Contents

Li	st of	Figures	7
Li	st of	Tables	ix
Al	ostra	ct	x
Re	esum	en	χι
\mathbf{St}	ructi	ure of the thesis	xix
1	Intr 1.1 1.2	Towards all-optical networks	
2	Opt 2.1 2.2 2.3 2.4 2.5	Introduction Main concepts Packet formats and network operations Metro area network context 2.4.1 Examples of OPS-based metro network prototypes Wide area network context 2.5.1 Node architectures 2.5.2 Techniques for contention resolution 2.5.3 Example of OPS-based backbone network prototypes	13 13 14 17 21 24 26 28
3	Intr	oduction to the OPS-based metro area networks	33
4	Mul 4.1	State-of-the-art	37 37 38 40

		4.2.1 Simulation scenario
	4.3	Performance evaluation
	4.4	Optimization
	4.5	QoS provisioning
		4.5.1 Problem formulation
		4.5.2 QoS strategy: the Limited Attempts (LA) technique 49
		4.5.3 Performance evaluation
		4.5.4 Comparison with other QoS techniques
	4.6	Summary
_	3.5	
5		Iti-ring architecture 57
	5.1	State-of-the-art
		5.1.1 MAC protocol
		5.1.2 Scheduling algorithm
		5.1.3 Traffic measurements
		5.1.4 Fairness control
		5.1.5 QoS provisioning
	5.2	Contributions
		5.2.1 Simulation scenario 6
	5.3	Performance evaluation
	5.4	Optimization
	5.5	QoS provisioning
		5.5.1 Problem formulation
		5.5.2 Heuristic solution
		5.5.3 Performance evaluation
		5.5.4 Optimization of the QoS mechanism
	5.6	Summary
6	Ron	chmarking 83
U	6.1	
	6.2	Multi-PON versus multi-ring
	-	
	6.3	
		6.3.1 Benchmarked solutions
	0.4	6.3.2 Resource dimensioning
	6.4	Example of CAPEX analysis
	6.5	Example of OPEX analysis
	6.6	Conclusions and perspective
7	Intr	oduction to the OPS-based wide area network 97
	7.1	State-of-the-art
	7.2	The connection-oriented OPS network
	7.3	Problems addressed in this thesis
	7.4	Simulation scenario

8	The	OVC setup in connection-oriented OPS networks	105
	8.1	Problem description	105
	8.2	OWSA algorithms	107
	8.3	Performance evaluation	
	8.4	Quality differentiation at the OVC setup	
	8.5	Summary	112
9	QoS	management in connection-oriented OPS networks	115
	9.1	State-of-the-art	115
	9.2	The Service Category-to-Algorithm Switching Selection technique	117
		9.2.1 Example of defining three different OPS service categories	117
		9.2.2 Performance evaluation	121
		9.2.3 Optical buffer architecture to integrate different SCASS	122
10	Con	clusions and future works	127
\mathbf{A}	Acr	onyms	131
В	Rela	ated publications	133
	B.1	Papers	133
	B.2	Projects deliverables	135
	B.3		135
Bi	bliog	graphy	137

