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Abstract

Electronic voting presents many challenges due to its multiple security requirements. Some of the challenges

are related to guaranteeing voters’ privacy and system’s transparency, which are hard to satisfy simultane-

ously. Electronic voting also presents other challenges such as usability, particularly from the voter’s side.

We study two problems of electronic voting. Cast-as-intended verifiability comprises those mechanisms

which assure the voter that her cast ballot corresponds to her chosen voting option. Current proposals put

the verification burden on the voter, something which is undesirable in real-world elections, where both

technically skilled and non-skilled voters participate. In this thesis, we introduce the concept of universal

cast-as-intended verifiability, which provides mechanisms which allow any entity to check that any ballot

corresponds to the voter’s selections - without revealing them. We formally define what universal cast-as-

intended verifiability is and we give an electronic voting protocol satisfying this property.

The other problem we have studied is the problem of invalid votes in electronic elections. Since a com-

mon selling point of electronic voting is that it avoids voters inadvertently spoiling their votes, deliberately

spoiled ballots appearing in the tallying phase of an electronic election can cause mistrust on the system.

Indeed, election stakeholders might think that the system is flawed or that it was exploited somehow. To

avoid this situation, we define the concept of vote validatability, which states the electronic voting system

should be able to detect spoiled ballots before they are successfully cast. In addition to formally defining

this notion, we design an electronic voting protocol satisfying this property.

All these security requirements of electronic voting systems are implemented with cryptographic tools.

In addition to encryption and signature schemes, another essential primitive for building electronic voting

protocols is zero-knowledge proofs. Zero-knowledge proofs allow a prover to convince a verifier that a

statement is true without leaking any other information. These zero-knowledge proofs can be used to, for

example, prove that the tally of the election was done properly. Recently, Groth and Sahai constructed

efficient non-interactive zero-knowledge proofs for a wide range of statements including, among others,

statements appearing in electronic voting.

In this thesis, we give two contributions on Groth-Sahai proofs. On the one hand, we give a framework

for deriving cryptographic assumptions from which to build secure cryptographic protocols. In particular,

we build new Groth-Sahai proofs improving the efficiency of currently known constructions. Independently,

we show how the original Groth-Sahai proofs can be extended to be compatible with even more statements,

how to improve their out-of-the-box efficiency for many of these statements and how to improve their re-

usability efficiency among multiple statements.

Keywords— Electronic Voting, Verifiability, Cryptography, Zero-Knowledge Proofs



Resum

Els sistemes de vot electrònic presenten molts reptes a causa dels seus múltiples requeriments. Alguns reptes

són garantir la privacitat del votant i la transparència del sistema, difı́cils de satisfer al mateix temps. Els

sistemes de vot electrònic també presenten reptes com la usabilitat, sobretot de cara als votants.

En aquesta tesi estudiem dos problemes del vot electrònic. La verificabilitat cast-as-intended tracta

d’obtenir mecanismes que garanteixin al votant que el seu vot correspon a les seves preferències. Les

propostes actuals posen la càrrega de la verificació en el votant, cosa que no és desitjable en eleccions del

món real, en les que participen votants amb diferents graus de coneixements tècnics. Nosaltres introduı̈m el

concepte de universal cast-as-intended verifiability, que proporciona mecanismes perquè qualsevol entitat

de l’elecció pugui comprovar que qualsevol vot conté les preferències del votant que l’ha emès - sense revelar

el contingut del vot. A banda de definir formalment el concepte de universal cast-as-intended verifiability,

també proposem un protocol de vot electrònic que satisfà aquesta propietat.

L’altre problema que hem estudiat és el problema dels vots invàlids en eleccions electròniques. Un dels

avantatges del vot electrònic és que permet evitar que els votants emetin vots nuls sense voler. Per això, si

durant el recompte de l’elecció apareixen vots nuls construı̈ts intencionadament es pot crear desconfiança

en el sistema de vot. Els usuaris del sistema de vot poden pensar que el sistema té forats de seguretat o

que ha estat atacat. Per evitar aquesta situació, definim el concepte de vote validatability, una propietat dels

sistemes de vot electrònic que garanteix que els vots nuls es poden identificar en el moment en què s’emeten.

En aquesta tesi hem definit formalment aquesta propietat i hem dissenyat un protocol que la satisfà.

Tots aquests requisits de seguretat dels protocols de vot electrònic s’implementen amb eines crip-

togràfiques. Les principals eines que s’utilitzen són esquemes de xifrat, esquemes de firma i proves de

coneixement zero. Una prova de coneixement zero permet a una entitat convèncer una altra entitat que

una sentència és certa sense donar cap altra informació que la certesa de la sentència. Aquestes proves

de coneixement zero es poden fer servir, per exemple, per demostrar que el recompte de l’elecció s’ha fet

correctament. Recentment, Groth i Sahai han construı̈t proves de coneixement zero que es poden fer servir

per un ampli ventall de sentències com les que apareixen en protocols de vot electrònic.

En aquesta tesi hem fet dos contribucions sobre les proves de Groth i Sahai. Per una banda, donem un

marc teòric que permet derivar hipòtesis criptogràfiques per construir protocols criptogràfics. En particular,

construı̈m noves proves de Groth i Sahai millorant l’eficiència de les construccions existents. De manera

independent, indiquem com les proves de Groth i Sahai es poden estendre per fer-les compatibles amb un

ventall més ampli de sentències, millorem l’eficiència de les proves de Groth i Sahai per moltes sentències

i millorem l’eficiència de les proves de Groth i Sahai quan es fan servir per demostrar múltiples sentències.

Paraules clau— Vot Electrònic, Verificabilitat, Criptografia, Proves de Coneixement Zero
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Voldria seguir per donar les gràcies al que, podrı́em dir, va ser el meu mecenes pel que fa a la recerca.
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Chapter 1

Introduction

1.1 Why is electronic voting so difficult?

The society we live in is constantly changing due to fast progress in technology. Technology has changed

how we interact with our bank, how we shop or how we interact with our government. Perhaps the most

challenging aspect of society that is changing is how we vote.

In traditional elections, voting is done during (usually) one day. During this day, voters go to a polling

place, put a piece of paper containing their selections into an envelope and deposit the envelop inside a box.

After the voting period, the envelopes in the box are shuffled, each envelope is opened and all the selections

are counted. People are generally satisfied with this process because they have high confidence that the

results announced by the election authorities reflect the voters’ will.

This confidence is built through different mechanisms. First, the voter can inspect the contents of the

paper which she is placing inside the envelope. The voter can also check that her envelope is deposited

inside the box. These boxes are transparent so that voters can always see their content. In addition, during

the entire voting day there are several people verifying that the whole process is being done correctly. These

auditors, who are affiliated to different political parties and non-governmental organizations, are in charge of

checking that the ballot box is empty at the beginning of the election, that only voters who are in the electoral

roll deposit envelopes inside the ballot box, that no ballots are removed and that the counting process is done

correctly. If trust is put on the auditors, all these mechanisms give sufficient guarantees that the result of the

election exactly corresponds to the voters’ will.

When technology is included in the electronic voting process, some of these mechanisms can no longer

be used. Let’s take as example the most extreme scenario in which voters cast their votes from their personal

devices (computer, smart phone, tablet or other). In this case, voters select their voting option and let the

voting device construct their digital ballot. These digital ballots are sent via the Internet and are stored inside

a digital ballot box. At the end of the election, all the votes inside the digital ballot box are counted by a

computer, which outputs a result.
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In this digital scenario, all the mechanisms which gave confidence to the voter that the election process

was done correctly no longer make sense. For example, the voter has no means of checking whether there

is a digital ballot corresponding to her cast vote stored in the digital ballot box. Similarly, the process of

counting the votes is completely opaque to any entity.

This lack of transparency is common to many processes which have been transformed by technology.

For example, when buying through the Internet the buyer has no means to tell whether the amount of money

sent to the seller equals what she saw advertised in the digital store. However, the bank can raise an alarm

if the buyer transfers some unusually high amount of money. This measure is easy to implement since the

bank knows how much money the buyer is spending in each transaction. In addition, banks have insurances

which might cover (part of) the fraud which can occur in electronic payments.

There is one key issue which makes electronic voting different from the other scenarios. Only the voter

should know what her chosen voting option is. This privacy requirement creates a lot of challenges by itself.

Designing electronic voting systems which guarantee the privacy of the vote is an active research topic.

Things get even more challenging when the goal is not only to provide privacy but also to bring back those

mechanisms which give confidence to the voter that the election result is the correct one.

It is not enough to have an electronic voting system which provides the same privacy and transparency

guarantees as traditional voting systems. There are other challenges which need to be solved to have elec-

tronic voting systems which people trust. One of such challenges is related to how invalid or null votes are

processed. In traditional voting systems, voters can easily spoil ballots by, for example, making selections

which are not allowed. One of such cases would be to make two selections in a single-mark ballot. During

the tallying of the ballots, such ballots are identified as invalid and they are excluded from the result. This is

a well-understood process and it is usual to see elections in which a small percentage of ballots are invalid.

In electronic voting systems, voters can also spoil ballots. Even though the visual interface which is

used to digitally cast a ballot can prevent casting spoiled votes, a technically skilled voter can overcome

such protections by creating a ballot using a maliciously crafted voting algorithm. Following the analogy

with traditional voting, such spoiled vote would be detected in the tallying phase of the election. One would

expect that detecting and rejecting the spoiled vote would be a satisfactory approach.

However, detecting spoiled votes at the tallying phase creates confusion and mistrust among electoral

administrators. One of the reasons is that there is the common belief that one of the advantages of electronic

voting is that it can prevent having spoiled votes. This creates the belief that a spoiled vote must be caused

by either a bug or an exploit of the system. Similarly, a voter claiming that she was able to cast a spoiled

vote might be perceived as a sign of a flaw in the electronic voting system.

Therefore, a requirement that one might expect from electronic voting systems is that no invalid votes

can be cast. In other words, the voting system should not accept a ballot unless it corresponds to a valid

vote. And, of course, this should be done without compromising the security of the ballots.
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The issue of invalid votes is particularly interesting. On the one hand, from an academic point of view

it is not regarded as a problem (after all, an invalid vote will not count towards the result of the election). In

particular, no research has been done to solve this issue. On the other hand, this is a real issue in the real

world, where it is not enough to have a secure voting system but the voting system also needs to be trusted

by the stakeholders of an election.

Last, but not least, the electronic voting system needs to be efficient. This means that, for example,

tallying the election should take a reasonable amount of time. Reducing the time it takes to tally the election

is indeed one of the selling points of electronic voting. But the efficiency requirement also means that casting

a vote should take a reasonable time as voters expect not to wait a long time once they have clicked the “cast

vote” button. Satisfying the privacy and transparency requirements while keeping the computational cost of

casting a vote low is another of the challenges that appear when building electronic voting systems.

Efficiency requirements are sometimes overlooked in academic proposals, where the exact time it takes

to cast a ballot is usually not relevant. On the other hand, electronic voting systems used in real elections

should be designed so that casting a vote takes at most a few seconds.

1.2 Privacy, verifiability and validatability

Classically, security requirements of electronic voting systems have been divided in two classes: those which

are related to privacy and those which are related to verifiability. In addition, in this thesis we introduce the

requirement of vote validatability, which states that it should not be possible to get a ballot corresponding to

an invalid vote inside the digital ballot box. In this section, we give some more details on these requirements.

1.2.1 Privacy requirements

A basic requirement of any electronic voting system is that no stakeholder of the election, including the

administrators of the voting system, can know what voting option was chosen by any individual voter. In

most of the electronic voting systems, the voter casts her vote by introducing the chosen voting option in a

voting device. This implies that we need to trust the voting device to not leak the voting option chosen by

the voter, otherwise we can get no privacy guarantee. However, this is one of the few assumptions that is

made regarding privacy.

There are proposals of electronic voting schemes in which the voter does not introduce her voting option

into the voting device. In these systems, the voter introduces some codes related to the chosen voting option.

The relation between codes and voting options is unknown to the voting device, so it is no longer needed

to assume that the voting device will not leak the voters’ selection. Despite this property of such voting

systems, there are usability problems in having to introduce many codes instead of selecting a candidate

through a graphical user interface, which is why other types of voting schemes are more popular.
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Going back to schemes in which the voting device is trusted, we can refine the notion of privacy. It is

commonly assumed that a private electronic voting scheme should not give any receipt to the voter which

can be used to sell her vote. In other words, the process of casting a vote should not output any information

which can be easily traced back to the voting option chosen by the voter. However, when academics talk

about receipt-freeness they refer to another security requirement.

Receipt-freeness is a stronger notion of privacy. It essentially states that no voter should be able to

produce a ballot in a way that she can later prove to someone else what voting option corresponds to the

ballot. This means that a voter should not be able to show how she voted when she uses the intended method

for casting a ballot but that this should hold even if the voter deviates from the protocol and uses any other

method for casting a ballot.

Finally, there are other stronger notions of privacy. A coercion-resistant scheme should not only hide the

voting option chosen by the voter but it should also hide the fact that the voter participated in the election.

This should hold even if someone was actively trying to prevent the voter from participating in the election

or trying to force the voter to vote in a particular way. There is always a trade-off between usability and

privacy. In particular, existing coercion-resistant electronic voting schemes are completely unusable.

Satisfying strong notions of privacy is a hard challenge by itself. The challenge gets even harder when

one wants to consider verifiability properties.

1.2.2 Verifiability requirements

To build trust on the electronic voting system, transparency requirements need to be imposed. These trans-

parency requirements involve having voters or other stakeholders verifying that all the processes of the

election were done properly. Depending on what object is under verification, we distinguish between cast-

as-intended verifiability, recorded-as-cast verifiability, counted-as-recorded verifiability and eligibility veri-

fiability. Another classification can be done regarding who performs the verifications. In this case, we dis-

tinguish between individual verifiability, when only the entity responsible for the process (such as casting a

vote) can perform the verification, and universal verifiability, when any entity can perform such verification.

Cast-as-intended verifiability refers to the process of verifying that the digital ballot cast by the voting

device corresponds to the voting option chosen by the voter. As only the voter knows what voting option

she chose, it is usually perceived that cast-as-intended verifiability belongs to individual verifiability.

Recorded-as-cast verifiability is concerned about verifying that the digital ballot which was cast by

the voting device has been correctly stored by the electronic voting system. In this case, the verifiability

requirement is only concerned about the digital ballot, not about the underlying chosen voting option. This

verifiability property is also part of individual verifiability because only the voter knows that she cast a ballot

and which one it is. However, the voter can delegate this verification to another party without compromising

her privacy by telling such party which is her digital ballot.
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We say that an electronic voting system has counted-as-recorded verifiability if it can be verified that

the tallying process was done properly. Such verification is done with respect to the digital ballots stored by

the system. In this case, anyone can potentially perform such verification as it does not involve the voting

process. Therefore, this verifiability property is part of universal verifiability.

Finally, we define the property of being able to verify that all recorded votes correspond to valid voters

as eligibility verifiability. This verification can also be done by any stakeholder of the election, if we assume

that the list of valid voters is public. This means that eligibility verifiability is part of universal verifiability.

It is easy to think about an electronic voting scheme which satisfies all these verifiability requirements.

Indeed, the most transparent electronic voting scheme is the one in which a digital ballot is just the voting

option chosen by the voter together with some identity of the voter. After the voting period, all digital ballots

could be published on-line and any entity could compute the result of the election. In this case, the voter

could trivially verify that her digital ballot corresponds to her chosen voting option and that it was recorded

by the system. Anyone could verify that the announced result of the election corresponds to the digital

ballots registered by the system. Given a list of eligible voters, any entity could also verify that each digital

ballot was created by an eligible voter. The electronic voting system would be completely transparent and it

would satisfy all the verifiability properties!

However, it would not be private at all. Designing electronic voting systems which satisfy both privacy

and verifiability requirements is a challenging task and an interesting area of research.

1.2.3 Validatability requirements

Even if an electronic voting scheme satisfies all privacy and verifiability requirements it does not mean that

people will trust the electronic voting system. One of the facts that helps to build trust in the system is to

make sure that the tallying process will not output invalid votes. In other words, the process of casting a vote

should be designed so that the voting system will not accept digital ballots corresponding to invalid votes.

A digital ballot could correspond to an invalid vote due to many reasons. First, the digital ballot itself

might be meaningless. The clearest case is the one in which the digital ballot is random nonsense data.

However, it might also happen that the digital ballot looks like a valid ballot but that it does not corre-

spond to any meaningful voting option. Let me give an example: in a referendum, a voter might either vote

“yes”, “no” or “blank”. We could imagine a scenario in which the digital ballot corresponds to a voting

option which is neither of these three options. In this case, the vote would be invalid, but this might not be

easy to infer from the ballot itself (think of a closed envelope: it does not reveal whether a vote is invalid).

Referendums are a concrete case of elections in which voters choose one out of three options. We could

consider more complex elections in which the voter can choose t out of n candidates. In this case, if the

voter chose the same candidate more than once then she would be choosing an invalid vote.

We could even imagine more complex elections in which the voter can make several selections and
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where there are several rules which state which are the valid combinations. In these complex elections,

there could be many reasons for which a vote might be invalid - one for each combination of validity rules.

The difficulty of satisfying the validatability requirement ultimately depends on what types of invalid

votes we can have in an election. Therefore, it is reasonable to make research on validatability properties of

electronic voting schemes which correspond to elections with different voting rules.

1.3 Using cryptography to meet security requirements

Designing electronic voting systems which satisfy privacy, verifiability and validatability requirements at

the same time seems an impossible quest. However, the use of cryptography has proven to be helpful in

building systems that satisfy such requirements. A deep understanding of the cryptographic primitives is

essential to build secure electronic systems.

1.3.1 Using encryption to achieve privacy

To start with, encryption schemes are cryptographic primitives which help protect data privacy. Encryption

schemes come in two flavours: symmetric encryption, in which both the sender and the receiver of the

information must share a key, and asymmetric encryption, in which the sender encrypts the information to

be sent to the receiver using the receiver’s public key, who uses her secret key to decrypt it.

In electronic voting, voters send their votes privately to the election authorities. However, it would be

impractical for the election authorities to privately share a different key with every voter, so asymmetric

encryption schemes are used. The electoral board has one public key, which any voter can use to encrypt

her vote, and a private key, which is only known to the election board and is used to decrypt ballots.

There exist many asymmetric encryption schemes, with different security guarantees. It is important

to know which security guarantee each encryption scheme provides since an incorrect choice of a secure

encryption scheme might lead to an insecure voting scheme, if the security guarantees from the encrypted

scheme are not the expected ones.

In addition, in some cases we will require that the encryption scheme has some special properties, usu-

ally not required for general data privacy. To protect the privacy of the voters, the election authorities apply

some vote anonymization techniques before decrypting them. The most widely used techniques involve

homomorphically aggregating the digital ballots or shuffling and re-encrypting them multiple times. If the

encryption scheme has homomorphic properties then the digital ballots can be homomorphically aggregated

to obtain an encryption of the result of the election, which can then be decrypted by the election authori-

ties. On the other hand, homomorphic encryption schemes also allow us to re-encrypt ciphertexts without

increasing their size, making those schemes ideal for shuffle and re-encryption anonymization techniques.
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1.3.2 Using signature schemes to achieve integrity and authenticity

Another widely studied cryptographic primitive is signature schemes. A signature scheme allows a sender

to produce a signature on some information by using a private key. By using the corresponding public key,

any entity can verify such signature.

The signature guarantees not only that the signed information comes from the sender and not from

some impostor but also that the signed information has not been tampered with. One application of digital

signatures in electronic voting is to sign digital ballots: we don’t want anyone to tamper with ballots and we

usually want to be able to identify who cast a ballot to make sure that no entity is producing multiple ballots.

In addition, signature schemes can also be used in other parts of the process. Election authorities may

sign election information such as the list of the candidates or the announced tally. In this thesis, signature

schemes also have some uses for satisfying other electronic voting requirements such as vote validatability.

1.3.3 Using zero-knowledge proofs to achieve transparency

As mentioned above, it is essential that electronic voting systems are transparent. We want to be sure that the

election authorities are following the protocol correctly and that they are producing the correct results, that

voting devices are correctly producing their ballots and that voters do not create spoiled ballots. However,

we want to do this without breaking privacy.

This is where zero-knowledge proofs come into play. A zero-knowledge proof allows a prover to con-

vince a verifier that some statement is true without revealing anything else than the truth of the statement.

These statements can be of the form “the tally is correctly computed from the ballots”. In this case, zero-

knowledge proofs allow election authorities to convince everyone that the statement is true without revealing

the contents of any ballot.

Zero-knowledge proofs can be interactive, when the prover and the verifier send messages back and

forth, or non-interactive, where the prover produces the proof without interaction with any verifier, and this

proof can then be verified by any entity without interacting with the prover. In electronic voting the most

used zero-knowledge proofs are the non-interactive ones, since we do not want the election authority to have

to interact with every voter to convince them that the tally was correctly generated.

Recently, Groth and Sahai [GS12] introduced some powerful non-interactive zero-knowledge proofs

which have been extensively used to build other cryptographic protocols. Since their introduction, Groth-

Sahai proofs have received a lot of attention and are still an active research topic.

1.4 Objectives

The initial objective of the thesis was to understand which the main challenges that electronic voting sys-

tems face are and to build electronic voting protocols solving (some of) these challenges. While other
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researchers might focus on rather theoretical aspects of electronic voting, we were particularly interested in

those challenges which have a significant impact on real-world electronic voting usage.

One example is those issues which impact voters’ experience: we need to design them not for abstract

voters, who will always follow any process flawlessly, but for real voters, who might not always be able to

follow complex workflows. Building cast-as-intended verifiable electronic voting protocols is one of such

challenges: it is the voter who needs to verify that her ballot contains her chosen voting option, so we should

build protocols in which this verification is as simple as possible.

Similarly, we are interested on building mechanisms which help to build trust on electronic voting:

a perfect electronic voting protocol will not be used in the real world if it works in a way which is not

easily understood by its users. We have already mentioned the concept of validatability: a property that we

introduce in this thesis that, while not being essential for the security of an electronic voting protocol, it is

required if we want an electronic voting system to be trusted.

While we wanted to build electronic voting protocols solving real-world issues, we understood that to

have secure electronic voting protocols we needed to design them with a detailed and formal treatment of

their security properties. This meant understanding which is the state of the art in security requirements for

electronic voting protocols and how they are formalized. This aspect of the research was paramount impor-

tance since we might need to modify the existing security definitions to accommodate any new property or

functionality which our protocols might have.

To be able to build electronic voting protocols, it was essential to have a deep understanding of the

cryptographic tools which are used to build them. As mentioned above, one of the most important of such

tools is zero-knowledge proofs, so we decided to deepen our understanding of this area of cryptography.

1.5 Contributions and structure of this thesis

This thesis’ contributions which can be split in two categories. On the one hand, there are contributions

in cryptography and, in particular, in zero-knowledge proofs. The other contributions are in the field of

electronic voting.

In Section 2 we give all the cryptographic background related to both our contributions in cryptography

and electronic voting. This cryptographic background includes the assumptions that we work with, defini-

tions of encryption schemes, signature schemes, zero-knowledge proofs and other cryptographic primitives.

The first contribution in the field of cryptography is given in Section 3. In this contribution, we give

a framework to generalize cryptographic assumptions such as the Decisional Diffie Hellman assumption

or the Decisional Linear assumption. This framework allows us to give new cryptographic assumptions

which can be used to give more efficient instantiations of cryptographic protocols. One of the cryptographic

protocols which can be instantiated with our new computational assumptions is Groth-Sahai proofs. The
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resulting instantiations are more efficient than previously known ones. In addition, we use our framework

to build shorter Non-Interactive Zero-Knowledge proofs with security based on traditional assumptions for

some concrete statements, such as equality of plaintexts in different ciphertexts.

The second contribution in the field of cryptography is given in Section 4. In this contribution, we expand

Groth-Sahai proofs in several directions. We re-frame Groth-Sahai proofs as a Commit-and-Prove scheme,

which allows us to reuse parts of the proofs in different related statements, therefore reducing the total size

of those proofs. We also show how Groth-Sahai proofs can be made more efficient for some subclass of

statements by introducing new techniques. Finally, we show how to reduce the prover’s computation when

she must produce proofs for multiple statements, even if the statements are completely unrelated.

In Section 5 we explain what is the state of the art in electronic voting research. We introduce which are

the main types of electronic voting protocols and we give an overview of the typical security requirements.

Our first contribution in electronic voting is given in Section 6. In this section, we present a new security

requirement for electronic voting protocols: vote validatability. This requirement states that it should be

possible to publicly verify if a ballot is valid or invalid, therefore preventing the presence of previously

undetected invalid votes when tallying the election. In addition to introducing the security requirement,

which we formally define, we also give a general construction of an electronic voting protocol built from

basic cryptographic primitives and we give an efficient instantiation of this electronic voting protocol.

We give our last contribution in Section 7. In this contribution, we show that it is possible to have

cast-as-intended mechanisms which can be used by any entity to verify that a ballot contains the voting

option chosen by the voter. This contrasts with previous proposals, in which only the voter of the cast vote

could perform such verification. We call this property cast-as-intended verifiability. We formally define

the universal cast-as-intended verifiability property, we give a generic construction of an electronic voting

protocol satisfying this property and we show how to efficiently instantiate this generic construction. In

addition, we present some possible implementations of electronic voting systems based on our protocol as a

first step towards building usable electronic voting systems with universal cast-as-intended verifiability.

Finally, we present the conclusions of this thesis in Section 8.
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Chapter 2

Cryptography background

In this section, we introduce some of the most important primitives in cryptography and, in particular, those

that are most often used in electronic voting systems.

2.1 Some preliminaries

Before introducing the basic cryptographic primitives, we introduce some concepts and notation which we

will use throughout the following sections.

Notation

We write y = A(x; r) when the algorithm A, on input x and randomness r, outputs y. We write y ← A(x)

for the process of picking randomness r uniformly at random and setting y = A(x; r). More generally,

we write y ← S for sampling y from the set S according to some probability distribution on S, using the

uniform distribution as the default when nothing else is specified.

We write a← A; b← B(a); . . . for running the experiment where a is chosen from A, then b is chosen

from B, which may depend on a, etc. This yields a probability distribution over the outputs, and we write

Pr[a ← A; b ← B(a); · · · : C(a, b, . . . )] for the probability of the condition C(a, b, . . . ) being satisfied

after running the experiment.

Negligible and overwhelming functions

Given two functions f, g : N → [0, 1] we write f(k) ≈ g(k) when |f(k) − g(k)| = O(k−c) for every

positive integer c. We say that f is negligible when f(k) ≈ 0 and that it is overwhelming when f(k) ≈ 1.
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Distinguishing distributions

We say that two sequence of probability distributions {Xk}k and {Yk}k are computationally indistinguish-

able if, for any probabilistic polynomial time (p.p.t.) adversary A, its advantage defined as:

Adv(k) := Pr[A(Xk) outputs 1]− Pr[A(Yk) outputs 1]

is negligible.

On the other hand, two sequence of probability distributions {Xk}k and {Yk}k are said to be identical if

their support is the same and the same probability is assigned for each value in both probability distributions.

In some cases, the sequence of probability distributions will be implicitly parametrized by a security

parameter λ. In this case, we might just say that the two probability distributions are indistinguishable but

we will be referring to the indistinguishability of the sequence of probability distributions.

2.2 Groups and assumptions

Many cryptographic schemes are based on commutative groups and, in particular, on prime order groups. A

group description (p, Ḡ, ḡ) consists of the group Ḡ of prime order p and a generator of the group ḡ. These

group descriptions are generated by a p.p.t. algorithm G, which takes as input a security parameter 1λ and

outputs a group description (p, Ḡ, ḡ). We write group elements x̄ ∈ Ḡ with a bar to distinguish them from

elements in Zp and we denote the neutral element in Ḡ as 0̄. In addition, unless stated otherwise, we will

write group operations with additive notation, this is, elements x̄, ȳ ∈ Ḡ are operated as x̄ + ȳ = z̄ ∈ Ḡ

and we will write x̄+
(a)
· · · +x̄ = ax̄ for a ∈ Zp, x̄ ∈ Ḡ. This notation deviates from standard practice but

will greatly simplify our results and will make it possible to use linear algebra concepts such as vectors and

matrices in a natural way. We stress that even though we are using additive notation it is hard to compute

discrete logarithms in the groups.

There are groups for which it is assumed that some computational problems are hard. When crypto-

graphic protocols are based on these groups, we reduce their security to the hardness of these problems.

One of such computational assumptions is the Decisional Diffie Hellman (DDH) assumption.

Definition 2.2.1. The DDH problem in Ḡ is to distinguish between the two distributions (ḡ, aḡ, bḡ, abḡ) and

(ḡ, aḡ, bḡ, zḡ) where a, b, z ← Zp. We say that the DDH assumption holds relative to G if the DDH problem

is computationally hard in Ḡ for (p, Ḡ, ḡ)← G.

Another mathematical structure with particular interest to cryptography is bilinear groups. A bilinear

group consists of three prime order groups Ĝ, Ȟ,T, an efficiently computable, non-degenerate bilinear map

e : Ĝ× Ȟ→ T, often referred to as a pairing, and generators ĝ, ȟ of Ĝ, Ȟ respectively. We write elements

x̂ ∈ Ĝ with a hat, elements y̌ ∈ Ȟ with an inverted hat and elements tT ∈ T with the T subscript. We denote
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the neutral elements in the groups Ĝ, Ȟ and T with 0̂, 0̌ and 0T. In some cases, it will also be convenient to

write the pairing e with multiplicative notation, defining x̂y̌ = e(x̂, y̌).

As explained in [GPS08], one can separate known bilinear groups in three basic types:

type-I, in which Ĝ = Ȟ = Ḡ are the same group. In this case, we write elements x̄ ∈ Ḡ with a bar.

type-II, in which Ĝ and Ȟ are different but there exists an efficiently computable homomorphism φ : Ȟ→

Ĝ which inverse φ−1 is not efficiently computable.

type-III, in which there are no efficiently computable homomorphisms between Ĝ and Ȟ.

Type-I bilinear groups are also known as symmetric bilinear groups, and their description (p, Ḡ,T, e, ḡ)

consists of the order of the groups p, the groups Ḡ,T, the bilinear map e and a generator ḡ of Ḡ. The

DDH assumption can not hold in symmetric bilinear groups, since e(aḡ, bḡ) = e(abḡ, ḡ) can be used for

distinguishing the two distributions.

This does not mean that symmetric bilinear groups are not useful for cryptography. Indeed, many

constructions base their security on the Decisional Linear assumption (DLIN), which might hold even under

the existence of the bilinear map e. In the following, let SPG be a p.p.t. algorithm which on input a security

parameter 1λ returns a symmetric bilinear group description (p, Ḡ,T, e, ḡ).

Definition 2.2.2. The DLIN problem in Ḡ is to distinguish between the two distributions (ḡ, aḡ, bḡ, raḡ, sbḡ,

(r + s)ḡ) and (ḡ, aḡ, bḡ, raḡ, sbḡ, zḡ), where a, b, r, s, z ← Zp. We say that the DLIN assumption holds

relative to SPG if the DLIN problem is hard in Ḡ for (p, Ḡ,T, e, ḡ)← SPG.

By default, when talking about asymmetric bilinear groups we will be referring to type-III bilinear

groups. We denote algorithms which generate asymmetric bilinear groups as PG. An algorithm PG takes

as input a security parameter 1λ and returns a group description (p, Ĝ, Ȟ,T, e, ĝ, ȟ), where Ĝ, Ȟ,T are

groups of prime order p, ĝ and ȟ are generators of Ĝ and Ȟ respectively, and e is an efficiently computable,

non-degenerate bilinear map e : Ĝ× Ȟ→ T.

In asymmetric bilinear groups the DDH problem might be hard in both Ĝ and Ȟ, as the bilinear map e

does not help to solve the DDH problem.

Definition 2.2.3. We say that the Symmetric eXternal Diffie-Hellman (SXDH) assumption holds relative to

PG if the DDH problem is computationally hard in both Ĝ and Ȟ for (p, Ĝ, Ȟ,T, e, ĝ, ȟ)← PG.

Finally, note that in type-II bilinear groups we might be able to assume that the DDH problem is hard in

Ĝ and the DLIN problem is hard in Ȟ. The homomorphism φ and the bilinear map e can be used to trivially

solve the DDH problem in Ȟ but not in Ĝ.

Depending on the bilinear group being used, cryptographic schemes are based on different assumptions.

In particular, each type of bilinear group leads to different constructions, with type-I bilinear groups leading
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to the most efficient schemes in terms of group elements. However, as detailed in [GPS08], known con-

structions of the different bilinear group types have important trade-offs in properties such as of group sizes

(for the same security parameter), group operation efficiency or pairing efficiency.

2.3 The Random Oracle Model and Hash Functions

A random oracle [BR93] is an algorithm that takes as input a value from some domain, processes it, and

returns a value from some range. A random oracle processes its inputs as follows: on an input which has not

been received before, it samples a random element from its range, stores the relation between the input and

this element and returns the sampled element. For inputs which the random oracle has already seen, it looks

at the corresponding sampled element and returns it. We say that a cryptographic scheme is secure in the

Random Oracle Model (ROM) if it uses random oracles and satisfies the appropriate security definitions.

Random oracles can not be implemented as a cryptographic scheme: two entities using the same random

oracle on the same input should obtain the same result, but this is impossible to implement due to its random

behavior and to due the state that needs to be kept in the random oracle. Therefore, when instantiating

cryptographic primitives we usually substitute the random oracle by a hash function.

Hash functions are one of the basic cryptographic primitives. A hash function H is a function which

takes as input bit strings of arbitrary size and compresses them into a constant-size output. There are three

basic security requirements for hash functions:

Pre-image resistance: given a hash value h it should be difficult to find a messagem such thatH(m) = h.

Second pre-image resistance: given a message m1 it should be difficult to find a different message m2

such that H(m1) = H(m2).

Collision resistance: it should be difficult to find two different messages m1,m2 such that H(m1) =

H(m2).

There are many efficient constructions of hash functions, such as the standardized SHA-256 [Dan13]. It

is assumed that these hash functions are secure since no attacks have been found against them.

The outputs of hash functions usually look like random values and, for this reason, they are used to

instantiate random oracles. However, the security which results from substituting a random oracle by a hash

function is heuristic. There are protocols designed so that they are secure in the Random Oracle Model but,

when random oracles are instantiated by any cryptographic hash function, they can not be secure [CGH04].

2.4 Encryption schemes

The first primitive which comes to mind when one talks about cryptography is encryption. Encryption is

about transforming a message that anyone can read into a ciphertext which reveals no information about
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the message. Obviously, encryption is also about reversing this process: turning the ciphertext back into a

meaningful message. To perform each of these operations, called encrypting and decrypting, a key is used.

Encryption comes in two flavors: symmetric and asymmetric. In symmetric encryption, the processes

of encrypting and decrypting the message use the same key. Anyone who can encrypt a message can also

decrypt any ciphertext encrypted using the same key. On the other hand, in asymmetric encryption, the

encrypting process uses a key, referred to as the public key, and the decryption process uses another key,

referred to as the private key. Usually, the public key is published (this is why it receives this name), so

that anyone can encrypt any message using this public key. The private key is only known by the intended

receiver of these messages, so that only she can decrypt the ciphertexts and retrieve the original messages.

Electronic voting usually happens in an asymmetric scenario. On the one hand, we have multiple voters

who send their ballots to some election authority. On the other hand, we have the election authority, who

tallies the election from the votes contained in the ballots. Naturally, most of the electronic voting schemes

are built on asymmetric encryption schemes.

The syntactical definition of an encryption scheme is the following one.

Setup(1λ): on input a security parameter 1λ outputs a setup gk. This implicitly defines (possibly setup-

dependant) spaces: the message space Mgk, the ciphertext space Cgk and the encryption randomness

space Rgk.

KeyGen(gk): on input a setup gk it generates and outputs a public key pk and a secret key sk.

Enc(gk, pk,m; r): on input a public key pk and a message m ∈ Mgk, outputs a ciphertext c ∈ Cgk

using randomness r ∈ Rgk. In some cases, we might omit the randomness used and just write

Enc(gk, pk,m).

Dec(gk, sk, c): on input a secret key sk and a ciphertext c ∈ Cgk outputs a message m̃ ∈ Mgk or aborts

outputting an error symbol ⊥.

We say that an encryption scheme is correct if, for all setups generated by the algorithm Setup, all

public/private key pairs generated by the algorithm KeyGen and for all messages in the message space

m ∈Mgk it is satisfied that:

Dec(gk, sk,Enc(gk, pk,m)) = m.

IND-CPA security

The basic notion of security for an encryption scheme is Indistinguishability of ciphertexts under a Chosen

Plaintext Attack (IND-CPA) [MRS88]. This notion considers a very weak adversarial goal: to guess which

of two adversarially generated messages is encrypted in a ciphertext, with probability better than a random

coin flip. As for the access to the encryption scheme, it considers basic access: the adversary knows the
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public key of the encryption key pair. This security notion is formalized via the following experiment

between a challenger C and an adversary A:

1. First, the challenger generates a setup gk = Setup(1λ) and a key pair (sk, pk) = KeyGen(gk). It

keeps sk for itself and forwards (gk, pk) to the adversary.

2. Then, the adversary submits two messages (m0,m1) to the challenger.

3. The challenger draws a random bit b ← {0, 1}. It then computes c = Enc(gk, pk,mb) and sends the

ciphertext c to the adversary.

4. Finally, the adversary submits a bit b̃.

We say that an encryption scheme is IND-CPA secure if, for all p.p.t. adversaries, the advantage of the

adversary defined as follows is negligible:

AdvIND-CPA(λ) := |Pr[b̃ = b]− 1/2|

NM-CPA security

Let’s consider encryption in the scenario of electronic voting. As we will see, ballots cast by voters are

often public since they do not reveal any information about the chosen voting options. A voter can then

copy someone else’s ballot and cast it as if it was her own ballot. This is not a desired behavior since it

might be useful for coercing voters (asking them to submit the same ballot that the coercer submitted) or

breaking privacy (if only a few voters participate in an election and many of them are corrupt they could

copy a honest voter’s ballot and infer information from the tally).

Simply copying a ballot can be easily detected by comparing each received ballot with all previously

received ballots. However, a voter might try to copy another voter’s ballot and exploit properties of the

encryption protocol to transform the copied ballot into a ballot with the same contents but which looks

completely different from the original one.

We therefore need that the encryption scheme does not allow for such kind of tampering with ciphertexts.

This is captured in the security definition of Non-Malleability of ciphertexts under a Chosen Plaintext Attack

(NM-CPA) [BDPR98]. The access of the adversary is the same than in the IND-CPA definition: it only has

access to the public key of the encryption key pair. However, its goal is different: the adversary now tries to

tamper with the ciphertext to convert it into an encryption of a related message.

The formal definition, which we now present, states this goal in the following way: the adversary re-

ceives a ciphertext from a challenger and tries to output a ciphertext which plaintext satisfies some relation

with the original plaintext. However, he must do better (in terms of probability) than outputting a cipher-

text which plaintext satisfies the same relation with a random plaintext. Instead of specifying the original
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plaintext, though, the adversary specifies a distribution of plaintexts from which the original and the random

plaintexts are drawn. This security notion is formalized via the following experiment between a challenger

C and an adversary A:

1. First, the challenger generates a setup gk = Setup(1λ) and a key pair (sk, pk) = KeyGen(gk). It

keeps sk for itself and forwards (gk, pk) to the adversary.

2. Then, the adversary outputs a distribution of messagesMA i.e., a subset of the message space Mgk

where each message has attached a non-zero probability (being the sum of all probabilities 1).

3. The challenger samples two messagesm0,m1 ←MA and a random bit b← {0, 1}. It then computes

c = Enc(gk, pk,m0), sends the ciphertext c to the adversary and keeps m0,m1 for himself.

4. The adversary submits a ciphertext c∗, different than c, and a relation R.

5. Finally, the challenger decrypts the ciphertext c∗ obtainingm∗. Ifm∗ =⊥ then the experiment outputs

a bit α = 0. Otherwise, the experiment outputs α = 1 if the relation R holds between m∗ and mb and

α = 0 otherwise.

We say that an encryption scheme is NM-CPA secure if, for all p.p.t. adversaries, the advantage of the

adversary defined as follows is negligible:

AdvNM-CPA(λ) := |Pr[α = 1|b = 1]− Pr[α = 1|b = 0]|

IND-CCA security

Another well-known security property of encryption schemes is the property of Indistinguishability against

Chosen Ciphertext Attacks (IND-CCA). This security properties comes in two flavors, known as IND-CCA1

[NY90] and IND-CCA2 [RS91]. We will only consider the IND-CCA2 notion and we will write it as IND-

CCA.

This security notion models an adversary with the same goal as the IND-CPA adversary, which is to

distinguish between the encryption of two chosen messages. However, the IND-CCA adversary has a much

stronger access: it can get decryptions for any ciphertext but the target ciphertext, in addition to having the

public key of the encryption key pair. This access models the fact that an adversary might trick the receiver

of ciphertexts into revealing some information about the plaintext. For example, if in some protocol the

decryption process aborts because the ciphertext is malformed and the receiver returns some error message,

the adversary might be gaining useful information. Similarly, if the receiver decrypts a message which she

does not expect, she might notify the adversary. As the access of the IND-CCA adversary is much stronger

than the access of an IND-CPA adversary, an IND-CCA secure encryption scheme is also IND-CPA secure.

The security notion is formalized via the following experiment between a challenger C and an adversary A:
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1. First, the challenger generates a setup gk = Setup(1λ) and a key pair (sk, pk) = KeyGen(gk). It

keeps sk for itself and forwards (gk, pk) to the adversary.

2. The adversary might then send ciphertexts c to the challenger, who decrypts them and returns the

result to the adversary. This can be done a number of times polynomial on the security parameter.

3. Then, the adversary submits two messages (m0,m1) to the challenger.

4. The challenger draws a random bit b← {0, 1}. It then computes c∗ = Enc(gk, pk,mb) and sends the

ciphertext c∗ to the adversary.

5. The adversary might then send more ciphertexts c 6= c∗ to the challenger, who decrypts them returning

the result to the adversary. This can be done a polynomial number of times.

6. Finally, the adversary submits a bit b̃.

We say that an encryption scheme is IND-CCA secure if, for all p.p.t. adversaries, the advantage of the

adversary defined as follows is negligible:

AdvIND-CCA(λ) := |Pr[b̃ = b]− 1/2|

Weakening the access of the adversary, we can give other privacy definitions. An interesting one is

known as IND-1-CPA. The goal of an IND-1-CPA adversary is once again to distinguish which of two

chosen messages is encrypted in a ciphertext. However, the access of this adversary stands between the

access of an IND-CPA adversary and an IND-CCA adversary: it has access to the public key and, after

receiving the challenge ciphertext, it can ask once for a decryption of multiple ciphertexts. Note that this

is different from the IND-CCA adversary access not only because it can not get decryptions before seeing

the challenge ciphertext but also because he must send all the ciphertexts to be decrypted at once, thus not

allowing any adaptive strategy in which each query depends on the previous one. The security notion is

formalized via the following experiment between a challenger C and an adversary A:

1. First, the challenger generates a setup gk = Setup(1λ) and a key pair (sk, pk) = KeyGen(gk). It

keeps sk for itself and forwards (gk, pk) to the adversary.

2. Then, the adversary submits two messages (m0,m1) to the challenger.

3. The challenger draws a random bit b← {0, 1}. It then computes c∗ = Enc(gk, pk,mb) and sends the

ciphertext c∗ to the adversary.

4. The adversary might then send a vector of ciphertexts (c1, . . . , cn) to the challenger, who decrypts

them returning the result to the adversary. None of the ciphertexts ci can be equal to c∗.

5. Finally, the adversary submits a bit b̃.
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We say that an encryption scheme is IND-1-CPA secure if, for all p.p.t. adversaries, the advantage of

the adversary defined as follows is negligible:

AdvIND-1-CPA(λ) := |Pr[b̃ = b]− 1/2|

An interesting result is given in [BS99], where they prove the following lemma:

Lemma 2.4.1. NM-CPA security is equivalent to IND-1-CPA security.

This lemma is interesting for two reasons. First, it relates the notion of NM-CPA security with the

notions of IND-CPA security and IND-CCA security. A priori, relating these notions would be difficult

since assessing whether the IND goal or the NM goal is stronger does not seem easy. However, due to this

result we know that IND-CCA security is stronger than NM-CPA security, which is in turn stronger than

IND-CPA security. On the other hand, working with the notion of NM-CPA security is difficult since it

involves proving things for adversarially chosen relations, whereas working with IND-1-CPA security is

considerably easier.

Homomorphic encryption

An encryption scheme works in a rather simple way: encrypting a message yields a ciphertext, which can be

decrypted back to a message. Having a ciphertext without knowing the secret key is meaningless. However,

in some scenarios we want to be able to perform operations on ciphertexts.

An example is encrypted search: a user submits a ciphertext to a search engine, which returns some

encrypted search result based on the underlying plaintext, without ever decrypting the user’s ciphertext. The

primitive that allows us to do these sort of operations is known as fully homomorphic encryption (FHE).

FHE was introduced in 2009 [Gen09] and is a very active area of research in cryptography. Despite recent

advances in FHE its underwhelming performance still limits its real applications.

A related primitive is known as partially homomorphic encryption, often just referred as homomorphic

encryption. If a FHE allows us to compute any operation on a ciphertext (which reduces to computing

bit addition, multiplication and negation), homomorphic encryption only allows us to compute the group

operation of the group the encryption scheme is built on. One example of a homomorphic encryption

scheme is the Pailler encryption scheme [Pai99], in which the product of two ciphertext yields a ciphertext

which is the encryption of the sum of the two original messages.

Homomorphic encryption turns out to be really useful for electronic voting. However, it is easily seen

that a homomorphic encryption scheme can not be NM-CPA secure. The reason is that, in those schemes,

ciphertexts are malleable. For example, it is easy to turn a ciphertext encrypting a plaintext m into a cipher-

text encrypting a plaintext 2m. For this reason, a homomorphic encryption scheme can not be IND-CCA

secure neither, since it’s a security property stronger than NM-CPA. However, there are NM-CPA encryption

schemes which ciphertexts can be transformed into homomorphically aggregable ciphertexts.
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2.4.1 Concrete encryption schemes

One of the most well-known encryption schemes is the ElGamal encryption scheme [Gam84]. The scheme

is based on a group Ḡ of prime order p and generator ḡ. Its message space is Ḡ, its randomness space is Zp

and its ciphertext space is Ḡ× Ḡ. The scheme works as follows.

Setup(1λ): on input a security parameter 1λ outputs a group description gk = (p, Ḡ, ḡ)← G(1λ).

KeyGen(gk): on input a setup gk = (p, Ḡ, ḡ), it samples a random scalar x ∈ Zp and computes h̄ = xḡ.

The secret key is x and the public key is h̄.

Enc(gk, pk,m): on input a setup gk = (p, Ḡ, ḡ), a public key pk = h̄ and a messagem = m̄ ∈ Ḡ, samples

a random r ∈ Zp and outputs a ciphertext c = (c̄1, c̄2) = (rḡ, rh̄+m).

Dec(gk, sk, c): on input a setup gk = (p, Ḡ, ḡ), a secret key sk = x ∈ Zp and a ciphertext c = (c̄1, c̄2) ∈

Ḡ× Ḡ outputs a message m̄′ = c̄2 − xc̄1.

It is straightforward to see that the scheme is correct. In addition, the scheme is homomorphic:

Enc(gk, pk,m1) + Enc(gk, pk,m2) = Enc(gk, pk,m1 +m2),

where the addition in Ḡ× Ḡ is performed element-wise. In [TY98] it is shown that the ElGamal encryption

scheme is IND-CPA secure if the Decisional Diffie-Hellman assumption holds relative to G.

