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ABSTRACT

Cachememorieswereincorporatedin microprocessorsin theearly timesandrepresentthemostcommon

solutionto dealwith thegapbetweenprocessorandmemoryspeeds.However, many studiespointout that

thecachestoragecapacityis wastedmany times,which meansa direct impactin processorperformance.

Althoughacacheis designedto exploit differenttypesof locality, all memoryreferencesarehandledin the

sameway, ignoring particularlocality behaviors. The restricteduseof the locality information for each

memoryaccesscanlimit theeffectivity of thecache.In this thesisweshow how adatalocality analysiscan

help the researcherto understandwhereandwhy cachemissesoccur, andthento proposedifferenttech-

niquesthatmake useof this informationin orderto improve theperformanceof cachememory. We pro-

posetechniquesin which locality informationobtainedby thelocality analyzeris passedfrom thecompiler

to the hardware through the ISA to guide the management of memory accesses.

Wehavedevelopedastaticdatalocality analysis.This analysisis basedon reusevectorsandperforms

thethreetypical steps:reuse,volumeandinterfereanalysis.Comparedwith previousworks,bothvolume

andinterferenceanalysishave beenimprovedby usingprofile informationaswell asa morepreciseinter-

ferenceanalysis.Theproposeddatalocality analyzerhasbeeninsertedasanotherpassin a researchcom-

piler. Resultsshow that for numerical applicationsthe analysis is very accurateand the computing

overheadis low. Thisanalysisis thebasefor all otherpartsof thethesis.In addition,for someproposalsin

thelastpartof thethesiswe have useda datalocality analysisbasedon cachemissequations.This analy-

sis,althoughmoretime consuming,is moreaccurateandmoreappropriatefor set-associative caches.The

usageof two differentlocality analyzersalsoshows thatthearchitecturalproposalsof this thesisareinde-

pendent from the particular locality analysis.

After showing theaccuracy of theanalysis,we have usedit to studythelocality behavior exhibitedby

theSPECfp95programs.This kind of analysisis necessarybeforeproposingany new techniquesincecan



helptheresearcherto understandwhy cachemissesoccur. Weshow thatwith theproposedanalysiswecan

studyvery accuratelythelocality of a programanddetectwherethehot spotsareaswell asthereasonfor

thesemisses.This studyof the locality behavior of differentprogramsis the baseandmotivation for the

different techniques proposed in this thesis to improve the memory performance.

Thus,using the datalocality analysisandbasedon the resultsobtainedafter analyzingthe locality

behavior of a setof programs,we proposeto usethis analysisin orderto guidethreedifferenttechniques:

(i) managementof multi-modulecaches,(ii) softwareprefetchingfor moduloscheduledloops,and(iii)

instruction scheduling for clustered VLIW architectures.

Thefirst useof theproposeddatalocality analysisis to manageanovel cacheorganization.Thiscache

supportsbypassingand/oris composedof differentmodules,eachoneorientedto exploit a particulartype

of locality. The main differenceof this cachewith respectto previous proposalsis that the decisionof

cachingor not, or in which modulea new fetchedblock is allocatedis managedby somebits in memory

instructions(locality hints).Thesehintsaresetat compiletime usingtheproposedlocality analysis.Thus,

the managementcomplexity of this cacheis kept low sinceno additionalhardware is required.Results

show thatsmallercacheswith a smartmanagementcanperformaswell as(or betterthan)biggerconven-

tional caches.

We have alsousedthe locality analysisto studythe interactionbetweensoftwarepipeliningandsoft-

wareprefetching.Softwarepipelininghasbeenshown to beaveryeffectiveschedulingtechniquefor loops

(mainly in numericalapplicationsfor VLIW processors).Themostpopularschemefor softwarepipelining

is calledmoduloscheduling.Many workson moduloschedulingcanbefoundin theliterature,but almost

all of themmake a critical assumption:they consideranoptimisticbehavior of thecache(in otherwords,

they usethehit latency whena memoryinstructionis scheduled).Thus,theresultsthey presentignorethe

effect of stallsdueto dependenceswith memoryinstructions.In this part of the thesiswe show that this

assumptioncan lead to scheduleswhoseperformanceis ratherlow when a real memoryis considered.

Thus,weproposeanalgorithmto schedulememoryinstructionsin moduloscheduledloops.Wehavestud-

ied differentsoftwareprefetchingstrategiesandfinally proposedan algorithmthat performsprefetching

basedon thelocality analysisandtheshapeof theloopdependencegraph.Resultsobtainedshows thatthe

proposedschemeoutperformsotherheuristicapproachessinceit achievesa bettertrade-off betweencom-

pute and stall time than the others

Finally, thelastuseof thelocality analysisstudiedin this thesisis to guideaninstructionschedulerfor

a clusteredVLIW architecture.Clusteredarchitecturesare becominga commontrend in the designof



embedded/DSPprocessors.Typically, thecoreof theseprocessorsis basedonaVLIW designwhichparti-

tionatesbothregisterfile andfunctionalunits.In this work we go a stepbeyondandalsomake a partition

of the cachememory. Then,both inter-registerandinter-memorycommunicationshave to be taken into

account.Weproposeanalgorithmthatperformsbothgraphpartitionandinstructionschedulingin asingle

stepinsteadof doing it sequentially, which is shown to bemoreeffective. This algorithmis improvedby

addingananalysisbasedon thecachemissequationsin orderto guidetheschedulingof memoryinstruc-

tions in clusters with the aim of reducing not only inter-register communications, but also cache misses.
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1
INTRODUCTION

Cachememoriesare fast and small memoriesthat curr ent microprocessorsinclude in order to miti-

gatethe gap betweenprocessorand memory speeds.The basicidea is to designa hierarchy of mem-

ories (oneor several levels)betweenthe processorand the main memory suchthat a memory access

may be solved by oneof theselevelsmuch faster than by the main memory. The effectivenessof this

solution strongly dependson the proper usageof the cachehierarchy. The ability of a cacheto store

the mostusefuldata is basedon exploiting the locality exhibited by memory references.In this chap-

ter we review differ ent techniques,both hardware and software, to impr ove the behavior of cache

memories,especiallytechniquesfocusedon the first level cache,and then we intr oduce the work

developed in this thesis.
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1.1. MOTIVATION

Oneof themainproblemsthatcomputerarchitectshave to faceis thegapbetweenprocessorandmemory

speeds.Advancesin the designof microprocessorshave experiencednotableimprovementsover the last

15yearsandthis tendency is likely to hold for thenext years.Themostimportantimprovementshavebeen

donein bothclock ratesandexecutionparallelism.By reducingtheminimumfeaturesize,new technolo-

giespackmorelogic in a singlechip, andallow transistorto switch faster. Furthermore,instruction-level

parallelism (ILP), exploitedby bothhardwareandcompilertechnology, hasalsobeenkey for this perfor-

mancegrowth. However this trendhasnot beenexperiencedby memorytechnology. Whereasmicropro-

cessorperformancehasimproved55%peryearsince1987,and35%peryearuntil 1986,theimprovement

in memorylatency is only a 7% peryear. This discrepancy in theevolution of processorandmemoryper-

formances can be seen in Figure 1.1., extracted from [43].

Thisdiscrepancy in speedhasfosteredmany studiesto mitigatethisgap.Themostextendedsolutionis

the inclusionof a memoryhierarchy, andthenthe conceptof cache memory is introduced[109]. Cache

memoriesaresmallandfastbuffersthatareusedto storerecently-usedinformation.Thebasicideabehind

a memoryhierarchy is to put a cachememorybetweentheprocessorandthemainmemory. Thus,a mem-

ory accessfrom theprocessorfirst tries in thecache,andif theinformationis found,theaccessis quickly

solved.This allows theprocessornot to wait for theinformationto bebroughtfrom mainmemory. Other-

wise, if the informationis not found in cache,it is fetchedfrom memoryandtemporarystoredthere.So

thata possiblefutureaccessto this informationcanbesolvedwith minimumlatency. Cachememoriesare

usually provided for dataand instructionsseparatelyin the first level. Memory hierarchieswith two or

threelevelsof cachebetweentheprocessorandthemainmemoryarecommonin existentcomputers.Cur-
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rentdesignshave thefirst level cache(andeventhesecond)insidethesamechip astheprocessorin order

to achieve a low access latency.

Theperformanceof thisschemehighly dependsontheability of thecacheto keeptheinformationthat

will beusedin anearfuture.Guessesaboutfuturereferencesrely on theconceptof locality [43]. Theabil-

ity of theprocessorto exploit thelocality dependsonboththecachearchitectureandthereferencepatterns

generated by the program.

As we will seein this chapterandduringtherestof thethesis,many heuristicshave beenproposedin

orderto improve theperformanceof thebasiccachearchitecture.Someof thesetechniquesconsistof code

transformationsor datareorganizationsthataredoneby thecompiler, whereassomeothertechniquesrely

on someadditionalhardware.We canalsofind in theliteraturesomehybrid techniquesthatcombinesoft-

wareandhardwaremechanisms.All heuristicsproposedarebasedon theexploitationof someparticular

locality featuresthathavebeenobservedin programs.Howevernotall of themmakeuseof a locality anal-

ysisthatindicateswhenthisheuristichasto beapplied.It is shown in someworksandin somepartsof this

thesisthat a “blind” useof many of theseheuristicscanleadto an underutilizationof the cacheandcan

evendegradeits performance.For instance,it is shown thatanunconditionaluseof prefetchingcontributes

to thepollution of thecachewith uselessblocksthatcanreplaceusefulblocks.A betterknowledgeof the

locality of programs,definingmorepreciselywherethe problemsareandwhat aretheir causesis a key

factor for an effective usage of many techniques.

In this thesiswe show thatdatalocality of programscanbeaccuratelyanalyzed.For numericapplica-

tions,this analysiscanbeperformedalmoststaticallyby thecompiler, obtainingthena very fastandvery

accurateanalysis.Moreover, the information that a static analysiscan offer is very wide, identifying

clearlythehot pointsin theprogram.This analysisis usedto proposedifferentalternativesin themanage-

mentof thecachein orderto efficiently usethestoragespace.We exploredifferenttechniquesthat“com-

municate”the locality informationto someparticularcacheorganizations,obtainingthentechniquesthat,

based on explicit locality information, make a smarter use of the bare cache scheme.

Theorganizationof this chapteris thefollowing one.First we will review somebasiccacheconcepts

as well as different classicaltechniques(both hardware and software) proposedto improve the perfor-

manceof the basiccachescheme.Then,we will highlight the contributionsof this thesisandfinally the

organization of the remaining chapters.



4 CHAPTER 1

1.2. BACKGROUND

Typicalcachesarecharacterizedby threedifferentparameters:(i) capacity, (ii) blocksize,and(iii) associa-

tivity. Thecapacityof acachecorrespondsto theamountof information(measuredin bytes)thatis ableto

store.This capacityis commonlydividedinto blocks(alsoreferredaslines).A cacheblock is theamount

of contiguousinformationthat is brought,whennecessary, from thenext level of thehierarchy. Then,the

block sizeis thesizeof oneof theseblocks.Finally, theassociativity of a cacherepresentsthenumberof

differentlocations(in this case,blocks)in whicha new block broughtfrom thenext hierarchy level canbe

stored.This parameter, thus,alsoindicatesthe numberof positionsin which we have to searchfor each

access.If theassociativity is one,thecacheis calleddirect-mapped. On theotherextreme,if a new block

canbestoredin any block of thecache,it is calledfully-associative. Finally, intermediateconfigurations

are calledn-way set-associative caches, wheren represents the associativity.

All currentgeneral-purposeprocessorsareimplementedwith at leastonecachelevel. Table1.1shows

differentexampleswith their features.Even in thescenarioof embedded/DSPprocessors,thathave typi-

cally beendesignedwithoutamemoryhierarchy, wecannowadaysfind commercialmicroprocessorswith

the inclusion of one or more levels of cache [102].

Many techniquesand proposalscan be found in the literatureto improve the behavior of a cache.

These techniques could be grouped into three different kinds, depending on their aim:

Family Model

L1 L2
(inside the chip)DATA INSTRUCTIONS

Size (KB) Assoc. Size (KB) Assoc. Size (KB) Assoc.

Intel Pentim II 16 4 16 4 - -

Pentium III 16 ? 16 ? 256 8

AMD K7 64 2 64 2 - -

PowerPC 620 32 8 32 8 - -

Sparc UltraSparc II 16 2 16 1 - -

Alpha 21164 8 1 8 1 96 ?

21264 64 2 64 2 - -

21364 64 2 64 2 1.5MB 6

MIPS R10000 32 2 32 2 - -

HP PA-7200 - - 64 2 - -

PA-7300 64 2 64 2 - -

PA-8500 1MB 4 0.5MB 4 - -

Table 1.1. Cache hierarchy configuration in current microprocessors
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• Reduce the penalty on a cache miss

• Reduce the number of misses

• Reduce the number of memory accesses

Amongall thesedifferenttechniques,someof themareimplementedjustby hardwaresothattheorig-

inal codeis notaffected,whereassomeotherproposalsarebasedoncodetransformations,with somepos-

sible support of the hardware. In the following subsectionswe review some of the most classical

techniques.Due to the hugenumberof proposedtechniques,this review will probablymisssometech-

niquesthatsomereadersmayconsidervery important.Othertechniquesmorerelatedto particularpropos-

als of this thesis are reviewed in the following chapters where the proposals are presented.

1.2.1. Hardware-Based Techniques

Hardwareapproachesareimplementedby modifying theorganizationof thecachecoreitself or by adding

new submoduleswith aspecialgoal.Themainadvantageof theseschemesis thatno requirementfrom the

instruction set nor from the user/compiler is required.

Higher associativity

As many studiespointout,oneof thereasonswhy memoryreferencesmissin cacheis dueto themapping

function.In a direct-mapped cache,eachblock that is broughtto thecachehasjust onepossiblelocation.

This meansthatif severalblocksthatareusedin thesameinterval of time aremappedontothesameloca-

tion, eachonewill alternatively replacetheother, provoking thencachemisses.Thebasicsolutionto this

problemis to increasethe associativity of the cache.Somedifferentalgorithmscanbe found in orderto

selectwhich oneof the multiple locationsis chosenif any block hasto be replaced(the mostcommon

algorithm is called LRU - Least Recently Used).

However, themaindrawbackof increasingtheassociativity of a basiccacheis that thecomplexity of

thecacheis increasedaswell. This factproducesanincrementin boththeaccesstime andtheareaof the

cache.Then,oneof the rolesof the designeris to choosethe besttrade-off amongtheseterms.Typical

organizations in modern high-performance processors are 2-way or 4-way set associative caches.

Larger block size

Anotherway to reducethemissrateis to increasetheblocksizeof thebasiccache.Largerblocksizestake

advantageof spatial locality and at the sametime reducecompulsorymisses.However, an important

remarkis thefactthatacacheis designedto exploit anaverageof thetemporalandspatialreuse.Notethat
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temporalreusedoesnot benefitfrom largerblock sizesbut from having morecacheblocks.With thesame

cachecapacity, a larger block meanslessnumberof blocks,andthen,we have hereanothertrade-off to

deal with. Typical cache blocks in modern microprocessors are 32 or 64 bytes.

Second-level caches

Themostcommonway to reducethepenaltyof a cachemissis to introduceoneor two levels of caches

betweenthefirst level cacheandthemainmemory. Thesecachescouldbeplacedinsidetheprocessorchip

or outside.An exampleof microprocessorswith several levelsof cacheis theAlpha 21364[40]. This pro-

cessorhasa 64KB L1 datacache,a 64KB L1 instructioncacheanda 1.5MB L2 unifiedsecondcacheon-

chip, and a can have an L3 cache off-chip.

Write buffers

In asimplecacheorganization,theCPUmustwait for storesif theblock to beupdatedis not in cache.The

simplepolicy is waiting until theblock is fetchedfrom thenext memorylevel andthenupdated.A com-

mon optimizationto reducestallsdueto storeoperationis the additionof a write buffer. A write buffer

consistson a small (typically fully-associative) buffer in which write requestsaretemporarystoreduntil

they arewritten to cacheor memory. It allows theCPUto wait just until therequesthasbeenwritten onto

the write buffer, reducingthenthe storelatency. Oncethe requestis in the write buffer, the cachetakes

profit of inactive cyclesto dealwith entriesin the buffer. On later cacheaccesses,both cacheandwrite

buffersaretried in parallel.If a block is in both thecacheandthewrite buffer, the requestis resolvedby

the latter, since it has the most recently updated block.

Victim caches

Thevictim cache’s [52] primarygoal is to remove conflict misses.Thebasicideais to have a small fully-

associative modulewhereblocksdiscardedfrom the main cacheareplaced.If a hit occursin the victim

cache,aswappingof blocksbetweenthevictim andthemaincacheis performed.A similarcachearchitec-

tureis thePA-7200assist cache [15]. Themanagementof thetwo modulesis somewhatdifferent,thesoft-

ware-controlledselective swappingbeing its most importantdifference.Memory instructionsin the PA-

7200have a flag that is setby thecompilerfor thoseinstructionsthatareexpectedto exhibit only spatial

reuse.Thedataaccessedby theseinstructionsarebroughtinto theassistcachebut arenot latermovedto

the main cache.
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Hardware prefetching

Dataprefetchingtechniquesbasicallyconsistof bringing memoryblocksto cachebeforethey arerefer-

enced.Basichardwareprefetchingtechniquesappearedpracticallyin conjunctionwith theearlierpropos-

als of cachesmemories.In fact, a conventionalcacheimplementsimplicitly a mechanismof hardware

prefetchingsinceon a miss,a memoryblock (insteadof just a singledata)is fetched,takingthenprofit of

the spatial locality.

Thefirst interestinghardwareprefetchingschemeswereproposedby A. J.Smith[94]. He proposeda

techniquescalledone block lookahead (OBL), that is, on anaccessto block i, theblock i+1 is prefetched,

takingthenprofit from spatiallocality. Healsoproposedalternativeapproachesto performingtheprefetch-

ing: (1) alwayson a cacheaccess,(2) on a cachemiss,and(3) taggedprefetch.This lastoptionworksas

follows: on a miss,thecurrentandnext blocksarefetched,andthis lastoneis taggedwith zero.Whenan

accessto a block with tagzerois performed,the tag is setto one,andtheprefetchto thenext line is per-

formed (in this case, if the new line is not in cache, it is tagged with zero).

With theyears,new hardwareprefetchingtechniqueshave beenproposed.Lookahead schemes try to

solve theproblemwhenthestrideof theaccessis large.However, maybethemostwell-known schemeare

the stream buffers. Stream buffers wereproposedby N. Jouppi[52]. They consistof FIFO queuesadded

betweentheL1 andL2 cacheswheresomeconsecutive memoryblocksarestored.On anaccessto mem-

ory, both the L1 cacheandthe topsof eachstream buffers aretried in parallel.If the accesshits on the

cache,the stream buffers remainuntouched.However, on a miss in cache,if the accesshits in a stream

buffer, thecorrespondingblock is movedto thecache.Then,thestream buffer prefetchesthenext block in

thenext level of thememoryhierarchy. Whenthereis missin boththeL1 cacheandthestream buffers, a

new stream buffer (if any) is reservedandthenext blocksareprefetched.As theprefetcheddataarestored

in buffersapartfrom theL1 cache,theschemeavoidsthepossiblepollution contributedby theprefetched

data.Nevertheless,stream buffers behavewell for smallstridesandwhenprogramsdonotdealat thesame

time with more structures (e.g., arrays or matrices) than availablestream buffers.

Non-blocking caches

On a typical memoryaccess,a misson thefirst level cacheprovokesall theCPUto stall until thedatais

returned to the target register, even if this data is not used immediately.

Non-blockingcacheswhereoriginally proposedby Kroft [60] andsincethen,somestudiesaboutthe

possibleimplementation[26] andits impactin the performance[16] have beenproposed.The main idea
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behinda non-blockingcache(alsoknown aslockup-freecache)is that instructionsthat missdo not stall

thesystem,that is, thememoryaccesswill beservedin parallelwith theexecutionof subsequentinstruc-

tions, including othermemoryaccesses,that do not needthe data.Moreover, a commonfeaturein non-

blocking caches is the possibility of dealing with multiple outstanding misses concurrently.

Non-blockingcachesarevery commonin currentprocessors.Examplesof processorsthat usethem

are the MIPS R1000, the PowerPC 620, the HP-PA8000 or the Alpha 21164.

1.2.2. Software-Based Techniques

Anotherfamily of techniquesarethoseperformedatcompiletime. In thiscase,thecompileris therespon-

sible for transforming the code with the goal of taking the maximum profit to the memory hierarchy.

High-level code transformations

High-level codetransformationsaim to restructuresomepartsof thecodein orderto increasethememory

performance.Thesetransformationscanbe performedin the high-level representationof the code.Each

techniqueis typically orientedto exploit a particularfeatureof the memoryaccesspatterns,andthen,a

typical optimization pass is composed of several of these transformations. Some of the more common are:

• Loop interchange: it consistsof exchangingthepositionof two loopsin a loopnestby moving oneof

theouterloop to innerpositions.This transformationcanimprove theperformancein many different

ways.Regardingthe improvementof the datalocality, it canhelp to reducethe strideof the access

(ideally to stride one), and then exploiting spatial locality in a cache block.

• Loop blocking (or tiling): this transformationhelpsto improve thelocality of accesseswhenit is lim-

ited by the cachecapacity. Blocking is accomplishedby modifying the orderin which the iteration

spaceis traversedsothatreusesof dataoccurat a shorterdistancein time.Thus,thestoragerequire-

ments to exploit the locality is relaxed.

• Loop unrolling: a loop is unrolledwhenthebodyof the loop is replicateda numberof timesu. The

benefitsof unrolling aremultiple: reductionof the loop overhead,incrementof the instructionlevel

parallelism,improvementof register, datacacheandTLB locality, etc.However, themaindisadvan-

tage on loop unrolling is the code expansion.

• Loop fusion: joining two differentloopsin onemayincreasetheregisterandcachelocality sincemany

timesit requireslessmemoryaccessesandcando a betterusageof the registers.This optimization

also allows to reduce loop overhead.
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• Variable padding: conflictswhenaccessingvariablesdependon theinitial addressesof eachvariable

andtheinitial addressesof eachof theirdimensions.By separatingtwo conflictingarraysin themem-

ory space(inter-arraypadding)or by addingsomedummyelementsto somearraydimensions(intra-

array padding), conflict misses can be reduced.

• Merging arrays: this techniquehelpsto reducethenumberof missesby improving spatiallocality. It

consistsof combiningdifferentmatrices(thatarereferencedwith thesamepattern)into asinglecom-

poundarray. Thebasicideais thata singlecacheblock will containthedesiredelements,avoiding

then the possible interferences among each other.

• Copying: this techniqueis basedon adjustingthedatalayout in cacheby copying arraytiles to tem-

porary arrays that exhibit better cache behavior.

Thesearejust a someexamplesof differenttechniquesthatcanbefoundin theliterature.All of them

canbevery beneficialis somecases,but at thesametime they candegradethegeneratedcodeif they are

not usedproperly. Thus,all of themrequireanin-depthanalysisof thecode,andin particularthe locality

properties.

Software prefetching

Softwareprefetchingis anotherdifferenttechniqueproposedto toleratememorylatency. Themainobjec-

tive of this technique,like hardwareprefetching,is to bring datato higherlevelsof thememoryhierarchy

(typically thefirst level cache)beforethesedataaredemandedby theprocessor. sothattheaccessescanbe

solved with shorter latency.

In softwareprefetching,thecompileris theresponsibleof, following certaincriteria,introducingspe-

cial prefetchinginstructionsin theusercode.Theseinstructionswill fetchthenecessarydatasothatlately,

whenthe actualload/storeinstructionis executed,the datacanbe found in cache.The basicideais that

thesekind of instructionwill not block theprocessoron a miss,andthentheseaccessescanbeserved in

parallelwith theexecutionof thefollowing instructions.Then,thebasichardwarerequirementsto support

software prefetchingare: (1) non-blockingcaches,and (2) a prefetchinstruction.Non-blockingcaches

were previously reviewed in this section. A prefetch instruction has three properties:

• It has no target register, since the data is fetched to cache.

• It doesnot block theprocessor, andthenit canbeoverlappedwith othermemoryreferencesor com-

putations (this is accomplished with the non-blocking cache).
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• It doesnot provoke exceptions,sincesoftwareprefetchingspeculateson certainmemoryaddresses

that may not be valid and provoke, for instance, page or protection faults.

The majority of currentmicroprocessorsincorporatein their instructionsetsoperationsto perform

softwareprefetching.For instance,the MIPS R10000[75] hasan instructioncalledPREF that canfetch

datato theL1 or theL2 caches,and,usinga specialhint, candeterminein which setof thecachethedata

hasto be allocated(since it is 2-way set-associative). The PowerPC620[19] offers instructionscalled

TOUCH that allow to pre-charge data in the cache.The Alpha 21164 [21] allows two modalitiesof

prefetchinginstructions:FETCH (normalprefetching)andFETCH_M (permitsmodificationsin someor

all blocksto beanticipated).Finally, theHP-PA8000[47] doesnotoffer any specialinstructionto prefetch

data,but it is doneby loadingdatain the registerzero.In casethis instructionprovokesa trap, thenit is

executed as aNOP.

An alternative to having specialprefetchinstructionsis using longer latenciesto schedulememory

operations.It consistsof schedulingselectedloadinstructionwith long latenciessothattheconsumercan

find thedataassoonasit is scheduledfor execution.In theliteraturethis secondalternative is calledbind-

ing prefetching (since the prefetchhas a target register), whereassoftware prefetchingusing prefetch

instructions is callednon-binding prefetching.

1.3. CONTRIBUTIONS OF THIS THESIS

In this thesisweproposesometechniquesto improvetheperformanceof thecacheby makinguseof aver-

satiledatalocality analysis.Themaindifferencebetweenthetechniquesproposedin thiswork andtherest

of proposalsis the explicit useof datalocality informationin orderto guidethe optimization.We claim

that the non-homogeneousmanagementof all memoryreferencesmay be key to performance.With this

aim, andwith thehelpof the locality information,eachmemoryinstructionwill behandledby the com-

piler in the particular way that best suits the underlying cache organization.

The main contributions of this thesis are listed below:

• Weproposeandmakeuseof anovel datalocality analysisthatis performedstaticallywith thehelpof

somesimple profiling information. In this analysis,a simple but efficient interferenceanalysisis

included, which makes the analysis more accurate.

• Theinformationobtainedby thelocality analysisis passedto thehardwarethroughsomespecialhints

in memoryinstructionsin order to managesomespecializedhardware addedto the simple cache

model.
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• We proposea novel explicit managementof multi-modulecachesusing the hints previously men-

tioned to decide, according to locality information, the best way of using these storage modules.

• Weproposeasoftwareprefetchingtechniqueto beusedin moduloscheduledloops.This techniqueis

shown to find the best trade-off between processor’s compute and stall time.

• Finally, weproposeanovel clusteredVLIW architecturewheretheL1 cacheis distributedamongthe

differentclusters.An algorithmto effectively scheduleinstructionsin this architectureis alsopro-

posed.

1.4. ORGANIZATION OF THIS THESIS

Thedifferentchaptersof this thesisareorganizedin thefollowing way. In Chapter2, thedatalocality ana-

lyzersusedin therestof thework arepresented.Wehaveusedin this thesistwo differentlocality analysis:

(i) SPLAT, and(ii) FastCME. Both analysishave in commonthat obtaintheir resultsstatically (that is,

without thenecessityof simulatingtheprogram)with theusageof somesimpleprofiling information.This

makesboth tools very fast,flexible andaccurate.The objective of usingtwo differentanalysisis alsoto

show that the techniques proposed in the rest of chapters are independent of the locality analysis itself.

In Chapter3, theSPLAT locality analysisis usedto obtaincharacterizethe locality of theSPECfp95

programs,which is laterusedasamotivationfor thedifferenttechniquesproposedin therestof thethesis.

In Chapter4, the first techniquethat make useof the locality analysisis presented.It consistsof a

multi-modulecachewith explicit managementbasedon hints that aresetby the compiler. The cacheis

composedof differentmodules,eachoneconfiguredto exploit a particulartypeof locality. Somehints in

thememoryinstructionsindicatethehardwarein which modulea new fetchedhasto beallocated.These

hints are set by the compiler using the data locality analysis.

In Chapter5, thesecondproposalthatmakesuseof thelocality analysisis described.Thischapterpre-

sentsa study of the interaction betweentwo different techniques:software pipelining and software

prefetching.The first one is a very effective techniqueproposedto scheduleloopswith the objective of

increasingtheILP. On theotherhand,softwareprefetching,aspreviously commented,is a techniqueused

to toleratememorylatency. After evaluatingdifferentalternatives,a novel algorithmto performsoftware

prefetchingin softwarepipelinedloopsis proposed.This algorithmtakesinto accountboth the shapeof

thedependencegraphandthelocality propertiesof thedifferentmemoryinstructionsusingthedatalocal-

ity analysis.
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In Chapter6, thelastapplicationof thelocality analysisis presented.In thischapterthelocality analy-

sis will be usedto scheduleinstructionsin a proposedclusteredVLIW architecture.After developingan

effective approachto schedulinginstructionsignoring memoryeffects in a clusteredarchitecturewith a

distributedregisterfile, analgorithmto scheduleinstructionsin anclusteredarchitecturewith adistributed

cacheis proposed.This algorithmwill usethe locality analysis(in this case,the FastCME) to selectin

which cluster is more beneficial to schedule a memory operation.

Finally, Chapter 7 summarizes the main conclusions of this thesis and outlines the future work.



2
DATA LOCALITY ANALYSIS

Data locality analysis is the process by means of which the intrinsic access pattern of memory

instructions and their behavior on a given memory hierarchy are studied. This kind of analysis is

commonly used to improve the performance of some locality optimizations performed by the com-

piler (such us blocking, loop interchange, etc.) as well as to study the locality properties of different

programs in order to propose new memory architectures. In this chapter we propose a data locality

analysis (called SPLAT) that will be used to support some of the techniques proposed in this thesis.

Moreover, we review a second data locality analysis (called FastCMEs) that, although not proposed

in this thesis, is used in one of the proposals.
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2.1. INTRODUCTION

Memory penaltiesareoneof the main reasonswhy computersperformanceis quite below peakperfor-

mancefor mostapplications.Understandingthe sourceof the problemsis the first steptowardsdevising

new hardware organizations and/or new code transformations to overcome them.

Theusermaybeinterestedin quantifyingthememorypenaltiesbut this informationis not enoughin

many cases.A moredetailedexplanationof thedifferentcausesfor thesepenaltiesis sometimesrequired

in order to investigate the appropriateoptimization.In order to tune a program,a programmermay be

interestedin knowing its performance,locatingthosecritical partswheremostof thememorypenaltiesare

produced,identifying which datastructuresareresponsiblefor mostof thecachemisses,etc.Examplesof

the type of information that the user may be interested in are listed below:

• Classifyingthedifferenttypesof cachemissesinto thethreecommonlyusedcategories(compulsory,

capacity, conflict)canbeimportantto chooseamongdifferenttypesof optimizations.Capacitymisses

couldbebestreducedby blocking[31][12]; conflict missesby padding[85]; andcompulsorymisses

by prefetching [9][76], among other possibilities.