List of Figures

1.1	Trend of the optical networking technology	2
1.2	Optical circuit switching solution	3
1.3	Optical burst switching solution	4
1.4	Optical packet switching solution	5
1.5	Network segments	6
2.1	An example of optical packet formats. a) out-of-band control channel, b) in-band control channel	14
2.2	Data incoming from client layers (a) can be placed in different optical packet formats: synchronous, fixed-length packets (b); asynchronous, fixed-length packets (c); synchronous, variable-length packets (d); asynchronous, variable-length packets	16
2.3	Schematic example of an OPS node for metro networks	18
2.4	Example of physical topologies for metro networks	19
2.5	Example of composite physical topologies for metro networks	19
2.6	Structure of the AWG-STAR metro network	22
2.7	Structure of the HORNET metro network	22
2.8	Structure of the DBORN metro network	23
2.9	A generic OPS node architecture	25
2.10	Schematic example of the a) single-stage and b) multi-stage node ar-	
2.11	Schematic example of the a) feed-forward and b) feedback node architecture	2525
2.12	Buffer configurations with 4 FDLs, a) Degenerate $k_j = j - 1$, $\mathbf{Q}_4 =$	
	$\{0, D, 2D, 3D\}$, b) Non-degenerate $k_j = (j-1)^2$, $\mathbf{Q}_4 = \{0, D, 4D, 9D\}$	27
	Structure of the WASPNET switch node	29
2.14	Structure of the DAVID switch node	29
3.1	Architectures considered in the DAVID project	34
4.1	Multi-PON architecture	38
4.2	Timing structure of the wavelength channels	39
4.3	Throughput as a function of the offered load under uniform traffic matrix $$	
4.4	Throughput as a function of the offered load under diagonal traffic matrix $$	44
4.5	Throughput as a function of the offered load under dynamic diagonal	
	traffic matrix	45

4.6	Throughput as a function of the offered load comparing the Greedy	16
4.7	and the Frame-based algorithm	46
4.1	the Greedy and the Frame-based algorithm	46
4.8	Throughput as a function of the offered load comparing the original	10
1.0	and the optimized solution	48
4.9	Maximum end-to-end delay as a function of the offered load comparing	_
	the original and the optimized solution	48
4.10		
	techniques and considering $(h = 3, k = 7)$	50
4.11	Throughput as a function of the offered load comparing different values	
	of (h, k) and using the TM technique	51
4.12	Packet loss rate as a function of the offered load comparing different	
	values of (h, k) and using the TM technique	52
4.13	Maximum end-to-end delay as a function of the offered load comparing	
111	different values of (h, k) and using the TM technique	52
4.14	Throughput as a function of HQ traffic relative load percentage at	E 1
1 15	100% total load using the TM technique	54
4.10	and LA	55
4.16	Maximum end-to-end delay as a function of the offered load comparing	55
1.10	the AP, RED and LA	55
5.1	Architectures of a) PMR node with transmission and reception decou-	- 0
T 0	pling and b) MR node with erasure capability	58
5.2	Multi-slot forwarding in the multi-ring. Colors in slot represent packet	E O
5.3	destinations	59 60
5.4	Throughput as a function of the offered load under uniform traffic matrix	63
5.5	Relative throughput per node for total load on the ring of 0.7, without	00
0.0	fairness control (solid line) and with SAT for two values of $Q \dots \dots$	64
5.6	Throughput as a function of the offered load under diagonal traffic matrix	65
5.7	Throughput as a function of the offered load under diagonal traffic	
	matrix with spatial reuse (dashed line) and without spatial reuse (solid	
	line). a) Network with 16 rings and 4 wavelengths per ring, b) Network	
	with 4 rings and 16 wavelengths per ring	67
5.8	Throughput as a function of the offered load under diagonal-7 traffic	
	matrix with traffic fluctuation comparing a) the original and b) the	
- 0	optimized solution	68
5.9	Throughput as a function of the offered load under uniform traffic	71
5.10	matrix. GS load is fixed to 30%	71
0.10	total load under diagonal traffic matrix	72
5.11	<u> </u>	73

