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Abstract
This thesis focusses on the essential features of Quantum Theory that are sys-

tems in an entangled state and Bell nonlocal correlations. Here, we take the angle of
a resource theory and are interested in understanding better how entanglement and
nonlocality, first, relate to one another. Indeed, if entangled systems are necessary
for the generation of nonlocal correlations, there nevertheless exist entangled sys-
tems that seem unable to do so. Quantitatively, it is also unclear whether "more" en-
tanglement leads to "more" nonlocality and, related to that, which measures should
be used as quantifiers. Second, entangled systems and nonlocal correlations have
been identified as resources for information tasks with no classical equivalent such
as the generation of true random numbers. It is then important to understand how
the two quantum resources relate to other quantities generated in information tasks.

First, we show that entangled quantum systems are unbounded resources for the
generation of certified random numbers by making sequences of measurements on
them. This certification is achieved through the successive near maximal violation
of a particular Bell inequality for each measurement in the sequence. Moreover,
even the simplest two-qubit systems in an almost separable (pure) state achieve this
unbounded randomness certification.

Second, we show that entanglement and nonlocality are seemingly put in a quan-
titative equivalence when using the nonlocal volume as measure. This measure is
defined as the probability that a system in a given state generates nonlocal correla-
tions when random measurements are performed on it. We prove that this measure
satisfies natural properties for an operational measure of nonlocality. Then we show
that, in all situations that we could explore, the most nonlocal state – as measured
by the nonlocal volume – is always the maximally entangled state.

Third, we consider multipartite scenarios in which quantum systems are dis-
tributed to numerous parties. Note that it is in general harder to generate a system
that is entangled between many parties rather than more systems entangled between
fewer parties. In that spirit, we develop a framework and tools for the study of cor-
relation depth, i.e. the minimal size of the resource – such as entangled systems –
that is needed for the (re)production of the correlations.

Fourth, we study the equivalence between the multipartite notions of entangle-
ment and of nonlocality. From an operational understanding of multipartite entan-
glement, we develop simple families of Bell inequalities that are very efficient for
the detection of multipartite nonlocality of pure states.

Last, we study the utility of multipartite quantum correlations for the design of
information protocols. We also identify novel features characteristic of these corre-
lations.
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The results of this thesis shed light on the interrelations in the triangle entanglement-
nonlocality-randomness in Quantum Theory. By going beyond the standard ap-
proaches – by considering sequences of measurements on the systems or by consid-
ering a novel measure of nonlocality – we obtain insight on the quantitative relations
between these three essential quantities. Our study of the multipartite scenario also
helps in characterising and identifying multipartite correlations in a simple way.
Finally, we also deepened our understanding of how entangled systems and nonlo-
cal correlations, in particular multipartite ones, serve as resources for the design of
information tasks with no classical equivalent.
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Resumen
La física cuántica es drásticamente distinta de su análogo clásico. Por ejemplo,

en principio es posible conocer con certidumbre el resultado de cualquier proceso
clásico, si uno tiene un conocimiento perfecto de las condiciones iniciales del pro-
ceso y sus interacciones. Sin embargo, la física cuántica es intrínsecamente aleato-
ria: incluso con un control perfecto, el resultado de un proceso cuántico es, en
general, probabilístico. El rango de posibilidades en términos de procesamiento de
información también cambia cuando se codifica información en el estado de sis-
temas cuánticos. El estudio de todas estas nuevas posibilidades es el objeto de la
teoría de la información cuántica.

Esta tesis se centra en dos fenómenos cuánticos responsables de parte del poder
de la teoría de información cuántica: la existencia de sistemas físicos en estados
entrelazados y de correlaciones de Bell no-locales. En primer lugar, y tomando el
enfoque de una teoría de recursos, nuestro primer objetivo es comprender mejor
cómo el entrelazamiento y la no-localidad se relacionan entre sí. De hecho, si bien
es sabido que los sistemas entrelazados son necesarios para la generación de correla-
ciones no-locales, existen sin embargo sistemas entrelazados que parecen incapaces
de hacerlo. Cuantitativamente, tampoco está claro si "más" entrelazamiento con-
duce a "más" no-localidad y qué medidas deben usarse como cuantificadores. En
segundo lugar, los sistemas entrelazados y las correlaciones no-locales se han iden-
tificado como recursos para tareas de información sin ningún equivalente clásico,
como por ejemplo la generación certificada de números aleatorios. Es por tanto
importante comprender cómo los dos recursos cuánticos se relacionan con otras
cantidades generadas en las tareas de información. El trabajo de la tesis, centrado
alrededor de estas dos motivaciones, ha llevado a los resultados que se describen a
continuación.

Primero, mostramos que los sistemas cuánticos entrelazados son recursos ilim-
itados para la generación de números aleatorios certificados a través de secuencias
de medidas. Esta certificación se logra mediante la sucesiva violación, casi máxima,
de una desigualdad de Bell particular para cada medición en la secuencia. Además,
incluso los sistemas de dos qubits más simples, en un estado puro casi separable,
logran esta certificación de aleatoriedad ilimitada.

En segundo lugar, mostramos que el entrelazamiento y la no-localidad se expre-
san, aparentemente, en una equivalencia cuantitativa cuando se utiliza el "volumen
no-local" como cuantificador. El volumen no-local se define como la probabili-
dad de que un sistema en un estado dado genere correlaciones no-locales cuando
se realizan mediciones aleatorias en él. Probamos que este cuantificador satis-
face las propiedades naturales de una medida operacional de no-localidad. Luego
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mostramos que, en todas las situaciones que podemos explorar, el estado más no-
local, medido por el volumen no-local, es siempre el más entrelazado.

Finalmente, obtenemos varios resultados en escenarios multi-partitos en los que
los sistemas cuánticos se distribuyen entre numerosos observadores. Desarrollamos
un marco y herramientas para el estudio de la profundidad de correlación, es decir,
el tamaño mínimo del recurso (por ejemplo, el entrelazamiento) que es necesario
para la reproducción de las correlaciones. Además. estudiamos la equivalencia
entre las nociones multi-partitas de entrelazamiento y de no-localidad, obteniendo
familias sencillas de desigualdades de Bell que son muy eficientes para la detección
de no-localidad multi-partita generada por sistemas en estados puros. Por último,
estudiamos la utilidad de las correlaciones cuánticas multi-partitas para el diseño de
protocolos de información.

Los resultados de esta tesis arrojan luz sobre las interrelaciones en el triángulo
entrelazamiento/no-localidad/aleatoriedad en la teoría cuántica. Al ir más allá de
los enfoques estándar, al considerar secuencias de mediciones en los sistemas o
al considerar una nueva medida de no-localidad, obtenemos información sobre las
relaciones cuantitativas entre estas tres cantidades esenciales. Nuestro estudio del
escenario multi-partito también ayuda a caracterizar e identificar las correlaciones
multi-partitas de una manera simple. Finalmente, profundizamos nuestra compren-
sión de cómo los sistemas entrelazados y las correlaciones no-locales, en particular
multi-partitas, sirven como recursos para el diseño de tareas de información sin
análogo clásico.
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Chapter 1

Objectives and main results

Much of the excitement that surrounds Quantum Theory stems from the fact that it
is very counter-intuitive. Indeed, our intuition is built on the events we experience
on a daily basis and where most, if not all, quantum features disappear. In terms of
information processing, the range of possibilities when information is encoded in
quantum states drastically differ from what is achievable in a classical theory. For
example, an unknown classical bit of information that is received can be read and
copied at will. On the contrary, information encoded in a qubit – a quantum bit
– can in general not be retrieved and copied with certainty, a result known as the
no-cloning theorem [WZ82]. More than this, the amount of classical bits that are
needed in order to fully describe the state of a single qubit is infinite!

Quantum Theory abandons many of the principles we believed to be essential
to any physical theory. Intrinsically probabilistic, the outcome of a physical process
can in general not be predicted even with perfect control over the initial condi-
tions. Some quantities, such as the position of a particle and its velocity, can not
be measured precisely at the same time: acquiring information about one will force
uncertainty about the other.

More than a century after its inception, Quantum Theory is one of the most ac-
curately tested physical theories. Nevertheless, some of its essential features – such
as entanglement or quantum nonlocality – are still puzzling the community. The
presence of entanglement, i.e. states of composite systems that can not be described
by the states of their subsystems, leads to the phenomenon of nonlocality: measure-
ments made on entangled quantum systems can produce correlations stronger than
those of any classical theory. First seen as theoretical peculiarities, entanglement
and non-locality are now essential resources in the field of Quantum Information
Science. Indeed, they have been harnessed into powerful resources for informa-
tion tasks with no classical counterpart: randomness certification, expansion and
amplification [AM16; CK11; CR12; Pir+10], provably secure distribution of secret
keys [BB84; Eke91], quantum teleportation [Ben+93] or testing devices without
making assumptions about their internal functioning [MY98], for example.



2 Chapter 1. Objectives and main results

The phenomenon of nonlocality exhibits itself through the correlations observed
between the outcomes of distant measurements made on entangled particles. As
such, it does not depend on the exact processes that were put into play to generate the
correlations, but solely on the statistical properties of the correlations themselves. In
particular, no assumption is made about the functioning of the measurement devices
or about the underlying Hilbert spaces dimensions of the physical systems. This
very abstract modelling of a physical set-up allows to draw conclusions in a device-
independent manner [MY98; Ací+07; Ban13].

The benefit of taking such a minimalistic approach is two folded. On the one
hand, we expect to deepen our understanding of the physical principles that are
obeyed by the correlations observed in the quantum world. Quantum Theory was
built as an ad hoc theory – whose predictive power has been confirmed numerous
times – and we are still lacking an understanding in terms of operational principles,
the "why" we observe what we observe. Comparing the correlations that can arise
from measurements on quantum systems with the ones that can be generated in
other theories, such as the classical or post-quantum ones, will help to single out
Quantum Theory in terms of principles.

On the other hand, when designing information protocols that make use of the
peculiarities of Quantum Theory as resources, the fewer assumptions that are made
about the physical set-up the more robust the protocol in an adversarial picture.
The device-independent paradigm allows one to build protocols with unprecedented
level of security, as the number of assumptions that are made is minimal [MPA11;
Ací+07; Eke91; AGM06; Pir+10].

1.1 Motivation

Understanding and characterising quantum nonlocal correlations is central not only
to answer fundamental questions, but also for the implementations of information
tasks where they have been identified as essential resources. In this view, it is cru-
cial not only to improve our understanding of how they can be generated, but also
to improve the methods for their identification or quantification. Given quantum
nonlocal correlations, from a resource-theoretic point of view it is also interesting
to understand how complex these correlations are for their (re)production.

Entangled quantum states are necessary for the generation of quantum nonlocal
correlations, that in turn are needed in information tasks such as the generation of
certified random numbers. It is then important to understand, first, how entangle-
ment and nonlocality relate to one another. Second, to understand how entanglement
and nonlocality relate to the quantities generated during information tasks such as
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certified random numbers. For example, is there a fundamental bound on the amount
of randomness that can be certified from entangled systems? The answers to these
questions will serve to understand what are the potentialities of Quantum Theory.
As resources, it will also shed light on how powerful entanglement and nonlocal
correlations are for the design of information tasks.

The two main axes of research of this thesis are: i) understand better, at the
fundamental level, how entanglement, nonlocality and other quantum features such
as certified randomness relate to one another – both qualitatively and quantitatively;
and ii) understand better the potentiality of entanglement and of nonlocal correla-
tions as resources for device-independent information tasks. For clarity, the precise
lines of research of this thesis are outlined in the following.

� Improve the tools to identify nonlocal correlations.
Today, the most common tool to witness the nonlocal character of the correlations
generated in an experiment are Bell inequalities. A violation of these indeed serves
to discard any possible classical explanation of the observed correlations. A Bell
inequality can always be understood as an information task that can be achieved
with greater probability when using quantum resources rather than classical ones.
Bell inequalities are thus also useful to identify new information tasks in which
quantum resources provide an advantage. In this context, it is important to continue
designing new Bell inequalities for a better characterisation of quantum nonlocal
correlations, but also in order to identify the nature of the advantages provided by
Quantum Theory over the classical ones.

The observation of nonlocal correlations often serves as a certificate that the un-
derlying processes were indeed making use of genuinely quantum resources [MY98],
because it imposes constraints on any physical realisations compatible with the ob-
served correlations. In particular, the violation of a Bell inequality has already been
identified as useful for: randomness certification [CK11; CR12; Pir+10]; secure
device-independent quantum key distribution [Ací+07; Eke91]; testing the func-
tioning of a device without assumptions about its internal functioning [MY98];
as device-independent witness of entanglement [Ban14a]; obtaining lower bounds
on the communication complexity of reproducing quantum correlations[Buh+10;
Dam99; TB03; RT09].

� Improve our understanding of the relation between quantum entangle-
ment and nonlocality.
Entangled quantum systems are necessary for the generation of quantum nonlocal
correlations. Nevertheless, it is still unclear whether all entangled systems can be
used in order to generate nonlocal correlations. At the quantitative level, the relation
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between the two quantum features is even more obscure. For instance, is more en-
tanglement synonymous of more nonlocality? This question obviously depends on
the measure that is used in order to quantify the nonlocality exhibited by quantum
systems and the result typically depends on the choice that is made. Nevertheless, a
shared feature of all measures used so far is that the most nonlocal states often are
the ones that are not the most entangled [Aci+02; Ebe93; AGG05; BGS05; MS06].
Do these "anomalies" hint at the fact that one should not expect a quantitative equiv-
alence between entanglement and nonlocality or rather that they appear as artefacts
of the chosen measures?

In some particular cases, the qualitative equivalence between entanglement and
nonlocality has been established. For instance, all physical systems in a pure en-
tangled state can be used to generate nonlocal correlations [Gis91; PR92]. In many
other situations, the question is subtler. For instance, some (mixed) quantum states
can not display nonlocality whenever single measurements are performed on each
copy [Wer89; Bar02]. They may nevertheless become able to generate nonlo-
cal correlations when: sequences of measurements are being performed on each
copy [Pop95] and/or many copies of the systems are measured together [Pal12]
and/or the systems are combined with others that are also unable to display nonlo-
cality [MLD08] and/or are put in a network [Cav+11]. The question of the equiv-
alence between entanglement and nonlocality in general remains one of the most
important open questions in the field of Quantum Information Theory.

� Identify information tasks whose success requires using quantum re-
sources.
As said, the use of quantum states as carrier of information and the phenomenon
of nonlocality open a new range of possibilities in terms of information processing.
Not only does it improve the performances in some existing tasks, but it also of-
fers opportunities to perform some that were otherwise impossible. For example,
in a classical theory it is impossible to generate truly random numbers as the the-
ory is deterministic in its essence. On the contrary, Quantum Theory is intrinsically
probabilistic. It thus offers the possibility to certify randomness, i.e. prove that
the outcomes of measurements on quantum systems are unpredictable based on the
statistical properties of the correlations only [CK11; CR12; Pir+10]. Another ex-
ample is the one of distributing a secret key to distant parties in a secure way, a task
of great importance in cryptography. Classical protocols for the distribution of keys
rely on complexity assumptions. For instance, their security depends on the capacity
of an adversary to factorize large numbers into prime ones, a task however known
to be easy (solvable in polynomial time) for a quantum computer. Quantum key
distribution offers the possibility to distribute secret keys in a provably secure way
based on minimal assumptions, in particular none about the computational power
of the adversary [Eke91]. Further, quantum key distribution can be performed in a
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device-independent manner [Ací+07], i.e. without relying on a faithful description
of the parties’ devices. One of the key objective of Quantum Information Theory is
to identify these tasks where quantum resources prove useful, understand why and
work on improving their experimental feasibility.

� Identify the limitations of quantum resources in information tasks.
It is already clear that quantum resources, such as entangled systems, provide ad-
vantages in terms of what can be achieved in information tasks as compared to what
can be done using classical resources. Nevertheless, there still exist fundamental
bounds, or limitations, on what is achievable within Quantum Theory in terms of
information processing. For example, since the state of a qubit requires an infi-
nite amount of classical bits for its description, it is tempting to think that it can be
used to transmit a very large amount of classical information. Nevertheless, it was
found that a single qubit can be used for the transmission of at most a single bit of
classical information [Hol73; SW97]. This question is closely related to the one of
understanding which information principles bound the set of possible correlations
achievable by making measurements on quantum systems. For example, the cor-
relations generated in Quantum Theory seems to be optimal in terms of how much
randomness can be certified through them, which is not the case in general when
considering post-quantum theories [Tor+15].

As resources, it is important to understand exactly how powerful entangled sys-
tems and nonlocal correlations are. When bounds appear on the potentiality of
quantum resources, it is important to distinguish the situation where these limita-
tions derive from fundamental principles or appear as artefact of the set-up that is
being considered. In the second case, it is then possible that the limitation can be
lifted by extending the range of operations that are considered in the limited set-up.
In that spirit, some entangled systems generate nonlocal correlations only when se-
quences of measurements are being performed on them and remain useless in the
standard set-up with a single measurement in the sequence [Pop95].

�Characterise the complexity of nonlocal correlations for their (re)production.
Quantifying the complexity of nonlocal correlations is useful for two reasons. First,
it is imperative to understand how complicated given nonlocal correlations are for
their experimental realisation, in particular when these are resources for informa-
tion tasks. Measures of complexity could be the number of particles that need to
be entangled together in a multipartite system [GTB05] or the degree of entangle-
ment that is needed for the generation of the correlations [Woo98]. Obviously, the
complexity of nonlocal correlations can be evaluated according to many criteria, the
choice of which depends on the specific aim one is interested in.

Second, it is also of interest to compare the complexity of quantum nonlocal
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correlations when these are to be reproduced by other nonlocal resources. For ex-
ample, how difficult is it to reproduce quantum nonlocal correlations when having
access to post-quantum but nevertheless no-signalling resources1 [BP05]? Also of
interest is the amount of classical communication that needs to be exchanged in
place of sharing entangled systems for the generation of specific nonlocal correla-
tions – the communication complexity of the correlations [Buh+10; Dam99; TB03;
RT09]. The goal is to understand how powerful quantum resources are as compared
to the ones of other theories.

� Understand the advantages provided by generalised scenarios.
The standard Bell scenario is the simplest set-up in which nonlocal correlations arise
and, as such, as received most of the attention of the community so far. Some of its
limitations are: a) correlations between two parties only are considered; b) the par-
ties make a single measurement on the system they receive before discarding it; c)
often projective measurements only are considered. The study of correlations in the
standard scenario suffices to observe a quantum advantage over classical resources
and its study has been extremely fruitful [Bela]. Nevertheless, there are many ex-
amples in which considering generalised scenarios – set-ups that go beyond the
standard one – permits to achieve tasks that were otherwise impossible in the stan-
dard scenario. Generalised scenarios may consist in: i) the use of multipartite states
distributed to many (more than two) observers, ii) performing sequences of mea-
surements on the systems, iii) the use of general measurements (positive-operator
valued measures). The use of multipartite systems has been shown to permit full
randomness amplification [Gal+13; Bou+14], the use of sequences of measurements
has been proved useful for the activation of hidden nonlocality [Pop95] and the use
of general measurements allows for increased randomness certification for exam-
ple [Ací+16]. In all these scenarios, not only is it possible to perform novel tasks
but richer types of correlations also arise [Gal+14; Sve87; SS02; Ban+13; Gal+12].

Exploring generalised scenario also helps as tool to obtain insight on all the
previously mentioned questions and research directions.

1.2 Main results

Entanglement and quantum nonlocality in bipartite states and beyond: to-
wards a quantitative equivalence [Lip+18]. – Many Bell inequalities are max-
imally violated by non maximally entangled states only [Aci+02], even when con-
sidering states of arbitrary Hilbert space dimension [LVB11; VW11]. This phe-
nomenon of obtaining more nonlocality from less entanglement is also observed
for almost all other operational measures of nonlocality [Aci+02; Ebe93; AGG05;

1I.e. any resources which do not allow for infinite speed communication.
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BGS05]. We study a recently proposed measure of nonlocality defined as the
probability that a given state displays nonlocal correlations when subjected to ran-
dom measurements, as witnessed by all possible Bell inequalities in a fixed sce-
nario [Ros+17; Lia+10; FP15]. We first prove that this measure satisfies some
natural properties for an operational measure of nonlocality. Second, we provide
analytical and numerical results suggesting that this measure is a good candidate for
a quantitative equivalence between entanglement and nonlocality for pure states.
These results help understanding under which perspective one should recognise en-
tanglement and nonlocality as quantitatively equivalent. In particular, it strengthens
the idea that Bell inequalities should be considered as witnesses and not as quanti-
fiers of nonlocality.

Entangled systems are unbounded resources for the generation of nonlocal
correlations and of certified randomness [Cur+17; Cur+18]. – In the standard
scenario, a single measurement is performed on the shares of a physical system
before they are discarded and a fresh copy of the system is generated. Nonlocal cor-
relations can thus be generated between the outcomes of two distant measurement
and only a limited amount of randomness can be certified [Ací+16]. In particular,
a system of two qubits can be used for the generation of at most four random bits.
This raise the question of whether there exist fundamental bounds on the amount of
randomness that can be certified from quantum systems. By considering sequences
of measurements performed on the systems, we show that it is possible to gener-
ate an unbounded amount of certified randomness even from the simplest entangled
systems, namely from two qubits that can be arbitrarily little entangled. The certi-
fication is achieved through the successive (near) maximal violation of a particular
Bell inequality for each measurement in the sequence. An important ingredient for
our construction is the use of weak measurements which allow tuning the trade-off
between the amount of information that is extracted from the states and the state dis-
turbance – i.e. entanglement destruction – that such a measurement causes. These
results show that there is no fundamental limit on the amount of randomness that
can be certified from entangled systems.

A simple approach to multipartite nonlocality from pure states [CAA18]. –
In the multipartite set-up for the generation of nonlocality, where multipartite states
are distributed to many (more than two) parties, richer correlations arise and novel
quantum features appear [Hor+09; Gal+14; Sve87; SS02; Ban+13; Gal+12]. From
an operational understanding of multipartite pure state entanglement, we develop
simple families of Bell inequalities witnessing (genuine) multipartite nonlocality.
We show that our families are very efficient to witness nonlocal correlations gen-
erated from pure states. We provide strong numerical evidence that all systems of
three and four qubits in a genuine multipartite entangled (GME) pure state violate
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our families and thus generate genuine multipartite nonlocality (GMNL). Analyti-
cally, we show that almost all pure states of three qubits in a GME state generate
GMNL, as witnessed by the violation of a single inequality. We also show that
a large class of GME pure states violate a family of inequalities for any number
of parties, even states that are almost separable. The operational meaning of our
inequalities and their violations lead us to conjecture that these can be used to gen-
eralise Gisin’s theorem for bipartite systems [Gis91] to the multipartite notions of
entanglement and nonlocality: we suspect that all GME pure states are GMNL.

Quantifying multipartite nonlocality via the size of the resource [CGL15].
– When given correlations from an experiment or from a theory, it is desirable to
determine the extent to which the participating parties would need to collaborate
nonlocally – by sharing entangled systems for example – for their (re)production.
We develop a framework to achieve this via the minimal group size (MGS) of the
resource, i.e., the smallest number of parties that need to share a given type of non-
local resource for the above-mentioned purpose. For example, certain correlations
between four parties can be generated by sharing entangled systems that are entan-
gled between three parties only. These correlations can be understood as simpler to
generate than those that require the use of systems that are entangled between all
the four parties together. They are nevertheless more complex than the ones where
only bipartite entangled systems suffice. Other nonlocal resources can consist of
arbitrary (post-quantum) no-signaling correlations or classical communication be-
tween subset(s) of the parties. Of course, the particular choice of resource that is
made in general leads to different answers. With this in mind, we build a framework
and tools for the study of the MGS of correlations. We also apply our techniques
to specific examples where the MGS of the correlations can be determined. Our
work allows for the quantification of multipartite correlations in a very natural and
operational way.

Multipartite quantum nonlocal correlations are useful resources for novel
device-independent information tasks [Lia+14]. – Novel properties exhibited by
quantum nonlocal correlations in the multipartite scenario are identified and showed
to be useful novel resources for information tasks. In particular, multipartite quan-
tum correlations can exhibit a form of anonymity, allowing a party to perform an
information task without revealing its identity. We also show that specific multipar-
tite quantum nonlocal correlations can in principle be used for quantum key distri-
bution in a device independent manner that is resilient to nearly arbitrary leakage
of information to the adversary. We also propose a scheme to perform multipartite
secret sharing between any two groups of parties. Our work also aims at show-
ing that the multipartite extent to which correlations are nonlocal does not seem
important for DI information tasks. One should rather focus on other interesting
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properties, such as perfect correlations between the parties, together with the fact
that the correlations are nonlocal at all. To obtain these results, we also analyse
the complexity of (re)producing specific quantum nonlocal correlations – in terms
of minimal group size of the resources – when using post-quantum resources such
as arbitrary no-signalling ones or classical communication between subset(s) of the
parties. In particular, we show that the gap between quantum and post-quantum
resources can be made arbitrarily large.

1.3 Outline of the thesis

The present thesis is organised as follows. The next chapter serves to introduce the
background material supporting the results of this thesis. The chapters that follow
are dedicated to the results obtained during the course of this thesis. Finally, I finish
with a general overview of this thesis and future perspectives. The appendices serve
as supporting material for the obtained results.
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Chapter 2

Background

This chapter is devoted to an introduction of the topics central to the thesis. Its first
section is devoted to entanglement, the second to the phenomenon of nonlocality,
the third to entanglement and nonlocality in the multipartite set-up. Finally, the
fourth section introduces several device-independent tasks relying on the generation
of nonlocal correlations. In each section, the formalism, important existing results
and tools useful in the scope of this thesis are exposed.

2.1 Quantum entanglement

"I would not call entanglement one but rather the characteristic trait of quantum me-
chanics, the one that enforces its entire departure from classical lines of thought."

E. Schrödinger, in [Sch35]

In 1935, Einstein, Podolski and Rosen (EPR) first note a peculiarity in the de-
scription of joint systems in Quantum Theory [EPR35]. Two particles that have
once interacted can indeed be in an entangled1 state when some physical quantities
are conserved. By making different measurements on one of the particles in such
an entangled state, it is possible to project the other particle into different states that
can in principle be the eigenstates of observables that do not commute – this what-
ever the distance that separates the particles at the moment of the measurement. For
example, by measuring one of the two entangled particles, one can project the other
one into a state with definite position or with definite momentum without interact-
ing with that second particle. By assuming that systems that are far apart can not
influence each other instantaneously – the principle of locality – one comes to the
conclusion that the second particle should have definite position and momentum, in-
dependently of the measurement that is being performed on the other particle. This
contradiction between the local description of a physical system – that can not be

1EPR didn’t use the word entangled, which was only later proposed by Schrödinger [Sch35].
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an eigenstate of both the position and momentum operators – and the consequences
of the global description of joint systems lead EPR to conclude that the description
of physical systems in Quantum Theory could not be considered complete.

It is only much later that the paradox was resolved: measurements made on one
of the two particles in an entangled state can indeed influence – at a distance and
instantaneously – the results of measurements made on the second one! Such influ-
ences can nevertheless not be used to communicate faster than the speed of light and
do thus not enter in conflict with the Theory of Relativity. Quantum Theory does not
respect the principle of locality2,3, a phenomenon known as quantum nonlocality.
Quantum nonlocality is the main topic of interest of this thesis and we describe it in
more detail in the next section. In the present section, we introduce the fundamental
property of entanglement of the joint states of physical systems, which is necessary
in order to generate nonlocal correlations.

2.1.1 Entanglement in bipartite systems

Two particles, A and B, that are in a pure state, are described by a joint quantum
state |Ψ〉AB ∈ HA ⊗HB – a vector living in the tensor product of the two local
Hilbert spaces over the complex numbers for A and B. Such a bipartite pure state is
said to be separable if it can be written as

|Ψ〉AB = |ψ〉A|φ〉B (2.1)

for some |ψ〉A ∈ HA, |φ〉B ∈ HB that are two normalised quantum states and
where we use the obvious abbreviation |ψ〉A|φ〉B ≡ |ψ〉A ⊗ |φ〉B. Separable states
(2.1) describe systems that can be understood as classical, in the sense that a mea-
surement made on one of the particles does not change the state of the other.

On the contrary, there are states |Ψ〉AB ∈ HA ⊗HB in Quantum Theory which
do not allow for a decomposition of the form (2.1)

|Ψ〉AB 6= |ψ〉A|φ〉B (2.2)

for any choice of (normalized) states |ψ〉A ∈ HA and |φ〉B ∈ HB . Such states
are entangled: measurements on one of the subsystems can influence the state of

2To be exact, there are other ways to circumvent the paradox, such as allowing for faster than light
signalling for example, but all these imply violating even stronger physical principles than the one of
locality.

3We simplify the situation, in reality quantum correlations violate the principle of local realism
(or, equivalently, local causality in Bell’s terms), that is that an event is influenced deterministically
by its immediate surroundings only.
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the other. Physical systems in an entangled state, apart from being of fundamental
interest, also are essential resources for many information tasks that are otherwise
impossible with separable (or classical) states only. One can send more than one bit
of information using the state of a single qubit4 – called superdense coding [BW92]
– or teleport the unknown state of one particle to another distant one using classical
communication only – quantum teleportation [Ben+93]. Both these tasks funda-
mentally rely on the use of entangled systems. Furthermore, entangled systems are
necessary for the generation of nonlocal correlations. This implies that any infor-
mation tasks requiring nonlocal correlations to be generated also crucially relies on
the possibility to distribute systems in an entangled state to distant observers.

Schmidt basis, concurrence and maximal entanglement

A pure quantum state |Ψ〉AB ∈ Cd ⊗Cd of two particles – a two-qudit pure state –
can always be written in a particular choice of local bases as

|Ψ〉AB =
d−1

∑
i=0

αi|ii〉 (2.3)

with αi ∈ R≥0 ∀i,
d−1
∑

i=0
α2

i = 1 and α0 ≥ α1 ≥ ... ≥ αd−1. A pure bipartite state

written in the form (2.3) is said to be in its Schmidt bases. In particular, a bipartite
two-qubit pure state (|Ψ〉AB ∈ C2 ⊗C2) is written as

|Ψ(θ)〉AB = cos(θ)|00〉+ sin(θ)|11〉 (2.4)

for an angle θ ∈ [0, π
4 ].

The amount of entanglement in a pure state can be quantified with the help of a
measure called the concurrence C(|Ψ〉AB) : Cd ⊗ Cd → [0, 1]. For any pure two
qubit state d = 2, written in its Schmidt basis (2.4)

C(|Ψ(θ)〉AB) = 2 cos(θ) sin(θ) = sin(2θ) (2.5)

implying that the amount of entanglement grows monotonically with the angle
θ ∈]0, π

4 ] and is zero only for the separable state with θ = 0.

4In addition to the system in a qubit state that is sent, the parties also share (maximally) entangled
systems which allow to enhance the amount of information the qubit system can carry between them.
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A state of particular interest is the the maximally entangled one, with αi =
1√
d
∀i

(2.3)

|Φ+〉AB =
d−1

∑
i=0

1√
d
|ii〉 (2.6)

In the case of two qubits (2.4), it is the one maximising the concurrence (2.5) with
θ = π

4 in (2.4)

|Φ+〉AB =
1√
2
(|00〉+ |11〉) (2.7)

Mixed quantum states

In practice, noise in the set-up or imperfect knowledge make that the states of physi-
cal systems need to be described in the formalism of mixed states, which also allows
for pure states to be represented. A mixed state ρAB is represented as an operator
acting on the spaceHA ⊗HB

5 and is an hermitian, trace one, matrix. It can always
be decomposed, and understood, as a probabilistic mixture of pure states

ρAB = ∑
i

qi|Ψi〉〈Ψi|AB (2.8)

with qi a probability distribution qi ∈ R≥0 ∀i with ∑
i

qi = 1 and |Ψi〉AB ∈ HA ⊗
HB a valid pure (normalised) state for all i. Note that a mixed state that is not pure
might allow for different decompositions (2.8). A simple condition to test the purity
of a state ρ is

Tr(ρ2)

{
= 1 ⇔ ρ is pure: ρ = |Ψ〉〈Ψ|AB

< 1 ⇔ ρ is mixed: ρ 6= |Ψ〉〈Ψ|AB
(2.9)

Mixed quantum states are not only useful as tools to deal with practical imper-
fection in the set-up – i.e. stemming from an incidental lack of knowledge – but
also as essential objects originating from an intrinsic lack of knowledge in the for-
malism of Quantum Theory. Indeed, one can show that when a system is in a pure
state ρAB = |Ψ〉〈Ψ|AB (2.2), the purity of its subsystems, say ρA = TrB(ρAB)
for example, can be computed in order to decide whether |Ψ〉AB is entangled or
separable:

Tr(ρ2
A)

{
= 1 ⇔ |Ψ〉AB = |ψ〉A|φ〉B
< 1 ⇔ |Ψ〉AB 6= |ψ〉A|φ〉B

(2.10)

5This is usually denoted ρ ∈ B(HA ⊗HB), ρ acts on the Banach space associated to the Hilbert
spacesHA ⊗HB.
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Deciding whether a given pure state is entangled or not – the separability problem
– can thus be achieved through the necessary and sufficient condition (2.10).

The definition of separable (2.1) and entangled pure states (2.2) generalise to
density matrices (2.8). A mixed state ρAB is said to be separable if

ρAB = ∑
i

giσ
i
A ⊗ γi

B (2.11)

where gi ∈ R≥0 ∀i form a convex combination ∑
i

gi = 1 and σi
A = |ψi〉〈ψi|A and

γi
B = |φi〉〈φi|B are valid (normalised) pure states for all i. The set of all separable

states (2.11) acting on Hilbert spaces of dimension d is denoted Sd and is convex
by construction. A mixed state (acting on Hilbert spaces of dimension d) that does
not admit a decomposition of the form (2.11), ρ /∈ Sd, is said to be entangled.

The separability problem for mixed states ρAB (2.8) amounts to checking their
membership to the set Sd of all separable states (2.11), i.e. deciding whether ρAB
allows for a decomposition of the form (2.11). Solving the separability problem
in general remains open and a necessary and sufficient criterion is known only for
mixed two-qubit and qubit-qutrit states – acting on C2 ⊗ C2 and in C2 ⊗ C3 re-
spectively [Per96]. Moreover, the separability problem was shown to be NP-hard
in general [Gur04]. The task of witnessing entanglement – both in theory and in
experiment – in quantum systems is of paramount importance in the field of Quan-
tum Information Science, first as a question of fundamental interest but also for the
characterisation of entanglement as a resource.

Entanglement witnesses

Another technique to identify entanglement in quantum states is the use of entan-
glement witnesses. Such a witness can be represented by an operator W acting on
quantum states such that its expectation value

Tr(Wρ) < 0 ⇒ ρ /∈ Sd (2.12)

identifies entanglement in the state. An entanglement witness can be understood
as an hyperplane in the state space, the entire set of separable states lying on the
positive side Tr(Wρ) ≥ 0 of it. Note that there are also entangled states ρent /∈ Sd
giving positive expectation values Tr(Wρent) ≥ 0, implying that the witness works
as a sufficient but not necessary condition for entanglement.

On the other hand, in a situation where one would like to characterise the en-
tanglement of an unknown state, it is then impossible to decide which entanglement
witness – among a infinite set of them – to use, making the technique potentially
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FIGURE 2.1: An illustration of an entanglement witness W in the abstract space
of quantum states. An entanglement witness is an hyperplane in that space and
separates it into two half spaces, with the set of separable states S lying on the
positive half. A negative expectation Tr(Wρ) < 0 serves as witness that the state

is entangled ρ /∈ S.

highly inefficient. Worse, imperfections in the measurement apparatuses or in prior
knowledge of the state will potentially lead to false positives [Ros+12].

Local operations and classical communication

The maximally entangled pure state |Φ+〉AB (2.6) in a given dimension d can be
transformed into any other state with the same (or lower) Hilbert space dimension
by performing local operations on each subsystem and using classical communica-
tion (LOCC)[Nie99]. LOCC operations are the ones that do not increase the amount
of entanglement (using any measure, for example the concurrence (2.5)). They can
therefore be seen, from a theoretical point of view, as free resources. In that view,
the maximally entangled state (2.6) plays a special role.

LOCC allow one to define entanglement in an operational way: entangled sys-
tems can not be prepared by two distant observers sharing separable states on which
they make rounds of local operations (such as a measurement or unitary operation)
followed by classical communication (such as sending to the other observer one’s
measurement outcome). In the same way, one can not increase the amount of entan-
glement in the states by means of LOCC. In order to create/increase entanglement
one needs to perform global operations on the joint state of the systems.
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2.2 Quantum Nonlocality

EPR were led to the conclusion of the incompleteness of Quantum Theory by as-
suming that any physical theory should respect the principle of locality: influences
spread gradually through space-time. It is only much later, in 1965, that J. Bell
formalised the concept of locality6 and derived statistical constraints on any theory
satisfying the principle [Bel01]. The inequalities that were obtained involve sta-
tistical correlations between the outcomes of local measurements made in distant
locations. J. Bell showed that the correlations obtained by making local measure-
ment on the subsystems of physical systems in an entangled state are stronger than
those of any local (or classical) theory, as witnessed by a violation of his inequal-
ities. The strength of J. Bell’s results is to have turned a theoretical observation
about the structure of a theory into measurable quantities, making it testable. More
than 50 years later, so-called Bell inequalities have been used in numerous exper-
iments confirming the nonlocal predictions made by Quantum Theory [Hen+15;
FC72; ADR82; Giu+15; Sha+15]: entangled particles can influence each other at a
distance through some "spooky action at a distance".

2.2.1 A Bell experiment

The simplest set-up for the generation of nonlocal correlations consists of two dis-
tant observers, A and B, that are being sent physical systems on which they perform
measurements. The experiment is divided in rounds of measurements on the sys-
tems, which are repeated in order to estimate the joint conditional probabilities of
the measurement outcomes.

Each round of the experiment, a fresh copy of a given bipartite system in a quan-
tum state ρ is generated by a source and one of its parts is sent to each observer.
Party A (respectively B) chooses one measurement from a set of mA (mB) possi-
ble ones, labelled by x ∈ 0, 1, ..., mA − 1 (y ∈ 0, 1, ..., mB − 1). Performing this
measurement on its part of the system, it observes an outcome a ∈ 0, 1, ..., OA − 1
(b ∈ 0, 1, ..., OB − 1) among OA (OB) possible ones. In this thesis, the alphabet of
the variables x, y, a, b is always taken to be finite. By repeating rounds of measure-
ments on the parts of the copies of the shared systems, the parties gather data until
they have a good estimate of the joint conditional probabilities P(ab|xy) – hereafter
called correlations.

Such an experiment with two parties is sufficient to discriminate between the
predictions made by different physical theories. This comes from the fact that the

6Again, to be precise, he formalised the principle of local causality, i.e. that events are determinis-
tically influenced by their immediate surroundings only.
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FIGURE 2.2: A round of a Bell experiment with two parties A and B. Each
party receives half of a quantum system on which it, locally, performs one out
of a possible set of measurements. The joint conditional outcome distribution of
the measurements sometimes allows one to draw conclusions about the underlying

processes, such as the entanglement properties of the state for example.

range of correlations that can, or not, be generated in a particular theory crucially
depends on the structure of the theory itself.

The assumptions made in a Bell experiment

Several important assumptions are made on the physical set-up when performing a
Bell test in order to draw the correct conclusions from the observed statistics 7:

◦ Independence of the measurement choices: the measurement choice of
each party, the inputs x, y, are independent variables at each round of the
experiment. This is often referred to as the freedom of choice (of the inputs x
and y) assumption.

◦ No communication between the parties: during each round of the experi-
ment, communication between the two parties is forbidden. This can be im-
plemented by making sure that the events of obtaining the outcomes a and b
from the measurements by each party are space-like separated at each round
of the experiment.

2.2.2 Local, quantum and no-signalling correlations

The range of possible correlations that can be generated depends on the particular
theory that is being considered. The other way around, the study of correlations

7Several additional aspects may have to be addressed when implementing a Bell test in a labo-
ratory, such as for example the problem of detection efficiencies or the need for the fair sampling
assumption. We here restrict our attention to the assumptions that need to be made at the theoretical
level only.
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observed in an experiment offers insight on the properties that a theory should fulfil
in order to be compatible with the observations.

Correlations from local influences

In a theory of local influences, correlations between space-like separated events can
only be explained by a (possibly hidden) cause lying in their common past. Equiv-
alently, one can understand that the parties A and B have access to shared ran-
domness that was acquired before they perform a round of the experiment. Shared
randomness can be obtained, for example, in a preparation phase where the two
observers communicate to build a common list of numbers. These classical and
possibly hidden variables shared in a common past are denoted by the variable λ
and allow for (classical) correlations between the outcomes. In a single round of
the experiment, correlations from local influences then ought to factorise on the
additional knowledge of the variable λ

P(ab|xy) = P(a|x, λ)P(b|y, λ) (2.13)

FIGURE 2.3: A graph of the possible causal influences between the variables
of a Bell experiment in a local (or classical) theory. The measurement choice x
(resp. y) can, locally, influence the outcome a (resp. b). Additionally, a classical
(and possibly hidden) variable λ distributed in the past may also serve to correlate
the outcomes. Such classical variable λ can also be understood as the two parties
having access to shared randomness – a pre-established list of numbers they have

in common.

The possible correlations that can be generated after many rounds of the ex-
periment in a local theory are then those that can be decomposed as a probabilistic
mixture of local correlations for one round (2.13)

P(ab|xy) = ∑
λ

qλP(a|x, λ)P(b|y, λ) (2.14)
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for some distribution qλ ≥ 0 with ∑
λ

qλ = 1. Note that it can be shown that one can

limit the alphabet of the variable λ to be finite when the variables of the measure-
ment choices x, y and outcomes a, b are too, which will be the case throughout this
thesis. We will refer to a Bell experiment with given alphabets mA, mB, OA, OB for
the variables x, y, a, b as [mA, mB, OA, OB]. The set L of all correlations admitting
a local decomposition (2.14) in a given set-up [mA, mB, OA, OB] can be shown to
be a polytope, that is a closed convex set with finite number of extremal points.

The set of quantum correlations

The correlations generated in a set-up [mA, mB, OA, OB] when making local mea-
surements on the shares of a joint physical system in a quantum state ρAB are de-
scribed by Born’s rule

P(ab|xy) = Tr(ρAB Ma|x ⊗ Nb|y) (2.15)

The measurement operators Ma|x and Nb|y are positive-operator valued measure
(POVM) Ma|x ≥ 0, ∀a, x and ∑

a
Ma|x = 1 ∀x (and similarly for Nb|y). They act,

respectively, onHA andHB . We come back later in more details on measurements
in Quantum Theory, see 2.2.4. The set of all correlations of the form (2.15) in a
particular set-up [mA, mB, OA, OB] form the convex set of quantum correlationsQ.
Note that the set of quantum correlations is not a polytope, as the number of ex-
tremal points is infinite.

The no-signalling principle and correlations

Quantum correlations (2.15) respect the no-signalling principle [Pr], which for-
malises the condition that measurements made on quantum systems should not be
useable to transmit information at infinite speed. In a Bell experiment, this implies
that the marginals PA(a|x) (and PB(b|y)) of each party should be independent of
the measurement choice y (x) of the other party. It could otherwise be used to send
a signal instantaneously. Correlations P(ab|xy) are said to be no-signalling when

PA(a|x) ≡ PA(a|xy) = ∑
b

P(ab|xy) ∀y

PB(b|y) ≡ PB(b|xy) = ∑
a

P(ab|xy) ∀x
(2.16)
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The set of all correlations in a set-up [mA, mB, OA, OB] satisfying the conditions
(2.16) is the set of no-signalling correlations NS . The set NS is a convex poly-
tope since it is defined only by a finite set of linear constraints (2.16), implying it
has only a finite number of extremal points.

The study of no-signalling correlations lead the way into searching information
principle(s) singling out quantum correlations from the set of possible ones. In
fact, quantum correlations (2.15) satisfy the no-signalling conditions (2.16) and the
principle seems so fundamental that one could be lead into thinking that the two sets
of correlations are identicalQ = NS . Interestingly, the quantum set of correlations
is strictly included in the set of no-signalling correlations Q ( NS , implying that
the no-signalling principle does not single out quantum correlations alone [PR94].

2.2.3 Bell inequalities

The polytope L of local correlations (2.14) in a given set-up [mA, mB, OA, OB] can
equivalently be described by a finite number of hyperplanes in the abstract space
of correlations P(ab|xy). Such hyperplanes take the form of inequalities IL – lin-
ear combinations of the probabilities P(ab|xy) – which are satisfied by all points
P(ab|xy) ∈ L

IL
(

P(ab|xy)
)
= ∑

x,y,a,b
hx,y

a,b P(ab|xy) ≤ BL ∀P(ab|xy) ∈ L

IL
(

P(ab|xy)
)
> BL ⇒ P(ab|xy) /∈ L

(2.17)

where BL ∈ R is the local bound – the maximal value of the inequality achievable
by local correlations P(ab|xy) ∈ L (2.14) – and the numbers hx,y

a,b ∈ R are the
coefficient defining the specific inequality IL.

Bell inequalities are central for the study of nonlocal correlations and for the
design of information processing tasks that are otherwise impossible. Their range
of applications in the field of Quantum Information Science is enormous and the
design of new useful Bell inequalities is a important task in the field.

