
Design of Energy-Efficient Vector
Units for In-order Cores

Milan Stanić

Department of Computer Architecture

Universitat Politècnica de Catalunya - BarcelonaTech

A thesis submitted for the degree of

Doctor of Philosophy in Computer Architecture

October, 2016

Director: Dr. Oscar Palomar
Codirector: Prof. Mateo Valero

mailto:milan.stanic@bsc.es
http://docencia.ac.upc.edu/
http://www.upc.edu

Acta de calificación de tesis doctoral
Curso académico:

Nombre y apellidos

Programa de doctorado

Unidad estructural responsable del programa

Resolución del Tribunal

Reunido el Tribunal designado a tal efecto, el doctorando / la doctoranda expone el tema de su tesis doctoral

titulada __

__.

Acabada la lectura y después de dar respuesta a las cuestiones formuladas por los miembros titulares del

tribunal, éste otorga la calificación:

NO APTO APROBADO NOTABLE SOBRESALIENTE

(Nombre, apellidos y firma)

Presidente/a

(Nombre, apellidos y firma)

Secretario/a

(Nombre, apellidos y firma)

Vocal

(Nombre, apellidos y firma)

Vocal

(Nombre, apellidos y firma)

Vocal

______________________, _______ de __________________ de _______________

El resultado del escrutinio de los votos emitidos por los miembros titulares del tribunal, efectuado por la Comisión

Permanente de la Escuela de Doctorado, otorga la MENCIÓN CUM LAUDE:

SÍ NO

(Nombre, apellidos y firma)

Presidente/a de la Comisión Permanente de la Escuela de
Doctorado

(Nombre, apellidos y firma)

Secretario/a de la Comisión Permanente de la Escuela de
Doctorado

Barcelona, _______ de ____________________ de __________

i

Abstract

In the last 15 years, power dissipation and energy consumption have
become crucial design concerns for almost all computer systems. Tech-
nology feature size scaling leads to higher power density and therefore
to complex and costly cooling. While power dissipation is critical for
high-performance systems such as data centers due to large power us-
age, for mobile systems battery life is a primary concern. In the low-end
mobile processor market, power, energy and area budgets are signifi-
cantly lower than in the server/desktop/laptop/high-end mobile mar-
kets. The ultimate goal in low-end systems is also to increase perfor-
mance, but only if area/energy budget is not compromised.

Vector architectures have been traditionally applied to the supercomput-
ing domain with many successful incarnations. The energy efficiency
and high performance of vector processors, as well as their applicability
in other emerging domains, encourage pursuing further research on vec-
tor architectures. However adding support for them using conventional
design incurs area and power overheads that would not be acceptable
for low-end mobile processors and also there is a lack of appropriate
tools to perform this research.

In this thesis, we propose an integrated vector-scalar design for the ARM
architecture that mostly reuses scalar hardware to support the execution
of vector instructions. The key element of the design is our proposed
block-based model of execution that groups vector computational in-
structions together to execute them in a coordinated manner. We com-
plement this with an advanced integrated design which features three
energy-performance efficient ideas: (1) chaining from the memory hier-
archy, (2) direct result forwarding and (3) memory shape instructions.

This thesis also presents two tools for measuring and analyzing an ap-
plication suitability for vector microarchitectures. The first tool is VALib,
a library that enables hand-crafted vectorization of applications and its
main purpose is to collect data for detailed instruction level characteri-
zation and to generate input traces for the second tool. The second tool
is SimpleVector, a fast trace-driven simulator that is used to estimate
the execution time of a vectorized application on a candidate vector mi-
croarchitecture.

The thesis also evaluates characteristics of Knights Corner processor
with simple in-order SIMD cores. Acquired knowledge is applied in
the integrated design.

Keywords: Computer Architecture, Microarchitecture, Data-Level Par-
allelism, Vector Processors, Single Instruction Multiple Data, Energy Ef-
ficiency, Instruction Level Characterization, Tools, Simulator, Xeon Phi

Acknowledgements

Pursuing a PhD is a multi-year endeavour that can turn into a tedious
and never ending journey. That was not my case, and I am thankful to
a lot of people without whom I would not have been able to complete
my PhD studies. While it is not possible to make an exhaustive list of
names, I would like to mention a few. Apologies if I forget to mention
any name below.

Firstly and foremost, I would like to express my sincere gratitude to my
director - Dr. Oscar Palomar for all the help and guidance he provided
during my PhD studies. You have been an outstanding mentor for me
and it has been a privilage to work with you. I would also like to
express my appreciation to my supervisors - Dr. Osman Ünsal, Dr.
Adrián Cristal, and Prof. Mateo Valero. Their support, confidence, and
sound technical advise have played a major role shaping my research
ideas into the contributions expressed in this thesis. I appreciate the
great opportunity that you have given to me.

A big thank you to the members of my thesis defence committee - Prof.
Victor Viñals, Prof. Lasse Natvig, Prof. Eduard Ayguadé, Dr. Petar
Radojković and Dr. Juan Manuel Cerbrián. I would also like to give a
shot-out the the excellent staff at the Barcelona Supercomputing Center
and UPC’s Departament d’Arquitectura de Computadores, especially
Joana Munuera and Dr. Xavier Masip.

I would also like to acknowledge all my colleagues from the office in
Barcelona Supercomputing Center that helped me throughout my PhD;
for their insights and expertise in technical matters, and for their un-
conditional support that has been crucial to keep me sane. My special
thanks go to my colleagues from the “Vector Group”, Ivan Ratković,

Milovan Ðurić, Timothy Hayes, and Nikola Bežanić for the stimulating
discussions, for the sleepless nights we were working together before
deadlines, and for all the fun we have had in the last seven years. I
acknowledge to my colleague Nikola Marković and my ex-flat mate
Aleksandar Branković for opportunity to talk and discuss with them
whenever I had an issue.

Last but not least, I would like to thank to my family and friends for sup-
porting me during this endeavour. I especially thank my wife Suzana
and daughter Nikolina for their unconditional love and care. You have
been unimaginably patient waiting for this time to arrive. I also thank
my parents and sister for their unconditional support during my PhD.

This thesis has been supported by the cooperation agreement between
the Barcelona Supercomputing Center and Microsoft Research, by the
Agency for Management of University and Research Grants - AGAUR
(FI-DGR 2014), by the European Union (FEDER funds) under contract
TIN2015-65316-P, and by the European Union’s Seventh Framework Pro-
gramme (FP7/2007- 2013) under the ParaDIME project (GA no. 318693)
and the RoMol ERC Advanced Grant (GA no. 321253).

Contents

1 Introduction 1
1.1 Vector Processors . 1

1.1.1 Vector Processors in Supercomputers 2
1.1.2 Vector Microprocessors . 3
1.1.3 Multimedia Extensions . 4
1.1.4 Advantages and Limitations of Vector Processors 4
1.1.5 Power and Energy Efficiency 5

1.2 Motivation . 6
1.3 Thesis Objectives . 8
1.4 Thesis Contributions . 9

1.4.1 Integrated Vector-Scalar Design for an In-order Core 10
1.4.2 Tools for Rapid Initial Research on Vector Microarchitectures 10
1.4.3 Evaluation of Knights Corner Capabilities 11

1.5 Thesis Organization . 11

2 VALib and SimpleVector: Tools for Rapid Initial Research on Vector Ar-
chitectures 13
2.1 VALib . 15

2.1.1 Vector ISA . 15
2.1.2 API . 16
2.1.3 Results and Statistics . 16

vii

2.1.4 Instruction and address traces 17

2.1.5 Extensibility . 17

2.1.6 Example of Vector Library Usage 18

2.2 Characterization of Vectorized Applications 19

2.2.1 Methodology . 20

2.2.2 Instruction-Level Characterization 21

2.3 Possible Alternatives to VALib . 26

2.4 SimpleVector . 28

2.4.1 Simulated Microarchitecture 29

2.4.2 Extensibility . 31

2.4.3 Accuracy Testing . 31

2.5 Evaluation of Microarchitectural Alternatives 32

2.5.1 Memory Hierarchy . 33

2.5.2 In-Order vs Decoupled . 37

2.6 Case Study: New instruction . 39

2.7 Related Work . 41

2.8 Summary . 42

3 Evaluation of Intel’s Xeon Phi characteristics 45

3.1 Background . 46

3.2 Parallel BFS Implementations . 47

3.2.1 Current BFS Implementation 47

3.2.2 Other BFS Implementations . 48

3.3 Vectorization of Graph500 . 50

3.4 Methodology . 52

3.5 Experimental Results . 53

3.5.1 Single-Thread Results . 53

3.5.2 Results for OpenMP Implementation 58

3.6 Summary . 64

viii

4 An Integrated Vector-Scalar Design 65
4.1 Integrated Design . 67

4.1.1 Execution of Vector Computational Instructions 69

4.1.2 Vector Memory Unit . 71

4.2 Integrated Design Evaluation . 71

4.2.1 Performance Evaluation . 75

4.2.2 Area, Power and Energy . 78

4.3 Advanced Integrated Design . 80

4.3.1 Chaining from the Memory Hierarchy 80

4.3.2 Direct Forwarding . 83

4.3.3 Vector Memory Shape Instruction 85

4.3.4 Unified Indexed Vector Load 86

4.4 Advanced Integrated Design Evaluation 89

4.4.1 Chaining from the Memory Hierarchy 89

4.4.2 Direct Forwarding . 94

4.4.3 Vector Memory Shape Instruction 95

4.4.4 Unified Indexed Vector Load 97

4.5 Related Work . 97

4.6 Summary . 101

5 Conclusion and Future Work 103
5.1 Conclusion . 103

5.2 Future Research Directions . 105

6 Publications 107
6.1 Publications from the thesis . 107

6.2 Related publications not included in the thesis 108

Appendices 111

A Examples of Graph500 Codes 113
A.1 Original Sequential Version . 113

A.2 Vectorized Sequential Version . 115

A.3 Sequential Version with Scalar Prefetching 120

ix

A.4 Vectorized sequential version with vector prefetching 122
A.5 Vectorized sequential version with vector and scalar prefetching . . 129

List of Figures 137

List of Tables 141

Bibliography 143

Acronyms 154

x

1
Introduction

In this chapter, we first introduce vector processors, present their historical overview

and describe their advantages and limitations. We then discuss the motivation be-

hind our work and present the objectives that we address in this thesis. Finally, we

provide an overview of our contributions and thesis organization.

1.1 Vector Processors

Vector processors [6, 31] are known to be very energy efficient and yield high

performance whenever there is enough data-level parallelism (DLP) [47]. They

typically operate with vector registers that hold multiple values instead of single-

value registers as in super-scalar processors. They provide vector instructions that

operate on all the values of the registers. For example, a scalar addition instruction

would take values from two scalar registers A and B, and produce a result stored

in scalar register C, as Figure 1.1 (a) shows. A vector addition instruction would

take two vectors A and B of vector length (VL) elements, and produce a resulting

vector C of the same size, as in Figure 1.1 (b)

1

1. INTRODUCTION

A B+ = C

Scalar Vector

B1

B3

B2

BVL

B5

B4
...

A1

A3

A2

AVL

A5

A4

...

+

C1

C3

C2

CVL

C5

C4

...

=

(a) (b)

Figure 1.1: Comparison of a scalar instruction and a vector instruction.

1.1.1 Vector Processors in Supercomputers

Vector processors have a long and successful history in supercomputers where
they are used for large scientific and engineering applications. The first vector
architectures in early 70s were memory based with instructions that operate on
memory-resident vectors [32, 84]. Cray [69], register-based vector machines were
the first commercially successful supercomputers [20]. They provided arithmetic
instructions that operate on vector registers, while separate vector load and store
instructions move data between vector registers and memory. Several modest mini-
vector supercomputers [18, 61] were released in the mid 80s.

The Japanese manufacturers, Fujitsu (VP50, VP100, VP200, VP400), Hitachi
(S810) and NEC (SX) have been very successful is building vector processors for
supercomputing [71].

Supercomputers that are built from commodity microprocessors have been dom-
inant from the 1990s [23], but since then there have been still several vector super-
computers on the market. The Earth Simulator (ES) was a highly parallel vector
supercomputer system based on NEC SX-6 architecture. It was the fastest super-
computer in the world from 2002 to 2004. Black Widow (Cray X2) [72] is a vector
processing node for the Cray XT5h supercomputer launched in 2007. ES was re-
placed by the Earth Simulator 2 (ES2) in 2009, that is based on the NEC SX-9

2

1.1 Vector Processors

architecture [85]. In 2013, NEC released SX-ACE vector supercomputers [51] and

NEC roadmaps indicate that the successor to the SX-ACE will be released around

2017.

1.1.2 Vector Microprocessors

It has been proposed to adopt vector units in designs of microprocessors to sup-

port execution of vector instructions [7, 9, 24, 26, 41, 42, 44]. While early vector

supercomputers were built from very expensive low-density ECL logic chips cou-

pled with several thousand BiCMOS SRAM memory chips, vector microprocessor

are built on a single high-density CMOS die. Torrent-0 [7], a vector microproces-

sor designed for multimedia, neural networks, and other digital signal processing

tasks, and VIRAM [41], a scalable processor based on vector architecture and IRAM

technology, are the first examples of vector microprocessors developed as part of

academic research. CODE [42] is a successor of VIRAM that overcomes the limi-

tations of conventional vector processors such as the complexity of a multiported

centralized register file, the difficulty of implementing precise exceptions for vector

instructions, and the high cost of on-chip vector memory system.

Espasa [20] showed that vector processors can improve their performance and

hide latency by applying techniques such as decoupling, out-of-order execution

and multithreading. Espasa et al. [24] developed Tarantula, a vector extension to

the Alpha architecture.

The vector-thread (VT) [44] unifies the vector and multithreaded compute mod-

els and provides good performance for all-purpose computing. Maven [9] is succes-

sor of VT that explores a new approach to build data-parallel accelerators based on

simplifying the instruction set, microarchitecture, and programming methodology

for a VT architecture.

Virtual Vector Architecture (ViVA) [26] provides an effective and practical ap-

proach to hide latency by combining the memory semantics of vector computers

with a software-controlled scratchpad memory.

3

1. INTRODUCTION

1.1.3 Multimedia Extensions

Multimedia extensions, such as MAX [46], MMX [60], SSE [80], AVX [14], AltiVec
[25], 3DNow! [58], etc., are very popular in desktop processors of all of the major
vendors. They implement instructions that use subword parallelism to accelerate
data-parallel applications. These multimedia extensions do not implement all tra-
ditional vector instructions and operate on much shorter vectors than in old vector
architectures. Current trend is to increase width of single instruction multiple data
(SIMD) registers. The width of SIMD arithmetic logic unit (ALU) units is equal
to the width of SIMD registers. They also provide weaker memory units. Most
of multimedia extensions do not support gather/scatter type memory operations
as vector machines usually do and they have issues with alignment when access
memory. Multimedia extension ISAs tend to be less general-purpose, less uniform,
and more diversified [68].

Most recently, the Xeon Phi is a recent massively parallel x86 microprocessor
designed by Intel and is based on the Larrabee [74] GPU that contains a 512-bit
SIMD vector processing unit in each core.

1.1.4 Advantages and Limitations of Vector Processors

As it is emphasized in previous work [6, 31, 38], vector processors and vector In-
struction Set Architectures (ISA)s have several advantages:

• A single vector instruction specifies N operations, where N represents tens
or hundreds of operations. It dramatically reduces instruction fetch band-
width, which is a bottleneck of conventional processors, particularly in terms
of power consumption [59, 52].

• These N operations are independent. It allows simultaneously execution of all
operations in an array of parallel functional units, or in a single very deeply
pipelined functional unit, or in any intermediate configuration of parallel and
pipelined functional units.

• Reduced control logic complexity. Hardware needs only to check for data
hazards between two vector instructions once per vector operand, not once

4

1.1 Vector Processors

for every element within the vectors. Therefore, the dependency checking
logic required between two vector instructions is approximately the same as
that required between two scalar instructions, but now many more elemental
operations can be in flight and it will keep functional units much more time
busy.

• Vector instructions that access memory have a known access pattern. A mem-
ory system can implement important optimizations if it has accurate informa-
tion on the address stream. In particular, a stream of unit-stride accesses can
be performed very efficiently using a large block transfer. Also vector mem-
ory instructions can amortize a high overall latency, because a single access is
initiated for the entire vector rather than for a single word.

The vector processors have several well known limitations:

• Cost. Vector processors are specialized processors and work well with data
that can be processed in highly parallel manner. If a workload does not
contain a significant amount of DLP most of the time the vector unit will
be idle. For example, ALU units that execute vector instructions will be idle
if scalar code is executed.

• Vector Registers. Vector registers are fast memory but area expensive and
power hungry structure [48]. They also have limited vector length.

1.1.5 Power and Energy Efficiency

Driven with the issue of power and energy consumption, researchers and industry
have been proposed a lot of architectural level energy and power efficient optimiza-
tion techniques for microprocessors [66]. These techniques (clock gating, power
gating, gated-Vdd, etc.) help computer architects to optimize their low power de-
signs.

Lemuet at al. [48] discussed the potential of energy efficiency of vector proces-
sors as accelerators for high performance computing systems. Lee at al. [47] con-
firmed that vector-based microarchitectures are more area and energy efficient than
scalar-based microarchitectures, even for fairly irregular data-level parallelism. They

5

1. INTRODUCTION

also explored a series of microarchitectural optimizations to improve performance,

area, and energy efficiency of baseline vector cores.

Low-power techniques such as clock gating [49], power gating [35, 81], etc.

could be combined with vector microarchitectures and possibly further reduce

power consumption and increase energy efficiency. For example, if a vector proces-

sor implementation has four lanes maybe at some point of the execution two lanes

are enough to ensure efficient execution and the remaining two can be powered off.

The execution of vector instructions will make busy some parts of processors such

as ALUs for a while and it can allow switching off inactive parts of the processor

such as the instruction cache.

1.2 Motivation

Increasing performance has been traditionally the ultimate goal of processor de-

signers since the first computers appeared. Technology scaling of CMOS [53] has

provided exponential growth of transistor density for the last four decades. Com-

bined with frequency scaling, it also provided improved performance of every next

processor generations. Increased transistor density allowed for implementing on-

chip implementation of solid computer architecture ideas such as out-of-order exe-

cution, pipelining, caching, multithreading, chip-multiprocessing, etc. that further

improved performance.

Various forms of parallelism have been exploited in computer architecture to in-

crease performance. The three major categories are: instruction-level parallelism
(ILP), thread-level parallelism (TLP) and DLP. ILP allows simultaneous execution

of multiple instructions from one instruction stream (superscalar processors and

out-of-order execution are examples of techniques that exploit ILP). TLP allows si-

multaneous execution of multiple instruction streams (simultaneous multi thread-

ing and multiprocessors are examples of techniques that exploit TLP). DLP allows

simultaneous execution of the same operations on arrays of elements (multimedia

extensions are an example of technique that exploits DLP).

In the last 15 years, power dissipation became the primary design concern for

almost all computer systems. Processor designers realized that further technology

6

1.2 Motivation

feature size scaling, would lead to higher power density and cooling such pro-
cessor could became extremely difficult and very costly (since around 2005-2007
Dennard scaling appears to have broken down [12]). Power density limits have
already impacted potential planned speed-ups by Moore’s law, resulting in a slow
down of CMOS scaling [79]. It has also caused that commodity microprocessors
have ceased to increase frequency in each generation [78]. As technology feature
size scaling goes further, power density is getting higher. Mike Muller, ARMs
CTO, also claimed [5] that if device power budgets are kept at present levels, and
the transistor density on chips increases in line with Moore’s Law, mobile system
designers could find themselves with computing power they cannot afford to use,
unless innovative ways are found to circumvent the problem.

There are also many other reasons why processor designers should worry about
power dissipation and energy consumption. Power and energy efficiency are equally
important for low-end and high-end processors. For example, there is an increas-
ing need data centers for huge amount of data storage and computational resources
with the substantial associated power usage. While high-performance systems fo-
cus more about power dissipation than energy consumption, mobile systems are
different. In battery operated, devices battery life becomes a major concern. Low-
ering the microprocessor energy as much as possible without spoiling performance
is the main design goal. The need for green electronics is also a concern that has
come consistently to the foreground in recent years [37].

Due to the above described facts, power and energy consumption are currently
one of the most important issues faced by the computer architecture community.
Driven with this goal, researchers have been trying to make better processor so-
lutions by proposing new and improving existing architectures. Vector processors
are an example of an energy efficient architecture.

Besides the long and successful history of vector processors in supercomputers,
vector units have been proposed in microprocessor design [9, 24, 42]. Recent works
on vector processors shows that they can be a good match even for workloads
with complex and irregular DLP [47] or applications from others domains such as
column-store data bases [30]. Knight Landing [76] is a recent, second generation
of the Xeon Phi processor. It is massively parallel x86 microprocessor designed by
Intel and based on the Larrabee [74] GPU that contains a 512-bit SIMD processing

7

1. INTRODUCTION

unit in each core. Also, SIMD multimedia extensions [14, 80] are often included
in modern microprocessors. While vector processors and SIMD extensions both
exploit DLP, they differ in the way the data operand elements are handled at the
execution stage. While SIMD extensions process all elements at once, vector pro-
cessors execute elements in a pipelined fashion. Although vector processors are
energy efficient, they still have high power and area overheads for low-end mobile
processors. This is mostly due to the strictly power and area budget of embedded
systems.

Before a vector microprocessor design is proposed it is very important to have
detailed knowledge of the low-level characteristics of the vectorized code (e.g. de-
gree of vectorization, distribution of vector lengths, etc.) as it is done in [6, 20, 64,
82]. In addition, it is also important to perform preliminary analysis of microarchi-
tectural choices and implementation alternatives to narrow down the vast design
space. Finally, it is common in computer architecture research to evaluate changes
in the vector ISA that better fit the needs of the new workloads (for example, exper-
imentation with new vector instructions or novel ways of vectorizing loops [17]).
For these kind of studies, there is a need for tools to vectorize the application, char-
acterize it, estimate performance of microarchitectural alternatives and experiment
with new instructions. Actual vector processors, and associated vector compilers,
could be used for the first two cases but they cannot be used to perform vector
architecture exploration studies.

1.3 Thesis Objectives

Thesis objectives are listed bellow.
Integrated vector-scalar processing for low-end mobile processor. An impor-

tant characteristic of microprocessor vector architectures is that a vector processing
unit is designed as an separate unit or coprocessor to a scalar core that is used
to run data-parallel applications. It requires additional hardware that is idle most
of the time in scalar intensive applications. Power and area overheads of such
additional hardware could be not acceptable for low-end mobile processors.

The main goal of the thesis is to propose an energy-efficient design of processor
extension for the low-end mobile market that will satisfy the strictly power and

8

1.4 Thesis Contributions

area budget of embedded processors and at the same time improves performance
for applications with potential high DLP.

Development of tools for initial research on vector architectures. We consider
that good research practice of proposing a new feature in computer architecture
consists of several steps. They include obtaining detailed knowledge of the low-
level characteristics of target applications, performing preliminary analysis of mi-
croarchitectural choices and implementation alternatives that narrows down the
vast design space, and evaluation of changes in the ISA that better fit the needs of
the target workloads.

Since there is no access to any tool that will allow for achieving previously
mentioned steps, second goal of the thesis is to develop tools that will analyze
vectorization characteristic of target workloads and perform preliminary design
space exploration of vector microarchitecture alternatives.

Evaluation of existing Xeon Phi Knights Corner processor. Even though the
Xeon Phi is designed for high-performance computing, Knights Corner has sim-
ple in-order core design. Deeper insight into Knights Corner capabilities during
execution of vectorized applications could provide fruitful informations for future
processor design.

Our research center has access to machines with Knights Corner processor and
as complementary goal, another contribution of the thesis is to evaluate charac-
teristics of the Knights Corner and use the acquired knowledge in the process of
making design decisions for our low-end mobile extension.

1.4 Thesis Contributions

This thesis makes the following contributions:

• An energy-efficient integrated vector-scalar design on an in-order ARM core.

• Two tools that allow for rapid initial research on vector architectures.

• An evaluation of Xeon Phi capabilities that can be useful for processor design
decisions.

Next we highlight the most important concepts of each contribution.

9

1. INTRODUCTION

1.4.1 Integrated Vector-Scalar Design for an In-order Core

The main contribution of this thesis is a method to increase the performance of

the low-power low-end embedded systems in an energy-efficient way. Energy effi-

ciency is attained by modifying a scalar core to execute vector instructions on the

existing infrastructure. In particular, the thesis proposes an integrated vector-scalar

design that combines scalar and vector processing mostly using existing resources

of an energy-efficient scalar processor (in our evaluation environment it is based

on the ARM Cortex A7). In addition to a design that uses a conventional vector

execution model, the thesis also contribute a novel block-based model of execu-

tion for vector computational instructions. Performance, power, area and energy

evaluation results of this integrated design are also presented in the thesis.

Additionally, the thesis proposes an advanced integrated design which features

three energy-performance efficient ideas: (1) chaining from the memory hierarchy,

(2) direct result forwarding and (3) memory shape instructions. Two novel tech-

niques that chain from the cache are proposed and implemented with the goal of

further improving the performance of our integrated design. They can be applied

to a conventional vector unit as well. We design and implement a novel result for-

warding mechanism which complements the block-based execution and does not

require writing to the vector register file. We design a vector memory unit with

support for complex memory instructions including memory shape and scatter/-

gather instructions.

1.4.2 Tools for Rapid Initial Research on Vector Microarchitec-
tures

The thesis also contributes two tools, the vector architecture library (VALib) and the

SimpleVector simulator: 1) VALib is a library that implements vector instructions

and allows the rapid manual vectorization and characterization of applications,

and 2) SimpleVector is a simple and very fast trace-based simulator which helps

to estimate the performance of a vector processor. Both have been designed to be

easily extended with new instructions or implementation alternatives.

10

1.5 Thesis Organization

The thesis includes use cases of the tools with six vectorized applications taken
from distinct application domains. They illustrate how to perform the instruction-
level characterization by using VALib or how to analyze the impact in performance
of the cache hierarchy, functional unit configuration and memory decoupling in a
vector processor.

This thesis also presents a case study to show how the tools can be used to
add a new uncommon vector memory instruction to the ISA and then analyze
the performance benefits with relative ease. In one interesting finding of our case
study, we show that our emerging applications benefit from this new instruction
which can provide up to 1.45x speedup.

1.4.3 Evaluation of Knights Corner Capabilities

The Knights Corner cores are in-order, which makes it very sensitive to cache
misses. The thesis includes a study of the impact of prefetching on the perfor-
mance of the Knights Corner and presents two observations that can be useful
Knights Corner users or processor architects that aim to use in-order architecture:
the initial results for vectorization can be misleading and prefetching is of maxi-
mum importance if data is not cache resident. We also prove that the combina-
tion of vectorization and parallelization is beneficial for workloads running on the
Knights Corner.

1.5 Thesis Organization

The rest of the documents is organized as follows: Chapter 2 presents two tools for
rapid initial research on vector vector microarchitectures.

Chapter 3 analyzes the capabilities of Knights Corner processor that consists of
SIMD in-order cores.

Chapter 4 presents energy-efficient integrated design that allows for execution
of vector computational instructions mostly reusing resources of an ARM in-order
core. Three energy-performance efficient ideas are also presented in this Chapter
and they additionally improves energy-efficiency or performance of the integrated
design.

11

1. INTRODUCTION

Chapter 5 concludes this thesis and points to future research directions.

12

2
VALib and SimpleVector: Tools for Rapid Initial

Research on Vector Architectures

Vector architectures have been traditionally applied to the supercomputing domain
with many successful incarnations [18, 51, 61, 69, 72, 85]. High performance of vec-
tor processors whenever there is enough DLP, as well as their applicability in other
emerging domains (not just high-performance computing domain), encourage pur-
suing further research on vector architectures. However, there is a lack of appropri-
ate tools to perform this research. Particularly in our case, we are missing tools to
perform detailed low-level characterization of the vectorized code (e.g. degree of
vectorization, distribution of vector lengths, instruction mix, etc.), to vectorize and
analyze six applications with potential high DLP, to perform preliminary analysis
of microarchitectural choices and implementation alternatives that narrow down
the vast design space, and to evaluate changes in the vector ISA that better fit
the needs of the new workloads (for example, experimentation with new vector
instructions).

Our goal in this chapter is to develop tools that will allow rapid initial research
on vector architectures, characterize at instruction level target applications, evaluate
several alternative properties of the vector microarchitecture, and experiment with
new or uncommon vector instructions. In summary, the main contributions of this
chapter are:

• Two tools for measuring and analyzing an application’s suitability for vector
microarchitectures. The first tool is VALib, a library that enables hand-crafted

13

2. VALIB AND SIMPLEVECTOR: TOOLS FOR RAPID INITIAL RESEARCH
ON VECTOR ARCHITECTURES

vectorization of applications and its main purpose is to collect data for de-

tailed instruction level characterization and to generate input traces for the

second tool. The second tool is SimpleVector, a fast trace-driven simulator

that is used to estimate the execution time of a vectorized application on a

candidate vector microarchitecture.

• Evaluation of six vectorized applications taken from distinct application do-

mains. It includes the instruction-level characterization performed by us-

ing VALib and analysis of the impact in performance of the cache hierarchy,

functional unit configuration and memory decoupling in a vector processor.

The results show high degrees of vectorization for these applications, rang-

ing from 91% to 63.2%. An application is dominated by short vectors of 16

elements but the rest have much longer average vector lengths, ranging from

31 to 59.9, for a maximum vector length of 64 elements. Memory decoupling

provides in average for all applications 16% improvement in the execution

time using the maximum vector length of 128 elements with three functional

units and three load/store units.

