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Abstract

Cyclic codes are an important family in coding theory and have been a pri-
mary area of study since its inception. Until the 1990s the usual alphabet
chosen by coding theorist was a finite field. Thereafter, it began the study
of codes over rings.

Since the emergence of Z2Z4-additive codes, the research on codes over
mixed ring alphabets has increased. In 2014, Abualrub et al. presented
Z2Z4-additive cyclic codes and it marked the beginning of the study of cyclic
properties on codes over mixed alphabets.

This thesis aims to explore the algebraic structure of cyclic codes as sub-
modules of direct product of finite rings. As these codes can be seen as sub-
modules of the direct product of polynomial rings, we determine the structure
of these codes giving their generator polynomials. Further, we study the con-
cept of duality defining the corresponding polynomial operation to the inner
product of vectors. This operation allows us to understand the duality in the
corresponding polynomial ring. Moreover, we provide techniques to give a
polynomial description for dual codes in terms of the generator polynomials
of the cyclic codes and we compute them in some particular cases.

Also, we consider different metrics in the direct product of finite rings
and we study their binary images under distinct distance preserving maps,
called Gray maps.

Finally, we give an algebraic structure for a large family of binary quasi-
cyclic codes constructing a family of commutative rings and a canonical Gray
map, such that cyclic codes over this family of rings produce quasi-cyclic
codes of arbitrary index in the Hamming space via the Gray map.
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Resum

Els codis cíclics són una família important en la teoria de la codificació i han
estat una àrea principal d’estudi des de la seva aparició. Fins a la dècada dels
90, els alfabets habitualment utilitzats en teoria de codis eren cossos finits.
A partir d’aleshores, es va iniciar l’estudi de codis definits sobre anells.

Des de l’aparició dels codis Z2Z4-additius, la investigació de codis so-
bre alfabets d’anells mixtes s’ha incrementat. L’any 2014, Abualrub et al.
van presentar els codis cíclics Z2Z4-additius i aquest fet va marcar l’inici de
l’estudi de les propietats cícliques en codis sobre alfabets mixtes.

La present tesi té com a objectiu examinar l’estructura algebraica dels
codis cíclics com a submòduls de productes directes d’anells finits. Partint
del fet que aquests codis poden ser interpretats com a submòduls del pro-
ducte directe d’anells de polinomis, es determina l’estructura d’aquests codis
cíclics tot donant els seus polinomis generadors. A més, s’estudia el concepte
de dualitat definint l’operació polinòmica corresponent al producte intern de
vectors. Aquesta operació permet entendre la dualitat en l’anell de polinomis
corresponent. Així mateix, es proporcionen tècniques per donar una descrip-
ció polinòmica dels codis duals en termes dels polinomis generadors dels codis
cíclics i es calculen explícitament en alguns casos particulars.

També es consideren diferents mètriques en el producte directe d’anells
finits i s’estudien les seves imatges binàries a través de diferents aplicacions
que preserven les distàncies, anomenades aplicacions de Gray.

Finalment, es dóna una estructura algebraica per a una gran família de
codis quasi-cíclics binaris tot construint una família d’anells commutatius i
una aplicació de Gray canònica. De tal manera que els codis cíclics sobre
aquesta família d’anells produeixen codis quasi-cíclics d’índex arbitrari en
l’espai d’Hamming a través de l’aplicació de Gray.
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Chapter 1

Introduction

Coding theory was originated as the mathematical foundation for the trans-
mission of messages over noisy communication channels, and deals with the
problem of detecting and correcting transmission errors caused by the noise
of the channel.

The mathematical background of coding theory is, for example, linear
algebra, theory of groups, rings and finite fields, and other areas of discrete
mathematics, such as theory of designs. Thus, coding theory has now become
an active part of mathematical research.

Within the family of codes, linear codes are special codes with rich math-
ematical structure. One of the most studied class of linear codes is the class
of cyclic codes. The algebraic structure of cyclic codes makes easier their im-
plementation. For this reason many practically important codes are cyclic.

In 1957, cyclic codes were introduced by Prange [Pra57]. As examples
of classes of cyclic codes we find the quadratic residue codes presented in
[Pra58], and an earlier example of such class is the binary Golay code [Gol49].
Two important classes of cyclic codes are the BCH codes, discovered by Hoc-
quenghem [Hoc59] and independently by Bose and Ray-Chaudhuri [BRC60],
and the Reed-Solomon codes, discovered by Reed and Solomon [RS60]. The
Goppa codes, presented by Goppa in [Gop70], are also cyclic codes that can
be seen as a subclass of alternant codes [Hel74].

Along this thesis, cyclic codes are always linear. However, not every code
satisfying the cyclic property is linear. In [Bla83], Blahut presented a non-
linear binary code that satisfies the cyclic property; the non-linear code with
length 15, size 28 and minimum distance 5 which is larger than the binary
linear cyclic BCH code of the same length and minimum distance, but with
size 27. This non-linear code with the cyclic property is comparable with
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2 Chapter 1. Introduction

the non-linear Preparata code with the same parameters. Preparata codes,
[Pre68], can be very simply constructed as binary images of linear codes over
Z4. The recognition that the Preparata codes and other families of non-
linear binary codes, as Kerdock and Goethals, are images under an isometry,
called Gray map, of linear codes over Z4 was presented by Hammons et al. in
[HKC+94]. The authors proved that all these codes are extended cyclic codes
over Z4. The study of the structure of cyclic codes over Z4 was discussed by
Calderbank et al. [CMKH96] and by Pless and Qian [PQ96].

The study of codes over rings has advanced from the middle of 90’s.
However, in 1963, Assmus and Mattson first considered rings as possible
alphabets for codes in [AM63]. Later, Blake investigate linear codes over
certain rings in [Bla72] and [Bla75]. But coding theory really gets a shock
when it was discovered that the mentioned families of non-linear binary codes
(Preparata, Kerdock, Goethals, etc.) can be represented as linear codes over
Z4, see [Nec89] and [HKC+94], via the Gray map. The theory of codes over
rings has not been developed in depth for general rings. It has been developed
principally for codes over finite chain rings since they have similar properties
to those of finite fields, as it will be shown later.

Some interesting results on cyclic codes over rings were done by Carlder-
bank and Sloane in [CS95], who determine the structure of cyclic codes over
Zpm . Later, in [KL97] Kanwar and López-Permouth do the same, but with
different proofs. In 2000, Norton and Sălăgean, in [NS00b], discussed the
structure of cyclic codes over finite chain rings and later, Dinh and López-
Permouth prove it in a different way in [DL04].

In Delsarte’s paper [Del73], he defines additive codes as subgroups of the
underlying abelian group in a translation association scheme. For the binary
Hamming scheme, namely, when the underlying abelian group is of order 2n,
the only structures for the abelian group are those of the form Zα2 ×Zβ4 , with
α+ 2β = n. This means that the subgroups of Zα2 ×Zβ4 are the only additive
codes in a binary Hamming scheme, [RP97].

A Z2Z4-linear code is a binary image of a Z2Z4-additive code, that is
an additive subgroup of Zα2 × Zβ4 . These Z2Z4-linear codes were first in-
troduced by Rifà and Pujol in 1997 [RP97] as abelian translation-invariant
propelinear codes. Later, an exhaustive description of Z2Z4-linear codes
was done by Borges et al. in [BFP+10]. The structure and properties of
Z2Z4-additive codes have been intensely studied, for example in [BBDF11],
[BDF12], [FPV10].

In [ASA14], Abualrub et al. define Z2Z4-additive cyclic codes. A code in
Zα2 × Zβ4 is called cyclic if the set of coordinates can be partitioned into two
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subsets, the set of coordinates over Z2 and the set of coordinates over Z4,
such that any cyclic shift of the coordinates of both subsets leaves the code
invariant. These codes can be identified as submodules of the Z4[x]-module
Z2[x]/〈xα − 1〉 × Z4[x]/〈xβ − 1〉.

Recently, Z2Z4-additive codes are generalized to Z2Z2s-additive codes in
[AS13], and later to ZprZps-additive codes in [AS15]. These codes are defined
over the direct product of rings of integers modulo some power of a prime
number. Also, we can find the direct product of other finite rings, for exam-

ple, codes in Zα2 ×
(

Z2[u]
〈u2〉

)β
in [AAS15] and [AAS16], codes in Zαp ×

(
Zp[u]

〈u2〉

)β

in [LZ15], and codes in
(

Z2[u]
〈u2〉

)α
×
(

Z2[u,v]
〈u2,v2−1〉

)β
in [AD16]. So, codes with sets

of coordinates over different rings are widely studied in recent times.
Chapter 2 and Chapter 3 aim to give a brief introduction about the re-

search topics of the thesis. Chapter 2 includes basic concepts and definitions
of classical coding theory over finite fields and over a more general algebraic
structure, finite rings. Chapter 3 discusses an alternative metric for codes
over finite rings and presents the Gray map and its extensions. Afterwards,
the family of additive codes over a mixed alphabet, Z2Z4-additive codes, is
introduced.

Chapter 4 is the core of this thesis, it reviews and summarizes the results
of the publications making up this dissertation, shows the storyline that links
them up, and discusses their relevance. These contributions are originally
presented in the following publications:

[BFT16a] J. Borges, C. Fernández-Córdoba, R. Ten-Valls, Z2Z4-Additive
Cyclic Codes, Generator Polynomials, and Dual Codes, IEEE
Transactions On Information Theory 62 (2016), no. 11, 6348–
6354.

[BFT17] J. Borges, C. Fernández-Córdoba, R. Ten-Valls, Z2-Double Cyclic
Codes, Designs, Codes and Cryptography (2017), 1–17.

[BFT] J. Borges, C. Fernández-Córdoba, R. Ten-Valls, On ZprZps-Additive
Cyclic Codes, to appear in Advances in Mathematics of Commu-
nications.

[AST] I. Aydogdu, I. Siap, R. Ten-Valls, On the Structure of Z2Z2[u3]-
Linear and Cyclic Codes, to appear in Finite Fields and Their
Applications.
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[DFT16] S. T. Dougherty, C. Fernández-Córdoba, R. Ten-Valls, Quasi-
cyclic codes as cyclic codes over a family of local rings, Finite
Fields and Their Applications 40 (2016), 138–149.

In the first contribution, [BFT16a], the parameters of a Z2Z4-additive
cyclic code are stated in terms of the degrees of the generator polynomials of
the code, and the generator polynomials of the dual code of a Z2Z4-additive
cyclic code are determined in terms of the generator polynomials of the code.

The second contribution, [BFT17], presents the structure of Z2-double
cyclic codes giving the generator polynomials of these codes and their duals,
and the relations between the generator polynomials of these codes. In this
contribution, the relations between Z2-double cyclic and other families of
cyclic codes are also studied.

The results in the third article, [BFT], generalise those for Z2Z4-additive
cyclic codes and Z2-double cyclic codes to ZprZps-additive cyclic codes.

The fourth article, [AST], is interested in a new family of mixed alpha-
bet codes, namely Z2Z2[u3]-additive codes, where Z2[u3] denotes the ring
Z2[u]/〈u3〉. It focuses on the study of the algebraic structures of linear and
cyclic codes in this family, giving standard forms of generator and parity-
check matrices for linear codes and later presenting the generators of cyclic
codes and their duals.

The last contribution, [DFT16], is an exploration of a family of commu-
tative rings and a canonical Gray map such that cyclic codes over this family
of rings produce quasi-cyclic codes of arbitrary index in the Hamming space
via the Gray map.

Finally, Chapter 5 concludes this dissertation and proposes some future
lines of research.



Chapter 2

Coding Theory

The publication of Claude Shannon’s paper “A Mathematical Theory of Com-
munication” in 1948, [Sha48], signified the beginning of coding theory. Given
a communication channel that may corrupt information sent over it, Shan-
non’s theorems tell us that there exists a number which he identified with
the capacity such that reliable communication is possible at any rate below
this capacity.

According to Shannon, we want to send a message m of a certain length
over a given alphabet. First, we encode m to a codeword c enlarging the
length by adding some redundant information. Then, the encoded message
c is sent over a noisy channel such that the symbols may be changed, under
certain probabilities that are characteristic of the channel. The received
vector c′ is decoded to m′. The idea of Shannon’s theorem is that it is
possible to transmit information through a noisy channel at any rate, R,
less than channel capacity, C, with an arbitrary small probability of error.
In other words, for every R < C it is possible to find optimal encoding
and decoding scheme such that the error probability that m′ differs to m is
arbitrarily small. And for R > C, such scheme is not possible.

Note that Shannon’s theorem is a non-constructive result; it tells us the
existence of an encoding and decoding scheme but it does not specify how
to produce an efficient code for a given channel. The origin of research in
coding theory was to construct codes in order to reduce the probability of
errors according to Shannon’s theorem.

We restrict ourselves to block codes, that is, the message words have
a fixed length of symbols. Then, for the purpose of error control, before
transmission we add a fixed number of redundant symbols to the message
word. So the encoded words have also a fixed length of symbols.

5



6 Chapter 2. Coding Theory

Definition 2.1. Let A be a set of q symbols called the alphabet. Let An be
the set of all n-tuples c = (c0, . . . , cn−1), with entries ci ∈ A. A block code
C of length n over A is a non-empty subset of An. We call the elements of
C codewords. If C contains |C| codewords, then |C| is called the size of the
code. The value n− logq(|C|) is called the redundancy, and the information
rate is defined as R = logq(|C|)/n.

Example 2.2. Replacing every binary symbol by a 3-fold repetition gives the
possibility of correcting one error in every 3-tuple of symbols in a received
word by majority. The triple repetition code has length 3 and 2 codewords,
so its information rate is 1/3.

Example 2.3. Let C be the binary block code of length n consisting of all
words with exactly two ones. The size of C is n(n − 1)/2. In this example,
the number of codewords is not a power of the size of the alphabet.

In order to determine the error-correcting capability of the code, we need
to introduce an appropriate metric on An. A metric on the set An is a
function d : An ×An → [0,∞) that defines a distance between two elements
of a set. For all x,y, z ∈ An, it has to satisfy:

• d is non-negative, d(x,y) ≥ 0, and the equality holds if and only if
x = y,

• d is symmetric, d(x,y) = d(y,x), and

• d satisfies the triangle inequality, d(x,y) ≤ d(x, z) + d(z,y).

The principal distance used in coding theory is the Hamming distance.
The Hamming distance between two elements c = (c0, . . . , cn−1) and c′ =

(c′0, . . . , c
′
n−1) in An, denoted by dH(c, c′), is defined to be the number of

components in which c and c′ differ; i.e., dH(c, c′) = |{i | ci 6= c′i}|.

Definition 2.4. The minimum distance of a code C, denoted by d(C), is

d(C) = min{dH(c, c′) | c, c′ ∈ C, c 6= c′}.

The error-correcting capability of a code C is bd(C)−1
2
c and we say that C is

a bd(C)−1
2
c-error-correcting code.

Example 2.5. The triple binary repetition code C = {000, 111} has min-
imum distance 3. The binary code of length n consisting of all words with
exactly two ones has minimum distance 2.
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A classical question on coding theory is to give optimal codes. That is, to
construct a code for a given length and number of codewords with the largest
possible minimum distance or, for a given length and minimum distance, to
construct a code with the maximum number of codewords, or to give the
minimum length for a fixed number of codewords and minimum distance.
One of the most important bounds for a code is the Singleton Bound which
relate all these parameters.

Theorem 2.6 (Singleton Bound, [Sin64]). Let C be a code of length n over
A. Then,

|C| ≤ qn−d(C)+1.

Any code with parameters which achieve the Singleton Bound is called a
Maximum Distance Separable (MDS) code.

2.1 Linear codes

2.1.1 Linear codes over finite fields

In order to simplify the encoding and decoding methods, if we impose an
additional structure to a code, then we may have many practical advantages.
The most popular block codes are linear, this means that the component-wise
sum of two codewords is again a codeword.

From the beginning, the most studied codes are those over finite fields.
A linear code C over the finite field of q elements, Fq, is defined as a k-
dimensional subspace of Fnq , and C is called an [n, k] linear code over Fq,
where n is the length and k is the dimension of the code. From linear
algebra, since Fnq is a vector space, we have that any subspace C has a basis
that consists of k linearly independent codewords. Therefore, a generator
matrix for a code C is defined to be any k × n matrix whose rows form a
basis for C, and then |C| = qk.

Giving a generator matrix is an explicit way to describe a code since every
codeword can be uniquely written as a linear combination of the elements of
the basis. Another way to describe a code is implicitly, that is as the null
space of a set of homogeneous linear equations. Let C be an [n, k] linear code
over Fq, then it is well known that there exists an (n−k)×n matrix H, with
entries in Fq and independent rows, such that C is the null space of H, i.e.,
C is the set of all c ∈ Fnq such that Hct = 0. The matrix H is called a parity
check matrix of C.
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The inner product of two vectors u = (u0, . . . , un−1),v = (v0, . . . , vn−1)

in Fnq is defined by

u · v =
n−1∑

i=0

uivi.

For an [n, k] linear code C over Fq, we define the dual code C⊥ as

C⊥ = {v ∈ Fnq | u · v = 0, for all u ∈ C}.

Furthermore, if H is a parity check matrix of C, then H is a generator matrix
of C⊥. Therefore, C⊥ is an [n, n− k] linear code.

If C ⊂ C⊥ then C is called self-orthogonal and, if C = C⊥, then C is
called self-dual code.

One of the most important results in coding theory are the MacWilliams
Theorems. They are stated by F. J. MacWilliams in [Mac62] and [Mac63].
The weight enumerator of C is defined by the polynomial

WC(X, Y ) =
∑

c∈C
Xn−wt(c)Y wt(c),

where wt(c) is the number of non-zero coordinates of c. The MacWilliams
Theorems for finite fields state that the weight enumerator of the dual code
C⊥ of a linear code C is uniquely determined by a linear transformation of
the weight enumerator of C.

The following theorem gives the relation, called MacWilliams identity,
between the weight enumerator of a linear code and its dual.

Theorem 2.7 (MacWilliams identity). Let C be a linear code over Fq and
C⊥ its dual. Then,

WC⊥(X, Y ) =
1

|C|WC(X + (q − 1)Y,X − Y ).

Note that replacing X = Y = 1, we can obtain the well-known identity
|C||C⊥| = |Fnq | = qn.

2.1.2 Linear codes over rings

It is proven by Hammons et al., [HKC+94], that certain good non-linear
binary codes can be seen as binary images of linear codes over Z4. After
[HKC+94], it became interesting to study codes over a larger class of alpha-
bets with some algebraic structures. For this reason, the study of codes over
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rings has been developed since then. So, we shall begin to study codes over
rings and give the appropriate definitions of the basic concepts of coding
theory from this new point of view.

A commutative ring is a set R equipped with two binary operations,
called addition and multiplication, such that R is an additive abelian group
with identity element 0, the multiplication holds the distributive laws and
it is abelian and associative. We say that R is a ring with unit if R has a
multiplicative identity; i.e., there exist an element in R, denoted 1, such that
for all r ∈ R, 1r = r. A subset I ⊆ R is an ideal if I is an additive subgroup
of R and ar ∈ I, for all a ∈ I and for all r ∈ R. An ideal I is a maximal ideal
of a ring R if there does not exist any other ideal I ′ such that I ( I ′ ( R. If
R has a unique maximal ideal, then R is known as a local ring.

For the remainder of the text, we will consider that all rings are finite com-
mutative rings with unity. For further information on the topic see [McD74].

Definition 2.8. Let R be a ring. A code over R of length n is a subset C of
Rn. If C is an R-submodule of Rn, then C is a linear code.

A module over a ring R, or an R-module, is a generalization of the notion
of vector space over a field, wherein the corresponding scalars are the elements
of the given ring and a multiplication is defined between elements of the
ring and elements of the module. Since a module is an abelian group, a
submodule of an R-module is a subgroup that is closed by the inherit scalar
multiplication.

So, much of the theory of codes over rings consists of extending as many
as possible the desirable properties of codes over fields. However, codes over
rings can be quite a bit more complicated than codes over fields; for instance,
since not all modules have a basis, then the definition of a generator matrix
is not trivial.

Generally, the most studied rings in coding theory are finite chain rings.
A finite chain ring, R, is a finite commutative local ring such that its ideals
are linearly ordered by inclusion, i.e., if γ is a fixed generator of the maximal
ideal of R and e is the nilpotency of γ, then the ideals of R form a chain

0 = 〈γe〉 ( 〈γe−1〉 ( · · · ( 〈γ1〉 ( 〈γ0〉 = R.

The theory of linear codes over finite chain rings is more similar to the
theory of linear codes over finite fields than the theory of codes over arbitrary
rings. Some rings whose properties lie closest to those of finite fields are in
fact finite chain rings. For example, one of these rings, that was first studied,
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was the ring of integers modulo pe, denoted by Zpe . Clearly, the submodules
of Znpe may not be free, but for every submodule we can find a suitable matrix,
which rows are a minimal generating set. After a permutation of coordinates
and row operations, we obtain a generator matrix in the form

G =




Ik0 A0,1 A0,2 A0,3 . . . A0,e−1 A0,e

0 pIk1 pA1,2 pA1,3 . . . pA1,e−1 pA1,e

0 0 p2Ik2 p2A2,3 . . . p2A2,e−1 p2A2,e
...

...
...

...
...

...
0 0 0 0 . . . pe−1Ike−1 pe−1Ae−1,e



,

where Ai,j are matrices over Zpe−i , [CS95].
Unlike codes over finite fields, we do not have dimension for codes nei-

ther over Zpe nor over an arbitrary ring. Although we cannot consider the
dimension of a code C over Zpe , we can define the type of C as

(pe)k0(pe−1)k1(pe−2)k2 . . . (p)ke−1 ,

where |C| = ∏e−1
i=0 p

(e−i)ki .

Example 2.9 ([HKC+94]). Any linear code over Z4 of length n and type
4k02k1 is permutation equivalent to a quaternary linear code with generator
matrix of the form

G =

(
Ik0 R S

0 2Ik1 2T

)
,

where R, T are matrices over {0, 1} ⊂ Z4 of size k0×k1 and k1×(n−k1−k0),

respectively; and S is a matrix over Z4 of size k0 × (n− k1 − k0).

These results on generator matrices are easily generalized for codes over
finite chain rings [NS00a]. So, for codes over finite chain rings it is easy
to construct a generator matrix from where we can identify the type. In
contrast to finite chain rings, if we just take m to be a positive integer but
not a power of a prime number, then it is not easy to describe a minimal
generating set for codes over Zm, as it is shown in [DGPW07].

We can define an inner product and the dual code in the standard way
for codes over rings. Clearly, a linear code C inherently determines its dual
code, C⊥, and so the weight distribution of C⊥ has to be implicit in C. The
explicit way to show this relation is by the MacWilliams identity.

We have seen that the MacWilliams identity holds for any linear code
over a finite field. So it is natural to ask which is the largest family of
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rings such that the MacWilliams Theorem is still true, and therefore it holds
|C||C⊥| = |R|n, for a code C over a ring R in this family. The answer of this
question is given by J. Wood [Woo99] and the family of Frobenius rings is
the largest family of rings such that the strong tools given by MacWilliams
remain true.

Theorem 2.10 ([Woo99]). Let R be a finite commutative Frobenius ring.
Let C be a linear code over R. Then

WC⊥(X, Y ) =
1

|C|WC(X + (|R| − 1)Y,X − Y ).

2.2 Cyclic codes

2.2.1 Cyclic codes over finite fields

Possibly, cyclic codes are the most studied of all codes. They are a subclass of
linear codes and they include important families of codes for error correction,
such as binary Hamming codes, Reed-Solomon or BCH codes. We shall begin
the study of codes over finite fields, examining the strong relation between a
cyclic code and an ideal of the ring of polynomials modulo xn − 1.

A linear code C of length n over Fq is called cyclic if

(c0, c1, . . . , cn−2, cn−1) ∈ C ⇒ (cn−1, c0, c1, . . . , cn−2) ∈ C.

Since a cyclic code is invariant under a cyclic shift we conclude that a cyclic
code contains all cyclic shifts of any codeword. We will denote by c(i) the ith
shift of c ∈ Fnq .

Example 2.11. The binary code C = {000, 110, 011, 101} is cyclic.

We can describe these codes in algebraic terms since any element of the
vector space (c0, c1, . . . , cn−1) ∈ Fnq can be identified by the residue class of
the polynomial c0 + c1x + · · · + cn−1x

n−1 (mod xn − 1) over Fq, [MS77], by
the bijection

Fnq → Fq[x]/〈xn − 1〉
(c0, c1, . . . , cn−1) 7→ c0 + c1x+ · · ·+ cn−1x

n−1. (2.1)

Therefore, any codeword is identified as a vector or as a polynomial.
Denote the image of a codeword c under the map (2.1) by c(x), and by C
indistinctly both the code and the corresponding image. It is clear that if
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C is a cyclic code and c(x) = c0 + c1x + · · · + cn−1x
n−1 ∈ C, then xc(x) =

c0x + c1x
2 + · · · + cn−1x

n = cn−1 + c0x + c1x
2 + · · · + cn−2x

n−1 ∈ C. Hence,
multiplying the polynomial c(x) by x corresponds to a right shift of the vector
c. So, under the map (2.1), it follows that cyclic codes over Fq are precisely
the ideals of the ring Fq[x]/〈xn − 1〉, and vice versa. Therefore, the study of
cyclic codes over Fq is equivalent to the study of ideals in Fq[x]/〈xn − 1〉.

It is well-known that every ideal C of Fq[x]/〈xn − 1〉 is principal [LN97],
i.e., C is generated by one element of the ring. More precisely, C is generated
by the monic polynomial of least degree g(x) ∈ C, called the generator
polynomial. Then, g(x) is a divisor of xn−1 in Fq[x]. Any codeword c(x) ∈ C
can be uniquely written as c(x) = λ(x)g(x), where λ(x) has degree less than
n− deg(g(x)) and the dimension of C is k = n− deg(g(x)). This discussion
gives the following theorem.

Theorem 2.12 ([HP03]). Let C be an [n, k] nonzero cyclic code in Fq[x]/〈xn−
1〉. Then there exists a unique monic polynomial g(x) ∈ C of degree n − k
such that g(x) divides xn − 1 and C = 〈g(x)〉.

Let g(x) = g0 + g1x + · · · + gn−kxn−k be the generator polynomial of a
code C of length n over a finite field. Then, the matrix

G =




g0 g1 . . . gn−k
g0 g1 . . . gn−k

. . . . . .
g0 g1 . . . gn−k


↔




g(x)

xg(x)
...

xk−1g(x)




is a generator matrix of C.
From ring theory, the annihilator of an ideal C, Ann(C), is the ideal

whose elements cancel out all the elements in the ideal C. In our case, let
C be an [n, k] cyclic code with generator polynomial g(x), C = 〈g(x)〉 ⊆
Fq[x]/〈xn − 1〉, and let h(x) = xn−1

g(x)
= h0 + h1x + · · · + hkx

k. Then h(x)

is called the parity check polynomial and Ann(C) = 〈h(x)〉. However, as
it is shown in the following example, Ann(C) does not correspond to the
polynomial representation of the dual code C⊥.

Example 2.13. Let C be the binary cyclic code generated by the linear com-
bination of all cyclic shifts of the vector (1, 1, 0, 1, 0, 0, 0). Clearly, C = 〈g(x)〉
where g(x) = x3 + x+ 1, and then h(x) = x4 + x2 + x+ 1. We have that the
polynomial x2h(x) = x6 + x4 + x3 + x2 belongs to Ann(C) = 〈h(x)〉 but its
corresponding vector (0, 0, 1, 1, 1, 0, 1) is not orthogonal to (1, 1, 0, 1, 0, 0, 0).
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Nevertheless, there is a close relation between the generator polynomial
of the dual code and the parity check polynomial.

Definition 2.14. Let p(x) = p0 + p1x + · · · + ptx
t be a polynomial over a

ring of degree t. The reciprocal polynomial of p(x) is the polynomial

p∗(x) = xtp(x−1) = pt + pt−1x+ · · ·+ p0x
t.

Note that the polynomial representation of the reverse of a vector u of
length n corresponds to the polynomial xn−deg(u(x))−1u∗(x).

Example 2.15. Let u = (1, 2, 0, 0). Then u(x) = 2x+1. Clearly, n = 4 and
xn−deg(u(x))−1u∗(x) = x2(x+2) = x3 +2x2 that corresponds to the polynomial
representation of (0, 0, 2, 1), the reverse of u.

The connection between the dual code and the reciprocal polynomial is
clear from the following fact, given in [HP03]. Let u = (u0, u1, . . . , un−1),v =

(v0, v1, . . . , vn−1) and suppose that u and all its shifts are orthogonal to v.
Then, for all i, we have that

u(i) · v =
n−1∑

j=0

ujvj+i = 0.

Since xn−deg(v(x))−1v∗(x) = vn−1 + vn−2x+ · · ·+ v1x
n−2 + v0x

n−1, we have
that

u(x)xn−deg(v(x))−1v∗(x) = u0vn−1 + (un−1vn−2 + · · ·+ u2v1 + u1v0)xn+

+ (u0vn−2 + u1vn−1)x+ (u2v0 + . . .+ un−1vn−3)xn+1

+ . . .

+ (u0v1 + · · ·+ un−2vn−1)xn−2 + un−1v0x
2n−2

+ (u0v0 + · · ·+ un−1vn−1)xn−1 mod (xn − 1).

Then,

u(x)xn−deg(v(x))−1v∗(x) =
n−1∑

i=0

(u(i) · v)xn−1−i

vanishes since all u(i) · v = 0.
Then, the generator polynomial of the dual code C⊥ is h∗(x)

h(0)
. Furthermore,

a generator matrix for C⊥, and hence a parity check matrix for C, is



hk . . . h1 h0

hk . . . h1 h0

. . . . . .
hk . . . h1 h0


 .
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Since cyclic codes have received much attention, they have been gener-
alized in many different forms, for example, negacyclic codes, quasi-cyclic
codes, skew cyclic codes,... For the following chapters, we shall briefly intro-
duce the concept of quasi-cyclic code.

Let t be a positive integer. A linear code C is called quasi-cyclic if for all
codeword u ∈ C we have that u(t) ∈ C. If t is the smallest integer, such that
this property holds then C is said to be a quasi-cyclic code of index t. Note
that we obtain cyclic codes when t = 1. The structure of quasi-cyclic codes
has been deeply studied in [LF01], [LS01], [LS03], [LS05], [LNS06].

2.2.2 Cyclic codes over rings

As we have already seen, much of the theory of codes over rings consists of
generalizing concepts and properties of codes over finite fields. Cyclic codes
over rings has not been studied in depth for a general ring. For the aim of
this dissertation, we shall focus primarily on codes over integer residue rings.

As usual, cyclic codes of length n over a ring R are linear codes with the
property that the cyclic shift of any codeword is again a codeword. They are
also identified with the ideals of R[x]/〈xn− 1〉 by representing the vectors as
the polynomials of degree less than n. So, it is natural to ask if we can find
generator polynomials of cyclic codes over rings. To do this, one must focus
first on the study of the factorization of xn − 1 over R.

As we have said in the previous section, finite chain rings have similar
properties to those of finite fields. But some properties on cyclic codes over
finite fields do not hold, for example, for cyclic codes over Zpe . A big differ-
ence is that in Zpe [x] it does not exist a unique factorization on irreducible
polynomials, for e > 1. As an example, consider the ring of polynomials over
Z4. We have the following distinct factorizations of the polynomial x4 − 1:

x4 − 1 = (x+ 1)(x− 1)(x2 + 1)

= (x+ 1)2(x2 + 2x− 1),

This occurrence may happen on polynomials over finite chain rings. An-
other difference is that the degree of the product of polynomials may be
smaller than the sum of the degrees of the polynomials, e.g., (2x + 1)2 = 1

in Z4[x]. Hence, determining if a polynomial is irreducible (i.e., if f(x) =

λ(x)µ(x) then λ(x) or µ(x) is a unit), is arduous since we can not assume
that the degree of the factors is less than the degree of the polynomial. So,
on codes over rings, we will prefer to factorize a polynomial by using a useful
subfamily of irreducible polynomials, called basic irreducible.



2.2. Cyclic codes 15

Let R be a ring, consider the widely known surjective reduction homo-
morphism to the residue field of R, and denote by “ ˜ ” the linear extension
of the reduction homomorphism for all elements of R[x], [McD74]. Then, a
polynomial f(x) ∈ R[x] is basic irreducible if f̃(x) is an irreducible polyno-
mial over the residue field of R, and two polynomials f(x) and g(x) are said
to be coprime if 〈f(x)〉+ 〈g(x)〉 = R[x].

Nevertheless, we can not guarantee yet a unique factorization of a poly-
nomial on basic irreducible polynomials. For example, in Zp2 [x] we have that
x2 = x · x = (x− p)(x+ p).

Please don’t be discouraged, the next theorem gives us the key.

Theorem 2.16 ([DL04, Proposition 2.7]). If f(x) is a monic polynomial over
a finite chain ring such that f̃(x) is square free, then f(x) factorizes uniquely
as a product of monic basic irreducible pairwise-coprime polynomials.

For this dissertation, we want that xn−1 factorizes uniquely in a product
of pairwise-coprime basic irreducible polynomials. It is well-known that xn−1

over Fq, with q a power of a prime p, has no repeated roots if n and p are
coprime. Therefore, if gcd(n, p) = 1 then xn − 1 is square free on Fq[x].

Corollary 2.17. Let R be finite chain ring and let n be a positive integer
coprime with the characteristic of the residue field of R. Then, xn − 1 has
a unique decomposition as a product of basic irreducible pairwise-coprime
polynomials in R[x].

Thereupon, we assume that the length of a code over a ring is coprime
with the characteristic of the residue field of the ring, unless otherwise spec-
ified. The previous Theorem 2.16 and Corollary 2.17 are based on Hensel’s
Lemma, which shows how to obtain a factorization of a polynomial f(x) from
f̃(x).

Lemma 2.18 (Hensel’s Lemma, [McD74]). Let f(x) be a polynomial over
R and assume f̃(x) = g1(x) · · · gt(x), where g1(x), . . . , gt(x) are pairwise-
coprime polynomials over the residue field of R. Then there exist pairwise-
coprime polynomials f1(x), . . . , ft(x) over R such that f(x) = f1(x) · · · ft(x)

and f̃i(x) = gi(x) for i = 1, . . . , t.

Summarizing, to factorize xn−1 in R[x], first factorize it over the residue
field and then use the Hensel’s Lemma to lift the resulting irreducible poly-
nomials.
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Example 2.19. In Z2[x], (x−1)(x3 +x+ 1)(x3 +x2 + 1) is the factorization
of x7−1 into irreducible polynomials. Therefore, (x−1)(x3+2x2+x+3)(x3+

3x2 + 2x + 3) is a factorization of x7 − 1 into basic irreducible polynomials
in Z4[x].

Once we have presented a proper scenario, we are ready to describe the
ideals of R[x]/〈xn− 1〉 that implies to describe the generator polynomials of
the corresponding cyclic codes. As a first approach, we are going to center
our attention on cyclic codes over Z4.

As it is discussed in [Bla08], cyclic codes over Z4 of length n can be formed
by using the basic irreduccible polynomials in the factorization of xn− 1 and
their products, just as it is done for cyclic codes over Fq in Theorem 2.12.
Nevertheless, there are more possibilities. For instance, let g(x) be a basic
irreducible polynomial on the factorization of xn − 1 over Z4. Then, we
can use g(x) as a generator polynomial of a cyclic code of length n. But,
besides this, 2g(x) generates a different cyclic code of length n that cannot be
generated by any divisor of xn−1. Hence, we are not able to give a complete
description of the generator polynomials as in Theorem 2.12 for cyclic codes
over finite fields.

So, we shall enumerate some results in order to deeper understand the
algebraic structure of the ideals of Z4[x]/〈xn − 1〉. The proofs of them can
be found in [Wan97].

The next theorem is an interpretation of the Chinese Remainder Theorem
of the direct sum decomposition of the ring Z4[x]/〈f(x)〉, where f(x) is the
product of pairwise-coprime polynomials in Z4[x].

Theorem 2.20 ([Wan97]). Let f1(x), f2(x), . . . , ft(x) be pairwise-coprime
monic polynomials of degree greater than 0, and let f(x) = f1(x)f2(x) · · · ft(x).
Then,

Z4[x]/〈f(x)〉 ∼=
t⊕

i=1

Z4[x]/〈fi(x)〉.

As a consequence, for any ideal I of Z4[x]/〈f(x)〉 we have that I = I1 +

I2 + · · ·+ It for ideals Ii ⊆ Z4[x]/〈fi(x)〉. Since xn − 1 can be represented as
a product of pairwise-coprime basic irreducible polynomials, for an odd n,
we are interested on the ideals of Z4[x]/〈fi(x)〉, for fi(x) basic irreducible.

It is known that for a basic irreducible polynomial fi(x) over Z4[x], the
ring Z4[x]/〈fi(x)〉 has only three ideals, and they are 〈0〉, 〈1〉 and 〈2〉.

Let xn−1 = f1(x)f2(x) · · · ft(x) be a representation of xn−1 as a product
of pairwise-coprime basic irreducible polynomials in Z4[x] for an odd n. Then,
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defining f̂i(x) = xn−1
fi(x)

, it is proved that any ideal of the ring Z4[x]/〈xn−1〉 is a
sum of some 〈f̂i(x)〉 and 〈2f̂i(x)〉. The following result is obtained operating
with these sums of ideals.

