SVART MEMORY M ANAGEMENT
THROUGH
L OCALITY ANALYSIS

Jesus Sanchez

DEPT. OF COMPUTER ARCHITECTURE
UNIVERSITAT POLITECNICA DE CATALUNYA
Barcelona (SRAIN)

A THESIS SUBMITTED IN FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
Doctor en Informéatica

ABSTRACT

Cachememorieswereincorporatedn microprocessorms the earlytimesandrepresenthe mostcommon
solutionto dealwith the gapbetweerprocessoandmemoryspeedsHowever, mary studiespoint outthat
the cachestoragecapacityis wastedmary times,which meansa directimpactin processoperformance.
Althoughacacheis designedo exploit differenttypesof locality, all memoryreferencesrehandledn the
sameway, ignoring particularlocality behaiors. The restricteduseof the locality informationfor each
memoryaccesganlimit theeffectivity of thecacheln thisthesiswe shav how a datalocality analysiscan
helpthe researcheto understandvhereandwhy cachemissesoccur andthento proposedifferenttech-
niquesthat make useof this informationin orderto improve the performanceof cachememory We pro-
posetechniquesn whichlocality informationobtainedby thelocality analyzeiis passedrom the compiler

to the hardwre through the ISA to guide the management of memory accesses.

We have developeda staticdatalocality analysis.This analysiss basedn reusevectorsandperforms
thethreetypical stepsrreuse volumeandinterfereanalysis Comparedvith previousworks, bothvolume
andinterferenceanalysishave beenimproved by usingprofile informationaswell asa morepreciseinter-
ferenceanalysis.The proposediatalocality analyzemasbeeninsertedasanothempassin aresearcttom-
piler. Resultsshav that for numerical applicationsthe analysisis very accurateand the computing
overheads low. This analysiss the basefor all otherpartsof thethesis.In addition,for someproposalsn
thelastpartof the thesiswe have useda datalocality analysisbasedon cachemissequationsThis analy-
sis,althoughmoretime consumingjs moreaccurateandmoreappropriatefor set-associate cachesThe
usageof two differentlocality analyzersalsoshavs thatthe architecturaproposalof this thesisareinde-

pendent from the particular locality analysis.

After shawing theaccurag of the analysiswe have usedit to studythelocality behaior exhibited by

the SPECfp95rogramsThis kind of analysisis necessarypeforeproposingany new techniguesincecan

helptheresearcheto understanavhy cachemissesccur We shawv thatwith the proposedanalysiswve can
studyvery accuratelthelocality of a programanddetectwherethe hot spotsareaswell asthereasorfor
thesemisses.This studyof the locality behaior of differentprogramsis the baseand motivation for the

different techniques proposed in this thesis to impthe memory performance.

Thus, using the datalocality analysisand basedon the resultsobtainedafter analyzingthe locality
behaior of a setof programswe proposeo usethis analysisin orderto guidethreedifferenttechniques:
(i) managemenof multi-modulecaches(ii) software prefetchingfor modulo scheduledoops, and (jii)

instruction scheduling for clustered VLIW architectures.

Thefirst useof the proposediatalocality analysiss to managea novel cacheorganization.This cache
supportdoypassingand/oris composedf differentmodulesgachoneorientedto exploit a particulartype
of locality. The main differenceof this cachewith respectto previous proposalss that the decisionof
cachingor not, or in which modulea new fetchedblock is allocatedis managedy somebits in memory
instructiong(locality hints). Thesehints aresetat compiletime usingthe proposedocality analysis.Thus,
the managementompleity of this cacheis keptlow sinceno additionalhardware is required.Results
shawv thatsmallercacheswith a smartmanagementanperformaswell as(or betterthan)biggercorven-

tional caches.

We have alsousedthe locality analysisto studythe interactionbetweersoftware pipelining and soft-
wareprefetching Softwarepipelininghasbeenshovn to beavery effective schedulingechniqueor loops
(mainlyin numericalapplicationgor VLIW processors)Themostpopularschemdor softwarepipelining
is calledmoduloschedulingMany works on moduloschedulingcanbefoundin the literature,but almost
all of themmale a critical assumptionthey consideran optimistic behaior of the cache(in otherwords,
they usethe hit latengy whena memoryinstructionis scheduled)Thus,theresultsthey presenignorethe
effect of stallsdueto dependencewith memoryinstructions.In this part of the thesiswe shav that this
assumptiorcanleadto schedulesvhoseperformanceds ratherlow whena real memoryis considered.
Thus,we proposeanalgorithmto schedulanemoryinstructionan moduloscheduledoops.We have stud-
ied differentsoftware prefetchingstratgjies andfinally proposedan algorithmthat performsprefetching
basednthelocality analysisandthe shapeof the loop dependencgraph.Resultsobtainedshavs thatthe
proposedschemeoutperformsotherheuristicapproachesinceit achieresa bettertrade-of betweencom-

pute and stall time than the others

Finally, thelastuseof thelocality analysisstudiedin this thesisis to guideaninstructionschedulefor

a clusteredVLIW architecture Clusteredarchitecturesare becominga commontrendin the designof

embedded/DSPBrocessorslypically, the coreof theseprocessorss basecbnaVLIW designwhich parti-
tionatesbothregisterfile andfunctionalunits. In this work we go a stepbeyond andalsomake a partition
of the cachememory Then, both interregisterandinte-memorycommunicationsave to be taken into
accountWe proposeanalgorithmthatperformsboth graphpartitionandinstructionschedulingn asingle
stepinsteadof doingit sequentiallywhich is shavn to be moreeffective. This algorithmis improved by
addingan analysisbhasedon the cachemissequationsn orderto guidethe schedulingof memoryinstruc-

tions in clusters with the aim of reducing not only ifregfister communicationsub also cache misses.

AGRADECIMIENTOS

Me gustariaagradecela confianzadepositada&nmi por Antonio Gonzalezmi directordetesis,el cualme

ha guiado durante todo este camino. Gracias por su paciencia y por todas las cosas que me ha ensefiado.

Graciasatodami familia: a mis padresPacoy Juani,a mi aluela,Carmeny ami hermanoCarlos,y
atodoel restodefamiliaquehancreidoenmi y mehanapoyadodurantetodoestetiempo,y muy especial-
mentea Lorena,quehaaparecidaenmi vidaenel tltimo afiodetesisy queme hailuminadodesdeznton-

ces con su sonrisae fuiero, osital ;-)

Agradecerel apgyo y ayudadetodala gentedel departamentgueen alginu otro momentome han
echadaunamano.Prefierono ponerunalista denombregporqueestariaigodos,peromuy especialmenta
mis amigosProfesorTitular PepeGonzalez con quiencomencéodaestaaventura,y Manolo Fernandez,

por todos esosuenos ratos dentro y fuera de la\émsidad.

Porultimo, no quisieraolvidarmede todosmis amigosfuerade la Universidadconlos quehe pasado
tanbuenosmomentosy conlos quesiemprehe consguido olvidarmeun pocode procesadoresompila-

dores y rollos de esos.

CONTENTS

I N 231U Lot o N SRS 1
I Y 1 Y7y i T) SRR 2

1.2. BACKGROUND ...oeiiiiiitieeiesesteeesteeesateessseessesatesaaseesssseessseessseesnsessnsesessesessssessesesssessnsessnsessnnes 4

1.2.1. HARDWARE-BASED TECHNIQUES ...coiiiiiitteeiiieeiieitreeesesssessssseeessssssssseeessssssnnens 5

1.2.2. SOFTWARE-BASED TECHNIQUES ...ceeviiiiiiitieeiieeeieiireeeeeeseesssreeeesssssnsssesessssennnens 8

1.3. CONTRIBUTIONS OF THIS THESISvtiticuieiieiiesteeeeste st eeessestessaesaestesseessessestesseensessesnesssensenns 10

1.3. ORGANIZATION OF THIS THESIS .ieutteitiestiesreesteesseessesssesssesssessesssesssesssssssessesssesssessssnssssesnns 11

2. DATA LOCALITY ANALY SIS ceeiiiiieiieesteeiteeesteeesteeestesesseeasnseesatesssesasesssesasseeessseessessssessnsessasesssssesseees 13
2.1, INTRODUCTION ..uttiiteeeiteresueeesuteessesesesassesessesesssessnsessssessnsessnsessssessssseesssesssessnsessnsesssnseessenes 14

2.1.1. DYNAMIC ANALYSIS .ooiiiitiiteeeeste e eeeste e sseeaestesteenaestesaeeseessessesnsessessessnensensens 15

2.0.2. STATIC ANALY SIS .oiitiiiteiiieesiensieesieesseesseesseesteessessseessessseessesssesssesssesssesssesssesssenns 16

2.2. BACKGROUN DEFINITIONS ..eciutieiiteieitieeiteeesteeestteesteessesssesssesssseeesnsessssessnsesssessnsessssseessees 17

2.3. STATIC AND PROFILED DATA LOCALITY ANALYSIS ..uveeciiecieeertieesteeseeesteesteeesreeesneeesneeas 18

2.3.1. COMPILER AND PROFILER PHASESootiiiiiiie e steesieeseeseesstesennee e sneeesnees 18

2.3.2. LOCALITY ANALYZER .iiiteeiteeeteesieeesseressesessesessesesssessnsesssessnsessnsessssesssssesssees 19

2.3.3. VALIDATION .oiuietiiteeteetesteeteeeestesteseessestesseessastesseessetesaesneesessesssesessessesnsansens 24

2.4, FAST CACHE MISS EQUATIONS ...octiiieeiiieiieesieesteesteesieesteesteestessseesbeessessseessesssesssesnsesssesssnnns 27

2.4.1. ANALYTICAL MODEL ..iiiutieiiiecieecieeesteeesteeestee e steeesnteesteesneessessnteeenneeesneeesnneas 27

2.4.2. IMPLEMENTATION ..etiittieiieesteesteestessseeesseeessesessesesssessnsessnsessnsessnsessnsssssssessnes 28

2.5. CHAPTER SUMMARY coiiiiiiiii i it e et e et et et s e st s s s s s e s s s b s ba e be b s bssassessseseseeeeseeeeeesesesesasaaaasasens 29

3. LOCALITY ANALYSIS OF SPECFPOScooii oottt ettt s s s e s as e s e eees e e e e eeeasetesesaaaasanees 31

3.1 INTRODUGCTION utiiueeiteiteeteestestesseeseetesseeseessessessessessestesssessessessesssessessesssesssssesssessessessesssensens 32
3.2. DATA LOCALITY IN THE SPECFPOS5ooiiiiiiiiiesieesieesiee e sie ettt sseenneens 32
3.2 1. INTRINSIC REUSE ...ccttieiiieiieecieecieeestee e stee e stee e stee e snteesnte s steestessnteeenneeesnneesnnens 33

3.2.2. QUANTIFYING TYPES OF MISSEScoitieriiirieeriensieenieesieesieesieeseessieesaeessesssessseens 36

3.2.3. CONFLICTING DATA STRUCTURESccttteitieeiteeesteeessteesteessesssesssessnseesssssssnens 41

3.2.4. CRITICAL CODE SECTIONSeeiteerieeereresueresseeessesesssesssessnsessssessnsessssesssssesssnes 43

3.3. CHAPTER SUMMARY .oiteiteeiteitesteestestesteeseessestessesssessestesssesestesseessessessessssssessesssessessessesssessens 43
4. LOCALITY SENSITIVE CACHES ..oooiiiiictiieetiee st e sttt este e ste e e steeesaeeesaeeessteesatessbessseseseeeaneeesasessnsessnsessnnes 45
T N =T 11T 1 46
4.2. RELATED WORKoiiuiiiiiieiieeesteeesteeesteeesateeste s eseeessesesseeesseeesnseesnsesenseeeseeensenesnseesnsessnsensnses 48
4.3. SELECTIVE AND DUAL DATA CACHES ...cveeiieitiiieeeente st eeeste et ste e ste s ste e et sre e enneseas 51
4.3.1. CACHE ARCHITECTURES ...coittiiteisieesiessseesseessesssesssesssesssesssssssssssesssesssessssssssssnens 51

4.3.2. LOCALITY ANALY SIS ..utiiitieeieeecteeestte e ste e st e ste e s te e e srae e snaeessaeesnaeesnteesnneeeneeennes 52

e G T Y/ Y I 7 T @) S 55

4.4, MULTIMODULE CACHE ...oiiiiiiiteieiteeestee e st e ste e ssteessaesssaeeesseeesnsesssesssessnseeesseessnsessnsessnsessnnes 58
4.4.1. CACHE ARCHITECTUREuoviitieiiteeeiueeesieesseesteestessnsesssseeesseessssnssnsessnsessnsessnses 59

4.4.2. LOCALITY ANALYSIS c.oiitieuieiiestesteeiestesteeseetestesaeeaessessesasessessessesnsessessessesnsensens 61

A.4.3. EVALUATION ..oiitiiiieisieeiueesieesseestesssesssessseesseessesssesssesssesssesssssssssssesssesssesssesssessnens 64

I O YN = 2 Y 2 72
5. SOFTWARE PREFETCHING FOR M ODULO SCHEDULED LOOPScccoviiieeciee e sree e see e see e 75
5.1, INTRODUGCTION ..tieuteiteitesteestestesseeseestessesseessessessesssessessesssessessessesssessesssssssssessessessessessesssensens 76
5.2. BACKGROUND ON MODULO SCHEDULING ..eccvteitieteesieesseesieessesssesssesssesssesssesssesssesssesssesssenns 77
5.3. ADDING SOFTWARE PFETCHINGcccuiiiiiiiiitieesiieesieesteesteesteeessaeesnteesnseesnseesntesensaessnneesnenas 80
5.3.1. MOTIVATING EXAMPLE ...ooiiiie e cee ettt ee st s st e st e st s ennae e sneeesnne s 80

5.3.2. BASIC SCHEMES TO SCHEDULE MEMORY OPERATIONSccocvveierenreeesneeennenns 81

5.3.3. CACHE SENSITIVE MODULO SCHEDULING ...vevevtireieieesieesieeseessseeenseeesseeesneens 83

5.4, EVALUATION ...utiitiiuieitesteeteeitestesteeseetessesseessessessesnsessestesssensessesseessessesssssssssessesssessessessesssensens 85
5.4.1. ARCHITECTURE MODEL ...oiiiiiiiiitieiteesieesieesiessiessseesseesseessesssesssesssesssesssesssesssenns 86

5.4.2. EXPERIMENTAL FRAMEWORKcccciiiiitiieiuieeitieesteeessteesteesseessessseesnseessnneesnnens 86

5.4.3. EARLY SCHEDULING ..veiiieeitieiieesteeesteeesseeessesesseeesssessssesssesssessnsessssssesssessnes 87

5.4.4. INSERTING PREFETCH INSTRUCTIONS ...cccviiitieiiueeesueeesreesreeseesseesenseessneessnenns 0

5.5. CHAPTER SUMMARY oiiiiiiiii i ettt et et e st e e s s e s s e aba e ba b st s sesse e s eeseeeeseeeeeeeesesesesesaaaasases 94

6. INSTRUCTION SCHEDULING FOR CLUSTERED VLIW ARCHITECTURES ...ttttttirieirieieiieieieieieresessasaeees 95

B.1. INTRODUGCTION ...viiuieiieitesteeitestesteeseestesseeseessessessessessessesssessessesseessessessssssssessesssessessessesssensens 96
6.2, PREVIOUS WORK ..tiiiiiiieitiesieesteesteesteesteesteestessbeesbeeseessesstessseessessbesssesssesssesssesssesnsesssesssnnns 97
6.3. SCHEDULING FOR A SEMI-DISTRIBUTED ARCHITECTUREcveviiiieiieesreesreesreeenveeesnneesnnens 99
6.3.1. ARCHITECTUREuetiitiieiuieesteesteestessseeesseeessessssesesssessnsessnsessnsessnsessnsesssnsessnes 99

6.3.2. BASIC SCHEDULING ALGORITHM ...viiiiieiieeeiteeeseeeesteessesssessssesssneessnsessseenns 101

6.3.3. ADDING LOOP UNROLLING ...ceiiuieeiiieiieeiieeesieresseeesseessessnsessssesssssessnsessnsessns 105

6.3.4. EVALUATION ..o.vicuietiiteieeseestesteeeestestesteeaestestessaensesaesseesaensessesnsesastessesnsessesees 106

6.4. SCHEDULING FOR A FULLY-DISTRIBUTED ARCHITECTUREcovitiiiisresnesserssesssessnsssessnes 113
B.4.1. ARCHITECTURE ...cuttiitieeteeesueeesteestesssesstesessesesssessnsesssessnsessasesssnsesssessnsesans 113

O \V T Yy T S 115

6.4.3. SCHEDULING ALGORITHM .utiiiieeeieeeieseteeesseeesseeessesssesssessssesssssesssessnsessns 118

B.4.4. EVALUATION iiiuveeiteeeiteeeteeesseeesteessesssesssesessesesssessnsessnsessnsessasesssnsessnsessnsessns 120

6.5. CHAPTER SUMMARY ..iteiteeteiteeteetestesteseessesteeseessestesseessessesssesssssessesssessessessesnsessessessesnsenns 124
7. CONCLUSIONS AND FUTURE WORK ...ciiiiiiiiieiiieciesestee e site e st e steesteeste e eaneeesneeesnneesaneesntessnessneesnnes 127
T.1. CONCLUSIONSoetiieeeeteeeiteeesutessteeesesssessasessaseessnseessseesssessnseesaseeessseessesesssessnsessnsesensessnses 128
7 U U A 130

L= == =4 =1 N =5 133

LIST OF FIGURES

CHAPTER 1

1.1. Ewlution in the performance of memory and CPU speeds during last 20.years............... 2
CHAPTER 2

2.1, GlODaAl SCHEME... ... et e e e e e e e 19........

2.2. Algorithm to quantify INtHNSIC FEUSE........iii e e e e e e e e e e e e eraaaaaas 20.....
CHAPTER 3

I O [11] ES (o U = PP PO PPPPPRRR 34........

3.5. Percentage of instructions with just one type of reuse: no reuse (NR), temporal (TR) or spatial

(SR). oottt 36.........
3.6. Different Kinds Of CACNE MISSES........cciiiiiiiiiiiiiee e 37.....
3.7. Exploiting temporal reuse ONlY...........coooiiiiiiiiiii e, 39......
3.8. Percentage of reusepdoited with a arying cache size without interferences..................... 40
3.9. Percentage of reusepboited with a varying cache size considering interferences.............41

3.10. Percentage of reusgmited with a arying cache size with/without interferences for tomcatv
41

3.11. Percentage of conflict misses between data StruCIULES........coovveieiiiiiiiiici e, 42..

3.12. Reduction in conflict miss ratio after PAdding..........coooiuriiriiiieeie e 42...

3.13. Cache misses pPer iNNEIMOSE IO0OPD......uuiiiiiiiiiiitiiii et e e 43....
CHAPTER 4

4.1. Performance of cuantional cache architecturegesaged for all SPECfp95...........cccevveen A7

4.2. Impact of cache line size on total miss ratio for some SPECfp95 benchmarks..............: 48

4.3. Block diagram of the selegdidata cache............cccccvvvvviiiii h1....

4.4, SAMPIE COUR.....eeiteiii ettt e e e et e e e e e e e e e et e e e e e e e bbb e e e e e e e e e e eannnrnees 52
4.5. Interference analysis for code of FIQUIE.A.4............uuuviiiiiiiiiiiiiiiiieiiieeeeeeeeeee e eee e 54....
4.6. Comparison among oantional, selectie and dual data caches............................LL 51.

4.7. Percentage of reusepipited with a selecte cache, arying the cache size and compared with a

COMVENTIONAI CACNE....cii i i e e e eas 58.......
4.8. Hardvare architecture of the LSMCACNE.............ccooiiiiiiiiiiiii e 59....
4.9. Percentage of dynamic memory instructions allocated to each madule......................... 66
4.10. Comparison of LSMCache without prefetchingiast two corventional caches................. 67
4.11. Comparison of LSMCache schemes with prefetchiamsigtwo corventional caches......... 69
4.12. Impact of prefetching on fetChe@mS.............coooeiiiiiiii i 70....
4.13. Comparison of the LSMCache with other multi-module caches.................................... 72

CHAPTER 5
5.1. Execution stages of a modulo scheduled [00p............ccccvvviiii 79....
5.2. Asample scheduling...........o o ———— 80.......
5.3. BaSiC SChEMES PEITOIMANCE.uuuuuueiutiiiiiiiieitieeteeeteees 82......
5.4, CSMS AlgOItNML......eieeee e e e e e e e 84........
5.5. CSMS algorithm compared with early scheduling.......................c o, 81...
5.6. CSMS algorithm compared with inserting prefetch instructions............ccccceieiiiiiiiciiinnnns 9l
CHAPTER 6
6.1. VLIW clustered architecture and detailed architecture of a single cluster...................... Q9
6.2. VLIW INSTIUCHION FOMMAL.......eiiiiiiiiieiiiiie et 100.....
6.3. Basic scheduling algorithim ... 102....
6.4. Relatve performance of VLIW clustered architectures assuming the samectione 104
6.5. Selectie unrolling algorithm...........ooooii 105....
6.6. Example of h@ tO UNTOll @ l00P.........uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiriieereeerreeeresereseeesreerreereeereereeeeee 107...
6.7. IPC results for all the SPECfp95 benchmarks and a 2-cluster configuratian................ 109
6.8. IPC results for all the SPECfp95 benchmarks and a 4-cluster configuratian................ 110
6.9. Speedup of clustered architectures with respect the unifiedumlatgng=1 gscle) 112
6.10. Impact of loop unrolling in the code SIize...........ooooiiii 113..

6.11. Microarchitectures of & MUItIVLIVWPTIOCESSAL........oouiieeeieie et a e 114.

6.12. MOLIVALING EXAMPIE ...ttt ee et et e et et eseeseeeseeseseesteeneensesaesneeneensesnens 116

6.13. RMCA modulo scheduling StEP DY SEEPccviiiiiiieeeereeee e 119
6.14. Results abtained for an unbounded number of buses (averaged for al benchmarks) 123
6.15. Results abtained when the number of busesis limited (averaged for all benchmarks) 125

CHAPTER 7

LIST OF TABLES

CHAPTER 1
1.1. Cache hierargtconfiguration in current MiCrOPrOCESSOLS......oeeeevveeevvrnriiireeeeerererrenninneeeeenen B
CHAPTER 2
2.1. Summary of locality analySiS tOOIS..........cuviiiiiiiiiiiiiiiieeeeeeeeeeeeee e 17...
CHAPTER 3
CHAPTER 4
4.1. Locality results for the sele@ CaChe............couvuiiiiiii e 56.....
4.2. Basic LSMCache configurations............ccouoiiiiiiiiiiiieeiiaiiiieee e e e 65......
4.3. LSMCache architectures with prefetChing............ooocuviiiiiiiiiiiii e 68....
4.4. Averaged number of cache accesses perreference.............ccccccLLL 71.
CHAPTER 5
LT I Y oo (=1 1= To Jr= T ol a1 L= o] (1] =TSP PP 8G.......
LI S o F= 1 LI o =T=To F o TP 88........
5.3. CSMS compared with LBND scheduling..........ccoooeiiiiiiiiiie i eeeens 89....

5.4. Increment of compute time and decrement of stall time in relation to the CHL (in perceBage)

5.5. Percentage of additional memory referenCeS..........c.uuvveiiieiiiiiiiiiiieee e 92....

5.6. Increment of compute time and decrement of stall time for schemes based on inserting prefetch
INSErUCLIONS (IN PEICENTAGE).ciiieeeeiiiiie et e e e e e e e e e e e e e e e e e ee e e e e e e e rearrrnnes 92......

5.7. Miss ratio for the CHL and the f@ifent prefetching schemes...........ccccooiiiiiinne, 93

CHAPTER 6

6.1. Clustered VLIW configurations and latencies

6.2. Cycle times according t@Rcharla model........

6.3. Clustered VLIW configurations and latencies

CHAPTER 7

A mis padres,
Paco y Juani,
por todo su apoyo.

1

| NTRODUCTION

Cachememoriesare fast and small memoriesthat curr ent microprocessorsnclude in order to miti-
gatethe gap betweenprocessorand memory speedsThe basicideais to designa hierarchy of mem-
ories (oneor several levels) betweenthe processorand the main memory suchthat a memory access
may be solved by one of theselevels much faster than by the main memory. The effectivenesof this
solution strongly dependson the proper usageof the cachehierarchy. The ability of a cacheto store
the mostuseful data is basedon exploiting the locality exhibited by memory referenceslin this chap-
ter we review differ ent techniques,both hardware and software, to impr ove the behavior of cache
memories, especiallytechniquesfocusedon the first level cache,and then we intr oduce the work

developed in this thesis.

2 CHAPTER 1

3000
2000

1000
O Memory

Performance
@ CPU

100

| I 1
S DD D PP OADDDODNI D PP P PO
P IS LT FSF S PSS
NSNS S R R S RS N A e

Year

Figure 1.1. Evolution in the performance of memory and CPU speeds during last 20 years

1.1. MOTIVATION

Oneof the main problemsthatcomputerarchitectshave to faceis the gap betweerprocessoandmemory
speedsAdvancesn the designof microprocessorbave experiencedhotableimprovementsover the last
15yearsandthistendeny is likely to hold for thenext years.The mostimportantimprovementdhave been
donein bothclock ratesandexecutionparallelism. By reducingthe minimum featuresize,new technolo-
giespackmorelogic in a singlechip, andallow transistorto switch faster Furthermorejnstruction-level

parallelism (ILP), exploited by both hardwareandcompilertechnologyhasalsobeenkey for this perfor-
mancegrowth. However this trend hasnot beenexperiencedoy memorytechnology Whereasmicropro-
cessomperformancéasimproved55%peryearsincel987,and35% peryearuntil 1986,theimprovement
in memorylateng is only a 7% peryeatr This discrepang in the evolution of processoandmemoryper-

formances can be seen in Figure letiracted from [43].

Thisdiscrepang in speedchasfosteredmary studieso mitigatethis gap. The mostextendedsolutionis
the inclusion of a memoryhierarcly, andthenthe conceptof cache memory is introduced[109]. Cache
memoriesaresmallandfastbuffersthatareusedto storerecently-usednformation.Thebasicideabehind
amemoryhierarcly is to puta cachememorybetweerthe processoandthe mainmemory Thus,a mem-
ory accesdrom the processofirst triesin the cache andif theinformationis found,the accesss quickly
solved. This allows the processonot to wait for theinformationto be broughtfrom mainmemaory Other-
wise, if theinformationis not foundin cachei|t is fetchedfrom memoryandtemporarystoredthere.So
thata possiblefuture accesdo this informationcanbe solvedwith minimum lateng. Cachememoriesare
usually provided for dataand instructionsseparatelyin the first level. Memory hierarchieswith two or

threelevelsof cachebetweerthe processoandthe mainmemoryarecommonin existentcomputersCur-

Introduction 3

rentdesignshave thefirst level cache(andeventhe secondjnsidethe samechip asthe processoin order

to achiee a lav access latenyc

The performancef this schemenighly depend®ntheability of the cacheto keeptheinformationthat
will beusedin anearfuture. Guesseaboutfuturereferencesely onthe conceptof locality [43]. The abil-
ity of theprocessoto exploit thelocality depend®n boththe cachearchitectureandthereferenceatterns

generated by the program.

As we will seein this chapterandduringtherestof thethesismary heuristicshave beenproposedn
orderto improve the performancef the basiccachearchitectureSomeof thesetechniquesonsistof code
transformation®r datareoiganizationghataredoneby the compiler whereassomeothertechniquesely
on someadditionalhardware.We canalsofind in theliteraturesomehybrid techniqueghatcombinesoft-
wareandhardwaremechanismsAll heuristicsproposedare basedon the exploitation of someparticular
locality featureghathave beenobsenedin programsHowever notall of themmake useof alocality anal-
ysisthatindicateswhenthis heuristichasto beapplied.It is shavn in someworksandin somepartsof this
thesisthata “blind” useof mary of theseheuristicscanleadto an underutilizationof the cacheandcan
evendegradeits performanceFor instanceit is shavn thatanunconditionauseof prefetchingcontritutes
to the pollution of the cachewith uselesdlocksthatcanreplaceusefulblocks.A betterknowledgeof the
locality of programsdefining more preciselywherethe problemsare andwhat aretheir causess a key

factor for an dective usage of mantechniques.

In this thesiswe shav thatdatalocality of programscanbe accuratelyanalyzedFor numericapplica-
tions, this analysiscanbe performedalmoststaticallyby the compiler obtainingthenavery fastandvery
accurateanalysis.Moreover, the information that a static analysiscan offer is very wide, identifying
clearlythe hot pointsin the program.This analysisis usedto proposadifferentalternatvesin the manage-
mentof the cachein orderto efficiently usethe storagespace We explore differenttechniqueghat“com-
municate”thelocality informationto someparticularcacheorganizationspbtainingthentechniqueghat,

based onlicit locality information, mak a smarter use of the bare cache scheme.

The organizationof this chapteris the following one.First we will review somebasiccacheconcepts
aswell asdifferent classicaltechniquegboth hardware and software) proposedto improve the perfor-
manceof the basiccacheschemeThen,we will highlight the contritutions of this thesisandfinally the

organization of the remaining chapters.

4 CHAPTER 1

1.2. BACKGROUND

Typicalcachesarecharacterizethy threedifferentparameters(i) capacity (ii) block size,and(iii) associa-
tivity. The capacityof a cachecorrespond$o theamountof information(measuredn bytes)thatis ableto
store.This capacityis commonlydividedinto blocks(alsoreferredaslines). A cacheblock is theamount
of contiguousnformationthatis brought,whennecessaryfrom the next level of the hierarcly. Then,the
block sizeis the sizeof oneof theseblocks.Finally, the associatiity of a cacherepresentshe numberof
differentlocations(in this case pblocks)in which a new block broughtfrom the next hierarcly level canbe
stored.This parameterthus, alsoindicatesthe numberof positionsin which we have to searchfor each
accesslf theassociatiity is one,the cacheis calleddirect-mapped. On the otherextreme,if a new block
canbe storedin ary block of the cacheit is calledfully-associative. Finally, intermediateconfigurations

are callech-way set-associative caches, where represents the associaty.

All currentgeneral-purposprocessorsreimplementedvith atleastonecacheevel. Table1.1showvs
differentexampleswith their featuresEvenin the scenarioof embedded/DSProcessorsthat have typi-
cally beendesignedvithouta memoryhierarctly, we cannowadaysfind commercialmicroprocessorsith

the inclusion of one or morevels of cache [102].

L1 L2
Family Model DATA INSTRUCTIONS | (inside the chip)
Size (KB) Assoc. Size (KB) Assoc. Size (KB) Assoc.

Intel Pentim Il 16 4 16 4

Pentium 1l 16 ? 16 ? 256 8
AMD K7 64 2 64 2
PowerPC 620 32 8 32 8
Sparc UltraSparc Il 16 2 16 1

Alpha 21164 8 1 8 1 96 ?
21264 64 2 64 2

21364 64 2 64 2 1.5MB 6
MIPS R10000 32 2 32 2
HP PA-7200 - 64 2
PA-7300 64 2 64 2
PA-8500 1MB 4 0.5MB 4

Table 1.1. Cache hierarchy configuration in current microprocessors

Many techniquesand proposalscan be found in the literatureto improve the behaior of a cache.

These techniques could be grouped into thrderdifit kinds, depending on their aim:

Introduction 5

* Reduce the penalty on a cache miss
* Reduce the number of misses

* Reduce the number of memory accesses

Amongall thesedifferenttechniquessomeof themareimplementedust by hardwaresothatthe orig-
inal codeis not affected,whereasomeotherproposalsarebasedn codetransformationsyith somepos-
sible supportof the hardware. In the following subsectionswe review some of the most classical
techniquesDue to the hugenumberof proposedechniquesthis review will probablymisssometech-
niquesthatsomereadersnay considewvery important.Othertechniquesnorerelatedto particularpropos-

als of this thesis areviewed in the folleving chapters where the proposals are presented.

1.2.1. Hardware-Based Techniques

Hardwareapproacheareimplementedy modifying the organizationof the cachecoreitself or by adding
newv submodulesvith a specialgoal. The mainadwantageof theseschemess thatno requirementrom the

instruction set nor from the user/compiler is required.

Higher associativity

As mary studiespoint out, oneof thereasonsvhy memoryreferencesnissin cacheis dueto themapping
function. In a direct-mapped cache gachblock thatis broughtto the cachehasjust one possiblelocation.
This meanghatif severalblocksthatareusedin the sameinterval of time aremappeddntothe sameoca-
tion, eachonewill alternatvely replacethe other provoking thencachemissesThe basicsolutionto this
problemis to increasehe associatiity of the cache.Somedifferentalgorithmscanbe foundin orderto
selectwhich one of the multiple locationsis chosenif ary block hasto be replaced(the mostcommon

algorithm is called LR - Least Recently Used).

However, the maindravbackof increasinghe associatiity of a basiccacheis thatthe compleity of
the cacheis increasediswell. This factproducesanincrementin boththe accesgime andthe areaof the
cache.Then,one of the roles of the designeris to choosethe besttrade-of amongtheseterms. Typical

organizations in modern high-performance processors ar@y2w4-vay set associate caches.

Larger block size

Anotherway to reducethemissrateis to increaseheblock sizeof thebasiccache Largerblock sizestake
advantageof spatiallocality and at the sametime reducecompulsorymisses.However, an important

remarkis thefactthata cacheis designedo exploit anaverageof thetemporalandspatialreuse Note that

6 CHAPTER 1

temporalreusedoesnot benefitfrom largerblock sizesbut from having morecacheblocks.With thesame
cachecapacity a larger block meandessnumberof blocks,andthen,we have hereanothertrade-of to

deal with. pical cache blocks in modern microprocessors are 32 or 64 bytes.

Second-level caches

The mostcommonway to reducethe penaltyof a cachemissis to introduceone or two levels of caches
betweerthefirst level cacheandthe mainmemory Thesecachesouldbe placedinsidethe processochip
or outside An exampleof microprocessorwith severallevelsof cacheis the Alpha 21364[40]. This pro-
cessohasa 64KB L1 datacachea 64KB L1 instructioncacheanda 1.5MB L2 unified secondcacheon-

chip, and a can ke an L3 cache &thip.

Write buffers

In asimplecacheorganization the CPUmustwait for storedf theblockto beupdateds notin cacheThe
simplepolicy is waiting until the block is fetchedfrom the next memorylevel andthenupdated A com-
mon optimizationto reducestallsdueto storeoperationis the addition of a write buffer. A write buffer
consistson a small (typically fully-associatve) buffer in which write requestsaretemporarystoreduntil
they arewritten to cacheor memory It allows the CPUto wait just until the requeshasbeenwritten onto
the write buffer, reducingthenthe storelateng. Oncethe requestis in the write buffer, the cachetakes
profit of inactive cyclesto dealwith entriesin the buffer. On later cacheaccessedyoth cacheandwrite
buffersaretried in parallel.If ablockis in boththe cacheandthe write buffer, the requests resohed by

the lattey since it has the most recently updated block.

Victim caches

Thevictim cache's [52] primary goalis to remove conflict missesThe basicideais to have a smallfully-
associatie modulewhereblocksdiscardedrom the main cacheare placed.If a hit occursin the victim
cacheaswappingof blocksbetweerthevictim andthemaincacheis performedA similar cachearchitec-
tureis the PA-7200assist cache [15]. Themanagemendf thetwo moduless somevhatdifferent,the soft-
ware-controlledselective swappingbeingits mostimportantdifference.Memory instructionsin the PA-
7200have a flag thatis sethy the compilerfor thoseinstructionsthat are expectedto exhibit only spatial
reuse.The dataaccessethy theseinstructionsare broughtinto the assistcachebut arenot later movedto

the main cache.

Introduction 7

Hardware prefetching

Data prefetchingtechniquedasicallyconsistof bringing memoryblocksto cachebeforethey arerefer-
encedBasichardwareprefetchingtechniquesppearegracticallyin conjunctionwith the earlierpropos-
als of cachesmemories.In fact, a corventionalcacheimplementsimplicitly a mechanisnof hardware
prefetchingsinceon a miss,a memoryblock (insteadof just a singledata)is fetched taking thenprofit of

the spatial locality

Thefirst interestinghardware prefetchingschemesvereproposeddy A. J. Smith[94]. He proposech
techniquesalledone block lookahead (OBL), thatis, on anaccesgo blocki, theblocki+1 is prefetched,
takingthenprofit from spatiallocality. He alsoproposedhlternative approacheto performingthe prefetch-
ing: (1) alwayson a cacheaccess(2) on a cachemiss,and(3) taggedprefetch.This lastoptionworks as
follows: on a miss,the currentandnext blocksarefetched,andthis lastoneis taggedwith zero.Whenan
accesdo a block with tag zerois performedthetagis setto one,andthe prefetchto the next line is per-

formed (in this case, if the wdine is not in cache, it is tagged with zero).

With the years,new hardware prefetchingtechniguedave beenproposedLookahead schemes try to
solve the problemwhenthe strideof theaccesss large. However, maybethe mostwell-knowvn schemeare
the stream buffers. Stream buffers were proposedoy N. Jouppi[52]. They consistof FIFO queuesadded
betweenthe L1 andL2 cachesvheresomeconsecutie memoryblocksarestored.On anaccesso mem-
ory, boththe L1 cacheandthe topsof eachstream buffers aretried in parallel. If the accessits on the
cache the stream buffers remainuntouchedHowever, on a missin cache,if the accesdhits in a stream
buffer, the correspondindplock is movedto the cache Then,the stream buffer prefetcheshe next blockin
the next level of the memoryhierarcly. Whenthereis missin boththe L1 cacheandthe stream buffers, a
new stream buffer (if ary) is reseredandthenext blocksareprefetchedAs the prefetchedlataarestored
in buffersapartfrom the L1 cachethe schemeavoidsthe possiblepollution contritutedby the prefetched
data.Neverthelessstream buffers behae well for smallstridesandwhenprogramsdo notdealatthesame

time with more structures (e.g., arrays or matrices) thaitadle stream buffers.

Non-blocking caches
On atypical memoryaccessa misson thefirst level cacheprovokesall the CPU to stall until the datais

returned to the tget rgister even if this data is not used immediately

Non-blockingcachesvhereoriginally proposedy Kroft [60] andsincethen,somestudiesaboutthe

possibleimplementatior26] andits impactin the performancd16] have beenproposedThe mainidea

8 CHAPTER 1

behinda non-blockingcache(alsoknown aslockup-freecache)is thatinstructionsthat missdo not stall
the systemthatis, the memoryacceswill be senedin parallelwith the executionof subsequennstruc-
tions, including othermemoryaccesseghat do not needthe data.Moreover, a commonfeaturein non-

blocking caches is the possibility of dealing with multiple outstanding misses concurrently

Non-blockingcachesare very commonin currentprocessorsExamplesof processorshat usethem
are the MIPS R1000, the wWerPC 620, the HPABO00O or the Alpha 21164.

