Portada

Menú rápido

Programa de Doctorado en Ciencias del Mar, U P C.

Influencia de la Turbulencia y de la Dinámica de Interfaces de Densidad Sobre Organismos Planctónicos.

"Aplicación al estuario del Ebro".

J. A. Carrillo^{†*}

* Consejo Nacional de Ciencia y Tecnología, México.

Director: Dr. José Manuel Redondo Apraiz[†]

Co-director: Dr. Julio González del Río Rams[‡]

[†] U. P. C. Dep. de Física Aplicada. Barcelona, España. [‡] U. P. V. Dep. Ing. Hidráulica y Medio Ambiente. Valencia, España.

Barcelona, Septiembre 2002.

Índice General

1	INT	TRODUCCIÓN.	2
	1.1	OBJETIVOS Y MOTIVACIÓN	2
	1.2	ÁREA DE ESTUDIO	2
		1.2.1 El delta del Ebro	2
		1.2.2 Aspectos generales	2
		1.2.3 Caudales históricos	2
		1.2.4 La cuña salina	2
		1.2.5 La salida al mar	2
	1.3	LA TURBULENCIA COMO AMBIENTE	3
		1.3.1 Las formas del fitopláncton y la energía	3
		1.3.2 Turbulencia a mesoescala y la ecofisiología planctónica	3
2	EC	UACIONES BÁSICAS.	9
_	$\frac{-}{2.1}$		
		· · · · · · · · · · · · · · · · · · ·	
	2.2		
			3
	2.3		
			4
		9	
		2.3.6 Escalas cinemáticas	
	2.4	FUERZAS QUE INTERVIENEN	4
		-	4
	2.5	- -	Ę
		2.5.1 El entrañamiento E	Ę
		2.5.2 Números de Richardson	Ţ
			Į
			Į
	2.6		(
	2	1.1 1.2 1.3 2 EC 2.1 2.2 2.3 2.4 2.5	1.1 OBJETIVOS Y MOTIVACIÓN. 1.2 ÁREA DE ESTUDIO. 1.2.1 El delta del Ebro. 1.2.2 Aspectos generales. 1.2.3 Caudales históricos. 1.2.4 La cuña salina. 1.2.5 La salida al mar. 1.3 LA TURBULENCIA COMO AMBIENTE. 1.3.1 Las formas del fitopláncton y la energía. 1.3.2 Turbulencia a mesoescala y la ecofisiología planctónica 2 ECUACIONES BÁSICAS. 2.1 SISTEMA DE REFERENCIA. 2.1.1 Clasificación de los flujos en laminar, turbulento y transicional. 2.2 CAPAS LÍMITE. 2.2.1 Capas límite turbulentas. 2.3 ESCALAS DE LONGITUD. 2.3.1 Dinámica de las escalas. 2.3.2 Escala de Kolmogorov. 2.3.3 Escala de Obukhov-Corrsin. 2.3.4 Escala de Batchelor. 2.3.5 Escalas cinemáticas. 2.4 FUERZAS QUE INTERVIENEN. 2.4.1 Las fuerzas de empuje. 2.5 DESCRIPTORES. 2.5.1 El entrañamiento E. 2.5.2 Números de Richardson. 2.5.3 Mezcla en fluidos estratificados con cizalladura.

