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SPECULATIVE MULTITHREADED

ARCHITECTURES

In this Chapter, the execution model of the speculative multithreading paradigm is presented. This

tion model is based on the identification of pairs of instructions in the program to spawn specu

threads. The first instruction of the pair, that is referred as spawning point is the instruction that w

reached, fires the creation of a speculative thread. The second instruction of the pair, that is referred

control quasi-independent point, is the instruction where the speculative thread starts its execution

hardware requirements for supporting this execution model are also identified and the tasks involved

spawn and the commit of the threads are discussed.
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2.1. INTRODUCTION

In the previous Chapter, the two main requirements for exploiting speculative thread level parallelism

pointed out: i) hardware support for executing multiple threads simultaneously and a partitioning m

nism to split the program into speculative threads. In this Chapter and the following one, the har

requirements for supporting the speculative multithreaded execution model are investigated wherea

ter 4 is focused on the spawning schemes.

The hardware support necessary for executing speculative thread-level parallelism is different d

ing on the type of parallelism that is to be exploited. Main differences come from the way values ar

tialized for the speculative threads, the way interthread data dependences are managed and

speculative threads finish their execution.

Regarding these issues, eager execution and helper thread paradigms are very similar. In bot

speculative threads are initialized with the values of the parent thread at the spawn time. Also, no ha

for forwarding dependent values is required since the speculative threads run independently. The m

ference between these two paradigms resides on the lifetime of the speculative threads whereas

execution, speculative threads may become non-speculative or be squashed, in the helper thread p

speculative threads never become non-speculative, there is always a main non-speculative thread t

cutes all the instructions of the program.

Nevertheless, speculative threads in the speculative multithreaded paradigm behave significan

ferent to the previous schemes. In this paradigm, speculative threads are not initialized just with the

of the parent thread at the spawn time since such threads will execute instructions far away of the sp

point. Besides, interthread data dependences will be present and mechanisms to enforce such depe

are necessary. Finally, speculative threads work cooperatively and each one executes different par

dynamic stream. Thus, a speculative thread becomes the non-speculative one when all the previous

have finished their execution.

Basically, the main requirements to implement a speculative multithreaded processor are:

• Separatecontexts for thespeculativethreads: Speculative threads need to store local information s

as their own instruction pointer and their own register and memory values. Besides, some of the

ues are shared among several speculative threads whereas some others are private. Thus, it is n

to maintain multiple versions for some registers and memory locations.
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• Storagefor the speculative state: Speculative threads execute instructions that may belong to

wrong path or may use incorrect operands due to its speculative nature. Therefore, speculative

are not allowed to modify the architected state of the processor until they become non-speculati

mechanisms to store and access the speculative state are needed.

• Interthreaddatadependencemanagement: Speculative threads are control and data dependent o

vious threads. In order to correctly execute them, such dependences have to be obeyed. So,

nisms to detect such interthread dependences and forward the dependent values from the p

speculative thread to the consumer one are also required.

• Speculative threadorderknowledge: An order relationship among threads have to be maintaine

avoid that a logically younger thread uses a value produced by a logically older thread in pro

order. Therefore, it is necessary to provide the processor of mechanisms to keep track of the

order among concurrent threads.

• Verifying thespeculation: when the non-speculative thread finishes its work, it has to free its co

and convert the next thread in logical order into the non-speculative one. Before that, the non-s

lative thread has to verify that the speculation has been correctly performed, that is, that the inp

ues of the following thread were correct.

In this Chapter, different proposals to deal with these requirements are presented and analyzed

ferent microarchitectural platforms, a clustered processor made up of several thread units and a cen

organization. The rest of the Chapter is organized as follows: Section 2 presents the execution mode

speculative multithreaded processors. Section 3 presents different microarchitectural platforms to e

speculative threads. Section 4 analyzes all the processes involved in the creation of speculative thre

Section 5 analyzes the processes involved in committing speculative threads and all the validation m

nisms to detect misspeculations. Section 6 presents some related architectures proposed in the l

and finally, Section 7 summarizes the main conclusions of this Chapter.

All topics related to the management of interthread data dependences will be thoroughly analy

Chapter 3.

