

Power- and Performance- Aware

Architectures

Ramon Canal Corretger

Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya

A THESIS SUBMITTED IN FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor en Informàtica

ii Preface

Power- and Performance- Aware

Architectures

Ramon Canal Corretger

Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya

Advisors:
 Antonio González Colás

Universitat Politècnica de Catalunya

James E. Smith
University of Wisconsin-Madison

A THESIS SUBMITTED IN FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor en Informàtica

Power- and Performance- Aware Architectures i

Preface i

Preface

The scaling of silicon technology has been ongoing for over forty years. We are on the way to

commercializing devices having a minimum feature size less than one-tenth of a micron. The push for

miniaturization comes from the demand for higher functionality and higher performance at a lower cost.

As a result, successively higher levels of integration have been driving up the power consumption of

chips. Today, heat removal and power distribution are at the forefront of the problems faced by chip

designers.

 In recent years portability has become important. Historically, portable applications were

characterized by low throughput requirements such as for a wristwatch. This is no longer true. Among the

new portable applications are hand-held multimedia terminals with video display and capture, audio

reproduction and capture, voice recognition, and handwriting recognition capabilities. These capabilities

call for a tremendous amount of computational capacity. This computational capacity has to be realized

with very low power requirements in order for the battery to have a satisfactory life span. This thesis is an

attempt to provide techniques for low-power microarchitectures with high-computational capacity.

 The first research of this thesis targets the reduction of the complexity and energy-requirements of

the issue logic. An important effort has been deployed to reduce the energy requirements and the power

dissipation of processors through novel mechanisms based on value compression. Several ultra-low

power processor designs that use value compression are presented, as well as, two compile-time that

show how the compiler can help in reducing the energy consumption.

ii Power- and Performance- Aware Architectures

ii Preface

Power- and Performance- Aware Architectures iii

Acknowledgements iii

Acknowledgements

De petit sempre pensava en quin punt me’n cansaria d’estudiar i aprendre coses noves. Després de ja uns

quants anys he vist que aquest camí mai s’acaba. Ni després d’haver escrit aquesta tesi m’ha quedat la

sensació d’haver arribat al final del camí. M’agradaria agrair a tothom que m’ha acompanyat aquest

temps i que m’ha ajudat a créixer: la seva confiança, el seu suport i la seva ma estesa disposada a ajudar-

me en els entrebancs.

 M’agradaria començar pels meus directors de tesi –l’Antonio i el Jim- amb els quals he tingut la

sort de compartir tot aquest treball. Ells m’han ensenyat el que és la recerca i el que és l’arquitectura de

computadors. Als meus pares i germans també els hi vull agrair tot el suport durant aquest temps, casa

sempre ha estat un oasis de tranquil·litat per aquells moments per pensar i reflexionar. Als meus cosins i

tiets, la millor companyia els dies de festa.

 També vull agrair a tot el Grup de Colònies a Borredà les estones compartides tots aquests anys, en

especial, a la Queralt i al Ramon Ma. També dins d’aquest món, gràcies, a la gent de la Fundació Mn.

Víctor Sallent, de Coordinació Catalana de Colònies Casals i Clubs d’Esplai (especialment a l’Anna i a la

Romina) i últimament de la FIMCAP pels moments viscuts. A tota la “colla” d’amics de Berga i en

concret a les Neus, l’Anna, la Sílvia i el Ricard, companys infatigables de tertúlies al voltant d’un cafè.

 Vull agrair també a tots els becaris, professors i altres membres del Departament d’Arquitectura de

Computadors de la UPC i de l’Intel-UPC Barcelona Research Center, la seva ajuda durant aquest temps i

especialment al Josep-Llorenç, Fernando, Pedro, Joan-Manel, Enric, Jaume A., Jaume V., Josep Maria,

Àlex A., Jordi, Pepe, Suso, Carlos M., Carles A., Montse, Carles N., Manel, Àlex R., Daniel J, Daniel O,

Jesús, Ayose, Oliver, Xavi, Fran, Carmelo i a la resta de PBCs.

 En resum, gràcies a tots els que m’heu acompanyat no només durant el període d’aquesta tesis sinó

des de que vaig aparèixer en aquest món.

“The essence of all beautiful art, all great art, is gratitude”
Friederich Nietzsche

iv Power- and Performance- Aware Architectures

iv Acknowledgements

Power- and Performance- Aware Architectures v

Acknowledgements v

Als que mirareu aquest treball

des de la distància

vi Power- and Performance- Aware Architectures

vi Acknowledgements

Power- and Performance- Aware Architectures vii

Index vii

Index

PREFACE ... 1
ACKNOWLEDGEMENTS ... 3
INDEX ... 7
CHAPTER 1 INTRODUCTION.. 1

1.1 SOURCES OF POWER DISSIPATION .. 3
1.2 DESIGNING FOR LOW POWER ... 4
1.3 POWER BREAKDOWN.. 6
1.4 MAIN CONTRIBUTIONS ... 6

1.4.1 Contributions to the Issue Logic Design... 6
1.4.2 Contributions to the Ultra-Low Power Processors... 7
1.4.3 Contributions to the high-performance processors .. 8

CHAPTER 2 COMPLEXITY-AWARE ISSUE LOGICS... 9
2.1 INTRODUCTION ... 10
2.2 DEPENDENCE TRACKING SCHEMES .. 11

2.2.1 N-use Issue Scheme... 11
2.3 PRESCHEDULING SCHEMES... 14

2.3.1 Distance Scheme ... 15
2.3.2 Deterministic Latency Scheme.. 16

2.4 PERFORMANCE EVALUATION ... 18
2.4.1 Experimental Framework ... 18
2.4.2 N-Use Scheme... 19
2.4.3 Distance Scheme ... 21
2.4.4 Deterministic Latency Scheme.. 23
2.4.5 N-Use vs. Latency ... 24
2.4.6 Comparison with the FIFO-Based Scheme... 25
2.4.7 Energy Savings ... 26

2.5 RELATED WORK ... 28
2.6 CONCLUSIONS .. 28

CHAPTER 3 VALUE COMPRESSION PRINCIPLES .. 31
3.1 MOTIVATION .. 32
3.2 SIGNIFICANCE COMPRESSION ... 33
3.3 VALUE COMPRESSION FOR ULTRA-LOW POWER MICROARCHITECTURES .. 34
3.4 VALUE COMPRESSION FOR HIGH-PERFORMANCE MICROARCHITECTURES ... 36

CHAPTER 4 ULTRA-LOW POWER MICROARCHITECTURES ... 39
4.1 INTRODUCTION ... 40
4.2 TECHNIQUES FOR REDUCING ACTIVITY LEVELS .. 41

4.2.1 PC Increment .. 41
4.2.2 Instruction Cache.. 43
4.2.3 Register File Access .. 46
4.2.4 ALU Operations .. 46
4.2.5 Data Cache Operations .. 48
4.2.6 Register Write Back .. 48
4.2.7 Pipeline Latches.. 48

4.3 ACTIVITY REDUCTION.. 49
4.4 EXPERIMENTAL FRAMEWORK .. 50
4.5 BYTE-SERIAL IMPLEMENTATION .. 50

viii Power- and Performance- Aware Architectures

viii Index

4.6 SEMI-PARALLEL IMPLEMENTATIONS .. 53
4.7 FULLY PARALLEL IMPLEMENTATIONS.. 55
4.8 SUMMARY AND CONCLUSIONS ... 59

CHAPTER 5 VALUE COMPRESSION FOR HIGH-PERFORMANCE MICROARCHITECTURES........ 61
5.1 INTRODUCTION ... 62
5.2 HARDWARE VALUE COMPRESSION .. 62

5.2.1 Hardware Extensions to a Conventional Processor ... 63
5.2.2 Experimental Framework ... 64
5.2.3 Energy Savings ... 65
5.2.4 Peak Power Reduction.. 68

5.3 VALUE RANGE PROPAGATION .. 69
5.3.1 Finding Initial Value Ranges .. 70
5.3.2 Forward and Backward Value Propagation... 70
5.3.3 Addition... 70
5.3.4 Loads... 71
5.3.5 Stores .. 71
5.3.6 Branches ... 71
5.3.7 “Useful” Range Propagation ... 72
5.3.8 Example .. 72
5.3.9 Loops... 73
5.3.10 Interprocedural Analysis.. 74

5.4 VALUE RANGE SPECIALIZATION .. 74
5.4.1 Computing the Energy Savings of Specialization ... 75
5.4.2 Computing the Cost of Specialization... 76
5.4.3 Identifying the Candidates for Specialization ... 76
5.4.4 Specialization of the Candidates... 77

5.5 EVALUATION .. 78
5.5.1 Experimental Framework ... 78
5.5.2 Benefits of “Useful” Value Range Propagation ... 78
5.5.3 Required Opcode Extensions .. 79
5.5.4 Energy Savings ... 80
5.5.5 Potential Benefits of Value Range Specialization ... 80
5.5.6 Benefits of Value Range Specialization... 81
5.5.7 Comparison with a Hardware Approach.. 87
5.5.8 Hardware and Software Trade-offs .. 89

5.6 RELATED WORK ... 90
5.6.1 Processor Front-End .. 90
5.6.2 Processor Back-End.. 91
5.6.3 Data Cache ... 92
5.6.4 Software Controlled Value Compression.. 94

5.7 CONCLUSIONS .. 94
CHAPTER 6 CONCLUSIONS AND FUTURE WORK.. 97

6.1 CONCLUSIONS .. 98
6.2 FUTURE WORK ... 99

6.2.1 Leakage Current ... 99
6.2.2 Temperature-Aware Computing ... 100
6.2.3 System on a Chip... 100

REFERENCES ... 101
LIST OF TABLES.. 6
LIST OF FIGURES.. 111

Power- and Performance- Aware Architectures 1

Introduction 1

Chapter 1

Introduction

Energy consumption and power dissipation have become a key constraint in the design of processors. In

the embedded segment, battery life is an issue, so the processor energy consumption has to be minimal. In

the high-performance segment, the power dissipation is a limiting factor since the cooling mechanisms

are becoming more expensive or even reaching its limits.

 Although significant research is targeted to produce longer-life batteries and better cooling

systems, contributions from other areas are becoming critical. This chapter presents the fundamentals of

energy consumption -and power dissipation- and the power analysis of a conventional processor.

“Teachers open the door, but you must enter by yourself”
Chinese proverb

2 Power- and Performance- Aware Architectures

2 Introduction

The invention of the transistor was a giant leap forward for low-power electronics that has remained

unequaled to date, even by the virtual torrent of developments it forbore. The operation of a vacuum tube

required several hundred volts and few watts of power. In comparison, the transistor required only

miliwatts of power. Since the invention of the transistor, decades ago, through the years leading to the

21st century, power dissipation, though not entirely ignored, was of little concern. The greater emphasis

was on performance and miniaturization. Applications powered by batteries –pocket calculators, hearing

aids and, most importantly, wristwatches- drove low-power electronics. In all such applications, it is

important to prolong the battery life as much as possible. And now, with the growing trend towards

portable computing and wireless communication, power dissipation has become one of the most critical

factors in the continued development of the microelectronics technology. There are two reasons for this:

1. To continue to improve the performance of the circuits and to integrate more functions into each

chip, feature size has to continue to shrink. As a result, the magnitude of power per unit area is

growing and the accompanying problem of heat removal and cooling is worsening. Examples are

the general-purpose microprocessors used in desktop computers and servers. Even with the

scaling down of the supply voltage, power dissipation has not come down. Figure 1 shows the

power density for several comercial processors. As it is shown in the figure, the trend is to

increase the power density to levels where the cooling mechanisms are unlikely to be effective

enough.

Figure 1: Power density for the Intel-32 family [6]

W
at

ts
/c

m
2

1

10

100

1000

ii338866
ii448866

PPeennttiiuumm®®
PPeennttiiuumm®® PPrroo

PPeennttiiuumm®® IIII
PPeennttiiuumm®® IIIIII HHoott ppllaattee

PPeennttiiuumm®® 44

NNuucclleeaarr RReeaaccttoorr

Power- and Performance- Aware Architectures 3

Introduction 3

2. Portable battery-powered applications of the past were characterized by low computational

requirements. The last few years have seen the emergence of portable applications that require a

greater amount of processing power. Two vanguards of this processing model are the notebook

computer and the personal digital assistant (PDA). People are beginning to expect to have access

to the same computing power, information resources, and communication abilities when they are

travelling as they do when they are at their desk. A representative of what the very near future

holds is the portable multimedia terminal. Such terminals will accept voice input as well as hand-

written (with a special pen on a touch-sensitive surface) input. Unfortunately, with the technology

available today, effective speech or hand-writing recognition requires significant amounts of

space and power.

As a result, today, it is widely accepted that power efficiency is a design goal at par in importance

with miniaturization and performance. In spite of this acceptance, the practice of low-power design

methodologies is being adopted at a slow pace due to the widespread changes called for by these

methodologies. Minimizing energy consumption and power dissipation calls for conscious effort at each

abstraction level and at each phase of the design process.

1.1 Sources of Power Dissipation

There are three sources of power dissipation in a digital complementary metal-oxide-semiconductor

(CMOS) circuit. Logic transitions are the first source. As the transistors in a digital CMOS circuit

transition back and forth between the two logic levels, the parasitic capacitances are charged and

discharged. Current flows through the channel resistance of the transistors, and electrical energy is

converted into heat and dissipated away (see Figure 2). This component of power dissipation is

proportional to the supply voltage, transistor voltage swing, and the average switched capacitance per

cycle. As the voltage swing in most cases is simply equal to the supply voltage, the dissipation due to

transitions varies overall as the square of the supply voltage and linearly with the capacitance. Short-

circuit currents that flow directly from supply to ground when the n-subnetwork and the p-subnetwork of

a CMOS gate both conduct simultaneously are the second source of power dissipation (see Figure 3).

With the input(s) to the gate stable at either logic level, only one of the two subnetworks conduct and no

short-circuit currents flow. But when the output of a gate is changing in response to a change in the input,

both subnetworks conduct simultaneously for a brief interval. The duration of the interval depends on the

input and the output transition (rise or fall) times and so does the short-circuit dissipation. Both the above

sources of power dissipation in CMOS circuits are related to transitions at gate outputs and are therefore

collectively referred to as dynamic dissipation. In contrast, the third and the last source of dissipation is

the leakage current that flows when the input(s) to, and therefore the outputs of, a gate are not changing

4 Power- and Performance- Aware Architectures

4 Introduction

(see Figure 4). This is called static dissipation. In recent technology, the relative magnitude of leakage

current was low and was neglected. But as the supply voltage is scaled down to reduce dynamic power,

MOS field-effect transistors (MOSFETs) with low threshold voltages have to be used. The lower the

threshold voltage, the lower the degree to which MOSFETs in the logic gates are turned off and the

higher is the standby leakage current.

Figure 2: Circuit transition currents (left: charge, right: discharge)

Figure 3: Short-circuit currents

Figure 4: Leakage currents

1.2 Designing for Low Power

The power dissipation attributable to the three sources described above can be influenced at different

levels of the overall design process.

Since the dominant component of power dissipation in CMOS circuits (due to logic transitions)

varies as the square of the supply voltage, significant savings in power dissipation can be obtained from

operation at a reduced supply voltage. If the supply voltage is reduced while the threshold voltages stay

the same, reduced noise margins result and gates become slower. To improve these parameters, the

threshold voltages need to be made smaller too. However, the subthreshold leakage current increases

exponentially when the threshold voltage is reduced. The higher static dissipation may offset the

reduction in the dynamic component of the dissipation. Hence, the devices need to be designed to have

Power- and Performance- Aware Architectures 5

Introduction 5

threshold voltages that maximize the net reduction in the dissipation and the delay can be compensated by

other means –in order to retrain the system level throughput at the desired level.

One way of influencing the delay of a CMOS circuit is by changing the channel-width-to-

channel-length ratio of the devices in the circuit. The power-delay product for an inverter driving another

inverter through an interconnect of a certain length varies with the width-to-length ratio of the devices. If

the interconnect capacitance is not significant, the power-delay product initially decreases and then

increases when the width-to-length ratio is increased and the supply voltage is reduced to keep the delay

constant. Hence, there exists a combination of the supply voltage and the width-to-length ratio that is

optimal from the power-delay product consideration.

Circuit level choices also impact the power dissipation of CMOS circuits. Usually a number of

approaches and topologies are available for implementing various logic and arithmetic functions. Choices

between static versus dynamic style, pass-gate versus normal CMOS realization versus asynchronous

circuits have to be made.

At the logic level, automatic tools can be used to locally transform the circuit and select

realizations for its pieces from a precharacterized library so as to reduce transitions and parasitic

capacitance at circuit nodes and therefore circuit power dissipation. At a higher level, various structural

choices exist for realizing any given logic functions; for example, for an adder one can select among

ripple-carry, carry-look-ahead, or carry-select realizations.

In synchronous circuits, even when the outputs computed by a block of combinatorial logic are

not required, the block keeps computing its outputs from observed inputs every clock-cycle. In order to

save power, entire execution units comprising combinatorial logic and their state registers can be put in

stand-by mode by disabling the clock and/or powering down the unit. Special circuitry is required to

detect and power-down unused units and power them up again when they are needed to be used.

The rate of increase in the total amount of memory per chip as well as rate of increase in the

memory requirement of new applications has more than kept pace with the rate of reduction in power

dissipation per bit of memory. As a result, in spite of the tremendous reductions in power dissipation

obtained from each new process generation of memory to the next, in many applications, an important

portion of power dissipation occurs in the memory.

Overall, a design for low power has implications at all the design levels. In this thesis, we target

the microarchitecture level. At this level, several proposals are made and evaluated that reduce the

dynamic energy consumption (most dominant in current technologies).

6 Power- and Performance- Aware Architectures

6 Introduction

1.3 Power Breakdown

Figure 5 shows the power breakdown for the Alpha 21264 processor (as reported by Gowan et al. [29]).

The clock network, the issue queue and the caches account, in this order, for most of the power dissipated.

On one hand, the clock network is an issue mainly related to the layout. On the other hand, the rest of the

structures are subject to architecture optimizations that can reduce significantly the energy consumption

and the power dissipation as it is shown in the next chapters.

Clock Network
32%

Issue Logic
18%Caches

15%

FP execution units
10%

INT execution units
10%

MMU
8%

I/O
5%

Misc. Logic
2%

Figure 5: Alpha 21264 processor power breakdown [29]

1.4 Main Contributions

1.4.1 Contributions to the Issue Logic Design

As shown in Figure 5, the issue logic is one of the main energy consumers in a conventional

microarchitecture. At the same time, the issue logic is a key part for exploiting large amounts of ILP

(Instruction Level Parallelism), its energy budget, as well as its cycle time is critical in most superscalar

Power- and Performance- Aware Architectures 7

Introduction 7

processors. In order to tackle this issue, novel issue logic designs have been proposed in this thesis. These

proposals are detailed in Chapter 2 and can be divided into two families:

• Dependence-tracking schemes. These schemes keep track of the producer-consumer relationships

between instructions. Since the direct dependences are stored, the scheme eliminates most of the

need for the associative wake-up logic –the part of the issue logic responsible for checking what

instructions have their operands available, and thus, decide whether the instruction is ready for

execution.

• Prescheduling schemes. Since most of the functional units have a fixed execution latency (all but

the memory); at dispatch time, the mechanism schedules the instructions for execution according

to the estimated availability cycle of its source operands and functional unit. Due to the

deterministic latencies of the units and schedule time of the instructions, the cycle where the

output value of an instruction will be available, can be already computed. As a consequence,

these schemes eliminate most of the logic needed by the issue logic since the instructions will be

only considered for issue just once (at the time they have been scheduled).

Three papers have been published related to this topic. The IEEE Micro paper entitled “Power- and

Complexity- Aware Issue Logics” [1] is a survey of the techniques presented so far to reduce the

complexity and reduce the energy requirements of the issue logic. The techniques presented in this work

have been published in the International Conference on Supercomputing (2000 and 2001) [13][14].

1.4.2 Contributions to the Ultra-Low Power Processors

Chapter 3 shows how value compression can be an effective way to reduce energy requirements. Both for

ultra-low power processors and high-performance ones, the values that flow through the pipeline

determine the energy consumption of the structures in the datapath (mainly the register file, the data cache

and the functional units). Since the energy consumption of these components depends directly on the

values manipulated, we analyzed and proposed several value compression schemes that reduce the energy

consumption of the processor by reducing the number of bits needed to be manipulated for each data

value. In Chapter 4, several datapaths are redesigned by considering value compression. From this setup,

different microarchitectures that exhibit different energy-performance tradeoffs are proposed and

analyzed.

• A new microarchitecture targeted to embedded processors is proposed. In this architecture the

datapath is redesigned in order to compute just the bytes that are significant.

• Several alternatives for a different set of energy/performance trade-offs are proposed. While the

alternatives are still targeted to embedded processors, these show a compromise between the

energy budget and the performance reduction.

8 Power- and Performance- Aware Architectures

8 Introduction

The work in this chapter has been published in the paper entitled “Very Low Power Pipelines using

Significance Compression” presented in the 33rd International Symposium on Microarchitecture

(MICRO-33) [17].

1.4.3 Contributions to the high-performance processors

Chapter 5 shows how value compression can also reduce significantly the energy consumed by

conventional high-performance processors. We show how hardware only schemes are able to reduce

significantly the energy budget and, at the same time, we show how compile-time techniques can be an

important support for reducing the energy requirements apart or on top of hardware-only value

compression. In short, the main contributions are:

• A value-aware processor design. Where the structures are modified in order to take advantage of

value compression and finally reduce its energy consumption.

• Two compile-time techniques that propagate the range of the values at compile-time and then re-

encode the instructions to use narrower execution widths. In this case, the value compression is

“communicated” to the processor through the use of narrower opcodes.

• A cooperative hardware-software approach that takes the advantages the two previous proposals.

Both hardware and software approaches have strengths and weaknesses so a cooperative

approach can yield the best energy reduction (and energy-performance tradeoff), while taking

advantage of both schemes.

The proposals in this topic have been published in the 2004 International Symposium on Code

Generation and Optimization [16] and a technical report [15] that describes all the findings on the

compressibility of data values and its potential for energy reduction and it proposes the 64-bit value-

aware processor design.

Power- and Performance- Aware Architectures 9

Complexity-Aware Issue Logics 9

Chapter 2

Complexity-Aware Issue Logics

The issue logic of dynamically scheduled superscalar processors is one of their most complex and power-

dense parts. In this chapter, we present alternative issue-logic designs that are much simpler than the

traditional ones while they retain most of its ability to exploit ILP. These alternative schemes are based

on the observation that most values produced by a program are used by very few instructions, and the

latencies of most operations are deterministic.

“Everything should be made as simple as possible, but not simpler”
Albert Einstein

10 Power- and Performance- Aware Architectures

10 Complexity-Aware Issue Logics

2.1 Introduction

Out-of-order issue is common in today's high-performance microprocessor due to its higher potential to

exploit instruction-level parallelism (ILP) for some applications whose behavior is hard to predict at

compile time (e.g. non-numeric applications such as SpecInt).

However, the hardware structures required by an out-of-order issue scheme are rather complex,

which translates to significant delays that may challenge the cycle time [54] and the energy budget [27].

The complexity and energy consumption of the issue logic depends on a number of microarchitectural

factors, mainly the size of the issue queue and the issue width [52][54][62]. These two parameters have

experienced a continuous increase, and future projections suggest that this trend will continue in the near

future. Therefore, the delay and energy consumption of the issue logic is expected to be even more critical

in the future.

The main complexity of the issue logic comes from the associative search of the wake-up

mechanism [62]. The wake-up uses long wires to broadcast the tags (and data, sometimes) to the non-

ready instructions, and a large number of comparators that compare each broadcast tag with every source

operand's tag.

Besides, the issue logic is not easy to pipeline [54] since this may prevent the back-to-back

execution of some dependent instructions. Therefore, the issue logic may significantly impact the clock-

cycle time. At the same time, the issue logic becomes a significant consumer of energy [27]. Recently,

Gowan, Biro and Jackson [29] (Figure 5) reported that in an Alpha 21264 operating at the maximum

operating frequency the issue logic accounts for the 18% of the total energy consumption. This percentage

was even higher than the consumption of caches, which accounted just for 15% of the total.