Theorem 2.21 ([Wan97]). Let n be an odd positive integer. Let C be and
ideal of Z4[x]/〈xn − 1〉. Then there are unique monic polynomials f(x), g(x)

and h(x) over Z4 such that C = 〈f(x)h(x), 2f(x)g(x)〉, where f(x)g(x)h(x) =

xn − 1.

Finally, we have that these ideals are principal, as it is shown in the next
theorem.

Theorem 2.22 ([Wan97]). Let n be an odd positive integer. Then, every
ideal C of Z4[x]/〈xn − 1〉 is a principal ideal of the form 〈f(x)h(x) + 2f(x)〉
and |C| = 4deg(g(x))2deg(h(x)), where f(x)g(x)h(x) = xn − 1.

In [CS95] and [KL97], the authors generalize these results to cyclic codes
over Zpe . They proved that a cyclic code over Zpe of length n coprime with
p has a generator polynomial of the form g(x) = g0(x) + pg1(x) + · · · +

pm−1gm−1(x) where g0(x), g1(x), . . . , gm−1(x) in Zpe [x](x) such that gm−1(x) |
gm−2(x) | · · · | g1(x) | g0(x) | (xn − 1). Analogous results are obtained for
cyclic codes over finite chain rings, and can be found in [NS00b] and [DL04].





Chapter 3

Additive Codes and their Binary
Images

In Chapter 2, we have presented basic definitions and results about linear
codes over fields and we have extended them to codes over rings. In the
current chapter, we start by providing a brief review on binary images of
codes over Z4. After that, we gather some of the most remarkable results
concerning the parameters and properties of Z2Z4-additive codes.

3.1 Binary images of codes over Z4

The study of codes over rings exploded with codes over Z4. In the semi-
nal paper [HKC+94], it is proven that certain non-linear binary codes can
be regarded as images of linear codes over Z4 under the Gray map. The
breakthrough of [HKC+94] was to consider an alternative weight on the rep-
resentation over Z4, the Lee weight. The Lee weight takes advantage of the
algebraic structure of Z4 as a cyclic group instead of only distinguishing if
an element is zero or not. In this way, the Gray map becomes an isometry
between two metrics defined from these two different weight functions, the
Hamming and the Lee weights. In this chapter, we shall give a very brief
explanation of the Gray map from Z4 and use it to introduce the family of
Z2Z4-additive codes, that are codes over a mixed alphabet.

The Gray map between Z4 and Z2
2 is usually denoted by φ. Let u ∈ Z4, we

have that an element u ∈ Z4 can be uniquely expressed in the form u = ũ+2û

where ũ, û ∈ {0, 1}. Then, the Gray map is defined by φ(u) = (û, ũ+ û), and

19
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therefore,
φ : Z4 → Z2

2

0 7→ (0, 0)

1 7→ (0, 1)

2 7→ (1, 1)

3 7→ (1, 0).

There are different permutation equivalent extensions of the Gray map
from Zn4 to Z2n

2 . In this dissertation, we will use the same extension as in
[HKC+94]. Let u = (u0, . . . , un−1) be an element of Zn4 such that ui = ũi+2ûi
with ũi, ûi ∈ {0, 1}. The Gray map from Zn4 to Z2n

2 , also denoted by φ, is
defined by

φ(u) = (û0, . . . , ûn−1 | ũ0 + û0, . . . , ũn−1 + ûn−1).

This Gray map from Z4 to Z2
2 is a non-linear map. However, the most

important property of this map is that it is a distance-preserving map or
isometry between Lee distance and Hamming distance defined on Zn4 and on
Z2n

2 , respectively.
If we consider the elements of Z4 as a cyclic group then we can define a

weight function as the shortest path on the cycle from an arbitrary element
to 0. This weight function is called the Lee weight, and it is denoted by wL.
On the elements 0, 1, 2, 3 ∈ Z4 it acts as follows

wL(0) = 0, wL(1) = wL(3) = 1, wL(2) = 2.

The Lee weight of u = (u0, . . . , un−1) ∈ Zn4 is defined to be the sum of the Lee
weights of its components, wL(u) =

∑n−1
i=0 wL(ui). The Lee weight function

defines a distance between two elements u and v of Zn4 as the Lee weight of
their difference, dL(u,v) = wL(u−v) on Z4, which is called the Lee distance.

When we refer to the image of a code C over Z4, we will always mean
its image C = φ(C) under the Gray map. The code C is a non-linear code
in general. A binary code is called a Z4-linear code if its coordinates can be
arranged so that it is the image of a linear code over Z4.

In [HKC+94], the authors give necessary and sufficient conditions for a
binary code to be Z4-linear, and for the binary image of a code over Z4 to be
a linear code. In [Wol99] and [Wol01], Wolfmann studies the condition for
the image of a cyclic code over Z4 of odd length to be linear. Moreover, he
proves that the cyclic structure is preserved after a convenient permutation
of coordinates.
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The Nechaev permutation is the permutation σ on Z2n
2 , with n odd, de-

fined by
σ(v0, v1, . . . , v2n−1) = (vτ(0), vτ(1), . . . , vτ(2n−1)),

where τ is the permutation on {0, 1, . . . , 2n− 1} given by

(1, n+ 1)(3, n+ 3) · · · (2i+ 1, n+ 2i+ 1) · · · (n− 2, 2n− 2).

Let ψ be the map from Zn4 into Z2n
2 defined by ψ = σφ, with n odd. This

map ψ is called the Nechaev-Gray map.

Definition 3.1. Let g̃(x) be a divisor of xn − 1 in Z2[x] and let ξ be a
primitive nth root of unity over Z2. The polynomial (g̃ ⊗ g̃)(x) is defined as
the divisor of xn − 1 in Z2[x] whose roots are the products ξiξj such that ξi

and ξj are roots of g̃(x).

The next theorem characterizes all linear cyclic codes over Z4 of odd
length whose images are binary linear codes.

Theorem 3.2 ([Wol01, Theorem 20]). Let C = 〈f(x)h(x)+2f(x)〉 be a cyclic
code over Z4 of odd length n and where f(x)h(x)g(x) = xn − 1. Let φ be the
Gray map and let ψ be the Nechaev-Gray map. The following properties are
equivalent.

1. gcd(f̃(x), (g̃ ⊗ g̃)(x)) = 1 in Z2[x];

2. φ(C) is a binary linear code of length 2n;

3. ψ(C) is a binary linear cyclic code of length 2n generated by f̃(x)2h̃(x).

The firsts rings studied in coding theory were the commutative rings of
four elements. Since F4 is a finite field and Z2[v]/〈v2 − v〉 is ring isomorphic
to Z2

2, the other commutative ring of four elements that is interesting to
consider in coding theory, a part of Z4 [HKC+94], is Z2[u]/〈u2〉. The study
of codes over this ring and their binary images is given in [BU99].

The ring Z2[u]/〈u2〉 is generalized in two different directions. On the
one hand, we have the family of chain rings Z2[u]/〈ur〉, and on the other
hand, the commutative local ring Z2[u1, u2, . . . , ur]/〈u2

1, u
2
2, . . . , u

2
r〉. Later,

in Chapter 4, we present a family of rings that generalizes both, and we give
the corresponding Gray map.
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3.2 Z2Z4-additive codes

In the special case of a binary Hamming scheme, the additive codes defined by
Delsarte [Del73] coincide with the abelian translation invariant properlinear
codes, first defined in [RP97]. According to these results, the codes that are
subgroups of Zα2 × Zβ4 are the only additive codes in the binary Hamming
scheme. In [BFP+10], Borges et al. give a comprehensive description of these
codes, called Z2Z4-additive codes.

A Z2Z4-additive code C is a subgroup of Zα2 ×Zβ4 . Hence, it is isomorphic
to a commutative structure of the form Zγ2 × Zδ4 and it has |C| = 2γ+2δ

codewords.
Since Z2Z4-additive codes are subgroups of Zα2 ×Zβ4 , they can be seen as

a generalization of codes over Z2 and Z4, when β = 0 or α = 0, respectively.
Therefore, the Gray and Nechaev-Gray maps can be also applied to the
coordinates over Z4 of a Z2Z4-additive code to obtain binary codes, that are
non-linear in general.

Let u ∈ Zα2 × Zβ4 . We write u = (u | u′) where u = (u0, . . . , uα−1) ∈ Zα2
and u′ = (u′0, . . . , u

′
β−1) ∈ Zβ4 . We define the extended Gray map Φ and the

extended Nechaev-Gray map Ψ as the maps from Zα2 ×Zβ4 to Zα+2β
2 given by

Φ(u) = Φ((u | u′)) = (u | φ(u′)), Ψ(u) = Ψ((u | u′)) = (u | ψ(u′)),

where φ is the Gray map and ψ is the Nechaev-Gray map, previously de-
fined. The weight of any element u ∈ Zα2 × Zβ4 can be computed by adding
the Hamming weight of the coordinates over Z2 and the Lee weight of the
coordinates over Z4, i.e., w(u) = wH(u) + wL(u′). This new weight function
defines a metric in Zα2 × Zβ4 , and the maps Φ and Ψ are isometries from
Zα2 × Zβ4 to Zα+2β

2 .
After applying the extend Gray map to Z2Z4-additive codes, we obtain

binary codes called Z2Z4-linear codes. There are several important classes
of binary codes which include Z2Z4-linear codes, e.g., Z2Z4-linear Hadamard
codes or Z2Z4-linear 1-perfect codes, see [PRV06] and [BR99], respectively.

Let X (respectively Y ) be the set of Z2 (respectively Z4) coordinate po-
sitions, so |X| = α and |Y | = β. Unless otherwise stated, the set X corre-
sponds to the first α coordinates and Y corresponds to the last β coordinates.
Let CX be the binary punctured code of C by deleting the coordinates outside
X. Define similary the quaternary code CY . Let Cb be the subcode of C which
contains all order two codewords and let κ be the dimension of (Cb)X , which
is a binary linear code. For the case α = 0, we write κ = 0. With all these
parameters, we say that the code C is of type (α, β; γ, δ;κ).
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Applying the classical Singleton bound [Sin64] to a Z2Z4-additive code
C of type (α, β; γ, δ;κ) and minimum distance d(C), the following bound is
obtained:

d(C)− 1

2
≤ α

2
+ β − γ

2
− δ. (3.1)

According to [BBDF11], a code meeting the bound (3.1) is called maximum
distance separable with respect to the Singleton bound, briefly MDSS.

Although a Z2Z4-additive code C is not a free submodule, in [BFP+10] it
is shown that any Z2Z4-additive code is permutation equivalent to a Z2Z4-
additive code with standard generator matrix of the form

GS =




Iκ Tb 2T2 0 0

0 0 2T1 2Iγ−κ 0

0 Sb Sq R Iδ


 ,

where Ik is the identity matrix of size k × k; Tb, Sb are matrices over Z2;
T1, T2, R are matrices over Z4 with all entries in {0, 1} ⊂ Z4; and Sq is a
matrix over Z4.

The concept of duality for Z2Z4-additive codes is also studied in [BFP+10],
and the appropriate inner product for any two vectors u,v ∈ Zα2×Zβ4 is given
by

u · v = 2
α−1∑

i=0

uivi +

β−1∑

j=0

u′jv
′
j ∈ Z4, (3.2)

where the computations are made taking the zeros and ones in the first α
coordinates as zeros and ones over Z4, respectively. The dual code of C is
defined in the standard way as C⊥ = {v ∈ Zα2 × Zβ4 | u · v = 0 for all u ∈
C}, and it is proven in [BFP+10] that C⊥ is a Z2Z4-additive code of type
(α, β; γ̄, δ̄; κ̄), where

γ̄ = α + γ − 2κ, δ̄ = β − γ − δ + κ, κ̄ = α− κ,
and has a generator matrix of the form




T tb Iα−κ 0 0 2Stb
0 0 0 2Iγ−κ 2Rt

T t2 0 Iβ+κ−γ−δ T t1 −(Sq +RT1)t


 .

Example 3.3. As a simple example, consider the Z2Z4-additive code of type
(3, 3; 2, 1; 2) with generator matrix in standard form

G =




101 200

011 220

000 111


 .
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Then, C⊥ is of type (3, 3; 1, 2; 1) and has generator matrix

H =




111 000

100 310

001 301


 .

Two structural invariants for binary codes are the rank and the dimension
of the kernel. In the case of non-linear codes, these parameters tell us how far
is the code from being linear. The rank of a binary code C is the dimension
of 〈C〉, which is the linear span of the codewords of C; and the kernel of a
binary code C, denoted by ker(C), is the set of vectors that leave C invariant
under translations, thus ker(C) = {v | v + C = C}. If C contains the zero
vector, then ker(C) is a binary linear subcode of C. Note that if C is a
binary linear code, then the rank and the dimension of the kernel coincide
with the dimension of the code C.

Any additive code C ⊆ Zα2 × Zβ4 is associated with two other codes. The
preimage of the kernel of Φ(C), which is defined to be the code K(C) =

{v ∈ Zα2 × Zβ4 | Φ(v) ∈ ker(Φ(C))}, and the preimage of the span of Φ(C),
R(C) = {v ∈ Zα2 × Zβ4 | Φ(v) ∈ 〈Φ(C)〉}. It is clear that K(C) ⊆ C ⊆ R(C).

It is known that if C is a Z2Z4-additive code, then 〈Φ(C)〉 and ker(Φ(C))
are both Z2Z4-linear codes ([FPV10]). Therefore, R(C) and K(C) are both
Z2Z4-additive codes. For the study on rank and kernel of Z4-linear codes we
refer to [FPV08].

In recent times, Z2Z4-additive codes have been first generalized to Z2Z2s-
additive codes and later to ZprZps-additive codes in [AS13] and [AS15], re-
spectively. With the same techniques, the authors extend the results from
[BFP+10] to these new mixed alphabets. These codes are defined over the
direct product of rings of integers modulo some power of a prime number.
Moreover, there are different works on codes over mixed alphabets from other

kind of finite rings. Some of these structures that we can find are Zα2×
(

Z2[u]
〈u2〉

)β

in [AAS15], Zαp ×
(

Zp[u]

〈u2〉

)β
in [LZ15], or

(
Z2[u]
〈u2〉

)α
×
(

Z2[u,v]
〈u2,v2−1〉

)β
in [AD16].

In these papers, the authors use comparable approaches to the previously
described ones to prove their results.

3.2.1 Z2Z4-additive cyclic codes

Cyclic codes have been a primary area of study for coding theory. Newly,
a first study that considers cyclic properties on codes with two different
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alphabets is done by Abualrub et al. in [ASA14], where the class of Z2Z4-
additive cyclic codes is defined.

Let u = (u | u′) ∈ Zα2 × Zβ4 and i be an integer. We define a cyclic shift
on Zα2 ×Zβ4 as the simultaneous cyclic shift of the set of Z2 and the set of Z4

coordinates, and we denote by

u(i) = (u(i) | u′(i)) = (u0−i, u1−i, . . . , uα−1−i | u′0−i, u′1−i, . . . , u′β−1−i)

the cyclic ith shift of u, where the subscripts are read modulo α and β,
respectively. We say that a Z2Z4-additive code C is cyclic if C is invariant
under the cyclic shift; that is, if for all codeword u ∈ C then u(1) ∈ C.

As in the normal course of events, there exists a bijection between Zα2×Zβ4
and Z2[x]

〈xα−1〉 ×
Z4[x]
〈xβ−1〉 given by:

(u0, u1, . . . , uα−1 | u′0, . . . ,u′β−1) 7→
(u0 + u1x+ · · ·+ uα−1x

α−1 | u′0 + · · ·+ u′β−1x
β−1).

Therefore, as it is common in the studies of cyclic codes, any codeword is
identified as a vector or as a polynomial where u = (u | u′) is represented
as u(x) = (u(x) | u′(x)). Using the polynomial representation, an equivalent
definition of Z2Z4-additive cyclic codes is the following

Definition 3.4 ([ASA14]). A subset C ⊆ Z2[x]
〈xα−1〉 ×

Z4[x]
〈xβ−1〉 is called a Z2Z4-

additive cyclic code if C is a Z4[x]-submodule of Z2[x]
〈xα−1〉 ×

Z4[x]
〈xβ−1〉 .

From [ASA14], if β is odd, we know that if C is a Z2Z4-additive cyclic
code then it is of the form

〈(b(x) | 0), (`(x) | f(x)h(x) + 2f(x))〉,

where f(x)h(x)g(x) = xβ − 1 in Z4[x], b(x) divides xα − 1 in Z2[x], and we
can assume that deg(`(x)) < deg(b(x)).

Denote by ∗ the external multiplication of elements in Z2[x]
〈xα−1〉 ×

Z4[x]
〈xβ−1〉 by

polynomials of Z4[x] given by p(x)∗u(x) = p(x)∗(u(x) | u′(x)) = (p̃(x)u(x) |
p(x)u′(x)). The next theorem gives the spanning sets of C in terms of the
generator polynomials of the code.

Theorem 3.5 ([ASA14, Theorem 13]). Let C = 〈(b(x) | 0), (`(x) | f(x)h(x)+

2f(x))〉 be a Z2Z4-additive cyclic code of type (α, β; γ, δ;κ), where β is odd
and f(x)h(x)g(x) = xβ − 1. Let

S1 =

α−deg(b(x))−1⋃

i=0

{xi ∗ (b(x) | 0)},
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S2 =

deg(g(x))−1⋃

i=0

{xi ∗ (`(x) | f(x)h(x) + 2f(x))}

and

S3 =

deg(h(x))−1⋃

i=0

{xi ∗ (`(x)g̃(x) | 2f(x)g(x))}.

Then, S1 ∪ S2 ∪ S3 forms a minimal spanning set for C as a Z4-module.

Note that S2 generates all order 4 codewords and the subcode of code-
words of order 2, Cb, is generated by {S1, 2S2, S3}. Hence, in this case we
have that |C| = 2α−deg(b(x))4deg(g(x))2deg(h(x)).

In [ASA14], Albuarub et al. establish an encoding method for Z2Z4-
additive cyclic codes and prove that the dual code of a Z2Z4-additive cyclic
code is again cyclic. Finally, the authors present an infinite family of MDSS
Z2Z4-additive cyclic codes. In [BFT16a], we show that the binary image of
this family is the set of all even weight vectors and the binary image of its
dual is the repetition code. In fact, these are the only MDSS Z2Z4-additive
codes with more than one codeword and minimum distance d(C) > 1, as can
be seen in [BBDF11].
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Contributions

The aforementioned contributions are the publications listed below. They
do not appear here in chronological order of publication, but in the order in
which they were developed. In the next sections we summarize them with
the aim of justifying the thematic unity of this compendium.

[BFT16a] J. Borges, C. Fernández-Córdoba, R. Ten-Valls, Z2Z4-Additive
Cyclic Codes, Generator Polynomials, and Dual Codes, IEEE
Transactions On Information Theory 62 (2016), no. 11, 6348–
6354.

[BFT17] J. Borges, C. Fernández-Córdoba, R. Ten-Valls, Z2-Double Cyclic
Codes, Designs, Codes and Cryptography (2017), 1–17.

[BFT] J. Borges, C. Fernández-Córdoba, R. Ten-Valls, On ZprZps-Additive
Cyclic Codes, to appear in Advances in Mathematics of Commu-
nications.

[AST] I. Aydogdu, I. Siap, R. Ten-Valls, On the Structure of Z2Z2[u3]-
Linear and Cyclic Codes, to appear in Finite Fields and Their
Applications.

[DFT16] S. T. Dougherty, C. Fernández-Córdoba, R. Ten-Valls, Quasi-
cyclic codes as cyclic codes over a family of local rings, Finite
Fields and Their Applications 40 (2016), 138–149.
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4.1 Duality of Z2Z4-additive cyclic codes

The family of Z2Z4-additive cyclic codes is defined in [ASA14]. The au-
thors study the algebraic structure of this family of codes and determine a
set of generator polynomials for this family as Z4[x]-submodules of the ring
Z2[x]/〈xα − 1〉 × Z4[x]/〈xβ − 1〉. They also give a minimal spanning set of
these codes as Z4-submodules in terms of the generator polynomials. From
this set it is easy to compute γ and δ of the type of the Z2Z4-additive codes,
but not κ. Therefore, a first important result in this contribution was the
complete description of the type (α, β; γ, δ;κ) in terms of the degrees of the
generator polynomials.

Theorem 4.1 ([BFT16a, Theorem 5]). Let β be an odd positive integer. Let
C = 〈(b(x) | 0), (`(x) | f(x)h(x) + 2f(x))〉 be a Z2Z4-additive cyclic code of
type (α, β; γ, δ;κ), where f(x)h(x)g(x) = xβ − 1. Then,

γ = α− deg(b(x)) + deg(h(x)),

δ = deg(g(x)),

κ = α− deg(gcd(`(x)g̃(x), b(x))).

In [ASA14], it is also proven that the dual code of a Z2Z4-additive cyclic
code is also a Z2Z4-additive cyclic code. But in their work it was not showed
how the generators of the dual code and the generators of the code are linked.
The primary center of attention in [BFT16a] was to find such relation. In
order to do that, first we should give an equivalent polynomial operation to
the inner product of a codeword and all the shifts of an element of Zα2 × Zβ4 .

First note that for a given codeword u, we have to do lcm(α, β) number
of shifts to arrive to the initial starting point, therefore there are lcm(α, β)

different inner products between u and all the shifts of v.
Denote the polynomial

∑m−1
i=0 xi by θm(x) and by m the least common

multiple of α and β. Then θm
α

(xα) = 1 + xα + x2α + · · · + xm−2α + xm−α

and note that if p(x) is a polynomial of degree α − 1, then θm
α

(xα)p(x) =

p(x) + xαp(x) + · · · + xm−αp(x) is a polynomial whose coefficients are m
α

simultaneous copies of the coefficients of p(x).
From the previous remarks and the definition of the inner product defined

over Zα2 × Zβ4 on Equation (3.2), we define the following operation on two
elements u(x) and v(x) of Z2[x]

〈xα−1〉 ×
Z4[x]
〈xβ−1〉 , where the resulting polynomial

has as coefficients the inner product of u and all the possible shifts of v.
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Definition 4.2 ([BFT16a, Definition 8]). Let u(x) = (u(x) | u′(x)) and
v(x) = (v(x) | v′(x)) be elements in Z2[x]

〈xα−1〉 ×
Z4[x]
〈xβ−1〉 . We define the map

◦ :

(
Z2[x]

〈xα − 1〉 ×
Z4[x]

〈xβ − 1〉

)
×
(

Z2[x]

〈xα − 1〉 ×
Z4[x]

〈xβ − 1〉

)
−→ Z4[x]

〈xm − 1〉 ,

such that

u(x) ◦ v(x) =2u(x)θm
α

(xα)xm−1−deg(v(x))v∗(x)

+ u′(x)θm
β

(xβ)xm−1−deg(v′(x))v′
∗
(x) mod (xm − 1),

where the computations are made taking the binary zeros and ones in u(x)

and v(x) as zeros and ones over Z4, respectively.

Proposition 4.3 ([BFT16a, Proposition 9]). Let u and v be vectors in Zα2 ×
Zβ4 with associated polynomials u(x) = (u(x) | u′(x)) and v(x) = (v(x) |
v′(x)). Then, u and all its shifts are orthogonal to v if and only if

u(x) ◦ v(x) = 0.

Since the dual C⊥ of a Z2Z4-additive cyclic code C is also cyclic, we will
denote

C⊥ = 〈(b̄(x) | 0), (¯̀(x) | f̄(x)h̄(x) + 2f̄(x))〉,
where f̄(x)h̄(x)ḡ(x) = xβ − 1 in Z4[x], b̄(x), ¯̀(x) ∈ Z2[x]/(xα − 1) with
b̄(x)|(xα − 1), deg(¯̀(x)) < deg(b̄(x)) and b̄ divides xβ−1

f̄(x)
¯̀(x) (mod 2). The

following theorem gives the generators of the dual code in terms of the gen-
erators of the code.

Theorem 4.4 ([BFT16a, Theorem 18]). Let β be an odd positive integer.
Let C = 〈(b(x) | 0), (`(x) | f(x)h(x) + 2f(x))〉 be a Z2Z4-additive cyclic
code of type (α, β; γ, δ;κ) , where f(x)g(x)h(x) = xβ − 1, and with dual code
C⊥ = 〈(b̄(x) | 0), (¯̀(x) | f̄(x)h̄(x) + 2f̄(x))〉, where f̄(x)ḡ(x)h̄(x) = xβ − 1.

Let ρ(x) = `(x)
gcd(b(x),`(x))

. Then,

1. b̄(x) = xα−1
(gcd(b(x),`(x)))∗ ∈ Z2[x],

2. f̄(x)h̄(x) is the Hensel lift of the polynomial (xβ−1) gcd(b(x),`(x)g̃(x))∗

f∗(x)b∗(x)
∈ Z2[x].

3. f̄(x) is the Hensel lift of the polynomial (xβ−1) gcd(b(x),`(x))∗

f∗(x)h∗(x) gcd(b(x),`(x)g̃(x))∗ ∈ Z2[x].
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4.

¯̀(x) =
xα − 1

b∗(x)

(
gcd(b(x), `(x)g̃(x))∗

gcd(b(x), `(x))∗
xm−deg(f(x))µ1(x)

+
b∗(x)

gcd(b(x), `(x)g̃(x))∗
xm−deg(f(x)h(x))µ2(x)

)
∈ Z2[x],

where




µ1(x) = xdeg(`(x))(ρ∗(x))−1 mod
(

b∗(x)
gcd(b(x),`(x)g̃(x))∗

)
,

µ2(x) = xdeg(`(x))(ρ∗(x))−1 mod
(

b∗(x)
gcd(b(x),`(x))∗

)
.

Example 4.5. Note that the code of Example 3.3 is in fact a Z2Z4-additive
cyclic code generated C = 〈(x− 1 | (x2 +x+ 1) + 2)〉 of type (3, 3; 2, 1; 2). We
have that b(x) = x3 − 1, `(x) = (x− 1), f(x) = 1 and h(x) = x2 + x+ 1.

Then, applying the formulas of Theorem 4.4 we have b̄(x) = x2 + x +

1, ¯̀(x) = x, f̄(x) = x−1, and h̄(x) = 1. Therefore, C⊥ = 〈(x2 +x+1 | 0), (x |
(x− 1) + 2(x− 1))〉.

Finally, we describe an infinite family of self-dual Z2Z4-additive cyclic
codes, according to the type that was given in [BDF12, Theorem 4].

Proposition 4.6 ([BFT16a, Proposition 19]). Let α be even and β odd. Let
C = 〈(b(x) | 0), (`(x) | f(x)h(x) + 2f(x))〉 be a Z2Z4-additive cyclic code with
b(x) = x

α
2 − 1, `(x) = 0, h(x) = xβ − 1 and f(x) = 1. Then C is a self-dual

code of type (α, β; β + α
2
, 0; α

2
).

4.2 Z2-double cyclic codes

A new topic of research, after the study of contributions in [BFT16a], was
to study the binary images of Z2Z4-additive cyclic codes which are linear.
Motivated by the research done by J. Wolfmann in [Wol01], it looked like
the linear images of a Z2Z4-additive cyclic code had to maintain some kind
of cyclic structure after an appropriate permutation of its coordinates. For
this reason, we introduced the term double cyclic code and we studied the
algebraic structures of Z2-double cyclic codes.

More recently, some other researchers have studied double cyclic codes
over other particular finite chain rings. For example, in [GSWF16], Gao
et al. showed double cyclic codes over Z4 and obtained some optimal or
suboptimal non-linear binary codes, or in [YSS15], where Yao et al. presented
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the structure of double cyclic codes over Fq[u]/〈u3〉. We have to say that, in
fact, double cyclic codes over a finite field are generalised quasi-cyclic codes
(GQC) with two different orbits introduced by Siap and Kulhan in [SK05].

At this point, it would be worthwhile to define the double cyclic property
on binary codes described in [BFT17]. So, a binary linear code C is a Z2-
double cyclic code if the set of coordinates can be partitioned into two subsets
such that any cyclic shift of the coordinates of both subsets leaves invariant
the code; i.e, the binary code C of length r + s is called Z2-double cyclic if

(u0, u1, . . . , ur−2, ur−1 | u′0, u′1, . . . , u′s−2, u
′
s−1) ∈ C

implies
(ur−1, u0, u1, . . . , ur−2 | u′s−1, u

′
0, u
′
1, . . . , u

′
s−2) ∈ C.

These codes can be trivially identified as submodules of the Z2[x]-module
Z2[x]
〈xr−1〉×

Z2[x]
〈xs−1〉 , where the vector u = (u | u′) is identified with the polynomial

tuple u(x) = (u(x) | u′(x)). The following theorem describes the generators
of such submodules.

Theorem 4.7 ([BFT17, Theorem 1 and Proposition 1]). Let C be a Z2-
double cyclic code of length r + s. Then C is generated by

〈(b(x) | 0), (`(x) | a(x))〉 ⊆ Z2[x]

〈xr − 1〉 ×
Z2[x]

〈xs − 1〉 ,

where a(x)|(xs − 1), b(x)|(xr − 1) and we can assume that deg(`(x)) <

deg(b(x)).

Once we obtained the generators of a Z2-double cyclic code C in terms of
polynomials, we were able to describe a minimal generating set for the vector
representation of C, see [BFT17, Proposition 3], and then we concluded that
de dimension of the code C is r + s− deg(b(x))− deg(a(x)).

Let C be a Z2-double cyclic code and C⊥ be its dual code. We proved that
C⊥ is also a Z2-double cyclic code, where C⊥ = 〈(b̄(x) | 0), (¯̀(x) | ā(x))〉,
for b̄(x), ¯̀(x) ∈ Z2[x]/〈xr − 1〉 with b̄(x) | (xr − 1) and ā(x) ∈ Z2[x]/〈xs − 1〉
with ā(x) | (xs − 1).

Let m be the least common multiple of r and s. In [BFT17], we defined
the following map, analogous to the map in Definition 4.2,

◦ :

(
Z2[x]

〈xr − 1〉 ×
Z2[x]

〈xs − 1〉

)
×
(

Z2[x]

〈xr − 1〉 ×
Z2[x]

〈xs − 1〉

)
−→ Z2[x]/〈xm − 1〉,
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such that for any u(x),v(x) ∈ Z2[x]
〈xr−1〉 ×

Z2[x]
〈xs−1〉 , we have that u(x) ◦ v(x) is

u(x)θm
r
(xr)xm−1−deg(v(x))v∗(x) + u′(x)θm

s
(xs)xm−1−deg(v′(x))v′∗(x) ∈ Z2[x]

〈xm−1〉 .
As soon as we defined the bilinear map ◦, and we had studied some

structural properties of punctured codes obtained from a Z2-double cyclic
code and their duals, we got the necessary tools to describe the generators
of the dual code in terms of the generators of the code. We summarize the
results in the next theorem.

Theorem 4.8 ([BFT17, Theorem 2]). Let C = 〈(b(x) | 0), (`(x) | a(x))〉 be
a Z2-double cyclic code with dual code C⊥ = 〈(b̄(x) | 0), (¯̀(x) | ā(x))〉. Then,

1. b̄(x) = xr−1
g∗b,l(x)

,

2. ā(x) =
(xs−1)g∗b,l(x)

a∗(x)b∗(x)
,

3. ¯̀(x) = xr−1
b∗(x)

λ(x), where

λ(x) =

{
0, if `(x) = 0,

xm−deg(a(x))+deg(`(x))
(
`∗(x)
g∗b,l(x)

)−1

mod
(
b∗(x)
g∗b,l(x)

)
, otherwise.

After the description of the algebraic structure of Z2-double cyclic codes
and their duals, we studied how Z2-double cyclic codes were related to other
families of cyclic codes, say cyclic codes over Z4 and Z2Z4-additive cyclic
codes. Recall the definition of the polynomial (g̃ ⊗ g̃)(x) in Definition 3.1.

Theorem 4.9 ([BFT17, Proposition 12 and Theorem 5]). Let n be odd.
Let C = 〈f(x)h(x) + 2f(x)〉 be a cyclic code over Z4 of length n, where
f(x)h(x)g(x) = xn − 1 and gcd(f̃(x), (g̃ ⊗ g̃)(x)) = 1. Then, φ(C) is a
Z2-double cyclic code in Zn2 × Zn2 . Moreover,

φ(C) = 〈(f̃(x)h̃(x) | 0), (f̃(x) | f̃(x))〉.

Therefore, we reached our goal to establish a relation between the gener-
ator polynomial of the cyclic code C over Z4 and its Z2-double cyclic image,
φ(C). And we relate Z2Z4-additive cyclic codes and Z2-double cyclic codes,
by the following encouraging result.

Theorem 4.10 ([BFT17, Theorem 6]). Let C be a Z2Z4-additive cyclic code.
If Φ(C) is a linear binary code then Ψ(C) is a Z2-double cyclic code.

Hence, if a Z2Z4-additive cyclic code has a linear image under the ex-
tended Gray map, then applying the appropriate permutation to the coor-
dinates of its image we obtain an equivalent code with the double cyclic
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property. To conclude the paper [BFT17], we gave some examples of Z2-
double cyclic codes which have the best known minimum distance, and some
examples of Z2-double cyclic codes obtained from cyclic codes over Z4 and
Z2Z4-additive cyclic codes.

4.3 On codes in a direct product of finite rings

Recently, some special type of mixed alphabet codes, that generalize single
alphabet codes, has attracted much attention.

Aydogdu and Siap generalize Z2Z4-additive codes to Z2Z2s-additive codes
and to ZprZps-additive codes, see [AS13] and [AS15], respectively. With the
study of mixed alphabet codes there have appeared new directions to be
explored. For example, Aydogdu et al. introduce Z2Z2[u]-additive codes in
[AAS15], and recently the subfamilies of cyclic and constacyclic codes are
discussed in [AAS16].

4.3.1 ZprZps-additive cyclic codes

In the contribution [BFT], we introduced ZprZps-additive cyclic codes. These
codes can be seen as Zps [x]-submodules of Zpr [x]

〈xα−1〉×
Zps [x]

〈xβ−1〉 . We determined the

generator polynomials of a code in the space Zpr [x]

〈xα−1〉 ×
Zps [x]

〈xβ−1〉 and a minimal
spanning set in Zαpr × Zβps in terms of the generator polynomials. We used the
techniques previously described to define a polynomial operation equivalent
to the inner product of vectors, as in [BFT16a].

It became natural the study of ZprZps-additive cyclic codes. On the one
hand, as the study of ZprZps-additive codes, presented in [AS15], with the
cyclic property. And, on the other hand, as a generalization of the different
types of cyclic codes studied in [ASA14], [BFT17], [BFT16a], [GSWF16],
[CS95], and [KL97].

We want to remark that the definition of a ZprZps-additive cyclic code
is well defined as long as Zpr and Zps are different rings, since the elements
on the first α coordinates and the ones in the last β coordinates belong to
different rings, Zpr and Zps , respectively. In the particular case that r = s,
the cyclic code in Zαpr × Zβpr is a double cyclic code. In this case, it is also
clear that the term double cyclic is given in order to distinguish the cyclic
code in Zαpr × Zβpr from the cyclic code in Zα+β

pr .
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4.3.2 Z2Z2[u
3]-additive codes

In [AST], we generalized Z2Z2[u]-additive codes to Z2Z2[u3]-additive codes.
These codes are submodules of Zα2 ×(Z2[u]/〈u3〉)β. We also introduced cyclic
codes and their duals over this class of codes. To study and determine the
structure of Z2Z2[u3]-additive codes, we used similar approaches to the tech-
niques employed in [BFP+10], [AS13] and [AAS15], and for Z2Z2[u3]-additive
cyclic codes the ones described in [ASA14] and [BFT16a]

In [GO04], the authors describe the notion of a homogeneous weight for
codes over Frobenius rings. Applying the conditions to the ring Z2[u]/〈u3〉,
the ideal structure of the ring dictates an homogeneous weight of the form

ωhom(x) =





0, if x = 0,
2η, if x = u2,
η, otherwise ,

where η is a non-negative real number. In order to define a distance pre-
serving Gray map from codes over Z2[u]/〈u3〉 to binary codes, first, we took
η = 2 and hence the homogeneous weight in our case is

ωhom(x) =





0, if x = 0,
4, if x = u2,
2, otherwise.

Then we used the first order Reed-Muller code of degree 2, and we had the
Gray isometry of this ring into Z4

2 defined in [AST] as φ : Z2[u]/〈u3〉 → Z4
2

given by

φ(0) = (0, 0, 0, 0), φ(1) = (0, 1, 0, 1), φ(u) = (0, 0, 1, 1), φ(u2) = (1, 1, 1, 1),

and then extend it linearly to all elements in Z2[u]/〈u3〉. Note that, by
construction, φ is a linear map.

Finally, in [AST] we listed some optimal binary linear codes with respect
to the minimum distance, according to [Gra07], which are actually images of
Z2Z2[u3]-additive cyclic codes under the Gray map φ.

4.4 Quasi-cyclic codes as cyclic codes over a
family of local rings

During the study of Z2Z2[u3]-additive cyclic codes, we realized that cyclic
codes over Z2[u]/〈u3〉 maps to binary quasi-cyclic codes.
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In [YK11], the authors study cyclic codes over the commutative ring
Z2[u, v]/〈u2, v2〉 which give rise to quasi-cyclic codes of index 4. In [DYK11],
[DKY12] and [DYK13], a family of rings, Z2[u1, u2, . . . , uk]/〈u2

i 〉, is intro-
duced. Cyclic codes are studied over this family of rings and these codes are
used to produce quasi-cyclic binary codes whose index is a power of 2.