2.2. EXECUTING SPECULATIVE THREADS

As it was mentioned in the previous Chapter, the execution model of the speculative multithreading

digm is based on partitioning the code into threads that are executed concurrently by the multithr

processor. The partitioning process will be thoroughly analyzed in chapter 4, but basically, it iden



ndent

l quasi-

ion set

itional

ntext of

r thread

nd the

le, the

eculative

reads,

the next

ilable at

as to be

cula-

and the

s more

ulative.

ds and it

non-

h the

, if the

y that

sis, we
Speculative Multithreaded Architectures 25

pairs of instructions in the dynamic instruction stream that are referred to asspawning pairs.The spawning

pairs are made up of aSpawning Pointand aControl Quasi-Independent Point.The spawning point is an

instruction that when it is reached, it can fire the creation of a new thread. The control quasi-indepe

point is the instruction where the spawned thread starts its execution. The spawning and the contro

independent points can be any instruction in the program even though extensions to the instruct

architecture may be required to indicate these points.

Thus, programs in speculative multithreaded processors perform in the same way that in a trad

superscalar processor until a spawning point is reached. Then, a new thread is spawned in a free co

the processor. Once the spawning process finishes, both threads proceed in parallel. The spawne

executes all the instructions between the spawning and the control quasi-independent point a

spawned thread executes instructions beyond the control quasi-independent point. In this examp

spawner thread is also known as the non-speculative thread and the spawned thread as the sp

thread.

Moreover, some parts of the context have to be initialized to correctly execute the speculative th

such as the instruction pointer and the values that are to be consumed by the speculative thread. In

Chapter, mechanisms to deal with those values consumed by the speculative thread that are not ava

the spawn time will be analyzed.

When the non-speculative thread reaches the control quasi-independent point, the speculation h

verified by checking whether the speculative thread was initialized with the proper values. If the spe

tion has been correctly performed, then the speculative thread becomes the non-speculative thread

context of the committed thread becomes free for a future use of new speculative threads.

This model can be generalized so that any thread may spawn new speculative threads. In thi

aggressive execution model, only one thread is non-speculative whereas the rest of them are spec

The non-speculative thread is the thread that has not been spawned by any of the other active threa

is the only one allowed to commit its instructions. Speculative threads will have to wait to become the

speculative to commit their instructions and the values produced by them.

Active threads are ordered according to their program order. This order is the order in whic

instructions of speculative threads would be executed if the program run single-threaded. Therefore

program order of threads A,B,C and D is A-B-C-D, thread A is the non-speculative thread, we sa

thread B is older than thread C, and thread B is less speculative than thread C. Similarly, in this the
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also consider that thread C is younger than thread B and thread C is more speculative than thread B.

terms older and younger are not referred to the time threads are created but the program order p

regarding the sequential program execution. With this terminology, the non-speculative thread is a

the oldest thread

There are different reasons to explain the performance improvement achieved by speculative

threading. The main reason is that this execution model allows the processor to build a huge instr

window as it is illustrated in figure 2.1 In ILP processors, the effective size of the instruction windo

limited by the branch prediction accuracy since the amount of correctly speculated control-flow in

tions depends on the number of consecutive branches that have been correctly predicted. This is du

sequential nature of the fetching mechanism of superscalar processors since a single mispredicted

prevents the instruction window from growing beyond the branch. For non-numeric programs, which

many difficult-to-predict branches, this may be just by itself a very important limitation.

On the other hand, in this execution model instructions are not fetched in program order. Thu

instruction window is not built by a sequential process but it consists of a collection of non-adja

smaller windows (W1, W2, W3 and W4). Each small window is composed of a subsequence of the dyna

instruction stream, and it is build by sequentially speculating on branches.

As it is expected, the main problem of such execution model is the dependences among the d

instruction windows, both control and data dependences. Such dependences do not only exist betw

instructions already fetched, but among those instructions that have not been fetched yet.

dynamic instruction stream

W1 W2 W3 W4

thread i thread i+1 thread i+2 thread i+3

Figure 2.1. Effective instruction window managed by speculative multithreaded processors.

CQIP

effective instruction window

CQIP CQIP
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2.3. ARCHITECTURAL SUPPORT

Exploiting thread-level parallelism is not a novel idea and there are lots of microarchitectural propos

the literature, especially in a non-speculative manner. Well-known examples of such architectures

instance, the Simultaneous Multithreaded Architecture proposed by Tullsenet al.[79] and multiprocessors.