3	$\mathbf{E}\mathbf{X}$	PERIN	MENTOS DE CAMPO Y LABORATORIO.	65
	3.1	EXPE	RIMENTOS DE CAMPO	65
		3.1.1	Muestreo a lo largo de todo el estuario	65
		3.1.2	Estacionalidad de muestreo	
	3.2	ESTA	CIONES FIJAS	65
		3.2.1	Mediciones para las estaciones fijas	66
		3.2.2	Parámetros biológicos	68
		3.2.3	Parámetros físicos	69
		3.2.4	Observaciones costeras por satelite	71
	3.3	EXPE	RIMENTOS DE LABORATORIO	71
		3.3.1	TURBULENCIA POR REJILLA OSCILANTE	73
		3.3.2	Ecuaciones básicas	73
		3.3.3	MEZCLA COSTERA HORIZONTAL	77
		3.3.4	Materiales y métodos	77
		3.3.5	LA PLUMA DEL EBRO	
		3.3.6	Ecuaciones básicas	78
		3.3.7	Materiales y métodos	
		3.3.8	SISTEMA DE PROCESAMIENTO DE IMÁGENES	82
		3.3.9	Soporte DigImage	83
		3.3.10	Tarjeta Digitalizadora	83
		3.3.11	Video Grabador	83
		3.3.12	Diagrama de flujo de la señal de video	
		3.3.13	MODELO NUMÉRICO DE MESOESCALA	85
		3.3.14	Ecuaciones del modelo numérico	86
		3.3.15	Condiciones de inicio numéricas	89
4	\mathbf{RE}	SULTA	DOS DE LA MEZCLA EN EL ESTUARIO.	91
	4.1	RESU	LTADOS: MEZCLA VERTICAL DE LABORATORIO	91
		4.1.1	Entrañamiento y eficiencia de mezcla	92
		4.1.2	Estructura vertical de las interfaces de densidades	
	4.2	RESU	LTADOS: AMBIENTES EN EL ESTUARIO	96
		4.2.1	Visualización de la cuña salina y la pluma en el estuario	96
		4.2.2	Variables estacionales medidas en el estuario	98
		4.2.3	Estructura de las velocidades cerca de la interface	100
		4.2.4	Criterios para determinar el inicio y final de una interface	
			en una columna de agua estratificada	108
	4.3	RESU	LTADOS: LA DENSIDAD EN LA CUNA ESTABLE	111
		4.3.1	Estabilidad de la cuña a lo largo de todo el estuario	112
		4.3.2	Profundidad de la interface y grosor de la capa de mezcla.	112
		4.3.3	La cuña como funciones de densidades a lo largo del estuario	o.113
		4.3.4	Distancia de la cabeza de acuerdo a la densidad mínima de	
			la columna de agua.	117
	4.4		LTADOS: CAUDALES	117
		4.4.1	Variabilidad morfológica del estuario	118

ÍNDICE GENERAL 5

		4.4.2	Estandarización de las medidas	119
		4.4.3	Cálculo de los caudales locales en las secciones de las esta-	
			ciones fijas de R1 a R6	121
		4.4.4	Estadística básica de los caudales en las campañas de mu-	
			estreo	123
		4.4.5	Posición de la interface respecto de los caudales locales de	
			las capas.	125
		4.4.6	Variación de los caudales históricos del río Ebro	125
	4.5	RESU	LTADOS: MEZCLA EN EL ESTUARIO	132
		4.5.1	Valores de las variables en las estaciones fijas	132
		4.5.2	Descriptores de la mezcla en el estuario	136
	4.6	RESU	LTADOS: BIOLÓGICOS	144
		4.6.1	Ausencia y recuperación de la cuña salina	144
		4.6.2	Scenedesmus	144
		4.6.3	Picocianobacterias	145
		4.6.4	Fitopláncton total	147
		4.6.5	Presencia de una cuña salina estable	149
6 5	DEG	CTIT TO A	ADOS DE LA PLUMA.	151
9	5.1		LTADOS: MODELOS EXPERIMENTALES	151
	5.1	5.1.1	Mezcla costera horizontal	
		5.1.1 $5.1.2$		
		5.1.2 $5.1.3$	La pluma en el Ebro	
			Series de tiempo.	
		5.1.4	Escalas características superficiales	
		5.1.5	Flujo en la columna de agua	
	r 0	5.1.6	LTADOS: MODELO NUMÉRICO	
	5.2			158
		5.2.1	Salinidad superficial.	
		5.2.2	Velocidad superficial	159
		5.2.3	Longitudes características	
	۲ ۵	5.2.4 DEGU	Variabilidad de la pluma en el tiempo	
	5.3		LTADOS: OBSERVACIONES NATURALES	162
		5.3.1	Estructuras observadas en las campañas	162
		5.3.2	Estructuras estudiadas por observación remota	163
6	DIS	CUSI	ONES Y CONCLUSIONES	167
	6.1	DINÁ	MICA DE LA MEZCLA EN EL ESTUARIO	167
		6.1.1	Áreas tipo que se encuentran presentes en el estuario del delta del Ebro.	167
		6.1.2	Determinación los valores de las variables de acuerdo a los	
		U.I.2	caudales de las diferentes capas que intervienen en la mezcla	
			a lo largo del estuario.	170
		6.1.3	Establecer los valores de los principales parámetros hidrodiná:	
		0.1.0	que maneian la mezcla en el estuario	175

		6.1.4	Determinar la distancia de penetración de la cuña respecto	
			de las densidades superficiales	178
	6.2	ORGA	ANISMOS TRAZADORES	180
		6.2.1	Cuantificar la presencia de organismos nativos de ambientes	
			de río y mar dentro del estuario	180
		6.2.2	Relacionar su presencia en la columna de agua de acuerdo	
			a las características hidrodinámicas de las misma	181
	6.3	LA PI	LUMA	182
		6.3.1	Efecto de la variación del caudal	183
		6.3.2	Diferencias entre los tratamientos	185
		6.3.3	Calcular el área de impacto de la pluma bajo los diferentes	
			caudales estacionales medidos	185
		6.3.4	Comparar los resultados para los diferentes escenarios ex-	
			perimentales de laboratorio, con las observaciones experi-	
			mentales de campo, experimentaciones numéricas y obser-	
			vaciones remotas	186
	6.4	CONC	CLUSIONES	187
7	Ref	erencia	as	193

