TABLE OF CONTENTS

List of figures	xvii
CHAPTER 1 INTRODUCTION	1
1.1 Background of the Research Project	1
1.2 Scope and Objectives of the Research Programme	2
1.3 Layout of the Thesis and Overview of the Experimental Programme	
CHAPTER 2 SOIL USED IN THE INVESTIGATION	5
2.1 Geological Origin of the Material and Mineralogy	
2.1.1 Origin of the material	
2.1.2 X-ray diffraction analysis	
2.1.3 Mineralogy	
2.2 Classification and Geotechnical Characteristics of Clay Powder and Packings	
2.2.1 Geotechnical classification tests	
2.2.1 Geotechnical classification tests	
2.2.1.2 Clay powder and remoulded state characterisation	
2.2.2 Pore water extraction by squeezing technique. Osmotic suction measurement	
2.2.2.1 General aspects and experimental procedure	
2.2.2.2 Experimental results	
2.3 Static Compaction Tests and Powder Preparation Techniques for the Different Soil	
Structures used in the Experiments	
2.3.1 Static compaction tests	
2.3.1.1 Test procedures and results	
2.3.1.2 One-dimensional compression results in the lateral stress measuring system cell	
2.3.2 Powder preparation techniques for the different soil structures	
2.4 Resonant Column Tests	
2.5 Mercury Intrusion Porosimetry and SEM Studies for the Different Soil Packings	20
2.5.1 Background of mercury intrusion porosimetry	20
2.5.1.1 Introduction	20
2.5.1.2 Background of Wahburn equation used in MIP	21
2.5.2 MIP equipment and testing procedures. MIP specimen preparation	23
2.5.3 MIP results and interpretation	24
2.5.4 MIP - retention curve relationships	27
2.5.5 MIP-saturated permeability relationships	
2.5.5.1 General MIP-permeability model	
2.5.6 SEM technique for direct fabric viewing. Comparisons between porosimetry and	
microscopy	
2.5.6.1 Experimental procedure	
2.5.6.2 Interpretation of SEM results	
2.6 Swelling-collapse potential of the aggregate packings under applied loads	
2.6.1 Testing procedures and results of swelling-collapse experiments	
2.6.2 Experimental method and results of one-dimensional consolidation tests	
2.6.2.1 Experimental method	
2.6.2.1 Experimental results and interpretation	37 34

CHAPTER 3	EXPERIMENTAL EQUIPMENT AND LAYOUT	61
3.1 Genera	l Layout of Testing Equipment	61
	roduction	
3.1.2 Ge	neral layout of air and water pressure systems	61
	Axis translation technique. Operational techniques	
	Diaphragm, piston and cell air pressure systems. Water pressure system	
3.2 Develo	pment of Suction Controlled Oedometer Cells	65
	nventional suction controlled oedometer cell.	
	ction and temperature controlled oedometer cell	
3.2.2.1	Description of the oedometer cell and heating system	65
	Experimental layout. Auxiliary devices	66
	Cell modifications to perform swelling pressure tests	
3.2.2.3 3.2.2.3	teral stress suction controlled oedometer cell	68
	Null-type confining ring. Control system and calibration	
	Oedometer cell and testing layout. Compaction layout	
	ction controlled oedometer cells and testing layout calibrations	
	• •	
	Mechanical calibration. Cell deformability and vertical load calibrations	
	Temperature calibrations	
	Temperature and ageing effects on water permeability of HAEV discs	
	shing system and diffused air volume indicators	
3.2.5.1	Concepts and formulation of air diffusion through saturated ceramic discs	76
	Experimental measurement of the diffused air	
	pment of Suction Controlled Isotropic Cells	
	ction controlled mini isotropic cell	
	mperature and suction controlled triaxial cell layout. Modifications for isot	
	ting	
	ial displacement transducers	
3.3.3.1		
	Temperature calibrations	
	dial displacement sensors	
3.3.4.1	Introduction. Laser-based electro-optical sensors	83
3.3.4.2	Implementation in the triaxial cell	
3.3.4.3	Calibrations and performance evaluation	85
3.3.4.4	Calibrations for non-isothermal paths. Temperature effects on sensitivity and	zero
	shifts	86
3.3.4.5	Theoretical considerations of refraction effects	87
3.3.4.6	Assessment of errors	89
3.3.5 For	ced convection heating system	90
	ta acquisition system	
	*	
CHAPTER 4	EXPERIMENTAL PROGRAMME AND PROCEDURES	119
	mental Procedure of Soil Suction Imposition under a Temperature I	
_	ometer calibrations	
	neral aspects of soil water potential. Background of application and measure	
	soil suction	
	pour equilibrium technique	
	ction imposition test series at different temperatures	
	/chrometer calibrations and measurements	
-	g Programme and Test Paths	
	st paths and methodology	
	Oedometer test paths	
	Isotropic test paths	
	dometer and isotropic testing programme	
7.4.4 UE	uometei anu isouodie testine dioelamme	1 4 7