In fact, any architecture that is capable of executing multiple threads is suitable for exploiting spe

tive multithreading. To do that, it is necessary to add to such architectures some elements for sup

speculative threads. These extra requirements are necessary due to the speculative nature of the

since the execution of such threads is control and data dependent on the previous threads. Basic

processor has to provide support for:

• Storing the speculative state of the speculative threads: Speculative multithreaded processors

provide storage for holding the speculative versions of the register and memory values until

threads become the non-speculative ones.

• Knowing the usage of the contexts of the processor: The processor has to know the availability

contexts for allocating new speculative threads when a spawning point is reached.

• Maintaining the program consistency: Speculative threads can be created out of the program

Therefore, the processor has to provide mechanisms for knowing which is the program order a

the speculative threads in order to avoid data dependence violations. Thus, values produced by a

should be visible to younger threads but not to older threads.

• Managing interthread data dependences: Speculative threads execute future instructions

dynamic instruction stream and data dependences among different threads may occur. Mech

for detecting such dependences as well as for detecting data dependence violations are need

In this section, different implementations for these requirements are investigated excepting the

agement of interthread data dependences, which will be analyzed in the next Chapter. The study

architectural requirements is done for two architectural platforms. The first one is a totally centralized

tithreaded processor. The second one is based on an on-chip multiprocessor with two different interc

tion networks, an unidirectional ring and a fully-interconnected scheme based on a crossbar.

2.3.1. Centralized Speculative Multithreaded Processor

Figure 2.2 shows the design of a centralized speculative multithreaded processor. This architecture

similar to a simultaneous multithreaded processor[79]. Almost all the subsystems of the process
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shared among the active threads. Sharing may benefit the performance of the processor since may

the usage of such resources even though it may also cause some contention or degradation on th

mance of those resources.

On the other hand, there are some elements of the processors that are replicated for each cont

as the individual program counter of each of the threads, the reorder buffer and the register map

Thus, different contexts have different versions for the architected registers for their own use and for

ing the speculative state of the thread.

Regarding the register file, different implementations can be considered. One solution is based o

licating the register file for the different contexts. Different threads use different register locations.

partition can be done physically or logically. In the latter case there is a huge register file, but a conte

only access to a given range of physical registers and the ports of the register file are shared among

texts.

However, the major drawback of having a partitioned register file is the initialization cost. Wh

speculative thread is spawned and allocated to a context, it is necessary to copy the register values

register map table from the parent thread to the spawned one and this copying process may cause

traffic.

Moreover, this naïve scheme may waste resources and time. For instance, some register values

not to be consumed by the spawned thread are copied anyway. In the same way, some values are s

all the speculative threads and having different physical registers with the same value results in a w

space and the time of copying.

Figure 2.2.  Centralized Speculative Multithreaded Processor.
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Considering a smarter mechanism for initializing the register values of the speculative thread

reduce the time of copying. In fact, it is only necessary to maintain different versions for those reg

that are to be written by the spawned thread. And, for this group, it would only be necessary to co

value for those logical registers that are to be read by the speculative thread. However, instead of c

the value, both threads may share the physical location until the speculative thread has to write in it.

the speculative thread will create a new version for that logical register. Handling interthread re

dependences will be investigated in Chapter 3.

To implement this new register allocation, a new organization of the register file is required as w

a mechanism (hardware or software) to know which logical registers are to be used by the sp

threads. To implement this approach, a large register file fully shared by all the contexts is necessary

when a thread is spawned, instead of copying all the register values from the parent thread to the s

one, only the register map table is copied. In this way, the physical locations of all the architected reg

are shared. Different versions of the logical registers are supported by means of maintaining differe

ister map tables. When a speculative thread writes in a register, the renaming mechanism supplie

physical register which is stored in the local register map table to prevent the parent thread from acc

the value produced by a latter thread.

Since a physical location may be accessed by different threads, it is not possible that a given

frees a register location if it is still visible for any other active thread. So, each entry of the registe

requires a counter that indicates the number of threads that can access to such physical register. Thu

a thread frees a physical register, the counter associated to such entry is decreased and it is only fre

the counter becomes 0.