Another way to interpret the elements of Z2[u]/〈u3〉 as binary vectors is
as elements of a vector space over Z2. So we can view the group structure of
Z2[u]/〈u3〉 as the vector space Z3

2 with basis {1, u, u2}. Then the Gray map
of each element of the basis can be given and then extended it linearly to all
of Z2[u]/〈u3〉. Under this map, cyclic codes become binary quasi-cyclic codes
of index at most 3.

In contribution [DFT16], we constructed a family of commutative rings
which generalize all the previous rings, and we described a canonical Gray
map such that cyclic codes over this family of rings produce quasi-cyclic
codes of arbitrary index in the Hamming space.

Let p1, p2, . . . , pt be prime numbers with t ≥ 1 and pi 6= pj if i 6= j, and
let ∆ = pk11 p

k2
2 · · · pktt . Let {upi,j}(1≤j≤ki) be a set of indeterminants. Define

the following ring

R∆ = R
p
k1
1 p

k2
2 ···p

kt
t

= F2[up1,1, . . . , up1,k1 , up2,1 . . . , up2,k2 , . . . , upt,kt ]/〈upipi,j = 0〉,

where the indeterminants {upi,j}(1≤i≤t,1≤j≤ki) commute. Note that for each
∆ there is a ring in this family.

Any indeterminant upi,j may have an exponent αpi,j in the set Ji =

{0, 1, . . . , pi − 1}. For a monomial uα1,1
p1,1
· · ·uα1,k1

p1,k1
· · ·uαt,1pt,1 · · ·u

αt,kt
pt,kt

in R∆ we
write uα, where α ∈ J = Jk11 × · · · × Jktt .

Any element c in R∆ can be written as

c =
∑

α∈J
cαu

α =
∑

α∈J
cαu

α1,1
p1,1
· · ·uα1,k1

p1,k1
· · ·uαt,1pt,1 · · ·u

αt,kt
pt,kt

, (4.1)

with cα ∈ F2.

Example 4.11. Let ∆ = 135 = 335 and let c = 1 + u2
3,2u3,3 + u3,2u

3
5,1 + u4

5,1.
Then,

c(0,0,0,0) = c(0,2,1,0) = c(0,1,0,3) = c(0,0,0,4) = 1.

We have proven that R∆ is in fact a Frobenius ring, and we give the
MacWilliams relations explicitly, as showed in [Woo99]. We also studied
some ideals in order to understand the ideal structure of R∆.

Let A∆ be the set of all monomials of R∆ and Â∆ be the subset of A∆ of
all monomials with one indeterminant.
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Example 4.12. Let ∆ = 6 = 2 · 3. Then,

A∆ = {1, u2,1, u2,1u3,1, u2,1u
2
3,1, u3,1, u

2
3,1}

and Â∆ = {u2,1, u3,1, u
2
3,1}.

We can view each element a ∈ A∆, a = uα for some α ∈ J , as the subset
{uαi,jpi,j

|αi,j 6= 0}(1≤i≤t,1≤j≤ki) ⊆ Â∆. We denote by â the corresponding subset
of Â∆. Note that 1 ∈ A∆ and 1̂ = ∅, the empty set.

Example 4.13. Let ∆ = 4050 = 2 ·34 ·52. Then, a = u2,1u
2
3,4u

3
5,2 is identified

with the set â = {u2,1, u
2
3,4, u

3
5,2}.

We consider the elements in R∆ as binary vectors of ∆ coordinates. Con-
sider the set A∆, order the elements of A∆ lexicographically, and use this
ordering to label the coordinate positions of F∆

2 .

Example 4.14. Let ∆ = 6 = 2 · 3. Then,

A∆ = {1, u2,1, u3,1, u
2
3,1, u2,1u3,1, u2,1u

2
3,1},

and we consider the following ordering of the monomials

[1, u2,1, u2,1u3,1, u2,1u
2
3,1, u3,1, u

2
3,1].

Let v = (100100) ∈ F6
2. Then, v1 = vu2,1u23,1 = 1 and vu2,1 = vu2,1u3,1 = vu3,1 =

vu23,1 = 0.

Define the Gray map Ψ : R∆ → F∆
2 as follows:

Ψ(a)b =

{
1 if b̂ ⊆ {â ∪ 1},
0 otherwise,

where a, b ∈ A∆ and Ψ(a)b indicates the coordinate of Ψ(a) corresponding
to the position of the element b with the defined ordering.

Example 4.15. Let ∆ = 6 = 2 · 3. Then, we have the following ordering
of the monomials [1, u2,1, u2,1u3,1, u2,1u

2
3,1, u3,1, u

2
3,1]. Let a = u2,1u

2
3,1 then

{â ∪ 1} = {1, u2,1, u
2
3,1}. Then,

Ψ(u2,1u
2
3,1)1 = 1, Ψ(u2,1u

2
3,1)u2,1 = 1, Ψ(u2,1u

2
3,1)u2,1u3,1 = 0,

Ψ(u2,1u
2
3,1)u2,1u23,1 = 1, Ψ(u2,1u

2
3,1)u3,1 = 0, Ψ(u2,1u

2
3,1)u23,1 = 1.

So, Ψ(u2,1u
2
3,1) = (1, 1, 0, 1, 0, 1). More examples,

Ψ(0) = (0, 0, 0, 0, 0, 0), Ψ(1) = (1, 0, 0, 0, 0, 0),

Ψ(u2,1) = (1, 1, 0, 0, 0, 0), Ψ(u2,1u3,1) = (1, 1, 1, 0, 1, 0),

Ψ(u3,1) = (1, 0, 0, 0, 1, 0), Ψ(u2
3,1) = (1, 0, 0, 0, 0, 1).
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The following theorem gives a construction of linear binary quasi-cyclic
codes of arbitrary index from cyclic codes and quasi-cyclic codes over R∆.

Theorem 4.16 ([DFT16, Theorem 7.2]). Let C be a linear cyclic code over
R∆ of length n. Then Ψ(C) is a linear binary quasi-cyclic code of length ∆n

and index at most ∆.

This theorem allows for a straightforward computational technique to
find binary quasi-cyclic codes of index at most ∆ from cyclic codes over R∆.
As usual, the study of cyclic codes over R∆ of length n is equivalent to the
description of the ideals of R∆[x]/〈xn − 1〉. The next theorem follows from
the canonical decomposition of rings, noting that for odd n the factorization
is unique.

Theorem 4.17 ([DFT16, Theorem 5.3]). Let n be an odd integer and let
xn − 1 = f1f2 . . . fr be a factorization on basic irreducible polynomials over
R∆. Then, the ideals in R∆[x]/〈xn−1〉 can be written as I ∼= I1⊕I2⊕· · ·⊕Ir
where Ii is an ideal of the ring R∆[x]/〈fi〉, for i = 1, . . . , r.

Later, we have shown that if f is a basic monic irreducible polynomial over
R∆ then there is a one-to-one correspondence between ideals of R∆[x]/〈f〉
and ideals of R∆. Therefore, if I∆ is the number of ideals on R∆ and r is the
number of distinct basic irreducible polynomials appearing in the factoriza-
tion of xn − 1, then the number of linear cyclic codes of length n over R∆ is
(I∆)r.

Finally, we examined codes that have a single generator using similar
techniques that the ones in [DKY12], and we gave some examples of one
generator cyclic codes over R∆ whose binary image via Ψ gives optimal codes
with respect to the minimum distance.





Chapter 5

Conclusions

5.1 Summary

The theme of the dissertation is the cyclic properties on codes developed on
finite fields, on finite rings, and on mixed finite alphabets.

Codes defined over finite fields and finite rings are studied in Chapter 2.
In Chapter 3, the Gray map is presented and Z2Z4-additive codes are in-
troduced. These chapters provide a background and framework over which
Chapter 4 is developed.

Since this thesis was developed as a compendium of publications, Chap-
ter 4 contains most of results obtained in the work done while completing
my PhD degree and describes the research evolution linking the publications
of this compendium.

The first goal of my research was to establish a well concept of duality
for the polynomial representation of cyclic codes over Zα2 × Zβ4 and gave
formulas to describe the generator polynomials of the dual of a Z2Z4-additive
cyclic code in terms of the generators of the code. This goal was reached in
[BFT16a] as it is shown in Proposition 4.3 and Theorem 4.4 using the inner
product defined in Definition 4.2.

With the techniques and tools used in [ASA14] and [BFT16a], we intro-
duced and described the generator polynomials of Z2Z2[u3]-additive cyclic
codes and their duals in [AST]. In [BFT], we also used these approaches
to define the cyclic property of ZprZps-additive codes, first introduced in
[AS15], and to study their algebraic structure and the inner product of the
polynomial representation of these cyclic codes.

In the study of Gray maps, we have introduced two new families of codes.

39
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The first one as the images of Z2Z4-additive cyclic codes. This family is a sub-
family of binary linear codes called Z2-double cyclic codes. We have studied
their algebraic structure and completely described their duals in [BFT17].

The second one is a family of cyclic codes over local rings such that they
are preimages of binary quasi-cyclic codes. These rings generalize the rings
Z2[u]/〈ut〉 and Z2[u1, . . . , ut]/〈u2

i 〉. The images of cyclic codes over these local
rings produce quasi-cyclic codes of any index depending on the structure of
the chosen ring, as it could be seen in [DFT16].

Finally, we want to remark that we developed a package in Magma soft-
ware to work with Z2Z4-additive cyclic codes. We implemented functions
to construct Z2Z4-additive cyclic codes as well as to return the generator
polynomials of a Z2Z4-additive code in the case that it is cyclic. This last
algorithm is described in [BFT16b].

It is important to mention that Magma, [BCP97], provides machinery
to study cyclic codes over finite fields Fq, over the integer residue classes Zm,
and over Galois rings GR(pn, k). The ring Z4 receives a special attention
and there are available specific functions to work with codes over Z4. Nev-
ertheless, Magma provides functions to get the generator polynomials for
cyclic codes only over finite fields, e.g., for binary cyclic codes. Therefore,
our functionalities allow to compute the generators for cyclic codes over Z4

considering Z2Z4-additive cyclic codes with α = 0 and β is odd.
Appendix F contains the manual describing all implemented functions for

Z2Z4-additive cyclic codes. These functionalities will be soon available in the
new version of the Combinatorics, Coding and Security Group (CCSG) pack-
age for Z2Z4-additive codes, [BFP+12], and will be able to be downloaded
from the CCSG web page http://ccsg.uab.cat/.

5.2 Future research

In this section, we indicate some open problems that derive from this disser-
tation which may be considered for future research on this topic.

In [Wol01], the author characterizes all linear cyclic codes over Z4 of odd
length whose Gray map images are linear binary codes as it is shown in
Theorem 3.2. So, an open problem is to give a classification of all Z2Z4-
additive cyclic codes with odd β whose Gray images are linear binary codes.

Talking about binary images of Z2Z4-additive codes it easily comes to
mind the study of the rank and the dimension of the kernel. If C is a Z2Z4-
additive cyclic code, it could be proven that the related codes K(C) and

http://ccsg.uab.cat/
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R(C) are also cyclic with an analogous proof of Theorems 4 and 22 in [DF16].
Therefore, it would be also interesting to complement the study of the families
of Z2Z4-additive cyclic codes by computing the rank and the dimension of
the kernel of the obtained codes, as it was done in [DF16] for cyclic codes
over Z4.

In this dissertation, we have presented some new families of cyclic codes
and we have studied the duality of these codes. In Proposition 4.6, we give
a large family of self-dual Z2Z4-additive cyclic codes. A future work could
focus on the description of the self-duality of these families of codes.

As we have seen, with the techniques described in [ASA14] and [BFT16a],
we have studied Z2Z2[u3]-additive cyclic codes and we generalized Z2Z4-
additive cyclic codes to ZprZps-additive cyclic codes. In addition, we pre-
sented in Computational and Mathematical Methods in Science and Engi-
neering (CMMSE 2016), [BFT16c], a generalization of these results to a
direct product of two finite commutative chain rings Rα

1 ×Rβ
2 where R1 can

be viewed as an R2-module. A first study that considers codes with two
alphabets is contributed by Brouwer et al. in [BHOS98] entitled Bounds on
Mixed Binary/Ternary Codes. Most of the approaches and methods used in
this dissertation are not valid to describe codes over this structure since Z2

is not a Z3-module, and vice versa. Thus, another line of study would be
to investigate which are the largest families of rings that could be used to
describe codes over mixed alphabets using these tools.

Another research area would focus on providing an effective lower bound
for the minimum distance of Z2-double cyclic codes as the generalization of
the BCH bound in the case of cyclic codes.
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description. Namely, cyclic codes can be described as ideals in a corresponding polyno-
mial ring. A canonical algebraic description for quasi-cyclic codes has been more elusive. 
In this paper, we shall give an algebraic description of a large family of quasi-cyclic codes 
by viewing them as the image under a Gray map of cyclic codes over rings from a family 
which we describe. This allows for a construction of binary quasi-cyclic codes of arbitrary 
index.

In [6], cyclic codes were studied over F2 +uF2 + vF2 +uvF2 which gives rise to quasi-
cyclic codes of index 2. In [1,2] and [3], a family of rings, Rk = F2[u1, u2, . . . , uk]/〈u2

i = 0〉, 
was introduced. Cyclic codes were studied over this family of rings. These codes were 
used to produce quasi-cyclic binary codes whose index was a power of 2. In this work, 
we shall describe a new family of rings which contains the family of rings Rk. With this 
new family, we can produce quasi-cyclic codes with arbitrary index as opposed to simply 
indices that are a power of 2.

A code of length n over a ring R is a subset of Rn. If the code is also a submodule then 
we say that the code is linear. Let π act on the elements of Rn by π(c0, c1, . . . , cn−1) =
(cn−1, c0, c1, . . . , cn−2). Then a code C is said to be cyclic if π(C) = C. If πs(C) = C

then the code is said to be quasi-cyclic of index s.

2. A family of rings

In this section, we shall describe a family of rings which contains the family of rings 
described in [1,2] and [3].

Let p1, p2, . . . , pt be prime numbers with t ≥ 1 and pi �= pj if i �= j, and let Δ =
pk1
1 pk2

2 · · · pkt
t . Let {upi,j}(1≤j≤ki) be a set of indeterminants. Define the following ring

RΔ = R
p

k1
1 p

k2
2 ···pkt

t
= F2[up1,1, . . . , up1,k1 , up2,1 . . . , up2,k2 , . . . , upt,kt

]/〈upi

pi,j
= 0〉,

where the indeterminants {upi,j}(1≤i≤t,1≤j≤ki) commute. Note that for each Δ there is 
a ring in this family.

Any indeterminant upi,j may have an exponent in the set Ji = {0, 1, . . . , pi − 1}. For 
αi ∈ Jki

i denote uαi,1
pi,1 · · ·uαi,ki

pi,ki
by uαi

i , and for a monomial uα1
1 · · ·uαt

t in RΔ we write uα, 
where α = (α1, . . . , αt) ∈ Jk1

1 × · · · × Jkt
t . Let J = Jk1

1 × · · · × Jkt
t .

Any element c in RΔ can be written as

c =
∑

α∈J

cαuα =
∑

α∈J

cαuα1,1
p1,1 · · ·uα1,k1

p1,k1
· · ·uαt,1

pt,1 · · ·uαt,kt

pt,kt
, (1)

with cα ∈ F2.

Lemma 2.1. The ring RΔ is a commutative ring with |RΔ| = 2p
k1
1 p

k2
2 ···pkt

t .

Proof. The fact that the ring is commutative follows from the fact that the indetermi-
nants commute.
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There are pk1
1 · · · pkt

t different values for α ∈ J . Moreover, for each fixed α, we have 

that cα ∈ F2 and hence there are 2p
k1
1 p

k2
2 ···pkt

t elements in RΔ. �
We define the ideal m = 〈upi,j〉(1≤i≤t,1≤j≤ki). We can write every element in RΔ as 

RΔ = {a0 + a1m | a0, a1 ∈ F2, m ∈ m}. We will prove that units of RΔ are elements 
a0 + a1m, with m ∈ m and a0 �= 0. First, the following lemma is needed.

Lemma 2.2. Let m ∈ m. There exists ξ > 0 such that mξ �= 0 and mξ+1 = 0.

Proof. It is enough to prove that for m ∈ m there exists ε such that mε = 0; for 
example, it is true if ε = p1p2 · · · pt. Then it follows that there must be a minimal such 
exponent. �

Define the map μ : RΔ → F2, as μ(c) = c0, where c =
∑

α∈J cαuα ∈ RΔ and 0 is the 
all-zero vector.

Lemma 2.3. Let c =
∑

α∈J cαuα ∈ RΔ. Then c is a unit if and only if μ(c) = 1; that is, 
c = 1 + m, for m ∈ m.

Proof. Consider c =
∑

α∈J cαuα ∈ RΔ, and A = {α ∈ J |cα = 1}.
If c0 = 0, then define βi,j = pi − max α∈A(αi,j), for i = 1, . . . , t, j = 1 . . . , ki, and 

c̃ = uβ1
1 · · ·uβt

t . We have that c · c̃ = 0 and therefore c is not a unit.
In the case when c0 = 1, there exists m ∈ m such that c = 1 + m. Consider 

the maximum ξ such that mξ �= 0. We know such a ξ exists by Lemma 2.2. Then, 
(1 + m)(1 + m + · · · + mξ) = 1 + mξ+1 = 1. Therefore c = 1 + m is a unit. �

As a natural consequence of the proof of the previous lemma, we have the following 
proposition.

Proposition 2.4. For m ∈ m,

(1 + m)−1 = 1 + m + · · · + mξ,

where ξ is the maximum value such that mξ �= 0.

Note that μ(m) = 0 for m ∈ m. In fact, m = Ker(μ).

Lemma 2.5. The ring RΔ is a local ring, where the maximal ideal is m. Moreover 
[RΔ : m] = 2 and hence RΔ/m ∼= F2.

Proof. We have that RΔ/Ker(μ) ∼= Im(μ) = F2. Therefore [RΔ : m] = 2 and m is a 
maximal ideal.

If m′ �= m is a maximal ideal, then there exits a unit u ∈ m′ which gives that m′ = RΔ. 
Therefore m is the unique maximal ideal. �
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Now we will prove that RΔ is in fact a Frobenius ring. To do that, first we shall 
determine the Jacobson radical and the socle of RΔ. Recall that for a ring R, the Jacobson 
radical consists of all annihilators of simple left R-submodules. It can be characterized 
as the intersection of all maximal right ideals. Since RΔ is a commutative local ring, we 
have that its Jacobson radical is:

Rad(RΔ) = m = 〈upi,j〉(1≤i≤t,1≤j≤ki).

The socle of a ring R is defined as the sum of all the minimal one sided ideals of the 
ring. For the ring RΔ there is a unique minimal ideal and hence the socle of the ring RΔ
is:

Soc(RΔ) = {0, up1−1
p1,1 · · ·up1−1

p1,k1
· · ·upt−1

pt,1 · · ·upt−1
pt,kt

}.

Note that the socle of RΔ is, in fact, the annihilator of m, AnnRΔ(m).

Theorem 2.6. The local ring RΔ is a Frobenius ring.

Proof. With the definition of Rad(RΔ) and Soc(RΔ), we have that RΔ/Rad(RΔ) =
RΔ/m ∼= F2 ∼= Soc(RΔ) and hence RΔ is a Frobenius ring. �

For a complete description of codes over Frobenius rings, see [7].

2.1. Codes over RΔ and their orthogonals

Recall that a linear code of length n over RΔ is a submodule of Rn
Δ. We define the 

usual inner-product, namely

[w,v] =
∑

wivi where w,v ∈ Rn
Δ.

The orthogonal of a code C is defined in the usual way as

C⊥ = {w ∈ Rn
Δ | [w,v] = 0, ∀v ∈ C}.

By Theorem 2.6, we have that RΔ is a Frobenius ring and hence we have that both 
MacWilliams relations hold, see [7] for a complete description. This implies that we have 
at our disposal the main tools of coding theory to study codes over this family of rings. 
In particular, we have that |C||C⊥| = |RΔ

n| = 2Δn.

2.2. Ideals of RΔ

In this subsection, we shall study some ideals in the ring RΔ. We will see later in 
Theorem 5.5 the importance of understanding the ideal structure of RΔ.
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Let AΔ be the set of all monomials of RΔ and let ÂΔ be the subset of AΔ of all 
monomials with one indeterminant. Clearly |AΔ| = pk1

1 pk2
2 · · · pkt

t = Δ and |ÂΔ| =
pk1
1 + pk2

2 + · · · + pkt
t . View each element a ∈ AΔ, a = uα for some α ∈ J , as the subset 

{uαi,j

pi,j
|αi,j �= 0}(1≤i≤t,1≤j≤ki) ⊆ ÂΔ. We will denote by ̂a the corresponding subset of ÂΔ. 

For example, the element a = u2,1u
2
3,4u

3
5,2 is identified with the set â = {u2,1, u2

3,4, u
3
5,2}. 

Note that 1 ∈ AΔ and 1̂ = ∅, the empty set.
Consider the vector of exponents α = (α1,1, . . . , α1,k1 , . . . , αt,1, . . . , αt,kt

) ∈ J and 
denote by ᾱ the vector (p1 − α1,1, . . . , p1 − α1,k1 , . . . , pt − αt,kt

), note that ¯̄α = α.
Let Iα be the ideal Iα = 〈uα〉, for α ∈ J . Note that I0 = 〈1〉 = RΔ. We also define 

I(p1,···,p1,p2···,pt,···,pt) = {0}. Now we define the ideal

Îα = 〈ûα〉 = 〈uαi,j

pi,j
|αi,j �= 0〉(1≤i≤t,1≤j≤ki).

Example 1. Consider Δ = 325 and α = (2, 1, 2). Then with the previous defini-
tions, Iα = 〈u2

3,1u3,2u
2
5,1〉, Îα = 〈u2

3,1, u3,2, u2
5,1〉, and Iᾱ = 〈u3,1u

2
3,2u

3
5,1〉. Note that 

〈u2
3,1, u3,2, u2

5,1〉⊥ = 〈u3,1u
2
3,2u

3
5,1〉. The following proposition will prove this fact in gen-

eral.

Proposition 2.7. Let α ∈ J be a vector of exponents. Then Î⊥
α = Iᾱ.

Proof. It is clear that Iᾱ ⊂ Î⊥
α . Then we are going to see that Î⊥

α ⊂ Iᾱ. Suppose that 
it is not true, then there exists an element b =

∑
β∈J cβuβ ∈ Î⊥

α that does not belong 
to Iᾱ. Then there exists a particular β such that cβ �= 0 and βi,j < ᾱi,j for some i and j. 
Then, uαi,j

pi,j
· b �= 0 for uαi,j

pi,j
∈ Îα. Therefore, b /∈ Î⊥

α and Î⊥
α ⊂ Iᾱ. �

Here, we have Î⊥
0 = R⊥

Δ = {0} = I(p1,···,p1,p2···,pt,···,pt) = I0̄.

Proposition 2.8. The number of elements of Iα is 2
∏

i∈ᾱ i and the number of elements 
of Îα is 2Δ−∏i∈α i.

Proof. Consider the set of all monomials of Iα. There are p1 − α1,1 different monomials 
fixing all the indeterminates except the first one, up1,1. There are p1 − α1,2 different 
monomials fixing all the indeterminates except the second one, up1,2. By induction and 
by the laws of counting, there are 

∏
1≤i≤t,1≤j≤ki

(pi − αi,j) different monomials in Iα. 
Since ᾱ is the vector (p1 − α1,1, · · · , p1 − α1,k1 , · · · , pt − αt,kt

) and all elements in Iα are 
a linear combination of its monomials, we have that |Iα| = 2

∏
i∈ᾱ i. By Proposition 2.7, 

clearly we have that |Îα| = 2Δ−∏i∈α i. �
Example 2. We continue Example 1 by counting the size of the ideals given there. We 
note that Δ = 45. Here α = (2, 1, 2) and so α = (1, 2, 3). Then |Iα| = 26 = 64 and 
|Îα| = 245−4 = 241 = 2,199,023,255,552.
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3. Gray map to the Hamming space

We will consider the elements in RΔ as a binary vector of Δ coordinates and consider 
the set AΔ. Order the elements of AΔ lexicographically and use this ordering to label the 
coordinate positions of FΔ

2 . For a ∈ AΔ, define the Gray map Ψ : RΔ → FΔ
2 as follows:

For all b ∈ AΔ

Ψ(a)b =
{

1 if b̂ ⊆ {â ∪ 1},
0 otherwise,

where Ψ(a)b indicates the coordinate of Ψ(a) corresponding to the position of the element 
b ∈ AΔ with the defined ordering. We have that Ψ(a)b is 1 if each indeterminant upi,j

in the monomial b with non-zero exponent is also in the monomial a with the same 
exponent; that is, b̄ is a subset of ā. In order to consider all the subsets of ā, we also add 
the empty subset that is given when b = 1; that is we compare b̄ to â ∪ 1. Then extend 
Ψ linearly for all elements of RΔ.

Example 3. Let Δ = 6 = 2 · 3, then we have the following ordering of the monomials 
[1, u2,1, u2,1u3,1, u2,1u

2
3,1, u3,1, u2

3,1]. As examples,

Ψ(1) = (1, 0, 0, 0, 0, 0), Ψ(u2
3,1) = (1, 0, 0, 0, 0, 1),

Ψ(u2,1u3,1) = (1, 1, 1, 0, 1, 0), Ψ(u2,1u
2
3,1) = (1, 1, 0, 1, 0, 1).

Proposition 3.1. Let a ∈ AΔ such that a �= 1. Then wtH(Ψ(a)) is even.

Proof. Since â is a non-empty set then â has 2|â| subsets. Thus, Ψ(a) has an even number 
of non-zero coordinates. �

Notice that for a, b ∈ AΔ such that a, b �= 1, we have

wtH(Ψ(a + b)) = wtH(Ψ(a)) + wtH(Ψ(b)) − 2wtH(Ψ(a) � Ψ(b))),

which is even, where � is the componentwise product. Therefore we have the following 
result.

Theorem 3.2. Let m be an element of RΔ. Then, m ∈ m if and only if wtH(Ψ(m)) is 
even.

Proof. We showed that if m ∈ m then wtH(Ψ(m)) is even. Since |m| = |RΔ|
2 and there 

are precisely |m| = |RΔ|
2 binary vectors in FΔ

2 of even weight, then the odd weight vectors 
correspond to the units in RΔ. �
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Each code C corresponds to a binary linear code, namely the code Ψ(C) of length Δn. 
It is natural now to ask if orthogonality is preserved over the map Ψ. In the following 
case, as proven in [1], it is preserved as in the following proposition. Recall that the ring 
Rk was a special case of RΔ when Δ was a power of 2.

Proposition 3.3. Let Δ = 2k and let C be a linear code over RΔ of length n. Then,

Ψ(C⊥) = (Ψ(C))⊥.

In general, orthogonality will not be preserved. In the next example we will see that if 
C is a code over RΔ then, in general, Ψ(C)⊥ �= Ψ(C⊥) and the following diagram does 
not commute:

C
Ψ−→ Ψ(C)

↓
C⊥ Ψ−→ Ψ(C⊥)

Example 4. Let Δ = 6 = 2 · 3 and consider the length one code Î(1,2) = 〈u2,1, u2
3,1〉. 

By Proposition 2.7, we have that the dual is Î⊥
(1,2) = I(1,1) = 〈u2,1u3,1〉. Clearly, 

[u2
3,1, u2,1u3,1] = 0 ∈ RΔ but, by Example 3, we have that [Ψ(u2

3,1), Ψ(u2,1u3,1)] �= 0.
Computing Ψ(Î(1,2))⊥ and Ψ(Î⊥

(1,2)) one obtains binary linear codes with parameters 
[6, 2, 2] and [6, 2, 4], respectively. That is, they are not only different codes but they have 
different minimum weights and hence are not equivalent.

4. MacWilliams relations

Let C be a linear code over RΔ of length n. Define the complete weight enumerator 
of C in the usual way, namely:

cweC(X) =
∑

c∈C

n∏

i=1
xci

.

We are using X to denote the set of variables (xci
) where the ci are the elements of RΔ

in some order.
In order to relate the complete weight enumerator of C with the complete weight 

enumerator of its dual, first we shall define a generator character of the ring. It is well 
known, see [7], that a finite ring is Frobenius if and only if it admits a generating 
character. Hence, a generating character exits for the ring RΔ. We shall find this character 
explicitly.

Define the character χ : RΔ −→ C� as

χ(
∑

α∈J

cαuα) =
∏

α∈J

(−1)cα .
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In other words, the character has a value of −1 if there are oddly many monomials and 
1 if there are evenly many monomials in a given element.

Consider the minimal ideal of the ring

Soc(RΔ) = {0, up1−1
p1,1 · · ·up1−1

p1,k1
· · ·upt−1

pt,1 · · ·upt−1
pt,kt

}.

Note that χ(0) = 1 and χ(upt−1
pt,1 · · ·upt−1

pt,kt
) = −1 since it is a single monomial. Therefore, 

χ is non-trivial on the minimal ideal. Note also that this minimal ideal is contained in 
all ideals of the ring RΔ since it is the unique minimal ideal. This gives that ker(χ)
contains no non-trivial ideal. Hence, by Lemma 4.1 in [7], we have that the character χ
is a generating character of the ring RΔ. This generating character allows us to give the 
MacWilliams relations explicitly.

Use the elements of RΔ as coordinates for the rows and columns. Let T be the 
|RΔ| × |RΔ| matrix given by Ta,b = χ(ab), for a, b ∈ RΔ. By the results in [7], we 
have the following theorem.

Theorem 4.1. Let C be a linear code over RΔ. Then

cweC⊥(X) = 1
|C|cweC(T · X),

where T · X represents the action of T on the vector X given by matrix multiplication 
TXt, where Xt is the transpose of X.

5. Cyclic codes over RΔ

In this section, we shall give an algebraic description of cyclic codes over RΔ. These 
codes will, in turn, give quasi-cyclic codes of index Δ over F2.

Recall that, for an element a in RΔ, μ(a) is the reduction modulo {upi,j} for all 
i ∈ {1, . . . , t} and j ∈ {1, . . . , ki}. Now, we can define a polynomial reduction μ from 
RΔ[x] to F2[x] where μ(f) = μ(

∑
aix

i) =
∑

μ(ai)xi.
A monic polynomial f over RΔ[x] is said to be a basic irreducible polynomial if μ(f)

is an irreducible polynomial over F2[x]. Since F2 is a subring of RΔ then, any irreducible 
polynomial in F2[x] is a basic irreducible polynomial viewed as a polynomial of RΔ[x].

Lemma 5.1. Let n be an odd integer. Then, xn −1 factors into a product of finitely many 
pairwise coprime basic irreducible polynomials over RΔ, xn − 1 = f1f2 · · · fr. Moreover, 
f1, f2, . . . , fr are uniquely determined up to a rearrangement.

Proof. The field F2 is a subring of RΔ and xn − 1 factors uniquely as a product of 
pairwise coprime irreducible polynomials in F2[x]. Therefore, the polynomial factors in 
RΔ since F2 is a subring of RΔ. Then Hensel’s Lemma gives that regular polynomials 
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(namely, polynomials that are not zero divisors) over RΔ have a unique factoriza-
tion. �

The previous lemma is highly dependent upon the fact that F2 is a subring of the 
ambient ring. Were this not the case, the lemma would not hold.

As in any commutative ring we can identify cyclic codes with ideals in a correspond-
ing polynomial ring. We give the standard definitions to assign notation. Let RΔ,n =
RΔ[x]/〈xn − 1〉.

Theorem 5.2. Cyclic codes over RΔ of length n can be viewed as ideals in RΔ,n.

Proof. We view each codeword (c0, c1, . . . , cn−1) as a polynomial c0 + c1x + c2x
2 + · · · +

cn−1x
n−1 in RΔ,n and multiplication by x as the cyclic shift and the standard proof 

applies. �
The next theorem follows from the canonical decomposition of rings, noting that for 

odd n the factorization is unique.

Theorem 5.3. Let n be an odd integer and let xn − 1 = f1f2 · · · fr. Then, the ideals in 
RΔ,n can be written as I ∼= I1 ⊕ I2 ⊕ · · · ⊕ Ir where Ii is an ideal of the ring RΔ[x]/〈fi〉, 
for i = 1, . . . , r.

Let f be an irreducible polynomial in F2[x], then f is a basic monic irreducible poly-
nomial over RΔ. Our goal now is to show that there is a one-to-one correspondence 
between ideals of RΔ[x]/〈f〉 and ideals of RΔ. We have that F2[x]/〈f〉 is a finite field 
of order 2deg(f). Let L0,0 = F2[x]/〈f〉 and Lp1,1 = L0,0[up1,1]/〈up1

p1,1〉. For 1 ≤ i ≤ t, 
1 ≤ j ≤ ki, define

Lpi,j =
{

Lpi−1,ki−1 [upi,1]/〈upi

pi,1〉 if j = 1,
Lpi,j−1[upi,j ]/〈upi

pi,j
〉 otherwise.

Then we have that any element a ∈ Lpi,j can be written as a = a0+a1upi,j +a2u
2
pi,j

+
· · · + api−1u

pi−1
pi,j

where a0, . . . , api−1 belong to Lpi,j−1 if j �= 1 or to Lpi−1,ki−1 if j = 1.

Proposition 5.4. Let a =
∑pi−1

d=0 adu
d
pi,j

be an element of Lpi,j. Then, a is a unit in Lpi,j

if and only if a0 is a unit in Lpi,j−1 if j �= 1 or in Lpi−1,ki−1 if j = 1.

Proof. Suppose a0 is a unit in Lpi,j−1 if j �= 1 or in Lpi−1,ki−1 if j = 1. Define b =
a−1
0 (
∑pi−1

d=1 adu
d
pi,j

). Clearly, b is a zero divisor and 1 + b is a unit since (1 + b)(1 + b +
b2 + · · · + bpi−1) = 1. So a0(1 + b) = a is also a unit.
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If a0 is not a unit then there exists b in Lpi,j−1 if j �= 1 or in Lpi−1,ki−1 if j = 1, such 
that ba0 = 0. Therefore, bupi−1

pi,j
a = 0. �

Denote by U(Lpi,j) the group of units of Lpi,j . By the previous result we can see that

|U(Lpi,j)| =
{

|U(Lpi−1,ki−1)||Lpi−1,ki−1 | if j = 1,
|U(Lpi,j−1)||Lpi,j−1| otherwise.

Since |U(L0,0)| = 2deg(f)−1, we get that |U(Lp1,1)| = 2deg(f)(2deg(f)−1). By induction, 
we obtain that

|Lpt,kt
| = (2deg(f))Δ and |U(Lpt,kt

)| = (2deg(f))Δ − (2deg(f))Δ−1.

Moreover, the group U(Lpi,j) is the direct product of a cyclic group G of order 
2deg(f)−1 and an abelian group H of order (2deg(f))Δ−1.

Theorem 5.5. The ideals of Lpt,kt
are in bijective correspondence with the ideals of RΔ.

Proof. From Proposition 5.4, it is straightforward that the zero-divisors of Lpt,kt
are of 

the form 
∑

cαuα1
1 · · ·uαt

t with cα ∈ L0,0 and c0 = 0, furthermore there are (2deg(f))Δ−1

of them. This gives the result. �
Corollary 5.6. Let n be an odd integer. Let xn − 1 = f1f2 · · · fr be the factorization of 
xn − 1 into basic irreducible polynomials over RΔ and let IΔ be the number of ideals 
in RΔ. Then, the number of linear cyclic codes of length n over RΔ is (IΔ)r.

6. One generator cyclic codes

We shall examine codes that have a single generator. We shall proceed in a similar 
way as was done in [2] for the case when Δ was a power of 2. If a polynomial s ∈ RΔ,n

generates an ideal, then the ideal is the entire space if and only if s is a unit. Hence we 
need to consider codes generated by a non-unit. For foundational results in this section, 
see [5].

Let Cn denote the cyclic group of order n. Consider the group ring RΔCn. This ring is 
canonically isomorphic to RΔ,n. Any element in RΔCn corresponds to a circulant matrix 
in the following form:

σ(a0 + a1x + a2x
2 + · · · + an−1x

n−1) =

⎛
⎜⎜⎜⎜⎝

a0 a1 a2 · · · an−1
an−1 a0 a1 · · · an−2

...
...

...
...

...
a1 a2 a2 · · · a0

⎞
⎟⎟⎟⎟⎠

.

Take the standard definition of the determinant function, det : Mn(RΔ) → RΔ.
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Proposition 6.1. An element α = a0 + a1x + a2x
2 + · · · + an−1x

n−1 ∈ RΔ,n is a non-unit 
if and only if det(σ(α)) ∈ m. Equivalently, we have that an element α = a0 + a1x +
a2x

2 + · · · + an−1x
n−1 ∈ RΔ,n is a non-unit if and only if μ(det(σ(α))) = 0.

This proposition allows for a straightforward computational technique to find gener-
ators for cyclic codes over RΔ which give binary quasi-cyclic codes of index Δ via the 
Gray map.

7. Binary quasi-cyclic codes

In this section, we shall give an algebraic construction of binary quasi-cyclic codes 
from codes over RΔ.

Lemma 7.1. Let v be a vector in Rn
Δ. Then Ψ(π(v)) = πΔ(Ψ(v)).