4.2.2.1 Oedometer testing programme	. 129
4.2.2.2 Isotropic testing programme	. 131
4.3 Sample Preparation Techniques	. 133
4.3.1 Stress paths for sample preparation (oedometer tests)	. 133
4.3.2 Examination of static compaction techniques for isotropic tests (triaxial equipment)	. 134
4.4 Testing Procedures	. 135
4.4.1 Saturation of ceramic discs. Water volume changes	. 135
4.4.2 Specimen mounting	. 136
4.4.2.1 Specimen mounting in oedometer cells	
4.4.2.2 Specimen mounting in triaxial cell	. 137
4.4.3 Equalisation stages	
4.4.3.1 Equalisation periods for wetting-drying paths	
4.4.3.2 Equalisation periods for loading-unloading paths	
4.5 Test Spurious Problems	
4.5.1 Ring friction effects	
4.5.2 Spurious problems with evaporative fluxes	
4.5.2.1 General aspects. Measured evaporative fluxes	
4.5.2.2 Theoretical bases of the thermo-hydraulic analysis	
4.5.2.2 Theoretical bases of the thermo-nythatine analysis	17/
CHAPTER 5 THERMO-HYDRAULIC EXPERIMENTAL RESULTS	170
5.1 Retention Curves obtained from Vapour Equilibrium, Psychrometer Results and Air	
Overpressure Techniques	
5.1.1 Aspects of clay-water system	
5.1.2 Main wetting and drying curves for different packings at $T = 22^{\circ}C$ (vapour	
equilibrium technique)	
<u>*</u>	
5.1.3 Main wetting and drying curves for different packings at $T = 22$ °C (air overpressure	
technique)	
5.1.4 Aspects of soil – water characteristic curves (main wetting and drying paths). Soil -	
water characteristic curve equations	
5.1.5 Temperature effects on main wetting paths (vapour equilibrium technique)	. 185
5.1.6 Aspects of temperature effects on soil water retention	
5.1.7 Main wetting-drying cycles and first scanning wetting path obtained from suction	
controlled oedometer tests at different temperatures	
5.1.7.1 Main wetting paths at different temperatures	
5.1.7.2 General aspects of main drying and first scanning wetting paths at different	
temperatures	
5.2 Water Permeability Determination under Controlled Suction	
5.2.1 Introduction. Unsaturated flow equations. General aspects	
5.2.2 General aspects and testing results of partial saturation and porosity effects on water	
permeability at two different temperatures	. 196
CHAPTER 6 THERMO-HYDRO-MECHANICAL OEDOMETER RESULTS	
6.1 Stress and Strain State Variables under Isothermal Conditions used in the Research	
6.1.1 General aspects of stress state variables	
6.1.2 General aspects of work conjugate strain variables	
6.2 Suction Controlled Swell / Shrinkage under Constant Load Results on Low-Porosity	
Packings	. 231
6.2.1 Isothermal paths	231
6.2.1.1 General aspects. Main wetting and drying paths	.231
6.2.1.2 Reversible features under nearly saturated conditions	. 237
6.2.1.3 Thermal induced reversible features under nearly saturated conditions (isothermal	
·	238

6.2.2 Non-isothermal paths	240
6.3 Suction Controlled Collapse (Swell) / Shrinkage under Constant Load Results on Hi	gh-
Porosity Packings (Isothermal Paths)	242
6.3.1 Main wetting and drying paths	242
6.3.2 Reversible features under nearly saturated conditions	245
6.4 Loading-Unloading Paths under Controlled Suction	246
6.4.1 Results on low-porosity packings	246
6.4.2 Results on high-porosity packings	
6.5 Suction Controlled Constant Volume Swelling and Shrinkage Pressure Tests	252
CHAPTER 7 THERMO-HYDRO-MECHANICAL ISOTROPIC RESULTS	319
7.1 Isothermal Suction Controlled Paths	
7.1.1 Suction controlled swell or collapse / shrinkage under constant net mean stress	
7.1.1.1 Testing results on the low-porosity packing	
7.1.1.2 Testing results on the high-porosity packing	
7.1.1.3 Compressibility aspects using DDL theory under nearly saturated conditions	
7.1.2 Loading-unloading paths under constant suction	
7.2 Non-Isothermal Suction Controlled Paths on the High-Porosity Packing	
7.2.1 General aspects and pore pressure build-up under quasi-undrained heating	
7.2.1.1 General aspects and testing results	
7.2.1.2 Pore pressure generation under quasi-undrained conditions	
7.2.2 Thermo-mechanical behaviour under quasi-undrained conditions	331
7.2.3 Thermo-mechanical behaviour under drained conditions	332
CHAPTER 8 SUMMARY, CONCLUSIONS AND FUTURE RESEARCH WORK	375
8.1 Summary and Conclusions	
8.1.1 Characterisation of the material	
8.1.2 Experimental equipment, programme and procedures	
8.1.3 Thermo-hydro-mechanical results	
8.1.3.1 General aspects. Temperature effects on hydraulic properties	
8.1.3.2 Thermo-hydro-mechanical aspects: oedometer tests	
8.1.3.3 Thermo-hydro-mechanical aspects: isotropic tests	
8.2 Future Research Work	
REFERENCES	383
APPENDIX A AGGREGATE SWELLING IN A WETTING PATH: ESEM IMAGES	403
A.1 Equipment, sample preparation and wetting path	
A.2 Volume change evolution	403

LIST OF FIGURES

Figure 2.1	NNW-SSE geological cross-section through the Mol site (Horseman et al., 1987)	. 37
Figure 2.2	X-ray diffraction pattern and mineral identification for the most intense reflections	. 37
Figure 2.3	Particle size distribution.	.38
Figure 2.4	Particle size density function.	.38
Figure 2.5	Specific surface for different packings using MIP technique	. 39
Figure 2.6	Plasticity chart.	. 39
Figure 2.7	Relationship between electrical conductivity and solute concentration for homoionic	
	(NaCl) and heteroionic systems.	. 40
Figure 2.8	Psychrometric, electrical conductivity and filter paper techniques for osmotic suction	
	measurement.	
Figure 2.9	Net vertical stress against dry unit weight for different values of moisture content	
Figure 2.10	Static compaction curves for different stress levels. Energy input per unit volume	
Figure 2.11	Static compaction curves with contours of equal suction	. 43
Figure 2.12	Stress paths followed by one-dimensional compression to a target $\gamma_d = 13.7$	
	kN/m ³ . Relationship between K ₀ and overconsolidation ratio.	. 44
Figure 2.13	Stress paths followed by one-dimensional compression to a target $\gamma_d = 16.7 \text{ kN/m}^3$.	
	Relationship between K ₀ and overconsolidation ratio.	. 45
Figure 2.14	Relationship between K ₀ and degree of saturation obtained from different test	
	results. Extrapolation to in situ overconsolidation ratio.	. 46
Figure 2.15	*	
	static compaction tests at different temperatures	. 46
Figure 2.16	Suction-mean preconsolidation stress relationships obtained from static compaction	
	tests at different temperatures.	. 47
Figure 2.17	Variation of shear modulus with shear strain for the different packings obtained	
	from resonant column tests.	
Figure 2.18	Surface phenomena in MIP technique and capillary rise.	
Figure 2.19	Cumulative intrusion pore volume normalised by sample weight	
Figure 2.20	Cumulative intrusion porosity.	
Figure 2.21	Pore size distribution for the different soil packings.	
Figure 2.22	Relative porosity frequency (histogram) obtained from classified MIP results	
Figure 2.23	Incremental relative porosity (frequency) from MIP raw results	
Figure 2.24	Pore size density function from MIP raw results	
Figure 2.25	Determination of the fractal dimension from MIP raw results	. 51
Figure 2.26	Adsorption and desorption isotherms for the different soil packings compared to	
	MIP results.	. 52
Figure 2.27	dSr _{nw} /dp function obtained from desorption isotherms. Apparent delimiting value	~ 0
F: 0.00	separating inter and intra-aggregate zones.	
Figure 2.28	Pore size density function evaluated from retention curve data.	
Figure 2.29	Relative permeability for different pore sizes evaluated from classified MIP data	
Figure 2.30	Permeability function evaluated from raw MIP data	
Figure 2.31	SEM photomicrographs for different dry side compacted packings (× 5000)	. 55
Figure 2.32	Graphic representation of porosity changes for the different soil packings. Pores are	
	black and particles white.	
-	Vertical strains in soaking tests for different hygroscopic compacted packings	
Figure 2.34		
Figure 2.35	Conventional pedometer loading-unloading path (saturated sample)	.58