On the other hand, when a speculative thread is spawned and the register map table is copied f

parent thread to the spawned thread, all the counters of the physical registers of the parent thre

increased. In fact, if the processor knows which of such logical registers are to be consumed

spawned thread, it can only increase the associated counters of such physical registers. Besides, th

of the register map table that corresponds to those logical registers that are not to be consumed, ha

initialized with a special value such as NIL.

Regarding memory values, the different versions of the memory locations are stored in a speci

level cache which is referred to as MultiVersion Cache. This cache also detects interthread memory

dence violations and will be thoroughly studied in the next Chapter.
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Finally, in figure 2.2 appears an additional block that is the Speculation Engine Block. Among

things, this block keeps track of the availability of the contexts as well as the logical order among th

rent active threads.

In summary, the main advantages of the centralized design lie on the low communication la

among the current active threads and a higher resource utilization. However, the requirements to in

the size of several parts of the processor such as the register file, may increase its access time wh

affect the cycle time of the processor.

2.3.2. Clustered Speculative Multithreaded Processor

As it was mentioned before, centralized processors require to increase the size of several system

processor and it may affect its access time. A very common technique to solve this problem is clus

([15][24] among others). Clustering splits a structure into multiple faster and smaller blocks. A pos

approach for clustering is to physically separate the contexts, that is, having different small process

each of the contexts of the multithreaded processor similar to an on-chip multiprocessor.

Thread units are similar to a superscalar core and they have their own register file, their own instr

window and their own functional units. The resource contention among different threads is elimina

this way.

In addition to the local register file, the local instruction window and the local functional units, th

units also have a local cache to store those values that are produced and consumed by this thread. H

the values produced by a speculative thread cannot update the main memory until this thread beco

non-speculative one.

The different versions for the registers and memory values are supported by means of the local r

file and the local memory. Similarly to the partitioned scheme in the centralized version, when a thr

spawned and a thread unit is assigned, the corresponding local register file has to be initialized w

values of the parent thread. As sharing values may be very difficult, all the register values have to be

from the parent thread to the spawned one through the interconnection network. In this thesis we ha

lyzed two topologies: an unidirectional ring topology and a fully-interconnected one. Next subsection

present both schemes.

Independently of the selected topology, it is also necessary to have a centralized speculation eng

keeping track of the availability of the thread units as well as the thread ordering of the current a
threads.
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The main advantage of a clustered design is the scalability since introducing more thread unit

not significantly affect the latency of the different blocks of the processor. However, the communic

latency to forward values from one thread to another is larger than for the centralized processor sin

ues have to travel through an interconnection network.

2.3.2.1. Unidirectional Ring Clustered Speculative Multithreaded Processor

Figure 2.3 illustrates a 3-thread unit clustered speculative multithreaded processor interconnec

means an unidirectional ring topology. In this implementation of the clustered processor, a thread u

only communicate with the adjacent thread units. Moreover, this communication is unidirectional, tha

thread unit only receives values from the previous thread unit and only can send values to the foll

one. Therefore, if a speculative thread needs a value from a non-adjacent thread, such value has

through the intermediate thread units until reaching the consumer one.

This kind of interconnection favours the execution model in which speculative threads are crea

program order. In this execution model, the logical order of the speculative threads matches with the

ical order of the thread units in the ring and thus, the communication latency to initialize and to for

values from the producer to the consumer thread is faster since values only have to be communicate

following thread.

When a speculative thread is created, the register file and the register map table are initialized w

contents of the register file and the register map table of the parent thread. In the same way as for t
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Figure 2.3.  Clustered Speculative Multithreaded processor with three thread units.
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tralized version, it is not necessary to copy everything in the register file but only those register value

are to be consumed by the spawned thread.

To forward interthread dependent register values, a special register file which is referred to as

register file is used. Its management will be detailed in the next Chapter.

Finally, in the same way as for the centralized speculative multithreaded processor, it is neces

keep track of the different versions of the memory values and to detect any possible misspeculation

the same special first level cache as the one of the centralized processor, a MultiVersion cache, ma

Note that this cache can be implemented either centralized or clustered.

2.3.2.2. Fully-Interconnected Clustered Speculative Multithreaded Processor

The main problem for the unidirectional ring architecture is that the communication latencies to for

dependent values are variable and depend on the physical location of the threads, that is, how fa

thread unit where the consumer speculative thread is allocated. To avoid that, a different interconn

network can be considered. For instance, a crossbar that interconnects all the thread units of the p

Figure2.4shows a fully-interconnected clustered speculative multithreaded processor. It is made

Figure 2.4. A clustered speculative multithreaded processor with four thread units fully intercon-
nected.
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values are obtained by means of local register files and local memories. A MultiVersion cache is

needed.