Due to the scheme being homomorphic, it can not be NM-CPA nor IND-CCA. In [TY98] the following

variant of the scheme is defined, where H : Ḡ3 → Zp is a random oracle (instantiated by a hash function):

Setup(1λ): on input a security parameter 1λ outputs a group description gk = (p, Ḡ, ḡ)← G(1λ).

KeyGen(gk): on input a setup gk = (p, Ḡ, ḡ), it samples a random scalar x ∈ Zp and computes h̄ = xḡ.

The secret key is x and the public key is h̄.

Enc(gk, pk,m): on input a setup gk = (p, Ḡ, ḡ), a public key pk = h̄ and a messagem = m̄ ∈ Ḡ, samples

two random scalars r, s ∈ Zp. It then computes and outputs the ciphertext c = (c̄1, c̄2, c3, c4) =

(rḡ, rh̄+ m̄,H(rḡ, rh̄+ m̄, sḡ), s+H(rḡ, rh̄+ m̄, sḡ)r mod p).

Dec(gk, sk, c): on input a setup gk = (p, Ḡ, ḡ), a secret key x and a ciphertext c = (c̄1, c̄2, c3, c4) ∈

Ḡ2 × Z2
p outputs a message m̄′ = c̄2 − xc̄1 if H(c̄1, c̄2, c4ḡ − c3c̄1) = c3 and ⊥ otherwise.

This scheme, known as the Signed ElGamal scheme, is an extension of the ElGamal encryption scheme

in which the encrypt algorithm computes some extra elements which are then used by the decrypt algo-

rithm to verify that a ciphertext is correctly computed. Intuitively, the random oracle prevents anyone from

tampering with the ciphertext. The Signed ElGamal encryption scheme is NM-CPA secure in the Random

Oracle Model [BPW12a] if the Decisional Diffie-Hellman assumption holds relative to G.
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There is yet another variant of the ElGamal encryption scheme, known as the Cramer-Shoup encryption

scheme [CS98]. This scheme can be shown to be IND-CCA secure. While the Cramer-Shoup encryption

scheme uses hash functions, they are not used to model any random oracle and, therefore, the security of the

Cramer-Shoup encryption scheme is not based on the Random Oracle Model.

In our thesis, we are particularly interested on the ElGamal encryption scheme and the Signed ElGamal

encryption scheme due to the homomorphic properties of the first one and the NM-CPA security of the

second one. One interesting fact is that, given a Signed ElGamal ciphertext, one can first check whether

H(c̄1, c̄2, c4ḡ − c3c̄1) = c3 is satisfied and then strip c3 and c4 from the ciphertext, obtaining an ElGamal

ciphertext. This new ciphertext can be homomorphically operated with other ciphertexts and, in some cases,

protocol security is guaranteed if the previous verification equation holds for all the original ciphertexts.

2.5 Signature schemes

Cryptography is not only about encrypting and decrypting messages. Another of the most used crypto-

graphic primitives is digital signatures. A digital signature is like a handwritten signature: given a message,

an entity can sign it so that anyone else can verify that the message was indeed signed by such entity. This is

achieved by using a pair of keys: a private key for signing messages and a public key for verifying signatures.

The syntactical definition of a signature scheme is the following one. A signature scheme is parametrized

by a (possibly setup-dependant) message space Mgk and a setup-dependant signature space Σgk. The mes-

sage space states which are the messages that can be signed and the signature space determines the format

of a signature. A signature scheme consists of four (possibly probabilistic) algorithms:

Setup(1λ): on input a security parameter 1λ outputs a setup gk. This implicitly defines (possibly setup-

dependant) spaces: the message space Mgk and the signature space Σgk.

KeyGen(gk): on input a setup gk it generates and outputs a public key pk and a secret key sk.

Sign(gk, sk,m): on input a setup gk, a private key sk and a message m ∈ Mgk, outputs a signature

σ ∈ Σgk.

Verify(gk, pk,m, σ): on input a setup gk, a public key pk, a message m ∈ Mgk and a signature σ ∈ Σgk

outputs 1 for success or 0 for failure.

As with encryption schemes, we first require a basic property which defines the functionality of a signa-

ture scheme. We say that a signature scheme is correct if, for all setups generated by the Setup algorithm,

all public/private key pairs generated using the algorithm KeyGen and for all messages in the message space

m ∈Mgk it is satisfied that Verify(gk, pk,m,Sign(gk, sk,m)) = 1.
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EUF-CMA security

The most widely used security notion for signature schemes is Existential Unforgeability under a Chosen

Message Attack (EUF-CMA) [GMR88]. The security notion is formalized via the following experiment

between a challenger C and an adversary A:

1. First, the challenger generates a setup gk = Setup(1λ) and a key pair (sk, pk) = KeyGen(gk). It

keeps sk for itself and forwards (gk, pk) to the adversary.

2. Then, the adversary sends messagesm to the challenger, who computes signatures σ on such messages

and sends them back to the adversary. The adversary can make a number of such queries polynomial

on the security parameter.

3. Finally, the adversary outputs a pair (m∗, σ∗). The output of the experiment is a bit β = 1 if m∗ has

not been queried to the challenger for a signature and Verify(gk, pk,m∗, σ∗)=1 and is 0 otherwise.

We say that an encryption scheme is EUF-CMA secure if, for all p.p.t. adversaries, the advantage of the

adversary defined as follows is negligible:

AdvEUF-CMA(λ) := Pr[β = 1]

Other security properties

There are some security properties which are related to EUF-CMA security which are worth considering.

First, a digital signature on a message might not be deterministic. A weaker goal than existential unforge-

ability (resulting in a stronger definition) is the goal of producing a signature on a message even if the

adversary has already seen a different signatures on the same message. This notion is known as strong Exis-

tential Unforgeability against Chosen Message Attacks (sEUF-CMA) [ADR02] and is defined by the same

experiment than EUF-CMA but the output of the experiment is also 1 if m∗ has been sent to the challenger

as a signature query and σ∗ has not been received from the challenger as the query reply.

If the adversary is only allowed to submit signature queries before seeing the public key of the signature

key pair, we say that the signature is weakly Existentially Unforgeable under a Chosen Message Attack (w-

EUF-CMA) [BB08]. The security notion is formalized via the following experiment between a challenger

C and an adversary A:

1. First, the adversary A sends a tuple of messages (m1, . . . ,mn) to the challenger.

2. After receiving the messages, C generates a setup gk = Setup(1λ) and a key pair (sk, pk) =

KeyGen(gk). It keeps sk for itself and forwards (gk, pk) to the adversary. It also computes signatures

on the messages received from the adversary and sends such signatures back to the adversary.
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3. Finally, the adversary outputs a pair (m∗, σ∗). The output of the experiment is a bit β = 1 if m∗ has

not been queried to the challenger for a signature and Verify(gk, pk,m∗, σ∗)=1 and is 0 otherwise.

As usual, we say that an encryption scheme is wEUF-CMA secure if, for all p.p.t. adversaries, the

advantage of the adversary defined as follows is negligible:

Advw-EUF-CMA(λ) := Pr[β = 1]

Even though w-EUF-CMA security is weaker than EUF-CMA security (due to the access of the adver-

sary being weaker), this security notion has some applications. For instance, in electronic voting we might

have the election authorities produce signatures on the lists of eligible candidates before the election takes

place and destroy the private signing key after that. In this case, the adversary gets the signatures on the

messages when receiving the public signing key. Actually, the access of an adversary is even weaker, as it

might only perform known message attacks.

2.5.1 Structure-Preserving Signatures

A particular type of interesting signature schemes are Structure Preserving Signature. Structure-preserving

signatures are defined over bilinear groups and have the property that messages and signatures consist of

group elements and the verification of signatures consists on evaluating the so-called pairing product equa-

tions: equations in T in which each element of T is expressed as the pairing of elements of Ĝ and Ȟ. This

allows us to combine structure-preserving signatures and other cryptographic primitives in an algebraic way.

A particularly efficient Structure-Preserving Signature scheme is the one given in [AGOT14], built on a

type-III bilinear groups (p, Ĝ, Ȟ,T, e, ĝ, ȟ).

Setup(1λ): on input a security parameter 1λ outputs a setup gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ, f̂), which consists

of a group description (p, Ĝ, Ȟ,T, e, ĝ, ȟ)← PG and a random element f̂ ← Ĝ.

KeyGen(gk): on input a setup gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ, f̂) it samples a random scalar x ∈ Zp and computes

v̌ = xȟ. The secret key is x and the public key is v̌.

Sign(gk, sk,m): on input a setup gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ, f̂) a private key sk = x and a message

m = m̂ ∈ Ĝ it samples r ∈ Z∗p and outputs the signature σ = (σ̌1, σ̂2, σ̂3) = (rȟ, xr m̂ + x
r f̂ ,

x
r σ̂2 +

1
r ĝ) ∈ Ȟ× Ĝ2.

Verify(gk, pk,m, σ): on input a setup gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ, f̂), a public key pk = v̌, a message

m = m̂ ∈ Ĝ and a signature σ = (σ̌1, σ̂2, σ̂3) it outputs 1 if e(σ̂2, σ̌1) = e(m̂, v̌) + e(f̂ , ȟ) and

e(σ̂3, σ̌1) = e(σ̂2, v̌) + e(ĝ, ȟ) hold and 0 otherwise.

In [AGOT14], the authors show that this structure-preserving signature scheme is sEUF-CMA secure

in the generic group model [Sho97], a security model which assumes that only a random encoding of the

bilinear group is accessible by all entities.
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2.6 Other cryptographic primitives

In this section, we present other cryptographic primitives. Even though they are not central to this thesis we

use them as building blocks of some of our protocols.

One-way functions

Just like an encryption scheme, one-way functions transform some value into another value so that it is

difficult to recover the original value. However, a one-way function is simpler than an encryption scheme:

it is deterministic, it does not rely on any key and there is no “decryption” algorithm. As its name states, a

one-way function is a function which is easy to evaluate but evaluating its inverse is hard.

More formally, a function F : X → Y between two finite sets is said to be one-way if the following two

properties are satisfied, where λ = log |X|:

• For each x ∈ X , F (x) can be computed in time polynomial in λ.

• For any adversary A running in time polynomial in λ, and for x ∈ X chosen with the uniform

distribution, the probability that A, on input F (x), outputs x is negligible.

One-way functions are at the very core of cryptography. Among others, signature schemes can be built

on one-way functions [Lam79]. In this thesis, we use one-way functions as one of the building blocks of

our voting protocols.

One of the most well-known one-way function is the exponentiation function in a group where the dis-

crete logarithm assumption [DH76] holds. Given such a group (p, Ḡ, ḡ)← G(1λ) and an element f̄ ∈ Ḡ, the

function Ff̄ : Zp → Ḡ defined as Ff̄ (x) = xf̄ is one-way. Actually, the discrete logarithm assumption and

the one-wayness of Ff̄ are exactly the same thing. The exponentiation function and the discrete logarithm

assumption receive their name because traditionally the group Ḡ is written in multiplicative notation.

An interesting subclass of one-way functions are homomorphic one-way functions. A one-way function

is homomorphic if X and Y are groups, which we write in additive notation, and F (x+ y) = F (x) +F (y)

for x, y ∈ X . The exponentiation function is homomorphic.

Pseudo-random permutations

A Pseudo-Random Permutation (PRP) family is a family of efficient bijective functions F(·) : X → X

parametrized by a key k ∈ KPRP .

The pseudo-random property of a PRP family states that it is difficult to distinguish the outputs of a

function Fk for a random key k ∈ KPRP from those of a random permutation from X to X .

In other words, an adversary being able to query the function as a black-box on inputs of its choice should

not be able to tell whether it is interacting with a random permutation or a pseudo-random permutation. In
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our voting protocols, we will use pseudo-random permutations to detect when the pre-image of the function

takes the same value more than once, without giving any other information about the pre-image.

In [MRV99] it is shown RSA function family F(·) : ZN → ZN defined as Fe(x) = xe mod N for

N = pq a product of primes and (e, φ(N)) = 1 is a PRP family. Even though we are not going to use this

particular PRP in this thesis, it is a useful example to understand this concept.

Secret sharing schemes

Secret sharing is a method to distribute a secret in several pieces or shares. The secret is distributed in such

a way that it can only be reconstructed from an authorized subset of shares. Even more: a non-authorized

subset of shares does not leak any information about the secret.

We now give the syntactical definition of a secret sharing scheme. For sake of simplicity, assume that

an authorized subset of shares is any set of shares which contains at least t different shares. We call such

schemes threshold secret sharing schemes. A secret sharing scheme is defined by two (possibly probabilis-

tic) algorithms:

• Split(s, n): on input a secret s and an integer n it outputs n shares of the secret (s1, . . . , sn).

• Reconstruct(si1 , . . . , sit): on input t shares (si1 , . . . , sit) outputs the reconstructed secret s̃.

The requirements of a secret sharing scheme are correctness and perfect privacy. Correctness states

that, if t shares are used to reconstruct the secret then the original secret must be recovered. Perfect privacy

states that less than t shares do not leak any information about the secret.

The most well-known secret sharing scheme is Shamir’s Secret Sharing scheme [Sha79], in which a

random polynomial over Zp is used to split the secret into shares. Each share is defined to be the evaluation of

the polynomial on a public value. One can control the threshold t by changing the degree of the polynomial:

if the secret is shared by using a polynomial of degree t−1 then t shares are needed to reconstruct the secret

whereas t− 1 shares do not give any information about the secret.

2.7 Zero-Knowledge proofs

One of the cryptographic primitives with many applications to electronic voting is zero-knowledge proofs.

The goal of this primitive is to prove that some statement is true without revealing any information other

than the truthfulness of the statement. For example, we might want to prove that some group element is in

the subgroup generated by another group element while hiding their discrete logarithm.

In electronic voting, we use zero-knowledge proofs in several situations. On the one hand, we want

voters to prove to the election authority that their cast ballot has certain properties (such as being a valid
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vote), without revealing the chosen voting option. On the other hand, we want the election authority to prove

that they are correctly tallying the ballots maintaining some of the operations private.

The first zero-knowledge protocols [GMR85] were interactive, i.e., protocols between two entities (a

Prover and a Verifier) in which each entity sends several messages, which depend on previously received

messages, to the other entity. It isn’t until [BFM88] when the first non-interactive zero-knowledge (NIZK)

proofs were proposed, at the cost of assuming some prior shared information between prover and verifier.

In both of our electronic voting use cases, we want to use the non-interactive version of zero-knowledge

proofs. In the first case, using non-interactive zero-knowledge proofs allows us to minimize the interaction

between voters and election authorities and to be able to verify these proofs at any point during the election.

In the second case, using non-interactive proofs means that the election authorities can produce a single

proof for all stakeholders of the election, instead of having to interact with each stakeholder of the election

individually. Therefore, we will mainly focus on NIZK proofs.

2.7.1 Definitions

Let us formalize what zero-knowledge proofs are. First, we define what sort of statements zero-knowledge

proofs allow us to deal with. Then, we formalize the concepts of not revealing any information other than

the truthfulness of the statement and convincing the other entity that the statement is true. The definitions

that we use are mainly based on those given in [GOS06].

Consider a relation of triplets (gk, x, w). We call gk the setup, x the statement and w the witness. We

can think of the witness as the evidence for the truth of the statement. The ternary relation, which is denoted

byR, must be efficiently computable. In other words, it must be possible to check whether a tuple (gk, x, w)

is in the relation in time polynomial in the length of the statement.

Now consider the language Lgk formed by those statements x such that there exists some witness w for

which (gk, x, w) ∈ R, i.e., those statements for which there exists a witness for the truth of the statement.

For a relation that ignores the setup gk, this is the standard definition of an NP-language. However, it will

be useful to consider languages that might be parametrized by a setup gk which, for example, could be the

description of a bilinear group.

Non-interactive proof systems

Before defining what a NIZK proof is, let us define the notion of non-interactive proof systems, which is

primitive a simpler than NIZK proofs sharing its syntactical definition.

A non-interactive proof system for a relation R consists of four (possibly probabilistic) algorithms:

Setup(1λ): on input a security parameter 1λ, it outputs a setup gk.

GenCRS(gk): on input a setup gk it outputs a common reference string crs.
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Prove(gk, crs, x, w): on input a setup gk, a common reference string crs, a statement x and a witness w

such that (gk, x, w) ∈ R outputs a proof π.

VerifyProof(gk, crs, x, π): on input a setup gk, a common reference string crs, a statement x and a proof π

outputs 1 for success or 0 for failure.

Note that the common reference string (crs), known by both the prover and the verifier, is required

in order to be able to build non-interactive zero-knowledge proofs for interesting relations R. Indeed, in

[Ore87] it is shown that if we restrict to settings without common reference string it is impossible to build

NIZK proofs for languages outside the complexity class BPP (the class of statements for which a witness

can be efficiently found with a bounded error probability), unless one uses the Random Oracle Model.

The basic requirement of a non-interactive proof system is that the scheme works as intended if all

participants are honest. This requirement is known as completeness.

Definition 2.7.1. We say that a non-interactive proof system (Setup, GenCRS, Prove, VerifyProof) is

complete for a relation R if for all setups gk generated by the Setup algorithm, all common reference

strings crs generated by the GenCRS algorithm and, for all (x,w) such that (gk, x, w) ∈ R, it holds that

VerifyProof(gk, crs, x,Prove(gk, crs, x, w)) = 1.

Soundness and knowledge

The first security requirement of a non-interactive proof system is that it is sound: if the honest verifier

accepts the proof then it must mean that the statement is true. No cheating prover should be able to convince

the verifier if the statement is false. The security notion is formalized via the following experiment between

a challenger C and an adversary A:

1. First, the challenger generates a setup gk using algorithm Setup and a common reference string crs

using the algorithm GenCRS and forwards (gk, crs) to the adversary.

2. Then, the adversary outputs a statement x and a proof π. The output of the experiment is a bit α = 1

if VerifyProof(gk, crs, x, π)=1 and x 6∈ Lgk and is 0 otherwise.

The value α represents the success of the adversary: when α = 1 the adversary managed to output

a false convincing statement. There are two flavors of soundness: perfect and computational. We speak

about perfect soundness when the probability of α being 1 at the end of the game is exactly 0, i.e., the

probability of the adversarial success is exactly 0. On the other hand, computational security is based

on some computational assumption and a negligible probability of adversarial success (i.e., a negligible

probability of α being 1 at the end of the game).
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Definition 2.7.2. A non-interactive proof system (Setup, GenCRS, Prove, VerifyProof) is computationally

sound if, for all p.p.t. adversaries, the following advantage of the adversary in the game defined above is

negligible:

Advsoundness(λ) := Pr[α = 1]

We say that the non-interactive proof system is perfectly sound if the advantage of any adversary (not

restricted to probabilistic polynomial time) is exactly 0.

Observe that this property is only stating that no cheating prover should convince an honest verifier if the

statement is false. In particular, it does imply that the prover should know any witness at all when creating

any convincing proof. There is another security notion which states that if the prover convinces the verifier

then the prover must know a witness for the statement. This implies that the statement must be true, which

makes this property stronger than soundness.

Showing that a prover knows a witness might be hard. For this reason, the security notion asks that proof

contains the witness (in a hidden way). The security notion works as follows. First, it requires the existence

of an alternative common reference string generator ExtGenCRS which outputs an extraction key xk in

addition to the common reference string crs. This extraction key is used to extract witnesses from proofs

by means of an extraction algorithm Extract. The distribution of common reference strings crs produced by

the alternative generator ExtGenCRS must be identically distributed to the distribution of common reference

strings crs output by GenCRS.

In some cases, being able to extract a function F of the witness is enough for the NIZK proof to be

used as a building block of a cryptographic protocol. In this case, the property is called F-knowledge.

Knowledge, the property of being able to extract the full witness, is a particular case of F-knowledge where

F is set to be the identity function. The security notion is formalized via the following experiment between

a challenger C and an adversary A, parametrized by algorithms ExtGenCRS and Extract:

1. First, the challenger generates a setup gk with the algorithm Setup and then runs ExtGenCRS to

obtain a common reference string crs and an extraction key xk. It keeps the extraction key xk and

forwards the setup gk and the common reference string crs to the adversary.

2. Then, the adversary A outputs a statement x and a proof π.

3. Finally, the challenger C obtains an element f̃ = Extract(gk, crs, x, xk, π). The output of the exper-

iment is a bit β = 1 if VerifyProof(gk, crs, x, π)=1 and there exists no w∗ such that F(w∗) = f̃ and

(gk, x, w∗) ∈ R and is 0 otherwise.

Similar to the soundness property, F-knowledge can be perfect or computational.

Definition 2.7.3. A non-interactive proof system (Setup, GenCRS, Prove, VerifyProof) is computation-

ally F-extractable if there exist algorithms ExtGenCRS,Extract such that the common reference strings crs
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generated by GenCRS and the common reference strings crs generated by ExtGenCRS are identically dis-

tributed and, for all p.p.t. adversaries, the following advantage of the adversary in the game defined above

is negligible:

AdvF -ext
ExtGenCRS,Extract(λ) := Pr[β = 1]

We say that the non-interactive proof system is perfectlyF-extractable if the distribution of the crs generated

by ExtGenCRS and the distribution of the crs generated by GenCRS are identical and the advantage of the

adversary defined as above is 0.

When a non-interactive proof system is F-extractable (resp. extractable), we say that the proof system

is a non-interactive proof of F-knowledge (resp. of knowledge).

Witness-Indistinguishability and Zero-Knowledge

The Witness-Indistinguishability property states that given a proof it should be impossible to distinguish

which witness was used to create the proof. In other words, proofs created with a witness w1 should be

indistinguishable from proofs created by using a different witness w2.

The security notion requires the existence of another crs generation algorithm, WIGenCRS, which output

distribution must be computationally indistinguishable from the distribution of crs generated by the GenCRS

algorithm.

Formally, the security notion is formalized via the following experiment between a challenger C and an

adversary A, parametrized by an algorithm WIGenCRS:

1. First, the challenger generates a setup gk via the algorithm Setup and a common reference string crs

using the algorithm WIGenCRS. It forwards (gk, crs) to the adversary.

2. Then, the adversary outputs a statement x and two valid witnesses w0, w1.

3. The challenger draws a random bit b← {0, 1} and computes the proof as π = Prove(gk, crs, x, wb).

The challenger submits the proof π to the adversary.

4. Finally, the adversary submits a bit b̃.

Just like soundness and F-extractability, witness-indistinguishability comes in two variants: perfect

witness-indistinguishability and computational witness-indistinguishability.

Definition 2.7.4. A non-interactive proof system (Setup, GenCRS, Prove, VerifyProof) is computationally

witness-indistinguishable if there exists an algorithm WIGenCRS such that the distribution of crs output by

GenCRS algorithm is computationally indistinguishable from the distribution of crs output by WIGenCRS

and, for all p.p.t. adversaries, the following advantage of the adversary in the game defined above is 0:

AdvWI
WIGenCRS(λ) := |Pr[b̃ = b]− 1/2|

32



We say that a non-interactive proof system is perfectly witness-indistinguishable if the distribution of the

crs generated by GenCRS and the distribution of the crs generated by WIGenCRS are identical and the

advantage of any adversary defined as above is 0.

When a non-interactive proof system has the Witness-Indistinguishability property, we say that it is a

Non-Interactive Witness-Indistinguishable (NIWI) proof.

The zero-knowledge property states the only information given by the proof should be the statement’s

truth. For instance, witness-indistinguishability might not prevent a proof from revealing the set of all

possible witnesses, while that would be not possible with a zero-knowledge proof (the zero-knowledge

property implies that finding any witness given a zero-knowledge proof is as hard as finding such witness

without knowledge of the proof).

Formalizing the concept that the only information given by the proof is the truth of the statement is

complex. This is why zero-knowledge is formalized in a different way. For the NIZK proof to be zero-

knowledge there must exist (another) alternate crs generation algorithm, SimGenCRS which, in addition to

the common reference string, outputs a trapdoor key tk. This trapdoor key can then be used to simulate

proofs without the knowledge of the witness via a proof simulation algorithm SimProve. The distribution of

the crs generated by the SimGenCRS algorithm must be computationally indistinguishable from the distribu-

tion of crs generated by the GenCRS algorithm. Furthermore, the distribution of simulated proofs generated

by the SimProve algorithm should be computationally indistinguishable from the distribution of real proofs

generated by the Prove algorithm.

The reasoning behind this definition is the following. If the simulated proof looks exactly like an hon-

estly generated proof and the simulated proof was created without any witness it must mean that honestly

generated proofs do not give information about the witness. Note that the trapdoor key tk does not help in

finding witnesses, it only allows the prover to simulate proofs. The indistinguishability requirements imply

that no adversary can tell apart real from simulated proofs.

The security notion is formalized via the following experiment between a challenger C and an adversary

A, parametrized by algorithms SimGenCRS,SimProve:

1. First, the challenger generates a setup gk using the algorithm Setup and then runs the algorithm

SimGenCRS to generate a common reference string crs and a trapdoor key tk. It keeps the trapdoor

key tk and forwards the setup gk and the common reference string crs to the adversary.

2. Then, the adversary outputs a statement x and a witness w.

3. The challenger draws a random bit b← {0, 1}. If b = 0 then the challenger computes the proof using

the honest proof generation algorithm: π = Prove(gk, crs, x, w). If b = 1 then the challenger simu-

lates the proof: π = SimProve(gk, crs, tk, x). The challenger submits the proof π to the adversary.
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4. Finally, the adversary submits a bit b̃.

Definition 2.7.5. A non-interactive proof system (Setup, GenCRS, Prove, VerifyProof) is computationally

zero-knowledge if there exist algorithms SimGenCRS, SimProve such that the distribution of common ref-

erence strings output by GenCRS algorithm is computationally indistinguishable from the distribution of

common reference strings output by SimGenCRS and, for all p.p.t. adversaries, their advantage in the game

above defined as follows is 0:

AdvZK
SimGenCRS,SimProve(λ) := |Pr[b̃ = b]− 1/2|

We say that a non-interactive proof system is perfectly zero-knowledge if the distribution of the crs generated

by GenCRS and the distribution of the crs generated by SimGenCRS are identical and the advantage of any

adversary defined as above is 0.

A straightforward argument shows that the zero-knowledge property is stronger than the witness-indist-

inguishability property. Indeed, if a non-interactive proof system is zero-knowledge then by defining the

algorithm WIGenCRS as the algorithm SimGenCRS without outputting the trapdoor key tk we get a witness-

indistinguishable non-interactive proof.

A non-interactive proof system with the zero-knowledge property is also called a Non-Interactive Zero-

Knowledge (NIZK) proof. A NIZK proof with extractability is usually called a Non-Interactive Zero-

Knowledge Proof of Knowledge (NIZK-PoK).

To be accurate, the notions of witness-indistinguishability and zero-knowledge that we have defined

are called composable witness-indistinguishability and composable zero-knowledge [Gro06], which are

stronger notions than the classical notions of witness-indistinguishability and zero-knowledge.

2.7.2 Non-interactive zero-knowledge from sigma protocols

One popular way of constructing Non-Interactive Zero-Knowledge protocols consists in modifying (in-

teractive) Zero-Knowledge protocols to remove their interactivity. One of such methods is the so-called

Fiat-Shamir heuristic, which transforms Sigma protocols into Non-Interactive Zero-Knowledge Proofs of

Knowledge.

Sigma protocols and the Fiat-Shamir heuristic

Sigma (Σ) protocols are 3-move interactive protocols between a prover P and a verifier V , where P wants

to prove knowledge of a witness w for a statement x. Formally, let R be a relation of tuples (gk, x, w) ∈ R,

where gk is a setup known to all parties, x will be a statement common to the prover P and to the verifier V

and w will be a witness only known to the prover P . Σ-protocols have the following form:

1. P sends a message a.
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2. V sends a random t-bit string c.

3. P sends a reply z, and V decides to accept or reject based on the data he has seen, i.e., x, a, c, z.

Definition 2.7.6. A protocol P is said to be a Σ-protocol for a relation R if:

• P is of the above 3-move form, and we have completeness: if P and V follow the protocol honestly

and their inputs are such that (gk, x, w) ∈ R then V always accepts.

• P has the special soundness property: from any x and any pair of accepting conversations (a, c, z),

(a, c′, z′) where c 6= c′, one can efficiently compute w such that (gk, x, w) ∈ R.

• P has the special honest-verifier zero-knowledge property: there exists a simulator M which on input

x and a random c outputs an accepting conversation of the form (a, c, z) with the same probability

distribution as the conversations between honest P , V on input x.

An example of such protocol is the Scnorr protocol [Sch91], which is used to prove knowledge of

discrete logarithms in a group (Ḡ, p, ḡ). Let h̄ ∈ Ḡ be a statement, known to both the prover and the

verifier, and let w be a witness such that h̄ = wḡ. The protocol for proving knowledge of such w works as

follows:

1. P chooses r ← Zp and sends ā = rḡ to V .

2. V chooses a challenge c← Z2t and sends it to P , where t is such that 2t < p.

3. P sends z = r+ cw mod p to V , who checks that zḡ = ā+ ch̄ ∈ Ḡ, and accepts iff this is the case.

It is straightforward to check that the properties required for the protocol to be a Σ-protocol are satisfied.

Indeed, the protocol is of the mentioned 3-move form. Completeness and special soundness can be verified

by using basic algebra. Finally, the simulatorM on input (h̄, c) gets z ← Zp and computes ā = zḡ−ch̄ ∈ Ḡ,

creating a transcript (ā, c, z) identically distributed to those resulting from executing the protocol.

Σ-protocol have many applications, some of them described in [Dam]. Among others, we can use

Σ-protocols to construct efficient NIZK-PoK in the Random Oracle Model, as described in [FS86].

Let O be an oracle O : Ḡ → Z2t . To remove interactivity from the Σ-protocol, the prover will need to

replace the challenge c with the response from the random oracle on input the statement x and the message

a, and compute the last message z as it would do in the interactive protocol. As the random oracle is known

to both the prover and the verifier, the prover only needs to send (a, z) to the verifier, who can compute

c = O(x, a) and check the verification equation. Formally, we define the non-interactive proof as follows:

Setup(1λ): on input a security parameter 1λ, it outputs any setup gk required by the Σ-protocol, and a

random oracle O : {0, 1}∗ → {0, 1}t.
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Prove(gk, x, w): on input a setup gk, a statement x and a witness w does the following steps:

1. Computes the value a as in the Σ-protocol

2. Queries the random oracle O on the statement x and the message a, obtaining c = O(x, a)

3. Computes the value z as if it had received c from the verifier V .

The output of this algorithm is the proof π = (a, z).

VerifyProof(gk, x, π): on input a setup gk, a statement x and a proof π = (a, z) queries the oracle c =

O(x, a) and outputs 1 if the tuple (x, a, c, z) satisfies the Σ-protocol verification relation, otherwise

outputs 0.

Note that the absence of the common reference string crs does not contradict the results in [Ore87], since

those results do not contemplate the existence of a random oracle.

In [BPW12a], it is shown that this construction, called the strong Fiat-Shamir construction, results in a

Non-Interactive Zero-Knowledge Proof of Knowledge, i.e., it satisfies completeness, zero-knowledge and

extractability. The results show that the construction results in a simulation-sound extractable protocol, a

stronger notion than extractability.

2.8 Groth-Sahai proofs

Early NIZK proof constructions with security not relying on the ROM [BFM88, FLS99, Dam, KP98] were

very inefficient. This changed when Groth, Ostrovsky and Sahai [GOS12] introduced pairing-based tech-

niques for constructing NIZK proofs. In a series of works [BW06, Gro06, BW07, GS12], pairing-friendly

NIZK proofs were developed. This line of research culminated in Groth and Sahai’s paper [GS12], that

gives a framework for building efficient and practical NIZK proofs that are now widely used in pairing-

based cryptography.

Known instantiations of the Groth-Sahai framework are based on bilinear groups (p, Ĝ, Ȟ,T, e, ĝ, ȟ)←

PG and are used to build proofs for the language of satisfiability of set of the following equations on

variables x̂i ∈ Ĝ, y̌j ∈ Ȟ, xi, yj ∈ Zp:

Pairing-product equation: Public constants âj ∈ Ĝ, b̌i ∈ Ȟ, γij ∈ Zp, tT ∈ T.

∑
i

e(x̂i, b̌i) +
∑
j

e(âj , y̌j) +
∑
i

∑
j

e(γij x̂i, y̌j) = tT.

Multi-scalar multiplication equation in Ĝ: Public constants âj ∈ Ĝ, bi ∈ Zp, γij ∈ Zp, t̂ ∈ Ĝ.

∑
i

x̂ibi +
∑
j

âjyj +
∑
i

∑
j

γij x̂iyj = t̂.
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Multi-scalar multiplication equation in Ȟ: Public constants aj ∈ Zp, b̌i ∈ Ȟ, γij ∈ Zp, ť ∈ Ȟ.

∑
i

xib̌i +
∑
j

aj y̌j +
∑
i

∑
j

γijxiy̌j = ť.

Quadratic equation in Zp: Public constants aj ∈ Zp, bi ∈ Zp, γij ∈ Zp, t ∈ Zp.∑
i

xibi +
∑
j

ajyj +
∑
i

∑
j

γijxiyj = t.

These four types of equations express in a direct way statements arising in pairing-based cryptography.

For this reason Groth-Sahai proofs are used in numerous pairing-based protocols including group signatures

[Gro07], anonymous credentials [BCKL08, BCC+09], e-cash [FPV09], etc.

Although we presented the equations above for asymmetric bilinear groups, Groth-Sahai proofs admit

bilinear groups of type-I, type-II (due to an extension given in [GSW10]) and type-III. Depending on which

type of bilinear groups is used, concrete Groth-Sahai proofs will be instantiated from the Groth-Sahai proof

framework differently and their security might be based on different assumptions.The setting which yields

the most efficient proofs are type-III bilinear groups.

Before explaining how Groth-Sahai proofs are constructed, let us briefly introduce the notion of a com-

mitment scheme. A commitment scheme is a cryptographic primitive which allows to commit to a chosen

value, by producing a commitment which hides the value to other entities. Then, at a later stage, the com-

mitment can be opened to reveal the hidden value. Commitments are created by using a commitment key and

have two properties: the binding property, which states that it should be unfeasible to open the commitment

to a value different than the original one, and the hiding property, which states that the commitment should

not reveal any information about the committed value. As with zero-knowledge proofs, these properties

come in two flavors: either a commitment scheme is computationally binding and perfectly hiding or it is

perfectly binding and computationally hiding.

2.8.1 Overview

The main ideas behind the Groth-Sahai framework are the following.

To provide soundness and witness-indistinguishability the common reference string might be generated

in two possible settings: the soundness setting, from which soundness and extractability properties will fol-

low, and the hiding setting, from which the witness-indistinguishability and the zero-knowledge properties

will follow. These two settings are computationally indistinguishable, therefore achieving all properties

(some of them are in a computational fashion).

The common reference string specifies some commitment keys to commit to variables, both group ele-

ments and scalars. When the common reference string is set in a soundness setting, these commitments will

be perfectly binding, whereas when the setting is the hiding one the commitments will be perfectly hiding.
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These commitments will satisfy some related set of equations over bilinear groups. However, to be able

to verify these equations, some elements related to the randomness used in the commitments will be needed

in the proof. These elements are randomized so that the related set of equations still hold but no further

information is revealed.

2.8.2 The Groth-Sahai proof framework

The Groth-Sahai framework abstracts the equations given in Section 2.8 as equations inR-modules A1,A2

and AT with a bilinear map f : A1 × A2 → AT .

In the case of pairing-product equations, the ring R is Zp, the modules A1,A2 and AT are Ĝ, Ȟ and

T respectively, and the bilinear map f is the bilinear map e. Multi-linear equations in Ĝ (resp. in Ȟ) are

obtained by having the ring R be Zp, the modules A1,AT (resp. A2,AT ) be Ĝ (resp. Ȟ), the module A2

(resp. A1) be Zp and the bilinear map f be the product of a scalar in Zp by a group element in Ĝ (resp. Ȟ).

Finally, scalar quadratic equations in Zp are obtained by having the ring R be Zp, the modules A1,A2 and

AT be Zp and the map f be the product of scalars in Zp.

To simplify notation, let us for x ∈ An1 , y ∈ An2 define

x · y =
n∑
i=1

f(xi, yi)

The equations given in Section 2.8 can now be written as

a · y + x · b + x · Γy = t,

where a ∈ An1 ,b ∈ Am2 ,Γ ∈ Rm×n, t ∈ AT . Note that a bilinear equation is completely specified by

(a,b,Γ, t).

The Groth-Sahai proof framework for satisfiability of quadratic equations in (A1,A2,AT , f) specifies

the following requirements and constructions for the algorithms of a NIZK proof:

Setup(1λ): on input the security parameter 1λ, it must output a setup gk, which consists of a finite commu-

tative ringR, theR-modules A1,A2,AT and the bilinear map f : A1 × A2 → AT .

GenCRS(gk): on input the setup gk outputs the common reference string crs. The common reference

string must contain some R-modules B1,B2,BT , a bilinear map F : B1 × B2 → BT , maps

ιi : Ai → Bi and pi : Bi → Ai for i ∈ {1, 2, T}, commitment keys u ∈ B1×m̂
1 ,v ∈ B1×n̂

2 and

matrices {Hi}ηi=1 ∈ Rm̂×n̂. These elements must satisfy the following properties:

1. The maps ι1, p1, ι2, p2, ιT , pT , F and f must commute as follows:

∀x ∈ A1,∀y ∈ A2 : F (ι1(x), ι2(y)) = ιT (f(x, y)),

∀x ∈ B1,∀y ∈ B2 : f(p1(x), p2(y)) = pT (F (x, y)).
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2. The maps ι1,ι2, ιT and F must be efficiently computable.

3. p1(u) = 0, p2(v) = 0 and the maps p1 ◦ ι1, p2 ◦ ι2 and pT ◦ ιT are the identity map in their

respective domains1.

We have not imposed yet any condition on the matrices {Hi}ηi=1. These conditions are imposed

on the WIGenCRS algorithm, which we will later give. Indistinguishability between GenCRS and

WIGenCRS will indirectly impose conditions on {Hi}ηi=1.

Prove(gk, crs, x, w): Takes as input the setup gk, the common reference string crs, a statement, which is a

list of quadratic equations {ai,bi,Γi, ti}Ni=1, and a satisfying witness x ∈ Am1 ,y ∈ An2 . It computes

the proof as follows:

1. Picks uniformly at random R ← Rm̂×m and S ← Rn̂×n and computes commitments to vari-

ables x,y as c = ι1(x>) + uR ∈ B1×m
1 and d = ι2(y>) + vS ∈ B1×n

2 , where ι1, ι2 operate

on x>,y> element-wise.

2. For each equation (ai,bi,Γi, ti) computes its proof by picking Ti ← Rm̂×n̂, ri1, . . . , riη ← R

and computing:

πππi =
(
ι2(b>i ) + ι2(y>)Γ>i + vSΓ>i

)
R> − vT>i +

η∑
j=1

rijvH
>
i ∈ B1×m̂

2

θθθi =
(
ι1(a>i ) + ι1(x>)Γi

)
S> + uTi ∈ B1×n̂

1

3. Outputs the proof, defined as (c,d, {(πππi, θθθi}Ni=1).

VerifyProof(gk, crs, x, π): takes as input the setup gk, the common reference string crs, a set of equations

{ai,bi,Γi, ti}Ni=1 and a proof (c,d, {(πππi, θθθi}Ni=1). For notational convenience let us define for x ∈

B1×n
1 ,y ∈ B1×n

2 : x • y =
∑n

i=1 F (xi, yi). For each equation, the VerifyProof algorithm checks:

ι1(a>i ) • d + c • ι2(b>i ) + c • dΓ>i = ιT (ti) + u • πππi + θθθi • v,

and outputs 1 if all checks pass, otherwise it outputs 0.

Linear equations A special case occurs when a = 0 and Γ = 0. In this case, the statement equation is

simply

x · b = t.

The prover can generate shorter proofs by choosing T = 0, which gives πππi = ι2(b>)R> +
∑η

j=1 rijvH
>
i

and θθθ = 0. The verification equation remains the same, but there is no need to compute θθθ • v = 0.
1This requirement is relaxed in [GS12], where it is asked that the compositions of those maps are non-trivial. If this composition

is not the identity map, then soundness can not be achieved with the Groth-Sahai framework.
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The symmetric case Another special case is when B := B1 = B2, m̂ ≥ n̂ with u1 = v1, · · · , um̂ = vm̂,

and for all x, y ∈ B we have F (x, y) = F (y, x). This is called the symmetric case. In the symmetric case,

the proof can be simplified by padding θθθ with zeros in the end to extend its length to m̂, call this vector θθθ′,

and reveal the proof φ = πππ + θθθ′. The verification equation is then

ι1(a>) • d + c • ι2(b>) + c • dΓ> = ιT (t) + u • φ.

The Groth-Sahai proof framework also specifies that an algorithm WIGenCRS must exist, with the

following properties:

WIGenCRS(gk) : on input the setup gk outputs the common reference string crs. The common reference

string must contain some R-modules B1,B2,BT , a bilinear map F : B1 × B2 → BT , maps

ιi : Ai → Bi and pi : Bi → Ai for i ∈ {1, 2, T}, commitment keys u ∈ B1×m̂
1 ,v ∈ B1×n̂

2 and

matrices {Hi}ηi=1 ∈ Rm̂×n̂. These elements must satisfy the following properties:

1. The maps ι1, p1, ι2, p2ιT , pT , F and f must commute as follows:

∀x ∈ A1,∀y ∈ A2 : F (ι1(x), ι2(y)) = ιT (f(x, y)),

∀x ∈ B1,∀y ∈ B2 : f(p1(x), p2(y)) = pT (F (x, y)).

2. The maps ι1,ι2, ιT and F must be efficiently computable.

3. ι1(A1) ⊆ 〈u1, . . . , um̂〉 and ι1(A2) ⊆ 〈v1, . . . , vn̂〉.

4. H1, . . . ,Hη generate theR-module of all matrices H ∈ Rm̂×n̂ such that uH • v = 0.

In addition to the restrictions mentioned above, the Groth-Sahai proof framework specifies that the

outputs of GenCRS and WIGenCRS must be computationally indistinguishable.

In [GS12], they state and prove the following theorem:

Theorem 2.8.1. The proof system (Setup,GenCRS,Prove,VerifyProof) satisfying the restrictions men-

tioned above is a NIWI proof for satisfiability of a set of quadratic equations with perfect completeness,

perfect soundness and composable witness-indistinguishability if there exists an algorithm WIGenCRS such

that Setup, GenCRS,WIGenCRS,Prove,VerifyProof are built as specified above and the output generated

by GenCRS is computationally indistinguishable from the output generated by WIGenCRS.

2.8.3 NIWI proofs for bilinear groups

So far, we have defined how to create NIWI proofs for satisfiability of systems of equations in generic R-

modules with a bilinear map (A1,A2,AT , f). However, we are interested in how to create NIWI proofs for

a set of quadratic equations over bilinear groups, where we can have a combination of:

Pairing product equations: A1 = Ĝ,A2 = Ȟ,AT = T, f(x̂, y̌) = e(x̂, y̌).
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Multiscalar multiplication in Ĝ: A1 = ÂT = Ĝ,A′2 = Zp, f̂(x̂, y) = yx̂

Multiscalar multiplication in Ȟ: A2 = ǍT = Ȟ,A′1 = Zp, f̌(x, y̌) = xy̌

Quadratic equations in Zp: A′1 = A′2 = A′T = Zp, f ′(x, y) = xy mod p.

The first approach would be to have four NIWI protocols, one for each equation type. However, to guar-

antee that the same values for the variables are consistently used across all equations, the same commitments

(and commitment schemes) must be used across all equations.

Therefore, we will have at most four different modules B1,B
′
1,B2,B

′
2 to commit to variables in

A1,A
′
1,A2,A

′
2 respectively. Similarly, there will be at most four inclusion maps ι1, ι′1, ι2, ι

′
2, four projection

maps p1, p
′
1, p2, p

′
2 and four sets of commitment keys u,u′,v,v′.

In principle, the Groth-Sahai framework allows having a different BT module for each equation type.

Therefore, we could have a module BT for pairing product equations, with the corresponding maps F, ιT ,

pT , a module B̂T (resp. B̌T ) for multi-scalar multiplications in Ĝ (resp. in Ȟ) and corresponding maps

F̂ , ι̂T , p̂T (resp. F̌ , ι̌T , p̌T ) and a module B′T for quadratic equations in Zp and corresponding maps

F ′, ι′T , p
′
T .

However, in all currently known Groth-Sahai proof instantiations, the modules B̃1, B̃2 and B̃T are the

same for all equation types. In addition, in asymmetric bilinear groups only one map F : B1 ×B2 → BT

is used for all four equation types. In symmetric bilinear groups two maps F, Fsym : B1 × B2 → BT

are usually defined for efficiency reasons as we will show later in this section, when we explain one of the

instantiations of Groth-Sahai proofs given in [GS12].

In summary, in a typical Groth-Sahai proof instantiation, the GenCRS and WIGenCRS algorithms will

need to output:

• Zp-modules B1, B2 where variables will be committed to.

• A Zp-module BT , a bilinear map F and, possibly, its symmetric variant Fsym.

• Inclusion maps ι1, ι′1, ι2, ι
′
2, projection maps p1, p

′
1, p2, p

′
2 and commitment keys u,u′,v,v′, to con-

struct commitments to group elements and scalars.

• For each equation type:

– The corresponding inclusion and projection maps ι̃T , p̃T and their symmetric versions if needed.

– The set of matrices {H̃i} such that, when the commitment keys ũ (either u or u′, depending on

the equation type) and ṽ (either u or u′) are generated by WIGenCRS generate all matrices H

such that ũ •Hṽ = 0.
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2.8.4 NIZK proofs

The NIWI proofs given above are not directly zero-knowledge, but in [GS12] the authors show under what

conditions a proof system can be made composable zero-knowledge.

First, some restrictions are imposed to the set of quadratic equations. For all pairing product equations,

the term on the right-hand side of the equation, tT, must be of the form tT =
∏n
i=1 e(p̂i, q̌i) for known p̂i, q̌i.

In addition, the set of quadratic equations must be modified as follows. Let {q̌j}mj=1 be all the constants

that appear in the products of the right-hand sides of all pairing product equation, (tT)k =
∏n
i=1 e(p̂ik, q̌ik).

A set of variables {žj}mj=1 and a set of equations {žj−q̌j = 0̂}mj=1 are added to the set of quadratic equations.

In addition, in the pairing product equation the constants {q̌j}mj=1 are substituted by the variables {žj}mj=1.

Note that the set of equations must be modified both when simulating proofs and when giving honest proofs

created by the Prove algorithm.

To have zero-knowledge, it must exist an algorithm SimGenCRS that outputs a common reference string

crs identically distributed to the one generated by WIGenCRS and, in addition, also outputs a trapdoor

key tk. This trapdoor key must consist of two elements, stk ∈ Rm̂×1, rtk ∈ Rn̂×1 such that ι′1(1) =

ι′1(0) + u′stk and ι′2(1) = ι′2(0) + v′rtk, where ι′1,u
′ are the inclusion map and the commitment keys for

committing scalars to B′1 and ι′2,v
′ are the inclusion map and the commitment keys for committing scalars

to B′2.

The SimProve algorithm then works as follows. For all multiscalar multiplication equations in Ĝ (resp.

in Ȟ), the right-hand side of the equation t̂ (resp. ť) is rewritten as δt̂ (resp. δť) , where δ ∈ Zp is a new

variable. In addition, for each quadratic equation in Zp, the right-hand side term of the equation t is rewritten

as δt, where δ ∈ Zp is a new variable. Now all the rewritten equations have the trivial solution where all

variables are 0 (in their respective groups). Therefore, the SimProve algorithm creates commitments to 0 for

all variables. However, for the variables δ, the randomness for the commitments is not chosen at random;

the commitments are created as c0 = ι′1(0) + u′stk, d0 = ι′2(0) + v′rtk. Finally, proofs are created as with

the Prove algorithm, but using these particular commitments.

