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MS/MS Tandem Mass Spectrometry  

MT2 Metallothioneins  

NGS Next Generation Sequencing  

NI Negative Ionization 

NOEC No Observable Effect Concentration  

O2 Dissolved Oxygen 

OA Okadaic Acid 

OECD Organisation for Economic Co-operation and Development 

OPIOIDS Illicit drugs, opiods/opiates and metabolites 

OPS Organophosphorous and carbamate  insecticides 

PAHs Polycyclic Aromatic Hydrocarbons 

PARABEN Parabens 

PC1 Principal Component 1 

PC2 Principal Component 2 

PC3  Principal Component 3 

PC4 Principal Component 4 

PC5 Principal Component 5 

PCA Principal Component Analysis  

PEC Predicted Environmental Concentration 

PFCs Perfluorinated compounds 

PFR Phosphate Ester Flame Retardants 

Pgp P-glycoprotein  

PI Parental Ion 

PLS Partial Least Square Projections to Latent Structures regression 

PNEC Predicted No Effect Concentration    

POTHER Other pesticides 
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PP1 Protein Phosphatase type 1 

PP2A Protein Phosphatase type 2A 

PPCP  Pharmaceutical and Personal Care Products  

PrI Precursor Ion 

qPCR Quantitative Polymerase Chain Reaction  

QqQ Triple Quadrupole 

(Q)SAR  Quantitative structure-activity relationship  

QT Quatification Transition 

r Intrinsic rate of population growth  

REACH Registration, Evaluation, Authorization and Restriction of Chemical substances  

RNA  Ribonucleic Acid 

ROS Reactive Oxygen Species 

RT Retention Time 

RXR Retinoid X Receptor  

RYA Recombinant Yeast Assay 

S Species Richness 

S/N Signal to Noise 

SD Standard Deviation 

SEROT Psychiatric drugs acting on serotonin 

SERT Serotonin transporter 

SPE Solid Phase Extraction 

SRM Selected Reaction Monitoring 

SS Suspended Solids 

SSRI Selective Serotonin Reuptake Inhibitors 

STATIN Statins 

STP Sewage Treatment Plant 

T Temperature 

TAMSUL Selective α1 receptor antagonist 

TDNP Tablas de Daimiel National Park 

TEQ Toxic Equivalents 

THg Total Mercury 

THIO  Thiolase 

TIE Toxicity Identification Evaluation 

TRIAZOLES Triazoles 

U Upper compartment 

UGP  UDP-glucose Pyrophosphorylase  

US-EPA United States Environmental Protection Agency  

UTM Universal Transverse Mercator 

VTG Vitellogenin E 

WARF Warfarin 

WFD Water Framework Directive 

WoE  Weight of Evidence  

WWTP Waste Water Treatment Plant 
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Summary  

The last century showed our need and dependency on a full range of chemicals 

in Pharmaceutical and Personal Care Products (PPCP), industrial and/or 

agricultural applications, although the environmental and human hazards of 

most of them were not considered. Since the late 1970s, the EU started priority 

lists of chemicals of major concern and from the mid-1980s it was made 

compulsory to set up a comprehensive Environmental Risk Assessment (ERA) 

for all new commercialized chemicals. Among all natural systems, one of the 

most affected is the aquatic ecosystem, as it stands as the final destination for 

most anthropogenic contaminants. Its status represents a major concern 

considering that a good and appropriate water quality is fundamental for a 

sustainable development of human society and maintenance of the ecosystem 

biodiversity and stability. Some chemicals are highly persistent, some are 

applied repeatedly or continuously, or directly as mixtures, thus leading to a 

complex cocktail of very heterogeneous compounds that may provoke 

significant toxic effects. For this reason, there is a need to develop innovative 

integrated approaches for the monitoring and assessment of the quality of 

surface water bodies as well as the understanding of the underlying 

mechanisms of toxicity. Among the available techniques to assess effects, a 

combined use of chemical analyses and biological responses, e.g. biochemical, 

physiological and molecular, is a sound procedure for detecting the impact of 

anthropogenic contaminants in freshwater systems. 

The overall goal of this thesis is the characterization of novel mechanisms of 

toxicity of contaminants in the aquatic ecosystem both in the field and in the 

laboratory. Field studies bearing different problematics were considered to 

specifically address three specific objectives, whereas a study conducted in the 

laboratory evaluating sublethal effects of pharmaceuticals at relevant 

environmental concentrations was pursued as fourth and final objective.  

In chapter 2 (Rivetti et al., 2015a), a comparative study in three rivers of Spain 

showing different sources of anthropogenic pollution was performed, combining 

genetic, biochemical and individual biomarkers in Daphnia magna. Individuals 
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were transplanted across 12 sites from three Spanish river basins (Llobregat, 

Ebro, Jucar) and gene transcription, feeding rates and enzymatical responses in 

the field were assessed and compared with those obtained in re-constituted 

water treatments, spiked with organic extracts obtained from water samples 

collected at the same locations and sampling periods. Up to 166 trace 

contaminants were detected in water and classified by their mode of action into 

45 groups that included metals, pharmaceuticals, pesticides, illicit drugs, and 

other industrial compounds. Biodiversity and species richness at the same 

locations were also evaluated. Both physico-chemical water parameters and 

transcription patterns of 13 genes encoding for general stress, metabolism and 

energy processes, molting and xenobiotic transporters corroborate phenotypic 

responses, differentiating sites within and across river basins. Principal 

Component Analyses (PCA) and Partial Least Square (PLS) regression 

analyses indicated that in situ responses of most genes, biomarkers and 

biodiversity indexes were affected by distinct environmental factors. Overall, this 

work allowed to test the usefulness of using transcriptomic responses of D. 

magna genes in the detection and identification of different types of 

environmental stressors in the field in transplanted organisms.  

In chapter 3 (Rivetti et al., 2015b) and 4 (Rivetti et al., 2015c), it was developed 

a study of forensic ecotoxicology to unravel the major toxic components in a 

superfund site in Ebro River (Spain) during an unusual period of prolonged 

flushing flows. The study aimed to use a Toxicity Identificaton Evaluation (TIE) 

approach, using a combination of toxicity assays and chemical 

analytical/fractionation methods. Post-exposure feeding rates of Daphnia 

magna were used to assess toxic effects of whole, filtered and re-constituted 

water samples. Organochlorine content of suspended material was analyzed by 

solid phase extraction (SPE) and GC–MS/MS, whereas presence of mercury 

was also determined for all sites by use of an Advance Mercury Analyzer 

(AMA). Unexpectedly, observed toxic effects did not correspond to the analyzed 

contaminants and were greater upstream the superfund site than downstream. 

In order to test other potential sources of toxicity i.e. toxins produced by 

cyanobacteria present in upstream river reservoirs, a new liquid 
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chromatography tandem mass spectrometry (LC-MS/MS) method for fast 

determination of five toxins in suspended material and sediment samples was 

developed (chapter 3). The developed analytical method was successfully 

applied to analyze the presence of toxins in suspended solids and sediment 

from Ebro River (NE Spain) and Ebro Delta associated lagoons and both 

anatoxin-a and okadaic acid were detected but at different locations. The 

residue levels of the cyanotoxin anatoxin-a were correlated with observed 

feeding inhibition responses and confirmed in the lab using anatoxin-a produced 

by Planktothrix agardhii, a filamentous cyanobacteria.  

In chapter 5 (Rivetti et al., 2017), a study of water quality in a Spanish natural 

reserve (Tabla de Daimiel, TDNP) and associated lagoons was implemented in 

order to analyze the potential risk of the constant input of micropollutants for the 

resident wildlife. We sampled 12 locations in TDNP and in the nearby Navaseca 

Pond during 2013, and performed a series of in vivo and in vitro bioassays, 

including Daphnia magna post-exposure feeding inhibition and recombinant 

yeast-based assays (RYA) for dioxin-like and estrogenic activities. Toxicity 

results were compared with the chemical analysis of PAHs and estrogenic 

compounds performed by GC-MS/MS and LC-MS/MS, respectively. Results 

showed a current good chemical status of TDNP, but threatened by both the 

inflow of wastewater treatment plants effluents from its river tributaries and by 

direct sewage discharges, as it occurs in the Navaseca Pond.   

In chapter 6 (Rivetti et al., 2016) the hypothesis that different families of neuro-

active pharmaceuticals may lead to similar phenotypic responses in D. magna 

was tested, focusing on alterations in reproduction and behavioral responses 

when exposed to low environmental relevant concentrations. Selected 

pharmaceuticals were widely prescribed compounds detected at considerable 

levels in the environment (ηg to few µg/L), namely carbamazepine, diazepam, 

propranolol. Fluoxetine was also included in behavioral assays. The three 

tested neuro-active pharmaceuticals were able to enhance reproduction at 1 

ηg/L (propranolol), 0.1 µg/L (diazepam) and 1 µg/L (carbamazepine). 

Fluoxetine, carbamazepine and diazepam increased positive phototactic 

behavior at concentrations ranging from 1, 10 and 100 ηg/L, respectively.  
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Resumen (castellano) 

El pasado siglo demostró nuestra dependencia de un amplio abanico de 

sustancias químicas como fármacos, productos para la higiene personal 

(PPCP, en inglés), compuestos para la industria y la agricultura, cuya 

acumulación y riesgos potenciales para el medio ambiente y el ser humano no 

se consideraron durante bastantes años. A finales de los años 70, la Unión 

Europea (UE) comenzó a elaborar listas de aquellas sustancias químicas que, 

por sus características, resultaban altamente preocupantes y por tanto debían 

considerarse prioritarias. Fue mediados de los 80 cuando se legisló la 

obligatoriedad de efectuar una Evaluación de Riesgo Medioambiental (ERA, en 

inglés) exhaustiva de todos aquellos productos químicos que se 

comercializaran por vez primera. Entre todos los sistemas naturales, uno de los 

más afectados por la contaminación antropogénica es el ecosistema acuático, 

dado que es el destino final de muchos de los compuestos mencionados. 

Mantener dicho ecosistema en buen estado es de vital importancia ya que la 

calidad del agua es fundamental para el desarrollo sostenible de la sociedad y 

para mantener la estabilidad y biodiversidad de los ecosistemas. Algunas 

sustancias químicas son altamente persistentes, otras se aplican de forma 

repetitiva o continua y/o como mezclas. Todo esto conlleva la presencia en el 

medio acuático de un coctel complejo de compuestos muy heterogéneos, 

capaces de provocar graves efectos tóxicos. Por esta razón es necesario 

desarrollar estrategias innovadoras e integradas que permitan no sólo la 

monitorización y la evaluación de la calidad de las aguas superficiales sino 

también la comprensión de los mecanismos de toxicidad subyacentes. Dentro 

de las técnicas disponibles, combinar el análisis químico con el estudio de las 

respuestas biológicas (bioquímicas, fisiológicas y moleculares) de los 

organismos expuestos resulta altamente eficaz en la detección y estudio del 

impacto de los contaminantes antropogénicos en los sistemas de agua dulce. 

El objetivo general de esta tesis es la caracterización de nuevos mecanismos 

de toxicidad de contaminantes presentes en los ecosistemas acuáticos, tanto 

en el campo como en el laboratorio. Las diferentes problemáticas que 

presentaron los estudios de campo se abordaron en tres de los objetivos 



 

24 

específicos, mientras que el estudio de los efectos subletales de fármacos a 

concentraciones relevantes desde el punto de vista medioambiental, se llevó a 

cabo en el laboratorio como cuarto y último objetivo. 

En el Capítulo 2 (Rivetti et al., 2015a) se realizó un estudio comparativo de tres 

cuencas fluviales españolas, que presentaban contaminantes antropogénicos 

de distintas procedencias. Para ello se combinaron biomarcadores genéticos, 

bioquímicos e individuales de Daphnia magna. Los individuos fueron 

trasplantados en 12 puntos diferentes de las cuencas (Llobregat, Ebro, Júcar) 

y, tras su exposición, se evaluaron los cambios en transcripción génica, tasa de 

alimentación y varias respuestas enzimáticas. Los resultados obtenidos se 

compararon con los de individuos expuestos a muestras sintéticas, preparadas 

mediante la reconstitución en agua de los extractos orgánicos procedentes de 

muestras recogidas en el mismo lugar y período en el que se realizó la 

exposición. Por otro lado, el análisis químico reveló un total de 166 

contaminantes traza en el agua muestreada, que se clasificaron en 45 grupos 

según su modo de acción, incluyendo: metales, fármacos, pesticidas, drogas 

ilegales y otros compuestos industriales. Además, se estudió la biodiversidad y 

abundancia de especies en las mismas localizaciones. Tanto los parámetros 

físico-químicos del agua como los patrones de trascripción de 13 genes 

diferentes que codifican por estrés general, procesos energéticos y 

metabolismo, muda y transporte de xenobióticos corroboraron las respuestas 

fenotípicas observadas, diferenciando tanto los puntos de exposición como las 

cuencas. El Análisis por Componentes Principales y regresión de Mínimos 

Cuadrados Parciales (PCA-PLS) indicó que las respuestas in situ de muchos 

genes y biomarcadores así como los índices de biodiversidad estaban 

afectados por distintos factores ambientales. En suma, con este trabajo se 

demuestra la utilidad de analizar variaciones en la respuesta transcriptómica de 

D. magna para detectar e identificar distintos factores de estrés ambiental en 

estudios de campo.  

En el capítulo 3 (Rivetti et al., 2015b) y 4 (Rivetti et al., 2015c) se desarrolló un 

estudio de ecotoxicología forense para desenmascarar los componentes más 

tóxicos en una zona altamente contaminada del rio Ebro (España) durante un 
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inusual período de crecidas de dicho rio. En el estudio se propuso utilizar una 

Evaluación de la Identificación de Toxicidad (TIE, en inglés), mediante la 

combinación de ensayos de toxicidad y métodos químicos de análisis y 

fraccionamiento. Las muestras de agua adquiridas tras las crecidas, se filtraron 

para eliminar el material en suspensión y se conservó el residuo filtrado para su 

estudio. Los posibles efectos tóxicos del agua muestreada, del agua tras la 

filtración y de muestras sintéticas preparadas por reconstitucion del residuo 

filtrado, se evaluaron analizando los cambios en la tasa de alimentación de 

Daphnia magna tras exponerla a dichas muestras. Por otro lado se determinó 

el contenido en organoclorados del material en suspensión mediante extracción 

en fase sólida y análisis por GC-MS/MS, mientras que la presencia de mercurio 

se cuantificó mediante un Analizador Avanzado de Mercurio (AMA, en inglés). 

Los resultados indicaron que los efectos tóxicos observados no se debían a los 

contaminantes analizados y que eran mayores aguas arriba de la zona 

altamente contaminada. Dada la presencia de cianobacterias en los embalses 

aguas arriba del lugar de muestreo, se consideró la posibilidad de que la 

toxicidad se debiera a la presencia de toxinas producidas por dichas bacterias. 

Para evaluar dicha posibilidad, se desarrolló un nuevo método de LC-MS/MS 

dirigido a detectar la presencia de cinco toxinas en dos matrices: materia en 

suspensión y sedimentos (capítulo 3). Este método se aplicó con éxito en la 

detección de toxinas en los sólidos en suspensión y sedimentos del rio Ebro y 

de las lagunas de su delta, observándose la presencia de anatoxina-a y ácido 

okadáico en diferentes localizaciones. Los niveles de anatoxina-a se 

correlacionaron con la inhibición de la ingesta, y se confirmó en el laboratorio 

empleando anatoxina-a producida por Planktothrix agardhii, una cianobacteria 

filamentosa. 

En el capítulo 5 (Rivetti et al., 2017) se implementó el estudio de calidad del 

agua en las Tablas de Daimiel (TDNP), una reserva natural española, y en sus 

lagunas asociadas con el fin de analizar el riesgo potencial en el que se 

encuentra la fauna silvestre residente en la zona, debido a la introducción 

constante de microcontaminantes por parte de los ríos que alimentan a TDNP.   

A lo largo de 2013 se tomaron muestras en 12 localizaciones diferentes, dentro 



 

26 

de TDNP y en el cercano Estanque de Navaseca. Estas muestras se utilizaron 

para llevar a cabo varias series de bioensayos in vivo e in vitro, incluyendo el 

estudio de la inhibición de la ingesta en Daphnia magna y la determinación de 

actividad estrogénica o tipo dioxina en levaduras recombinantes (ensayo RYA). 

Los resultados de toxicidad se compararon con el análisis químico de 

hidrocarburos aromáticos policíclicos (PAHs en inglés) y de compuestos 

estrógenicos, realizados mediante GC-MS/MS y LC-MS/MS respectivamente. 

Los resultados mostraron que TDNP se encuentra en buen estado químico 

pero está amenazado por el flujo procedente plantas de tratamiento de aguas 

residuales, que vierten en los ríos que alimentan a TDNP, y por vertido directo 

de aguas de alcantarillado, como sucede en el Estanque de Navaseca. 

En el capítulo 6 (Rivetti et al.2016) se exploró la hipótesis de que la exposición 

de D.magna a fármacos neuroactivos de distintas familias y a concentraciones 

bajas, pero relevantes desde el punto de vista ambiental, podrían provocar 

respuestas fenotípicas como efectos sobre la reproducción y alteración del 

comportamiento. Se seleccionaron los siguientes fármacos: carbamacepina, 

diazepam, propanolol y fluoxetina (esta última incluida solo en ensayos de 

comportamiento), debido a que se recetan con frecuencia y que se han 

detectado en niveles considerables en el medioambiente (de ηg/L a pocos 

µg/L). Los tres primeros provocaron un aumento en la tasa de reproducción a 

concentraciones de 1ηg/L (propanolol), 0.1 µg/L (diazepam) y 1 µg/L 

(carbamacepina). Fluoxetina, carbamacepina y diazepam aumentaron el 

comportamiento fototáctico positivo en concentraciones desde 1, 10 y 100 ηg/L, 

respectivamente. 
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Chapter I.  

General Introduction and thesis outline 

1.1 Background 

1.1.1 We are a chemical society 

Humankind has continually developed and progressed, and this advancement 

was never faster and more evident than in recent times. The last century 

showed our need and dependency on a full range of chemical products in order 

to achieve and keep our wellness and health. Indeed, we are surrounded at all 

moments by massive amounts (both in quantities and kinds) of natural and 

synthetic substances, many of which may threaten the environment. Nowadays, 

all substances are classified by a CAS Registry number that provide a unique, 

unambiguous identifier for chemicals and molecular structures. At the moment 

of writing this manuscript (December 2016), the CAS database contains more 

than 120 million registered chemicals (of which only 130 thousand are 

commercially available), both organic and inorganic, most of which are poorly 

tested or untested for potential health effects. Over the last century, we have 

been slowly introducing these chemicals in Pharmaceutical and Personal Care 

Products (PPCP), industrial and/or agricultural applications in order to improve 

processes, although the environmental and human hazards of most of them 

were not considered (Hartung, 2011). In the last decades society has been 

more aware on how we face problems with respect to our ecosystems 

protection and the scientific community has deeply focused on the evaluation of 

the toxicity of persistent and widely distributed chemical pollutants and their 

potential harm to the environment. Specific guidelines and protocols have been 

issued for those compounds considered of particular concern, aiming to a 

severe reduction of their usage and with the ultimate goal of their complete 

abolishment. Since then, in most industrialized countries comprehensive 

environmental legislation has been introduced in order to regulate the wide 

spectrum of different pollution sources and control release into the environment. 
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Nevertheless, there are still several classes of compounds e.g PPCPs, 

hormones and steroids, illicit drugs, flame retardants, engineered nanoparticles 

between others, not included in these priority lists and classical assessment and 

whose concern should be raised. These substances are referred to as 

“emerging contaminants”, although many of them have been used already for 

decades now. 

1.1.2 Environmental Risk Assessment  

Environmental risk assessment (ERA) is defined as ”the procedure by which the 

likely or actual adverse effects of pollutants and other anthropogenic activities 

on ecosystems and their components are estimated with a known degree of 

certainty using scientific methodologies (Namiesnik and Szefer, 2009)“. 

Conventional risk assessment generally aims at establishing a link between the 

effects induced by a chemical and the kind and extent of exposure expected or 

measured in the environment. Described in the Technical Guidance Document 

on Risk Assessment (EC, 2003), it is based on a risk quotient approach using 

the predicted environmental concentrations (PECs) and predicted no effect 

concentrations (PNECs).  Since the late 1970s, the EU started priority lists of 

chemicals of major concern and since the mid 1980s it was made compulsory to 

set up a comprehensive ERA for all new commercialized chemicals. Indeed, 

risk is not an inherent property of a chemical toxicant but rather the product of 

its toxicity times the exposure received by a given organism, thus requiring 

deep investigation and application to case-studies scenarios (van Leeuwen and 

Vermeire, 2007). Risk assessment management can be divided into two 

different components: the scientifically oriented risk analysis, including hazard 

identification, effect assessment, exposure assessment and risk 

characterization; and the politically-oriented risk management, dealing with 

regulatory measures based on risk assessment (Walker et al., 2012). Those two 

components are intrinsically related to each other, unravelling the risk of a 

certain stressor (the former) and examining the possible solutions to the 

problem (the latter).  

More recently, the EU also started the Registration, Evaluation, Authorization 

and Restriction of Chemical substances (REACH), which entered into force on 1 
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June 2007, in order to get environmental agencies and chemical industry to 

cooperate and with the final objective of merging the hazards for both human 

health and the environment. In fact, the overall aim of REACH is to improve the 

protection of human health and the environment through a better and earlier 

identification of the intrinsic toxicological properties of chemical substances. The 

REACH regulation places greater responsibility on industry to identify and 

manage the risks and to provide safety information of the substances. 

According to this European regulatory framework, standardized toxicity tests 

should be used for the assessment of the ecotoxicity hazard and estimate a 

value of PNEC (ECHA, 2008). Manufacturers and importers are then required to 

gather information on the properties of all chemical substances commercialized 

or used in intermediate processes, which will allow their safe handling and use, 

and to register the information in a central database (Bowman and Van Calster, 

2007). The European Chemicals Agency (ECHA) has set three major deadlines 

for registration of chemicals, determined by tonnage manufactured and/or 

imported per year. Thus, all chemicals manufactured/imported within European 

Union (EU) at ≥ 1000 tonnes/year were required to be registered by December 

1st 2010, ≥ 100 tonnes/year by June 1st 2013 and ≥ 1 tonne/year by June 1st 

2018.  

1.1.3 New challenges in Ecotoxicology 

The term ecotoxicology was introduced in 1969 by René Truhaut (Truhaut, 

1977), derived by the combination of ecology and toxicology. It was defined as 

“the branch of  toxicology concerned with the study of toxic effects, caused by 

natural or synthetic pollutants, to the constituents of ecosystems, animal, 

vegetable and microbial, in an integral context” (Truhaut, 1977). The 

introduction of this new word reflected a growing concern about the harmful 

effects of chemicals (toxicology) on the environment and consequently on 

species other than humans (ecology). In other words, core mission of the 

discipline is to describe and unravel what happens to chemicals in the real 

world and to understand the mechanisms by which they disrupt normal 

biological performance, in order to develop appropriate measures or tools to 

prevent adverse outcomes. For this aim, main traditional areas of application of 
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ecotoxicology cover both laboratory exposures and field studies, including 

biomonitoring of environmental pollution in specific ecosystems, conduction of 

field trials or specific case-studies and ERA (Walker et al., 2012).  

Currently, as result of all the above presented efforts, concentrations of many 

well-known pollutants have decreased, because new, less toxic and less 

persistent substances with low bio-accumulative potential have being developed 

and introduced. Nevertheless, ecosystems are still under threat.  

Current challenges in ecotoxicology are (Eggen et al., 2004): 

- Low concentrations of pollutants and long exposure times (chronic 

effects) 

- Multiple effects by single pollutants 

- Complex mixtures of pollutants 

- Multiple natural stressors 

- Ecosystem complexity 

In order to answer these questions and face the ever increasing number of 

chemicals present in the environment, ecotoxicology has adapted accordingly to 

these new needs and innovative concepts have recently arisen.  

1.1.4 Predictive ecotoxicology 

Historically, ecotoxicology and ERA for chemicals have been largely based on 

toxicity data from whole animal testing with apical endpoints such as survival, 

growth and reproduction although this type of testing is slow, costly and time-

consuming.  At the same time, regulatory programs throughout the world are 

requiring data for an increasing number of chemicals and assessment 

scenarios, while cutting down on the use of animal testing. To meet this need, in 

these last years, efforts have been put in developing high-throughput screening 

(HTS) assays and new computational tools together with the use of alternative 

model animals and non-animal alternatives (including in vitro and in silico 

approaches) in order to develop simple and cost-effective approaches. Recent 
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advances in toxicological science, bioinformatics and systems biology have 

provided means to transform (eco)toxicology into a predictive science which 

utilize mechanistic, pathway-based data that have not typically been used in the 

past for ERA applications. This is aimed at identifying potential toxicants on the 

basis of an understanding of their mechanisms of biological action. Predictive 

ecotoxicology based on mechanistic data has become nowadays of key 

importance for ERA. In fact, a combination of new approaches and methods 

both in biology and chemistry is leading to a greater understanding of the 

mechanistic processes connecting chemical exposure and adverse outcome. 

These approaches should also be able to accelerate the screening and toxicity 

assessment for the ever increasing number of commercialized chemicals for 

their potential hazards to humans and ecosystems health (Garcia-Reyero, 

2014). Following this trend, a major step has been the introduction of the 

concept of Mechanism of Action, defined as “a complete and detailed 

understanding of each and every step in the sequence of events that leads to a 

toxic outcome” (ECETOC, 2007). This concept should not be confused though 

with the similar expression Mode of Action (MoA). A MoA in fact describes more 

comprehensively “a common set of physiological and behavioral signs that 

characterize a type of adverse biological response to a specific chemical 

challenge, where the majority (but not all) of the biological steps are 

understood” (OECD, 2012). A novel tool with even broader potential in 

toxicology and ERA is the description of an Adverse Outcome Pathway (AOP). 

The AOP framework is a conceptual construct that provides a clear-cut 

mechanistic representation of the progression of critical toxicological events 

across different levels of biological organization, which lead to adverse 

outcomes relevant for ERA.  In other words, it aims to describe a full cascade of 

biological events, beginning with a molecular initial event (MIE), progressing 

through a series of intermediate steps and key events (KE) at different 

biological levels to an observable adverse effect in a population (Ankley et al., 

2010; Groh et al., 2015; Vinken, 2013).  Indeed, a detailed mechanistic 

knowledge of observed effects would facilitate the development of alternative 

testing methods as well as help prioritize higher tiered toxicity testing (Wittwehr 

et al., 2017). As a consequence, this would improve our capacities of grouping 
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and read-across, thus allowing scientist to better extrapolate results and make 

inferences about the resultant toxic potential. 

Nevertheless, in order to face the ever-increasing number of existing 

compounds, for which would be unthinkable to unravel all specific MoA or even 

more unlikely an AOP, the Read-Across hypothesis and Quantitative structure-

activity relationship (Q)SAR were developed.  Read-across is considered a non-

testing method for filling data gaps which is based on an analogue or chemical 

category (Van Leeuwen et al., 2009). It must be scientifically supported and the 

inherent uncertainties must be addressed as uncertainty factors as often 

applied in weight-of evidence (WOE) studies (Burton et al., 2002). WOE refers 

to the interpretative methods of ERA. WOE approaches determine potential 

ecological impacts from chemicals or other stressors based on multiple lines of 

evidence (LOE). WOE studies include chemical and biological measurements, 

of which both laboratory and field components are considered of high 

importance (Chapman and Hollert, 2006; Linkov et al., 2009; Weed, 2005). 

Lastly, (Q)SARs are regression models and have been developed as valuable 

tools for predicting acute toxicity and classify toxicants, when little or no 

empirical data are available (Benigni et al., 2007; Kar and Roy, 2010). They can 

also be more generally applied to assign MoA to chemicals.  

1.1.5 Aquatic ecosystem 

Among all natural systems, the aquatic ecosystem is one of the most affected 

as it stands as the final destination for most anthropogenic contaminants and its 

sediments (either deposited or in suspension) as major sink, functioning as 

storage deposits (Rand, 1995; Schwarzenbach et al., 2006). A good and 

appropriate water quality is fundamental for a sustainable development of 

human society as well as for maintenance of the ecosystem biodiversity and 

stability. More specifically, freshwater ecosystems, including rivers and streams, 

wetlands, ponds and lakes, represent a major concern (Crook et al., 2015). 

Diversity in these ecosystems is often of high value, as they can face periods of 

isolation leading to development of distinct patterns of biodiversity and unique 

flora and fauna (Clements et al., 2012). 
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Nowadays, in many highly industrialized and agricultural areas, water 

contamination has become a high priority problem with the presence of mixtures 

of chemicals with potential toxic effects both on the ecosystems and human 

health (Ginebreda et al., 2014; Hering et al., 2015; Rosi-Marshall and Royer, 

2012). In fact, most substances currently detected in rivers and lakes showed a 

high potential to exert noxious effects on aquatic species (Brodin et al., 2013; 

Ford and Fong, 2015; McNeil et al., 2016; Morrissey et al., 2015; Rosi-Marshall 

et al., 2015). As a response, priority lists of compounds showing hazard 

potential for the ecosystem have been built. Among them, one of the most 

relevant list is the “List of Priority substances” within the EU Water Framework 

Directive (WFD) - EU Directive 2000/60/EC (WFD, 2000). The inherent aim of 

the WFD is to protect and prevent deterioration of European waters and achieve 

a good chemical status of the water bodies, by “getting Europe’s waters cleaner 

and the citizen involved”, thus increasing awareness (Bjerregaard, 1998). 

Nevertheless, it implicitly relies on a good knowledge of the ecosystem 

functioning under specific environmental conditions, an ambitious assumption 

considering the complexity and heterogeneity of aquatic ecosystems (Allan et 

al., 2006; Martinez-Haro et al., 2015). This attitude is convenient, but on the 

other hand does not consider a great number of chemicals that are of emergent 

concern, namely used in personal care products, pharmaceutical compounds 

and other non-industrial, as the standard ERA evaluations do not cover specific 

sub-lethal effects that may exert impacts at different ecological levels. More 

recently, it was launched the EU Directive 2013/39/EU, that updates the 

previous water framework policy, highlighting the need to develop new water 

treatment technologies to deal with such problem (EU, 2013). Thus, the 

identification of ecological risks of environmental relevant pollutants to aquatic 

organisms is an essential point for environmental managers and policy makers 

to locally identify and alleviate chemical pressures in aquatic ecosystems. 

Classical WOE approaches implemented for ERA of aquatic ecosystem 

contamination include and combine information from three complementary and 

integrated LOEs: chemical analyses for the detection of pollution candidates; 

toxicity tests and biological responses at the individual scale used as fast and 

sensitive bio-indicators for toxicity; and community structure analyses to provide 
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evidence of toxicity effects in aquatic species at different levels of biological 

organization (Adams et al., 2000; Chapman and Smith, 2012; Santos et al., 

2017; Vasseur and Cossu-Leguille, 2003). Providing early warning signals of 

toxicity effects on biota, specific biomarkers could be used as alternative to a 

third LOE, before the community level is seen affected (Damásio et al., 2010; 

Sanchez and Porcher, 2009). 

1.1.6 Emerging contaminants 

During the last decades analytical chemistry technologies underwent fast 

development, allowing the detection of chemicals down to trace levels as low as 

ηg/L or even pg/L and in complex environmental matrices e.g. water, sediments 

and wastewaters (Anumol et al., 2013; Burgess et al., 2015; Cristale et al., 

2013; Gorga et al., 2013; Niu et al., 2014). Effective chromatographic 

separations coupled to high-resolution mass spectrometers have become 

common in the modern environmental research, increasing the awareness and 

understanding of the presence of classical and emerging contaminants in our 

ecosystems, as wel as their transformation and fate. This led to new lines of 

ecotoxicological research to highlight the complex ecological consequences that 

they may pose to biological systems (Noguera-Oviedo and Aga, 2016). Thanks 

to this increased sensitivity, we are now facing overwhelming evidences that 

“new” xenobiotic substances have been introduced and became nowadays 

ubiquitous in the aquatic environment. These substances, referred to as 

emerging contaminants or, better, contaminants of Emerging Concern (cECs), 

include a wide array of different compounds commonly derived from municipal, 

agricultural and industrial wastewater (Drewes and Shore, 2001; Michael et al., 

2014; Noguera-Oviedo and Aga, 2016; Weissinger et al., 2016; Younos, 2005). 

cECs do not actually mean that they are new pollutants. Their release has most 

likely occurred for a long time, but may not have been detected until now, for 

which reason concerns have been raised much more recently (Sauvé and 

Desrosiers, 2014). Although low, these concentrations may be significant 

enough to induce toxic and synergistic effects on aquatic species due to their 

continual influx and/or persistence (Daughton and Ternes, 1999; Hernando et 

al., 2006; Isidori et al., 2009). Moreover, due to their continuous introduction into 
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the environment, they do not need to be persistent in order to compensate their 

transformation or removal rate. It is also now well documented that many cECs 

outflow the most widely used wastewater treatment process (Celiz et al., 2009; 

Martín et al., 2012; Nakada et al., 2006). However, due to their broad and 

increasing number and variety of characteristics, only few of these compounds 

have been so far toxicologically evaluated.  As a result, the scientific community 

is becoming aware of the risks of cECs, and it is without surprise that these 

chemicals are now recollecting most of the resources for research, together with 

their inclusion within the list of priority chemicals for an in-depth ERA 

(Gavrilescu et al., 2015; Murray et al., 2010; Pereira et al., 2015; Stuart et al., 

2012). The list of compounds recognized as cECs is very dynamic as it is the 

concept of “emerging”: chemicals that were considered emerging just a decade 

or two ago, nowadays might no longer be qualified, whereas new cECs 

(previously unknown molecules or for which environmental issues were not fully 

recognized earlier) may be now included. Current recognized cECs include a 

wide range of substances such as PPCPs, fragrances and synthetic musks, 

plasticizers, hormones and steroids, illicit drugs and drugs of abuse, flame 

retardants, engineered nanoparticles, chlorinated paraffines, perfluoroalkyl 

compounds, polar pesticides, food additives, algal toxins among others, bound 

to appear day by day (Gavrilescu et al., 2015; Lapworth et al., 2012; Ternes et 

al., 2015).  

In general, most of the cECs present low acute toxicity, but their potential sub-

lethal effects at low levels and long-term exposure and toxicological MoAs are 

mostly unknown or only known in humans (Claessens et al., 2013; Cristale et 

al., 2013; Drewes et al., 2005; Gibs et al., 2007; Hutchinson et al., 2013; Kinney 

et al., 2006; Noguera-Oviedo and Aga, 2016; Veldhoen et al., 2006; Woodling 

et al., 2006). In fact, for most cECs there is currently little information regarding 

their potential toxicological significance in ecosystems with special regard to the 

effects from long-term and low-level of environmental relevant exposures. 

Therefore, traditional toxicity test endpoints may not be sufficiently sensitive for 

cECs. Low-doses effects, non-monotonic dose responses and life-stage 

dependent effects cannot be often solved by traditional ERA approaches and 
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standard international guidelines, thus needing to be further explored and 

refined. As a matter of fact, a better understanding of the influence and effects 

of subtle toxicity on individual and population fitness would provide a broader 

integration of sub-lethal endpoints into the ERA frameworks (Groh et al., 2015). 

At this point, a more accurate description for cECs would be to define them as 

occurring chemicals or materials which have recently been detected or are 

suspected to be present in various ecosystems and whose properties are likely 

to significantly alter at some point the metabolism of a living being. Such 

compounds would remain “emerging” as long as there is a lack of information 

about the associated potential risks and adverse effects it may pose to human 

health and/or the environment and which are not yet subjected to regulatory 

criteria. This does not imply that all cECs will actually prove to have some toxic 

potential; the focus is the lack of ecotoxicological data and suitable 

environmental fate that prevents a proper evaluation of associated risks (Sauvé 

and Desrosiers, 2014). 

1.1.6.1 Pharmaceuticals and neuro-active compounds 

Pharmaceuticals are a large and diverse class of organic compounds used in 

the prevention and treatment of humans and animals diseases. In the last 

century, as a result of the rapid medical advances, a still increasing number of 

new medications and treatments have been developed, thus resulting in an 

increased consumption of drugs and their consequent release into wastewaters. 

Nowadays, more than 3000 different pharmaceuticals are available on the 

market, including analgesics, antibiotics, neuro-active compounds, lipid 

regulators, among others (Bottoni et al., 2010; Fent et al., 2006). Although their 

effects on human health have been investigated under every aspect, the full 

extent and complete consequences of their presence in the (aquatic) 

environment have not usually been sufficiently studied yet, for which reason 

they are considered cECs (Fabbri, 2015; Fent et al., 2006; Silva et al., 2015). 

The worldwide occurrence of psychiatric disorders led in the last decades to an 

increased use of neuro-active pharmaceuticals, i.e. antidepressants, anxiolytics 

and sedatives (Calisto and Esteves, 2009). According to OECD Health 

Statistics, between 2000 and 2012 the consumption of this class of compounds 
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has doubled on average in OECD countries (OECD, 2014). As a consequence 

of their extensive application, together with their tendency of persistence and 

accumulation, their present occurrence in the environment is in the range of 

ηg/L or µg/L (Calisto and Esteves, 2009). Although these levels are below the 

concentrations predicted to harm humans, as well as to cause acute toxicity to 

non-target organisms, their highly specific biological activity on the neuro-

endocrine system makes them an important group of pharmaceuticals for 

evaluating ecotoxicological effects in aquatic non-target organisms (van der Ven 

et al., 2006). In fact, neuro-active pharmaceuticals are biologically active 

molecules, designed to exert specific effects on individuals receptors/pathway, 

characterized by a large window of pharmacological effect but low toxicity, thus 

making their effects on biota of physiological importance even though difficult to 

detect and evaluate (Bottoni et al., 2010). As a matter of fact, several authors 

already reported effects on invertebrates at very low concentrations (Calisto and 

Esteves, 2009; Campos et al., 2012a; Campos et al., 2012b; Fent et al., 2006; 

Ford and Fong, 2015).   

1.1.6.2 Natural toxins  

Natural toxins are a class of molecules produced by bacteria and eukaryotes 

that are poisonous, whose evolutionary function is to act as defensive agents 

against predation. They can be small molecules, peptides or larger proteins that 

are capable of causing harm when in contact with or after absorption by body 

tissues, affecting the normal physiology of an organism. Toxins can vary greatly 

in their toxicity, ranging from usually minor effects (such as a mosquito bite) to 

sudden death (such as poisoning by a neurotoxic toxin). 

A well-known group of natural toxins causing acute toxicity are cyanotoxins, 

which are produced by cyanobacteria (bacteria also known as blue-green 

algae). Cyanobacteria are mostly found in lakes and oceans and have the 

ability to synthesize a great variety of secondary metabolites with various types 

of biochemical or biological activities, that can be extremely toxic (Bláha et al., 

2009). Under optimal conditions (usually high eutrophication periods), 

cyanobacteria are able to reproduce exponentially and form algal blooms. 

During blooming the concentration of cyanotoxins produced can be high enough 
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to poison and even kill animals and/or humans. Cyanotoxins can also bio-

accumulate in fish and shellfish, and cause important health problems to 

humans that consume them i.e. shellfish poisoning. Most common detected 

toxins include neurotoxins (e.g. anatoxin-a, saixitoxins), hepatotoxins (e.g. 

microcystins, nodularins, cylindrospermopsins), cytotoxins (e.g. lyngbyatoxin-a, 

cylindrospermopsins), and endotoxins (e.g. lipopolysaccharides) (Churro et al., 

2012; Zanchett and Oliveira-Filho, 2013). Cyanotoxins can be produced by a 

wide variety of planktonic cyanobacteria. Some of the most commonly occurring 

toxic genera are Microcystis, Anabaena, and Planktothrix (Oscillatoria). Another 

important natural toxin is okadaic acid (OA), a strong phosphatase protein 

inhibitor produced by several species of dinoflagellates. It is known to 

accumulate in marine invertebrates, especially sponges and shellfish and to be 

one of the primary responsible for the diarrheic shellfish poisoning. 

1.1.7 Aquatic toxicology 

Aquatic toxicology is a multidisciplinary field, which integrates toxicology, 

ecology and environmental chemistry. The overall aim of the discipline is to 

increase our understanding of the impact of potentially toxic chemicals and 

study their effect on aquatic ecosystems. It also deals with the mechanisms of 

toxicity and the responses to toxic agents in aquatic environment at the 

community, species, tissue, cellular and molecular level (Campos et al., 2013; 

Campos et al., 2012a; Claessens et al., 2013; Cristale et al., 2013; Drewes et 

al., 2005; Gibs et al., 2007; Hutchinson et al., 2013; Jordão et al., 2016; Kinney 

et al., 2006; Veldhoen et al., 2006; Woodling et al., 2006).  

Traditionally, this discipline has used toxicity tests to identify putatively harmful 

effects to organisms and ecosystems through the test of endpoints like 

mortality, reproduction and/or individual growth (Chevalier et al., 2015). As a 

matter of fact, current tests cover only a small set of laboratory organisms, and 

are often not sensitive enough, thus not able to unravel adverse effects of these 

compounds due to their experimental design (Noguera-Oviedo and Aga, 2016). 

