
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús
establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso
establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set
by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en

“icasthesis-template” — 2016/9/6 — 15:28 — page i — #1

Departament de Microelectrònica i Sistemes Electrònics

Automatic Source Code
Adaptation for

Heterogeneous Platforms
Albert Saà-Garriga

Memòria de Tesi
presentada per optar al títol de

Doctor en Informàtica

September 2016

“icasthesis-template” — 2016/9/6 — 15:28 — page ii — #2

“icasthesis-template” — 2016/9/6 — 15:28 — page iii — #3

Dr. Jordi Carrabina, Professor Titular del Departament de Microelectrònica i Sis-
temes Electrònics, Dr. David Castells-Rufas, Professor Associat del Departament
de Microelectrònica i Sistemes Electrònics

Certifiquen

que la Memòria de Tesi Automatic Source Code Adaptation for Heterogeneous Plat-
forms presentada per Albert Saà-Garriga per optar al títol de Doctor en Informà-
tica s’ha realitzat sota la seva direcció i ha estat tutoritzada en el Departament de
Microelectrònica i Sistemes Electrònics de la Universitat Autònoma de Barcelona.

Directors Dr. Jordi Carrabina .

Dr. David Castells-Rufas .

. , a de de

c©2016 Albert Saà Garriga
Some Rights Reserved. This work is licensed under a Creative Commons Attribution-
ShareAlike 4.0 International License.

“icasthesis-template” — 2016/9/6 — 15:28 — page iv — #4

“icasthesis-template” — 2016/9/6 — 15:28 — page v — #5

Never send a human to do a machine’s job.
Agent Smith

v

“icasthesis-template” — 2016/9/6 — 15:28 — page vi — #6

“icasthesis-template” — 2016/9/6 — 15:28 — page vii — #7

vii

“icasthesis-template” — 2016/9/6 — 15:28 — page viii — #8

Resum
La fi de l’increment de la freqüència de rellotge com a forma més fàcil de millorar el
rendiment dels sistemes de computació, junt amb una creixent escletxa entre la ve-
locitat d’accés a CPU i la memòria, així com l’increment en la intensitat aritmètica
dels problemes que resol lacomunitat de Computació amb Altes Prestacions (HPC),
ha donat a llum a una nova gama de arquitectures computacionals heterogènies que
pretenen conduir a una important millora del rendiment.

Els processadores amb molts nuclis (many-cores), ja siguin homogenis o heterogenis
respecte el sistema central de comput són una de les sol.lucions mes esteses per a
intentar arribar a les prestacions requerides. No obstant això, la comple xitat
d’aquestes noves arquitectures no es pot ocultar fàcilment al programador, i això
dificulta la seva aplicació. En aquesta tesi proposo un conjunt d’eines que busquen
facilitar la creació de codi que permeti l’aprofitament de les característiques de les
arquitectures paral.leles heterogenies a través de transformacions en el codi font,
amb l’objectiu de millorar el rendiment i al mateix temps incrementar l’eficiència
energètica de aplicacions originariament descrites amb codi seqüencial.

En aquesta tesis es presenta una metodologia i un entorn d’eines que facilita la
portabilitat d’un codi font seqüencial a la seva descripció en entorns de progra-
mació paral.lela, com OpenMP, MPI o HMPP. S’ha demostrat amb èxit que les
eines faciliten aquesta tasca mitjançant exemples que posen de relleu com es redu-
eix el temps dedicat per un programador per dur a terme aquesta transformació.
Com a primer pas en la paralelització del codi es mostra una eina que ens ajuda
a detectar dependències de dades en codi complexe. Un cop es detecta el parale-
lisme potencial, es pot anotar el codi amb pragmas OpenMP, però l’escalabilitat
d’aquesta solució està limitada al nombre de processadors del node de computació.
Es presenta l’eina OMP2MPI que mostra com generar automàticament codi MPI
a partir de OpenMP per poder escalar fàcilment a un nombre major de proces-
sadors. Per altre banda, l’eina OMP2HMPP permet transformar codi OpenMP
automàticament a codi HMPP, per a la seva execució en arquitectures GPU. A
partir d’exemples concrets, es pot veure com el sistema permet transformar un co-
di seqüencial en OpenMP primer, i posteriorment MPI per obtenir una acceleració
de 60× respecte el codi seqüencial. De manera semblant es demostra com es pot
transformar automaticament un codi sequencial a OpenMP primer, i posteriorment
en HMPP per obtenir una acceleració de 31× respecte al codi seqüencial i alhora
augmentar l’eficiència energètica en un factor 5,86×.

viii

“icasthesis-template” — 2016/9/6 — 15:28 — page ix — #9

Abstract
The demise of frequency scaling, which is the easiest way to improve computing
performance, in addition to the growing gap between CPU and memory speeds and
the increase in arithmetic intensity in current problems, has given rise to a new
range of devices created to improve performance. Heterogeneous Computing (HC),
and many-cores are examples of this new range of devices. However, the complexity
of these new hardware architectures is not easily hidden from the programmer. In
this thesis, I propose a set of tools that seek to exploit (through source-to-source
(S2S) compilers) the capabilities and peculiarities of parallel computing and HC to
speed up and increase the energy efficiency of originally sequential source code.

The proposed modular programs are implemented as a set of tools that help port
sequential source code to OpenMP, MPI, and HMPP, demonstrating how the in-
put code can effectively automatically be translated. Through a real-life example,
I show how the proposed dependency analysis tool trivializes the task of paral-
lelizing sequential code, breaking the first performance barrier. The OMP2MPI
experiments generate code that is more than 60× faster than its sequential version
and also faster than its original OpenMP code. The OMP2HMPP experiments ob-
tain an average speedup of 31× and average increase in energy efficiency of 5.86×.
Both tools were tested with OpenMP, obtaining successful results that demonstrate
the feasibility of using this set of tools for exploring HC.

ix

“icasthesis-template” — 2016/9/6 — 15:28 — page x — #10

“icasthesis-template” — 2016/9/6 — 15:28 — page xi — #11

Acknowledgements

I am grateful to David Castells-Rufas and Jordi Carrabina for the care with which
they reviewed this thesis as well as for conversations that clarified my thoughts on
this and other matters. Their friendship and professional collaboration has meant
a great deal to me. Thank you to all my family, specially to my parents because I
am you. Toño, I know that you walk beside me every day and, Neus, thank you for
being my compass and the spiritual support at critical and opportune times. To
Marta, because you are my peace and my smile, you are the song that I want to
hear every day, for all the time spent helping me yet being my sunshine. To Arturo,
Cesc, Toni, and Miguel for all the shared lunches which gave me the energy to follow
my research, the reviews of the final thesis proposal, and also for the comments
that encouraged me to revise and improve it.

xi

“icasthesis-template” — 2016/9/6 — 15:28 — page xii — #12

“icasthesis-template” — 2016/9/6 — 15:28 — page xiii — #13

Contents

1 Introduction 1

1.1 Motivation . 8

1.2 Objectives . 9

1.3 State-of-the-Art Technologies . 11

1.3.1 Compilers . 11

1.3.2 Transformations . 13

2 Visualizing Data Access Patterns 17

2.1 Automatic Instrumentation . 19

2.1.1 Results . 20

2.2 Execution . 21

2.3 Data Analysis . 21

2.4 Visualization . 23

2.5 Case Study: Triangular Matrix–Matrix Multiplication 23

2.6 Concluding Remarks . 26

xiii

“icasthesis-template” — 2016/9/6 — 15:28 — page xiv — #14

3 OpenMP to HMPP (OMP2HMPP) 29

3.1 Hybrid Multicore Parallel Programming (HMPP) Directives 31

3.2 Source-to-Source Compiler (S2S) Transformations 32

3.2.1 Outline Phase . 32

3.2.2 Inline Phase . 41

3.3 Results . 42

3.4 Concluding Remarks . 47

4 OpenMP to MPI (OMP2MPI) 63

4.1 Abstract Syntax Tree (AST) Manipulation 64

4.1.1 Task Distribution . 68

4.1.2 Context Analysis . 68

4.1.3 Loop Analysis . 69

4.1.4 Workload Distribution . 72

4.2 Results . 76

4.3 Concluding Remarks . 78

5 Integrated Modular System 91

6 Conclusions 97

6.1 Open Research . 98

xiv

“icasthesis-template” — 2016/9/6 — 15:28 — page xv — #15

List of Figures

1.1 Growth in processor performance since the late 1970s. Source: [1] . . 2

1.2 Power density wall. Source: S. Borkar (Intel) 3

1.3 Performance gap, measured as the difference in time between proces-
sor memory request (for a single processor or core) and the latency of
the DRAM access, over time using 1980 performance as a baseline.
Source: [1] . 3

1.4 Moore’s 1965 prediction that the number of “minimum cost“ com-
ponents on a chip would double each year, based on historical data
and extrapolated to 1975. Source [2] 4

1.5 Paralleled tasks using OpenMP blocks. Source: [3] 5

1.6 Paralleled task using distributed memory architecture. Source: [3] . 6

1.7 List of objectives for each of the three S2S compilers (Access Pattern,
OMP2MPI, and OMP2HMPP) . 10

2.1 Caption for LOF1 . 24

2.2 Caption for LOF2 . 25

2.3 Caption for LOF3 . 27

2.4 TRMM problem speedup . 27

xv

“icasthesis-template” — 2016/9/6 — 15:28 — page xvi — #16

3.1 S2S transformation process. 32

3.2 S2S transformation workflow. 34

3.3 Example of the location and explanation of new directives. 35

3.4 FIXED directive flags explanation 36

3.5 Context example . 37

3.6 Delegate store directive optimization. Variables are downloaded as
far as possible from the kernel finish, next to the first CPU read. . . 38

3.7 Delegate store directive optimization. Variables are downloaded
when the kernel finishes. 38

3.8 Advanced load directive optimization. Variables are loaded as close
as possible to the last CPU write. 39

3.9 Advanced load directive optimization. Variables are loaded when
the kernel is invoked. 39

3.10 Example of data transfer in loops . 40

3.11 Example of data transfer in loops 41

3.12 Asynchronous and synchronous differences in a codelet call. 42

3.13 GOPS/W. Problem subset of the Polybench benchmark. (1/3) . . . 43

3.14 GOPS/W. Problem subset of the Polybench benchmark. (2/3) . . . 44

3.15 GOPS/W. Problem subset of the Polybench benchmark. (3/3) . . . 45

3.16 Speedup Comparison. Problem subset of the Polybench benchmark. 47

3.17 Energy/Time trade-off. Problem subset of the Polybench bench-
mark. (1/5) . 48

3.18 Energy/Time trade-off. Problem subset of the Polybench bench-
mark. (2/5) . 49

3.19 Energy/Time trade-off. Problem subset of the Polybench bench-
mark. (3/5) . 50

3.20 Energy/Time trade-off. Problem subset of the Polybench bench-
mark. (4/5) . 59

3.21 Energy/Time trade-off. Problem subset of the Polybench bench-
mark. (5/5) . 60

xvi

“icasthesis-template” — 2016/9/6 — 15:28 — page xvii — #17

4.1 Example memory access pattern of an OpenMP application. Threads
directly access the shared memory. Blue lines represent read opera-
tions and red lines represent write operations. 65

4.2 Example proposed memory access pattern for shared variables in
MPI target applications. Access to shared variables is managed by
the master node, and worker processes must communicate with it
to access them. Blue lines represent read operations, and red lines
represent write operations. 66

4.3 Illustration of the shared memory access method. Red lines represent
read operations and green lines represent write operations. 67

4.4 AST manipulation process performed by OMP2MPI (grey boxes)
surrounded by reused Mercurium framework blocks(grey boxes). . . 68

4.5 Example of the loop normalization process. 72

4.6 Index accesses knowledge at compilation time. 73

4.7 Profile analysis for automatically generated MPI versions of the
problem shown in Table 4.1 with 10 rows and columns in Figures 4.7b
and 4.7c and 300 in the rest. Yellow, dark blue, red, and blue text
indicate MPI_Recv functions, MPI_Send functions, MPI_Init and
MPI_Finalize functions, and variable initialization, respectively. Some
figures show a portion of the whole process for clarity. 80

4.8 Profile analysis for automatically generated MPI versions of the
problem shown in Table 4.1 with 300 rows and columns. Yellow, dark
blue, red, and blue text indicates MPI_Recv functions, MPI_Send
Functions, MPI_Init and MPI_Finalize functions, and init_array,
respectively. 81

4.9 Workload distribution . 82

4.10 Speedup obtained for the sequential test problems using 16, 32, and
64 processors. Purple lines represent OpenMP speedup, and blue
lines showMPI speedup. The green and red lines represents the same
problem when dividing the slave block size by 2 and 4, respectively. . 83

4.11 Speedup obtained for the sequential test problems using 16, 32, and
64 processors. Purple lines represent OpenMP speedup, and blue
lines show MPI speedup. Green and red lines show the same problem
executed using the maximum number of available processors but
different slave block sizes. (1/6) . 84

xvii

“icasthesis-template” — 2016/9/6 — 15:28 — page xviii — #18

4.12 Speedup obtained for the sequential test problems using 16, 32, and
64 processors. Purple lines represent OpenMP speedup, and blue
lines show MPI speedup. Green and red lines show the same problem
executed using the maximum number of available processors but
different slave block sizes. (2/6) . 85

4.13 Speedup obtained for the sequential test problems using 16, 32, and
64 processors. Purple lines represent OpenMP speedup, and blue
lines show MPI speedup. Green and red lines show the same problem
executed using the maximum number of available processors but
different slave block sizes. (3/6) . 86

4.14 Speedup obtained for the sequential test problems using 16, 32, and
64 processors. Purple lines represent OpenMP speedup, and blue
lines show MPI speedup. Green and red lines show the same problem
executed using the maximum number of available processors but
different slave block sizes. (4/6) . 87

4.15 Speedup obtained for the sequential test problems using 16, 32, and
64 processors. Purple lines represent OpenMP speedup, and blue
lines show MPI speedup. Green and red lines show the same problem
executed using the maximum number of available processors but
different slave block sizes. (5/6) . 88

4.16 Speedup obtained for the sequential test problems using 16, 32, and
64 processors. Purple lines represent OpenMP speedup, and blue
lines show MPI speedup. Green and red lines show the same problem
executed using the maximum number of available processors but
different slaves block sizes . (6/6) . 89

5.1 Speedup obtained for the sequential test problems using 16, 32, and
64 processors. The OpenMP blocks of the TRMM problem are
solved using an OpenMP and MPI combination or hybrid model. . . 93

5.2 Speedup obtained for the sequential test problems using 16, 32, and
64 processors. The OpenMP blocks of the TRMM problem are
solved using an OpenMP and MPI combination or hybrid model. . . 93

5.3 Speedup obtained for the sequential test problems and the hybrid
model of the same problem using 16, 32, and 64 processors. 96

xviii

“icasthesis-template” — 2016/9/6 — 15:28 — page xix — #19

List of Tables

2.1 Simple C parallelizable source code 18

2.2 Simple C non-parallelizable source code 18

2.3 Input code . 21

2.4 Transformed code . 22

2.5 TRMM original code . 26

2.6 TRMM rectified source code . 26

3.1 Example of an OMP2HMPP S2S transformation process using a
simple code as input. 33

3.2 Different OMP2HMPP transformations on each of the OpenMP par-
allel for pragmas inside an OpenMP parallel block. 52

3.3 Example of variable access inside the kernel, as distinguished by
OMP2HMPP, which determines if these variables are read or modi-
fied inside it. 53

3.4 Example of grid division, as determined by OMP2HMPP using the
hmppcg gridify directive. This example transformation shows an
OpenMP block that contains an OpenMP reduction directive. 54

3.5 Example of OMP2HMPP use of contextual analysis. 55

xix

“icasthesis-template” — 2016/9/6 — 15:28 — page xx — #20

3.6 Example of contextual analysis with the noupdate directive. 56

3.7 OMP2HMPP transformation. Data transfer between the GPU and
CPU is decreased by using the HMPP noupdate directive. 57

3.8 Inline transformation. 58

3.9 Example OMP2HMPP CSV spreadsheet output for Jacobi imple-
mentation. 61

4.1 OpenMP block source code example using the created target clause. 64

4.2 Automatically generated Message Passing Interface (MPI) source
code with expanded slave code. OMP2MPI automatically groups
accesses into read/write requests with conditional range updates.
(1/2) . 70

4.3 Automatically generated MPI source code with expanded slave code.
OMP2MPI automatically groups accesses into read/write requests
with conditional range updates. (2/2) 71

4.4 Automatically generated MPI source code with expanded master
code. (1/2) . 75

4.5 Automatically generated MPI source code with expanded master
code. (2/2) . 76

4.6 Automatically generated MPI source code with expanded slave code.
Each access to a variable implies a request to the master process. . . 77

5.1 Slave source code. Hybrid MPI + OpenMP 92

5.2 Automatically generated OpenMP + MPI source code with HMPP
kernels using the proposed tools. (1/2) 94

5.3 Automatically generated OpenMP + MPI source code with HMPP
kernels using the proposed tools. (2/2) 95

xx

“icasthesis-template” — 2016/9/6 — 15:28 — page xxi — #21

List of Acronyms

HPC High-Performance Computing . 1

GPGPU General Propose Units for Graphic Processing Unit 7

GPU Graphic Processing Unit . 7

MPI Message Passing Interface . xx

OpenMP Open Multi-Processing . 4

CUDA Compute Unified Device Architecture . 7

OMP2MPI OpenMP to MPI . xiv

OMP2HMPP OpenMP to HMPP. xiv

HMPP Hybrid Multicore Parallel Programming . xiv

xxi

“icasthesis-template” — 2016/9/6 — 15:28 — page xxii — #22

NoC Network on Chip . 7

MPSoC Multi-Processor System on Chip . 7

CPU Central Processing Unit . 1

FPGA Field Programmable Gate Array . 8

LLVM Low Level Virtual Machine . 12

SDSM Software Distributed Shared Memory Architectures 15

AST Abstract Syntax Tree . xiv

S2S Source-to-Source Compiler . xiv

RPC Remote Procedure Call . 29

GOPS Giga Operations per Second . 47

TRMM Triangular Matrix Matrix Multiplication . 24

WTAG Write Tag . 73

SWTAG Secure Write Tag. .73

RTAG Read Tag . 73

FWTAG Full Write Tag . 74

FRTAG Full Read Tag . 74

xxii

“icasthesis-template” — 2016/9/6 — 15:28 — page xxiii — #23

IN Input Variables . 68

OUT Output Variables. .69

INOUT Input Output Variables . 69

DSIP Domain Specific Instruction-Set Processors . 8

ASIP Application Specific Instruction-Set Processors . 8

MCAPI Multicore Communications API . 8

HC Heterogeneous Computing . ix

CSV Comma-Separated Values . 42

OpenCL Open Computing Language. .8

OpenACC Open Accelerators .7

CTM Close To Metal . 7

API Application Programming Interfaces .99

HWA Hardware Accelerator. .31

COBOL Common Business-Oriented Language . 11

CST Concrete Syntax Tree . 12

SIMD Single Instruction Multiple Data . 4

xxiii

“icasthesis-template” — 2016/9/6 — 15:28 — page xxiv — #24

“icasthesis-template” — 2016/9/6 — 15:28 — page 1 — #25

Introduction 1

Over the years, the High-Performance Computing (HPC) community has tried
to increase computer performance and overcome all the problems found in the
computing process (Figure 1.1).

Some years ago, digital microelectronics circuits reached the frequency scaling limit.
An increment in frequency leads to an increment in power density (in W/cm2

according to Equation 1.1) that, in the early 2000s, reached a limit equivalent
to the power density found in a nuclear reactor. This power dissipation problem
made it impossible to continue to increment the frequency and limited computing
performance, as shown in Figure 1.2.

P = C × V 2 × F. (1.1)

Another problem is the continuously growing gap between Central Processing Unit
(CPU) and memory speeds, as illustrated in Figure 1.3. This has been an important
disadvantage for overall computer performance, as sometimes a processor is forced
to stall while waiting for a memory operation to complete.

Finally, another important performance hurdle is the continuous increment in arith-
metic intensity. Arithmetic intensity is defined as the number of floating-point op-
erations needed to run a program divided by the number of bytes accessed in main
memory [4]. Arithmetic intensity is found in recently proposed problems, which are
more complex than old ones, but can be introduced into old problems by scaling
the problem size.

The HPC community is attempting to overcome these problems by implementing
new strategies that increase performance. At the same time, they continue to
keep Moore’s Law [5] relevant by proposing new architectures that are able to
surpass the limitations of conventional systems. Moore’s law is a self-fulfilling

1

“icasthesis-template” — 2016/9/6 — 15:28 — page 2 — #26

2 CHAPTER 1. INTRODUCTION

Figure 1.1 Growth in processor performance since the late 1970s.
Source: [1]

prophecy that states that, over the history of computing hardware, the number of
transistors in a dense integrated circuit doubles approximately every two years, as
illustrated in Figure 1.4. Initially, it was proposed in the form of an observation
and forecast. Since it has become widely accepted, it has been converted into a
goal for the entire industry. Moore’s Law, even with some pessimistic predictions,
is still relevant. The aforementioned issues do not affect it, and the number of
transistors is still doubled every 18 to 24 months.

Nonetheless, the HPC community has noted that with the end of frequency scal-
ing, these transistors can no longer be used to increase frequency scaling, but
can be used to add extra hardware, such as additional cores, to facilitate parallel
computing. The clock frequencies of leading processors are now saturated, and ar-
chitectural innovations are expected to keep raising the overall performance, such
as via multi-core processing, which uses various cores to provide performance gains.
This allows computing density to continue to double while reducing per-processor
power consumption and heat.

In this context, parallel programming has become a necessary tool provided by
the HPC community. However, parallel programming is complex for a variety of
reasons. Applications are now no longer sequentially executed but divided into a
more complex map composed of parallelizations. Further, parallel programs need
to communicate among processors in order to coordinate certain tasks.

Parallel applications can be written using a variety of parallel programming paradigms,
i.e., message passing, shared memory, parallel data, bulk synchronous parallel data,
and mixed-modes. There are two de-facto standards for programing parallel code.

“icasthesis-template” — 2016/9/6 — 15:28 — page 3 — #27

3

Figure 1.2 Power density wall. Source: S. Borkar (Intel)

Figure 1.3 Performance gap, measured as the difference in time be-
tween processor memory request (for a single processor or
core) and the latency of the DRAM access, over time using
1980 performance as a baseline. Source: [1]

“icasthesis-template” — 2016/9/6 — 15:28 — page 4 — #28

4 CHAPTER 1. INTRODUCTION

Figure 1.4 Moore’s 1965 prediction that the number of “minimum
cost“ components on a chip would double each year, based
on historical data and extrapolated to 1975. Source [2]

The first, MPI, advocates explicitly embedding communication primitives in the
source code, making it difficult to read and maintain. The other, Open Multi-
Processing (OpenMP), advocates a pragma-based approach that makes the com-
piler responsible for the efficient parallelism of the application through the use of
a set of task division directives, as illustrated in Figure 1.5.

OpenMP version 2.0 primarily specifies ways to parallelize highly regular loops
by using directives (shuch as parallel, do, section) that allow defining the blocks
that have to be parallelized as well as the scope of the variables (either private or
shared) of the variables inside these blocks. The standard offers other directives to
define synchronization in a finer grain (such as critical, atomic) and includes some
run-time functions that help implementing the necessary control of typical parallel
program (like omp_set_num_threads, omp_get_threads_num).

Version 3.0 included more control with new directives, including the concept of
tasks and task constructs. Version 4.0 includes support for accelerators, atomics,
error handling, thread affinity, tasking extensions, user defined reduction, and
Single Instruction Multiple Data (SIMD) support. One of the strengths of the
OpenMP paradigm is the simplicity of its programming model. In this paradigm,
the invocation of communication primitives are hidden from the programmer, as
they are implicitly introduced by compilation directives working in conjunction
with OpenMP at run-time. However, its use is usually limited to shared memory
systems. Large HPC systems (such as the ones in the top 500 list) are often
created by replicating nodes that contain some memory and a number of sockets

“icasthesis-template” — 2016/9/6 — 15:28 — page 5 — #29

5

Figure 1.5 Paralleled tasks using OpenMP blocks. Source: [3]

with multi-core processors or accelerators that can access that memory. Memory
on remote nodes is not usually visible in the address space of applications running
on one node. This makes OpenMP limited to the node domain. Thus, OpenMP
applications are difficult to scale to a larger number of nodes (and cores) without
introducing other paradigms such as MPI.