• Identifyingthepartsof theprogramthatareresponsiblefor mostpenaltiesmayhelpto reducetheopti-

mization effort by focusing on such cases.

• Conflict missesarethedominanttypeof missesfor many numericalapplications.Identifying which

datastructuresareresponsiblefor theseconflictsmayberequiredin orderto eliminatethemby means

of padding [85] or copying [99], among other possibilities.

• Quantifyingtheintrinsic reuseof aprogramcanbeusedasanupperboundof thelocality thatcanbe

exploited.This is ausefulmeasurein orderto know how far from optimalthecurrentperformanceis.

• Evaluatingthememoryperformancefor a varietyof cachearchitecturesfor a setof applicationscan

beinterestingfor thedesignof anembeddedprocessorwith acachememorycustomizedfor apartic-

ular workload.

• Including somebits in the memoryinstructionsso that the compilercanprovide somehints to the

hardwareregardingthe locality exhibitedby eachmemoryinstructionis becominga commonprac-

tice.For instance,thePA7200hasabit in orderto identifymemoryinstructionswith onlyspatiallocal-

ity [15]. The PowerPCprovidesthe possibility of identifying instructionsthat do not exhibit much

locality andthus,to bypassthecachefor suchinstructions[97]. Having differentcachememoriesspe-

cializedin exploiting differenttypesof locality maybea promisingalternative to increasethecache
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performanceaswe will seein Chapter4. In all thesecases,thecompileris responsiblefor providing

theinformationthatis codifiedin thememoryinstructionandthatwill determineduringexecutionthe

proper action that the hardware must take.

The processof obtaininginformationof the locality characteristicsof a given programis known as

datalocality analysis. Thisanalysishasbeenperformedtraditionallyeitheratcompile-timeor at run-time.

Theformerapproachhasa low overheadbut it is relatively inaccuratesincethereis muchinformationthat

thecompilerdoesnot know. The latterusuallytakesthe form of a memoryhierarchy simulator, which is

quite accurate but very slow.

Differentapproachesto analyzethe datalocality of programsmay be found in the literature.These

approaches can be classified into three families of techniques:

• Memory simulation.

• Toolsbasedon hardware-countersprovidedby somemicroprocessors.Examplesof suchmicropro-

cessors are the Pentium Pro [81], the UltraSparc [103] or the MIPS R10000 [112].

• Static locality.

The following subsections review some previous work on data locality analysis.

2.1.1. Dynamic Analysis

Any datalocality analysismethodologyor tool canbeassessedthroughthreebasiccriteria:a)accuracy; b)

speed; andc) flexibility. By this later term we meantheamountof differentinformationthat theanalysis

may provide and the possibility to analyze different memory architectures.

Memorysimulationtechniquesarevery accurateandflexible in general,but they arevery slow. Tradi-

tionally memory simulatorsare basedon a trace-driven approach[57][34][74][98][32][67][35][5][72].

They causea significantslowdown in the executionof the analyzedprogram,which may be of several

ordersof magnitude.For instance,theslowdown exhibitedby all thesimulatorssurveyedin [105] is in the

range of 45-6250. This slowdown is obviously unaffordable for some real applications.

More recently, someinnovative methodsto performmemorysimulationhave beenproposedwith the

mainobjective of reducingtheexhibitedslowdown. Thebasicideabehindthesemethodsis to find special

caseswherea memoryreferencedoesnot affect thesimulatedmemorystate,andavoid or keepvery low

theoverheadin thesecases.For instance,if weareinterestedonly in themissratio, referencesthatcausea
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cachehit donot requireany processing.Thehit detectioncanbeperformedby software,asit is thecaseof

MemSpy [70], Fast-cache[64], andEmbra[110], or it canbedoneby hardware,asit is thecaseof WWT

[84]. The slowdown exhibited by thesetechniquesdependson the missratio. The lowestslowdown has

beenreportedfor WWT, which canbeaslow as1.4 for cacheswith very low missratios,but it is greater

than30or 40 for cachessmallerthan32KBytes[63]. Theotherthreetechniquesexhibit aslowdown of 2-

21,which is still quitehigh,especiallyif oneconsidersthatthelocality analysisusuallyis apartof aniter-

ative processin which multiple analysisand optimizationstepsare appliedrepeatedly. Besides,if the

requiredinformationis morethanjust themissratio (e.g.typeof reuseexhibitedor typeof misses),it may

requireto processmostor all memoryreferences,which will resultin a slowdown similar to thatof trace-

driven simulation approaches. In other words, these innovative methods trade-off flexibility for speed.

Toolsbasedon hardwarecounters(e.g.[3]) arefastandaccuratebut they lack of flexibility , sincethey

canonly analyzethememoryarchitectureof theactualmicroprocessor, andthey canjustprovidea limited

setof resultswhich dependon theparticularcountersprovidedby a particularmachine.Importantresults

like numberof conflict missesper eachpair of datastructurescannotbe obtainedwith currenthardware

counters, unless they are combined with a type of memory simulator.

2.1.2. Static Analysis

Staticanalysistechniques(e.g.[100][33]) arefastandflexible, but they canhave a low accuracy. This loss

of accuracy is causedby theunknown informationat compiletime.For instance,unknown loop boundsor

unknown initial addresses of data structures can be rather detrimental to the accuracy of the results.

Thestatic/dynamicapproachtakenby theSPLAT tool achievesthebesttrade-off amongthethreeper-

formancecriteria:accuracy, speedandflexibility . It is flexible sincethestaticanalysiscantrackmany dif-

ferentinformationamongmemoryreferencesanddifferentmemoryarchitecturescanbeconsidered.It is

accurate(for numericalprogramswhicharethetargetof thetool), sincetheinformationthatis unknown at

compiletime is providedby aprofiling. Finally, it is fastsincetheprofiling informationis quitesimpleand

it mustbegeneratedjust oncefor multiple analysisof thesameprogram.Theslowdown of thetool for the

analyzedbechmarksrangesfrom 0.0 to 0.11. As its main drawback,we shouldmentionthat the SPLAT

tool is not capable of monitoring multi-process workloads or the operating system kernel.

The main characteristics of the different types of tools are summarized in Table 2.1.

1. On a SuperSPARC/60 workstation
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2.2. BACKGROUND DEFINITIONS

Beforepresentingthe datalocality analysis,we first definesomememoryrelatedtermsthat areusedall

alongthis chapter. Thefirst definitionis relatedto thetermsreuse andlocality. Reuse(alsocalledintrinsic

reuse) is a measurethat is inherentin a givenprogramanddependson neithertheorderin which instruc-

tionsareexecutednor thecacheconfiguration.A reuseoccurswhenever a memoryinstructionreferences

thesamedataasa previous instruction(thatcaneitherbe thesameinstructionor anotherone).However,

when theseinstructionsareexecuted,somefactorsmay inhibit the exploitation of this reusein a given

memoryhierarchy level (for instance,thelimited storageof thecachememory).Theamountof reusethat

is actually exploited by a given memoryhierarchy level is referredto as locality of the programwith

respect to that memory level.

The differenttypesof reuse/localityusedin this chapteraredefinedin [111]. Temporalreuseoccurs

when the samememorylocation is accessedseveral times. It is called self-temporal or group-temporal

reuse/localitydependingon whetherit is accessedby thesamememoryinstructionor by differentinstruc-

tions respectively. On the otherhand,spatialreuseappearswhendifferentnearbymemorylocationsare

accessed.It is calledself-spatial or group-spatial reuse/localitydependingonwhetherit is accessedby the

samememoryinstructionor by differentinstructionsrespectively. Note that an instructionin a loop nest

can have a different type of reuse/locality for each loop on the nest

Finally, the last setof termsthat we usein this chapterrefersto the differenttypesof cachemisses.

Missesare traditionally classifiedinto threecategories [44]: compulsory, capacityand conflict misses.

Compulsory misses occurthefirst time a cacheblock is accessed.This typeof missesarealsocalledcold

startmisses.On theotherhand,bothcapacityandconflictmissescanbeconsideredasreplacementmisses

(in otherwords,thedatawasin cache,but whenit is actuallyaccessed,it is not).Capacitymisseshappen

becausethecachecannotcontainall theblocksneededduringtheexecutionof aprogram,whereasconflict

missesoccurin set-associative caches(includingdirect-mapped)whentoo many blocksmapto thesame

set.

Accuracy Speed Flexibility

Simulation Very high Slow-
Moderate

High-
Low

Hardware
counters

Very high Fast Low

Static
analysis

Moderate Fast High

Table 2.1. Summary of locality analysis tools
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For the locality analyzerpresentedin this chapter, the reuseof eachmemoryinstructionis computed

following themethodologydescribedin [111]. Theresultsarerepresentedasa vectorspacethat identifies

the loops in which reuseis found (eachdimensioncorrespondsto a loop). We distinguishbetweentwo

types of temporal and spatial reuse:

a) Unitary: thevectorhasonly oneelementdifferentfrom zero,that is, vector(0,...,0,ni,0,...,0)indi-

cates that this reference has reuse afterni iterations of loopi.

b) Combined: the vector has more than one elements different from zero, that is, vector

(0,...,0,ni,ni+1,...,nN) indicatesthatthis referencehasreuseafterni iterationsof loop i, ni+1 iterations

of loop i+1  and so on.

The result of this study is a list of the different reusesexhibited for eachreferenceindicating the

loop(s) for which each reuse holds.

2.3.STATIC AND PROFILED LOCALITY ANALYSIS

This sectiondescribestheproposedtool for datalocality analysis,which is calledSPLAT (Static-Profiled

dataLocality AnalysisTool). The locality analysisis performedthroughsomestatic informationcom-

puted by the compiler and some dynamic information obtained by a simple profiling (see Figure 2.1).

2.3.1. Compiler and Profiler Phases

Thestaticinformationis aimedat computingthedifferenttypesof missesthatwill happenduringtheexe-

cution.Compulsorymissesrequireto computetheintrinsic reuseof data.Capacitymissesrequirein addi-

tion to computethevolumeof datareferencedby eachloop iteration.Finally, conflictmissesareidentified

by computing interferences among data references. All this information is summarized in three files:

• Reusefile: for eachmemoryinstructionandeachloopin whichit is enclosed,it storesits typeof reuse

(unknown, none,self-temporal,self-spatial,group-temporalor group-spatial).If thereuseis spatialit

alsostoresthestride(i.e.,thedifferencebetweentheeffectiveaddressof two consecutiveexecutions).

If thereuseis group-temporalor groupspatial,it alsocontainsthedistance, which is definedasthe

number of iterations before the reuse takes place.

• Nestloopfile: thisfile is intendedto representtheloopstructureof theprogram.For eachloopit stores

its parent, which is defined as the loop that encloses it.
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• Interferencefile: for eachpair of memoryinstructions(with thesamenestinglevel andwithout any

otherloop in between)thathave thesamereferencepattern,it containstheir initial addressesif they

areknown at compile-time1. Two instructionshave thesamereferencepatternif their corresponding

variableshave thesamenumberof dimensions,thesizeof eachdimensionis thesamein bothrefer-

ences,andtheexpressionsthat representthe indexing functionsfor eachdimensiondiffer only in a

constant value.

Theprofiling consistsof just thenumberof executionsof eachbasicblock,which is a facility provided

by many currentcompilers(e.g.,theSunf77 compiler).Fromthis information,thenumberof executions

of eachmemoryinstructionandtheaveragenumberof iterationsof eachloop canbederived.Thesedata

are stored in thereference file and theiteration file respectively.

2.3.2. Locality Analyzer

This staticanddynamicinformation is usedasan input to the locality analyzer. The locality analysisis

divided into threephases:(i) reusephase,(ii) volumephase,and(iii) interferencephase.The first phase

identifiesall the reuseexhibited by the program.This information is the basisfor computingmisses.In

particular, compulsorymissesdo not requireany additionalanalysis:they consistof all referenceswithout

any reuse.Thevolumephaseis targetedto identify capacitymisses.Finally, the interferencephasecom-

putes the conflict misses.

1. In theSPECfp95benchmarksuite,about75%of all memoryreferenceshavetheir initial addressanddimensionsizesknown
at compile-time
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Reuse phase

In thisphase,thedifferenttypesof reuseexhibitedby eachreferencearequantified.Theinput to thisphase

is thereusefile thatis computedatcompile-timefollowing themethodologydescribedby Wolf andLamin

[111].

Thequantificationof thereuseis performedbasicallythroughthefunctionqreuse(i) showedin Fig-

ure 2.2, which is appliedto eachmemoryinstructionexceptfor thosewith unknown reuse1 (they corre-

spondto referencesoutsideloops,or inside loops but with non-linearexpressions,or expressionswith

variablesthatarenot loop indices).Thei parameterrepresentstheinstructionidentifier. Theanalysisstarts

from the innermostloop andfinisheswith the outermostloop that includesthe instructioni, which are

denoted byN-1 and 0 respectively.

1. Referenceswith unknownreuseareassumedto alwaysmissin cache.Theyrepresenta 15%of thetotal numberof memory
references in the SPECfp95.

Figure 2.2. Algorithm to quantify intrinsic reuse

function qreuse (int i) {
NNi[N] = 1;
STi[N] = SSi[N] = GTi[N] = GSi[N] = 0;
for j=N-1 to 0 do {
switch (SELFReuse[j]) {

case NONE:
NNi[j] = NGItj * NNi[j+1];
STi[j] = TItj * STi[j+1];
SSi[j] = TItj * SSi[j+1];

break;
case TEMPORAL:
NNi[j] = NNi[j+1];
STi[j] = (TItj - 1)* ATItj + STi[j+1];
SSi[j] = TItj * SSi[j+1];

break;
case SPATIAL:
factor = stride / blocksize;
NNi[j] = (factor * NGItj) * NNi[j+1];
STi[j] = TItj * STi[j+1];
SSi[j] =(factor * TItj) * SSi[j+1] +

((1-factor) * TItj) * ATItj;
break;

}
GTi[j] = NGItj * GTi[j+1];
GSi[j] = NGItj * GSi[j+1];
switch (GROUPReuse[j]) {

case NONE:
break;
case TEMPORAL:
GTi[j] += GItj * ATItj;

break;
case SPATIAL:
GSi[j] += GItj * ATItj;

break;
}
}

}

A

B

C
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Thefunctioncomputesfor eachparticularmemoryinstructionin a particularloop j thefollowing val-

ues:

• GItj: number of iterations with group reuse in loop j.

• NGItj: number of iterations without group reuse in loopj.

• TItj: total number of iterations of loop j.

• ATItj: number of executions per each iteration of loopj. It is computed as .

Thequantificationof eachtypeof reusefor eachloop in whichthereferenceis enclosedis storedin the

vectorsNN (no reuse),ST (self-temporal),SS (self-spatial),GT (group-temporal)andGS (group-spatial).For

instance,STi[j] representsthenumberof executionsof instructioni thatexhibit self-temporalreusecon-

sideringall the iterationsof loop j. Eachtypeof intrinsic reuseidentifiedby thecompileris quantifiedas

follows (see Figure 2.2):

• Section A: theinstructiondoesnothaveany kind of self reusein loop j. In thiscase,for eachiteration

of j withoutgroupreuse,thenumberof executionswithoutany reuseis thenumberof executionswith-

out reusein theloop j+1 (i.e.,NNi[j]=NGItj*NNi[j+1]). For eachiterationof loop j, thenumberof exe-

cutionswith self-temporalor self-spatialreuseis thenumberof executionswith suchreusein loop j+1

(i.e.,STi[j]=TItj*STi[j+1]).

• Section B: theinstructionhasself-temporalreusein loop j. In thiscase,thefirst iterationof loop j has

thesamenumberof no-reusesasthewholeexecutionof loop j+1 andtheexecutionscorresponding

to theremainingiterationsreusethedataof thefirst iteration.ThereforeNNi[j]=NNi[j+1].Self-tempo-

ral reuseis exploitedby all executionsexceptfor thefirst iteration.For this iteration,thenumberof

self-temporalreusescorrespondsto thatexhibitedby thenext innerloop.Finally, self-spatialreuseis

computed as in section A.

• Section C: theinstructionhasself-spatialreusein loop j. In thiscase,avaluecalledfactor thatrepre-

sentsthepercentageof referencesthataccessanew cacheblock is computed.Then,for eachiteration

of j withoutgroupreusethatreferencesanew cacheline, thenumberof executionswithoutany reuse

is thenumberof executionswithout reusein theloop j+1. Self-temporalreuseis computedasin sec-

tion A. Finally, self-spatialreuseis computedasfollows.For thoseiterationsof j suchthati references

anew block,thenumberof self-spatialreusesarethesameasthosein thenext innerloop;andfor the

remaining iterations, all the executions exhibit self-spatial reuse.

TIti
i j 1+=

N 1–

∏
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• Section D: groupreuseis computedasfollows (spatialandtemporalaretreatedin the sameway).

First, for thoseiterationsof j suchthat i doesnot exhibit groupreuse,thenumberof executionswith

groupreuseis the sameasthat of the next inner loop. For the remainingiterations,all executions

exhibit group reuse.

After computingthe function qreuse(i), NNi[0] containsthe numberof compulsory misses of

instructioni.

Volume phase

A factorthatmayinhibit theexploitationof reuseis thelimited storageof cachememory. In otherwords,

if theamountof differentdatablocksthatarereferencedbetweentwo consecutivereusesof thesameblock

is higherthanthecachecapacity(in block units),this reusecannotbeexploitedby anLRU fully-associa-

tive cache . The resulting cache miss is called acapacity miss.

This requiresto determinetheamountof datathatis usedby eachreferencein eachloop.Thisamount

of data depends on:

a) Type of reuse: calculated in the previous step.

b) Loop bounds: obtained from the profiling information.

In this phase,thevolume(in cacheblocks)thateachmemoryinstructioncontributesto the total vol-

umeof the loopsthatencloseit is computed.This canbeobtaineddirectly from thedatacomputedin the

previous phase.For a given loop j eachexecutionof instructioni that doesnot exhibit any type of reuse

will bringanew block into cache.Ontheotherhand,if aparticularexecutionof aninstructionhasany type

of reuse,it doesnot bring any additionaldatainto cache.Therefore,thevalueof NNi[j] expressesthevol-

ume contributed by the instructioni to the loopj.

Once the volume of every loop has been computed, some reuses are marked as non-exploitable:

• If aninstructionhasself reusein loop j (eithertemporalor spatial),but thevolumeof loop j is greater

thanthetotalnumberof cacheblocks,this reusewill likely notbeexploitedby aconventionalcache.

• If aninstructionhasgroupreuse(eithertemporalor spatial)andthevolumecorrespondingto distance

(seebeginningof section2) iterationsof theloopis greaterthanthetotalnumberof cacheblocks,this

reuse will likely not be exploited either.
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Then, the function qreuse is computedagain but without consideringthe reusesmarked as non-

exploitable.Thenew computedNNi[0], asin thepreviousphase,representsthecachemissesof instruction

i and the difference with its previous value is the number ofcapacity misses of instructioni.

Interference phase

Anotherfactorthat influencesthelocality is theeffect of interferences.Typically, interferencesor conflict

missesaredefinedasthosemissesthatoccurin adirect-mappedor n-wayset-associativecachebut not in a

fully-associativecache.Thiskind of missesmayhaveahigh impactfor cachememorieswith a low degree

of associativity, specially for direct-mapped caches.

Thebehavior of conflict missesis hardto predictbecauseit dependson variousdynamicfactorssuch

asmemoryaddresses,instructionorder, etc.Interferencesmaybeof two differenttypes:self-interferences

and cross-interferences. Self-interferencesoccur when different data blocks referencedby the same

instructionaremappedonto the samecachelocation,whereascross-interferencesoccuramongdifferent

memoryinstructions.The analysisproposedin this sectiondetectsa subsetof theseinterferences.The

interferenceanalysisis currently implementedfor direct-mappedcaches.Its extensionto set-associative

caches is left as future work.

For every arrayreferenceandevery loop for which it doesnot exhibit temporallocality, self-interfer-

ences are assumed to occur if the following condition is met:

cache_size_in_blocks < N * 2 stride_family_in_blocks

whereN representsthenumberof iterationsof theloop.Thestride_family_in_blocksis relatedto thestride

of thereferencein theanalyzedloop,expressedin cacheblockunits.If thestrideis notanintegralnumber

of blocks,thestrideis roundedup to thenext integer. Thestride_familydefinedby x is thesetof strides

σ•2 x with σ odd[42]. All thestridesbelongingto thesamefamily (e.g.,12=3•2 2 and20=5•2 2 belongto

family 2) have the same behavior from the point of view of self-interference.

For eachreferenceandeachloop,aself-conflictratio is computed,whichdenotesthepercentageof the

N iterationsof theloop thatproduceself-interferences.Theamountof reusesin outerloopsis reducedby

this factor due to self-interferences.

Regardingcross-interferences,we focuson what is usuallycalledping-ponginterferences,that is, a

pair of instructionsthat referencedifferentdatablocksthatmapontothesamecacheblock for every exe-

cution.Theseinterferenceswill inhibit completelytheexploitationof any reuseexhibitedby the interfer-
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ing instructions.This type of conflicts is analyzedfor eachpair of memory instructionsthat meet the

following conditions:

a) Variableswhosebaseaddressandsizeof everydimensionis staticallyknown.Thatis,variablesallo-

cated at compile-time (75% of all references for the SPECfp95).

b) Thedifferenceor “hole” betweentheaddresses(modulothecachesize)of thefirst elementrefer-

enced by both instructions is less than the cache block size.

holeAB= | RA modcache_size - RB modcache_size |

c) Both referencesfollow thesamepattern(seetheabove descriptionof thereferencefile for a defini-

tion of reference pattern).

For eachinstruction,a realvaluebetween0 and1 thatrepresentsthepercentage of interference(PI) is

defined.If PI is 0, this instructionis freeof interferenceswhereasif PI is 1, it meansthat this instruction

conflictswith someotherinstructionfor every iterationof the loop. Valuesin betweenrepresentdifferent

percentagesof interference,that is, thepercentageof total iterationsin which aninstructionmissesdueto

interferences. For two instructions A and B that interfere, this factor is computed as:

PIAB = (block_size - holeAB) / block_size

If an instruction conflicts with various other instructions, the maximumPI is considered.

Thereuseof aninstructioni in a loopthatis notmarkedasnon-exploitablein thevolumephasewill be

exploited only by the percentageof referencesthat are free of interferences,that is, for (1-PIi) * nrefsi,

where nrefsi is the number of executions of instructioni. The rest of references will produce a cache miss.

Then,the functionqreuse is computedagain but consideringjust the reusesthatarefreeof interfer-

ences.Thenew computedNNi[0], asin previousphases,representsthenumberof cachemissesof instruc-

tion i and the difference with its previous value is the number ofconflict misses.

2.3.3. Validation

TheSPLAT tool estimatesthedatalocality exhibitedby aprogramthroughsomeinformationcomputedat

compile-timeandsomesimpledynamicinformationobtainedby a profiler. The aim of this tool is a fast

study of the memorybehavior without the necessityof a costly memorysimulator. However, this tool

would beuselessif theobtainedresultswerefar from thereality. In this section,we validatetheaccuracy

of theproposedtool by comparingtheestimatedmissratioswith thoseobtainedthroughacachesimulator.
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Framework

Thestaticanalysisusedby theSPLAT tool hasbeenimplementedusingtheICTINEO compilingplatform

[4]. ICTINEO is a sourceto sourcetranslatorthatproducesa codein which eachsentencehasa semantics

very similar to that of currentmachineinstructions,but the high level informationneededfor the reuse

analysisis retained.Currently, ICTINEO assumesan infinite numberof registersandthus,the references

producedby spill codearenotconsideredin thiswork. Optimizationsusuallyappliedby currentcompilers

(suchascommonsubexpressionelimination,deadcoderemoval, invariants,etc.)areimplementedandare

appliedto theresultingcode.In this way, theresultingcodeis very similar to thecodegeneratedby a pro-

duction compiler.

For boththetool validationandtheapplicationexamplesof thenext section,we have usedsomepro-

gramsfrom theSPECfp95benchmarkssuite.Theseprogramsare:tomcatv, swim, su2cor, hydro2d, mgrid,

applu andturb3d.

A direct-mappedcachehasalwaysbeenconsidered.Theresultspresentedin thissectioncorrespondto

the profiling/execution of the whole execution of each benchmark using the test input data.

Error in the estimation

In orderto validatethetool, theresultsobtainedby simulationandtheresultsproducedby theSPLAT tool

havebeencompared.With thisgoal,wehavesimulatedadirect-mappedcachememoryof differentcapac-

ities (1KB, 8KB and64KBytes)andvariousblocksizes(16,32and64bytes).Figure2.3shows theresults

for threeprograms,two of themshowing a high variability in themissratio (tomcatv andswim), whereas

theotheronehasa missratio that is muchlessaffectedby thecacheparameters(hydro2d). Besides,tom-

catv andswim areprogramswith a high conflict missratio whereashydro2d hasa very low conflict miss

ratio.

Thefirst row of graphsshows boththesimulatedandestimatedcachemissratiosfor thevariouscon-

figurationsof cache.We canseein thesegraphsthattheresultsobtainedby theSPLAT tool arevery close

to the simulation results. That shows that the tool is accurate for a typical range of cache parameters.

Anotherway to measurethe accuracy of the estimationis to computethe averageabsoluteerror per

instruction.Thiserrorindicateshow far from thereality theestimationis for eachsingleinstruction.These

results are depicted in the second and third rows of graphs.
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The secondrow shows the averageerror per instruction,both static (S) anddynamic(D). The static

error is computed as:

avg_serror =

whereas the dynamic error is computed as:

avg_derror =

The black bar representsthe error for instructionswith reuseknown at compile time, whereasthe

whitebarcorrespondsto theerrorof all theinstructions.Thestaticerroris alwaysgreaterthanthedynamic

error for all programsandconfigurations.This meansthat theanalysisestimatesbetterthoseinstructions

morefrequentlyexecuted.Instructionswhosereuseis unknown have a high impacton thestaticerror. The
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Figure 2.3. Comparison of the tool results against simulation results
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impactof theseinstructionsis muchlower on thedynamicerror, sincenormally theseinstructionsareout

of loopsandrarelyexecuted.Theaverageerrorperdynamicinstructionis aroundor lessthan10%for all

programs and all the cache configurations.

Finally, onthethird row of graphstheestimatederrorfor aparticularconfiguration(in thiscase,a8KB

cachewith 32bytesblocks)is moredetailed.Thesegraphsdisplaythedistribution functionof thedynamic

error per instruction.It canbe seenthat a very large percentageof dynamicinstructionshave a very low

error. Theaccuracy of the tool is extremelyhigh for the hydro2d program:about90%of the instructions

have no error at all.

2.4. FAST CACHE MISS EQUATIONS

The seconddata locality analysisusedin this thesisis basedon the CacheMiss Equations(CMEs).

AlthoughtheSPLAT tool previously presentedis fastandaccurateenoughfor many programs,it still has

somelimitations.Thetwo main limitationsarethat (i) it canonly beusedto studydirect-mappedcaches,

and (ii) just a subset of all the conflict misses are captured (in particular, only ping-pong interferences).

CMEsallow usto obtainananalyticalandprecisedescriptionof thebehavior of any cachememoryfor

loop-orientedcodes.Unfortunately, adirectsolutionsof theCMEsis computationallyintractabledueto its

NP-hardnature.In this sectionwefirst review thetheorybehindtheCMEsandthenwe commenta practi-

cal implementationthatmakespossibleto obtaina very accurateandfastlocality tool (thatwe call FastC-

MEs).

2.4.1. Analytical Model

CMEs wereoriginally proposedby Ghoshet al. [33] asan analyticalmodel to describethe behavior of

cachememoryfor asetof memoryinstructions.Thebasicideais to generate,for eachmemoryinstruction,

asetof constraints(representedthroughasetof equalitiesandinequalities)definedover theiterationspace

of the loop nestin which instructionsareenclosed.Theseconstraintsrepresent,for eachiterationpoint in

the iteration space, whether the instruction will hit in a given cache or not.

Theequationsaredefinedin baseof thereusevectors[111], asusedin theSPLAT. Eachequationrep-

resentsa convex polyhedronin Rn, wheren dependson the type of equation.For eachreusevector, two

kinds of equations are generated:

• Compulsoryequations:they representthefirst time a memoryline is accessed.Missesdueto these

equations will be counted as compulsory misses.
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• Replacementequations:givena reference,theseequationsrepresenttheinterferenceswith any other

reference.1

Therearetwo typesof compulsoryequations:(i) cold missequations,and(ii) cold missbounds.The

formerarethoseequationsthatdescribetheiterationpointswherea reusecannotbeexploitedbecauseit is

from aniterationpoint outsidetheiterationspace.Thelatterrepresenttheiterationpointswherethereuse

cannot hold since the reference reuses data that is mapped onto a different cache line.

2.4.2. Implementation

The integer pointsinsideeachconvex polyhedronrepresentthe potentialcachemisses,andthena direct

resolutionof theCMEs is basedon countingthesepoints.Thereareseveralapproachesto computethese

points.An analyticalmethodwould consistof countingthenumberof pointsinsidethepolyhedragener-

atedby theequations.However, this is anNP-hardproblemmakingtheprobleminfeasibledueto its huge

computingtime.A secondmethodto solve theproblemcouldbeto traversetheiterationspace,that is, all

iteration points are tested independently.

In this thesiswehaveusedananalyzerthatusessomeparticulartechniquesto acceleratethesolvingof

theCMEs.Theobtainedtool is basedon thesecondmethodologypreviouslyproposed(traversingtheiter-

ations space) and the addition of two optimizations that make the problem feasible:

• Removing empty polyhedra

• Sampling

Thefirst optimization(removing emptypolyhedra)wasproposedby Bermudoet al. [6] andis based

on mathematicaltechniques.Thebasicideais to reducethenumberof equationsof thesystemby remov-

ing thoseequationsthat form emptypolyhedra.This is possibleusingtheknowledgethat thesolutionsof

our system(pointsof theiterationspacewherethereusecannotbeexploited)have to beintegersolutions.

Then,apolyhedronthatonly containsrealsolutionsarediscarded.Thissimplificationonthecomplexity of

the system result in speeds-up of more than one order of magnitude.

The secondoptimization(sampling)is basedon statisticaltechniques.As we have mentioned,each

iterationpointcanbetestedindependentlyof theothers.Basedon thisproperty, asmallsubsetof theitera-

tion spacecouldbeanalyzed,reducingthenthecomputationcost.This optimization(proposedby Veraet

1.Comparedto SPLAT, theCMEscannotdistinguishbetweenreplacementsdueto thelimited capacityof thecache(capacitymisses)or due
to the mapping functions (conflict misses).
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al. [107]) usesrandomsamplingin orderto selectthe iterationpointsto study, andthenthe missratio is

computedfrom them.The useof samplingalongwith inferencetheoryallows the userto setthe desired

confidence level and the width of the result interval.

Theresultis a very fastandaccuratetool thatcanbeusedto studythe locality behavior of any cache

for loop-orientedcodes.Theexperimentsshown theauthorsfoundthat,usinga confidenceof 95%andan

interval width of 0.05,theabsoluteerror in themissratio is smallerthan0.2 in 65%of theloopsfrom the

SPECfp95andnever biggerthat 1.0. Moreover, the analysistime requiredfor eachprogramis usuallya

few seconds and never more than 2.3 minutes.