To address this problem, various techniques have been proposed elsewhere. These techniques

attempt to partition the central issue logic by means of a clustered architecture where the assignment of

instructions to clusters is performed by either considering each instruction in turn [18] or managing larger

instruction units such as trace cache lines [59] or loop iterations [42]. Another approach is to rely on the

compiler to schedule the instructions, VLIW [25] architectures being an example of this approach.

We take a different approach in this thesis to tackle this problem. This approach is based on the

observed properties of typical dynamic instruction streams. We first note that a vast majority of the

register values generated by a program are read at most once. For instance, only about one out of four

values generated by the Spec95 benchmarks is read more than once [22]. This feature suggests that the

wake-up function could be implemented through a simple table that is indexed by the register identifier,

avoiding the associative search. The second observation is that the latencies of most instructions are

known (except for memory unit operations) and thus the time when a source operand will be available can

Power- and Performance- Aware Architectures 11

Complexity-Aware Issue Logics 11

be deterministically computed in most cases. This suggests an issue logic that schedules instructions

based on the availability time of their operands.

We present different implementations of the issue logic based on the above two concepts and show

that these schemes can significantly reduce the issue logic complexity with a minor impact on the IPC

rate.

2.2 Dependence Tracking Schemes

2.2.1 N-use Issue Scheme

The N-use scheme is designed upon the observation that most register values are read very few times. For

instance, only 22% of the values generated by the SpecInt95 and 25% of the FP register values produced

by SpecFP95 are read more than once [22]. The N-use issue scheme is based on a table (we refer to it as

N-use table) that, for each physical register, stores the first N instructions that read it in sequential order.

We refer to the parameter N as the associativity degree of the issue logic. The scheme works as follows:

After being decoded, each instruction is inserted in the issue logic –dispatched- in a different way

depending on the availability of its source operands:

• If all its operands are available, it is dispatched to a queue of ready instructions.

• If for each non-ready source operands there is a free slot in the N-use table in the corresponding

operand, the instruction is dispatched to the table entries corresponding to the non-ready

operands.

• If for any of the non-ready source operands there is no free slot in the N-use table entry

corresponding to the source operand, the dispatch of instructions is stalled until the operand

becomes ready. Alternatively, the issue logic can be extended with an issue queue where such

instructions are dispatched and later issued either in-order or out-of-order. This queue could be

small since it is used by few instructions.

Figure 6 shows a block diagram of the N-use issue scheme. This scheme consists of two main

hardware parts. The first one is a ready queue, which contains instructions that have all their operands

available. This queue issues the instructions to the functional units in-order. Instructions are dispatched to

this queue if they meet the conditions in the above paragraph (1). The second component (N-use table) is

a table that contains the first N instructions that read each physical register that is not available. The table

will have N times the number of physical registers (N x #Physical Regs). Instructions are dispatched to

this queue when they meet the conditions in the above paragraph (2). Since an instruction can have up to

two source registers, it can be stored into two different entries, if both operands are not available. Each

entry of the N-use table has an additional field that may point to another entry of the table. When an

12 Power- and Performance- Aware Architectures

12 Complexity-Aware Issue Logics

instruction is placed in two entries, each entry's pointer is set to point to the other entry. The pointer size

is:  gsphysicalreN ×2log .

When the execution of an instruction completes, its physical register identifier is used to index the

N-use table. If an instruction is found in the corresponding entry, then the pointer field is analyzed. If it

does not point to any other entry (i.e., the pointer's value is NIL), the instruction is forwarded to the ready

queue, since this indicates that this register was the only one that was not available for that instruction.

Otherwise, the pointer's value is used to access the other entry of the N-use table where the same

instruction resides, and the pointer of that other entry is set to point to NIL. When the physical register

corresponding to the entry is available, the instruction will be forwarded to the ready queue since the

pointer that the processor will find when it accesses this entry will be NIL.

In the basic N-use scheme described above, if a decoded instruction has a source operand that is not

ready and it does not correspond to the first N uses of such value, the decode and dispatch of instructions

is stalled until this operand becomes ready. Then, it is dispatched to the ready queue. Alternatively, the

basic scheme could be extended for increased performance with an extra buffer (I- buffer) shown in

Figure 6. Basically, it consists of a buffer (I-buffer) where the instructions that have non-ready operands

that are not in the first N uses of them are dispatched. The instructions from this I-buffer are issued to the

functional units after their operands are available. We have investigated two different organizations for

the I-buffer, with very different hardware cost and complexity: in-order and an out-of-order issue policies.

Note that both the basic scheme and the extended scheme where the I-buffer uses an in-order issue

policy do not require any associative search for the issue logic, which is a significant simplification with

respect to a conventional out-of-order issue mechanism.

Power- and Performance- Aware Architectures 13

Complexity-Aware Issue Logics 13

 Dispatch

Phy. Reg

N-Use Table

Ready Queue I-buffer

Figure 6: N-use issue logic design

In Figure 7, we can see an example of the use of the 2-use scheme for a sample code. We assume

that all five instructions can be dispatched in the current cycle and that registers P4, P5 and P6 are

available at this cycle. Since the two loads have their operands ready they are sent to the Ready queue.

When dispatching the ADD instruction, the processor detects that this operation does not have its

operands ready and both correspond to the first use of them. Thus, this instruction is steered to the N-use

table into the entries corresponding to its source registers. Furthermore, each entry is made to point to the

other one. As far as the multiply is concerned, it is the first use of P3 and the second of P1. Since this

implementation allows 2 instructions (uses) per register in the N-use table this instruction is kept in the 2-

use table. Regarding the store instruction, the operand P3 is not available and it is the second use of P3,

thus the instruction is stored in the corresponding N-use table entry. The pointer is set to NIL since P3 is

the only unavailable operand.

14 Power- and Performance- Aware Architectures

14 Complexity-Aware Issue Logics

 Dispatch

P1:

P2:

P3:

First-Use Table

Ready Queue

Optional

I-buffer

ADD P1, P2, P3

MUL P10,P1,P3

ADD P1, P2, P3

MUL P10,P1,P3

ST 0(P6), P3 NIL

LD P1, 0(P4)

LD P2, 0(P5)

Sample code:

LD R1, 0(R4)
LD R2, 0(R5)
ADD R1, R2, R3
MUL R10, R1, R3
ST 0(R6), R3

Code after renaming:

LD P1, 0(P4)
LD P2, 0(P5)
ADD P1, P2, P3
MUL P10, P1, P3
ST 0(P6), P3

Figure 7: Example of the 2-use scheme

In order to handle instruction squashing, for example in the case of a branch miss-prediction, each

entry in the N-use table will hold a tag that indicates the position of that instruction in the ROB (ReOrder

Buffer). When flushing the instructions, the tag of the misspredicted branch is sent to the N-use table. If

an entry of the N-Use table holds an instruction, the tag of that will be compared to the one of the

misspredicted branch. In case that the instruction has been fetched after the branch, that entry will be set

to invalid and thus squashed.

2.3 Prescheduling Schemes

Another approach to the issue logic is based on the fact that the latency of most instructions is known

when they are decoded. Thus, we could dynamically schedule the instructions following a similar

approach to that implemented by a static scheduler. In other words, the order in which instructions will be

executed is determined at the decode stage. The only problem this scheme has to face is the varying

Power- and Performance- Aware Architectures 15

Complexity-Aware Issue Logics 15

latency of the memory accesses. We consider two main approaches for memory accesses. The first one is

to assume that the latency is not known and thus, any instruction depending on a memory access will have

to wait to be scheduled till the latency of the access is known. The second alternative is to assume that

memory accesses have a given latency and thus, the instructions depending on the memory access can be

scheduled according to the assumed latency.

2.3.1 Distance Scheme

The Distance Scheme implements the first alternative described above. In this scheme, the instructions are

scheduled after decode according to its producers’ latencies. If any producer’s latency is unknown at this

time, the scheme provides an extra hardware that will hold the instructions until the cycle when their

operands will be available is known.

Figure 8 shows a block diagram of the Distance issue logic. This scheme consists of three main

blocks. First, we have a table that for each physical register contains the cycle when its value will be

produced, if it is known. This table is called the register-availability table.

 Dispatch

Register
Availability

Table

Phy. Reg

Wait Queue

head

Issue Queue

Figure 8: Distance scheme issue-logic

The second block is the Wait queue, which holds the instructions that do not know when one (or

both) of their operands will be produced. When an instruction in the Wait queue knows the availability

time of all its source operands, it is removed from the queue and placed in the Issue queue. Besides, the

16 Power- and Performance- Aware Architectures

16 Complexity-Aware Issue Logics

time when its destination register will be available is computed and it is used to update the register

availability table. The identifier of its destination register along with its availability time is then broadcast

to the Wait queue. Actually, the instructions placed in this queue will be those depending directly or

indirectly on a load which has not been completed yet, as it is explained in short.

The third block is the Issue queue. Instructions are issued always from this queue. For each

instruction in the queue, this block contains information regarding the cycle when the instruction will be

issued. Conceptually, it can be regarded as a circular buffer where for each entry there are as many

instruction slots as the issue width and each entry corresponds to one cycle. Thus, this queue contains the

instructions in the order that they will be executed and separated by a distance that ensures that

dependencies will be obeyed if at every cycle the processor issues the instructions in the head entry. Thus,

the issue logic for this queue is very simple: at each cycle the instructions in the head of the queue are

issued and the head pointer is increased by one. In Section 2.4.3, the depth of the Issue queue is

empirically determined. Instructions are placed on the issue queue only when the time when its source

operands will be available is known. The location in the issue queue is computed as follows. First, the

maximum of the availability time of its source operands (MaxSource) is calculated and then, the

difference between this value and the current cycle indicates the displacement with respect to the head

pointer. The instruction is placed on the first free slot starting at that cycle.

Once an instruction is placed on the issue queue, the time when its output register will be available

is computed as MaxSource plus the latency of the instruction plus the additional delay due to conflicts in

the issue queue with previously scheduled instructions. This value is used to update the register

availability table.

Loads from memory are handled in the following way. They are dispatched as any other instruction

but the entry in the register-availability table of the output register is set to unknown. Instructions that

depend on the load will be held in the Wait queue since the availability time of their operands is

unknown. When the load performs the write-back stage, it will update the entry in the register-availability

table with the current cycle and it will broadcast the destination register of the load and the current cycle

to the Wait queue. This may wake up some instructions that use the value produced by the load.

Similarly, these instructions will update the entry of its output register in the register-availability table and

wake up other instructions in the Wait queue, and so on.

2.3.2 Deterministic Latency Scheme

The other alternative presented in the prescheduling family is the Deterministic Latency Scheme. In this

case, the memory accesses are assumed to have a fixed latency (either hit or miss time in the first level

cache). Instructions are all scheduled in the Issue queue according to the predicted latencies.

Power- and Performance- Aware Architectures 17

Complexity-Aware Issue Logics 17

Nevertheless, the issue will be stalled when the instruction depending on the memory access has to issue

and the memory access has not finished yet. Alternatively, there could be a queue where the dependant

instructions are kept when they are not ready at the expected issue time.

Figure 9 shows a block diagram of the Deterministic Latency issue logic. This scheme consists of

three main blocks. First, we have a table where for each physical register it contains the cycle when its

value will be produced. This table is called the register-availability table (as in the Distance scheme).

 Dispatch
Register

Availability
Table

Phy. Reg

Delayed Issue
Queue

head

Issue Queue

Figure 9: Deterministic Latency issue logic

The second block is the Delayed Issue queue, which holds the instructions that were scheduled to

be issued too early, before their operands were ready. This queue has a complexity similar to that of a

traditional instruction issue queue since every time an instruction finishes its execution, its physical

destination register is broadcast to all entries of this queue. Any entry with a matching source operand

takes note of its readiness and will be issued the next cycle that there is an available issue slot. The third

block is the Issue queue, which has the same structure and functionality as described in the previous

section for the Distance scheme.

Loads from memory are handled in the following way. They are dispatched as any other instruction

and they are assumed to have the latency of a hit in the first level cache (alternatively, they could have the

latency of a second level cache hit). Instructions that depend on the load read the output time and are

scheduled according to it. Nevertheless, it can happen that an instruction depending on a memory access

is not ready to execute when it is at the head of the issue queue since the memory access has not finished.

18 Power- and Performance- Aware Architectures

18 Complexity-Aware Issue Logics

For example, an instruction depending on a load may assume that the memory value will be available 1

cycle after the load is issued. If the load misses in the first level cache, the data will not be ready at that

time so the instruction will have to be taken apart (kept in the Delayed Issue queue) or the issue will have

to be stalled. In this chapter, we study both alternatives and investigate the trade-off between the size of

the delayed issue queue and performance. Note that since stores do not produce any output register the

scheduling is not affected by the store latency.

Instructions are issued first from the Delayed queue, and then from the Issue queue. Any instruction

that cannot be issued from the Issue queue head -either because its operands are not ready or because the

instructions of the Delayed queue took its issue slot- will be kept in the Delayed queue. If the Delayed

queue is full and there are some instructions in the Issue queue that should move into the Delayed queue,

the issue will be stalled till the "delayed" instructions fit in the Delayed Issue queue.

The technique used for instruction squashing is similar to that presented for the N-Use scheme in

Section 2.2.1. In this case, the tags will be held in the Issue queue. No work needs to be done in the

Register-Availability Table since during the squashing the physical registers will be deallocated (and thus

not referenced). Next time the physical register is assigned (as an output register of a new operation) the

availability time will be set by the new instruction.

2.4 Performance Evaluation

2.4.1 Experimental Framework

We have used a cycle-based timing simulator based on the SimpleScalar tool set [10] for performance

evaluation. We extended the simulator to include register renaming through a physical register file and the

issue mechanisms described in this chapter. See Table 1 for the main architectural parameters of the

machine. We used the programs from the Spec 95 suite. All the benchmarks were compiled with the

Compaq-Alpha C compiler with the -O5 optimization flag. For each benchmark, 100 million instructions

were run after skipping the first 100 million. Performance results are reported as the harmonic mean for

the whole benchmark suite. For comparison purposes, an out-of-order and an in-order scheme have been

also evaluated. The next subsections present performance figures for all these schemes.

Power- and Performance- Aware Architectures 19

Complexity-Aware Issue Logics 19

Table 1: Machine parameters

Parameter Configuration

Fetch Width 4 instructions

I-cache
64KB, 2-way set-associative. 32-byte lines, 1-cycle hit

time, 6-cycle miss penalty.

Branch Predictor

Combined predictor of 1K entries with a Gshare with

64K 2-bit counters, 16 bit global history, and a

bimodal predictor of 2K entries with 2-bit counters.

Decode/Rename width 4 instructions

Max. in-flight instructions

(RUU)
64

Retire width 4 instructions

Functional units 3 intALU + 1 int mul/div3 fpALU + 1 fp mul/div

Issue mechanism
4 instructions

Out-of-order Window based

D-cache L1

64KB, 2-way set-associative. 32-byte lines, 1-cycle hit

time, 6-cycle miss penalty

3 R/W ports

I/D-cache L2

256 KB, 4-way set associative, 64-byte lines, 6-cycle

hit time.

16 bytes bus bandwidth to main memory, 16 cycles

first chunk, 2 cycles interchunk

Physical registers 96

2.4.2 N-Use Scheme

Figure 10 shows the IPC of the basic N-use mechanism (i.e. without an I-buffer) in comparison to an in-

order issue and an out-of-order issue. We can see that the first-use scheme performs better than an in-

order issue mechanism but significantly worse than an out-of-order issue scheme. Actually, what happens

is that the out-of-order scheme can find instructions ready to execute further ahead in the code sequence

than the N-use scheme since the latter stalls the dispatch much more frequently. The first-use scheme

performs –in terms of IPC- 38% better than the in-order scheme but it slows down the out-of-order

machine by a 40%. For bigger associativities of the N-use table, the performance is very close to that of

an out-of-order mechanism since with this configuration the issue is stalled less frequently due to the

bigger capacity of the N-use table.

20 Power- and Performance- Aware Architectures

20 Complexity-Aware Issue Logics

0

0,5

1

1,5

2

2,5

In-Order 1-Use 2-Use 4-Use 8-Use Out-of-
Order

IP
C

 (H
-m

ea
n

 S
p

ec
95

)

Figure 10: Performance of the N-use scheme (without I-buffer)

When the N-use scheme is extended with a small out-of-order I-buffer (see Figure 6) the

performance of this scheme significantly increases. Figure 11 shows the evolution of the IPC when the

size of the I-buffer varies. We can see that for sizes of the I-buffer of 8 elements or more, the N-use

scheme performs almost at the same level as the out-of-order issue mechanism. When reducing the I-

buffer size further, the overall effect depends on the associativity of the N-use table. The higher the

associativity, the minor the effect of the I-buffer size is. For a 4-entry I-buffer, the performance

degradation is very low whereas without a I-buffer, the degradation varies from 2.5% and 32% depending

on the associativity level.

0

0,5

1

1,5

2

2,5

0 2 4 8 16 32 64

instr. in I-buffer (out-of-order)

IP
C

 (
H

-m
ea

n
 S

p
ec

95
)

Out-of-order

1-use (out-of-order)

2-use (out-of-order)

4-use (out-of-order)

8-use (out-of-order)

In-order

Figure 11: Evolution of the IPC for the N-use scheme for different sizes of an out-of-order I-buffer

In particular, the 2-use scheme with a 2-entry I-buffer achieves an IPC comparable (~4% slow-

down) to that of an out-of-order scheme and it reduces the associative look-up from 64 to 2 entries (32

Power- and Performance- Aware Architectures 21

Complexity-Aware Issue Logics 21

times smaller). This restricted associative search will certainly result in a shorter issue delay which may in

turn influence the clock-cycle time.

Alternatively, we could get rid of any associative search logic by implementing an in-order issue

for instructions in the I-buffer. The performance of this alternative is shown in Figure 12.

We can see in Figure 12 that this scheme implies a decrease in IPC with respect to the out-of-order

I-buffer configuration (see Figure 11) for the first-use scheme whereas it is rather low for higher degrees

of associativity. It is interesting to analyze the impact of the size of the in-order I-buffer on performance.

A bigger I-buffer reduces the stalls in the dispatch. However, since instructions from the I-buffer are

issued in order, once an instruction is placed on this buffer it must wait until all previous instructions have

been issued. However, sometimes it is better to stall the dispatch for a few cycles and then issue the

instruction to the N-use table, from where it can issue out of order. This trade-off explains why the IPC

increases when the I-buffer size increases, but beyond a certain size (8 entries), the benefits of a larger I-

buffer are more than offset by its drawbacks, which results in a slight decrease in performance. This effect

is minimized by the associativity of the N-use table. For smaller values of N the effect is more visible.

Overall, the performance of the N-use scheme is quite close to that of an out-of-order scheme for a small

I-buffer and associativities higher than 1. For associativity 1 the performance is somewhat lower (about

12% lower on average) for any I-buffer size.

0

0,5

1

1,5

2

2,5

0 2 4 8 16 32 64

instr. in I-buffer (in-order)

IP
C

 (H
-m

ea
n

S
pe

c9
5)

Out-of-order

1-use (inorder)

2-use (inorder)

4-use (inorder)

8-use (inorder)

In-order

Figure 12: Performance of the N-use scheme for different sizes of an in-order I-buffer

2.4.3 Distance Scheme

Figure 13 shows the IPC of a basic implementation of the Distance scheme in comparison with an in-

order issue approach and an out-of-order issue mechanism. This basic implementation does not require

22 Power- and Performance- Aware Architectures

22 Complexity-Aware Issue Logics

any associative search since it assumes a zero-entry Wait queue (see Figure 8). We can see that the new

mechanism performs better than an in-order machine (85% speed-up) and not very far from an out-of-

order machine (10% slow-down).

0

0,5

1

1,5

2

2,5

In-order Distance Out-of-order

Type of Issue Logic

IP
C

 (
H

-m
ea

n
S

pe
c9

5)

Figure 13: Performance of the basic Distance scheme (without Wait queue)

When a full implementation of the Distance scheme is considered, the IPC is significantly

improved. Figure 14 shows the evolution of the IPC when the size of the Wait queue varies. We can see

that from 4 to 64 elements in the associative part of the mechanism (Wait queue) the scheme performs

almost at the same level (~4% slow-down) as the out-of-order approach.

0

0,5

1

1,5

2

2,5

0 2 4 8 16 32 64

instr. in Wait Queue

IP
C

 (H
-m

ea
n

S
pe

c9
5)

Out-of-order

Distance

In-order

Figure 14: Performance of the Distance scheme for different Wait queue sizes

We have empirically determined that the maximum depth that the Issue queue of the Distance

scheme requires in order not to cause any stall is 4 entries of 4 instructions each and, on average, it is

around 2 entries (16 instructions to be issued in this or the following cycle) for the SpecInt95 benchmarks

Power- and Performance- Aware Architectures 23

Complexity-Aware Issue Logics 23

and a little bit larger (8 entries) for FP benchmarks in our experimental framework (see Section 2.4.1 for

the details).

2.4.4 Deterministic Latency Scheme

Figure 15 shows the IPC of a basic implementation of the Deterministic Latency scheme when memory

instructions are scheduled assuming a 1-cycle -DL1- and 6-cycle -DL6- memory access latency. An in-

order issue approach and an out-of-order issue mechanism are also shown for comparison. This basic

implementation does not require any associative search since it assumes a zero-entry Delayed Issue queue

(see Figure 9). We can see that the DL mechanism performs much better than an in-order machine (65%

and 84% speed-up for the DL1 and DL6, respectively) and not very far from an out-of-order machine

(10% slow-down for the DL6).

0

0,5

1

1,5

2

2,5

In-order DL 1 DL 6 Out-of-orderIP
C

 (
H

-m
ea

n
 S

p
ec

95
)

Figure 15: Performance of the basic Deterministic Latency scheme (without a Delayed Issue queue)

When a full implementation of the Deterministic Latency scheme is considered, the IPC is

significantly improved. Figure 16 shows the evolution of the IPC when the size of the Delayed queue

varies. The size of the queue hardly affects the performance of the DL6 scheme. Although the

performance grows up when the size increases, there is a point where the extra cycles spent for every

access (this scheme assumes that memory accesses take 6 cycles) limit the maximum performance

achievable. As far as the DL1 is concerned, we can see that with 16 to 64 elements in the associative part

of the mechanism (Delayed Issue queue) the scheme performs almost at the same level (~4% slow-down)

as the out-of-order approach. For smaller sizes, the performance goes down significantly.

24 Power- and Performance- Aware Architectures

24 Complexity-Aware Issue Logics

0

0,5

1

1,5

2

2,5

0 2 4 8 16 32 64

instr. in Delay Queue

IP
C

 (
H

-m
ea

n
S

pe
c9

5)
Out-of-order

DL 1

DL 6

In-order

Figure 16: Performance of the Deterministic Latency scheme for different Delayed Issue queue
sizes

We have empirically determined that the maximum depth that the Issue queue of the Deterministic

Latency scheme requires in order not to cause any stall is 60 entries of 4 instructions each and, on

average, it is around 18 entries for the Spec benchmarks for the 1-cycle memory access latency

configuration (45 for the DL 6). Note also that for integer codes the size of the Issue queue is smaller due

to the shorter latencies of the functional units.

2.4.5 N-Use vs. Latency

Figure 17 shows the performance of both the N-use and the Deterministic Latency schemes when varying

the size of the associative hardware. We can see that when there is no associative buffer, the

Deterministic Latency scheme and the 4-Use scheme perform at the same level. Besides if a small

associative buffer (2 or 4 entries) is feasible, the N-use scheme performs better. And, in this case, the

performance achieved is very close to that of an out-of-order mechanism.

Power- and Performance- Aware Architectures 25

Complexity-Aware Issue Logics 25

0

0,5

1

1,5

2

2,5

0 2 4 8 16 32 64

instr. in associative buffer

IP
C

 (
H

-m
ea

n
 S

p
ec

95
) Out-of-order

1-use (out-of-order)

2-use (out-of-order)

4-use (out-of-order)

Distance

DL 1

DL 6

In-order

Figure 17: Performance of the three proposed schemes

Thus, we can conclude that if we can afford a small associative buffer (around 2-4 entries), the N-

use scheme is very competitive in terms of IPC when compared to a fully out-of-order mechanism and it

has the potential advantage of reducing the cycle time. If we want to completely avoid any associative

search, both the Deterministic Latency scheme without the Delayed queue and the N-Use scheme with a

moderate associativity in the N-use table with an in-order I-buffer have about the same IPC, which is

significantly higher than that of an in-order scheme (~84%) and not far from the performance of an out-

of-order mechanism (~10%).

