

A hybrid approach for item collection
recommendations: an application to

automatic playlist continuation

Anna Gatzioura

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del r e p o s i t o r i i n s t i t u c i o n a l
UPCommons (http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX
(h t t p : / / w w w . t d x . c a t /) ha estat autoritzada pels titulars dels drets de propietat intel·lectual
únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza
la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc
aliè al servei UPCommons o TDX. No s’autoritza la presentació del seu contingut en una finestra
o marc aliè a UPCommons (framing). Aquesta reserva de drets afecta tant al resum de presentació
de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom
de la persona autora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
únicamente para usos privados enmarcados en actividades de investigación y docencia. No
se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde
un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al
resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes
de la tesis es obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the i n s t i t u t i o n a l r e p o s i t o r y UPCommons
(http://upcommons.upc.edu/tesis) and the cooperative repository TDX (http://www.tdx.cat/?locale-
attribute=en) has been authorized by the titular of the intellectual property rights only for private
uses placed in investigation and teaching activities. Reproduction with lucrative aims is not
authorized neither its spreading nor availability from a site foreign to the UPCommons service.
Introducing its content in a window or frame foreign to the UPCommons service is not authorized
(framing). These rights affect to the presentation summary of the thesis as well as to its contents.
In the using or citation of parts of the thesis it’s obliged to indicate the name of the author.

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

A Hybrid Approach for Item Collection
Recommendations

An Application to Automatic Playlist Continuation

Anna Gatzioura

PhD Thesis

Doctoral Program of Artificial Intelligence
Universitat Politècnica de Catalunya

Supervisor: Dr. Miquel Sànchez-Marrè

August 2018

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my super-
visor, Prof. Miquel Sànchez-Marrè, for the continuous support and guidance
throughout all the project realisation. Without his persistent help and valuable
advices this PhD thesis would not have been possible.

An important part of this work was realised during my research stay in
LIAAD-INESC TEC, in Porto. I am deeply grateful to Prof. Aĺıpio Jorge for
giving me this opportunity, for his supervision and constant encouragement.
His feedback and the enriching conversations we had, have been an enormous
help to improve the quality of this research. I would also like to thank all the
members of the LIAAD group for the unforgettable time spent there. Special
thanks to Dr. João Vinagre for the always interesting conversations and ideas,
on music and recommender systems.

In addition, I would like to thank my colleagues and members of the KEMLG
group for all the good moments spent together, the shared experiences and
mutual support during these years.

Last but not least. Life, and as part of it this thesis, would be nonsense
without the existence and unconditional support of my family and friends. The
people that, no matter whether in Greece, Spain, Portugal or England, were and
are always there for me, even in my worst. Thank you for that. Please accept
my sincere apologies for all those moments that, due to geographical distance
and time limitations, I was not able to be as present as I would like to.

iii

iv

Abstract

Current recommender systems aim mainly to generate accurate item recom-
mendations, without properly evaluating the multiple dimensions of the recom-
mendation problem. However, in many domains, like in music, where items are
rarely consumed in isolation, users would rather need a set of items, designed to
work well together, while having some cognitive properties as a whole, related
to their perception of quality and satisfaction.

In this thesis, a hybrid case-based recommendation approach for item col-
lections is proposed. In particular, an application to automatic playlist con-
tinuation, addressing similar cognitive concepts, rather than similar users, is
presented. Playlists, that are sets of music items designed to be consumed as a
sequence, with a specific purpose and within a specific context, are treated as
cases. The proposed recommender system is based on a meta-level hybridiza-
tion. First, Latent Dirichlet Allocation is applied to the set of past playlists, de-
scribed as distributions over music styles, to identify their underlying concepts.
Then, for a started playlist, its semantic characteristics, like it slatent concept
and the styles of the included items, are inferred, and Case-Based Reasoning is
applied to the set of past playlists addressing the same concept, to construct,
and recommend, a relevant playlist continuation. A graph-based item model
is used to overcome the semantic gap between songs’ signal-based descriptions
and users’ high-level preferences, efficiently capture the playlists’ structures and
the similarity of the music items in those. As the proposed method bases its
reasoning on previous playlists, it does not require the construction of complex
user profiles to generate accurate recommendations. Furthermore, apart from
relevance, support to parameters beyond accuracy, like increased coherence or
support to diverse items is provided to deliver a more complete user experience.