2.5. CHAPTER SUMMARY

In this chapterwe have presentedtwo datalocality analysistechniquesthat arethe basefor the different

applications and techniques proposed in this thesis.

Thefirst analysis,calledSPLAT, is proposedin this thesis.It is dividedinto two steps.Thefirst is per-

formedjust onceandconsistsof a basicanalysisof somecharacteristicsof the programanda profiling

pass(basically, countingnumberof executionsof basicblocks).This first passproducessomeinformation

thatfeedsthelocality analyzer. This performstwo typical phasesthatarecommonto otheranalyzers,plus

an interferencephasethatcancapturea subsetof theconflict misses.Theoverheadof this mechanismis

very low sincemostof theanalysisis performedat compile-timeandtherequiredprofiling supportis just

a basicblock executioncount.Besides,we show in this chapterthat the proposedmechanismis highly

accuratefor numericcodesby comparingit with techniquesbasedon simulation.SPLAT will be usedto

studysomelocality characteristicsof theSPECfp95benchmarksin Chapter3. Moreover, it is usedto sup-

port the techniques proposed in Chapters 4 and 5.

Thesecondanalysisis calledFast CMEs (CacheMiss Equations)consistsof a moreaccurateanalysis

tool that canbeusedto studythebehavior of any set-associative cache.Although this secondanalysisis

not proposed in this thesis, it will be used in Chapter 6.

An importantremarkis thatalthoughtwo differentanalysishavebeenusedin this thesis,theproposed

techniques proposed in the following chapters are independent of the locality analysis itself.
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3
LOCALITY ANALYSIS OF SPECFP95

An utility of a data locality analysisis the study of the locality behavior of differ ent programs.This

study canhelp researchersto find problemsrelatedto memory and devisewaysto handle them. This

chapter presentsdiffer ents statistics about the data locality exhibited by the SPECfp95. The tools

proposedin Chapter 2 have beenused for this study. In this chapter we presentstudies ranging

fr om the intrinsic reuseof a program (ignoring cachesizeand associativity) to the actual locality of a

program when a real cacheconfiguration is considered. This chapter presentsnot only quantitati ve

results,but also qualitati ve numbers that show the reasonwhy a particular reusecannot be finally

exploited in a cache. Quantifying differ ent types of localities as well as differ ent types of cache

missesis useful to identify what technique is appropriate to solve (or at least,aliviate) the problem.

This kind of study is a previous step before thinking in new schemesto impr ove memory perfor-

mance, and is the motivation for the different techniques proposed in the following chapters.
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3.1. INTRODUCTION

Oneof themaingoalsof thethesisis to show how usefula datalocality analysiscanbein a compiler. In

thekernelof thisdocumentweshow how thiskind of analysiscanbeusedto managenew cacheorganiza-

tions aswell as to guide the schedulingof memoryinstructionsin order to reducethe impactof cache

misses.

A convenientstepbeforeproposingnew schemesto improve memorybehavior (and, in particular,

cache memory) is to study and analyze where the hot spots are and how these problems can be attacked.

This canbedonethrougha datalocality analysis.Thus,thefirst useof a datalocality analysiswill be

thestudyof thelocality exhibitedby a setof programsin orderto motivateour proposals.In theliterature

we canfind otherlocality toolsaswell aspapersthat reportsthekind of studiespresentedin this chapter

(evenfor thesamesetof programs).Many of theseworksarebasedof thesimulationof theprograms,and

thenobtaininga wide variety of results(by modifying, for instance,differentcacheparameters)is very

time costly (as reported in Chapter 2). On the other hand, SPLAT has a low overhead and high accuracy.

3.2. DATA LOCALITY IN THE SPECFP95

This sectionpresentsa quantitative analysisof thelocality exhibitedby theSPECfp95programs.We pro-

vide statisticsfor seven out of the ten benchmarks.Eachprogramhasbeencompiledwith full optimiza-

tions and the reported statistics refer to the whole run of them.

We are interestedin all types of reuseexhibited by eachsingle memory reference.Considerfor

instance the following code:

DO J=1,M
DO I=1,N
...A(I)...
...A(I+1)...
...A(I)...
END DO

END DO

Our analysiswill concludethat for loop I, thefirst andthird referencesexhibit group-temporalreuse.

Group-temporalreuseis alsoexhibitedby thesecondandfirst references(in thiscasethereuseis afterone

iteration).Besides,eachreferenceexhibits self-spatialreuse.Now, consideringloop J, we have that the

three referencesexhibit self temporalreuseand any pair of referencesexhibits group-temporalreuse.

Assumingthattheinterferenceanalysisdoesnotdetectany interferenceandthatthesizeof vectorA is not

higher than the cachecapacity, the analysiswill concludethat all the reusecanbe exploited (the reuse
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acrossloop J requiresa largervolumethatthereuseacrossloop I, but it is still into thelimits of thecache

size).

Consideringonly thelasttypeof reusein programorderasproposedin [72], theanalysiswoulddetect

only a subsetof the different reuses1. In particular, it would observe just group spatialreusefor every

memoryreference.This could suggestthat for the above codeit is not worthwhile to exploit temporal

locality, whereas this is not the case.

3.2.1. Intrinsic Reuse

The intrinsic reuseexhibited by a programcan be usedas a lower bound of the memory bandwidth

requiredby a given program.That is, every referencethat doesnot exhibit any type of reusewill surely

require a memory reference to the next level of the memory hierarchy.

Memoryreusecanbeclassifiedinto four categories:self-temporal(ST), self-spatial(SS), group-tempo-

ral (GT) andgroup-spatial(GS). The temporalreuseis independentof theparticularcachearchitectureof

theunderlyinghardware.Ontheotherhand,spatialreusejustdependson thecacheline size,in additionto

the programcharacteristics.Regardinggroupreuse,currentlythe tool canonly analyzethe reuseamong

memory referencesthat are in the sameloop, which can result in an underestimationof group reuse.

Extending the tool to identify reuse among references in different loops is left for future work.

Figure3.4quantifiestheamountof reuseof theSPECfp95for someof theprogramsandtheaverage.

Thereuseis quantifiedfor acacheline sizerangingfrom 8 to 128bytes.In additionto thepreviouslymen-

tioned four categoriesof reuse,the graphsincludea fifth category that correspondsto thosereferences

without any typeof reuse(NN) anda sixth onethatcorrespondsto thosereferencesfor which thetool has

not beenableto detectits type of reuse(UN). Notice that a given referencemay exhibit several typesof

reuse and thus, the different bars may add up to more than 100%.

On averagefor all programs,it canbeseenthatself-spatialreuseis themostfrequenttypeof reuse(it

is exhibitedby 56%of all references).Self-temporalreuseis alsosignificant(33%of references).Group-

temporalis thenext in importance(20%of references)andfinally, group-spatialis the leastcommonone

(7% of references).Noticealsothatgroup-spatialreusestabilizesfor a 32-byteline sizewhereasself-spa-

tial reuse provides diminishing returns for a line size greater that 128 bytes.

1. In [72], what we call reuse is referred as to locality. However, to be consistent with the rest of this paper, we have changed
their terminology according to our definition.
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Figure 3.4. Intrinsic reuse
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Theresultsfor individualprogramsareverydifferent,andthedominanttype/sof reusedependson the

concrete benchmark:

• Tomcatv: thedominanttypesof reusearebothself-temporalandself-spatial.Group-temporalreuseis

alsoimportant.In general,theintrinsicreusefor thisprogramis veryhigh(notethattheNN baris very

small, even for blocks of 8 bytes).

• Swim: for this programthe dominanttypesof reusearegroup-temporalandself-spatial.The other

reuses are very low for all block sizes.

• Su2cor: this benchmarkpresentsa high degreeof temporalreuse,mainly self-temporal.It is alsoa

program with a high intrinsic reuse.

• Hydro2d: thedominanttypeof reusefor thisprogramis self-spatial,followedby temporalreuse(both

self and group). Finally, group-spatial reuse is almost negligible.

• Mgrid: for thisprogramthetemporalreuseis low, bothself andgroup.Likewise,group-spatialreuse

is almostnull. Thedominanttypeof reuseis self-spatial.Notethattheno-reusebaris very sensitive

to the block size.

• Applu: themostrelevantaspectof thisprogramregardingits reuseis thelow impactof theblocksize.

Notethat the incrementof spatialreuseor thedecrementof no-reuseis almostnegligible for blocks

biggerthan8 bytes.Besides,this is theprogramwith the lowestamountof reuse,asdenotedby the

relatively highNN bar.

• Turb3d: in generalfor this programthereuseis poor, mainly group-temporalandself-spatialreuse.

However, notethatthepercentageonunknown referencesis veryhigh(about60%),sotheresultsmay

not be very accurate for the overall program.

Severalconclusionscanbedrawn from Figure3.4.First,we canseethatin average,self-temporaland

self-spatialreusearethemostfrequentandnoneof themis dominant.Grouptemporalreuseis alsoquite

commonwhereasgroupspatialreuseis relatively infrequent.As expected,this resultsdiffer from those

presentedin [72], whereit wasreportedfor instancethatself-temporalreusewastheleastfrequenttypeof

reuse1. Thedominanttypeof reusevariessignificantlyfor thedifferentbenchmarks.Self-temporalis dom-

inant for tomcatv, applu and turb3d. Self-temporalandgroup-temporalarethe most frequentfor mgrid.

Self-spatialis dominantfor swim, su2cor andhydro2d. Groupspatialis alwaysthe leastcommontypeof

reuse.Noticealsothat in average,thelocality analysiscandeterminethereuseexhibitedby about90%of

1. Another reason for the discrepancy is the different benchmark suite.
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the executedinstructions.Finally, it canbe observed that almostall the referencesexhibit sometype of

reuse.

Figure3.5shows thepercentageof executedinstructionsthatexhibit justonetypeof reuse,eitherspa-

tial or temporal.From now on, the figurespresentjust averagestatisticsover the differentbenchmarks.

Fromthis graphit canbeconcludedthat temporalreuseis themostcommontypeof singlereuse,which

maysuggestthe inclusionof a modulespecializedto exploit temporallocality asit is thecaseof thedual

data cache.

3.2.2. Quantifying Types of Misses

Quantifyingthedifferenttypesof missesmaybeusefulto decidetheparticularoptimizationthatmaybest

improve theperformanceof a give program.Missesaretraditionallyclassifiedinto threecategories:com-

pulsory, capacityandconflict.Eachtypeof missescanbebestreducedwith differenttechniquesasunder-

lined in the introduction.Currently the tool can estimateconflict missesjust for direct-mappedcaches

although the extension to set-associative caches is straightforward.

Figure3.6 shows themissratio of theprogramsstudiedin this paperfor a cachesizerangingfrom 1

KB to 64 KB anda line sizeof 16,32 and64 bytes.For eachconfiguration,thetotal missratio is divided

into the threedifferent categories.The y-axis representsthe percentageof the total executedmemory

instructionswhosereuseis known (thefirst columnfor eachgraphicin Figure3.4- UN column- represents

the dynamic percentage of references with unknown reuse).

Figure 3.5. Percentage of instructions with just one type of reuse: no reuse (NR), temporal (TR) or spatial
(SR).
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For each program, the source of misses may be quite different:
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Figure 3.6. Different kinds of cache misses
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• Tomcatv: this programhasa very largenumberof conflict misses,especiallyfor cachessmallerthan

16KB. Increasingthecachesizereducescacheconflictsalthoughothertechniqueslikepaddingcould

bemorecost-effective, aswe will show in thenext section.Capacitymissesarealsosignificantand

hardlyvaryfor theconsideredrangeof cachecapacity. Thisis becausetheworkingsetof thisprogram

is higherthan64KB. Finally, notethatthemosteffective line sizedependsonthecachecapacity. For

verysmallcaches,theline sizehasasmalleffect.For intermediatecaches,smallerlinesbehavebetter

sincethey significantlyreducethenumberof conflict misses,dueto the largernumberof lines.For

largecaches,thebestperformanceis obtainedby thelargestline size.This is dueto thereductionin

capacitymisses.Notethat increasingtheline sizemayreducecapacitymissesalthoughit mayseem

counterintuitive.This mayhappenif therearereferencesthatexhibit bothspatialandtemporalreuse

but temporalreusecannotbeexploiteddueto capacityconstraints.In thissituation,increasingtheline

sizewill resultin abetterexploitationof spatiallocality andthus,capacitymisseswill bereduced.For

instance, assume the following code:

do i=1,8
do j=1,1024
... A[j] ...

enddo
enddo

In thisexamplethereferenceA[j] hasspatialreusein loop j andtemporalreusein loop i. If thecache

capacityis 512elements,thetemporalreusecannotbeexploited.Therefore,if the line sizeis 4 ele-

ments,this codewill produce256 (1024/4)compulsorymisses(for thefirst iterationof loop i) and

1792((1024/4)∗7) capacitymisses(therestof iterationsof loop i). However, if theline sizeis 8 ele-

ments, there will be 128 (1024/8) compulsory misses and 896 ((1024/8)∗7) capacity misses.

• Swim: the main sourceof missesfor this program is conflict misses.For cachesize smaller

than16Kbytes,missesdueto interferencesrepresentthemajority of misses.For a cacheof 16Kbytes

it is alsothedominantsourceof missesfor block sizesof 32 and64 bytes.Finally, for cacheswith a

sizeof 32 or 64Kbytes,compulsorymissesarethe mostimportantcauseof miss.For instance,for

caches of 64Kbytes, compulsory misses are the only source of misses.

Note that for this program the effect of capacity misses is almost negligible.

• Su2cor: thelow impactof bothcacheandblock sizesin thetotal numberof missesfor this program

is remarkable.Thebehavior for all cachesizesis practicallyconstant,andtheimpactof block sizeis

lessthan5%.It canbeobservedthatthemajorpartof missesaredueto capacitymisses,but thework-

ing set of the program is bigger than 64Kbytes, since capacity misses up to that size do not decrease.
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• Hydro2d: for thisprogramall theworkingsetcanbestoredin averysmallcacheandthus,increasing

cachecapacityhardlyimprovesperformance.Increasingtheline sizefavorstheexploitationof spatial

locality and reduces the number of compulsory misses.

• Mgrid: ashydro2d, for thisprogramthemaincauseof missesarecompulsorymisses.If thecachehas

just 16 blocks(that is, a 1Kbytecachewith a block sizeof 64 bytes),thereis no spaceto keepmost

of the data in cache, so the number of capacity misses is very high.

• Applu: assu2cor, the number of misses for this benchmark is almost constant for all configurations.

• Turb3d: this programshows a high missratio.However, notethattheresultsarepresentedfor refer-

enceswhosereusecould be studied,andfor this programthe percentageof unknown referencesis

almost60%(seeFigure3.4).For this reason,theresultsof thisgraphmaynotberepresentativeof the

overall program.

Thereuseinformationtogetherwith thequantificationof thedifferenttypesof reusecanbeusedby the

compiler to set appropriatelythe hints provided by memoryinstructionsin somemicroprocessors.For

instance,if thecachehasa bypasscapability, thosereferenceswithout any reusecouldbemarkedasnon-

cacheable.Besides,if two different memoryinstructionsfrequentlycollide, one of them could also be

marked asnon-cacheable.In this way, the locality exhibited by the other instructioncould be exploited,

which is betterthannotexploiting any of both.For instance,in next Chapterwill bebeenreportedthatthis

typeof analysiswhenappliedto driveaselectivecachingpolicy mayprovideabout25%reductionin aver-

age memory access time and 65% reduction in next level memory bandwidth.

Figure3.7shows thepercentageof temporalreusethatcanbeexploitedwith a fully-associative cache

that is usedonly for referencesthatexhibit just temporalreuse(herea fully-associative cacheis modelled

Figure 3.7. Exploiting temporal reuse only
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by justnotconsideringcacheinterferences).In thiscase,theline sizeis 8 bytes(onedoubleprecisionfloat)

sincea larger line doesnot make sensebecausespatialreuseis not present.Fromthis figurewe cancon-

cludethata 16 line (128byte)storageis enoughto exploit mostof thesingletemporalreuse.As we have

seenin Figure3.5,thesereferencesrepresentabout35%of thetotal.Thus,this will bethesizeof thetem-

poral module of the dual data cache for the experiments of the next chapter.

As pointedout above, a given instructioncanhave several typesof reuse.Given a particularcache

organization,wedefinethepercentageof reusethatis exploitedasthenumberof executedinstructionsthat

canexploit at leastonetypeof reusedividedby thenumberof executedinstructionsthathave at leastone

type of reuse.

Figure3.8shows thepercentageof reusethatcanbeexploitedfor a varyingcachesizewith a line size

rangingfrom 8 to 64 bytesandneglectingtheeffect of cross-interferences.It canbeseenthata cachesize

of about1 Kbyte with linesgreaterthan8 bytescancapturesomereusefor practicallyall theinstructions

of the analyzed programs with some reuse

Sincealmostall thereferencesexhibit sometypeof reuse(asit hasbeenshown in Figure3.5)andthis

reusecanbeexploitedwith a relatively smallvolume,a locality analysisthatdid not includea interference

analysiswould incorrectlyconcludethat it is worthwhileto cachealmostall memoryreferences.Theper-

centageof reusethatwould beexploitedby this approachwould besignificantlylower thanexpecteddue

to interferences.This is shown in Figure3.9 for a varyingcachecapacityandline size.For instance,com-

paring the graphsof Figure3.8 andFigure3.9 for a 8 Kbytescapacityand32-byteline size, it canbe

observedthatwithout interferencesnearly100%of thereusecanbeexploitedbut only 80%of it is actually

Figure 3.8. Percentage of reuse exploited with a varying cache size without interferences.
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exploitedwhenconsideringtheeffect of interferences.For someprogramswith a high conflict missratio,

the effect of interferencesis even muchmorenoticeable.This is the casefor instanceof tomcatv. Figure

3.10comparesthepercentageof reusethatcanbeexploitedwith a varyingcachesizeanda line sizeof 32

bytes.Whereas1 Kbyte is enoughto exploit all thereuseif therewerenot interferences,whenconsidering

interferences the reuse exploited with a 8 Kbyte cache is just 28%.

3.2.3. Conflicting Data Structures

For thoseprogramswith a high percentageof conflict misses,it maybeinterestingto identify which data

structuresareresponsiblefor suchconflicts.Techniqueslike paddingor copying canbe thenappliedto

such data structures to try to reduce these conflicts.

Figure 3.9. Percentage of reuse exploited with a varying cache size considering interferences.
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Figure 3.10. Percentage of reuse exploited with a varying cache size with/without interferences
for tomcatv.
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For instance,Figure3.11showsthepercentageof conflictsbetweenany pairof datastructures,ordered

from highestto lowest,for thetomcatv andtheswim benchmarks,for a8 KB direct-mappedcachewith 32

bytesperline. For the tomcatv program,it canbeseenthatdatastructuresX andY areresponsiblefor the

majorityof conflictmisses.In addition,in Figure3.11wecanobservethatmostmissesaredueto conflicts,

which suggestthatpaddingmaybeaneffective techniqueto reducememorypenalties.For instance,Fig-

ure3.12shows theresultingconflictmissratioof tomcatv afterinsertinganumberof emptybytesbetween

thetwo datastructures.It canbeseenthat just with this naive paddingscheme,conflict missesaresignifi-

cantly decreased, from 39.5% to 27.2%.

For theswim program, conflict misses are more distributed among a larger set of data structures.
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3.2.4. Critical Code Sections

Mostof thememorypenaltiesarein many casescausedby averysmallpercentageof thecode.Identifying

thesemostpenalizingsectionsmayhelp theprogrammer/compilerto focustheeffort on suchpartsof the

code.

For instance,shows thepercentageof cachemisses(over thetotal numberof misses)thatarecaused

by every innermostloop, for two applications.Besides,for eachloop, its correspondingpercentageof

missesis split into the threedifferenttypes:compulsory, capacityandconflict. An 8 KB, direct-mapped

cache with 32 bytes per line is assumed.

Notethat in bothcasesthevastmajority of missesaredueto a very few sectionsof code:threeinner-

mostloopsfor swim andsix innermostloopsfor turb3d. For swim, mostof themissesaredueto conflicts

whereas inturb3d, both capacity and compulsory misses have a significant contribution.

3.3. CHAPTER SUMMARY

In this chapterwehavepresentedadetailedanalysisof thelocality exhibitedby theSPECfp95benchmark

suite.Thisdetailedevaluationhasbeenperformedby meansof anew datalocality analysistool thatis very

fast,which allows to obtainstatisticsfor the whole executionof real programsandmany differentcache

configurations with a negligible slowdown.
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We have shown thatdifferentprogramsexhibit very differentlocality characteristics.Detailedevalua-

tion of thelocality exhibitedby aprogrammaythenbeessentialto choosethebestapproachto betakento

improve it.

Fully-automaticoptimizationtools have proved so far insufficient dueto the variety of differentsce-

nariosthatthey shouldcopewith. We thenbelieve thatthebestapproachtodaytowardsmemoryoptimiza-

tion is by meansof aniterative (andinteractive)processin whichrepetitiveanalysisandoptimizationsteps

areinterleaved until the final result is acceptable.Therefore,the speedof the analysistool aswell asthe

rangeof informationthat it canprovide arecritical. We have shown that the typeof analysispresentedin

this paper can be very useful for such an approach.



4
LOCALITY SENSITIVE CACHES

Cachememoriesare often inefficiently managed,which resultsin significant memory penalties.An

important reasonfor this poor performance is the homogeneousmanagementof all memory refer-

encesand the inflexibility of the cachearchitecture itself, even though differ ent memory references

may exhibit a very differ ent locality. Most memory referencesin numerical codescorrespondto

array referenceswhoseindices are affine functions of surrounding loop indices.Thesearray refer-

encesfollow a regular predictablememory pattern that canbeanalyzedat compile time. This analy-

siscan provide valuable information lik e the locality exhibited by eachreference,which can be used

to implement a more intelligent cachingstrategy. In this chapter, wepresentan evolution of differ ent

cacheorganizationsthat we call locality sensitive caches.This evolution runs fr om a cachewith the

capacity of bypassingsomedata dir ectly to the CPU to a novel data cachearchitecture composedof

differ ent modules,each module exploiting a particular type of locality. The information of which

module eachfetcheddata is placedon is passedto the hardware by meansof a hint encodedin the

memory instructions. This hint is set based on the locality analysis detailed in Chapter 2.
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4.1. INTRODUCTION

Dueto thegreatimpactthatcacheperformancehason theoverall processorperformance,currentproces-

sorsassigna large portion of its areato implementa first-level cache(typically split into instructionand

datacaches).In this way, on-chipcachesin modernprocessorsoccupy between1/3 and3/4 of the total

chip area.However, the performanceobtainedby thesecachescanstill be insufficient for someapplica-

tions, mainly numericapplicationsthat requirelarge working sets.For instance,Cvetanovic and Bhan-

darkarreportedthattheAlpha21164is stalledabout50%of thetimefor theSPECfp92andthemajorityof

these stalls are due to memory related issues [14].

Increasingthecachecapacity/associativity mayhelpbut is notnecessarilythemostcost-effectivesolu-

tion becauseboth capacityandassociativity may increasethe cycle time. Furthermore,thereareseveral

studies(see[45][8] for instance)thatshow that thecachememorymakesan inefficient useof its storage

capability. We claim thatthis inefficiency comesfrom theuniform managementof all memoryreferences.

Conventional cachestry to exploit spatial reuseby using a block (also called line) as a transferunit

betweenthedifferentlevelsof thehierarchy, andseekto exploit temporalreuseby keepingsomerecently

accessedblocksin thecachememory. All memoryreferencesarehandledin thesameway, thatis, they use

thesamefetch,placement,replacementandwrite policies[43]. However, this uniform managementof all

memoryreferencescanbe very inefficient. In particular, somereferencescandegradethe cacheperfor-

manceby introducingblocksthatwill not beusedin anearfuture,or blockswhereonly a smallportionof

themis used.Suchreferencesfetchanunnecessarynumberof words,wastingmemorybandwidthandpol-

luting the cache.

Whena referencedoesnot exhibit any typeof locality, it resultsin cachepollution andmemoryband-

width waste.Thepollution is dueto theplacementin cacheof a non-reusableblock whereasthememory

bandwidthwasteis causedby theadditionaldatabroughtfrom L2 cacheto L1 cachein thesameblock as

the requesteddata.To cope with this issue,somecurrent microprocessorsprovide memory reference

instructionsthatcanbypassthecache.Ontheotherhand,whenareferencehasonly temporallocality (i.e.,

only onedataelementof eachcacheblockreferencedby it is usedby itself or any otherinstruction),it also

resultsin cachepollution andmemorybandwidthwastesinceonly oneelementof thenew block will be

used.To overcomethis problem,a cachecouldprovide a specialmoduleto storethosedataelementswith

just temporal locality.
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For instance,Figure4.1 shows the resultsof simulatingseveral conventionalcachearchitecturesfor

someSPECfp95programs(seeSection4.4.3 for further detailsaboutthe simulationenvironment).The

graphsshow: a) the missratio; b) the averagenumberof fetchedwords(8 bytes)from the next memory

level permemoryreference(thathasa directrelationwith thetraffic); andc) thepercentageof wordsthat

arebroughtinto cachebut not usedbeforebeingreplaced.Four differentcapacitiesareconsidered:8KB,

16KB, 32KB and64KB; aswell asthreedifferentdegreesof associativity: direct-mapped,4-way setasso-

ciative andfully-associative. All configurationsusea typical line sizeof 32 bytes.The graphsshow the

resultsaveragedfor all theanalyzedprograms.We canobserve that increasingthecachecapacityreduces

themissratio but thebenefitsaresmallbeyond32KB (to obtaina furthersignificantimprovementa very

largecapacityis required).Figure4.1 alsoshows thatassociativity helpsbut thebenefitsaremorenotice-

ablefor smallcaches.Finally, it canalsobeobservedthatfor all theconfigurationsthereis ahighpercent-

age of useless fetched words.

Anotherimportantobservationis thatthespatiallocality of eachreferencemaybevery different.Ref-

erenceswith very high spatiallocality will benefitfrom very large cachelines, whereasreferenceswith

poorspatiallocality may favor small cachelines.Thesedifferencesin spatiallocality maybeobserved if

oneconsidersthebehavior of differentreferences(or sections)in thesameprogram,or theglobalbehavior

of differentprograms.For instance,Figure4.2 shows themissratio of someSPECfp95bechmarks(tom-

catv, swim andsu2cor) for differentdirect-mappedcaches(16KB and32KB) whenthecacheline sizevar-

ies from 16 to 128bytes.In thegraph,light-grey barsshow thebestline sizefor eachparticularprogram

andcachecapacity. It canbeseenthatthereareprogramsthatachieve thebestmissratioby usingmedium

or long lines (suchas tomcatv and su2cor). On the other hand,someother programswork betterwith
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shorterlines(suchasswim). This behavior suggeststhata uniqueline sizeis not thebestsolutionin order

to implement a general-purpose cache.

For numericalprograms,which arein generalmoresensitive to thecacheperformance,thelocality of

each reference can be estimated quite accurately at compile time using a data locality analy-

sis([31][111][12]). In this chapter, we focuson this type of applications.For other type of applications

(non-numericalapplications,with a lot of pointersanddynamicstructures)astaticlocality analysismaybe

unfeasible, but other approaches such as the use of profiling data can be appropriate.

In thischapterwe introducesomecachearchitectures,whichwecalledlocality sensitive caches. They

arecomposedof oneor severalmodules,eachonetargetedto exploit a certaintypeof locality. Theselec-

tion of wherenew fetcheddatais storedis doneby somehintsin thememoryinstructions.We proposeto

use the data locality analysis presented in Chapter 2 to set these hints and manage the proposed caches.

4.2. RELATED WORK

Selective Caching

Selective caching(alsocalledcachebypassing)is a featureof currentmicroprocessorslike thePowerPC

[97]. It allows somememoryaccessesthatmisson theL1 cachenot to allocateany block for thedatathat

is fetchedfrom thenext level of thehierarchy. Insteadof that, thedatais storedjust in the target register

without polluting thecachewith uselessdata.Someremarkableworks for datacachesare[17], [1], [36],

[53] and[104]. Theschemeproposedin [17] is basedon a compile-timeestimationof datalifetimes.The

mechanismproposedin [1] identifiesnon-cacheabledataby meansof profiling. Theschemeproposedin

[36] is basedon a run-timemanagedhistory tableof the most recentload/storeinstructions.The Cache

BypassBuffers (CBB) areproposedin [53] to reduceinterferencemisses.The approachesproposedin

[104] are either hardware-based or make use of simple schemes based on profiling.
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Multimodule Caches

Somemulti-modulecachearchitectureshavepreviouslybeenproposedin theliterature.Thestream buffers

[52] andthe victim cache [52] wherereviewed in theChapter1 asclassicaltechniquesto improve cache

performance.The stream buffers performhardwareprefetchingin specialFIFO queuesthatareprobedin

parallelwith thedatacache.Unlikeourproposal,thisschemedoesnot take into accounttheparticulartype

of reuseexploitedby eachreference,andthus,unnecessarytraffic andlow performancecanoccurfor only-

temporalandnon-stridedreferences.On theotherhand,thevictim cacheshasa a primaryaim to remove

conflict missesby having a fully-associative modulewhereblocks discardedfrom the main cacheare

placed.This schemealsomakesa uniform managementof thecachearchitecturesinceall referencesare

handledin thesameway. Themaindrawbackof thevictim cacheis the“blind” swappingmanagement(in

the sensethat all replacedlines aremoved to the victim cache),in additionto the increasein cacheport

pressure due to the swapping traffic

Therearealsosomeworks that proposedifferentcachearchitecturescomposedof several modules,

eachoneexploiting someparticularkind of locality, suchasthedual data cache [36], the split temporal/

spatial cache [73], or thearray cache [41]. For instance,thedualdatacacheis composedof two modules,

calledtemporalandspatial.Theformer is targetedto exploit just temporallocality. The latter is designed

to exploit spatiallocality, in additionto temporallocality if a referenceexhibits both typesof locality. In

consequence,thetemporalmodulehasveryshortblocks(one64-bitword is assumedin thisstudy)andthe

spatialcachehaslargerblocks(32bytesperblock is assumedhere).Usinga locality predictiontablebased

on the pasthistory, oneof threepossibleactionsin caseof a cachemissis selected:a) bring a new long

block (32 bytes)andplaceit in thespatialmodule;b) bring a new shortblock (8 bytes)andplaceit in the

temporalmodule;andc) bring just the requesteddata,which requiresone64-bit word transactiondueto

the assumed bus width, and do not place it in any module (that is, bypass the cache).

All theseschemesbasicallyattemptto reducethenegative effectsof referencesthatexploit only tem-

poralreuse,by just fetchingasinglewordandallocatingit in aspecialmodule.However, suchschemesdo

not exploit the fact that some references exhibit just spatial reuse.

RiversandDavidsonproposedtheNTS cache [86]. Thisarchitecturedynamicallydividescacheblocks

into two groups:temporaland non-temporal,basedon their pastreusebehavior. The decisionis made

through a detection unit indexed by effective address.This architecturehas a separatesmall cache

(accessedin parallelwith the main cache)wherenon-temporalblocksbroughtto cacheareplaced.The

basicgoalof this schemeis to reduceconflict missescausedby only-spatialreferences.In [87], it is pro-



50 CHAPTER 4

posedamodificationof theCNA cache presentedby Tysonetal. [104] thatalsoconsistsof two cachemod-

ules, but in this case thedetection unit is indexed by program counter.

