
 

 

 

 

CHAPTER 5 
 

 

 

 

SHEAR FAILURE OF FULL-SCALE SFRC BEAMS 
 

 

 

5.1. INTRODUCTION 

 

The tensile and shear behavior of SFRC has been studied at a material level in the 

previous chapters, where the benefits of incorporating steel fibers have been clearly 

demonstrated. The objective of this chapter is to analyze the shear failure of full-scale 

structural elements of SFRC. With this aim, rectangular- and T-beams of SFRC have been 

cast and tested. For comparison, plain concrete elements that are identical to some of the 

SFRC beams have also been studied. 

 

The analysis of the experimental results involves the identification of the modes of 

failure, the study of the load-displacement response in the element prior to failure and the 

influence of the geometry of the beam section on the response. 

 

Also, the experimental failure loads are compared with those given by existing 

design methods for SFRC. Finally, recommendations for design are made, including a 

proposal for shear design based on the equivalent shear strength from the push-off test. 
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5.2. REVIEW OF SHEAR DESIGN APPROACHES FOR SFRC 

 

 In terms of cross-section analysis as a fundamental step in structural design, 

conventional procedures are normally based on the stress-strain (σ-ε) response of the 

materials involved (i.e., concrete and steel) and the deformations across the critical section. 

Along the lines of such σ-ε approaches, the models for the behavior of SFRC have 

replaced those for plain concrete in the design of fiber concrete structures and the tensile 

response of the concrete is taken into account, instead of being neglected. A step further is 

the use of toughness-based limit stresses that draw on the improvement in the ductility of 

the concrete due to the incorporation of fibers (e.g., Moens and Nemegeer, 1991; SCA, 

1995). On the other hand, the use of the fracture response or the stress versus crack 

opening or width (σ-w) response of SFRC has led to more general approaches for cross-

section design (e.g., Stang and Olesen, 1999). Such approaches also implicitly account for 

size and geometry effects (Carpinteri and Massabó, 1997) that often create problems in 

conventional limit stress or strain based design. 

 

 In the case of the shear design of beams, the resistance offered against failure is 

mostly decoupled, as in conventional design, as components attributable to plain concrete, 

rebars and fibers. However, there is an interaction between the components, which is seen, 

for example, in the improvement of the dowel action of rebars due to the fibers that has 

been incorporated in design equations by di Prisco et al. (1994) and di Prisco and Romero 

(1996). Also, in many approaches the behavior of the composite SFRC has been 

considered instead of separating the material into concrete and fibers. Accordingly, the 

enhancement in the material performance of the concrete due to the incorporation of the 

fibers has been modeled through empirical models (Al-Taan and Al-Feel, 1990) and 

plasticity-based approaches (Batson and Youssef, 1994) to yield equations for the shear 

cracking stress and ultimate shear strength of SFRC beams.  

 

 In terms of the flexure-shear failure mechanisms, the studies of Li et al. (1992) on 

beams concluded that for shear spans (a/d) longer than 2.5, the failure was dominated by 

beam action (with failure occurring after the propagation of flexure-shear cracking) while 

for shorter shear spans, the arch action predominated (with crushing or splitting failure). 
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A model for the ultimate shear strength of beams, based on simultaneous arch and beam 

actions, as well as size effect, among other phenomenological aspects, was proposed by 

Imam et al. (1994, 1997), and verified through comparisons with extensive test results. 

This model was later extended to high strength SFRC (Imam and Vandewalle, 1996).  

 

 More rational approaches based directly on the tensile stress versus crack width 

curve have been used in design considering three failure modes: bending, shear and 

concentrated loading. In one methodology (Rossi, 1995; Casanova and Rossi, 1996, 1997; 

Casanova et al., 1997), the stress-crack width relationship is used in flexural and shear 

design, along with maximum allowable crack widths. Along similar lines, the structural 

crack widths have been predicted using the stress-crack width curve (Stang et al., 1995; 

Zhang and Stang, 1998). When rebars are present, their interaction with the concrete is 

treated as an elastic bond problem (Stang and Aarre, 1992; Stang et al., 1995). Another 

formulation, based on equilibrium equations, for modeling crack widths in fiber reinforced 

concrete with main reinforcement can be found in Brincker et al. (1995). 

 

 

5.3. TEST PROGRAM 

 

Two series of tests were performed on the SFRC beams described in Figures 5.1 

and 5.2. The first series consisted of 3 beams with rectangular cross-sections (and varying 

depth) and 4 T-beams with different flange dimensions. The second consisted of 3 beams 

with rectangular cross-sections (and varying depth) and 3 T-beams with different flange 

depths (and same flange width). Altogether, 13 SFRC beams have been tested (6 

rectangular beams and 7 T-beams). As seen in the figures, some beams were tested twice 

in order to verify the repeatability of the results. In addition, a set of plain concrete beams 

with the same dimensions and reinforcement as the 30 and 60 cm deep rectangular beams, 

and the T-beam with a 100 cm wide flange were also tested. The plain concrete beams will 

be used as a reference so the influence of the steel fibers can be identified. The fiber 

content, compressive strength and the shear span-to-depth ratio of the beams have been 

kept constant. All the beams were over-reinforced longitudinally so as to avoid flexural 

cracking. 
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Figure 5.1. Series 1. Cross-section, reinforcement and test configuration

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
l = 200 cm l = 330 cm l = 450 cm 
a = 91 cm a = 137 cm a = 189 cm 
b = 129 cm b = 193 cm b = 261 cm 
ρL = 2.83 % ρL = 3.08 % ρL = 2.73 % 
k = 1.88 k = 1.72 k = 1.61 
k1 = 1.34 k1 = 1.21 k1 = 1.06 
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Figure 5.2. Series 2. Cross-section, reinforcement and test configuration

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
l = 200 cm l = 340 cm l = 450 cm 
a = 91 cm a = 155 cm a = 189 cm 
b = 129 cm b = 185 cm b = 261 cm 
ρL = 2.83 % ρL = 2.41 % ρL = 2.73 % 
k = 1.88 k = 1.66 k = 1.61 
k1 = 1.34 k1 = 1.14 k1 = 1.06 
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5.3.1. Beam Characteristics 

 

In the case of the rectangular beams (Figures 5.1 and 5.2) the variable investigated 

is the height (h) while the beam width (bw) remains constant. All the beams were loaded 

closer to one end of the beam than the other. The shorter span (a) or the critical shear span 

is where the principal failure is expected to occur. The corresponding shear span-to-depth 

ratio (a/d) ratio is kept constant, where d is the effective depth and the length (l ) of the 

beam is approximately equal to 8 d. 