Besides, most of the standardized ecotoxicological assays by organizations like 

Organization for Economic Co-operation and Development (OECD) and United 

States Environmental Protection Agency (US-EPA) focus on individual level 
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(apical) effects and do not provide information regarding toxic mechanisms 

and/or MoAs. New toxicity investigations are needed, using specific toxicity 

parameters that can lead to a more meaningful ERA (Chevalier et al., 2015). 

Overall, there is a general lack of chronic toxicity data of these emerging 

contaminants on non-target species and especially bio-active substances, i.e. 

pharmaceuticals and similar compounds, need more research about potential 

long-term ecotoxicological effects, particularly with respect to potential 

disturbances in hormonal homeostasis (endocrine disruption), reproductive 

outputs, immunological status, gene activation and/or silencing during long-

term, low doses exposure. In fact, when evaluating the effects of PPCPs on 

non-target species, we should keep in mind that they are biologically active 

molecules, designed to target specific metabolic and molecular pathways in 

humans and/or animals. Under this perspective, they may or may not have 

similar effects in non-target species, as many targets are phylogenetically 

conserved (Gunnarsson et al., 2008). On the other hand, they can also have 

unexpected effects in other organisms due to biological and physiological 

differences that may alter the pharmacodynamics and/or pharmacokinetics. In-

depth understanding of possible effects needs a mechanism-based approach 

focused on target molecules. This kind of approach should yield more 

meaningful results and deeper insights than the standard toxicity testing.  

It is also important to stress that toxicity data are not always available for all 

potential affected species in a given environment (Cogliano, 2016; Wilson, 

2006). Given this limitation, the overall objective of test organism selection is to 

choose models that are evocative of the major ecosystem components: aquatic 

algae and plants are representative of photosynthetic organisms, also called 

primary producers (Villain et al., 2016); invertebrate species such as scuds and 

water fleas, feeding on algae, decaying plant materials and bacteria, have a key 

position into the food web, being important sources of food for a variety of larger 

fish, birds and mammals (Baird and Burton, 2001; Miner et al., 2012); fish 

species are crucial for their great interest in the assessment of biological and 

biochemical responses to environmental contaminants as vertebrates (Powers, 

1989).  
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1.1.8 Complex exposure scenarios 

In aquatic ecosystems, organisms are normally exposed to complex mixtures of 

chemicals and it is relatively uncommon to find sites polluted with only one 

substance (Lydy and Austin, 2004; Villanueva et al., 2014; Walker, 2001). In 

fact, some chemicals are highly persistent, some are applied repeatedly or 

continuously, and others are directly applied as mixtures in order to increase 

efficiency or reduce costs, thus leading to a complex cocktail of very 

heterogeneous compounds, whose interactions are often unknown (Marking, 

1977; Mayer, 1977). These mixtures may provoke toxic effects even when the 

individual stressors are present at concentrations lower than the No Observable 

Effect Concentration (NOEC) and their adverse effects are often 

underestimated (Brian et al., 2007; Kortenkamp, 2008). In fact, due to the large 

number of different chemical compounds present in environmental matrices, 

individual testing of each component may not be fully representative of the total 

mixture effect (Backhaus and Karlsson, 2014; González-Pleiter et al., 2013; 

Vasquez et al., 2014). For instance, contaminants with similar or different MoA 

can influence each other, thus resulting in an almost unlimited number of 

potential additive, synergistic or antagonistic combinations (Beyer et al., 2014). 

In addition, natural factors i.e. physico-chemical variables such as temperature, 

pH, conductivity, may also act as stressors and increase the complexity of 

multiple stressor situations (Hering et al., 2015; Nõges et al., 2016). 

Furthermore, compounds that affect specific organisms or sensitive life-stages 

and compounds known to interact with highly conserved targets across taxas 

e.g. pharmaceuticals, may also represent a special concern (de Perre et al., 

2016; Jager et al., 2016; Vasquez et al., 2014). Under this perspective, it is 

evident that there is no “one-size-fits-all” ecotoxicological bioassay that can be 

used to comprehensively assess the effects of complex mixtures of chemicals in 

the environment. Instead, a battery of bioassays need to be implemented to 

understand and describe important biological endpoints related to different 

physiological pathways (Noguera-Oviedo and Aga, 2016). Besides, given the 

ever increasing number of synthetic chemicals that are currently in use 

worldwide, it is logistically impossible to empirically assess the toxicity of each 
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of them to aquatic species and any possible combination in mixture. For this 

aim, robust predictive toxicity models are essential, in order to estimate their 

toxicity with acceptable precision (Altenburger et al., 2013; Lydy and Austin, 

2004; Vighi et al., 2003). The accurate prediction of chemicals interactions in 

mixtures remains a priority topic in aquatic ecotoxicology, especially for when it 

results into synergistic toxicity (Cedergreen, 2014).  

1.1.9 Integrative approach 

In the frame of the WFD, an integrated approach is required for the monitoring 

and assessment of the quality of surface water bodies and the understanding of 

the underlying mechanisms of toxicity (Wernersson et al., 2015). Chemical 

analyses usually imply a prior knowledge and a choice about the type of 

substances to be monitored as it would be quite challenging to consider and 

quantify all substances that may be present in a specific ecosystem, for both 

technical and economic reasons. In the past, considerable high levels of 

compounds, but in limited number, were detected locally in the aquatic 

environment, producing acute and chronic effects on the communities and 

ecosystems, making it easier to target specific compounds of interest. Lately, 

instead, the situation has shifted: larger numbers of chemicals are being 

registered every year although detected at lower environmental concentrations 

and more geographically spread on a global scale. This raises the need of 

looking for more subtle, chronic, long-term effects of chemicals and their 

mixtures selecting bioassays, which can deliver the specificity and sensitivity 

required to detect possible adverse effects. The major examples come from 

exposures to a vast array of pharmaceuticals, personal care products and 

endocrine disruptors (Fabbri, 2015; Noguera-Oviedo and Aga, 2016; Vasquez 

et al., 2014). For a good assessment of the unexpected effects of chemicals in 

the field and/or in laboratory conditions, an integrative approach represents an 

innovative and relevant methodology, with special regard to the understanding 

of mechanisms of action and effects at the different biological organization 

levels (Fabbri, 2015; Schmitt-Jansen et al., 2008). Test strategies focused on 

responses across different biological organization levels, from genes to 

populations and/or multigenerational tests allow us to unravel new potential 
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MoA of emerging contaminants (Ankley et al., 2010; Barata et al., 2017; 

Brennan et al., 2006; Campos et al., 2016). The integrated test approach gives 

us the possibility to identify key-events and effects and then, uses this 

information to design novel tools for ERA and guide chemical analyses (Ankley 

et al., 2010). In fact, it aims to provide a deeper mechanistic insight into ERA 

and a stronger characterization of the MoA of substances. Among the available 

techniques to measure effects, an integrated use of chemical analyses and 

biological responses to pollutants, e.g. biochemical, physiological and molecular 

responses, is a sound procedure for detecting impact of anthropogenic 

contaminants in freshwater systems. Accordingly, an integrated chemical–

biological approach is vitally important for the understanding and proper 

assessment of anthropogenic pressures and their effects on ecosystems. Such 

an approach is also necessary for prudent management, aiming at safeguarding 

the sustainable use of ecosystem goods and services. Thus, the main research 

focus is now increasingly directed to the development of integrated assessment 

of chemical pollution and new tools contributing to a more holistic ecosystem 

health assessment. 

1.1.10 The use of biomarkers 

In terms of ERA, it is clear that an integrated approach broadens the potential 

for the inclusion and use of a battery of biomarker determinations within the 

WFD. Biomarkers are functional measures of exposure to stressors expressed 

at the molecular, physiological or behavioral level (McCarty and Munkittrick, 

1996). In other words, biomarkers are surrogate measures of biological 

responses within both field and laboratory studies. As a matter of fact, any 

alteration in molecular, cellular, biochemical, physiological or ecological 

processes may be considered and used as a biomarker. However, it should 

have biological significance, as it should be used only when it is possible to link 

its change to important and known biological processes, thus allowing inclusive 

results interpretation. Biomarkers were developed in response to the need for 

more subtle and sensitive indicators of sub-lethal effects to environmental 

stressors than traditional apical ecotoxicological bioassays as lethality, 

reproduction and/or growth impairment as endpoints. A combined approach 
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including both biomarkers and apical bioassays would add value and provide 

complementary evidence to be included in an integrated ERA approach 

together with chemical and ecological community measures (Hagger et al., 

2006). Whereas traditional biomarkers focused mostly on organism physiology 

or biochemistry (i.e. feeding rate, behavior, enzymes activity, …), recent 

advances in molecular biology are extending the field to the molecular level (i.e. 

gene expression) (Jemec et al., 2010). It is important to remark that the effects 

produced by any contaminant at lower levels of biological organization, e.g. 

molecular or biochemical, generally occur earlier and faster than at higher levels 

(Van der Oost et al., 2003), e.g. organismal or community, and hence may offer 

a more sensitive early warning of toxicological risk within a community or 

ecosystem (Clements, 2000). However, until now, their overall relevance to 

provide unambiguous and ecologically significant information on the 

exposure/effects of toxicants has been under discussion (Amiard-Triquet et al., 

2015; Forbes et al., 2006; Moore et al., 2004; Walker et al., 2012): in fact, 

although individual biomarkers play an important role in gaining relevant 

insights into the mechanisms of toxicity on whole-organism performance and 

are useful indicators of exposure, they seem not entirely reliable in providing 

useful predictions on relevant ecological effects (Forbes et al., 2006). Thus, it is 

important to highlight how, although all biomarkers provide useful knowledge on 

the exposure or effects, not all of them may be suitable for use in ERA (Hagger 

et al., 2006). Due to the complexity of the biological processes and multiple 

levels of organization, there is no single biomarker that can provide an 

unequivocal measure of toxicity or stress. The most comprehensive hazard 

evaluation is accomplished by the use of a battery of biomarkers targeting 

multiple endpoints at different levels of organization coupled with chemical 

analyses (Hagger et al., 2006). In the ERA framework, it is advisable to use a 

set of sensitive biomarkers in order to target short-term endpoints as well as 

longer-term more relevant effects and provide a WOE approach, establishing 

causal links between environmental stressor and biological/ecological 

outcomes. 
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1.1.11 Importance of field studies 

A longstanding goal in ecotoxicology is the inclusion of environmental realism in 

the design and analysis of scientific studies. Since in real field situations aquatic 

organisms are being exposed to multiple chemical and environmental factors, 

each contributing to a final overall adverse effect, the use of a large set of 

biological responses may allow us to identify contaminants that might be 

especially hazardous. Similar approaches have already been successfully used 

in studies with invertebrates (Amiard et al., 2006; Brown et al., 2004; Damásio 

et al., 2010). Although aquatic animals are invariably exposed to a full set of 

anthropogenic and natural stressors, only a small number of contaminants may 

be responsible for the observed toxicity. The integrated use of a set of 

biomarker responses to pollutants is considered to be one of the best 

procedures to detect impacts of specific contaminants in situ. Therefore 

combining several biomarkers that can be related with exposure to specific 

stressors and toxicological responses should allow identifying and targeting 

toxic components within complex chemical mixtures. Previous results lend 

positive support to the use of bioassays in combination with biochemical 

responses and chemical analyses in order to assess effects and to identify toxic 

components within complex mixtures in the field, thus contributing to a more 

realistic assessment of ecological risks (Barata et al., 2007; Damásio et al., 

2008). Nevertheless, specific tools are required to identify causes and elucidate 

links between exposure and effects.  

Toxicity Identification Evaluation (TIE) is an integrated biological and chemical 

framework, which aims to identify toxic compounds in a complex environmental 

sample (water, soil, air, effluent), which cause a biological response 

(Wernersson et al., 2015).  It was developed by the US-EPA first for aqueous 

samples and more recently also for sediment testing (EPA, 2007). TIE 

procedures often include three steps: characterization (phase I), identification 

(phase II) and confirmation (phase III). This strategy has grown increasingly 

popular since the 1990s, especially for pinpointing active substances present in 

complex mixtures displaying endocrine disrupting activities (Burnison et al., 

2003). TIE procedures were mainly used in the past in connection with effluent 
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discharge regulations, but today they are also used in ERA as well as in 

remediation work. Several bioassay/effect-directed analyses (BDA/EDA) 

concepts are being developed based on the TIE procedures, such as receptor-

based in vitro assays, to characterize biologically active contaminants present in 

sediment samples (Dindal et al., 2007; Hurst et al., 2004; Noguerol et al., 

2006a; Noguerol et al., 2006b; Otte et al., 2008). As a precautionary remark, it 

is important to consider that whereas this kind of approach moves us toward a 

better understanding of causality of events, distinguishing from other 

confounding factors that may influence biological responses, it is still not 

possible to use this information as conclusive diagnostic proof of cause-effect 

relationships of individual substances (Barata et al., 2007; Burgess et al., 2013). 

1.1.12 Gene-based ecotoxicological approaches 

The connection of the genetic basis of variation in ecological important traits 

with its effects on population, community and ecosystem properties is 

nowadays among the most significant challenges in biology. During the last 

decade, advances in DNA sequencing and functional characterization of 

genomes have opened up a range of new possibilities and high-throughput 

molecular-based technologies. Their broad potential in the frame of ERA has 

been suggested repeatedly (Connon et al., 2012; Garcia‐Reyero and Perkins, 

2011; van Straalen and Feder, 2011; Villeneuve et al., 2011). The new term 

“Ecotoxicogenomics” was introduced in 2004 and defined as the integration of 

molecular-based studies (i.e. transcriptomics, proteomics, metabolomics and 

epigenomics, among others) into ecotoxicology studies (Kim et al., 2015; Snape 

et al., 2004). This newly born research area brings together the fields of 

molecular biology and ecotoxicology towards the study of chemical and physical 

interactions of pollutants and their effects, when released into the environment. 

Based on the knowledge that gene expression (transcription) can be deeply 

altered as a direct and/or indirect result of a contaminant exposure, it became of 

crucial importance to determine the changes of the transcriptome of an 

organism to completely understand the underlying MoA (Aardema and 

MacGregor, 2002; Piña et al., 2007). These molecular approaches can be used 

as suitable early warning systems and to provide powerful tools for high-
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throughput screening of chemicals. In fact, gene expression is expected to be 

stress-specific and to respond quickly, from minutes to hours (López-Maury et 

al., 2008; Sørensen et al., 2005). Thus, the rapid development of 

toxicogenomics and associated high-throughput methods has greatly facilitated 

the in-depth characterization of molecular KE (Altenburger et al., 2012). In this 

regard, the first obvious advantage of using genomic information was the 

increase of the information that we could extract from one single experiment, 

being able to measure several gene expression shifts thus sorting and allowing 

better and more accurate conclusions. This would also allow to establish links 

between molecular biomarkers, as early signals and responses, to higher level 

responses, such as individual and population, in order to anticipate potential 

risks (Wernersson et al., 2015). Nowadays this new discipline is becoming a 

key tool for the assessment of environmental impacts of emerging pollutants, 

thanks to its potential to highlight toxicant specific gene expression patterns, 

namely defining new biomarkers that can be used to identify new and more 

accurate MoA (Piña and Barata, 2011). In fact, it offers a different approach to 

the ERA, and its application as a standardized procedure for risk assessment is 

presently being the object of discussion between scientists, regulators and 

policy-makers, weighting its advantages and disadvantages (Robbens et al., 

2007).  

A major step for our ability to monitor, study and understand the transcriptional 

patterns of genes transcription came with the development of new molecular 

techniques such as quantitative (Real-Time) Polymerase Chain Reaction 

(qPCR) and, more recently, microarrays and next generation sequencing (NGS) 

e.g RNAseq, that revolutionized the way how we were able to address genomic 

processes. Whereas qPCR analyses allow the monitoring of few genes at the 

time with high resolution in a quantitative way, techniques like microarrays and 

RNAseq offer opportunity for the screening of thousands of genes at once, 

providing a more complete picture of toxicologically significant events, although 

in a much more qualitative way (Martyniuk and Simmons, 2016; Newton et al., 

2004; Wang et al., 2009).  



Chapter I. 

 

49 

Thanks to an integrative use of these techniques, we are able to study new 

potential genetic biomarkers, being every gene a potential biomarker of any 

given change: life-cycle changes, chemical changes, etc. In order to achieve 

this final goal of connecting genes, phenotypes, populations and ecosystems to 

improve our understanding of physiology, ecology and evolution, we need to 

apply modern genomic tools to model organisms known to have substantial and 

diverse ecological roles in natural environments (Miner et al., 2012). The 

ultimate purposes of integrating an OMICs-oriented approach into toxicity 

studies is to build toxicity pathways by obtaining a complex overview of stress-

response profile and identifying key events leading to effects at high biological 

organization levels (apical). In addition, OMICs tools are of great importance in 

order to be able to study the effect of stressors at low concentrations i.e. NOEC 

levels, as the molecular endpoints are relatively more sensitive than 

conventional toxicological endpoints. It should be stressed that responses at the 

molecular level to a very low exposure level may not necessarily be the witness 

of an adverse outcome at the physiological level, but provide important 

information to unravel stress-induced signal transductions and the specific 

underlying MoA (Song et al., 2012). 

1.1.13 Daphnia magna as a model organism 

Daphnia magna, a freshwater micro-crustacean, is advocated as one of the 

best model organisms for ecotoxicology studies in freshwaters ecosystems and 

was used as test organism in all parts of this thesis. During the last decades, 

Daphnia has been successfully used as a model organism in a broad range of 

applications including evolution, ecology, toxicology and genomics (Lampert 

and Kinne, 2011; Lynch, 1984; McCauley et al., 1990; Shaw et al., 2008) with 

more than 200 years of data archived about its physiology, ecological role, 

development and evolution. More recently, Daphnia has slowly matured into a 

versatile genomic model thank to the work of the Daphnia Genomics 

Consortium, an international network of researchers whose joint efforts are 

committed to establish Daphnia as a premiere model system (Shaw et al., 2008; 

Stollewerk, 2010). This lead to the publication of the first Daphnia species 

genome for the related species D. pulex (Colbourne et al., 2011) and fully 
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assembled transcriptome for D. magna (Orsini et al., 2016). As a results, it has 

also been suggested as a primary model species for ecological genomics, 

transcriptomics and ecotoxicogenomics, fields that aim to understand how biotic 

and abiotic stressors, as well as evolutionary and life-history characteristics, 

affect gene expression and other biological and ecological changes (Colbourne 

et al., 2011; Ebert, 2011; Orsini et al., 2011; Orsini et al., 2016; Watanabe et al., 

2008). 

In this perspective, the freshwater zooplankter Daphnia offers a very powerful 

model with an exceptional potential. In fact, the combination of modern genomic 

tools together with well-documented community and ecosystem impacts makes 

Daphnia the ideal species for integrative investigation of mechanisms and MoAs 

that underlie responses to environmental changes (Miner et al., 2012; Shaw et 

al., 2008). Besides, they are internationally recognized as an indicator of 

environmental health and fitness and, consequently, as an important and widely 

used bioassay of aquatic toxicity to define regulatory limits. The use of this 

“super-model” has also recently been recommended by the NIH to be used in 

biomedical research. 

The taxonomy classification of Daphnia magna Strauss is as follows (Boxshall, 

2013): Animalia > Arthropoda > Branchiopoda > Phyllopoda > Diplostraca > 

Cladocera > Anomopoda > Daphniidae > Daphnia O.F. Muller, 1785 > Daphnia 

magna Straus, 1820.  

D. magna (Fig. 1.1) is a brackish and freshwater organism, found in lakes and 

ponds all around the world and plays a key ecological role in the food web as a 

highly efficient grazer and a preferred prey item for fish and other invertebrate 

predators (Lampert and Kinne, 2011). Similarly to other crustaceans, its growth 

is not continuous, possible only by regular substitutions of its chitinous, non-

elastic exoskeleton, a phenomenon known as molting (Ebert and Jacobs, 

1991). Daphnia species are non-selective filter feeders, mainly grazing on 

algae, but able to retain and ingest without selection all the suspended particles 

that can be withheld by their filtering apparatus (>1um) (Gillis et al., 2005).  
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Besides, through asexual parthenogenic reproduction, it is possible to produce 

genetically constant clonal lines, hereby reducing genetic variability, offering 

unparalleled opportunities of reproducibility. On the other hand, clonal lines with 

different genetic background can also be maintained to create experimental 

populations with controlled genetic variation and studying the genetic 

architecture underlying phenotypic variation in natural populations (Orsini et al., 

2012). 

1.2 Methodology and approaches 

Due to the holistic nature and goals of this thesis, an extensive set of 

techniques was used for its successful accomplishment. In fact, in order to 

achieve full comprehensive assessment at different organization levels, e.g. 

ecological, physiological and molecular, the use of a wide selection of methods 

and skills belonging both to different fields of biology and chemistry were 

required. As already stated earlier, Daphnia magna was used as model 

organism throughout the progress of this work. Both in vivo and in vitro 

bioassays were included, together with molecular and chemical analyses in 

order to achieve a comprehensive integrative approach when dealing with a 

series of heterogeneous environmental clues.  

1.2.1 In vivo bioassays  

Daphnia magna standardized ecotoxicology tests endorsed by OECD, such as 

standard acute (immobilization test, 48 hours, according to OECD guideline 

202) and chronic tests (reproduction test, 21 days, according to OECD guideline 

211), were used to study the effects of emerging contaminants. Effects of other 

classes of pharmaceuticals on survival and reproduction of D. magna have 

been already evaluated in previous studies (Campos et al., 2012b; Dietrich et 

al., 2010; Dzialowski et al., 2006; Flaherty and Dodson, 2005). Comparing 

these two approaches, a reproduction test running over 21 days allows the 

simultaneous study of several sublethal endpoints i.e. molting, growth rate, time 

to reproductive maturity, number of offsprings, body sizes and others, thus 
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providing a more adequate and sensitive method to detect and unravel toxicity 

effects.  

Other sublethal testing included previously validated feeding rate assessment 

assays and behavioral experiments, both used as powerful and effective 

methods to screen for sub-lethal toxicity, in the field and lab exposures, 

respectively (De Meester, 1991; McWilliam and Baird, 2002). In fact, to 

overcome current limitations on ERA procedures, a comprehensive evaluation 

often requires the development of specific bioassays able to detect these 

effects and to give insights into novel mechanisms of action (Bednarska et al., 

2013). For this reason, it is paramount to highlight the importance of natural 

stressors inside ERA and to endorse the idea that ecotoxicological 

assessments should incorporate at least some, most representative natural 

environmental factors, including a range of biological and ecological 

circumstances (Bednarska et al., 2013), i.e. feeding patterns and locomotor 

migration in the water column. These may be difficult to be incorporated into 

standardized ecotoxicological testing, thus tailored-made approaches become 

of extreme importance.     

1.2.2 In vitro bioassays 

A second category of performed bioassays belongs instead to the in vitro 

testing, in which the use of specific tissues/cells is preferred rather than the live 

animal or plant (in vivo) in order to determine the biological activity of a 

substance. The main advantages of in vitro techniques are the increased 

sensitivity, specificity and reproducibility when compared to the more traditional 

in vivo testing. On the other hand, the results extrapolation on possible 

consequences for organisms is more difficult. Despite their intensive application 

in environmental research, their measurements in invertebrates have not been 

commonly applied yet in ERA or used for regulatory purposes (Jemec et al., 

2010). In vitro techniques used in this thesis encompassed biochemical 

biomarkers and recombinant yeast assays (RYA). 

Biochemical (or enzymatic) biomarkers of exposure are good indicators of 

toxicity including oxidative stress and neurotoxicity among others. At the base of 
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their functioning it lies the concept that exposure to several anthropogenic 

contaminants e.g. metals, redox cycling compounds, dioxins, may lead to 

oxidative stress and produce high levels of reactive oxygen species (ROS), thus 

leading to oxidative damages of the main cellular components, primarily lipids, 

proteins and DNA, and eventually to cell death (Halliwell and Gutteridge, 2007). 

Furthermore, they can result in an over-accumulation of the neurotransmitter 

acetylcholine, thus provoking neuromuscular paralysis and leading also to 

death. Among the many existing and validated biomarkers, the most widely 

used are antioxidant enzymes, important in the prevention of oxidative stress 

damages e.g. catalase (CAT) and glutathione-S-transferase (GST), lipid 

peroxidation (LPO) and DNA damage (DNAd), and enzymes  related to 

neurotoxicity e.g. acethylcholinesterase (AChE) and carboxylesterase (CbE). 

Evaluation of the levels (activity) of these enzymes allows the identification of 

possible effects of the tested compound on the organisms. Their inherent 

capacity to detect toxic effects and causal mechanisms potentially responsible 

for effects at higher levels of organization made biochemical biomarkers one of 

the most promising tools for ecotoxicological applications in the last decades 

(Adams, 2002; Depledge and Fossi, 1994; Peakall and Walker, 1994). As a 

matter of fact, in the last decades they have been widely used as diagnostic 

tools in field studies (Barata et al., 2007; Damásio et al., 2010; Faria et al., 

2009; Faria et al., 2010), but also in laboratory toxicity studies to test specific 

hypotheses concerning mechanisms of chemical impact (Forbes, 2000). 

The second in vitro tool used in this compendium was the recombinant yeast 

assay (RYA) that allows to evaluate the ability of a given compound (or a 

mixture) to bind to a specific receptor and to elicit the physiological responses 

associated to this binding in in vivo conditions. This assay makes use of 

genetically modified yeast strains, an engineered yeast strain carrying at least 

two foreign genetic elements: the former allows the expression of a given 

vertebrate nuclear receptor; the latter, a reporter gene located under 

transcriptional control of the expressed nuclear receptor and whose expression 

is easy to quantify, is intended to allow monitoring of the activity of the 

expressed receptor e.g. an enzyme or a fluorescent protein (Fox et al., 2008). 
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Examples of application of RYA to environmental monitoring include the use of 

yeast strain harboring the receptor responding to presence of dioxin-like 

compounds (aryl hydrocarbon receptor, AhR-RYA) and estrogenic compounds 

(estrogen receptor, ER-RYA). This approach does not provide a precise 

chemical characterization of the ligand-receptor ligands, but their low cost, short 

time of execution and easiness of handling make them widely used when 

testing large numbers of samples or compounds (Barcelo and Hansen, 2008). 

1.2.3 Molecular techniques 

In order to widen the approach and get a deeper insight into the MoAs after field 

exposure, transcriptomic studies were also performed, including RNA 

extractions and cDNA synthesis, PCR and quantitative Real-Time PCR (qPCR). 

qPCR involves the study of specific gene expression (mRNA levels) 

characterized by a wide dynamic range, low quantification limits and the least 

biased results when compared to other methods such as microarrays and 

RNAseq (Dallas et al., 2005; Wang et al., 2009). It is specifically suitable when 

analyzing a restricted number of genes whose sequence is well known. 

Generally, environmental stress situations can be assessed at molecular level 

by choosing specific genetic biomarkers, representative of stress response and 

other specific metabolic pathways or linked to phenotypic endpoint of exposure, 

resulting in an exposure fingerprint, which provides information concerning the 

response of cells and organisms to changes in the external environment 

(Calzolai et al., 2007; Snell et al., 2003). Compared to conventional stress 

enzymatic biomarkers i.e. catalase, glutathione S-transferase and 

cholinesterase among others, gene expression analyses by qPCR are 

technically more demanding and costly but on the other hand more sensitive 

and represent a better tool to unravel toxicity mechanisms. Molecular 

biomarkers developed using this approach have the potential of providing early 

detection of environmental stress (being gene transcription the first affected 

step), inferring mechanisms of action and, overall, improving the monitoring of 

the environment (Calzolai et al., 2007).  
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1.2.4 Analytical chemistry  

Chemical analyses performed according to the most advanced techniques of 

analytical chemistry were run in parallel to the bioassays in order to support 

results and provide additional information to explain results. This involved the 

use of several analytical tools, including both liquid and gas chromatography 

(LC and GC, respectively) coupled with mass spectrometers. Both techniques 

are analytical methods that combine the feature of chromatography separation 

together with mass spectrometry in order to identify substances (by their mass) 

within a complex sample, and are considered of extreme value in environmental 

chemistry, especially when dealing with forensic substance identification, thanks 

to their high specificity and low levels of detection.  

The equipment is composed of two parts: the chromatographer that allows the 

separation of compounds thanks to their affinity to a stationary phase and the 

choice of the mobile phase that may be liquid (LC) or gaseous (GC); the mass 

spectrometer that ionizes and sorts the molecules based on their mass-to-

charge ratio, thus measuring their mass weight (m/z). Among existing kinds of 

mass detector available, the triple quadrupole (TqD) composed of three 

consecutive linked quadrupole mass analyzers, allows for tandem mass 

spectrometry analyses (MS/MS). This involves multiple steps of mass 

spectrometry selection, with a step of fragmentation in between. The coupling of 

chromatography with mass spectrometry (LC- or GC-MS/MS) provides an 

additional performance enhancement in terms of resolution and sensitivity (in 

the order of ηg/L or even pg/L) and representes a major breakthrough in 

forensic environmental studies. Whereas GC-MS/MS is highly suitable for 

volatile compounds or molecule that can be easily vaporized, LC-MS/MS is 

usually the preferred choice allowing the identification and quantification of a 

wide battery of organic compounds down to ηg/L levels without time-consuming 

derivatization and with minimal sample cleanup (Bussy et al., 2016).  
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1.3.1 Ebro River 

The Ebro River (Fig. 1.3 B) is the largest and most important river in Spain, with 

928 km in length, affected both by Atlantic and Mediterranean climate 

(http://www.chebro.es). At its end, it gives origin to the Ebro Delta, one of the 

largest wetland areas (320 km²) in the western Mediterranean region and a 

National Park since 1983 (Parc Natural del Delta de l'Ebre). Nowadays, the 

delta area is in intensive agricultural use mainly for rice, but also fruits and 

vegetables. Along its course, the Ebro River is largely regulated by several 

dams and channels, which have altered its hydrological and sedimentary 

regime and decreased its flow by approximately 30%. Agriculture and irrigation 

activities together with heavy industries concentrated close to the main cities in 

the basin have also deteriorated soil and water quality, making its water 

pollution a relevant issue. In particular, it is worth to mention the area of Flix in 

the lower part of the river course, where a chlor-alkali industry operated since 

the beginning of the 20th century and resulted in the accumulation of high 

amounts of heavily polluted sediments in the adjacent riverbed. 

Major pollutants present at this site included high levels of organochlorides 

(hexachlorobenzene, DDEs–DDTs, polychlorostyrenes,…) and heavy metals 

(e.g. mercury, cadmium, nickel) and were carried downstream by the flow until 

its delta (Bosch et al., 2009; Fernandez et al., 1999; Soto et al., 2011). 

 1.3.2 Llobregat River 

The Llobregat River (Fig. 1.3 A) is the second longest river in Catalonia (NE 

Spain), with a total length over 170 km. The river is heavily impacted in its lower 

course and water that was previously lost to the sea is now pumped upstream 

to increase the natural flow. This river is one of Barcelona’s major drinking 

water resources (Catalonia, NE Spain). Though, it receives surface runoff from 

agricultural areas as well as extensive urban and industrial waste water 

discharges (Sabater et al., 2012). Consequently, waters have high 

concentration of pesticides, surfactants, pharmaceuticals and estrogenic 

compounds with important effects on the biological communities (Ginebreda et 
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al., 2010; González et al., 2012; Kuster et al., 2008; López-Serna et al., 2012; 

Muñoz et al., 2009; Sabater et al., 2012).  

1.3.3 Jucar River 

The Jucar River (Fig. 1.3 C) basin is located in the east of Spain, with a main 

stream length of approximately 500 km. The management of the system is very 

complex and presents considerable hydrologic variability, due to an intensive 

water use. The medium part of the basin is mainly characterized by agricultural 

and irrigation activities, whereas in the lower part of the river a great part of 

urbanized, industrial and agricultural pressures are present, decreasing 

substantially the water quality. The Jucar basin was designated as a European 

Pilot River Basin for the implementation of the WFD (Molina et al., 2011).  

1.3.4 Tablas de Daimiel National Park 

The Tablas de Daimiel National Park (TDNP, Fig. 1.3 D) is a floodplain wetland 

located in the Upper Guadiana Basin (central Spain) and represents one of the 

most important semiarid wetlands of the Mediterranean area. In 1980, the 

TDNP was declared by UNESCO one of the core areas of the Mancha Húmeda 

Biosphere Reserve, for its special relevance among European wetlands as an 

ecological refuge for many water birds and plant species. The wetland is the 

result of the mixture of inputs from two rivers, namely Gigüela and Guadiana, 

together with groundwater discharge from the West Mancha aquifer. The 

peripheral surface of the wetland is 1928 ha, but at present, the potentially 

flooded area is 1587 ha (Sánchez-Carrillo et al. 2010). Characterized by a  

semi-arid climate, it presents an irregular spatio-temporal rain distribution and 

high temperature in summer, thus making its water balance particularly fragile, 

showing water shortage considered a structural characteristic of the system 

(Sanchez-Ramos et al., 2016). Moreover, it is also subjected to intensive 

groundwater overexploitation since the late 1970s (Navarro et al., 2011) and 

water pollution due to population growth and agriculture and its associated 

industry development. Worth of mention is its proximity to a point-source 

pollution site due to the presence of a waste water treatment plant (WWTP).  
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1.4 Objectives 

The overall goal of this thesis is the characterization of novel mechanisms of 

toxicity of contaminants present in the aquatic ecosystem both in the field and in 

the laboratory. Aquatic environments in the field are affected by complex 

mixtures of contaminants and other natural stressors making quite difficult to 

identify with a high degree of certainty toxic compounds. In this regard my 

approach was to use a large and diverse range of assays, biomarkers 

combined with multi-analytical mass spectrometry techniques. Conventional 

and behavioral assays were used in lab exposures to characterize the 

mechanisms of action of new emerging contaminants such as psychiatric drugs 

at realistic environmental concentrations. Field studies bearing different 

problematics were considered to specifically address three specific objectives, 

whereas a study conducted in the laboratory evaluating sublethal effects of 

neuro-active pharmaceuticals at relevant environmental concentrations was 

pursued as fourth and last objective. 

- Objective 1. To test the usefulness of using transcriptomic responses of 

D. magna genes in detecting and identifying different types of environmental 

stressors in the field in transplanted organisms.  

This objective was tested comparing transcriptomic responses of selected 

genes in transplanted animals across three river basins with detrimental 

physiological effects measured using already validated bioassays (feeding 

rates, biomarkers), corroborated by measurements through other validated 

bioassays. The study was conducted in three river basins affected by different 

anthropogenic pressures and climatic/flow conditions. The study is described in 

chapter 2 and it is entitled “Transcriptomic, biochemical and individual markers 

in transplanted Daphnia magna to characterize impacts in the field”.  

- Objective 2. To characterize an unknown source of toxicity caused by 

small amounts of highly toxic bio-active compounds (cyanotoxins) bound to 

suspended particles in a highly contaminated site impacted by a chlor-alkali 

industry.  
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Testing this objective required the development of a new analytical method for a 

rare cyanotoxin “anatoxin-a” described in chapter 3 and entitled “Liquid 

chromatography coupled with tandem mass spectrometry to characterize trace 

levels of cyanobacteria and dinoflagellate toxins in suspended solids and 

sediments”, and to develop a test procedure to assess effects of toxic 

compounds bound to suspended material and able to distinguish specific effects 

of cyanotoxins from other potential causes of toxicity. The study is described in 

chapter 4 and entitled ”Identification of compounds bound to suspended solids 

causing sub-lethal toxic effects in Daphnia magna. A field study on re-

suspended particles during river floods in Ebro River”. 

- Objective 3. To combine chemical and toxicity assays (both in vivo and 

in vitro) to identify chemicals causing toxicity in the pristine mediterranean 

floodplain reserve (Tablas de Daimiel), which has a high Ecological value 

(RAMSAR site and UNESCO bird reserve).  

This Natural reserve has been threatened in the past by an over-exploitation of 

its water sources and now the scarcity of water is amended from water coming 

from other river basins and water treated effluents. Thus, it is important to 

determine if water sources entering the flood plain of Tablas de Daimiel contain 

contaminants toxic to aquatic wild life. The study is described in chapter 5 and 

is entitled “Integrated environmental risk assessment of chemical pollution in a 

Mediterranean floodplain by combining chemical and biological methods”.  

- Objective 4. To test the hypothesis that different families of neuro-active 

pharmaceuticals may lead to similar phenotypic responses in D. magna, such 

as enhance reproduction and alter behavioral responses, at low environmentally 

relevant concentrations. 

This study is supported from a previous work conducted in our lab in which we 

found that fluoxetine, the active component of Prozac, enhanced reproduction in 

Daphnia and altered phototactic behavior in amphipods. The study is described 

in chapter 6 and entitled “Low environmental levels of neuro-active 

pharmaceuticals alter phototactic behavior and reproduction in Daphnia 

magna”. 
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Overall, this work illustrates, through three different field case studies and one 

laboratory-based study, the complementary role of classical bioassays, specific 

biomarkers and chemical analyses which, used in combination, provide major 

information to understand impacts of anthropogenic pressures with the potential 

to affect the aquatic environment. We discuss the inherent difficulties of field 

studies, where the interactions among chemicals and/or other confounding 

factors might occur, the limitations of this kind of approach and future 

improvements needed.  
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Chapter II. 

Transcriptomic, biochemical and individual markers in 

transplanted Daphnia magna to characterize impacts in 

the fielda 

2.1 Abstract 

Daphnia magna individuals were transplanted across 12 sites from three 

Spanish river basins (Llobregat, Ebro, Jucar) showing different sources of 

pollution. Gene transcription, feeding and biochemical responses in the field 

were assessed and compared with those obtained in re-constituted water 

treatments spiked with organic eluates obtained from water samples collected 

at the same locations and sampling periods. Up to 166 trace contaminants were 

detected in water and classified by their mode of action into 45 groups that 

included metals, pharmaceuticals, pesticides, illicit drugs, and other industrial 

compounds. Physicochemical water parameters differentiated the three river 

basins with Llobregat having the highest levels of conductivity, metals and 

pharmaceuticals, followed by Ebro, whereas the Jucar river had the greatest 

levels of illicit drugs. D. magna grazing rates and cholinesterase activity 

responded similarly than the diversity of riparian benthic communities.  

Transcription patterns of 13 different genes encoding for general stress, 

metabolism and energy processes, molting and xenobiotic transporters 

corroborated phenotypic responses and differentiated sites within and across 

river basins. Principal Component analysis and Partial Least Square Projections 

to Latent Structures regression analyses indicated that measured in situ 

responses of most genes and biomarkers and that of benthic macroinvertebrate 

diversity indexes were affected by distinct environmental factors.   

Conductivity, suspended solids and fungicides were negatively related with the 

diversity of macroinvertebrates cholinesterase, and feeding responses. Gene 

transcripts of heat shock protein and metallothionein were positively related with 

11 classes of organic contaminants and 6 metals. Gene transcripts related with 
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signaling paths of molting and reproduction, sugar, protein and xenobiotic 

metabolism responded similarly in field and lab exposures and  were related 

with high residue concentrations of analgesics, diuretics, psychiatric drugs,  

blockers, illicit drugs, trizoles, bisphenol A, caffeine and  pesticides. These 

results indicate that application of OMIC technologies in the field is a promising 

subject in water management. 

Keywords: Daphnia, feeding, transcriptomics, gene, biomarker, in situ, benthic 

macroinvertebrate, river, water quality 

2.2 Introduction 

Identifying indicators of adverse change in ecological systems which can 

diagnose causal agents is a major challenge in environmental risk assessment 

(Baird and Burton, 2001). Traditionally, biomonitoring of fresh waters has been 

based on measures of community structure, focusing on biodiversity metrics 

(Rosenberg and Resh, 1993). Such diagnostic measures have been widely 

used to establish the ecological quality of water (Munné and Prat, 2009). 

Nevertheless, biodiversity metrics are based on the occurrence of species and 

hence they are mostly sensitive to dramatic changes such as reductions of 

individuals within species or even to species extinction. These features make 

biodiversity metrics unable to detect subtle changes of individual physiological 

responses. Furthermore, in many cases biodiversity metrics respond to other 

environmental factors than to trace contaminants (Baird and Burton, 2001). 

The development of new bioassays with caged single species has allowed 

determining pollutant effects in situ. Key advantages of in situ bioassays over 

whole effluent toxicity tests and biological surveys of invertebrate communities 

include: a greater relevance to the natural situation, especially with respect to 

the contamination scenario; and their ability to detect effects more rapidly 

(hours to days) than resulting changes in community structure (months to years) 

measured during macroinvertebrate sampling (Maltby et al., 2002). More 

specifically, a set of in situ and cost effective bioassays based on feeding and 

biochemical responses of invertebrate species have permitted detecting lethal 
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and sublethal responses that are biologically linked with key ecological 

processes such as detritus processing and algal grazing rates, and of specific 

toxicological mechanisms (Barata et al., 2007; Burton Jr et al., 2005; Damásio 

et al., 2010; Maltby et al., 2002; Maltby et al., 2000; Schulz and Liess, 1999). 