Experiments on real music datasets have revealed improved results, com-
pared to other state of the art techniques, while achieving a “good trade-off”
between recommendations’ relevance, diversity and coherence. Finally, although
actually focusing on playlist continuations, the designed approach could be eas-
ily adapted to serve other recommendation domains with similar characteristics.

v

vi

Resumen

Los sistemas de recomendación actuales tienen como objetivo principal generar
recomendaciones precisas de art́ıculos, sin evaluar propiamente las múltiples di-
mensiones del problema de recomendación. Sin embargo, en dominios como la
música, donde los art́ıculos rara vez se consumen en forma aislada, los usuar-
ios más bien necesitaŕıan recibir recomendaciones de conjuntos de elementos,
diseñados para que se complementaran bien juntos, mientras se cubran algunas
propiedades cognitivas, relacionadas con su percepción de calidad y satisfacción.

En esta tesis, se propone un sistema híıbrido de recomendación meta-nivel,
que genera recommendaciones de colecciones de art́ıculos. En particular, el
sistema se centra en la generación automática de continuaciones de listas de
música, tratando conceptos cognitivos similares, en lugar de usuarios similares.
Las listas de reproducción son conjuntos de elementos musicales diseñados para
ser consumidos en secuencia, con un propósito espećıfico y dentro de un contexto
espećıfico. El sistema propuesto primero aplica el método de Latent Dirichlet
Allocation a las listas de reproducción, que se describen como distribuciones
sobre estilos musicales, para identificar sus conceptos. Cuando se ha iniciado
una nueva lista, se deducen sus caracteŕısticas semánticas, como su concepto y
los estilos de los elementos incluidos en ella. A continuación, el sistema aplica
razonamiento basado en casos, utilizando las listas del mismo concepto, para
construir una continuación relevante. Se utiliza un grafo que modeliza las rela-
ciones de los elementos, para superar el “salto semántico” existente entre las
descripciones de las canciones, normalmente basadas en caracteŕısticas sonoras,
y las preferencias de los usuarios, expresadas en caracteŕısticas de alto nivel.
También se utiliza para calcular la similitud de los elementos musicales y para
capturar la estructura de las listas de dichos elementos.

Como el método propuesto basa su razonamiento en las listas de repro-
ducción y no en usuarios que las construyeron, no se requiere la construcción de
perfiles de usuarios complejos para poder generar recomendaciones precisas.
Aparte de la relevancia de las recomendaciones, el sistema tiene en cuenta
parámetros más allá de la precisión, como mayor coherencia o soporte a la
diversidad de los elementos para enriquecer la experiencia del usuario.

Los experimentos realizados en bases de datos reales, han revelado mejores
resultados, en comparación con las técnicas utilizadas normalmente. Al mismo
tiempo, el algoritmo propuesto logra un “buen equilibrio” entre la relevancia,
la diversidad y la coherencia de las recomendaciones generadas. Finalmente,
aunque la metodoloǵıa presentada se centra en la recommendación de continua-
ciones de listas de reproducción musical, el sistema se puede adaptar fácilmente
a otros dominios con caracteŕısticas similares.

vii

viii

Contents

I Introduction 1

1 Introduction 3

1.1 General . 3

1.2 Motivation . 4

1.3 Scope . 5

1.4 Why music playlist recommendations? 6

1.5 Why using a hybrid approach? 7

1.6 Contributions . 8

1.7 Research Questions . 9

1.8 Overview . 10

II Related Work 11

2 Recommendation Techniques 13

2.1 Recommender Systems . 13

2.1.1 Problem Formalization . 17

2.2 Main Recommendation Approaches 17

2.2.1 Collaborative Filtering . 18

2.2.2 Content-Based . 19

2.2.3 Utility-Based . 20

2.2.4 Rule-Based . 20

2.2.5 Knowledge-Based . 21

2.2.6 Semantic Analysis and Probabilistic Models 22

2.2.7 Hybrid approaches . 22

2.3 From Items to Collections . 23

2.3.1 Initial Approaches . 25

2.4 Other Methodologies . 26

2.4.1 Case-Based Reasoning . 26

2.4.2 Case-Based Recommenders and Applications 29

2.5 Semantic Analysis and Probabilistic Topic Models 31

2.5.1 Latent Semantic Analysis 31

2.5.2 Probabilistic Latent Semantic Analysis 32

2.5.3 Latent Dirichlet Allocation 32

2.5.4 Topic Model Recommenders and Applications 35

2.6 Conclusions . 36

ix

x CONTENTS

3 Music Recommender Systems 37
3.1 Music Items and Consumption 37
3.2 Music Recommender Systems . 39
3.3 Music Information Retrieval . 41
3.4 Playlists . 41

3.4.1 Automatic Playlist Generation 43
3.4.2 Automatic Playlist Generation Approaches 45

3.5 Additional Dimensions . 48
3.5.1 Contextual Factors . 48
3.5.2 Beyond Accuracy Dimensions 50
3.5.3 Individual Perception . 53