1.2.2. Software-Based Techniques

Anotherfamily of techniquesirethoseperformedat compiletime. In this case thecompileris therespon-

sible for transforming the code with the goal of taking the maximum profit to the memory hierarch

High-level code transformations

High-level codetransformationgim to restructuresomepartsof the codein orderto increaséhe memory
performanceThesetransformationsanbe performedin the high-level representationf the code.Each
techniqueis typically orientedto exploit a particularfeatureof the memoryaccesgatternsandthen,a

typical optimization pass is composed ofesal of these transformations. Some of the more common are:

« Loop interchange: it consistsof exchanginghe positionof two loopsin aloop nestby moving oneof
the outerloop to innerpositions.This transformatiorcanimprove the performancen mary different
ways. Regardingthe improvementof the datalocality, it canhelp to reducethe stride of the access

(ideally to stride one), and therpoiting spatial locality in a cache block.

« Loop blocking (or tiling): this transformatiornelpsto improve thelocality of accessewhenit is lim-
ited by the cachecapacity Blocking is accomplishedy modifying the orderin which the iteration
spacss traversedsothatreusesf dataoccurat a shorterdistancan time. Thus,the storageequire-

ments to gploit the locality is relagd.

* Loop unrolling: aloop is unrolledwhenthe body of the loop is replicateda numberof timesu. The
benefitsof unrolling aremultiple: reductionof the loop overheadjncrementof the instructionlevel
parallelism,improvementof register datacacheand TLB locality, etc. However, the maindisadwan-

tage on loop unrolling is the codepansion.

* Loop fusion: joining two differentloopsin onemayincreaseaheregisterandcachdocality sincemary
timesit requireslessmemoryaccesseandcando a betterusageof the registers.This optimization

also allavs to reduce loopwerhead.

Introduction 9

» Variable padding: conflictswhenaccessingariablesdependn theinitial addressesf eachvariable
andtheinitial addressesf eachof theirdimensionsBy separatingwo conflictingarraysin themem-
ory spacg(interarraypadding)or by addingsomedummyelementdo somearraydimensiongintra-

array padding), conflict misses can be reduced.

» Merging arrays. this techniquehelpsto reducethe numberof missedy improving spatiallocality. It
consistf combiningdifferentmatriceqthatarereferencedvith thesamepattern)into asinglecom-
poundarray The basicideais thata single cacheblock will containthe desiredelementsavoiding

then the possible interferences among each.other

« Copying: this techniguds basedon adjustingthe datalayoutin cacheby copying arraytiles to tem-

porary arrays thatxibit better cache betamr.

Thesearejust a someexamplesof differenttechniqueghatcanbefoundin theliterature.All of them
canbevery beneficialis somecasesput at the sametime they candegradethe generateatodeif they are
not usedproperly Thus,all of themrequireanin-depthanalysisof the code,andin particularthe locality

properties.

Softwar e prefetching

Softwareprefetchings anotherdifferenttechniqueproposedo toleratememorylateng. The mainobjec-
tive of this techniquelike hardwareprefetchingis to bring datato higherlevels of the memoryhierarcly
(typically thefirst level cachebeforethesedataaredemandedby the processarsothattheaccessesanbe

solved with shorter lateryc

In software prefetchingthe compileris the responsibleof, following certaincriteria,introducingspe-
cial prefetchingnstructionsn theusercode.Thesenstructionswill fetchthenecessargatasothatlately,
whenthe actualload/storeinstructionis executed the datacanbe found in cache.The basicideais that
thesekind of instructionwill not block the processoon a miss,andthentheseaccessesanbe senedin
parallelwith the executionof the following instructions.Then,the basichardwarerequirements$o support
software prefetchingare: (1) non-blockingcachesand (2) a prefetchinstruction. Non-blockingcaches

were preiously reviewed in this section. A prefetch instruction has three properties:

* It has no taget rgister, since the data is fetched to cache.

* |t doesnot block the processqgrandthenit canbe overlappedwith othermemoryreference®r com-

putations (this is accomplished with the non-blocking cache).

10 CHAPTER 1

* It doesnot provoke exceptions,sincesoftware prefetchingspeculate®n certainmemoryaddresses

that may not bealid and preoke, for instance, page or protecti@ults.

The majority of currentmicroprocessorgncorporatein their instruction setsoperationsto perform
software prefetching For instance the MIPS R10000[75] hasan instructioncalled PREF thatcanfetch
datato theL1 ortheL2 cachesand,usinga specialhint, candeterminan which setof the cachethe data
hasto be allocated(sinceit is 2-way set-associate). The PoverPC620[19] offers instructionscalled
TOUCH that allow to pre-chage datain the cache.The Alpha 21164 [21] allows two modalities of
prefetchinginstructions:FETCH (normalprefetchingland FETCH_M (permitsmodificationsin someor
all blocksto be anticipated)Finally, the HP-FA8000[47] doesnot offer any specialinstructionto prefetch
data,but it is doneby loadingdatain the registerzero.In casethis instructionprovokesa trap, thenit is

executed as AIOP.

An alternatve to having specialprefetchinstructionsis using longer latenciesto schedulememory
operationslt consistof schedulingselectedoadinstructionwith long latenciessothatthe consumercan
find thedataassoonasit is scheduledor execution.In theliteraturethis secondalternatve is calledbind-
ing prefetching (sincethe prefetchhas a target register), whereassoftware prefetchingusing prefetch

instructions is calledon-binding prefetching.

1.3. CONTRIBUTIONS OF THISTHESIS

In this thesiswe proposesometechniquego improve the performancef the cacheby makinguseof aver-
satiledatalocality analysis.The maindifferencebetweerthetechniquegproposedn thiswork andtherest
of proposalds the explicit useof datalocality informationin orderto guide the optimization.We claim
that the non-homogeneoumanagemendf all memoryreferencesnay be key to performanceWith this
aim, andwith the help of the locality information,eachmemoryinstructionwill be handledby the com-

piler in the particular @y that best suits the underlying cachgaaization.
The main contribtions of this thesis are listed beto

» We proposeandmalke useof anovel datalocality analysighatis performedstaticallywith the help of
somesimple profiling information. In this analysis,a simple but efficient interferenceanalysisis

included, which mads the analysis more accurate.

» Theinformationobtainedoy thelocality analysiss passedo the hardwarethroughsomespeciahints
in memoryinstructionsin orderto managesomespecializechardware addedto the simple cache

model.

Introduction 11

» We proposea novel explicit managemenof multi-modulecachesusing the hints previously men-

tioned to decide, according to locality information, the best of using these storage modules.

» We proposea softwareprefetchingechniqueo beusedin moduloscheduledoops.Thistechniquds

shawn to find the best tradefdietween processercompute and stall time.

« Finally, we proposeanovel clustered/LIW architecturavherethelL1 caches distributedamongthe
differentclusters.An algorithmto effectively schedulenstructionsin this architectures also pro-

posed.

1.4. ORGANIZATION OF THIS THESIS

Thedifferentchaptersof this thesisareorganizedin thefollowing way. In Chapter2, the datalocality ana-
lyzersusedin therestof thework arepresentedWe have usedin this thesistwo differentlocality analysis:
(i) SPLAT, and(ii) FastCME. Both analysishave in commonthat obtaintheir resultsstatically (thatis,
withoutthenecessityf simulatingthe program)with the usageof somesimpleprofiling information.This
makes both tools very fast, flexible andaccurate The objective of usingtwo differentanalysisis alsoto

shaw that the techniques proposed in the rest of chapters are independent of the locality analysis itself.

In Chapter3, the SPLAT locality analysisis usedto obtaincharacterizehe locality of the SPECfp95

programswhichis laterusedasa motivationfor thedifferenttechniquegproposedn therestof thethesis.

In Chapter4, the first techniquethat make useof the locality analysisis presentedlt consistsof a
multi-modulecachewith explicit managemenbasedon hints that are setby the compiler The cacheis
composeddf differentmodules eachone configuredto exploit a particulartype of locality. Somehintsin
the memoryinstructionsindicatethe hardwarein which modulea new fetchedhasto be allocated.These

hints are set by the compiler using the data locality analysis.

In Chapter5, thesecondoroposathatmakesuseof thelocality analysids describedThis chapterpre-
sentsa study of the interaction betweentwo different techniques:software pipelining and software
prefetching.The first oneis a very effective techniqueproposedo scheduldoopswith the objective of
increasinghelLP. Onthe otherhand,softwareprefetchingaspreviously commentedis atechniqueused
to toleratememorylateng. After evaluatingdifferentalternatves,a novel algorithmto performsoftware
prefetchingin software pipelinedloopsis proposedThis algorithmtakesinto accountboth the shapeof
thedependencgraphandthelocality propertiesof the differentmemoryinstructionsusingthe datalocal-

ity analysis.

12 CHAPTER 1

In Chapter6, thelastapplicationof thelocality analysiss presentedin this chapterthelocality analy-
siswill be usedto scheduldnstructionsin a proposedclusteredVLIW architecture After developingan
effective approachto schedulinginstructionsignoring memoryeffectsin a clusteredarchitecturewith a
distributedregisterfile, analgorithmto schedulenstructionsin anclusteredarchitecturavith adistributed
cacheis proposedThis algorithmwill usethe locality analysis(in this case the FastCME) to selectin

which cluster is more beneficial to schedule a memory operation.

Finally, Chapter 7 summarizes the main conclusions of this thesis and outlines the tuture w

2

DATA LOCALITY ANALYSIS

Data locality analysis is the process by means of which the intrinsic access pattern of memory
instructions and their behavior on a given memory hierarchy are studied. This kind of analysisis
commonly used to improve the performance of some locality optimizations performed by the com-
piler (such usblocking, loop interchange, etc.) aswell asto study the locality properties of different
programsin order to propose new memory architectures. In this chapter we propose a data locality
analysis (called SPLAT) that will be used to support some of the techniques proposed in this thesis.
Moreover, we review a second data locality analysis (called FastCMES) that, although not proposed

in thisthesis, is used in one of the proposals.

14 CHAPTER 2

2.1. INTRODUCTION

Memory penaltiesare one of the main reasonsvhy computergperformances quite belov peakperfor-
mancefor mostapplicationsUnderstandindghe sourceof the problemsis the first steptowardsdevising

new hardware oganizations and/or mecode transformations tovercome them.

Theusermay be interestedn quantifyingthe memorypenaltiesbut this informationis not enoughin
mary casesA moredetailedexplanationof the differentcausedor thesepenaltieds sometimesequired
in orderto investicate the appropriateoptimization.In orderto tune a program,a programmermmay be
interestedn knowing its performancelocatingthosecritical partswheremostof thememorypenaltiesare
producedjdentifying which datastructuresareresponsibldor mostof the cachemissesgtc. Examplesof

the type of information that the user may be interested in are listed: belo

« Classifyingthe differenttypesof cachemissednto thethreecommonlyusedcateyories(compulsory
capacityconflict) canbeimportantto chooseamongdifferenttypesof optimizations Capacitymisses
couldbe bestreducedoy blocking[31][12]; conflict missedy padding[85]; andcompulsorymisses
by prefetching [9][76], among other possibilities.

« |dentifyingthepartsof theprogramthatareresponsibléor mostpenaltiesnayhelpto reduceheopti-

mization efort by focusing on such cases.

« Conflict missesarethe dominanttype of missesfor mary numericalapplicationsldentifying which
datastructuresreresponsibldor theseconflictsmayberequiredn orderto eliminatethemby means

of padding [85] or coging [99], among other possibilities.

 Quantifyingtheintrinsic reuseof a programcanbe usedasanupperboundof thelocality thatcanbe

exploited. Thisis ausefulmeasurén orderto know how far from optimalthe currentperformancés.

« Evaluatingthe memoryperformancdor a variety of cachearchitecturegor a setof applicationscan
beinterestingor the designof anembeddegrocessowith acachememorycustomizedor a partic-

ular workload.

* Including somebits in the memoryinstructionsso that the compiler can provide somehintsto the
hardwareregardingthe locality exhibited by eachmemoryinstructionis becominga commonprac-
tice.ForinstancethePA7200hasabit in orderto identify memoryinstructionswith only spatiallocal-
ity [15]. The PowverPCprovidesthe possibility of identifying instructionsthat do not exhibit much
locality andthus,to bypasghecachédor suchinstructiond97]. Having differentcachenemoriespe-

cializedin exploiting differenttypesof locality maybe a promisingalternatve to increasehe cache

Data L ocality Analysis 15

performanceaswe will seein Chapterd. In all thesecasesthe compileris responsibldor providing
theinformationthatis codifiedin thememoryinstructionandthatwill determineduringexecutionthe

proper action that the hardwe must tad.

The processof obtaininginformation of the locality characteristic®f a given programis known as
datalocality analysis This analysishasbeenperformedraditionally eitherat compile-timeor atrun-time.
Theformerapproachasalow overheadbut it is relatively inaccuratesincethereis muchinformationthat
the compilerdoesnot know. The latter usuallytakesthe form of a memoryhierarcly simulator which is

quite accurateut very slow.

Differentapproacheso analyzethe datalocality of programsmay be found in the literature. These

approaches can be classified into theamilies of techniques:

* Memory simulation.

* Tools basedon hardware-countergrovided by somemicroprocessorsExamplesof suchmicropro-
cessors are the Pentium Pro [81], the UltraSparc [103] or the MIPS R10000 [112].

« Static locality
The folloving subsections wiew some preious work on data locality analysis.

2.1.1. Dynamic Analysis

Any datalocality analysismethodologyor tool canbe assessethroughthreebasiccriteria: a) accuiacy; b)
speed andc) flexibility. By this later term we meanthe amountof differentinformationthatthe analysis

may prwide and the possibility to analyzeféifent memory architectures.

Memorysimulationtechniquesrevery accurateandflexible in generalbut they arevery slow. Tradi-
tionally memory simulatorsare basedon a trace-drven approach[57][34][74][98][32][67][35][5][72].
They causea significantslowdown in the executionof the analyzedprogram,which may be of several
ordersof magnitude For instancethe slovdown exhibited by all the simulatorssurveyedin [105] is in the

range of 45-6250. This sl@lown is olviously unafordable for some real applications.

More recently someinnovative methodso performmemorysimulationhave beenproposedwith the
main objectie of reducingthe exhibited slovdown. The basicideabehindthesemethodss to find special
casesvherea memoryreferencedoesnot affect the simulatedmemaorystate,andavoid or keepvery low

theoverheadn thesecasesFor instancejf we areinterestednly in themissratio, referenceshatcausea

16 CHAPTER 2

cachehit donotrequireary processingThehit detectioncanbe performedby software,asit is the caseof
MemSyy [70], Fast-cachg64], andEmbra[110], or it canbe doneby hardware,asit is the caseof WWT
[84]. The slowdown exhibited by thesetechniquesdependwn the missratio. The lowestslovdown has
beenreportedfor WWT, which canbe aslow as1.4for cacheswith very low missratios,but it is greater
than30 or 40for cachesmallerthan32 KBytes[63]. Theotherthreetechniquesxhibit a slovdown of 2-
21,whichis still quitehigh, especiallyif oneconsiderghatthelocality analysisusuallyis a partof aniter-
ative processin which multiple analysisand optimization stepsare applied repeatedly Besides,if the
requiredinformationis morethanjustthemissratio (e.g.type of reuseexhibited or type of misses)jt may
requireto procesamostor all memoryreferenceswhich will resultin a slovdown similar to thatof trace-

driven simulation approaches. In othesrds, these inn@tive methods trade-bfiexibility for speed.

Toolsbasedn hardwarecounterge.g.[3]) arefastandaccuratebut they lack of flexibility, sincethey
canonly analyzethe memoryarchitectureof the actualmicroprocessgiandthey canjust provide alimited
setof resultswhich dependon the particularcountersprovided by a particularmachine lmportantresults
like numberof conflict missesper eachpair of datastructurescannotbe obtainedwith currenthardware

counters, unless thi@re combined with a type of memory simulator

2.1.2. Static Analysis

Staticanalysigechniquege.g.[100][33]) arefastandflexible, but they canhave alow accurag. Thisloss
of accuray is causedy theunknavn informationat compiletime. For instance unknovn loop boundsor

unknawn initial addresses of data structures can be rather detrimental to the yaoéuingcresults.

Thestatic/dynami@pproachakenby the SPLAT tool achievesthe besttrade-of amongthethreeper-
formancecriteria: accurag, speedandflexibility . It is flexible sincethe staticanalysiscantrack mary dif-
ferentinformationamongmemoryreferenceanddifferentmemoryarchitecturecanbe consideredlt is
accuratgfor numericalprogramswhich arethetargetof thetool), sincetheinformationthatis unknowvn at
compiletimeis providedby aprofiling. Finally, it is fastsincethe profiling informationis quite simpleand
it mustbe generatequst oncefor multiple analysisof the sameprogram.The slovdown of thetool for the
analyzedbechmarksangesfrom 0.0to 0.11. As its main dravback, we shouldmentionthat the SPLAT

tool is not capable of monitoring multi-processridoads or the operating systeriel.

The main characteristics of thefdifent types of tools are summarized able 2.1.

1. On a SuperSPARC/60 workstation

Data L ocality Analysis 17

Accuracy Speed Flexibility
Simulation Very high Slow- High-
Moderate Low
Hardware Very high Fast Low
counters
Static Moderate Fast High
analysis

Table 2.1. Summary of locality analysis tools

2.2. BACKGROUND DEFINITIONS

Before presentinghe datalocality analysis,we first definesomememoryrelatedtermsthat are usedall
alongthis chapterThefirst definitionis relatedto thetermsreuse andlocality. Reusgalsocalledintrinsic
reuse) is ameasurdhatis inherentin a given programanddepend®n neitherthe orderin which instruc-
tions areexecutednor the cacheconfiguration A reuseoccurswhen&er a memoryinstructionreferences
the samedataasa previousinstruction(that caneitherbe the sameinstructionor anotherone). However,
when theseinstructionsare executed,somefactorsmay inhibit the exploitation of this reusein a given
memoryhierarcly level (for instancethe limited storageof the cachememory).The amountof reusethat
is actually exploited by a given memory hierarcly level is referredto aslocality of the programwith

respect to that memoryel.

The differenttypesof reuse/localityusedin this chapteraredefinedin [111]. Temporalreuseoccurs
whenthe samememorylocationis accessedeveral times. It is called self-temporal or group-temporal
reuse/localitydependingon whetherit is accessetly the samememoryinstructionor by differentinstruc-
tions respectrely. On the otherhand,spatialreuseappearsvhendifferentnearbymemorylocationsare
accessedt is calledself-spatial or group-spatial reuse/localitydependingnwhetherit is accessedly the
samememoryinstructionor by differentinstructionsrespectrely. Note that aninstructionin a loop nest

can hae a diferent type of reuse/locality for each loop on the nest

Finally, the last setof termsthatwe usein this chaptermrefersto the differenttypesof cachemisses.
Missesare traditionally classifiedinto three catayories[44]: compulsory capacityand conflict misses.
Compulsory misses occurthefirst time a cacheblock is accessedThis type of missesarealsocalledcold
startmissesOntheotherhand,both capacityandconflict missescanbe consideredsreplacemeninisses
(in otherwords,the datawasin cache but whenit is actuallyaccessedt is not). Capacitymisseshappen
becausé¢he cachecannotcontainall the blocksneededluringthe executionof a programwhereasonflict
missesoccurin set-associate cachegincluding direct-mappedyvhentoo mary blocksmapto the same

set.

18 CHAPTER 2

For the locality analyzermpresentedn this chapter the reuseof eachmemoryinstructionis computed
following the methodologydescribedn [111]. Theresultsarerepresentedsa vectorspacehatidentifies
the loopsin which reuseis found (eachdimensioncorrespondgo a loop). We distinguishbetweentwo

types of temporal and spatial reuse:

a) Unitary: the vectorhasonly one elementdifferentfrom zero,thatis, vector(0,...,0n;,0,...,0)indi-

cates that this reference has reuse aftierations of loop.

b) Combined the vector has more than one elements different from zero, that is, vector
(O,...,0n;,ni41 ,...0y) indicategthatthis referencéhasreuseaftern; iterationsof loopi, nj,q iterations

of loopi+1 and so on.

The result of this studyis a list of the different reusesexhibited for eachreferenceindicating the

loop(s) for which each reuse holds.

2.3. STATIC AND PROFILED LOCALITY ANALYSIS

This sectiondescribeghe proposedool for datalocality analysiswhich is called SPLA (Static-Profiled
datalLocality Analysis Tool). The locality analysisis performedthroughsomestaticinformation com-

puted by the compiler and some dynamic information obtained by a simple profiling (see Figure 2.1).

2.3.1. Compiler and Profiler Phases

The staticinformationis aimedat computingthe differenttypesof misseghatwill happerduringthe exe-
cution. Compulsorymissegequireto computetheintrinsic reuseof data.Capacitymissegequirein addi-
tion to computethevolumeof datareferencedy eachloopiteration.Finally, conflict missesareidentified

by computing interferences among data references. All this information is summarized in three files:

* Reusdile: for eachmemoryinstructionandeachioopin whichit is enclosedit storests typeof reuse
(unknawn, none self-temporalself-spatialgroup-temporabr group-spatial)lf thereuses spatialit
alsostoreghestride(i.e., thedifferencebetweerthe effective addres®f two consecutie executions).
If thereuseis group-temporabr groupspatial,it alsocontainsthe distance which is definedasthe

number of iterations before the reusectalace.

» Nestloopfile: thisfile isintendedo representheloop structureof the program For eachloopit stores

its parent, which is defined as the loop that encloses it.

Data L ocality Analysis

Reuse

File
COMPILER NestLoop
File
Interference
File

Program

Reference

File
PROFILER
Iteration

File

A
v

Once

Figure 2.1. Global scheme

19

Results

LOCALITY
ANALYZER

Modify
Cache
Parameters

¢+—r
N times

* Interferencefile: for eachpair of memoryinstructions(with the samenestinglevel andwithout ary

otherloop in betweenthathave the samereferencepattern,it containstheir initial addresse# they

areknown at compile-timé. Two instructionshave the samereferencepatternif their corresponding

variableshave the samenumberof dimensionsthe sizeof eachdimensionis the samein bothrefer-

encesandthe expressionghatrepresenthe indexing functionsfor eachdimensiondiffer only in a

constant galue.

Theprofiling consistof justthe numberof executionsof eachbasicblock, whichis afacility provided

by mary currentcompilers(e.g.,the Sunf77 compiler).Fromthis information,the numberof executions

of eachmemoryinstructionandthe averagenumberof iterationsof eachloop canbe derived. Thesedata

are stored in theeference fileand theateration filerespecirely.

2.3.2. Locality Analyzer

This staticand dynamicinformationis usedasaninput to the locality analyzer The locality analysisis

divided into threephases(i) reusephase(ii) volumephaseand(iii) interferencephase.Thefirst phase

identifiesall the reuseexhibited by the program.This informationis the basisfor computingmisses.n

particulay compulsorymissesdo notrequireary additionalanalysisthey consistof all referencesvithout

ary reuse.The volume phaseis targetedto identify capacitymissesFinally, the interferencephasecom-

putes the conflict misses.

1. In the SPECfp9Shenchmarlsuite,about75%of all memoryreference$avetheirinitial address&nddimensionsizesknown

at compile-time

20 CHAPTER 2

function greuse (int i) {

NNN = 1;
STi[N = S§[N —GT[N] = G5 [N = 0;
for j=N-lt00 do {
switch (SELFReuse[J]) {
case
NN, =NGIt * NN +1]
ST; =TIt; Vs ST, [] +1];
SS; = Tty * s§[]+1];
br eak;
case TEMPORAL:
NNj] = NN +1]5 _
ST, = (TIt) - 1)* ATIt; + STi[]+1];
SS; = Tit; > SS[j+1];
br eak;
case SPATI AL:
factor = stride / blocksize;
NN = (factor * NGAt;) * NN[j+1];
ST, =TIt * ST[j+1]
ss, ~(factor * Tity) * SS[j+1] +
((1-factor) * Tit;) * ATIt;;
br eak
}
Ghi[j] = Nat; * GT[J+l]
Gsi[]] = NGt | +1];
sw tch (GROJIJReuse[J]) {
case NONE:
br eak;

case TEIVPCRAL

GTi[j] += Gt; * ATIt;;
br eak;

case SPATIAL

GS[j] += Gt; * ATIt;;
br eak;

Figure 2.2. Algorithm to quantify intrinsic reuse

Reuse phase

In this phasethedifferenttypesof reuseexhibited by eachreferencearequantified . Theinputto this phase
is thereusefile thatis computedat compile-timefollowing the methodologydescribedy Wolf andLamin
[111].

The quantificationof thereuseis performedbasicallythroughthe functiongr euse(i) shavedin Fig-
ure 2.2, which is appliedto eachmemoryinstructionexceptfor thosewith unknovn reuse (they corre-
spondto referencesutsideloops, or inside loops but with non-linearexpressionspr expressionswith
variableghatarenotloopindices).Thei parameterepresenttheinstructionidentifier Theanalysisstarts
from the innermostloop and finisheswith the outermostoop thatincludesthe instructioni , which are

denoted by 1 andorespectiely.

1. Referencesvith unknownreuseareassumedo alwaysmissin cache Theyrepresenta 15% of thetotal numberof memory
references in the SPECfp95.

Data L ocality Analysis 21

Thefunctioncomputedor eachparticularmemoryinstructionin a particularloop j thefollowing val-

ues:

* G t;: number of iterations with group reuse in loop .
* NG t; : number of iterations without group reuse in Ipop
* T t;: total number of iterations of loop j.

* ATI t;: number of gecutions per each iteration of loppt is computed asﬁﬂ t;

i=j+1

Thequantificationof eachtypeof reusefor eachloopin whichthereferences encloseds storedin the

vectorsNN (noreuse) ST (self-temporal) ss (self-spatial) GT (group-temporalandcs (group-spatial)For

instancesT,;[j] representthe numberof executionsof instructioni thatexhibit self-temporaleusecon-

sideringall the iterationsof loop j. Eachtype of intrinsic reuseidentified by the compileris quantifiedas

follows (see Figure 2.2):

» Section A: theinstructiondoesnot have ary kind of selfreusein loopj. In this case for eachiteration
of j withoutgroupreusethenumberof executionswithoutarny reusds thenumberof executionswith-
outreusein theloopj+1 (i.e.,NN [j1=NG t;*NN [j +1]). For eachiterationof loopj, thenumberof exe-
cutionswith self-temporabr self-spatiateusds thenumberof executionswith suchreusen loopj+1

(i.e.,STi[j1=Tit;*ST[j +1]).

Section B: theinstructionhasself-temporateusen loopj. In this casethefirstiterationof loopj has
the samenumberof no-reusessthe whole executionof loop j+1 andthe executionscorresponding
to theremainingiterationsreusethe dataof thefirstiteration. Thereforenn [j 1 =N [+1] . Self-tempo-
ral reuseis exploited by all executionsexceptfor the first iteration.For this iteration,the numberof
self-temporateusesorrespond$o thatexhibited by the next innerloop. Finally, self-spatiareuses

computed as in section A.

Section C: theinstructionhasself-spatiakeusein loopj. In this caseavaluecalledfactor thatrepre-
sentghepercentagef referenceshatacces&new cacheblockis computedThen,for eachiteration
of j withoutgroupreusethatreferences new cachdine, the numberof executionswithoutary reuse
is thenumberof executionswithoutreusein theloop j+ 1. Self-temporaleuseis computedasin sec-
tion A. Finally, self-spatialeuses computedasfollows. For thoseiterationsof j suchthati references
anew block, thenumberof self-spatiareusesrethe sameasthosein thenext innerloop; andfor the

remaining iterations, all thexecutions ghibit self-spatial reuse.

22 CHAPTER 2

» Section D: groupreuseis computedasfollows (spatialandtemporalaretreatedin the sameway).
First, for thoseiterationsof j suchthati doesnot exhibit groupreusethe numberof executionswith
groupreuseis the sameasthat of the next innerloop. For the remainingiterations,all executions

exhibit group reuse.

After computingthe functiongreuse(i), NN [0] containsthe numberof compulsory misses of

instructioni .

Volume phase

A factorthatmay inhibit the exploitation of reuseis thelimited storageof cachememory In otherwords,
if theamountof differentdatablocksthatarereferencedetweertwo consecutie reusef thesameblock
is higherthanthe cachecapacity(in block units), this reusecannotbe exploited by anLRU fully-associa-

tive cache . The resulting cache miss is callegpacity miss.

Thisrequiresto determingheamountof datathatis usedby eachreferencan eachloop. Thisamount

of data depends on:

a) Type of reuse: calculated in the pwous step.

b) Loop bounds: obtained from the profiling information.

In this phasethe volume (in cacheblocks)thateachmemoryinstructioncontributesto the total vol-
umeof theloopsthatencloset is computedThis canbe obtaineddirectly from the datacomputedn the
previous phase For a givenloop j eachexecutionof instructioni that doesnot exhibit any type of reuse
will bringanew blockinto cache Ontheotherhand,if aparticularexecutionof aninstructionhasary type
of reusejt doesnotbring ary additionaldatainto cache Thereforethevalueof NN [j] expresseshevol-

ume contrilited by the instructionto the loog.
Once the wlume of @ery loop has been computed, some reuses aresthasknon@loitable:
« If aninstructionhasselfreusen loopj (eithertemporalor spatial) but thevolumeof loopj is greater

thanthetotal numberof cacheblocks,this reusewill likely notbeexploitedby a corventionalcache.

« If aninstructionhasgroupreuseg(eithertemporalor spatial)andthevolumecorrespondingo distance
(seebgginningof section?) iterationsof theloopis greatethanthetotal numberof cacheblocks,this

reuse will likely not be gploited either

Data L ocality Analysis 23

Then, the function greuse is computedagain but without consideringthe reusesmarked as non-
exploitable. The new computed\N [0] , asin the previous phaserepresentshe cachemissesof instruction

i and the dfierence with its pndous \alue is the number @apacity missesf instructioni.

Interference phase

Anotherfactorthatinfluenceghe locality is the effect of interferencesTypically, interference®r conflict
missesaredefinedasthosemisseghatoccurin adirect-mappeadr n-way set-associate cachebut notin a
fully-associatve cache This kind of missesnayhave a highimpactfor cachememorieswith alow degree

of associatiity, specially for direct-mapped caches.

The behaior of conflict missess hardto predictbecausét dependsn variousdynamicfactorssuch
asmemoryaddressesnstructionorder, etc. Interferencesnay be of two differenttypes:self-interfeences
and cross-interfeences Self-interferencesoccur when different data blocks referencedby the same
instructionare mappedonto the samecachelocation,whereascross-interferencesccuramongdifferent
memoryinstructions.The analysisproposedn this sectiondetectsa subsetof theseinterferencesThe
interferenceanalysisis currently implementedfor direct-mappedacheslts extensionto set-associate

caches is left as futureork.

For every arrayreferenceandevery loop for which it doesnot exhibit temporallocality, self-interfer-

ences are assumed to occur if the feitgy condition is met:
cade size in blds<N* 2 stride_family_in_bloks

whereN representthenumberof iterationsof theloop. Thestride_family _in_bloksis relatedto the stride
of thereferencean theanalyzedoop, expressedn cacheblock units. If the strideis notanintegral number
of blocks,the strideis roundedup to the next integer. The stride_familydefinedby x is the setof strides
0+2* with o odd[42]. All the stridesbelongingto the samefamily (e.g.,12=322 and20=5+2 2 belongto

family 2) have the same behavior from the point of view of self-interference.

For eachreferenceandeachloop, aself-conflictratio is computedwhich denoteghe percentagef the
N iterationsof the loop that produceself-interferencesThe amountof reusesn outerloopsis reducedoy

this factor due to self-interferences.

Regarding cross-interferencesye focuson whatis usually called ping-ponginterferencesthatis, a
pair of instructionsthatreferencalifferentdatablocksthatmapontothe samecacheblock for every exe-

cution. Theseinterferencesvill inhibit completelythe exploitation of ary reuseexhibited by theinterfer-

24 CHAPTER 2

ing instructions.This type of conflictsis analyzedfor eachpair of memoryinstructionsthat meetthe

following conditions:

a) Variablesvhosebaseaddressindsizeof everydimensionis staticallyknown. Thatis, variablesallo-

cated at compile-time (75% of all references for the SPECfp95).

b) Thedifferenceor “hole” betweerthe addresseémodulothe cachesize) of thefirst elementrefer-

enced by both instructions is less than the cache block size.
holeyg = | Ry modcadhe_size Rg modcade_sizg

¢) Bothreferencegollow the samepattern(seetheabove descriptionof the refelencefile for a defini-

tion of reference pattern).

For eachinstruction,arealvaluebetweerD and1 thatrepresentshe percentaye of interference(Pl) is
defined.If Pl is O, this instructionis free of interferencesvhereasf Pl is 1, it meanghatthis instruction
conflictswith someotherinstructionfor every iterationof the loop. Valuesin betweerrepresentifferent
percentagesf interferencethatis, the percentagef total iterationsin which aninstructionmissesdueto

interferences. & two instructions A and B that interfere, théfor is computed as:
Plag = (block_size- holeyg) / blodk_size
If an instruction conflicts witharious other instructions, the maximi#his considered

Thereuseof aninstructioni in aloop thatis notmarkedasnon-eploitablein thevolumephasewill be
exploited only by the percentagef referenceshat are free of interferencesthatis, for (1-Pl;) * nrefs,

wherenrefs is the number ofxecutions of instruction The rest of references will produce a cache miss.

Then,the functiongr euse is computedagain but consideringust the reuseghat arefree of interfer-
encesThenen computed\N [0], asin previous phasestepresentshe numberof cachemisseof instruc-

tioni and the dfierence with its pndous \alue is the number @onflict misses

2.3.3. Validation

The SPLAT tool estimateshe datalocality exhibited by a programthroughsomeinformationcomputechat
compile-timeand somesimple dynamicinformationobtainedby a profiler. The aim of this tool is a fast
study of the memorybehaior without the necessityof a costly memory simulator However, this tool
would be uselessf the obtainedresultswerefar from the reality. In this section,we validatethe accurag

of the proposedool by comparinghe estimatednissratioswith thoseobtainedhrougha cachesimulator

Data L ocality Analysis 25

Framewor k

Thestaticanalysisusedby the SPLAT tool hasbeenimplementedisingthe ICTINEO compiling platform
[4]. ICTINEO is a sourceto sourcetranslatorthatproducesa codein which eachsentencédasa semantics
very similar to that of currentmachineinstructions,but the high level information neededor the reuse
analysisis retained.Currently ICTINEO assumesn infinite numberof registersandthus,the references
produceddy spill codearenot consideredn thiswork. Optimizationsusuallyappliedby currentcompilers
(suchascommonsubepressiorelimination,deadcodeemoval, invariants,etc.) areimplementecandare
appliedto theresultingcode.In this way, the resultingcodeis very similar to the codegeneratedby a pro-

duction compiler

For boththetool validationandthe applicationexamplesof the next section,we have usedsomepro-
gramsfrom the SPECfp9henchmarksuite. Theseprogramsare:tomcatv, swim, su2cor, hydro2d, mgrid,

applu andturb3d.

A direct-mappedachehasalwaysbeenconsideredTheresultspresentedh this sectioncorrespondo

the profiling/execution of the wholex@cution of each benchmark using the test input data.

Error in the estimation

In orderto validatethetool, theresultsobtainedby simulationandtheresultsproducedoy the SPLAT tool
have beencomparedWith this goal,we have simulateda direct-mappeadachememoryof differentcapac-
ities (LKB, 8KB and64KBytes)andvariousblock sizes(16, 32 and64 bytes).Figure2.3 shavstheresults
for threeprogramstwo of themshawing a high variability in the missratio (tomcatv andswim), whereas
the otheronehasa missratio thatis muchlessaffectedby the cacheparameterghydro2d). Besidestom-
catv andswim areprogramswith a high conflict missratio whereashydro2d hasa very low conflict miss

ratio.

Thefirst row of graphsshavs both the simulatedandestimatedcachemissratiosfor the variouscon-
figurationsof cache We canseein thesegraphsthatthe resultsobtainedby the SPLAT tool arevery close

to the simulation results. That st®that the tool is accurate for a typical range of cache parameters.

Anotherway to measurdahe accurag of the estimationis to computethe averageabsoluteerror per
instruction.This errorindicateshow far from thereality the estimationis for eachsingleinstruction.These

results are depicted in the second and thingrof graphs.

26 CHAPTER 2
100 100 100
-\ 5\ z\ —e— Simulated
- ¥ = T \ \ = 7 -0 Edimated
g 3 5 g \ g
S e0l—x RN Ty S 60— At o 60
g p—" A g Iy A \ g
4 "\ o p hd
40 - 40 \ 4015
.*23 ! \ \ g \ \ \ -;ﬁ g
2 Y \ \ 2 \ \ \ 2 BN LN
: % 3 \ \ =S N
s b I
0 o o 2 o m 2 0 o 2 0 o m 2 0 o 2 o o 2 0 o o 2 o o 2 o o 2
%53 %83 583 %53 %% 3 583 2853 %3%3 5% 3
16 bytes 32 bytes 64 bytes 16 bytes 32 bytes 64 bytes 16 bytes 32 bytes 64 bytes
Cache Size Cache Size Cache Size
0.20 0.20 0.20
5 0 Allinstrs. 5 5
g [1] ® Only known instrs. G =] _
3 015+ 3 015 3 015
7} B B
£ £ £
& 0104 & o010+ & o10
5 5 5
I 005+ H I 005+ I 005+
=] =) =)
> > >
< < <
0.00 - 0.00 - 0.00 -
m o 2 o o 2 0 o 2 m o 2 o o 2 m o 2 o o 2 o o 2 n o 2
S 53 ¥5§ %83 253 ¥5 3 %83 ¥ %535 ¥¥%3 %383
16 bytes 32 bytes 64 bytes 16 bytes 32 bytes 64 bytes 16 bytes 32 bytes 64 bytes
Cache Size Cache Size Cache Size
100 100 — 100
—~ - — —~ f’_'_’—
P\i 80 ""'_/—’ § 80 PI § 80
8 8 od 8
5 5 f 5
60 60 60
= 2 1 2
X 4 S I_' X g4
Q g r Q
- £
E 20 § 20 —Allinsrs. g 2
= > 0 e Only known instrs. >
Aa a a
0 T T T T 0 T T T T 0 T T T T
0.0 02 04 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
Accumulated Error Accumulated Error Accumulated Error
tomcatv swim hydro2d

Figure 2.3. Comparison of the tool results against simulation results

The secondrow shaws the averageerror per instruction, both static (S) and dynamic(D). The static

error is computed as:

NINSTR
z ‘missratioeslb—missratio
|

avg_serror = —!

simi‘

NINSTR

whereas the dynamic error is computed as:

NINSTR
z ‘mlssratloes,i—mlssratlosimi Chrefs,

avg_derror = —

NINSTR

z nrefs,

The black bar representghe error for instructionswith reuseknown at compile time, whereasthe
white barcorrespond$o theerrorof all theinstructions.Thestaticerroris alwaysgreateithanthedynamic
error for all programsand configurationsThis meanghat the analysisestimatedetterthoseinstructions

morefrequentlyexecutedInstructionswhosereuses unknavn have a highimpacton the staticerror. The

Data L ocality Analysis 27

impactof theseinstructionsis muchlower on the dynamicerror, sincenormally theseinstructionsareout
of loopsandrarely executed.The averageerror per dynamicinstructionis aroundor lessthan10%for all

programs and all the cache configurations.