 

The variables studied in the case of T-beams are the height (hf) and width (bf ) of 

the flange while the height (h) of the beam section remains constant. The effect of the 

width of the flange is mainly studied with the first set of beams (Figure 5.1) while the 

flange height is studied with the second (Figure 5.2). 

 

 

5.3.2. Materials and Element Fabrication 

 

A normal strength concrete with a characteristic compressive strength of 30 MPa 

with 40 kg/m3 of Dramix® RC 65/60 BN s1teel fibers has been used for the study. The 

concrete was provided in a truck mixer from a ready-mix plant with the mix design given 

in Table 5.1. Table 5.2 shows the slump and 28-day compression strengths (fc) of the plain 

concrete and the SFRCs. The equivalent flexural tensile strengths (feq3) of the SFRCs were 

determined according to the RILEM recommendation (2000,a). The two series of tests on 

the fiber concrete beams are denoted hereafter as SFRC-1 and SFRC-2, respectively. Note 

that for the first series (SFRC-1) an equivalent CMOD was considered in the calculation of 

feq,3 from the notched beam tests, taking the deflection/CMOD ratio as 0.86. For the second 

series (SFRC-2), feq,3 was directly obtained from the load-deflection response.  
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Table 5.1. Composition of the mix (per m3) 

Cement CEM I 42.5 R (kg) 385 

Water (lit.) 168 

Gravel (5-12 mm) (kg) 183 

Gravel (12-25 mm) (kg) 773 

Sand (0-5 mm) (kg) 851 

Plasticizer (lit.) 4.6 

 

 

Table 5.2. Characteristics of the concrete 

Concrete 
Slump 

(cm) 

fc 

(MPa) 

feq,3 

(MPa) 

Plain concrete 23 32.1 (±2%) - 

SFRC-1 17 37.7 (±2%) 5.43 (±17%) 

SFRC-2 20 38.8 (±1%) 5.58 (±12%) 

 

The beams were filled in several layers and compacted by a combination of external 

vibration using a vibrating screed placed on the wooden molds, as shown in Figures 5.3 

and 5.4, and needle vibration at the ends. 

 

Figure 5.3. Filling of the molds 
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Figure 5.4. Compaction of the beams 

 

Along with the full-scale beams, the following specimens for the material 

characterization were cast: standard 150×300 mm cylinders for the compression and 

uniaxial tension tests, and 150×150×600 mm prisms for the bending and push-off shear 

tests. 

 

 

5.3.3. Experimental Details 

 

The tests have been carried out under displacement control using a load frame 

anchored to a strong-floor and an MTS servo-hydraulic actuator with a loading capacity of 

1 MN and an MTS TestStar controller. The test set-up can be seen in Figure 5.5. The 

loading rate was varied for each beam as a function of its depth to have approximately the 

same time to failure (of approximately 35 minutes). In order to determine the load-point 

deflection, displacements have been measured by means of Temposonic (magnetostrictive) 

transducers located below the loading point and at the supports. Also, displacements at the 

ends of the beams have been measured to estimate the rotations. Additionally, a rosette of 

three Temposonic transducers was mounted on one side of the beam, at the middle of the 

shear span, to study the cracking behavior (see Figure 5.5). See photographs in Figures 5.6-

5.7 for more details of test set-up. 
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Figure 5.5. Test set up 

 

 

 

Figure 5.6. Test configuration 
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Figure 5.7. Beam ready to be tested 

 

 

5.4. RESULTS AND DISCUSSION 

 

5.4.1. Modes of Failure 

 

All rectangular and T-beams tested, in both series, failed in shear. The rectangular 

beams of the plain concrete failed suddenly (Figure 5.8) with the appearance of a single 

crack. In the plain concrete T-beam, the cracking initiated in the web within the critical 

shear span but, prior to failure, cracks also developed outside of the critical shear span. 

Some of the cracks propagated into the beam flange (Figure 5.9). In general, the failure 

was less brittle in the T-beams than the rectangular beams.  
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Figure 5.8. Plain concrete 20×30 rectangular beam: Final state of cracking in the critical 
shear span. 

 
 
(a)            (b) 

 
Figure 5.9. Plain concrete T-beam with 100 cm wide flange: Final state of cracking in the 

critical shear span (a) and on the longer span (b) 
 

As expected, the SFRC beams exhibited a much more ductile mode of failure. Prior 

to the maximum load, several cracks were observed over the span of the beams.  

Final failure occurs after at least some crushing in the compression zone (Figure 5.10). 

This occurs suddenly in the case of rectangular beams when the crack reaches the top of 

the beam. In the case of SFRC T-beams, the response is stable even after the maximum 

load, as seen in Figure 5.11. 
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Figure 5.10. SFRC 20×30 rectangular beam: Final state of cracking in the critical shear 
span 

 
 
(a)          (b) 

 
Figure 5.11. SFRC T-beam with 100 cm wide flange: Final state of cracking in the critical 

shear span (a) and on the longer span (b) 
 

The typical crack patterns for the plain and SFRC beams can be seen in Figures 

5.12 and 5.13 for the rectangular beams, and in Figure 5.14 for the T-beams. Individual 

crack patterns for all the beams can be found in Annex E, along with other test results. 
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(a) 

 

(b) 

 

Figure 5.12. Final crack pattern in the 30 cm deep rectangular beams: (a) Plain concrete 
beam (b) SFRC beam of Series 1 

 

Figure 5.12 shows the crack distribution for 20×30 cm rectangular beams. As 

mentioned earlier, in the case of the plain concrete beam, only one crack occurs. In the 

case of the SFRC beam, the first crack occurs in the critical shear span and a second crack 

occurs later in the longer span, leading to a multiple crack pattern. This clearly reflects the 

increase in the deformability of the structural element and the redistribution of the stresses 

due to the presence of the fibers. Note that near the tensile face the crack follows the 

reinforcing bars, leading to progressive fracture along the rebar-concrete interface.  
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(a) 

 

(b) 

 

Figure 5.13. Final crack pattern in the 60 cm deep rectangular beams: (a) Plain concrete 
beam (b) SFRC beam of Series 2 

 

Figure 5.13 shows the final crack pattern for 20×60 cm rectangular beams. As it can 

be seen, the final crack distribution in the case of the plain concrete beam is, as expected, a 

single diagonal shear crack formed within the shear span of the beam. Crack patterns 

observed in the case of the SFRC 20×60 cm rectangular beam tested in the Series 2 show a 

response similar to the 20×30 cm SFRC beam. 