Quantum nonlocality: the CHSH scenario

Quantum nonlocality refers to the fact that there exist inequalities of the form (2.17)
and quantum correlations PQ(ab|xy) ∈ Q (2.15) such that IL

(
PQ(ab|xy)

)
> BL

and thus PQ(ab|xy) /∈ L. This implies that quantum correlations can in general not
be generated by a local (or classical) theory. Inequalities allowing for a quantum
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violation, thus witnessing quantum nonlocality, are called Bell inequalities.

The so-called Clauser-Horne-Shimony-Holt (CHSH) inequality [Cla+69] is the
simplest and most widely used for witnessing nonlocality. In the scenario [2, 2, 2, 2]
where both parties A and B have a dichotomic choice of two-outcome measure-
ments (x, y, a, b ∈ 0, 1), it is the unique non-trivial hyperplane of the local set L8.
It reads

ICH
(

P(ab|xy)
)
= ∑

x,y,a,b
(−1)a⊕b⊕xyP(ab|xy) ≤ 2 ∀P(ab|xy) ∈ L (2.18)

where ⊕ denotes the sum modulo 2 and the local bound BL = 2. This inequality
is often written using the expectation value of the product of the outcomes – the
correlators

〈AxBy〉 = P(a = b|xy)− P(a 6= b|xy) (2.19)

Written using these correlators, the CHSH inequality reads

ICHSH
(

P(ab|xy)
)
= 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 ≤ 2

∀P(ab|xy) ∈ L (2.20)

To see that indeed, L ( Q, we construct quantum correlations P(ab|xy) ∈ Q
with x, y, a, b ∈ 0, 1 from measurements on the maximally entangled system of two
qubits |Φ+〉AB = 1√

2
(|00〉+ |11〉) (2.7)

P(ab|xy) = Tr
(

Ma|x ⊗ Nb|y|Φ+〉〈Φ+|AB
)

Ma|0 =
1
2
(1+ (−1)aσZ) ; Nb|0 =

1
2
(1+ (−1)b σZ + σX√

2
)

Ma|1 =
1
2
(1+ (−1)aσX) ; Nb|1 =

1
2
(1+ (−1)b σZ − σX√

2
)

(2.21)

giving the value ICHSH
(

P(ab|xy)
)
= 2
√

2 > 2, implying that P(ab|xy) /∈ L and
L ( Q, i.e. quantum nonlocality.

Interestingly, the set of quantum correlations is strictly included in the set of no-
signalling correlationsQ ( NS , implying that the no-signalling principle does not

8In addition to trivial inequalities of the form P(ab|xy) ≥ 0
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single out quantum correlations alone. This fact is best illustrated by considering
the correlations PPR(ab|xy) with x, y, a, b ∈ 0, 1, also called the Popescu-Rohrlich
(PR) correlations [Pr], respecting the rule

PPR(ab|xy) =

{
1
2 if a⊕ b = xy
0 otherwise

(2.22)

where⊕ denotes the sum modulo 2. It is easy to check that the correlations PPR(ab|xy)
satisfy the conditions (2.16), but give a values ICHSH(PPR(ab|xy)) = 4 implying
that they can not be realised using quantum resources PPR(ab|xy) /∈ Q (2.15). In-
deed, Tsirelson has proven that the maximal value to the CHSH inequality (2.20)
achievable by quantum correlations (2.15) is max

Q
ICHSH(P(ab|xy)) = 2

√
2 < 4,

which is realised uniquely by the quantum strategy (2.21).

FIGURE 2.4: A representation of the sets of no-signalling, quantum and local
correlations in a particular cut of the abstract space of correlations. The set of
local correlations is strictly included in the set of quantum ones L ⊂ Q, which is
in turn strictly included in the set of no-signalling onesQ ⊂ NS , as witnessed by

the different values of the CHSH inequality.

The scenario [2, 2, 2, 2] with two observers and dichotomic choice of two-outcome
measurements is the only one in which the violation of the CHSH inequality9 is both
necessary and sufficient for correlations P(ab|xy) to be nonlocal.

9One needs to consider the whole family of inequalities equivalent to the CHSH inequality (2.20),
i.e. all the inequalities that can be obtained from the inequality by local relabelling of the variables.
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In general, the set of local correlations for any number of measurement choices
and outcomes has a richer structure with numerous inequivalent families of Bell in-
equalities [Pir14]. The violation of a particular Bell inequality is thus a sufficient
condition, but not a necessary one in general. The full list (of finite size) of Bell
inequalities for a specific scenario with a given number of measurement choices
and outcomes x, y, a, b is a valuable resource: any correlations that are nonlocal
necessarily violate at least one of these. Nevertheless, computing this full list for a
specific scenario is in general a hard task and was only done in some specific cases
with low number of measurement choices and outcomes (see [RBG14]).

Linear programming as an alternative to Bell inequalities

An alternative to the use of Bell inequalities for the detection of nonlocality is the
use of linear programming to determine directly whether the correlations belong,
or not, to the local set L in a given set-up [mA, mB, OA, OB]. One searches for a
decomposition of some given correlations P(ab|xy) into the extremal points – or
vertices – of the local set L. There is a finite number of vertices i = 1, 2, ..., V only
since the local set is a polytope. The vertices can be shown to be the ones that can
be written as

Pi
ext(ab|xy) = δa= f i

A(x)δb= f i
B(y)

(2.23)

for some choice of f i
A : {0, 1, ..., mA− 1} → {0, 1, ..., OA− 1} ( f i

B : {0, 1, ..., mB−
1} → {0, 1, ..., OB − 1}), that is a function of the local input x(y) and of the index

i and δa= f i
A(x) =

{
1 if a = f i

A(x)
0 otherwise

(and similarly for δb= f i
B(y)

).

One can interpret expression (2.23) as the fact that the extremal strategies for lo-
cal correlations are the those that come from local deterministic response functions:
the outcome a(b) is a deterministic function of the input x(y) and of the variable
i only. Any other local correlations in that set-up can then be obtained by a proba-
bilistic mixture of these extremal strategies.

If the correlations P(ab|xy) are written under the form of a column vector
~P(ab|xy), one is then interested in solving the problem:

Find ~q ∈ RV
≥0 with

V

∑
i=1

qi = 1

such that ~P(ab|xy) =
V

∑
i=1

qi~Pi
ext(ab|xy)

(2.24)
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If there exists a solution to the linear problem (2.24), then P(ab|xy) ∈ L and if not
P(ab|xy) /∈ L, hence witnessing nonlocality of the correlations P(ab|xy). Prob-
lem (2.24) can be solved by means of linear programming and is an efficient way
to decide whether correlations are local for set-ups [mA, mB, OA, OB] with small
alphabet for the variables x, y, a, b.

On the other hand, the amount of vertices of the local set L grows exponentially
fast with the number of measurement choices and outcomes, rapidly making an ex-
plicit decomposition of the correlations into them intractable.

2.2.4 Quantum measurements: POVM versus projective

Quantum correlations (2.15) in a Bell experiment 2.2.1 are made of two basic in-
gredients: quantum states and local measurements. A measurement is described in
Quantum Theory by a positive-operator valued measure (POVM) Ma ≥ 0 ∀a (for
party A) such that

∑
a

Ma = 1 (2.25)

A restricted class of POVMs that is of particular interest are the measurements
that are said to be projective. Such measurements, in addition to property (2.25),
also satisfy

M2
a = Ma ∀a (2.26)

Interestingly, there are very few examples of situations related to nonlocality in
which using general POVM measurements offers an advantage over projective ones.
Several information tasks, such as obtaining a maximal amount of certified random-
ness from entangled systems, crucially depend on the use of POVM measurements
[Ací+16]. The maximal violation of certain very specific Bell inequalities was also
shown to require the use of POVMs measurements [VB10]. On the other hand,
there is no known quantum entangled state that generates nonlocal correlations only
if general measurements are being performed on it instead of projective ones.

For nonlocality, why are projective measurements almost always as powerful as
general POVM ones? In that view, understanding in which tasks general POVM
measurements outperform the subclass of projective ones is an interesting question
of fundamental interest. We will see that the sequential scenario, where repeated
measurements are being performed on the systems instead of a single one at each
round of the experiment, offer a very natural situation in which one can not work
without general (non-projective) POVM measurements.
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2.2.5 Box world: a device-independent framework

In a Bell experiment 2.2.1, only a minimal modelling of the physical set-up is made.
The objects of interest are the correlations P(ab|xy) generated between the classi-
cal outcomes of distant measurements and not the exact underlying process that lead
to their generation. In that sense, one can picture the two parties as each possess-
ing a black box – representing their measurement device – which they interact with
using a classical variable (the measurement choices x, y) and from which they ob-
serve the generation of another classical variable (the outcomes a, b). Somehow, the
experiment is equivalent to using a classical computer to interact with a quantum
device. One is then interested in drawing conclusions about the quantum devices
based solely on the correlations observed "from the outside" between the classical
variables x, y, a, b. This approach of picturing physical processes as black boxes is
often referred to as the box world.

FIGURE 2.5: In the framework of box world, the two devices of a Bell experiment
are seen as black boxes: no assumption is made about their internal functioning.
One then interacts classically with the two boxes, by feeding each an input and
observing an output from it. By repeating the procedure many times on two distant
boxes, one can draw conclusions about the devices based solely on the generated

correlations P(ab|xy) between them.

Taking such a minimalist approach also offers the advantage of designing infor-
mation protocols that are extremely secure in an adversarial picture. Indeed, rep-
resenting processes as black boxes implies diminishing the number of assumptions
that are made about the set-up, reducing the gap between theory and implementa-
tion. In particular, no assumptions are made regarding the Hilbert space dimension
of the underlying states that are used nor on the nature of the measurement devices.
The protocol’s success is certified by the generation of certain (nonlocal) correla-
tions only and not on how these were generated. This particular framework, based
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on the study of the statistical properties of the experiments, is called the device-
independent framework and is the one that is followed in this thesis.

Nonlocality: a device-independent witness of entanglement

As said, entanglement is a necessary resource for the generation of quantum nonlo-
cal correlations. This can be seen quite simply by noticing that the correlations gen-
erated by performing local measurements on a separable state ρsep = ∑

i
giσ

i
A ⊗ γi

B

(2.11) always give rise to local correlations (2.14)

P(ab|xy) = Tr
(
ρsepMa|x ⊗ Nb|y

)
= Tr

(
∑

i
gi(σ

i
A ⊗ γi

B)(Ma|x ⊗ Nb|y)
)

= ∑
i

giTr
(
σi

A Ma|x
)
Tr
(
γi

BNb|y
)
= ∑

i
giPA(a|x, i)PB(b|y, i) ∈ L

(2.27)

independently of the Hilbert space dimension of the state or the local measurements
M, N that were performed.

In the other direction, this implies that the observation of correlations P(ab|xy) /∈
L is incompatible with the use of separable systems as the resource, hence that the
systems on which the measurements were performed were entangled. The violation
of a Bell inequality, and more generally the observation of Bell nonlocal correla-
tions, thus serves as device-independent witness of entanglement (see also [Bra+13;
Ter00]).

2.2.6 Entanglement versus nonlocality with two parties

The idea behind nonlocality – instantaneous influences at a distance – is already
present in the formalism of Quantum Theory with the possibility for the state de-
scribing joint systems to be entangled. Nevertheless, quantum states are mathe-
matical objects of the theory and not directly observable quantities. What can be
observed are results, i.e. classical variables, of measurements performed on quan-
tum states. In general, it is even possible to think that what we observe arises from
different processes than the ones described by the Quantum Theory. In this thesis, if
not explicitly stated otherwise, it is assumed that Quantum Theory indeed describes
the observed world.

One could think that since quantum states already exhibit a (weaker) form of
non-classicality, then it should be possible to make measurements on such states so
as to exhibit nonlocal correlations between the outcomes of these measurements.
If that were to be true, then entanglement and nonlocality could be understood as
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qualitatively equivalent.

Towards a qualitative equivalence

In the case of bipartite systems in an entangled pure state of any Hilbert space di-
mension (2.3), this qualitative equivalence was shown to hold by Gisin [Gis91].
Indeed, Gisin proved that it is always possible to find local measurements on any
such entangled state to generate nonlocal correlations.

The case of mixed states is much subtler. As was shown by Werner, there exist
mixed entangled states (2.8) that are unable to generate nonlocal correlations when
performing (projective) measurements on them [Wer89]. This result was later ex-
tended to general measurements by Barrett [Bar02]. When the parties make local
measurements on the copies of the state at each round of the experiment, entangle-
ment and nonlocality are thus qualitatively different properties.

The situation gets more interesting when considering larger classes of local op-
erations to be made on the subsystems of systems in an entangled state. Palazuelos
considered (mixed) entangled states that can not generate nonlocal correlations in
the standard Bell experiment – in which measurements are being performed on the
shares of a single copy of the state. Palazuelos then showed that these states can
be super-activated by making joint measurements on the shares of multiple copies
of the state instead. By receiving multiple copies of the state instead of one only
at each round of the experiment, the parties generate nonlocal correlations (see Fig.
2.8).

This result shows that it is in general important to consider all possible local
operations in order to exploit the full potentiality of entangled states to generate
nonlocal correlations.

Another possibility is to make a sequence of measurements, instead of a single
measurement only, on each share of a copy of the state at each round. The sequential
measurement scenario, that also allows one to generate nonlocal correlations from
(mixed) entangled states that are otherwise unable to do so, is the subject of the next
section (see Subsec. 2.2.7).

It is unknown whether there exists a class of local operations on quantum states
such that all entangled states become able to display nonlocal correlations. In this
view, exploring set-ups that go beyond the standard one with single measurements
on each copy of the state is of fundamental importance.
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Towards a quantitative equivalence

Second, at the quantitative level, it is important to understand whether "more" en-
tanglement leads to "more" nonlocality. Tsireslon’ originally showed that the maxi-
mal violation of the CHSH inequality (2.20) crucially requires the use of two-qubit
systems in a maximally entangled state (2.7). It was then expected that the max-
imal violation of any Bell inequality requires maximal entanglement. Neverthe-
less, in [Aci+02], it was shown that some Bell inequalities are maximally violated
only when making measurements on non maximally entangled states. This holds
true even when considering states of arbitrary Hilbert space dimension [LVB11;
VW11]. This anomaly of obtaining more nonlocality from less entangled states not
only appears for the amount of violation of a particular Bell inequality, but also
for other measures of nonlocality such as: the robustness of nonlocality to noise
[Aci+02], losses [Ebe93], statistical strength of Bell tests [AGG05] and the simula-
tion of quantum correlations with nonlocal resources [BGS05]. It is then desirable
to understand if this apparent quantitative inequivalence between entanglement and
nonlocality stems only as an artefact from the employed measure or, on the contrary,
as a more fundamental phenomenon.

In chapter 3, we study anomalies using a natural and operational measure of
nonlocality, defined as the probability that a given state generates nonlocal correla-
tions when random measurements are performed on it.

2.2.7 The sequential measurement scenario

A Bell experiment such as the one described in 2.2.1 suffices to generate nonlo-
cal correlations and, as such, has received most of the attention of researchers so
far. Nevertheless, using bipartite systems, this scenario does not make use of the
full capability of quantum states and local measurements in the sense that: i) only
single copies of the systems are measured at each round of the experiment and ii)
the shares of the systems are measured once by each party at each round. We have
already seen in the previous section that going beyond point i) offers advantages:
some quantum states only exhibit their non-classical behaviour when the shares of
multiple copies of the state are measured jointly. In this section, we focus on the
sequential measurement scenario, in which the parts of a copy of the system are
subjected to multiple measurements at each round of the experiment.

We here consider an intermediate situation where only one party, say B, makes
a sequence of n measurements on its share of the system. Party A makes a sin-
gle measurement in the sequence as in the standard Bell experiment. In the DI
framework, party B is then pictured as possessing multiple measurement devices
Bi, i ∈ 1, 2, ..., n which are seen as black boxes (see Fig. 2.6). Each measurement
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choice (in the sequence) is labelled by yi, i ∈ 1, 2, ..., n and the corresponding out-
comes by bi, i ∈ 1, 2, ..., n. Remember that all variables x, yi and a, bi take their
values within a finite alphabet. By making many rounds of measurements, the par-
ties gather data until they obtain a good estimate of the joint conditional probabilities
P(a~b|x~y) ≡ {P(ab1b2...bn|xy1y2...yn)}x,y1,y2,...,yn .

⇢AB

A

B

a

b1 b2 b3

x

y1 y3y2

⇢AB

Sequential Bell test

Standard Bell test

FIGURE 2.6: In a Bell experiment, at each round of the experiment the shares
of a fresh copy of a quantum system are sent to the two parties. In the standard
scenario, each party makes a single measurement on the share it receives. In the
sequential scenario, party B makes multiple measurements on his share instead.

The sequential assumption: one-way signalling

The sequential measurement scenario takes its essence from the fact that a certain
ordering of the measurements is assumed: measurement Bi happens before mea-
surement Bj for i < j. Note that the freedom of choice assumption 2.2.1 is still
valid: all measurement choices yi of party B are assumed to be independent vari-
ables at each round of the experiment. Even if measurement Bj happens after Bi,
the measurement choice yj is assumed to be independent of the variables yi, bi gen-
erated in its past.

Mathematically, the sequential measurement assumption leads to the notion of
one-way signalling: the outcome bj of measurement Bj can depend on the variables
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xi, bi of measurement Bi i < j. On the other hand, the outcome bi of Bi can not
depend on the variable xj of Bj for i < j or one could send a signal backwards in
time. Correlations P(a~b|x~y) are said to be sequential – or one-way signalling – if

P(bj|~yj~bj−1) ≡ ∑
a,bj+1,bj+2,...,bn

P(a~b|x~y) ∀bj,~yj,~bj−1 and ∀x, yl>j

(2.28)
where we use the notation~bk = b1, b2, ..., bk. Note that we have also assumed stan-
dard no-signalling (2.16) between A and each Bi.

Local correlations in the sequential measurement scenario are a generalisation
of the ones of the standard Bell experiment (2.13) with a single measurement in the
sequence. Such correlations are the ones that can be obtained from classical (hid-
den) variables – or equivalently shared randomness – distributed to A and B (all Bi),
together with communication from Bi to Bj for i < j (see also Fig. 2.7)

P(a~b|x~y) = ∑
λ

qλP(a|xλ)
n

∏
i=1

P(bi|~yi~bi−1λ)

= ∑
λ

qλP(a|xλ)P(b1|y1λ)P(b2|~y2b1λ)...P(bi|~yi~bi−1λ)...P(bn| ~yn~bn−1λ) ∈ Lseq
n

(2.29)

with, again, qλ ≥ 0 ∀λ and ∑
λ

qλ = 1. For n = 1, one recovers the standard defini-

tion of local correlations (2.13). Any correlations that can not be written in the form
(2.29) for any choice of distribution of the variable λ and local response functions
P(a|xλ), P(bi|~yi~bi−1λ) is said to be sequential nonlocal.

The set Lseq
n of local correlations (2.29) in the sequential scenario, for any num-

ber n of measurements in the sequence, also forms a polytope. Note, however, that
due to the growing number of extremal points it is usually extremely difficult to
characterise these local sets with the help of linear programming (see sec. 2.2.3).

Post-measurement states and Kraus operators

The whole point of considering sequences of measurements instead of single ones
resides in the fact that one makes further use of the post-measurement systems as
potential resources. In the standard Bell experiment the systems are, at each round,
measured only once before a new round starts and that a fresh copy of the system
is sent to the parties. There are two main reasons why sequences of measurements
have not attracted much attention so far: a) in a laboratory, a measurement usually
is destructive, i.e. the particle(s) that was measured is not available subsequently; b)
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FIGURE 2.7: A graph of the causal influences in a local theory between the vari-
ables of a sequential Bell experiment. Each input yi can influence, locally, the
outcome bi but also the outcomes generated later bj j > i. Nevertheless, the
inputs are still assumed to be independent variables. Additionally, the outcomes

might be correlated using the the shared classical variable λ.

we have seen that in almost all situations, projective measurements (2.26) perform
just as well as general POVMs (see 2.2.4), it is then often useless to consider these
last ones.

Measurements in Quantum Theory can be represented using the formalism of
Kraus operators, with which it is also possible to represent general POVMs. Never-
theless, Kraus operators additionally allow to compute the state of the post-measurement
system. A measurement N with d outcomes is represented by a set of d matrices
Nb – the Kraus operators

Nb, b = 1, 2, ..., d s.t.
d

∑
b=1

N†
b Nb = 1 (2.30)

that, when performed on a state ρB ∈ B(Hd), give outcome b ∈ 1, 2, ..., d with
probability

p(b|ρB) = Tr
(
ρBN†

b Nb
)

(2.31)

The formalism of POVMs (2.25) is simply obtained by considering each POVM
element Pb = N†

b Nb and projective measurements (2.26) are the ones for which
PbPb = Pb ∀b.
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The formalism of Kraus operators, contrary to the one of POVMs, allows to
compute the state ρ′B(b) after a measurement N for which outcome b was obtained

ρ′B(b) =
NbρBN†

b
p(b|ρB)

(2.32)

The states ρ′B(b) can then be measured another time, thus potentially serving as the
resource again.

Clearly, measurements that are useful to generate multiple nonlocal correlations
in a sequence preserve some entanglement in the system. If the initial system ρAB is
entangled between A and B1, one would like the post-measurement system ρ′AB(b1)
(after B1’s measurement) to be entangled between A and B2 too, at least for one out-
come b1. If the first measurement of B1 destroys all entanglement in the system, then
there is no hope to use it as subsequent resource to generate nonlocal correlations
between A and B2.

Rank one Kraus operators

Nb = α|b〉〈b| ∀b (2.33)

b = 1, 2, ..., d of Hd and α ∈ [−1, 1] destroy all entanglement in any initial state
ρAB = ∑

j
qj|Ψj〉〈Ψj|AB ∈ B(Hd ⊗Hd). The post-measurement state for each out-

come b is thus a convex mixture of separable states. This implies that one should go
beyond rank one Kraus operators, in particular rank one projective measurements,
to retain entanglement in the post-measurement system.

Some results making use of sequences of measurements

Werner showed that there exist some mixed entangled states that are unable to gen-
erate nonlocal correlations when each copy of the system is subjected to a projec-
tive measurement [Wer89]. These states nevertheless generate nonlocal correlations
when performing sequences of (non-projective) measurements on each copy of the
state [Pop95]. This result was later generalised to mixed states that do not exhibit
nonlocal correlations when a single general (POVM) measurement is made on each
copy of the state [Hir+13], but that do with sequences of measurements instead.
This phenomenon of obtaining nonlocality from systems only when sequences of
measurements are being performed on them is called hidden nonlocality.

Until now, it was unknown whether sequences of measurements can provide
with advantages in device-independent information tasks. In some sense, is it pos-
sible to use sequences of measurement to do more than just reveal the nonlocal
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FIGURE 2.8: 1) The standard Bell scenario, where the parties each make a single
measurement on each copy of the system at each round. 2) The sequential scenario,
where one of the parties (B) makes two measurements in a row on his share of
the copy of the system at each round. 3) The multi-copy scenario, where the
parties receive the shares of multiple copies of the system at each round, which
they measure jointly. One can understand scenarios 2) and 3) as ones in which
larger sets of local operations are allowed. Some quantum systems in a entangled

mixed state generate nonlocal correlations only in the scenario 2) or 3).

behaviour of some very specific quantum states?
In chapter 4, we consider the use of sequences of measurements for certifying

randomness.
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2.3 Multipartite entanglement and nonlocality

Resources such as systems in an entangled state naturally come in more complex
configurations than in the simpler bipartite scenario. In the multipartite scenario,
one considers that more than two observers share physical systems in a joint quan-
tum state. The notions of entanglement and non-locality become richer in this sce-
nario [Hor+09; GTB05; Sve87; SS02; Gal+12; Ban+13]. For example, multipartite
systems can be in a genuine multipartite entangled (GME) state, a stronger form of
entanglement where all the particles of a physical system are entangled with each
other, not only subsets of them. Such GME systems – and only them – can generate
strong correlations that can not be reproduced by any local theory, even if additional
non-local resources are available to subsets of the observers [Sve87]. Multipartite
non-local correlations have already been used, for example: to discard causal in-
fluences that spread at a faster than light, but finite speed [Ban]; for randomness
amplification under a minimal set of assumptions [Gal+13; Bou+14]; to detect the
non-local behaviour of ground states of Hamiltonians appearing naturally in con-
densed matter physics [Tur+14]. However, much remains to be explored in this
scenario.

This section introduces the novel notions of entanglement and of nonlocality
that appear when multiple (more than two) parties share systems in an entangled
state. The section follows the lines of the ones on bipartite entanglement 2.1 and
nonlocality 2.2. We start with the basic definitions of multipartite entanglement both
for pure and mixed states and the different approaches for the quantification of the
multipartite extent to which multipartite states can be entangled. Second, we focus
on the novel notions of multipartite nonlocality that appear and how to quantify
and/or reproduce these correlations. Finally, we expose what is known about the
relation between entanglement and nonlocality in the multipartite scenario and the
use of multipartite resources for DI information tasks.

2.3.1 Multipartite entanglement

Physical systems distributed to multiple observers can be in different entangled
quantum states that are richer than the ones of bipartite systems. For example, a
system made of three particles can be in a state in which two of the three parties
A1, A2, A3 only are entangled |Ψ〉A1 A2 A3 = |φ+〉A1 A2 |ψ〉A3 . If such a state clearly
exhibits some entanglement, it is nevertheless lacking some genuinely multipartite
feature since party C does not share entanglement with the other parties. With three
parties, a new hierarchy of multipartite entanglement appears: i) fully separable
states which do not require any form of entanglement; ii) states that require entan-
glement between two of the three parties only and; iii) states which are entangled
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between all three parties. Contrary to the bipartite scenario, multipartite states al-
low for some hybrid form of entanglement where some subsets of parties only are
entangled.

In that spirit, in a set-up with n parties Ar, r = 1, 2, ..., n, a pure state |Ψ〉n ≡
|Ψ〉A1 A2...An ∈ Hd ⊗Hd ⊗ ...⊗Hd is said to be fully separable if

|Ψ〉sep
n = |ψ1〉A1 |ψ2〉A2 ...|ψn〉An (2.34)

and entangled otherwise. Similarly, an n−partite mixed entangled state ρn is fully
separable if it can be written as a convex mixture of fully separable pure states (2.34)

ρsep
n = ∑

i
qi

n⊗
r=1

|ψr,i〉〈ψr,i|Ar

= ∑
i

qi|ψ1,i〉〈ψ1,i|A1 ⊗ |ψ2,i〉〈ψ2,i|A2 ⊗ ...⊗|ψn,i〉〈ψn,i|An

(2.35)

with ∑
i

qi = 1 and qi ≥ 0 ∀i. A state ρn that does not allow for a decomposition

of the form (2.35) for any distribution of the variable i and of choice of local states
|ψr,i〉Ar is said to be entangled.

Multipartite entangled states: m−separability

As said, multipartite states exhibit richer forms of entanglement than in the bipar-
tite set-up. One of the approaches to capture the extent to which subsystems in a
joint quantum state are entangled together is through the notion of m−separability,
which refines the bipartite notion of separability to multipartite states [Hor+09]. An
m−separable pure state |Ψ〉m−sep

n – for a given m ≤ n – is a state which is separable
between (at least) m groups of parties

|Ψ〉m−sep
n =

m⊗
r=1

|ψr〉kr (2.36)

with each state |ψr〉kr being defined on the Hilbert space of a subset kr of the n
parties. The variable k defines a partitioning of the n parties into m pairwise disjoint
and non-empty groups kr, r = 1, 2, ..., m, kr ∩ ks = ∅ ∀r 6= s and such that
m
∑

r=1
|kr| = n.

For example, a four-partite, 3-separable, pure state |Ψ〉3−sep
4 can only be entan-

gled between two parties at most since it be decomposed as |Ψ〉3−sep
4 = |ψ〉As At |ψ〉Au |ψ〉Av
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for some quadruple s, t, u, v. In that case, the partitioning is k1 = {As At}, k2 =
{Au} and k3 = {Av}. An n−partite state that is n−separable is fully separable
(2.34).

The idea is that an n−partite state |Ψ〉n which can be decomposed as (2.36) for
a given m is then less multipartite entangled than another state |Φ〉n which can not.
A special class of states are the ones that do not allow for a decomposition of the
form (2.36) even for m = 2

|Ψ〉n 6= |ψ1〉k1 |ψ2〉k2 (2.37)

for any bipartition of the n parties k1, k2 and any choice of states |ψi〉ki . These states
require entanglement to be present between all the n parties and are called genuine
multipartite entangled.

Similarly to the case of full separability, a mixed state ρ is m−separable if it can
be decomposed as a convex mixture of m−separable pure states (2.36)

ρm−sep
n = ∑

i
qi|Ψi〉〈Ψi|m−sep

n (2.38)

with ∑
i

qi = 1, qi ≥ 0 .

A genuine multipartite entangled mixed state is a state ρn which does not allow
for a decomposition (2.38) even for m = 2

ρn 6= ∑
i

qi|Ψi〉〈Ψi|2−sep
n (2.39)

for any choice of the distribution of the variable q, qi ≤ 0 and ∑
i

qi = 1 and any

2-separable states |Ψi〉2−sep
n (sometimes also termed biseparable).

The operational meaning of m−separability is clear and analogous to the bipar-
tite one: a state ρn that is not m−separable for some m < n can not be prepared
by the n parties gathering into m groups, within which they can perform any (joint)
operations and use classical communication between the groups. A state that is not
m−separable then exhibits entanglement between at least m + 1 groups of parties.
Obviously, a state that is m−separable is also (m− 1)−separable and a state that
is not m−separable is not (m + 1)−separable either.

Quantifying multipartite entanglement: Entanglement depth

The notion of m−separability captures a multipartite aspect of classicality in the
sense that the state is separable across m groups of parties at least. Between these
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groups of parties, entanglement is thus absent and can not be used as resource in
a device-independent task for example. On the other hand, and following this def-
inition, a state with bipartite entanglement between multiple pairs of parties might
be more entangled than a state in which a single group of three parties only are
entangled together. Nevertheless, it is in general difficult to generate entanglement
between an increasing number of parties. Another natural measure of the multipar-
tite extent to which a state is entangled is the minimal number of parties which need
to be entangled together in order to generate the state. The entanglement depth of a
pure states |Ψ〉n captures this aspect of multipartite entanglement [GTB05]. A pure
state having an entanglement depth of m can be decomposed as

|Ψ〉m−depth
n =

⊗
i

|ψi〉ki

if and only if max
|ki |
≥ m

(2.40)

In other words, if one is able to generate entanglement between at most a certain
number m of parties, then one can hope to produce at best multipartite systems with
an entanglement depth of m.

Similarly, a mixed entangled state ρm−depth
n with an entanglement depth of m

can be decomposed as a convex mixture of pure states of entanglement depth m

ρm−depth
n = ∑

i
qi|Ψi〉〈Ψi|m−depth

n (2.41)

for some distribution of i, ∑
i

qi = 1, qi ≥ 0 and some states |Ψi〉m−depth
n .

In that spirit, a fully separable state ρn (2.35) has an entanglement depth of
m = 1 and a genuine multipartite entangled state (2.37) of m = n, i.e. requires all
parties to be entangled together.

2.3.2 Multipartite nonlocality

Similarly to entanglement, many novel features appear exclusive to the multipartite
scenario when generating nonlocal correlations between multiple observers instead
of two. For example, and contrary to the bipartite scenario, some Bell inequalities
in the multipartite scenario can be saturated by quantum correlations, enabling full
randomness amplification under minimal assumptions [Gal+13; Bou+14]. It was
also found that an information principle, if any, that singles out quantum correlations
necessarily involves multipartite considerations [Fri+13].
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A multipartite Bell experiment

In a multipartite Bell experiment, n > 2 parties make rounds of measurements
on the copies of a multipartite quantum system. Each party Ai i = 1, 2, ..., n, at
each round of the experiment, chooses to make a measurement labelled by xi ∈
{0, 1, ..., mAi − 1} on the share of the system it receives. It then obtains an out-
comes ai ∈ {0, 1, ..., OAi − 1} from that measurement. In this thesis, the num-
ber of measurement choices and outcomes of all parties are taken to be dichoto-
mous xi, ai ∈ {0, 1} if not explicitly stated otherwise. Making many rounds of
measurements serves to compute a good estimate of the correlations P(~an|~xn) ≡
P(a1a2...an|x1x2...xn). In the DI picture, one is interested in drawing conclusions
about the underlying processes generating the correlations from the statistical prop-
erties of the correlations only.

The definitions of multipartite nonlocality

The notions and definitions of multipartite nonlocality basically follow the same
constructions as for entanglement, up to interesting peculiarities.

In analogy to fully separable states, fully local correlations Ploc(~an|~xn) are the
ones that factorise with respect to all parties on the additional knowledge of a clas-
sical variable λ

Ploc(~an|~xn) = ∑
λ

qλ

n

∏
i=1

P(ai|xi, λ)

= ∑
λ

qλP(a1|x1, λ)P(a2|x2, λ)...P(an|xn, λ)
(2.42)

∑
λ

qλ = 1 and qλ ≥ 0 ∀λ. The set of all fully local correlations Ln (2.42) form a

polytope which can equivalently be described by a finite set of inequalities that are
satisfied by all correlations belonging to the set – which then serve as Bell inequal-
ities in the multipartite scenario.

Fully local correlations (2.42) can be understood as those which can be gen-
erated by all the parties using shared randomness λ only (that is generated before
the parties make their measurement choices xi). Equivalently, and in analogy to bi-
partite nonlocality, fully local correlations can be understood as those coming from
local measurements made on fully separable state (2.35) since
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Tr
(

Ma1|x1
⊗Ma2|x2

⊗ ...⊗Man|xn ρsep
n
)

= ∑
i

qiTr
(

Ma1|x1
⊗Ma2|x2

⊗ ...⊗Man|xn |ψi〉〈ψi|A1 ⊗ |ψi〉〈ψi|A2 ⊗ ...⊗ |ψi〉〈ψi|An

)
= ∑

i
qiTr

(
Ma1|x1

|ψi〉〈ψi|A1

)
Tr
(

Ma2|x2
|ψi〉〈ψi|A2

)
...Tr

(
Man|xn |ψi〉〈ψi|An

)
= ∑

i
qiP(a1|x1, i)P(a2|x2, i)...P(an|xn, i) ∈ Ln

(2.43)

In particular, (2.43) implies that any correlations that are not fully local (2.42) can
not have been generated from local measurements on a fully separable state. The
violation of a Bell inequality defining the set Ln thus serves as a device-independent
witness of entanglement – or non full separability (2.35) – of the state.

As for entanglement, multipartite correlations can exhibit stronger form of non-
locality characteristic of the multipartite scenario. Indeed, nonlocal correlations can
be generated in an n−party scenario by two parties only sharing entangled states on
which they make suitable measurements. Such correlations, even if nonlocal, do not
capture the essence of multipartite nonlocality as the nonlocality is in effect bipar-
tite. In analogy with the definition of m−separability (2.38) and of entanglement
depth (2.41), one can quantify the multipartite extent of nonlocal correlations with
notions such as m−way locality and correlations depth.

The multipartite extent of correlations: m-way (non)locality

The idea of m−separability for systems in an entangled state can be generalised
to capture the multipartite extent of correlations. The first to introduce, indirectly,
the notion of m−way locality was Svetlichny[Sve87; SS02]10. In the spirit of his
work, extremal correlations Pext

m-way(~an|~xn) are said to be m−way local if they can
be decomposed into a product of m groups of parties

Pext
m-way(~an|~xn) =

m

∏
r=1

P(~akr |~xkr) (2.44)

with, as for multipartite entanglement, a partitioning of the n parties labelled by the

variable k: kr, r = 1, 2, ..., m,
m
∑

r=1
|kr| = n and ks ∩ kt = ∅ ∀s 6= t. We also used

the notation~akr = {ai|i ∈ kr}. The terms P(~akr |~xkr) in (2.44) of the parties inside
a group kr are, in Sveltichny’s definition, allowed to be arbitrary (i.e. normalised

10We use the name m−way (non)locality that was introduced in [Ban+13; Ban+09].
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and positive only) outcome distributions of the |kr| parties in the group kr.

General, i.e. not necessarily extremal, correlations that are m−way local can be
decomposed as convex mixture of extremal, m−way local correlations (2.44)

Pm-way(~an|~xn) = ∑
λ

qλPext
m-way(~an|~xn, λ) (2.45)

for some distribution of the variable λ, ∑
λ

qλ = 1 and qλ ≥ 0 ∀λ. A decompo-

sition that does not allow for a decomposition (2.45) for a given m is said to be
m−way nonlocal. In particular, there are strong nonlocal correlations that can not
be decomposed as (2.45) even for m = 2

P(~an|~xn) 6= ∑
λ

qλPext
2-way(~an|~xn, λ) (2.46)

for any choice of distribution qλ, qλ ≥ 0 and ∑
λ

qλ = 1. Correlations (2.46) are said

to be genuine multipartite nonlocal as nonlocality is somehow "everywhere". In
that sense, such genuinely multipartite nonlocal correlations requires all the parties
to group together m = 1 and |k1| = n in order to (re)produce the correlations.
Remark that if m = 1, any probability distribution P(~an|~xn) can be decomposed as
(2.45).

Interestingly, it is possible to make local measurements on systems in a genuine
multipartite entangled state (2.39) such that the generated correlations are genuine
multipartite nonlocal (2.46) for any number n of parties [Ban+09; Ban+11]. In the
other direction, the generation of m−way nonlocal correlations (2.45) serves as DI
witness of non m−separability (2.38) – i.e. of entanglement between m + 1 groups
– in the underlying systems that were used.

It was shown in [Gal+12] that the definition of m−local correlations (2.45) in
the sense of Svetlichny – i.e. where the terms P(~akr |~xkr) are unconstrained (yet nor-
malised) probabilities – does not allow for an operational meaning. To avoid oper-
ational problems, one can constrain further the terms P(~akr |~xkr) to be no-signalling
(see 2.2.2).

An operational meaning of multipartite correlations: no-signalling resources
within subsets of parties

Following the ideas introduced and developed in [Gal+12] and in [Ban+13], one
can define a hierarchy of multipartite correlation by constraining the correlations
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P(~akr |~xkr) that are allowed between the parties within a group kr of parties

Pm-way(~an|~xn) = ∑
λ

qλPext
m-way(~an|~xn, λ)

where Pext
m-way(~an|~xn, λ) =

m

∏
r=1

P(~akr |~xkr , λ)
(2.47)

• m−way quantum correlations.– can be decomposed as in (2.47) by the n
parties grouping into m groups and where entanglement is allowed within the
groups only

P(~akr |~xkr , λ) = Tr
(
ρλ

kr

⊗
i∈kr

Mai |xi ,λ
)

(2.48)

i.e. all the correlations that can be generated from local measurements on
m−separable states. For a given m, the set Qm−way of all m−way quantum
correlations is a convex set. Quantum correlations P(ab|xy) /∈ Qm−way must
have been generated using states that are not m−separable, hence witnessing
m + 1 multipartite entanglement in a DI manner.

• m−way no-signalling correlations.– can be decomposed as (2.47) where
each term P(~akr |~xkr , λ) is restricted by the no-signalling principle (see 2.2.2)
only between the |kr| parties

P(ai|xi, λ) ≡ ∑
aj

j∈kr ,j 6=i

P(~akr |~xkr , λ) ∀kr, i ∈ kr, ai,~xkr , λ (2.49)

On the other hand, two parties that do not belong to the same group can
be correlated using the shared randomness λ only. m−way no-signalling
correlations are thus the ones that can be generated by the n parties making
m groups, within which the parties can share post-quantum but nevertheless
no-signalling resources.

For any m ≤ n, the set of m−way no-signalling correlations NSm−way
that can be generated is a polytope. Since quantum correlations satisfy the
no-signalling principle, one gets that for any given n, m ≤ n: Qm−way ⊆
NSm−way. Hence,

P(ab|xy) /∈ NSm−way ⇒ P(ab|xy) /∈ Qm−way (2.50)

which also enables one to witness m+ 1 entanglement in a DI manner P(ab|xy) /∈
Qm−way and using linear programming only.

In this work, to avoid operational problems in the definitions of multipartite
nonlocality, we will work with the no-signalling (NS) definition described above
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(2.3.2). Correlations P(~an|~xn) /∈ NSm−way are then said to be m− way nonlocal.
Note that since NSm−way ⊆ Sm−way, witnessing m− way Sveltichny nonlocality
serves to witness m− way nonlocality

P(~an|~xn) /∈ Sm−way ⇒ P(ab|xy) /∈ NSm−way (2.51)

This last fact (2.51) proves useful since it is easy to compute the extremal points
of the polytope Sm−way, but hard to get the ones of NSm−way in general. This
makes the condition P(~an|~xn) /∈ Sm−way often easier to check that P(~an|~xn) /∈
NSm−way.

All the sets Rm−way, R ∈ {Q,NS ,S} (Qm−way ⊆ NSm−way ⊆ Sm−way)
can be understood, from a resource-theoretic point of view, as disjoint groups of
parties having access to a given type of nonlocal resource in order to generate corre-
lations. In all cases, parties that do not belong to the same groups are only correlated
classically, imposing additional limitations on the possible correlations that can be
generated.

Correlation depth and minimal group size

The study of m−way locality has been very fruitful, in particular to characterise
genuine multipartite nonlocality and thus witness genuine multipartite entangle-
ment in a DI manner (using m = 2) [Sve87; Ban+12; Aol+12; Gal+12; Ban+13;
Col+02b; JLM05; Ban+11; Che+11]. Nevertheless, in general it is difficult to gen-
erate systems that are entangled between a large number of parties and easier to gen-
erate many systems that are only entangled between fewer parties. In that sense, it is
often not the number of groups that can be made, but rather the size of these groups
– and thus of the system in an entangled state – that is needed that should serve
as figure of merit. If one can generate entanglement between a given number m of
parties, it is then interesting to understand what correlations can be (re)produced by
using these nonlocal resources. If an information protocol requires the generation
of a specific type of correlations, what is the minimal size of the resource that is
needed in order to generate these correlations?

In chapter 6, we study these questions and quantify, for a resourceR ∈ {Q,NS ,S},
the minimal amount of parties that need to group together in order to (re)produce
given correlations. To this end, we develop a framework that generalises the concept
of entanglement depth to correlations.
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Multipartite entanglement versus multipartite nonlocality

Analogously to the bipartite set-up, understanding the relation between multipar-
tite entanglement and nonlocality is a topic of fundamental interest in the field of
Quantum Information Theory. Nevertheless, we have seen that the notions of en-
tanglement and of nonlocality become richer in the multipartite scenario: i) parties
can be entangled/nonlocal between subsets of parties only and ii) the definitions of
multipartite nonlocality crucially depend on what nonlocal resources are allowed
within the subsets (or groups) of parties. In this light, there are many questions of
interest and numerous directions to explore in the multipartite scenario.

All multipartite systems in a pure entangled state were shown to be able to
generate nonlocal correlations [PR92; GG16]. More precisely, all states that are
not fully separable (2.34) can generate non fully local correlations (2.42) for any
number of parties. On the other hand, these results have the caveat of not capturing
the notions of multipartite entanglement and nonlocality as these are essentially
bipartite.

For pure states only, it is still unknown whether all genuine multipartite en-
tangled (GME) states are able to generate genuine multipartite nonlocal (GMNL)
correlations. Only in the case of three parties was the question answered affirma-
tively in [Che+14; Che+04]. Nevertheless, witnessing nonlocality in these works
requires Hardy-type paradoxes [Har93], making it untestable in an experiment. For
any number of parties n, the equivalence between GME and GMNL for pure states
is yet to be proven.

For mixed states, the situation is analogous to the bipartite case. Some GME
states (2.39) were shown to be unable to generate GMNL correlations (2.47) for
all n [Aug+15]. This implies that GME and GMNL are qualitatively inequivalent.
There even exist GME mixed states that were shown to be able to generate fully
local correlations (2.42) only [Bow+16], strengthening the previous result.

More generally, it would be even more interesting to understand better the exact
link between states that are not m−separable (2.36, 2.38) and the generation of cor-
relations that are m−way nonlocal (2.47), both for pure and mixed states. Similarly,
another direction to explore is the link between entanglement depth and correlations
depth.

In chapter 5, we focus on understanding better the relation between GME pure
states and GMNL correlations. We then also extend our study and results further to
the relation between m−separable states and m−way nonlocal correlations.
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Understanding the relation between entanglement and nonlocality, both in the
bipartite and in the multipartite set-up, can be seen as a task of purely fundamental
interest. On the other hand, some DI information tasks can be performed only when
designing protocols making use of multipartite resources [Gal+13; Ban; Bou+14;
Tur+14]. One of these tasks is full randomness amplification, in which one allows
the initial source of randomness to be arbitrarily, yet not completely, correlated to
an adversary. This task requires the generation of correlations that algebraically
saturate a Bell inequality, which can not be achieved in the bipartite set-up. The
maximal violation of, for example, the Mermin inequality with three parties n = 3
allows one to achieve full randomness amplification [Gal+13; Bou+14]. This result
is even valid against an adversary that is not limited by the laws of Quantum Theory,
but that is only unable to signal faster than light.

In chapter 7, we study multipartite nonlocal correlations and their use in DI
information tasks such as quantum key distribution (DIQKD) or secret sharing.
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2.4 Entanglement and nonlocality: resources for device-
independent information tasks

Despite their fundamental nature, the study of nonlocal correlations – and thus in-
directly of entangled systems – has lead to very fruitful advances in our information
processing capabilities (see [Bru+14]). The violation of a Bell inequality can always
be understood as a particular information task in which quantum resources outper-
form classical ones. Usually, the nonlocal properties of the correlations serve as
certificate that the processes in the experiment truly make use of quantum states and
measurements, guaranteeing that the outcomes indeed exhibit some desired prop-
erty – that they are truly random for example.