Nevertheless such developments were still limited to few responses. The use of 

OMIC technologies may offer the possibility to extent those responses to many 

genes within individuals.  

The water flea Daphnia magna is possibly the invertebrate species most used in 

toxicology and experimental ecology and together with its close relative D. pulex 

is used as a model for environmental genomics research (Piña and Barata, 

2011). D. pulex genome has been fully sequenced and about 50% of its 

genome is annotated (Colbourne et al., 2011), thus that of its close relative D. 

magna, despite of being incomplete, may benefit from the former. Indeed 

several studies have identified gene markers within D. magna genome that 

respond to specific pollutants. These genes  include general stress genes such 

as the heat shock protein 70 (HSP70) and metallothioneins (MT2), whose 

transcripts are induced by several metals (Ho, 2008; Poynton et al., 2007); 

genes  involved in metabolic pathways, i.e. the metabolism of the sugars (UDP-

glucose pyrophosphorylase, UGP), lipids (thiolase, THIO),  amino acids 

(fumarylacetoacetate, FAA) and the Krebs cycle (isocytrate dehydrogenase 

(IDH), aconitase (ACON) (Campos et al., 2013); specific genes encoding  key 

processes of growth and reproduction (vitellogenein, VTG; ecdysteroid receptor, 

EcR; retinoid X receptor, RXR and molt-inhibiting hormone, MIH) (Montagné et 

al., 2010; Tokishita et al., 2006; Wang and LeBlanc, 2009; Wang et al., 2007); 

and transporter genes from the multixenobiotic resistance mechanisms such as 

the P-glycoprotein (Pgp) and multidrug resistance protein 4 (MRP4) (Campos et 

al., 2014).  

The Mediterranean basin is one of the world’s regions most vulnerable to global 

change (Barceló and Sabater, 2010) and one of the “hot spots” for ongoing 

problems in water availability (Giorgi and Lionello, 2008). Here we tested the 

feasibility of using mRNA responses of D. magna genes in detecting and 

identify environmental stressors in the field having detrimental effects in river 
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biota. To do that, up to 19 responses in  D. magna individuals transplanted in 

the field were used to evaluate the effects of up to 167 trace contaminants and 

five general physicochemical parameters in 12 sites belonging to three distinct 

Mediterranean rivers. The biodiversity of benthic macroinvertebrates were also 

considered to allow comparison of D. magna responses with those of the whole 

community.  D. magna responses included that of post-exposure feeding rates, 

five enzymatic biomarkers (cholinesterase, carboxylesterease, lactate 

dehydrogenase, catalase, glutathione S transferase) and 13 genes (HSP70, 

MT2, ACON, IDH, UGP, FAA, THIO, VTG, EcR, MIH, RXR, PGP, MRP4). 

Secondly, the response of the studied genes together with that of post- 

exposure feeding rates was evaluated in D. magna individuals exposed in the 

lab to organic extracts of water samples collected at the studied sites. This 

allowed comparing the robustness and repeatability of the studied gene 

responses in detecting effects of organic contaminant residues. This study 

focused on three river basins Llobregat, Ebro and Jucar rivers (NE Spain).  

2.3 Material and Methods 

2.3.1 Study sites 

Like most Mediterranean systems, Llobregat, Ebro and Jucar river basins 

natural resources have been greatly affected by human activities such as 

agriculture, urbanization, salinization by mining activities and an intensive water 

use for human consumption, which together have severely deteriorated the 

ecological status of the main rivers and tributaries since 1970s (Belenguer et 

al., 2014; Damásio et al., 2011; Damásio et al., 2010; Damásio et al., 2008; De 

Castro-Català et al., 2013; Fàbrega et al., 2013). The Llobregat River (northeast 

Spain) is 156.5 km in length, covers a catchment area of approximately 4,948 

km2, and its watershed is heavily populated (3,089,465 inhabitants in 1999). 

The Llobregat River is a paradigm of overexploited Mediterranean river with 

nearly 30% of its annual discharge used for drinking water. Moreover, the 

Llobregat River receives extensive urban and industrial wastewater discharges 

(137,000,000 m3/year; 92% comes from the wastewater treatment plants) that 

cannot be diluted by its natural flow (0.68–6.5 m3/s basal flow) (Muñoz et al., 
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2009). The Ebro river is one of the largest river basins in Spain, 928 km in 

length and with a drainage basin of 85,550 km2 and around 2,800,000 

inhabitants living in the area. The most relevant economic activity in the region 

is basically agriculture (vineyards, cereals, fruit, corn, horticulture and rice 

production), but there are also some highly industrialized regions, mainly 

located in the northern-central part (Silva et al., 2011). The Júcar River is 

497.5 km long drainage area of 21,600 km2 and its mean annual flow is 10 m3/s; 

it flows Eastern Spain, under a typical Mediterranean climate (Belenguer et al., 

2014). 

Deployment sites comprised four points along the Llobregat, Ebro and Jucar 

river systems, respectively (Fig. 2.1). The study stations were chosen as being 

examples of the different characteristics of the basins. 

The Llobregat stations were L3 (Pont de Vilomara), L4 (Castellbell i el Vilar), L5 

Abrera) and L7 (Sant Joan Despí). L3 site was located at the mid-section of the 

river, without much human impact. L4 was located after the junction with the 

Cardener river, characterized by its high conductivity and pollutants coming 

from Manresa sewage treatment plant (STP). L5 and L7 were located at the end 

of the mid and lower section of the river, downstream the STP of Monistrol de 

Montserrat and Barcelona, respectively. The Ebro study sites were all located in 

the upper-mid section of the river, an area with high water usage for agricultural 

purposes but also with an important human population settlement. E2 was 

located on the upper course at Miranda de Ebro. It is the first major city in the 

main stream. There is a large industrial area and the STP is less efficient than 

desired so the concentration of organic compounds in the river is high. E3, E4 

and E5 sampling site received the influence of the wine field lixiviates from STP 

of  Haro,  Logroño and Tudela cities, respectively. Jucar Sampling stations were 

distributed along the full course of the river. The J2 site was located inside the 

city of Cuenca.  Water at J4 site presented a strong eutrophic process and 

presence of filamentous algae along the reach was observed. J5 was just 

downstream of a small dam and J6 downstream the bypass of the irrigation 

channels that are used in the agricultural explorations further down. 
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2.3.2 Environmental measurements 

A set of environmental variables were measured on each deployment occasion. 

Water physicochemical parameters including temperature (T; oC), pH, 

conductivity (S/cm), dissolved oxygen (O2, mg/l) and suspended solids (SS, 

mg/L) were obtained following (Damásio et al., 2008)  procedures. Briefly, T, 

pH, conductivity and O2 were measured in situ by using a WTW Multi 340i 

handheld meter, whereas total suspended solids were measured in the lab 

following ASTM Standard Methods (APHA-AWWA-WEF, 1995). Residue levels 

of eight metals in water and that of up to 158 organic contaminant residues 

were analysed. Organic contaminant residues were classify into 37 functional 

groups according to their mode of action or/and chemical structure. Further 

details of the established groups are in Table 2.2. Surface water samples (12) 

were taken from the studied sites. Duplicate water samples were collected in 

the middle of the current river with 2.5 L amber glass bottles. Within 48 h, water 

samples were vacuum filtered through 0.45 μm glass fiber filters and aliquoted 

into 1 L. The aliquots were extracted using OASIS HLB SPE cartridge (200 mg 

sorbent/6 mL cartridge, Waters) and eluted with different solvents according to 

the family of compounds that were to be analysed. Ilicit drugs were eluted with a 

gradient acetonitrile : water and analysed by isotope dilution on-line solid phase 

extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) 

following the method described in (Postigo et al., 2008). Pharmaceuticals were 

eluted with methanol and the concentrations of the 73 compounds were 

determined using a multi-residue analytical method based on LC-MS/MS 

(Osorio et al., 2012). Most relevant environmental endocrine disruptors 

compounds (EDCs) and compounds suspected to be EDCs such as natural and 

synthetic estrogens and their conjugates, antimicrobials, parabens, bisphenol A, 

alkylphenolic compounds, benzotriazoles, and organophosphorus flame 

retardants were analysed using a fully automated approach in which water 

samples were directly injected into the chromatographic system and the target 

compounds were concentrated into the loading column. Thereafter, the analytes 

were transferred into the analytical column for subsequent detection by MS/MS 

(QqQ) (Gorga et al., 2013). 



 

 

 

Table 2.2 Defined chemical classes according to the mode of action and chemical structure. 
 
Chemical classes Abreviations Contaminants included           
Metals               
As  As              
Co  Co              
Cu  Cu              
Fe  Fe              
Mn  Mn              
Ni  Ni              
Pb  Pb              
Zn  Zn              
Organic contaminants                
Analgesics: antipyretic APYR Phenazone, Propyphenazone           
Analgesics, Opiates AOPIATES Oxycodone, Codeine           

Analgesics: NSAID  ANSAID 
Acetaminophen, Ibuprofen, Indomethacin, Diclofenac, Ketoprofen, Naproxen, Piroxicam, 
Meloxicam, Tenoxicam 

    

Antibiotics ANTIB 
Erythromycin, Azithromycin, Clarithromycin, Tetracycline, Sulfamethoxazole, Trimethoprim, 
Metronidazole, 2-Hydroxy-Metronidazole, Ofloxacin, Ciprofloxacin, Cefalexin 

Anticuagulant; Warfarin WARF             
Anticuagulant; Aacridone ACRID             
Lipid regulators, Fibrates FIBRAT Bezafibrate, Gemfibrozil           
Lipid regulators, statins STATIN Pravastatin, Fluvastatin, Atorvastatin           
Tricyclic antihistamins ANTIHIST Loratidine, Desloratidine           
Antihistamins; Histamine H2-
receptor antagonist 

CIMET Cimetidine           

 blockers; treat hypertension BBLCK Atenolol, Sotalol, Metoprolol, Propanolol, Nadolol, carazolol       
Angiotensin II receptor antagonist, 
treat hypertension 

ANGIO Irbesartan, Losartan, Valsartan           

Diuretics; Sulfonylureas DIUREAS Torasemide, Glibenclamide           
Diuretics DIURET Hidrochlorothiazide, Furosemide           
Psychiatricc drugs acting on 
serotonin 

SEROT Fluoxetine, Norfluoxetine, Paroxetine, Sertraline, Citalopram, Venlafaxine, Trazodone     

Psychiatric drugs acting on GABA 
type α receptors 

GABA 
Diazepam, Lorazepam, Alprazolam, Carbamazepine, Olanzapine 
  

        



 

 

 

 
 Table 2.2 (continuation) 
Chemical classes Abreviations Contaminants included      
β2-adrenergic agonists to treat 
asthma 

ADREN Salbutamol, Xylazine, Azaperone           

Anthelmintic veterinarian 
compounds  

ANTHEML Albendazol, Thiabendazole, Levamisol           

Dexamethasone, anti-inflammatory 
glucocorticoid steroid  

DEXTH             

X-ray contrast media IOPROM Iopromide           
Selective α1 receptor antagonist TAMSUL Tamsulosin            
Thienopyridine class antiplatelet 
agent 

CLOPID Clopidogrel           

Azole fungicides 
 
 
FZOLE 

 
Azinphos methyl, Carbendazim, Imazalil, Prochloraz, Tebuconazole, Thiabendazole 
  

    

Organophosphorous and carbamate  
insecticides 

OPS 
Chlorfenvinphos, Chlorpyriphos, Diazinon, Ethion, Fenthion, Malathion, Omethoate,  
Parathion-methyl, Methiocarb, Carbofuran, Fenthion 

  

Herbicides; triazines HTRIAZ 
Deisopropylatrazine, Deethylatrazine, Simazine, Terbumeton, Terbumeton-deethyl, 
Terbuthylazine,  Terbuthylazine-2-hydroxy, Terbutryn, Terbuthylazine-deethyl 

    

Other pesticides POTHER Hexythiazox, Imidacloprid, Metolachlor, Pyriproxyfen           
Illicit drugs, cocaine & metabolites 
(MB) 

COCAIN Benzoylecgonine, Cocaethylene, Cocaine           

Illicit drugs, amphetamine-like 
compounds & MB 

AMPHET (±)-Amphetamine, (±)-MDMA, Ephedrine, (±)-Methamphetamine       

Illicit drugs, opiods/opiates &MB OPIOIDS (±)-EDDP, (±)-Methadone, 6-acetylmorphine, Morphine           
Triazoles; corrosion inhibitors TRIAZOLES 1H-Benzotriazole, Tolytriazole           
Parabens PARABEN Benzylparaben, Propylparaben, Ethylparaben, Methylparaben     
Bisphenol A BPA             
Caffeine CAFF             
Estrogenic compounds; mainly 
estrone 

E2 
Estradiol, Estradiol 17-glucuronide, Estriol, Estrone, Estrone 3-glucuronide , Estrone 3-
sulfate  

    

Alkylphenols APE 
Nonylphenol, Nonylphenol diethoxylate, Nonylphenol monocarboxylate,  Octylphenol , 
Octylphenol diethoxylate, Octylphenol monocarboxylate  

Phosphate Ester Flame Retardants PFR Tris(2-chloroethyl) phosphate, Tris(butoxyethyl) phosphate, Tris(chloroisopropyl) phosphate  

Perfluorinated compounds PFCs 
i,p-PFNS, L-PFBS, L-PFDS, L-PFHxS, L-PFOS, PFBA, PFDA , PFDoA, PFHxA, 
PFHxDA,PFOA , PFODA,  PFTeDA , PFTrDA, PFUdA  
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Pesticides and PFCs were eluted using a mixture of dichloromethane : 

methanol (50:50) (v/v) and analysed by LC–MS/MS and LC–QTOF-MS (Masiá 

et al., 2013). Metal analyses dissolved in water were performed using 5 mL of 

filtered water (0.2 μm nylon membrane filters, Whatman) and acidified 

immediately with 1% of HNO3 (65% suprapure, Merck). Analyses were done by 

inductively coupled plasma mass spectroscopy (ICP-MS 7500c Agilent 

Technologies, Inc., Wilmington, DE) (Bonet et al., 2013). 

2.3.3 Biological condition 

Invertebrate samples from sediment were randomly collected with a corer (24 

cm2 area, 5 replicates per site). Samples were sieved through a 500 µm mesh 

to separate invertebrates and fixed with 4% formaldehyde. The invertebrates 

were identified at species level and used to calculate species richness (S) and 

Shannon´s  diversity index (Shannon and Weaver, 1963). More information is in 

(López-Doval et al., 2010) 

2.3.4 Field and lab bioassays 

2.3.4.1 Field exposures 

In situ D. magna deployments were conducted as indicated by using the same 

test chambers and procedures of (Mc William and Baird, 2002) with only minor 

modifications that included 10 test chambers to allow collection of animals for 

gene and biomarker determination and to increase the number of replicates for 

post-exposure feeding rate measurements. Chambers were constructed from 

clear polyvinyl chloride cylindrical piping (13 cm long, 5 cm external diameter). 

Each chamber had two rectangular windows (7 x 3.5 cm) cut into either side of 

the cage, covered with 150 µm nylon mesh. Pipe ends were sealed with 

polypropylene caps. Groups of 4-5 chambers were placed inside a 13-mm2 

wire-mesh cylinder that was positioned in the stream perpendicular to flow. In 

each deployment, a lab control treatment with animals maintained in the lab and 

never exposed to the field was also included as a surrogate control. 

Deployments were conducted in 2011, on 15-16th September in Llobregat, 21-

22nd September in Ebro and 5-6th October in Jucar. Within each period, 

deployments were conducted simultaneously in four locations that always 
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included at least a low polluted site. Briefly the procedure for the in situ 

bioassays was as follows. Juveniles were transported to field sites in groups of 

10 in 175 glass jars filled with American Society for Testing Materials (ASTM) 

hard water (Mc William and Baird, 2002). At each site 10 chambers, each 

containing 10-20 individuals were placed inside a 13 mm2 wire-mesh cylinder 

that was positioned in the stream perpendicular to flow.  

2.3.4.2 Lab exposures to reconstituted water 

A second exposure experiment was set in the lab to compare feeding and gene 

responses with those of the field and to test if responses observed in the field 

were related to organic contaminant pollution only. For that purpose we use the 

same water samples and extraction procedures as those reported for chemical 

analyses but without the addition of standards. Final eluates were then 

combined, evaporated to dryness with N2 and re-suspended in 0.3 mL of 

acetone. Lab exposures were then conducted by exposing 50 animals in 2 L 

ASTM hard water dosed with 0.2 mL of the obtained acetone extract eluates. 

Exposures were conducted in 3 L glass bottles gently shaken (3 rpm) in an 

orbital incubator at 20ºC under darkness and lasted 24 h. Controls that were 

processed similarly as field samples, but using ASTM water only, were included 

in each trial. Each river was assayed simultaneously. After exposures animals 

were used for post-exposure feeding and gene responses as described below.  

2.3.4.3 Post-exposure responses 

After 24 h, animals were retrieved from chambers or lab exposure media. 

Twenty-five surviving animals of five  chambers or collected from lab exposures 

were used to determine post-exposure feeding rates and the remaining  

individuals were pooled in Eppendorf’s in groups of five,  immediately frozen in 

liquid N2 and kept at –80oC until further gene analysis.  From each of the 

remaining 5 chambers of field exposures, surviving animals were also pooled, 

frozen and used for biomarker determination.  

Shortly after exposure (within 1 h) five surviving juveniles were placed into 60 

mL screw-capped glass jars containing 50 mL of ASTM hard water, with 

Chlorella vulgaris (Beijerink, strain CCAP C211/12) at a concentration of 5 x 105 
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cells/mL, and allowed to feed for 4 h (Mc William and Baird, 2002). Three jars 

containing no animals were used to establish initial algal densities. Biomarker, 

gene and post-exposure feeding rates were also measured in animals 

maintained in the lab during the duration of the deployments and transported to 

the field sites to include as surrogate lab control. Post-exposure feeding 

experiments were conducted in darkness to avoid algal growth and under 

constant temperature conditions (20  2ºC) provided by a thermostatised 

chamber. Individual feeding rates (cells animal-1 h-1) were determined as the 

change in cell density during 4 h according to the method given by (Mc William 

and Baird, 2002). Cell density was estimated from absorbance measurements 

at  = 650 nm in a dual-beam spectrophotometer (Uvikon 941) using standard 

calibration curves based on at least 20 data points, with an r2 > 0.98. 

2.3.4.4 Enzyme assays  

Juveniles were homogenized at 4 oC in 1: 4 wet weight/buffer volume ratio in 

100 mM phosphate buffer, pH 7.4 containing 100 mM KCl and 1 mM EDTA. 

Homogenates were centrifuged at 10 000 g for 10 min and the supernatants 

were immediately used as enzyme sources.  Biochemical measurements were 

carried out on Uvikon 941 Plus dual-beam and Spectra-max Plus microplate 

reader spectrophotometers. Assays were run at least in duplicate. AChE was 

determined by a modification of the Ellman method adapted to mircroplate 

(Barata et al., 2004). Acetylcholinesterase activity was measured in the 

presence of 1 mM acetylthiocholine and 0.1 mM 5,5’-dithiobis-2-dinitrobenzoic 

acid (DTNB), and the increase of absorbance was measured at 405 nm. 

Catalase activity was measured by the decrease in absorbance at 240 nm due 

to H2O2 consumption (extinction coefficient 40 M-1 cm-1) according to (Aebi, 

1974). The reaction volume was 1 mL and contained 50 mM phosphate buffer, 

pH 6.5, 50 mM H2O2 (Ni et al., 1990). Glutathione-S-transferase (GST) activity 

towards 1–chloro-2,4–dinitrobenzene (CDNB) was measured as described by 

(Habig et al., 1974). The reaction mixture contained 100 mM phosphate buffer 

(pH 7.5), 1 mM CDNB and 1 mM of reduced glutathione. The formation of S–

2,4-dinitro-phenyl-glutathione conjugate was evaluated by monitoring the 

increase in absorbance at 340 nm. CbE activity was measured by the UV 
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method of Mastropaolo and Yourno (1981) in the presence of 0.25 mM α-

naphtyl acetate, and the formation of naphthol monitored by the increase in 

absorbance at 235 nm (Barata et al., 2004). Lactate dehydrogenase (LDH) 

activity was determined according to Diamantino et al. (2001). Proteins were 

measured by the method of Bradford (1976) using serum albumin as standard. 

2.3.4.5 Gene responses 

Total RNA was isolated from the samples using Trizol reagent (Invitrogen, 

Carlsbad, USA) following the manufacturer’s protocol and quantified in a 

NanoDrop D-1000 Spectrophotometer (NanoDrop Technologies, Delaware, 

DE). RNA quality was checked in an Agilent 2100 Bioanalyzer (Agilent 

Technologies, Santa Clara CA). Quantities of 1 µg were retro-transcribed to 

cDNA using First Strand cDNA Synthesis Kit Roche®77 (Germany) and stored 

at -20ºC. Thirteen genes were selected for representation of different 

pathways/gene families:  HSP70, MT2, ACON, IDH, UGP, FAA, THIO, VTG, 

EcR, MIH, RXR, PGP, MRP4. The gene glyceraldehyde 3-phosphate 

dehydrogenase (G3PDH) was used as an internal control. For each of these 

genes primers were designed with Primer Quest (IDT Technologies, Coralville, 

IA) and are listed in Table 2.3. Aliquots of 10 ng were used to quantify specific 

transcripts in Lightcycler® 78 480 Real Time PCR System (Roche, Germany)  

using Lightcycler 480 SYBR Green I Master® (Roche, Germany). Relative 

abundance values of all genes were calculated from the second derivative of 

their respective amplification curve, Cp values calculated by technical 

triplicates. Cp values of target genes were compared to the corresponding 

reference genes. 

2.3.5 Data analysis 

Within each deployment date, post-exposure feeding rates, gene and enzymatic 

activity responses at the studied sites were converted to proportional responses 

relative to the surrogate lab controls. Proportional responses of all the studied 

12 sites were then compared using one-way ANOVA, followed by post-hoc 

Tukey’s multiple comparison test (Zar, 1996). Prior to analysis, data was log 
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transformed to meet ANOVA assumptions of normality and variance 

homoscedasticity.  

Table 2.3 Primer pairs designed from available D. magna sequences for 
amplification of the selected genes.  
 
  Primer sequence   

Genes forward  Reverse Amplicon 

G3PDH  GACCATTACGCTGCTGAATACG CCTTTGCTGACGCCGATAGG 100 
ACON AACTAACAACGGCACTGGCAC CTTCTCCGTTAGCGCCTTTG 81 

IDH CTGTTTTCCGCGAACCTATCC GACGACCAATGACAATGGGC 81 

THIO AGGCACACGCAATGTTTCC TTTGGCCGTGCTAACGATG 81 

FAA ACTGGAACCCCACCTGGAGT AACTTCGCATTCCACCACGT 81 

UGP GAATTGTGGCAAACCGCTTC TTCCATCAACACCGCTCATC 81 

HSP70 GACGTTGCTCCTCTGTCGCT TGGGATAGTGGTGTTCCGCT 81 

MT2 TGCGCTACTGGTGGTGAATG CTTGCAGCAGGCGGACTT 81 

VTG GATTGCCAAAGATGCCGGT TTCATCACCTCCTGCGAGC 100 

EcR GGGCAAGATGCTGAAGCTGT AGCCGAAATGGCGTTACG 81 

RXR GTGTCGAGTGCAAGGACGAG TTTTCCAGTTGGTTGAATGGG 100 

MIH GGCTTGCCTGAAAGTCTTGC TTGCGTTAGCGGCCAATT 81 

PGP GTATCCAGTGCGGAAGTGGC ACAGCGTATCGCTATTGCCC 100 

MRP4 CCCGATCCCTTTACGTCGAT GGTGGCGTCCTACATGAGTGT 100 

 

To explore causal-effect relationships between the studied environmental 

variables and parameters and the biological responses, Principal Component 

Analysis (PCA) and Partial Least Square Projections to Latent Structures 

regression (PLS) methods were used (Damásio et al., 2008). PCA was used to 

investigate the existing relationships between samples and variables and to 

deduce how many independent sources (components) were needed to explain 

the observed (experimental) data variance. These included two PCA performed 

on biological responses obtained in field (18) and lab exposures (12) and one 

conducted on environmental variables (44).  

PLS is a regression extension of PCA which was used to connect the 

information between biological responses (Y variables) and environmental (X) 

variables. PLS models can be expressed in terms of traditional regression 

coefficients, b, of the multilinear model (i.e. y = X b model), simplifying model 

interpretation for the general case where multiple latent variables are needed 

for a satisfactory data modeling and prediction. Information about the correlation 
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structure among variables and responses can be obtained using the VIP 

parameter. This parameter is a weighted sum of squares of PLS weights taking 

into account the amount of explained Y variance and it summarizes the 

information content of all latent and X variables (Wold et al., 1993). X variables 

having high VIP scores contributed greater to Y variance. We performed two 

PLS considering field and lab data. The latter analysis was limited to gene and 

post-exposure responses and organic contaminant residues. 

Since variables were very different and they were not measured using the same 

scale units, the data was auto-scaled prior to analysis (each element was 

subtracted by its column mean and divided by the standard deviation of its 

column). The number of PCA and PLS components was finally selected 

according to cross validation leaving one out prediction errors criteria (Wold et 

al., 2001). PCA and PLS analyses were conducted using the Matlab 6.0 

software (MathWorks, Natick, Massachusetts). 

2.4 Results 

2.4.1 Environmental water parameters 

From the 158 organic residues measured in the water samples collected from 

the 12 sites, 22 were not detected and the remaining ones were grouped into 37 

groups according to their mode of action or chemical structure. In some cases 

the groups depicted in Table 2.4 contained a single compound whereas in 

others the sum of many. The composition of each group and its full name is 

depicted in Table 2.2. In general, conductivity and suspended solids increase 

from upper to downstream reaches, being Llobregat the river having the highest 

levels. Water temperature was lower in Jucar sites. Measured oxygen levels in 

water and pH varied little across sites and were within ecological optimal values 

(Damásio et al., 2008). Selected contaminant groups varied dramatically across 

rivers and sites (Table 2.4). For most contaminant groups, the downstream site 

of Llobregat (L7) had the greatest values that on average were around 10 times 

higher than those of the rest of sites. As expected the PCA analysis performed 

for physico-chemical water parameters was dramatically influenced by site L7, 
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which alone explained 52.4% of data variance (Fig. 2.2 inlet graph). Without 

considering L7 and excluding four classes of contaminants that varied little 

across the remaining sites (warfarin, tricyclic antihistamins, tamsulosin, 

clopidogrel), the PCA resolved in five interpretable components that explained 

up to 79%of data variance (Table 2.5). 

Sample scores obtained from each of the five principal components were 

significantly correlated with 31 out of the 44 environmental factors considered. 

The first component (PC1) explained up to 34.7% of data variance, separated 

the three rivers (Fig. 2.2) and its sample scores were significantly (P<0.05) 

correlated with measured suspended solids, four metals, eight pharmaceutical 

groups, two industrial chemical groups (triazoles and alkylphenols), opiod 

residues of illicit drugs, azole fungicides and dexamethasone. PC2 explained up 

to 14.8% of data variance, and mainly separated E2 from the rest due to its low 

levels of conductivity, Ni and bisphenol A. The third, fourth and fifth components 

explained 30% of data variance and their sample scores were significantly 

correlated with the values of 8 environmental factors (Table 2.5). 

 
 
Figure 2.2 Representation of site scores for the Principal Component analyses 
performed on physico-chemical variables with (inlet graph) and without 
considering L7. 
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Table 2.4. Measured (Mean ± SD) physco-chemical water parameters across the studied river sites. Contaminant residues 
have been grouped in classes. See Table 2.2 for further explanation. Metal and organic contaminant levels are µg/L and ηg/L, 
respectively. The range (min-max) is also depicted. 
 

 
 

Rivers Llobregat Ebro Jucar 
Variables Mean SD Range Mean SD Range Mean SD Range 

T (oC) 21.9 1.7 19.9 23.9 20.8 1 19.9 21.8 17 3.5 14.6 22.2 
O2 (mg/l) 8.5 0.1 8.4 8.7 9.5 0.5 8.8 9.9 8.6 0.4 8.1 8.9 

Cond (µS/cm) 1338.5 221.6 1105 1625 712.8 410.5 368 1272 751.5 181 530 972 
pH 8.1 0.1 8 8.2 7.8 0.2 7.6 8.1 8.3 0.1 8.1 8.4 

SS (mg/l) 42.2 11.6 32.1 55.4 22.6 30.3 3.4 67.8 10.7 6.1 3.1 17 
As 3 1.8 1.7 5.7 1.4 0.1 1.3 1.5 1.1 0.3 0.8 1.5 
Co 2 2.2 0.6 5.2 0.6 0.6 0.2 1.5 0.4 0.1 0.3 0.5 
Cu 3.2 3.3 0.6 7.8 1.7 0.1 1.5 1.8 0.5 0.1 0.4 0.6 
Fe 559.4 615.6 43.4 1273.5 47.2 43.8 14.9 110.9 67.7 72 15.2 169.6 
Mn 92.6 124.4 8.5 277.6 8.3 3.4 5.9 13.2 3.6 3.5 1.1 8.6 
Ni 6.3 8.4 1.4 18.9 1.2 0.4 0.7 1.5 1.4 0 1.4 1.4 
Pb 1.1 1 0.2 2.2 0.6 0.4 0.2 1.2 0.2 0.2 0 0.5 
Zn 15.4 12.5 3.8 32.2 4.9 2.2 2.2 7.6 4.4 2.1 2.9 7.4 

APYR 1.3 0.2 1.2 1.6 1.2 0.1 1 1.3 0.7 0.4 0.4 1.2 
AOPIATES 1.6 1 0.8 2.8 1.2 0.6 0.8 2.1 1.8 0.6 0.9 2.2 

ANSAID 161.5 230.4 38.1 507 40.6 9.4 26.8 48 21.6 11.4 9.6 32.8 
ANTIB 25.2 27.7 8.9 66.7 11.4 2.4 7.8 13 9.8 4.3 7.2 16.2 
WARF 1 <0.1 1 1 1 <0.1 1 1 1 <0.1 1 1 
ACRID 5.2 7.2 1.3 15.9 1.8 0.5 1.4 2.5 1.2 0 1.2 1.3 
FIBRAT 83.1 127.4 13.7 274 10.1 5.5 4.5 17.5 3.1 3.1 0.2 7 
STATIN 7.2 0.4 6.9 7.7 7.9 1.6 6.9 10.3 2.8 1.4 1.3 3.9 

ANTIHIST 10.3 2.2 9.2 13.5 9.2 0.1 9.2 9.3 9.2 <0.1 9.2 9.2 
CIMET 0.5 nd <0.1 0.5 0.5 nd <0.1 0.5 0.5 nd <0.1 0.5 



 

 

 

 
Table 2.4 continuation 

Rivers Llobregat Ebro Jucar 
Variables Mean SD Range Mean SD Range Mean SD Range 

BBLCK 97.3 157.6 18.3 333.7 18.6 0.1 18.5 18.7 17.2 2.5 13.4 18.4 
ANGIO 6.7 7.2 1.8 17.4 2.2 1.3 0.6 3.6 1 0.4 0.5 1.5 

DIUREAS 1.7 1.2 0.9 3.5 1 0.1 <0.1 1.1 <0.1 nd <0.1 <0.1 
DIURET 125.4 196.8 20.1 420.4 5.1 2.9 1.5 8.4 1.1 0.6 0.6 1.7 
SEROT 54.5 54.6 25.7 136.3 24.5 0.7 23.7 25.1 24.8 0.9 24.1 26 
GABA 22.4 9.7 16.7 36.8 16.8 0.4 16.2 17.1 16.5 0.6 16.2 17.5 

ADREN 1.4 0.5 0.7 2 0.7 0 0.7 0.8 1.4 0.4 0.8 1.6 
ANTHEML 9.8 3.8 7.8 15.5 6.9 1 5.5 7.7 7.1 1 5.7 8.2 

DEXTH 1.5 nd <1 1.5 <1 nd <1 <1 2.1 0.5 1.3 2.3 
IOPROM 1.3 0.5 1.1 2 1.1 nd <0.1 1.1 1.1 0.1 <0.1 1.1 
TAMSUL 0.2 <0.1 0.2 0.2 0.2 <0.1 0.2 0.2 0.2 <0.1 0.2 0.2 
CLOPID 5 2.4 3.7 8.6 3.6 0.1 3.6 3.7 3.5 0 3.5 3.5 
FZOLE 132.7 nd <0.6 132.7 8.7 6.6 <0.6 15.9 22.4 38.1 2 79.4 

OPS 13 13.2 1.5 31.9 10.4 12 <0.6 18.8 11.9 5.7 5.6 17.7 
HTRIAZ 30.5 51.2 <0.6 89.6 22.5 14.1 <0.6 38.6 17.4 4.7 <0.6 22.5 

POTHER 19.7 25 4.8 57 3.9 4.4 <0.6 8.7 <0.6 nd <0.6 <0.6 
COCAIN 16.6 5.5 9.5 22.5 7.7 3.7 2.4 10.3 348.1 688 3.3 1380.1 
AMPHET 40.3 70.1 2.9 145.4 6 4.7 1.5 12.2 5.2 9.3 0.3 19.1 
OPIOIDS 15.3 24.2 1.5 51.5 1.6 0.7 1 2.6 0.2 0.1 0.1 0.3 

TRIAZOLES 2405 3916.3 383.5 8279.1 595.7 332.6 215.5 1014.2 120.4 78.1 16.9 196.8 
PARABEN 20.3 12.6 10.7 <0.5 6.8 5.6 1 12.3 30.7 37.6 2 81.4 

BPA 80.8 22.3 51.5 103.5 37.9 52.8 1.7 114 62.8 14.5 54.5 84.4 
CAFF 433.1 525.6 154.5 1220.9 210 122.4 51.7 340.9 506.5 758.3 109.6 1643.7 

E2 4 2.7 1.5 6.3 1.4 0.6 0.9 2.1 1 0.5 0.6 1.5 
APE 344.5 460 63.4 1032.1 224.9 232.5 39.6 529.4 34.9 32.4 5.1 79.9 
PFR 431.3 624.5 99.8 1367.8 159.6 104.3 45.6 298.4 128.5 41.4 93.2 175.6 
PFCs 32.4 35.5 5.1 80 30 17.7 9.5 48.2 33.7 45.5 7.3 101.9 
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Table 2.5 Results of the PCA performed on physico-chemical data depicted in 
Table 2.3. Site L7 and chemical groups WARF, ANTIHIST, TAMSUL, CLOPID 
have been removed from the analyses. % VAR, variance explained. Significant 
(P<0.05) Pearson correlations coefficients between sample PC scores and 
those of chemical classes are also depicted. * 0.05 < P < 0.01; ** P < 0.01. 
 

PC1 PC2 PC3 PC4 PC5 

Eigenvalues 15.3 6.5 5.2 4.6 3.4

% VAR 34.7 14.8 11.9 10.5 7.6

Correlation   

SS 0.686*  

As  0.823**  

Cu  0.688*  

Mn  0.904**  

Zn  0.617*  

APYR 0.624*  

ANSAID 0.756**  

FIBRAT 0.908**  

ANGIO 0.746**  

DIUREAS 0.831**  

DIURET 0.930**  

SEROT 0.688*  

GABA 0.706*  

POTHER 0.765**  

OPIOIDS 0.956**  

APE 0.651*  

TRIAZOLES 0.763**  

DEXTH -0.857**  

FZOLE -0.644*  

COND  0.716*  

Ni   0.654*  

BPA  0.882**  

ACRID  -0.748**  

AMPHET  -0.604*  

CAFF  -0.658*  

ANTIB  -0.796**  

IOPROM  0.763** 

ANTHEML  0.643* 

PARABEN  -0.604* 

PFR  -0.695* 

T   0.702*
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2.4.2 Biological responses 

The mean percentage of animals recovered (dead and alive) from the chambers 

after field exposures were always higher than 95% and so mean survival rates. 

Except for carboxylesterase, the studied proportional responses in field 

transplanted D. magna varied significantly (P<0.05, ANOVA tests) across sites 

and rivers (Table 2.6). The PCA analysis performed on the remaining 18 

significant (P<0.05) D. magna proportional responses and the Shannon’s 

diversity index resolved into five interpretable components that explained 89.8% 

of data variance (Table 2.7). The sample scores of the five obtained 

components correlated significantly (P<0.05) with the mean proportional 

responses of the studied biological variables establishing six clusters. Post-

exposure feeding and ChE proportional responses decreased in Llobregat and 

Ebro rivers from upstream to downstream reaches but not in Jucar and co-

varied with the Shannon’s diversity (Fig. 2.3 A). The rest of D. magna 

responses were clustered into five additional groups according to their variation 

across sites (Fig. 2.3 B-E). Interestingly proportional responses of gene 

markers, but those of the gene RXR, grouped differently from biomarkers.  

From the 14 proportional biological responses determined for lab exposures 

only 12 varied significantly (P < 0.05, based on ANOVA) across sites (see Table 

2.8). PCA conducted on those 12 variables identified three interpretable 

components explaining 84.1% of data variance (Table 2.7). PC1 explained most 

variance of data (58%) and its sample scores correlated significantly with mean 

proportional values of 9 out of the 11 genes considered. Sample scores of PC2 

correlated with mean proportional responses of MRP4 and MT2 and 

proportional post-exposure feeding rates with PC3’s sample scores. The 

resulting five interpretable clusters of laboratory D. magna responses are 

depicted in Fig. 2.4.  

Bi-variate Pearson correlations between mean site proportional responses of D. 

magna individuals transplanted in the field or exposed in the lab to organic 

eluates of water samples collected at the studied sites showed significant 

(P<0.05)  correlations for EcR, MIH, FAA, UGP, MRP4 (Table 2.9). 



 

 

 

Table 2.6 Proportional biological responses (Mean SE; N =5) measured in D. magna individuals deployed at the studied sites.  
Different letters means significant (P<0.05)  differences across sites following ANOVA and Tukey’s multiple comparison tests.  
The number of species (S) and Shannon’s diversity index (H) are also depicted. 
 