2.4. SPAWNING SPECULATIVE THREADS

When a thread reaches a spawning point, a new speculative thread can be created. This spawning

includes several non-negligible tasks such as checking for an idle context, evaluating which is the l

order position regarding the other active threads and initializing the values for the new speculative t

In this section, different approaches to implement some of these tasks are discussed. The way inte

dependent values are initialized and how such dependences are enforced will be analyzed in the nex

ter.

2.4.1. Spawning models

In previous sections, it has been mentioned that any active thread is allowed to spawn new spec

threads. This spawning model is referred to asunrestricted thread ordering.

The greatest benefit provided by this spawning model is that it allows the processor to speculate

ferent loop levels. However, it is difficult to exactly determine which is the logical order of a spaw

thread. In this thesis, we propose a thread order predictor.

When a thread is spawned by any other thread, it is obvious that the new spawned thread is y

than the spawner thread. So, it is only necessary to determine the order with respect to the threads

younger than the spawner one. Therefore, if the youngest thread -that is, the most speculative threa

only one allowed to spawn speculative threads, the thread order predictor is not required since th

position of the spawned thread is obvious. This spawning model is referred to assequential thread order-

ing.

As it is expected, the potential of this spawning model is lower than the one offered by the unrest

thread ordering model. However, the main advantage of this model is that fits very well into an unid

tional ring clustered processor since the order of the threads can match with the physical order of the

units.

2.4.2. Thread Unit Availability

The first step of the spawning process is to look for an idle context where the new spawned thread

allocated. If there are no thread units available, different solutions can be taken:
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• The new speculative thread is not spawned.

• The spawner thread is stalled until there is a thread unit available. This solution is not very good

it may cause deadlocks if the non-speculative thread is stalled. Moreover, it does not seems wo

stall the execution of a thread just for creating a speculative thread that may be never reached

• Compute the order of the new speculative thread and, if there is any active thread more spec

than it, squash the most speculative and place the new spawned one at that thread unit.

In this thesis the last approach has been considered. However, if the speculation mechanism

reliable, the solution that provides better performance may be the first one since it does not eliminate

ulative threads that are correctly executing.

2.4.3. Thread-Order Prediction

When a new speculative thread is spawned, it is necessary to know which is the order of this threa

respect to all the other active threads. This is necessary not only to know which is the next non-spec

thread when the current one commits, but also to early detect data misspeculations. A data misspe

occurs when an older thread has consumed a value that has been produced by a younger thread. Th

detect such data misspeculations will be detailed in the next Chapter.

For the sequential thread ordering, computing the order of a new spawned thread is straightfo

since the spawned threads always are the new most speculative ones.

This task becomes difficult for the unrestricted thread ordering model. Here, any active thre

allowed to spawn a new speculative thread and such thread may be located at any order position b

the spawner and the most speculative thread.

Naive solutions that consist in assuming that the new speculative thread is always the most spec

or just the next to the spawner thread can be considered. However, the processor can take benefit f

fact that speculative threads are usually executing with the same other speculative threads and that t

tent order among them is usually the same. This suggests a simple thread order predictor which pred

a new spawned thread the same order that in its previous execution with the same threads.

Regarding the way of representing the order information, the order relationship between two th

only has two possible outcomes, younger or older. So, to represent the order relationship betwe

threads, it is only necessary to keep one-bit information, that is, if the new spawned thread will be co
ted before (1) or after (0) the other active thread.
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Then, every spawning pair has a table that contains all the order relationships with respect to

other speculative threads. This table can be tagged, that is, each entry contains the identifier of th

speculative thread, or non-tagged. Each entry of the table can contain just one bit indicating which w

last order relationship among them or an-bit saturated counter.

The behavior of the thread order predictor is shown in figure 2.5. The speculative multithreaded

cessor is executing three threads and the non-speculative thread reaches a spawning point. If the

available thread unit, the speculative thread is created and the logical order with the other two

threads has to be determined. There are three possibilities, the new speculative thread is older than

goes between them or it is the most speculative.