Proof. The result is a direct consequence from the definition of Ψ. �
The following theorems give a construction of linear binary quasi-cyclic codes of ar-

bitrary index from cyclic codes and quasi-cyclic codes over RΔ.

Theorem 7.2. Let C be a linear cyclic code over RΔ of length n. Then Ψ(C) is a linear 
binary quasi-cyclic code of length Δn and index Δ.

Proof. Since C is a cyclic code, π(C) = C. Then by Lemma 7.1, Ψ(C) = Ψ(π(C)) =
πΔ(Ψ(C)). Hence Ψ(C) is a quasi-cyclic code of index Δ. �
Theorem 7.3. Let C be a linear quasi-cyclic code over RΔ of length n and index k. Then, 
Ψ(C) is a linear binary quasi-cyclic code of length Δn and index Δk.

Proof. We can apply the same argument as in Theorem 7.2, taking into account that 
Ψ(C) = Ψ(πk(C)) = πΔk(Ψ(C)). �
8. Examples RΔ

Examples of RΔ-cyclic codes of length n for the case Δ = 2k1 can be found in [2].
Table 1 shows some examples of one generator RΔ-cyclic codes, for Δ �= 2k1 , whose 

binary image via the Ψ map gives optimal codes [4] with minimum distance at least 3. 
For each cyclic code C ∈ Rn

Δ, in the table there are the parameters [Δ, n], the gener-
ator polynomial, and the parameters [N, k, d] of Ψ(C), where N is the length, k is the 
dimension, and d is the minimum distance.



S.T. Dougherty et al. / Finite Fields and Their Applications 40 (2016) 138–149 149

Table 1
Quasi-cyclic codes of index Δ.

[Δ, n] Generators Binary image

[6, 2] (u2,1u2
3,1 + u2,1u3,1 + u2

3,1 + u3,1)x + u2,1u3,1 + u2,1 + u3,1 [12, 6, 4]
[6, 3] (u2,1u2

3,1 + u2,1u3,1 + u3,1)x2 + (u2,1u3,1 + u2,1 + u3,1)x [18, 11, 4]
[6, 3] (u2,1u2

3,1 + u2,1 + u2
3,1 + u3,1)x2 + (u2,1u3,1 + u2,1 + u3,1)x [18, 10, 4]

[6, 3] (u2,1u2
3,1 + u2,1u3,1 + u2

3,1)x
2 + (u2,1u2

3,1 + u2,1u3,1 + u2
3,1)x [18, 4, 8]

[6, 3] (u2,1u2
3,1 + u2,1u3,1 + u2

3,1)x
2 + (u2,1u2

3,1 + u2,1u3,1 + u2
3,1)x + u2,1u2

3,1 +
u2,1u3,1 + u2

3,1

[18, 2, 12]

[6, 4] (u2,1u2
3,1 + u2,1u3,1 + u2,1 + u3,1)x3 + (u2,1u2

3,1 + u2,1u3,1)x2 +
(u2,1u3,1 + u2,1 + u3,1)x

[24, 8, 8]

[6, 4] (u2,1u2
3,1 + 1)x3 + x2 + (u2,1u3,1 + u2,1 + 1)x + u2,1u3,1 + u2,1 + 1 [24, 9, 8]

[6, 6] (u2,1u2
3,1 + u2,1 + u2

3,1 + 1)x5 + (u2
3,1 + 1)x4 + (u2,1u2

3,1 + u2,1)x3 +
(u2,1 + u2

3,1 + 1)x2 + (u2,1u3,1 + u2,1 + 1)x
[36, 17, 8]

[6, 6] (u2,1u2
3,1 + u2,1u3,1 + u3,1 + 1)x5 + (u2,1u2

3,1 + u2,1u3,1 + u2
3,1)x

4 +
(u2,1u3,1 + u2,1 + u2

3,1)x
3 + (u2,1u3,1 + u2,1 + 1)x2

[36, 18, 8]

[6, 7] (u2,1u2
3,1 + u2,1 + u3,1 + 1)x6 + (u2,1u3,1 + u2,1 + u3,1 + 1)x5 +

(u2,1u3,1 + u2,1 + 1)x4 + (u2,1u3,1 + u2,1 + 1)x2
[42, 32, 4]

[6, 7] (u2,1 + u3,1 + 1)x6 + (u2,1 + u2
3,1 + 1)x5 + (u2

3,1 + 1)x4 + (u2,1u3,1 +
u2

3,1 + u3,1)x3 + (u2,1u3,1 + u2,1 + 1)x2
[42, 33, 4]

[9, 2] (u2
3,1u3,2 + u2

3,1 + u3,1u3,2)x + u2
3,1u2

3,2 + u2
3,1u3,2 + u2

3,1 + u3,1u3,2 [18, 4, 8]
[9, 2] (u2

3,1u2
3,2+u2

3,1+u3,1u2
3,2+u3,1+1)x +u2

3,1u3,2+u3,1u2
3,2+u3,1u3,2+u3,1+1 [18, 10, 4]

[9, 3] (u2
3,1u3,2 + u2

3,1 + u3,1u2
3,2 + u3,1u3,2 + u3,1 + u2

3,2 + u3,2)x2 + (u2
3,1 +

u3,1u2
3,2 + u3,1u3,2 + u3,1)x + u2

3,2

[27, 18, 4]

[9, 4] (u2
3,1u2

3,2 + u3,1 + u2
3,2)x

3 + (u2
3,1 + u3,1 + 1)x2 + (u2

3,1 + u3,1u2
3,2 +

u3,1u3,2 + u2
3,2 + 1)x

[36, 27, 4]

[12, 3] (u2,1u2
3,1 + u2,1 + u2,2u2

3,1 + u2,2u3,1 + u2,2 + u2
3,1)x

2 + (u2,1u2,2u2
3,1 +

u2,1u2
3,1 + u2,2u3,1 + u2,2)x + u2,1u2,2u2

3,1 + u2,1u2,2 + u2,1u3,1 + u2,1 +
u2,2u2

3,1 + u2,2u3,1

[36, 17, 8]

[12, 3] u3,1x2 + (u2,1u2,2u2
3,1 + u2,1u2

3,1 + u2,2u3,1 + u2,2)x + u2,1u2,2u2
3,1 +

u2,1u2,2 + u2,1u3,1 + u2,1 + u2,2u2
3,1 + u2,2u3,1

[36, 18, 8]
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Z2Z4-Additive Cyclic Codes, Generator
Polynomials, and Dual Codes
Joaquim Borges, Cristina Fernández-Córdoba, and Roger Ten-Valls

Abstract—A Z2Z4-additive code C ⊆ Zα
2 × Zβ

4 is called cyclic
if the set of coordinates can be partitioned into two subsets, the
set of Z2 and the set of Z4 coordinates, such that any cyclic
shift of the coordinates of both subsets leaves the code invariant.
These codes can be identified as submodules of the Z4[x]-module
Z2[x]/(xα − 1) × Z4[x]/(xβ − 1). The parameters of a
Z2Z4-additive cyclic code are stated in terms of the degrees of the
generator polynomials of the code. The generator polynomials of
the dual code of a Z2Z4-additive cyclic code are determined in
terms of the generator polynomials of the code C.
Index Terms—Binary cyclic codes, cyclic codes over Z4,

duality, Z2Z4-additive cyclic codes.

I. INTRODUCTION

DENOTE by Z2 and Z4 the rings of integers modulo 2
and modulo 4, respectively. We denote the space of

n-tuples over these rings as Zn2 and Zn4. A binary code is any
non-empty subset C of Zn2. If that subset is a vector space then
we say that it is a linear code. A code over Z4 is a non-empty
subset C of Zn4 and a submodule of Zn4 is called a linear code
over Z4.
In Delsarte’s 1973 paper (see [5]), he defined additive codes

as subgroups of the underlying abelian group in a translation
association scheme. For the binary Hamming scheme, namely,
when the underlying abelian group is of order 2n , the only
structures for the abelian group are those of the form Zα

2 ×Zβ
4 ,

with α+2β = n. This means that the subgroups C of Zα
2 ×Zβ

4
are the only additive codes in a binary Hamming scheme.
In [4], Z2Z4-additive codes were studied.
For vectors u ∈ Zα

2 × Zβ
4 we write u = (u | u′) where

u = (u0, . . . , uα−1) ∈ Zα
2 and u′ = (u′

0, . . . , u
′
β−1) ∈ Zβ

4 .
Let C be a Z2Z4-additive code. Since C is a subgroup of

Zα
2 × Zβ

4 , it is also isomorphic to a commutative structure
like Zγ

2 × Zδ
4. Therefore, C is of type 2γ 4δ as a group,

it has |C| = 2γ+2δ codewords and the number of order two
codewords in C is 2γ+δ .
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Let X (respectively Y ) be the set of Z2 (respectively Z4)
coordinate positions, so |X | = α and |Y | = β. Unless
otherwise stated, the set X corresponds to the first α coordi-
nates and Y corresponds to the last β coordinates. Call CX
(respectively CY ) the punctured code of C by deleting the
coordinates outside X (respectively Y ). Let Cb be the subcode
of C which contains all order two codewords and let κ be the
dimension of (Cb)X , which is a binary linear code. For the
case α = 0, we will write κ = 0.
Considering all these parameters, we will say that C is of

type (α, β; γ, δ; κ). Notice that CY is a linear code over Z4 of
type (0, β; γY , δ; 0), where 0 ≤ γY ≤ γ , and CX is a binary
linear code of type (α, 0; γX , 0; γX ), where κ ≤ γX ≤ κ + δ.
A Z2Z4-additive code C is said to be separable if C = CX×CY .
Let κ1 and δ2 be the dimensions of the subcodes

{(u | 0 . . . 0) ∈ C} and {(0 . . . 0 | u′) ∈ C :
the order of u′ is 4}, respectively. Define κ2 = κ − κ1 and

δ1 = δ − δ2. By definition, it is clear that a Z2Z4-additive
code is separable if and only if κ2 and δ1 are zero; that is,
κ = κ1 and δ = δ2.
We define a Gray Map as φ : Zα

2 × Zβ
4 → Zα+2β

2 such
that φ(u) = φ(u | u′) = (u, φ4(u′)), where φ4 is the usual
quaternary Gray map defined by φ4(0) = (0, 0), φ4(1) =
(0, 1), φ4(2) = (1, 1), φ4(3) = (1, 0).
The standard inner product, defined in [4], can be written as

u · v = 2

(
α−1∑

i=0
uivi

)
+

β−1∑

j=0
u′
jv

′
j ∈ Z4,

where the computations are made taking the zeros and ones in
the α binary coordinates as zeros and ones in Z4, respectively.
The dual code of C, is defined in the standard way by

C⊥ = {v ∈ Zα
2 × Zβ

4 | u · v = 0, for all u ∈ C}.
If C is separable then C⊥ = (CX )⊥ × (CY )⊥. From [4], and

the previous definition of κ1 and δ1 we obtain the number of
codewords of C, CX , CY and their duals.
Proposition 1: Let C be a Z2Z4-additive code of type

(α, β; γ, δ; κ). Let κ1 and δ1 be defined as before. Then,

|C| = 2γ 4δ, |C⊥| = 2α+γ−2κ4β−γ−δ+κ ,

|CX | = 2κ+δ1, |(CX )⊥| = 2α−κ−δ1,

|CY | = 2γ−κ14δ, |(CY )⊥| = 2γ−κ14β−γ−δ+κ1 .

Let C be a Z2Z4-additive code of type (α, β; γ, δ; κ). Then,
C is permutation equivalent to a Z2Z4-additive code with

0018-9448 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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generator matrix of the form

GC =

⎛
⎜⎜⎜⎜⎝

Iκ1 T T ′
b1 Tb1 0 0 0 0 0

0 Iκ2 T ′
b2 Tb2 2T2 2Tκ2 0 0 0

0 0 0 0 2T1 2T ′
1 2Iγ−κ 0 0

0 0 Sδ1 Sb S11 S12 R1 Iδ1 0
0 0 0 0 S21 S22 R2 Rδ1 Iδ2

⎞
⎟⎟⎟⎟⎠

where Ir is the identity matrix of size r × r ; the matrices
Tbi , T ′

bi , Sδ1 , Sb are over Z2; the matrices T1, T2, Tκ2, T ′
1, Ri

are over Z4 with all entries in {0, 1} ⊂ Z4; and Si j are matrices
over Z4. The matrices Sδ1 and Tκ2 are square matrices of full
rank δ1 and κ2 respectively, κ = κ1 + κ2 and δ = δ1 + δ2.
This new generator matrix can be obtained by applying

convenient column permutations and linear combinations of
rows to the generator matrix given in [4]. This new form is
going to help us to relate the parameters of the code and the
degrees of the generator polynomials of a Z2Z4-additive cyclic
code.

II. Z2Z4-ADDITIVE CYCLIC CODES

A. Parameters and Generators
Let u = (u | u′) ∈ Zα

2 × Zβ
4 and i be an integer. Then we

denote by

u(i) = (u(i) | u′(i))
= (u0+i , u1+i , . . . , uα−1+i | u′

0+i , u′
1+i , . . . , u′

β−1+i )

the cyclic i th shift of u, where the subscripts are read modulo
α and β, respectively.
We say that a Z2Z4-additive code C ⊆ Zα

2 × Zβ
4 is cyclic if

for any codeword u ∈ C we have u(1) ∈ C.
Let Rα,β = Z2[x]/(xα−1)×Z4[x]/(xβ−1), for β ≥ 0 odd,

and define the operation � : Z4[x] × Rα,β → Rα,β as λ(x) �
(p(x) | q(x)) = (λ(x)p(x) mod (2) | λ(x)q(x)). From [1],
we know that Z2Z4-additive cyclic codes are identified as
Z4[x]-submodules of Rα,β . Moreover, if C is a Z2Z4-additive
cyclic code of type (α, β; γ, δ; κ), then it is of the form

C = 〈(b(x) | 0), (
(x) | f (x)h(x) + 2 f (x))〉, (1)

where f (x)h(x)g(x) = xβ − 1 in Z4[x], b(x), 
(x) ∈
Z2[x]/(xα − 1) with b(x)|(xα − 1), deg(
(x)) < deg(b(x)),
and b(x) divides xβ−1

f (x) 
(x) (mod 2).
Note that if C is a Z2Z4-additive cyclic code with

C = 〈(b(x) | 0), (
(x) | f (x)h(x) + 2 f (x))〉, then the
canonical projections CX and CY are a cyclic code over Z2
and a cyclic code over Z4 generated by gcd(b(x), 
(x)) and
( f (x)h(x) + 2 f (x)), respectively (see [6], [9]).
Since b(x) divides xβ−1

f (x) 
(x) (mod 2), we have the
following result.
Corollary 2: Let C be a Z2Z4-additive cyclic code of type

(α, β; γ, δ; κ) with C = 〈(b(x) | 0), (
(x) | f (x)h(x) +
2 f (x))〉. Then, b(x) divides xβ−1

f (x) gcd(b(x), 
(x)) (mod 2)
and b(x) divides h(x) gcd(b(x), 
(x)g(x)) (mod 2).
Note that if a Z2Z4-additive cyclic code is separable, then


(x) = 0.
In the following, a polynomial f (x) ∈ Z2[x] or Z4[x] will

be denoted simply by f and the parameter β will be an odd
integer.

Lemma 3: Let C = 〈(b | 0), (
 | f h + 2 f )〉 be
a Z2Z4-additive cyclic code. Then,

Cb = 〈(b | 0), (
g | 2 f g), (0 | 2 f h)〉.
Proof: Cb is the subcode of C which contains all

codewords of order 2. Since C = 〈(b | 0), (
 | f h+2 f )〉, then
all codewords of order 2 are generated by 〈(b | 0), (
g | 2 f g),
(0 | 2 f h)〉.
The following results show the close relation of the

parameters of the type of a Z2Z4-additive cyclic code and
the degrees of the generator polynomials of the code.
First, the next theorem gives the spanning sets in terms of

the generator polynomials.
Theorem 4 ( [1, Th. 13]): Let C = 〈(b | 0), (
 | f h + 2 f )〉

be a Z2Z4-additive cyclic code of type (α, β; γ, δ; κ), where
f hg = xβ − 1. Let

S1 =
α−deg(b)−1⋃

i=0
{xi � (b | 0)},

S2 =
deg(g)−1⋃

i=0
{xi � (
 | f h + 2 f )}

and

S3 =
deg(h)−1⋃

i=0
{xi � (
g | 2 f g)}.

Then, S1 ∪ S2 ∪ S3 forms a minimal spanning set for C as
a Z4-module. Moreover, C has 2α−deg(b)4deg (g)2deg (h)

codewords.
Note that S2 generates all order 4 codewords and the

subcode of codewords of order 2, Cb, is generated by
{S1, 2S2, S3}. Hence, in the following theorem, by using these
spanning sets, we can obtain the parameters (α, β; γ, δ; κ) of
the code.
Theorem 5: Let C = 〈(b | 0), (
 | f h + 2 f )〉 be

a Z2Z4-additive cyclic code of type (α, β; γ, δ; κ), where
f hg = xβ − 1. Then

γ = α − deg(b) + deg(h),
δ = deg(g),
κ = α − deg(gcd(
g, b)).

Proof: The parameters γ and δ are known from Theorem 4
and the parameter κ is the dimension of (Cb)X . By Lemma 3,
the space (Cb)X is generated by the polynomials b and 
g.
Since the ring is a polynomial ring and thus a principal ideal
ring, it is generated by the greatest common divisor of the two
polynomials. Then, κ = α − deg(gcd(
g, b)).
In this case we have that |C| = 2α−deg(b)4deg(g)2deg(h).
Proposition 6: Let C = 〈(b | 0), (
 | f h + 2 f )〉 be a

Z2Z4-additive cyclic code of type (α, β; γ, δ = δ1 + δ2;
κ = κ1 + κ2), where f hg = xβ − 1. Then,

κ1 = α − deg(b), κ2 = deg(b) − deg(gcd(b, 
g)),
δ1 = deg(gcd(b, 
g)) − deg(gcd(b, 
)) and δ2 = deg(g) − δ1.

Proof: The result follows from Proposition 1 and knowing
the generator polynomials of CX and (Cb)X . They are gcd(b, 
)
and gcd(b, 
g), respectively.
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B. Dual Z2Z4-Additive Cyclic Codes

In [1], it is proven that the dual code of a Z2Z4-additive
cyclic code is also a Z2Z4-additive cyclic code. So, we will
denote

C⊥ = 〈(b̄ | 0), (
̄ | f̄ h̄ + 2 f̄ )〉,

where f̄ h̄ ḡ = xβ − 1 in Z4[x], b̄, 
̄ ∈ Z2[x]/(xα − 1) with
b̄|(xα − 1), deg(
̄) < deg(b̄) and b̄ divides xβ−1

f̄ 
̄ (mod 2).
The reciprocal polynomial of a polynomial p(x) is

xdeg(p(x))p(x−1) and is denoted by p∗(x). As in the theory
of cyclic codes over Z2 and Z4 (see [6], [7]), reciprocal
polynomials have an important role on duality.
We denote the polynomial

∑m−1
i=0 xi by θm(x). Using this

notation we have the following proposition.
Proposition 7: Let n,m ∈ N. Then,

xnm − 1 = (xn − 1)θm(xn).

Proof: It is well know that ym − 1 = (y − 1)θm(y),
replacing y by xn the result follows.
From now on, m denotes the least common multiple

of α and β.
Definition 8: Let u(x) = (u(x) | u′(x)) and v(x) = (v(x) |

v ′(x)) be elements in Rα,β . We define the map

◦ : Rα,β × Rα,β −→ Z4[x]/(xm − 1),

such that

◦(u(x), v(x)) = 2u(x)θm
α
(xα)xm−1−deg(v(x))v∗(x)

+ u′(x)θm
β
(xβ)xm−1−deg(v ′(x))v ′∗(x)

mod (xm − 1),

where the computations are made taking the binary zeros
and ones in u(x) and v(x) as quaternary zeros and ones,
respectively.
The map ◦ is linear in each of its arguments; i.e., if we fix

the first entry of the map invariant, while letting the second
entry vary, then the result is a linear map. Similarly, when
fixing the second entry invariant. Then, the map ◦ is a bilinear
map between Z4[x]-modules.
From now on, we denote ◦(u(x), v(x)) by u(x)◦v(x). Note

that u(x) ◦ v(x) belongs to Z4[x]/(xm − 1).
Proposition 9: Let u and v be vectors in Zα

2 × Zβ
4

with associated polynomials u(x) = (u(x) | u′(x)) and
v(x) = (v(x) | v ′(x)). Then, u is orthogonal to v and all
its shifts if and only if

u(x) ◦ v(x) = 0.

Proof: The i th shift of v is v(i) = (v0+iv1+i . . . vα−1+i |
v ′
0+i . . . v ′

β−1+i ). Then,

u · v(i) = 0 if and only if 2
α−1∑

j=0
u jv j+i +

β−1∑

k=0
u′
kv

′
k+i = 0.

Let Si = 2
∑α−1

j=0 u jv j+i +
∑β−1

k=0 u′
kv

′
k+i . One can check that

u(x) ◦ v(x) = 2θm
α
(xα)

⎡
⎣

α−1∑

n=0

α−1∑

j=n
u j−nv j xm−1−n

+
α−1∑

n=1

α−1∑

j=n
u jv j−nxm−1+n

⎤
⎦

+ θm
β
(xβ)

⎡
⎣

β−1∑

t=0

β−1∑

k=t
u′
k−tv ′

j x
m−1−t

+
β−1∑

t=1

β−1∑

k=t
u′
kv

′
k−t xm−1+t

⎤
⎦

mod (xm − 1).

Then, arranging the terms one obtains that

u(x) ◦ v(x) =
m−1∑

i=0
Si xm−1−i mod (xm − 1).

Thus, u(x)◦v(x) = 0 if and only if Si = 0 for 0 ≤ i ≤ m−1.

Lemma 10: Let u = (u(x) | u′(x)) and v(x) = (v(x) |
v ′(x)) be elements in Rα,β such that u(x) ◦ v(x) = 0. If u′(x)
or v ′(x) equals 0, then u(x)v∗(x) ≡ 0 (mod (xα−1)) over Z2.
If u(x) or v(x) equals 0, then u′(x)v ′∗(x) ≡ 0 (mod (xβ −1))
over Z4.

Proof: Let u′(x) or v ′(x) equals 0, then

0 = u(x) ◦ v(x)
= 2u(x)θm

α
(xα)xm−1−deg(v(x))v∗(x) + 0 mod (xm − 1).

So,

2u(x)θm
α
(xα)xm−1−deg(v(x))v∗(x) = 2μ′(x)(xm − 1),

for some μ′(x) ∈ Z4[x].
This is equivalent to

u(x)θm
α
(xα)xm−1−deg(v(x))v∗(x) = μ′(x)(xm − 1) ∈ Z2[x].

By Proposition 7,

u(x)xmv∗(x) = μ(x)(xα − 1),
u(x)v∗(x) ≡ 0 (mod (xα − 1)).

A similar argument can be used to prove the other case.
The following proposition determines the degrees of the

generator polynomials of the dual code in terms of the degrees
of the generator polynomials of the code. These results will
be helpful to determine the generator polynomials of the dual
code.
Proposition 11: Let C = 〈(b | 0), (
 | f h + 2 f )〉 be

a Z2Z4-additive cyclic code of type (α, β; γ, δ; κ), where
f gh = xβ − 1, and with dual code C⊥ = 〈(b̄ | 0),
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(
̄ | f̄ h̄ + 2 f̄ )〉, where f̄ ḡh̄ = xβ − 1. Then,

deg(b̄) = α − deg(gcd(b, 
)),

deg( f̄ ) = deg(g) + deg(gcd(b, 
)) − deg(gcd(b, 
g)),

deg(h̄) = deg(h) − deg(b) − deg(gcd(b, 
))

+ 2 deg(gcd(b, 
g)),

deg(ḡ) = deg( f ) + deg(b) − deg(gcd(b, 
g)).

Proof: Let C⊥ be a code of type (α, β; γ̄ , δ̄; κ̄). It is easy
to prove that (CX )⊥ is a binary cyclic code generated by b̄,
so |(CX )⊥| = 2α−deg(b̄). Moreover, by Proposition 1,
|(CX )⊥| = 2α−κ−δ1 and by Proposition 6, we obtain that
deg(b̄) = α − deg(gcd(b, 
)). Finally, from [4] it is known
that

γ̄ = α + γ − 2κ,

δ̄ = β − γ − δ + κ,

κ̄ = α − κ,

and applying Theorem 5 to the parameters of C and C⊥,
we obtain the result.
We know that a Z2Z4-additive code C is separable if and

only if C⊥ is separable. Moreover, if a Z2Z4-additive cyclic
code is separable, then it is easy to find the generator polyno-
mials of the dual, that are given in the following proposition.
Proposition 12: Let C = 〈(b | 0), (0 | f h + 2 f )〉 be a

separable Z2Z4-additive cyclic code of type (α, β; γ, δ; κ),
where f gh = xβ − 1. Then,

C⊥ = 〈( x
α − 1
b∗ | 0), (0 | g∗h∗ + 2g∗)〉.

Proof: If C is separable, then C⊥ = (CX )⊥×(CY )⊥, where
(CX )⊥ = 〈 xα−1

b∗ 〉 and (CY )⊥ = 〈g∗h∗ + 2g∗〉.
Proposition 13: Let C = 〈(b | 0), (
 | f h + 2 f )〉 be a

Z2Z4-additive cyclic code of type (α, β; γ, δ; κ) with dual
code C⊥ = 〈(b̄ | 0), (
̄ | f̄ h̄ + 2 f̄ )〉. Then,

b̄ = xα − 1
(gcd(b, 
))∗

∈ Z2[x].

Proof: We have that (b̄ | 0) belongs to C⊥. Then,

(b | 0) ◦ (b̄ | 0) = 0,
(
 | f h + 2 f ) ◦ (b̄ | 0) = 0.

Therefore, by Lemma 10,

bb̄∗ ≡ 0 (mod (xα − 1)),

b̄∗ ≡ 0 (mod (xα − 1)),

over Z2. So, gcd(b, 
)b̄∗ ≡ 0 (mod (xα − 1)), and there exist
μ ∈ Z2[x] such that gcd(b, 
)b̄∗ = μ(xα − 1).
Moreover, since gcd(b, 
) and b̄∗ divides (xα − 1) and, by
Proposition 11, we have that deg(b̄) = α − deg(gcd(b, 
)).
We conclude that

b̄∗ = xα − 1
gcd(b, 
)

∈ Z2[x].

Proposition 14: Let C = 〈(b | 0), (
 | f h + 2 f )〉 be
a Z2Z4-additive cyclic code of type (α, β; γ, δ; κ), where
f gh = xβ − 1, and with dual code C⊥ = 〈(b̄ | 0),
(
̄ | f̄ h̄+2 f̄ )〉, where f̄ ḡh̄ = xβ −1. Then, f̄ h̄ is the Hensel
lift of the polynomial (xβ−1) gcd(b,
g)∗

f ∗b∗ ∈ Z2[x].
Proof: It is known that h and g are coprime, from which

we deduce easily that p1 f h + p2 f g = f , for some p1,
p2 ∈ Z4[x]. Since (b | 0), (0 | 2 f h) and (
g | 2 f g) belong
to C, then

(0 | b
gcd(b, 
g)

(2p1 f h + 2p2 f g)) = (0 | b
gcd(b, 
g)

2 f ) ∈ C.

Therefore,

(
̄ | f̄ h̄ + 2 f̄ ) ◦ (0 | b
gcd(b, 
g)

2 f ) = 0.

Thus, by Lemma 10,

( f̄ h̄ + 2 f̄ )
(

b∗2 f ∗

gcd(b, 
g)∗

)
≡ 0 (mod (xβ − 1)),

and

(2 f̄ h̄)
(

b∗ f ∗

gcd(b, 
g)∗

)
= 2μ(xβ − 1), (2)

for some μ ∈ Z4[x].
If (2) holds over Z4, then it is equivalent to

( f̄ h̄)
(

b∗ f ∗

gcd(b, 
g)∗

)
= μ(xβ − 1) ∈ Z2[x].

It is known that f̄ h̄ is a divisor of xβ − 1 and, by
Corollary 2, we have that

(
b∗ f ∗

gcd(b,
g)∗
)
divides (xβ−1) over Z2.

By Corollary 11, deg( f̄ h̄) = β − deg( f ) − deg(b) +
deg(gcd(b, 
g)), so

β = deg
(
f̄ h̄

b∗ f ∗

gcd(b, 
g)∗

)
= deg(xβ − 1).

Hence, we obtain that μ = 1 ∈ Z2 and

f̄ h̄ = (xβ − 1) gcd(b, 
g)∗

f ∗b∗ ∈ Z2[x]. (3)

Since β is odd and by the uniqueness of the Hensel
lift [9, p.73], f̄ h̄ is the unique monic polynomial in Z4[x]
dividing (xβ − 1) and satisfying (3).
Proposition 15: Let C = 〈(b | 0), (
 | f h + 2 f )〉 be

a Z2Z4-additive cyclic code of type (α, β; γ, δ; κ), where
f gh = xβ − 1, and with dual code C⊥ = 〈(b̄ | 0),
(
̄ | f̄ h̄ + 2 f̄ )〉, where f̄ ḡh̄ = xβ − 1. Then, f̄ is the Hensel
lift of the polynomial (xβ−1) gcd(b,
)∗

f ∗h∗ gcd(b,
g)∗ ∈ Z2[x].
Proof: One can factorize in Z2[x] the polynomials b, 
, 
g

in the following way:


 = gcd(b, 
)ρ,


g = gcd(b, 
g)ρτ1,

b = gcd(b, 
g)τ2,

where τ1 and τ2 are coprime polynomials.
Hence, there exist t1, t2 ∈ Z2[x] such that t1τ1 + t2τ2 = 1.

Then,

gcd(b, 
g)ρ(t1τ1 + t2τ2) = gcd(b, 
g)ρ,



6352 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

and

t1
g + ρt2b = gcd(b, 
g)
gcd(b, 
)


.

Therefore,
gcd(b, 
g)
gcd(b, 
)

� (
 | f h + 2 f ) + t1 � (
g | 2 f g) + ρt2 � (b | 0)

=
(
0 | gcd(b, 
g)

gcd(b, 
)
( f h + 2 f ) + t12 f g

)
∈ C.

Since h̄ and ḡ are coprime, there exist p̄1, p̄2 ∈ Z4[x] such
that 2 p̄1 f̄ h̄+2 p̄2 f̄ ḡ = 2 f̄ . So, (2 p̄1+ p̄2ḡ)�(
̄ | f̄ h̄+2 f̄ ) =
( p̄2
̄ḡ | 2 f̄ ) ∈ C⊥.
Therefore,

( p̄2
̄ḡ | 2 f̄ ) ◦
(
0 | gcd(b, 
g)

gcd(b, 
)
( f h + 2 f ) + t12 f g

)
= 0.

By Lemma 10, arranging properly, we obtain that

2 f̄
(
gcd(b, 
g)∗

gcd(b, 
)∗

)
f ∗h∗ ≡ 0 (mod (xβ − 1))

and

2 f̄
(
gcd(b, 
g)∗

gcd(b, 
)∗

)
f ∗h∗ = 2μ(xβ − 1), (4)

for some μ ∈ Z4[x].
If (4) holds over Z4, then it is equivalent to

f̄
(
gcd(b, 
g)∗

gcd(b, 
)∗

)
f ∗h∗ = μ(xβ − 1) ∈ Z2[x].

It is easy to prove that
(
gcd(b,
g)∗
gcd(b,
)∗

)
f ∗h∗ divides (xβ − 1)

in Z2[x]. By Corollary 11, deg( f̄ ) = β − deg( f ) − deg(h) +
deg(gcd(b, 
)) − deg(gcd(b, 
g)), so

β = deg
(
f̄
(
gcd(b, 
g)∗

gcd(b, 
)∗

)
f ∗h∗

)
= deg(xβ − 1).

Hence, we obtain that μ = 1 and

f̄ = (xβ − 1) gcd(b, 
)∗

gcd(b, 
g)∗ f ∗h∗ ∈ Z2[x]. (5)

Since β is odd and by the uniqueness of the Hensel lift
[9, p.73] then f̄ is the unique monic polynomial in Z4[x]
dividing (xβ − 1) and holding (5).
Lemma 16: Let C = 〈(b | 0), (
 | f h + 2 f )〉 be

a Z2Z4-additive cyclic code of type (α, β; γ, δ; κ), where
f gh = xβ − 1. Then, the Hensel lift of b

gcd(b,
g) divides h.
Proof: In general, if a | b | xβ − 1 over Z2[x] with

β odd, then the Hensel lift of a divides the Hensel lift of b
that divides xβ −1 over Z4[x]. Then, by Corollary 2, the result
follows.
In the family of Z2Z4-additive cyclic codes there is a

particular class when the polynomials b and gcd(b, 
g) are
the same. Applying Lemma 3 to this class we obtain that Cb
has only two generators, 〈(b | 0), (0 | 2 f )〉, instead of three,
〈(b | 0), (
g | 2 f g), (0 | 2 f h)〉. So, we have to take care of
this class of Z2Z4-additive cyclic codes.
Proposition 17: Let C = 〈(b | 0), (
 | f h + 2 f )〉 be a

non-separable Z2Z4-additive cyclic code of type

(α, β; γ, δ; κ), where f gh = xβ − 1, and with dual
code C⊥ = 〈(b̄ | 0), (
̄ | f̄ h̄ + 2 f̄ )〉, where f̄ ḡh̄ = xβ − 1.
Let ρ = 


gcd(b,
) . Then,


̄ = xα − 1
b∗

(
gcd(b, 
g)∗

gcd(b, 
)∗
xm−deg( f )μ1

+ b∗

gcd(b, 
g)∗
xm−deg( f h)μ2

)
,

where ⎧
⎨
⎩

μ1 = xdeg(
)(ρ∗)−1 mod
(

b∗
gcd(b,
g)∗

)
,

μ2 = xdeg(
)(ρ∗)−1 mod
(

b∗
gcd(b,
)∗

)
.

Proof: In order to calculate 
̄, by using ◦, we are going
to operate (
̄ | f̄ h̄ + 2 f̄ ) by three different codewords of C.
The result of these operations is 0 modulo xm − 1.
First, consider (
̄ | f̄ h̄ + 2 f̄ ) ◦ (b | 0) = 0. By Lemma 10,


̄b∗ ≡ 0 (mod (xα − 1)) and, for some λ ∈ Z2[x], we have
that 
̄ = xα−1

b∗ λ.

Second, consider τ = gcd(b,
g)
gcd(b,
) and compute (
̄ | f̄ h̄+2 f̄ )◦

(τ
 | τ f h+2τ f ). Let t = deg(τ ) and note that ( f h+2 f )∗ =
f ∗h∗ + 2xdeg(h) f ∗. We obtain that

0 = (
̄ | f̄ h̄ + 2 f̄ ) ◦ (τ
 | τ f h + 2τ f )
= 2
̄θm

α
(xα)xm−deg(
)−1−tτ ∗
∗

+ f̄ h̄θm
β
(xβ)xm−deg( f h)−1−tτ ∗ f ∗h∗

+ 2 f̄ h̄θm
β
(xβ)xm−deg( f )−1−tτ ∗ f ∗

+ 2 f̄ θm
β
(xβ)xm−deg( f h)−1−tτ ∗ f ∗h∗ mod (xm − 1).

(6)

Apply Proposition 7 to each addend and 
̄ = xα−1
b∗ λ. In

the second addend, by Proposition 14, we may replace f̄ h̄ by
the Hensel lift of (xβ−1) gcd(b,
g)∗

f ∗b∗ . The Hensel lift of (xβ −
1) and f ∗ (mod 2) are the same polynomials (xβ − 1) and
f ∗. Moreover, by Lemma 16, the second addend is 0 modulo
(xm − 1). Therefore, by Proposition 14 and Proposition 15,
we get that

0 = (
̄ | f̄ h̄ + 2 f̄ ) ◦ (τ
 | τ f h + 2τ f )

= 2
(xm − 1)

b∗ λxm−deg(
)−1−tτ ∗
∗

+ 2
(xm − 1) gcd(b, 
)∗

f ∗h∗ gcd(b, 
g)∗
xm−deg( f h)−1−tτ ∗ f ∗h∗

+ 2
(xm − 1) gcd(b, 
g)∗

f ∗b∗ xm−deg( f )−1−tτ ∗ f ∗

mod (xm − 1). (7)

Clearly, the second addend is 0 modulo (xm − 1). Since
τ = gcd(b,
g)

gcd(b,
) , we have that (
̄ | f̄ h̄ + 2 f̄ ) ◦ (τ
 | τ f h + 2τ f )
is equal to

2
(xm−1) gcd(b, 
g)∗

b∗
(
λxm−deg(
)−1−tρ∗+xm−deg( f )−1−tτ ∗)

≡ 0 (mod (xm − 1)). (8)

This is equivalent, over Z2, to
(xm−1) gcd(b, 
g)∗

b∗
(
λxm−deg(
)−1−tρ∗+xm−deg( f )−1−tτ ∗)

≡ 0 (mod (xm − 1)).
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Then,
(
λxm−deg(
)−1−tρ∗ + xm−deg( f )−1−tτ ∗)

≡ 0 (mod (xm − 1)), (9)

or
(
λxm−deg(
)−1−tρ∗ + xm−deg( f )−1−tτ ∗)

≡ 0 (mod
(

b∗

gcd(b, 
g)∗

)
). (10)

Since ( b∗
gcd(b,
g)∗ ) divides (xm − 1), then (9) implies (10).