5.12	Example of slot forwarding in the multi-ring network with wavelength-	
	to-wavelength permutations	74
5.13	Throughput as a function of GS traffic relative load under the uni-	
	form traffic matrix: comparison of a) the optimal and b) the heuristic	
	solution for the passive multi-ring configuration, and c) the heuristic	 -
1	solution for the active multi-ring configuration	78
5.14	Throughput as a function of GS traffic relative load under the diago-	
	nal traffic matrix: comparison of a) the optimal and b) the heuristic	
	solution for the passive multi-ring configuration, and c) the heuristic	70
E 1E	solution for the active multi-ring configuration	79
5.15	Throughput as a function of GS traffic relative load under the power- of ten traffic matrix, comparison of a) the entired and h) the houristic	
	of-ten traffic matrix: comparison of a) the optimal and b) the heuristic solution for the passive multi-ring configuration, and c) the heuristic	
	solution for the passive multi-ring configuration, and c) the neuristic solution for the active multi-ring configuration	80
5 16	Throughput as a function of GS traffic relative load under the very	00
5.10	unbalanced traffic matrix: comparison of a) the optimal and b) the	
	heuristic solution for the passive multi-ring configuration, and c) the	
	heuristic solution for the passive multi-ring configuration, and c) the	81
	neuristic solution for the active main ring configuration	01
6.1	The network dimensioning methodology	84
6.2	The considered switch architecture	86
6.3	Node structures. (DMUX: wavelength demultiplexer; MUX: wave-	
	length multiplexer; NPR: network processing receiver; NPT: network	
	processing transmitter; SW: STM-1/STM-4 switch; Eth SW: Ethernet	
	switch; XC: cross-connect; DAB: data aggregation board. a) Point-to-	0.0
0.4	point Ethernet Hub + Node. b) SDH node. c) RPR node	88
6.4	Node capacity (in Gbit/s) required in the different network architec-	0.0
c r	tures for the three traffic volumes	89
6.5	Example of OPEX analysis: relative annual OPEX cost comparison in the different network architecture for the three traffic volumes	92
6.6	the different network architecture for the three traffic volumes Possible introduction scenario of the different metro technologies	93
0.0	1 ossible introduction scenario of the different metro technologies	9.
7.1	The considered switch architecture	98
7.2	Connection-oriented OPS network	100
7.3	Contention resolution techniques in connection-oriented OPS networks.	101
8.1	Example of OVC forwarding table configurations able to avoid and	
0.1	produce contentions	106
8.2	Packet loss rate as a function of the relative load at different overall	100
٠. _	load.	107
8.3	OWSA algorithms.	109
8.4	Packet loss rate as a function of the overall load comparing the RND,	- 0
	RR, BLC, and GRP algorithms under uniform traffic matrix	110
8.5	Packet loss rate as a function of the overall load comparing the RND,	
	RR, BLC, and GRP algorithms under power-of-two traffic matrix	110

8.6	Packet loss rate as a function of the overall load comparing the RND,	
	RR, BLC, and GRP algorithms under unbalanced traffic matrix	111
8.7	Procedure for HQ and LQ OVC	112
8.8	Packet Loss Rate as a function of the offered load. HQ load increases from 5% to 50% with respect to the overall load under uniform traffic	
	matrix	113
8.9	Packet Loss Rate as a function of the overall load with HQ load is 25%	
	under a) power-of-two traffic matrix and b) unbalanced traffic matrix.	113
9.1	TSWS algorithms.	118
9.2	LBWS algorithms	119
9.3	SKWS algorithms.	120
9.4	a) Packet loss rate, b) Forwarding opacity, and c) Out-of-sequence	
	packets as a function of D normalized to the average packet duration,	
	comparing TSWS, LBWS and SKWS	121
9.5	Non-degenerate buffer configuration with 6 FDLs. BE packets can use	
	delays $\{0, D, 2D, 3D\}$, while the RT and LS packets can use delays	
	$\{0, 3D, 6D, 9D\}$	123
9.6	Packet loss rate as a function of D normalized to the average packet	
	duration	124
9.7	Packet loss rate as function of the buffer length B	125
9.8	Packet loss rate as function of traffic relative load percentage	125

List of Tables

2.1	Example of node architectures	26
5.1	Average running times for the four solutions	72
6.1	Node types and traffic assumptions	84
6.2	Major components quantities for mean traffic for 80G scenario	85
6.3	Transport resources required in the different architectures	90
6.4	Example of CAPEX analysis: cost relative to the passive multi-ring $$.	91
9.1	PLR, FO and OS comparing SCASS technique with EQWS and MIN-	
	GAP both adopting a buffer threshold technique	124