Anothermulti-modulecacheis theoneproposedby JohnsonandHwu [51]. Thisscheme,unlikeprevi-

ousproposals,dynamicallydividesmemoryreferencesbasedon their frequency of reuse.In this case,the

detectionunit is accessedby effective address,andnot by instructionaddress.Only frequentlyreferenced

dataareplacedon the main cache,whereasthe otherbypassthe main cacheandareplacedin a small

buffer in order to exploit its possible temporal reuse.

Locality Hints

Includingsomehints in thememoryinstructionssothat thecompilercanprovide thehardwarewith rele-

vantinformationregardingthelocality exhibitedby eachmemoryinstructionis becomingacommonprac-

tice. For instance,the PA7200 memoryinstructionshave a bit in order to identify referenceswith only

spatiallocality [15]. In this machine,every memoryinstructionincludesa hint calledspatial locality only

that indicatesthat thedatareferencedby that instructionexhibits spatiallocality but not temporallocality.

Thefirst level of thememoryhierarchy of thePA-7200consistsof two modules:theassistcacheandthe

off-chip cache.Theformerstoresall thedatareferencedby any instructionwhile thelatterstoresthedata

replacedin theassistcacheif thespatiallocality hint is notset.In consequence,theassistcacheis targeted

to any typeof referencewhile theoff-chip cacheis targetedto storethedataexceptingthosewith just spa-

tial locality. The PowerPCprovides the possibility of identifying memoryinstructionsthat exhibit low

locality andthus,to bypassthecachefor suchinstructions[97]. In all thesecases,thecompileris responsi-

ble for providing theinformationthatis encodedin thememoryinstructionandthatwill determineduring

executionthe properactionthat the hardwaremusttake. A moregeneralapproachis taken by the HPL-

Playdoharchitecture[55] andmorerecentlyby theIA-64 architecture[48]. This latterarchitectureempha-

sizesthe philosophy of passinginformation from the compiler/profiler to the hardware by making it

explicit in theISA. This informationmayberelatedto differentissues,suchasdependences,speculation,

data locality, etc.

Note that an importantdifferenceof the schemesproposedin this chapterin comparisonto all these

previous proposalsis the explicit managementof the placementof fetchedblocks.The information of

whetheran accessbypassthe cache,or in which modulea new fetchedblock is storeddependson some

hintsthataresetin thememoryinstructionat compiletime.Therefore,theadditionalhardwareto magage

the proposed cache organizations is minimal.
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4.3. SELECTIVE DATA CACHE

In this sectionusethe static locality analysisproposedin Chapter2 to managethe selective datacache

organization.As shown in Chapter3, we know that a substantialpercentageof referencesdo not exhibit

locality for someprograms,in many casesdueto cacheconflicts.Thisobservationmotivatestheuseof the

selective cache managed by software.

4.3.1. Cache Architecture

Theselectivecacheconsideredin thischapteris like theschemeproposedin [36]. In thatcase,it wasbased

on a run-timemanagedhistorytableof themostrecentload/storeinstructions.Figure4.3shows theblock

organizationof theselectivecache.Whenanew datais fetchedfrom L2 cache,theselectionhardwaresets

thereference tag signalto indicateif thedatahasto bestoredin theL1 cacheor just returnedto theCPU.

In thissection,theseletivecacheis likeaconventionalcachein whichall thememoryinstructionshavean

additionalbit that is setby thecompiler(correspondsto ehreferencetag).In caseof a cachemiss,this bit

controlswhethera new block is brought from L2 cacheand placedin L1 or just the missingdata is

requestedfrom L2 andit bypassesL1 cache.Weassumea64-bitdatabusbetweenL1 andL2. Thus,this is

the bandwidth spent by any bypassing request regardless of the actual size of the required data.

Figure 4.3. Block diagram of the selective data cache
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4.3.2. Locality Analysis

The static locality analysisusedto managethe selective datacacheis basedon the analysisproposedin

Chapter2. It consistsof thethreemainstepsof thatanalysis:reuseanalysis,interferenceanalysisandvol-

umeanalysis.We will usethe samplecodein Figure4.4 to show how the analysisworks andmemory

instructions are finally tagged with the appropriate locality hint.

We restrictthelocality analysisto referencesinsideloops,which representthemajority of references.

Thelocality analysisestimatesthetypeof locality for bothscalarandvectorreferences.For thelatter, the

locality analysisis performedjust for arrayreferenceswherethearrayindicesareaffine (i.e., linear)func-

tions of surroundingloop indices.In the analyzedbenchmarks,the referencesthat werehandledby the

analysisrepresentabout90% of the numberof dynamicmemoryinstructions.For the remainingrefer-

ences,it is assumedthat they exhibit spatialandtemporallocality, andthenthey aretaggedto thespatial

module.

As in thelocality analysisdetailedin Chapter2, thefirst stepof theanalysisis thereuseanalysis.The

resultof this phaseis a list of the differentreusesexhibited for eachreferenceindicatingthe loop(s)for

which eachreuseholds.For instance,the reuseanalysisof the samplecodewill producethe following

result:

REFERENCE Reuse in J Reuse in I

A(J) self-spatial N.A.

B(I,J) no reuse self-spatial

C(I,J) no reuse group-temporal (trailing)
with C(I+1,J)
and self-spatial

C(I+1,J) no reuse self-spatial

D(I,J) no reuse self-spatial

E(1,J) no reuse self-temporal

Figure 4.4. Sample code.

DO J = 1, 10, 1
A(J) = 0
DO I = 1, 1000, 1
B(I,J) = C(I,J) + C(I+1,J)
D(I,J) = E(1,J)

ENDDO
ENDDO
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The main differencebetweenthe locality analysisusedto managethe selective datacacheand the

analysisproposedin Chapter2 is that theorderof thevolumephaseandthe interferencephasehasbeen

interchanged.Thereasonof this modificationis becausewe try to remove someinterferencesby usingthe

bypasscapabilityof theselectivedatacache.Thus,whentheanalysisdetectsthattwo memoryinstructions

suffer from ping-ponginterferences,thenoneof the instructionsis marked asnon-cacheable(and then,

bypassesthe cache).In this way, the otherinstructionwill be ableto exploit its datalocality. As instruc-

tionsthatbypassthecachedo not contributeto thevolumeof theloop, theinterferenceanalysisis applied

before the volume analysis.

The interferenceanalysistries to identify groupsof memoryinstructionsthatwill repeatedlyproduce

conflict missesdueto interferencesamongthem(we assumein this chaptera direct-mappedorganization

for the selective and the spatialmoduleof the dual datacache).The analysisconsistsof the following

steps:

1) Usingthesameanalysisasdetailedin Chapter2, detectmemoryinstructionsthatsuffer from ping-

ponginterferencesandbuild an interferencegraphfor eachbasicblock. Rememberthata conflict

betweentwo referencesR1 andR2 is assumedif they aremappedontocacheatadistancelowerthan

the block size:

Potentialconflictsareanalyzedfor eachpairof referencesandthey areidentifiedin theinterference

graph by means of an edge (we will later show an example).

2) Remove interferences.If two instructionswith sometypeof reuseinterfere,their respective reuse

cannotbeexploitedsincetheblockbroughtin cacheby any of themwill beevictedimmediatelyby

theother, beforeit is reused.Theobjective of this stepis to tagsomeof theinterferinginstructions

asnon-cacheablesothattheremaininginstructionsdonot interfereandthereforetheir reusecanbe

exploited.

Thealgorithmworksasfollows: in the interferencegraph,thenodewith themaximumnumberof

edgesis chosen.This referenceis labeledasnon-cacheable,andits edgesareremoved.Then,the

process is repeated until the graph has no edges.

If we apply this analysisto the exampleof Figure4.4, the resultsareshown in Figure4.5. We have

supposedthat the initial interferencegraphis the oneon the left. The selectedreferenceis D(I,J). Thus,

R1mod CacheSize R2mod CacheSize– BlockSize<
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this referencewill betaggedasnon-cacheableandit will not becacheddespiteof having reuse.However,

the reuse exhibited byC(I,J) andC(I+1,J) can be exploited.

Thefinal stepof our analysisif thevolumeanalysisasproposedin Chapter2. If we applythis analysisto

ourexampleof Figure4.4theresultsarethefollowing, assumingthattheblocksizeis 4 dataelementsand

the cache has 256 blocks:

Consequently, only reuseacrossloop I canbe exploited.Therefore,the referenceA(J) will result in

repetitive cache misses even though it has spatial reuse.

After thelocality analysisis done,eachmemoryinstructionis taggedaccordingly:referenceswith no

reuse are tagged asbypass, and the rest ascacheable in the selective cache.

REFERENCE
Contributed

volume to loop I
(# of blocks)

Contributed
volume to loop J

(# of blocks)

B(I,J) 1 250

C(I,J) 1 250

C(I+1,J) 0 0

D(I,J) 0 0 ← Not cached

E(1,J) 1 10

Total 3 510

A(J) - 1

Total 3 511

B(I,J)

C(I,J)

C(I+1,J)

D(I,J)

E(1,J)

Non cacheable

Figure 4.5. Interference analysis for code of Figure 4.4
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4.3.3. Evaluation

Experimental Framework

Thecacheexperimentspresentedin thissetionhavebeenperformedusingthefollowing SPECfp95bench-

marks[96]: tomcatv, swim, su2cor, hydro2d, mgrid, applu andturb3d. All of themarewritten in Fortran

language.

The locality analysishasbeenimplementedusing the ICTINEO toolset [4]. Optimizationsusually

appliedby currentcompilersareimplementedin ICTINEO andareappliedto theresultingcode.Memory

referencesaretheninstrumentedaccordingto thelocality analysisresults,andthetraceobtainedfrom the

executionof instrumentedcodefeedsa cachesimulatorof a selective datacache.A conventionalcacheis

alsosimulatedfor comparison.Theresultspresentedin thischaptercorrespondto theexecutionof thefirst

100 million of memory instructions of each benchmark.

Performance Results

In this section,the performanceof the selective datacacheis comparedagainst that of a conventional

cache.It is assumedthat the cachememoryis connectedto the next level of the memoryhierarchy by

meansof a 8-bytewide bus.Thelatency of thenext memorylevel is assumedto be5 cyclesplusanextra

cycle per64-bit word. Theconventionalandselective cachesaredirect-mapped,write-allocateandcopy-

back.Cachesizeis 8 Kbytesandblock sizeis 32 bytes.Thespatialmoduleof thedualdatacacheis like a

conventionalcache.Thetemporalmoduleis a very small(16 words)fully-associative buffer. This sizehas

beenproved to besufficient to storepracticallyall memoryreferencesthatexhibit only temporallocality

(see Figure 3.7 in Chapter 3).

Table4.1showstheresultsof thelocality analysisappliedto theselectivecache.Thefirst columnindi-

catesthepercentageof memoryreferencesthatarebypassed.Thesecondcolumnlists thehit ratio for the

referencesthat arecached.The last columnshows the missratio of bypassreferenceson a conventional

cache,whichcachesall references.Thetwo lastcolumnsprovideanevaluationof thelocality analysis.An
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accuratelocality analysisshouldresultin a high hit ratio for cacheddataandin a high missratio for non-

cached data.

Onecanseein Table4.1 that the hit ratio of cachedreferencesis nearor above 90% for mostpro-

grams.On theotherhand,themissratio of bypassedreferenceson a conventionalcacheis high excepting

somecasesin which thepercentageof bypassreferencesis very low andthereforetheresultsarenot sig-

nificant (su2cor, mgrid, applu and turb3d).

Figure4.6 shows a comparisonamongconventionalandselective datacachesin termsof hit ratio,

averagememoryaccesstime andaveragenumberof wordsfetchedfrom thenext memorylevel permem-

ory reference.Thesefiguresaredividedin programswith low locality (tomcatv andswim) andhigh local-

ity (the others).

We canseethat the selective cacheprovidesa significantimprovementin the first groupof bench-

marks.Comparedwith a conventionalcache,they reducethe averagememoryaccesstime in about25%

andtheamountof datafetchesin about65%.Note that this latterbenefitmaybevery effective to reduce

memorybandwidth,which is expectedto beanimportantlimitation for futuremicroprocessors[8]. In the

secondgroupof benchmarks,wherethememorybehavior on a conventionalcachewasalreadygood(see

Figure 4.6b), the new cachearchitecturesslightly improve the performanceexcept for one benchmark

(applu) which experiences a small increase in average memory access time.

Selective cachingcanplay an importantrole to reducethe negative effect of interferences.Applying

theinterferenceanalysispresentedin Section4.3.2,reusecanbeexploitedmoreeffectively asit is shown

in Figure4.7. This graphshows the percentageof exploited reusefor differentsizesof the selective and

conventional(direct-mapped)caches.Resultsareaveragedfor all studiedbenchmarks.Fromthisfigurewe

BENCHMARK %Bypass %C-Hit %B-Miss

tomcatv 42.94 71.18 84.37

swim 57.32 89.09 82.06

su2cor 0.06 93.11 0.83

hydro2d 0.05 84.44 69.15

mgrid 0.04 97.19 38.62

applu 1.92 94.51 9.67

turb3d 5.68 96.73 38.71

Table 4.1. Locality results for the selective cache
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can extract, for instance, that a 4 Kbyte selective cache can exploit more reuse than a 8 Kbyte conventional

cache. The differences observed are much higher for individual programs with many interferences (tom-

catv and swim).
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The extra bit usedto managethe cachedo not comefree. The mostobvious implementationwould

reducetherangeof theconstantdisplacementin memoryinstructionsby a factorof two or four. If thedis-

placementfield has16 bits (which is typical for currentarchitectures)andcanbeusedto address64KB of

data,in themodifiedinstructionsetwe have thatvaluereducedto 32KB. This mayincur in extra instruc-

tions if theaddresseddatais larger. We have measuredfor thebenchmarksconsideredin this chapterthat

only 1.32%of dynamicmemoryinstructionsexecutedneedextra instructionswith 15bits of displacement

(comparedwith memoryinstructionsthathasa displacementof 16 bits), which confirmsthat thepenalty

introduced by these additional instructions is negligible.

4.4. MULTIMODULE CACHE

TheLSMCache (Locality Sensitive Multimode Cache) representsanevolution of thedualdatacache[36]

in thecontext of locality sensitive caches.It consistsof a cachearchitecturecomposedof threemodules,

eachoneexploiting aparticulartypeof locality. Theselectionof wherethedatais placedwhenit is fetched

from thenext memorylevel couldbedoneby astaticlocality analysisor basedonananalysisof somepro-

filing data.As in theselective anddualdatacaches,theinformationis passedto thehardwareby addinga

specialfield or hint to memory instructions.The cachearchitectureproposedin this work is oriented

towardsnumericalcodes,for which moduleallocationcanbecompletelybasedon a staticlocality analy-

sis,dueto its high accuracy. However this staticanalysisis not appropriatefor non-numericalcodesanda

profiled-based analysis may be more effective.

Theworking of theLSMCache is dividedinto two parts:(1) thecompile-timeanalysisandtaggingof

memoryinstructions,and(2) therun-timebehavior. Below wefirst discussthehardwarearchitectureof the

Figure 4.7. Percentage of reuse exploited with a selective cache, varying the cache size and compared
with a conventional cache.
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LSMCache. Then,thecompile-timesupport,which basicallyconsistsof a staticlocality analysisbasedin

the one proposed in Chapter 2.

4.4.1. Cache Architecture

Thehardwarearchitectureof theLSMCache is shown in Figure4.8.Themaindifferenceof this architec-

turewith respectto all thepreviousworkson multimodulecachesis thecleardifferentiationof threetypes

of reuse:only-temporal,low-volumeself-spatialand the rest (they are later defined).The LSMCache is

composedof threemodulesthatarereferredto asspatial (S), temporal (T) andspatial-temporal (ST). Both

modulesS andT aresmall fully-associative buffers,whereasmoduleST is direct-mappedandhaslarger

capacity. The goal of each module is the following:

• Module S: it is orientedto exploit low-volume, self-spatial reuse. A memoryinstructionis said to

exhibit low-volume,self-spatialreuseif it hasself-spatialreusefor a given loop andself-temporal

reusefor all inner loops.Intuitively, this is an instructionthathasspatialreusethat requiresa single

cache line to be exploited. For instance, the reference in the next loop:

hasspatialreusein loopI, andtemporalreusein loopJ. Thus,whena line is fetchedandplacedin

themoduleS, all iterationsof loopJ cantakeadvantageof thetemporalreusewithout increasingthe

MODULE
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LOGIC

CPU

MODULE
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MODULE
STM

OD
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L2 CACHE
Memory
Instruction

(a) Cache hit access (b) Fetching a block from
the next level

Figure 4.8. Hardware architecture of the LSMCache

DO I = 1, N, 1
DO J = 1, M, 1

... A(I) ...
ENDDO

ENDDO
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numberof fetchedlines.Furtheriterationsof loopI will exploit thespatialreuseby accessingother

elements of the same line.

Notethateitherlonglinesorsomesimplehardwareprefetchingtechnique(prefetchingthenext orpre-

viousblock,accordingto thedirectionof thestride)maysignificantlyincreasetheexploitationof the

locality exhibited by such references. Both strategies have been evaluated in this work.

• Module T: it is orientedto exploit justtemporallocality. In aconventionalcache,thosereferenceswith

just temporallocality pollutethecacheandwastememorytraffic becauseonly onewordof theentire

line is used. This is avoided by using a special module with short lines to keep these references.

• Module ST: this moduleactsasa conventionalcachetargetedto exploit both temporalandspatial

locality. It storesthedatanotallocatedto thepreviousmodules,thatis,datareferencedby instructions

with both spatialandtemporalreuse,suchthat spatialreuserequiresa high numberof lines to be

exploited. Furthermore,it also storesthe data referencedby those instructionswhose reuseis

unknown.Thisis thecaseof referencesoutsideloopsor referencesfor whichthelocality analysiscan-

notdeterminetheir locality. Finally, thismodulealsocachesthosereferencesthatcannotbeplacedin

theS or T modules in spite of meeting the reuse requirement, due to capacity constraints.

Notethatdueto thedifferentline size,thesamedataelementcanresidein severalmodulesat thesame

time.This mayhappenwhensomedatais broughtto a givenmoduleandlateron,a referenceto a nearby

dataelementbringsit againasapartof a largerdatablock thatis placedinto adifferentmodule.If acopy-

backpolicy is used,thedatabroughtfrom memorymaybestale.Coherency of datais keptin thefollowing

way.

For eachload instruction,the threemodulesarechecked in parallel.If the datais found in just one

module,thenit is returnedto theprocessor. In thecasethatthedatais foundin morethanonemodule,the

datafrom the modulewith the smallestline sizeis returned.Storeinstructionsarealsosentto the three

modules and those that contain the requested data are updated.

In caseof a load/storemiss,a new datablock is broughtinto themoduleindicatedby thelocality hint

includedin the instruction.If the replacedline is dirty andit is presentin any othermodulewith larger
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lines, this module is updated. The following simple example can help to understand the coherency method-

ology:

In this example each load/store instruction is marked with its hint (S, T or ST), and the D bit in a cache

line indicates that the line is dirty. First, the store brings A(1) to the module T. Then, A(2) is referenced

in function F2 and a new block is brought into the module ST since it is not in cache, but this block con-

tains a stale copy of A(1). Something similar happens to the following load to A(3), in the main pro-

gram. The two stale copies of A(1) can reside in cache together with the updated copy, because the data in

the smallest cache line will always be chosen. When the dirty line of the module T that contains A(1) is

replaced, the modules S and ST are updated.

We will show in Section 4.4.3 that the number of additional accesses required by the coherency mech-

anism is very low since, on average, only about 0.5% of dynamic memory references hit in more than one

module.

4.4.2. Locality Analysis

This section explains the analysis that is performed in order to set the locality hint of every memory

instruction for numerical codes. This analysis is divided into three steps:

1) Choose candidate instructions for each module.

2) Sort the candidates in a priority order.

3) Tag each instruction with the appropriate hint.

PROGRAM P1
REAL*8 A(N)

:
CALL F1(A(1))
CALL F2(A)

:
LOAD A(3).S

:
END

FUNCTION F1(K)
REAL*8 K

:
STORE K.T

:
RETURN
END

FUNCTION F2(B)
REAL*8 B(N)

:
LOAD B(2).ST

:
RETURN
END

S
A(1)

STT
After STORE 0

D
1

D
0

D

S
A(1) A(2) A(3) A(4) A(1) A(2)A(1)

STT
After both LOADs 0

D
1

D
0

D

S
A(1) A(2) A(3) A(4) A(1) A(2)-

STT
After block in T 0

D
0

D
0

D

is replaced



62 CHAPTER 4

The selectionof the instructionswhosereferenceddataarecandidateto be placedin eachmoduleis

basedon a simplereuseanalysis.This analysisis very similar to theoneusedin Chapter2. Theresultsof

this analysisaretwo vectorsthatrepresenttheself-reuseandthegroup-reuseof eachmemoryinstruction.

The self-reuseis representedby vectorSRV. The dimensionof this vectorrepresentsthe nestinglevel of

the memoryinstruction(that is, the numberof loopsthat enclosethe reference).For eachloop i (loop 0

representstheoutermost),thevalueof SRV(i) canbeN (no reuse),T (self-temporalreuse)or S (self-spa-

tial reuse).Thefirst stepof thealgorithmis to determinewhich memoryinstructionsarecandidatesto be

tagged for each module.

The candidates for moduleS are those instructions that meet the following condition:

∃ i | SRV(i) = S and ∀ j > i, SRV(j) = T

Thesearethosememoryinstructionsthathaveself-spatialreusein a loop,andfor all their innerloops,

if any, they have self-temporal reuse.

The candidates for moduleT are those instructions that meet the following condition:

∃ i | SRV(i) = T and ¬∃ j | SRV(j) = S

Thesearethosereferencesthathave self-temporalreusein oneor several loops,but do not have self-

spatial reuse for any of the loops where they are enclosed.

Therestof the instructionsarecandidatesfor moduleST, including thoseinstructionsthatareplaced

outside loops, or for which the reuse analysis cannot be applied.

Note that instructionswith group reuseamongthem exhibit the sameself-reuseand thus, they are

tagged as candidates for the same module.

Thesecondstep,which ordersthecandidatesfor thesamemoduleaccordingto a priority function,is

appliedto theS andT candidates.Therearethreeparametersthatdeterminetheorderamongcandidates:

(i) placementof thememoryinstructionin theloop nest;(ii) loop wherethereusehasto beexploited;and

(iii) strideof the access(only for memoryinstructionswith spatialreuse).The orderingof candidatesis

based on the following heuristics:

1) Thenumberof reusesfor eachline broughtto themoduleS increasesasthenestinglevel of theloop

where spatial reuse is exploited decreases.
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2) Thevolumerequiredto exploit a giventypeof reusedecreasesasthenestinglevel of theloop that

generates the reuse increases.

3) Thebenefitsof spatialreusearehigherasthestrideis smallersincethenumberof reusesfor each

cache block is higher.

In consequence,memoryinstructionsarefirst sortedaccordingto their locationin theloop nest,from

innermostto outermostinstructions.For all instructionsin thesamenestinglevel, asecondstepof ordering

is appliedaccordingto the level of the loop wherethe reuseis exploited (from outermostto innermost

loops).If aninstructioncanexploit reusein differentloopsof thesamenest,theinnermostof suchloopsis

considered.Finally, instructionsplacedin thesamelevel of thenestandthatexploit their reusein thesame

loop level are sorted according to their stride, from smaller to larger. For instance, in the next code:

theallocationof candidatesto thedifferentmodulesandthefinal orderingof candidateswill beasfollows:

Thelaststepof theanalysisis thefinal selectionof thetagfor eachmemoryinstruction.In this step,a

volumeanalysisis appliedfor bothS andT candidates,in orderto determinewhetherthelocality exhibited

by eachinstructioncanbe exploited given the capacityof the correspondingmodule.If a referencethat

was initially candidate for moduleS or T does not fit in it, it is finally allocated to moduleST.

Thevolumeanalysisis basedon theapproachpresentedin Chapter2, andit is independentlyapplied

to bothlistsof candidatesto modulesS andT. For eachreferenceof thelist, from highestto lowestpriority,

thevolumein cachelinesthatthis referencecontributesto eachloop whereit is enclosedis computedand

addedto the accumulatedvolume so far. If the accumulatedvolume of the loop where this reference

exploits its spatial/temporalreuse(for modulesS andT respectively) doesnot exceedthecapacityof the

module,the memoryinstructionis taggedwith the correspondingmodule(S or T). Otherwise,it is allo-

DO I = 1, N, 1
A(I)
A(I+1)
DO J = 1, M, 1

B(J)
C(I)
K1
D(I,J)

ENDDO
K2

ENDDO

(S)
(S)

(T , S)
(S , T)
(T , T)
(N , N)

(T)

❶
❷

❸
❹
➎
➏

➐

SRVs

S Candidates :

ST Candidates :
T Candidates :

❹➝❸➝❷➝❶

➎➝➐

➏
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catedto themoduleST andits contribution to thevolumeof eachloop is subtractedfrom theaccumulated

volumes.

For instance, the volume analysis for theS candidates in the previous code is the next one:

In thisexample,instruction4 requiresjust1 line to exploit its spatialreusein loopJ. If this instruction

is taggedasS, theninstruction3 requires2 cachelinesto exploit its reuse.Sincebothinstructions4 and3

have beenallocatedto moduleS, instruction2 requires2+M/4 lines in orderto exploit its spatialreusein

loop I, which is thevolumecontributedby instructions4 and3, in additionto the line requiredby itself.

Assumingthat this volumeis still lower thanthemoduleS capacity, reference2 is taggedasS, andthen,

reference1 is considered.This referencedoesnot contribute any additionalvolumeto any loop, sinceit

reuses the lines referenced by instruction2. Therefore, it is also tagged asS.

Finally, the resultof the whole locality analysisis reflectedin eachmemoryinstructionby meansof

oneof thefollowing tags(thestrideinformationis relevantjust for thoseschemesthatimplementprefetch-

ing, as discussed in next section):

4.4.3. Evaluation

Experimental Framework

Thepreviously proposedlocality analysishasbeenimplementedin theICTINEO compilingplatform[4].

Theprogramshave beencompiledwith full optimization(scalaroptimizationssuchasconstantpropaga-

tion, andcommonsubexpressions,deadcodeandinvariantremoval) andtheresultingcodehasbeeninstru-

mented to generate a trace that feeds a simulator of the cache architecture.

HINTS Module

00 S, positive stride

01 S, negative stride

10 T

11 ST

C(I)
B(J)
A(I+1)
A(I)

Accumulated
Volume

of
Loop I

1
1+M/4
2+M/4
2+M/4

❹
❸
❷
❶

Accumulated
Volume

of
Loop J

1
2
2
2

Condition

1 ≤ NLINES ?
2 ≤ NLINES ?

2+M/4 ≤ NLINES ?
2+M/4 ≤ NLINES ?
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The LSMCache hasbeentestedwith the following SPECfp95programs[96]: tomcatv, swim, su2cor,

hydro2d, mgrid, applu andturb3d. Theprogramshavebeenexecutedby usingthetestinputdata,andwere

run for the first 1,500 million of memory instructions (except for programs with fewer instructions).

Schemes without Prefetching

The first experimentevaluatessomeLSMCache architecturesthat do not incorporateany prefetching

scheme.Thedifferencesamongthemarethetotal sizeandline sizeof themoduleS. Table4.2summarizes

theevaluatedconfigurations.ModulesS andT have both16 linesanduseanLRU replacement.Thelabel

FA stands forfully-associative, whereasDM representsdirect-mapped.

We have comparedthe proposedarchitecturesagainst two conventional caches:(a) a 8KB direct-

mappedcache(8KB-DM), and(b) a64KB fully-associativecache(64KB-FA) (seeSection4.1in orderto com-

paretheresultswith otherconventionalcachearchitectures).TheLSM architecturesarecomparablein area

andaccesstime1 to the 8KB-DM cache.A 64KB-FA cacherequiresmuchmoreareaanda muchhigher

accesstime that theconsideredLSMCache architectures.This organizationis usedasa referencepoint of

themissratioandmemorytraffic thatcouldbeachievedwith averypowerful but alsoveryexpensivecon-

ventional organization.

Figure4.9shows thepercentageof dynamicmemoryinstructionstaggedasS, T or ST for theLSM-S1

architecture.We canseethat in general,low-volumeself-spatialreusereferencesare the dominanttype

(thesereferencesareallocatedto moduleS if therearenot volumeconstraints).However, for somepro-

grams,the percentagesof referencesallocatedto modulesS andST arealsosignificant(note that these

resultsarefor SPECfp95programsand,althoughherethemajority of instructionsaretaggedasS, this is

not necessary for other codes).

MODEL

MODULE S MODULE T MODULE ST
TOTAL

CAPACITY
(Kb)Total

Size
Line
Size Assoc Total

Size
Line
Size Assoc Total

Size
Line
Size Assoc

LSM-S1 512b 32b
FA 128b 8b FA 4Kb 32b DM

4.625

LSM-S2 1Kb 64b 5.125

Table 4.2. Basic LSMCache configurations

1. Fully-associative cacheslargerthanthesizeof themodulesS andT (alsowith morelines),andwith a one-cycle accesstime
have been implemented in commercial processors. An example is the 2KB (64 lines) assist cache of the PA-7200 [15].
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Figure4.10depictsthemissratio, averagenumberof fetchedwordsper reference,andpercentageof

unusedwords brought into cache,for the LSMCache and the two conventionalcaches.The numberof

fetchedwordshasadirectrelationwith thetraffic generatedbetweenL1 andL2 caches.Moreover, theper-

centage on unused words (or bandwidth waste) denotes the efficiency of this traffic.

OnaveragebothLSMCache schemessignificantlyoutperformthe8KB-DM cachefor thethreeperfor-

mancefigures.For instance,the 8KB-DM miss ratio is about2.6 times higher than that of the LSM-S2

cache.Comparingtheproposedschemes,LSM-S2 performsbetterthanLSM-S1, mainly in missratio.This

tendency is quite uniform for eachindividual program.Moreover, notethat for someprograms(tomcatv,

swim andhydro2d), LSM-S2 achievesa bettermissratio thanthe64KB-FA cacheeventhoughthenumber

of fetchedwordsis higher. This is dueto a betterusageof the fetchedwords.Notealsothat,on average,

the miss ratio of the LSM-S2 is closeto that of the 64KB-FA, in spiteof its muchsmallercapacity. To

achieve this performance,LSM-S2 requiresa highernumberof fetchedwords(which is dueto its smaller

capacity)but thefetchbandwidthefficiency (which is thereciprocalof bandwidthwaste)is comparableto

that of the64KB-FA.