There are run-times that can overcome this limitation, usually by implementing
software distributed shared memory (SDSM). They are also transparent to the
programmer and, consequently, do not allow any fine tuning that could be needed
to better adapt to the potential to different contexts. Moreover, they cannot be
generally applied to all distributed memory platforms.

In contrast, MPI is a de-facto standard commonly used for large HPC applications.
In this paradigm, the communication primitives must be explicitly coded. Intro-
ducing the communication primitives to implement the cooperation patterns makes
the code larger and more difficult to read and understand. Obviously, it is more
complex to learn because there are many functions, including point-to-point com-
munication primitives as well as collective communication primitives. This coding
effort is justified if it is needed for the execution of thousands of cores. MPI allows
cores on different nodes to communicate. One might think that this introduces
more performance overheads at the node level than OpenMP. However, this is a
controversial issue with no clear answer, as shown in [6, 7]. Several versions have
been presented since it was first published. Version 1.3 (commonly referred to as
MPI-1) emphasizes message passing and has a static runtime environment. The
following version, MPI-2.2 (MPI-2), includes new features such as parallel I/O,
dynamic process management, and remote memory operations. The most recent

“icasthesis-template” — 2016/9/6 — 15:28 — page 6 — #30

6 CHAPTER 1. INTRODUCTION

Figure 1.6 Paralleled task using distributed memory architecture.
Source: [3]

version, MPI-3.1 (MPI-3), includes extensions to the collective operations with non-
blocking versions and extensions to one-sided operations1. Adoption of MPI-1.2
has been more extended during last years, essentially in HPC, but MPI-2.1 have
been less repercusion and acceptance. We can see that many of the applications
implemented using MPI-1.2 are using just a small subset of that standard, which
has mean that there has been notreal need to add MPI-2 functionalities. The basic
MPI functions (the complete set of functions can be found in [8]) and subroutines
needed to divide tasks as illustrated in Figure 1.6. These can be divided in 4 main
subsets: 1) Initialization and finalization functions to control the program flow,
2) Functions that define or report the logical topology of the distributed system
(number of available slaves and execution IDs), 3) Data transference functions,
dedicated to distribute data necessary for computation among the different nodes
either synchronously or asynchronously . 4) Functions that control the communi-
cation process, to support, for instance the asynchronous operations (wait, test).

Another option that the HPC community uses to overcome frequency scaling, mem-
ory gap, and arithmetic complexity growth problems is to specialize processors for
particular tasks, thus creating HC architectures. In those, specialized processors
and conventional multi-cores will work together. Heterogeneous architectures have
been presented as an architectural solution to all possible scenarios, and high-
performance computers are increasingly based on HC architectures. The special-
ization of computational units and the adoption of different models of computation
in various nodes increase system performance and energy efficiency.

1Summary extracted from:https://en.wikipedia.org/wiki/Message_Passing_Interface.

https://en.wikipedia.org/wiki/Message_Passing_Interface

“icasthesis-template” — 2016/9/6 — 15:28 — page 7 — #31

7

One example of these target architectures is the General Propose Units for Graphic
Processing Unit (GPGPU). GPGPUs were proposed as promising vehicles for
general purpose HPC and have become a popular part of such HC architectures
because they obtain better speedup than parallel CPU versions in many cases.
Accelerators such as NVIDIA Graphic Processing Unit (GPU) and Intel Xeon Phi
are gaining market share: a 2013 survey found that 26% of systems have one or
more accelerators installed [9].

HC allows a huge range of processing elements to be deployed in a single workflow
and, at the same time, the platform that best fits each combination of elements
can be selected. HC is different from network computing or high-performance dis-
tributed computing. However, even when MPI-based network computing is con-
sidered in order to exploit non-shared memory architectures such as distributed
computing clusters, network computing can also be applied to HC because it can
contain structures such as Network on Chip (NoC)-based or Multi-Processor Sys-
tem on Chip (MPSoC), as demonstrated in [10].

The OpenMP and MPI paradigms for parallel computing significantly increase
the performance of a sequential application. The use of specialized processors on
GPGPUs has been shown to achieve speedups of up to 100× those of conventional
microprocessor architectures. Nevertheless, not all problems achieve the same per-
formance increase, because any specific processor solution will be optimal for all
kinds of computations.

There are two main barriers to HC use that might affect its wider adoption.
First, the programming complexity required to distribute workloads across mul-
tiple processors is even more complex than in parallel computing. For example, for
GPGPUs, a user must choose from a large number of alternatives proposed by the
community, i.e., Compute Unified Device Architecture (CUDA) [11], HMPP [12,
13], RapidMind [14], Open Accelerators (OpenACC) [15], PeakStream [16], and
Close To Metal (CTM) [17]. Even with these resources, programming a GPGPU is
still complex compared to programming general-purpose CPUs, even when parallel
programming models such as OpenMP [3] are used. This hurdle is combined with
the additional effort needed to combine different kinds of processors. Neither issue
is negligible. The potential advantages that an HC or parallel computing approach
can provide have to be weighed against the cost and resources required to overcome
them.

These complex and diverse scenarios open the door to new programming strategies
that address them and ease the programming of emerging HC systems for non-
experts. These new strategies will also be useful for expert programmers to reduce
the time needed for testing and selecting the best method for performance and thus
fully exploiting the capabilities of HC architectures. It is therefore essential for

“icasthesis-template” — 2016/9/6 — 15:28 — page 8 — #32

8 CHAPTER 1. INTRODUCTION

computer system researchers to facilitate these tasks. Researchers must offer new
programming methods and tools to tightly integrate disparate computing elements
on a platform with specialized processors while providing a programming path that
does not require fundamental changes for software developers[18].

1.1 Motivation

Now that frequency scaling is no longer an easy way to improve computing perfor-
mance, a new range of devices that exploit parallelism to drive performance have
emerged. GPGPUs, and Many-Cores are examples of this new range of devices.
However, the complexity of these new hardware architectures is not easily hidden
from the programmer. To overcome this situation, many alternatives have been
proposed, such as concurrent programming languages (e.g., Cilk and OCCAM), or
extensions to existing languages (e.g., OpenMP [3], MPI [19], CUDA, Multicore
Communications API (MCAPI), and [20]).

Parallel programming is not new. The HPC community has been active for a long
time and usually works with a couple de-facto standards: MPI and OpenMP. The
learning curve for new languages is usually steep, and it is desirable for legacy code
to be executed on new platforms to take advantage of new capabilities.

The main motivation of this thesis is to ease the learning curve of parallel program-
ming and HC architectures for the programmer. My strategy consists of letting
users program in high-level C source code and provide some tools to refactor (or
translate) the code into another form so that it can benefit from the specifics of
the target architectures. The proposed tools fall into the category of S2S transfor-
mations, and are hence only a part of the compilation chain. Hence, they are com-
plemented by standard front-end and back-end compilation tools. The expected
benefits from these transformations are (1) better performance and (2) lower energy
consumption.

Different types of parallelism can be exploited by this method depending on the
targeted hardware architecture. For GPGPUs, source code transformations gen-
erally create kernels that have to be executed on the graphics accelerator. For
homogeneous many-core accelerators (such as the Intel Xeon-Phi), we can combine
different programming languages, models, and tools supporting Intel Architecture
such as OpenMP, MPI, MCAPI, Open Computing Language (OpenCL), and Cilk.
We also consider Application Specific Instruction-Set Processors (ASIP) or Domain
Specific Instruction-Set Processors (DSIP). Related transformations can detect the
instruction patterns for which the processors have been optimized and ensure that
they are used. For devices such as Field Programmable Gate Array (FPGA) we

“icasthesis-template” — 2016/9/6 — 15:28 — page 9 — #33

1.2. OBJECTIVES 9

consider HC that combines soft-core processors and custom logic so that the trans-
formation uses custom logic as much as possible.

1.2 Objectives

The HPC community is addressing the abovementioned needs by creating new
strategies to increase performance using HPC architectures that can work around
the limitations of conventional systems. This thesis reviews the proposed methods
and focuses on facilitating the task to fully exploit the capabilities of HC architec-
ture and parallel computation paradigms.

The main objective of this thesis is to efficiently orchestrate the distribution of
computing tasks and loads on accelerator and HC platforms by providing a diverse
suite of tools. These tools allow solutions to be obtained with close-to-optimal
performance for certain tasks, such as diverse algebraic level-3 applications, even
when they are inherently different.

Because the current number of available target platforms is large, the scope of this
research is limited to a representative subset: (1) parallel programming on shared
memory architectures using OpenMP, (2) distributed memory architectures using
MPI, and (3) HC using both CPUs and GPGPUs. A modular approach is used to
build each of these three platforms. This modularity provides better adaptability
to future input/output programming languages in a domain that is not yet stable.

The main idea is to build a set of tools that demonstrates the viability of automat-
ically refactoring high-level C source code into the target programming languages.
The proposed workflow is described in Figure 1.7.

OpenMP is defined as the common factor for all transformations because I consider
it to be the simplest way to describe a parallel program while maintaining the struc-
ture of the sequential source code. OpenMP allows OMP2MPI and OMP2HMPP
tools to work with the same input code. These tools generate new code that can
be analyzed by time or an energy/time trade-off, if the target system is able to
measure it. The code generated by these compilers for any selected architecture
leads to more efficient implementations on heterogeneous platforms.

To reach this goal, the first step is to understand the differences between sequential
and parallel code, especially to detect which parts of a sequential program can
be parallelized without modifying the final result. These parts are mainly loops
because the instructions inside them are repeated as sequential executions and
therefore are fair candidates for large performance gains when distributed.

It is easier to determine whether simple (that is easy to understand) code can

“icasthesis-template” — 2016/9/6 — 15:28 — page 10 — #34

10 CHAPTER 1. INTRODUCTION

Figure 1.7 List of objectives for each of the three S2S compilers (Ac-
cess Pattern, OMP2MPI, and OMP2HMPP)

be safely parallelized. However, determining this for more complex code that can
include conditional clauses and function calls is not as easy. One of the fundamental
roadblocks to parallelization is data dependency. When an operation depends on
data that has to be previously computed, the execution of the operation has to be
delayed until operands are available. Inter-dependencies between variables are very
common in procedural programming languages, which were conceived for sequential
execution such as C/C++, Java, and many others. The proposed tool facilitates
the detection these data dependencies and illustrates them in order to clarify how
the initial source code can be parallelized.

Once we have parallel code written in OpenMP, I offer two different tools that
generate code able to fully exploit the capabilities of HC architecture, including
parallel computation. The first focuses on GPGPUs. This new tool(OMP2HMPP)
helps generate code for GPGPUs and combine it with CPU parallel code written
using OpenMP.

In contrast, I also extend the use of parallel programming to distributed memory
architectures through the use of MPI. I offer a tool that transforms OpenMP source
code into MPI source code. The resulting code is able to execute in different kinds
of DM systems, such as large HPC clusters or experimental distributed memory
processors such as Intel Polaris, Ambric, or experimental FPGA based multi-soft-
cores (such as [21]). Another potential use is to check if there is any performance
gain when using MPI for coding a given application on the same shared memory
platform or when combining it with OpenMP.

“icasthesis-template” — 2016/9/6 — 15:28 — page 11 — #35

1.3. STATE-OF-THE-ART TECHNOLOGIES 11

1.3 State-of-the-Art Technologies

As described in Section 1.2, this thesis proposes a new tool chain composed of
three different modules. These modules are implemented as S2S compilers that
transform sequential C/C++ source code so that it works in a different pro-
gramming paradigm, i.e., parallel programming either on shared memory archi-
tectures, distributed memory architectures, or heterogeneous architectures that
include GPGPUs.

1.3.1 Compilers

For many years, assembly code was the way to program code for computers. Each
program was specific to a determined task and dependent on the kind of CPU
used. With the invention of compilers, programmers where allowed to reuse their
software on a variety of CPUs. These compilers became essentials in the process
of software implementation. Hopper developed the first compiler, which was de-
voted to the A-0 programming language, in 1952. With that machine-independent
programming languages adoption was extended, leading to the birth of Common
Business-Oriented Language (COBOL), which is considered one of the first high-
level programming languages.

However, although the most common reasons for compilers since then is to trans-
form source code into a binary form to create an executable program or generate
assembly language or machine code to produce a binary form, this thesis is mainly
based on compilers that are not dedicated to this task. The extended meaning of
compilers as used in the proposed tools is as a specific type of translator. This
meaning encompasses the meaning of the original compilers as well.

There are six main extended operations in a compilation procedure: lexical anal-
ysis, preprocessing, parsing, semantic analysis (syntax-directed translation), code
generation, and code optimization. More abstractly, compilation occurs in two
phases. The first one (front-end), is dedicated to analyzing the correctness of the
input code by breaking it into abstract symbols that represent lexical units (to-
kens). Analyzing these tokens, which must be ordered as the compiler expects,
follows the description of the form that is defined for all corresponding different se-
quences of characters. This defines the nodes and allows semantic analysis. There
are different intermediate representations of code: semantic graphs, control flow
graphs, or the AST. The AST has control of the symbol table, which defines where
any symbol in the source code is mapped including contextual information as the
type, scope or location. The next step, the semantic analysis, is by definition more
complex since it took the tokens as a group, generating sentences that have to

“icasthesis-template” — 2016/9/6 — 15:28 — page 12 — #36

12 CHAPTER 1. INTRODUCTION

mean together, it is normally hand written, even that in some cases can be par-
tially or fully automated by the definition of productors of attribute grammars that
encapsulate the possible group formations. We can subdivide the explained phases
in subgroups: 1) lexing, that will allow scan and evaluation, 2) parsing, generate
the Concrete Syntax Tree (CST), that are concrete being easy to generate and
represent the input as a tree but are difficult to analyse, and 3) transforming, that
translate it to an AST, more abstract, represents in a hierarchical data structure
all the syntactic clutter, allowing more easy understanding for further analysis and
translation stages.

This thesis focuses on understanding and modifying the AST. The AST represents
the source code hierarchically as a tree of nodes that includes constants or variables
(leaves) and operators or statements (inner nodes). A simple representation of a
structure of the AST is shown in Figure 3.11. The AST is often used to generate
the intermediate representation, also called an intermediate language, for the code
generation. These intermediate languages enable the second phase of a compiler,
the optimizations. We can describe many kinds of optimizations at this point,
removal of useless or unreachable code, localization and propagation of constant
values, relocation of computation to a less frequently executed place (e.g., out of
a loop), or specialization of computation based on the context, are part of these.
Finally, the code generation is optimized for a target system.

The number of phases used in a certain compiler allows us to classify them in
different categories. We can think then, in different front ends for different lan-
guages combined back ends oriented to various CPUs, thanks to the separation
of these phases. The extended GNU Compiler Collection, or the more new Low
Level Virtual Machine (LLVM), are an example in which we can find this combi-
nations. Those compilers combine multiple front-ends and multiple back-ends but
they share analysis stage.

We jump over the complexity of parsing the syntaxes and semantics of the input
source code and focuses on the S2S compilers or transcompilers. In this kind
of compiler, either the input or output will be a high-level language. For S2S
compiler infrastructure, there are many possible solutions, such as LLVM [22], PIPS
[23], Cetus [24], ROSE [25], and Mercurium [26]. Mercurium supports C/C++
source code, which is the main reason it was chosen. As stated in [27], which
describes most problems that can be found when parsing C++, this is not an easy
task. Using the Mercurium infrastructure allows focus to remain on the creation
of the S2S compilers by offering a friendly abstract representation through its
intermediate representation (AST). AST provides easy access to the source code
structure representation, the table of symbols, and the context of their context
using a well-documented API that allows it to be further extended.

“icasthesis-template” — 2016/9/6 — 15:28 — page 13 — #37

1.3. STATE-OF-THE-ART TECHNOLOGIES 13

With access to the AST, implemented S2S compilers are able to modify it by adding
new semantically correct trees while maintaining tree consistency. Our compilers
are based on the premise of find and replace or reformulation. The compilers are
able to find patterns, understand how they are used, and then generate code that
works in the target architecture. One of the earliest S2S compilers was by Digital
Research XLT86 in 1981. In this case, the compiler was able to transform .ASM
code originally designed for the Intel 8080 processor into .A86 source code for the
Intel 8086. There are other actual target-specific examples, such as CFRONT
(C++ to C) and HIPHOP for PHP (PHP to C++), and others that are able to
transform code to more than one target, such as LLVM [22], which can translate
any language sported by gcc 4.2.1 to ADA, C, C++, Fortran, Java, Objective-C
or Objective-C++, or from clang to C, C++, or MSIL.

The proposed S2S compilers are a part of the second subset running on top of the
Mercurium platform. As explained in [28], this platform has been mainly used in
the Nanos environment to implement OpenMP, but because it is quite extensible,
it has also been used to implement other programming models or compiler transfor-
mations. Extending Mercurium is done using a plugin architecture, where plugins
represent several phases of the compiler. These plugins are written in C++ and
dynamically loaded by the compiler according to the selected configuration. Code
transformations are implemented on the source code so that there is no need to
know or modify the internal syntactic representation of the compiler.

1.3.2 Transformations

As was explained in [29], to fully utilize the power of heterogeneous machines or
parallel programming paradigms, programmers must efficiently parallelize and map
their applications. This task is far from trivial, leading to the need to automate this
process. Automatically transforming sequential code into parallelized code is more
feasible on a shared memory architecture. This process could be either partially
addressed by tools that analyze the code to exploit parallelism or a fully automated
process. Most of the proposed tools are of the first type, in which techniques are
built-in in some parallelizing compilers, but the user needs to identify parallelizable
code and mark it with special language constructs. This is also the case for the
tool proposed in this thesis. The compiler identifies these language constructs and
analyzes the marked code for parallelization. These parts tend to be loops.

“icasthesis-template” — 2016/9/6 — 15:28 — page 14 — #38

14 CHAPTER 1. INTRODUCTION

From sequential to parallel code (parallelizing compiler)

Most compilers built for automatic parallelization research consider Fortran pro-
grams [30, 31, 24, 32]. Fortran cannot produce aliasing when identifying data
dependency, in contrast to languages such as C and C++. Aliasing occurs when
a data location in memory can be accessed through different symbolic names in
the program. Thus, modifying the data through one name implicitly modifies the
values associated with all aliased names, which may not be expected by the pro-
grammer. As a result, aliasing makes it particularly difficult to determine the data
dependencies of a program. Aliasing analyzers try to compute information that
is useful for understanding aliasing in programs. Therefore, C/C++ is generally
difficult to analyze when pointers are involved. If there are further dependencies in
the identified code sections, the possibilities for parallelization decrease. Neverthe-
less, a few compilers take C as input source code and transform these to OpenMP.
One example is [33], which uses the parallelization methodology explained in [32]
and applies it to C source code or PLUTO [34]. In both cases, the user has to use
a set of new pragma directives defining the scope and mark the blocks of code that
should be analyzed for parallelization. That tool generates a naive OpenMP version
of the sequential source code when it detects loops that can be parallelized without
modifying their form. Nonetheless, it has the drawback that it only transforms
originally written C source code.

An experimental comparison using some of the tools mentioned above is presented
in [35]. The automation of the parallelization process is neither optimal nor ready
to become a widely adopted in practice, even for commercial compilers [36, 37],
because of the complexity of changing from sequential to parallel code. Most cases
require a more exhaustive analysis of the parts of the code with data dependencies
and their adaptations to the parallel programming paradigms. Further work is
needed to provide tools to programmers for the parallelization of sequential code.
These tools demonstrate the variable access patterns and theory of data depen-
dencies. Various examples are [38], [39], [40], and [41]. Examples of more complex
representation are those proposed in [22] or the polyhedral model that produces
graphics showing the dependency between iterations [42]. The main characteristic
of our tool is that it tries to keep the visualization simple and at the same time
analyze complex AST structures that could contain function calls that result in
context switching.

From shared to distributed memory

The second tool of this proposal is dedicated to generating parallel code for dis-
tributed memory architectures using MPI. This tool uses generated code to gen-

“icasthesis-template” — 2016/9/6 — 15:28 — page 15 — #39

1.3. STATE-OF-THE-ART TECHNOLOGIES 15

erate solutions that can be executed using distribute memory architectures. Code
can come from the access pattern and data dependency analysis extracted by the
previous tool or from the code of existing OpenMP implementations that will be
reused. Most projects that use OpenMP code for distributed memory architec-
ture rely on the use of a software layer to manage data placements on the nodes (
Software Distributed Shared Memory Architectures (SDSM) architectures). OMNI
OpenMP [43] and its optimization (proposed in [44, 45]) are examples of alterna-
tives to support OpenMP in a distributed memory environment using SDSM as
an underlying run-time system. Cluster-enabled OMNI OpenMP on SCASH is an
implementation of the OMNI OpenMP compiler for SDSM system SCASH running
under score cluster system software. Another important software system is Cluster
OpenMP, proposed by Intel [46] (although it was discontinued few years ago). All
these solutions, based on the software layer, can be used on distributed architecture
without using MPI but need some kind of run-time. In contrast, OMP2MPI shows
the generated solution that will be executed on the cluster to the programmer.
This solution can be further optimized if needed by an expert, thus offering more
flexibility about how the code is executed in the cluster.

Other similar ways to port OpenMP programs to clusters were proposed in Pa-
RADE [47], which is based on the OMNI compiler, or included in Polaris as [48].
Both combine the data management software layer with MPI primitives.

In [49–51], the authors proposed extending OpenMP with additional clauses for
streamization, as I do. Nonetheless, the most similar tools to the ones proposed in
this thesis were proposed in [52, 44] and [53]. The first is based on Cetus [24] and
the second on PIPS [23].

Transforming for GPU use

I also explore the use of GPGPUs to increase performance in HC systems. The dom-
inant GPU programming models have traditionally been CUDA [11] and OpenCL
[54]). In recent years, many S2S alternatives have been proposed to overcome
GPGPU programming complexity. Some of them are similar to the tool proposed
in this thesis. In contrast to OMP2HMPP, their methods transform code to the
CUDA language, not to HMPP, which means that CUDA programming complexity
is directly exposed to the final user.

Some of the proposals extend, in one way or another, the current standards such as
C/C++ and OpenMP to trivialize the programming task [55], [56]. In contrast,
there are proposals that do not require any language extension to transform the
source code directly from CPUs to GPUs.

“icasthesis-template” — 2016/9/6 — 15:28 — page 16 — #40

16 CHAPTER 1. INTRODUCTION

One example that includes language extensions is proposed in [15]. CAPS, CRAY,
Nvidia, and PGI (members of the OpenMP Language Committee) published Ope-
nACC in November 2011. OpenACC has been proposed as the standard for
directive-based standard programming, as it contributes to the specification of
OpenMP for accelerators. In the same way, but not with the same consensus, a
programming interface called OpenMPC was presented in [57]. This paper analyzes
extensively the actual state-of-the-art OpenMP for CUDA S2S and CUDA optimiz-
ers. OpenMPC provides an abstraction of the complexity of the CUDA program-
ming model and increases its automation though user-assistance tuning systems.
It takes time to understand the newly proposed directives for both OpenMPC and
OpenACC and to manually optimize the data transfer between the CPU and GPU.
In contrast, OMP2HMPP adds just two new OpenMP directives, and the program-
mer does not need to deal with new languages and their underlying optimization.
Another option, as explained in[57], is the hiCUDA directive-based language [58],
which is a set of directives for CUDA computation and data attributes in a sequen-
tial program. However, hiCUDA has the same programming paradigm as CUDA.
Even though it hides the CUDA language syntax, the complexity of the CUDA
programming and memory model is directly exposed to programmers. Moreover,
in contrast to OMP2HMPP, hiCUDA does not provide any transfer optimization.
Finally [59] and [60] proposed an OpenMP compiler for hybrid CPU/GPU com-
puting architecture. In these papers, the authors propose adding a directive to
OpenMP in order to choose where the OpenMP block must be executed (CPU or
GPU). The process is fully hidden from the programmer and is a direct translation
of CUDA. Again, it does not provide any transfer optimization.