• A case study to show how the tools can be used to add a new uncommon

vector memory instruction to the ISA and then analyze the performance ben-

efits with relative ease. In one interesting finding of our case study, we show

that our emerging applications benefit from this new instruction which can

provide up to 1.45x speedup.

The rest of this chapter is organized as follows: Section 2.1 introduces VALib,

Section 2.2 presents the characterization of six applications vectorized using VALib

and Section 2.3 discusses alternatives to the use of VALib. Section 2.4 describes

SimpleVector. Results for different vector microarchitectures are presented in Sec-

tion 2.5. Section 2.6 shows a case study of adding a new vector instruction. Section

2.7 discusses related work. Finally, Section 2.8 presents the summary of this chap-

ter.

14

2.1 VALib

2.1 VALib

VALib offers a vector instruction set to the programmer and emulates the execu-
tion of the instructions. Target applications are vectorized by hand by adding calls
to VALib similarly to programming using intrinsics. This enables executing vector-
ized applications in the absence of a vector processor which in turn allows for initial
research on their applicability for different vector architecture design options. The
main purpose of VALib is to collect data for detailed instruction level character-
ization of vectorized applications and to generate input traces for SimpleVector.
VALib is not bound to any specific vector ISA and can be easily extended to offer
new instructions. This section introduces the features and implementation details
of VALib.

2.1.1 Vector ISA

The default ISA offered is inspired by classic register-based vector machines, e.g.
CRAY and CONVEX [2, 18, 31] with some additional uncommon instructions (see
2.6) that are useful or required to vectorize our target applications. They can be
grouped into the following classes:

Arithmetic and logical. These instructions are common operations such as
addition, multiplication, logical bitwise operations, etc. They can operate in vector-
vector or vector-scalar mode. Some instructions support masking [75].

Memory. There are instructions for unit-stride, strided and indexed access.
Some variants support masking, which is useful to access elements conditionally.
The library also implements shape instructions for 2D strided accesses, based on
those introduced by RSVP [15]. See section 2.6.

Reduction. This class includes sum, max and min.

Bit/element manipulation. Examples of this class include instructions to read
or write individual elements of a vector register, or to compress a register according
to a vector mask.

VALib implements a vector register file and a vector mask register file. The
number of registers and the number of elements per vector register are param-
eterizable. This allows us to experiment with different maximum vector length

15

2. VALIB AND SIMPLEVECTOR: TOOLS FOR RAPID INITIAL RESEARCH
ON VECTOR ARCHITECTURES

(MVL). There is also vector length register and corresponding instructions to read
and write it. Several data types are supported: signed or unsigned integer (16, 32
and 64 bits), single and double precision floating-point (FP) (32 and 64 bits) or char
(8 bits).

2.1.2 API

VALib offers the following types of function described below and provides wrapper
functions in C, C++ and FORTRAN for all the functions of the library.

Instruction functions are the core of VALib and each one implements a vector
instruction from the ISA described above. The function updates the state according
to the semantics of the instruction it implements. State includes memory and the
vector register file. The identifiers of the source and destination vector register are
input parameters of the function.

Annotation functions can be optionally used to provide additional information
useful for characterization. For example, we use them to indicate the presence
of blocks of scalar instructions or that a vectorized loop begins or ends. Such
information is used by VALib and SimpleVector to estimate the amount of executed
scalar instructions.

Initialization sets up the internal structures of the library such as the vector
register file and clears all statistics.

Finalization performs the opposite task. It closes the opened files, dumps the
statistics and frees all allocated memory and internal objects.

2.1.3 Results and Statistics

A main objective of VALib is to generate statistics and characterize the vectorized
applications. It collects the following statistics:

Percentage of vectorized code provides the degree of vectorization of an appli-
cation; it is calculated using the number of vector operations and the number of
scalar instructions executed.

Vector instruction mix shows the distribution of the vector instructions; the
number of instructions of each type executed and the number of operations per
instruction.

16

2.1 VALib

Distribution of vector lengths indicates how many instructions used a given

vector length and helps to determine the efficient utilization of the vector registers.

Histogram of strides helps to determine the dominant memory access patterns.

2.1.4 Instruction and address traces

VALib can generate traces of the vector instructions executed as well as traces of

the addresses accessed by memory vector instructions. SimpleVector uses the traces

as inputs to estimate the execution time of the vectorized application (see Section

2.4). The instruction trace encodes the vector instructions and the number of scalar

instructions between two vector instructions.

VALib supports two ways of counting scalar instructions, with performance

PAPI counters [54] and with annotation functions. The first approach is more pre-

cise, but the second is much faster. Reasons for precise scalar info are following: (i)

we need to calculate percentage of vectorization for an application, and (ii) some-

times there are still scalar instructions inside vectorized code (e.g. scalar code inside

a loop that performs strip-mining) and their precise count is important to estimate

the execution time in SimpleVector. However, PAPI function calls add additional

overhead that slows down an application. Calls to PAPI functions also require

additional scalar instructions, therefore we need to calibrate PAPI counters (deter-

mine number of scalar instructions associated with calls to PAPI functions). The

annotation functions just indicate the approximate size of the scalar block. When

counters are used, the wrappers include the appropriate code to disable and enable

counting before and after the call to VALib.

2.1.5 Extensibility

VALib has been designed with extensibility in mind. It is simple to include new

instructions. Templates and auxiliary classes are used to implement versions of

each instruction for all supported data types automatically. The wrappers for the

different data types are created automatically once a new instruction is included in

VALib. It is also simple to incorporate new statistics and traces.

17

2. VALIB AND SIMPLEVECTOR: TOOLS FOR RAPID INITIAL RESEARCH
ON VECTOR ARCHITECTURES

for (i = 0; i < veclen; i++) {
 diff1 = x[i] - m1[i];
 dval1 -= diff1 * diff1 * v1[i];
}
 (a)
LDV R3, x // load vector x
LDV R1, m1 // load vector m1
SUBV R4, R3, R1 // vector-vector subtraction
MULV R5, R4, R4 // vector multiplication
LDV R2, v1 // load vector v1
MULV R5, R5, R2 // vector multiplication
VREDADD R5, temp // vector reduction
dval1 =- temp
 (b)
 MVL = get_mvl();
 set_vl(MVL);
 for (k=0; k < veclen; k+=MVL) {
 if ((k + MVL) > veclen) {
 MVL = veclen – k; set_vl(MVL);
 }
 ldv_fl(R3, x+k);
 ldv_fl(R1, (m1+k));
 subv_fl_fl_fl(R4, R3, R1);
 mulv_db_fl_fl(R5, R4, R4);
 ldv_fl(R2, (v1+k));
 mulv_db_db_fl(R5, R5, R2);
 vredadd_db(&temp_db, R5);
 dval1 -= temp_db;
}
 (c)

Figure 2.1: Example of vector library usage: a) source code of kernel, b) vectorized pseudo-
code, c) vectorized code using VALib.

For example, we have extended VALib to generate a trace of all operands of
addition/subtraction vector instructions. The traces, coupled with timing informa-
tion generated by SimpleVector, were used as input to a circuit-level simulator to
measure performance and estimate power of a vector addition unit [67].

2.1.6 Example of Vector Library Usage

The following example shows how to use VALib to vectorize a kernel. The code
in the Figure 2.1.a represents one part of a kernel from Sphinx3. It consists of one
loop which computes a scalar from three input arrays (x, m1 and v1).

18

2.2 Characterization of Vectorized Applications

The pseudo-code in the Figure 2.1.b shows how the example can be vectorized.

Vectors are accessed using vector memory load instructions from VALib and then

computation is performed using vector subtraction and multiply functions. Finally,

a reduction instruction generates the scalar.

Once we have the pseudo-code of the vectorized kernel it is straightforward to

replace this code with function calls from VALib (Figure 2.1.c). This resembles the

way SSE/AVX intrinsics are used to manually SIMDize code. Function names are

composed of two parts. The first one indicates the opcode of the vector instruction

(e.g. ldv, subv, etc.) and the second indicates the data type or types used by the

instruction. Since strip-mining is typically applied, we also did it in our example

(the loop and first three rows in the loop in the Figure 2.1.c).

2.2 Characterization of Vectorized Applications

This section presents the instruction-level characterization that is possible to per-

form with VALib on six applications. First, the methodology applied to vectorize

the applications is described and then the results of the characterization are pre-

sented.

Since the goal of our tools is to evaluate differences between vector designs (not

to measure speed-up over scalar) we chose applications with high potential DLP,

as subsection 2.2.2 shows. The applications are described in Table 2.1. Four appli-

cations are from SPEC benchmark suites. Sphinx3, H264ref and Hmmer are from

the SPEC2006 benchmark suite. Sphinx3 performs speech recognition, H264ref

does video coding while Hmmer feature hidden markov models which are used

in machine learning. Facerec is from the SPEC2000 benchmark suite. Even though

SPEC benchmarks are typically used to evaluate general purpose processors, appli-

cations such as speech recognition or face recognition are widely used in mobiles.

The Graph500 [55, 56] benchmark is a data intensive, high performance graph

processing application but we choose this application because it is highly cache

unfriendly and it is a good example to evaluate our ideas for cache unfriendly sce-

narios. ECLAT [57] is an application from the data-mining realm. In particular, it

implements a known algorithm for frequent itemset mining.

19

2. VALIB AND SIMPLEVECTOR: TOOLS FOR RAPID INITIAL RESEARCH
ON VECTOR ARCHITECTURES

Table 2.1: Vectorized applications.

Application Description

FaceRec Face recognition system.
Sphinx3 Speech recognition system.
H264ref Implementation of H.264 /AVC.
Hmmer Search a gene sequence database.
ECLAT Frequent itemset mining.
Graph500 BFS for undirected graphs.

2.2.1 Methodology

The methodology that we used during the process of vectorization has the follow-

ing steps:

Profiling is performed to identify the functions that dominate the application’s

execution time. We used gprof and Intel’s VTune profilers.

Kernel analysis is performed for kernels that consume most of the execution

time. They are examined for vectorization (e.g. does the kernel contain loops, what

kinds of dependencies appear, what is the size of loop, etc.). The kernels that are

successfully identified as vectorizable are selected for the next step.

Kernel vectorization is done by writing pseudo-code and inserting calls to

VALib. The actual vector length required by an algorithm (the number of iterations

of a loop) is usually larger than the maximum vector length (MVL) supported by

the architecture. Also, we want to experiment with several MVLs. Furthermore,

the actual vector length is often unknown at compile time. Strip-mining is applied

in all vectorized kernels that have a number of loop iterations greater than MVL or

when it is unknown/variable (as vectorized example shows in the Figure 2.1.c). It

also allows changing the MVL without modifying the vectorized source code.

Result analysis is performed after the vectorized application is run and its

statistics are collected. The results are analyzed using the instruction-level char-

acterization described below.

20

2.2 Characterization of Vectorized Applications

Table 2.2: Instruction-level characterization.

Application Scalar Vector Vector Percentage of Average
instructions instructions operations vectorization VL

FaceRec 2.1×1010 2.4×109 9.4×1010 81.8 38.7
Sphinx3 3.6×1011 3.7×1010 1.7×1012 82.5 46.0
ECLAT 1.7×108 3.8×107 1.7×109 91.1 59.1
Hmmer-I 2.2×1011 8.5×109 5.1×1011 70.1 59.9
Hmmer-II 5.2×1011 2.1×1010 1.1×1012 66.8 49.8
H264ref-I 1.5×1011 1.6×1010 2.5×1011 63.2 15.3
H264ref-II 1×1011 9.5×109 2.1×1011 67.7 22.2
H264ref-III 8.9×1010 7.7×1011 2.1×1012 73.2 23.4
Graph500 1.1×1010 3×109 9.5×1010 89.4 31.1

2.2.2 Instruction-Level Characterization

This section illustrates the kind of detailed characterization at the instruction level

that can be performed using VALib.

Degree of Vectorization

Table 2.2 presents some statistics for vectorized applications described in Section

2.1.3. The first column lists the applications. Hmmer and H264ref are presented

with multiple data sets. The next two columns contain the total number of ex-

ecuted scalar and vector instructions. The next column presents the number of

operations performed by the vector instructions. A scalar instruction performs a

single operation while a vector instruction performs a number of operations deter-

mined by the value of the vector length register. The fifth column is the percentage

of vectorization of each application, defined as the ratio of vector operations and

total operations (scalar instructions plus vector operations) [20]. The last column

presents the average vector length (AVL) (vector operations divided by vector in-

structions) with an MVL of 64.

The first interesting point from Table 2.2 is the degree of vectorization which

shows if a vector processor is a suitable choice for the application. All our appli-

21

2. VALIB AND SIMPLEVECTOR: TOOLS FOR RAPID INITIAL RESEARCH
ON VECTOR ARCHITECTURES

0
16

32
48

64
80

96
112

128
144

160
176

192
208

224
240

256

0

10

20

30

40

50

60

70

80

90

100

FaceRec

VL value

C
u

m
u

la
ti

ve
 %

0
16

32
48

64
80

96
112

128
144

160
176

192
208

224
240

256

0

10

20

30

40

50

60

70

80

90

100

Sphinx3

VL value

0
16

32
48

64
80

96
112

128
144

160
176

192
208

224
240

256

0

10

20

30

40

50

60

70

80

90

100

ECLAT

VL value

0
16

32
48

64
80

96
112

128
144

160
176

192
208

224
240

256

0

10

20

30

40

50

60

70

80

90

100

Hmmer-I

VL value

C
u

m
u

la
ti

ve
 %

0
16

32
48

64
80

96
112

128
144

160
176

192
208

224
240

256

0

10

20

30

40

50

60

70

80

90

100

Hmmer-II

VL value

0
16

32
48

64
80

96
112

128
144

160
176

192
208

224
240

256

0

10

20

30

40

50

60

70

80

90

100

H264ref-I

VL value

0
16

32
48

64
80

96
112

128
144

160
176

192
208

224
240

256

0

10

20

30

40

50

60

70

80

90

100

GRAPH500

VL value

C
u

m
u

la
ti

ve
 %

MVL 16
 MVL 32
MVL 64
MVL 128
MVL 256

Figure 2.2: Distribution of vector lengths. X-axis represents the VL and Y-axis is a cumula-
tive %.

22

2.2 Characterization of Vectorized Applications

cations have a high degree of vectorization and it is an expected result from the

selected applications, that have a lot of potential DLP. It ranges from 62.90% for

H264ref up to 91.06% for ECLAT. It is important to mention that we just vectorized

the most executed kernels and these numbers could be improved by vectorizing

other kernels in the applications. The degree of vectorization also depends on the

input data set. We can observe that Hmmer has different degree of vectorization for

its two different input data sets, 70.08% and 66.76%. We investigated Hmmer and

found that the most executed loop has only 100 iterations in Hmmer-I while 300 in

Hmmer-II.

Vector Lengths

The actual vector length used by vector instructions is an important characteristic of

vectorized applications and one convenient way to present it is the AVL. The AVL

observed in the vectorized applications is presented in Table 2.2. Even though these

applications are highly vectorizable, their AVLs vary considerably. Only Hmmer

and ECLAT have AVLs very close to the MVL. All other applications also have

relatively long AVLs except H264ref and Graph500. H264ref has a short AVL, and

in Graph500, the AVL is half of the MVL.

While the AVL is important when long memory latencies are considered, the

effective usage of vector registers is important in achieving high performance. For

this reason, we further analyze vector lengths and study the effective usage of

vector registers with different MVLs. Vector length distribution is crucial to under-

stand the interaction between latencies and performance. The MVL is a key design

decision of a vector unit and this statistic shows the actual vector length used by the

applications. In Figure 2.2, we plot the cumulative percentage of vector instructions

executed with each vector length. The X-axis plots the vector length value and the

Y-axis plots the cumulative percentage of instructions that have used a given vector

length. Each line corresponds to a different MVL. For example, for Sphinx3 we can

see that for an MVL of 64 about 15% of all vector instructions were executed with a

vector length that was lower than 39, about 40% were executed with vector length

39, and 45% were executed using the MVL (64).

23

2. VALIB AND SIMPLEVECTOR: TOOLS FOR RAPID INITIAL RESEARCH
ON VECTOR ARCHITECTURES

Our applications present a very wide range of behavior with respect to the
vector length distribution. Most instructions in ECLAT use the MVL or a close
value for any MVL, due to a very long loop. H264ref has a dominant vector length
of 16. The distribution of vector lengths in Hmmer-I and Hmmer-II shows a step
in many cases that is determined by the number of iterations of the vectorized
kernel (i.e. 300 and 100, respectively). For example, when the MVL is 256, Hmmer-I
executes instructions with vector lengths 256 and 44. FaceRec and Sphinx3 have
a distribution that follows a staircase with several dominant vector lengths. The
number of instructions that use the MVL is higher for shorter MVLs. Graph500
executes instructions with all possible vector lengths from one to the MVL and
many instructions have a very short length, which lowers the AVL.

This data shows that the utilization of vector registers depends both on the
application and the input data set. While some of the applications almost always
use the whole vector register, the other could also run at a similar performance
using shorter MVLs (H264ref). Results for Hmmer and H264ref show how the input
data sets used to run the applications have an impact in the vector lengths used.
Moreover, the way these kernels are vectorized has a lot of influence in the usage
of vector registers as is shown in Section 2.6. VALib is useful to easily study how
larger MVLs could be used by vectorized applications.

It can also be interesting to know what would happen if the ISA offered an
infinite MVL. The annotation functions of VALib can be used to perform such a
study by counting the number of iterations in the vectorized loops. The most
interesting results are that Graph500 and ECLAT could use longer MVLs because
their lengths are much longer than 256 elements.

Vector Instruction Mix

The instruction mix indicates which vector instructions types are executed in the
vectorized applications. We can determine the most executed instructions, as well
as the ratio between memory and computation instructions. This helps to identify
potential bottlenecks. Table 2.3 shows the distribution of four categories of vector
instructions: arithmetic and logical, memory, reduction, and bit/element manip-
ulation instructions. The vector library counts the number of executions for each

24

2.2 Characterization of Vectorized Applications

Table 2.3: Instruction mix.

Application Vector Instructions %
instructions Arithmetic & Memory Reduction Bit &

Logical Element

FaceRec 2.4×109 41.0 34.4 13.1 11.5
Sphinx3 3.7×1010 46.5 37.8 11.3 4.3
ECLAT 3.8×107 7.3 21.9 0.0 70.8
Hmmer 8.5×109 39.5 42.1 2.6 15.8
H264ref-I 1.6×1010 31.8 48.8 13.4 6.0
H264ref-II 9.3×109 26.6 57.0 11.2 5.1
H264ref-III 7.7×1011 26.3 56.0 10.8 6.9
Graph500 3×109 16.7 58.4 0.0 24.9

instruction individually. We grouped them here to simplify the table and provide
a general view of the applications. The library also counts the operations per in-
struction that aren’t included here because the overall numbers are very similar.

We can see that 35% to 58% of all vector instructions are of the memory type,
except for ECLAT, in which this percentage is lower, about 22%. Memory instruc-
tions are the most executed type in Hmmer, H264ref and Graph500. These results
stress the importance of the memory system. The characteristics of these instruc-
tions are further studied in the next section. In the following chapters we pay
special attention to the memory unit/instructions. The dominant computation cat-
egory are arithmetic and logical instructions, except for ECLAT and Graph500 where
bit/element manipulation instructions represent 70.8% and 24.9% of the vector in-
structions respectively. Reduction instructions are significant in Sphinx3, FaceRec,
H264ref-I and H264ref-II applications with the range between 10% and 15%. The
table shows the results just for one input data set of Hmmer because we observed
that the distribution is the same for the different input data sets.

Memory access patterns

Stride distribution shows which memory access patterns are used by the applica-
tions. This helps to identify which accesses should be optimized in the memory

25

2. VALIB AND SIMPLEVECTOR: TOOLS FOR RAPID INITIAL RESEARCH
ON VECTOR ARCHITECTURES

F
a

c
e

R
e

c

S
p

h
in

x
3

E
C

L
A

T

H
m

m
e

r

H
2

6
4

re
f-

I

H
26

4
re

f-
II

G
R

A
P

H
5

0
0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

indexed

stride 13

stride 8

stride 4

stride 2

unit stride

Figure 2.3: Distribution of memory access patterns.

system, a critical part of any vector machine. Figure 2.3 presents the distribution

of memory access patterns, including unit-stride, stride n and indexed. HM exe-

cutes almost only unit-stride instructions. The vector processor can take advantage

of the spatial locality and the burst nature of unit-stride accesses and implement a

faster support for this instruction type, retrieving a whole cache line per access. On

the contrary, the memory easily becomes the bottleneck for applications that use

strides greater than one or indexed memory accesses. FaceRec and Sphinx3 have

a relevant percentage of strided memory accesses. Index memory instructions are

dominant in ECLAT and Graph500 and are very important for Sphinx3 and H264ref.

2.3 Possible Alternatives to VALib

One important initial motivation to create VALib was the lack of an available vec-

tor machine native compiler. Compilers for vector architectures have been very

successful at vectorizing code automatically. However, vector compilers are bound

to a specific vector ISA and machine and are available only to users of the system.

Another problem is that they are not open source; for this reason, they lack the flex-

26

2.3 Possible Alternatives to VALib

ibility to extend them to support new instructions, a common study in computer
architecture research. On the contrary, VALib does not support auto-vectorization
capabilities, and it requires vectorization by hand, but it is flexible to extend the
implemented vector ISA with new instructions (see Section 2.6) and it is not bound
to any specific vector ISA.

An alternative would be to use a tool such as the Intel SPMD Programing Com-
piler (ispc) [62] as an alternative to avoid vectorization by hand. The ispc is an
open-source compiler that provides a high-level programming interface for pro-
gramming SIMD in an OpenMP-like style. The compiler can generate C++ code
with a set of generic SIMD intrinsics, which can then be mapped to platform spe-
cific SIMD intrinsics (that implements the particular generic SIMD intrinsic inter-
face). Another option is to extend an existing compiler such as gcc or LLVM [45]
with a vector back-end and use its existing auto-vectorization capabilities or to em-
ploy auto-vectorization capabilities of a source-to-source compiler and implement
a backend that inserts calls to VALib. However, ispc or gcc is intended for generat-
ing code that uses SIMD instructions. Although SIMD and vector have similarities,
they have important differences that would require modifying the ispc substantially
to adapt it to a vector ISA. For example, SIMD instructions operate with a fixed vec-
tor length while vector architectures have a variable vector length. Another issue
is that it may not be trivial to extend the compiler to utilize the new instructions
and to extend the compiler optimizations to account for the new instructions. For
this reason, we would need first to establish the usefulness of the new instructions
with VALib to ensure that it is worth the effort to modify the compiler.

Auto-vectorization capabilities cannot always capture the DLP available. For
this reason, typically intrinsics are employed to use SIMD instructions effectively
for highly optimized code. We consider that hand vectorization with VALib is
similar to coding using intrinsics. The main difference is that existing intrinsics
do not implement a vector ISA but SIMD extensions, so they cannot be used for
research on vector architectures.

Recently, we have managed to connect our VALib with Mercurium compiler
[8]. Mercurium is able to vectorize part of a code that is annotated with pragma
directives. Instead of calling SIMD intrinsics we managed to insert call to functions
from our VALib. It means that the compiler is able to automatically vectorize a code

27

2. VALIB AND SIMPLEVECTOR: TOOLS FOR RAPID INITIAL RESEARCH
ON VECTOR ARCHITECTURES

using our VALib. For example, a loop below is annotated with pragma directive
simd.

#pragma simd
for (i = 0 ; i < LENGTH; i ++) {

z [i] = x [i] + y [i] ;
}

After compiling the loop, Mercurium compiler generates the following code:

v a l i b _ s e t v l (6 4) ;
for (i = 0 ; i <= −64 + n ; i = 64 + i) {

v a l i b _ l d _ i n t 3 2 (VR0 , &b [i]) ;
v a l i b _ l d _ i n t 3 2 (VR1 , &c [i]) ;
v a l i b _ a d d _ i n t 3 2 _ i n t 3 2 _ i n t 3 2 (VR2 , VR0 , VR1) ;
v a l i b _ s t _ i n t 3 2 (VR2 , &a [i]) ;

}
v a l i b _ l d _ i n t 3 2 (VR0 , _ v l i t e r a l _ 0) ;
v a l i b _ s e t _ i n t 3 2 (VR1 , n − i) ;
v a l i b _ l e _ i n t 3 2 _ i n t 3 2 (MR0, VR0 , VR1) ;
i f (! val ib_mask_is_zero (MR0)) {

val ib_ldm_int32 (VR0 , &b [i] , MR0) ;
val ib_ldm_int32 (VR1 , &c [i] , MR0) ;
va l ib_addm_int32_int32_ int32 (VR2 , VR0 , VR1 , MR0) ;
va l ib_s tm_int32 (VR2 , &a [i] , MR0) ;

}

The loop is vectorized using corresponding functions from our VALib. In this
particular example, the remaining part of the loop (epilogue) is vectorized using
masked vector instructions. Mercurium compiler also supports approach which
sets new vector length for the epilogue (like in Figure 2.1).

2.4 SimpleVector

SimpleVector is a simple trace-driven simulator for vector processors based on a
generic vector processor, such as the described by Hennessy and Patterson [31].
The model consists of a component that models the microarchitecture of the de-
sired vector processor, a memory hierarchy and methods that apply chaining and

28

2.4 SimpleVector

other implementation specific features. The model uses an instruction trace, op-
tionally an address trace and the Instruction Per Cycle (IPC) metric of scalar code
as inputs to estimate execution time of the vectorized application. The traces are
generated by VALib (see section 2.1.4). SimpleVector generates detailed statistics
of the resource usage. These statistics help us to better understand the obtained
results and the behavior of the vectorized applications.

Detailed microarchitectural simulators are a very common way to evaluate per-
formance. Although it can be accurate this method is time-consuming both to cre-
ate the simulator and to run the simulations. Our goal was to develop a tool that
provides results fast and allows a preliminary evaluation and an early parameter
exploration. In chapter 4, we build a simulator for a specific vector microarchitec-
ture.

2.4.1 Simulated Microarchitecture

The structure of SimpleVector is presented in Figure 2.4. It takes as input two files,
the instruction trace file and the memory address trace file. It models functional
units (FU), vector load/store units (LD/ST), a vector register file, a memory hi-
erarchy, a fetch/decode unit and an execution unit. The fetch/decode unit loads
instructions from the instruction trace. The execution unit checks for available des-
tination and source registers as well as a FU or LD/ST unit. After that it computes
instruction’s start and end of execution, and updates states of units that are af-
fected by execution of that instruction. For memory instruction, the execution unit
generates accesses to the memory hierarchy using the memory address trace.

SimpleVector is parameterizable in several ways. It can model in-order and
decoupled execution. The number of FUs and LD/ST units, as well as the number
of vector lanes, are parameters. Each unit is parameterizable too, including: 1)
the number and length of vector registers for the vector register file, 2) instruction
and data types supported by each FU (e.g. FP multiply, logical, etc.), 3) memory
instruction types supported by each vector memory unit and 4) latencies. The
parameters can be provided either at compile or run time.

As mentioned above, SimpleVector simulates a memory hierarchy. Even though
class vector supercomputers accessed main memory directly, it has been shown that

29

2. VALIB AND SIMPLEVECTOR: TOOLS FOR RAPID INITIAL RESEARCH
ON VECTOR ARCHITECTURES

Memory
hierarchy

V
e
c
to

r
ld

/s
t

u
n

it

V
e
c
to

r
ld

/s
t

u
n

it

V
e
c
to

r
ld

/s
t

u
n

it

Vector register

Vector register

Vector register

Vector register

Vector register

FU unit

FU unit

FU unit

FU unit

Fetch/decode
unit

Execution
unit

Instruction
trace file

Memory address
trace file

Figure 2.4: The basic structure of SimpleVector.

vector processors benefit from accessing caches [24, 40, 65] and we expect any fu-

ture vector processor to access a memory hierarchy. A basic cache simulator based

on a modified memory model of SimpleScalar [13] is attached to SimpleVector. Ac-

cess to main memory is simulated in a more accurate way than in SimpleScalar.

We model a bus and therefore have limited bandwidth with a fixed memory la-

tency. On top of that, we use DRAMsim [83] to calculate a representative accurate

memory latency. The cache simulator takes as input the address trace generated

by VALib. For each vector memory instruction, the address trace contains all nec-

essary information to generate the addresses accessed. For unit-stride memory

instructions, we can load/store a whole L1 cache line with only one access, while

for strided, indexed and shape memory instructions, only one element per access

is loaded/stored.

Currently SimpleVector models the execution unit for in-order and decoupled

vector architectures. In the in-order model, all instructions are executed in program

order. Decoupled vector architectures [22] improve in-order by separating the exe-

cution of computation instructions and data movement, and allowing memory in-

structions to be executed ahead of computation instructions. For both in-order and

decoupled architecture, SimpleVector implements several techniques commonly

30

2.4 SimpleVector

found in vector processors [31] such as multilaning, pipelined instruction start-
up (dead time or recovery time) and chaining for arithmetic vector instructions.
SimpleVector does not support chaining from the memory hierarchy. In chapter 4,
we propose techniques that allow for chaining from the memory hierarchy with
their detailed description and evaluation.

All the parameters mentioned above help us to analyze a broad range of dif-
ferent configurations of vector processors, from very simple vector processors with
only one lane, one vector load/store unit and a small number of functional units,
to more complex vector processor architectures with multiple lanes and a rich set
of load/store and functional units as shown in Section 2.5.

2.4.2 Extensibility

SimpleVector has been also designed with extensibility in mind. For example if an
instruction is added to VALib, SimpleVector will automatically decode it correctly
from the instruction trace because VALib and SimpleVector share files where the
new instruction is defined. Only the semantics of the new instruction has to be
implemented in SimpleVector. By semantics we mean the specification of how the
instruction uses the resources of the simulated processor (e.g. when are FU used,
registers accessed or memory requests initiated).