Índice de Figuras

1.1	Área de estudio.	26
1.2	Posiciones de la cuña correspondientes a los rangos de caudal en el río Ebro, de acuerdo a Ibáñes (1993)	30
1.3	Representación gráfica de la mandala de Margalef, donde las principales formas de vida fitoplanctónicas están colocadas en un espacio ecológico definido por concentración de nutrientes y turbulencia	32
1.4	Especies y grupos de especies de acuerdo con suscoeficientes de correlación con el análisis delsegundo (II) y el (III) tercer eje de componentes principales	33
2.1	Sistema referencial de coordenadas donde x , y y z son las coordenadas de referencia; mientras que u , v y w son las magnitudes de la velocidad referidas a cada coordenada respectivamente. U es la velocidad media del flujo	36
2.2	Esquema representativo de la cuña idealizada a la que se dirige este estudio	37
2.3	Escalas de longitud, de difusión y convección en una capa límite laminar sobre una superficie plana.	38
2.4	Escalas de longitud, de difusión y convección en una capa límite turbulenta sobre una superficie plana.	39
2.5	Perfiles típicos de la transferencia de tensión turbulenta (τ) en una capa límite turbulenta con una transferencia de tensión turbulenta alta (A) y baja (B) en una columna de agua con una velocidad carac-	4.0
2.6	terística u	40
2.7	Comportamiento de la velocidad u respecto del $\ln h$, evidenciando un proceso de transferencia de tensión turbulenta en una columna tipo (A), con una frontera en movimiento a favor en relación a la dirección	4.0
	de la velocidad característica (B) y en contra (C)	42

2.8	Ejemplos de gradientes de densidades en una columna de agua. A) Sin estratificar, B) Linealmente estratificada y C) estratificada con una interface abrupta de densidad. Para los tres casos la densidad (ρ) se representa en el eje x y la profundidad (z) en el eje y	49
2.9	Inestabilidad de una masa de agua en una interface de densidad por una oscilación inercial. En un perfil de densidad sin perturbación (A), y un perfil de densidad que evidencia el paso de una onda interna (B).	51
2.10	Evolución en el tiempo de la oscilación de una interface de densidad para un ambiente estable.	52
2.11	Funciones del entrañamiento respecto a diferentes números de Richardson global propuesta por Christodoulou (1986) y complementada por Fernando (1991). La simbología es la siguiente: $+$, experimentos sujetos a forzamiento superficial; Δ , corrientes de densidad; O, flujos superficiales en circuito abierto; X, evaluación del flujo; ET, Ellison y Turner (1959); DW, Deardorff y Willis (1982); NF, Narimousa y Fernando (1987); KP, Kato y Phillips (1969)	58
2.12	Número de Richardson de flujo contra número de Richardson global para diferentes experimentos compuesta por Linden (1979). • mezcla producida por la caida de una rejilla de barras cuadradas a través de una interface de densidades, \bigtriangledown mezcla producida por vortices disparados en una interface de densidades, \circ valores calculados de perfiles medidos en la estela de una plataforma vertical, \Box y \triangle valores de Ri_f medidos para la mezcla inducida por cizalladura	61
2.14	Onda de K-H en una una interface de densidad para un ambiente localmente inestable	61
2.13	Inestabilidad de Hölmböe en una una interface de densidad para un ambiente localmente inestable.	62
2.15	Diferentes tipos de inestabilidades identificadas en los experimentos de Redondo (1987). 1) Ondas internas, 2) Ondas de Hölmböe, 3) Filamentos proyectados por ondas solitarias, 4) K-H y 5) Turbulencia.	63
2.17	Inestabilidad K-H con filamentos proyectados por ondas internas para un fluido estratificado con cizalladura. Cortesía J. M. Redondo	63
2.16	Espacio paramétrico dominado por los experimentos de Redondo (1987), donde las inestabilidades dominantes se representan por: o no inestable (interface plana), w ondas internas, h Hölmböe o con cúspide y k K-H.	64