There are fewer proposals that try to directly transform C/C++ code into CUDA
without the need for any new language extension. Ref. [61] presents a tool that uses
unimodular loop transformation theory to analyze the loops that could be trans-
formed to work in parallel kernels (either OpenMP or CUDA) through the ROSE
compiler [25]. Par4All [33] transforms code originally written in C or Fortran to
OpenMP, CUDA, or OpenCL. Par4All uses a polyhedral model to analyze and
transform C/C++ source code. It also adds OpenMP directives where it thinks
this would be useful. This transformation allows the re-factorization of the newly
created OpenMP blocks into GPGPUs kernels by moving OpenMP directives into
the CUDA language. However, this transformation does not take into account the
kernel data-flow context and this leads to non-optimal data transfer results. Re-
gardless, both tools, as well as the tools that transform sequential code to OpenMP,
could be useful for generating input code for the proposed OMP2HMPP tool. All
that is required is the substitution of the code generated after the access pattern
study. This is because of the inherent modular work-flow of the tools proposed in
this thesis.

“icasthesis-template” — 2016/9/6 — 15:28 — page 17 — #41

Visualizing Data Access
Patterns in Loops to

Identify Potential
Parallelism 2

The objective of the first S2S process in the chain (and its related tool) is to provide
a way to refactor an input C/C++ source code into another form so it can benefit
from the advantages of parallel computing on shared memory architectures using
OpenMP, as illustrated in Figure 1.7. This process cannot be fully automated
in most cases because of the task complexity, but the tool facilitates this task by
providing essential information to the user. The tool detects parts of a sequential
code that can be parallelized without modifying the final result obtained by the
execution of the initial application.

Simple code can be easy to understand and determine if it can be safely paral-
lelized; however, more complex code, which can include conditional clauses and
function calls, is not so easy. The proposed tool is mainly devoted to detecting
data dependencies in applications that can make the parallelization of the original
source code prohibitive. Inter-dependencies between variables are terribly common
in procedural programming languages that were conceived for sequential execution
such as C/C++, Java, and many others. When an operation depends on data that
has to be previously computed, its execution has to be delayed until all operands
are available.

The proposed tool, introduced in [62], mainly focuses on loops, since the instruc-
tions inside them will be repeated in sequential execution and are fair candidates
for obtaining large performance gains when distributed. Taking as an example a

17

“icasthesis-template” — 2016/9/6 — 15:28 — page 18 — #42

18 CHAPTER 2. VISUALIZING DATA ACCESS PATTERNS

1 f o r (i n t i =0; i < 10; i++) {
2 a [i] = k ∗ b [i] ;
3 }

Table 2.1 Simple C parallelizable source code

1 f o r (i n t i =0; i < 10 ; i++) {
2 i f (i==0)
3 a [i] = b [i] ;
4 e l s e
5 a [i] = b [i] − a [i−1] ;
6 }

Table 2.2 Simple C non-parallelizable source code

simple C input source code, it is easy to see that some such loops can be easily
executed in parallel if they do not exhibit dependency, as illustrated in Table 2.1,
where all ten iterations could be executed simultaneously without any problem.
Every iteration is independent because the index of access for variables A and B is
the actual value of the iterator used in the loop.

Changing the problem by adding an index access with a different value than the
variable iterated, as illustrated in Table 2.2, shows iterations that should be ex-
ecuted sequentially. In this case, iteration i needs data from a former iteration.
Note that in this case, the subtraction operation is irrelevant; any operation would
produce the same data dependency. Such a data dependency could mean that this
piece of code cannot be parallelized. Although in the proposed problems in Tables
2.1 and 2.2, the data dependency is easy to see, there are plenty of more complex
problems for which it would be necessary to perform a more exhaustive analysis.

To trivialize the parallelization task, the proposed tool provides a trace log of all
the variables accessed inside any marked loop of interest and provides a tool to
visualize data dependencies in an easy way.

To do this, the implemented procedure is divided into three stages: (1) instrumen-
tation by manually introducing some pragmas in the code to identify the section
to be analyzed and using a S2S compiler to complete the instrumentation, (2) ex-
ecution to create a memory access trace, and (3) visualization to view the data
accesses pattern in the loops of the application to detect if there are dependencies
that prevent them from being unrolled.

“icasthesis-template” — 2016/9/6 — 15:28 — page 19 — #43

2.1. AUTOMATIC INSTRUMENTATION 19

2.1 Automatic Instrumentation

To automatically introduce a log-in function into an input source code, the im-
plemented tool requires source code to be marked using a new pragma directive.
This new directive describes the information that needs to be analyzed inside the
marked block.

The created directive is analyze_access_pattern, and it can be completed using two
clauses: var and iter. Table2.3 shows an example of the use of this new directive
using both clauses. The var clause determines the target variables in which data
dependency could appear (marked red), and the iter clause determines the iterators
targeted in the access log (marked blue).

Having defined the variables of interest (using the var clause) and the iterators
(using the iter clause) in a loop that the programmer wants to analyze, the S2S
compiler traverses the AST, detecting memory accesses and including the proper
log functions in the detected points.

To generate a well-formed trace log, a set of log functions are defined. These
functions are introduced automatically by a new S2S compiler inside the original
source code. Later execution of the generated code provides a complete trace log
that has the information required to detect all the possible access patterns and
related data dependencies.

The set of proposed functions is divided by its functionality: (1) to understand the
context, (2) to describe the variables of interest in that context, and (3) to identify
how these variables are used.

Within a loop context, the user is interested in knowing how that loop is con-
structed. Analysis of the AST allows us to detect the desired loop structure.
Hence, the following functions are provided:

1 void mem_trace_loop_start (char∗ var) ;
2 void mem_trace_loop_end (char∗ var) ;
3
4 void mem_trace_iter_start (char∗ var , i n t v) ;
5 void mem_trace_iter_end (char∗ var , i n t v) ;

These functions allow which accesses are done in which operation of which loop
to be identified. Every loop that the user wants to analyze during the program is
uniquely identified by a name. Iterations are identified by the iteration variable
and its value. The first two functions are located before and after the loop of
interest. The last ones are located inside the loop body, defining the context of
every iteration.

To analyze the use of the variables and their access, we need first to define them by
describing their dimensions and the place they occupy in memory. By knowing the

“icasthesis-template” — 2016/9/6 — 15:28 — page 20 — #44

20 CHAPTER 2. VISUALIZING DATA ACCESS PATTERNS

size (number of dimensions and size of each), the base memory position, and the
type size of variables, we can exactly track which variable elements are accessed.
The proposed tool focuses on arrays because the access pointers to them could
be more difficult to follow. Finding declarations is usually a difficult task, but,
by exploring the AST context, we can detect global or local variables as well as
dynamic pointers and their size at a certain point in the code. To describe this
variable information, the following list of four functions is defined:

1 void mem_trace_def_array1d (char∗ v , i n t d1) ;
2 void mem_trace_def_array2d (char∗ v , i n t d1 , i n t d2) ;
3 void mem_trace_def_array3d (char∗ v , i n t d1 , i n t d2 , i n t d3) ;
4 void mem_trace_def_mem(char∗ var , void∗ ptr , i n t typeSize ,
5 i n t varS i ze) ;

The first three functions are dedicated to determining the size of each of the di-
mensions for each array of interest (there is a limit to the number of dimensions
that define a variable, but this value could be extended in future implementations).
In contrast, the last trace function is used to provide memory information.

Finally, two functions are defined to log memory accesses. These functions dis-
tinguish two kind of accesses (read or write), and are inserted before any variable
calculation expression. Read operations are placed first, followed by write opera-
tions. Expressions are usually the last node in an AST. To determine if a symbol is
read or written, we analyze two factors in the considered expression. The symbols
contained in the second operand of the expression are always considered read access.
The first operand is determined by analyzing the operation of the assignment, since
some cases can also contain a mathematical expression such as addition, subtrac-
tion, multiplication, or division. There is a particular case in which the compiler
finds a function call with parameters for analysis for which the type of access can-
not be determined at that point. In order to solve this issue, we inline the function,
following the methodology explained in Section3.2.2. In order to add the analyzed
information, the following set of functions are used for labeling the expressions:

1 void mem_trace_read (char∗ v , void∗ idx) ;
2 void mem_trace_write (char∗ v , void∗ idx) ;

Just the variable name and pointer are used. In fact, the variable name is redun-
dant, since it could be derived from pointer information.

2.1.1 Results

Table 2.3 illustrates an example of some input code and Table 2.4 shows the source
code generated automatically by the proposed S2S tool.

“icasthesis-template” — 2016/9/6 — 15:28 — page 21 — #45

2.2. EXECUTION 21

1 double alpha ;
2 double A[N] [N] ;
3 double B[N] [N] ;
4
5 in t main (i n t argc , char∗∗ argv) {
6 in t i , j , k ;
7 i n t n = N;
8 in i t_array () ;
9 #pragma analyze_access_pattern var (A,B) i t e r (i , j)
10 f o r (i = 1 ; i < n ; i++)
11 f o r (j = 0 ; j < n ; j++)
12 f o r (k = 0 ; k < i ; k++)
13 B[i] [j] += alpha ∗ A[i] [k] ∗ B[j] [k] ;
14 return 0 ;
15 }

Table 2.3 Input code

2.2 Execution

This is the simplest stage of the proposed work-flow. The automatically generated
source code, explained on Section 2.1, is executed. The execution extracts the log
of memory accesses.

We encourage working with smaller workloads and thus with higher productivity.
The execution process produces a memory overhead and a large demand for memory
when visualizing the accesses. Nonetheless, the nature of the data access pattern
algorithm is usually independent of the size of the data. For instance, in order to
capture and analyze the data access pattern of a matrix multiplication that uses
1,000 × 1,000 matrices, it is sufficient to analyze the 10 × 10 case. This simpler case
can provide the information required to discover the related effective parallelization
strategy.

2.3 Data Analysis

The main principle is that all memory accesses should be aggregated in the same
iteration. It makes no sense to look at individual read and write operations. What
it is needed is understanding of how different iterations access different memory
positions. Furthermore, before visualizing any data, collected information is aggre-
gated so that it can be usefully presented.

Data analysis basically consists of collecting information about when read or write
operations happen for each variable. In the case of arrays, this information has to
be obtained for every element of the array.

“icasthesis-template” — 2016/9/6 — 15:28 — page 22 — #46

22 CHAPTER 2. VISUALIZING DATA ACCESS PATTERNS

1 double alpha ;
2 double A[N] [N] ;
3 double B[N] [N] ;
4 i n t main (i n t argc , char ∗∗argv) {
5 in t i , j , k ;
6 i n t n = N;
7 in i t_ar ray () ;
8 mem_trace_def_array2d ("A" , N, N) ;
9 mem_trace_def_mem("A" , &A, s i z e o f (double) , s i z e o f (A)) ;
10 mem_trace_def_array2d ("B" , N, N) ;
11 mem_trace_def_mem("B" , &B, s i z e o f (double) , s i z e o f (B)) ;
12 mem_trace_loop_start (" loop1 ") ;
13 f o r (i = 1 ; i < n ; i++) {
14 mem_trace_iter_start (" i " , i) ;
15 mem_trace_loop_start (" loop2 ") ;
16 f o r (j = 0 ; j < n ; j++) {
17 mem_trace_iter_start (" j " , j) ;
18 f o r (k = 0 ; k < i ; k++) {
19 mem_trace_read ("B" , &B[j] [k]) ;
20 mem_trace_read ("B" , &A[i] [j]) ;
21 mem_trace_read ("A" , &A[i] [k]) ;
22 mem_trace_write ("B" , &B[i] [j]) ;
23 (B[i] [j] += alpha ∗ A[i] [k] ∗ B[j] [k]) ;
24 }
25 mem_trace_iter_end (" j " , j) ;
26 }
27 mem_trace_loop_end (" loop2 ") ;
28 mem_trace_iter_end (" i " , i) ;
29 }
30 mem_trace_loop_end (" loop1 ") ;
31 return 0 ;
32 }

Table 2.4 Transformed code

Using the tracing functions added by our S2S compiler, it is possible to automati-
cally track every iteration thanks to an added keyword. This keyword is composed
of the name of the loop and the value of the iteration index. If a hierarchy of
loops is analyzed, the keywords are formed by the combination of each iteration
identifier.

The data analysis step demands a large amount of memory because it needs as many
versions of the data access information as iterations (or iteration combinations) that
occur at run time.

The example code shown in Table 2.3 has three loops that iterate variables i, j, and
k, respectively. However, only i and j are considered because i spans from 0 to N
and j spans from 0 to N . The number of iterations is N2. On line 9 of Table 2.3,
variables A and B are defined as the variables of interest. These N ×N variables
are tracked using data analysis. The tool needs 2 ∗N2 ∗N2 = 2 ∗N4 elements to
track the application access pattern.

“icasthesis-template” — 2016/9/6 — 15:28 — page 23 — #47

2.4. VISUALIZATION 23

2.4 Visualization

The memory trace log generated by the execution and data analysis of our S2S
tool on the input source should be observed using a visualization interface. In our
tool, a new visualization interface is proposed to allow users to obtain a visual
understanding of data dependencies and each read/write operation traced.

The proposed tool targets non-expert users. The task of refactoring a sequential
program into its parallel version requires a set of rules to be defined to deal with
the incorrect actions than these users can propose. A typical example is when
a user analyzes a loop that contains many variables but cannot determine which
ones are read-only and will not lead to variable conflicts (i.e., will not produce
variable dependence). The visualization tool detects and discriminates such read-
only variables by analyzing all intermediate matrices stored for that variable and
detecting if there are no write operations. With this information, the visualization
tool will propose to ignore them. All analyzed variables are shown in a check box
list, and the ones that are detected as Read-Only are marked with an additional
label, as illustrated in Figures 2.1 and 2.2. However, the tool keeps this information
because it can be interesting to view the data access patterns of read-only variables.
For instance, this is the case when we would like to have real data to mitigate
specific problems such as cache misses.

Thus, the main idea around our visualization tool is to provide information to the
user about which written memory positions are read in further iterations, indicating
data dependency. The tool shows in a simple interface if an iteration in the same
loop reads a previously written position.

At the same time, it is also possible to observe if any read memory position has
been written in a previous loop by maintaining a loop matrix. If the code reads a
previously written position, the user should be notified. When any loop iteration
finishes, the current iteration is consolidated with the previous one.

To more easily detect collisions, the tool displays the detected collisions. To do
this, the matrix accessed at iteration i is consolidated as (i-1) in the next iteration.
Comparing interaction matrices at execution time allows collisions to be indicated.

2.5 Case Study: Triangular Matrix–Matrix Multipli-
cation

In order to illustrate how the presented set of tools (i.e., the S2S compiler and visu-
alization tool) work together, I selected a problem from the set of codes proposed in

“icasthesis-template” — 2016/9/6 — 15:28 — page 24 — #48

24 CHAPTER 2. VISUALIZING DATA ACCESS PATTERNS

the Polybench benchmark [63]: Triangular Matrix Matrix Multiplication (TRMM)
is very suitable for analysis because of its peculiarities. The TRMM algebraic prob-
lem, illustrated in Tables 2.4 and 2.5, shows the code generated after adding the
function traces during the S2S compilation process.

The trace log for further analysis is shown in Figure 2.1. When analyzing the loop
1 accesses of Table 2.5 (iteration i), it is clear that the memory positions of the
elements of matrix B that were read during that iteration were written in previous
iterations. Larger values of i mean that the number of read-after-write collisions
is higher. It is also clear that loop 1 is not directly parallelizable.

Figure 2.1 Original TRMM loop1 visualization 1

Loop 2 of Table 2.5 (iteration j) illustrates that collisions only occur when j is
equal to i (as shown in Figure 2.2). When j is lower than i, the operations are
computing the values of the first positions of the i-th row, which were not written
in this iteration. When j is higher than i, the computed values are written for the
last positions of the i-th row that were not read.

After analyzing this behavior, I propose a new calculation structure that restruc-
1Video available on: https://youtu.be/iqi1LlDyuqI
2Video available on: https://youtu.be/p3z6AaIwuQw

https://youtu.be/iqi1LlDyuqI
https://youtu.be/p3z6AaIwuQw

“icasthesis-template” — 2016/9/6 — 15:28 — page 25 — #49

2.5. CASE STUDY: TRIANGULAR MATRIX–MATRIX MULTIPLICATION25

Figure 2.2 Original TRMM loop2 visualization 2

tures the way the inner loop is computed. The resulting code is illustrated in Table
2.4. The new structure was designed to allow parallelization of the inner loops.

When the tool is executed again after this change, it shows that loop 1 still has
dependencies, while loops 2 to 4 have no dependency and can be safely parallelized
(as illustrated in Figure 2.3).

As a parallel version for the TRMM was readily available, it was tested by executing
the resulting code on 1,000 × 1,000 matrices on 64 CPUs E7-4800 with 2.40 GHz
(Bullion quadri module). The speedup obtained for the generated version was
computed by comparing its execution time with the execution time of the sequential
version. The results are illustrated in Figure 2.4, where the vertical axis shows the
speedup for the TRMM example and the horizontal axis indicates the number of
processors.

3Video available on: https://youtu.be/SK1VYpoTSrU

https://youtu.be/SK1VYpoTSrU

“icasthesis-template” — 2016/9/6 — 15:28 — page 26 — #50

26 CHAPTER 2. VISUALIZING DATA ACCESS PATTERNS

1 // loop1
2 f o r (i = 1 ; i < n ; i++) {
3 // loop2
4 f o r (j = 0 ; j < n ; j++) {
5 f o r (k = 0 ; k < i ; k++) {
6 B[i] [j] += alpha ∗ A[i] [k] ∗ B[j] [k] ;
7 } } }

Table 2.5 TRMM original code

1 // loop1
2 f o r (i = 1 ; i < n ; i++) {
3 // loop2
4 f o r (j = 0 ; j < i ; j++) {
5 f o r (k = 0 ; k < i ; k++) {
6 B[i] [j] += alpha ∗ A[i] [k] ∗ B[j] [k] ;
7 }
8 }
9 // loop3
10 f o r (j = i ; j <=i ; j++) {
11 f o r (k = 0 ; k < i ; k++) {
12 B[i] [j] += alpha ∗ A[i] [k] ∗ B[j] [k] ;
13 }
14 }
15
16 // loop4
17 f o r (j = i +1; j < n ; j++) {
18 f o r (k = 0 ; k < i ; k++) {
19 B[i] [j] += alpha ∗ A[i] [k] ∗ B[j] [k] ;
20 }
21 }
22 }

Table 2.6 TRMM rectified source code

2.6 Concluding Remarks

This chapter presents a set of tools proposed to allow users to easily analyze data
dependencies in sequential source code. These tools are essential to allow efficient
code transformation into equivalent parallel source code. The tool is composed
of an S2S compiler and a visualization tool. Its power was shown on the TRMM
problem from the Polybench benchmark. This tool will help users easily determine
when it is useful to add OpenMP for directives in any sequential source code to
obtain the correct results together with execution speedup. The number of parts
in a sequential source code that could be analyzed for parallelization can be high.
This could lead to a complex visualization of their access patterns, thus making
the analysis in the visualization stage difficult. For this reason, I propose a new
pragma directive that allows users to mark blocks of interest (mainly addressed to
for loops) and to fix, using clauses, which variables are of interest in their study.

“icasthesis-template” — 2016/9/6 — 15:28 — page 27 — #51

2.6. CONCLUDING REMARKS 27

Figure 2.3 Refactored TRMM visualization 3

Figure 2.4 TRMM problem speedup

However, there are still some aspects that can be improved. The size of the marked
blocks can lead to a point where some problems are not scalable with respect to
the visualization interface. This is the reason why, in the current version, the
user has to minimize the size of the problem before the S2S compiler is executed.

“icasthesis-template” — 2016/9/6 — 15:28 — page 28 — #52

28 CHAPTER 2. VISUALIZING DATA ACCESS PATTERNS

Future versions will automate this task by automatically scaling the problem to its
minimum number of feasible dimensions.

Another issue to consider refers to the fact that if non-expert users use the vi-
sualization tool, they can obtain more than the minimum amount of information
required. Future versions will contemplate this option and instead of generating
logs, the collision test will be passed to the execution stage instead of the visual-
ization one. This feature will facilitate the test-error parallelization, in which the
user will put OpenMP directives in loops and check the output error to validate
their correct use.

“icasthesis-template” — 2016/9/6 — 15:28 — page 29 — #53

OMP2HMPP: Compiler
Framework for

Energy-Performance
Analysis of

Automatically
Generated Code 3

OMP2HMPP is a new tool that we propose for running specific sections of code on
accelerators so that the program will execute them more efficiently on a heteroge-
neous platform. The new S2S compiler transforms an OpenMP input source code
into HMPP, as already shown in Figure 1.7. OMP2HMPP was initially developed
for the systematic exploration of a large set of possible transformations to deter-
mine the optimal one in terms performance (for both energy and time consump-
tion). OMP2HMPP extends upon this with knowledge of the existing alternatives
for GPGPU programming by studying the use of one of the most promising options
yet developed: HMPP. HMPP offers the easiest way to migrate from sequential
to parallel code because it is a directive-based language. The meta-information
added to the source code of the application does not change the semantics of the
original code, thus simplifying the kernel creation. In addition, it offers an incre-
mental method for migrating applications by first declaring and generating kernels
to later manage data transfers and next optimizing kernel performance and data
synchronization. HMPP directives address the Remote Procedure Call (RPC) of
functions or regions of code on GPUs and many-core accelerators as well as the

29

“icasthesis-template” — 2016/9/6 — 15:28 — page 30 — #54

30 CHAPTER 3. OMP2HMPP

transfer of data to and from the target device memory. Most existing alternatives
rely on a stream programming style. However, a program written for a given plat-
form cannot run on another one. HMPP takes a radically different approach. A
HMPP application can be compiled with an off-the-shelf compiler and run without
any specific run-time to produce a conventional native binary.

Moreover, thanks to its dynamic linking mechanism, an HMPP application is able
to make use of either a new accelerator or an improved codelet without having
to recompile the application source. In this way, it preserves legacy codes and
isolates them from the frequent hardware platform changes that are typical for
hybrid multicores, e.g., fast GPU architecture evolution. As mentioned above,
programming with existing alternatives (including HMPP) for GPGPUs is still
more complex than programming general-purpose CPUs and parallel programming
models such as OpenMP, because of the related hardware complexity. For this
reason, OMP2HMPP is thought to avoid this complexity for the programmer.

In order to simplify the transformation task, OMP2HMPP can reuse the exist-
ing source code that describes parallelism using OpenMP directives. The HPC
community commonly uses two standards: MPI and OpenMP. OpenMP is better
oriented towards supporting multi-platform shared memory parallel programming
in C/C++. It defines an interface for parallel applications on a wide range of plat-
forms: from desktops to supercomputers. As a natural extension, OpenMP could
be combined with the use of HMPP to analyze and improve the performance and
energy efficiency trade-off.

On this basis, I developed the OMP2HMPP tool to do the following:

• Run specific sections of the proposed code on accelerators. OMP2HMPP
combines the use of CPU parallel code and GPU code so that the program
can execute more efficiently on a heterogeneous platform.

• Systematically explore the large set of possible transformations from pragma-
annotated code to determine the optimal transformation.

• Introduce GPGPU acceleration that can provide a good trade-off between
performance and development effort (not necessarily an optimal solution),
avoiding the creation of a new platform learning curve.

• Compare all the possible configurations ofOpenMP and HMPP in terms of
time and energy spent for the execution of each code section.

“icasthesis-template” — 2016/9/6 — 15:28 — page 31 — #55

3.1. HMPP DIRECTIVES 31

3.1 HMPP Directives

The proposed tool is able to combine the following HMPP directives with the
original OpenMP directives:

• Callsite: Specifies the use of a codelet at a given point in the program.
Related data transfers and synchronization points that are inserted elsewhere
in the application must use the same label.

• Codelet: Specifies that a version of the following function must be opti-
mized for a given piece of hardware.

• Group: Allows the declaration of a group of codelets.

• Advanced Load: Uploads data before the execution of the codelet.

• Delegate Store: Downloads output data from the Hardware Accelerator
(HWA) to the host. (This is the opposite of the advanced load directive.)

• Synchronize: Specifies waiting until the completion of an asynchronous
callsite execution.

• Release: Specifies when to release the HWA for a stand-alone codelet or
group of codelets.

• No Update: Specifies that the data is already available on the HWA.
When this property is set, any further transfer will be done on the considered
argument.