 
 

Site

Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE

MT2 1,73 0,08 bc 1,80 0,26 bc 2,57 0,45 c 3,82 0,99 c 1,41 0,16 b 1,24 0,23 b 0,56 0,05 a 1,34 0,29 b 1,11 0,04 b 0,84 0,10 a 1,38 0,17 b 1,29 0,37 b

RXR 1,77 0,18 bc 1,77 0,17 bc 1,53 0,14 b 1,57 0,12 b 1,66 0,16 b 1,66 0,05 b 1,41 0,10 b 1,42 0,07 b 1,03 0,08 a 1,00 0,09 a 1,19 0,07 a 1,44 0,09 b

ECDY 0,77 0,14 a 0,77 0,10 a 0,89 0,16 a 0,93 0,05 a 1,24 0,12 ab 1,19 0,19 ab 0,71 0,15 a 0,88 0,11 a 1,12 0,08 a 0,99 0,26 a 1,31 0,13 b 1,35 0,16 b

VTG 0,63 0,06 bc 0,43 0,07 ab 0,20 0,05 a 0,16 0,02 a 0,25 0,03 ab 0,29 0,07 a 0,23 0,03 a 0,15 0,05 a 0,67 0,18 b 0,21 0,11 a 0,23 0,08 a 0,51 0,22 ab

MIH 0,71 0,08 a 0,95 0,16 ab 0,61 0,10 a 0,70 0,06 a 1,07 0,05 b 1,16 0,14 b 0,87 0,03 b 0,84 0,06 ab 0,93 0,07 ab 0,80 0,09 ab 0,95 0,09 ab 1,07 0,14 b

HSP70 1,49 0,17 bc 1,53 0,14 bc 1,29 0,12 ab 1,49 0,23 b 1,10 0,11 b 0,98 0,14 a 0,92 0,05 a 1,17 0,23 ab 0,89 0,03 a 0,86 0,09 a 1,05 0,12 ab 1,26 0,12 ab

ACON 1,27 0,07 bc 1,39 0,09 bc 1,11 0,12 a 1,00 0,01 a 0,98 0,05 ab 1,28 0,07 b 1,10 0,08 a 1,12 0,04 a 1,19 0,11 a 1,05 0,07 a 1,34 0,09 b 1,63 0,05 c

FAA 0,63 0,06 a 0,75 0,04 a 0,87 0,08 ab 0,91 0,08 b 1,00 0,02 ab 1,06 0,04 b 0,74 0,05 a 0,86 0,14 ab 0,96 0,07 b 0,98 0,19 b 1,21 0,14 c 1,32 0,15 c

IDH 0,99 0,07 ab 0,98 0,07 ab 0,72 0,06 a 0,70 0,04 a 0,85 0,06 b 0,91 0,04 ab 0,78 0,02 a 0,83 0,02 a 1,08 0,01 ab 0,97 0,03 ab 1,14 0,04 b 1,20 0,06 b

THIO 0,98 0,09 ab 0,78 0,03 ab 0,79 0,07 ab 0,83 0,04 ab 0,90 0,18 ab 0,82 0,07 ab 0,67 0,04 a 0,81 0,09 ab 0,87 0,11 ab 0,93 0,08 ab 1,07 0,11 b 1,13 0,09 b

UGP 0,85 0,05 a 0,91 0,06 ab 0,77 0,04 a 0,70 0,02 a 1,24 0,06 ab 1,17 0,12 b 1,08 0,04 ab 1,21 0,10 c 1,34 0,06 c 1,02 0,10 ab 1,24 0,05 c 1,12 0,11 b

PGP 0,79 0,03 a 0,66 0,08 a 0,91 0,16 a 1,39 0,08 b 1,20 0,22 b 1,22 0,23 b 0,51 0,10 a 1,20 0,35 b 0,88 0,08 a 1,09 0,24 ab 1,66 0,47 c 1,46 0,35 bc

MRP4 0,85 0,08 ab 0,99 0,05 ab 0,75 0,05 a 0,74 0,05 a 1,26 0,05 b 1,40 0,10 c 1,18 0,04 bc 1,49 0,15 d 0,97 0,05 b 0,96 0,09 ab 1,35 0,12 cd 1,34 0,23 cd

GST 1,07 0,05 b 1,06 0,03 b 0,96 0,04 ab 0,92 0,02 ab 1,05 0,08 b 0,92 0,06 ab 1,05 0,04 b 1,01 0,09 ab 0,88 0,05 a 0,89 0,06 a 0,95 0,05 ab 0,92 0,04 ab

LDH 1,09 0,05 b 1,05 0,04 ab 1,05 0,06 ab 1,00 0,06 ab 1,05 0,07 ab 0,96 0,07 ab 1,07 0,06 ab 1,18 0,11 b 0,87 0,06 a 0,87 0,07 a 0,96 0,06 ab 0,88 0,02 ab

ACHE 1,06 0,03 b 0,92 0,02 bc 1,00 0,04 bc 0,89 0,01 b 1,04 0,03 b 0,99 0,04 ab 0,96 0,03 ab 0,81 0,07 a 1,01 0,02 bc 1,03 0,07 b 1,08 0,03 b 0,92 0,05 b

CBE 0,87 0,03 a 0,98 0,05 a 0,86 0,05 a 0,83 0,06 a 0,97 0,09 a 0,96 0,10 a 0,98 0,11 a 0,80 0,08 a 0,99 0,11 a 0,97 0,15 a 0,87 0,10 a 0,71 0,11 a

CAT 0,99 0,04 ab 0,93 0,03 a 0,95 0,02 a 0,97 0,05 ab 1,07 0,07 b 0,95 0,05 a 0,92 0,06 a 1,12 0,05 b 0,79 0,05 a 0,79 0,05 a 0,97 0,07 ab 0,87 0,09 a

Feeding 0,77 0,02 cd 0,63 0,05 c 0,55 0,06 bc 0,43 0,02 a 0,83 0,05 c 0,86 0,07 c 0,62 0,06 c 0,40 0,06 a 0,31 0,06 a 0,50 0,10 b 0,58 0,07 b 0,49 0,05 a

S 19,00 7,00 8,00 3,00 10,00 7,00 4,00 5,00 8,00 10,00 14,00 1,00

M 2,02 0,78 0,92 0,34 1,10 0,69 0,45 0,58 0,70 1,12 1,44 0,10

H 2,61 1,71 1,67 1,04 1,88 1,33 1,17 1,13 0,93 1,92 1,79 0,30

JUC6JUC5JUC4JUC2EBR2 EBR3 EBR4 EBR5LLO3 LLO4 LLO5 LLO7
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Figure 2.3 Proportional D. magna responses (Mean ± SE, N = 5) of individuals 
deployed across the studied sites. Responses have been grouped according to 
the clusters defined in previous Principal Component analyses. In Graph A the 
Shannon’s diversity index H is also depicted. Each graph corresponds to a 
different cluster. 
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Figure 2.4 Proportional D. magna responses (Mean ± SE, N = 5) of individuals 
exposed to organic eluates obtained from water samples collected at the 
studied sites. Responses have been grouped according to the clusters defined 
in previous Principal Component analyses. Each cluster graph has a different 
letter. For clarity the cluster of graph B has been divided in two graphs. 
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Table 2.7 Results of Principal Component  analyses   performed on biological 
responses obtained in field and lab exposures. % VAR,  variance explained. 
Significant (P<0.05) Pearson correlation coefficients between sample PC 
scores and those of biological responses are also depicted. * 0.05 < P < 0.01;  
** P < 0.01. 
 
 Field      Lab   
 PC1 PC2 PC3 PC4 PC5  PC1 PC2 PC3 
Eigenvalues 6.5 3.3 2.8 2.5 1.9  6.9 1.9 1.3
% VAR 34.4 17.1 14.9 13.2 9.9  57.3 16.1 10.7
Correlation          

UGP 0.907**       0.909**   
MIH 0.811**       0.668*   

HSP70 -0.710**       -0.751**   
MRP4 0.879**        0.918**  
MT2 -0.858**        -0.751**  
RXR   0.886**     0.923**   
EcR     0.875**    0.916**   
FAA     0.865**    0.824**   
THIO     0.663*    0.968**   
PGP     0.968**       
VTG      0.832**      

ACON      0.863**   0.912**   
IDH      0.750**   0.915**   

     
GST   0.760**        
LDH   0.783**        
CAT   0.887**        

ACHE       0.931**     
FED       0.611*    0.923**

H       0.807**     
 

2.4.3 Relationships between environmental parameters and 

biological effects 

PLS models performed to relate biological responses with environmental 

variables explained from 84 to 97% of the total variance of the former. In all 

analyses two PLS components were selected. PLS results for field variables are 

depicted in Table 2.10. For clarity we only depicted regression coefficients 

associated to VIP scores higher than 1. For interpretation purposes a cluster 

analysis was performed on regression coefficients, which differentiated eight 

clusters for biological and environmental variables, which are depicted in Table 

2.10.  



 

 

 

 
 
 
Table 2.8 Proportional biological responses (Mean SE; N =5) measured in D. magna individuals  exposed in the lab to water 
organic extracts of water samples obtained at the studied sites.  Different letters mean significant (P<0.05) differences across 
sites following ANOVA and Tukey’s multiple comparison tests. 
 

 

 

Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE

MT2 2,66 0,27 c 0,93 0,09 ab 0,85 0,07 ab 0,95 0,06 ab 0,98 0,25 ab 0,63 0,05 a 1,29 0,15 b 0,91 0,10 ab 0,64 0,06 a 0,88 0,04 ab 0,96 0,13 ab 0,83 0,07 ab

RXR 1,00 0,05 a 0,93 0,06 a 0,92 0,05 a 0,81 0,03 a 1,18 0,12 b 1,54 0,09 a 1,10 0,10 ab 0,99 0,09 a 1,35 0,04 c 1,01 0,03 a 0,95 0,08 a 0,97 0,08 a

ECDY 1,15 0,16 ab 0,90 0,14 a 1,11 0,17 ab 0,96 0,03 a 1,25 0,23 ab 1,30 0,14 b 1,07 0,11 ab 1,03 0,19 ab 1,63 0,24 b 1,08 0,07 ab 0,99 0,11 ab 1,02 0,08 ab

VTG 1,92 0,70 a 2,64 0,79 a 0,46 0,08 a 1,25 0,37 a 1,38 0,43 a 0,50 0,07 a 1,35 0,57 a 0,93 0,26 a 2,17 1,14 a 1,27 0,31 a 0,99 0,29 a 0,99 0,14 a

MIH 0,98 0,09 a 0,78 0,10 a 0,83 0,08 a 0,91 0,11 a 1,60 0,27 b 1,05 0,10 a 1,18 0,11 ab 1,13 0,11 ab 1,37 0,10 b 1,17 0,05 ab 1,08 0,14 a 1,07 0,02 a

HSP70 0,97 0,10 ab 1,13 0,12 b 0,98 0,11 ab 1,04 0,04 ab 0,78 0,16 a 0,68 0,11 ab 0,81 0,10 ab 0,83 0,08 ab 0,70 0,07 a 1,02 0,11 ab 0,83 0,15 ab 1,22 0,22 b

ACON 1,01 0,03 a 0,90 0,07 a 0,95 0,05 a 0,92 0,03 a 1,29 0,08 b 1,20 0,02 b 1,06 0,05 ab 1,05 0,06 a 1,31 0,02 b 1,10 0,02 ab 1,02 0,06 a 1,07 0,03 ab

FAA 1,08 0,10 a 0,89 0,08 a 1,11 0,03 ab 0,96 0,04 a 1,43 0,22 bc 1,47 0,16 bc 1,06 0,13 a 1,18 0,26 ab 1,76 0,22 c 1,06 0,12 a 1,11 0,24 ab 1,60 0,13 c

IDH 1,05 0,04 ab 0,92 0,05 a 0,99 0,03 a 0,93 0,02 a 1,13 0,02 ab 1,23 0,07 b 1,07 0,05 ab 1,12 0,06 ab 1,27 0,07 b 1,04 0,02 ab 1,05 0,06 ab 1,16 0,06 ab

THIO 1,14 0,10 ab 0,82 0,10 a 0,95 0,07 a 0,95 0,03 a 1,35 0,19 b 1,72 0,16 c 1,07 0,07 ab 1,10 0,13 ab 1,47 0,08 bc 1,06 0,03 ab 1,03 0,11 ab 1,15 0,10 ab

UGP 0,96 0,07 b 0,87 0,07 a 0,90 0,04 a 0,90 0,02 a 1,25 0,13 b 1,30 0,18 b 1,01 0,06 b 1,11 0,16 b 1,36 0,07 b 1,01 0,02 b 1,07 0,07 b 1,09 0,06 b

PGP 1,30 0,31 a 0,74 0,16 a 1,18 0,38 a 1,84 0,83 a 1,39 0,18 a 1,82 0,49 a 0,71 0,09 a 1,25 0,19 a 0,96 0,18 a 0,86 0,10 a 0,94 0,09 a 0,96 0,11 a

MRP4 0,42 0,09 a 0,99 0,10 a 0,96 0,03 a 1,04 0,08 a 1,79 0,43 a 1,62 0,47 a 1,62 0,20 a 4,04 1,12 b 1,67 0,12 a 1,15 0,06 a 1,02 0,08 a 1,26 0,11 a

Feeding 0,89 0,02 c 0,87 0,02 c 0,78 0,05 b 0,67 0,02 a 0,95 0,03 d 0,64 0,03 a 0,62 0,04 a 0,76 0,05 b 0,87 0,07 c 0,89 0,03 c 0,99 0,02 d 0,76 0,04 b

JUC5 JUC4 JUC2LLO3 LLO4 LLO5 LLO7 EBR2 EBR3 EBR4 EBR5 JUC6
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Proportional responses of gene markers encoding for specific metabolic and 

molting processes (PGP, EcR, FAA, MIH, UGP, MRP4) were negatively related 

with up to 18 classes of contaminants. Proportional feeding rates, and those of 

GST, LDH, CAT and RXR were negatively and positively related with measured 

environmental factors. Up to 9 classes of organic contaminants, 6 metals and 

water temperature were positively related with responses of HSP70 and/or 

MT2. Nine environmental variables including (estrogenic compounds, 

antibiotics, β2-adrenergic agonists) were related positively with species diversity 

and proportional cholinesterase activity whereas fungicides, pyrine, analgesics, 

conductivity and suspended solids were negatively related with HSP70 and 

MT2. Environmental variables were grouped into three major and five minor 

clusters. One of the major clusters included pharmaceuticals (analgesics, lipid 

regulators, anticoagulants, sulfonylurea diuretics),   opiod’s illicit drugs, triazole 

and alkylphenol compounds, and covaried negatively with the response of 9 

genes, and positively with that of three genes, feeding and three biomarkers. 

The cluster that included the metals As, Mn, Ni, diuretic, psychiatric drugs and 

anti-asthma compounds were positively related with the response of MT2 and 

HSP70 and negatively with that of MRP4, MIH, UGP. 

Table 2.9 Pearson correlation coefficients obtained between D. magna 
responses obtained in the field and lab exposures considering either mean 
responses across sites or PLS regression coefficients estimated for organic 
pollutants. N, sample size .* P<0.05. 
 

Responses Mean responses per site PLS regression coefficients 
VTG 0.45 0.30 
MT2 0.07 0.16 
RXR 0.22 0.58* 
EcR 0.61* 0.54* 
MIH 0.64* 0.65* 

HSP70 0.38 0.35* 
ACON 0.30 0.22 
FAA 0.62* 0.60* 
IDH 0.47 0.07 

THIO 0.27 -0.08 
UGP 0.66* 0.45* 
PGP 0.40 0.31 

MRP4 0.69* 0.61* 
FED 0.08 -0.07 

   
N 12 33 
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The third major cluster included antibiotics, illicit drugs and caffeine that were 

negatively related with the response of most traits except with those of ACHE 

and H that covaried positively with them. From the remaining minor clusters and 

environmental variables those having greater coefficients were those of 

estrogenic compounds that were positively related with the response of VTG, 

ACHE, H; the cluster of fungicides and antipyrine analgesics that covaried 

negatively with the response of ACHE and H; opiate analgesics that covaried 

negatively with responses of CAT and H: and temperature, which was positively 

related with feeding and RXR responses. 

From the 12 biological responses considered in lab exposures, PLS regression 

coefficients of 8 of them (RXR, EcR, MIH, HSP70, FAA, UGP, MRP4) were 

significantly (P<0.05, N = 33) and positively correlated with those of field 

responses (Table 2.9). This means that the relative response of eight genes to 

the studied organic contaminant classes was similar in field and lab exposures.  

2.5 Discussion 

This study aimed to identify biological active pollutants using in situ D. magna 

responses. It was implemented in three Mediterranean rivers differing in 

anthropogenic pressures and hence on pollution impacts. Indeed 

physicochemical water parameters such as water temperature, conductivity, 

suspended solids, five metals and 23 organic chemical functional classes 

differentiated the three rivers and within each river most and less polluted sites. 

Eighteen D. magna responses measured in individuals deployed in the field 

also differentiated the three rivers and sites. Biological responses clustered into 

six distinct groups. Post-exposure feeding rates and cholinesterase activity co-

varied similarly with the diversity of macroinvertebrate communities from the 

studied sites.  

 

Table 2.10 PLS regression coefficients having VIP scores higher than 1. 
Clustered biological and environmental variables are depicted in grey. 



 

 

 

VTG THIO PGP EcR IDH ACON FAA MT2 HSP70 GST LDH CAT FED RXR MRP4 MIH UGP ACHE H 

ANSAID - - -0.04 - -0.074 -  0.071 0.044  
ACRID -0.07  - -0.089 0.079  0.081 0.103 0.073  
STATIN   -0.09 0.137 0.138 0.167 0.142 0.136  

DIUREAS - - - - -0.064 - 0.035 0.126 0.117 0.081 0.046 - -  
OPIOIDS - - -0.05 - - 0.024 0.031 0.039 0.033 0.027 - -  

TRIZOLES -  - 0.068 0.064 0.074 0.072 0.086  
APE - - - -0.07 -   

FIBRAT - - - - - 0.035 0.024 -0.069 - -  
DEXTH 0.077 0.053 0.043 0.088 0.066 0.074 -0.084 - - - -  

AOPIATES  - -0.07 -0.116 - - - - -0.095 -
PARABEN 0.106 0.094 0.091 0.12 0.079  0.114  
POTHER  0.022 0.002 - 0.112 0.086 0.049 0.029 0.057 -0.049 - 0.089 

As  -   - - - 0.103 0.042  -0.07 - - 0.092 
Mn   0.017 0.007 0.032 0.106 0.04 -0.04  -0.051 - -  
Ni    0.052 0.049  - - -0.057 - -0.06  

DIURET  - -0.03 - 0.088 0.087 - 0.049 -0.061 - -  
SEROT   0.14 0.06 -0.08 -0.06 -0.08 -0.05 -0.04  
ADREN 0.116  0.14 0.079  -0.099 - - 0.131 0.113 

Cond   -0.05 0.075 0.085  - - - -0.105 -
IOPROM 0.096   0.081 0.066  - -0.08  

GABA -0.05 -0.04 -0.05 0.08 -0.10 -0.08 -0.06 -0.08 -0.07  
ANTIB -  - - - -0.142 -0.09  0.082 -0.09 - 0.132 0.153 
BBLCK -0.10  -0.06 -0.09 -0.18 -0.12 -0.08  0.13 0.19 

COCAIN -   -0.079  - - 0.1 
AMPHET -  - - - -0.111 - - -0.074  - -  

CAFF -   -0.077 -0.07  - - 0.091 
E2 0.226  - - - 0.071 0.101  0.093 -0.12 - - 0.189 0.208 

APYR 0.088   0.06 0.103 -0.129 -
FZOLE 0.08  0.073 0.072 0.157 0.121  -0.175 -0.21 

    
CIMET -    -  
ANGIO -   - 0.064 -0.079  -  

    
Zn  0.121   0.083 0.088 0.057   

OPS 0.103 0.066  0.063   
    

SS   - - 0.111 0.077 - - -0.149 -
Co    - - 0.052 0.118 0.078 - - -0.13  

PFCs  0.091 0.1 0.117 0.145 0.073 0.123 
    

Fe    0.083 0.091 0.05   
ANTHEML  -0.13 -0.12 -0.13  -0.11 -0.10 -0.10 -0.06  

T   0.077 0.074  0.084 0.111 0.151 -0.084  
HTRIAZ   0.07 -0.083  0.073 0.06  

PFR   -0.096   
Pb    0.074  0.07  
Cu  -0.05  0.078  0.053 0.071 0.074 0.082 -0.096  

BPA    - -  
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Previous studies performed in the Llobregat and Besós rivers using D. magna and 

field collected caddisfly larvae also found a good correlation between the ecological 

quality of riparian invertebrate communities, D. magna feeding rates and 

cholinesterase activity in both D. magna and caddisfly larvae (Damásio et al., 2011; 

Damásio et al., 2008). Thus in situ D. magna responses of feeding rates and 

cholinesterase activity can be considered good markers of ecological quality. Indeed 

post-exposure feeding rates have already been used in several studies to assess 

ecological quality of river biota (Barata et al., 2007; Damásio et al., 2011; Mc William 

and Baird, 2002; Puértolas et al., 2010). A second cluster included three biomarkers 

and the retinoic X receptor gene whose levels were inhibited towards downstream 

locations in Llobregat and Ebro River but increased in Jucar. Wang et al (2017) 

found that mRNA levels of the retinoic X receptor were high in reproductive females 

and were inhibited by insecticide terpenoids like pyriproxyfen. Thus, higher levels of 

RXR may indicate optimal conditions for Daphnia growth and reproduction and low 

levels increasing concentrations of insecticides. Enzymatic activities of CAT, GST 

and LDH followed similar response patterns than RXR thought less apparent. In the 

Llobregat river these enzymatic activities hardly varied across sites (values 

approached 1) but in downstream sites of the Ebro river increased, whereas in most 

sites of the Jucar river decreased. These results are consistent with previous studies 

that also reported no changes of CAT and GST activities across the same stations of 

Llobregat (Damásio et al., 2011). Inhibition or enhanced enzyme activities of CAT 

and GST in   deployed in the field have been related to the presence of 

organophosporous pesticides, herbicides, alkylphenols, fungicides, metals and 

polycyclic aromatic hydrocarbons (Barata et al., 2007; Damásio et al., 2008). 

Another cluster was composed of genes encoding for specific responses such as 

sugar metabolism (UGP), molting (MIH) and xenobiotic transporter activity (MRP4). 

The responses of these genes varied across rivers and sites being down-regulated 

in Llobregat, up-regulated in Ebro and down and up-regulated in Jucar. There is 

reported evidence that UGP and MRP4 in D. magna are deregulated by psychiatric 

drugs and metals (Campos et al., 2014; Campos et al., 2013). A fourth cluster 

grouped genes codifying two stress proteins MT2 and HSP70 (Ho, 2008; Poynton et 

al., 2007). Metallothioneins like MT2 are involved in metal detoxification, binging to 

them and hence facilitating metal metabolism, whereas HSP70 protect other proteins 
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under stress (Asselman et al., 2013; Bond and Bradley, 1997; Haap and Köhler, 

2009; Haap et al., 2008). Levels of mRNA of these two genes and specially those of 

MT2 were up-regulated in downstream sites of Llobregat that also had the highest 

levels of metals and of most other pollutants. A fifth  cluster included genes having 

distinct functions such as those encoding for xenobiotic transporter proteins (PGP), 

those involve in the metabolism of amino acids (FAA) and lipids (THIO) and the gene 

encoding for the ecdysone receptor (EcR) (Campos et al., 2014; Campos et al., 

2013; Kato et al., 2007). The response of these genes was up-regulated at the 

downstream sites of Llobregat and Jucar and down-regulated at E4 in Ebro river. 

Previous studies have reported that pharmaceuticals and pesticides deregulated 

those genes (Campos et al., 2014; Campos et al., 2013; Mu and Leblanc, 2004; 

Wang et al., 2011). A sixth cluster included vitellogenin and two genes from the 

Krebs cycle (ACON, IDH). mRNA levels of those genes  varied between rivers and 

across sites as follows: within river basins mRNA gene levels decreased towards 

downstream sites in Llobregat, remained unchanged in Ebro and increased towards 

downstream reaches in Jucar. Note also that levels of VTG were always down-

regulated relative to the surrogate lab control having the greatest levels of 

deregulation in Ebro. (Hannas et al., 2011) recently reported that the putative VTG 

gene in D. magna acts like a general stress gene that could be either up or down-

regulated by many contaminants. There is also evidence that the transcripts of the 

two Krebs cycle genes (ACON, IDH) are deregulated by pollutants (Campos et al., 

2013). 

A further characterization of the relationships between measured responses and 

environmental factors was performed with the aid of the PLS excluding out L7. The 

most important relationships allowed to group biological responses into eight groups 

that were affected similarly by environmental parameters. These include 

cholinesterase and diversity responses that were affected negatively by conductivity, 

suspended solids in water, fungicides and antipyrine analgesics and positively by -

blockers, β2-adrenergic agonists and antibiotics. Residue levels of antipyrine 

analgesics and β2-adrenergic agonist were probably too low ≤2 ηg/L to have any 

effect on the measured responses and those of -blockers hardly varied across most 

sites. In this study conductivity measured salinization that in Mediterranean rivers is 
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an important problem that deteriorates water quality (Damásio et al., 2011). High 

levels of suspended solids associated to anthropogenic impacts are also known to 

impair the ecological quality of rivers (Damásio et al., 2011). Fungicides are also 

known to reduce diversity of riparian communities directly impairing the physiology of 

aquatic organisms and indirectly by reducing fungus biomass and hence food for 

shredders (Maltby et al., 2009). There is evidence that low levels of antibiotics 

reduce the microbial load of invertebrates, promoting its growth and reproduction 

(Zalewski et al., 2011). Thus low levels of antibiotics could be beneficial for 

invertebrates and thus may increase diversity. Previous studies have reported that 

organophosphorous or carbamate insecticides inhibit cholinesterase acticities of  D. 

magna at about 100 ηg/L (Barata et al., 2007; Barata et al., 2004).  Therefore, 

measured organophosphorours and carbamate pesticides residue levels in water 

were probably too low (≤2 ηg/L) to have impaired cholinesterase activity in Daphnia. 

The cluster of the remaining biomarkers (CAT, GST, LDH) was related positively with 

a cluster of eight organic chemicals (i.e.analgesics, lipid regulators, diuretics, illicit 

drugs, trizoles) and negatively with up to 11. Excluding out pesticides, sublethal 

effects of organic chemical substances to D. magna rarely occur below µg/l 

(Constantine and Huggett, 2010; Yang et al., 2013). This means that from the above 

mentioned pollutant groups, residues of trizole compounds, NSAID analgesics and 

lipid regulators were the most likely to affect biological responses of deployed D. 

magna individuals. Nevertheless for these chemical groups effects on D. magna 

have been reported at the mg/L range (Heckmann et al., 2007; Seeland et al., 2012; 

Zurita et al., 2007). 

The cluster of metallothionein and heat shock protein 70 was related positively with 

most studied environmental factors. This is expected to occur since these two 

proteins are known to be induced under stress acting as a detoxification 

mechanisms to metals (MT2) or protecting proteins (HSP70). (Asselman et al., 2013; 

Bond and Bradley, 1997; Haap and Köhler, 2009; Haap et al., 2008). Interestingly 

MT2 responses obtained in the field were not related with those observed in lab 

exposures to organic eluates neither their PLS regression coefficients. This means 

that responses of MT2 in the field were related to other factors than organic 

pollutants. Metals like As, Mn, Ni and conductivity were positively related with MT2, 
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which support recent findings reporting that mRNA levels of MT2 are inducible by 

several metals (Asselman et al., 2013).  Genes encoding for key enzymes of the 

Krebs cycle such as IHD and ACON, VTG and those involved in the lipid (THIO) or 

xenobiotic metabolism (PGP) responded differently in the field and lab exposures. 

According to our experimental design biological responses to lab exposures should 

mimic those of the field for organic chemicals. This means that for those responses, 

the obtained PLS-relationships with measured organic residues have to be 

considered with caution since they can be associated to other sources of 

contamination than those measured in this study.  This was the case for mRNA 

levels of vitellogenin in D. magna that was positively related with estrogenic steroids 

but not with other known estrogenic compounds such as alkylphenols, bisphenol A 

and triazoles (De Castro-Català et al., 2013). Furthermore, obtained PLS 

associations of vitellogenin in field exposures were not correlated with those 

obtained in lab exposures. In a previous study (De Castro-Català et al., 2013) 

reported a positive relationship between estrogenic compounds and the number of 

eggs per clutch in freshwater snails deployed to the same rivers and sites. Contrary 

to crustaceans like Daphnia (Hannas et al., 2011), gastropods respond to estrogenic 

compounds (Castro et al., 2007; Stange et al., 2012). Differences in the exposure 

scenario and/or variations in gene responses to environmental stressors may also 

explain the observed lack of relationships between field and lab exposures. During 

field assays animals were directly exposed to the river water flow and suspended 

matter and hence to a broader number of contaminants and other environmental 

factors than in lab exposures, which were conducted under static conditions and 

using organic extracts of filtered water samples. Genes encoding for general 

metabolic processes (IHD, ACON, THIO) are likely to be altered by several stressors 

apart from organic contaminants and that encoding for PGP is known to respond to 

many different organic and inorganic chemicals (Campos et al., 2014; Faria et al., 

2011). Therefore, the higher complexity of field exposures may explain the observed 

discrepancies on gene responses between lab and field. This was clearly illustrated 

for feeding responses, which were more affected during field assays (Fig. 2.3 A, 2.4 

A). 
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For genes related with molting and reproductive processes (MIH, EcR),  sugar, 

protein and xenobiotic metabolism (UGP, FAA, MRP4), lab and field responses were 

similar and were negatively related with several pharmaceutical groups (diuretics, 

illicit drugs, lipid regulators-fibrates, psychiatric drugs, β2-adrenergic agonists), 

bisphenol A, estrogenic and anti-parasitic compounds, As, Mn, Ni, Co, conductivity 

and suspended solids. Few of the measured contaminants (trizoles, pesticides) were 

positively related with MRP4, MIH, FAA or/and UGP. Responses of the retinoic 

receptor RXR followed a distinct patern being positively and negatively related with 

the above mentioned and other pollutants like caffeine, analgesic opiates.  An 

excess of suspended solids, salt and of metals like Ni, inhibit growth or/and 

reproduction in D. magna (Baillieul et al., 1996; Burton Jr et al., 2005; Diamond et 

al., 1992; Hoang et al., 2007; Pane et al., 2004; Robinson et al., 2010). Psychiatric 

drugs such as selective serotonine re-uptake inhibitors are known to disrupt 

signaling gene pathways of molting, reproduction, sugar and aminoacid metabolism 

at environmental relevant concentrations close to 1 µ/L (Campos et al., 2013). 

Despite that sublethal effects of fibrates, estrogenic steroids and bisphenol A occur 

in D. magna at mg/L (Brennan et al., 2006; Jeong et al., 2013; Zurita et al., 2007), in 

mixtures pharmaceuticals may trigger  physiological responses at lower doses 

(Cleuvers, 2003). Many organic contaminants and metals can interact  and act 

additively or synergically inhibiting  xenobiotic transporter activity mediated by 

multidrug resistance proteins like  MRP4 (Campos et al., 2014; Faria et al., 2011; 

Kurelec, 1997). In the present study many of the above mentioned pharmaceutical 

and industrial chemical groups occurred together and hence it should be feasible to 

establish a threshold biological effect at 100 ηg/L. Accordingly analgesics, diuretics, 

psychiatric drugs,  blockers, illicit drugs, trizoles, caffeine and measured pesticide 

levels should be considered of environmental concern.   

2.6 Conclusions 

In summary, our results led positive support to the use of sublethal specific gene 

responses in combination with in situ Daphnia feeding and biochemical responses to 

assess effects and identify environmentally detrimental factors within complex (multi-

stressed) river systems in the field, thus contributing to a more realistic assessment 
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of ecological risks. D. magna responses of feeding and cholinesterase activity were 

able to assess the general ecological quality of the selected river sites and those of 

genes assessed specific effects of particular contaminant groups. Interestingly the 

contaminant groups that differentiated the studied sites (Table 2.5) did not follow 

those that were associated with specific biological response (Table 2.10). This 

means that risk assessment estimates based on chemical analyses have to be taken 

with caution (Fàbrega et al., 2013; Ginebreda et al., 2010). Furthermore, subdivision 

of chemical groups according to known mode of actions and the inclusion of lab 

exposures allowed to judge false positive relationships. The experimental 

procedures developed in this study indicate that in multi-stressed rivers biota is often 

chronically exposed to sublethal levels of contaminants and hence a large set of 

biological and chemical markers are needed to identify detrimental pollutants. 

Nevertheless, it is important to consider that, while the approach used in this study 

drives us closer towards the “in situ environmental hazard identification evaluation”, 

issues arising from other confounding factors influencing in situ Daphnia responses 

still should be considered with caution in the interpretation of such findings as 

conclusive diagnostic proofs of individual factors causing effects. 
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Chapter III. 

Liquid chromatography coupled with tandem mass 

spectrometry analytical tools to characterize trace levels of 

cyanobacteria and dinoflagellate toxins in suspended 

solids and sedimentsa 

3.1 Abstract 

Microcystins, anatoxins and okadaic acid are toxins produced by freshwater 

cyanobacteria and marine dinoflagellates. These toxins have been the responsible 

for the illness and death of biota and humans. To determine their presence in water 

during blooms, sensitive analytical methods are needed. In this study we have 

developed a new liquid chromatography tandem mass spectrometry (LC-MS/MS) 

method for fast multiresidue determination of five toxins in suspended material and 

sediment samples. For each target compound, two selected reaction monitoring 

(SRM) transitions were optimized. Chromatographic conditions were optimized 

considering that the compounds analyzed had different chemical structure and 

chromatographic behaviour. Using a Luna C18 column and specific SRM transitions, 

five phyco/phytotoxins were resolved. Method detection limits (MDL) for anatoxin-a, 

microcystins RR, LR, YR and okadaic acid were 7.1, 3.3, 81.7, 102.8 and 28.8 ng/g 

dry weight in sediment, respectively. The developed analytical method was 

successfully applied to analyze the presence of toxins in suspended solids and 

sediment from Ebro River (NE Spain) and Ebro Delta associated lagoons. Anatoxin-

a was detected downstream of the Riba-Roja reservoir with levels ranging from 20 to 

1120 ng/g d.w. of suspended solids. Okadaic acid was only detected in three 

samples collected in the Alfacs Bay (Ebro Delta, Spain) affected by Dinophysis 

blooms in 2012.  

Keywords: cyanotoxins, okadaic acid, LC-MS/MS, sediment, Ebro 
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3.2 Introduction 

The assessment of phyco and phytotoxins present in both fresh and marine water is 

an important issue in both environmental and human health (Chapela et al., 2008). 

Cyanobacteria play a fundamental role as primary producers. Though, under certain 

conditions they outbreak forming blooms that may compromise the use of water for 

drinking and recreational purposes, especially when bloom-forming species produce 

cyanotoxins (Ibelings and Havens, 2008). The most frequent and harmful 

cyanotoxins present in water are the hepatoxic microcystins and the neurotoxic 

anatoxins (Ibelings and Havens, 2008). In brackish and marine waters 

dinoflagellates and diatoms can produce phycotoxins that can enter into the food 

chain, accumulate in fish and shellfish and ultimate can affect humans. One of the 

most abundant phycotoxin is okadaic acid that is produced by dinoflagellates and 

produced diarrhoea, promotes tumor and apoptosis (Chapela et al., 2008). The 

molecular structures of these toxins (Fig. 3.1) reveal chemical differences that are 

important with respect to their simultaneous determination. 

Preventive measures for recreational and consumer protection on harmful algal 

blooms (HABs) require powerful analytical methods. Liquid chromatography–

electrospray ionisation-tandem mass spectrometry (LC-ESI-MS/MS) has been 

shown to represent a powerful and established method for the detection of several 

toxin groups (Cong et al., 2006; Chapela et al., 2008; Dörr et al., 2010; Gugger et al., 

2005; Zhang et al., 2012). However, most methods developed until now, are focused 

to analyse phyco and phytotoxins in algae or water to detect bloom episodes or in 

food like shellfish to prevent consumers from being poisoned (Cong et al., 2006; 

Chapela et al., 2008; Dörr et al., 2010; Gugger et al., 2005; Zhang et al., 2012). 

Preventing blooming episodes of toxic cyanobacteria or algae in rivers, lakes or 

coastal areas, however, require the detection of toxic species or of their toxins in 

water before the occurrence of blooms. The presence of algae toxins in most cases 

is associated with the presence of their producers, thus they mostly occur in the 

suspended solid fraction inside algae cells (Aboal and Puig, 2005). 
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Nowadays, LC-MS/MS  is considered to be a well-accepted technique for the 

quantification determination of phytotoxins due to its efficient toxin separation, high 

selectivity, high sensitivity (lower limits of detection), and accurate and precise 

quantification (Chapela et al., 2008). However, phyco/phytotoxin characterization in 

sediments is still an emerging issue, often confounded by the complexity of the 

matrix. Little research has been performed to determine adsorbed toxins onto 

particles of sediment or suspended matter and the few existing studies are limited to 

analyses of microcystins (Schmidtkunz et al., 2009; Tsuji et al., 2001). One of the 

reasons explaining the scarcity of studies addressing cyanotoxins in sediment is that 

no suitable analytical method has been established yet. Matrix effects  are one of the 

major drawbacks of analyzing cyanotoxins by liquid chromatography LC-MS/MS, 

especially when working in electrospray ionization mode (ESI), and may led to 

erroneous conclusions, resulting in the possible suppression or enhancement of 

analyte signal (Benijts et al., 2004). The use of internal standards closely matching 

targeted compounds enables the assessment of which matrix effects are influencing 

the quantification, but these internal standards are not currently available for most 

cyanotoxins (Chapela et al., 2008). Therefore, an extensive study to evaluate matrix 

effects should be included in the method validation, in order to ensure results 

reliability. 

The aim of the present study is to develop a new fast analytical method based on 

solid liquid extraction and analysis by LC-ESI-MS/MS for simultaneous determination 

of toxins present in the suspended solids of water samples and sediments from Ebro 

River, the largest river of Spain, and Ebro Delta associated lagoons.  

3.3 Experimental 

3.3.1 Chemicals and materials 

Pure analytical standards of 98–99% purity of anatoxin-a and okadaic acid were 

acquired from Santa Cruz Biotechnology (USA) and those of microcystins RR, LR, 

YR were obtained from Sigma–Aldrich (St. Louis, USA). Target compounds, 

molecular formula and the chemical structure are shown in Fig. 3.1 Methanol 

(MeOH), acetonitrile (ACN), and HPLC water (LiChrosolv grade) were supplied by 
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Merck (Darmstadt, Germany). In the preparation of the standards, an exhaustive 

control on handling procedures, storage conditions and safety rules has been 

followed, as specified by manufacturers. 

3.3.2 Sample collection and preparation 

Twenty-four water samples were collected from January 18th to June 22nd 2013 

along the lower course of Ebro River between the Cinca River (CI), just before its 

junction with the Riba-Roja reservoir and the village of Mora d’Ebre, 50 km 

downstream (M; Fig. 3.2 A). Samples were collected at five different time points 

during a prolonged flash flow of 155 days (Fig. 3.2 C). Sampling sites included 

locations situated upstream the Riba-Roja dam (CI), at the Flix dam (RR, FR) and at 

downstream sites (MU, MD, A, M) (Fig. 3.2 A, B). In addition to the above water 

samples, twelve additional samples were considered. These included four sediment 

samples located between the meander and Ascó (sediment samples S5, S6; S7, S8,  

Fig. 3.2 A; (Bosch et al., 2009)); four samples collected at the Ebro’s mouth (Sant 

Jaume d’Enveja, SJ) and at the end of three drainage channels of Ebro’s Delta (D1, 

D2, D3) in July 2013 (Fig. 3.2 A). These drainage channels collect and transport the 

water from the south mid-delta rice fields into one of the sea lagoons (the Alfacs 

lagoon) (Barata et al., 2007). Finally, three samples were collected during February 

and March 2012 in Alfacs lagoon during a toxic algal bloom of Dinophysis. Sediment 

samples from Sitges coast (NE, Spain) that did not have detectable residue levels of 

the studied toxins were used for method development. 

Total suspended solids of water samples were measured in the laboratory according 

to standard methods (Way, 2012). Once collected, suspended solids were separated 

from water by filtration in pre-weighed and pre-combusted (350ºC, 12h) 47 mm 

Whatman GF/F glass fiber filters within 24 hours from sampling. The filters were then 

frozen, lyophilized, weighted and frozen again. Sediment samples were also frozen, 

lyophilized, sieved <70 μm and frozen again. Freeze-thawing is a procedure that 

enhances lysing of cyanobacterial cells possibly present in the sediment, thus 

releasing intracellular toxins that would otherwise not be extractable (Barco et al., 

2005). Suspended solid material on filters varied between 15 and 30 mg. 
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Figure 3.2 Studied sites within Ebro and Cinca Rivers (A, B) and water flow during 
the studies period (C). Bars indicate main dams. In (A) and (B) the location of 
sediment samples collected along the river (S5, S6, S7, S8) and water samples 
obtained in Sant Jaume d’ Enveja (SJ) at the river mouth and at the drainage 
channels (D1, D2, D3) are also included. 

 

Particle size and phytoplankton analyses peyformed with a Beckman Coulter LS 

Particle Size Analyzer and an inverted optical microscopy, respectively, showed that 

suspended solids was mainly composed of fine silt (75%; 4 μm < grain size < 62 μm) 

and clay (25%; grain size < 4 μm) with only few phytoplanktonic cells < 2 cells/mL (< 

1 cells/mL of cyanobacteria).  The sediment from Sitges used for method 

development also had the same grain distribution. The organic C and N content of 

suspended solids, analyzed by means of a Thermo Electron Flash 1112 elemental  

analyser (Thermo Scientific, UK), of suspended solids, varied little (4-5% of C, <0.05-

0.25% of N). The organic content of C and N of the sediment samples from Sitges 
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was similar to those of suspended solids being 3.2% for C and 0.29% for N. Toxins 

from the filters were extracted according to (Barco et al., 2005) with some 

modifications. Filters with suspended solids were extracted with 5 mL of MeOH/water 

80% by sonication three times for 10 min in ice and centrifuged at 8000 rpm for 5 

min. The supernatants of the three extractions were then pooled, evaporated to 

almost dryness under light N2 current, and reconstituted with 0.15 mL of MeOH in a 

chromatographic vial.  

3.3.3 LC–MS/MS analysis 

Toxins were measured using LC-MS/MS (TqDetector, Acquity Waters, USA) 

modifying a previous study that reported chromatographic conditions for separation 

of a wide range of toxins (Chapela et al., 2008). Separation was performed by using 

a Luna C18 (150 mm×2 mm ID, particle size 5 µm, Phenomenex, Torrance, USA) 

equipped with a Security Guard pre-column.  

The mobile phase composition consisted of binary mixtures with 0.1% formic acid in 

ACN (A) and 0.1% formic acid in water (B). Gradient elution started at 5% A and 

95% B, increased to 40% A in 5 min, 60% A in 10 min and reaching to 100% A in 20 

min. Initial conditions to stabilize the system were  attained in 5 min. Total run lasted 

25 min. The system was operated at room temperature, the flow rate was set at 200 

µL min−1 and 10 µL were injected. In the same run microcystins (RR, LR and YR) 

and anatoxin-a were measured under positive electrospray ionization mode (ESI+), 

whereas okadaic acid (OA) was detected using a negative electrospray ionization 

(ESI-) mode.  

Flow injection analysis (FIA) was performed to determine the optimum cone voltage 

(between 1 and 90 V) to obtain the molecular ion with highest sensitivity and the 

optimum collision energies (between 5 and 80 eV) to obtain at least two intense 

fragment ions. Finally, acquisition was performed in SRM mode using two transitions 

from [M+H]+ or [M-H]- precursor ion to daughter ions to identify each compound. The 

transitions used as well as the optimized cone voltages and collision energies are 

given in Table 3.1. The data were acquired and processed using the MassLynx v4.1 

software package. 
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3.3.4 Quality assurance 

Calibration was performed over a concentration range from 0.001 to 1 ng/µL, using 

seven calibration points. Quantification was performed by external standard 

calibration since labelled standards were not available for these compounds. 