2.4.6 Comparison with the FIFO-Based Scheme

In this Section, we will compare the proposed mechanisms to the FIFO-based scheme proposed by

Palacharla et al.[54]. In Palacharla's scheme instructions are dispatched to several FIFO queues depending

on the following facts:

• If the last instruction of a queue produces one of the registers of the instruction being dispatched,

this instruction is sent to that queue.

• Otherwise it is sent to an empty FIFO queue. If there are no queues available, the dispatch is

stalled until this instruction has an empty FIFO.

Figure 18 shows the performance of the FIFO scheme in comparison to the N-use scheme and the

Deterministic Latency scheme. For the FIFO-based scheme, the X-axis corresponds to the number of

FIFO queues (note that the zero position means zero entries in the extra buffer for the DL and N-use

schemes and one single FIFO for the FIFO-based mechanism). The number of FIFO queues determines

26 Power- and Performance- Aware Architectures

26 Complexity-Aware Issue Logics

the degree of associativity of the issue logic since instructions of different queues are issued in any order

whereas those in the same queue are issued in-order. The number of entries in the FIFO queues for each

configuration is determined by the number of entries in the instruction window (64) divided by the

number of queues. We can see that the performance of all the schemes is similar for a degree of

associativity of 16 or more (except for the Deterministic Latency that assumes 6 cycles for the memory

accesses). When reducing the associativity the FIFO scheme reduces dramatically its performance due to

lack of empty FIFO queues when dispatching.

0

0,5

1

1,5

2

2,5

0 2 4 8 16 32 64

instr. in associative buffer

IP
C

 (
H

-m
ea

n
 S

p
ec

95
) Out-of-order

2-use (out-of-order)

4-use (out-of-order)

Distance

DL 6

FIFO-based

In-order

Figure 18: Performance of the FIFO scheme together with the N-use and the Deterministic Latency

In conclusion, the N-use scheme and the Deterministic Latency scheme have a much better

performance than the FIFO-based scheme for low degrees of associativity.

2.4.7 Energy Savings

Energy consumption statistics have been taken from a modified version of the Wattch framework [8]. The

tool was modified to implement the techniques presented in this chaper. Processor parameters –as used

through section 2.4- can be found in Table 1 in page 19. Energy savings are above 8% for most of the

configurations. Figure 19 shows the energy savings of a processor (total processor power) with the

proposed mechanisms over an out-of-order architecture (base architecture). The configurations with

smaller structures (the ones with a small out-of-order queue) can further reduce the energy spent and they

go beyond the 10% savings mark.

Power- and Performance- Aware Architectures 27

Complexity-Aware Issue Logics 27

0%

2%

4%

6%

8%

10%

12%

14%

0 2 4 8 16 32 64

P
er

ce
n

ta
g

e
o

f s
av

in
g

s

Distance

DL 1

DL 6

1-use

2-use

4-use

Figure 19: Evolution of the energy savings for the proposed mechanisms

Some of the schemes studied degrade performance. In this sense, energy-efficiency has been

studied and it is shown in Figure 20 as the benefit on the energy-delay2 product. Although all the

mechanisms reduce the energy requirements (as it is shown in Figure 19), when considering energy-

efficiency most configurations are more energy-efficient than the out-of-order scheme. Since performance

is degraded in many of the schemes this turns out in energy-efficiency levels below that of an out-of-order

architecture as it is the case for the configurations without extra buffer. Since the energy-delay2 product

gives more importance to delay than to energy reduction, the performance of the schemes is very

important when considering its energy efficiency. In this sense, just the schemes that perform close to the

out-of-order architecture (the ones that have big extra buffers) can be more efficient since their

performance slow down is minimal and while keeping most of the energy-savings of these schemes.

-60%

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

0 2 4 8 16 32 64

P
er

ce
n

ta
g

e
o

f s
av

in
g

s

Distance

DL 1

DL 6

1-use

2-use

4-use

Figure 20: Evolution of the energy-delay2 product for the proposed mechanisms

28 Power- and Performance- Aware Architectures

28 Complexity-Aware Issue Logics

2.5 Related Work

S. Weiss and J.E. Smith [73] designed an issue logic similar to the basic first-use mechanism explained in

Section 2.2.1. In their work, they did not implement an I-buffer and the first use check was done through

a tag mechanism. As shown in Section 2.4.2 the mechanism suffers significant performance degradation

when the I-buffer is not present.

S. Palacharla and J.E. Smith [54] presented an approach based on implementing the issue queue

through several FIFOs so that just the heads of the FIFOs need to be considered for issuing. Section 2.4.6

compares this proposal to the ones in this thesis.

S. Öner and R. Gupta [52] proposed a mechanism which tried to chain the instructions according to

the dependences among them. This scheme builds the data dependence graph dynamically and limits the

number of instructions that each instruction can wake up. In their study they assumed that all the FUs

latencies are known, which simplifies the issue logic.

A drastic approach to reduce the complexity of the issue logic is to use in-order issue, such as

VLIW architectures [25]. In this case the scheduling is done at compile time. This is the approach that

reduces most the issue logic complexity but, on the other hand, it is not as flexible as a dynamic scheme

since not all the information is available at compile time (e.g. memory access latencies).

Michaud et al. [43] presented a prescheduling technique similar in concept to the proposed

prescheduling techniques presented in this chapter. In their case, they did not work directly on the issue

logic but on preparing (prescheduling) the instruction for that stage. A deeper pipeline was used and thus

more complex sturctures could be used.

Henry et al. [31] presented several circuit-level techniques for reducing the complexity of the issue

logic. Their approach is orthogonal to ours and thus both could be combined nicely.

More general approaches to reduce the complexity of the issue logic and, in general, of the

microarchitecture are clustering and multithreading. These approaches try to reduce the complexity of the

issue logic by partitioning it into several parts. The cluster approach [13][18][24][33][54] partitions the

datapath whereas in the multithreading approach [66][73], each thread may have its own issue logic. Both

architectural approaches are orthogonal with the research conducted in this work.

2.6 Conclusions

Out-of-order issue is a key component for high-performance in non-numeric applications. For instance,

we have observed that for the SpecInt95, an out-of-order implementation achieves an IPC (instruction

committed per cycle) that is about 2.5 times higher than that of a similar processor with an in-order issue

scheme. This difference could be reduced by a compiler that was aware of the underlying in-order issue

Power- and Performance- Aware Architectures 29

Complexity-Aware Issue Logics 29

scheme and generated a more optimized code for this case, but we may still expect significant differences

since the performance of instruction scheduling for non-numeric codes is significantly constrained by the

small size of basic blocks and the large percentage of ambiguous memory references.

However, implementing a fully out-of-order issue scheme in the way that current microprocessors

do, is very complex and energy-demanding, which poses significant constraints to its scalability. In this

chapter we have proposed alternative implementations of an out-of-order issue scheme that are much

simpler and retain most, if not all, the ability of the fully out-of-order mechanism to exploit instruction-

level parallelism.

In particular, the N-use scheme does not require any associative search and provides a performance

very close the out-of-order scheme for N equal to 4. The cost of this scheme is a table with as many

entries as number of physical registers but this table does not require any associative search, i.e., it is

indexed by the operand register identifiers). Other alternatives are the prescheduling schemes. Both the

Distance scheme and the Deterministic Latency scheme provide a performance very close to the out-of-

order processor and at the same time they constrain the associative searches to a small queue of 8-16

entries.

At the same time, the schemes proposed can be more energy-efficient than a conventional out-of-

order issue logic while using smaller amounts of associative structures. These small structures reduce the

impact on performance that the schemes introduce and while not adding significant extra power; can yield

better results when considering both energy and performance.

30 Power- and Performance- Aware Architectures

30 Complexity-Aware Issue Logics

Power- and Performance- Aware Architectures 31

Value Compression Principles 31

Chapter 3

Value Compression Principles

In this chapter, we show that most of the values that flow through the pipeline do not need the maximum

word-width to be represented. We then show how value compression can reduce the number of bits that

flow through the pipeline. In the forthcoming chapters, value compression will be used to design ultra-

low power architectures and to devise compile-time techniques to assist in reducing energy consumption

and power dissipation.

“The most exciting phrase to hear in science, the one that heralds the most
discoveries, is not ‘Eureka!’, but ‘That's funny...’”
 Isaac Asimov

32 Power- and Performance- Aware Architectures

32 Value Compression Principles

3.1 Motivation

As the name suggests, value compression reduces the number of bits used for representing a given value.

In this work, we focus on compression of non-floating point data; extensions for floating point is left for

further research.

Value compression can be used in several structures that make up a processor’s datapath. These

include data and instruction caches, integer functional units, register files, and branch predictors. Figure

21 contains data that indicates the compressibility of data values read/written in the register file as SpecInt

benchmarks are run on a 64-bit Compaq Alpha processor. This distribution shows a large potential for the

value compression mechanisms because a large percentage of the values are narrow. For example, 44%

have only one significant byte (values range from -128 to 127) and 52% fit in two bytes. The peak at

40bits is due to the memory addresses which are typically 5 bytes long in these binaries.

0%

10%

20%

30%

40%

50%

8b 16b 24b 32b 40b 48b 56b 64b

P
er

ce
n

ta
g

e
o

f o
cu

rr
en

ce

¡

Figure 21: Register data size distribution for the SpecInt95 on a 64-bit microarchitecture

A good value compression method has to take advantage of this data distribution, and, at the same

time, incur in a low overhead when compressing and decompressing. Thus, a good compression scheme

should strike a balance between the compressibility of the values and the extra performance and energy

costs of the mechanism.

Three basic methods of value compression have been considered in this work. The first, which we

will call size compression, compresses values according to their size (i.e. number significant bytes in 2’s

complement notation) [7][39][51][52][60]. With size compression, one or more format bit(s) indicate the

number of significant bytes. The second mechanism uses one format bit per byte to indicate whether the

byte is zero or not [71]. This method, which we call zero compression, can take advantage of zero bytes in

any position, not just in high order positions as with size compression. The last mechanism is the

significance compression introduced in this chapter which is a superset of size-compression.

Power- and Performance- Aware Architectures 33

Value Compression Principles 33

3.2 Significance Compression

The basic technique proposed for representing data is to tightly compress data bits that do not hold

significant data. For example, a small two's complement integer (positive or negative) has only a few

numerically significant low-order bits and a number of numerically insignificant higher order bits (all

zeros or all ones).

In principle, one could consider significance at bit-level granularity, i.e. store and operate on

exactly the numerically significant bits and no more. However, implementations are likely to be simpler

and more efficient overall if a coarser granularity is used. Consequently, we primarily consider byte

granularities and focus on the significant bytes rather than bits. Byte granularity is rather arbitrarily

chosen, but it seems to be a good compromise of implementation complexity and activity savings. In

general, one could consider non-power-of-two bit sequences and dividing words into sequences of

different lengths (as shown in Chapter 5). Because the lowest order data byte is very often significant, we

will always represent and operate on the low order byte. Then we will use a very small number of bits (2

or 3) to indicate the significance of the other 3 bytes (of a 32 bit word).

A simple encoding (which we named size compression) is to add two extra extension bits to encode

the total number of bytes that are merely sign extensions. For example, the 32-bit number 00 00 00 04 (in

hexadecimal) can be encoded as - - - 04 : 11. This is a mixed hexadecimal/binary notation that uses

hexadecimal for significant (represented) bytes, a dash for the insignificant (non-represented) bytes, and a

binary pattern after the colon for the values of the extension bits. In the above example, the only

significant byte is 04 with three sign extension bytes, so the extension bits encode a binary three. This

simple method also works for two’s complement negative numbers if it is assumed that the high order

significant bit of the most significant data byte is extended. For example, the number FF FF F5 04 can be

represented as - - F5 04: 10. I.e. it has two significant bytes, and the most significant bit of these two

bytes is extended to fill out the full 32-bit number. This encoding has an overhead of two bits per 32-bit

word (about 6 percent).

After inspecting commonly occurring data/address patterns, it is apparent that there are other, easily

compressible values. In these cases there are some "internal" bytes that are all zeros or all ones, and these

bytes are in a sense insignificant (although we abuse the meaning of "significance" somewhat). An

important case occurs for memory addresses in upper memory. These addresses often have nonzero upper

bits, nonzero lower bits, but zero bits in between. For example, the data segment base of our experimental

framework (see section 5.2.1) is set at address 10 00 00 00, thus a variable may be located at address 10

00 00 09.

To handle these cases, we propose the significant compression scheme with three extension bits

(approx. 9% overhead). In this scheme, the extension bits apply on a per-byte basis. Each extension bit

34 Power- and Performance- Aware Architectures

34 Value Compression Principles

corresponds to one of the upper three data bytes (as before, the least significant byte is always fully

represented). If an extension bit is set to one, it indicates that the previous byte position is sign extended;

if the extension bit is zero, it indicates the corresponding byte is significant. Consequently, the earlier

example 10 00 00 09 is represented as 10 - - 09: 011 . As a more complex example, FF E7 00 04 is

represented as - E7 - 04 : 101 The three-bit extension scheme allows for eight different patterns of

significant/insignificant bytes (assuming the low order byte is always significant).

3.3 Value Compression for Ultra-Low Power Microarchitectures

Value compression can be applied to any microarchitecture, in this thesis we have made a separation

between ultra-low power microarchitectures and high-performance ones. In this section we analyze the

potential of the value compression methods for the ultra-low power segment. In this scenario, the typical

applications run are media processing ones. Thus, the comparison will be done using the Mediabench

benchmarks [37] and a 32-bit microarchitecture.

A simple, trace driven study was run to determine the relative frequency of occurrence of each

value size. The benchmarks were run under an extended version of the sim-fast simulator of the

Simplescalar framework [10]. Figure 22 shows the distribution of the run-time values manipulated by the

register file, the ALU and the data cache. For the three compression schemes, the structure that has

narrower values is the ALU since in many cases immediate values are used. On the other hand, the data

cache is the structure that has wider data. The data cache has wider data since each memory instruction

sends (and sometimes loads and stores) addresses and both address and data values are considered in

these figures. All three compression mechanisms perform in a similar way in each structure. On one hand,

significance compression achieves the smallest number of wide (32-bit) values for the register file and the

ALU. On the other hand, zero compression reduces further the number of 32-bit values for the data cache.

This may indicate that many addresses contain zero bytes that are not a sign extension of previous ones

(otherwise significance compression would be as effective as zero compression). It is less probable that it

may be due to data values since these are also considered in the register file and, in this structure,

significance compression achieves better performance.

Overall, the average size for any value manipulated by the register file, the ALU and the data-cache

is showed in Figure 23. The overall average size column is the arithmetic mean of all the accesses to the

structures just mentioned (not the average of the previous columns). Overall, significance compression

and zero compression achieve a similar compression rate on average. Nevertheless, significance

compression needs two less extra-bits per word to indicate the format. Thus, significance compression

might be a slightly better value compression method in these 32-bit architectures.

Power- and Performance- Aware Architectures 35

Value Compression Principles 35

Figure 22: Distribution of run-time values for the several pipeline structures

0

5

10

15

20

25

30

REG-FILE ALU D-CACHE Overall avg size

N
u

m
b

er
 o

f
b

it
s Size compression

Significance compression

Zero Compression

Figure 23: Average operand size for several pipeline structures

The exploration of value compression for ultra-low power microarchitectures continues in next

chapter where several pipeline organizations are presented that take into account the compressability of

the values by using significance compression.

(a) Size Compression

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

REG-FILE ALU D-CACHE

P
er

ce
n

ta
g

e
o

f O
cc

u
rr

en
ce

32b

24b

16b

8b

(b) Significance Compression

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

REG-FILE ALU D-CACHE

P
er

ce
n

ta
g

e
o

f
O

cc
u

rr
en

ce

32b

24b

16b

8b

(c) Zero Compression

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

REG-FILE ALU D-CACHE

P
er

ce
n

ta
g

e
o

f
O

cc
u

rr
en

ce

32b

24b

16b

8b

36 Power- and Performance- Aware Architectures

36 Value Compression Principles

3.4 Value Compression for High-Performance Microarchitectures

The previous section has showed that value compression can reduce the average number of bits needed

for the values manipulated through the pipeline. In this section we analyze the potential of the same value

compression methods for high-performance microarchitectures. In this scenario, the typical applications

run are modeled through Spec Integer 95 and a 64-bit microarchitecture (i.e. Compaq Alpha). The study

was conducted through a trace driven simulation to determine the relative frequency of occurrence of

each value size using the Simplescalar framework [10].

Figure 24 shows the distribution of the run-time values for the register file, the ALU and the data-

cache (as in the previous section). In any of the three compression methods, most of the data is either 8-

bit wide or 40-bit wide (i.e. memory addresses). It is interesting to see that in the case of the zero

compression, the number of 64-bit values is significantly higher than in the other cases. This is due to the

large percentage of negative values (values that have the upper bits set to 1). Both size and significance

compression can compress these negative values effectively but zero compression. Overall, the average

access size for each of these structures is shown in Figure 24. In this case, significance and size

compression perform better than zero compression.

Figure 24: Distribution of run-time values for the several pipeline structures with size compression

(a) Size Compression

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

REG-FILE ALU D-CACHE

P
er

ce
n

ta
g

e
o

f
O

cc
u

rr
en

ce

64b

56b

48b

40b

32b

24b

16b

8b

(b) Significance Compression

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

REG-FILE ALU D-CACHE

P
er

ce
n

ta
g

e
o

f
O

cu
rr

en
ce

64b

56b

48b

40b

32b

24b

16b

8b

(c) Zero Compression

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

REG-FILE ALU D-CACHE

P
er

ce
n

ta
g

e
o

f
o

cu
rr

en
ce

64b

56b

48b

40b

32b

24b

16b

8b

Power- and Performance- Aware Architectures 37

Value Compression Principles 37

0

5

10

15

20

25

30

REG-FILE ALU D-CACHE Overall avg size

N
u

m
b

er
 o

f
b

it
s Size compression

Significance compression

Zero Compression

Figure 25: Average operand size for several pipeline structures

In Chapter 5, several hardware and software techniques are proposed for high-performance

microarchitectures to take advantage of the compressibility of the values (as Figure 25 shows, although 64

bits are reserved for each value manipulated in the datapath, just around 23 bits are necessary –on

average).

38 Power- and Performance- Aware Architectures

38 Value Compression Principles

Power- and Performance- Aware Architectures 39

Ultra-Low Power Microarchitectures 39

Chapter 4

Ultra-Low Power Microarchitectures

Power requirements are becoming an increasing headache among processor designers. In the ultra-low-

power architectures, simple pipelines are implemented. We show how a significance compression method

is integrated into a 5-stage pipeline, with the extension bits flowing down the pipeline to enable pipeline

operations only for the significant bytes. Consequently register, logic, and cache activity (and dynamic

power) are substantially reduced.

“Necessity is the mother of invention”
Plato

40 Power- and Performance- Aware Architectures

40 Ultra-Low Power Microarchitectures

4.1 Introduction

There are many microprocessor applications, typically battery-powered embedded applications, where

energy consumption is the most critical design constraint. In these applications, where performance is less

of a concern, relatively simple RISC-like pipelines are often used [45][57]. As shown in Chapter 1, in

current CMOS technology, most energy consumption occurs when transistor switching or memory access

activity takes place. Consequently, an important energy conservation technique is to "gate off" portions of

logic and memory that are not actively being used.

Recently [7] it was proposed that certain operand values could be used to gate off portions of

execution units rather than basing logic gating decisions entirely on operation types. In particular,

arithmetic involving short-precision operands only needs to be performed on the (relatively few)

numerically significant bits. Operations involving insignificant bits (typically leading zeros or ones) can

either be avoided or can be computed more simply than with the normal functional unit.

We generalize the notion of operand gating to all stages of the pipeline. The key principle is the use

of a small number of extension bits appended to all data and instructions residing in the caches, registers,

and functional units. In Figure 26, the extension bits are shown along the bottom of a basic pipeline.

These bits correspond to portions of the datapath, and they flow through the pipeline to gate-off unneeded

energy-consuming activity at each stage. New extension bit values are generated only when there is a

cache line filled from main memory (although they could also be maintained in memory) and when new

data values are produced via the ALU. The points where extension bits are generated are indicated in

Figure 26 by circled "G"s.

Figure 26: Basic pipeline

For the instruction caches, extension bits allow a simple form of compression targeted at reducing

instruction fetch activity, rather than reducing the number of bits in the program's footprint. For other

Cache fill

Instruction
Cache

ALU

Data
Cache

Register
File

exten exten exten exten G G

G
Cache

fill

Writeback

Power- and Performance- Aware Architectures 41

Ultra-Low Power Microarchitectures 41

datapath elements, they enable a form of compression where memory structures actively load and store

only useful (significant) operand bytes. For arithmetic and logical operations, the extension bits enable

operand gating techniques similar to those proposed in [7].

Given that only significant bytes require datapath operations and storage, pipeline hardware can be

simplified by using byte-serial implementations, where the datapath width may be as narrow as one byte,

and a pipeline stage is used repeatedly for the required number of significant bytes. Although there are

many alternative implementations with different degrees of parallelism, in all of them there is some

serialization in the pipeline. In particular, low-order byte(s) and extension bits are first accessed and/or

operated on; then additional bytes may be accessed and/or operated on if necessary. We describe and

evaluate several pipeline implementations of this type.

4.2 Techniques for Reducing Activity Levels

In this section, we develop methods for reducing memory and logic activity for each pipeline stage.

Because activity in the simple pipeline depends primarily on the data values and instructions, we first

undertake a trace-driven study to determine the required activity for each of the major pipeline operations.

Then, in later sections, we propose and study pipelined implementations that come close to achieving the

minimum "required" activity levels.

This work is based on a simple 5-stage pipeline with in-order issue as is often used for low power

embedded applications. We consider the 32-bit MIPS instruction set architecture (ISA) and focus on

integer instructions and benchmarks -commonly used in the very low power domain.

4.2.1 PC Increment

Incrementing the PC is one of the operations at the very beginning of the pipeline. When incrementing the

program counter, we do not literally append extension bits to the operands. One of the operands is always

+1 (the PC is word resolution), so it is known to have only one significant bit. The PC, on the other hand,

is held to full 30-bit precision (the two least significant bits are zero). The PC increment is performed

byte-serially to reduce activity. In particular, we first increment only the low order byte. If a carry out is

produced, the next byte is incremented on the next cycle, etc. If a carry out is not produced at any stage,

no additional byte additions need to be done.

This method very often saves adder and PC latching activity for higher order bytes, but it can lead

to some performance loss in the uncommon cases when there is a carry beyond the low order byte, and

instruction fetch is temporarily stalled while additional byte additions are performed. A brief analysis

sheds some light on this tradeoff. In general, one can consider a block-serial implementation where the

42 Power- and Performance- Aware Architectures

42 Ultra-Low Power Microarchitectures

block size is not necessarily a byte. The size of the block determines the performance and the activity

savings. Performance is maximized by the biggest block size (i.e. 30 bits), but the activity savings are

null. On the other hand, a smaller block may have a slightly lower performance but may produce

significant activity savings.

If the block size is N bits, and we assume that at a random point in time all instruction addresses

have the same probability, then we can calculate the probability that i stages (each of size N) are required

to compute PC+1. We refer to this probability as P(i,N). The value of P(i,N) for a 30 bit PC can be

calculated as:

Ni

N
NiP

*2

12
),(

−
= 1

30
..1 −



=

N
i

N
NN

N
P

*1
30

2),
30

(








−





=



 



=

N
i

30

We can then compute the required activity (measured on average number of bits operated on) as

 ∑






=

=
N

i

NiPNiNActivity

30

1

),(**)(

And we can compute the average number of cycles to compute a PC as

 ∑






=

=
N

i

NiPiNLatency

30

1

),(*)(

Table 2 shows the activity and latency statistics for values of N ranging from 1 to 8. Higher values

of N are not interesting because they hardly improve performance, and activity increases significantly.