As explainedin sectionSection4.4.1,theLSMCache requiressomecoherency operationswhena data

elementresidesin morethanonemodule.Notehowever that this event is ratherinfrequent.For theLSM-

S1 architecture,this percentageis 0.43% on averagefor all the programs(the maximumis 2.50% for

applu, andtheminimumis 0.00%for tomcatv, swim andsu2cor). Notethatin thisarchitectureadatumcan

bein moduleT, or just in oneof theothertwo sincetheline sizeis thesame.RegardingtheLSM-S2 archi-

tecture,theaveragepercentageis 0.65%(themaximumis 2.11%for applu, andtheminimumis 0.00%for

tomcatv).
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Schemes with Prefetching

Prefetchingdatais beneficialprovided that thecachemayanticipatewhich datawill be referencedin the

near future. Otherwise,prefetchmay harm performance.The detailedcharacterizationof the locality

exhibited by each reference allows for an efficient implementation of a prefetch scheme.
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Figure 4.10. Comparison of LSMCache without prefetching against two conventional caches
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Wehaveconsideredasimplehardwareprefetchingschemebasedontheone-blocklookaheadschemes

(OBL) [94], andextendedwith a locality analysis.We call theschemeselective OBL sincetheprefetchis

performedonly for thosereferencesthatexhibit low-volume,self-spatialreuse(i.e. thoseallocatedto mod-

uleS). Notethatthis typeof locality meansthatafteraccessingadatablock,it is very likely thatthenext or

thepreviousblock, dependingon thedirectionof thestride,is accessedtoo. Thecandidatereferencesfor

which theprefetchis performedaswell asthedirectionof thestrideareprovidedby the locality analysis

described in Section 4.4.2.

Three alternative prefetching schemes, based on those considered in [94], have been implemented:

1) Always prefetching (A): every time a referencetaggedasS is performed,a prefetchto thenext/pre-

vious block is issued.

2) Prefetching on miss (M): everytimeareferencetaggedasS misses(in all modules),aprefetchto the

next/previous block is issued as well.

3) Tagged prefetching (T): every timeareferencetaggedasS accessesablock for thefirst timesinceit

has been brought to cache, a prefetch to the next/previous block is issued as well.

Note thata prefetchaccessbehaveslike anordinaryaccess,that is, all modulesareprobed.Table4.3

summarizes the differentLSMCache architectures with prefetching that are considered in this section.

BothmodulesS andT useanLRU replacement.ThelabelFA standsfor fully-associative, whereasDM

representsdirect-mapped. NotethatthemoduleS has32 linesbut thecompile-timeanalysissupposesthat

it has16 lines, becausesomeaccessesto this modulefetch a pair of lines dueto prefetching.Thus,the

instructionsallocatedto eachmodulearethesameasthosein thepreviousexperiments(LSM-S1 andLSM-

S2).

MODEL

MODULE S MODULE T MODULE ST
TOTAL

CAPACITY
(Kb)Total

Size
Line
Size Assoc Pref. Total

Size
Line
Size Assoc Total

Size
Line
Size Assoc

LSM-PA
1Kb 32 FA

A
128b 8b FA 4Kb 32b DM 5.125

LSM-PM M

LSM-PT T

Table 4.3. LSMCache architectures with prefetching
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Figure 4.11 depicts the miss ratio, average number of fetched words per reference, and percentage of

unused words brought into cache, for the LSMCache architectures with prefetching, and compares them

with the two conventional caches.
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Figure 4.11. Comparison of LSMCache schemes with prefetching against two conventional caches
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Regardingmissratio,LSMCache schemesperformmuchbetterthanthe8KB-DM cache,achieving an

averagereductionin missratio by a factorof about7.0 (LSM-PA). Note that for someprogramsthemiss

ratio is verycloseto zero.Theaveragereductionin memorytraffic is alsosignificantalthoughfor two pro-

grams(su2cor, andmgrid) it is somewhatincreased.However, thelinesbroughtinto cachearebetterused,

asdenotesthebandwidthwastegraph.NotethattheseLSMCache architecturesachieve a lower missratio

thanafully-associativecachewith acapacitytwelve timeslarger(LSM-PA hasamissratio thatis 2.5times

lower thanthatof the64KB-FA cache).This requiresanincreasein thememorytraffic by a factorof about

two to compensatefor the muchsmallercapacity, but this traffic is efficiently usedsincethe bandwidth

waste is of the same order as that of the64KB-FA cache.

AmongthedifferentLSMCache architectures,thebestperformanceis achievedby LSM-PA, thatis, by

theschemethatalwaysprefetchesfor thosedataallocatedin the S module.This schemegeneratesabout

thesametraffic astheLSM-PM (prefetchonmiss)schemebut achievesamissratio thatis 2.7timeslower.

TheLSM-PT (taggedprefetching)schemehasanintermediatemissratio but generatesslightly moretraf-

fic. A positive effect of alwaysprefetchingis thatprefetcheddatais keptat thetop of theLRU stack,and

thereforeit is usuallynot evicted beforebeingused.This is an efficient policy sinceprefetchesarevery

effective, as shown below, because they are driven by a locality analysis.

Theeffectivenessof prefetchingcanbeevaluatedby measuringtheadditionaltraffic that they gener-

ate.This is shown in Figure4.12,whichdepictstheaveragenumberof fetchedwordsperreferencefor the

previous configurationsand the samecachearchitectureswithout incorporatingprefetch.It canbe seen

that the increase in memory traffic due to the prefetch schemes is very low.
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As for the schemes without prefetching, the percentage of dynamic references that hit in more than one

module has been also obtained, being very low for all three prefetching schemes (0.49% for LSM-PA,

0.43% for LSM-PM, and 0.35% for LSM-PT).

Finally, a drawback of prefetching is an increase in the cache port pressure. Each time a prefetch is

issued, all the modules in the cache have to be probed. Table 4.4 shows the average number of cache mem-

ory accesses for each dynamic memory reference (without prefetching this number is 1.00):

In this table we can see that the always prefetch scheme is the one than achieves the lowest miss ratio

but at the expense of a higher pressure on cache ports. If this resource is critical, the tagged prefetch

scheme may be the best trade-off when both miss ratio and port pressure are considered.

Comparison with Other Multi-Module Caches

We have compared the LSMCache with three other multi-module schemes: (a) an 8KB direct-mapped

cache with a 512B victim-cache (16 lines of 32 bytes each one)(8KM-VC); (b) an 8KB direct-mapped cache

with 4 stream-buffers (each one with 4 entries of 32 bytes) with the optimizations proposed by Palacharla

et al. [79] (8KB-SB); and c) an 8KB 4-way set-associative cache (8KB-4WA).

Figure 4.13 compares the miss ratio for a direct-mapped cache (8KB-DM), three multi-module caches

(8KB-4WA, 8KB-VC and 8KB-SB) and two LSMCache schemes (LSM-S2 and LSM-PA), without/with prefetching.

MODEL A
Always Prefetch

M
Prefetch on Miss

T
Tagged Prefetch

tomcatv 2.00 1.07 1.22

swim 1.98 1.06 1.08

su2cor 1.81 1.08 1.14

hydro2d 1.84 1.08 1.16

mgrid 1.90 1.05 1.09

applu 1.20 1.00 1.06

turb3d 1.54 1.03 1.23

AVERAGE 1.75 1.05 1.14

Table 4.4. Averaged number of cache accesses per reference
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We can seein thesegraphsthat on averageLSMCache schemesperform better than all the other

schemes.Looking at individual benchmarks,only for thelast two programs(applu andturb3d), theLSM-

Cache architecture is not the best multi-module scheme.

4.5. CHAPTER SUMMARY

In thischapterwehaveproposedtwo new cachearchitectures.Theproposedcaches(calledLocality Sensi-

tive caches) have in commonthe managementthroughsomehints includedin memoryinstructionsand

that are set at compile time after a locality analysis.

TheSelective Cache usesthesehintsto bypassthecachefor thosememoryreferenceswithout locality.

This avoidsto pollutethecachewith datathatwill not bereused,andthusmakesa betteruseof theavail-

ablestoragespace.Resultsshow thatthelocality analysisis quiteaccuratefor this typeof management.It

hasbeenobserved that this cachearchitectureprovidesa significantreductionin averagememoryaccess

time andamountof datafetchedfrom thenext memorylevel, speciallyfor programswith a poor locality,

when compared with a conventional cache.

Theotherproposedcacheis theLSMCache. It is composedof threemodules,eachmodulebeingspe-

cializedto exploit a particulartype of locality (only-temporal,low-volumeself-spatialandthe rest).We

have observed that for numericalcodesthe proposedcachearchitectureeliminatesthe majority of cache

misseswith just 5KB of capacity. It hasa miss ratio that is aboutthe sameasthat of a 12 times larger

(64KB) fully-associative cachewhendataprefetchingis not incorporatedand2.5 timeslower whendata

prefetchingis added(for themostaggressive prefetchingscheme).Prefetchingis very effective sinceit is

driven by the locality analysis. We have shown that prefetching hardly increases the memory traffic.
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The main conclusion of this chapter is that the implementation of smaller caches with a more clever

management can be an effective approach to reduce the large area occupied by this component in current

microprocessors as well as its access time and power consumption.
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5
SOFTWARE PREFETCHING

FOR MODULO SCHEDULED LOOPS

This chapter studies the interaction between software prefetching (both binding and nonbinding)

and software pipelining for VLIW machines. First, it is shown that evaluating software pipelined

schedules without considering memory effects can be rather inaccurate due to stalls caused by

dependences with memory instructions (even if a lockup-free cache is considered). It is also shown

that the penalty of the stalls is in general higher than the effect of spill code. Second, we show that in

general binding schemes are more powerful than nonbinding ones for software pipelined schedules.

Finally, the main contribution of this chapter is an heuristic scheme that schedules some memory

operations according to the locality estimated at compile time and other attributes of the dependence

graph. The proposed scheme is shown to outperform other heuristic approaches since it achieves a

better trade-off between compute and stall time than the others.
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5.1. INTRODUCTION

Softwarepipeliningis a well-known loop schedulingtechniquethattriesto exploit instructionlevel paral-

lelism by overlapping several consecutive iterations of the loop and executing them in parallel ([82]).

Differentalgorithmscanbefoundin theliteraturefor generatingsoftwarepipelinedschedules,but the

mostpopularschemeis calledmoduloscheduling.Themainideaof thisschemeis to find afixedpatternof

operations(calledkernelor steadystate)that consistsof operationsfrom distinct iterations.Finding the

optimal schedulingfor a resourceconstrainedscenariois a NP-completeproblem,so practicalproposals

are basedon different heuristicstrategies. The key goal of theseschemeshasbeento achieve a high

throughput (e.g., [61][49][108][83]), minimize register pressure (e.g., [38][22]) or both (e.g.,

[46][65][23][66]), but noneof themhasevaluatedthe effect of memory. Theseschemesassumea fixed

latency for all memory operations, which usually corresponds to the cache-hit latency.

Lockup-freecachesallow theprocessornot to stall onacachemiss([60]). However, in aVLIW archi-

tecturethe processoroften stallsafterwardsdue to true dependenceswith previous memoryoperations.

The alternative of schedulingall loadsusingthe cache-misslatency increasesregisterpressureandmay

reduce throughput if recurrences contain memory instructions ([1]).

Softwareprefetchingis aneffective techniqueto toleratememorylatency ([9]). Softwareprefetching

canbeperformedthroughtwo alternative schemes:bindingandnonbindingprefetching.Thefirst alterna-

tive, alsoknown asearlyschedulingof memoryoperations,movesmemoryinstructionsaway from those

instructionsthatdependon them.Thesecondalternative introducesin thecodespecialinstructions,which

arecalledprefetchinstructions.Thesearenonfaultinginstructionsthatperforma cachelookupbut do not

modify any register.

These alternative prefetching schemes have different drawbacks:

• Thebindingschemeincreasestheregisterpressurebecausethelifetime of thevalueproducedby the

memoryoperationis stretched.It mayalsoincreasetheinitiation interval dueto memoryoperations

that belong to recurrences.

• The nonbindingschemeincreasesthe memorypressuresinceit increasesthe numberof memory

requests,whichmayproduceanincreasein theinitiation interval. Besidesit mayproduceanincrease

in the register pressuresince the lifetime of the value usedto computethe effective addressis

stretched.A higher registerpressuremay requireadditionalspill code,which resultsin additional

memory pressure.
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In thischapterwe investigatetheinteractionbetweensoftwareprefetchingandsoftwarepipeliningin a

VLIW machine.First we show thatpreviousschemesthatdo not considertheeffect of memorypenalties

produceschedulesthat are far from the optimal when they areevaluatedtaking into accounta realistic

cachememory. We evaluateseveral heuristicsto schedulememory operationsand to insert prefetch

instructionsin a softwarepipelinedschedule.Thecontributionsof stallsandspill codearequantifiedfor

eachcase,showing thatstall penaltieshaveamuchhigherimpactonperformancethanspill code.We then

proposean heuristicthat tries to tradeoff both initiation interval andstall time in orderto minimize the

executiontime of a softwarepipelinedloop.Finally, we show thatschemesbasedon bindingprefetchare

more effective than those based on nonbinding prefetch for software pipelined schedules.

The use of binding and nonbinding prefetching has been previously studied in [58][1] and

[9][37][59][76][7] respectively amongothers.The selective scheduling([1]) schedulessomeoperations

with cache-hitlatency andotherswith cache-misslatency, like theschemeproposedin thispaper. However

theselective schedulingis basedon profiling informationwhereasour methodis basedon a staticanalysis

performedat compile time. In addition,the selective schedulingdoesnot considerthe interactionswith

softwarepipelining.In [20] theauthorsanalyzetheeffect of moduloschedulingmemoryoperationswith

either cache-hitlatency when they exhibit sometype of reuseof cache-misslatency otherwise.Their

resultsshow that in average,this schemeis betterthantheschemethatalwaysusescache-hitlatency but

worsethantheschemethatalwaysusescache-misslatency. Our resultscorroboratethis fact.However, the

scheme proposed in this chapter outperforms both cache-hit and cache-miss based approaches.

5.2. BACKGROUND ON MODULO SCHEDULING

Modulo schedulingis aninstructionschedulingapproachfor loops[61]. In moduloschedulingtechniques

all dependencesandresourceconflictsamongoperationsareconsideredasthe scheduleis built. Unlike

othertechniquesthat scheduleoperationsfrom particulariterationswith previously scheduledoperations

from specific iterations, modulo scheduling schedules an operation from all iterations at the same time.

The objective of moduloschedulingis to engineera schedulefor oneiterationof the loop suchthat

whenthesamescheduleis repeatedat regular intervalsno intra- or inter-iterationdependenceis violated

andno resourceusageconflict arisesamongoperationsfrom eitherthesameor distinct iterations.A soft-

warepipelinedloop via moduloschedulingis characterizedbasicallyby two terms:the initiation interval

(II) andthestagecounter(SC). Theformerindicatesthenumberof cyclesbetweentheinitiation of succes-

sive iterations. The latter shows how many iterations are overlapped.
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Modulo schedulingalgorithmswork asfollows. A lower bound(mII) of the initiation interval (II) is

computed.This lower boundtakes into accountthe numberof available resourcesof eachtype and the

resourcerequirementsof the loop aswell asthedependenceconstraints.Theoperationsof a singleitera-

tion are scheduled in any desired manner but in accordance with the following constraints:

• Inputconstraints:theinputsof anoperationmustbegeneratedlongenoughagosothatthey areavail-

able at the start of the operation (i.e. dependences must be honored).

• Modulo constraints:Let ni bethenumberof resourcesof typeTi availablein thearchitecture.Then,

no more thanni operations requiring resourceTi may be scheduled for the same time moduloII.

In orderto fulfill themoduloconstraints,a modulo reservation table (MRT) is used.TheMRT is a

reservationtableof lengthII cycles.Eachrow of theMRT representsall thetime slotsthatarecon-

gruentmoduloII andeachcolumnrepresentsaresource.An instructionu which is scheduledatcycle

Cu is assigned to row Cu modII in the MRT.

Different heuristics to schedule an iteration define different Modulo Scheduling algorithms.

• If no scheduleis foundwhenschedulinga singleiteration,the II is increasedin oneor severalunits

and the scheduling step is repeated until a correct schedule is found.

• Oncea valid schedulefor oneiterationis foundall theimplied codemotionsto form theprolog,the

kernelandtheepilogaredeterminedby assumingthatthesamescheduleis repeatedexactly every II

cycles.

Theexecutionof a moduloscheduledloop canbedividedinto threedifferentparts:prolog,kernel(or

steadystate)andepilog.Figure5.1 shows thesethreedifferentstagesduring the executionof a modulo

scheduled loop. In this way, the execution time of the loop can be calculated as:

texec = (NITER + SC -1) ·II + tstall

For agivenarchitectureandagivenscheduler, thefirst termof thesum(calledcompute time in therest

of thechapter)is fixedandit is determinedat compiletime. Thestall time is mainly dueto dependences

with previous memoryinstructionsand it dependson the run-time behavior of the program(e.g.,miss

ratio, outstanding misses, etc.).
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In orderto minimizetheexecutiontime,classicalmethodshavetried to minimizetheinitiation interval

with thegoalof reducingthefixedpartof texec. Theminimuminitiation interval is boundedby resources

and recurrences:

mII = max (IIres , IIrec)

TheIIres is thelower bounddueto resourceconstraintsof thearchitectureandassumingthatall func-

tional units are pipelined, it is calculated as:

IIres = max

whereNOPS(x) indicatesthenumberof operationsof typex in the loop body, andNFUS(y) indicatesthe

number of functional units of typey in the architecture.

TheIIrec is the lower bound due to recurrences in the graph and it is computed as:

IIrec = max

whereLAT(x) representsthesumof all nodelatenciesin therecurrencex, andDIST(y) representsthesum

of all edge distances in the recurrencey.

For a particulardataflow dependencegraphanda givenarchitecture,theresultingII is dependenton

thelatency thattheschedulerassignsto eachoperation.Thelatency of operationsis usuallyknown by the

compilerexceptfor memoryoperations,which have a variablelatency. The II alsodependson theNOPS,

which is affectedby thespill codeintroducedby thescheduler. Theotherparameters,NFUS andDIST, are

fixed.

o p ARCH NOPS op( )
NFUS op( )
---------------------------,∈∀ 

 

SC-1

NITER-SC+1

SC-1

PROLOG

KERNEL

EPILOG

Figure 5.1.  Execution stages of a modulo scheduled loop

rec GRAPH LAT rec( )
DIST rec( )
---------------------------,∈∀ 

 
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5.3. ADDING SOFTWARE PREFETCHING

5.3.1. Motivating Example

Conventionalmoduloschedulingproposalsuseafixedlatency (usuallythecache-hittime) to schedule

memoryinstructions.Schedulinginstructionswith its minimum latency minimize the register pressure,

andthus,reducesthespill code.On theotherhand,this minimumlatency schedulingcanincreasethestall

time becauseof datadependences.In particular, if anoperationneedsa datathathasbeenloadedin a pre-

viousinstructionbut thememoryaccesshasnotfinishedyet, theprocessorstallsuntil thedatais available.

Figure5.2 shows a sampleschedulingfor a datadependencegraphanda given architecture.In this

case,memoryinstructionsarescheduledwith cache-hitlatency. If thestall time is ignored,asit is usualin

studiesdealingwith softwarepipelining techniques,the expectedoptimistic executiontime will be (sup-

poseNITER is huge):

= (NITER + 2) · 3 = 3 ·NITER + 6≅ 3 ·NITER

Obviously this is anoptimisticestimationof theactualexecutiontime,whichcanberatherinaccurate.

For instance,supposethatthemissratioof theN1 loadoperationis 0.25(e.g.,it hasstride1 andthereare4

N1
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N4
add
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store
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(b) Data flow dependence graph

(c) Code scheduling

(d) Kernel

Instruction latencies:
load/store : 1-10 cycles
add : 2 cycles
mult : 4 cycles

(a) Original code

DO I = 1, NITER, 1

A(I) = B(I)*k + C(I)

ENDDO

Figure 5.2. A sample scheduling

texecopt
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elementspercacheline). Every cachemisstheprocessorstallssomecycles(calledpenalty). Thepenalty

for a particularmemoryinstructiondependson the hit latency, the miss latency and the distancein the

schedulingbetweenthememoryoperationandthefirst instructionthatusesthedataproducedby themem-

ory instruction.For thedependencebetweenN1 andN2 thepenaltyis 9 cycles,sothestall time assuming

that the remaining dependences do not produce any penalty is:

tstall = NITER · (10 - 1) · 0.25 = 2.25 ·NITER

and therefore

texec = 5.25 ·NITER = 1.75 ·

In this case,theactualexecutiontime is neartwice theoptimisticexecutiontime. If we assumea miss

ratio of 1 insteadof 0.25, the discrepancy betweenthe optimistic and the actualexecutiontime is even

higher. In this case, the stall time is:

tstall = NITER · (10 - 1) · 1 = 9 ·NITER

and therefore

texec = 12 ·NITER = 4 ·

If all memoryreferenceswereconsidered,theeffectof thestall time couldbegreater, andthediscrep-

ancy betweentheoptimisticestimationusuallyutilized to evaluatetheperformanceof softwarepipelined

schedulersand the actual performancecould be much higher. We can also concludethat scheduling

schemes that try to minimize the stall time may provide a significant advantage.

In thispaper, theproposedscheduleris evaluatedandcomparedwith othersusingthetexec metric.This

requiresto considertherun-timebehavior of individual memoryreferences,which requiresthesimulation

of the memory system.

5.3.2. Basic Schemes to Schedule Memory Operations

In thissectionweevaluatetheperformanceof basicschemesto schedulememoryoperationsandpointout

the drawbacks of them, which motivates the new approach proposed in the next section.

We have alreadymentionedin theprevioussectionthatmoduloschedulingschemesusuallyschedule

memoryoperationsusingthecache-hitlatency. This schemewill becalledcache-hit latency (CHL). This

schemeis expectedto produceasignificantamountof processorstallsassuggestedin theprevioussection.

texecopt

texecopt
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An approachto reducethe processorstall is to inserta prefetchinstructionfor every memoryopera-

tion. Suchinstructionsarescheduledat a distanceequalto thecache-misslatency from theactualmemory

references.Thisschemewill becalledinsert prefetch always (IPA). However, thisschememayresultin an

increasein the numberof operations(dueto prefetchinstructionsbut alsoto someadditionalspill code)

and therefore, it may require anII higher than the previous approaches.

Finally, an alternative approachis to scheduleall memoryoperationsusing the cache-misslatency.

This schemewill becalledearly scheduling always (ESA).This schemeprefetchesdatawithout requiring

additionalinstructionsbut it may result in an increasein the II whenmemoryinstructionsare in recur-

rences. Besides, it may also require additional spill code.

Figure5.3comparestheperformanceof theabove threeschemesfor someSPECfp95benchmarksand

two differentarchitectures(detailsabouttheevaluationmethodologyandthearchitecturearegivenin Sec-

tion 5.4).Eachcolumnis split into computeandstall time. In this figureit is alsoshown a lower boundon

the executiontime (LBND). This lower boundcorrespondsto the executionof programswhenmemory

operationsarescheduledusingthe cache-hitlatency (which minimizesthe spill code)but assumingthat

they alwayshit in cache(which resultsin null stall time). This lower boundwasdefinedastheoptimistic

execution time in Section 5.3.1.

The main conclusionthat canbe drawn from Figure5.3 is that the performanceof the threerealistic

schemesis far away from thelower boundin general.TheCHL schemeresultsin a significantpercentage

Figure 5.3. Basic schemes performance
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of stall time (for theaggressive architecturethestall time representsmorethan50%of theexecutiontime

for mostprograms).TheIPA schemereducessignificantlythestall time but not completely. This is dueto

the fact that someprograms(especiallytomcatv and swim) have cacheinterfering instructionsat a very

shortdistanceandtherefore,theprefetchesarenot alwayseffective becausethey maycollide andreplace

somedatabeforebeingused.Besides,theIPA schemeresultsin a significantincreasein thecomputetime

for someprograms(e.g.,hydro2d and turb3d amongothers).The ESA schemepracticallyeliminatesall

thestall time. Theremainingstall time is basicallydueto the lack of entriesin theoutstandingmisstable

that is usedto implementa lockup-freecache.However, this schemeincreasessignificantlythe compute

time for someprogramslike the turb3d (by a factor of 3 in the aggressive architecture),mgrid and

hydro2d. This is due to the memory references in recurrences that limit theII.

5.3.3. Cache Sensitive Modulo Scheduling

In this sectionwe proposea new algorithm,which is calledcache sensitive modulo scheduling (CSMS),

thattriesto minimizeboththecomputetimeandthestall time.Thesetermsarenot independentandreduc-

ing oneof themmayresultin anincreasein theother, aswe have just shown in theprevioussection.The

proposed algorithm tries to find the best trade-off between the two terms.

The CSMS algorithm is basedon early schedulingof someselectively chosenmemoryoperations.

Schedulinga memoryoperationusingthe cache-misslatency canhide almostall memorylatency aswe

have shown in theprevioussectionwithout increasingmuchthenumberof instructions(asopposedto the

use of prefetch instructions). However, it can increase the execution time in three ways:

• It mayincreasetheregisterpressure,andtherefore,it mayincreasetheII dueto spill codeif theper-

formance of the loop is bounded by memory operations.

• It may increaseIIrec because the latency of memory operations is augmented.

• It may increasetheSC becausethe lengthof individual loop iterationsmaybe increased.This aug-

ments the cost of the prolog and the epilog.

Two of themain issuesof theCSMSalgorithmis thereductionof the impactof recurrenceson the II

andtheminimizationof thestall time.Theproblemof thecostof theprologandepilogis handledby com-

putingtwo alternativeschedules.Both focusonminimizing thestall timeandtheII. However, oneof them

reducestheimpactof theprologandtheepilogat theexpenseof anincreasein thestall time whereasthe

otherdoesnot careabouttheprologandepilogcost.Then,dependingon thenumberof iterationsof the

loop, the most effective one is chosen.
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Thecoreof theCSMSalgorithmis shown in Figure5.4(a).Thealgorithmmakesuseof a staticlocal-

ity analysis(asproposedin Chapter2) in additionto otherissuesin orderto determinethe latency to be

considered when scheduling each individual instruction.

Initially, two datadependencegraphswith thesamenodesandedgesaregenerated.Thedifferenceis

just the latency assignedto eachnode.In grph1, eachmemorynodeis taggedaccordingto the locality

analysis:it is taggedwith the cache-hitlatency if it exhibits any type of locality or with the cache-miss

latency otherwise. Ingrph2, all memory nodes are tagged with the cache-miss latency.

Then,a schedulethatminimizestheimpactof recurrenceson the II is computedfor eachgraphusing

thefunctionComputeSchedMinRecEffect thatis shown in Figure5.4(b). Thefirst stepof this functionis to

order the recurrencesaccordingto the IIrec in decreasingorder. After that, the latency of thosememory

operationsinsiderecurrencesthatlimit theII is changedfrom cache-missto cache-hituntil theII is limited

by resourcesor by a more constrainingrecurrence(function MinimizeRecurrence Effect). Nodesto be

modifiedarechosenaccordingto a locality order, startingfrom theonesthatexhibit mostlocality (thepri-

ority order is the next one:self-temporal-spatial,self-temporal,group-trailing,self-spatial,unknown and

without locality).

Figure 5.4. CSMS algorithm

function CSMS(InnerLoop IL)
return Schedulingis
grph1 = CreateGraph(LOClatency)
grph2 = CreateGraph(MISSlatency)
if (RecurrencesInGraph)then

sch1 =ComputeSchedMinRecEffect(grph1)
sch2 =ComputeSchedMinRecEffect(grph2)

else
sch1 = ComputeScheduling(grph1)
sch2 = ComputeScheduling(grph2)

endif
if (NITER UpperBound) then

return (sch1)
else

return (sch2)
endif

endfunction

≤

function ComputeSchedMinRecEffect(Graph G)
return Schedulingis

OrderRecurrencesByRestrictionOrder(G)
II = II res
foreach (Recurrence R G) do

if (II rec(R) II) then
II = MinimizeRecurrenceEffect(R,II)
endif

endforeach
return ComputeScheduling(G)

endfunction

function MinimizeRecurrenceEffect(Rec R, int II)
return integeris
OrderInstructionsByLocality(R)
while (II rec(R) II) do

ChangeMostLocalityInstrLatency(R)
endwhile
return max (II,ComputeII(R))

endfunction

∈
>

>

(a) Overall algorithm

(b) Scheduling a loop with recurrences
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Then,thesecondstepis to computetheactualschedulingusingthemodifiedgraph.This stepcanbe

performed through any of the software pipelined schedulers proposed in the literature.

Finally, theminimumnumberof iterations(UpperBound) thatensuresthat sch2 is betterthansch1 is

computed.A maindifferencebetweenthesetwo schedulesis thecostof theprologandepilogparts,which

is lower for thesch1. This bounddependson thecomputedschedulesandtheresultsof thelocality analy-

sisandit is calculatedthroughanestimationof theexecutiontimeof eachschedule.Thesch1 is chosenif:

The execution time of a given schedule is estimated as:

 = (NITER + SC -1) ·II +

The stall time is estimated as:

 = NITER ·

wherepenalty is calculated as explained in Section 5.3.1:

penalty = LatMiss - (CycleUse - CycleProd)

andthemissratio is estimatedby thelocality analysis.In thisway, sch1 is preferredto sch2 if NITER is less

or equal to:

We usea schedulingaccordingto the locality a not the CHL (which achieves the minimum SC) in

order to take into account the possible poor locality of some loops.

5.4. EVALUATION

In this sectionwe presenta performanceevaluationof theCSMSalgorithm.We compareits performance

to thatof thebasicschemesevaluatedin Section5.3.2.It is alsocomparedwith somealternative binding

(early scheduling) and nonbinding (inserting prefetch instructions) prefetch schemes.

texecsched1
texecsched2

≤

texecest
tstallest

tstallest
penalty op( ) missratio op( )⋅

o p MEM∈∀
∑

SC2 1–( ) I I2⋅ SC1 1–( ) I I1⋅–

I I1 I I2–( ) penalt y1 op( ) penalty2 op( )–( ) missratio op( )⋅
o p MEM∈∀

∑+
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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5.4.1. Architecture model

A VLIW machinehasbeenconsideredto evaluatetheperformanceof thedifferentschedulingalgorithms.

Wehavemodeledtwo architecturesin orderto evaluatedifferentaspectsof theproducedschedulingssuch

asexecutiontime, stall time, spill code,etc.The first architectureis calledsimple andit is composedof

four functionalunits: integer, floatingpoint,branchandmemory. Thecache-misslatency for thefirst level

cacheis 10cycles.Thesecondarchitectureis calledaggressive andit hastwo functionalunitsof eachtype

andthe cache-misslatency is 20 cycles.All functionalunits arefully pipelinedexceptdivide andsquare

root operations.In both modelsthe first memorylevel correspondsto a 8KB lockup-free,direct-mapped

cachewith lines of 32 bytesand 8 outstandingmisses.Other featuresof the modeledarchitecturesare

depicted in Table 5.1.

In the modeledarchitecturestherearetwo reasonsfor the processorto stall: (a) whenan instruction

requiresan operandthat is not availableyet (e.g., it is beingreadfrom the secondlevel cache),and(b)

when a memory instruction produces a cache miss and there are already 8 outstanding misses.