In order to implement a new vector processor model, the already defined vector
instruction functionality can be reused as well as structures such as the vector
register file, FU units, etc. Only the new execution model of vector instructions has
to be implemented.

2.4.3 Accuracy Testing

In order to increase our confidence in the correctness of the results of SimpleVector,
we decided to compare the output of SimpleVector with known and predictable
results. We used as reference published results of Cray-1 M [71] for three mi-
crobenchmarks. We chose microbenchmarks because we do not have access to a
existing vector machine and we cannot use published results because many vari-
ables are unknown. The first microbenchmark adds two vectors and stores the

31

2. VALIB AND SIMPLEVECTOR: TOOLS FOR RAPID INITIAL RESEARCH
ON VECTOR ARCHITECTURES

Table 2.4: Execution cycles for three microbenchmarks.

Benchmark SimpleVector Cray-1 M
ID 10 100 1000 10 100 1000

First 56 352 3442 121 416 3508
Second 60 356 3471 147 444 3563
Third 70 460 4480 116 508 4531

result to a third one, the second microbenchmark performs vector-scalar multi-
plication and then vector-vector addition while the third performs vector-vector
multiplication and then vector-vector addition. We configure SimpleVector as close
as Cray-1 M as possible, following the Cray-1 M hardware reference manual [1].

Table 2.4 presents results for SimpleVector and Cray-1 M. The results are pre-
sented in cycles and three different vector lengths (10, 100 and 1,000) are used in all
microbenchmarks. The MVL of Cray-1 is 64 elements. The differences in the results
of SimpleVector and Cray-1 M are small. For example, in the first microbenchmark
the difference between our results and CRAY-1 M is around 65 cycles for all dif-
ferent lengths. Even though this is large for short vector lengths, for typical vector
array lengths the difference is small, e.g. 2.7% for 1,000 elements. Since this differ-
ence is constant across different array lengths, it seems that some undocumented
kernel initialization is the likely source of the discrepancy. We did not take this into
account in our experiments. The results for the other two microbenchmarks show
similar trends.

2.5 Evaluation of Microarchitectural Alternatives

In this section, we evaluate several alternatives of the microarchitecture by using
SimpleVector. In particular, we study the memory hierarchy and compare in-order
(IO) and decoupled (DC) architectures. The vectorized applications presented in
Section 2.2 are used to perform the evaluation.

As it is well known, long vectors are useful to hide the memory latency. We
want to study the behavior of the set of vectorized applications using different
cache configurations and MVLs.

32

2.5 Evaluation of Microarchitectural Alternatives

Table 2.5: Cache hierarchy configurations.

C2K C16K C64K C128K C1M

L1 cache 2KB 16KB 64KB 128KB 1MB
L2 cache 32KB 256KB 1MB 2MB 16MB

We also evaluate two different vector architectures: IO and DC. These two ar-

chitectures are interesting alternatives. IO processors are overwhelmingly used in

the embedded domain because they are more energy-efficient compared to bulky

out-of-order architectures, while DC architecture is an efficient way to improve per-

formance without the complexity of out-of-order execution. It is also not trivial to

determine the best configuration for the functional units. We want to see what

is the impact on execution time for the set of vectorized applications when using

different configurations of functional units for both IO and DC.

2.5.1 Memory Hierarchy

In the experiments of this section, we use five different configurations of the cache

hierarchy presented in Table 2.5. They are ranging from small caches (L1 2 KB, L2

32 KB) to larger caches (L1 1 MB, L2 16 MB). The L2 cache is 16 times larger than

L1 in all configurations.

We performed an analysis using four different L1 hit latencies (1, 2, 4 and 8

cycles) and three different L2 hit latencies (12, 16 and 20 cycles) before we fixed

their values. We run experiments using all possible combinations of hit latencies

and the C64K configuration for cache sizes. Results show that the difference in

execution time is less than 5% for all applications, except for H265ref-I when L1

hit latency is 8. In this case, the execution time is around 15% worse than the best

configuration. We chose 4 and 12 cycles for L1 and L2 hit latencies respectively

since they are common in modern microprocessors [3]. All caches are 4-way set

associative and have 64-byte lines.

Two FU and two memory units are used in all experiments of this section. The

FU support all non-memory vector instructions and the memory units support all

memory vector instructions. Instruction and address traces with MVLs of 32, 64,

33

2. VALIB AND SIMPLEVECTOR: TOOLS FOR RAPID INITIAL RESEARCH
ON VECTOR ARCHITECTURES

VL=32 VL=64 VL=128 VL=256
0.0E+00

5.0E+08

1.0E+09

1.5E+09

2.0E+09

2.5E+09

ECLAT

VL=32 VL=64 VL=128 VL=256
0.0E+00

5.0E+10

1.0E+11

1.5E+11

2.0E+11

2.5E+11

3.0E+11

3.5E+11

H264ref-I

VL=32 VL=64 VL=128 VL=256
0.0E+00

2.0E+10

4.0E+10

6.0E+10

8.0E+10

1.0E+11

1.2E+11

1.4E+11

1.6E+11

FaceRec

VL=32 VL=64 VL=128 VL=256
0.0E+00

1.0E+11

2.0E+11

3.0E+11

4.0E+11

5.0E+11

6.0E+11

7.0E+11

Hmmer-I

VL=32 VL=64 VL=128 VL=256
0.0E+00

5.0E+11

1.0E+12

1.5E+12

2.0E+12

2.5E+12

3.0E+12

Sphinx3

VL=32 VL=64 VL=128 VL=256
0.0E+00

2.0E+10

4.0E+10

6.0E+10

8.0E+10

1.0E+11

1.2E+11

1.4E+11

1.6E+11

1.8E+11

GRAPH500

C2K
C16K
C64K
C128k
C1M

Figure 2.5: Execution time for different MVLs and configurations of cache hierarchies.

34

2.5 Evaluation of Microarchitectural Alternatives

128 and 256 are used in the experiments. All experiments in this section were per-

formed using the IO vector architecture. Performance counters are used to count

the scalar instructions. Average memory access time is obtained using trace-based

DRAMsim for each application and for all configurations of the cache hierarchy

and MVLs separately. The measured average access time is used as the main mem-

ory latency in SimpleVector. Figure 2.5 presents the execution time in cycles of the

applications using different cache sizes and MVLs. A lower number means a better

result.

The first and expected observation is that we have better execution time for

longer MVLs for smaller cache configurations except H2-I which has almost the

same execution time for all MVLs because most instructions use a vector length

around 16 as Figure 2.2 shows. In FaceRec, the execution time is almost the same

for all MVLs greater or equal to 64. The reason is the small number of instructions

that are executed with vector lengths larger than 64 (see Figure 2.2). The very

high hit rates for larger cache configurations explain why we have almost the same

execution time in Hmmer-I for different MVLs.

The second observation is that we have better execution time for larger caches

for all MVLs. One of the main benefits of long MVLs is that it is easier to hide

memory latency. However, when data set fits in the cache, memory latency is

short, so long MVLs add little performance improvement. The best execution time

is obtained for C1M in all cases. However, it is interesting to notice that there is very

small difference between C128K and C1M, except for Graph500 which has a large

data set. For the rest of applications, the data set fits in the C128K configuration

with an L2 cache of 2 MB, and there is no need for larger caches. Moreover, for

some applications (ECLAT and Hmmer-I), caches larger than C64K are not useful.

A preliminary conclusion from these experiments with the cache hierarchy is

that a C128K cache configuration is enough to provide sustainable performance

for all applications for MVLs larger or equal to 64 elements. Longer MVLs also

provide better performance for smaller caches if the application can exploit longer

MVLs (Sphinx3, ECLAT and Hmmer-I).

35

2. VALIB AND SIMPLEVECTOR: TOOLS FOR RAPID INITIAL RESEARCH
ON VECTOR ARCHITECTURES

VL=32 VL=64 VL=128 VL=256
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

FaceRec

S
p
e
e
d
-u
p

VL=32 VL=64 VL=128 VL=256
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

Sphinx3

VL=32 VL=64 VL=128 VL=256
0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

ECLAT

S
p
e
e
d
-u

p

VL=32 VL=64 VL=128 VL=256
0.970

0.975

0.980

0.985

0.990

0.995

1.000

1.005

Hmmer-I

VL=32 VL=64 VL=128 VL=256
0.83

0.84

0.85

0.86

0.87

0.88

0.89

H264ref-I

S
p
e
e
d
-u

p

VL=32 VL=64 VL=128 VL=256
0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

Graph500

C2K

C16K

C64K

C128k

C1M

Figure 2.6: Results for direct L2 access.

36

2.5 Evaluation of Microarchitectural Alternatives

Direct L2 access

Direct L2 access is an interesting solution to integrate a vector unit with the cache
hierarchy of a microprocessor [24, 30, 65]. The idea is that vector memory instruc-
tions directly load/store data from/to L2 cache. We performed the same experi-
ments described above but with direct L2 access. Figure 2.6 shows speedups for
direct L2 access over the results presented in Figure 2.5. In most cases, accessing
the L2 directly does not have a big impact on performance. In the baseline config-
uration, an L2 hit pays a higher latency than the same access in direct L2 because
it has to add the latency of accessing and missing in the L1. On the contrary, when
an access hits in the L1 the latency is smaller. For this reason, in larger cache con-
figurations where the L1 hit rate is higher, the baseline configuration is usually
faster than the direct L2 configuration while for smaller configurations direct L2
often outperforms the baseline. The difference in performance is less than 5% for
all applications except for H264ref which degrades performance about 15% with
direct L2 access and Graph500 that sees a speedup of roughly 10%. The reason is
that for H264ref, the data set fits in L1 even with the smallest configuration, and for
Graph500, it does not fit even with the largest.

2.5.2 In-Order vs Decoupled

We perform two kinds of experiments in this section: we compare the IO and DC
execution models and search for optimal configuration of functional and memory
units using vectorized applications and different MVLs. We consider four MVLs as
in the previous section and four different configurations of functional units ranging
from two FUs and two memory units to four FUs and three memory units. The
FU units support all vector arithmetic and logic instructions with any data types
for both models. In the IO model, the memory units support all types of vector
memory instructions while in the DC model, a given memory unit supports either
load or store instructions. This approach allows parallel execution of independent
load and store instructions. In configurations with three memory units, two units
support vector load instructions and one unit support store instructions. In other
configurations, memory units are divided equally. The C128K cache configuration
is used in all experiments.

37

2. VALIB AND SIMPLEVECTOR: TOOLS FOR RAPID INITIAL RESEARCH
ON VECTOR ARCHITECTURES

32 IO 32 DC 64 IO 64 DC 128 IO 128 DC 256 IO 256 DC
0.0E+00

5.0E+10

1.0E+11

1.5E+11

2.0E+11

2.5E+11

3.0E+11

3.5E+11

H264ref-I

32 IO 32 DC 64 IO 64 DC 128 IO 128 DC 256 IO 256 DC
0.0E+00

2.0E+08

4.0E+08

6.0E+08

8.0E+08

1.0E+09

1.2E+09

1.4E+09

1.6E+09
ECLAT

32 IO 32 DC 64 IO 64 DC 128 IO 128 DC 256 IO 256 DC
0.0E+00

2.0E+11

4.0E+11

6.0E+11

8.0E+11

1.0E+12

1.2E+12

1.4E+12

1.6E+12
Sphinx3

32 IO 32 DC 64 IO 64 DC 128 IO 128 DC 256 IO 256 DC
0.0E+00

5.0E+10

1.0E+11

1.5E+11

2.0E+11

2.5E+11

3.0E+11

3.5E+11

4.0E+11

4.5E+11
Hmmer-I2A2M

3A2M
3A3M
4A3M

32 IO 32 DC 64 IO 64 DC 128 IO 128 DC 256 IO 256 DC
0.0E+00

2.0E+10

4.0E+10

6.0E+10

8.0E+10

1.0E+11

1.2E+11

1.4E+11

1.6E+11
GRAPH500

32 IO 32 DC 64 IO 64 DC 128 IO 128 DC 256 IO 256 DC
0.0E+00

1.0E+10

2.0E+10

3.0E+10

4.0E+10

5.0E+10

6.0E+10

7.0E+10

8.0E+10

9.0E+10
FaceRec

Figure 2.7: Execution time of applications for in-order and decoupled vector architectures.
jAkM stands for a configuration with j FUs and k memory units.

38

2.6 Case Study: New instruction

Figure 2.7 presents the execution time for the vectorized applications evaluated
on the two models using different MVLs and configurations of functional units. As
it is expected, the best results are obtained for the DC architecture for all applica-
tions because vector memory instructions can be executed ahead of computation
instructions. Regarding the IO architecture, the results show that the memory in-
structions limit the performance of the applications. Thus, it is beneficial to start
executing them as soon as possible. The main exception is Graph500 for the con-
figurations that have two memory units where IO is faster than DC. The reason is
that in DC memory units are dedicated to either vector loads or stores while, in
IO, they are universal. This allows IO to execute two load instructions in parallel
from the main kernel. This outperforms the advantage of DC to overlap memory
with computation because there are not many computation instructions in the main
kernel. This also happens for some other applications, but the difference is much
smaller. We performed an experiment with two dedicated memory units (one for
loads, another for stores) for IO. DC outperforms IO in this case.

A large number of FUs provides smaller execution time for all applications,
except H264ref-I which has almost the same execution time for all configurations.
An increased MVL provides smaller execution time for Sphinx3 and FaceRec for
MVLs up to 64. It is not the case for Hmmer-I and H264ref-I because the L1 cache
hit rates are very high as mentioned in the previous section.

Adding a third memory unit in the IO model yields very small improvements
in execution time for all applications, while a third memory unit in the DC model
improves the execution time for Sphinx3 and FaceRec.

The results show that decoupling improves execution time for our applications
over an in-order architecture. For the configuration with three FUs and three
LD/ST units and an MVL of 128 elements, the average speed-up is 1.16x and it
ranges from just 1.01x for ECLAT up to 1.37x for H264ref-I.

2.6 Case Study: New instruction

Vector ISAs do not provide all possible vector instructions and the lack of a given
instruction can decrease performance or even prevent vectorization of a kernel by
the compiler as it was shown in Section 2.3. Our tools make it very easy to add

39

2. VALIB AND SIMPLEVECTOR: TOOLS FOR RAPID INITIAL RESEARCH
ON VECTOR ARCHITECTURES

new instructions to the ISA of VALib and then analyze the performance using

SimpleVector. VALib can also be used to study the impact in the average vector

length and other instruction-level metrics.

In the first vectorized version of FaceRec that we wrote, the average vector length

for the complete application was only 18 because it loaded many short vectors in

several kernels. Figure 2.8 shows how a particular kernel accesses the elements of

a matrix. There are three cases (a, b and c). All three patterns are used the same

number of times in a cyclic fashion. The kernel always accesses 64 elements. In

case a all 64 elements can be loaded with a single vector load instruction with a

stride of 2 while, in the other two cases, several vector load instructions have to

be executed with a shorter vector length. However, as the figure shows, there is a

regularity in the accesses that would make possible to load all the elements at once

even in cases b and c.

In this kernel, there is the possibility of applying memory shape instructions

[15], in which the vector is described by the address of the first element and three

scalar values: stride, span and skip. Stride describes the spacing between each load-

ed/stored element (inclusive of element). Span describes how many elements to

access at stride spacing before applying the second-level skip offset. Memory shape

instructions can be seen as an extension of stride instructions to 2-D patterns.

We implemented the memory shape instructions in VALib and SimpleVector

and modified the vectorized kernel of FR to use them. All instructions in the new

version of the kernel have a vector length of 64 (unless the MVL is smaller). The

average vector length for the whole application becomes 38 for an MVL of 64.

The results with SimpleVector show that memory shape instructions provide

up to 1.45x speed-up over the original vectorized kernel, with small differences

depending on the MVL and configuration chosen. The memory shape instructions

are implemented in the same way as strided memory instructions (one access to

memory per element). It means that this speed-up is achieved from longer vector

lengths and reduced number of executed vector instructions. The memory shape

instructions have been used to vectorize several kernels. They are used in Fac-
eRec and H264ref applications, accounting for 8.1% and 4.3% of all vector memory

instructions, respectively.

40

2.7 Related Work

Figure 2.8: Memory access patterns of the case study.

We also implemented several other uncommon instructions that are useful or
required to vectorize our target applications. Select instruction selects elements
from one or other source vector register depending on the value in vector mask
register. The library also implements new reduction instruction called sub-reduction
add or sub-sum. This instruction performs the sum for sub-sets in a vector register.
Some vector memory instructions (including indexed vector load or gather) are also
implemented with support for masking. These instructions are useful in kernels
where we have to store or load some elements of a stream depending on some
condition.

2.7 Related Work

Valero [82], Espasa [20] and Quintana [64] presented a detailed instruction-level
characterization of selected programs from the PERFECT club and SPECfp92 bench-
marks. Quintana also included several benchmarks for the Mediabench suite, mod-
ified some benchmarks to vectorize them and manually strip-mined all programs.
A trace-driven approach was used to characterize the programs. Binaries generated
by Convex C3400’s compiler were instrumented to produce traces [21]. Asanovic
[6] presented the design, implementation, and evaluation of the first single-chip
vector microprocessor (T0). He presented the results and statistics for several ap-
plications evaluated with T0.

41

2. VALIB AND SIMPLEVECTOR: TOOLS FOR RAPID INITIAL RESEARCH
ON VECTOR ARCHITECTURES

Previous work mentioned above includes statistics similar to the ones presented
in this paper, e.g. distribution of vector lengths, vector register usage, etc. However,
the methodology to obtain the results is very different since instead of using a
vector compiler we developed VALib that allows us to vectorize applications and
explore the potential of new vector instructions for them. It is hard to compare
results because we vectorized different applications, there is no general trend for
all applications and input data sets are much larger compared to those used in
their experiments.

Corbal [19] implemented a library to emulate a multimedia extension for Alpha
architectures. The code was manually modified to insert calls to the library. An
instrumentation tool was used to detect the calls to the library and feed a simulator.
The instruction set implemented was completely different to ours and targeted
multimedia extensions instead of vector architectures. Moreover, the use of an
instrumentation tool to detect the calls can slow down a lot the target application.

Like us, Janin [38] developed a library that implements many common instruc-
tions that are present in a register-based vector architecture. However, the library
does not allow the simulation of any particular architecture nor microarchitectural
details (e.g. memory hierarchy, chaining, etc.) and is not useful to estimate exe-
cution time. The library was specifically designed to vectorize speech recognition
algorithms. It is not publicly available so it cannot be used by the research commu-
nity.

2.8 Summary

This chapter presented two tools, VALib that enables rapid manual vectorization
and characterization of applications and SimpleVector, a simple and fast simula-
tor to estimate the execution time in many different vector processor configura-
tions. The potential and applicability of the two tools was demonstrated on six
applications with potentially high DLP. VALib can easily be used to vectorize and
characterize an application at the instruction level.

SimpleVector allows the evaluation of several alternative properties of the mi-
croarchitecture such as the memory hierarchy and in-order versus decoupled archi-
tectures. Moreover, a case study shows how VALib and SimpleVector can be used

42

2.8 Summary

to evaluate the performance speed-up achieved with the addition of new instruc-
tions to a vector ISA. VALib and SimpleVector have been designed to be extended
easily with new features and instructions.

In this chapter we saw that the memory side is also important. Some appli-
cations are memory bound where vector memory instructions are dominant (see
Section 2.2.2). There is also need to support complex memory access patterns in-
cluding gather/scatter, 2D-access, masking, etc. In a future vector microprocessor,
special attention should be given to a design and implementation of the memory
side.

43

3
Evaluation of Vectorization Potential of Graph500

on Intel's Xeon Phi

In the previous chapter we performed a detailed analysis of instruction-level char-
acteristics of our target applications. Most of them have a high degree of vector-
ization and this suggests that vector processors could be a good match. We also
analyzed the impact in performance of the cache hierarchy and functional unit
configuration in in-order and decoupled vector architectures. Since our targets
are low-end embedded systems it seemed reasonable to evaluate them rather than
more power hungry alternatives like out of order.

Our research center has access to machines with the Xeon Phi "Knights Cor-
ner" processor. The Xeon Phi processor is a massively parallel x86 microprocessor
designed by Intel. Since it has simple in-order cores and energy-efficient charac-
teristics, deeper insight into Xeon Phi capabilities during execution of vectorized
applications could provide fruitful informations for our processor design.

Our goal in this chapter is to evaluate of Xeon Phi characteristics that can be
useful in the process of making design decisions for our low-end embedded pro-
cessor extension. We decided to use the Graph500 [56] benchmark as an example
during evaluation. The main contributions of this chapter are:

• A study of the impact of prefetching on the performance of the Xeon Phi. The
Xeon Phi cores are in-order, which makes it very sensitive to cache misses.

• We prove that the combination of vectorization and parallelization is benefi-
cial for our workload running on the Xeon Phi.

45

3. EVALUATION OF INTEL’S XEON PHI CHARACTERISTICS

• Two observations that can be useful for Xeon Phi users or processor architects:
the initial results for vectorization can be misleading and prefetching is of
maximum importance if data is not cache resident.

The rest of this chapter is organized as follows: Section 3.1 gives an overview
of Graph500 and Xeon Phi. Section 3.2 describes parallel implementations of
Graph500. Section 3.3 shows how we vectorized Graph500 while Section 3.4 out-
lines methodology that we used during experiments. Section 3.5 presents experi-
mental results and finally, Section 3.6 concludes the chapter.

3.1 Background

The Graph500 benchmark is a data intensive, high performance computing ap-
plication. It complements TOP500, the performance evaluation metric used to
rank supercomputers, and targets five graph-related business areas: Cybersecurity,
Medical Informatics, Data Enrichment, Social Networks, and Symbolic Networks.
Graph500 is used for performance ranking and has attracted attention in recent
years. The Graph500 list ranks the first 500 supercomputers with highest perfor-
mance running the Graph500 benchmark.

Graph500 aims to implement three kernels: concurrent search, optimization
(single source shortest path), and edge-oriented (maximal independent set). They
access a single data structure representing a weighted, undirected graph. The main
kernel of Graph500, Breadth First Search (BFS), contains a lot of irregular memory
accesses. Most SIMD ISAs do not provide support for indexed memory accesses
and this lack has prevented vectorization of BFS.

The Xeon Phi is a recent massively parallel x86 microprocessor designed by
Intel and is based on the Larrabee GPU [74]. Its new features with respect to
some multimedia extensions, such as scatter/gather instructions, satisfy missing
requirements that prevent vectorization of Graph500. It has a large number of cores
and each core contains a wide SIMD unit. Each core in Xeon Phi [36] uses a short
in-order pipeline and is capable of supporting 4 threads in hardware. It contains a
vector processing unit (VPU) that implements a novel 512-bit SIMD instruction set.
A mask register was added to allow predicated execution. The VPU can execute

46

3.2 Parallel BFS Implementations

8 operations per cycle with 64-bit data or 16 operations per cycle with 32-bit data.
It delivers substantial performance and has been designed for energy efficiency
when executing highly parallel applications that can benefit from parallelization
and vectorization. These characteristics make the Xeon Phi an attractive processor
for building supercomputers. The most powerful supercomputer according to the
TOP500 list from November 20131, Tianhe-2 (MilkyWay-2), is built using Xeon Phi
co-processors.

Currently there are six supercomputers on the Graph500 list2 (November 2015)
that are built using the Xeon Phi. However, in their implementation of the Graph500
they just exploit the parallelization features of the Xeon Phi, following the work
done by Saule et al. [70] and ignore the vector features offered by the Xeon Phi that
allows for more efficient parallelization.

3.2 Parallel BFS Implementations

BFS is the main kernel of Graph500. BFS begins at a random node called start node
and inspects all its neighboring nodes. Then, for each of those neighbor nodes, it
inspects their neighbor nodes which were yet unvisited, and so on. In Graph500,
there is freedom to change the algorithm, the implementation and the data struc-
tures used. In order to be able to compare the performance of BFS implementations
across a variety of architectures, programming models, languages and frameworks,
the performance metric traversed edges per second (TEPS) is used. It is defined as
the ratio of the number of edges in the input graph to the execution time. In this
section we describe the current default implementation (V1.2) that we have used
in our experiments, as well as an overview of recently proposed alternative BFS
implementations.

3.2.1 Current BFS Implementation

The default parallel implementation of BFS is queue-based with local per-thread
next-level queues. Figure 3.1 shows the pseudo-code of that implementation. It is a

1http://top500.org/lists/2013/11/
2http://www.graph500.org/results_nov_2015

47

3. EVALUATION OF INTEL’S XEON PHI CHARACTERISTICS

level synchronous BFS algorithm with two optimization techniques borrowed from

[4]: ‘test and test-and-set’ operation and use of local next-level queues. It means

that the search of unvisited neighbor nodes (neighbors) is done in parallel (partition

per thread) and there is synchronization before the algorithm starts to search their

neighbors. The algorithm manages two sets of nodes: the visited (parent) set and

the next-nodes (next) set. The next set is implemented using a queue (global queue).

BFS starts searching from the start node. In each iteration, the algorithm visits

all the nodes in the next set in parallel and for each node, the ‘test and test-and-

set’ operation (lines 8-9) is used to check if the neighbors have not been visited

already (line 8). If this is true, the parent node is assigned to the parent set (line

9). Unvisited nodes are first stored in the per-thread local queue (local_queue) until

they are bulk inserted into the global queue or the next set (lines 12, 20). The per-

thread local queue is used to avoid synchronization for each element added in the

global queue, and therefore to provide better performance. Figure 3.2 shows an

example of the graph traversed using this implementation. The start node is A. In

the first iteration, all its neighbors are visited (gray nodes - B, C, D) and added to

the next set. In the next iteration, the neighbors of gray nodes are visited and only

unvisited nodes (yellow nodes - E, F, G, H) are added to the next set.

3.2.2 Other BFS Implementations

In this subsection we describe alternative implementations of BFS. Since all these

alternatives are still not included in official Graph500 benchmark we did not con-

sider their vectorization.

Bitmap

A bitmap is used to compactly represent the visited set as an optimization to the

default algorithm that has been discussed above. The main benefit is to reduce the

size of the structure, thus reducing cache misses. Since this structure is the most

frequently accessed data in the algorithm, the use of a bitmap in shared-memory

machines with large last-level caches is effective.

48

3.2 Parallel BFS Implementations

1. function breadth-first-search(vertices, source)
2. next ← {source}
3. parents ← [-1,-1,...,-1]
4. parents[source] = 0
5. while next ≠ {} do
6. for v next.partition[tid] ∈ do
7. for n neighbors[v] ∈ do
8. if parents[n] = -1 then
9. if parents[n].atomicSet(v) = 1 then
10. local_queue[tid] <- n
11. if local_queue[tid].isFull() then
12. next.safeBulkPush(local_queue[tid])
13. local_queue[tid] ← {}
14. end if
15. end if
16. end if
17. end for
18. end for
19. if local_queue[tid].notEmpty() then
20. next.safeBulkPush(local_queue[tid])
21. local_queue[tid] ← {}
22. end if
23. end while
24. return parents

Figure 3.1: Pseudo-code for the Graph500 BFS algorithm.

A

CB D

FE HG

Figure 3.2: An example of graph traversed by the BFS algorithm.

49

3. EVALUATION OF INTEL’S XEON PHI CHARACTERISTICS

Read-based

Read-based BFS is proposed in [33] and it also keeps the visited set as a bitmap.
In contrast to the current BFS implementation, it keeps a node’s level in the next
set. During the search, if a node belongs to the current level, it means that its
neighbors should be searched in the current iteration. For example, in Figure 3.2,
the blue node will have level 0, the gray nodes will have level 1 and the yellow
nodes will have level 2 instead of having id of parent node. The advantages of this
method are the elimination of queue overhead (it removes atomic instructions and
also saves cache and memory bandwidth) and the replacement of some indexed
memory accesses with sequential memory accesses.

Bottom-Up

Bottom-up BFS [10] proposes searching in the opposite direction compared to pre-
vious methods. Instead of each node in the next set attempting to become the par-
ent of all of its neighbors, each unvisited node attempts to find any parent among
its neighbors. A neighbor can be a parent if the neighbor is a member of the next
set. For example, in the first iteration for the graph in Figure 3.2 only node A is
in the next set. It means that only the gray nodes (B, C, D) can find a valid parent
in the first iteration. This approach is more efficient when the next set is large. It
reduces a lot the total number of edges examined.

Hybrid

Hybrid BFS [10] is the state-of-the-art BFS implementation and it is part of pre-
released version of Graph500 benchmark. It combines top-down and bottom-up
approaches because they are complementary. It uses the top-down approach when
the next set is small and the bottom-up approach when the next set is large.

3.3 Vectorization of Graph500

We vectorized by hand two versions of BFS: sequential and parallel OpenMP ver-
sions based on the current implementation. Both versions are vectorized practically

50

3.3 Vectorization of Graph500

in the same way using intrinsics. The part of code that is actually vectorized is the

loop where a node searches for its neighbors (lines 7-17 in Figure 3.1). All neigh-

bors of the node are loaded using vector load instructions (line 7). Line 8, where

the algorithm checks if a neighbor is not visited, is vectorized using an indexed

vector load from the parent set and comparing loaded values with -1. The neigh-

bors that are loaded in the previous step are used as indices. The two previous

steps are exactly the same for the sequential and parallel versions. The next step,

where the parent and next sets have to be updated, is different. In the parallel ver-

sion, unvisited neighbors are stored to a temporal array using the vector packstore

instruction to store selected elements to consecutive memory locations using a vec-

tor mask. Then scalar atomic instructions are used to ensure that all the threads

correctly update the unvisited nodes to the parent and next sets. This is done with

scalar code. In the sequential version, the parent set is updated using an indexed

vector store, while the next set is updated using the vector packstore instruction.