As explained in section 2.2.5, the observation of nonlocal correlations only re-
quires minimal assumptions to be made about physical set-up, allowing to draw
conclusions in a device-independent (DI) manner. For that reason, the implementa-
tion of an information protocol in the DI framework reaches unprecedented levels
of security in an adversarial picture, since the gap between theory and experiment is
made smaller. The price for obtaining such level of security is that the correlations
that need to be generated are typically more demanding experimentally than in a
framework in which one relies on more assumptions, such as a faithful description
of the measurement devices.

This section introduces two important information tasks based on nonlocal cor-
relations between distant observers. The first one, on which we give a particular
focus in this thesis, is devoted to randomness certification. The provably secure
distribution of secret keys – device-independent quantum key distribution (DIQKD)
is the subject of the second part of this section.

2.4.1 Information tasks in an adversarial picture

Before describing randomness certification and DIQKD in more details, it is useful
to understand in which framework the security of these tasks is asserted. Two hon-
est parties, A and B, perform a Bell experiment 2.2.1 in the DI framework. They
thus rely only on the generated statistics Pobs(ab|xy) and on the minimal assump-
tions described in 2.2.1 to draw conclusions. The two parties do not want to rely on
any assumption regarding the functioning of their devices – which they see as black
boxes – and the success of the information task should be independent of the actual
implementation generating the observed statistics.
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In addition to the two trusted parties, the experiment is pictured as being per-
formed in the presence of a third and malicious party E that compromises the se-
curity of the protocol. The objective of the adversary E is to break the security of
the protocol that the two parties wish to perform without being detected. To this
end, E shares, at each round of the experiment, a tripartite state ρABE of which
ρAB = TrE(ρABE) is used to generate the statistics observed between the two hon-
est parties (see Fig. 2.9). This implies that E might share entanglement – and thus
be strongly correlated – with parties A and B. Moreover, A and B do not make any
assumption about the functioning of their measurement devices or the distributed
states. These might even be – in the worse case scenario – plotting against them
in the adversary’s advantage. In that sense, the states that are prepared and the
measurements that are being made on these can be understood as being the optimal
ones for the adversary’s cause. Nevertheless, these need to be compatible with the
observed statistics or the adversary’s presence would be detected and the protocol
aborted. Crucially, the constrain on E to reproduce the observed correlations, in
addition to the assumption that are made in a Bell experiment, are sufficient to put
bounds on the adversary’s capabilities in attacking the security of the tasks.

FIGURE 2.9: In the adversarial picture, the Bell experiment between A and B is
imagined as being performed in the presence of a third and malicious party E. This
adversary is modelled in a very abstract, minimalistic, way. In particular, it may
prepare the joint state ρABE of which ρAB = TrE(ρABE) is used to generate the
observed correlations Pobs(ab|xy) and thus be correlated to A and B. If one can
certify that such an adversary can not compromise the security of the task, then the

task is cryptographically secure.
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For the sake of clarity, one can find in table 2.1 a comparison of what are the
premises the honest parties A and B can rely on for the security proofs and compare
them with the adversary E’s capabilities.

Parties A and B Adversary E

Can rely on the fact that the
experiment respects the assumptions

made during a Bell test, see 2.2.1.

Can design the state and measurements
that are used by A and B during the
experiment, without violating the

assumptions of a Bell test.

Can rely on the observed correlations
Pobs(ab|xy).

Can use on a finer description of the
observed correlations

Pobs(ab|xy) = ∑
e

qeP(ab|xye).

Can rely on the assumption that the
experiment is shielded from the

outside: the outcomes a, b are obtained
by the parties and are not

communicated to the adversary after
their generation.

Respects the laws of Quantum
Mechanics, i.e. P(ab|xye)P(e) =
TrABE

(
ρABE Ma|x ⊗ Nb|y ⊗ Ee

)
,

where ρABE is a valid quantum state
and Ma|x, Nb|y and Ee valid quantum

measurements (2.2.4) for all e.

TABLE 2.1

Remark that one assumption was added to the ones made in a Bell experiment:
the shielding assumption. This assumption refers to the fact that the outcomes (a, b
in the case of a Bell experiment) of the devices should not be communicated to the
adversary after their generation and each is known only to the party that observes it.

2.4.2 Randomness certification

The concept of randomness has always attracted a lot of attention and has been at
the centre of many fields of research ranging from philosophy and mathematics to
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evolutionary biology. The generation of good random numbers is of paramount im-
portance for tasks such as quantum cryptography, but also for numerical simulations
when using the Monte-Carlo technique for example.

In any experiment, two types of randomness coexist: i) the apparent one, that
stems from a lack of control or knowledge about the underlying processes and ii)
the intrinsic one, that can not be removed even with perfect control over the initial
conditions or over the processes. Classical theory is intrinsically deterministic and,
as such, only allows for the first type of randomness. With perfect knowledge of the
initial conditions one can in principle predict the outcome of any physical process.

Quantum Theory is intrinsically random. Even if one knows all variables of a
physical set-up, in general the two types of randomness coexist in an experiment
making use of quantum objects.

In this thesis, the notion of randomness we focus on is the cryptographic one:
a random number is a number that is private and unpredictable by the hypothetical
adversary we modelled in section 2.4.1. Such random numbers necessarily stem
from intrinsically random processes.

A random number is unpredictable and private

As said, two notions are crucial to the concept of a random number we are inter-
ested in: its unpredictability and its privacy. To illustrate why these two notions are
important, consider the situation where one uses a first random number generator
(RNG) to obtain a list of random numbers. This list is then put inside a second
device that, then, outputs the numbers on the list. Now, suppose that the first RNG
is truly built on a random process, i.e. the numbers it outputs are random numbers
when they are generated. Nevertheless, their presence on the list makes them pre-
dictable at the exit of the second RNG to an adversary having made a copy of that
list.

Moreover, suppose that one makes a projective measurement on one of the parts
of a system in a maximally entangled two-qubits state |Φ+〉AB = 1√

2
(|00〉+ |11〉)

(2.7). Quantum Theory predicts that the two outcomes of this measurement occur
with probability half, i.e. are completely unpredictable. One could thus be tempted
in using these outcomes as random numbers. Nevertheless, an adversary E that
makes measurements on the other share of the system can in general obtain an out-
come that is correlated to the one obtained from the other share. If the outcomes of
such measurements can be considered as coming from a truly unpredictable process,
they are nevertheless correlated to each other, i.e. the adversary has at least partial
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knowledge of it. Public randomness, random numbers made accessible to everyone,
is another example of randomness that is not cryptographically secure.

The outcomes of measurements whose statistics violate a Bell inequality can
be proven to be both private and coming from a truly unpredictable process, over-
coming the potential problems mentioned in the two previous examples. Relying on
minimal assumptions about the set-up, device-independent randomness certification
is the only way known today to generate such random numbers.

The guessing probability

A way to quantify the randomness, or unpredictability, of the outcomes generated in
a Bell experiment is through guessing probabilities. The observed guessing proba-
bility corresponds to the probability to guess correctly the outcome pair a, b, given
only the observed correlations Pobs(ab|xy). For some particular choices of mea-
surement settings x = x̄, y = ȳ, it is

Gobs(x̄, ȳ, Pobs(ab|xy)) = max
ab

Pobs(ab|x̄ȳ) (2.52)

This predictability of the outcomes, based on Pobs(ab|xy) only, is the one of parties
A and B.

In the adversarial picture we have described, the adversary may possess a finer
description of the observed correlations Pobs(ab|xy) = ∑

e
qeP(ab|xye). This, in

general, implies that it also has greater predictive power of the outcomes. In or-
der to obtain quantitative bounds on the adversary’s predictive power, one defines
the device-independent guessing probability of the outcomes a, b of given observed
correlations Pobs(ab|xy) by

G(x̄, ȳ, Pobs(ab|xy)) = max
qe,P(ab|xye)
→Pobs(ab|xy)

∑
e

qeGobs(x̄, ȳ, P(ab|xye))
(2.53)

where the maximisation means that the adversary can choose the optimal realisation
of Pobs(ab|xy) = ∑

e
qeP(ab|xye). Moreover, we assume that the adversary respects

the laws of Quantum Theory, i.e. that

P(ab|xye) = Tr
(

Me
a|x ⊗ Ne

b|y|ψe〉〈ψe|AB
)

(2.54)

where Me
a|x, Ne

b|y are valid quantum measurements and |ψe〉AB valid states for all e.
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The operational meaning of the guessing probability (2.53) is clear: the adver-
sary has access to the optimal decomposition of the observed correlations in ex-
tremal realisations Pobs(ab|xy) = ∑

e
qeP(ab|xye) and guesses the most likely out-

comes for each of the extremal realisations max
ab

P(ab|x̄ȳe)). This guessing proba-

bility (2.53) clearly gives an upper bound on the predictive power of the adversary,
hence allowing for the certification of randomness as long as G(x̄, ȳ, Pobs(ab|xy)) <
1.

The amount of randomness, measured in bits r, that can be certified in a Bell
experiment is then quantified through the min entropy

r = H∞(x̄, ȳ, Pobs(ab|xy)) = − log2(G(x̄, ȳ, Pobs(ab|xy))) (2.55)

A guessing probability G(x̄, ȳ, Pobs(ab|xy)) = ( 1
2 )

r allowing to certify the genera-
tion of r random bits.

Extremal correlations Pext
obs(ab|xy) – correlations that do not allow for different

decompositions – are of particular interest for the task of randomness certification.
Indeed, for these there is a unique e = ē such that qē = 1 in Pext

obs(ab|xy) =

∑
e

qeP(ab|xye) and the optimisation problem in (2.53) simplifies to

G(x̄, ȳ, Pext
obs(ab|xy)) = Gobs(x̄, ȳ, Pext

obs(ab|xy)) = max
ab

Pext
obs(ab|xy) (2.56)

i.e. the observed guessing probability of the honest parties and the DI guessing
probability of the adversary E coincide for extremal correlations.

Bell nonlocality as witness of randomness

The outcomes generated in a Bell experiment can be certified to be at least par-
tially random given that the observed correlations violate a Bell inequality. For this,
one does not need to assume that the correlations are generated through quantum
processes, but only that these respect the no-signalling principle [CR12] (see sec.
2.2.2). Quantum correlations are only a particular case since they satisfy the prin-
ciple. Interestingly, one does thus not need to assume that the world is described
by the laws of quantum mechanics in order to be able to generate randomness. As-
suming that the correlations respect the no-signalling principle is sufficient for that
purpose.

On the other hand, it seems that Quantum Theory is somehow optimal – as
compared to post-quantum but no-signalling theories for example – in order to gen-
erate certified random number [Tor+15]: in any scenario, one can in principle find
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quantum correlations from which all the outcomes are certified to be random. On
the contrary, in a no-signalling theory one of the outcomes can always be predicted
once the other outcomes are known. This puts limitations on the amount of random-
ness generated in a Bell experiment in such a theory, unlike in Quantum Theory.

The optimisation problem (2.53) to obtain bounds on the predictive power of
E can be relaxed into the one where, instead of demanding to the adversary to re-
produce the full observed statistics Pobs(ab|xy), one asks only that a particular Bell
inequality violation

IL
(

Pobs(ab|xy)
)
= ∑

x,y,a,b
hx,y

a,b Pobs(ab|xy) = Bobs (2.57)

is reproduced:

G(x̄, ȳ, Pobs(ab|xy)) = max
qe,P(ab|xye)
→∑

e
qeBe=Bobs

∑
e

qeGobs(x̄, ȳ, P(ab|xye))
(2.58)

where Be = IL
(

P(ab|xye)
)
. The result of the optimisation problem (2.58) is an up-

per bound on the one of (2.53), as the constraints on the adversary are being relaxed.
Crucially, in many cases this relaxed problem is sufficient to obtain non trivial upper
bounds on the guessing power of the adversary and thus to certify the generation of
random numbers.

For the generation of randomness using the outcomes of a Bell experiment, the
rounds of measurements on the systems are divided into two sets: i) rounds that
serve to build the statistics Pobs(ab|xy) violating a Bell inequality, their number de-
pends on the quality of the estimate one desires to obtain; and ii) rounds in which
the outcomes serve to generate randomness. The rounds i) serve to certify proper-
ties of the set-up through the study of the generated statistics, often by observing
a given Bell inequality violation. In some sense a given portion of the statistics is
sacrificed to obtain the guarantee that the outcomes from the rest of the rounds can
indeed be used to generate random numbers.

Local randomness in a Bell test

Randomness certification is usually performed as a single user task, i.e. the two
boxes performing the Bell test are held by a single observer. In this case, the two
outcomes can be used as random numbers. Nevertheless, in a cryptographic set-
up the user might have access to one of the outcomes of the Bell experiment only.
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Instead of using both outcomes a, b at a round of the experiment to generate ran-
domness, one can disregard one of them and focus on generating randomness from
the other outcome only – from b for example. Outcome a is still crucial to compute
the observed correlations, but is not used as random number. In this case, the goal
is to certify that the adversary E can not predict the outcome b, which is quantified
through the local DI guessing probability

G(ȳ, Pobs(ab|xy)) = max
qe,P(ab|xye)
→Pobs(ab|xy)

∑
e

qeGobs(ȳ, P(ab|xye))

= max
qe,P(ab|xye)
→Pobs(ab|xy)

∑
e

qe max
b

PB(b|ȳe)
(2.59)

where PB(b|ȳe) = ∑
a

P(ab|xȳe) ∀x, e is the marginal of party B for each extremal

distribution.

Again, one can relax the problem into the one where the adversary is only re-
quired to reproduce a particular Bell inequality violation

G(ȳ, Pobs(ab|xy)) = max
qe,P(ab|xye)
→∑

e
qeBe=Bobs

∑
e

qeGobs(ȳ, P(ab|xye))
(2.60)

where Be = IL
(

P(ab|xye)
)

and ∑
e

qeBe = IL
(

Pobs(ab|xy)
)
.

In both cases (2.59) and (2.60), the amount of randomness that is generated at
each round of the experiment is quantified through the min entropy

r = H∞(ȳ, Pobs(ab|xy)) = − log2(G(ȳ, Pobs(ab|xy))) (2.61)

Randomness versus entanglement and nonlocality

We have seen that a necessary and sufficient condition to certify randomness in the
outcomes of a Bell experiment is that the generated correlations Pobs(ab|xy) violate
a Bell inequality. In that sense, randomness and nonlocality are qualitatively equiv-
alent. As entanglement is necessary for the generation of nonlocal correlations, it is
in turn necessary – but not sufficient – for the generation of random outcomes.

At the quantitative level, the exact relation between entanglement, nonlocality
and randomness is more intricate. In the simplest [2, 2, 2, 2] Bell scenario (with
two dichotomic choices of two-outcome measurements), it is known that one can
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use almost separable states and still be able to generate perfectly random bits lo-
cally. This means that G(ȳ, Pobs(ab|xy)) = 1

2 (2.59) or r = 1 at each round used
for the generation of randomness. Entanglement and randomness are thus quan-
titatively inequivalent in that sense, since weak entanglement suffices to generate
perfect randomness. What is more, generating observed correlations Pobs(ab|xy)
that lie arbitrarily close to the set of local correlations – whose correlations have
predictable outcomes – can be used to generate perfect randomness. Entanglement,
nonlocality and randomness are thus quantitatively inequivalent.

Interestingly, it is known that correlations generated from measurements on two-
qudit systems (in Hd ⊗Hd (2.3)) in a pure state can be simulated by using local
measurement with at most OA = OB = d2 outcomes each [DPP05]. In that light,
the worse case scenario for the adversary E is to have to reproduce the observed
correlations using measurements with d2 outcomes locally. This, in turn, limits to
r = − log2(

1
d2 ) = 2 log(d) bits the randomness that can be generated from a qudit

system at each round. By combining the two local outcomes a, b, there is thus a
fundamental bound of r = 4 log(d) which can be obtained from each two-qudit
state at each round used for randomness generation when single measurements are
being performed on each copy of the state. In the particular case of systems of two
qubits, one can generate at most 4log2(2) = 4 bits of randomness at each round
used for randomness generation. For two-qubit systems in a maximally entangled
pure state only, it was shown how to certify the maximal amount of 2 local random
bits in [Ací+16].

These results raise the question of whether there exist fundamental bounds on
the amount of randomness that can be generated from quantum systems.

In chapter 4, this is the question we consider and use sequences of measurements
on the systems at each round of the experiment. This allows us to explore further
the limitations on the amount of randomness that can be certified from quantum
systems. We show that an unbounded amount of randomness can be certified from
quantum systems by performing sequences of measurements.

2.4.3 Device-independent quantum key distribution

The second information task that we focus on is the one of distributing secret keys
to distant observers. This task can be achieved in a provably secure way only when
using quantum resources [BB84; Eke91]. The generated secret keys can then be
used to secure the communication of a message between parties – called quantum
cryptography. In reality, secure communication between parties can be achieved
classically, given that they share a key that has the same size as the message they
wish to encrypt, through a procedure called one-time pad. The only missing element
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in order to establish secure communication using classical resources is the gener-
ation of secret keys between the parties. This is (yet) doable securely only when
using quantum systems. Moreover, one can also perform device-independent quan-
tum key distribution (DIQKD) from the outcomes of measurements whose statistics
violate a Bell inequality.

The task of producing secret keys can be understood as two parties generating
random outcomes a, b – i.e. certify that these are uncorrelated to an hypothetical
adversary E – that are nevertheless correlated between each other, a = b for ex-
ample. The correlated and random outcomes then serve as key, which can be used
to encrypt the message. Performing DIQKD allows one to design protocols whose
security is maximal. The actual implementation generating the observed statistics
is of no importance, but crucially requires the generation of nonlocal correlations.
The secret keys are thus built from the outcomes of a Bell experiment whose ob-
served correlations violate a Bell inequality, as proposed in [Ací+07] and based on
the ideas in the previous works [MY98] and [BHK05]. General security proofs for
these protocols were later obtained in [VV14; MS16; AF+18].

As for randomness certification, a portion of the rounds of the experiment serves
to build an estimate of the behaviours of the devices through the observed correla-
tions Pobs(ab|xy). From a good estimate Pobs(ab|xy) violating a Bell inequality,
one then obtains a certificate of security for the rounds that serve for the generation
of the secret key.

DIQKD: the CHSH inequality and the maximally entangled state

In this thesis, we are not interested in building a protocol implementing DIQKD
that would have, for example, a certain resistance to noise or imperfections. In that
sense, we study only perfect implementations with maximal violation of a Bell in-
equality in order to draw theoretical conclusions about the fundamental aspect of
DIQKD from the Quantum Information Theory perspective. With that particular
aim in mind, we describe DIQKD through the particular case of the maximal viola-
tion of the CHSH inequality.
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By performing measurements on a maximally entangled system of two qubits
|Φ+〉AB = 1√

2
(|00〉+ |11〉) (2.7)

Pobs(ab|xy) = Tr
(

Ma|x ⊗ Nb|y|Φ+〉〈Φ+|AB
)

Ma|0 =
1
2
(1+ (−1)aσZ) ; Nb|0 =

1
2
(1+ (−1)b σZ + σX√

2
)

Ma|1 =
1
2
(1+ (−1)aσX) ; Nb|1 =

1
2
(1+ (−1)b σZ − σX√

2
)

(2.62)

one obtains the maximal value ICHSH
(

Pobs(ab|xy)
)
= 2
√

2 > 2, implying that
P(ab|xy) /∈ L is nonlocal. In particular, Pobs(ab|xy) is also extremal and the local
outcome a for x = 0 defines a perfect random bit

G(x̄ = 0, Pobs(ab|xy)) = Gobs(x̄ = 0, Pobs(ab|xy))

= max
a ∑

b
Pobs(ab|x̄y) =

1
2

(2.63)

Now, party B can in addition make a projective Nb|y=2 = 1
2 (1+ (−1)bσZ) mea-

surement on his share the maximally entangled system |Φ+〉AB, obtaining b = a

Pobs(a = b|02) = 1 (2.64)

i.e. they share two correlated but yet random bits a = b that serve to build the secret
key.

2.5 End of the background

We have now finished introducing the basic ingredients necessary for the develop-
ment of the results obtained during the course of this thesis. The following chapters
expose these results and are mostly modelled on the published articles.
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Chapter 3

Towards an equivalence between
maximal entanglement
and maximal quantum nonlocality

While all bipartite pure entangled states are known to generate correlations violating
a Bell inequality, and are therefore nonlocal, the quantitative relation between pure-
state entanglement and nonlocality is poorly understood (see Sec. 2.2.6). In fact,
some Bell inequalities are maximally violated by non-maximally entangled states
and this phenomenon is also observed for other operational measures of nonlocal-
ity. In this chapter, we study a recently proposed measure of nonlocality defined
as the probability that a pure state displays nonlocal correlations when subjected
to random measurements. We first prove that this measure satisfies some natural
properties for an operational measure of nonlocality. Then, we show that for pure
states of two qubits the measure is monotonic with entanglement for all correlation
two-outcome Bell inequalities: for all these inequalities, the more the state is en-
tangled, the larger the probability to violate them when random measurements are
performed. Finally, we extend our results to the multipartite setting.

Our work represents the first analytical results of a measure seemingly putting
entanglement and nonlocality in a quantitative equivalence. Complementary numer-
ical evidence is provided for the cases which we could not approach analytically.
This is the first chapter presenting the results that were obtained during the thesis
and is based on [Lip+18].

3.1 Introduction

Early work by Tsirelson demonstrated that the maximal quantum violation of the
Clauser-Horne-Shimony-Holt (CHSH) inequality [Cla+69] can only be achieved
when making measurements on a two-qubit maximally entangled state [Cir80]. It
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was then natural to expect maximal entanglement to be indispensable to retrieve
the maximal quantum violation of Bell inequalities. However, subsequent exam-
ples showed this intuition to be wrong: the maximal quantum violation of certain
Bell inequalities crucially requires partial entanglement [Aci+02], even when con-
sidering states of arbitrary Hilbert space dimension [LVB11; VW11]. Furthermore,
the phenomenon of obtaining more nonlocality from less entanglement for pure
states happened to occur not only for the amount of violation of a given Bell in-
equality. It was also observed for other measures of nonlocality, such as the ro-
bustness of nonlocality to noise [Aci+02], losses [Ebe93], statistical strength of
Bell tests [AGG05] and the simulation of quantum correlations with nonlocal re-
sources [BGS05]. This apparent inequivalence of pure-state entanglement and non-
locality was dubbed anomaly in [MS06] and this is the terminology adopted here.

Even if there is no fundamental requirement for maximal entanglement and
maximal nonlocality to be in one to one correspondence, it is desirable to under-
stand if these anomalies appear only as artefacts of the measure that is used. In that
sense, it would be interesting to come up with an operational measure of quantum
nonlocality that would be maximized by maximally entangled states. A step in this
direction was made in [FP15], where the authors gave numerical results suggest-
ing that the anomaly originally observed in [Aci+02] with two-qutrit states violat-
ing maximally the Collins-Gisin-Linden-Massar-Popescu (CGLMP) Bell inequal-
ity [Col+02a] disappears when considering a novel measure of nonlocality. For a
given (pure) quantum state |ψ〉, the value of the measure is the probability of violat-
ing a specific Bell inequality when random projective measurements are performed
on the state. A state |ψ1〉 is more nonlocal than a state |ψ2〉, in the sense of the
measure studied in [FP15], if by making random measurements on |ψ1〉 there is a
higher chance of generating nonlocal correlations than on |ψ2〉. This is the type of
measure of nonlocality that we study here, which we name nonlocal volume. More
specifically, the authors of [FP15] numerically showed that the probability of violat-
ing the three-outcome CGLMP inequality with random projective measurements is
maximal among all pure two-qutrit states when using a maximally entangled state.
Thus, the new quantifier removes the original anomaly between entanglement and
nonlocality identified in [Aci+02] for the CGLMP inequality with three outputs.
Note that the probability of finding nonlocal correlations for qubit states was ini-
tially considered in [Lia+10].

While the above study offers a promising insight into a potential measure of non-
locality for which the original anomaly disappears, several crucial aspects were not
addressed there. The main limitation of this measure is that a single Bell inequal-
ity is used to witness nonlocality in the correlations. But apart from the simplest
Bell-CHSH case, in any Bell scenario there are many inequivalent families of Bell
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inequalities. It is, then, unclear why a single inequality should be tested and pre-
ferred over the rest. In the context of the nonlocality measure, this limitation was
lifted later when the authors of [Ros+17] extended the numerical search of [FP15]
without assuming any a priori fixed Bell inequality. Instead, they considered all
the possible Bell inequalities in a given Bell scenario. Note that this approach is
equivalent to checking whether the given correlations are nonlocal independently
of a specific Bell inequality, which provides a much more operational result. They
then performed an intense numerical exploration of many different Bell setups, see-
ing that in all of them the largest value of the nonlocal volume was obtained for the
maximally entangled state.

All this numerical evidence suggests that the nonlocal volume, that is, the prob-
ability of generating nonlocal correlations when performing random local measure-
ments on a quantum state, is a good candidate for a measure of nonlocality without
anomalies. On the other hand, to our knowledge almost no analytical results are
known using this new measure. The only analytical results we are aware of con-
cern the simplest scenario for quantum nonlocality with its unique CHSH inequal-
ity [Lia+10; Ros+17], where it is known that the nonlocal volume is a monotone
of entanglement: the more entangled the state, the bigger its probability to violate
a CHSH inequality with random measurements made on it. The nonlocal volume
for the maximally entangled state of two qubits only was computed analytically in
[Lia+10] and was found to be 2(π − 3) ≈ 28.32%. The reason why so little is
known so far about the nonlocal volume is that it is hard to deal with it in analyti-
cally as one typically needs to solve complicated integrals.

In this chapter, we give the first analytical results connecting maximal entangle-
ment and nonlocality in terms of the nonlocal volume. We start by defining properly
the measure and proving that it indeed has many of the desirable properties as mea-
sure of nonlocality for quantum states. Specifically, we show that it is invariant
under local unitaries (LU) applied by each party on the state, that its value is strictly
positive for all pure bipartite entangled states and that its value tends to one in the
limit of infinite measurement settings, as expected.

We then prove that no anomaly can occur for two-qubit states when consider-
ing scenarios based on correlation inequalities (or XOR games [Cle+04; BV13] )
involving any number of projective two-outcome measurements per site. More gen-
erally, we show that these particular inequalities are monotonic with the amount of
entanglement in two-qubit pure states: the more the entanglement in the state, the
larger its probability of violating these Bell inequalities when random measurements
are made on it. This implies, in particular, that the maximally entangled state is al-
ways the most nonlocal according to this measure in these scenarios. We show that
our results extend to the multipartite scenario for the Greenberger-Horne-Zeilinger
(GHZ) family of states cos(θ)|0...0〉 + sin(θ)|1...1〉. Finally, we demonstrate by
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providing explicit examples that our proof technique cannot be extended to scenar-
ios involving two-output Bell inequalities with marginal terms.

3.2 The nonlocal volume

We work in the standard bipartite Bell scenario [mA, mB, oA, oB] that we described
in Sec. 2.2.1, where the two parties generate the correlations P(ab|xy) from many
rounds of measurements. The measurements each party performs are described by
a set of orthogonal projectors {Ma|x}x=0,1,...,mA−1 and {Nb|y}y=0,1,...,mB−1 that sum

up to the identity
oA−1

∑
a=0

Ma|x =
oB−1
∑

b=0
Nb|y = 1 ∀x, y (see Sec. 2.2.4).

Now, consider a quantum system shared by A and B in a pure state of two qubits
written in its Schmidt basis (2.4):

|ψθ〉 = cos (θ) |00〉+ sin (θ) |11〉 (3.1)

parametrized by the angle θ ∈ [0, π
4 ]. Gisin showed that one can find local mea-

surements on any state of the form (3.1) with θ > 0 such that the generated corre-
lations are nonlocal [Gis91]. A natural question is then: which one among all the
states |ψθ〉 is the most nonlocal, in the sense of giving the largest Bell inequality
violation? The question is troublesome as the answer typically depends on the sce-
nario and on the Bell inequality considered. The situation simplifies in the setup
with two dichotomic-outcome measurements per side, where the violation of the
CHSH inequality alone is both necessary and sufficient to witness nonlocality. The
state maximally violating the CHSH inequality upon optimization over the measure-
ments is the maximally entangled state |φ+〉 (θ = π/4 in (3.1)) [Cir80]. In fact,
in this case there even exists a monotonous relation between entanglement and non-
locality [HHH95]: the more entangled the state is, the more it violates the CHSH
inequality.

Intuitively, one could expect a similar monotonous relation between entangle-
ment and nonlocality to hold for inequalities in broader scenarios, for Bell tests
involving more measurement choices and/or outcomes, or even in full general-
ity. In [Aci+02], however, it was found that the CGLMP inequality [Col+02a]
with oA = oB = 3 outcomes and with a two-qutrit state of the form |ψγ

3 〉 =
1√

2+γ2
(|00〉+ γ|11〉+ |22〉) with γ ' 0.79 achieves a higher violation than ob-

tained with the two-qutrit maximally entangled state |φ+
3 〉 = 1√

3
(|00〉 + |11〉 +

|22〉). Furthermore, this anomaly of obtaining more nonlocality from less entan-
glement happened to occur for states of arbitrary dimension [ZG08], and for other
measures of nonlocality as well [Ebe93; AGG05; BGS05]. Note that most of the
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previous results were not rigorous proofs of the existence of an anomaly, as they
mostly consisted of numerical searches. But subsequent works, such as [LVB11;
NPA08; VW11], proved some of these results analytically.

As mentioned, to fix the original anomaly detected in [Aci+02], the authors
of [FP15] considered a measure of nonlocality defined by the probability that the
correlations generated from randomly chosen measurements made on a given state
|ψ〉 violate any Bell inequality by any extent. More formally, one defines the set
of variables Ω parametrizing all the measurements that two parties may perform.
For instance, a two-outcome projective measurement Ma|x ≡ Ma|x(ω1, ω2) can be
parametrized by two angles ω1, ω2 in the Bloch sphere. For all the measurement
parameters in Ω one then needs to check whether the generated behavior from the
state |ψ〉 is nonlocal. The parameters that do lead to measurements giving nonlocal
correlations when made on |ψ〉 can be arranged in the set V(|ψ〉). We are interested
in calculating the relative volume of the set V(|ψ〉) with respect to the volume of the
whole set Ω. The reason for it is that it can be directly interpreted as the probability
of obtaining nonlocal correlations with random measurements, i.e. PNL(|ψ〉) =
vol(V(|ψ〉))

vol(Ω)
. Note that the exact value of this probability depends on the value of

the volumes, which, in turn, is a function of the measure chosen to sample the
measurements. As discussed below, for projective measurements the sampling is
naturally defined by the Haar measure, which is the only measure invariant under
unitary operations. Moreover, we remark that some of our results are valid for any
choice of measure.

Equivalently, the nonlocal volume can be obtained by considering the following
quantity

PNL(|ψ〉) =
∫

dΩ f (|ψ〉, Ω), (3.2)

where we integrate over the measurement parameters Ω according to the Haar mea-
sure. The function f (|ψ〉, Ω) is an indicator function that takes the value 1 whenever
the generated behavior is nonlocal and 0 otherwise:

f (|ψ〉, Ω) =

{
1 if p(ab|xy) is nonlocal
0 otherwise

(3.3)

Using this definition, the potential nonlocality of the generated behaviors p(ab|xy) =
Tr(|ψ〉〈ψ|Ma|x ⊗Mb|y) (3.3) can be understood as witnessed by all possible Bell
inequalities for a given scenario. Note that this is equivalent to checking whether
some given correlations admit a local decomposition (??). In that sense, the vio-
lation of a Bell inequality should be understood as a witness of nonlocality only,
and not as a quantifier. Seen as witnesses, it is then important to consider the full
set of possible inequalities in a setup, as it would otherwise be possible for nonlocal
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correlations to go undetected and lead to an underestimation of the nonlocal volume.

In general, explicitly evaluating the integral in (3.2) can be highly demanding.
So far, analytical results exist only in the simplest bipartite case and for the CHSH
inequality [Lia+10; Ros+17]. Nonetheless, the numerical results of [FP15; Ros+17]
strongly suggest that the above measure may be able to remove the anomaly between
nonlocality and entanglement. Indeed, extensive numerical computations show that
the maximally entangled state is the one achieving the highest probability of obtain-
ing nonlocal correlations with random measurements in all the explored cases.

3.3 Properties of the measure

The nonlocal volume (3.2) aims at measuring how nonlocal pure states are in order
to compare them. As such, we clearly want this measure to fulfill a basic set of con-
ditions to consider it an operational measure of nonlocality. In this section we list
some of the desired properties and formally prove that the nonlocal volume satisfies
them.

Property 1. The nonlocal volume (3.2) is invariant under local unitaries applied
on the state if one uses the Haar measure for the integration:

PNL(V1 ⊗V2 ρ V†
1 ⊗V†

2 ) = PNL(ρ) ∀ V1, V2 (3.4)

where V1, V2 are local unitary transformations applied by the parties to their share
of the state.

Proof.

PNL(V1 ⊗V2 ρ V†
1 ⊗V†

2 )

=
∫

dΩ f (V1 ⊗V2 ρ V†
1 ⊗V†

2 , Ω)
(3.5)

Now, using the cyclicity of the trace operator:

Tr(V1 ⊗V2 ρ V†
1 ⊗V†

2 MΩ
a|x ⊗ NΩ

b|y)

= Tr(ρ V†
1 MΩ

a|xV1 ⊗V†
2 NΩ

b|yV2)
(3.6)

Finally, making the substitution Ω→ Ω′ such that MΩ′
a|x⊗NΩ′

b|y = V†
1 MΩ

a|xV1⊗
V†

2 NΩ
b|yV2 and the fact that, if using the Haar measure, dΩ′ = dΩ (the elements of

integration are invariant under LU) leads to the desired result.
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Property 2. For all pure bipartite entangled states |ψ〉ent in a setup with at least two
choices of two-outcome measurements, the nonlocal volume (3.2) is strictly positive:

PNL(|ψ〉ent) > 0 (3.7)

and thus:
PNL(|ψ〉) = 0 (3.8)

if and only if the state |ψ〉 is separable.

Proof. To see this, first consider the space Ω of parameters parameterizing all the
local measurements. For example, a two-outcome projective measurement on a
qubit state can be parameterized by two angles ω1, ω2 in the Bloch sphere. From
[Gis91], we know that for any pure entangled state |ψ〉ent (of any dimension) there
exist certain values of the parameters such that the measurements performed on the
state generate correlations that are nonlocal in the simplest setup with x, y, a, b =
1, 2, i.e. V(|←〉ent) 6= ∅. We still need to show that the set of parameters leading
to nonlocal correlations V(|←〉ent) is not of volume zero. Note that since the local
correlations form a closed set, for any fixed state the set of measurement parameters
leading to local correlations (??) is also closed. This implies that the (disjoint) sets
of parameters leading to nonlocal correlations are open. In particular there is always
a ball around any nonlocal point in this space of parameters that contains parameters
leading to nonlocal correlations as well. For any fixed pure entangled state is then
clear that starting from any nonlocal quantum correlations one can slightly perturb
all the parameters ω and still generate nonlocal correlations.

Property 3. For any pure bipartite entangled state |ψ〉ent, the nonlocal volume (3.2)
tends to unity when the number of measurement choices tends to infinity:

PNL(|ψ〉ent)
mA→∞−−−−→
mB→∞

1 (3.9)

Proof. From property (2), we know that for the pure state |ψ〉ent and in the setup
with x, y, a, b = 1, 2 the nonlocal volume is strictly larger than zero PNL(|ψ〉ent) =
ε > 0. The probability that the generated correlations {p(ab|xy)}x,y=1,2 are local
for random measurements is then Ploc = 1− PNL = 1− ε. Now, with additional
measurement settings, say x = 3, 4 and y = 3, 4, the correlations {p(ab|xy)}x,y=3,4
also has a probability Ploc = 1− ε of being local, independently of {p(ab|xy)}x,y=1,2.
By repeating the argument and thus increasing the number of measurements choices,
the probability that all two-settings correlations {p(ab|xy)}x,y=2k−1,2k with k =
1, 2, ... are local is:

Pk
loc(|ψ〉ent) = (1− ε)k (3.10)
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Remark that if any of these two-settings correlations are nonlocal, then clearly the
full correlations also is nonlocal. This implies that

PNL(|ψ〉ent) ≥ 1− Pk
loc(|ψ〉ent) = 1− (1− ε)k k→∞−−→ 1, (3.11)

which means that the lower bound on PNL goes to 1 as k→ ∞. Moreover, we have
that k→ ∞ implies mA, mB → ∞, which yields the desired result.

Note that the numerical evidence suggesting Property 3 of the nonlocal volume
had been found in [Ros+17; Sha+12].

Finally, let us comment on the generalisation of properties 2 and 3 to bipartite
mixed entangled states that are nonlocal, i.e. mixed states for which one can find
local measurements such that the generated correlations violate a Bell inequality.
Clearly, if the mentioned measurements can be found in a scenario involving finite
numbers of measurements settings mA, mB, then one can obtain properties simi-
lar to 2 and 3 for a given mixed nonlocal state ρ. In a scenario with at least mA
and mB settings – instead of mA, mB = 2 for a pure entangled state, PNL(ρ) > 0
since one can always slightly perturb the mentioned measurements and still gener-
ate nonlocal correlations. This observation comes from the fact that the set of local
correlations is also closed in that scenario. Property 3 also holds for any mixed non-
local state and only the proof needs to be adapted. One now considers k disjoints
sets consisting of mA, mB measurements each (instead of mA, mB = 2 for pure en-
tangled states) and by taking k large enough the probability that all the correlations
{p(ab|xy)}x=(k−1)mA,(k−1)mA+1,...,kmA−1

y=(k−1)mB,(k−1)mB+1,...,kmB−1 for k = 1,2,... are local tends to zero, im-
plying that the probability of the full correlations being nonlocal tends to one with
growing k.

3.4 The nonlocal volume using correlation Bell inequali-
ties is a monotone of entanglement

Having proven some of the properties of the measure (3.2), we proceed to analyzing
the nonlocal volume of different entangled states. We are still unable to compute
PNL(|ψ〉) explicitly from Definition 3.2. Therefore, we approach the problem al-
ternatively and study whether there exist inclusion relations among the sets V(|ψ〉)
of measurements leading to nonlocal correlations when made on different states.
Indeed, if the set of measurements V(|ψ1〉) leading to nonlocal correlations on the
state |ψ1〉 is included in the set V(|ψ2〉) for the state |ψ2〉, V(|ψ1〉) ⊆ V(|ψ2〉),
then obviously PNL(|ψ1〉) ≤ PNL(|ψ2〉). Crucially, we show that in many sit-
uations, namely when witnessing nonlocality with correlation (see below (3.13))



3.4. The nonlocal volume using correlation Bell inequalities is a monotone of
entanglement

65

inequalities only, the set of measurements V(|ψθ1〉) leading to nonlocal correlations
on a pure two-qubit entangled state |ψθ1〉 is included in the set V(|ψθ2〉) if |ψθ1〉
is less entangled than |ψθ2〉. We thus prove that the nonlocal volume of correlation
Bell inequalities is a monotone of entanglement in the case of qubit states and two-
outcome projective measurements.

We work in Bell scenarios with two-outcome measurements and any number of
measurement settings per party. Labeling the measurements outcomes a, b = ±1,
the correlations in this scenario can be parametrized as

p(ab|xy) =
1
4
(
1 + a〈Ax〉+ b〈By〉+ ab〈AxBy〉

)
, (3.12)

where 〈Ax〉 = ∑
a=±1

a pA(a|x) are Alice’s local expectation value depending on

her marginal distribution pA(a|x) = ∑
b

p(ab|xy), and similarly for Bob’s 〈By〉.
The terms 〈AxBy〉 = ∑

a,b=±1
ab p(ab|xy) are known as two-body correlators. In

this scenario, correlation or full-correlator Bell inequalities (or even XOR games)
for two outcomes are those in which only these last terms appear and hence can be
written as

Î〈..〉 = ∑
xy

gxy〈AxBy〉 ≤ gloc (3.13)

where gloc is the local bound.

For any correlation Bell inequality I〈..〉 and for local measurements Ma|x and
Nb|y, one can define the associated Bell operator (acting at the level of the states):

BI〈..〉 = ∑
xy

gxy Ax ⊗ By, (3.14)

where we defined the observables Ax = M+1|x − M−1|x, By = N+1|y − N−1|y.
For a given state ρ, the value of the Bell inequality then reads

I〈..〉(ρ) = Tr(ρBI〈..〉). (3.15)

Next, we present our main result under the form of a theorem. Our result holds
for any number of 2-outcome projective measurements performed by Alice and Bob.

Theorem 1. Consider any correlation Bell inequality Î〈..〉 = ∑
xy

gxy〈AxBy〉 ≤
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gloc (3.13) with gloc being the local bound. A and B measure the local observ-
ables {Ax} and {By} respectively, defining the associated Bell operator B〈..〉I =

∑xy gxy Ax ⊗ By (3.15). Consider two pure two qubit states |ψθ1〉 and |ψθ2〉 with
θ1, θ2 ∈ [0, π

4 ] (3.1) and θ2 > θ1 such that |ψθ1〉 violates the inequality, that is
Tr(|Ψθ1〉〈Ψθ1 | B̂I〈..〉) > gloc. Then:

Tr(|Ψθ2〉〈Ψθ2 | B̂I〈..〉) > Tr(|Ψθ1〉〈Ψθ1 | B̂I〈..〉). (3.16)

In words, if a correlation Bell inequality I〈..〉 is violated by correlations gener-
ated when A and B measure the local observables {Ax} and {By} respectively on
a pure partially entangled two qubit state |ψθ1〉, then the same inequality with the
same measurements gives a strictly larger violation when acting on any other pure
entangled two qubit state |ψθ2〉 with more entanglement θ2 > θ1.

Proof. Observe that |ψθ〉 can always be written as

|ψθ〉 =
(

cos θ+sin θ√
2

1 + cos θ−sin θ√
2

σz

)
⊗ 1 |φ+〉. (3.17)

Denote by B̂I〈··〉 the Bell operator associated to the inequality I〈..〉 (3.14) for the given
local measurements. Since the inequality I〈..〉 contains only full-body correlators,
it does not involve marginal terms and thus the decomposition of the Bell operator
B̂I〈··〉 in the Pauli basis does not contain terms proportional to 1 ⊗ 1, 1 ⊗ σi and
σi ⊗ 1, for i = x, y, z. Using this fact and expression (3.17), the Bell violation for
state (3.17), bθ ≡ Tr(|ψθ〉〈ψθ | |B̂I〈··〉), reads

bθ =
b+ + b−

2
+

sin 2θ

2
(b+ − b−) > gloc, (3.18)

where b± ≡ 〈φ±|B̂I〈··〉 |φ±〉 denotes the expectation value of B̂I〈··〉 on the maximally
entangled state |φ±〉 = 1√

2
(|00〉 ± |11〉).

By hypothesis we have that when θ = θ1

bθ1 ≡ Tr(|ψθ1〉〈ψθ1 |B̂I〈··〉) > gloc, (3.19)

The term b++b−
2 can be understood (by linearity of the trace) as the expectation value

of B̂I〈··〉 on the separable state

1
2
(|00〉〈00|+ |11〉〈11|) (3.20)

and is thus necessarily smaller or equal to gloc. But since sin 2θ is positive for
θ ∈ [0, π

4 ], Eq. (3.18) necessarily implies that b+ > b−. Now, because of this
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property and the fact that sin 2θ is monotonically increasing for θ ∈ [0, π
4 ], the

proof of the theorem follows.

Put differently, the theorem shows that when using correlation Bell inequal-
ities Î〈..〉 (3.13) only to witness nonlocal correlations, the set of measurements
V 〈··〉(|ψθ1〉) generating nonlocal behaviors when performed on |ψθ1〉 is included
in the set of measurements V 〈··〉(|ψθ2〉) leading to nonlocal correlations when per-
formed on any state |ψθ2〉 with more entanglement θ2 > θ1. This, in particular,
implies that no anomaly can ever occur in these cases.

We now want to show that the inclusion relation V 〈··〉(|ψθ1〉) ⊂ V 〈··〉(|ψθ2〉) is
strict. In the setup with two measurement choice with two outcomes, the violation
of the CHSH inequality

〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 ≤ 2 (3.21)

is both necessary and sufficient for witnessing nonlocality in the correlation. In that
scenario one can check that A and B measuring the following observables:

Ax=0 = σx By=0 = cos(ξ)σx + sin(ξ)σz

Ax=1 = σz By=1 = cos(ξ)σx − sin(ξ)σz
(3.22)

with ξ ∈ [0, π
2 ] on a pure two qubit state |ψθ〉 (3.1) gives:

CHSH(θ, ξ) = 2
(

sin(ξ) + sin(2θ) cos(ξ)
)

(3.23)

which for θ = π
4 and all ξ > 0 is larger than 2 (the local bound). Now, for another

value of θ, the inequality is violated if

sin(2θ) >
1− sin(ξ)

cos(ξ)
(3.24)

implying in particular that for any θ2 > θ1 – i.e. sin(2θ2) > sin(2θ1) – one can
find an angle ξ̄ such that CHSH(θ2, ξ̄) > 2 but CHSH(θ1, ξ̄) ≤ 2. In the end, this
allows us to conclude that the inclusion of sets is strict

V 〈··〉(|ψθ1〉) ⊂ V 〈··〉(|ψθ2〉), (3.25)

Consequently, and in the spirit of definition (3.2), it follows that:

P〈··〉NL (|ψθ1〉) ≤ P〈··〉NL (|ψθ2〉) ≤ P〈··〉NL (|φ+〉), (3.26)
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where P〈··〉NL (|ψθ1〉) is defined in the same fashion as in (3.2), but assuming that
nonlocal correlations may only be witnessed by correlation inequalities. Crucially,
and in sound contrast with previous works [LVB11; FP15; Ros+17], our results
are valid for any number of measurement settings, and – interestingly – as well as
for any measurement sampling in (3.2) (not only for the Haar measure). It is also
worth noting that in many scenarios facet inequalities — those delimiting the local
set L— are correlation inequalities, meaning that our result applies to a very broad
class of inequalities [WW01b] in any scenario [Pir14; WW01a; Ban+09; Lia+15;
CLG14].