3.6 Conclusions . 56

III Proposed Recommender System 57

4 Methodology 59
4.1 Problem Description . 59
4.2 Motivation and Goal . 62
4.3 Important Issues . 63
4.4 Problem Formalization and Data Modelling 64
4.5 Hybrid Recommender System Architecture 66
4.6 Design and Implementation Evolution 67
4.7 Recommendation Approach Overview 68

4.7.1 MusCBR and CMusCBR 68
4.7.2 MusHR . 70
4.7.3 HybA . 71

4.8 HybA Offline Phase: Data Pre-processing 73
4.8.1 Song Models . 73
4.8.2 Playlist General Concept 80

4.9 HybA Online phase: Recommendation Algorithm 82
4.9.1 Candidates’ Retrieval . 84
4.9.2 Candidates’ Ranking . 88
4.9.3 Recommendations’ generation 91

4.10 Conclusions . 91

5 Evaluation 93
5.1 Evaluation metrics . 95

5.1.1 Accuracy-based . 95
5.1.2 Beyond accuracy . 97

5.2 Compared Methods . 98
5.2.1 Popularity-based . 99
5.2.2 Rule-based . 99
5.2.3 Latent Models . 100
5.2.4 Collaborative Filtering . 100
5.2.5 Incremental Matrix Factorization 101

5.3 Initial Evaluation . 101
5.3.1 Dataset details . 101
5.3.2 MusCBR and CMusCBR Evaluation 103
5.3.3 MusHR Evaluation . 104

CONTENTS xi

5.4 Final Evaluation . 106
5.4.1 Datasets’ details . 106
5.4.2 HybA Evaluation . 108
5.4.3 Comparison with other techniques 115

5.5 Conclusions . 122

IV Conclusions and Future Work 125

6 Conclusions 127
6.1 Contributions . 127

6.1.1 Limitations . 129
6.2 Future Work . 130

List of Related Publications 131

References 133

xii CONTENTS

List of Figures

2.1 Basic components of a Recommender System 16

2.2 Preference matrix example for a CF recommendation process . . 18

2.3 Preference matrix example for a CB recommendation process . . 19

2.4 Item-attribute matrix for the CB recommendation example . . . 20

2.5 CBR Cycle . 28

2.6 SVD performed by the LSA . 32

2.7 Matrix factorization performed by the the topic model 34

4.1 The semantic gap in music (recommendation and information
retrieval) applications . 61

4.2 General schema behind a cognitive playlist recommendation ap-
proach . 62

4.3 Playlist and song distributions 65

4.4 General CBR APC process . 67

4.5 MusCBR recommendation algorithm 69

4.6 CMusCBR recommendation algorithm 70

4.7 MusHR recommendation algorithm 71

4.8 HybA recommendation algorithm 72

4.9 Items’ general hierarchical model 74

4.10 Example of product hierarchical classification 75

4.11 Example of first possible songs hierarchical classification 76

4.12 Example of second possible songs hierarchical classification . . . 76

4.13 Example of songs graph based representation 78

4.14 Playlist distribution over music styles 81

4.15 Playlists’ latent distributions over music styles 82

4.16 Detailed CBR APC process . 83

4.17 Candidates’ pre-filtering . 84

4.18 Comparing a new and a retrieved list 86

5.1 Evaluation process overview . 94

5.2 Recommendations’ precision using different contextual dimensions 109

5.3 Recommendations’ hit ratio using different contextual dimensions 109

5.4 Average similarity between the real and the recommended playlist
continuations when using different contextual dimensions 110

5.5 Recommendations’ coherence using different contextual dimensions111

5.6 Recommendations’ diversity using different contextual dimensions 111

5.7 Recommendations’ precision for the HybA versions 112

xiii

xiv LIST OF FIGURES

5.8 Average similarity of the real and the recommended playlist con-
tinuations by the different HybA versions 113

5.9 Recommendations’ coherence for the HybA versions 114
5.10 Recommendations’ diversity for the HybA versions 114
5.11 Average coherence in relation to average diversity of the various

recommended playlist continuations 115
5.12 Recommendations’ precision for the various techniques 116
5.13 Recommendations’ hit ratio for the various techniques 116
5.14 Average similarity with the real playlists for the various techniques117
5.15 Recommendations’ coherence for the various techniques 118
5.16 Recommendations’ diversity for the various techniques 119
5.17 Average coherence in relation to average diversity of the various

recommended playlist continuations 119
5.18 F-measure for recommendations of 10 songs 120
5.19 Fd-measure for recommendations of 10 songs 121
5.20 Recommendations’ recall@N for the various techniques 122