2.18	Compilación espacio paramétrico experimental de varios autores hecha por Redondo (1987) para experimentos con inestabilidades inducidas por cizalladura en fluidos estratificados. La linea discontinua corta indica la transición entre interfaces estables y la aparición de ondas internas, /// indica la transición entre ondas internas e inestabilidades de Hölmböe, xxx indica la transición entre Hölmböe y K-H. l.s. indica el límite de estabilidad lineal (linear stability), las regiones delimitadas por las lineas discontinuas largas y la linea punteada indica la zona de emparejamiento de ondas K-H según Torpe (1986). Los simbolos indican experimentos realizados por o Koop y Browand (1979), • Thorpe (1985); . Browand y Wang (1972) y + Gartrell (1982)	64
3.1	Posición de las estaciones fijas en los últimos 15 km del estuario del delta del Ebro desde R1 en la boca a R6 remontando el estuario	66
3.2	Posiciones de las estaciones (+) donde se tomaron las secciones locales del lecho del Ebro en el delta	70
3.3	Dependencia del número de Richardson respecto a la distancia de la interface de densidades y la fuente turbulenta, para condiciones de $\omega=6Hz,s=1cm,L=5cm$ y $b=15cm.$	74
3.4	Dependencia del entrañamiento (E) respecto a la distancia de la interface de densidades y la fuente turbulenta, para condiciones de $\omega=6Hz,\ s=1cm,\ L=5cm,\ b=15cm$ y $\Delta\rho=1.$	75
3.5 3.6	Tipo de tanque utilizado en los experimentos de turbulencia generada por rejilla oscilante. Este con una base de $39 \times 39 cm$ y una altura de $80 \ cm$, es similar al usado por Turner (1973) y Redondo et al (1996). Vista superior del tanque de $1 \times 1m$ para el avance de un frente	76
	turbulento frente a una corriente costera paralela a la costa, en un sistema estratificado	77
3.7	Vista lateral del tanque de $1 \times 1m$, donde A: tanque experimental, B: video cámara, C: video grabadora y D: fuente de iluminación	78
3.8	Cubeta rectangular experimental de $4 \times 2m$ dentro de la mesa rotatoria de cinco metros de diámetro	81
3.9	Simplificación geométrica del delta del Ebro usada para la experimentación	82
3.10	Representación gráfica del área de estudio experimental dentro de la cuba de cuatro por dos metros	83
3.11	Equipo informático utilizado para el procesado de las imágenes por medio del programa <i>DigImage</i>	84
3.12	Diagrama de flujo de la señal de imagen dentro del sistema de procesamiento de Mecánica de Fluidos <i>DigImage</i>	85
4.1	Vista lateral de una columna de agua estratificada. Arriba un fotograma del avance de la capa de mezcla. Abajo seguimiento del movimiento de partículas y capas en un tiempo de 5 segundos	92

4.2	Secuencia de la evolución de una interface de densidades $(Ri=350$ y $\Delta t=0.5s)$	93
4.3	Serie de tiempo para el avance vertical de una interface de densidades en los tiempos de 0, 1, 2, 3, 4 y 5 minutos	93
4.4	Izquierda: Serie de tiempo de cinco minutos para el avance vertical de una interface de densidades tomado como referencia la linea central de las imágenes. Derecha: Isolinea de intensidad de 160 para la serie de tiempo. Cada linea se toma cada 0.5515 segundos	94
4.5	Algunos ejemplos de entrañamiento de una interface turbulenta, se observan procesos de engolfamiento en la imagen con $t=14:24$, mientras que se puede observar rotura de una onda interna en la imagen $t=16:00.\ldots$	95
4.6	Evolución de la posición de la interface en el tiempo para interfaces de densidad para: Izquierda salinidad donde $\Delta\rho$ corresponde con \circ 42, $+$ 21, \triangle 11, ∇ 5 y * $2kgm^3$. Derecha temperatura donde Δt (°C capa inferior - °C capa superior) corresponde con \circ 17-62, $+$ 36-54, \triangle 41-50, ∇ 21-42 y * 31-46	95
4.7	Entrañamiento medido en función del número de Richardson global y la eficiencia de mezcla para experimentos de laboratorio con números de Richardson de 10 a 400.	96
4.8	Visualización de la cuña salina a partir de los datos de salinidad de ctd de la primera campaña de verano (Cytmar II). Desde la desembocadura del río Ebro hasta la población de Amposta.	97
4.9	Visualización de la pluma para la primera campaña de verano $(Cytmar2)$ en la desembocadura del Delta del Ebro, un día después de una tormenta en la zona	, 98
4.10	Variación de los perfiles de salinidad para las estaciones fijas de $R1$ a $R6$ para las campañas bajo condiciones de primavera, verano, otoño e invierno	99
4.11	Perfiles de salinidad para las estaciones fijas de $R1$ a $R6$ en la campaña del día 3 de febrero	100
4.12	perfiles salinidad (+) y velocidad (*) durante la campaña de primavera $Pionner1$, para las estaciones fijas $R1$, $R2$ y $R3$ arriba y $R4$, $R5$ y $R6$ abajo	101
4.13	perfiles salinidad (+) y velocidad (*) durante la campaña de verano $Pionner2$, para las estaciones fijas $R1$, $R2$ y $R3$ arriba y $R4$, $R5$ y	
4.14	R6 abajo	102
4.15	R6 abajo	102
	$R6$ abajo. $\dots \dots \dots$	103