Figure 2.36	Saturated water permeability-void ratio relationship obtained from different testing	
	procedures.	.59
Figure 2.37	Different published results for saturated water permeability. Conversion to	
	macroporosity void ratio.	.59
Figure 3.1	Diagram and pictures of the suction and temperature controlled oedometer cell	.93
Figure 3.2	Temperature evolution during heating and cooling paths in oedometer cell and	
118010 0.2	compaction mould.	94
Figure 3.3	Experimental setup for temperature and suction controlled oedometer tests	
Figure 3.4	Hermetic mould and heating chamber used to prepare specimens at temperatures	., ,
1 1guic 5.4	higher than 60°C.	95
Figure 3.5	Scheme of the null-type confining ring.	
Figure 3.6	Arrangement for lateral stress swelling pressure tests. Control system and ram	.) 5
Tigule 5.0	pump	06
Figure 3.7	Calibration of the lateral stress system.	
Figure 3.8	Diagram and picture of the lateral stress suction controlled oedometer cell.	
Figure 3.9	Deformability of suction controlled oedometer cells	
Figure 3.10	Arrangement for vertical load static calibration and theoretical relationships	. 70
riguie 3.10		00
Figure 3.11	between diaphragm or piston pressure and transmitted net vertical load	.90
rigure 3.11	Comparison between theoretical relationships and calibration results of oedometer loading systems.	00
Eigung 2 12	• •	
Figure 3.12 Figure 3.13	Temperature calibrations of oedometer cell for non-isothermal paths.	
_	Water volume change corrections for non-isothermal paths.	
Figure 3.14	Ageing effects on water permeability of HAEV discs (conventional oedometers)	101
Figure 3.15	Ageing and temperature effects on water permeability of HAEV discs (thermal	102
F: 2.16	oedom. 1).	102
Figure 3.16	Ageing and temperature effects on water permeability of HAEV discs (thermal	102
E: 2 17	oedom. 2).	
Figure 3.17 Figure 3.18	Water permeability of HAEV discs (lateral stress cell and triaxial cell)	103
rigule 3.16	Water volume change under isothermal conditions. Comparison between directly measured values of diffused air volume and estimated from steady-state	
	considerations	104
Figure 3.19	Amount of air diffusing through the ceramic discs for different matric suctions and	104
rigule 3.19	temperatures.	105
Figure 3 20	Volumetric solubility in water for different gases constituents of dry air	
•	Basic scheme of the mini isotropic suction controlled cell.	
	Cross-section scheme of triaxial cell.	
-	Picture of triaxial cell.	
_	Top and base plate assembly of HAEV discs and coarse porous stones.	
	Mounting scheme of internal LVDTs.	
	Calibration cycles of internal LVDTs at different temperatures.	
Figure 3.26	a) Lateral strain sensor head scheme and optical triangulation technique. b), c) and	10)
11guic 3.20	d) Refraction effects on sensor response.	110
Figure 3.27	Output voltage and displacement calibration relationships of lateral strain sensor	
Figure 3.28	Sensitivity of the lateral strain sensor with different transparent media. Sensitivity	111
11guic 3.26	shift for varying cell temperatures.	111
Figure 3.29	Calibration cycles of temperature effects on zero-shift of lateral strain sensors	
Figure 3.30	Comparison of theoretical and calibration sensitivities of lateral strain sensors	
Figure 3.31	Sources of errors involved in the non-contact lateral strain measurement.	
Figure 3.32	Performance of lateral strain sensors at different cell temperatures. Dummy sample	113
1 1guic 3.32	profiles.	112
Figure 3.33	Scheme of the forced convection heating system.	
_	Power supplied to the external heater according to target cell temperatures	
-	Temperature evolution and zero-shift of local sensors (22°C to 40°C).	