 

Figure 5.14 shows the crack pattern for the T-beam with a 100×15 cm flange and a 

20 cm wide web. As mentioned earlier, multiple cracking occurred in both the plain 

concrete and SFRC T-beams. It is clear that the presence of the flange noticeably alters the 

crack pattern in the beam. 
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(a) 

 

(b) 

 

Figure 5.14. Final crack pattern for the T-beam with 15 cm deep and 100 cm wide flange: 
(a) Plain concrete beam (b) SFRC beam of Series 1 

 

 

5.4.2. Load-Deflection Response 

 

 As mentioned earlier, the deflections below the load and at the supports were 

measured during each test. The net load-point deflection has been consequently determined 

and is used in the following discussions. The reference of each curve indicates the beam 

dimensions, e.g., 20×60-SFRC 1 indicates the curve of the rectangular beam of Series 1 

with a 20 cm wide and 60 cm deep section. In the case of the T-beams, the legend indicates 

the dimensions of the flange, e.g., T15×100-SFRC 1 indicates an SFRC T-beam with a 15 

cm deep and 100 cm wide flange. 

 

Figures 5.15 and 5.16 show the results corresponding to the beams tested in Series 

1, for the rectangular and T-beams, respectively. Similarly, Figures 5.17 and 5.18 show 

results for the rectangular and T-beams tested in Series 2. As it can be seen, all tests were 
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stable in the pre- and post-cracking regimes. In the case of rectangular beams (Figures 5.15 

and 5.17), the response after the maximum load is not plotted since load dropped suddenly. 

 

 

Figure 5.15. Load-deflection response: Rectangular beams of Series 1 

 

 

Figure 5.16. Load-deflection response: T-beams of Series 1 
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Figure 5.17. Load-deflection response: Rectangular beams of Series 2 

 

 

Figure 5.18. Load-deflection response: T-beams of Series 2 
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and ultimate loads, together with the corresponding deflections, for all of the specimens 
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a significant reduction in the slope of the curve. The ultimate deflection is taken to be the 

load-point deflection corresponding to the peak-load. The first-crack and ultimate loads, as 

well as the corresponding deflections, increase significantly with the presence of the steel 

fibers, indicating the important enhancement in the ductility. Also, the differences between 

the results from identical specimens of the two series indicate that the scatter in the 

response is significant.  

 

Note that the test of the 60 cm deep rectangular SFRC beam of Series 1 was 

stopped before complete failure occurred since the beam started to tilt laterally. This 

explains the lower maximum load obtained in this test when compared to the identical 

beam in Series 2. 

 

Table 5.3. First-crack and ultimate loads, and deflections 

Load (kN) Deflection (mm) 
Beam 

First crack Ultimate Load First crack Ultimate Load

20x30-Plain  102.1 102.1 2.5 2.5 

20x30-SFRC Series 1 
Series 2 

148.8 
196.6 

188.7 
224.7 

4.1 
7.2 

9.3 
10.8 

20x45-SFRC Series 1 215.8 248.5 5.8 8.6 

20x50-SFRC Series 2 255.5 272.3 7.9 9.6 

20x60-Plain  186.6 186.6 5.1 5.1 

20x60-SFRC Series 1 
Series 2 

236.0 
307.3 

264.5 
382.6 

7.6 
9.3 

10.3 
15.2 

T10x50-SFRC Series 1 
Series 2 

203.1 
209.7 

285.6 
264.6 

3.9 
4.4 

10.3 
9.2 

T15x50-SFRC Series 1 
Series 2 

241.4 
207.8 

445.5 
276.1 

5.8 
4.9 

18.4 
8.5 

T23x50-SFRC Series 2 278.1 426.5 6.1 16.1 

T15x75-SFRC Series 1 255.7 437.2 5.4 16.4 

T15x100-Plain  213.9 257.4 4.6 7.9 

T15x100-SFRC Series 1 263.1 411.6 5.5 17.1 
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5.4.3. Influence of Steel Fibers 

 

In order to compare the plain concrete and SFRC responses, the load-deflection 

curves for rectangular and T-beams are plotted again in Figures 5.19 and 5.20, showing 

identical beams of the concrete with and without fibers.  

 

 

Figure 5.19. Load-deflection response: Plain and SFRC rectangular beams, Series 1 and 2 
 

The increase in load carrying capacity and deformability due to the fibers in the 

rectangular beams is clear. It can be observed that the load at first-crack increases in the 30 

cm and 60 cm deep rectangular beams, respectively, by 69% and 46%, on average. The 

ultimate load for the 30 cm and the 60 cm deep rectangular SFRC beams is also higher, on 

average, by about 102% and 73%, respectively, than that of the corresponding plain 

concrete beam. Moreover, the SFRC beams exhibit higher deflections at first-crack than 

the plain concrete beams; the corresponding values for the 30 and 60 cm deep rectangular 

SFRC beams are 127 % and 66 % higher, respectively.  
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Figure 5.20. Load-deflection response: Plain and SFRC T-beams. Series 1 
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In general, the results confirm that the steel fibers lead to substantially higher 
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prematurely, as explained earlier. As expected, an increase in beam height leads to an 

increase in the first-crack and ultimate loads, as already seen in Table 5.3. 

 

 

Figure 5.21. Load-deflection response: Rectangular SFRC beams 

 

The possible effect of beam size on the nominal shear strength is examined in 

Figure 5.22, where the load is normalized by the cross-section area and plotted as a 

function of the logarithm of the beam depth. It can be seen that the normalized load 

decreases slightly for an increase in beam depth, denoting some size effect. The same 
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Figure 5.22. Variation of the ultimate and first crack loads with beam depth 

 

 

5.4.5. Influence of Flange Width 

 

The load-deflection responses of the SFRC T-beams with 15 cm thick flanges from 
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depth are the same for each beam, and the only variable is the width of the flange. As a 
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Figure 5.23. Influence of the flange width of SFRC T-beams on the load-deflection 
response 

 

When the responses of the T-beams are considered with respect to each other, there 

is a slight increase in the first-crack load with an increase in the flange width (i.e., 241, 256 

and 263 kN for 50, 75 and 100 cm flange width, respectively), as can be expected. On the 

other hand, the ultimate load decreases slightly with an increase in flange width (i.e., 446, 

437 and 412 kN for 50, 75 and 100 cm flange width, respectively). In conclusion, it 

appears that the flange width does not have a significant effect on its load carrying 

capacity, within the range studied.  