In [GS12], the following theorem is stated and proven.

Theorem 2.8.2. The proof system (Setup,GenCRS,Prove,VerifyProof) is a NIZK proof for satisfiability of

a set of quadratic equations in bilinear groups with perfect completeness, perfect soundness and composable

zero-knowledge if there exists algorithms WIGenCRS, SimGenCRS, SimProve such that Setup, GenCRS,

WIGenCRS,SimGenCRS,Prove, SimProve,VerifyProof are built as specified above, the output generated

by GenCRS is computationally indistinguishable from the output generated by WIGenCRS and the crs output

by the SimGenCRS is identically distributed to the output of WIGenCRS.

Once we have presented the Groth-Sahai proof framework it must be clear that, to instantiate it, only a

few ingredients have to be specified. We must specify the algorithms Setup,GenCRS and WIGenCRS and
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we must proof that they satisfy the required properties. In addition, if instead of specifying the WIGenCRS

algorithm we specify the SimGenCRS algorithm and we show that it satisfies the required conditions we

will obtain zero-knowledge (for a reduced set of statements).

In some cases, however, it will be interesting to specify how proofs are created and verified since some

non-out-of-the-box optimizations might be done. In the remaining of this section, we give the two most

efficient constructions of the ones given in [GS12].

2.8.5 The SXDH instantiation

In [GS12], Groth and Sahai give one instantiation of Groth-Sahai proofs in asymmetric bilinear groups based

on the SXDH assumption, which we now present. As already argued, we only need to specify the Setup,

GenCRS and SimGenCRS algorithms to completely define the instantiation. However, we will also specify

the Prove and VerifyProof algorithms both for sake of completeness and to show some optimizations which

can be done on this instantiation.

Setup: on input a security parameter 1λ, the setup outputs gk := (p, Ĝ, Ȟ,T, e, ĝ, ȟ)← PGSXDH(1λ)2

GenCRS: on input gk, return the common reference string crs := (û1, û2, v̌1, v̌2), where û1 = (ĝ, αĝ)> ∈

Ĝ2, û2 = t1û1 ∈ Ĝ2, v̌1 = (ȟ, βȟ)> ∈ Ȟ2 and v̌2 = t2v̌1 ∈ Ȟ2 for random α, β, t1, t2 ← Zp. We

will write Û = (û1, û2) ∈ Ĝ2×2 and V̌ = (v̌1, v̌2) ∈ Ȟ2×2.

No matrix H is needed as part of the common reference string. The modules B1,B2,BT are im-

plicitly defined as Ĝ2, Ȟ2,T4 respectively, and are used for all equation types. The required maps are

defined as follows:

• The map F : Ĝ2 × Ȟ2 → T4 is defined as:

F :

x̂1

x̂2

 ,

y̌1

y̌2

 7→
e(x̂1, y̌1) e(x̂1, y̌2)

e(x̂2, y̌1) e(x̂2, y̌2)

 ,

• The maps ι1 : Ĝ→ Ĝ2 and p1 : Ĝ2 → Ĝ are defined as:

ι1(ẑ) := (0̂, ẑ)>, p1((ẑ1, ẑ2)>) := ẑ2 − αẑ2

• The maps ι′1 : Zp → Ĝ2 and p′1 : Ĝ2 → Zp are defined as:

ι′1(z) := z(û2 + (0̂, ĝ)>), p′1((z2ĝ, z1ĝ)>) := z2 − αz1

• Maps ι2, ι′2, p2, p
′
2 are defined in an analogous way.

The maps ιT , pT are defined as follows for each equation type:
2We write PGSXDH to say that the SXDH assumption holds relative to PG.
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Pairing product equation: Commitment keys Û and V̌ and inclusion maps ι1 and ι2 are used to

commit to elements in Ĝ and Ȟ respectively. The maps ιT , pT are defined as:

ιT (tT) :=

0T 0T

0T tT

 , pT

e(x̂1, y̌1) e(x̂1, y̌2)

e(x̂2, y̌1) e(x̂2, y̌2)

 := e(x̂2 − αx̂1, y̌2 − βy̌1)

Multiscalar multiplication in Ĝ: Commitment keys Û and v̌1 and inclusion maps ι1 and ι′2 are

used to commit to elements in Ĝ and Zp respectively. The maps ι̂T , p̂T are defined as:

ι̂T (ẑ) := F (ι1(ẑ), ι′2(1)), p̂T (ZT) := e−1,Ĝ(pT (ZT))

Multiscalar multiplication in Ȟ: Commitment keys û1 and V̌ and inclusion maps ι′1 and ι2 are

used to commit to elements in Zp and Ȟ respectively. The maps ι̌T , p̌T are defined as:

ι̌T (ž) := F (ι′1(1), ι2(ž)), p̌T (ZT) := e−1,Ȟ(pT (ZT))

Quadratic equations: Commitment keys û1 and v̌1 and inclusion maps ι′1 and ι′2 are used to commit

to elements in Zp. The maps ι′T , p
′
T are defined as:

ι′T := F (ι′1(1), ι′2(t)), p′T (ZT) := loge(ĝ,ȟ) pT (ZT)

where e−1,Ĝ(e(ẑ, ȟ)) = ẑ and e−1,Ȟ(e(ĝ, ž)) = ž.

SimGenCRS: on input gk, return the common reference string crs := (û1, û2, v̌1, v̌2) and the trapdoor key

tk = (stk, rtk) = (t1, t2), where û1 = (ĝ, αĝ)> ∈ Ĝ2, û2 = t1û1 − (0̂, ĝ)> ∈ Ĝ2, v̌1 = (ȟ, βȟ)> ∈

Ȟ2 and v̌2 = t2v̌1 − (0̌, ȟ)> ∈ Ȟ2 for random α, β, t1, t2 ← Zp.

The required maps and matrices are implicitly defined exactly as in the GenCRS algorithm.

Prove: On input gk,crs, a set of equations and a witness x̂, y̌,x,y do:

1. Commit to the group elements x̂ ∈ Ĝm and the scalars x ∈ Zm′p as

Ĉ = ι1(x̂>)+ÛR ∈ Ĝ2×m, Ĉ ′ = ι1(x>)+û1r ∈ Ĝ2×m′ , where R← Z2×m
p , r← Z1×m′

p

Commit to the group elements y̌ ∈ Ȟn and the scalars y ∈ Zn′p as

Ď = ι2(y̌>) + V̌ S ∈ Ȟ2×n, Ď′ = ι2(y>) + v̌1s ∈ Ȟ2×n′ , where S ← Z2×n
p , s← Z1×n′

p

2. For each pairing product equation â · y̌ + x̂ · b̌ + x̂ · Γy̌ = tT sample T ← Z2×2
p and compute:

Π̌ :=
(
ι2(b̌>) + ι2(y̌>)Γ> + V̌ SΓ>

)
R> − V̌ T> ∈ Ȟ2×2,

Θ̂ :=
(
ι1(â>) + ι1(x̂>)Γ

)
S> + ÛT ∈ Ĝ2×2.
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For each linear equation â · y̌ = tT compute the proof as Π̌ := 0̌ and Θ̂ := ι1(â>)S>. The proof

can be communicated by just sending â>S> since there is a bijective correspondence between

ι1(â>)S> and â>S>.

For each linear equation x̂ · b̌ = tT, the proof is computed as Π̌ := ι2(b̌>)R>, Θ̂ := 0̂ and it

can be communicated by sending b̌>R>.

3. For each multiscalar multiplication equation in Ĝ of the form â · y + x̂ · b + x̂ · Γy = t̂, set

T ← Z2×1
p and compute the proof as

Π̌ :=
(
ι′2(b>) + ι′2(y>)Γ> + v̌1sΓ>

)
R> − v1T

> ∈ Ȟ2×2

θ̂̂θ̂θ :=
(
ι1(â>) + ι1(x̂>)Γ

)
s> + ÛT ∈ Ĝ2×1.

For each linear equation â · y = t̂ the proof is computed as Π̌ := 0̌, θ̂̂θ̂θ := ι1(â>)s> and it can

be communicated by sending â>s>.

For each linear equation x̂ · b = t̂ the proof is computed as Π̌ := ι′2(b>)R>, θ̂̂θ̂θ := 0̂ and it can

be communicated by sending b>R>.

4. For each multiscalar multiplication equation in Ȟ of the form a · y̌ + x · b̌ + x · Γy̌ = ť set

T ← Z1×2
p and compute the proof as

π̌̌π̌π :=
(
ι2(b̌>) + ι2(y̌>)Γ> + V̌ SΓ>

)
r> − V̌ T> ∈ Ȟ2×1,

Θ̂ :=
(
ι′1(a>) + ι′1(x>)Γ

)
S> + û1T ∈ Ĝ2×2.

For each linear equation a · y̌ = ť the proof is computed as π̌̌π̌π := 0̌, Θ̂ := ι′1(a>)S> and it can

be communicated by sending a>S>.

For each linear equation x · b̌ = ť the proof is computed as π̌̌π̌π =: ι2(b̌>)r>, Θ̂ := 0̂ and it can

be communicated by sending b̌>r>.

5. For each quadratic equation a · y + x · b + x · Γy = t, set T ← Zp and compute the proof as

π̌̌π̌π :=
(
ι′2(b>) + ι′2(y>)Γ> + v̌1sΓ>

)
r> − v̌1T ∈ Ȟ2×1,

θ̂̂θ̂θ :=
(
ι′1(a>) + ι′1(x>)Γ

)
s> + û1T ∈ Ĝ2×1.

For each linear equation a ·y = t the proof is computed as π̌̌π̌π := 0̌, θ̂̂θ̂θ := ι′1(a>)s> and it can be

communicated by sending a>s>.

For each linear equation x · b = t the proof is computed as π̌̌π̌π := ι′2(b>)r>, θ̂̂θ̂θ := 0̂ and it can

be communicated by sending b>r>.

VerifyProof: On input (gk, crs), a set of equations, and a proof Ĉ, Ď, Ĉ ′, Ď′, {Π̌i, Θ̂i}Ni=1 do:

1. For each pairing product equation with proof (Π̌, Θ̂) check that

ι1(â>) • Ď + Ĉ • ι2(b̌>) + Ĉ • ĎΓ> = ιT (tT) + Û • Π̌ + Θ̂ • V̌
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Assumption: SXDH Ĝ Ȟ Zp

Variables x ∈ Zp, x̂ ∈ Ĝ 2 0 0

Variables y ∈ Zp, y̌ ∈ Ȟ 0 2 0

Figure 2.1: Cost of committing to each variable type.

Assumption: SXDH Ĝ Ȟ Zp

Pairing product equations 4 4 0

- Linear equation: â · y̌ = tT 2 0 0

- Linear equation: x̂ · b̌ = tT 0 2 0

Multiscalar multiplication equations in Ĝ: 2 4 0

- Linear equation: â · y = t̂ 1 0 0

- Linear equation: x̂ · b = t̂ 0 0 2

Multiscalar multiplication equations in Ȟ: 4 2 0

- Linear equation: a · y̌ = ť 0 1 0

- Linear equation: x · b̌ = ť 0 0 2

Quadratic equations in Zp 2 2 0

- Linear equation: a · y = t 0 0 1

- Linear equation: x · b = t 0 0 1

Figure 2.2: Size of an NIZK proof for each type of equation.

2. For each multi scalar equation in Ĝ with proof (Π̌, θ̂̂θ̂θ) check that

ι1(â>) • Ď′ + Ĉ • ι′2(b>) + Ĉ • Ď′Γ> = ι̂T (t̂) + Û • Π̌ + F (θ̂̂θ̂θ, v̌1)

3. For each multi scalar equation in Ȟ with proof (π̌̌π̌π, Θ̂) check that

ι′1(a>) • Ď + Ĉ ′ • ι2(b̌>) + Ĉ ′ • ĎΓ> = ι̌T (ť) + F (û1, π̌̌π̌π) + Θ̂ • V̌

4. For each quadratic equation with proof (π̌̌π̌π, θ̂̂θ̂θ) check that

ι′1(a>) • Ď′ + Ĉ ′ • ι′2(b>) + Ĉ ′ • Ď′Γ> = ι′T (t) + F (û1, π̌̌π̌π) + F (θ̂̂θ̂θ, v̌1)

Size. Each element in B1 and B2 consists of two group elements from, respectively Ĝ and Ȟ. Therefore,

the cost of each proof can be derived from the figures Fig. 2.1 and Fig. 2.2.

In [GS12], the authors show that the instantiation satisfies the requirements of the Groth-Sahai proof

framework. This allows them to prove the following theorem.
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Theorem 2.8.3. The protocol given above is a NIWI proof with perfect completeness, perfect soundness and

composable witness-indistinguishability for satisfiability of a set of equations over a bilinear group where

the SXDH problem is hard. The protocol is zero-knowledge if for all pairing product equations, the term on

the right-hand side of the equation, tT, is of the form tT =
∏n
i=1 e(p̂i, q̌i) for public p̂i, q̌i and the equations

are rewritten so that they can be simulated.

2.8.6 The DLIN instantiation

Another interesting instantiation of Groth-Sahai proofs given in [GS12], is the one based on the DLIN

assumption for symmetric bilinear groups where Ĝ = Ȟ = Ḡ. The interest of this instantiation is the

introduction of Groth-Sahai proofs in the symmetric case and the fact that two maps F, Fsym are used to

optimize the proofs efficiency.

Setup : gk := (p, Ḡ,T, e, ḡ)← SPGDLIN (1λ)3

GenCRS : On input gk, return crs := (ū1, ū2, ū3), where ū1 = (αḡ, 0̄, ḡ)>, ū2 = (0̄, βḡ, ḡ)>, ū3 =

rū1 + sū2 for random α, β ← Z∗p and r, s ← Zp. Let us define Ū = (ū1, ū2, ū3) ∈ Ḡ3×3 and

Ū ′ = (ū1, ū2) ∈ Ḡ3×2.

The modules B1,B2,BT are implicitly defined as Ḡ3, Ḡ3,T9 respectively, and are used for all equa-

tion types. The maps are defined as follows:

• Two different bilinear maps F, Fsym are defined. The map F : Ḡ3 × Ḡ3 → T9 is defined as

F :



x̄1

x̄2

x̄3

 ,


ȳ1

ȳ2

ȳ3


 7→


e(x̄1, ȳ1) e(x̄1, ȳ2) e(x̄1, ȳ3)

e(x̄2, ȳ1) e(x̄2, ȳ2) e(x̄2, ȳ3)

e(x̄3, ȳ1) e(x̄3, ȳ2) e(x̄3, ȳ3)

 ,

whereas the symmetric map Fsym is defined by

Fsym(x̄, ȳ) :=
1

2
F̃ (x̄, ȳ) +

1

2
F̃ (ȳ, x̄)

• The maps ι : Ḡ→ Ḡ3 and p : Ḡ3 → Ḡ are defined as:

ι(z̄) := (0̄, 0̄, z̄)>, p((z̄1, z̄2, z̄3)>) = z̄3 −
1

α
z̄1 −

1

β
z̄2

• The maps ι′ : Zp → Ḡ3 and p′ : Ḡ3 → Zp are defined as:

ι′(z) = z(ū3 + (0̄, 0̄, ḡ)>), p′((z1ḡ, z2ḡ, z3ḡ)>) = z3 −
1

α
z1 −

1

β
z2

The matrices {Hi} and the maps ιT , pT are defined as follows for each equation type:

3We write SPGDLIN to say that the DLIN assumption holds relative to SPG.
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Pairing product equation: Commitment keys Ū and the inclusion map ι are used to commit to ele-

ments in Ḡ. The maps ιT , pT are the same for both F and Fsym:

ιT (tT) :=


0T 0T 0T

0T 0T 0T

0T 0T tT

 ,

pT (ZT) :=z33,T − α−1z13,T − β−1z23,T

− α−1(z31,T − α−1z11,T − β−1z21,T)

− β−1(z32,T − α−1z12,T − β−1z22,T),

where ZT =


z11,T z12,T z13,T

z21,T z22,T z23,T

z31,T z32,T z33,T

 .

The matrices

H1 =


0 1 0

−1 0 0

0 0 0

 , H2 =


0 0 1

0 0 0

−1 0 0

 , H3 =


0 0 0

0 0 1

0 −1 0


are a basis of all matrices H such that ŪH •sym Ū = 0̄ whereas the equation ŪH • Ū = 0̄ only

admits the trivial solution.

Multiscalar multiplication equations: Commitment keys Ū and Ū ′ and inclusion maps ι and ι′ are

used to commit to elements in Ḡ and Zp respectively. Both for F̃ = F and F̃ = Fsym, ˜̄ιT , ˜̄pT

are defined as:

˜̄ιT (z̄) := F̃ (ι′(1), ι(z̄)), ˜̄pT (ZT) := e−1(pT (ZT))

where e−1(e(z̄, ḡ)) = z̄.

The matrix

H1 =

 0 1 0

−1 0 0


generates all matrices H such that Ū ′H •sym Ū = 0̄ whereas the equation Ū ′H • Ū = 0̄ only

admits the trivial solution.

Quadratic equations: Commitment keys Ū ′ and the inclusion map ι′ are used to commit to elements

in Zp. Both for F̃ = F and F̃ = Fsym, ι̃′T , p̃′T are defined as:

ι̃′T (z) := F̃ (ι′(1), ι′(z)), p̃′T (ZT) := loge(ḡ,ḡ)(pT (ZT))
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The matrix

H1 =

 0 1

−1 0


generates all matrices H such that Ū ′H •sym Ū ′ = 0̄ whereas the equation Ū ′H • Ū ′ = 0̄ only

admits the trivial solution.

SimGenCRS : On input gk, return crs := (ū1, ū2, ū3) and the trapdoor key tk = stk = (r, s)>, where

ū1 = (αḡ, 0̄, ḡ)>, ū2 = (0̄, βḡ, ḡ)>, ū3 = rū1 + sū2 − (0̄, 0̄, ḡ)> for random α, β ← Z∗p and

r, s← Zp.

The required maps and matrices are implicitly defined exactly as in the GenCRS algorithm.

Prove : On input gk,crs, a set of equations and a witness x̄,x do:

1. Commit to the scalars x ∈ Zm′p and the group elements x̄ ∈ Ḡm as

C̄ ′ := ι′(x>)+Ū ′R ∈ Ḡ3×m′ , C̄ := ι(x̄>)+ŪS ∈ Ḡ3×m, where R← Z2×m′
p , S ← Z3×m

p

2. For each pairing product equation ā · x̄+ x̄ ·Γx̄ = tT the map Fsym is used, random r1, r2, r3 ←

Zp are sampled and the proof is computed as:

Φ̄ := ι(ā>)S> + ι(x̄>)(Γ + Γ>)S> + Ū(SΓ>S> +

3∑
i=1

riHi)

For each linear equation ā · x̄ = tT, the map F is used and the proof is computed as Π̄ := 0̄ and

Θ̄ := ι(ā>)S>. The proof can be communicated by just sending Φ̄ := ā>S>.

3. For each multiscalar multiplication equation a · x̄ + x · ā + x ·Γx̄ = t̄ the map Fsym is used and

a random r1 ← Zp is sampled to compute the proof as

Φ̄ := ι(ā>)R> + ι(x̄>)Γ>R> + ι′(a>)S> + ι′(x>)ΓS> + Ū(SΓ>R> + r1H
>
1 )

For each linear equation a · x̄ = t̄ the map F is used and the proof is computed as Π̄ := 0̄ and

Θ̄ := ι′(a>)S>. The proof can be communicated by just sending Φ := a>S> .

For each linear equation x · ā = t̄ the map F is used and the proof is computed as Π̄ :=

ι(ā>)R>, Θ̄ := 0̄. The proof can be communicated by sending Φ̄ := ā>R>.

4. For each quadratic equation a · x + x · Γx = t the map Fsym is used, a random r1 ← Zp is

sampled and the proof is computed as:

Φ̄ := ι′(a>)R> + ι′(x>)(Γ + Γ>)R> + Ū ′(RΓ>R> + r1H1)

For each linear equation a · x = t, the map F is used and the proof is computed as Π̄ := 0̄ and

Θ̄ := ι′(a>)R>. The proof can be communicated by just sending Φ := a>R> .
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Assumption: DLIN Ḡ Zp

Variables x ∈ Zp, x̄ ∈ Ḡ 3 0

Figure 2.3: Cost of committing to each variable type.

VerifyProof . On input (gk, crs), a set of equations, and a proof C̄, C̄ ′, {Φ̄i}Ni=1 do:

1. For each pairing product equation with proof Φ̄ check that

ι(ā>) •sym C̄ + C̄ •sym C̄Γ> = ιT (tT) + Ū •sym Φ̄

For each linear equation with proof Φ̄ check that

ι(ā>) • C̄ = ιT (tT) + ι(Φ̄) • Ū

2. For each multi scalar multiplication equation proof Φ̄ check that

ι′(a>) •sym C̄ + C̄ ′ •sym ι(ā>) + C̄ ′ •sym C̄Γ> = ῑsym,T (t̄) + Ū •sym Φ̄

For each linear equation with proof Φ check that

ι′(a>) • C̄ = ῑT (t̄) + ι′(Φ) • Ū

For each linear equation with proof Φ̄ check that

C̄ ′ • ι(ā>) = ῑT (t̄) + Ū ′ • ι(Φ̄)

3. For each quadratic equation with proof Φ̄ check that

C̄ ′ •sym ι′(a>) + C̄ ′ •sym C̄ ′Γ> = ι′sym,T (t) + Ū ′ •sym Φ̄

For each linear equation with proof Φ check that

C̄ ′ • ι′(a>) = ι′T (t) + Ū ′ • ι′(Φ)

Size. The cost of each proof can be derived from the figures Fig. 2.3 and Fig. 2.4.

In [GS12], they show that the instantiation satisfies the requirements of the Groth-Sahai proof frame-

work. This allows them to prove the following theorem.

Theorem 2.8.4. The protocol given above is a NIWI proof with perfect completeness, perfect soundness and

composable witness-indistinguishability for satisfiability of a set of equations over a bilinear group where

the DLIN problem is hard. The protocol is zero-knowledge if for all pairing product equations, the term on

the right-hand side of the equation, tT, is of the form tT =
∏n
i=1 e(p̄i, q̄i) for public p̄i, q̄i and the equations

are rewritten so that they can be simulated.
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Assumption: DLIN Ḡ Zp

Pairing product equations 9 0

- Linear equation: ā · ȳ = tT 3 0

Multiscalar multiplication equations: 9 0

- Linear equation: a · ȳ = t̄ 0 3

- Linear equation: x · b̄ = t̄ 2 0

Quadratic equations in Zp 6 0

- Linear equation: x · b = t 0 2

Figure 2.4: Size of an NIZK proof for each type of equation.

Extensions of Groth-Sahai proofs

There have been several papers that extend or improve the Groth-Sahai proof system in different directions.

[Mei09] suggested how to create perfectly extractable commitments, something which is not given by the

commitments used by Groth and Sahai. [CHP12, BFI+10] reduced the computational cost of the verification

of the proofs using batch techniques, at the cost of trading perfect soundness for statistical soundness.

[Seo12] gave another map for verifying proofs in the symmetric setting which reduces the computational

cost of the verification of the proofs. On the other hand, they prove that the map proposed by Groth and

Sahai in the asymmetric setting is optimal. [GSW10] proposed another assumption on which Groth-Sahai

proofs can be based. [BCKL08, BCC+09] exploited re-randomization properties of Groth-Sahai proofs,

which they used in anonymous credentials. Recently, [CKLM12] introduced a new notion of malleable

proof systems, which can be built from Groth-Sahai proofs. While there has been significant research effort

devoted to pairing-based NIZK proofs, Groth-Sahai proofs still remain the most efficient NIZK proofs that

are based on standard intractability assumptions and there has not been any progress in reducing their size

or the prover’s computation.
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Chapter 3

An Algebraic Framework for

Diffie-Hellman Assumptions

This chapter is mainly based on the results published in [EHK+13] (conference version) and [EHK+17]

(journal version), coauthored with Gottfried Herold, Eike Kiltz, Carla Ràfols and Jorge Luis Villar.

3.1 Motivation

In Section 2.2, we have introduced the DDH assumption and we have discussed that the DDH problem

is easy in a group Ḡ if there exists a bilinear map e : Ḡ × Ḡ → T. We have also mentioned the DLIN

assumption, which can hold in symmetric bilinear groups since the DLIN problem can not be solved simply

with a bilinear map.

A similar argument to the one used to show that the DDH problem is easy in symmetric bilinear groups

can be used to show that if a 3-linear map e : Ḡ × Ḡ × Ḡ → T3 existed then the DLIN problem would be

trivially easy in Ḡ.

As a consequence, the DLIN assumption (also known as the 2− Lin assumption) was generalized to the

(k − Lin)k∈N assumption family [HK07, Sha07]. Each k − Lin assumption does not hold in a group with a

k + 1-linear map, creating a family of increasingly weaker assumptions. This generalization also includes

the DDH assumption, which corresponds to the 1− Lin assumption.

The k−Lin assumptions can be seen as subgroup membership assumptions, i.e., assumptions stating that

it is hard to say whether an element of a group is in a strict subgroup or not. For example, the DDH can be

thought as the problem of distinguishing whether a pair of group elements (r̄, z̄) ∈ Ḡ2 is sampled uniformly

at random from Ḡ2 or is in the subspace of Ḡ2 generated by (ḡ, aḡ) ∈ Ḡ2 for some a← Zp. Similarly, the

2−Lin assumption can be seen as distinguishing whether a triplet of elements (r̄, s̄, t̄) is sampled uniformly

at random from Ḡ3 or if it is in the subspace generated by the triplets {(a1ḡ, 0̄, ḡ), (0̄, a2ḡ, ḡ)} ∈ Ḡ3 for

a1, a2 ← Ḡ.
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Formulating the k−Lin assumptions as subgroup membership assumptions has proven to be useful. For

instance, it allowed to provide more instantiations of the original DDH-based scheme of Cramer and Shoup

and it is also the most natural point of view for translating schemes originally constructed in composite order

groups into prime order groups [Fre10, MSF10, Seo12, SC12]. Another number of works have illustrated

the usefulness of a more algebraic point of view on decisional assumptions in bilinear groups, like the

Dual Pairing Vector Spaces of Okamoto and Takashima [OT10] or the Subspace Assumption of Lewko

[LOS+10]. Although these new decisional assumptions reduce to the 2-Lin Assumption, their flexibility

and their algebraic description have proven to be crucial in many works to obtain complex primitives in

strong security models previously unrealized in the literature, like Attribute-Based Encryption, Unbounded

Inner Product Encryption and many more (see [LOS+10, OT15, OT12], just to name a few).

Even though the k − Lin assumptions have been the default assumptions used in most of the crypto-

graphic constructions, in [EHK+17] we question whether there could be other assumption families eventu-

ally leading to more efficient cryptographic constructions. In particular, we look at assumptions formulated

as subspace membership problems: to distinguish whether a given vector in Ḡ` is contained in the space

spanned by k vectors in Ḡ`.

3.2 Our contributions

We define a new framework for giving subspace membership assumptions, which we call DDH-like as-

sumptions.

• We give three assumption families based on our framework, which in particular can be used as as-

sumptions in bilinear groups.

• We give security reductions between these assumptions, as well as some results on the security of any

assumption derived from our framework.

• We show how our assumptions can be used to build cryptographic protocols. In particular, we instan-

tiate NIZK proofs from the Groth-Sahai framework based on our new assumptions.

• We give more efficient constructions for NIZK proofs for languages of statements related to the com-

mon reference string.

The assumptions’ security results given in [EHK+17] were not part of my contribution and fall out of

the scope of this thesis. Regarding cryptographic protocols, my main contribution was on applying our

framework to NIZK proofs. Therefore, in this thesis we will only give the applications of our framework for

NIZK proofs. We refer the reader to [EHK+17] for those results not detailed in this thesis.
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A new framework for DDH-like assumptions

For integers ` > k let D`,k be an (efficiently sampleable) distribution over Z`×kp . We define the D`,k-Matrix

DH (D`,k −MDDH) Assumption as the following subgroup decision assumption:

D`,k −MDDH : (A||Ar)ḡ ≈ (A||u)ḡ ∈ Ḡ`×(k+1),

where A ∈ Z`×kp is chosen from the distribution D`,k, r← Zkp, and u← Z`p.

New Assumptions for bilinear groups

We propose other families of decisional assumptions that did not previously appear in the literature, e.g.,

those associated to Ck,SCk, ILk defined below. For the most important parameters k = 2 and ` = k+1 = 3,

we consider the following examples of distributions:

C2 : A =


a1 0

1 a2

0 1

 , SC2 : A =


a 0

1 a

0 1

 , L2 : A =


a1 0

0 a2

1 1

 , IL2 : A =


a 0

0 a+ 1

1 1

 ,

for uniform a, a1, a2 ∈ Zp as well as U3,2, the uniform distribution in Z3×2
p , already considered in [BHHO08,

NS12, GHV12, Vil12]). It is easy to verify that L2−MDDH = 2−Lin. We define 2−Casc := C2−MDDH

(Cascade Assumption), 2 − SCasc := SC2 −MDDH (Symmetric Cascade Assumption), and 2 − ILin :=

IL2 −MDDH (Incremental Linear Assumption). In [EHK+17], we show that 2 − SCasc =⇒ 2 − Casc,

2 − ILin =⇒ 2 − Lin and that U3,2 −MDDH is the weakest of these assumptions. Although originally

[EHK+13] 2 − ILin and 2 − SCasc were thought to be incomparable assumptions, in [EHK+17] we show

that 2 − SCasc and 2 − ILin are indeed equivalent assumptions. The equivalence results, together with the

fact that 2− ILin =⇒ 2− Lin, imply that 2− SCasc is a stronger assumption than 2− Lin.

Efficiency improvements

As a measure of efficiency, we define the representation size REḠ(D`,k) of an D`,k −MDDH assumption

as the minimal number of group elements needed to represent Aḡ for any A ∈ D`,k. This parameter

is important since it affects the performance (typically the size of public/secret parameters) of schemes

based on a Matrix Diffie-Hellman Assumption. 2 − Lin and 2 − Casc have representation size 2 (elements

(a1ḡ, a2ḡ)), while 2 − SCasc’s representation size is only 1 (element aḡ). Hence our new assumptions

directly translate into shorter parameters for a large number of applications. Further, our result points out

a trade-off between efficiency and hardness which questions the role of 2− Lin as the “standard decisional

assumption” over a bilinear group Ḡ.
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New Families of Weaker Assumptions

By defining appropriate distributions Ck,SCk, ILk over Z(k+1)×k
p , for any k ∈ N, one can generalize all

three new assumptions naturally to k − Casc, k − SCasc, and k − ILin with representation size k, 1, and 1,

respectively. In [EHK+17] we show that k− SCasc, and k− ILin are equivalent for every k. Since all these

assumptions are false in (k+1)-linear groups this gives us three new families of increasingly strictly weaker

assumptions1. In particular, the k−SCasc (equivalently, k− ILin) assumption family is of great interest due

to its compact representation size of only 1 element.

Groth-Sahai Non-Interactive Zero-Knowledge Proofs

We show how to instantiate the Groth-Sahai proof system based on any D`,k −MDDH Assumption. While

the size of the proofs depends only on ` and k, the crs and verification depends on the representation size of

the Matrix Assumptions. Therefore, our new instantiations offer improved efficiency over the 2−Lin-based

construction from [GS12]. This application in particular highlights the usefulness of the Matrix Assumption

to describe in a compact way many instantiations of a scheme: instead of having to specify the constructions

for the DDH and the 2 − Lin assumptions separately [GS12], we can recover them as a special case of a

general construction.

More efficient proofs for crs dependent languages

We provide more efficient NIZK proofs for concrete natural languages which are dependent on the common

reference string. More specifically, the common reference string of our D`,k − MDDH instantiation of

Groth-Sahai proofs of includes as part of the commitment keys the matrix Aḡ, where A ← D`,k. We give

more efficient proofs for several languages related to A. Although at first glance the languages considered

may seem quite restricted, they naturally appear in many applications, where typically Aḡ is the public key

of some encryption scheme and one wants to prove statements about ciphertexts. More specifically, we

obtain improvements for several kinds of statements, namely:

• Subgroup membership proofs. We give more efficient proofs in the language LA,Ḡ,ḡ := {Arḡ, r ∈

Zkp} ⊂ Ḡ`. In particular, these proofs can be used to prove that two commitments with the same key

hide the same value.

• Ciphertext validity. The result is extended to prove membership in the language LA,z,Ḡ,ḡ := {c̄ :

c̄ = Arḡ + zm̄} ⊂ Ḡ`, where z ∈ Z`p is some public vector such that z /∈ Im(A), and the witness of

1We actually assume that k and ` are considered as constants, i.e. they do not depend on the security parameter. Otherwise, for a

generalD`,k it is not so easy to solve theD`,k−MDDH problem with the only help of a (k+ 1)-linear map, because determinants

of size k + 1 could not be computable in polynomial time.
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the statement is (r, m̄) ∈ Zkp × Ḡ. The natural application of this result is to prove that a ciphertext is

well-formed and the prover knows the message m̄, like for instance in [DHLW10].

• Plaintext equality. We obtain more efficient proofs for equality of ciphertexts. We consider Groth-

Sahai proofs in a setting in which the variables of the proofs are committed with different com-

mitment keys, defined by two matrices A ← D`1,k1 , B ← D′`2,k2 . We give more efficient proofs

of membership in the language LA,B,Ḡ,ḡ := {(c̄A, c̄B) : c̄A = Arḡ + (0̄, . . . , 0̄, m̄)>, c̄B =

Bsḡ+(0̄, . . . , 0̄, m̄)>, r ∈ Zk1p , s ∈ Zk2p } ⊂ Ḡ`1× Ḡ`2 As in the previous case, this language appears

most naturally when one wants to prove equality of two committed values or plaintexts encrypted

under different keys.

3.3 Matrix DH assumptions

Definition 3.3.1. Let `, k ∈ N with ` > k. We call D`,k a matrix distribution if it outputs (in poly time, with

overwhelming probability) matrices in Z`×kp of full rank k. We define Dk := Dk+1,k.

For simplicity, we will also assume that, w.l.o.g., the first k rows of A← D`,k form an invertible matrix.

We define the D`,k-matrix problem as the problem of distinguishing the two distributions (Aḡ,Awḡ)

and (Aḡ,uḡ), where A← D`,k,w← Zkp and u← Z`p.

Definition 3.3.2 (D`,k-Matrix Diffie-Hellman AssumptionD`,k−MDDH). LetD`,k be a matrix distribution.

We say that the D`,k-Matrix Diffie-Hellman (D`,k − MDDH) Assumption holds relative to G if the distri-

butions of (A||Ar)ḡ and (A||u)ḡ are computationally indistinguishable, where (Ḡ, p, ḡ) ← G, A ← D`,k,

w← Zkp and u← Z`p.

Due to its linearity properties, the D`,k − MDDH assumption does not hold in (k + 1)-linear groups,

assuming that k is constant, i.e. it does not depend on the security parameter.

Lemma 3.3.3. Let D`,k be any matrix distribution. Then the D`,k-Matrix Diffie-Hellman Assumption is

false in (k + 1)-linear groups.

Proof. In a (k + 1)-linear group, the implicit representation of any r × r determinant for r ≤ k + 1 can be

efficiently computed by using the r-linear map given by the Leibnitz formula:

det(M) =
∑
σ∈Sr

sgn(σ)

r∏
i=1

mi,σi

Using the (k + 1)-linear map, det(M)e(ḡ, (k). . ., ḡ) can be computed in the target group. Then, given

Bḡ := (A||z)ḡ, consider the submatrix A0 formed by the first k rows of A and the vector z0 formed by the

first k elements of z.
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If det(A0) 6= 0, then define C as the submatrix formed by the first k + 1 rows of B. If z is random

then det(C) 6= 0 with overwhelming probability, while if z = Aw for some vector w then det(C) = 0.

Therefore the D`,k-Matrix Diffie-Hellman Assumption is false in this case.

Otherwise det(A0) = 0. Then rank(A0||z0) = rank(A0) when z = Aw, while rank(A0||z0) =

rank(A0) + 1 with overwhelming probability if z is random. To compute the rank of both matrices the

following efficient randomized algorithm can be used. Take random invertible matrices L,R ∈ Zk×kp . Then

set A′0ḡ = LA0Rḡ and z′0ḡ = Lz0ḡ, which is just a randomized instance of the same problem. Now if

rank(A′0) = r then with overwhelming probability its principal r × r minor is nonzero. Therefore, we can

estimate r = rank(A′0) as the size of the largest nonzero principal minor (with negligible error probability).

Finally, if the determinant of the submatrix of A′0||z′0 formed by the first r + 1 rows and the first r and the

last column is nonzero we conclude that z is random.

3.3.1 Examples of D`,k −MDDH

Let D`,k be a matrix distribution and A ← D`,k. We define the representation size REḠ(D`,k) of a given

polynomial-induced matrix distribution D`,k as the minimal number of group elements it takes to represent

Aḡ for any A ∈ D`,k. By Lemma 3.3.3 we obtain a family of strictly weaker assumptions. Our goal is to

obtain such a family of assumptions with small (possibly minimal) representation.

Example 1. Let U`,k be the uniform distribution over Z`×kp .

The next lemma says that U`,k − MDDH is the weakest possible assumption among all D`,k-Matrix

Diffie-Hellman Assumptions. However, U`,k has a poor representation, i.e., REḠ(U`,k) = `k.

Lemma 3.3.4. Let D`,k be any matrix distribution. Then D`,k =⇒ U`,k.

Proof. Given an instance (Aḡ,Awḡ) of D`,k, if L ∈ Z`×`p and R ∈ Zk×kp are two random invertible matri-

ces, it is possible to get a properly distributed instance of the U`,k-matrix DH problem as (LARḡ, LAwḡ).

Indeed, LAR has a distribution statistically close to the uniform distribution2 in Zk×`p , whileLAw = LARv

for v = R−1w. Clearly, v has the uniform distribution in Zkp .

Example 2 (k-Linear Assumption / k − Lin). We define the distribution Lk as follows

A =



a1 0 · · · 0 0

0 a2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 ak

1 1 · · · 1 1


2If A has full-rank (that happens with overwhelming probability) then LAR is uniformly distributed in the set of full-rank

matrices in Z`×k
p , which implies that it is close to uniform in Z`×k

p .
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where ai ← Z∗p. Note that the distribution (A,Aw) can be compactly written as (a1, . . . , ak, a1w1, . . . ,

akwk, w1 + · · ·+ wk) = (a1, . . . , ak, b1, . . . , bk,
b1
a1

+ · · ·+ bk
ak

with ai ← Z∗p, bi, wi ← Zp. Hence the Lk-

Matrix Diffie-Hellman Assumption is an equivalent description of the k-linear Assumption [BBS04, HK07,

Sha07], with REḠ(Lk) = k.

Example 3 (k-Cascade Assumption / k − Casc). We define the distribution Ck as follows

A =



a1 0 · · · 0 0

1 a2 · · · 0 0

0 1
. . . 0 0

...
...

. . .
...

...

0 0 · · · 1 ak

0 0 · · · 0 1


where ai ← Z∗p. Note that (A,Aw) can be compactly written as (a1, . . . , ak, a1w1, w1 +a2w2, . . . , wk−1 +

akwk, wk) = (a1, . . . , ak, b1, . . . , bk,
bk
ak
− bk−1

ak−1ak
+

bk−2

ak−2ak−1ak
− · · · ± b1

a1·····ak . We have REḠ(Ck) = k.

Matrix A bears resemblance to a cascade which explains the assumption’s name. Indeed, in order to

compute the right lower entry wk of matrix (A,Aw) from the remaining entries, one has to “descend” the

cascade to compute all the other entries wi (1 ≤ i ≤ k − 1) one after the other.

A more compact version of Ck is obtained by setting all ai := a.

Example 4 (Symmetric k-Cascade Assumption / k − SCasc). We define the distribution SCk as Ck but

now ai = a, where a ← Z∗p. Then (A,Aw) can be compactly written as (a, aw1, w1 + aw2, . . . , wk−1 +

awk, wk) = (a, b1, . . . , bk,
bk
a −

bk−1

a2
+

bk−2

a3
− · · · ± b1

ak
). We have REḠ(SCk) = 1.

Observe that the same trick cannot be applied to the k-Linear assumption k − Lin, as the resulting

Symmetric k-Linear assumption does not hold in k-linear groups. However, if we set ai := a + i − 1, we

obtain another matrix distribution with compact representation.

Example 5 (Incremental k-Linear Assumption). We define the distribution ILk as Lk with ai = a+ i− 1,

for a← Z∗p. (A,Aw) can be compactly written as (a, aw1, (a+1)w2, . . . , (a+k−1)wk, w1 + · · ·+wk) =

(a1, b1, . . . , bk,
b1
a + b2

a+1 + · · ·+ bk
a+k−1). We also have REḠ(ILk) = 1..

The following theorem is proven in [EHK+17], which shows the relation between these new assump-

tions.

Theorem 3.3.5. For any k ≥ 2, the following holds:

k − SCasc⇐⇒ k − ILin;

k − SCasc =⇒ k − Casc; k − ILin =⇒ k − Lin;

k − Casc =⇒ (k + 1)Casc; k − SCasc =⇒ (k + 1)SCasc
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3.4 Instantiating Groth-Sahai proofs using the MDDH-assumptions

As we explained in Section 2.8, in [GS12] Groth and Sahai give a framework for creating NIWI and NIZK

proofs for the language of satisfiability of a set of quadratic equations over a bilinear group.

In order to instantiate the framework, we need to show how the Setup, the GenCRS and the SimGenCRS

algorithms work, this is, how the common reference string is created in the soundness setting and in the

simulation setting. In addition, we must show that their outputs are indistinguishable and that they satisfy

the properties required by the framework. Indeed, the other algorithms (Prove,SimProve,VerifyProof) are

completely described by the Groth-Sahai framework once the common reference string is known.

Setup : gk := (p, Ḡ,T, e, ḡ)← SPGD`,k
(1λ)3

GenCRS : On input gk, return crs := (ū1, . . . , ūk+1), constructed as follows. First, the algorithm picks

A ← D`,k, w ← Zkp and a vector z ∈ Z`p, z /∈ Im(A), this is, not in the span of the columns of

A. Then, (ū1, . . . , ūk+1) are defined as the columns of (A||Aw)ḡ. For notational convenience, we

define Ū = (ū1, . . . , ūk+1) = (A||Aw)ḡ and Ū ′ = (ū1, . . . , ūk) = Aḡ.

The modules B1,B2,BT are implicitly defined as Ḡ`, Ḡ`,T`×` respectively, and are used for all

equation types. Let ξ ∈ Z`p be an arbitrary vector such that ξ>A = 0 and ξ>z = 1. The maps are

defined as follows:

• Two different bilinear maps F, Fsym are defined. The map F : Ḡ` × Ḡ` → T`×` is defined as

F :



x̄1

...

x̄`

 ,


ȳ1

...

ȳ`


 7→


e(x̄1, ȳ1) · · · e(x̄1, ȳ`)

...
. . .

...

e(x̄`, ȳ1) · · · e(x̄`, ȳ`)

 ,

whereas the symmetric map Fsym is defined by

Fsym(x̄, ȳ) :=
1

2
F̃ (x̄, ȳ) +

1

2
F̃ (ȳ, x̄)

• The maps ι : Ḡ→ Ḡ` and p : Ḡ` → Ḡ are defined as:

ι(x̄) := zx̄, p(c̄) = ξ>c̄,

• The maps ι′ : Zp → Ḡ` and p′ : Ḡ` → Zp are defined as:

ι′(x) = x(ūk+1 + zḡ), p′(c̄) = logḡ(ξ
>c̄),

where logḡ is the discrete logarithm with respect to ḡ.

3We write SPGD`,k
to say that the D`,k assumption holds relative to SPG, where the definition of D`,k holding relative to

SPG is the natural extension of Definition 3.3.2.
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In the following, let Hr,s,m,n = (hij) ∈ Zm×np denote the matrix such that hrs = −1, hsr = 1 and

hij = 0 for (i, j) /∈ {(r, s), (s, r)}. The matrices {Hi} and the maps ιT , pT are defined as follows for

each equation type:

Pairing product equation: Commitment keys Ū and the inclusion map ι are used to commit to ele-

ments in Ḡ. The maps ιT , pT are the same for both F and Fsym:

ιT (zT) = z · z>zT ∈ T`×` pT (ZT) = ξ>ZTξT ,

where zT ∈ T, ZT ∈ T`×`. The equation ŪH • Ū = 0T admits no non-trivial solution, while all

the solutions to ŪH •sym Ū = 0T are generated by
{
Hr,s,k+1,k+1

}
1≤r<s≤k+1

.

Multiscalar multiplication equations: Commitment keys Ū and Ū ′ and inclusion maps ι and ι′ are

used to commit to elements in Ḡ and Zp respectively. Both for F̃ = F and F̃ = Fsym, ˜̄ιT , ˜̄pT

are defined as:

˜̄ιT (z̄) := F̃ (ι′(1), ι(z̄)), ˜̄pT (ZT) := ξ>Z̄ξ,

where Z̄ ∈ Ḡ`×` is such that e(Z̄ij , ḡ) = (ZT)ij for all entries of Z̄. The equation Ū ′H •

Ū = 0̄ admits no solution, while all the solutions to Ū ′H •sym Ū = 0̄ are generated by{
Hr,s,k,k+1

}
1≤r<s≤k.

Quadratic equations: Commitment keys Ū ′ and the inclusion map ι′ are used to commit to elements

in Zp. Both for F̃ = F and F̃ = Fsym, ι̃′T , p̃′T are defined as:

ι̃′T (z) := F̃ (ι′(1), ι′(z)), p̃′T (ZT) := ξ>Zξ,

where Z ∈ Z`×`p is the matrix which entries are the discrete logarithms of the entries of ZT with

respect to e(ḡ, ḡ). The equation Ū ′H • Ū ′ = 0̄ admits no solution, while all the solutions to

Ū ′H •sym Ū ′ = 0̄ are generated by
{
Hr,s,k,k

}
1≤r<s≤k.

SimGenCRS : On input gk, return crs := (ū1, . . . , ūk+1) and the trapdoor key tk = stk := w, constructed

as follows. First, the algorithm picks A← D`,k, w← Zkp and a vector z ∈ Z`p, z /∈ Im(A), this is, not

in the span of the columns of A. Then, (ū1, . . . , ūk+1) are defined as the columns of (A||Aw − z)ḡ.

The required maps and matrices are implicitly defined exactly as in the GenCRS algorithm.

The Prove and VerifyProof algorithms are the same as those for the DLIN instantiation of [GS12], given

in Section 2.8.6, and the same optimizations can be used.

Theorem 3.4.1. The protocol given above is a NIWI proof with perfect completeness, perfect soundness

and composable witness-indistinguishability for satisfiability of a set of equations over a symmetric bilinear
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group (p, Ḡ,T, e, ḡ) if the D`,k-Matrix Diffie-Hellman Assumption holds relative to SPGD`,k
. The protocol

is zero-knowledge if for all pairing product equations, the term on the right-hand side of the equation, tT, is

of the form tT =
∏n
i=1 e(p̄i, q̄i) for public p̄i, q̄i and the equations are rewritten so that they can be simulated

as explained in Section 2.8.4.