Figure 3.36	Temperature evolution and zero-shift of local sensors (40°C to 60°C)	116
Figure 3.37	Temperature evolution and zero-shift of local sensors (60°C to 80°C)	
Figure 3.38	Cooling path and zero-shift on laser sensors (80°C to ambient temperature)	117
Figure 4.1	Activity of NaCl solution versus water mole fraction.	151
Figure 4.2	Soil total suction imposition at different temperatures with NaCl solutions	
Figure 4.3	Relative humidity for saturated NaCl solutions at different temperatures	152
Figure 4.4	Implements of vapour equilibrium tests.	
Figure 4.5	a) Calibration curves for transistor psychrometric probes. b) Calibration curves for	
	thermocouple psychrometers (dew point and psychrometric modes)	
Figure 4.6	Oedometer isothermal (22°C and 80°C) wetting-drying cycles on dense (heavily	
	overconsolidated) packings.	
Figure 4.7	Oedometer isothermal (22°C and 80°C) wetting-drying cycles on high-porosity	
U	packings.	
Figure 4.8	Oedometer loading-unloading paths at constant matric suction for the high-	
U	density packings.	155
Figure 4.9	Oedometer loading-unloading paths at constant matric suction for the high-porosity	
8	packings.	
Figure 4.10	Oedometer non-isothermal paths at constant matric suction and net vertical stress	
Figure 4.11	Isotropic wetting-drying cycles and loading-unloading paths on dense and high-	
11801011	porosity packings (mini isotropic and triaxial cells).	156
Figure 4.12		
118410 1112	(high-porosity packing).	156
Figure 4.13	Repeatability and reproducibility features on high-density first wetting paths	100
riguics	(expansive behaviour, suction steps 1.9 MPa \rightarrow 0.20 MPa)	157
Figure 4.14	Repeatability features on high-density first wetting paths (expansive behaviour,	157
1 15010 4.14	suction steps $0.20 \text{ MPa} \rightarrow 0.01 \text{ MPa}$).	157
Figure 4.15	Repeatability features on high-porosity first wetting paths (suction steps 1.9 MPa →	137
11guie 4.13	0.20 MPa)	158
Figure 4 16	Repeatability features on high-porosity first wetting paths. Soil shrinkage due to	150
11guic 4.10	water evaporation	150
Figure 4.17	Repeatability features on high-porosity first wetting paths (collapsible behaviour,	
11guic 4.17	suction steps 1.9 MPa \rightarrow 0.20 MPa)	
Figure 4 19	Repeatability features on high-porosity first wetting paths (collapsible behaviour,	
-		
	suction steps $0.20 \text{ MPa} \rightarrow 0.01 \text{ MPa}$).	139
Figure 4.19	Experimental setup for static compaction tests: a) sample preparation in the hermetic mould inside the heating chamber, b) sample preparation in the lateral	
	stress ring	160
Figure 4.20	Stress paths, stress variable values and soil conditions for the high-density packing	
11guie 4.20	during sample preparation under different temperatures ('c' refer to 22°C and 'h' to	
	80°C)	161
Eigung 4 21	Stress paths, stress variable values and soil conditions for the high-porosity packing	101
Figure 4.21	during sample preparation under different temperatures ('c' refer to 22°C and 'h' to	
		160
Ei 4 22	80°C).	
Figure 4.22	Examination of static compaction techniques for isotropic tests.	
Figure 4.23	Temperature evolution of the high-density sample at two points (central zone and	
	border in contact with the ring) and water content changes (or suction changes)	162
E: 4.04	during setting up.	
Figure 4.24	Layout of swelling pressure tests: a) thermal cell and b) lateral stress cell	
Figure 4.25	*	
Figure 4.26	Triaxial sample: a) LVDTs mounted on sample and b) partly assembled triaxial cell	
F: 4.25	showing full internal instrumentation.	
Figure 4.27	Isochrones of water content changes during sample (triaxial cell) setting up	166

Figure 4.28	Equalisation periods for loading steps under controlled matric suction (oedometer tests with high-density packings at 22°C and 80°C)	7
Figure 4.29	Equalisation periods for loading steps under controlled matric suction in the lateral stress cell (high-density packing)	
E: 1 20		0
Figure 4.30	Equalisation periods for loading steps under controlled matric suction in the lateral	0
E: 4 21	stress cell (low-density packing)	ð
Figure 4.31	Time evolution at selected nodes of air and water pressure changes, average lateral	
	stress within the sample height, volumetric strain and water content changes during the application of a step loading increment and during the subsequent consolidation	
	period	9
Figure 4.32	Isochrones of air and water pressure changes along sample height17	0
Figure 4.33	Ring friction effects in wetting-drying cycles (high-density packing)17	0
Figure 4.34	Measured evaporative fluxes under steady-state conditions in first wetting paths17	1
Figure 4.35	Problems with matric suction equalisation in test series H17-0.026A (first stages) 17	2
Figure 4.36	Problems with matric suction equalisation in test series H17-0.026A (last stages) 17	2
Figure 4.37	Proposed equipment to control vapour pressure in the dry air pressure line of the	
	triaxial cell	3
Figure 4.38	Variable boundary conditions for mass fraction of water in gas	3
Figure 4.39	Computed evaporative fluxes under steady-state conditions for different final relative humidity	'3
Figure 4.40	Matric suction evolution at selected nodes during first wetting step (target matric	J
1 iguic 4.40	suction of 0.45 MPa)	4
Figure 4.41	Matric suction evolution at selected nodes during second wetting step (target matric	
_	suction of 0.20 MPa)	5
Figure 4.42	Matric suction isochrones for the first wetting step (target matric suction of 0.45	
	MPa)17	6
Figure 4.43	Matric suction isochrones for the second wetting step (target matric suction of	
_	0.20 MPa)	7
Figure 4.44	Final matric suction at selected points under steady-state conditions and related to	
	the evaporative flux in the open system	7
Figure 5.1	Quasi-immobile intra-aggregate water fraction (% of total pore volume)20	
Figure 5.2	Soil water potential relationships for different initial dry unit weights at 22°C20	
Figure 5.3	Zoom of the previous figure	2
Figure 5.4	Dry unit weight-degree of saturation values after total suction equalisation in main	
	wetting and drying paths	
Figure 5.5	Dry unit weight-water content values after total suction equalisation	
Figure 5.6	Total suction-degree of saturation relationships at constant porosity	3
Figure 5.7	Relationships between suction and water content for different dry unit weights in	
	main wetting and drying paths at 22°C (vapour equilibrium and air overpressure	
	techniques)	4
Figure 5.8	Relationships between suction and degree of saturation for different dry unit	
	weights	
Figure 5.9	Main wetting and drying retention curves (suction vs. degree of saturation)20	5
Figure 5.10	Conceptual framework of suction-water content retention curves at constant	
	porosity20	6
Figure 5.11	Soil water characteristic curves at different temperatures for different initial dry	
	densities	7
Figure 5.12	Dry unit weight-water content values after total suction equalisation in main wetting	
	paths at different temperatures20	8
Figure 5.13	Dry unit weight-degree of saturation values after total suction equalisation in main	
	wetting paths at different temperatures	9
Figure 5.14	Total suction-degree of saturation relationships at constant porosity (main wetting	_
	paths at different temperatures).	()

