Structure of the thesis

Environment

Optical Packet Switching: cope with the electronic bottleneck exploiting the statistical multiplexing directly in optical domain; the optical packets travel along the network transparently while the headers are converted in electrical domain at each hop to take forwarding decisions.

In this dissertation

Quality of Service is defined by IETF (RFC 2386) as "the complete set of service requirements to be met by the network while transporting a flow". This dissertation mainly focuses on providing QoS in both wide area and metropolitan environment using OPS environment assigning/managing/controling resources such that not all customers are treated the same.

OPS-based metropolitan area networks

Scenario: two composite network topologies

- Multi-PON topology
- Multi-ring topology

Tasks

- Identification of the service requirements
- Optimization of the proposed schemes
- QoS supporting all types of services
- Benchmarking study

Identification of the service requirements

- Guaranteed service: data with real-time constraints.
- Priority service: data near-real-time, less delay and bandwidth-sensitive.
- Best-effort service: data that can be sent at the leisure of the node.

Multi-PON

Related work

- MAC protocol
- QoS supporting Best-effort and Guaranteed services

Contributions

- Optimization of MAC protocol
- Support of Priority service

Multi-ring

Related work

- MAC protocol
- QoS supporting Best-effort and Priority services

Contributions

- Optimization of MAC protocol
- Support of Guaranteed service

Benchmarking study

A cost-effectiveness study is performed to assess the benefits of the OPS-based solutions comparing them to non-OPS technologies such as SONET, Ethernet and RPR.

OPS-based wide area networks

Scenario: single OPS switch

Tasks

- Analysis of the related work
- Identification of the critical metrics
- Novel techniques for QoS support in connection-oriented OPS networks

Analysis of the related work

- Several contention resolution algorithms ranging from simple random to complex void filling queueing selection
- QoS provisioning based on the following method:
 - design a contention resolution algorithm which minimizes the packet loss rate
 - then apply a QoS mechanism to differentiate the packet loss rate using resource reservation, offset time or hybrid electrical/optical buffers

Identification of the critical metrics

- Packet loss rate
- Out-of-sequence delivery of packets
- Computational complexity

Novel techniques

- Contributions to the development of the connection-oriented OPS network.
- Design of original policies to setup OVC in such a scenario.
- QoS management in connection-oriented OPS network.