Proof. Since this is an instantiation of the Groth-Sahai proof framework, we just need to prove that all the

requirements of the framework are satisfied. In particular, we need to show that:

1. The requirements for the crs generated by the GenCRS algorithm are satisfied:

• For each equation type, the corresponding maps ι, p, ιT , pT , F and f commute, this is:

∀x ∈ A1, ∀y ∈ A2 : F (ι(x), ι(y)) = ιT (f(x, y)),

∀x ∈ B1,∀y ∈ B2 : f(p(x), p(y)) = pT (F (x, y)).

• For each equation type, the maps ι,ιT and F are efficiently computable.

• For each equation type, p1(u) = 0, p2(v) = 0 and the maps p1 ◦ ι1, p2 ◦ ι2 and pT ◦ ιT are the

identity map in their respective domains.

It is easy to see that all these requirements are satisfied by construction.

2. The requirements for the crs generated by the SimGenCRS algorithm are satisfied:

• The maps ι1, p1, ι2, p2ιT , pT , F and f must commute, this is:

∀x ∈ A1,∀y ∈ A2 : F (ι1(x), ι2(y)) = ιT (f(x, y)),

∀x ∈ B1,∀y ∈ B2 : f(p1(x), p2(y)) = pT (F (x, y)).

• The maps ι1,ι2, ιT and F must be efficiently computable.

• ι1(A1) ⊆ 〈u1, . . . , um̂〉 and ι1(A2) ⊆ 〈v1, . . . , vn̂〉.

• H1, . . . ,Hη generate theR-module of all matrices H ∈ Rm̂×n̂ such that uH • v = 0.

The first three requirements are satisfied by construction. Regarding the fourth one, it follows from the

observation that if u1, . . . , uk are linearly independent, then F (ui, uj) are also linearly independent.

3. The crs distributions generated by the GenCRS and the SimGenCRS algorithms are computationally

indistinguishable. This is a direct consequence of the assumption that theD`,k-Matrix Diffie-Hellman

Assumption holds relative to SPGD`,k
.

4. The trapdoor key tk = stk is such that ι′(1) = ι′(0) + u′stk, which is satisfied by construction.
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Assumption: D`,k Ḡ Zp

Variables x ∈ Zp, x̄ ∈ Ḡ ` 0

Figure 3.1: Cost of committing to each variable type.

Assumption: D`,k Ḡ Zp

Pairing product equations `(k + 1) 0

- Linear equation: ā · ȳ = tT k + 1 0

Multiscalar multiplication equations: `(k + 1) 0

- Linear equation: a · ȳ = t̄ 0 k + 1

- Linear equation: x · b̄ = t̄ k 0

Quadratic equations in Zp `k 0

- Linear equation: x · b = t 0 k

Figure 3.2: Size of an NIZK proof for each type of equation.

Size. By applying the optimizations used in Section 2.8.6, it follows that the cost of each proof can be

derived from the figures Fig. 3.1 and Fig. 3.2.

We emphasize that for D`,k = L2 and z = (0, 0, 1)> and for D`,k = L1 and z = (0, 1)> (in the natural

extension to asymmetric bilinear groups), we recover the 2 − Lin and the SXDH instantiations of [GS12].

While the size of the proofs depends only on ` and k, both the size of the crs and the cost of verification

increase with REḠ(D`,k). In particular, in terms of efficiency, the SC2 Assumption is preferable to the

2 − Lin Assumption but the main reason to consider more instantiations of Groth-Sahai proofs is to obtain

more efficient proofs for a large class of languages in Section 3.5.

3.5 More efficient proofs for some crs dependent languages

Let Ū be the commitment key defined in last section as part of a D`,k-MDDH instantiation, for some A ←

D`,k. In this section, we show how to shorter proofs of some languages related to A. The common idea

of all the improvements is to exploit the special structure of the homomorphic commitments used in Groth

Sahai proofs. Our proofs implicitly use the Groth-Sahai framework, although we have preferred to give the

proofs without using the Groth-Sahai notation. In addition, in this section we use simplified notation for a

bilinear pairing, writing e(x̄, ȳ) = x̄ū and

x̄ȳ> =


e(x̄1, ȳ1) · · · e(x̄1, ȳ`)

...
. . .

...

e(x̄`, ȳ1) · · · e(x̄`, ȳ`)


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3.5.1 More efficient subgroup membership proofs

We first show how to obtain shorter membership proofs in the language LA,gk := {Arḡ, r ∈ Zkp} ⊂ Ḡ`.

Intuition

The idea behind our improvement is to exploit the special algebraic structure of commitments in Groth-

Sahai proofs, namely the observation that if Φ̄ = Arḡ ∈ LA,gk then Φ̄ can be seen as a commitment of

the scalar 0 using randomness r. Therefore, to prove that Φ̄ ∈ LA,gk, we proceed as if we were giving a

Groth-Sahai proof of satisfiability of the equation x = 0 where the randomness used for the commitment to

x is r. In particular, no commitments have to be given in the proof, which results in shorter proofs. To prove

zero-knowledge we rewrite the equation x = 0 as x · δ = 0. The real proof is just a standard Groth-Sahai

proof with the commitment to δ = 1 being ι′(1) a commitment to the scalar 1 using randomness 0, while

in the simulated proof the trapdoor allows to open ι′(1) as a commitment of 0, so we can proceed as if the

equation was the trivial one x · 0 = 0, for which it is easy to give a proof of satisfiability.

The construction

Define H := {H ∈ Zk×kp : H + H> = 0}. Following the intuition given above, the actual construction

looks as follows:

Setup : the setup samples and outputs a group (p, Ḡ,T, e, ḡ)← SPG(1λ).

GenCRS : The commitment keys Ū = (ū1, . . . , ūk+1) are defined as (A||Aw + z)ḡ, where A ← D`,k,

w ← Zkp , and z ∈ Z`p, z /∈ Im(A). For convenience, we define Ū ′ = (ū1, . . . , ūk) = Aḡ. The

common reference string is crs := (Ū , z).

SimGenCRS : The commitment key Ū = (ū1, . . . , ūk+1) are defined as (A||Aw)ḡ, where A ← D`,k,

w ← Zkp , and z ∈ Z`p, z /∈ Im(A). The common reference string is crs := (Ū , z). The simulation

trapdoor τ is the vector w ∈ Zkp .

Prove : On input crs, a vector Φ̄ = Arḡ ∈ LA,gk and the witness r ∈ Zkp , the prover chooses a matrix

H ← H and computes

Π̄ = ūk+1r
> + Ū ′H.

VerifyProof : On input crs, Φ̄, Π̄, the verifier checks if Φ̄ū>k+1 + ūk+1Φ̄
> = Π̄Ū ′> + Ū ′Π̄>.

SimProof . On input crs, Φ̄, τ the simulator picks a matrix Hsim ← H and computes

Π̄sim = Φ̄w> + Ū ′Hsim.
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Theorem 3.5.1. The proof system given above is a Non-Interactive Zero-Knowledge Proof for the language

LA,gk, with perfect completeness, perfect soundness and composable zero-knowledge of k` group elements

based on the D`,k-MDDH Assumption.

Proof. First, it is clear that under the D`,k-MDDH Assumption, the distribution of crs generated by the

GenCRS algorithm and the distribution of crs generated by the SimGenCRS algorithm are computationally

indistinguishable. For the sake of simplicity, we talk about the soundness setting and the WI setting for

referring to when the crs is created by the GenCRS algorithm or the SimGenCRS algorithm respectively.

Completeness. To see completeness, we see that a real proof satisfies the verification equation. Indeed, in

the soundness setting, the left term of the verification equation is:

Φ̄ū>k+1 + ūk+1Φ̄
> = (Arḡ)((Aw + z)ḡ)> + ((Aw + z)ḡ)(Arḡ)>

= (A(rw> + wr>)A> +Arz> + zr>A>)ḡḡ,

while the right term in the real proof is:

Π̄Ū ′> + Ū ′Π̄> = (A(wr> + wr>)A> +A(H +H>)A> +Arz> + zr>A>)ḡḡ

= (A(rw> + wr>)A> +Arz> + zr>A>)ḡḡ

Soundness. Let ξ ∈ Z`p be any vector such that ξ>A = 0, ξ>z = 1. This implies that ξ>Ū ′ = 0̄ and,

in the soundness setting, ξ>ūk+1 = ḡ. Therefore, if Π̄ is any proof that satisfies the verification equation,

multiplying on the left by ξ> and the right by ξ,

ξ>(Φ̄ū>k+1 + ūk+1Φ̄>)ξ = ξ>(Π̄Ū ′> + ŪΠ̄>)ξ,

we obtain

ξ>Φ̄ḡ + ḡΦ̄>ξ = 0T

Since ξ>Φ̄ + Φ̄>ξ = 2ξ>Φ̄, from this last equation it follows that ξ>Φ̄ḡ = 0T . This holds for any vector

ξ such that ξ>A = 0 and ξ>z = 1, which implies that Φ̄ ∈ LA,gk which proves perfect soundness.

Composable Zero-Knowledge. We will now see that, in the witness indistinguishability setting, both a real

proof and a simulated proof have the same distribution when Φ̄ ∈ LA,gk. We first note that they both satisfy

the verification equation. Indeed, the left term of the verification equation in the WI setting is

Φ̄ū>k+1 + ūk+1Φ̄
> = A(rw> + wr>)A>ḡḡ,

which is obviously equal to the right term of the verification equation for the real proof. On the other hand,

if Φ̄ ∈ LA,gk, the right term of the verification equation for a simulated proof is:

Π̄simŪ
′> + Ū ′Π̄>sim = A(rw> + wr>)A>ḡḡ +A(H ′ + (H ′)>)A>ḡḡ

= A(rw> + wr>)A>ḡḡ,
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for some Hsim ∈ H.

We now argue that an honestly generated proof Π̄ and a simulated proof Π̄sim have the same distribution.

By construction, there exist some matrices Θ and Θ′ such that Π̄ = Ū ′Θ and Π̄sim = Ū ′Θ′. Now, if

Π̄1 = Ū ′Θ1 and Π̄2 = Ū ′Θ2 are two proofs, real or simulated, which satisfy the verification equation, then

necessarily (Π̄1 − Π̄2)Ū ′> + Ū ′(Π̄1 − Π̄2)T = A((Θ1 −Θ2) + (Θ1 −Θ2)>)A>ḡḡ = 0.

Since with overwhelming probability A has rank k, it must hold that (Θ1−Θ2)+(Θ1−Θ2)> = 0, that

is, it must hold that (Θ1 − Θ2) ∈ H. By construction, both for honestly generated proofs Π̄ and simulated

proofs this difference is uniformly distributed inH.

Efficiency comparison

To prove that Φ̄ ∈ LA,gk, for some A ← D`,k with a Groth-Sahai instantiation based on a (possibly

unrelated)D`′,k′-matrix DH problem using standard Groth-Sahai proofs, one would prove that the following

equation has a solution for all i = 1, . . . , `:

r1ū1,i + · · ·+ rkūk;i = Φ̄i;

that is, one needs to prove that ` linear equations with k variables are satisfied. Therefore, according to

Figures 3.1 and 3.2, the verifier must be given k`′ elements of Ḡ for the commitments and `k′ elements

of Ḡ for the proof. On the other hand, proving Φ̄ ∈ LA,gk using our approach requires `k elements of Ḡ,

corresponding to the size of the proof of one quadratic equation.

Application example 1

The standard proof of membership in LA,gk, when A ← 2 − Lin based on the same assumption (with

` = `′ = 3, k = k′ = 2), requires 12 group elements, while with our approach only 6 elements are required.

This reduces the ciphertext size of one of the instantiations of [LY12] from 15 to 9 group elements.

Application example 2

With our results, we can also give a more efficient proof of correct opening of a Cramer-Shoup ciphertext.

We briefly recall the Cramer-Shoup encryption scheme based on the 2 − Lin-Assumption [Sha07, HK07].

The public key consists of the description of some group Ḡ and a tuple (ā1, ā2, b̄1, b̄2, b̄3, b̄4, b̄5, b̄6) ∈ Ḡ8.

Given a message m ∈ Ḡ, a ciphertext is constructed by picking random r, s← Zp and setting

c̄ := r(ā1, 0̄, ḡ, b̄5, b̄1 + αb̄3) + s(0̄, ā2, ḡ, b̄6, b̄2 + αb̄4) + (0̄, 0̄, m̄, 0̄, 0̄),

where α is the hash of some components of the ciphertext and possibly some label. To prove that a ci-

phertext opens to a (known) message m, subtract m from the third component of the ciphertext and prove
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membership in LA,gk, where Aα is defined as:

Aα :=



a1 0

0 a2

1 1

b5 b6

b1 + αb3 b2 + αb4


=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 α





a1 0

0 a2

1 1

b5 b6

b1 b2

b3 b4


,

where ai, bi are the discrete logarithms of āi, b̄i with respect to ḡ. DenoteMα, C, the two matrices of the

right term of the previous equation such that Aα = MαC. The matrix Aα depends on α and is different for

each ciphertext, so it cannot be included in the crs. Instead, we include the matrix ŪC := (C||Cw + zC)ḡ

in the soundness setting and ŪC := (C||Cw)ḡ in the WI setting, for zC /∈ Im(C), for instance z>C :=

(0, 0, 0, 0, 1, 0)

To prove membership in LA,gk as we explained, we would make the proof with respect to the crs

Ūα := MαŪC . Clearly, if z> := (0, 0, 0, 0, 1), Ūα = (Aα||Aαw + z)ḡ in the soundness setting and

Ūα = (Aα||Aαw)ḡ in the WI, as required. The resulting proof consists of 10 group elements, as opposed

to 16 using standard Groth-Sahai proofs. This applies to the result of [FLM11], Section 3.

3.5.2 More efficient proofs of validity of ciphertexts

The techniques of the previous section can be extended to prove the validity of a ciphertext. More specifi-

cally, given A← D`,k, and some vector z ∈ Z`p , z /∈ Im(A), we show how to give a more efficient proof of

membership in the space:

LA,z,gk = {c̄ : c̄ = Arḡ + zm̄} ⊂ Ḡ`,

where (r; m̄) ∈ Zkp× Ḡ is the witness. This is also a proof of membership in the subspace of Ḡ` spanned by

the columns of A and the vector z, but the techniques given in Section 3.5.1 do not apply. The reason is that

part of the witness, m̄, is in the group Ḡ and not in Zp, while to compute the subgroup membership proofs

as described in Section 3.5.1 all the witness has to be in Zp.

In a typical application, c̄ will be the ciphertext of some encryption scheme, in which case r will be the

ciphertext randomness and m̄ the message. Deciding membership in this space is trivial when Im(A) and

z span all Z`p, so in particular our result is meaningful when ` > k + 1 and, in particular, that there exists

some non-zero vector s ∈ Z`p such that s /∈ 〈Im(A), z〉.

The construction

DefineH := {H ∈ Z(k+2)×(k+2)
p : H +H> = 0}.

Setup : The setup gets and outputs a bilinear group gk = (p, Ḡ,T, e, ḡ)← SPG(1λ).
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GenCRS : We define Ū = (ū1, . . . , ūk+2) as (A||z||Aw)ḡ , where A ← D`,k,w ← Zkp , and s /∈

〈Im(A), z〉. The common reference string is crs := (Ū , s, z).

SimGenCRS : We define Ū = (ū1, . . . , ūk+2) as (A||z||Aw + s)ḡ, where A ← D`,k,w ← Zkp , and

s /∈ 〈Im(A), z〉. The common reference string is crs := (Ū , s, z). The simulation trapdoor τ is the

vector w ∈ Zkp .

Prove : On input crs, a vector c̄ = Arḡ + zm̄ ∈ LA,z,gk and the witness (r, m̄) ∈ Zkp × Ḡ, the prover

chooses a matrix H ← H and computes

Π̄ = s(r>ḡ, m̄, 0) + ŪH.

VerifyProof : On input crs, c̄, Π̄, the verifier checks if

c̄(sḡ)> + (sḡ)c̄> = Π̄Ū> + ŪΠ̄>.

SimProve : On input crs, c̄, τ the simulator picks a matrix Hsim ← H and computes

Π̄sim = c̄(w>, 0,−1) + ŪHsim.

Theorem 3.5.2. The proof system given above is a Non-Interactive Zero-Knowledge Proof for the language

LA,z,gk, with perfect completeness, perfect soundness and composable zero-knowledge of (k + 2)` group

elements based on the D`,k-MDDH Assumption.

Proof. First, it is clear that under the D`,k −MDDH Assumption, the soundness (when crs is generated by

GenCRS) and the WI setting (when crs is generated by SimGenCRS) are computationally indistinguishable.

Completeness. To see completeness, note that by definition

c̄ = Ū


r

m

0

 ,

where m ∈ Zp is such that m̄ = mḡ. Therefore, the left term of the verification equation is:

c̄(sḡ)> + (sḡ)c̄> = Ū


rḡ

m̄

0̄

 s> + sŪ(r>ḡ, m̄, 0̄)

while the right term of a verification equation for a honestly created proof can be rewritten as:

Π̄Ū> + ŪΠ̄> = s(r>ḡ, m̄, 0̄)Ū> + Ū


rḡ

m̄

0̄

 s> + Ū(H +H>)Ū>
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Since H ∈ H, perfect completeness follows.

Soundness. Let ξ ∈ Z`p be any vector such that ξ>A = 0 and ξ>s = 1. If Π̄ is any proof that satisfies the

verification equation, multiplying on the left by ξ> and the right by ξ in the soundness setting,

ξ>(c̄(sḡ)> + (sḡ)c̄>)ξ = ξ>(Π̄Ū> + ŪΠ̄>)ξ,

we obtain

ξ>c̄ḡ + ḡc̄>ξ = 2ξ>c̄ḡ = 0T

Since this holds for any vector ξ such that ξ>A = 0 and ξ>s = 1, this implies that c̄ ∈ LA,z,gk, which

proves perfect soundness.

Composable Zero-Knowledge. We will now see that, in the witness indistinguishability setting, both a real

proof and a simulated proof have the same distribution when c̄ ∈ LA,z,gk. We first note that they both satisfy

the verification equation. Indeed, the left term of the equation in the WI setting is the same as before and

obviously equal to the right term of the equation for the real proof. On the other hand, if c̄ ∈ LA,z,gk, the

right term of the verification equation for a simulated proof is:

Π̄simŪ
> + ŪΠ̄>sim = c̄(w>, 0,−1)Ū> + Ū


w>

0

−1

 c̄> = c̄(sḡ)> + (sḡ)c̄>.

We now argue that an honestly generated proof Π̄ and a simulated proof Π̄sim have the same distribution.

By construction, there exist some matrices Θ and Θ′ such that Π̄ = ŪΘ and Π̄sim = ŪΘ′. Now, if

Π̄1 = ŪΘ1 and Π̄2 = ŪΘ2 are two proofs, real or simulated, which satisfy the verification equation, then

necessarily (Π̄1 − Π̄2)Ū> + Ū(Π̄1 − Π̄2) = Ū((Θ1 −Θ2) + (Θ1 −Θ2)>)Ū> = 0.

Since with overwhelming probability, Ū has rank k+2, it must hold that (Θ1−Θ2)+(Θ1−Θ2)> = 0,

that is, it must hold that (Θ1 − Θ2) ∈ H. By construction, both for honestly generated proofs Π̄ and

simulated proofs Π̄sim this difference is uniformly distributed inH.

Efficiency comparison

It is straightforward to see that our proof requires `(k + 2) group elements. For sake of simplicity, let us

assume z> = (0, . . . , 0, 1) ∈ Z`p. There are two possible approaches to prove ciphertext validity based on a

D`′,k′- matrix assumption. In the first one, one commits to r, m̄ (which requires `′(k + 1) group elements)

and then one proves that

c̄`−1 = (A`−1ḡ)r, c̄` = (A`ḡ)r + m̄,

where c̄`−1, A`−1 denote the first `−1 elements of c̄ and the first `−1 rows ofA and c̄`, A` the last element

and the last row. In this case, for the proof we need to give k′(` − 1) elements for the first ` − 1 equations

and `′(k+ 1) for the last equation (although the last equation is also linear, the witness is in Zp and Ḡ so the
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proof is the same size of a quadratic equation, see Figures 3.1 and 3.2). The second approach is to write the

statement as a pairing product equation, in which case the prover commits to rḡ, m̄ (which requires `′(k+1)

group elements) and it proves that:

c̄`−1ḡ = (A`−1ḡ)(rḡ), c̄`ḡ = (A`ḡ)(rḡ) + m̄ḡ.

Now, all the equations are linear pairing product equations and the total cost of the proof is `(k′ + 1).

Therefore, in total we need `′(k + 1) + `′(k + 1) + k′(` − 1) group elements using the first approach and

`′(k+ 1) + `(k′ + 1) using the second. When adequate `, k parameters are chosen, our proofs are therefore

more efficient than the two mentioned alternative approaches.

Application example 1

We can use our results to show that the 2 − Lin-based Cramer-Shoup encryption scheme described is a

well formed ciphertext for some (secret) message m̄. Let Aα,Mα, C the matrices described in the sec-

ond example of Section 3.5.1. To apply our results in this section, include in the crs the matrix ŪC :=

(C||zC ||Cw + sC)ḡ in the soundness setting and ŪC := (C||z||Cw)ḡ in the WI setting, where s>C :=

(0, 0, 0, 0, 1, 0) and z>C := (0, 0, 1, 0, 0, 0). To prove that a ciphertext is valid for a certain value of α, we

would proceed as we just described with respect to the crs Ūα = MαŪC . In this application, in our case

the size of the proof is of 20 group elements (` = 5, k = 2), while a proof of ciphertext validity based on

2−Lin would require 24 group elements using the most efficient of the two approaches for these parameters

(`′ = 3, k = 2, k′ = 2, ` = 5).

3.5.3 More efficient proofs of plaintext equality

One of the applications of D`,k-MDDH assumptions given in [EHK+17] is building encryption schemes.

One can define an encryption scheme which encryption algorithm works as follows. For a public key defined

as pkA = (Ḡ; (Aḡ) ∈ Ḡ`×k), for some A← D`,k, given r ∈ Zkp , the encryption of m̄ ∈ Ḡ is defined as:

Enc(gk, pkA, m̄; r) = c̄ = Arḡ + (0̄, . . . , 0̄, m̄)>.

In [EHK+17], the decryption algorithm is also given and a reduction to the D`,k-MDDH is shown.

This encryption scheme corresponds to a commitment in Groth-Sahai proofs, with some particular ran-

domness. Indeed, we can rewrite

c̄ = Arḡ + (0̄, . . . , 0̄, m̄)> = Arḡ + m̄z,

where z := (0, . . . , 0, 1)>. Note that c̄ can be seen as a commitment to m̄ using randomness s> := (r>, 0).

Therefore, given two (potentially distinct) matrix distributions D`1,k1 ,D′`2,k2 and A ← D`1,k1B ← D′`2,k2 ,

proving equality of plaintexts of two ciphertexts encrypted under pkA, pkB , corresponds to proving that two
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commitments under different keys open to the same value. Our proof will be more efficient because we do

not give any commitments as part of the proof, since the ciphertexts themselves play this role. More specif-

ically, given c̄A = Enc(gk, pkA, m̄; r) and c̄B = Enc(gk, pkB, m̄; s) we will treat c̄A as a commitment to

the variable x̄ ∈ Ḡ = A1 and c̄B as a commitment to the variable ȳ ∈ Ḡ = A2 and prove that the quadratic

equation e(x̄, ḡ) · e(−ḡ, ȳ) = 0T is satisfied. The zero-knowledge simulator will open ι1(ḡ), ι2(−ḡ) as

commitments to the 0̄ variable and simulate a proof for the equation e(x̄, 0̄) · e(0̄, ȳ) = 0T, which is trivially

satisfiable and can be simulated.

More formally, let

LA,B,z1,z2,gk := {(c̄A; c̄B) : c̄A = Arḡ + m̄z1; c̄B = Bsḡ + m̄z2} ⊂ Ḡ`1 × Ḡ`2

where r ∈ Zk1p , s ∈ Zk2p , ḡ ∈ Ḡ, z1 ∈ Z`1p , and z1 /∈ Im(A) and z2 ∈ Z`2p , z2 /∈ Im(B)

We now give

The construction

Setup : The setup specifies some group gk = (p, Ḡ,T, e, ḡ)← SPG(1λ).

GenCRS : The common reference string crs specifies Ū = (ū1, . . . , ūk1+1) and V̄ = (v̄1, . . . , v̄k2+1),

which are (Ū , V̄ ) = ((A||Aw1)ḡ, (B||Bw2)ḡ), where w1 ← Zk1p ,w2 ← Zk2p , z1 ∈ Z`1p , z1 /∈ Im(A)

and z2 ∈ Z`2p , z2 /∈ Im(B). The common reference string is crs := (Ū , V̄ , z1, z2).

SimGenCRS : The common reference string crs specifies Ū = (ū1, . . . , ūk1+1) and V̄ = (v̄1, . . . , v̄k2+1),

which are (Ū , V̄ ) = ((A||Aw1 − z1)ḡ, (B||Bw2 − z2)ḡ), where w1 ← Zk1p ,w2 ← Zk2p , z1 ∈

Z`1p , z1 /∈ Im(A) and z2 ∈ Z`2p , z2 /∈ Im(B). The crs is crs := (Ū , V̄ , z1, z2). The trapdoor is

τ = (w1,w2) ∈ Zk1p × Zk2p .

Prove : On input the setup gk, the common reference string crs, (c̄A, c̄B) ∈ LA,B,z1,z2,gk and the witness

(r, s) ∈ Zk1p × Zk2p , pick T ← Z(k1+1)×(k2+1)
p and return

Π̄ = z2((rḡ)>, 0̄)− V̄ T> ∈ Ḡ`2×(k1+1)

Θ̄ = −z1((sḡ)>, 0) + ŪT ∈ Ḡ`1×(k2+1).

VerifyProof : On input gk, crs, c̄A, c̄B the verifier checks if

c̄A(z2ḡ)> − (z1ḡ)c̄>B = ŪΠ̄> + Θ̄V̄ >.

SimProve : On input gk, crs, c̄A, c̄B, τ = (w1,w2) the simulator picks T ← Z(k1+1)×(k2+1)
p and returns

Π̄sim = −c̄B(w>1 ,−1)− V̄ T>, Θ̄sim = c̄A(w>2 ,−1) + ŪT.
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Theorem 3.5.3. Let D`1,k1 and D′`2,k2 be two matrix distributions and let A← D`1,k1 , B ← D′`2,k2 . There

exists a Non-Interactive Zero-Knowledge Proof for the language LA,B,z1,z2,gk of `1(k2 + 1) + `2(k1 + 1)

group elements with perfect completeness, perfect soundness and composable zero-knowledge based on the

D`1,k1 −MDDH and the D`2,k2 −MDDH Assumption.

Proof. First, it is clear that under the D`,k − MDDH Assumption, the soundness and the WI setting are

computationally indistinguishable.

Completeness. Note that the ciphertexts can be written as:

c̄A = Ū

r

0

+ m̄z1 cB = V̄

s

0

+ m̄z2

therefore, the left term of the equation is of the form:

c̄A(z2ḡ)> − (z1ḡ)c̄>B = Ū

r

0

 (z2ḡ)> − (z1ḡ)(s>, 0)V̄ > + m̄(z1z
>
2 − z1z

>
2 )

= Ū

r

0

 (z2ḡ)> − (z1ḡ)(s>, 0)V̄ >,

from which it can easily be seen that an honestly generated proof satisfies the verification equation.

Soundness. Let ξ1 ∈ Z`1p be any vector such that ξ>1 A = 0, ξ>1 z1 = 1 and let ξ2 ∈ Z`2p be any vector such

that ξ>2 B = 0, ξ>2 z2 = 1. Let Π̄, Θ̄ be any proof that satisfies the verification equation. In the soundness

setting, the verification equation holds if and only if

ξ>1 (c̄A(z2ḡ)> − (z1ḡ)c̄>B)ξ2 = ξ>1 (ŪΠ̄> + Θ̄V̄ >)ξ2,

from which it follows that

ξ>1 c̄Aḡ − ḡc̄>Bξ2 = 0T

which implies that ξ>1 c̄A = c̄>Bξ2. Since this holds for any possible ξ1, ξ2 meeting the aforementioned

conditions, one can easily conclude that m̄1 = m̄2, as required.

Composable zero-knowledge. Clearly, an honestly generated proof also satisfies the verification equation

in the WI setting. On the other hand, a simulated proof satisfies the verification equation, since,

c̄A(z2ḡ)> − (z1ḡ)c̄>B = c̄A(V̄ (w>2 ,−1)>)> − Ū(w>1 ,−1)>c̄>B

= (c̄A(w>2 ,−1) + ŪT )V̄ > − Ū((w>1 ,−1)>c̄>B − T V̄ >)

for any T ← Z(k1+1)×(k2+1)
p . In the WI setting, c̄A, (z1ḡ) ∈ 〈ū1; . . . ; ūk1+1〉 and c̄B, (z2ḡ) ∈ 〈v̄1, . . . ,

v̄k2+1〉. In either case (real or simulated), the matrix T is random, so we can think of Θ̄ as uniformly

distributed. On the other hand, for any fixed Θ̄, any two proofs Π̄, Π̄′ which satisfy the verification equation,

it must hold that 0T = Ū(Π̄− Π̄′)>. In the WI setting, since c̄B ∈ 〈v̄1, . . . , v̄k2+1), both for the real and the
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simulated proof this equation holds if and only if there exists a non-zero matrix H such that0T = ŪHV̄ >.

Such a matrix does not exist because in the WI setting Ū and V̄ have full rank. Therefore, both for real

and simulated proofs, Θ̄ and Π̄ are uniformly distributed among all the proofs that satisfy the verification

equation.

Efficiency comparison

The size of our proof of membership in (c̄A, c̄B) ∈ LA,B,z1,z2,gk for some A ← D`1,k1 , B ← D′`2,k2 , is

`1(k2 + 1) + `2(k1 + 1). The size of a standard proof depends on general of the specific A,B, z1, z2. We

discuss several examples of applications below.

Example of application 1

When `1 = k1 + 1, `2 = k2 + 1, z>1 = (0, . . . , 0, 1) ∈ Zk1+1
p and z>2 = (0, . . . , 0, 1) ∈ Zk2+1

p the natural

approach is the one described in [KV13], namely, if we denote by A0 and c̄A,0 the first k1 rows of A and the

first k1 elements of c̄A, A1 and c̄A,1 the last row and element, by B0 and c̄B,0 the first k2 rows of B and the

first k2 elements of c̄B and B1, c̄B,1 the last row and element, one would prove that the following equations

are satisfied

(A0ḡ)x = c̄A,0

(B0ḡ)y = c̄B,0

(A1ḡ)x− (B1ḡ)y = c̄A,1 − c̄B,1.

That is, one needs to prove that (k1 + k2 + 1) linear multiscalar multiplication equations are satisfiable

with k1 + k2 variables. Therefore, if one uses an instantiation of Groth-Sahai based on some Dk −MDDH

problem, one needs (k1 + k2 + 1)k group elements for the proof and (k1 + k2)(k + 1) group elements for

the commitments, whereas in our case we give a total of 2(k1 + 1)(k2 + 1) group elements. For the special

case of 2 − Lin, with A ← L2, B ← L2 a proof based on the 2 − Lin instantiation of Groth-Sahai proofs

as described in [KV13] requires thus 22 elements as opposed to 18. On the other hand, for the encryption

scheme of Hofheinz and Jager with tight security reduction to 2-Lin [HJ16] we need to make a proof for

equality of plaintexts written as a pairing product equation. This is because the authors need to convert

an OR of sets of pairing product equations into an AND of pairing product equations. In terms of pairing

product equations, equality of plaintexts is expressed as

e((A0ḡ)x, ḡ) = e(c̄A,0, ḡ)

e((B0ḡ)y, ḡ) = e(cB,0, ḡ)

e((A1ḡ)x− (B1ḡ)y, ḡ) = e(c̄A,1 − c̄B,1, ḡ)
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and requires longer proofs, namely (k1 + k2 + 1)(k+ 1) group elements for the proof and (k1 + k2)(k+ 1)

for the commitments. In this case, for 2− Lin the proof is reduced from 27 elements to 18 elements.

More general relations

We think our results can be extended to give more efficient arguments of knowledge for affine relations

among ciphertexts encrypted under more than two different public keys. More specifically, given some

ordered sequence of matrices A1, . . . , An independently sampled from D1
`1,k1

, . . . ,Dn`n,kn , some vectors

zi ← Z`p, zi /∈ Im(Ai), and some ciphertexts c̄i = (Aiḡ)ri + m̄izi, one could use similar techniques to

prove that the ciphertexts are such that
∑n

i=1 bim̄i = t̄, for some constants b1, . . . , bn ∈ Zp and t̄ ∈ Ḡ.

3.5.4 Commitment schemes

The languages for which we have given more efficient proofs in this section arise naturally when one tries to

prove statements about ciphertexts, but they naturally extend to more general commitment schemes (obvi-

ously a ciphertext can be seen as a special type of commitment). For instance, in [FLM11], the authors prove

that a Cramer-Shoup ciphertext encrypts the same value as a Groth-Sahai commitment based on 2 − Lin.

To get a more efficient proof for this statement or also for the statement that two Groth Sahai commit-

ments based on different matrix assumptions correspond to the same value, we can essentially use the same

approach as the one of Section 3.5.3.
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Chapter 4

Fine-Tuning Groth-Sahai Proofs

This chapter is mainly based on the results published in [EG14], coauthored with Jens Groth.

4.1 Our contributions

In this contribution, we focus on improving Groth-Sahai proofs efficiency and we propose several ways to

fine-tune Groth-Sahai zero-knowledge proofs in the asymmetric SXDH bilinear group setting, which is the

one that yields the most efficient NIZK proofs.

• Groth-Sahai proofs use public constants and committed variables. We introduce two new types of

values: public base elements and encrypted variables. This reduces the size of proofs for statements

involving these values.

• We recast Groth-Sahai proofs as a commit-and-prove scheme. This makes it possible to reuse com-

mitments in the proofs of different statements even when these statements depend on previous com-

mitments and proofs.

• We show that the prover’s computation can be reduced by letting her pick her own provably correct

common reference string.

Encrypted variables

The common reference string in Groth-Sahai proofs contains a public commitment key that the prover uses

to commit to variables. The prover then proceeds to prove that the committed variables satisfy the equations

in the statement. The commitment key can be set up to be perfectly binding, in which case it is impossible

to cheat in the proof (perfect soundness). Alternatively, the commitment key can be set up to be perfectly

hiding, in which case the NIZK proof can be simulated without knowledge of the witness (perfect zero-

knowledge).
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In our scheme, we allow the prover to encrypt variables using ElGamal encryption as an alternative

to the commitment scheme. ElGamal encryption requires two scalar multiplications and commitments in

Groth-Sahai proofs require four scalar multiplications so this reduces the prover’s computation. Moreover,

equations that use ElGamal ciphertexts instead of commitments have simpler proofs and we save two group

elements for each of those equations.

We must be careful when using ElGamal encryption though since it will always be perfectly binding

regardless of the key. We can therefore not set up the common reference string to give us perfect zero-

knowledge any more. Instead, we rely on the Decision Diffie-Hellman (DDH) assumption to get computa-

tional zero-knowledge and we place some restrictions on the types of equations where ElGamal encryptions

can be used.

Base elements

Groth-Sahai proofs are zero-knowledge if all pairing-product equations have tT = 0T and no public con-

stants are paired with each other. Groth and Sahai gave a technique to rewrite the equations to enable

zero-knowledge proofs when tT =
∑n

i=1 e(t̂i, ťi), however, this comes at a cost of O(n) group elements.

We observe that the commitment keys can be set up to allow simulation in the special case where

the public constants are the base elements ĝ or ȟ. In the context of Groth-Sahai proofs this makes zero-

knowledge simulation possible when tT = e(â, ȟ) + e(ĝ, b̌) for public constants â ∈ Ĝ and b̌ ∈ Ȟ. This

extension of Groth-Sahai proofs comes at no extra cost, so we save the costly rewriting of the equations to

get zero-knowledge.

In addition, Groth-Sahai zero-knowledge proofs for multi-scalar multiplications equations in Ĝ or in Ȟ

in which all the field elements are constants consist of 6 group elements unless t̂ = 0̂ or ť = 0̌, in which

case the size of the proof is reduced to 2 group elements. We observe that if t̂ = ĝ or ť = ȟ then we can still

have zero-knowledge proofs which consist of 2 group elements.

Using commitment keys with known discrete logarithms

In Groth-Sahai proofs, the prover uses a common reference string shared between the prover and the verifier

to create NIZK proofs. This common reference string is created by a trusted entity and, in particular, the

discrete logarithms of the commitment keys with respect to ĝ and ȟ are unknown to both the prover and the

verifier.

In this contribution, we show how to reduce the prover’s computation by allowing her to choose her own

common reference string, which we think of as her public key. This change reduces the cost of computing

her commitments from 4 scalar multiplications to 2 scalar multiplications and it also reduces the cost of

computing proofs.

The verifier does of course need a guarantee that the prover’s public key is formed as a perfectly binding
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common reference string, otherwise the proofs would not be sound any more. This can be accomplished

by letting the prover give a Groth-Sahai proof, using a common reference string the verifier does trust, for

the public key being correct. We show that the prover can communicate her public key and prove it is

correct using 12 group elements in total, which is a one-off cost as the public key can be used for many

commitments and proofs.

Seeing the common reference string as the prover’s public key also gives us some flexibility in the setup.

Instead of proving the public key correct in the common reference string model, the prover could use the

multi-string model [GO14] where the setup assumption is relaxed to assuming a majority out of n common

reference strings are honest. Alternatively, the prover could give a zero-knowledge proof of knowledge to a

trusted third party that the public key is correct and get a certificate on the public key.

Type-based commit-and-prove schemes

A commit-and-prove scheme [Kil90, CLOS02] is a natural generalization of a zero-knowledge proof, where

the prover can commit to values and prove statements about the committed values. Commit-and-prove

schemes provide extra flexibility and reduce communication; the same commitments can for instance be

used in different proofs for adaptively chosen statements about the committed values.

Groth-Sahai proofs can be used to build a non-interactive commit-and-prove scheme in a natural way.

Fuchsbauer [Fuc11] defined a witness-indistinguishable Groth-Sahai based commit-and-prove scheme and

used it in the construction of delegatable anonymous credentials.

We will formulate our construction as a non-interactive commit-and-prove scheme because it allows for

greater flexibility. It is for instance possible to choose values to be committed to in an adaptive fashion that

depends on previous commitments or proofs, while the traditional definition of NIZK proofs would require

the prover to make an entirely new set of commitments for each statement to be proven.

Our results are natural extensions of Groth-Sahai proofs and our definition of a non-interactive commit-

and-prove scheme will resemble Fuchsbauer’s [Fuc11]. However, we are in a different situation because we

have more types of elements that we want to commit to. A group element in Ĝ may for instance be commit-

ted using the perfectly binding/perfectly hiding commitment scheme or using ElGamal encryption. We could

resolve this by using multiple commitment schemes, i.e., define and construct a many-commitment-scheme-

and-prove system. However, the definition would quickly become unwieldy as the number of commitment

schemes grows.

To give a generally applicable definition of non-interactive commit-and-prove schemes, we instead pro-

pose the notion of type-based commitments. A type-based commitment scheme enables the prover to com-

mit to a message m with a publicly known type t. One example of a type could for instance be t = encĜ

meaning the value m should be encrypted (as opposed to using the more expensive commitment operation)

and it should be done in group Ĝ. Type-based commitments resemble tag-based commitments, where a
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message m can be committed under an arbitrary tag tag, but a crucial difference is that while tags can be

arbitrary bit-strings, types may be restricted. More precisely, we require that the type and message pair

(t,m) belong to a message space Mgk. We consider the type as being part of the message, so another way

of looking at a type-based commitment scheme is to say a message consists of public part t and a private

partm. This increases the flexibility of the commitment scheme, we can for instance create a type (pubĜ, x)

that publicly declares the committed value x. Since the type is public this commitment is no longer hiding,

however, as we shall see it simplifies our commit-and-prove scheme because we can now commit to both

public constants and secret variables without having to treat them differently.

Armed with type-based commitments we provide a formal definition of commit-and-prove schemes,

where the prover may commit to values and prove statements about the values. We stress that commit-

ments and proofs can be arbitrarily interleaved so at any given point a new value or statement may depend

on previous commitments and proofs, which makes them more flexible than standard Groth-Sahai proofs.

The commit-and-prove scheme is defined to be sound if it is impossible to prove a false statement about

the committed values and it is defined to be zero-knowledge if there exists a simulator that can simulate

commitments and proofs.

Applications

To illustrate the advantages of our fine-tuned Groth-Sahai proofs we will give an example based on the weak

Boneh-Boyen signature scheme [BB08], which is widely used in pairing-based protocols. The verification

key is an element v̂ ∈ Ĝ and a signature on a message m ∈ Zp is a group element σ̌ ∈ Ȟ such that

e(v̂ +mĝ, σ̌) = e(ĝ, ȟ).

Suppose the prover has commitments to v̂ and σ̌ and wants to demonstrate that they satisfy the verifi-

cation equation for a (public) message m. With traditional Groth-Sahai proofs the commitments c and d

to v̂ and σ̌ would be treated as part of the statement and one would carefully demonstrate the existence of

openings of c and d to v̂ and σ̌ satisfying the pairing-product equation. With a commit-and-prove system,

we can instead jump directly to demonstrating that the values inside v̂ and σ̌ satisfy the verification equation

without having to treat the openings of the commitments as part of the witness. This saves several group

elements each time one of the commitments is used.

Next, observe that the pairing-product equation has tT = e(ĝ, ȟ). A direct application of Groth-Sahai

proofs would therefore not yield a zero-knowledge proof but only give witness-indistinguishability. To

get zero-knowledge we could use the workaround suggested by Groth-Sahai, which would consist of com-

mitting to a new variable y̌, prove that y̌ = ȟ and simultaneously e(v̂ + mĝ, σ̌) − e(ĝ, y̌) = 0T. This

work-around would increase the cost of the proof from 8 group elements to 16 group elements, so we save

8 group elements by enabling a direct proof.
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Now assume the prover has created her own common reference string pk and has already sent it together

with the well-formedness proof to the verifier. The prover could now use pk to compute the zero-knowledge

proof for the equation (v̂ + mĝ) · σ̌ = ĝȟ . By using pk, she would need to do 10 scalar multiplications in

Ĝ and 6 scalar multiplications in Ȟ to compute the proof. In contrast, if she was computing the proof using

the commitment key ck, she would need to do 12 scalar multiplications in Ĝ and 10 scalar multiplications

in Ȟ. As the operations in Ȟ are usually significantly more expensive than the operations in Ĝ, the prover

is essentially saving 4 expensive operations of the 10 that she would need to do if she used ck. Therefore,

our techniques reduce the computational cost of creating the zero-knowledge proof by roughly 40%. In

addition, the computational cost of computing the commitments to v̂ and σ̌ would also be reduced by 50%.

Finally, we can obtain a saving by encrypting one of the variables instead of committing to it. If we

encrypt v̂ for instance, the ciphertext is still 2 group elements just as the commitment in a Groth-Sahai proof

would be, but the cost of the proof for the pairing-product equation is reduced from 8 group elements to 6

group elements. In total, we have reduced the cost of the proof by 63% from 16 group elements to 6 group

elements.

In Sec. 4.9 we give two concrete examples of existing schemes using Groth-Sahai proofs where our

techniques can improve efficiency.

4.2 Commit-and-prove scheme definitions

In Section 2.8 we explained how to define a setup-dependent language Lgk from a relation R containing

tuples of setup, statement and witness (gk, x, w).

We will now define a commit-and-prove scheme for a relation R. In the commit-and-prove scheme,

we may commit to different values w1, . . . , wN and prove for different statements x that a subset of the

committed values w = (wi1 , . . . , win) constitute a witness for x ∈ Lgk, i.e., (gk, x, w) ∈ R.

We will divide each committed value into two parts wi = (ti,mi). The first part ti can be thought

of as a public part that does not need to be kept secret, while the second part mi can be thought of as a

secret value that our commit-and-prove scheme should not reveal. The first part ti will be useful later on to

specify the type of value mi is, for instance a group element or a field element, and to specify which type

of commitment we should make to mi. This is a natural and useful generalization of standard commitment

schemes.

A commit-and-prove scheme CP = (Setup,GenCRS,Commit,Prove,VerifyProof) consists of five

polynomial time algorithms. The algorithms Setup,GenCRS,Prove are probabilistic and the algorithms

Commit,VerifyProof are deterministic.

Setup(1λ): On input a security parameter 1λ outputs a setup gk. The setup specifies a message space Mgk,

a randomness space Rgk and a commitment space Cgk. Membership of either space can be decided
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efficiently.

GenCRS(gk): On input a setup gk generates a commitment key ck.

Commit(gk, ck, t,m; r): Given a setup gk, a commitment key ck, a message (t,m) ∈Mgk and randomness

r such that (t, r) ∈ Rgk returns a commitment c such that (t, c) ∈ Cgk.

Prove(gk, ck, x, (t1,m1, r1), . . . , (tn,mn, rn)): Given a setup gk, a commitment key ck, a statement x and

commitment openings such that (ti,mi) ∈ Mgk, (ti, ri) ∈ Rgk and (gk, x, t1,m1, . . . , tn,mn) ∈ R

returns a proof π.

VerifyProof(gk, ck, x, (t1, c1), . . . , (tn, cn), π): Given a setup gk, a commitment key ck, a statement x, a

proof π and commitments (ti, ci) ∈ Cgk returns 1 (accept) or 0 (reject).

Definition 4.2.1 (Perfect correctness). The commit-and-prove system CP is (perfectly) correct if for all

adversaries A

Pr


gk ← Setup(1λ); ck ← GenCRS(gk) ; (x,w1, r1, . . . , wn, rn)← A(gk, ck) ;

ci ← Commit(gk, ck, wi; ri) ;π ← Prove(gk, ck, x, w1, r1, . . . , wn, rn) :

VerifyProof(gk, ck, x, (t1, c1), . . . , (tn, cn), π) = 1

 = 1,

where A outputs wi, ri such that wi = (ti,mi) ∈Mgk, (ti, ri) ∈ Rgk and (gk, x, w1, . . . , wn) ∈ R.

We say a commit-and-prove scheme is sound if it is impossible to prove a false statement. Strengthening

the usual notion of soundness, we will associate unique values to the commitments, and these values will

constitute a witness for the statement. This means that not only does a valid proof guarantee the truth of the

statement, but also each commitment will always contribute a consistent witness towards establishing the

truth of the statement.

Definition 4.2.2 (Perfect soundness). The commit-and-prove system CP is (perfectly) sound if there exists

a deterministic (unbounded) opening algorithm Open such that for all adversaries A

Pr


gk ← Setup(1λ); ck ← GenCRS(gk) ;

(x, t1, c1, . . . , tn, cn, π)← A(gk, ck) ; mi ← Open(gk, ck, ti, ci) :

VerifyProof(gk, ck, x, t1, c1, . . . , tn, cn, π) = 0 ∨ (gk, x, (t1,m1), . . . , (tn,mn)) ∈ R

 = 1.

Extending the notion of soundness, we may define knowledge as the ability to efficiently extract a

witness for the truth of the statement proven when given an extraction key xk. Actually, the commit-and-

prove schemes we construct will not allow the extraction of all types of witnesses due to the hardness of the

discrete logarithm problem. However, we can specify a function F such that we can extract F (gk, w) from

a commitment. Efficient extraction of a witness corresponds to the special case where F (gk, w) = m, with

m being the secret part of the witness w = (t,m).
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Definition 4.2.3 (Perfect F -knowledge). Let in the following ExtGenCRS and Extract be two algorithms

as described below.

• ExtGenCRS is a p.p.t. algorithm that on gk returns (ck, xk). We call ck the commitment key and

xk the extraction key. We require that the probability distributions of ck made by ExtGenCRS and

GenCRS are identical.