Figure 5.15	Water content-temperature plots at constant total suction	. 211
Figure 5.16	Total suction-temperature plots at constant water content.	. 211
Figure 5.17	Parameters used to model temperature effects on energy status of soil water	.212
Figure 5.18	Relationships between suction and water content for different temperatures	
Figure 5.19	Relationships between suction and degree of saturation for different temperatures	
Figure 5.20	Main wetting retention curves for test series C17-xxx	
Figure 5.21	Main wetting retention curves for test series C14-xxx.	
Figure 5.22	Main wetting retention curves for test series I17-xxx and I14-0.600.	
Figure 5.23	Predicted retention curves for main wetting paths (test series C17-xxx and C14-xxx).	
Figure 5.24	Main wetting retention curves for test series H17-xxx	
Figure 5.25	Main wetting retention curves for test series H14-xxx	. 216
Figure 5.26	Main drying and scanning wetting retention curves for test series C17-xxx	. 216
Figure 5.27	Main drying and scanning wetting retention curves for test series C14-xxx	. 217
Figure 5.28	Main drying and scanning wetting retention curves for test series I17-xxx and I14-0.600.	
Figure 5.29	Main drying and scanning wetting retention curves for test series H17-xxx	
Figure 5.30	Main drying and scanning wetting retention curves for test series H14-xxx	
Figure 5.31	Conceptual framework for main drying paths departing from near-saturated conditions.	
Figure 5.32	Main drying and scanning wetting paths for different packings and temperatures	
Figure 5.33	Impedance ratio effects on water permeability (transient inflow/outflow method)	
Figure 5.34	Steady-state corrections for air diffusion and soil water evaporation.	
Figure 5.35	Water permeability vs. degree of saturation obtained in different suction steps at 22°C.	į
Figure 5.36	Water permeability vs. degree of saturation obtained in different suction steps at 80°C.	į
Figure 5.37	Water permeability vs. void ratio for constant degrees of saturation at 22°C	
Figure 5.38	Water permeability vs. void ratio for constant degrees of saturation at 80°C	
Figure 5.39	Relative water permeability-degree of saturation relationship for a constant low-	-
Eigung 5 40	porosity packing at a reference w _{res} = 2.2%	
Figure 5.40	Relative water permeability-degree of saturation relationship for a constant high- porosity packing at a reference $w_{res} = 2.2\%$	
Figure 5.41	Relative water permeability-Sr relationships for different packings ($w_{res} = 2.2\%$)	
_	Relative water permeability-degree of saturation relationships for different packings at a reference $w_{res} = 2.2\%$ (inflow/outflow results and MIP-retention curve	5
	predictions).	
Figure 5.43	Relative water permeability-effective degree of saturation relationships for different packings at a reference $w_{ref} = 13\%$ (inflow/outflow results and MIP predictions)	t
Figure 5.44	Water permeability for the high-porosity packing at different degrees of saturation and temperatures (best-fit curve).	1
Figure 5.45		225
•		
Figure 5.46	k _w -volumetric water content relationships at different void ratios and temperatures	. 226
Figure 6.1	Stress paths in s: p plane for the high-density packing in a wetting-drying-wetting cycle under oedometer conditions and constant net vertical stress (T=22°C)	
Figure 6.2	Stress paths in s: p plane for the high-porosity packing in a wetting-drying-wetting cycle under oedometer conditions and constant net vertical stress (T=22°C)	5
Figure 6.3	Stress paths in logs: p̂ plane for the high-density packing in a wetting-drying-	
Figure 6.4	wetting cycle under oedometer conditions and constant net vertical stress (T=22°C) Stress paths in logs: \hat{p} plane for the high-porosity packing in a wetting-drying-wetting cycle under oedometer conditions and constant net vertical stress (T=22°C)	-
	wearing cycle under occonnective conditions and constant net vertical success $(1-22)^{-1}$.	. 250