4.10	Regresiones de la velocidad [ms^{-1}] respecto al logaritmo neperiano de	
	la distancia al centro de la interface $(x_{z0}[m])$, para las estaciones $R1$,	
	R4 y $R5$ durante la campaña de primavera	104
4.17	Regresiones de la velocidad $[ms^{-1}]$ respecto al logaritmo neperiano de	
	la distancia al centro de la interface $(x_{z0}[m])$, para las estaciones $R1$,	
	R4 y $R5$ durante la campaña de verano	105
4.18	Regresiones de la velocidad $[ms^{-1}]$ respecto al logaritmo neperiano de	
	la distancia al centro de la interface $(x_{z0}[m])$, para las estaciones $R1$,	
	R4 y $R5$ durante la campaña de otoño	106
4.19	Regresiones de la velocidad $[ms^{-1}]$ respecto al logaritmo neperiano de	
	la distancia al centro de la interface $(x_{z0}[m])$, para las estaciones $R1$,	
	R4 y $R5$ durante la campaña de invierno	107
4.20	Izquierda: Valores de la pendiente de la salinidad (*). Centro: Fre-	
	cuencua de Brunt-Väisälä (*) y Derecha: Valores del número de Ri-	
	chardson de gradiente (*). Respecto a la profundidad, para un perfil	
	de salinidades $(+)$	109
4 21	Determinación del inicio y final de una interface mediante los valores	
1.21	críticos de $m_{crit}=5~ppm/m,~BV_{crit}=0.01~s^{-1}$ y $Ri_{crit}=0.02$ para	
	el perfil de referencia de $R6$ de la campaña de primavera	110
1 22	Variacion estacional del grosor promedio de la capa de mezcla en las	110
7.22	campañas de primavera, verano, otoño e invierno	111
4 23	Estabilidad de la estratificación en la columna de agua a lo largo del	***
1.20	estuario del delta del Ebro (arriba), calculado psara la campaña de	
	verano Cytmar2 (abajo)	113
1 21	Arriba: Ancho de la interface a lo largo de todo el estuario (W). Abajo:	113
4.24	Profundidad del inicio de la interface D en la columna de agua (x) y	
	del final de la capa de mezcla (*) a lo largo del estuario del delta del	
	Ebro durante la campaña de verano.	114
1 25	Regresión lineal de la evolución del inicio de la interface D , durante	114
4.20	la campaña de verano	115
1 28	Punto de máxima diferencia entre las densidades máximas (derecha)	113
4.20	y mínimas (izquierda) localizado a 16.4478 km de la boca	115
1 26	Densidades máximas $(+)$, mínimas (0) y promedio $(*)$ en la columna	113
4.20	de agua para la cuña estable en condiciones de verano	116
4 27	Diferencias de densidades entre las densidades mínimas y máximas de	110
4.41	la columna de agua para la cuña salina en condiciones de verano	117
4.20	Relación de la diferencia de densidades respecto de las densidades	111
4.29	mínimas (arriba) y de las densidades máximas (abajo)	118
1 20		110
4.50	Densidades típicas calculadas () para los valores de la columna de	
	agua mínimos (o) , máximos $(+)$ y promedio $(*)$ a partir de los valores	110
4 9 O	de densidad observados (—)	119
	Batimetría medida mediante la navegación sobre el río	119
4.33	Batimetría máxima calculada a partir de las secciones locales medidas	100
	en el lecho del río	120