5.4.2. Experimental framework

Thelocality analysisandschedulingtaskhavebeenperformedusingtheICTINEO toolset[4]. After trans-

lating the code to such low-level representationand applying classicaloptimizations,the dependence

graphof eachinnermostloop is constructedaccordingtheparticularprefetchingapproach.Then,instruc-

tionsarescheduledusingany softwarepipeliningalgorithm.Theparticularsoftwarepipeliningalgorithm

usedin theexperimentsreportedhereis theHRMS[65], whichhasbeenshown to beveryeffective to min-

imize both theII and the register pressure.

Other instructions Latency

MACHINE MODEL Simple Aggressive

In
te

g
er

ARITH 2

Integer FUs 1 2 MUL 4

FP FUs 1 2 DIV or POW 6

Branch FUs 1 2

F
lo

at
in

g
 P

o
in

t ARITH 4

Memory FUs 1 2 MUL 8

Cache Size 8 Kb DIV or SQRT or POW 12

Line Size 32 bytes TRIG 2

Outstanding misses 8

C
o

n
tr

o
l JUMP 1

Memory latency 1/10 1/20 BRANCH 2

Number of registers 32 CALL or RETURN 4

Table 5.1. Modeled architectures
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Theresultingcodeis instrumentedto generatea tracethat feedsa simulatorof thearchitecture.Each

programwasrun for the first 100 million of memoryreferences.The performancefiguresshown in this

sectionrefer to the innermostloops(without subroutinecalls) containedin this part of the program.We

have measuredthatmemoryreferencesinsidesuchloopsrepresentabout95%of all thememoryinstruc-

tionsconsideredfor eachbenchmark,so thestatisticsarequite representative of thewholesectionof the

program.

The differentprefetchingalgorithmshave beenevaluatedfor the following SPECfp95benchmarks:

tomcatv, swim, su2cor, hydro2d, mgrid andturb3d.

5.4.3. Early scheduling

In this sectionwe comparetheCSMSalgorithmwith otherschemesbasedon earlyschedulingof memory

operations.Theseschemesare:(i) usealwayscache-hitlatency (CHL), (ii) usealwayscache-misslatency

(ESA),and(iii) scheduleinstructionsthathavesometypeof locality usingthecache-hitlatency andsched-

ule the remainingonesusing the cache-misslatency. This later schemewill be called early scheduling

according to locality (ESL).

Thedifferentalgorithmshave beenevaluatedin termsof executiontime, which is split into compute

andstall time.Thestall time is dueto dependencesor to thelackof entriesin theoutstandingmisstable.In

Figure5.5we canseetheresultsfor boththesimpleandtheaggressive architectures.For eachbenchmark
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Figure 5.5. CSMS algorithm compared with early scheduling
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all columnsarenormalizedto theCHL executiontime. It canbeseenthattheCSMSalgorithmachievesa

computetimeverycloseto theCHL schemewhereasit hasastall timeverycloseto theESAscheme.That

is, it resultsin thebesttrade-off betweencomputeandstall time. In programswhererecurrenceslimit the

initiation interval, andthereforetheESA schemeincreasesthecomputetime (for instancein hydro2d and

turb3d benchmarks),theCSMSmethodminimizethis effect at theexpenseof a slight increasein thestall

time.

TheCSMSschemeincreasestheregisterpressurewhencomparedwith theCHL method.This results

in an increaseof 0.1%and20%of thespill codefor thesimpleandaggressive architecturesrespectively.

However, the penalty of this additional spill code in much lower than the reduction in the stall time.

Table5.2 shows the relative speed-upof the differentschedulerswith respectthe CHL scheme.On

average,all alternative schedulersoutperformtheCHL scheme(which is usuallytheoneusedby software

pipeliningschedulers).However, for someprograms(mainly for turb3d) theESAandESLschedulersper-

form worse than the CHL due to the increasein the II causedby recurrences.The CSMS algorithm

achievesthebestperformancefor all benchmarks.For thesimplearchitecturetheaveragespeed-upis 1.61,

and for the aggressive architecture it is 2.47.

Table5.3 comparestheCSMSalgorithmwith anoptimistic lower executiontime (LBND) asdefined

in Section5.3.2thatis usedasa lowerboundof theexecutiontime.It alsoshowsthepercentageof theexe-

cutiontime thattheprocessoris stalled.It canbeseenthatfor thesimplearchitecturetheCSMSalgorithm

is closeto theoptimisticboundandit doesnot causealmostany stall. For theaggressive architecture,the

performanceof theCSMSis worsethanthatof LBND andthestall time representsabout10%of thetotal

SPECfp95

SIMPLE
ARCHITECTURE

AGGRESSIVE
ARCHITECTURE

ESA ESL CSMS ESA ESL CSMS

tomcatv 2.34 2.28 2.57 3.92 3.41 5.56

swim 2.43 2.04 2.43 3.52 2.14 3.52

su2cor 1.41 0.99 1.44 2.30 1.00 2.53

hydro2d 1.13 1.00 1.45 1.13 1.00 2.78

mgrid 1.15 1.00 1.17 1.12 1.00 1.19

turb3d 0.62 0.73 1.18 0.27 0.33 1.42

HARMONIC
MEAN 1.22 1.13 1.54 0.93 0.88 2.17

Table 5.2. Relative speed-up
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executiontime. Note however, that the lower boundcould be quite below the actualminimum execution

time. Table 5.4 compares the different schemes using the CHL algorithm as a reference point.

For eachschemeit shows theincreasein computetimeandthedecreasein stall time.As wehaveseen

before,schedulingmemoryoperationsusingthe cache-misslatency canaffect the initiation interval and

thestagecount,which resultsin an increasein thecomputetime. Thecolumndenotedas∆Compute repre-

sentstheincrementin computetimecomparedwith theCHL scheduling.For any schemes, it is calculated

as:

∆Compute =

SPECfp95

SIMPLE
ARCHITECTURE

AGGRESSIVE
ARCHITECTURE

LBND/
CSMS %Stall LBND/

CSMS %Stall

tomcatv 0.998 0.02 0.830 13.23

swim 1.000 0.00 0.537 28.87

su2cor 0.972 1.92 0.873 11.17

hydro2d 0.978 0.18 0.962 1.84

mgrid 0.998 0.05 0.680 6.39

turb3d 0.951 2.54 0.709 19.54

HARMONIC
MEAN 0.982 0.00 0.737 6.31

Table 5.3. CSMS compared with LBND scheduling
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SIMPLE
ARCHITECTURE

AGGRESSIVE
ARCHITECTURE

ESA ESL CSMS ESA ESL CSMS

∆Compute ∇Stall ∆Compute ∇Stall ∆Compute ∇Stall ∆Compute ∇Stall ∆Compute ∇Stall ∆Compute ∇Stall

tomcatv 10.05 100.00 0.00 91.95 0.00 99.98 55.03 97.21 1.34 83.36 4.69 97.20

swim 0.00 100.00 -1.94 85.19 0.00 100.00 32.89 90.27 18.42 66.25 32.23 90.34

su2cor 4.74 100.00 1.48 2.54 0.88 95.90 21.80 97.67 6.10 4.09 2.03 93.27

hydro2d 42.07 99.99 9.54 3.79 11.00 99.62 153.46 99.85 6.93 4.84 2.02 98.98

mgrid 2.35 99.89 -0.23 3.59 0.11 99.68 47.10 87.58 2.81 5.19 37.60 87.57

turb3d 98.38 94.35 68.49 85.75 2.36 94.35 621.80 98.21 494.40 87.59 13.20 72.48

GEOMETRIC
MEAN 2.78 99.01 0.87 16.88 0.12 98.22 74.95 95.02 10.69 19.17 8.22 89.51

Table 5.4. Increment of compute time and decrement of stall time in relation to the CHL (in percentage)

texecs
tstalls

–〈 〉 texecCHL
tstallCHL

–( )–

texecCHL
tstallCHL

–
------------------------------------------------------------------------------------------- 100×
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The stall time due to dependencescan be eliminatedby schedulingmemoryinstructionsusing the

cache-misslatency. By default, spill codeis scheduledusing the cache-hitlatency and thereforeit may

causesomestalls,althoughit is unlikely becausethespill codeusuallyis a storefollowedby a loadto the

sameaddress.Sinceusuallythey arenot close(otherwisethe spill codehardly reducesthe registerpres-

sure),the load will causea stall only if it interfereswith a memoryreferencein betweenthe storeand

itself. The columndenotedas∇Stall representsthe percentageof the stall time causedby the CHL algo-

rithm that is avoided. For any schemes, it is calculated as:

∇Stall (%) =

We canseein Table5.4 that the CSMSalgorithmachievesthe besttrade-off betweencomputetime

andstall time,which is thereasonfor outperformingtheothers.TheESA schemeis thebestoneto reduce

the stall time but at the expenseof a large incrementin computetime, mainly when the architecture

becomes more aggressive.

5.4.4. Inserting prefetch instructions

In orderto reducethepenaltiescausedby memoryoperations,analternative to earlyschedulingof mem-

ory instructionsis insertingprefetchinstructions,whichareprovidedby many currentinstructionsetarchi-

tectures(e.g.,the touch instructionof thePowerPC[19]). This new schemecanintroduceadditionalspill

codesinceit increasesthe registerpressure.In particular, the lifetime of valuesthat areusedto compute

the effective addressis increasedsincethey areusedby both the prefetchandordinarymemoryinstruc-

tions. It can also increase the initiation interval due to additional memory instructions.

We have evaluatedthree alternative schemesto introduceprefetchinstructions:(i) insert prefetch

always(IPA), (ii) insertprefetchfor thosereferenceswithout temporallocality evenif they exhibit spatial

locality, accordingto thestaticlocality analysis(IPT), and(iii) insertprefetchfor thoseinstructionswith-

outany typeof locality (IPL). Thefirst schemeis expectedto resultin avery few stallsbut it requiresmany

additionalinstructions,whichmayincreasetheII. TheIPT schemeis moreselectivewhenaddingprefetch

instruction.However, it addsunnecessaryprefetchinstructionsfor somereferenceswith just spatiallocal-

ity. Instructionswith only spatiallocality will causeacachemissonly whenanew cacheline is accessedif

it is not in cache.The IPL schemeis the mostconservative in the sensethat it addsthe lessnumberof

prefetch instructions.

tstallCHL
tstalls

–

tstallCHL

------------------------------------- 100×
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In Figure5.6 it is comparedthetotal executiontime of theCSMSschedulingagainsttheabove-men-

tionedprefetchingschemes.Thefiguresarenormalizedto theCHL scheduling.TheCSMSschemealways

performsbetterthantheschemesbasedon insertingprefetchinstructionsexceptfor themgrid benchmark

in theaggressive architecture.In this lattercase,theIPA schemeis thebestonebut theperformanceof the

CSMS is very close to it.

Amongtheschemesthat insertprefetchinstructions,noneof themoutperformstheothersin general.

Dependingon the particularprogramandarchitecture,the bestoneamongthemis a differentone.The

prefetchschemesoutperformtheCHL schemein general(i.e., theperformancefiguresin Figure5.6arein

generallower than1) but in somecasesthey maybeevenworsethantheCHL, which is in generalworse

than the schemes that are based on early scheduling.

Comparingbinding(Figure5.5)with nonbinding(Figure5.6)schemes,it canbeobservedthatbinding

prefetchis alwaysbetterfor the threefirst benchmarks.Both schemeshave similar performancefor the

next two benchmarks and only for the last one, nonbinding prefetch outperforms the binding schemes.

To understandthereasonsfor thebehavior of theprefetchschemes,we presentbelow someadditional

statisticsfor theaggressivearchitecture.Table5.5shows thepercentageof additionalmemoryinstructions

thatareexecutedfor theCSMSalgorithmandfor thoseschemesbasedon insertingprefetchinstructions.

In the CSMSalgorithm,additionalinstructionsareonly dueto spill codewhereasin the otherschemes

they aredueto spill codeandprefetchinstructions.Wecanseein this tablethat,exceptfor theIPL scheme

(a) Simple architecture (b) Aggressive architecture

Figure 5.6. CSMS algorithm compared with inserting prefetch instructions
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for themgrid benchmark,theprefetchschemesrequiremuchhighernumberof additionalmemoryinstruc-

tions.As expected,the increasein numberof memoryinstructionsof the IPA schemeis the highest,fol-

lowed by IPT, then the IPL and finally the CSMS.

Table5.6 shows the increasein computetime andthedecreasein stall time of theschemesbasedon

insertingprefetchinstructionsin relationto theCHL scheme.Negativenumbersindicatethatthestall time

is increased instead of decreased.

We canseein Table5.6 that the computetime is increasedby prefetchingschemessincethe large

numberof additionalinstructionsmayimply asignificantincreasein theII for thoseloopsthatarememory

SPECfp95

AGGRESSIVE ARCHITECTURE

CSMS

INSERTING PREFETCH INSTR.

IPA IPT IPL

tomcatv 32.12 60.99 50.29 53.84

swim 38.75 64.00 48.47 44.77

su2cor 0.00a

a.Thereis spill code,but not in thesimulatedpartof thepro-
gram.

60.52 48.71 23.34

hydro2d 2.12 55.49 39.94 2.85

mgrid 49.90 59.26 56.57 7.50

turb3d 0.00a 69.16 49.19 51.34

ARITHMETIC
MEAN 20.48 61.57 48.86 30.60

Table 5.5. Percentage of additional memory references

SPECfp95

SIMPLE ARCHITECTURE AGGRESSIVE ARCHITECTURE

IPA IPT IPL IPA IPT IPL

∆Compute ∇Stall ∆Compute ∇Stall ∆Compute ∇Stall ∆Compute ∇Stall ∆Compute ∇Stall ∆Compute ∇Stall

tomcatv 7.98 49.50 2.06 65.03 2.31 48.85 40.26 23.38 6.04 67.21 8.05 19.50

swim 27.98 82.34 22.62 55.51 19.70 54.66 65.13 -18.63 24.34 45.63 34.86 3.18

su2cor 11.85 95.38 9.18 95.07 0.59 1.84 45.63 74.54 27.03 82.31 9.30 -3.04

hydro2d 31.22 97.90 17.31 90.83 9.70 17.53 63.87 85.01 8.67 86.85 0.57 4.43

mgrid 4.82 99.33 22.49 88.74 1.41 3.31 31.28 88.39 26.71 35.49 3.16 5.56

turb3d 18.43 94.41 10.08 90.35 5.47 85.78 87.20 69.00 78.60 74.00 49.60 82.60

GEOMETRIC
MEAN 13.94 84.22 10.90 79.37 3.552 17.04 52.46 NaN 20.41 62.14 7.84 NaN

Table 5.6. Increment of compute time and decrement of stall time for
schemes based on inserting prefetch instructions (in percentage)
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bound.The stall time is in generalreduced,but the reductionis lessthanthat of the CSMSscheme(see

Table5.4).Theprogrammgrid is theonly onefor which thereis a prefetchbasedscheme(IPA) thatout-

performstheCSMSalgorithm.However, thedifferenceis very slight andfor theremainingprogramsthe

performanceof theCSMSschemeis overwhelminglybetterthanthattheIPA scheme.Table5.7shows the

missratio of thedifferentprefetchingschemescomparedwith themissratio of a nonprefetchingscheme

(CHL).

We canseethatin generaltheschemesthatinsertmostmemoryprefetchesproducethehighestreduc-

tions in missratio. However, insertingprefetchinstructionsdo not remove all cachemisses,even for the

schemethat insertsa prefetchfor every memory instruction (IPA). This is due to cacheinterferences

betweenprefetchinstructionsbeforethe prefetcheddatais used.This is quite commonin the programs

tomcatv andswim. For instance,if two memoryreferencesthat interferein thecachearevery closein the

code,it is likely that the two prefetchescorrespondingto themarescheduledbeforeboth memoryrefer-

ences.In this case,at leastoneof thetwo memoryreferenceswill missin spiteof theprefetch.Besides,if

the prefetchesand memoryinstructionsare scheduledin reverseorder (i.e., instructionA is scheduled

before B but the prefetch of B is scheduled before the prefetch of A), both memory instructions will miss.

To summarize,therearetwo mainreasonsfor thebadperformanceof theschemesbasedon inserting

prefetch instructions when compared with the CSMS scheme:

• They increase the compute time due to the additional prefetch instructions and spill code.

• They arenotalwayseffective in removing stallscausedby cachemissesdueto interferencesbetween

the prefetch instructions.

SPECfp95
AGGRESIVE ARCHITECTURE

CHL IPA IPT IPL

tomcatv 68.02 41.08 49.71 43.37

swim 64.65 31.55 44.18 51.56

su2cor 25.43 2.35 5.68 21.55

hydro2d 19.57 1.33 5.04 18.80

mgrid 6.46 0.57 2.91 5.35

turb3d 10.68 2.11 2.39 2.64

GEOMETRIC
MEAN 23.07 4.11 8.71 15.29

Table 5.7. Miss ratio for the CHL and the different prefetching schemes
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5.5. CHAPTER SUMMARY

The interactionbetweensoftwareprefetchingandsoftwarepipelining techniquesfor VLIW architectures

hasbeenstudied.We have shown thatmoduloschedulingschemesusingcache-hitlatency producemany

stalls due to dependenceswith memoryinstructions.For a simple architecturethe stall time represents

about32% of the executiontime and63% for an aggressive architecture.Thus,ignoring memoryeffects

when evaluating a software pipelined scheduler may be rather inaccurate.

We have comparedtheperformanceof differentprefetchingapproachesbasedon eitherearlyschedul-

ing of memoryinstructions(bindingprefetch)or insertingprefetchinstructions(nonbindingprefetch).We

haveseenthatbothprovideasignificantimprovementin general.However, methodsbasedonearlysched-

uling outperformthosebasedon insertingprefetches.Themainreasonsfor theworseperformanceof the

lattermethodsarethe increasein memorypressuredueto prefetchinstructionsandadditionalspill code,

and their limitation to remove short-distance conflict misses.

We have proposedan heuristicschedulingalgorithm(CSMS),which is basedon early schedulingof

somememoryinstructions,thattriesto minimizeboththecomputeandthestall time.Thealgorithmmakes

useof a staticlocality analysisto scheduleinstructionsin recurrences.We have shown that it outperforms

the rest of strategies. For instance,when comparedwith the approachbasedon schedulingmemory

instructionsusingthecache-hitlatency, theproducedcodeis 1.6timesfasterfor asimplearchitecture,and

2.5 timesfasterfor anaggressive architecture.In the formercase,we have alsoshown that theexecution

time is very close to an optimistic lower bound.



6
INSTRUCTION SCHEDULING

FOR CLUSTERED VLIW ARCHITECTURE S

Clustered organizationsare becominga commontr end in the designof VLIW architectures.In this

chapter we first proposea novel modulo schedulingapproachfor architecturesin which both regis-

ter file and functional units are partitioned. The proposedtechnique performs the cluster assign-

ment and the instruction schedulingin a singlepass,which is shown to be more effective than doing

first the assignmentand later the scheduling. Wealsoshow that loop unrolling significantly enhances

the performanceof the proposedscheduler, especiallywhenthe communicationchannelamongclus-

ters is the main performancebottleneck.By selectively unrolling someloops,we can obtain the best

performance with the minimum increasein codesize.Performance evaluation shows that the clus-

tered architecture achieves about the sameIPC (Instructions Per Cycle) as an equivalent unified

architecturewith the sameresources.Then, the algorithm is extendedto clusteredarchitectureswith

a distrib uted data cache. The proposedalgorithm takes into account both register and memory

inter-cluster communications.It hasbeenevaluated for both 2- and 4-cluster configurations and for

differ ent number and latency of inter-cluster buses.It is shown that the proposedalgorithm pro-

ducesscheduleswith very low communication requerimentsand it outperforms previouscluster-ori-

ented schedulers.
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6.1. INTRODUCTION

Semiconductortechnologyhasexperienceda continuousimprovementin thepastandcurrentprojections

anticipatethat this trendwill continuein the forthcomingyears[93]. By reducingthe minimum feature

size,new technologieswill packmorelogic in a singlechip but new problemsmayarise.Technologypro-

jectionspoint out thatwire delayswill beoneof themainhurdlesfor improving instructionthroughputof

futuremicroprocessors[93]. As wire delaysgrow relative to gatedelaysandfeaturesizesshrink,theper-

centageof on-chiptransistorsthatcanbereachedin a singlecycle will decrease,andmicroprocessorswill

becomecommunication bound rather thancapacity bound [2][71].

In thesameway, anapproachto enhancetheprocessorperformanceis to exploit moreinstruction-level

parallelism(ILP). However, this requiresmorefunctionalunits, registersandmoreresourcesin general.

This incrementin resourcescanaffect thecycle time of theprocessor. For instance,Palacharlaet al. [80]

showed that the bypassdelayandthe registerfile accesstime aresomeof the critical delaysof current

microprocessors.

Proposedapproachesto dealwith theseproblemsarebasedonexploiting communicationlocality. The

basicideais to divide thesysteminto severalprocessing“units” thatcanwork almostindependentlyandat

averyhigh frequency. Then,somecommunicationchannelsareincludedin orderto exchangesignals/data

among “units”. This partition of the processor in quasi-independent units is nowadays calledclustering.

Currenttrendsin clusteringfocuson thepartitionof theregisterfile. Functionalunitsaregroupedand

assignedto a registerfile partitionsothey canonly readtheiroperandsfrom their local registerfile. Values

generatedby oneclusterandneededby anothermustbecommunicated.In this way, bothbypassesamong

functionalunits andportsof the registerfile arereducedaswell asthe numberof registersof eachlocal

register file. Clustereddesignscan be found in currentresearchproposals(multiscalar[29][95], multi-

threading[69], traceprocessors[88][106], etc.)andevenin somecommercialsuperscalarprocessorssuch

as the Alpha 21264[39]. However, this trend is even more commonfor VLIW processorsusedin the

embedded/DSPdomain.Examplesof thelatteraretheTexasInstrument’sTMS320C6000[101], theEqua-

tor’s MAP1000 [68], the Analog’s TigerSharc [30] and the HP/ST’s Lx plattform [25].

In thischapterwe focusonclusteredVLIW architectures.As previouslymentionedin Chapter5, soft-

warepipeliningis a very effective techniqueto staticallyscheduleloops.Themostpopularschemeto per-

form softwarepipelining is calledmoduloscheduling.In this chapterwe first proposea cluster-oriented

moduloschedulingalgorithmfor an architecturewhich hasall the resourcespartitioned.For the sake of
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simplicity, wefirst consideraclusteredarchitecturewith asharedcachememoryandproposeanalgorithm

for reducinginter-clusterregistercommunicationandmaximizingworkloadbalance.By performingthe

clusterassignmentandthe instructionschedulingat the sametime andby usingloop unrolling, the pro-

posedtechniquecanhidepracticallyall thecommunicationlatency, resultingin anIPCverysimilar to that

of a unified architecturewith the sameresources,for different communicationdelaysand bandwidths.

When the cycle time is factoredin, the clusterarchitectureachievesan averagespeed-upof 3.6 for the

SPECfp95 on a 4-cluster configuration.

Then,we considera clusteredVLIW microarchitecturewith a distributedcachememory. This archi-

tecturehasall the resourcesdistributed: instructionfetch, executeandmemoryunits. It resemblesvery

mucha multiprocessor, with theexceptionthatall theclustersprogressin a lockstepmode,andinter-clus-

ter registercommunicationsarecontrolledby thecompilerby meansof certainfields in theISA. Because

of this resemblance we refer to this architecture as amultiVLIWprocessor.

Theeffectivenessof this microarchitecturestronglydependson theability of thecompilerto generate

codethat balancesthe workloadof the differentclustersandresult in few inter-clustercommunications.

We proposea modulo schedulerfor multiVLIWprocessors that includessomeheuristicsfor minimizing

inter-clusterregister communication,basedon the information provided by the datadependencegraph.

Besides,it implementsa powerful memory locality analysisbasedon Cache Miss Equations [33] as

describedin Chapter2, whichguidestheschedulingof memoryinstructionswith theobjectiveof minimiz-

ing/hiding inter-cluster memory communications.

6.2. PREVIOUS WORK

Thereareseveralworks relatedwith instructionschedulingfor clusteredarchitectures.Thefirst proposal

for solving theproblemof schedulinginstructionsfor partitionedregisterfiles is in thework by Ellis in a

prototypecompiler called Bulldog [24]. That work implementstrace schedulingand decidescluster

assignmentsto the instructionsin the trace.In that algorithm clusterselectionand list schedulingare

treatedastwo sequentialphases.Theclusterassignmentstepusesa BUG algorithm(Bottom-UpGreedy).

Communication operations are inserted during the scheduling step if necessary.

Capitanioetal. presentaschedulingalgorithm[11] whoseobjective is codepartitionwhentheVLIW

clusteredarchitecturedoesnot have full connectivity amongall registersandfunctionalunits.The algo-

rithm strategy also performs cluster assignment and instruction scheduling in two sequential phases.
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Janget al. [50] presentanotherschedulingschemethatusesseparateassigning/schedulingphases.In

their work, a graphis partitionedusinga k-way partitioningalgorithm(wherek is thenumberof clusters).

Theirmainaimis to achiveabalancedscheduling.In thedependencegrapheachnoderepresentsaregister

(or value) instead of an operation in order to provide flexibility in their retargetable compiler.

Theseworks differ from the approachpresentedin this chapterin two basicaspects:they focuson

schedulinginstructionsin acyclic codes(moreparticularly, they do not dealwith moduloscheduling)and

follow anapproachwhereclusterassignmentandinstructionschedulingareperformedin two sequential

steps.

Özeret al. [78] proposea schedulingalgorithmcalledunified-assign-and-scheduling(UAS) that dif-

fers from previous approachesto schedulinginstructions.Insteadof first partitioning the instructions

amongthe clustersandthenschedulingthem,thesetwo stepsareperformedat the sametime. The algo-

rithm proposedin this paperfollows thesamestrategy. However, our work focuseson moduloscheduling

instead of list scheduling.

Therearea coupleof works relatedto moduloschedulingfor clusteredarchitectures.Nystromand

Eichenberger[77] presentanalgorithmto assignnodesto clusterswhenmoduloschedulingis performed.

Their algorithmdealswith caseswherethe connectionamongthe differentregisterfiles is bus-basedor

grid-based.Their approachfollows a strategy wherethe clusterassignmentand nodeschedulingcorre-

spondto differentphases.If any of themfails, the algorithmis re-startedby incrementingthe initiation

interval. They focuson two mainaspects:theimpactof loop-carrieddependencesandthenegative impact

of aggressively filling clusters.They obtain good resultsfor the loops evaluatedbut their architecture

almostnever saturatesthe communicationchannels(becausethey assumesufficient low-latency buses),

andtherebytheeffect of communicationis very low. However, aswe will seein a latersection,whenthe

numberof channels(busesin ourcase)decreasesor thecommunicationlatency increases,theperformance

of this algorithm is significantly degraded.

Fernandeset al. [28] proposeanapproachto performbothschedulingandpartitioningin a singlestep

for softwarepipelinedloops.However, they assumeanarchitecturewith anunusualregisterfile organiza-

tion based on a set of local queues for each cluster and a queue file for each communication channel.

Therearealsosomeworksthatscheduleinstructionsdynamicallyamongthedifferentclustersof func-

tional units for a variety of architectures. Some interesting works are [56][27][92][69][10].
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6.3. SCHEDULING FOR A SEMI-DISTRIBUTED ARCHITECTURE

In this sectionwe first describethe clusteredarchitecture,including the VLIW instructionformat which

incorporatesexplicit controlof inter-clusterregistercommunications.Wethenpresenttheschedulingalgo-

rithm that includes selective loop unrolling.

6.3.1. Architecture

TheclusteredVLIW architecturethatwe assumein this sectionis shown in Figure6.1. It is composedof

differentclusters,eachonemadeup of differentfunctionalunitsanda local registerfile. Valuesgenerated

by oneclusterandconsumedby anotherarecommunicatedthrougha bus sharedby all theclusters.The

architecturemay have oneor several busesin orderto communicatevaluesamongthe differentclusters.

Whena valueis communicated,the employedbus is busy during the latency of the communication.The

clusterthatwritesonto thebusandthecluster/sthat readfrom thebusarecodifiedin theVLIW instruc-

tion, asdescribedbelow. All theclustersalsosharethememoryhierarchy, startingfrom theL1 cache.In

this work we have consideredthatall clustersarehomogeneous(i.e., samenumberof registersandtype/

numberof functional units) althoughthe proposedschedulingtechniquescan easily be generalizedfor

non-homogeneous configurations.

FUFUFU FUFUFU

CLUSTER 1 CLUSTER n
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Figure 6.1. VLIW clustered architecture and detailed architecture of a single cluster
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Thedetailedarchitectureof a singleclusteris alsoshown in Figure6.1.Theinputsof eachfunctional

unit aremultiplexedamongavaluereadfrom thelocal registerfile, valuesobtainedthroughbypassesfrom

otherfunctionalunits of the samecluster, andfinally the valuethat comesfrom a bus.This last valueis

storedin a specialregistercalledincomingvalueregister(IRV), andcanfeeda functionalunit and/orbe

storedin thelocal registerfile (in thecasethatanotherinstructionscheduledin this clusterneedsthevalue

later).Ontheotherhand,thedatathatis placedonthebuscanbeeitherobtainedfrom theoutputof a func-

tional unit or from the local register file.

Registervaluesgeneratedby oneclusterandneededby anotheronearecommunicatedthroughasetof

busesthataresharedby all clusters(calledregister buses). A valuethat is put in a registerbuscancome

from either the local registerfile or the outputof a functionalunit througha short-circuit.On the other

hand,a valuethat is readfrom thebuscanbestoredin a registerfile, feeda functionalunit or both.Thus,

instructionregister operandscan be readfrom either the local register file or any bus, and instruction

resultscanbewritten into the registerfile andto any registerbus.All registercommunicationoperations

areexplicitly encodedin the appropriatefields of the VLIW instruction,which aresetat compile time.

Thus,noadditionalhardwareis neededto manageandarbitrateregisterbuses.ThedetailedVLIW instruc-

tion format is shown in Figure6.2.A stall in oneclusteraffectsall theothers,sothatall theclusterswork

on thesameVLIW instruction.Eachinstructionfor a particularclusterconsistsof thefollowing fields.An

operationfor eachfunctionalunit in thatparticularcluster(FUj) andthesource(IN BUS)andtarget(OUT

BUS)of thebus(thereareasmany IN/OUT fieldsasnumberof buses).TheIN BUSfield indicates,if nec-

essary, theregisterin thelocal registerfile in which thevaluein IRV hasto bestored.IRV (Incoming Reg-

ister Value) is a specialregisterin eachclusterthat latchesthe valuethat comesfrom the bus.The OUT

BUS field indicatesfrom which local registera valuehasto be issuedto the bus, if any. If the registeris

...UF1 UF2 UFn IN
BUS

OUT
BUS...FU1 FU2 FUn IN

BUS
OUT
BUS

OP SRC1 SRC2 TARGET

FU Input Mux
•Register

•IRV

•Constant

•Unused

Bus Output
•Register

•Unused

Bus Input
•Register

•Null
FU Output

•Register

...CLUSTER1 CLUSTER2 CLUSTERn

Figure 6.2. VLIW instruction format

VLIW Instruction
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beingwritten in thatcycle, thedatawill bebypassedfrom theoutputof thecorrespondingfunctionalunit.

As a busis a resourcesharedby all theclusters,whenoneparticularclusterplacesa dataon thebus(OUT

BUS), this buswill bebusyduring theentirebus latency andno otherinstructioncanusethis busmean-

while (a bus is considered by the scheduling algorithm as another resource in the reservation table).