Recovery studies were performed in triplicate directly in sediment samples or in re-

constituted suspended solids produced by spiking analyte-free sediment from Sitges 

(15 mg, particle size < 70 µm) in pre-combusted (350ºC, 12h) 47 mm Whatman GF/F 

glass fibre filters. All the samples were spiked with 3.3 ng/g dry weight (d.w.) of 

microcystins, anatoxin-a and okadaic acid mixture. In addition, sediment matrix effect 

was estimated by comparing a spiked sediment and suspended solid-filter extract 

with a spiked solvent extract, using the same concentrations as in recovery studies 

Instrumental detection limits (IDLs) were determined using the lowest concentration 

standard detected that yielded a signal/noise (S/N) ratio equal to 3. Method detection 

limit (MDL) was calculated in the same way, using blank sediment samples spiked at 

the same concentration levels as for the recovery studies. Inter-assay variation was 

determined by measuring the same standard concentration (1 ng/µL) on three 

different days. Solvent blanks did not contain any of the investigated analytes, 

indicating no carryover effects in any of the LC–MS/MS runs. 

 

Table 3.1 LC–MS/MS retention time (RT), acquisition mode (AM) and optimized 
parameters for the analysed toxins. PrI, Precursor Ion; CV, Cone voltage (V); QT, 
Quantification transition; CE, Collision energy (eV); CT, Confirmation transition. 

 

Compound  RT (min) AM PrI (m/z) CV (V)  QT (m/z) CT (m/z) 

          (CE, eV) (CE, eV) 

Anatoxin-a 1.92 ESI(+) 166 [M+H]+ 34 166>149 (18) 166>131 (18), 166>91 (20) 

Microcystin-RR 6.53 ESI(+) 520 [M+H]+ 42 520>135 (36) 520>103 (48) 

Microcystin-YR 7.47 ESI(+) 1046 [M+H]+ 74 1046>135 (59) 1046>107 (67) 

Microcystin-LR 7.59 ESI(+) 996 [M+H]+ 45 996>135 (59) 996>213 (50) 

Okadaic acid 17.30 ESI(-) 803 [M-H]- 92 803>255 (41) 803>113 (48) 

 



Chapter III. 

 

125 

3.4 Results and discussion 

3.4.1 Optimization of the ionization parameters and chromatographic 

separation 

Optimization of the ionization source conditions was performed using LC-MS/MS in 

ESI(+) and ESI(-) mode acquisition. At 3 V extraction voltage and 3.5 kV capillary 

voltage, the protonated molecule in ESI(+) and the deprotonated molecule in ESI(-) 

(for okadaic acid) was formed as the base peak. Cone voltage (CV) was the major 

parameter influencing the intensity of signals, with compounds showing strong 

fragmentation and compounds forming very few ions. Optimum cone voltages were 

ranged from 34 to 74 V in ESI(+) and 92 V in ESI(-). Then, molecules were 

fragmented by optimisation of the collision energy (CE), and the two most abundant 

product ions of each compound were chosen for the SRM analysis to enhance 

selectivity and sensitivity. At this point, CE was optimized from 18 to 67 eV (ESI(+)) 

and 41 to 48 eV (ESI(-)). Table 3.1 shows the mass spectral information. 

3.4.2 Mass spectral characterization 

The mass spectra of target compounds are shown in Fig. 3.3. Anatoxin-a is a 

secondary, bicyclic amine alkaloid and cyanotoxin with acute toxicity. The ESI(+) 

spectrum of anatoxin-a showed the m/z 166 [M+H]+ as base peak and the product 

ion spectra from the precursor yielded three intense fragment ions. At CE of 18 eV, 

the m/z 149 [M-NH3+H]+ was formed corresponding to the loss of an ammonia 

molecule (Fig. 3.3 B). At the same CE, the m/z 131 [M-NH3-H2O+H]+  was formed 

corresponding to the loss of a water molecule respect to the fragment m/z 149; and 

at CE of 20 eV, the formation of cyclohepta-2,4,6-trien-1-ylium molecule (m/z 91 

[C7H7]
+) was obtained. Sanchez et al. (Sanchez et al., 2014) analyzed anatoxin-a in 

Anabaena sp. cultures with LC-MS/MS obtaining the same fragmentation pathway in 

ESI(+) (m/z 149, m/z 131 and m/z 91). The SRM transition 166>149 was chosen for 

quantification and 166>131 and 166>91 was selected for confirmatory purposes 

(Table 3.1).  

Microcystins are cyclic non ribosomal peptides produced by cyanobacteria (e.g. 

Microcystis aeruginosa and Planktothrix sp). They are cyanotoxins and can be very 
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toxic for plants and animals including humans. Their hepatotoxicity may cause 

serious damage to the liver. Microcystins can strongly inhibit protein phosphatases 

type 1 (PP1) and 2A (PP2A), and are linked to pansteatitis. Microcystin-RR showed 

the intense double-protonated molecule at m/z 520 [M+2H]2+, resulting from the 

presence of two arginine residues that are both protonated. The MS/MS spectra from 

the precursor ion gave fragment ions at m/z 135 [C9H11O]+ that corresponds to the 

loss of the 1-(2-methoxyethyl)benzene moiety, generated by alpha-cleavage at the 

methoxy group of the Adda beta-amino acid moiety (Namikoshi et al., 1992). At m/z 

103 the obtained fragment ion [135-CH3OH]+ corresponds to the loss of MeOH from 

the 135 fragment ion (Fig. 3.3 A). (Kaloudis et al., 2013) analyzed mycrocystins in 

Lake Marathonas and also obtained the double-protonated molecule at m/z 519.8. 

They identified two fragment ions at m/z 135 (the same that in the present study) and 

at m/z 213 [C9H13N2O4]
+, characteristic of most microcystins but giving rise to a 

weaker signal in our analyses when compared to m/z 103. In this regard, the SRM 

transition 520>135 was chosen for quantification and 520>103 was selected for 

confirmatory purposes (Table 3.1). Mycrocystin-YR, with full scan LC-MS, produced 

the protonated molecule at m/z 1046 at 74 V of cone voltage (Table 3.1). MS/MS 

spectra from this precursor ion using 59 and 67 eV of CE, respectively, produced a 

fragment ion at m/z 135, characteristic of most mycrocystins and used herein as 

qualifier. The above mentioned ion at m/z 107 formed [C7H7O]+ by cleavage of the p-

cresol moiety (Fig. 3.3 A). Both 1046>135 and 1046>107 were used as a SRM 

transitions.  Xu et al. (Xu et al., 2008) using LC-MS/MS reported also the protonated 

molecule of mycrocystin-YR at m/z 1045.8 [M+H]+ and the formation of the two 

characteristic fragment ions at m/z 135 (the quantifier ion as in our study) and at m/z 

213 using 63 and 55 eV of CE respectively, whereas we decided to use m/z 107 

giving a better signal. Mycrocystin-LR is a naturally occurring toxin produced by 

cyanobacteria. It is considered the most toxic compound of this family. Mycrocystin-

LR showed the intense protonated molecule at m/z 996 [M+H]+. The MS/MS spectra 

from the precursor ion gave fragment ions at m/z 135 [C9H11O]+ and at m/z 213 

[C9H13N2O4]
+ which corresponds to the loss of a 4-(N-(1-carbamoylvinyl)-N-

methylcarbamoyl)butanoic acid moiety (Fig. 3.3 A). The SRM transition 996>135 was 

chosen for quantification and 996>213 was selected for confirmatory purposes. (Xu 

et al., 2008) also obtained the protonated molecule at m/z 995.6 and the same 
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fragment ions at m/z 135.0 and m/z 213.3 using 55 eV of CE. Overall, in the present 

study, it was possible to detect and discriminate the microcystins using three 

different confirmation transitions, allowing their identification both with mass 

characterization and retention time. 

Finally, the full scan ESI mass spectrum of okadaic acid at -92 V of CV was 

dominated by m/z 803 [M-H]-. The MS/MS spectra of this precursor ion gave the 

fragment ions at m/z 255 [C15H27O3]
- and at m/z 113 [C6H9O2]

- using 41 and 48 eV of 

CE (Fig. 3.3 B). Both 803>255 and 803>113 were used as a SRM transitions. (Shen 

et al., 2013) analyzed okadaic acid and other marine toxins in shellfish. Using a 

declustering potential and a CE of -60 and -65 eV, respectively, the former authors 

obtained the deprotonated molecule at m/z 803.5 [M-H]- and the fragment ions at 

m/z 255.3 (the same as in our study) and at m/z 563.5. 

3.4.3 Optimization of HPLC conditions 

In order to achieve optimum resolution and compound detection, different mobile 

phase composition and gradients were tested using a Luna C18 column. Optimal 

HPLC conditions are already depicted in 3.3.3. Experimental – LC-MS/MS analysis. 

Under these conditions, no chromatographic coelutions occurred for any of the 

analysed compounds. With the conditions optimized, it was possible to determine 

anatoxin-a, three microcystins and okadaic acid in two ionization modes but within a 

single run. The ion chromatogram of a mix solution at 1 ng/µL containing all the 

target analytes using the Luna C18 column is shown in Fig. 3.4 A. In Fig. 3.4 B,C we 

depict the ion chromatograms of positive results of selected environmental samples. 

3.4.4 Quality parameters and identification criteria 

Sensitivity, linearity recoveries, precision and matrix effects were considered as 

criteria for the validation of the analytical methodology developed. Calibration curves 

were generated using linear regression analysis over the established range of 

concentrations. Good correlation coefficients (R2>0.99) were obtained for all 

compounds with calibration curves ranking from 0.01 to 1 ng/µL for anatoxin-a and 

microcystin RR and from 0.005 to 1 ng/µL for the remaining compounds. IDL ranged 

from 0.01 (Anatoxin-a and mycrocystin RR) to 0.05 ng (mycrocystin LR, YR and 

okadaic acid). Inter-day precision ranges were from 10 to 25% at 1 ng/µL level, thus 
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indicating a robust method response. MDL for anatoxin-a, microcystins RR, LR, YR 

and okadaic acid were 7.1, 3.3, 81.7, 103 and 28.8 ng/g d.w. suspended 

solids/sediment, respectively. When referred to water volume the previous limits 

became 0.4, 0.2, 5.0, 6.2, 1.7 ng/L for the target compounds, respectively.  

Percentage recoveries (Mean ± SD, N = 6) from the spiked sediments and 

suspended solids used for method development and were 76±12, 62±5, 81±6, 73±5, 

93± 5 % for anatoxin-a, microcystins RR, LR, YR and okadaic acid, respectively. 

Reported recoveries and detection limits of the studied toxins are in most cases 

referred to units of water volume to meet criteria of the World Health Organization 

provisional guideline that for example establishes a limit for microcystin-LR of 1 μg/L. 

Nevertheless, several studies have reported detection levels of the studied toxins in 

biological tissues of fish and mollusks. In the EU the maximum value for okadaic acid 

in edible tissue is 160 ng/g (Chapela et al., 2008). In our study obtained analytical 

detection limits were within the lowest reported range for water (Al-Sammak et al., 

2014; Chen et al., 2012; Ferranti et al., 2009; Li et al., 2011b; Shan et al., 2011; 

Wang et al., 2007; Yen et al., 2011; Zhang et al., 2004).  

Besides, as the extraction of sediment can affect the ionization of target compounds, 

the matrix effect was calculated. Matrix-induced signal suppression or enhancement 

relative to the methanol spike (Mean ± SD, N =6) were 126.0±21.1, 126.5±15.1, 

101.3±13.7, 96.0±5.8, 97.1± 5.8 % for anatoxin-a, microcystins RR, LR, YR and 

okadaic acid, respectively. Ion suppression results in a value less than 100%, 

whereas a value exceeding 100% suggests that there is ion enhancement. Obtained 

matrix signal responses relative to the solvent spike were within accepted limits (96-

126%). Studies conducted in microcystins with more complex matrixes such as 

biological tissues reported ion suppression or enhancement of up to 50% (Karlsson 

et al., 2005). The few reported studies that have analysed microcystins or anatoxins 

in sediments or suspended solids did not provide quality assurance data to be 

compared with the obtained results (Chen et al., 2008; Klitzke et al., 2011; Rapala et 

al., 1994; Song et al., 2014).   
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Figure 3.4 LC-MS/MS chromatogram of a standard solution at 1 ng/μL (A); and 
positive samples of anatoxin-a from FR June 22nd (B) and okadaic acid  from March 
22nd (C) 
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3.4.5 Environmental levels 

During winter and spring 2013 an excess of rain and of accumulation and 

subsequent melting of snow in the Pyrenees made necessary to open the dams of 

Riba-Roja and Flix reservoirs. Opening the Riba-Roja reservoir dam dramatically 

increased the downstream water flow of Ebro River (Fig. 3.1 C) and consequently 

the amount of re-suspended particle matter (Table 3.2). The greatest levels of 

suspended solids measured in the study coincided with those periods of maximal 

water flow in January 8th and June 22nd.  

From the five targeted toxins, only residues of anatoxin-a were detected in 

suspended solids from the Ebro’s water samples downstream Riba-Roja reservoir  

with concentrations ranging from 20 to 1120 ng/g d.w. (Table 3.2). The highest levels 

were measured just downstream of Riba-Roja reservoir at RR when the dam was 

opened for the first time in January 28th, and the lowest  in June 22nd at MU after 155 

days of floods. When anatoxin-a residues in suspended mater were converted to 

levels per volume of filtrated water, concentrations ranged from 0.2-0.3 ng/L in June 

9th to 6.8 ng/L at RR in January 28th. These levels are quite low when compared with 

those reported during cyanobacterial blooms that usually are within the µg/L or µg/g 

d.w. range (Santos et al., 2012). In our study the visual inspection of the suspended 

solids present in water samples under an inverted microscopy could detect only few 

cyanobacteria cells but instead fine clay material and bacteria associated to it (data 

not shown), thus indicating that residue levels of algae toxins should be low. 

Of particular interest were water samples collected in January 28th that were 

enriched with anatoxin-a at RR and subsequent diluted downstream due to the 

increase of suspended solids, probably coming from mobilised bottom sediment 

during the flood. This means that measured anatoxin-a on suspended matter are 

likely to be related to sediment wastes coming from the Riba-Roja reservoir. Indeed, 

during floods, Ebro’s reservoirs are partially emptied in order to erode the stored 

sediment, and evacuate them through the bottom outlets by using the water column 

pressure (Rovira and Ibàñez, 2007). 
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Table 3.2 Measured suspended solids (SS) and residue levels of anatoxin-a in the 
studied environmental samples. bdl: below detection limit. Units for sediment 
samples are in mg sediment dry weight (d.w.) 

 

Date Sites SS 

(mg/L d.w. ) 

Anatoxin a 

Ng/g d.w. 

Jan 28th RR 4.8 1120.1 
 FR 20.2 154.1 
 MU 26.8 119.1 
 MD 24.8 88.6 
 A 30.1 133.5 
 M 35.2 71.9 
March13rd RR 13.2 56.2 
 MU 12.6 46.0 
 A 12.6 86.3 
May 22nd RR 5.0 89.1 
 FR 6.3 296.9 
 MU 5.0 150.2 
 MD 5.7 114.7 
 A 6.1 79.8 
 M 6.0 159.8 
June 9th CI 22.7 bdl 
 RR 4.5 61.1 
 A 5.8 36.5 
June 22nd RR 30.7 30.3 
 FR 37.6 48.2 
 MU 39.6 36.4 
 MD 36.1 20.5 
 A 34.6 35.8 
 M 36.7 23.5 
June 24th SJ 4.78 bdl 
 D1 18.6 bdl 
 D2 22.0 bdl 
 D3 19.5 bdl 
Sediment S5 14.7 bdl 
 S6 16.3 bdl 
 S7 13.5 bdl 
 S8 15.1 bdl 
 Sitges 17.5 bdl 
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The most common toxic cyanobacteria species found in Ebro’s reservoirs are 

Anabaena aphanizomenoides and Planktothrix cf. agardhii, which are known to 

produce microcystins and anatoxins (de Hoyos et al., 2004; Quesada et al., 2004). It 

should be pointed out that despite our samplings were not carried out at the typical 

period for cyanobacteria blooming (from August to October), there is reported 

evidence that toxic cyanobacteria occurs along the year in Ebro’s reservoirs 

(Quesada et al., 2004). There are also studies showing that toxic cyanobacteria of 

the genus Anabaena and Planktothrix can live in the bottom sediment of lakes even 

under heterotrophic conditions and winter (Li et al., 2011a; Mannan and Pakrasi, 

1993; Savichtcheva et al., 2011; Toporowska et al., 2014). Microcystins, and 

specially anatoxin-a, are known to adsorb to fine clay material, accumulating in the 

sediment in which they can persist for long periods depending on the existing micro-

flora (Chen et al., 2008; Chen et al., 2013; Kaminski et al., 2013; Klitzke et al., 2011; 

Rapala et al., 1994). The detection of anatoxin-a and not of microcystins in the 

analyzed suspended matter samples support the previous studies.  

None of the targeted toxins were detected in sediment samples, neither in samples 

collected at the Ebro’s River mouth located about 100 km downstream of Riba-Roja 

reservoir nor in water samples collected along Ebro’s Delta drainage channels 

(Table 3.2 for anatoxin-a). These channels collect and drainage the water from the 

rice fields into the Ebro’s associated bays (Barata et al., 2007). For the freshwater-

associated phytotoxins, the previous results indicated that the detected anatoxin-a is 

not transported, at least at detectable levels, towards the river mouth or across the 

Delta throughout the net of channels used for rice production (Barata et al., 2007). 

Residue levels of okadaic acid, exclusively produced by marine dynoflagellates 

(Chapela et al., 2008), were only measured in three samples collected in 2012 

during blooms of Dinophysis spp. in one of the Ebro’s associated marine bays 

(Alfacs Bay) (Table 3.3). Levels of okadaic acid measured in suspended solids 

during the Dinophysis bloom were quite high ranking between 2405-9164 ng/g d.w., 

which corresponded to 6.7-50.4 ng/L (Table 3.3). There is ample reported 

information of periodical blooms of toxic dynoflagellates in Ebro’s associated bays 

(Garcés et al., 1997; Garcés et al., 1999; Garibo et al., 2014; Loureiro et al., 2009; 

Quijano-Scheggia et al., 2008).  Despite that marine water mix with river water in the 
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Ebro’s mouth or in the studied Delta drainage channels (Barata et al., 2007; Gómez-

Gutiérrez et al., 2011; Ibánez and Prat, 2003), we were unable to detect trace levels 

of okadaic acid in these locations. This is likely related to the fact that at the time of 

sampling there were no blooms of toxic dynoflagellates in that area. 

Table 3.3 Measured suspended solids (SS) and residue levels of okadaic acid in the 
studied environmental samples. bdl: below detection limit. For clarity only positive 
samples are included. 
 

Date Sites 
SS 

(mg/L) 

Okadaic acid 

ng/g d.w. 

Okadaic acid 

ηg/L 

15th February 2012 Alfacs lagoon 2.8 2405.3 6.7 

5th March 2012 Alfacs lagoon 4.6 4628.4 21.3 

22nd March 2012 Alfacs lagoon 5.5 9164.1 50.4 

3.5 Conclusions 

Overall, there is a lack of data on the sedimentation and the fate of toxins in 

sediments and their possible remobilization into the water column. In this study we 

provide a reliable method to detect accurately marine and freshwater algae toxins in 

the suspended solid fraction of the water column and sediments. In fact, the 

proposed LC-ESI-MS/MS method proved to be a powerful tool for simultaneous 

extraction and determination of different classes of noxious toxins at trace levels. 

The extraction with methanol/water 80:20 (v/v) allows a good recovery for all studied 

toxins without carry-over of the matrix. The extracts are injected directly into the LC-

ESI-MS/MS device and are well separated in a single 25 min chromatographic run 

and unambiguously detected by ESI-MS/MS. To our knowledge this is the first study 

analysing phytotoxins present in suspended solids mobilized during floods from 

reservoirs to downstream locations.  
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Chapter IV. 

Identification of compounds bound to suspended solids 

causing sub-lethal toxic effects in Daphnia magna. A field 

study on re-suspended particles during river floods in 

Ebro Rivera 

4.1 Abstract 

Identifying chemicals causing adverse effects in organisms present in water remains 

a challenge in environmental risk assessment. This study aimed to assess and 

identify toxic compounds bound to suspended solids re-suspended during a 

prolonged period of flushing flows in the lower part of Ebro River (NE, Spain). This 

area is contaminated with high amounts of organochlorine and mercury sediment 

wastes. Chemical characterization of suspended material was performed by solid 

phase extraction using a battery of non-polar and polar solvents and analyzed by 

GC–MS/MS and LC–MS/MS. Mercury content was also determined for all sites. 

Post-exposure feeding rates of Daphnia magna were used to assess toxic effects of 

whole and filtered water samples and of re-constituted laboratory water with re-

suspended solid fractions. Organochlorine and mercury residues in the water 

samples increased from upstream to downstream locations. Conversely, toxic effects 

were greater at the upstream site than downstream of the superfund Flix reservoir. A 

further analysis of the suspended solid fraction identified a toxic component eluted 

within the 80:20 methanol : water fraction. Characterization of that toxic component 

fraction by LC–MS/MS identified the phytotoxin anatoxin-a, whose residue levels 

were correlated with observed feeding inhibition responses. Further feeding inhibition 

assays conducted in the lab using anatoxin-a produced from Planktothrix agardhii, a 

filamentous cyanobacteria, confirmed field results. This study provides evidence that 

in real field situation measured contaminant residues do not always agree with toxic 

effects. 
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Keywords: Toxicity identification evaluation, Daphnia, Feeding, Mercury, PCB, 

Cyanobacteria. 

4.2 Introduction 

The adsorption of chemicals onto sediment particles is an important process through 

which many contaminants are removed from the water column. Bottom sediments 

may act both as a sink and as a long-term source of toxicants (Burton, 2002). This 

dual role is particularly relevant during floods, in which pollutants stored in sediments 

may be easily remobilized by sudden increases of river flow and the consequent 

increase of toxicant concentrations. Nowadays, in fact, due to climate change, we 

are suffering an increase of severe weather conditions for certain regions, often 

characterized by an alternation of extreme events such as drought and flash floods, 

thus growing the awareness to the impacts caused by floods (Ikeda et al., 2005; 

Kleinen and Petschel-Held, 2007). Therefore, there is an increasing challenge 

among environmental toxicologists to identify substances within suspended 

particular matter having the potential to harm the biological communities (Stachel et 

al., 2005; Wölz et al., 2010). 

Traditionally, identifying environmental contaminants has been performed using 

targeted chemical analysis following a prioritisation/ranking process. This approach 

is an effective way of analysing environmental samples, but has the drawback that 

certain unknown contaminants may be missed (e.g., components with low 

concentrations and high target toxicity, metabolites, transformation products or 

natural products). In recent years the development of effect-directed analysis (EDA) 

or toxicity identification procedures (TIE) have allowed to address the problem of 

unknowns using bioassays as diagnostic tools. Using these methods a complex 

environmental sample is extracted, fractionated and then analyzed using both 

biological assays and chemical analysis in order to link the presence of one or more 

compounds to their biological effects. Finally, the identified compounds need to be 

confirmed by testing uncontaminated samples spiked at concentrations measured in 

the obtained fractions. In these procedures, the selection of bioassays to be used in 

whole samples and their fractions are crucial. Therefore, there is a need to develop 

more ecologically relevant in vivo bioassays that can be used both for the whole 
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samples and fractions. This is most problematic when trying to assess toxicity of 

particle bound contaminants in suspended material in water, since the very few 

already existing bioassays have been only tested in sediments (Bosch et al., 2009; 

Phillips et al., 2009; Schmitt et al., 2011; Wölz et al., 2010). In this regard, particle-

feeding organisms are of special interest since contaminated particles might end up 

in their gastrointestinal tract and exert toxic effects (Bosch et al., 2009). Recently, the 

use of cost effective sub-lethal Daphnia magna feeding tests combined with Toxicity 

Identification Evaluation (TIE) procedures have allowed the identification of water 

soluble and particle-bound compounds in sediments causing toxic effects (Bosch et 

al., 2009). 

Likewise many other rivers located in arid or semi-arid climate regions, dams in the 

Ebro River (NE, Spain) are used to regulate surface-water cycles, especially when 

water demand and its availability are imbalanced (Petrovic et al., 2011). Flushing 

flows have been used typically to mitigate dam-induced impacts such as 

deterioration of riparian habitats (Gibbins et al., 2007) or reduction of sediment 

transport (Batalla and Vericat, 2009). As a counter effect, contaminants that are 

accumulated in sediments have been shown to be mobilized during these flood 

events (Kirchner et al., 2000; Quesada et al., 2014). This is especially problematic in 

Flix reservoir, where an organochlorine industry operates since the beginning of the 

20th century. In fact, this long operational period, along with the construction of a 

dam next to the factory around 1960, resulted in the accumulation of high amounts of 

heavily polluted sediments in the adjacent riverbed (Bosch et al., 2009; Fernández et 

al., 1999; Grimalt, 2006). Major pollutants reported in these wastes include 

hexachlorobenzene (1900 ηg/g), polychlorobiphenyls (39,000 ηg/g), DDEs-DDTs 

(1300 ηg/g), polychlorostyrenes (360 ηg/g), polychloronaphthalenes (1100 ηg/g), 

mercury (49 μg/g), cadmium (2.3 μg/g), chromium (210 μg/g) and nickel (67 μg/g), 

mean values (Grimalt, 2006). Bosch et al. (2009) reported that mercury bound to 

waste sediment particles severely impaired grazing rates of filter feeders like D. 

magna. Furthermore, pollutants originated at Flix site are carried downstream by the 

Ebro River to its delta located 90 km away, where they can bio-accumulate and 

affect biota (Faria et al., 2010; Navarro et al., 2009; Pastor et al., 2004). 
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Nevertheless, there is no information of toxic effects of re-suspended industrial 

waste sediment material during flood events. 

Another environmental problem associated to dams is the proliferation of noxious 

substances produced by cyanobacterial blooms (Agha et al., 2012; Herry-Allani and 

Bouaïcha, 2013). Several studies have reported the occurrence of toxic 

cyanobacteria species (e.g., Anabaena, Planktothrix), known to produce toxins such 

as microcystins and anatoxins in Ebro reservoirs at and downstream of Flix (de 

Hoyos et al., 2004; Quesada et al., 2004). The cyanobacteria mentioned above 

or/and their phytotoxins exert toxic effects to grazers like Daphnia, which are known 

to graze on them (Claska and Gilbert, 1998; Demott et al., 1991; Freitas et al., 2014). 

This study aimed to use a TIE protocol implemented with in vivo D. magna feeding 

inhibition responses to evaluate and identify toxic compounds present in suspended 

solids during an unusual period of prolonged flushing flows along a contaminated 

area located at the low Ebro River Basin. 

4.3 Material and methods 

4.3.1 Water sampling 

Thirty superficial water samples were collected from January 18th to June 22nd 2013 

along the lower course of Ebro River (NE Spain) between its tributary, the Cinca river 

(CI) that ends at Riba-Roja reservoir, just before its junction with the reservoir and 

the village of Mora d’Ebre, which is located 50 km downstream (M; Fig. 4.1 A). 

Samples were collected at five different periods during a prolonged flash flow of 155 

days (Fig. 4.1 C). Sampling sites included locations situated upstream the industrial 

sediment wastes (e.g., Cinca river, CI and Riba-Roja pier at Flix reservoir, RR), in 

front of the wildlife reserve located on the riverbank opposite to the factory (FR) and 

at the meander located immediately downstream from the dam (MU, MD) (Fig. 4.1 A 

and B). On June 22nd it was possible to take samples on the river bank opposite of 

MU at MF (Fig. 4.1 B). According to the river flow, MF site should have a greater 

contribution of mobilized industrial wastes than sites FR, MU and MD. Three 

locations further downstream were also sampled and included both river margins at 

Ascó village (Ascó pier, A; and Ascó village, AV) and at Mora village (M) (Fig. 4.1 A 
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and B). Part of the water from Flix reservoir is diverted through a bypass below the 

village of Flix to generate electrical power and it is released just downstream of MD. 

This means that a portion of the re-suspended sediment particles coming from the 

industrial sediment wastes, which are located at the left margin of Flix reservoir, may 

not reach MU, MF and MD. Conversely, water samples from Ascó and Mora should 

be fully enriched from re-suspended particles from contaminated Flix sediments. 

In addition to the above water samples, three additional samples were included as 

negative controls. Two were obtained from elutriates of sediments obtained between 

the Meander and Ascó in a previous study (sediment samples S5, S6; (Bosch et al., 

2009)). Elutriates were obtained after mixing 1 g of freeze dried and sieved (60 μm 

size) sediment in 1 L of ASTM hard water to obtain the fine particulate fraction. 

Another water sample was obtained outside the Ebro basin from the lagoons of Las 

Tablas de Daimiel National Park (TDNP), south-central Spain. 

 
 

Figure 4.1 Studied sites within Ebro and Cinca rivers (A, B) and water flow (C) 
during the study period. Bars indicate main dams. In graph B the location of Flix 
industrial wastes is indicated. 
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4.3.2 Physico-chemical characterization of water samples 

A set of environmental variables were measured on each sampling. Water physico-

chemical parameters including temperature (T; °C), pH, conductivity (μS/cm), 

dissolved oxygen (O2, mg/L) and suspended solids (SS, mg/L) were obtained 

following (Damásio et al., 2008) procedures. Briefly, T, pH, conductivity and O2 were 

measured in situ by using a WTW Multi 340i handheld meter. Suspended solids 

were obtained after filtering 1 L of water sample through a Whatman grade GF/F 

glass fiber filter paper (0.7 μm pore size) previously washed with acetone, pre-

combusted at 400°C and pre-weighted. Following filtering, the filter was freeze dried, 

weighed to assess suspended solids and then used to determine total mercury or 

organochlorine residues. Further characterizations of the suspended matter were 

conducted in water samples from January and May. Particle size analyses were 

performed using a Laser Diffraction particle size analyser (LS 13,320 MW, Beckam 

Coulter, Inc., USA), whereas carbon, nitrogen and hydrogen content was determined 

by Elemental Microanalyzer (A5) model Flash 1112 (Thermo Scientific, UK), 

performed by the modified Pregl-Dumas technique (dynamic flash combustion), 

using helium as carrier gas. 

Analysis of total Hg in filters was performed following Carrasco et al. (2008) with 

minor modifications by means of the Advanced Mercury Analyzer AMA-254 (Altec, 

Prague, Czech Republic). In each run appropriate blanks (freeze dried filters 

previously loaded with 1 L of nanopure water) were used. The AMA instrument is 

based on catalytic combustion of sample, its pre-concentration by gold 

amalgamation, thermal desorption and atomic absorption spectrometry (AAS). 

Samples were homogenized, weighed and placed into the instrument, which is 

automatically introduced into the AMA. The entire analytical procedure was validated 

by analyzing total mercury in a certified reference sediment (MESS-3: 

0.091 ± 0.009 mg/kg, National Research Council Canada, NRCC; Ottawa). Analyses 

of MESS-3 in the beginning and end of each set of samples (usually 10) ensured 

that the instrument remained calibrated during the analytical sequence. Detection 

and quantification limits were calculated from blank measurements giving values 0.2 

and 0.7 ng Hg/g (d.w.). 
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Organochlorine residues in filters were extracted and analyzed as described with 

minor modifications (Sánchez-Avila et al., 2011). Prior to extraction, all the filters 

were spiked with a surrogate recovery standard (PCB congeners 65 and 209, Dr. 

Ehrenstorfer, GmbH, Augsburg, Germany). Washed and pre-combusted (400°C) 

filters were used as blanks and quality controls, spiked with the surrogate standards 

and the native solution containing all compounds to be analyzed. All filters were 

extracted in parallel with laboratory filter blanks by sonication (three times, 10 min 

each, with 1 min vortexing in between) using a mixture of 20 mL of 

hexane/dichloromethane (1:1, v/v), and centrifuged for 10 min at 3000 × g to remove 

filter leftovers. Then, the liquid extracts were cleaned up using Florisil (5 g) SPE 

cartridges, previously conditioned with hexane/dichloromethane (1:1, v/v). The 

sample extract was eluted using 2 × 15 mL of hexane/dichloromethane (1:1, v/v). 

The eluates were evaporated almost to dryness under nitrogen current and 

reconstituted in 100 μL of hexane. Hexachloro 1,3 butadiene (HCBu), 

hexachlorobenzene (HCB),  α, β, γand δ hexachlorocyclohexanes (HCHs), 

heptachlor,  α and β endosulfan, PCB congeners 28, 52, 101, 118, 138, 153 and 

180, o,p′-DDE, p,p′-DDE, o,p′-DDD, p,p′-DDD, o,p′-DDT and p,p′-DDT were analyzed 

by gas chromatography coupled to tandem mass spectrometry using an Agilent 

7890 A GC System (Agilent Technologies, Palo Alto, CA, USA) connected to a 

7000 A triple quadrupole mass spectrometer (Agilent, USA). Calibration curves were 

determined for each compound to be quantified. The target compounds were 

positively identified by comparison of their retention times and two SRM transitions to 

the standard solutions. A Mass Hunter WorkStation Acquisition Software B.02.01 

(Agilent Technologies) was used for data acquisition and automatic integration and 

quantification of the results. The accuracy of the method and detection limits were 

assessed according to the original protocol. 

Phytotoxins residues of anatoxin-a and microcystins LR, RR and YR were extracted 

and analyzed in filter samples according to the method developed in (Rivetti et al. 

2015). Analytical standards of microcystins RR (C49H75N13O12), LR (C49H74N10O12), 

YR (C52H72N10O13) were obtained from Sigma–Aldrich (St. Louis, USA) and that of 

anatoxin-a (C10H15NO) was purchased from Santa Cruz Biotechnology (USA). 

Briefly, filters with suspended solids were extracted with 5 mL of methanol : water 
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(80:20, v/v) by sonication for 10 min on ice and centrifuged at 8000 rpm for 5 min. 

This procedure was repeated three times. The supernatants of the three extractions 

were then pooled, evaporated to almost dryness under a gentle N2 current, and 

reconstituted with 0.15 mL of MeOH in a chromatography vial. Toxins were 

measured using LC–MS/MS (TqDetector, Acquity Waters, USA) (LC–MS/MS) with a 

Luna C18 column (150 mm × 2 mm ID, particle size 5 μm, Phenomenex, Torrance, 

USA). All chromatographic conditions followed the above cited method. Method 

detection limits (MDL) for anatoxin-a and microcystins RR, LR and YR were, 

respectively, 0.4, 0.2, 5.0, 6.2 ηg/L, when referred to water volume (Rivetti et al., 

2015). 

4.3.3 Phytoplankton determination 

Aliquots (50 mL) of water samples collected in January and May were fixed with 

buffered formalin (4%) solution and stored at 4 °C to allow the determination of the 

phytoplankton. Samples were sedimented for at least 24 h and the entire surface of 

sedimentation was visually examined for taxonomic analysis of phytoplankton using 

Nikon Eclipse 90i (Nikon, Champigny sur Marne, France) microscope. Images were 

acquired with a Nikon Digital Sight DS-Ri1 camera and NIS Elements AR software 

(version 3.0) and saved as high resolution (3840 pixels × 3005 pixels) tagged image 

file format (TIFF). Algae identification was based on classic, specific and regional 

literature. Species relative density was determined following the method of Battarbee 

(1986). 

4.3.4 Experimental animals 

A single laboratory D. magna clone (clone F), which has been the subject of many 

investigations (Barata and Baird, 2000), was used for this study. Bulk cultures of 15 

animals each were maintained in ASTM hard synthetic water as described by Barata 

et al. (2000). Animals were fed daily with Chorella vulgaris Beijerinck (106 cells/mL, 

corresponding to 3.6 g C/mL) (Barata and Baird, 1998). The culture medium was 

changed every other day, and neonates were removed within 24 h. From 200 to 250 

neonates were then transferred to 4 L tanks and reared under the same conditions 

as their mothers until they reached their fourth instar (4–5 days at 20°C). At this 

stage groups of juveniles were used for feeding and toxicity studies. 
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4.3.5 Cyanobacteria cultures 

Batch cultures of Planktothrix agardhii CCAP 1459/11 A (SAMS Research Services 

Ltd Scottish Marine Institute, Scotland, UK) were cultured in Jaworski’s Medium 

(CCAP) at 20 ± 1°C under constant light intensity of 12 μmol m−2 s−1 (14 h light: 10 h 

dark) with gentle shaking to allow re-suspension. Cultures were concentrated by 

centrifugation, re-suspended in ASTM, stored at 4°C and used within 5 days for the 

confirmation phase within the TIE protocol. Cell densities of P. agardhii were 

reported as biovolume estimates following established procedures in Sun and Liu 

(2003). 

4.3.6 TIE design 

The TIE experimental design was focused to test the hypothesis that observed 

toxicity of water samples was associated with the particulate fraction and to identify 

putative toxic compounds (Table 4.1). To do that, feeding responses of D. 

magna were determined for all samples in unfiltered and filtered water samples using 

post-exposure feeding and feeding assays, respectively. According to our 

hypothesis, filtered water samples should not impair feeding due to the removal of 

suspended matter. Further TIE phase I–III assessment included testing that 

suspended solids were toxic, assessing that metals did not contribute to toxicity by 

pre-treating samples with EDTA, studying which organic fraction was toxic and 

identifying toxic compounds by LC–MS/MS. Finally the toxicity of identified 

compounds was confirmed using lab exposures to those compounds (Table 4.1). 

Confirmation that suspended solids were toxic was performed assessing post-

exposure feeding effects of individuals exposed to ASTM hard water fortified with 

suspended solids extracted by means of filtration of water samples through a 

Whatman nylon filter (0.45 μm pore size). Post- exposure feeding responses to co-

exposures of unfiltered water samples with 200 μM EDTA were performed to discard 

metallic mediated effects on feeding of suspended material (Bosch et al., 2009). 

Feeding responses to non-polar and polar solvent extracts of suspended solids 

attached to glass fiber filters were performed to assess the polar nature of the toxic 

organic fraction. Accordingly, suspended solids present in 1 L water samples 

collected in June 22nd at RR and filtered in a Whatman glass fiber filter (0,.7 μm pore 

size) were extracted using dichloromethane : hexane (1:1, v/v), dichloromethane : 
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methanol (1:1, v/v), methanol 100%, methanol : water (80:20 v/v), methanol : water 

(50:50, v/v). Following fractionation the toxicity of solvent extracts relative to that of 

water only exposures was determine. Within each run appropriate solvent controls 

with extraction of clean filters and ASTM controls were used. Finally, confirmation 

that particle bound anatoxin-a could account for the observed toxicity of suspended 

solids was further assessed by measuring post-exposure feeding responses of D. 

magna juveniles. Individuals were pre-exposed for 24 h to six concentrations of P. 

agardhii cells (0.2–8 × 10−3 mm3/L) containing measured residue levels of anatoxin-

a, ranging from 0.1 to 4 ηg/L. 

 

Table 4.1 Phases I, II and III toxicity identification manipulations and toxicity assays. 
a post-exposure feeding responses of ASTM water containing 1  g/L of fine (< 20 µm) 
sediment S5,S6 particles; b post-exposure  feeding responses of ASTM water 
fortified with suspended solids extracted from water samples; c co-exposure of 
unfiltered samples from RR, AV with 0.1 mM EDTA; d feeding responses to solvent 
extracts of suspended solids from sampling sites RR, FR, MF, Mora; f  exposures to 
pure algae cultures grown in the lab 
 
T.I.E. procedures Assays, analyses 
Phase I. Toxicant characterization tests  
Unfiltered  water samples: all samples 
Water samples from Tablas de Daimiel  
Water elutriates of samples S5, S6 a. 

Post-exposure feeding 

Filtered  water samples: all samples Feeding 
Phase II. Toxicant identification analyses  
Re-constituted lab samples with suspended solids
Samples from 13rd March and May 22nd  b 

Post-exposure feeding 

Unfiltered  water samples from  May 22nd and 
EDTAc 

Post-exposure feeding 

Solvent extraction fractions of suspended solids: 
non polar to polar; samples from June 22nd d 

Feeding 

Analysis of organochlorine, phytotoxins and 
total mercury in suspended material 

Correlation analysis with 
post-exposure feeding 
responses 

Phase III - confirmation  
Planktothrix agardhii cells f Post-exposure feeding 
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4.3.7 Toxicity assays 

Post-exposure feeding assays followed previously validated methods (Bosch et al., 

2009). Four-day-old juveniles of D. magna were first pre-exposed in groups of 25 

individuals to 1 L of unfiltered, re-constituted, water:sediment elutriates or water 

spiked with different concentrations of P. agardhii cells for 24 h in a rotary wheel 

(3 rpm). In each run laboratory controls were also included,exposing individuals to 

1 L of ASTM hard water. After exposure, feeding rates were measured in groups of 5 

individuals in 50 mL of ASTM hard water with 5 × 105 Chlorella vulgaris cells/mL. 