 

In general, the presence of the flange clearly benefits the shear resistance but the 

present tests do not clearly indicate the transition or the existence of a limit up to which an 

increase in the flange width increases the load-carrying capacity. 
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5.4.6. Influence of Flange Depth 

 

Figure 5.24 shows the load-deflection responses of the SFRC T-beams tested in 

Series 2 with flange widths of 50 cm, and flange depths of 10, 15 and 23 cm. As a 

reference, the curve corresponding to the 50 cm deep rectangular beam is also shown. 

 

 

Figure 5.24. Load-deflection response: Influence of flange depth, Series 2 
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tests of Series 1 (Figure 5.25 and Table 5.3) the beam with a 15 cm deep flange exhibited a 

19% higher first-crack load and 56% higher maximum load than the beam with a 10 cm 

deep flange. Also, the first-crack deflection and the deflection at maximum load were 47% 

and 80% higher, respectively. However, in the tests of Series 2, there is practically no 

difference in the response of the beams with 10 cm and 15 cm deep flanges. Also, the 

difference in behavior between the 45 cm deep rectangular beam in Series 1 and the T-

beams was significantly higher than that seen in Series 2 between the rectangular and the 

T-beams.  

 

 

Figure 5.25. Load-deflection response: Influence of flange depth,  Series 1 

 

 

5.4.7. Displacements Associated with Web Cracking 

 

As mentioned earlier, 3 Temposonic transducers were mounted at 0°, 45° and 90°, 

(see Figures 5.5 - 5.8) to record the displacements in the web of the beam within the 

critical shear span. A typical load-displacement response from the three transducers is 

shown in Figure 5.26, where the load-deflection response is plotted as reference. Individual 

responses for each beam are given in Annex E, which also presents the load-rotation 
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response at the load-point for each beam. The rotation is calculated using the readings 

obtained from the pair of Temposonic transducers placed at the ends of the beams. 

 

 From Figure 5.26, it can be seen that up to the crack load, the horizontal transducer 

(R 0º) gives the largest displacement, followed by the transducer placed at 45º (R 45º) and 

with almost no displacement for the case of the vertical transducer (R 90º), placed in the 

load direction. Once cracking occurs, R 45º and R 90º displacements begin to grow 

constantly up to the end of the test. Note that R 45º displacement is actually the crack 

opening of the principal crack in the critical shear span. In the case of the beam in Figure 

5.26 (20×30 SFRC beam of Series 2) it can be seen that the crack did not intercept the R 0º 

transducer span and thus the displacement does not grow after cracking. 

 

 

Figure 5.26. Typical load-displacement response of the rosette transducers 
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5.5. REVIEW OF DESIGN METHODS FOR SHEAR FAILURE OF SFRC 

 

The existing code-type approaches for the design of SFRC beams for shear failure 

are based on conventional design methods supplemented by provisions for the fiber 

contribution. Two such methods are those given in the Dramix®  design guidelines (1996) 

and the RILEM recommendation (2000b). On the other hand, there are design methods that 

are based on the fracture or development of a tensile crack, where its behavior is simulated 

through a stress-crack width (σ-w) relation in uniaxial tension (e.g., Casanova and Rossi, 

1997). The following three sections summarize the principles of these approaches. 

 

5.5.1 RILEM Design Method 

 

The RILEM σ-ε design method describes the mechanical behavior of SFRC by 

means of a stress-strain relationship. This method gives a good opportunity to combine it 

easily with the design method for conventionally reinforced concrete, as recommended in 

Eurocode 2: ENV 1992-1-1. 

 

The design value of the shear resistance of a general beam section is considered in 

this method to be a sum of the contributions of the concrete (e.g., due to aggregate 

interlock), the shear reinforcement (i.e., stirrups) and the steel fibers: 

 

             (eq. 5.1) 

 

where: 

Vcd is the shear resistance of the member without shear reinforcement: 

 

     (N)                    (eq. 5.2) 

 

 

 

( ) db.fk.V wcpfcklcd 




 σ+ρ= 150100120 3
1



Chapter 5 

 - 120 - 

with 

 

(d in mm)  and k < 2           (eq. 5.3) 

 

           (eq. 5.4) 

 

As =  area of reinforcement exceeding not less than ‘d + anchorage length’ beyond 

the section considered (mm2) 

bw =  minimum width of the section over the effective depth d (mm) 
 

     (N/mm2)       (eq. 5.5) 

 
Nsd = longitudinal force in section due to loading or prestressing (compression: 

positive) (N). In the case of prestressing, “h” should be used instead of “d” in 

the formula (eq. 2). 

 
Vfd is the contribution of the steel fiber shear reinforcement, given by: 

 
Vfd = kf k1 τfd bw d (N)              (eq. 5.6) 

 
where: 

          kf = factor for taking into account the contribution of the flanges in a T-section: 

 

kf = 1 + n         kf ≤ 1.5           (eq. 5.7) 

 

hf = height of flanges (mm) 

bf = width of flanges (mm) 

bw = width of web (mm) 

 

n = where n < 3    n             (eq. 5.8) 

 
      (d in mm)  and k1 ≥ 1            (eq. 5.9) 
 

d
k 2001+=

%2
As ≤=ρ

dbw
l

c

Sd

A
N

=σcp

f

wf

h
bb −

f

w

h
b3≤

1000
d1600k1

−=


















d
h

b
h f

w

f



Shear Behavior of Full-Scale SFRC Beams 

 - 121 - 

τfd = design value of the shear strength due to steel fibers: 

 

 (N/mm2)            (eq. 5.10) 

 
where feqk,3 is the characteristic value of the equivalent flexural strength 

 
Vwd is the contribution of the shear reinforcement due to stirrups and / or included bars: 

 

(N)            (eq. 5.11) 

 

where: 

s = spacing between the shear reinforcement measured along the longitudinal axis 

(mm) 

α = angle of the shear reinforcement with the longitudinal axis 

fywd =  design yield strength of the shear reinforcement (N/mm2) 

 

 

 When checking against crushing of the compression struts, VRd2 is given by: 

 

    (N)             (eq. 5.12) 

 

where: 

 

with ffck (N/mm2)             (eq. 5.13) 

 

For vertical stirrups, or for vertical stirrups combined with inclined shear 

reinforcement, cot α is taken as zero. 
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5.5.2. Dramix® Design Method 

 

 The Dramix® guidelines are also based on the Eurocode 2: ENV 1992-1-1 and 

adapted for steel fiber reinforced concrete reinforced with Dramix® steel fibers. As this 

study involves using concrete reinforced with such fibers, this method is appropriate. 