Figure 6.5	Time evolution of volumetric strain, net lateral stress, water content and degree of
E: ((saturation at 22°C for the high-density packing in a main wetting process
Figure 6.6	Time evolution of volumetric strain, net lateral stress, water content and degree of saturation at 22°C for the high-density packing in a main drying and wetting cycle260
Figure 6.7	Variation of volumetric strain, net horizontal stress, water content and degree of
rigare o.,	saturation for the high-density fabric in wetting-drying cycles under constant net
	vertical stress (T=22°C)
Figure 6.8	Variation of volumetric strain, water content and degree of saturation for the high-
	density fabric in wetting-drying cycles at two different temperatures and under
	constant $(\sigma_v - u_a) = 0.026 \text{ MPa}.$ 262
Figure 6.9	Variation of volumetric strain, water content and degree of saturation for the high-
	density fabric in wetting-drying cycles at two different temperatures and under
F' (10	constant $(\sigma_v - u_a) = 0.085 \text{ MPa}$.
Figure 6.10	Variation of volumetric strain, water content and degree of saturation for the high-
	density fabric in wetting-drying cycles at two different temperatures and under constant $(\sigma_v$ - $u_a) = 0.300$ MPa
Figure 6.11	Variation of volumetric strain, water content and degree of saturation for the high-
riguic 0.11	density fabric in wetting-drying cycles at two different temperatures and under
	constant (σ_v - u_a) = 0.550 MPa
Figure 6.12	Comparison of volumetric strains for the high-density fabric in wetting-drying
	cycles at different net vertical stresses and temperatures
Figure 6.13	Undrained loading and swelling curves for the high-density fabric at different
	temperatures and matric suction steps for varying applied net vertical stresses (main
Eigung 6 14	wetting paths)
Figure 6.14	Water content and degree of saturation values for the high-density fabric at different temperatures and matric suction steps for varying applied net vertical stresses (main
	wetting paths)
Figure 6.15	Water content and degree of saturation values for the high-density fabric at
O	different temperatures and matric suction steps for varying applied net vertical
	stresses (main drying paths)
Figure 6.16	Swelling and shrinkage strains for the high-density fabric in wetting-drying cycles269
Figure 6.17	Apparent yield shrinkage suction for the high-density packing for different
	temperatures
Figure 6.18	Total swelling upon main wetting and reversible strain during scanning wetting at
TI	different temperatures and stress conditions (high-density packing)
Figure 6.19	
Figure 6.20	(high-density packing)
riguie 0.20	temperatures and stress conditions (high-density packing). Relationship between
	plastic and reversible strains
Figure 6.21	Irreversible shrinkage strains in drying-wetting cycles at different temperatures and
_	stress conditions (high-density packing). Relationship between plastic and
	reversible strains. 271
Figure 6.22	Isothermal changes in elastic strain associated with changes in intergranular vertical
F: 6.00	stress obtained from constant (σ_v - u_a) data (high-density fabric)
Figure 6.23	Isothermal changes in elastic strain associated with changes in intergranular vertical
Figure 6.24	stress obtained from constant (u _a -u _w) data (high-density fabric)
1 1gu10 0.24	changes in intergranular vertical stress obtained from constant (σ_v - u_a) and (u_a - u_w)
	data (high-density fabric)
Figure 6.25	Drained reversible thermal coefficients for high-density and high-porosity packings
_	under constant vertical stress. 273

Figure 6.26	Drained reversible aspects of matric suction work conjugate variable with changes in temporature (high density and high persection positive)	272
F: 6 27	in temperature (high-density and high-porosity packings).	213
Figure 6.27	Time evolution of volumetric strain, water content and degree of saturation during	
	a drained heating path at constant net vertical stress and $(u_a-u_w) = 0.20$ MPa (high-	274
E: 6 20	density fabric).	2/4
Figure 6.28	Time evolution of volumetric strain, water content and degree of saturation during	
	a drained heating path at constant net vertical stress and $(u_a-u_w) = 0.06$ MPa (high-	275
F: 6.20	density fabric).	213
Figure 6.29	Drained heating-cooling cycles at constant matric suctions and under $(\sigma_v$ - $u_a) = 0.026$	25.
F' 600	MPa (high-density fabric).	276
Figure 6.30	Non-isothermal paths compared to isothermal main wetting paths in terms of	
	volumetric strains (high-density packing at $(\sigma_v-u_a) = 0.026$ MPa)	277
Figure 6.31	Non-isothermal paths compared to isothermal main wetting paths in terms of matric	
	suction work conjugate variable (high-density packing at $(\sigma_v - u_a) = 0.026$ MPa)	277
Figure 6.32	Time evolution of volumetric strain, net lateral stress, water content and degree of	
	saturation at 22°C for the high-porosity packing in a main wetting process	278
Figure 6.33	Time evolution of volumetric strain, net lateral stress, water content and degree of	
	saturation at 22°C for the high-porosity packing in a main drying and wetting cycle.	279
Figure 6.34	Variation of volumetric strain, net horizontal stress, water content and degree of	
	saturation for the high-porosity fabric in wetting-drying cycles under constant net	
	vertical stress (T=22°C).	280
Figure 6.35	Variation of volumetric strain, water content and degree of saturation for the high-	
	porosity fabric in wetting-drying cycles at two different temperatures and under	
	constant $(\sigma_v - u_a) = 0.600 \text{ MPa}$.	281
Figure 6.36	Variation of volumetric strain, water content and degree of saturation for the high2	282
Figure 6.37	Comparison of volumetric strains for the high-porosity fabric in wetting-drying	
	cycles at different net vertical stresses and temperatures.	283
Figure 6.38	Undrained loading and swell/collapse under load curves for the high-porosity fabric	
	for different matric suction steps and T=22°C (main wetting paths)	284
Figure 6.39	Undrained loading and swell/collapse under load curves for the high-porosity fabric	
	for different matric suction steps and temperatures (main wetting paths)	285
Figure 6.40	Undrained loading and swell/collapse under load curves for different matric suction	
	steps and temperatures as a function of OCR _{vo} (high-density and high-porosity	
	packings).	286
Figure 6.41	Water content and degree of saturation values for the high-porosity fabric at	
	different temperatures and matric suction steps for varying applied net vertical	
	stresses (main wetting paths).	287
Figure 6.42	Matric suction work conjugate variable changes for different matric suction steps	
	and temperatures as a function of OCR _{vo} (high-density and high-porosity packings) 2	288
Figure 6.43	Water content and degree of saturation values for the high-porosity fabric at	
	different temperatures and matric suction steps for varying applied net vertical	
	stresses (main drying paths).	289
Figure 6.44	Apparent yield shrinkage suction for the high-porosity packing for different	
	temperatures and vertical stress conditions (aggregated and pellet fabrics)	290
Figure 6.45	Total shrinkage upon main drying and reversible strain during scanning wetting at	
	different temperatures and stress conditions (high-porosity packing)	290
Figure 6.46	Isothermal changes in elastic strain associated with changes in intergranular vertical	
	stress obtained from constant $(\sigma_v$ -u _a) data (high-porosity aggregate and pellet	
	fabrics).	291
Figure 6.47	·	
	stress obtained from constant (σ_v-u_a) and (u_a-u_w) data (high-density and high-	
	porosity fabrics).	291