With the thread identifier of the new spawned thread, which may be any hash function combinin

instruction pointers of the spawning and the control quasi-independent point, the order predictor ta

accessed. Each entry of this table contains the order relationships for this speculative thread. Th

entry is accessed with the thread identifiers of the other active threads to determine the logical orde

new speculative thread. In this example, the spawned thread is predicted to be younger (more spec

than thread T1 and older (less speculative) than T2.

Figure 2.5. The thread order predictor.

T0 T1 T2

SP(T3)
Current order:

SP(T0) SP(T1) SP(T2)

Order Prediction Table

001000101
1 Older
0 Younger

SP(T0) SP(T1) SP(T3) SP(T2)

Predicted order:
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Inconsistent predictions, that is, the outcome predicts that the new thread is older than thread

younger than thread B and thread A is older than thread B can be eliminated just computing seque

the order from the less speculative to the most one until the prediction is “older”.

The update is done when a misspeculation occurs, that is, the non-speculative thread has re

control quasi-independent point of an active thread different to the expected one and when a thread

mitted. The best approach to updating is to store the current order and the prediction at the momen

thread creation and make the update for the threads that exist at the spawning time. The update can

done at the commit-time. This solution may produce misspeculations since it updates entries of th

that were not accessed at the spawn-time.

2.4.3.1. Performance evaluation

Figure 2.6 shows the prediction accuracy obtained by the order predictor for the SpecInt95. The as

spawning scheme will be presented in Chapter 4. The size of the order prediction table is 4K entri

each entry contains 16 or 32 2-bit saturating counters, and the access to the second level table

tagged. It can be observed that the order information is quite redundant and simple predictors ac

very high hit rations, greater than 95% in both cases.

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x
A

m
ea

n

SpecInt95

0

20

40

60

80

100

P
re

di
ct

io
n 

A
cc

ur
ac

y 

16 
32

Figure 2.6. Prediction accuracy of the thread order predictor.
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2.4.4. Other Considerations: Branch Prediction

A centralized branch predictor may not be adequate for speculative multithreaded processors s

would require a large number of ports. In addition, branches are not fetched in sequential order, an

the history information, especially global history registers, would be significantly degraded by this.

Each thread unit could have its local branch predictor that could be copied from the table of the p

thread at initialization. This may imply additional traffic from the spawner to the spawned thread. Alte

tively, branch prediction tables could be not initialized at thread creation. Instead, when a new thr

started in a thread unit, it simply inherits the prediction table as it was left by the previous thread exe

in that unit.

Predicting the outcome of branches only based on the history of branches executed in the same

unit may cause negative effects in the accuracy of the predictor and therefore, in the overall performa

the processor.

Figure 2.7 compares the branch prediction accuracy of branch predictors initialized from the par

thread creation and that of a non-initialization policy considering the fully-interconnected clustered s

lative multithreaded processor with 16 thread units and perfect register value prediction. In addition,

shows the prediction accuracy of a centralized predictor that processes all branches in sequential or

superscalar microprocessor does, as a baseline for comparison. Observe that the degradation suffe

the copy mechanism is implemented is very low (only 1% for a loop-iteration spawning policy and 4%

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x

A
m

ea
n

SpecInt95

0

20

40

60

80

100

B
ra

nc
h 

P
re

di
ct

io
n 

A
cc

ur
ac

y

Global gshare
Copy & Loops
Copy & Subr.
Local & Loops
Local & Subr. 

Figure 2.7. Branch prediction accuracy.
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the subroutine-continuation one), but it is significant when predictors are independently managed (

than 10% on average).

The degradation in the overall performance of the speculative multithreaded processor for

schemes will be shown in Chapter 5.

2.5. COMMITTING SPECULATIVE THREADS

When a speculative thread reaches the control quasi-independent point of any other active th

stops fetching instructions and stalls until its control and data speculation is verified, that is, it waits

the processor is assured that it has executed correct code with the correct instructions and beco

non-speculative thread.

On the other hand, when the non-speculative thread reaches the control quasi-independent poin

other active thread, it verifies that the control quasi-independent point corresponds to the next thr

program order. If not, an order misspeculation has occurred. An order misspeculation may cause

value produced by a younger thread has been forwarded to an older one. In this case, different acti

be taken, the most conservative one is to squash all the threads and continue with the execution of t

speculative one. A more aggressive approach is to squash the intermediate threads and verify the v

the next thread. If a data misspeculation has occurred, then the correct values are forwarded to suc

and all dependent instructions and selectively reissued.