• Target: Specifies one or more targets platforms for which the codelet must
be generated. This means that if the hardware and the corresponding codelet
implementation for it is available, that one will be executed. Otherwise, the
next target configuration specified in the list will be tried. In the current
version, OMP2HMPP always uses CUDA. Tests are performed using a server
without OpenCL support.

• Group: Allows the declaration of a group of codelets. The parameters
defined in this directive are applied to all codelets belonging to the group.

HMPP directives are described as “meta-information“ added to the application
source code. We consider that this meta-information is safe in the sense that
it does not change the original code behavior. The directives address the RPC
of a function as well as the transfer of data to/from HWA memory. With these
directives, OMP2HMPP is able to create a version that, in most cases, rarely differs
from a hand-coded HMPP version of the original problem.

“icasthesis-template” — 2016/9/6 — 15:28 — page 32 — #56

32 CHAPTER 3. OMP2HMPP

3.2 S2S Transformations

The OMP2HMPP implementation is a pipeline consisting of S2S compiler trans-
formations devoted to moving OpenMP code to HMPP. This pipeline has two
compiler phases devoted to two different transformation steps: outline and inline
phases.

The first phase (outline phase) transforms the pragma OpenMP block into an
HMPP codelet and callsite. The second phase checks the scope of all the variables
used in the codelet in order to solve any problems related to the use of global
variables inside the HMPP kernels or with function calls not allowed in the device.
At the same time, the second phase transforms inline function calls inside the
codelet (inline phase). Figure 3.1 shows the workflow of the transformation process,
which is detailed in the following sections.

Figure 3.1 S2S transformation process.

OMP2HMPP generates multiple implementations that differ in their use of different
HMPP pragma parameter configurations. It then compiles and executes them,
collecting the elapsed time and energy consumed during each execution. Results
can be plotted to obtain the trade-off curves that allow the optimal working point
to be selected. Figure 3.2 depicts the multiple execution and single plot processes
that are performed after S2S transformation.

3.2.1 Outline Phase

The outline phase is responsible for the outline transformation (transforming OpenMP
blocks to HMPP kernels and blocks). This phase finds all the OpenMP pragma
instructions in the input code and then detects the start and end of the pragma
block.

Once this detection is complete, the outline phase declares a function with the same
functionality as the pragma block. Table 3.1 gives an example of the transformation

“icasthesis-template” — 2016/9/6 — 15:28 — page 33 — #57

3.2. S2S TRANSFORMATIONS 33

OpenMP

1 in t main ()
2 {
3 . . .
4 #pragma omp p a r a l l e l f o r
5 f o r (i =0; i<row;++ i){
6 f o r (j =0); j<co l ;++k){
7 r e s u l t [i] [j] = 0 ;
8 array [i ∗ j] = mat [i] [j] ;
9 f o r (k=0;k<row;++k){
10 a=0;
11 whi le (a<10) {
12 r e s u l t [i] [j] += mat1 [i] [k] ∗mat2 [k] [j] ∗array [i ∗ j] ;
13 a++
14 }
15 }
16 }
17 }
18 . . .
19 }

HMPP

1 #pragma hmpp _intr_for__ol_3_main codelet , target = CUDA,
2 args [r e su l t , array] . i o=inout , a rgs [array] . s i z e={row∗ co l } , &
3 #pragma hmpp & args [∗] . t r a n s f e r=auto
4 void _intr_for__ol_3_main (i n t i , i n t row , i n t j , i n t r e s u l t [row] [c o l] ,
5 i n t ∗array , i n t mat1 [row] [c o l] , i n t k , i n t a , i n t mat2 [row] [c o l]) {
6 f o r (i =0; i<row;++ i){
7 f o r (j =0); j<co l ;++k){
8 r e s u l t [i] [j] = 0 ;
9 array [i ∗ j] = mat [i] [j] ;
10 f o r (k=0;k<row;++k){
11 a=0;
12 whi le (a<10) {
13 r e s u l t [i] [j] += mat1 [i] [k] ∗mat2 [k] [j] ∗array [i ∗ j] ;
14 a++
15 }}}}}
16
17 in t main () {
18 . . .
19 #pragma hmpp _inst_for__ol_3_main c a l l s i t e
20 _instr_for__ol_3_main(i , row , j , col , r e su l t , array , mat1 , k , a , mat2) ;
21 . . .
22 }

Table 3.1 Example of an OMP2HMPP S2S transformation process
using a simple code as input.

“icasthesis-template” — 2016/9/6 — 15:28 — page 34 — #58

34 CHAPTER 3. OMP2HMPP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 3.2 S2S transformation workflow.

implemented in this phase. The code on top of the table shows the original code,
while code at the bottom shows the code after the outlining transformations.

The outline phase is divided into two stages. The first one, the compilation stage,
is liable for the S2S transformation, understanding the programmer‘s source code,
and the generation of its different versions. The second stage, optimization, is
devoted to improving the code proposed by the programmer.

Compilation

The compiler has to deal with all the OpenMP standard directives, e.g., shared,
private, and reduction. There are two possible scenarios: (1) OpenMP blocks are
expressed as simple blocks where the OMP2HMPP tool transforms them into an
HMPP codelet, or (2) they are expressed as a group of blocks and the compilation
transforms OpenMP parallel blocks either into HMPP codelet groups (thus sharing
variables if needed), or dividing them into simple blocks (thus specifying where each
of these blocks will be computed). Table 3.2 shows how such techniques can be
used to explore the capabilities of the HC architecture.

Every OpenMP block in the source code is transformed into its new version.
OMP2HMPP explores all the possible HMPP configurations that can be used in
these blocks and the combination of these configurations on different blocs. This
implies that the number of generated versions grows exponentially with the num-
ber of OpenMP blocks to transform. It can be described as bc, where b is the
number of blocks and c the number of possible configurations per block. To solve
this, two new OpenMP directives were created that allow the user to generate a
smaller number of explorations than all possible versions that can be generated.
These directives allow the programmer to explore the generated versions block by
block. The set of new directives is described in the following list and demonstrated
in Figure 3.3.

“icasthesis-template” — 2016/9/6 — 15:28 — page 35 — #59

3.2. S2S TRANSFORMATIONS 35

CHECK The OpenMP blocks with a pragma set “#pragma omp parallel for
check“, are transformed using all possible HMPP configurations, including
no transformation, which keeps the current OpenMP block as in the original
code.

FIXED The programmer fixes a transformation for a certain block by setting
information flags for the next execution of OMP2HMPP, i.e., “#pragma omp
parallel for fixed (10,1,0)“.

Figure 3.3 Example of the location and explanation of new directives.

The programmer can explore all the possible configurations of HMPP for any
given OpenMP block. The best configuration will be selected, as explained in
Section 3.3. The selected configuration can be blocked for the following executions
of OMP2HMPP using the FIXED directive. The FIXED directive is complemented
with three flags, as described in Figure 3.4. These flags have an internal binary
representation that is transformed into a decimal one to compress its length in the
OpenMP pragma instruction specification.

As the detection of each variable is passed as value, copy, or reference (i.e., in
Table 3.3), this allows variable context to be distinguished inside every block.
OMP2HMPP has to treat array and matrix parameter passing differently. HMPP‘s
distinction requirements impose detection when both of them are used, as shown
in Table 3.1 for variables result, mat1, and mat2 in the case of matrices or variable
array in the case of arrays.

The compilation stage takes more control of how the outlined kernel division detects

“icasthesis-template” — 2016/9/6 — 15:28 — page 36 — #60

36 CHAPTER 3. OMP2HMPP

Figure 3.4 FIXED directive flags explanation

the variables that define the two outer for-loops. Using this information, it defines
the grid division using the “hmppcg gridify“ directive. Table 3.4 illustrates this
case using an example.

As mentioned above, OMP2HMPP deals with all the OpenMP directives. A ref-
erence example is used to show how it works with the reduction directive. Re-
duction is a safe way of joining results from all threads after the construct phase.
OMP2HMPP solves it by transforming the original code and simulating pass by
reference with variables in reduction directive diffsum. The result of this transfor-
mation is shown in Table 3.4.

Optimization

This stage improves the code proposed by the programmer by exploiting context
situations. The optimization reduces the number of transfers between the CPU
and GPU by capturing and understanding the variable context of the OpenMP
kernels.

In order to implement the optimization, OMP2HMPP must perform an accurate
contextual analysis of the original code. To do this, OMP2HMPP studies contex-
tual information, taking care of every array or matrix variable needed in each of the
OpenMP kernels marked for transformation. Through this analysis, OMP2HMPP,
is able to understand the following variable contexts:

• the kind of access (write/read)

“icasthesis-template” — 2016/9/6 — 15:28 — page 37 — #61

3.2. S2S TRANSFORMATIONS 37

• the host where it is used (CPU/GPU)

• the scope of the instruction where it is used (loop detection)

Figure 3.5 Context example

With this information, OMP2HMPP stores the contextual analysis for each kernel,
as shown in Table 3.5 for the first of the marked pragma OpenMP blocks. The top
code in Table 3.5 shows the original code while the bottom source code in Table 3.5
shows the different usages of each studied variable. The table illustrates the last
read/write (if it exists) in the CPU and GPU before the OpenMP block and the
first read/write (if it exists) in the CPU and GPU after the OpenMP block. These
proprieties are specified in Table 3.5 by their labels: F (first), L (last), R (read),
and W (write). The hosts are further specified as CPU or GPU. There are two
additional parameters, as described in Table 3.5. The first one, inside parentheses,
identifies the number of lines where the loop begins (if the use is actually inside a
loop), and -1 (if it is not inside a loop). The last parameter is the line number in
the actual context. Here, this number refers to lines of interest i.e., assignments,
declarations, HMPP pragma, OpenMP blocks, and function calls. Nevertheless, the
OMP2HMPP tool is capable of understanding pragma directives without variable
usage information, as in the case of HMPP synchronization or the release directive.
In these cases, OMP2HMPP searches the name of the callsite and looks for the call
of this callsite in the AST with the same scope. Next, OMP2HMPP analyzes the
kernel codelet in order to extract information on the variables implicated in the
HMPP directives.

“icasthesis-template” — 2016/9/6 — 15:28 — page 38 — #62

38 CHAPTER 3. OMP2HMPP

Figure 3.6 Delegate store directive optimization. Variables are down-
loaded as far as possible from the kernel finish, next to the
first CPU read.

Figure 3.7 Delegate store directive optimization. Variables are down-
loaded when the kernel finishes.

Figure 3.5 shows a simple example of such context understanding. Variables A
and C are used inside the OpenMP block. OMP2HMPP uses that information
to select the best use of HMPP directives that minimizes the number of data
transfers. In Figure 3.5, OMP2HMPP has two variables to analyze: A and C.
In the case of A, it has to be uploaded to the GPU. However, there is no need
to download it after the kernel call because it is not read until the end of the
code. Variable C has to be downloaded from the GPU to CPU, but there is no
need to upload it to the GPU because the kernel does not perform any read of C.
With that information, OMP2HMPP uses an advancedload for A and places that
directive as close as possible to the last write expression, as shown in Figure 3.8 to
optimize the data transfer and improve the performance of the generated code. For
C, OMP2HMPP places a delegatedstore directive as far as possible into the kernel
call, as shown in Figure 3.6, thus increasing the performance of the generated code.
Figures 3.7 and 3.9 illustrate the selection of an incorrect transfer policy using the
same examples.

Moreover, OMP2HMPP can deal with context situations in which the source code
contains nested loops. OMP2HMPP determines if an operation on a variable is
performed inside a loop and adapts its data transfer to the proper context situation.
Figures 3.10 and 3.11 illustrate an example of possible context situations. In the
first figure, when OMP2HMPP wants to compute the loop in GPU, it needs to load
the value of variable A, which is required to compute the value of C. Because the last
write by the CPU of A is inside a loop with a different nested level than the GPU
block, OMP2HMPP has to backtrack the nesting of loops to find the block shared

“icasthesis-template” — 2016/9/6 — 15:28 — page 39 — #63

3.2. S2S TRANSFORMATIONS 39

Figure 3.8 Advanced load directive optimization. Variables are
loaded as close as possible to the last CPU write.

Figure 3.9 Advanced load directive optimization. Variables are
loaded when the kernel is invoked.

by both loops. Then, similar to the process shown in Figure 3.5, OMP2HMPP
optimizes the load of A by adding the advancedload directive as close as possible
to the end of the loop. Figure 3.11 shows the opposite problem when changing the
block that is computed in the GPU. In this figure, the result of the GPU kernel
is needed by the CPU to compute C, which is not at the same loop level. In that
case, the optimum way to add the delegatestore directive is just before the start of
the nested loops, where the computation of C is located.

Table 3.6 shows a more complex example of loop context understanding. OMP2HMPP
is able to understand complex context situations inside loops, thus detecting unnec-
essary transfer repetitions between CPU→GPU and GPU→CPU. OMP2HMPP
understands that a previous read inside the same loop context (of the marked
OpenMP block to transform) is at the same time the next read by unrolling the
loop. This ability is shown in the first advanced load HMPP directive of Table 3.6,
which is placed outside the loop where variables myTable and myTableOut are last
used. This also affects the other appearances of the same directives in Table 3.6.
In these cases, OMP2HMPP avoids uploading variable myTable in each iteration of
the loop because the OpenMP block marked to be transformed is inside a loop and
the previous CPU instructions read this variable. Table 3.6 also illustrates how
OMP2HMPP downloads this variable from the GPU to the CPU after finishing
the current iteration in order to update its value, which has been modified in the
GPU.

The problem was extended to better understand of the use of the contextual in-
formation of the group, mapbyname, noupdate, and asynchronous directives. After
the use of any variable by the GPU, if that variable is not written in the CPU

“icasthesis-template” — 2016/9/6 — 15:28 — page 40 — #64

40 CHAPTER 3. OMP2HMPP

Figure 3.10 Example of data transfer in loops

before the next read in GPU, the optimization phase will keep the variable in
the GPU without downloading it to the CPU and automatically create a group of
HMPP codelets using the group directive, even if it was not specified in the origi-
nal OpenMP source code. The creation of this group allows both kernels to share
this variable using just one load transfer CPU→GPU and one download transfer
GPU→CPU with the use of the mapbyname directive.

OMP2HMPP includes the option of using asynchronicity in kernel invocation when
it can be beneficial. OMP2HMPP extracts the information about the next usage
of the kernel variables and adds the asynchronous HMPP directive. Finally, the
noupdate directive is used to keep variables in the GPU that are not updated in
the CPU, as shown in Table 3.6, which illustrates the kernel call, and in Table 3.7,
which shows the codelet transforming these variables into input parameters. This
transformation keeps the variables myTable and myTableOut in the GPU and per-
forms just one load/download transfer. Figure 3.12 shows the difference between
the synchronous and asynchronous calls of an HMPP codelet.

“icasthesis-template” — 2016/9/6 — 15:28 — page 41 — #65

3.2. S2S TRANSFORMATIONS 41

Figure 3.11 Example of data transfer in loops

3.2.2 Inline Phase

This phase takes any function call in the input code and detects its variable and
body declaration. It thus identifies the declaration and function parameters re-
quired to create a block of code that implements the same function. At the same
time, this phase is responsible for checking the scope of the variable to detect any
incorrect usage of global variables inside an HMPP codelet.

Table 3.8 shows an example of this procedure. The left side shows the original
code, and the right shows the code after inline transformation.

A declaration of all the needed inline parameters is added to change their name
inside this block according to the pattern name _p_x_f_y, where x is the position
of the parameter in the function call, f is the name of the inlined function, and y
is an index in order to avoid re-declaration. Index y increases each time a function
is inlined. In addition, new variables ret_fy, ret, and _return_y are added to deal

“icasthesis-template” — 2016/9/6 — 15:28 — page 42 — #66

42 CHAPTER 3. OMP2HMPP

(a) Asynchronous (b) Synchronous

Figure 3.12 Asynchronous and synchronous differences in a codelet
call.

with the return parameters of the original function. The inline phase divides the
expression that is formed by a mathematical expression of the results of a set of
function calls into each function call. All results of the function calls are stored in
_return_y variables and then the original expression is computed using these new
variable values.

The global informative variables appear in the first lines of the code transformed
by OMP2HMPP. These variables are created to inform the programmer which
functions have been inlined.

3.3 Results

The elapsed time and consumed energy for the parallel execution of the code with
different options is presented in the report file generated by the OMP2HMPP tool.
This file is a Comma-Separated Values (CSV) file that has all the information
needed for further analysis. OMP2HMPP can perform several executions of each
generated version on different input code to extract the median time and energy
consumed by execution.

Table 3.9 presents example CSV results in a spreadsheet form. The first column

“icasthesis-template” — 2016/9/6 — 15:28 — page 43 — #67

3.3. RESULTS 43

(a) 2mm

(b) 3mm

Figure 3.13 GOPS/W. Problem subset of the Polybench benchmark.
(1/3)

“icasthesis-template” — 2016/9/6 — 15:28 — page 44 — #68

44 CHAPTER 3. OMP2HMPP

(a) GEMM

(b) LU

Figure 3.14 GOPS/W. Problem subset of the Polybench benchmark.
(2/3)

“icasthesis-template” — 2016/9/6 — 15:28 — page 45 — #69

3.3. RESULTS 45

(a) Covariance

Figure 3.15 GOPS/W. Problem subset of the Polybench benchmark.
(3/3)

“icasthesis-template” — 2016/9/6 — 15:28 — page 46 — #70

46 CHAPTER 3. OMP2HMPP

shows the name of the generated file, the second column shows a unique signature
(referred to the selected version of HMPP directives, OMP2HMPP FIXED direc-
tive, and useful for further executions), and in the following columns, the values
for the time and energy measurements.

The generated versions were executed on a B505 blade equipped with 2 quad-core
Intel Westmere-EP E5640 2.66 GHz CPUs, 24 GB of memory, and two Nvidia Tesla
M2050 GPUs. This blade was equipped with energy meters that can be accessed
by the Baseboard Management Controller and an embedded micro-controller that
manages the blade. This microcontroller can power the blade on and off and mea-
sures its temperature, ventilation, and the energy consumed. The energy consumed
by the components of the chassis (e.g., AC/DC transformer, chassis management
module, interconnect switches) is not taken into account because these components
are outside the blade. The energy consumption is obtained in Watt-hours (Wh)
These values were converted to Joules by applying the corresponding conversion of
3, 600Joule = 1Wh. The measured energy includes the computing units:

• Active CPU

• Idle CPU

• Memory

• GPUs

An example performance analysis of the code generated by OMP2HMPP, is shown
on a set of code extracted from the Polybench benchmark [63]. The execution of the
code resulting from OMP2HMPP was compared with the original OpenMP version
and also with a hand-coded CUDA version and a sequential version of the same
problem. Figure 3.16 compares the speedup for the selected problems. This figure
shows that OMP2HMPP produces a good transformation of the original OpenMP
code, obtaining an average speedup of 113×. In contrast, the hand crafted CUDA
version achieves an 1.7× speed-up compared to the automatic generated programs.
Moreover, the average speedup obtained when comparing the generated code to
the original OpenMP version is 31×, which is a large gain in performance for a
programmer that additionally does not need to have any deep knowledge about
GPGPU programming.

OMP2HMPP measured the energy and time for all the generated code of all the
benchmark problems. Figures 3.17, 3.18, 3.19, 3.20, and 3.21 show those measure-
ments. These results allow the right implementation to be selected according to
the desired working point. The upper plot in these figures shows the full set of
generated versions and the bottom plot is an enlargement of the top one, showing

“icasthesis-template” — 2016/9/6 — 15:28 — page 47 — #71

3.4. CONCLUDING REMARKS 47

in more detail the best ones. Figures 3.17, 3.18, 3.19, 3.20, and 3.21 illustrate that
in some cases, there is a real trade-off between energy and time.

Finally, Figures 3.13,3.14, and 3.15 present the energy efficiency (in Giga Opera-
tions per Second (GOPS)/W) for all cases. These results show that the generated
versions increase the number of operations per watt that can be obtained after the
re-factorization performed by OMP2HMPP.

Figure 3.16 Speedup Comparison. Problem subset of the Polybench
benchmark.

3.4 Concluding Remarks

I built an OMP2HMPP S2S compiler to provide a powerful tool for GPGPU pro-
grammers to facilitate the study of all the transformations that can be generated
from an OpenMP block into any possible HMPP codelet and callsite. These trans-
formations can be compared at the same time with the non-transformed version

“icasthesis-template” — 2016/9/6 — 15:28 — page 48 — #72

48 CHAPTER 3. OMP2HMPP

(a) 2mm

(b) 2mm detail

Figure 3.17 Energy/Time trade-off. Problem subset of the Polybench
benchmark. (1/5)

“icasthesis-template” — 2016/9/6 — 15:28 — page 49 — #73

3.4. CONCLUDING REMARKS 49

(a) 3mm

(b) 3mm detail

Figure 3.18 Energy/Time trade-off. Problem subset of the Polybench
benchmark. (2/5)

“icasthesis-template” — 2016/9/6 — 15:28 — page 50 — #74

50 CHAPTER 3. OMP2HMPP

(a) Covariance

(b) Covariance detail

Figure 3.19 Energy/Time trade-off. Problem subset of the Polybench
benchmark. (3/5)

“icasthesis-template” — 2016/9/6 — 15:28 — page 51 — #75

3.4. CONCLUDING REMARKS 51

of the proposed block that combines CPU and GPU using parallel shared memory
computation (CPU and GPGPUs) exploring the use of HC. With the automatic
transformations, the programmer avoids needing to learn the meaning of HMPP di-
rectives and, more importantly, obtains a good performance analysis. This allows
the code implementation to be intelligently selected according to requirements.
Using OMP2HMPP on the Polybench benchmark subset, I obtained an average
speedup of 31× and an average increase in energy efficiency of 5.86× compared
with the best results of the OpenMP version. The OMP2HMPP tool produces
solutions that rarely differ from the best HMPP hand-coded version. Note that
a CUDA hand-coded version obtains an speedup of near 1.7× compared with the
best speedup of OMP2HMPP.

The automatic translation provided by our tool can be also useful for experimenting
users that want to obtain, with minimal effort, a GPGPU code that can be used
as starting point for further optimization. This staring point will provide a flavor
of the code partitioning and mapping for any given problem, from which better
performance with additional clever transformations can be obtained.

The current version of the tool has some limitations with the regard to the OMP2HMPP
expansion. One of its limitations is that the actual version of OMP2HMPP gen-
erates a maximum of twenty-one possible configurations for each simple OpenMP
block. The number of generated versions grows exponentially when trying to trans-
form many simple OpenMP blocks at the same time or groups of OpenMP parallel
blocks. This is because the versions that OMP2HMPP proposes either consider
the possibility of full HMPP source code or create possible solutions that combine
OpenMP and HMPP. Therefore, this results in a huge number of versions that
can considerably complicate the final analysis. OMP2HMPP will solve this issue in
future versions in order to minimize the execution time needed for a higher num-
ber of versions. This will be done by improving the optimization stage so that it
deletes some redundant versions or a priori inefficient versions. OMP2HMPP will
then propose the smallest set of possible versions with a smarter pragma combi-
nation of OpenMP and HMPP. OMP2HMPP will perform this task, separating
every OpenMP annotated pragma into a new process generated using its outline
and variable context. After that, each sub-program will be compiled and executed
to establish if it is efficient (in terms of its potential to obtain good results) to opti-
mize the CPU parallel block under a pre-established metric. This ability will save
testing time, but OMP2HMPP will still present the versions needed to determine
the best trade-off between execution time and energy consumption.