4.31	Anchura del río a partir de las secciones medidas	121
4.34	Batimetría promedio calculada a partir de las secciones locales medidas en el lecho del río	121
4.35	Secciones de las estaciones fijas correspondientes a R1 hasta R6	122
	Variación de la anchura del río en las estaciones fijas	122
4.37	Batimetría estandar calculada a partir del área calculada de las secciones locales medidas en el lecho del río	123
4.38	Caudales históricos para el período comprendido de 1912 a 1986 (x) y promedios mensuales para el mismo período (barras)	126
4.39	Caudales horarios para los días previos a las campañas de primavera, verano, otoño e invierno, reportados para la presa de Mequinenza por la Confederación Hidrográfica del Ebro	128
4.40	Regresiones lineales para la posición de la interface para las estaciones fijas de $R1$ a $R6$, de acuerdo a los caudales de la capa superior a lo largo de un año tipo	129
4.41	Regresiones lineales para la posición de la interface para las estaciones fijas de $R1$ a $R6$, de acuerdo a los caudales de la capa de mezcla a lo	130
4.42	largo de un año tipo	
4.43	largo de un año tipo	130
4.44	capa de superior	131
	respecto a los caudales de la capa de superior	132
	caudales en las secciones de las estaciones fijas	133
	locales de las secciones de las estaciones fijas	133
	secciones de las estaciones fijas	134
	locales de las secciones de las estaciones fijas	134
	locales de las secciones fijas de $R1$ a $R6.$	135
	Tiempo estimado para la medida del entrañamiento desde una sección desde su inmediata superior en el estuario.	136
	Entrañamiento calculado para los caudales en las secciones de las estaciones fijas R1 (o), R2 (+), R3 (\diamond), R4 (\triangle) y R5 (∇)	137
4.52	Dispersión turbulenta calculado en el eje Z para las secciones de las estaciones fijas R1 (o), R2 (+), R3 (\diamond), R4 (\triangle) y R5 (∇)	138

4.53	lados para las secciones de las estaciones fijas en el área de estudio.	
151	R1 (o), R2 (+), R3 (\diamond), R4 (\triangle), R5 (∇) y R6 (\square) Número de Richardson de gradiente frente al Ri_b calculado para las	138
4.04	estaciones fijas R1 (o), R2 (+), R3 (\diamond), R4 (\triangle) y R5 (∇) en el	
	estuario del delta del Ebro	139
4.55	Número de Richardson global calculado para las estaciones fijas R1	
	(o), R2 (+), R3 (\diamond), R4 (\triangle) y R5 (∇) en el estuario del delta del	
	Ebro, donde se espera la presencia de inestabilidades dominantes en	
	la interface de densidades de acuerdo al caudal local	140
4.56	Relación del entrañamiento respecto del número de Richardson global	
	para los caudales locales en las secciones de las estaciones fijas R1	
	(o), R2 (+), R3 (\diamond), R4 (\triangle) y R5 (∇) de la zona de estudio	141
4.57	Relación de la eficiencia de mezcla (η) respecto del número de Ri-	
	chardson global para los caudales locales en las secciones R1 (o), R2 (\downarrow), R2 (\Diamond), R4 (\Diamond) y R5 (\bigtriangledown) de las estaciones fijos de la zone de	
	$(+)$, R3 (\diamond) , R4 (\triangle) y R5 (\bigtriangledown) de las estaciones fijas de la zona de estudio	142
4 58	Localización de las condiciones paramétricas de las estaciones de mu-	172
1.00	estreo durante las campañas de <i>Pionner</i> . Las letras indican los límites	
	empíricos para las inestabilidades dominantes, A zona estable con una	
	interface plana, B ondas internas, C ondas de Hölmboe, D inestabili-	
	dades K-H y E región de transición turbulenta	143
	Cuña salina para los días 3 y 5 de febrero.	145
	Dos aspectos de <i>Scenedesmus acuminatus</i>	145
	Izq. Scenedesmus opaliensis (3500x) y der. Scen. panonicus (3500x).	146
	Izq. Scenedesmus platydiscus y der. Scen. arcuatus (40x)	146
4.63	Abundancia de <i>Scenedesmus</i> [cel/l] en el estuario para los días 3 (*)	1 / 7
165	y 5 (o) de febrero	147
4.00	(*) y 5 (o) de febrero	147
4 64	Abundancia de <i>Scenedesmus</i> [cel/I] en la columna de agua del estuario	171
1.01	para los días 3 (arriba) y 5 (debajo) de febrero	148
4.66	Abundancia de picocianobacterias [cel/I] en la colunma de agua del	
	estuario para los días 3 (arriba) y 5 (debajo) de febrero	149
4.67	Abundancia del fitopláncton total [cel/l] en el estuario para los días 3	
	(*) y 5 (o) de febrero	149
4.68	Abundancia del fitopláncton total [cel/l] en la colunma de agua del	
	estuario para los días 3 (arriba) y 5 (debajo) de febrero	150
4.69	Abundancia de las pcb [cel/l] en la colunma de agua del estuario para	150
	el día 12 de junio de 1999 bajo condiciones de una cuña salina estable.	150
5.1	Serie de tiempo para el avance de un frente turbulento generado por	
	jets de injección y succión. Se muestran nueve fotogramas en los	
	tiempos de 0, 1, 3, 5, 7, 9, 11, 13 y 15 segundos	152