6.3.2. Basic Scheduling Algorithm

In this sectionwe presenttheproposedmoduloschedulingalgorithmfor semi-distributedclusteredVLIW

architectures.We first presenta basicschedulingalgorithm,which tries to reducethe penaltiesof inter-

clustercommunicationsasits maingoal,sincethebusesarethemostconstrainedresourcefor many loops.

However, this kind of algorithmsarenot sufficient for many loops(sincemany communicationscannotbe

hidden).Therefore,in next sectionwe alsopresentanalgorithmfor unrolling someloopsin orderto fur-

ther reduce the impact of communications on the final scheduling.

Algorithm

Themainobjective of theBasic Scheduling Algorithm (BSA) is to reducethenumberof communications

or, in otherwords,obtainthesameII asanhypotheticalunifiedarchitecture(thatis, withoutclusteringand

with the samenumberof resources).Our algorithmemploys a unified assign-and-scheduleapproach,as

proposedby Özer et al. [78] for non-cyclic scheduling,wherethe clusterselectionheuristicsprioritize

those clusters that minimize the number of communications.

Theschedulingalgorithmis shown in Figure6.3.In thefirst stepof thealgorithm(1) a list with all the

nodesof thegraphis built (which representinstructions).In this list, all nodesaresortedin orderto reflect

thesequenceto follow during theschedulingphase.We have chosentheorderingperformedby theSMS

[66]. This orderinggivespriority to thenodesin recurrenceswith thehighestRecMII (thatis, accordingto

their criticallity). RecMII standsfor the minimum initiation interval constrainedby recurrences.Besides,

theresultingorderensuresthata nodein a particularpositionof the list only haspredecessorsor succes-

sorsbeforeit (except in the caseof sortinga new subgraph).Moreover, nodesthat areneighborsin the

graph are placed close together in the ordering.

Oncethenodeshavebeensorted,andfollowing thisordering,eachoneis scheduledin theappropriate

cycle andcluster. If thecurrentnodedoesnot have a predecessornor a successor, thedefault cluster(def-

cluster variable)is setto thenext oneaccordingto a circularorder(2). Otherpossibilitiesfor selecting

the default cluster are feasible, such as choosing the least loaded one.
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The coreof the algorithmis in fragment(3). In this loop we attemptto schedulethe currentnodein

eachpossiblecluster(i.e. thoseclusterswith an emptyslot for the correspondingfunctionalunit). Those

clustersfor which theinsertionof this nodewould increasetheregisterrequirementsabove thenumberof

available registersare discarded1. The variabletmpoutedges representsthe numberof edgesfrom the

nodesscheduledin the candidatecluster(including the currentnode)to the restof nodes.This measure

representsthenumberof communicationsneededin thisclusterif theschedulewouldfinishhere.Theidea

of our algorithmis to schedulea nodein theclusterthatresultsin thebestuseof outedges.For this reason

theprofit in a cluster(profit[c]) is definedasthedifferencebetweentheoutgoingedgesbeforeandafter

schedulingthecurrentnodein this cluster. Then,a list of theclusterswith thehighestprofit is built (4). If

no clusteris in the list (all theslotsof the functionalunitsarefull, or noneof the registersnor busesare

available),thentheinitiation interval is increasedandthewholeprocessis reinitialized(5). Otherwise,one

1. Insertionof spill codemayimprovetheperformanceof theproposedalgorithm.Techniquesto insertspill codeonthe
fly can be found elsewhere [54] and are beyond the scope of this work.

(1)NLIST = OrderNodes(G);
foreach (n in NLIST) do {
// Check if it is a new subgraph

(2) if (!SchedPred(n, G) && !SchedSucc(n, G))
defcluster = NextCluster(defcluster);

// Compute the profit contributed in outedges
(3) foreach (c in CLIST) do {

tmpoutedges = TryNodeOnCluster(n, c, G);
profit[c] = OutEdgesOnCluster(c) - tmpoutedges;

}
// Build a list with the best ones

(4) candlist = ChooseBestProfit(profit);
// Choose the most appropriate

(5) if (ListLenght(candlist) == 0) {
II++;
ReInitialize();

}
if (ListLenght(candlist == 1)

(6) chosen = ChooseCluster(candlist);
else {

(7) if (n = ExistPredOrSuccInCand(candlist))
chosen = n;

else {
(8) if (candlist[defcluster] == Ok)

chosen = defcluster;
else

(9) chosen = MinimizeRegRequirements(candlist);
}

}
(10)ScheduleNode(n, chosen);

}

Figure 6.3. Basic scheduling algorithm



Instruction Scheduling for Clustered VLIW Architectures 103

clusteris chosenaccordingto thenext prioritizedcriteria:theonly one(6), theclusterwith any predecessor

or successor(if any) of the currentnode(7), the defcluster (8), or the onethat minimizesthe register

requirements(9). Oncetheclusteris chosen,thenodeis scheduledin theappropriatecycle andbothfunc-

tional unit and bus (if needed) are marked as occupied in the reservation table (10).

Note in particular the following cases:

a) Thefirst nodeof anew subgraphis beingscheduled:asit hasnosuccessornorpredecessoralready

scheduled,thebenefitin outedgesis thesamefor all theclusters.Therefore,thechosenclusteris the

default one.

b) If theloophasbeenunrolledandanodeof aparticulariterationis beingscheduledandthenodedoes

nothaveany dependencewith nodesin otheriterations,thebenefitwill bemaximizedif it is sched-

uled in the same cluster as the other nodes of the same iteration.

Therefore,this algorithmtriesto schedulesubgraphsthataredisconnectedin differentclusters,andin

particular, iterations of an unrolled loop follow this trend.

Evaluation

For a clusteredVLIW architecture,both II andSC canbeaffectedby inter-clustercommunications.If the

communicationbusesbecomesaturated,a higherII is required.On theotherhand,communicationopera-

tionsmay increasethe lengthof theschedule,andthereforetheSC maybe increased.Thus,the IPC of a

VLIW clusteredarchitecturewill be lower than that of a VLIW unified architecturewith the same

resources in general.

In this sectionwe show how thenumberandlatency of busesaffect thefinal moduloschedulingin a

VLIW clusteredarchitecturecomparedto a unifiedarchitecturewith thesameresources(functionalunits

andregisters).We alsohighlight thedifferencesbetweenapproachesthatperformfirst thepartitioningof

instructionsamongclustersandthencomputethe schedulefor eachclusterandapproachesthat do both

taskssimultaneously. In general,thelattertypeof methodswill bebetter, sincethepartitioningmaybenefit

from information obtained from the partial schedule.

Figure6.4 shows performanceresultsrelative to a unifiedmachineobtainedthroughsimulationcom-

paredwith anhypotheticalunifiedmachined.It shows theperformanceof thebasicalgorithmwe propose

basedon a unifiedassign-and-schedulestrategy andthealgorithmproposedby NystromandEichenberger

[77], which consistsof a first phasefor performingthegraphpartitioninganda secondphasefor schedul-
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ing eachnodein the correspondingcluster. For the latter approachwe have usedthe clusterassignment

algorithm that they proposed and then, we have used the SMS instruction scheduler [66].

Graphson theleft show theresultsfor a2-clusterconfigurationwhereason theright theresultsarefor

a 4-clusterconfiguration(seeSection6.3.4 for more detailsabouteachparticulararchitectureand the

bechmarksevaluated).In thesefigures,we can seethe relative performanceaveragedfor all evaluated

benchmarks.In thesetwo figureswecanalsoseetheresultsof ourbasicschedulingalgorithm(BSA, lines

marked with circles) and Nystrom et al. (N&E, lines marked with diamonds)assumingbuseswith a

latency of one (L=1, solid line) and two (L=2, dotted line) cycles.

We canseein thesefiguresthat assumingthe sameconfigurations(clusters,busesand latencies)as

usedby Nystromet al., our basicalgorithmproducesschedulesthathave anIPC about7% higher. In that

paper, theproposedalgorithmis evaluatedwith theconfigurations2-cluster/2-busesand4-cluster/4-buses

(andbothassuming1-cycle latency buses).Theresultsobtainedthere(even thoughfor a setof programs

differentfrom ours)demonstratedthat their schedulingalgorithmobtainedfor 94%and98%of the loops

thesameII asaunifiedmachinewith thesamenumberof resources.Wedonotshow ourresultsin termsof

II but in relative IPC,which is definedastheIPC obtainedfor theclusteredconfigurationswith respectto

theunifiedconfiguration(this measureis morerealisticsinceprolog,epilogandtheactualnumberof iter-

ationsof eachloop aretakeninto account).Looking at Figure6.4, for thesameconfigurationswe cansee

thatastrategy basedonperformingtheclusterassignmentandschedulingat thesametimeperformsbetter

than a scheme based on a two-step approach.
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Figure 6.4. Relative performance of VLIW clustered architectures assuming the same cycle time



Instruction Scheduling for Clustered VLIW Architectures 105

Thesecondimportantconclusionthatwecandraw from Figure6.4is thattheperformanceof theclus-

teredarchitecturesignificantlydecreaseswhenthenumberof busesdecreasesor the latency of thebuses

increases.This canbeobservedfor bothapproachesalthoughto a lesserextentfor our proposal.This deg-

radation is caused by the fact that the bus (or buses) becomes the bottleneck of the architecture.

6.3.3. Adding Loop Unrolling

As we have seenin the previous section,the communicationbusesmay be the main performancebottle-

neck,evenwhentheschedulingalgorithmtries to reducethenumberof communicationsamongclusters.

The alternative we proposeto reducethe pressureon the busesis to apply the previous BSA scheduling

algorithmto anunrolledgraph.Loop unrolling is a well-known technique.Usingboth loop unrolling and

moduloschedulingwasproposedby Lavery andHwu [62] in orderto reduceresourcerequirementsand

thelengthof critical paths.Their observationwasthatusingloop unrolling theactualMII (minimuminiti-

ationinterval) for theunrolledloop is closerto therealMII whenthevalueis rounded.In ourcase,therea-

sonfor applyingloop unrolling is that many timesloopspresentvery few dependencesamongiterations

(loop-carrieddependences).Therefore,schedulingdifferent iterationson different clustersrequire few

communicationandin addition,theworkloadis balancedsinceall iterationsperformthesameamountof

work.

However, a drawbackof loop unrolling is codeexpansion,which maybea critical issuein somesys-

temssuchasembeddedprocessors.Thus,it shouldbeusedonly for thosecasesin which it providesaclear

net benefit.For instance,if the performanceof the non-unrolledloop is not limited by communications,

unrolling maynot provide any additionalbenefit.For this reasonwe proposeanalgorithmto performloop

unrolling only when it increases performance.

// Compute scheduling for the original graph
(1)sched = ScheduleGrah(G);

// Check if unroll is beneficious
(2)if ( LimitedByBus(sched)) {
(3) ufactor = ncluster;
(4) comneeded = NDepsNotMult(G) * ufactor;
(5) cycneeded = (comneeded/nbuses) * latbus;
(6) if (cycneeded < II(sched)) {
(7) G’ = UnrollLoop(G, ufactor);

return ( ScheduleGraph(G’));
}

}
return (sched);

Figure 6.5. Selective unrolling algorithm
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Theselectiveunrollingalgorithmis shown in Figure6.5.Firstof all, thescheduleof thegraphwithout

unrolling is computed.If the resultingscheduleis limited by communications(i.e., the initiation interval

was increasedbecausethe busesbecomesaturated)thena schedulewith the unrolled loop is tried. Our

schedulealgorithmpresentedin the previous sectiontendsto scheduledifferent iterationsinto different

clusters.Therefore,theunroll factoris setto thenumberof clusters.Schedulingoneiterationin eachclus-

ter resultsin a numberof communications(comneeded) equalto the numberof dependencesat distance

greaterthanzero(andnot multiple of theunrolling factor)multiplied by theunrolling factoritself. Thus,

thecyclesneededto communicatethevalues(cycneeded) canbecomputedby dividing the total number

of cyclesneededfor communications(comneeded * latbus) by thenumberof buses(nbuses). If thisvalue

doesnot increasetheinitiation interval of theunrolledloop (which canbedeterminedwithout performing

the scheduling), then the loop is finally unrolled and the scheduling of the new graph is performed.

An exampleof theschedulingprocessfor a loop is shown in Figure6.6.Theresultinggraphhastwo

loop-carrieddependences.The table in Figure 6.6 shows the schedulingprocessfor the graphwithout

unrolling.Supposethearchitecturehastwo general-purposefunctionalunitspercluster, eachinstructionis

1-cycle latency andonebuswith one-cycle latency. TheminimumII is computedas2 (ResMII = =

2, andRecMII = = 2), andthusthemaximumnumberof communicationsis 2. Thenodesaresched-

uledfollowing thecomputedorder. In thetable,tmp is thetmpoutedges valuein ourschedulingalgorithm

(seeSection5.1).We canseethatnodesD, B, A andC arescheduledon cluster0. However, nodeE andF

cannotbescheduledin thisclusterbecauseit is alreadyfull (thereareno freefunctionalunits).For nodeE,

two communicationsareneeded(valuesfrom A and C), and thereforethe communicationneededfor F

(value from D - value from A was previously brought)cannotbe allocated.Thereforethe II hasto be

increasedto 3 in orderto find a feasiblescheduling.On theotherhand,looking at theunrolledgraph,the

minimum II is 4 in this case,andthus4 communicationsof 1 cycle areavailable.However, following our

algorithmjust2 communicationsareneeded(from A’ to E andfrom A to E’), becausedifferentiterationsare

scheduledin differentclusters.In thiscase,unrollinghidesthecommunicationlatency (it wouldevenif the

latency of the bus was 2 cycles) and the unrolled schedule in more effective.

6.3.4. Evaluation

In this sectionwe first show the different clusteredVLIW configurationsevaluatedand list the set of

benchmarksusedto evaluatethe performanceof the schedulingalgorithm.Then,someperformancefig-

urescomparingunified and clusteredarchitecturesare shown including timing considerations.Finally,

some results about the impact on code size of the unrolling technique are shown.

6 4⁄

3 2⁄
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Benchmarks and Configurations Evaluated

Theschedulingalgorithmhasbeenevaluatedfor threedifferentconfigurationsof theVLIW architecture.

This configurations are shown in Table 6.1.

Thefirst configurationis calledUnifiedandit is composedof asingleclusterwith four functionalunits

of eachtype(integer, floatingpointandmemory)andauniqueregisterfile of 64general-purposeregisters.

Thisconfigurationrepresentsourbaseline.Both the2-clusterand4-clusterconfigurationshavetheregister

file partitioned(into two andfour partitionsrespectively). The formerhas2 functionalunitsof eachtype

and32 registerperclusterandthelattercorrespondsto 1 functionalunit of eachtypeanda registerfile of

RESOURCES Unified 2-cluster 4-cluster LATENCIES INT FP

INT / cluster 4 2 1 MEM 2 2

FP / cluster 4 2 1 ARITH 1 3

MEM / cluster 4 2 1 MUL 2 6

REGS / cluster 64 32 16 DIV/SQR/TRG 6 18

Table 6.1. Clustered VLIW configurations and latencies

A

B C

D E

F

1

2

minII = 2

A

B C

D E

F

1

A’

B’ C’

D’ E’

F’

1

1

minII = 4

Unroll x2

Nodes

CLUSTER 0 CLUSTER 1
CLUSTER
CHOSEN NCOMM

tmp profit tmp profit

D 1 1 1 1 0 0 ✓

B 1 0 1 1 0 0 ✓

A 2 1 1 1 0 0 ✓

C 3 1 1 1 0 0 ✓

E - - 0 0 1 2 ✓

F - - 0 0 1 3 ✘

Figure 6.6. Example of how to unroll a loop
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16 registerspercluster(notethatboth,in total,are12-way issue).For theclusteredconfigurationswe will

show results for different number of buses (1 or 2) and with different latencies (1, 2, or 4 cycles).

For all configurationsthememoryhierarchy is sharedby all theclustersandconsideredperfect(i.e.,

alwayshits with minimum latency). In the caseof consideringa real memory, techniquesto reducethe

impact of cache misses when modulo scheduling is applied should be used [90].

The modulo schedulingalgorithm hasbeenimplementedin the ICTINEO compiler [4] and all the

SPECfp95benchmarkshave beenevaluated.Theprogramswererun until completionusingthetestinput

dataset.Theperformancefiguresshown in this sectionreferto themoduloschedulingof innermostloops

with anumberof iterationsgreaterthanfour. Wehavemeasuredthatcodeinsidesuchinnermostloopsrep-

resentabout95%of all theexecutedinstructions,andthenthestatisticsfor innermostloopsarequiterep-

resentative of the whole program.

IPC Performance Figures

Theresultsshown in this sectionshow to theIPC (InstructionscommittedPerCycle)obtainedfor theuni-

fied andclusteredconfigurationsfor differentvaluesof the numberof busesandlatency. The IPC takes

into accountthe prolog, the kernelandthe epilog aswell asthe numberof iterationsandthe timeseach

loop is executed. Both non-unrolled and unrolled versions of the loops are evaluated.

TheIPC resultsfor all theSPECfp95programsaswell asaveragefiguresareshown in Figure6.7and

Figure6.8.Graphson Figure6.7 comparetheunifiedconfigurationwith the2-cluster, whereasgraphson

Figure6.8 comparethe unifiedwith the 4-clusterconfiguration.Eachgraphis divided into threesetsof

bars:

• No unrolling: results when the loops are not unrolled.

• Unrolling: resultswhenall the loopsof theprogramhave beenunrolled.In thecaseof the2-cluster

configuration, the unroll factor is 2. In the case of the 4-cluster configuration this factor is 4.

• Selective unrolling: results using the selective unrolling algorithm presented in Section 6.3.3.

Eachoneof thesesetsif composedof differentbars.White barsshow theIPC obtainedby theunified

configuration.Grey barsshow the IPC obtainedby the clusteredconfigurationwith just 1 bus. Finally,

black barsarethe IPC achieved with clusteredconfigurationsand2 buses.For clusteredconfigurations,

different latencies for the buses have been considered (L = 1, 2 or 4 cycles).
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Figure 6.7. IPC results for all the SPECfp95 benchmarks and a 2-cluster configuration

(a) 2-cluster configuration
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Figure 6.8. IPC results for all the SPECfp95 benchmarks and a 4-cluster configuration

(b) 4-cluster configuration
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Whenwe look at the first setof bars(No unrolling), we canseethat the IPC achieved by clustered

architecturescomparedwith theunifiedarchitecturedecreaseswhenthenumberof busesdecreasesor the

buslatency increases.Wecanseethatthisproblemis overcomewhenloopunrolling is appliedto all loops

(Unrolling). Theperformanceobtainedfor clusteredarchitecturesis thesame(or evenbetter)for mostof

the programsandconfigurations(except for tomcatv in the 4-clusterconfiguration).Note that whenall

loopsareunrolledour schedulingalgorithmis lesssensitive to thenumberof busesandtheir latency. The

reasonwhy clusteredarchitecturesperformbetterthanunifiedarchitecturesfor someprogramsandconfig-

urationswhenall loopsareunrolledis dueto ourschedulingalgorithm.Whenloopunrolling is applied,the

differentiterationsof the loop arescheduledin differentclusters,usingtheir resourcesequally. However,

in theunifiedarchitecture,all theresourcesareavailablewhenschedulingthefirst subgraphof theunrolled

loop. As the schedulingphasetries to scheduleoperationsascloseaspossibleto their predecessorsand

successorsin orderto minimize registerpressure,a very goodschedulingis obtainedfor thesubgraphof

the first iteration sometimes at the expense of the other iterations.

The resultsfor the selective unrolling presentedin Section6.3.3 are shown in the third set of bars

(Selective unrolling). We canseethatusingthis selective unrolling algorithmtheperformanceobtainedis

very similar to the oneobtainedwhenall loopsareunrolled.However, aswe will seein Section6.4, the

code size is significantly reduced for this scheme.

Timing considerations

We have shown that the proposedschedulingalgorithmappliedto clusteredarchitecturesachievesabout

thesameIPC astheunifiedconfiguration.However, therealbenefitof clusteredarchitecturescomeswhen

thecycle time is consideredin thetotal performance.Usingthedelaymodelsproposedby Palacharla[80],

weshow in Table6.2thecycle time(in picoseconds,for a technologyof 0.18µm) obtainedfor thedifferent

configurationsof theVLIW machine.In eachcase,we have assumedthat thecycle time is determinedby

themaximumbetweenthebypassdelayandtheaccesstime to theregisterfile. Theformerdependson the

numberof functionalunitspercluster, whereasthelaterdependson boththenumberof ports(2RD/1WR

perfunctionalunitsplus1RD/1WRperbus)andthenumberof registerspercluster. Usingthenumbersof

Unified
2-cluster 4-cluster

1 bus 2 buses 1 bus 2 buses

1030.08 ps 394.12ps 420.52ps 293.69ps 311.24ps

Table 6.2. Cycle times according to Palacharla model
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this table,Figure6.9 shows theaveragespeed-upachievedby someclusteredconfigurationswith respect

to theunifiedone.In this figure,NU standsfor No Unrolling, whereasSU meansSelective Unrolling. For

both cases, there are results for one (B=1) and two (B=2) buses.

The main conclusionwe candraw from this figure is that all configurationssignificantlyoutperform

theunifiedconfigurationandthebestperformanceis alwaysobtainedfor the4-clusterconfigurationwith 1

bus when the selective unrolling algorithm is used,achieving an speed-upof 3.6 on averagefor the

SPECfp95.

Effect on Code Size

Although loop unrolling is beneficialfor moduloscheduledloopsin a clusteredVLIW architecture,code

expansionin a majordrawbackof this technique.For thoseapplicationswherecodesizein a majorcon-

straint,loopunrollingcanbringanotherkind of problems(for instance,whencodedoesnotfit in themem-

ory of anembeddedprocessor).Theselective unrolling proposedin Section5.2 tries to unroll only those

loops for which the bus is the main performance bottleneck.

Thesizeof thecodein a VLIW is a measurehardto obtainbecausecompressiontechniquesarecom-

monly used.Thecompressedcodesizedependson thenumberof usefuloperations,thenumberof NOP

operationsandhow they aredistributedin thecode.However, this topic is beyondthescopeof this paper,

and therefore we show just some measures in order to approximate the size of the code.

Theeffectof unrollingon thecodesizeis shown in Figure6.10. Thedifferentbarsin thegraphscorre-

spondto thesamescenariosasin Figure6.7andFigure6.8.Thegraphon theleft shows theresultsfor the

2-clusterconfiguration,whereasthe graphon the right is for the 4-clusterconfiguration.For eachgraph,

eachcolumnin normalizedto thesizeof thecodefor theunifiedconfigurationandwithout unrolling (first

2-cluster 4-cluster
0

1

2

3

4
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ee
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p NU B=1

NU B=2
SU B=1
SU B=2

AVERAGE

Figure 6.9. Speedup of clustered architectures with respect the unified one (bus latency=1 cycle)
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bar).White barsrepresentthe amountof operationstaking into accountNOP operations,andblack bars

show just useful operations.

We canconcludefrom this figure that when loopsarenot unrolled, the numberof NOP operations

tendsto increasewhenthelatency increasesor thenumberof busesdecreasessincetheII augments.This

trend doesnot appearwhen unrolling is performed.We can seethat the selective unrolling algorithm

decreasesthetotalsizeof thecodein termsof bothusefulandNOPoperations.Thedecrementis betterfor

configurations with higher communication bandwidth (i.e., 2 buses with 1-cycle latency).

6.4. SCHEDULING FOR A FULLY-DISTRIBUTED ARCHITECTURE

In thissectionweadapttheBasicSchedulingAlgorithm (BSA) presentedin theprevioussectionto afully-

distributedclusteredVLIW architecture.The main characteristicof this new architectureis that, in addi-

tion to thefunctionalunitsandtheregisterfile, theL1 cacheis alsopartitionedamongtheclusters.Dueto

the resemblanceof this novel architecturewith a multiprocessor, we call this architectureasMultiVLIW-

Processor. We first show the main featuresof this new organization.Afterwards,we show a motivating

examplethatdemonstratestheutility of incorporatinga datalocality analysisin thescheduler. Finally, the

scheduling algorithm and performance results are presented.

6.4.1. Architecture

Our basearchitecture(seeFigure6.11)is composedof severalclusters,eachoneexecutinga fixedpartof

eachVLIW instruction.All clusterswork in lockstepmode,i.e.,any stall in oneclusteralsostallstheother

clusters.Every cycle, all clustersfetch their correspondingpartsof a new VLIW instructionfrom their

local instructioncaches.Eachclusterconsistsof several functionalunits, a registerfile anda local data

cachememoryin additionto the local instructioncache.Functionalunits canbe of threedifferenttypes:

(a) 2-cluster configuration (b) 4-cluster configuration
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Figure 6.10.Impact of loop unrolling in the code size
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integerarithmetic,floating-pointarithmeticor memoryaccess.For thesake of simplicity, we considerthat

all clustersarehomogeneous(i.e., with the samenumberandtype of functionalunits),but the proposed

techniquescanbegeneralizedfor heterogeneousclusters.Theformatof theVLIW instructionandthedata

paths are the same as in Figure 6.1 and Figure 6.2.

Regardingmemoryaccesses,a load/storeissuedby a clusterfirst tries its local L1 datacache.If the

datais found,theaccessis satisfiedwith minimumlatency. Otherwise,thecacheof theotherclustersare

searchedor, finally, theaccessis solvedby themainmemory. Both local memoriesandmainmemoryare

interconnectedthroughoneor severalbuses(thatarecalledmemory buses). As thecacheis physicallypar-

titioned amongthe clusters,coherenceamongthe local cachesandthe main memoryhasto be kept.For

this reason,a snoopy MSI protocol[13] hasbeenassumed.This protocolis completelytransparentto the

ISA, andfurther, boththecoherenceandthebusarbitrationaremanagedby thehardware.Whenamemory

accessmissesin its localcache,themissrequestis queuedin a localMSHR(Miss information/Status Han-

dling Register) structure,sincetheL1 datacacheis non-blocking[60]. Then,theaccesshasto competefor

a free memory bus in order to access a remote cache or the main memory.

All thedependenceswith memoryoperationsaredynamicallychecked,sincetheschedulermayhave

consideredanoptimisticlatency for theseinstructions(i.e.,hit in thelocalcache).If any dependenceis not

met, the dependent instruction stalls in all clusters until the hazard is resolved.

INT INT FP FP MEM MEM

REGISTER FILE

DATA CACHE

CLUSTER
1

CLUSTER
2

CLUSTER
N

MAIN MEMORY

CLUSTER
1

CLUSTER
2

CLUSTER
N

Register buses

Memory buses

INSTR. CACHE

Figure 6.11. Microarchitectures of a MultiVLIWProcessor
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6.4.2. Motivation

The two main parametersthat staticallycharacterizea moduloscheduledloop arethe initiation interval

(II) andthestage count (SC),andfor a clusteredVLIW architecturebothof themcanbeaffectedby inter-

clusterregistercommunications.For this section,which focuseson moduloschedulingfor multiVLIWpro-

cessors, the numberof cycles neededto executea particularmodulo scheduledloop can be modeled

through the following expression (as previously seen in Chapter 5):

NCYCLETotal= NCYCLECompute + NCYCLEStall

Where NCYCLECompute representsa fixed numberof cycles that dependson the particular static

schedulingproducedby thecompiler. During thesecyclestheprocessoris doinguseful(or at leastsched-

uled)work. NCYCLEStall representsthenumberof cycleswheretheprocessoris stalledanddependson

several factorsaswe detail below. The valueof NCYCLEComputecanbe computedbeforeexecutingthe

loop if thenumberof timestheloop is executed(NTIMES) andthenumberof iterationsof eachexecution

(NITER) are known, as shown by the next expression:

NCYCLECompute = NTIMES * ((NITER + SC -1) * II)

Thevalueof NCYCLEStall cannotbecomputedstatically. It representsthenumberof stall cyclesdue

to incompleteinformationmanagedby thecompiler. For instance,somememoryinstructionlatenciesmay

be unknown sincethe compilerdoesnot know whetherthey will hit in the first level cache.If the value

loadedby a memoryinstructionfeedsanotheroperation(i.e., thelatterdependson theformer)but thelat-

ter wasscheduledusinganunderestimationof thememorylatency, it will stall until thememoryaccessis

finished.In theassumedmicroarchitecture,thefinal latency of amemoryinstructiondependson threefac-

tors:

• Latency of memoryaccesses,whichdependsonthememorylevel thatsatisfiestheaccess:localcache,

remote cache or main memory.

• Numberof entriesin theMSHRof thelockup-freecaches.If thereis noavailableentryfor anew miss

request, the instruction stalls until there is a free entry.

• Cycles waiting for a free bus and bus latency.

Thus,consideringall of thesefactors,thetotal latency of a memoryaccesscanberepresentedby this

formula:

LATMemAccess= LATCache+ MISSLC * (NCWaitingEntry+ NCWaitingBus+ LATMemoryBus+ max( LATCache, MISSRC * LATMainMemory) )
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WherebothMISSLC andMISSRC representbinaryvaluesthatare1 if theaccessmissesin local cache

andall remotecachesrespectively, or 0 otherwise.NCWaitingEntry representsthe numberof cyclesthat a

missaccessis waiting for an availableentry in the MSHR. NCWaitingBus is the numberof cyclesthat the

accessis waiting for a freebus.Notethata buscanbealsobusyfor coherenceoperationsandthis is taken

into accountby our simulator. Finally, althoughwe have consideredLATMainMemoryasa fixedparameter,

in theabove expressionnotethat for somereferencesthis numbercouldbesmallerif anearliermisshas

already started loading the relevant cache line. This fact has also been accounted for by our simulator.

Motivating Example for the Proposed Scheduler

Theobjective of this studyis twofold: first, demonstratethatwhenthedatacacheis partitionedamongthe

differentclusters,theselectionof theclusterwhereeachmemoryinstructionis scheduledis very important

andcandramaticallyaffect thefinal performanceof a program(thesameholdsfor registervalues,but this

hasalreadybeenshown in Section6.3). Second,we proposea moduloschedulerthat takesinto account

both register and memory inter-cluster communications.

In this section,we illustratethroughanexamplehow theclusterselectioncanaffect the total number

of cyclesin which a codesectionis executed.Considerthat we want to performmoduloschedulingof a

loopwhosecodeanddependencegraphareshown in Figure6.12.Assumetheprocessorconsistsof 2 clus-

ters,eachonewith its local registerfile anddatacache(direct-mapped),and2 functionalunits: onefor

arithmeticoperations(with 2-cycle latency) andonefor memoryoperations.Thereis oneinter-registerbus

with a2-cycle latency. Thelatenciesfor memoryaccessesare:2 cyclesfor a local cache,2 cyclesfor abus

transaction and 10 cycles for an access to main memory.