Figure 6.48	Isothermal reversible changes in work conjugate variable of matric suction with changes in intergranular vertical stress obtained from constant (σ_v-u_a) and (u_a-u_w)
Figure 6.49	data (high-porosity fabric)
Figure 6.50	changes in intergranular vertical stress (high-density and high-porosity fabrics)292 Loading-unloading paths on the high-density fabric at constant (u_a - u_w) = 0.20 MPa and T=22°C. Evolution of specific volume, degree of saturation, K_0 and state
Figure 6.51	variable Gs.w
Figure 6.52	Loading-unloading paths on the high-density fabric at different temperatures and at constant $(u_a-u_w) = 0.30 \text{ MPa}$
Figure 6.53	Loading-unloading paths on the high-density fabric at different temperatures and at constant $(u_a-u_w)=0.01$ MPa
Figure 6.54	Specific volume : $ln(\sigma_v-u_a)$ loading-unloading curves obtained at different matric suctions and temperatures (high-density fabric)
Figure 6.55	Specific volume : $ln[(\sigma_v-u_a)+(u_a-u_w)]$ loading-unloading curves obtained at different matric suctions and temperatures (high-density fabric)298
Figure 6.56	$v : \ln(\sigma_v - u_a)$ and $v : \ln[(\sigma_v - u_a) + (u_a - u_w)]$ plots in main drying-scanning wetting paths299
Figure 6.57	λ_{oed} and κ_{oed} values at different matric suctions and temperatures (high-density packing).
Figure 6.58	LC yield curve for the high-density fabric from static compaction and suction controlled tests. Macrostructural softening due to swelling300
Figure 6.59	Loading-unloading paths on the high-porosity fabric at constant $(u_a-u_w) = 0.20$ MPa and T=22°C. Evolution of specific volume, degree of saturation, K_0 and state variable Gs.w
Figure 6.60	Loading-unloading paths on the high-porosity fabric at different temperatures and at constant $(u_a-u_w) = 0.45 \text{ MPa}$
Figure 6.61	Loading-unloading paths on the high-porosity fabric at different temperatures and at constant $(u_a-u_w) = 0.20$ MPa
Figure 6.62	Loading-unloading paths on the high-porosity fabric at different temperatures and at constant $(u_a-u_w) = 0.06$ MPa304
Figure 6.63	Loading-unloading paths on the high-porosity fabric at different temperatures and at constant $(u_a-u_w) = 0.01$ MPa305
Figure 6.64	Specific volume : $ln(\sigma_v-u_a)$ loading-unloading curves obtained at different matric suctions and temperatures (high-porosity fabric)
Figure 6.65	Specific volume : $ln[(\sigma_v-u_a)+(u_a-u_w)]$ loading-unloading curves obtained at different matric suctions and temperatures (high-porosity fabric)
Figure 6.66	
Figure 6.67	λ_{oed} and κ_{oed} values at different matric suctions and temperatures (high-porosity packing).
Figure 6.68	LC yield curve for the high-porosity fabric from static compaction and suction controlled tests. Macrostructural hardening due to collapse
Figure 6.69	LC yield curve and yield points during main wetting (high-porosity fabric)310
	Saturated net stress at yielding obtained from static compaction, compression and suction controlled tests as a function of dry unit weight310
Figure 6.71	Time evolution of vertical and lateral swelling pressures, water content and loading system compressibility in a main wetting-drying cycle (high-density and high-porosity fabrics)
Figure 6.72	Vertical and horizontal swelling and shrinkage pressure paths in the high-density
<i>J</i> : 3 2	packing 312

Figure 6.73	Vertical and horizontal swelling and shrinkage pressure paths in the high-porosity packing.	
Figure 6.74	Vertical and horizontal swelling and shrinkage pressure paths in the high-porosity packing (comparison of pellet and aggregated fabrics)	
Figure 6.75	Vertical swelling and shrinkage pressure paths in the high-porosity packing at different temperatures.	
Figure 6.76	Swelling and shrinkage pressure paths in s : p and q : p planes for both packings	
Figure 6.77	Swelling and shrinkage pressure paths in $s:\hat{p}$ and $q:\hat{p}$ planes for both packings	317
Figure 6.78	Swelling and shrinkage pressure paths in s : p and q : p planes for the high-porosity packing (pellet and aggregated fabrics)	
Figure 7.1	Time evolution of axial, radial, shear and volumetric strains, water content and degree of saturation for the high-density packing in a main wetting path ($s_o \approx 1.9$ MPa $\rightarrow s_f = 0.45$ MPa)	
Figure 7.2	Time evolution of axial, radial, shear and volumetric strains, water content and degree of saturation for the high-density packing in a main wetting path ($s_{\rm o}=0.45$	
Figure 7.3	MPa \rightarrow s _f = 0.20 MPa)	
Figure 7.4	Progressive development of the lateral profile and lateral strains of the high-density specimen in a main wetting path ($s_0 \approx 1.9 \text{ MPa} \rightarrow s_f = 0.45 \text{ MPa}$)	
Figure 7.5	Progressive development of the lateral profile and lateral strains of the high-density specimen in a main wetting path ($s_0 = 0.45 \text{ MPa} \rightarrow s_f = 0.20 \text{ MPa}$)	
Figure 7.6	Progressive development of the lateral profile and lateral strains of the high-density specimen in a main wetting path ($s_0 = 0.20 \text{ MPa} \rightarrow s_f = 0.06 \text{ MPa}$)	
Figure 7.7	Variation of axial, radial, shear and volumetric strains, strain ratio, water content and degree of saturation for the high-density packing in wetting-drying cycles under a constant isotropic net stress.	
Figure 7.8	Time evolution of axial, radial, shear and volumetric strains, water content and degree of saturation for the high-porosity packing in a main wetting path ($s_o \approx 1.9$ MPa $\rightarrow s_f = 0.45$ MPa)	
Figure 7.9	Time evolution of axial, radial, shear and volumetric strains, water content and degree of saturation for the high-porosity packing in a main wetting path ($s_o = 0.45 \text{ MPa} \rightarrow s_f = 0.20 \text{ MPa}$).	
Figure 7.10	Time evolution of axial, radial, shear and volumetric strains, water content and degree of saturation for the high-porosity packing in a main wetting path ($s_o = 0.20 \text{ MPa} \rightarrow s_f = 0.06 \text{ MPa}$).	
Figure 7.11	Time evolution of axial, radial, shear and volumetric strains, water content and degree of saturation for the high-porosity packing in a main drying path ($s_o = 0.20$ MPa $\rightarrow s_f = 0.45$ MPa)	
Figure 7.12	Progressive development of the lateral profile and lateral strains of the high-porosity specimen in a main wetting path ($s_o \approx 1.9 \text{ MPa} \rightarrow s_f = 0.45 \text{ MPa}$): a) raw data and b) processed data.	
Figure 7.13	Progressive development of the lateral profile and lateral strains of the high-porosity specimen in a main wetting path ($s_o = 0.45 \text{ MPa} \rightarrow s_f = 0.20 \text{ MPa}$): a) raw data and b) processed data	
Figure 7.14	Progressive development of the lateral profile and lateral strains of the high-porosity specimen in a main wetting path ($s_o = 0.20 \text{ MPa} \rightarrow s_f = 0.06 \text{ MPa}$): a) raw data and b) processed data	
	· •	