Furthermore, our result enables us to draw conclusions beyond the fundamental
study of the relation between entanglement and nonlocality. In a situation where
one wants to check whether given measurements are useful to violate a correlation
Bell inequality with two-qubit states, a necessary and sufficient condition is that
they generate nonlocal correlations when performed on the maximally entangled
state. Indeed, if the measurements do not generate nonlocality with the maximally
entangled state, they will not generate nonlocality with any other less entangled
state. What is more, since the maximally entangled state is the one with the highest
probability to reveal nonlocality (up to any extend), it is the best choice to succeed
in any Bell test using correlation inequalities and two-qubit states with poor control
over the measurement bases. This is of particular interest for experimental setups
where aligning reference frames is troublesome.

Before concluding, we would like to connect this result with previous works.
Tsirelson showed that the maximal violation of a two-outcome correlation Bell in-
equality is obtained for a maximally entangled state [Tsi93]. However, this state is
not necessarily of two qubits. In fact, there are known examples of two-outcome
correlation Bell inequalities whose maximal violation requires systems of dimen-
sion larger than 2 [VP08]. When discussing qubits, the maximal violation of cor-
relation Bell inequalities is obtained by a maximally entangled state, as the Bell
operator is always diagonal in a given Bell basis. Recall, however, that this has a
priori no implications for the nonlocal volume, as maximal violation and nonlocal
volume are unrelated quantities. For example, the maximally entangled state does
not give the maximal violation of the CGLMP inequality, but it does maximise the
nonlocal volume. Note, however, that our theorem goes beyond proving that the
maximal qubit violation is obtained by a Bell state: for fixed Schmidt bases, which
do not necessarily coincide with those of the maximally entangled state providing
the maximal qubit violation, the largest violation is obtained by a maximally entan-
gled state.
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3.5 Possible bipartite generalisations of the result

Our next objective is to discuss possible extensions of our result. In 3.4 we made
three important assumptions: i) the Bell inequality is a correlation inequality, i.e.
without marginal terms (single-body correlators), ii) only two-qubit pure states were
considered, and iii) only extremal (thus projective) measurements were considered.

As far as assumption i) is concerned, a numerical search provided us with an
analytical counter-example consisting of measurements generating correlations vi-
olating a Bell inequality when performed on |ψθ〉 for θ = 3π

16 but generating local
correlations when performed on |φ+〉 in the [3, 4, 2, 2] scenario. We verified that the
violated Bell inequality indeed contains marginal terms 〈Ax〉 and 〈By〉 as expected.
We refer the reader to A.1 for the exact construction. This counterexample closes
the possibility to generalize our theorem onto general Bell inequalities including
single-body correlators. Therefore, the sets V(|ψθ〉) and V(|φ+〉) are not contained
one into another and we can not conclude on the relation between PNL(|ψθ〉) and
PNL(|φ+〉) based on inclusion relations between these sets.

As it is impossible to prove an analog of our main theorem for general two-
outcome Bell inequalities including marginals, we numerically computed the value
of the nonlocal volume (3.2) for arbitrary two-qubit states and different Bell scenar-
ios. In fig. 3.1, we provide numerical evidence for a wide range of scenarios that
indicate that the probability of generating nonlocal correlations from random mea-
surements is always the largest when measuring the maximally entangled state. We
conjecture that the relation PNL(|ψθ〉) ≤ PNL(|φ+〉) (3.2) holds in general. Note
that similar numerical results were obtained in [Ros+17].

FIGURE 3.1: Probability of obtaining nonlocal correlations with uniformly ran-
dom measurements as a function of the entanglement parameter θ. For clarity of
the image the range of θ has been extended to π

2 due to symmetry of the state
|ψθ〉. Measurement scenarios: (+) – [2,2,2,2], (◦) – [2,3,2,2], (•) – [3,4,2,2], (∗)

– [8,8,2,2].
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In order to relax assumption ii) one can study states in systems of arbitrary di-
mension Cd ×Cd. Note that in these systems, the ordering induced between entan-
gled states is partial at the single-copy level, as there are pairs of states that can not
be deterministically transformed one into another in either way by local operations
and classical communication (LOCC) [Nie99]. So, it is unclear which entanglement
quantifier would be a good candidate to be in correspondence with the nonlocal vol-
ume. The most natural candidate is the entanglement entropy, but it is a quantity
that becomes especially relevant in the many-copy regime [PR97]. Despite all these
issues, there is a clear notion of maximally entangled state. Thus, the most natural
working conjecture is that this state maximizes the nonlocal volume. Numerical
searches already performed in [Ros+17] indicate that this may be the case. More
precisely, the authors considered states 1√

2+γ2
(|00〉+ γ|11〉+ |22〉) with param-

eter γ ∈ [0, 1] and found that the highest probability of obtaining nonlocality with
randomly sampled measurements occurs for γ = 1. It is also interesting to consider
weaker variants of this conjecture that may be easier to attack. For instance there is
a notion of correlation function and correlation Bell inequality for scenarios involv-
ing measurements of more than two outputs [Col+02a; Sal+17]. Understanding
whether Theorem 1 generalizes to this partial case deserves further investigation.

As for assumption iii), extending our study to general measurements beyond
projective is also interesting. Note, however, that in this case, it is less clear what
the natural way of sampling measurements should be.

3.6 The nonlocal volume in the multipartite scenario

So far our analysis has focused on bipartite settings. Extending the problem to the
multipartite case is also interesting and first numerical steps in this direction were
presented in [Lia+10; Ros+17]. Here we provide the first analytical results. Note
that in the multipartite case there is no notion of maximally entangled state [AVC03].
So it is not clear which state should be the natural candidate to maximise the nonlo-
cal volume and it could even happen that the optimal state varies with the number of
parties. In the following however we show that in a restricted multipartite scenario,
it is possible to generalize our main result and conclude about the monotonicity of
the measure for specific families of states and correlation Bell inequalities.

In a multipartite scenario, n parties share an entangled system of many par-
ticles (see more details in Sec. 2.3). Each party Ai, i = 1, ..., n, performs a
local measurement on its share of the system with measurement choice labelled
xi = 1, ..., mAi and (dichotomic) outcome ai = 0, 1. As before, the measure-

ments each party performs are described by a set of orthogonal projectors {M(i)
ai |xi
},

which generate joint conditional probabilities P(~a|~x) ≡ {p(a1 . . . an|x1 . . . xn)}.



3.6. The nonlocal volume in the multipartite scenario 71

Then, p(~a|~x) ≡ p(a1 . . . an|x1 . . . xn) = Tr(M(1)
a1|x1
⊗ . . . ⊗ M(n)

an|xn
ρ). As in

the bipartite scenario, a Bell inequality is a linear combination of the probabilities
Î〈n〉 (P(ab|xy)) ≡ ∑

a1...anx1...xn

gx1...xn
a1...an p(~a|~x) and corresponds to a Bell operator act-

ing at the level of the states B̂I〈n〉 = ∑
a1...anx1...xn

gx1...xn
a1...an M(1)

a1|x1
⊗ . . .⊗M(n)

an|xn
.

For two-outcome measurements only, we can define full-body correlators

〈Ax1 ...Axn〉 = ∑
a1...an=0,1

(−1)
n
∑

i=1
ai

p(~a|~x), (3.27)

and a correlation inequality (inequality with n-body correlators)

I〈n〉 = ∑
x1...xn

g̃x1...xn〈Ax1 ...Axn〉. (3.28)

As we mentioned, it is much harder in the multipartite setting to order (pure)
states in terms of how entangled they are. To avoid the problem, we focus on a
natural generalization of the bipartite pure states |φθ〉 (3.1)

|Ψn
θ 〉 = cos θ|0〉⊗n + sin θ|1〉⊗n, (3.29)

where θ is the entanglement parameter whose value runs again from 0 to π/4. The
maximally entangled state of this family, with θ = π

4 , is the GHZ state |GHZn〉 ≡
|Ψn

θ= π
4
〉 as any other state in the family can be deterministically reached from it by

LOCC.

We now generalize Theorem 1 to the multipartite setup for an even number of
parties, correlation Bell inequalities and pure states in the GHZ family (3.29).

Theorem 2. Consider a correlation Bell inequality I〈n〉 = ∑
x1...xn

g̃x1...xn〈Ax1 ...Axn〉 ≤
gloc with gloc being the local bound. Assume that the number of parties n is even.
Each party measures, locally, the observable {A(i)

xi ≡ M(i)
ai=0|xi

−M(i)
ai=1|xi

}, defin-

ing the associated Bell operator B̂I〈n〉 = ∑
x1x2...xn

gx1x2...xn ⊗n
i=1 A(i)

xi . For any two

pure multipartite qubit states |Ψn
θ1
〉, |Ψn

θ2
〉 with θ1, θ2 ∈ [0, π

4 ] (3.1) and θ2 > θ1, if

Tr(
∣∣∣Ψn

θ1

〉〈
Ψn

θ1

∣∣∣ B̂I〈..〉) > gloc then:

Tr(
∣∣Ψn

θ2

〉〈
Ψn

θ2

∣∣ B̂I〈n〉) > Tr(
∣∣Ψn

θ1

〉〈
Ψn

θ1

∣∣ B̂I〈n〉) (3.30)
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In particular, the theorem implies that if the state |Ψn
θ1
〉 violates the Bell inequal-

ity when given measurements are being made on it, the state |Ψn
θ2
〉 does so too with

the same measurements.

Proof. The proof of the above statement follows the structure of the proof of Theo-
rem 1. By assumption we have that

bn
θ1
≡ Tr(|Ψn

θ1
〉〈Ψn

θ1
| B̂I〈n〉) > gloc (3.31)

As before, we can write, without loss of generality, that

|Ψn
θ1
〉 =

(
cos θ1+sin θ1√

2
1 + cos θ1−sin θ1√

2
σz

)
⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸

n−1

|GHZn〉 (3.32)

Now, the Bell operator can be decomposed in the Pauli basis as

B̂I〈n〉 =
3

∑
i=1

ci1...in σi1 ⊗ . . .⊗ σiN (3.33)

where σij denotes one of the Pauli operators σx, σy, σz of j-th party. Note that the in-
equality I〈n〉 is a correlation inequality, therefore in the above decomposition (3.33)
none of the operators σij can be 1. Using this fact and expression (3.32), the left
hand-side of (3.31) can be written as

bn
θ1
=

bn
+ + bn

−
2

+
sin 2θ1

2
(bn

+ − bn
−) > gloc, (3.34)

where bn
+ ≡ 〈GHZn|B̂I〈n〉 |GHZn〉 denotes the expectation value of B̂I〈n〉 on the

maximally entangled GHZ state, and similarly bn
− ≡ 〈GHZn

−|B̂I〈n〉 |GHZn
−〉 for the

GHZ state with a relative − sign. Note that this decomposition holds if and only
if the number of parties n is even – as it can be verified that all the cross terms
involving 1⊗ σi1 ⊗ . . .⊗ σin︸ ︷︷ ︸

n

disappear only when n is even.

Similarly to the proof of Theorem 1, observe that the term bn
++bn

−
2 from (3.34) is

the expectation value of B̂I〈n〉 on a separable state, 1
2 (|0 . . . 0〉〈0 . . . 0|+ |1 . . . 1〉〈1 . . . 1|),

and therefore it is necessarily smaller or equal to gloc. Since by assumption bn
θ1

>
gloc, it follows that bn

+ > bn
− since sin(2θ1) > 0 for all θ1 ∈ [0, π

4 ].
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Interestingly, in the multipartite scenario the implications of Theorem 2 become
richer than those of Theorem 1 in the bipartite scenario. Specifically, in the multi-
partite scenario there exist other notions of nonlocality, giving rise to a hierarchy of
multipartite correlations as captured by notions such as k-producibility or correla-
tion depth [Ban+09; CGL15]. Observe, however, that in the proof of Theorem 2 our
derivation is independent of the type of multipartite nonlocality that is witnessed by
the violation of a given correlation Bell inequality. This observation is possible due
to the fact that the term bn

+−bn
−

2 in (3.34) is the expectation value of the inequality
on a fully separable state 1

2 (|0 . . . 0〉〈0 . . . 0|+ |1 . . . 1〉〈1 . . . 1|). Hence, this term
alone can not violate any Bell inequality as the generated correlations are (fully)
local. Therefore, our theorem applies to any type of generalized multipartite non-
locality. In particular, if some measurements lead to k-partite nonlocal correlations
violating a correlation Bell inequality when made on the state |Ψn

θ1
〉, they also gen-

erate k-partite nonlocal correlations on any state |Ψn
θ2
〉 with θ2 ≥ θ1.

In light of the above theorem, when using correlation n-partite inequalities to
witness nonlocality, for even n, the set of measurements leading to nonlocal be-
haviors when performed on |Ψn

θ1
〉 is included in the set of measurements leading

to nonlocal correlations when made on |Ψn
θ2
〉 if θ2 > θ1. In particular, the set of

measurements leading to nonlocal correlations on the maximally entangled state
|GHZn〉 is the largest

V〈n〉(|Ψn
θ 〉) ⊆ V〈n〉(|GHZn〉). (3.35)

where V〈n〉 denotes the set of measurements leading to nonlocal behaviors exhib-
ited with correlation inequalities. In the end, the nonlocal volume (3.2) is always
maximised by the maximally entangled n-partite GHZ state (3.29)

P〈n〉(|Ψn
θ 〉) ≤ P〈n〉(|GHZn〉). (3.36)

Note that these results are consistent with the numerical findings of [Ros+17]. We
leave open the problem of proving Theorem 2 for an odd number of parties.

3.7 Conclusions

The nonlocal volume is a measure of nonlocality with a clear operational meaning
that seems to establish a one-to-one correspondence between maximal entanglement
and maximal quantum nonlocality. Based on the existing results, it is tempting to
conjecture that in bipartite systems the maximally entangled state maximizes the
nonlocal volume, which would solve the anomaly observed between entanglement
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and nonlocality when using other measures. In our work, we provide the first ana-
lytical results in this direction. Solving the problem in full generality appears chal-
lenging because the nonlocal volume is a rather hard function to deal with. Beyond
analytical results, it is also worth performing more numerical searches supporting
the conjecture, by extending it to more complex scenarios involving more mea-
surements, outputs, or non-projective measurements. The multipartite case is quite
unexplored and also contains intriguing questions.

Before concluding, we would like to briefly mention that no anomalies can be
seen in the case of steering, where one of the parties has control over the state re-
ceived and over the measurements performed [WJD07; SNC14]. In this framework
one can see that the set of measurements leading to steering on a partially entangled
state is always included in the set of measurements doing the same on the maxi-
mally entangled one. This observation holds for any number of measurements, any
type of measurements and any dimension d. In fact, the probability to violate a
steering inequality is always 1 for any pure entangled states, since the set of com-
patible measurements has mesure zero and therefore random measurements always
produce a violation of a steering inequality when performed on any pure entangled
state [CS16].
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Chapter 4

Unbounded randomness
certification using sequences of
measurements

When making single measurements on the parts of quantum systems at each round
of a Bell experiment, only a limited amount of randomness can be certified from
the generated outcomes. Indeed, from systems in an entangled states in an Hilbert
space |ψ〉 ∈ Hd ⊗Hd, one can hope to generate at most r = 4 log2(d) certified
random bits, i.e. r = 4 bits from two qubits systems (see Sec. 2.4.2). Does this
imply that there is a fundamental bound on the amount of certified randomness that
can be generated from measurements on quantum systems?

In this chapter, we consider the scenario where one of the parties, B, performs
sequences of measurements on the system it receives at each round of a Bell experi-
ment as explained in Sec. 2.2.7. We show that the bounds on randomness from sin-
gle measurements can be lifted and obtain any amount of certified random numbers
from entangled pairs of qubits in a pure state. This is achieved by making sequences
of weak measurements on one of the shares of each copy of the system. Moreover,
the systems can be arbitrarily weakly entangled. The certification is achieved by
near-maximal violation of a particular Bell inequality for each measurement in the
sequence. Quantum systems in an almost separable state and of the lowest possi-
ble Hilbert space dimension – d = 2, i.e. two-qubit systems – are thus unbounded
sources of certified random numbers and of nonlocal correlations in a sequence.

This chapter is based on the two articles [Cur+17; Cur+18].
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4.1 Introduction

Imagine the following situation where, contrary to the device-independent approach
that we follow in this thesis, one has perfect control over the functioning of the
device generating randomness. An entangled state initially prepared in the Pauli-
Z basis, i.e., a σz eigenstate |0〉 or |1〉, is measured in the Pauli-X, or σx basis
|±〉 = |0〉+|1〉√

2
. The outcome of this measurement is perfectly random and the post-

measurement state is now one of the two eigenstates of the Pauli-X basis |±〉. If
the device now measures this new state in the original Pauli-Z basis, the outcome of
this new measurement is again random and one of the σz eigenstates is obtained. A
device alternating between measurements in those two orthogonal basis thus allows
one to obtain any amount of random bits from a single system as input.

Of course, this way of generating randomness can never be trusted, as one can
always design a classical device (with deterministic outcomes – a local model) that
has the same behavior as the device we described, i.e., their outputs are indistin-
guishable. To certify randomness one needs the generation of non-local correla-
tions, that can not be simulated with classical resources. But is it nevertheless
possible to use this idea of measuring a state repeatedly, in a scheme exploiting
nonlocality, to obtain more random numbers and beat the bounds on randomness
certification? Clearly, certifying more randomness by making sequences of mea-
surements on the same state depends on whether one is able to produce sequences
of non-local correlations between distant observers, as otherwise no additional ran-
domness can be certified. One of the obstacles to this is that if local (projective)
measurements are used to generate the non-local correlations, the entanglement in
the state is destroyed. Then the post-measurement state is separable and thus can-
not be further used to generate nonlocality or to certify randomness. A challenge is
therefore to come up with measurements that do not destroy all the entanglement in
the state but nevertheless generate non-local correlations. With such measurements
the post-measurement state will still be a potential resource for the generation of
more non-local correlations and certified randomness.

Bell tests with sequences of measurements have received less attention in the
literature than the standard ones with a single measurement round despite the novel
features in this scenario [Gal+14], as for example the phenomenon known as hid-
den nonlocality [Pop95] (for more details, see sec. 2.2.7). In our work we show
that they prove useful in the task of randomness certification, which also provides
another example [Ací+16] where general measurements can overcome limitations
of projective ones, the first example of their usefulness in a DI information task.
More precisely, we describe a scheme where any number m of random bits are cer-
tified using a sequence of n > m consecutive measurements on the same system.
This work thus shows that the bound of 4log2d random bits in the standard scenario
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can be overcome in the sequential scenario, where it is impossible to establish any
bound. The unbounded randomness is certified by a near-maximal violation of a
particular Bell inequality for each measurement in the sequence. Moreover, for any
finite amount of certified randomness, our scheme has a finite (yet very small) noise
robustness. Our results show that entangled systems are an unbounded resource for
the generation of certified random numbers and of non-local correlations in a se-
quence.

4.2 The sequential measurements scenario

Before presenting our results, let us remind the scenario we work in and that we
developed in more details in sec. 2.2.7. We carry over many of the features from
the standard scenario except that now we allow party B to make multiple measure-
ments in a sequence on his share of the state. One can visualize this as in Fig.
4.1 where B is split up into several Bs, each one corresponding to a measurement
made on the state and labeled by Bi, i ∈ {1, 2, .., n}, where n is the total number
of measurements made in the sequence. Each Bi makes one measurement and the
post-measurement state is sent to Bi+1. We organize the Bobs such that Bi is doing
his measurement before Bj for i < j. Thus in principle Bj can receive the informa-
tion about the inputs and outputs of previous measurements Bi for all i < j(see fig.
4.1 and sec. 2.2.5).

They generate statistics from multiple runs of the experiment to obtain the ob-
served probability distribution Pobs with elements pobs(a,~b|x,~y). This distribution
Pobs lives inside the set of quantum correlationsQsequ

n obtained from measurements
on quantum states in a sequence as we described. This set is convex and thus can be
described in terms of its extreme points, denoted Pext, and any Pobs can be written
as Pobs = ∑

ext
qextPext, where ∑

ext
qext = 1 and every qext ≥ 0.

4.3 Randomness certification: from the standard to the se-
quential scenario

As in the standard scenario with a single measurement in the sequence (see Sec.
2.4.2), one can quantify the amount of randomness in the set-up with sequences
of measurements. From studying the outcome statistics only we can bound E’s
predictive power by allowing it to have complete knowledge of how Pobs is de-
composed into extreme points, i.e., it knows the probability distribution qext over
extreme points Pext. This predictive power is quantified via the sequential device-
independent guessing probability (DIGP) [AMP12] where we fix the particular in-
put string y0

1, y0
2, .., y0

n ≡ ~y0 for which E has to guess the outputs~b. The sequential
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⇢AB

A

B

a

b1 b2 b3

x

y1 y3y2

⇢AB

Sequential Bell test

Standard Bell test

FIGURE 4.1: The standard scenario, where parties A and B make a single quan-
tum measurement on their share of the state and discard it versus the sequential

scenario where the second party B makes multiple measurements on his share.

DIGP, denoted by G(~y0, Pobs), is then calculated as the optimal solution to the fol-
lowing optimization problem [Tor+15; NSPS14]:

G(~y0, Pobs) = max
{qext,Pext}

∑
ext

qext max
~b

pext(~b|~y0)

subject to:

pext(~b|~y0) = ∑
a

pext(a,~b|x,~y0), ∀x (4.1)

Pobs = ∑
ext

qextPext, Pext ∈ Qsequ
n . (4.2)

The operational meaning of this quantity is clear: E has a complete description
of the observed correlations in terms of extreme points. It then guesses the most
probable outcome for each extreme point. The standard scenario with a single mea-
surement at each round n = 1 can also be represented in this formalism by simply
considering that ~b = b and ~y(0) = y(0), recovering the standard non-sequential
DIGP (2.53) of sec. 2.4.2. To quantify the amount of bits of randomness that is
certified, we use the min entropy H(~y0, Pobs) = − log2 G(~y0, Pobs) which returns
m bits of randomness if G(~y0, Pobs) = 2−m. The amount of bits of randomness
quantified in this way is the figure of merit in this work and our goal is to obtain as
many bits as possible from the systems.

Note that certifying randomness can be understood as splitting the rounds of the
Bell experiment in two: i) rounds that serve to build the statistics Pobs violating a
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Bell inequality, their number depends on the quality of the estimate one desires to
obtain; and ii) rounds in which the outcomes serve to generate randomness. The
rounds i) serve to certify properties of the set-up through the study of the gener-
ated statistics, often by observing a given Bell inequality violation. In some sense,
a given portion of the rounds is sacrificed to obtain a certificate that the outcomes
from the rest of the rounds can indeed be used to generate random numbers. Here,
we are interested in obtaining as much randomness from measurements on quan-
tum systems when the round serves to generate randomness only. A more general
approach would consist in studying how much randomness on average can be ob-
tained from the outcomes by also taking into account the sacrificed rounds.

Before presenting proceeding further, it is worth explaining why the causal con-
straints imposed by the sequential scenario make it stronger than in a standard Bell
experiment with one measurement in the sequence. At first sight, one could be
tempted to group all the measurements in the sequence into a single box receiving
an input string ~yn to output another string~bn, as in a standard Bell test. However,
in general a sequence of measurements can not be represented as a single measure-
ment. To understand this, note that in the sequential scenario the outcome bi can
depend only on variables produced in its past, namely the input choices ~yi and the
outcomes~bi−1 that were previously obtained. However, a single measurement box
instead of the sequence receives all inputs and produces all outputs at once. In par-
ticular, outcome bi can now be a function of input choices yj>i and outcomes bj>i
that are produced in the future. That is, such a big box may violate the physical
constraints coming from the sequential arrangement and the assumption that signal-
ing from the future to the past is impossible. These additional causality constraints
further limit the adversary E’s predictability with respect to a standard Bell test and
are responsible for the unbounded amount of certified randomness.

An important part of this work is contained in the appendices B.1, where we
develop a framework and tools for the study of the DIGP in a sequence and derive
general properties of the guessing probability (4.2), summarised in the form of the-
orems 3 and 4. Let us stress here that these results are not limited to the guessing
probability used in this work but are general properties of guessing probabilities.
For the sake of simplicity, we give here a subset of these results only.

The remaining of this subsection is more technical and one can pass directly
to subsection "Making non-destructive measurements on qubit states" 4.4 without
loosing comprehension of the main results.

For a single measurement on each system (i.e. a sequence of n = 1 measure-
ment), which corresponds to the standard Bell scenario and Q ≡ Qsequ

1 the set of
quantum correlations for a single measurement on each subsystem we have that:
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Proposition 1. The function G(y0, Pobs) on the set of quantum distributions Q is
continuous in the interior of Q.

Proposition 2. The function G(y0, Pobs) is continuous at any extremal point of Q.

The proofs of these two propositions are based mostly on general properties
of concave functions [Roc70] and of concave roof extensions in particular [BL13],
and can be found in section B.2 of the appendices. In other words the guessing
probability for a single measurement is continuous everywhere except possibly at
some points that lie on the surface of the quantum set but that are not extremal.
An example of such a discontinuity can be obtained from the measurements de-
scribed in [Pir+10] for a state with arbitrarily little entanglement. The joint condi-
tional probability distribution (introduced below, see (4.6)) corresponding to those
measurements made on such a state has G(y0, Pobs) = 1/2 and is at the same time
arbitrarily close to a joint conditional probability distribution corresponding to mea-
surements on a product state with G(y0, Pobs) = 1, i.e., a local point. The key is
that this local point is not extremal, it lies somewhere on the surface of the local
(and quantum) set but can be decomposed into other extremal (local) points, i.e. is
not a vertex of the local polytope. Discontinuities of G(y0, Pobs) can thus appear
only at the boundary between extremal points and non-extremal points lying on the
surface of the set, and in the rest of the set it is continuous.

In general – and in particular in our work – the optimization problem (4.2) can
be relaxed to an optimization where instead of insisting on Pobs = ∑

ext
qextPext (4.2),

one only imposes that the observed statistics Pobs give a particular Bell inequality
violation [Pir+10]. The optimal solution to this new problem is an upper bound to
the optimal solution of (4.2). Crucially, this relaxation often gives non trivial bounds
as shown in our case for example. From now on, every time we refer to a guessing
probability we refer to this relaxation of the problem to a particular Bell inequality
violation.

Now, we consider a Bell expression I with its maximal value tmax on the quan-
tum setQ. We define the hyperplane Ht to contain the elements ofQ for which the
value of I is t ≤ tmax and further we define the restriction G(y0, Pobs)t of G(y0, Pobs)
to the intersection of Ht with Q and let max G(y0, Pobs)t be the maximum of the
guessing probability on this intersection. From Propositions 1 and 2 we can show
that:

Theorem 3. If the intersection of Htmax with Q is a single (thus extremal) point,
there exists a tc < tmax such that G(y0, Pobs)t is a continuous function of t for
tc ≤ t ≤ tmax
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The proof of this theorem can be found in section B.3 of the appendices. In the
other case, if the intersection of Htmax with Q has more than one point, it also con-
tains a set of non-extremal points ofQ and therefore a discontinuity of G(y0, Pobs)t
at tmax can not be ruled out by theorem (3). In other words, if the violation of a
particular Bell inequality I is achieved by a unique quantum point (as for example
the following (4.5)), the guessing probability close to that point is continuous.

Until now, we have considered the continuity properties of the guessing proba-
bility in the standard scenario with a single measurement in the sequence. We would
like to extend those results to the guessing probability in the sequential measurement
scenario with n ≥ 2 measurements being made on the subsystems. Remember that
we split party B into many Bi, so that party Bi makes the ith measurement on the
system. The measurement setting of Bi is yi and its outcome bi (see Fig. 1). In our
work, we will always take yi ∈ {0, 1} and bi ∈ {0, 1}, but the following results can
be generalized to any number of inputs and outcomes (they may even be different
for each measurement in the sequence).

Consider the joint conditional probability distributions Pi
obs(a, bi|x,~yi,~bi−1),

~yi = y1, y2, ..., yi and ~bi−1 = b1, b2, ..., bi−1, between A and each Bi. That is,
the joint conditional probability distribution between A and Bi conditioned on what
happened before the ith measurement, namely the input choices ~yi−1 and the out-
comes ~bi−1 that were obtained before measurement i. There are n of those joint
conditional probability distributions living in Q that can be obtained directly from
the whole probability distribution for the sequence Pobs(a~b|x~y) living inQsequ

n . Now
suppose that we play, for each distribution Pi

obs(a, bi|x,~yi,~bi−1), a Bell game Ii such
that Ii(Pi(a, bi|x,~yi,~bi−1)) = ti ≤ tmax

i , where tmax
i is the maximum of Ii over the

set Q.

Theorem 4. Suppose that each joint conditional probability distribution Pi
obs(a, bi|x,~yi,~bi−1)

between A and Bi in the sequence is such that Ii(Pi(a, bi|x,~yi,~bi−1)) = ti and con-
sider the limit where each ti → tmax

i . Suppose also that for each i, Gi(y0
i , Pi

obs(a, bi|x,~yi,~bi−1))
attains its smallest possible value at ti = tmax

i . Then if the maximal value tmax
i of

each Ii is achieved in a unique quantum point in Q:

G(~y0, Pobs(a~b|x~y))→
n

∏
i=1

Gi(y0
i , Pi

obs(a, bi|x,~yi,~bi−1)) (4.3)

where Gi(y0
i , Pi

obs(a, bi|x,~yi,~bi−1)) is the (non sequential) relaxed guessing prob-
ability (4.2) of an adversary E trying to guess outcome bi for input y0

i from the
observed joint probability distribution Pi

obs(a, bi|x,~yi,~bi−1)). The proof of this the-
orem can be found in appendices B.4 and B.5. In other words, if each measurement
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in the sequence taken separately – thus not seen as in a sequence – leads to correla-
tions close enough to the unique maximal violation of inequality Ii between A and
Bi only, and if this maximal violation corresponds to the minimal possible guessing
probability for bi, then the guessing probability for the whole sequence tends to the
product of the individual guessing probabilities of the outcomes bi.

4.4 Making non-destructive measurements on qubit states

A and B share the two-qubit pure state (2.4)

|ψ(θ)〉 = cos(θ)|00〉+ sin(θ)|11〉 (4.4)

that for all θ ∈]0, π/4] is entangled. In Ref. [AMP12], a family of Bell inequalities
was introduced:

Iθ = β〈B0〉+ 〈A0B0〉+ 〈A1B0〉+ 〈A0B1〉 − 〈A1B1〉 (4.5)

where β = 2 cos(2θ)/[1 + sin2(2θ)]1/2, 〈By〉 = p(b = +1|y)− p(b = −1|y)
and 〈AxBy〉 = p(a = b|xy) − p(a 6= b|xy) for x, y ∈ {0, 1}. This family
of inequalities has the following two useful properties: first, its maximal quantum
violation, Imax

θ = 2
√

2
√

1 + β2/4, is obtained by measuring the state (4.4) with
measurements:

A0 = cos µ σz + sin µ σx, B0 = σz,
A1 = cos µ σz − sin µ σx, B1 = σx,

(4.6)

where tan µ = sin(2θ). Second, when maximally violated, the inequality certi-
fies one bit of local randomness on Bob’s side for his second measurement choice
y0 = 1: G(y0 = 1, Pmax

obs ) = 1/2 [AMP12]. These observations are possible
because the maximal violation is uniquely achieved by the probability distribution
Pmax

obs that arises from the previously-described state and measurements (4.4) and
(4.6). Therefore, for the maximal violation, Pmax

obs = Pext in (4.2) and the guessing
probability for input choice y0 = 1 is equal to 1/2.

However, as we said in general we may not get correlations that maximally
violate our Bell inequality but give a violation that is only close to maximal. Nev-
ertheless, using theorem 3 one gets that the guessing probability is a continuous
function of the value of the inequality close to the maximal violation. This implies
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in the particular case we are studying that:

Iθ → Imax
θ ⇒ G(y0 = 1, Pobs)→

1
2

. (4.7)

In section 4.6, we also provide a numerical upper bound on the guessing probability
G(y0 = 1, Pobs) by a concave function of the value of Iθ .

Bell inequalities (4.5) are the first main ingredient in our sequential construction
below. The second one is the use of general, non-projective measurements. Indeed,
if B1 performs a projective measurement on the shared entangled state, the result-
ing post-measurement state, now shared between Alice and B2, is separable and
thus useless for randomness production. Consequently, one needs to consider non-
projective measurements to retain some entanglement in the system for the subse-
quent measurements. For this purpose, let us introduce the following two-outcome
quantum measurement (written in the formalism of Kraus operators, see sec. 2.2.7
for more details):

M±1(ξ) = cos ξ|±〉〈±|+ sin ξ|∓〉〈∓| (4.8)

corresponding to the two outcomes {±1}. This measurement σ̂x(ξ) ≡ {M†
+1M+1, M†

−1M−1}
can be understood as a generalization of the projective measurement σx. It varies
from being projective (for ξ = 0) to being non-interacting (for ξ = π/4). One
can verify that measuring an entangled state (4.4) for ξ ∈]0, π/4] (non-projective
measurement) the post-measurement state still retains some entanglement, irrespec-
tively of the outcome. Therefore, by tuning the parameter ξ we are able to vary
the destruction of the entanglement of the state at the gain of extracting information
from it: the closer to being a projective measurement, the lower the entanglement in
the post-measurement state, but the bigger the violation of the initial Bell inequality.

4.5 A scheme for unbounded certified random numbers

We now combine the previous observations to demonstrate our main result. First,
let us recall that, as shown in [AMP12], one can obtain one bit of randomness from
any pure entangled two qubit state, irrespective of the amount of entanglement in
it. Moreover, one can verify that approximately one random bit can be certified if
the measurements are close to the ones in Eq. (4.6) (in the sense that σ̂x(ξ) is close
to a measurement of σx for B1 in Eq. (4.6)) since Iθ is then close to Imax

θ in Eq.
(4.7). Second, the measurement in Eq. (4.8) is only close to projective for ξ close
to zero and leaves entanglement in the post-measurement state between Alice and
Bob, which is thus still useful for randomness certification.
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By repeated use of these two properties we can certify the production of an un-
bounded amount of random bits from a single pair of entangled qubits. We now
formally describe this process in which Alice makes a single measurement on her
share of the state, whereas Bob makes a sequence of n measurements on his.

Each Bi chooses between measurements of σz and σ̂x(ξi) (4.8) for inputs yi = 0
and yi = 1, respectively, with outcomes bi ∈ {±1}. The parameter ξi is fixed
before the beginning of the experiment. The initial entangled state shared between
A and B, before B1’s measurement, is |ψ(1)(θ1)〉 (see Eq. (4.4) with θ = θ1). If the
first non-projective measurement of the operator σ̂x(ξ1) is made by B1 on the initial
state |ψ(1)(θ1)〉, the post-measurement state is of the form

|ψ(2)
b1

(θ1, ξ1)〉 = Ub1
A (θ1, ξ1)⊗Vb1

B (θ1, ξ1)(c|00〉+ s|11〉) , (4.9)

where c = cos(θb1(θ1, ξ1)) and s = sin(θb1(θ1, ξ1)) and the two unitaries, Ub1
A (θ1, ξ1)

and Vb1
B (θ1, ξ1), and angle θb1(θ1, ξi) ∈]0, π/4] depend on the first outcome b1 and

the angles θ1 and ξ1.
After his measurement, B1 applies the unitary (Vb1

B )†, conditioned on his out-
come b1, on the post-measurement state going to B2. This allows B2 to use the same
two measurements σ̂(ξ2) and σz independently of the outcome b1 since the unitary
(Vb1

B ) is canceled in (4.9). This last procedure will be applied by each Bi after his
measurement, before sending the post-measurement state to the next Bi+1. If the
system passed through only the non-projective measurements, the state received by
Bi can be one of 2i−1 potential states, depending on all of the previous Bj’s (j < i)
outcomes (one for each combination~bi−1 ≡ (b1, b2, .., bi−1) of outcomes obtained
by the previous Bj, these can be computed before the beginning of the experiment).
Any of these states can be written as:

|ψ(i)
~bi−1
〉 = U

~bi−1
A ⊗ 1B

[
cos(θ~bi−1

)|00〉+ sin(θ~bi−1
)|11〉

]
, (4.10)

where the angles θ~bi−1
and the matrix U

~bi−1
A both depend on the outcomes~bi−1, on

the initial angle θ1 and the angles ξ j of the previous Bj’s with j < i. In the notation,
we will always omit the dependence on the angles θ1 and ξ1, ξ2, .., ξ j since these are
fixed before the beginning of the experiment. For each of these different potential
states with angle θ~bi−1

, Alice adds two measurements to her input choices, where for

k ∈ {0, 1}, these are measurements of the observables A
~bi−1
k which are defined as

U
~bi−1
A

[
cos(µ~bi−1

)σz + (−1)k sin(µ~bi−1
)σx

]
(U

~bi−1
A )†, (4.11)



4.5. A scheme for unbounded certified random numbers 85

where tan(µ~bi−1
) = sin(2θ~bi−1

), depending on the specific state |ψ(i)
~bi−1
〉 (4.10).

We are now ready to describe how the scheme certifies randomness. The mea-
surement operator σ̂x(ξi) can be made arbitrarily close to σx by choosing ξi suf-
ficiently small. This brings the outcome statistics for measurements σ̂x(ξi), σz on

Bob’s side and A
~bi−1
0 , A

~bi−1
1 on Alice’s side on the state in Eq. (4.10), arbitrarily

close to the statistics for the measurements in Eq. (4.6) and a state of the form in
Eq. (4.4), for θ = θ~bi−1

. Therefore, the inequality Iθ~bi−1
for Alice and Bi as defined

in (4.5) can be made arbitrarily close to its maximal violation. This in turn guar-
antees that the guessing probability, G(y0

i = 1, Pobs) can be made arbitrarily close
to 1/2. Note that this guessing probability does not only describe the instances

when Alice chooses the measurements A
~bi−1
j . Since Eve does not know Alice’s

measurement choices in advance she cannot use a strategy that gives higher predic-
tive power for the instances when Alice chooses other measurements. Finally, by
making G(y0

i = 1, Pobs) sufficiently close to 1/2 for each i (by choosing each ξi
sufficiently close to 0) the DIGP G(~y0

n, Pobs) can, by continuity, be made arbitrarily
close to 2−n (see appendices B.4 and B.5 for more formal proofs of these state-
ments).

At the end, Bob can produce m random bits by a suitably chosen sequence
σ̂x(ξi), i ∈ {1, 2, .., n}, of n > m measurements. The certification only requires
that each Bi occasionally chooses the projective measurement σz so that a good es-
timate of the whole statistics Pobs can be constructed. Note that Bob can choose
σz with probability γi and σ̂x(ξi) with probability 1 − γi for γi as close to zero
as he wants. Finally, note that the value of each inequality Iθ~bi−1

between each Bi

and A can be made as close as wanted to the maximal value Imax
θ~bi−1

. Therefore, we

can certify randomness for each measurement Bi in the sequence at the expense of
increasing the number of measurements that Alice chooses from.

This protocol can also be used to certify any finite amount of randomness with
some small but strictly non-zero noise robustness. Indeed, assume the goal is to
certify m random bits. One can then run the protocol for m′ > m bits. By con-
tinuity, when adding a small but finite amount of noise the protocol will certify m
random bits. Of course, the noise robustness tends to zero with the number of cer-
tified random bits. However, we expect this to be the case for any protocol. This
conjecture is based on the following argument: each measurement of a particle of
finite dimension can produce only a finite amount of randomness. Thus, to get un-
bounded randomness, an infinite number of measurements are needed. Moreover,
a measurement that is very close to non-interacting is unlikely to produce nonlocal
correlations and is thus useless to certify randomness. It therefore appears quite
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likely that, in the infinite limit, any sequence of local measurements that are useful
for randomness certification will destroy all the entanglement in the state, so that the
resulting noise resistance tends to zero. We therefore expect that, while quantitative
improvements over our protocol in terms of noise robustness can be expected, from
a qualitative point of view it goes as far as possible.

4.6 Numerical bounds on the amount of violation of the
family of Bell inequalities of [AMP12] and the certified
randomness

Let us now explain some numerical results that should provide some quantitative
intuition on the relation between the amount of violation of the family of inequali-
ties (4.5) and the amount of random bits certified by this violation. This allows one
to evaluate how close the value Iθ of the inequalities (4.5) should be to the maximal
one Imax

θ in order to certify close to one perfect random bit from the statistics for
one measurement n = 1.

Our numercial bounds apply to a larger family of Bell inequalities than the Iθ

(4.5), namely the following two-parameter class of Bell inequalities:

Iα,β := β〈B0〉+ α(〈A0B0〉+ 〈A1B0〉) + 〈A0B1〉 − 〈A1B1〉 ≤ β + 2α (4.12)

where α ≥ 1 and β ≥ 0 such that αβ < 2. For α = 1 the above class reproduces
the family of Bell inequalities (4.5) with β = 2 cos(2θ)/[1 + sin2(2θ)]1/2. In
[AMP12] it was proved that the maximal quantum value Imax

α,β for these inequalities
is given by:

Imax
α,β =

√
(1 + α2)(4 + β2). (4.13)

Now, we conjecture that the following inequality is satisfied by Iαβ:

I2
α,β + (2− αβ)2〈B1〉2 ≤ (1 + α2)(4 + β2). (4.14)

We have numerically evaluated this inequality for various values of α and β by
maximizing its left-hand side over general one-qubit measurements Ai = ~mi ·~σ
and Bi = ~ni ·~σ with ~mi,~ni ∈ R3 such that |~mi| = |~ni| = 1 for i = 0, 1, and
two-qubit pure entangled states that can always be written as

|ψ〉 = cos(θ)|00〉+ sin(θ)|11〉 (4.15)
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with θ ∈ [0, π/2] now being independent of β. The obtained values were always
smaller than or equal to the right-hand side of (4.14). Notice that in the case of Bell
scenarios with two dichotomic measurements one can always optimize expression
like the above one over qubit measurements and states (see e.g. Ref. [AMP12]).

From (4.14), it is easy to obtain an upper bound on the expectation value:

|〈B1〉| ≤

√
(1 + α2)(4 + β2)− I2

α,β

2− αβ
=

√
(Imax

α,β )2 − I2
α,β

2− αβ
, (4.16)

which, due to the fact that the right-hand side of the above is a concave function in
Iα,β, implies an upper bound on the guessing probability:

G(y0 = 1, Pobs) ≤
1
2
+

√
(Imax

α,β )2 − I2
α,β

2(2− αβ)
≡ f (Iαβ). (4.17)

In the particular case of maximal violation of the inequality Iαβ (4.12) – which
saturates inequality (4.14), this bound implies that the outcome of the first Bob’s
measurement is completely unpredictable, G(y0 = 1, Pobs) = 1/2. Our numeri-
cal bound is thus tight at the maximal quantum violation of the inequality, but also
when Iαβ attains its classical value 2α + β, for which G(y0 = 1, Pobs) = 1. In
general, however, the bound (4.17) is not tight. Still, it provides a good bound on
the guessing probability in terms of the amount of violation of Iαβ (4.12) and thus
also of the family of inequalities Iθ (4.5) we were using in our scheme.

Let us finally consider the case of α = 1 and β = 2 cos(2θ)/[1+ sin2(2θ)]1/2,
which results in the Bell inequality (4.5) considered in the main text. Figure 4.3
presents the bound (4.17) for three values of θ, in particular for θ = π/4 which
corresponds to the CHSH Bell inequality. This should provide one with an intu-
ition of how close quantitatively to the maximal violation Imax

θ the observed value
Iθ should be in order to get close to one perfect local bit of randomness (G(y =
1, Pobs)→ 1/2) for a state with a given angle θ.

4.7 The amount of certified randomness as a function of
the strength of the measurement

In this section we analyse with the help of numerical tools the dependency of the
certified randomness from the violation of the family of Bell inequalities (4.5) on
the strength parameter ξ of the measurements σ̂x(ξ) = cos(2ξ)σx (4.8). For exam-
ple, what is the maximal value of the parameter ξ – i.e. the minimal strength of the
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FIGURE 4.2: Our numerical upper bounds on the guessing probability in function
of the violation of Iθ for θ = π
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16 , where Iθ= π
4
= CHSH. One can see that

these are tight both at the maximal violation of the inequality and at its local bound.

measurement –such that we can generate nonlocal correlations (and thus random-
ness) from this measurement on an entangled state of the form |ψ(θ)〉 (4.4)? Do
less entangled states need stronger measurement to unveil their nonlocal behaviour?