Finally, onthethird row of graphgheestimatederrorfor a particularconfiguration(in this casea 8KB
cachewith 32 bytesblocks)is moredetailed.Thesegraphsdisplaythedistribution functionof thedynamic
error perinstruction.It canbe seenthata very large percentag®f dynamicinstructionshave a very low
error. The accurag of thetool is extremelyhigh for the hydro2d program:about90% of the instructions

have no error at all.

2.4. FAST CACHE MISS EQUATIONS

The seconddatalocality analysisusedin this thesisis basedon the CacheMiss Equations(CMES).
Althoughthe SPLAT tool previously presenteds fastandaccurateesnoughfor mary programsit still has
somelimitations. Thetwo mainlimitations arethat(i) it canonly be usedto studydirect-mappeaaches,

and (ii) just a subset of all the conflict misses are captured (in particalaping-pong interferences).

CMEsallow usto obtainananalyticalandprecisedescriptionof thebehaior of any cachememoryfor
loop-orienteccodesUnfortunately a directsolutionsof the CMEsis computationallyintractabledueto its
NP-hardnature.In this sectionwe first review thetheorybehindthe CMEsandthenwe commenta practi-
calimplementatiorthatmakespossibleto obtaina very accurateandfastlocality tool (thatwe call FastC-
MES).

2.4.1. Analytical Model

CMEs were originally proposedoy Ghoshet al. [33] asan analyticalmodelto describethe behaior of
cachememoryfor asetof memoryinstructions Thebasicideais to generatefor eachmemoryinstruction,
asetof constraintgrepresentethrougha setof equalitiesandinequalities)definedover theiterationspace
of theloop nestin which instructionsareenclosedTheseconstraintgepresentfor eachiterationpointin

the iteration space, whether the instruction will hit inveegicache or not.

Theequationsaredefinedin baseof thereusevectors[111], asusedin the SPLAT. Eachequationrep-
resentsa corvex polyhedronin R", wheren dependson the type of equation.For eachreusevector two

kinds of equations are generated:

» Compulsoryequationsthey representhe first time a memoryline is accessedMissesdueto these

equations will be counted as compulsory misses.

28 CHAPTER 2

* Replacemeng¢quationsgivenareferencetheseequationgepresentheinterferencesvith ary other

reference:

Therearetwo typesof compulsoryequations(i) cold missequationsand(ii) cold missbounds.The
formerarethoseequationghatdescribeheiterationpointswherea reusecannotbe exploitedbecausét is
from aniterationpoint outsidetheiterationspaceThe latterrepresentheiterationpointswherethereuse

cannot hold since the reference reuses data that is mapped ofeoemtddache line.

2.4.2. Implementation

Theinteger pointsinside eachcorvex polyhedronrepresenthe potentialcachemissesandthena direct
resolutionof the CMEs is basedon countingthesepoints. Thereare several approacheso computethese
points.An analyticalmethodwould consistof countingthe numberof pointsinsidethe polyhedragener-
atedby the equationsHowever, thisis an NP-hardproblemmakingthe probleminfeasibledueto its huge
computingtime. A secondmethodto solve the problemcouldbeto traversetheiterationspacethatis, all

iteration points are tested independently

In thisthesiswe have usedananalyzethatusessomeparticulartechniqueso acceleratehe solving of
the CMEs. Theobtainedool is basedn the secondnethodologypreviously proposedtraversingtheiter-

ations space) and the addition obtaptimizations that makthe problem feasible:

* Remwa/ing empty polyhedra

» Sampling

Thefirst optimization(removing emptypolyhedra)was proposeddy Bermudoet al. [6] andis based
on mathematicatechniquesThe basicideais to reducethe numberof equationf the systemby remov-
ing thoseequationghatform emptypolyhedra.This is possibleusingthe knowledgethatthe solutionsof
our system(pointsof theiterationspacewherethe reusecannotbe exploited) have to beinteger solutions.
Then,apolyhedrorthatonly containgealsolutionsarediscardedThis simplificationon thecompleity of

the system result in speeds-up of more than one order of magnitude.

The secondoptimization(sampling)is basedon statisticaltechniquesAs we have mentionedgach
iterationpoint canbetestedndependentlyf the others.Basedon this property asmallsubsebf theitera-

tion spacecould be analyzedreducingthenthe computationcost. This optimization(proposedy Veraet

1.Comparedo SPLAT, the CMEs cannotdistinguishbetweerreplacementdueto thelimited capacityof the cachecapacitymisses)r due
to the mapping functions (conflict misses).

Data L ocality Analysis 29

al. [107]) usesrandomsamplingin orderto selectthe iteration pointsto study andthenthe missratio is
computedfrom them. The useof samplingalongwith inferencetheoryallows the userto setthe desired

confidence leel and the width of the result intedy

Theresultis avery fastandaccurateool thatcanbe usedto studythelocality behaior of arny cache
for loop-orientedcodes.The experimentsshavn the authorsfoundthat, usinga confidenceof 95%andan
intenval width of 0.05,the absoluteerrorin the missratio is smallerthan0.2in 65% of theloopsfrom the
SPECfp95andnever biggerthat 1.0. Moreover, the analysistime requiredfor eachprogramis usuallya

few seconds and mer more than 2.3 minutes.

2.5. CHAPTER SUMMARY

In this chapterwe have presentedwo datalocality analysistechniqueghat arethe basefor the different

applications and techniques proposed in this thesis.

Thefirst analysiscalled SPLAT, is proposedn this thesis.lt is dividedinto two steps.Thefirst is per-
formedjust onceand consistsof a basicanalysisof somecharacteristicef the programanda profiling
pass(basically countingnumberof executionsof basicblocks).This first passproducesomeinformation
thatfeedsthe locality analyzerThis performstwo typical phaseshatarecommonto otheranalyzersplus
aninterferencgphasethat cancapturea subsewf the conflict misses.The overheadof this mechanisnis
very low sincemostof the analysisis performedat compile-timeandthe requiredprofiling supportis just
a basicblock executioncount. Besideswe shav in this chapterthat the proposedmechanisnis highly
accuratdor numericcodesby comparingit with techniqguedasedon simulation.SPLAT will be usedto
studysomelocality characteristicef the SPECfp9shenchmarkén Chapter3. Moreover, it is usedto sup-

port the techniques proposed in Chapters 4 and 5.

Thesecondanalysidgs calledFast CMEs (CacheMiss Equationsconsistsof a moreaccurateanalysis
tool that canbe usedto studythe behaior of ary set-associate cache Although this secondanalysisis

not proposed in this thesis, it will be used in Chapter 6.

An importantremarkis thatalthoughtwo differentanalysishave beenusedin this thesis the proposed

techniques proposed in the fallimg chapters are independent of the locality analysis itself.

30

CHAPTER 2

3

L OCALITY ANALYSIS OF SPECG-P95

An utility of a data locality analysisis the study of the locality behavior of differ ent programs. This
study can help reseachersto find problemsrelatedto memory and devisewaysto handlethem. This
chapter presentsdiffer ents statistics about the data locality exhibited by the SPECfp95. The tools
proposedin Chapter 2 have beenusedfor this study. In this chapter we presentstudiesranging
fromthe intrinsic reuseof a program (ignoring cachesizeand associatvity) to the actual locality of a
program when a real cacheconfiguration is considered. This chapter presentsnot only quantitati ve
results,but also qualitative numbers that shawv the reasonwhy a particular reusecannot be finally
exploited in a cache. Quantifying different types of localities as well as different types of cache
missesis useful to identify what techniqueis appropriate to solve (or at least, aliviate) the problem.
This kind of study is a previous step before thinking in new schemego improve memory perfor-

mance, and is the motiation for the different techniques ppposed in the 6llowing chapters.

32 CHAPTER 3

3.1. INTRODUCTION

Oneof the main goalsof the thesisis to shov how usefula datalocality analysiscanbein a compiler In
thekernelof this documentve shav how this kind of analysiscanbe usedto managenew cacheorganiza-
tions aswell asto guide the schedulingof memoryinstructionsin orderto reducethe impactof cache

misses.

A corvenientstepbefore proposingnen schemedo improve memorybehaior (and,in particular

cache memory) is to study and analyze where the hot spots arevatttebe problems can be attadk

This canbe donethrougha datalocality analysis.Thus,thefirst useof a datalocality analysiswill be
the studyof thelocality exhibited by a setof programsn orderto motivateour proposalsin theliterature
we canfind otherlocality tools aswell aspaperghatreportsthe kind of studiespresentedn this chapter
(evenfor thesamesetof programs)Many of theseworksarebasedf the simulationof the programsand
then obtaininga wide variety of results(by modifying, for instance differentcacheparametersjs very

time costly (as reported in Chapter 2). On the other hand, BRa#é a lav overhead and high accusac

3.2. DATA LOCALITY IN THE SPECFP95

This sectionpresentsa quantitatve analysisof the locality exhibited by the SPECfp95rogramsWe pro-
vide statisticsfor seven out of the ten benchmarksEachprogramhasbeencompiledwith full optimiza-

tions and the reported statistics refer to the whole run of them.

We are interestedin all types of reuseexhibited by each single memory reference.Considerfor

instance the folling code:

Our analysiswill concludethatfor loop |, the first andthird referencesxhibit group-temporateuse.
Group-temporateuses alsoexhibited by the secondandfirst referencegin this casethereuseis afterone
iteration). Besides,eachreferenceexhibits self-spatialreuse.Now, consideringloop J, we have that the
three referencesexhibit self temporalreuseand ary pair of referencesexhibits group-temporakeuse.
Assumingthattheinterferenceanalysisdoesnot detectary interferenceandthatthe sizeof vectorA is not

higherthanthe cachecapacity the analysiswill concludethat all the reusecan be exploited (the reuse

L ocality Analysis of SPECfp95 33

acrosdoop Jrequiresalargervolumethatthereuseacrosdoop |, but it is still into thelimits of the cache

size).

Consideringonly thelasttype of reusein programorderasproposedn [72], theanalysisvould detect
only a subsetof the differentreused. In particular it would obsere just group spatial reusefor every
memoryreference.This could suggesthat for the abore codeit is not worthwhile to exploit temporal

locality, whereas this is not the case.

3.2.1. Intrinsic Reuse

The intrinsic reuseexhibited by a programcan be usedas a lower bound of the memory bandwidth
requiredby a given program.Thatis, every referencethat doesnot exhibit any type of reusewill surely

require a memory reference to thetlevel of the memory hierargh

Memoryreusecanbeclassifiednto four cateyories:self-temporalsT), self-spatiass), group-tempo-
ral (GT) andgroup-spatialGs). The temporalreuseis independenof the particularcachearchitectureof
theunderlyinghardware.Ontheotherhand,spatialreusgust depend®nthecachdine size,in additionto
the programcharacteristicsRegarding groupreuse currentlythe tool canonly analyzethe reuseamong
memory referenceghat are in the sameloop, which canresultin an underestimatiorof group reuse.

Extending the tool to identify reuse among references fierdiit loops is left for future avk.

Figure3.4 quantifiesthe amountof reuseof the SPECfp95or someof the programsandthe average.
Thereuseis quantifiedfor acachdine sizerangingfrom 8 to 128bytes.In additionto the previously men-
tionedfour cateyoriesof reuse the graphsinclude a fifth cateyory that corresponddo thosereferences
without ary type of reuse(NN) anda sixth onethatcorrespondso thosereferencegor which the tool has
not beenableto detectits type of reuse(UN). Notice that a given referencemay exhibit several typesof

reuse and thus, the fiifent bars may add up to more than 100%.

On averagefor all programsijt canbe seenthatself-spatiakreuseis the mostfrequenttype of reuse(it
is exhibited by 56% of all references)Self-temporaleuseis alsosignificant(33% of references)Group-
temporalis the next in importance(20% of referencesandfinally, group-spatials the leastcommonone
(7% of references)Notice alsothatgroup-spatiateusestabilizesfor a 32-byteline sizewhereasself-spa-

tial reuse preides diminishing returns for a line size greater that 128 bytes.

1.In [72], what we call reuse is referred as to locaktgwever, to be consistent with the rest of this paper hae changed
their terminology according to our definition.

CHAPTER 3

g

8 8 &8 & °

(%) S90UB B Jo D1WrRUAQ

128

32

16

&

8 8 & R

N
(%) seoue lBY dIWeuAQ

Block Size (bytes)

Block Size (bytes)

swim

tomcatv

g8 8 8 2 R
(9%) s9oUB I oY dlWreUAQ
; ; .

g8 8 8 2 R

(%) SeoUB oY D1WeUAQ

Block Size (bytes)

Block Size (bytes)

su2cor

hydro2d

g 8 3
(9) S99UR lB oy dIWrRUAQ
g 8 8 & R’ °

(%) seoUB Jo oy DlWreUAQ

Block Size (bytes)

Block Size (bytes)

applu

mgrid

g8 8 8 ¢
(%) SeoUR BPY dIWeUAQ
4wO%
. T
d%m
: EINN
d%m
: ENN
mm%m
: NN
w w 1 T 1 T 1 T i
g8 8 8 8 & °

(%) soUR RPY dlwreUAQ

Block Size (bytes)

AVERAGE

Block Size (bytes)

turb3d

Figure 3.4. Intrinsic reuse

L ocality Analysis of SPECfp95 35

Theresultsfor individual programsarevery different,andthe dominanttype/sof reusedepend®nthe

concrete benchmark:

» Tomcatv: thedominanttypesof reusearebothself-temporahndself-spatial Group-temporateuseis
alsoimportant.In generaltheintrinsic reusefor this programis very high (notethattheNN baris very

small, een for blocks of 8 bytes).

« Swim: for this programthe dominanttypesof reuseare group-temporahnd self-spatial. The other

reuses areery low for all block sizes.

» Su2cor: this benchmarkpresents high degreeof temporalreuse mainly self-temporallt is alsoa

program with a high intrinsic reuse.

» Hydro2d: thedominantypeof reusefor this programis self-spatialfollowedby temporakeusgboth

self and group). Finallygroup-spatial reuse is almosgtigible.

« Mgrid: for this programthetemporalreuses low, bothselfandgroup.Lik ewise,group-spatiateuse
is almostnull. The dominanttype of reuseis self-spatial Note thatthe no-reusebaris very sensitve

to the block size.

» Applu: themostrelevantaspecbdf this programregardingits reusds thelow impactof theblock size.
Notethatthe incrementof spatialreuseor the decremenbf no-reusds almostnegligible for blocks
biggerthan8 bytes.Besidesthis is the programwith the lowestamountof reuse asdenotedoy the

relatively highNN bar

» Turb3d: in generalfor this programthe reuseis poor, mainly group-temporahndself-spatialreuse.
However, notethatthepercentagen unknavn referencess very high (about60%),sotheresultsmay

not be \ery accurate for theverall program.

Severalconclusioncanbedravn from Figure3.4. First, we canseethatin average self-temporabnd
self-spatialreusearethe mostfrequentandnoneof themis dominant.Grouptemporalreuseis alsoquite
commonwhereasgroup spatialreuseis relatively infrequent.As expected,this resultsdiffer from those
presentedh [72], whereit wasreportedfor instancehatself-temporateusewastheleastfrequenttype of
reusé. The dominanttype of reusevariessignificantlyfor thedifferentbenchmarksSelf-temporals dom-
inant for tomcatv, applu andturb3d. Self-temporaland group-temporahre the mostfrequentfor mgrid.
Self-spatialis dominantfor swim, su2cor andhydro2d. Groupspatialis alwaysthe leastcommontype of

reuse Notice alsothatin average thelocality analysiscandeterminethe reuseexhibited by about90% of

1. Another reason for the discreparis the diferent benchmark suite.

36 CHAPTER 3

100 4
g 80 —
% |
B 60—
= |
8 40+
=
8 j
N 204
0
SEH SEG ZEH ZESH
8 16 R 64
Line Size (bytes)
AVERAGE
Figure 3.5. Percentage of instructions with just one type of reuse: no reuse (NR), temporal (TR) or spatial

(SR).

the executedinstructions.Finally, it canbe obsened that almostall the referencesxhibit sometype of

reuse.

Figure3.5shawvs the percentagef executednstructionghatexhibit just onetype of reuse githerspa-
tial or temporal.From now on, the figurespresenfust averagestatisticsover the differentbenchmarks.
Fromthis graphit canbe concludedthattemporalreuseis the mostcommontype of singlereuse which

may suggesthe inclusionof a modulespecializedo exploit temporallocality asit is the caseof the dual
data cache.

3.2.2. Quantifying Types of Misses

Quantifyingthe differenttypesof misseanay be usefulto decidethe particularoptimizationthatmaybest
improve the performanceof a give program.Missesaretraditionally classifiedinto threecateyories:com-
pulsory capacityandconflict. Eachtype of missescanbe bestreducedwith differenttechniquesasunder-
lined in the introduction. Currently the tool can estimateconflict missesjust for direct-mappedtaches

although the xension to set-associedi caches is straightfoasd.

Figure 3.6 shaws the missratio of the programsstudiedin this paperfor a cachesizerangingfrom 1
KB to 64 KB andaline sizeof 16, 32 and64 bytes.For eachconfigurationthe total missratio is divided
into the three different cateyories. The y-axis representghe percentagef the total executedmemory
instructionswhosereuses known (thefirst columnfor eachgraphicin Figure3.4- UN column- represents

the dynamic percentage of references with unknreuse).

Locality Analysis of SPECfp95

100 T T
@ Conflict
80 O Capacity H
m Compulsory |..

Memory References (%)

TeN3 983 993 983 983 983 983
1KB 2KB 4KB 8KB 16KB 32KB 64KB

Memory References (%)

@ Conflict
O Capacity H
m Compulsory |..

TeNE 983 983 983 983 983 983
1KB 2KB 4KB 8KB 16KB 32KB 64KB

Cache Size (bytes) Cache Size (bytes)
tomcatv swim
100 — 100 —
’\g @ Conflict ’\; @ Conflict
< 80 O Capacity < O Capacity
§ m Compulsory |.. g m Compulsory |..
5 60 5]
] (]
‘S ‘D
X 4 @
> >
5] 5]
5 204 5
= 1 =]
0583 o8z 993 983 93 983 283 0—"cnz 283 283 °¥3 283 843 883
1IKB 2KB 4KB 8KB 16KB 32KB 64KB 1KB 2KB 4KB B8KB 16KB 32KB 64KB
Cache Size (bytes) Cache Size (bytes)
su2cor hydro2d
100 — 100 —
’\3 @ Conflict ’\3 @ Conflict
< O Capacity < O Capacity
g m Compulsory | g m Compulsory |
5 &
] (]
‘S jo]
o T 40
> >
<] o]
5 § 20
s lglHmlm el e =]
ToH3 93 S9N3 983 983 983 98 0—"cnz o8z 283 2H3 S8 883 98
1KB 2KB 4KB 8KB 16KB 32KB 64KB 1KB 2KB 4KB 8KB 16KB 32KB 64KB
Cache Size (bytes) Cache Size (bytes)
mgrid applu
100 —
’\; @ Conflict
< 8 O Capacity
§ m Compulsory |..
& 60
(]
‘D
X 404
>
6 <
&5 20
=]

a83 9§

1KB 2KB 4KB 8KB 16KB 32KB 64KB

Figure 3.6. Different kinds of cache misses

SH3 983 98I 98I 88

Cache Size (bytes)

turb3d

37

For each program, the source of misses may be quite different:

38

CHAPTER 3

» Tomcatv: this programhasa very large numberof conflict missesgspeciallyfor cachesmallerthan
16KB. Increasinghecachesizereducesacheconflictsalthoughothertechniquesik e paddingcould
be morecost-efective, aswe will shawv in the next section.Capacitymissesarealsosignificantand
hardlyvaryfor theconsideredangeof cachecapacity Thisis becaus¢heworking setof thisprogram
is higherthan64 KB. Finally, notethatthe mosteffective line sizedepend®nthe cachecapacity For
very smallcachestheline sizehasa smalleffect. For intermediatecachessmallerlinesbehae better
sincethey significantlyreducethe numberof conflict missesdueto the larger numberof lines. For
large cachesthe bestperformances obtainedby thelargestline size. This is dueto the reductionin
capacitymissesNotethatincreasingheline sizemay reducecapacitymissesalthoughit may seem
counterintuitve. This may happerif therearereferenceshatexhibit both spatialandtemporalreuse
buttemporakeusecannotbeexploiteddueto capacityconstraintsin this situation,increasingheline
sizewill resultin abetterexploitationof spatiallocality andthus,capacitymisseswill bereducedFor

instance, assume the folling code:

do i=1,8
do j=1,1024
- AT
enddo
enddo

In thisexamplethereference\[j] hasspatialreusein loopj andtemporalreusein loopi. If thecache
capacityis 512 elementsthe temporalreusecannotbe exploited. Therefore|f theline sizeis 4 ele-
ments,this codewill produce256 (1024/4)compulsorymissegfor thefirst iterationof loop i) and
1792((1024/4) 1) capacitymissegqtherestof iterationsof loop i). However, if theline sizeis 8 ele-
ments, there will be 128 (1024/8) compulsory misses and 896 ((102¥{&ypacity misses.

» Swim: the main sourceof missesfor this programis conflict misses.For cachesize smaller
than16Kbytesmissegdueto interferencesepresenthe majority of missesFor a cacheof 16Kbytes
it is alsothe dominantsourceof missedor block sizesof 32 and64 bytes.Finally, for cacheswith a
sizeof 32 or 64Kbytes,compulsorymissesarethe mostimportantcauseof miss.For instance for

caches of 64Kbytes, compulsory misses are the only source of misses.

Note that for this program thefeft of capacity misses is almosugiigible.

SuZ2cor: the low impactof bothcacheandblock sizesin the total numberof missedor this program
is remarkableThebehaior for all cachesizesis practicallyconstantandtheimpactof block sizeis

lessthan5%. It canbeobsenedthatthemajorpartof missesaredueto capacitymissesbut thework-

ing set of the program is bigger than 64Kbytes, since capacity misses up to that size do not decrease.

L ocality Analysis of SPECfp95 39

100
~ 80
X
) 60 :
3 1+ —— tomcatv
x —+— swim
B 40 —e— su2cor
S —e— hydro2d
53 --a-- mgrid
w20 --x-- applu

i --=+-- turb3d
0

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K

Cache Size (bytes)

Figure 3.7. Exploiting temporal reuse only

» Hydro2d: for this programall theworking setcanbestoredin avery smallcacheandthus,increasing
cachecapacityhardlyimprovesperformancelncreasingheline sizefavorstheexploitationof spatial

locality and reduces the number of compulsory misses.

» Mgrid: ashydro2d, for this programthe maincauseof missesarecompulsorymisseslf thecachehas
just 16 blocks(thatis, a 1Kbyte cachewith a block size of 64 bytes),thereis no spaceo keepmost

of the data in cache, so the number of capacity missesyiigh.
» Applu: assu2cor, the number of misses for this benchmark is almost constant for all configurations.

 Turb3d: this programshaows a high missratio. However, notethatthe resultsarepresentedor refer-
enceswhosereusecould be studied,andfor this programthe percentagef unknavn referencess
almost60% (seeFigure3.4).For thisreasontheresultsof this graphmaynotberepresentatie of the

overall program.

Thereuseanformationtogethemwith the quantificationof thedifferenttypesof reusecanbeusedby the
compilerto setappropriatelythe hints provided by memoryinstructionsin somemicroprocessors-or
instancejf the cachehasa bypasscapability thosereferencesvithout arny reusecould be marked asnon-
cacheableBesides,if two different memoryinstructionsfrequently collide, one of them could also be
marked as non-cacheabldn this way, the locality exhibited by the otherinstructioncould be exploited,
whichis betterthannot exploiting ary of both.For instancejn next Chaptemwill bebeenreportedhatthis
type of analysiswhenappliedto drive aselectve cachingpolicy may provide about25%reductionin aver-

age memory access time and 65% reductionihleeel memory bandwidth.

Figure3.7 shavs the percentagef temporalreusethat canbe exploited with a fully-associatve cache

thatis usedonly for referenceshatexhibit justtemporalreuse(herea fully-associatve cacheis modelled

40 CHAPTER 3

80—. /W_’_’_"; :

g

% 60

@

= —+— linesize= 8 bytes

5 20 —e— 16 bytes
—a— 32 bytes
— 64 bytes

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K256K

Cache Size (bytes)
AVERAGE

Figure 3.8. Percentage of reuse exploited with a varying cache size without interferences.

by justnot consideringcachenterferences)in this casetheline sizeis 8 bytes(onedoubleprecisionfloat)
sincea larger line doesnot make sensebecausespatialreuseis not presentFromthis figure we cancon-
cludethata 16 line (128 byte) storagds enoughto exploit mostof the singletemporalreuse As we have
seenin Figure3.5,thesereferencesepresenaibout35% of thetotal. Thus,thiswill bethesizeof thetem-

poral module of the dual data cache for theegiments of the n& chapter

As pointedout above, a given instructioncan have several typesof reuse.Given a particularcache
organizationwe definethe percentagef reusethatis exploitedasthe numberof executednstructionshat
canexploit atleastonetype of reusedivided by the numberof executedinstructionsthathave atleastone

type of reuse.

Figure3.8 shavs the percentagef reusethatcanbe exploitedfor a varying cachesizewith aline size
rangingfrom 8 to 64 bytesandneglectingthe effect of cross-interferencedt canbe seenthata cachesize
of aboutl Kbyte with lines greaterthan8 bytescancapturesomereusefor practicallyall theinstructions

of the analyzed programs with some reuse

Sincealmostall thereferencegxhibit sometype of reuse(asit hasbeenshowvn in Figure3.5) andthis
reusecanbe exploitedwith arelatively smallvolume,alocality analysishatdid notincludeainterference
analysiswould incorrectlyconcludethatit is worthwhile to cachealmostall memoryreferencesThe per-
centageof reusethatwould be exploited by this approachwould be significantlylower thanexpecteddue
to interferencesThisis shavn in Figure3.9for avarying cachecapacityandline size.For instancecom-
paring the graphsof Figure 3.8 and Figure 3.9 for a 8 Kbytes capacityand 32-byteline size,it canbe

obseredthatwithoutinterferencesiearly100%of thereusecanbe exploitedbut only 80%of it is actually

Locality Analysis of SPECfp95 41

100
o %07
>
§ o«
14]
= —+— linesize= 8 bytes
i 20 —— 16 bytes
—a— 32 bytes
— 64 bytes

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K256K

Cache Size (bytes)
AVERAGE

Figure 3.9. Percentage of reuse exploited with a varying cache size considering interferences.

g
)
3
a4
Z 40-
5 ;
g 1 R LA
w204 -
- —m— Without interferences
--a-- Withinterferences
o-L—m

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K256K

Cache Size (bytes)
TOMCATV

Figure 3.10. Percentage of reuse exploited with a varying cache size with/without interferences
for tomcatv.

exploitedwhenconsideringhe effect of interferenceskor someprogramswith a high conflict missratio,
the effect of interferencess even muchmorenoticeable This is the casefor instanceof tomcatv. Figure
3.10compareshe percentagef reusethatcanbe exploitedwith a varying cachesizeandaline sizeof 32
bytes.Whereadl Kbyte is enoughto exploit all thereuseif therewerenotinterferenceswhenconsidering

interferences the reusgpoited with a 8 Kbyte cache is just 28%.

3.2.3. Conflicting Data Structures

For thoseprogramswith a high percentagef conflict missesjt may beinterestingto identify which data
structuresareresponsibleor suchconflicts. Techniquedik e paddingor copying can be thenappliedto

such data structures to try to reduce these conflicts.

42 CHAPTER 3

100 100
. N
jg %’ 80
€ o0 € e
5 1 B e
= T 10
8 8]
5 5
& 5 20
5 5
o (o
0_
+7\Qj-9$+ﬁ.ﬁvv€§>€§>9iYigtvpzvﬁyi'oi’&@iﬁé
Conflicting pairs Conflicting pairs
tomcatv swim
Cache size: 8KB
Block size: 32 bytes

Figure 3.11. Percentage of conflict misses between data structures

g

5]

|

N
o

Conflict Miss Ratio (%)

=
o

Padding X-Y (in bytes)

Figure 3.12. Reduction in conflict miss ratio after padding

For instanceFigure3.11shovsthepercentagef conflictsbetweerary pair of datastructuresprdered
from highestto lowest,for thetomcatv andthe swim benchmarksfor a8 KB direct-mappedachewith 32
bytesperline. For thetomcatv program,it canbe seenthatdatastructures< andY areresponsibldor the
majority of conflictmissesin addition,in Figure3.11we canobsene thatmostmissesaredueto conflicts,
which suggesthat paddingmay be an effective techniqueto reducememorypenaltiesFor instance Fig-
ure3.12shawstheresultingconflict missratio of tomcatv afterinsertinga numberof emptybytesbetween
thetwo datastructureslt canbe seenthatjustwith this naive paddingschemeconflict missesaresignifi-
cantly decreased, from 39.5% to 27.2%.

For theswim program, conflict misses are more disttédd among a lger set of data structures.

Locality Analysis of SPECfp95 43

50 50 o
37 = conflict Cache size: 8KB
g S 40-— Eg?r)na;i%ory - Block size: 32 bytes
é 303 ﬁ 30
S g s 3
2 20 2 20 ‘
é 10 é 10 .

Innermost Loop | dentifiers

swim turb3d

Figure 3.13. Cache misses per innermost loop

3.2.4. Critical Code Sections

Most of thememorypenaltiesarein mary casesausedy avery smallpercentagef thecode.ldentifying
thesemostpenalizingsectionamay help the programmer/compileto focusthe effort on suchpartsof the

code.

For instance, shaws the percentagef cachemissegover the total numberof missesthatare caused
by every innermostloop, for two applications.Besides for eachloop, its correspondingpercentagenf
missesis split into the threedifferenttypes:compulsory capacityand conflict. An 8 KB, direct-mapped

cache with 32 bytes per line is assumed.

Notethatin both casedhe vastmajority of missesaredueto a very few sectionsof code:threeinner-
mostloopsfor swim andsix innermostioopsfor turb3d. For swim, mostof the missesaredueto conflicts

whereas inturb3d, both capacity and compulsory missegeha significant contriltion.

3.3. CHAPTER SUMMARY

In this chaptemwe have presentec detailedanalysisof thelocality exhibited by the SPECfp9%enchmark
suite.This detailedevaluationhasbeenperformedoy meansof anew datalocality analysigool thatis very
fast,which allows to obtainstatisticsfor the whole executionof real programsand mary differentcache

configurations with a rgigible slovdown.

44 CHAPTER 3

We have showvn thatdifferentprogramsexhibit very differentlocality characteristicsDetailedevalua-

tion of thelocality exhibited by a programmaythenbeessentiato choosehebestapproacto betakento
improve it.

Fully-automaticoptimizationtools have proved so far insufficient dueto the variety of differentsce-
nariosthatthey shouldcopewith. We thenbelieve thatthe bestapproachodaytowardsmemoryoptimiza-
tion is by meanf aniterative (andinteractve) processn which repetitve analysisandoptimizationsteps
areinterleared until the final resultis acceptableTherefore the speedof the analysistool aswell asthe
rangeof informationthatit canprovide arecritical. We have shavn thatthe type of analysispresentedn

this paper can beevy useful for such an approach.

A

L OCALITY SENSITIVE CACHES

Cachememoriesare often inefficiently managed,which resultsin significant memory penalties.An
important reasonfor this poor performanceis the homogeneousnanagementof all memory refer-
encesand the inflexibility of the cachearchitecture itself, even though different memory references
may exhibit a very different locality. Most memory referencesin numerical codescorrespondto
array referenceswhoseindices are affine functions of surrounding loop indices. Thesearray refer-
encedollow aregular predictablememory pattern that can be analyzedat compile time. This analy-
siscan provide valuable information lik e the locality exhibited by eachreference,which canbe used
to implement a moreintelligent cachingstrategy. In this chapter, we presentan evolution of differ ent
cacheorganizationsthat we call locality sensitve caches.This evolution runs from a cachewith the
capacity of bypassingsomedata dir ectly to the CPU to a novel data cachearchitecture composedof
differ ent modules, each module exploiting a particular type of locality. The information of which
module eachfetched data is placed on is passedto the hardware by meansof a hint encodedin the

memory instructions. This hint is set based on the locality analysis detailed in Chapter 2.

46 CHAPTER 4

4.1. INTRODUCTION

Dueto the greatimpactthat cacheperformancénason the overall processoperformancecurrentproces-
sorsassigna large portion of its areato implementa first-level cache(typically split into instructionand
datacaches)In this way, on-chip cachesn modernprocessor®ccupy betweenl/3 and 3/4 of the total
chip area.However, the performanceobtainedby thesecachescanstill be insuficient for someapplica-
tions, mainly numericapplicationsthat require large working sets.For instance Cvetanwic and Bhan-
darkarreportedhatthe Alpha 21164is stalledabout50%of thetime for the SPECfp92andthe majority of

these stalls are due to memory related issues [14].

Increasinghe cachecapacity/associatity mayhelpbut is not necessarilghe mostcost-efective solu-
tion becauséoth capacityand associatiity may increasethe cycle time. Furthermorethereare several
studies(see[45][8] for instanceXhat shav thatthe cachememorymakesan inefficient useof its storage
capability We claim thatthis inefficiengy comesfrom the uniform managemendf all memoryreferences.
Corventional cachestry to exploit spatial reuseby using a block (also called line) as a transferunit
betweerthe differentlevels of the hierarcly, andseekto exploit temporalreuseby keepingsomerecently
accesseblocksin thecachememory All memoryreferencesrehandledn the sameway, thatis, they use
the samefetch, placementreplacemenandwrite policies[43]. However, this uniform managemenof all
memaoryreferencesan be very inefficient. In particular somereferencesandegradethe cacheperfor-
manceby introducingblocksthatwill notbeusedin anearfuture,or blockswhereonly a smallportion of
themis used.Suchreference$etchanunnecessargumberof words,wastingmemorybandwidthandpol-

luting the cache.

Whena referencedoesnot exhibit ary type of locality, it resultsin cachepollution andmemoryband-
width waste.The pollution is dueto the placemenin cacheof a non-reusabld®lock whereaghe memory
bandwidthwasteis causedy the additionaldatabroughtfrom L2 cacheto L1 cachein the sameblock as
the requesteddata. To cope with this issue,some current microprocessorprovide memory reference
instructionghatcanbypasghe cache Ontheotherhand,whenareferenceéhasonly temporallocality (i.e.,
only onedataelementf eachcacheblockreferencedy it is usedby itself or any otherinstruction),it also
resultsin cachepollution and memorybandwidthwastesinceonly oneelementof the new block will be
used.To overcomethis problem,a cachecould provide a specialmoduleto storethosedataelementswith

just temporal locality

L ocality Sensitive Caches 47

25— 1.0 50
E Il Direct-Mapped % 1 W Direct-Mapped ;\;’\ I Direct-Mapped
—~ 20 @ 4-WS Associative |-- - 0.8 [E@ 4-WS Associative |- ~ 403- B 4-WS A: iati
o\o E [Fully-Associative g J [Fully-Associative % [Fully-Associative
g 15 7 3 0.6 - = [CORER | N |
©] < 1 =
@ b =] =
7 104 U | OO g 04— e L 5 2030t Rt R
= L 2
2 54 2 02 2 104
N <€] @
X 0
8KB 16KB 32KB 64KB 8KB 16KB 32KB 64KB 8KB 16KB 32KB 64KB
SPECfp95 SPECfp95 SPECfp95
(a) Miss ratio (b) Avg. fetched wrds (c) Waste of bandwidth

Figure 4.1. Performance of conventional cache architectures averaged for all SPECfp95

For instance Figure 4.1 shaws the resultsof simulatingsereral corventionalcachearchitecturegor
someSPECfp95programs(seeSection4.4.3for further detailsaboutthe simulationervironment). The
graphsshow: a) the missratio; b) the averagenumberof fetchedwords (8 bytes)from the next memory
level permemoryreferencdthathasa directrelationwith thetraffic); andc) the percentag®ef wordsthat
arebroughtinto cachebut not usedbeforebeingreplaced Four differentcapacitiesare considered8KB,
16KB, 32KB and64KB; aswell asthreedifferentdegreesof associatiity: direct-mapped4-way setasso-
ciative andfully-associatve. All configurationausea typical line size of 32 bytes.The graphsshow the
resultsaveragedor all the analyzedprogramsWe canobsene thatincreasinghe cachecapacityreduces
the missratio but the benefitsare small beyond 32KB (to obtaina further significantimprovementa very
large capacityis required).Figure4.1 alsoshaws thatassociatiity helpsbut the benefitsaremorenotice-
ablefor smallcachesFinally, it canalsobe obseredthatfor all the configurationghereis a high percent-

age of useless fetchedvds.

Anotherimportantobsenationis thatthe spatiallocality of eachreferencanaybevery different.Ref-
erenceswith very high spatiallocality will benefitfrom very large cachelines, whereageferencesvith
poor spatiallocality may favor small cachelines. Thesedifferencesn spatiallocality may be obsenred if
oneconsiderghebehaior of differentreferencegor sectionsjn thesameprogram,or theglobalbehaior
of differentprogramsFor instance Figure 4.2 shawvs the missratio of someSPECfp95hechmarkgtom-
catv, swim andsu2cor) for differentdirect-mappedacheg16KB and32KB) whenthecachedine sizevar-
iesfrom 16 to 128 bytes.In the graph,light-grey barsshow the bestline sizefor eachparticularprogram
andcachecapacity It canbe seernthatthereareprogramghatachieve the bestmissratio by usingmedium

or long lines (suchas tomcatv and su2cor). On the other hand,someother programswork betterwith

48 CHAPTER 4

shorterlines (suchasswim). This behaior suggestshata uniqueline sizeis not the bestsolutionin order

to implement a general-purpose cache.

For numericalprogramswhich arein generaimoresensitve to the cacheperformancethelocality of
each reference can be estimated quite accurately at compile time using a data locality analy-
sis([31][111][12]).In this chapter we focus on this type of applications.For othertype of applications
(non-numericaapplicationswith alot of pointersanddynamicstructuresh staticlocality analysismaybe

unfeasible, bt other approaches such as the use of profiling data can be appropriate.

In this chaptemve introducesomecachearchitecturesyhich we calledlocality sensitive caches. They
arecomposeddf oneor severalmodules eachonetargetedto exploit a certaintype of locality. Theselec-
tion of wherenew fetcheddatais storedis doneby somehintsin the memoryinstructions. We proposeto

use the data locality analysis presented in Chapter 2 to set these hints and manage the proposed caches.

4.2. RELATED WORK

Selective Caching

Selectve caching(alsocalled cachebypassing)s a featureof currentmicroprocessortke the PoverPC
[97]. It allows somememoryaccessethatmissonthelLl1 cachenotto allocateary block for the datathat
is fetchedfrom the next level of the hierarcly. Insteadof that, the datais storedjustin the targetregister
without polluting the cachewith uselesslata.Someremarkablevorks for datacachesare[17], [1], [36],
[53] and[104]. The schemeoroposedn [17] is basedon a compile-timeestimationof datalifetimes. The
mechanisnproposedn [1] identifiesnon-cacheabldataby meansof profiling. The schemeproposedn
[36] is basedon a run-time managedistory table of the mostrecentload/storeinstructions.The Cache
BypassBuffers (CBB) are proposedn [53] to reduceinterferencemisses.The approacheproposedn

[104] are either hardare-based or makuse of simple schemes based on profiling.