“icasthesis-template” — 2016/9/6 — 15:28 — page 52 — #76

52 CHAPTER 3. OMP2HMPP

OpenMP

1 in t main ()
2 {
3 . . .
4 #pragma omp p a r a l l e l shared (myTableOut , myTable) check
5 f o r (; (index < i t e r a t i o n s) ; index++)
6 {
7 #pragma omp fo r
8 f o r (i=SPANI ; i < WORKSIZE − SPANI ; i++) {
9 f o r (j=SPANJ; j < LINESIZE − SPANJ; j++) {
10 . . .
11 }
12 }
13 theDiffNorm = 0 . 0 ;
14 di f f sum=theDiffNorm ;
15 #pragma omp f o r reduction (+: di f f sum)
16 f o r (i = 1 ; i < (1 + MAXM + 1) − 1 ; i++) {
17 f o r (j = 1 ; j < (1 + MAXN + 1) âĂŞ 1 ; j++) {
18 âĂę
19 }
20 }
21 theDiffNorm=di f f sum ;
22 }
23 #pragma omp p a r a l l e l f o r reduction (+: d i f f sum) f i x ed (10 ,1 ,0)
24 f o r (i = 1 ; i < (1 + MAXM + 1) − 1 ; i++){
25 f o r (j = 1 ; j < (1 + MAXN + 1) − 1 ; j++){
26 . . .
27 }
28 }
29 disp layRegion (myTable) ;
30 return 0 ;
31 }

HMPP

1 in t main ()
2 {
3 #pragma hmpp <group1> group , target=CUDA
4 #pragma hmpp <group1> mapbyname, myTableOut
5 . . .
6 #pragma hmpp <group1> _instr_for4_ol_13_main advancedload , args [myTableOut] ,
7 args [myTableOut] . addr="myTableOut "
8 in t a = 0 ;
9 double d i f f sum = 0 . 0 ;
10 f o r (; (index < i t e r a t i o n s) ; index++) {
11 #pragma hmpp <group1> _instr_for4_ol_13_main c a l l s i t e ,
12 args [myTableOut] . noupdate=true
13 _instr_for4_ol_13_main (i , j , a , myTable , myTableOut) ;
14 theDiffNorm = 0 . 0 ;
15 di f f sum = theDiffNorm ;
16 #pragma hmpp <group1> _instr_for4_ol_13_main delegatedstore ,
17 args [myTableOut] , args [myTableOut] . addr="myTableOut "
18 #pragma omp p a r a l l e l f o r reduction (+: d i f f sum) shared (myTable) private (i , j)
19 f o r (i = 1 ; i < (1 + 5000 + 1) − 1 ; i++) {
20 f o r (j = 1 ; j < (1 + 5000 + 1) − 1 ; j++) {
21 . . .
22 }
23 }
24 theDiffNorm = di f f sum ;
25 }
26 #pragma hmpp <group1> _instr_for4_ol_20_main c a l l s i t e ,
27 args [myTableOut] . noupdate=true
28 _instr_for4_ol_20_main (i , j , myTableOut , myTable , a , &di f f sum) ;
29 disp layRegion (myTable) ;
30 #pragma hmpp <group1> r e l e a s e
31 return 0 ;
32 }

Table 3.2 Different OMP2HMPP transformations on each of the
OpenMP parallel for pragmas inside an OpenMP paral-
lel block.

“icasthesis-template” — 2016/9/6 — 15:28 — page 53 — #77

3.4. CONCLUDING REMARKS 53

OpenMP

1 in t main ()
2 {
3 . . .
4 #pragma omp p a r a l l e l f o r
5 f o r (i =0; i<row;++ i){
6 f o r (j =0); j<co l ;++k){
7 r e s u l t [i] [j] = 0 ;
8 f o r (k=0;k<row;++k){
9 r e s u l t [i] [j] += mat1 [i] [k] ∗mat2 [k] [j] ∗array [i ∗ j] ;
10 }
11 }
12 }
13 . . .
14 }

HMPP

1 #pragma hmpp _intr_for__ol_3_main codelet , target = CUDA,
2 args [r e s u l t] . i o=inout , a rgs [mat1 , mat2] . i o=in

Table 3.3 Example of variable access inside the kernel, as distin-
guished by OMP2HMPP, which determines if these vari-
ables are read or modified inside it.

“icasthesis-template” — 2016/9/6 — 15:28 — page 54 — #78

54 CHAPTER 3. OMP2HMPP

OpenMP

1 #pragma omp p a r a l l e l f o r reduction (+: d i f f sum) shared (myTable) check
2 f o r (i = 1 ; i < (1 + MAXM + 1) − 1 ; i++)
3 {
4 f o r (j = 1 ; j < (1 + MAXN + 1) − 1 ; j++)
5 {
6 double d i f f = myTableOut [i] [j] − myTable [i] [j] ;
7 double d i f fmu l = d i f f ∗ d i f f ;
8 d i f f sum += di f fmu l ;
9 myTable [i] [j] = myTableOut [i] [j] ;
10 }
11 }

HMPP

1 #pragma hmpp _instr_for__ol_75_main codelet , target = CUDA,
2 args [myTable] . i o=inout , a rgs [myTableOut] . i o=in ,
3 args [dif fsum_reduced] . i o=inout , a rgs [dif fsum_reduced] . s i z e={1}
4 void _instr_for__ol_75_main (i n t i , i n t j , double myTableOut [5002] [5002] ,
5 double myTable [5002] [5002] ,
6 double ∗diffsum_reduced)
7 {
8 double d i f f sum = ∗diffsum_reduced ;
9 #pragma hmppcg g r i d i f y (i , j) , reduce (+: di f f sum)
10 f o r (i = 1 ; i < (1 + 5000 + 1) − 1 ; i++)
11 {
12 f o r (j = 1 ; j < (1 + 5000 + 1) − 1 ; j++)
13 {
14 double d i f f = myTableOut [i] [j] − myTable [i] [j] ;
15 double d i f fmu l = d i f f ∗ d i f f ;
16 di f f sum += di f fmu l ;
17 myTable [i] [j] = myTableOut [i] [j] ;
18 }
19 }
20 ∗diffsum_reduced = di f f sum ;
21 }

Table 3.4 Example of grid division, as determined by OMP2HMPP
using the hmppcg gridify directive. This example transfor-
mation shows an OpenMP block that contains an OpenMP
reduction directive.

“icasthesis-template” — 2016/9/6 — 15:28 — page 55 — #79

3.4. CONCLUDING REMARKS 55

OpenMP

1 in t main ()
2 {
3
4 in t index =0;
5 double theDiffNorm = 1 ;
6 double RefDiffNorm = 0 ;
7 in t i t e r a t i o n s = 99 ;
8 in t works ize=WORKSIZE, l i n e s i z e=LINESIZE ;
9 in t i , j , o ;
10 double dif fsum , d i f f , d i f fmu l ;
11 i n i t (myTable , myTableOut) ;
12 f o r (index=0; (index < i t e r a t i o n s) ; index++) {
13 #pragma omp p a r a l l e l f o r shared (myTableOut) check
14 f o r (i=SPANI ; i < WORKSIZE − SPANI ; i++) {
15 f o r (j=SPANJ; j < LINESIZE − SPANJ; j++) {
16 double neighbor =cos (myTable [i−SPANI] [j]) +s in (myTable [i] [j−SPANJ])
17 +s in (myTable [i] [j+SPANJ]) +cos (myTable [i+SPANI] [j]) ;
18 myTableOut [i] [j] = neighbor /3 ;
19 }
20 }
21 theDiffNorm = 0 . 0 ;
22 di f f sum=theDiffNorm ;
23 #pragma omp p a r a l l e l f o r reduction (+: d i f f sum) shared (myTable) check
24 f o r (i = 1 ; i < (1 + MAXM + 1) − 1 ; i++) {
25 f o r (j = 1 ; j < (1 + MAXN + 1) − 1 ; j++) {
26 d i f f = myTableOut [i] [j] − myTable [i] [j] ;
27 d i f fmu l = d i f f ∗ d i f f ;
28 di f f sum += di f fmu l ;
29 myTable [i] [j] = myTableOut [i] [j] ;
30 }
31 }
32 theDiffNorm=di f f sum ;
33
34 }
35 disp layRegion (myTable) ;
36 return 0 ;
37 }

HMPP

1 myTableLR(CPU)(−1): 9 −> i n i t (myTable , myTableOut) ;
2 myTableLW(CPU)(−1): 9 −> i n i t (myTable , myTableOut) ;
3 myTableFR(GPU) (6 4) : 16 −> #pragma omp p a r a l l e l f o r reduct ion (+: di f f sum)
4 shared (myTable) check
5 f o r (i = 1 ; i < (1 + 5000 + 1) − 1 ; i++)
6 {
7 . . .
8 }
9 myTableFW(GPU) (6 4) : 16 −> #pragma omp p a r a l l e l f o r reduct ion (+: di f f sum)
10 shared (myTable) check
11 f o r (i = 1 ; i < (1 + 5000 + 1) − 1 ; i++)
12 {
13 . . .
14 }
15 myTableFR(CPU)(−1): 18 −> disp layRegion (myTable) ;
16 myTableFW(CPU)(−1): 18 −> disp layRegion (myTable) ;
17 −−−−−−−−−−−−−−−−−−−−−−−−−−−
18 myTableOutLR(CPU)(−1): 9 −> i n i t (myTable , myTableOut) ;
19 myTableOutLW(CPU)(−1): 9 −> i n i t (myTable , myTableOut) ;
20 myTableOutFR(GPU) (6 4) : 16 −> #pragma omp p a r a l l e l f o r reduct ion (+: di f f sum)
21 shared (myTable) check
22 f o r (i = 1 ; i < (1 + 5000 + 1) − 1 ; i++)
23 {
24 . . .
25 }

Table 3.5 Example of OMP2HMPP use of contextual analysis.

“icasthesis-template” — 2016/9/6 — 15:28 — page 56 — #80

56 CHAPTER 3. OMP2HMPP

OpenMP

1 in t main ()
2 {
3 in t index =0;
4 double theDiffNorm = 1 ;
5 double RefDiffNorm = 0 ;
6 in t i t e r a t i o n s = 99 ;
7 in t works ize=WORKSIZE, l i n e s i z e=LINESIZE ;
8 in t i , j , o , a ;
9 double dif fsum , d i f f , d i f fmu l ;
10 i n i t (myTable , myTableOut) ;
11 f o r (index=0; (index < i t e r a t i o n s) ; index++)
12 {
13 #pragma omp p a r a l l e l f o r shared (myTableOut) check
14 f o r (i=SPANI ; i < WORKSIZE − SPANI ; i++) {
15 f o r (j=SPANJ; j < LINESIZE − SPANJ; j++) {
16 double neighbor=cos (myTable [i−SPANI] [j]) +s in (myTable [i] [j−SPANJ])
17 +s in (myTable [i] [j+SPANJ]) +cos (myTable [i+SPANI] [j]) ;
18 myTableOut [i] [j] = neighbor /3 ;
19 }
20 }
21 theDiffNorm = 0 . 0 ;
22 di f f sum=theDiffNorm ;
23 a=0;
24 #pragma omp p a r a l l e l f o r reduct ion (+: di f f sum) shared (myTable) check
25 f o r (i = 1 ; i < (1 + MAXM + 1) − 1 ; i++)
26 {
27 f o r (j = 1 ; j < (1 + MAXN + 1) − 1 ; j++)
28 {
29 d i f f = myTableOut [i] [j] − myTable [i] [j] ;
30 d i f fmu l = d i f f ∗ d i f f ;
31 di f f sum += di f fmu l ;
32 a=2;
33 myTable [i] [j] = myTableOut [i] [j] ;
34 }
35 }
36 theDiffNorm=di f f sum ;
37
38 }
39 disp layRegion (myTable) ;
40 return 0 ;
41 }

HMPP

1 in t main ()
2 {
3 #pragma hmpp <group0_12> group , target=CUDA
4 #pragma hmpp <group0_12> mapbyname, myTable , myTableOut
5 in t index = 0 ;
6 double theDiffNorm = 1 ;
7 double RefDiffNorm = 0 ;
8 in t i t e r a t i o n s = 99 ;
9 in t works ize = (1 + 5000 + 1) , l i n e s i z e = (1 + 5000 + 1) ;
10 in t i , j , o , a ;
11 double dif fsum , d i f f , d i f fmu l ;
12 i n i t (myTable , myTableOut) ;
13 #pragma hmpp <group0_12> _instr_for12_ol_12_main advancedload , args [myTable ,
14 myTableOut] , args [myTable] . addr="myTable " ,
15 args [myTableOut] . addr="myTableOut "
16 f o r (index = 0 ;
17 (index < i t e r a t i o n s) ;
18 index++)
19 {
20 #pragma hmpp <group0_12> _instr_for12_ol_12_main c a l l s i t e ,
21 args [myTable , myTableOut] . noupdate=true
22 _instr_for12_ol_12_main (i , j , myTable , myTableOut) ;
23 theDiffNorm = 0 . 0 ;
24 di f f sum = theDiffNorm ;
25 a = 0 ;
26 #pragma hmpp <group0_12> _instr_for12_ol_17_main c a l l s i t e ,
27 args [myTableOut , myTable] . noupdate=true
28 _instr_for12_ol_17_main (i , j , d i f f , myTableOut , myTable , d i f fmul ,
29 &diffsum , a) ;
30 theDiffNorm = di f f sum ;
31 }
32 #pragma hmpp <group0_12> _instr_for12_ol_17_main delegatedstore ,
33 args [myTable] , args [myTable] . addr="myTable "
34 disp layRegion (myTable) ;
35 #pragma hmpp <group0_12> r e l e a s e
36 p r i n t f (" theDiffNorm :%.12 g␣RefDiffNorm=%.12g ; " , theDiffNorm , RefDiffNorm) ;
37 return 0 ;
38 }

Table 3.6 Example of contextual analysis with the noupdate direc-
tive.

“icasthesis-template” — 2016/9/6 — 15:28 — page 57 — #81

3.4. CONCLUDING REMARKS 57

HMPP

1 #pragma hmpp <group0_12> _instr_for12_ol_12_main codelet ,
2 args [myTable , myTableOut] . i o=in
3 void _instr_for42_ol_12_main (i n t i , i n t j , double myTable [5002] [5002] ,
4 double myTableOut [5002] [5002]) {
5 #pragma hmppcg g r i d i f y (i , j)
6 f o r (i = 1 ; i < (1 + 5000 + 1) − 1 ; i++) {
7 f o r (j = 1 ; j < (1 + 5000 + 1) − 1 ; j++) {
8 double neighbor = cos (myTable [i − 1] [j]) + s in (myTable [i] [j − 1])
9 + s in (myTable [i] [j + 1]) + cos (myTable [i + 1] [j]) ;
10 myTableOut [i] [j] = neighbor / 3 ;
11 } } }

Table 3.7 OMP2HMPP transformation. Data transfer between the
GPU and CPU is decreased by using the HMPP noupdate
directive.

“icasthesis-template” — 2016/9/6 — 15:28 — page 58 — #82

58 CHAPTER 3. OMP2HMPP

OpenMP HMPP

1 void g (i n t &a , i n t b) {
2 in t r=2;
3 in t c=1;
4 a=a+r+2;
5 in t ret = a+b+c+r ∗2;
6 }
7 in t f (i n t a) {
8 return a+1;
9 }
10
11 in t main () {
12 in t l ;
13 i n t x=2;
14 l=f (1)+ f (2)+g (x , 6) ;
15 l=l ∗g (x , 2) ;
16 return 1 ;
17 }

1 in t deletedFunctionBodyNamed_g = 1;
2 in t deletedFunctionBodyNamed_f = 1;
3 in t main () {
4 in t l ;
5 i n t x = 2 ;
6 in t _p_0_f_0 = 1;
7 in t _return_0 ;
8 {
9 in t ret_f0 ;

10 ret_f0 = _p_0_f_0 + 1;
11 _return_0 = ret_f0 ;
12 }
13 in t _p_0_f_1 = 2;
14 in t _return_1 ;
15 {
16 in t ret_f1 ;
17 ret_f1 = _p_0_f_1 + 1;
18 _return_1 = ret_f1 ;
19 }
20 in t ∗_p_0_g_2 = &x ;
21 in t _p_1_g_2 = 6;
22 in t _return_2 ;
23 {
24 in t r = 2 ;
25 in t c = 1 ;
26 ∗_p_0_g_2 = ∗_p_0_g_2 + r + 2 ;
27 in t ret = ∗_p_0_g_2 + _p_1_g_2
28 + c + r ∗ 2 ;
29 in t ret_g2 ;
30 ret_g2 = ret ;
31 _return_2 = ret_g2 ;
32 }
33 l = _return_0 + _return_1 + _return_2 ;
34 i n t ∗_p_0_g_3 = &x ;
35 in t _p_1_g_3 = 2 ;
36 in t _return_3 ;
37 {
38 in t r = 2 ;
39 in t c = 1 ;
40 ∗_p_0_g_3 = ∗_p_0_g_3 + r + 2 ;
41 in t ret = ∗_p_0_g_3 + _p_1_g_3
42 + c + r ∗ 2 ;
43 in t ret_g3 ;
44 ret_g3 = ret ;
45 _return_3 = ret_g3 ;
46 }
47 l = l ∗ _return_3 ;
48 return 1 ;
49 }

Table 3.8 Inline transformation.

“icasthesis-template” — 2016/9/6 — 15:28 — page 59 — #83

3.4. CONCLUDING REMARKS 59

(a) LU

(b) LU detail

Figure 3.20 Energy/Time trade-off. Problem subset of the Polybench
benchmark. (4/5)

“icasthesis-template” — 2016/9/6 — 15:28 — page 60 — #84

60 CHAPTER 3. OMP2HMPP

(a) GEMM

(b) GEMM detail

Figure 3.21 Energy/Time trade-off. Problem subset of the Polybench
benchmark. (5/5)

“icasthesis-template” — 2016/9/6 — 15:28 — page 61 — #85

3.4. CONCLUDING REMARKS 61

Version/Measure Signature Time
Expended (ms) Energy

Consumption (J)
Original
(OpenMP)

0, 0, 0 59500 17428

Adv_loaddelSto... 9, 1, 0 9611 3401,55
Adv_loadRel... 11, 3, 0 10530,2 3819,2
Adv_loadRel... 11, 1, 0 10572,4 4109,9
Adv_loadRel... 10, 1, 0 10844,4 3974,2
...

Table 3.9 Example OMP2HMPP CSV spreadsheet output for Jacobi
implementation.

“icasthesis-template” — 2016/9/6 — 15:28 — page 62 — #86

“icasthesis-template” — 2016/9/6 — 15:28 — page 63 — #87

OMP2MPI: Automatic
MPI Code Generation

from OpenMP Programs 4

In this chapter, I develop the proposed S2S compiler tool called OMP2MPI. OMP2MPI
extends the use of parallel programming on shared memory architectures to dis-
tributed memory architectures using MPI, as illustrated in Figure 1.7. The new
S2S compiler tool transforms OpenMP source code into MPI source code. The
tool automatically generates code that can be executed on different kinds of DM
systems, such as large HPC clusters or distributed memory experimental proces-
sors such as Intel Polaris, Ambric, or experimental FPGA-based multi-soft-core
platforms (e.g., [21]).

Figure 4.4 shows a simplified process flow for the OMP2MPI compiler, where an
OpenMP input code is transformed into an MPI using the AST. OMP2MPI detects
and transforms OpenMP blocks (focused in “#pragma omp parallel for“), dividing
selected tasks in the MPI master and slave processes that will be distributed on
the available cores. To determine which OpenMP blocks need to be transformed,
OMP2MPI uses the directives proposed in [64]. This process is illustrated in the
input code example shown in Table 4.1.

The OMP2MPI tool is able to use the combination of peer-to-peer communication
functions (MPI_Send, MPI_Recv) and divide the code into sequential and parallel
parts using MPI ranks.

With these MPI functions OMP2MPI, in contrast to [56], is able to correctly
implement a MPI parallel program that overcomes the problems detected in this
thesis and generate code that can be compared to an MPI hand-coded version of
the original problem. OMP2MPI transforms the original code by initializing MPI

63

“icasthesis-template” — 2016/9/6 — 15:28 — page 64 — #88

64 CHAPTER 4. OMP2MPI

1 in t main (i n t argc , char∗∗ argv) {
2 . . .
3 in i t_array () ;
4 . . .
5 #pragma omp p a r a l l e l f o r p r i va t e (iy , ix) t a rg e t mpi
6 f o r (i z = 0; i z < Cz ; i z++) {
7 f o r (iy = 0; iy < Cym; iy++) {
8 f o r (ix = 0; ix < Cxm; ix++) {
9 c l f [i z] [iy] = Ex [i z] [iy] [ix]
10 − Ex [i z] [iy + 1] [ix]
11 + Ey [i z] [iy] [ix + 1]
12 − Ey [i z] [iy] [ix] ;
13 tmp [i z] [iy] = (cymh [iy] / cyph [iy]) ;
14 Hz [i z] [iy] [ix] = (cxmh [ix] / cxph [ix]) ;
15 Bza [i z] [iy] [ix] = tmp [i z] [iy] ;
16 }
17 tmp [i z] [iy] = (cymh [iy] / cyph [iy])
18 ∗ Bza [i z] [iy] [Cxm]
19 − (ch / cyph [iy])
20 ∗ c l f [i z] [iy] ;
21 Hz [i z] [iy] [Cxm] = (cxmh [Cxm] / cxph [Cxm]) ;
22 Bza [i z] [iy] [Cxm] = tmp [i z] [iy] ;
23 }
24 }
25 double t o t a l = 0 ;
26 f o r (i n t i t e r = 0 ; i t e r < Cz ; i t e r++) {
27 f o r (i n t i t e r 2 = 0 ; i t e r 2 < Cym; i t e r 2++) {
28 f o r (i n t i t e r 3 = 0 ; i t e r 3 < Cxm; i t e r 3++) {
29 t o t a l+=Bza [i t e r] [i t e r 2] [i t e r 3] ;
30 }
31 }
32 }
33 return 0 ;
34 }

Table 4.1 OpenMP block source code example using the created tar-
get clause.

and distributing workload based on the process rank of the calling process in the
communicator. The master process has rank 0 and contains all the sequential code
from the original OpenMP application. It also manages the shared memory access,
thus keeping all of the slaves updated, as shown in Figure 4.2. For the original
OpenMP memory access, represented in Figure 4.1, all the created threads have
access to shared memory.

4.1 AST Manipulation

The AST manipulation stage shown in Figure 4.4 is composed of four main steps:
1) task division, 2) context analysis, 3) loop analysis, and 4) workload distribution.

“icasthesis-template” — 2016/9/6 — 15:28 — page 65 — #89

4.1. AST MANIPULATION 65

Figure 4.1 Example memory access pattern of an OpenMP applica-
tion. Threads directly access the shared memory. Blue
lines represent read operations and red lines represent
write operations.

“icasthesis-template” — 2016/9/6 — 15:28 — page 66 — #90

66 CHAPTER 4. OMP2MPI

Figure 4.2 Example proposed memory access pattern for shared vari-
ables in MPI target applications. Access to shared vari-
ables is managed by the master node, and worker processes
must communicate with it to access them. Blue lines rep-
resent read operations, and red lines represent write oper-
ations.

“icasthesis-template” — 2016/9/6 — 15:28 — page 67 — #91

4.1. AST MANIPULATION 67

(a) Example of read/write re-
quest using the demand
method. Each element is ac-
cessed individually.

(b) Example of a read/write re-
quest using the group arrays
method. Each element is ac-
cessed by a range defined by
an offset pointer to a fixed
size location.

(c) Example of a secure write re-
quest. Every element is ac-
cessed individually. The de-
manding process blocks the
master communications to
all other slaves until it fin-
ishes (atomicity operation).

Figure 4.3 Illustration of the shared memory access method. Red
lines represent read operations and green lines represent
write operations.

“icasthesis-template” — 2016/9/6 — 15:28 — page 68 — #92

68 CHAPTER 4. OMP2MPI

Figure 4.4 AST manipulation process performed by OMP2MPI
(grey boxes) surrounded by reused Mercurium framework
blocks(grey boxes).

4.1.1 Task Distribution

This stage distributes the original code calculations by implementing the MPI
initialization in the communicator and distributing the workload based on the
process rank of the called processes. OMP2MPI has two different alternatives for
distributing tasks: full task division or finalization.

When an input source code uses full task distribution, all the processes share all
the variable declarations and contain the parallelized parts of the code, but the
remaining source code is simply performed in the master. This methodology allows
slaves to perform other tasks while the master does not require them.

In contrast, in the finalization method (detailed in [56]), all the slaves do the
same work (including initialization and previous sequential computation) on the
updated values, as explained in Section 4.1.2, until the end of the last parallelized
block, decreasing the number of data transfers. After the finalization of all the
OpenMP-transformed blocks, it asserts the MPI_Finalize instructions and assigns
the remaining process to the master node, avoiding unnecessary computation in
the slaves.