• Extract is a deterministic polynomial time algorithm that given a setup gk, an extraction key xk and

(t, c) ∈ Cgk returns a value.

The commit-and-prove scheme CP with perfect soundness for opening algorithm Open has F -knowledge

for a function F if for all adversaries A

Pr

 gk ← Setup(1λ); (ck, xk)← ExtGenCRS(gk) ; (t, c)← A(gk, ck, xk) :

(t, c) /∈ Cgk ∨ Extract(gk, xk, t, c) = F (gk, t,Open(gk, ck, t, c))

 = 1.

We say a commit-and-prove scheme is zero-knowledge if it does not leak information about the secret

parts of the committed messages besides what is already leaked by the public parts. This is defined as the

possibility to simulate commitments and proofs without knowing the secret parts of the messages (the types

are known) if instead some secret simulation trapdoor is known about the commitment key ck.

Following [Gro06, GOS12] we define a strong notion of zero-knowledge called composable zero-

knowledge. Composable zero-knowledge says the commitment key can be simulated, and if the commit-

ment key is simulated it is not possible to distinguish real proofs from simulated proofs even if the simulation

trapdoor is known.

Definition 4.2.4 (Composable zero-knowledge). The commit-and-prove system CP is computationally com-

posable zero-knowledge if there exist p.p.t. algorithms SimGenCRS, SimCommit, SimProve such that for

all non-uniform polynomial time stateful interactive adversaries A

Pr
[
gk ← Setup(1λ); ck ← GenCRS(gk) : A(gk, ck) = 1

]
≈Pr

[
gk ← Setup(1λ); (ck, tk)← SimGenCRS(gk) : A(gk, ck) = 1

]
and

Pr


gk ← Setup(1λ); (ck, tk)← SimGenCRS(gk);

(x, i1, . . . , in)← ACommit(gk,ck,·)(gk, ck, tk);

π ← Prove(gk, ck, x, wi1 , ri1 , . . . , win , rin) :

A(π) = 1



≈ Pr


gk ← Setup(1λ); (ck, tk)← SimGenCRS(gk);

(x, i1, . . . , in)← ASimCommit(gk,tk,·)(gk, ck, tk);

π ← SimProve(gk, tk, x, ti1 , si1 , . . . , tin , sin) :

A(π) = 1

 ,
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where

• tk is a trapdoor key used to construct simulated proofs

• Commit(gk, ck, ·) on wi = (ti,mi) ∈ Mgk picks uniformly random ri such that (ti, ri) ∈ Rgk and

returns ci = Commit(gk, ck, wi; ri)

• SimCommit(gk, tk, ·) on wi = (ti,mi) ∈ Mgk runs (ci, si) ← SimCommit(gk, tk, ti) and returns

ci, where si is some auxiliary information used to construct simulated proofs

• A picks (x, i1, . . . , in) such that (gk, x, wi1 , . . . , win) ∈ R

Comparison to standard zero-knowledge proofs. The commit-and-prove functionality defined above

is a generalization of standard zero-knowledge proofs. The commitment key corresponds to a common

reference string. To give a proof for x ∈ Lgk the prover could commit to the witness and then give a proof.

However, note that languages appearing in standard zero-knowledge proofs are not parametrized by any

setup. The correctness, soundness and zero-knowledge properties given above imply that this would yield a

NIZK proof system for R.

The generalization to a commit-and-prove functionality is quite useful for efficiency reasons. Using a

traditional zero-knowledge proof system the prover has to start from scratch every time a new statement

has to be proved. In a commit-and-prove system, commitments to values can be reused in multiple proofs,

which reduces both computation and communication.

There are also conceptual advantages to using a commit-and-prove functionality. One is that it is conve-

nient that the same committed values can be used across multiple proofs. Another one is that we capture in

a natural way that statements may be related to commitments and proofs that have been made before.

4.3 Preliminaries

4.3.1 Using linear algebra to express bilinear group equations

Let (p, Ĝ, Ȟ,T, e, ĝ, ȟ)← PG be a type-III bilinear group.

Writing the pairing multiplicatively allows us to use linear algebra notation in a natural way, we have

for instance

x̂

 0̌ y̌

ž 0̌

 e> =

 x̂y̌

0T

 ,

for x̂ ∈ Ĝ, y̌, ž ∈ Ȟ and e = (0, 1). Note that as (x̂a)y̌ = x̂(ay̌) we will use the simpler notation

x̂ay̌ = (x̂a)y̌ = x̂(ay̌).
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4.3.2 ElGamal encryption

We have already introduced the ElGamal encryption scheme in Section 2.4.1. In this section, we redefine it

to leverage the more compact algebraic notation.

• Setup: on input a security parameter 1λ, output a cyclic group Ĝ of prime order p, an element ĝ ∈ Ĝ

and an element ξ ← Z∗p. Then, define the public key as pk = (Ĝ, v̂), where v̂ = (ξĝ, ĝ)> ∈ Ĝ2×1

and the secret decryption key as xk = (pk, ξ), where ξ = (−ξ−1 mod p, 1).

• Encrypt: the encryption algorithm takes as input the setup gk, the public key pk and a message

x̂ ∈ Ĝ, picks a random r ← Zp and outputs the ciphertext ĉ = e>x̂+ v̂r ∈ Ĝ2×1, where e = (0, 1).

• Decrypt: the decryption algorithm takes as input the setup gk, the secret key xk and a ciphertext

ĉ ∈ Ĝ2×1 and outputs x̂ = ξĉ. Note ξe> = 1 and ξv̂ = 0 so simple linear algebra shows decryption

is correct.

As stated in Section 2.4.1, the ElGamal encryption scheme is IND-CPA secure if the DDH problem is

computationally hard in Ĝ. ElGamal encryption can be defined similarly in Ȟ and if the SXDH assumption

holds we then have IND-CPA secure encryption schemes in both Ĝ and Ȟ.

4.3.3 Pairing-product equations and other types of equations

Using the linear algebra friendly additive notation for group operations and multiplicative notation for the

pairing, we can express the four types of equations for which Groth-Sahai allow us to make NIZK proofs in

a compact way.

Consider elements x̂1, . . . , x̂m ∈ Ĝ and y̌1, . . . , y̌n ∈ Ȟ, which may be publicly known constants (called

âj and b̌i in the introduction) or secret variables. Let furthermore the matrix Γ = {γij}m,ni=1,j=1 ∈ Zm×np and

tT ∈ T be public values. We can now write the pairing product equation simply as

x̂Γy̌ = tT,

where x̂ = (x̂1, . . . , x̂m) and y̌ = (y̌1, . . . , y̌n)>.

We can in a similar fashion write multi-scalar multiplication equations in Ĝ, multi-scalar multiplication

equations in Ȟ, and quadratic equations in Zp as

x̂Γy = t̂ xΓy̌ = ť xΓy = t

for suitable choices of m,n ∈ N,Γ ∈ Zm×np , x̂ ∈ Ĝ1×m, y̌ ∈ Ȟn×1,x ∈ Z1×m
p ,y ∈ Zn×1

p , t̂ ∈ Ĝ, ť ∈ Ȟ

and t ∈ Zp. The vectors x̂, y̌,x,y may contain a mix of known public values and secret variables.

Groth and Sahai [GS12] made the useful observation that by subtracting t̂ · 1, 1 · ť and 1 · t on both

sides of the respective equations we may without loss of generality assume t̂ = 0̂, ť = 0̌ and t = 0 in all
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multi-scalar multiplication equations and quadratic equations. For multi-scalar multiplication equations this

has an implicit cost, though: we need to treat the field element 1 as a variable, as the simulator will need to

equivocate it to the field element 0. This means that if all the field elements that appear in the multi-scalar

multiplication equation are constants, the equation will not be treated as a linear equation any more, which

have witness-indistinguishable proofs which consist of 2 group elements. Instead, the zero-knowledge proof

will consist of 6 group elements. However, in the special case where t̂ = ĝ or ť = ȟ we will show that we

can still treat the equation as a linear equation, which have zero-knowledge proofs consisting of 2 group

elements.

To get zero-knowledge proofs, we will in addition like Groth and Sahai restrict ourselves to tT = 0T

in all pairing product equations. Groth and Sahai [GS12] do not allow pairings of public constants in the

pairing product equations in their zero-knowledge proofs, which we express by requiring the matrix Γ to

contain entries γi,j = 0 whenever x̂i and y̌j both are public values. This is because their zero-knowledge

simulator breaks down when public values are paired. Groth and Sahai offers a work-around to deal with

public values being paired with each other but it involves introducing additional multi-scalar multiplication

equations and therefore increases the complexity of the zero-knowledge proof by many group elements. We

will show that zero-knowledge simulation is possible when base elements ĝ or ȟ are paired with each other

or other public values. Since we do not need the additional multi-scalar multiplication equation used in

Groth and Sahai’s work-around this yields a significant efficiency gain whenever ĝ or ȟ are paired with each

other or other public values.

4.4 Commitment keys and commitments

As in the SXDH instantiation of [GS12], the setup algorithm Setup is defined as follows: given a security

parameter 1λ it generates a bilinear group (p, Ĝ, Ȟ,T, e, ĝ, ȟ)← PG(1λ). Also, like in Groth-Sahai proofs,

commitment keys come in two flavours: extraction keys that give perfect soundness and simulation keys that

give zero-knowledge. The two types of key generation algorithms are given in Fig. 4.1 and by the SXDH

assumption extraction keys and simulation keys are computationally indistinguishable.1

The column vectors v̂, ŵ, û ∈ Ĝ2×1 will be used to make commitments ĉ to group elements x̂ ∈ Ĝ and

scalars x ∈ Zp. Commitments to group elements and scalars are computed as

ĉ← e>x̂+ v̂r + ŵs and ĉ← ûx+ v̂r,

where r, s ∈ Zp. Commitments, usually denoted ď, to group elements ŷ ∈ Ȟ and scalars y ∈ Zp are made

analogously using the row vectors v̌, w̌, ǔ ∈ Ȟ1×2.

1The commitment keys are not defined exactly as in [GS12]: by defining v̂ as (ξĝ, ĝ)> instead of (ĝ, ξĝ)> we will be able to

reduce the computational cost of the prover, as explained in Sec. 4.8. Besides this small difference, the keys v̂, ŵ, û, v̌, w̌ and ǔ

correspond to u1, u2, u, v1, v2 and v in [GS12].
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ExtGenCRS(gk)

ρ← Zp, ξ ← Z∗p σ ← Zp, ψ ← Z∗p
v̂← (ξĝ, ĝ)> v̌← (ψȟ, ȟ)

ŵ← ρv̂ w̌← σv̌

û← ŵ + (0̂, ĝ)> ǔ← w̌ + (0̌, ȟ)

ξ ← (−ξ−1 mod p, 1) ψ ← (−ψ−1 mod p, 1)>

ck ← (p, Ĝ, Ȟ,T, e, û, v̂, ŵ, ǔ, v̌, w̌)

xk ← (ck, ξ, ψ)

Return (ck, xk)

SimGenCRS(gk)

ρ← Zp, ξ ← Z∗p σ ← Zp, ψ ← Z∗p
v̂← (ξĝ, ĝ)> v̌← (ψȟ, ȟ)

ŵ← ρv̂ − (0̂, ĝ)> w̌← σv̌ − (0̌, ȟ)

û← ŵ + (0̂, ĝ)> ǔ← w̌ + (0̌, ȟ)

ck ← (p, Ĝ, Ȟ,T, e, û, v̂, ŵ, ǔ, v̌, w̌)

tk ← (ck, ρ, σ)

Return (ck, tk)

Figure 4.1: Generator algorithms

The commitment scheme is similar to [GS12], however, we will have several different types of commit-

ments and the randomness r, s ∈ Zp we use will depend on the type. Fig. 4.2 summarizes the commitment

types and describes the message, randomness and commitment spaces specified by the setup gk.

The type t = (pubĜ, x̂) corresponds to a commitment to a public value x̂ using randomness r = s = 0.

It is easy for the verifier to check whether a commitment ĉ = e>x̂ is indeed a correct commitment to

a public value x̂. Explicitly allowing public values in the commitments simplifies the description of the

proofs because we can now treat all elements x̂1, . . . , x̂m in a pairing product equation as committed values

regardless of whether they are public or secret. Suppose some of the elements x̂ ∈ Ĝ1×m that appear

in a pairing-product equation are committed as constant and others as Groth-Sahai commitments. The

matrix consisting of all the commitments Ĉ = (ĉ1 · · · ĉm) ∈ Ĝ2×m can be written in a compact way as

Ĉ = e>x̂ + v̂rx + ŵsx, where for a constant x̂i we just have rxi = 0 and sxi = 0.

In a standard Groth-Sahai proof, group element variables are committed as type t = comĜ using ran-

domness r, s ← Zp. We will for greater efficiency also allow commitments of type t = encĜ where s = 0.

A type t = encĜ commitment to a group element x̂ is ĉ← e>x̂+ v̂r, which is an ElGamal encryption of x̂

as described in Sec. 4.3.2. Using encryption of variables instead of commitments reduces the computation

and in some instances the size of the proofs. However, even on a simulation key the encryptions are only

computationally hiding, so we must take care to ensure that it is possible to simulate proofs.

We also introduce the type t = baseĜ for a commitment to the base element ĝ using r = s = 0.

This type allows us to differentiate ĝ from other public values, which is important because the simulation

becomes problematic when public values are paired with each other. However, in the special case when ĝ is

paired with ȟ or public constants it is possible to simulate. In addition, one can get shorter zero-knowledge

proofs for certain equations by using the special properties of ĝ and ȟ.
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t m (r, s) ĉ

(pubĜ,m) m̂ ∈ Ĝ r = s = 0 ĉ = (0̂, m̂)>

encĜ m̂ ∈ Ĝ r ∈ Zp, s = 0 ĉ ∈ Ĝ2×1

comĜ m̂ ∈ Ĝ r, s ∈ Zp ĉ ∈ Ĝ2×1

baseĜ m̂ = ĝ r = s = 0 ĉ = (0̂, ĝ)>

scaĜ m ∈ Zp r ∈ Zp, s = 0 ĉ ∈ Ĝ2×1

unitĜ m = 1 r = s = 0 ĉ = û

t m (r, s) ď

(pubȞ,m) m̌ ∈ Ȟ r = s = 0 ď = (0̌, m̌)

encȞ m̌ ∈ Ȟ r ∈ Zp, s = 0 ď ∈ Ȟ1×2

comȞ m̌ ∈ Ȟ r, s ∈ Zp ď ∈ Ȟ1×2

baseȞ m̌ = ȟ r = s = 0 ď = (0̌, ȟ)

scaȞ m ∈ Zp r ∈ Zp, s = 0 ď ∈ Ȟ1×2

unitȞ m = 1 r = s = 0 ď = ǔ

Figure 4.2: Mgk,Rgk and Cgk.

Scalars have the type t = scaĜ and we use the type t = unitĜ for a commitment to the scalar 1 using

r = s = 0. Please note that t = unitĜ suffices to incorporate any public value a ∈ Zp into our equations by

multiplying the corresponding row in the matrix Γ with a. With these two types, we can therefore commit

to both variables and constants in Zp, which simplifies the description of the proofs.

We have now described the types of commitments in Ĝ and similar types for commitments in Ȟ are

given in Fig. 4.2. The commitment algorithm is described in Fig. 4.3.

The extraction key xk includes a vector ξ such that ξv̂ = ξŵ = 0̂ and ξe> = 1, ξû = ĝ. On a

commitment to a group element ĉ = e>x̂+ v̂r+ ŵs or on an encryption to a group element ĉ = e>x̂+ v̂r

we can extract x̂ by computing x̂ = ξĉ. On a commitment to a scalar ĉ = ûx + v̂r we extract ĝx = ξĉ,

which uniquely determines the committed value x. The extraction algorithm is given in Fig. 4.4.

The simulated commitment algorithm SimCommit(gk, tk, t) is described in Fig. 4.5. Essentially it

commits honestly to public constants, base elements ĝ, ȟ and units 1, which is easy to verify using public

information. For all other types, it commits to 0.

On a simulation key, the commitments of types comĜ or scaĜ are perfectly hiding. Commitments

of types (pubĜ, x̂) or encĜ on the other hand are perfectly binding. However, by the SXDH assumption

commitments of type encĜ cannot be distinguished from commitments to other elements. Commitments of

type (pubĜ, x̂) are public, so we do not require any hiding property.

Commitments to ĝ and 1 of types baseĜ and unitĜ are interesting. The secret simulation key specifies
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Input Randomness Output

(pubĜ, x̂), x̂ r ← 0, s← 0 ĉ← e>x̂

encĜ, x̂ (?) r ← Zp, s← 0 ĉ← e>x̂+ v̂r

comĜ, x̂ r ← Zp, s← Zp ĉ← e>x̂+ v̂r + ŵs

baseĜ, ĝ (?) r ← 0, s← 0 ĉ← e>ĝ

scaĜ, x r ← Zp, s← 0 ĉ← ûx+ v̂r

unitĜ, 1 r ← 0, s← 0 ĉ← û

Input Randomness Output

(pubȞ, y̌), y̌ r ← 0, s← 0 ď← y̌e

encȞ, y̌ (?) r ← Zp, s← 0 ď← y̌e + rv̌

comȞ, y̌ r ← Zp, s← Zp ď← y̌e + rv̌ + sw̌

baseȞ, ȟ (?) r ← 0, s← 0 ď← ȟe

scaȞ, y r ← Zp, s← 0 ď← yǔ + rv̌

unitȞ, 1 r ← 0, s← 0 ď← ǔ

Figure 4.3: Commitment algorithm. The commitments marked with (?) were not defined in [GS12].

Extract(gk, xk, t, ĉ) where ĉ ∈ Ĝ2×1

Return x̂← ξĉ

Extract(gk, xk, t, ď) where ď ∈ Ȟ1×2

Return y̌ ← ďψ

Figure 4.4: Extraction algorithm.

Input Randomness Output

(pubĜ, x̂) r ← 0, s← 0 ĉ← e>x̂

encĜ r ← Zp, s← 0 ĉ← v̂r

comĜ r ← Zp, s← Zp ĉ← v̂r + ŵs

baseĜ r ← 0, s← 0 ĉ← e>ĝ

scaĜ r ← Zp, s← 0 ĉ← v̂r

unitĜ r ← 0, s← 0 ĉ← û

Input Randomness Output

(pubȞ, y̌) r ← 0, s← 0 ď← y̌e

encȞ r ← Zp, s← 0 ď← rv̌

comȞ r ← Zp, s← Zp ď← rv̌ + sw̌

baseȞ r ← 0, s← 0 ď← ȟe

scaȞ r ← Zp, s← 0 ď← rv̌

unitȞ r ← 0, s← 0 ď← ǔ

Figure 4.5: Simulation algorithm for commitments.
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ρ such that û = ρv̂ and e>ĝ = ρv̂ − ŵ. This means that commitments of types baseĜ and unitĜ can be

equivocated as either commitments to ĝ and 1 or as commitments to 0̂ and 0. The zero-knowledge simulator

will use the equivocations to simulate proofs involving the base element ĝ or constants in Zp.

4.5 Proofs

We will first explain how the proofs work using the example of pairing product equations to give intuition.

We want to prove that committed values x̂, y̌ satisfy the equation

x̂Γy̌ = 0T.

Assume that we have committed to x̂, y̌ as Ĉ = e>x̂ + v̂rx + ŵsx and Ď = y̌e + ryv̌ + syw̌. We then

have

ĈΓĎ =(e>x̂ + v̂rx + ŵsx)Γ(y̌e + ryv̌ + syw̌)

=e>x̂Γy̌e + v̂rxΓĎ + ŵsxΓĎ + e>x̂Γryv̌ + e>x̂Γsyw̌

=0T + v̂π̌′v̂ + ŵπ̌′ŵ + π̂′v̌v̌ + π̂′w̌w̌

where π̌′v̂ = rxΓĎ, π̌′ŵ = sxΓĎ, π̂′v̌ = e>x̂Γry, π̂
′
w̌ = e>x̂Γsy.

The prover randomizes π̌′v̂, π̌
′
ŵ, π̂

′
v̌, π̂
′
w̌ as π̌v̂ = π̌′v̂+αv̌+βw̌, π̌ŵ = π̌′ŵ+γv̌+δw̌, π̂v̌ = π̂′v̌−v̂α−ŵγ,

π̂w̌ = π̂′w̌ − v̂β − ŵδ. This gives us a randomized proof π̌v̂, π̌ŵ, π̂v̌, π̂w̌ satisfying the verification equation

ĈΓĎ = v̂π̌v̂ + ŵπ̌ŵ + π̂v̌v̌ + π̂w̌w̌.

Soundness and F -knowledge

An extraction key xk contains ξ, ψ such that ξv̂ = ξŵ = 0̂ and v̌ψ = w̌ψ = 0̌. Multiplying the verification

equation by ξ and ψ on the left and right side respectively, we get

ξĈΓĎψ = ξv̂π̌v̂ψ + ξŵπ̌ŵψ + ξπ̂v̌v̌ψ + ξπ̂w̌w̌ψ = 0T.

Observe, x̂ = ξĈ are the values the extractor Extract gets from the commitments Ĉ and y̌ = Ďψ are the

values the extractor Extract gets from the commitments Ď. The extracted values from the commitments

therefore satisfy x̂Γy̌ = 0T. This gives us perfect soundness and perfect F -knowledge, where F on group

elements in Ĝ and Ȟ is the identity function.

Zero-knowledge

The simulator will simulate proofs by equivocating the commitments to values x̂, y̌ that satisfy the equation

x̂Γy̌ = 0T. On a simulation key, commitments with types comĜ, comȞ are perfectly hiding. The simulator

can therefore use x̂i = 0̂ or y̌j = 0̌. Commitments with types baseĜ, baseȞ are also equivocable to 0̂ or 0̌
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since on a simulation key e>ĝ = v̂ρ− ŵ and ȟe = σv̌− w̌. By using equivocations to 0̂ and 0̌ we can now

ensure that x̂iγi,j y̌j = 0T whenever txi ∈ {baseĜ, comĜ} or tyj ∈ {baseȞ, comȞ}. Commitments of type

txi ∈ {(pubĜ, x̂), encĜ} and tyj ∈ {(pubȞ, y̌), encȞ} cannot be equivocated and, to get zero-knowledge,

we will therefore assume γi,j = 0 whenever such types are paired (as is also the case in [GS12]).

We now have that the simulator can equivocate commitments and base elements to 0̂ and 0̌ such that the

resulting x̂, y̌ satisfy x̂Γy̌ = 0T. The randomization of the proofs ensures that they will not leak information

about whether we are giving a real proof or simulating. Recall the prover randomized π̌′v̂, π̌
′
ŵ, π̂

′
v̌, π̂
′
w̌ as

π̌v̂ = π̌′v̂ + αv̌ + βw̌, π̌ŵ = π̌′ŵ + γv̌ + δw̌, π̂v̌ = π̂′v̌ − v̂α− ŵγ, π̂w̌ = π̂′w̌ − v̂β − ŵδ. On a simulation

key this means regardless of whether we are giving a real proof or a simulated proof π̌v̂, π̌ŵ are uniformly

random and π̂v̌, π̂w̌ are the unique values that make the verification equation true. Finally, the encrypted

elements are computationally hidden by the SXDH assumption, so here the simulator may use encryptions

of 0̂ and 0̌ instead of the witness and as we shall show the proofs can be constructed on top of the ciphertexts

such that they do not reveal whether the underlying plaintext are part of a real witness or are set to zero by

the simulator.

Optimizations

Now let us return to the prover. Observe that rx, sx, ry, sy may have some zero elements. In particular,

assume that all elements in sx are 0. This happens if all x̂i in the statement have types encĜ, (pubĜ, x̂i) or

baseĜ. Moreover, assume that all elements y̌ have as types either comȞ or baseȞ so that a simulator uses

y̌ = 0̌ in the simulated proof. This sets π̌′ŵ = 0̌. As π̌′ŵ is the same for all witnesses, even for “simulated

witnesses”, we might as well set γ = δ = 0. This gives us a proof that consists of 4 elements in Ĝ and

2 elements in Ȟ instead of 4 elements both in Ĝ and Ȟ. For such equations, we therefore save 2 group

elements or 25% of the proof size compared to Groth and Sahai [GS12] where there is no encĜ or encȞ

types. We refer to Fig. 4.9 for the list of equation types and the corresponding proof sizes.

4.5.1 The full proof system

We divide the possible statements into 16 different types. They are summarized in Fig. 4.6, which provides

an algorithm for checking that the statement format is correct.

The relation R is defined in Fig. 4.7, which provides an algorithm to check whether a statement is true.

The relation first checks that the types of the witnesses and the types of the equations match according to

Fig. 4.6 and then whether the relevant pairing product, multi-scalar multiplication or quadratic equation is

satisfied.

The prover and verifier are given in Fig. 4.8. The prover constructs a proof for the relevant type of

equation assuming the input is a correctly formatted statement with valid openings of commitments to a

satisfying witness. The verifier uses the matching verification equation to check validity of a proof.
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CheckFormat(gk, T,Γ, {txi}mi=1, {tyj}nj=1)

Check Γ ∈ Zm×np

Check that the equation and message types match each other according to the table below

T tx1 , . . . , txm ty1 , . . . , tyn

PPE baseĜ, (pubĜ, x̂i), encĜ, comĜ baseȞ, (pubȞ, y̌j), encȞ, comȞ

PEncĜ baseĜ, (pubĜ, x̂i), encĜ baseȞ, comȞ

PConstĜ baseĜ, (pubĜ, x̂i) baseȞ, comȞ

PEncȞ baseĜ, comĜ baseȞ, (pubȞ, y̌j), encȞ

PConstȞ baseĜ, comĜ baseȞ, (pubȞ, y̌j)

MEĜ baseĜ, (pubĜ, x̂i), encĜ, comĜ unitȞ, scaȞ

MEncĜ baseĜ, (pubĜ, x̂i), encĜ unitȞ, scaȞ

MConstĜ baseĜ, (pubĜ, x̂i) unitȞ, scaȞ

MLinĜ baseĜ, comĜ unitȞ

MEȞ unitĜ, scaĜ baseȞ, (pubȞ, y̌j), encȞ, comȞ

MEncȞ unitĜ, scaĜ baseȞ, (pubȞ, y̌j), encȞ

MConstȞ unitĜ, scaĜ baseȞ, (pubȞ, y̌j)

MLinȞ unitĜ baseȞ, comȞ

QE unitĜ, scaĜ unitȞ, scaȞ

QConstĜ unitĜ unitȞ, scaȞ

QConstȞ unitĜ, scaĜ unitȞ

If T = PPE check Γi,j = 0 for all (i, j) where txi ∈ {(pubĜ, x̂i), encĜ} and tyj ∈ {(pubȞ, y̌j), encȞ}

Accept format if all checks pass, else abort

Figure 4.6: Equation - message types check
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R(gk, (T,Γ), ({(txi , xi)}mi=1, {(tyj , yj)}nj=1))

CheckFormat(gk, T,Γ, {txi}mi=1, {tyj}nj=1)

For all i, j check (txi , xi) ∈Mgk and (tyj , yj) ∈Mgk

If x ∈ Ĝm and y ∈ Ȟn check xΓy = 0T

If x ∈ Ĝm and y ∈ Znp check xΓy = 0̂

If x ∈ Zmp and y ∈ Ȟn check xΓy = 0̌

If x ∈ Zmp and y ∈ Znp check xΓy = 0

Accept if and only if all checks pass

Figure 4.7: Relation that defines the setup-dependent languages for our proofs

Prove(gk, ck, T,Γ, {(txi , xi, (rxi , sxi))}mi=1, {(tyj , yj , (ryj , syj ))}nj=1)

If x ∈ Ĝm define Ĉ = e>x + v̂rx + ŵsx else if x ∈ Zmp define Ĉ = ûx + v̂rx

If y ∈ Ȟn define Ď = ye + ryv̌ + syw̌ else if y ∈ Znp define Ď = yǔ + ryv̌

Set α = β = γ = δ = 0

If T = PPE pick α, β, γ, δ ← Zp

If T ∈ {PEncĜ,MEȞ} pick α, β ← Zp

If T ∈ {PEncȞ,MEĜ} pick α, γ ← Zp

If T ∈ {MEncĜ,MEncȞ,QE} pick α← Zp

π̌v̂ ← rxΓĎ + αv̌ + βw̌ π̂v̌ ← (Ĉ − v̂rx − ŵsx)Γry − v̂α− ŵγ

π̌ŵ ← sxΓĎ + γv̌ + δw̌ π̂w̌ ← (Ĉ − v̂rx − ŵsx)Γsy − v̂β − ŵδ

Return π = (π̌v̂, π̌ŵ, π̂v̌, π̂w̌)

VerifyProof(gk, ck, T,Γ, {(txi , ĉi)}mi=1, {(tyj , ďj)}nj=1, π)

CheckFormatck(T,Γ, {txi}mi=1, {tyj}nj=1)

Check Ĉ = (ĉ1 · · · ĉm) ∈ Ĝ2×m and Ď =
(
ď1 · · · ďn

)> ∈ Ȟn×2

Check π = (π̌v̂, π̌ŵ, π̂v̌, π̂w̌) ∈ Ȟ2×1 × Ȟ2×1 × Ĝ1×2 × Ĝ1×2

Check ĈΓĎ = v̂π̌v̂ + ŵπ̌ŵ + π̂v̌v̌ + π̂w̌w̌

Return 1 if all checks pass, else return 0

Figure 4.8: Prover and verifier algorithms
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T π̌v̂ π̌ŵ π̂v̌ π̂w̌ Ĝ Ȟ Zp

PPE π̌v̂ π̌ŵ π̂v̌ π̂w̌ 4 4 0

PEncĜ (?) π̌v̂ 0̌ π̂v̌ π̂w̌ 4 2 0

PConstĜ 0̌ 0̌ e>(x̂Γry) e>(x̂Γsy) 2 0 0

PEncȞ (?) π̌v̂ π̌ŵ π̂v̌ 0̂ 2 4 0

PConstȞ (rxΓy̌)e (sxΓy̌)e 0̂ 0̂ 0 2 0

MEĜ π̌v̂ π̌ŵ π̂v̌ 0̂ 2 4 0

MEncĜ (?) π̌v̂ 0̂ π̂v̌ 0̂ 2 2 0

MConstĜ 0̌ 0̌ e>(x̂Γry) 0̂ 1 0 0

MLinĜ (rxΓy)ǔ (sxΓy)ǔ 0̂ 0̂ 0 0 2

MEȞ π̌v̂ 0̌ π̂v̌ π̂w̌ 4 2 0

MEncȞ (?) π̌v̂ 0̌ π̂v̌ 0̂ 2 2 0

MConstȞ (rxΓy̌)e 0̌ 0̂ 0̂ 0 1 0

MLinȞ 0̌ 0̌ û(xΓry) û(xΓsy) 0 0 2

QE π̌v̂ 0̌ π̂v̌ 0̂ 2 2 0

QConstĜ 0̌ 0̌ û(xΓry) 0̂ 0 0 1

QConstȞ (rxΓy)ǔ 0̌ 0̂ 0̂ 0 0 1

Figure 4.9: Size of an NIZK proof for each type of equation. The size of the NIZK proofs are the same

as in [GS12], except for the equation types marked with (?), which were not defined in [GS12].

As described earlier there are some types of equations where parts of the proof are just 0 or can be

compressed. In Fig. 4.9 we show the parts of the proofs that allow reduced communication for each type of

equation and, if the proof is shortened, we explain how it is done.

Let F be given by

F (gk, t, x̂) = x̂ for t ∈ {(pubĜ, x̂), encĜ, comĜ, baseĜ}

F (gk, t, x) = ĝx for t ∈ {scaĜ, unitĜ}

F (gk, t, ŷ) = y̌ for t ∈ {(pubȞ, y̌), encȞ, comȞ, baseȞ}

F (gk, t, y) = yȟ for t ∈ {scaȞ, unitȞ}

.

Theorem 4.5.1. The commit-and-prove scheme given in Figs. 4.1,4.3,4.4 and 4.8 has perfect correctness,

perfect soundness and F -knowledge for the function F defined above, and computational composable zero-

knowledge if the SXDH assumption holds relative to PG.

The description of the zero-knowledge simulator is given in Sec. 4.6. The proof of the theorem follows

from Lemmas 4.7.1, 4.7.2 and 4.7.3 given in Sec. 4.7.
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SimProve(gk, tk, T,Γ, {(txi , (xi, rxi , sxi))}mi=1, {(tyj , (yj , ryj , syj ))}nj=1)

Modify some values according to the following tables

T txi xi, rxi , sxi

PPE,PEncȞ,PConstȞ,MLinĜ baseĜ xi ← 0̂, rxi ← ρ, sxi ← −1

MEȞ,MEncȞ,MConstȞ,QE,QConstȞ unitĜ xi ← 0, rxi ← ρ, sxi ← 0

T tyj yj , ryj , syj

PPE,PEncĜ,PConstĜ,MLinȞ baseȞ yj ← 0̌, ryj ← σ, syj ← −1

MEĜ,MEncĜ,MConstĜ,QE,QConstĜ unitȞ yj ← 0, ryj ← σ, syj ← 0

If x ∈ Ĝm define Ĉ = e>x + v̂rx + ŵsx else if x ∈ Zmp define Ĉ = ûx + v̂rx

If y ∈ Ȟn define Ď = ye + ryv̌ + syw̌ else if y ∈ Znp define Ď = yǔ + ryv̌

Set α = β = γ = δ = 0

If T = PPE pick α, β, γ, δ ← Zp

If T ∈ {PEncĜ,MEȞ} pick α, β ← Zp

If T ∈ {PEncȞ,MEĜ} pick α, γ ← Zp

If T ∈ {MEncĜ,MEncȞ,QE} pick α← Zp

π̌v̂ ← rxΓĎ + αv̌ + βw̌ π̂v̌ ← (Ĉ − v̂rx − ŵsx)Γry − v̂α− ŵγ

π̌ŵ ← sxΓĎ + γv̌ + δw̌ π̂w̌ ← (Ĉ − v̂rx − ŵsx)Γsy − v̂β − ŵδ

Return π = (π̌v̂, π̌ŵ, π̂v̌, π̂w̌)

Figure 4.10: Simulator algorithm

4.6 Zero-Knowledge simulator

Simulation

The simulator gets as input a well-formed statement where the equation and message types match. Unlike

the prover, the simulator does not know the witness. Some of the simulator’s inputs xi and yj will correspond

to public values, base elements and units, while others have been generated with the simulated commitments

and are 0. Having the secret simulation key the simulator can equivocate the baseĜ, unitĜ and baseȞ, unitȞ

type commitments to 0. This enables it to get a satisfying witness for the statement and using this simulated

witness it can now create the proof as an honest prover would do. The simulator algorithm is detailed in

Fig. 4.10.
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4.7 Security proofs for the commit-and-prove scheme

Lemma 4.7.1. The commit-and-prove scheme has perfect correctness.

Proof. The prover gets a statement and valid witness (gk, (T,Γ), {(txi , xi)}mi=1, {(tyn , yn)}nj=1) ∈ R,

which guarantees the statement is correctly formatted, (txi , xi), (tyj , yj) ∈ Mgk and the vectors x =

(x1, . . . , xm) and y = (y1, . . . , yn)> fall into one out of four cases given below.

Case Implication

x ∈ Ĝ1×m,y ∈ Ȟn×1 and xΓy = 0T e>xΓye = 0T

x ∈ Ĝ1×m,y ∈ Zn×1
p and xΓy = 0̂ e>xΓyǔ = 0T

x ∈ Z1×m
p ,y ∈ Ȟn×1 and xΓy = 0̌ ûxΓye = 0T

x ∈ Z1×m
p ,y ∈ Zn×1

p and xΓy = 0 ûxΓyǔ = 0T

The prover’s input also satisfies (txi , (rxi , sxi)), (tyj , (ryj , syj )) ∈ Rgk. For x ∈ Zmp this gives us

sx = 0 and we can write Ĉ = ûx + v̂rx + ŵsx. Similarly, for y ∈ Znp it gives us sy = 0 and we can write

Ď = yǔ + ryv̌ + syw̌.

This means that for each of the four cases

(Ĉ − v̂rx − ŵsx)Γ(Ď − ryv̌ − syw̌) = 0T.

This fact gives us that the verification equation used by the verifier holds.

ĈΓĎ = (Ĉ − v̂rx − ŵsx)ΓĎ + v̂rxΓĎ + ŵsxΓĎ

= (Ĉ − v̂rx − ŵsx)Γ(Ď − ryv̌ − syw̌) + (Ĉ − v̂rx − ŵsx)Γryv̌ + (Ĉ − v̂rx − ŵsx)Γsyw̌

+ v̂rxΓĎ + ŵsxΓĎ + v̂(α− α)v̌ + v̂(β − β)w̌ + ŵ(γ − γ)v̌ + ŵ(δ − δ)w̌

= 0T +
(

(Ĉ − v̂rx − ŵsx)Γry − v̂α− ŵγ
)

v̌ +
(

(Ĉ − v̂rx − ŵsx)Γsy − v̂β − ŵδ
)

w̌

+ v̂(rxΓĎ + αv̌ + βw̌) + ŵ(sxΓĎ + γv̌ + δw̌)

= π̂v̌v̌ + π̂w̌w̌ + v̂π̌v̂ + ŵπ̌ŵ.

Lemma 4.7.2. The commit-and-prove scheme has perfect soundness and perfect F -knowledge.

Proof. The verifier checks that the statement is correctly formatted, the commitments are valid and the proof

is well-formed. Finally, the verifier checks that the commitments organized into matrices Ĉ and Ď satisfy

ĈΓĎ = v̂π̌v̂ + ŵπ̌ŵ + π̂v̌v̌ + π̂w̌w̌.

Recall ExtGenCRS returns ξ, ψ such that ξv̂ = ξŵ = 0̂ and v̌ψ = w̌ψ = 0̌. Multiplying by ξ and ψ on the

left and right side respectively, we get

ξĈΓĎψ = ξv̂π̌v̂ψ + ξŵπ̌ŵψ + ξπ̂v̌v̌ψ + ξπ̂w̌w̌ψ = 0T.
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Observe, x̂ = ξĈ are the values the extractor Extract gets from the commitments (tx1 , ĉ1), . . . , (txm , ĉn)

and y̌ = Ďψ are the values the extractor Extract gets from the commitments (ty1 , ď1), . . . , (tyn , ďn). The

extracted values from the commitments therefore satisfy

x̂Γy̌ = 0T.

If the equation is a pairing product equation, this directly gives us both perfect soundness and perfect F -

knowledge.

If the equation is a multi-scalar multiplication equation in Ȟ, then the committed value is x = logĝ x̂.

Then the opened values satisfy xΓy̌ = 0̌, which gives us perfect soundness and perfect F -knowledge. The

case of a multi-scalar multiplication in Ĝ is similar. Finally, for quadratic equations over Zp the committed

values are x = logĝ x̂, y = logȟ y̌ and they satisfy xΓy = 0, which gives us perfect soundness and perfect

F -knowledge.

Lemma 4.7.3. The commit-and-prove scheme is composable zero-knowledge if the SXDH assumption holds

relative to PG.

Proof. We first recall what the GenCRS and SimGenCRS algorithms are. Both algorithms output a commit-

ment key which specifies elements v̂, ŵ, û, v̌, w̌, ǔ. The only difference between GenCRS and SimGenCRS

(besides the fact that SimGenCRS outputs a simulation trapdoor) is that in GenCRS, the elements are of the

form v̂ = (ĝ, ξĝ)>, v̌ = (ȟ, ȟψ), ŵ = ρv̂, w̌ = σv̌, û = ρv̂+e>ĝ, ǔ = σv̌+eȟ, whereas in SimGenCRS

the elements are of the form v̂ = (ĝ, ξĝ)>, v̌ = (ȟ, ψȟ), ŵ = ρv̂ − e>ĝ, w̌ = σv̂ − eȟ, û = ρv̂, ǔ = σv̌.

Under the SXDH assumption, the distribution of the elements v̂, ŵ, û, v̌, w̌, ǔ generated by GenCRS

is computationally indistinguishable from the distribution of the elements v̂, ŵ, û, v̌, w̌, ǔ generated by

SimGenCRS. This shows that the first requirement of composable zero-knowledge is satisfied.

For the second requirement, we first give a high-level description of the simulator in Fig. 4.10.

• For elements in the witness such that t ∈ {comĜ, scaĜ, comȞ, scaȞ}, the simulator will create com-

mitments to m = 0̂,m = 0̌ or m = 0 according to the type. These commitments are perfectly hiding

under the commitment key output by SimGenCRS.

• For elements in the witness such that t ∈ {baseĜ, unitĜ, baseȞ, unitȞ}, the simulator will use the

simulation trapdoor tk to be able to treat them as commitments to 0̂, 0̌ or 0 according to t.

• For elements in the witness such that t ∈ {encĜ, encȞ}, the commitments are computed as encryptions

of 0̂ and 0̌ respectively.

• Having obtained satisfying openings of the commitments the simulator creates the proof as an honest

prover would do with those values.
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We now argue that a simulated proof is computationally indistinguishable from an honestly generated

proof when the commitment key is output using SimGenCRS. To show that, we define three games and use

a hybrid argument.

• Game 1 is the game where the commitment key is output using SimGenCRS and the proof is done

using a valid witness.

• Game 2 is as Game 1, but instead of using a valid witness, commitments with t ∈ {comĜ, scaĜ,

comȞ, scaȞ} are done to m = 0̂,m = 0̌ or m = 0, and commitments with t ∈ {baseĜ, unitĜ, baseȞ,

unitȞ} are equivocated as commitments to 0̂, 0̌ or 0, according to t and T as described in Fig. 4.10.

• Game 3 is as Game 2, but commitments with t ∈ {encĜ, encȞ} are changed for encryptions of 0̂, 0̌

according to t. Note that Game 3 is equivalent to the simulation.

Game 1 and Game 2 are perfectly indistinguishable due to the fact that commitments with t ∈ {comĜ,

scaĜ, comȞ, scaȞ} are perfectly hiding and the uniformity of the randomized proofs, which we prove in

Lemma 4.7.4. Equivocating the commitments with t ∈ {baseĜ, unitĜ, baseȞ, unitȞ} as commitments to 0̂, 0̌

or 0 only changes the proofs and not the commitments themselves, so this case is also indistinguishable by

Lemma 4.7.4.

Game 2 and Game 3 are computationally indistinguishable due to the IND-CPA security of ElGamal.

Note that, in Game 2 and Game 3, the equation is satisfied for any value of the elements in the witness such

that t ∈ {encĜ, encȞ}. Actually, for each element x̂i and y̌j we can just get the corresponding ciphertext ĉi

or ďj and build the proof on top of it. We can do this because all the terms of the proof which have to be

computed using the ciphertext’s randomness will be 0 as the element paired to the randomness is going to

be 0 due to the restrictions on the equation2. This allows us to reduce the computational indistinguishability

of Game 2 and Game 3 to the IND-CPA security of ElGamal.

Lemma 4.7.4. Proofs are uniformly random over solutions to the verification equations when the commit-

ment key is generated using SimGenCRS.

Proof. In all games from Game 1 to Game 3, all witnesses will yield proofs satisfying the verification

equation by perfect completeness. Let us now argue that these proofs are uniformly random over the possible

solutions to the verification equation. Observe that, as the commitment key is generated using SimGenCRS,

we have that v̂, ŵ generate Ĝ1×2, v̌, w̌ generate Ȟ2×1, û ∈ 〈v̂〉 and ǔ ∈ 〈v̌〉. From now on, let us define

the pre-proofs as those proofs that satisfy the verification equation but haven’t been randomized yet, for

instance, π̂′v̌ = e>x̂Γry.

2 Strictly speaking, if the proofs are computed using the algorithm given in Fig. 4.10, then this argument is only true for

encryptions of elements in Ȟ. However, the proofs can be written in an alternative way by changing the role of Ĝ and Ȟ so that the

same argument holds for encryptions of elements in Ĝ
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We will prove either that there is only one proof which is accepted by the verification equation or

that when there are many possible proofs both honestly generated and simulated proofs will be uniformly

distributed among all valid proofs, i.e., among all solutions to the verification equations. In the first case,

by using the techniques used in [GS12] it is easy to see that when π̌v̂, π̌ŵ (resp. π̂v̌, π̂w̌) are 0 there is only

one value for π̂v̌, π̂w̌ (resp. π̌v̂, π̌ŵ) which satisfies the verification equation. In the latter case, we will show

that π̌v̂, π̌ŵ (resp. π̂v̌, π̂w̌) are uniformly random, and using the techniques from [GS12] it is easy to see that

for fixed values for π̌v̂, π̌ŵ (resp. π̂v̌, π̂w̌) there is only one value for π̂v̌, π̂w̌ (resp. π̌v̂, π̌ŵ) which satisfies

the verification equation. If some of π̌′v̂, π̌
′
ŵ, π̂

′
v̌, π̂
′
w̌ are already 0 due to the type of equation, we will not

randomize them. The reason is that due to the restrictions on the equation types, if for an honestly generated

proof some of π̌′v̂, π̌
′
ŵ, π̂

′
v̌, π̂
′
w̌ are 0 then the zero-knowledge simulator will be able to construct simulated

proofs such that the same parts of the proof are 0. Therefore, all valid proofs will be such that the same parts

of the proof are 0, so these components will not need to be randomized.

For each type of equation, we now detail whether π̌v̂, π̌ŵ (or π̂v̌, π̂w̌) are 0 or whether π̌v̂, π̌ŵ (or π̂v̌, π̂w̌)

are uniformly random, where we assume that α, β, γ, δ ← Zp:

For T = PPE, π̌v̂ = π̌′v̂ + αv̌ + βw̌, π̌ŵ = π̌′ŵ + γv̌ + δw̌ are uniformly distributed. For T = PEncĜ,

π̌v̂ = π̌′v̂ + αv̌ + βw̌ is uniformly distributed and π̌ŵ = 0 (similarly for T = PEncȞ). For T = PConstĜ,

π̌v̂ = π̌ŵ = 0 (similarly for T = PConstȞ).

For T = MEĜ, π̂v̌ = π̂′v̌ + αv̂ + βŵ is uniformly distributed and π̂w̌ = 0. For T = MEncĜ,

π̌v̂ = π̌′v̂ + αv̌ is uniformly distributed and π̌ŵ = 0. For T = MConstĜ, π̌v̂, π̌ŵ = 0. For T = MLinĜ,

π̂v̌, π̂w̌ = 0. (Similarly, for T ∈ {MEȞ,MEncȞ,MConstȞ,MLinȞ}).

For T = QE, π̂v̌ = π̂′v̌ + αv̂ is uniformly distributed and π̂w̌ = 0. For T = QConstĜ, π̌v̂ = π̌ŵ = 0

(similarly for T = QConstȞ).

4.8 NIZK proofs with prover-chosen CRS

In Groth-Sahai proofs, the prover uses a common reference string shared between the prover and the verifier

to construct NIZK proofs. We can improve efficiency by letting the prover choose her own common refer-

ence string, which we will refer to as her public key. The public key has to be created as a perfectly binding

key, otherwise the soundness of the NIZK proof could be easily broken by the prover. The prover will then

have to prove to the verifier that her public key has been created as a perfectly binding key. To do that the

prover will give an NIZK proof using the shared common reference string. The definitions for commit-and-

prove schemes with prover-chosen CRS are given in Sec. 4.8.1. In Secs. 4.8.2 to 4.8.4 we explain how the

prover creates her public key, proves its well-formedness and we detail what the efficiency improvement

obtained is. Finally, in Sec. 4.8.5 we prove the security of our scheme.
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4.8.1 Definitions for prover-chosen CRS commit-and-prove schemes

The definitions given in Sec. 4.2 are not suitable for the scenario where the prover chooses her own common

reference string. The reason is that the prover will only communicate her public key pk to the verifier once,

and the public key pk will be used to generate and verify commitments and proofs.