As mentioned above, the Xeon Phi operates on 512-bit vectors. Our implemen-

tation of Graph500 uses 32-bit data, thus each Xeon Phi vector instruction operates

on 16 elements at a time. This is known as the vector length. If the number of iter-

ations in a loop is longer than the vector length, the strip-mining technique [31] is

applied during the process of vectorization. Strip-mining is a technique that allows

for operating on "stripes" of data of length less than or equal to the vector length. If

the number of iterations is not a multiple of the vector length there is a remaining

part, called epilogue. The epilogue can be vectorized in the Xeon Phi using vector

masked instructions or it can be left as scalar code. Please note that when the num-

ber of iterations is smaller than the vector length, the whole loop is considered the

epilogue. Xeon Phi has support for gather vector memory instruction that has an

index vector with elements of a maximum of 32 bits. Since elements that are loaded

from memory and used as index vector, we are forced to use 32-bit elements for

graph representation instead of 64-bit elements like the original implementation of

Graph500.

51

3. EVALUATION OF INTEL’S XEON PHI CHARACTERISTICS

3.4 Methodology

This section presents our experimental setup. We measured the performance of

our various vectorized BFS implementations and we compared them against the

original Graph500 implementations. Edgefactor and SCALE are the main input pa-

rameters of the graph generator. SCALE is the log2 of the number of nodes in the

graph. This parameter determines the graph size and consequently the size of data

structures needed to store it. Edgefactor is the ratio of the graph’s edge count to its

node count (i.e., half the average degree of a node in the graph). For higher edgefac-

tor, the average size of the adjacency list is also higher. In particular, this parameter

has a direct effect on the length of the vectorized loop and, consequently, on the

amount of vectorized code when the epilogue is executed with scalar instructions.

We use an edgefactor of 8 and a SCALE of 23 in our experiments unless specified

otherwise. This is the highest value of SCALE that can be used in our system.

The graphs are stored in Compressed Sparse Row (CSR) format. It merges the

adjacency lists of all nodes into a single array, with the initial location of each

node’s adjacency list stored in a separate array. We used Intel’s compiler version

13.0.1 with the -O3 optimization level.

We run our experiments on a compute node that contains two Intel Xeon CPU

E5-2670 @ 2.60GHz processors (8 cores/processor), 64 GB of RAM memory and

two Intel Xeon Phi 5110P (60 cores and four hardware threads per core). In our

experiments we use a single Xeon Phi processor.

As mentioned above, TEPS is used to benchmark performance and it represents

the ratio of the number of edges in the input graph to the runtime. Graph500

performs 64 searches (starting from a random node) per run. We use the harmonic

mean of TEPS of all 64 searches (harm TEPS).

For the sake of clarity, we label the experiments in the following way: the name

of experiment has three parts; the first part indicates whether it is vectorized (vect)

or sequential (seq) code; the second part tells if sequential prefetching is applied

(spf), vectorized (vpf), both are combined (vspf) or there is no prefetching (npf);

this is followed by a number that indicates if it is a single-thread execution (1)

or multi-thread execution (n being the number of threads used). For example,

52

3.5 Experimental Results

seq_npf_1 is a sequential single-thread execution without prefetching. Additional
information is appended to the name in some cases.

Two modes of execution are used to run experiments on the Xeon Phi: "offload"
and "native" mode. In "offload" mode, an application runs on the host machine
and the parts of the code that are specified to be executed on the Xeon Phi are
"offloaded" during execution to the co-processor. Data has to be copied to the co-
processor memory before and after "offloading". In our experiments in "offload"
mode, the whole BFS kernel is executed on the Xeon Phi. In "native" mode, the
application is executed completely on the Xeon Phi. By comparing the two, we can
see the cost of "offloading".

3.5 Experimental Results

In the first part of our experiments, we evaluated our vectorized implementation
of BFS against the sequential implementation for single-thread execution. In the
second part, we focused on parallel OpenMP implementations. Our main goal was
to check if there is any benefit of applying vectorization on Graph500 using the
Xeon Phi.

3.5.1 Single-Thread Results

For the single-thread execution, we focused on three types of experiments. We
compared results when only vectorization is applied, then we applied prefetching
and finally we measured hardware counters using the PAPI library [54] to better
understand the results that we obtained in the previous experiments.

Manual vectorization and memory alignment

We compared our sequential implementations of Graph500 against the original
sequential CSR implementation from the benchmark suite.

The CSR format is used to store the graph. It merges the adjacency lists of all
nodes into a single array, and the offset to the initial location of each node’s adja-
cency list is stored in a separate array. By storing the list consecutively, the lists are

53

3. EVALUATION OF INTEL’S XEON PHI CHARACTERISTICS

typically unaligned at the 512-bit boundary. This implies that two vector memory

instructions are needed to load/store a 512-bit vector with a node’s adjacency list

in the Xeon Phi. We have implemented a padded version of this structure to en-

force 512-bit aligned accesses, thus reducing the access to a single vector memory

instruction.

Figure 3.3 shows the speedup over the original implementation for different

single-threaded versions of Graph500: sequential original CSR (seq_npf_1), a vec-

torized version with aligned accesses (vect_npf_1+alig), a vectorized version with

unaligned accesses to the original (non-padded) data structure (vect_npf_1+unalig),

and vect_npf_1+unalig+epil, which is the same but with a vectorized epilogue using

masked operations. The epilogue is executed in scalar fashion in vect_npf_1+alig

and vect_npf_1+unalig versions. The speedups are computed for harmonic TEPS

over seq_npf_1.

In Figure 3.3, one may notice that vectorized implementations yield small speedups,

ranging from 3% for unaligned+epilogue up to 7% for unaligned. Another inter-

esting point is that we did not get better results when aligned memory accesses

are enforced. The main reason is the increased cache miss rate due to the use of a

larger structure to store the input graph. We also run experiments using the “na-

tive" mode of execution and we almost got the same results for the sequential and

aligned versions. We experimented with an edgefactor of 16 to increase the length

of the vectorized loop. However, we saw only a 3.5% speedup for the unaligned

version. Subsequent experiments assume vectorized code with unaligned memory

accesses and scalar epilogue.

Vectorization Prefetching vs Sequential Prefetching

Since the results of vectorization were not satisfying, we decided to apply prefetch-

ing to the original sequential code and our implementation. The Intel compiler has

good automatic prefetching capabilities but in our experiments it does not provide

significant speedup. The main reason is the abundance of indexed memory ac-

cesses, which the compiler does not prefetch automatically. Therefore, we decided

to manually insert prefetching intrinsics. We used scalar prefetch instructions for

54

3.5 Experimental Results

0.96

0.98

1

1.02

1.04

1.06

1.08

harm TEPS

S
p
e
e
d
u
p

Figure 3.3: Results for different implementations using single-thread run and no prefetch-
ing.

the sequential version and vector gather prefetch instructions for our vectorized im-
plementation with unaligned accesses to memory. The results are presented only
for the "native" mode but the results for "offload" are very similar.

For sequential prefetching, we experimented with six different prefetch dis-
tances. Figure 3.4 (a) shows results for these experiments. The y-axis presents the
speedups over the original implementation (seq_npf_1) and the x-axis shows exper-
iments with different prefetch distances. Scalar prefetching allows for significant
speedups. A prefetch distance of two provides the maximum speedup, 3.01x.

We implemented six variants for vectorized prefetching. Prefetching is applied
to the vectorized for loop in line 7 of Figure 3.1. In the first variant (n_iter+n_node),
we prefetched the next iteration of the vectorized loop (neighbor’s nodes) for the
current node in the next set or the first iteration of the next node in the next set if we
are in the last iteration of the vectorized for loop. In the second variant (2_its), we
prefetched the next two iterations if possible. In order to implement prefetching,
we need to load the index vector for the gather vector prefetch instruction. We
separated the vector load and the vector gather prefetch instructions in the third
(splited_ld_gth) and fourth (splited_ld_gth_II) variants and placed them in different
places of the code. The fifth variant (2nd_iter_L2) is similar to the second one, the
only difference is that the second iteration is prefetched to the L2 cache. The last
variant (vect_vspf_1) combines the first variant for vectorized code and sequential

55

3. EVALUATION OF INTEL’S XEON PHI CHARACTERISTICS

0

0.5

1

1.5

2

2.5

3

3.5

harm TEPS

(a) Sequential prefetching

S
p

e
e

d
u

p

0

0.5

1

1.5

2

2.5

3

3.5

harm TEPS

(b) Vectorized prefetching

S
p

e
e

d
u

p

Figure 3.4: Results with prefetching for single-thread run.

56

3.5 Experimental Results

prefetching for the epilogue. As explained above, the epilogue is implemented
with scalar instructions.

Results for prefetching in the vectorized code are presented in Figure 3.4 (b).
Speedups are computed over the vectorized implementation without prefetching.
Prefetch again provides significant speedups, up to 2.99x for the sixth variant that
combines sequential and vector prefetching. It is interesting to notice that the best
results are obtained when sequential prefetching is included. The speedup is 1.07x
over the best vector-only prefetching variant (first variant). The combination of
both prefetching (vspf) schemes in the vectorized version provides a speedup of
1.04x over the best sequential variant (prefetch distance of two). The next section
aims to explain these results by analyzing measurements obtained with hardware
counters.

PAPI Profiling Results

For further analysis of the results that we obtained using vectorization and vector
prefetching, we used PAPI [54] hardware counters. We run experiments for five
different implementations: sequential (seq_npf_1), vectorized (vect_npf_1), sequen-
tial with prefetching (seq_spf_1+2), vectorized with vector prefetching
(vect_vpf_1+n_iter+n_node) and vectorized version with combined sequential and
vector prefetching (vect_vspf_1). The experiments were run using the "native" mode
of execution. Table 3.1 summarizes the results that we collected with PAPI counters,
while aggregating the results for 64 BFS calls (the benchmark performs searches for
64 random start nodes). The first column lists the different implementations of BFS.
The second column presents the percentage of vector instructions executed in the
benchmark. Third and fourth columns are L1 and L2 cache miss rates, respectively.
The fifth column is the number of vector instructions executed. Finally, the last
column is the number of execution cycles.

Table 3.1 shows that the results for the original and vectorized versions are
similar. Provided that the epilogue is executed with scalar instructions, one may
guess that there is a small amount of vector instructions and there are no benefits
of vectorization, but it is actually not the case. 42.71% of all executed instructions
are vector and the main reason why we observe similar performance for sequential

57

3. EVALUATION OF INTEL’S XEON PHI CHARACTERISTICS

Table 3.1: Obtained results using hardware counters.

Implementation % of vector L1 cache L2 cache # of # of
instructions miss rate miss rate instructions cycles

Sequential 0.07 44.98 89.34 11.3×108 47.8×109

Vectorized 42.71 66.78 89.99 6.36×108 47.5×109

Seq_prefetching 0.01 1.96 15.87 30.1×108 12.0×109

Vect_prefetching 53.78 12.68 47.14 9.83×108 15.9×109

Seq_vect_prefetching 41.55 4.54 19.34 12.7×108 11.8×109

and vectorized versions is cache behavior. The use of gather/scatter instructions
increases the L1 cache miss rate and therefore reduces the benefit of vectorization.

As can be expected, the use of prefetch instructions (rows three and four) de-
creases a lot L1 and L2 cache miss rates and this is the main reason for the signif-
icant speedups shown in Figure 3.4. However, another interesting point is that L1
and L2 cache miss rates for the vectorized version with prefetching are again higher
than L1 and L2 cache miss rates for sequential prefetching. This is the reason why
experiments with sequential prefetching achieve higher speedups in Figure 3.4. L2
cache miss rate is always higher than L1 cache miss rate because the data set is not
L2 cache resident.

The combination of vector and scalar prefetching provides better cache utiliza-
tion, allowing the vectorized version to outperform the best sequential version by
4%.

3.5.2 Results for OpenMP Implementation

The Xeon Phi provides the best performance when both, parallelization and vector-
ization, are applied together. In this section we explore the effect of vectorization
on the CSR version of Graph500 parallelized using OpenMP.

Manual vs. Automatic Vectorization

Figure 3.5 presents results for three different parallel versions of Graph500. seq_npf_n
is the original parallel version, seq_npf_n-vect is the same but with auto-vectorization
disabled and vect_npf_n is our vectorized version of parallel Graph500. All three

58

3.5 Experimental Results

version are compiled using the -O3 optimization level without prefetching as de-

scribed in section 3.5.1. The y-axis presents measured performance in harmonic

TEPS and the x-axis represents the number of threads used (n).

The results show that vectorization does not have significant impact on the

measured performance. The difference between seq_npf_n-vect and seq_npf_n is

also negligible because the compiler is not able to vectorize any part of BFS code.

While vectorization seems inefficient, the increased number of threads provides

better performance. For example, the parallel vectorized version with 40 threads in

"offload" mode is 14 times faster than the best single-thread implementation. The

results scale well for "native" mode of execution while they saturate for "offload"

mode if we use more than 160 threads. The main reason for better results and

scalability in "native" mode is substantial data transfer overhead before and after

"offloading".

Vectorization Prefetching vs Sequential Prefetching

We further explore the effects of prefetching on the parallel version of Graph500.

We applied prefetching on the original OpenMP implementation using sequential

prefetch instructions while we used vector scatter/gather prefetch instructions for

our implementation. We experimented with several different prefetch distances

for sequential prefetching as well as six different variants for the vectorized ver-

sion. These are the same prefetching schemes presented in subsection 3.5.1. All

experiments were performed using 160 threads.

Figure 3.6 shows the speedup for the original OpenMP implementation with

sequential prefetch instructions that use different prefetch distances. The speedup

is computed over the original OpenMP implementation. Prefetching increases the

performance of Graph500 for all prefetch distances in both modes, "offload" and

"native". For example, the highest speedups are 2.07x and 2.36x for "offload" and

"native" modes respectively, for a prefetch distance of eight.

The results for vectorized prefetching are presented in Figure 3.7. The y-axis

presents speedups computed over our vectorized OpenMP implementation and

the x-axis shows our different prefetching implementations. Again prefetching

59

3. EVALUATION OF INTEL’S XEON PHI CHARACTERISTICS

0 50 100 150 200 250
0.0E+00
5.0E+06
1.0E+07
1.5E+07
2.0E+07
2.5E+07
3.0E+07
3.5E+07
4.0E+07
4.5E+07

Offload mode

 seq_npf_n - vect

 seq_npf_n

 vect_npf_n

threads

h
a

rm
o

n
ic

 T
E

P
S

0 50 100 150 200 250
0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1.2E+08

1.4E+08

Native mode

seq_npf_n - vect

seq_npf_n

vect_npf_n

threads

h
a

rm
o

n
ic

 T
E

P
S

Figure 3.5: Results for hand-written vectorization, auto-vectorization and no vectorization.

0

0.5

1

1.5

2

2.5

Offload mode

Native mode

S
p
e
e
d
u
p

Figure 3.6: Results for OpenMP version with sequential prefetching.

60

3.5 Experimental Results

0

0.5

1

1.5

2

2.5

3

3.5

Offload mode

Native mode

S
p
e
e
d
u
p

Figure 3.7: Results for vectorized version with gather/scatter prefetching.

increases performance significantly and the best results are obtained for the com-

bined vector and sequential prefetching scheme. Speedups are 1.66x and 2.94x for

"offload" and "native" modes, respectively.

Our implementation outperforms the best implementation from Figure 3.6 pro-

viding 10% and 27% higher harmonic TEPS in "offload" and "native" modes respec-

tively. The Xeon Phi provides the best performance when both, parallelization and

vectorization are applied and Graph500 clearly can benefit from it.

Scalability

Figure 3.8 shows the results for different number of threads for the OpenMP imple-

mentation with sequential prefetching and the vectorized version with combined

vector-sequential prefetching. It can be seen that "native" mode performance scales

better than the results for the "offload" mode due to substantial data transfer over-

head in the "offload" mode. In the "offload" mode, the harmonic TEPS seem to

saturate after 120 threads, while performance still grows, albeit slower, for "native"

execution. It is also noticeable that the vectorized version consistently outperforms

the sequential version, for any number of threads and both execution modes.

61

3. EVALUATION OF INTEL’S XEON PHI CHARACTERISTICS

0 50 100 150 200 250
0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

Offload mode

vect_vspf_n

sec_spf_n

of threads

h
a

rm
o

n
ic

 T
E

P
S

0 50 100 150 200 250
0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

3.50E+08

Native mode

vect_vspf_n

sec_spf_n

of threads

h
a

rm
o

n
ic

 T
E

P
S

Figure 3.8: Results for prefetching using different number of threads.

62

3.5 Experimental Results

10 12 14 16 18 20 22 24
0.00E+000

5.00E+007

1.00E+008

1.50E+008

2.00E+008

2.50E+008

3.00E+008

3.50E+008

vect_vspf_160

seq_spf_160+16

SCALE

h
a

rm
o

n
ic

 T
E

P
S

Figure 3.9: Impact of SCALE on performance in native mode.

Scale and Edgefactor

Finally, we experimented with different values for SCALE and edgefactor. We com-

pared again the OpenMP implementation with sequential prefetching and the vec-

torized version with combined vector-sequential prefetching. We used a fixed num-

ber of threads (160) for all experiments and run them in "native" mode.

Figure 3.9 shows results for different SCALE values. The y-axis presents mea-

sured performance in harmonic TEPS and the x-axis shows different values for

SCALE. It can be seen that the vectorized version consistently outperforms the se-

quential version. The vectorized version achieves the highest performance when

SCALE is 21 and performance saturates for higher numbers. For SCALE lower than

14 the vectorized version achieves nearly no speedup and even has slowdown, for a

SCALE of 11. This SCALE is extremely small since Graph500 aims to represent ap-

plications with very large graphs. In this case, the generated graph is small enough

to fit into the L1 cache and be cache resident.

Figure 3.10 shows results for different edgefactor values. The y-axis presents

measured performance in harmonic TEPS and the x-axis shows different values for

edgefactor. The vectorized version again outperforms the sequential version. As it

is expected, the vectorized version benefits from a higher edgefactor while this gain

is smaller for the sequential version. To quantify this, we have measured how often

nodes are processed with vector instructions. For an edgefactor of 8, the vectorized

loop processes 87% of the nodes, while the rest is executed in the scalar epilogue.

63

3. EVALUATION OF INTEL’S XEON PHI CHARACTERISTICS

5 10 15 20 25 30 35
0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

3.50E+08

4.00E+08

vect_vspf_160

seq_spf_160+16

Edgefactor

h
a

rm
o

n
ic

 T
E

P
S

Figure 3.10: Impact of edgefactor on performance in native mode.

For edgefactor of 32, 94.2% of the nodes are processed with vector instructions due
to the increased vector lengths.

3.6 Summary

In this chapter we evaluated the capabilities of the Xeon Phi by vectorizing and
running the Graph500. Applying vectorization on a single-threaded implementa-
tion provides negligible improvement and a hasty conclusion would be that Xeon
Phi and in-order architecture can not be good choice for an irregular data intensive
application. This conclusion is misleading because we achieve higher speedups
when prefetching is combined with vectorization. Prefetching is more important
for the Xeon Phi when running applications like Graph500, because the data is not
cache resident. The combination of parallelization with vectorization and prefetch-
ing is very important for achieving higher performance. Use of parallelization and
four hardware threads per core is a way to hide latency of memory instructions
and keep busy wide SIMD units in in-order core. We achieve 27% of speedup for
the best vectorized version with applied vector prefetch instructions over the best
scalar implementation with sequential prefetching in "native" mode.

64

4
An Integrated Vector-Scalar Design on an In-order

ARM Core

In chapter 2 we vectorized six applications and performed a detailed instruction-
level characteristics. We analyzed the impact in performance of the cache hierarchy
and functional unit configuration in in-order and decoupled vector architectures.
We also experimented with new uncommon vector instructions. In chapter 3 we
evaluated one of these applications on the Xeon Phi and results show that even sim-
ple in-order cores can provide decent speed-up for highly irregular data-intensive
application. The performance of the memory system is crucial. In chapter 3 we
used prefetching and evaluate its impact. Alternatively, new methods could be
used to keep necessary data close to the CPU when there is need for them.

Our goal in this chapter is to propose and implement a method that will in-
crease the performance of the low-end embedded systems in an energy-efficient
way (see chapter 1) by using the gained knowledge and experience from previous
chapters. The energy efficiency is attained by modifying a scalar core to execute
vector instructions on the existing infrastructure. A set of vectorized kernels from
applications analyzed in chapter 2 will be used to evaluate the proposed ideas in
this chapter. In summary, the main contributions of this chapter are:

• We propose an integrated vector-scalar design that combines scalar and vector
processing mostly using existing resources of an energy-efficient scalar pro-
cessor (in our evaluation environment it is based on the ARM Cortex A7). In
addition to a design that uses a conventional vector execution model, we also

65

4. AN INTEGRATED VECTOR-SCALAR DESIGN

contribute a novel block-based model of execution for vector computational
instructions.

• Additionally, we also propose an advanced integrated design which features
three energy-performance efficient ideas: (1) chaining from the memory hier-
archy, (2) direct result forwarding and (3) memory shape and memory uni-
fied instructions. We propose and implement two novel techniques that chain
from the cache with the goal of further improving the performance of our
integrated design. They can be applied to a conventional vector unit as well.
We design and implement a novel result forwarding mechanism which com-
plements the block-based execution and does not require writing to the vec-
tor register file. We design a vector memory unit with support for complex
memory instructions including memory shape, scatter/gather and unified in-
structions.

• We present performance, power, area and energy evaluation results of t inte-
grated design. The results show that all vector designs significantly reduce
energy over the scalar baseline for most of the considered kernels with a
small area overhead. We report up to 5x energy reduction for our block-
based execution model over the scalar baseline. Additionally, we found that
the block-based execution model provides better results (up to 26% of energy
saving) than a conventional vector unit with dedicated units. Regarding per-
formance gains, we report more than a 6x speed-up compared to the scalar
baseline. Moreover, our block-based execution model is up to 1.4x faster than
the conventional vector unit for floating-point kernels.

• Our results regarding the advanced integrated design reveal that additional
speed-up (up to 20%) is achieved with our chaining techniques over the in-
tegrated design without chaining. Direct forwarding reduces energy/power
consumption of the vector register file by more than 50% for three evaluated
kernels while the vector memory shape instruction increases speed-up of a
vectorized kernel from 1.77x to 2.66x for the block-based model of execution.

Section 4.1 describes our integrated design. Section 4.2 outlines the experimen-
tal methodology and evaluates our integrated design regarding performance, area,

66

4.1 Integrated Design

Fetch

Decode

Register File

Data

Cache

Unit

L1 Inst

Cache

L1

Data

Cache

Vector Memory Unit

Simple

INT ALU

Complex

INT ALU

Issue queue EXEU

CCL

VECL

Vector Register File

ACL

VMCTVMIT

AG

Figure 4.1: Block diagram of the integrated design.

power and energy. In Section 4.3 we propose techniques that further improve the
integrated design and we evaluate them in Section 4.4. Finally, Section 4.6 con-
cludes the chapter.

4.1 Integrated Design

As a baseline, we use a scalar core based on the highly energy-efficient ARM
Cortex-A7. It is an in-order, dual-issue processor that implements the ARM v7
architecture with an 8-stage pipeline (non-highlighted gray blocks in Figure 4.1).

In our proposed integrated vector-scalar design, we attempt to maximize the
reuse of resources already present in the baseline scalar core (white blocks in Fig-
ure 4.1) while adding support for vector instructions. While the front-end of the

67

4. AN INTEGRATED VECTOR-SCALAR DESIGN

vecload
vecadd
vecsub
vecload
vecload
vecadd

...
...

vecload
vecadd
vecsub
vecload
vecload
vecadd

...
...

(a) OBO

(b) BBE

id0 id1 id2 id3 id4

id0

id0 id1 id2 Id3 id4

id0

id0

id1 id2 id3 id4

id0 id1 id2 id3 id4

id1

id1

time

time

Figure 4.2: An example of code with vector instructions executed with one ALU assuming
(a) the one-by-one model and (b) the block-based execution model.

pipeline is the same (fetch and decode1 stages), in the back-end we added two

structures to support the execution of vector instructions on the scalar core: a vec-

tor register file, and a vector memory unit (blue blocks in Figure 4.1). There is

also additional logic that controls the execution of vector instructions: the vector

execution control logic (VECL) is added in the issue stage to support the execu-

tion of computational vector instructions. Aliasing control logic (ACL) exchanges

information between the vector memory and the data cache unit and forces scalar

and vector memory instructions to be executed in-order. We implement support

for chaining [69], a well-known concept in vector processors. Similar to result for-

warding in scalar processors, chaining allows starting the execution of a dependent

vector instruction as soon as the first element of the vector is generated by the pre-

vious computational instruction. Chaining control logic (CCL) is responsible for

the execution of chained dependent computational instructions.

1With the obvious exception of the decode logic, which needs to be extended to support the
new vector instructions.

68

4.1 Integrated Design

4.1.1 Execution of Vector Computational Instructions

For executing the vector computational instructions on the existing scalar FUs, we
study two alternatives: 1) the One-By-One model of execution (OBO), in essence
the classic vector execution model, in which a vector instruction is executed to com-
pletion once it starts execution in a functional unit, i.e. for all the operations of the
vector; and 2) a novel execution model called Block-Based Execution (BBE). In this
model, for a block of consecutive vector computational instructions, first all oper-
ations on the first element of the vectors are executed, then the operations of the
second element, and so on. Figure 4.2 shows an example with a sequence of vector
instructions, illustrating the difference of the two execution models. For this exam-
ple, we assume that vector instructions operate on FP data by using a single FP unit
and a single data cache port. The first vecload instruction is executed in the same
way and at the same time on both models, since the models refer only to compu-
tational instructions. Regarding computational vector instructions, in the first case
(OBO, Figure 4.2 (a)) all operations of one vector computational instruction (vecadd)
are executed, and then we move on to the next vector instruction (vecsub). In the
second case (BBE, Figure 4.2 (b)), several consecutive vector computational instruc-
tions form a block of vector instructions, and we execute one operation from each
instruction of the block and repeat this for each operation in the block of vector
instructions. In the example, we execute one operation from vecadd and then one
operation from vecsub. The process ends once all operations are computed. The
next subsection describes the BBE model in more detail.

Block-Based Execution

In order to support this model of execution, we added simple control logic and a
small table that keeps the information of the instructions of the block. In the design
presented in this thesis, the blocks of vector computational instructions are formed
dynamically in a very simple way: once a computational vector instruction is ready
for execution, the control logic examines the next instruction in the issue queue and
adds it to the block if it is a vector computational instruction. This process stops
when the next instruction in the issue queue is of another type (a scalar or vector
memory instruction) or the block table is full.

69

4. AN INTEGRATED VECTOR-SCALAR DESIGN

The number of vector instructions that can be executed in parallel or with chain-

ing using the OBO model is restricted by the number of available FUs. BBE does not

have this limitation, allowing for execution of more vector instructions in parallel.

Inherently, more dependent instructions can be chained (scalar bypass logic can be

reused) since one vector instruction does not occupy the ALU for all its elements in

continuous cycles, and thus it can be interleaved with other instructions using the

same ALU. An important advantage of BBE over OBO or a classic vector unit is the

following: while a block of vector computational instructions is under execution,

BBE allows for the execution of subsequent scalar or vector memory instructions

if they are ready for execution and there are free functional units that can execute

them. In Figure 4.2 (b), the second vecload instruction can start execution just after

the vecsub started with execution of the first operation.

BBE has some drawbacks as well: the number of vector computational instruc-

tions dynamically included in a block is sensitive to the placement of the vector

instructions inside vectorized code (e.g. if the second and third loads in Figure

4.2 are moved before vecadd and vecsub, there will be three vector computational

instruction in the block). Smaller blocks present less opportunities for forward-

ing/bypassing that can be achieved with longer blocks. In order to keep the design

simple, the implementation presented in the paper does not allow overlapping of

execution between two consecutive blocks, which is a potential solution to allevi-

ate this problem. This means that the first block needs to finish execution before

the second block can start. Another limitation is that dealing with multi-cycle in-

structions and especially groups of dependent instructions with different latencies

inside a block requires additional control logic support. In our model, we support

execution of multi-cycle instructions as well as execution of dependent instructions

with different latencies, but restricted to the case where they are executed on dif-

ferent ALUs. The benefit of BBE can be further increased if we can chain vector

memory instructions in an efficient way. The next section describes the vector mem-

ory unit of the proposed system, and the subsection 4.3.1 presents our proposal to

implement chaining from the memory hierarchy.

70

4.2 Integrated Design Evaluation

4.1.2 Vector Memory Unit

The vector memory unit holds and controls the execution of vector memory instruc-
tions. There are two tables that hold the necessary information to execute vector
memory instructions, as shown in Figure 4.3. The vector memory instruction table
(VMIT) keeps information for each instruction (instruction, start address, stride,
number of elements, current element and number of completed operations). The
vector memory control table (VMCT) controls the exchange of packets with the L1
cache. Each entry in this table has the following fields: instruction ID, packet/re-
quest ID and a valid bit. Additional fields are used to identify the corresponding
element(s) of the source/destination vector register.

The address generator (AG) performs the address generation for vector memory
instructions. The information about the instruction stored in the VMIT, namely the
opcode, start address, stride, number of elements and current element, is enough
to generate all requests to the cache hierarchy. We can decode the type of vec-
tor memory instruction (unit-strided, strided or indexed) and destination/source
register from the instruction opcode field. The stride field can hold the stride for
strided memory instructions or the ID of a vector register that holds the index
vector for indexed memory instructions. We load/store whole cache lines for unit-
stride vector memory instructions with a single access.