Incubations lasted 4 h and were performed in quintuplicate. Appropriated blanks 

(vessels with algae and no animals) were also included to account for algae growth. 

Direct feeding tests with filtered water samples or solvent extracts were assessed in 

24 h toxicity tests following Barata et al. (2008). Groups of 5 juveniles were exposed 

to 100 mL of test concentrations in 120 mL borosilicate flasks in the presence of 

food. C. vulgaris was added at a concentration of 5 × 105 cells/mL (equivalent to 

1.5 μg C/mL). Treatments consisted of ASTM hard water control, solvent controls 

when required and the studied water samples represented in five replicates. Each 

group of replicates consisted of five vessels with animals and one blank. Blanks 

were used to assure that initial algal concentrations did not increase significantly 

over the exposure period. Both direct feeding and post-exposure feeding 

experiments were conducted in the dark in order to avoid algal growth. Individual 

feeding rates (number of algal cells ingested per animal per hour) were determined 

as the change in cell density in 4 or 24 h according to the method described by Allen 

et al. (1995) and converted to proportional feeding rates relative to lab controls. Cell 

density was estimated from absorbance measurements at λ = 650 nm using 

standard calibration curves based on at least 20 data points (r2 > 0.98). 

4.3.8 Data analysis 

Within each sampling date or TIE treatment, feeding responses were compared with 

laboratory control treatments using ANOVA followed by Dunnett’s test. Feeding 

inhibition responses relative to controls were then compared across all sampling 

sites and periods using ANOVA followed by Tukey’s multiple comparison tests. 

Feeding and proportional responses were log transformed to meet ANOVA 

assumptions of normality and variance homocedasticity (Zar, 198496). Relationships 
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between environmental factors and post-exposure feeding inhibition were assessed 

using Pearson correlation. Residue levels of anatoxin-a and suspended solids were 

further related with feeding inhibition responses using the Hill regression model of 

eq. 1. 

ሻ݊݋݅ݐܾ݄݅݅݊݅%ሺܧ ൌ ଵ଴଴

ଵାሺா஼ఱబ/௫ሻ೛
      (eq.1) 

where E is the effect in % of feeding inhibition, p is the shape parameter; EC50 is the 

concentration of a test compound causing 50% feeding inhibition of individuals, x is 

the concentration of the test compound. Regression parameters were estimated by 

the Least Square Method using the Levenberg–Marquardt algorithm. The standard 

error (SE) or 95% confidence intervals (CI) of each estimated parameter was then 

calculated from the standard deviation of the least square estimates (Zar 1984). 

Model accuracy was assessed by using the adjusted coefficient of determination (r2) 

and by analyzing the residual distribution. Analyses were performed with the SPSS 

Statistics 17 package (SPSS inc., Chicago Ill). 

4.4 Results 

4.4.1 Physico-chemical characterization 

Physico-chemical parameters of the studied sediment samples denoted substantial 

differences across sampling periods and sites (Table 4.2). Conductivity and oxygen 

levels decrease from January to June and were inversely related with water 

temperature (Pearson correlations of −0.65 and −0.75; respectively, 

P < 0.05, N = 30). Suspended solids present in the water column varied across 

sampling periods and sites, decreasing during the periods of lower water flow in May 

22nd and June 9th and increasing toward the river downstream. Observed high levels 

of suspended solids in June 9th in the Cinca river (site CI) are related to the different 

flow regimen in comparison to that of the Ebro River, which is regulated by dams. 

Particle size and composition showed that suspended solids were mainly composed 

of fine silt (75%; 4 μm < grain size < 62 μm) and clay (25%; grain size <4 μm), which 

mean particle size distributions (mean ± SE,N = 6) decreasing from RR 

(16.1 ± 1.6 μm) toward M (12.9 ± 1.5 μm). Organic carbon varied little across 
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measured water samples (mean ± SE, N = 10) 4.8 ± 0.1%. Negative control samples 

(samples from TDNP and S5 and S6 from Ebro) had similar grain distribution as 

suspended solids in collected water samples, being mainly composed of fine silt (70–

80%; 4 μm < grain size < 62 μm) and clay (20–30%; grain size <4 μm). The organic 

content of C and N of the sediment samples from negative controls were also similar 

to those of suspended solids, being 3.0–3.5% for C and 0.29% for N.  

Total mercury measured in suspended matter and expressed in a water volume 

basis (ηg/L) correlated with that of suspended solids (P < 0.05; 0.56,N = 30), 

whereas organochlorine levels did not. Nevertheless, for both chemical groups, 

residue levels increased from upstream to lower reaches in most samplings. In June 

9th the sample from Cinca river had the highest levels of suspended solids and of 

total Hg and in June 22nd the levels of total Hg were the highest at MF, which is 

located just downstream to the chlor-alkaly factory. 

From the four phytotoxins analyzed (anatoxin-a and microcystins LR, RR and YR) in 

methanol:water (80:20, v/v) filter extracts, only anatoxin-a residues were detected in 

different amounts in all samples (Table 4.2). No phytotoxins were detected in the 

negative control samples. 

Visual inspection of the water samples under microscope evidenced the presence of 

fine clay material, aggregated organic matter and bacterial growth associated. The 

presence of algae was limited to few cells (mean ± SE, N = 12) 1.8 ± 0.1 cells/mL, 

from which cyanobacteria were only detected at concentrations <1 cell/mL in 

upstream locations of RR and FR. Identified taxa included Bacillariophyceae 

(Melosira varians C., Fragilaria sp.), Chlorophyceae (Oedogonium sp., Ulothrix sp.) 

and Cyanophyceae (Aphanothece halophytica, Merismopedia sp.). Images of the 

samples are presented in Fig. 4.2 

Table 4.2 Measured physico-chemical water parameters of samples. Conductivity, 
oxygen levels, temperature, suspended solids, total mercury and organochlorine 
residue levels in water are reported as µS/cm, mg/L, oC, mg/L, ηg/L and ηg/L, 
respectively. Abbreviations are explained in the text. LOD, below detection limit; 
empty cells are missing values; TD, Tablas de Daimiel water sample. a 
Physicochemical values are those of ASTM hard water and laboratory control 
conditions; b THg values in ηg/L obtained from Bosch et al. (2009) 



 

 

 

Date Sites pH Cond O2 T SS THg Ana DDTs HCH HCL PCBs OCL 
Jan 28th RR 7.9 1013 11.2 8.1 4.8 1.4 6.8 0.66 11.88 0.03 0.86 2.51 
 FR 8.5 1002 10.6 8.1 20.2 3.8 3.5 1.06 4.36 0.04 0.48 5.98 
 MU 8.7 994 11.2 8.8 26.8 5.5 3.1 0.84 4.27 0.07 0.3 5.48 
 MD 8.1 1013 10.9 8 24.8 5.9 2.2 2.26 7.16 0.02 1.05 10.5 
 AP 8.6 1014 9.8 8.6 29.8 11.7  9.17 4.68 0.01 2.33 16.18 
 AV 8.5 1010 9.1 9.7 30.1 12.4 3.8 4.22 5.39 0.03 0.68 10.32 
 M 8.4 1013 9.9 8.7 35.2 24.5 2.4 20.54 6.39 2.47 2.25 31.65 
March 13 rd RR 8.2 705 13 8.9 13.2 2.2 1.2 0.09 0.69 0.02 0.05 1.18 
 FR 7.8 684 11.8 9.8 13.9 2.7  0.59 1.24 0.05 0.2 2.07 
 MU 8.1 703 11.6 9.6 12.6 2.7 1.0 1.11 1.87 0.06 0.39 3.43 
 MD 8.1 705 13.2 9.2 12.5 2.6  1.77 1.61 0.04 0.37 3.78 
 AP 8.4 704 13.4 9.1 12.8 3.3  2.68 2.03 0.13 0.75 5.59 
 AV 8.2 708 13.2 11.1 12.6 2.6 1.1 3.1 1.17 LOD 0.48 4.76 
 M 8.2 707 13.2 9.9 12.5 4.0  2.78 12.07 0.12 0.63 15.61 
May 22nd RR 7.5 746 10.6 15.2 5.0 1.2 0.5      
 FR 7.5 738 9.6 15.5 6.3 1.5 1.9      
 MU 7.6 744 10.1 15 5.0 1.2 0.7      
 MD 7.6 743 9.5 15.3 5.7 1.6 0.7      
 AV 7.6 756 10.2 16.1 6.1 3.1 0.5      
 M 7.7 750 10.9 16.1 6.0 2.4 1.0      
June 9th CI 6.8 727 6.2 18.7 22.7 6.9 0.2      
 RR 8.4 837 8.9 20 4.5 1.1 0.3      
 AV 8 857 6.0 17.2 5.8 2.6 0.3      
June 22nd RR 7.4 603 8.0 18.3 30.7 3.0 0.9      
 FR 7.2 591 7.9 18.5 37.6 3.6 1.8      
 MF 7.4 610 7.6 18.6 35.6 18.1 1.0      
 MU 7.4 494 7.7 18.5 39.6 3.5 1.4      

 MD 7.4 585 8.0 18.5 36.1 3.9 0.7      
 AV 7.4 590 8.3 20.2 34.6 4.3 0.9      
 M 7.5 583 8.4 19.2 36.7 5.1 0.5      
Negative  S5 8.1 540 9.7 20 1000 2700 LOD 9150.6 2.5  5701.1 14854.2 
Controls a S6 8.1 540 9.7 20 1000 1300 LOD 826.1 3.3  297.7 1127.1 
 TD 8.1 540 9.7 20 15 LOD LOD      
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ASTM hard water fortified with suspended solids recovered from nylon filters 

were about 50% of those observed in whole water samples and in all cases 

were significantly (P < 0.05) inhibited relative to controls (Table 4.3). 

Feeding responses of negative controls included two treatments of ASTM hard 

water fortified with 1 g/L of fine sediment samples from the same study area 

collected years before (S5, S6: (Bosch et al., 2009) and a water sample 

collected in the lagoons of Las Tablas de Daimiel National Park. In all three 

cases feeding responses were not inhibited (Table 4.3). 

A further TIE assessment was performed using EDTA and different solvent 

extractions to assess the relative contribution of metallic, non-polar and polar 

contaminants in the measured toxicity of suspended solids. Results, as shown 

in Fig. 4.3, indicated no changes in feeding inhibition between intact water 

samples and those fortified with 200 μM of EDTA.  
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Figure 4.3 Post-exposure feeding inhibition responses (mean ± SE, N = 5) of D. 
magna individuals exposed to selected water samples from May 22nd with and 
without 200 μM of EDTA. Significant (P < 0.05) differences across samples 
following ANOVA and Tukey’s test are indicated by different letters. 
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Table 4.3 Feeding inhibition (%) (Mean, SE, N = 5) relative to lab control 
treatments of unfiltered, filtered and re-constituted water samples across the 
studied periods and sites. * indicates significantly (P < 0.05) different feeding 
rates following ANOVA and Dunnett’s tests. PE, post-exposure feeding.  

  Unfiltered Filtered Reconstituted
  PE feeding Feeding PE feeding 

           
Periods Sites Mean SE  Mean SE  Mean SE  

      
Jan 28th RR 55.3 3.1 * -8.3 0.8      
 FR 78.4 5.1 * -9.1 1.2      
 MU 68.8 2.4 * -15.4 0.4      
 MD 67.3 5.4 * -11.2 1.3      
 AP 64.6 6.1 * -6.2 0.5      
 AV 61.5 4.4 * -6.8 3.0      
 M 50.3 5.5 * -6.6 1.4      
           
March 13 rd RR 55.0 3.6 * 2.1 1.0   20.4 4.1 * 
 FR 57.1 1.7 * 1.8 1.6   31.4 3.7 * 
 MU 64.7 0.9 * -5.5 1.3   42.3 2.9 * 
 MD 68.9 2.7 * -2.1 .6   32.8 3.2 * 
 AP 50.1 2.6 * 0.9 .5   24.8 1.5 * 
 AV 58.1 3.7 * 2.5 .6   31.4 3.9 * 
 M 60.9 3.9 * 1.8 2.0   38.7 1.4 * 
           
 May 22 nd RR 54.8 3.1 * -5.8 .6   33.8 3.7 * 
 FR 48.5 4.2 * 0.6 .9   28.8 1.3 * 
 MU 56.4 4.2 * -9.1 .8   20.8 2.5 * 
 MD 54.5 3.8 * -12.0 1.2   29.2 4.1 * 
 AV 47.9 3.0 * 2.3 2.1   21.1 1.0 * 
 M 51.8 3.1 * -10.0 1.4   20.4 1.8 * 
           
June 9 th CI <0.1 4.2  1.7 4.2      
 RR 9.6 2.9  4.0 4.0      
 AV 10.5 2.6  -1.1 2.7      
           
June 22 nd RR 78.4 3.4 * -2.7 0.4   43.1 1.5 * 
 FR 72.7 3.0 * -11.0 0.2   39.1 1.0 * 
 MF 81.5 0.4 * -9.9 0.2   45.6 1.1 * 
 MU 67.0 1.1 * -8.6 0.4   33.9 1.2 * 
 MD 75.3 2.1 * -9.7 0.4   42.3 0.4 * 
 AV 71.1 3.1 * -12.6 0.9   39.2 0.9 * 
 M 71.1 1.3 * -10.7 0.4   41.5 0.6 * 
           
Negative controls S5 -2.7 5.7        
 S6 -3.6 5.3        
 Tablas Daimiel 4.9 2.3        
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Correlation analyses between physico-chemical parameters and feeding 

inhibition responses only gave significant (P < 0.05) relationships between 

feeding and levels of suspended solids (δ = 0.49, N = 30) and of anatoxin-a 

residues (δ = 0.65, N = 29). Regression fits depicted in Fig. 4.5 indicated that 

feeding inhibition versus anatoxin-a levels could be accurately predicted by the 

Hill models (P < 0.05, r2 = 0.66, N = 29, Fig. 4.5 A) having an EC50 ± SE of 

0.64 ± 0.11 ηg/L of anatoxin-a. Suspended solids versus feeding inhibition 

responses had a quite poor fit to the Hill model (P < 0.05, r2 = 0.23, N = 30, Fig. 

4.5 B). Confirmation TIE phase III assays using post-exposure feeding inhibition 

responses of D. magna individuals exposed to P. agardhii ranging from 

0.24 × 10−3 to 8 × 10−3 mm3/L evidenced a strong feeding inhibition. Chemical 

analyses of cyanotoxins present in the tested concentrations of P. agardhii cells 

only detected residue levels of anatoxin-a. Feeding inhibition responses plotted 

against measured residue levels of anatoxin-a produced by P. agardhii showed 

a good fit with the Hill equation (P < 0.05, r2 = 0.893, N = 23) having an 

EC50 ± SE of 0.14 ± 0.01 ηg/L of anatoxin-a (Fig. 4.5 C). 

4.5 Discussion 

During winter and spring 2013, an excess of rain combined with high amounts 

of accumulated snow and consequent melting waters from the Pyrenees, made 

it necessary to open the dams of Riba-Roja and Flix reservoirs. The opening of 

the Riba-Roja reservoir dam dramatically increased the water flow of Ebro River 

downstream (Fig. 4.1 C) and consequently the amount of re-suspended particle 

matter as well as mercury and organochlorine residues associated with it (Table 

4.2). The greatest levels of suspended solids measured in the study coincided 

with those periods of maximal water flow, respectively, January 8th and June 

22nd. However, residue levels of total Hg associated to particle matter were 

greater in January than in June, probably due to the prolonged wash of the 

riverbed and banks (Quesada et al., 2014). In all samplings, contaminant 

residue levels increased from up- to downstream locations and were especially 

high in the water samples collected just downstream of the contaminated 

wastes of Flix at MF in June 22nd. These results indicated that there was a 

continuous mobilization and enrichment of contaminants associated with 

sediment particles coming from Flix industrial wastes toward the downstream 
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Thus the results reported in this study for metallic and organochlorine residue 

levels associated to suspended solids agree with and support previous findings 

showing that industrial wastes of Flix are being mobilized toward downstream 

locations during flushing floods (Quesada et al., 2014). Results obtained in 

toxicity assays conducted in unfiltered and filtered samples and in re-constituted 

ASTM water with suspended solids indicated that toxic effects were associated 

exclusively to suspended matter. There were strong inhibitory effects of D. 

magna feeding rates across most water samples with little variation between 

upstream and downstream sites, the exception being those water samples 

collected in June 9th that showed no toxicity. Unexpectedly toxic effects were 

unrelated to measured contaminants (i.e., organochlorine and total mercury). 

Two independent pieces of evidence corroborated the previous results: (1) 

treatment of water samples with EDTA did not diminished toxicity, which 

indicates that neither measured mercury nor other metals contributed to the 

observed toxicity; (2) water elutriates obtained spiking 1 g of sediments from 

sediments S5 and S6 into 1 L of ASTM were not toxic to D. magna juveniles, 

despite containing higher levels of mercury and organochlorine residues than 

the water samples collected across the studied sites and periods. In a previous 

study it was shown that treatment with EDTA was able to diminish most of the 

observed effects of metals bound to sediment wastes from Flix (Bosch et al., 

2009). In the same study elutriates of sediments S5 and S6 were also non-toxic 

to D. magna. Thus, our results indicated that despite of being re-suspended, the 

sediment wastes of Flix had a negligible contribution to observed toxicity of 

suspended solids. 

Of particular interest were water samples collected at RR, which despite of 

being upstream of the contaminated wastes of Flix, were as toxic as those 

collected downstream. There is no industry and little agricultural activity around 

RR, and this location has been considered as a reference site in several 

previous works (Benejam et al., 2010; Bosch et al., 2009; Carrasco et al., 2008; 

Faria et al., 2010; Navarro et al., 2009). This means that measured toxic effects 

on suspended matter are likely to be related to wastes coming from the Riba-

Roja reservoir. Indeed the ‘flushing flood' method used in the lower Ebro River 

region consists in partially emptying the reservoir in order to erode the stored 

sediment and evacuate them through the bottom outlets by using the water 

column pressure (Rovira and Ibàñez, 2007). Reported evidences of sources of 

toxicity in the Ebro's reservoirs such as Riba-Roja are limited to organochlorine 
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and mercury wastes coming from industrial activities located upstream (de la 

Cal et al., 2008; Eljarrat et al., 2008; Faria et al., 2010; Lavado et al., 2006; 

Navarro et al., 2009; Raldúa et al., 1997) and toxic cyanobacteria (de Hoyos et 

al., 2004; Quesada et al., 2004). The most common toxic cyanobacteria genus 

found in Ebro's reservoirs are Anabaena and Planktothrix, which can produce 

microcystins and anatoxins (de Hoyos et al., 2004; Quesada et al., 2004). In our 

study, the visual inspection of the suspended solids present in water samples 

under microscope detected only very few colonies of Cyanobacteria, e.g. 

Merismopedia sp. and Aphanotece sp. in upstream locations, with no reported 

evidence of species producing anatoxins. The previous findings, however, did 

not discard the occurrence and presence of toxic cyanobacteria species around 

the area. Indeed in October 2014 we have detected Planktothrix sp. 

communities growing in the periphyton at MU (unpublished data). The analysis 

of the toxic fraction of suspended matter extracts, however, evidenced the 

presence of residues of anatoxin-a that correlated quite well with observed 

feeding inhibition responses. It should be pointed out that despite our samplings 

were not carried out at the typical period for cyanobacterial blooming (from 

August to October), there is reported evidence that toxic cyanobacteria occur all 

year long in Ebro’s reservoirs (Quesada et al., 2004). There is also described 

evidence that toxic cyanobacteria of the genus Anabaena and Planktothrix can 

live in the bottom sediment of lakes even under heterotrophic conditions and 

survive through winter (Li et al., 2011; Mannan and Pakrasi, 1993; Savichtcheva 

et al., 2011; Toporowska et al., 2014). Microcystins and especially anatoxin-a 

are known to adsorb to fine clay material, accumulating in the sediment, in 

which they can persist for long periods depending on the existing microflora 

(Chen et al., 2008; Chen et al., 2013; Kaminski et al., 2013; Klitzke et al., 2011; 

Rapala et al., 1994). The detection of anatoxin-a and not of any microcystins in 

the analyzed suspended matter samples rich in clay particles support the 

previous studies. 

Confirmation TIE III assays using lab exposures against naturally produced 

anatoxin-a by cyanobacteria of species P. agardhii confirmed the results 

obtained in field samples. Post-exposure feeding inhibition assays performed 

with cells of P. agardhii re-suspended in ASTM showed significant detrimental 

effects at ηg/L of anatoxin-a. Feeding response were inhibited at lower amounts 

of anatoxin-a when D. magna were exposed to pure cultures of P. agardhii 

compared to field collected water samples. This is an expected result provided 
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that, in the lab, individuals were exposed to pure cultures of cyanobacteria that 

are known to produce many different bioactive molecules that may act 

synergistically (Ibelings and Havens, 2008). It is also important to consider that 

the highest concentrations of P. agardhii tested in the lab (8 × 10−3 mm3/L) 

were within the lowest range reported for natural populations 

of Planktothrix occurring in oligotrophic lakes (Ostermaier et al., 2012). Thus, 

our results showed that low or almost undetectable concentrations of P. 

agardhii cells were highly toxic to D. magna. 

4.6 Conclusions 

In summary, results reported in this study provided evidence that post-exposure 

feeding responses of D. magna can be used to identify toxic components 

present in suspended material using TIE approaches. Results indicated that 

non-targeted pollutants present in suspended matter, such as cyanotoxins, 

affected feeding rates. This is the first evidence showing that the release and 

re-suspension of bottom sediments from reservoirs during flushing floods may 

be detrimental to grazers living downstream the river due to the presence of 

cyanobacteria toxins. 
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Chapter V. 

Integrated environmental risk assessment of chemical 

pollution in a Mediterranean floodplain by combining 

chemical and biological methodsa 

5.1 Abstract 

The Tablas de Daimiel National Park (TDNP) is a unique floodplain ecosystem 

in central Spain, serving as permanent resting and breeding areas for many 

waterbird species. In the last decades, this biodiversity hotspot has been 

severely endangered by poorly treated wastewater discharges from upstream 

urban communities arriving through its two major contributors, the Cigüela and 

Guadiana rivers. In this work, we analyzed the potential risk of this constant 

input of micropollutants (estrogens, dioxin-like compounds and other endocrine 

disruptors) for the resident wildlife. We sampled 12 locations in TDNP and in the 

nearby Navaseca Pond during 2013, and performed a series of in vivo and in 

vitro bioassays, including Daphnia magna post-exposure feeding inhibition and 

recombinant yeast-based assays for dioxin-like and estrogenic activities. These 

results were then compared with the chemical composition of the samples, 

analyzed by GC-MS/MS and LC-MS/MS, and evaluated according to their toxic 

potential as toxic equivalents or TEQ. The Navaseca Pond, heavily impacted by 

wastewater from the town of Daimiel, showed the highest levels of toxic 

compounds, estrogenic activity, and Daphnia toxicity. Conversely, the less 

impacted TDNP sites showed low residue levels of contaminants, low 

estrogenicity and dioxin-like activity and negligible toxicity. The results indicates 

that the current good chemical status of TDNP is menaced by both the inflow of 

wastewater treatment plants effluents from Guadiana and Cigüela rivers into 

TDNP tributaries and, as it occurs in the Navaseca Pond, by direct sewage 

discharges. 

Keywords: contaminant, endocrine disruption, freshwater, UNESCO Biosphere 

Reserve, Ramsar site. 
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5.2 Introduction 

River floodplains provide human society with many important ecosystem 

services (Postel and Carpenter, 1997), but their ecological status is determined  

by several complex parameters, including fluvial dynamics and groundwater 

and man-made processes (Alvarez-Cobelas et al., 2001). In recent times, 

intensive agriculture combined with groundwater extraction for irrigation, and 

overall decreases in surface and groundwater quality have appeared as major 

threats for river floodplains (Tockner and Stanford, 2002). As a consequence, 

most floodplains are functionally extinct nowadays in North America and 

Europe, including the Mediterranean (Brinson and Malvárez, 2002; Tockner and 

Stanford, 2002). In Spain, floodplains present the worst conservation situation 

among all wetlands, as more than 79% of the surface they possessed in the 

19th century has been lost by draining for cultivation (Casado et al., 1992). A 

worse-case scenario of a severely impacted Mediterranean floodplain are 

Tablas de Daimiel National Park (TDNP), which is located at the center of 

Spain, and it is considered a Biosphere reserve by UNESCO, a Ramsar site 

and refuge for migratory birds and aquatic plants. Its many valuable features 

come from the structure of submerged vegetation communities, dominated by a 

mosaic of Cladium mariscus sawgrass-emergent stands and open water 

habitats (“tablas”) (Cirujano et al., 1996), and of extensive stonewort 

(Charophyceae) communities. The latter plant community is extremely 

important for the survival of many migratory and resident waterbirds (Cirujano et 

al., 1996). The waterbird community in TDNP has been famous since at least 

the Middle Ages, being cited in the ancient hunting literature sources (Coronado 

et al., 1974). Almost 200 bird species have been recorded in this wetland and 

its surrounding terrestrial habitats; this figure includes practically every inland 

waterbird species known in southern Europe. Registers of ichthyofaunal 

diversity in TDNP from the 16th Century onwards reflected a richness of species 

that remained so at the turn of the 20th Century. However, recent  invasive 

events of freshwater fish, such as the common carp (Cyprinus carpio), are 

negatively affecting aquatic vegetation, both directly by consuming 

macrophytes, and indirectly by changing water quality (Laguna et al., 2016). 
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The wetlands of TDNP are the result of the mixture of inputs from Cigüela and 

Guadiana rivers, together with groundwater discharge from the West Mancha 

aquifer (Alvarez-Cobelas et al., 2001; Berzas et al., 2000). The reduction of the 

drainage area and an overexploitation of groundwater for irrigation purposes 

lead to the near desiccation of TDNP and, finally, to the ignition of a smoldering 

peat fire inside the TDNP in August 2009. This fire posed an enormous risk for 

both the physical structure supporting the ecosystem and the quality of 

groundwater beneath it (Moreno et al., 2011), especially considering that fires 

are an important source of pollution by polycyclic aromatic hydrocarbons 

(PAHs) for Mediterranean rivers (Vila-Escale et al., 2007). A TDNP Hydric 

Regeneration Plan was implemented to stop or at least mitigate this 

environmental degradation. The plan includes the artificial recharge of the 

wetlands by pumping groundwater from nearby wells and, occasionally, by 

diverting water from the Tajo River to the Cigüela River (Berzas et al., 2000).  

TDNP also suffers from water pollution associated with human population 

growth and the subsequent agriculture and industry developments (Berzas et 

al., 2000; Sanchez-Ramos et al., 2016). Pollution sources include dispersed-

source pollution from surrounding agriculture and industrial activities, and point-

source pollution from wastewater treatment plants (WWTP) discharging treated 

or untreated effluents into the Cigüela and Guadiana rivers (Sanchez-Ramos et 

al., 2016). One of such contaminated sites is the Navaseca Pond, which is 

located at the Guadiana River basin and that receives wastewater effluents 

from the town of Daimiel, both treated and untreated, particularly during heavy 

rain episodes. Besides the town of Daimiel, Villarrubia de los Ojos town 

discharges wastewater effluents to Cigüela River from its wastewater treatment 

plant. Another nearby town, Fuente el Fresno, has been discharging untreated 

effluents into Cañada Lobosa stream until 2013 when its wastewater treatment 

plant started to operate. This means that there is potential risk of contaminants 

to cause detrimental effects on living biota in the TDNP. In recent years, the 

populations of herbivorous waterfowl have shown a marked decrease, 

potentially linked to the deterioration of submerged macrophyte stands by 

introduced fish species, such as the common carp Cyprinus carpio (Laguna et 

al., 2016). There is, however, the possibility that some noxious contaminants 
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are affecting birds directly or indirectly being toxic to aquatic invertebrates and 

plants, which are food sources for aquatic birds. The aim of the present study is 

to characterize noxious organic contaminants in TDNP and their main water 

sources, by sampling 14 locations in the wetland of TDNP and its nearby 

Navaseca Pond during 2013. We determined residue levels of up to 31 different 

organic compounds including estrogens, antimicrobials, preservatives, 

plasticizers, alkylphenols, anticorrosives and flame retardants, that are often 

found in treated wastewater effluents, some of them with known estrogenic 

activity to vertebrates (Gorga et al., 2013). Additionally, PAHs present in 

suspended solids of water samples were determined, since some of them are 

known to have dioxin-like activity (Misaki et al., 2007). Chemical determinations 

were complemented with measurements of total estrogenicity and dioxin-like 

activity using in vitro recombinant yeast assays (RYAs) (Bosch et al., 2009; 

Céspedes et al., 2004; Noguerol et al., 2006a) and of general toxicity to aquatic 

invertebrates using post-exposure Daphnia magna feeding toxicity tests (Bosch 

et al., 2009; Rivetti et al., 2015b). Combining chemical and toxicity assays will 

allow identifying chemicals causing toxic effects, which may help the 

implementation of future remediation strategies in the TDNP.  

5.3 Material and methods 

5.3.1 Study area 

TDNP is situated in central Spain at the SW corner of the Mancha Húmeda 

Biosphere Reserve (MAB program, UNESCO), within the province of Ciudad 

Real (39º 08' 17'' N, 3º 41' 50'' S, Fig. 5.1 A, B). The Park covers an area of 

3030 ha, of which almost 2000 ha consists of a fluctuating Mediterranean 

floodplain, which is fed by water from the Guadiana and Cigüela rivers and the 

underlying aquifer (Fig. 5.1C). This region has a semiarid continental 

Mediterranean climate, with an extremely irregular rainfall regime, the average 

annual rainfall being between 400 and 500 mm, and having an average 

temperature of 14°C (Alvarez-Cobelas et al., 2001; Cirujano et al., 1996). 
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additional station from the Guadiana River (Griñon station), and three stations 

at the Navaseca Pond, one at the discharging point of the Daimiel WWTP (N1), 

and two more sites at both extremes of the pond (N2, N3, Fig. 5.1 C). Fig. 5.1 C 

depicts different sources of diffuse pollution influencing the TDNP, coming from 

agricultural activities, from Villarubia de los Ojos WWTP discharges through the 

Cigüela River, from Fuente el Fresno through Cañada Lobosa stream, and from 

contaminated bird faeces (Sanchez-Ramos et al., 2016).  Approximately 4 L of 

water were collected per site, stored in 1 L amber glass bottles, and transported 

to the laboratory under cooled conditions (4ºC).  

5.3.3 Sample processing and physico-chemical analyses 

Upon reception, samples were filtered through glass fiber Whatman GF/C filters 

(GE Healthcare Ltd.) previously washed with acetone, pre-combusted at 400ºC 

and pre-weighted. Following filtering, filter residues were freeze dried, weighed 

to assess total suspended particles (mg/L) and then stored at -20ºC until their 

use for chemical and dioxin-like activity determinations. Additional water 

physico-chemical parameters, including pH, conductivity (mS/cm), dissolved 

oxygen (O2, mg/L), were measured using a WTW Multi 340i handheld meter. 

Estrogenic compounds and other chemicals commonly found in WWTP 

effluents were analyzed in filtered water samples using a fully automated 

method, based on column switching using EQuanTM columns for an integrated 

sample pre-concentration and liquid chromatography coupled to tandem mass 

spectrometry (LC–LC–MS/MS) (Gorga et al., 2013). Up to 31 different 

chemicals were selected, including both recognized and suspected 

environmental endocrine disruptors (EDCs), such as natural and synthetic 

estrogens and their conjugates, antimicrobials, parabens, bisphenol A, 

alkylphenolic compounds, benzotriazoles, and organophosphorus flame 

retardants. Analytical conditions were fully described in the previous study 

(Gorga et al., 2013). In brief, the Thermo Scientific EQuanTM system for online 

sample pre-concentration and analysis consisted of a triple quadrupole (QqQ) 

MS with an electrospray ionization source (ESI), two LC quaternary pumps 

(Finnigan Surveyor L-Pump) and two LC columns, one for pre-concentration of 

the sample and the second for the analytical separation. The injection volume 
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was set at 5 mL. Spiked samples with a solution of surrogate standards were 

directly injected into the chromatographic system and the target compounds 

were pre-concentrated into the loading column by a stream of mobile phase 

(aqueous : organic solvent (98:2, v/v)). Thereafter, analytes were transferred 

from pre-concentration column to the analytical column using the same mobile 

phases than previous step through both columns. Chromatographic separation 

of compounds detected under negative ionization (NI) conditions was performed 

under gradient elution condition using water (A) and methanol (B). The initial 

condition was 50% B, then the gradient was linearly increased to 70% B in 2 

min, increased to 100% B in 6 min and kept isocratic for 6 min. Compounds 

detected under positive ionization (PI) conditions were separated using the 

same gradient program using solvent system containing water–methanol both 

phases with 20 mM of ammonium formiate and 0.1% of acetic acid. Detection 

was carried out using a mass spectrometer TSQ Vantatge, equipped with an 

ESI turbo spray interface. The operating parameters were as follows for NI and 

PI, respectively: spray voltage 2500/3000 V, sheath gas pressure 40/40 (N2), 

auxiliary gas pressure 20/20 (N2), ion sweep gas pressure 0.5/0.5 (N2) and 

transfer tube temperature 270/300ºC. The precursor and product ions of 

individual target compounds were obtained by tuning after direct injection of 1 

ppm. The optimized MS/MS parameters for SRM analysis of the analytes are 

given in (Gorga et al., 2013). Natural and synthetic estrogens and conjugates, 

antimicrobials/ disinfectants, preservatives, BPA, and the alkylphenolic 

compounds (OP, NP, OP1EC and NP1EC) were detected under NI conditions 

as [M−H]−. Diagnostic ions used for the analysis of anticorrosives, 

organophosphorus flame retardants compounds and the chemical biomarker 

caffeine, in PI mode were those corresponding to [M+H]+, while for the 

alkylphenolic compounds (OP1EO, OP2EO, NP1EO and NP2EO) the adduct 

precursor ion [M+NH3]
+ was analysed.  Identification and confirmation of the 

analytes were based on retention time for all monitored transitions (± 1 s) and a 

ratio between the two monitored transitions within 15% of the theoretical value 

(calculated upon standards). Internal standard quantification was performed 

using deuterated compounds. The instrumental parameters showed good 

linearity in the concentration range studied (2.5–3000 ηg/L) for all compounds 

(r2>0.99). Intra-day variation was below 8.0%. Solvent and matrix blank 
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samples were also analyzed and no carry-over effect was detected throughout 

the analyses. Mean recoveries (±SD) in water for the detected compounds were 

77(±15)%. Limits of detection calculated at a signal-to-noise ratio of 3 are 

depicted in Table 5.1, and ranged between 0.01 to 0.27 ηg/L. 

Levels of PAHs dissolved in water and adsorbed to suspended particles were 

obtained following previous procedures (Martinez et al., 2004; Rivetti et al., 

2015a). For extracting dissolved PAHs, 10% (v/v) of methanol was added to 1 L 

of filtered water and the solution was mixed. The internal/surrogate standards 

composed of five deuterated PAHs were added at this stage at a concentration 

of 0.5 µg/L. Filtered water sample pre-concentration (500 mL) was performed by 

SPE using HLB (6 mL, 200 mg) cartridges and a Baker vacuum system (J.T. 

Baker, The Netherlands). The SPE cartridges were subsequently conditioned 

(at a flow rate of 1 mL/min) with 10 mL of hexane, followed by 10 mL of 

dichloromethane, 10 mL of methanol and 15 mL of water. Cartridges were 

eluted, at the same flow rate, with 10 mL of dichloromethane: hexane (1:1, v/v), 

then eluents evaporated with a gentle stream of nitrogen, reconstituted to a final 

volume of 100 µL with hexane. PAHs from suspended solids retained in freeze 

dried filter were extracted as follows. Filters were broken in small pieces and 

then inserted in a glass tube with 30 mL hexane : dichloromethane (1:1, v/v) 

and placed in the ultrasonic bath for 10 min. The surrogate/internal standard 

was added at this stage at the same concentration as for water samples. 

Afterwards, the solution was centrifuged during 5 min at 2500 rpm. Extraction 

steps were repeated three times. The sonicated extracts were evaporated at 

room temperature under nitrogen and reconstituted in 100 µL of hexane. 

Samples were analysed by a GC System (Carlo Erba GC 8000) coupled to a 

quadrupole mass spectrometer (Fisons MD 800).  

Table 5.1 Contaminant residue levels (ηg/L) and general physico-chemical 
parameters of water samples collected from TDNP and Navaseca Reservoir in 
May (M) and July (J). Abbreviations are described in Gorga et al. (2013) and 
Martinez et al. (2003). D, lower than limit of detection (LOD). 



 

 

 

Cigüela site Guadiana site Navaseca LOD (ng/L)

ng/L T1‐M T2‐M 3‐M T9‐M T10‐M T1‐J T2‐J T9‐J T10‐J T4‐M T5‐M T6‐M T7‐M T8‐M Griñon‐J T4‐J T5‐J T6‐J T7‐J N1‐J N2‐J N3‐J

Estrogens

Estriol D D D D D D D D D D D D D D D D D D D 0.7 D D 0.17

Estrone D D D D D D D 3.7 D D D D D D D D 2.8 D D 6.739 D D 0.05

Antimicrobials

Triclosan D D D D 25.5 D D D D D D D D D D D D D D 39.1 D 1.1 0.03

Preservatives

Methylparaben D D D D D D D D D D D D D D D D D D D D D D 0.02

Ethylparaben D D D D D D 1.2 D D D D D D D D D D D D D D D 0.27

Propylparaben D D D D D D D D D D D D D D D D D D D D 1.8 1.5 0.02

Plasticizer

Bisphenol A 6.3 6.8 10.5 6.7 4.1 D 4.5 3.2 8.5 34.3 17.4 16.2 8.8 7.7 D 1.3 0.7 D D 44.5 6.7 3 0.12

Alkylphenols

Nonylphenol D D D D 26 30.1 D D D D D D D D D 21.8 D D D D D D 0.14

Octylphenol 0.5 D D 1 1 D 0.8 D 0.6 D 0.5 0.1 0.4 0.3 D D D D D 3.2 0.3 0.1 0.14

Nonylphenol monocarboxylate 5.2 D D D D D D D D 2 D D D D D D D D D 208.6 185 197 0.03

Nonylphenol diethoxylate 21.4 19 24.3 8.9 25.9 D 15.3 D 11.9 18.8 33.8 4.5 20.6 19.6 D D 19.1 D D 56.6 19.3 12.7 0.01

Anticorrosives

1H‐Benzotriazole D D D D D D D D D D D D D D D D D D D 59.7 44.1 43.7 0.07

Tolytriazol 20.2 9.9 D D 11.2 44.3 20.3 4.4 D 2.5 D 2.5 D D D 9.7 D D 4 307.2 294.5 265.5 0.01

Organophosphorous flame retardants

Tris(butoxyethyl)phosphate D D D D D D D D D D D D D 27.6 D D D D D 82.8 64.5 62.2 0.05

Tris(chloroisopropyl)phospate 59.7 52.8 10.4 24.9 47.2 155.5 152.2 64.2 49.4 18.3 5.8 40.5 36.7 71.9 D 18 20.8 32.2 29 535.5 961.7 963.8 0.06

Tris(2‐chloroethyl)phosphate D D D D D D D 17 D D D D D D D D D D D 486.5 452.9 561.6 0.03

PAHs

Naphtalene 0.1 0.3 0.1 0.1 0.1 2.1 0.1 0.1 0.7 0.2 0.2 0.1 0.4 0.4 0.2 0.3 0.1 D 0.2 1.4 0.6 0.9 0.02

Acenaphtylene D D D D D D D D D D D D D D D D D D 0.4 1.7 0.5 0.9 0.12

Acenaphtene 0.2 0.3 D 0.3 D 0.3 0.3 0.6 D 0.3 D D D 1.5 D 0.5 0.7 D 0.7 2.1 1.7 1.7 0.08

Fluorene 0.3 0.5 0.1 0.5 0.7 1.1 0.3 0.2 0.6 0.5 0.1 D 0.2 0.7 0.3 0.7 0.9 0.3 1.2 3.2 2.7 2.8 0.03

Phenantrene 0.4 0.9 0.1 0.9 2 0.9 0.5 0.3 0.1 1.2 D D D 1.4 1.1 0.9 1.1 1 1.2 1.8 1.4 1.4 0.02

Antracene D D D D 0.1 D D D D D D D D D D D D D D 0.1 D D 0.02

Fluorantene 0.1 D 0.4 0.6 0.4 0.6 1 D 0.3 0.4 0.3 0.2 0.3 0.6 0.4 0.4 0.4 0.9 0.5 D 0.1 D 0.01

Pyrene 0.8 D 2.8 3.7 2.3 3.8 4.7 D 2.4 2.5 1.7 1.8 2 3.6 2.4 2.3 2.2 4.2 3.3 D D D 0.01

Benzo[a]anthracene D D D D D D D D D D D D D D D D D D D D D D 0.01

Crysene D D 0.1 D 0.1 0.1 0.1 D D 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 D 0.1 0.01

Benzo[b ]fluoranthene D D D D D D D D D D D D D D D D D D D D D D 0.02

Benzo[k ]fluoranthene D D D D 0.1 D D D D D D D 0.1 D D D D D D D D D 0.01

Benzo[a ]pyrene D D D D D D D D D D D D D 0.1 D D D D D D D D 0.02

Indeno[1,2,3‐cd ]pyrene D D D D D D D D D D D D D 0.1 D D D D D D D D 0.02

Benzo[a,h ]anthracene D D 0.1 D D D 0.4 D D D D D D 0.1 0.1 0.1 D 0.1 0.1 D D D 0.01

Dibenzo[ghi ]perylene D D D D D D D D D D D D D D D D D D D D D D 0.01

Chemical biomarker

Caffeine 16.6 3.6 2.8 1 3.7 D D 1.5 D 0.5 D 6.4 0.7 38.6 189 101.6 D 0.4 D 262.3 57.5 53.8 0.02

pH 7.89 7.98 7.94 7.95 7.8 7.6 7.64 7.92 7.92 7.82 7.91 7.8 8.02 8 7.9 7.8 8 7.83 7.75 7.9 7.87 8.15
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The system was operated in electron impact mode (EI, 70 eV). The separation 

was achieved with a 30 m × 0.25 mm i.d. DB-5 column (J&W Scientific, Folsom, 

CA, USA) coated with 5% diphenyl–polydimethylsiloxane (film thickness 

0.25_m). The oven temperature was programmed from 60ºC (holding time 1 

min) to 175ºC at 6ºC/min (holding time 4 min) to 235ºC at 3ºC/min and finally to 

300ºC at 8ºC/min, keeping the final temperature for 5 min. Injection was 

performed in splitless mode, keeping the split valve closed for 48 s. Helium was 

the carrier gas (50 cm/s). Injector, transfer line and ion source temperatures 

were 280, 250 and 200ºC, respectively. Peak detection and integration were 

carried out using Masslab software. For increased sensitivity and specificity, 

quantification was performed in time scheduled selected ion monitoring (SIM) 

using three ions for each of the 16 PAHs analyzed. Five deuterated PAHs were 

used, one in each elution window. Internal standard quantification was 

performed for all target compounds using the respective deuterated compound 

present within each chromatographic window. Intra- and inter-day variability of 

the method was between 0.5 and 6% for most compounds, up to 13% for 

fluoranthene. Mean recoveries (±SD) in water and suspended solids for the 16 

analysed PAHs were 75 (±15)% and 72 (±14)%, respectively. Limits of 

detection calculated at a signal-to-noise ratio of 3 are depicted in Table 5.1 and 

ranged between 0.01 to 0.12 ηg/L.  