Therefore, we define extended commit-and-prove schemes for a relation R, which capture the fact that

the prover chooses her own public key. We will only consider the common reference string model, where

the prover makes a well-formedness NIZK proof for her pk by using the shared common reference string

between the prover and the verifier. In particular, we are not considering the multi-string model [GO14] nor

the scenario where the prover gets a certificate on her public key. The definitions can be naturally extended

to those settings.

The definitions share many elements with the definitions given in Sec. 4.2. We may commit to dif-

ferent values w1, . . . , wN and prove for different statements x that a subset of the committed values w =

(wi1 , . . . , win) constitute a witness for x ∈ Lgk, i.e., (gk, x, w) ∈ R. We will also divide each committed

value into two parts wi = (ti,mi).

An extended commit-and-prove scheme ECP (Setup,GenCRS,CreatePK,VerifyPK,Commit,Prove,

VerifyProof) consists of six algorithms. The algorithms Setup,GenCRS,CreatePK,Prove are probabilistic

and the algorithms VerifyPK,Commit,VerifyProof are deterministic.

Setup(1λ): On input a security parameter 1λ outputs a setup gk. The setup specifies a message space Mgk,

a randomness space Rgk and a commitment space Cgk. Membership of either space can be decided

efficiently.

GenCRS(gk): Generates a commitment key ck.

CreatePK(gk, ck): Given a setup gk and a commitment key ck, returns a public key pk, a secret key sk

and a well-formedness proof πpk.

VerifyPK(gk, ck, pk, πpk): Given a setup gk, a commitment key ck, a public key pk and a well-formedness

proof πpk returns 1 (accept) or 0 (reject).

Commit(gk, ck, sk, t,m; r): Given a setup gk, a commitment key ck, a secret key sk, a message (t,m) ∈

Mgk and randomness r such that (t, r) ∈ Rgk returns a commitment c such that (t, c) ∈ Cgk.

Prove(gk, ck, sk, x, (t1,m1, r1), . . . , (tn,mn, rn)): Given a setup gk, a commitment key ck, a secret key

sk, a statement x, and commitment openings such that (ti,mi) ∈Mgk, (ti, ri) ∈ Rgk and (gk, ck, x,

t1,m1, . . . , tn,mn) ∈ R returns a proof π.

VerifyProof(gk, ck, pk, x, (t1, c1), . . . , (tn, cn), π): Given a setup gk, a commitment key ck, a public key

pk, a statement x, a proof π and commitments (ti, ci) ∈ Cgk returns 1 (accept) or 0 (reject).
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Definition 4.8.1 (Perfect correctness). The extended commit-and-prove system ECP is (perfectly) correct if

for all adversaries A

Pr


gk ← Setup(1λ); ck ← GenCRS(gk) ;

(pk, sk, πpk)← CreatePK(gk, ck); (x,w1, r1, . . . , wn, rn)← A(gk, ck, pk, sk, πpk) ;

ci ← Commit(gk, ck, sk, wi; ri) ;π ← Prove(gk, ck, sk, x, w1, r1, . . . , wn, rn) :

VerifyPK(gk, ck, pk, πpk) · VerifyProof(gk, ck, pk, x, (t1, c1), . . . , (tn, cn), π) = 1

 = 1,

where A outputs wi, ri such that wi = (ti,mi) ∈Mgk, (ti, ri) ∈ Rgk and (gk, ck, x, w1, . . . , wn) ∈ R.

Definition 4.8.2 (Perfect soundness). The extended commit-and-prove system ECP is (perfectly) sound if

there exists a deterministic (unbounded) opening algorithm Open such that for all adversaries A

Pr


gk ← Setup(1λ); ck ← GenCRS(gk) ;

(pk, πpk, x, t1, c1, . . . , tn, cn, π)← A(gk, ck) ; mi ← Open(gk, ck, ti, ci) :

VerifyPK(gk, ck, pk, πpk) · VerifyProof(gk, ck, pk, x, t1, c1, . . . , tn, cn, π) = 0

∨ (gk, ck, x, (t1,m1), . . . , (tn,mn)) ∈ R

 = 1.

Perfect F -knowledge is defined exactly as for commit-and-prove schemes. This means that we will be

using a global extraction key associated with ck for all commitments regardless of which public keys are

used to generate the commitments.

Definition 4.8.3 (Composable zero-knowledge). The extended commit-and-prove system ECP is (compu-

tationally) composable zero-knowledge if there exist some p.p.t. algorithms SimGenCRS, SimCreatePK,

SimCommit, SimProve such that for all non-uniform polynomial time stateful interactive adversaries A

Pr

 gk ← Setup(1λ); ck ← GenCRS(gk) :

A(gk, ck) = 1

 ≈ Pr

 gk ← Setup(1λ); ck ← SimGenCRS(gk) :

A(gk, ck) = 1


and

Pr

 gk ← Setup(1λ); (ck, tk)← SimGenCRS(gk); (pk, sk, πpk)← CreatePK(gk, ck) :

A(gk, ck, tk, pk, πpk) = 1


≈ Pr

 gk ← Setup(1λ); (ck, tk)← SimGenCRS(gk); (pk, sk, πpk)← SimCreatePK(gk, tk) :

A(gk, ck, tk, pk, πpk) = 1

 ,
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and

Pr


gk ← Setup(1λ); (ck, tk)← SimGenCRS(gk); (pk, sk, πpk)← SimCreatePK(gk, tk);

(x, i1, . . . , in)← ACommit(gk,ck,sk,·)(gk, ck, tk, pk, sk, πpk);

π ← Prove(gk, ck, sk, x, wi1 , ri1 , . . . , win , rin) :

A(π) = 1



≈ Pr


gk ← Setup(1λ); (ck, tk)← SimGenCRS(gk); (pk, sk, πpk)← SimCreatePK(gk, tk);

(x, i1, . . . , in)← ASimCommit(gk,ck,sk,·)(gk, ck, tk, pk, sk, πpk);

π ← SimProve(gk, ck, sk, x, ti1 , si1 , . . . , tin , sin) :

A(π) = 1

 ,

where

• Commit(gk, ck, sk, ·) on wi = (ti,mi) ∈ Mgk picks uniformly random ri such that (ti, ri) ∈ Rgk

and returns ci = Commit(gk, ck, sk, wi; ri)

• SimCommit(gk, ck, sk, ·) on wi = (ti,mi) ∈ Mgk runs (ci, si) ← SimCommit(gk, ck, sk, ti) and

returns ci, where si is some auxiliary information used to construct simulated proofs.

• A picks (x, i1, . . . , in) such that (gk, ck, x, wi1 , . . . , win) ∈ R

4.8.2 Creating the public key

As in a regular commit-and-prove system, the setup algorithm Setup takes as input a security parameter 1λ

and runs PG(1λ) to return a bilinear group (p, Ĝ, Ȟ,T, e, ĝ, ȟ). Like commitment keys, public keys can be

created in two ways: they can either be perfectly binding or perfectly hiding. These two types of keys are

computationally indistinguishable if the SXDH assumption holds. As we already argued, we will require

the prover to create her public key in a perfectly binding way. However, the zero-knowledge simulator will

create a perfectly hiding public key and simulate the NIZK proof for well-formedness.

As shown in Fig. 4.11, the public key is created in a similar way to how the commitment key is created.

The main difference is that we allow the prover to reuse the elements v̂, v̌. This both reduces the size of the

public key and also ensures that the prover’s commitments are extractable even when using her own key.

Once the prover has created her pair of public key and secret key, she has to compute an NIZK proof

to show that her pk is perfectly binding. A valid public key is defined by the existence of some ρP , σP

such that ŵP = ρP v̂ and w̌P = σP v̌, which can be written as two equations of type MConstĜ involving

public elements in Ĝ and a secret ρP committed in Ȟ, and two equations of type MConstȞ involving public

elements in Ȟ and a secret σP committed in Ĝ. These are simple statements that each have a proof consisting

of a single group element. In Fig. 4.12 we give the exact NIZK proofs that have to be computed. The total

cost of communicating the public key, which is determined by ŵP , w̌P , the two commitments to ρP and
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GenPK(gk, ck)

ρP ← Zp σP ← Zp

v̂P ← v̂ v̌P ← v̌

ŵP ← ρP v̂P w̌P ← σP v̌P

ûP ← ŵP + (0̂, ĝ)> ǔP ← w̌P + (0̌, ȟ)

pk ← (ûP , v̂P , ŵP , ǔP , v̌P , w̌P )

sk ← (pk, ρP , σP )

Return (pk, sk)

SimGenPK(gk, ck)

ρP ← Zp σP ← Zp

v̂P ← v̂ v̌P ← v̌

ŵP ← ρP v̂P − (0̂, ĝ)> w̌P ← σP v̌P − (0̌, ȟ)

ûP ← ŵP + (0̂, ĝ)> ǔP ← w̌P + (0̌, ȟ)

pk ← (ûP , v̂P , ŵP , ǔP , v̌P , w̌P )

sk ← (pk, ρP , σP )

Return (pk, sk)

Figure 4.11: Public key generator algorithms

σP and the four NIZK proofs is 12 group elements. Since we are using a commit-and-prove scheme we can

consider this as a one-off cost for each verifier engaging with the prover after which the public key may be

used for many commitments and proofs.

4.8.3 Proving the well-formedness of a prover-chosen CRS

As explained in Sec. 4.8.2, once the prover has chosen its own CRS a proof of well-formedness has to be

given in order to guarantee soundness. This is, the prover has to show that the values v̂P , ŵP , v̌P , w̌P

satisfying

ŵP − v̂PρP = 0̂ and w̌P − σP v̌P = 0̌,

for some secret values ρP , σP . To prove that these relations are satisfied, the prover can use Groth-Sahai

proofs. In Fig. 4.12 we detail what proofs need to be done by the prover to prove the well-formedness of her

pk, writing J ij for the 2× 2 matrix such that all its elements are 0 except the element in row i and column

j, which takes the value 1. Note that these are ordinary Groth-Sahai proofs, which can be verified using the

commitment key ck.

4.8.4 Computing commitments and NIZK proofs

Once the prover has created her public key pk and has proven its well-formedness, she can make commit-

ments and prove statements using pk instead of ck. The commitments and proofs are created and verified in

exactly the same way as described in Fig. 4.3 and Fig. 4.8, but the number of scalar multiplications needed

to compute commitments and NIZK proofs can be reduced using her knowledge of the discrete logarithms

in sk. We have for instance

ĉ = e>x̂+ v̂r + ŵP s = e>x̂+ v̂(r + ρP s),
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ProvePK(gk, ck, pk, sk)

Parse v̂P , ŵP , v̌P , w̌P as ((v̂P )1, (v̂P )2 = ĝ), ((ŵP )1, (ŵP )2), ((v̌P )1, (v̌P )2 = ȟ), ((w̌P )1, (w̌P )2))

Compute the commitments ďρ ← ρP ǔP + rρv̌; ĉσ ← ûPσP + v̂rσ; where rρ, rσ ← Zp

Define the following variables and types:

rx1 , sx1 , rx2 , sx2 , ry1 , sy1 , sy2 ← 0; ry2 ← rρ

tx1 = (pubĜ, (ŵP )1), x1 = (ŵP )1, tx2 = (pubĜ, (v̂P )1), x2 = (v̂P )1

ty1 = unitȞ, y1 = 1, ty2 = scaȞ, y2 = ρP

π1 ← Prove(gk, ck,MConstĜ, (J
11 − J22), {(txi , xi, (rxi , sxi))}2i=1, {(tyj , yj , (ryj , syj ))}2j=1)

Redefine the following variables and types:

rx1 , sx1 , rx2 , sx2 , ry1 , sy1 , sy2 ← 0; ry2 ← rρ

tx1 = (pubĜ, (ŵP )2), x1 = (ŵP )2, tx2 = baseĜ, x2 = ĝ

ty1 = unitȞ, y1 = 1, ty2 = scaȞ, y2 = ρP

π2 ← Prove(gk, ck,MConstĜ, (J
11 − J22), {(txi , xi, (rxi , sxi))}2i=1, {(tyj , yj , (ryj , syj ))}2j=1)

Redefine the following variables and types:

rx1 , sx1 , sx2 , ry1 , sy1 , ry2 , sy2 ← 0; rx2 ← rσ

tx1 = unitĜ, x1 = 1, tx2 = scaĜ, x2 = σP

ty1 = (pubȞ, (w̌P )1), y1 = (w̌P )1, ty2 = (pubȞ, (v̌P )1), y2 = (v̌P )1

π3 ← Prove(gk, ck,MConstȞ, (J
11 − J22), {(txi , xi, (rxi , sxi))}2i=1, {(tyj , yj , (ryj , syj ))}2j=1)

Redefine the following variables and types:

rx1 , sx1 , sx2 , ry1 , sy1 , ry2 , sy2 ← 0; rx2 ← rσ

tx1 = unitĜ, x1 = 1, tx2 = scaĜ, x2 = σP

ty1 = (pubȞ, (w̌P )2), y1 = (w̌P )2, ty2 = baseȞ, y2 = ȟ

π4 ← Prove(gk, ck,MConstȞ, (J
11 − J22), {(txi , xi, (rxi , sxi))}2i=1, {(tyj , yj , (ryj , syj ))}2j=1)

Return πpk = (ĉρ, ďσ, π1, π2, π3, π4)

Figure 4.12: Algorithm to prove well-formedness of the public key
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GS commitments This work

t Ĝ Ȟ Ĝ Ȟ

comĜ 4 0 2 0

comȞ 0 4 0 2

encĜ Undefined 2 0

encȞ Undefined 0 2

scaĜ 4 0 2 0

scaȞ 0 4 0 2

GS proofs This work

T Ĝ Ȟ Ĝ Ȟ

PPE 4|x̂|+ 8 2|y̌|+ 8 4|x̂|+ 4 2|y̌|+ 4

PEncĜ Undefined 4|x̂|+ 4 |y̌|+ 2

PConstĜ 2|x̂| 0 2|x̂| 0

PEncȞ Undefined 2|x̂|+ 2 2|y̌|+ 4

PConstȞ 0 2|y̌| 0 2|y̌|

MEĜ |x̂|+ 4 8 |x̂|+ 2 4

MEncĜ Undefined |x̂|+ 2 2

MConstĜ |x̂| 0 |x̂| 0

MLinĜ 0 0 0 0

MEȞ 8 |y̌|+ 4 4 |y̌|+ 2

MEncȞ Undefined 2 |y̌|+ 2

MConstȞ 0 |y̌| 0 |y̌|

MLinȞ 0 0 0 0

QE 4 4 2 2

QConstĜ 0 0 0 0

QConstȞ 0 0 0 0

Figure 4.13: Scalar multiplications needed for computing commitments and NIZK proofs

so the prover can compute a commitment with 2 scalar multiplications instead of 4 scalar multiplications.

As shown in Fig. 4.13, by using the secret key sk the prover can reduce the number of scalar multi-

plications by 50% for commitments to group elements and commitments to elements in Zp. Computing

NIZK proofs is more complicated and there are many operations that cannot be avoided by using the secret

key sk. However, in some cases the improvement is very noticeable as in the case of quadratic equations

(T = QE) where the number of scalar multiplications is reduced by 50%3. Furthermore, in most applica-

tions found in the literature there are only a few variables in the equations, which makes our improvements

more significant.

3We assume that operations in Ȟ are more computationally expensive than operations in Ĝ, as usually Ĝ is an elliptic curve

over a prime order field and Ȟ is the same elliptic curve over an extension field [GPS08]. Therefore, we have tried to reduce the

numbers of operations in Ȟ as much as possible. In addition, we have for simplicity assumed that the commitments that appear in

the NIZK proof have as many randomization factors as possible conditioned to the equation type T .

102



4.8.5 Security proofs for the prover-chosen CRS commit-and-prove scheme

Lemma 4.8.4. The prover-chosen CRS commit-and-prove scheme has perfect correctness.

Lemma 4.8.5. The prover-chosen CRS commit-and-prove scheme has perfect soundness and perfect F -

knowledge.

Perfect correctness, perfect soundness and perfect F -knowledge can be proven in a similar way to how

they are proven for our commit-and-prove scheme.

Lemma 4.8.6. The prover-chosen CRS commit-and-prove scheme is composable zero-knowledge if the

SXDH assumption holds relative to PG.

Proof. (Sketch) The zero-knowledge simulator is quite straightforward given a zero-knowledge simula-

tor for our commit-and-prove scheme. First, the simulator will create the public key using the algorithm

SimProverGen given in Fig. 4.11. Then, instead of making NIZK proofs to show that the generated public

key is binding, it will simulate these proofs using the trapdoor key tk associated to ck. After simulating the

well-formedness of pk, the simulator is able simulate any proof by using the secret key sk.

It should be noted that the simulator is simulating an NIZK proof for a false statement as the public

key generated is no longer perfectly binding. In principle, the definition of zero-knowledge only guarantees

that simulated proofs are indistinguishable from honestly generated proofs as long as the statement is true.

However, in our case the public key and the simulated proof of well-formedness are computationally indis-

tinguishable from a binding public key generated with the algorithm ProverGen and an honestly generated

well-formedness proof.

To see that, consider the following hybrid proof: the first game corresponds to the setting where the

public key is generated using ProverGen and the well-formedness proof is not simulated. The second game

corresponds to the same setting as the first game, but the well-formedness proof is simulated. Both games

are computationally indistinguishable due to the zero-knowledge property of Groth-Sahai proofs. In the

third game, the public key is generated using SimProverGen and the well-formedness proof is simulated.

The second game and the third game are computationally indistinguishable because the two types of public

key are indistinguishable under the SXDH assumption.

4.9 Applications of our results

In [BCKL08] the authors give a construction of a P-Signature scheme in asymmetric bilinear groups. This

construction uses Groth-Sahai proofs based on the SXDH instantiation. The statements that have to be

proven are such that our techniques can be applied to have better efficiency. Concretely, in the construction

given in the paper each P-signature proof consists of 18 elements in Ĝ and 16 elements in Ȟ. Using our

techniques, we can get 16 elements in Ĝ and 16 elements in Ȟ. In the full version of [BCKL08], they
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give another construction in which our techniques could be applied too, bringing the 12 elements in Ĝ and

10 elements in Ȟ that they need to 10 elements in Ĝ and 10 elements in Ȟ. In addition, in the equations

that appear in their scheme, the constant terms in T that appear are of the form e(ĝ, ȟ). Using Groth-Sahai

proofs, to get NIZK proofs they would need to add extra commitments and proofs. This is why they do

not use NIZK proofs but NIWI proofs. However, using our techniques the same proofs are actually NIZK

proofs, without increasing the number of elements needed. It would be interesting to see if this would result

in more efficient P-signature schemes.

Another example is [AFG+16], which defines structure-preserving signatures, i.e., signature schemes

where the messages, signatures and verification keys are group elements and where the verification predicate

is a conjunction of pairing-product equations. This definition makes structure-preserving signatures particu-

larly well-suited for the application of Groth-Sahai proofs. One of their applications of structure-preserving

signatures given in [AFG+16] is a blind signature scheme in which Groth-Sahai proofs are used. To obtain a

blind signature, the user commits to several elements and proves in zero-knowledge that some relations are

satisfied. These are relations in which we can apply our techniques to get better efficiency. Concretely, the

output of the Obtain protocol of the blind signature scheme consists of 18 elements in Ĝ and 16 elements in

Ȟ, and using our techniques the output of the protocol can be reduced to 16 elements in Ĝ and 14 elements

in Ȟ.

4.10 Conclusions

In this contribution we have presented several techniques to improve the efficiency of Groth-Sahai proofs.

This work is based on the SXDH setting, but our techniques can be applied to other settings as well. Both

framing Groth-Sahai proofs as a Commit-and-Prove scheme and letting the prover choose her own crs are

contributions which clearly do not depend on the setting Groth-Sahai proofs are based on. Distinguishing

base elements and the implied improvements can also be done in any Groth-Sahai proofs setting. Finally,

although defining the encryption type can also be done for any setting, one has to be careful when using

encryptions in Groth-Sahai proofs since we have to guarantee that we can still simulate those proofs.

In particular, the results from this contribution can also be applied to any settings which result from the

assumptions given in Section 3.
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Chapter 5

State of the Art in Electronic Voting

5.1 Types of electronic voting protocols

The main two requirements of an electronic voting system are privacy and verifiability. Historically, elec-

tronic voting systems were designed to meet the privacy requirements and then they were modified or en-

hanced to satisfy other requirements. For this reason, we classify electronic voting systems based on how

they achieve privacy. We will follow the criteria used in [NBV14], where they classify the voting systems

depending on in which phase of the election the relation between a voter and her vote is broken.

5.1.1 Code Voting

First, we consider schemes in which such relation is broken before the voting phase. There is currently only

one family of such protocols, called code voting [Cha01b]. In code voting schemes, the election authorities

generate a code card for each voter before the voting phase takes place. In each code card, there is a Code

Card Identification Number, a Voting Code for each candidate and a Verification Code for each candidate

(all codes vary from voter to voter). Once the code cards have been generated they are sent to each voter by

a secure channel such as postal mail. In order to cast a vote, the voter sends the Code Card Identification

Number and the Voting Code(s) corresponding to the chosen candidate(s) to the election authorities. The

election authorities process these codes and return Verification Code(s) to the voter, who checks that they

match the ones in her Code Card. At the end of the election, the election authorities use their knowledge of

the relationship between voting codes and candidates to tally the election.

The main advantage of this class of electronic voting systems is that privacy does not depend on the

voting device not being compromised. Indeed, the voting device does not get at any point information

neither about the real identity of the voter nor about the selected candidates. This is why we say that privacy

is broken before the voting phase.

However, this type of systems suffer from two important drawbacks. First, the code cards need to be

sent to voters via some trustworthy channel such as postal mail. If this channel gets compromised then the
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attacker can break voter’s privacy by relating the codes sent by the voter to her identity and to her selections.

The attacker can also impersonate the voter, as it has all the information needed to cast a vote on the voter’s

behalf. The second drawback is usability: introducing codes is not as intuitive as using a graphical user

interface to select the candidates and, if the number of candidates to be chosen is large, the amount of codes

required makes the system unusable.

These systems are not infallible neither. Even though the voter does not introduce any personal infor-

mation into the voting device, such device might extract some information about the behavior of the voter

such as how long it takes for the voter to cast a vote. This information might help an attacker to create a

profile of the voter. Therefore, it is not so clear that the voting device has no information about the voter’s

identity. Using this information, the voting device might make a guess of what voting option the voter might

be choosing and carry out the following attack. The first time the voter attempts to vote, the voting device

displays some error. Then, subsequent attempts using the same voting code (and, as a consequence, for the

same candidate) are denied until the voter introduces another code. At this point the voting device allows

the vote to be cast.

5.1.2 Two Agencies

There are two broad families of electronic voting systems that break the relation between voters and votes

during the voting phase: anonymous token-based systems [OKNV12] and blind signature-based systems

[FOO92]. Both systems are based on the principle of separation of duties, for this reason they are often

known as Two Agencies systems.

Both families of systems work in a two-step process. In the first step, the voter authenticates to some

authentication authority. After the authentication has taken place, the authentication authority provides the

voter some information which allows her to cast a ballot to the election authority. The main characteristic

of these systems is that the ballot that the voter sends does not contain any information about her identity.

As long as the authentication process does not reveal the voters’ selections and the two authorities are not

corrupt at the same time, these systems guarantee privacy.

The difference between the anonymous token-based systems and the blind signature-based systems is in

the authentication process. On the one hand, anonymous token-based systems are based on the voter and the

authentication authority engaging in some computation which produces a token for the voter. The voter can

use this token to anonymously send her voting option to the election authority, guaranteeing that she was

authenticated with the authentication authority.

On the other hand, blind signature-based systems consist on having the voter blinding her selections

and sending those blinded selections to the authentication authority. The authentication authority then au-

thenticates the voter and produces a signature on the blinded selections, returning the signature to the voter.

Finally, the voter can unblind the signed and blinded selections obtaining a signature produced by the au-
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thentication authority on her selections. The voter then sends her selections together with the signature to

the election authority, who can check the signature to verify that the voter was authenticated by the authen-

tication authority.

This family of systems bases the privacy guarantees on the strong implicit assumption that the voting

channel is anonymous. If the channel used is the Internet, there are many ways an attacker could de-

anonymize the voter, from IP addresses to her browser user agent [Eck10].

5.1.3 Homomorphic Tallying

We now move to the first family of schemes which break the relation between votes and voters after the

voting phase. These schemes, first introduced in [CGS97], work as follows. During the voting phase, the

voting client encrypts the selected voting option using the electoral board public key. The encrypted vote is

then sent to the electoral board, who stores all the encrypted votes until the end of the election. At the end

of the election, the electoral board aggregates all the encrypted votes obtaining an encryption of the tally.

Finally, the electoral board decrypts the aggregation of the votes obtaining the tally. To be able to aggregate

the encrypted votes and obtain the encryption of the tally, the encryption scheme must be homomorphic.

More in detail, in order to cast a vote the voting device proceeds as follows. Using the Pailler encryption

scheme as an example, for each eligible candidate the voting device encrypts either 1 if the candidate was

chosen or 0 if the candidate was not chosen, obtaining a ciphertext for each eligible candidate. When tallying

the election, the electoral board multiplies all the ciphertexts corresponding to the same candidate, obtaining

an encryption of the number of people who chose this candidate. Finally, the electoral board decrypts each

resulting ciphertext to obtain, for each candidate, the number of votes that she received.

In this system, the ballot cast by the voting device does not need to be anonymous. Indeed, in order

to guarantee that only eligible voters participate in the election, voters sign their ballots with their private

signing key. It is the homomorphic aggregation what breaks the relation between each voter and her chosen

voting option: this is why we say that such relation is broken after the voting phase.

The description of the system given above is not complete though. As currently described, instead of

encrypting values 0 or 1 for each candidate the voting device could encrypt any value such as 1000 or -1000.

This would have the effect of voting 1000 times for the same candidate or subtracting 1000 votes from the

votes received by the candidate. Similarly, with the system described above there is no way to restrict the

number of candidates that a voter can choose.

The solution to this problem is to use zero-knowledge proofs to force the voting device to encrypt only

values 0 or 1 and to choose up to the allowed number of candidates. There exist specific zero-knowledge

proofs which are efficient enough so that the process of casting a ballot can still be completed in a reasonable

amount of time.

The main drawback of this type of schemes is that one encryption has to be done for each candidate.
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When the number of eligible candidates is small, such as in a referendum or small elections, this does not

suppose any problem. However, in big elections with tens of parties and hundreds of eligible candidates per

party the number of encryptions to be done is too big to be completed in a reasonable time.

A partial solution to this problem is to encrypt more than one candidate per ciphertext in a way that

the ciphertexts can still be aggregated obtaining the vote count for each candidate. This can only be done

with special encryption schemes such as the Damgaard Jurik encryption scheme [DJ01]. However, this

special encoding of the voting option imposes some restrictions on the number of eligible candidates and

the number of voters. For large elections, this approach is not the most efficient from the voters’ side.

5.1.4 Mix-Nets

The second family of voting schemes which break the relation between votes and voters after the voting

phase are Mix-Net-based voting schemes, first introduced in [SK95]. In such schemes, the voting device

encrypts the selected candidates, similarly to what is done in homomorphic tallying-based voting schemes.

The electoral board receives all ballots and stores them until the end of the election. At the end of the

election, the electoral board removes any voter-related information of the vote (such as a digital signature),

shuffles all the ballots and decrypts them individually. Shuffling the ballots breaks any relation between

votes and voters.

Shuffling the ballots instead of aggregating them has two important consequences. First, the encryption

scheme being used does not need to have any special homomorphic property. Second, as no homomorphic

aggregation of the candidates is performed, the voting client only has to encrypt the candidates chosen by

the voter instead of encrypting all the eligible candidates. In some cases, all chosen candidates can even be

encoded in a single plaintext so that the voting device only needs to perform one encryption. This implies

that the voting process is cheap in computational terms.

In contrast with homomorphic tallying-based systems, in Mix-Net based systems voters do not need to

compute any Zero-Knowledge proof to show that the ciphertext does not contain invalid options. However,

this has no effect on the tally of the election. Since the election authorities decrypt each ballot individually,

invalid votes can be identified and discarded.

The main drawback of this scheme is that the election authorities need to perform the shuffling of the

votes and to decrypt each individual vote. Compared to homomorphic tallying-based systems, this requires

a higher computational power from the election authorities. As we will see later, expensive zero-knowledge

proofs are added in the tallying process to make such process verifiable. In this case, the tallying process

becomes even more computationally expensive than homomorphic tallying-based systems.
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5.2 Verifiable electronic voting systems

We will now explain what are the main techniques which are used in order to provide verifiability mech-

anisms to electronic voting schemes. We will focus on homomorphic tallying-based and Mix-Net-based

voting schemes, the other families of schemes suffer from very important drawbacks as we have explained.

Verifiability properties can be divided in four types, depending on which is the object of the verifiabil-

ity. These four types are: cast-as-intended verifiability, recorded-as-cast verifiability, eligibility verifiability

and counted-as-recorded verifiability. In this section, we will explain how these verifiability properties are

usually achieved.

5.2.1 Cast-as-intended verifiability

We say that a voting system has cast-as-intended verifiability if the voter can verify that the ballot cast

by the voting device contains her chosen candidates. In other words, the voting system should provide

mechanisms so that the voter can check that the voting device did not cheat by encrypting candidates other

than her selections. There are three main mechanisms for providing cast-as-intended verifiability: immediate

decryption, interactive proofs and return codes.

The immediate decryption mechanism, introduced in [Ben06], works for both homomorphic tallying-

based and Mix-Net-based systems. This mechanism works as follows. First, the voting device produces the

ballot by encrypting the chosen candidates. Then, the voting device commits to this ballot either by printing

it or showing it on screen. Once the voter has access to the ballot, she might choose to audit the ballot or

to cast it. If she chooses to audit the ballot, then the voting device provides information which allows the

voter to perform the cast-as-intended verification. Such information is usually the randomness used in the

encryption process. The voter must then use an independent trusted device to verify that her ballot contains

her selected candidates.

However, this information provided by the voting device would also serve as a receipt which could be

used for coercion or vote selling. Therefore, if the voter chooses to audit the ballot then this ballot can not

be cast and the voting process has to be started from the beginning. The voting device then produces another

ballot, which the voter can choose to audit or to cast it.

The main drawback of this mechanism is usability: it might be hard for voters to understand the pro-

cess. This, in turn, implies that many voters might choose not to audit their ballots and, in conclusion, the

effectiveness of this mechanism might be reduced. In case that each voter uses a distinct voting device, this

implies that the mechanism is effective for a given voter only if she uses the mechanism.

The interactive proof mechanism, introduced in [Ben06], also works for homomorphic tallying-based

and Mix-Net-based voting systems. In this mechanism, voters and voting devices engage in an elaborate

interactive protocol to convince the voter that the ballot contains her selections. First, the voting device
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produces several ballots containing the candidates chosen by the voter. The voting device commits to those

ballots by printing them in a location or form that can not be read by the voter (such as printing them behind

an opaque screen or on the back of a card). Then, the voter chooses a subset of those ballots randomly

and the voting device shows, similarly to as done in the immediate decryption mechanism, that the ballots

correspond to the candidates chosen by the voter. Finally, the voting device proves in zero-knowledge

that all the ballots correspond to the same voting option (without revealing which one it is) and produces

fake audited ballots corresponding to voting options not chosen by the voter and simulated zero-knowledge

proofs for these fake ballots.

This mechanism suffers from several drawbacks. First, it needs to print the ballots in such a way that the

voter does not see them. This requires special technology not available to every voter. In addition, voters

must make several random selections. As humans, we are bad at choosing randomness and, as a result,

the selections would not be purely random and the effectiveness of the system would decrease. Finally, the

usability of this system is, at best, questionable.

There is another mechanism to provide cast-as-intended verifiability, which are the so-called return

codes [Gjø11]. As far as we know, the current proposals for the return codes mechanism only work with

Mix-Net-based electronic voting systems. The mechanism borrows an idea from Code Voting systems: once

the voter has submitted her ballot, the election authorities compute some Verification Codes (also known as

Return Codes) from the ballot and send such codes to the voter. The voter then checks that these codes

match some other codes which appear in her Code Card, which the voter received by postal mail prior to the

election. If the codes match, this guarantees that the ballot contains the voting option chosen by the voter.

Computing the Verification Codes from the ballot without breaking ballot privacy is a challenging task.

Current proposals achieve this goal by using homomorphic encryption schemes. In [Gjø11], the computation

of the Verification Codes is split in two entities, each of them doing complementary computations, and ballot

privacy is guaranteed as long as at least one of the entities is honest. On the other hand, in [GGP15] the

ballot produced by the voting device consists of two parts: the encryption of the voting option and the

Partial Verification Codes. The voting device also provides some zero-knowledge proofs to guarantee that

the Partial Verification Codes correspond to the encrypted voting option. The election authorities use the

Partial Verification Codes to compute the actual Verification Codes.

This is clearly the most usable cast-as-intended verification mechanism of the three that we exposed.

Indeed, the voter only needs to check that the codes print on screen match with the corresponding codes on

the Code Card. However, this mechanism has two drawbacks. First, as opposed to the other mechanisms, it

is necessary to deliver the Code Cards by postal mail. This increases the cost of the election and might not

be feasible in all scenarios. In addition, the mechanism is effective as long as voters do check that the codes

match. This is similar to what happens with the other two mechanisms of cast-as-intended verifiability.
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5.2.2 Recorded-as-cast verifiability

A system with recorded-as-cast verifiability allows the voter to verify that the ballot cast by her voting device

was correctly received and stored by the election authorities. In particular, the system provides evidence to

convince the voter that the ballot was not modified nor deleted after it was cast.

There is currently only one mechanism which provides recorded-as-cast verifiability, known as the Bul-

letin Board [GV10]. The idea is quite simple: during and/or after the voting period, the election authorities

publish all the ballots cast by the voters to some repository, for example a website. When a ballot is cast,

the voting device also prints the ballot (e.g., on a screen). The voter can then check that the ballot printed

by the voting device also appears on the repository.

Although the idea is simple, there are some real-world implementation subtleties. For example, there

have to be mechanisms to verify that the same Bulletin Board is shown to all the voters, otherwise the

Bulletin Board would lose its effectiveness. Similarly, if the Bulletin Board is published during the voting

period, it has to be guaranteed that the Bulletin Board’s contents are updated in an append-only way. Despite

these subtleties, the Bulletin Board is the only recorded-as-cast verifiability mechanism known so far and

recorded-as-cast verifiability is considered a solved problem.

5.2.3 Eligibility verifiability

In addition to allowing voters to verify that their vote was correctly stored by the system, an electronic voting

system should also allow anyone to verify that the ballot box only contains ballots cast by voters who can

participate in the election. This property is known as eligibility verifiability.

Eligibility verifiability is easily accomplished by digitally signing each ballot with a voter’s private key.

This assumes that voters have key pairs which public key is recognized by the election authorities. This is

easily achieved if voters have some electronic id card (such as Spanish id card [edn]), which usually contain

at least one signature key pair.

It should be noted that, by signing each ballot, anyone can verify whether a voter participated or not in

an election. This is a concern when strong notions of privacy are required in which individual participation

data should also be private. We will not consider these strong notions of privacy in this thesis.

5.2.4 Counted-as-recorded verifiability

Finally, a voting system should also give evidence that the tallying process was done correctly, taking as

input the ballots stored in the ballot box. A system providing such evidence is said to have counted-as-

recorded verifiability.

The mechanisms for providing counted-as-recorded verifiability depend on the family of the electronic

voting system. Once again, we will only focus on homomorphic tallying-based voting systems and Mix-
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Net-based voting systems. Although the mechanisms for these schemes are different, the core idea is the

same: to provide a proof that all secret computations were done correctly.

When considering homomorphic tallying-based systems, the mechanism for achieving counted-as-

recorded verifiability is relatively simple. It can be split in two parts. First, the homomorphic aggregation of

the ciphertexts is a deterministic, non-private operation, therefore it can be reproduced and no proofs need

to be given for this operation. The decryption operation is a private operation, so zero-knowledge proofs

are given to show that the ballots were correctly decrypted. An example of such proofs can be found in

[CGS97].

On the other hand, counted-as-recorded verifiability mechanisms for Mix-Net-based systems are a bit

more complex. The reason is that both the shuffling and the decryption processes are private. In addition,

when shuffling the ballots the output of the shuffle needs to be kept private since the shuffle could be

inferred otherwise. The most common solution is to shuffle and re-encrypt each ballot and then decrypt

each individual ballot. As we already mentioned, decryption zero-knowledge proofs are fairly simple. On

the other hand, Zero-Knowledge proofs for the shuffle and re-encryption process are more complex. The

most efficient ones are those given in [BG12] and [TW10].

5.3 Going formal: syntactical and security definitions

5.3.1 Syntactical definition

Once we have given an overview of the current families of electronic voting schemes, we will explain what

work has been done on formal security definitions. The focus is going to be on homomorphic tallying-

based and Mix-Net-based voting systems. We will also restrict this section to privacy definitions since

previous verifiability definitions are not relevant for this thesis. We will give the privacy definitions given in

[BCG+15], since they are the most recent ones and they fix some flaws found in previous definitions.

We will first give the syntactical definition of an electronic voting system. This specifies the processes

which take place in the system together with their inputs and outputs. As explained in Section 5.1, in a

homomorphic tallying-based or in a Mix-Net-based electronic voting system the voters only interact with

the system by casting their ballot. These type of schemes are said to be single-pass voting schemes, as

defined in [BPW12b].

Before introducing the syntactical definition, it will be useful to define the entities that participate in

an election. First, election authorities are in charge of defining the election parameters, generating any

required cryptographic keys and tallying the result of the election. The bulletin board (BB) is a repository

of information containing public keys and ballots. It can be read by any entity but only the bulletin board

manager and the election authorities can write to it. Voters participate in the election by choosing their

preferred voting option and submitting their ballots.
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In addition, there are some parameters which define a single-pass voting scheme. These are the set

of possible votes V (i.e., all valid combinations of candidates), a result space R and a result function ρ :

(V ∪ {⊥})∗ → R, where ⊥ denotes an invalid vote.

The result function usually specifies the rules applied to the votes for obtaining the tally. However, the

output of the result function is not necessarily the ultimate result of the election. Indeed, in some cases

it might just specify some process after which the count of the votes is performed in a public way. The

clearest example of such result function is the multiset function. As defined in [BCG+15], the multiset

function takes as input all the cast votes and outputs them in a random order. Once the votes have been

disclosed in a random order any entity can compute the result of the election in a public way.

We can now give the syntactical definition of a single-pass voting scheme. A single-pass voting scheme

is defined by the following (possibly probabilistic) algorithms:

ElectionSetup(1λ): on input a security parameter 1λ it generates and outputs an election public key pk and

an election secret key sk. This algorithm defines all keys and parameters which will be needed in

the electronic voting system. It might include keys for encryption and signature schemes, but also

common reference strings for NIZK proofs.

Vote(pk, v): on input the election public key pk and a vote v ∈ V, outputs a ballot b.

ValidateBallot(BB, b): on input a bulletin board BB and a ballot b it outputs either accept (1) or reject (0).

Tally(sk,BB): on input the election secret key sk and the bulletin board BB it outputs the tally r ∈ R

together with a proof of correct tabulation Π.

VerifyTally(BB, r,Π): on input the bulletin board BB, the tally r and a proof of correct tabulation Π it

outputs either accept (1) or reject (0).

Now we explain which algorithms are executed by which entities. A single-pass protocol is executed in

the following three phases.

1. In the setup phase, the election authority runs the ElectionSetup algorithm. It publishes the election

public key pk to the bulletin board BB and privately keeps the election secret key sk.

2. In the voting phase, the voter chooses a vote v and creates a ballot using the Vote algorithm, where the

public key pk is retrieved from the bulletin board. The result of the Vote algorithm is a ballot b, which

is sent to the bulletin board manager. The bulletin board manager then executes the ValidateBallot

algorithm on the ballot. If the algorithm returns 1, then the bulletin board manager adds the ballot to

the bulletin board. Otherwise, it rejects the ballot and notifies the voter.

3. In the counting phase, the election authority runs the Tally algorithm on the bulletin board using the

election secret key. The output of the Tally algorithm, which consists of the result and the correct
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tabulation proof, is published to the bulletin board. This proof of correct tabulation can then be

verified by any entity using the VerifyTally algorithm.

5.3.2 Correctness

Before considering privacy definitions, we have to define a basic requirement: if the voting system is used

as intended then it should behave in a pre-defined manner. In particular, we want that if all participants are

honest then (i) the result r output by the Tally algorithm is equal to the evaluation of the result function ρ on

the voting options corresponding to the ballots cast by the voters and (ii) the algorithm VerifyTally on input

the result of the Tally algorithm returns accept.

5.3.3 Privacy

Defining privacy for a voting scheme is a surprisingly difficult task. One of the reasons is that the access

of an adversary is quite strong: on the one hand, it has access to the result of the election and, on the other

hand, some voters and some members of the election authority might cooperate with the attacker. We say

that those voters or election authorities are corrupt.

If not all the members of the election authority are corrupt, then there are techniques which can help

to make the voting system private. These tools are known as Multi-Party Computation [Yao82] and can be

implemented independently of the other parts of the voting system. For sake of simplicity we will assume

that there is only one election authority, which is honest.

As we said, the adversary might corrupt some voters as well. We might attempt to define privacy as

no adversary being able to tell what honest voters voted for. In the extreme situation where the adversary

corrupts all-but-one voters then the adversary might force a draw with the ballots of all corrupt voters and

the tally would reveal the honest voter’s vote. Still, if the adversary does not corrupt all voters, there are

other situations in which it could trivially know the honest voters’ choices. For example, if the adversary

controls one half minus one of the voters it could submit ballots for the same candidate. This would reveal

if all other voters voted for the opposing candidate or not.

A privacy definition should allow an adversary to get such information as such leakage is unavoidable

when the adversary can corrupt voters. However, it should not allow any other information leak. This is

captured in the Universal Composability (UC) model [Gro04]. This model works by specifying an ideal

functionality, in our case having all voters submit votes privately to a trusted party and this trusted party

publicly announcing the tally. Some of the voters could be corrupt, so their votes would be leaked. Then, a

scheme satisfies privacy if it does not leak any information not leaked in the ideal functionality.

Working in the UC model is extremely complex. However, in [BCG+15] a definition is given which is

proven to be equivalent to the UC definition. Their definition is not intuitive, but it is easy to work with.

In addition, as it is equivalent to the UC definition we can be sure that it is a definition which matches our
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expectations as defined in the UC definition.

The definition given in [BCG+15] works as follows. The adversary might corrupt voters, submitting

ballots on their behalf. In addition, for each honest voter it submits two possible votes. Either the first vote

will be used to cast ballots for all voters or the second vote will be the one used to cast ballots. The adversary

will then have to distinguish whether the first vote or the second vote was used to cast each voter’s ballot.

Up to this point this is a typical indistinguishability definition where the adversary must distinguish between

two situations, or experiments, which have similar behavior.

To avoid having the tally leak information about the honest voters’ votes, as in the case of all-but-one

voters being corrupt, the same tally will always be shown to the adversary, regardless of whether the first

vote or the second vote was used to cast honest voters’ ballots. This implies that the tally the adversary

gets might not correspond to the votes cast by honest and corrupt voters. However, this allows us to have

schemes in which the adversary does not distinguish between the two scenarios.

This is formalized by considering two experiments or situations: the left (L) experiment and the right

(R) experiment. In both experiments, there is a bulletin board (BBL and BBR respectively). The adversary

might submit ballots b, which will be added to both bulletin boards if the ballots are valid. In addition, the

adversary might submit two votes for each honest voter. These votes correspond to the right vote, or the

vote to be used in the right experiment, and the left vote, which will be used in the left experiment. At the

end of the election, the election authorities tally the ballots on the bulletin board but always output the result

of the left experiment.

There is one caveat here: how can the election authorities give a proof of correct tabulation if the

announced result is not the tally of the election? In this case, the election authorities need to provide a

simulated proof of correct tabulation. The security definition must allow the election authority to provide

such simulated proofs. Note how a security definition is allowed to deviate from the usual work flow: in

a real election, it must be impossible to have the election authorities provide a simulated proof of correct

tabulation.

Another minor caveat is that the proof of correct tabulation and the simulated proof of correct tabulation

could be used as covert channel. This was studied in [BCG+15] and it was shown that previous privacy

definitions had a flaw that allowed a voting scheme which was clearly not private to satisfy the privacy

definition by using the covert channel. This flaw was fixed in the definition of [BCG+15] by restricting the

information from which the simulated proof of correct tabulation was computed.

Ballot privacy is defined by using two experiments between an adversaryA and a challenger C. The goal

of the adversary is to distinguish between the two experiments. For compactness, we present the two exper-

iments as a single experiment which depends on a bit β ∈ {0, 1}. Both experiments assume given the set

of voting options V, the result space R, the result function ρ and use an algorithm SimProof(BB, r) which,

given a bulletin board and a result, simulates a correct tabulation proof (in this case, the ElectionSetup
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algorithm will need to be modified so that proofs can be simulated).

The experiment Expβ is run in these phases:

1. Setup phase. C sets up two empty bulletin boards BBL and BBR. It runs the ElectionSetup(1λ)

protocol to obtain the election public key pk and the election private key sk. It then posts pk on both

bulletin boards. The adversary is given read access to either BBL if β = 0 or BBR if β = 1.

2. Voting phase. The adversary may make two types of queries:

• Vote(vL, vR) queries. The adversary provides two votes vL, vR ∈ V. The challenger runs

Vote(pk, vL) and Vote(pk, vR) obtaining two ballots bL and bR respectively. C then obtains

new versions of the boards BBL and BBR by running both ValidateBallot(BBL, bL) and

ValidateBallot(BBR, bR) and updating the boards accordingly.

• Ballot(b) queries. These are queries made on behalf of corrupt voters. Here the adversary pro-

vides a ballot b. The challenger runs ValidateBallot(BBL, b). If the algorithm returns 1, BBL

is updated and ValidateBallot(BBR, b) is executed, updating BBR accordingly. Otherwise, if

the algorithm returns 0, it does nothing.

3. Tallying phase. The challenger evaluates Tally(sk,BBL) obtaining the result r and the proof of

correct tabulation Π. If β = 0, the challenger posts (r,Π) on the bulletin board BBL. If β = 1, the

challenger runs SimProof(BBR, r) obtaining a simulated proof Π′ and posts (r,Π′) on the bulletin

board BBR.

4. Output. The adversary A outputs a bit α.

We say that a voting protocol for (V, R, ρ) provides ballot privacy if there exists an algorithm SimProof

such that for any p.p.t. adversary A the following advantage is negligible in the security parameter λ.

Advpriv
SimProof(λ) := |Pr[α = 1|β = 1]− Pr[α = 1|β = 0]|

5.3.4 Strong consistency and strong correctness

The definition of privacy given above does not suffice to be equivalent to the UC definition. As shown in

[BCG+15], two extra properties are needed: strong consistency and strong correctness.

While correctness states that when all participants are honest then the output of the tally must match the

output of the result function on the votes chosen by the voters, it does not specify the behavior of the system

when some voters are not honest. In particular, it could happen that a corrupt voter caused the tally of the

election to be completely different than the result function applied to the votes chosen by voters. Similarly,

it could happen that corrupt voters submitted ballots that caused ballots cast by honest voters to be invalid.
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Strong consistency states that the tally of the bulletin board must correspond to the result of applying the

result function to the contents of the ballots in the bulletin board. This must hold even if the bulletin board

was generated adversarially.