ACL controls the proper execution of vector and scalar memory instructions. In
our model, we support a very simple aliasing policy to limit the complexity of the
control logic: a scalar load instruction waits until all older vector stores are finished
and vice versa.

4.2 Integrated Design Evaluation

We have extended the gem5 simulator [11] to model an in-order ARM core, a classic
vector unit (CVU) and our two models of execution: OBO and BBE. CVU can
be seen as a co-processor or accelerator to the scalar core [24]. The OBO model
is very similar to the ARM’s own VFP mode, which reuses FP registers as short
vector registers [73], when executing vector computational instructions with FP
data. There are still some differences that are discussed in Section 4.5. Simulations

71

4. AN INTEGRATED VECTOR-SCALAR DESIGN

instruction start_address stride num_elem curr_elem completed

32 bits 32 bits 32 bits 8 bits 8 bits 8 bits

3 bits 8 bits 1 bit 2 bits 6 bits 6 bits

Vector Memory Instruction Table

Vector Memory Control Table

...

...

...

...

......

instID reqID valid FLM first_elem last_elem

Figure 4.3: Vector memory unit.

Table 4.1: Microarchitectural parameters.

Parameter Value

Instruction Width 32-bits

L/S Queue 16 entries

VMIT Entries 8 entries

VRF 16 registers

L1 D-Cache 32KB, 64B/line, 4-cycle latency

L2 Cache 256KB, 64B/line, 12-cycle latency

ALU units One simple, one complex int ALU

and one floating-point ALU

L1 D-Cache ports One read/one write

are performed using system call emulation mode which avoids the need to model
devices or an operation system by emulating most system-level services [11].

Table 4.1 summarizes the micro-architectural parameters used in our experi-
ments. CVU has two additional integer ALUs (one simple and one complex) and
one FP ALU to execute vector computational instructions. The vector register file
has 16 vector registers. We use four different MVLs: 16, 32, 64 and 128 elements,
with 32 being the default length. Gem5’s model of the bus between CPU and L1

72

4.2 Integrated Design Evaluation

Table 4.2: Vectorized kernels.

kernel benchmark access com/mem # of vec insts loop data vector/scalar

name pattern ratio per iteration count type op ratio

sphinx-a Sphinx3 strided 2:1 12 128 FP 56:1

sphinx-b Sphinx3 unit-stride 4:3 7 32 FP 10:1

sphinx-c Sphinx3 indexed 1:1 4 20.5 INT 2:1

saxpy - unit-stride 1:1 4 512 FP 53:1

h264ref h264ref unit-stride 3:1 4 16 INT 1:2

hmmer hmmer unit-stride 11:8 38 256 INT 3:1

graph500 graph500 indexed 1:3 4 28 INT 4:1

facerec Facerec strided 17:11 56 25.3 FP 6:1

data cache is extended to model bandwidth and bus contention. We used 16 bytes
for the bus width. L2 bus bandwidth is one cache-line per cycle. L2 also has a sim-
ple strided hardware prefetcher. OBO has a similar configuration to CVU except
it uses scalar ALUs to compute vector computational instructions. Broadcast logic
(including broadcast bus) is also different. The differences between OBO and BBE
are a table that holds vector computational instructions (four instructions) for BBE
and logic that controls execution of vector computational instructions. We used a
latency of one cycle for all instructions that use the simple int ALU, three cycles for
the complex int ALU and four cycles for all instructions that use the FP ALU.

We have modified McPAT [50] to evaluate power, energy and area of these
micro-architecture variants. We modeled additional structures using the same ap-
proach and borrowing the parameters from existing structures in McPAT or CACTI
if it is suitable. For example, in order to model a decoder for chaining logic from
the memory hierarchy we took a decoder from decode stage with new parameters
(e.g. number of bits to compare). We assume a 40nm technology for embedded
processor with low operating power for energy, power and area evaluation. We ex-
perimented with frequencies of 1 GHz and 2 GHz and results show similar trends
with both frequencies.

Table 4.2 lists the kernels that are used to evaluate our design: saxpy micro-
kernel, the three most time consuming kernels from Sphinx3, one from H264ref,
one from Hmmer, one from Facerec and one from Graph500. The first three bench-
marks are from the SPEC2006 benchmark suite. We have chosen these applica-

73

4. AN INTEGRATED VECTOR-SCALAR DESIGN

tions because they represent typical mobile applications: Sphinx3 performs speech

recognition, H264ref does video coding while Hmmer feature hidden markov mod-

els which are used in machine learning. Facerec is from the SPEC2000 benchmark

suite. Even though SPEC benchmarks are typically used to evaluate general pur-

pose processors, applications such as speech recognition or face recognition are

widely used in mobiles. The saxpy microkernel is not as representative of mobile

workloads but we chose it as a a paradigmatic example of a vectorized kernel.

Moreover, its simplicity and characteristics help to reason about the results. The

Graph500 [56] benchmark is a data intensive, high performance graph processing

application but we choose this application because it is highly cache unfriendly and

it is a good example to evaluate our ideas for cache unfriendly scenarios. Vector-

ization potential of the Graph500 is evaluated on Xeon Phi in chapter 3. sphinx-a,

sphinx-b, saxpy and facerec operate on FP data point while the rest of kernels use

integers. Table 4.2 also presents characteristics for each kernel. Our eight kernels

exploit several different memory access patterns. Four kernels have a unit-stride,

sphinx-a and facerec have strided while sphinx-c and graph500 have indexed

memory access patterns. The ratio between computational and memory instruc-

tions varies across kernels as well as the number of vector instructions inside a vec-

torized loop. Kernels also have different loop counts. There are kernels with very

short loop count (sphinx-c1, facerec2, h264ref, sphinx-b and graph5003) and ker-

nels with a longer loop count (sphinx-a, saxpy and hmmer). The last column shows

the ratio between vector and scalar operations. Most of the kernels have a high

percentage of executed operations inside vector instructions (sphinx-a, sphinx-b,

saxpy, sphinx-b and facerec). sphinx-c, hmmer and graph500 have between 66%

and 80% of all operations executed in vector instructions, while h264ref is the only

kernel with dominant scalar operations (around 66%). More detailed instruction-

level characterization that includes selected benchmarks is performed is chapter

2. We tried to cover as many scenarios and aspects as possible with these eight

1This is the average vector length for all iterations. Most of iterations are short, the maximum
count is 166.

2This is the average vector length for all iterations. Three vector lengths (4, 18 and 64) are
repeated in cyclic fashion.

3This is the average vector length.

74

4.2 Integrated Design Evaluation

kernels. We extracted the input data from the applications when running the ref
input data set and used them to initialize the data structures before simulation.

We extended the ARM ISA with a set of 27 vector instructions that we used to
vectorize the kernels. Nine instructions are vector memory instructions: unit-stride
load, strided load, indexed load, shape load, unified load, unit-stride store, unit-
stride store over vector mask register, strided store and indexed store. There are 11
computational instructions: addition of two vectors, vector-scalar addition, subtrac-
tion of two vectors, scalar-vector subtraction, scalar-vector subtraction over vector
mask register, multiplication of two vectors, vector-scalar multiplication, compar-
ison of two vectors, vector-scalar comparison, vector-vector select instruction and
vector-scalar select instruction. We also implemented two reduction instructions:
sum and maximum. There are also three instructions that perform element manip-
ulation. the first instruction performs cast to corresponding data type. The second
instruction set the first element of a vector register to a value provided in the first
source register and each next element of the vector register is equal to the value of
the previous element incremented by value provided in the second source register.
The third instruction sets all elements of a vector register to the same value pro-
vided in the source register. Finally, we implemented two instructions that set and
get value of a register that hold current vector length.

4.2.1 Performance Evaluation

Figure 4.4 shows the speed-ups for CVU, OBO and BBE over the scalar baseline for
all kernels. As expected, CVU outperforms the integrated designs (OBO and BBE)
for integer data (sphinx-c, h264ref, hmmer and graph500) because it has two addi-
tional ALUs for computational vector instructions while ALUs are shared between
scalar and vector computational instructions in the integrated designs. In the vec-
torized loops, there are still many scalar instructions for bookkeeping, which then
interfere with the execution of vector instructions in the integrated designs. The
integrated designs provide good speed-up over the scalar baseline for hmmer and
graph500, while there is little speed-up over the scalar for sphinx-c. The main rea-
sons are the use of index memory accesses, the small amount of computational vec-
tor instructions and the short vector lengths for the majority of iterations. h264ref

75

4. AN INTEGRATED VECTOR-SCALAR DESIGN

Figure 4.4: Speed-up for CVU, OBO and BBE over the scalar baseline.

is an example where vectorization is inefficient. We obtained slow down over the

scalar for all vector models. Despite this kernel has a short vector length (only 16),

the main reason for slow down is that in order to vectorize this kernel, we require

twice the amount of computational operations than the scalar version.

Regarding FP kernels, vector models are always faster than the scalar. Speed-

ups for saxpy are extremely high. It is a very simple kernel with a unit-strided

memory access pattern and highly regular DLP. A whole cache line can be ac-

cessed with one access (16 elements per access) and for this particular experiment

the input data set fits into L1 cache. sphinx-a and sphinx-b have decent speed-

ups. sphinx-a uses strided vector memory instructions to load data from the cache

and it is the limiting factor for higher speed-ups. sphinx-b uses unit-stride vector

memory instructions but it is limited by the number of iterations in the vectorized

loop (only 32 iterations). facerec has the smallest speed-up and the main reasons

are the presence of strided memory accesses and a short vector length in most of

cases (only four or eight). CVU and OBO have the same execution time (one FP

unit) while BBE outperforms them due to the advantage of executing subsequent

integer scalar (loop overhead instructions) or vector memory instructions in paral-

lel with the current block of vector computational instructions. In-order execution

blocks the vector instructions and subsequent instructions in CVU and OBO, but

76

4.2 Integrated Design Evaluation

this does not happen in BBE, as shown above in Figure 4.2 with an example of

code with vector instructions executed in OBO and BBE models of execution. This

difference is especially noticeable for sphinx-a where the speed-up for BBE over

CVU and OBO is around 1.4x for all MVLs. Sphinx-b, saxpy and facerec exploit

a benefit from BBE execution inside single iteration of a vectorized loop, while

sphinx-a is a kind of kernel that is able to exploit the benefit across multiple itera-

tions. There is usually a vector memory store instruction at the end of a vectorized

loop (sphinx-b, saxpy and facerec). This instruction needs to wait until all ele-

ments of a vector source register are computed before it starts with execution. Then

we can proceed with the next iteration. Sphinx-a does not have a vector memory

store instruction in the inner loop and it is able to overlap execution of a vector load

instruction in next iteration with vector computational instructions in the previous

iteration. For this particular case, vector computational instructions are completely

overlapped with vector memory instructions across all iterations of inner loop and

it is the main reason for significant speed-up of BBE over CVU and OBO.

Increasing the MVL from 16 to 32 elements provides better execution time for

all kernels except h264ref (only 16 iterations in the vectorized loop) and facerec

(in most of cases only four or eight iterations in the vectorized loop). Further

increasing MVL to 64 is beneficial for sphinx-b, saxpy, hmmer and graph500 while

vector registers with 128 elements only provide marginal speed-up for sphinx-a

and saxpy. Sphinx-b can not exploit the benefits of longer MVLs than 32 because

the vectorized loop has only 32 iterations. Sphinx-c is limited by short loop counts

and does not scale with longer MVLs.

We also performed a sensitivity analysis using several different latencies for

vector arithmetic instructions. For example, we used four different latencies for

vector arithmetic FP instructions: four, five, six and eight cycles. If we increase

latency from four to eight cycles, speed-up over scalar baseline is decreases by

5.9% using MVL 16 in sphinx-a, while this number is only 1.1% MVL 128. Results

are similar for other kernels.

77

4. AN INTEGRATED VECTOR-SCALAR DESIGN

Figure 4.5: Normalized energy consumption for CVU, OBO and BBE over the scalar base-
line.

Figure 4.6: Dynamic power.

4.2.2 Area, Power and Energy

Table 4.3 shows the area and leakage numbers for the scalar baseline and the CVU,
OBO and BBE models of execution. We present results for vector registers with 16
elements. The area is computed in mm2. Leakage is presented in watts.

The area overhead of OBO and BBE is only 4.66% compared to the scalar base-
line (it is around 3.3% for vector registers with 16 elements and it goes up to 12.2%

78

4.2 Integrated Design Evaluation

Table 4.3: Area and leakage.

Scalar CVU OBO/BBE

w/o FP w/ FP

Area [mm2] 2.831 3.065 4.040 2.925

Leakage [W] 0.057 0.069 0.085 0.060

for vector registers with 128 elements). CVU without a FP unit increases the area
of the baseline for 9.6%. When we include a FP unit, the area overhead of adding
CVU is significant, around 44% with vector registers of 32 elements.

Energy consumption of CVU, OBO and BBE is presented in Figure 4.5 and it is
normalized to the scalar baseline. Energy consumption is significantly lower than
in the baseline for sphinx-a, sphinx-b, saxpy, hmmer and graph500 (kernels with
decent or high speed-ups over the scalar), showing how adding a vector unit is an
energy-efficient way to increase performance. As can be expected, the exceptions
are facerec, h264ref and sphinx-c due to slow-down or small speed-up. Energy
consumption for sphinx-c, h264ref, hmmer and graph500 is very similar for CVU,
OBO and BBE. Regarding FP kernels, OBO and BBE clearly outperform CVU. BBE
is also better than OBO for sphinx-a, sphinx-b and facerec. If we consider dif-
ferent MVLs for vector register and energy consumption, Figure 4.5 shows that 32
elements is the optimal size for the vector register.

Figure 4.6 shows dynamic power for scalar, CVU, OBO and BBE. Results are
stacked for vector models using four different MVLs. OBO and BBE have slightly
lower dynamic power than CVU for integer kernels. For FP kernels, OBO has
always lower dynamic power than CVU, while BBE has the highest dynamic power
for sphinx-a. This is a direct consequence of the speed-up achieved with BBE over
CVU and OBO (Figure 4.4) combined with its larger reduction of consumed energy
(Figure 4.5). For the rest of kernels this difference is smaller and we observed that
the most power-consuming model changes with the MVL. OBO and BBE also have
lower dynamic power than the scalar baseline for sphinx-c and facerec for all
MVLs and sphinx-b with shorter MVLs (16 and 32) due to significant savings in
the front-end of processor (instruction fetch and dispatch).

79

4. AN INTEGRATED VECTOR-SCALAR DESIGN

This evaluation indicates that if only performance is important and only integer
data is used then CVU should be chosen. If area or power are important then
one of our proposed integrated models can be a good match. For FP kernels,
our BBE model is clearly the best choice from the performance, area and energy
consumption perspectives.

4.3 Advanced Integrated Design

A basic integrated design featuring the block-based execution (BBE) is presented
and evaluated in previous Sections. In this Section, we present four techniques that
improve this design. The techniques have negligible area overhead and increase
performance or reduce energy and/or power with respect to the basic integrated
design.

4.3.1 Chaining from the Memory Hierarchy

Chaining from vector memory instructions was a feature typical implemented in
classic vector supercomputers [69, 71]. In those systems, the vector processor ac-
cessed main memory directly. The lack of a cache hierarchy made memory access
time completely predictable, so given an instruction it was simple to determine
exactly in which cycle every element would arrive from memory. Therefore, addi-
tional control logic to support chaining from vector memory instructions did not
require substantial resources. The first issues arose with vector microprocessors
and cache hierarchy. Due to the nature of the cache hierarchy and cache misses it
was difficult to predict when the requested data will be arrive from the cache. Pro-
cessor architects realized that supporting chaining from the memory hierarchy is
expensive and required complex control logic, and did not implement this feature
in vector microprocessors (e.g. [42]).

We consider that chaining from cache can be particularly fruitful for our BBE
model due to the opportunity to chain larger number of vector arithmetic instruc-
tions in a block. This technique works not only for BBE, but for OBO and CVU
as well. Therefore, we decided to design and evaluate support for this feature.
Figure 4.7 shows the logic and structures we propose to allow chaining from the

80

4.3 Advanced Integrated Design

memory hierarchy to one vector register. The main idea is to track the last written
element (lastWritten) of a vector register, and use it in the VECL (the Vector Execu-
tion Control Logic, as explained in Section 4.1). Then, the VECL can determine if
the current vector operation is ready for execution, simply by comparing the last
written element and the current operation (currElem): if lastWritten is greater than
or equal to currElem then VECL can execute the current vector operation. Other-
wise it needs to wait until currElem is written in the vector register and lastWritten
updated. The most complex operation of this design is updating the lastWritten
register. Due to the presence of caches, the elements of a vector load can arrive out
of order to the vector register, so we need to track all elements that have arrived.
To this purpose, we added a bitmap. The size of the bitmap is equal to the MVL
of the vector registers. In order to decode which element is written, a decoder is
added. Subsequently, a priority encoder is used to determine the new value of the
lastWritten register: the position of an element in the vector register, in which all
prior elements are written already, as well as itself, and its immediate successor is
not written yet.

Figure 4.8 illustrates an example of how the lastWritten register is updated.
Current state is presented in Figure 4.8 (a). The lastWritten register has value two
because, as can be seen in the bitmap, elements 0 and 1 of the vector register are
already written while element 3 has still not arrived from the cache (i.e. element 0
and element 1 have value one and element 2 has value zero in the bitmap). Figure
4.8 (b) shows what happens when element 2 in the vector register is written and
two is the input of the decoder to update the lastWritten. The decoded value is
00100000 and the corresponding element in the bitmap is set to one (the light gray
box). Then the content of the bitmap is send to the input of the priority encoder.
Value five is generated since it is the last consecutive one in the bitmap (dark gray
box) before the first zero. Therefore, five is written to the lastWritten.

In an initial design, we first assume that each vector register has dedicated
chaining logic. This design tracks the last written element for each vector load
even though there is no ready dependent computational vector instruction that
can be chained. This decision leads to high area, power and energy overheads.
Aiming to decrease the number of chaining elements and track the last written
element only for vector loads that can be chained from, we also propose a restricted

81

4. AN INTEGRATED VECTOR-SCALAR DESIGN

Decoder

Bit_map_of_written_elems

Priority encoder

lastWritten currElem

position of element
that is written to
vector register

control signal for
execution of chained

vector arithmetic
instructions

mvl = 2 ^ n

n

n

n n

mvl

mvl

<=

Figure 4.7: Chaining from memory hierarchy.

chaining from memory with few chaining elements. In this design, the chaining

control logic needs to know if it will track the last written element for a vector

load, i.e. if there is any dependent computational vector instruction that is ready

for execution. Since there is enough time to resolve if there is any ready dependent

instruction between the moment a vector load starts execution and the moment the

first element arrives to a vector register, we decided to use this as a requirement

to apply chaining from memory. This means that a dependent instruction will be

chained only if it is in the issue queue and ready for execution before the first

element arrives to the vector register. Otherwise, the dependent instruction stalls

until the vector load is completed.

82

4.3 Advanced Integrated Design

1 1 0 1 1 0 1 0

Decoder

Priority encoder

input value

3

8

decoded
value

= = = = = = = =

8

output value

2 lastWritten

bit_map

(a)

1 1 1 1 1 0 1 0

Decoder

Priority encoder

0

3

8

00100000

= = = = = = = =

8

5

5 lastWritten

bit_map

(b)

7

2

0 7

Figure 4.8: An example of how to update the lastWritten register for chaining from the
memory hierarchy.

vecloadst VR2
vecloadst VR3
vecsubsv VR4, scalar, VR3
vecmul VR5, VR4, VR4
vecmul VR6, VR5, VR2
vecsub VR7, VR7, VR6

Figure 4.9: A sequence of vector instructions where writing to the vector register file can
be avoided.

4.3.2 Direct Forwarding

While we are vectorizing our evaluated kernels, we realized that there are cases in

which data are computed and then used only once. Figure 4.9 shows an example

from Sphinx3 kernel. Instruction vecsubsv stores the result of its computation in

vector register VR4 and only the subsequent instruction vecmul uses it as input

operand. The scenario is the same for vector registers VR5 and VR6. They are

only used once as input operands by subsequent instructions. Therefore, if these

83

4. AN INTEGRATED VECTOR-SCALAR DESIGN

Table 4.4: Possible reduction in number of writes and reads to/from the vector register file.

kernel current with forwarding

name reads writes reads writes

sphinx-a 92 82 42 41

sphinx-b 7 6 3 3

sphinx-c 3 3 3 3

saxpy 4 4 3 3

h264ref 3 3 2 2

hmmer 24 17 10 9

graph500 4 2 4 2

facerec 72 48 60 36

instructions are chained and we can take advantage of the fact that they are read

only once, we could save three (x VL) writes and three reads (x VL) to/from the

vector register file in this particular example. Moreover, forwarding from vector

memory instructions we could avoid writes and reads to vector registers VR2 and

VR3 as well. It means that we would only need to read data from vector register

VR7 and to write the final result there.

To further analyze the potential applicability for result forwarding without writ-

ing to the vector register file (direct forwarding), we examined all vectorized ker-

nels. Table 4.4 shows how many vector registers are read or written per iteration

(we just counted one access per vector register of each instruction, not VL times).

These numbers show that we can reduce the number of reads and writes by more

than two for sphinx-a, sphinx-b and hmmer, but there are also kernels that can not

benefit from this technique.

Since there is already logic for scalar result forwarding/bypassing we decided

to reuse it with small additional logic that will allow for direct forwarding. The

key idea is to somehow identify if the result of an instruction is used in only

one subsequent instruction. In many situations, the compiler can relatively easy

identify the previously mentioned case and annotate that instruction (e.g. a bit

84

4.3 Advanced Integrated Design

set to one). Forwarding logic detects if the bit is set to one and forwards results
to corresponding FU without writing to the vector register. The consequence of
this approach is that the ISA must be extended to allow for annotating of vector
instructions.

Direct forwarding can be applied to all three models: CVU, OBO and BBE but it
is much more suitable for BBE because it allows for execution of larger number of
vector computational instructions in parallel and therefore, it increases the benefit
of direct forwarding. In CVU and OBO it is only useful for chained instructions,
which depends on the number and types of the instructions executed.

4.3.3 Vector Memory Shape Instruction

Even though facerec is highly vectorizable, we did not obtain high speed-ups over
the scalar baseline (up to 1.77x for BBE). The main reason is that it performs a
complex memory access pattern to a matrix. Elements are loaded from the matrix
using three memory access patterns that are repeated in a cyclic fashion. Each
memory pattern loads 64 elements. In the first pattern, 64 elements are loaded us-
ing a single strided vector memory load instruction with stride two. In the second
pattern, we need four strided vector load instructions with stride two to load all 64
elements while in the third pattern we need 16 instructions (each one loads only
four elements). We realized that there is a regularity in the accesses for the second
and third case that cannot be expressed with strided memory instructions, but it
would be possible to load all the elements by providing a more complex vector
memory instruction that supports this pattern: we found in the literature the "vec-
tor memory shape instruction" [15]. Vector memory shape instruction uses a base
address and three scalar values: stride, span and skip to describe a vector. Stride
has the same role like in strided vector memory instructions (spacing between each
accessed element). Span describes how many elements to access at stride spac-
ing before applying the second-level skip offset. Memory shape instructions can
be called 2-D strided vector memory instruction because they are an extension of
stride instructions to 2-D patterns.

In order to support the execution of vector memory shape instructions, we
slightly modified the vector memory unit (Figure 4.3). VMIT is extended with

85

4. AN INTEGRATED VECTOR-SCALAR DESIGN

span (8 bits), skip (32 bits) and a field that counts the number of elements before
skip is applied (8 bits). An additional circuitry is added to increment the third field
and compare with span. AG is also extended to increment an address for stride or
skip depending on the output of the previously mentioned comparator.

4.3.4 Unified Indexed Vector Load

We achieved decent speed-up for graph500 even though it is data-intensive, cache
unfriendly application. In the first part of the BFS kernel, algorithm loads all neigh-
boring nodes of the current node and checks if they are visited (see section 3.2.1).
In the current implementation we used three vector instructions to perform this
task: 1) unit-stride vector load gets indices, 2) indexed vector load gets neighboring
nodes, and 3) compare vector-scalar instruction checks if they are already visited.
Since we already implemented chaining from memory instructions, we were won-
dering what will be benefit for graph500 if we somehow merge first and second
instructions. The idea is to have single instruction and once we receive data from
data cache for indices (index values), automatically initiate accesses for indexed
vector load instruction (operations that correspond to loaded indices - final val-
ues). Loading an array and use it as index vector is also used in other applications.

We profiled graph500 using 3,000 nodes and 50,000 edges as input parameters
for graph and three different cache configurations: small (L1 8KB and L2 128KB),
medium (L1 16KB and L2 256KB) and big (L1 32KB and L2 256KB). Our findings
were that unit-stride vector load misses a lot for all cache sizes (2/3 of all requests
misses L1 data cache) while miss rate for indexed vector load depends on number
of nodes and cache size (as table 4.5 shows). The desired scenario for us would
be if one of the requests of the unit-stride vector load hits L1 data cache and the
corresponding elements of the indexed vector load miss L1 data cache. In this
particular case we will receive earlier values for indexed vector load compared
to the current implementation where indexed vector load needs to wait until unit-
stride vector load is finished. Figure 4.10 shows a simplified example how elements
are loaded from the memory system using unit-stride and indexed vector load
(a) and unified vector load (b). Requests to load index values are blue squares
and loaded index values are blue cycles. Requests to load final values are red

86

4.3 Advanced Integrated Design

Table 4.5: Number of L1 data cache misses for unit-stride and indexed vector loads.

cache unit-stride load indexed load
size hits misses hits misses

small 2254 4029 65970 1361
medium 2226 4057 56325 11006

big 2223 4060 33776 33555

squares and loaded final values are red cycles. Lets assume that we have the desired

scenario for the second element: request for the index value hits L1 while request

for the final value misses L1. The first approach that uses unit-stride and indexed

vector load (Figure 4.10 (a)) has to wait with sending requests for final values until

all index values are loaded, while in the case of the unified vector load requests for

final values are initiate immediately after the index values are received (Figure 4.10

(b)). Therefore, we can see in the presented example that the second final value is

loaded much earlier using the unified vector load as well as all final values. If we

assume that a hit to L1 is four and miss twelve cycles, all elements will be loaded in

33 cycles in the first case, while we will need 22 cycles with the unified vector load.

We further profiled graph500 and we found that there is always at least one request

inside unit-stride vector load that hits L1 data cache. We can start with indexed

load accesses for those cases while waiting for the rest. Our profiling results shown

that it could be beneficial to implement unified indexed vector load instruction.

We had several dilemmas regarding implementation of unified indexed vector

load instruction. The initial idea was to add hardware that will detect packets with

indices (when the unit-stride vector load), buffer them and initiate accesses for in-

dexed vector load at the cache side. We realized that we will need to communicate

with the TLB in some cases (index value is higher than the TLB page size) in order

to perform the address translation. We also realized that the indexed vector loaded

by unit-stride vector load is used by several subsequent vector instructions and that

we will need to transfer those values to the vector register file. Therefore, we de-

cided to move additional hardware in the vector memory unit (see subsection 4.1.2)

where most of the existing hardware can be reused to support execution of unified

indexed vector load. If the index values are just used in the unified instruction then

87

4. AN INTEGRATED VECTOR-SCALAR DESIGN

1st

2nd

3rd

4th

1st

2nd

3rd

4th

1st

2nd

3rd

4th

1st

2nd

3rd

4th

time

hit

time

hit

hit

hit

hit

hit

miss

miss

(a) Unit-stride + indexed vector load

1st

2nd

3rd

4th

1st

2nd

3rd

4th

1st

2nd

3rd

4th

1st

2nd

3rd

4th

time

hit

time

hit

hit

hit

hit

hit

miss

miss

(b) Unified vector load

Figure 4.10: An example that shows execution of (a) unit-stride and indexed vector load
and (b) unified vector load.

moving hardware to the data cache size could be a good design option.

Once the unified indexed vector load instruction is dispatched to the vector

memory unit, two entries in VMIT are reserved. The first entry controls loading

of index values, while the second entry is responsible for getting final values. As

additional hardware we need only two buffers. The first buffer holds index values

that are returned from data cache. Since packets that contain index values can re-

turn out of order due to cache misses, we need the second buffer where each value

indicates the position in vector register for each index value in the first buffer. As it

is explained above, index values are stored in a vector register. Once a correspond-

ing element in vector register is selected to be written, the ID number is written in

the second buffer. This information is important for the second part of the unified

instruction in-order to write final values on the right position in the destination

88

4.4 Advanced Integrated Design Evaluation

vector register. The size of buffers is equal to the size of vector registers.
Our current implementation supports forwarding between older stores and sub-

sequent loads based on load addresses. Since we will not have the address of the
final value until we receive corresponding index value from the data cache, we
decided to apply a conservative approach during the execution of the unified in-
struction. Our unified instruction is waiting all older vector stores to complete it
before starts execution. In our particular kernel graph500, it is possible that there
is a conflict between older vector stores and subsequent vector loads. It means that
subsequent vector loads could access a value that is written by older vector stores.
Therefore, our conservative approach is required. If we are sure that there is no
collision between stores and loads, a weak ordering mechanism as in the latest
NEC SX-ACE machine could be applied.

4.4 Advanced Integrated Design Evaluation

In this Section we evaluate the advanced integrated design and present results for
the techniques described in the previous Section.

4.4.1 Chaining from the Memory Hierarchy

Figure 4.11 presents the speed-ups achieved with our two proposed approaches
over the scalar baseline: Full Chaining Support (FCS) and Restricted Chaining
Support (RCS), while Figure 4.12 presents the speed-ups achieved over the same
models of execution without chaining. We used 16 chaining elements for FCS and
four for RCS.