4.1.2 Context Analysis

To transform the original code, OMP2MPI analyzes the context where the OpenMP
block was originally computed and performs an accurate contextual analysis of
the AST for each of the variables needed inside it. In MPI, every executed pro-
cess manages its own private variables independently. The main problem when
transform OpenMP to MPI is caused by the shared variables. OMP2MPI studies
each shared variable used in an OpenMP block and analyzes the AST to identify
when or whether they are accessed. OMP2MPI distinguishes the variables used in
an OpenMP block into Input Variables (IN) variables (read inside the block and

“icasthesis-template” — 2016/9/6 — 15:28 — page 69 — #93

4.1. AST MANIPULATION 69

not modified), Output Variables (OUT) variables (written in the block and whose
result is needed after block finalization), and Input Output Variables (INOUT)
variables (variables that comply with both cases). In the example shown in Table
4.1, OMP2MPI determines that all variables read in the OpenMP block are IN
variables (i.e., Ex and Ey), but just one of the written variables Bza is considered
OUT because it is read after the block finalization.

The context analysis stage also includes the study of the OpenMP block context,
for instance to detect that the OpenMP block to be transformed is placed inside
a loop. In this case, OMP2MPI modifies where the initialization and task syn-
chronization instructions are inserted. An OpenMP block located inside a loop
condition modifies how the variable use (IN or OUT) is understood by the tool. In
the problem illustrated in Table 4.1, OMP2MPI considers only Bza as an OUT be-
cause only this variable is read after block finalization. By modifying the problem
and context of the OpenMP block by putting it inside a loop, all the variables that
are written inside that kernel will be considered OUT if they are previously read.
All the variables modified on iteration x of the loop that contains the OpenMP
block require the updated value to be read on iteration x + 1.

4.1.3 Loop Analysis

This stage is dedicated to studying the loop that is included in the pragma omp
for directive. Its goal is to correctly divide the inner computation statements of
the for loop. OMP2MPI performs an exhaustive analysis of the for semantics to
determine: 1) the iterated variable, 2) the variable‘s initial value, 3) the variable‘s
final value 4) the decrements/increment after every iteration, and 5) the logic com-
parison operation. However, there are some cases in which OMP2MPI is not able
to transform loops depending on specific for loop semantics, i.e., complex nonlinear
increments of the iterator or multiple cases in the condition. OMP2MPI will gen-
erate an alert that informs the user that the selected block cannot be transformed
or can only be transformed by automatic or manual loop normalization.

A loop is considered normalized if it is formed in an incremental way, from a lower
to higher iterator values and if the condition to follow is a less than operator (“<“).
A non-normalized loop can lead to additional errors in the following compilation
stages, and OMP2MPI offers the possibility to perform this transformation auto-
matically by modifying the loop formation. Figure 4.5 illustrates an example of
the transformation process and how the original loop parts are transformed into
their normalized version.

“icasthesis-template” — 2016/9/6 — 15:28 — page 70 — #94

70 CHAPTER 4. OMP2MPI

1 in t main (. . .)
2 {
3 in t myid ; MPI_Status s t a t ; i n t s i z e ; i n t ∗argcVar = NULL; char ∗∗∗argvVar = NULL;
4 MPI_Init (argcVar , argvVar) ;
5 MPI_Comm_size(MPI_COMM_WORLD, &s i z e) ;
6 MPI_Comm_rank(MPI_COMM_WORLD, &myid) ;
7 i n t iz , iy , ix ;
8 i n t Cz = 10;
9 in t Cym = 10;
10 in t Cxm = 10;
11 i f (myid == 0) {
12 in i t_array () ;
13 }
14 const i n t FTAG = 0;
15 const i n t ATAG = 1;
16 const i n t RTAG = 2;
17 const i n t WTAG = 3;
18 const i n t SWTAG = 4;
19 const i n t FRTAG = 5;
20 const i n t FWTAG = 6;
21 double t imeFin i sh ;
22 in t coordVector0 [3] ;
23 in t pa r tS i z e = ((Cz − (0))) / (s i z e − 1) > 0 ? ((Cz − (0))) / (s i z e − 1) / 2 : 1 ;
24 in t o f f s e t ;
25 /∗Master Source Code∗/
26 . . .
27 /∗ Slave Source Code∗/
28 i f (myid != 0) {
29 whi le (1) {
30 MPI_Recv(& o f f s e t , 1 , MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG,
31 MPI_COMM_WORLD, &s ta t) ;
32 i f (s t a t .MPI_TAG == ATAG) {
33 MPI_Recv(&partS ize , 1 , MPI_INT, 0 , ATAG, MPI_COMM_WORLD, &s ta t) ;
34 in t idxForReadWriteSwitch ;
35 MPI_Recv(&ch , 1 , MPI_DOUBLE, 0 , ATAG, MPI_COMM_WORLD, &s ta t) ;
36 MPI_Recv(&Ey [o f f s e t] , pa r tS i z e ∗ EySizeDim1 ∗ EySizeDim2 , MPI_DOUBLE,
37 0 , ATAG, MPI_COMM_WORLD, &s ta t) ;
38 MPI_Recv(&Ex [o f f s e t] , pa r tS i z e ∗ ExSizeDim1 ∗ EySizeDim2 , MPI_DOUBLE,
39 0 , ATAG, MPI_COMM_WORLD, &s ta t) ;
40 (coordVector0 [0] = 0) ;
41 (coordVector0 [1] = ((Cym) − coordVector0 [0])) ;
42 (idxForReadWriteSwitch = 1) ;
43 MPI_Send(&idxForReadWriteSwitch , 1 , MPI_INT, 0 , FRTAG,
44 MPI_COMM_WORLD) ;
45 MPI_Send(&coordVector0 , 2 , MPI_INT, 0 , FRTAG, MPI_COMM_WORLD) ;
46 MPI_Recv(&cymh [coordVector0 [0]] , coordVector0 [1] , MPI_DOUBLE, 0 ,
47 FRTAG, MPI_COMM_WORLD, &s ta t) ;
48 (coordVector0 [0] = 0) ;
49 (coordVector0 [1] = ((0) > (Cym)) ? ((Cym) − (0)) : ((0) − (0))) ;
50 i f ((0) < (0) && coordVector0 [1] > 0) {
51 (idxForReadWriteSwitch = 1) ;
52 MPI_Send(&idxForReadWriteSwitch , 1 , MPI_INT, 0 , FRTAG,
53 MPI_COMM_WORLD) ;
54 MPI_Send(&coordVector0 , 2 , MPI_INT, 0 , FRTAG, MPI_COMM_WORLD) ;
55 MPI_Recv(&cymh [coordVector0 [0]] , coordVector0 [1] , MPI_DOUBLE,
56 0 , FRTAG, MPI_COMM_WORLD, &s ta t) ;
57 }
58 (coordVector0 [0] = (((Cym)) > (0)) ? ((Cym)) : (0)) ;
59 (coordVector0 [1] = (((Cym)) > (0)) ? (Cym − ((Cym))) : (Cym − 0)) ;
60 i f ((Cym) > (Cym) && coordVector0 [1] > 0) {
61 (idxForReadWriteSwitch = 1) ;
62 MPI_Send(&idxForReadWriteSwitch , 1 , MPI_INT, 0 , FRTAG,
63 MPI_COMM_WORLD) ;
64 MPI_Send(&coordVector0 , 2 , MPI_INT, 0 , FRTAG, MPI_COMM_WORLD) ;
65 MPI_Recv(&cymh [coordVector0 [0]] , coordVector0 [1] , MPI_DOUBLE, 0 ,
66 FRTAG, MPI_COMM_WORLD, &s ta t) ;
67 }
68 . . .

Table 4.2 Automatically generated MPI source code with expanded
slave code. OMP2MPI automatically groups accesses into
read/write requests with conditional range updates. (1/2)

“icasthesis-template” — 2016/9/6 — 15:28 — page 71 — #95

4.1. AST MANIPULATION 71

69 . . .
70 f o r (i n t i z = o f f s e t ; i z < o f f s e t + par tS i z e ; ++i z) {
71 double cymh_iy ; double cyph_iy ; double cxmh_ix ; double cxph_ix ;
72 double cxmh_Cxm; double cxph_Cxm;
73 f o r (iy = 0; iy < Cym; iy++) {
74 f o r (ix = 0; ix < Cxm; ix++) {
75 c l f [i z] [iy] = Ex [i z] [iy] [ix] − Ex [i z] [iy + 1] [ix]
76 + Ey [i z] [iy] [ix + 1] − Ey [i z] [iy] [ix] ;
77 (tmp [i z] [iy] = (cymh [iy] / cyph [iy])) ;
78 (Hz [i z] [iy] [ix] = (cxmh [ix] / cxph [ix])) ;
79 (Bza [i z] [iy] [ix] = tmp [i z] [iy]) ;
80 }
81 (tmp [i z] [iy] = (cymh [iy] / cyph [iy]) ∗ Bza [i z] [iy] [Cxm]
82 − (ch / cyph [iy]) ∗ c l f [i z] [iy]) ;
83 i f (Cxm > (Cxm) | | Cxm < (0)) {
84 (idxForReadWriteSwitch = 2) ;
85 (coordVector0 [0] = Cxm) ;
86 MPI_Send(&idxForReadWriteSwitch , 1 , MPI_INT, 0 , RTAG,
87 MPI_COMM_WORLD) ;
88 MPI_Send(&coordVector0 , 1 , MPI_INT, 0 , RTAG,
89 MPI_COMM_WORLD) ;
90 MPI_Recv(&cxmh_Cxm, 1 , MPI_DOUBLE, 0 ,
91 RTAG, MPI_COMM_WORLD, &s ta t) ;
92 } e l s e {
93 (cxmh_Cxm = cxmh [Cxm]) ;
94 }
95 i f (Cxm > (Cxm) | | Cxm < (0)) {
96 (idxForReadWriteSwitch = 6) ;
97 (coordVector0 [0] = Cxm) ;
98 MPI_Send(&idxForReadWriteSwitch , 1 , MPI_INT, 0 , RTAG,
99 MPI_COMM_WORLD) ;
100 MPI_Send(&coordVector0 , 1 , MPI_INT, 0 , RTAG,
101 MPI_COMM_WORLD) ;
102 MPI_Recv(&cxph_Cxm, 1 , MPI_DOUBLE, 0 , RTAG,
103 MPI_COMM_WORLD, &s ta t) ;
104 } e l s e {
105 (cxph_Cxm = cxph [Cxm]) ;
106 }
107 (Hz [i z] [iy] [Cxm] = (cxmh_Cxm / cxph_Cxm)) ;
108 (Bza [i z] [iy] [Cxm] = tmp [i z] [iy]) ;
109 }
110
111
112 }
113 MPI_Send(&partS ize , 1 , MPI_INT, 0 , ATAG, MPI_COMM_WORLD) ;
114 MPI_Send(& o f f s e t , 1 , MPI_INT, 0 , ATAG, MPI_COMM_WORLD) ;
115 MPI_Send(&Bza [o f f s e t] , pa r tS i z e ∗ BzaSizeDim1 ∗ BzaSizeDim2 ,
116 MPI_DOUBLE, 0 , ATAG, MPI_COMM_WORLD) ;
117 } e l s e i f (s t a t .MPI_TAG == FTAG) {
118 break ;
119 } } }
120 MPI_Finalize () ;
121 double t o t a l = 0 ;
122 i f (myid == 0) {
123 f o r (i n t i t e r = 0 ; i t e r < Cz ; i t e r++) {
124 f o r (i n t i t e r 2 = 0 ; i t e r 2 < Cym; i t e r 2++) {
125 f o r (i n t i t e r 3 = 0 ; i t e r 3 < Cxm; i t e r 3++) {
126 t o t a l += Bza [i t e r] [i t e r 2] [i t e r 3] ;
127 } } }
128 p r i n t f (" t o t a l=%f \n" , t o t a l) ;
129 }
130 return 0 ;
131 }

Table 4.3 Automatically generated MPI source code with expanded
slave code. OMP2MPI automatically groups accesses into
read/write requests with conditional range updates. (2/2)

“icasthesis-template” — 2016/9/6 — 15:28 — page 72 — #96

72 CHAPTER 4. OMP2MPI

Figure 4.5 Example of the loop normalization process.

4.1.4 Workload Distribution

When the context and the proper loop semantics are understood, OMP2MPI dis-
tributes the OpenMP block calculation to work with the master/slave MPI model
according to a producer/consumer paradigm. OMP2MPI has already handled
all the variables at the context analysis stage. Figures 4.9a and 4.9b show how
OMP2MPI divides the computation for each of the OpenMP blocks. The iter-
ations of the OpenMP block are divided differently depending on whether the
original OpenMP block contains a static or guided schedule clause in its pragma
clauses. OMP2MPI divides the iterations of the for loop between all the available
slaves, as described in Equation 4.1, where S_i is the number of iterations for slave
i, maxV it she maximum value of the iterator, minV is the minimum value of the
iterator, sN is the number of slaves available, and dF is the division factor that
could be determined by the command line in OMP2MPI execution. The value of
Si can also be fixed using the OMP2MPI command line to one size for all slaves (if
it is possible). Figure 4.9b shows the distribution model for an OpenMP dynamic
block, and Figure 4.9a shows how an OpenMP static or guided block is distributed
among the master and slaves.

Si = (maxV −minV)
sN

/dF. (4.1)

By using static division, the outer loop is scheduled in a round-robin fashion using
MPI_Recv from specific ranks. This could lead to an unbalanced load. However,
this kind of division is needed because OMP2MPI is thought to be faithful to the

“icasthesis-template” — 2016/9/6 — 15:28 — page 73 — #97

4.1. AST MANIPULATION 73

Figure 4.6 Index accesses knowledge at compilation time.

original OpenMP code, which could have this directive. In contrast, for dynamic di-
vision, the outer loop is scheduled dynamically using ANY_SOURCE MPI_Recv,
which gives more efficient results.

In previous versions of OMP2MPI [56], the workload distribution used (shown in
Figure 4.7a) does not properly deal with all the possible shared variables that
could be found in an OpenMP block. To overcome these problems, I issue back
to the formal structure shown in Figure 4.3a. Each individual read/write access
is managed through the master node by a read/write request from the slave (on
demand). This is solved by the producer/consumer paradigm allowing the master
to perform these requests in the transformed source code. This is described in
Figure 4.3a using Read Tag (RTAG) and Write Tag (WTAG). In a similar way,
OMP2MPI includes the possibility of concurrent accesses to these variables using
Secure Write Tag (SWTAG), as is illustrated in Figure 4.3c. Table 4.6 shows
an example of the transformation based on these principles and the requests that
the source generated for a slave (using the input code illustrated in Table 4.1).
Nevertheless, because every memory access implies a slave-to-master request, the
communication time significantly increases, as shown in Figure 4.7b.

To decrease the communication time, OMP2MPI analyzes the context information
extracted for every variable in order to group, when possible, all read or write
accesses into a single variable and transfer them using just one request. One of
the OMP2MPI methodologies to group these transfers consists of detecting of the
divided iterator, linearly in the first dimensional access pointer in a read/write
operation of a variable (i.e., clf or Ex in line 9 of Table4.1) using MPI_Send
and MPI_Recv functions transfers after the starting iterator value. Its maximum
value in that division is just the portion of the IN/OUT variables that must be
read or have been modified. They need to be counted from the offset to the actual
maximum iterator, as illustrated in Figures 4.9a and 4.9b. These variables are
received on the slave before the start of the iteration division computation, and
are returned once the modified variables value is updated. Line 96 of Table 4.3
shows the instruction that sends the modified array back to the master using the
process illustrated in Figure 4.3b. In all the other shared variable cases, OMP2MPI
operates using an on-demand method (i.e., cymh in line 13 of Table4.1). Figure 4.7c

“icasthesis-template” — 2016/9/6 — 15:28 — page 74 — #98

74 CHAPTER 4. OMP2MPI

illustrates this method. Communications are significantly decreased with respect
to the previous case.

To decrease the number of transfers, OMP2MPI also deals with array variables that
are accessed inside a loop nested inside a divided loop and that have a different
iterator, especially if it is used as first dimension value conforming to a range of
accesses (i.e., cymh. To do this, it uses Full Read Tag (FRTAG) or Full Write
Tag (FWTAG), as shown in lines 37 to 58 in Table 4.2. With such a grouping, the
number of transfers is further decreased, as shown in Figure 4.7d, but there are
still some unnecessary transfers that could be deleted.

Each read/write operation that operates a variable on a given range, even in the
same expression, is fully transferred using the whole range of variable values. A
simple representation of accesses to array cymh shown in Figure4.6 shows that
OMP2MPI is not able to determine if the value of S0 is less than, greater than, or
the same as S1 (nor any other values). Applying this example to the problem in
Table 4.2, it loads all the values every time an access to its range is detected. This
generates redundant accesses to the same variable. For this reason, OMP2MPI
uses conditional ranges to define the accessed range that will be determined at
execution time. This methodology considerably reduces the number of transfers,
as shown in Figures 4.7e and 4.7f. Moreover, in this version, individual accesses to
a variable with indexes that are not iterators on a range (i.e., cymh[x] in Figure
4.6) will not be transformed as an individual request if the result at execution time
indicates that the accessed member is already loaded before the conditional range.
This last example can be seen in lines 79 to 87 in Table 4.2.

After that, an optimal and automatically generated version that maximizes the
transfer groupings (decreasing their number considerably) is then obtained. Fur-
thermore, OMP2MPI offers to the user the option of using two kinds of work distri-
bution (detailed in Subsection 4.1.1), the finalization method illustrated in Figure
4.7f or full distribution method illustrated in Figure 4.7e. Using the finalization
method, users decrease the amount of initialization of data on slaves because all
the slaves have the updated values after executing all the same code; however, the
full division method allows slaves to be dedicated to other tasks when the master
does not require their work.

Finally, a special case of shared variables is the reduced variable, as specified by
the OpenMP reduction clause. In this case, OMP2MPI supports a few sets of
reduction operations. When a reduction operation is detected, OMP2MPI will
determine the starting value of the reduced variable depending on the reduction
operation. OMP2MPI uses a starting value of 0 for “+“ and “-“ operations and 1
for “*“ and “/“. It also accumulates the received results computed at the slaves in
the resulting variable during the reduce operation.

“icasthesis-template” — 2016/9/6 — 15:28 — page 75 — #99

4.1. AST MANIPULATION 75

1 in t main (. . .) {
2 /∗ I n i t MPI∗/
3 . . .
4 i n t coordVector0 [maxNumOfDimensionsInStudiedVar] ;
5 i n t pa r tS i z e = ((iteratorMaxValue − (i t e r a t o r I n i t V a l u e))) / (s i z e − 1)
6 > i t e r a t o r I n i t V a l u e ?
7 ((iteratorMaxValue − (i t e r a t o r I n i t V a l u e))) / (s i z e − 1)
8 / divisionFactor : 1 ;
9 i n t o f f s e t ;
10 i f (myid == 0) {
11 . . .
12 f o r (i n t to = 1 ; to < s i z e ; ++to) {
13 i f ((fo l lowIN + par tS i z e) < iteratorMaxValue) {
14 MPI_Send(&fol lowIN , 1 , MPI_INT, to , ATAG, MPI_COMM_WORLD) ;
15 MPI_Send(&partS ize , 1 , MPI_INT, to , ATAG, MPI_COMM_WORLD) ;
16 /∗Send in va r i ab l e s ∗/
17 } e l s e i f ((iteratorMaxValue − fo l lowIN) > 0) {
18 (par tS i z e = maxIteratorValue − fo l lowIN) ;
19 MPI_Send(&fol lowIN , 1 , MPI_INT, to , ATAG, MPI_COMM_WORLD) ;
20 MPI_Send(&partS ize , 1 , MPI_INT, to , ATAG, MPI_COMM_WORLD) ;
21 /∗Send in va r i ab l e s ∗/
22 } e l s e {
23 MPI_Send(&o f f s e t , 1 , MPI_INT, to , FTAG, MPI_COMM_WORLD) ;
24 k i l l e d++;
25 }
26 fo l lowIN += par tS i z e ;
27 }
28 whi le (k i l l e d != s i z e − 1) {
29 MPI_Recv(&partS ize , 1 , MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG,
30 MPI_COMM_WORLD, &s ta t) ;
31 in t source = s ta t .MPI_SOURCE;
32 i f (s t a t .MPI_TAG == RTAG) {
33 switch (par tS i z e) {
34 case 0 :
35 MPI_Recv(&coordVector0 , 1 , MPI_INT, source , RTAG,
36 MPI_COMM_WORLD, &s ta t) ;
37 MPI_Send(&var1 [coordVector0 [0]] , 1 , MPI_DOUBLE, source , RTAG,
38 MPI_COMM_WORLD) ;
39 break ;
40 case 1 :
41 . . .
42 }
43 } e l s e i f (s t a t .MPI_TAG == WTAG) {
44 switch (par tS i z e) {
45 case 0 :
46 MPI_Recv(&coordVector0 , 3 , MPI_INT, source , WTAG,
47 MPI_COMM_WORLD, &s ta t) ;
48 MPI_Recv(&var2 [coordVector0 [0]] [coordVector0 [1]] [coordVector0 [2]] ,
49 1 , MPI_DOUBLE, source , WTAG, MPI_COMM_WORLD, &s ta t) ;
50 break ;
51 }
52 } e l s e i f (s t a t .MPI_TAG == SWTAG) {
53 switch (par tS i z e) {
54 case 0 :
55 do {
56 MPI_Recv(&partS ize , 1 , MPI_INT, source , MPI_ANY_TAG,
57 MPI_COMM_WORLD, &s ta t) ;
58 i f (s t a t .MPI_TAG == RTAG) {
59 switch (par tS i z e) {
60 case 0 :
61 MPI_Recv(&coordVector0 , 1 , MPI_INT, source , RTAG,
62 MPI_COMM_WORLD, &s ta t) ;
63 MPI_Send(&var1 [coordVector0 [0]] , 1 , MPI_DOUBLE,
64 source , RTAG, MPI_COMM_WORLD) ;
65 break ;
66 case 1 :
67 . . .
68 }
69 }
70 } whi le (s t a t .MPI_TAG != WTAG) ;
71 MPI_Recv(&coordVector0 , 3 , MPI_INT, source , WTAG,
72 MPI_COMM_WORLD, &s ta t) ;
73 MPI_Recv(&var2 [coordVector0 [0]] [coordVector0 [1]] [coordVector0 [2]] ,
74 1 , MPI_DOUBLE, source , WTAG, MPI_COMM_WORLD, &s ta t) ;
75 break ;
76 case 1 :
77 . . .
78 }
79 . . . //Continue on (2/2)

Table 4.4 Automatically generated MPI source code with expanded
master code. (1/2)

“icasthesis-template” — 2016/9/6 — 15:28 — page 76 — #100

76 CHAPTER 4. OMP2MPI

80 . . .
81 } e l s e i f (s t a t .MPI_TAG == FRTAG) {
82 switch (par tS i z e) {
83 case 0 :
84 MPI_Recv(&coordVector0 , 2 , MPI_INT, source , FRTAG,
85 MPI_COMM_WORLD, &s ta t) ;
86 MPI_Send(&var1 [coordVector0 [0]] , coordVector0 [1] , MPI_DOUBLE,
87 source , FRTAG, MPI_COMM_WORLD) ;
88 break ;
89 case 1 :
90 . . .
91 }
92 } e l s e i f (s t a t .MPI_TAG == FWTAG) {
93 switch (par tS i z e) {
94 case 0 :
95 MPI_Recv(&coordVector0 , 2 , MPI_INT, source , FWTAG,
96 MPI_COMM_WORLD, &s ta t) ;
97 MPI_Recv(&var2 [coordVector0 [0]] ,
98 coordVector0 [1] ∗ (s izeCoord1) ∗ (s izeCoord2) ,
99 MPI_DOUBLE, source , FWTAG, MPI_COMM_WORLD, &s ta t) ;
100 break ;
101 }
102 } e l s e i f (s t a t .MPI_TAG == ATAG) {
103 MPI_Recv(& o f f s e t , 1 , MPI_INT, source , ATAG, MPI_COMM_WORLD, &s ta t) ;
104 /∗Recieve out vars ∗/
105 MPI_Recv(&reductionVar , 1 , MPI_DOUBLE, source , MPI_ANY_TAG,
106 MPI_COMM_WORLD, &s ta t) ;
107 reducedVar += reductionVar ;
108 /∗Follow next i t e r a t i o n s ∗/
109 } } } . . . }

Table 4.5 Automatically generated MPI source code with expanded
master code. (2/2)

These kinds of requests and the reduction performed by the master are shown in
Tables 4.4 and 4.5.