5.3.4 Dioxin-like and estrogenic activity 

Two recombinant yeast assays (RYAs) were used to quantify the presence of 

estrogens (ER-RYA) and dioxin-like activity (AhR-RYA) in water samples as 

described elsewhere (Céspedes et al., 2004; Noguerol et al., 2006a). 

Preliminary tests indicated that most estrogenic activity was present in filtered 

water whereas dioxin-like activity was found in both filtered water and 

suspended solid filters (i.e. filters). Filtered water sample pre-concentration was 

performed following the same protocol as for the PAH analyses eluting with 10 

mL of either dichloromethane : hexane (1:1, v/v) or dichloromethane : acetone 

(1:1, v/v), for dioxin-like and estrogenic activity, respectively. Final extracts for 

measuring estrogenic activity were then evaporated with a gentle stream of N2, 

and reconstituted to a final volume of 0.5 mL methanol. Dioxin-like activities 
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were determined in composite samples including 0.25 mL of methanol 

reconstituted filtered water sample extracts and 0.25 mL of methanol 

reconstituted dichloromethane: hexane 1:1 extracts from filter samples. No 

surrogate standards were added to the extracts prepared for the RYA assays.  

The ER-RYA was performed using the yeast strain BY4741 (MATa ura3∆0 

leu2∆0 his3∆1 met15∆0) from EUROSCARF (Frankfurt, Germany) transformed 

with plasmids pH5HE0 (hER) and pVitBX2 (ERE-LacZ) (Noguerol et al., 2006b). 

For the AhR-RYA we used the YCM4 yeast strain (Miller, 1997), harboring a 

chromosomally integrated construct that co-expresses the hAHR and ARNT 

genes under the Gal1-10 promoter and the pDRE23-Z (XRE5-CYC1-LacZ) 

(Noguerol et al., 2006b). RYA tests were performed in 96-well polypropylene 

microtiter plates (NUNC, Roskilde, Denmark) as described by Noguerol et al. 

(2006b). β-Galactosidase activity was measured by fluorescence in a Synergy 2 

spectrofluorometer (BioTec, USA) at 355 nm excitation and 460 nm emission 

wavelengths, using 4-methylumbelliferone β-D-galactopyranoside (MuGal, 

Sigma Aldrich Chemical, Germany) as a fluorogenic substrate (Noguerol et al., 

2006b). β-Galactosidase activity values were calculated as the rate of increase 

in time in the arbitrary units of fluorescence, by means of standard linear 

regression models (Noguerol et al., 2006b). Samples were tested in duplicate. 

Each plate included positive (1 mM ß-naphthoflavone for dioxin-like, 10 nM 

estradiol for estrogenic), negative (5% of vehicle, methanol), and inhibitory 

(sample extract plus either 1 mM β-naphthoflavone or 10 nM estradiol) control 

(Noguerol et al., 2006b). 

Estrogenic or dioxin-like activities were expressed as estradiol equivalents 

(E2Eq., ER-RYA) or benzo[a]pyrene (B[a]Pyr) equivalents (BaPeq, AhR-RYA), 

calculated as the EC50 of each sample divided by the calculated EC50 for 

estradiol (74 ηg/L) or for B[a]Pyr (280 µg/L), respectively (Noguerol et al., 

2006b), after consideration of the volume of water corresponding to each mL of 

extract tested. 

Measured ER-RYA activities (E2eq) were compared with predicted ones from 

measured chemical residues of natural estrogens, alkylphenolic compounds, 
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triazoles and bisphenol A using the conversion factors provided by Céspedes et 

al. (2004)). Similarly measured AhR-RYA activities (BaPeq) were compared 

with predicted ones from measured PAH residues following Misaki et al. (2007). 

 5.3.5 Feeding toxicity tests 

A single laboratory D. magna clone (clone F), which has been the subject of 

many investigations (Barata and Baird, 2000), was selected for this study. Bulk 

cultures of 15 animals each were maintained in ASTM hard synthetic water as 

described elsewhere (Barata and Baird, 2000). Animals were fed daily with 

Chlorella vulgaris Beijerinck (106 cells/mL, corresponding to 3.6 g C/mL). The 

culture medium was changed every other day, and neonates were removed 

within 24 h. Between 200 to 250 neonates were then transferred to 4 L tanks 

and reared under the same conditions as their mothers until they reached their 

fourth instar (4–5 days at 20 ºC). At this stage groups of juveniles were used for 

post-exposure feeding toxicity studies. 

Post-exposure feeding assays followed previously validated methods (Bosch et 

al., 2009; Rivetti et al., 2015b). Four-day-old juveniles of D. magna were first 

pre-exposed in groups of 25 individuals to 1 L of unfiltered water for 24 h in a 

rotary wheel (3 rpm). In each run laboratory controls were also included, 

exposing individuals to 1 L of ASTM hard water. After exposure, feeding rates 

were measured in groups of 5 individuals in 50 mL of ASTM hard water with 

5×105 Chlorella vulgaris cells/mL. Incubations lasted 4 h and were performed in 

quintuplicate. Appropriated blanks (vessels with algae and no animals) were 

also included to account for algae growth. Feeding experiments were conducted 

in the dark in order to avoid algal growth. Individual feeding rates (number of 

algal cells ingested per animal per hour) were determined as the change in cell 

density in 4 h and converted to proportional feeding inhibition relative to lab 

controls. Cell density was estimated from absorbance measurements at 650 nm 

using standard calibration curves based on at least 20 data points (r2> 0.98). 

5.3.6 Data Analyses 

 Measurements of organic contaminant levels and endocrine activity in water 

samples were not replicated and hence could not be compared individually. 
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Instead spatial and temporal differences in the measured responses of TDNP 

areas belonging to the influence of Cigüela and Guadiana rivers and Navaseca 

Pond in May and July were compared using one way ANOVA. To reduce the 

number of environmental variables and avoid an excessive occurrence of 

undetected contaminant levels across stations (i.e. zero values), the 35 

contaminants detected in the studied water samples were grouped into nine 

chemical classes: triazoles, PAHs, organophosphorous flame retardants, 

alkylphenols, estrogens, parabens, triclosan, caffeine and bisphenol A. One 

way ANOVA followed by Tukey’s post-hoc tests were used to analyse feeding 

inhibition responses, as unbalanced samples across sites and seasons did not 

allowed to perform a full two way ANOVA. 

Principal Component Analysis (PCA)  was used to explore variability patterns 

and co-correlations between the studied environmental variables (Jolliffe, 2002). 

The initial model included the nine chemical classes mentioned above plus four 

physico-chemical ones (pH, oxygen concentration, conductivity and suspended 

solids). Non detected values were set to half the detection limit. Since variables 

were very different and they were not measured using the same scale units, 

data was auto-scaled and normalized prior to analysis. pH and conductivity 

were excluded from the final model as they fail in the Kaiser-Meyer-Olkin test of 

adequacy of variables for PCA (Jolliffe, 2002). Dioxin-like and estrogenic 

activities were compared both to pollutant concentrations and to PCA sample 

scores by linear regression analyses.  

5.4 Results 

5.4.1 Environmental variables 

Measured PAH levels in filtered water were three fold lower than those 

measured in suspended solids and both fractions varied similarly across the 

studied samples. For the sake of clarity both fractions were considered 

together. Ten of the twelve studied physico-chemical variables showed 

significant differences (ANOVAs, P<0.05) across TDNP influenced areas, 

Navaseca Pond, and /or seasons. Nine of those variables (all but oxygen levels) 
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are shown in Figure 5.2, the complete set is shown in Table 5.1. Oxygen levels 

in Navaseca Pond were lower (Mean ± SE, 7.2 ± 0.5 mg/L)  than those of the 

rest of samples, which approached saturation values (9-10 mg/L) (Table 5.1). 

Navaseca Pond had the greatest levels of triazoles, PAHs, flame retardants, 

alkylphenols, parabens and total suspended solids (SS) (Fig 5.2). TDNP sites 

from Guadiana side and Navaseca Pond had the highest levels of caffeine and 

BPA. TDNP sites from Guadiana side and Navaseca Pond had the highest 

levels of conductivity (Fig. 5.2). The highest levels for many pollution indicators 

corresponded to summer samples, including flame retardants and parabens 

concentrations, conductivity for TDPN Cigüela samples, and caffeine levels for 

TDPN Guadiana samples. Conversely, levels of BPA in TDPN samples 

influenced by the Guadiana River were higher in May than in July (Fig. 5.2). 

5.4.2 Biological effects 

ER-RYA and AhR-RYA assays indicated low estrogenic and dioxin-like 

activities across the studied water samples (Fig. 5.3). Measured total estrogenic 

activity was linearly related with predicted estrogenicity values obtained from 

chemically measured estrogenic compound concentration (r2 = 0.75, Fig. 5.3 A). 

Measured total dioxin-like activity also showed a significant linear relationship 

with predicted values (P < 0.05, r2 = 0.26), but, in this case, the observed values 

were about one order of magnitude higher than the ones predicted from the 

observed PAH concentrations (PAHs, Fig. 5.3 B).  

There were significant differences in feeding inhibition rates among the studied 

samples and seasons (P<0.05; F 21,89 = 50.3). Navaseca Pond samples were 

the most toxic ones, inhibiting feeding almost completely (76-90%, Fig. 5.4). 

Moderate levels of feeding inhibition (18-37%) were observed in water samples 

from TDNP sites T1, T2, T10 and T5 in May and low levels (0-13%) in the rest 

of samples (Fig. 5.4).  
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Figure 5.2 Mean ±SE (N = 3-5) of selected chemical groups and physico-
chemical responses measured in water samples taken across Tablas de 
Daimiel National Park (TDNP) in the areas influenced by Cigüela and Guadiana 
rivers and in Navaseca Pond. Different letters indicated significant (P<0.05) 
differences among sites following ANOVA and Tukey’s post-hoc test. 
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Figure 5.3 Predicted versus measured estrogenicity (A) and dioxin-like (B) 
effects of the studied water samples. Fitted regression lines and r2 are also 
depicted. 



Chapter V. 

 

185 

5.4.3 Associations between environmental and biological variables 

PCA performed on measured environmental factors defined two interpretable 

components that explained 78.5 % of data variance. Bi-plots of the first two 

principal components are depicted in Fig. 5.5 A. PC1 was determined by 

positive loadings of all variables having the greatest scores for triazoles, 

alkylphenols and TP. Accordingly, PC1 separated TDNP sites from Navaseca 

Pond ones. PC2 was defined by positive loadings of parabens and negative 

ones of BPA, estrogens and triclosan. PC2 differentiated Navaseca Pond 1 

from the rest of sites. PC1 and PC2 scores were linearly related with feeding 

inhibition (r2 = 0.70, P < 0.05) and estrogenic activity (RYA-E2 eq,; r 2= 0. 34, 

P<0.05), respectively (Fig. 5.5 B,C).  
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Figure 5.4 Feeding inhibition responses relative to control treatments across 
the studied water samples. Different letters indicated significant (P<0.05) 
differences following ANOVA and Tukey’s post hoc test. 
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Figure 5.5 Bi-plot of variable loadings and sampling scores of the first two 
Principal Components (A) of the analysis performed with selected chemical 
groups and physico-chemical variables measured across the studied samples 
from TDNP and Navaseca Pond. Graphs B and C show Bi-plots of PC1, PC2 
sample scores against feeding inhibition and estrogenic activity, respectively. 
Lines in graphs B and C are fitted linear regression curves.  
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5.5 Discussion 

Most measured contaminant levels across most TDNP sampling sites were 

lower than those reported for surface waters of several rivers across Spain 

(Gorga et al., 2013). Residue levels of total PAHs in water in TDNP sites varied 

between 4-6 ηg/L, which are quite low compared to those measured in water 

from Mediterranean creeks just after forest fires (Vila-Escale et al., 2007). 

These low amounts of PAHs in TDNP water samples indicate that this wetland 

is probably no longer affected by PAHs coming from smoldering peat fires that 

took place years ago, when TDNP suffered a severe drought period (Moreno et 

al., 2011). There was no consistent pattern of pollution across sites of TDNP 

influenced by Cigüela and Guadiana Rivers, neither in May nor in July.For 

example, residues of BPA and caffeine were higher in May and July, 

respectively, in sites influenced by the Guadiana River; and those of parabens 

and organophosphorous flame retardants were higher in July in sites influenced 

by Cigüela River. Surface waters subjected to the Mediterranean semi-arid 

climate regime typically show higher levels of WWTP-related pollutants in 

summer, as there is less water and hence less dilution of pollution coming from 

effluent discharges (Collado et al., 2014). Navaseca Pond may release its 

contaminated waters into Guadiana River, but this only occurs sporadically 

when the pond and the WWTP are overloaded during heavy rains. 

Nevertheless, it is important to note that TDNP sites influenced by the Cigüela 

River receive more constantly pollutants from WWTP effluents of the Villarubia 

de los Ojos town (Fig. 5.1 C). This is therefore consistent with the high 

measured residue levels of flame retardants and parabens in TDNP sites 

influenced by the Cigüela River sampled during the July campaign.  

PCA analyses identified two sources of pollutants mainly associated with 

Navaseca Pond: PC1 was defined by high loads of residue levels of some 

compounds usually found in WWTP effluents, like organophosphorate flame 

retardants, anticorrosive triazoles, and alkylphenols, which were from 5 to 10 

times higher in Navaseca Pond than in TDNP. These results are in line with the 

reported differences in concentrations of these substances between surface 

waters and WWTP effluents (Gorga et al., 2013). This supports also the 
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premise that Navaseca Pond receives poorly treated sewage effluents from 

WWTP of Daimiel town. The second PC2 component was defined by other 

compounds such as estrogens, disinfectants, preservatives, BPA and caffeine, 

which were still higher in Navaseca Pond than in TDNP, although their levels 

were within the lowest range detected in WWTP effluents (Gorga et al., 2013). 

Our data on chemical residue levels, thus, indicated that the impact of pollutants 

from Navaseca Pond and/or from other WWTP effluents on TDNP during our 

sampling period was not as important as predicted by the study of Sanchez-

Ramos et al. (2016)). This previous study, however, only analyzed physico-

chemical parameters and not particular contaminants, and it only included 

sampling stations close to waste water effluent discharges rather than inside 

TDNP.  

Measured maximal levels of estrogenic and dioxin-like activities across the 

studied samples were 0.4 ηg/L E2eq and 50 ηg/L BaPeq, respectively. 

Reported EC50 for ER-RYA and AhR-RYA assays are calculated as 74 ηg/L 

E2eq and 280 µg/L BaPeq, respectively (Céspedes et al., 2004; Olivares et al., 

2013). This means that in this study measured endocrine disruption activities 

across samples were quite low, which are in line with low measured residue 

levels of estrogenic compounds and PAHs. Indeed in surface waters receiving 

discharges from WWTP, ER-RYA activities as high as 8 ηg/L E2eq have been 

reported (Céspedes et al., 2005). For dioxin-like activity, the values obtained 

using AhR-RYA were 10 fold higher than those predicted from analysed PAH 

residues. This observed excess between measured and predicted dioxin-like 

activities are common across studies and are due to the existence of other 

compounds aside PAHs that also are able to activate the AhR receptor 

(Mesquita et al., 2014). Compounds such as polychlorinated dibenzo-p-dioxins 

(PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated/ 

polybrominated biphenyls (PCBs/PBBs), and dioxins can also produce dioxin-

like activity (Olivares et al., 2011). Nevertheless, the above mentioned 

organochlorine/brominated compounds are mostly related to the combustion of 

industrial wastes and/or associated to industrial activities, which are absent or 

of minor importance around TDNP (Berzas et al., 2000; Sanchez-Ramos et al., 
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2016). It is also interesting to point out that in this study dioxin-like activity was 

not correlated with any of the two components of the PCA, which means that 

this disruptive activity was not related to any identified source of pollution. It is 

then likely that the excess of dioxin-like activity was at least partially coming 

from naturally occurring humic materials and/or other natural substances 

(Janošek et al., 2007). 

The studied samples of TDNP did not or did only marginally (0-17%) impair the 

grazing rates of D. magna. Conversely, water samples from Navaseca Pond 

were quite toxic to D. magna, reducing feeding rates by more than 80%. 

Feeding inhibition response in D. magna is a cost-effective and sensitive 

endpoint that has been tested against natural toxins and many pollutants from 

industrial, domestic and agriculture origin (Barata et al., 2008; Rivetti et al., 

2015b). Feeding inhibition is also an ecological response since feeding 

impairment in D. magna, as well as in most organisms, is directly related to 

reduced food acquisition and hence to detrimental effects on growth, 

reproduction and survival, which ultimately translated into reduced population 

growth rates (Barata and Baird, 2000). The post-exposure feeding assay used 

in this study allowed to assess the toxicity of both dissolved and particle bound 

contaminants (Rivetti et al., 2015b). D. magna grazing rates are especially 

sensitive to natural cyano-toxins, followed by pesticides, and less sensitive to 

industrial/domestic contaminants (Barata et al., 2008; Barata et al., 2007; Rivetti 

et al., 2015b). From all measured chemical residues, nonylphenol and BPA 

were the most toxic, impairing D. magna feeding rates at around 0.1 and 15 

mg/L, respectively (Jordão et al., 2016). Thus it is unlikely that measured 

residue levels at Navaseca Pond, which were at most in the low µg/L range, 

were toxic to D. magna. This means that measured toxicity in Navaseca Pond 

probably came from non-tested compounds. There are reported studies 

indicating that pesticides that are often found at high amounts in WWTP 

effluents and/or cyanobacteria toxins that occur naturally in Spanish surface 

waters can severely inhibit D. magna feeding rates (Damásio et al., 2008; 

Rivetti et al., 2015b) . As there is no reported information of pesticide residue 
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levels and of cyanotoxins in TDNP, future research should thus be focused on 

characterizing the toxic compounds present in that floodplain. 

5.6 Conclusions 

In this present study, the combination of endocrine disruption and general 

toxicity assays with targeted chemical analyses allowed to detect potential 

sources of contamination in TDNP. Measured pollutant levels and related 

endocrine disrupting activity and toxicity were low in samples from TDNP, but 

considerably higher for the Navaseca Pond samples, especially regarding D. 

magna toxicity. This pond is highly impacted by treated wastewater effluents 

from Daimiel, and its close proximity to the Guadiana River constitutes an 

imminent risk of contamination for TDNP. Furthermore, many waterbirds use 

the contaminated euthrophic Navaseca Pond as a feeding ground. Therefore 

there is also a real risk of those birds inhabiting TDNP to be exposed to the 

contaminants present in Navaseca Pond when they visit that pond. Future 

action plans for TDNP should therefore improve the water quality of Navaseca 

Pond by adapting Daimiel WWTP capacity to the actual volumes of sewage 

water emissions from the town of Daimiel, with special attention to the 

management of large inputs during heavy rain periods.  

Treated sewage water is in many semiarid countries, such as Spain, an 

important contribution to maintain a minimum ecological flow in some rivers. In 

the particular case of the wetlands of the Biosphere Reserve of “La Mancha 

Húmeda”, the treated sewage maintains some of the wetlands of international 

importance and it has been also evaluated as a potential resource to flood 

TDNP during drought periods (Navarro et al., 2011). The present work 

contributes to evaluate the chemical risk concomitant with sewage water from 

urban and industrial sources that adds to biotic risks associated with 

eutrophication and the dispersion of pathogens (Anza et al., 2014). The use of 

treated sewage water for “closed” wetlands, in contrast with rivers, must take 

into account the overload with some persistent chemicals that can affect in the 

long term the health of the wildlife and the ecosystem in general.  
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Chapter VI. 

Low environmental levels of neuro-active 

pharmaceuticals alter phototactic behavior and 

reproduction in Daphnia magnaa 

6.1 Abstract 

Assessing the risks of emerging contaminants such as pharmaceuticals in the 

environment requires an understanding of their exposure regime and their 

effects at environmentally relevant concentrations across species. Daphnia 

magna represents an excellent invertebrate model species to study the mode of 

action of emerging pollutants, allowing the assessment of effects at different 

biological levels. The present study aims to test the hypothesis that different 

families of neuro-active pharmaceuticals at low environmentally relevant 

concentrations may lead to similar phenotypic responses in D. magna. 

Phenotypic traits included reproduction and behavioral responses. Selected 

pharmaceuticals were carbamazepine, diazepam and propranolol, three widely 

prescribed compounds, already detected at considerable levels in the 

environment (ng to few µg/L). Fluoxetine was also included in behavioral 

assays. The three tested neuro-active pharmaceuticals were able to enhance 

reproduction at 1 ηg/L of propranolol, 0.1 µg/L of diazepam and 1 µg/L of 

carbamazepine. Fluoxetine, carbamazepine and diazepam increased positive 

phototactic behavior at concentrations ranging from 1, 10 and 100 ηg/L, 

respectively.  Reported responses were non-monotonic, which means that eco- 

toxicity testing of pharmaceuticals need to assess effects at the ηg/L range. 

Keywords:  population; crustacean; beta-blockers; diazepam; carbamazepine; 

neuroendocrine 
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6.2 Introduction 

Assessing the risks of long-term exposure to low doses of human prescribed 

pharmaceuticals is an identified research need (Fent et al., 2006). Treated and 

untreated wastewater effluents are the main route that brings human 

pharmaceuticals and/or their metabolites to water. Consequently,  

pharmaceuticals are continuously released into the environment and thus their 

negative effects are independent from their persistence in the environment 

(Fent et al., 2006; Petrović et al., 2003). In surface waters concentrations of 

measured human pharmaceuticals are often in the ηg/L range.  However, 

targeted ecotoxicological studies using environmental relevant concentrations 

and focusing on subtle environmental effects are scarce.  Recently several 

studies have reported that very low concentrations of antidepressants and 

anxiolytic drugs alter the behavior of fish, molluscs and crustaceans (Brodin et 

al., 2013; Fong and Ford, 2014; Ford and Fong, 2015). Human targets of 

antidepressants, anxiolytic and neuropathic drugs  such as selective serotonin 

re-uptake inhibitors (SSRI), drugs blocking voltage-gated sodium channels 

and/or GABA agonists and  certain antihypertensive compounds are highly 

conserved across vertebrates and 61% of them are also found in the 

invertebrate crustacean Daphnia (Gunnarsson et al., 2008). Therefore, neuro-

active drugs may also affect aquatic invertebrates. It is important to note, that 

several neuro-active compounds are designed to affect neurotransmitters 

(serotonin, dopamine, epinephrine, gamma-aminobutyric acid-GABA), which 

regulate many physiological and behavioural processes (Fong and Ford, 2014; 

Ford and Fong, 2015). There is also an increased number of studies showing 

that effects of antidepressants at low concentrations do not follow a monotonic 

response (Fong and Ford, 2014; Ford and Fong, 2015). This behavior is 

common among endocrine and neuro-active compounds that at low 

concentrations act specifically on their target sites, whereas at high 

concentrations became toxic and hence impair survival, growth and/or 

reproduction irrespectively of its primary mode of action (Vandenberg et al., 

2012). This means that there is an urgent need to measure subtle but 
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consistent effects of human pharmaceuticals at low concentration levels in non-

target organisms. 

The crustacean and aquatic ecotoxicological model organism Daphnia magna 

share with vertebrates several of the neurotransmitters that are targeted by 

antidepressant and other neuro-active drugs. These include the presence of 

serotonin, dopamine, epinephrine and GABA receptor signaling pathways 

(Campbell et al., 2004; Campos et al., 2013b; Ehrenström and Berglind, 1988; 

McCoole et al., 2012a; McCoole et al., 2012b; Weiss et al., 2012).  There is also 

evidence that the SSRI fluoxetine, carbamazepine and propranolol increase 

offspring production at 10, 1 and 50 µg/L, respectively (Campos et al., 2012a; 

Lürling et al., 2006; Stanley et al., 2006). In amphipods the SSRIs fluoxetine 

and sertraline altered phototaxis and swimming behavior at quite low 

concentrations ranging from 1 to 100 ηg/L (Bossus et al., 2014; Guler and Ford, 

2010). In D. magna negative phototactic behavior is directly linked to diel 

vertical migration along the water column, which prevents Daphnia to be preyed 

upon fish during daylight (Cousyn et al., 2001; De Meester, 1993). Thus, this 

response is an ecologically relevant trait. The aim of the present study is to 

determine changes in phototactic behavior and reproduction in D. magna 

individuals exposed to four widely prescribed neuro-active drugs using low 

environmental concentrations ranging from high ηg/L to low µg/L. The studied 

compounds included the anti-depressant SSRI fluoxetine, the anxiolytic 

diazepam, the neuropathic and anti-epilepsy drug carbamazepine and the 

antihypertensive compound propranolol.  Selective serotonin reuptake inhibitors 

(SSRIs) act by blocking the re-uptake of serotonin in the nerve synapses. This 

effect is used worldwide to treat clinical depression in humans (Rang et al., 

1995), with the consequences that these compounds are nowadays widespread 

in the environment. Surveys in US have reported levels of 12-540 ηg/L of 

fluoxetine, the active ingredient of Prozac, in surface waters and effluents 

(Kolpin et al., 2002) and total concentrations of SSRIs in aquatic systems were 

measured in the range of 840 ηg/L to 3.2 µg/L (Metcalfe et al., 2010; Vasskog et 

al., 2008). Diazepam, first marketed as Valium, is widely used to treat anxiety. 

Diazepam enhances the effect of the neurotransmitter GABA by binding to the 
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benzodiazepine site on the GABAA receptor (via the constituent chlorine atom) 

leading to central nervous system depression (Riss et al., 2008). 

Concentrations of diazepam ranging from 4 to 40 ηg/L have been found in 

Spanish urban rivers (Valcárcel et al., 2012). Carbamazepine is a medication 

used primarily in the treatment of epilepsy and neuropathic pain. It stabilizes the 

inactivated state of voltage-gated sodium channels, making fewer of these 

channels available to subsequently open. This leaves the affected cells less 

excitable until the drug dissociates (Ambrósio et al., 2002). Carbamazepine is 

also a GABA receptor agonist since it potentiates GABA receptors made up of 

alpha1, beta2, and gamma2 subunits (Ambrósio et al., 2002).  Carbamazepine 

is fairly persistent in water and hence can be found at concentrations ranging 

from 1 to up to 3000 ηg/L in rivers receiving waste water treatment effluents 

(Muñoz et al., 2009; Tixier et al., 2003). Propranolol is a nonselective beta 

blocker widely prescribed to treat high blood pressure and a number of heart 

dysrhythmias. It blocks the action of epinephrine and norepinephrine on both β1- 

and β2-adrenergic receptors (Wisler et al., 2007). Propranolol is also quite 

persistent in water and can be found at 10-60 ηg/L in surface water (Bendz et 

al., 2005; Muñoz et al., 2009).  

6.3 Methods 

6.3.1 Chemicals 

Fluoxetine hydrochloride (CAS-No 56296-78-7; analytical standard, purity 

100%), diazepam (CAS-No 439-14-5; analytical standard, purity 99%), 

carbamazepine (CAS-No 298-46-4; analytical standard, purity 99%) and 

propranolol hydrochloride (CAS-No 318-98-9;  analytical standard, purity 99%) 

were purchased from Sigma-Aldrich (USA/Netherlands). All other chemicals 

were analytical grade and were obtained from Merck (Germany).  

6.3.2 Experimental animals  

A single D. magna clone F, extensively characterized in previous studies 

(Barata and Baird, 2000) was used for all assays.  Individual or bulk cultures of 

10 animals/L were maintained in ASTM hard synthetic water (ASTM, 1994) as it 
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has been describes previously (Barata and Baird, 2000). Individual or bulk 

cultures were fed daily with Chorella vulgaris Beijerinck (5x105 cells/mL, 

corresponding to 1.8 g C/mL; (Barata and Baird, 2000). The culture medium 

was changed every other day, and neonates were removed within 24 h. 

Photoperiod was set to 14 h light: 10 h dark cycle and temperature at 20  1 oC. 

6.3.3 Reproduction tests 

Reproduction tests followed established OECD guidelines with only minor 

modifications (Barata and Baird, 2000). Effects of fluoxetine on reproduction 

responses of D. magna have been already studied in previous studies (Campos 

et al., 2013b; Campos et al., 2012b), thus reproductive responses of this 

compound were not tested. Two independent experiments were performed. In 

the first one, neonates (< 24 h old) were exposed until their fourth brood 

(approx. 21-23 days at 20oC) to 0.01, 0.1, 1, 10 and 100 µg/L of diazepam, 

carbamazepine and propranolol. The previous concentration range allowed to 

define lowest effect concentrations for all compounds but propranolol since this 

compound already affected measured responses at 0.01 µg/L. Therefore a 

second experiment was conducted to test lower concentrations of propranolol:  

0.1, 1, 10, 100 and 1000 ηg/L.  Animals were exposed individually to the tested 

chemicals in 100 mL of ASTM hard water at the food ration of 5 x 105 cells/mL 

of C. vulgaris. The same concentration of ethanol 50 µL/L) was used in all 

treatments as a carrier solvent and a solvent treatment was also included. Each 

treatment was replicated 10 times. The test medium was changed every other 

day. For each individual its survival, age at first reproduction and brood size 

were monitored. The intrinsic rate of population growth (r) was computed 

iteratively from the Lotka (Lotka, 1922) equation (eq. 1) using the measured 

age, specific survival and fecundity rates: 

1e
0






 ml xx
x

rx
                 (eq. 1) 

Where lx is the proportion of the females surviving to age x (days) and mx is the 

number of juveniles produced per surviving female between the ages x and 
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x+1. The age at birth was set to 0 days and survival probability (l) to 1 since 

mortality was absent in most treatments (in 16 out of 23) and when occurred it 

was low (10%) and related to handling rather than to toxic effects.  

6.3.4 Phototactic Behavior 

Changes in phototactic behavior were quantified by determining the mean 

phototactic response of 5 individuals in the presence and absence of the tested 

chemical concentration. Tested concentrations were selected from previously 

conducted reproduction assays. Behavioral assays were replicated four times.  

Three different type of behavioral experiments were conducted: with 8-day-old 

adults exposed during their entire life (experiment 1); with 8-day-old adults 

exposed for 48 h, from 6 until day 8 (experiment 2); with 48-h-old juveniles 

exposed during their entire life (experiment 3). In experiments 2 and 3 

performed with carbamazepine, diazepam and propranolol exposure 

concentrations were limited to those that in experiment 1 had the highest 

effects. Exposures were performed in groups of 5 individuals in 500 mL of test 

media for adults or 100 mL of test media for juveniles. Ethanol (< 50 µL/L) was 

used as a carrier solvent and a solvent treatment was also included. Exposures 

were performed as described above. After reaching the desired age, adults or 

juveniles were used to determine phototactic behavior. The experimental design 

and setup to measure phototactic behavior followed previous studies (Cousyn 

et al., 2001; De Meester, 1991, 1993). In short, the experimental set-up 

consisted of a small glass column (25 cm height, 5 cm internal cross-section), 

placed in a darkened box, and illuminated from above with a 50 W compact 

fluorescent light source (OSRAM; Germany). Light intensity at the water surface 

was about 500 Wm-2.The bottom of the column was covered by black pebbles, 

so that light reflection was minimized. The column was externally divided in an 

upper compartment of 3 cm height, a lower compartment of 3 cm height, and a 

middle compartment of 10 cm height, and placed in a constant temperature (20 

± 2°C) room. In each experiment and replicate 5 individuals were followed. The 

experimental column was also filled with ASTM hard water alone or with ASTM 

hard water spiked with the desired test concentration. Once placed in the 

experimental column, the animals were given 5 minutes of adaptation to the 
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water column, followed by 5 minutes in darkness, after which the light source 

was lit. At 1 min intervals, the positions of the test animals were recorded. A 

percentage positively phototactic behavior can be assigned to the number of 

animals in the upper compartment, while a percentage negatively phototactic 

behavior can be defined for the lower 3 cm of the column. The phototactic index 

(I) is defined as (U - L) / (U + M + L), in which U, M, and L are the number of 

animal-observations in the upper, middle, and lower compartment, respectively. 

The phototactic index (I) was averaged over the last ten minutes of the 

experiment to minimize the influence of the initial light reaction.  

6.3.5 Chemical analyses 

Stability of each compound during the tests was confirmed using solid-phase 

extraction and liquid chromatography-tandem mass spectrometry. From 

reproduction and behavioral tests duplicated water samples of freshly made and 

old (48 hours) test solutions were collected and pre-concentrated using Oasis 

HLB SPE cartridges (200 mg), conditioned with 10 mL of methanol followed by 

10 mL of water. 500 mL of ASTM water were pre-concentrated at a flow rate of 

10 mL/min and eluted with 2 x 5 mL of methanol. The eluate was then reduced 

under nitrogen to almost dryness and reconstituted in 500 µL of methanol. All 

compounds were measured using LC-ESI-MS/MS (TqDetector, Acquity Waters, 

USA) following a previous study reporting an analytical method for simultaneous 

identification of a wide range of pharmaceuticals with minor changes (López-

Serna et al., 2011). Separation was performed by using a Luna C18 (150 mm×2 

mm ID, particle size 5 µm, Phenomenex, Torrance, USA) equipped with a 

SecurityGuard pre-column. The mobile phase composition consisted of binary 

mixtures with 0.1% formic acid in ACN (A) and 0.1% formic acid in water (B). 

The gradient of elution started at 5% A , then increased to 40% A in 5 min, 60% 

A in 10 min, reaching 100% A in 20 min and then return to initial conditions 

within 5 min. The system was operated at room temperature, the flow rate was 

set at 200 µL min−1 and 10 µL were injected. Fluoxetine, carbamazepine, 

diazepam and propranolol were analyzed under positive electrospray ionization 

mode (ESI+). Acquisition was performed in SRM mode using two transitions 

from [M+H]+ precursor ion to daughter ions to identify each compound. The 



Chapter VI. 

 

204 

transitions used as well as the cone voltages and collision energies were in 

accordance with the above mentioned work (López-Serna et al., 2011). 

Quantification was based on external calibration standard 8 point curves (range 

between 0.5-1000 µg/L). Limits of detection  and quantification (LOD,LOQ) 

defined as the minimum detectable amount of analyte with a signal-to-noise 

ratio of 3:1 and 10:1, respectively, were 1.35, 4.52 ηg/L for fluoxetine; 0.15, 0.52 

ηg/L for diazepam; 0.07, 0.021 ηg/L for carbamazepine and 0.02, 0.06 for 

propranolol. The data were acquired and processed using the MassLynx v4.1 

software package.  

6.3.6 Data analyses 

Effects of the studied chemical treatments on reproduction and population 

growth rates responses relative to non-exposed controls were assessed using 

parametric one way ANOVA followed by Dunnet’s post hoc tests. Age at first 

reproduction and behavioral responses were compared using non parametric 

ANOVA (Kruskal- Wallis) analyses and Wilcoxon and Wilcox’s post hoc tests 

since these variables did not  meet the ANOVA assumptions of normality and/or 

variance homoscedasticity (Zar, 1996). 

6.4 Results 

 6.4.1 Chemical analyses 

Measured residue levels of the tested concentrations in freshly prepared 

solutions (Table 6.1, 0 h) were pretty close to nominal values being in 17 out of 

21 cases within 20% of nominal ones and having the max deviation of 33%. In 

all treatments but one (0.001 ηg/L of propranolol) measured concentrations of 

old test solutions were within 20% of freshly prepared ones (Table 6.1, 48 h). 

For the sake of clarity hereafter we will refer to nominal values.  

6.4.2 Life-History effects 

Mortality was observed in only 7 of the 23 treatments, that never exceeded 10% 

(one out of ten individuals used per treatment). Replicates that did not survive 

until the end of the exposure period were removed from statistical analyses. In 
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the first and second experiments the tested pharmaceuticals affected 

significantly (P<0.05) total offspring production of exposed females (F16,147 = 

2.8, F6,60 = 8.7) enhancing reproduction relative to both solvent and non-solvent 

controls at concentrations as low as 0.01 µg/L of propranolol, 0.1 µg/L of 

diazepam and 1 µg/L of carbamazepine (Fig. 6.1 A).  

 

Table 6.1 Nominal and measured (Mean ±SD) concentrations (µg/L) of the 
tested chemicals in freshly prepared (0 h) and old (48 h) test solutions. 

 

Chemical Nominal Measured (0 h) Measured (48 h) 

N Mean SD Mean SD 

Fluoxetine 0.01 4 0.011 0.0009 0.009 0.002 

0.1 4 0.128 0.005 0.114 0.01 

1 4 1.330 0.059 1.139 0.076 

10 4 12.065 0.148 10.419 0.123 

100 4 104.734 4.180 93.513 2.328 

       

Carbamazepine 0.01 4 0.011 0.0005 0.010 0.0004

0.1 4 0.114 0.005 0.102 0.004 

1 4 0.9 0.062 0.838 0.060 

10 4 10.0 0.468 8.354 0.502 

100 4 100.0 10.277 89.413 4.798 

Diazepam 0.01 4 0.013 0.0004 0.011 0.002 

0.1 4 0.117 0.0009 0.103 0.008 

1 4 1.06 0.015 0.958 0.032 

10 4 10 0.105 9.030 0.099 

100 4 100 6.520 93.171 0.383 

Propranolol 0.001 4 0.0013 0.0005 0.001 0.0003

0.01 4 0.011 0.0090 0.010 0.008 

0.1 4 0.113 0.0008 0.108 0.012 

1 4 1.242 0.079 1.135 0.125 

10 4 11.497 0.159 10.723 0.531 

100 4 115.600 2.543 107.518 2.059 
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In the second experiment, which was limited to test lower propranolol 

concentrations, effects occurred at 1 ηg/L (Fig. 6.1 B). Concentration effects of 

reproduction were non-monotonic, increasing at intermediate concentrations 

and decreasing at higher concentrations. Bi-plots of population growth rate 

responses with age at first reproduction are depicted in Fig. 6.2. Population 

growth rate responses, were either unchanged or negatively affected (P<0.05) 

by the tested pharmaceuticals in the first (F16,147=0.91, Fig. 6.2 A) and second 

experiment (F6,56 = 3.7; Fig. 6.2 B), respectively. Negative effects on population 

growth rate effects were related to the fact that the studied pharmaceuticals 

increased significantly (P<0.05) age at first reproduction of exposed females 

(Kruskal-Wallis tests and df for first and second experiments were 27.2, df = 16 

and 16.2, df = 6, respectively), and that this trait was strongly and negatively 

correlated with population growth rates (Fig 6.2 A, B). It is also worth noting that 

total offspring production was positively (P<0.05) correlated with population 

growth rate in the first experiment (r = 0.34, N = 164, P<0.05) but not in the 

second one (r = 0.19, N = 65). 