5.2	Serie de tiempo para el avance del frente turbulento a los tiempos: 0, 2, 12, 22, 172 segundos	153
5.3	Área del frente turbuento para condiciones de corriente litoral $(+, \Delta, \bullet)$ y sin corriente litoral $(*)$	154
5.4	Estructuras presentes área cercana al delta del Ebro experimental bajo el caudal de 114.33 m^3s^{-1} para los tiempos 60, 120, 180 y 240 segundos.	155
5.5	Estructuras presentes área cercana al delta del Ebro experimental bajo el caudal de 121.27 m^3s^{-1} para los tiempos 60, 120, 180 y 240 segundos.	156
5.6	Estructuras presentes área cercana al delta del Ebro experimental bajo el caudal de 287.00 m^3s^{-1} para los tiempos 60, 120, 180 y 240 segundos.	157
5.7	Estructuras presentes área cercana al delta del Ebro experimental bajo el caudal de 635.70 m^3s^{-1} para los tiempos 60, 120, 180 y 240 segundos.	158
5.8	Condiciones experimentales para la pluma del río Ebro con caudales 114.33, 121.27, 287.00 y 635.70 m^3s^{-1} a los 120 segundos con rotación.	160
5.9	Isolineas de salinidad superficial calculadas con el modelo matemático, para caudales de 114.33, 121.27, 287.00 y 635.70 m^3s^{-1} . Tiempo de experimentación 33 horas	161
5.10	Campo euleriano de velocidad superficial calculadas con el modelo matemático, para caudales de 114.33, 121.27, 287.00 y 635.70 m^3s^{-1} . Tiempo de experimentación 33 horas	161
5.11	Área de influenciade la pluma para un Tiempo de cálculo de 33 horas con el modelo matemático, para caudales de 114.33, 121.27, 287.00 y 635.70 m^3s^{-1}	162
5.12	Longitudes características de la pluma modelada (o) respecto del caudal para un tiempo de cálculo de 66 horas, y longitudes características para el modelo experimental (+) para un tiempo de 120 segundos (44 horas).	163
5.13	Desarrollo en el tiempo del área de influencia de la pluma modela-da para un tiempo de cálculo de 66 horas con un caudal de 114.33 m^3s^{-1} . Izquierda: Isolineas para el valor de la salinidad de $35ppm$ para incrementos de 4.1 horas. Derecha: Regresión de los valores de	
5 14	las áreas (+) respecto del tiempo de cálculo	163164
	Dos aspectos de las capas límite de la pluma fragmentada observada desde una embarcación con trayecto desde el poblado de la Ampolla hacia la desembocadura del Ebro. Derecha: Primera porción de la pluma observada e Izquierda: Segunda fracción perteneciente al final de la pluma principal de la desembocadura	
5.16	lmágen SAR del área del delta del Ebro de $\approx 100 \times 100$ km. Del día 27 de agosto de 1997	164165
5.17	lmágen SAR del área del delta del Ebro de \approx 100 x 100 km. Del día 01 de octubre de 1997	166

6.1	Localización de las condiciones paramétricas de las estaciones de mu-	
	estreo durante las campañas de <i>Pionner</i> y los experimentos de otros	
	autores. El área dentro de la linea punteada indica los experimentos	
	realizados por Redondo (1987) y el área dentro de la linea continua	
	delimita la zona de los valores medidos en el campo para el estuario	
	del Ebro	178
6.2	Abundancias de pcb en el estuario del río Ebro bajo diferentes condi-	
	ciones de número de Reynolds (izquierda) y salinidad (derecha), para	
	los días 3 (*) y 5 (o) de febrero de 2000. Las regresiones de la salin-	
	idad respecto de las abundancias son: $y = 2.49 \times 10^{-6} x + 2.93$ para	
	el día 3 de febrero y $y=1.22\times 10^{-6}x+6.36$ para el día 5 de febrero.	182
6.3	Abundancias de pcb en el estuario del río Ebro bajo diferentes números	
	de Reynolds para el día 12 de junio de 1999	183
6.4	Relaciones lineales de abundancia de organismos y salinidad de acuerdo	
	a las diferentes estaciones fijas para el día 12 de junio de 1999	184
6.5	lmágenes (tipo) de la influencia de la pluma del delta del Ebro en la	
	productividad orgánica primaria para costas del Mediterráneo orien-	
	tal, de acuerdo a los pigmentos observados los días 3 (izquierda) y 4	
	(derecha) de abril de 1983	187
	·	