Minimum activity is achieved for N=1, but this incurs in a 1-cycle penalty per instruction on average (as

expected). N=5 may be a good trade-off because activity is reduced by 83%, and performance is degraded

by just 3%. Finally, N=8 provides negligible degradation in performance with an activity reduction of

73.2%. In section 4.3, we validate these analytical figures with an empirical analysis. As indicated above,

we assume a block size of 8 bits for the PC increment.

Power- and Performance- Aware Architectures 43

Ultra-Low Power Microarchitectures 43

Table 2: Activity and performance estimates for PC updating

number of bits per
block

Activity Performance

1 2.00 2.00
2 2,67 1.33
3 3.43 1.14
4 4.27 1.07
5 5.16 1.03
6 6.10 1.02
7 7.06 1.01
8 8.03 1.00

4.2.2 Instruction Cache

To save instruction cache activity, instruction words are stored in a permuted form. The goal is to reduce

the number of instruction bytes that have to be read, written, and latched. This objective is different from

the more common instruction compression techniques [34][36][68][69][70] that attempt to store more

instructions in a given amount of memory. In our case, each instruction is still allocated a full word in the

instruction cache. However, not all bits have to be read/written/latched each time an instruction is placed

in the cache or is fetched.

Permutation methods of this type are likely to be specific to the ISA, and we consider methods that

work well for the MIPS ISA. While the exact methods may not extend entirely to other ISAs, similar

methods are likely to be applicable – at least for RISC ISAs. Hence, the method given here is an example

of the basic principle: instruction words can be modified (other than through classical compression) and

extended with extension bits to reduce cache activity.

Although we considered a number of methods, two basic schemes seem to work well for the MIPS

ISA and probably provide a significant majority of the benefit that can be achieved. First of all, we

observe that the MIPS ISA very often uses one of two formats1 [58]:

• R-format: A 6-bit opcode, three 5-bit register fields, a shift amount field, and a 6-bit function

code.

• I-format: A 6-bit opcode, two 5-bit register fields, and a 16-bit immediate value.

In the R-format, the number of significant instruction bits can frequently be reduced to three bytes

by recoding the six-bit function field so that the most common eight cases use three bits of the field with

zeros in the other three bits. For these eight common cases, only three instruction bytes must be fetched

and latched. In the other less common cases, all four instruction bytes must be fetched. Shifts that use the

1 There is a third format (J-format), but it only accounts for 2.2% of the executed instructions in the Mediabench.

44 Power- and Performance- Aware Architectures

44 Ultra-Low Power Microarchitectures

shift amount field do not use the first register field (rs), so the fields can be permuted by moving the shift

amount (shamt) into what is normally the rs field.

The permutation for R-format consists of shuffling bits in a minor way and re-encoding the

function bits. Figure 27a and Figure 27b show the permutations for the R-format instructions. The

function field is split into two 3-bit fields, f1 and f2, as noted above. To determine which function re-

encoding to use, we first traced the Mediabench benchmarks and counted the dynamic frequency of each

of the function codes. The results are in Table 3. Consequently, the most common eight function codes

are recoded to 6-bit encodings, where the last three bits are all zeros (and do not have to be fetched). All

the other function code patterns are mapped to the remaining six bit patterns. From the table we see that

86.7 % of all the R-format instructions require three bytes when modified in this manner.

 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

opcode rs rt rd shamt funct

opcode rs rt rd f1 f2 shamt

6 bits 5 bits 5 bits 5 bits 3
bits

3
bits

5 bits

recode

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

opcode rs rt rd shamt funct

opcode shamt rt rd f1 f2

6 bits 6 bits 5 bits 5 bits 3
bits

3
bits

5 bits

recode

6 bits 5 bits 5 bits 16 bits

opcode rs rt immediate

opcode rs rt immed 1 immed 2

6 bits 5 bits 5 bits 8 bits 8 bits

a) First permutation for R-format instructions

c) Permutation for I-format instructions

b) Second permutation for R-format instructions

Figure 27: Permutations for the different instruction formats

For the I-format, we simply note that often eight or fewer immediate bits are actually significant,

and in these cases three instruction bytes are again adequate. Figure 27c shows the permutation for the I-

Power- and Performance- Aware Architectures 45

Ultra-Low Power Microarchitectures 45

format instructions. For I-format instructions we also traced the benchmarks and determined the sizes of

the immediate values. It was found that 59.1% of all instructions use immediate values and 80% of these

immediates require only eight bits.

Although there are a few cases where it can be done, we do not attempt to reduce the number of

fetched instruction bytes to fewer than three. Consequently, we add a single "extension" bit to the

instruction word portion of the instruction cache. This bit indicates whether three or four bytes should be

fetched and latched. Note that only one bit is used and it serves multiple purposes depending on the actual

6-bit opcode. For typical R-format opcodes it indicates that the low order three function bits (field f2) are

zeros. For the shift amount R-format opcodes, it also moves the shamt field, and for I-format opcodes it

indicates an 8-bit immediate.

Overall, a total of 36.85% of instructions are R-format that use the function field, 4.05% are R-

format but the function field is not used, 56.9% are I-format and 2.2% are J-format. Combining this with

the immediate and function code frequency statistics, the average number of bytes fetched and latched per

instruction is 3.17 bytes (3.29 if we include the extension bit). This represents a savings of about 20% (at

an overhead of 3% for the extra bit per word). There is also additional overhead during instruction cache

fill for permuting/modifying the instruction bits, but this is a relatively small amount of additional

activity, assuming a reasonable instruction cache miss rate.

Table 3: Dynamic frequency of the function codes

Opcode Percentage Cumulative
ADDU 36.01 36.01
SLL 16.20 52.21
SRA 9.09 61.30
SLT 8.19 69.49
SUBU 8.17 77.66
SLTU 3.28 80.94
XOR 3.07 84.01
MFLO 2.74 86.75
Other 2.47 .. 0.04 100

Finally, note that the order of the rearranged instruction bytes is chosen so that the bytes needed

earlier in the pipeline are toward the most significant end. This enables better performance for

implementations (to be given later) that read instruction bytes serially. For example, after an

implementation fetches the first two bytes, there is enough information to perform the initial opcode

decode and register read operations. The other bytes give the immediate bits, a result register field, and/or

ALU function bits that are not needed until later in the pipeline.

46 Power- and Performance- Aware Architectures

46 Ultra-Low Power Microarchitectures

4.2.3 Register File Access

For the register file, extension bits as described in Section 3.1 are used. When the register file is accessed,

first the low order data byte and the extension bits are read. Depending on the values of the extension bits,

additional register bytes may be read during subsequent clock cycle(s). In a study of the Mediabench

benchmarks described below, we determined that the extension bits result in large register file activity

savings. On average, the number of bits that are read is reduced by 47%.

4.2.4 ALU Operations

ALU operations are performed using only the numerically significant register bytes and the extension bits

as input operands. The ALU produces significant result bytes as well as the extension bits that go with

them.

ALU operations are performed in a byte-serial fashion. Because additions/subtractions, memory

instructions, and branches all require an addition, and they collectively account for 70.7% of the executed

instructions in our benchmarks, this operation is the most critical one to be implemented efficiently. For

each byte position, there are three major cases, depending on which of the operands have significant

byte(s) in the position being added.

• Case 1: Both bytes are significant. In this case, the byte addition must be performed.

• Case 2: Only one of the operands has a significant byte. If the non-significant byte is zeros

(ones) and the carry-in from the preceding byte is zero (one), the result btye will be equal to the

significant byte. If the non-signficant byte is zeros (ones) and the carry-in is one (zero), the

result byte is the significant byte plus one (minus one). In all these cases one could use

simplified logic; however, we do not include these potential optimizations in activity statistics.

• Case 3: Neither of the operands has a significant byte in the position being added. Consider the

addition of two bytes, Ci=Ai+Bi, where Ai and Bi are both sign extensions of their preceding

bytes, Ai-1 and Bi-1. There is a general rule with some exceptions. The general rule is that the

result byte Ci is not significant, and the result is computed simply by setting the extension bits of

the result because Ci will also be a sign extension of Ci-1. In the exceptional cases, the ALU

must generate a full byte value. Table 4 lists all exceptions to the general rule.

Power- and Performance- Aware Architectures 47

Ultra-Low Power Microarchitectures 47

Table 4: Cases in which byte Ci has to be generated

Values of Ai-1 and Bi-1
(the order is not significant)

Extra conditions

00xxxxxx 01xxxxxx 5th bit produces carry
01xxxxxx 01xxxxxx -
11xxxxxx 10xxxxxx 5th bit produces carry
10xxxxxx 10xxxxxx -
00xxxxxx 11xxxxxx 5th bit produces carry
01xxxxxx 10xxxxxx 5th bit produces carry

To understand the exceptions to the general rule of Case 3, consider the example where Ai-1 =

00000001, and Bi-1=01111111; Ai and Bi are both sign extensions (i.e. they are equal to zero). Then the

addition of Ai+Bi will obviously be zero, but because byte Ci-1 has a one in its most significant bit, Ci is

not the sign extension of Ci-1. In this case, the processor has to generate the full byte value, although the

addition is not actually necessary.

 Finally, note that in some cases a result byte may not be significant although the two source

operand bytes are significant (e.g. 3 + -3 = 0). To handle these cases, there is simple logic that examines

each result byte and generates extension bits accordingly. This logic basically checks whether all bits of a

byte and the most significant bit of the previous byte have the same value. It then sets the extension bits

for the result accordingly.

Another common ALU operation that can be optimized is the comparison, which represents the

6.9% of the instructions in our benchmarks. In this case, the normal byte processing order can be

reversed, with the computation starting at the most significant byte and finishing with the least significant

one. However, as soon as the two compared bytes are different, no more bytes must be computed, even

for comparisons of the type greater-than or less-than.

This reversal of access order can be implemented with different levels of complexity depending on

the particular processor design. For instance, for the byte-serial implementation described in section 4.5,

the reversal is easily implemented since this design has a single byte-wide register file and a byte-wide

ALU. In other cases such as the byte-parallel skewed implementation described in section 4.7, the order

reversal is more complex and may require an additional register port for avoiding structural hazards.

Finally, bit-wise logical operations, which represent 4.2% of the instructions in our benchmarks,

can also be byte-pipelined. In this case, whenever two bytes are sign extensions, the result will also be a

sign extension. Note that other optimizations are feasible when just one of the operands is a sign

extension, but we have not considered them. For instance, A AND 0 = 0, A AND -1 = A, etc. As shown

below in Section 4.3, extension bits result in an average reduction of the ALU activity of 33% for

Mediabench.

48 Power- and Performance- Aware Architectures

48 Ultra-Low Power Microarchitectures

4.2.5 Data Cache Operations

The data cache holds data in a manner similar to the register file. That is, extension bits are appended to

each data word and only the bytes containing significant data are read and written. The address bytes may

also be formed sequentially, beginning with the low order byte. This means that the cache index will be

computed before the tag bits, and that the tag bits may be formed as part of multiple byte additions.

Consequently, the tag comparison may be done in two sections as the tag bits become available. If

the lower order tag bits do not match the cache tags, then an "early miss" can be signaled, and the higher

order address and cache tag bits do not have to be formed and compared, resulting in reduced activity.

However, because the miss rate is relatively low (2.7% on average), the activity saving is insignificant.

There is similar activity for cache writes; the extension bits for the store data are read from the

register file and written alongside the data. For cache fills, the extension bits must be generated as data is

brought from memory (although the extension bit concept could also be maintained in main memory). We

show below in Section 4.3 that the above techniques reduce the activity on the data cache by 31% for the

data array and 1% for the tag array.

4.2.6 Register Write Back

During the register write-back stage, only bytes holding significant values have to be written into the

register file. The extension bits also have to be stored. For ALU data, the bits are generated as described

above in Section 3.1. For memory data, the extension bits read from the data cache are used. We show

below in Section 4.3 that extension bits result in an average reduction of 42% in register file write

activity.

4.2.7 Pipeline Latches

Significant energy is consumed in pipeline latches [70]. The extension bits are used for gating the pipeline

latches in the normal way [41][46]. Only the PC bytes that change require latch activity. Based on

extension bits, only significant register, ALU and cache bits need to be latched. Hence, activity savings in

the datapath elements is reflected directly in activity savings in the pipeline latches immediately following

the datapath elements.

Latch activity depends on the particular implementation. The lowest latch activity is achieved by

the implementations with fewer pipe stages. This is the case for instance of the byte-serial implementation

described in section 4.5. In this case, we show in section 4.3 that the latch activity can be reduced on

average by 42%.

Power- and Performance- Aware Architectures 49

Ultra-Low Power Microarchitectures 49

4.3 Activity Reduction

To determine the activity savings for the techniques described above, we performed a trace driven

simulation of the Mediabench [37]. Only byte activity indicated by the extension bits was performed.

Table 5 provides the overall results for byte granularity and for comparison, Table 6 contains average

results for halfword granularity significance compression. The tables show percent activity savings.

The byte-serial PC increment operation saves 73% activity, because the great majority of the time,

only the least significant byte is changed, as predicted by the analysis in Section 4.2.1. I-cache activity

saving is 18%, and is quite uniform across all benchmarks. On average 47% of the Register read activity

is saved, with individual benchmarks saving from 34% to 72%. ALU activity saving averages 33%

(ranging from 15% to 68%) and data cache activity saves an average of 30% (ranging from 1% to 57%).

The data cache activity is measured for data fills, reads and writes. The average saving on the data bank is

31% (ranging from 1% to 57%) whereas the saving for the tag bank is negligible. Register writeback

saving is on average 42% (ranging from 30% to 69%). Finally, for implementations where the number of

stages is not increased beyond the basic 5-stage pipeline, the latch activity is reduced by 42% on average

and between 30% and 67% for individual benchmarks.

Table 5: Activity reduction (%) for datapath operations (8 bit)

Benchmark Fetch RF read RF writes ALU D-cache data D-cache tag PC increment Latches
cjpeg 17.25 45.95 41.72 30.26 39.61 0.15 73.33 40.43
djpeg 19.43 41.07 37.10 22.74 39.85 0.12 73.33 36.63
epicdec 19.11 45.05 35.21 30.03 20.33 0.06 73.33 39.73
epicenc 20.55 42.45 46.65 41.96 0.92 0.01 73.33 46.73
g721dec 19.32 50.51 47.27 39.60 43.86 1.94 73.33 45.38
g721enc 19.30 50.66 46.91 39.68 44.51 0.98 73.33 45.41
gs 13.59 47.73 47.21 35.52 39.88 1.30 73.33 42.44
gsmdec 17.39 45.69 40.26 33.14 38.10 0.23 73.33 41.03
gsmenc 19.02 45.13 35.35 31.69 12.95 0.69 73.33 39.92
mesamipmap 16.16 37.49 30.52 19.35 12.36 3.55 73.33 32.91
mesaosdemo 15.60 33.73 26.94 15.19 19.00 0.51 73.33 30.21
mesatexgen 16.76 40.48 36.69 23.18 12.30 1.91 73.33 35.62
mpeg2dec 16.95 43.74 38.88 28.33 36.14 0.38 73.33 38.87
mpeg2enc 20.86 47.01 48.67 32.17 30.19 0.03 73.33 42.61
pgpdec 19.01 38.85 29.75 20.49 25.04 2.79 73.19 34.33
pgpenc 18.05 39.68 34.24 25.26 30.59 0.02 73.31 35.98
rasta 16.56 43.91 38.27 27.23 12.15 2.76 73.33 38.02
rawcaudio 20.05 71.73 69.20 67.61 57.37 0.00 73.33 67.39
rawdaudio 20.05 71.73 69.20 67.61 57.37 0.00 73.33 65.41
AVG 18.16 46.98 42.11 33.21 30.66 0.92 73.33 42.06

Table 6: Activity reduction (%) datapath operations (16 bit)

Benchmark Fetch RF read RF writes ALU D-cache data D-cache tag PC increment Latches
AVG 18.16 35.85 30.31 22.11 23.38 0 46.67 34.93

50 Power- and Performance- Aware Architectures

50 Ultra-Low Power Microarchitectures

The 16-bit serial savings remain substantial (Table 6), but are somewhat less than the byte serial

activity savings, as expected. The primary advantage of the 16-bit granularity is in performance, as will

be shown in short.

Holding and maintaining the extension bits adds an overhead of 9% when three bits are used, and

the PC increment and instruction fetch stages have much less overhead.

The bottom line is that the net overall activity savings (and therefore the overall energy savings)

can be substantial. Major savings are possible in each of the pipeline stages. Finally, note that these

results are for a 32-bit architecture; if a 64-bit ISA were to be used (as in [7]), the savings will likely be

much greater.

4.4 Experimental Framework

We developed a simulator for several proposed pipeline implementations using some components of the

SimpleScalar toolset, primarily the instruction interpreter and the TLB and cache simulators. In all cases

we assumed an in-order issue processor, with the following microarchitecture parameters:

• First level split instruction and data cache: 8 KB, direct-mapped, 32-byte line, 1-cycle hit time.

• Second level unified cache: 64 KB, 4-assoc., 32-byte line, 6-cycle hit time, 30-cycle miss time.

• Instruction TLB: 16 entries, 4-way set-associative, 1-cycle hit time,30-cycle miss time.

• Data TLB: 32 entries, 4-way set-associative, 1-cycle hit time, 30-cycle miss time.

The processor does not perform any type of branch prediction, thus every branch stalls the fetch

stage until the branch is resolved in the ALU stage. This is in keeping with some very low power

embedded processors, although the trend is toward implementing branch prediction.

We used the Mediabench benchmark suite [37], which was compiled with the gcc compiler with “-

O3 -finline-funtions -funroll-loops” optimization flags into a MIPS-like ISA. As a baseline for

comparison we use a conventional 32-bit wide processor, with 5 pipeline stages: Instruction Fetch,

Decode and Register Read, Execute, Memory, and Write Back.

As explained in Chapter 1, dynamic power consumption is directly proportional to the switching

activity of the different components. Thus, reducing the switching activity will result in a reduction in

energy consumption at the same level.

4.5 Byte-Serial Implementation

Having established potential activity reductions that can be achieved (and therefore energy reductions),

we now consider implementations that attempt to achieve these levels while providing good performance.

Power- and Performance- Aware Architectures 51

Ultra-Low Power Microarchitectures 51

Implementations will differ in total hardware resources although they may not necessarily differ in circuit

activity.

First, we consider a simple byte-serial implementation that has a one byte wide data path. If more

than one data/address byte is needed at a given stage, then that pipeline stage will be used sequentially for

multiple cycles. While later sequential data bytes are being processed, however, earlier bytes can proceed

up the pipeline. For example, if it is necessary to read 3 bytes from the register file, first the low order

byte is read and passed on to the EX stage, then while the next byte is being accessed, the EX unit can

perform on the first data byte and pass it to the data cache stage.

Figure 28 shows the byte-serial implementation. In this microarchitecture there is a single register

file bank, a single ALU, and a single data cache bank, all one-byte wide. Inter-stage latches are provided

to store values on a byte basis and only the significant bytes are required to be latched. In addition, the

extension bits must flow through the pipeline and a three bit latch is provided between some stages for

this purpose. The ALU stage includes a special unit that operates on extension bits as described in Section

4.2.4. There is one byte-wide PC increment unit that operates serially and three instruction cache banks,

which are accessed in the first stage along with the extension bit. Then, if the extension bit indicates that

it is needed, the instruction remains in this stage for one more cycle while one of the banks is accessed

again. Using a three byte wide instruction cache stage is a departure from the strictly byte serial

implementation. This decision was made to avoid excessive stalls while reading instructions; otherwise,

every instruction would incur at least two stall cycles because the average number of bytes per instruction

is 3.17.

52 Power- and Performance- Aware Architectures

52 Ultra-Low Power Microarchitectures

Figure 28: Byte-serial implementation

Figure 29 shows the performance of the byte-serial implementation, expressed as cycles per

instruction (CPI). For comparison, the CPI of a baseline 32-bit wide implementation is also shown. For

most programs, the performance of the byte-serial implementation is significantly lower than that of the

32-bit processor. CPI is increased by 79% on average, although activity (and energy) is reduced by 30-

40% for most of the pipeline functions (Table 5).

If the pipeline is widened to 16-bits, the average CPI becomes 1.96, which is just 29% higher than

that of the byte-wide implementation, but the activity savings are lower (around 20-30% for most of the

pipeline functions). Note that the relative performance of the pipelined schemes is quite uniform across all

the benchmarks.

I-Cache
tags

exten

ALU Data
Cache

Register
File

exten exten G

Writeback

PC
ADD

I-Cache
2/3

I-Cache
0

I-Cache
1

D-Cache
tags

Tag compare Tag compare

exten

Power- and Performance- Aware Architectures 53

Ultra-Low Power Microarchitectures 53

0

0,5

1

1,5

2

2,5

3

3,5

4

cjp
eg

djp
eg

ep
icd

ec

ep
ice

nc

g7
21

de
c

g7
21

en
c gs

gs
mde

c

gs
men

c

mesa
mipm

ap

mes
ao

sd
em

o

mes
ate

xg
en

mpe
g2

de
c

mpe
g2

en
c

pg
pd

ec

pg
pe

nc
ras

ta

raw
ca

ud
io

raw
da

ud
io

Av
g.

(H
-m

ea
n)

C
P

I

32-bit baseline

Halfword serial

Byre serial

Figure 29: Performance of the byte-serial architecture

4.6 Semi-Parallel Implementations

The byte-serial implementation achieves significant activity reduction, but at the cost of substantial

performance losses with respect to the baseline 32-bit pipeline. For some applications, energy savings

may be much more important than performance, and this will represent a good design point. There may

be other applications, however, where performance is more important, and performance losses should be

reduced. We now consider methods that retain low activity levels, but use additional hardware to improve

performance.

The principle is to improve performance by adding additional byte-wide datapath elements at the

various pipeline stages. For example, the register file can be constructed of two byte-wide files (rather

than one) and produce a full data word in 2 cycles instead of 4. Similarly, multiple byte-wide ALUs can

be used to improve throughput in the execute stage of the pipe.

Adding these units does not necessarily increase circuit and memory access activity, however,

because not all the units have to be enabled every cycle. For example, if a data item has only one

significant byte, then a register access can be performed for one byte of a two byte wide register file,

while the other byte is disabled. Similarly, if the source operands of an addition only have two significant

bytes, these bytes will be operated in two of the ALUs while the others will be disabled.

Finally, the numbers of byte-wide units in each of pipeline stages do not have to be the same. That

is, the number of byte units or memories can be established to permit balanced processing bandwidths

among the pipe stages.

To determine how many parallel units and memories should be used, we first undertook a

bottleneck study of the byte-serial implementation to see where the major stalls occur. We observed that

54 Power- and Performance- Aware Architectures

54 Ultra-Low Power Microarchitectures

in the byte-serial architecture the ALU is the most important bottleneck, 72% of the stalls were caused by

structural hazards in the EX stage. Thus, increasing the bandwidth of the ALU stage is the most effective

approach to increase performance. To quantify how much bandwidth is required in each stage, we did the

following simple analysis.

Consider each of the major pipeline stages. First, the study in Section 4.2.2 shows that an

instruction requires about 3.2 bytes to be fetched on average. The ALU operates on an average of 2.7

bytes, but since the maximum CPI is 1.5 (32-bit baseline processor), the activity of the ALU will not be

higher than 2.7/1.5 = 1.8 bytes/cycle on average. Next, around one third of instructions access memory,

and each access is 2.8 bytes wide on average. Thus, less than one byte per cycle is accessed on average.

Based on this study, we determined that a good balance is achieved with an instruction cache three bytes

wide, a register file and ALU two bytes wide, and data cache one byte wide.

An implementation for this configuration is shown in Figure 30 and is referred to as byte semi-

parallel. The instruction cache essentially contains three byte-wide banks and works as in the byte-serial

implementation.