To answer these questions, we have been using semi-definite programming (SDP)
techniques as explained in [BSS14; NSPS14] to obtain numerical upper bounds on
the guessing probabilities (4.2). One can find the computational details – presented
in a pedagogical way – online at https://github.com/peterwittek/ipython-notebooks/
blob/master/Unbounded_randomness.ipynb. Here we work in the stan-
dard scenario with only one measurement n = 1 in the sequence. We used states of
the form (4.4):

|ψ(θ)〉 = cos(θ)|00〉+ sin(θ)|11〉 (4.18)

and measurements (4.6):

A0 = cos µ σz + sin µ σx, B0 = σz,
A1 = cos µ σz − sin µ σx, B1 = σ̂x(ξ) = cos(2ξ)σx,

(4.19)

where tan(µ) = sin(2θ). These measurements correspond to the ones in our

https://github.com/peterwittek/ipython-notebooks/blob/master/Unbounded_randomness.ipynb
https://github.com/peterwittek/ipython-notebooks/blob/master/Unbounded_randomness.ipynb
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scheme for an unbounded amount of randomness and where the second measure-
ment y = 1 of B is the tunable version σ̂x(ξ) ≡ {M†

+1M+1, M†
−1M−1} of Eq.

(4.8):
M±1(ξ) = cos ξ|±〉〈±|+ sin ξ|∓〉〈∓|, (4.20)

with ξ ∈ [0, π
4 ]. For example, if the parameter ξ = 0, the four (projective) mea-

surements in Eq. (4.19) on any quantum state |ψ(θ)〉 with angle θ (4.18) generates
a behavior Pθ

obs leading to the maximal violation of the inequality Iθ (4.5) for the
same value of θ. This implies that extremal nonlocal correlations are generated and
from the results of [AMP12] we know that one perfect random bit – equivalently
G(y0 = 1, Pθ

obs) =
1
2 – is produced. This corresponds to the strongest (projective)

version of the measurements. Now, as we increase the parameter ξ > 0 of B’s
y = 1 measurement, σ̂x(ξ) gets weaker, the generated correlations cease to be ex-
tremal and less than one random bit is produced. At some point, at a particular value
ξθ

max the measurement of B is so weak that we expect the generated correlations to
become local. This exact value might depend on the amount of entanglement θ in
the state. The bounds obtained by SDP indicate that this dependency on the angle
θ of the maximal value ξθ

max is unexpectedly small. As we vary the angle θ, the
minimal required strength of the measurement to generate a nonlocal behavior Pθ

obs
stays within a narrow interval: ξθ

max ∈ [0.519, 0.576] for θ ∈ [ π
32 , π

4 ]. Nevertheless,
as ξ increases the lower bounds on the certified randomness rapidly decreases, with
a more rapid decrease for smaller θ.

One can find our results in the form of a graph Fig.4.3. A complete tables with
our results for the different states and bounds on the guessing probabilities can be
found in the appendices B.6.

In the end, we are interested primarily in the amount of certified randomness
from Pθ

obs close to the maximal violation of Iθ , corresponding to ξ → 0. There, the
SDP solutions indicate that the correlations resisting the best to the weakening of the
measurement ξ > 0 are the ones coming from the measurements made on the maxi-
mally entangled state. Indeed, if the bounds are close to the actual values of certified
randomness it is quite clear from the numerical results that the more the state is en-
tangled (θ → π

4 ) the better it resists. The less entangled states (θ → 0) appear to
generate exponentially less randomness when the parameter ξ increases, or equiva-
lently when the correlations cease to be extremal. This tells us that even though our
scheme certifies an unbounded amount of randomness from states |ψ(θ)〉 with any
nonzero amount of entanglement, i.e. any θ > 0, it is preferential from a practical
point of view to use the maximally entangled state as the initial state.
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FIGURE 4.3: Lower bounds on the amount of randomness certified from the
quantum state (4.4) with angles θ = 0, π
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4 as function of the strength of

the measurement ξ. The measurement is projective for ξ = 0 – which certifies
the maximal amount of randomness – and is non interacting with the system when
ξ = π

4 . It is intriguing to see that for the cases of π
32 ≤ θ ≤ π

4 considered the
generated behavior become local in a small interval ξmax ∈ [0.519, 0.576].

4.8 Conclusion

We have presented a scheme for certifying an unbounded amount of random bits
from pairs of entangled qubits in the scenario where one of the qubits is subjected
to a sequence of measurements. The measurements do not completely destroy the
entanglement but map the state to another pure entangled two-qubit state (with re-
duced entanglement). Our main result made use of the fact that every measurement
in Bob’s sequence generated an almost-maximally non-local output distribution (in
the sense of violating some Bell inequality almost maximally). In Ref. [Sil+15],
a sequence of non-local correlations is obtained from pairs of qubits, showing that
the nonlocality of a state can be shared between many parties. While it also con-
siders sequences of measurements, one can show that the correlations obtained in
their work do not generate more certified randomness than the simple standard sin-
gle measurement scenario. Indeed, the maximum of randomness is achieved when
all but one measurements do not interact with the particle and their scheme is thus
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optimal when coinciding with a single measurement one. In our work, we over-
come this limitation by producing (almost) extremal correlations for each measure-
ment in the sequence, which is a fundamental property of potential further use for
many other device-independent quantum information tasks (in particular for ran-
domness certification). Our work is in many respects a proof-of-principle result:
First, it requires an exponentially increasing number of measurements on Alice’s
side, namely ∑n

i=1 2i = 2(2n − 1) measurement choices for n measurements in the
sequence. Second, the result is based on a continuity argument and there is no con-
trol on the noise robustness. All these issues deserve further investigation. Finally,
it is worth exploring how to design device-independent randomness generation pro-
tocols involving sequences of measurements. However, the sequential scenario is
much more demanding from an implementation point of view, because it requires
quantum non-demolition measurements. It is then unclear whether with present or
near future technology sequential protocols will provide a significant practical ad-
vantage over simpler protocols based on standard Bell tests. However, the first ex-
perimental works observing non-local correlations in the sequential scenario have
recently been reported [Sch+17; Hu+16]. In any case, the main implications of our
work are fundamental: It shows that pairs of pure entangled qubits are potentially
unbounded sources of certifiable random bits when performing sequences of mea-
surements on it.

We have also provided numerical results that gives us an insight on the resis-
tance to imperfections of a potential protocol that implements our scheme. For a
single measurement in the sequence, we have given numerical bounds on how the
certified randomness diminishes as the generated correlations cease to be extremal.
Second, we have also explored how the certified randomness diminishes when the
strength of the measurement is lowering. This allows us to expect that any potential
protocol trying to implement our scheme for a finite amount of randomness start-
ing from an entangled system has an advantage in using the maximally entangled
one. It is clear from our numerical results that this state offers the best resistance to
imperfections. So, while it is true that even arbitrarily little entangled states are a
source of unbounded certified randomness, more entanglement offers an advantage
in terms of resistance to imperfections.

It would also be interesting to explore whether an unbounded amount of ran-
domness can be obtained versus a post-quantum adversary E, only constrained by
the no-signaling condition, trying to guess the outcomes of the measurements. Or,
on the contrary, is the amount of certified randomness against no-signaling adver-
saries bounded also in the sequential scenario? Our conjecture is that the amount
of randomness that can be certified is limited in this case. Indeed, the fact that the
no-signaling set – consisting of all correlations constrained only by the no-signaling
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conditions – does not have a continuous set of extremal points (it is a polytope)
makes it impossible to obtain a sequence of extremal probability distributions in a
sequence as the one that we could obtain in the quantum case. A different approach
thus needs to be taken. It is really the fact that the quantum set has curved bound-
aries made of extremal quantum behaviours that allowed to derive the results of this
chapter.
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Chapter 5

A simple approach to genuine
multipartite nonlocality of pure
states

In this chapter, we study the relation between the different notions of multipartite
entanglement and multipartite nonlocality. In particular, we focus on the equiva-
lence between genuine multipartite entanglement (GME) and genuine multipartite
nonlocality (GMNL) for pure states. From an operational understanding of multi-
partite (pure state) entanglement, we develop a method to construct simple families
of Bell inequalities witnessing different types of multipartite nonlocality. We show,
analytically, that our families witnessing GMNL are violated by large classes of
GME pure states for any number of parties. In particular, even GME states that are
almost separable can violate our inequalities for any number of parties. In the tripar-
tite scenario, we show analytically that all three-qubit systems in a GME pure state,
that is symmetrical to the permutation of two of the three parties, violate a single
Bell inequality witnessing GMNL. Complementary to our analytical results, numer-
ical evidence is provided that all three and four partite qubit systems in a GME pure
state also violate a single of our inequalities and are hence GMNL.

These results, together with the operational meaning of our inequalities, lead us
to conjecture that our families of Bell inequalities can be used to show that all GME
pure states display GMNL.

The work exposed in this section is based on [CAA18].

5.1 Introduction

Nonlocal correlations have been extensively studied in the simplest scenario of bi-
partite systems (see Sec. 2.2), which is sufficient to obtain powerful resources for
information tasks with no classical equivalent (see Sec. 2.4). Multipartite scenarios
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– consisting of set-ups with at least three parties – have received far less attention
due to their greater complexity. They offer, however, a much richer source of cor-
relations than the bipartite set-up, and have already been proven useful for several
tasks [Sve87; SS02; Gal+12; Ban+13; Ban14a; Gal+13; Ban14b; Bou+14; Tur+14].
For more details on the multipartite scenario, see Sec. 2.3. Either for a better use of
the potential provided by multipartite systems, which might be particularly interest-
ing for tasks on quantum networks, or simply to explore scenarios that go beyond
the standard bipartite set-up, the study of multipartite scenarios is nowadays a cen-
tral problem.

Two-particle systems in a pure quantum state display a straighforward relation
between entanglement and nonlocality: all pure entangled two-particle states are
nonlocal [Gis91]. This result has been extended to the multipartite scenario [PR92;
GG16], with the caveat that the used definitions of entanglement and nonlocality
only require two parties of the multipartite system to be non-classically correlated.
In order to grasp the full potential of many-body systems, it is necessary to consider
genuinely multipartite definitions of entanglement and nonlocality, where all the
parties of a system are engaged, instead of only subsets of them. Genuine multipar-
tite entangled (GME) states (2.39) are necessary to generate genuine multipartite
nonlocal (GMNL) correlations (2.46) (see more details in Sec. 2.3). It is a long-
standing open question whether entanglement in pure states is sufficient to observe
nonlocality, in the genuinely multipartite sense. Can all pure GME states generate
GMNL correlations, for any number of particles? So far, it is known that this holds
for systems of three particles in a pure GME state [YO13; Che+14]. This result re-
lies, however, on the use of genuine tripartite Hardy-type paradoxes [Har93], which
have the drawback of not allowing for experimental realisations, contrary to nonlo-
cal correlations detected by the violation of a Bell inequality1.

In this work, we make steps forward to prove the equivalence between GME
of pure states and GMNL in full generality. To do so, we develop a technique to
build families of Bell inequalities that witness GMNL for any number of observers.
These families of Bell inequalities have a very clear operational meaning and cap-
ture essential features of multipartite nonlocality. We show analytically that a large
class of GME pure states violate our inequalities for any number of parties, even
states that are almost separable. In the tripartite scenario, we also show that almost

1Contrary to the violation of a Bell inequality, the realisation of a Hardy-type paradox relies on
strong conditions of the form P(ab|xy) = 0 for some values of a, b, x, y. Such conditions are impossi-
ble to meet in an experiment, where even the smallest imperfections lead to values P(ab|xy) = ε > 0.
Realisations that are close to the optimal ones of a Hardy paradox are likely to remain nonlocal, but
will further require the use of a Bell inequality as witness. It is moreover unclear which Bell inequality
should be used in that case.
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all GME pure state violate our inequalities. We extend these analytical results by
providing numerical evidence that all three-qubit and four-qubit systems in a GME
pure state violate our inequalities. The strength of our construction to detect the
multipartite nonlocality generated from pure states – in addition to the strong oper-
ational meaning of our construction – lead us to conjecture that one of our family of
Bell inequalities can be used to generalise Gisin’s theorem: all GME pure states are
GMNL.

Finally, we extend our results to the richer notions of multipartite nonlocality as
captured by the notion of m−way (non)locality (see Sec. 2.3.2).

5.2 The tripartite scenario

We are here interested in genuinely multipartite definitions of entanglement and
nonlocality (2.39), (2.46), which we recall here briefly for the sake of clarity. As
first noticed by Svetlichny [Sve87], distributions generated in a tripartite scenario
lead to stronger notions of nonlocality. Consider for instance a relaxation of the
locality assumption, where pairs of parties are now allowed to group together and
share nonlocal resources. This type of hybrid local/nonlocal models leads to joint
conditional probability distributions

P2/1(a1a2a3|x1x2x3) =

= ∑
λ1

q1(λ1)PA1 A2(a1a2|x1, x2, λ1)PA3(a3|x3, λ1)

+∑
λ2

q2(λ2)PA1 A3(a1a3|x1, x3, λ2)PA2(a2|x2, λ2)

+∑
λ3

q3(λ3)PA2 A3(a2a3|x2, x3, λ3)PA1(a1|x1, λ3)

(5.1)

with qi(λi) ≥ 0 and ∑
i,λi

qi(λi) = 1. Distributions P(a1a2a3|x1x2x3) that cannot

be decomposed in the form (5.1) are named genuine tripartite nonlocal. Remem-
ber that the choice of nonlocal resource inside a group of parties leads to differ-
ent definitions of genuine multipartite nonlocality (see Sec. 2.3.2). As explained,
in this thesis the distributions PAi Aj(aiaj|xi, xj, λ) satisfy the no-signalling prin-
ciple [PR94], which implies that the marginals P(ai|xi, λ) = P(ai|xi, xj, λ) =

∑aj
P(aiaj|xixj, λ), ∀xj, are well defined for all λ.
A system of three particles is said to be in a genuine tripartite entangled pure

state if it can not be decomposed as |ψ123〉 = |φij〉|φk〉, where ijk is any combi-
nation of the particles (2.39). One can easily verify that local measurements on
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biseparable states always lead to a hybrid joint distribution (5.1).

In the bipartite scenario, when each party have two choices of two-outcome
measurements, i.e. xi, ai ∈ {0, 1} for i = 1, 2, the violation of the CHSH inequal-
ity is both necessary and sufficient for P(a1a2|x1x2) to be nonlocal [Chs; Fro81;
Fin82]. This is also the inequality used to show that all pure states of two particles
are nonlocal [Gis91]. Here we write a variation of the CHSH inequality,

IA1 A2 = P(00|00)− P(01|01)− P(10|10)− P(00|11) ≤ 0 (5.2)

which is equivalent to the standard expression

CHSH = 〈A0B0〉+ 〈A1B0〉+ 〈A0B1〉 − 〈A1B1〉 ≤ 2 (5.3)

for no-signaling distributions and where 〈AxBy〉 = ∑
ab

P(a = b|xy) − P(a 6=
b|xy).

5.3 Bell inequalities witnessing genuine tripartite nonlo-
cality

Our two inequalities witnessing genuine tripartite nonlocality use CHSH inequali-
ties (5.2) as building blocks and can be written as

IA1 A2 A3
sym = IA1 A2

0|0 + IA1 A3
0|0 + IA2 A3

0|0 − P(000|000) ≤ 0 (5.4)

IA1 A2 A3
À = IA1 A2

0|0 + IA1 A3
0|0 − P(000|000) ≤ 0 (5.5)

and where

IA1 A2
0|0 ≡ P(000|000)− P(010|010)− P(100|100)

−P(000|110)
(5.6)

is a lifting [Pir05] of the inequality IA1 A2 to the tripartite scenario, by setting ob-
server A3 to measurement x3 = 0 and outcome a3 = 0. Lifted inequalities IA1 A3

0|0
and IA2 A3

0|0 are built in a similar way. Note that the local bound of the lifted in-

equalities is the same as the original one, I
Ai Aj

0|0 ≤ 0. See Appendix C.1 for more

details on lifted Bell inequalities. Inequality IA1 A2 A3
sym belongs to class 6 of [Ban+13],

where strong numerical evidence was provided indicating that all 3-qubit systems
in a GME pure state could generate distributions violating it. Although we already
know from [Ban+13] that this inequality detects genuine tripartite nonlocality, we
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present here a proof that will be useful for understanding the generalisation to n
parties.

Theorem 5. The Bell inequalities IA1 A2 A3
sym (5.4) and IA1 A2 A3

À (5.5) are witnesses of
genuine tripartite nonlocality.

Proof. We want to show that any hybrid distribution (5.1) satisfies IA1 A2 A3
sym ≤ 0 and

IA1 A2 A3
À ≤ 0, hence only genuine tripartite nonlocal correlations can violate these

inequalities. A basic element of our proof if that

I
Ai Aj

0|0
(

PAj Ak(ajak|xjxk)PAi(ai|xi)
)
≤ 0 (5.7)

for any triplet i, j, k ∈ {1, 2, 3} with i 6= j 6= k 6= i and for any extremal hybrid
distribution PAj Ak(ajak|xjxk)PAi(ai|xi). This comes from the fact that the (lifted)

inequality I
Ai Aj

0|0 can only be violated if parties Ai and Aj are non-classically corre-
lated, which is not the case when the correlations allow for a decomposition of the
form PAj Ak(ajak|xjxk)PAi(ai|xi). Also notice that

Ī
Ai Aj

0|0 ≡I
Ai Aj

0|0 − P(000|000) =

= −P(010|010)−P(100|100)− P(000|110) ≤ 0
(5.8)

holds for any normalised probability distribution (that is, even a post-quantum one).
For completeness, in Appendix C.1 we add a brief review on lifting Bell inequalites
and in particular a rigorous proof of statement (5.7).

We now first expose the proof for IA1 A2 A3
sym and notice that the inequality is in-

variant under permutations of parties. This, together with the convexity of (5.1)
allows us to restrict, without loss of generality, to show that

IA1 A2 A3
sym (PA1 A2(a1a2|x1x2)PA3(a3|x3)) ≤ 0 (5.9)

Now, for correlations PA1 A2(a1a2|x1x2)PA3(a3|x3) we have that IA1 A3
0|0 ≤ 0 and

IA2 A3
0|0 ≤ 0 from (5.7). Therefore,

IA1 A2 A3
sym

(
PA1 A2(a1a2|x1x2)PA3(a3|x3)

)
≤ IA1 A2

0|0 − P(000|000) = ĪA1 A2
0|0 ≤ 0

(5.10)

which ends the proof for the symmetrical family IA1 A2 A3
sym .
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The proof for the second family IA1 A2 A3
À follows the same steps as for the sym-

metrical IA1 A2 A3
sym one. This time, since the inequality is not invariant under permu-

tations of parties we need to prove that

IA1 A2 A3
À (PAi Aj(aiaj|xixj)PAk(ak|xk)) ≤ 0 (5.11)

for any hybrid correlations PAi Aj(aiaj|xixj)PAk(ak|xk). Now, since (5.7) and (5.8)
hold for any combination of the three parties

IA1 A2 A3
À

(
PAi Aj(aiaj|xixj)PAk(ak|xk)

)
≤ I

Ai Aj

0|0 − P(000|000) = Ī
Ai Aj

0|0 ≤ 0

(5.12)

This finishes the proof for the second family IA1 A2 A3
À .

Notice that the idea behind our construction can be extended to build a two
parameter family of inequalities that also witness genuine multipartite nonlocality
between three parties

IA1 A2 A3
µ,ν = IA1 A2

0|0 + µIA1 A3
0|0 + νIA2 A3

0|0 − P(000|000) ≤ 0 (5.13)

for µ, ν ∈ [0, 1]2. Indeed, one can use property (5.7) as in the proof of Theorem 5
to see that (5.13) holds

IA1 A2 A3
µ,ν

(
PAi Aj(aiaj|xixj)PAk(ak|xk)

)
≤ I

Ai Aj

0|0 − P(000|000) = Ī
Ai Aj

0|0 ≤ 0

(5.14)

It is interesting to observe that the local strategy where every party always ob-
tains outcome ai = 1 for any measurement xi saturate both inequalities IA1 A2 A3

À = 0
and IA1 A2 A3

sym = 0. This implies that the local and hybrid bounds of our inequalities
coincide.

We now use the non symmetrical family of inequalities IA1 A2 A3
À (5.5) to show

that a very large class of three-qubit GME pure states are GMNL. In [Ací+00], it
was shown that all systems of three qubits in a pure state could be written as

|Ψ3〉 = h0|000〉+ h1eiφ|100〉+ h2|101〉+ h3|110〉+ h4|111〉 (5.15)

where hi ∈ R+, ∑
i

h2
i = 1 and φ ∈ [0, π].

2Note that the combination µ = ν = 0 is not a Bell inequality any more.
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Theorem 6. For all tripartite pure states (5.15) that are GME and for which h2 =
h3 – i.e. that are symmetrical with respect to permutation of two parties among the
three A2 ↔ A3

3 – one can find measurements such that the generated correlations
violate inequality IA1 A2 A3

À > 0 (5.5), hence generating GMNL correlations.

Proof. The full proof of theorem 6 can be found in appendix C.4. The main line
of it goes as follows. Both the (projective) measurements of parties A2 and A3 are
chosen to be the same 〈ma2|x2

| = 〈ma3|x3
| ∀a2 = a3 and x2 = x3. This makes the

whole correlations P(a1a2a3|x1x2x3) symmetrical with respect to the permutation
A2 ↔ A3 too as both the state and the measurements used are. This symmetry
also implies that the two prepared states |ψA1 A2

0|0 〉 = |ψ
A1 A3
0|0 〉 are the same, where

the state |ψA1 A2
0|0 〉 between A1 and A2 is the state prepared by party A3 making the

projection 〈ma3=0|x3=0| on |Ψ3〉 (5.15)

|ψA1 A2
0|0 〉 ∝ 1A1 ⊗ 1A2 ⊗ 〈ma3=0|x3=0||Ψ3〉 (5.16)

and similarly for |ψA1 A3
0|0 〉. So far, we can always tune the measurements 〈ma2=0|x2=0| =

〈ma3=0|x3=0| such that the prepared states |ψA1 A2
0|0 〉 = |ψ

A1 A3
0|0 〉 are entangled [PR92],

but not maximally. In the end, all these symmetries, in particular that IA1 A2
0|0 = IA1 A3

0|0
allow us to simplify

IA1 A2 A3
À = IA1 A2

0|0 + IA1 A3
0|0 − P(000|000) = 2IA1 A2

0|0 − P(000|000)

= P(000|000)− 2P(010|010)− 2P(100|100)− 2P(000|110)
(5.17)

Finally, we show that one can always realise

P(000|000) > 0
P(010|010) = P(100|100) = P(000|110) = 0

(5.18)

by choosing the measurements on the prepared state |ψA1 A2
0|0 〉 (that is entangled, but

not maximally) as for a violation of the Hardy paradox [Har93]. Note that it is a
family of measurements on a non-maximally entangled state |ψA1 A2

0|0 〉 that can be

chosen such that the generated correlations satisfy (5.18): one can choose freely4

the first measurement, say 〈ma2=0|x2=0|, and always find three other measurements
〈ma2=0|x2=1|, 〈ma1=0|x1=0|, 〈ma1=0|x1=1| such that (5.18) is satisfied. Now since

3I.e. for which h0, h4 > 0, h2 = h3
4To be exact, for any pure (non maximally) entangled state |ψA1 A2

0|0 〉 the measurement can not be
chosen completely freely: there is one point in the full space of measurements that is not allowed.
Being only a point in the full space, this does not affect the proof. More details can be found in App.
C.5.
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measurement 〈ma2=0|x2=0| is free, it can be tuned in order to be compatible with the
condition to prepare a state |ψA1 A3

0|0 〉 (= |ψ
A1 A2
0|0 〉) that is non-maximally entangled.

Theorem 6 implies that all three qubit systems in a GME pure state, that are
in addition symmetrical to the permutation of two out of the three parties Ai ↔
Aj, i 6= j, are GMNL. Note that the fact that tripartite systems in a GME pure
state are GMNL was already proven in [Che+14; Che+04]. On the other hand, their
construction relies on the violation of two families of Hardy-like paradox witnessing
GMNL, making it untestable in an experiment. We were unable to prove that our
inequality IA1 A2 A3

À (5.5) can be violated by all GME three qubit pure states (5.15)
(else than numerically).

5.4 General multipartite scenario

Let us briefly recall the important definitions that we need in the multipartite sce-
nario (see Sec. 2.3.2 for more details). Consider n ≥ 3 distant observers performing
local measurements ~x = (x1, . . . , xn) and obtaining outcomes~a = (a1, . . . , an). A
distribution P(~a|~x) is said to be biseparable if

P2-sep(~a|~x) = ∑
g

∑
λg

qg(λg)P(~ag|~xg, λg)P(~aḡ|~xḡ, λg) (5.19)

where ∑
g

∑
λg

qg(λg) = 1, qg(λg) ≥ 0 and g is a group consisting of a particu-

lar subset of the n observers and ḡ its complement. We label the string of mea-
surement choices (resp. outcomes) of the observers belonging to the group g as
~xg (~ag). For example, for n = 3 there are only three possible inequivalent ways
of making two groups: (g1 = A1A2, ḡ1 = A3), (g2 = A1A3, ḡ2 = A2) and
(g3 = A2 A3, ḡ3 = A1), leading to a decomposition of the form (5.1). Distributions
that can not be written according to the decomposition (5.19) are genuine multipar-
tite nonlocal. Again, local measurements on pure biseparable states, which for pure
states can be written as |ψ1...n〉 = |φg〉|φḡ〉 for some splitting g/ḡ of the particles,
always lead to biseparable joint distributions (5.19). Genuine multipartite entangle-
ment is necessary to observe genuine multipartite nonlocality.
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5.5 Bell inequalities witnessing genuine multipartite non-
locality

The generalisation of inequalities IA1 A2 A3
sym (5.4) and IA1 A2 A3

À (5.5) to any number of
parties gives two distinct families of Bell inequalities that can be written in a simple
form:

IA1...An
sym =

n−1

∑
i=1

n

∑
j>i

I
Ai Aj

~0|~0 −
(

n− 1
2

)
P(~0|~0) ≤ 0 (5.20)

IA1...An
À =

n

∑
j>1

I
A1 Aj

~0|~0 − (n− 2)P(~0|~0) ≤ 0 (5.21)

where (n−1
2 ) = (n−1)(n−2)

2 and we take the freedom of writing ~0 ≡ (0, 0, ..., 0),

the size of the string should be obvious in the context. Similarly to (5.6), I
Ai Aj

~0|~0
is a lifting of inequality IAi Aj (5.2) to n observers by setting the remaining n− 2
observers to have their measurement and outcome set to 0:

I
Ai Aj

~0|~0 = P(0i0j~0|0i0j~0)− P(1i0j~0|1i0j~0)

−P(0i1j~0|0i1j~0)− P(0i0j~0|1i1j~0) .
(5.22)

The operational meaning of these inequalities is the following: a) for the symmet-
rical family (5.20), more than (n−1

2 ) different pairs of parties Ai Aj should be able
to win a lifted inequality (conditioned on the remaining n − 2 parties’ input and
outcomes xk = ak = 0 ∀k 6= i, j); and b) the inequalities "centered" on A1 (5.21),
more than n− 2 different pair of parties A1Aj should win a lifted inequality (condi-
tioned on the remaining n− 2 parties’ input and outcomes xk = ak = 0 ∀k 6= 1, j).

Theorem 7. The Bell inequalities IA1...An
sym (5.20) and IA1...An

À (5.21) are witnesses
of genuine multipartite nonlocality for all n ≥ 3.

Proof. Here we only provide an outline, the detailed proof can be found in Ap-
pendix C.2.1. The idea is similar to the one for three parties and, again, we start
with the symmetrical family IA1 ...An

sym (5.20). We want to show that all biseparable
distributions (5.19) for n parties satisfy IA1 ...An

sym ≤ 0. Again, by convexity, it is
enough to verify it for extremal biseparable distributions

IA1 ...An
sym

(
P(~ag|~xg)P(~aḡ|~xḡ)

)
≤ 0 . (5.23)
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If parties Ai and Aj belong to different groups, they are only classically correlated

and therefore I
Ai Aj

~0|~0 ≤ 0. Then, the only terms that can give a positive contribution

to (5.23) are terms I
Ai Aj

~0|~0 where parties Ai and Aj belong to the same group. Now

the trick is to kill these positive contributions by subtracting enough P(~0|~0) terms
since, similarly to n = 3 (5.8),

Ī
Ai Aj

~0|~0 ≡ I
Ai Aj

~0|~0 − P(~0|~0) ≤ 0 (5.24)

for any probability distributions. In general, if the first group g consists of m parties

and ḡ of n− m, a total number of (m
2 ) + (n−m

2 ) inequalites I
Ai Aj

~0|~0 can in principle
be positive. The largest number of pairs is obtained by putting n− 1 parties in one
group5, which means (n−1

2 ) potentially positive terms I
Ai Aj

~0|~0 . Then,

IA1 ...An
sym

(
P(~ag|~xg)P(~aḡ|~xḡ)

)
≤

n−2

∑
i=1

n−1

∑
j>i

I
Ai Aj

~0|~0 −
(

n− 1
2

)
P(~0|~0) =

n−2

∑
i=1

n−1

∑
j>i

Ī
Ai Aj

~0|~0 ≤ 0
(5.25)

where we used the fact that IA1 ...An
sym is invariant under permutations of parties to

consider the specific partition g = {1, .., n − 1} and ḡ = {n}. This finishes the
proof for the symmetrical family IA1...An

sym .

The proof for the non symmetrical family IA1 ...An
À (5.21) follows the same idea.

Using (5.24), any biseparable distribution (5.19) with m parties in the first group g
containing party A1 and n−m in the other group ḡ gives

IA1 ...An
À

(
P(~ag|~xg)P(~aḡ|~xḡ)

)
≤ ∑

j∈g
I

A1 Aj

~0|~0 − (n− 2)P(~0|~0) ≤ ∑
j∈g

Ī
A1 Aj

~0|~0 ≤ 0

(5.26)

since there are at most n− 2 parties together with party A1 in the first group g.

One can understand a violation of the families (5.21) and (5.20) of inequalities
in the following way: GMNL correlations are the only ones for which it is poten-
tially possible to violate a lifted inequality I

Ai Aj

~0|~0 between all pairs of parties, as
they are the ones where all the parties share nonlocal resources with all the others.

5One can check that (n−1
2 ) > (m

2 ) + (n−m
2 ) ∀m ≥ 2.
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Biseparable correlations (5.19) are limited in this sense, as many parties are only
classically correlated to the parties that are in a different group and thus numerous
lifted inequalities I

Ai Aj

~0|~0 cannot be violated. We give an illustration of that argument
in Fig. 5.1.

FIGURE 5.1: An abstract representation of five parties (the blue balls) arranged
into groups (the grey areas). Two parties inside the same group can potentially

violate a lifted inequality I
Ai Aj
~0|~0 (as represented by a dashed line between them). i)

Two groups of parties |g| = 2; |ḡ| = 3, giving a distribution of the form P(~a|~x) =
P(a1a2|x1x2)P(a3a4a5|x3x4x5) and a maximum number of (2

2) + (3
2) = 4 vio-

lated inequalities I
Ai Aj
~0|~0 > 0. ii) Two groups of parties |g| = 1; |ḡ| = 4, for

(4
2) = 6 potentially violated inequalities I

Ai Aj
~0|~0 > 0. iii) GMNL: all parties are

in the same group and thus (5
2) = 10 inequalities can be violated. Only iii) can

violate IA1 ...A5
sym =

4
∑

i=1

5
∑
j>i

I
Ai Aj
~0|~0 − 6P(~0|~0) since I

Ai Aj
~0|~0 − P(~0|~0) ≤ 0.

More insight on the rich structure of the symmetrical family of inequalities
(5.20) is given by noticing that they can also be written in a recursive form for
n ≥ 3

IA1 A2...An
sym =

n

∑
i=1

Iall\Ai
0|0 − (n− 2)P(~0|~0) ≤ 0 (5.27)
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where Iall\Ai
0|0 is the symmetrical inequality for n− 1 observers lifted to n of them

with observer Ai’s input and outcome set to 0. Note that for n = 3, Iall\Ai
0|0 corre-

sponds to the CHSH inequality lifted to 3 parties (5.6). The proof of the equivalence
between the direct expression (5.20) and the recursive one (5.27) can be found in
Appendix C.2.2.

In other words, operationally a violation of the symmetrical family IA1 A2...An
sym

can also be understood as a violation of more than n − 2 inequalities Iall\Ai
0|0 be-

tween n− 1 parties lifted to n parties – instead of (n−1
2 ) bipartite ones I

Ai Aj

~0|~0 lifted
to n parties. Since this argument can be used recursively, one concludes that GMNL
correlations violating our inequalities violate numerous inequalities between subset
of m parties lifted to n parties, for all m.

Observe that, similar to the tripartite case, the generalised families IA1 ...An
sym (5.20)

and IA1 ...An
À (5.21) are also saturated by local distributions. The local strategy is the

same as for n = 3: every party Ai outputs ai = 1 for all measurements xi. This
implies that the local and biseparable bounds of our families of inequalities coincide
for all n.

5.6 Pure GME states and GMNL detected by our inequal-
ities

The operational meaning of our families of Bell inequalities is clear: a) any distri-
bution that violates IA1...An

sym (5.20) needs to be capable of violating more than (n−1
2 )

lifted CHSH inequalities I
Ai Aj

~0|~0 between different observers Ai and Aj; and b) any

distribution that violates IA1...An
À (5.21) violates more than n − 2 lifted CHSH in-

equalities I
A1 Aj

~0|~0 between A1 and different observers Aj. Only GMNL correlations,
where all pairs of parties can potentially be correlated nonlocally, are able to do this.

Let us now return to our main question: can we always find local measurements
on any pure GME state that generate GMNL correlations? Our Bell inequalities
seem fit for prove this result since for any pure GME state, there exist local pro-
jections on any n− 2 parties that leave the remaining two in a pure entangled state
[PR92], which can in turn be used to violate the CHSH inequality [Gis91]. The main
difficulty in proving the result in full generality is to find local measurements that
simultaneously perform the desired projections but are also fit to violate the CHSH
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terms. For n = 2 our two families of inequalities coincide with the CHSH inequal-
ity, which was used to prove the equivalence between nonlocality and pure state
entanglement [Gis91]. For n = 3, there is numerical evidence that this holds for
GME three-qubits pure states [Ban+13] using the symmetrical family IA1 A2 A3

sym (5.5).

We extend these results to the scenario with n = 4 observers, where we ob-
tained numerical evidence that all 4-qubit systems in a pure GME state generate
distributions violating the symmetrical family of inequality IA1 A2 A3

sym (5.20).

Moreover, we use our symmetrical family of inequalities IA1...An
sym (5.20) to show

analytically that a large class of pure GME states of the greenberger1989going fam-
ily [GHZ89] can generate GMNL correlations for all number of observers n ≥ 3.

Theorem 8. All pure GME states of the form

|greenberger1989goingn〉θ = cos θ|0〉⊗n − sin θ|1〉⊗n (5.28)

with θ ∈]0, π
4 [ violate the Bell inequality IA1...An

sym (5.20) for all n ≥ 3. All observers
Ai make the same projective measurements, 〈mai |xi

| = 〈ma|x|, defined by

〈m0|x| = cos αx〈0|+ sin αx〈1|
〈m1|x| = sin αx〈0| − cos αx〈1|

(5.29)

where

α0 = arctan(tan−
3

3n−4 (θ))

α1 = − arctan(tan−
1

3n−4 (θ)) .
(5.30)

In other words, all states of the form (5.28) that are GME are GMNL.

Proof. A detailed proof of this theorem can be found in Appendix C.3 and is con-
structive. The key point is to impose that the local measurements to be the same for
every observer, which makes the joint outcome distribution invariant under permu-
tations of the parties (since the state |greenberger1989goingn〉θ (5.28) is too). This
symmetry simplifies the problem and allowed us to find an analytical solution.

Interestingly, the only pure GME state of this family for which our construc-
tion fails is the maximally entangled state (θ = π/4), which is already known to
generate GMNL for any number of observers [Ban+09]. We have however found,
numerically, several sets of measurements on this state that lead to distributions
violating our inequality, but the amount of symmetries is reduced. Interestingly,
Theorem 8 implies that even states that are almost separable (θ → 0) can be used to
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generate GMNL correlations for any number of observers.

A larger class of symmetrical states, including the ones of (5.28), was shown to
be GMNL for all n in [Che+14; Che+04]. Nervetheless, their construction is based
on Hardy-like paradoxes witnessing GMNL, making the test impossible in an ex-
periment.

5.7 Using other inequalities as seed for the construction

The construction was so far done using as "seed" the CHSH inequality IA1 A2 (5.2)
to build our families of inequalities by using the lifted inequalities I

Ai Aj

~0|~0 . However,
the construction can be applied to other inequalities. Indeed, any inequality that can
be written as

IA1 A2(P(ab|xy)) = P(00|00)− ∑
a,b,x,y
6=0,0,0,0

β
x,y
a,b P(ab|xy) ≤ 0 (5.31)

such that β
x,y
a,b ≥ 0 ∀a, b, x, y 6= 0, 0, 0, 0 is useful. To see that, note that the

only important ingredient in all our proofs is that IA1 A2 − P(00|00) ≤ 0 (for any
probability distribution), which is true for any inequality which can be written as
(5.31):

ĪA1 A2 ≡ IA1 A2 − P(00|00) = − ∑
a,b,x,y
6=0,0,0,0

β
x,y
a,b P(ab|xy) ≤ 0 (5.32)

In particular, (5.32) also implies that Ī
Ai Aj

~0|~0 = I
Ai Aj

~0|~0 − P(~0|~0) ≤ 0 once the original
inequality is lifted to more parties. The rest of this section is devoted such examples
of inequalities that can be used for the construction.

The tilted CHSH inequality.– as first example, we write the "tilted CHSH"
inequality IA1 A2

β that was introduced in [AMP12] (with α = 1) as

IA1 A2
β = P(00|00)− P(01|01)− P(10|10)− P(00|11)− β

2
PA1(1|0) ≤ 0

(5.33)
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where PA1(a1|x1) = ∑
a2

P(a1a2|x1x2) ∀x2 is the marginal distribution of party A1

and β ≥ 0. As said, similarly to Ī
Ai Aj

~0|~0 ≤ 0 (5.24) from the CHSH inequality (5.2)

Ī
Ai Aj

β,~0|~0 ≡IA1 A2

β,~0|~0 − P(~0|~0)

= −P(~01j|~01j)− P(1i~0|1i~0)− P(~0|1i1j~0)−∑
aj

β

2
P(1iaj~0|~0) ≤ 0

(5.34)

where ĪA1 A2

β,~0|~0 is a lifting of inequality IA1 A2
β (5.33) to n parties similarly to the lifting

IA1 A2
~0|~0 to n parties of the CHSH inequality IA1 A2 . The term ∑

aj

β
2 P(1iaj~0|~0) is the

marginal PAi(1|0) = ∑
aj

PAi Aj(1a2|0x2) ∀x2 of party Ai lifted to n parties.

Starting from the new seed IA1 A2
β (5.33), we construct two new families of

GMNL witnesses for any number n of parties

Theorem 9. The families of inequalities

IA1...An
β,sym =

n−1

∑
i=1

n

∑
j>i

I
Ai Aj

β,~0|~0 −
(

n− 1
2

)
P(~0|~0) ≤ 0 (5.35)

IA1...An
β,À =

n

∑
j>1

I
A1 Aj

β,~0|~0 − (n− 2)P(~0|~0) ≤ 0 (5.36)

witness GMNL for any number n of parties.

Proof. The proof that these two families of inequalities indeed witness GMNL for
all n is exactly the same as for the families (5.20) and (5.21), except one needs to
use property ĪA1 A2

β,~0|~0 ≤ 0 (5.34) instead of Ī
Ai Aj

~0|~0 ≤ 0 (5.24).

A tripartite inequality as seed.– as a second example, we show that one can
also start from a seed that is an inequality for more parties instead of a bipartite one.
We found that the inequality for n = 3 parties – that witnesses GMNL in tripartite
correlations – that belongs to the class number 5 of [Ban+13] could be written as

IA1 A2 A3
tri = P(000|000)− P(010|111)− P(000|011)

−P(001|001)− P(100|110)− P(010|010)− P(100|100) ≤ 0
(5.37)

Implying that IA1 A2 A3
tri − P(000|000) ≤ 0 and IA1 A2 A3

tri,~0|~0 − P(~0|~0) ≤ 0 for any prob-
ability distribution as desired. This allows us to construct, again, two new families
of Bell inequalities witnessing GMNL for any n ≥ 3
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Theorem 10. The families of inequalities

IA1 ...An
tri,sym =

n−2

∑
i=1

n−1

∑
j>i

n

∑
k>j

I
Ai Aj Ak

tri,~0|~0 −
(

n− 1
3

)
P(~0|~0) ≤ 0 (5.38)

IA1 ...An
tri,ÀÁ =

n

∑
j>2

I
A1 A2 Aj

tri,~0|~0 − (n− 3)P(~0|~0) ≤ 0 (5.39)

witness GMNL for any number n of parties.

Proof. This time, a biseparable probability distribution (5.19) can violate at most
(n−1

3 ) inequalities I
Ai Aj Ak

tri,~0|~0 between three different parties. This comes from the

fact that the best for a biseparable distribution is a grouping g = {1, 2, ..., n− 1},
ḡ = {n} of the parties, allowing a maximum of (n−1

3 ) to potentially violate the

inequality I
Ai Aj Ak

tri,~0|~0 . Hence the family (5.38).

Second, there are at most n − 3 inequalities I
A1 A2 Aj

tri,~0|~0 that can potentially be

violated for a grouping g = {1, 2, ..., n − 1}, ḡ = {n} of the parties. Hence the
family (5.39).

It would obviously be interesting to explore to which extent the inequalities that
can be built – as the ones in (5.35),(5.36), (5.38) and (5.39) – are useful in order to
witness GMNL from GME states. We leave this direction of research open for fur-
ther work. Finally, it would also be insightful to consider inequalities IA1 A2 as seeds
for our construction that allow for more measurement choices and/or outcomes and
that satisfy the condition IA1 A2 − P(00|00) ≤ 0.

5.8 Constructing m−way multipartite nonlocality witnesses
with our techniques

For a given inequality as seed for the construction, one can also build families to
witness intermediate types of multipartite nonlocality, rather than GMNL only. In-
deed, in the multipartite scenario it is possible to define a hierarchy of multipartite
correlations taking into account the multipartite extent to which these are nonlocal.
This can be measured, for example, by notions such as m−way (non)locality or
m−separability of correlations [Ban+13; Ban+09] (see more details in Sec. 2.3.2).
Instead of asking whether given correlations can be decomposed into (convex mix-
tures) of two groups as in (5.19), one can ask whether the correlations can be de-
composed into m groups. Correlations that are decomposable into m < n groups
are then less multipartite nonlocal than other correlations that can not.
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Correlations P(~a|~x) are said to be m−separable (or m−way local), i.e. decom-
posable into m groups, if

Pm-sep(~a|~x) = ∑
k

∑
λk

qk(λk)
m

∏
i=1

P(~aki |~xki , λk) (5.40)

where ∑
k

∑
λk

qk(λk) = 1, qk(λk) ≥ 0. This time, the variable k defines a group-

ing of the n parties into m pairwise disjoint and non-empty groups: |ki| > 0 ∀i,

ki ∩ k j = ∅ ∀i 6= j and
m
∑

i=1
|ki| = n. Biseparable correlations (5.19) for m = 2 can

be decomposed into (convex mixtures of) two group of parties k1 = g and k2 = ḡ.

Now, from any seed inequality IA1 A2 such that IA1 A2 − P(00|00) ≤ 0 (for any
correlations), we have that

Theorem 11. The families of inequalities for n parties

IA1...An
m-sep,sym =

n−1

∑
i=1

n

∑
j>i

I
Ai Aj

~0|~0 −
(

n + 1−m
2

)
P(~0|~0) ≤ 0 (5.41)

IA1...An
m-sep,À =

n

∑
j>1

I
A1 Aj

m,~0|~0 − (n−m)P(~0|~0) ≤ 0 (5.42)

witness m−way nonlocality – or non m−separability – for all n, m < n.

Proof. The proofs follow the same line as the proofs for the other families of in-
equalities we have already constructed. By making m groups instead of 2, one
needs to count the maximum number of pairs of parties Ai Aj that can be made in-
side all the m groups for the family (5.41). Indeed, only such pair of parties Ai Aj

in the same group can potentially violate a lifted inequality I
Ai Aj

~0|~0 . The best way to
group n parties into m groups, in order to maximise the number of such pairs of
parties, is to put n− m + 1 parties into one group and the remaining m− 1 ones
into one group each. In this way, a maximum amount of (n+1−m

2 ) inequalities I
Ai Aj

~0|~0
can potentially be violated, but these can be cancelled by the (n+1−m

2 )P(~0|~0) terms

in (5.41) since I
Ai Aj

~0|~0 − P(~0|~0) ≤ 0.
For the family (5.42), one needs to count the maximum number of pair A1Aj

that can be made inside the group containing party A1. By putting the maximal
number of n − m parties, plus party A1, in one group, one gets that a maximum
number of n−m pairs A1Aj can be formed. This implies that a maximum amount
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of n− m inequalities I
Ai Aj

~0|~0 can potentially be violated, but these are cancelled by

the (n−m)P(~0|~0) term in (5.42) since I
Ai Aj

~0|~0 − P(~0|~0) ≤ 0.