Miss Ratio (%)

SH3® 983 A SH3¥ 3983y A 838 983y
16KB 32KB 16KB 32KB 16KB 32KB
tomcatv swim su2cor

Figure 4.2. Impact of cache line size on total miss ratio for some SPECfp95 benchmarks

L ocality Sensitive Caches 49

Multimodule Caches

Somemulti-modulecachearchitecturesiave previously beenproposedn theliterature . The stream buffers
[52] andthe victim cache [52] wherereviewedin the Chapterl asclassicaltechniquego improve cache
performanceThe stream buffers performhardware prefetchingin specialFIFO queueghatare probedin
parallelwith thedatacache Unlike our proposalthis schemaloesnottake into accounthe particulartype
of reuseexploitedby eachreferenceandthus,unnecessariraffic andlow performanceanoccurfor only-
temporalandnon-stridedreferencesOn the otherhand,the victim cacheshasa a primary aim to remove
conflict missesby having a fully-associatve module where blocks discardedfrom the main cacheare
placed.This schemealsomakesa uniform managemendf the cachearchitecturesinceall referencesre
handledn the sameway. The maindravbackof thevictim cacheis the“blind” swappingmanagemen(in
the sensehatall replacedines aremoved to the victim cache),in additionto the increasen cacheport

pressure due to the apping trafic

Thereare also someworks that proposedifferent cachearchitecturesomposedf several modules,
eachoneexploiting someparticularkind of locality, suchasthe dual data cache [36], the split temporal/
gpatial cache [73], or thearray cache [41]. For instancethe dualdatacacheis composedf two modules,
calledtemporalandspatial. The formeris targetedto exploit just temporallocality. The latteris designed
to exploit spatiallocality, in additionto temporallocality if a referenceexhibits bothtypesof locality. In
consequencéhetemporalmodulehasvery shortblocks(one64-bitword is assumedh this study)andthe
spatialcachehaslargerblocks(32 bytesperblockis assumedhere).Usingalocality predictiontablebased
on the pasthistory, oneof threepossibleactionsin caseof a cachemissis selecteda) bring a new long
block (32 bytes)andplaceit in the spatialmodule;b) bring a new shortblock (8 bytes)andplaceit in the
temporalmodule;andc) bring just the requestedlata,which requiresone 64-bit word transactiordueto

the assumedus width, and do not place it inyamodule (that is, bypass the cache).

All theseschemedbasicallyattemptto reducethe negative effectsof referenceshat exploit only tem-
poralreuse py justfetchinga singleword andallocatingit in a specialmodule.However, suchschemeslo

not exploit the fact that some referenceshéit just spatial reuse.

RiversandDavidsonproposedhe NTS cache [86]. This architecturedynamicallydividescacheblocks
into two groups:temporaland non-temporal basedon their pastreusebehaior. The decisionis made
through a detection unit indexed by effective address.This architecturehas a separatesmall cache
(accessedh parallelwith the main cache)wherenon-temporablocks broughtto cacheare placed.The

basicgoal of this schemds to reduceconflict missescausedy only-spatialreferencesin [87], it is pro-

50 CHAPTER 4

poseda modificationof the CNA cache presentedby Tysonetal. [104] thatalsoconsistf two cachemod-

ules, lut in this case thdetection unit is indexed by program counter

Anothermulti-modulecacheis theoneproposedy JohnsorandHwu [51]. This schemeunlike previ-
ousproposalsdynamicallydividesmemoryreferencedasedon their frequeng of reuseln this case the
detectionunit is accessedtby effective addressandnot by instructionaddressOnly frequentlyreferenced
dataare placedon the main cache ,whereasthe other bypassthe main cacheand are placedin a small

buffer in order to eploit its possible temporal reuse.

Locality Hints

Including somehintsin the memoryinstructionsso thatthe compilercanprovide the hardwarewith rele-
vantinformationregardingthelocality exhibited by eachmemoryinstructionis becominga commonprac-
tice. For instance the PA7200 memoryinstructionshave a bit in orderto identify referencesvith only
spatiallocality [15]. In this machine gvery memoryinstructionincludesa hint calledspatial locality only
thatindicatesthatthe datareferencedy thatinstructionexhibits spatiallocality but not temporallocality.
Thefirst level of the memoryhierarcly of the PA-7200 consistsof two modules:the assistcacheandthe
off-chip cache Theformerstoresall the datareferencedy ary instructionwhile the latter storesthe data
replacedn theassistcacheif the spatiallocality hintis not set.In consequenceheassisttaches targeted
to ary type of referencewhile the off-chip caches targetedto storethe dataexceptingthosewith just spa-
tial locality. The PoverPC provides the possibility of identifying memoryinstructionsthat exhibit low
locality andthus,to bypasghe cachefor suchinstructiong97]. In all thesecasesthe compileris responsi-
ble for providing theinformationthatis encodedn the memoryinstructionandthatwill determineduring
executionthe properactionthat the hardware musttake. A more generalapproachs taken by the HPL-
Playdoharchitecturg55] andmorerecentlyby thelA-64 architecturd48]. This latterarchitectureempha-
sizesthe philosoply of passinginformation from the compiler/profilerto the hardware by making it
explicit in the ISA. This informationmay be relatedto differentissuessuchasdependencespeculation,

data locality etc.

Note thatan importantdifferenceof the schemegproposedn this chapterin comparisorto all these
previous proposalsis the explicit managemenof the placementof fetchedblocks. The information of
whetheran accesdypassthe cache,or in which modulea new fetchedblock is storeddependsn some
hintsthataresetin the memoryinstructionat compiletime. Therefore the additionalhardwareto magage

the proposed cachegamizations is minimal.

L ocality Sensitive Caches 51

memory request
from CPU hit/miss

| |
I I request to
| [L2 cache
| |
w |
T |
< | |
O ! L1 REFERENCE
| Cache |
< | TAG .
< | [
[A l |
w ! |
> |
[: |
8 ! hit ' data from
- : ¢ | L2 cache
o ! .

data from/to CPU

Figure 4.3. Block diagram of the selective data cache

4.3. SELECTIVE DATA CACHE

In this sectionusethe static locality analysisproposedn Chapter2 to managethe selectve datacache
organization.As shovn in Chapter3, we know thata substantiapercentag®f referenceslo not exhibit
locality for someprogramsjn mary caseslueto cacheconflicts. This obsenation motivatesthe useof the

selectve cache managed by softxe.

4.3.1. Cache Architecture

Theselectve cacheconsideredn this chapteiis lik e the schemeproposedn [36]. In thatcasejt wasbased
on arun-timemanagedistory tableof the mostrecentioad/storanstructions Figure4.3 shavs the block
organizationof the selectve cache Whenanew datais fetchedfrom L2 cachetheselectiorhardwaresets
thereference tag signalto indicateif the datahasto be storedin the L1 cacheor just returnecdto the CPU.
In this section the seletive caches lik e a corventionalcachein which all the memoryinstructionshave an
additionalbit thatis setby the compiler(correspondso ehreferenceag).In caseof a cachemiss,this bit
controlswhethera new block is broughtfrom L2 cacheand placedin L1 or just the missing datais
requestedrom L2 andit bypasse& 1 cache We assume 64-bitdatabusbetweerl1 andL2. Thus,thisis

the bandwidth spent by wtypassing requestgardless of the actual size of the required data.

52 CHAPTER 4

4.3.2. Locality Analysis

The staticlocality analysisusedto managethe selectve datacacheis basedon the analysisproposedn
Chapter2. It consistof thethreemain stepsof thatanalysisreuseanalysisjnterferenceanalysisandvol-
ume analysis.We will usethe samplecodein Figure 4.4 to shov how the analysisworks and memory

instructions are finally tagged with the appropriate locality hint.

We restrictthelocality analysisto referencesnsideloops,which representhe majority of references.
Thelocality analysisestimateghetype of locality for both scalarandvectorreferenceskor the latter, the
locality analysisis performedust for arrayreferencesvherethearrayindicesareaffine (i.e., linear) func-
tions of surroundingloop indices.In the analyzedbenchmarksthe referenceghat were handledby the
analysisrepresentabout90% of the numberof dynamicmemoryinstructions.For the remainingrefer-
encesjt is assumedhatthey exhibit spatialandtemporallocality, andthenthey aretaggedto the spatial

module.

As in thelocality analysisdetailedin Chapter2, thefirst stepof the analysisis thereuseanalysis.The
resultof this phaseis alist of the differentreusesexhibited for eachreferencendicatingthe loop(s)for

which eachreuseholds. For instance the reuseanalysisof the samplecodewill producethe following

result:
REFERENCE Reuse in J Reuse in |
A(J) self-spatial N.A.
B(I1,J) no reuse self-spatial
c(1,J) no reuse group-temporal (trailing)
with C(1+1,J)
and self-spatial
C(1+1,J) no reuse self-spatial
D(l,J) no reuse self-spatial
E(1,J) no reuse self-temporal
DOJ =1, 10, 1
A(J) =0
DO I =1, 1000, 1
B(l1,J) =C(1,J) + C(I1+1,)
D(1,J) = E(1,J)
ENDDO
ENDDO

Figure 4.4. Sample code.

L ocality Sensitive Caches 53

The main differencebetweenthe locality analysisusedto managethe selectve datacacheandthe
analysisproposedn Chapter2 is thatthe orderof the volume phaseandthe interferencgphasehasbeen
interchangedThereasorof this modificationis becauseve try to remove someinterference$y usingthe
bypassapabilityof theselectve datacache Thus,whentheanalysisdetectghattwo memoryinstructions
suffer from ping-ponginterferencesthenone of the instructionsis marked as non-cacheabl¢andthen,
bypasseshe cache).In this way, the otherinstructionwill be ableto exploit its datalocality. As instruc-
tionsthatbypasghe cachedo not contritute to the volumeof the loop, theinterferenceanalysisis applied

before the slume analysis.

Theinterferenceanalysistries to identify groupsof memoryinstructionsthatwill repeatedlyproduce
conflict missesdueto interferenceamongthem (we assumen this chaptera direct-mappedrganization
for the selectve and the spatialmodule of the dual datacache).The analysisconsistsof the following

steps:

1) Usingthesameanalysisasdetailedin Chapter2, detectmemoryinstructionsthatsuffer from ping-
ponginterferencesandbuild aninterferencegraphfor eachbasicblock. Remembethata conflict
betweertwo reference®; andR, is assumed they aremappeddntocacheatadistancdowerthan

the block size:
|Rymod CacheSize- R,mod CachesSize< BlocksSize

Potentialconflictsareanalyzedor eachpair of referencesindthey areidentifiedin theinterference

graph by means of an edge (we will latenglam exkample).

2) Remore interferenceslf two instructionswith sometype of reuseinterfere,their respectre reuse
cannotbeexploitedsincetheblock broughtin cacheby ary of themwill be evictedimmediatelyby
the other, beforeit is reusedThe objective of this stepis to tag someof theinterferinginstructions
asnon-cacheablsothattheremaininginstructionsdo notinterfereandthereforetheir reusecanbe

exploited.

Thealgorithmworks asfollows: in the interferencegraph,the nodewith the maximumnumberof
edgess chosen.This referencds labeledasnon-cacheableandits edgesareremoved. Then,the

process is repeated until the graph has no edges.

If we apply this analysisto the exampleof Figure 4.4, the resultsare shavn in Figure4.5. We have

supposedhatthe initial interferencegraphis the oneon the left. The selectedeferenceas (1, J). Thus,

B(1,J)
alr,J)
C(1+1,J)
D(1,J)
E(1,J)

5 =

ON NONON®

Figure 4.5. Interference analysis for code of Figure 4.4

Non cacheable

CHAPTER 4

this referencewill betaggedasnon-cacheablandit will notbe cacheddespiteof having reuse However,

the reusexhibited byc(1,) andc(1+1,3) can be eploited.

Thefinal stepof our analysisif the volumeanalysisasproposedn Chapter2. If we applythis analysisto

our exampleof Figure4.4theresultsarethefollowing, assuminghattheblock sizeis 4 dataelementsand

the cache has 256 blocks:

Contributed Contributed
REFERENCE volume to loop | volume to loop J
(# of blocks) (# of blocks)
B(I,J) 1 250
c(l,J) 1 250
C(1+1,3) 0 0
D(1,J) 0 0
E(1,J) 1 10
Total 3 510
A(J) - 1
Total 3 511

~ Not cached

Consequentlyonly reuseacrosdoop | canbe exploited. Therefore the referencea(J) will resultin

repetitve cache misseven though it has spatial reuse.

After thelocality analysisis done,eachmemaoryinstructionis taggedaccordingly:referencesvith no

reuse are tagged bgpass, and the rest asacheable in the selectie cache.

L ocality Sensitive Caches 55

4.3.3. Evaluation

Experimental Framework

Thecacheexperimentgpresentedh this setionhave beenperformedusingthefollowing SPECfp9%ench-
marks[96]: tomcatv, swim, su2cor, hydro2d, mgrid, applu andturb3d. All of themarewritten in Fortran

language.

The locality analysishasbeenimplementedusingthe ICTINEO toolset[4]. Optimizationsusually
appliedby currentcompilersareimplementedn ICTINEO andareappliedto theresultingcode.Memory
referencesretheninstrumentediccordingto the locality analysisresults,andthe traceobtainedfrom the
executionof instrumenteccodefeedsa cachesimulatorof a selectve datacache A corventionalcacheis
alsosimulatedfor comparisonTheresultspresentedn this chaptercorrespondo the executionof thefirst

100 million of memory instructions of each benchmark.

Perfor mance Results

In this section,the performanceof the selectie datacacheis comparedagainstthat of a corventional
cache.lt is assumedhat the cachememoryis connectedo the next level of the memoryhierarcly by

meansof a 8-bytewide bus. Thelateng of the next memorylevel is assumedo be5 cyclesplusanextra
cycle per 64-bit word. The corventionalandselectve cachesaredirect-mappedwrite-allocateand copy-

back.Cachesizeis 8 Kbytesandblock sizeis 32 bytes.The spatialmoduleof thedualdatacacheis like a
conventionalcache Thetemporalmoduleis avery small (16 words)fully-associatve buffer. This sizehas
beenprovedto be sufficient to storepracticallyall memoryreferenceghat exhibit only temporallocality

(see Figure 3.7 in Chapter 3).

Table4.1shavstheresultsof thelocality analysisappliedto the selectve cache Thefirst columnindi-
catesthe percentag®f memoryreferenceshatarebypassedThe secondcolumnlists the hit ratio for the
referenceghat are cached.The last columnshows the missratio of bypassreferencesn a corventional

cachewhich cachesll referencesThetwo lastcolumnsprovide anevaluationof thelocality analysis An

56 CHAPTER 4

accuratdocality analysisshouldresultin a high hit ratio for cacheddataandin a high missratio for non-

cached data.

BENCHMARK %Bypass %C-Hit %B-Miss
tomcatv 42.94 71.18 84.37
swim 57.32 89.09 82.06
su2cor 0.06 93.11 0.83
hydro2d 0.05 84.44 69.15
mgrid 0.04 97.19 38.62
applu 1.92 94.51 9.67
turb3d 5.68 96.73 38.71

Table 4.1. Locality results for the selective cache

Onecanseein Table4.1 thatthe hit ratio of cachedreferencess nearor abore 90% for mostpro-
grams.On the otherhand,the missratio of bypassedeference®n a corventionalcacheis high excepting
somecasesdn which the percentag®f bypasseferencess very low andthereforetheresultsarenot sig-

nificant Gu2cor, mgrid, applu andturb3d).

Figure 4.6 shovs a comparisonamongcorventionaland selectve datacachesn termsof hit ratio,
averagememoryaccesgime andaveragenumberof wordsfetchedfrom the next memorylevel permem-
ory referenceThesefiguresaredividedin programswith low locality (tomcatv andswim) andhigh local-
ity (the others).

We canseethat the selectve cacheprovides a significantimprovementin the first group of bench-
marks.Comparedwith a corventionalcachethey reducethe averagememoryaccesgime in about25%
andthe amountof datafetchesin about65%. Note thatthis latter benefitmay be very effective to reduce
memorybandwidth which is expectedto be animportantlimitation for future microprocessorfg]. In the
secondgroupof benchmarkswherethe memorybehaior on a corventionalcachewasalreadygood(see
Figure 4.6b), the new cachearchitecturesslightly improve the performanceexceptfor one benchmark

(applu) which eperiences a small increase ireeage memory access time.

Selectve cachingcanplay animportantrole to reducethe negative effect of interferencesApplying
theinterferenceanalysispresentedn Section4.3.2,reusecanbe exploited moreeffectively asit is shavn
in Figure4.7. This graphshows the percentag®f exploited reusefor differentsizesof the selectve and

corventional(direct-mappedachesResultsareaveragedor all studiedbenchmarksi-romthisfigurewe

L ocality Sensitive Caches

Avg. Memory Access Time Hit Ratio

Avg. Memory Fetched Words

50

30

20

10

100 —
— 80]]
60 -
40
20
S R S
> & < & N »
& R A
@ (b)

S S >
&L S & & & » 05
N & N @& N R
(© (d)
] 0.8
] 1 Conventional cache
2 1 mm Selective cache
] 0.6 -]
] 0.4
1]
0.2 -
04— — 0.0 | |
Q) : < S N
& S O 3 & » 05
@@ N 6\(), @g\ S quQ @(o
(¢ (f)

Figure 4.6. Comparison among conventional, selective and dual data caches

57

can extract, for instance, that a4 Kbyte selective cache can exploit more reuse than a8 Kbyte conventional

cache. The differences observed are much higher for individual programs with many interferences (tom-

catv and swim).

58 CHAPTER 4

g 8 8
P T R |

N
o
|

—a— Conventional
--4-- Selective

Exploited Reuse (%)

N
o
|

o

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K256K

Cache Size (bytes)
AVERAGE

Figure 4.7. Percentage of reuse exploited with a selective cache, varying the cache size and compared
with a conventional cache.

The extra bit usedto managethe cachedo not comefree. The mostobvious implementationvould
reducetherangeof the constandisplacemenin memoryinstructionsby afactorof two or four. If thedis-
placementield has16 bits (which s typical for currentarchitecturesandcanbe usedto addres$64KB of
data,in the modifiedinstructionsetwe have thatvaluereducedo 32KB. This mayincurin extra instruc-
tionsif the addressedatais larger We have measuredor the benchmarkgonsideredn this chapterthat
only 1.32%of dynamicmemoryinstructionsexecutedneedextra instructionswith 15 bits of displacement
(comparedwvith memoryinstructionsthat hasa displacemenof 16 bits), which confirmsthatthe penalty

introduced by these additional instructions igliggble.

4.4 MULTIMODULE CACHE

The LSMCache (Locality Sensitive Multimode Cache) representsn evolution of the dual datacache[36]

in the context of locality sensitve cacheslt consistsof a cachearchitecturecomposedf threemodules,
eachoneexploiting a particulartype of locality. The selectionof wherethedatais placedwhenit is fetched
from the next memorylevel couldbe doneby a staticlocality analysisor basecbn ananalysisof somepro-
filing data.As in the selectve anddual datacachesthe informationis passedo the hardwareby addinga
specialfield or hint to memoryinstructions.The cachearchitectureproposedin this work is oriented
towardsnumericalcodes for which moduleallocationcanbe completelybasedon a staticlocality analy-
sis,dueto its high accurag. However this staticanalysisis not appropriatdor non-numericatodesanda

profiled-based analysis may be moreetve.

Theworking of the L&VICache is dividedinto two parts:(1) the compile-timeanalysisandtaggingof

memoryinstructionsand(2) therun-timebehaior. Below wefirst discusghe hardwarearchitectureof the

L ocality Sensitive Caches 59

L2 CACHE
Memory
Instruction —‘
T:I

—

| ol
o = voouie
—— e s
CPU
(a) Cache hit access (b) Fetching a block from

the net level

Figure 4.8. Hardware architecture of the LSMCache

LSMCache. Then,the compile-timesupport,which basicallyconsistsof a staticlocality analysisbasedn

the one proposed in Chapter 2.

4.4.1. CacheArchitecture

The hardwarearchitectureof the LSMCache is shavn in Figure4.8. The main differenceof this architec-
turewith respecto all the previousworks on multimodulecachess the cleardifferentiationof threetypes
of reuse:only-temporal low-volume self-spatialand the rest (they are later defined).The LSMCache is
composeaf threemoduleshatarereferredto asspatial (S), temporal (T) andspatial-temporal (ST). Both
modulesS and T are small fully-associatve buffers, whereasmoduleST is direct-mappedind haslarger

capacity The goal of each module is the foliog:

* Module S it is orientedto exploit low-volume, self-spatial reuse. A memoryinstructionis saidto
exhibit low-volume, self-spatialreuseif it hasself-spatialreusefor a given loop and self-temporal
reusefor all innerloops.Intuitively, this is aninstructionthathasspatialreusethatrequiresa single

cache line to bexploited. For instance, the reference in thexnieop:

hasspatialreusein loop | , andtemporalreusein loop J. Thus,whenaline is fetchedandplacedin

themoduleS all iterationsof loop J cantake advantageof thetemporalreusewithoutincreasinghe

60 CHAPTER 4

numberof fetchedlines. Furtheriterationsof loop | will exploit the spatialreuseby accessingther

elements of the same line.

Notethateitherlonglinesor somesimplehardwareprefetchingechniqueprefetchinghenext or pre-
viousblock, accordingo thedirectionof the stride)maysignificantlyincreasehe exploitationof the

locality exhibited by such references. Both stgigs hae been ealuated in this wark.

» ModuleT: it is orientedto exploit justtemporalocality. In acorventionalcachethosereferencesvith
justtemporallocality pollutethe cacheandwastememorytraffic becaus@nly oneword of theentire

line is used. This isvaided by using a special module with short linesdepkthese references.

» Module ST: this moduleactsas a corventionalcachetargetedto exploit both temporaland spatial
locality. It storeghedatanotallocatedo thepreviousmodulesthatis, datareferencedby instructions
with both spatialand temporalreuse,suchthat spatialreuserequiresa high numberof linesto be
exploited. Furthermore,it also storesthe data referencedby those instructionswhose reuseis
unknawn. Thisis thecaseof referencesutsideloopsor reference$or whichthelocality analysiscan-
notdetermingheirlocality. Finally, this modulealsocacheghosereferenceshatcannotbeplacedin

theSor T modules in spite of meeting the reuse requirement, due to capacity constraints.

Notethatdueto thedifferentline size,thesamedataelementcanresidein severalmodulesatthesame
time. This may happenwvhensomedatais broughtto a givenmoduleandlateron, areferencdo a nearby
dataelementbringsit again asa partof alargerdatablock thatis placedinto a differentmodule.If a copy-
backpolicy is usedthedatabroughtfrom memorymaybe stale.Cohereng of datais keptin thefollowing

way.

For eachload instruction,the threemodulesare checled in parallel.If the datais foundin just one
module,thenit is returnedto the processann the casethatthe datais foundin morethanonemodulethe
datafrom the modulewith the smallestline sizeis returned.Storeinstructionsare also sentto the three

modules and those that contain the requested data are updated.

In caseof aload/storemiss,a new datablock is broughtinto the moduleindicatedby the locality hint

includedin the instruction.If the replacedine is dirty andit is presentin arny othermodulewith larger

L ocality Sensitive Caches 61

lines, thismodule is updated. The following simple example can help to understand the coherency method-

ology:

PROGRAM P1 FUNCTI ON F1(K) FUNCTI ON F2(B)
REAL*8 A(N) REAL*8 K REAL*8 B(N)
CALL F1(A(1)) STORE K. T LOAD B(2). ST
CALL F2(A) : :
: RETURN RETURN
LOAD A(3).S END END
END
S o T, ST
After STORE LT T T o @] [T o
S o T, ST
After both LOADs [y a2 [A@ (A4 o] [aw][] [a@ [A@]o]
S o T, ST
After block in T [amT a2 Ja3 Jaa o] [~ Jo] [a@]ac2) o]
is replaced

In this example each load/store instruction is marked with its hint (S, T or ST), and the D bit in a cache
lineindicatesthat the lineis dirty. First, the store brings A(1) to themodule T. Then, A(2) isreferenced
in function F2 and a new block is brought into the module ST since it is not in cache, but this block con-
tains a stale copy of A(1) . Something similar happens to the following load to A(3) , in the main pro-
gram. Thetwo stale copiesof A(1) can reside in cache together with the updated copy, because the datain
the smallest cache line will always be chosen. When the dirty line of the module T that contains A(1) is
replaced, the modules Sand ST are updated.

We will show in Section 4.4.3 that the number of additional accesses required by the coherency mech-
anism is very low since, on average, only about 0.5% of dynamic memory references hit in more than one

module.
4.4.2. Locality Analysis
This section explains the analysis that is performed in order to set the locality hint of every memory
instruction for numerical codes. This analysisisdivided into three steps:
1) Choose candidate instructions for each module.

2) Sort the candidatesin a priority order.

3) Tag each instruction with the appropriate hint.

62 CHAPTER 4

The selectionof the instructionswhosereferenceddataare candidateto be placedin eachmoduleis
basedon a simplereuseanalysis.This analysisis very similar to the oneusedin Chapter2. Theresultsof
this analysisaretwo vectorsthatrepresenthe self-reuseandthe group-reus®f eachmemoryinstruction.
The self-reuses representedby vector SRV. The dimensionof this vectorrepresentshe nestinglevel of
the memoryinstruction(thatis, the numberof loopsthat enclosethe reference)For eachloopi (loop 0
representshe outermost)thevalueof SRV(i) canbeN (noreuse),T (self-temporakreuse)or S (self-spa-
tial reuse).Thefirst stepof the algorithmis to determinewhich memoryinstructionsarecandidate$o be

tagged for each module.
The candidates for modufare those instructions that meet the folteg condition:
Oi|SRV()=Sand O j>i, SRV() =T

Thesearethosememoryinstructionghathave self-spatiakreusein aloop, andfor all theirinnerloops,

if any, they have self-temporal reuse.
The candidates for moduleare those instructions that meet the fwlly condition:
Oi | SRV()) =Tand-0j | SRV()) =S

Thesearethosereferenceshat have self-temporareusein oneor severalloops,but do not have self-

spatial reuse for grof the loops where tlyeare enclosed.

Therestof the instructionsare candidategor module ST, including thoseinstructionsthatare placed

outside loops, or for which the reuse analysis cannot be applied.

Note that instructionswith group reuseamongthem exhibit the sameself-reuseand thus, they are

tagged as candidates for the same module.

The secondstep,which ordersthe candidategor the samemoduleaccordingto a priority function,is
appliedto the Sand T candidatesTherearethreeparametershat determinethe orderamongcandidates:
(i) placemenbf the memoryinstructionin theloop nest;(ii) loop wherethereusehasto be exploited;and
(iii) strideof the accesgonly for memoryinstructionswith spatialreuse).The orderingof candidatess

based on the folleing heuristics:

1) Thenumberof reusedor eachline broughtto themoduleSincreaseasthe nestinglevel of theloop

where spatial reuse ig@oited decreases.

L ocality Sensitive Caches 63

2) Thevolumerequiredto exploit a giventype of reusedecreaseasthe nestinglevel of theloop that

generates the reuse increases.

3) Thebenefitsof spatialreusearehigherasthe strideis smallersincethe numberof reusedor each

cache block is higher

In consequencaenemoryinstructionsarefirst sortedaccordingto their locationin theloop nest,from
innermosto outermosinstructions For all instructionsn the samenestinglevel, asecondstepof ordering
is appliedaccordingto the level of the loop wherethe reuseis exploited (from outermostto innermost
loops).If aninstructioncanexploit reusen differentloopsof the samenest,theinnermosif suchloopsis
consideredFinally, instructionsplacedin the saméevel of the nestandthatexploit theirreusein thesame

loop level are sorted according to their stride, from smaller tgelaFor instance, in the necode:

SRVs
DOl =1, N, 1
o ACl) ()
0 A(1+1) (s)
DOJ =1, M 1
0 B(J) (T, 9
. (1) (s. 0
K1 (T, T
o (!, J) (N, N
O ENDDO
K2 (M
O ENDDO

theallocationof candidateso thedifferentmodulesandthefinal orderingof candidatesvill beasfollows:

S Candidates : 0O OO0 000
T Candidates : (O 0
ST Candidates : [

Thelaststepof theanalysiss thefinal selectionof thetagfor eachmemoryinstruction.In this step,a
volumeanalysigs appliedfor bothSandT candidatesin orderto determinevhetherthelocality exhibited
by eachinstructioncanbe exploited given the capacityof the correspondingnodule.If areferencehat

was initially candidate for modulgor T does not fit in it, it is finally allocated to mod8&

Thevolumeanalysisis basedon the approactpresentedn Chapter2, andit is independenthapplied
to bothlists of candidate$o modulesSandT. For eachreferenceof thelist, from highestto lowestpriority,
thevolumein cachdinesthatthis referencecontributesto eachloop whereit is encloseds computedand
addedto the accumulatedvolume so far. If the accumulatedvolume of the loop wherethis reference
exploits its spatial/temporateuse(for modulesS and T respectirely) doesnot exceedthe capacityof the

module,the memoryinstructionis taggedwith the correspondingnodule(S or T). Otherwise,it is allo-

64 CHAPTER 4

catedto the moduleST andits contrilbution to the volumeof eachloop is subtractedrom theaccumulated

volumes.
For instance, theolume analysis for th8 candidates in the prwus code is the xéone:

Accumulated Accumulated

Volume Volume
of of Condition
Loop | Loop J
o) 1 1 1 <NLINES?
O B(J) 1+M 4 2 2 <NLINES ?
O A(l+1) 2+M 4 2 2+M 4 <NLINES ?
O A(l) 2+M 4 2 2+M 4 <NLINES ?

In this example,instruction4 requiregust 1 line to exploit its spatialreusein loop J. If thisinstruction
is taggedasS theninstruction3 requires2 cachdinesto exploit its reuse Sincebothinstructions4 and3
have beenallocatedto modules, instruction2 requires2+M/4 linesin orderto exploit its spatialreusein
loop |, whichis the volume contributed by instructions4 and 3, in additionto theline requiredby itself.
Assumingthatthis volumeis still lower thanthe moduleS capacity reference? is taggedas S, andthen,
referencel is consideredThis referencedoesnot contritute ary additionalvolumeto ary loop, sinceit

reuses the lines referenced by instrucfBomherefore, it is also tagged s

Finally, the resultof the whole locality analysisis reflectedin eachmemaoryinstructionby meansof
oneof thefollowing tags(the strideinformationis relevantjust for thoseschemeshatimplementprefetch-

ing, as discussed in xiesection):

HINTS Module

00 S, positive stride

01 S neative stride

10 T

11 ST

4.4.3. Evaluation

Experimental Framework

The previously proposedocality analysishasbeenimplementedn the ICTINEO compiling platform [4].
The programshave beencompiledwith full optimization(scalaroptimizationssuchasconstanfpropag-
tion, andcommonsubepressionsgeadcodandinvariantremoval) andtheresultingcodehasbeeninstru-

mented to generate a trace that feeds a simulator of the cache architecture.

L ocality Sensitive Caches 65

The LSMCache hasbeentestedwith the following SPECfp95programg96]: tomcatv, swim, su2cor,
hydro2d, mgrid, applu andturb3d. The programshave beenexecutedby usingthetestinputdata,andwere

run for the first 1,500 million of memory instructionggept for programs with feer instructions).

Schemes without Prefetching

The first experimentevaluatessome LSMCache architectureghat do not incorporateary prefetching
schemeThedifferenceamongthemarethetotal sizeandline sizeof themoduleS. Table4.2 summarizes
the evaluatedconfigurationsModulesSandT have both 16 linesandusean LRU replacementThelabel

FA stands fofully-associative, whereaPM representslirect-mapped.

MODULE S MODULE T MODULE ST TOTAL
MODEL . . . CAPACITY
Total Line Yo Total Line Yo Total Line Yo (Kb)
Size Size Size Size Size Size
LSM-S1 512b 32b 4.625
FA 128b 8b FA 4Kb 32b DM
LSM-S2 1Kb 64b 5.125

Table 4.2. Basic LSMCache configurations

We have comparedthe proposedarchitecturesagainst two corventional caches:(a) a 8KB direct-
mappedcache(sks-bm), and(b) a 64KB fully-associatve cache(esks-Fa) (seeSectiord.1in orderto com-
paretheresultswith otherconventionalcachearchitectures)The LSM architecturesrecomparablén area
andaccesgime! to the 8KB-DM cache A 64KB-FA cacherequiresmuch more areaanda much higher
accesdime thatthe considered_SMiCache architecturesThis organizationis usedasa referencepoint of
themissratioandmemaorytraffic thatcouldbeachiezedwith avery powerful but alsovery expensve con-

ventional oganization.

Figure4.9 shavs the percentag®f dynamicmemoryinstructionstaggedasS, T or ST for the LSVI-S1
architecture We canseethatin generallow-volume self-spatialreusereferencesare the dominanttype
(thesereferencesreallocatedto moduleSif thereare not volume constraints)However, for somepro-
grams,the percentagesf referencesllocatedto modulesS and ST are also significant(note that these
resultsarefor SPECfp95programsand,althoughherethe majority of instructionsaretaggedass, this is

not necessary for other codes).

1. Fully-associatie cachedargerthanthe sizeof the modulesSandT (alsowith morelines),andwith a one-gcle accesgime
have been implemented in commercial processors.xamele is the 2KB (64 lines) assist cache of the7P00 [15].

66 CHAPTER 4

)
X
N—r
%]
S
g Bl Module S
—_ [Module T
'8 W Module ST
—
g
x
L

>
& 00& oq/ ‘\6 N ".)6
EC AN

SPECfp95

Figure 4.9. Percentage of dynamic memory instructions allocated to each module

Figure4.10depictsthe missratio, averagenumberof fetchedwords per referenceandpercentag®f
unusedwords broughtinto cache,for the LSMCache andthe two corventional caches.The numberof
fetchedwordshasa directrelationwith thetraffic generatedetweerlL1 andL2 cachesMoreover, theper-

centage on unusedmnds (or bandwidth aste) denotes thefigiengy of this trafic.

On averageboth LSMCache schemesignificantlyoutperformthe 8KB-DM cachefor thethreeperfor-
mancefigures.For instance the 8KB-DM missratio is about2.6 times higherthan that of the LSM-2
cache Comparingthe proposedschemes, SM- performsbetterthanLSM-S1, mainly in missratio. This
tendeny is quite uniform for eachindividual program.Moreover, notethat for someprograms(tomcaty,
swim andhydro2d), LSM-S2 achieresa bettermissratio thanthe 64KB-FA cacheeventhoughthe number
of fetchedwordsis higher This is dueto a betterusageof the fetchedwords.Note alsothat, on average,
the missratio of the LSM-2 is closeto that of the 64KB-FA, in spite of its much smallercapacity To
achieve this performancel.SM-2 requiresa highernumberof fetchedwords (whichis dueto its smaller
capacity)but the fetchbandwidthefficiengy (whichis thereciprocalof bandwidthwaste)is comparabldo
that of the64KB-FA.

As explainedin sectionSectiond.4.1,the LSVICache requiressomecohereng operationsvhena data
elementresidesn morethanonemodule.Note however thatthis eventis ratherinfrequent.For the LSM-
Sl architecture this percentages 0.43% on averagefor all the programs(the maximumis 2.50% for
applu, andtheminimumis 0.00%for tomcatv, swim andsu2cor). Notethatin thisarchitecturea datumcan
bein moduleT, or justin oneof the othertwo sincetheline sizeis the same Regardingthe LSM-S2 archi-
tecture theaveragepercentagés 0.65%(the maximumis 2.11%for applu, andthe minimumis 0.00%for

tomcatv).

L ocality Sensitive Caches 67

57.'08
25
M 8KB-DM
B LSM-S1
= 20 O LSM-S2
S [64KB-FA
2 15
g
10
ki
= 5
0
tomcatv swim su2cor hydro2d mgrid applu turb3d AVERAGE
SPECfp95
1.0
0 1 M 8KB-DM
© B LSM-S1
5 OB O LsM-s2
= 1 [0 64KB-FA
0.6 W= 0| TRBl |- e
B
T 04— B I Bmrr - BEH BRI B R
LL
2 024 || E (A . -
<]
0.0- [l
tomcatv swim su2cor hydro2d mgrid applu turb3d AVERAGE
SPECfp95
100
] M 8KB-DM
B LSM-S1
B0 @ Lsms2 |
[64KB-FA

N
o
.

N
o
.

il

tomcatv swim su2cor hydro2d mgrid applu turb3d AVERAGE

Bandwidth Waste (%)
3
|

o
-

SPECfp95

Figure 4.10. Comparison of LSMCache without prefetching against two conventional caches

Schemes with Prefetching

Prefetchingdatais beneficialprovided thatthe cachemay anticipatewhich datawill be referencedn the
near future. Otherwise,prefetchmay harm performance.The detailed characterizatiorof the locality

exhibited by each reference alle for an dicient implementation of a prefetch scheme.

68 CHAPTER 4

We have consideredh simplehardwareprefetchingschemeébasedn the one-blocklookaheadschemes
(OBL) [94], andextendedwith a locality analysis We call the schemeselective OBL sincethe prefetchis
performedonly for thosereferenceshatexhibit low-volume,self-spatiareuse(i.e. thoseallocatedto mod-
ule S). Notethatthistypeof locality meanghatafteraccessing datablock, it is very likely thatthenext or
the previous block, dependingon the directionof the stride,is accessetbo. The candidataeferencedor
which the prefetchis performedaswell asthe directionof the strideareprovided by the locality analysis

described in Section 4.4.2.
Three alternatie prefetching schemes, based on those considered in [9d]bben implemented:
1) Always prefetching (A): every time areferencdaggedasSis performeda prefetchto the next/pre-

vious block is issued.

2) Prefetching on miss(M): everytime areferencaaggedasSmissegin all modules)aprefetchto the

next/previous block is issued as well.
3) Tagged prefetching (T): everytime areferencdaggedasSaccesseablock for thefirst time sinceit

has been brought to cache, a prefetch to th#previous block is issued as well.

Notethata prefetchaccesdbehaeslike anordinaryaccessthatis, all modulesareprobed.Table4.3

summarizes the ddrentLSMCache architectures with prefetching that are considered in this section.

MODULE S MODULE T MODULE ST TOTAL
MODEL Total Line Assoc Pref. Total Line Assoc Total Line Assoc CA::STY
Size Size : Size Size Size Size
LSM-PA A
1Kb 32 FA 128b 8b FA 4Kb 32b DM 5.125
LSM-PM M
LSM-PT T

Table 4.3. LSMCache architectures with prefetching

BothmodulesSandT useanLRU replacementThelabel FA standdor fully-associative, whereaDM
representslirect-mapped. Notethatthe moduleShas32 lines but the compile-timeanalysissupposesghat
it has16 lines, becausesomeaccesse$o this modulefetch a pair of lines dueto prefetching.Thus,the
instructionsallocatedo eachmodulearethe sameasthosein the previousexperimentgLSM-S1 andLSM-
).