There are several interesting points in these figures. The difference in speed-up
for FCS and RCS is negligible or the speed-up is the same for almost all kernels
in all three models, except for sphinx-a and sphinx-b with MVL 16 for CVU and
OBO. Therefore, if area and power are the most important constraints, RCS can
provide good results for the most of kernels.

Each kernel has different trends and we analyze them case by case. FCS pro-
vides up to 17% improvement in sphinx-a for CVU and OBO, while BBE does
not benefit a lot from chaining for this kernel. BBE without chaining already has

89

4. AN INTEGRATED VECTOR-SCALAR DESIGN

Figure 4.11: Speed-up for CVU, OBO and BBE with full (FCS) and restricted (RCS) chaining
support from memory hierarchy over the scalar baseline.

significant speed-up over CVU and BBE (see subsection 4.2.1). This speed-up is

mainly due to overlapped execution of vector memory and computational instruc-

tions in BBE. Single L1 D-Cache port is already almost fully utilized, and therefore

chaining is not able to provide additional significant performance improvements.

The speed-up of BBE over CVU and OBO is reduced from 40% to 20% with chain-

ing. Sphinx-a does not benefit at all from RCS for CVU and OBO, while there is

small speed-up for BBE and shorter MVLs. Applications with strided and indexed

vector loads can benefit more from chaining because memory instructions have

longer execution time. This is the reason why we obtained the highest speed-up

with chaining for sphinx-a. BBE benefits the most from FCS in sphinx-b, around

90

4.4 Advanced Integrated Design Evaluation

Figure 4.12: Speed-up for CVU, OBO and BBE with full (FCS) and restricted (RCS) chaining
support from memory hierarchy over the same models without chaining.

16% for MVL 16. CVU and OBO also experience improvements higher than 10%

and trends are consistent across different MVLs. We knew that unit-stride vector

loads are fast (whole cache line per access) but we still expected better results for

saxpy, speed-up increases around 5% for CVU and OBO, while BBE has little bet-

ter results, up to 9.5% for MVL 64. The data set for saxpy is cache resident, so we

decided to perform a test to pollute the L1 data cache before saxpy starts compu-

tation. The results that are then obtained for CVU show 20.5% of improvement for

MVL 32. This means that applications with poor cache locality can benefit a lot

from chaining from memory hierarchy, similarly to the applications with strided

and indexed memory instructions. Table 4.6 shows L1 data cache miss rates for

91

4. AN INTEGRATED VECTOR-SCALAR DESIGN

Table 4.6: L1 data cache miss rates for MVL 32.

kernel L1 miss
name rate in %

sphinx-a 8.0
sphinx-b 25.1
sphinx-c 3.0

saxpy 7.8
h264ref 6.0
hmmer 7.2

graph500 9.8
facerec 17.2

current data input sets and MVL 32. Speed-ups are the same for FCS and RCS in

saxpy. BBE increases the speed-up over CVU and OBO for sphinx-b and saxpy.

FCS provides around 5% of improvement in facerec for all models, while using of

RCS slightly decreases the speed-up achieved with FCS.

Even though sphinx-c has indexed vector loads, CVU does not benefit a lot

from chaining mainly due to the use of short vectors, while chaining provides up

to 10% improvements for OBO and BBE with MVL 128. The difference in execution

time between CVU and OBO or BBE with chaining is only 1.4% for MVL 128 while

it was 9.5% without chaining. h264ref does not benefit at all from chaining. The

reason is the short vector length of the loop, combined with the unit-stride access.

The vector load is able to bring all 16 elements from data cache with one access.

Therefore, chaining does not play any role in this case. We also expected higher

speed-ups for hmmer, but we observed that the execution of consecutive vector com-

putational instructions is serialized. The reason is that a unit-stride vector load is

followed by several vector computational instructions that are all of the same type.

Since there is only one ALU for that operation that they must share, the first in-

struction can start execution a few cycles earlier while the rest of instructions still

need to wait for the ALU. Adding another ALU could overcome this issue. CVU
does not benefit from chaining in graph500 while chaining provides almost 6% of

improvement for OBO and BBE. OBO and BBE provides almost the same speed-ups

92

4.4 Advanced Integrated Design Evaluation

Table 4.7: Total number and number of chained vector loads per iteration.

kernel # of vector # of chained vector
name loads per iteration loads per iteration

sphinx-a 27 26
sphinx-b 3 2
sphinx-c 2 2

saxpy 2 2
h264ref 1 0
hmmer 14 9

graph500 2 1
facerec 14 4

with chaining as CVU for graph500.

Table 4.7 shows how often chaining is used. The first column lists kernels. The

second column shows number of vector loads per single iteration in vectorized

kernel, while the last column shows how many vector loads are chained. We can

observe that the chaining from vector loads is quite often used in most of the

vectorized kernels, except h264ref and facerec.

The area overhead of adding chaining logic from the memory hierarchy is pre-

sented in table 4.8 and depends on the size of vector register. Area for FCS ranges

from 0.4% for MVL 16 up to 2.6% for MVL 128 in OBO or BBE. It is around 19%

of total area overhead for OBO or BBE for MVL 128. This percentage is lower for

CVU since it has a larger total area. RCS contributes four times less area overhead

and it is around 5% of total area overhead for OBO or BBE for MVL 128.

Dynamic power contribution of FCS or RCS to the total dynamic power is al-

ways lower than 1% for all kernels. Total dynamic power is increased up to 18%

for sphinx-a in OBO for MVL of 128. Relative energy consumption is presented in

Figure 4.13. Results are presented as relative energy consumption for CVU, OBO

and BBE with FCS and RCS over the same models without chaining support. Re-

garding energy consumption for FCS, there is up to 6% savings for sphinx-a and

saxpy in CVU, while the rest of kernels are in range of 2%. Savings are smaller for

RCS in CVU, up to 2.8% for sphinx-b. Savings are similar for OBO and BBE. Some

93

4. AN INTEGRATED VECTOR-SCALAR DESIGN

Table 4.8: Area overhead of supporting chaining from the memory hierarchy.

w/o chaining w/ FCS w/ RCS

CVU OBO/BBE CVU OBO/BBE CVU OBO/BBE

VL16 - Area [mm2] 4.040 2.925 4.045 2.937 4.036 2.928

VL32 - Area [mm2] 4.077 2.964 4.094 2.986 4.077 2.969

VL64 - Area [mm2] 4.158 3.044 4.194 3.086 4.162 3.054

VL128 - Area [mm2] 4.292 3.178 4.369 3.261 4.307 3.199

kernels have higher energy consumption over models without chaining for higher
MVLs and RCS but it is 1.6% in the worst case for sphinx-a with MVL 128 in BBE
and around 7% for graph500 with MVL 16 in CVU.

All these numbers suggest that chaining from the memory hierarchy is fruitful
for most of the kernels in terms of performance and energy savings with small area
overheads. The contribution of chaining logic to the total dynamic power is also
negligible.

4.4.2 Direct Forwarding

We evaluated this technique in terms of energy and power in McPAT and results are
presented in Figure 4.14. Obtained results show that we can save more than 50% of
energy/power of the vector register file in sphinx-a, sphinx-b and hmmer. h264ref,
saxpy and facerec have decent savings between 33% and 16%. Depending on the
size of the vector registers, savings at the level of CPU range from 2.5% for short
vector registers (16 elements) up to 11% for MVL of 128 elements for sphinx-b.

The results presented in this subsection show the benefit of applying this tech-
nique between vector arithmetic instructions. It would be possible to achieve even
further savings in the vector register file if this technique is combined with chaining
from the memory hierarchy to provide direct forward for vector memory instruc-
tions as well. This idea is more challenging because it will require more complex
logic to implement it and the proposed solution should not affect the performance
results.

94

4.4 Advanced Integrated Design Evaluation

Figure 4.13: Relative energy consumption for CVU, OBO and BBE with full (FCS) and
restricted (RCS) chaining support from memory hierarchy over the same models without
chaining.

4.4.3 Vector Memory Shape Instruction

Figure 4.15 shows the speed-ups for CVU, OBO and BBE over the scalar baseline

for facerec with the vector memory shape instruction. We presented results both

with and without chaining from the memory hierarchy. The vector memory shape

instruction increases speed-up from 1.63x to 2.4x for CVU and OBO using MVL

64 while the speed-up is increased from 1.77x to 2.66x for BBE. Chaining from the

memory hierarchy also additionally improves performance (from 2.4x to 2.68x for

CVU and OBO). It is also interesting that performance scales better with increased

MVL from 16 to 64 elements compared to the implementation without support

for vector memory shape instruction (Figure 4.4). We also modeled the additional

95

4. AN INTEGRATED VECTOR-SCALAR DESIGN

Figure 4.14: Normalized energy/power consumption for BBE model with direct forward-
ing over the same model without direct forwarding.

Figure 4.15: Speed-up for CVU, OBO and BBE over the scalar baseline when using vector
memory shape instruction.

hardware in McPAT and results show negligible area overheads (less than 0.2%)

while energy savings are almost proportional to the achieved speed-up (from 9%

for MVL 16 up to 18% for longer MVLs).

96

4.5 Related Work

4.4.4 Unified Indexed Vector Load

Figure 4.16 shows the speed-ups for the vectorized version of graph500 using the

unified vector load over the version with the indexed vector load. Results are pre-

sented with and without chaining from the memory hierarchy for all three models

of execution: CVU, OBO and BBE. The unified vector load instruction increases

speed-up only up to 1.08x for CVU without chaining from memory. Results are

similar with chaining from the memory hierarchy. We profiled execution of both

vectorized versions and we found that the unified vector load completes execution

faster than the indexed vector load. The speed-up per single instruction goes from

1.1x to 1.22x. Since the rest of the kernel is the same, overall speed-up goes only up

to 1.08x. We also noticed that loading all neighboring nodes and their current state

(visited or not visited) takes a few hundreds cycles (300-400) for 30 neighboring

nodes on average. Therefore, the benefit of having single instruction and saving

some cycles in the front-end of the processor is also small in the particular exam-

ple. Area overhead of the additional hardware is small, less than 0.3% in the worst

case when two buffers with 128 elements are added. Energy savings are also small

and proportional to the speed-ups, less than 4.1%, while dynamic power increases

up to 8%.

Even though current results are not promising, the unified indexed vector load

could be further improved. For example, if the index vector is used only in the

unified vector load instruction, we could avoid writing to the vector register. We

also noticed that a cache line that holds only neighbors of one node (index values)

is accessed only once. We could avoid caching these lines in L1 or L2 and provide

a small victim cache or streaming buffer for those lines. Therefore, L1 and/or L2

caches would not be polluted with cache lines that are used only once.

4.5 Related Work

In this section we discuss differences between our integrated design and several

works that integrated vector and scalar processing. We also discuss alternatives to

vectors and justify design decisions.

97

4. AN INTEGRATED VECTOR-SCALAR DESIGN

Figure 4.16: Speed-up with the unified vector load over the indexed vector load in graph500

for CVU, OBO and BBE.

An important characteristic of most microprocessor vector architectures is that
the vector processing unit is designed as an extension or co-processor to a scalar
core, but there are few works that combine vector and scalar processing on the
same substrate. Quintana et al. [65] added a vector unit to a superscalar core.
Since their research focused on high performance, this processor design resembles
a classic vector with multiple lanes and direct L2 access which is completely differ-
ent from our design. This work also does not include any evaluation of power and
energy of the proposed design, even though their approach requires additional
hardware that is idle most of the time in scalar intensive applications. Gebis et
al. [26] proposed the first integrated solution that combines scalar and vector pro-
cessing (ViVA). However, ViVA adds support only for vector memory instructions
while regular scalar instructions are used for computation. We have observed the
advantages of using vector computation instructions, e.g. the energy reduction due
to reduced front-end activity. Soliman [77] proposed a low-complexity vector core
that has a common execution data-path for executing scalar/vector instructions,
but using the scalar register file limits the design to support only short vector (up
to 8 elements). PTX [16] supports vector instructions, but they are transformed to
scalar instructions for Nvidia SIMT microarchitectures, which behave like many
independent scalar units. This can be seen an instance of using scalar hardware to

98

4.5 Related Work

execute vector instructions.
Integrated vector-scalar design is also proposed in CELL and power processors

[27, 28, 29]. Cell and power processors target high-performance and it is crucial for
them to have parallel hardware that can exploit available DLP and provide high
performance. Since they realized the importance of having integrated vector-scalar
processing, support for scalar execution is added in the parallel hardware (SIMD
vector unit). In our work we are targeting the low-end embedded market, where
power, energy and area are important design concerns. So we used the opposite
approach: we added minimal hardware to support execution of traditional vector
instructions (not SIMD) on a scalar in-order core.

The Imagine processor [39] implements a somewhat similar model of execution
to our BBE. They called it compound stream operations. They perform multiple
computational operations on each stream element. Our BBE model is more flexi-
ble, as instructions in the block can be independent. The Imagine targets stream-
ing applications with little data reuse, while our approach is more general. Their
model of execution is implemented on specific accelerators while BBE works on a
general purpose core and does not have any specific constraint. It can use regular
vectorized code and execute in a block-based fashion without additional support
from the compiler. The SCALE processor [43] also implements a kind of block-
based execution at the level of virtual processor (VP). VP instructions (RISC-like)
are grouped into atomic instruction blocks (AIBs), which is the unit of work issued
to a VP at one time. Albeit the common use of the term “block", our BBE blocks are
completely distinct from AIBs. In our case, it is a block of vector instructions that
is dynamically formed during execution. Like for the Imagine, BBE can execute
regular vector code without additional compiler support.

We would like to emphasize that we use traditional vector execution (Cray-I in-
spired) in our integrated design rather than SIMD implementations found in com-
modity processors such as Intel/AMD X86, Cell, Power, etc. SIMD processing units
operate in parallel requiring multiple functional units and thus they are less effi-
cient solutions in area and energy for embedded systems. Additionally, even when
focusing on high-performance, execution of vector instructions in a pipelined form
is still a relevant design point. For example the modern NEC SX-ACE vector pro-
cessor (2013) has 16 vector pipelines in each core; each pipeline can execute up

99

4. AN INTEGRATED VECTOR-SCALAR DESIGN

to four operations per cycle but each vector register has 256 elements; thus each

instruction is pipelined serially in the functional units unlike SIMD-based architec-

tures.

NEON is a SIMD unit incorporated in ARM processors. We predict that area

overhead of NEON unit would be similar or higher to CVU in the case of 128-bit

SIMD FP unit. Regarding performance, NEON should provide better performance

for cache-friendly applications with unit-stride access and short vectors: NEON is

able to process two or four operations in parallel, while we chose to provide a single

vector lane. The advantages of our design would be apparent in applications with

long vectors (due to the smaller code size and reduced dynamic instruction count,

resulting in less front-end activity) and irregular memory access patterns - strided

or indexed memory accesses (NEON only supports vectors that are stored con-

secutively in memory and therefore code with indexed or strided memory access

pattern cannot be vectorized). Cache-unfriendly applications would also benefit

greatly from using long vectors because vector memory instructions are able to

hide long latencies.

OBO mode of execution is similar to the ARM’s VFP mode [73] for floating-point

computation but there are still some differences. Our OBO model supports longer

vector lengths while VFP is restricted to shorter vector lengths. Also, we provide

support for gather/scatter vector memory instructions. We applied chaining for

computational vector instructions as well as chaining from the memory hierarchy.

Moreover, the execution of vector instructions with integer data is also different,

since our model uses scalar ALUs.

Our baseline is an energy-efficient in-order ARM core and we wanted to im-

prove it in terms of energy and performance. Since vector processors are by default

energy-efficient [48], we added support for vector instructions. We did not con-

sider adding multiple lanes due to the following reasons: (1) we wanted to do

minimal changes to the existing scalar processor in order to keep the area/power

envelope and reuse the existing processor resources in the most efficient way; (2)

adding one additional lane increases area of scalar baseline by 44%; adding four

lanes will more than double the area of the processor and it is not acceptable in

highly constrained low-end devices.

100

4.6 Summary

Early vector processors had single lane architectures (CRAY-1) and they were
successful compared to others at that era such as IBM370. Efficiency was the fac-
tor. By analogy, in-order processors are overwhelmingly used in the embedded
domain because they are more energy-efficient compared to bulky out-of-order ar-
chitectures. Recent work demonstrates that single-lane vector units offer significant
performance gains over commodity processors [30]. It shows quite clearly that the
advantages come from a reduction of fetch/decode/rename/commit and consoli-
dating memory requests together. Our results in the paper also confirmed that we
can achieve good speed-ups over scalar baseline.

As we mentioned above, chaining from the memory hierarchy was popular in
classic vector machines [69, 71]. Since access time to the memory hierarchy was
constant, it was not so difficult to implement it. To the best of our knowledge there
is no published work that discusses how to implement chaining from memory
hierarchy with caches.

Regarding direct forwarding, it can be seen as a extreme case of short-lived reg-
isters [34, 63] because we are using only once produced value. Short-lived registers
or values are used only for a short period of time after they are written, meaning
that the destination registers targeted by these values are renamed by the time the
results are written back. Writing to the register file is avoided by caching in a small
dedicated register file [63] or by using a small structure which sits between the
functional units and the register file that buffer and filter accesses to the register
file [34].

4.6 Summary

In this chapter we proposed the integrated vector-scalar design that mostly reuses
scalar hardware of in-order ARM core to support the execution of vector instruc-
tions. Our integrated design has several advantages. It has a small area and power
overheads (only 4.66% when using a vector register with 32 elements) while at the
same time the BBE model provides even better performance results (up to 1.4x)
than CVU for FP data. As a result, not only a significant reduction of energy over
the scalar is achieved (up to 5x), as expected due to the energy efficiency of vector
architectures, the integrated design also consumes less energy than CVU (up to

101

4. AN INTEGRATED VECTOR-SCALAR DESIGN

26% of reduction). Direct forwarding is applied to BBE and it provides additional
power/energy saving in the vector register file (up to 57%).

102

5
Conclusion and Future Work

This chapter presents the conclusions of the research done during this thesis work.

It also provides suggestions for future research directions.

5.1 Conclusion

Using a vector processor is one of the most energy efficient ways of achieving

high performance for a wide number of applications that contain significant DLP.

However, even in vector-heavy workloads, the vector execution hardware goes un-

derutilized most of the time and therefore, the vector ALU sits idle, burning static

power, being idle a substantial portion of the time.

In this thesis, we proposed the integrated vector-scalar design that allows for

execution of vector computational instructions mostly reusing resources of an ARM

in-order core. We showed that good performance and energy-efficiency improve-

ments can be achieved with minimal hardware overhead for applications with de-

cent or high DLP. We also showed how additional improvements could be achieved

by applying several energy-performance efficient ideas: (1) chaining from the mem-

ory hierarchy, (2) direct result forwarding and (3) memory shape and unified in-

structions. The key advantages are that our integrated design (a) apply vector-

scalar processing automatically in hardware, (b) gain the advantages of a vector

ISA, and (c) apply the best ideas from prior vector architectures to reduce power

and increase performance in a mobile CPU.

103

5. CONCLUSION AND FUTURE WORK

We still think it is a good idea to reuse the scalar ALUs to execute vector com-
putational instructions. Even though we did not exploit the benefit of parallel
hardware and vector computational instructions, our results in the Chapter 4 con-
firmed that we can achieve good speed-ups over scalar baseline. This is mainly due
to a reduction of instructions in the front-end of the processor (instruction cache,
fetch and decode stages) and consolidating memory requests together. We did not
consider adding multiple lanes due to the following reasons: (1) we wanted to do
minimal changes to the existing scalar processor in order to keep the area/power
envelope and reuse the existing processor resources in the most efficient way; (2)
adding one additional lane increases area of scalar baseline by 44%; adding four
lanes will more than double the area of the processor and it is not acceptable in
highly constrained low-end devices.

Even though BBE model of execution did not provide any performance im-
provement over OBO model of execution, its nature to execute more vector com-
putational instructions in coordinated manner opened a new opportunities to im-
prove performance or energy-efficiency of our integrated design in combination
with ideas such as chaining from the memory hierarchy or direct result forward-
ing. Chaining from the memory hierarchy is more complex than directly from
main memory, but we have seen it is possible to implement it without very com-
plex hardware. Direct result forwarding is simple idea but in the combination with
BBE can decrease the energy consumption of the vector register file by factor of two.
Even additional savings could be achieved if we consider direct result forwarding
from vector memory instructions.

Special attention should be paid to the performance of the memory system in
in-order architectures. The Knight Corner deals with this using four hardware
threads, extensive prefetching and gather/scatter instructions. Beside the use of
long vector memory instructions (they are able to hide long memory latencies) in
our integrated design, we have seen it is possible to improve performances for some
kernels by implementing specific vector memory instructions (the vector shape
instruction, gather/scatter, the unified instruction) with simple hardware extension
and small area overhead. Instead of using multiple hardware threads like in the
Knight Corner to deal with the memory system in in-order architecture, we were
able to provide good speed-ups over the scalar baseline by providing support for

104

5.2 Future Research Directions

long vector memory instructions, applying chaining from the memory hierarchy
and implementing specific vector memory instructions.

In this thesis, we also developed two tools that allow for rapid initial research on
vector architectures: VALib and SimpleVector. We vectorized six applications using
VALib, performed their detailed instruction-level characterization and evaluated
several alternative properties of the vector microarchitecture. It helped us to define
the set of vector instructions that we implemented in the integrated design as well
as to pay special attention to the memory side. It guided us to propose techniques
for chaining from the memory hierarchy and special vector memory instructions.
Since vector architectures will become even more popular in the future due to
their potential for energy-efficient high performance execution, we think that these
tools will also help the community to study the potential of vectorization for target
applications, characterization of the vectorized code at the instruction level and
make a preliminary evaluation on a broad range of vector microarchitectures.

We also performed an evaluation of Knights Corner capabilities that were later
useful in making design decisions for our integrated vector-scalar core. Even
though the Knights Corner is designed for high-performance computing and it
implements SIMD processing, it was very interesting for us because its architecture
is in-order. Our evaluation again stressed the importance of the memory system for
achieving high performance. In particular case, we achieved good performance for
Graph500 when vectorization is combined with prefetching and parallelization. In
our integrated design, use of longer vector memory instructions, chaining from the
memory hierarchy and unified vector memory instruction provided decent speed-
up over a scalar version of Graph500.

5.2 Future Research Directions

Obviously, not all aspects of the integrated design are perfect and there are a few
open issues. Even though McPAT is widely used by computer architecture com-
munity, it is not as accurate as a design of an architecture at circuit level. Therefore,
an interesting direction would be an evaluation of BBE’s control logic at the cir-
cuit level to accurately study the complexity/power/performance trade-offs of its
design. An implementation at the circuit level will determine if the changes to

105

5. CONCLUSION AND FUTURE WORK

the hardware affect the critical path and maximum operating frequency. Another
concern is that CVU, OBO and BBE are extremely sensitive to the order of the in-
structions in the program because they are all in-order. This could be partially
relieved with decoupling [22], but careful power evaluation should be performed
to ensure it does not compromise the savings achieved with the proposed architec-
ture. Since we think that our proposed instructions are valuable, another direction
would be to put a lot of effort on compiler support.

We were able to reduce the energy consumption of the vector register file with
direct result forwarding but still there is an area overhead of adding the vector
register file. The area overhead is more significant if we want to support longer
vector register. An alternative would be to use part of a 3D stacked memory to
implement the vector register file. It would allow for having support for long
vector registers with fast access and hight bandwidth at low cost in therm of area.

Another possible direction would be a research that will investigate how our
integrated design will deal with multi-core or multi-thread architecture or out-of-
order execution. If there is a good way to provide support for long vectors using 3D
stacked memory, an idea would be to support execution of single vector instruction
across multiple threads. Since this kind of processor that combines our integrated
design with out-of-order execution, multi-core or multi-thread architecture will
not most likely target low-end mobile system, it will also open the opportunity of
adding multiple lanes.

106

6
Publications

The work of the thesis has resulted in the following publications.

6.1 Publications from the thesis

• Milan Stanić, Oscar Palomar, Ivan Ratković, Milovan Duric, Osman Unsal,

Adrian Cristal, and Mateo Valero, “VALib and SimpleVector: Tools for Rapid

Initial Research on Vector Architectures”, ACM International Conference on

Computing Frontiers, May 2014, Cagliari, Italy.

• Milan Stanić, Oscar Palomar, Ivan Ratković, Milovan Duric, Osman Unsal,

Adrian Cristal, and Mateo Valero, “Evaluation of Vectorization Potential of

Graph500 on Intel Xeon Phi”, International Conference on High Performance

Computing & Simulation (HPSC), July 2014, Bologna, Italy.

• Milan Stanić, Oscar Palomar, Timothy Hayes, Ivan Ratković, Osman Unsal,

Adrian Cristal, and Mateo Valero, “Towards Low-Power Embedded Vector

Processor”, ACM International Conference on Computing Frontiers, May

2016, Como, Italy.

• Milan Stanić and Oscar Palomar, “Block-Based Execution on an Integrated

Vector-Scalar In-Order Core”, BSC International Doctoral Symposium, May

2016, Barcelona, Spain.

107

6. PUBLICATIONS

• Milan Stanić, Oscar Palomar, Timothy Hayes, Ivan Ratković, Osman Unsal,

Adrian Cristal, and Mateo Valero, “POSTER: An Integrated Vector-Scalar De-

sign on an In-order ARM Core”, In Proceedings of the 2016 International

Conference on Parallel Architectures and Compilation (pp. 447-448), Septem-

ber 2016, Haifa, Israel.

• Milan Stanić, Oscar Palomar, Timothy Hayes, Ivan Ratković, Osman Unsal,

Adrian Cristal, and Mateo Valero, “An Integrated Vector-Scalar Design on

an In-order ARM Core”, In submission at ACM Transactions on Architecture

and Code Optimization (TACO).

6.2 Related publications not included in the thesis

• Ivan Ratković, Oscar Palomar, Milan Stanić, Osman Unsal, Adrian Cristal,

and Mateo Valero, “On the Selection of Adder Unit in Energy Efficient Vector

Processing”, Proceedings of the 2013 The International Symposium on Qual-

ity Electronic Design (ISQED), March 2013, Santa Clara, USA.

• Ivan Ratković, Oscar Palomar, Milan Stanić, Osman Unsal, Adrian Cristal,

and Mateo Valero, “Design of Energy-Efficient Adder Units for Vector Proces-

sors”, Proceedings of the 2013 Advanced Computer Architecture and Com-

putation for Embedded Systems (ACACES), July 2013, Fiuggi, Italy.

• Ivan Ratković, Oscar Palomar, Milan Stanić, Osman Unsal, Adrian Cristal,

and Mateo Valero, “Physically vs. Physically-Aware Estimation Flow: Case

Study of Design Space Exploration of Adders”, In Proceedings of IEEE Com-

puter Society Annual Symposium on VLSI (ISVLSI), July 2014, Tampa, USA.

• Milovan Duric, Oscar Palomar, Aaron Smith, Milan Stanic, Osman S. Un-

sal, Adrian Cristal, Mateo Valero, Doug Burger, Alexander V. Veidenbaum,

“Dynamic-vector execution on a general purpose EDGE chip multiproces-

sor”, International Conference on Embedded Computer Systems: Architec-

tures, Modeling and Simulation (SAMOS), July 2014, Samos, Greece.

108

6.2 Related publications not included in the thesis

• Ivan Ratković, Oscar Palomar, Milan Stanić, Milovan Duric, Djordje Pešić, Os-
man Unsal, Adrian Cristal, and Mateo Valero, “Joint Circuit-System Design
Space Exploration of Multiplier Unit Structure for Energy-Efficient Vector Pro-
cessors”, In Proceedings of IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), July 2015, Montpelier, France.

• Milovan Duric, Milan Stanić, Ivan Ratković, Oscar Palomar, Osman Unsal,
Adrian Cristal, and Mateo Valero, “Imposing Coarse-Grain Reconfiguration
to General Purpose Processors”, International Conference on Embedded Com-
puter Systems: Architectures, Modeling and Simulation (SAMOS), July 2015,
Samos, Greece.

• Ivan Ratković, Oscar Palomar, Milan Stanić, Osman Unsal, Adrian Cristal,
and Mateo Valero, “A Fully Parameterizable Low Power Design of Vector
Fused Multiply-Add Using Active Clock-Gating Techniques”, 2016 IEEE/ACM
International Symposium on Low Power Electronics and Design (ISLPED),
August 2016, San Francisco, USA.

109

Appendices

111

A
Examples of Graph500 Codes

In this appendix we present different versions of Graph500 implementations used
in chapter 3. All versions use compress sparse row (CSR) representation for an
input graph. It includes the following implementations of Graph500:

• Original sequential version.

• Vectorized sequential version.

• Sequential version with scalar prefetching.

• Vectorized sequential version with vector prefetching.

• Vectorized sequential version with vector and scalar prefetching.