4.2 Results

A subset of the Polybench benchmark was compiled using OMP2MPI. The gener-
ated versions were executed on 64 CPUs E7-4800 with 2.40 GHz (Bullion quadri
module) and compiled with bullxmpi (MPI 2.1 compatible). Bullxmpi has been
enhanced by Bull with many new features such as effective abnormal pattern de-
tection, network-aware collective operations, and multi-path network fail-over to
increase reliability, resilience, and boost the performance of parallel MPI applica-
tions. The codes resulting from the execution of OMP2MPI was compared with the
original OpenMP results as well as with a sequential version of the same problem.
Figures 4.11, 4.12, 4.13, 4.14, 4.15, and 4.16 compare the speedup for the selected
problems. These figures show that OMP2MPI produces a good transformation of
the original OpenMP code and, in most cases, the generated code demonstrates
better scalability than the original, with a linear speedup increase that is related
to the number of processors used for execution. It is remarkable that the results

“icasthesis-template” — 2016/9/6 — 15:28 — page 77 — #101

4.2. RESULTS 77

1 . . .
2 f o r (i n t i z = o f f s e t ; i z < o f f s e t + par tS i z e ; ++i z)
3 {
4 double clf_iz_iy ;
5 double Ex_iz_iy_ix ;
6 double Ex_iz_iyPlus1_ix ;
7 double Ey_iz_iy_ixPlus1 ;
8 double Ey_iz_iy_ix ;
9 . . .
10 f o r (iy = 0; iy < Cym; iy++) {
11 f o r (ix = 0; ix < Cxm; ix++) {
12 (idxForReadWriteSwitch = 8) ;
13 (coordVector0 [0] = i z) ;
14 (coordVector0 [1] = iy) ;
15 (coordVector0 [2] = ix) ;
16 MPI_Send(&idxForReadWriteSwitch , 1 , MPI_INT,
17 0 , RTAG, MPI_COMM_WORLD) ;
18 MPI_Send(&coordVector0 , 3 , MPI_INT, 0 , RTAG,
19 MPI_COMM_WORLD) ;
20 MPI_Recv(&Ex_iz_iy_ix , 1 , MPI_DOUBLE, 0 ,
21 RTAG, MPI_COMM_WORLD, &s ta t) ;
22 (idxForReadWriteSwitch = 8) ;
23 (coordVector0 [0] = i z) ;
24 (coordVector0 [1] = iy + 1) ;
25 (coordVector0 [2] = ix) ;
26 MPI_Send(&idxForReadWriteSwitch , 1 , MPI_INT,
27 0 , RTAG, MPI_COMM_WORLD) ;
28 MPI_Send(&coordVector0 , 3 , MPI_INT, 0 , RTAG,
29 MPI_COMM_WORLD) ;
30 MPI_Recv(&Ex_iz_iyPlus1_ix , 1 , MPI_DOUBLE,
31 0 , RTAG, MPI_COMM_WORLD, &s ta t) ;
32 /∗Other reads on expre s s i on ∗/
33 . . .
34 (clf_iz_iy = Ex_iz_iy_ix − Ex_iz_iyPlus1_ix
35 + Ey_iz_iy_ixPlus1 − Ey_iz_iy_ix) ;
36 (idxForReadWriteSwitch = 1) ;
37 MPI_Send(&idxForReadWriteSwitch , 1 , MPI_INT,
38 0 , WTAG, MPI_COMM_WORLD) ;
39 (coordVector0 [0] = i z) ;
40 (coordVector0 [1] = iy) ;
41 MPI_Send(&coordVector0 , 2 , MPI_INT, 0 , WTAG,
42 MPI_COMM_WORLD) ;
43 MPI_Send(&clf_iz_iy , 1 , MPI_DOUBLE, 0 , WTAG,
44 MPI_COMM_WORLD) ;
45 . . .
46 } . . . } } . . .

Table 4.6 Automatically generated MPI source code with expanded
slave code. Each access to a variable implies a request to
the master process.

“icasthesis-template” — 2016/9/6 — 15:28 — page 78 — #102

78 CHAPTER 4. OMP2MPI

are obtained in a shared memory architecture node, which opens up the possibility
of executing both using the same number of processors; nonetheless, the most im-
portant aspect of these results is that they open the possibility of using MPI in our
original OpenMP-implemented source code, allowing us to execute the transformed
codes in many more processors because of the capability of MPI to go outside the
node.

Figures 4.11, 4.12, 4.13, 4.14, 4.15, and 4.16 show the OpenMP speedup (red lines)
and MPI speedup (yellow lines). Green triangles and yellow rhombuses represent
the execution results of the same input problem transformed by OMP2MPI for
different numbers of iterations assigned to each slave execution. Green rhombuses
indicate that the default size (Equation 4.1) was divided by 2, and yellow triangles
indicate that the default size was divided by 4. Figures 4.11, 4.12, 4.13, 4.14,
4.15, and 4.16 show that the modification of the number of iterations assigned
to each slave execution can modify the global performance because it affects the
load balance. Figure 4.10 compares the speedup of the doitgen and bigc problems,
which shows the importance of tuning the size value.

4.3 Concluding Remarks

OMP2MPI is a tool proposed to facilitate the portability of OpenMP source code
to MPI. I showed how it effectively and automatically translates OpenMP source
code to MPI because it is able to go outside the node, thus allowing the program to
exploit non-shared-memory architectures such as clusters or NoC-based MPSoC.

This automatic task is very useful because the programmer can keep working
with the OpenMP model, which is easily readable, and simply compile it over
the OMP2MPI compiler to obtain the advantages of the MPI model offer (e.g.,
speedup and scalability). The readability of the generated code is acceptable, so
further optimizations can be done by experts to improve performance results. The
experimental results obtained on the Polyhedral benchmark in Figures 4.11, 4.12,
4.13, 4.14, 4.15, and 4.16 are promising, especially when considering it is an effort-
less version. They also produce better scalability than the original OpenMP code.
The speedup figures for 64 cores are higher than 60× in some cases, and also higher
than the original OpenMP code. These results show again that, as mentioned in
the introduction, OpenMP does not always perform better than MPI in shared
memory systems.

OMP2MPI considerably reduces the number of transfers. Nevertheless, as il-
lustrated in Figures 4.11c, 4.12a, 4.12c, 4.14b, and 4.15a there are still some
cases in which a high number of transfers are produced, especially when the on-

“icasthesis-template” — 2016/9/6 — 15:28 — page 79 — #103

4.3. CONCLUDING REMARKS 79

demand method is mostly used on the generated transformation. Future versions
of OMP2MPI will have to find a way to decrease the number of such transfers, e.g.,
by creating local variables on slaves that include all the individual accesses.

OMP2MPI produces highly tunable results, thus allowing users easily modify the
generated versions by changing the sizes of the divided blocks. This decreases the
possibility of unbalanced loads, as demonstrated in Figures 4.10a and 4.10b, where
greater speedups were obtained by dividing the size of blocks differently.

The current version of the tool has some limitations with respect to standard
vectors and dynamic arrays. These could not be easily parsed to determine their
size at compilation time, causing some errors. OMP2MPI states that it is not able
to transform correctly during compilation. Nevertheless, the access to OMP2MPI
source code could still help expert users solve such errors or to improve aspects
that could be found by future analysis. After the defence of this thesis I would like
to open source the completeness of the source code in[65].

Future improvements will improve transference by detecting elements that are used
in a detected range, as explained in 4.1.4, by transferring only the operational
indexes in a range, i.e., in the range

1 f o r (i n t i =0; i<N; i=i +2) {
2 A[i] [. . .
3 }

and an inner variable A that is accessed in the first dimension by variable i.
OMP2MPI will only transfer the accessed values according to the step of the de-
fined range. This work can be done automatically by analyzing the data access
pattern to understand which parts of the variable are read or written after a loop
with memory traces inserted is executed.

“icasthesis-template” — 2016/9/6 — 15:28 — page 80 — #104

80 CHAPTER 4. OMP2MPI

(a) Method implemented in [56]

(b) Each read/write operation is transformed into a read-
/write request to the master.

(c) On Start/End arrays or matrices that use the principal it-
erator as the first dimension access index inside a block are
transferred in a group according to the operation range.
The rest are treated as illustrated in the previous figure.

(d) All the arrays or matrices that use an iterator as the index
of the first dimension, defining a range of required values,
are transferred as a group.

(e) All the arrays or matrices that use, as the first dimension
index, an iterator that defines a range are transferred as a
group. This case uses conditional ranges during execution,
as explained in Section 4.1.4. The task is divided using the
finalization method in Section 4.1.1.

(f) All the arrays or matrices that use, as the first dimension
index, an iterator that define a range are transferred as a
group. This case uses conditional ranges at execution, as
explained in Section 4.1.4. The task is divided using the
full division method in Section 4.1.1.

Figure 4.7 Profile analysis for automatically generated MPI ver-
sions of the problem shown in Table 4.1 with 10 rows
and columns in Figures 4.7b and 4.7c and 300 in the
rest. Yellow, dark blue, red, and blue text indicate
MPI_Recv functions, MPI_Send functions, MPI_Init
and MPI_Finalize functions, and variable initialization,
respectively. Some figures show a portion of the whole
process for clarity.

“icasthesis-template” — 2016/9/6 — 15:28 — page 81 — #105

4.3. CONCLUDING REMARKS 81

(a) Execution profile of the method implemented in [56].

(b) Execution profile using the methodology in which all the
arrays or matrices that use, as the first dimension in-
dex, an iterator that define a range are transferred as a
group. This case uses conditional ranges at execution, as
explained in Section 4.1.4. The task is divided using the
full division method in Section 4.1.1.

Figure 4.8 Profile analysis for automatically generated MPI versions
of the problem shown in Table 4.1 with 300 rows and
columns. Yellow, dark blue, red, and blue text indicates
MPI_Recv functions, MPI_Send Functions, MPI_Init
and MPI_Finalize functions, and init_array, respectively.

“icasthesis-template” — 2016/9/6 — 15:28 — page 82 — #106

82 CHAPTER 4. OMP2MPI

(a) Static workload distribution.
The work is sent in an
orderly manner depending
on the rank of the slaves.
All slaves must finish be-
fore continuing with the next
piece of the workload. Op-
tional communications de-
pending on the selected pro-
cess are indicated in blue
and data exchanged during
slave computation is indi-
cated in green.

(b) Dynamic workload distribu-
tion. The work is divided
by dynamically responding
to the slave that answers
with the range of iterations
and variables needed to per-
form the computation. Op-
tional communications de-
pending on the selected pro-
cess are indicated in blue
and data exchanged during
slave computation is indi-
cated in green.

Figure 4.9 Workload distribution

“icasthesis-template” — 2016/9/6 — 15:28 — page 83 — #107

4.3. CONCLUDING REMARKS 83

(a) Bigc

(b) Doitgen

Figure 4.10 Speedup obtained for the sequential test problems using
16, 32, and 64 processors. Purple lines represent OpenMP
speedup, and blue lines show MPI speedup. The green
and red lines represents the same problem when dividing
the slave block size by 2 and 4, respectively.

“icasthesis-template” — 2016/9/6 — 15:28 — page 84 — #108

84 CHAPTER 4. OMP2MPI

(a) 2mm

(b) Adi

(c) Convolution

Figure 4.11 Speedup obtained for the sequential test problems using
16, 32, and 64 processors. Purple lines represent OpenMP
speedup, and blue lines show MPI speedup. Green and red
lines show the same problem executed using the maximum
number of available processors but different slave block
sizes. (1/6)

“icasthesis-template” — 2016/9/6 — 15:28 — page 85 — #109

4.3. CONCLUDING REMARKS 85

(a) Fdtd-2d

(b) Fdtd-apml

(c) Gauss filter

Figure 4.12 Speedup obtained for the sequential test problems using
16, 32, and 64 processors. Purple lines represent OpenMP
speedup, and blue lines show MPI speedup. Green and red
lines show the same problem executed using the maximum
number of available processors but different slave block
sizes. (2/6)

“icasthesis-template” — 2016/9/6 — 15:28 — page 86 — #110

86 CHAPTER 4. OMP2MPI

(a) GEMM

(b) Gemver

(c) Gesummv

Figure 4.13 Speedup obtained for the sequential test problems using
16, 32, and 64 processors. Purple lines represent OpenMP
speedup, and blue lines show MPI speedup. Green and red
lines show the same problem executed using the maximum
number of available processors but different slave block
sizes. (3/6)

“icasthesis-template” — 2016/9/6 — 15:28 — page 87 — #111

4.3. CONCLUDING REMARKS 87

(a) Jacobi 1d

(b) Jacobi 2d

(c) Mvt

Figure 4.14 Speedup obtained for the sequential test problems using
16, 32, and 64 processors. Purple lines represent OpenMP
speedup, and blue lines show MPI speedup. Green and red
lines show the same problem executed using the maximum
number of available processors but different slave block
sizes. (4/6)

“icasthesis-template” — 2016/9/6 — 15:28 — page 88 — #112

88 CHAPTER 4. OMP2MPI

(a) Seidel

(b) Syr2k

(c) Syrk

Figure 4.15 Speedup obtained for the sequential test problems using
16, 32, and 64 processors. Purple lines represent OpenMP
speedup, and blue lines show MPI speedup. Green and red
lines show the same problem executed using the maximum
number of available processors but different slave block
sizes. (5/6)

“icasthesis-template” — 2016/9/6 — 15:28 — page 89 — #113

4.3. CONCLUDING REMARKS 89

(a) Trisolv

Figure 4.16 Speedup obtained for the sequential test problems using
16, 32, and 64 processors. Purple lines represent OpenMP
speedup, and blue lines show MPI speedup. Green and red
lines show the same problem executed using the maximum
number of available processors but different slaves block
sizes . (6/6)

“icasthesis-template” — 2016/9/6 — 15:28 — page 90 — #114

“icasthesis-template” — 2016/9/6 — 15:28 — page 91 — #115

Integrated Modular
System 5

To explore the possibilities of the full system work-flow, I first test the use of com-
bined computing using a combination of MPI and OpenMP blocks and generating
all the possible versions that can be extracted from the problem, as illustrated in
Table 2.4. These versions were parallelized using the Access Pattern tool presented
in Chapter 2 and the work-flow explained in Figure 4.3b using OMP2MPI. Figure
4.3b also includes the results of the OpenMP+MPI hybrid model. The hybrid
model was constructed by adding a “#pragma omp parallel for“ inside the slave
part of work. This kind of hybrid parallelization could be beneficial when utilizing
the high optimization of the shared memory model on each node. As a result, the
generated codes are able to take advantage of the MPI capabilities by exploiting
the cluster jumping between nodes. Further, performance could be incremented by
access to shared memory without memory transfers between nodes. An example is
shown in Table 5.1.

In this particular problem, the proposed system could not obtain great scalability
using MPI (either by combining OpenMP+MPI or using the hybrid model) because
of the time expended on data transference and synchronization, as illustrated in
Figure 5.1 on a 10 times 10 problem size. Nevertheless, it is useful to understand
how difficult it would be for a non-expert user to arrive to that conclusion in
contrast to the ease of use of the Access Pattern Visualization and OMP2MPI
tools.

Taking as an example the problem illustrated in Figure 4.11a and comparing these
results with the results of a hybrid model, it is clear that the proposed tools allows
many solutions that can improve the performance of sequential source code to be
explored. Figure 5.3 compares the results obtained by the hybrid model for the
2MM problem with those of previous experiments. These results are obtained by

91

“icasthesis-template” — 2016/9/6 — 15:28 — page 92 — #116

92 CHAPTER 5. INTEGRATED MODULAR SYSTEM

1 i f (myid != 0) {
2 whi le (1) {
3 MPI_Recv(& o f f s e t , 1 , MPI_INT, MPI_ANY_SOURCE,
4 MPI_ANY_TAG, MPI_COMM_WORLD, &s ta t) ;
5 i f (s t a t .MPI_TAG == ATAG) {
6 MPI_Recv(&partS ize , 1 , MPI_INT, 0 , MPI_ANY_TAG,
7 MPI_COMM_WORLD, &s ta t) ;
8 MPI_Recv(&sum [o f f s e t] , partS ize , MPI_DOUBLE,
9 0 , MPI_ANY_TAG, MPI_COMM_WORLD, &s ta t) ;
10 #pragma omp p a r a l l e l f o r
11 f o r (i n t i = o f f s e t ; i < o f f s e t + par tS i z e ;++ i) {
12 double x = (i + 0 . 5) ∗ step ;
13 sum [i] = 4 .0 / (1 . 0 + x ∗ x) ;
14 }
15 MPI_Send(& o f f s e t , 1 , MPI_INT,
16 0 , 0 , MPI_COMM_WORLD) ;
17 MPI_Send(&partS ize , 1 , MPI_INT,
18 0 , 0 , MPI_COMM_WORLD) ;
19 MPI_Send(&sum [o f f s e t] , partS ize , MPI_DOUBLE,
20 0 , 0 , MPI_COMM_WORLD) ;
21 } e l s e i f (s t a t .MPI_TAG == FTAG) {
22 break ;
23 }
24 }
25 }

Table 5.1 Slave source code. Hybrid MPI + OpenMP

adding a created new OpenMP directive hybrid (still in the testing phase) that
could be added near the check clause, as explained in Chapter 4.

It is not now possible to test the combination of OpenMP+MPI+HMPP, as it was
at the start of this thesis three years ago. On June 27, 2014, CAPS Enterprise, who
managed the HMPP compiler and its license distribution closed due to economic
difficulties [66]. This company maintained the licenses on the NOVA cluster until
that date. After that, it was impossible to compile the generated code even when
correctly generated, as shown in Tables 5.2 and 5.3. These tables illustrate a
possible transformation generated using the TRMM problem from the Polybench
benchmark, previously parallelized as explained in Chapter 2 and shown in Table
2.4. In this source, three loops are defined that could be parallelized by the use of
OpenMP parallel for blocks. Using the tools presented on this thesis, I demonstrate
a correct transformation by combining the three programming languages. The first
block is kept as OpenMP, the second block is transformed into MPI using the
OMP2MPI tool (the following Figure 5.2 indicates that 16 processors could work
well), and, finally, the third block is generated using OMP2HMPP.

“icasthesis-template” — 2016/9/6 — 15:28 — page 93 — #117

93

Figure 5.1 Speedup obtained for the sequential test problems using
16, 32, and 64 processors. The OpenMP blocks of the
TRMM problem are solved using an OpenMP and MPI
combination or hybrid model.

Figure 5.2 Speedup obtained for the sequential test problems using
16, 32, and 64 processors. The OpenMP blocks of the
TRMM problem are solved using an OpenMP and MPI
combination or hybrid model.

“icasthesis-template” — 2016/9/6 — 15:28 — page 94 — #118

94 CHAPTER 5. INTEGRATED MODULAR SYSTEM

1 in t main (. . .) {
2 . . .
3 f o r (i = 1 ; i < n ; i++) {
4 #pragma omp p a r a l l e l f o r private (k)
5 f o r (j = 0 ; j < i ; j++) {
6 f o r (k = 0 ; k < i ; k++) {
7 B[i] [j] += alpha ∗ A[i] [k] ∗ B[j] [k] ;
8 } }
9 (par tS i z e = (((i + 1 − (i))) / (s i z e − 1)) > 0 ? ((((i + 1 − (i)))
10 / (s i z e − 1)) / 1) : 1) ;
11 i f (myid == 0) {
12 . . . //Master Source Code as Expl ia ined on Chapter 4
13 }
14 i f (myid != 0) {
15 whi le (1) {
16 MPI_Recv(& o f f s e t , 1 , MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG,
17 MPI_COMM_WORLD, &s ta t) ;
18 i f (s t a t .MPI_TAG == ATAG) {
19 MPI_Recv(&partS ize , 1 , MPI_INT, 0 , ATAG, MPI_COMM_WORLD, &s ta t) ;
20 in t idxForReadWriteSwitch ;
21 MPI_Recv(&i , 1 , MPI_INT, 0 , ATAG, MPI_COMM_WORLD, &s ta t) ;
22 MPI_Recv(&alpha , 1 , MPI_DOUBLE, 0 , ATAG, MPI_COMM_WORLD, &s ta t) ;
23 MPI_Recv(&B[o f f s e t] , pa r tS i z e ∗ (sizeDimension1) , MPI_DOUBLE, 0 ,
24 ATAG, MPI_COMM_WORLD, &s ta t) ;
25 (coordVector0 [0] = i) ;
26 (coordVector0 [1] = ((i + 1) − coordVector0 [0])) ;
27 (idxForReadWriteSwitch = 3) ;
28 MPI_Send(&idxForReadWriteSwitch , 1 , MPI_INT, 0 , FRTAG,
29 MPI_COMM_WORLD) ;
30 MPI_Send(&coordVector0 , 2 , MPI_INT, 0 , FRTAG, MPI_COMM_WORLD) ;
31 MPI_Recv(&A[coordVector0 [0]] , coordVector0 [1] ∗ (sizeDimension1) ,
32 MPI_DOUBLE, 0 , FRTAG, MPI_COMM_WORLD, &s ta t) ;
33 (coordVector0 [0] = i) ;
34 (coordVector0 [1] = (o f f s e t > (i + 1)) ?
35 ((i + 1) − (i)) : (o f f s e t − (i))) ;
36 i f ((i) < o f f s e t && coordVector0 [1] > 0) {
37 (idxForReadWriteSwitch = 2) ;
38 MPI_Send(&idxForReadWriteSwitch , 1 , MPI_INT, 0 , FRTAG,
39 MPI_COMM_WORLD) ;
40 MPI_Send(&coordVector0 , 2 , MPI_INT, 0 , FRTAG,
41 MPI_COMM_WORLD) ;
42 MPI_Recv(&B[coordVector0 [0]] , coordVector0 [1] ∗ (sizeDimension1) ,
43 MPI_DOUBLE, 0 , FRTAG, MPI_COMM_WORLD, &s ta t) ;
44 }
45 (coordVector0 [0] = ((o f f s e t + par tS i z e) > (i)) ?
46 (o f f s e t + par tS i z e) : (i)) ;
47 (coordVector0 [1] = ((o f f s e t + par tS i z e) > (i)) ?
48 (i + 1 − (o f f s e t + par tS i z e)) : (i + 1 − i)) ;
49 i f ((i + 1) > o f f s e t + par tS i z e && coordVector0 [1] > 0) {
50 (idxForReadWriteSwitch = 2) ;
51 MPI_Send(&idxForReadWriteSwitch , 1 , MPI_INT, 0 , FRTAG,
52 MPI_COMM_WORLD) ;
53 MPI_Send(&coordVector0 , 2 , MPI_INT, 0 , FRTAG,
54 MPI_COMM_WORLD) ;
55 MPI_Recv(&B[coordVector0 [0]] , coordVector0 [1] ∗ (sizeDimension1) ,
56 MPI_DOUBLE, 0 , FRTAG, MPI_COMM_WORLD, &s ta t) ;
57 }
58 f o r (i n t j = o f f s e t ; j < o f f s e t + par tS i z e ; ++j) {
59 f o r (k = 0 ; k < i ; k++) {
60 (B[i] [j] += alpha ∗ A[i] [k] ∗ B[j] [k]) ;
61 }
62 }
63 . . .