The greatest common divisor between ρ and
(

b
gcd(b,
g)

)

is 1, then ρ∗ is invertible modulo
(

b∗
gcd(b,
g)∗

)
. Thus,

λ = τ ∗xm−deg( f )+deg(
)(ρ∗)−1 mod
(

b∗

gcd(b, 
g)∗

)
.

Let λ1 = τ ∗xm−deg( f )+deg(
)(ρ∗)−1 mod
(

b∗
gcd(b,
g)∗

)
.

Then λ = λ1 + λ2 with λ2 ≡ 0 (mod
(

b∗
gcd(b,
g)∗

)
).

Finally, we compute (
̄ | f̄ h̄ + 2 f̄ ) ◦ (
 | f h + 2 f ).

0 = (
̄ | f̄ h̄ + 2 f̄ ) ◦ (
 | f h + 2 f )
= 2
̄θm

α
(xα)xm−deg(
)−1
∗

+ f̄ h̄θm
β
(xβ)xm−deg( f h)−1 f ∗h∗

+ 2 f̄ h̄θm
β
(xβ)xm−deg( f )−1 f ∗

+ 2 f̄ θm
β
(xβ)xm−deg( f h)−1 f ∗h∗ mod (xm − 1). (11)

Apply Proposition 7 to each addend. By Lemma 16 and
replacing f̄ h̄ by the Hensel lift of (xβ−1) gcd(b,
g)∗

f ∗b∗ , then
the second addend is 0 mod (xm − 1) and, by Proposition
14 and Proposition 15, (
̄ | f̄ h̄ + 2 f̄ ) ◦ (
 | f h + 2 f )
is equal to

2
(xm − 1)

b∗ (λ1 + λ2)xm−deg(
)−1
∗

+ 2
(xm − 1) gcd(b, 
g)∗

b∗ xm−deg( f )−1

+ 2
(xm − 1) gcd(b, 
)∗

gcd(b, 
g)∗
xm−deg( f h)−1 ≡ 0 (mod (xm − 1)).

Since λ1 = τ ∗xm−deg( f )+deg(
)(ρ∗)−1 mod
(

b∗
gcd(b,
g)∗

)
,

we have that

2
(xm − 1)

b∗ λ1xm−deg(
)−1
∗

+ 2
(xm − 1) gcd(b, 
g)∗

b∗ xm−deg( f )−1 ≡ 0 (mod (xm − 1)).

Therefore, we obtain that

2
(xm − 1)

b∗ λ2xm−deg(
)−1
∗

+ 2
(xm − 1) gcd(b, 
)∗

gcd(b, 
g)∗
xm−deg( f h)−1 ≡ 0 (mod (xm − 1)),

and then

2
(xm − 1) gcd(b, 
)∗

b∗

×
(

λ2xm−deg(
)−1ρ∗ b∗

gcd(b, 
g)∗
xm−deg( f h)−1

)

≡ 0 (mod (xm − 1)).

Arguing similar to the calculation of λ in (8), we obtain that

λ2 = b∗

gcd(b, 
g)∗
xm−deg( f h)+deg(
)(ρ∗)−1

mod
(

b∗

gcd(b, 
)∗

)
.

Now, considering the values of λ1 and λ2 and defining
properly μ1 and μ2 we obtain the expected result.
We summarize the previous results in the next theorem.
Theorem 18: Let C = 〈(b | 0), (
 | f h + 2 f )〉 be

a Z2Z4-additive cyclic code of type (α, β; γ, δ; κ) , where
f gh = xβ − 1, and with dual code C⊥ = 〈(b̄ | 0), (
̄ |
f̄ h̄ + 2 f̄ )〉, where f̄ ḡh̄ = xβ − 1. Let ρ = 


gcd(b,
) . Then,
1) b̄ = xα−1

(gcd(b,
))∗ ∈ Z2[x],
2) f̄ h̄ is the Hensel lift of the polynomial

(xβ−1) gcd(b,
g)∗
f ∗b∗ ∈ Z2[x].

3) f̄ is the Hensel lift of the polynomial
(xβ−1) gcd(b,
)∗
f ∗h∗ gcd(b,
g)∗ ∈ Z2[x].

4)


̄ = xα − 1
b∗

(
gcd(b, 
g)∗

gcd(b, 
)∗
xm−deg( f )μ1

+ b∗

gcd(b, 
g)∗
xm−deg( f h)μ2

)
∈ Z2[x],

where⎧
⎨
⎩

μ1 = xdeg(
)(ρ∗)−1 mod
(

b∗
gcd(b,
g)∗

)
,

μ2 = xdeg(
)(ρ∗)−1 mod
(

b∗
gcd(b,
)∗

)
.

Note that from Theorem 18 and Theorem 4 one can easily
compute the minimal spanning set of the dual code C⊥ as a
Z4-module, and use the encoding method for Z2Z4-additive
cyclic codes described in [1].

III. EXAMPLES

As a simple example, consider the Z2Z4-additive cyclic
code C1 = 〈(x − 1 | (x2 + x + 1) + 2)〉 of type (3, 3; 2, 1; 2).
We have that b = x3−1, 
 = (x−1), f = 1 and h = x2+x+1.
The generator matrix ( [4]) is

G =
⎛
⎝
101 200
011 220
000 111

⎞
⎠ .

Then, applying the formulas of Theorem 18 we have
b̄ = x2+ x+1, 
̄ = x, f̄ h̄ = x−1, and f̄ = x−1. Therefore,
C⊥
1 = 〈(x2 + x + 1 | 0), (x | (x − 1) + 2(x − 1))〉, is of type

(3, 3; 1, 2; 1) and has generator matrix

H =
⎛
⎝
111 000
100 310
001 301

⎞
⎠.
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In order to determine some cyclic codes with good parame-
ters, we will consider some optimal codes with respect to the
minimum distance. Applying the classical Singleton bound [8]
to a Z2Z4-additive code C of type (α, β; γ, δ; κ) and minimum
distance d , the following bound is obtained:

d − 1
2

≤ α

2
+ β − γ

2
− δ. (12)

According to [2], a code meeting the bound (12) is called
maximum distance separable with respect to the Singleton
bound, briefly MDSS.
By [1, Th. 19] it is known that C = 〈(b | 0), (
 | f h+2 f )〉

with b = x−1, 
 = 1 and f = h = 1 is an MDSS code of type
(α, β; α − 1, β; α − 1). Applying Theorem 18 to compute the
dual code of C one obtain that C⊥ = 〈(b̄ | 0), (
̄ | f̄ h̄ + 2 f̄ )〉
with b̄ = xα −1, 
̄ = θα(x), f̄ = θβ(x) and h̄ = x −1, which
is also an MDSS code. In fact, the binary image of C is the set
of all even weight vectors and the binary image of C⊥ is the
repetition code. Moreover, these are the only MDSS Z2Z4-
additive codes with more than one codeword and minimum
distance d > 1, as can be seen in [2].

Finally, we are going to see a pair of examples of self-dual
Z2Z4-additive cyclic codes, giving the generators and type of
these codes.

Generators Type
b = x10+ x8+ x7+ x3+ x+1, 
 =
x6 + x4 + x + 1, f h = y4 + 2y3 +
3y2 + y + 1, f = 1

( 14, 7; 8, 3; 7 )

b = x5 + 1, 
 = 0, f h = y5 −
1, f = 1

( 10, 5; 10, 0; 5 )

The second code in the table belongs to an infinite fam-
ily of self-dual Z2Z4-additive cyclic codes that was given
in [3, Th. 4].
Proposition 19: Let α be even and β odd. Let C = 〈(b | 0),

(
 | f h+2 f )〉 be a Z2Z4-additive cyclic code with b = x
α
2 −1,


 = 0, h = xβ − 1 and f = 1. Then C is a self-dual code of
type (α, β; β + α

2 , 0; α
2 ).

Proof: By Theorem 18, one obtains that b̄ = x
α
2 − 1,


̄ = 0, h̄ = xβ − 1 and f̄ = 1. Hence C is self-dual and,
by Theorem 5, it is of type (α, β; β + α

2 , 0; α
2 ).
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Abstract A binary linear code C is a Z2-double cyclic code if the set of coordinates can
be partitioned into two subsets such that any cyclic shift of the coordinates of both subsets
leaves invariant the code. These codes can be identified as submodules of the Z2[x]-module
Z2[x]/(xr − 1) × Z2[x]/(xs − 1). We determine the structure of Z2-double cyclic codes
giving the generator polynomials of these codes. We give the polynomial representation of
Z2-double cyclic codes and its duals, and the relations between the generator polynomials
of these codes. Finally, we study the relations between Z2-double cyclic and other families
of cyclic codes, and show some examples of distance optimal Z2-double cyclic codes.

Keywords Binary linear codes · Duality · Z2-double cyclic codes
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1 Introduction

Let Z2 be the ring of integers modulo 2. Let Zn
2 denote the set of all binary vectors of length

n. A non-empty subset of Zn
2 is a binary code and a subgroup of Z

n
2 is called a binary linear

code. In this paper we introduce a subfamily of binary linear codes, called Z2-double cyclic
codes, with the property that the set of coordinates can be partitioned into two subsets, the
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first r coordinates and the last s coordinates, such that any cyclic shift of the coordinates of
both subsets of a codeword is also a codeword.

Note that if one of these sets of coordinates is empty, for example r = 0, then we obtain
a binary cyclic code of length s. Therefore, binary cyclic codes are a special class of Z2-
double cyclic codes. Another special case is when r = s, where a Z2-double cyclic code is
permutation equivalent to a quasi-cyclic code of index 2 and even length. Theory of binary
cyclic codes and quasi-cyclic codes of index 2 can be found in [11].

Recently,Z2Z4-additive codes have been studied (see [4,7]). ForZ2Z4-additive codes, the
set of coordinates is partitioned into two subsets, the first one of binary coordinates and the
second one of quaternary coordinates. The simultaneous cyclic shift of the subsets of coor-
dinates of a codeword has been defined in [1], where the authors study Z2Z4-additive cyclic
codes and identify these codes as Z4[x]-modules of a certain ring. Furthermore Z2Z2[u]-
additive codes and Z2Z2[u]-additive cyclic and constacylic codes have been studied in [2]
and [3] respectively, where these codes are another special classes of mixed type codes.

Since [9], a lot of variants of linear and cyclic codes over different rings are studied.
Obviously, these codes have a theoretical interest, from a mathematical point of view, since
they are related to algebraic structures such as rings, ideals or modules. But the interest for
such codes is not purely mathematical because some of them have binary images with better
parameters than classical binary linear codes. Here, we present a new variant of cyclic codes,
the Z2-double cyclic codes, closely related to generalized quasi-cyclic codes of index 2 [13].
We give examples of Z2-double cyclic codes that are optimal with respect to the minimum
distance. The aim of this paper is to study the algebraic structure of Z2-double cyclic codes
and their dual codes. The paper is organized as follows. In Sect. 2, we give the definition ofZ2-
double cyclic codes, we find the relation between some canonical projections of these codes
and binary cyclic codes. Also we present theZ2[x]-moduleZ2[x]/(xr −1)×Z2[x]/(xs −1),
denoted by Rr,s . In Sect. 3, we determine the algebraic structure of a Z2-double cyclic code
and we state some relations between its generators. In Sect. 4, we study the concept of duality
and, for a Z2-double cyclic code, we determine the generators of the dual code in terms of
the generators of the code. In Sect. 5, we study the relations between Z2-double cyclic codes
and other families of cyclic codes such as Z4-cyclic codes and Z2Z4-additive cyclic codes.
Finally, in Sect. 6 we give tables with the generator polynomials of some specific Z2-double
cyclic codes and their dual codes. In some cases, the codes are optimal with respect to the
minimumdistance.We also give examples ofZ2-double cyclic codes obtained fromZ4-cyclic
and Z2Z4-additive cyclic codes.

2 Z2-double cyclic codes

Let C be a binary code of length n. Let r and s be non-negative integers such that n = r + s.
We consider a partition of the set of the n coordinates into two subsets of r and s coordinates
respectively, so that C is a subset of Zr

2 × Z
s
2.

Definition 1 Let C be a binary linear code of length n = r + s. The code C is called
Z2-double cyclic if

(u0, u1, . . . , ur−2, ur−1 | u′
0, u

′
1, . . . , u

′
s−2, u

′
s−1) ∈ C

implies

(ur−1, u0, u1, . . . , ur−2 | u′
s−1, u

′
0, u

′
1, . . . , u

′
s−2) ∈ C.
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Z2-double cyclic codes

Let u = (u0, u1, . . . , ur−1 | u′
0, . . . , u

′
s−1) be a codeword in C and let i be an integer. We

denote by

u(i) = (u0−i , u1−i , . . . , ur−1−i | u′
0−i , . . . , u

′
s−1−i ) (1)

the i th shift of u, where the subscripts are read modulo r and s, respectively. Note that
u(−1) = u(lcm(r,s)−1) and, in fact, u(i) = u(lcm(r,s)+i), for i ∈ Z.

Let C ⊆ Z
r
2 × Z

s
2 be a Z2-double cyclic code. Let Cr be the canonical projection of C

on the first r coordinates and Cs on the last s coordinates. Note that Cr and Cs are binary
cyclic codes of length r and s, respectively. The code C is called separable if it is the direct
product of Cr and Cs .

There is a bijective map between Z
r
2 × Z

s
2 and Z2[x]/(xr − 1) × Z2[x]/(xs − 1) given

by:

(u0, u1, . . . , ur−1 | u′
0, . . . , u

′
s−1) �→ (u0 + u1x + · · · + ur−1x

r−1 | u′
0 + · · · + u′

s−1x
s−1).

We denote the image of the vector u by u(x).

Definition 2 Denote the ring Z2[x]/(xr − 1) × Z2[x]/(xs − 1) by Rr,s . We define the
operation

� : Z2[x] × Rr,s → Rr,s

as

λ(x) � (p(x) | q(x)) = (λ(x)p(x) | λ(x)q(x)),

where λ(x) ∈ Z2[x] and (p(x) | q(x)) ∈ Rr,s .

The ring Rr,s with the external operation � is a Z2[x]-module. Let u(x) = (u(x) | u′(x))
be an element of Rr,s . Note that if we operate u(x) by x we get

x � u(x) = x � (u(x) | u′(x))
= x � (u0 + · · · + ur−2x

r−2 + ur−1x
r−1 | u′

0 + · · · + u′
s−2x

s−2 + u′
s−1x

s−1)

= (u0x + · · · + ur−2x
r−1 + ur−1x

r | u′
0x + · · · + u′

s−2x
s−1 + u′

s−1x
s)

= (ur−1 + u0x + · · · + ur−2x
r−1 | u′

s−1 + u′
0x + · · · + u′

s−2x
s−1).

Hence, x � u(x) is the image of the vector u(1). Thus, the operation of u(x) by x in Rr,s

corresponds to a shift of u. In general, xi � u(x) = u(i)(x) for all i .

3 Algebraic structure and generators

In this section, we shall study submodules of Rr,s . We describe the generators of such sub-
modules and state some properties. From now on, 〈S〉 will denote the submodule generated
by a subset S of Rr,s . Let πr : Rr,s → Z2[x]/(xr −1) and πs : Rr,s → Z2[x]/(xs −1) be the
canonical projections, and let N be a submodule of Rr,s . If πr (N ) = {0} (resp. πs(N ) = {0})
then we may consider that the generator polynomial of πr (N ) (resp. πs(N )) is xr − 1 (resp.
xs − 1). Define N ′ = {(p(x)|q(x)) ∈ N | q(x) = 0}. It is easy to check that N ′ ∼= πr (N ′)
by considering the map (p(x) | 0) �→ p(x).
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Theorem 1 The Z2[x]-module Rr,s is a noetherian Z2[x]-module, and every submodule N
of Rr,s can be written as

N = 〈(b(x) | 0), (�(x) | a(x))〉,
where b(x), �(x) ∈ Z2[x]/(xr − 1) with b(x) | (xr − 1), and a(x) ∈ Z2[x]/(xs − 1) with
a(x) | (xs − 1).

Proof By using the fact that Z2[x]/(xr − 1) and Z2[x]/(xs − 1) are principal ideal rings,
we have that Ns = πs(N ) and πr (N ′) are finitely generated. Moreover, since N ′ ∼= πr (N ′),
it follows that N ′ is finitely generated.

The generators of πr (N ′) may not be unique. Consider b(x) the generator of πr (N ′)
satisfying b(x) | (xr −1). Then (b(x) | 0) is a generator of N ′. Similarly, consider a(x) ∈ Ns

such that Ns = 〈a(x)〉 and a(x) | (xs − 1). Then there exists �(x) ∈ Z2[x]/(xr − 1) such
that (�(x) | a(x)) ∈ N .

We claim that

N = 〈(b(x) | 0), (�(x) | a(x))〉.
Let (p(x) | q(x)) ∈ N . We shall prove that (p(x) | q(x)) is generated by (b(x) | 0)

and (�(x) | a(x)). First, since q(x) = πs(p(x) | q(x)) ∈ Ns and Ns = 〈a(x)〉, there exists
λ(x) ∈ Z2[x] such that q(x) = λ(x)a(x). Moreover,

(p(x) | q(x)) − λ(x) � (�(x) | a(x)) = (p(x) − λ(x)�(x) | 0) ∈ N ′,

that is generated by (b(x) | 0). Then, there exists μ(x) ∈ Z2[x] such that (p(x)−λ(x)�(x) |
0) = μ(x) � (b(x) | 0). Thus,

(p(x) | q(x)) = μ(x) � (b(x) | 0) + λ(x) � (�(x) | a(x)).

Therefore, N is finitely generated by (b(x) | 0) and (�(x) | a(x)), and then Rr,s is a noetherian
Z2[x]-module. 
�

From the previous result, it is clear that we can identifyZ2-double cyclic codes inZr
2×Z

s
2

as submodules of Rr,s . Hence, any submodule of Rr,s is a Z2-double cyclic code. From now
on, we will denote by C indistinctly both the code and the corresponding submodule.

Note that if C = 〈(b(x) | 0), (�(x) | a(x))〉 is a Z2-double cyclic code, then the canon-
ical projections Cr and Cs are binary cyclic codes generated by gcd(b(x), �(x)) and a(x),
respectively. Moreover, the generator polynomials of Cr , Cs andC may not be unique. In the
following proposition we give some conditions to the generator polynomials of a Z2-double
cyclic code.

Proposition 1 Let C = 〈(b(x) | 0), (�(x) | a(x))〉 be a Z2-double cyclic code. Then, we
can assume that

1. Cs = 〈a(x)〉, with a(x)|(xs − 1),
2. πr (C ′) = 〈b(x)〉, with b(x)|(xr − 1),
3. deg(�(x)) < deg(b(x)).

Proof The conditions for a(x) and b(x) follow from the proof of Theorem 1. Now, suppose
that deg(�(x)) ≥ deg(b(x)). Let i = deg(�(x))−deg(b(x)) and letC1 = 〈(b(x) | 0), (�(x)+
xi � b(x) | a(x))〉.

On the one hand, deg(�(x)+xi �b(x)) < deg(�(x)) and since the generators ofC1 belong
to C , we have that C1 ⊆ C . On the other hand,

(�(x) | a(x)) = (�(x) + xi � b(x) | a(x)) + xi � (b(x) | 0).
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Then, 〈(�(x) | a(x))〉 ⊆ C1 and hence C ⊆ C1. It follows that C = C1, which implies that
we may consider deg(�(x)) < deg(b(x)). 
�

Example 1 Consider the code C1 generated by 〈(x2 + x + 1 | 0), (x + 1 | x4 + x3 + x2 +
x + 1)〉 ⊆ R3,5. Since (x + 1) � (x + 1 | x4 + x3 + x2 + x + 1) = (x2 + 1 | 0) and
(x2 + x + 1 | 0) belong to C1, it is easy to see that πr (C1) = 〈1〉. Clearly, the generators
of C1 are not as in Proposition 1 since 〈x2 + x + 1〉 
= πr (C1). Thus, we may consider
C1 = 〈(1 | 0), (0 | x4 + x3 + x2 + x + 1)〉, and these polynomials satisfy the conditions of
Proposition 1.

Proposition 2 Let C = 〈(b(x) | 0), (�(x) | a(x))〉 be a Z2-double cyclic code. Assume the
generator polynomials of C satisfy the conditions in Proposition 1. Then, b(x) | xs−1

a(x) �(x).

Proof By Proposition 1, N ′ = 〈(b(x) | 0)〉. We have that xs−1
a(x) � (�(x) | a(x)) ∈ N ′ and,

therefore, xs−1
a(x) �(x) ∈ 〈b(x)〉 and b(x) | xs−1

a(x) �(x). 
�

Corollary 1 Let C = 〈(b(x) | 0), (�(x) | a(x))〉 be a Z2-double cyclic code. Assume
the generator polynomials of C satisfy the conditions in Proposition 1. Then, b(x)
| xs−1

a(x) gcd(b(x), �(x)).

We have seen that Rr,s is a Z2[x]-module, and the product by x ∈ Z2[x] is equivalent
to the double right shift on the vector space Z

r
2 × Z

s
2. Moreover, we have that Zr

2 × Z
s
2 is

a Z2-module, where the operations are addition and multiplication by elements of Z2. Our
goal now is to find a set of generators for C as a Z2-module.

Proposition 3 Let C = 〈(b(x) | 0), (�(x) | a(x))〉 be a Z2-double cyclic code. Assume the
generator polynomials of C satisfy the conditions in Proposition 1. Define the sets

S1 = {(b(x) | 0), x � (b(x) | 0), . . . , xr−deg(b(x))−1 � (b(x) | 0)},
S2 = {(�(x) | a(x)), x � (�(x) | a(x)), . . . , xs−deg(a(x))−1 � (�(x) | a(x))}.

Then, S1 ∪ S2 forms a minimal generating set for C as a Z2-module.

Proof It is easy to check that the codewords of S1 ∪ S2 are linearly independent.
Let c(x) = p1(x) � (b(x) | 0) + p2(x) � (�(x) | a(x)) ∈ C . We have to check that

c(x) ∈ 〈S1 ∪ S2〉.
If deg(p1(x)) ≤ r − deg(b(x)) − 1, then p1(x) � (b(x) | 0) ∈ 〈S1〉. Otherwise, using

the division algorithm, we compute p1(x) = q1(x)
xr−1
b(x) + r1(x) with deg(r1(x)) ≤ r −

deg(b(x)) − 1, hence

p1(x) � (b(x) | 0) =
(
q1(x)

xr − 1

b(x)
+ r1(x)

)
� (b(x) | 0) = r1(x) � (b(x) | 0) ∈ 〈S1〉.

It follows that c(x) ∈ 〈S1 ∪ S2〉 if p2(x) � (�(x) | a(x)) ∈ 〈S1 ∪ S2〉.
If deg(p2(x)) ≤ s − deg(a(x)) − 1, then p2(x) � (�(x) | a(x)) ∈ 〈S2〉. If not, using

the division algorithm, consider p2(x) = q2(x)
xs−1
a(x) + r2(x), where deg(r2(x)) ≤ s −

deg(a(x)) − 1. Then,
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p2(x) � (�(x) | a(x)) =
(
q2(x)

xs − 1

a(x)
+ r2(x)

)
� (�(x) | a(x))

=
(
q2(x)

xs − 1

a(x)

)
� (�(x) | a(x)) + r2(x) � (�(x) | a(x))

= (q2(x)
xs − 1

a(x)
�(x) | 0) + r2(x) � (�(x) | a(x)).

To prove that p2(x) � (�(x) | a(x)) ∈ 〈S1 ∪ S2〉 first note that r2(x) � (�(x) | a(x)) ∈ 〈S2〉.
Finally, by Proposition 2, b(x) divides xs−1

a(x) �(x) and it follows that (q2(x)
xs−1
a(x) �(x) | 0) ∈

〈S1〉. Thus, c(x) ∈ 〈S1 ∪ S2〉. 
�
Corollary 2 Let C = 〈(b(x) | 0), (�(x) | a(x))〉 be a Z2-double cyclic code. Assume the
generator polynomials of C satisfy the conditions in Proposition 1. Then, C is a binary linear
code of dimension r + s − deg(b(x)) − deg(a(x)).

4 Duality

Let C be a Z2-double cyclic code and C⊥ be its dual code (see [10]). Taking a vector v of
C⊥, u · v = 0 for all u in C . Since u belongs to C , we know that u(−1) is also a codeword.
So, u(−1) · v = u · v(1) = 0 for all u ∈ C , therefore v(1) is in C⊥ and C⊥ is also a Z2-double
cyclic code. Consequently, we obtain the following proposition.

Proposition 4 Let C be aZ2-double cyclic code. Then the dual code of C is also aZ2-double
cyclic code.

We denote C⊥ = 〈(b̄(x) | 0), (�̄(x) | ā(x))〉, where b̄(x), �̄(x) ∈ Z2[x]/(xr − 1) with
b̄(x) | (xr − 1) and ā(x) ∈ Z2[x]/(xs − 1) with ā(x) | (xs − 1).

The reciprocal polynomial of a polynomial p(x) is xdeg(p(x)) p(x−1) and is denoted by
p∗(x). As in the theory of binary cyclic codes, reciprocal polynomials have an important role
in duality (see [11]).

We denote the polynomial
∑m−1

i=0 xi by θm(x). Using this notation we have the following
proposition.

Proposition 5 Let n,m ∈ N. Then, xnm − 1 = (xn − 1)θm(xn).

Proof It is well known that ym −1 = (y−1)θm(y). Replacing y by xn , the result follows. 
�
From now on, m denotes the least common multiple of r and s.

Definition 3 Let u(x) = (u(x) | u′(x)) and v(x) = (v(x) | v′(x)) be elements in Rr,s . We
define the map

◦ : Rr,s × Rr,s −→ Z2[x]/(xm − 1),

such that

◦(u(x), v(x)) =u(x)θm
r
(xr )xm−1−deg(v(x))v∗(x)+

+ u′(x)θm
s
(xs)xm−1−deg(v′(x))v′∗(x) mod (xm − 1).

The map ◦ is linear in each of its arguments. That is, ◦ is a bilinear map between Z2[x]-
modules.

From now on, we denote ◦(u(x), v(x)) by u(x) ◦ v(x). Note that u(x) ◦ v(x) belongs to
Z2[x]/(xm − 1).
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Proposition 6 Let u and v be vectors inZr
2×Z

s
2 with associated polynomials u(x) = (u(x) |

u′(x)) and v(x) = (v(x) | v′(x)), respectively. Then, v is orthogonal to u and all its shifts if
and only if

u(x) ◦ v(x) = 0.

Proof Let u(i) = (u0−i , u1−i , . . . , ur−1−i | u′
0−i , . . . , u

′
s−1−i ) be the i th shift of u. Then,

u(i) · v = 0 if and only if
r−1∑
j=0

u j−iv j +
s−1∑
k=0

u′
k−iv

′
k = 0.

Let Si = ∑r−1
j=0 u j−iv j + ∑s−1

k=0 u
′
k−iv

′
k . Computing u(x) ◦ v(x) we obtain

u(x) ◦ v(x) = θm
r
(xr )

⎡
⎣r−1∑
n=0

r−1∑
j=n

u j−nv j x
m−1−n +

r−1∑
n=1

r−1∑
j=n

u jv j−nx
m−1+n

⎤
⎦

+ θm
s
(xs)

[
s−1∑
t=0

s−1∑
k=t

u′
k−tv

′
j x

m−1−t +
s−1∑
t=1

s−1∑
k=t

u′
kv

′
k−t x

m−1+t

]
.

Then, arranging the terms, we have that

u(x) ◦ v(x) =
m−1∑
i=0

Si x
m−1−i mod (xm − 1).

This implies that u(x) ◦ v(x) = 0 if and only if Si = 0 for 0 ≤ i ≤ m − 1. 
�
Lemma 1 Let u(x) = (u(x) | u′(x)) and v(x) = (v(x) | v′(x)) be elements in Rr,s such
that u(x) ◦ v(x) = 0. If u′(x) or v′(x) equals 0, then u(x)v∗(x) ≡ 0 (mod (xr − 1)).
Respectively, if u(x) or v(x) equals 0, then u′(x)v′∗(x) ≡ 0 (mod (xs − 1)).

Proof Let u′(x) or v′(x) equals 0. Then

0 = u(x) ◦ v(x) = u(x)θm
r
(xr )xm−1−deg(v(x))v∗(x) + 0 mod (xm − 1).

Therefore, u(x)θm
r

(xr )xm−1−deg(v(x))v∗(x) = μ′(x)(xm − 1), for some μ′(x) ∈ Z2[x].
Let μ(x) = μ′(x)xdeg(v(x))+1. By Proposition 5, u(x)xmv∗(x) = μ(x)(xr − 1), and hence
u(x)v∗(x) ≡ 0 (mod (xr − 1)). The same argument can be used to prove the other case. 
�

The following proposition shows that the dual of a separable Z2-double cyclic code is
also separable.

Proposition 7 Let C = 〈(b(x) | 0), (�(x) | a(x))〉 be a separable Z2-double cyclic code.
Assume the generator polynomials ofC satisfy the conditions inProposition 1. Then �(x) = 0.
Moreover, C⊥ is a separableZ2-double cyclic code such that C⊥ = 〈( xr−1

b∗(x) | 0), (0 | xs−1
a∗(x) )〉.

Proof If C is separable, then C = Cr × Cs and clearly �(x) = 0. Hence, it is easy to see
that C⊥ = C⊥

r ×C⊥
s . By [11], we have that C

⊥
r = 〈 xr−1

b∗(x) 〉 and C⊥
s = 〈 xs−1

a∗(x) 〉. Therefore, the
statement follows. 
�

In view of Proposition 7, we shall focus on non-separable Z2-double cyclic codes for the
rest of the section. From now on, we will denote gcd(b(x), l(x)) by gb,l(x).
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Proposition 8 Let C = 〈(b(x) | 0), (�(x) | a(x))〉 be a Z2-double cyclic code. Assume the
generator polynomials of C satisfy the conditions in Proposition 1. Then,

|Cr | = 2r−deg(b(x))+κ , |Cs | = 2s−deg(a(x)),

|(Cr )
⊥| = 2deg(b(x))−κ , |(Cs)

⊥| = 2deg(a(x)),

|(C⊥)r | = 2deg(b(x)), |(C⊥)s | = 2deg(a(x))+κ ,

where κ = deg(b(x)) − deg(gb,l(x)).

Proof LetC be aZ2-double cyclic codewithC = 〈(b(x) | 0), (�(x) | a(x))〉, and assume the
generator polynomials of C satisfy the conditions in Proposition 1. Then, by Proposition 3,
C is generated by the matrix whose rows are the elements of the set S1 ∪ S2. The subcode
of C generated by the elements of S1 and the subcode generated by the elements of S2 have
generator matrices of the form

G1 = (
Ir−deg(b(x)) A 0

)
,

G2 = (
B D Is−deg(a(x))

)
,

respectively.
Consider the subcode C0 of C with 0 in the first r coodinates. Clearly C0 is generated by

elements in S2 and therefore the dimension of C0 is s − deg(a(x)) − κ , for some κ ≥ 0.
Taking into account κ and the matrices G1 and G2, we have that C is permutation equivalent
to a binary linear code with generator matrix of the form

G =
⎛
⎜⎝

Ir−deg(b(x)) A1 A2 0 0 0

0 Bκ B1 D1 Iκ 0

0 0 0 D2 R Is−deg(a(x))−κ

⎞
⎟⎠ ,

where Bκ is a square matrix of full rank. Note that κ = deg(b(x)) − deg(gb,l(x)). The
cardinalities of Cr , (Cr )

⊥,Cs and (Cs)
⊥ follow easily from G. The values of |(C⊥)r | and

|(C⊥)s | can be obtained from the projections on the first r and on the last s coordinates of
the following parity check matrix of C

H =
⎛
⎜⎝

At
1 Iκ 0 0 Bt

κ Bt
κ R

t

At
2 0 Ideg(b(x))−κ 0 Bt

1 Bt
1R

t

0 0 0 Ideg(a(x)) Dt
1 Dt

2 + Dt
1R

t

⎞
⎟⎠ .


�
Corollary 3 Let C = 〈(b(x) | 0), (�(x) | a(x))〉 be a Z2-double cyclic code with dual code
C⊥ = 〈(b̄(x) | 0), (�̄(x) | ā(x))〉. Assume the generator polynomials of C and C⊥ satisfy
the conditions in Proposition 1. Then,

deg(b̄(x)) = r − deg(gb,l(x)),

deg(ā(x)) = s − deg(a(x)) − deg(b(x)) + deg(gb,l(x)).

Proof It is easy to prove that (Cr )
⊥ is a cyclic code generated by b̄(x). Therefore, |(Cr )

⊥| =
2r−deg(b̄(x)). Moreover, by Proposition 8, |(Cr )

⊥| = 2deg(b(x))−κ with κ = deg(b(x)) −
deg(gb,l(x)). Thus, deg(b̄(x)) = r − deg(gb,l(x)).

Since C⊥ is a Z2-double cyclic code, (C⊥)s is a cyclic code generated by ā(x), and
hence |(C⊥)s | = 2s−deg(ā(x)). By Proposition 8, we have that |(C⊥)s | = 2deg(a(x))+κ with
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κ = deg(b(x)) − deg(gb,l(x)) and consequently deg(ā(x)) = s − deg(a(x)) − deg(b(x)) +
deg(gb,l(x)). 
�

The previous propositions and corollaries will be helpful to determine the relations
between the generator polynomials of a Z2-double cyclic code and the generator polyno-
mials of its dual code.

Proposition 9 Let C = 〈(b(x) | 0), (�(x) | a(x))〉 be a Z2-double cyclic code with dual
code C⊥ = 〈(b̄(x) | 0), (�̄(x) | ā(x))〉. Assume the generator polynomials of C and C⊥
satisfy the conditions in Proposition 1. Then,

b̄(x) = xr − 1

g∗
b,l(x)

.

Proof We have that (b̄(x) | 0) belongs to C⊥. Then,

(b(x) | 0) ◦ (b̄(x) | 0) = 0,

(�(x) | a(x)) ◦ (b̄(x) | 0) = 0.

Applying Lemma 1 to the previous equations, we obtain

b(x)b̄∗(x) ≡ 0 (mod (xr − 1)),

�(x)b̄∗(x) ≡ 0 (mod (xr − 1)).

Therefore, gb,l(x)b̄∗(x) ≡ 0 (mod (xr − 1)), and there exists μ(x) ∈ Z2[x] such that
gb,l(x)b̄∗(x) = μ(x)(xr−1).Moreover, gb,l(x) and b̄∗(x) divide (xr−1), and byCorollary 3
we have that deg(b̄(x)) = r − deg(gb,l(x)) and then b̄∗(x) = xr−1

gb,l (x)
. 
�

Proposition 10 Let C = 〈(b(x) | 0), (�(x) | a(x))〉 be a Z2-double cyclic code with dual
code C⊥ = 〈(b̄(x) | 0), (�̄(x) | ā(x))〉. Assume the generator polynomials of C and C⊥
satisfy the conditions in Proposition 1. Then,

ā(x) = (xs − 1)g∗
b,l(x)

a∗(x)b∗(x)
.

Proof Consider the codeword

b(x)

gb,l(x)
� (�(x) | a(x)) − �(x)

gb,l(x)
� (b(x) | 0) =

(
0 | b(x)

gb,l(x)
a(x)

)
.

Then, since (�̄(x) | ā(x)) ∈ C⊥, we have that (�̄(x) | ā(x)) ◦ (0 | b(x)
gb,l (x)

a(x)) = 0. Thus, by

Lemma 1, ā(x) a
∗(x)b∗(x)
g∗
b,l (x)

≡ 0 (mod (xs − 1)), and hence ā(x) a
∗(x)b∗(x)
g∗
b,l (x)

= (xs − 1)μ(x),

for someμ(x) ∈ Z2[x]. By Corollary 1, it follows that a∗(x)b∗(x)
g∗
b,l (x)

divides (xs −1). Therefore,

if a∗(x)b∗(x)
g∗
b,l (x)

≡ 0 (mod (xs − 1)) we may consider that a∗(x)b∗(x)
g∗
b,l (x)

= (xs − 1). By Corollary

3, deg(ā(x)) = s − deg(a(x)) − deg(b(x)) + deg(gb,l(x)), thus

deg(xs − 1) = s = deg

(
ā(x)

a∗(x)b∗(x)
g∗
b,l(x)

)
= deg((xs − 1)μ(x)).

Hence, we obtain that μ(x) = 1 and ā(x) = (xs−1)g∗
b,l (x)

a∗(x)b∗(x) . 
�
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Proposition 11 Let C = 〈(b(x) | 0), (�(x) | a(x))〉 be a non-separable Z2-double cyclic
code with dual code C⊥ = 〈(b̄(x) | 0), (�̄(x) | ā(x))〉. Assume the generator polynomials of
C and C⊥ satisfy the conditions in Proposition 1. Then,

�̄(x) = xr − 1

b∗(x)
λ(x),

where λ(x) = xm−deg(a(x))+deg(�(x))
(

�∗(x)
g∗
b,l (x)

)−1
mod

(
b∗(x)
g∗
b,l (x)

)
.

Proof Let c̄(x) = (b̄(x) | 0) + (�̄(x) | ā(x)) ∈ C⊥. Then

c̄(x) ◦ (b(x) | 0) = (b̄(x) | 0) ◦ (b(x) | 0) + (�̄(x) | ā(x)) ◦ (b(x) | 0)
= 0 + (�̄(x) | ā(x)) ◦ (b(x) | 0) = 0.