A.1 Original Sequential Version

s t a t i c i n t 6 4 _ t ∗ r e s t r i c t x o f f ; /∗ Length 2∗nv+2 ∗ /
define XOFF(k) (x o f f [2∗ (k)])
define XENDOFF(k) (x o f f [1+2∗ (k)])

i n t
make_bfs_tree (i n t 6 4 _ t ∗ bfs_ t ree_out ,

i n t 6 4 _ t ∗max_vtx_out ,
i n t 6 4 _ t srcvtx , i n t 6 4 _ t nv_scale)

113

A. EXAMPLES OF GRAPH500 CODES

{
i n t 3 2 _ t ∗ r e s t r i c t _ _ a t t r i b u t e _ _ ((t a r g e t (mic))) \

b f s _ t r e e = b f s _ t r e e _ o u t ;
i n t e r r = 0 ;
i n t 6 4 _ t ∗ r e s t r i c t v l i s t = NULL;
i n t 6 4 _ t k1 , k2 ;

∗max_vtx_out = maxvtx ;

v l i s t = xmal loc_ large (nv ∗ s i ze of (∗ v l i s t)) ;
i f (! v l i s t) return −1;

for (k1 = 0 ; k1 < nv ; ++k1)
b f s _ t r e e [k1] = −1;

#pragma o f f l o a d t a r g e t (mic :MIC_DEV) \
in (x o f f : length (2∗nv + 2)) \
in (xadj : length ((XOFF(nv)))) \
inout (v l i s t : length (nv)) \
inout (b f s _ t r e e : length (nv_scale) \
a l l o c _ i f (1) f r e e _ i f (1))

{
v l i s t [0] = s r c v t x ;
b f s _ t r e e [s r c v t x] = s r c v t x ;
k1 = 0 ; k2 = 1 ;
while (k1 != k2) {

const i n t 6 4 _ t oldk2 = k2 ;
i n t 6 4 _ t k ;
for (k = k1 ; k < oldk2 ; ++k) {

const i n t 6 4 _ t v = v l i s t [k] ;
const i n t 6 4 _ t veo = XENDOFF(v) ;
i n t 6 4 _ t vo ;
for (vo = XOFF(v) ; vo < veo ; ++vo) {

const i n t 6 4 _ t j = xadj [vo] ;
i f (b f s _ t r e e [j] == −1) {

b f s _ t r e e [j] = v ;

114

A.2 Vectorized Sequential Version

v l i s t [k2++] = j ;
}

}
}
k1 = oldk2 ;

}
/ / o f f l o a d end
}

x f r e e _ l a r g e (v l i s t) ;

return e r r ;
}

A.2 Vectorized Sequential Version

[
b a s i c s t y l e =\small ,

]
s t a t i c i n t 6 4 _ t ∗ r e s t r i c t x o f f ; /∗ Length 2∗nv+2 ∗ /
define XOFF(k) (x o f f [2∗ (k)])
define XENDOFF(k) (x o f f [1+2∗ (k)])

i n t
make_bfs_tree (i n t 3 2 _ t ∗ bfs_ t ree_out ,

i n t 6 4 _ t ∗max_vtx_out ,
i n t 6 4 _ t srcvtx , i n t 6 4 _ t nv_scale)

{
i n t 3 2 _ t ∗ r e s t r i c t _ _ a t t r i b u t e _ _ ((t a r g e t (mic))) \

b f s _ t r e e = b f s _ t r e e _ o u t ;
i n t e r r = 0 ;

i n t 3 2 _ t ∗ r e s t r i c t v l i s t = NULL;
i n t 3 2 _ t kk1 , kk2 ;

∗max_vtx_out = maxvtx ;

v l i s t = xmal loc_ large (nv ∗ s i ze of (∗ v l i s t)) ;
i f (! v l i s t) return −1;

115

A. EXAMPLES OF GRAPH500 CODES

#pragma o f f l o a d t a r g e t (mic :MIC_DEV) \
in (x o f f : length (2∗nv + 2)) \
in (xadj : length ((XOFF(nv)))) \
inout (v l i s t : length (nv)) \
inout (b f s _ t r e e : length (nv_scale) \
a l l o c _ i f (1) f r e e _ i f (1))

{

for (kk1 = 0 ; kk1 < nv ; ++kk1)
b f s _ t r e e [kk1] = −1;

v l i s t [0] = s r c v t x ;
b f s _ t r e e [s r c v t x] = s r c v t x ;
kk1 = 0 ; kk2 = 1 ;
while (kk1 != kk2) {

const i n t 3 2 _ t oldk2 = kk2 ;
i n t 3 2 _ t k ;
for (k = kk1 ; k < oldk2 ; ++k) {

const i n t 3 2 _ t v = v l i s t [k] ;
const i n t 3 2 _ t veo = XENDOFF(v) ;
i n t 3 2 _ t vo , i ;

i f d e f __MIC__

i n t 3 2 _ t int_mask , cnt ;

vo = XOFF(v) ;
i f (veo − vo >= 1 6) {

/ / s e t v e c t o r zmm3 t o −1
__m512i zmm3 = _mm512_set1_epi32 (−1) ;
/ / s e t v e c t o r zmm4 t o v
__m512i zmm4 = _mm512_set1_epi32 (v) ;

for (; vo <= (veo −16); vo +=16){
i f d e f ALIGNED_ACCESS

/ / l o a d c o n n e c t e d nodes from x a d j
__m512i zmm1 = _mm512_load_epi32 (&(xadj [vo])) ;

else
__m512i zmm1 = _mm512_loadunpacklo_epi32 \
(zmm1, &(xadj [vo])) ;

116

A.2 Vectorized Sequential Version

zmm1 = _mm512_loadunpackhi_epi32 \
(zmm1, &(xadj [vo + 1 6])) ;

endif
/ / g a t h e r e l e m e n t s from b f s _ t r e e
__m512i zmm2 = _mm512_i32gather_epi32 \
(zmm1, b f s _ t r e e , 4) ;

__mmask16 k1 = _mm512_cmpeq_epi32_mask (zmm2, zmm3) ;
int_mask = _mm512_mask2int (k1) ;
cnt = _mm_countbits_32 (int_mask) ;
i f (cnt) {

/ / s c a t t e r s t o r e o v e r mask r e g i s t e r t o b f s _ t r e e
_mm512_mask_i32scatter_epi32 \
(b f s _ t r e e , k1 , zmm1, zmm4, 4) ;

/ / s t o r e o v e r mask t o v l i s t
_mm512_mask_packstorelo_epi32 \
(&(v l i s t [kk2]) , k1 , zmm1) ;
_mm512_mask_packstorehi_epi32 \
(&(v l i s t [kk2 + 1 6]) , k1 , zmm1) ;
kk2 += cnt ;

}
}

}

i f d e f VECT_REMAINING_PART
i n t 3 2 _ t temp_mask ;
i n t 3 2 _ t rem = veo − vo ;
i f (rem > REMAINING_PART) {

switch (rem) {
case 1 5 : temp_mask = 0 b111111111111111 ;

break ;
case 1 4 : temp_mask = 0 b11111111111111 ;

break ;
case 1 3 : temp_mask = 0 b1111111111111 ;

break ;
case 1 2 : temp_mask = 0 b111111111111 ;

break ;
case 1 1 : temp_mask = 0 b11111111111 ;

break ;
case 1 0 : temp_mask = 0 b1111111111 ;

117

A. EXAMPLES OF GRAPH500 CODES

break ;
case 9 : temp_mask = 0 b111111111 ;

break ;
case 8 : temp_mask = 0 b11111111 ;

break ;
case 7 : temp_mask = 0 b1111111 ;

break ;
case 6 : temp_mask = 0 b111111 ;

break ;
case 5 : temp_mask = 0 b11111 ;

break ;
case 4 : temp_mask = 0b1111 ;

break ;
case 3 : temp_mask = 0b111 ;

break ;
case 2 : temp_mask = 0b11 ;

break ;
case 1 : temp_mask = 0b1 ;

break ;
}

/ / s e t v e c t o r zmm3 t o −1
__m512i zmm3 = _mm512_set1_epi32 (−1) ;
/ / s e t v e c t o r zmm4 t o v
__m512i zmm4 = _mm512_set1_epi32 (v) ;

__mmask16 k1 = _mm512_int2mask (temp_mask) ;

i f d e f ALIGNED_ACCESS
/ / l o a d c o n n e c t e d nodes from x a d j
__m512i zmm1 = _mm512_mask_load_epi32 \
(zmm1, k1 , &(xadj [vo])) ;

else
__m512i zmm1 = _mm512_mask_loadunpacklo_epi32 \
(zmm1, k1 , &(xadj [vo])) ;
zmm1 = _mm512_mask_loadunpackhi_epi32 \
(zmm1, k1 , &(xadj [vo + 1 6])) ;

endif
/ / g a t h e r e l e m e n t s from b f s _ t r e e
__m512i zmm2 = _mm512_mask_i32gather_epi32 \
(zmm2, k1 , zmm1, b f s _ t r e e , 4) ;

118

A.2 Vectorized Sequential Version

__mmask16 k2 = _mm512_mask_cmpeq_epi32_mask \
(k1 , zmm2, zmm3) ;
int_mask = _mm512_mask2int (k2) ;
cnt = _mm_countbits_32 (int_mask) ;
i f (cnt) {

/ / s c a t t e r s t o r e o v e r mask r e g i s t e r t o b f s _ t r e e
_mm512_mask_i32scatter_epi32 \
(b f s _ t r e e , k2 , zmm1, zmm4, 4) ;

/ / s t o r e o v e r mask t o v l i s t
_mm512_mask_packstorelo_epi32 \
(&(v l i s t [kk2]) , k2 , zmm1) ;
_mm512_mask_packstorehi_epi32 \
(&(v l i s t [kk2 + 1 6]) , k2 , zmm1) ;
kk2 += cnt ;

}
} e lse {

endif

for (; vo < veo ; ++vo) {
const i n t 3 2 _ t j = xadj [vo] ;
i f (b f s _ t r e e [j] == −1) {

b f s _ t r e e [j] = v ;
v l i s t [kk2++] = j ;

}
}

i f d e f VECT_REMAINING_PART
}

endif
e lse

for (vo = XOFF(v) ; vo < veo ; ++vo) {
const i n t 3 2 _ t j = xadj [vo] ;
i f (b f s _ t r e e [j] == −1) {

b f s _ t r e e [j] = v ;
v l i s t [kk2++] = j ;

}
}

endif
}
kk1 = oldk2 ;

119

A. EXAMPLES OF GRAPH500 CODES

}
/ / o f f l o a d end

}

x f r e e _ l a r g e (v l i s t) ;
return e r r ;

}

A.3 Sequential Version with Scalar Prefetching

s t a t i c i n t 6 4 _ t ∗ r e s t r i c t x o f f ; /∗ Length 2∗nv+2 ∗ /
define XOFF(k) (x o f f [2∗ (k)])
define XENDOFF(k) (x o f f [1+2∗ (k)])
define USE_PREFETCH
define DIST 32

i n t
make_bfs_tree (i n t 6 4 _ t ∗ bfs_ t ree_out ,

i n t 6 4 _ t ∗max_vtx_out ,
i n t 6 4 _ t srcvtx , i n t 6 4 _ t nv_scale)

{
i n t 3 2 _ t ∗ r e s t r i c t _ _ a t t r i b u t e _ _ ((t a r g e t (mic))) \

b f s _ t r e e = b f s _ t r e e _ o u t ;
i n t e r r = 0 ;
i n t 6 4 _ t ∗ r e s t r i c t v l i s t = NULL;
i n t 6 4 _ t k1 , k2 ;

∗max_vtx_out = maxvtx ;

v l i s t = xmal loc_ large (nv ∗ s i ze of (∗ v l i s t)) ;
i f (! v l i s t) return −1;

for (k1 = 0 ; k1 < nv ; ++k1)
b f s _ t r e e [k1] = −1;

#pragma o f f l o a d t a r g e t (mic :MIC_DEV) \
in (x o f f : length (2∗nv + 2)) \

120

A.3 Sequential Version with Scalar Prefetching

in (xadj : length ((XOFF(nv)))) \
inout (v l i s t : length (nv)) \
inout (b f s _ t r e e : length (nv_scale) \
a l l o c _ i f (1) f r e e _ i f (1))

{
v l i s t [0] = s r c v t x ;
b f s _ t r e e [s r c v t x] = s r c v t x ;
k1 = 0 ; k2 = 1 ;
while (k1 != k2) {

const i n t 6 4 _ t oldk2 = k2 ;
i n t 6 4 _ t k ;

i f d e f __MIC__
i f d e f USE_PREFETCH

i n t 3 2 _ t new_node = 0 ;
i n t 3 2 _ t temp ;

endif
endif

for (k = k1 ; k < oldk2 ; ++k) {
const i n t 6 4 _ t v = v l i s t [k] ;
const i n t 6 4 _ t veo = XENDOFF(v) ;
i n t 6 4 _ t vo ;

i f d e f __MIC__
i f d e f USE_PREFETCH

i n t 3 2 _ t v1 = v l i s t [k + 1] ;
i n t 3 2 _ t vo1 = XOFF(v1) ;
i n t 3 2 _ t veo1 = XENDOFF(v1) ;
i n t 3 2 _ t d i s t a n c e = DIST ;
new_node = 0 ;

endif
endif

for (vo = XOFF(v) ; vo < veo ; ++vo) {
i f d e f __MIC__
i f d e f USE_PREFETCH

i f (! new_node) {
i f ((veo−vo) < DIST) {

new_node = 1 ;

121

A. EXAMPLES OF GRAPH500 CODES

i f ((veo1−vo1) < DIST)
d i s t a n c e = veo1−vo1 ;

for (temp = 0 ; temp < d i s t a n c e ; ++temp)
_mm_prefetch \
(& b f s _ t r e e [xadj [vo1+temp]] , _MM_HINT_T0) ;

} e lse {
_mm_prefetch \
(& b f s _ t r e e [xadj [vo+DIST]] , _MM_HINT_T0) ;

}
}

endif
endif

const i n t 6 4 _ t j = xadj [vo] ;
i f (b f s _ t r e e [j] == −1) {

b f s _ t r e e [j] = v ;
v l i s t [k2++] = j ;

}
}

}
k1 = oldk2 ;

}
/ / o f f l o a d end
}

x f r e e _ l a r g e (v l i s t) ;

return e r r ;
}

A.4 Vectorized sequential version with vector prefetch-
ing

s t a t i c i n t 6 4 _ t ∗ r e s t r i c t x o f f ; /∗ Length 2∗nv+2 ∗ /
define XOFF(k) (x o f f [2∗ (k)])
define XENDOFF(k) (x o f f [1+2∗ (k)])
define USE_PREFETCH

122

A.4 Vectorized sequential version with vector prefetching

i n t
make_bfs_tree (i n t 3 2 _ t ∗ bfs_ t ree_out ,

i n t 6 4 _ t ∗max_vtx_out ,
i n t 6 4 _ t srcvtx , i n t 6 4 _ t nv_scale)

{
i n t 3 2 _ t ∗ r e s t r i c t _ _ a t t r i b u t e _ _ ((t a r g e t (mic))) \

b f s _ t r e e = b f s _ t r e e _ o u t ;
i n t e r r = 0 ;
i n t 3 2 _ t ∗ r e s t r i c t v l i s t = NULL;
i n t 3 2 _ t kk1 , kk2 ;
∗max_vtx_out = maxvtx ;
v l i s t = xmal loc_ large (nv ∗ s i ze of (∗ v l i s t)) ;
i f (! v l i s t) return −1;

#pragma o f f l o a d t a r g e t (mic :MIC_DEV) \
in (x o f f : length (2∗nv + 2)) \
in (xadj : length ((XOFF(nv)))) \
inout (v l i s t : length (nv)) \
inout (b f s _ t r e e : length (nv_scale) \
a l l o c _ i f (1) f r e e _ i f (1))

{
for (kk1 = 0 ; kk1 < nv ; ++kk1)

b f s _ t r e e [kk1] = −1;

v l i s t [0] = s r c v t x ;
b f s _ t r e e [s r c v t x] = s r c v t x ;
kk1 = 0 ; kk2 = 1 ;
while (kk1 != kk2) {

const i n t 3 2 _ t oldk2 = kk2 ;
i n t 3 2 _ t k ;
for (k = kk1 ; k < oldk2 ; ++k) {

const i n t 3 2 _ t v = v l i s t [k] ;
const i n t 3 2 _ t veo = XENDOFF(v) ;
i n t 3 2 _ t vo , i ;

123

A. EXAMPLES OF GRAPH500 CODES

i f d e f __MIC__
const i n t 3 2 _ t v1 = v l i s t [k + 1] ;
const i n t 3 2 _ t veo1 = XENDOFF(v1) ;
i n t 3 2 _ t vo1 = XOFF(v1) ;

__m512i zmm7;
i n t 3 2 _ t int_mask , cnt ;

vo = XOFF(v) ;
i f (veo − vo >= 1 6) {

/ / s e t v e c t o r zmm3 t o −1
__m512i zmm3 = _mm512_set1_epi32 (−1) ;
/ / s e t v e c t o r zmm4 t o v
__m512i zmm4 = _mm512_set1_epi32 (v) ;

for (; vo <= (veo −16); vo +=16){
i f d e f USE_PREFETCH

i f ((vo + 32) < veo) {
i f d e f ALIGNED_ACCESS

zmm7 = _mm512_load_epi32 (&(xadj [vo + 1 6])) ;
else

zmm7 = _mm512_loadunpacklo_epi32 \
(zmm7, &(xadj [vo + 1 6])) ;
zmm7 = _mm512_loadunpackhi_epi32 \
(zmm7, &(xadj [vo + 3 2])) ;

endif
_mm512_prefetch_i32gather_ps \
(zmm7, b f s _ t r e e , 4 , _MM_HINT_T0) ;

}
endif

i f d e f ALIGNED_ACCESS
/ / l o a d c o n n e c t e d nodes from x a d j
__m512i zmm1 = _mm512_load_epi32 \
(&(xadj [vo])) ;

else

124

A.4 Vectorized sequential version with vector prefetching

__m512i zmm1 = _mm512_loadunpacklo_epi32 \
(zmm1, &(xadj [vo])) ;
zmm1 = _mm512_loadunpackhi_epi32 \
(zmm1, &(xadj [vo + 1 6])) ;

endif
/ / g a t h e r e l e m e n t s from b f s _ t r e e
__m512i zmm2 = _mm512_i32gather_epi32 \
(zmm1, b f s _ t r e e , 4) ;
__mmask16 k1 = _mm512_cmpeq_epi32_mask \
(zmm2, zmm3) ;
int_mask = _mm512_mask2int (k1) ;
cnt = _mm_countbits_32 (int_mask) ;
i f (cnt) {

/ / s c a t t e r s t o r e o v e r mask r e g i s t e r t o b f s _ t r e e
_mm512_mask_i32scatter_epi32 \
(b f s _ t r e e , k1 , zmm1, zmm4, 4) ;

/ / s t o r e o v e r mask t o v l i s t
_mm512_mask_packstorelo_epi32 \
(&(v l i s t [kk2]) , k1 , zmm1) ;
_mm512_mask_packstorehi_epi32 \
(&(v l i s t [kk2 + 1 6]) , k1 , zmm1) ;
kk2 += cnt ;

}
}

}

i f d e f VECT_REMAINING_PART
i n t 3 2 _ t temp_mask ;
i n t 3 2 _ t rem = veo − vo ;
i f (rem > REMAINING_PART) {

switch (rem) {
case 1 5 : temp_mask = 0 b111111111111111 ;

break ;
case 1 4 : temp_mask = 0 b11111111111111 ;

break ;

125

A. EXAMPLES OF GRAPH500 CODES

case 1 3 : temp_mask = 0 b1111111111111 ;
break ;

case 1 2 : temp_mask = 0 b111111111111 ;
break ;

case 1 1 : temp_mask = 0 b11111111111 ;
break ;

case 1 0 : temp_mask = 0 b1111111111 ;
break ;

case 9 : temp_mask = 0 b111111111 ;
break ;

case 8 : temp_mask = 0 b11111111 ;
break ;

case 7 : temp_mask = 0 b1111111 ;
break ;

case 6 : temp_mask = 0 b111111 ;
break ;

case 5 : temp_mask = 0 b11111 ;
break ;

case 4 : temp_mask = 0b1111 ;
break ;

case 3 : temp_mask = 0b111 ;
break ;

case 2 : temp_mask = 0b11 ;
break ;

case 1 : temp_mask = 0b1 ;
break ;

}

/ / s e t v e c t o r zmm3 t o −1
__m512i zmm3 = _mm512_set1_epi32 (−1) ;
/ / s e t v e c t o r zmm4 t o v
__m512i zmm4 = _mm512_set1_epi32 (v) ;

__mmask16 k1 = _mm512_int2mask (temp_mask) ;

i f d e f ALIGNED_ACCESS

126

A.4 Vectorized sequential version with vector prefetching

/ / l o a d c o n n e c t e d nodes from x a d j
__m512i zmm1 = _mm512_mask_load_epi32 \
(zmm1, k1 , &(xadj [vo])) ;

else
__m512i zmm1 = _mm512_mask_loadunpacklo_epi32 \
(zmm1, k1 , &(xadj [vo])) ;
zmm1 = _mm512_mask_loadunpackhi_epi32 \
(zmm1, k1 , &(xadj [vo + 1 6])) ;

endif
/ / g a t h e r e l e m e n t s from b f s _ t r e e
__m512i zmm2 = _mm512_mask_i32gather_epi32 \
(zmm2, k1 , zmm1, b f s _ t r e e , 4) ;

__mmask16 k2 = _mm512_mask_cmpeq_epi32_mask \
(k1 , zmm2, zmm3) ;
int_mask = _mm512_mask2int (k2) ;
cnt = _mm_countbits_32 (int_mask) ;
i f (cnt) {

/ / s c a t t e r s t o r e o v e r mask r e g i s t e r t o b f s _ t r e e
_mm512_mask_i32scatter_epi32 \
(b f s _ t r e e , k2 , zmm1, zmm4, 4) ;

/ / s t o r e o v e r mask t o v l i s t
_mm512_mask_packstorelo_epi32 \
(&(v l i s t [kk2]) , k2 , zmm1) ;
_mm512_mask_packstorehi_epi32 \
(&(v l i s t [kk2 + 1 6]) , k2 , zmm1) ;
kk2 += cnt ;

}
} e lse {

endif

i f d e f USE_PREFETCH
i f ((vo1 + 16) < veo1) {

i f d e f ALIGNED_ACCESS
zmm7 = _mm512_load_epi32 (&(xadj [vo1])) ;

127

A. EXAMPLES OF GRAPH500 CODES

else
zmm7 = _mm512_loadunpacklo_epi32 \
(zmm7, &(xadj [vo1])) ;
zmm7 = _mm512_loadunpackhi_epi32 \
(zmm7, &(xadj [vo1 + 1 6])) ;

endif
_mm512_prefetch_i32gather_ps \
(zmm7, b f s _ t r e e , 4 , _MM_HINT_T0) ;

}
endif

for (; vo < veo ; ++vo) {
const i n t 3 2 _ t j = xadj [vo] ;
i f (b f s _ t r e e [j] == −1) {

b f s _ t r e e [j] = v ;
v l i s t [kk2++] = j ;

}
}

i f d e f VECT_REMAINING_PART
}

endif
e lse

for (vo = XOFF(v) ; vo < veo ; ++vo) {
const i n t 3 2 _ t j = xadj [vo] ;
i f (b f s _ t r e e [j] == −1) {

b f s _ t r e e [j] = v ;
v l i s t [kk2++] = j ;

}
}

endif
}
kk1 = oldk2 ;

}
/ / o f f l o a d end

}

x f r e e _ l a r g e (v l i s t) ;

128

A.5 Vectorized sequential version with vector and scalar prefetching

return e r r ;
}

A.5 Vectorized sequential version with vector and scalar
prefetching

s t a t i c i n t 6 4 _ t ∗ r e s t r i c t x o f f ; /∗ Length 2∗nv+2 ∗ /
define XOFF(k) (x o f f [2∗ (k)])
define XENDOFF(k) (x o f f [1+2∗ (k)])
define USE_PREFETCH

i n t
make_bfs_tree (i n t 3 2 _ t ∗ bfs_ t ree_out ,

i n t 6 4 _ t ∗max_vtx_out ,
i n t 6 4 _ t srcvtx , i n t 6 4 _ t nv_scale)

{
i n t 3 2 _ t ∗ r e s t r i c t _ _ a t t r i b u t e _ _ ((t a r g e t (mic))) \

b f s _ t r e e = b f s _ t r e e _ o u t ;
i n t e r r = 0 ;
i n t 3 2 _ t ∗ r e s t r i c t v l i s t = NULL;
i n t 3 2 _ t kk1 , kk2 ;
∗max_vtx_out = maxvtx ;

v l i s t = xmal loc_ large (nv ∗ s i ze of (∗ v l i s t)) ;
i f (! v l i s t) return −1;

#pragma o f f l o a d t a r g e t (mic :MIC_DEV) \
in (x o f f : length (2∗nv + 2)) \
in (xadj : length ((XOFF(nv)))) \
inout (v l i s t : length (nv)) \
inout (b f s _ t r e e : length (nv_scale) \
a l l o c _ i f (1) f r e e _ i f (1))

{
for (kk1 = 0 ; kk1 < nv ; ++kk1)

b f s _ t r e e [kk1] = −1;

129

A. EXAMPLES OF GRAPH500 CODES

v l i s t [0] = s r c v t x ;
b f s _ t r e e [s r c v t x] = s r c v t x ;
kk1 = 0 ; kk2 = 1 ;
while (kk1 != kk2) {

const i n t 3 2 _ t oldk2 = kk2 ;
i n t 3 2 _ t k ;
for (k = kk1 ; k < oldk2 ; ++k) {

const i n t 3 2 _ t v = v l i s t [k] ;
const i n t 3 2 _ t veo = XENDOFF(v) ;
i n t 3 2 _ t vo , i ;

i f d e f __MIC__
const i n t 3 2 _ t v1 = v l i s t [k + 1] ;
const i n t 3 2 _ t veo1 = XENDOFF(v1) ;
i n t 3 2 _ t vo1 = XOFF(v1) ;

__m512i zmm7;

i n t 3 2 _ t int_mask , cnt ;
i n t 3 2 _ t dis tance , temp ;

vo = XOFF(v) ;
i f (veo − vo >= 1 6) {

/ / s e t v e c t o r zmm3 t o −1
__m512i zmm3 = _mm512_set1_epi32 (−1) ;
/ / s e t v e c t o r zmm4 t o v
__m512i zmm4 = _mm512_set1_epi32 (v) ;

for (; vo <= (veo −16); vo +=16){
i f d e f USE_PREFETCH

i f ((vo + 32) < veo) {
i f d e f ALIGNED_ACCESS

zmm7 = _mm512_load_epi32 (&(xadj [vo + 1 6])) ;
else

zmm7 = _mm512_loadunpacklo_epi32 \

130

A.5 Vectorized sequential version with vector and scalar prefetching

(zmm7, &(xadj [vo + 1 6])) ;
zmm7 = _mm512_loadunpackhi_epi32 \
(zmm7, &(xadj [vo + 3 2])) ;

endif
_mm512_prefetch_i32gather_ps \
(zmm7, b f s _ t r e e , 4 , _MM_HINT_T0) ;

} e lse {
d i s t a n c e = veo−vo ;
for (temp = 1 6 ; temp < d i s t a n c e ; ++temp)

_mm_prefetch \
(& b f s _ t r e e [xadj [vo+temp]] , _MM_HINT_T0) ;

}
endif

i f d e f ALIGNED_ACCESS
/ / l o a d c o n n e c t e d nodes from x a d j
__m512i zmm1 = _mm512_load_epi32 (&(xadj [vo])) ;

else
__m512i zmm1 = _mm512_loadunpacklo_epi32 \
(zmm1, &(xadj [vo])) ;
zmm1 = _mm512_loadunpackhi_epi32 \
(zmm1, &(xadj [vo + 1 6])) ;

endif
/ / g a t h e r e l e m e n t s from b f s _ t r e e
__m512i zmm2 = _mm512_i32gather_epi32 \
(zmm1, b f s _ t r e e , 4) ;

__mmask16 k1 = _mm512_cmpeq_epi32_mask \
(zmm2, zmm3) ;
int_mask = _mm512_mask2int (k1) ;
cnt = _mm_countbits_32 (int_mask) ;
i f (cnt) {

/ / s c a t t e r s t o r e o v e r mask r e g i s t e r t o b f s _ t r e e
_mm512_mask_i32scatter_epi32 \
(b f s _ t r e e , k1 , zmm1, zmm4, 4) ;

131

A. EXAMPLES OF GRAPH500 CODES

/ / s t o r e o v e r mask t o v l i s t
_mm512_mask_packstorelo_epi32 \
(&(v l i s t [kk2]) , k1 , zmm1) ;
_mm512_mask_packstorehi_epi32 \
(&(v l i s t [kk2 + 1 6]) , k1 , zmm1) ;
kk2 += cnt ;

}
}

}

i f d e f VECT_REMAINING_PART
i n t 3 2 _ t temp_mask ;
i n t 3 2 _ t rem = veo − vo ;
i f (rem > REMAINING_PART) {

switch (rem) {
case 1 5 : temp_mask = 0 b111111111111111 ;

break ;
case 1 4 : temp_mask = 0 b11111111111111 ;

break ;
case 1 3 : temp_mask = 0 b1111111111111 ;

break ;
case 1 2 : temp_mask = 0 b111111111111 ;

break ;
case 1 1 : temp_mask = 0 b11111111111 ;

break ;
case 1 0 : temp_mask = 0 b1111111111 ;

break ;
case 9 : temp_mask = 0 b111111111 ;

break ;
case 8 : temp_mask = 0 b11111111 ;

break ;
case 7 : temp_mask = 0 b1111111 ;

break ;
case 6 : temp_mask = 0 b111111 ;

break ;
case 5 : temp_mask = 0 b11111 ;

132

A.5 Vectorized sequential version with vector and scalar prefetching

break ;
case 4 : temp_mask = 0b1111 ;

break ;
case 3 : temp_mask = 0b111 ;

break ;
case 2 : temp_mask = 0b11 ;

break ;
case 1 : temp_mask = 0b1 ;

break ;
}

/ / s e t v e c t o r zmm3 t o −1
__m512i zmm3 = _mm512_set1_epi32 (−1) ;
/ / s e t v e c t o r zmm4 t o v
__m512i zmm4 = _mm512_set1_epi32 (v) ;