Figure 30: Byte semi-parallel implementation

The register access stage is skewed with the low order byte being accessed first together with the

extension bits. In the next stage the low order byte is operated on, and at the same time another register

byte is read if needed according to the extension bits. If there is more than one additional byte the

instruction uses this stage for multiple cycles. The next stage performs the ALU operation on the

Tag compare

I-Cache
tags

exten

Data
Cache

exten

PC
ADD

I-Cache
2/3

I-Cache
0

I-Cache
1

D-Cache
tags

Tag compare

ALU
0

Register
File

0

exten G exten

ALU
1-3

Register
File
1-3

exten

Power- and Performance- Aware Architectures 55

Ultra-Low Power Microarchitectures 55

additional bytes and is used for as many cycles as the previous stage. The following stage performs the

data cache access (if needed). It first reads/writes the low order byte, the tags, and the extension bits and,

according to the latter, the instruction uses this stage sequentially for multiple cycles until all data are

read/written. Finally, the last stage writes the result into the register file. It first writes the low order byte,

the extension bits and one additional byte if needed. If more than one additional byte must be written, the

instruction uses this stage for multiple cycles.

0

0,5

1

1,5

2

2,5

3

3,5

4

cjp
eg

djp
eg

ep
icd

ec

ep
ice

nc

g7
21

de
c

g7
21

en
c gs

gs
mde

c

gs
men

c

mes
am

ipm
ap

mes
ao

sd
em

o

mes
ate

xg
en

mpe
g2

de
c

mpe
g2

en
c

pg
pd

ec

pg
pe

nc
ras

ta

raw
ca

ud
io

raw
da

ud
io

Av
g.

(H
-m

ea
n)

C
P

I

32-bit baseline

Byte semi-parallel

Byre serial

Figure 31: Performance of the byte semi-parallel microarchitecture

Figure 31 shows the CPI of this microarchitecture along with that of the 32-bit baseline processor

and the byte-serial implementation. On average, the CPI is 24% higher than the 32-bit baseline processor.

We observe that the performance is much closer to the 32-bit implementation than the byte-serial

implementation while all the activity savings are retained except for a few additional latches.

4.7 Fully Parallel Implementations

The microarchitecture above still loses some performance – bottlenecks cannot be perfectly balanced all

the time because of bursty behavior that most programs exhibit. So, we consider pipelines with maximum

(4 bytes) parallelism at each stage, and use operand gating to enable only those datapath bytes that are

needed. This requires a skewing of stages in a similar way to the semi-parallel implementation described

in the previous section. A block diagram of a portion of the microarchitecture, which is referred to as

byte-parallel skewed, is depicted in Figure 32.

This pipeline is optimized for the long data case, i.e. where the pipeline keeps flowing even if each

operand is a full 4 bytes. No stage is used more than once (except for the PC computation in very few

cases). Although the activity of the functional units is the same as that of the byte-pipelined and semi-

56 Power- and Performance- Aware Architectures

56 Ultra-Low Power Microarchitectures

parallel implementation, the longer pipeline of the byte-parallel skewed implementation implies more

latch activity and more backward bypasses.

Figure 32: Byte-parallel skewed microarchitecture

The performance of this microarchitecture is shown in Figure 33. We can observe that the CPI is

very close to that of the 32-bit baseline processor for all programs. On average, it is just 3% higher.

Another alternative is a "compressed" parallel pipeline implementation (see Figure 34). In this case,

the pipeline consists of the original 5 stages. Each instruction spends one cycle in the Ifetch stage to read

3 bytes and an additional one if a fourth byte is needed. Then it moves on to the second stage where it

reads the low order byte and the extension bits. If more bytes are needed, the instruction spends one more

cycle in the same stage to read all of them in parallel. Then the instruction moves on to the ALU stage

where it executes in a single cycle, using only the functional units that operate on significant bytes. Then

it moves on to the memory stage where it reads first the low order byte and the extension bits, and if

needed, it spends an additional cycle to read all the remaining bytes. If it is a store, all the significant

bytes along with the extension bits are written in a single cycle. Finally, all significant bytes and the

extension bits are written into the register file in a single cycle.

I-Cache
tags

Data
Cache

0

PC
ADD

I-Cache
2/3

I-Cache
0

I-Cache
1

D-Cache
tags

1

Tag compare

ALU
0

Register
File

0

Register
File

2

Data
Cache

1

Data
Cache

2

Data
Cache

3

D-Cache
tags

0

Register
File

1

ALU
1

Register
File

3

ALU
2

ALU
3

Tag compare

Power- and Performance- Aware Architectures 57

Ultra-Low Power Microarchitectures 57

This design works well for short data because the pipeline length is kept minimal and this reduces

the branch penalty and the number of backward bypasses. Furthermore, functional unit and latch activity

is kept minimal (equal to the byte-serial implementation). However, full-width (32-bit) data operations

suffer stalls in some stages, which result in performance losses when compared with the full parallel

implementation. Performance is shown in Figure 35. The CPI increase compared with the 32-bit baseline

processor is 6% on average, which is quite close to the performance of the byte parallel skewed

configuration.

0

0,5

1

1,5

2

2,5

3

3,5

4

cjp
eg

djp
eg

ep
icd

ec

ep
ice

nc

g7
21

de
c

g7
21

en
c gs

gs
mde

c

gs
men

c

mes
am

ipm
ap

mesa
os

de
mo

mes
ate

xg
en

mpe
g2

de
c

mpe
g2

en
c

pg
pd

ec

pg
pe

nc
ras

ta

raw
ca

ud
io

raw
da

ud
io

Av
g.

(H
-m

ea
n)

C
P

I

32-bit baseline

Byte-parallel skew ed

Byre serial

Figure 33: Performance of the byte-parallel skewed microarchitecure

58 Power- and Performance- Aware Architectures

58 Ultra-Low Power Microarchitectures

Figure 34: Byte-parallel compressed pipeline

We can get the best of both (performance wise) by putting forwarding paths into the byte-parallel

skewed pipeline. In this way, when a short operand is encountered, it can skip the stages where no

operation is performed. This reduces the latch activity to the same level as that of the byte-serial

implementation, and at the same time the effective pipeline length is shortened, which reduces the branch

penalty. However, the number of backward bypasses is the same as that of the byte-parallel skewed

implementation.

The performance of this architecture is also shown in Figure 35. Now performance is very close to

the baseline 32-bit processor (the CPI is only 2% higher on average) while the activity is reduced around

30-40% for most of the stages. A disadvantage, however, is that this design has rather complicated control

and many data paths (for forwarding).

I-Cache
tags

exten

Data
Cache

0

exten exten G

ALU 0 Register
File 0

Writeback

PC
ADD

I-Cache
2/3

I-Cache
0

I-Cache
1

D-Cache
tags Tag compare

Tag compare

exten

ALU 1 Register
File 1

ALU 2 Register
File 2

ALU 3 Register
File 3

Data
Cache

1

Data
Cache

2

Data
Cache

3

Power- and Performance- Aware Architectures 59

Ultra-Low Power Microarchitectures 59

0

0,5

1

1,5

2

2,5

3

3,5

4

cjp
eg

djp
eg

ep
icd

ec

ep
ice

nc

g7
21

de
c

g7
21

en
c gs

gs
mde

c

gs
men

c

mes
am

ipm
ap

mes
ao

sd
em

o

mes
ate

xg
en

mpe
g2

de
c

mpe
g2

en
c

pg
pd

ec

pg
pe

nc
ras

ta

raw
ca

ud
io

raw
da

ud
io

Av
g.

(H
-m

ea
n)

C
P

I

32-bit baseline

Byte-parallel skew ed (plus bypasses)

Byte-parallel compressed

Byre serial

Figure 35: Performance of the byte-parallel compressed and skewed + bypasses microarchitecture

4.8 Summary and Conclusions

The significant bytes of instructions, addresses, and data values essentially determine a minimal activity

level that is required for executing a program. For a simple pipeline design, we showed that this level is

typically 30-40% lower than for a conventional 32-bit wide pipeline. Every stage of the pipeline shows

significant activity savings (and therefore energy savings).

We proposed a number of pipeline implementations that attempt to achieve these low activity

levels while providing a reasonable level of performance. The byte-serial pipeline is very simple

hardware-wise, but increases CPI by 79%. For some very low power applications, this may be an

acceptable performance level, in which case the byte-serial implementation would be a very good design

choice.

For higher performance, the pipeline stages can be widened. A rough analysis indicates that three

bytes of instruction fetch, two bytes of register access and ALU, and one byte of data cache might provide

a good balance of bandwidths. For this configuration, the CPI is 24% higher than that of the full width

baseline design. Activities are still at their reduced levels, and this design may provide a very good design

point for many very low power applications.

Finally, we considered designs with a four byte wide datapath at each stage. Operand gating is

retained for reducing activity, but under ideal conditions throughput is no longer restricted. These designs

can come very close in performance to the baseline 32-bit design while again retaining reduced activity

levels. The disadvantage of these schemes is an increased latch activity and static energy consumption, or

additional forwarding paths or more complex control. We believe that these may be a very important class

of implementations however, because of their high performance levels, and low activity.

60 Power- and Performance- Aware Architectures

60 Ultra-Low Power Microarchitectures

Power- and Performance- Aware Architectures 61

Value Compression for High-Performance Microarchitectures 61

Chapter 5

Value Compression for High-Performance Microarchitectures

Hardware and software techniques to reduce the energy consumption in high-performance 64-bit

microarchitectures are explored in this chapter. While hardware techniques can benefit of adapting to the

run-time circumstances, compile-time techniques have some advantages over hardware schemes such as

the minimal impact on the microarchitecture and the wider scope over the program code. This chapter

analyzes several hardware compression mechanisms and two compile-time techniques that can reduce

the energy requirements of the code executed.

“There is more life than increasing its speed”
Gandhi

62 Power- and Performance- Aware Architectures

62 Value Compression for High-Performance Microarchitectures

5.1 Introduction

In Chapter 3, three value compression methods were proposed and their potential energy reduction was

computed. In this chapter, we first implement the value compression methods presented in Chapter 3.

Then, we propose and study two software-based approaches that exhibit a different set of

hardware/software tradeoffs, namely Value Range Propagation and Value Range Specialization.

Assuming that the instruction set architecture (ISA) contains opcodes that specify operand lengths

(e.g. load byte, add halfword) -this feature is already available in some conventional instruction sets and

could be added as an extension to others- at compile time, or as part of static binary translation, an

enhanced version of Value Range Propagation is used to determine bounds on the useful value ranges of

all variables. Then, through proper opcode assignment, only useful portions of data are computed,

communicated, and stored, thereby saving power. This approach has much less added hardware

complexity than the hardware value compression methods proposed, but requires static analysis by the

compiler or translator and may require additional instruction opcodes to specify operand widths

(depending on the base ISA).

5.2 Hardware Value Compression

Chapter 3 has shown three value compression mechanisms that are effective in reducing the number of

bits needed through the pipeline. In this section, we analyze the performance and the reduction on energy

of several configurations of the compression methods. The following table shows the value configuration

formats we consider in this section.
Value compression method Classification of the values Number of extra bits per value

Size 8-64 8 bits or 64 bits 1
Size 16-64 16 bits or 64 bits 1
Size 32-64 32 bits or 64 bits 1
Size 40-64 40 bits or 64 bits 1

Size 8-16-32-64 8 bits, 16 bits, 32 bits or 64 bits 2
Size 8-16-40-64 8 bits, 16 bits, 40 bits or 64 bits 2

Significance 8-16-24-32-40-64 Bytes 2,3,4,5 sign extended one byte,
 or byte 6 extended by two bytes.

5

Significance 8-16-24-32-40-48-56-64 Bytes 2,3,4,5,6,7,8 sign extended one byte 7
Zero 8-16-24-32-40-64 Bytes 2,3,4,5 can be zero or bytes 6 through 8. 6

Zero 8-16-24-32-40-48-56-64 Any byte can be a zero 8

A more detailed study of the average compressed value size using the schemes listed above is

shown in Figure 36. The average size was computed as the average of the number of bytes for each access

to the register file, data cache, instruction cache (address), functional units, and the rename buffers. Note

that the structures considered in this study differ from the ones in Chapter 3, thus the numbers showed are

different. The first column shows the average data size taking into account the format bits, and the second

column shows the average size without the format bits. On average, ignoring the format bits, the zero

Power- and Performance- Aware Architectures 63

Value Compression for High-Performance Microarchitectures 63

compression mechanism achieves the best compression (21.2 bits for the configuration that can compress

every byte). However, when the format bits are included, the best scheme is the size compression

mechanism with an average of 28 bits per value (for the configuration in which the values are compressed

to 8, 16, 40 or 64 bits).

0
5

10
15
20
25
30
35
40
45
50

siz
e 8

 64

siz
e 1

6 6
4

siz
e 3

2 6
4

siz
e 4

0 6
4

siz
e 8

 16
 32

 64

siz
e 8

 16
 40

 64

sig
nifi

ca
nc

e 8
 16

 24
 32

 40
 64

sig
nif

ica
nc

e 8
 16

 24
 32

 40
 48

 56
 64

ze
ro

8 1
6 2

4 3
2 4

0 6
4

ze
ro

8 1
6 2

4 3
2 4

0 4
8 5

6 6
4

bi

ts

AVG

AVG w /o cmp bits

Figure 36: Average Data Size for the SpecInt95

This study points out that any of the three proposed schemes can perform well (they reduce the

effective data-width from 64 bits to fewer than 30 bits). In the next section, we describe several proposals

for using value compression for different processor’s datapath subsystems. Then we analyze the energy

consumption for the three value compression mechanisms.

5.2.1 Hardware Extensions to a Conventional Processor

Several data-dependent structures have been modified in order to consider value compression. The

structures modified and the ways they are modified are explained in this section.

First, the register file is extended to hold the extension bits necessary to keep the compression

information. At the same time, each access to the register file will just use those banks that keep

significant data. In other words, compression bits are used to enable/disable the portions of the register

file that have useful/unneeded information.

The data-cache holds compressed values. Thus each write access to the cache will consist of the

compressed value plus de extension bits. When a read is performed, just the significant data will be read

along with the extension bits. In the same way as the register file, the compression information (extension

bits) will be used to just access the banks that have significant data. In a similar way, the instruction-cache

64 Power- and Performance- Aware Architectures

64 Value Compression for High-Performance Microarchitectures

is compressed. The only difference is that since the instruction word is 32-bit long, the compression

mechanisms have to be adapted to this size. Section 5.2.3 describes in detail the exact implementation.

Due to the simplicity of the compression methods used, functional units are capable of computing

with compressed values and generate accordingly a compressed output value.

The instruction-queue and the rename-buffers hold compressed values, as well. In this case, the

value is kept compressed –together with the extension bits. When a read or a write is performed, just

those significant bytes are read/written. Finally, in the case of the BTB, the branch targets are kept in a

compressed form. Branch targets are 64-bit addresses, thus it is possible to compress them in the same

way as the other values that flow through the pipeline are compressed. The branch predictor cannot be

compressed since it hold two-bit saturating counters.

5.2.2 Experimental Framework

The Wattch [8] toolset is used to conduct the evaluation. The main architectural parameters of the

assumed out-of-order processor are described in Table 1. We use the programs from the SpecInt95 suite

with their reference inputs. All benchmarks are compiled with the Compaq-Alpha C compiler with the

maximum optimization level. Each benchmark was run to completion.

Table 7: Machine parameters

Parameter Configuration

Fetch Width 4 instructions

I-cache 64KB, 2-way set-associative. 32-byte lines, 1-cycle hit
time, 6-cycle miss penalty.

Branch Predictor
Combined predictor of 1K entries with a Gshare with

64K 2-bit counters, 16 bit global history, and a
bimodal predictor of 2K entries with 2-bit counters.

Decode/Rename width 4 instructions

ROB size 64

Instruction Queue 64

Retire width 4 instructions

Functional units 3 intALU + 1 int mul/div3 fpALU + 1 fp mul/div

Issue mechanism 4 instructions
Out-of-order

D-cache L1
64KB, 2-way set-associative. 32-byte lines, 1-cycle hit

time, 6-cycle miss penalty
3 R/W ports

I/D-cache L2

256 KB, 4-way set associative, 64-byte lines, 6-cycle
hit time.

16 bytes bus bandwidth to main memory, 16 cycles
first chunk, 2 cycles interchunk

Physical registers 96

Power- and Performance- Aware Architectures 65

Value Compression for High-Performance Microarchitectures 65

5.2.3 Energy Savings

In addition to the average data size (shown in Figure 36), several other factors such as the switching

activity are important when computing dynamic energy reduction. Although storing more compression

bits results in wider structures, the activity of these wider structures is the one that sets the energy

consumption. Thus, it can happen that a wider structure has less activity than a narrower one (i.e. with

less extra-bits but with more switching activity).

In Figure 37, we can see the energy savings of the mechanisms analyzed in this section. The figures

show the overall processor energy savings, nevertheless, value compression has been applied to just the d-

cache, ALU, register file, rename buffers, instruction queue and BTB. The significance compression is

the one that achieves higher energy savings (close to 30%) despite the use of 7 extra bits per word. The

best size compression scheme (close to 20% energy savings) is the one that compresses values to 8, 16, 40

and 64 bits. The fact that it includes memory addresses (typically 5 bytes long) makes it perform better

than the other size compression mechanisms. The zero compression mechanism achieves a maximum of

20% overall energy reduction.

0%

5%

10%

15%

20%

25%

30%

35%

siz
e 8

 64

siz
e 1

6 6
4

siz
e 3

2 6
4

siz
e 4

0 6
4

siz
e 8

 16
 32

 64

siz
e 8

 16
 40

 64

sig
nif

ica
nc

e 8
 16

 24
 32

 40
 64

sig
nifi

ca
nc

e 8
 16

 24
 32

 40
 48

 56
 64

ze
ro

8 1
6 2

4 3
2 4

0 4
8 5

6 6
4

ze
ro

8 1
6 2

4 3
2 4

0 6
4

Value Compression Mechanism

E
ne

rg
y

R
ed

uc
tio

n
(P

er
ce

nt
ag

e)

Figure 37: Processor Energy savings

In the following figures, we analyze behaviour of the value compression schemes for several

structures (instruction-cache, data-cache, register file and ALU). Figure 41 shows the energy benefits in

the data cache (both addresses sent to the cache and the data stored/loaded). The distribution of the energy

66 Power- and Performance- Aware Architectures

66 Value Compression for High-Performance Microarchitectures

savings in the data cache is similar to that of the whole processor. In this case, the significance

compression energy savings are close to 14% and the significance compression that compresses all the

bytes (not only until the 5th byte) performs better than the other configurations of the significance

compression. Figure 39 shows the energy savings for the register file. The savings scale up to 50% for the

significance compression while the size compression reaches a 40% reduction in energy and the zero

compression stays a little bit behind. Figure 40 shows the reduction in the ALU. The difference between

the significance compression and the other schemes is larger in this case (almost 60% vs 35%). Finally,

Figure 41 shows the reduction in energy in the instruction cache. Since the instruction word is 32-bit wide

(Alpha ISA) just three mechanisms have been evaluated. The first one (labeled as size) compresses the

data to 8, 16, 24 or 32-bit data in the same way as the size compression presented earlier in this work. The

second one (labeled significance) compresses the instructions using significance compression to 8, 16, 24,

and 32-bit data. Finally the third column (labeled zero) compresses the instructions using zero

compression where each byte of the 32-bit word can be tagged as being zero. All the schemes perform

quite well and they achieve more than 30% energy reduction in the instruction cache meaning that the

instructions have a very compressible form that the schemes are able to find and exploit.

0%
2%
4%
6%
8%

10%
12%
14%
16%

siz
e 8

 64

siz
e 1

6 6
4

siz
e 3

2 6
4

siz
e 4

0 6
4

siz
e 8

 16
 32

 64

siz
e 8

 16
 40

 64

sig
nifi

ca
nc

e 8
 16

 24
 32

 40
 64

sig
nif

ica
nc

e 8
 16

 24
 32

 40
 48

...

ze
ro

8 1
6 2

4 3
2 4

0 6
4

ze
ro

8 1
6 2

4 3
2 4

0 4
8 5

6 6
4

Value Compression Mechanism

P
er

ce
n

ta
g

e
o

f
E

n
er

g
y

R
ed

u
ct

io
n

Figure 38: Energy savings for the Data Cache (SpecInt95)

Power- and Performance- Aware Architectures 67

Value Compression for High-Performance Microarchitectures 67

0%

10%

20%

30%

40%

50%

60%

siz
e 8

 64

siz
e 1

6 6
4

siz
e 3

2 6
4

siz
e 4

0 6
4

siz
e 8

 16
 32

 64

siz
e 8

 16
 40

 64

sig
nifi

ca
nc

e 8
 16

 24
 32

 40
 64

sig
nifi

ca
nc

e 8
 16

 24
 32

 40
 48

 56
 64

ze
ro

8 1
6 2

4 3
2 4

0 6
4

ze
ro

8 1
6 2

4 3
2 4

0 4
8 5

6 6
4

Value Compression Mechanism

P
er

ce
n

ta
g

e
o

f
E

n
er

g
y

R
ed

u
ct

io
n

Figure 39: Energy savings for the Register file (SpecInt95)

0%

10%

20%

30%

40%

50%

60%

70%

siz
e 8

 64

siz
e 1

6 6
4

siz
e 3

2 6
4

siz
e 4

0 6
4

siz
e 8

 16
 32

 64

siz
e 8

 16
 40

 64

sig
nif

ica
nc

e 8
 16

 24
 32

 40
 64

sig
nif

ica
nce

 8
16

 24
 32

 40
 48

 56
 64

ze
ro

8 1
6 2

4 3
2 4

0 6
4

ze
ro

8 1
6 2

4 3
2 4

0 4
8 5

6 6
4

Value Compression Mechanism

P
er

ce
n

ta
g

e
o

f
E

n
er

g
y

R
ed

u
ct

io
n

Figure 40: Energy savings for the ALU (SpecInt95)

68 Power- and Performance- Aware Architectures

68 Value Compression for High-Performance Microarchitectures

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

size significance zero

Value Compression Mechanism

P
er

ce
n

ta
g

e
o

f E
n

er
g

y
R

ed
u

ct
io

n

Figure 41: Energy savings for the I-Cache (SpecInt95)

5.2.4 Peak Power Reduction

Peak power is also an interesting metric since it determines the maximum possible burst of power that a

processor might dissipate. The peak power shown in Figure 42 corresponds to the execution of the

SpecInt95 suite. Nevertheless, one could think of a code where the compression schemes do not achieve

any size reduction. In this case, the peak power would not be reduced. In fact, the extra bits needed by the

data compression could even increase the worst case peak power. Nevertheless, the small complexity of

the required hardware mechanisms does not add a significant overhead in this worst case peak power

since there are more power hungry units such as the clock network and the caches. Although one might

think that compressing the data might not have a direct impact on peak power since there might be a cycle

where every computation will need 64 bits. However, experiments show that peak power is significantly

reduced with the proposed compression mechanisms. As in the case of the energy consumption, the

significance compression mechanism achieves a 25% peak power reduction. It is interesting to see that

the configuration of the significance compression that achieves the highest energy reduction (see Figure

37) is not the best in terms of peak power reduction (see Figure 42) where the scheme that compresses all

the bytes (significance 8,16,24,32,40,56,64) performs a little bit better. The fact that it can compress bytes

within large words makes it perform better in terms of peak power. The size compression mechanism

achieves, in its best configuration, a 15% peak power reduction while the zero compression mechanism

stays below the 15% line.

Power- and Performance- Aware Architectures 69

Value Compression for High-Performance Microarchitectures 69

0%

5%

10%

15%

20%

25%

30%

siz
e 8

 64

siz
e 1

6 6
4

siz
e 3

2 6
4

siz
e 4

0 6
4

siz
e 8

 16
 32

 64

siz
e 8

 16
 40

 64

sig
nifi

ca
nc

e 8
 16

 24
 32

 40
 64

sig
nifi

ca
nc

e 8
 16

 24
 32

 40
 48

 56
 64

ze
ro

8 1
6 2

4 3
2 4

0 6
4

ze
ro

8 1
6 2

4 3
2 4

0 4
8 5

6 6
4

Value Compression Mechanism

P
er

ce
nt

ag
e

of
 R

ed
uc

tio
n

Figure 42: Peak power reduction (SpecInt95)

5.3 Value Range Propagation

If instruction opcodes encode the width of the operands involved (as it is done in conventional ISAs),

propagating the range of values that registers will have at run-time can be used to help chose an opcode

that determines narrower operands, and thus to reduce the run-time width of the operands involved. A

compiler or binary translator can implement the proposed value range propagation (VRP) technique. It

first finds individual instructions where value ranges can be easily determined. It then propagates this

information to other instructions and determines value ranges that each integer register may have at run

time. Methods are given for propagating value ranges within loops and across procedure boundaries.