 

 The Dramix® design method has the same equations as the RILEM method for the 

contributions of the concrete and the vertical or inclined shear reinforcement to the total 

shear capacity. The contribution of the steel fibers, Vfd, is given by: 

 

Vfd = kf τfd bw d              (eq. 5.14) 

 
where: 

kf = factor for taking into consideration the contribution of the flanges in T-

sections. It is calculated according to equation (eq. 5.7). 

bw = width of the web 

d =  effective depth of the beam 

τfd = the design value of the increase in shear strength due to the steel fibers. 

 

The value of τfd can be calculated as: 

 

              (eq. 5.15) 

 

where: 

γc= 1.5 

 

fctk,ax = characteristic axial tensile strength of steel fiber reinforced concrete 

 

fctk,ax = 0.7 fctm,ax and  fctm,ax = 0.3 fck
2/3 
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                 (eq. 5.16) 

 

where: 

C =  20 

λf =  aspect ratio (ratio of fiber length, lf, to the fiber diameter, df) 

Wf =  weight of fibers (kg/m3) 

 

 

5.5.3. σσσσ-w or Fracture-based Design Method 

 

The shear capacity of SFRC beams with conventional longitudinal reinforcement 

has been analyzed in Casanova (1995), and Casanova and Rossi (1997) by considering the 

failure to occur due to shear crack propagation along a known plane. 

 

As in Eurocode 2 (1992), the ultimate shear load carrying capacity, Vrd3, is taken as 

the sum of the contributions of the member without shear reinforcement Vcd, of the stirrups 

and inclined bars Vwd and of the steel fibers Vfd (as in equation 5.1). The contribution of the 

structural part, Vcd (compression zone, longitudinal reinforcement, aggregate interlock) and 

the corresponding to the classical transverse reinforcement, Vwd, can be calculated using 

Eurocode 2. Then, considering a rectangular cross section, Figure 5.27, of with a width b, 

effective depth d (as the distance from the top of the beam to the centroid of the reinforcing 

bars) and inner lever arm z, the fiber contribution, Vfd, is calculated from the design stress-

crack opening relationship σwd  (w) as follows: 

 

Vfd = )(.. mpd wdb σ              (eq. 5.17) 

 

Where the quantity )w( mpdσ  is the mean residual stress at the crack width wm and 

represents the mean value of the post-cracking stress between zero and wm. This is: 
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∫ σ=σ mw

wd
m

mpd dww
w

w
0

)(1)(             (eq. 5.18) 

 

 

Figure 5.27. Crack geometry assumed for the σ-w method: Rectangular beam, as in 
Casanova and Rossi (1997) 

 

Then, the definition of wm is necessary since Vfd decreases with an increase in the 

maximum crack opening. Casanova and Rossi (1997), through experimental studies carried 

out on SFRC beams of different geometries and with conventional longitudinal reinforcing 

bars, have analyzed the onset of inclined cracks and the formation of concrete struts. 

According to their results, the spacing of these cracks is roughly equal to the inner lever 

arm z (z = 0.9 d) of the beam and the ultimate crack opening is proportional to the height of 

the beam. Since the crack opening is controlled by the longitudinal reinforcement, it is 

proposed that the maximum crack opening could be taken as: 

 

wm = εs z              (eq. 5.19) 

 

where εs is the strain of the longitudinal reinforcement. 

 

As an example, if this strain is limited to 1%, the maximum allowable crack 

opening, wm is: 

 

wm = 0.009 d              (eq. 5.20) 

 

The authors also extended these design considerations to a double T-beam 

(Casanova, 1995). In this case, the bottom flange restrains the crack opening along the 

crack length (see Figure 5.28). Moreover, the crack propagates along the bottom of the 
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compression flange and possibly along the tension flange (if it is sufficiently deep and/or 

the longitudinal reinforcement ratio is high). This makes the representation of the cracking 

more difficult than in a rectangular beam. For calculating the contribution of the fibers in 

such cases, a maximum crack opening, wm, is again considered. Then,  

 

Vfd = b.(d-hf). )( mpd wσ             (eq. 5.21) 

 

where hf is the height of the compression flange and wm = 0.01 (d - hf) for a strain limit of 

1 % in the longitudinal rebars. Here, the crack opening limit depends on the effective depth 

of the beam from which the depth of the compression flange is subtracted to take into 

account the horizontal propagation of the crack. 

 

 

Figure 5.28. Crack geometry assumed for the σ-w method: T beam, as in   
 Casanova and Rossi (1997) 
 

 

5.6. APPLICATION OF THE DESIGN METHODS AND PROPOSED 
MODIFICATIONS 

 

5.6.1. Application of the RILEM and DRAMIX Design Methods  

 

Table 5.5 shows a comparison between the experimentally obtained values and the 

design values of the ultimate shear capacity (VRd3) from the RILEM and DRAMIX 

methods presented earlier. The concrete and steel fiber contributions (Vc and Vf) are 

presented separately. In the calculations, the characteristic values of the compressive 

strength, fck, were taken as 30 and 31 MPa for the Series 1 and 2, respectively. In the case 

of the RILEM design method, values of feqk,3= 2.67 and 3.64 MPa were used for the Series 

1 and 2. For the Dramix  method, fctk,ax was determined to be 2.03 and 2.07 MPa for Series 
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1 and 2. As a reference, the RILEM and Dramix® design methods were also applied to 

plain concrete beams, taking fck as 24 MPa. Due to the fact that both methods utilize the 

formula from Eurocode 2 to take into account the structural contribution (Vc), it can be 

seen that in the case of plain concrete beams both guidelines give the same ultimate shear 

capacity. 