Strong consistency is given by the following game, parameterized by the election parameters (V, R, ρ)

and an algorithm Extract(sk, b), which takes as input the election secret key and a ballot and outputs either

a vote or the error symbol ⊥ denoting an invalid vote.

1. Setup phase. The challenger runs ElectionSetup(1λ) to obtain the election public key pk and the

election secret key sk. It gives both pk and sk to the adversary A.

2. Bulletin Board(BB). The adversary submits a bulletin board BB to the challenger.

3. Output. The challenger runs Tally(sk,BB) to obtain a result r and a correct tabulation proof Π. The

output of the game is a bit γ. This bit is defined as 1 if r 6= ρ(Extract(sk,BB)) and 0 otherwise,

where Extract is applied on the bulletin board by applying it to each individual ballot.

We say that a voting protocol for (V, R, ρ) has strong consistency with respect to an extract algorithm

Extract if the following conditions are satisfied:

(i) For any (pk, sk) generated by ElectionSetup, for any vote v ∈ V we have Extract(Vote(pk, v)) = v

(ii) For any p.p.t. adversary A, the following advantage is negligible in the security parameter λ:

Advs-const(λ) := Pr[γ = 1]

On the other hand, strong correctness states that ballots created by honest voters should be valid regard-

less of the ballots submitted by corrupt voters. Strong correctness is given by the following game:

1. Setup phase. The challenger runs ElectionSetup(1λ) to obtain the election public key pk and the

election secret key sk. It gives both pk and sk to the adversary A.

2. Bulletin Board(BB). The adversary submits a bulletin board BB to the challenger.

3. Vote(v). The adversary submits a vote v to the challenger.

4. Output. The challenger runs Vote(pk, v) to obtain a ballot b. The output of the game is a bit δ. This

bit is defined as 1 if ValidateBallot(BB, b) = 0 and 0 otherwise.

We say that a voting protocol for (V, R, ρ) has strong correctness if for any p.p.t. adversary A, the

following advantage is negligible in the security parameter λ:

Advs-corr(λ) := Pr[δ = 1]
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5.4 Enc2Vote: a very basic voting scheme

In [BCP+11], a very basic voting scheme is introduced. This scheme, called Enc2Vote (encrypt to vote),

has as its only goal to satisfy ballot privacy, strong correctness and strong consistency. In particular, no

verifiability requirements are satisfied. The idea of this voting scheme is to construct a very basic ballot

private scheme which can be used as a basis for other, more advanced voting schemes.

The scheme is a Mix-Net based voting scheme and, in particular, uses as its result function ρ the multiset

function. It uses as building block an encryption scheme (Setup,KeyGen,Enc,Dec) and works as follows:

ElectionSetup(1λ): executes the Setup and KeyGen algorithms of the encryption scheme to obtain a setup

gk and a pair of encryption keys (pke, ske). It sets pk = (gk, pke) as the election public key, sk = ske

as the election private key and the message space of the voting scheme Mgk as the set of votes.

Vote(pk, v): on input the encryption public key pk = (gk, pke) and a vote v ∈Mgk it computes the ballot

b = Enc(gk, pke, v).

ValidateBallot(BB, b): on input a bulletin board BB and a ballot b outputs 0 if b ∈ BB , and 1 otherwise.

Tally(sk,BB): on input the encryption secret key sk = ske and the bulletin board BB, retrieves pk =

(gk, pke) from the bulletin board, decrypts all ballots and outputs ρ({Dec(gk, ske, b)}b∈BB) and no

auxiliary data.

VerifyTally(BB, r,Π): on input a bulletin boardBB, the result r and a proof of correct tabulation Π always

returns 1.

As shown in [BPW12b], the Enc2Vote scheme is ballot private, strongly correct and strongly consistent

if the encryption scheme is NM-CPA. As we will see, our voting schemes will reduce some of their security

properties to the security of the Enc2Vote scheme.
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Chapter 6

Vote Validatability in Mix-Net-Based

Electronic Voting

This section is based on the results published in [BEM15], coauthored with Pedro Bibiloni and Paz Morillo.

6.1 Motivation

When building a Homomorphic Tallying based voting system, a technical requisite is that the voter must

construct a proof that her vote conforms to the election rules. Otherwise, the homomorphic aggregation of

invalid votes could produce completely unreasonable results.

Mix-Net-based systems do not have this requirement. As votes are individually decrypted, it can be

checked whether each decrypted vote conforms to the election rules and, in case it does not, consider it an

invalid vote. From a technical perspective this is completely reasonable, we do not need to ask voters for a

proof of her vote conforming to the election rules in order to have a secure Mix-Net-based system.

Despite proofs of ballot well-formedness not being necessary to implement a secure electronic voting

system, the lack of such proofs might affect the reputation of the system. From a non-technical voter’s

perspective, it is reasonable to assume that if the voting interface does not allow for an invalid vote to be cast

then invalid votes should be impossible to cast. Therefore, modifying the voting client to cast an invalid vote

might be seen as an attack against the system, even if it has no effect on the result on the election. Besides, it

would be impossible to track the attacker due to the anonymity provided by the Mix-Net. In addition, should

there be a software bug which created ballots for invalid votes inadvertently, this would be only detected at

the tallying phase. Depending on the number of invalid votes, the election might even have to be restarted –

with the reputation loss that it represents.
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6.2 Our contributions

In the paper [BEM15], we introduced the concept of vote validatability, which attempts to solve the problem

mentioned above. We consider that an electronic voting system has vote validatability if it can be publicly

verified that a ballot contains a vote conforming to the election rules – we want to be able to detect whether

a vote is invalid before it is decrypted. This means that (a) no invalid votes will appear during the tallying of

the election and (b) any software bug in the voting devices affecting ballot creation will be detected during

the election period, so it can be quickly fixed, providing the voters another attempt to vote before the end of

the election.1

As we discussed above, Homomorphic Tallying systems have vote validatability since it is a requisite

in order to have a secure voting system, in contrast with Mix-Net-based systems. Adding this property

to a Mix-Net-based scheme is a problem solved from a theoretical point of view: there are inefficient

cryptographic tools such as general-purpose zero-knowledge proofs which can be used to achieve it. The

challenge is thus using appropriate protocols to have a low computational cost from the voters’ side, which

is one of the advantages of using a Mix-Net-based system.

There is a trivial approach to achieve vote validatability: considering all possible contents of a ballot

as valid. This can be done by defining an encoding for all-but-one eligible candidates and assigning any

other encoding to the last candidate. However, this has some drawbacks. First, having several encodings

for the same candidate opens the door to facilitating vote selling by making it possible to introduce the

voter’s identity in the encoding of the candidate. In addition, requiring a specific encoding might prevent

benefiting from some features of the electronic voting systems. One example is the so-called return codes

[Gjø10], which current implementations require that each candidate has only one encoding. Another one is

using special encodings to aggregate encryptions before the tallying, as also done in [Gjø10]. Therefore, we

prefer a solution to vote validatability which does not require a specific encoding of the candidates.

The rest of this chapter is structured as follows. We introduce a formal definition for the concept of vote

validatability in Section 6.3. Then, we give a general construction of a Mix-Net-based scheme achieving

vote validatability and ballot privacy. This construction is based on basic cryptographic primitives and is

given in Section 6.4, along with the proofs of its security properties. Finally, we give a concrete, efficient

instantiation of a Mix-Net-based system with vote validatability in Section 6.5.

6.3 Vote validatability definition

We now present the definition of vote validatability, which is the first contribution of the paper [BEM15].

Our definition of vote validatability applies to single-pass voting schemes, which syntactical definition is
1There could be bugs in the software which verifies vote validatability. However, this verification can be done in parallel by

different implementations done by different entities, leveraging this risk.
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given in Section 5.3.1. Vote validatability states that a ballot which passes all validations must correspond

to a valid vote. This is modeled by stating that there must exist an algorithm Extract which never returns

the error symbol ⊥ on ballots for which ValidateBallot returns 1. We will also need that the voting protocol

must be strong consistent with respect to Extract.

Vote validatability is given by the following game parametrized by the election parameters (V, R, ρ) and

an algorithm Extract(sk, b), which takes the election secret key and a ballot and outputs either a vote or the

error symbol ⊥ denoting an invalid vote.

1. Setup phase. The challenger runs ElectionSetup(1λ) to obtain the election public and private keys

(pk, sk), giving both to the adversary.

2. Ballot(b). The adversary submits a ballot b to the challenger.

3. Output. The output of the game is a bit δ. This bit is defined as 1 if Extract(sk, b) =⊥ and

ValidateBallot = 1, and as 0 otherwise.

We say that a single-pass voting protocol for (V, R, ρ), as defined in Section 5.3.1, has vote validatability

with respect to an extract algorithm Extract if the following conditions are satisfied:

(i) The voting protocol for (V, R, ρ) is strongly consistent (see Section 5.3.4) with respect to Extract

(ii) For any p.p.t. adversary A, the following advantage is negligible in the security parameter λ:

Advval(λ) := Pr[δ = 1]

One implication of the definition given above is that, if the protocol has vote validatability, then it must

be satisfied that, for any honestly-generated keys and any adversarially generated bulletin board, the result

output by the tally can be obtained with only valid votes, r ∈ ρ(V∗).

We want to remark that vote validatability does not depend on the secrecy of the election secret key.

However, it assumes that the ElectionSetup is run honestly. Even though this can be achieved by distributing

the trust among multiple authorities, we give the definition assuming that there is only one authority for the

sake of simplicity.

6.4 General construction

6.4.1 Core idea

In an electronic voting system, voters might be able to vote for more than one candidate, so we will consider

a generic scenario in which votes are subsets of n distinct candidates from a larger but specified list of

them. Treating the set of votes as the set of combinations of candidates would result in a terribly inefficient

system. Therefore, each of the selected candidates will be encrypted independently. To prove that each
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candidate hidden in its respective encryption belongs to the list of candidates, we will use a set membership

protocol based on digital signatures. In addition, we will use a technique originally designed to avoid

double-spending in e-cash to demonstrate that the candidates hidden in these encryptions are distinct.

The main idea of our new construction is inspired by the set membership protocol proposed by Ca-

menisch et al. [CCas08]. In that work, the authors construct a protocol for proving that a value is a com-

mitment to a member of a pre-defined set. Their protocol works as follows. First, there is a trusted third

party which produces signatures on each element of the set. Then, the prover constructs a zero-knowledge

proof that she knows a signature on the committed value which verifies under the trusted third party’s secret

key. When the encryption scheme and the signature scheme being used have nice structural properties, the

size of the proof is small and constant on the size of the set. In our case, the electoral authority will sign all

candidates, and the voter will prove that she knows a signature on each selected candidate. However, this

would still allow the voter to choose repeated candidates.

To detect this last situation, we use a technique inspired by the e-cash scheme given in [BCKL09]. In

e-cash, detecting double-spending is essential, and this problem is similar to detecting repeated candidates

in a vote. We will ask the voter to choose a pseudo-random permutation key and to publish the image of each

chosen candidate under the pseudo-random permutation defined by such key. Given that the pseudo-random

permutation is deterministic, if the voter chooses the same candidate more than once this will be detected

by any entity. The protocol will require the voter to prove in zero-knowledge that the images of the pseudo-

random permutation correspond to the candidates which she encrypted and that she knows a signature for

each candidate.

In Section 6.4.2 we describe a generic protocol built on the mentioned cryptographic primitives. In

Section 6.5 we show that by instantiating the cryptographic primitives with adequate schemes the resulting

protocol can be made as efficient as state-of-the-art electronic voting systems.

6.4.2 Detailed protocol

We begin by characterizing the set of allowed votes V. Given a set of candidates V , we define the set of

votes as V = {v | v ⊂ V ∧ |v| = n} for some fixed value of n. Here, we are assuming that a voter must vote

for n candidates. We can handle blank votes and undervotes by designating n different blank candidates.

Our voting protocol is built on an encryption scheme, a signature scheme and a NIZK proof system. We

will require that these three schemes have a common setup algorithm Setup. The voting protocol is also

built on a PRP family.

Therefore, the building blocks of our voting protocol are an encryption scheme (Setup, KeyGenenc,

Enc,Dec), a signature scheme (Setup,KeyGensign,Sign,VerifySign), a PRP family F(·) : Mgk → Mgk,

where Mgk is the message space of the encryption and signature schemes defined by the output of Setup,
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and a NIZK proof system (Setup,GenCRS, Prove, VerifyProof) for the relation R defined as:

R = {(gk, x, w)| x = (c1, . . . , cn, p1, . . . , pn, pke, pks)∧

w = (ν1, . . . , νn, r1, . . . , rn, σ1, . . . , σn, k)∧

(c1, . . . , cn) = (Enc(gk, pke, ν1, r1), . . . ,Enc(gk, pke, νn, rn))∧

(VerifySign(gk, pks, ν1, σ1), . . . ,VerifySign(gk, pks, νn, σn)) = (1, . . . , 1)∧

(p1, . . . , pn) = (Fk(ν1), . . . , Fk(νn))}

The algorithms are then defined as follows:

ElectionSetup(1λ) : starts by running the Setup algorithm of the cryptographic building blocks to generate

the common setup gk. Then the algorithm runs GenCRS(gk) to generate the common reference string

crs, KeyGenenc(gk) to generate a pair of encryption keys (pke, ske) and KeyGensign(gk) to generate

a pair of public/private signing keys (pks, sks). This implicitly defines the message space Mgk for

both the encryption and the signature scheme. We require that there exists an injective mapping η

such that η(V) ⊂ Mgk. For the sake of simplicity, we will assume that V ⊂ Mgk. Then, for each

ν ∈ V , the algorithm produces a signature on it, σν = Sign(gk, sks, ν). The election public key is

defined as pk = (gk, crs, pke, pks, {σν}ν∈V) and the election secret key is defined as sk = ske.

Vote(pk, v): parses pk as (gk, crs, pke, pks, {σν}ν∈V) and v as (ν1, . . . , νn). It then samples fresh ran-

domness (r1, . . . , rn) and runs (Enc(gk, pke, ν1, r1), . . . , Enc(gk, pke, νn, rn)) obtaining ciphertexts

C = (c1, . . . , cn). Next, it selects a fresh random PRP key k ∈ KPRP and computes (p1, . . . , pn) =

(Fk(ν1), . . . , Fk(νn)). Finally, it computes a NIZK proof π for the relation R defined above with

statement x = (c1, . . . , cn, p1, . . . , pn, pke, pks) and witness w = (ν1, . . . , νn, r1, . . . , rn, σν1 , . . . ,

σνn , k). The output is then b = (C, π, {pi}ni=1).

ValidateBallot(BB, b): recovers pk from the bulletin board BB and parses pk as pk = (gk, crs, pke, pks,

{σν}ν∈V). Upon reception of a ballot b, which is parsed as b = (C, π, {pi}ni=1), it is checked if in

the bulletin board there is another ballot b′ such that c′j = ci for any i, j ∈ {1, . . . , n}. If any such

ballot is found, the algorithm stops and returns 0. Otherwise, the algorithm checks that the values

(p1, . . . , pn) are distinct, returning 0 if they are not. If the values are distinct, the algorithm returns

the output of VerifyProof using the statement x = (c1, . . . , cn, p1, . . . , pn, pke, pks).

Tally(sk,BB): after each individual ballot b ∈ BB is processed with ValidateBallot, the tally algorithm

decrypts them and the result function is computed. The decryption procedure is defined as follows.

1. (ν̃1, . . . , ν̃n) = (Dec(gk, ske, c1), . . . ,Dec(gk, ske, cn)) is computed.

2. It is checked that ν̃1, . . . , ν̃n ∈ V .
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3. It is checked that (ν̃1, . . . , ν̃n) are pairwise different.

4. If any check fails, v is assigned the value ⊥. Otherwise, v is assigned the value (ν̃1, . . . , ν̃n).

Then, ρ is applied to the resulting decryptions {v}. Note that, for each v, either v ∈ V or v =⊥, so ρ

can be applied. The output of ρ is defined as the result and the proof of correct tabulation is defined

to be the empty string ε

As the proof of correct tabulation is the empty string ε, VerifyTally returns 1 on any input.

6.4.3 Security proofs

Finally, we give the security properties fulfilled by our scheme. Let (Setup,KeyGenenc,Enc,Dec) be a

NM-CPA secure encryption scheme, let (Setup,GenCRS,Prove,VerifyProof) be a NIZK proof system for

relation R, and let (Setup,KeyGensign, Sign,VerifySign) be an wEUF-CMA signature scheme and let F(·) :

Mgk → Mgk be a PRP family for the message space Mgk defined by Setup. Let ρ be the counting

function which outputs its inputs randomly permuted and let Extract be the decryption procedure of the

Tally algorithm. Then, the protocol defined in Section 6.4.2 satisfies ballot privacy, strong correctness,

strong consistency and vote validatability for any candidate set V, with respect to ρ,Extract.

Theorem 6.4.1. Let (Setup,KeyGenenc,Enc,Dec) be a NM-CPA secure encryption scheme, let F(·) be

a PRP family and let (Setup,GenCRS,Prove,VerifyProof) be a NIZK proof system. Then, the protocol

defined in Section 6.4.2 has ballot privacy.

Proof. Recall that privacy is defined as the indistinguishability of two experiments which depend on a bit

β. We will refer to them as Expβ for β ∈ {0, 1}.

Define Expβ,0 = Expβ . Consider experiments Expβ,1 to be the experiment which are the same as Expβ,0

but the challenger runs SimGenCRS instead of GenCRS and it runs SimProve instead of Prove. Finally, let

Expβ,2 be the experiments which are identical to Expβ,1 but in which the challenger uses a truly random

function instead of a PRP in order to cast ballots.

Due to the zero-knowledge property of the NIZK proof system, Expβ,0 and Expβ,1 are indistinguish-

able for β ∈ {0, 1}. Besides, Expβ,1 and Expβ,2 are indistinguishable for β ∈ {0, 1} due to the pseudo-

randomness of the PRP. Now the only thing left is to prove that Exp0,2 and Exp1,2 are indistinguishable.

Consider the Enc2Vote scheme defined in Section 5.4, for which the following holds:

Theorem 6.4.2. Let (Setup,KeyGenenc,Enc,Dec) be an NM-CPA encryption scheme. Then, Enc2Vote has

ballot privacy.

Finally, we reduce the privacy of our scheme to the privacy of Enc2Vote.
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Lemma 6.4.3. Let A1 be a p.p.t. adversary that interacts which challenger C and outputs a bit αA1 such

that |Pr[αA1 = 1|Exp0,2]−Pr[αA1 = 1|Exp1,2]| is non-negligible. Then, there exists an adversaryA2 that

breaks the ballot privacy property of the Enc2Vote scheme.

In our reduction, A1 will interact with A2, which will act as the challenger for A1. At the same time,

A2 will interact with the privacy challenger C. The reduction is as follows:

In the Setup phase, C will run Setup, outputting gk and posting it to the bulletin board it shares withA2.

It will also run KeyGenenc, keeping the private key for itself and publishing the public key pke to the same

bulletin board. Then, A2 will run the GenCRS and the KeyGensign algorithms and will produce signatures

on each voting option, posting pks, crs and the created signatures to the bulletin board that it has in the game

with A1.

In the Voting phase, when A1 submits a Vote query, A2 will submit n Vote queries to C, one for

each pair of candidates. The challenger C will answer with n pairs of ciphertexts (c0,1, . . . , c0,n) and

(c1,1, . . . , c1,n). A2 will then sample two pairs of random values (p0,1, . . . , p0,n) and (p1,1, . . . , p1,n)

of the target space of the PRP. Finally, it will create ballots b0 = (c0,1, . . . , c0,n, p0,1, . . . , p0,n, π0) and

b1 = (c1,1, . . . , c1,n, p1,1, . . . , p1,n, π1) where π0 and π1 will be simulated. A2 will post these ballots to

the respective bulletin boards. Finally, when A1 submits a Ballot(b) query, A2 will run the ValidateBallot

algorithm and will create a Ballot(b′) for C with b′ = (c1, . . . , cn) from b.

It is straightforward to see that the output ofA2 in its interaction with A1 is correctly distributed, which

implies that the reduction is sound.

In addition to ballot privacy, our protocol also satisfies strong correctness and strong consistency.

Theorem 6.4.4. Let ρ be the counting function which outputs its inputs randomly permuted and filtering

invalid votes. Let Extract be the algorithm defined as Extract(b, sk) = Dec(gk, ske, c). Then, the protocol

defined in Section 6.4.2 has strong consistency with respect to Extract.

Theorem 6.4.5. The protocol defined in Section 6.4.2 has strong correctness.

Both theorems can be reduced to proving that the Enc2Vote satisfies those properties. The reductions

are very similar to the one used to prove Lemma 6.4.3. On the other hand, Enc2Vote does satisfy strong

correctness and strong consistency with respect to Extract as explained in Section 5.4. Therefore, our voting

protocol also satisfies those properties.

Theorem 6.4.6. Let ρ be the counting function which outputs its inputs randomly permuted. Let (Setup,

GenCRS,Prove,VerifyProof) be a NIZK-PoK proof system and let (KeyGenSign, Sign,VerifySign) be an

wEUF-CMA signature scheme. Let Extract be the decryption procedure of the Tally algorithm of the pro-

tocol defined in Section 6.4.2. Then, the protocol defined in Section 6.4.2 has vote validatability for any V,

with respect to ρ,Extract.
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Proof. We have already stated that our protocol satisfies strong consistency.

Let Exp0 be the vote validatability experiment and let Exp1 be identical to Exp0 but instead of using

GenCRS the challenger uses ExtGenCRS. These two experiments are indistinguishable by the properties

of the NIZK-PoK. Now assume that an adversary A1 is able to output a ballot b in the experiment Exp1

such that ValidateBallot = 1 and Extract(sk, b) =⊥. Then, we build an adversary A2 which breaks the

EUF-CMA of the signature scheme.

The reduction is straightforward: A2, interacting with an wEUF-CMA challenger asks for signatures

on {ν}ν∈V . Then, it interacts with A1, posing as a vote validatability challenger. It runs all the algorithms

as in the protocol but uses ExtGenCRS, keeping the trapdoor key tk for itself, and using the answers from

the wEUF-CMA challenger as the signatures on the voting options. When A1 outputs a ballot b, A2 uses

Extract on π to obtain a witness w = (ν̃1, . . . , ν̃n, r1, . . . , rn, σν̃1 , . . . , σν̃n , k)) such that (gk, x, w) ∈ R.

This means that VerifySign(gk, pks, ν̃i, σν̃i) = 1 for i ∈ {1, . . . , n}. Extract(gk, sk, b) might return ⊥

either because (i) some Dec(gk, ske, ci) =⊥, (ii) some ν̃i = ν̃j for i 6= j or (iii) some ν̃i 6∈ V . However,

(i) and (ii) are ruled out due to w being a valid witness, so the only possibility is (iii). Then, A2 can submit

(ν̃i, σν̃i) as its wEUF-CMA forgery.

6.5 Concrete instantiation

We now give a concrete instantiation of the voting protocol given above. In order to give the concrete in-

stantiation, we just need to define which encryption scheme, signature scheme, pseudo-random permutation

family and NIZK-PoK scheme the protocol will use. With regard to our instantiation, the candidates will

be encoded as n randomly sampled elements of a group Ĝ and we will require that |V| is polynomial in the

security parameter.

The Setup algorithm will consist of a group generation algorithm PG which outputs type-III bilinear

groups (p, Ĝ, Ȟ,T, e, ĝ, ȟ) as common setup gk. We will assume that the SXDH assumption introduced in

Section 2.2 holds relative to PG.

Encryption scheme

The protocol will use the Signed ElGamal (introduced in Section 2.4.1) in Ĝ, which is NM-CPA secure if

the DDH problem is hard Ĝ, which is implied by the SXDH assumption.

Signature scheme

The signature scheme that we will use is the structure-preserving signature scheme given in [AGOT14] and

explained in Section 2.5.1. The structure-preserving signature scheme uses the common Setup algorithm as

required.
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Pseudo-Random Permutation family

We will define the set of candidates, V , as a set containing n randomly sampled group elements from Ĝ,

where n is polynomial in the security parameter. This allows us to define the pseudo-random function

Fk : Ĝ → Ĝ where Fk(ĝ) = kĝ and k ∈ Z∗p. As we assume that the Decisional Diffie-Hellman problem is

hard in Ĝ, this function family is pseudo-random when we restrict the input to V . 2

Non-Interactive Zero-Knowledge Proof of Knowledge

Finally, we have to give the NIZK-PoK scheme that we will use. We will use Groth-Sahai proofs framed as

a Commit-and-Prove scheme as explained in Section 4. In this case, we can use the common Setup as the

setup for the Commit-and-Prove scheme.

In addition, the Commit-and-Prove scheme explained in Section 4 allows us to treat the ElGamal en-

cryption of a value as a commitment of type “encryption”, where the randomness used for the encryption is

the randomness used for the commitment. The encryption scheme is thus embedded into the Commit-and-

Prove scheme, instead of being an independent scheme, as assumed in the general construction. However,

we can still adapt the security proof to keep it sound as we now describe.

We will consider the conjunction of two proofs. The first one is a zero-knowledge proof for the language

defined by the relation

R1 = {(gk, x, w)| x = (c1, . . . , cn, pke, pks)∧

w = (ν1, . . . , νn, r1, . . . , rn, σ1, . . . , σn)∧

(c1, . . . , cn) = (Enc(gk, pke, ν1, r1), . . . ,Enc(gk, pke, νn, rn))∧

(VerifySign(gk, pks, σ1, ν1), . . . ,VerifySign(gk, pks, σn, νn)) = (1, . . . , 1)}

For this proof, the prover computes a commitment to each value of the signature and builds proofs for

satisfiability of the verification equations.

We now need to see that the Commit-and-Prove scheme given in Section 4 is Zero-Knowledge for the

language defined by R1. In other words, we need to see that exists a simulator. As seen in Section 4, this

reduces to check that there are no terms in pairing product equations which prevent simulation. Those terms

are pairings where in each side of the pairing there is either a public, non-equivocable value3 or a value

which commitment type is “encryption”. Going back to the verification equations of the signature scheme,

we see that there are none of these terms. Therefore, there exists a simulator for the R1 statement.
2Technically, it is a Pseudo-Random Function [GGM86] from V to Ĝ where F(·) is injective for any k ∈ Z∗p. Therefore, an

adversary restricted to only evaluate the function in points from V can not distinguish those evaluations from randomly sampled

elements, which is sufficient for the security reduction to work.
3In Section 4 we defined equivocable values as the generators of the group. However, it can be seen that values for which the

simulator knows the discrete logarithm w.r.t. the generator of the group are also equivocable.
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The second zero-knowledge proof is defined by the relation

R2 = {(gk, x, w)| x = (c1, . . . , cn, p1, . . . , pn, pke)∧

w = (ν1, . . . , νn, r1, . . . , rn, k)∧

(c1, . . . , cn) = (Enc(gk, pke, ν1, r1), . . . ,Enc(gk, pke, νn, rn))∧

(p1, . . . , pn) = (Fk(ν1), . . . , Fk(νn))}

For the proof for the relation R2, we will consider the multi-exponentiation equations kν̂i = p̂i, where

ν̂i and k are secret values. The prover computes a commitment on k and builds a proof for satisfiability of

this equation using ci as a commitment to ν̂i. Both the commitments on the signatures and the proofs will

be included in π. As noted in Section 4, multi-exponentiation equations are always simulatable.

Note that the Commit-and-Prove scheme given in Section 4 is not extractable for exponents such as k.

However, the proof of our scheme having vote validatability only needs to extract the values ν̂1, . . . , ν̂n and

their corresponding signatures.

6.5.1 Efficiency

When counting the number of elements required by the Signed ElGamal encryption, the images of the PRP

and the NIZK-PoK, we get that a ballot consists of 19n elements in Ĝ, 12n + 2 elements in Ȟ and 2n

elements in Zp. The cost is linear in n (the number of candidates encoded in each vote). Moreover, the

constant factor is relatively small.

6.6 Conclusions

We have formalized the definition of vote validatability in order to give an accurate meaning to avoid voters

from casting invalid votes, both if done in purpose or as a consequence of a software bug. Besides creat-

ing a construction based on generic building blocks and general-purpose zero-knowledge proofs, we have

provided a concrete instantiation. We have shown that its efficiency fits into the computational capacity of

voting devices currently used in electronic elections.

There are other alternatives which may improve the performance of our construction achieving the same

security properties. First, a cryptographic accumulator could be used to prove that candidates are valid.

This approach could reduce the length of the ballot. Second, much of the cost of the ballot comes from

the NIZK-PoK proof for the language defined by R1. A choice of a different structure-preserving signature

scheme might improve the efficiency of our system.
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Chapter 7

Universal Cast-as-Intended Verifiability

This paper is mainly based on the research published in [EGHM16], coauthored with Sandra Guasch, Javier

Herranz and Paz Morillo.

7.1 Motivation

Intuitively, it seems that cast-as-intended verification can only be performed by the voter who cast the vote,

given that she made her selections in secret. However, leaving the responsibility of this verification to the

voter may not be effective at all.

On the one hand, we might think of systems which make the cast-as-intended verification mandatory

in order to cast a vote. The problem is that current cast-as-intended verification systems present impor-

tant drawbacks: verification mechanisms are not very usable and, in most cases, voters have to engage in

highly interactive protocols and/or be able to perform complex computations. Therefore, mandatory cast-

as-intended verification would disenfranchise less skilled voters.

On the other hand, we could allow the cast-as-intended verification to be an optional step which the

voter can do before casting the vote. This does not solve the problem though, as targeted attacks against

non-skilled voters, who will probably not use the verification system, can succeed undetectably. Even if

all voters use the same voting device and voter authentication does not take place in the voting device,

the voting device could heuristically detect the behaviour of the voter and guess whether she will use the

verification mechanism.

7.2 Our contributions

In this contribution, we present a universal cast-as-intended verification protocol, i.e., a protocol which

cast-as-intended verification is not restricted to the voter anymore. This allows to deploy mechanisms for

auditing all the cast votes in an extensive form, and ensure no tampering attacks happen. Once the voter
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has cast a ballot, our protocol does not require her to take any further step to verify that her cast ballot

corresponds to her chosen candidates.

This is a change of paradigm with respect to current voting protocols, as in our new protocol the verifi-

cation of the content of the encrypted votes does not rely on the willingness or skills of the voters. Indeed,

it can now rely on third parties (e.g., election auditors) without compromising voters’ privacy.

The main idea of our protocol is the following: a voter registers to vote with a set of registrars of her

choice. Each registrar generates a pair of public-secret values for each voting option in the election. The

secret values are provided to the voter and the public ones are published together with their relation to the

voting options. During the voting phase, the voter provides her selected voting option and a subset of the

secret values she received during registration to the voting device. The voting device then encrypts the

voter’s selections and creates a NIZK-PoK, which will be valid only in the case the voting device encrypted

what the voter selected.

Thanks to the zero-knowledge property of the proofs, they can be publicly verified while maintaining

the voter’s privacy. Therefore, we can say that the system provides universal cast as intended verifiability.

The security of our scheme relies on some assumptions, which are presented in Section 7.3.2 but for

which we provide a brief overview here. The voting device, in charge of encrypting the voter’s choice, is

trusted for privacy (i.e., it is assumed to not to leak any information about the voter’s selection) but it is not

trusted for integrity, so the verifiability of the scheme does not depend on its honesty. The registrars are the

entities in charge of providing some secret values to the voter for the universal cast-as-intended verification.

We assume that each voter is able to select any subset of registrars on which she relies. We assume that

corrupt registrars are honest but curious. In addition, when considering verifiability, we assume that at least

one of the chosen registrars is completely honest.

7.2.1 Related work

At a first glance one would say that our voting protocol is similar to any Code Voting protocol [Cha01a]:

in both systems voters introduce codes in their voting devices. However, there are important differences

between our voting protocol and any Code Voting protocol. Unlike Code Voting systems, privacy of our

voting protocol does not depend on the secrecy of the voting codes. In addition, not only our voting protocol

is (universally) cast-as-intended verifiable but it can be extended to be end-to-end verifiable by using known

techniques such as a Bulletin Board [GV10] and a verifiable Mix-Net [SK95]. As far as we know, the

only end-to-end verifiable Code Voting protocol (with individual cast-as-intended verifiability) is VeryVote

[JRF09], in which verifiability is achieved at the cost of making the scheme non-private to the voting server.

Finally, note that our voting protocol does not attempt to solve the secure platform problem [GNR+01] and,

in particular, it can be implemented with a user-friendly point and click voting interface (even though voters

still need to introduce voting codes).
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7.3 Electronic voting definitions

7.3.1 Syntactical definition

We now give the syntax of a voting scheme with universal cast-as-intended verifiability. This definition is

based on single-pass voting schemes, as defined in [BPW12b]. This kind of schemes are characterized by

the fact that voters interact with the system only by submitting their ballots. Since we will add functionalities

to the voting scheme, we need to modify and extend the definitions given in Section 5.3.

As defined in [BPW12b], a voting scheme has the following participants: the Election Authorities are

in charge of setting up the election, computing the tally and publishing the results; the Voters participate in

the election by choosing their preferred options; and the Bulletin Board Manager receives, processes and

publishes the ballots received, as well as other public information.

In addition, we also consider the following participants: the Registrars, from which a subset is chosen

by each voter to register with. The registrars are responsible for providing all the information needed to

vote and, in particular, the information that will provide the UCIV property, to the voters that chose them

as registrars. We also explicitly consider the Voting Device as a participant. As opposed to Voters, who

only choose their preferred voting option, the Voting Device is in charge of casting a ballot given this voting

option. This distinction is important when introducing the concept of universal cast-as-intended verifiability.

We assume that non-cryptographic election specifications such as the set of voting options V, the set of

Registrars RID or the set of voters are fixed in advance by the Election Authorities. Further we assume a

counting function ρ : (V ∪ {⊥})∗ → R is given, where V is the set of voting options, ⊥ denotes an invalid

vote and R is the set of results.

For sake of simplicity, we will assume that there is only one Election Authority. Detailed trust assump-

tions for Election Authorities are further discussed in Section 7.3.2.

The voting scheme is characterized by the following algorithms:

ElectionSetup(1λ): is a protocol executed by the Election Authority. On input a security parameter 1λ, it

generates and outputs an election public/private key pair (pk, sk). In addition, it defines the space of

secret Universal Cast-As-Intended Verification (UCIV from now on) information SVI , the space of

voting option-dependent secret UCIV information S̃VI , the space of public UCIV information PVI

and a family of functions σ· : SVI → S̃VI such that, for each voting option v ∈ V the function σv

maps the secret UCIV information to some voting option-dependant secret UCIV information (The

function σv will need to be evaluated by the voter, so it should be a relatively simple one. In our

scheme the function will consist on selecting some elements from a given set).

Register(vid, rid,V, pk): is run by registrar rid. It takes as input a voter identity vid, the set of voting

options V and the election public key pk. It outputs partial secret UCIV information svid,riduciv ∈ SVI

and partial public UCIV information pvid,riduciv ∈ PVI .
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Let us define the secret UCIV information as sviduciv = {svid,riduciv }rid∈RID [vid] and the public UCIV infor-

mation as pviduciv = {pvid,riduciv }rid∈RID [vid], where RID [vid] is the set of registrars with whom the voter vid

registered.

Vote(vid, σv(s
vid
uciv), p

vid
uciv, pk, v): is a probabilistic protocol run by voting devices. It receives as input the

voter identity vid, a voting option v ∈ V, the function σv evaluated component-wise on the secret

UCIV information sviduciv ∈ SVI |RID [vid]|, the public UCIV information pviduciv ∈ PVI |RID [vid]|, the

election public key pk and outputs a ballot b.

ValidateBallot(BB, b, vid): is run by the bulletin board manager. It receives as input a bulletin board BB,

a ballot b and a voter identity vid and outputs either success (1) or reject (0).

Tally(BB, sk): is run by the Election Authority. It takes as input a bulletin board BB and the election

secret key sk and outputs a result r ∈ R and a correct tabulation proof Π.

VerifyTally(BB, r,Π): on input the bulletin board BB, the tally r and a proof of correct tabulation Π it

outputs either accept (1) or reject (0).

Finally, the scheme is executed as follows:

1. In the configuration phase, the Election Authority runs the ElectionSetup algorithm. The Election

Authority publishes the election public key pk on the bulletin board BB and keeps the election secret

key sk.

2. In the registration phase, each voter can register with as many registrars as she wants to. Each registrar

selected by the voter then runs the Register algorithm, provides the partial secret UCIV information

svid,riduciv to the voter, and publishes the partial public UCIV information pvid,riduciv to the bulletin board.

3. In the voting phase the voter vid chooses a voting option v, evaluates σv(sviduciv) (where sviduciv is defined

as the set of all partial secret UCIV information) and provides (vid, v, σv(s
vid
uciv)) to the voting device.

The voting device takes the election public key pk and the public UCIV information pviduciv from the

bulletin board and runs the Vote algorithm, producing a ballot b. The ballot b and the voter’s identity

vid are then sent to the bulletin board. Upon reception of the ballot, the bulletin board manager

executes the ValidateBallot algorithm. In case the output is 1, the ballot is published in the bulletin

board, otherwise the ballot is discarded and the voter is notified accordingly.

4. In the counting phase the Election Authority runs the Tally algorithm using the election private key

sk and the information in the bulletin board, including the ballots. The output of the Tally algorithm

is published on the bulletin board.
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A voting system as defined above is correct if, when the four phases are run with all the participants

behaving correctly, the result r output by the Tally algorithm is equal to the evaluation of the counting

function ρ on the voting options corresponding to the ballots cast by the voters.

7.3.2 Security definitions

In this section we give the security definitions for an electronic voting scheme. In particular, we define ballot

privacy and universal cast-as-intended verifiability.

Assumptions on voting devices, election authorities and registrars

The security of our electronic voting scheme will rely on some assumptions. Even though they will be

properly formalized in this section, we first give an informal intuition.

When considering voting devices, we distinguish between privacy and integrity. In order to guarantee

privacy, we assume that the voting device behaves properly by correctly encrypting the voter’s choice and

not leaking any information. This is a common assumption in electronic voting schemes where the voter can

use a point and click interface to make her choices, such as Helios [Adi08, BCP+11]. On the other hand,

we do not trust the voting device at all when it comes to integrity, since we assume it could try to change

the voter’s choice prior to encryption. In the same way, the verifiability of the scheme does not rely on the

voting device being honest.

We will assume that there is only one election authority, which is trusted for privacy. Secret sharing

and multi-party computation techniques can be easily deployed, as done in [CGS97], to overcome this

limitation so that privacy is guaranteed as long as a subset of the election authorities are trusted. The

electoral authorities do not need to be trusted for our new verifiability property. Indeed, in the UCIV security

definition we assume that the election private key is leaked to the adversary.

In addition, we will also assume that any common reference strings are generated by a single, trusted

authority. This is a strong assumption, which can be solved by using the multi-string model defined by

Groth and Ostrovsky in [GO14]. In this model, several parties provide their common reference strings and

security relies on assuming that a threshold of such parties are honest. We consider that directly using the

multi-string model would make the description of the protocol utterly complex and, on the other hand, it

would not add much value to this contribution.

When considering registration authorities, we will consider that they are producing the UCIV informa-

tion correctly. In particular, under these assumptions there should be no claims from voters about having

received corrupted UCIV information from a malicious registrar. We allow each voter to choose which

registrars she registers with: she might register with only one registrar or with all of them. In terms of

privacy, we will assume that all the secret information generated by the registrars is leaked to the adversary.

When defining UCIV, we will assume that at least one of the registrars chosen by the voter is completely
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honest. The other registrars will be assumed to be honest-but-curious: they will not cheat, but they might

leak information, including any covert channel they might use.

We will finally assume that registrars only publish on the bulletin board UCIV information correspond-

ing to a registration from a voter. This can be ensured by also posting some sort of registration request

produced by the voter.

Ballot privacy

Intuitively, a voting system has ballot privacy if an adversary with access to the bulletin board is not able

to guess what voting options the voters chose. We adopt the formalization given in [BCG+15], where they

give a definition correcting the flaws of previous definitions.

Ballot privacy is defined using two experiments between an adversary A and a challenger C. The goal

of the adversary is to distinguish between the two experiments. In both experiments, we let the adversary

corrupt voters and submit ballots on their behalf. In addition, for each honest voter the adversary can also

specify two votes to be used for casting her ballot. The votes which will be used to cast the honest voters’

ballots will depend on which experiment is taking place. The goal of the adversary is to distinguish between

both experiments i.e., to distinguish which votes were used to cast the honest voters’ ballots. As revealing

the “true” tally would easily allow the adversary to distinguish between the experiments, the same tally is

always shown to the adversary, regardless of which vote was used to cast honest voters’ ballots.

For compactness, we present the two experiments as a single experiment depending on a bit β. The

experiments are parametrized by the set of voting options V and an algorithm SimProof(BB, r) such that,

given a bulletin board and a result simulates a proof of correct tabulation (in this case, the ElectionSetup

algorithm will need to be modified so that proofs can be simulated).

1. Setup phase. C sets up two empty bulletin boards BBL and BBR. It runs the ElectionSetup(1λ)

protocol to obtain the election public key pk and the election private key sk. It then posts pk on both

bulletin boards. The adversary is given read access to either BBL if β = 0 or BBR if β = 1. In

addition, C initializes an empty list ID .

2. Registration phase. The adversary may make one type of query.

• Register(vid, rid) query. The adversary provides a voter identity and a registrar identity such

that (vid, rid) 6∈ ID . The challenger runs Register on inputs (vid, rid,V, pk) to generate the

partial public UCIV information pvid,riduciv and the partial secret UCIV information svid,riduciv . C

provides both pvid,riduciv and svid,riduciv to A and pvid,riduciv is published on both bulletin boards. The

pair (vid, rid) is added to ID .

3. Voting phase. The adversary may make two types of queries.
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• Vote(vid, vL, vR) queries. The adversary provides a voter identity vid such that there is at

least one rid for which (vid, rid) ∈ ID and two votes vL, vR ∈ V. The challenger runs

Vote(vid, σvL(sviduciv, vL), pviduciv, pk), which outputs bL and Vote(vid, σvR(sviduciv), p
vid
uciv, pk, vR)

which outputs bR (in this case, sviduciv, p
vid
uciv are the set of partial public/secret UCIV information

corresponding to the registrars rid such that (vid, rid) ∈ ID). C then obtains new versions of

the boards BBL and BBR by running ValidateBallot(BBL, bL, vid) and ValidateBallot(BBR,

bR, vid) and updating the boards accordingly.

• Ballot(b, vid) queries. These are queries made on behalf of corrupt voters. Here the adver-

sary provides a ballot b and an identity vid such that there is some rid with (vid, rid) ∈

ID . The challenger runs ValidateBallot(BBL, b, vid) and if the process accepts it also runs

ValidateBallot(BBR, b, vid) and updates the boards accordingly.

4. Tallying phase. The challenger evaluates Tally(BBL, sk) obtaining the result r and the proof of

correct tabulation Π. If β = 0, the challenger posts (r,Π) on the bulletin board BBL. If β = 1, the

challenger runs SimProof(BBR, r) obtaining a simulated proof Π′ and posts (r,Π′) on the bulletin

board BBR.

5. Output. The adversary A outputs a bit α.

We say that a voting protocol for (V, R, ρ) as defined in Section 7.3.1 provides ballot privacy if there

exists an algorithm SimProof such that for any p.p.t. adversary A, the following advantage is negligible in

the security parameter λ.

Advpriv
SimProof(λ) := |Pr[α = 1|β = 1]− Pr[α = 1|β = 0]|

We want to remark that in case of honest voters the ballots are properly encrypted. In other words, this

implies that the voting devices used to cast those ballots use good randomness and do not leak information

about the randomness used. In addition, the ballot privacy does not rely on the adversary not having access

to the secret UCIV information.

In addition to voting privacy we will also require that voting protocols satisfy strong consistency and

strong correctness as defined in Section 5.3.4.

Universal cast-as-intended verifiability

Intuitively, a voting system satisfies the cast-as-intended property if a corrupt voting device is not able to

cast a ballot for a voting option different to the one chosen by the voter. This should hold as long as the

voter is honest. If the voter is malicious no guarantees can be given besides the fact that the ballot must

correspond to at most one voting option (i.e., it could also correspond to an invalid voting option, which will
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not be counted). We define cast-as-intended on a per-ballot basis, not considering the tallying phase inside

the definition.

Universal cast-as-intended verifiability is defined as an experiment between an adversary A and a chal-

lenger C. In this experiment, the adversary may corrupt registrars, voters or voting devices. The goal of the

adversary is to cast ballots on behalf of a non-corrupt voter so that the ballot does not extract to the voting

option chosen by the voter. Here, the extract algorithm must be a meaningful one, we require it to be one

with which the voting scheme is strongly consistent. The experiment is parametrized by the set of voting

options V and an algorithm Extract(b, sk) such that, given a ballot and the election private key returns a

vote or ⊥ denoting an invalid vote.

1. Setup phase. The challenger sets up an empty bulletin board BB and runs the ElectionSetup(1λ)

protocol to obtain the election public key pk and the election private key sk, posts pk on the board

and gives (pk, sk) to the adversary. The adversary is given read access to BB. The adversary A

announces the (strict) subset of registrars R̃ID ⊂ RID which he corrupts so that they become honest-

but-curious. In addition, C initializes three empty lists IDR, IDP , IDF . For convenience, we define

ID = IDP ∪ IDF

2. Registration phase. The adversary may make one type of query.

• Register(vid, rid) query. The adversary provides a voter identity and a registrar identity such

that (vid, rid) 6∈ IDR. The challenger runs Register(vid, rid,V, pk) to generate the partial

public UCIV information pvid,riduciv and the partial secret UCIV information svid,riduciv . If rid ∈ R̃ID ,

C provides both pvid,riduciv and svid,riduciv toA. Otherwise, C only provides pvid,riduciv toA. In both cases,

pvid,riduciv is published on the bulletin board and (vid, rid) is added to IDR.

3. Voting phase. The adversary may make two types of queries.

• CorruptVotingDevice(vid, vvid) queries. The adversary provides a voter identity vid 6∈ ID

such that (vid, rid) ∈ IDR for some rid 6∈ R̃ID and a voting option vvid corresponding to such

identity. Then, C provides σvvid(svid,riduciv ) for all (vid, rid) ∈ ID to A. The challenger adds vid

to IDP .

• CorruptVoter(vid) queries. The adversary provides a voter identity vid 6∈ ID such that

(vid, rid) ∈ IDR for some rid. Then, C provides svid,riduciv for all (vid, rid) ∈ ID to A. The

challenger adds vid to IDF .

4. Output. The adversary submits a pair (b∗, vid∗). The output of the experiment is a bit δ, which is

defined as 1 if (i) vid∗ ∈ IDP , (ii) ValidateBallot(BB, b∗, vid∗) = 1 and (iii) Extract(b∗, sk) 6=

vvid∗ , where vvid∗ is the voting option submitted by the adversary in the PartialCorruptVoter query for

vid∗. δV, is defined as 0 in any other case.
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We say that a voting protocol for (V, R, ρ) as defined in Section 7.3.1 has universal cast-as-intended

verifiability if there exists an algorithm Extract such that the following two conditions hold:

(i) the voting protocol is strongly consistent with respect to Extract, as defined in Section 5.3.4.

(ii) for any p.p.t. adversary A, the following advantage is negligible as a function of λ.

Advuciv
Extract(λ) := Pr[δ = 1]

We want to remark that the universal cast-as-intended verifiability property does not rely on the secrecy

of the private election key.

7.4 Core voting protocol

7.4.1 Overview

In this section, we present our new voting protocol. We will not take into account usability issues from a

voter’s point of view; we will take care of these issues in the voting systems proposed in Section 7.7. We

think that by splitting the core protocol from the voting systems built on top of it the reader can get a clearer

picture of our solution.