Value range information can then be used to determine the number of bits that must be computed and

stored in order to maintain correct the semantics of the original HLL program. Finally, opcodes are

assigned to specify the needed value ranges.

In our study, based on a 64-bit architecture, we assume opcodes may specify operand widths of a

byte, halfword, word, and doubleword. Many conventional ISAs already support many of the needed

opcodes; otherwise opcode sets will need to be enhanced.

VRP is always done in a conservative manner (and thus requires no hardware or software recovery

techniques). All the decisions concerning unknown ranges are always in the conservative worst-case

direction, ensuring the correctness of results. If there is a case where a given value is used in more than

one place with different widths or ranges, the widest range is assumed.

70 Power- and Performance- Aware Architectures

70 Value Compression for High-Performance Microarchitectures

Furthermore, value ranges are not propagated through memory. To perform accurate VRP through

memory, address alias analysis is required. To keep things simple in our initial implementation, all

memory values are assumed to be 64 bit values (unless the specific data declaration is otherwise).

5.3.1 Finding Initial Value Ranges

Following are cases where individual instructions can have their value ranges immediately bound,

irrespective of other instructions in the scope of a compiler or binary translator:

• Instructions that are declared to have narrow-width operands; for example, in terms of a HLL

like C: “int a; a=a+1” where an int is 32 bits. The compiler would select a 32-bit addition

if available as an opcode. Or, if binary translation is being used, the original binary would have

a narrow-width opcode (I.e. add_long), and the binary translator can use this information (the

32-bit addition opcode) to infer that the range of the result value.

• Assignments of the type (VAR=constant). The value range of VAR is defined by the single

constant value.

• If-condition statements whose evaluation implies a bound on the tested variable along the taken

or fall-through path. For example “if (X >= 7) then….” places a lower bound on X along

the taken path and an upper bound on X along the fall-through path.

5.3.2 Forward and Backward Value Propagation

Given the initial value range information, additional information can be derived for other instructions via

a propagation process, as follows. The propagation alternates between forward and backward traversals of

the program’s data-dependence graph until a constant state is reached. During a forward propagation, the

dependence-graph is traversed in a top-down style. For each instruction, the range of the output value (if

any) is determined based on the range(s) of the input operands. In a backward propagation, the traversal

of the dependence-graph is done in a bottom-up manner. During this traversal the range of the every

instruction’s input operands is set depending on its output value, the type of operation, and any previously

set input values.

Following subsections describe value range propagation for some of the more common
instruction types.

5.3.3 Addition

Given the value range information of the inputs (RangeIn1 and RangeIn2); the value range information of

the output variable will be:

Power- and Performance- Aware Architectures 71

Value Compression for High-Performance Microarchitectures 71

In a forward traversal:

 RangeOut.MinVal=(RangeIn1.MinVal+RangeIn2.MinVal)
 RangeOut.MaxVal=(RangeIn1.MaxVal+RangeIn2.MaxVal)

If an input value can be produced by different instructions, there is an additional step of defining a

range for each of the potential input values. Then, the minimum value for a given input variable will be

calculated as the minimum value of all the possible producers and the maximum value as the maximum of

all the possible producers. This technique assures that the widest possible value range is used.

In a backward traversal:

 RangeIn1.MinVal=(RangeOut.MinVal-RangeIn2.MaxVal)
 RangeIn1.MaxVal=(RangeOut.MaxVal-RangeIn2.MinVal)
 RangeIn2.MinVal=(RangeOut.MinVal-RangeIn1.MaxVal)
 RangeIn2.MaxVal=(RangeOut.MaxVal-RangeIn1.MinVal)

If there is a case where the output value is used in more than one instruction, the above expressions

are applied to all of the dependent instructions. Consequently, the input values will take the minimum and

maximum values calculated for all the dependent instructions. A similar approach is used in the other

arithmetic instructions.

In arithmetic operations there can be the possibility of overflows. In this case, we assume that

conventional two’s complement arithmetic is used (i.e. overflows wrap-around). If overflow is possible

then the calculated range takes wraparound behavior into account. Although in many cases this may be

overly conservative, it ensures correctness of the generated code.

5.3.4 Loads

In a forward traversal, the range of the output value (the loaded value) is set to the maximum and

minimum values that the instruction can load, depending on the instruction’s opcode.

During a backward traversal, the range of the loaded value is set for those instructions that use it,

possibly reducing the conservative range assumed in the forward traversal.

5.3.5 Stores

Stores are ignored for forward traversals because they do not produce a result, whereas during backward

traversals, the stored value may be constrained to a limited range depending on the store width specified

by the opcode.

5.3.6 Branches

Unconditional branches do not provide information about value ranges. On the other hand, the

72 Power- and Performance- Aware Architectures

72 Value Compression for High-Performance Microarchitectures

comparison(s) upon which conditional branches depend are used to determine value ranges for each path.

For example, consider the following code.

if (a<100) then {
 /* within the if condition */
} else {
 /* within the else condition */
}

In the “within the if condition” piece of code the maxium value of “a” is set to 100, and in the

“within the else condition” piece of code minimum value of “a” is set to 101.

5.3.7 “Useful” Range Propagation

Some instructions constrain the range of the values due to their operations. Important cases follow.

• Logical operations. For example, AND R1, 0xFF, R2 (R2←R1&0xFF); OR R1,

0xFFFFFFFF00000000, R2(R2←R1|0xFFFFFFFF00000000).

• Mask operations (already present in the ISA). For example, MSKBL R1, 0, R2 which extracts

the least significant byte of R1 and copies it to R2, the rest of the bytes of R2 are set to zero.

• Limited width fields (I.e. shift amounts). For example, SRL R1, R2, R3, i.e. R3←R1>>R2

because the useful range for the shift amount is between 0 and 63.

A conventional VRP would assume that the range of input values is defined to include all possible

runtime values. As noted in the introduction, we are only interested in the useful values, i.e. the ones that

affect program results. So for example, in the case of the, AND R1, 0xFF, R2 our VRP method would

backward propagate just the low order byte of R1 because all other bytes are set to 0 regardless of their

previous value.

In other to ensure correctness when propagating “useful” range information, the technique must

ensure there is no other point in the program where a wider range of values is used. In the AND example

given above, if R1 is used somewhere else in the program execution and it has a wider range, the wider

range is used despite the fact that in the AND operation just one byte is needed. Similarly, “useful”

backward propagation through arithmetic instructions is disallowed in order to avoid hiding overflows;

for example, in the case of a loop whose upper bound is unknown, a value within the loop is incremented,

and only the first byte is used.

5.3.8 Example

Figure 43 is a simple example that illustrates value propagation. Numbers label the propagation steps.

Steps 1 through 7 and 9 occur during forward propagation and the 8th step during backward propagation.

Power- and Performance- Aware Architectures 73

Value Compression for High-Performance Microarchitectures 73

At step 6, the loop trip count is calculated according to the algorithm described below. INTmin and

INTmax stand for the minimum and maximum possible values for an integer value; those are the default

values for any integer value. In step 8, a1in refers to the input a1 value. In the first step, a0 is assigned the

base address of the vector. Since it is an unknown value the range is set to the widest possible. In step

two, a1 is assigned a 0 and the range is set to the specific value. In step 3, a3 is assigned the product of a1

and 4. Because a1 is 0, the multiplication results in 0. Then a0 is added to a3, the sum is assigned the

widest possible range of a2. Then there is a store, which does not change anything. Then a1 is

incremented (step 6). At this point, the loop is detected and the loop trip count is calculated (as it is

explained in next section); then the value range of a1at the jump is set (step 7). Once the forward

propagation is done, it starts the upward propagation. In step 8, the range of a1 as an input value is set

(according to the range of the output <1,100> and the increment). In the following and last step, the value

range of a3 is updated according to the new range of a1.

Figure 43. Example of value range propagation

5.3.9 Loops

Loops require special treatment. The range of values generated by instructions in a loop depends on the

number of iterations. Consequently, a loop trip count bounding technique is implemented. This technique

focuses on loops (typically “for” loops), where the iterator is of the form x=ax+b (where a and b are

constants and x is the iterator). In this case, loops of the form: “for (i=constant; i<constant;

i=ai+b) ...” permit the value range of i to be bound. Special cases may arise, like those loops having

more than one iterator. Obviously, loops that traverse a list or any structures through pointers, which

typically depend on a comparison to finish the traversal, are not subject to this technique and the trip

Original C code:
for (i=0; i<100; i++) {
 a[i]=i;
}

a0 = @a
a1 = 0

a3 = a1*4
a2=a0+a3
mem[a2]= a1
a1 = a1+1
a1 < 100

return

1. a0=<INTmin, INTmax>
2. a1=<0,0>

3. a3=<0,0>
4. a2=<INTmin, INTmax>

5. a1=<1,1>
6. tripcount=100
7. a1=<1,100>

8. a1in = <0,99>

9. a3 = <0, 396>

74 Power- and Performance- Aware Architectures

74 Value Compression for High-Performance Microarchitectures

count may not be determinable at compile time. This introduces limitations on the technique, depending

on the source code being analyzed.

Sometimes certain parts of a given loop are executed more or less often than others parts. In these

cases, a detailed loop trip count for each section can often be computed. For example, given the loop:

for (i=0;i<100;i++) {
 if (i<50) then ...
 else ...
}

The number of times each region is executed can be determined because it depends directly on the

loop trip count. Nevertheless, there might be cases where this “local” trip count might not be possible to

know:

for (i=0;i<100;i++) {
 if (a[i]==0) then ...
 else ...
}

For a given section of a loop if the trip count, N, is known; the result range of executing an

instruction for the N iterations can then be determined for those operations depending on the loop trip

count (induction variable). If the trip count is partially known or not known at all, then a worst-case

bound must be assumed in order to ensure the correctness of the code generated. In Section 5.3.8 an

example of value range propagation using the loop trip count has been shown.

5.3.10 Interprocedural Analysis

Our implementation of VRP includes interprocedural analysis. In this case, all the values passed from one

function to another through registers keep their range information. At a procedure entry point, the

possible ranges of the registers are analyzed, and the most conservative range is calculated. For return

values, the range of the value of returned register(s) is set, and any instruction reading this register will

read the range information, too. Since value propagation through memory is not taken into account, as

mentioned above, by-reference parameters do not have value range information.

5.4 Value Range Specialization

Value Range Specialization is a compile-time technique based on profiling. The technique has three steps:

1. It identifies instructions (candidates) where the specialization may be profitable.

2. Through profiling, the run-time range of the values of the possible candidates is computed.

3. Using the profile information, the candidates that are deemed profitable are specialized.

Power- and Performance- Aware Architectures 75

Value Compression for High-Performance Microarchitectures 75

The first step defines the candidates for specialization. In other words, it defines the set of

instructions that have most chances of being profitable specialization points. These candidates are then

profiled. With the profiling information on the value ranges, each candidate is then evaluated. If the

evaluation results positive (there are energy savings of specializing the candidate for a certain range), the

candidate is set to be specialized. Finally the specialization phase clones the section of code being

specialized; and it adds the tests for the specialized and propagates the new range to the specialized

region.

5.4.1 Computing the Energy Savings of Specialization

The energy savings of specializing a given candidate are guided by estimates of the benefit obtained

through the specialization of a given instruction and output register. For each single instruction,

InstSaving(I,r,min,max) is the energy saved for the instruction when the input register r has a given value

range [min,max]. InstSaving is calculated the following way: given the range of the input operands (on of

which is r), the range of the output register is set; then, if the width of the output register has changed

(meaning it may need a narrower opcode), the energy savings are computed depending on each

instruction type (as Table 8 shows for ALU operations). These instruction-type dependant energy savings

have been empirically defined for each instruction type and operand-width through the observation of its

energy requirements (see Section 5.5.1 for the experimental framework). The energy savings for a given

instruction I is denoted by Savings(I,r) and it is the energy saved for all dependant instructions on the

ouput register of instruction I (which is r).

[]∑
∈∀

+=
),(

)max',min',',(max)min,,,()(),(
rIUsesD

rDSavingrDgxInstSavinDInstCountrISaving

Where r’ is the output register of instruction D and its range is [min’,max’]. Uses(I,r) are all the

instructions that use the output register r of instruction I. And, InstCount(D) is the number of times

instruction D is executed.

The savings of each instruction type have been empirically computed by determining the energy-

savings (in nano Joules) of a given instruction type with different operand width. Table 8 depicts the

energy savings for ALU operations:

76 Power- and Performance- Aware Architectures

76 Value Compression for High-Performance Microarchitectures

Table 8: Energy savings for ALU operations (in nJoules)

 Source Width

Target Width 64 32 16 8

64 - -1 -3 -6

32 1 - -2 -5

16 3 2 - -3

8 6 5 3 -

This function, Savings(I,r), will be useful both when looking for candidates to profile and then,

together with the profile data, to determine the estimations of the run-time savings.

5.4.2 Computing the Cost of Specialization

The benefits of specialization have to be weighted against the costs incurred due to the runtime tests. The

cost of such tests depends on the actual range tested. For instance, if the minimum and the maximum of a

given range are the same value just one comparison is needed, otherwise, two tests are needed (one to

check the minimum and one to check the maximum). At the same time, due to the tests implemented in

the alpha architecture, testing for a zero value can be done in one single instruction but testing for another

value has two be done in two instructions.

 In order to compute the cost in terms of energy, each instruction needed in the test is given an

energy requirement in relation to its instruction-type (branches, comparisons, and additions).

CostAddNAddsisonCostComparnsNComparisoCostBranchNbranchesrIInstCost ***),(++=

),(*)(),(rIInstCostIInstCountrICost =

Nbranches, NComparisons and Nadds are, respectively, the number of branches, the number of

comparisons and the number of additions needed to perform the test and CostBranch, CostComparison

and CostAdd is the energy budget for each of these instruction types.

5.4.3 Identifying the Candidates for Specialization

In order not to profile every single instruction in the program code, we attempt to identify candidates

(instructions) that the specialization could yield benefits in terms of energy savings if the run-time range

would be sufficiently skewed. In order to reduce the number of candidates, a minimum cost is assumed.

The minimum cost is found when specializing for the range [0, 0], since it needs just a single comparison.

Setting the minimum cost reduces the number of instructions profiled to those that –at least- can get a

benefit over the minimum cost.

Power- and Performance- Aware Architectures 77

Value Compression for High-Performance Microarchitectures 77

Given the set of candidates to be profiled, we use the scheme proposed by Calder et al. [12] to

perform the profiling. This technique inserts a function in the program that is called at the profiling points

and stores the value of the output register analyzed in a fixed-size table. If the value is already in the table,

the count of that value is incremented. Otherwise, if the table is not full, the value is added. If the table is

full the value is ignored. Periodically, the table is cleaned by evicting the least frequently used values

from the table: this allows new values to enter the table. The total number of times the profiling point is

executed is also kept in a separate counter. After the execution of the program and for each profiling

point, a distribution of the run-time output values is available.

5.4.4 Specialization of the Candidates

The specialization is done in two steps. First, the profile data is analyzed and the set of candidates is

reduced to those that produce benefits. Second, the program is transformed accordingly for those

beneficial points.

The benefit of specializing is computed through the formulas presented before in this section. For

each candidate and using the profile information the energy savings and the energy costs are computed.

Specializing a given program instruction I, for a range of [min,max] of its output register r is worthwhile

if the overall benefit given by the next expression is positive (greater than zero).

),(max)(min,*),(rICostFreqrISavings −

Where Freq(min,max) is the frequency that the range of the value of r is within the range of the

specialized region, in other words, the frequency that the program path will go through the specialized

code.

There are two possible transformations of the code. In the case that the range [min,max] results in

the specialization for a single value (i.e. min=max), a value specialization method is used. Otherwise, a

value range specialization method is used. The value specialization method is based on the one proposed

by Muth, et al. [50]. In the case of the value range specialization, the method is a variation of the single

value specialization adapted to ranges.

The value range specialization consists basically of duplicating the regions of code that are

affected by the specialization and, after that, inserting the tests to select the region that will be executed:

either the specialized or the not specialized. The value range specialization technique introduces a set of

comparisons to check that the value is between the limits of the specialized range. In order to minimize

the costs of executing two conditional branches, the comparisons are implemented performing two

comparisons and an AND operation and not through conditional branches. The condition tested is (x=min

&& x=max) where x is the value that is being specialized. After the tests are inserted, the value range

propagation technique is run and thus the range of all the instructions in the specialized region is set.

78 Power- and Performance- Aware Architectures

78 Value Compression for High-Performance Microarchitectures

5.5 Evaluation

5.5.1 Experimental Framework

To evaluate the proposed technique, we use an extended version of Wattch [8] for power analysis. The

extensions include activity counts for all the blocks that allow data-width power gating. The main

architectural parameters of the out-of-order machine are described in Table 7 in section 5.2.2. VRP and

VRS were implemented in the Alto [42] binary optimizer. Some modifications where done in the

optimizer by expanding the use-def algorithm to allow intra-basic-block and inter-procedural, forward

and backward traversals. In order to implement the VRS, the profiling part of Alto was modified by

inserting the capability of profiling value ranges, computing the cost/benefit equations in terms of energy

and modifying the specialization function to insert the correct specialization code for value ranges. We

used the programs from the SpecInt95 suite with their reference inputs (and train inputs to perform the

profiling). All benchmarks were compiled with the HP-Alpha C compiler. The resulting binaries were

optimized at the maximum level and post-processed with our binary optimizer in order to perform VRP.

All benchmarks were run to completion.

5.5.2 Benefits of “Useful” Value Range Propagation

Figure 3 shows the distribution of the run-time instructions (on average for SpecInt95) according to the

widths determined by value range propagation. The extended value range propagation technique that

distinguishes useful values from all actual values (labeled in the figure as Proposed VRP) can identify

more instructions with small operands than the conventional VRP –without “useful” value range

propagation (see section 5.3.7) . Overall, the number of 64-bit instructions is reduced from a 51% to a

42%.

0

10

20

30

40

50

60

8 bits 16 bits 32 bits 64 bits

instruction width

P
er

ce
n

ta
g

e

Conventional VRP

Proposed VRP

Figure 3: Dynamic instruction distribution according to value size.

Power- and Performance- Aware Architectures 79

Value Compression for High-Performance Microarchitectures 79

5.5.3 Required Opcode Extensions

Depending on the initial instruction set, some new opcodes may have to be implemented to fully support

the proposed VRP technique. In this section, we analyze extensions required for the Alpha ISA.

The technique as presented applies only to integer computations. Thus, floating-point operations

are not analyzed. In addition, branch instructions are not taken into account because they manipulate

addresses (i.e. wide data). The Alpha ISA already supports byte, halfword, word and double word

memory operations (Load2 and Store). In Table 9, the distribution of other instructions is presented, in

order of their dynamic percentage of occurrence (for SpecInt95). The first column lists the operation type,

the second column gives the percentage of dynamic instructions of the given type, and the remaining

columns give the various data widths as a percentage of instructions of that type, i.e. as a percentage of

the column 2 percentages. Hence, 24 percent of the ADD instructions operate on 8 bits, or about 6.65

percent of all dynamic instructions.

Table 9: Distribution of operation types

Percentage
of run-time
instructions 64b 32b 16b 8b

ADD 27.66 58.04 14.37 10.98 24.03
MSK 5.18 35.50 13.41 13.57 37.63
CMP 3.78 6.18 7.79 20.53 64.84
SHIFT 2.75 29.91 19.56 22.90 32.23
SUB 2.35 13.87 15.76 16.82 60.78
AND 1.92 16.11 8.73 27.03 48.94
OR 1.79 23.77 5.90 3.53 68.62
XOR 1.15 17.04 7.52 29.77 43.89
CMOV 0.80 18.42 20.04 25.33 39.61
MUL 0.18 47.95 23.39 7.04 26.87

Because the MUL operation is rarely used and almost half the time it uses 64 bits anyway, there is

no advantage to implementing narrow-width MUL instructions. Similarly, there are very few 16-bit

operations overall. Only ADD is likely to be important enough to warrant a 16-bit version.

Overall, new opcodes added to the Alpha ISA are: byte and halfword addition; byte substraction;

byte and word logical operations (and, or, xor) and; byte and word shifts, conditional moves and

comparisons.

If some narrow data-width opcodes are not available for a chain of dependant instructions, value

range propagation must ensure that the values read at run time contain significant data for all the input

2 Although the byte and halfword load are unsigned it has no effect on the value range propagation.

80 Power- and Performance- Aware Architectures

80 Value Compression for High-Performance Microarchitectures

bytes (meaning that unused leading bytes have a defined value –either zero or one). This will ensure that

the wider instructions do not have undefined leading bits. For example, it would be unacceptable for the

result of a 16-bit load (i.e. 0x0000FFFF) to be used as input to a 32-bit multiplication (i.e.

0xXXXXXXXX0000FFFF –where X indicates an undefined value).

5.5.4 Energy Savings

The VRP mechanism does not affect the performance of the benchmarks since it just reencodes the

instructions with narrower opcodes. These narrower opcodes are then used to gate-off the portions of the

datapath that are not relevant for the computation of the final results. Figure 44 shows the power savings

of the processor when using the proposed VRP mechanism over the execution of the same binary without

VRP. The power results for the rename logic, branch prediction, instruction cache and second level cache

are not given because are not affected by the VRP. Nevertheless, the power consumption of these

components is part of the “processor” column.

The power savings for the most data intensive structures is up to 18% (i.e. functional units), and

for most other structures the savings are around 15% (instruction-queue, rename buffers, register file and

the result busses). The memory management structures (LSQ and L1 data cache) exhibit a minor

improvement since they handle memory addresses as well. Overall, the savings in these structures result

in an overall energy savings close to 6% on average for the SpecInt95 suite.

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

Ins
tru

ctio
n Q

ue
ue

Ren
am

e B
uff

fer
s LS

Q

Reg
iste

r F
ile

D-C
ac

he
 (L

1) FU

Res
ultb

us

Pro
ce

sso
r

Processor part

P
er

ce
n

ta
g

e
o

f E
n

er
g

y
S

av
in

g
s

Figure 44: Power savings for the VRP

5.5.5 Potential Benefits of Value Range Specialization

Figure 45 shows the potential of the Value Range Specialization. The potential has been computed

Power- and Performance- Aware Architectures 81

Value Compression for High-Performance Microarchitectures 81

assuming no overhead for the specialization (i.e. extra comparisons and branches) and taking into account

every instruction that has a narrower value range than that set by the VRP technique -at least, 90% of the

times it is executed. The instructions are divided between the ones that the range is a single value or

multiple values. The benefits of specializing for a given value are greater since some instructions may be

eliminated through constant propagation. The baseline is the energy spent with the Value Range

Propagation mechanism.

 We can see in Figure 45 that the potential benefit of using profiling varies between a 9% and a 20%

reduction of the total processor energy over the VRP mechanism. This means that the technique without

profiling can achieve a good glimpse of the run-time values in most of the benchmarks and that the

benefit of using profiling can be important for some benchmarks where the static approach cannot get a

good result; in other words, there is still room for improvement for the VRS mechanism.

0%

5%

10%

15%

20%

25%

compress gcc go ijpeg li m88ksim perl vortex AVG

Benchmark

P
er

ce
n

ta
g

e

Value Range

Single Value

Figure 45: Potential energy savings of VRP+VRS

5.5.6 Benefits of Value Range Specialization

As explained in Section 5.4, the Value Range Specialization is a profiling-based technique. Figure 46

shows the distribution of the candidates (i.e. instructions profiled) when they are analyzed right before

performing the specialization. The number on the top of each bar is the total number of candidates

(instructions that may are a potential source for specialization) profiled for each benchmark. Several

82 Power- and Performance- Aware Architectures

82 Value Compression for High-Performance Microarchitectures

filters have been implemented in order to select only those candidates that result in an energy-benefit. As

shown in Figure 46, most of the candidates are finally not considered for specialization since they

produce no benefit (88%). The other reason to eliminate a candidate is that it is dependent on another

candidate (since specializing one candidate will result in the specialization of the dependant one). On

average this only happens for a 2% of the candidates. At the end, the number of specialized candidates is

on average a 7% of the profiled ones. This means that on average, for the SpecInt95, 15 candidates are

specialized per benchmark, and individual benchmarks range from 3 (perl) to 55 (gcc).