 

Table 5.4. Comparison between design and experimental shear capacities 

Design loads Experimental / 
Design 

RILEM Dramix® 
Beam Experimental 

Vu 
(kN) VC 

(kN) 
VF 

(kN) 
VRd3 
(kN) 

VC 
(kN) 

VF 
(kN) 

VRd3
(kN)

RILEM Dramix®

20×30 Plain 60 43 - 43 43 - 43 1.40 1.40 

20×30 Series 1 111 46 22 68 46 20 66 1.63 1.68 

20×30 Series 2 132 46 32 78 46 20 66 1.69 2.00 

20×45 Series 1 146 64 31 94 64 31 94 1.55 1.55 

20×50 Series 2 148 73 48 120 73 36 108 1.23 1.37 

20×60 Plain 109 78 - 78 78 - 78 1.40 1.40 

20×60* Series1 154 82 36 118 82 41 122 1.31 1.26 

20×60 Series 2 222 81 52 133 81 41 121 1.67 1.83 

T10×50 Series 1 169 75 45 121 75 47 122 1.40 1.39 

T10×50 Series 2 157 73 63 136 73 47 120 1.15 1.31 

T15×50 Series 1 264 72 50 122 72 52 124 2.16 2.13 

T15×50 Series 2 163 73 71 144 73 53 126 1.13 1.29 

T23×50 Series 2 253 77 76 153 77 57 134 1.65 1.89 

T15×75 Series 1 259 72 50 122 72 52 123 2.12 2.11 

T15×100 Plain 152 67 - 67 67 - 67 2.27 2.27 

T15×100 Series 1 244 78 53 131 78 58 136 1.86 1.79 

* underestimated failure load due to premature termination of test 

 

 It can be seen in Table 5.4 that the RILEM method leads to satisfactory design 

loads. However, the safety factors (or the ratio between the experimental and design loads) 

are not consistent; considering that a constant experimental/calculated ratio of 1.4 - 1.5 is 
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expected, for the RILEM method the factors range from 1.23 to 1.69 for the rectangular 

beams and from 1.13 to 2.16 for the T-beams.  

 

The Dramix® method also leads to conservative design, with the 

experimental/calculated ratio ranging from 1.26 to 2.00 for the rectangular beams and from 

1.29 to 2.13 for the T-beams. 

 

In general, it can be concluded that the design formulas are satisfactory for the 

rectangular beams. For the T-beams, the scatter makes the analysis difficult. However, it 

appears that for the beams with wider flanges, the limitation of kf of 1.5 (eq. 5.6 and 5.7) 

leads to more conservative design. 

 

 

5.6.2. Application of the Casanova-Rossi Method 

 

For obtaining the material parameters for the concrete used in the large-scale 

beams, in terms of the σ-w curve, 6 uniaxial tension tests of notched cylinders were 

performed. Also 3 notched beam tests performed for determining the toughness parameters 

were inverse analyzed to get another set of σ-w curves (as in Annex D). Both tests were 

performed according to the procedures of Chapter 3, and the results are shown in Figure 

5.29. It can be seen that the stress-crack width curves from the tension tests are much lower 

than obtained from the inverse analysis of the beams. 
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Figure 5.29. Stress-crack width curves obtained from tension tests and inverse analysis of 
beam test results 

 

For applying the design method explained in section 5.4.3, a limit crack width (wm) 

should be chosen. The use of the rebar strain of 1%, as in the equation 5.17 used by 

Casanova and Rossi, to obtain the crack width limit leads to large crack openings for the 

beam depths of this study. Therefore, a lower and more realistic value of 2 mm has been 

adopted for the predicting the shear capacity of the beams described earlier on in the 

chapter. 

 

As described earlier, for the beams without stirrups and prestressing, the shear 

resistance is obtained from summing the contributions of the concrete element and the 

fibers. The contribution of the concrete is taken from the code equation but substituting the 

characteristic value of the compressive strength by the mean value (fcm). Then eq. 5.2 

changes to: 

 

   (N)              (eq. 5.22) 
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with 

 

(d in mm)  and k < 2                      (eq. 5.23) 

 

          (eq. 5.24) 

 

As =  area of reinforcement exceeding not less than ‘d + anchorage length’ beyond 

the section considered (mm2) 

 

 Using the )( mpd wσ  values of 0.99 MPa and 2.19 MPa obtained from the uniaxial 

tension tests and from inverse analysis of the notched beam results respectively according 

to equation 5.18, the failure load (Vu) can be predicted from the other equations in section 

5.4.3. Note that the value of )( mpd wσ  at 2000 µm of crack width has been defined as 

t,2000
eqf  in Chapter 3. The results of the analysis are given in Table 5.5, along with the 

experimental failure load of each beam.  
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Table 5.5. Comparison between predicted and experimental shear capacities 

Predicted failure loads Experimental / 
Predicted 

Vu using )( mpd wσ  
from uniaxial 
tension tests 

using )( mpd wσ  
from inverse 

analysis of beam 
test results 

Beam Experimental 

Vu 

(kN) 
VC 

(kN) 
VF 

(kN) 
Vu 

(kN) 
VC 

(kN) 
VF 

(kN) 
Vu 

(kN) 

Uniaxial 
Tension 

Inverse 
Analysis

20×30 Plain 60 43 - 43 43 - 43 1.40 1.40 
20×30 Series 1 111 56 46 102 56 102 158 1.09 0.70 
20×30 Series 2 132 56 46 102 56 102 159 1.29 0.83 
20×45 Series 1 146 79 71 150 79 157 236 0.97 0.62 
20×50  Series 2 148 87 82 168 87 181 268 0.88 0.55 
20×60 Plain 109 78 - 78 78 - 78 1.40 1.40 
20×60 Series 1 154 98 96 193 98 213 311 0.80 0.50 
20×60 Series 2 222 97 94 191 97 208 305 1.16 0.73 

T10×50 Series 1 169 78 75 153 78 166 244 1.10 0.69 
T10×50 Series 2 157 76 71 147 76 158 233 1.07 0.67 
T15×50 Series 1 264 73 61 134 73 136 209 1.97 1.26 
T15×50 Series 2 163 74 62 136 74 137 211 1.20 0.77 
T23×50 Series 2 253 74 49 122 74 108 182 2.07 1.39 
T15×75 Series 1 259 67 61 128 67 136 203 2.02 1.28 
T15×100 Plain 152 67 - 67 67 - 67 2.27 2.27 