L ocality Sensitive Caches 69

57.08
25
M 8KB-DM
B LSM-PA
= 20 @ LSM-PM
S O LSM-PT
o 15 [64KB-FA
&
10
ki
= 5
0
tomcatv swim su2cor hydro2d mgrid applu turb3d AVERAGE
SPECfp95
1.0
0 1 M 8KB-DM
© B LSM-PA
5 0.8 @ LSM-PM
= 1 O LSM-PT
0.6 1 O 64KB-FA
B
T 0.4+
LL]
2 024
<]
0.0-
tomcatv swim su2cor hydro2d mgrid applu turb3d AVERAGE
SPECfp95
100
< : M 8KB-DM
§, 80 e] B LSM-PA |
[0} @ LSM-PM
% 1 O LSM-PT
BO —f--vereeeeeeeemeee e L O 64KB-FA|..
=
=]
R e N S '
%]
= 204- AR (e e
=] 1
0 1 =
tomcatv swim su2cor hydro2d mgrid applu turb3d AVERAGE
SPECfp95

Figure 4.11. Comparison of LSMCache schemes with prefetching against two conventional caches

Figure 4.11 depicts the miss ratio, average number of fetched words per reference, and percentage of
unused words brought into cache, for the LSVICache architectures with prefetching, and compares them

with the two conventional caches.

70 CHAPTER 4

1.0

M W No prefetch
.. Il LSM-PA

@ LSM-PM
O LSM-PT

w

tomcatv swim su2cor hydro2d mgrid applu turb3d AVERAGE

Avg. Fetched Words

SPECfp95

Figure 4.12. Impact of prefetching on fetched words

Regardingmissratio, L9VICache schemeperformmuchbetterthanthe 8KB-DM cache achiezing an
averagereductionin missratio by a factorof about7.0 (LSM-PA). Note thatfor someprogramsthe miss
ratiois very closeto zero.Theaveragereductionin memorytraffic is alsosignificantalthoughfor two pro-
grams(su2cor, andmgrid) it is somavhatincreasedHowever, thelinesbroughtinto cachearebetterused,
asdenoteghe bandwidthwastegraph.Note thattheselL SMCache architectureschiese alower missratio
thanafully-associatve cachewith acapacitytwelve timeslarger(LSM-PA hasa missratio thatis 2.5times
lower thanthatof the 64KB-FA cache) Thisrequiresanincreasen the memorytraffic by afactorof about
two to compensatdor the much smallercapacity but this traffic is efficiently usedsincethe bandwidth

waste is of the same order as that of64i€B-FA cache.

AmongthedifferentLSMCache architecturesthe bestperformances achievedby LSM-PA, thatis, by
the schemeahat always prefetchedor thosedataallocatedin the S module.This schemegeneratesibout
thesametraffic asthe LSM-PM (prefetchon miss)schemebut achievesa missratio thatis 2.7 timeslower.
The LSM-PT (taggedprefetching)schemenhasanintermediatemissratio but generateslightly moretraf-
fic. A positive effect of alwaysprefetchingis that prefetchedlatais keptat the top of the LRU stack,and
thereforeit is usually not evicted beforebeingused.This is an efficient policy sinceprefetchesarevery

effective, as shan belawv, because theare drven by a locality analysis.

The effectivenessf prefetchingcanbe evaluatedby measuringhe additionaltraffic thatthey gener-
ate.Thisis shavn in Figure4.12,which depictsthe averagenumberof fetchedwordsperreferencdor the
previous configurationsand the samecachearchitecturesvithout incorporatingprefetch.lt canbe seen

that the increase in memory fiafdue to the prefetch schemes éswlow.

L ocality Sensitive Caches 71

Asfor the schemes without prefetching, the percentage of dynamic references that hit in more than one
module has been aso obtained, being very low for al three prefetching schemes (0.49% for LSM-PA,
0.43% for LSMI-PM, and 0.35% for LSMI-PT).

Finally, a drawback of prefetching is an increase in the cache port pressure. Each time a prefetch is
issued, all the modulesin the cache have to be probed. Table 4.4 shows the average number of cache mem-

ory accesses for each dynamic memory reference (without prefetching this number is 1.00):

Aol AIwaysI:'refetch Prefetcl|1won Miss TaggedT’refetch
tomcatv 2.00 1.07 122
swim 1.98 1.06 1.08
su2cor 181 1.08 114
hydro2d 1.84 1.08 1.16
mgrid 1.90 1.05 1.09
applu 1.20 1.00 1.06
turb3d 154 1.03 1.23
AVERAGE 1.75 1.05 114

Table 4.4. Averaged number of cache accesses per reference

In this table we can see that the always prefetch scheme is the one than achieves the lowest miss ratio
but at the expense of a higher pressure on cache ports. If this resource is critical, the tagged prefetch

scheme may be the best trade-off when both miss ratio and port pressure are considered.

Comparison with Other Multi-M odule Caches

We have compared the LSVICache with three other multi-module schemes: (a) an 8KB direct-mapped
cache with a512B victim-cache (16 lines of 32 bytes each one)(skm-vc); (b) an 8KB direct-mapped cache
with 4 stream-buffers (each one with 4 entries of 32 bytes) with the optimizations proposed by Palacharla
et a. [79] (skB-sB); and c) an 8KB 4-way set-associative cache (8kB-4wa).

Figure 4.13 compares the miss ratio for a direct-mapped cache (skBs-bm), three multi-module caches

(8kB-4wA, 8kB-vC and skB-sB) and two LSVICache schemes (Lsm-s2 and LsM-PA), without/with prefetching.

72 CHAPTER 4

N
ol

I 8KB-DM
I 8KB-4WA

N
o

’\;‘ I 8KB-VC
< @ 8KB-SB
o 15 O LSM-S2 fuveoeieieeieeeeen) Y
= O LSM-PA
S
NOREE | | (DR | | (VR | | (EER | [(F Sttt R IEIEIEIEIRIRIR AR IR IR, | | () e
ki
s . _‘
0 [1
tomcatv swim su2cor hydro2d mgrid applu turb3d AVERAGE
SPECfp95

Figure 4.13. Comparison of the LSMCache with other multi-module caches

We can seein thesegraphsthat on averageLSMCache schemesperform betterthan all the other
schemeslooking atindividual benchmarksonly for thellasttwo programsapplu andturb3d), the LSM-

Cache architecture is not the best multi-module scheme.

4.5. CHAPTER SUMMARY

In this chaptemwe have proposedwo new cachearchitecturesTheproposedachegcalledLocality Sensi-
tive caches) have in commonthe managementhroughsomehints includedin memaoryinstructionsand

that are set at compile time after a locality analysis.

The Sdlective Cache useghesehintsto bypasghe cachefor thosememoryreferencesvithoutlocality.
This avoidsto pollutethe cachewith datathatwill notbereusedandthusmakesa betteruseof the avail-
ablestoragespaceResultsshowv thatthe locality analysisis quite accuratdor this type of managementt
hasbeenobsened thatthis cachearchitecturgrovidesa significantreductionin averagememoryaccess
time andamountof datafetchedfrom the next memaorylevel, speciallyfor programswith a poor locality,

when compared with a ceentional cache.

Theotherproposedtacheis the LSVICache. It is composedaf threemodulesgachmodulebeingspe-
cializedto exploit a particulartype of locality (only-temporal low-volume self-spatialandthe rest). We
have obsered that for numericalcodesthe proposedcachearchitecturesliminatesthe majority of cache
misseswith just 5KB of capacity It hasa missratio thatis aboutthe sameasthat of a 12 timeslarger
(64KB) fully-associatve cachewhendataprefetchingis not incorporatedand 2.5 timeslower whendata
prefetchingis added(for the mostaggressie prefetchingscheme)Prefetchings very effective sinceit is

driven by the locality analysis. & \hare shavn that prefetching hardly increases the memoryidraf

L ocality Sensitive Caches 73

The main conclusion of this chapter is that the implementation of smaller caches with a more clever
management can be an effective approach to reduce the large area occupied by this component in current

microprocessors as well as its access time and power consumption.

74

CHAPTER 4

5

SOFTWARE PREFETCHING
FOR M ODULO SCHEDULED L OOPS

This chapter studies the interaction between software prefetching (both binding and nonbinding)
and software pipelining for VLIW machines. Firgt, it is shown that evaluating software pipelined
schedules without considering memory effects can be rather inaccurate due to stalls caused by
dependences with memory instructions (even if a lockup-free cache is considered). It is also shown
that the penalty of the stallsisin general higher than the effect of spill code. Second, we show that in
general binding schemes are more power ful than nonbinding ones for software pipelined schedules.
Finally, the main contribution of this chapter is an heuristic scheme that schedules some memory
operations accor ding to thelocality estimated at compiletime and other attributes of the dependence
graph. The proposed scheme is shown to outperform other heuristic approaches since it achieves a

better trade-off between compute and stall time than the others.

76 CHAPTER 5

5.1. INTRODUCTION

Softwarepipeliningis a well-known loop schedulingechniquethattriesto exploit instructionlevel paral-

lelism by orerlapping seeral consecwie iterations of the loop anaecuting them in parallel ([82]).

Differentalgorithmscanbefoundin theliteraturefor generatingoftwarepipelinedscheduleshut the
mostpopularschemas calledmoduloschedulingThemainideaof this schemas to find afixed patternof
operationgcalledkernel or steadystate)that consistsof operationdrom distinctiterations.Finding the
optimal schedulingfor a resourceconstrainedscenariois a NP-completeproblem,so practicalproposals
are basedon different heuristic stratgies. The key goal of theseschemeshasbeento achieve a high
throughput (e.g., [61][49][108][83]), minimize register pressure (e.g., [38][22]) or both (e.g.,
[46][65][23][66]), but noneof them hasevaluatedthe effect of memory Theseschemesassumea fixed

lateng for all memory operations, which usually corresponds to the cache-hitlatenc

Lockup-freecachesallow the processonotto stall on acachemiss([60]). However, in aVLIW archi-
tecturethe processoften stalls afterwardsdue to true dependencewith previous memoryoperations.
The alternatve of schedulingall loadsusingthe cache-misdatenqy increasesegister pressureand may

reduce throughput if recurrences contain memory instructions ([1]).

Software prefetchingis an effective techniqueto toleratememorylateng ([9]). Softwareprefetching
canbe performedthroughtwo alternatve schemesbindingandnonbindingprefetching.Thefirst alterna-
tive, alsoknown asearly schedulingof memoryoperationsmaoves memoryinstructionsaway from those
instructionsthatdependon them.The secondalternatve introducesn the codespecialinstructionswhich
arecalledprefetchinstructions.Thesearenonfaulting instructionsthat performa cachelookup but do not

modify ary registetr
These alternate prefetching schemesveadifferent dravbacks:

» Thebindingschemeéncreasesheregisterpressurdecausehelifetime of thevalueproducedoy the
memaoryoperationis stretchedIt may alsoincreasehe initiation interval dueto memoryoperations

that belong to recurrences.

» The nonbindingschemeincreaseshe memory pressuresinceit increaseghe numberof memory
requestswhich mayproduceanincreasen theinitiation interval. Besidest mayproduceanincrease
in the register pressuresince the lifetime of the value usedto computethe effective addressis
stretched A higherregister pressureanay requireadditional spill code,which resultsin additional

memaory pressure.

Softwar e Prefetching for Modulo Scheduled L oops 77

In this chaptemwe investigatetheinteractionbetweersoftwareprefetchingandsoftwarepipeliningin a
VLIW machineFirst we show that previous schemeghatdo not considerthe effect of memorypenalties
producescheduleghat are far from the optimal whenthey are evaluatedtaking into accounta realistic
cachememory We evaluate seseral heuristicsto schedulememory operationsand to insert prefetch
instructionsin a software pipelinedscheduleThe contritutionsof stallsandspill codeare quantifiedfor
eachcase shaving thatstall penaltieshave a muchhigherimpacton performancehanspill code.We then
proposean heuristicthat tries to tradeoff both initiation interval and stall time in orderto minimize the
executiontime of a softwarepipelinedloop. Finally, we shav thatschemedasedon binding prefetchare

more efective than those based on nonbinding prefetch for soéwipelined schedules.

The use of binding and nonbinding prefetching has been previously studied in [58][1] and
[91[371[59][76][7] respectiely amongothers.The selectve scheduling([1]) schedulesomeoperations
with cache-hitateng andotherswith cache-mis$ateng, lik e the schemeproposedn this paperHowever
the selectve schedulings basedon profiling informationwhereasour methodis basedn a staticanalysis
performedat compiletime. In addition, the selectve schedulingdoesnot considerthe interactionswith
software pipelining. In [20] the authorsanalyzethe effect of moduloschedulingmemoryoperationswith
either cache-hitlateny when they exhibit sometype of reuseof cache-misdateny otherwise.Their
resultsshowv thatin average this schemds betterthanthe schemehat alwaysusescache-hitlateng but
worsethanthe schemehatalwaysusescache-missateng. Our resultscorroboratehis fact. However, the

scheme proposed in this chapter outperforms both cache-hit and cache-miss based approaches.

5.2. BACKGROUND ON M ODULO SCHEDULING

Modulo schedulings aninstructionschedulingapproacHor loops[61]. In moduloschedulingechniques
all dependenceand resourceconflictsamongoperationsare consideredasthe schedules built. Unlike
othertechniqueghat scheduleoperationdrom particulariterationswith previously scheduledperations

from specific iterations, modulo scheduling schedules an operation from all iterations at the same time.

The objective of moduloschedulings to engineera schedulefor oneiteration of the loop suchthat
whenthe sameschedulds repeatedat regular intenals no intra- or inter-iterationdependences violated
andno resourcausageconflict arisesamongoperationdrom eitherthe sameor distinctiterations.A soft-
ware pipelinedloop via moduloschedulings characterizedbasicallyby two terms:theinitiation intenal
(I andthe stagecounter(SC). Theformerindicateshe numberof cyclesbetweertheinitiation of succes-

sive iterations. The latter siws hav mary iterations are erlapped.

CHAPTER 5

Modulo schedulingalgorithmswork asfollows. A lower bound(mil) of the initiation interval (I1) is

computed.This lower boundtakesinto accountthe numberof available resourcef eachtype andthe

resourcerequirement®f the loop aswell asthe dependenceonstraintsThe operationf a singleitera-

tion are scheduled in yrdesired mannerb in accordance with the folldng constraints:

* Inputconstraintstheinputsof anoperatiormustbegeneratedong enoughagosothatthey areavail-

able at the start of the operation (i.e. dependences must be honored).

» Modulo constraintsiet n; be the numberof resource®f type T; availablein the architectureThen,
no more tham; operations requiring resouréemay be scheduled for the same time modiulo
In orderto fulfill the moduloconstraintsa modulo reservation table (MRT) is used.The MRT is a
resenationtableof lengthll cycles.Eachrow of the MRT representsll the time slotsthatarecon-
gruentmoduloll andeachcolumnrepresentsresourceAn instructionu whichis scheduledtcycle
C, is assigned to m C, modll in the MRT.

Different heuristics to schedule an iteration defineiit Modulo Scheduling algorithms.

« If no schedulds foundwhenschedulinga singleiteration,thell is increasedn oneor seseralunits

and the scheduling step is repeated until a correct schedule is found.

» Onceavalid scheduldor oneiterationis foundall theimplied codemotionsto form the prolog, the
kernelandthe epilogaredeterminedy assuminghatthe samescheduléds repeatedxactly every I

cycles.

The executionof a moduloscheduledoop canbe dividedinto threedifferentparts:prolog, kernel(or

steadystate)and epilog. Figure 5.1 shows thesethreedifferent stagesduring the executionof a modulo

scheduled loop. In thisay, the ececution time of the loop can be calculated as:

toee = (NITER + SC -1) -1 + tyy

For agivenarchitectureanda givenschedulerthefirst termof the sum(calledcompute time in therest

of the chapter)is fixed andit is determinedat compiletime. The stall time is mainly dueto dependences

with previous memoryinstructionsandit dependson the run-time behaior of the program(e.g., miss

ratio, outstanding misses, etc.).

Softwar e Prefetching for Modulo Scheduled L oops 79

PROLOG | H\?C-l

KERNEL . \NITER-SC+1

EPILOG | ,.\S‘C'l
|

Figure 5.1. Execution stages of a modulo scheduled loop

In orderto minimizetheexecutiontime, classicaimethodshave tried to minimizetheinitiation interval
with the goal of reducingthe fixed part of toe.. The minimuminitiation interval is boundedby resources

and recurrences:
mil =max (e, o)

Thell, is thelower bounddueto resourceconstraintf the architectureandassuminghatall func-
tional units are pipelined, it is calculated as:
o =max HJop O ARCH, NOF’—S(OIO)WD
e o [NFUS(op) H
whereNOPS(x) indicatesthe numberof operationf type x in theloop body, andNFUS(y) indicatesthe

number of functional units of typein the architecture.
Thell,q is the laver bound due to recurrences in the graph and it is computed as:
Il ec =max Hirec 0 GRAPH, [LAT(rec) F
rec %] [DIST(rec) u

whereLAT(X) representshe sumof all nodelatenciesn therecurrence, andDIST(y) representthe sum

of all edge distances in the recurregce

For a particulardataflow dependencgraphanda givenarchitecturethe resultingll is dependenon
thelateng thatthe scheduleassigndo eachoperation.Thelateng of operationss usuallyknown by the
compilerexceptfor memoryoperationswhich have a variablelateng. Thell alsodepend®n the NOPS
whichis affectedby the spill codeintroducedby theschedulerThe otherparameterdNFUSandDIST, are

fixed.

80 CHAPTER 5

ALU MEM
0 N1
11 N2

DOl =1, NTER 1
A(l) = B(1)*k + C(I)
ENDDO
(a) Original code

Instruction latencies:
load/store : 1-10 cycles
$ @ add : 2 cycles
mult : 4 cycles

(c) Code scheduling

add ALU MEM

N3

N4

© N o o A

N5

0 N1,

1| N2 | N3;

@ 2| N4, | N5,

(b) Data flav dependence graph (d) Kernel

Figure 5.2. A sample scheduling

5.3. ADDING SOFTWARE PREFETCHING
5.3.1. Motivating Example

Corventionalmoduloschedulingoroposalaisea fixedlateng (usuallythe cache-hitime) to schedule
memoryinstructions.Schedulinginstructionswith its minimum latengy minimize the register pressure,
andthus,reduceghe spill code.Onthe otherhand,this minimumlateny schedulingcanincreasehe stall
time becausef datadependencesn particular if anoperatiomneedsa datathathasbeenloadedin apre-

viousinstructionbut the memoryacces$asnotfinishedyet, the processostallsuntil the datais available.

Figure 5.2 shavs a sampleschedulingfor a datadependencgraphanda given architectureln this
casememoryinstructionsarescheduledvith cache-hitateng. If thestalltime is ignored,asit is usualin
studiesdealingwith software pipelining techniquesthe expectedoptimistic executiontime will be (sup-

poseNITER is huge):

texec,, = (NITER+ 2) - 3=3 NITER+ 603 -NITER
opt

Obviously thisis anoptimistic estimationof the actualexecutiontime, which canberatherinaccurate.

For instancesupposehatthe missratio of theN1 loadoperationis 0.25(e.qg.,it hasstride1 andthereare4

Softwar e Prefetching for Modulo Scheduled L oops 81

elementger cacheline). Every cachemissthe processostallssomecycles(calledpenalty). The penalty
for a particularmemoryinstructiondepend=n the hit lateng, the misslateny andthe distancein the
schedulingoetweerthe memoryoperationrandthefirst instructionthatuseshe dataproducediy themem-
ory instruction.For the dependencbetweern1 andN2 the penaltyis 9 cycles,sothe stall time assuming

that the remaining dependences do not produg@eanalty is:
tga) =NITER - (10 - 1) - 0.25 = 2.25NITER
and therefore

tovee = 5.25 NITER = 1.75 -texec

opt

In this case the actualexecutiontime is neartwice the optimistic executiontime. If we assumea miss
ratio of 1 insteadof 0.25, the discrepang betweenthe optimistic and the actualexecutiontime is even

higher In this case, the stall time is:
tgar =NITER - (10-1) - 1 = 9NITER
and therefore

texec = 12 ‘NITER = 4 - teyec

opt

If all memoryreferencesvereconsideredthe effect of the stall time couldbe greaterandthediscrep-
ang/ betweerthe optimistic estimationusually utilized to evaluatethe performanceof softwarepipelined
schedulersand the actual performancecould be much higher We can also concludethat scheduling

schemes that try to minimize the stall time mayjte a significant acantage.

In this papertheproposedschedulers evaluatedandcomparedvith othersusingthetg . metric. This
requiresto considertherun-timebehaior of individual memoryreferenceswhich requiresthe simulation

of the memory system.
5.3.2. Basic Schemesto Schedule Memory Operations
In this sectionwe evaluatethe performancef basicschemeso schedulenemoryoperationsaandpoint out

the dravbacks of them, which metites the ne approach proposed in thexhsection.

We have alreadymentionedn the previous sectionthatmoduloschedulingschemesisuallyschedule
memaoryoperationaisingthe cache-hitlateng. This schemaewill be calledcache-hit latency (CHL). This

schemas expectedo producea significantamountof processostallsassuggesteéh the previoussection.

82 CHAPTER 5

1.0 1.0+
0.8 0.8
0.6 0.6

0.4 0.4

0.2

0.2

Normalized L oop Execution Time
Normalized L oop Execution Time

0.0-

2cor hydro2d mgrid tomcatv. swim su2cor hydro2d mgrid turb3d
SPECfp95 SPECfp95
(a) Simple architecture B Compute time (b) Aggressie architecture

Hl Stall time

Figure 5.3. Basic schemes performance

An approachto reducethe processostall is to inserta prefetchinstructionfor every memoryopera-
tion. Suchinstructionsarescheduledt a distanceequalto the cache-missateng from the actualmemory
referencesThis schemewill becalledinsert prefetch always (IPA). However, this schemamayresultin an
increasan the numberof operationgdueto prefetchinstructionsbut alsoto someadditionalspill code)

and therefore, it may require drhigher than the pwéous approaches.

Finally, an alternatve approachis to scheduleall memoryoperationsusing the cache-misdateng.
This schemewill becalledearly scheduling always (ESA). This schemeprefetcheglatawithout requiring
additionalinstructionsbut it may resultin anincreasen the Il when memoryinstructionsarein recur-

rences. Besides, it may also require additional spill code.

Figure5.3comparesheperformancef theabove threeschemeg$or someSPECfp9%enchmarksind
two differentarchitecture¢detailsaboutthe evaluationmethodologyandthe architecturearegivenin Sec-
tion 5.4). Eachcolumnis splitinto computeandstalltime. In this figureit is alsoshavn alower boundon
the executiontime (LBND). This lower boundcorrespondgo the executionof programswhen memory
operationsare scheduledusingthe cache-hitlateng (which minimizesthe spill code)but assuminghat
they alwayshit in cache(which resultsin null stall time). This lower boundwasdefinedasthe optimistic

execution time in Section 5.3.1.

The main conclusionthat canbe dravn from Figure 5.3 is thatthe performanceof the threerealistic

schemess far away from the lower boundin general.The CHL schemeesultsin a significantpercentage

Softwar e Prefetching for Modulo Scheduled L oops 83

of stalltime (for the aggressie architecturehe stall time representsnorethan50% of the executiontime
for mostprograms) The IPA schemeaeducessignificantlythe stall time but not completely This is dueto
the fact that someprograms(especiallytomcatv and swim) have cacheinterfering instructionsat a very
shortdistanceandtherefore the prefetchesare not alwayseffective because¢hey may collide andreplace
somedatabeforebeingused Besidesthe IPA schemeesultsin asignificantincreasen the computetime
for someprograms(e.g., hydro2d andturb3d amongothers).The ESA schemepractically eliminatesall
the stall time. The remainingstall time is basicallydueto the lack of entriesin the outstandingnisstable
thatis usedto implementa lockup-freecache However, this schemeéncreasesignificantlythe compute
time for some programslike the turb3d (by a factor of 3 in the aggresaie architecture)mgrid and

hydro2d. This is due to the memory references in recurrences that linlt the

5.3.3. Cache Sensitive Modulo Scheduling

In this sectionwe proposea hew algorithm,which is called cache sensitive modulo scheduling (CSMS),
thattriesto minimize boththe computetime andthestalltime. Thesaetermsarenotindependenandreduc-
ing oneof themmay resultin anincreasdn the other aswe have just shovn in the previous section.The

proposed algorithm tries to find the best tradesefween the ta terms.

The CSMS algorithmis basedon early schedulingof someselectvely chosenmemory operations.
Schedulinga memoryoperationusingthe cache-misdateny canhide almostall memorylateny aswe
have shawvn in the previous sectionwithout increasingnuchthe numberof instructions(asopposedo the

use of prefetch instructions). Wever, it can increase thexecution time in three ays:

* It mayincreaseaheregisterpressureandthereforejt mayincreasehell dueto spill codeif theper-

formance of the loop is bounded by memory operations.
* It may increasél . because the latepof memory operations is augmented.

* It mayincreasehe SC becausdhe lengthof individual loop iterationsmay be increasedThis aug-

ments the cost of the prolog and the epilog.

Two of the mainissuesof the CSMSalgorithmis the reductionof theimpactof recurrencesnthell
andtheminimizationof the stalltime. The problemof the costof the prologandepilogis handledoy com-
putingtwo alternatve schedulesBoth focuson minimizing the stall time andthell. However, oneof them
reducegheimpactof the prologandthe epilog at the expenseof anincreasen the stall time whereaghe
otherdoesnot careaboutthe prolog andepilog cost. Then,dependingon the numberof iterationsof the

loop, the most é&kctive one is chosen.

CHAPTER 5

function CSMS(InnerLoop IL)
return Schedulings
grphl = CreateGraph(LOClatency)
grph2 = CreateGraph(MISSlatency)
if (RecurrencesIinGrapthen
schl =ComputeSchedM inRecEffect(grphl)
sch2 =ComputeSchedMinRecEffect(grph2)
ese
schl = ComputeScheduling(grphl)
sch2 = ComputeScheduling(grph2)
endif
if (NITER < UpperBound) then
return (schl)
ese
return (sch2)
endif
endfunction

function ComputeSchedMinRecEffect(Graph G)
return Schedulings
OrderRecurrencesByRestrictionOrder(G)
=1les
foreach (Recurrence RO G)do
if (Il,edR) > 1) then
Il = MinimizeRecurrenceEffect(R,II)
endif
endforeach
return ComputeScheduling(G)
endfunction

(a) Overall algorithm

Figure 5.4. CSMS algorithm

function MinimizeRecurrenceEffect(Rec R, int 11)
return integeris
OrderlinstructionsByLocality(R)
while (Il,e{R) > 1) do

ChangeMostLocalitylnstrLatency(R)
endwhile
return max (Il,Computell(R))
endfunction

(b) Scheduling a loop with recurrences

Thecoreof the CSMSalgorithmis shavn in Figure5.4 (a). Thealgorithmmakesuseof a staticlocal-
ity analysis(asproposedn Chapter2) in additionto otherissuesin orderto determinethe lateng to be

considered when scheduling eachwulial instruction.

Initially, two datadependencgraphswith the samenodesandedgesaregeneratedThe differenceis
just the lateny assignedo eachnode.In grphl, eachmemorynodeis taggedaccordingto the locality
analysis:it is taggedwith the cache-hitlateng if it exhibits ary type of locality or with the cache-miss

lateng otherwise. Irgrph2, all memory nodes are tagged with the cache-miss hatenc

Then,a schedulghatminimizesthe impactof recurrencesnthell is computedor eachgraphusing
thefunction ComputeSchedMinRecEffect thatis shavn in Figure5.4 (b). Thefirst stepof this functionis to
orderthe recurrencesiccordingto the Il,o. in decreasingrder After that, the lateny of thosememory
operationsgnsiderecurrenceshatlimit thell is changedrom cache-mis$o cache-hiwuntil thell is limited
by resourcesor by a more constrainingrecurrence(function MinimizeRecurrence Effect). Nodesto be
modifiedarechoseraccordingto alocality order startingfrom the onesthatexhibit mostlocality (the pri-
ority orderis the next one: self-temporal-spatiakelf-temporal group-trailing,self-spatial,unknavn and

without locality).

Softwar e Prefetching for Modulo Scheduled L oops 85

Then,the secondstepis to computethe actualschedulingusingthe modifiedgraph.This stepcanbe

performed through gnof the softvare pipelined schedulers proposed in the literature.

Finally, the minimum numberof iterations(UpperBound) thatensureghatsch2 is betterthanschl is
computedA maindifferencebetweerthesewo scheduless the costof the prologandepilog parts,which
is lower for the schl. This bounddependon the computedschedulesndtheresultsof thelocality analy-

sisandit is calculatedhroughanestimationof the executiontime of eachscheduleThe schl is chosenif:
texecyneqs S texecqnens
The eecution time of a gien schedule is estimated as:
texee,, = (NITER+SC -1) -1l + tgan_,
The stall time is estimated as:

tstall,, = NITER - Z penalty(op) Cissratio(op)
Oop O MEM

wherepenalty is calculated asxplained in Section 5.3.1.:
penalty = LatMiss - (CycleUse - CycleProd)

andthemissratio is estimatedy thelocality analysisin thisway, schl is preferredo sch2 if NITERs less

or equal to:

(SC,—1)O1,-(SC,-1) 01,

(I =Ty Z(penaltyl(op) — penalty,(op)) [issratio(op)
Oop OMEM

We usea schedulingaccordingto the locality a not the CHL (which achievesthe minimum SC)in

order to tak into account the possible poor locality of some loops.

5.4. EVALUATION

In this sectionwe presenia performancevaluationof the CSMSalgorithm.We compareits performance
to that of the basicschemegvaluatedin Section5.3.2.1t is alsocomparedvith somealternatve binding

(early scheduling) and nonbinding (inserting prefetch instructions) prefetch schemes.

86 CHAPTER 5

5.4.1. Architecture model

A VLIW machinehasbeenconsideredo evaluatethe performancef the differentschedulingalgorithms.
We have modeledwo architecturesn orderto evaluatedifferentaspect®f the producedschedulingsuch
asexecutiontime, stall time, spill code,etc. The first architectures calledsimple andit is composedf
four functionalunits: integer, floating point, branchandmemory The cache-missateng for thefirst level
caches 10 cycles.Thesecondarchitecturds calledaggressive andit hastwo functionalunits of eachtype
andthe cache-misdateng is 20 cycles.All functionalunitsarefully pipelinedexceptdivide andsquare
root operationsin both modelsthe first memorylevel correspondso a 8KB lockup-free,direct-mapped
cachewith lines of 32 bytesand 8 outstandingmisses.Other featuresof the modeledarchitecturesare
depicted in @ble 5.1.

Other instructions | Latency

MACHINE MODEL Simple Aggressive _ ARITH 2
Integer FUs 1 2 ;)? MUL 4
FP FUs 1 2 = DIV or POW 6
Branch FUs 1 2)= ARITH 4
Memory FUs 1 2 Qco-» MUL 8
Cache Size 8 Kb £|pivor sQrTorPOW| 12
Line Size 32 bytes T TRIG 2
Outstanding misses 8 5 JUMP 1
Memory latency 1/10 1/20 % BRANCH 2
Number of registers 32 © CALL or RETURN 4

Table 5.1. Modeled architectures

In the modeledarchitecturegherearetwo reasondor the processoto stall: (a) whenan instruction
requiresan operandthatis not availableyet (e.qg.,it is being readfrom the secondevel cache),and (b)

when a memory instruction produces a cache miss and there are already 8 outstanding misses.

5.4.2. Experimental framework

Thelocality analysisandschedulingaskhave beenperformedusingthe ICTINEO toolset[4]. After trans-
lating the codeto suchlow-level representatiorand applying classicaloptimizations,the dependence
graphof eachinnermostoop is constructedaccordingthe particularprefetchingapproachThen,instruc-
tionsarescheduledisingary software pipelining algorithm. The particularsoftware pipelining algorithm
usedin theexperimentgeportechereis theHRMS [65], which hasbeenshavn to bevery effective to min-

imize both thdl and the rgister pressure.

Softwar e Prefetching for M odulo Scheduled L oops 87

1593
1371
3618
3.034

1.0+ 1.0+

0.8 0.8

0.6 0.6

0.4 0.4

0.2 I I ‘
0 [2)
7 7
4] 4]

0.2

Normalized L oop Execution Time
Normalized L oop Execution Time

0.0- @ @ 0 %) 7] %) 0.0- 0 0 0
tomcatv swim su2cor hydro2d mgrid turb3d tomcatv swim su2cor hydro mgrid turb3d
SPECfp95 SPECfp95
a) Simple architecture L] Compute time CSMS i i
(a) Simp BE Compute time others (b) Aggressie architecture
Hl Stall time

Figure 5.5. CSMS algorithm compared with early scheduling

Theresultingcodeis instrumentedo generatea tracethatfeedsa simulatorof the architectureEach
programwasrun for the first 100 million of memoryreferencesThe performancdiguresshawn in this
sectionrefer to the innermostloops (without subroutinecalls) containedin this part of the program.We
have measuredhatmemoryreferencesnside suchloopsrepresenabout95% of all the memoryinstruc-
tions consideredor eachbenchmarkso the statisticsare quite representatie of the whole sectionof the

program.

The different prefetchingalgorithmshave beenevaluatedfor the following SPECfp95benchmarks:

tomcatv, swim, su2cor, hydro2d, mgrid andturb3d.

5.4.3. Early scheduling

In this sectionwe comparehe CSMSalgorithmwith otherschemebasedn early schedulingof memory
operationsTheseschemesre: (i) usealwayscache-hitateng (CHL), (ii) usealwayscache-missatencg
(ESA),and(iii) schedulenstructionghathave sometype of locality usingthecache-hitateny andsched-
ule the remainingonesusing the cache-misdateng. This later schemewill be called early scheduling

according to locality (ESL).

The differentalgorithmshave beenevaluatedin termsof executiontime, which is split into compute
andstalltime. Thestalltime is dueto dependencesr to thelack of entriesin the outstandingnisstable.In

Figure5.5we canseetheresultsfor boththe simpleandthe aggressie architecturesk-or eachbenchmark

88 CHAPTER 5

all columnsarenormalizedto the CHL executiontime. It canbe seenthatthe CSMSalgorithmachievesa
computeime very closeto the CHL schemevhereast hasa stalltime very closeto the ESA schemeThat
is, it resultsin the besttrade-of betweencomputeandstall time. In programswvhererecurrencedimit the
initiation intenal, andthereforethe ESA schemédncreaseshe computetime (for instancean hydro2d and
turb3d benchmarks)the CSMSmethodminimize this effect at the expenseof a slightincreasen the stall

time.

The CSMSschemeéncreasesheregisterpressuravhencomparedwvith the CHL method.This results
in anincreaseof 0.1%and20% of the spill codefor the simpleandaggressie architecturesespectrely.

However, the penalty of this additional spill code in muclvéo than the reduction in the stall time.

SIMPLE AGGRESSIVE

SPECfp95 ARCHITECTURE ARCHITECTURE

ESA | ESL | CSMS | ESA | ESL | CSMS

tomcatv | 2.34 | 2.28 | 257 | 3.92 | 3.41 | 5.56
swim 243 | 2.04 | 243] 352 | 2.14 | 3.52
su2cor 141|099 | 144 230 | 1.00| 2.53
hydro2d | 1.13 | 1.00 | 145| 1.13 | 1.00 | 2.78
mgrid 1.15| 1.00 | 1.17] 1.12 | 1.00 | 1.19
turb3d 0.62 | 0.73 | 1.18 | 0.27 | 0.33 | 1.42

HARMONIC

MEAN 122 | 113 | 154 | 093 | 0.88 | 217

Table 5.2. Relative speed-up

Table 5.2 shows the relative speed-upf the differentschedulersvith respectthe CHL schemeOn
averageall alternatve schedulersutperformthe CHL schemgwhichis usuallythe oneusedby software
pipeliningschedulers)However, for someprogramgmainly for turb3d) the ESAandESL schedulerper-
form worse than the CHL due to the increasein the Il causedby recurrencesThe CSMS algorithm
achievesthebestperformancdor all benchmarkskor the simplearchitectureahe averagespeed-ups 1.61,

and for the aggress architecture it is 2.47.

Table5.3 compareghe CSMSalgorithmwith an optimistic lower executiontime (LBND) asdefined
in Section5.3.2thatis usedasalowerboundof theexecutiontime. It alsoshovsthe percentagef the exe-
cutiontime thatthe processors stalled.It canbeseenrthatfor the simplearchitectureahe CSMSalgorithm
is closeto the optimisticboundandit doesnot causealmostary stall. For the aggressie architecturethe

performancef the CSMSis worsethanthatof LBND andthe stall time representsibout10% of thetotal

Softwar e Prefetching for Modulo Scheduled L oops 89

SIMPLE AGGRESSIVE
ARCHITECTURE | ARCHITECTURE
SPECfp95
LBND/ | LBND/ |
P %Stall P %Stall

tomcatv 0.998 0.02 0.830 13.23
swim 1.000 0.00 0.537 28.87
su2cor 0.972 1.92 0.873 11.17
hydro2d 0.978 0.18 0.962 1.84
mgrid 0.998 0.05 0.680 6.39
turb3d 0.951 2.54 0.709 19.54

HARMONIC

MEAN 0.982 0.00 0.737 6.31

Table 5.3. CSMS compared with LBND scheduling

executiontime. Note however, that the lower boundcould be quite below the actualminimum execution

time. Table 5.4 compares the fdifent schemes using the CHL algorithm as a reference point.

SIMPLE AGGRESSIVE
ARCHITECTURE ARCHITECTURE
SPECTp95 ESA ESL csMs ESA ESL CSMS

ACompute | [OStall | ACompute | [IStall | ACompute | [IStall | ACompute | [OStall | ACompute | [IStall | ACompute | [IStall
tomcatv 10.05 | 100.00| 0.00 | 9195 | 0.00 | 99.98 | 55.03 | 97.21 | 1.34 | 8336 | 4.69 | 97.20

swim 0.00 | 100.00| -1.94 | 85.19 | 0.00 | 100.00| 32.89 | 90.27 | 18.42 | 66.25 | 32.23 | 90.34

su2cor 4.74 | 100.00| 1.48 2.54 0.88 | 95.90 | 21.80 | 97.67 | 6.10 4.09 2.03 | 93.27

hydro2d 42.07 | 99.99 | 9.54 3.79 | 11.00 | 99.62 | 153.46| 99.85 | 6.93 4.84 2.02 | 98.98

mgrid 235 | 99.89 | -0.23 | 3.59 0.11 | 99.68 | 47.10 | 87.58 | 2.81 5.19 | 37.60 | 87.57

turb3d 98.38 | 94.35 | 68.49 | 85.75 | 2.36 | 94.35| 621.80| 98.21 | 494.40| 87.59 | 13.20 | 72.48

GEOMETRIC
MEAN

2.78 99.01 0.87 16.88 0.12 98.22 | 7495 | 95.02 | 10.69 | 19.17 8.22 89.51

Table 5.4. Increment of compute time and decrement of stall time in relation to the CHL (in percentage)

For eachschemaét shavs theincreasén computetime andthedecreasén stalltime. As we have seen
before,schedulingmemoryoperationsusingthe cache-misdateny canaffect the initiation interval and
the stagecount,which resultsin anincreasean the computetime. The columndenotedasACompute repre-
sentgheincrementin computetime comparedvith the CHL schedulingFor any schemes, it is calculated

as:

|jexecs ~lstal ISD_ (texecCHL - tstaIICHL)
t

ACompute = x 100

-t
execey, stallgy,

20 CHAPTER 5

The stall time due to dependencesan be eliminatedby schedulingmemoryinstructionsusing the
cache-misdateng. By default, spill codeis scheduledusing the cache-hitlateng andthereforeit may
causesomestalls,althoughit is unlikely becauséehe spill codeusuallyis a storefollowed by aloadto the
sameaddressSinceusuallythey arenot close(otherwisethe spill codehardly reduceghe register pres-
sure),the load will causea stall only if it interfereswith a memoryreferencein betweenthe storeand
itself. The columndenotedas Ol representshe percentagef the stall time causedby the CHL algo-
rithm that is &oided. For ary schemes, it is calculated as:

Dstall (%) = fsallg ltall o

stall ey,

We canseein Table 5.4 thatthe CSMSalgorithmachieresthe besttrade-of betweencomputetime
andstalltime, whichis thereasorfor outperformingthe others. The ESA schemas the bestoneto reduce
the stall time but at the expenseof a large incrementin computetime, mainly when the architecture

becomes more aggressi

5.4.4. Inserting prefetch instructions

In orderto reducethe penaltiescausedy memoryoperationsan alternatve to early schedulingof mem-
ory instructionds insertingprefetchinstructionswhich areprovidedby mary currentinstructionsetarchi-
tectureq(e.g.,the touch instructionof the PaverPC[19]). This new schemecanintroduceadditionalspill

codesinceit increaseshe registerpressureln particular the lifetime of valuesthat areusedto compute
the effective addresss increasedsincethey are usedby both the prefetchand ordinary memoryinstruc-

tions. It can also increase the initiation inrgue to additional memory instructions.