By Lemma 1, we have that �̄(x)b∗(x) ≡ 0 (mod (xr − 1)) and therefore

�̄(x) = xr − 1

b∗(x)
λ(x).

Computing (�̄(x) | ā(x)) ◦ (�(x) | a(x)) and arranging properly we obtain

(xm − 1)g∗
b,l(x)

b∗(x)

(
λ(x)xm−deg(�(x))−1 �∗(x)

g∗
b,l(x)

+ xm−deg(a(x))−1

)
,

that is congruent to 0 (mod (xm − 1)). Then, either(
λ(x)xm−deg(�(x))−1 �∗(x)

g∗
b,l(x)

+ xm−deg(a(x))−1

)
≡ 0 (mod (xm − 1)), (2)

or (
λ(x)xm−deg(�(x))−1 �∗(x)

g∗
b,l(x)

+ xm−deg(a(x))−1

)
≡ 0

(
mod

(
b∗(x)
g∗
b,l(x)

))
. (3)

Since b∗(x)
g∗
b,l (x)

divides xm − 1, clearly (2) implies (3). Hence,

λ(x)xm
�∗(x)
g∗
b,l(x)

= xm−deg(a(x))+deg(�(x)) mod

(
b∗(x)
g∗
b,l(x)

)
.

We have that xm ≡ 1 (mod
(

b∗(x)
g∗
b,l (x)

)
). Moreover, the greatest common divisor between

�(x)
gb,l (x)

and b(x)
gb,l (x)

is 1, and then �∗(x)
g∗
b,l (x)

is an invertible element modulo
(

b∗(x)
g∗
b,l (x)

)
. Therefore,

λ(x) = xm−deg(a(x))+deg(�(x))

(
�∗(x)
g∗
b,l(x)

)−1

mod

(
b∗(x)
g∗
b,l(x)

)
.


�
We summarize the previous results in the next theorem.

Theorem 2 Let C = 〈(b(x) | 0), (�(x) | a(x))〉 be a Z2-double cyclic code with dual code
C⊥ = 〈(b̄(x) | 0), (�̄(x) | ā(x))〉. Assume the generator polynomials of C and C⊥ satisfy
the conditions in Proposition 1. Then,
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1. b̄(x) = xr−1
g∗
b,l (x)

,

2. ā(x) = (xs−1)g∗
b,l (x)

a∗(x)b∗(x) ,

3. �̄(x) = xr−1
b∗(x) λ(x), where

λ(x) =
{
0, if C is separable,

xm−deg(a(x))+deg(�(x))
(

�∗(x)
g∗
b,l (x)

)−1
mod

(
b∗(x)
g∗
b,l (x)

)
, otherwise.

5 Relations between Z2-double cyclic codes and other codes

In this section, we study how Z2-double cyclic codes are related to other families of cyclic
codes, say Z4-cyclic codes and Z2Z4-additive cyclic codes. Since these families of codes
have part or all the coordinates over Z4, their generator polynomials also have coefficients
over the ring Z4. From now on, the binary reduction of a polynomial p(x) ∈ Z4[x] will be
denoted by p̃(x).

Let p(x) be a divisor of xn − 1 in Z2[x] with n odd and let ξ be a primitive nth root of
unity over Z2. The polynomial (p⊗ p)(x) is defined as the divisor of xn − 1 in Z2[x] whose
roots are the products ξ iξ j such that ξ i and ξ j are roots of p(x).

From [12] and [10], it is known that aZ4-cyclic code C of length n is generated by a single
element f (x)h(x)+ 2 f (x) ∈ Z4[x]/(xn − 1), where f (x)h(x)g(x) = xn − 1 in Z4[x], and
|C| = 4deg(g(x))2deg(h(x)).

Let u = (u0, . . . , un−1) be an element of Zn
4 such that ui = ũi + 2u′

i with ũi , u
′
i ∈ {0, 1}.

As in [9], the Gray map φ from Z
n
4 to Z

2n
2 is defined by

φ(u) = (u′
0, . . . , u

′
n−1 | ũ0 + u′

0, . . . , ũn−1 + u′
n−1).

Let u(x) = ũ(x)+2u′(x) be the polynomial representation of u ∈ Z
n
4. Then, the polynomial

version of the Gray map is φ(u(x)) = (u′(x) | ũ(x) + u′(x)). The Nechaev permutation is
the permutation π on Z2n

2 with n odd defined by

π(v0, v1, . . . , v2n−1) = (vτ(0), vτ(1), . . . , vτ(2n−1)),

where τ is the permutation on {0, 1, . . . , 2n − 1} given by
(1, n + 1)(3, n + 3) . . . (2i + 1, n + 2i + 1) . . . (n − 2, 2n − 2).

Let ψ be the map from Z
n
4 into Z

2n
2 defined by ψ = πφ, with n odd. The map ψ is called

the Nechaev–Gray map, [15]. Therefore we give the following theorem.

Theorem 3 ([15, Theorem 20]) Let C = 〈 f (x)h(x) + 2 f (x)〉 be a Z4-cyclic code of odd
length n and where f (x)h(x)g(x) = xn − 1. Let φ be the Gray map and let ψ be the
Nechaev–Gray map. The following properties are equivalent.

1. gcd( f̃ (x), (g̃ ⊗ g̃)(x)) = 1 in Z2[x];
2. φ(C) is a binary linear code of length 2n;
3. ψ(C) is a binary linear cyclic code of length 2n generated by f̃ (x)2h̃(x).

Using the last theorem, we can relate Z2-double cyclic codes to Z4-cyclic codes.

5.1 Z2-double cyclic codes versus Z4-cyclic codes

Let C be a Z4-cyclic code of length n, and w ∈ φ(C). The codeword w can be written as
(u′

0, . . . , u
′
n−1 | ũ0 + u′

0, . . . , ũn−1 + u′
n−1), for (u0, . . . , un−1) = u = φ−1(w) ∈ C. By
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definition of the Gray map, we have that w(1) is (u′
n−1, u

′
0, . . . , u

′
n−2 | ũn−1 + u′

n−1, ũ0 +
u′
0, . . . , ũn−2 + u′

n−2) = φ(un−1, u0, . . . , un−2). Therefore, since C is Z4-cyclic, we have
that w(i) ∈ φ(C).

In general, the Gray image of a linear code over Z4 is not linear. Hence, we shall consider
Z2-double cyclic codes as images of Z4-cyclic codes, C = 〈 f (x)h(x) + 2 f (x)〉, in the case
that such a code C has linear image under theGraymap; that is, when gcd( f̃ (x), (g̃⊗g̃)(x)) =
1 in Z2[x], by Theorem 3. Consequently, we obtain the following proposition.

Proposition 12 Let C = 〈 f (x)h(x) + 2 f (x)〉 be a Z4-cyclic code of odd length n, where
f (x)h(x)g(x) = xn − 1, and gcd( f̃ (x), (g̃ ⊗ g̃)(x)) = 1. Then, φ(C) is a Z2-double cyclic
code in Z

n
2 × Z

n
2 .

Our goal is to establish a relation between the generator polynomial of the Z4-cyclic code
C and its Z2-double cyclic image, φ(C).

Let i ∈ {2, 4}. If C is a Zi [x]-module and g1, . . . , gt ∈ C. Then 〈g1, . . . , gt 〉i will denote
the Zi [x]-submodule of C generated by g1, . . . , gt .

The following theorem is proved in [14, Theorem 8].

Theorem 4 Let n be odd and let f (x), h(x), g(x) be in Z4[x] such that f (x)h(x)g(x) =
xn −1. Then 〈 f (x)h(x)+2 f (x)〉4 = 〈 f̃ (x)h̃(x)〉2 +2〈 f̃ (x)〉2 if and only if gcd( f̃ (x), (g̃⊗
g̃)(x)) = 1 in Z2[x].
Lemma 2 Let C be a linear code over Z4 of type 2γ 4δ such that φ(C) is a linear code.
Let {ui }γi=1 be codewords of order two and {v j }δj=1 codewords of order four such that C =
〈{ui }γi=1, {v j }δj=1〉4. Then,

φ(C) = 〈{φ(ui )}γi=1, {φ(v j )}δj=1, {φ(2v j )}δj=1〉2.
Proof From [6, Lemma 3], it is known that if C is a linear code over Z4 of type 2γ 4δ such
that C = 〈{ui }γi=1, {v j }δj=1〉4, then

〈φ(C)〉2 = 〈{φ(ui )}γi=1, {φ(v j )}δj=1, {φ(2v j )}δj=1, {φ(2v j ∗ vt )}1≤ j<t≤δ〉2,
where u ∗ v denote the component-wise product for any u, v ∈ Z

n
4. We know that

φ(C) is linear if and only if 2u ∗ v ∈ C for all u, v ∈ C, [9]. Since φ(C) is a
binary linear code, then {2v j ∗ vt }1≤ j<t≤δ ∈ C. Therefore, 〈{φ(2v j ∗ vt )}1≤ j<t≤δ〉2 ⊆
〈{φ(ui )}γi=1, {φ(v j )}δj=1, {φ(2v j )}δj=1〉2. 
�
Theorem 5 Let C = 〈 f (x)h(x) + 2 f (x)〉4 be a Z4-cyclic code of odd length n, where
f (x)h(x)g(x) = xn − 1 and gcd( f̃ (x), (g̃ ⊗ g̃)(x)) = 1. Then,

φ(C) = 〈( f̃ (x)h̃(x) | 0), ( f̃ (x) | f̃ (x))〉2.
Proof By Theorem 4, the generators of C are 〈 f̃ (x)h̃(x)〉2 and 2〈 f̃ (x)〉2. By Proposition 12,
we have that φ(C) is a Z2-double cyclic code. Then, by Lemma 2, it is easy to see that the
generator polynomials of φ(C) are φ( f̃ (x)h̃(x)) and φ(2 f̃ (x)). The corresponding images
of the Gray map are φ( f̃ (x)h̃(x)) = (0 | f̃ (x)h̃(x)) and φ(2 f̃ (x)) = ( f̃ (x) | f̃ (x)), hence
φ(C) = 〈(0 | f̃ (x)h̃(x)), ( f̃ (x) | f̃ (x))〉2. Therefore,

φ(C) = 〈( f̃ (x)h̃(x) | 0), ( f̃ (x) | f̃ (x))〉2.

�
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5.2 Z2-double cyclic codes versus Z2Z4-additive cyclic codes

AZ2Z4-additive code C is a subgroup ofZα
2×Z

β
4 (see [4]). Since C is a subgroup ofZα

2×Z
β
4 , it

is also isomorphic to a commutative structure likeZγ
2 ×Z

δ
4 and it has |C| = 2γ+2δ codewords.

A Z2Z4-additive code C ⊆ Z
α
2 × Z

β
4 is called cyclic if the set of coordinates can be

partitioned into two subsets, the set of Z2 and the set of Z4 coordinates, denoted by X and Y ,
such that any cyclic shift of the coordinates of both subsets leaves invariant the code. As it
was done in (1), for (u, v) ∈ Z

α
2 ×Z

β
4 we also denote by (u, v)(1) such shift. These codes can

be identified as submodules of the Z4[x]-module Z2[x]/(xα − 1) × Z4[x]/(xβ − 1). From
[1] and [5], we know that if C ⊆ Z

α
2 ×Z

β
4 is a Z2Z4-additive cyclic code, where β is an odd

integer, then it is of the form

C = 〈(b(x) | 0), (�(x) | f (x)h(x) + 2 f (x))〉4,
where f (x)h(x)g(x) = xβ − 1 in Z4[x], b(x), �(x) ∈ Z2[x]/(xα − 1) with b(x)|(xα − 1),
deg(�(x)) < deg(b(x)), and b(x) divides xβ−1

f (x) �(x) (mod 2).
The extended Gray map � and the extended Nechaev–Gray map � are the maps from

Z
α
2 × Z

β
4 into Z

α+2β
2 given by

�(u, v) = (u, φ(v)), �(u, v) = (u, ψ(v)),

where u ∈ Z
α
2 , v ∈ Z

β
4 , φ is the Gray map and ψ is the Nechaev–Gray map.

Table 1 Optimal Z2-double cyclic codes

Code Generators [r, s] Parameters

C1 b(x) = x2 + x + 1, �(x) = x, a(x) = x + 1 [3,3] [ 6, 3, 3 ]∗

C2 b(x) = x2 + 1, �(x) = 1, a(x) = x2 + x + 1 [2,6] [ 8, 4, 4 ]∗s
C3 b(x) = x3 + x2 + x + 1, �(x) = x2 + x, a(x) = x + 1 [4,4] [ 8, 4, 4 ]∗s
C4 b(x) = x4+x3+x+1, �(x) = x2+x+1, a(x) = x2+x+1 [6,6] [ 12, 6, 4 ]∗s
C5 b(x) = x7+1, �(x) = x4+x2+x+1, a(x) = x4+x2+x+1 [7,7] [ 14, 3, 8 ]∗

C6 b(x) = x6 + x5 + x4 + x3 + x2 + x + 1, �(x)
= x3 + x2 + 1, a(x) = x4 + x2 + x + 1

[7,7] [ 14, 4, 7 ]∗

C7 b(x) = x4 + x3 + x2 + 1, �(x) = x3 + x + 1, a(x)
= x3 + x2 + 1

[7,7] [ 14, 7, 4 ]∗s

C8 b(x) = x7 + 1, �(x) = x3 + x + 1, a(x)
= x9 + x8 + x6 + x5 + x4 + x3 + 1

[7,14] [ 21, 5, 10 ]∗

C9 b(x) = x6 + x5 + x4 + x3 + x2 + x + 1, �(x)
= x4 + x3 + 1, a(x) = x5 + x2 + x + 1

[7,14] [ 21, 10, 7 ]∗

C10 b(x) = x6 + x5 + x4 + x3 + x2 + x + 1, �(x)
s = x + 1, a(x) = x3 + x2 + 1

[7,14] [ 21, 12, 5 ]∗

C11 b(x) = x3 + x2 + 1, �(x) = 1, a(x) = x2 + 1 [7,14] [ 21, 16, 3 ]∗

C12 b(x) = x2 + 1, �(x) = x + 1, a(x)
= x16 + x13 + x10 + x9 + x7 + x6 + x5 + x + 1

[2,30] [ 32, 14, 8 ]

C13 b(x) = x20 + x19 + x18 + x17 + x15 + x12 + x11 + x10

+ x9+ x8+ x5+ x3+ x2+ x+1, �(x) = x15+ x13+ x12

+ x11 + x9 + x8 + x7 + x5 + 1, a(x) = x6 + x4 + x3 + 1

[31,31] [ 62, 36, 10 ]
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Call CX (respectively CY ) the punctured code of C by deleting the coordinates outside
X (respectively Y ). Notice that if φ(CY ) and ψ(CY ) are binary linear codes, then �(C) and
�(C) are not necessary binary linear codes.

Example 2 Let C = 〈(x − 1 | x + 1)〉4 ⊂ Z
2
2 × Z

3
4 be a Z2Z4-additive cyclic code with

b(x) = 0, �(x) = x − 1, f (x) = 1, h(x) = x − 1 and g(x) = x2 + x + 1. Since f (x) = 1,
by Theorem 3, we have that φ(CY ) is linear. By [5], a generator matrix for C is⎛

⎝ 1 1 2 0 0
0 0 3 1 0
0 0 3 0 1

⎞
⎠ .

We know that �(C) is linear if and only if 2(u, v) ∗ (w, z) ∈ C for all (u, v), (w, z) ∈ C, [7].
Clearly, 2(0, 0, 3, 1, 0) ∗ (0, 0, 3, 0, 1) = (0, 0, 2, 0, 0) /∈ C. Therefore, �(C) is not a binary
linear code.

Theorem 6 Let C = 〈(b(x) | 0), (�(x) | f (x)h(x) + 2 f (x))〉4 ⊆ Z
α
2 × Z

β
4 be a Z2Z4-

additive cyclic code, where β is an odd integer and f (x)h(x)g(x) = xβ − 1. Let � be the
extended Nechaev–Gray map. If �(C) is a binary linear code, then �(C) is a Z2-double
cyclic code of length α + 2β and dimension α − deg(b(x)) + deg(h(x)) + 2 deg(g(x)).

Proof By the definition of�, the length of�(C) isα+2β and, since�(C) is a linear code, we
need to prove that �((u, v))(1) ∈ �(C) for all (u, v) ∈ C. By [15], we can easily deduce that
�((u, v))(1) = �((u, −v)(1)). We have that (u, −v)(1) ∈ C and consequently �((u, v))(1)

belongs to �(C). Hence, �(C) is a Z2-double cyclic code. Finally, since |�(C)| = |C|, we
have that |C| = 2α−deg(b(x))+deg(h(x))4deg(g(x)) by [1]. 
�

Table 2 Dual Z2-double cyclic codes

Code Generators of the dual codes [r, s] Parameters

C1 b̄(x) = x3 + 1, �̄(x) = x + 1, ā(x) = 1 [3,3] [ 6, 3, 3 ]

C2 b̄(x) = x2 + 1, �̄(x) = 1, ā(x) = x2 + x + 1 [2,6] [ 8, 4, 4 ]s

C3 b̄(x) = x3 + x2 + x + 1, �̄(x) = x2 + x, ā(x) = x + 1 [4,4] [ 8, 4, 4 ]s

C4 b̄(x) = x4+x3+x+1, �̄(x) = x2+x+1, ā(x) = x2+x+1 [6,6] [ 12, 6, 4 ]s

C5 b̄(x) = x3 + x2 + 1, �̄(x) = 1, ā(x) = 1 [7,7] [ 14, 11, 2 ]

C6 b̄(x) = x4 + x2 + x + 1, �̄(x) = x3 + x, ā(x) = 1 [7,7] [ 14, 10, 3 ]

C7 b̄(x) = x4 + x3 + x2 + 1, �̄(x) = x3 + x + 1, ā(x)
= x3 + x2 + 1

[7,7] [ 14, 7, 4 ]s

C8 b̄(x) = x4 + x3 + x2 + 1, �̄(x) = x, ā(x) = x + 1 [7,14] [ 21, 16, 3 ]

C9 b̄(x) = x7+1, �̄(x) = x4+ x3+ x2 + x, ā(x) = x3+ x +1 [7,14] [ 21, 11, 6 ]

C10 b̄(x) = x7 + 1, �̄(x) = x6 + x4 + x3 + x2 + x + 1, ā(x)
= x5 + x4 + x3 + 1

[7,14] [ 21, 9, 6 ]

C11 b̄(x) = x7 + 1, �̄(x) = x6 + x5 + x2 + 1, ā(x)
= x9 + x6 + x5 + x4 + x3 + x + 1

[7,14] [ 21, 5, 7 ]

C12 b̄(x) = x + 1, �̄(x) = 1, ā(x)
= x13 + x11 + x9 + x8 + x7 + x2 + x + 1

[2,30] [ 32, 18, 2 ]

C13 b̄(x) = x26 + x23 + x21 + x20 + x17 + x16 + x15 + x14

+ x13 + x9 + x8 + x6 + x5 + x4 + x2 + 1, �̄(x)
= x24+x23+x22+x21+x20+x19+x18+x17+x16+x13

+x11+x10+x8+x5+x3+x, ā(x) = x10+x9+x3+x+1

[31,31] [ 62, 26, 15 ]
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Z2-double cyclic codes

6 Examples

Table 1 gives some examples ofZ2-double cyclic codes which have the best knownminimum
distance. In the table, the parameters are [n, k, d], where n = r + s is the length, k is the
dimension, and d is the minimum distance of the code. It is denoted by [.]∗ when the code is
optimal according to [8]. It is denoted by [.]s when the code is self-dual. Table 2 shows the
generators and the parameters of the dual codes of the codes in Table 1.

In Sect. 5, we have studied how Z2-double cyclic codes are related to other families of
cyclic codes. By Theorem 5, we know how to construct the generators of Z2-double cyclic
codes starting from the generators of Z4-cyclic codes. Also, by Theorem 6 we know that the
image of a Z2Z4-additive cyclic code under the Nechaev–Gray map, whenever it is linear, is
also a Z2-double cyclic code. In Tables 3, 4, we present some examples of Z2-double cyclic
codes obtained from Z4-cyclic codes and Z2Z4-additive cyclic codes.
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Abstract. A ZprZps -additive code, r ≤ s, is a Zps -submodule of Zαpr × Zβps .

We introduce ZprZps -additive cyclic codes. These codes can be seen as Zps [x]-

submodules of Rα,βr,s =
Zpr [x]
〈xα−1〉 ×

Zps [x]
〈xβ−1〉 . We determine the generator polyno-

mials of a code over Rα,βr,s and a minimal spanning set over Zαpr × Zβps in terms

of the generator polynomials. We also study the duality in the module Rα,βr,s .
Our results generalise those for Z2Z4-additive cyclic codes.

1. Introduction

Z2Z4-additive codes have been introduced in [4] and intensely studied during
last years. The set of coordinates of a Z2Z4-additive code can be partitioned into
two subsets, the set of coordinates over Z2 and the set of coordinates over Z4. In
recent times, Z2Z4-additive codes were generalized to Z2Z2s -additive codes in [2],
and later to ZprZps -additive codes, in [3]. In [2] and [3], the authors determine, in
particular, the standard forms of generator and parity-check matrices and present
some bounds on the minimum distance.

One of the most studied class of codes is the class of cyclic codes. For example,
the algebraic structure and the generators of cyclic codes over Zpm have been studied
in [7] and [10]. Newly, the concept of double cyclic codes over rings appeared in
the literature. A double cyclic code is a code such that the set of coordinates can
be partitioned into two subsets such that any cyclic shift of the coordinates of both
subsets leaves invariant the code. Notice that if one of these sets of coordinates is
empty then we obtain a cyclic code. We can find examples of double cyclic codes
over the rings Z2 and Z4 in [5] and [9], respectively. Also, Z2Z4-additive cyclic
codes have been defined in [1]. These codes have the property that a simultaneous
cyclic shift of the coordinates over Z2 and the coordinates over Z4 of a codeword
is also a codeword. A Z2Z4-additive cyclic code is identified as a Z4[x]-module of a
certain ring. The duality of Z2Z4-additive cyclic codes has been studied in [6].

After all these papers, it becomes natural the study of ZprZps -additive cyclic
codes. On the one hand, as the study of ZprZps -additive codes, presented in [3],
with the cyclic property. And, on the other hand, as a generalization of the different
types of cyclic codes studied in [1, 5, 6, 9, 7, 10].

The aim of this paper is the study of the algebraic structure of ZprZps -additive
cyclic codes. We will assume that r ≤ s. As ZprZps -additive cyclic codes can be

2010 Mathematics Subject Classification: 94B05, 94B15, 94B60.
Key words and phrases: Additive codes, codes over rings, cyclic codes, duality.
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2 J. Borges, C. Fernández-Córdoba and R. Ten-Valls

identified as Zps [x]-submodules of
Zpr [x]
〈xα−1〉 ×

Zps [x]
〈xβ−1〉 then, Section 2 reviews cyclic

codes over Zpm and details a minimal generating set of a cyclic code over Zpm as a
Zpm -module. In Section 3, we recall definitions and basic results of ZprZps -additive
codes, defined in [3]. In Section 4, we give the definition of a ZprZps -additive
cyclic code, we discuss the algebraic structure of these codes, we determine the
generator polynomials of a ZprZps -additive cyclic code, and we describe a minimal
generating set for the code as a Zps-module in terms of the generator polynomials.
Finally, in Section 5, we study the duality of these codes over the Zps [x]-module
Zpr [x]
〈xα−1〉 ×

Zps [x]
〈xβ−1〉 .

2. Cyclic codes over Zpm

Let p be a prime number and let Zpm be the ring of integers modulo pm. A linear
code of length n over Zpm is a submodule of Znpm , and a cyclic code of length n over
Zpm is a linear code with the property that if (c0, · · · , cn−2, cn−1) is a codeword
then (cn−1, c0, · · · , cn−2) is also a codeword.

Let g1, . . . , gr be polynomials in a Zpm [x]-module. We denote by 〈g1, . . . , gr〉
the Zpm [x]-submodule, resp. 〈g1, . . . , gr〉Zpm the Zpm -submodule, generated by
g1, . . . , gr.

Let C be a cyclic code of length n over Zpm . We can identify C as an ideal of
Zpm [x]/〈xn−1〉. We assume that n is a positive integer such that it is coprime with
p. Therefore, the polynomial xn − 1 has a unique decomposition as a product of
basic irreducible polynomials that are pairwise coprime over Zpm [x].

Theorem 2.1 ([8, Theorem 3.5]). Let C be a cyclic code of length n over Zpm .
Then, there exist polynomials g0, g1, . . . , gm−1 in Zpm [x] such that C is generated by
{g0, pg1, . . . , pm−1gm−1} and gm−1 | gm−2 | · · · | g1 | g0 | (xn − 1).

Let C = 〈g0, pg1, . . . , pm−1gm−1〉 be a cyclic code of length n and let g = g0+pg1+
· · ·+pm−1gm−1. Since g0 is a factor of xn−1 and, for i = 1 . . .m−1, the polynomial
gi is a factor of gi−1, we may define the polynomials ĝ0 = xn−1

g0
and ĝi = gi−1

gi
for

i = 1 . . .m − 1. Define G =
∏m−1
i=0 ĝi. It is clear that Gg =

(∏m−1
i=0 ĝi

)
g = 0 over

Zpm [x]/〈xn − 1〉.
Lemma 2.2. Let C be a cyclic code of length n over Zpm . Let g0, g1, . . . , gm−1 in
Zpm [x] such that C = 〈g0, pg1, . . . , pm−1gm−1〉 and gm−1 | gm−2 | · · · | g1 | g0 |
(xn − 1), and let g = g0 + pg1 + · · ·+ pm−1gm−1. Then,

1. pm−1g = pm−1gm−1 Gĝ0 ,

2. pm−1−i(
∏i−1
j=0 ĝj)g = pm−1gm−1 Gĝi , for i = 1, . . . ,m− 1.

Proof. We have

pm−1g = pm−1g0 1
g1

g1
g2
. . . gm−3

gm−2

gm−2

gm−1
gm−1

= pm−1gm−1ĝ1ĝ2 . . . ĝm−2ĝm−1
= pm−1gm−1 Gĝ0 ,

and 1 holds. For i = 1, . . . ,m− 1 we have

pm−1−i(
∏i−1
j=0 ĝj)g = pm−1−i(

∏i−1
j=0 ĝj)p

igi

= pm−1−i(
∏i−1
j=0 ĝj)p

igi
1

gi+1

gi+1

gi+2
. . . gm−2

gm−1
gm−1

= pm−1gm−1ĝ0ĝ1 . . . ĝi−1ĝi+1 . . . ĝm−1
= pm−1gm−1 Gĝi ,

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX



On ZprZps -additive cyclic codes 3

and statement 2 is proved.

From Theorem 2.1, we get the following result.

Corollary 2.3. Let C be a cyclic code of length n over Zpm such that C is generated
by {g0, pg1, . . . , pm−1gm−1} with gm−1 | gm−2 | · · · | g1 | g0 | (xn − 1). Then,

|C| = p
∑m−1
i=0 (m−i) deg(ĝi).

Proof. From the previous definition of ĝi, these polynomials are the same polyno-
mials described in [8, Theorem 3.4].

In [7], it is proved that Zpm [x]/〈xn − 1〉 is a principal ideal ring. Furthermore,
they showed how are the generator polynomials of the ideals. Joining these results
we obtain the following.

Theorem 2.4 ([7]). Let C be a cyclic code of length n over Zpm . Let g0, g1, . . . , gm−1
polynomials in Zpm [x] such that C = 〈g0, pg1, . . . , pm−1gm−1〉 and gm−1 | gm−2 | · · · |
g1 | g0 | (xn−1). Then, the polynomial g = g0+pg1+ · · ·+pm−1gm−1 is a generator
polynomial of C, i.e., C = 〈g〉.
Theorem 2.5. Let C = 〈g〉 = 〈g0 + pg1 + · · ·+ pm−2gm−2 + pm−1gm−1〉 be a cyclic
code of length n over Zpm with gm−1 | gm−2 | · · · | g1 | g0 | (xn − 1). We define the
following sets

S0 =
{
xig
}deg(ĝ0)
i=0

=
{
xi(g0 + pg1 + · · ·+ pm−2gm−2 + pm−1gm−1)

}deg(ĝ0)
i=0

,

S1 =
{
xiĝ0g

}deg(ĝ1)
i=0

=
{
xi(pg1ĝ0 + · · ·+ pm−2gm−2ĝ0 + pm−1gm−1ĝ0)

}deg(ĝ1)
i=0

,

...

Sj =

{
xi(

j−1∏

t=0

ĝt)g

}deg(ĝj)

i=0

,

...

Sm−1 =

{
xi(

m−2∏

t=0

ĝt)g

}deg(ĝm−1)

i=0

=

{
xi(

m−2∏

t=0

ĝt)p
m−1gm−1

}deg(ĝm−1)

i=0

.

Then,

S =
m−1⋃

j=0

Sj

forms a minimal generating set for C as a Zpm-module.

Proof. Let c ∈ C. We have c = dg, with d ∈ Zpm [x]. If deg(d) < deg(ĝ0) then dg ∈
〈S0〉Zpm and c ∈ 〈S〉Zpm . Otherwise, compute d = d0ĝ0 +r0 with deg(r0) < deg(ĝ0),
so dg = d0ĝ0g + r0g and r0g ∈ 〈S0〉Zpm .

If deg(d0) < deg(ĝ1), then d0ĝ0g ∈ 〈S1〉Zpm and c ∈ 〈S〉Zpm . Otherwise, compute
d0 = d1ĝ1 + r1 with deg(r1) < deg(ĝ1), so d0ĝ0g = d1ĝ1ĝ0g + r1ĝ0g and r1ĝ0g ∈
〈S1〉Zpm .

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX



4 J. Borges, C. Fernández-Córdoba and R. Ten-Valls

In the worst-case scenario, and reasoning similarly, one obtains c ∈ 〈S〉Zpm if

dm−2(
∏m−2
t=0 ĝt)g ∈ 〈S〉Zpm . It is obvious that if deg(dm−2) < deg(ĝm−1) then

dm−2(
∏m−2
t=0 ĝt)g ∈ 〈Sm−1〉Zpm . If not, dm−2 = dm−1ĝm−1 + rm−1. Therefore,

dm−2(

m−2∏

t=0

ĝt)g = dm−1(

m−1∏

t=0

ĝt)g + rm−1(

m−2∏

t=0

ĝt)g = rm−1(

m−2∏

t=0

ĝt)g ∈ 〈Sm−1〉Zpm .

Since rm−1(
∏m−2
t=0 ĝt)g ∈ 〈Sm−1〉Zpm , we have c ∈ 〈S〉Zpm , hence S is a generating

set. If one compute |S| clearly

|S| =
m−1∑

i=0

(m− i) deg(ĝi).

By Corollary 2.3, |C| = |〈S〉| and S is a minimal generating set.

3. ZprZps-additive codes

Let Zpr and Zps be the rings of integers modulo pr and ps, respectively, with p
prime and r ≤ s. Since the residue field of both Zpr and Zps is Zp, an element b
of Zpr could be written uniquely as b = b0 + pb1 + p2b2 + · · · + pr−1br−1, and any
element a ∈ Zps as a = a0 + pa1 + p2a2 + · · ·+ ps−1as−1, where bi, aj ∈ Zp.

Then we can consider the surjective ring homomorphism

π : Zps → Zpr
a 7→ a mod pr.

Note that π(pi) = 0 if i ≥ r. Let a be an element of Zps and b be an element of
Zpr . We define a multiplication ∗ as follows: a ∗ b = π(a)b. Then, Zpr is a Zps -
module with the external multiplication ∗ given by π. Since Zpr is commutative,
∗ has the commutative property. Then, we can generalize this multiplication over

the ring Zαpr × Zβps as follows. Let a be an element of Zps and u = (u | u′) =

(u0, u1, . . . , uα−1 | u′0, u′1, . . . , u′β−1) ∈ Zαpr × Zβps . Then,

a ∗ u = (π(a)u0, π(a)u1, . . . , π(a)uα−1 | au′0, au′1, . . . , au′β−1).

With this external operation, the ring Zαpr × Zβps is also a Zps -module.

Definition 3.1. A ZprZps -additive code C is a Zps -submodule of Zαpr × Zβps .

The structure of the generator matrix in standard form and the type of ZprZps -
additive codes are defined and determined in [3].

Let CX be the canonical projection of C on the first α coordinates and CY on the
last β coordinates. Then, CX and CY are Zpr and Zps linear codes of length α and
β, respectively. A code C is called separable if C is the direct product of CX and CY ,
i.e., C = CX × CY .

Since r ≤ s, we consider the inclusion map

ι : Zpr ↪→ Zps
b 7→ b

.

Let u,v ∈ Zαpr × Zβps , then the inner product is defined in [3] as

u · v = ps−r
α−1∑

i=0

ι(uivi) +

β−1∑

j=0

u′jv
′
j ∈ Zps ,

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX



On ZprZps -additive cyclic codes 5

and the dual code of a ZprZps -additive code C is defined in a natural way as

C⊥ = {v ∈ Zαpr × Zβps | u · v = 0, ∀u ∈ C}.

Let C be a separable code in Zαpr × Zβps , then C⊥ is also separable and C⊥ =

C⊥X × C⊥Y .

4. ZprZps-additive cyclic codes

Definition 4.1. Let C ⊆ Zαpr × Zβps be a ZprZps -additive code. The code C is called
cyclic if

(u0, u1, . . . , uα−2, uα−1 | u′0, u′1, . . . , u′β−2, u′β−1) ∈ C
implies

(uα−1, u0, u1, . . . , uα−2 | u′β−1, u′0, u′1, . . . , u′β−2) ∈ C.

Let u = (u0, u1, . . . , uα−1 | u′0, . . . , u′β−1) be a codeword in C and i be an integer.

We then denote by u(i) = (u0−i, u1−i, . . . , uα−1−i | u′0−i, . . . , u′β−1−i) the ith shift
of u, where the subscripts are read modulo α and β, respectively. Note that if

C ⊆ Zαpr × Zβps is cyclic, then CX (resp. CY ) is a cyclic code over Zαpr (resp. Zβps).
We remark that in this paper the definition of a ZprZps -additive cyclic code is

well defined as long as Zpr and Zps are different rings, since the elements on the
first α coordinates and the ones in the last β coordinates belong to different rings,
Zpr and Zps , respectively. In the particular case that r = s, the cyclic code in

⊆ Zαpr × Zβpr is known in the literature as double cyclic code, see [5], [9]. The term

double cyclic is given in order to distinguish the cyclic code in Zαpr × Zβpr from the

cyclic code in Zα+βpr .

Denote by Rα,βr,s the ring Zps [x]/〈xα − 1〉 × Zps [x]/〈xβ − 1〉. There is a bijective

map between Zαpr × Zβps and Rα,βr,s given by:

(u0, u1, . . . , uα−1 | u′0, . . . , u′β−1) 7→ (u0 + u1x+ · · ·+ uα−1x
α−1 | u′0 + · · ·+ u′β−1x

β−1).

We denote the image of the vector u by u(x). Note that we can extend the maps
ι and π to the polynomial rings Zpr [x] and Zps [x] applying these maps to each of
the coefficients of a given polynomial.

Definition 4.2. Define the operation ∗ : Zps [x]×Rα,βr,s → Rα,βr,s as

λ(x) ∗ (t(x) | q(x)) = (π(λ(x))t(x) | λ(x)q(x)),

where λ(x) ∈ Zps [x] and (t(x) | q(x)) ∈ Rα,βr,s .

The ring Rα,βr,s with the external operation ∗ is a Zps [x]-module. Let u(x) =

(u(x) | u′(x)) be an element of Rα,βr,s . Note that if we operate u(x) by x we get

x ∗ u(x) = x ∗ (u(x) | u′(x))

= (u0x+ · · ·+ uα−2x
α−1 + uα−1x

α | u′0x+ · · ·+ u′β−2x
β−1 + u′β−1x

β)

= (uα−1 + u0x+ · · ·+ uα−2x
α−1 | u′β−1 + u′0x+ · · ·+ u′β−2x

β−1).

Hence, x ∗u(x) is the image of the vector u(1). Thus, the operation of u(x) by x in
Rα,β corresponds to a shift of u. In general, xi ∗ u(x) = u(i)(x) for all i.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX



6 J. Borges, C. Fernández-Córdoba and R. Ten-Valls

4.1. Algebraic structure and generators of cyclic codes. In this section,
we study submodules of Rα,βr,s . We describe the generators of such submodules
and state some properties. From now on, 〈S〉 will denote the Zps [x]-submodule
generated by a subset S of Rα,βr,s .

For the rest of the discussion we will consider that α and β are coprime integers
with p. From this assumption, we know that Zpr [x]/(xα − 1) and Zps [x]/(xβ − 1)
are principal ideal rings, see [7], [8].

Theorem 4.3. Every submodule C of the Zps [x]-module Rα,βr,s can be written as

C = 〈(b(x) | 0), (`(x) | a(x))〉,
where b(x), a(x) are generator polynomials in Zpr [x]/(xα − 1) and Zps [x]/(xβ − 1)
resp., and `(x) ∈ Zpr [x]/(xα − 1).