Our protocol is a mix-net based voting protocol. In mix-net based protocols, the voters encrypt their

votes (we will assume that each selection is encrypted individually), then all the ciphertexts submitted by

the voters are shuffled and re-encrypted in several nodes and then the shuffled ciphertexts are decrypted. We

will work with a simplified scheme where votes are only shuffled and decrypted once.

The goal of our work is to provide a protocol which provides ballot privacy and universal cast-as-

intended verifiability. Other requirements of voting schemes such as the assurance of the authorship of the

vote (an eligible voter), recorded-as-cast verifiability and counted-as-recorded verifiability are not consid-

ered in this work, since other measures can be built around the protocol in order to fulfill them. For instance,

digital signatures, public bulletin boards or verifiable mix-nets could be used to satisfy the mentioned prop-

erties respectively.

The main idea of the core protocol is the following: during the registration phase, a voter registers to

vote with a set of registrars of her choice. Each one of the selected registrars generates a secret value for

each candidate of the election, and provides them to the voter. A one-way function will be applied to each

secret value and the resulting images will be made public (maintaining the relation with the candidates).

Once the voter has selected her voting option by using a voting device, she will provide a subset of the

secret values (previously unknown) to the voting device. Then the voting device will encrypt the voting

option, and will create a NIZK-PoK. By carefully choosing which secret values the voter discloses, the

voting device will only be able to create a valid NIZK-PoK if it really encrypted the voter’s selections.

The NIZK-PoK used in the protocol can be publicly verified, since the voter’s privacy is maintained in

such case due to the zero-knowledge property of the proofs. Therefore, the system provides universal cast
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as intended verifiability since the proofs can be universally verified and this validation is successful only in

the case the voting device encrypted the voter’s selections.

A sketch on how this NIZK-PoK works is the following: for sake of simplicity, assume that the voter

can only select one candidate and there is only one registrar. In the voting phase, the voter will provide the

voting device the secret values whose images are associated to the candidates she did not choose. The voting

device will then create, for each possible candidate, a NIZK-PoK of the statement “either this candidate is

encrypted in the ciphertext or I know the pre-image of the public value which corresponds to it”. Without

further information, the voting device will be able to create all the proofs as long as it encrypted the voter’s

selected candidate. When dealing with several registrars, the secret and public values will be defined as the

homomorphic aggregation of the secret and public values provided by each registrar.

The proofs also guarantee that, as long as the voter behaved honestly, the encrypted vote contains a

valid candidate. This might be useful to discern whether a malformed vote was intentionally created by a

malicious voter or by a malicious voting device (used by an honest voter). Note that, as we are giving a

mix-net based protocol, if both the voter and the voting device are malicious and submit a vote containing

a non-valid candidate, this vote will be anyway discarded once the votes have been mixed and decrypted,

prior to being added to the count. Therefore, this is not an attack against the system.

7.4.2 2-cnf-proof of knowledge

In this section, we define the language for which the NIZK-PoK will be created. Above we said that one

NIZK-PoK would be given for each voting answer, what we will actually do is to give a single proof for all

the voting answers, which will achieve the same behaviour. We will now describe the relation for which we

will construct the final NIZK-PoK.

In Section 2.4 we defined an encryption scheme (Setup,KeyGen,Enc,Dec) with an associated message

space Mgk, ciphertext space Cgk and randomness space Rgk. Consider the relation

Renc = {(gk, (c,m), r)|m ∈Mgk, c ∈ Cgk, r ∈ Rgk, c = Enc(gk, pk,m; r)},

which consists of the tuples of setups, ciphertexts, messages and randomness such that the ciphertext is an

encryption of the message using the specified randomness. Note that, in this relation, the statement is the

pair ciphertext - message, while the witness is the randomness.

Also consider that we have a homomorphic one-way function F with an associated input space X and

output space Y , both of them additive groups. Consider the relation Row = {(y, x)|x ∈ X , y ∈ Y , y =

F (x)} which consists of the pairs of values such that the first value is the image of the second one under

the one-way function F . In this case, the image value (i.e., the first element, y) is the statement while the

pre-image (i.e., the second element, x) is the witness.
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The relation for which we will make the NIZK-PoK is the following one:

R2-cnf = {((gk, (c, (m1, . . . ,mn), (y1, ..., yn)), (r, (x1, . . . , xn)))|

(((gk, c,m1); r) ∈ Renc ∨ (x1, y1) ∈ Row)∧

(((gk, c,m2); r) ∈ Renc ∨ (x2, y2) ∈ Row)∧

· · · ∧

(((gk, c,mn); r) ∈ Renc ∨ (xn, yn) ∈ Row)}

This way of presenting the relation R2-cnf allows us to analyze it easily: the relation takes a statement,

which is a ciphertext, a set of messages and a set of image values, and a witness, which is some random-

ness and a set of pre-images. The tuple of setup, statement and witness belongs to the language iff every

predicate in the AND clause is satisfied. This is, we require that for every i ∈ {1, . . . , n} the predicate

((gk, (c,mi), r) ∈ Renc ∨ (xi, yi) ∈ Row) is satisfied. This predicate perfectly captures the intuition given

above: either the ciphertext encrypts the message mi or a pre-image of yi is known. The description of the

language R2-cnf will also allow us to generate a NIZK-PoK from the composition of simpler NIZK-PoKs

for the relations Renc and Row.

As explained in Section 2.7, NIZK-PoKs can be constructed for any relation which can be verified in

polynomial-time in the length of the statement. The relation R2-cnf described above is of such type, so

we directly have a NIZK-PoK system for such relation. In Section 7.6.1 we present efficient NIZK-PoK

systems for the R2-cnf relation.

7.4.3 Detailed protocol

Our protocol implements a voting scheme where the counting function ρ is the multiset function as defined

in [BCG+15]. This function returns a random permutation of its input, filtering invalid votes. This is the

case for all mix-net based protocols.

We will start by describing the protocol for single-mark ballots. In Section 7.4.4 we present an extension

for multiple-mark ballots. For the sake of simplicity, we will consider blank candidates as additional voting

options the voter can choose, both for single-mark and for multiple-mark systems.

Our protocol is built on an encryption scheme, a homomorphic one-way function and a NIZK-PoK proof

system. We will require that the schemes have the same setup algorithm.

Therefore, the building blocks of our protocol are an encryption scheme (Setup,KeyGen,Enc,Dec), a

homomorphic one-way function F and a NIZK-PoK (Setup,GenCRS,Prove,VerifyProof) for the relation

R2-cnf defined in Section 7.4.2.

We define the partial secret UCIV information for a voter as a set of pre-images (xvid,rid1 , . . . , xvid,ridn )

of F , one for each element in V (the set of voting options), and the partial public UCIV information as

(yvid,rid1 , . . . , yvid,ridn ) = (F (xvid,rid1 ), . . . ,F (xvid,ridn )), the images of each element of the secret UCIV
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information. Each pair (xvid,ridi , yvid,ridi ) is related to the corresponding voting option vi, and the relation

between yvid,ridi and vi is public.

By defining the secret UCIV information as (xvid1 , . . . , xvidn ) = (
∑

rid x
vid,rid
1 , . . . ,

∑
rid x

vid,rid
1 ) and

(yvid1 , . . . , yvidn ) = (
∑

rid y
vid,rid
1 , . . . ,

∑
rid y

vid,rid
1 ) it will still be satisfied that yvidi = F (xvidi ).

The function σvi has as input the set of all pre-images (xvid,rid1 , . . . , xvid,ridn ) and outputs the same

values except for xvid,ridi . Note that this implicitly defines SVI , S̃VI ,PVI . As all this information is

only determined by F , there is no need to consider the specification of SVI , S̃VI ,PVI , σ as part of the

ElectionSetup algorithm.

The protocol consists of the following algorithms:

ElectionSetup(1λ): the algorithm first runs Setup to generate a setup gk. Then it runs GenCRS(gk) to gen-

erate the common reference string crs and KeyGen(gk) to generate a pair of public/private encryption

keys (pke, ske). This implicitly defines the message space Mgk, the ciphertext space Cgk and the

randomness space Rgk, where there must exist some public efficient injective mapping η satisfying

η(V) ⊂ Mgk. For sake of simplicity, we will assume that V ⊂ Mgk so that no encoding is needed.

Finally, it chooses two groups X , Y and a one-way function F : X → Y , which might depend on

gk. The election public key pk is defined as pk = (gk, crs, pke,X ,Y ,F ) and the election secret key

is defined as sk = ske.

Register(vid, rid,V, pk): the algorithm generates the partial secret UCIV information svid,riduciv for that voter

by generating, for each voting option vi ∈ V, a random value xvid,ridi ∈ X . The partial public

UCIV information pvid,riduciv is generated by computing the image yvid,ridi = F (xvid,ridi ) for each voting

option.

Vote(vid, σv(s
vid
uciv), p

vid
uciv, pk, v): first, the algorithm parses pk as (gk, crs, pke,X ,Y ,F ). It also parses

σv(s
vid
uciv) = {{xvid,ridi }i s.t. vi 6=v}rid∈RID [vid] and pviduciv = {(yvid,rid1 , . . . , yvid,ridn )}rid∈RID [vid],where

RID [vid] is the set of registrars the voter registered with. The algorithm then computes xvidi =∑
rid∈RID [vid] x

vid,rid
i for i s.t. vi 6= v and yvidi =

∑
rid∈RID [vid] y

vid,rid
i for i ∈ {1, . . . , n}. It then

runs the Enc algorithm using randomness r ∈ Rgk, producing a ciphertext c = Enc(gk, pke, v, r).

Then, by using the witness w = (r, (ξvid1 , . . . , ξvid)), where ξvidk with k = j is such that vj = v is the

empty string ε and it is xvidk otherwise, the algorithm computes a NIZK-PoK for the relation R2-cnf

as π = Prove(gk, crs, c, yvid1 , . . . , yvidn , w). The resulting ballot b is defined by the pair (c, π).

ValidateBallot(BB, b, vid): upon reception of a ballot b, which can be parsed as b = (c, π), it is checked if

in the bulletin board there is another either another pair (id, b′) (i.e., with the same id), or another bal-

lot b′ = (c′, π′) such that c = c′. If any of such case is found, the algorithm stops and returns 0. Oth-

erwise, pviduciv is recovered from the bulletin board and parsed as {(yvid,rid1 , . . . , yvid,ridn )}rid∈RID [vid].

Then, yvidi =
∑

rid∈RID [vid] y
vid,rid
i for i ∈ {1, . . . , n} is computed and VerifyProof(gk, crs, c
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, yvid1 , . . . , yvidn , π) is run, where gk, crs are also recovered from the bulletin board. The output of

VerifyProof is returned as the output of ValidateBallot.

Tally(BB, sk): at the end of the election, ValidateBallot(BB, b, vid) is run for all pairs (b, vid) appearing

in the bulletin board. Then, each individual ballot b is decrypted ṽ = Dec(gk, ske, c) and ρ is applied

to the resulting decryptions {ṽ}. The output of ρ is defined as the result and the proof of correct

tabulation is defined to be the empty string ε.

As the proof of correct tabulation is the empty string ε, VerifyTally returns 1 on any input.

7.4.4 Extension to multiple-mark ballots

The protocol defined in Section 7.4.3 only applies to a specific type of election systems, those in which

only one candidate can be chosen. We now extend the election systems for which our protocol works to

multiple-mark ballot elections. Although we could consider V to be the space of the combinations of marks,

a vote v to be a combination of marks and then use the protocol defined in Section 7.4.3 in a straightforward

way, this would result in a terribly inefficient system. Therefore, we give a cleaner solution in this section.

If multiple candidates can be chosen, then multiple encryptions will be produced, one for each chosen

candidate. Denote the number of encryptions by `. We define the relation R`−enc as follows: R`−enc =

{(gk, (c1, . . . , c`,m), r)|c1 = Enc(gk, pk,m, r)∨· · ·∨c` = Enc(gk, pk,m, r)}. We then define the relation

R(`+1)-cnf =

{(gk, ((c1, . . . , c`), (m1, . . . ,mn), (y1, ..., yn)), (r, (x1, . . . , xn)))|

((gk, (c1, . . . , c`,m1), r) ∈ R`−enc ∨ (x1, y1) ∈ Row)∧

((gk, (c1, . . . , c`,m2), r) ∈ R`−enc ∨ (x2, y2) ∈ Row)∧

· · · ∧

((gk, (c1, . . . , c`,mn), r) ∈ R`−enc ∨ (xn, yn) ∈ Row)}

The algorithms in the protocol remain almost the same as in the Core Voting Protocol exposed in Section

7.4.3. The Register algorithm will still generate a secret xvid,ridi and a public yvid,ridi value for each individ-

ual candidate νi, although the space V is now defined to contain all the valid combinations of candidates a

voter can select.

The main difference is at the Vote algorithm, where the input v represents in this case a set {νi}`i=1 of

several candidates selected by the voter. Accordingly, the evaluation σv(sviduciv) will provide the set of all

secrets {xvid,ridi }rid∈RID [vid] except for the ones assigned to {νi}`i=1.

During the execution of the Vote algorithm, one ciphertext is created for each of the ` candidates con-

tained in v, and instead of generating the NIZK-PoK for the relation R2-cnf , the NIZK-PoK for the relation

R(`+1)-cnf is used.
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The algorithms ValidateBallot and Tally also change accordingly: the algorithm ValidateBallot uses the

NIZK-PoK verification algorithm for the same relation R(`+1)-cnf ; and the Tally process decrypts multiple

ciphertexts per ballot. In addition, ValidateBallot checks that no individual ciphertext is found twice in the

bulletin board.

As a final remark on multiple-mark ballots, the efficiency of a mix-net based protocol with several

encryptions per voter is linear on the number of options encrypted, so the protocol will get less efficient

as more marks can be made. In addition, the NIZK-PoK proofs will also be less space-efficient the more

options a voter can choose.

7.5 Security of the protocol

In this Section we state that our single-mark protocol given in Section 7.4.3 satisfies ballot privacy, strong

consistency, strong correctness and universal cast-as-intended verifiability. The security results are easily

extended to the multiple-mark protocol of Section 7.4.4.

Theorem 7.5.1. Let (Setup,KeyGen,Enc,Dec) be a NM-CPA encryption scheme and let (Setup, GenCRS,

Prove, VerifyProof) be a NIZK-PoK for the relation R2-cnf defined in Section 7.4.2. Then, the protocol

defined in Section 7.4.3 satisfies the ballot privacy property.

Proof. Recall that the ballot privacy definition is based on the indistinguishability of two experiments which

depend on a bit β. We will refer to them as Exp0 for the experiment where β = 0 and Exp1 for the experiment

where β = 1.

Let SimVote(v, siduciv, p
id
uciv, pk) be the Vote algorithm of the protocol given in Section 7.4.3 but, when

computing the Prove algorithm of the NIZK-PoK, the witness w to be used is w = (ε, (ξvid1 , . . . , ξvidn )),

where ξvidk is xvidk , the pre-image of yvidk for all k. Note that w is a valid witness and SimVote is defined to

take as input all values xvidk . Then consider the experiment Expβ′ which is the same as Expβ except that,

when the adversary submits a Vote(id, vL, vR) query, the challenger runs SimVote(vL, s
id
uciv, p

id
uciv, pk) and

SimVote(vR, s
id
uciv, p

id
uciv, pk) instead of Vote(σvL(siduciv), p

id
uciv, pk, vL) and Vote(σvR(siduciv), p

id
uciv, pk, vR)

respectively. The following lemma is straightforward to prove.

Lemma 7.5.2. The experiments Expβ and Expβ′ are computationally indistinguishable for β ∈ {0, 1} if the

NIZK-PoK is computationally witness indistinguishable.

Now consider the Enc2Vote scheme as defined in Section 5.4. In addition, consider the definition of

ballot privacy given in Section 7.3.2 in the special case that SVI ,PVI = ∅ (this is, no UCIV information

and therefore functionality is used). The resulting definition is the same than the one given in Section 5.3.3.

As mentioned in Section 5.4, the following theorem holds.
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Theorem 7.5.3. Let (Setup,KeyGen,Enc,Dec) be a NM-CPA secure encryption scheme, then Enc2Vote

has ballot privacy, for the ballot privacy definition in Section 5.3.3.

Finally, we reduce the ballot privacy property of our scheme to the ballot privacy property of the

Enc2Vote scheme.

Lemma 7.5.4. Let A1 be a p.p.t. adversary that interacts with a challenger C and outputs a bit αA such

that |Pr[αA|Exp0′ ]−Pr[αA|Exp1′ ]| is non-negligible. Then, there exists an adversaryAE2V that breaks the

ballot privacy property of the Enc2Vote scheme.

In our reduction, A1 will interact with AE2V (the latter acting as the challenger) and AE2V will interact

with a challenger C.

The reduction is as follows:

In the Setup phase, C will run the Setup and KeyGen algorithms, keeping the private key for itself and

publishing the public key pkE2V to the bulletin board. Then, AE2V will run the GenCRS algorithm and will

post the public key pkuciv = (pkE2V, gk, crs) to its bulletin board.

In the Registration phase, when A1 submits a Register query, AE2V will run the Register algorithm of

our protocol, it will give all the output to A1, it will also keep it for itself and will post the partial public

UCIV information to the bulletin board.

In the Voting phase whenA1 submits a Vote query,AE2V will submit a Vote query to C. The challenger

will respond by publishing a ballot bE2V = c to the bulletin board visible by AE2V. Then, AE2V will run

Prove(gk, crs, c, yvid1 , . . . , yvidn , w) with w = (ε, (xvid1 , . . . , xvidn )), where xvid1 , . . . , xvidn and yvid1 , . . . , yvidn

are computed as in our voting protocol. Let π be the output of the Prove algorithm. AE2V will then post

the ballot bpriv−uciv = (c, π) to the bulletin board visible by A1. Finally, when A1 submits a Ballot(b, id)

query, where b = (c, π), AE2V will construct a ballot b̃ = c and will submit a Ballot(b̃, id) query to C.

In the Tallying phase, the challenger C will post the result of evaluating Tally(L, ske) to the bulletin

board visible by AE2V. Then, AE2V will publish the same result to the bulletin board visible by A1. We set

the correct tabulation proofs (both the real one and the simulated one) to be the empty string ε.

Finally, A1 will output a bit and AE2V will output the same bit as its own output.

It is straightforward to see that the output of AE2V in its interaction with A1 is correctly distributed,

which implies that the reduction is sound.

Recall that, as explained in Section 5.3.4, in order to have a meaningful notion of privacy we also need

that the voting protocol satisfies the strong consistency and strong correctness properties.

Theorem 7.5.5. Let ρ be the counting function which outputs its inputs randomly permuted and filtering

invalid votes. Let Extract be the algorithm defined as Extract(b, sk) = Dec(gk, ske, c). Then, the protocol

defined in Section 7.4.3 has strong consistency with respect to Extract.
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Theorem 7.5.6. The protocol defined in Section 7.4.3 has strong correctness.

Both theorems can be reduced to proving that the Enc2Vote satisfies those properties. The reductions

are very similar to the one used to prove Lemma 7.5.4. On the other hand, Enc2Vote does satisfy strong

correctness and strong consistency with respect to Extract as explained in Section 5.4. Therefore, our voting

protocol also satisfies those properties.

Let us now prove that our scheme satisfies the universal cast-as-intended property. However, we have

to limit to the case where the number of voters and candidates are polynomial in the security parameter λ

(In the security reduction we guess which voter identity and which voting option the adversary will try to

attack. This implies that the security reduction will not be tight. This loss of tightness can be avoided if we

assume that the adversary announces in advance which voter and voting option it will attack).

Theorem 7.5.7. Let F : X → Y be a homomorphic one-way function and let (Setup,GenCRS,Prove,

VerifyProof) be a NIZK-PoK. Let Auciv be an adversary which makes Register queries for at most a poly-

nomial number (in the security parameter) of different voter identities. Also, assume that the number of

candidates is polynomial in the security parameter. Then, the protocol defined in Section 7.4.3 satisfies the

universal cast-as-intended property.

Proof. In this proof, we assume that there is an adversaryAuciv which breaks the universal cast-as-intended

property and we will construct an adversary Aowf which will break the one-wayness of F . Aowf will make

use of the extraction property of the NIZK-PoK during the security reduction.

First, Aowf will guess which will be the voter identity which Auciv will attack. Concretely, it will

guess that it will be the k-th queried identity, where k will be drawn from a uniform distribution between 1

and q. Similarly, it will guess that the Auciv will target the vote v`, where v will be drawn from a uniform

distribution between 1 and n. Note that this sets the probability of correctly guessing which voter and voting

option the adversary Auciv to be 1/(qn).

In the Setup, Aowf will run the algorithm ExtGenCRS of the zero-knowledge extractor instead of run-

ning GenCRS to output a common reference string crs and a trapdoor key tk. It will keep tk for itself and

will define pk, sk as in the protocol.

In case of Register queries, Auciv submits one voter identity vid and one registrar identity rid. We

distinguish between two cases:

• If (i) vid is the k-th voter identity which Auciv is registering, (ii) rid 6∈ R̃ID and (iii) rid is the first

registrar not in R̃ID with which vid is being registered then Aowf computes the partial public and

secret UCIV information by running Register but redefines yvid,rid` = y the one-way challenge and

implicitly defines xvid,rid` to be its pre-image. We denote rid∗ the registrar rid.

• Otherwise, Aowf computes the partial public and secret UCIV information by running Register and,

if rid ∈ R̃ID it forwards all the information to the adversary.
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Note that if the guess of which vid and voting option is going to be attacked is correct then Aowf will

be able to answer to any CorruptVotingDevice or CorruptVoter queries. This happens with probability

1/(qn).

In this case, once Auciv has submitted the pair (b∗, vid∗) where b∗ = (c∗, π∗), Aowf will use the algo-

rithm Extract of the NIZK-PoK using the trapdoor key tk to obtain a witness w for π∗. Due to the structure

of the NIZK-PoK language, it must be the case that the witness w has the form w = (r, (xvid1 , . . . , xvidn ))

with yvid` = F (xvid` ).

Denote RID∗ the set RID [vid∗]\rid∗. Then, by definition of yvid` and xvid` we have that x := xvid` −∑
rid∈RID∗ x

vid,rid
` is a valid pre-image of y := yvid,rid

∗

` . Finally, observe that if the advantage Adv ofAuciv

is negligible, then the advantage of Aowf which is 1/(nq) · Adv will also be negligible.

7.6 Protocol instantiations

7.6.1 Efficient instantiation with ROM-based security

The protocol given in Section 7.4 uses a generic encryption scheme and a generic (and maybe impractical)

NIZK-PoK. In this section we give a concrete instantiation of the voting protocol. The instantiation has

provable security in the Random Oracle Model (ROM).

This instantiation of our protocol uses the Signed ElGamal encryption scheme, which is NM-CPA se-

cure in the ROM, together with σ-protocols made non-interactive by using the Fiat-Shamir heuristic, which

results in a NIZK-PoK in the ROM. We now present the mentioned building blocks.

Signed ElGamal encryption

The encryption scheme that we use is the Signed ElGamal cryptosystem, as defined in Section 2.4.1. The

Signed ElGamal encryption scheme is NM-CPA secure in the ROM assuming that the DDH problem is

hard in the ElGamal group Ḡ.

Discrete logarithm one-way function

The one-way function that we will use is the exponentiation function introduced in Section 2.6. By using the

same cyclic group Ḡ and the same generator ḡ used for the encryption scheme, the exponentiation function

F : Zp → Ḡ is defined as F (x) = xḡ. The exponentiation function is homomorphic and, in addition,

this function is one-way if the discrete logarithm problem is hard in Ḡ. Note that the discrete logarithm

assumption is a weaker assumption than the DDH assumption, therefore we are not introducing any new

assumption.
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NIZK-PoK from σ-protocols

As we explained in Section 2.7.2, one way to build NIZK-PoKs with ROM-based security is to apply the

Fiat-Shamir heuristic to σ-protocols. There exist σ-protocols for a wide range of languages. Two exam-

ples are proving knowledge of a discrete logarithm [SJ00] (also known as a Schnorr protocol) and proving

equality of two discrete logarithms [CP92] (also known as a Chaum-Pedersen protocol). Furthermore, as

shown in [CDS94], given a σ-protocol for a relation R1 and another σ-protocol for a relation R2 one can

construct both a σ-protocol for the relation Ror defined as (x,w) ∈ Ror iff (x,w) ∈ R1 or (x,w) ∈ R2 and

a σ-protocol for the relation Rand defined as (x,w) ∈ Rand iff (x,w) ∈ R1 and (x,w) ∈ R2.

Focusing on the election scheme for single-mark ballots with n candidates, a ballot in this specific

instantiation of our scheme will have the form (C, π), where C = (c̄1, c̄2, c3, c4) is a Signed ElGamal

encryption of the chosen candidate v̄, and π = (w, {w(i)
1 , s

(i)
1 , s

(i)
2 }1≤i≤n) is the NIZK-PoK for the relation

R2-cnf , computed by combining the Fiat-Shamir heuristic and the afore-mentioned techniques, as we now

detail. Let C ′ = (c̄1, c̄2) = (rḡ, rh̄ + v) be the underlying ElGamal encryption of C and let us denote

xi = xvid,ridi and yi = yvid,ridi , for each i = 1, . . . , n. Then, the proof π can be computed as follows:

1. For i = 1, . . . , n, i 6= j, choose s(i)
1 , w

(i)
1 ∈ Zp at random. Define the values c̄(i)

1 = s
(i)
1 ḡ−w(i)

1 c̄1 and

c̄
(i)
2 = s

(i)
1 h̄+ (−w(i)

1 )(c̄2 − v̄i).

2. For index j, choose s(j)
2 , w

(j)
2 ∈ Zp at random, and define the value r̄(j) = s

(j)
2 ḡ − w(j)

2 ȳj .

3. For i = 1, . . . , n, i 6= j, choose α(i) ∈ Zp at random and compute r̄(i) = α(i)ḡ.

4. For index j, choose β(j) ∈ Zp and z(j) ∈ Ḡ, at random, and compute c̄(j)
1 = β(j)ḡ and c̄(j)

2 = β(j)h̄.

5. Compute the hash function w = H(c̄1, c̄2, c3, c4, {c̄(i)
1 , c̄

(i)
2 , r̄(i)}1≤i≤n) ∈ Zp.

6. For i = 1, . . . , n, i 6= j, compute w(i)
2 = w − w(i)

1 mod p. For index j, compute w(j)
1 = w − w(j)

2

mod p.

7. For i = 1, . . . , n, i 6= j, compute s(i)
2 = α(i) + xiw

(i)
2 mod p.

8. For index j, compute s(j)
1 = β(j) + rw

(j)
1 mod p.

To verify the correctness of the proof π, one has to compute first, for each i = 1, . . . , n, the values

w
(i)
2 = w−w(i)

1 mod p, c̄(i)
1 = s

(i)
1 ḡ−w(i)

1 c̄1, c̄(i)
2 = s

(i)
1 h̄−w(i)

1 (c̄2− v̄i) and r̄(i) = s
(i)
2 ḡ−w(i)

2 ȳi. After

that, the proof is accepted if and only if w = H(c̄1, c̄2, c3, c4, {c̄(i)
1 , c̄

(i)
2 , r̄(i)}1≤i≤n).

Finally, note that we are computing the NIZK-PoK on the ElGamal ciphertext (not in the Signed ElGa-

mal). In other words, the voter is assured that the ElGamal ciphertext contains the selected candidate. How-

ever, as the Schnorr proof of the Signed ElGamal encryption is publicly verifiable, this assures the voter that

the Signed ElGamal ciphertext contains the selected candidate too. Moreover, the ciphertext which consists
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of the Signed ElGamal ciphertext and the NIZK-PoK is NM-CPA secure even if the NIZK-PoK is computed

on the ElGamal ciphertext.

Efficiency comparison to Helios

The group Ḡ is typically implemented with an elliptic curve [Mil85]. In this case, each element in Zp and

each element in Ḡ can be represented with λ bits, where λ is the length in bits of the prime number p.

Therefore, the size of each ballot (c, π) in this instantiation is (3n + 5)λ bits: 4λ bits for c and (3n + 1)λ

bits for π. The number of modular exponentiations that must be computed to generate such a ballot is 3n+4.

We can compare these costs with the costs of the basic version of Helios for the case of a single-mark

election, with n candidates. Let us remember that a ballot in Helios consists of n ElGamal encryptions

c1, . . . , cn of 0 or 1, one encryption for each of the n candidates (the voter encrypts 1 only for the chosen

candidate, and 0 everywhere else), along with a NIZK-PoK π of the fact that each ciphertext encrypts 0

or 1, and the product of all the ciphertexts (which is an encryption of the sum of the n plaintexts, by the

homomorphic properties of ElGamal) also encrypts 0 or 1. The size of each ballot in Helios is (5n + 4)λ

bits: 2nλ bits for the n ElGamal ciphertexts, and (3(n + 1) + 1)λ bits for π. The number of modular

exponentiations required to generate a ballot in Helios is 6n.

Summing up, the instantiation that we have just presented is more efficient than the basic version of

Helios, for single-mark elections, in terms of the size of the ballots and the computational cost to generate

them, while adding a new property (universal cast-as-intended verifiability) not satisfied by Helios.

Even though Helios uses homomorphic tallying, resulting in a much cheaper tallying process than a

Mix-Net based protocol, this efficiency comparison shows that our new protocol has ballots of a reasonable

size and that ballot creation is efficient enough to be used in a real election.

7.6.2 Instantiation with security in the CRS model

As we mentioned in Section 2.3, the security obtained when instantiating a random oracle by a hash function

is heuristic, which led the Random Oracle Model to some criticisms. Therefore, at least from a theoretical

point of view, it is interesting to obtain protocols which security is not based on the Random Oracle Model.

The Common Reference String model states that there might be a common reference string which is honestly

created and trusted by all parties prior to the protocol. We still want the protocol to be efficient and not just

a theoretical result. Therefore, we will need to choose carefully the building blocks of out voting protocol.

Setup

The setup is a type-II bilinear group (p, Ĝ, Ȟ,T, e, ĝ, ȟ)← PGtype−II .
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Cramer-Shoup encryption scheme

To achieve security in the common reference string model we can use the DLIN-based version of the Cramer-

Shoup encryption scheme, introduced in Section 3.5.1, in Ȟ, which is an IND-CCA secure encryption

scheme if the DLIN assumption holds in Ȟ. This will be used to encrypt the selection m̌, which will be one

of the candidates {v̌i}ni=1 ∈ Ȟ.

One-way function in the bilinear group

Although one would be tempted to use the exponentiation function in the groups Ĝ or Ȟ, it turns out that

then it would not be easy to construct a NIZK-PoK for the relation R2-cnf defined in Section 7.4.2 in the

CRS model. We therefore use a different one-way function. In particular, the function that we use is the map

ψ : Ȟ→ Ĝ, which is homomorphic and, in addition, it is also one-way if the bilinear group is of type-II.

Groth-Sahai proofs

Groth-Sahai proofs, introduced in Section 2.8 and re-framed as a Commit-and-Prove scheme as shown in

Section 4, are the most flexible and efficient NIZK-PoK protocols secure in the Common Reference String

model. As seen in Section 4, Groth-Sahai proofs (possibly re-framed as a Commit-and-Proof scheme) allow

us to build proofs of satisfiability of equations of the form

n∑
i=1

e(âi, y̌i) +

m∑
i=1

e(x̂i, b̌i) +

m∑
i=1

n∑
j=1

γije(x̂i, y̌j) = e(ĝ, ď) + e(ĉ, ȟ), (7.1)

where {x̂i}mi=1 are variables in Ĝ, {y̌i}ni=1 are variables in Ȟ, {âi}ni=1, ĉ are constants in Ĝ, {b̌i}mi=1, ď are

constants in Ȟ and {γi,j}m,ni,j=1 ∈ Zq are also constants. A witness for a statement is a set of values of x̂i, y̌j

such that the set of equations is satisfied.

We can encode the relation R2-cnf defined in Section 7.4.2 as a set of equations of the form (7.1). A

Groth-Sahai proof of satisfiability of such set of equations is a NIZK-PoK for R2-cnf if the techniques

shown in Section 4 are used. Indeed, observe that equations of the form (7.1) only contain group elements

as variables, which gives us perfect extractability.

Let m̂ be a variable in Ĝ (which represents the plaintext of the encrypted selection and is computed as

ψ(m̌)), {v̂i}ni=1 be constant elements in Ĝ (which represent the possible candidates and are computed as

ψ(v̌i)), {y̌i}ni=1 be variables in Ȟ (which represent the pre-image values), {f̂i}ni=1 be constants in Ĝ (which

represent the image values), {ẑi}ni=1 be variables in Ĝ, {w̌i}ni=1 be variables and Ȟ (ẑi, w̌i are auxiliary

variables) and ĝ, ȟ be the generators of Ĝ, Ȟ respectively. Then, the set of equations which encodes the
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relation R2-cnf is the following set of 4n equations:

e(m̂, w̌i) = e(v̂i, w̌i) for i ∈ {1, . . . , n} (1-i)

e(ĝ, y̌i) = e(f̂i, ȟ− w̌i) for i ∈ {1, . . . , n} (2-i)

e(ẑi, ȟ) = e(ĝ, w̌i) for i ∈ {1, . . . , n} (3-i)

e(ẑi, ȟ) = e(ẑi, w̌i) for i ∈ {1, . . . , n} (4-i)

It is easy to see that, by moving all non-constant terms to the left hand side of the equations and the

constant terms to the right hand side of the equations, the equations above are indeed of the form 7.1.

A straightforward analysis shows that, for a fixed i, equations (3-i) and (4-i) are only satisfied either if

ẑi = ĝ, w̌i = ȟ or if ẑi = 0̂, w̌i = 0̌, where 0̂ and 0̌ denote the identity elements in Ĝ and Ȟ respectively.

This is what allows us to have an or-proof. Indeed, if w̌i = ȟ, then equation (1-i) is only satisfied if

m̂ = v̂i, while equation (2-i) is trivially satisfied for y̌i = 0̌. On the other hand, if w̌i = 0̌, then equation

(1-i) is satisfied for any value of m̂, while equation (2-i) is only satisfied if y̌i is such that ψ(y̌i) = f̂i. In

other words, for a fixed i, the set of equations (1-i)-(4-i) correspond to the statement “either m (the value

encrypted in the ciphertext) is equal to vi, or I know a pre-image of fi”. Therefore, the set of equations

{(1-i),(2-i),(3-i),(4-i)}ni=1 correctly encodes the relation R2-cnf .

Let us now consider the Commit-and-Prove scheme given in Section 4 as the proof system used to show

satisfiability of the above system of equations. Even though the protocol given in Section 4 is designed for

type-III bilinear groups, as explained in Section 4.10 they can easily be adapted to the type-II bilinear group

setting given in [GSW10].

In this case, we can define the type of m̂ to be encryption, whereas we can use the type commitment for

all other variables. As shown in Figure 4.6, this combination of types is an acceptable one.

Finally, observe that the number of elements in both Ĝ and Ȟ is O(n), and the constant is relatively

small, which translates into a fairly efficient instantiation.

The last thing we need to do is to prove that the Cramer-Shoup encryption of m̌ contains the same voting

option as the encryption of m̂ given in the Commit-and-Prove proof explained above.

This can be solved by using the techniques given in Section 3.5.3 to prove plaintext equality. Even

though the techniques given in Section 3.5.3 apply to the symmetric case, they can be adapted to work

in an asymmetric setting where the commitment keys to m̂ are the commitment keys of the Commit-and-

Prove scheme and the commitment keys to m̌ are the Cramer-Shoup tailored commitment keys explained in

Section 3.5.1.

The proof is relatively small and only adds a constant number of group elements to the encrypted vote

sent by the voter.

149



7.7 Towards designing usable UCIV systems

The protocol presented in Section 7.4 requires the voter to provide one secret value per registrar and per

each of the candidates that she did not choose to the voting device. This may require a considerable effort,

since the number of available candidates in an election may be quite large, even if the voter can only make

one selection (as in single-marking ballot elections). In addition, these values will be fairly big, for instance

256 bits if elliptic curves are used. Finally, providing secrets for the non-selected candidates is counter-

intuitive (note that it is just inverse to what is required in code voting schemes [MMP02], for example),

since the voter usually expects to enter information related to what she selects. Clearly, requiring the voter

to introduce such information is not very user-friendly.

In this section, we present two voting systems built on top of our new voting protocol which provide

a more intuitive approach for the voter introducing the codes. We provide these examples as a first step

towards an implementation in a real scenario: usability tests should be done to assess how usable these

systems really are.

One characteristic that we will see is that there is a trade-off between the number of registrars a voter

registers with and the usability of the scheme. For example, in the first system the voter will need to use as

many hardware tokens as registrars she registered with. However, this trade-off seems inevitable: the less

trust there is in registrars the more security mechanisms we will need to provide.

7.7.1 Voting system using a cryptographic hardware token

The first system we propose is based on using a cryptographic hardware token, such as a Smart Card. This

hardware token will be used to provide the secrets generated in the Registration phase to the voter. The

cryptographic hardware token can be seen as an implementation of the secure channel between a registrar

and a voter, which can not be eavesdropped by the voting device. In addition, the token is also used to

provide some logic capabilities, so that the voter is only required to provide secrets for the voting option

that she did indeed choose.

In order to do that, for each registrar the secret values for the n candidates available in the election

are stored in a token (one token per registrar) in the following way: a random short password (i.e., a PIN)

is generated for each of the candidates. Then, a Reveal functionality is implemented in the token which,

given the ` PINs corresponding to the candidates chosen by the voter, reveals the set of partial secret UCIV

information corresponding to the candidates not chosen by the voter. Note that the set of PINs for a token

must not be known to the voting device, so they have to be provided to the voter using a channel which can

not be eavesdropped by the voting device.

This system is specially suitable for, but not restricted to, poll-site or kiosk-based electronic voting,

where specific hardware such as cryptographic hardware tokens can be easily provided to the voters.
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7.7.2 Voting system using QR codes

The second voting system that we propose is based on using high-capacity barcodes such as QR codes

[ISO06]. These QR codes will contain the secret values the voter has to enter in the voting device. A paper

sheet with printed QR codes provides means for storage for those secrets, as well as a channel which can

not be eavesdropped by the voting device. The security of the channel depends on the method for delivering

the QR sheets to the voters, for example in sealed envelopes sent by postal mail.

In contrast to the cryptographic hardware token, the QR sheet does not provide logic capabilities, and

thus the Reveal functionality is not present. However, the QR contents can still be organized in a way such

that the voter is only required to scan the QR codes corresponding to the candidates she selects in order to

retrieve the secrets corresponding to the other candidates.

For each registrar, a QR paper sheet will be created as follows. First, one QR code will be assigned to

each candidate. Let n be the total number of candidates and let ` be the number of candidates which the

voter can select. Then, each secret value xvid,ridi (which corresponds to the candidate vi) will be divided

into n − 1 shares using a threshold secret sharing scheme (defined in Section 2.6) with threshold `. This

will result in shares xvid,ridi,k for k ∈ {1, . . . , n}\i, this is, n− 1 shares, each one assigned to each candidate

different from vi. Then, the QR code assigned to the candidate vi will be created containing all the shares

xvid,ridj,i for j ∈ {1, . . . , n}\i, this is, the i-th share of each secret value except for xvid,ridi .

It follows that, given the information of ` QRs codes (assigned to ` candidates), only the secret values

for the candidates not assigned to those QR codes can be reconstructed from the shares inside the QR codes.

Scrath surfaces or stickers can be used in order to enforce that only the designated QR codes are scanned by

the voting device’s camera.

Efficiency considerations need to be done when considering usage of QR codes: the information that

they can contain is limited. Note however that each QR code will contain n − 1 secret values of size 256

bits each (if using elliptic curves). The maximum capacity of a QR code is around 23 thousand bits, more

than enough to be able to use them in most elections.

This system can be used either in remote or in poll-site/kiosk-based electronic voting schemes. The QR

sheets may be distributed to the voters by postal mail or by hand, depending on the scenario.

7.7.3 Fully auditable voting systems

We have presented two different voting systems based on our new voting protocol. These systems have

different mechanisms for delivering the secret values to the voters which can be used to easily provide these

secret values to the voting devices. These voting systems significantly improve the usability of the core

protocol from Section 7.4.

The strength of the cast-as-intended verification depends on the right secret values being provided by the

voter to the voting device to compute the proof, and therefore it is critical that (i) the secret values and the
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corresponding images are computed correctly, and (ii) the mechanism to provide secret values to the voting

device works as intended, i.e., it only provides the secret values which are supposed to be provided.

As shown in Section 7.3.2, the privacy of the encrypted vote does not depend on the knowledge of the

secret values associated to the candidates. In particular, after the vote has been cast they can be made public,

these secret values can be published.

When considering our two voting systems, this implies that the hardware tokens and the QR code sheets

can be given to auditors after the election takes place without affecting voters’ privacy. In addition, as

long as the voting device does not get knowledge of the secret values associated to the candidates, both the

hardware token and the QR code sheet can be audited before casting the vote. In order to audit the QR code

sheet, all the QR codes can be read and it can be checked that they contain the correct shares. On the other

hand, to audit the hardware token, a dump of its functionalities can be made.

Third-party auditors, international observers, and representatives of the different political parties and of

the electoral commission should participate in this audit, as well as in the audit of the proofs generated for

the cast votes.

It is important to note that our system allows to verify all the tokens or QR code sheets used by the voters.

This contrasts with other verifiable voting systems [CRS05], [CCC+09], where voting and/or verification

materials cannot be used by the voters once they are audited and, therefore, only a sample of them is verified

for correctness.

7.8 Conclusions and future work

In this work, we have proposed the first solution for the problem of universal cast-as-intended verification

in electronic voting: in our solution everybody (and not only the voter, as it happens in previous solutions)

is able to verify that the contents of an encrypted vote are consistent with the voter choices.

One obvious weakness of our solution is that its security only holds in front of honest-but-curious reg-

istrars. Removing this restriction is not an easy task. This is because that voters, unlike voting devices, can

not perform cryptographic computations. Therefore, a voter has no means to tell whether the partial secret

UCIV information that he receives from a registrar matches the partial public UCIV information, even if the

registrars use zero-knowledge proofs or digital signatures.

Intuitively, a solution would be to be able to blame registrars who behave incorrectly. This blame could

serve two purposes. On one hand, it could help a voter to identify which registrars she can trust. On the

other hand, it could be useful to determine that a registrar is malicious and therefore should be excluded

from the election. In the latter case, voters should not be able to forge false claims, a task which seems

difficult to solve at the protocol level.

In any case, proper security definitions should be given to prevent both voters making bogus claims
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but also registrars from creating incorrect UCIV information in a way that no one can prove their incorrect

behavior.

Another interesting line of research would be to improve the efficiency of the voting protocol. In partic-

ular, the size of ballots scales poorly with the number of candidates and the number of choices a voter can

make. This is in contrast with typical (non-UCIV) mix-net protocols, where the size of ballots increases at

most linearly with the number of choices a voter can make.

Although in this work we focused on the notions of privacy provided by existing schemes such as

[Adi08], we consider for future works to design a protocol with universal cast-as-intended verifiability,

together with stronger notions of privacy such as receipt-freeness or coercion-resistance. Another challenge

to solve is to design a voting protocol such that the voting device does not learn the identity of the voter even

in front of dishonest registrars.

Finally, we consider there is work to do in the usability field. Although we have proposed solutions for

making the voting process more intuitive for the voter, there is still a long way to walk to have a usable

voting scheme. Feedback from usability tests and user experience designers should be used in order to find

out the best approaches to follow.
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Chapter 8

Conclusions and Open Problems

Regarding our contributions in cryptography, we have shown how to improve known Groth-Sahai proofs

in several directions, either by changing the underlying assumptions, changing the generic Groth-Sahai

proofs construction or fine-tuning the proofs for concrete statements. Our improvements directly benefit

many protocols which use Groth-Sahai proofs in a black-box way. The question therefore is whether we

can push the efficiency of Groth-Sahai proofs even further without changing their security properties, since

each improvement, even small ones, benefits many cryptographic protocols. Another question is which is

the best efficiency we can get by improving Groth-Sahai proofs. Answering this question would allow us

to know how efficient protocols based on Groth-Sahai proofs can theoretically get just by leveraging the

improvements in Groth-Sahai proofs.

The contributions of our work in electronic voting are of different nature. We have focused on solving

problems which have a direct impact on the deployment of electronic voting systems. We have shown how

to make electronic voting systems robust to spoiled votes, not from an accuracy or privacy point of view but

from a reputation point of view. In our work, we have proved that vote validatability is an achievable security

property by building an electronic voting protocol, based on bilinear groups, satisfying vote validatability.

However, we would like to see whether currently used electronic voting protocols can be adapted to satisfy

vote validatability without relying on bilinear groups.

We have also demystified the perception that cast-as-intended verifiability can only be achieved by

implementing individual verifiability mechanisms. This is an important change of paradigm since it removes

part of the verifiability burden from the voter, therefore achieving more usable electronic voting systems. We

already stated some of the open problems on the conclusions of that contribution, such as building electronic

voting protocols which are universally cast-as-intended verifiable in presence of malicious registrars which

are not limited to be honest-but-curious. In addition to those conclusions, it is still an open question if we

can remove or minimize individual verifiability from end-to-end verifiable electronic voting systems and, in

particular, if it could be possible to design recorded-as-cast mechanisms which are universally verifiable.

The last conclusion we would like to point out is rather philosophical. In this thesis, we have presented
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some contributions in cryptography and others in electronic voting. However, these contributions are not

independent: we have used results from our cryptographic contributions to instantiate electronic voting pro-

tocols with new security properties. This puts into evidence the fact that there is a strong connection between

the state-of-the-art in cryptographic protocols and electronic voting protocols. Even if some cryptography

research seems rather theoretical, it might eventually lead to practical applications in areas such as secure

electronic voting. In order for electronic voting research to benefit from cryptography advancements it is

important for electronic voting researchers to have a deep knowledge of the latest developments in cryp-

tography research. In summary, it is only when practical and theoretical research go hand-by-hand that

advances in real-world problems happen.
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[BCP+11] David Bernhard, Véronique Cortier, Olivier Pereira, Ben Smyth, and Bogdan Warinschi.

Adapting Helios for provable ballot privacy. In Vijay Atluri and Claudia Dı́az, editors, Com-

puter Security - ESORICS 2011 - 16th European Symposium on Research in Computer Security,

Leuven, Belgium, September 12-14, 2011. Proceedings, volume 6879 of Lecture Notes in Com-

puter Science, pages 335–354. Springer, 2011.

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among no-

tions of security for public-key encryption schemes. In Hugo Krawczyk, editor, Advances in

Cryptology - CRYPTO ’98, 18th Annual International Cryptology Conference, Santa Barbara,

California, USA, August 23-27, 1998, Proceedings, volume 1462 of Lecture Notes in Computer

Science, pages 26–45. Springer, 1998.

[BEM15] Pedro Bibiloni, Alex Escala, and Paz Morillo. Vote validatability in mix-net-based evoting.

In Rolf Haenni, Reto E. Koenig, and Douglas Wikström, editors, E-Voting and Identity - 5th

International Conference, VoteID 2015, Bern, Switzerland, September 2-4, 2015, Proceedings,

volume 9269 of Lecture Notes in Computer Science, pages 92–109. Springer, 2015.

[Ben06] Josh Benaloh. Simple verifiable elections. In Dan S. Wallach and Ronald L. Rivest, editors,

2006 USENIX/ACCURATE Electronic Voting Technology Workshop, EVT’06, Vancouver, BC,

Canada, August 1, 2006. USENIX Association, 2006.

157



[BFI+10] Olivier Blazy, Georg Fuchsbauer, Malika Izabachène, Amandine Jambert, Hervé Sibert, and
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