We have evaluatedthree alternatve schemedo introduce prefetchinstructions: (i) insert prefetch
always(IPA), (ii) insertprefetchfor thosereferencesvithout temporallocality evenif they exhibit spatial
locality, accordingto the staticlocality analysis(IPT), and(iii) insertprefetchfor thoseinstructionswith-
outary typeof locality (IPL). Thefirst schemas expectedo resultin avery few stallsbut it requiresmary
additionalinstructionswhich mayincreasehell. ThePT schemds moreselectve whenaddingprefetch
instruction.However, it addsunnecessargrefetchinstructionsfor somereferencesvith just spatiallocal-
ity. Instructionswith only spatiallocality will causea cachemissonly whenanew cachdine is accessed
it is notin cache.The IPL schemes the mostconserative in the sensethat it addsthe lessnumberof

prefetch instructions.

Softwar e Prefetching for Modulo Scheduled L oops 91

1257

1.0+
1.0

0.8
0.8

0.6

0.4

02 | I ‘
3 3
Y Y

Normalized L oop Execution Time

Normalized L oop Execution Time

0.0 -

tomcatv swim su2cor hydro2d mgri urb3
SPECfp95
SPECfp95
(a) Simple architecture 1 Compute time CSMS (b) Aggressie architecture
[Compute time others
Hl Stall time

Figure 5.6. CSMS algorithm compared with inserting prefetch instructions

In Figure5.6it is comparedhe total executiontime of the CSMSschedulingagainstthe abose-men-
tionedprefetchingschemesThefiguresarenormalizedo the CHL schedulingThe CSMSschemealways
performsbetterthanthe schemedasedn insertingprefetchinstructionsexceptfor the mgrid benchmark
in theaggressie architectureln this lattercase the IPA schemas the bestonebut the performancef the

CSMS is ery close to it.

Amongthe schemeshatinsertprefetchinstructions,noneof themoutperformshe othersin general.
Dependingon the particularprogramand architecturethe bestone amongthemis a differentone. The
prefetchscheme®utperformthe CHL scheman general(i.e., the performancdiguresin Figure5.6 arein
generallower than1) but in somecaseghey may be evenworsethanthe CHL, whichis in generalWworse

than the schemes that are based on early scheduling.

Comparingbinding (Figure5.5)with nonbinding(Figure5.6) schemes canbe obseredthatbinding
prefetchis always betterfor the threefirst benchmarksBoth schemeshave similar performancedor the

next two benchmarks and only for the last one, nonbinding prefetch outperforms the binding schemes.

To understandhereasongor the behaior of the prefetchschemesywe presenbelov someadditional
statisticsfor the aggressie architectureTable5.5 shavs the percentagef additionalmemoryinstructions
thatareexecutedfor the CSMSalgorithmandfor thoseschemedpasedon insertingprefetchinstructions.
In the CSMS algorithm, additionalinstructionsare only dueto spill codewhereasn the otherschemes

they aredueto spill codeandprefetchinstructionsWe canseein this tablethat,exceptfor thelPL scheme

92

CHAPTER 5

for themgrid benchmarkihe prefetchschemesequiremuchhighernumberof additionalmemoryinstruc-

tions. As expected the increasdn numberof memoryinstructionsof the IPA schemds the highest,fol-
lowed by IPT then the IPL and finally the CSMS.

AGGRESSIVE ARCHITECTURE
SPECfp95 INSERTING PREFETCH INSTR.
Sehls IPA IPT IPL
tomcatv | 3212 | 60.99 | 50.29 | 53.84
swim 3875 | 6400 | 4847 | 44.77
suzcor | 0.0 | 6052 | 4871 | 23.34
hydro2d | 212 | 5549 | 39.94 | 285
mgrid | 49.90 | 59.26 | 56.57 | 7.50
turbad | 000 | 69.16 | 49.19 | 51.34
ARPITC| 2048 | 6157 | 4886 | 3060

Table 5.5. Percentage of additional memory references

aThereis spill code,but notin the simulatedpartof the pro-

gram.

Table5.6 shavs theincreasan computetime andthe decreasén stall time of the schemedasedon

insertingprefetchinstructiondn relationto the CHL schemeNegative numbersndicatethatthe stalltime

is increased instead of decreased.

SIMPLE ARCHITECTURE AGGRESSIVE ARCHITECTURE
SPECfp95 IPA IPT IPL IPA IPT IPL
ACompute | [OStall | ACompute | [OStall | ACompute | CStall | ACompute | (CStall | ACompute | OStall | ACompute | CIStal
tomcaty | 7.98 | 49.50 | 2.06 | 65.03 | 2.31 | 48.85| 40.26 | 23.38 | 6.04 | 67.21 | 8.05 | 19.50
swim | 27.08 | 82.34 | 2262 | 5551 | 19.70 | 54.66 | 65.13 | -18.63 | 24.34 | 45.63 | 34.86 | 3.18
suzcor | 11.85 | 95.38 | 9.18 | 9507 | 0.59 | 1.84 | 45.63 | 74.54 | 27.03 | 82.31 | 9.30 | -3.04
hydrozd | 31.22 | 97.90 | 17.31 | 90.83 | 9.70 | 17.53 | 63.87 | 85.01 | 8.67 | 86.85 | 0.57 | 4.43
mgrid | 4.82 | 99.33 | 22.49 | 88.74 | 141 | 331 | 3128 | 88.39 | 26.71 | 3549 | 3.16 | 556
trb3d | 18.43 | 94.41 | 10.08 | 90.35 | 5.47 | 85.78 | 87.20 | 69.00 | 78.60 | 74.00 | 49.60 | 82.60
GEOMTC | 1394 | 8422 | 1090 | 7037 | 3552 | 1704 | 5246 | NaN | 2041 | 6214 | 7.84 | NaN

Table 5.6. Increment of compute time and decrement of stall time for
schemes based on inserting prefetch instructions (in percentage)

We canseein Table 5.6 that the computetime is increasedy prefetchingschemessincethe large

numberof additionalinstructionamayimply asignificantincreasen thell for thoseloopsthatarememory

Softwar e Prefetching for Modulo Scheduled L oops 93

bound.The stall time is in generalreduced put the reductionis lessthanthat of the CSMS schemgsee
Table5.4). The programmgrid is the only onefor which thereis a prefetchbasedschemgIPA) thatout-
performsthe CSMSalgorithm.However, the differenceis very slight andfor the remainingprogramshe
performancef the CSMSschemads overwhelminglybetterthanthatthe IPA schemeTable5.7 shavsthe
missratio of the differentprefetchingschemegomparedwith the missratio of a nonprefetchingscheme
(CHL).

AGGRESIVE ARCHITECTURE

SPECfp95
CHL IPA IPT IPL

tomcatv | 68.02 | 41.08 | 49.71 | 43.37
swim 6465 | 3155 | 4418 | 5156
suzcor | 2543 | 235 | 568 | 2155
hydro2d 19.57 1.33 5.04 18.80
mgrid 646 | 057 | 291 | 535
turbsd | 1068 | 211 | 239 | 264
GEOMEFC] 2307 | am 871 | 1529

Table 5.7. Miss ratio for the CHL and the different prefetching schemes

We canseethatin generathe schemeshatinsertmostmemoryprefetchegproducethe highestreduc-
tionsin missratio. However, insertingprefetchinstructionsdo not remove all cachemissesgvenfor the
schemethat insertsa prefetchfor every memoryinstruction (IPA). This is due to cacheinterferences
betweenprefetchinstructionsbeforethe prefetcheddatais used.This is quite commonin the programs
tomcatv andswim. For instancejf two memoryreferenceshatinterferein the cachearevery closein the
code,it is likely thatthe two prefetchesorrespondindgo themare scheduledbeforeboth memoryrefer-
encesln this case atleastoneof thetwo memoryreferencesvill missin spiteof the prefetch Besidesijf
the prefetchesand memoryinstructionsare scheduledn reverseorder (i.e., instructionA is scheduled

before B lit the prefetch of B is scheduled before the prefetch of A), both memory instructions will miss.

To summarizetherearetwo mainreasondgor the badperformancef the schemedasedon inserting
prefetch instructions when compared with the CSMS scheme:
» They increase the compute time due to the additional prefetch instructions and spill code.

» They arenotalwayseffective in remaoving stallscausedy cachemissesdueto interference®etween

the prefetch instructions.

94 CHAPTER 5

5.5. CHAPTER SUMMARY

The interactionbetweensoftware prefetchingand software pipelining techniquedor VLIW architectures
hasbeenstudied.We have shavn that moduloschedulingschemesisingcache-hilatengy producemary
stalls dueto dependencewith memoryinstructions.For a simple architecturethe stall time represents
about32% of the executiontime and 63% for an aggressie architectureThus,ignoring memoryeffects

when &aluating a softare pipelined scheduler may be rather inaccurate.

We have comparedhe performancef differentprefetchingapproachebasedon eitherearly schedul-
ing of memoryinstructions(binding prefetch)or insertingprefetchinstructions(nonbindingprefetch) We
have seernthatboth provide a significantimprovementin general However, methodsasedn earlysched-
uling outperformthosebasedon insertingprefetchesThe main reasongor the worseperformanceof the
latter methodsarethe increasan memorypressuralueto prefetchinstructionsandadditionalspill code,

and their limitation to reme short-distance conflict misses.

We have proposedan heuristicschedulingalgorithm (CSMS),which is basedon early schedulingof
somememoryinstructionsthattriesto minimize boththecomputeandthe stalltime. Thealgorithmmales
useof a staticlocality analysisto schedulénstructionsin recurrencesWe have shawvn thatit outperforms
the rest of stratgies. For instance,when comparedwith the approachbasedon schedulingmemory
instructionsusingthe cache-hitateng, the producedcodeis 1.6timesfasterfor a simplearchitectureand
2.5timesfasterfor an aggressie architectureln the former case we have alsoshovn thatthe execution

time is \ery close to an optimistic\er bound.

6

| NSTRUCTION SCHEDULING
FOR CLUSTERED VLIW ARCHITECTURE S

Clustered organizationsare becominga commontrend in the designof VLIW architectures.In this
chapter we first proposea novel modulo schedulingapproachfor architecturesin which both regis-
ter file and functional units are partitioned. The proposedtechnique performs the cluster assign-
ment and the instruction schedulingin a single pass,which is shown to be more effective than doing
first the assignmentand later the scheduling We alsoshaw that loop unrolling significantly enhances
the performanceof the proposedscheduler especiallywhen the communication channelamongclus-
ters is the main performancebottleneck. By selectively unrolling someloops,we can obtain the best
performance with the minimum increasein code size.Performance evaluation shows that the clus-
tered architecture achieves about the samelPC (Instructions Per Cycle) as an equivalent unified
architecturewith the sameresources.Then, the algorithm is extendedto clustered architectureswith
a distributed data cache. The proposedalgorithm takesinto accountboth register and memory
inter-cluster communications.It hasbeenevaluated for both 2- and 4-cluster configurations and for
different number and latency of inter-cluster buses.It is shown that the proposedalgorithm pro-
ducesscheduleswith very low communicationrequerimentsand it outperforms previous cluster-ori-

ented schedulers.

96 CHAPTER 6

6.1. INTRODUCTION

Semiconductotechnologyhasexperienceda continuousmprovementin the pastandcurrentprojections
anticipatethat this trendwill continuein the forthcomingyears[93]. By reducingthe minimum feature
size,new technologiewill packmorelogic in a singlechip but new problemsmayarise.Technologypro-
jectionspoint out thatwire delayswill be oneof the mainhurdlesfor improving instructionthroughputof
future microprocessorf93]. As wire delaysgrow relative to gatedelaysandfeaturesizesshrink, the per-
centagef on-chiptransistorghatcanbereachedn asinglecycle will decreaseandmicroprocessorwill

becomecommunication bound rather tharcapacity bound [2][71].

In thesameway, anapproacho enhanceheprocessoperformances to exploit moreinstruction-level
parallelism(ILP). However, this requiresmore functional units, registersand more resourcesn general.
This incrementin resourcesanaffect the cycle time of the processarFor instance Palacharlaet al. [80]
shaved that the bypassdelay and the register file accesdime are someof the critical delaysof current

Microprocessors.

Proposeapproacheto dealwith theseproblemsarebasedon exploiting communicatioriocality. The
basicideais to divide the systeminto severalprocessingunits” thatcanwork almostindependentlyandat
avery highfrequeng. Then,somecommunicatiorchannelsareincludedin orderto exchangesignals/data

among “units”. This partition of the processor in quasi-independent unitevédags calledlustering.

Currenttrendsin clusteringfocuson the partition of theregisterfile. Functionalunitsaregroupedand
assignedo aregisterfile partitionsothey canonly readtheir operandg$rom their local registerfile. Values
generatedby oneclusterandneededy anothemustbe communicatedin this way, bothbypassesmong
functionalunits and portsof the registerfile arereducedaswell asthe numberof registersof eachlocal
register file. Clustereddesignscan be found in currentresearchproposals(multiscalar[29][95], multi-
threading[69], traceprocessor$88][106], etc.)andevenin somecommercialsuperscalaprocessorsuch
asthe Alpha 21264[39]. However, this trend is even more commonfor VLIW processorsisedin the
embedded/DSBomain.Examplef thelatterarethe Texasinstruments TMS320C6004101], theEqua-
tor's MAP1000 [68], the Analog'TigerSharc [30] and the HP/STLx plattform [25].

In this chaptemwe focuson clusteredvLIW architecturesAs previously mentionedn Chapters, soft-
warepipeliningis avery effective techniqueo staticallyscheduldoops.The mostpopularschemdo per-
form software pipelining is called modulo schedulingIn this chapterwe first proposea clusteroriented

modulo schedulingalgorithmfor an architecturewvhich hasall the resourcegartitioned.For the sale of

Instruction Scheduling for Clustered VLIW Architectures 97

simplicity, we first considera clusteredarchitecturewith a shareccachememoryandproposeanalgorithm
for reducinginter-clusterregister communicatiorand maximizing workload balance By performingthe
clusterassignmentaindthe instructionschedulingat the sametime and by usingloop unrolling, the pro-
posedechniquecanhide practicallyall the communicatiorateng, resultingin anIPC very similar to that
of a unified architecturewith the sameresourcesfor different communicationdelaysand bandwidths.
Whenthe cycle time is factoredin, the clusterarchitectureachieves an averagespeed-upof 3.6 for the

SPECfp95 on a 4-cluster configuration.

Then,we considera clusteredvVLIW microarchitecturavith a distributedcachememaory This archi-
tecturehasall the resourceglistributed: instructionfetch, executeand memoryunits. It resemblesery
mucha multiprocessqrwith the exceptionthatall the clustersprogressn alockstepmode,andinter-clus-
ter registercommunicationgrecontrolledby the compilerby meansof certainfieldsin theISA. Because

of this resemblance we refer to this architecture rasl&aVLIWprocessor.

The effectivenesof this microarchitecturestronglydepend®n the ability of the compilerto generate
codethat balanceghe workload of the differentclustersandresultin few inter-clustercommunications.
We proposea modulo schedulerfor multiVLIWprocessors that includessomeheuristicsfor minimizing
inter-clusterregister communication pasedon the information provided by the datadependencgraph.
Besides,it implementsa powerful memory locality analysisbasedon Cache Miss Equations [33] as
describedn Chapter2, which guidesthe schedulingof memoryinstructionswith the objective of minimiz-

ing/hiding intercluster memory communications.

6.2. PREVIOUS WORK

Thereareseveral works relatedwith instructionschedulingfor clusteredarchitecturesThe first proposal
for solvingthe problemof schedulingnstructionsfor partitionedregisterfilesis in thework by Ellis in a
prototype compiler called Bulldog [24]. That work implementstrace schedulingand decidescluster
assignmentdo the instructionsin the trace.In that algorithm cluster selectionand list schedulingare
treatedastwo sequentiaphasesThe clusterassignmenstepusesa BUG algorithm(Bottom-UpGreedy).

Communication operations are inserted during the scheduling step if necessary

Capitanioetal. presenta schedulingalgorithm[11] whoseobjective is codepartitionwhenthe VLIW
clusteredarchitecturedoesnot have full connectiity amongall registersandfunctional units. The algo-

rithm stratgy also performs cluster assignment and instruction scheduling isesuential phases.

98 CHAPTER 6

Janget al. [50] presentanotherschedulingschemehat usesseparatassigning/schedulinghasesin
theirwork, a graphis partitionedusinga k-way partitioningalgorithm(wherek is the numberof clusters).
Theirmainaimis to achive abalancedchedulingln thedependencgrapheachnoderepresents register

(or value) instead of an operation in order tovie flexibility in their retagetable compiler

Theseworks differ from the approachpresentedn this chapterin two basicaspectsthey focuson
schedulingnstructionsin agyclic codes(more particularly they do not dealwith moduloschedulingyand
follow an approachwhereclusterassignmenandinstructionschedulingare performedin two sequential

steps.

Ozeret al. [78] proposea schedulingalgorithm called unified-assign-and-schedulifyAS) that dif-
fers from previous approachego schedulinginstructions.Insteadof first partitioning the instructions
amongthe clustersandthenschedulingthem,thesetwo stepsare performedat the sametime. The algo-
rithm proposedn this paperfollows the samestratgy. However, our work focuseson moduloscheduling

instead of list scheduling.

Thereare a couple of works relatedto modulo schedulingfor clusteredarchitecturesNystromand
Eichenbeger[77] presenfanalgorithmto assignnodesto clusterswhenmoduloschedulings performed.
Their algorithmdealswith casesvherethe connectionamongthe differentregisterfiles is bus-basedr
grid-based.Their approachfollows a stratey wherethe clusterassignmentind node schedulingcorre-
spondto differentphaseslif ary of themfails, the algorithmis re-startedby incrementingthe initiation
intenal. They focuson two mainaspectstheimpactof loop-carrieddependenceandthe negative impact
of aggressiely filling clusters.They obtain good resultsfor the loops evaluatedbut their architecture
almostnever saturateghe communicationchannelgbecausahey assumesuficient low-lateny buses),
andtherebythe effect of communicatioris very low. However, aswe will seein a latersectionwhenthe
numberof channelgbusesn our case)decreasesr thecommunicatiorlateny increasesthe performance

of this algorithm is significantly dgaded.

Fernandesgtal. [28] proposeanapproachio performboth schedulingandpartitioningin a singlestep
for softwarepipelinedloops.However, they assumean architecturewvith anunusualegisterfile organiza-

tion based on a set of local queues for each cluster and a queue file for each communication channel.

Therearealsosomeworksthatschedulenstructionsdynamicallyamongthedifferentclustersof func-

tional units for a &riety of architectures. Some interestingrks are [56][27][92][69][10].

Instruction Scheduling for Clustered VLIW Architectures 99

BUS

Bus =
+—</ Incoming

1 1 | Hobier
OCAL OCAL LOCAL REGISTER FILE :
REGISTER FILE | REGISTER FILE |

+ i
I adl adl i b
ml ml ml ml ml ml m‘l i i 1l il ,LlL
eoe
S — S\ S — S\ 3 v 3 ﬁ% A % 3 A

CLUSTER 1 CLUSTER n
(fu] | [Fu] | [FU]
L1 : '
ChacHE CLUSTER
L1
CACHE

Figure 6.1. VLIW clustered architecture and detailed architecture of a single cluster

6.3. SCHEDULING FOR A SEMI-DISTRIBUTED ARCHITECTURE

In this sectionwe first describethe clusteredarchitecturejncluding the VLIW instructionformat which
incorporategxplicit controlof inter-clusterregistercommunicationsWe thenpresenthe schedulingalgo-

rithm that includes selegg loop unrolling.

6.3.1. Architecture

TheclusteredvLIW architectureghatwe assumen this sectionis shavn in Figure6.1. It is composedf
differentclusters gachonemadeup of differentfunctionalunitsandalocal registerfile. Valuesgenerated
by oneclusterand consumedy anotherare communicatedhrougha bus sharedby all the clusters.The
architecturemay have oneor several busesin orderto communicatevaluesamongthe differentclusters.
Whena valueis communicatedthe employed bus is busy during the lateng of the communicationThe
clusterthat writes onto the bus andthe cluster/sthatreadfrom the bus are codifiedin the VLIW instruc-
tion, asdescribedbelon. All the clustersalsosharethe memoryhierarcly, startingfrom theL1 cacheln
this work we have consideredhatall clustersarehomogeneoui.e., samenumberof registersandtype/
numberof functional units) althoughthe proposedschedulingtechniquescan easily be generalizedor

non-homogeneous configurations.

100 CHAPTER 6

VLIW Instruction | CLUSTERT | CLUSTER2 | ... | CLusTERn |

FU Input Mux Bus Output
eRegister | FU1 | FU2 | | FUn| eRegister
IRV eUnused
e«Constant Bus Input
eUnused |op| sRC1 | sRC2 [TARGET|

eRegister
‘ oNull
FU Output
eRegister

Figure 6.2. VLIW instruction format

The detailedarchitectureof a singleclusteris alsoshavn in Figure6.1. Theinputsof eachfunctional
unit aremultiplexedamonga valuereadfrom thelocal registerfile, valuesobtainedhroughbypassefrom
otherfunctionalunits of the samecluster andfinally the valuethat comesfrom a bus. This last valueis
storedin a specialregistercalledincomingvalueregister (IRV), andcanfeeda functionalunit and/orbe
storedin thelocal registerfile (in the casethatanotherinstructionscheduledn this clusterneedghevalue
later).Ontheotherhand thedatathatis placedon thebuscanbe eitherobtainedrom the outputof afunc-

tional unit or from the local gaster file.

Ragistervaluesgeneratedy oneclusterandneededy anothernearecommunicatedhrougha setof
busesthataresharedby all clusters(calledregister buses). A valuethatis putin aregisterbus cancome
from eitherthe local registerfile or the outputof a functional unit througha short-circuit.On the other
hand,a valuethatis readfrom the bus canbe storedin aregisterfile, feeda functionalunit or both. Thus,
instruction register operandscan be read from either the local register file or any bus, and instruction
resultscanbe written into the registerfile andto ary registerbus. All registercommunicatioroperations
areexplicitly encodedn the appropriatefields of the VLIW instruction,which are setat compiletime.
Thus,no additionalhardwareis neededo manageandarbitrateregisterbuses.ThedetailedVLIW instruc-
tion formatis shovn in Figure6.2. A stall in oneclusteraffectsall the others,sothatall the clusterswork
onthesameVLIW instruction.Eachinstructionfor a particularclusterconsistof thefollowing fields. An
operatiorfor eachfunctionalunitin thatparticularcluster(FU;) andthe source(IN BUS) andtarget(OUT
BUS) of thebus (thereareasmary IN/OUT fieldsasnumberof buses) ThelN BUSfield indicatesjf nec-
essarytheregisterin thelocal registerfile in which thevaluein IRV hasto be stored.IRV (Incoming Reg-
ister Value) is a specialregisterin eachclusterthat latchesthe valuethat comesfrom the bus. The OUT

BUS field indicatesfrom which local registera value hasto beissuedto the bus, if ary. If theregisteris

Instruction Scheduling for Clustered VLIW Architectures 101

beingwrittenin thatcycle, the datawill be bypassedrom the outputof the correspondindunctionalunit.
As abusis aresourcesharedby all the clusterswhenoneparticularclusterplacesa dataon the bus (OUT
BUS), this buswill be busy duringthe entirebus lateng andno otherinstructioncanusethis bus mean-

while (a lus is considered by the scheduling algorithm as another resource in thaties¢able).

6.3.2. Basic Scheduling Algorithm

In this sectionwe presenthe proposednoduloschedulingalgorithmfor semi-distritutedclusteredvLIW

architecturesWe first presenta basicschedulingalgorithm, which tries to reducethe penaltiesof inter-
clustercommunicationgsits maingoal,sincethe busesarethe mostconstraineaesourcdor mary loops.
However, this kind of algorithmsarenot sufficient for mary loops(sincemary communicationgannotbe
hidden).Thereforejn next sectionwe alsopresentan algorithmfor unrolling someloopsin orderto fur-

ther reduce the impact of communications on the final scheduling.

Algorithm

The main objective of the Basic Scheduling Algorithm (BSA) is to reducethe numberof communications
or, in otherwords,obtainthe samell asanhypotheticalunifiedarchitecturethatis, without clusteringand
with the samenumberof resources)Our algorithm employs a unified assign-and-schedubgproachas
proposedby Ozeret al. [78] for non-g/clic schedulingwherethe cluster selectionheuristicsprioritize

those clusters that minimize the number of communications.

Theschedulingalgorithmis shavn in Figure6.3. In thefirst stepof thealgorithm(1) alist with all the
nodesof thegraphis built (which represeninstructions)ln thislist, all nodesaresortedin orderto reflect
the sequenceo follow during the schedulingophase We have choserthe orderingperformedby the SMS
[66]. This orderinggivespriority to the nodesin recurrencesvith the highestRecMI|I (thatis, accordingto
their criticallity). RecMII standsfor the minimum initiation intenal constrainedy recurrencesBesides,
the resultingorderensureghata nodein a particularpositionof thelist only haspredecessorsr succes-
sorsheforeit (exceptin the caseof sortinga nenv subgraph)Moreover, nodesthat are neighborsin the

graph are placed close together in the ordering.

Oncethenodeshave beensorted andfollowing this ordering,eachoneis scheduledn theappropriate
cycle andcluster If the currentnodedoesnot have a predecessanor a successqithedefault cluster(def -
cl ust er variable)is setto the next oneaccordingto a circular order(2). Otherpossibilitiesfor selecting

the defult cluster are feasible, such as choosing the least loaded one.

102 CHAPTER 6

(1) NLI ST = Order Nodes(Q) ;
foreach (n in NLIST) do {
/1 Check if it is a new subgraph
(2) if (!SchedPred(n, G && !SchedSucc(n, Q)
defcluster = NextC uster(defcluster);
/1 Conpute the profit contributed i n outedges
(3) foreach (c in CLIST) do {
t npout edges = TryNodeOnCl uster(n, c, G;
profit[c] = Qut EdgesOnCluster(c) - tnpoutedges;
}
/] Build alist with the best ones
(4) candlist = ChooseBestProfit(profit);
/1 Choose the nobst appropriate
(5) if (ListLenght(candlist) == 0) {

Il ++;
Relnitialize();
}
if (ListLenght(candlist == 1)
(6) chosen = Choosed uster(candlist);
el se {

(7) if (n = Exi stPredO Succl nCand(candlist))
chosen = n;

el se {
(8) if (candlist[defcluster] == k)
chosen = defcl uster;
el se
(9) chosen = M ni ni zeRegRequi renent s(candl i st);
}
}
(10) Schedul eNode(n, chosen);

}

Figure 6.3. Basic scheduling algorithm

The core of the algorithmis in fragment(3). In this loop we attemptto schedulehe currentnodein
eachpossiblecluster(i.e. thoseclusterswith an emptyslot for the correspondindunctionalunit). Those
clustersfor which theinsertionof this nodewould increasehe registerrequirementsabore the numberof
available registersare discarded. The variablet npout edges representshe numberof edgesfrom the
nodesscheduledn the candidatecluster(including the currentnode)to the restof nodes.This measure
representthe numberof communicationsieededn this clusterif the schedulevouldfinish here.Theidea
of ouralgorithmis to schedulea nodein the clusterthatresultsin the bestuseof outedgeskor thisreason
theprofitin acluster(pr of i t [c]) is definedasthe differencebetweerthe outgoingedgeseforeandafter
schedulinghe currentnodein this cluster Then,alist of the clusterswith the highestprofit is built (4). If
no clusteris in thelist (all the slots of the functionalunits arefull, or noneof the registersnor busesare

available),thentheinitiation interval is increase@ndthewhole processs reinitialized(5). Otherwisepne

1. Insertionof spill codemayimprovethe performancef the proposedalgorithm.Techniquego insertspill codeonthe
fly can be found elsewhere [54] and are beyond the scope of this work.

Instruction Scheduling for Clustered VLIW Architectures 103

clusteris choseraccordingo thenext prioritizedcriteria:the only one(6), the clusterwith ary predecessor
or successofif ary) of the currentnode(7), the def cl ust er (8), or the onethat minimizesthe register
requirement$9). Oncethe clusteris chosenthe nodeis scheduledn the appropriatecycle andbothfunc-

tional unit and bs (if needed) are magll as occupied in the resation table (10).
Note in particular the folling cases:

a) Thefirst nodeof anew subgraphs beingscheduledasit hasno successonor predecessalready
scheduledthebenefitin outedgess thesamefor all theclustersThereforethechoserclusteris the

default one.

b) If theloophasbeenunrolledandanodeof aparticulariterationis beingscheduleé&ndthenodedoes
not have ary dependencwith nodesin otheriterations the benefitwill be maximizedif it is sched-

uled in the same cluster as the other nodes of the same iteration.

Therefore this algorithmtriesto schedulesubgraphshataredisconnectedh differentclustersandin

particulay iterations of an unrolled loop follothis trend.

Evaluation

For aclusteredvLIW architecturepothll andSC canbe affectedby inter-clustercommunicationsif the
communicatiorbusesbecomesaturateda higherll is required.On the otherhand,communicatioropera-
tions may increasethe lengthof the scheduleandthereforethe SC may be increasedThus,the IPC of a
VLIW clusteredarchitecturewill be lower than that of a VLIW unified architecturewith the same

resources in general.

In this sectionwe shav how the numberandlateng of busesaffect the final moduloschedulingn a
VLIW clusteredarchitecturecomparedo a unified architecturewith the sameresourcegfunctionalunits
andregisters).We alsohighlight the differencesbetweenapproacheshat performfirst the partitioning of
instructionsamongclustersand then computethe schedulefor eachclusterandapproacheshat do both
taskssimultaneouslyin generalthelattertypeof methodswill bebetter sincethe partitioningmaybenefit

from information obtained from the partial schedule.

Figure6.4 shawvs performanceesultsrelative to a unified machineobtainedthroughsimulationcom-
paredwith anhypotheticalunified machinedIt shavs the performancef the basicalgorithmwe propose
basedn a unified assign-and-schedustrately andthe algorithmproposedy NystromandEichenbeger

[77], which consistsof afirst phasefor performingthe graphpartitioninganda secondphasefor schedul-

104 CHAPTER 6

]]
(&) o
8 8
E 19 E
(=] — [=]
£ %7 7 —0—BSA L=1 =
=S --@-- BSA L =2 =
2] e —o— N&EL=1 g
= --o-- NQEL =2 B
5 02— <
4 . 4 1
0.0 T T T T 0.0 T T T T
0 2 4 6 8 100 12 0 2 4 6 8 10 12
Number of buses Number of buses
AVERAGE AVERAGE
(a) 2-cluster configuration (b) 4-cluster configuration

Figure 6.4. Relative performance of VLIW clustered architectures assuming the same cycle time

ing eachnodein the correspondingluster For the latter approachwe have usedthe clusterassignment

algorithm that the proposed and then, wevsaused the SMS instruction scheduler [66].

Graphsontheleft shawv theresultsfor a 2-clusterconfiguratiorwhereasn theright theresultsarefor
a 4-clusterconfiguration(see Section6.3.4 for more details abouteachparticular architectureand the
bechmarksevaluated).In thesefigures,we can seethe relative performanceaveragedfor all evaluated
benchmarksln thesetwo figureswe canalsoseethe resultsof our basicschedulingalgorithm(BSA, lines
marked with circles) and Nystrom et al. (N&E, lines marked with diamonds)assumingbuseswith a

latengy of one (L=1, solid line) and tw(L=2, dotted line) ycles.

We canseein thesefiguresthat assuminghe sameconfigurationgclusters,busesandlatencies)as
usedby Nystromet al., our basicalgorithmproducesscheduleshathave anIPC about7% higher In that
paper the proposedalgorithmis evaluatedwith the configuration®2-cluster/2-lnsesand4-cluster/4-ises
(andboth assumingl-cycle latengy buses).Theresultsobtainedthere(eventhoughfor a setof programs
differentfrom ours)demonstratethattheir schedulingalgorithmobtainedfor 94% and98% of the loops
thesamédl asaunifiedmachinewith thesamenumberof resourcesWe do notshav ourresultsin termsof
Il but in relative IPC, which is definedasthe IPC obtainedfor the clusteredconfigurationswith respecto
the unified configuration(this measurés morerealisticsinceprolog, epilog andthe actualnumberof iter-
ationsof eachloop aretakeninto account)Looking at Figure6.4, for the sameconfigurationsve cansee
thata stratgy basedon performingthe clusterassignmenandschedulingat the sametime performsbetter

than a scheme based on atstep approach.

Instruction Scheduling for Clustered VLIW Architectures 105

/] Compute scheduling for the original graph
(1) sched = Schedul eG ah(G);

/1 Check if unroll is beneficious
(2)if (Li m tedByBus(sched)) {
(3) ufactor = ncluster;
(4) comneeded = NDepsNot Mul t (G) * ufactor;
(5) cycneeded = (comneeded/nbuses) * latbus;
(6) if (cycneeded < I'1 (sched)) {
(7) G'= Unroll Loop(G, ufactor);

return (Schedul eGr aph(G);
}
}

return (sched);

Figure 6.5. Selective unrolling algorithm

Thesecondmportantconclusionthatwe candraw from Figure6.4is thatthe performancef theclus-
teredarchitecturesignificantlydecreasesvhenthe numberof busesdecreasesr the lateng of the buses
increasesThis canbe obsenedfor bothapproachealthoughto alesserextentfor our proposal This deg-

radation is caused by thact that the s (or luses) becomes the bottleneck of the architecture.

6.3.3. Adding Loop Unrolling

As we have seenin the previous section,the communicatiorbusesmay be the main performancebottle-
neck,evenwhenthe schedulingalgorithmtriesto reducethe numberof communication@mongclusters.
The alternatve we proposeto reducethe pressureon the busesis to apply the previous BSA scheduling
algorithmto anunrolledgraph.Loop unrolling is a well-known technique Using both loop unrolling and
moduloschedulingwas proposedoy Lavery and Hwu [62] in orderto reduceresourcerequirementsand
thelengthof critical paths.Their obsenationwasthatusingloop unrolling theactualMIl (minimuminiti-

ationinterval) for theunrolledloop is closerto therealMIl whenthevalueis roundedIn our casetherea-
sonfor applyingloop unrolling is that mary timesloops presentvery few dependenceamongiterations
(loop-carrieddependences)lherefore,schedulingdifferent iterationson different clustersrequire few

communicatiorandin addition,the workloadis balancedsinceall iterationsperformthe sameamountof

work.

However, a dravbackof loop unrolling is codeexpansionwhich may be a critical issuein somesys-
temssuchasembeddegbrocessorsThus,it shouldbeusedonly for thosecasesn whichit providesaclear
net benefit.For instance|f the performanceof the non-unrolledioop is not limited by communications,
unrolling may not provide any additionalbenefit.For this reasonwe proposeanalgorithmto performloop

unrolling only when it increases performance.

106 CHAPTER 6

Theselectve unrolling algorithmis shovn in Figure6.5. First of all, the scheduleof the graphwithout
unrolling is computedlf the resultingschedulds limited by communicationgi.e., theinitiation interval
was increasedecauseahe busesbecomesaturatedthena schedulewith the unrolledloop is tried. Our
schedulealgorithm presentedn the previous sectiontendsto scheduledifferentiterationsinto different
clustersThereforetheunroll factoris setto the numberof clusters Schedulingoneiterationin eachclus-
ter resultsin a numberof communicationgcormeeded) equalto the numberof dependenceat distance
greaterthanzero (andnot multiple of the unrolling factor) multiplied by the unrolling factoritself. Thus,
the cyclesneededo communicatehe values(cycneeded) canbe computedby dividing the total number
of cyclesneededor communicationgcomrmeeded * | at bus) by thenumberof buseqnbuses). If thisvalue
doesnotincreasedheinitiation interval of the unrolledloop (which canbe determinedvithout performing

the scheduling), then the loop is finally unrolled and the scheduling ofwhgraph is performed.

An exampleof the schedulingporocesdor aloop is shavn in Figure6.6. The resultinggraphhastwo
loop-carrieddependenceslhe table in Figure 6.6 shavs the schedulingprocessfor the graphwithout
unrolling. Supposehe architecturenastwo general-purpostinctionalunits per cluster eachinstructionis
1-¢ycle lateny andonebuswith one-gcle lateng. Theminimumll is computedas2 (ResMIl = [6/47 =
2,andRecMlIl = [3/27 = 2), andthusthe maximumnumberof communicationss 2. Thenodesaresched-
uledfollowing the computedbrder In thetable,tmp is thet mpout edges valuein our schedulingalgorithm
(seeSection5.1). We canseethatnodesD, B, A andc arescheduledn cluster0. However, nodeE andF
cannotbescheduledn this clusterbecausét is alreadyfull (thereareno freefunctionalunits).For nodek,
two communicationsare neededvaluesfrom A andc), andthereforethe communicatiomeededfor F
(value from D - value from A was previously brought) cannotbe allocated.Thereforethe Il hasto be
increasedo 3 in orderto find a feasibleschedulingOn the otherhand,looking at the unrolledgraph,the
minimum I is 4 in this caseandthus4 communication®f 1 cycle areavailable.However, following our
algorithmjust2 communicationsreneededfrom A’ to E andfrom A to E’), becausadlifferentiterationsare
scheduledn differentclustersin this caseunrolling hidesthe communicatiorateng (it would evenif the

lateny of the lus was 2 gcles) and the unrolled schedule in morfective.