Proof. Let ψX : Rα,βr,s → Zpr [x]/〈xα − 1〉 and ψY : Rα,βr,s → Zps [x]/〈xβ − 1〉 be the

canonical projections, let C be a submodule of Rα,βr,s . Define C′ = {(p(x)|q(x)) ∈ C |
q(x) = 0}. It is easy to check that C′ ∼= ψX(C′) by (p(x) | 0) 7→ p(x). Hence, by
Theorem 2.4, ψX(C′) is finitely generated and so is C′. Let b(x) be a generator of
ψX(C′), then (b(x) | 0) is a generator of C′.
As Zps [x]/〈xβ − 1〉 is also a principal ideal ring, then CY = ψY (C) is generated
by one element. Let a(x) ∈ CY such that CY = 〈a(x)〉, then there exists `(x) ∈
Zpr [x]/〈xα − 1〉 such that (`(x) | a(x)) ∈ C.
We claim that

C = 〈(b(x) | 0), (`(x) | a(x))〉.
Let (p(x) | q(x)) ∈ C, then q(x) = ψY (p(x) | q(x)) ∈ CY . So, there exists λ(x) ∈
Zps [x] such that q(x) = λ(x)a(x). Now,

(p(x) | q(x))− λ(x) ∗ (`(x) | a(x)) = (p(x)− π(λ(x))`(x) | 0) ∈ C′.
Then, there exists µ(x) ∈ Zps [x] such that (p(x)−π(λ(x))`(x) | 0) = µ(x)∗(b(x) | 0).
Thus,

(p(x) | q(x)) = µ(x) ∗ (b(x) | 0) + λ(x) ∗ (`(x) | a(x)).

So, C is finitely generated by 〈(b(x) | 0), (`(x) | a(x))〉.

From the previous results, it is clear that we can identify codes in Zαpr × Zβps
that are cyclic as submodules of Rα,βr,s . So, any submodule of Rα,βr,s is a cyclic code.
From now on, we will denote by C indistinctly both the code and the corresponding
submodule.

In the following, a polynomial f(x) ∈ Zpr [x] or Zps [x] will be denoted simply by
f .

Proposition 4.4. Let C ⊆ Zαpr × Zβps be a ZprZps-additive cyclic code. Then, there
exist polynomials ` and b0 | b1 | · · · | br−1 | (xα − 1) over Zpr [x], and polynomials
a0 | a1 | · · · | as−1 | (xβ − 1) over Zps [x] such that

C = 〈(b0 + pb1 + · · ·+ pr−1br−1 | 0), (` | a0 + pa1 + · · ·+ ps−1as−1)〉.
Proof. Let C be a ZprZps -additive cyclic code. By Theorem 4.3, there exist poly-
nomials b, ` ∈ Zps [x]/〈xα − 1〉 and a ∈ Zps [x]/〈xβ − 1〉 such that C = 〈(b |
0), (` | a)〉. By Theorem 2.4, one can consider b = b0 + pb1 + · · · + pr−1br−1
and a = a0 + pa1 + · · · + ps−1as−1 such that br−1|br−2| . . . |b1|b0|(xα − 1) and
as−1|as−2| . . . |a1|a0|(xβ − 1).
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On ZprZps -additive cyclic codes 7

For the rest of the discussion any cyclic code C over Zαpr × Zβps is of the form

C = 〈(b | 0), (` | a)〉, where b = b0 + pb1 + · · · + pr−1br−1 and a(x) = a0 + pa1 +
· · ·+ ps−1as−1, for polynomials bi and aj as in Proposition 4.4. Since b0 is a factor
of xα − 1 and for i = 1 . . . r− 1 the polynomial bi is a factor of bi−1, we will denote

b̂0 = xα−1
b0

, b̂i = bi−1

bi
for i = 1 . . . r − 1, and b̂r = br−1. In the same way, we define

â0 = xβ−1
a0

, âj =
aj−1

aj
for j = 1 . . . s− 1, and âs = as−1.

Proposition 4.5. Let C ⊆ Zαpr × Zβps be a ZprZps-additive cyclic code. Then,

s−1∏

t=0

ât ∗ (` | a) ∈ 〈(b | 0)〉.

Proof.
∏s−1
t=0 ât ∗ (` | a) = xβ−1

as−1
∗ (` | a) = (π(x

β−1
as−1

)` | xβ−1as−1
a) = (π(x

β−1
as−1

)` | 0).

Theorem 4.6. Let C ⊆ Zαpr × Zβps be a ZprZps-additive cyclic code. Define

Bj =

{
xi(

j−1∏

t=0

b̂t) ∗ (b | 0)

}deg(b̂j)−1

i=0

,

for 0 ≤ j ≤ r − 1, and

Ak =

{
xi(

k−1∏

t=0

ât) ∗ (` | a)

}deg(âk)−1

i=0

,

for 0 ≤ k ≤ s− 1. Then,

S =



r−1⋃

j=0

Bj


⋃

(
s−1⋃

t=0

At

)

forms a minimal generating set for C as a Zps-module. Moreover,

|C| = p
∑r−1
i=0 (r−i) deg(b̂i)+

∑s−1
j=0(s−j) deg(âj).

Proof. By Theorem 2.5, it is clear that the elements in S are Zps -linearly indepen-

dent since
(⋃r−1

j=0 Bj

)
X

and
(⋃s−1

t=0 At

)
Y

are minimal generating sets for the codes

CX and CY , respectively. Let c be a codeword of C, then c = q ∗ (b | 0) + d ∗ (` | a).

Reasoning similarly as in Theorem 2.5, q ∗ (b | 0) ∈ 〈⋃r−1j=0 Bj〉Zps . So we have to

prove that d ∗ (` | a) ∈ 〈S〉Zps .
If deg(d) < deg(â0) then d∗(` | a) ∈ 〈A0〉Zps and c ∈ 〈S〉Zps . Otherwise, compute

d = d0â0 + r0 with deg(r0) < deg(â0). Then, d ∗ (` | a) = d0â0 ∗ (` | a) + r0 ∗ (` | a)
and r0 ∗ (` | a) ∈ 〈A0〉Zps .

In the worst-case scenario and reasoning similarly, one obtains that c belongs to
〈S〉Zps if ds−2(

∏s−2
t=0 ât)∗(` | a) ∈ 〈S〉Zps . It is obvious that if deg(ds−2) < deg(âs−1)

then ds−2(
∏s−2
t=0 ât)∗ (` | a) ∈ 〈As−1〉Zps , if not, ds−2 = ds−1âs−1 +rs−1. Therefore,

ds−2

(
s−2∏

t=0

ât

)
∗ (` | a) = ds−1

(
s−1∏

t=0

ât

)
∗ (` | a) + rs−1

(
s−2∏

t=0

ât

)
∗ (` | a).
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On the one hand, rs−1(
∏s−2
t=0 ât) ∗ (` | a) ∈ 〈As−1〉Zps . On the other hand,

ds−1(
∏s−1
t=0 ât) ∗ (` | a) = ds−1(

∏s−1
t=0 ât) ∗ (` | 0) and then

ds−1(
s−1∏

t=0

ât) ∗ (` | a) = f ∗ (b | 0) ∈ 〈
r−1⋃

j=0

Bj〉Zps .

Thus, c ∈ 〈S〉Zps and S is a minimal generating set for C.
The order of an element v of an abelian group, ord(v), is the smallest positive

integer m such that m · v = 0. Let C be a ZprZps -additive code. Define

Cpi = {v = (v | v′) ∈ C | ord(v) = pi and ord(v′) = pi}.
Let k0 be the dimension of Cpr restricted in the first α coordinates, i.e., k0 =

dim((Cpr )X). Define ki = dim((Cpr−i)X) −∑i−1
j=0 kj , for i = 1, . . . , r − 1. The

code C is of type (α, β; k0, k1, . . . , kr−1; l0, . . . , ls−1) if it is group isomorphic to

Zk0pr × Zk1pr−1 × · · · × Zkr−1
p × Zl0ps × · · · × Zls−1

p . With this definition, it is clear that

|C| = p
∑r−1
i=0 (r−i)ki+

∑s−1
j=0(s−j)lj . The type and the generator matrices of ZprZps -

additive codes were given in [3].

Example 4.7. In this example, we show the standard form of the generator matrix,
according to [3], of a Z4Z8-additive code of type (α, β; k0, k1; l0, l1, l2).




Ik0 B0,1 B0,2 0 0 2T0,1 2T0,2
0 2Ik1 2B1,2 0 0 0 4T1,2
0 S0,1 S0,2 Il0 A0,1 A0,2 A0,3

0 0 2S1,2 0 2Il1 2A1,2 2A1,3

0 0 0 0 0 4Il2 4A2,3



.

In this example, C22 is generated by



Ik0 B0,1 B0,2 0 0 2T0,1 2T0,2
0 2S0,1 2S0,2 2Il0 2A0,1 2A0,2 2A0,3

0 0 2S1,2 0 2Il1 2A1,2 2A1,3


 ,

and C2 is generated by



2Ik0 2B0,1 2B0,2 0 0 4T0,1 4T0,2
0 2Ik1 2B1,2 0 0 0 4T1,2
0 0 0 4Il0 4A0,1 4A0,2 4A0,3

0 0 0 0 4Il1 4A1,2 4A1,3

0 0 0 0 0 4Il2 4A2,3



.

The following result relates the type and the generator polynomials of a ZprZps -
additive code when r = 1.

Proposition 4.8. Let C be a ZpZps-additive cyclic code of type (α, β; k0; l0, . . . , ls−1).
Then

• k0 = α− deg(gcd(b, x
β−1
as−2

l)),

• lj = deg(âj) for j ∈ {0, . . . , s− 2},
• ls−1 = deg(âs−1) + deg(gcd(b, x

β−1
as−2

l))− deg(b).

Proof. By Theorem 4.6, it follows from the sets A0, . . . , As−2 that lj = deg(âj) for
j ∈ {0, . . . , s− 2}. By the definition, k0 is the dimension of the space generated by
the firsts α coordinates of B0 and As−1 that it is generated by the greatest common
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divisor of b and xβ−1
as−2

l. Therefore, k0 = α−deg(gcd(b, x
β−1
as−2

l)). Finally, by Theorem

4.6, since |C| = pdeg(b̂)+
∑s−1
j=0(s−j) deg(âj) = pk0+

∑s−1
j=0(s−j)lj and deg(b̂) = α− deg(b),

the following equality is straightforward

ls−1 = deg(âs−1) + deg(gcd(b,
xβ − 1

as−2
l))− deg(b).

For the general case, it is easy to prove that, for i ∈ {0, . . . , s−r−1}, li = deg(âi).
But the computation of the remaining parameters become a really meticulous and
tedious work. This is because one has to obtain the generator matrix in standard
form, described in [3], as the proper linear combination of the sets Bj and Ak from
Theorem 4.6.

5. Duality for cyclic codes

Let C be a ZpZps -additive cyclic code and let C⊥ be the dual code of C. Taking

a vector v of C⊥, u ·v = 0, for all u in C. Since u belongs to C, we know that u(−1)

is also a codeword. So, u(−1) · v = u · v(1) = 0 for all u from C, therefore v(1) is in
C⊥ and C⊥ is also a cyclic code. Consequently, we obtain the following proposition.

Proposition 5.1. Let C ⊆ Zαpr × Zβps be a ZprZps-additive cyclic code. Then, the
dual code of C is also a ZprZps-additive cyclic code.

Proposition 5.2. Let C ⊆ Zαpr × Zβps be a ZprZps-additive cyclic code. Then,

|C⊥| = p
∑r
i=1 i deg(b̂i)+

∑s
j=1 j deg(âj),

Proof. It is well known that |Zαpr × Zβps | = |C||C⊥| = pαr+βs and that |C⊥| = pl, for

some l. By Theorem 4.6, |C| = p
∑r−1
i=0 (r−i) deg(b̂i)+

∑s−1
j=0(s−j) deg (âj). Therefore,

l = αr + βs−∑r−1
i=0 (r − i) deg(b̂i) +

∑s−1
j=0(s− j) deg (âj)

=
∑r
i=1 i deg(b̂i) +

∑s
j=1 j deg (âj).

Finally, we exhibit a polynomial operation equivalent to the inner product of
vectors, as in [6].

The reciprocal polynomial of a polynomial p(x) is xdeg(p(x))p(x−1) and is denoted

by p∗(x). We denote the polynomial
∑m−1
i=0 xi by θm(x), and the least common

multiple of α and β by m.

Definition 5.3. Let u(x) = (u(x) | u′(x)) and v(x) = (v(x) | v′(x)) be elements in
Rα,βr,s . We define the map

◦ : Rα,βr,s ×Rα,βr,s −→ Zps [x]/〈xm − 1〉,
such that

◦(u(x),v(x)) =ps−rι(u(x)v∗(x))θm
r

(xr)xm−1−deg(v(x))+

+ u′(x)v′
∗
(x)θm

s
(xs)xm−1−deg(v

′(x)) mod (xm − 1).
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10 J. Borges, C. Fernández-Córdoba and R. Ten-Valls

The map ◦ is linear in each of its arguments; i.e., if we fix the first entry of the
map invariant, while letting the second entry vary, then the result is a linear map.
Similarly, when fixing the second entry invariant. Then, the map ◦ is a bilinear
map between Zps [x]-modules.

From now on, we denote ◦(u(x),v(x)) by u(x) ◦ v(x). Note that u(x) ◦ v(x)
belongs to Zps [x]/〈xm − 1〉.

Theorem 5.4. Let u and v be vectors in Zαpr × Zβps with associated polynomials
u(x) = (u(x) | u′(x)) and v(x) = (v(x) | v′(x)), respectively. Then, v is orthogonal
to u and all its shifts if and only if

u(x) ◦ v(x) = 0.

Proof. Let u(i) = (u0−iu1−i . . . uα−1−i | u′0−i . . . u′β−1−i) be the ith shift of u. Then,

u(i) · v = 0 if and only if ps−r
α−1∑

j=0

ι(uj−ivj) +

β−1∑

k=0

u′k−iv
′
k = 0 mod ps.

Let Si = ps−r
∑α−1
j=0 ι(uj−ivj) +

∑β−1
k=0 u

′
k−iv

′
k. One can check the equality

u(x) ◦ v(x) = ps−rθm
α

(xα)



α−1∑

n=0

α−1∑

j=n

ι(uj−nvj)x
m−1−n +

α−1∑

n=1

α−1∑

j=n

ι(ujvj−n)xm−1+n




+ θm
β

(xβ)

(
β−1∑

t=0

β−1∑

k=t

u′k−tv
′
jx

m−1−t +

β−1∑

t=1

β−1∑

k=t

u′kv
′
k−tx

m−1+t
)

mod (xm − 1).

Then, arranging the terms one obtains

u(x) ◦ v(x) =
m−1∑

i=0

Six
m−1−i mod (xm − 1).

Thus, u(x) ◦ v(x) = 0 if and only if Si = 0, for 0 ≤ i ≤ m− 1.

Theorem 5.4 shows that ◦ is the corresponding polynomial operation to the inner
product of vectors. Finally, the following example illustrates this correspondence.

Example 5.5. Let R4,5
3,9 = Z4

3 × Z5
9, then the inner product is

u · v = 32−1
4−1∑

i=0

ι(uivi) +
5−1∑

j=0

u′jv
′
j ∈ Z9.
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Let u = (1, 1, 1, 1 | 1, 1, 1, 1, 1) and v = (1, 0, 1, 0 | 2, 0, 1, 0, 0). Clearly, all the shifts
of v are orthogonal to u. Then,

u(x) ◦ v(x) = (x3 + x2 + x+ 1 | x4 + x3 + x2 + x+ 1) ◦ (x2 + 1 | x3 + 2)

= 32−1ι
(
(x3 + x2 + x+ 1)(x2 + 1)∗

)
θ 20

4
(x4)x20−1−2

+ (x4 + x3 + x2 + x+ 1)(x3 + 2)
∗
θ 20

5
(x5)x20−1−3 mod (x20 − 1)

= 3(x3 + x2 + x+ 1)(x2 + 1)θ5(x4)x17

+ (x4 + x3 + x2 + x+ 1)(2x3 + 1)θ4(x5)x16 mod (x20 − 1)

= 5x38 + 5x37 + 8x36 + 4x18 + 4x17 + x16 mod (x20 − 1)

= 0.
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1 Introduction

Linear codes over finite rings have attracted a great attention after the famous
paper written by Hammons et al. in 1994 ([11]) where algebraic structures are
presented for some well-known nonlinear binary codes via a Gray map. After
this paper, there have been and are still many studies on codes over rings.
Recently, codes over mixed alphabet rings viewed as submodules have been
studied. The first of these studies is an interesting paper authored by Borges et
al. (2010) presenting Z2Z4-additive codes as Z4 submodules (additive groups)

of Zα2 × Zβ4 where α and β are positive integers [7]. Later, Aydogdu and Siap
generalized these additive codes to codes over Z2×Z2s ([3]) and Zpr ×Zps ([4])
where r and s (1 ≤ r < s) are positive integers and p is prime. The mixed
alphabet approach has brought other possible choices and also new directions
to be explored. In one of the such studies, Aydogdu et al. have introduced
Z2Z2[u] codes where Z2[u] = {0, 1, u, 1 + u} and u2 = 0 as submodules in
[5] recently. Although, the structure of these codes is similar to the structure
of codes over Z2 × Z4, these codes have some advantages compared to Z2Z4-
additive codes. For example, the Gray images of linear codes over Z2Z2[u] are
also binary linear codes, however, this is not always the case for codes over Z2Z4.
Another advantage of working over such submodules is that, the factorization
of polynomials in Z2[x] is also valid since Z2 is a subring of Z2[u] and Hensel’s
lift is not necessary.

Recently, Abualrub et al. defined cyclic codes for Z2Z4-additive codes [2].
Inspired by this paper, Aydogdu et al. presented the structure of cyclic and
constacyclic codes and their duals in [6].

In this paper we generalize the results of the papers [5] and [6] as Z2Z2[u3]-
linear and cyclic codes and determine the spanning sets of both cyclic codes and
their duals. We also give some examples of optimal binary codes derived from
the Z2Z2[u3]-cyclic codes.

2 Z2Z2[u
3]-linear codes

Consider the finite binary field Z2 = {0, 1} and the finite ring Z2 +uZ2 +u2Z2 =
R3 =

{
0, 1, u, 1 + u, u2, 1 + u2, u+ u2, 1 + u+ u2

}
where u3 = 0. It is clear that

the ring Z2 is a subring of R3. We construct the set

Z2R3 = {(v, v′) |v ∈ Z2 and v′ ∈ R3} .
This set can not be made an R3-submodule with respect to scalar multiplication
directly. We need to define an auxiliary map

η : R3 → Z2 (1)

η
(
a+ ub+ u2c

)
= a,

where η(0) = 0, η(1) = 1, η(u) = 0, η(1 + u) = 1, η(u2) = 0, η(1 + u2) =
1, η(u+u2) = 0 and η(1+u+u2) = 1. Now, it is not difficult to show that η is a
ring homomorphism. For an element d ∈ R3, define the following multiplication

d · (v, v′) = (η(d)v, dv′) .

2



This is a well-defined scalar multiplication. In fact this multiplication can be
generalized over the set Zr2 × Rs3 in the following way. For any d ∈ R3 and
v = (v0, v1, ..., vr−1, v

′
0, v
′
1, ..., v

′
s−1) ∈ Zr2 ×Rs3 define

d · v =
(
η(d)v0, η(d)v1, ..., η(d)vr−1,dv

′
0, dv

′
1, ..., dv

′
s−1

)
.

This definition leads to the following result.

Lemma 2.1. The set Zr2 ×Rs3 is an R3-module with respect to the scalar mul-
tiplication defined above.

Definition 2.2. A non-empty subset C of Zr2 × Rs3 is called a Z2Z2[u3]-linear
code if C is an R3-submodule of Zr2 ×Rs3.

Definition 2.3. We define a Gray map φ : R3 → Z4
2 as φ(0) = 0000, φ(1) =

0101, φ(u) = 0011, φ(1 + u) = 0110, φ(u2) = 1111, φ(1 + u2) = 1010, φ(u +
u2) = 1100, and φ(1 + u+ u2) = 1001. It is easy to see that φ is a linear map.
We can also generalize this Gray map for all v = (v0, v1, ..., vr−1) ∈ Zr2 and
v′ = (v′0, v

′
1, ..., v

′
s−1) ∈ Rs3 as follows

Φ : Zr2 ×Rs3 → Zn2
Φ(v, v′) =

(
v0, v1, ..., vr−1,φ(v′0), φ(v′1), ..., φ(v′s−1)

)
.

Hence, the binary image Φ (C) = C of a Z2Z2[u3]-linear code C is also a linear
code of length n = r + 4s.

2.1 Generator matrices of Z2Z2[u
3]-linear codes

In this subsection, we determine standard forms of generator matrices of Z2Z2[u3]-
linear codes whose rows consist of minimal spanning sets. First, we define the
type of a code. For v′ ∈ R3, v

′ can be written uniquely as v′ = a + ub + u2c
where a, b, c ∈ Z2. And also, the ring R3 is isomorphic to Z3

2 as an additive
group. Therefore, if C is a Z2Z2[u3]-linear code then it is additively isomorphic
to a group of the form Zk02 × Z3k1

2 × Z2k2
2 × Zk32 . So, under these parameters,

we say that the Z2Z2[u3]-linear code C is of type (r, s; k0; k1, k2, k3) and hence
C has 2k023k122k22k3 codewords.

Theorem 2.4. Let C be a Z2Z2[u3]-linear code of type (r, s; k0; k1, k2, k3). Then
C is permutation equivalent to a Z2Z2[u3]-linear code with the following standard
form generator matrix

GS =




Ik0 Ā01 0 0 0 u2T01

0 S01 Ik1 A01 A02 + uB02 A03 + uB03 + u2C03

0 S11 0 uIk2 uA12 uA13 + u2B13

0 0 0 0 u2Ik3 u2A23


 (2)

where Ā01, A01, A02, A03, A12, A13, A23, B02, B03, B13 and C03 and further S01, S11

and T01 are matrices over Z2.
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Proof. Let Cs be the shortened code obtained by restricting C to its last s
coordinates. Since Cs is a linear code over R3, we can put the generator matrix
of Cs into the following form




Ik1 A′01 A′02 + uB′02 A′03 + uB′03 + u2C ′03

0 uIk2 uA′12 uA′13 + u2B′13

0 0 u2Ik u2A′23


 .

Now getting back to the original generator matrix, we have



S1 S2 Ik1 A′01 A′02 + uB′02 A′03 + uB′03 + u2C ′03

S3 S4 0 uIk2 uA′12 uA′13 + u2B′13

S5 S6 0 0 u2Ik u2A′23




where for i ∈ {1, 2, 3, 4, 5, 6}, Si’s are matrices with entries from Z2. Next, by
applying necessary row operations to last k3 rows and row and column opera-
tions to the first r coordinates we can rearrange the former matrix as




S′1 S′2 Ik1 A′′01 A′′02 + uB′′02 A′′03 + uB′′03 + u2C ′′03

S′3 S′4 0 uIk2 uA′′12 uA′′13 + u2B′′13

0 0 0 0 u2Ik3 u2A′′23

Ik0 S′6 0 0 u2Ik′3 u2A24


 .

Finally, by applying the necessary row and column operations to the above
matrix, we can easily obtain the standard form generator matrix in (2).

Example 1. Let C be a Z2Z2[u3]-linear code generated by the matrix

G =




1 1 0 u u+ u2 1 + u 1 + u2

0 1 0 1 u u2 0
0 1 1 0 u2 0 u2

1 1 1 u2 u u+ u2 0


 .

Hence, we can write the standard form of this matrix easily as follows.

GS =




1 1 1 0 0 0 0
0 0 1 1 0 0 u
0 1 0 0 1 0 1
0 1 1 0 0 u u+ u2


 (3)

Therefore, C is of type (3, 4; 1; 2, 1, 0) and C has 21 ·23·2 ·22 ·20 = 512 codewords.

2.2 Parity-check matrices of Z2Z2[u
3]-linear codes

In this subsection, we give standard form of generator matrices of the dual code
C⊥ of a Z2Z2[u3]-linear code C. We define a new inner product for v,w ∈ Zr2×Rs3
as

v ·w = u2

(
r∑

i=1

viwi

)
+

r+s∑

j=r+1

vjwj .

Next, with respect to this inner product, we can also define the dual code C⊥
in the usual way

C⊥ = {w ∈ Zr2 ×Rs3 | v ·w = 0 for all v ∈ C} .
It is easy to prove that C⊥ is also a Z2Z2[u3]-linear code.
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Theorem 2.5. Let C be a Z2Z2[u3]-linear code with the standard form generator
matrix as in (2). Then,

H =




Āt01 Ir−k0 uSt11 0 0
T t01 0 P Āt13 +At23A

t
12 At23 Is−k1−k2−k3

0 0 uAt12 uIk3 0
0 0 u2Ik2 0 0


 (4)

is the generator matrix of the dual code C⊥ (the parity-check matrix of C) where

P =




u2St01 + uSt11A
t
01

Āt03 + Āt13A
t
01 +At23Ā

t
02 +At23A

t
12A

t
01

uĀt02 + uAt12A
t
01

u2At01




and

Ā02 = A02 + uB02, Ā03 = A03 + uB03 + u2C03, and Ā13 = A13 + uB13.

Proof. It can be easily checked thatGS ·HT = 0. Therefore, every row ofH is or-
thogonal to the rows of GS . In other words, the submodule spanned by the rows
of H is a submodule of C⊥. The first r−k0 rows of (4) are linearly independent
with the others and contribute 2(r−k0) codewords. The other rows contribute
23(s−k1−k2−k3)22k32k2 many codewords. Since all rows are linearly indepen-
dent, the subspace generated by H has cardinality 2(r−k0)23(s−k1−k2−k3)22k32k2 .
Hence, |C||C⊥| =

(
2k023k122k22k3

) (
2(r−k0)23(s−k1−k2−k3)22k32k2

)
= 2r+3s. Con-

sequently, the rows of the matrix H generate all dual space and hence H is in
the desired matrix.

Corollary 2.6. Let C be a Z2Z2[u3]-linear code of type (r, s; k0; k1, k2, k3) with
generator matrix in the standard form as in (2) and let δ = rank(S11). Then,
the dual code C⊥ is of type (r, s; r − k0 − δ; s− k1 − k2 − k3, k3 + δ, k2 − δ).

Example 2. Let C be a Z2Z2[u3]-linear code of type (3, 4; 1; 2, 1, 0) with the
generator matrix (3). Then the parity-check matrix of C is

HS =




1 1 0 0 u2 u 0
1 0 1 u2 0 u 0
0 0 0 u 1 1 + u 1
0 0 0 0 0 u2 0




and therefore C⊥ is of type (3, 4; 1; 1, 1, 0) .

3 Z2Z2[u
3]-cyclic codes

Recently, new generalizations of cyclic codes over mixed alphabet codes have
been introduced. For the codes over mixed alphabet, the set of coordinates
are partitioned into two subsets, such that any simultaneous cyclic shift of the
coordinates of both subsets leaves the code invariant. The generators of both
codes and their duals have been studied by several authors ([2, 6, 8] and [9]).
Here, we introduce Z2Z2[u3]-cyclic codes and study their properties.
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Definition 3.1. Let C be a Z2Z2[u3]-linear code of length n = r+ s. C is called
cyclic if

(v0, v1, . . . , vr−2, vr−1 | v′0, v′1, . . . , v′s−2, v
′
s−1) ∈ C

implies
(vr−1, v0, v1, . . . , vr−2 | v′s−1, v

′
0, v
′
1, . . . , v

′
s−2) ∈ C.

Let v = (v0, v1, . . . , vr−2, vr−1 | v′0, v′1, . . . , v′s−2, v
′
s−1) be a codeword in C

and i be an integer, then the ith shift of v is denoted by

v(i) = (v0−i, v1−i, . . . , vr−1−i | v′0−i, . . . , v′s−1−i)

where the subscripts are taken modulo r and s, respectively.
Let Cr be the canonical projection of C on the first r coordinates and Cs

on the last s coordinates. Since the canonical projection is a linear map, Cr
is a binary cyclic code of length r and Cs is an R3 cyclic code of length s. If
C = Cr × Cs, then C is called separable.

There is a bijective map between Zr2×Rs3 and Z2[x]/(xr−1)×R3[x]/(xs−1)
given by

(v0, v1, . . . , vr−1 | v′0, . . . , v′s−1) 7→ (v0 + v1x + · · ·+ vr−1x
r−1 | v′0 + · · ·+ v′s−1x

s−1).

We denote the image of the vector v by v(x).

Definition 3.2. Let λ(x) = λ0 + λ1x + · · · + λtx
t ∈ R3[x] and (p(x) | q(x)) ∈

Rr,s = Z2[x]/(xr − 1)×R3[x]/(xs − 1).
We define a scalar multiplication

∗ : R3[x]×Rr,s → Rr,s

by
λ(x) ∗ (p(x) | q(x)) =

(
η(λ(x))p(x) | λ(x)q(x)

)

where η is the map defined in (1) and η(λ(x)) = η(λ0) + η(λ1)x+ · · ·+ η(λt)x
t.

Therefore, Rr,s with the scalar multiplication ∗ is an R3[x]-module. Let
v(x) = (v(x) | v′(x)) be an element of Rr,s. Note that if we multiply v(x) by x
we get

x ∗ v(x) = x ∗ (v(x) | v′(x))

= (v0x+ · · ·+ vr−2x
r−1 + vr−1x

r | v′0x+ · · ·+ v′s−2x
s−1 + v′s−1x

s)

= (vr−1 + v0x+ · · ·+ vr−2x
r−1 | v′s−1 + v′0x+ · · ·+ v′s−2x

s−1).

Hence, x ∗v(x) is the image of the vector v(1). Thus, the multiplication of v(x)
by x in Rr,s corresponds to a shift of v. In general, xi ∗ v(x) = v(i)(x) for all i.

3.1 Generator polynomials over Rr,s

In this subsection, we study submodules of Rr,s and describe their generators
and state some related results. We focus on studying a particular case where
the rings Z2[x]/(xr − 1) and R3[x]/(xs − 1) are both principal ideal rings. In
the sequel, we assume that s is an odd integer [1].

Also note that 〈S〉 denotes the submodule generated by a subset S of Rr,s.
The following theorem plays an important role in the study of cyclic codes over
Rr,s.
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Theorem 3.3. Let s be an odd integer. The R3[x]-module Rr,s is a Noetherian
R3[x]-module, and every submodule C of Rr,s can be expressed by

C = 〈(f(x) | 0), (`(x) | g(x) + ua(x) + u2a2(x))〉,
where f(x), `(x), g(x), a(x), a2(x) ∈ Z2[x] with f(x) | (xr − 1) and a2(x) | a(x) |
g(x) | (xs − 1).

Proof. Let πr : Rr,s → Z2[x]/(xr − 1) and πs : Rr,s → R3[x]/(xs − 1) be
the canonical projections and C be a submodule of Rr,s. As R3[x]/(xs − 1) is
Noetherian, Cs = πs(C) is finitely generated.
Define C′ = {(p(x)|q(x)) ∈ C | q(x) = 0}. It is easy to check that C′ ∼= πr(C′)
by (p(x) | 0) 7→ p(x). Hence Z2[x]/(xr − 1) is Noetherian, and πr(C′) is finitely
generated and so is C′.
Let f(x) be a generator of πr(C′). Then f(x) | (xr − 1) and (f(x) | 0) is a
generator of C′. Let g(x), a(x), a2(x) ∈ Z2[x] such that Cs = 〈g(x) + ua(x) +
u2a2(x)〉. Then, a2(x) | a(x) | g(x) | (xs−1) and there exists `(x) ∈ Z2[x]/(xr−
1) such that (`(x) | g(x) + ua(x) + u2a2(x)) ∈ C.
We claim that

C = 〈(f(x) | 0), (`(x) | g(x) + ua(x) + u2a2(x))〉.
Let (p(x) | q(x)) ∈ C. Then, q(x) = πs(p(x) | q(x)) ∈ Cs. So, there exists
λ(x) ∈ R3[x] such that q(x) = λ(x)(g(x) + ua(x) + u2a2(x)). Now,

(p(x) | q(x))−λ(x)∗ (`(x) | g(x)+ua(x)+u2a2(x)) = (p(x)−λ(x)`(x) | 0) ∈ C′.
Hence, there exists µ(x) ∈ R3[x] such that (p(x)−λ(x)`(x) | 0) = µ(x) ∗ (f(x) |
0). Thus,

(p(x) | q(x)) = µ(x) ∗ (f(x) | 0) + λ(x) ∗ (`(x) | g(x) + ua(x) + u2a2(x)).

So, C is finitely generated by {f(x) | 0), (`(x) | g(x) + ua(x) + u2a2(x))} and
Rr,s is a Noetherian R3[x]-module.

From the previous results, it is clear that we can identify Z2Z2[u3]-cyclic
codes in Zr2 ×Rs3 as submodules of Rr,s. So, any submodule of Rr,s is a cyclic
code. From now on, we denote by C indistinctly both the code and the corre-
sponding submodule.

Note that if C is a Z2Z2[u3]-cyclic code with C = 〈(f(x) | 0), (`(x) | g(x) +
ua(x) + u2a2(x))〉, then the canonical projection Cr is a binary cyclic code gen-
erated by gcd(f(x), `(x)) and the canonical projection Cs is an R3 cyclic code
generated by g(x) + ua(x) + u2a2(x).

Proposition 3.4. Let C = 〈(f(x) | 0), (`(x) | g(x) + ua(x) + u2a2(x))〉 be a
Z2Z2[u3]-cyclic code. Then, we can assume that deg(`(x)) < deg(f(x)).

Proof. Suppose that deg(`(x)) ≥ deg(f(x)). Let i = deg(`(x))− deg(f(x)) and
C′ be a code generated by

C′ = 〈(f(x) | 0), (`(x) + xi ∗ f(x) | g(x) + ua(x) + u2a2(x))〉.
On one hand, deg(`(x) + xi ∗ f(x)) < deg(`(x)) and since the generators of C′
belong to C, we have C′ ⊆ C. On the other hand,

(`(x) | g(x)+ua(x)+u2a2(x)) = (`(x)+xi∗f(x) | g(x)+ua(x)+u2a2(x))+xi∗(f(x) | 0).

Then, 〈(`(x) | g(x)+ua(x)+u2a2(x))〉 ⊆ C′ and hence C ⊆ C′. Thus, C = C′.
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Proposition 3.5. Let C = 〈(f(x) | 0), (`(x) | g(x) + ua(x) + u2a2(x))〉 be a
Z2Z2[u3]-cyclic code. Then, f(x) | xs−1

a2(x)`(x).

Proof. Let π be the projective homomorphism of R3[x]-modules defined by

π : C −→ R3[x]/(xs − 1)
(p1(x) | p2(x)) −→ p2(x).

It can be easily checked that ker(π) = 〈(f(x) | 0)〉.
Now, consider xs−1

a2(x) ∗ (`(x) | g(x) + ua(x) + u2a2(x)) = ( x
s−1
a2(x)`(x) | 0). So,

xs − 1

a2(x)
∗ (`(x) | g(x) + ua(x) + u2a2(x)) ∈ ker(π) = 〈(f(x) | 0)〉.

Thus, f(x) | xs−1
a2(x)`(x).

Corollary 3.6. Let C = 〈(f(x) | 0), (`(x) | g(x) + ua(x) + u2a2(x))〉 be a
Z2Z2[u3]-cyclic code. Then, f(x) | xs−1

a2(x) gcd(`(x), f(x)).

We have seen that Rr,s is an R3[x]-module, and also multiplication by x ∈
R3[x] corresponds to the right shift on Zr2×Rs3. Moreover, we know that Zr2×Rs3
is an R3-module, where the operations are addition and scalar multiplication
by elements of R3.

So, our goal is to find a set of generators for C as an R3-module. We denote
R3-linear combinations of elements of a subset S ⊆ Rr,s by 〈S〉R3

= {∑i λisi |
λi ∈ R3, si ∈ S}, and we call a set S an R3-linear independent set if the relation∑
i λisi = 0 implies that λisi = 0 for all i.

Proposition 3.7. Let C = 〈(f(x) | 0), (`(x) | g(x) + ua(x) + u2a2(x))〉 be
a Z2Z2[u3]-cyclic code such that g(x)h(x) = xs − 1, g(x) = a0(x)a(x) and
a(x) = a1(x)a2(x). Define the sets

S1 = {xi ∗ (f(x) | 0)}r−deg(f(x))−1
i=0 ,

S2 = {xi ∗ (`(x) | g(x) + ua(x) + u2a2(x))}deg(h(x))−1
i=0 ,

S3 = {xi ∗ (`(x)h(x) | ua(x)h(x) + u2a2(x)h(x))}deg(a0(x))−1
i=0 , and

S4 = {xi ∗ (`(x)h(x)a0(x) | u2a2(x)h(x)a0(x))}deg(a1(x))−1
i=0 .

Then, S = S1 ∪ S2 ∪ S3 ∪ S4 forms a minimal generating set for C as an R3-
module.

Proof. If c is a codeword of C, then c = q ∗ (f | 0) + d ∗ (` | g + ua + u2a2).
Reasoning similarly as in [2, Theorem 13], we have q ∗ (f | 0) ∈ 〈S1〉R3 . Now,
we need to show that d ∗ (` | g + ua+ u2a2) ∈ 〈S〉R3 .