6.4.3 Behavioural effects 

Behavioural responses performed on adults and juveniles are reported in Fig. 

6.3. The more negative the index the greater negative phototactic behavior. 

Fluoxetine showed the greatest effects on adults exposed during 8 days 

diminishing significantly (P < 0.05) negative phototactic behavior at 1 ηg/L. 

Carbamazepine decreased negative phototactic behavior at 10 and 100 ηg/L in 

adults exposed for just 48 h or during their entire life, respectively. Diazepam 

decreased the phototactic behavior of adults exposed only for 48 h at 0.1 µg/L.  

Propranolol did not affected significantly (P < 0.05) the phototactic behavior of 

exposed adults.  Juveniles showed a lower negative phototactic behavior and 

only those exposed to carbamazepine had their negative phototactic behavior 

significantly (P < 0.05) diminished relative to unexposed ones at 100 ηg/L. 

Likewise occurred for reproduction responses, behavioral responses were also 

non-monotonic.  
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Figure 6.1 Cumulative total offspring production (Mean ± SE, N=10) of D. 
magna individuals exposed to the tested pharmaceuticals during 21 days in the 
first (A) and second (B) experiments. * indicated significant (P<0.05) differences 
following ANOVA and Dunnett’s post hoc tests. C, SC are control and solvent 
controls, respectively. 
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Figure 6.2 Population growth rate vs age at first reproduction (Mean ±SE, 
N=10) bi-plots of  D. magna individuals exposed to the tested pharmaceuticals 
during 21 days in the first (A)  and second (B) experiments.  Upright triangles, 
inverse triangles, squares and circles correspond to controls (unexposed and 
solvent controls), propranolol, carbamazepine and diazepam treatments, 
respectively. Darker symbols represent increasing concentrations.  In each 

graph correlation coefficients are depicted. *, represent significant (P<0.05) 
treatment effects relative to controls of age at first reproduction and population 
growth rates, respectively, following ANOVA/Kruskal-Wallis and post-hoc 
Dunnett’s/Wilcoxon and Wilcox’s  tests.  
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Figure 6.3 Phototactic index (Mean ± SE, N=4) of D. magna juveniles and 
adults exposed to fluoxetine (A), carbamazepine (B), diazepam (C) and 
propranolol (D). Results from experiments performed on 8 day old adults 
exposed during their entire life or 2 days and those of juveniles exposed for 48 
h are depicted in white, grey and black bars, respectively. α, β and  identify 
those treatments significantly (P<0.05) different than solvent controls in adults 
exposed for 8 and 2 days and juveniles, respectively, following Kruskal-Wallis 
and Wilcoxon and Wilcox’s  post hoc tests. C, SC are control and solvent 
controls, respectively. 
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6.5 Discussion 

Propranolol, diazepam and carbamazepine enhanced offspring produced at 

environmental relevant concentrations of 1 ηg/L, 0.1 µg/L and 1 µg/L, 

respectively.  Several studies have reported previously that fluoxetine enhanced 

offspring production across a concentration rage of 10-80 µg/L (Campos et al., 

2012b; Flaherty and Dodson, 2005).  Lürling et al. (2006) and Wolfe et al. 

(2015) also found that carbamazepine and fluoxetine enhanced offspring 

production at 1-2.3 and 1 µg/L, respectively. Observed effects, however, were 

non-monotonic and occurred always within one or two orders of magnitude. All 

tested pharmaceuticals and fluoxetine are neuro-active compounds since 

targeted neurotransmitters (serotonin, GABA, epinephrine and norepinephrine) 

and/or their signaling pathways. Neurotransmitters control neuroendocrine 

organs that regulate most physiological and behavioral processes in 

crustaceans (Christie, 2011; Fong and Ford, 2014).  

Recently, it was hypothesized that increased levels of synaptic serotonin made 

available by SSRI treatment increased post-synaptic neuronal activity in D. 

magna, which changes the perception of the food environment and switches 

life-history responses towards those normally found only at highest levels of 

food available: D. magna females reproduce earlier and produce more but 

smaller offspring (Campos et al., 2012a; Campos et al., 2012b). Experimental 

evidence confirmed this hypothesis only in part such that SSRIs affected 

offspring production at limited but not at high food rations. The phenotype 

associated with SSRI exposure, i.e. increased offspring production, was 

reverted when animals were co-exposed to SSRI and the serotonin-receptor 

antagonist cyproheptadine (Campos et al., 2012a). It was also shown that 

SSRIs de-regulate genes related to serotonin signaling pathways in D. magna 

(Campos et al., 2013a). Putative 5-HT1,7 receptors and serotonin transporter 

(SERT) gene homologues have also been found in the D. magna close relative 

D. pulex genome (McCoole et al., 2012a). The above mentioned data, however, 

do not demonstrate that SSRI act similarly than humans. Indeed in the zebra 

mussel (Dreissena polymorpha) it was reported that SSRIs can act as ligands of 

5-HT receptors (Fong et al., 2003) inducing spawning. In the nematode 
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Caenorhabditis elegans effects of the SSRI fluoxetine on egg laying behavior 

also occurs in transgenic organisms lacking serotonin transporters and related 

receptors (Dempsey et al., 2005). This means that in invertebrates SSRIs can 

affect serotonin transporters, serotonin and other receptors. In crustaceans 

serotonin regulates neurosecretory organs that release neuro-hormones that 

control reproduction, growth, maturation, immune function, metabolism, 

behavior and color physiology (Fong and Ford, 2014). The GABA signaling 

pathway has been related to the expression of predatory induced life-history 

defenses in Daphnia like growth, the timing and reproductive output (Weiss et 

al., 2012). GABA has also been detected in the neuroendocrine pericardian 

organ in crabs (Christie, 2011). β-blockers affect Daphnia heart beat similarly 

than in humans (Villegas-Navarro et al., 2003). Thus it is likely that the tested 

pharmaceuticals affected reproduction altering the neuroendocrine system in 

Daphnia. 

Mechanisms for non-monotonic response of endocrine active compounds are 

well known and include cytotoxicity, cell and tissue-specific receptors and 

cofactors, receptor selectivity, receptor down-regulation and desensitization, 

receptor competition, and endocrine negative feedback loops (Vandenberg et 

al., 2012). Previous studies reported that in Daphnia carbamazepine decreased 

population growth rates at 200 µg/L,  and propranolol and fluoxetine impaired 

reproduction at 110 µg/L and  125 µg/L, respectively (Dzialowski et al., 2006; 

Hansen et al., 2008; Lürling et al., 2006). These reported inhibitory 

concentrations are quite close to the upper tested range (100 µg/L). There is 

also reported evidence that in other related species such as Ceriodaphnia, 

sertraline, which is also a SSRI, delayed reproduction, inhibited growth and 

reproduction at 4.8 µg/L in second generation exposed individuals. Thus 

observed non-monotonic response can be associated to general toxicity 

mechanisms occurring at high concentrations.  Nevertheless, caution  has to be 

paid when comparing toxicity across studies since factors such as pH and 

enantionespecificity can affect the toxicity of the studied pharmaceuticals 

(Boström and Berglund, 2015; Stanley et al., 2007; Stanley et al., 2006)  
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Most pharmaceutical treatments also delayed reproduction although only 

propranolol did so significantly. In growing populations the timing of 

reproduction (i.e. age at first reproduction) and offspring production contributed 

linearly and logarithmically to population growth rates, respectively (Barata et 

al., 2002). This means that the tested compounds, despite of enhancing 

reproduction, also delayed reproduction and hence affected negative on 

population growth rates. As a result population growth rates decreased in most 

pharmaceutical treatments although only in the second experiment were 

significantly affected by propranolol.  

Behavioral responses of D. magna adults and juveniles exposed to fluoxetine, 

carbamazepine and diazepam were affected at similar concentrations than 

those observed for reproduction and were also non-monotonic. All three 

chemicals decreased negative phototactic behavior, which means that made 

exposed individuals more attracted to light. Observed behavioral changes to 

light thus are similar to those reported in the amphipod Echinogammarus 

marinus (Guler and Ford, 2010). Adults exposed for just 48 h to carbamazepine 

and diazepam showed greater responses than those exposed during their entire 

life. For fluoxetine, however, despite that adults exposed during short and long 

periods had similar response patterns, only the latter group had their behavior 

significantly affected. Fluoxetine was the compound having the strongest effect 

on phototactic behavior, followed by carbamazepine and diazepam. Negative 

phototactic behavior of adult females decreased from 1 ηg/L to 1 µg/L of 

fluoxetine, from 0.01 to 1 µg/L of carbamazepine and from 0.1 to 1 µg/L of 

diazepam Despite that D. magna juveniles had lower negative phototactic 

behavior, they responded similarly to the tested chemicals than adults. There is 

reported evidence showing that antidepressant action of fluoxetine in humans 

occurs after long exposures of about a month (Pérez et al., 2001), but recent 

studies indicated that effects of antidepressants can be detected  within hours 

when more sensitive responses are measured (Schaefer et al., 2014). This is 

not the case for carbamazepine or diazepam that act shortly after being 

ingested (Besser, 1967; Post, 1988). In the amphipod Echinogammarus 
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marinus behavioral effects of fluoxetine were obtained after exposures  of one 

week or longer.  

Our results, thus, agree with most of previous studies and indicate that 

carbamazepine and diazepam affected phenotypic responses (i.e. behavior) 

shortly after exposures, whereas those of fluoxetine required at least one week.  

Likewise reproduction, behavioral effects were non-monotonic. Guler and Ford 

(2010) found that behavioral responses were non-monotonic and that fluoxetine 

decreased negative phototactic behavior in the amphipod E. marinus having the 

greatest effects at 100 ηg/L. Carbamazepine, on the other hand, only affected 

geotaxis behavior of E. marinus, the position of the animals in the water column 

without a light stimulus, at 10 µg/L. Locomotion and ventilation behavioral 

responses of Gammarus pulex to fluoxetine, carbamazepine and ibuprofen 

showed a dual response (De Lange et al., 2006): at low concentrations (1-100 

ηg/L) the three pharmaceuticals increased ventilation, whereas at high 

concentrations increase locomotion. Neurotransmitter receptors are subject to 

ligand-induced desensitization, that is, they can become unresponsive upon 

prolonged exposure to their neurotransmitter (Nicosia et al., 2003; Yamauchi et 

al., 2006). Thus, desensitisation could explain the reduced behavior effect at 

higher concentrations and at longer exposures. Reported  effects on phototaxis 

behaviour in D. magna have also been reported for other chemicals. The 

antibiotics lincomycin (5 mg/L) and bacitracin (10 mg/L) decreased phototaxis 

but aminosidine (10 mg/L) increased it (di Delupis et al., 1992). There are also 

reported results showing that cadmium and naphthalene decreased phototaxis 

in D. magna, but at concentrations close to those impairing survival ( 60 µg/L 

Cadmium and 1 mg/L naphtahalene). Thus when studying changes on behavior 

it is important to differentiate between specific and general toxic effects. In our 

study, concentrations of the tested pharmaceuticals causing changes in 

behavior were too low to be considered toxic, thus observed effects were likely 

to be related to a specific neurological response. Despite that the studied 

pharmaceuticals affected reproduction and behavior at similar concentrations, 

existing experimental evidence is too limited to hypothesize that both responses 

may share a common mechanisms of action. In crustaceans and in particular in 
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Daphnia, serotonin together with dopamine and other ammines regulate 

behavior responses to light (Christie and McCoole, 2012; Ehrenström and 

Berglind, 1988; Fong and Ford, 2014; Strauss and Dircksen, 2010). If fluoxetine 

increases serotonin activity in D. magna (Campos et al., 2012a), then it is likely 

that by doing so also alters its response to light stimulus. The main target of 

carbamazepine in humans is blocking voltage dependent sodium channels 

(Ambrósio et al., 2002), but there is reported information indicating that 

carbamazepine also causes increases in extracellular serotonin levels (Dailey et 

al., 1997). There is also evidence that in mammals carbamazepine activates 

dopamine receptors (Montezinho et al., 2007). Accordingly, carbamazepine 

may also act like fluoxetine increasing serotonin/dopamine activity and hence 

altering behavioral responses to light. There is reported information showing 

that diazepam decreases anxiolytic behavior in fish and increases locomotion 

activity in decapod crustaceans, probably acting on GABA receptors (Bencan et 

al., 2009; Snyder and Peeke, 2001). Diazepam is also known to reduce 

expressed anti-predatory life-history behavior in Daphnia interacting with GABA 

(Weiss et al., 2012). Negative phototactic behavior is an adaptive anti-predatory 

behavior (Cousyn et al., 2001) and hence could be also regulated by GABA and 

be affected by diazepam. Our results for diazepam, thus, agree with the 

previous argument. Propranolol not only binds to β- adrenergic receptors but 

also to 5-HT1 receptors in humans acting as an antagonist (Tierney, 2001). 

There is, however, no reported information of behavioral effects of β-blockers in 

Daphnia or in other crustacean species. In crickets α-adrenergic receptor 

antagonist but not β-blockers alter aggressive behavior to intruders (Rillich et 

al., 2011).  

Reduced phototactive behavior of animals exposed to fluoxetine, 

carbamazepine and diazepam is maladaptive since it would increase the 

chance of adults to be preyed upon fish in surface waters during daylight. Fish 

predation in Daphnia is size dependent, being stronger in larger individuals 

(Barata et al., 2001). Consequently we should expect less marked negative 

phototaxis in juveniles as it was observed in this study.  
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6.6 Conclusions 

In summary, the four tested neuro-active pharmaceuticals were able to enhance 

reproduction and, except propranolol, also to alter phototactic behavior in a 

maladaptive manner. The studied pharmaceuticals enhanced reproduction at a 

cost of delaying first reproduction and hence negatively affected population 

growth rates. Altered phototactic behavior is always maladaptive in Daphnia 

populations living in lakes with fish. Differential responses occurred at 

concentrations ranging from 1 ηg/L to 1 µg/L, which are close to measured 

residue levels of these pharmaceuticals in surface waters. Reported responses 

were non-monotonic and indicate that at low levels these compounds act 

specifically but at high concentrations act unspecifically and become toxic. This 

means that environmental risk assessment toxicity testing of pharmaceuticals 

need to focus in assessing specific physiological effects that for neuro-active 

pharmaceuticals may occur at the ηg/L range. This is the case for anti-

depressants (Fong and Ford, 2014; Ford and Fong, 2015).  
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Chapter VII.  

General Discussion and Conclusions 

7.1 General Discussion 

During the last decades, the release of a wide array of chemicals, including the 

ones of emerging concern, has been threatening the health and balance of 

ecosystems (Bottoni et al., 2010; Ginebreda et al., 2014; Kummerer, 2010). In 

this context, elucidating potential adverse effects of chemicals, excluding 

confounding factors e.g. abiotic, geographical and additional stressors among 

others, constitutes a new pressing challenge for the scientific community (Floury 

et al., 2017; Navarro-Ortega et al., 2015). All this increases the inherent 

difficulties of field studies, in which potential interactions among different 

chemicals and their interplay with environmental factors make the identification 

of sublethal toxic triggers extremely challenging (Amiard-Triquet, 2015; Hooper 

et al., 2013; Laetz et al., 2015). 

The ultimate objective of ERA is to assess the ongoing status of a specific 

ecosystem and provide sufficient information for decision-making with the final 

purpose of protecting the environment from unwanted effects of chemicals 

(Forbes and Galic, 2016). New upcoming regulations, such as the European 

chemicals legislation (REACH) and the WFD, brought more attention towards 

the possible negative effects in ecosystems and increased the demands on 

ERA (Hernando et al., 2011; Wilks et al., 2015). Nowadays, we are facing the 

massive task of assessing the risk for a continuously increasing number of 

compounds and complex chemical mixtures while protecting the integrity and 

diversity of ecosystems.  

While assessing the risk for human health concerns only one species, ERA 

should ideally consider a multitude of species, with their diversity in morphology, 

physiology, and ecological peculiarities (Breitholtz et al., 2006). In practice this 

is not possible, an issue which may have strong consequences for the 

relevance of the process. The choice of a selected number of representative 
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key species for testing is critical and interspecies extrapolations of effects (seen 

in a few test species, and often only under experimental conditions) to the entire 

ecosystem are paramount (Breitholtz et al., 2006; Walker et al., 2012). Among 

the available test organisms, D. magna represents a good ecotoxicological 

model due to its key ecological role in freshwater ecosystems as a grazer of 

algae and prey for many fish and invertebrate predators (Lampert and Kinne, 

2011). D. magna is also easy to culture, it has a short life-cycle and in the lab it 

often reproduces parthenogenetically, so that it can be maintained as 

genetically homogeneous clonal lines (Ebert, 1992). The physiology and 

ecology of the D. magna and related species is well known and its genome has 

been fully sequenced and mostly annotated, thus having a great potential for 

mechanistic applications (Colbourne et al., 2011; Orsini et al., 2016; Shaw et 

al., 2008). This confidence is supported by the always increasing number of 

papers using Daphnia species as their model organism.  

In order to expand the scientific basis of ERA, another crucial issue to be 

addressed is to unravel mechanisms or MoA of chemical pollutants (Breitholtz 

et al., 2006; Escher and Hermens, 2002). Understanding what happens at the 

molecular level when a chemical enters an organism and then how these 

effects propagate and translate into an adverse effect (apical endpoint) is of key 

importance for a more causal comprehension of toxic effects (Ankley et al., 

2007; Ankley et al., 2010; Forbes and Galic, 2016). The increasing use of 

sensitive biomarkers and endpoints together with advanced molecular 

techniques in ecotoxicology would help to reveal new MoAs for individual 

substances and finally improve future ERA. By all means, the selection of 

specific endpoints and test organisms is a challenging task. Under this view and 

in order to meet the objectives of environmental protection, it is extremely 

important the continuous development of new methods and approaches which 

include scientifically relevant combinations of test methods, species, and 

endpoints. Integration of different endpoints and bioassays coupled with 

chemical analyses stays paramount (Bednarska et al., 2013; Hagger et al., 

2006; Hernando et al., 2011; Santos et al., 2017; Wilks et al., 2015).  
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The work presented in this thesis covers different approaches of biomonitoring 

(through three field-case studies and one study in laboratory), different 

bioassays and contaminant types, thus allowing important conclusions under an 

ERA perspective and at the same time defining important holistic 

methodological approaches in order to improve it. Overall, the use of sensitive 

endpoints as physiological biomarkers of exposure e.g. feeding inhibition test 

and behavioral assay, in vitro approaches and molecular techniques provides 

us with deeper information than traditional responses such as death or 

reproduction which are generally unsuitable when dealing with environmental 

relevant concentration (usually low, in the range of ηg/L) and their 

consequences. 

In chapter 2 of this monography, a comparative study of three Spanish rivers 

(Ebro, Llobregat, Jucar) was performed with the combined use of molecular 

(gene expression), physiological (biochemical responses) and individual 

(feeding inhibition rate) markers in Daphnia magna and these results were 

related to over 150 trace contaminants detected in the waters. The main aim of 

this study was to validate the use of molecular biomarkers in field studies. In the 

past decade McWilliam and Baird (2002) developed a cost effective post-

exposure feeding field assay in Daphnia, which evaluates detrimental effects on 

grazing rates of previously exposed organisms in the field. The assay was 

proven to be robust in detecting effects of metals, pyrethroids and other 

pesticides and insensitive to confounding environmental factors such as 

changes of flow rates, water temperatures and presence of suspended solids 

(Mc William and Baird, 2002). Moreover, in previous studies, effects on feeding 

rates were complemented with effects measured in selected enzymatic 

biomarkers, thus improving the value of the post-exposure feeding Daphnia 

magna bioassay (Barata et al., 2007; Damasio et al., 2011; Damasio et al., 

2008; Puertolas et al., 2011). The response of antioxidant, phase II 

detoxification and B-esterase enzyme activities (AChE, CbE) were also quite 

robust, showing low variability across clean sites, thus allowing to differentially 

evaluate detrimental effects in river sites affected by complex waste water 

effluents and pesticides. Nevertheless, with the exception B-esterases, the used 
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biomarkers and individual response were quite unspecific, thus preventing the 

identification of specific effects of particular contaminants. In chapter 2, the 

previous methodology was further improved by including the transcription 

pattern of 13 different genes encoding for general stress, metabolism and 

energy processes, molting and xenobiotic transporters. Daphnids were exposed 

directly in the field using cages deployed in the river water to increase the 

similarity to the natural scenario; additionally, individuals were also exposed in 

the laboratory to re-constituted water spiked with organic eluates extracted from 

water samples obtained concurrently at the same sites. The latter lab-

reconstituted water procedure allowed to test if the response of the selected 

genes was specific of measured contaminants or in response to other factors in 

the field. To the best of our knowledge, this was the first work presenting this 

kind of comparison between field and laboratory exposure using water samples 

collected simultaneously at the same sampling site. The chosen biomarkers 

allowed the differentiation of the three river basins, heterogeneous for location 

and sources of pollution. Multivariate analyses indicated that measured in situ 

responses of most genes, of biomarkers and those of benthic macroinvertebrate 

diversity indexes were affected by distinct environmental factors. Conductivity, 

suspended solids and fungicides were negatively related with the diversity of 

macroinvertebrates, cholinesterase and feeding responses, which supports 

previous findings (Damasio et al., 2008). Gene transcripts of heat shock protein 

and metallothionein were positively related with 11 classes of organic 

contaminants and 6 metals. About 8 of the 14 genes considered responded 

similarly in field and lab exposures and were related with high residue 

concentrations of pharmaceuticals, triazoles, bisphenol A, caffeine and 

pesticides. These genes were related with signaling pathways of molting and 

reproduction, sugar, protein and xenobiotic metabolism. Overall, these results 

indicate that the application of molecular-based technologies in the field is a 

promising subject in water management. Nevertheless, consistency of gene 

responses was lower when compared to biochemical biomarkers, probably due 

to the high sensitive and early response of gene expression to any stimulus. A 

deeper knowledge in the Daphnia genome and gene function will allow in future 

to better define MoAs in response to contaminant and identify fingerprint genes 
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to be used as stress biomarkers through response to specific chemicals and/or 

scenarios of exposure.  

In chapters 3 and 4, a study of forensic ecotoxicology was developed to unravel 

the major toxic components in a superfund site in Ebro River (Spain), using a 

combined approach of sublethal toxicity assays and chemical 

analytical/fractionation methods. Following a Toxicity Identification Evaluation 

(TIE) approach it was possible the identification of water soluble and particle-

bound compounds in suspended solids causing important toxic effects. 

Nowadays the use of untargeted chemical analyses of environmental samples 

is still of little value due to its complexity, poor sensitivity and high costs, thus 

the use of specific bioassays as diagnostic tools can guide the identification of 

unknown toxic compounds that would have been missed by the traditional 

targeted chemical analysis. This is often accomplished by using TIE 

approaches, but these methods often suffer from the use of toxicity assays with 

poor specificity and sensitivity, thus being unable to detect effects of highly 

active substances that are present in very low amounts. The sampling of the 

presented study was performed during an event of extreme high water in an 

area highly contaminated by a chlor-alkali factory, which for over 50 years has 

been releasing organochloride residues and heavy metals that accumulated at 

high amounts in sediments nearby the factory wastewater outlet (Bosch et al., 

2009). Targeted chemical analyses of known compounds revealed that under 

high water flow conditions organochlorine compounds and mercury present in 

the sediment were re-suspended and hence increased dramatically in sampling 

sites downstream the chlor-alkali factory. However, toxicity of water was higher 

upstream the factory, so it was unrelated with analyzed organochloride and 

metal residues in suspended material. Uncoupled chemical and toxicity data is 

a frequent result that prevents many studies to be published, although it may 

also lead to alternative hypotheses such as the iceberg effect (Tang et al., 

2013). The previous hypothesis states that toxicity in the field is caused in most 

cases by many more compounds than those identified by using bio-analytical 

ecotoxicity tools. Indeed our laboratory has been facing this problem for years. 
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This means that upstream of the chlor-alkali industry there is an additional 

contaminant source, not yet identified.  

Ebro River is subject of high regulations by many dams that are used as 

reservoirs of water and for electric power production (Petrovic et al., 2011). 

Several studies have reported the occurrence of toxic cyanobacteria species 

(e.g. Anabaena, Planktothrix) known to produce toxins such as microcystins 

and anatoxins upstream and in Flix reservoirs as well as in locations 

downstream (Hoyos et al., 2004; Quesada et al., 2004). Reported 

cyanobacteria occurrence, however, was limited to late spring and summer 

months when algal blooms of these species are more likely to occur. During 

periods of high water flow in Ebro River (when the accumulated ice/snow in 

mountains melt and/or during periods of heavy rain), dams are opened and 

hence reservoir waters from the bottom are mobilized and released into the 

river. This was the case of the upstream sampling site, which is located just 

after a big reservoir (Riba-Roja). In this regard, it was hypothesized that specific 

cyanotoxins mobilized from Riba-Roja reservoir were causing most of the 

observed toxic effects. It is important to take into consideration that our 

hypothesis faced three arguments against it: an unappropriated sampling time 

(winter, early spring), which is unusual to detect cyanobacteria, the potential 

occurrence of rare cyanotoxins such as anatoxin-a and the fact that there was 

unclear evidence that cyanobacteria cells were present in water samples. Thus, 

to test this hypothesis, it was necessary to develop a robust TIE procedure 

adapted to the chemical characteristics of known cyanotoxins, which are polar 

and water soluble, and are often present inside cyanobacteria cells, only being 

released to the water column during algae blooms, which was not the case. 

Bioassays included: 

- post-exposure D. magna feeding rate assay, which consists in exposing 

juveniles for 24 h to unfiltered water samples in a rotary wheel and then the 

assessment of feeding inhibition effects. This assay was previously proven to 

be quite robust in detecting toxic effects associated to suspended solids 

(Bosch et al., 2009); 
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- confirmation assays, in which animals were exposed to re-constituted lab 

water with suspended solids obtained in the field, which allowed to 

corroborate that the toxicity due only to suspended material;  

- negative control assays, in which animals were exposed to filtered water 

samples, thus showing that there was no toxic components dissolved in 

water; 

-  feeding assays conducted with organic extracts of suspended solids 

obtained with distinct combinations of water, methanol and dichloromethane : 

methanol. This last step allowed the confirmation that toxic compounds 

present in suspended solids had an hydrophilic nature which resembled that 

of cyanotoxins.  

Furthermore, the study was performed during several months using an 

exhaustive sampling campaign to demonstrate that the observed “toxic 

phenomena” were reproducible during periods of high water flow, when dams 

were open, but not during periods of low water flow. For this aim, it was also 

necessary to develop appropriate LC-MS analytical tools to be able to analyze 

selected cyanotoxins in the suspended solid water fraction. A new detection 

method by LC-MS/MS for three specific families of toxins was developed, which 

included three mycrocystins, anatoxin-a and okadaic acid (chapter 3). Several 

chromatography methods are available nowadays to detect these toxins in 

waters, but little effort has been put in their determination when bound to 

particles in sediments or suspended matters. Besides, the identification and 

quantification of the toxins present in environmental samples encountered the 

added inherent difficulty of the lack of (deuterated) commercial standards 

combined with the existence of many different isoforms of the same toxin. The 

new developed method allowed the identification of anatoxin-a residues bound 

to the suspended matter of the sampled river water, causing the observed 

toxicity. Results were then successfully verified by performing further bioassays 

and chemical analyses using a lab culture of an algal strain (Plankthothrix 

agardhii) able to produce anatoxin-a. Lab assays allowed fulfilling the last step 

of confirmation required by the TIE phase III approach. TIE approaches are 

powerful available procedures for performing environmental diagnostics on 
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water samples and whole sediments to detect anthropogenic contaminants that 

cause toxic effects, though using different strategies (Burgess et al., 2013). In 

this work. the TIE procedure on whole-organism (in vivo) toxicity testing allowed 

identifying with high certainty  the compound responsible for the observed 

toxicity. Whereas there are several examples of successful application of TIE 

approach on waterbodies and sediments for toxicity evaluation (Burgess et al., 

2000; Norberg‐King et al., 1991; Werner et al., 2000), this study represents the 

first one that used a TIE approach to identify biological active cyanotoxins in 

real samples.   

Another important ecotoxicological procedure to identify toxic components in 

complex environmental samples is the Effect Direct Analysis (EDA) that may or 

may not be included in a TIE approach. It is based on the use of specific assays 

(in many cases in vitro ones), sensitive to specific chemical families. This 

approach was used in chapter 5, where an integrated study of chemical 

analyses and biological indicators provided an overall insight into the water 

quality of Tablas de Daimiel National Park (TDNP), a lagoon of high ecological 

value for aquatic wildlife. The study was part of a wider biomonitoring program 

held during the last five years in the area, aimed to assess the overall chemical 

impact on the ecosystem, especially with regard to effects on resident birds and 

fishes. This work differs from the previous ones in the characteristics of 

geographical sampling location, bioassays used (a combination of in vivo and in 

vitro testing) and chemical analyses performed (including both GC-MS/MS and 

LC-MS/MS). A successful application of this kind of approach in environmental 

studies has been used for a fast screening of unknown pollutants in the 

environment and to improve the analysis of joint effects of mixtures (König et 

al., 2017). In vitro testing, such as Recombinant Yeast Assays (RYA) for 

detection of dioxin-like activity and estrogenicity, is a powerful methodology as 

alternative to animal (in vivo) methods, being more stable (precise), less time-

consuming and generally less expensive (Beyer et al., 2014; Mazzeo et al., 

2016; Mesquita et al., 2014; Puy-Azurmendi et al., 2014). Besides, the use of 

appropriate in vitro systems allows studying early cellular responses and 

predicting toxicity effects in vivo (Blaauboer et al., 2012). In the last decades, 
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different approaches have been used in order to provide a successful ecological 

water status assessment. The use of bioassays/biomarkers (when compared to 

studies at the community level) are especially useful as early warning systems 

of toxicity and also to explore the causes of ecological impairment, thus allowing 

to better understand the causal relationships of observed effects (Damásio et 

al., 2007; Martinez-Haro et al., 2015; Prat et al., 2013). Main water sources to 

TDNP floodplain come from two rivers (Guadiana and Cigüela River). Both 

rivers receive effluents from waste water treatment plants (WWTP) of nearby 

urban nuclei. This means that there is a high potential for strong estrogenic 

compounds present in WWTP effluents to contaminate the floodplain and affect 

aquatic vertebrate biota living on it. Besides, nearby the lagoon there is also a 

wastewater drainage pond (Navaseca), which is used as a feeding ground by 

many species of aquatic birds living in the area, thus representing a threat for 

the wildlife inhabiting TDNP. Furthermore, the reduction of the drainage area 

and an overexploitation of groundwater for irrigation purposes led in the past 

decades to the near desiccation of TDNP and, finally, to the ignition of a 

smoldering peat fire inside the TDNP in August 2009. This fire posed an 

enormous risk for both the physical structure supporting the ecosystem and the 

quality of groundwater beneath it (Moreno et al., 2011). Moreover, fires are an 

important source of pollution by polycyclic aromatic hydrocarbons (PAHs) for 

Mediterranean rivers (Vila-Escale et al., 2007). Following this, a TDNP Hydric 

Regeneration Plan was implemented to stop (or at least mitigate) this 

environmental degradation. Nevertheless, it is possible that today PAHs or 

related compounds having dioxin-like activity may still be present in TDNP and 

affect aquatic biota living there. As a consequence, considering the above 

mentioned sources of pollution, the study of chapter 5 focused on the chemical 

and biological characterization of estrogenic and dioxin-like compounds typically 

found in WWTP effluents and surface waters affected by forest fires (PAHs). In 

addition, we use feeding rate responses of D. magna as a generalized measure 

of sublethal toxicity. Results indicated that the water from TDNP was relatively 

clean, showing low residue levels of most analyzed pollutants and low 

estrogenic and dioxin-like activities. Conversely, water samples from Navaseca 

pond had elevated levels of estrogenic compounds as well as associated 
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estrogenic activity and inhibited D. magna feeding rates. Unfortunately, potential 

contaminants inhibiting D. magna feeding rates such as some pesticides and 

cyanotoxins were not analyzed. In conclusion the study presented in Chapter 5 

indicates that TDNP, despite of having a good ecological water quality, is 

threatened by nearby waste water drainage ponds like Navaseca, which may 

act as a pollution source of contamination. Future remediation strategies should 

focus on improving the water quality of these associated ponds. 

In chapter 6, a laboratory-based assessment of the potentially detrimental 

consequences of neuro-active pharmaceuticals in D. magna is presented. 

Concentrations used were in the ηg/L and µg/L range to simulate those 

encountered normally in the environment. Their effects on aquatic biota may be 

difficult to evaluate as they are bioactive molecules specifically designed to 

have very low toxicity, but to exert a precise biological effect through specific 

receptors/pathways (Bottoni et al., 2010; Daughton and Ternes, 1999; Fent et 

al., 2006). It is important to note that several neuro-active compounds are 

designed to affect neurotransmitters (serotonin, dopamine, epinephrine, 

gamma-aminobutyric acid-GABA), which regulate many physiological and 

behavioral processes (Fong and Ford, 2014; Ford and Fong, 2015). Recently, 

several studies have reported that very low concentrations of antidepressants 

and anxiolytic drugs alter the behavior of fish, mollusks and crustaceans (Brodin 

et al., 2013; Fong and Ford, 2014; Ford and Fong, 2015). Therefore, neuro-

active drugs may also affect aquatic invertebrates. This is probably related to 

the fact that human targets of antidepressants, anxiolytic and neuropathic drugs  

such as selective serotonin re-uptake inhibitors (SSRIs), drugs blocking voltage-

gated sodium channels and/or GABA agonists as well as certain 

antihypertensive compounds are highly conserved across vertebrates and 61% 

of them are also found in the invertebrate crustacean Daphnia (Gunnarsson et 

al., 2008). Phototactic behavior, either negative or positive, is a response 

common to most organisms (Haney, 1988; Ringelberg, 1964). Many organisms 

escape from light since they would be more visible to predators (Cousyn et al., 

2001; De Meester and Cousyn, 1997; Lampert, 1989; Ringelberg, 1999). 

Recent studies indicated that psychiatric drugs, such as SSRIs, affect the 
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phototactic behavior of amphipods (Bossus et al., 2014; Guler and Ford, 2010). 

In daphnids, the vertical migration in the water column in response to light 

exposure provides a sensitive approach to assess potential sublethal effects 

that would not be assessed by more traditional testing (De Meester, 1991, 

1993; Michels et al., 1999). Daphnia diel migration represents an important 

evolutionary achievement of protection behavior against predators, where a 

normal pattern includes a nocturnal ascent (for feeding closer to the surface) 

and a morning descent (for preservation purposes) (Lampert, 1989; Loose, 

1993), thus any change affecting the vertical movement is of extreme 

importance under an ecological perspective. Previously, it was also reported in 

our laboratory that SSRIs were able to enhance reproduction in Daphnia under 

low food conditions since the mentioned compounds increased the levels of 

serotonin in the brain as they did in humans (Campos et al., 2012b; Campos et 

al., 2016). Several other traits are also affected by SSRIs exposure. Exposed 

organisms showed increased levels of aerobic metabolism, matured earlier and 

produced more although smaller offspring under low food conditions (Campos 

et al., 2012a). This switch in the reproductive strategy was proven to be 

detrimental under food depletion, when the production of few but larger 

offspring is ecologically more beneficial since offspring size increase their 

tolerance to starvation, while reducing the time to sexual maturity. In this 

chapter, the aim was to test the premise that other neuro-active drugs could 

have similar effects as SSRIs and in addition they could alter phototactic 

behavior. The substances tested included the SSRI fluoxetine, the anxiolytic 

diazepam, the neuropathic and anti-epileptic drug carbamazepine and the 

antihypertensive propranolol. SSRIs act by blocking the re-uptake of serotonin 

in the nerve synapses (Spinks and Spinks, 2002). Diazepam enhances the 

effect of the neurotransmitter GABA by binding to the benzodiazepine site on 

the GABAA receptor, leading to central nervous system depression (Riss et al., 

2008). Carbamazepine is also a GABA receptor agonist since it potentiates 

GABA receptors (Ambrósio et al., 2002). Propranolol is a nonselective beta-

blocker that blocks the action of epinephrine and norepinephrine on adrenergic 

receptors (Wisler et al., 2007). Results indicated that all tested drugs were able 

to increased offspring production at the ηg/L or low µg/L range, while 
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psychiatric, anxiolytic and anti-epilepsy drugs also decreased the response of 

D. magna individuals to light at these concentrations. These results suggest that 

these drugs produced similar effects in Daphnia despite having a different 

primary MoA, at least in humans. In fact, observed effects on reproduction and 

on behavior indicate that the tested compounds probably share a molecular 

target or pathway, most likely at the central nervous system, which regulates 

multiple physiological processes. This was the case of fluoxetine that by 

increasing serotonin activity changed the perception of food in Daphnia, 

increasing reproduction rates and aerobic metabolism (Campos et al., 2013; 

Campos et al., 2012a). Further work is needed to elucidate the mechanisms of 

action of the remaining three pharmaceuticals. For instance, there is evidence 

in humans that carbamazepine and fluoxetine de-regulated the brain 

arachidonic acid pathway (Bazinet, 2009), which in Daphnia is involved in the 

regulation of reproduction (Ginjupalli et al., 2015). It is also likely that the lack of 

a hemato-encefalic barrier in Daphnia allows these drugs to act in an unspecific 

way on neuronal receptors, thus affecting common regulatory pathways. Indeed 

unpublished work conducted later in our laboratory, led to the creation of 

serotonin-depleted Daphnia clones, using CRISPR/Cas9-mediated targeted 

mutagenesis (Nakanishi et al., 2014). Exposure of these knock-down animals to 

the SSRI fluoxetine showed enhanced reproduction (unpublished), as it was 

previouslt observed in the “wild-type” clone. This indicates that SSRIs may 

interact directly with serotonin or other neuronal post-synaptic receptors. We 

are also undergoing the development of a LC-MS/MS analytical method in order 

to measure neurotransmitter levels in Daphnia (e.g. serotonin, dopamine, 

epinephrine, norepinephrine, gamma-aminobutyric acid- GABA) which may help 

to elucidate more exhaustively the MoA of these drugs in the near future.  

7.2 Conclusions 

Overall, this thesis aimed to prove the importance and need of a 

complementary role of classical bioassays, specific biomarkers, molecular-

based techniques and chemical analyses. When used in combination, all these 

approaches provide significant information to understand potential impacts of 
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anthropogenic pressures on aquatic biota. Along seven chapters, we discuss 

the inherent difficulties of field studies (where the interactions among chemicals 

and/or other confounding factors might occur) compared to laboratory-based 

methodologies, the limitations of this kind of approaches and future 

improvements needed.  

 

The following conclusions were achieved: 

1. The combination of individual, biochemical and gene transcription 

biomarkers in D. magna field assays coupled with chemical analyses of 

contaminant residues allowed a better assessment of causative effects of 

contaminants across three river basins impacted by different anthropogenic 

pressures. 

2. Gene transcription responses have the advantage over biochemical 

responses to be less sample demanding and allow testing many signaling 

pathways at the same time. However, molecular responses are more variable 

and hence further work is required to assess their natural variability and 

specificity. 

3. The use of in situ field exposures in parallel with lab exposures in 

reconstituted water with contaminant organic extracts is a robust method in 

order to confirm if observed effects in the field are caused by the correspective 

analyzed contaminants. 

4. A new analytical method to simultaneously measure mycrocystins, 

anatoxin-a and okadaic acid levels bound to suspended particles within the 

water column and sediments was developed and applied to environmental 

samples from the Ebro River and Delta, revealing the presence of anatoxin-a 

and okadaic acid at different sites. 

5. The combination of analytical methods to detect trace contaminants with 

the use of sensitive D. magna feeding and post-exposure feeding assays 
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toghether with an appropriated TIE approach allowed to identify an unknown 

source of toxicity present in the particle water fraction. 

6. The cyanotoxin anatoxin-a (produced by the cyanobacteria Planktothrix) 

bound to river particles was correlated with the toxicity effects measured in the 

low Ebro River during an unusual period of high water flow. 

7. The use of a combination of effect-directed bio-analytical assays, 

including recombinant yeast assays for both human estrogen and aryl receptor, 

Daphnia feeding inhibition assays and chemical analyses of estrogenic 

compounds and polycyclic aromatic hydrocarbons, allowed to characterize the 

ecological quality of water from Las Tablas de Daimiel floodplain and its 

associated ponds. 

8. Water from las Tablas de Daimiel floodplain has low levels of 

contaminants and of related estrogenic and dioxin-like activity whereas that of 

the associated pond Navaseca was toxic to Daphnia and it highly contaminated 

by estrogenic compounds. 

9. Neuro-active pharmaceuticals targeting different neurological pathways 

in humans were able to disrupt in a similar way the reproduction of Daphnia, 

enhancing offspring production at environmental relevant concentrations (ηg/L). 

Some of them including psychiatric, anxiolytic and anti-epileptic drugs, were 

also able to alter Daphnia phototactic behavior. 
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