T15×100 Series 1 244 68 71 138 68 158 225 1.77 1.08 
* underestimated failure load due to premature termination of test 

 

It can be seen in Table 5.5 that the σ-w method generally gives reasonable 

predictions with the stress-crack opening curve obtained from the uniaxial tension tests 

while those obtained using the inverse analysis over-estimate the failure loads 

significantly. It appears that in this case the molded cylinders represent the concrete of the 

beams better than the beams. Some of the T-beam failure loads are significantly under-

estimated by both approaches.  
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5.6.3. Modification of the σσσσ-w Design Method Proposed for T-beams  

 

As discussed by Casanova (1997) the design method given in section 5.5.3 maybe 

insufficient for T-beams since any possible crack propagation along the flange-web 

interface before failure is neglected. In the existing approach, only the tensile resistance 

generated by the shear crack until it reaches the flange is considered for calculating the 

shear resistance; a crack length of d-hf. However, this could under-estimate the failure load 

when the compression flanges have a significant depth, as seen in the previous section, 

since the shear forces transferred across the web-flange interface are not considered. It has 

been observed in the tests that when the flange depth is significant compared to the 

effective beam depth, the crack reaches the compression flange and propagates along the 

web-flange interface before failure occurs (see Figure 5.30). 

 

 

Figure 5.30. Crack geometry assumed for the modified σ-w method: T-beam. 

 

In order to account for the direct shear stresses transferred due to the web-flange 

interface crack, it is proposed that for beams with hf  > 0.2 d, an additional term (Vdsd) be 

introduced in the calculation of the shear resistance: 

 

                          (eq. 5.25) 

 

where Vdsd represents the direct shear stress transfer by the web-flange crack. 

 

For estimating this additional contribution the stress transferred by a direct shear 

crack is needed. For this purpose, the shear push-off test, as performed and reported in 

Chapter 4, is used. Assuming that similar shear and tensile forces are generated in the 
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fibers, the residual stress (or nominal shear stress) obtained in the direct shear push-off test 

at a slip of sm , denoted as )(, mdres sτ , is used to determine Vdsd  by considering that the 

length of the interface crack is equal to the flange depth: 

 

Vdsd = bw hf )(smdres,τ  for  hf > 0.2 d            (eq. 5.26) 

 

For the concrete corresponding to the T-beams, the value of )(, mdres sτ  for a slip 

(sm) of 2 mm was 1.85 MPa. Using this value in Equation 5.26, the failure loads for the T-

beams with flange depths greater than 0.2 times the effective depth have been calculated 

and compared with the experimental results in Table 5.7.  

 

The comparisons indicate that the estimation is better when the direct shear 

contribution is included, except in the case of beam T15×50- Series 2, which can be 

considered a statistically low result. Further tests will be needed to explore the use of such 

an approach in T-beam design. 

 

Table 5.6. Experimental and calculated failure loads for T-beams with direct shear 
contribution 

 
Beam Experimental load 

(kN) 
Calculated load 

(kN) 

T15×50-Series 1 446 321 

T15×50-Series 2 276 324 

T23×50-Series 2 427 359 

T15×75-Series 1 438 311 

T15×100-Series 1 412 328 
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5.6.4. Proposed ττττ-s Design Method 

 

As seen in the previous section, for the case of T-beams, a combination of tensile 

and shear stresses gives a better estimation of the shear capacity than only the tensile 

contribution of the fibers (Figures 5.30). Here an alternative approach using only the 

residual shear strength from the push-off tests at a certain slip is used to obtain the shear 

capacity of the beam, Vu (see Figure 5.31): 

 

Vu = )( mpd sb.z.τ   with z = 0.9 d          (eq. 5.27) 

 

Where the quantity )( mpd sτ  is called the equivalent residual strength at the slip 

displacement sm, and represents the mean value of stress between a slip s = 0 (at the 

maximum stress) and sm. This is: 

 

∫ τ=τ ms

sd
m

mpd dss
s

s
0

)(1)(             (eq. 5.28) 

 

where τsd is the residual stress at a slip s. 

 

 

Figure 5.31. Crack geometry for the proposed τ-s method: Rectangular beam 

 

Table 5.7 shows the calculated results for rectangular beams considering Vu as in 

equation 5.31 and a slip limit sm= 2 mm. Experimental and calculated values are also 

contrasted in Figure 5.32. As it can be seen from Table 5.7, the τ-s method gives very good 

agreement with the experimental values. 
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Table 5.7. Experimental and Calculated values, τ-s Method: Rectangular beams 

Beam Experimental Vu 

(kN) 

Calculated Vu 

(kN) 

Experimental / 

Calculated 

20×30-S1 111 102 1.08 

20×30-S2 132 102 1.29 

20×45-S1 146 157 0.93 

20×50-S2 148 181 0.82 

20×60-S1* 154 213 0.72 

20×60-S2 222 208 1.07 

 * underestimated failure load due to premature termination of the test. 

 

 

 

Figure 5.32. Experimental versus calculated Vu: τ-s design method, rectangular beams 
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5.7. OTHER METHODS FOR CALCULATING THE SHEAR CAPACITY 

 

 In this section, the methods proposed by Al-Ta’an and Al-Feel (1990), Campione 

and Mindess (1999), and Dupont and Vandewalle (2000) are applied to the present data. 

 

 Al-Ta’an and Al-Feel, calculated the total shear strength as the sum of the ultimate 

shear strength of a rectangular beam without web reinforcement based on the concrete 

compressive strength, the percentage of longitudinal tensile reinforcement, the effective 

beam depth, the shear span and the bond stress. The fiber contribution is calculated 

considering the number of fibers at the cross section in tension (i.e., the depth of the 

neutral axis is first calculated) and the average bond strength. The fiber pull-out length is 

taken to be lf /4 (where lf  = fiber length) and it is supposed that all fibers will pull-out 

instead of breaking. Accordingly, the total shear strength of a fiber concrete beam can be 

calculated as: 

 
vu = vuc + vuf 

 
where vuc  is the ultimate shear strength of a rectangular beam without web reinforcement 

and vuf is the unit stress provided by the steel fibers, with: 

 

 3 10
s

cuc a
dfv ⋅⋅ρ⋅=   for  5.2>

d
as  

 ( )3 43 160 scuc adfv ⋅⋅ρ⋅=   for  5.2<
d
as  

 
 where ρ = reinforcement ratio 
  fc = cylinder compressive strength 
  d = effective depth 
  as = shear span 
 

and 
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where c is the depth of the neutral axis and cuσ  is the ultimate stress sustained by a unit 

area of the crack at failure given by ( )fN ⋅ , where N is the number of fibers crossing a unit 

area of the crack and f is the average pull-out force per fiber. 