6.3.4. Evaluation

In this sectionwe first shav the different clusteredVLIW configurationsevaluatedand list the set of
benchmarksisedto evaluatethe performanceof the schedulingalgorithm. Then, someperformancdig-
ures comparingunified and clusteredarchitecturesare shavn including timing considerationsFinally,

some results about the impact on code size of the unrolling technique\are sho

Instruction Scheduling for Clustered VLIW Architectures 107

e 1 0 1 @
| ® 1 © A NCIRCY RN EGERG
Q e Unroll x2 4
—> | E ©® | ®
© ' &
minll =2
minll = 4
CLUSTER 0 CLUSTER 1
Nodes CUSTER | neoum
tmp profit tmp profit
D 1 1 1 1 0 0 0
B 1 0 1 1 0 0 0
A 2 1 1 1 0 0 O
C 3 1 1 1 0 0]
E 0 0 1 2 0
F 0 0 1 3 O

Figure 6.6. Example of how to unroll a loop

Benchmarks and Configurations Ealuated

The schedulingalgorithmhasbeenevaluatedfor threedifferentconfigurationsof the VLIW architecture.

This configurations are sivo in Table 6.1.

RESOURCES Unified 2-cluster 4-cluster LATENCIES INT FP
INT / cluster 4 2 1 MEM 2 2
FP / cluster 4 2 1 ARITH 1 3

MEM / cluster 4 2 1 MUL 2 6

REGS / cluster 64 32 16 DIV/ISQR/TRG 6 18

Table 6.1. Clustered VLIW configurations and latencies

Thefirst configurationis calledUnifiedandit is composedf asingleclusterwith four functionalunits
of eachtype (integer, floatingpointandmemory)anda uniqueregisterfile of 64 general-purposeegisters.
This configuratiorrepresentsur baselineBoth the 2-clusterand4-clusterconfigurationdave theregister
file partitioned(into two andfour partitionsrespectiely). The former has2 functionalunits of eachtype

and32 registerper clusterandthe latter correspondso 1 functionalunit of eachtype andaregisterfile of

108 CHAPTER 6

16 registerspercluster(notethatboth,in total, are 12-way issue).For the clusteredconfigurationsve will

shaw results for diferent number oflises (1 or 2) and with dérent latencies (1, 2, or 4des).

For all configurationghe memoryhierarcly is sharedby all the clustersand considerederfect(i.e.,
always hits with minimum lateng). In the caseof consideringa real memory techniguego reducethe

impact of cache misses when modulo scheduling is applied should be used [90].

The modulo schedulingalgorithm hasbeenimplementedin the ICTINEO compiler [4] and all the
SPECfp9%henchmark$ave beenevaluated.The programswvererun until completionusingthe testinput
dataset.The performancdiguresshawn in this sectionreferto the moduloschedulingof innermostoops
with anumberof iterationsgreatethanfour. We have measuredhatcodeinsidesuchinnermostoopsrep-
resentabout95% of all the executedinstructions andthenthe statisticsfor innermostoopsarequite rep-

resentatie of the whole program.

I PC Performance Figures

Theresultsshowvn in this sectionshaw to the IPC (InstructionscommittedPerCycle) obtainedfor the uni-
fied and clusteredconfigurationsfor differentvaluesof the numberof busesandlateng. The IPC takes
into accountthe prolog, the kernelandthe epilog aswell asthe numberof iterationsandthe timeseach

loop is ecuted. Both non-unrolled and unrollegfsions of the loops areaduated.

ThelPC resultsfor all the SPECfp95programsaswell asaveragefiguresareshown in Figure6.7 and
Figure6.8. Graphson Figure 6.7 comparethe unifiedconfigurationwith the 2-cluster whereagyraphson
Figure 6.8 comparethe unified with the 4-clusterconfiguration.Eachgraphis divided into threesetsof

bars:

» No unolling: results when the loops are not unrolled.

* Unrolling: resultswhenall the loopsof the programhave beenunrolled.In the caseof the 2-cluster

configuration, the unrolictor is 2. In the case of the 4-cluster configuration #utof is 4.

« Selective uralling: results using the seleati unrolling algorithm presented in Section 6.3.3.

Eachoneof thesesetsif composeddf differentbars.White barsshav the IPC obtainedby the unified
configuration.Grey barsshav the IPC obtainedby the clusteredconfigurationwith just 1 bus. Finally,
black barsare the IPC achiezed with clusteredconfigurationsand 2 buses.For clusteredconfigurations,

different latencies for theuses hee been considered (L = 1, 2 orytiles).

Instruction Scheduling for Clustered VLIW Architectures

10 10 10

109

| Mhlﬂllllllﬂllllll
=
L=1L=2L=4 L=1L=2L=4 L=1L=2L=4 L=1L=2L=4 L=1L=2L=4 L=1L=2L=4 L=1L=2L=4 L=1L=2L=4 L=1L=2L=4
No unrolling Unrolling x2 Select unrolling No unrolling Unrolling x2 Select unrolling No unrolling Unrolling x2 Select unrolling
101. toncatv 102. swim 103. su2cor
10 10 10
| m“"lﬂllllllmlllll
o
T l=iL=2L=4 L=1Ll=2L=4 L=1L=2L=4 L=1L=2L=4 L=1Ll=2L=4 L=1Ll=2L=4 L=1Ll=2L=4 L=1L=2L=4 L=1Ll=2L=4
No unrolling Unrolling x2 Select unrolling Nounrolling Unrolling x2 Select unrolling Nounrolling Unrolling x2 Select unrolling
104. hydro2d 107.ngrid 110. appl u
10 10 10
84 84 8
6 6
o] O O
a8 o o
4+ 4
2,
0,

L=1L=2L=4 L=1L=2L=4 L=1L=2L=4 L=1L=2L=4 L=1L=2L=4 L=1L=2L=4 L=1L=2L=4 L=1L=2L=4

No unrolling Unrolling x2 Select unrolling No unrolling Unrolling x2 Select unrolling No unrolling Unrolling x2
125. turb3d 141. apsi 145. f pppp
10 10
8- 8
O Unified
= 1bus
= 2 buses

L=1l=2L=4
No unrolling

L=1L=2L=4
Unrolling x2

146. wave5

L=1l=2L=4
Select unrolling

L=1l=2L=4
No unrolling

L=1L=2L=4
Unrolling x2

AVERAGE

L=1L=2L=4
Select unrolling

(a) 2-cluster configuration

Figure 6.7. IPC results for all the SPECfp95 benchmarks and a 2-cluster configuration

L=1L=2L=4
Select unrolling

110 CHAPTER 6

10 10 10
8,
O O O
= | ‘IlI | ‘IlI = =
- L=1L=2L=4 L=1L=2L=4 L=1L=2L=4 L=1L=2L=4 L=1L=2L=4 L=1L=2L=4 L=1L=2L=4 L=1L=2L=4 L=1L=2L=4
No unrolling Unrolling x4 Select unrolling No unrolling Unrolling x4 Select unrolling No unrolling Unrolling x4 Select unrolling
101. toncatv 102. swi m 103. su2cor
10 10 10
8 8
6,
O O O
= g g
4,
L=1Ll=2L=4 L=1L=2L=4 L=1L=2L=4 L=1L=2L=4 L=1Ll=2L=4 L=1L=2L=4 L=1L=2L=4 L=1Ll=2L=4 L=1L=2L=4
Nounrolling Unrolling x4 Select unrolling Nounrolling Unrolling x4 Select unrolling Nounrolling Unrolling x4 Select unrolling
104. hydr o2d 107.norid 110. appl u
10 10 10
8 8 8
6 - 6 - 6
O O O
= = =
44 4 - 4
2 2
0- 0-
L=1l=2L=4 L=1l=2L=4 L=1l=2L=4 L=1Ll=2L=4 L=1l=2L=4 L=1l=2L=4 L=1L=2L=4 L=1l=2L=4 L=1L=2L=4
No unrolling Unrolling x4 Select unrolling No unrolling Unrolling x4 Select unrolling No unrolling Unrolling x4 Select unrolling
125. turb3d 141. apsi 145. f pppp
10 10
84 8
o 6| o 6+ o Unified
a o = 1bus
- - = 2 buses
L=1L=2L=4 L=1l=2L=4 L=1l=2L=4 L=1L=2L=4 L=1l=2L=4 L=1l=2L=4
No unrolling Unrolling x4 Select unrolling No unrolling Unrolling x4 Select unrolling
146. waveb AVERAGE

(b) 4-cluster configuration

Figure 6.8. IPC results for all the SPECfp95 benchmarks and a 4-cluster configuration

Instruction Scheduling for Clustered VLIW Architectures 111

Whenwe look at the first setof bars(No unrolling), we canseethat the IPC achieved by clustered
architecturegomparedvith the unified architecturedecreasewhenthe numberof busesdecreaseser the
buslateng increasesWe canseethatthis problemis overcomewhenloop unrollingis appliedto all loops
(Unralling). The performanceobtainedfor clusteredarchitecturess the same(or even better)for mostof
the programsand configurationgexceptfor t ontat v in the 4-clusterconfiguration).Note that whenall
loopsareunrolledour schedulingalgorithmis lesssensite to the numberof busesandtheir lateng. The
reasorwhy clusteredarchitectureperformbetterthanunifiedarchitecture$or someprogramsandconfig-
urationswhenall loopsareunrolledis dueto our schedulingalgorithm.Whenloop unrolling is applied the
differentiterationsof the loop arescheduledn differentclusters,usingtheir resourcegqually However,
in theunifiedarchitectureall theresourceareavailablewhenschedulinghefirst subgraptof theunrolled
loop. As the schedulingphasetries to scheduleoperationsas closeas possibleto their predecessorand
successorm orderto minimize registerpressurea very goodschedulings obtainedfor the subgraptof

the first iteration sometimes at thgense of the other iterations.

The resultsfor the selectve unrolling presentedn Section6.3.3 are shavn in the third setof bars
(Selective unrolling). We canseethatusingthis selectve unrolling algorithmthe performancebtainedis
very similar to the oneobtainedwhenall loopsareunrolled. However, aswe will seein Section6.4,the

code size is significantly reduced for this scheme.

Timing considerations

We have shawvn that the proposedschedulingalgorithmappliedto clusteredarchitectureschiezesabout
thesamelPC asthe unified configuration However, thereal benefitof clusteredarchitecturegomeswvhen

thecycletimeis consideredn thetotal performanceUsingthe delaymodelsproposedy Palacharld80],

2-cluster 4-cluster

Unified
1 bus 2 buses 1 bus 2 buses

1030.08 ps| 394.12ps | 420.52ps | 293.69ps | 311.24ps

Table 6.2. Cycle times according to Palacharla model

we shaw in Table6.2thecycletime (in picoseconddpr atechnologyof 0.18um) obtainedor thedifferent
configurationof the VLIW machineln eachcase we have assumedhatthe cycle time is determinedy
themaximumbetweerthe bypassdelayandthe accesdimeto theregisterfile. Theformerdepend®nthe
numberof functionalunits per cluster whereaghe later dependsn both the numberof ports(2RD/1WR

perfunctionalunits plus 1RD/1WRperbus)andthe numberof registersper cluster Usingthe numbersof

112 CHAPTER 6

a I NU B=1
%) = NU B=2

= SUB=1
& = SUB=2

2-cluster 4-cluster
AVERAGE

Figure 6.9. Speedup of clustered architectures with respect the unified one (bus latency=1 cycle)

this table,Figure 6.9 shavs the averagespeed-ummchiered by someclusteredconfigurationswith respect
to theunifiedone.In thisfigure,NU standsor No Unrolling, whereasSU meansSelectve Unrolling. For

both cases, there are results for one (B=1) andBa2) huses.

The main conclusionwe candraw from this figure is that all configurationssignificantly outperform
theunified configuratiorandthe bestperformances alwaysobtainedor the 4-clusterconfiguratiorwith 1
bus when the selectve unrolling algorithm is used,achieving an speed-upof 3.6 on averagefor the

SPECfp95.

Effect on Code Size

Althoughloop unrolling is beneficialfor moduloscheduledoopsin a clusteredvVLIW architecturecode
expansionin a major dravbackof this technique For thoseapplicationswherecodesizein a majorcon-
straint,loop unrolling canbring anothetkind of problemgfor instancewhencodedoesnotfit in themem-
ory of anembeddegrocessor)The selectve unrolling proposedn Section5.2 triesto unroll only those

loops for which the ois is the main performance bottleneck.

Thesizeof thecodein aVLIW is ameasuréardto obtainbecauseompressiotiechniquesrecom-
monly used.The compressedodesize dependn the numberof usefuloperationsthe numberof NOP
operationsaandhow they aredistributedin the code.However, this topic is beyondthe scopeof this paper

and therefore we shojust some measures in order to approximate the size of the code.

Theeffectof unrolling onthecodesizeis shavn in Figure6.1Q Thedifferentbarsin thegraphscorre-
spondto the samescenariosasin Figure6.7 andFigure6.8. The graphon theleft shavs theresultsfor the
2-clusterconfiguration whereaghe graphon the right is for the 4-clusterconfiguration.For eachgraph,

eachcolumnin normalizedo the sizeof the codefor the unified configurationandwithout unrolling (first

Instruction Scheduling for Clustered VLIW Architectures 113

2.0
Q 1 Q
N N
B o
[0} [0}
o ho]
8 8
B T
2 N
< ©
IS IS
<] <]
=z =z
L=1L=2L=4 L=1L=2L=4 L=1L=2L=4 L=1L=2L=4 L=1L=2L=4 L=1L=2L=4
No unralling Unrollingx2 Selectiveunrolling No unrolling Unrollingx4 Selectiveunrolling
AVERACE AVERAGE
(a) 2-cluster configuration (b) 4-cluster configuration

Figure 6.10.Impact of loop unrolling in the code size

bar). White barsrepresenthe amountof operationgaking into accountNOP operationsandblack bars

shaw just useful operations.

We can concludefrom this figure that when loops are not unrolled, the numberof NOP operations
tendsto increasevhenthe lateny increase®r the numberof busesdecreasesincethe Il augmentsThis
trend doesnot appearwhen unrolling is performed.We can seethat the selectve unrolling algorithm
decreasethetotal sizeof thecodein termsof bothusefulandNOP operationsThedecremenis betterfor

configurations with higher communication bandwidth (i.e.uges with 1-gcle lateng).

6.4. SCHEDULING FOR A FULLY-DISTRIBUTED ARCHITECTURE

In this sectionwe adaptthe BasicSchedulingAlgorithm (BSA) presentedh theprevioussectionto afully-

distributed clusteredVLIW architectureThe main characteristi®f this new architecturds that, in addi-
tion to the functionalunitsandtheregisterfile, the L1 cacheis alsopartitionedamongthe clusters Dueto
the resemblancef this novel architecturewith a multiprocessaqrwe call this architectureas MultiVLIW-
Processor. We first shav the main featuresof this new organization.Afterwards,we shov a motivating
examplethatdemonstratethe utility of incorporatinga datalocality analysisin the schedulerFinally, the

scheduling algorithm and performance results are presented.

6.4.1. Architecture

Our basearchitecturgseeFigure6.11)is composedf seseral clusters eachoneexecutinga fixed part of
eachVLIW instruction.All clusterswork in lockstepmode,i.e.,ary stallin oneclusteralsostallstheother
clusters.Every cycle, all clustersfetch their correspondingpartsof a new VLIW instructionfrom their
local instructioncaches Eachclusterconsistsof several functional units, a register file anda local data

cachememoryin additionto the local instructioncache Functionalunits canbe of threedifferenttypes:

114 CHAPTER 6

Register buses INSTR. CACHE
WU H REGISTER FILE
CLUSTER | [CLUSTER . CLUSTER
rir - () | R
Memory buses 1 DATA CACHE
? 4
MAIN MEMORY

Figure 6.11. Microarchitectures of a MultiVLIWProcessor

integerarithmetic,floating-pointarithmeticor memoryaccesskFor the sale of simplicity, we considerthat
all clustersarehomogeneou§i.e., with the samenumberandtype of functionalunits), but the proposed
techniquesanbegeneralizedor heterogeneoudusters.Theformatof the VLIW instructionandthe data

paths are the same as in Figure 6.1 and Figure 6.2.

Regardingmemoryaccessesa load/storeissuedby a clusterfirst triesits local L1 datacache.lf the
datais found, the accesss satisfiedwith minimum lateng. Otherwise the cacheof the otherclustersare
searcheabr, finally, the accesss solved by the main memory Both local memoriesandmain memoryare
interconnectethroughoneor severalbusegthatarecalledmemory buses). As the cacheis physically par-
titioned amongthe clusters,coherenceamongthe local cachesandthe main memoryhasto be kept. For
this reasona snoofy MSI protocol[13] hasbeenassumedThis protocolis completelytransparento the
ISA, andfurther, boththe coherencandthe busarbitrationaremanagedy the hardware.Whenamemory
accessnissesn its local cachethemissrequesis queuedn alocal MSHR (Miss information/Status Han-
dling Register) structure sincethe L1 datacaches non-blocking[60]. Then,theacces$iasto competeor

a free memory s in order to access a remote cache or the main memory

All thedependencewith memoryoperationsaredynamicallychecled, sincethe schedulemay have
considere@noptimisticlateng for theseinstructiongi.e., hit in thelocal cache)lf ary dependencis not

met, the dependent instruction stalls in all clusters until the hazard isegsolv

Instruction Scheduling for Clustered VLIW Architectures 115

6.4.2. Motivation

The two main parametershat statically characterizea modulo scheduledoop arethe initiation interval
(I1) andthe stage count (SC),andfor aclusteredVLIW architecturéboth of themcanbe affectedby inter-
clusterregistercommunicationskor this section which focuseson moduloschedulingior multiVLIWpro-
cessors, the numberof cycles neededto executea particular modulo scheduledoop can be modeled

through the follaving expression (as pwously seen in Chapter 5):
NCYCLErota= NCYCLEcompute™ NCYCLEsq

Where NCYCLE¢compute representsa fixed numberof cycles that dependson the particular static
schedulingproducedoy the compiler During thesecyclesthe processoris doing useful(or at leastsched-
uled) work. NCYCLEg;, representshe numberof cycleswherethe processors stalledanddependson
several factorsaswe detail below. The value of NCYCLEc,mp eCanbe computedoeforeexecutingthe
loop if thenumberof timestheloopis executed NTIMES) andthe numberof iterationsof eachexecution

(NITER) are knan, as shan by the ngt expression:
NCYCLEcompute= NTIMES * ((NITER + SC -1) * II)

Thevalueof NCYCLEg, cannotbe computedstatically It representshe numberof stall cyclesdue
to incompleteinformationmanagedy the compiler For instancesomememoryinstructionlatenciesnay
be unknavn sincethe compilerdoesnot know whetherthey will hit in thefirst level cache.lf the value
loadedby a memoryinstructionfeedsanotheroperation(i.e., thelatterdependsn the former) but the lat-
terwasscheduledusinganunderestimatiomf the memorylatengy, it will stall until the memoryaccesss
finished.In theassumednicroarchitecturethefinal lateny of amemoryinstructiondepend®n threefac-

tors:
* Lateny of memoryaccessesyhichdepend®nthememorylevel thatsatisfiegheaccesstocalcache,
remote cache or main memory

» Numberof entriesin theMSHR of thelockup-freecacheslf thereis noavailableentryfor anew miss

request, the instruction stalls until there is a free entry

* Cycles vaiting for a free bs and bs lateny.

Thus,consideringall of thesefactors the total lateny of a memoryaccessanberepresentety this

formula:

LATmemaccess™ LATcache™ MISS ¢ * (NCuwaitingEntry t NCwaitingBust LATMemorysust MaxX(LATcache: MISSre* LAT MainMemory))

116 CHAPTER 6

CLUSTER 1 CLUSTER 2

DOl =1, N, 2
A(l) =@IY*C(l) + ARITH | MEM ARITH | MEM
(B(1+1)* (1 +1) 0] " | oiy 1| D3y
ENDDO N\ (@) 1 LDz LD4
‘2 | ST

1=3,SC=4

CECICED
ONRO
© (b)
(D ©

Figure 6.12.Motivating example

CLUSTER 1 CLUSTER 2

ARITH | MEM
LD1y

ARITH | MEM

el
| D2
STy
o | L4

LD3y)

wlhd|=|o

WherebothMISS, - andMISSg¢ represenbinaryvaluesthatarel if theaccessnissesn local cache
andall remotecachesrespectiely, or 0 otherwise.NCyyitingentry r€Presentshe numberof cyclesthata
missaccesss waiting for anavailableentryin the MSHR. NCyy,jtingausiS the numberof cyclesthatthe
accesss waiting for afree bus. Note thata buscanbe alsobusyfor coherenceperationsaandthisis taken
into accountby our simulator Finally, althoughwe have considered AT ainmemory @sa fixed parameter
in the above expressiomotethatfor somereferenceshis numbercould be smallerif anearliermisshas

already started loading the redamt cache line. Thisatt has also been accounted for by our simulator

Motivating Examplefor the Proposed Scheduler

The objective of this studyis twofold: first, demonstrat¢hatwhenthe datacaches partitionedamongthe
differentclusterstheselectionof the clusterwhereeachmemoryinstructionis scheduleds very important
andcandramaticallyaffect the final performancef a program(the sameholdsfor registervalues but this
hasalreadybeenshavn in Section6.3). Secondwe proposea modulo scheduletthat takesinto account

both regyister and memory intarluster communications.

In this section,we illustratethroughan examplehow the clusterselectioncanaffect the total number
of cyclesin which a codesectionis executed.Considerthatwe wantto performmoduloschedulingof a
loopwhosecodeanddependencgraphareshavnin Figure6.12.Assumethe processoconsistof 2 clus-
ters,eachonewith its local registerfile and datacache(direct-mapped)and 2 functional units: one for
arithmeticoperationgwith 2-cycle latengy) andonefor memoryoperationsThereis oneinter-registerbus
with a2-cycle lateng. Thelatenciefor memoryaccesseare:2 cyclesfor alocal cache2 cyclesfor abus

transaction and 10ycles for an access to main memory

Instruction Scheduling for Clustered VLIW Architectures 117

For thisloop,theminimuminitiation interval (mll) for anequivalentunifiedarchitecturevith thesame
resourcess 3 cycles.The partition andschedulinghat minimizesthe numberof registercommunications
betweerclustersand,thus,thatachievesthe samell asthe equivalentunifiedarchitecturds shavn in Fig-
ure 6.12(a).In this figure, the left part representghe partition of the operationsbetweenthe clusters
whereagheright part shavs the moduloresenration table obtainedafter moduloschedulingEachopera-
tion is scheduledn a particularslotandthenumberin bracletsrepresentshe stageat which this operation
is scheduledThe usageof the registerbusis alsoshown in this table.Wheneer a bus transactiontakes

place, the correspondingidtime slot is reseed and it is indicated by@in the reseration table.
Then, the NCYCLIgompyteOf the resulting loop can be computed as:
NCYCLEcompute(a™ NTIMES * (N + 4 -1) * 3) = NTIMES * (N + 3) * 3

However, supposéhatbotharraysB andC arelocatedin memoryata distancehatis a multiple of the
local cachememorysize. This meansthatwe will have ping-ponginterference$etweenLD1 andLD2,
andbetweerLD3 andLD4. Thus,the spatiallocality exhibited by the four instructionscannotbe exploited
andthe four accessealways miss. The resultis that the instruction(s)that consumehe memoryvalues
suffer mary stalls.In theexample,the VLIW instructionthatcontainsthe multiplicationscannotcontinue
its executionuntil the missesaresatisfied Assumingthatwe have sufficient memorybusesthe numberof
cyclesthattheinstructionstallsis thelateng of abustransactiorplusanacces$o mainmemory sincethe

lateng to the local cache &g talen into account by the schedul€hen, the number of stajdes is:
NCYCLEgta)i(@y= NTIMES * N * (2+10) = NTIMES * N * 12

An alternatve schedulingis shavn in Figure 6.12(b). Basedon the locality propertiespreviously
obsenred,in this secondalternatve clusterassignmenis selectedn orderto take advantageof thelocality
exhibitedby memoryinstructions For thisreason.D1 andLD3 arescheduledn thesameclusterin order
to benefitfrom its groupreuse ,andthe sameappliesfor LD2 andLD4 which arescheduledn the other
cluster In this way, ping-ponginterferenceareremoved andwe cantake advantageof the spatialreuse.
However, aswe canseein the example,for this casetwo communicationdetweenregister valuesare
needecperiteration,andthenthell hasto beincreasedrom 3 to 4. Thus,NCYCLEcqmpytels computed

as:

NCYCLEcomputen= NTIMES * (N + 3 - 1) * 4) = NTIMES * (N + 2) * 4

118 CHAPTER 6

However, the missrateof LD3 andLD4 is 25% (assumingeight dataelementger cacheblock), and

LD1 and LD2 alvays hit (excepting the first iteration). Thus, the number of stales is:
NCYCLEgz)ip)= NTIMES * N * (2%(2+10)* 0.25) = NTIMES * N * 6
Then, putting all togethewe hae that the total number ofces in both stratges as:
NCYCLEroaiay= NTIMES * (15 * N + 9)
NCYCLEroaipy= NTIMES * (10 * N + 8)

Therefore we canconcludethatthe secondstratey, which takesinto accountothregisterandmem-
ory communicationsachierzesa schedulghatis 1.5timesfasterthanthe original one,which is optimized

only for register communications.

6.4.3. Scheduling Algorithm

In this sectionwe presenta moduloschedulethattriesto minimize bothregisterandmemoryinter-cluster
communicationgndat the sametime balancethe workload.We will comparethe performancef the pro-
posedalgorithmwith the resultsobtainedfor the Basic Scheduling Algorithm (BSA), which ignoresthe

effect of cache misses.

The new algorithmmakesuseof a datalocality analysiswhenperformtheinstructionschedulingSo
that, we usethe CME asproposedn Chapter2 to estimatethe amountof reusethatis exploited by ary
subsebf memoryinstructions CME will allow the scheduleto estimateéheamountof memorycommuni-
cationsamongclustersor betweerclustersandmainmemory The scheduleuseshisinformationto guide
its schedulingdecisionsFor instancegivenamemoryinstruction,it is beneficialto schedulet in acluster
wheretherealreadyareotherinstructionsfrom which it reusesdata(groupreuse).On the otherhand,it is
detrimentalto schedulethe instructionin a clusterwheretherealreadyare other instructionsthat cause
mary cacheconflictswith the currentone. CME allow the scheduleo quantify the amountof reuseand
conflictsamongary groupof instructionsof the sameloop nest. CME are usedto producethe following

statistics:

» The numberof missesincurredby a setof memoryreferencedor a particularcacheconfiguration

(capacity block size and assochatly)

» The miss ratio of a particular memory instruction in this set.

Instruction Scheduling for Clustered VLIW Architectures 119

Best profit
in cache misses

Minimize
register regs.

Schedule it

A 4
Select possible
Sort nodes @ Nextnode P ™ iisters

Figure 6.13. RMCA modulo scheduling step by step

Best profit
in output edges

Scheduler for a Distributed Cache

The proposedhlgorithmis calledRMCA (which standsfor Register and Memory Communication-Aware)
moduloschedulinglt is anevolution of the BSA algorithmpresentedn Section6.3.2andits main steps
aredepictedn Figure6.13(new featuresareshawn in grayboxes).All nodesn thedatadependencgraph
arefirst sortedaccordingto the criteriausedby the BSA algorithm. This orderingminimizesthe numberof
nodeghathave bothpredecessom@ndsuccessorm thesetof nodeghatprecedat in theorder Then,clus-
ter selectionandschedulings performedn asinglestepfollowing thatorder However, thereis now adis-
tinction betweentwo types of nodes:(a) memory operations,and (b) non-memoryoperations.For
operation®f thelattergroup,thealgorithmproceedsasthe BSA schemeHowever, whena memoryoper-
ationis scheduleda differentstrateyy is used.Insteadof choosingthe clusterwherethe gain from output
registeredgess maximized the clusterselectiondepend®n the profit from cachemissesin otherwords,
eachtime a memoryoperationis scheduledall clustersaretried, andfor eachone,the numberof cache
missescontritutedby memoryoperationscheduledn thatcluster beforeandafterintroducingthecurrent
operation,is computedthroughthe CME. Then,the cluster(s)wherethis gain is maximizedis chosenlf
morethanoneclusteris optimalwith respecto cachemissesthe scheduleselectsone of themusingthe
samestratgy as for non-memoryoperations.Although the solver of the CME have to be repeatedly
invoked,the methodis very fastdueto the optimizationsamentionedn Chapter2., andthetime requiredby

the scheduler is a small percentage of the total compilation time.

This algorithmtries to minimize the numberof cachemisses,andthusit attemptsto minimize the
inter-clustermemorycommunicationsHowever, the lateny of thesecommunicationcan be hiddenby
schedulingsomeloadinstructionsusingthe cache-mis$ateny (binding prefetchingasproposedn Chap-
ter5). Whenaloadis scheduledisingthe cache-mis$ateng, the operatiorthatconsumeshe datareadby

theloadwill not be stalledbecausét is schedulecassuminghe worst-casdateng. However, scheduling

120 CHAPTER 6

instructions using a larger latency can have a negative effect on both register pressure and length of the
schedule. On one hand, the lifetime of the load destination register is increased. On the other hand, the I
can beincreased if thisinstruction belongsto a recurrence and this increased latency makes the recurrence
the most restrictive constraint on the Il. Besides, the length of the schedule for a single iteration may
increase, which may cause an increase in the SC, which in turn affects the durations of the prolog and epi-
log. Therefore, as shown in Section 6.4.2, it may be much more effective to schedule with a miss latency
only those loads that are likely to miss. This can be done aslong as the latency does not increase the |1 with
respect to the schedule produced when loads are scheduled with a hit latency. Thus, the proposed scheme
includes another step: once the target cluster of an instruction is determined, it is scheduled using the
cache-miss latency if the miss ratio of this instruction in this particular cluster (considering the partial
schedule produced so far) is greater than a certain threshold, and provided that this latency does not
increase the 1l if the operation is in a recurrence. The assumed miss latency is the time to access main
memory, that is, LATcaghe + LATvemorygus + LATmainvemory (NOtE that we do not consider the memory bus con-

tention since it is not known at this moment, although it could be estimated).

Note that with this scheme some memory instructions are scheduled with the miss latency even if their
miss ratio is lower than 100%. This may happen for instance for instructions with spatial locality. In this
case, loop unrolling could be used to generate multiple instances of the same instruction such that one of
them always miss and the other aways hit (as shown in Chapter 5). However, we have not considered this

optimization in this paper.

6.4.4. Evaluation

This section analyzes the performance of the proposed scheduler. The main performance metric that we
use is the number of cycles executing instructions of modulo scheduled loops. Note that this metric does
not include the effect of clustering on the cycle time, thus, differences observed for different schedulers
and the same architecture directly trandate into differences in execution time. However, the number of
cyclesfor different architectures should be divided by cycle time to measure differences in execution time.
Since we are concerned with differences among alternative schedulers, we prefer not to include the effect
of cycle time in our metric, to isolate the effect of the schedulers. A study of the impact of clustering on
cycle time can be found elsewhere [80] as well as on energy consumption [113], which is another impor-

tant factor that can be reduced through clustering.

Instruction Scheduling for Clustered VLIW Architectures 121

Configurations and Benchmarks

The schedulingalgorithmhasbeenevaluatedfor threedifferentconfigurationof the multivVLIWpiocessor
architectureTheseconfigurationsareshavn in Table6.3. Thefirst configurationis calledUnifiedandit is
composedf a single clusterwith four functionalunits of eachtype (integer, floating point andmemory)

and a unique master file of 64 general-purposeyigters. This configuration represents our baseline.

RESOURCES Unified 2-cluster 4-cluster LATENCIES INT FP
INT / cluster 4 2 1 MEM 2 2
FP / cluster 4 2 1 ARITH 1 3

MEM / cluster 4 2 1 MUL 2 6

REGS / cluster 64 32 16 DIV/ISQR/TRG 6 18

Table 6.3. Clustered VLIW configurations and latencies

Both the 2-clusterand4-clusterconfigurationshave theregisterfile partitioned(into two andfour par-
titionsrespectiely). Theformerhas2 functionalunits of eachtypeand32 registerperclusterandthelatter
includesl functionalunit of eachtype anda registerfile of 16 registersper cluster The threeconfigura-

tions are 12-ay issue.

For all configurationsthe total L1 cachesizeis 8KB, divided into equal-sizesamongthe different
clusters. This cache capacity is realistic for embedded/DSPprocessors.For instance, the TI
TMS320C6711hasan L1 datacacheof 4Kbytes[101]. In our architecturegachlocal cacheis direct-
mapped hon-blockingwith 10 entriesin the MSHR. An accesgo a local cacheis satisfiedin 2 cycles,
whereasnaccesso mainmemorytakes10 cycles.For theclusteredconfigurationsve will presentesults

for different number and latepof both rgister and memoryuses.

The modulo schedulingalgorithm has beenimplementedin the ICTINEO compiler [4] and some
SPECfp95benchmarkdave beenevaluated:tomcaty swim su2cor hydmo2d, mgrid, applu turb3d and
apsi Notethatmoduloschedulings aneffective techniquefor bothnumericandmultimediaapplications,
but it is not so effective for applicationssuchasSPECint95dueto the smallnumberof iterationsfor each

loop eecution and the aimdance of conditionals.

The performancdiguresshavn in this sectionreferto the moduloschedulingof innermostoopswith
a numberof iterationsgreaterthanfour. Our measuremerghavs that codeinside suchinnermostioops
representabout90% of all the executedinstructions,so that the statisticsfor innermostloops are quite

representagie of the whole program.Only instructionsthat belongto modulo scheduledoopsaretaken

122 CHAPTER 6

into accounty the simulator Thus,the programswererun until thefirst 100 million memoryinstructions

in these loops using the ref input data set.

An Unbounded Number of Buses

Beforeconsideringealisticconfigurationswe have evaluatedan architecturenith anunboundedhumber
of busesto testthe performancef the proposedalgorithmunderextremesituationswherebus bandwidth
in notaproblem.Theremainingparametersf thearchitecturearethoselistedin Table6.3andthelateny
of the busesis parametrizedFigure 6.14 shavs the normalizednumberof cyclesaveragedor all bench-
marks,for 2 and4 clustersandthe differentlatenciesconsideredThe first setof four barsrepresentshe
resultsfor the unified configuration Therestrepresentheresultsfor the clusteredconfiguratiorfor differ-
entlatenciesof registerbuses(LRB - Latency of Register Buses) andmemorybuses(LMB - Latency of

Memory Buses). For the diferent sets, we a evaluated tw different schedulers:

» TheBSA scheduledescribedn Section6.3.2,whichis very effective at minimizing registercommu-

nications.

» The proposedilgorithm,thattakesinto accountothregisterandmemorycommunicationsyhichis

labeled aRRMCA.

Eachsetof four barsrepresentshe resultsobtainedfor differentvaluesof the cachemissthreshold
(from 1.00to 0.00)thatdeterminesvhetheraloadis attemptedo be scheduledvith a misslatengy. Note
thatthresholdl.00representshe traditionalschemethatis, usingalwaysthe cache-hitlateng for mem-
ory operationsOn the otherhand,threshold0.00is mostsimilar to the one proposedn Chapters, where
all operationghatdo not causeanincrementn thell (dueto recurrencesarescheduledisingthe cache-
misslateng. The only differenceis the locality analysisemployed, which is morepowerful in this paper
Eachbaris split into two parts:the computetime (or NCYCLEc,mpud IS the black/grgy part, whereasthe

stall time (OMNCYCLEg,) is the white one.

Fromthesegraphswe canseethatfor all configurationgnumberof clusters)atenciesandthresholds)
the schemdhattakesinto accountmemorycommunicatior(RMCA) outperformghe onethatignoresthis
feature(BSA). As expected for smallervaluesof the thresholdthe computetime increasegsinceit may
increaseboththell dueto registerrequirementsandthe SCdueto anincreasdn thelengthof the sched-
ule) but the stalltime decreaseNote thatwith athresholdof 0.00the stall time is almostzerofor all con-
figurationsandthe numberof cyclesfor the multiVLIWprocessor are comparablgo thoseof the unified
configurationWe canalsoobsene thatfor smallthresholdg0.250r 0.00) both BSA andRMCA stratgjies

123

Instruction Scheduling for Clustered VLIW Architectures

000 3@
Gcom
s/0m
00T m

000 B
scom
s/om
00T m

(sxyrewyouaq |je 1o} pabelaAr) sasng Jo JaguiNu papunogun ue Joj paurelqo s)nsay ‘#1°9 ainbi4

BBNnpP- (q)
uolrelnblyuo)d sng
14 Z T =gy
14 Z T 14 Z T 14 Z T =dn1
VONY VS99 VONY VsS4 VYONd VsS4 VYONY VsS4 YONY VvSd YONd VvSd VONY VS9 VONY VS4 VYONY VsS4 payjiun 00
7 7 7 7 ~S0
o = C = - = = u = O 3
: 200000 . 1
0 e N
FGT
—07¢
BBnp-z (e)
uonreinbiyuo)d sng
14 Z T = g4
14 Z T 14 Z T 14 Z T =dN1
VYOWNY VvSd VYONY VvSd VYONY VvSd VYONY VsS4 VYONY VvSd VYONY VsS4 VYONY VvSd VOWNY VvSd VYONY VvSd payiun 00
-GS0
O O =—] = H o= = H 0T
FGT
—-07¢

$9]9AD JO JaquINN pazifew.ioN

$9194D JO JBqUINN PaZI[eWION

124 CHAPTER 6

achieve similar performancesincethe lateng of cachemissesis hiddenby schedulingloadswith the
cache-misdateng, exceptfor the 4-clusterconfigurationand memorybus latengy of 4 cycles.Neverthe-
less,notethatfor an unboundedhumberof busesthe time waiting for a free bus (NCyitingsud IS z€ro,and
hencejf thelateng is hidden,thenumberof misseshasno effect. However, aswe will seein next section,
whenthe numberof memorybusesis limited, the differencebetweerboth schemeswill be notable since

the schedules produced by RIACA scheme require much less communications.

Evaluation of Realistic Configurations

We have shavn the potentialbenefitsthat can be achieved when memorycommunicatiorare taken into
accountby the schedulerln this sectionwe studythe resultswhena realisticinter-clustercommunication

network is considered.

We have evaluatedconfigurationswith a fixed numberandlatengy of registerbuses(2 buseswith 1-
cycle lateny) andfor a differentnumberand lateny of memorybuses.In Figure 6.15 we can seethe
resultsfor both2 and4 clusters Eachsetof four barshasthe samemeaningasin the previoussection.The
first setrepresentsheresultsfor the unified configuration.The restarethe averagedesultsfor the differ-
entstratgies(BSA andRMCA) for 1 and2 buseS(NMB - Number of Memory Buses) and1 and4 cyclesof
lateny (LMB - Latency of Memory Buses). We can obsere in thesegraphsthat, asin the unbounded
study the RMCA stratgyy outperformghe BSA for all configurationsHowever now, for smallvaluesof the
thresholdthe differencebetweenboth stratgiesis moreremarkablemainly for 4 clusters.For the most
effective threshold(0.00),the RMCA schemeoutperformghe baselinescheduleby about5% for 2 clus-
tersand20%for 4 clustersWe have obsenred thatthe reasorfor this differenceis the time spentwaiting
for anavailablebusin orderto initiate acommunicationWhenthe numberof memorybusess unbounded
thisvalueis zero,becausé¢hereis alwaysanavailablebus.However, whenthe numberof busess limited,
reducingthe numberof missesis alsoimportantsincelesserthe numberlocal cachemissesJesserthe

number of accesses competing for a freg time slot.