If deg(d) < deg(h), then d ∗ (` | g + ua + u2a2) ∈ 〈S2〉R3
and c ∈ 〈S〉R3

.
Otherwise, compute d = d0h + r0 with deg(r0) < deg(h), so d ∗ (` | g + ua +
u2a2) = d0h∗(` | g+ua+u2a2)+r0∗(` | g+ua+u2a2) and r0∗(` | g+ua+u2a2) ∈
〈S2〉R3 .

If deg(d0) < deg(a0), then d0h ∗ (` | g+ ua+ u2a2) ∈ 〈S3〉R3 and c ∈ 〈S〉R3 .
Otherwise, compute d0 = d1a0 + r1 with deg(r1) < deg(a0), so d0 ∗ (h` | uha+
u2ha2) = d1a0 ∗ (h` | uha + u2ha2) + r1 ∗ (`h | uha + u2ha2) and r1 ∗ (`h |
uha+ u2ha2) ∈ 〈S3〉R3

.
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If deg(d1) < deg(a1), then d1ha0∗(` | g+ua+u2a2) ∈ 〈S4〉R3
and c ∈ 〈S〉R3

.
Otherwise, compute d1 = d2a1 + r2 with deg(r2) < deg(a1), so d1 ∗ (ha0` |
u2ha0a2) = d2a1∗(ha0` | u2ha0a2)+r2∗(ha0` | u2ha0a2). Therefore, r2∗(ha0` |
u2ha0a2) ∈ 〈S4〉R3 . Also, d2a1 ∗ (ha0` | u2ha0a2) = (d2ha0a1` | 0) and by
Proposition 3.5 it belongs to 〈S1〉R3 . Thus, c ∈ 〈S〉R3 .

Remark: Note that if f = gcd(f, `), then the code C is separable and hence
`(x) = 0.

Corollary 3.8. Let C = 〈(f(x) | 0), (`(x) | g(x) + ua(x) + u2a2(x))〉 be a
Z2Z2[u3]-cyclic code such that g(x)h(x) = xs − 1, g(x) = a0(x)a(x) and a(x) =
a1(x)a2(x). Then, |C| = 2r−deg(f)8deg(h)4deg(a0)2deg(a1).

Proposition 3.9. Let C = 〈(f(x) | 0), (`(x) | g(x) + ua(x) + u2a2(x))〉 be a
Z2Z2[u3]-cyclic code of type (r, s; k0; k1, k2, k3) such that g(x)h(x) = xs − 1,
g(x) = a0(x)a(x) and a(x) = a1(x)a2(x). Then, k0 = r − deg(gcd(f, a0h`)),
k1 = deg(h), k2 = deg(a0) and k3 = deg(a1) + deg(gcd(f, a0h`))− deg(f).

Proof. The parameters k1 and k2 are clear from Proposition 3.7. The parameter
k0 is the dimension of the space that generates the codewords of order two in
the first r coordinates. Again by Proposition 3.7, it is clear that this space
is generated by the polynomials f and a0h`. Since the ring of the projection
on the first r coordinates is a polynomial ring and thus a principal ideal ring,
we can conclude that it is generated by the greatest common divisor of the two
polynomials. Then, k0 = r−deg(gcd(f, a0h`)). Finally, since |C| = 2k08k24k22k3

and by Corollary 3.8, we have k3 = deg(a1) + deg(gcd(f, a0h`))− deg(f).

3.2 Duality on Rr,s

Let C be a Z2Z2[u3]-cyclic code and C⊥ be the dual code of C. If we take an
element v of C⊥, then clearly we have w·v = 0 for all w in C. Since w belongs to
C, we know that w(−1) (the left cyclic shift by one position) is also a codeword.
So, w(−1) · v = w · v(1) = 0 for all w from C, therefore v(1) is in C⊥ and C⊥ is
also a Z2Z2[u3]-cyclic code. Consequently, we obtain the following proposition.

Proposition 3.10. Let C be a Z2Z2[u3]-cyclic code. Then, the dual code of C
is also a Z2Z2[u3]-cyclic code. Furthermore

C⊥ = 〈(f̄(x) | 0), (¯̀(x) | ḡ(x) + uā(x) + u2ā2(x))〉,

where f̄(x), ¯̀(x), ḡ(x), ā(x), ā2(x) ∈ Z2[x] with f̄(x) | (xr − 1) and ā2(x) | ā(x) |
ḡ(x) | (xs − 1).

Proposition 3.11. Let C = 〈(f(x) | 0), (`(x) | g(x) + ua(x) + u2a2(x))〉 be a
Z2Z2[u3]-cyclic code with g = a0a and a = a1a2. Then,

|C⊥| = 2deg(f)8deg(a2)4deg(a1)2deg(a0).

Proof. Since |C||C⊥| = 2r8s and |C| = 2r−deg(f)8deg(h)4deg(a0)2deg(a1), by Corol-
lary 3.8, the result follows immediately.

The reciprocal polynomial of a polynomial p(x) is xdeg(p(x))p(x−1) and is
denoted by p∗(x). As in the theory of binary cyclic codes, reciprocal polynomials
have an important role in the duality (see [12]).
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We denote the polynomial
∑m−1
i=0 xi by θm(x). Using this notation we give

the following proposition.

Proposition 3.12. Let n,m ∈ N. Then, xnm − 1 = (xn − 1)θm(xn).

Proof. It is well known that ym − 1 = (y − 1)θm(y). So, we have the result by
replacing y with xn.

From now on, m denotes the least common multiple of r and s.

Definition 3.13. Let w(x) = (w(x) | w′(x)) and v(x) = (v(x) | v′(x)) be any
two elements in Rr,s. Define the map

◦ : Rr,s ×Rr,s −→ R3[x]/(xm − 1),

such that

◦(w(x),v(x)) =u2(w(x)θm
r

(xr)xm−1−deg(v(x))v∗(x))+

+ w′(x)θm
s

(xs)xm−1−deg(v′(x))v′
∗
(x) mod (xm − 1).

The map ◦ is bilinear, i.e., if we fix the first entry of the map, while letting
the second entry vary, then the result is a linear map. Similarly we have the
linearity for the second component.

From now on, we denote ◦(w(x),v(x)) by w(x) ◦ v(x). Note that w(x) ◦
v(x) ∈ R3[x]/(xm − 1).

Proposition 3.14. Let w and v be elements in Zr2 ×Rs3 with associated poly-
nomials w(x) = (w(x) | w′(x)) and v(x) = (v(x) | v′(x)), respectively. Then, w
is orthogonal to v and all of its shifts if and only if

w(x) ◦ v(x) = 0 mod (xm − 1).

Proof. Let v(i) = (v0−iv1−i . . . vr−1−i | v′0−i . . . v′s−1−i) be the ith shift of v.
Then,

w · v(i) = 0 if and only if u2
r−1∑

j=0

wjvj−i +
s−1∑

k=0

w′kv
′
k−i = 0.

Let Si = u2
∑r−1
j=0 wjvj−i +

∑s−1
k=0 w

′
kv
′
k−i. We see that

w(x) ◦ v(x) = u2
r−1∑

n=0


θm

r
(xr)

r−1∑

j=0

wjvj−nx
m−1−n


+

s−1∑

t=0

[
θm

s
(xs)

s−1∑

k=0

w′kv
′
k−tx

m−1−t
]

= θm
r

(xr)


u2

r−1∑

n=0

r−1∑

j=0

wjvj−nx
m−1−n


+ θm

s
(xs)

[
s−1∑

t=0

s−1∑

k=0

w′kv
′
k−tx

m−1−t
]
.

Then, by rearranging the terms we obtain

w(x) ◦ v(x) =
m−1∑

i=0

Six
m−1−i mod (xm − 1).

Thus, w(x) ◦ v(x) = 0 if and only if Si = 0 for 0 ≤ i ≤ m− 1.
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Now, we determine the generator polynomials of the dual in terms of the
generator polynomials of the code. First we introduce two auxiliary lemmas
that will be helpful to achieve our goal.

Lemma 3.15. Let w(x) = (w(x) | w′(x)) and v(x) = (v(x) | v′(x)) be elements
in Rr,s such that w(x) ◦ v(x) = 0 mod (xm − 1). If w′(x) or v′(x) equal 0,
then w(x)v∗(x) = 0 mod (xr − 1). Respectively, if w(x) or v(x) equal to 0,
then w′(x)v′∗(x) = 0 mod (xs − 1).

Proof. Suppose that w′(x) or v′(x) equals to 0. Then,

w(x) ◦ v(x) = u2(w(x)θm
r

(xr)xm−1−deg(v(x))v∗(x)) + 0 = 0 mod (xm − 1).

So,
w(x)θm

r
(xr)xm−1−deg(v(x))v∗(x) = µ′(x)(xm − 1),

over Z2[x] for some µ′(x) ∈ Z2[x]. Let µ(x) = µ′(x)xdeg(v(x))+1. Since θm
r

(xr) =
xm−1
xr−1 by Proposition 3.12,

w(x)xmv∗(x) = µ(x)(xr − 1),

w(x)v∗(x) = 0 mod (xr − 1).

The same argument can be used to prove the other case.

Lemma 3.16. Let C = 〈(f(x) | 0), (`(x) | g(x)+ua(x)+u2a2(x))〉 be a Z2Z2[u3]-

cyclic code. Then, gcd(f,a0h`)
gcd(f,h`) h` belongs to 〈f, a0h`〉 and gcd(f,h`)

gcd(f,`) ` belongs to

〈f, h`〉.
Proof. Let h` = gcd(f, h`)t1 and f = gcd(f, a0h`)t2. Then, we can write a0h` =
gcd(f, a0h`)t1t3 with gcd(t2, t3) = 1. Therefore, there exist polynomials p and

q such that pt2 + qt3 = 1. Thus, gcd(f,a0h`)
gcd(f,h`) h` = pt1f + qa0h`. Similarly, it is

easy to see that gcd(f,a0h`)
gcd(f,h`) h` ∈ 〈f, a0h`〉.

Proposition 3.17. Let C = 〈(f(x) | 0), (`(x) | g(x) + ua(x) + u2a2(x))〉 be
a Z2Z2[u3]-cyclic code and C⊥ = 〈(f̄(x) | 0), (¯̀(x) | ḡ(x) + uā(x) + u2ā2(x))〉.
Then,

f̄(x) =
xr − 1

gcd(f(x), `(x))∗
.

Proof. For all (v | v′) ∈ C, we have (f̄ | 0) ◦ (v | v′) = 0 mod (xm − 1) . By
Lemma 3.15, (f̄ | 0) ◦ (v | v′) = 0 mod (xm − 1) is equivalent to f̄v∗ = 0
mod (xr − 1). So, clearly the generator polynomial of (Cr)⊥ is f̄ . Since Cr =
〈gcd(f, `)〉, we have

f̄ =
xr − 1

gcd(f, `)∗
.

Proposition 3.18. Let C = 〈(f(x) | 0), (`(x) | g(x) + ua(x) + u2a2(x))〉 be
a Z2Z2[u3]-cyclic code and C⊥ = 〈(f̄(x) | 0), (¯̀(x) | ḡ(x) + uā(x) + u2ā2(x))〉.
Then,

ḡ(x) =
(xs − 1) gcd(f(x), `(x)h(x)a0(x))∗

f∗(x)a∗2(x)
.
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Proof. Since (`ha0 | u2a2ha0), (0 | u2a1a
2
2) ∈ C and gcd(a1a2, ha0) = 1, there

exists p ∈ R3[x] such that (`ha0p | u2a2) ∈ C and hence (0 | f
gcd(f,`ha0)u

2a2) ∈ C.
We are going to compute (¯̀ | ḡ + uā + u2ā2) ◦ (0 | f

gcd(f,`ha0)u
2a2). From

Lemma 3.15, we have (¯̀ | ḡ+uā+u2ā2)◦(0 | f
gcd(f,`ha0)u

2a2) = 0 ∈ R3[x]/(xm−
1), which is equivalent to

ḡ
f∗a∗2

gcd(f, `ha0)∗
= 0 over Z2[x]/(xs − 1).

Then,

ḡ =
(xs − 1) gcd(f, `ha0)∗

f∗a∗2
.

Proposition 3.19. Let C = 〈(f(x) | 0), (`(x) | g(x) + ua(x) + u2a2(x))〉 be
a Z2Z2[u3]-cyclic code and C⊥ = 〈(f̄(x) | 0), (¯̀(x) | ḡ(x) + uā(x) + u2ā2(x))〉.
Then,

ā(x) =
(xs − 1) gcd(f(x), `(x)h(x))∗

a∗(x) gcd(f(x), `(x)h(x)a0(x))∗
.

Proof. It is clear that (f | 0), (h` | uha + u2ha2), (a0h` | u2a0ha2) ∈ C. By

Lemma 3.16, we get (0 | gcd(f,a0h`)
gcd(f,h`) (uha + u2ha2) + qu2a0ha2) ∈ C, for some

polynomial q ∈ R3[x]. Since (0 | ug + u2a) ∈ C and gcd(g, h) = 1, we have

(0 | gcd(f,a0h`)
gcd(f,h`) ua + u2Q) for some polynomial Q ∈ R3[x]. The code C⊥s is a

cyclic code over R3 generated by ḡ+ uā+ u2ā2. Then by [1, Theorem 2], there
exists γ ∈ R3[x] such that γ(ḡ + uā+ u2ā2) = uā. Hence (η(γ)¯̀ | uā) ∈ C⊥.

Now, we consider (η(γ)¯̀ | uā) ◦ (0 | gcd(f,a0h`)
gcd(f,h`) ua + u2Q). By Lemma 3.15,

we obtained that (η(γ)¯̀ | uā) ◦ (0 | gcd(f,a0h`)
gcd(f,h`) ua+ u2Q) = 0 ∈ R3[x]/(xm − 1),

which is equivalent to

ā
gcd(f, a0h`)

∗

gcd(f, h`)∗
a∗ = 0 over Z2[x]/(xs − 1).

Hence,

ā =
(xs − 1) gcd(f, h`)∗

gcd(f, a0h`)∗a∗
.

Proposition 3.20. Let C = 〈(f(x) | 0), (`(x) | g(x) + ua(x) + u2a2(x))〉 be
a Z2Z2[u3]-cyclic code and C⊥ = 〈(f̄(x) | 0), (¯̀(x) | ḡ(x) + uā(x) + u2ā2(x))〉.
Then,

ā2(x) =
(xs − 1) gcd(f(x), `(x))∗

g∗(x) gcd(f(x), `(x)h(x))∗
.

Proof. Since (f | 0), (h` | uha+u2ha2), (` | g+ua+u2a2) ∈ C, by Lemma 3.16,

we have (0 | gcd(f,h`)
gcd(f,`) g+uQ) ∈ C for some polynomial Q ∈ R3[x]. The code C⊥s is

a cyclic code over R3 generated by ḡ+uā+u2ā2. Then by [1, Theorem 2], there
exists γ ∈ R3[x] such that γ(ḡ+ uā+ u2ā2) = u2ā2. Then, (η(γ)¯̀ | u2ā2) ∈ C⊥.
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By Lemma 3.15, we know that (η(γ)¯̀ | u2ā2) ◦ (0 | gcd(f,h`)
gcd(f,`) g + uQ) = 0 ∈

R3[x]/(xm − 1) which is equivalent to

ā2
gcd(f, h`)∗

gcd(f, `)∗
g∗ = 0 over Z2[x]/(xs − 1).

Hence,

ā2 =
(xs − 1) gcd(f, `)∗

gcd(f, h`)∗g∗
.

In the family of Z2Z2[u3]-cyclic codes, there are some particular classes.
For example, if the polynomials f and gcd(f, `) are the same, then the code
is separable. Now, we consider all the cases separately and finally present the
most general case for Z2Z2[u3]-cyclic codes.

Proposition 3.21. Let C = 〈(f(x) | 0), (`(x) | g(x) + ua(x) + u2a2(x))〉 be a
Z2Z2[u3]-cyclic code and C⊥ = 〈(f̄(x) | 0), (¯̀(x) | ḡ(x) + uā(x) + u2ā2(x))〉. Let
ρ = `

gcd(f,`) . Then,

¯̀(x) =
xr − 1

f∗(x)

(
gcd(f, `ha0)∗

gcd(f, `)∗
xm−deg(a2)λ1

+
f∗ gcd(f, `h)∗

gcd(f, `ha0)∗ gcd(f, `)∗
xm−deg(a)λ2

+
f∗

gcd(f, `h)∗
xm−deg(g)λ3

)
,

where

λ1 = xdeg(`) (ρ∗)−1
mod

(
f∗

gcd(f, `ha0)∗

)
.

λ2 = xdeg(`) (ρ∗)−1
mod

(
f∗

gcd(f, `h)∗

)
.

λ3 = xdeg(`) (ρ∗)−1
mod

(
f∗

gcd(f, `)∗

)
.

Proof. Let c̄ ∈ C⊥ with c̄ = (¯̀ | ḡ + uā+ u2ā2). Then

c̄ ◦ (f | 0) =((¯̀ | ḡ + uā+ u2ā2)) ◦ (f | 0)

=0 + ((¯̀ | ḡ + uā+ u2ā2)) ◦ (f | 0)

=0 mod (xm − 1).

So, by Lemma 3.15,
¯̀f∗ = 0 mod (xr − 1)

and
¯̀=

xr − 1

f∗
λ.

Now, we consider (¯̀ | ḡ+uā+u2ā2)◦
(

gcd(f,`ha0)
gcd(f,`) ∗ (` | g + ua+ u2a2)

)
. Let

t = deg(gcd(f,`ha0)
gcd(f,`) ). By Propositions 3.18, 3.19 and 3.20, we obtain
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(¯̀ | ḡ+uā+ u2ā2) ◦
(

gcd(f, `ha0)

gcd(f, `)
∗ (` | g + ua+ u2a2)

)
=

u2 (xm − 1)

f∗
λxm−deg(`)−t−1`∗

gcd(f, `ha0)∗

gcd(f, `)∗

+
(xm − 1) gcd(f, `ha0)∗

f∗a∗2
xm−deg(g)−t−1g∗

gcd(f, `ha0)∗

gcd(f, `)∗
(5)

+ u
(xm − 1) gcd(f, `h)∗

gcd(f, `ha0)∗a∗
xm−deg(g)−t−1g∗

gcd(f, `ha0)∗

gcd(f, `)∗
(6)

+ u
(xm − 1) gcd(f, `ha0)∗

f∗a∗2
xm−deg(a)−t−1a∗

gcd(f, `ha0)∗

gcd(f, `)∗
(7)

+ u2 (xm − 1) gcd(f, `)∗

gcd(f, `h)∗g∗
xm−deg(g)−t−1g∗

gcd(f, `ha0)∗

gcd(f, `)∗
(8)

+ u2 (xm − 1) gcd(f, `h)∗

gcd(f, `ha0)∗a∗
xm−deg(a)−t−1a∗

gcd(f, `ha0)∗

gcd(f, `)∗
(9)

+ u2 (xm − 1) gcd(f, `ha0)∗

f∗a∗2
xm−deg(a2)−t−1a∗2

gcd(f, `ha0)∗

gcd(f, `)∗
.

By Corollary 3.5, we know that f |a1 gcd(f, `ha0). Clearly the summands
(5), (6), (7), (8), (9) are 0 modulo xm− 1. Since they are orthogonal codewords
we have that

u2 (xm − 1) gcd(f, `ha0)∗

f∗

(
λxm−deg(`)−1−tρ∗ +

gcd(f, `ha0)∗

gcd(f, `)∗
xm−deg(a2)−1−t

)
= 0.

This is equivalent, over Z2, to

(xm − 1) gcd(f, `ha0)∗

f∗

(
λxm−deg(`)−1−tρ∗ +

gcd(f, `ha0)∗

gcd(f, `)∗
xm−deg(a2)−1−t

)
= 0.

Then,
(
λxm−deg(`)−1−tρ∗ +

gcd(f, `ha0)∗

gcd(f, `)∗
xm−deg(a2)−1−t

)
= 0 mod (xm − 1), (10)

or
(
λxm−deg(`)−1−tρ∗ +

gcd(f, `ha0)∗

gcd(f, `)∗
xm−deg(a2)−1−t

)
= 0 mod

(
f∗

gcd(f, `ha0)∗

)
.

(11)

Since ( f∗

gcd(f,`ha0)∗ ) divides (xm − 1), we have (10) implies (11).

The greatest common divisor of ρ =
(

(`)
gcd(f,`)

)
and

(
f

gcd(f,`ha0)

)
is 1, hence

ρ∗ has an inverse modulo
(

f∗

gcd(f,`ha0)∗

)
. Thus,

λ =
gcd(f, `ha0)∗

gcd(f, `)∗
xm−deg(a2)+deg(`) (ρ∗)−1

mod

(
f∗

gcd(f, `ha0)∗

)
.
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Let λ1 = xdeg(`) (ρ∗)−1
mod

(
f∗

gcd(f,`ha0)∗

)
. Then λ = gcd(f,`ha0)∗

gcd(f,`)∗ xm−deg(a2)λ1+

λ′ with λ′ = 0 mod
(

f∗

gcd(f,`ha0)∗

)
.

Now, we compute (¯̀ | ḡ + uā+ u2ā2) ◦
(

gcd(f,`h)
gcd(f,`) ∗ (` | g + uā+ u2ā2)

)
. Let

t = deg
(

gcd(f,`h)
gcd(f,`)

)
. Then,

(¯̀ | ḡ+uā+ u2ā2) ◦
(

gcd(f, `h)

gcd(f, `)
∗ (` | g + uā+ u2ā2)

)
=

u2 (xm − 1)

f∗

(
gcd(f, `ha0)∗

gcd(f, `)∗
xm−deg(a2)λ1 + λ′

)
xm−deg(`)−1−t`∗

gcd(f, `h)∗

gcd(f, `)∗

+ u2 (xm − 1) gcd(f, `ha0)∗

a∗2f
∗ xm−deg(a2)−1−ta∗2

gcd(f, `h)∗

gcd(f, `)∗

+u2 (xm − 1) gcd(f, `h)∗

a∗ gcd(f, `ha0)∗
xm−deg(a)−1−ta∗

gcd(f, `h)∗

gcd(f, `)∗
. (12)

Clearly, u2 (xm−1)
f∗

(
gcd(f,`ha0)∗

gcd(f,`)∗ xm−deg(a2)λ1

)
xm−deg(`)−1−t`∗ gcd(f,`h)∗

gcd(f,`)∗ +(12) =

0. Thus, we obtain

u2 (xm − 1) gcd(f, `h)∗

f∗

(
λ′xm−deg(`)−1−tρ∗ +

f∗ gcd(f, `h)∗

gcd(f, `ha0)∗ gcd(f, `)∗
xm−deg(a)−1−t

)
= 0

modulo (xm − 1). Furthermore, arguing similarly we obtain

λ′ =
f∗ gcd(f, `h)∗

gcd(f, `ha0)∗ gcd(f, `)∗
xm−deg(a)λ2

where λ2 = xdeg(`) (ρ∗)−1
mod

(
f∗

gcd(f,`h)∗

)
. Then, λ = gcd(f,`ha0)∗

gcd(f,`)∗ xm−deg(a2)λ1+

f∗ gcd(f,`h)∗

gcd(f,`ha0)∗ gcd(f,`)∗x
m−deg(a)λ2 + λ′ with λ′ = 0 mod

(
f∗

gcd(f,`h)∗

)
.

Finally, we consider (¯̀ | ḡ + uā + u2ā2) ◦ (` | g + ua + u2a2). And using a
similar argument, we can get the desired results for both for λ and λ3.

Proposition 3.22. Let C = 〈(f(x) | 0), (`(x) | g(x) + ua(x) + u2a2(x))〉 be
a Z2Z2[u3]-cyclic code such that g(x)h(x) = xs − 1, g(x) = a0(x)a(x) and
a(x) = a1(x)a2(x). Let (r, s; k̄0; k̄1, k̄2, k̄3) be the type of C⊥. Then, k̄0 =
deg(gcd(f, h`)), k̄1 = deg(a2) − deg(gcd(f, a0h`)) − deg(f), k̄2 = deg(a1) +
2 deg(gcd(f, a0h`))−deg(f)−deg(gcd(f, h`)) and k̄3 = deg(a0)−deg(gcd(f, a0h`))+
deg(gcd(f, h`)).

Proof. On one hand, since C⊥ is a Z2Z2[u3]-cyclic code we know that k̄2 =
deg(ā0), by Proposition 3.9. On the other hand, by Propositions 2.6 and 3.9,
we get k̄2 = deg(a1) + deg(gcd(f, a0h`)) − deg(f) + δ. Computing ā0 = ḡ

ā ,

we get ā0 =
(

gcd(f,a0h`)
2a1

gcd(f,h`)f

)∗
. Equalizing k̄2’s and isolating δ, we obtain δ =

deg(gcd(f, a0h`)) − deg(gcd(f, h`)). Now, the result follows from Propositions
2.6 and 3.9.
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We summarize the previous results in the next theorem.

Theorem 3.23. Let C = 〈(f(x) | 0), (`(x) | g(x) + ua(x) + u2a2(x))〉 be a
Z2Z2[u3]-cyclic code and C⊥ = 〈(f̄(x) | 0), (¯̀(x) | ḡ(x) + uā(x) + u2ā2(x))〉.
Then,

1. f̄(x) = xr−1
gcd(f(x),`(x))∗ ,

2. ḡ(x) = (xs−1) gcd(f(x),`(x)h(x)a0(x))∗

a∗2(x)f∗(x) ,

3. ā(x) = (xs−1) gcd(f(x),`(x)h(x))∗

a∗(x) gcd(f(x),`(x)h(x)a0(x))∗ ,

4. ā2(x) = (xs−1) gcd(f(x),`(x))∗

g∗(x) gcd(f(x),`(x)h(x))∗ ,

5. ¯̀(x) = xr−1
f∗(x)λ(x), where λ(x) is as in Proposition 3.21.

Moreover, |C⊥| = 2deg(f)8deg(a2)4deg(a1)2deg(a0).

3.3 Examples

In this subsection, we present some good examples that are obtained within this
family of codes. The following table presents these examples of Z2Z2[u3]-cyclic
codes, giving the generators and the parameters r and s, whose binary images
via the Gray map give optimal codes [10].
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Generators [r, s] Binary Image

f = x3 − 1, ` = x2 + x, g = x9 − 1, a =
x9 − 1, a2 = x7 + x6 + x4 + x3 + x+ 1

[ 3, 9 ] [ 39, 2, 26 ]

f = x3 − 1, ` = x2 + x + 1, g = x − 1, a =
1, a2 = 1

[ 3, 3 ] [ 15, 8, 4 ]

f = x4 + x3 + x2 + 1, ` = x3 + x + 1, g =
x− 1, a = 1, a2 = 1

[7, 1] [11, 5, 4]

f = x − 1, ` = 0, g = x4 + x2 + x + 1, a =
x4 + x2 + x+ 1, a2 = x− 1

[1, 7] [29, 12, 8]

f = x5 − 1, ` = x4 + x3 + x2 + x + 1, g =
x7 − 1, a = x7 − 1, a2 = x3 + x+ 1

[5, 7] [33, 4, 16]

f = x7 − 1, ` = x4 + x3 + x, g = x7 − 1, a =
x6 +x5 +x4 +x3 +x2 +x+1, a2 = x3 +x2 +1

[7, 7] [35, 5, 16]

f = x5 − 1, ` = x4 + x3 + x2 + x + 1, g =
x31 − 1, a = x31 − 1, a2 = x25 + x22 + x21 +
x17 + x16 + x15 + x14 + x11 + x9 + x7 + x6 +
x4 + x3 + x2 + 1

[5, 31] [129, 6, 64]

f = x7 − 1, ` = x4 + x3 + x2 + 1, g = x21 −
1, a = x21 − 1, a2 = x18 + x17 + x16 + x14 +
x11 + x10 + x9 + x7 + x4 + x3 + x2 + 1

[7, 21] [ 91, 3, 52 ]

f = x15−1, ` = x10 +x9 +x8 +x6 +x5 +x2 +
1, g = x15−1, a = x14+x13+x12+x11+x10+
x9+x8+x7+x6+x5+x4+x3+x2+x+1, a2 =
x10 + x9 + x8 + x6 + x5 + x2 + 1

[ 15, 15 ] [ 75, 6, 36 ]

f = x15 − 1, ` = x12 + x8 + x7 + x6 + x5 +
x3 + x + 1, g = x15 − 1, a = x15 − 1, a2 =
x11 + x10 + x9 + x8 + x6 + x4 + x3 + 1

[ 15, 15 ] [ 75, 4, 40 ]

f = x15−1, ` = x13+x12+x10+x9+x7+x6+
x4 +x3 +x+1, g = x15−1, a = x15−1, a2 =
x13 +x12 +x10 +x9 +x7 +x6 +x4 +x3 +x+1

[ 15, 15 ] [ 75, 2, 50 ]

4 Conclusion

In this paper, we generalize Z2Z2[u]-linear codes to codes over Z2Z2[u3], where
Z2[u3] =

{
0, 1, u, 1 + u, u2, 1 + u2, u+ u2, 1 + u+ u2

}
is the 8-element ring with

u3 = 0 which are viewed as submodules. We also introduce cyclic codes and
their duals over this class of codes. Furthermore, we list some optimal binary
linear codes which are actually Gray images of Z2Z2[u3]-cyclic codes. For future
research, self-dual codes over Z2Z2[u3]-cyclic codes can be investigated. In this
paper, the results are restricted to the parts of odd lengths. So, the general case
is an open problem. And also, it will be interesting to generalize these codes to
Z2[ur]Z2[us]-cyclic codes where r and s are positive integers such that 1 ≤ r ≤ s
together with a suitable Gray image.

Acknowledgement: The authors wish to thank the anonymous reviewers
for their valuable remarks that led to an improved version of our paper.
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Appendix F

Magma package implementation

A Z2Z4-additive code C is cyclic if for any codeword

c = (a0, . . . , aα−1 | b0, . . . , bβ−1) ∈ C ⊆ Zα2 × Zβ4 ,

its double right cyclic shift (aα−1, a0, . . . , aα−2 | bβ−1, b0, . . . , bβ−2) is also a
codeword in C. An element c = (a0, . . . , aα−1 | b0, . . . , bβ−1) ∈ Zα2 × Zβ4 can
be identified with a module element consisting of two polynomials c(x) =

(a0 + a1x+ · · ·+ aα−1x
α−1 | b0 + b1x+ · · ·+ bβ−1x

β−1) = (a(x) | b(x)) ∈ Rα,β,
where Rα,β = Z2[x]/(xα − 1) × Z4[x]/(xβ − 1). This identification gives a
one-to-one correspondence between the elements of Zα2 × Zβ4 and Rα,β. Let
C(x) be the set of all polynomials associated to the Z2Z4-additive code C.
A subset C ⊆ Zα2 ×Zβ4 is a Z2Z4-additive cyclic code if and only if the subset
C(x) ⊆ Rα,β is a Z4[x]-submodule of Rα,β. Moreover, if C is a Z2Z4-additive
cyclic code of type (α, β; γ, δ;κ) with β odd, then

C(x) = 〈(p(x) | 0), (l(x) | f(x)h(x) + 2f(x))〉, (F.1)

where p(x), l(x) ∈ Z2[x]/(xα − 1), deg(l(x)) < deg(p(x)), p(x)|(xα − 1),
f(x), h(x) ∈ Z4[x]/(xβ−1) with f(x)h(x)|(xβ−1), and p(x) divides xβ−1

f(x)
l(x)

a Z2[x]. Note that if β is even, then xβ − 1 does not factorize uniquely over
Z4[x].

For more information about Z2Z4-additive cyclic codes, the reader is re-
ferred to [ASA14] and [BFT16a], where these codes were introduced and have
been studied deeply.

Z2Z4CyclicCode(α, β, p, l, f, h)

Given two non-negative integers α and β, and four polynomials p(x), l(x),
f(x) and h(x), such that p(x), l(x) ∈ Z2[x] and f(x), h(x) ∈ Z4[x], construct
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124 Appendix F. Magma package implementation

the Z2Z4-additive cyclic code of type (α, β; γ, δ;κ) generated by (p(x) | 0)

and (l(x) | f(x)h(x) + 2f(x)).

Z2Z4CyclicCode(α, β, a, b)

Given two non-negative integers α and β, and two polynomials a(x) ∈ Z2[x]

and b(x) ∈ Z4[x], construct the Z2Z4-additive cyclic code of type (α, β; γ, δ;κ)

generated by (a(x) | b(x)).

Z2Z4CyclicCode(α, β, G)

Given two non-negative integers α and β, and a non-empty sequence G

containing r tuples of polynomials, that is G = [< a1(x), b1(x) >, . . . , <

ar(x), br(x) >], where ai(x) ∈ Z2[x] and bi(x) ∈ Z4[x], for 1 ≤ i ≤ r,
construct the Z2Z4-additive cyclic code of type (α, β; γ, δ;κ) generated by
(a1(x) | b1(x)), . . . , (ar(x) | br(x)).

Z2Z4CyclicCode(α, u)

Given a non-negative integer α and a vector u = (uα|uβ) ∈ Zα2 × Zβ4 , repre-
sented as an element in V = Zα+β

4 by changing the ones in the first α coordi-
nates by twos, construct the Z2Z4-additive cyclic code of type (α, β; γ, δ;κ)

generated by the double right cyclic shifts of the vector u. It is checked
whether the elements in the first α coordinates are in {0, 2}.

Z2Z4CyclicCode(α, G)

Given a non-negative integer α and a non-empty sequence of r vectors G =

[u1, u2, . . . , ur], where, for 1 ≤ i ≤ r, ui ∈ Zα2 × Zβ4 is represented as an
element in V = Zα+β

4 by changing the ones in the first α coordinates by
twos, construct the Z2Z4-additive cyclic code of type (α, β; γ, δ;κ) generated
by the double right cyclic shifts of the vectors u1, u2, . . . , ur. It is checked
whether the elements in the first α coordinates are in {0, 2}.

Example F.1. > PR2<x> := PolynomialRing(Integers(2));
> PR4<y> := PolynomialRing(Integers(4));

> p := x^5+x^3+x+1;
> l := x^4+x^3+1;
> f := PR4!1;
> h := y^4+y^3+3*y^2+2*y+1;
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> alpha := 15;
> beta := 7;
> C1 := Z2Z4CyclicCode(alpha, beta, p, l, f, h);
> C2 := Z2Z4CyclicCode(alpha, beta, [<p, PR4!0>, <l, f*h + 2*f>]);
> Z2Z4Equal(C1, C2);
true

> IsZ2Z4Cyclic(C1);
true

> V := RSpace(Integers(4), alpha + beta);

> g1 := V!([2*(Coefficient(PR4!p, i)) : i in [0 .. alpha - 1]]
cat [Integers(4)!0 : j in [0 .. beta - 1]]);

> g1;
(2 2 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
> g2 := V!([2*(Coefficient(PR4!l, i)) : i in [0 .. alpha - 1]]

cat [Coefficient(f*h + 2*f, j) : j in [0 .. beta - 1]]);
> g2;
(2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 3 2 3 1 1 0 0)
> C3 := Z2Z4CyclicCode(alpha, [g1, g2]);
> Z2Z4Equal(C1, C3);
true

> C4 := Z2Z4CyclicCode(alpha, g1);
> C5 := Z2Z4CyclicCode(alpha, g2);
> Z2Z4Subset(C4, C3) and Z2Z4Subset(C5, C3);
true

> G := Z2Z4MinRowsGeneratorMatrix(C1);
> v := Eltseq(G[1]);
> v;
[ 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2 ]
> u := Rotate(v[1..alpha],3) cat Rotate(v[alpha+1..alpha+beta],3);
> u;
[ 2, 2, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0 ]
> V ! u in C1‘Code;
true
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IsZ2Z4Cyclic(C)

Return true if and only if the Z2Z4-additive code C is cyclic.

Z2Z4GeneratorPolynomials(C)

Given a Z2Z4-additive cyclic code of type (α, β; γ, δ;κ) with β odd, return a
tuple containing the generator polynomials < p(x), l(x), f(x), h(x) >, where
p(x), l(x) ∈ Z2[x] and f(x), h(x) ∈ Z4[x], described in F.1.

Example F.2. > PR2<x> := PolynomialRing(Integers(2));
> PR4<y> := PolynomialRing(Integers(4));

> alpha := 15;
> beta := 7;
> U := Z2Z4AdditiveUniverseCode(alpha, beta);
> Z := Z2Z4AdditiveZeroCode(alpha, beta);
> IsZ2Z4Cyclic(U);
true
> IsZ2Z4Cyclic(Z);
true
> Z2Z4GeneratorPolynomials(U);
<1, 0, 1, 1>
> Z2Z4GeneratorPolynomials(Z);
<x^15 + 1, 0, y^7 + 3, 1>

> a1 := x^6+x^4+x^2+x;
> a2 := x^5+x^4+x;
> b1 := PR4!0;
> b2 := y^5+y^4+3*y^3+2*y^2+3*y;

> C1 := Z2Z4CyclicCode(alpha, beta, [<a1, b1>, <a2, b2>]);
> Z2Z4GeneratorPolynomials(C1);
<x^5 + x^3 + x + 1, x^4 + x^3 + 1, 1, y^4 + y^3 + 3*y^2 + 2*y + 1>

> p := x^5+x^3+x+1;
> l := x^4+x^3+1;
> f := PR4!1;
> h := y^4+y^3+3*y^2+2*y+1;
> C2 := Z2Z4CyclicCode(alpha, beta, [<p, PR4!0>, <l, f*h + 2*f>]);
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> Z2Z4Equal(C1, C2);
true



Roger Ten Valls
Cerdanyola del Vallès, May 2017
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