Figure 7.15	Variation of axial, radial, shear and volumetric strains, strain ratio, water content and degree of saturation for the high-porosity packing in wetting-drying cycles
Figure 7.16	under a constant isotropic net stress
	saturation errors
Figure 7.17	Reversible changes in volumetric strain associated with changes in intergranular
	mean stress obtained from constant $(\sigma_m$ - $u_a)$ and $(\sigma_v$ - $u_a)$ data
Figure 7.18	Reversible changes in work conjugated variable of matric suction with changes in
Figure 7.19	intergranular mean stress obtained from constant (σ_m - u_a) and (σ_v - u_a) data
Figure 7.20	Loading-unloading paths on the high-density fabric at constant $(u_a-u_w) = 0.20$ MPa. Evolution of specific volume, state variable Gs.w and degree of saturation352
Figure 7.21	Progressive development of the lateral profile and lateral strains of the high-porosity specimen in a loading path at $s = 0.20$ MPa: a) raw data and b) processed data353
Figure 7.22	LC yield curves for both packings obtained from static compaction and suction controlled tests. Stress states at yielding and strain hardening/softening effects354
Figure 7.23	Progressive development of the lateral profile and lateral strains of the high-porosity specimen in a drained heating path at $s = 0.20$ MPa and $(\sigma_m-u_a) = 1.00$ MPa: a) raw data and b) processed data
Figure 7.24	Time evolution of strains and water volume change for a normally consolidated
118010 / 12 1	state during heating and regulation phase at p = 1.00 MPa and s = 0.20 MPa (21°C to 30°C in path B-C).
Figure 7.25	Time evolution of strains and water volume change for a normally consolidated
	state during heating and regulation phase at $p=1.00$ MPa and $s=0.20$ MPa (30°C to 40°C in path B-C)
Figure 7.26	Time evolution of strains and water volume change for a normally consolidated
	state during heating and regulation phase at $p=1.00$ MPa and $s=0.20$ MPa (40° C to 50° C in path B-C)
Figure 7.27	Time evolution of strains and water volume change for a normally consolidated state during heating and regulation phase at $p = 1.00$ MPa and $s = 0.20$ MPa (50°C to 60°C in path B-C)
Figure 7.28	Time evolution of strains and water volume change during cooling and regulation phase at $p = 1.00$ MPa and $s = 0.20$ MPa (60°C to 40°C in path C-D)360
Figure 7.29	Time evolution of strains and water volume change during cooling and regulation phase at $p = 1.00$ MPa and $s = 0.20$ MPa (40°C to 20°C in path C-D)361
Figure 7.30	Time evolution of strains and water volume change during heating and regulation phase at $p = 1.00$ MPa and $s = 0.20$ MPa (21°C to 40°C in path D-E)362
Figure 7.31	Time evolution of strains and water volume change during heating and regulation phase at $p = 1.00$ MPa and $s = 0.20$ MPa (40°C to 60°C in path D-E)363
Figure 7.32	Time evolution of strains and water volume change during cooling and regulation phase at $p = 1.00$ MPa and $s = 0.20$ MPa (60°C to 50°C in path E-F)364
Figure 7.33	Time evolution of strains and water volume change during cooling and regulation phase at $p = 1.00$ MPa and $s = 0.20$ MPa (50°C to 40°C in path E-F)365
Figure 7.34	Time evolution of strains and water volume change during cooling and regulation phase at $p = 1.00$ MPa and $s = 0.20$ MPa (40°C to 30°C in path E-F)
Figure 7.35	Time evolution of strains and water volume change during cooling and regulation phase at $p = 1.00$ MPa and $s = 0.20$ MPa (30°C to 20°C in path E-F)367
Figure 7.36	Time evolution of strains and water volume change for an overconsolidated state during heating and regulation phases at $p=0.10$ MPa and $s=0.20$ MPa (22°C to
	30°C in path G-H)

Figure 7.37	Time evolution of strains and water volume change for an overconsolidated state during heating and regulation phases at $p = 0.10$ MPa and $s = 0.20$ MPa (30°C to
	40°C in path G-H)
Figure 7.38	Time evolution of strains and water volume change for an overconsolidated state
	during heating and regulation phases at $p = 0.10$ MPa and $s = 0.20$ MPa (40° C to
	50°C in path G-H)
Figure 7.39	Time evolution of strains and water volume change for an overconsolidated state
	during cooling and regulation phases at $p = 0.10$ MPa and $s = 0.20$ MPa (50°C to
	40°C in path H-I)
Figure 7.40	Thermal volume expansion coefficients under quasi-undrained heating conditions
	plotted against different temperatures
Figure 7.41	Drained volumetric thermal strains versus temperature for normal and
	overconsolidated states
Figure 7.42	Three-dimensional view of the yield surfaces in (q, p, s) stress space at different
	temperatures
Figure 7.43	Thermal softening functions compared to measured values of preconsolidation
	pressure changes induced by temperature
Figure A.1	Wetting path followed by the high-density aggregate in the ESEM404
Figure A.2	Image analysis evolution of volume change behaviour (horizontal bar represents 20
	μm)405