__mmask16 k1 = _mm512_int2mask (temp_mask) ;

i f d e f ALIGNED_ACCESS
/ / l o a d c o n n e c t e d nodes from x a d j
__m512i zmm1 = _mm512_mask_load_epi32 \
(zmm1, k1 , &(xadj [vo])) ;

else
__m512i zmm1 = _mm512_mask_loadunpacklo_epi32 \
(zmm1, k1 , &(xadj [vo])) ;
zmm1 = _mm512_mask_loadunpackhi_epi32 \
(zmm1, k1 , &(xadj [vo + 1 6])) ;

endif
/ / g a t h e r e l e m e n t s from b f s _ t r e e
__m512i zmm2 = _mm512_mask_i32gather_epi32 \
(zmm2, k1 , zmm1, b f s _ t r e e , 4) ;

__mmask16 k2 = _mm512_mask_cmpeq_epi32_mask \
(k1 , zmm2, zmm3) ;
int_mask = _mm512_mask2int (k2) ;

133

A. EXAMPLES OF GRAPH500 CODES

cnt = _mm_countbits_32 (int_mask) ;
i f (cnt) {

/ / s c a t t e r s t o r e o v e r mask r e g i s t e r t o b f s _ t r e e
_mm512_mask_i32scatter_epi32 \
(b f s _ t r e e , k2 , zmm1, zmm4, 4) ;

/ / s t o r e o v e r mask t o v l i s t
_mm512_mask_packstorelo_epi32 \
(&(v l i s t [kk2]) , k2 , zmm1) ;
_mm512_mask_packstorehi_epi32 \
(&(v l i s t [kk2 + 1 6]) , k2 , zmm1) ;
kk2 += cnt ;

}
} e lse {

endif

i f d e f USE_PREFETCH
i f ((vo1 + 16) < veo1) {

i f d e f ALIGNED_ACCESS
zmm7 = _mm512_load_epi32 (&(xadj [vo1])) ;

else
zmm7 = _mm512_loadunpacklo_epi32 \
(zmm7, &(xadj [vo1])) ;
zmm7 = _mm512_loadunpackhi_epi32 \
(zmm7, &(xadj [vo1 + 1 6])) ;

endif
_mm512_prefetch_i32gather_ps \
(zmm7, b f s _ t r e e , 4 , _MM_HINT_T0) ;

} e lse {
d i s t a n c e = veo1−vo1 ;
for (temp = 0 ; temp < d i s t a n c e ; ++temp)
_mm_prefetch \
(& b f s _ t r e e [xadj [vo1+temp]] , _MM_HINT_T0) ;

}
endif

for (; vo < veo ; ++vo) {

134

A.5 Vectorized sequential version with vector and scalar prefetching

const i n t 3 2 _ t j = xadj [vo] ;
i f (b f s _ t r e e [j] == −1) {

b f s _ t r e e [j] = v ;
v l i s t [kk2++] = j ;

}
}

i f d e f VECT_REMAINING_PART
}

endif
e lse

for (vo = XOFF(v) ; vo < veo ; ++vo) {
const i n t 3 2 _ t j = xadj [vo] ;
i f (b f s _ t r e e [j] == −1) {

b f s _ t r e e [j] = v ;
v l i s t [kk2++] = j ;

}
}

endif
}
kk1 = oldk2 ;

}
/ / o f f l o a d end

}

x f r e e _ l a r g e (v l i s t) ;

return e r r ;
}

135

List of Figures

1.1 Comparison of a scalar instruction and a vector instruction. 2

2.1 Example of vector library usage: a) source code of kernel, b) vector-
ized pseudo-code, c) vectorized code using VALib. 18

2.2 Distribution of vector lengths. X-axis represents the VL and Y-axis is
a cumulative %. 22

2.3 Distribution of memory access patterns. 26

2.4 The basic structure of SimpleVector. 30

2.5 Execution time for different MVLs and configurations of cache hier-
archies. 34

2.6 Results for direct L2 access. 36

2.7 Execution time of applications for in-order and decoupled vector ar-
chitectures. jAkM stands for a configuration with j FUs and k mem-
ory units. 38

2.8 Memory access patterns of the case study. 41

3.1 Pseudo-code for the Graph500 BFS algorithm. 49

3.2 An example of graph traversed by the BFS algorithm. 49

3.3 Results for different implementations using single-thread run and no
prefetching. 55

3.4 Results with prefetching for single-thread run. 56

137

LIST OF FIGURES

3.5 Results for hand-written vectorization, auto-vectorization and no vec-
torization. 60

3.6 Results for OpenMP version with sequential prefetching. 60

3.7 Results for vectorized version with gather/scatter prefetching. . . . 61

3.8 Results for prefetching using different number of threads. 62

3.9 Impact of SCALE on performance in native mode. 63

3.10 Impact of edgefactor on performance in native mode. 64

4.1 Block diagram of the integrated design. 67

4.2 An example of code with vector instructions executed with one ALU
assuming (a) the one-by-one model and (b) the block-based execu-
tion model. 68

4.3 Vector memory unit. 72

4.4 Speed-up for CVU, OBO and BBE over the scalar baseline. 76

4.5 Normalized energy consumption for CVU, OBO and BBE over the
scalar baseline. 78

4.6 Dynamic power. 78

4.7 Chaining from memory hierarchy. 82

4.8 An example of how to update the lastWritten register for chaining
from the memory hierarchy. 83

4.9 A sequence of vector instructions where writing to the vector register
file can be avoided. 83

4.10 An example that shows execution of (a) unit-stride and indexed vec-
tor load and (b) unified vector load. 88

4.11 Speed-up for CVU, OBO and BBE with full (FCS) and restricted
(RCS) chaining support from memory hierarchy over the scalar base-
line. 90

4.12 Speed-up for CVU, OBO and BBE with full (FCS) and restricted
(RCS) chaining support from memory hierarchy over the same mod-
els without chaining. 91

4.13 Relative energy consumption for CVU, OBO and BBE with full (FCS)
and restricted (RCS) chaining support from memory hierarchy over
the same models without chaining. 95

138

LIST OF FIGURES

4.14 Normalized energy/power consumption for BBE model with direct
forwarding over the same model without direct forwarding. 96

4.15 Speed-up for CVU, OBO and BBE over the scalar baseline when us-
ing vector memory shape instruction. 96

4.16 Speed-up with the unified vector load over the indexed vector load
in graph500 for CVU, OBO and BBE. 98

139

List of Tables

2.1 Vectorized applications. 20
2.2 Instruction-level characterization. 21
2.3 Instruction mix. 25
2.4 Execution cycles for three microbenchmarks. 32
2.5 Cache hierarchy configurations. 33

3.1 Obtained results using hardware counters. 58

4.1 Microarchitectural parameters. 72
4.2 Vectorized kernels. 73
4.3 Area and leakage. 79
4.4 Possible reduction in number of writes and reads to/from the vector

register file. 84
4.5 Number of L1 data cache misses for unit-stride and indexed vector

loads. 87
4.6 L1 data cache miss rates for MVL 32. 92
4.7 Total number and number of chained vector loads per iteration. . . . 93
4.8 Area overhead of supporting chaining from the memory hierarchy. . 94

141

Bibliography

[1] (1981). Cray-1 S Series Hardware Reference Manual HR-0808. Cray. 32

[2] (2002). Cray Assembly Language CAL for Cray X1 Systems Ref. Manual. 15

[3] (2012). Intel 64 and IA-32 Architectures Optimization Reference Manual. Intel. 33

[4] Agarwal, V., Petrini, F., Pasetto, D. & Bader, D.A. (2010). Scalable graph
exploration on multicore processors. In Proceedings of the 2010 ACM/IEEE In-
ternational Conference for High Performance Computing, Networking, Storage and
Analysis, 1–11, IEEE Computer Society. 48

[5] ARM (2013). EE Times Virtual Conference. www.eetimes.com/arm/. 7

[6] Asanović, K. (May, 1998). Vector Microprocessors. Ph.D. thesis, University of
California, Berkeley. 1, 4, 8, 41

[7] Asanović, K. & Beck, J. (1997). T0 Engineering Data. Tech. Rep. CSD-97-931.
3

[8] Balart, J., Duran, A., Gonzàlez, M., Martorell, X., Ayguadé, E. &
Labarta, J. (2004). Nanos mercurium: a research compiler for OpenMP. In
Proceedings of the European Workshop on OpenMP, vol. 8, 56. 27

[9] Batten, C.F. (2010). Simplified vector-thread architectures for flexible and efficient
data-parallel accelerators. Ph.D. thesis, Citeseer, Cambridge, MA, USA. 3, 7

143

BIBLIOGRAPHY

[10] Beamer, S., Asanović, K. & Patterson, D. (2013). Direction-optimizing
breadth-first search. Scientific Programming, 21, 137–148. 50

[11] Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A.,
Hestness, J., Hower, D.R., Krishna, T., Sardashti, S., Sen, R., Sewell, K.,
Shoaib, M., Vaish, N., Hill, M.D. & Wood, D.A. (2011). The Gem5 simulator.
SIGARCH Comput. Archit. News, 39, 1–7. 71, 72

[12] Bohr, M. (2007). A 30 year retrospective on Dennard’s MOSFET scaling paper.
Solid-State Circuits Society Newsletter, IEEE, 12, 11–13. 7

[13] Burger, D. & Austin, T.M. (1997). The SimpleScalar tool set, version 2.0.
SIGARCH Comp. Arch. News, 25, 13–25. 30

[14] Buxton, M., P. Jinbo, K.N. & N. Firasta (2008). Intel AVX: New frontiers in
performance improvements and energy efficiency. White paper. 4, 8

[15] Ciricescu, S., Essick, R., Lucas, B., May, P., Moat, K., Norris, J.,
Schuette, M. & Saidi, A. (2003). The reconfigurable streaming vector proces-
sor (RSVPTM). In Proceedings of the 36th annual IEEE/ACM International Sympo-
sium on Microarchitecture, 141, IEEE Computer Society. 15, 40, 85

[16] Compute, N. (2010). PTX: Parallel thread execution ISA version 2.3.
http://developer. download. nvidia. com/compute/cuda/3, 1. 98

[17] Cong, J., Ghodrat, M.A., Gill, M., Huang, H., Liu, B., Prabhakar, R., Rein-
man, G. & Vitanza, M. (2012). Compilation and architecture support for cus-
tomized vector instruction extension. In Design Automation Conference (ASP-
DAC), 2012 17th Asia and South Pacific, 652–657, IEEE. 8

[18] Convex Press (1992). CONVEX Architecture Reference Manual (C Series). 6th
edn. 2, 13, 15

[19] Corbal, J., Espasa, R. & Valero, M. (2002). Three-dimensional memory vec-
torization for high bandwidth media memory systems. In Proceedings of the
35th annual ACM/IEEE international symposium on Microarchitecture, 149–160.
42

144

BIBLIOGRAPHY

[20] Espasa, R. (1997). Advanced Vector Architectures. Ph.D. thesis, Universitat
Politècnica de Catalunya. 2, 3, 8, 21, 41

[21] Espasa, R. & Martorell, X. (1994). Dixie: a trace generation system for the
C3480. Tech. Rep. CEPBA-RR-94- 08, Univ. Politècnica de Catalunya. 41

[22] Espasa, R. & Valero, M. (1996). Decoupled vector architectures. In High-
Performance Computer Architecture, 1996. Proceedings., Second International Sym-
posium on, 281–290. 30, 106

[23] Espasa, R., Valero, M. & Smith, J.E. (1998). Vector architectures: past, present
and future. In Proceedings of the 12th international conference on Supercomputing,
425–432, ACM. 2

[24] Espasa, R., Ardanaz, F., Emer, J., Felix, S., Gago, J., Gramunt, R., Hernan-
dez, I., Juan, T., Lowney, G., Mattina, M. et al. (2002). Tarantula: a vector
extension to the alpha architecture. In Computer Architecture, 2002. Proceedings.
29th Annual International Symposium on, 281–292, IEEE. 3, 7, 30, 37, 71

[25] Fuller, S. (1998). Motorola’s AltiVec technology. White paper. 4

[26] Gebis, J.J. (2008). Low-complexity vector microprocessor extension. Ph.D. thesis,
Berkeley, CA, USA. 3, 98

[27] Gschwind, M. (2006). Chip multiprocessing and the cell broadband engine. In
Proceedings of the 3rd conference on Computing frontiers, 1–8, ACM. 99

[28] Gschwind, M. (2016). Workload acceleration with the IBM POWER vector-
scalar architecture. IBM Journal of Research and Development, 60, 14–1. 99

[29] Gschwind, M., Hofstee, H.P., Flachs, B., Hopkins, M., Watanabe, Y. &
Yamazaki, T. (2006). Synergistic processing in Cell’s multicore architecture.
IEEE micro, 26, 10–24. 99

[30] Hayes, T., Palomar, O., Unsal, O., Cristal, A. & Valero, M. (2012). Vector
extensions for decision support DBMS acceleration. In Proceedings of the 45th
Annual ACM/IEEE International Symposium on Microarchitecture, 166–176. 7, 37,
101

145

BIBLIOGRAPHY

[31] Hennessy, J.L. & Patterson, D.A. (2006). Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., 4th edn., appendix F. 1, 4, 15, 28,
31, 51

[32] Hintz, R.G. & Tate, D.P. (1972, IEEE). Control data STAR-100 processor de-
sign. In Compcon 72, 1–4. 2

[33] Hong, S., Oguntebi, T. & Olukotun, K. (2011). Efficient parallel graph ex-
ploration on multi-core CPU and GPU. In Parallel Architectures and Compilation
Techniques (PACT), 2011 International Conference on, 78–88, IEEE. 50

[34] Hu, Z. & Martonosi, M. (2000). Reducing register file power consumption
by exploiting value lifetime. In Proceedings of WCED in conjunction with ISCA,
vol. 27. 101

[35] Hu, Z., Buyuktosunoglu, A., Srinivasan, V., Zyuban, V., Jacobson, H. &
Bose, P. (2004). Microarchitectural techniques for power gating of execution
units. In Proceedings of the 2004 international symposium on Low power electronics
and design, ISLPED ’04, 32–37, ACM, New York, NY, USA. 6

[36] Intel (2012). Intel Xeon Phi TM Coprocessor Instruction Set Architecture Reference
Manual. 46

[37] Irimia-Vladu, M. (2014). Green electronics: biodegradable and biocompatible
materials and devices for sustainable future. Chemical Society Reviews, 43, 588–
610. 7

[38] Janin, A.L. (2004). Speech Recognition on Vector Architecture. Ph.D. thesis, Univ.
of California, Berkeley. 4, 42

[39] Khailany, B., Dally, W.J., Kapasi, U.J., Mattson, P., Namkoong, J., Owens,
J.D., Towles, B., Chang, A. & Rixner, S. (2001). Imagine: Media processing
with streams. IEEE Micro, 21, 35–46. 99

[40] Kobayashi, H., Egawa, R., Takizawa, H., Okabe, K., Musa, A., Soga, T. &
Shimomura, Y. (2009). First experiences with NEC SX-9. In High Performance
Computing on Vector Systems 2008, 3–11, Springer. 30

146

BIBLIOGRAPHY

[41] Kozyrakis, C. (2002). Scalable vector media-processors for embedded systems.
Tech. rep., Berkeley, CA, USA. 3

[42] Kozyrakis, C. & Patterson, D. (2003). Overcoming the limitations of con-
ventional vector processors. In Computer Architecture, 2003. Proceedings. 30th
Annual International Symposium on, 399–409. 3, 7, 80

[43] Krashinsky, R., Batten, C., Hampton, M., Gerding, S., Pharris, B., Casper,
J. & Asanović, K. (2004). The vector-thread architecture. In Proceedings of the
31st Annual International Symposium on Computer Architecture, ISCA ’04, 52–64.
99

[44] Krashinsky, R.M. (2007). Vector-thread architecture and implementation. Ph.D.
thesis, Massachusetts Institute of Technology, Cambridge, MA, USA. 3

[45] Lattner, C. & Adve, V. (2004). LLVM: A compilation framework for lifelong
program analysis & transformation. In Code Generation and Optimization, 2004.
CGO 2004. International Symposium on, 75–86, IEEE. 27

[46] Lee, R.B. (1995). Accelerating multimedia with enhanced microprocessors.
IEEE Micro, 15, 22–32. 4

[47] Lee, Y., Avizienis, R., Bishara, A., Xia, R., Lockhart, D., Batten, C. &
Asanović, K. (2011). Exploring the tradeoffs between programmability and
efficiency in data-parallel accelerators. In Proceedings of the 38th Annual Inter-
national Symposium on Computer Architecture, ISCA ’11, 129–140, ACM, New
York, NY, USA. 1, 5, 7

[48] Lemuet, C., Sampson, J., Collard, J.F. & Jouppi, N. (2006). The potential
energy efficiency of vector acceleration. In Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, SC ’06, ACM, New York, NY, USA. 5, 100

[49] Li, H., Bhunia, S., Chen, Y., Vijaykumar, T.N. & Roy, K. (2003). Determinis-
tic clock gating for microprocessor power reduction. In Proceedings of the 9th
International Symposium on High-Performance Computer Architecture, HPCA ’03,
113–, IEEE Computer Society, Washington, DC, USA. 6

147

BIBLIOGRAPHY

[50] Li, S., Ahn, J.H., Strong, R., Brockman, J., Tullsen, D. & Jouppi, N. (2009).

McPAT: An integrated power, area, and timing modeling framework for mul-

ticore and manycore architectures. In Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, 469–480. 73

[51] Momose, S., Hagiwara, T., Isobe, Y. & Takahara, H. (2014). The brand-new

vector supercomputer, SX-ACE. In Supercomputing, 199–214, Springer. 3, 13

[52] Montanaro, J., Witek, R.T., Anne, K., Black, A.J., Cooper, E.M., Dobber-

puhl, D.W., Donahue, P.M., Eno, J., Hoeppner, W., Kruckemyer, D. et al.
(1996). A 160-mhz, 32-b, 0.5-w CMOS RISC microprocessor. vol. 31, 1703–1714,

IEEE. 4

[53] Moore, G.E. (2000). Readings in computer architecture. chap. Cramming more

components onto integrated circuits, 56–59, Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA. 6

[54] Mucci, P.J., Browne, S., Deane, C. & Ho, G. (1999). PAPI: A portable interface

to hardware performance counters. In Proceedings of the department of defense
HPCMP users group conference, 7–10. 17, 53, 57

[55] Murphy, R., Berry, J., McLendon, W., Hendrickson, B., Gregor, D. & Lums-

daine, A. (2006). DFS: a simple to write yet difficult to execute benchmark. In

2006 IEEE International Symposium on Workload Characterization, 175–177, IEEE.

19

[56] Murphy, R.C., Wheeler, K.B., Barrett, B.W. & Ang, J.A. (2010). Introducing

the Graph 500. Cray Users Group (CUG). 19, 45, 74

[57] Narayanan, R., Ozisikyilmaz, B., Zambreno, J., Memik, G. & Choudhary,

A. (2006). Minebench: A benchmark suite for data mining workloads. In 2006
IEEE International Symposium on Workload Characterization, 182–188, IEEE. 19

[58] Oberman, S., Favor, G. & Weber, F. (1999). AMD 3DNow! technology: Archi-

tecture and implementations. IEEE Micro, 19, 37–48. 4

148

BIBLIOGRAPHY

[59] Palacharla, S., Jouppi, N.P. & Smith, J.E. (1997). Complexity-effective super-
scalar processors. In Proceeding of the 24th International Symposium on Computer
Architecture, ISCA 97, 206–218. 4

[60] Peleg, A. & Weiser, U. (1996). MMX technology extension to the Intel archi-
tecture. IEEE Micro, 16, 42–50. 4

[61] Perron, R. & Mundie, C. (March, 1986). The architecture of the Alliant FX/8
computer. Compcon 86, 390–394. 2, 13

[62] Pharr, M. & Mark, W.R. (2012). ispc: A SPMD compiler for high-performance
CPU programming. In Innovative Parallel Computing (InPar), 2012, 1–13, IEEE.
27

[63] Ponomarev, D., Kucuk, G., Ergin, O. & Ghose, K. (2003). Reducing datapath
energy through the isolation of short-lived operands. In Proceedings. 12th In-
ternational Conference on Parallel Architectures and Compilation Techniques, 2003.
PACT 2003., 258–268, IEEE. 101

[64] Quintana, F. (2001). Aceleradores Vectoriales para Procesadores Superescalaress.
Ph.D. thesis, Universitat Politècnica de Catalunya. 8, 41

[65] Quintana, F., Corbal, J., Espasa, R. & Valero, M. (1999). Adding a vector
unit to a superscalar processor. In Proceedings of the 13th international conference
on Supercomputing, ICS ’99, 1–10. 30, 37, 98

[66] Ratković, I. (2011). An Overview of Architecture Level Power and Energy Efficient
Techniques. Master’s thesis, Faculty of Electrical Engineering. 5

[67] Ratković, I., Palomar, O., Stanić, M., Ünsal, O.S., Cristal, A. & Valero,
M. (2013). On the selection of adder unit in energy efficient vector processing.
143–150. 18

[68] Ren, G., Wu, P. & Padua, D. (2003). A preliminary study on the vectorization of
multimedia applications for multimedia extensions. In Languages and Compilers
for Parallel Computing, 420–435, Springer. 4

149

BIBLIOGRAPHY

[69] Russell, R.M. (1978). The CRAY-1 computer system. Commun. ACM, 21, 63–72.
2, 13, 68, 80, 101

[70] Saule, E. & Çatalyürek, Ü.V. (2012). An early evaluation of the scalability
of graph algorithms on the Intel MIC architecture. In Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th Inter-
national, 1629–1639, IEEE. 47

[71] Schönauer, W. (1987). Scientific computing on vector computers. Elsevier Science
Inc. 2, 31, 80, 101

[72] Scott, S., Abts, D., Kim, J. & Dally, W.J. (2006). The BlackWidow high-radix
clos network. In Proceedings of the 33rd annual international symposium on Com-
puter Architecture, ISCA ’06, 16–28, IEEE Computer Society, Washington, DC,
USA. 2, 13

[73] Seal, D. (2000). ARM Architecture Reference Manual. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2nd edn. 71, 100

[74] Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Dubey, P., Junkins, S.,
Lake, A., Cavin, R., Espasa, R., Grochowski, E., Juan, T., Abrash, M., Sug-
erman, J. & Hanrahan, P. (2009). Larrabee: A many-core x86 architecture for
visual computing. vol. 29, 10–21, IEEE Computer Society, Los Alamitos, CA,
USA. 4, 7, 46

[75] Smith, J.E., Faanes, G. & Sugumar, R. (2000). Vector instruction set support
for conditional operations. In Proceeding of the 27th International Symposium on
Computer Architecture, ISCA 00, 260–269. 15

[76] Sodani, A. (2015). Knights landing: 2nd generation intel xeon phi processor.
In August issue of Proceedings of Hot Chips: A Symposium on High Performance
Chips. 7

[77] Soliman, M. (2011). LcVc: Low-complexity vector-core for executing
scalar/vector instructions. In Computer Engineering Conference (ICENCO), 2011
Seventh International, 19–24. 98

150

BIBLIOGRAPHY

[78] Sutter, H. (2005). The free lunch is over: A fundamental turn toward concur-
rency in software. Dr. Dobbs journal, 30, 202–210. 7

[79] Taur, Y. (2002). CMOS design near the limit of scaling. IBM Journal of Research
and Development, 46, 213–222. 7

[80] Thakkar, S. & Huff, T. (1999). Internet streaming SIMD extensions. Computer,
32, 26–34. 4, 8

[81] Usami, K., Goto, Y., Matsunaga, K., Koyama, S., Ikebuchi, D., Amano, H. &
Nakamura, H. (2011). On-chip detection methodology for break-even time of
power gated function units. In Proceedings of the 17th IEEE/ACM international
symposium on Low-power electronics and design, 241–246, IEEE Press. 6

[82] Valero, M. & Espasa, R. (1995). Instruction level characterization of the Perfect
Club programs on a vector computer. In SCCC 15, 198–209. 8, 41

[83] Wang, D., Ganesh, B., Tuaycharoen, N., Baynes, K., Jaleel, A. & Jacob,
B. (2005). DRAMsim: a memory system simulator. ACM SIGARCH Computer
Architecture News, 33, 100–107. 30

[84] Watson, W. (1972). The TI-ASC, a highly modular and exible super computer
architecture. In AFIPS ’72 (Fall, part I), 221–228. 2

[85] Zeiser, T., Hager, G. & Wellein, G. (2009). The world’s fastest CPU and SMP
node: Some performance results from the NEC SX-9. Parallel and Distributed
Processing Symposium, International, 0, 1–8. 3, 13

151

Acronyms

ACL Aliasing control logic. 54, 58

AG address generator. 57, 70

ALU arithmetic logic unit. 6, 8, 9, 55–59, 61

AVL average vector length. 35–37

BBE Block-Based Execution. 55–59, 61–65, 69, 71–75, 78

BFS Breadth First Search. 12–18, 22, 24

CCL Chaining control logic. 55

FCS Full Chaining Support. 70–73

CSR Compressed Sparse Row. 17, 19, 24

CVU classic vector unit. 58, 59, 61–65, 69, 71–75

DC decoupled. 44, 45, 48, 49

DLP data-level parallelism. 1, 4, 6, 7, 33, 35, 40, 51, 62, 75

FP floating-point. 30, 42, 55, 58–60, 62–65, 75

153

Acronyms

FU functional units. 41–44, 46, 48, 49, 55, 56

ILP instruction-level parallelism. 1

IO in-order. 44–46, 48, 49

IPC Instruction Per Cycle. 41

ISA Instruction Set Architectures. 3, 6, 8, 10, 12, 29–31, 37, 40, 41, 49–51, 53, 61

ispc Intel SPMD Programing Compiler. 40

LD/ST load/store units. 41, 42, 49

MVL maximum vector length. 30, 33–37, 43–50, 58, 62–66, 71–74

OBO One-By-One model of execution. 55, 56, 58, 59, 61–65, 69, 71–75, 77

RCS Restricted Chaining Support. 70–73

SIMD single instruction multiple data. 3, 6, 12, 16, 32, 40, 41

TEPS traversed edges per second. 13, 18, 19, 24, 26–28

TLP thread-level parallelism. 1

VALib vector architecture library. 10, 29–34, 37, 40–43, 50, 51

VECL vector execution control logic. 54, 66

VL vector length. 4, 36, 68

VMCT vector memory control table. 57

VMIT vector memory instruction table. 57, 70

VPU vector processing unit. 16

154

	1 Introduction
	1.1 Vector Processors
	1.1.1 Vector Processors in Supercomputers
	1.1.2 Vector Microprocessors
	1.1.3 Multimedia Extensions
	1.1.4 Advantages and Limitations of Vector Processors
	1.1.5 Power and Energy Efficiency

	1.2 Motivation
	1.3 Thesis Objectives
	1.4 Thesis Contributions
	1.4.1 Integrated Vector-Scalar Design for an In-order Core
	1.4.2 Tools for Rapid Initial Research on Vector Microarchitectures
	1.4.3 Evaluation of Knights Corner Capabilities

	1.5 Thesis Organization

	2 VALib and SimpleVector: Tools for Rapid Initial Research on Vector Architectures
	2.1 VALib
	2.1.1 Vector ISA
	2.1.2 API
	2.1.3 Results and Statistics
	2.1.4 Instruction and address traces
	2.1.5 Extensibility
	2.1.6 Example of Vector Library Usage

	2.2 Characterization of Vectorized Applications
	2.2.1 Methodology
	2.2.2 Instruction-Level Characterization

	2.3 Possible Alternatives to VALib
	2.4 SimpleVector
	2.4.1 Simulated Microarchitecture
	2.4.2 Extensibility
	2.4.3 Accuracy Testing

	2.5 Evaluation of Microarchitectural Alternatives
	2.5.1 Memory Hierarchy
	2.5.2 In-Order vs Decoupled

	2.6 Case Study: New instruction
	2.7 Related Work
	2.8 Summary

	3 Evaluation of Intel's Xeon Phi characteristics
	3.1 Background
	3.2 Parallel BFS Implementations
	3.2.1 Current BFS Implementation
	3.2.2 Other BFS Implementations

	3.3 Vectorization of Graph500
	3.4 Methodology
	3.5 Experimental Results
	3.5.1 Single-Thread Results
	3.5.2 Results for OpenMP Implementation

	3.6 Summary

	4 An Integrated Vector-Scalar Design
	4.1 Integrated Design
	4.1.1 Execution of Vector Computational Instructions
	4.1.2 Vector Memory Unit

	4.2 Integrated Design Evaluation
	4.2.1 Performance Evaluation
	4.2.2 Area, Power and Energy

	4.3 Advanced Integrated Design
	4.3.1 Chaining from the Memory Hierarchy
	4.3.2 Direct Forwarding
	4.3.3 Vector Memory Shape Instruction
	4.3.4 Unified Indexed Vector Load

	4.4 Advanced Integrated Design Evaluation
	4.4.1 Chaining from the Memory Hierarchy
	4.4.2 Direct Forwarding
	4.4.3 Vector Memory Shape Instruction
	4.4.4 Unified Indexed Vector Load

	4.5 Related Work
	4.6 Summary

	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Research Directions

	6 Publications
	6.1 Publications from the thesis
	6.2 Related publications not included in the thesis

	Appendices
	A Examples of Graph500 Codes
	A.1 Original Sequential Version
	A.2 Vectorized Sequential Version
	A.3 Sequential Version with Scalar Prefetching
	A.4 Vectorized sequential version with vector prefetching
	A.5 Vectorized sequential version with vector and scalar prefetching

	List of Figures
	List of Tables
	Bibliography
	Acronyms