Índice de Tablas

1.1	Caudales máximos registrados en Tortosa antes y después de la puesta en funcionamiento de los embalses de Mequinenza y Riba Roja en el siglo pasado. Capacidad de encauzamiento en Tortosa \simeq 2800 m^3s^{-1} .	28
1.2	Magnitudes características de las diferentes escalas presentes en los fluidos turbulentos en el océano	30
2.1	Escalas de longitud relevantes para flujos turbulentos con cizalladura como los de este trabajo.	47
2.2 2.3	Fuerzas que intervienen en la dinámica básica de un fluido estratificado. Valores de los rangos pequeño, intermedio y grande para el Ri_b prop-	
2.4	uestos por Christodoulou (1986)	59 63
3.1	Caracterización de las condiciones estacionales para las campañas del	
0.1	delta del ebro	66
3.2	Posición y distancia de las estacionales fijas respecto a la desembo- cadura del estuario del delta del ebro	67
3.3	Profundidades fijas y variables donde se tomaron muestras de agua, para las estacionales fijas dentro del estuario del delta del ebro	67
3.4	Exponentes de la dependencia del entrañamiento repecto de la a la distancia de la interface de densidades y la fuente turbulenta generada por rejilla oscilante para diferentes solutos y temperatura reportados por Redondo (1996)	75
3.5	Notación de variables usadas para las ecuaciones del modelo numérico.	86
3.6	Características principales de los sistemas de advección en el modelo.	89
4.1	Límites $[m]$ superior, inferior y grosor (w) de la interface de la interface calculados para las campañas de primavera, verano, otoño e invierno de acuerdo al criterio del número de Richardson de gradiente	111
4.2	Valores calculados de la distancia de la cabeza de la cuña salina de acuerdo con la densidad mínima local de la colunma de agua para el estuario del delta del Ebro en condiciones de fuerte estratificación	
	(verano)	120

4.3	Caudales locales de para las diferentes capas de las estaciones fijas en	
4.4	las diferentes campañas de muestreo en el estuario del delta del Ebro. Promedio y desviacion estandar de los caudales locales de las capas	124
	superior, mezcla e inferior en el estuario del delta del Ebro, en las	
	diferentes estaciones fijas de muestreo para todas las campañas	125
4.5	Promedio y desviacion estandar de los caudales locales de las capas superior, mezcla e inferior en el estuario del delta del Ebro, en las	
	diferentes campañas de muestreo a lo largo del año tipo	125
4.6	Caudales promedio $[m^3s^{-1}]$ para los ultimos 35 años del período de	123
1.0	1912 a 1998	127
4.7	Valores promedio, desviación estandar, máximo y mínimo de los cau-	
	dales $[m^3s^{-1}]$ reportados por la Confederación Hidrográfica del Ebro	
	para el embalse de Mequinenza durante los días previos de las cam-	
	pañas de muestreo.	127
4.8	Valores de las correlaciones de los caudales de agua locales para las	
	capas superficial, de mezcla e inferior a lo largo del estuario del delta	100
4.9	del Ebro en un año tipo	129
4.9	a lo largo del estuario del delta del Ebro en un año tipo	129
4.10	Inestabilidades dominantes bajo diferentes números de Richardson glob-	123
1.10	al en el estuario del delta del Ebro de acuerdo con los valores experi-	
	mentales establecidos por Strang y Fernando (2001)	140
4.11	Valores de las regresiones de los entrañamientos respecto de ${\it Ri}_b$	
	pequeños (P), intermedios (M) y grandes (G)	141
4.12	Valores de la variables usadas para las regresiones de las eficiencias de	1 40
	mezcla en las secciones de estudio.	142
5.1	Caudales utilizados para la modelación experimental de la pluma	153
5.2	Longitudes características de la circulación inducida por las descargas	
	del estuario en el mar adyacente modelado experimentalmente. A un	
	tiempo de 120 segundos	159
5.3	Longitudes características de la pluma experimental expresadas como	
	D= radio mayor, d= radio menor, s= distancia del inicio del vórtice formado por la pluma a la desembocadura del estuario	159
5.4	Longitudes características de la pluma calculada con el modelo exper-	100
0.1	imental expresadas como D= radio mayor, d= radio menor	160
5.5	Longitudes características de las estructuras observadas para los días	
	27 de agosto y 1 de octubre de 1997, expresadas como D= radio	
	mayor, d= radio menor, s= distancia a la desembocadura del inicio	
	de la estructura	165
6.1	Puntos que se presentan como barreras potenciales ala penetración de	
	la cuña salina. Tomando como referencia la distancia a la desembo-	
	cadura. * Indica puntos por describir	173

6.2	Abundancias de pcb para diferentes áreas geográficas. $DCM = Pro-$	
	fundidad de máximo de clorofila (deep chlorophyll maximum), PPP =	
	picofitopláncton, Syn = Synecococus	191