0%

20%

40%

60%

80%

100%

co
mpre

ss gc
c go

ijp
eg li

m88
ks

im pe
rl

vo
rte

x

Av
era

ge

Benchmark

P
er

ce
nt

ag
e

Specialized

Dependant on another candidate

Candidate generates no benefit

 69 2098 379 366 53 82 63 61 396

Figure 46: Distribution of the candidates profiled after specialization

The information about the number of specialized candidates is interesting to see the effectiveness

of the profiling. At the same time, a more concrete result is the number of instructions that result from the

specialization of these candidates. Figure 47 shows the distribution of the instructions specialized for each

benchmark and on average. Although in most of the cases the instructions are specialized (in other words,

a new and more concise range is set for these instructions), there is also a significant amount of

instructions (especially in m88ksim and vortex) that are removed from the specialized sections of the

code. Since the technique is capable of specializing for a given value, and because constant propagation is

applied to the resulting code; some instructions can be eliminated.

Power- and Performance- Aware Architectures 83

Value Compression for High-Performance Microarchitectures 83

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

com
pre

ss gc
c go

ijpe
g li

m88
ksi

m pe
rl

vo
rte

x

Ave
rag

e

Benchmark

P
er

ce
n

ta
g

e

Eliminated

Specialized

 118 10628 2139 1448 90 77 7613 101 2777

Figure 47: Distribution of the specialized instructions at compile-time

At run time, the distribution of specialized instructions is showed in the first column of each

benchmark in Figure 48. At the same time, the percentage of instructions needed to specialize a point

(comparisons, etc) is reported in the second column. As it was shown in Figure 47, m88ksim and vortex

eliminate almost all the specialized instructions, which results in a minimal run-time occurrence of

specialized instructions. On average, more than 15% of the executed instructions are specialized -with a

maximum of 35% for perl; whereas the comparisons represent 1% of the executed instructions on

average.

0%

5%

10%

15%

20%

25%

30%

35%

40%

co
mpre

ss gc
c go

ijp
eg li

m88
ks

im pe
rl

vo
rte

x

Av
era

ge

Benchmark

P
er

ce
nt

ag
e

specialized instructions

specialization comparisons

Figure 48: Distribution of the run-time instructions

Another interesting statistic is the distribution of run-time instructions through the different value

range propagation mechanisms. Figure 49 shows the distribution of the run-time instructions on average

84 Power- and Performance- Aware Architectures

84 Value Compression for High-Performance Microarchitectures

for the SpecInt95. The first column is the baseline where no mechanism is implemented. In this case,

most of the instructions deal with 64 or 32 bits. When Value Range Propagation is implemented, the

amount of 64-bit instructions decrease to 40%, the percentage is further reduced to a 30% with the Value

Range Specialization mechanism (VRS 50uJ, meaning that the cost of specialization is set to 50 nano

Joules). This decrease in 64-bit instructions turns (mainly) into an increment in 8-bit instructions.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

No range
propagation

VRP VRS 50nJ

Value Range Mechanism

P
er

ce
n

ta
g

e

64 bits

32 bits

16 bits

8 bits

Figure 49: Distribution of the run-time instructions according to its execution size

Figure 50 shows the energy savings in relation to the baseline (the architecture without any value

range mechanism). In the case of the VRS mechanisms, different configurations have been studied

depending on the cost of specializing in terms of energy. As Figure 50 shows, the difference in cost does

not turn into big differences in energy reduction. This suggests that the set of candidates profiled have a

very skewed distribution according to the benefits they produce: either they are extremely good for

specialization or they are extremely bad.

Power- and Performance- Aware Architectures 85

Value Compression for High-Performance Microarchitectures 85

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

co
mpre

ss gc
c go

ijpe
g li

m88
ks

im pe
rl

vo
rte

x
AVG

Benchmark

P
er

ce
n

ta
g

e
o

f e
n

er
g

y
sa

vi
n

g
s

VRP

VRS 110nJ

VRS 90nJ

VRS 70nJ

VRS 50nJ

VRS 30nJ

Figure 50: Energy savings for the Spec95

Detailed energy benefits for every part of the processor are shown in Figure 51. Due to the nature

of the mechanism, the parts that most benefit of the value range mechanisms are those that directly

manipulate data values (i.e. issue queue, rename buffers, register file, functional units and result busses)

as it happened with VRP in Figure 44. Since VRS mechanisms manipulate code (by adding the

comparisons to perform the specializations and removing instructions in the specialized section), all the

parts of the processor are printed in Figure 51. Minimal energy benefits arise from the reduction of the

instructions but more impressive benefits arise from the data-dependent structures –the ones the technique

was focused on. Overall, the energy benefits of the VRS mechanism are around 9% while most of the data

intensive structures are over 20% of energy savings.

86 Power- and Performance- Aware Architectures

86 Value Compression for High-Performance Microarchitectures

-5%

0%

5%

10%

15%

20%

25%

Rename

Branch Predictio
n

Instru
ctio

n Queue ROB

Rename Buffers LSQ

Registe
r File

I-ca
che

D-ca
che (L1)

D-ca
che (L2) ALU

Result bus

Processo
r

Processor part

P
er

ce
nt

ag
e

of
 e

ne
rg

y-
re

du
ct

io
n

VRP

VRS 110nJ

VRS 90nJ

VRS 70nJ

VRS 50nJ

VRS 30nJ

Figure 51: Energy benefits for the different parts of the processors

Since the code is modified by inserting the comparisons of the VRS and eliminating the

instructions in the VRS sections of specialized code, it is important to see the impact on the execution

time of the benchmarks with the new technique. Note that the VRP mechanism does not affect

performance since it does not add any instruction to the code, it just recodes the instructions with

narrower opcodes. Figure 52 shows the reduction in execution time. Except for one configuration of VRS

in go, the rest of the binaries perform slightly better when VRS is included.

-1

0

1

2

3

4

5

co
mpre

ss gc
c go

ijpe
g li

m88
ksi

m pe
rl

vo
rte

x
AVG

Benchmark

P
er

ce
n

ta
g

e
o

f s
av

in
g

s VRP

VRS 110nJ

VRS 90nJ

VRS 70nJ

VRS 50nJ

VRS 30nJ

Figure 52: Execution time savings

Power- and Performance- Aware Architectures 87

Value Compression for High-Performance Microarchitectures 87

In order to compare the benefits of using the VRS mechanism, the energy-delay2 metric provides a

fair comparison of all the design points taking into account both energy and execution time savings.

Figure 53 shows the improving in energy-delay2 for all the benchmarks in the SpecInt 95. On average the

benefits of the VRP mechanism are a little bit above 5% but, when using the VRS mechanism, the

benefits scale up to almost 15%. In the case of the VRS 90nJ mechanism, the benefit rises to 25% in the

case of gcc.

0%

5%

10%

15%

20%

25%

30%

co
mpre

ss gc
c go

ijpe
g li

m88
ksi

m pe
rl

vo
rte

x
AV

G

Benchmark

P
er

ce
n

ta
g

e

VRP

VRS 110nJ

VRS 90nJ

VRS 70nJ

VRS 50nJ

VRS 30nJ

Figure 53: Energy-Delay2 Product for the Spec95

5.5.7 Comparison with a Hardware Approach

To compare with a hardware approach, we use the mechanisms presented in Chapter 3. Significance

compression is implemented through seven tag bits added per data word (64 bits) to indicate the number

of significant bytes. For comparison purposes size compression is also evaluated. In this mechanism, two

extra-bits are added per data word in order to indicate whether the value is 1, 2, 5 or 8 byte long.

Figure 54 shows the energy reduction of the different hardware approaches. On average, a 16% of

the overall power is reduced. The hardware approach has the advantage of enabling multiple-size

operands in the functional units. For example, an addition of a 16-bit plus a 32-bit value producing a 64-

bit value could be possible. Furthermore, the data-width of the same static instruction for several different

dynamic instances can be different (this being a big difference to the software schemes presented in this

work). Overall, the hardware approach has more opportunities to reduce the power consumption despite

the cost of keeping several bits per data word.

88 Power- and Performance- Aware Architectures

88 Value Compression for High-Performance Microarchitectures

0%

5%

10%

15%

20%

25%

co
mpre

ss gc
c go

ijpe
g li

m88
ks

im pe
rl

vo
rte

x
AV

G

Benchmark

P
er

ce
n

ta
g

e
in

 e
n

er
g

y
sa

vi
n

g
s

size compression

significance compression

Figure 54: Energy savings for the different hardware approaches

0%

10%

20%

30%

40%

50%

60%

Ren
am

e

Bra
nc

h P
red

icto
r

Ins
tru

ctio
n Q

ue
ue ROB

Ren
am

e B
uff

ers

Ld
/St Q

ue
ue

Reg
iste

r F
ile

I-C
ac

he

D-C
ac

he
 (L

1)

D-C
ac

he
 (L

2) Fu
s

Res
ult

Bus

Pro
ce

sso
r

Processor part

P
er

ce
n

ta
g

e
o

f
E

n
er

g
y

R
ed

u
ct

io
n size compression

signif icance compression

Figure 55: Energy savings for each processor part (Average SpecInt 95)

Figure 56 presents the energy delay savings when combining the hardware and software schemes.

Both hardware and software schemes cooperate to achieve a higher percentage of energy-delay2 savings.

The energy-delay2 savings of the VRS mechanism are (on average) very close to those of the significance

compression mechanism and better than the size compression mechanism. In some benchmarks (gcc, perl

Power- and Performance- Aware Architectures 89

Value Compression for High-Performance Microarchitectures 89

and vortex), the VRS mechanism has a better performance in terms of energy-delay2 than the hardware

mechanisms. The reasons behind this competitive performance are the reduction of the execution time,

the minimal extra cost (in hardware) of the software mechanism and the accuracy of the value range

analysis. The benefit of using the profiling technique is even higher when a hardware scheme is used in

the architecture since the additional energy savings of the hardware scheme are added to the reduction in

execution time of the profiling mechanism. For instance, gcc achieves almost a 38% of energy-delay2

benefit when combining the significance compression and the VRS.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

compress gcc go ijpeg li m88ksim perl vortex AVG

VRP VRS 50
hdw size hdw significance
VRP + hdw size VRP + hdw significance
VRS 50 + hdw size VRS 50 + hdw significance

Figure 56: Energy Delay2 savings for different hardware and software configurations

5.5.8 Hardware and Software Trade-offs

Both hardware and software approaches to operand gating have advantages and disadvantages. In general,

the hardware approach requires no change in the ISA and no recompilation or binary translation. On the

other hand, software approaches tend to make the microarchitecture simpler. Changes to

microarchitecture in order to support the hardware mechanism are the following:

• A set of tag bits (2 or 7 as explained earlier in this section) that have to be stored with all values

(in the register file and in the cache).

• The tag bits of a register value must be read before the data in order to know which bytes are

significant and require a register file access. This may introduce a delay in the register file

access.

90 Power- and Performance- Aware Architectures

90 Value Compression for High-Performance Microarchitectures

• The functional units must be able to generate sign extended bytes for those values that need

extra sign extension when a computation is performed (i.e. when adding a 16-bit value with a

32-bit one).

• The functional units must generate the tag bits for results.

The software approach encodes the width of the values used in the operation mnemonic and thus

requires minimal hardware changes.

In terms of value range propagation, the proposed software approach can only identify and

propagate useful value ranges through the static program code, and may eliminate significant data bits in

the process if they are not required for semantically correct results. On the other hand, a dynamic

hardware-based significance compression mechanism is able to detect value ranges more accurately than

a static software method.

This suggests a cooperative hardware-software approach where both methods are used in the

same processor. To implement this cooperative approach, value compression is initiated both through

compiler-generated instructions and through hardware-generated compressed values at runtime. In both

cases, two significance compression tag bits follow values in the pipeline. Although the compiler

generates opcodes for 8, 16, 32 and 64-bit wide data, when a hardware compressing mechanism is used,

the instructions executed will use 8, 16, 40 or 64 bits within the microarchitecture. The cooperative

hardware and software approach achieves a 31% overall energy-delay2 savings in relation to the base

architecture (the architecture without any compile or run-time data compression).

Overall, the software scheme seems more appropriate to an environment where the ISA already

supports multiple-size operations and where hardware overhead is unaffordable. On the other hand, for

scenarios where recompilation is an issue and where hardware changes are not critical, the hardware

approach may be best. Finally, only for environments where power is very critical, one may be willing to

pay the overheads of a combined software and hardware approach in order to achieve the extra 10%

power reduction that the combination provides over the hardware-only scheme.

5.6 Related Work

5.6.1 Processor Front-End

The primary functions performed in a processor’s front end are instruction caching and branch prediction.

Simple zero compression was proposed for the instruction cache [71], resulting in a 10% reduction in the

energy consumption of the cache.

 To the best of our knowledge there have been no published results on value compression to reduce

energy requirements of branch prediction. However, in Section 5.2.3, we show performance figures of

Power- and Performance- Aware Architectures 91

Value Compression for High-Performance Microarchitectures 91

applying the zero compression mechanism of Villa et al. [71] and our significance compression method to

branch predictors. The power savings during branch prediction comes from compressing values held in

the branch target buffer (BTB).

Sato and Arita [60] split the value predictor structure that keeps the predicted values into two

similar structures, where one holds byte-wide data and the other holds 64-bit data. This structure is shown

to be beneficial for energy saving because most of the instructions’ ouput-value widths do not change,

and a large portion of them (as shown in the data width distribution in Figure 21) are narrow.

5.6.2 Processor Back-End

Brooks et al .[7], Loh [39] and Nakra et al. [51] propose techniques for exploiting narrow width operands

to reduce functional unit energy requirements and, at the same time, to increase performance. Their

techniques pack instructions that use narrow operands so that they can be executed in a single ALU (i.e.

one 64-bit adder can compute four 16-bit additions). The differences between the various approaches lie

in the ways the narrow widths are obtained. Brooks et al. introduce hardware that dynamically detects the

width of operand values. Loh extracts the data-width from a data-width predictor and thus a recovery

mechanism is needed in case the prediction is wrong. Finally Nakra et al. set the width at compile-time.

In these works [7][39][51], the register file is modified in two possible ways: either by incrementing the

number of read and write ports to the banks of the register file holding the low-order bytes; or by

replicating the lower part of the register file.

The implications to the functional units result in two alternatives: Brooks [7], Loh [39] and Nakra

[51] extend the functional units with the capability to execute multiple narrow-width instructions (see

Figure 57a). On the other hand, as we proposed in the previous chapter, the functional units can be

extended so that the FUs can operate with compressed values and generate the compression bits (see

Figure 57b). In terms of implementation of these alternatives, Choi et al. [22] present several FU

implementations that turn off the portions of the FU that compute the high-order bits when these are just a

sign-extension of the least significant ones (the boundary between the high-order and low-order bits is

analyzed and set in their work).

92 Power- and Performance- Aware Architectures

92 Value Compression for High-Performance Microarchitectures

Figure 57: (a) ALU with packing capabilities, (b) ALU with value compression capabilities

5.6.3 Data Cache

Several value compression methods have been proposed for reducing energy consumption in the memory

subsystem. Most of them are focused on on-chip caches. The data cache has been shown to be one of the

more power-hungry structures in a microarchitecture. Figure 58 shows a data cache enhanced with value

compression capabilities. Typical implementations compress and decompress the data when it is moved

between the first and the second level caches. The same compression mechanisms can be used in all the

memory hierarchy, and more sophisticated schemes [69] can be used in lower levels of the memory

hierarchy for achieving higher compression ratios at the expense of some increase in latency -- not critical

in lower memory levels.

Figure 58: Data cache with value compression capabilities

Several compression mechanisms have been proposed: zero compression [71] eliminates the bytes

that are set to zero; active data-width [52] compresses the values to certain ranges (6,14,24 or 32 bit);

frequent value cache [76] has a list of most frequent values for the high-order bits (32 bits); and the last

value a Cbits value b Cbits

value c Cbits

ALU

v.2a v.1a v.3a v.4a v.2b v.1b v.3b v.4b

v.2c v.1c v.3c v.4c

ALU

compression bits 1

value 1

compression bits 2

value 2
Data Cache

output compression bits output value

memory address

Power- and Performance- Aware Architectures 93

Value Compression for High-Performance Microarchitectures 93

scheme analyzed is the significance compression that we have proposed in the previous chapter which

eliminates the bytes that are a sign-extension of the previous one.

Villa et al. [71] propose an encoding where one bit per byte indicates whether this byte is null

(zero) or not. The data-cache is modified to store the necessary bits. When the data is accessed, the

additional bits are read first in order to just read the bytes that have a value different from zero. Okuma et

al. [52] propose to divide the cache into several sub-banks where each sub-bank keeps a portion of the

value (32-bit wide in their case). For each memory access, just the sub-banks with significant data are

accessed. In their case, one sub-bank holds the lowest significant six bits, next sub-bank holds the

following 8 bits, the third sub-bank keeps the next 10 and the last bank holds the last (most-significant) 12

bits. This compression scheme needs two bits per word and is very similar to the more general one

analyzed in this paper under the name of size compression.

There are several other studies that use some properties of the values manipulated by the cache in

order to save some energy. For instance, Yang and Gupta [76] propose to add an extra structure in the

data cache that keeps the most frequent accessed high-order bits of the values in a compressed form.

When a load is performed, the low-order bits bank is accessed, together with the bits indicating whether

the remaining 32 bits are stored in a compressed form or not. If they are compressed, the frequent value

bank is accessed; otherwise the high-order bits bank is used. This compression scheme adds 5 bits per

data value when 16 frequent values are stored (i.e. log2 n +1 bits, where n is the number of frequent values

stored and one extra bit to indicate whether it is a frequent value or not). Moshnyaga et al. [46] propose a

similar approach to the Frequent-Value Cache [76]. In particular, they propose to compress the values for

the video-memory and just for the MPEG2 encoder. In this case the upper bits are not stored if they are

the same as the previous value in the cache. One extra bit per byte indicates this situation. Finally, Park et

al. [55] propose to invert the values when storing them in the cache. The values are stored either in their

true or complemented value in order to minimize the transitions of the precharged value. One extra bit is

necessary to differentiate between the true or complemented value.

The last work in this section refers to a proposal to reduce the energy consumption in the I/O pins.

Musoll et al. [48] focus on the energy consumption of the pins communicating the processor cache to the

off-chip memory subsystem. According to Mussoll’s study, most of the off-chip memory accesses have

locality. Since most of the programs work on a few memory zones, each zone is given a code. Then, when

performing an off-chip memory access, the zone code is sent along with the offset of the access to the

previous reference instead of sending the whole memory address. In the same way, Benini et al. [3], Stan

et al. [64] and Yang et al. [77] propose several new encodings for the values to save power in the I/O

operations.

94 Power- and Performance- Aware Architectures

94 Value Compression for High-Performance Microarchitectures

5.6.4 Software Controlled Value Compression

Value Range Propagation has been already explored in early stages of the compiler. Techniques using

value range propagation have been used in high-level code transformations [9][40][56][65]. Our work

applies at a much later code development step and to binary code. The technique proposed here is more

CPU specific but totally compiler independent. For instance, forward propagation and loop analysis have

some precedent in high-level program representations mainly used by symbolic analysis for different

applications such as parallelizing compilers [4]. Other applications of the value range propagation include

VLSI synthesis targeted to custom processors (i.e. that execute only a certain application) [21][40][65]. In

[21] the authors propose a datapath-width optimization framework based on runtime information

concerning the size of operands. This information is used to rewrite the source code where each data type

has a width component. What we call Useful Value Range Propagation has not been previously

implemented to the best of our knowledge; though Budiu et al. [9] implemented useful bit-width

computation (where each bit was tagged whether it was useful or not). Alternatively, value range

propagation has been used for branch prediction [56], although in this case backward propagation and

loop-carried expressions were not considered.

Alternative approaches for narrow values are multimedia extensions like MMX-SSE, AltiVec and

3DNow!. These approaches are currently being most efficiently used directly by the programmers.

5.7 Conclusions

The compression of data values for different microarchitecture components has been shown to be an

effective way of reducing the overall power consumption of processors. In this chapter, we have focused

on the value compression paradigm and the proposals around this topic for high-performance processors.

Hardware value compression has been shown to be a good method to reduce the activity and thus the

energy consumption with no impact on performance.

Software operand gating has been shown to be an effective way to increase the processor energy

efficiency. A software technique for operand gating has been evaluated. With minimal extensions to the

ISA, the software approach is able to extract width information from the binary code and then propagate it

through the program code. By extending the propagation through profiling to further constraint the value

ranges, multiple versions of code for certain program segments are created and the most efficient is

dynamically chosen based on the actual values of the operands. The proposed technique achieves an

overall 14% energy-delay2 reduction for the SpecInt95 set. It achieves a much better reduction for data-

intensive structures where the energy benefits are over 20%.

Power- and Performance- Aware Architectures 95

Value Compression for High-Performance Microarchitectures 95

Although the hardware schemes require some extensions to the microarchitecture, they can

reduce the energy for any data that has a small number of significant bits. Since the values are checked

dynamically at run-time, operand gating is optimized for each particular value. On the other hand, the

software approach has to make conservative assumptions for two reasons. First, it has to assume the

worst-case range when the compiler does not know the potential values of a variable. Second, it uses a

unique range for each static instruction that includes all the values of the corresponding dynamic

instances of the static instruction. However, a software scheme has a number of advantages. For instance,

software analysis can detect useful bits, which in general are more restrictive than significant bits. This

suggests that a combined hardware-software approach can further reduce the energy consumption. Our

experiments show an average energy-delay2 benefit of 31%.

96 Power- and Performance- Aware Architectures

96 Value Compression for High-Performance Microarchitectures

Power- and Performance- Aware Architectures 97

Conclusions and Future Work 97

Chapter 6

Conclusions and Future Work

This chapter summarizes the main conclusions of this work and outlines some future work.

“Human subtelty will never devise an invention more beautiful, more simple
or more direct than does Nature, because in her inventions, nothing is
lacking and nothing is superfluous”
Leonardo DaVinci

98 Power- and Performance- Aware Architectures

98 Conclusions and Future Work

6.1 Conclusions

Several low power techniques have been proposed and analyzed in this thesis either specifically for one

processor structure (issue logic) or for the whole datapath. We have investigated different alternatives that

reduce the associative structures and increase the power savings.

In the case of the issue logic, we proposed alternative implementations that are much simpler and

retain most, if not all, the ability of the full out-of-order mechanism to exploit instruction-level

parallelism.

In particular, we have studied two families of schemes. The first one based on the so called

“dependence-tracking” family presents the N-use scheme where the dependences between instructions are

kept in a table indexed by physical register. Another alternative is the “prescheduling” family. Both the

Distance scheme and the Deterministic Latency scheme presented provide a performance very close to the

out-of-order processor and at the same time they constrain the associative searches to a small queue of 8-

16 entries.

Chapter 3 showed the compressibility of the values manipulated in the pipeline. Three value

compression methods and their reduction in the average number bits needed to be computed were

presented. From the study in Chapter 3, two different processor segments were differentiated: ultar-low

power and high-performance ones. Chapter 4 has shown how value compression can be applied to ultra-

low power processors through redesigning the datapath. Since the significant bytes of instructions,

addresses, and data values essentially determine a minimal activity level that is required for executing a

program (typically 30-40% lower than for a conventional 32-bit pipeline), we developed several pipeline

implementations that attempt to achieve these low activity levels while providing a reasonable level of

performance. The byte-serial pipeline is very simple hardware-wise, but increases CPI dramatically. For

some very low power applications, this may be an acceptable performance level, in which case the byte-

serial implementation would be a very good design choice. For higher performance, the pipeline stages

can be widened. An analysis of bandwidths suggests a balanced design. Activities are still at their reduced

levels, and this design may provide a very good design point for many very low power applications.

Finally, we considered designs with a four byte wide datapath at each stage. Operand-gating is retained

for reducing activity, but under ideal conditions throughput is no longer restricted. These designs can

come very close in performance to the baseline 32-bit design while again retaining reduced activity levels.

The disadvantage of these schemes is an increased latch activity, or additional forwarding paths or more

complex control. We believe that these may be a very important class of implementations however,

because of their high performance levels.