5.9 Conclusion

In this work, we have first designed two new families of multipartite Bell inequal-
ities, for any number of parties n ≥ 3, where many different pairs of parties are
asked to violate a lifted CHSH game. The idea is that only GMNL distributions are
capable of violating a sufficiently large number of lifted CHSH inequality in order
to observe a violation of our inequalities. The intuition behind this observation is
based on an intuition found in [Pop95]: GME pure states are the ones for which one
can find projections on any n− 2 parties leaving the remaining two parties in a pure
entangled state. This state can then be used for the violation of the CHSH inequality
for that pair. Using these families, we have analytically found local measurements
on states of the form cos θ|0〉⊗n − sin θ|1〉⊗n that generate GMNL distributions in
the whole range of parameter θ where the states are GME (except for θ = π/4,
which are already known to be GMNL [Ban+09]). We also found numerical evi-
dence that all 4-qubit systems in a GME pure state violate our symmetrical inequal-
ity IA1...A4

sym (5.23), extending the evidence for 3-qubits [Ban+13]. For systems of
three qubits in a GME pure state, we have also shown that all states that are invari-
ant under the permutation of two of the three parties violate our second family of
inequalities IA1 A2 A3

À (5.5). These results, together with the operational meaning of
our inequalities, lead us to conjecture that these families can be used to show that
all GME pure states display GMNL.

Apart from a proof in full generality, which seems not straightforward, it would
be interesting to extend our results to more families of GME pure states. A possibil-

ity is to study the multipartite W-state, |Wn〉 = 1√
n

n
∑

i=1
|1〉i ⊗j 6=i |0〉j, for which we

already managed to obtain, numerically, violations up to n = 5. It would also be
interesting to use further the characterisation of all 3-qubit systems in a pure state
[Aci+01] to obtain an analytical proof that our inequality for n = 3 detects GMNL
when these states are GME by detecting also the states which have no symmetries.
Further numerical exploration, for more observers or systems of larger dimensions,
is another possibility.

In parallel, it would be interesting to explore the strength of the witnesses of
m−way nonlocality (see 5.8) by, for example, using numerical techniques to ob-
tain violation from states that are not GME. More generally, it would be interesting
to understand the link between m−separability (of states) and m−way nonlocality,
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both for pure and mixed states.

Finally, we have seen that our method to construct families of Bell inequalities
is very fertile and can be used to obtain many other families witnessing multipartite
nonlocality. By using a different seed than the CHSH inequality, for instance a Bell
inequality for more settings or outcomes, or even for more parties, one can generate
inequalities fit to detect GMNL in a whole range of different scenarios. We also
expect that our families of inequalities with various seeds, such as the tilted CHSH
inequality (5.33), can be used to self-test certain classes of multipartite entangled
pure states.





113

Chapter 6

Quantifying multipartite
nonlocality via the size of the
resource

When given correlations from an experiment or from a theory, it is desirable to
determine the extent to which the participating parties would need to collaborate
nonlocally for its (re)production. Here, we develop a framework for the study of the
correlations’ depth, which we study in terms of the minimal group size (MGS) of
the resource needed for the above-mentioned purpose. Indeed, it is often harder to
produce nonlocal resources between numerous parties rather than numerous copies
of a smaller nonlocal resource between fewer parties – as is often the case for mul-
tipartite entangled systems.

We provide a general recipe — based on the lifting of Bell-like inequalities —
to construct MGS witnesses for non-signalling resources starting from any Bell in-
equality. En route to illustrating the applicability of this recipe, we also show that
when restricted to the space of full-correlation functions, non-signalling resources
are as powerful as unconstrained signalling resources. Explicit examples of corre-
lations where their MGS can be determined using this recipe and other numerical
techniques are provided.

The work exposed in this chapter is based on the results published in [CGL15].

6.1 Introduction

Far, prior investigations on multipartite nonlocal correlations have focused predom-
inantly on the notion of m-way (non)locality (2.47), namely, the possibility to re-
produce them when the parties are separated into m groups [Ban+09] — specifi-
cally two groups [Sve87; Ban+12; Aol+12; Gal+12; Ban+13; Col+02b; JLM05;
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Ban+11; Che+11] — and where the usage of some nonlocal resource R is only al-
lowed within each group (see sec. 2.3.2). While this has been a fruitful approach
for the detection of genuine multipartite nonlocality, and hence genuine multipartite
entanglement in a device-independent setting [Ban11; PV11; Mor+13; Ban+12], it
is however not always applicable to the detection of genuine multipartite nonlocality
among a subset of participating parties. To manifest this shortcoming, let us con-
sider a 4-partite correlation ~P = {P(~a|~x)} = {P(a1a2a3a4|x1x2x3x4)} of getting
measurement outcome (output) ai for the i-th party given the measurement setting
(input) xi. A specific kind of biseparable correlation in this scenario takes the form
of

P(~a|~x) = ∑
λ

qλPRλ (a1a2|x1x2)PRλ (a3a4|x3x4)

+ ∑
µ

qµPRµ (a1a3|x1x3)PRµ (a2a4|x2x4)

+ ∑
ν

qνPRν (a1a4|x2x3)PRν (a2a3|x2x3),

(6.1)

where PRi (ajak|xjxk) is some 2-partite distribution allowed by the resource R,
while qλ, qµ and qν are non-negative, normalized weights. If ~P cannot be written in
the form of Eq. (6.1), the production of this correlation clearly requires at least 3 out
of the 4 participating parties to collaborate nonlocally viaR. If moreover, nonlocal
collaboration between 3 parties is sufficient, we see that ~P is thus biseparable, i.e.,
producible by parties separated into (convex mixtures of) two groups, see Fig. 6.1.
In other words, the multipartite nonlocality contained in ~P cannot be detected by
the conventional approach of detecting non-biseparability. Indeed, with the conven-
tional (m-separability) approach, one only makes a distinction between the number
of groups, but not the size, i.e., the number of parties involved in each group.

To determine the extent to which participating parties would need to collaborate
nonlocally in a general scenario, it thus seems more natural to quantify multipartite
nonlocality in terms of the minimal group size (MGS), i.e., the smallest number of
parties required to collaborate nonlocally in reproducing some nonlocal correlation.
In this work, we develop the formalism necessary for the study of MGS, or corre-
lation depth in analogy to the study of entanglement, see sec. 2.3.1. Clearly, this
approach provides information complementary to the one of m-way locality on how
R has to be distributed/ shared among the participating parties in order to reproduce
some given correlation. The aim of this work is to give a state-of-the-art exposition
of this approach and to provide a general technique for the construction of MGS
witnesses.
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FIGURE 6.1: Schematic diagram showing a situation where the conventional ap-
proach of non-biseparability fails to detect the multipartite nonlocality present in
the correlation. Here, the dashed lines joining the three circles symbolically repre-
sent the nonlocal collaboration between the three parties. Since the fourth party is
only correlated with the rest through shared randomness, the overall correlation is

biseparable.

6.2 Minimal group size, k-producibility and multipartite
nonlocality

Correlations satisfying Eq. (6.1) are 2-producible whereas a correlation ~P = {P(~a|~x)}
satisfying

P(~a|~x) = ∑
λ

qλPRλ (a1a2a3|x1x2x3)PRλ (a4|x4)

+ ∑
µ

qµPRµ (a1a2a4|x1x2x4)PRµ (a3|x3)

+ ∑
ν

qνPRν (a1a3a4|x1x3x4)PRν (a2|x2)

+ ∑
θ

qθ PRθ (a2a3a4|x2x3x4)PRθ (a1|x1).

(6.2)

are only 3-producible. General 3-producible correlations, however, may involve
convex combination of correlations of the form of Eq. (6.1) and of Eq. (6.2). Ob-
viously, k-producibility implies k′-producibility for all k′ > k. Using the above
terminologies, we thus say that ~P is genuinely k-partite nonlocal1 or having a MGS
of k if ~P is k-producible but not (k− 1)- producible. For example, a 4-partite cor-
relation that satisfies Eq. (6.1) but violates a Bell inequality is 2-producible but not

1To conform with existing terminologies in the literature, when R refers to a quantum resource,
we say that ~P must have arisen from a genuinely k-partite entangled state instead of ~P exhibits genuine
k-partite nonlocality.
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1-producible, and hence genuinely 2-partite nonlocal. Similarly, a 4-partite correla-
tion that is 3-producible but not decomposable in the form of Eq. (6.1) is genuinely
3-partite nonlocal.

A few other remarks are now in order. Firstly, the above definition can be seen
as a generalization of existing notions of genuine k-partite nonlocality for an n=k-
partite scenario [Ban+13] to an n-partite scenario where n ≥ k. It is worth noting
that the question of whether given correlations ~P can be produced by having at
most k parties in one group (k-producibility) is not completely independent from
the question of whether ~P can be produced by separating the n parties into at least
m groups (m-way locality (2.47)). For instance, k-producible correlations ~P are
m-way local for some m ≥ d n

k e; likewise, if ~P are m-way local, these are also
k-producible for some k ≥ d n

me. Thus, the smallest n for which these descriptions
become inequivalent is n = 4. Finally, any multipartite correlations that can not be
produced by SR, or equivalently that is nonlocal or not 1-producible, is genuinely
k-partite nonlocal for some k ≥ 2.

6.2.1 Characterization of the sets of k-partite R-producible correla-
tions

While the bulk of the above discussion is independent of the choice of the nonlo-
cal resource R, it is worth reminding some features that are pertinent to specific
resources. A more detailed discussion of these topics can be found in sec. 2.3.2.
In this context, four commonly discussed nonlocal resources R are: (1) Q: (local
measurements on) an entangled quantum state of unrestricted Hilbert space dimen-
sion, (2) NS : a post-quantum, but non-signalling [PR94; Bar+05] resource,2 (3)
T [Gal+12; Ban+13]: a time-ordered, one-way classical signalling resource3 and
(4) S [Sve87] : a Svetlichny resource.4 Note that each resourceR above is strictly5

stronger than the preceding one(s), in the sense that R can be used to produce all
correlations arising from the preceding resource(s) [Gal+12; Ban+13]. As a result,

2Such a resource only allows correlations where their marginal distributions for any subset of
parties are independent of the input of the complementary subset of parties.

3The correlations allowed by such a resource is referred to as time-ordered bilocal in Ref. [Gal+12].
4The Svetlichny resource allows the parties in a group to use any joint strategy and hence to

produce any correlation that is only constrained by the normalization of probabilities. In some cases,
such a resource can be realized by allowing multiple rounds of classical communications among the
parties but in others, such a resource may not have a well-defined physical meaning, see Refs. [Gal+12;
Ban+13] for a discussion.

5To see the "strictly" part, one can construct, for each type of resources R, correlations violating
the Guess Your Neighbour’s Input (GYNI) inequality introduced in [GYNI] up to different extents
(except for L ⊂ Q, which refers to quantum nonlocality).
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we have the strict inclusion relations,

L ⊂ Q ⊂ NS ⊂ T ⊂ S , (6.3)

with L being a local resource, provided by SR alone. Hence, a correlation ~P that is
k-partiteQ-producible is also a member of the set of k-partiteR-producible correla-
tions (henceforth denoted byRn,k) forR ∈ {NS , T ,S}. Conversely, a correlation
that is not in Sn,k is also not in Rn,k for R ∈ {Q,NS , T }, see Fig. 6.2. Formally,
these implications are summarized as follows:

~P ∈ Qn,k ⇒ ~P ∈ Rn,k for all R ∈ {NS , T ,S}, (6.4a)
~P 6∈ Sn,k ⇒ ~P 6∈ Rn,k for all R ∈ {Q,NS , T }. (6.4b)

LnQn,k

NSn,k

Tn,k

Sn,k

FIGURE 6.2: (Color online) Schematic diagram showing the inclusion relations
of the various sets ofRn,k, cf. Eq. (6.3) and Eq. (6.4). The smallest of these sets is
Ln [depicted as the (brown) rectangle], followed by Qn,k [depicted as the (green)
oval], followed byNSn,k [with boundary marked by the (magenta) dashed-dotted
line], followed by Tn,k [with boundary marked by the (blue) dashed line]. Finally,
the k-producible Svetlichny set Sn,k is represented by the outermost (black) solid

polygon.

More generally, we note that independent of the nonlocal resourceR ∈ {Q,NS , T ,S},
the set Rn,k is convex. Moreover, for the case when R ∈ {NS , T ,S}, Rn,k is
even a convex polytope [Ban+13], i.e., a convex set having only a finite number
of extreme points [Grü+67] and thus can be equivalently specified through a finite
number of Bell-like inequalities (corresponding to the facets of the respective poly-
tope). Determining if a given correlation ~P is inside Rn,k, and hence producible by
the respective resource can thus be decided via a linear program [BV04], or through
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the violation of one of those Bell-like inequalities defining the polytope. In the
simplest 2-input, 2-output scenario where R = NS , the set NS3,2 has been com-
pletely characterized in Ref. [Ban+13] whereas a superset of NS4,2 has also been
characterized in Ref. [CLG14] (see also Ref. [Cur13]). If R = Q, i.e., a quantum
resource, then the set Rn,k is no longer a convex polytope. Determining if a given
~P is in Qn,n−1 can nonetheless be achieved by solving a hierarchy of semidefinite
programs [BV04] described in Ref. [Ban11]. More generally, determining if any
given ~P is in Qn,k can be achieved — to some extent — by solving a variant of the
hierarchy of semidefinite programs described in Ref. [Mor+13] (see Ref. [Lia+15]
for details).

However, regardless ofR, it is generally formidable to solve the aforementioned
linear/ semidefinite programs by brute force even on a computer for relatively sim-
ple scenarios. Implications such as those summarized in Eq. (6.4) are thus useful
to bear in mind for subsequent discussions. For example, if ~P violates an n-partite
Svetlichny inequality — a Bell-like inequality that holds for a general Svetlichny
resource — then it is not (n− 1)-producible for all R. In other words, the corre-
lation ~P exhibits genuine n-partite nonlocality (and hence can only be produced, if
at all, by a genuinely n-partite entangled state) and has an MGS of n. A generic
correlation ~P, evidently, will have an MGS that depends on the resource under con-
sideration, as we now illustrate by explicit examples in the following subsections.

6.2.2 An example of a genuinely 3-partite NS nonlocal correlation in
a 4-partite scenario

The Greenberger-Horne-Zeilinger (GHZ) state [GHZ89; Mer90b] between n parties
is defined as follow :

|GHZn〉 =
1√
2
(|0〉⊗n + |1〉⊗n), (6.5)

where |0〉 and |1〉 are, respectively, the eigenstate of the Pauli matrix σz with eigen-
value +1 and −1. Consider the following equal-weight mixture of three parties
sharing |GHZ3〉 and one party holding |−〉:

ρ =
1
4
(|GHZ3〉〈GHZ3| ⊗ |−〉〈−|+ �) (6.6)

where |−〉 is the eigenstate of the Pauli matrix σx with eigenvalue −1, and we have
used � to denote similar terms which must be included to ensure that the expression
involved is invariant under arbitrary permutation of parties. This quantum state
could be prepared, for instance, by distributing uniformly randomly |GHZ3〉 to any
of the three parties and |−〉 to the remaining one. By construction, ρ does not have
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genuine 4-partite entanglement. Hence, any correlation ~P derived by performing
local measurement on ρ must be a member of Q4,3 and by Eq. (6.4a), alsoR4,3.

Now, consider the case where all parties measure the following dichotomic ob-
servables,

A0 = B0 = C0 = D0 = −
√

3
2

σx +
1
2

σy,

A1 = B1 = C1 = D1 = −
√

3
2

σx −
1
2

σy.

(6.7)

It can be shown that that the resulting correlation ~P violates the following Bell
inequality which must be satisfied by all correlations from NS4,2 [CLG14]:

I =− 12 〈A0〉 − 3 〈A1〉 − 2 〈A0B0〉+ 6 〈A0B1〉
− 3 〈A1B1〉+ 13 〈A0B0C0〉 − 3 〈A1B0C0〉
− 11 〈A1B1C0〉+ 14 〈A1B1C1〉+ 22 〈A0B0C0D0〉
− 15 〈A0B0C0D1〉 − 10 〈A1B1C0D0〉
− 7 〈A1B1C1D0〉+ 21 〈A1B1C1D1〉+ �
NS4,2

≤ 105, (6.8)

giving a quantum value of 117.8827. This implies that the correlation ~P is also gen-
uinely 3-partite nonlocal, or having an MGS of 3 forR ∈ {Q,NS}.

Interestingly, it can be shown that ~P does not lie in any of the 3-partite NS-
producible set corresponding to a fixed partition. This, together with the fact that ~P
is 3-partite NS-producible means that the generation of ~P requires classical mix-
tures of different partitions of the 4 participating parties into 2 groups, one of them
containing three parties and sharing an NS resource. It is also worth noting that
all tripartite marginal correlations of ~P are verifiably 1-producible (hence satisfying
the complete set of Bell inequalities for this scenario given in Ref. [Śli03]). In other
words, although ~P is genuinely 3-partite NS-nonlocal, this 3-partite nonlocality
cannot be revealed by studying each of the four tripartite marginal correlations in-
dividually. Neither can this multipartite nonlocality be manifested by analysing the
biseparability (or 2−way locality (2.47)) of the 4-partite correlation since this more
conventional approach can not distinguish correlation of the form of Eq. (6.1) and
those of the form of Eq. (6.2).

In the above example, we were able to determine the MGS of the correlation for
the quantum, and a general non-signalling resource. For the Svetlichny resource,
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we could also show — by solving some linear program — that the very same cor-
relations is inside the set S4,2, and thus only exhibits an MGS of 2. However, due
to the computational complexity involved in solving the corresponding linear pro-
gram for the 1-way signalling resource T , we were not able to determine precisely
its MGS. Apart from correlations that violate an n-partite Svetlichny inequality (in
which case MGS = n for all resources) or correlations that are local (in which case
MGS = 1), one may thus wonder if there exist other n-partite correlations ~P which
have an MGS that can be fully characterized for all the different resources. We now
provide examples of this kind in the next section.

6.2.3 A family of n-partite examples with fully characterized MGS

In chapter 7 (based on [Lia+14]), we show that if all n parties either measure the σx
or the σy observable on the n-partite state |GHZn〉, Eq. (6.5), the resulting corre-
lation has an MGS of d n

2 e for R ∈ {NS , T ,S} whenever n is odd or n
2 is even.

On the other hand, if we restrict ourselves to a quantum resource, then for all odd
n ≥ 3, it follows from the result of Ref. [Lia+14] that the corresponding MGS is
n, demonstrating a large gap between the size of the resource required to reproduce
these correlations when using a quantum and a post-quantum non-signalling (or a
classical but signalling) resource. To prove these results, a general NS biseparable
decomposition of the aforementioned correlation is provided for arbitrary partition-
ing of the n parties into two groups, thus establishing that these correlations are
d n

2 e-producible forR ∈ {NS , T ,S}. Then to prove that these correlations are not
(d n

2 e − 1)-producible for the same set of resources, it was shown in Ref. [Lia+14]
that except for even n with odd n

2 , these correlations are not 3-separable, i.e., cannot
be reproduced by a separation of the n parties into 3 groups. As for R = Q, an
MGS = n for odd n [Lia+14] follows from the fact that the corresponding correlation
violates a device-independent witness for genuine n-partite entanglement [Ban11;
Ban+12] constructed from the Mermin-Ardehali-Belinskii-Klyshko (MABK) Bell
expression [Mer90a; Ard92; RS91; Belb; GBP98]. In the case of even n, result re-
cently established in Ref. [Lia+15] (based on earlier work of Ref. [NKI02]) allows
one to conclude that the above-mentioned GHZ correlations has an MGS of at least
n− 1 (forR = Q).

6.3 Witnessing non-k-producibility using Bell-like inequal-
ities

Evidently, as discussed in Sec. 6.2, Bell-like inequalities are very useful tools for de-
termining (or at least lower-bounding) the MGS of given correlations by certifying
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its non-k-producibility. For example, all Bell-like inequalities that have been de-
rived — based on the non-biseparability (2.46) approach [Sve87; Ban+12; Aol+12;
Gal+12; Ban+13; Col+02b; JLM05; Ban+11; Che+11] — to detect genuine n-
partite nonlocality can be used as witnesses for non-(n − 1)-producibility for the
respective resources. It is however unrealistic to hope to find all such Bell-like in-
equalities by solving the polytope describing the convex setRn,k even for relatively
small n and k. But all is not lost and in this section, we recall from Ref. [Pir05] the
technique of lifting — originally developed for Bell inequalities that witness Bell-
nonlocality — and show that it can also be used to construct Bell-like inequality for
arbitrary Rn′,k (where n′ > n and R ∈ {Q,NS}) starting from any given Bell-
like inequality forRn,k. Before that, let us first make a digression and point out the
usefulness of a non-signalling resource in simulating a general correlation.

6.3.1 All extremal full-correlation functions can be simulated with non-
signalling strategies

In an n-partite, m-input, `-output Bell scenario, the set of full-correlation functions
defined in Ref. [Ban+12] consists of the following `mn joint conditional probability
distributions:

{P([a~x]` = r)}`−1
r=0 (6.9a)

where [X]` := X mod `,

P([a~x]` = r) = ∑
~a

P(~a|~x) δ∑i ai mod `, r, (6.9b)

and δa,b is the Kronecker delta of a and b. Note that due to the normalization con-
ditions, only (`− 1)mn of these joint conditional probability distributions are in-
dependent. Moreover, in the case where there are only two possible outcomes, i.e.,
` = 2, it is easy to see that the above definition of full-correlation functions is equiv-
alent to the conventional one defined by the expectation value of the product of ±1
outcomes.

We now present a mathematical fact about the space of correlations spanned by
the set of full-correlation functions defined in Eq. (6.9).

Theorem 12. When restricted to the set of full-correlation functions given in Eq. (6.9),
all extremal strategies achievable by an n-partite Svetlichny resource Sn are also
achievable using an n-partite non-signalling resource NSn. Thus, in the subspace
spanned by full-correlation functions, the three sets of correlations Sn, Tn, and
NSn become identical.

One can find the proof of this theorem in Appendix D.1. Let us remind that the
Svetlichny resource is the most powerful nonlocal resource, and is only constrained
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by the normalization of probability distributions. In other words, Sn is basically
the set of normalized n-partite correlations. The importance of Theorem 12 is that
when restricted to the set of coarse-grained measurement statistics represented by
the set of full-correlation functions, cf Eq. (6.9a), one also can not make a distinction
between NSn and the set of normalized conditional probability distributions. Note
that for binary-outcome full-correlation functions arising from the Bell singlet state,
the coincidence between S2 and NS2 was already anticipated from the results of
Ref. [Cer+05]. In fact, an alternative proof of Theorem 12 for the special case
of binary-outcome full-correlation functions can be found, e.g., in Theorem 12 of
Ref. [Qui12].

It is also worth noting that the definition of full-correlation functions is not
unique, nevertheless, numerous Bell-like inequalities can be written in terms of the
correlation functions defined in Eq. (6.9), see e.g., Ref. [Ban+12]. In this regard,
note also the following corollary of Theorem 12, which allows us to relate Bell-like
inequalities for NSn,k with those ofRn,k forR ∈ {T ,S}.
Corollary 1. Let IRn,k be a tight, full-correlation Bell-like inequality that holds for
R ∈ {T ,S}, i.e.,

IRn,k : ∑
~x

`−1

∑
r=0

βr
~xP([a~x]` = r)

Rn,k

≤ BRn,k, (6.10)

and there exists P(~a|~x) ∈ Rn,k such that inequality (6.10) becomes an equality, then
there also exists P(~a|~x) ∈ NSn,k such that inequality (6.10) becomes an equality.
In other words,

∑
~x

`−1

∑
r=0

βr
~xP([a~x]` = r)

NSn,k

≤ BRn,k, (6.11)

is also a tight, full-correlation Bell-like inequality that holds forR = NS .

The proof of the above corollary can be found in Appendix D.2. The corol-
lary tells us that if we restrict ourselves to Bell-like inequalities that only involve
linear combination of full-correlation functions, Eq. (6.9), then we cannot distin-
guish between correlations that are k-producible with respect to any of the resource
R ∈ {NS , T ,S}. In other words, for any given n and k and in the subspace of
measurement statistics spanned by the set of full-correlation functions, cf. Eq. (6.9),
the three sets of correlationsNSn,k, Tn,k and Sn,k become identical. It is worth bear-
ing this fact in mind in order to appreciate the generality of the upcoming theorem.

6.3.2 Lifting of Bell-like inequalities

The lifting of Bell inequalities was first discussed by Pironio in Ref. [Pir05]. Essen-
tially, it is a technique that allows one to extend any (facet-defining) Bell inequality
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of a given scenario to a more complex scenario (involving more parties and/or in-
puts and/or outputs). In this work, we are only interested in the lifting of Bell-like
inequalities to a scenario involving more parties. In this case, a lifted Bell inequal-
ity corresponds to a witness of nonlocality where the nonlocal behavior of a subset
of, say n, of the parties becomes apparent after conditioning on a specific combi-
nation of measurement settings and outcomes from the complementary subset of h
parties.6

More concretely, let us denote a specific combination of the measurement set-
tings and measurement outcomes of the h parties, respectively, by ~s and ~o. It can
then be shown that if the (n+ h)-partite correlation P(~a,~o|~x,~s) is 1-producible (and
non-vanishing7), so is the conditional distribution given by:

P̃|~o,~s(~a|~x) = P(~a,~o|~x,~s)
∑~a P(~a,~o|~x,~s)

. (6.12)

An immediate implication of this is that a Bell inequality that is defined for an
n-partite scenario can be trivially extended to any (n + h)-partite scenarios by con-
sidering specific measurement settings~s and outcomes~o for the h parties.

As an example consider the well known Clauser-Horne-Shimony-Holt [Cla+69]
Bell inequality applicable to a scenario involving two parties, each performing two
binary-outcome measurements:

1

∑
x1,x2,a1,a2=0

(−1)a1+a2+x1x2 P(a1a2|x1x2)
Ł
≤ 2. (6.13)

Lifting this inequality to the scenario of 3 parties and with the 3rd party getting a
specific measurement outcome o3 given the specific measurement setting s3 gives
the following lifted CHSH Bell inequality:

1

∑
x1,x2,a1,a2=0

(−1)a1+a2+x1x2 P(a1a2o3|x1x2s3)

− 2P(o3|s3)
Ł
≤ 0.

(6.14)

Lifting the CHSH Bell inequality to an arbitrary number of n > 2 parties can be
carried out analogously. In Ref. [Pir05], it was shown that such a procedure not only
generates a legitimate Bell inequality but even one that preserves the facet-defining
property of the original Bell inequality.

6This particular kind of lifting has been applied to show, for instance, a stronger version of Bell’s
theorem, see, e.g., Ref. [Ban14b; Bar+13].

7If the distribution vanishes, the conditional distribution given in Eq. (6.12) is ill-defined.
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6.3.3 A general recipe for the construction of non-k-producible wit-
nesses

We shall now demonstrate how lifting may be used as a general technique for the
construction of Bell-like inequalities for Rn′,k starting from one for Rn,k where
n′ is an arbitrary integer greater than n and R is a resource that respects the non-
signalling constraints. To this end, we note that, without loss of generality, a (linear)
Bell-like inequality for a non-signalling-respectingRn,k can always be written in the
form of:

In = ∑
~a,~x

β~a~xP(~a|~x)
Rn,k

≤ 0, (6.15)

where β~a~x is some real-valued function of~a and ~x. Our main observation is that the
lifting of In to a scenario involving arbitrary n′ > n parties is also a legitimate Bell-
like inequality forRn′,k, as summarized more formally in the following theorem.

Theorem 13. If In is a Bell-like inequality satisfied by all correlations in Rn,k ∈
{Q,NS}, i.e., Eq. (6.15) holds for all P(~a|~x) ∈ Rn,k, then

In+h = ∑
~a,~x

β~a~xP(~a,~o|~x,~s)
Rn+h,k

≤ 0, (6.16)

meaning that the lifted inequality holds for all P(~a,~o|~x,~s) ∈ Rn+h,k where h ≥ 1,
whilst~o and~s refer, respectively, to arbitrary but fixed combination of measurement
outcomes and measurement settings for the h additional parties.

A proof of this theorem can be found in Appendix D.3. Clearly, one can see
Theorem 13 as a partial generalization of the results presented in [Pir05] fromRn,1
toRn,k wheneverR ∈ {Q,NS}. As forR ∈ {T ,S}, we know from Corollary 1
and Theorem 13 that any full-correlation Bell-like inequality valid forRn,k can also
be lifted as a Bell-like inequality for NSn′,k in the extended scenarios. Unfortu-
nately, the theorem in general does not apply to the signalling resource S (as well
as T ). To see this, consider the tripartite Svetlichny inequality (writtten in the form
given in [Ban+12]):

IS ,3 = ∑
~x,~a

β~aS ,3,~x P(a1a2a3|x1x2x3)− 4
S3,2

≤ 0, (6.17a)

β~aS ,3,~x = (−1)∑i ai+
⌊

∑i xi−1
2

⌋
. (6.17b)
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If Theorem 13 were to be applicable for a Svetlichny resource, we would expect,
for instance, that the following inequality

IS ,4 =∑
~x,~a

β~aS ,3,~x P(a1a2a3, o4 = 0|x1x2x3, s4 = 0)

−4 ∑
~a

P(a1a2a3, o4 = 0|x′1x′2x′3, s4 = 0) ≤ 0, (6.18)

to hold true for S4,2 and for some arbitrary choice of x′1, x′2, x′3 = {0, 1}. One can,
however, easily verify that this is not the case. For instance, with x′1 = x′2 = x′3 = 0,
the Svetlichny strategy from S4,2:

a1 = 1− δx1,1δx2,1, a2 = 1,
a3 = a4 = 1− δx3,1δx4,0,

(6.19)

gives vanishing contribution to the second term in Eq. (6.18) but an overall value of
4 for IS ,4, clearly violating inequality (6.18).

Despite the above remark, let us stress once more that there is still wide appli-
cability of Theorem 13. For example, each of the Bell-like inequalities obtained for
NS3,2 and NS4,2 in Refs. [Ban+13; CLG14] can now be used to construct wit-
nesses showing MGS ≥ 3 (for the NS resource) for arbitrary number of parties.
Thanks to Corollary 1, the families of k-partite Svetlichny inequalities obtained in
Refs. [Col+02b; JLM05; Ban+11; Che+11; Ban+12] can similarly be extended to
detect genuine NS k-partite nonlocality in an arbitrary n > k partite scenario.
Likewise, each device-independent witness for genuine k-partite entanglement ob-
tained in Ref. [Ban11; Ban+12; PV11] can now be applied to witness genuine k-
partite entanglement in an arbitrary n > k partite scenario. Of course, it remains to
show that Bell-like inequalities generated with the help of Theorem 13 could indeed
be useful, and this is what shall show next with a very simple example.

6.3.4 An example where a lifted Bell-like inequality can be used to de-
termine MGS

Consider the following four-partite mixed state:

ρ = v |GHZ3〉〈GHZ3| ⊗ |0〉〈0|+ (1− v)
1

23 ⊗ |1〉〈1|, (6.20)

where v ∈ (0, 1], and |0〉, |1〉 are again the eigenstates of σz. Since ρ is bisep-
arable, regardless of which local measurements are performed on ρ, the resulting
correlations must be in Q4,3 and thus having MGS ≤ 3 for all R [cf. Eq. (6.4a)].
Clearly, from Eq. (6.20), we see that the entanglement of ρ lies entirely within
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the first three subsystems. Let us denote these systems by A, B, and C respec-
tively. For v ≤ 1

5 , it is known that the tripartite reduced density matrix ρABC =
v |GHZ3〉〈GHZ3|+ (1− v) 123 is fully separable (2.35) [DC00] and thus not capa-
ble of violating any Bell inequalities. Nonetheless, in what follows, we shall show
that a lifted Bell-like inequality can indeed be used to show that certain correlation
derived from ρ indeed exhibits MGS = 3 for all v 6= 0, thus showing that the gener-
ation of such a correlation quantum mechanically indeed requires at least tripartite
entanglement.

To this end, consider now the following dichotomic observables,

A0 = σx, A1 = σy,

B0 =
1√
2
(σx − σy), B1 =

1√
2
(σx + σy), (6.21)

C0 = −σy, C1 = σx,

and the tripartite Svetlichny inequality given in Eq. (6.17). It is known that by
measuring the local observables {Ai, Bi, Ci}i=0,1 given in Eq. (6.21) on |GHZ3〉,
one obtains correlation ~P that violates IS ,3 maximally.

Note that by Corollary 1 and the fact that Eq. (6.17) is a full-correlation Bell-
like inequality, we know that inequality (6.17) still holds and can be saturated even
if we now consider only correlations in NS3,2, i.e.,

INS ,3 = ∑
~x,~a

β~aS ,3,~x P(a1a2a3|x1x2x3)− 4
NS3,2

≤ 0. (6.22)

Lifting the inequality INS ,3 to the specific case where the 4th party performs the
0-th measurement and getting the 0-th outcome, one obtains the inequality:

I|s4=o4=0
NS ,3 =∑

~x,~a
β~aNS ,3,~xP(a1a2a3, o4 = 0|x1x2x3, s4 = 0)

− 4P(o4 = 0|s4 = 0)
NS4,2

≤ 0. (6.23)

Let us now identify the 0-th measurement of the fourth party by σz and the 0-th
outcome by a successful projection onto the eigenstate |0〉. Together with the mea-
surements specified in Eq. (6.21), one finds that for all 0 < v ≤ 1, the resulting
correlation derived from ρ must also violate inequality (6.23). To see this, it suf-
fices to note that (i) for v 6= 0, the probability of successfully projecting the fourth
system onto |0〉 is strictly greater than zero and (ii) conditioning on a successful
projection, the conditional state for ABC is simply |GHZ3〉 which, as mentioned
above, violates INS ,3 inequality maximally. The aforementioned correlation thus
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exhibits MGS stronger than that allowed in NS4.2 which, by Eq. (6.4b), implies
that it has MGS ≥ 3 for allR ∈ {Q,NS}. Combining this with the biseparability
of ρ mentioned above, we see that this particular correlation has exactly MGS = 3.

6.4 Conclusion

To investigate the extent to which participating parties would need to collaborate
nonlocally in a multipartite Bell experiment 2.3.2, we have introduced the notion
of minimal group size (MGS), i.e., the smallest number of nonlocally-correlated
parties required to reproduce a given nonlocal correlation ~P. We believe that this
more general notion of genuine multipartite nonlocality inspired by k-producibility
(or entanglement depth) [GTB05] from the studies of multipartite entanglement will
be a fruitful approach towards a better understanding of multipartite nonlocality.

As an illustration, we presented, in a four-partite scenario, some genuine tri-
partite nonlocal correlation where the multipartite nonlocality cannot be detected
through the conventional m-way (non)locality approach 2.3.2. Nonetheless, as first
demonstrated in Ref. [Lia+14] (see chapter 7), and further elaborated in this paper,
the biseparability approach – i.e. m−way locality for m = 2 – can in some cases
provide tight lower bound on the MGS. In fact, for the family of n-partite correla-
tions presented in Ref. [Lia+14], it was even found that their MGS for a quantum
resource is n whereas that for a general non-signalling (or even an unrestricted sig-
nalling) resource is d n

2 e, giving an increasing gap between their MGS as n increases.
Could there be a bigger gap between the MGS of a nonlocal correlation with respect
to a quantum resource and a general (non-)signalling resource? In particular, does
there exist a multipartite nonlocal quantum correlation which requires genuine n-
partite entangled state for its production but nonetheless only an MGS of 2 if one is
allowed to exploit a signalling, or even a non-signalling but post-quantum resource?
The answer to these questions would certainly shed light on how quantum entangle-
ment help in a different aspect of communication complexity, namely, how many
communicating parties we can replace by quantum entanglement.

We also demonstrated how the technique of lifting [Pir05] — originally pre-
sented in the context of Bell inequality (for 1-producibility) — can be applied to
generate new MGS witnesses starting from one involving a smaller number of par-
ties. This generalizes partially the result of Ref. [Pir05] and provides a useful recipe
for the construction of MGS witnesses (with respect to a non-signalling, e.g., a
quantum resource) for an arbitrary n-partite scenario. Moreover, we have found that
for the complete list of 185 facet-defining Bell-like inequalities of NS3,2 given in
Ref. [Ban+13], the corresponding MGS witnesses of NS4,2 generated from lifting
still correspond to a facet [Grü+67] of the polytope in the more complex scenario.
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Likewise, when these 185 lifted inequalities, as well as the 13,479 facet-defining in-
equalities obtained in Ref. [CLG14] are lifted to the 5-partite scenario, it can again
be verified that they correspond to facets of the NS5,2 polytope. Based on these
observations, we conjecture that — as with standard Bell inequalities — the proce-
dure of lifting, when applied to a facet-defining inequality ofNSn,k, also generates
a facet of NSn′,k in the extended scenario involving n′ > n parties.

Unfortunately, a naive application of lifting to signalling resources generally
does not always result in legitimate MGS witnesses in the extended scenario. Nev-
ertheless, the possibility to simulate all possible full-correlation functions [Ban+12]
using only non-signalling resources — as we show in Appendix D.1 — allows us
to apply the recipe to Bell-like inequalities originally derived for Svetlichny re-
sources [Ban+12; Sve87; Col+02b; JLM05; Ban+11; Che+11] and construct MGS
witnesses for non-signalling resources in any extended scenario. It is also conceiv-
able that an analogous witness-generating technique may be found for signalling
resources, a problem that we shall leave for future research.

Evidently, on top of Bell-like inequalities that one may construct using the
aforementioned technique, it is natural to ask if there exist simple family of non-
k-producible witnesses for arbitrary number of parties. In this regard, we note that a
family of such witnesses for a quantum resource (as well as a general non-signalling
resource) has recently been identified [Lia+15]. Similar results for other resources,
especially one that is either optimal (in the sense of being facet-defining) for the
respective convex polytope, or one that involves a small number of terms to be mea-
sured experimentally, would certainly be desirable.

Finally, let us stress that while we have discussed MGS mostly in the context of
reproducing certain nonlocal correlations, these values for the post-quantum non-
signalling resource, as well as for signalling resources also provide insight on the
difficulty in reproducing certain correlations using quantum resources. In this sense,
evaluation of the MGS for a given correlation may give an indication on how diffi-
cult it is to produce certain Bell-inequality violating correlations in the laboratory:
the larger the value of MGS, the more systems need to be entangled together in their
generation.
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Chapter 7

Anonymous Quantum Nonlocality

In this chapter, we study multipartite nonlocal correlations and their use in device-
independent (DI) information tasks. We show that these can indeed provide advan-
tages in some tasks, such as DI quantum key distribution (DIQKD) or secret sharing
between any two groups of parties. We study correlations whose generation requires
only subsets of the parties to share nonlocal resources – such as entangled systems
– but which exhibit other interesting features. Such correlations already provide
with the necessary properties for information tasks. Anonymous nonlocality is such
a feature proper to multipartite correlations, allowing a subset of parties to generate
nonlocal correlations – and thus achieve an information task – without revealing
their identity. Our work thus provides additional evidence that multipartite nonlo-
cal correlations are useful for DI information tasks. On the other hand, there is no
apparent reason to focus on the multipartite extend of the nonlocal correlations, but
rather on the fact that these are nonlocal at all.

From a resource-theoretic perspective, our results also imply that the gap be-
tween quantum and post-quantum resources (such as no-signalling ones) – in terms
of resources size or correlations depth – for the (re)production of nonlocal correla-
tions can be made arbitrarily large.

This chapter is based on the results obtained in [Lia+14].

7.1 Biseparable correlations and anonymous nonlocality

In contrast to genuine multipartite nonlocal correlations (2.46), correlations that are
biseparable, cf. Eq. (2.45) with m = 2, receive almost no attention. Apart from
being a tool in the derivation of Bell-type inequalities for genuine multipartite non-
locality, is this kind of correlations interesting in its own right? Here, we answer
this question affirmatively via the phenomenon of anonymous nonlocality (ANL),
an intriguing feature that is only present in biseparable correlations. We will also
provide evidence showing that ANL can be a powerful resource, allowing one to
design device-independent quantum cryptographic protocols that can guard against
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a particular kind of attack by any post-quantum, but no-signalling adversary.

To appreciate the peculiarity manifested by ANL, let us start by considering the
simplest, tripartite scenario. Clearly, among the subsets of correlations that can are
biseparable, are those that satisfy:

P(~a|~x) = ∑
ν

pνPν(a1|x1) PRν (a2a3|x2x3), (7.1a)

= ∑
µ

pµ Pµ(a2|x2)PRµ (a1a3|x1x3), (7.1b)

= ∑
λ

pλ Pλ(a3|x3)PRλ (a1a2|x1x2), (7.1c)

where pν, pµ, pλ ≥ 0 for all ν, µ and λ, but in contrast with Eq.(2.45), we now
have ∑ν pν = ∑µ pµ = ∑λ pλ = 1. Eqs. (7.1a)–(7.1c) imply that the correlation
can be produced without having any nonlocal collaboration between the isolated
party and the remaining two parties (as a group). Naively, one may thus expect
that all correlations satisfying these equations must also be Bell-local (henceforth
abbreviated as local). However, there exist [VB12] quantum correlations that satisfy
Eqs. (7.1a)–(7.1c) as well as:

P(~a|~x) 6= ∑
θ

pθ Pθ(a1|x1)Pθ(a2|x2)Pθ(a3|x3), (7.1d)

for any conditional distributions Pθ(ai|xi) and any normalized weights pθ . In other
words, ~P satisfying Eq. (7.1) is nonlocal but this nonlocality is (i) not genuinely tri-
partite (it is biseparable) (ii) not attributable to any of the two-partite marginals1 and
(iii) not attributable to any bipartition of the three parties. The nonlocality present
in any correlations satisfying Eq. (7.1) is thus in some sense nowhere to be found!

We now provide a very simple example of correlation satisfying Eq. (7.1), and
more generally the property of being (1) nonlocal and (2) biseparable with re-
spect to all bipartitions in an arbitrary n-partite scenario. Consider the n-partite
Greenberger-Horne-Zeilinger (GHZ) state [GHZ89] |GHZn〉 = 1√

2
(|0〉⊗n + |1〉⊗n)

and the local measurement of σx and σy. The resulting correlation is

P(~a|~x) = Pn
GHZ(~a|~x) =

1
2n

[
1 + cos

(
x

π

2

) n

∏
i=1

ai

]
, (7.2)

where x = ∑i xi, and we have identified xi = 0 (1) as the σx(σy) measurement

1Eqs. (7.1a)–(7.1c) imply that all marginals are local.
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(see, eg. Eq. (23) of [WLB11]). In Appendix E.1, we show that for all n ≥ 3, n-
partite correlations of the form of Eq. (7.2) admit a biseparable decomposition with
respect to any partitioning of the n parties into two groups. Specifically for n = 3,
this decomposition, cf. Eq. (7.1a), involves pν = 1

4 for all ν, Pν(a1|x1) = 0, 1 and
PRν (a2a3|x2x3) is the correlation associated with the so-called Popescu-Rohrlich
(PR) box (2.27) — a hypothetical, stronger-than-quantum, but non-signalling re-
source.2 To see that these correlations are nonlocal, it suffices to note that Eq. (7.2)
violates the Mermin-Bell inequality [Mer90a; Ard92; RS91; Belb; GBP98] (even
maximally [WW00] for all odd n ≥ 3). See Appendix E.2.

Consider now an alternative way to understand the nonlocality associated with
Eq. (7.1). Operationally, Eq. (7.1c) implies that ~P can be produced by, e.g., party 1
signalling classically to party 2, and all parties responding according to the informa-
tion that they received and some predefined strategy λ. By symmetry of Eqs. (7.1a)–
(7.1c), the same can be achieved by having only nonlocal collaboration between any
two out of the three parties. Thus, while the correlation can be produced by hav-
ing only a definite subset of parties collaborating nonlocally, the identity of these
nonlocally collaborating parties is anonymous to an outsider who only has access to
~P. Indeed, even if an outsider is given the promise that a fixed subset of the parties
have collaborated nonlocally, it is impossible for him to tell if, say, party 1 and 2
have collaborated nonlocally in generating ~P. Importantly, the anonymity present
in these correlations differs from the case where a classical mixture of the different
bipartitions is necessary, cf. Fig. 7.1 (see [CLG14; Lia+14] for examples of such
classical anonymity). In this latter case, it is indeed possible to identify the parties
that must have collaborated nonlocally, even though this identification is generally
not possible at any single run of the experiment.