If the order prediction is correct, then the non-speculative thread has finished its work and has to

that the speculation done is correct. Verification schemes for the data input values of a thread will b

lyzed in the next Chapter.

If the verification is correct, the next thread becomes the non-speculative one and the thread

which the previous non-speculative thread was allocated is freed. Before freeing the thread unit, th

cessor has to ensure that the values are committed. Memory values stored in the local caches of t

speculative thread can be written to the main memory or just marked as committed. In the latter case

a speculative thread is allocated to that thread unit, it will update the main memory when it replace

committed lines. This model eliminates the burst traffic at the commit time of the non-speculative t

but it may complicate the management of memory dependences.
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2.6. RELATED WORK

The Multiscalar[16][68] architecture is a clustered processor made up of several execution units int

nected by means of an unidirectional ring topology. Besides, the logical order of the tasks matches w

physical order to minimize the communication latency of dependent values. Such execution units ar

lar to a superscalar core and each of them executes only one task. When an execution unit becom

the task predictor predicts the next task to be executed and is allocated to a free thread unit. The M

lar processor also has a head and tail pointer that moves through the ring indicating the non and th

speculative task respectively.

Trace processors [59] have a clustered design and the instructions executed in each cluster cor

to traces built by the trace cache. It also uses trace prediction to determine which is the next trace to

cuted when a processing element becomes free.

Another clustered design is the Superthreaded Architecture[76], which uses a unidirectional rin

interconnecting the Thread Processing Units. The logical and the physical order of the threads is th

Some other works have studied the performance of different speculative multithreaded models

on-chip multiprocessor such as the Atlas[10], the Hydra[24], the TLDS[71] and the IACOMA[34] gro

among others. The Atlas multiprocessor consist on 8 processors interconnected by means of a bidire

ring and the spawning model used is the sequential thread ordering in order to match the physical a

logical order of the threads.

Stanford’s Hydra is an on-chip multiprocessor made up of several MIPS processors fully inte

nected. In this design, it does not exist direct interconnection among the processors in such a way th

ister values are forwarded through memory (by means of the register passing buffer). Similarl

IACOMA and the TLDS works present an on-chip multiprocessor with capabilities to support specu

multithreading. In all the cases, the order of the spawned threads is known at the spawning time sin

spawn threads at well-known program constructs and their logical order can be easily detected.

Finally, the Dynamic Multithreaded Processor[2] uses a centralized design similar to a Simulta

Multithreaded Processors. Such processor implements a certain order predictor to order the new s

thread with respect to the existent ones. It also uses a preemptive spawning model if there is no threa

available for spawning new threads. Thus, if there are no context available and the thread to be cre

older that any active thread, the most speculative thread is squashed and the new thread is spawne
context.
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2.7. SUMMARY

In this chapter, the main hardware requirements to support the speculative multithreaded execution

have been presented. This execution model is based on spawning threads at spawning pairs. The s

point is the instruction that when reached, fires the creation of the speculative thread. The control

independent point is the instruction where the spawned thread starts its execution.

Different architectural platforms have been presented such as a centralized and a clustered des

different interconnection topologies. Support for speculative multithreading includes a multiversion r

ter file and a multiversion cache and the schemes for spawning and committing threads.

The spawning process has been described and it includes the identification of available cont

spawn the new speculative thread, the identification of the logical order relationship of the spawned

with respect to the other active threads and the initialization of the context of the speculative thre

thread order predictor has been presented and it achieves very high hit ratios (higher than 95%). Mo

the penalties due to fetching instructions out of program order have been studied and two proposa

been evaluated. The first one is based on copying the branch prediction information from the parent

to the spawned thread. This mechanism achieves results close to an idealized branch predictor whic

ages branches in program order. The second one does not initialize the branch prediction tables

new thread is spawned. This latter mechanism achieves lower hit ratios but the cost in hardware is

lower than the previous one.

Finally, the committing process is described. In this kind of architectures, only the non-specu

thread is allowed to commit its values whereas the speculative threads have to wait to become th

speculative thread to do it. In case of misspeculation, a simple squash of the speculative thread or

tive reissue of the misspeculated instructions can be implemented.
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