6.5. CHAPTER SUMMAR Y

We have presentedneffective approacho performmoduloschedulingor a clusteredVLIW architecture.
We have first proposecan algorithmorientedto reduceinter-clusterregistercommunicationsT he perfor-
manceof the proposedtechniquecomesfrom using a single stepto perform cluster assignmentand
instructionschedulingaswell asfrom the useof a selectve loop unrolling. We have shavn thattheresult-

ing algorithmis very effective for a variety of configurationswith differentcommunicationlateny and

Instruction Scheduling for Clustered VLIW Architectures 125

2.0
m]
8]
5]
s} 1.5—_
@ 1 m 1.00
g 1.0 i .—. an |_||_ |_||_| an |_|r| |_||_||_| | 0.75
2] m 0.25
- 1 @ 0.00
(7] 4
N]
® _
£ 05 1
] 4
Z -
Unified BSA RMCA BSA RMCA BSA RMCA BSA RMCA
LMB = 1 4
NMB = 1 2
Bus Configuration
(a) 2-cluster
2.0 - o I
m |
é]
o |
Is) 1.5—_
kS]
@ 1 m 1.00
< 10.] M m0.75
2] m 0.25
z @ 0.00
(9]
N
©
£
o
z
Unified BSA RMCA BSA RMCA BSA RMCA BSA RMCA_
LMB = 4
NMB = 1 2

Bus Configuration

(b) 4-cluster

Figure 6.15. Results obtained when the number of buses is limited (averaged for all benchmarks)

bandwidth Besidesthe selectve unrolling policy minimizestheimpactof unrolling onthe codesize.Per-
formanceevaluationfor the SPECfp95shaws thatthe IPC of the clusteredarchitecturds not degradedin

comparisonwith a unified architecturewith the sameresourcesMoreover, whenthe cycle time of each
architectures consideredye have shovn thata 4-clusterarchitecturds on average3.6 timesfasterthana

unified configuration.

In thesecondpartof the chaptemwe have proposeda novel microarchitecturealledmulti VLIWproces-
sor, which hasafully-distributedclusteredVLIW organization.The mainnovelty of this architecturawith
respectto previous proposalsfor clusteredVLIW processorss the distributed datacache,which intro-
ducesnew challengego the instructionschedulerThen,we have presentec moduloscheduledesigned

for this particulararchitecturébasedn the previous schedulerThe new schedulerby meansof a powerful

126 CHAPTER 6

locality analysis based on the Cache Miss Equations and an analysis of the register data dependence graph,
generates codes with very low inter-cluster communication requirements. We have also shown that the pro-

posed scheduler outperforms previous schemes that just focused on register communications.

v

CONCLUSIONS AND FUTURE WORK

This chapter presentsthe main conclusions and the open resear ch lines of thiswork.

128 CHAPTER 7

7.1. CONCLUSIONS

In this thesiswe have presentedhreenovel techniquedo improve the performancef thefirst level cache
that stronglyrely on a powerful locality analysis A mainfeatureof the proposedechniquess thatmake
useof somehintsin theinstructionghatarestaticallysetby the compilerusinganextra passhatperforms

the locality analysis.

In Chapter2 we have presentedhe two datalocality analyzerghathave beenusedin this thesis.The
first one,called SPLAT, hasbeendevelopedin this work. The analysisis divided into two steps.Thefirst
onecollectsstaticinformation(suchasthe reusevectorsor theloop nestorganization)andprofiling infor-
mation (thougha simple profiler of basicblocks). This informationis the input of the secondstep,thatis
composedf threephasesreuse volumeandinterference The reuseandvolume phasesare commonin
othertechniquegroposedofar, howevertheinterferencephasess anovel contritution. We have checled
theaccurayg of SPLAT by comparingts resultswith the outputof a cachesimulator We have seerthatthe
tool is very accuratdor the programsstudied.However, the mainadwantagewith respecthe simulatorsis
thatit is muchfaster(it takes several secondgor most SPECfp95)andthe locality informationthat can

collect is \ery diverse. This mads the tool gry flexible but also fist and precise.

The secondocality analysisusedin this thesisis the FastCME,developedby otherauthors This ana-
lyzer usesmathematicahndstatisticaltechniquego solve the CacheMiss EquationsThe resultis a tool
which is alsofast, flexible and even more accuratethanthe SPLAT. A main advantagewith respectto

SPLAT is thatwith FastCMEwe cananalyzethelocality behaior of a programfor set-associate caches.

In Chapter3 we have presentedomedifferentlocality statisticsobtainedusing SPLAT. Thesestatis-
tics rangefrom the study of the intrinsic reuseof an application,to the isolation of differentcritical sec-
tions of a codethat are responsiblefor the majority of cachemisses.The main conclusionsthat are
extractedfrom this chapterarethatdifferentprogramsresentwery differentreuse whereasn somecases
thetemporalreuses predominantin someothercasess the spatialor bothtogetherMoreover, thisis also
truefor individual instructionsor for codesectionsThe reasorof why cachemissesoccursalsovariesin
singlememoryinstructionsjoopsor thewhole program.In somecaseshereis a predominankind of miss
(compulsorycapacityor conflict) whereasn someothercaseghereis a mixture of two or thethreetypes.
This study hasmotivatedoptimizationstargetedto the particularfeaturesof eachmemoryinstruction.In
this analysiswe have alsoshavn thatthe only-temporalreuseandonly-spatialreuseare very commonin
somecaseswhich hasmotivatedthe cacheorganizationproposedn Chapter4. Summarizingthe most

importantconclusiondravn from this chaptetis thatlocality behaior of memoryinstructionsis statically

Conclusions and Future Work 129

predictablefor the studiedprogramsandthenthis informationcanbe usedto performa smartermanage-

ment of the cache.

In Chapter4 we have usedthelocality analysigo staticallysethintsin memoryinstructionso manage
the Selectve Data Cache.This cacheallows somereferencego bypassthe cachein caseof a miss.We
have adaptedhe SPLAT to seta bit in eachmemoryinstructionto selectwhetherit bypasseshe cacheor
not. Resultsshav improvementsn missratio (sincemary interferencesreeliminated)andtraffic with the
next level of the memoryhierarcly. Theeffectivenesof thelocality analysiso managdhe Selectve Data
Cacheandthe statisticsobtainedn Chapter3 have motivatedthe proposed_.SMCache(Locality Sensitve
Multimodule Cache).This cacheis composef threemodules:oneconfiguredto exploit temporalreuse,
oneconfiguredo exploit spatialreuseandathird oneorientedto exploit bothtypesof locality. In this case,
the compileris responsibldo setthe hints in memoryinstructionsthat indicate,on a miss,wherea new
block hasto be stored.Resultshave shavn the effectivenesof this architecturecomparedvith a corven-
tional cachewith equivalentcapacitythe performances muchbetter Moreover, if thespatialcaches con-
figuredwith longerlines, the missratio obtainedis nearthe missratio of a 64KB fully-associatve cache
(usedasalowerbound).For this modulewe have alsostudiedthe effectivenesf includingasimplehard-
ware prefetchingmechanismWe have evaluateddifferent alternatves and the conclusionis that adding
one-blocklookaheadprefetchingto the LSMCachethe performancas much betterthan the miss ratio
obtainedfor the 64KB fully-associatve cache This studyhasshowvn thatdealingeachmemoryinstruction

in the most covenient vay depending on its locality can significantly imydhe performance.

In Chapter5 we have studiedthe interactionbetweensoftware pipelining and software prefetching.
Whereaghe maingoal of softwarepipeliningis to increasaheILP in aloop, software prefetchingis ori-
entedto hidememorylateng. We have shavn thatmoduloschedulingschemesisingcache-hitateng for
loadsproducemary stallsdueto dependencesith memoryinstructions For a simplearchitecturehe stall
time representabout32% of the executiontime and63% for an aggressie architectureThis meanthat
moduloschedulershatignorethe effect of stallsdueto cachemissescanobtainresultsfar awvay from the
idealexecutiontime. Then,we have comparedwo differentapproacheto introducesoftwareprefetching:
one basedon early schedulingof memoryinstructions(also called binding prefetching)and anotherthat
insertsprefetchinstructions(alsocallednon-bindingprefetching) Both of themsignificantlyimprove the
performancebut they cancausesignificantpenaltiesin somecaseslin average,schemedasedon early
schedulingproducebetterresults.For this reasonwe have proposedan heuristic schedulingalgorithm
(calledCSMS- CacheSensitve Modulo Scheduling)whichis basedn early schedulingandtriesto min-

imize both the computeandthe stall time. The proposedalgorithm schedulessomememoryoperations

130 CHAPTER 7

usingthe cache-misgateny usinginformationaboutthe shapeof the dependencgraphandinformation
aboutthelocality of eachmemoryinstructionobtainedwith the SPLAT. Theresultshave shavn thatit out-
performstherestof stratgies.Comparedvith a baselineschemewhich schedulesll memoryoperations
usingthe cache-hitateng, the producedcodeis 1.6 timesfasterfor a simplearchitectureand2.5 for an

aggressie architecture.

Finally, Chapter6 is focusedon the scheduleof instructionsin clusteredvVLIW architectureandin
particularin scheme®asedn moduloschedulingFirst we have studiedhow to performmoduloschedul-
ing in asemi-distrilutedclusteredarchitectureThe clustersin this architecturecontainalocal registerfile
and functional units, but the cache(and memoryhierarcly in general)is sharedby all the clusters.The
basicideahasbeento proposea goodalgorithmto reducecommunication@mongregisterfiles. We have
proposedanalgorithmwhosemain differencewith previousworksis thatboththe clusterassignmenand
instructionschedulingareperformednto a singlestepinsteadof two sequentiakteps We have shavn that
this methodologyimproves performance Moreover, for loops wherethe performances constrainecby
communicationgmongclusterswe have studiedthe effect of loop unrolling. We have seerthatincluding
a selectve loop unrolling in the algorithmis straightforvard and very effective. Then,we have studied
someheuristicsto schedulenstructionsin fully-distributed clusteredarchitecturesThe basicdifference
with previousarchitecturas thatnow the caches alsodistributedamongthe differentclustersUsingasa
basethe previous schedulingalgorithmandthe informationgivenby the FastCMEtool, we have proposed
an schemgcalledRMCA - Regjisterand Memory CommunicationAware moduloscheduling)hattakes
into accountothinter-clusterregisterandmemorycommunicationsResultshave shavn thatthe selection

of the cluster where memory operations are scheduledasfadtor for performance.

7.2. FUTURE WORK

In this sectionthe mainresearclactivities thatwe considemworthy to purseasa continuationof this thesis
aresummarizedT hedifferentideasaresplit in themaintopicsthathave beenstudiedin thisthesis A gen-
eralresearchaskis to studytheimpactof the selectedocality analysisn the performancef the proposed
techniquesln this thesiswe have usedtwo possibledatalocality analyzer§ SPLAT andFastCME),but we
have notcomparedheresultsobtainedvhenbothareusedfor the sametechniquelt looksclearthebetter
thelocality analysisis, the betterthe propsedechniquegerform,but we have not checled how mustthe

accuray of the locality analysis #dcts the results.

Conclusions and Future Work 131

Data locality analysis

Therearetwo pointsin which we areinterestedFirst, we planto studyof reusebetweernoops.Both data
locality analyzergpresentedn Chapter2 werebasedn thereusevectors.Thesevectorsonly representhe
reuseamongmemoryinstructionsin a loop, but not amonginstructionsthat belongto differentloops.

Some studies point out that this kind of reuse can be significant in some programs.

The secondssueis a locality analysisfor non-numericatodes.The work developedin this thesisis
orientedtowardsnumericalapplications.The main reasonfor thatis anotherlimitation of the reusevec-
tors:they canonly dealwith affine referenceskor the SPECfp95rogramsthatarethe benchmarksised
in this thesis the majority of referencegollow this pattern. However, andmainly for non-numericabppli-
cationsusually written in C languagemary memoryreferencesare not affine. For instance the useof
pointersis very common.We planto studythe possibility of obtainingthe reusevectorsfor thesekind of
referencesisinga differentapproactbasedon the studyof how pointersaremodifiedin a program.How-
ever, an alternatve optionis the useof profiling informationor even a locality analysisimplementedn

hardware.

Study of locality behavior

Another utility of the locality analysisthat hasnot beenstudiedin this thesisis the useof the locality
resultsto guidedifferentoptimizations We have shovn thatdifferentprogramsexhibit very differentlocal-
ity characteristicsDetailed evaluation of the locality exhibited by a programmay then be essentiato
choosehe bestapproacho improve it. Fully-automaticoptimizationtools have proved sofar insufiicient
dueto thevariety of differentscenarioghatthey shouldcopewith. We thenbelieve thatthe bestapproach
todaytowardsmemoryoptimizationis by meansof aniterative (andinteractve) processn which repeti-
tive analysisandoptimizationstepsareinterleaved until thefinal resultis acceptableTherefore the speed
of theanalysistool aswell astherangeof informationthatit canprovide arecritical. We have shavn that

the type of analysis presented in this thesis careleuseful for such an approach.

Management of locality sensitive caches

About this topic therearethreedifferentlines of study In this thesiswe have shavn the effectivenesof a
multimodulecachewith explicit software managementThe resultshave beenobtainedfeedinga cache
simulatorwith memorytraces.The first improvementin the performanceevaluationwould beto include
the cacheorganizationin a timing simulator The mainreasorfor thatis thatin suchsimulatorwe could
take into accountthings suchasbus contention,a more accuratestudy of how the prefetchinghardware

works, etc.

132 CHAPTER 7

Anotherinterestingissueis the studyof theimpactin area,accessime andpower consumptionThis
impliestheimplementatiorof the proposedtacheorganizationusingVLSI tools. This studycould helpto

decide better ays of partitioning the cache or grouping thdedént submodules.
Finally, the last topic of interest is a hara®-based approach to set the hints in the LSMCache.

Softwar e prefetching

An interestingtopic to studyis theinterferencegausedy spill codereferencesWith the aim of reducing
thesenterferencesa specialbuffer in which storethe spill codedatamay be corvinient. Someworks have

recently appear about a similar kind offfer but handled as a complementargister file.

A mainpointto studyin softwareprefetchings a mixedbindingandnon-bindingprefetchingscheme.
Theproposedilgorithm(CSMS)is basedn binding prefetching(or earlyscheduling) but aswe have ana-
lyzedin Chapters, non-bindingprefetching(or insertingprefetchinstructions)canbe beneficialin some
casegfor instancefor memoryinstructiongnsiderestrictve recurrences)An algorithmthatusesghemost

corvenient approach for each particular memory instruction should obtain better results.

Scheduling in clustered architectures

In this topic we arecurrentlycontinuingthework developedin this thesisin somedifferentlines. First, we
have beenimproving thealgorithmto schedulenstructionsn a semi-distrilutedclusteredvLIW architec-
ture (althoughcould be adaptedo the fully-distributedorganization). The basicideabehindthis improve-
menthasbeento includespill code.In thealgorithmpresentedn Chapter6, a clusteris not selectedf no

sufficient registers are\ailable. Wth spill code, this restriction could be redai

Anothertaskwill be the improvementof the algorithm by re-schedulinghodes(whatis commonly
calledbacktracking).This canhelp to obtain betterschedulesalthoughat the expenseof increasingthe

scheduling time.

For theclusteredvLIW architecturewith distributedcachejn the organizationproposedn Chapteré
the cachewasphysically partitionedamongthe differentclustersandthusary addresf the programin
executioncouldbeallocatedin arny cache.Thatrequireda hardwareprotocol,additionaltraffic (andmore
compl«ity in general)to keepthe coherencemongthe differentcachesWe are studyingotherways of

partitioning the cache and algorithms to schedule instructions in such architectures.

(1]

(2]

(3]

[4]

[5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

S.G.AbrahamR.A. SugumarB.R. RauandR. Gupta,“Predictability of Load/StordnstructionLatencies”,in
Procs. of 26th Int. Symp. on Maarchitectuie (MICRO-26), pp.139-152, Dec. 1993

V. Agarwal, M.S. Hrishikesh,S.W. KecklerandD. Burger, “Clock RateversuslPC: The End of the RoadFor
CorventionalMicroarchitectures”in Procs.of the 27th.Int. Sympon ComputerArchitectuie (ISCA2000), pp.
248-259, June 2000

G. Ammons,T. Ball andJ.R.Larus,“Exploiting Hardware PerformanceCounterswith Flow andContext Sen-
sitive Profiling”, in Procs.onofthe1997Conf on ProgrammingLanguajesDesignandImplementatiofPLDI-
97), 1997

E.AyguadéC.BarradoA. Gonzalez].LabartaJ.Llosa,D. Lopez,S.Moreno,D. PaduaF. Reig,Q. Rieraand
M. Valero, “Ictineo: a ©ol for Research on ILP”, iBupecomputing 96, Resedr Exhibit “Polaris at Wrk”

R. Bedichek, Talismam:FastandAccurateMulticomputerSimulation”,in ACM Sigmetric<Conf on Measue-
ment and Modeling of Computer Systepgs 14-24, May 1995

N. Bermudo.X. Vera,A. GonzélezandJ. Llosa,“An Efficient Solver for CacheMiss Equations”,in Procs.of
Int. Symp. on &formance Analysis and System SofevApril 2000

D. BernsteinD. CohenA. FreundandD.E. Maydan,“Compiler Techniquedor DataPrefetchingon the Pow-
erPC”,in Procs.of Int. Cont onParallel Architectuesand CompilationTechniquegPACT’95), pp.19-26,1995

D.C. Burger, J.R. Goodmanand A. Kéagi, “Memory Bandwidth Limitations of Future Microprocessors”jn
Procs. of 23th Int. Symp. on Computectitectuie (ISCA96), May 1996

D. CallahanK. KennedyandA. Porterfield,'SoftwarePrefetching”jn Procs.of thelV Int. Conf on Architec-
tural Support for Pogramming Languges and Opeaiting Systems (ASPLOS-J\p.40.52, April 1991

R. Canal,J.M. Parcerisaand A. Gonzalez,'Dynamic ClusterAssigmentMechanisms”jn Procs. of 6th Int.
Symp. on High-&formance Computer Ahnitectue, pp. 133-142, Jan. 2000

A. Capitanio,D. Dytt and A. Nicolau, “Partitioned Register Files for VLIWs: A Preliminary Analysis of
Tradeofs”, in Procs. of 25th. Int. Symp. on Miarchitectue (MICRO-??), pp. 192-300, 1992

S. Carr, K.S. McKinley andC-W. Tseng,“Compiler Optimizationsfor Improving DataLocality”, in Procs.of
theV Int. Conf on Architectural Supportfor ProgrammingLanguaesandOpelating System§ASPLOS-V))pp.
252-262, Oct. 1994

D. Culler and J.P Singh,“Parallel ComputerArchitecture.A Hardware/Softvare Approach”, Morgan Kauf-
mann Publishes, Inc, 1999

Z. Cvetanwic andD. Bhandarkar‘PerformanceCharacterizatioof the Alpha21164MicroprocessolbJsing TP
andSPECWorkloads”,in Procs.of 2nd.Int. SymponHigh-PerformanceComputerArchitectuie (HPCA-2) pp.
270-280, 1996

134

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

(24]

[25]

(26]

[27]

(28]

[29]

(30]
[31]

[32]

[33]

[34]

[35]

(36]

References

K.K. Chan,C.C.Hay, J.R.Keller, G.R KurpanekF.X. SchumacheandJ. Zheng,"Designof the HP PA 7200
CPU", Hewlett-Padkard Journal, Feb 1996

T-F. ChenandJ-L. Baer “Reducingmemorylateny via non-blockingand prefetching-caches”,in Procs.V
InternationalConfeenceon Architectural Supportfor ProgrammingLanguayesand Operating SystemgASP-
LOS-V) pp. 51-61, Oct. 1992

C-H. Chi andH. Dietz, “Unified Managemenbf Registersand CacheUsing Livenessand CacheBypass”,in
Procs.of Int. Conf onProgrammingLanguage DesignandimplementatiorfPLDI'89), pp.344-355Junel989

E. vander Deijl, G. Kanbier O. TemamandE.D. Granston,’A CacheVisualizationTool”, IEEE Computer
30(7), pp. 71-78, July 1997

K. Diefendorf, R. OehlerandR. Hochsprung;Evolution of the PoverPCArchitecture”,in IEEE Micro, \ol.
4, No. 2 pp.34-49, 1994

C.Ding, S. Carr, andP. Swean, “Modulo schedulingwvith cachereuseinformation”,in Procs.of EuroPar '97,
pp. 1079-1083, August 1997

J.H.EdmondsonPlI. Rubinfeld,PJ.Bannon.etal., “Internal organizationof the Alpha 21164,a 300-Mhz64-
bit quad-issue CMOS RISC microprocessor'Digital Technical burnal, \61.7 No.J, 1995

A.E. Eichenbeger, E.S. Davidsonand S.G. Abraham,“Optimum Module Scheduledor Minimum Register
Requirements”, ifProcs. of Supeomputing 95pp.31-40, July 1995

A.E. EichenbegerandE.S.Davidson,“StageSchedulinga Techniqueao Reducahe RegisterRequirementsf
a Module Schedule”, iRrocs. of 28th Int. Symp. on Maarchitectue (MICRD-28), pp.338-349, Na1995

J. R. Ellis, “Bulldog: A Compiler for VLIW ArchitecturesMIT Press pp. 180-184, 1986

P. Faraboschi. Brown, J. Fisher G. DesoliandF. Homeavood,“Lx: A TechnologyPlatformfor Customizable
VLIW EmbeddedProcessing”in Procs.of the27thint. Sympon ComputerArchitectuie (ISCA2000), pp.203-
213, June 2000

K.l. FarkasandN.P. Jouppi,"Complexity/performancédradeofs with non-blockingloads”,in Proc. 21thinter-
national Symposium on Computerchitectue (ISCA94), pp. 211-222, 1994

K.l. Farkas,P. Chow, N.P. Jouppiand Z. Vranesic,“The Multicluster Architecture:ReducingCycle Time
Through Rrtitioning”, in Procs. 0o80th. Int. Symp. on Mioarchitecture, pp. 149-159, Dec. 1997

M.M. Fernandes]. LlosaandN. Topham, DistributedModulo Scheduling”,in Procs.of Int. Symp.on High-
Performance Computer Ahnitecture, pp. 130-134, Jan. 1999

M. Franklin,“The MultiscalarArchitecture”,PhD Thesis Technical ReportTR-1196 ComputerScienceDept.,
UW-Madison 1993

J. Fridman and Zvi Greefield, “ThaegerSharc DSP ArchitecturelEEE Micro, pp. 66-76, Jan-FeR000

D. GannonW. JalbyandK. Gallivan,“Strategiesfor CacheandLocal MemoryManagementyy GlobalProgram
Transformations”Journal of Rirallel and Distriluted Computing5, pp. 587-616, 1988

J.Gee M. Hill, D. PnermatikatosandA.J. Smith,“CachePerformancef the SPEC9BenchmarlSuite”, IEEE
Micro, pp. 17-27, Aug. 1993

S.Ghosh M. MartonosiandS. Malik, “CacheMiss EquationsanAnalytical Representationf CacheMisses”,
in Procs. of Int. Confon Supazomputing (ICS'97)pp. 317-324, July 1997

A.J. Goldbeg and J. Hennessy“PerformanceDebugging SharedMemory MultiprocessorProgramswith
Mtool”, in Procs. of Supeomputing’91 Conf(SC’'91) pp. 481-490, 1991

S. GoldschmidtandJ. Hennessy‘The Accurag of Trace-Drven Simulationof Multiprocessors”jn ACM Sig-
metrics Confon Measuement and Modeling of Computer Systgops146-157, May 1993

A. GonzélezC. AliagasandM. Valero,“A DataCachewith Multiple CachingStrategjies Tunedto Different
Types of Locality”, inProc. of Int. Confon Supesomputing (ICS'95)pp. 338-347, 1995

References 135

[37]

(38]

[39]
[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

E.H. Gornish,E.D. GranstorandA.V. Veidenbaum;Compiled-DirectedDataPrefetchingn Multiprocessors
with Memory Hierarcl”, in Procs. of 17th Int. Symp. on Computeciitectue (ISCA90), pp.354-368, 1990

R. Govindarajan.E.R. Altman and G.R. Gao,“Minimal Register Requirements&Jnder Resource-Constrained
Software Pipelining”, inProcs. of 27th Int. Symp. on Maarchitecture (MICRO-27), pp.85-94, Nu. 1994

L. Gwennap, “Digital 21264 Sets WNeStandard”Microprocessor Report, 10(14pct. 1996
L. Gwennep;Alpha 21364to EaseMemoryBottleneck”,MicroprocessoiReport,12(14) pp.12-15,0ct. 1998

S.Hadjiyannis M. Tomaslo andW. Najjar, “An Evaluationof Split Scalar/ArrayCaches” Technical ReportCS-
TR-97-104, CS Department, Cadoio State Univesity, Jan. 1997

D.T. Harperlll andD.A. Linebager, “A DynamicStorageSchemdor Conflict FreeVectorAccess”,Procs.of
the 14th. Int. Symp. on Computerchitecture (ISCA87), pp. 72-77, 1987

J.L.HennesswyndD.A. Patterson;ComputerArchitecture A Quantitatve Approach”,MorganKaufmanrPub-
lishers, 2nd. Edition, SanrBnciscg 1996

M.D. Hill, “Aspectsof CacheMemoryandInstructionBuffer Performance”PhD. Thesis University of Cali-
fornia at Berleley, UCB/CSD 87/381Nov. 1987

A.S. Huangand J.P Shen,“A Limit Studyof Local Memory RequirementdJsing Value ReuseProfiles”, in
Procs. of 28th Int. Symp. on Maarchitectuie (MICRO-28), pp. 71-81, 1995

R.A. Huff, “Lifetime-Sensitve Modulo Scheduling”inProcs.of Int. Conf on ProgrammingLanguaje Design
and Implementation (PLDI'93pp.318-328, 1993

D. Hunt, “Advancedperformacefeaturesof the 64-bit PA-8000”, in CompcorDigestof Papers, pp. 123-128,
1995

Intel Corp., “IA-64 Application Deelopers Architecture Guide’ntel Corpoiation Report May 1999

S.Jain,“Circular SchedulingaNew Techniqueo PerformSoftwarePipelining”,in Procs.of Int. Cont onPro-
gramming Languge Design and Implementation (PLDI'9Pp.219-228, June 1991

S.Jang,S.Carr, P. Sweary andD. Kuras,"A CodeGeneratiorFramavork for VLIW Architectureswith Parti-
tioned Rgister Banks”, irProcs. of 3d. Int. Conf on Massively &allel Computing SystemApril 1998

T. Johnsorand W.W. Hwu, “Run-Time Adaptive CacheHierarcty Managementia ReferenceAnalysis”, in
Procs. of 24th Int. Symp. on Computectitectuie (ISCA97), pp. 315-326, June 1997

N.P. Jouppi, “Improving Direct-MappedCachePerformanceby the Addition of a Small Fully-Associatve
Cacheand PrefetchBuffers”, in Procs.of 17thInt. Symp.on ComputerArchitectuie (ISCA90), pp. 364-373,
1990

T. Juan,J.J.NavarroandT. Lang, “Removing InterferencedMissesUsing CacheBypassBuffers”, Technical
Report UPC-CEPB-94-14 1994

K. Kailas,K. EbciogluandA. Agrawala,“CARS: A New CodeGeneratior-ramevork for CLusteredLP Pro-
cessors”, irProcs. 7th Int. Symp. on HighePormance Computer ghitectue (HPCS-7)Jan. 2001

V. Kathail, M. Schlanskr andB. Rau,“HPLabsPlayDohArchitectureSpecificationVersion1.0”, Technical
Report HPL-93-80, Helett-Fackard Labs, March 1994

G.A. KempandM. Franklin,“PEWs: A Decentralizeddynamic Scheduleffor ILP Processing”jn Procs.on
Int. Conf on Rarallel Processingpp. 239-246, Aug. 1996

K. KennedyD. CallahanandA. Porterfield,"AnalyzingandVisualizingPerformancef Memory Hierarcly”,
in Instrumentation for Mualization ACM Press, Ne York, 1990

D.R. KernsandS.J.Eggers,‘BalancedSchedulinginstructionScheduling?vhenMemory Lateng is Uncer-
tain”, in Procs.of Int. Conf on ProgrammingLanguae Designand Implementatio(PLDI'93), pp.278-289,
1993

A.C.KlaiberandH.M. Levy, “An Architecturefor Software-ControlledDataPrefetching”jn Procs.of 18thint.
Symp. on Computer éhitectue (ISCA91), pp.43-53, May 1991

136

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]
[69]

[70]

[71]

[72]

[73]

[74]
[75]
[76]

[77]

[78]

[79]

(8]

(81]

References

D. Kroft,” Lockup-FrednstructionFetch/PrefetciCacheOrganization”,in Procs.8th Int. Symp.on Computer
Architecture, pp. 81-87, 1981

M.S. Lam, “Software Pipelining: an Effective SchedulingTechniquefor VLIW Machines”,in Procs. of Int.
Conf on Pogramming Languge Design and Implementation (PLDI'8§)p.318-328, June 1988

D.M. Lavery andW.W. Hwu, “Unrolling-BasedOptimizationsfor Modulo Scheduling”,in Procs.of 28th.Int.
Symp. on Miavarchitectue, pp., 1995

A.R. LebeckandD.A. Wood, “CacheProfiling andthe SPECBenchmarksA CaseStudy”, IEEE Computer
27(10), pp. 15-26, Oct. 1994

A.R. LebeckandD.A. Wood, “Fast-Cachea New Abstractionfor Memory-SystenSimulation”in ACM Sig-
metrics Confon Measuement and Modeling of Computer Systgops 220-230, 1995

J.Llosa,M. Valero,E. AyguadéandA. Gonzalez;HypernodeReductiorModulo Scheduling”jn Procs.of 28th
Int. Symp. on Mi@architecture (MICRO-28), pp.350-360, Na 1995

J.Llosa,A. GonzalezE. AyguadéandM. Valero,“Swing Modulo Scheduling”in Procs.of Int. Conf on Par-
allel Architectuies and Compilationethniques (RCT'96), pp.80-86, Oct. 1996

P. Magnusson;A Designfor Efficient Simulationof aMultiprocessor”jn Procs.of theWesternSimulationMul-
ticonfeence on Int. \Wkshop on MASCT5-93 pp. 69-78, La Jolla, California, 1993

“MAP1000 unfolds at EquatorMicroprocessor Report, 12(16pec. 1998

P. MarcuelloandA. Gonzalez,ClusteredSpeculatie MultithreadedProcessors’in Procs.onthe13thint. Con-
ference on Supeomputing (ICS'99)pp. 365-372, June 1999

M. Martonosi,A. GuptaandT. Anderson,"Memspy: Analyzing Memory PerformancesystemBottlenecksn
Programs” Performance Evaluation Rg 20(2), June 1992

D. Matzke, “Will PhysicalScalabilitySabotagéerformancé&ains”,IEEE Computer\Vol. 30,No.9, pp.37-39,
Sept. 1997

K. McKinley andO. Temam,"A Quantitatve Analysisof Loop NestLocality”, in Procs.of VII Int. Conf on
Architectural Supportfor ProgrammingLanguaes and Opemating SystemgASPLOS-VII) pp. 94-104,0ct.
1996

V. Milutinovic, B. Markovic, M. Tomasgic andM. Tremblay “The Split Temporal/SpatiaCache Initial Per-
formance Analysis”, ifProcs. of SClzzL-5 dvkshop pp. 63-70, March 1996

MIPS, “RISCompiler Languages ProgrammeBuide”,MIPS, 1988
MIPS, “R10000 Microprocessor Useanual’,MIPS Ednolaies, Inc, June 1995

T.C. Mowry, M.S. Lam andA. Gupta,“Design and Evaluationof a Compiler Algorithm for Prefetching”,in
Procs.of theV Int. Conf on Architectural Supportfor ProgrammingLanguajesand Operating System¢ASP-
LOS-V) pp.62-73, Oct. 1992

E. NystromandA. E. Eichenbeger, “Effective ClusterAssingmenfor Modulo Scheduling”in Procs.of 31th.
Int. Symp. on Mi@architectue, pp.103-114, 1998

E. Ozer S. BanerjiaandT.M. Conte,“Unified AssignandScheduleA New Approachto Schedulingfor Clus-
teredRegisterFile Microarchitectures”jn Procs.of 31stint. Symp.on Microarchitectuie, pp. 308-315,Nov.
1998

S. PalacharlaandR.E. Kessler “EvaluatingStreamBuffers asa SecondaryCacheReplacement”in Procs.of
the 21st Int. Symp. on Computechitecture (ISCA-21)pp. 24-33, Apr1994

S.PalacharlaN.P. JouppiandJ.E.Smith,“Complexity-Effective SuperscalalProcessors’'in Procs.of the24th.
Int. Symp. on Computer éhitecture (ISCA97), pp. 1-13, June 1997

D. B. Papworth, “Tuning the Pentium Pro MicroarchitecturéZEE Micro, 16(2) pp. 8-15, April 1996

References 137

[82]

[83]

(84]

(85]

(86]

[87]

(88]

[89]

[90]

[91]

[92]

(93]

[94]
[99]

[96]

[97]
(98]

[99]

B.R. RauandC.D. Glaeser“Some SchedulingTechniquesandan Easily Schedulablédorizontal Architecture
for High Performancé&cientificComputing”,in Procs.on the 14th Ann.Wbrkshopon Microprogramming pp.
183-198, Oct. 1981

B.R. Rau,"Iterative Modulo Schedulingan Algorithm for Software PipeliningLoops”, in Procs.of 27th Int.
Symp. on Miavarchitectue (MICRD-27), pp.63-74, Nw. 1994

S.ReinhardtM. Hill, J.Larus,A. Leveck,J.Lewis andD. Wood,“The Wisconsinwind Tunnel:Virtual Proto-
typing of Parallel Computers”jn ACM SigmetricsConf on Measuemeniand Modelingof ComputerSystems
pp. 48-60, May 1993

G. RiveraandC-W. Tseng, Data Transformationgor Eliminating Conflict Misses”in Procs.of Conf on Pro-
gramming Languge Design and Implementation (PLDI‘98)998

J.A.RiversandE.S.Davidson,"ReducingConflictsin Direct-MappedCachesvith Temporality-Base@®esign”,
in Procs. of Int. Confon Rarallel Processing (ICPP’96)pp. 93-103, Dec. 1996

J.A.Rivers,S.Tam,G.S.TysonandE.S.Davidson, Utilizing Reusdnformationin DataCacheManagement”,
in Procs. of Int. Confon Supezomputing (ICS’98),ully 1998

E. Rotenbeg, Q. JacobsonY. SazeidegndJ.E.Smith,“TraceProcessors’in Procs.of the 30thInt. Symp.on
Microarchitectue (MICRO-30), pp. 138-148, Dec. 1997

J. SanchezA. Gonzéalezand M. Valero,“Static Locality Analysisfor CacheManagement”jn Procs. of Int.
Conf on Rarallel Architectuies and Compilationéthniques (RCT'97), Nov. 1997

J.SancheandA. Gonzalez,'CacheSensitve Modulo Scheduling”,in Procs.of 30th. Int. Symp.on Microar-
chitectute, pp. 338-348, Dec. 1997

J.SancheandA. Gonzalez,The Effectivenesof Loop Unrolling for Modulo Schedulingn ClusteredvLIW
Architectures”, to appear iarocs. of the 29th. Int. Candn Rarallel ProcessingAug. 2000

S.S.Sastry S. Palacharlaand J.E. Smith, “Exploting Idle Floating-PointResourcesor Integer Execution”,in
Procs. of Int. Confon Pogramming Languges Design and Implementatiqup. 118-129, June 1998

Semiconductoindustry Association,“The National TechnologyRoadmapfor SemiconductorsTechnology
Needs”, 1997

A.J.. Smith, “Cache MemoriesGomputing Surwes, \60l. 14, No. 3pp. 473-530, Sept. 1982

G. Sohi, S.E.BreahandT.N. Vijaykumar “Multiscalar Processors’in Procs.of the 22nd.Int. Symp.on Com-
puter Achitectue (ISCA95), pp.414-425, June 1995

StandardPerformanceEvaluation Corporation,“The SPEC95benchmarksuite”, http://wwwspecbenit.org,
1995

J.M. Stone and R.[Fitzgerald, “Storage in the RerPC”,IEEE Micro, vol. 15, no. 2pp. 50-58, April 1995

R. Sugumar“Multi-configuration simulationalgorithmsfor the evaluationof computerdesigns”,PhD disser-
tation, Univesity of Midigan, 1993

O. Temam E.D. GranstonW. Jalby “To Copy or notto Copy: A Compile-timeTechniquefor Assessingvhen
DataCopying Shouldbe Usedto Eliminate CacheConflicts”, in Procs.of Supecomputing’93Conf (SC'93),
pp. 410-419, 1993

[100] O. Temam,C. Fricker andW. Jalby “CachelnterferencePhenomena’in ACM SigmetricsCont on Measue-

ment and Modeling of Computer SysteMay 1994

[101] Texas Instruments Inc., “TMS320C62x/67x CPU and Instruction Set Reference Guide”, 1998
[102] Texas Instruments Inc., “TMS320C6211 Cache Analy#giplication Report SPRA473ept. 1998
[103] M. TremblayandJ.M. O’Connot “UltraSparcl: a Four-lssueProcessoSupportingMultimedia”, IEEE Micro,

16(2), pp. 42-49, April 1996

[104] G. Tyson,M. FarrensJ. Matthavs andA. Pleszkun,’A Modified Approachto DataCacheManagement”jn

Proc. of 28th Int. Symp. on Maarchitectue (MICRD-28),pp. 93-103, Dec. 1995

138 References

[105] R.A. Uhlig and TN. Mudge, “Trace-drven Memory Simulation: a Sugy”, ACM Computing Surye, 1997

[106] S.VajapgramandT. Mitra, “Improving SuperscalalinstructionDispatchandissueby Exploiting DynamicCode
Sequences”, iRrocs. of Int. Symp. on Computerchitecture (ISCA97), pp. 1-12, June 1997

[107] X. Vera,J.Llosa,A. GonzalezandC. Ciuraneta;'A Fastimplementatiorof CacheMiss Equations”,in Procs.
of the 8th. Int. \@tkshop on Compilarfor Rarallel Computes, pp. 319-326, Jan. 2000

[108] J.WangandC. Eisenbeis,DecomposedoftwarePipelining:aNew Approachto Exploit InstructionLevel Par-
allelism for Loops Programs”, iifrIP, Jan. 1993

[109] M. Wilkes,"“Slave Memoriesand DynamicMemory Allocation”, IEEE Transactionon Electronic Computes,
EC-14(2) pp. 270-271, April 1965

[110] E. Witchel andM. Rosenblum;Embra: FastandFlexible MachineSimulation”,in ACM SigmetricsConf on
Measuement and Modeling of Computer Systeiiagy 1996

[111] M.E. Wolf andM.S. Lam, “A DataLocality Optimizing Algorithm”, in Procs.of Int. Conf on Programming
Languaye Design and Implementation (PLDI'91p.30-44, 1991

[112] K.C. Yeagey“The MIPS R10000 Superscalar MicroprocesstifEE Micro, 16(2) pp. 28-40, April 1996

[113] V.V. Zyuban,‘Low-Pawver High-Performanc&uperscalaArchitectures” PhD Thesis Dept.of ComputerSci-
ence and EngineeringJniversity of Note Dame Jan. 2000