Power- and Performance- Aware Architectures 99

Conclusions and Future Work 99

Finally, in Chapter 5 we showed how software-controlled operand-gating is an effective way to

increase the processor energy efficiency. With minimal extensions to the ISA, the software approach is

able to extract width information from the binary code and then propagate it through the program code.

By extending the propagation through profiling to further constraint the value ranges, multiple version of

code for certain program segments are created and the most efficient is dynamically chosen based on the

actual values of the operands.

Hardware value compression methods were also implemented in Chapter 5. While hardware

schemes require some extensions to the microarchitecture, they can reduce further the energy since the

values are checked dynamically at run-time and operand gating is optimized for each particular value. On

the other hand, the software approaches have to be conservative since either they do not have all the

information to take a decision or they have to assume the widest range possible of all run-time instances.

Combining the hardware and software approaches resulted in a benefit of 31% in terms of energy-delay2.

Overall, the thesis began with some insight into the issue logic complexity. Afterwards, we focused

on wider-scope techniques based on novel value compression methods for the whole datapath. Starting in

the ultra-low power segment, we proposed several microarchitrectures that achieved a minimal activity,

and thus, energy consumption. After this work, we targeted high-performance processors. In this scenario,

the compression overheads have to be kept to a minimum to minimize the impact on performance. Two

compile time techniques have been proposed to enhance the benefits of value compression, either based

on just static analysis or with the help of profiling information. We have shown that the compiler can play

an important role when trying to reduce the energy requirements.

6.2 Future Work

Due to the increasing trend to miniaturization, several research topics arise that are interesting follow-ups

of this thesis. Power and energy related issues are becoming one of the more intensive research areas.

Thus, important effort should be directed to study new techniques and methods that can mitigate the

restrictions that power and energy-related issues have on future microprocessors. For instance leakage

currents and temperature-aware computing are still mainly unexplored and we believe they may be

important in the future.

6.2.1 Leakage Current

As pointed out in the introduction of this thesis, for future technologies static power consumption will

likely become the main component of the energy consumption equation. In this sense, future works

should be targeted to reduce the leakage currents effectively.

100 Power- and Performance- Aware Architectures

100 Conclusions and Future Work

In this case, the energy consumed is proportional to the number of devices (transistors) in the chip.

Thus, techniques that reduce switching activity might be less effective in this environment and techniques

that power down sections of the chip (or structures) might be an interesting focus of our research. At the

same time, compile-time techniques will be a good choice since they have a smaller hardware impact

because they usually require minimal hardware modifications (as it was shown in Chapter 5, for high-

performance value compression methods).

6.2.2 Temperature-Aware Computing

Temperature-aware computing has started to become an interesting research for microarchitects. Given

the scenario where the cooling and the packing costs set the temperature limit at which the processor can

operate, it is an interesting research to evaluate performance- and energy-wise techniques that yield the

best performance/energy requirements for this scenario.

It presents a challenge in terms of simulation since many implementation parameters have to be

taken into account. An interesting start in this field of research is how thermal modeling can be

implemented into a conventional simulator and then validated. Simulating temperature-wise behavior of a

processor is a challenge, but the benefit of knowing such information and devising techniques that can

increment the efficiency of the design may be deemed profitable in the near future.

6.2.3 System on a Chip

Another interesting scenario is the one that is being developed nowadays for mobile computing and it

might become the standard technology in the near future for mobile devices such as mobile phones. In

this scenario, a chip includes the processor, the memory, and several components for communication

protocols (i.e. GSM, GPRS, Bluetooth, etc.).

Computer architects should work on these designs as well. Although it may be claimed that the

inclusion of several functions in the chip is not a novel idea; the fact that they include communication

units, and an increasing demand of multimedia processing makes it a very interesting field to research on

and energy conservation techniques might be important for such devices.

Power- and Performance- Aware Architectures 101

References 101

References

[1] J. Abella, R. Canal and A. González, “Power- and complexity-aware issue-queue designs”, IEEE

Micro, Volume 23, Issue: 5, pp. 50–58, September-October 2003.

[2] C.S. Ananian. “The Static Single Information Form”. Technical Report MIT-LCS-TR801,

Massachusetts Institue of Technology, 1999.

[3] L. Benini, G.D. Micheli, E. Macii, M. Poncino and S. Quer, “Reducing Power Consumption of Core

Based Systems by Address Bus Encoding”, IEEE Transactions VLSI Systems, Volume 6, Issue 4, pp.

554-562, 1998.

[4] W.J. Blume, “Symbolic Analysis Techniques for Effective Automatic Parallelization”, Ph.D. Thesis

University of Illinois at Urbana-Champaign, 1995.

[5] M.T. Bohr, "Interconnect Scaling - The Real Limiter to High Performance VLSI", in Proceedings of

the 1995 IEEE International Electron Devices Meeting, pp. 241-244, 1995.

[6] S. Borkar, “Design Challenges of Technology Scaling”, IEEE Micro Volume 19, Issue: 4, pp. 23-29,

July-August 1999.

[7] D. Brooks and M. Martonosi, “Dynamically Exploiting Narrow Width Operands to Improve

Processor Power and Performance”, in Proceedings of 5th. International Symposium on High-

Performance Computer Architecture, 1999.

[8] D. Brooks, V. Tiwari and M. Martonosi, “Wattch: A Framework for Architectural-Level Power

Analysis and Optimization”, in Proceedings of the 27th Annual International Symposium on

Computer Architecture, June 2000.

[9] M. Budiu, S. Goldstein, M. Sakr and K. Walker. “BitValue inference: Detecting and exploiting

narrow bitwidth computations”. In Proceedings of the 2000 European Conference on Parallel

Computing, August 2000.

[10] D. Burger, T.M. Austin, S. Bennett, "Evaluating Future Microprocessors: The SimpleScalar Tool

Set", Technical Report CS-TR-96-1308, University of Wisconsin-Madison, 1996.

102 Power- and Performance- Aware Architectures

102 References

[11] G. Cai and C.H. Lim, “Architectural Level Power/Performance Optimization and Dynamic Power

Estimation”, in the Cool Chips tutorial of the 32nd International Symposium on Microarchitecture

1999.

[12] B. Calder, P.Feller and A. Eustace, “Value Profiling”, in Proceedings of the 30th International

Symposium on Microarchitecture, December 1997.

[13] R. Canal, A. González. “A Low-Complexity Issue Logic”. Proceedings of the 2000 International

Conference on Supercomputing, pp. 327-335, May 2000.

[14] R. Canal, A. González. “Reducing the Complexity of the Issue Logic”. Proceedings of the 2001

International Conference on Supercomputing, pp. 312-320, June 2001.

[15] R. Canal, A. González and J.E. Smith, “Power-Aware Computing through Value Compression”,

Technical Report UPC-DAC-2003-32.

[16] R. Canal, A. González and J.E. Smith, “Software-Controlled Operand-Gating”, in Proceedings of the

2004 International Symposium on Code Generation and Optimization, March 2004.

[17] R. Canal, A. González and J.E. Smith, “Very Low Power Pipelines using Significance Compression”,

in Proceedings of the 33rd International Symposium on Microarchitecture, pp. 181-190, December

2000.

[18] R. Canal, J.M. Parcerisa, A. González, "Dynamic Cluster Assignment Mechanisms", in Proceedings

of the International Symposium on High-Performance Computer Architecture, pp. 133-142, 2000.

[19] R. Canal, J.M. Parcerisa, A. González, "Dynamic Code Partitioning for Clustered Architectures",

International Journal of Parallel Programming, Volume 29 Issue 1 , pp. 59-79, February 2001.

[20] R. Canal, J.M. Parcerisa, A. González, "A Cost-Effective Clustered Architecture”, Proceedings of

International Conference on Parallel Architectures and Compilation Techniques, October 1999.

[21] Y. Cao, H. Yasuura, “A System-Level Energy Minimization Approach Using Datapath Width

Optimization”, in Proceedings of the International Symposium on Low Power Electronics and

Design, August 2001.

Power- and Performance- Aware Architectures 103

References 103

[22] J. Choi, J. Jeon and K. Choi, “Power Minimization of Functional Units by Partially Guarded

Computation”, in Proceedings of the 2000 International Symposium on Low Power Electronics and

Design, pp. 131-136, August 2002.

[23] J.Ll. Cruz, A. González, M. Valero, N. Topham, "Multiple-Banked Register File Architectures" in

Proceedings of the 27th International Symposium on Computer Architecture, 2000.

[24] K.I. Farkas, P. Chow, N.P. Jouppi, Z. Vranesic, "The Multicluster Architecture: Reducing Cycle

Time through Partitioning", in Proc of the 30th. Annual Symposium on Microarchitecture, pp. 149-

159, 1997.

[25] J.A. Fisher, "Very Long Instruction Word and ELI-512", in Proceedings of the 10th Symposium on

Computer Architecture, pp. 140-150, 1983.

[26] M. Franklin, "The Multiscalar Architecture", Ph.D. Thesis, Technical Report TR 1196, Computer

Sciences Department, Univ. of Wisconsin-Madison, 1993.

[27] D. Folegnani, A. Gonzalez, “Reducing Power Consumption of the Issue Logic” Workshop on

Complexity-Effective Design, Vancouver, June 2000.

[28] R. Gonzalez and M. Horowitz, “Energy Dissipation in General Purpose Microprocessors”, IEEE

Journal of Solid-State Circuits, Volume 31 Issue 9, pp. 1277-1284 September 1996.

[29] M.K. Gowan, L.L. Biro, D.B. Jackson, “Power Considerations in the Design of the Alpha 21264

Microprocessor”, Proceedings of the 35th ACM/IEEE conference on Design Automation Conference,

pp. 726-731, 1998.

[30] W. Harrison. “Compiler Analysis of the Value Ranges for Variables”. IEEE Transactions of Software

Engineering 3:243-250, May 1977.

[31] D.S.Henry, D.C.Kuszmaul, G.H.Loh, R.Sami, “Circuits for Wide-Window Superscalar Processors”,

Proceedings of the 27th International Symposium on Computer Architecture, pp. 236-247, June 2000.

[32] R. Iris Bahar and S. Manne, “Power and Energy Reduction via Pipeline Balancing”, in Proceedings of

the 28th Annual International Symposium on Computer Architecture, June 2001.

[33] G.A. Kemp, M. Franklin, "PEWs: A Decentralized Dynamic Scheduler for ILP Processing", in

Proceedings of the International Conference on Parallel Processing, Volume 1, pp 239-246, 1996.

104 Power- and Performance- Aware Architectures

104 References

[34] K.D. Kissell, “MIPS16: High-density MIPS for the Embedded Market”, SGI MIPS group, 1997.

[35] K. Knobe and V. Sarkar. “Array SSA form and its use in Parallelization”, in Proceedings of the 25th

International Symposium on Principles of Programming Languages, pp 107-120, January 1998.

[36] M. Kozuch and A. Wolfe, “Compression of Embedded Systems Programs”, in Proceedings of the

International Conference on Computer Design, 1994.

[37] C. Lee, M. Potkonjak and W. H. Mangione-Smith, “Mediabench: A Tool for Evaluating and

Synthesizing Multimedia and Communications Systems”, in Proceedings of the 30th International

Symposium on Microarchitecture, pp. 330-335, December 1997.

[38] C.R Lefurgy, E.M Piccininni and Trevor N Mudge, “Evaluation of a High Performance Code

Compression Method”, in Proceedings of the 32nd International Symposium on Microarchitecture

1999.

[39] G. Loh, “Exploiting Data-Width Locality to Increase Superscalar Execution Bandwidth”, in

Proceedings of the 35th International Symposium on Microarchitecture, pp. 395-405, November

2002.

[40] S. Mahlke, R. Ravindran, M. Schalnsker, R. Schreiber and T. Sherwood, “Bitwidth Cognizant

Architecture Synthesis of Custom Hardware Accelerators”, IEEE transactions on Computer-Aided

Design of Integrated Circuits and Systems, Volume 20 Issue 11, pp. 1355 -1371, November 2001.

[41] S. Manne, A. Klauser and D. Grunwald, “Pipeline Gating: Speculation Control for Energy

Reduction”, in Proceedings of the 25th International Symposium on Computer Architecture, pp.132-

141, June 1998.

[42] P. Marcuello, A. Gonzálex, J. Tubella, "Speculative Multithreaded Processors", in Proceedings of the

International Conference on Supercomputing, pp. 77-84, 1998.

[43] D. Matzke, "Will Physical Scalability Sabotage Performance Gains", IEEE Computer Volume 30,

Issue 9, pp.37-39, 1997.

[44] P. Michaud, A. Seznec, “Data-Flow Prescheduling for Large Instruction Windows in Out-of-Order

Processors”, in Proceedings of the 7th International Symposium on High-Performance Computer

Architecture, pp. 27-36, 2001.

Power- and Performance- Aware Architectures 105

References 105

[45] J. Montanaro and et. All. “A 160-MHz, 32-b, 0.5 W CMOS RISC Microprocessor”, Digital Technical

Journal, volume 9. DEC, 1997.

[46] V. Moshanyaga, K. Inoue and M. Fukagawa, “Reducing Energy Consumption of Video Memory by

Bit-Width Computation”, in Proceedings of the 2002 International Symposium on Low Power

Electronics and Design, pp. 142-147, August 2002.

[47] E. Musoll, “Predicting the usefulness of a block result: a micro-architectural technique for high-

performance low-power processors”, in Proceedings of the 32nd International Symposium on

Microarchitecture 1999.

[48] E. Musoll, T. Lang and J. Cortadella, “Exploiting the locality of memory references to reduce the

address bus energy”, in Proceedings of the 1997 International Symposium on Low Power Electronics

and Design, pp. 202-206, August 1997.

[49] R. Muth, S. Debray, S. Watterson and K. De Bosschere “Alto: A Link-Time Optimizer for the

Compaq-Alpha”, Software Practice and Experience 31:67-101, January 2001.

[50] R. Muth, S. Watterson, S. Debray, “Code Specialization based on Value Profiles”, in Proceedings 7th

International Static Analysis Symposium, June 2000.

[51] T. Nakra, B. Childers, and M.L.Soffa, “Width Sensitive Scheduling for Resource Contained VLIW

processors”, Workshop on Feedback Directed and Dynamic Optimizations, December 2001.

[52] T. Okuma, Y. Cao, M Muroyama and H Yasuura, “Reducing Access Energy of On-Chip Data

Memory Considering Active Data Width”, in Proceedings of the 2002 International Symposium On

Low Power Electronics and Design, pp. 88-91, August 2002.

[53] S. Önder, R. Gupta, "Superscalar Execution with Dynamic Data Forwarding", in Proceedings

International Conference on Parallel Architectures and Compilation Techniques, pp. 130-135, 1998.

[54] S. Palacharla, N.P. Jouppi, and J.E. Smith, "Complexity-Effective Superscalar Processors", in

Proceedings of the 24th. International Symposium on Computer Architecture, pp 1-13, 1997.

[55] B.I. Park, Y.S. Chang and C.M. Kyung, “Conforming Inverted Data Store for Low Power Memory”,

in Proceedings of the 1999 International Symposium on Low Power Electronics and Design, pp. 91-

93, August 1999.

106 Power- and Performance- Aware Architectures

106 References

[56] J. Patterson. “Accurate Static Branch Prediction by Value Range Propagation”. In Proceedings of the

Conference on Programming Languages Design and Implementation, pp 67-78, June 1995.

[57] PowerPC 405CR User Manual”, IBM/Motorola, June 2000.

[58] C. Price, “MIPS IV Instruction Set”, MIPS Technologies Inc, 1995.

[59] E. Rotenberg, Q. Jacobson, Y. Sazeides and J.E. Smith, "Trace Processors", in Proc of the 30th.

Annual Symposium on Microarchitecture, 1997.

[60] T. Sato and I. Arita, “Table Size Reduction for Data Value Predictors by Exploiting Narrow Width

Values”, in Proceedings of the 2000 International Conference on Supercomputing, pp.196-205, May

2000.

[61] Semiconductor Industry Association, "The National Technology Roadmap for Semiconductors",

1997.

[62] J.E. Smith, G.S. Sohi. “The Mircoarchitecture of Superscalar Processors”, Proceedings of the IEE,

Volume 83, Issue 12, pp. 1609-1624, December 1995.

[63] G.S. Sohi, S.E. Breach, and T.N. Vijaykumar, "Multiscalar Processors", in Proceedings of the 22nd

International Symposium on Computer Architecture, pp. 414-425, 1995.

[64] M.R. Stan and W.P. Burleson, “Bus-Invert Coding for Low-Power I/O”, IEEE Transactions on VLSI

Systems, Volume 3, Issue: 1, pp. 49-58, March 1995.

[65] M. Stephenson, J. Babb and S. Amarasinghe, “Bitwidth Analysis with Application to Silicon

Compilation”, in Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language

Design and Implementation, pp. 108-120, 2001.

[66] R.M. Tomasulo, "An efficient algorithm for exploiting multiple arithmetic units", IBM Journal of

Research and Development, Volume 11, pp. 25-33, 1967.

[67] D.M. Tullsen, S.J. Eggers, H.M. Levy, "Simultaneous Multithreading: Maximizing On-Chip

Parallelism", in Proceedings of the International Symposium on Computer Architecture, pp. 392-403,

1995.

Power- and Performance- Aware Architectures 107

References 107

[68] J. Turley, “Thumb Squeezes Arm Code Size”, Microprocessor Report, Volume 9, Issue 4, March

1995.

[69] J. Turley, “PowerPC Adopts Code Compression”, Microprocessor Report, October 1998.

[70] N. Vijaykrishnan, M. Kandemir, M.J. Irwin, S.H. Kim and W. Ye, “Energy-Driven Integrated

Hardware-Software Optimizations Using SimplePower”, in Proceedings of the 27th International

Symposium on Computer Architecture, pp. 95-106, 2000.

[71] L. Villa, M. Zhang, and K. Asanovic, "Dynamic Zero Compression for Cache Energy Reduction”, in

Proceedings of the 33rd International Symposium on Microarchitecture, December 2000.

[72] D.W. Wall, "Limits of Instruction-Level Parallelism", Techincal Report WRL 93/6, Digital Western

Research Lab, 1993.

[73] S. Weiss, J.E. Smith, "Instruction Issue Logic in Pipelined Supercomputers", in the IEEE

Transactions on Computers, Volume c-33, Issue 11, pp 1013-1022, November 1984.

[74] A. Wolfe and A. Channin, “Executing Compressed Programs on an Embedded RISC Architecture”,

in Proceedings of the 19th International Symposium on Microarchitecture, 1992.

[75] W. Yamamoto, M. Nemirovsky, "Increasing Superscalar Performance through Multistreaming", in

Proceedings of the International Conference on Parallel Architectures and Compilation Techniques,

pp. 49-58, 1995

[76] J. Yang and R. Gupta, “Energy Efficient Frequent Value Data Cache Design”, in Proceedings of the

35rd International Symposium on Microarchitecture, pp. 197-207, November 2002.

[77] J. Yang and R. Gupta. “FV encoding for Low PowerData I/O”. In Proceedings of the 2001

International Symposium on Low Power Electronics and Design, pp. 84-87, August 2001.

[78] V. Zyuban, “Inherently Lower-Power High-Performance Superscalar Architectures”, PhD. Thesis,

Dept. of Computer Science and Engineering, University of Notre Dame, (Indiana), January 2000.

[79] L. Villa, M. Zhang, and K. Asanovic, “Dynamic Zero Compression for Cache Energy Reduction”, in

Proceedings of the 33rd International Symposium on Microarchitecture, December 2000.

108 Power- and Performance- Aware Architectures

108 References

Power- and Performance- Aware Architectures 109

List of tables 109

List of tables

Table 1: Machine parameters.. 19
Table 2: Activity and performance estimates for PC updating... 43
Table 3: Dynamic frequency of the function codes .. 45
Table 4: Cases in which byte Ci has to be generated .. 47
Table 5: Activity reduction (%) for datapath operations (8 bit) ... 49
Table 6: Activity reduction (%) datapath operations (16 bit) ... 49
Table 7: Machine parameters.. 64
Table 8: Energy savings for ALU operations (in nJoules) ... 76
Table 9: Distribution of operation types ... 79

110 Power- and Performance- Aware Architectures

110 List of tables

Power- and Performance- Aware Architectures 111

List of figures 111

 List of figures

Figure 1: Power density for the Intel-32 family [6].. 2
Figure 2: Circuit transition currents (left: charge, right: discharge) ... 4
Figure 3: Short-circuit currents... 4
Figure 4: Leakage currents.. 4
Figure 5: Alpha 21264 processor power breakdown [29] .. 6
Figure 6: N-use issue logic design .. 13
Figure 7: Example of the 2-use scheme .. 14
Figure 8: Distance scheme issue-logic.. 15
Figure 9: Deterministic Latency issue logic ... 17
Figure 10: Performance of the N-use scheme (without I-buffer) ... 20
Figure 11: Evolution of the IPC for the N-use scheme for different sizes of an out-of-order I-

buffer... 20
Figure 12: Performance of the N-use scheme for different sizes of an in-order I-buffer 21
Figure 13: Performance of the basic Distance scheme (without Wait queue).............................. 22
Figure 14: Performance of the Distance scheme for different Wait queue sizes.......................... 22
Figure 15: Performance of the basic Deterministic Latency scheme (without a Delayed Issue

queue).. 23
Figure 16: Performance of the Deterministic Latency scheme for different Delayed Issue queue

sizes... 24
Figure 17: Performance of the three proposed schemes ... 25
Figure 18: Performance of the FIFO scheme together with the N-use and the Deterministic

Latency.. 26
Figure 19: Evolution of the energy savings for the proposed mechanisms 27
Figure 20: Evolution of the energy-delay2 product for the proposed mechanisms....................... 27
Figure 21: Register data size distribution for the SpecInt95 on a 64-bit microarchitecture 32
Figure 22: Distribution of run-time values for the several pipeline structures 35
Figure 23: Average operand size for several pipeline structures .. 35
Figure 24: Distribution of run-time values for the several pipeline structures with size

compression .. 36
Figure 25: Average operand size for several pipeline structures .. 37
Figure 26: Basic pipeline .. 40
Figure 27: Permutations for the different instruction formats .. 44
Figure 28: Byte-serial implementation ... 52
Figure 29: Performance of the byte-serial architecture... 53
Figure 30: Byte semi-parallel implementation ... 54
Figure 31: Performance of the byte semi-parallel microarchitecture ... 55
Figure 32: Byte-parallel skewed microarchitecture.. 56
Figure 33: Performance of the byte-parallel skewed microarchitecure .. 57
Figure 34: Byte-parallel compressed pipeline .. 58
Figure 35: Performance of the byte-parallel compressed and skewed + bypasses

microarchitecture .. 59
Figure 36: Average Data Size for the SpecInt95 .. 63
Figure 37: Processor Energy savings .. 65

112 Power- and Performance- Aware Architectures

112 List of figures

Figure 38: Energy savings for the Data Cache (SpecInt95) ... 66
Figure 39: Energy savings for the Register file (SpecInt95) .. 67
Figure 40: Energy savings for the ALU (SpecInt95).. 67
Figure 41: Energy savings for the I-Cache (SpecInt95) ... 68
Figure 42: Peak power reduction (SpecInt95) .. 69
Figure 43. Example of value range propagation... 73
Figure 44: Power savings for the VRP ... 80
Figure 45: Potential energy savings of VRP+VRS... 81
Figure 46: Distribution of the candidates profiled after specialization... 82
Figure 47: Distribution of the specialized instructions at compile-time....................................... 83
Figure 48: Distribution of the run-time instructions... 83
Figure 49: Distribution of the run-time instructions according to its execution size.................... 84
Figure 50: Energy savings for the Spec95 .. 85
Figure 51: Energy benefits for the different parts of the processors... 86
Figure 52: Execution time savings.. 86
Figure 53: Energy-Delay2 Product for the Spec95 ... 87
Figure 54: Energy savings for the different hardware approaches ... 88
Figure 55: Energy savings for each processor part (Average SpecInt 95) 88
Figure 56: Energy Delay2 savings for different hardware and software configurations............... 89
Figure 57: (a) ALU with packing capabilities, (b) ALU with value compression capabilities 92
Figure 58: Data cache with value compression capabilities ... 92