Table 5.2 Automatically generated OpenMP + MPI source code
with HMPP kernels using the proposed tools. (1/2)

“icasthesis-template” — 2016/9/6 — 15:28 — page 95 — #119

95

64 . . .
65 (idxForReadWriteSwitch = 0) ;
66 (coordVector0 [0] = i < o f f s e t) ;
67 (coordVector0 [1] = (o f f s e t > i + 1) ?
68 (i + 1 − i) : (o f f s e t − i)) ;
69 i f ((i) <= o f f s e t && coordVector0 [1] > 0) {
70 MPI_Send(&idxForReadWriteSwitch , 1 , MPI_INT, 0 , FWTAG,
71 MPI_COMM_WORLD) ;
72 MPI_Send(&coordVector0 , 2 , MPI_INT, 0 , FWTAG,
73 MPI_COMM_WORLD) ;
74 MPI_Send(&B[coordVector0 [0]] , coordVector0 [1] ∗ (sizeDimension1) ,
75 MPI_DOUBLE, 0 , FWTAG, MPI_COMM_WORLD) ;
76 }
77 (idxForReadWriteSwitch = 0) ;
78 (coordVector0 [0] = ((o f f s e t + par tS i z e) > (i)) ?
79 (o f f s e t + par tS i z e) : (i)) ;
80 (coordVector0 [1] = ((o f f s e t + par tS i z e) > (i)) ?
81 (i + 1 − (o f f s e t + par tS i z e)) : (i + 1 − i)) ;
82 i f ((i + 1) >= o f f s e t + par tS i z e && coordVector0 [1] > 0) {
83 MPI_Send(&idxForReadWriteSwitch , 1 , MPI_INT, 0 , FWTAG,
84 MPI_COMM_WORLD) ;
85 MPI_Send(&coordVector0 , 2 , MPI_INT, 0 , FWTAG,
86 MPI_COMM_WORLD) ;
87 MPI_Send(&B[coordVector0 [0]] , coordVector0 [1] ∗ (sizeDimension1) ,
88 MPI_DOUBLE, 0 , FWTAG, MPI_COMM_WORLD) ;
89 }
90 MPI_Send(&partS ize , 1 , MPI_INT, 0 , ATAG, MPI_COMM_WORLD) ;
91 MPI_Send(&o f f s e t , 1 , MPI_INT, 0 , ATAG, MPI_COMM_WORLD) ;
92 MPI_Send(&B[o f f s e t] , pa r tS i z e ∗ (sizeDimension1) , MPI_DOUBLE, 0 , ATAG,
93 MPI_COMM_WORLD) ;
94 } e l s e i f (s t a t .MPI_TAG == FTAG) {
95 break ;
96
97 } } }
98 #pragma hmpp <group0_1> _instr_for1_ol_10_main advancedload , args [B]
99 #pragma hmpp <group0_1> _instr_for1_ol_10_main advancedload , args [A]
100 #pragma hmpp <group0_1> _instr_for1_ol_10_main c a l l s i t e
101 _instr_for1_ol_10_main (j , i , n , k , B, alpha , A) ;
102 #pragma hmpp <group0_1> _instr_for1_ol_10_main delegatedstore , args [B]
103 }
104 i f (myid == 0) { . . . }
105 return 0 ;
106 }
107
108 #pragma hmpp <group0_1> _instr_for1_ol_10_main codelet , args [A] . i o=in
109 , args [B] . i o=inout
110 void _instr_for1_ol_10_main (i n t j , i n t i , i n t n , i n t k , double B[10] [10] ,
111 double alpha , double A[10] [10]) {
112 f o r (j = i + 1 ; j < n ; j++) {
113 f o r (k = 0 ; k < i ; k++) {
114 B[i] [j] += alpha ∗ A[i] [k] ∗ B[j] [k] ;
115 }
116 }
117 }

Table 5.3 Automatically generated OpenMP + MPI source code
with HMPP kernels using the proposed tools. (2/2)

“icasthesis-template” — 2016/9/6 — 15:28 — page 96 — #120

96 CHAPTER 5. INTEGRATED MODULAR SYSTEM

Figure 5.3 Speedup obtained for the sequential test problems and the
hybrid model of the same problem using 16, 32, and 64
processors.

“icasthesis-template” — 2016/9/6 — 15:28 — page 97 — #121

Conclusions 6

The proposed tools were shown to be able to combine different programming models
to automatically generate solutions for a variety of target hardware from parallel
programming on shared memory architectures by the use of OpenMP, distributed
memory architectures using MPI to HC combining the use of CPUs and GPGPUs
and obtain correct solutions that could be orchestrated distributing computing
tasks and loads on accelerator and HC platforms in an easy and effective way.

The proposed modular is translated into the implementation of a set of tools that
facilitates the portability of a sequential source code to OpenMP, MPI and HMPP,
showing how it effectively automatically translates input code. The generated codes
allows to combine these as explained in Chapter 5. The presented tools allow to
parallelize in an easy way sequential codes into OpenMP and to keep this code easily
and readable to later transform to work on MPI or HMPP. S2S compilers allow
to avoid learning of HMPP directives or MPI functions just compiling over one of
compilers to take the advantages of the output models offer (speedup, scalability,
etc.), and more important, obtains a good performance analysis that allows a smart
selection of the best version according to its requirements. The readability of
the code generated is acceptable so that allows further optimization by an expert
intending to improve performance results.

I analyzed with our tools the version of Polybench benchmark implemented on
[67], where I detected some codes not well parallelized using the tool presented in
Chapter 2 as the TRMM problem presented on that section.

The results of OMP2MPI tool of the correctly parallelized problems in Chapter 4
where I detected that the speedup figures for 64 cores in some of the cases are higher
than 60× compared to the sequential version, and also higher than the original
OpenMP code. These results show again, as mentioned in the introduction, that
OpenMP does not always perform better than MPI in shared memory systems.

97

“icasthesis-template” — 2016/9/6 — 15:28 — page 98 — #122

98 CHAPTER 6. CONCLUSIONS

And the results of a sub-set of problems of these problems using the tool OMP2HMPP.
In that experiment I obtain an average speedup of 31× and an average increase of
energy efficiency of 5.86×, comparing the generated version with the best results
coming from OpenMP version. OMP2HMPP tool produces solution that rarely
differ from the best HMPP hand-coded version. I notice that a CUDA hand-coded
version CUDA obtains an speedup near 1.7× compared with the version the best
speedup of OMP2HMPP.

The set of presented tools could be combined as presented on Chapter 5, even that
the results doesn’t give a considerable speedup improvement in the selected case
when I tested combination of OpenMP and MPI programming model combining
the use of OpenMP and MPI. However, this able to explore without effort the
possible combinations of that two languages.

The bankruptcy of CAPS enterprises makes it impossible to combine GPGPUs
with OpenMP or MPI, nonetheless future improvements are considered to make
that transformation possible. This would preserve the modularity of our system,
so that it is more adaptable to changes in a domain that is not yet stable.

6.1 Open Research

As mentioned above, one of the main problems with the presented tools is with
the OMP2HMPP tool, in which the selected target language of our S2S compiler
has been halted because of the economic difficulties of CAPS Enterprise. For that
reason, future changes for that tool may use two possible target programming
languages.

On one hand, OpenACC or CUDA is a possible language target. The first one was
developed to be a programming standard for parallel computing developed by Cray,
CAPS, Nvidia, and PGI. It was designed to simplify the parallel programming of
heterogeneous CPU/GPU systems and merge into the OpenMP specification to
create a common specification that extends OpenMP to accelerator support in a
future release. Considering that OpenMP will remain the starting point of the
modified tool, this is one of the easiest ways to improve it. OpenACC directives
are quite similar to HMPP directives, which are used to annotate C/C++ source
code to identify the areas that should be accelerated using compiler directives and
additional functions. Hence, this task will not take significant effort.

On the other hand, because of this versatility, I plan to consider OpenCL because
it explores HC using a framework that allows programs to be written that are
executed across heterogeneous platforms consisting of CPUs, GPUs, digital sig-
nal processors, FPGAs, and other processors. Hence, OpenCL specifies a language

“icasthesis-template” — 2016/9/6 — 15:28 — page 99 — #123

99

(based on C99) for programming these devices and Application Programming Inter-
faces (API)s to control the platform and execute programs on the compute devices.
OpenCL provides parallel computing using task-based and data-based parallelism.

For distributed memory computing, I would like to offer a new possible solution
using MCAPI [20]. This solution, in comparison to MPI, focuses purely on embed-
ded communications, allowing MCAPI to support various quality of service, where
connected channels may exploit underlying embedded hardware. MCAPI provides
a standardized API for communication and synchronization between closely dis-
tributed (multiple cores on a chip and/or chips on a board) embedded systems.
This will enable better HC solutions to be explored.

Because it is designed as a modular system, in future experiments, I plan to com-
bine the generated solutions, exploring all the implemented tools, always with the
objective of automatically and efficiently orchestrating the distribution of comput-
ing tasks and loads on accelerator and heterogeneous computing platforms.

“icasthesis-template” — 2016/9/6 — 15:28 — page 100 — #124

“icasthesis-template” — 2016/9/6 — 15:28 — page 101 — #125

References

[1] J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative
approach. Elsevier, 2011.

[2] I. PRESENT. Cramming more components onto integrated circuits. Readings
in computer architecture, page 56, 2000.

[3] OpenMP. The openmp api, March 1997. URL http://openmp.org/wp/.

[4] S. Williams, A. Waterman and D. Patterson. Roofline: an insightful visual
performance model for multicore architectures. Communications of the ACM,
52(4):65–76, 2009.

[5] G. E. Moore. Lithography and the future of moore’s law. In SPIE’s 1995
Symposium on Microlithography, pages 2–17. International Society for Optics
and Photonics, 1995.

[6] G. Krawezik. Performance comparison of mpi and three openmp programming
styles on shared memory multiprocessors. In Proceedings of the fifteenth an-
nual ACM symposium on Parallel algorithms and architectures, pages 118–127.
ACM, 2003.

[7] D. Buono, T. De Matteis, G. Mencagli and M. Vanneschi. Optimizing message-
passing on multicore architectures using hardware multi-threading. 22nd Eu-
romicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP), pages 262–270, 2014.

101

http://openmp.org/wp/

“icasthesis-template” — 2016/9/6 — 15:28 — page 102 — #126

102 REFERENCES

[8] MPI. Ibm developerworks, 2018. URL https://www.mpi-forum.org/docs/
mpi-1.3/mpi-report-1.3-2008-05-30.pdf.

[9] C. Willard, A. Snell, L. Sergervall and M. Feldman. Hpc user site cen-
sus: Systems, July 2013. URL http://www.intersect360.com/industry/
downloadsummary.php?id=92.

[10] D. Castells-Rufas and J. Carrabina. 128-core many-soft-core processor with
mpi support. In Jornadas de ComputaciÃşn Reconfigurable y Aplicaciones
(JCRA). 2015.

[11] NVIDIA. Cuda sdk, March 2007. URL https://developer.nvidia.com/
cuda-downloads.

[12] CAPS. Openhmpp directives, March 2007. URL http://www.
caps-entreprise.com/openhmpp-directives/.

[13] R. Dolbeau, S. Bihan and F. Bodin. Hmpp: A hybrid multi-core parallel
programming environment. In Workshop on General Purpose Processing on
Graphics Processing Units (GPGPU 2007). 2007.

[14] Rapid. home page, March 2009. URL http://www.rapidmind.net/.

[15] OpenACC Working Group. The OpenACC Application Programming Inter-
face, Version 1.0, November 2011. URL http://www.openacc-standard.
org/.

[16] PeakStream. home page, March 2006. URL http://www.peakstream.com/.

[17] A. CTM. Technical reference manual, March 2006. URL http://ati.amd.
com/companyinfo/researcher/documents/ATI_CTM_Guide.pdf.

[18] AMD. Amd developer, August 2014. URL http://
developer.amd.com/resources/heterogeneous-computing/
what-is-heterogeneous-system-architecture-hsa/.

[19] M. P. Forum. Mpi: A message-passing interface standard. Technical report,
Knoxville, TN, USA, 1994.

[20] T. M. Association. Multicore communications api, March 2014. URL http:
//www.multicore-association.org/workgroup/mcapi.php.

[21] E. Fernandez-Alonso, D. Castells-Rufas, S. Risueño, J. Carrabina and J. Joven.
A noc-based multi-{soft} core with 16 cores. In Electronics, Circuits, and
Systems (ICECS), 2010 17th IEEE International Conference on, pages 259–
262. IEEE, 2010.

https://www.mpi-forum.org/docs/mpi-1.3/mpi-report-1.3-2008-05-30.pdf
https://www.mpi-forum.org/docs/mpi-1.3/mpi-report-1.3-2008-05-30.pdf
http://www.intersect360.com/industry/downloadsummary.php?id=92
http://www.intersect360.com/industry/downloadsummary.php?id=92
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
http://www.caps-entreprise.com/openhmpp-directives/
http://www.caps-entreprise.com/openhmpp-directives/
http://www.rapidmind.net/
http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.peakstream.com/
http://ati.amd.com/companyinfo/researcher/documents/ATI_CTM_Guide.pdf
http://ati.amd.com/companyinfo/researcher/documents/ATI_CTM_Guide.pdf
http://developer.amd.com/resources/heterogeneous-computing/what-is-heterogeneous-system-architecture-hsa/
http://developer.amd.com/resources/heterogeneous-computing/what-is-heterogeneous-system-architecture-hsa/
http://developer.amd.com/resources/heterogeneous-computing/what-is-heterogeneous-system-architecture-hsa/
http://www.multicore-association.org/workgroup/mcapi.php
http://www.multicore-association.org/workgroup/mcapi.php

“icasthesis-template” — 2016/9/6 — 15:28 — page 103 — #127

103

[22] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In Code Generation and Optimization, 2004. CGO
2004. International Symposium on, pages 75–86. IEEE, 2004.

[23] C. Ancourt, F. Coelho, B. Creusillet, F. Irigoin, P. Jouvelot and R. Keryell.
Pips: A framework for building interprocedural compilers, parallelizers and
optimizers. Technical report, Technical Report A/289, Centre de Recherche
en Informatique, Ecole des Mines de Paris, 1996.

[24] C. Dave, H. Bae, S.-J. Min, S. Lee, R. Eigenmann and S. Midkiff. Cetus: A
source-to-source compiler infrastructure for multicores. Computer, 42(12):36–
42, 2009.

[25] D. Quinlan. Rose: Compiler support for object-oriented frameworks. Parallel
Processing Letters, 10(02n03):215–226, 2000.

[26] J. Balart, A. Duran, M. Gonzàlez, X. Martorell, E. Ayguadé and J. Labarta.
Nanos mercurium: a research compiler for openmp. In Proceedings of the
European Workshop on OpenMP, volume 8. 2004.

[27] E. D. Willink. Meta-compilation for c+. 2001.

[28] Nanos. Mercurium, March 2004. URL https://pm.bsc.es/projects/mcxx.

[29] Y. Qian. Automatic parallelization tools. In Proceedings of the World Congress
on Engineering and Computer Science, volume 1. 2012.

[30] D. A. Padua, R. Eigenmann, J. Hoeflinger, P. Petersen, P. Tu, S. Weatherford
and K. Faigin. Polaris: A new-generation parallelizing compiler for mpps. In
In CSRD Rept. No. 1306. Univ. of Illinois at Urbana-Champaign. Citeseer,
1993.

[31] H.-S. Kim, Y.-H. Yoon, S.-O. Na and D.-S. Han. Icu-pfc: an automatic paral-
lelizing compiler. In High Performance Computing in the Asia-Pacific Region,
2000. Proceedings. The Fourth International Conference/Exhibition on, vol-
ume 1, pages 243–246. IEEE, 2000.

[32] R. Allen and K. Kennedy. Automatic translation of fortran programs to
vector form. ACM Transactions on Programming Languages and Systems
(TOPLAS), 9(4):491–542, 1987.

[33] M. Amini, B. Creusillet, S. Even, R. Keryell, O. Goubier, S. Guelton, J. O.
McMahon, F.-X. Pasquier, G. Péan, P. Villalon et al. Par4all: From convex
array regions to heterogeneous computing. In IMPACT 2012: Second Interna-
tional Workshop on Polyhedral Compilation Techniques HiPEAC 2012. 2012.

https://pm.bsc.es/projects/mcxx

“icasthesis-template” — 2016/9/6 — 15:28 — page 104 — #128

104 REFERENCES

[34] U. Bondhugula, A. Hartono, J. Ramanujam and P. Sadayappan. Pluto: A
practical and fully automatic polyhedral program optimization system. In Pro-
ceedings of the ACM SIGPLAN 2008 Conference on Programming Language
Design and Implementation (PLDI 08), Tucson, AZ (June 2008). Citeseer,
2008.

[35] E. Kallel, Y. Aoudni and M. Abid. Openmp automatic parallelization tools: An
empirical comparative evaluation. International Journal of Computer Science
Issues (IJCSI), 10(4), 2013.

[36] IBM. Ibm developerworks, August 2013. URL https://goo.gl/s8555T.

[37] Intel. Intel parallel studio xe 2015, August 2015. URL https://software.
intel.com/en-us/intel-parallel-studio-xe.

[38] O. Brewer, J. Dongarra and D. Sorensen. Tools to aid in the analysis of
memory access patterns for fortran programs. Parallel Computing, 9(1):25–
35, 1988.

[39] V. Subotic, A. Campos, A. Velasco, E. Ayguade, J. Labarta and M. Valero.
Tareador: The unbearable lightness of exploring parallelism. In Tools for High
Performance Computing 2014, pages 55–79. Springer, 2015.

[40] M. Ishihara, H. Honda, T. Yuba and M. Sato. Interactive parallelizing as-
sistance tool for openmp: ipat/omp. In Proc. Fifth European Workshop on
OpenMP (EWOMP âĂŸ03), pages 21–29. 2003.

[41] M. Corina. Quantitative analysis and visualization of memory access patterns.
Ph.D. thesis, TU Delft, Delft University of Technology, 2010.

[42] C. Bastoul. Code generation in the polyhedral model is easier than you think.
In Proceedings of the 13th International Conference on Parallel Architectures
and Compilation Techniques, pages 7–16. IEEE Computer Society, 2004.

[43] M. Sato, S. Satoh, K. Kusano and Y. Tanaka. Design of openmp compiler for
an smp cluster. In Proc. of the 1st European Workshop on OpenMP, pages
32–39. 1999.

[44] A. Basumallik, S.-J. Min and R. Eigenmann. Towards openmp execution on
software distributed shared memory systems. In High Performance Computing,
pages 457–468. Springer, 2002.

[45] V. Schuster and D. Miles. Distributed openmp, extensions to openmp for smp
clusters. In Proc. of the Workshop on OpenMP Applications and Tools (WOM-
PAT 2000). 2000.

https://goo.gl/s8555T
https://software.intel.com/en-us/intel-parallel-studio-xe
https://software.intel.com/en-us/intel-parallel-studio-xe

“icasthesis-template” — 2016/9/6 — 15:28 — page 105 — #129

105

[46] J. P. Hoeflinger. Extending openmp to clusters. White Paper, Intel Corpora-
tion, 2006.

[47] Y.-S. Kee, J.-S. Kim and S. Ha. Parade: An openmp programming environment
for smp cluster systems. In Proceedings of the 2003 ACM/IEEE conference on
Supercomputing, page 6. ACM, 2003.

[48] R. Eigenmann, A. Basumallik, S.-J. Min, J. Hoeflinger, R. H. Kuhn, D. Padua
and J. Zhu. Is openmp for grids? In Parallel and Distributed Processing
Symposium, International, volume 2, pages 0171b–0171b. IEEE Computer
Society, 2002.

[49] A. Duran, J. M. Perez, E. Ayguadé, R. M. Badia and J. Labarta. Extending
the openmp tasking model to allow dependent tasks. In OpenMP in a New Era
of Parallelism, pages 111–122. Springer, 2008.

[50] B. R. Gaster. Streams: Emerging from a shared memory model. In OpenMP
in a New Era of Parallelism, pages 134–145. Springer, 2008.

[51] A. Pop, S. Pop, H. Jagasia, J. Sjödin and P. H. Kelly. Improving gnu com-
piler collection infrastructure for streamization. Proceedings of the 2008 GCC
Developers Summit, pages 77–86, 2008.

[52] A. Basumallik and R. Eigenmann. Towards automatic translation of openmp
to mpi. In Proceedings of the 19th annual international conference on Super-
computing, pages 189–198. ACM, 2005.

[53] D. Millot, A. Muller, C. Parrot and F. Silber-Chaussumier. Step: a distributed
openmp for coarse-grain parallelism tool. In OpenMP in a New Era of Paral-
lelism, pages 83–99. Springer, 2008.

[54] Khronos OpenCL Working Group. The OpenCL Specification, version
1.0.29, 8 December 2008. URL http://khronos.org/registry/cl/specs/
opencl-1.0.29.pdf.

[55] A. Saà-Garriga, D. Castells-Rufas and J. Carrabina. Omp2hmpp: Compiler
framework for energy-performance trade-off analysis of automatically gener-
ated codes. International Journal of Computer Science Issues (IJCSI), 12(2):9,
2015.

[56] A. Saà-Garriga, D. Castells-Rufas and J. Carrabina. Omp2mpi: Automatic
mpi code generation from openmp programs. High Performance Energy Effi-
cient Embedded Systems (HIP3ES), 2015.

http://khronos.org/registry/cl/specs/opencl-1.0.29.pdf
http://khronos.org/registry/cl/specs/opencl-1.0.29.pdf

“icasthesis-template” — 2016/9/6 — 15:28 — page 106 — #130

106 REFERENCES

[57] S. Lee, S.-J. Min and R. Eigenmann. Openmp to gpgpu: a compiler framework
for automatic translation and optimization. ACM Sigplan Notices, 44(4):101–
110, 2009.

[58] T. D. Han and T. S. Abdelrahman. hi cuda: a high-level directive-based lan-
guage for gpu programming. In Proceedings of 2nd Workshop on General Pur-
pose Processing on Graphics Processing Units, pages 52–61. ACM, 2009.

[59] H.-F. Li, T.-Y. Liang and J.-L. Jiang. An openmp compiler for hybrid cpu/gpu
computing architecture. In Intelligent Networking and Collaborative Systems
(INCoS), 2011 Third International Conference on, pages 209–216. IEEE, 2011.

[60] E. Ayguadé, R. M. Badia, P. Bellens, D. Cabrera, A. Duran, R. Ferrer,
M. Gonzàlez, F. Igual, D. Jiménez-González, J. Labarta et al. Extending
openmp to survive the heterogeneous multi-core era. International Journal of
Parallel Programming, 38(5-6):440–459, 2010.

[61] P. Cantiello, B. Di Martino and F. Piccolo. Unimodular loop transformations
with source-to-source translation for gpus. In Algorithms and Architectures for
Parallel Processing, pages 186–195. Springer, 2013.

[62] D. Castells-Rufas. Scalable Parallel Architectures on Reconfigurable Platforms.
Ph.D. thesis, Microelectronics and Electronic Systems Department, Universi-
tat Autònoma de Barcelona, 2015.

[63] PolyBench. The polyhedral benchmark suite, March 1997. URL http://web.
cse.ohio-state.edu/~pouchet/software/polybench/.

[64] E. Ayguade, R. M. Badia, D. Cabrera, A. Duran, M. Gonzalez, F. Igual,
D. Jimenez, J. Labarta, X. Martorell, R. Mayo et al. A proposal to extend the
openmp tasking model for heterogeneous architectures. In Evolving OpenMP
in an Age of Extreme Parallelism, pages 154–167. Springer, 2009.

[65] A. Saà-Garriga. Github repository: Automatic parallelization, 2014. URL
https://github.com/sdruix/AutomaticParallelization/.

[66] CAPS. Caps entreprise bankrupt, March 2014. URL http://www.
produits-c-s.fr/Nous-ne-commercialisons-plus-les-produits-CAPS_
a143.html.

[67] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula and J. Cavazos. Auto-
tuning a high-level language targeted to gpu codes. In Innovative Parallel Com-
puting (InPar), 2012, pages 1–10. IEEE, 2012.

http://web.cse.ohio-state.edu/~pouchet/software/polybench/
http://web.cse.ohio-state.edu/~pouchet/software/polybench/
https://github.com/sdruix/AutomaticParallelization/
http://www.produits-c-s.fr/Nous-ne-commercialisons-plus-les-produits-CAPS_a143.html
http://www.produits-c-s.fr/Nous-ne-commercialisons-plus-les-produits-CAPS_a143.html
http://www.produits-c-s.fr/Nous-ne-commercialisons-plus-les-produits-CAPS_a143.html

	Introduction
	Motivation
	Objectives
	State-of-the-Art Technologies
	Compilers
	Transformations

	Visualizing Data Access Patterns
	Automatic Instrumentation
	Results

	Execution
	Data Analysis
	Visualization
	Case Study: Triangular Matrix–Matrix Multiplication
	Concluding Remarks

	OMP2HMPP
	HMPP Directives
	S2S Transformations
	Outline Phase
	Inline Phase

	Results
	Concluding Remarks

	OMP2MPI
	AST Manipulation
	Task Distribution
	Context Analysis
	Loop Analysis
	Workload Distribution

	Results
	Concluding Remarks

	Integrated Modular System
	Conclusions
	Open Research

	Títol de la tesi: Automatic Source Code
Adaptation for
Heterogeneous Platforms
	Nom autor/a: Albert Saà-Garriga