As remarked above, for all n ≥ 3, the GHZ correlations of Eq. (7.2) are nonlocal
but can nevertheless be produced by splitting the parties into any two groups, and
disallowing any nonlocal collaboration between these groups. Thus, the anonymity
present in these correlations is even more striking in the n > 3 scenarios: not only
are the groups of parties sharing R unidentifiable in an unambiguous manner, even
the size of the groups are also not identifiable (see Fig. 7.2). For example, when

2In the tripartite scenario, the biseparability of the GHZ correlation was also discovered indepen-
dently in [PBS11] (see also [Cer02; MPR04]).
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1|23

3|12

2|13

L

FIGURE 7.1: (Color online) Schematic representation of the various sets of tri-
partite correlations. Correlations biseparable with respect to party i in one group
and parties j and k in the other lie in the (light blue) rectangle labelled by “i|jk".
The convex hull of the three biseparable sets “i|jk" where i, j, k ∈ {1, 2, 3} is
represented by the filled convex region and gives the set of all biseparable corre-
lations. The blank region between the outermost box and the filled convex region
represents correlations that are genuinely tripartite nonlocal. Intersection of the
three biseparable subsets “i|jk" gives correlations satisfying Eqs. (7.1a)–(7.1c); its
subset featuring ANL is the tiled region while local correlations lie in the (cyan)
rectangle L. Hatched regions represent biseparable correlations where classical

mixture of different bipartitions is necessary for their production.

n = 4, the correlation satisfy:

P(~a|~x) = ∑
λ1

qλ1 Pλ1(a1|x1)PRλ1
(a2a3a4|x2x3x4), (7.3a)

= ∑
λ2

qλ2 Pλ2(a2|x2)PRλ2
(a1a3a4|x1x3x4), (7.3b)

= · · · , (7.3c)

= ∑
µ3

qµ3 PRµ3
(a1a4|x1x4)PRµ3

(a2a3|x2x3), (7.3d)

P(~a|~x) 6= ∑
θ

qθ

4

∏
i=1

Pθ(ai|xi), (7.3e)

where ∑λi
pλi = ∑µj

pµj = 1, pi ≥ 0 for all i, j, and “· · · " indicates other possible
biseparable decompositions that have been omitted. From Eq. (7.3), we see that
the 4-partite GHZ correlation could have been produced by having any three parties
collaborating nonlocally, or any two groups of two parties collaborating nonlocally
within each group. From the correlation itself, it is simply impossible to distinguish
these possibilities apart (Fig. 7.2).

Let us now briefly comment on the relationship between ANL and multipartite
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1∼2 & 3∼4?
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1∼2∼3?
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1∼3∼4?
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FIGURE 7.2: ANL in the 4-partite scenario. Each participating party is abstractly
represented by a box labelled by the party number. The correlations were produced
by having parties 1 & 2, as well as 3 & 4 collaborated nonlocally (symbolized
by “∼"). To an outsider who only has access to ~a and ~x, even if one is given
the promise that the correlations were produced by the four parties separated into
two fixed groups, it is impossible to tell which actual partitioning of the parties

generated these correlations.

entanglement. Clearly, one expects that there must also be features analogous to
ANL in the studies of multipartite entanglement. Indeed, the first of such exam-
ples dates back to the three-qubit bound entangled [HHH98] SHIFT state [Ben+99]
where its entanglement was dubbed delocalized [DiV+03] since it is separable with
respect to all bipartitions, yet not fully separable. A more recent example [VB12]
involves a three-qubit bound entangled state which even violates a Bell inequality,
thus giving also an example of anonymous quantum correlation. An important dif-
ference between their example and the tripartite case of our GHZ example is that
their correlation can be produced by a biseparable tripartite entangled state whereas
ours necessarily requires a genuinely tripartite entangled state. More generally, for
all odd n ≥ 3, we show in Appendix E.3 that the correlations of Eq. (7.2) can only
be produced by genuinely n-partite entangled state. Our examples thus show that
the generation of ANL does not require delocalized entanglement.

7.2 Perfect correlations with uniform marginals

From Eq. (7.2), we see that whenever an odd number of parties measure in the σy
basis, the product of outcomes ∏i ai gives ±1 with equal probability, otherwise it
is either perfectly correlated or perfectly anti-correlated. Moreover, it follows from
Eq. (7.2) that all marginal distributions of these correlations are uniformly random.
Next, we present two quantum cryptography protocols that exploit these strong but
anonymous correlations.
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7.2.1 Application I: multipartite secret sharing (MSS)

Imagine that n parties wanted to share a secret message between any two comple-
mentary subgroups as they desire, i.e., between any subgroup of k parties (k ≤
n− 1) and the subgroup formed by the remaining parties. Suppose moreover that
the shared secret is to be recovered by these subgroups only when all parties within
each group collaborate (so that it is unnecessary to trust all parties within each
group). A possibility to achieve this consists in: (i) the n parties share (many copies
of) |GHZn〉, (ii) each party randomly measures either the σx or the σy observable,
(iii) the n parties are randomly separated into two groups and all parties assigned
to the same group collaborate to compare their inputs and outputs, (iv) both groups
announce their sum of inputs, (v) parties in the same group compute the product of
their measurement outcome and deduce, using Eq. (7.2), the shared secret bit upon
learning the sum of inputs of the other group, (vi) parties in one group use the shared
secret keys to encrypt the message and send it to the other.

In the device-independent setting, security analysis is carried out by treating
each physical subsystem together with their measurement device as a black box;
conclusions are drawn directly from the measurement statistics. Indeed, the above
protocol does not rely on the assumption of a GHZ state nor the particular mea-
surements being performed, but rather the strong correlation present in Eq. (7.2)
— for the right combination of inputs, the product of outputs are perfectly (anti)
correlated.3 Thus, the protocol essentially works by first distributing the correlated
data needed to establish the secret keys, and performing the secret sharing [Sch07;
GG97] between any two complementary subgroups of the n participating parties as
they deem fit. Since the product of outcomes for each group is uniformly random,
the protocol is secure against cheating by any dishonest parties within the group;
no one can retrieve the shared key without collaborating with everyone else within
the same group. What about eavesdropping by an external, post-quantum but non-
signalling adversary Eve?

Since the GHZ correlations of Eq. (7.2) are biseparable, a naive attack by Eve
may consist in preparing for the n parties the biseparable, non-signalling boxes that
reproduces exactly Eq. (7.2). For instance, in the tripartite case, in accordance with
the biseparable decomposition, she would prepare with equal probability 4 different
versions of a deterministic box for one of the parties, and correspondingly 4 different
versions of a PR box for the remaining two parties. If the decomposition that she
chooses matches exactly the way the parties are separated into two groups, then
after step (iv), she learns exactly the key and hence the message shared by these

3This happens in half the cases. In the other cases, the correlation is useless for key generation.
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parties.4 However, as the grouping is decided only after the measurement phase,
she can guess the bipartition correctly only with a chance of 1

3 in the tripartite case,
and more generally (2n−1− 1)−1 in the n-partite scenario. Evidently, this guessing
probability rapidly approaches 0 as n increases, making it extremely difficult for
Eve to succeed with this eavesdropping strategy for large n.

7.2.2 Application II: bipartite leakage-resilient QKD

Next, let us describe a quantum key distribution (QKD) protocol between two par-
ties, A and B, which is as leakage-resilient [DP08; Sta+10; LRR14] as one could
hope for. The protocol consists of: (i) preparation of many copies of |GHZn〉, (ii)
for each of these n-partite systems, a randomly chosen subset, say, k of the n sub-
systems are distributed to A, while the remaining n− k subsystems are distributed
to B, (iii) for each of these subsystems, A and B randomly measure σx or σy, (iv)
both parties announce their sum of inputs, (v) for each n-partite system distributed
from the source, A and B compute the product of their local measurement outcomes
and deduce, using Eq. (7.2), the shared secret bit upon learning the sum of inputs of
the other party.

As with the MSS protocol described above, the secret key is established through
the perfect (anti) correlation present in the product of the outputs. Moreover, the gist
of the protocol only relies on the correlation given by Eq. (7.2), rather than the actual
state and measurement giving rise to this correlation, rendering the protocol ideal for
device-independent analysis. However, in contrast with usual device-independent
cryptography where leakage of information is not allowed, the above protocol is as
leakage-resilient as one can hope for — the adversary Eve can certainly recover the
secret key if all the output bits from either party leak to her, but if she misses merely
one output bit from each party, the additional information that she gains from the
leakage cannot improve her guess of the secret key. Now, if we assume that Eve
has no control over how the subsystems are distributed in step (ii)5 but otherwise
only constrained by the non-signalling principle, then as with the MSS protocol, for
n sufficiently large, her advantage of preparing some biseparable, non-signalling
boxes for A & B is minimal.

4In this case, the product of outcomes for each group is a deterministic function (of the sum of
inputs) known to Eve. The secret sharing protocol of Hillery et al. [HBB99] is thus insecure against
this kind of attack by a non-signalling adversary.

5Instead of this assumption, A & B can employ additional measurement settings, cf. [AMP06], to
certify that the overall correlations indeed exhibit genuine multipartite nonlocality and they are then
again not susceptible to such an attack.



136 Chapter 7. Anonymous Quantum Nonlocality

7.3 Discussion and conclusion

Let us now comment on some possible directions for future research. Clearly, we
have only provided intuitions on why the protocols proposed above may be secure
even in a device-independent setting. For odd n ≥ 3, since the GHZ correlations vi-
olate the Mermin-Bell inequality maximally (see Appendix E.2), the result of Franz
et al. [FFW11] implies that these correlations are necessarily monogamous with
respect to any potential quantum eavesdropper. This strongly suggests that if we
assume an independent-and-identically-distributed (i.i.d) scenario, a formal secu-
rity proof of these protocols against a quantum adversary may be given even in the
case with noisy correlations,6 and in a device-independent setting. Evidently, a se-
curity proof without this assumption is even more desirable, and a possible path
towards this is to prove that the protocols are even secure against an adversary that
is only constrained by the non-signalling principle [PR94]. Our arguments on why
the protocols are not immediately susceptible to a straightforward attack by such an
eavesdropper, despite the fact that the correlations are biseparable, is an evidence
pointing in this direction.

For leakage-resilient QKD, one could also imagine, instead of the above pro-
tocol, doing an existing QKD protocol many times in parallel and then using the
XOR of the secret key bits to generate the final secret key. Although such a protocol
requires many more qubits to establish the final secret key, it can clearly offer high
level of leakage resilience. How would such a protocol perform compared with the
above protocol based on |GHZn〉? This certainly deserves some further investiga-
tion.

Coming back to ANL itself, let us note that the requirement of (1) nonlocality
and (2) biseparability with respect to all bipartitions may arguably not, by them-
selves, imply that an outsider cannot attribute unambiguously the nonlocality to
any definite subset(s) of the n parties. For instance, one may start with the tripar-
tite GHZ correlation P3

GHZ(~a|~x), cf. Eq. (7.2), and trivially construct an example
P′ = P3

GHZ(~a|~x)∏n
i=4 P(ai|xi) for arbitrary n parties by introducing parties that

are uncorrelated with the first three. While such an n-partite correlation P′ indeed
satisfies the two requirements stated above, one can unambiguously attribute the
nonlocality present only to the three parties that give rise to P3

GHZ(~a|~x). Note,
however, that such an identification is incomplete since the production of such a
biseparable correlation only requires the nonlocal collaboration between two par-
ties, and it is still impossible for an outsider to determine which two parties have
collaborated nonlocally in producing the given correlation (Fig. 7.1 and Fig. 7.2). A

6Due to the noise robustness of the Mermin-Bell violation of ~Pn
GHZ(~a|~x), the ANL of ~Pn

GHZ(~a|~x)
is also extremely robust to noise.
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more precise definition of ANL may thus require also a specification of the extent
(size) of the nonlocal resource needed in producing the given correlation, a task that
shall be pursued elsewhere [Lia+14]. For our GHZ examples, except for the cases
where n is even with n

2 odd, it can be shown (see Appendix E.4) using the result
of Ref. [Ban+09] that the correlations of Eq. (7.2) are not triseparable, i.e., not pro-
ducible by a partitioning of the parties into three groups (where only parties within
the same group are allowed to collaborate nonlocally). Hence, the generation of
these correlations indeed requires the nonlocal collaboration of at least d n

2 e parties
in one group; an analogous statement for the remaining cases would be desirable.
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Chapter 8

Overview and future perspectives

The objective of this thesis was to make steps forward in our understanding of: i)
how entanglement, nonlocality and other quantum features such as certified ran-
domness relate to one another – both qualitatively and quantitatively; and ii) the
potentiality of entanglement and of nonlocal correlations as resources for device-
independent information tasks.

With these objectives in mind, the contributions of this thesis are the following.

The nonlocal volume: a measure putting maximal entanglement and non-
locality in a quantitative equivalence.– In chapter 3, we got interested in whether
"more" entanglement leads to "more" nonlocality and the concept of anomalies:
so far, almost all measures of nonlocality put non maximally entangled states as
maximally nonlocal. We were interested in understanding if these anomalies stem
from a fundamental inequivalence, or rather as an artefact of the used measure of
nonlocality. In this spirit, we studied a recently introduced measure of nonlocality
defined as the probability that a state generates nonlocal correlations when random
measurements are being performed on it – the nonlocal volume.

First, we proved that this measure satisfies basic properties as an operational
measure of nonlocality. We have then provided both analytical and numerical re-
sults providing evidence that this measure puts maximal (pure state) entanglement
and maximal nonlocality in a one-to-one correspondence. Our observations are to a
large extent based on inclusion relations between the sets of measurements leading
to nonlocal correlations when performed on different entangled systems. In particu-
lar, we have shown that correlation Bell inequalities (or XOR games) are monotones
of entanglement for two-qubit systems: the more entanglement in a pure state, the
larger the probability to violate these inequalities when random measurements are
performed on it. Finally, we extended our results and observations to classes of
multipartite systems.

Future perspectives: Our work represents the first analytical results using the
nonlocal volume as a measure. The main reason why so little is know analytically
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about the measure is that it is typically difficult to tackle the problem directly as it
involves solving complicated integrals. We circumvented the problem by studying
the inclusion relations of the sets of measurements leading to a violation of corre-
lation inequalities when made on different entangled systems. This opens a novel
interesting direction of research: understand, more generally, what are the relations
between the sets of measurements leading to nonlocal correlations when performed
on different entangled systems.

Second, it would be interesting to explore specifically how our results and the
inclusion relations of the sets of measurements generalise to scenarios with more
outcomes. By generalising the notion of correlation inequalities1, using Weyl op-
erators for example, is it possible to extend the inclusion relations to set-ups with
more outcomes?

Unbounded randomness certification using sequences of measurements.–
We addressed the question of whether there exist fundamental bounds on the amount
of randomness that can be generated from measurements on entangled systems. In
the standard Bell scenario, each party performs a single measurement on its share of
each copy of the system. In that scenario, only a finite amount of randomness of at
most 4 log 2(d) bits can be certified from a pair of entangled particles of dimension
d.

In chapter 4, we showed that this limitation can be overcome using sequences
of measurements on the same system. More precisely, we proved that one can cer-
tify any amount of random bits from a pair of qubits in a pure state as the resource,
even if it is arbitrarily weakly entangled. In addition, this certification is achieved
by near-maximal violation of a particular Bell inequality for each measurement in
the sequence. Our results show that entangled systems are unbounded sources of
certified random numbers and of nonlocal correlations in a sequence.

Future perspectives:
The main objective of this work was to lift the limitations of the standard scenario
for the certification of random numbers from measurements on quantum systems.
As such, it should essentially be understood as a proof of principle. An important
direction of future research is to explore its experimental feasibility. Indeed, our
scheme can be adapted to one that is resistant to imperfections by generating only
a finite amount of randomness. The first experiments implementing sequences of
measurements on quantum systems have since then be performed. Nevertheless,
these require a high level of trust and are not being performed in a DI manner,
implying that no randomness can be certified from them. An experimental challenge
is to come up with a true DI sequence of measurements. This should allow, in

1To be exact, one needs to generalise the Bell operator associated to the inequality, i.e. the operator
acting on the state.
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principle at least, for the implementation of a protocol generating random numbers
in a sequence.

Second, it would be interesting to explore whether it is possible to certify ran-
domness in a sequence as we do against a post-quantum adversary. Indeed, in our
case the certification is built on the assumption that the adversary is bound by the
laws of Quantum Theory. It would be interesting to explore how much randomness
can be certified, for example, against a post-quantum but no-signalling adversary.
One possibility is that Quantum Theory somehow is the only theory allowing for an
unbounded amount of certified randomness in a sequence. A related problem is to
achieve randomness amplification – and not only certification – from sequences of
measurements.

Towards an equivalence between multipartite entanglement and multipar-
tite nonlocality.– The equivalence between pure state entanglement and nonlocality
has been established in the bipartite set-up and extended to the multipartite one: one
can always find local measurements on such states such as to generate nonlocal
correlations [Gis91; PR92; GG16]. Nevertheless, in the multipartite scenario the
generated nonlocality has the caveat of being essentially bipartite. The equivalence
between the genuine multipartite notions of entanglement and nonlocality is yet to
be proven.

In chapter 5, we made steps towards showing the equivalence between genuine
multipartite entanglement (GME) of pure states and genuine multipartite nonlocal-
ity (GMNL). Based on an operational understanding of multipartite entanglement,
we developed a simple method to design Bell inequalities suited for the detection of
multipartite nonlocal correlations generated from pure states. We first showed ana-
lytically that large classes of GME pure states violate our inequalites, even ones that
are arbitrarily little entangled and for any number of observers. We also provided
numerical evidence that all systems of three and four qubit in a GME pure state vio-
late our inequalities. Our results, together with the very operational meaning of our
inequalities, led us to conjecture that all GME pure states violate our inequalities
for any number of observers.

Future perspectives: In our work, we have managed to show analytically that
all GME pure states of three particles that are invariant under the permutation of
two parties generate GMNL correlations. This was achieved using a single of our
inequalities as witness. An important improvement would be to generalise our re-
sults to three-particle GME systems that have no symmetry, for which we have clear
numerical evidence that the statement holds. A general proof of the equivalence be-
tween GME and GMNL for any number of parties seems difficult to tackle directly
as no characterisation of GME pure states is know for more than three-qubit sys-
tems. One possibility would be to follow the lines of [PR92] and come up with a
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proof ad-absurdum.
Another interesting direction to explore is to understand the efficiency of our

inequalities to witness multipartite nonlocal correlations generated from systems in
a mixed state. One could also extend our numerical searches to larger number of
parties in order to strengthen the evidences we already gathered. Finally, it would
be interesting to try to implement an experiment for the violation of our inequalities
for small numbers of parties but large classes of GME systems.

A framework for the study of correlations’ depth.– It is in general harder to
generate systems that are entangled between many parties rather than many systems
entangled between fewer parties. A very natural way to quantify the complexity of
multipartite nonlocal correlations is thus through the minimal size of the resource
that is needed in order to generate them – the correlations’ depth. Correlations that
can be produced by distributing systems that are entangled between two parties only
are then less complex than the ones that require entanglement between more parties.
Naturally, the complexity of correlations also varies with the type of resources, as
for example post-quantum but no-signalling ones, that are allowed. In chapter 6, we
developed a framework for the study of the correlations’ depth.

In addition, we provided a general recipe to construct Bell-like inequalities wit-
nessing correlations’ depth for any non-signalling resources, for any number of par-
ties and any depth. Explicit examples of correlations where their MGS could be
determined using this recipe and other numerical techniques were also provided.

Future perspectives: The first natural extension of our result was to obtain a
simple family of inequalities – and not only ones that are build based on liftings
of existing inequalities – witnessing k−depth of correlations. This was achieved in
[Lia+15]. Further, in [Bac+18] the authors showed how to adapt technique based
on semi-definite programming in order to quantify the depth of correlations. These
results already provide useful tools for the detection of the depth of correlations. An
interesting result would be to use this novel framework and tools in order to make
the realisation of certain useful correlations "cheaper": these correlations would be
generated by using entangled systems with lower depth than previously.

Additionally, it would be insightful to understand how and why the depth of
certain nonlocal correlations varies in function of the nonlocal resources that is con-
sidered2. Is there an operational principle that would be violated if quantum cor-
relations of a given depth were to be as powerful for the reproduction of nonlocal

2This is the case, for example, with the Mermin inequality[Mer90a]: the maximal (algebraic)
bound of the inequality requires the use of GME entangled states, i.e. that are entangled between
all parties. When using post-quantum but no-signalling resources, one only needs d n

2 e parties to be
non-classically correlated [Lia+14].
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correlations as post-quantum ones of the same depth?

Multipartite nonlocal correlations as resources for device-independent in-
formation tasks.– Multipartite set-ups are interesting at the fundamental level be-
cause richer notions of nonlocal correlations arise. Nevertheless, their potential use
as resources in device-independent (DI) information tasks is less transparent. In
chapter 7, we identified novel features characteristic of multipartite correlations and
how these could be useful in DI tasks. A DI quantum key distribution (DIQKD)
scheme that is resilient to leakage of information to the adversary and a secret shar-
ing scheme between two groups of parties were proposed. A novel multipartite fea-
ture, anonymous nonlocality, allows parties to achieve an information task without
revealing their identity, a potentially useful property in a cryptographic set-up.

Our work also hints at the fact that it is often not the multipartite extent of corre-
lations that matters when designing information tasks. Rather, one should focus on
other interesting properties – such as perfect correlations between parties – together
with the fact that the correlations are nonlocal to any extent. From a resource-
theoretic point of view, our work also sheds light on the potentiality of quantum
resources as compared to post-quantum ones for the (re)production of nonlocal cor-
relations. Indeed, we showed that the difference in the depth of certain correlations
when using quantum resources as compared to no-signalling ones can be made ar-
bitrarily large.

Future perspectives: It is desirable to understand whether there exist informa-
tion tasks which require the generation of genuine multipartite nonlocal correlations
(GMNL). Indeed, the characterisation of multipartite correlations and the quantifi-
cation of their multipartite extent has seen some development lately, but are so far
useful only for fundamental questions. In that spirit, it would be useful to under-
stand if GMNL correlations also provide with true advantages in DI tasks.

Second, it would be interesting to compare the schemes we proposed, for ex-
ample for DIQKD, with the ones where instead of using a multipartite entangled
system one uses numerous bipartite systems. How multiple bipartite entangled sys-
tems compare to fewer multipartite ones in DI information tasks is an interesting
question to investigate.
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Appendices: Towards an
equivalence between maximal
entanglement and maximal
nonlocality

A.1 Bell inequalities with single body correlators: viola-
tion with measurements on a partially entangled state
only

Using linear programming, we obtained an example of particular local measure-
ments that do not lead to nonlocality when made on the maximally entangled state,
but do so on a partially entangled one. We checked that with our example, the
inequality which is violated by the partially entangled state (3.1) with θ = 3π

16 con-
tains single-body correlators, see Table A.2. Table A.1 presents Bloch vectors corre-
sponding to Alice’s and Bob’s measurement settings, whereas Figure A.1 visualizes
these vectors in the Bloch sphere.

TABLE A.1: Bloch vectors corresponding to measurement settings for A and B
leading to the counterexample. Entanglement parameter θ = 3π

16 .

Alice’s measurements.

x = 0 x = 1 x = 2
σx 0.0213 0.3539 0.8786
σy 0.9599 0.9320 −0.4772
σz −0.2795 −0.0780 0.0176

Bob’s measurements.

y = 0 y = 1 y = 2 y = 3
0.8685 0.0095 −0.0025 0.6437
0.2420 0.6762 0.6456 0.0175
0.4326 0.7367 −0.7636 −0.7651
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TABLE A.2: The violated Bell inequality in the counterexample case organized in
the Collins-Gisin correlator table. Entanglement parameter θ = 3π

16 .

〈A0〉 〈A1〉 〈A2〉
〈B0〉 〈A0B0〉 〈A1B0〉 〈A2B0〉
〈B1〉 〈A0B1〉 〈A1B1〉 〈A2B1〉
〈B2〉 〈A0B2〉 〈A1B2〉 〈A2B2〉
〈B3〉 〈A0B3〉 〈A1B3〉 〈A2B3〉

=

−0.25 0 0.25
−0.13 0.25 −0.25 −0.25
−0.13 0.25 0.25 −0.25
−0.01 0 0 0

0 −0.25 0 0.25

FIGURE A.1: Bloch vectors reproducing qubit counterexample measurement set-
tings in the scenario mA = 3, mB = 4 for θ = 3π

16 . Red solid vectors correspond
to A’s settings, blue dashed to B’s. On the right projections to xz-plane, xy-plane

and yz -plane are presented.
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Appendix B

Appendices: Unbounded
randomness certification using
sequences of measurements

B.1 The guessing probability

We start our appendices with the following discussion, which is a summary of the
work done in deriving the device-independent guessing probability (DIGP) [Pir+10;
AMP12; NSPS14; Tor+15]. A conditional probability distribution that is the out-
come distribution for some measurement on a quantum state is called a quantum
distribution. For example, a distribution P with elements p(ab|xy) is quantum if
there exist at least one quantum state, i.e., a positive semi-definite hermitian unit
trace matrix ρ and at least one set of measurements, i.e., a set of positive semi-
definite hermitian matrices Ma|x, Mb|y satisfying ∑a Ma|x = ∑b Mb|y = 1 such
that p(ab|xy) = Tr(Ma|x ⊗Mb|y · ρ). We will often abuse notation and refer to a
distribution by its elements p(ab|xy) when there is no confusion in doing so.

The setQ of quantum distributions is convex and a distribution inQ that cannot
be decomposed as a convex combination of other distributions is called extremal in
Q. For a non-extremal distribution P(ab|xy) there is in general more than one
possible convex decomposition.

A non-extremal distribution p(ab|xy) with a convex decomposition p(ab|xy) =
∑λ qλ pλ(ab|xy) can be constructed by sampling the different distributions pλ(ab|xy)
with probability qλ. In this case knowledge about the convex decomposition chosen
changes the ability of an eavesdropper to correctly guess the outcomes a and/or b.

Without knowledge of the decomposition, or for extremal distributions, the
probability of correctly guessing the outcome of measurement y0 is maxb p(b|y0),
the probability of the most likely outcome. With knowledge of the decomposition
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p(ab|xy) = ∑λ qλ pλ(ab|xy), the probability is larger or equal to maxb p(b|y0)

∑
λ

qλ max
b

pλ(b|y0) ≥ max
b

∑
λ

qλ pλ(b|y0) = max
b

p(b|y0). (B.1)

For a given observed non-extremal distribution Pobs, it is possible that it was pro-
duced by an agent Eve that has larger predictive power than an agent which only
observes the outcomes.

We now want to consider the optimal probability for the agent Eve to correctly
guess an outcome b of measurement y0 given a distribution pobs(ab|xy) and con-
trol over its decomposition in extremal points. If the set of quantum distributions is
closed there exist one or several optimal ways to decompose the given distribution
that maximizes this probability. If the set is not closed but open or semi-open, there
may not exist a maximum and the relevant quantity is instead the supremum value
of Eves probability to correctly guess the outcome. Since maxb p(b|y0) is a con-
tinuous function on the set of probability distributions it follows that the supremum
value of ∑λ qλ maxb pλ(b|y0) as a function of all possible decompositions, indexed
by λ, on an open or semi-open set of distributions is the same as the maximum value
on the closure of the set. Therefore, in this case we can consider the closure of the
set and express the probability as an optimization over the extremal points of this
closed set.

With this disclaimer, the maximal probability for the agent Eve to correctly
guess an outcome b of measurement y0 given a distribution pobs(ab|xy) and control
over the decomposition is the DIGP G(y0, Pobs)

G(y0, Pobs) = max
qλ,pλ(ab|xy)

∑
λ

qλ max
b

pλ(b|y0). (B.2)

where λ is labelling the convex decompositions of pobs(ab|xy) in terms of extremal
distributions pλ(ab|xy). Note that if Q is not closed a given extremal point may
not belong to the set but only to its closure. For any open interval of Q the function
G(y0, Pobs) is a concave function [Pir+10]. Therefore this kind of maximization is
called a concave roof construction.

The guessing probability can be approximated by a hierarchy of semidefinite
programming (SDP) relaxations [NSPS14; BSS14]. We used Ncpol2sdpa [Wit15]
to generate the relaxations for verifying some of the analytical results. We relied on
the arbitrary-precision variant of the SDPA family of solvers [YFK03] for obtaining
important numerical values, and the solver Mosek1 in all other cases.

1http://mosek.com/

http://mosek.com/
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B.2 Continuity of the guessing probability in interior and
extremal points of Q

The guessing probability as a function on the space of probability distributions is not
everywhere continuous. An example of this is that the family of Bell-inequalities of
Ref. [AMP12] that certifies one bit of randomness for measurements on a state with
arbitrarily little entanglement. The probability distribution corresponding to such a
state and the measurements in Eq. 4.6 has G(y0, Pobs) = 1/2 and is at the same
time arbitrarily close to a distribution corresponding to measurements on a product
state with G(y0, Pobs) = 1, i.e., a distribution which can be prepared by a local
deterministic procedure. There is thus a discontinuity where the guessing proba-
bility jumps from 1/2 to 1. The key to understanding this discontinuity is that the
local deterministic distribution is not extremal while the quantum distribution in the
neighbouring point is extremal. As seen in Eq. B.1, the guessing probability is given
by different functions depend ing on whether a distribution can be decomposed into
other distributions or not, i.e., if it is extremal or not. This means discontinuities can
appear at the boundary between extremal points and non-extremal points.

We will now show that discontinuities can only appear at such boundaries be-
tween extremal and non-extremal points in the boundary ∂Q of the quantum set Q.
To do this we use the property of the guessing probability described in Eq. B.1, to-
gether with some general properties of concave functions and in particular concave
roof constructions.

We want to show that the following propositions are true:

Proposition 3. The function G(y0, Pobs) on the set of quantum distributions Q is
continuous in the interior of Q.

Proposition 4. The function G(y0, Pobs) is continuous in any extremal point of Q.

Proposition 3 is trivial. The guessing probability G(y0, Pobs) is concave by def-
inition and any concave function is continuous on an open subset of its domain
[Roc70]. In particular this means that G(y0, Pobs) is continuous in the interior ofQ.
Note that ifQ is open, i.e. has no boundary, there can thus not exist any discontinu-
ity.

To address proposition 4 we consider the restriction G(y0, Pobs)∂Q of G(y0, Pobs)
to the boundary ∂Q of the quantum set. First we note that the function G(y0, Pobs)∂Q

by definition is continuous on any open set of extremal points since maxb p(b|y) is
a continuous function. Next we observe that the boundary ∂Q can be decomposed
into a collection of open sets of extremal points and a collection {Si} of closed con-
nected possibly overlapping sets where each set is the closure of a maximal open
connected subset. A maximal open connected subset M of the non-extremal points
is an open set such that any other open connected set of non-extremal points which
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contains M is M itself. Therefore, each set Si is the convex hull of the set of ex-
tremal points in its closure.

Any closed set Si has a boundary ∂Si with the rest of ∂Q which can be decom-
posed in the same way into open sets of extremal points and closed connected sets
Sij that are closures of maximal open connected sets of non-extremal points. The
boundary ∂Sij of Sij with the rest of ∂Si is in turn decomposable in the same way.

Continuing this successive decomposition of the boundary ∂Q we will eventu-
ally reach sets Sijk... that are one dimensional simplexes, or alternatively sets with
only extremal points in the boundary. On sets of these two types G(y0, Pobs) is a
continuous function. To see this we introduce the following terminology, and use a
theorem from Ref. [BL13].

A function for which all discontinuities are such that the function takes the
higher value at a closed set and the lower value at an open set is called upper semi-
continuous.

The function G(y0, Pobs)S defined on a closed convex set S can be viewed as an
extension of G(y0, Pobs)∂S to the interior of S. This extension is called the concave
roof extension.

Theorem 14. Let C be a compact set and K = co(C) be the convex hull of C. If
F : C → R is bounded, upper semi-continuous, and concave on C, then the concave
roof extension F̂ : K → R of F to K is upper semi-continuous [BL13].

The guessing probability is bounded and concave by definition. If the bound-
ary of S has only extremal points it follows that G(y0, Pobs)∂S is continuous in ∂S
and by theorem 14 G(y0, Pobs)S is upper semi-continuous on S. Moreover, since
G(y0, Pobs)S is concave it cannot have an upper semi-continuous discontinuity be-
tween the boundary and the interior. If S is a one-dimensional simplex we can,
if necessary, restrict the domain of the guessing probability to a one dimensional
subspace and make the same argument.

Next we consider discontinuities between S and an open set of extremal points.

Lemma 1. Any discontinuity of G(y0, Pobs) between a closed set and an open set
of extremal points is upper semi-continuous.

Proof. If the boundary point of the closed set is extremal the G(y0, Pobs) is con-
tinuous since maxb p(b|y0) is continuous. Next consider a non-extremal boundary
point of the closed set. G(y0, Pobs) in the non-extremal point is always greater
or equal to maxb P(b|y0) by Eq. B.1. Thus any discontinuity is upper semi-
continuous.

If there is a discontinuity of G(y0, Pobs) on the boundary of S it is, by lemma 1
, upper semi-continuous and at a set of non-extremal points.



B.3. Bounds on the guessing probability as a function of a Bell inequality:
Continuity at a unique point of maximal violation

151

By repeated application of Theorem 14 and lemma 1 we can conclude that
G(y0, Pobs)∂Q is upper semi-continuous on ∂Q and that G(y0, Pobs) is upper semi-
continuous on Q. Since G(y0, Pobs) is concave there cannot be an upper semi-
continuous discontinuity between the boundary ∂Q and the interior of Q. Thus the
only discontinuities are between non-extremal points in closed subsets of ∂Q and
extremal points in open subsets of ∂Q.

B.3 Bounds on the guessing probability as a function of a
Bell inequality: Continuity at a unique point of maxi-
mal violation

We have described the guessing probability as a function on set of quantum distri-
butions, but it is sometimes useful to consider it as a function of the violation of
some given Bell inequality I. A Bell expression is a linear function on the space
of distributions and the set of distributions for which it takes a given value t is a
hyper-plane Ht. The different values of the Bell expression thus defines a family of
parallel hyperplanes.

On each hyperplane Ht we can consider the restriction G(y0, Pobs)t of G(y0, Pobs)
to the intersection of Ht withQ and take its maximum max G(y0, Pobs)t on this in-
tersection. This maximum is the highest probability for Eve to guess the outcome of
y0 for any distribution P ∈ Q such that I(P) = t. The function max G(y0, Pobs)t
can have a discontinuity at t = tc only if Htc intersects with a point in Q at which
G(y0, Pobs) is discontinuous.

Let us consider a Bell expression I and its maximal value tmax on Q. If the
intersection of Htmax and Q is a single extremal point it follows from Propositions
3 and 4 that there is a tc 6= tmax such that for the range tc ≤ t ≤ tmax for which
max G(y0, Pobs)t is a continuous function of t.

If the intersection of Htmax and Q contains more than one extremal point it also
contains a set of non-extremal points of ∂Q and G(y0, Pobs) could have a disconti-
nuity between this set and an open set of extremal points. This discontinuity could
lead to a discontinuity of the function max G(y0, Pobs)t at tmax.

B.4 Guessing probability for a sequence

So far, we have discussed the continuity properties of the guessing probability in
the standard scenario, where one single measurement Ma|x is made on Alice’s side
and Mb|y on Bob’s. The goal of this section is to extend these properties to the
case where sequential measurements Mai |xi

and Mbi |yi
are performed by each party,

where i labels the position of a particular measurement in the sequence.
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Let us consider a sequence of measurements σ̂(ξi) chosen by Bob and denote
(ξ1, ξ2, . . . , ξn) ≡ ~ξ. The convex decomposition of the observed outcome distribu-
tion that gives Eve optimal probability to correctly guess the sequence of outcomes
~bn of the measurements (y0

1, y0
2, . . . , y0

n) ≡ ~y0
n is a function of ~ξ. The guessing

probability G(~y0
n, Pobs) is thus given by

G(~y0
n, Pobs) = ∑

λξ̄

qλ~ξ
max
~bn

pλ~ξ
(b1|y0

1) · pλ~ξ
(b2|y0

2, y0
1, b1) . . . pλ~ξ

(bn|~y0
n
~bn−1).

(B.3)
where the extremal distributions pλ~ξ

(bn|yn . . . ) and weights qλ~ξ
of the optimal con-

vex decomposition are functions of ~ξ as indicated by the index λ~ξ . Let us assume
that a term which appears in the convex combination is

qλ~ξ
pλ~ξ

(b1|y0
1) . . . pλ~ξ

(bn|~y0
n
~bn−1). (B.4)

Thus we assume that it corresponds to the most probable sequence of outcomes~bn
for a specific distribution indexed by λ~ξ .

Given that Eve has chosen the optimal convex decomposition for guessing the
outcomes of~y0

n we consider her probability of correctly guessing the outcome of y0
m

for 1 ≤ m ≤ n given a particular sequence of previous outcomes~bm−1. It is given
by

∑
λ~ξ

kλ~ξ
max

bm
pλ~ξ

(bm|~y0
m
~bm−1), (B.5)

where kλ~ξ
is the probability that the distribution indexed by λ~ξ will be sampled

given the sequence of previous outcomes~bm−1

kλ~ξ
=

qλ~ξ
pλ~ξ

(b1|y0
1) . . . pλ~ξ

(bm−1|~y0
m−1

~bm−2)

∑λ~ξ
qλ~ξ

pλ~ξ
(b1|y0

1). . .pλ~ξ
(bm−1|~y0

m−1
~bm−2)

. (B.6)

The probability in Eq. B.5 is larger or equal to 1/dm, where dm is the number of
possible outputs bm, but is lower or equal to G(y0

m, Pobs), the maximal probability
that Eve could guess the outcome of y0

m correctly given that she had chosen an
optimal strategy for this and not the optimal strategy for guessing the outcomes of
the sequence ~y0

n. Thus if G(y0
m, Pobs) is close to 1/dm so is the expression in Eq.

B.5.
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B.5 Arbitrarily close to n random bits for n measurements

We want to prove that G(~y0
n, Pobs) can be made arbitrarily close to 2−n by making

G(y0
m, Pobs) sufficiently close to 1/2 for each 1 ≤ m ≤ n.
The proof relies on the fact that if a convex combination of a collection of num-

bers xi equals a, i.e., ∑i kixi = a where ∑ ki = 1, and if xi ≥ a for each i, it follows
that for every i either ki = 0 or xi = a.

From this follows that when G(y0
m, Pobs) is very close to 1/2 either maxbm pλ~ξ

(bm|~y0
m
~bm−1)

in Eq. B.5 is very close to 1/2 or kλ~ξ
is very close to zero for each λ~ξ . To see this

more clearly we construct the following bound

kλ~ξ
max

bm
pλ~ξ

(bm|~y0
m
~bm−1) ≤ G(y0

m, Pobs)− ∑
λ′ 6=λ

kλ′~ξ
max

bm
pλ′~ξ

(bm|~y0
m
~bm−1)

≤ G(y0
m, Pobs)− 1/2(1− kλ~ξ

)

where we used maxbm pλ′~ξ
(bm|~y0

m
~bm−1) ≥ 1/2 for each λ′~ξ and ∑λ′ 6=λ kλ′~ξ

= 1−
kλ~ξ

. It follows that

G(y0
m, Pobs)− 1/2 ≥ kλ~ξ

[max
bm

pλ~ξ
(bm|~y0

m
~bm−1)− 1/2],

and given Eq. (B.6) this implies

G(y0
m, Pobs)− 1/2 ≥ qλ~ξ

pλ~ξ
(b1|y0

1) . . . pλ~ξ
(bm−1|~y0

m−1
~bm−2)[max

bm
pλ~ξ

(bm|~y0
n
~bm−1)− 1/2].

Thus for sufficiently small G(y0
m, Pobs) − 1/2 either maxbm pλ~ξ

(bm|~y0
m
~bm−1) −

1/2 can be made arbitrarily small, or the probability qλ~ξ
pλ~ξ

(b1|y0
1) . . . pλ~ξ

(bm−1|~y0
m−1

~bm−2)

that the distribution labelled by λ~ξ is sampled when y0
m is measured is made arbi-

trarily small.
The argument can be made for any Bm. For B1, it follows that either pλ~ξ

(b1|y0
1)

is made arbitrarily close to 1/2 or qλ~ξ
is made arbitrarily close to 0. For B2, it

follows that either pλ~ξ
(b2|y0

2y0
1b1) is made arbitrarily close to 1/2 or qλ~ξ

pλ~ξ
(b1|y0

1)

is made arbitrarily close to zero. Given the second option and that pλ~ξ
(b1|y0

1) is
made arbitrarily close to 1/2 it is implied that that qλ(~ξ) is made arbitrarily close

to 0. If on the other hand pλ~ξ
(b1|y0

1) is not very close to 1/2 it follows that qλ~ξ
is

made arbitrarily close to zero by the preceding argument.
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By induction it is clear that either the term in Eq. B.4 satisfies that pλ~ξ
(b1|y0

1) . . . pλ~ξ
(bn|~y0

n
~bn−1)

can be made arbitrarily close to 2−n or alternatively qλ~ξ
is made arbitrarily small.

Since the same is true for every λ~ξ in Eq. B.3 it follows that G(~y0
n, Pobs) can be

made arbitrarily close to 2−n.
Note that the above argument can be straightforwardly extended to the case

where the number of outputs di for each Bi can be different from 2. Thus, in this
case G(~y0

n, Pobs) can be made arbitrarily close to ∏n
i=1 d−1

i by making G(y0
m, Pobs)

sufficiently close to 1/dm for each 1 ≤ m ≤ n.

B.6 Our programs to obtain lower bounds on the certified
randomness

In this section of the appendices we give the tables of results for section 4.7. We
remind the reader that the computational details – exposed in a pedagogical way –
of our results can be found online at:

https://github.com/peterwittek/ipython-notebooks/blob/
master/Unbounded_randomness.ipynb

https://github.com/peterwittek/ipython-notebooks/blob/master/Unbounded_randomness.ipynb
https://github.com/peterwittek/ipython-notebooks/blob/master/Unbounded_randomness.ipynb
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TABLE B.1: θ = π
4 , the maximally entangled state

ξ ] random bits
0.000 1.000
0.013 0.962
0.027 0.925
0.040 0.890
0.053 0.855
0.067 0.822
0.080 0.790
0.093 0.759
0.106 0.729
0.120 0.700
0.133 0.673
0.146 0.647
0.160 0.622
0.173 0.598
0.186 0.575
0.200 0.554
0.213 0.533
0.226 0.514
0.240 0.494
0.253 0.473
0.266 0.452
0.280 0.430
0.293 0.409
0.306 0.387
0.319 0.365
0.333 0.342
0.346 0.320
0.359 0.298
0.373 0.276
0.386 0.254
0.399 0.233
0.413 0.211
0.426 0.190
0.439 0.170
0.453 0.150
0.466 0.130
0.479 0.111
0.493 0.093
0.506 0.075
0.519 0.058
0.532 0.042
0.546 0.027
0.559 0.012
0.572 0.000

TABLE B.2: θ = π
8

ξ ] random bits
0.000 1.000
0.013 0.941
0.027 0.884
0.040 0.830
0.053 0.779
0.067 0.729
0.080 0.682
0.093 0.637
0.106 0.595
0.120 0.555
0.133 0.519
0.146 0.485
0.160 0.453
0.173 0.424
0.186 0.396
0.200 0.371
0.213 0.348
0.226 0.327
0.240 0.307
0.253 0.289
0.266 0.273
0.280 0.258
0.293 0.243
0.306 0.229
0.319 0.214
0.333 0.200
0.346 0.186
0.359 0.171
0.373 0.157
0.386 0.143
0.399 0.129
0.413 0.115
0.426 0.102
0.439 0.089
0.453 0.077
0.466 0.064
0.479 0.053
0.493 0.041
0.506 0.031
0.519 0.021
0.532 0.012
0.546 0.004
0.559 0.000
0.572 0.000
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TABLE B.3: θ = π
16

ξ ] random bits
0.000 1.000
0.013 0.896
0.027 0.800
0.040 0.714
0.053 0.641
0.067 0.577
0.080 0.521
0.093 0.473
0.106 0.429
0.120 0.391
0.133 0.356
0.146 0.325
0.160 0.297
0.173 0.271
0.186 0.248
0.200 0.227
0.213 0.207
0.226 0.190
0.240 0.174
0.253 0.159
0.266 0.146
0.280 0.134
0.293 0.122
0.306 0.112
0.319 0.103
0.333 0.095
0.346 0.087
0.359 0.078
0.373 0.070
0.386 0.062
0.399 0.055
0.413 0.047
0.426 0.040
0.439 0.034
0.453 0.027
0.466 0.021
0.479 0.016
0.493 0.011
0.506 0.007
0.519 0.003
0.532 0.000
0.546 0.000
0.559 0.000
0.572 0.000

TABLE B.4: θ = π
32

ξ ] random bits
0.000 1.000
0.013 0.823
0.027 0.706
0.040 0.619
0.053 0.551
0.067 0.493
0.080 0.444
0.093 0.400
0.106 0.362
0.120 0.328
0.133 0.297
0.146 0.269
0.160 0.244
0.173 0.221
0.186 0.200
0.200 0.181
0.213 0.163
0.226 0.147
0.240 0.133
0.253 0.119
0.266 0.107
0.280 0.095
0.293 0.085
0.306 0.076
0.319 0.067
0.333 0.059
0.346 0.052
0.359 0.046
0.373 0.040
0.386 0.035
0.399 0.030
0.413 0.025
0.426 0.021
0.439 0.017
0.453 0.013
0.466 0.009
0.479 0.006
0.493 0.004
0.506 0.002
0.519 0.000
0.532 0.000
0.546 0.000
0.559 0.000
0.572 0.000
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Appendix C

Appendices: A simple approach
to genuine multipartite
nonlocality of pure states

C.1 Lifting Bell inequalities to more observers

The technique of lifting a Bell inequality consists in taking an inequality designed
for a specific Bell set-up – with a fixed number of observers, measurements and
outcomes–, and extending it to a set-up with an increased number of any of these
variables. Here we are interested in lifting a Bell inequality to more observers. We
will briefly review its definition and prove one property of these inequalities, which
is used in Theorems 5 and 7.