 

 Campione and Mindess proposed two empirical equations for calculating the 

cracking and ultimate shear strengths. The ultimate shear strength, Vnf (MPa), of a fiber 

reinforced concrete section with web reinforcement is expressed as: 
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⋅

⋅⋅
+








⋅⋅⋅τ⋅+







 ⋅⋅+⋅⋅= l41.08024.0e  

 
where f’spfc = split cylinder tensile strength; ρ = percentage of longitudinal tensile 

reinforcement; d = effective depth; a = shear span; lf and φ = length and diameter of the 

fibers; Vf = volume percentage of fibers; df = an empirical factor taking into account the 

bond characteristics of fibers (0.5 for round fibers, 0.75 for crimped fibers and 1.00 for 

indented fibers); τ is the average fiber/matrix interfacial bond stress; fyk = yield stress of 

stirrup steel; Ay = area of web reinforcement; s = spacing of the stirrups; b and H = 

transverse dimensions of the beams and e = 2.8 d/a. 

 

 Dupont and Vandewalle proposed a shear design formula based on the model of 

Bazant and Sun (1987). This approach does not separate the contribution of the concrete, 

the stirrups and the fibers. The shear capacity is given by the following formulae for the 

case of NSC.  

 

( ) wcu V

d
a

fV +









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




ω⋅+⋅ω⋅Ψ⋅= 5

3 2756.0  

 

where Ψ is a size effect factor, 
( )

( )a

a

d
d

d

⋅+

+
=Ψ

251

08.51
  

with d = effective depth 
  da = maximum aggregate size (mm) 
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 ω = combined effect of longitudinal reinforcement and steel fibers, ω = ρ (1+4F) 

       with ρ = longitudinal reinforcement ratio 

   fF dV ⋅⋅







=

f

F

D
LF   

f

F

D
L = aspect ratio of the fiber 

 FV = volume fraction 

fd = efficiency coefficient (= 1 for hooked- 
ended fibers) 

 fc = cylinder compressive strength 
 a = shear span 

Vw = contribution of the stirrups; it is calculated in the same way as in the RILEM 

recommendation (see eq. 5.11) 

 

 The calculated values with the above methods are presented in Table 5.8 together 

with the experimental values. As it can be seen, the method of Campione and Mindess 

gives best predictions of the shear capacity. With the other two methods, the test results are 

underestimated significantly for the cases analyzed. 

 

Table 5.8. Shear capacity obtained with methods of Al-Ta’an and Al-Feel, Campione  
and Mindess, and Dupont and Vandewalle 

Al-Ta’an and  

Al-Feel 

Campione and 

Mindess 

Dupont and 

Vandewalle 
Beam 

Vu 

Experimental 

(kN) 
Vu calc 

(kN) 
Vu exp / 
Vu calc 

Vu calc 

(kN) 
Vu exp / 
Vu calc. 

Vu calc 

(kN) 
Vu exp / 
Vu calc 

20×30  Series 1 111 121 0.92 97 1.14 142 0.78 
20×30  Series 2 132 122 1.08 97 1.36 143 0.92 
20×45  Series 1 146 186 0.79 158 0.92 215 0.68 
20×50  Series 2 148 206 0.72 170 0.87 215 0.69 
20×60  Series 1 154 245 0.63 200 0.77 247 0.62 
20×60  Series 2 222 242 0.92 196 1.13 245 0.91 

 

 

 

 

 



Chapter 5 

 - 138 - 

5.8. CONCLUSIONS 

 

Tests of full-scale rectangular and T-beams have shown that the inclusion of steel 

fibers improves significantly the deformation characteristics, shear-load carrying capacity 

and first crack load of the both types of beams. Also, that a much greater degree of 

cracking occurred in SFRC beams than in plain beams, implicating more energy consumed 

during failure. 

 

The failure modes and load-deflection response have been studied for plain and 

SFRC beams and the influence of the shape of the cross section on these issues analyzed. 

The variables considered were: the height of rectangular beams, and the width and height 

of the flange in the case of T-beams. The following points summarize the obtained results: 

 

•  Increasing the height of a rectangular SFRC beam results in an increase in the 

ultimate shear load-carrying capacities and first-crack loads. The first-crack deflections 

also increase with increasing height, however the ultimate-load deflections are relatively 

unaffected to this variation. 

 

•  For the range of flange widths studied in this project, increasing the flange width 

does not seem to affect the ultimate shear load-carrying capacities neither the first-crack 

load of the beams. However, the flange can result in a substantial increase of the shear 

capacity when comparisons are made with that of a rectangular beam. On the other hand, 

increasing the flange widths of the T-beams does not have any significant effect on the 

deflections of the beams produced at ultimate or first-crack load. 

 

•  Increasing the flange depth of the T-beams over a limit value results in increased 

ultimate shear load-carrying capacities and first-crack loads. The same tendency is 

observed for the respective deflections. 
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 The experimentally obtained results have also been compared with those predicted 

by design recommendations for shear design of SFRC. From the comparisons carried out, 

the following conclusions can be drawn: 

 

•  The RILEM and Dramix® recommendations for the design of SFRC against shear 

failure give satisfactory results for rectangular beams. However, in the case of SFRC T-

beams, they over-estimate the shear capacity in some cases. 

 

•  The σ-w design method proposed by Casanova and Rossi appears to be satisfactory 

for rectangular beams. Predictions for T-beams can be over-conservative but better results 

were obtained by adding a shear contribution from the fibers at the web-flange interface. 

The maximum crack width was limited to 2 mm in all cases. 

 

Furthermore, a τ-s design method based on a shear toughness parameter given by 

the push-off shear test is proposed. It appears that it can predict well the direct shear 

capacity of rectangular beams. More study would be necessary to investigate its 

possibilities. 

 

 The shear design method proposed by Campione and Mindess has also been 

applied along with other methods, and its results appear to be satisfactory. 

 

 

 