LD1 LD2

*

LD3 LD4

*

+

LD1 LD2

*

LD3 LD4

*

+

CLUSTER 1 CLUSTER 2

ARITH MEM BUS ARITH MEM

0 *[1] LD1[0] *[1] LD3[0]

1 LD2[0] C LD4[0]

2 C +[2] ST[3]

(a)
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LD3 LD4
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0 LD1[0] C +[2]

1 C *[1] LD2[0]

2 LD3[0] C ST[2]

3 C *[0] LD4[1]

(b)

ST

ST

ST

DO I = 1, N, 2
A(I) = B(I)*C(I) +

B(I+1)*C(I+1)
ENDDO

II = 3 , SC = 4

II = 4 , SC = 4

Figure 6.12.Motivating example



Instruction Scheduling for Clustered VLIW Architectures 117

For this loop,theminimum initiation interval (mII) for anequivalentunifiedarchitecturewith thesame

resourcesis 3 cycles.Thepartitionandschedulingthatminimizesthenumberof registercommunications

betweenclustersand,thus,thatachievesthesameII astheequivalentunifiedarchitectureis shown in Fig-

ure 6.12(a).In this figure, the left part representsthe partition of the operationsbetweenthe clusters

whereastheright partshows themoduloreservation tableobtainedaftermoduloscheduling.Eachopera-

tion is scheduledin aparticularslotandthenumberin bracketsrepresentsthestageatwhich thisoperation

is scheduled.The usageof the registerbus is alsoshown in this table.Whenever a bus transactiontakes

place, the corresponding bus time slot is reserved and it is indicated by aC in the reservation table.

Then, the NCYCLECompute of the resulting loop can be computed as:

NCYCLECompute(a) = NTIMES * ((N + 4 -1) * 3) = NTIMES * (N + 3) * 3

However, supposethatbotharraysB andC arelocatedin memoryatadistancethatis amultipleof the

local cachememorysize.This meansthat we will have ping-ponginterferencesbetweenLD1 andLD2,

andbetweenLD3 andLD4. Thus,thespatiallocality exhibitedby thefour instructionscannotbeexploited

andthe four accessesalwaysmiss.The result is that the instruction(s)that consumethe memoryvalues

suffer many stalls.In theexample,theVLIW instructionthatcontainsthemultiplicationscannotcontinue

its executionuntil themissesaresatisfied.Assumingthatwe have sufficient memorybuses,thenumberof

cyclesthattheinstructionstallsis thelatency of abustransactionplusanaccessto mainmemory, sincethe

latency to the local cache was taken into account by the scheduler. Then, the number of stall cycles is:

NCYCLEStall(a) = NTIMES * N * (2+10) = NTIMES * N * 12

An alternative schedulingis shown in Figure 6.12(b). Basedon the locality propertiespreviously

observed,in this secondalternative clusterassignmentis selectedin orderto take advantageof thelocality

exhibitedby memoryinstructions.For this reason,LD1 andLD3 arescheduledin thesameclusterin order

to benefitfrom its groupreuse,andthe sameappliesfor LD2 andLD4 which arescheduledin the other

cluster. In this way, ping-ponginterferencesareremovedandwe cantake advantageof thespatialreuse.

However, as we can seein the example,for this casetwo communicationsbetweenregister valuesare

neededper iteration,andthenthe II hasto be increasedfrom 3 to 4. Thus,NCYCLEComputeis computed

as:

NCYCLECompute(b) = NTIMES * ((N + 3 - 1) * 4) = NTIMES * (N + 2) * 4
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However, themissrateof LD3 andLD4 is 25%(assumingeightdataelementspercacheblock), and

LD1 and LD2 always hit (excepting the first iteration). Thus, the number of stall cycles is:

NCYCLEStall(b) = NTIMES * N * (2*(2+10)* 0.25) = NTIMES * N * 6

Then, putting all together, we have that the total number of cycles in both strategies as:

NCYCLETotal(a) = NTIMES * (15 * N + 9)

NCYCLETotal(b) = NTIMES * (10 * N + 8)

Therefore,we canconcludethatthesecondstrategy, which takesinto accountbothregisterandmem-

ory communications,achievesa schedulethat is 1.5 timesfasterthantheoriginal one,which is optimized

only for register communications.

6.4.3. Scheduling Algorithm

In thissectionwepresentamoduloschedulerthattriesto minimizebothregisterandmemoryinter-cluster

communicationsandat thesametime balancetheworkload.We will comparetheperformanceof thepro-

posedalgorithmwith the resultsobtainedfor the Basic Scheduling Algorithm (BSA), which ignoresthe

effect of cache misses.

Thenew algorithmmakesuseof a datalocality analysiswhenperformthe instructionscheduling.So

that,we usethe CME asproposedin Chapter2 to estimatethe amountof reusethat is exploited by any

subsetof memoryinstructions.CME will allow theschedulerto estimatetheamountof memorycommuni-

cationsamongclustersor betweenclustersandmainmemory. Theschedulerusesthis informationto guide

its schedulingdecisions.For instance,givenamemoryinstruction,it is beneficialto scheduleit in acluster

wheretherealreadyareotherinstructionsfrom which it reusesdata(groupreuse).On theotherhand,it is

detrimentalto schedulethe instructionin a clusterwheretherealreadyareother instructionsthat cause

many cacheconflictswith the currentone.CME allow the scheduleto quantify the amountof reuseand

conflictsamongany groupof instructionsof thesameloop nest.CME areusedto producethe following

statistics:

• The numberof missesincurredby a setof memoryreferencesfor a particularcacheconfiguration

(capacity, block size and associativity)

• The miss ratio of a particular memory instruction in this set.
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Scheduler for a Distributed Cache

Theproposedalgorithmis calledRMCA (which standsfor Register and Memory Communication-Aware)

moduloscheduling.It is anevolution of theBSA algorithmpresentedin Section6.3.2andits mainsteps

aredepictedin Figure6.13(new featuresareshown in grayboxes).All nodesin thedatadependencegraph

arefirst sortedaccordingto thecriteriausedby theBSA algorithm.Thisorderingminimizesthenumberof

nodesthathavebothpredecessorsandsuccessorsin thesetof nodesthatprecedeit in theorder. Then,clus-

terselectionandschedulingis performedin asinglestepfollowing thatorder. However, thereis now adis-

tinction betweentwo types of nodes: (a) memory operations,and (b) non-memoryoperations.For

operationsof thelattergroup,thealgorithmproceedsastheBSA scheme.However, whenamemoryoper-

ation is scheduled,a differentstrategy is used.Insteadof choosingtheclusterwherethegain from output

registeredgesis maximized,theclusterselectiondependson theprofit from cachemisses.In otherwords,

eachtime a memoryoperationis scheduled,all clustersaretried, andfor eachone,the numberof cache

missescontributedby memoryoperationsscheduledin thatcluster, beforeandafterintroducingthecurrent

operation,is computedthroughtheCME. Then,thecluster(s)wherethis gain is maximizedis chosen.If

morethanoneclusteris optimalwith respectto cachemisses,theschedulerselectsoneof themusingthe

samestrategy as for non-memoryoperations.Although the solver of the CME have to be repeatedly

invoked,themethodis very fastdueto theoptimizationsmentionedin Chapter2.,andthetimerequiredby

the scheduler is a small percentage of the total compilation time.

This algorithm tries to minimize the numberof cachemisses,and thus it attemptsto minimize the

inter-clustermemorycommunications.However, the latency of thesecommunicationscanbe hiddenby

schedulingsomeloadinstructionsusingthecache-misslatency (bindingprefetching,asproposedin Chap-

ter5). Whena loadis scheduledusingthecache-misslatency, theoperationthatconsumesthedatareadby

the loadwill not bestalledbecauseit is scheduledassumingtheworst-caselatency. However, scheduling
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Figure 6.13. RMCA modulo scheduling step by step
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instructions using a larger latency can have a negative effect on both register pressure and length of the

schedule. On one hand, the lifetime of the load destination register is increased. On the other hand, the II

can be increased if this instruction belongs to a recurrence and this increased latency makes the recurrence

the most restrictive constraint on the II. Besides, the length of the schedule for a single iteration may

increase, which may cause an increase in the SC, which in turn affects the durations of the prolog and epi-

log. Therefore, as shown in Section 6.4.2, it may be much more effective to schedule with a miss latency

only those loads that are likely to miss. This can be done as long as the latency does not increase the II with

respect to the schedule produced when loads are scheduled with a hit latency. Thus, the proposed scheme

includes another step: once the target cluster of an instruction is determined, it is scheduled using the

cache-miss latency if the miss ratio of this instruction in this particular cluster (considering the partial

schedule produced so far) is greater than a certain threshold, and provided that this latency does not

increase the II if the operation is in a recurrence. The assumed miss latency is the time to access main

memory, that is, LATCache + LATMemoryBus + LATMainMemory (note that we do not consider the memory bus con-

tention since it is not known at this moment, although it could be estimated).

Note that with this scheme some memory instructions are scheduled with the miss latency even if their

miss ratio is lower than 100%. This may happen for instance for instructions with spatial locality. In this

case, loop unrolling could be used to generate multiple instances of the same instruction such that one of

them always miss and the other always hit (as shown in Chapter 5). However, we have not considered this

optimization in this paper.

6.4.4. Evaluation

This section analyzes the performance of the proposed scheduler. The main performance metric that we

use is the number of cycles executing instructions of modulo scheduled loops. Note that this metric does

not include the effect of clustering on the cycle time, thus, differences observed for different schedulers

and the same architecture directly translate into differences in execution time. However, the number of

cycles for different architectures should be divided by cycle time to measure differences in execution time.

Since we are concerned with differences among alternative schedulers, we prefer not to include the effect

of cycle time in our metric, to isolate the effect of the schedulers. A study of the impact of clustering on

cycle time can be found elsewhere [80] as well as on energy consumption [113], which is another impor-

tant factor that can be reduced through clustering.
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Configurations and Benchmarks

Theschedulingalgorithmhasbeenevaluatedfor threedifferentconfigurationsof themultiVLIWprocessor

architecture.Theseconfigurationsareshown in Table6.3.Thefirst configurationis calledUnifiedandit is

composedof a singleclusterwith four functionalunitsof eachtype (integer, floatingpoint andmemory)

and a unique register file of 64 general-purpose registers. This configuration represents our baseline.

Both the2-clusterand4-clusterconfigurationshave theregisterfile partitioned(into two andfour par-

titionsrespectively). Theformerhas2 functionalunitsof eachtypeand32registerperclusterandthelatter

includes1 functionalunit of eachtype anda registerfile of 16 registersper cluster. The threeconfigura-

tions are 12-way issue.

For all configurations,the total L1 cachesize is 8KB, divided into equal-sizesamongthe different

clusters. This cache capacity is realistic for embedded/DSPprocessors.For instance, the TI

TMS320C6711hasan L1 datacacheof 4Kbytes[101]. In our architecture,eachlocal cacheis direct-

mapped,non-blockingwith 10 entriesin the MSHR. An accessto a local cacheis satisfiedin 2 cycles,

whereasanaccessto mainmemorytakes10cycles.For theclusteredconfigurationswewill presentresults

for different number and latency of both register and memory buses.

The modulo schedulingalgorithm hasbeenimplementedin the ICTINEO compiler [4] and some

SPECfp95benchmarkshave beenevaluated:tomcatv, swim, su2cor, hydro2d, mgrid, applu, turb3d and

apsi. Notethatmoduloschedulingis aneffective techniquefor bothnumericandmultimediaapplications,

but it is not soeffective for applicationssuchasSPECint95dueto thesmallnumberof iterationsfor each

loop execution and the abundance of conditionals.

Theperformancefiguresshown in this sectionreferto themoduloschedulingof innermostloopswith

a numberof iterationsgreaterthanfour. Our measurementshows that codeinsidesuchinnermostloops

representsabout90% of all the executedinstructions,so that the statisticsfor innermostloopsarequite

representative of the whole program.Only instructionsthat belongto moduloscheduledloopsaretaken

RESOURCES Unified 2-cluster 4-cluster LATENCIES INT FP

INT / cluster 4 2 1 MEM 2 2

FP / cluster 4 2 1 ARITH 1 3

MEM / cluster 4 2 1 MUL 2 6

REGS / cluster 64 32 16 DIV/SQR/TRG 6 18

Table 6.3. Clustered VLIW configurations and latencies
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into accountby thesimulator. Thus,theprogramswererun until thefirst 100million memoryinstructions

in these loops using the ref input data set.

An Unbounded Number of Buses

Beforeconsideringrealisticconfigurations,we have evaluatedanarchitecturewith anunboundednumber

of busesto testtheperformanceof theproposedalgorithmunderextremesituationswherebusbandwidth

in notaproblem.Theremainingparametersof thearchitecturearethoselistedin Table6.3andthelatency

of thebusesis parametrized.Figure6.14shows thenormalizednumberof cyclesaveragedfor all bench-

marks,for 2 and4 clustersandthedifferentlatenciesconsidered.Thefirst setof four barsrepresentsthe

resultsfor theunifiedconfiguration.Therestrepresenttheresultsfor theclusteredconfigurationfor differ-

ent latenciesof registerbuses(LRB - Latency of Register Buses) andmemorybuses(LMB - Latency of

Memory Buses). For the different sets, we have evaluated two different schedulers:

• TheBSA schedulerdescribedin Section6.3.2,which is veryeffectiveatminimizingregistercommu-

nications.

• Theproposedalgorithm,thattakesinto accountbothregisterandmemorycommunications,which is

labeled asRMCA.

Eachsetof four barsrepresentsthe resultsobtainedfor differentvaluesof the cachemissthreshold

(from 1.00to 0.00)thatdetermineswhethera loadis attemptedto bescheduledwith a misslatency. Note

that threshold1.00representsthe traditionalscheme,that is, usingalwaysthecache-hitlatency for mem-

ory operations.On theotherhand,threshold0.00is mostsimilar to theoneproposedin Chapter5, where

all operationsthatdo not causeanincrementin theII (dueto recurrences)arescheduledusingthecache-

misslatency. Theonly differenceis the locality analysisemployed,which is morepowerful in this paper.

Eachbar is split into two parts:the computetime (or NCYCLECompute) is the black/grey part,whereasthe

stall time (orNCYCLEStall) is the white one.

Fromthesegraphswe canseethatfor all configurations(numberof clusters,latenciesandthresholds)

theschemethattakesinto accountmemorycommunication(RMCA) outperformstheonethat ignoresthis

feature(BSA). As expected,for smallervaluesof the thresholdthe computetime increases(sinceit may

increaseboththeII dueto registerrequirements,andtheSCdueto anincreasein thelengthof thesched-

ule) but thestall time decreases.Notethatwith a thresholdof 0.00thestall time is almostzerofor all con-

figurationsandthe numberof cyclesfor the multiVLIWprocessor arecomparableto thoseof the unified

configuration.We canalsoobserve thatfor small thresholds(0.25or 0.00)bothBSA andRMCA strategies
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achieve similar performance,sincethe latency of cachemissesis hiddenby schedulingloadswith the

cache-misslatency, exceptfor the4-clusterconfigurationandmemorybus latency of 4 cycles.Neverthe-

less,notethat for anunboundednumberof busesthetime waiting for a freebus(NCWaitingBus) is zero,and

hence,if thelatency is hidden,thenumberof misseshasnoeffect.However, aswewill seein next section,

whenthenumberof memorybusesis limited, thedifferencebetweenbothschemeswill benotable,since

the schedules produced by theRMCA scheme require much less communications.

Evaluation of Realistic Configurations

We have shown the potentialbenefitsthat canbe achieved whenmemorycommunicationaretaken into

accountby thescheduler. In this sectionwe studytheresultswhena realisticinter-clustercommunication

network is considered.

We have evaluatedconfigurationswith a fixed numberandlatency of registerbuses(2 buseswith 1-

cycle latency) and for a differentnumberand latency of memorybuses.In Figure 6.15 we canseethe

resultsfor both2 and4 clusters.Eachsetof four barshasthesamemeaningasin theprevioussection.The

first setrepresentstheresultsfor theunifiedconfiguration.Therestaretheaveragedresultsfor thediffer-

entstrategies(BSA andRMCA) for 1 and2 buses(NMB - Number of Memory Buses) and1 and4 cyclesof

latency (LMB - Latency of Memory Buses). We can observe in thesegraphsthat, as in the unbounded

study, theRMCA strategy outperformstheBSA for all configurations.Howevernow, for smallvaluesof the

threshold,the differencebetweenboth strategiesis moreremarkable,mainly for 4 clusters.For the most

effective threshold(0.00),theRMCA schemeoutperformsthebaselineschedulerby about5% for 2 clus-

tersand20%for 4 clusters.We have observedthat thereasonfor this differenceis thetime spentwaiting

for anavailablebusin orderto initiateacommunication.Whenthenumberof memorybusesis unbounded

this valueis zero,becausethereis alwaysanavailablebus.However, whenthenumberof busesis limited,

reducingthe numberof missesis also importantsincelesserthe numberlocal cachemisses,lesserthe

number of accesses competing for a free bus time slot.

6.5.CHAPTER SUMMAR Y

Wehavepresentedaneffectiveapproachto performmoduloschedulingfor aclusteredVLIW architecture.

We have first proposedanalgorithmorientedto reduceinter-clusterregistercommunications.Theperfor-

manceof the proposedtechniquecomesfrom using a single step to perform cluster assignmentand

instructionschedulingaswell asfrom theuseof a selective loop unrolling.We have shown thattheresult-

ing algorithmis very effective for a variety of configurationswith differentcommunicationlatency and
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bandwidth.Besides,theselectiveunrollingpolicy minimizestheimpactof unrollingon thecodesize.Per-

formanceevaluationfor theSPECfp95shows that theIPC of theclusteredarchitectureis not degradedin

comparisonwith a unified architecturewith the sameresources.Moreover, whenthe cycle time of each

architectureis considered,we have shown thata 4-clusterarchitectureis onaverage3.6timesfasterthana

unified configuration.

In thesecondpartof thechapterwehaveproposedanovel microarchitecturecalledmultiVLIWproces-

sor, which hasa fully-distributedclusteredVLIW organization.Themainnovelty of this architecturewith

respectto previous proposalsfor clusteredVLIW processorsis the distributeddatacache,which intro-

ducesnew challengesto the instructionscheduler. Then,we have presenteda moduloschedulerdesigned

for thisparticulararchitecturebasedonthepreviousscheduler. Thenew scheduler, by meansof apowerful
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locality analysis based on the Cache Miss Equations and an analysis of the register data dependence graph,

generates codes with very low inter-cluster communication requirements. We have also shown that the pro-

posed scheduler outperforms previous schemes that just focused on register communications.



7
CONCLUSIONS AND FUTURE WORK

This chapter presents the main conclusions and the open research lines of this work.
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7.1. CONCLUSIONS

In this thesiswe have presentedthreenovel techniquesto improve theperformanceof thefirst level cache

thatstronglyrely on a powerful locality analysis.A main featureof theproposedtechniquesis thatmake

useof somehintsin theinstructionsthatarestaticallysetby thecompilerusinganextrapassthatperforms

the locality analysis.

In Chapter2 we have presentedthetwo datalocality analyzersthathave beenusedin this thesis.The

first one,calledSPLAT, hasbeendevelopedin this work. Theanalysisis divided into two steps.Thefirst

onecollectsstaticinformation(suchasthereusevectorsor theloop nestorganization)andprofiling infor-

mation(thougha simpleprofiler of basicblocks).This informationis the input of thesecondstep,that is

composedof threephases:reuse,volumeandinterference.The reuseandvolumephasesarecommonin

othertechniquesproposedsofar, however theinterferencephasesis anovel contribution.Wehavechecked

theaccuracy of SPLAT by comparingits resultswith theoutputof acachesimulator. Wehaveseenthatthe

tool is very accuratefor theprogramsstudied.However, themainadvantagewith respectthesimulatorsis

that it is muchfaster(it takesseveral secondsfor mostSPECfp95)andthe locality informationthat can

collect is very diverse. This makes the tool very flexible but also fast and precise.

Thesecondlocality analysisusedin this thesisis theFastCME,developedby otherauthors.This ana-

lyzer usesmathematicalandstatisticaltechniquesto solve theCacheMiss Equations.Theresultis a tool

which is also fast,flexible and even more accuratethan the SPLAT. A main advantagewith respectto

SPLAT is thatwith FastCMEwecananalyzethelocality behavior of aprogramfor set-associativecaches.

In Chapter3 we have presentedsomedifferentlocality statisticsobtainedusingSPLAT. Thesestatis-

tics rangefrom the studyof the intrinsic reuseof an application,to the isolationof differentcritical sec-

tions of a code that are responsiblefor the majority of cachemisses.The main conclusionsthat are

extractedfrom this chapterarethatdifferentprogramspresentvery differentreuse:whereasin somecases

thetemporalreuseis predominant,in someothercasesis thespatialor bothtogether. Moreover, this is also

truefor individual instructionsor for codesections.Thereasonof why cachemissesoccursalsovariesin

singlememoryinstructions,loopsor thewholeprogram.In somecasesthereis apredominantkind of miss

(compulsory, capacityor conflict)whereasin someothercasesthereis a mixtureof two or thethreetypes.

This studyhasmotivatedoptimizationstargetedto the particularfeaturesof eachmemoryinstruction.In

this analysiswe have alsoshown that theonly-temporalreuseandonly-spatialreusearevery commonin

somecases,which hasmotivatedthe cacheorganizationproposedin Chapter4. Summarizing,the most

importantconclusiondrawn from this chapteris that locality behavior of memoryinstructionsis statically
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predictablefor thestudiedprogramsandthenthis informationcanbeusedto performa smartermanage-

ment of the cache.

In Chapter4 wehaveusedthelocality analysisto staticallysethintsin memoryinstructionsto manage

the Selective DataCache.This cacheallows somereferencesto bypassthe cachein caseof a miss.We

have adaptedtheSPLAT to seta bit in eachmemoryinstructionto selectwhetherit bypassesthecacheor

not.Resultsshow improvementsin missratio (sincemany interferencesareeliminated)andtraffic with the

next level of thememoryhierarchy. Theeffectivenessof thelocality analysisto managetheSelectiveData

Cacheandthestatisticsobtainedin Chapter3 havemotivatedtheproposedLSMCache(Locality Sensitive

MultimoduleCache).This cacheis composedof threemodules:oneconfiguredto exploit temporalreuse,

oneconfiguredto exploit spatialreuseandathird oneorientedto exploit bothtypesof locality. In thiscase,

the compiler is responsibleto setthe hints in memoryinstructionsthat indicate,on a miss,wherea new

block hasto bestored.Resultshave shown theeffectivenessof this architecture:comparedwith a conven-

tionalcachewith equivalentcapacity, theperformanceis muchbetter. Moreover, if thespatialcacheis con-

figuredwith longerlines, themissratio obtainedis nearthemissratio of a 64KB fully-associative cache

(usedasa lowerbound).For thismodulewehavealsostudiedtheeffectivenessof includingasimplehard-

wareprefetchingmechanism.We have evaluateddifferentalternativesandthe conclusionis that adding

one-blocklookaheadprefetchingto the LSMCachethe performanceis much betterthan the miss ratio

obtainedfor the64KB fully-associativecache.Thisstudyhasshown thatdealingeachmemoryinstruction

in the most convenient way depending on its locality can significantly improve the performance.

In Chapter5 we have studiedthe interactionbetweensoftwarepipelining andsoftwareprefetching.

Whereasthemaingoalof softwarepipelining is to increasetheILP in a loop, softwareprefetchingis ori-

entedto hidememorylatency. Wehaveshown thatmoduloschedulingschemesusingcache-hitlatency for

loadsproducemany stallsdueto dependenceswith memoryinstructions.For asimplearchitecturethestall

time representsabout32% of the executiontime and63% for an aggressive architecture.This meanthat

moduloschedulersthat ignoretheeffect of stallsdueto cachemissescanobtainresultsfar away from the

idealexecutiontime.Then,wehavecomparedtwo differentapproachesto introducesoftwareprefetching:

onebasedon early schedulingof memoryinstructions(alsocalledbinding prefetching)andanotherthat

insertsprefetchinstructions(alsocallednon-bindingprefetching).Both of themsignificantlyimprove the

performance,but they cancausesignificantpenaltiesin somecases.In average,schemesbasedon early

schedulingproducebetter results.For this reasonwe have proposedan heuristicschedulingalgorithm

(calledCSMS- CacheSensitiveModuloScheduling),which is basedonearlyschedulingandtriesto min-

imize both the computeand the stall time. The proposedalgorithmschedulessomememoryoperations
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usingthecache-misslatency usinginformationabouttheshapeof thedependencegraphandinformation

aboutthelocality of eachmemoryinstructionobtainedwith theSPLAT. Theresultshaveshown thatit out-

performstherestof strategies.Comparedwith a baselinescheme,which schedulesall memoryoperations

usingthecache-hitlatency, theproducedcodeis 1.6 timesfasterfor a simplearchitectureand2.5 for an

aggressive architecture.

Finally, Chapter6 is focusedon the scheduleof instructionsin clusteredVLIW architecture,andin

particularin schemesbasedonmoduloscheduling.First wehavestudiedhow to performmoduloschedul-

ing in a semi-distributedclusteredarchitecture.Theclustersin this architecturecontaina local registerfile

andfunctionalunits, but the cache(andmemoryhierarchy in general)is sharedby all the clusters.The

basicideahasbeento proposea goodalgorithmto reducecommunicationsamongregisterfiles. We have

proposedanalgorithmwhosemaindifferencewith previousworksis thatboththeclusterassignmentand

instructionschedulingareperformedinto asinglestepinsteadof two sequentialsteps.Wehaveshown that

this methodologyimproves performance.Moreover, for loops wherethe performanceis constrainedby

communicationsamongclusters,we have studiedtheeffect of loop unrolling.We have seenthatincluding

a selective loop unrolling in the algorithm is straightforward andvery effective. Then,we have studied

someheuristicsto scheduleinstructionsin fully-distributedclusteredarchitectures.The basicdifference

with previousarchitectureis thatnow thecacheis alsodistributedamongthedifferentclusters.Usingasa

basethepreviousschedulingalgorithmandtheinformationgivenby theFastCMEtool, we have proposed

an scheme(calledRMCA - RegisterandMemory CommunicationAwaremoduloscheduling)that takes

into accountbothinter-clusterregisterandmemorycommunications.Resultshaveshown thattheselection

of the cluster where memory operations are scheduled is a key factor for performance.

7.2. FUTURE WORK

In this sectionthemainresearchactivities thatwe considerworthy to purseasa continuationof this thesis

aresummarized.Thedifferentideasaresplit in themaintopicsthathavebeenstudiedin this thesis.A gen-

eralresearchtaskis to studytheimpactof theselectedlocality analysisin theperformanceof theproposed

techniques.In this thesiswehaveusedtwo possibledatalocality analyzers(SPLAT andFastCME),but we

havenotcomparedtheresultsobtainedwhenbothareusedfor thesametechnique.It looksclearthebetter

the locality analysisis, thebetterthepropsedtechniquesperform,but we have not checkedhow mustthe

accuracy of the locality analysis affects the results.
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Data locality analysis

Therearetwo pointsin which we areinterested.First,we planto studyof reusebetweenloops.Both data

locality analyzerspresentedin Chapter2 werebasedon thereusevectors.Thesevectorsonly representthe

reuseamongmemoryinstructionsin a loop, but not amonginstructionsthat belongto different loops.

Some studies point out that this kind of reuse can be significant in some programs.

Thesecondissueis a locality analysisfor non-numericalcodes.Thework developedin this thesisis

orientedtowardsnumericalapplications.The main reasonfor that is anotherlimitation of the reusevec-

tors: they canonly dealwith affine references.For theSPECfp95programs,thatarethebenchmarksused

in this thesis,themajority of referencesfollow this pattern.However, andmainly for non-numericalappli-

cationsusuallywritten in C language,many memoryreferencesarenot affine. For instance,the useof

pointersis very common.We planto studythepossibilityof obtainingthereusevectorsfor thesekind of

referencesusinga differentapproachbasedon thestudyof how pointersaremodifiedin a program.How-

ever, an alternative option is the useof profiling informationor even a locality analysisimplementedin

hardware.

Study of locality behavior

Another utility of the locality analysisthat hasnot beenstudiedin this thesisis the useof the locality

resultsto guidedifferentoptimizations.Wehaveshown thatdifferentprogramsexhibit verydifferentlocal-

ity characteristics.Detailedevaluationof the locality exhibited by a programmay then be essentialto

choosethebestapproachto improve it. Fully-automaticoptimizationtoolshave provedsofar insufficient

dueto thevarietyof differentscenariosthatthey shouldcopewith. We thenbelieve thatthebestapproach

todaytowardsmemoryoptimizationis by meansof an iterative (andinteractive) processin which repeti-

tive analysisandoptimizationstepsareinterleaveduntil thefinal resultis acceptable.Therefore,thespeed

of theanalysistool aswell astherangeof informationthat it canprovide arecritical. We have shown that

the type of analysis presented in this thesis can be very useful for such an approach.

Management of locality sensitive caches

About this topic therearethreedifferentlinesof study. In this thesiswe have shown theeffectivenessof a

multimodulecachewith explicit softwaremanagement.The resultshave beenobtainedfeedinga cache

simulatorwith memorytraces.The first improvementin the performanceevaluationwould be to include

thecacheorganizationin a timing simulator. Themain reasonfor that is that in suchsimulatorwe could

take into accountthingssuchasbus contention,a moreaccuratestudyof how the prefetchinghardware

works, etc.
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Anotherinterestingissueis thestudyof the impactin area,accesstime andpower consumption.This

impliestheimplementationof theproposedcacheorganizationusingVLSI tools.This studycouldhelpto

decide better ways of partitioning the cache or grouping the different submodules.

Finally, the last topic of interest is a hardware-based approach to set the hints in the LSMCache.

Software prefetching

An interestingtopic to studyis theinterferencescausedby spill codereferences.With theaim of reducing

theseinterferences,aspecialbuffer in whichstorethespill codedatamaybeconvinient.Someworkshave

recently appear about a similar kind of buffer but handled as a complementary register file.

A mainpoint to studyin softwareprefetchingis amixedbindingandnon-bindingprefetchingscheme.

Theproposedalgorithm(CSMS)is basedonbindingprefetching(or earlyscheduling),but aswehaveana-

lyzed in Chapter5, non-bindingprefetching(or insertingprefetchinstructions)canbebeneficialin some

cases(for instance,for memoryinstructionsinsiderestrictiverecurrences).An algorithmthatusesthemost

convenient approach for each particular memory instruction should obtain better results.

Scheduling in clustered architectures

In this topicwearecurrentlycontinuingthework developedin this thesisin somedifferentlines.First,we

havebeenimproving thealgorithmto scheduleinstructionsin asemi-distributedclusteredVLIW architec-

ture(althoughcouldbeadaptedto thefully-distributedorganization).Thebasicideabehindthis improve-

menthasbeento includespill code.In thealgorithmpresentedin Chapter6, a clusteris not selectedif no

sufficient registers are available. With spill code, this restriction could be relaxed.

Another taskwill be the improvementof the algorithmby re-schedulingnodes(what is commonly

calledbacktracking).This canhelp to obtainbetterschedules,althoughat the expenseof increasingthe

scheduling time.

For theclusteredVLIW architecturewith distributedcache,in theorganizationproposedin Chapter6

thecachewasphysically partitionedamongthedifferentclusters,andthusany addressof theprogramin

executioncouldbeallocatedin any cache.Thatrequireda hardwareprotocol,additionaltraffic (andmore

complexity in general)to keepthecoherenceamongthedifferentcaches.We arestudyingotherwaysof

partitioning the cache and algorithms to schedule instructions in such architectures.
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