Consider a Bell inequality for two observers (??) that, without loss of generality,
can be written as

I = ∑
a1a2x1x2

cx1x2
a1a2

P(a1a2|x1x2) ≤ 0 (C.1)

where observer Ai performs a measurement xi and obtains an outcome ai. The co-
efficients cx1x2

a1a2 are real numbers and P(a1a2|x1x2) represents the observed outcome
distribution, for each measurement pair. A lifting of this Bell inequality to n ob-
servers consists in extending the expression (C.1) by choosing a fixed measurement
and outcome for observers A3, . . . , An:

IA1 A2
~0|~0 = ∑

a1a2x1x2

cx1x2
a1a2

P(a1a2~0|x1x2~0) ≤ 0 (C.2)

where, without loss of generality, the fixed n− 2 measurements and outcomes are
set to ~0 = {0, . . . , 0}. Notice that P(a1a2~0|x1x2~0) = P(a1a2|x1x2,~0,~0)P(~0|~0),
where P(~0|~0) is independent of measurements x1 and x2 according to the no-
signaling principle. This means that if the conditional distribution P~0,~0(a1a2|x1x2) ≡
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P(a1a2|x1x2,~0,~0) violates the bipartite inequality (C.1), it implies that the full dis-
tribution P(~a|~x) violates the lifted inequality (C.2). Therefore, the nonlocality of
the conditional distribution is a sufficient condition for the nonlocality of the full
distribution.

We now want to show that any biseparable distribution (5.19) where parties A1
and A2 belong to different groups of parties, A1 ∈ g and A2 ∈ ḡ, does not violate
a lifted Bell inequality (C.2):

IA1 A2
~0|~0 (Pg/ḡ

bisep) ≤ 0 (C.3)

Since a Bell inequality is a linear function and Pg/ḡ
bisep is convex, it is enough to show

that the previous inequality holds for any pure biseparable distribution P(~ag|~xg)P(~aḡ|~xḡ).
We have then

IA1 A2
~0|~0

(
P(~ag|~xg)P(~aḡ|~xḡ)

)
= ∑

a1a2x1x2

cx1x2
a1a2

Pg(a1~0|x1~0)Pḡ(a2~0|x2~0)

= ∑
a1a2x1x2

cx1x2
a1a2

PA1(a1|x1,~0,~0)PA2(a2|x2,~0,~0)Pg\A1
(~0|~0)Pḡ\A1

(~0|~0) ≤ 0
(C.4)

where the size of the vector~0 should be clear by the context. Notice that we have
again used the fact that the distributions are no-signaling and that PAi(ai|xi,~0,~0)
are well-defined local distributions.

C.2 Properties of our families of Bell inequalities

C.2.1 The family of Bell inequalities IA1 A2...An
sym (5.20) witnesses genuine

multipartite nonlocality

In this section we want to give a more detailed proof of Theorem 7, which states
that for any number n ≥ 3 of observers, all biseparable distributions (5.19) satisfy
our family of inequalities (5.20),

IA1 A2...An
sym =

n−1

∑
i=1

n

∑
j>i

I
Ai Aj

~0|~0 −
(

n− 1
2

)
P(~0|~0) ≤ 0 (C.5)

where (n−1
2 ) = (n−1)(n−2)

2 and thus IA1 A2...An witnesses GMNL in the distributions.
The proof for the family of inequalities IA1...An

À (5.21) follows exactly the same
lines.
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Proof. Our Bell inequalities IA1 A2...An are invariant under permutations of the ob-
servers. Since a Bell inequality is a linear function of the probability terms P(~a|~x),
and by the convexity of biseparable distributions (5.19), we can restrict the proof –
without loss of generality – to pure biseparable distributions of the form

Pm/(n−m) ≡ P(a1a2 . . . am|x1x2 . . . xm)P(am+1am+2 . . . an|xm+1xm+2 . . . xn) ,
(C.6)

where the first term includes the variables of the m first observers and the second
the remaining n− m. Let us recall that, inside each group, observers are allowed
to share any no-signaling nonlocal resources. Our proof consists in counting how
many lifted inequalities I

Ai Aj

~0|~0 (5.22) can be violated by a pure biseparable distribu-

tion (C.6). We will see that this happens to at most (n−1
2 ) lifted inequalities. Indeed,

a term I
Ai Aj

~0|~0 can only be positive if observers Ai and Aj belong to the same group
(i, j ≤ m or i, j > m), since otherwise there are only classically correlated (see
Appendix C.1). Thus

IA1 A2...An
sym (Pm/(n−m)) ≤

m−1

∑
i=1

m

∑
j>i

I
Ai Aj

~0|~0 +
n−1

∑
k=m+1

n

∑
l>k

IAk Al
~0|~0 −

(
n− 1

2

)
P(~0|~0)

=
m−1

∑
i=1

m

∑
j>i

I
Ai Aj

~0|~0 −
(

m
2

)
P(~0|~0) +

n−1

∑
k=m+1

n

∑
l>k

IAk Al
~0|~0 −

(
n−m

2

)
P(~0|~0)

−(m− 1)(n−m− 1)P(~0|~0)

=
m−1

∑
i=1

m

∑
j>i

Ī
Ai Aj

~0|~0 +
n−1

∑
k=m+1

n

∑
l>k

ĪAk Al
~0|~0 − (m− 1)(n−m− 1)P(~0|~0)

≤ −(m− 1)(n−m− 1)P(~0|~0) ≤ 0
(C.7)

in which we have used the fact that
m−1
∑

i=1

m
∑
j>i

I
Ai Aj

~0|~0 contains (m
2 ) lifted terms and

n−1
∑

k=m+1

n
∑

l>k
IAk Al
~0|~0 contains (n−m

2 ) of them. We have further used Ī
Ai Aj

~0|~0 ≡ I
Ai Aj

~0|~0 −

P(~0|~0) ≤ 0, for any i, j (see equation (5.24)). Notice that the situation where most

lifted terms I
Ai Aj

~0|~0 could be positive occurs for bipartitions of one versus n− 1 ob-

servers, hence the (n−1
2 ) factor in our Bell inequalities (C.5).
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C.2.2 A recursive formula for our inequalities

Our family of Bell inequalities IA1 A2...An
sym can also be written in a recursive form,

which shows its rich multipartite structure and operational meaning:

IA1 A2...An
sym =

1
n− 2

n

∑
i=1

Iall\Ai
0|0 − P(~0|~0) ≤ 0 (C.8)

for n ≥ 3, where Iall\Ai
0|0 is the Bell inequality testing genuine nonlocality between

n− 1 parties lifted to n parties, with party Ai’s input and outcome set to 0

Iall\Ai
0|0 =

1
n− 3

n

∑
j=1
j 6=i

I
all\Ai Aj

0|0 − P(~0|~0) . (C.9)

The seed of this recursive expression is the variant of the CHSH inequality (5.2).

Proof. We prove that the recursive expression (C.8) is equivalent to the direct ex-
pression (C.5) for IA1 A2...An

sym through mathematical induction. First, we check that
for n = 3 the equivalence holds, which can easily be done by developing both ex-
pressions. Then, we show that if the equivalence is true for n, it implies that it is
true also for n + 1.

Suppose the equivalence holds for n:

1
n− 2

n

∑
i=1

Iall\Ai
0|0 − P(~0|~0) =

n−1

∑
i=1

n

∑
j>i

I
Ai Aj

~0|~0 −
(

n− 1
2

)
P(~0|~0) . (C.10)

For n + 1, we develop the recursive expression in (C.8), where Iall\Ai
0|0 is now an

n observer inequality for which the recurrence hypothesis (C.10) can be used:

1
n− 1

n+1

∑
i=1

Iall\Ai
0|0 − P(~0|~0)

=(C.10) 1
n− 1

n+1

∑
i=1

( n

∑
j=1
j 6=i

n+1

∑
k>j
k 6=i

I
Aj Ak
~0|~0 −

(
n− 1

2

)
P(~0|~0)

)
− P(~0|~0)

=
1

n− 1

n+1

∑
i=1

( n

∑
j=1
j 6=i

n+1

∑
k>j
k 6=i

I
Aj Ak
~0|~0

)
−
(

n + 1
n− 1

(
n− 1

2

)
+ 1
)

P(~0|~0)

(C.11)

Note that the last expression can be simplified taking into account that the terms
I

Aj Ak
~0|~0 are being counted multiple times. Since the inequalities are invariant under
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permutations of observers, we can restrict our attention to counting how many times

the particular term IA1 A2
~0|~0 appears in (C.11). One can check that

n
∑

j=1
j 6=i

n+1
∑

k>j
k 6=i

I
Aj Ak
~0|~0 gives

one term IA1 A2
~0|~0 if i 6= 1, 2. Suming over i, we get a total of n− 1 terms, from which

we obtain

1
n− 1

n+1

∑
i=1

( n

∑
j=1
j 6=i

n+1

∑
k>j
k 6=i

I
Aj Ak
~0|~0

)
−
(

n + 1
n− 1

(
n− 1

2

)
+ 1
)

P(~0|~0) =
n

∑
j=1

n+1

∑
k>j

I
Aj Ak
~0|~0 −

(
n
2

)
P(~0|~0)

(C.12)

where we used n+1
n−1 (

n−1
2 ) + 1 = (n

2). Since the last expression coincides with the
direct expression (C.5) for n + 1 observers, we finish our proof.

C.2.3 Fully local strategies that saturate the inequalities

Interestingly, one can check that the (fully) local strategy

PL(a1a2...an|x1x2...xn) =

{
1 if ai = 1 ∀i and ∀xi

0 else
(C.13)

saturates our families of inequalities (5.20) and (5.21) since there is no term in the
inequalities where all outcomes have value 1. Nonlocal resources shared between
a subset of the observers are thus useless to reach better bounds on our family,
only nonlocal resources shared between all observers are relevant. Remark that
these observation generalise to all the families of inequalities that have the CHSH
inequality IA1 A2 (5.2) as seed.

C.2.4 Post-quantum no-signaling resources that violate the inequalites

Consider a genuine multipartite generalisation of the (no-signaling) PR-box [PR94]:

PNS(~a|~x) =
{

1
2n−1 if ⊕n

i=1 ai = ⊕n−1
i=1 ⊕n

j>i xixj

0 else
(C.14)

where the marginal distributions are completely random, i.e. PNS(ai|xi) = 1
2 ,∀i.

It is interesting to see that this post-quantum no-signaling distribution violates our
Bell inequalities IA1 A2...An , for all n ≥ 2,

IA1 A2...An
sym (PNS) =

n− 1
2n−1 > 0 . (C.15)
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Proof. The proof follows from direct evaluation of our inequalities (C.5) with the
no-signaling box (C.14). First, we get that I

Ai Aj

~0|~0 (PNS) =(5.22) PNS(~0|~0) ∀i, j be-

cause PNS(~0|~0) is the only non-vanishing term. Then

IA1 A2...An
sym (PNS) =

n−1

∑
i=1

n

∑
j>i

PNS(~0|~0)−
(

n− 1
2

)
PNS(~0|~0)

=
1

2n−1

[(n
2

)
−
(

n− 1
2

)]
=

n− 1
2n−1 > 0, ∀n ≥ 2

(C.16)

which finishes our proof.

A similar proof can be made for the inequalities in the family IA1 ...An
À (5.21).

C.3 All pure GME states of the family |GHZn〉θ = cos θ|0〉⊗n−
sin θ|1〉⊗n generate GMNL correlations

Here we prove Theorem 8 in detail.

Proof. Our proof is constructive as we will provide, for all states

|GHZn〉θ = cos θ|0〉⊗n − sin θ|1〉⊗n (C.17)

with θ ∈]0, π
4 [, local measurements that lead to explicit distributions PGHZn

θ
(~a|~x)

violating our family of inequalities IA1...An
sym (5.20).

In order to provide symmetry to the problem, and significantly reduce the de-
grees of freedom, all the observers use the same projective measurements mai |xi

=
ma|x:

m0|x = cos αx〈0|+ sin αx〈1|
m1|x = sin(αx〈0| − cos αx〈1| .

(C.18)

Since both the state (C.17) and measurements (C.18) are invariant under permu-
tations of the observers, the generated distribution PGHZn

θ
(~a|~x) also has this sym-

metry. For three observers for example, we get that P(100|100) = P(010|010) =
P(001|001) or P(000|011) = P(000|101) = P(000|110) or that the lifted inequal-
ities are all equal IA1 A2

~0|~0 = IA1 A3
~0|~0 = IA2 A3

~0|~0 . This implies that inequalities IA1...An
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(5.21), when evaluated on the generated distributions, simplify to

IA1 A2...An
sym

(
PGHZn

θ

)
=

(
n
2

)
IA1 A2
~0|~0 −

(
n− 1

2

)
P(~0|~0)

= (n− 1)P(00~0|00~0)− 2
(

n
2

)
P(10~0|10~0)−

(
n
2

)
P(00~0|11~0)

(C.19)

where we have used that (n
2)− (n−1

2 ) = n− 1. Using measurements (C.18) on the
state (C.17) we obtain all the terms of (C.19)

P(00~0|00~0) =
(

cosn(α0) cos(θ)− sinn(α0) sin(θ)
)2

P(10~0|10~0) =
(

cosn−1(α0) sin(α1) cos(θ) + sinn−1(α0) cos(α1) sin(θ)
)2

P(00~0|11~0) =
(

cosn−2(α0) cos2(α1) cos(θ)− sinn−2(α0) sin2(α1) sin(θ)
)2

(C.20)

We want now to find angles αx of the local measurements (C.18) such that the
quantity (C.19) is always positive. A particular solution is{

P(00~0|00~0) > 0
P(10~0|10~0) = P(00~0|11~0) = 0

. (C.21)

which holds true for angles

α0 = arctan(tan
−3

3n−4 θ)

α1 = −arctan(tan
−1

3n−4 θ)
(C.22)

when θ ∈]0, π
4 [. The value of the inequalities at these angles is

IA1 A2...An
sym (PGHZ(~a|~x)) = (n− 1)P(00~0|00~0)

= (n− 1)
(

cosn(arctan(tan
−3

3n−4 θ)
)

cos(θ)− sinn (arctan(tan
−3

3n−4 θ)) sin(θ)
)2

(C.23)

which is positive for θ ∈]0, π/4[, as promised.

For the maximally entangled state (θ = π/4) we have P(~0|~0) = 0, which
means that our construction breaks. However, this state is already known to be
genuine multipartite nonlocal for all number of observers [Ban+09], and moreover
we numerically found several sets of measurements on it that lead to a violation of
our inequalities.
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C.4 Proof of theorem 6

We here provide a formal proof of theorem 6. Let us start with an observation that
will be used in the upcoming proof.

Observation.– On any pure, non maximally entangled, two qubit state

|φθ〉 = cos(θ)|00〉+ sin(θ)|11〉 (C.24)

i.e. for θ ∈]0, π
4 [, the measurements

M0|0 = cos(α)〈0|+ eiδsin(α)〈1|
M0|1 ∝ cos2(θ)cos(α)〈0|+ eiδsin2(θ)sin(α)〈1|

N0|0 ∝ sin3(θ)eiδsin(α)〈0| − cos3(θ)cos(α)〈1|
N0|1 ∝ sin(θ)sin(α)eiδ〈0| − cos(θ)cos(α)〈1|

(C.25)

lead to correlations Pθ(ab|xy) = 〈φθ |
(

Ma|x ⊗ Nb|y
)
|φθ〉 that violate inequality

(5.2) IA1 A2(Pθ(ab|xy)) > 0 with the free parameters α and δ such that α 6= 0, π/2
for any θ 6= 0, π/4. More precisely, they lead to the particular violation of the
inequality (5.2)

IA1 A2(Pθ(ab|xy)) = Pθ(00|00) > 0 (C.26)

and thus Pθ(01|01) = Pθ(10|10) = Pθ(00|11) = 0, i.e. a realisation of the bipar-
tite Hardy paradox [Har93]. A proof of this observations can be found further in the
appendices C.5.

Since we are interested in a violation up to any extent of our inequality

IA1 A2(Pθ(ab|xy)) > 0 (C.27)

whose bound is zero, we have taken the freedom not to normalise some of the mea-
surements in (C.25). In other words, the observation (C.4) implies that for any
non-maximally entangled pure two qubit state |φθ〉 (C.24), one can chose one of the
measurement of one of the parties for free (as expressed by the free parameters α
and δ such that α 6= 0, π/2) and still find three other measurements such that the
generated correlations violated the inequality.

Now we want to show that a large class of three qubit GME states violate
inequalityIA1 A2 A3

µ=0 (5.5). In [Ací+00], it was shown that all three qubits in a pure
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state could be written as

|Ψ3〉 = h0|000〉+ h1eiφ|100〉+ h2|101〉+ h3|110〉+ h4|111〉 (C.28)

where hi ≥ 0, ∑
i

h2
i = 1 and φ ∈ [0, π]. On these states, we impose the addi-

tional constrain that h2 = h3, i.e. we consider only the states (C.28) which are
symmetrical with respect to the permutations of the parties A2 ↔ A3. By rela-
belling the parties’ index, however, any state which is symmetrical with respect to
the permutation of two out of the three parties can be transformed to one where the
symmetry is between parties A2 and A3, which we chose without loss of generality.
Now, party A2 and A3 both make the same projective measurement 〈mai |xi

| for their
input choice x2 = x3 = 0

〈m0|xi=0| = cos(α)〈0|+ sin(α)〈1| (C.29)

for some (yet) free angle α1. The state that is prepared between parties A1A3 (resp.
A1 A2) from party A2 (A3) by performing measurement 〈m0|xi=0| (C.29) on the
state |Ψ3〉 (C.28) conditioned on obtaining the outcome a2 = 0 (a3 = 0) is

|ψA1 A2
0|0 〉 = |ψ

A1 A3
0|0 〉 ∝ cos(α)h0|00〉+

(
cos(α)h1 + sin(α)h2

)
|10〉

+
(

cos(α)h2 + sin(α)h4
)
|11〉

(C.30)

since h2 = h3 and that both the state |Ψ3〉 (C.28) and measurements 〈m0|xi
| are

symmetrical with respect to permutation A2 ↔ A3. Using the concurrence, the
state |ψA1 A2

0|0 〉 (C.30) is entangled if and only if

det
( cos(α)h0 0

cos(α)h1 + sin(α)h2 cos(α)h2 + sin(α)h4

)
6= 0

⇔ cos(α)h0
(

cos(α)h2 + sin(α)h4
)
6= 0

(C.31)

leading to the four conditions

α 6= π

2
(C.32)

tan(α) 6= −h2

h4
(C.33)

h0 6= 0 (C.34)

h2 6= 0 6= h4 (C.35)

1Remark additionally that we do not make use of a potential second degree of freedom (the phase).
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First, remark that both conditions (C.34) and (C.35) only mean that the state |Ψ3〉
(C.28) needs to be GME (as well as symmetrical h2 = h3). Now, since the parame-
ter α is free, we choose to avoid the two values α = π

2 and α = − arctan
( h2

h4

)
6= 0.

In the end, one can tune continuously the parameter α (up to the forbidden values
(C.32) and (C.33)) so that the prepared states |ψA1 A2

0|0 〉 = |ψ
A1 A3
0|0 〉 are not maximally

entangled. One can then use observation C.4, as well as the symmetries A2 ↔ A3
that was imposed on both state and measurements, to obtain

IA1 A2 A3
µ=0 = IA1 A2

0|0 + IA1 A3
0|0 − P(000|000) = 2IA1 A2

0|0 − P(000|000)

= P(000|000)− 2P(100|100)− 2P(010|010)− 2P(000|110) > 0
(C.36)

by choosing A1’s measurements as in (C.25) for the prepared (non maximally en-
tangled) state |ψA1 A2

0|0 〉 (C.30), i.e. realising

P(000|000) > 0
P(010|010) = 0
P(100|100) = 0
P(000|110) = 0

(C.37)

C.5 Hardy’s measurements for n = 2

From the realisation (C.26), we have four conditions

P(00|00) > 0
P(01|01) = 0
P(10|10) = 0
P(00|11) = 0

(C.38)

to be satisfied by the measurement Ma|x and Nb|y made on the state |φθ〉 = cos(θ)|00〉+
sin(θ)|11〉 written in it’s Schmidt basis by A and B respectively. We start by choos-
ing M0|0 = cosα〈0|+ sinαeiδ〈1| freely and then try to satisfy these four conditions.
From P(01|01) = 0 we get that

(cosα〈0|+ sinαeiδ〈1|)⊗ N0|1 · (cos(θ)|00〉+ sin(θ)|11〉) = 0

⇔ N0|1(cosαcosθ|0〉+ eiδsinαsinθ|1〉) = 0

⇔ N0|1 ∝ eiδsinαsinθ〈0| − cosαcosθ〈1| (C.39)
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where we use non normalized measurements, which, again, does not make a dif-
ference when interested in conditions of the form P(a1a2|x1x2) = 0 or P(a1a2|x1x2) >
0. Considering projective two-outcome measurements:

N1|1 ∝ cosαcosθ〈0|+ e−iδsinαsinθ〈1| (C.40)

Then, with condition P(00|11) = 0

M1|1 ⊗ N1|1(cos(θ)|00〉+ sin(θ)|11〉) = 0

⇔ M1|1(cosαcos2θ|0〉+ e−iδsinαsin2θ|1〉) = 0

⇒ M1|1 ∝ e−iδsinαsin2θ〈0| − cosαcos2θ〈1| (C.41)

⇒ M0|1 ∝ cosαcos2θ〈0|+ eiδsinαsin2θ〈1| (C.42)

Finally, from condition P(10|10) = 0

M0|1 ⊗ N0|0(cos(θ)|00〉+ sin(θ)|11〉) = 0

⇒ N0|0 ∝ eiδsinαsin3θ〈0| − cosαcos3θ〈1| (C.43)

⇒ N1|0 ∝ cosαcos3θ〈0|+ e−iδsinαsin3θ〈1| (C.44)

Now one can check that with these measurements on the state cos(θ)|00〉 +
sin(θ)|11〉 gives:

M0|0 ⊗ N0|0(cos(θ)|00〉+ sin(θ)|11〉) ∝ ... = − eiδ

8
sin2αsin4θ (C.45)

That is equal to zero – i.e. P(00|00) = 0 – if and only if α = 0, π/2 or
θ = 0, π/4. In the end, the conditions (C.38) are satisfied for these measurements
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of pure states

for all non-maximally entangled states with any set of measurements of the form

M0|0 = cos(α)〈0|+ eiδsin(α)〈1|
M0|1 ∝ cos2(θ)cos(α)〈0|+ eiδsin2(θ)sin(α)〈1|

N0|0 ∝ sin3(θ)eiδsin(α)〈0| − cos3(θ)cos(α)〈1|
N0|1 ∝ sin(θ)sin(α)eiδ〈0| − cos(θ)cos(α)〈1|

(C.46)

except for the forbidden values of α = 0, π/2.
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Appendix D

Appendices: Quantifying
multipartite nonlocality via the
size of the resource

D.1 Proof that all full-correlation functions are attainable
using a non-signaling resource

Our goal here is to give a proof that when restricted to the (`− 1)mn-dimensional
space of full-correlation functions defined by Eq. (6.9), the set of legitimate cor-
relations coincide with that achievable by a non-signaling resource NSn. To this
end, it is worth reminding that the set of normalized correlations in this space is
precisely the set of correlations achievable by the Svetlichny resource Sn. To prove
the desired result, it is then sufficient to show that all extreme points of Sn in this
space are also achievable using NSn.

Proof. Firstly, let us note that all extremal strategies of these full-correlation func-
tions are deterministic function of the joint inputs ~x, i.e., they are defined by speci-
fying for each given ~x, the corresponding sum of outputs modulo `. In other words,
for each of these extremal strategies and for each given ~x, we have that

P([a~x]k = r) = δr, f (~x), (D.1)

where f (~x) is some deterministic, r-value function of ~x. Different extremal strate-
gies of Sn in this space then corresponds to different choices of f (~x). To prove
Theorem 12, it is then sufficient to find a non-signaling strategy that gives Eq. (D.1)
for an arbitrary choice of f (~x).

Let us first illustrate how this works in the scenario of n = 2. Consider the
following normalized probability distribution

P(a1a2|x1x2) =
1
`

δa1+a2 mod ` , f (x1,x2). (D.2)



170
Appendix D. Appendices: Quantifying multipartite nonlocality via the size of the

resource

Note that (regardless of x1 and x2) for each a1 — due to the Kronecker delta —
there is one, and only one value of a2 such that the right-hand-side of Eq. (D.2) is
non-vanishing; likewise for a2. As a result, the corresponding marginal distributions
are given by:

P(a1|x1x2) = ∑
a2

1
`

δa1+a2 mod ` , f (x1,x2) =
1
`

,

P(a2|x1x2) = ∑
a1

1
`

δa1+a2 mod ` , f (x1,x2) =
1
`

.
(D.3)

Both these marginal distributions are independent of the input of the other party
and hence the distribution given in Eq. (D.2) satisfies the non-signaling constraints.
From these observations and Eq. (6.9b), it is also easy to see that the non-signaling
distribution given in Eq. (D.2) satisfies Eq. (D.1). We have thus shown that in the
above-mentioned subspace of full-correlation functions, the extremal strategy of S2
can also be achieved by a non-signaling correlation. More generally, for arbitrary
n ≥ 2, it is easy to verify that the following distribution:

P(~a|~x) = 1
`n−1 δ∑i ai mod ` , f (~x) (D.4)

is non-signaling, giving a uniform n′′-partite marginal distribution of `−n′′ , and sat-
isfies Eq. (D.1). In other words, we have proved that the extremal strategy of Sn
in the subspace of full-correlation functions can always be achieved using a non-
signaling strategy.

D.2 Proof of Corollary 1

Here, we give a proof of Corollary 1. For concreteness, we shall provide a proof
for R = S . The case for R = T follows from the inclusion relations given in
Eq. (6.3).

Proof. Given inequality (6.10), the inclusion relations of Eq. (6.3) immediately im-
ply that inequality (6.11) holds true for all P(~a|~x) ∈ NSn,k. It thus remains to
show that there also exists P(~a|~x) = PNS0 (~a|~x) ∈ NSn,k such that the inequal-
ity (6.11) is saturated, i.e.,

∑
~x

`−1

∑
r=0

βr
~xPNS0 ([a~x]` = r) = BSn,k. (D.5)
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By assumption, there exists extremal P(~a|~x) = PS (~a|~x) ∈ Sn,k such that in-
equality (6.10) is saturated, i.e.,

∑
~x

`−1

∑
r=0

βr
~xPS ([a~x]` = r) = BSn,k. (D.6)

From the definition of the full-correlation function, Eq. (6.9b), and the assumed
k-producibility of the correlation, we have

PS ([a~x]` = r) = ∑
~a

PS (~a|~x) δ[a~x ]`,r

= ∑
~a

G

∏
i=1

PS (~a[i]|~x[i]) δ[a~x ]`,r,
(D.7a)

where PS (~a[i]|~x[i]) refers to the i-th constituent distribution, which is at most k-
partite. Denote the sum of the outputs in the j-th group by a~x[j] , we can then further
rewrite PS ([a~x]` = r) as:

G

∏
i=1

∑
~a[i]

PS (~a[i]|~x[i]) δ[
∑j[a~x[j] ]`

]
`
,r

, (D.7b)

=
G

∏
i=1

∑
~a[i]

`−1

∑
r[i]=0

PS (~a[i]|~x[i])δ[a
~x[i] ]`,r

[i] δ[
∑j[a~x[j] ]`

]
`
,r

.

Note that for each ~x[i], due to the Kronecker delta δ[a
~x[i] ]`,r

[i] , there is only one term

in the sum over r[i] that contributes non-trivially. Swapping the order of the sums
gives:

G

∏
i=1

`−1

∑
r[i]=0

∑
~a[i]

PS (~a[i]|~x[i])δ[a
~x[i] ]`,r

[i] δ[
∑j[a~x[j] ]`

]
`
,r

,

=
G

∏
i=1

`−1

∑
r[i]=0

∑
~a[i]

PS (~a[i]|~x[i])δ[a
~x[i] ]`,r

[i] δ[∑j r[j]]
`
,r,

=
G

∏
i=1

`−1

∑
r[i]=0

PS ([a~x[i] ]` = r[i]) δ[∑j r[j]]
`
,r, (D.7c)

which means that PS ([a~x]` = r) factorizes into a (linear combination of) product of
full-correlation functions for each group PS ([a~x[i] ]` = r[i]). By Theorem 12, there
is no loss of generality in replacing the constituent distribution from the i-th group
PS (~a[i]|~x[i]) by some non-signaling distributions PNS0 (~a[i]|~x[i]) such that they agree
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at the level of the full-correlation functions, i.e.,

PS ([a~x[i] ]` = r[i]) = PNS0 ([a~x[i] ]` = r[i]) ∀ i, r[i] (D.8)

Substituting this back into Eq. (D.7) and then Eq. (D.6), we thus obtain Eq. (D.5)
by identifying

PNS0 ([a~x[i] ]` = r[i]) = ∑
~a

G

∏
i=1

PNS (~a[i]|~x[i]) δ[a~x ]`,r. (D.9)

An immediate consequence of the above Corollary is that any full-correlation
Bell-like inequality for Sn,k, such as those derived in Refs. [Ban+12; Sve87; Col+02b;
JLM05; Ban+11; Che+11], is also valid and tight for NSn,k.

D.3 Proof of Theorem 13

We now provide a proof of Theorem 13.

Proof. By assumption, the following expression holds true

In = ∑
~a,~x

β~a~xP(~a|~x)≤0 (D.10)

for all P(~a|~x) ∈ Rn,k, and our goal is to show that

In+h = ∑
~a,~x

β~a~xP(~a,~o|~x,~s)
Rn+h,k

≤ 0, (D.11)

for arbitrary h ≥ 1 and all fixed choices of ~o and~s. We will show that this is the
case by reductio ad impossibilem.

Suppose the converse, namely, that there exists some choice of~o,~s and h such
that for some P(~a,~o|~x,~s) ∈ Rn+h,k,

∑
~a,~x

β~a~xP(~a,~o|~x,~s) > 0. (D.12)

By linearity of the expression and the requirement that P(~a,~o|~x,~s) ∈ Rn+h,k, the
above inequality implies that there exists some correlation

P(~a,~o|~x,~s) =
G

∏
i=1

PR(~a[i],~o[i]|~x[i],~s[i]) (D.13)
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such that

∑
~a,~x

β~a~x

G

∏
i=1

PR(~a[i],~o[i]|~x[i],~s[i]) > 0, (D.14)

where PR(~a[i],~o[i]|~x[i],~s[i]) refers to the i-th constituent distribution (from the i-th
group), and as with P(~a,~o|~x,~s), we have used~o[i] and~s[i] to indicate, respectively,
the (possibly empty) outcome and setting string that are fixed in PR(~a[i],~o[i]|~x[i],~s[i]).
Note that the assumption of P(~a,~o|~x,~s) ∈ Rn+h,k implies that each constituent
distribution is at most k-partite and their respective size ni sum up to n + h, i.e.,
∑G

i=1 ni = n + h.
Evidently, since inequality (D.14) is strict and that PR(~a[i],~o[i]|~x[i],~s[i]) ≥ 0 for

all~a[i] and ~x[i], it must be the case that

∑
~a[i]

PR(~a[i],~o[i]|~x[i],~s[i]) > 0 (D.15)

for all ~x[i] that contribute nontrivially in the left-hand-side of Eq. (D.14). In fact,
since the left-hand-side of inequality (D.15) can also be obtained by performing the
appropriate sums of Eq. (D.13)

∑
~a,~o[j]|j 6=i

P(~a,~o|~x,~s) = ∑
~a,~o[j]|j 6=i

G

∏
`=1

PR(~a[`],~o[`]|~x[`],~s[`])

= ∑
~a[i]

PR(~a[i],~o[i]|~x[i],~s[i]), (D.16)

we see that by the non-signaling nature of P(~a,~o|~x,~s), the very last expression of
Eq. (D.16) must also be independent of ~x[i]. Hereafter, we shall simply write these
marginal distributions as:

PR(~o[i]|~s[i]) = ∑
~a[i]

PR(~a[i],~o[i]|~x[i],~s[i]). (D.17)

Hence, from inequality (D.15), we see that the conditional distributions

P̃|~o
[i],~s[i](~a[i]|~x[i]) = PR(~a[i],~o[i]|~x[i],~s[i])

PR(~o[i]|~s[i]) (D.18)

are well-defined for all~x[i] and satisfy the normalization condition ∑~a[i] P̃|~o
[i],~s[i](~a[i]|~x[i]) =

1. With some thought, one can also see that the conditional distribution defined in
Eq. (D.18) also inherits the property of the defining distribution, i.e., satisfying the
constraint defined by R. For instance, if PR(~a[i],~o[i]|~x[i],~s[i]) admits a quantum
representation, so does P̃|~o

[i],~s[i](~a[i]|~x[i]).
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Dividing inequality (D.14) by ∏i PR(~o[i]|~s[i]) and using Eq. (D.18), we obtain

∑
~a,~x

β~a~x

G

∏
i=1

P̃|~o
[i],~s[i](~a[i]|~x[i]) > 0. (D.19)

As mentioned above, for all i, the conditional distribution P̃|~o
[i],~s[i](~a[i]|~x[i]) is

a legitimate distribution with respect to the resource R and cannot be more than
k-partite, i.e, ∏G

i=1 P̃|~o
[i],~s[i](~a[i]|~x[i]) ∈ Rn,k. Hence, inequality (D.19) implies that

the original inequality In can be violated by correlation in Rn,k, which contradicts
our very first assumption that In is a legitimate Bell-like inequality forRn,k.
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Appendix E

Appendices: Anonymous
Quantum Nonlocality

E.1 An explicit biseparable decomposition of the n-partite
GHZ correlations

For the n-partite GHZ state and the situation where all parties measure either the
0th-observable σx or the 1st observable σy, the resulting correlation of Eq. (7.2) can
be rewritten in terms of the correlator, i.e., the expectation value of the product of
outcomes:1

E(~x) = ∑
a′1,a′2,...,a′n=0,1

(−1)∑i a′i P(~a′|~x) = cos
(

x
π

2

)
(7.2)

where for conciseness of subsequent presentation we have used, instead, a′i =
ai+1

2 = 0, 1 to denote the output and as before, x = ∑i xi to denote the sum of
inputs. Note that all the full n-partite correlators depend only on the parity of x and
x/2 whereas all the marginal correlators vanish.

Here we give a proof that the above correlation is biseparable with respect
to all bipartitions whenever parties in each group are allowed to share arbitrary
post-quantum but non-signaling (NS) resources, while parties in different groups
can only be correlated through shared randomness. Note that the biseparability of
Eq. (7.2) under the NS constraint implies that if parties in the same group are al-
lowed to share a stronger resource, such as a Svetlichny resource [Sve87], or some
other one-way signaling resource discussed in Refs. [Gal+12; Ban+13], the correla-
tion must remain biseparable.

1To arrive at this n-partite correlator, see, eg., Eq. (23) of [WLB11].
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Let us define the four families of n-partite NS boxes, labeled by µ1, µ2, µ3 and
µ4:

Pn
µ1
(~a′|~x) = 1

2n−1 δ∑n
i=1 a′i−Hn

0 (~x)−Hn
3 (~x)mod 2,

Pn
µ2
(~a′|~x) = 1

2n−1 δ∑n
i=1 a′i−Hn

0 (~x)−Hn
1 (~x)mod 2,

Pn
µ3
(~a′|~x) = 1

2n−1 δ∑n
i=1 a′i−Hn

1 (~x)−Hn
2 (~x)mod 2,

Pn
µ4
(~a′|~x) = 1

2n−1 δ∑n
i=1 a′i−Hn

2 (~x)−Hn
3 (~x)mod 2,

(E.1)

where Hn
` (~x) = ∑

b n−`
4 c

j=0 F(4j + `,~x),

F(k,~x) = ∑
G

∏
i∈G

xi ∏
j∈G′

(xj + 1) (E.2)

and the sum ∑G is over all G ⊆ [n] = {1, 2, . . . , n} with group size |G| = k, and
G′ is the complement of G in [n]. Essentially, each term involved in the summand in
F(k,~x), and hence Hn

` (~x) defines a distinct combination of inputs ~x = ~x′ such that
Hn

` (~x
′) = 1 mod 2, and hence making the outputs anti-correlated. For instance,

F(0,~x) only makes a nontrivial combination to Hn
0 (~x) if all the inputs xi are 0.

From Eq. (E.1), it is easy to verify that for all 1 ≤ k ≤ n − 1, the k-partite
marginals of Pn

j (~a
′|~x) are 1/2k and these correlations indeed define NS probabil-

ity distributions. Moreover, from Eq. (E.1) and these marginal distributions, one
can show that these NS boxes give rise to vanishing marginal correlators and the
following full n-partite correlators:

E(~x)µ1 = (−1)Hn
0 (~x)⊕Hn

3 (~x) = −E(~x)µ3 ,

E(~x)µ2 = (−1)Hn
0 (~x)⊕Hn

1 (~x) = −E(~x)µ4 ,
(E.3)

where in Eq. (E.3), ⊕ denotes sum modulo 2 and in arriving at the second equality
in each line, we have employed the identity ∑n

j=0 F(j) = 1 that holds for all n-bit
strings ~x.2 To gain some intuition on these NS boxes, we note that for n = 1,
the µ1/3 boxes correspond to the deterministic strategies a′ = x ⊕ 1 and a′ =
x whereas the µ2/4 boxes correspond to the deterministic strategies a′ = 1 and
a′ = 0. Similarly, for n = 2, the µ1/3 boxes correspond to the PR boxes defined
by a′1 + a′2 = (x1 + 1)(x2 + 1) and a′1 + a′2 = (x1 + 1)(x2 + 1) ⊕ 1 whereas
the µ2/4 boxes correspond to the PR boxes defined by a′1 + a′2 = x1x2 ⊕ 1 and

2This last sum involves all possible combinations of inputs and thus for all input bit strings~x, there
is exactly one term in the expression that does not vanish, therefore giving the identity.
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a′1 + a′2 = x1x2. For n = 3, all these NS boxes correspond to some version of NS
box 46 described in Ref. [PBS11]. It is conceivable that these boxes are extremal
NS distributions for all n.

To reproduce the correlations given in Eq. (7.2) using biseparableNS resources
with k parties in one group and the remaining (n− k) parties in the other group, it
suffices to consider an equal-weight mixture of the following four strategies:

1. The group of k parties share the k-partite version of the µ1 box and the re-
maining parties share the (n− k)-partite version of the µ2 box.

2. The group of k parties share the k-partite version of the µ3 box and the re-
maining parties share the (n− k)-partite version of the µ4 box.

3. The group of k parties share the k-partite version of the µ2 box and the re-
maining parties share the (n− k)-partite version of the µ1 box.

4. The group of k parties share the k-partite version of the µ4 box and the re-
maining parties share the (n− k)-partite version of the µ3 box.

For n = 3, the above strategy corresponds to a mixture of 4 different versions of
the NS box 2 in Ref. [PBS11]. In general, to verify that the above strategy indeed
gives rise to Eq. (7.2), we first remark that each of these strategies also reproduces
Eq. (7.2) for the case when ∑i xi is even. To see this, we use the fact that NS
box µ1 gives anti-correlation (i.e., expectation value -1) only if either ∑i xi/2 or
(1 + ∑i xi)/2 is even; NS box µ2 gives anti-correlation only if ∑i xi/2 is even
or (1 + ∑i xi)/2 is odd; NS box µ3 gives anti-correlation only if either ∑i xi/2
or (1 + ∑i xi)/2 is odd; NS box µ4 gives anti-correlation only if ∑i xi/2 is odd or
(1+∑i xi)/2 is even. Moreover, since strategy 1 and 3 are such that the correlation
produced by parties in the same group are exactly opposite (likewise for strategy 2
and 4), we see that all the less-than-n-partite correlators, as well as the full n-partite
correlator when ∑n

i=1 xi is odd, indeed vanishes as claimed.

E.2 Mermin-Bell violation of the GHZ correlations

Here, we compute the quantum expectation value of the GHZ correlations for the
Mermin Bell inequality [Mer90a; Ard92; RS91; Belb; GBP98] (here written in the
form derived in [WLB11])3

|Bn
±| = 2

1−n
2

∣∣∣ ∑
~x∈{0,1}n

cos
{π

4
[1± (n− 2x)]

}
E (~x)

∣∣∣ ≤ 1. (E.4)

3Bn
+ is the same Bell expression as the usual one obtained through the recursive formula [RS91;

Belb; GBP98]; it can also be obtained by flipping all the inputs in Bn
−.
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The above Bell expression can be rewritten as:

2
n−1

2 |Bn
±| =

∣∣∣ ∑
~x∈{0,1}n

cos
{π

4
[1± (n− 2x)]

}
E(~x)

∣∣∣,
=
∣∣∣ ∑
~x∈{0,1}n

cos
[π

4
(1± n)

]
cos

(
x

π

2

)
E(~x)

± ∑
~x∈{0,1}n

sin
[π

4
(1± n)

]
sin
(

x
π

2

)
E(~x)

∣∣∣.
For the GHZ correlation of Eq. (7.2), this simplifies to

|Bn
±| =2

1−n
2

∣∣∣ ∑
~x∈{0,1}n, x even

cos
[π

4
(1± n)

]
cos2

(
x

π

2

)∣∣∣,
=2

n−1
2

∣∣∣cos
[π

4
(1± n)

]∣∣∣,
giving

max
±
|Bn
±| =

{
2

n−1
2 : n odd

2
n−2

2 : n even
, (E.5)

i.e., achieving maximal [WW00] possible quantum value of |Bn
±| for odd n.

E.3 Quantum biseparable bound of the n-partite Mermin-
Bell expression

For arbitrary odd n ≥ 3, the Mermin-Bell expression Bn
+ given on the left-hand-side

of Eq. (E.4) is equivalent to a special case of a general family of permutationally
invariant Bell expression described in Eq. (22) of [Ban+12],

Ωn,2,2;δx,0·r = 2n−2 − 2
n−3

2 Bn
+ (E.6)

From Eq. (23) of Ref. [Ban+12], it can be shown that the above expression
admits the following upper bound on the quantum biseparable bound:

Ωn,2,2;δx,0·r ≥ 2n−3(2−
√

2). (E.7)

Combining these two equations and after some straightforward computations, we
get the following upper bound on the quantum biseparable bound for the Mermin-
Bell expression:

Bn
+ ≤ 2

n
2−1. (E.8)
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For arbitrary even n ≥ 2, the Mermin-Bell expression Bn
+ given on the left-

hand-side of Eq. (E.4) is equivalent to the following Bell expression described in
Eq. (1) of Ref. [Ban+12],

In,2,2 = 2n−1 − 2
n−2

2 Bn
+ (E.9)

From Eq. (25) of Ref. [Ban+12], we know that the above expression admits the
following upper bound on the quantum biseparable bound:

In,2,2 ≥ 2n−2. (E.10)

Combining these two equations, we arrive, again, at Eq. (E.8).
To see that the biseparable bound of Eq. (E.8) is tight, it suffices to note that the

biseparable quantum state

|ψ〉 = |GHZn−1〉 ⊗ |0〉 (E.11)

and the local observables

Axi = cos αxi σx + sin αxi σy ∀ i = 1, . . . , n− 1,
Axi = βxi1 for i = n.

(E.12)

with α0 = − π
4(n−1) , α1 = −π

2 − π
4(n−1) , β0 = −

√
2 sin nπ

4 , and β1 =
√

2 cos nπ
4

indeed give rise to a quantum value of Bn
+ of 2

n
2−1. Since Bn

− can be obtained from
Bn
+ by flipping all the inputs, the same quantum biseparable bound holds for Bn

−.
Since the GHZ correlations of Eq. (7.2) give Eq. (E.5), we see that for odd n, the

generation of these correlations necessarily requires a genuinely n-partite entangled
state, independent of the underlying Hilbert space dimension.

E.4 m-separability and multipartite nonlocality underly-
ing the n-partite GHZ correlations

For odd n, we know from the main theorem of [Ban+09] that a quantum violation
of |Bn

±| = 2
n−1

2 implies that it is impossible to reproduce these GHZ correlations
using any 3-separable resource (i.e., a partitioning of the parties into three groups,
and where the parties within each group can share even arbitrary nonlocal resource).
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For even n, let us evaluate the the quantum value of the following Bell expres-
sion [Ban+09]:

|Bn
Σ| =

1√
2
|Bn

+ + Bn
−| ,

=
1√
2

∣∣∣ ∑
~x∈{0,1}n

∑
s=0,1

cos
π

4
[1 + (−1)s(n− 2x)] E(~x)

∣∣∣,
=

1√
2

∣∣∣ ∑
~x∈{0,1}n

2 cos
π

4
cos

[π

4
(n− 2x)

]
E(~x)

∣∣∣,

=
∣∣∣ ∑
~x∈{0,1}n

cos
[π

4
(n− 2x)

]
E(~x)

∣∣∣. (E.13)

For even n and E(~x) of Eq. (7.2), this becomes∣∣∣ ∑
~x∈{0,1}n, x even

cos
nπ

4
cos2 x

π

2

∣∣∣ = 2n−1
∣∣∣cos

nπ

4

∣∣∣ ,

giving a value of 2n−1 for even n
2 and 0 for odd n

2 .
Again, note from the main theorem of Ref. [Ban+09] that for even n, any

correlation producible by a partition of the n parties into 3 groups (each sharing
some Svetlichny resource S [Sve87; Gal+12; Ban+13]) can at most give a value of
Bn

Σ = 2n−2. This means that, as with odd n, the n-partite GHZ correlation for even
n with even n

2 is not producible by any partition of the parties into 3 groups, even if
parties in each group are allowed to share whatever nonlocal resource.

Together with the biseparable decomposition obtained for these correlations, the
above results on m-separability imply that for (1) odd n and (2) even n with even n

2 ,
generation of the GHZ correlations of Eq. (7.2) requires the nonlocal collaboration
of at least d n

2 e parties in one group.
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