List of Tables

2.1 Recommendation techniques’ basic characteristics 36

3.1 APG techniques’ basic characteristics 56

5.1 Small scale dataset . 102
5.2 Average precision for complete music style recommendations . . 103
5.3 Average precision for artist recommendations 103
5.4 Average precision for music style recommendations 103
5.5 Recommendations’ precision for MusHR with different abstractions104
5.6 Average precision for the different methods 105
5.7 Average recommendations’ diversity for the different methods . . 105
5.8 Fd-measure of the recommended playlists for the different methods105
5.9 Recommendations’ long tail percent for the different methods . . 105
5.10 Palco Principal datasets . 107
5.11 Playlists’ coherence and diversity ranges in the various datasets . 118

xv

xvi LIST OF TABLES

List of Acronyms

APC – Automatic Playlist Continuation
APG - Automatic Playlist Generation
AR(s) - Association Rule(s)
CF - Collaborative Filtering
CB - Content-Based
CBR - Case-Based Reasoning
ILD - Intra List Diversity
IR - Information Retrieval
LDA - Latent Dirichlet Allocation
LSA – Latent Semantic Analysis
MBA - Market Basket Analysis
MF - Matrix Factorization
MIR - Music Information Retrieval
MRS(s) - Music Recommender System(s)
NLP - Natural Language Processing
RS(s) - Recommender System(s)
SP(s) - Sequential Pattern(s)

xvii

xviii LIST OF TABLES

Part I

Introduction

1

Chapter 1

Introduction

1.1 General

The exponential growth of the World Wide Web, along with its extended use
in recent years, have enabled the generation of a huge amount of multimedia
and information about them, coming from different sources, and being available
through the internet and the social networking platforms. In addition, the
extended use of mobile devices, has enabled users in consuming and sharing
those, any time and from any place.

When it comes to music, the improved capabilities of digital music produc-
tion, have enabled its creation and public distribution, with lower costs than
in the past, and without geographic limits. This has resulted in an increased
amount of music items, and information about them, easily accessible. Music
items in general can be songs, artists, genres, albums and radio stations (Schedl
et al., 2015). In addition, a change in the way that music is “consumed” has been
observed. Users, nowadays, more than “owning” songs in their personal collec-
tions tend to listen to them online (Schedl, Knees, & Gouyon, 2017). Therefore,
in order to help users in finding and properly experiencing the music they want,
numerous issues have arisen, related to the discovery, organisation, sharing and
information services, that need to be facilitated (Celma, 2010).

To this direction, music recommender systems (MRSs), recommender sys-
tems (RSs) related to music, seem as among the promising solutions to handle
the information overload related to music, and help users to find relevant songs
and artists, that otherwise would have difficulties in discovering (Schedl, Yang,
& Herrera-Boyer, 2017). In addition, due to the semantic gap between the
songs’ signal-based descriptions and the human perception of music, these sys-
tems seem as the most appropriate tools to better capture users’ needs and
ensure their satisfaction (Celma et al., 2006).

Music items are rarely consumed in isolation but rather as well designed se-
quences. Therefore, increased focus has been lately placed on automatic playlist
generation (APG) and recommendation, to support users in organising their mu-
sic libraries and having a more complete experience. Playlists can be defined
as sets of music items designed to be consumed as a sequence, similar to tradi-
tional radio broadcasts (Bonnin & Jannach, 2014). In playlist recommendation,
and similar domains, more than recommending isolated items, or presenting an

3

4 CHAPTER 1. INTRODUCTION

ordered list of the most promising alternatives for a user, like the majority of
RSs do, the underlying structure of joint selections should be evaluated, as item
interactions within a set may heavily influence the result (Schedl, Zamani, et
al., 2017)

Therefore, the presence of an item within a concrete concept should be cap-
tured, in order to recommend sets designed to be consumed together, under
given circumstances, satisfying at the same time cognitive properties like rele-
vance, coherence and diversity (Smyth & McClave, 2001). This becomes even
more complex if we keep in mind the effect that the additional dimensions of the
recommendation problem, like the circumstances under which those selections
are made, have (Kaminskas & Ricci, 2017). Furthermore, the influence even of
the same, or very similar contextual situations, on a user’s mood, music percep-
tion and preferences, has been found to heavily depend on the user’s character
and emotional state (Kim et al., 2010).

1.2 Motivation

The general scope of a RS is to find the items that a specific user would like to
use, buy or enjoy, in a given moment. Therefore, its functionality is based on the
approximation of a utility function describing the degree of (expected) satisfac-
tion that a user would experience from using an item, and the recommendation
of the items that maximise this expected utility (Ricci et al., 2010).

Although having become a fundamental part of various applications, rec-
ommender systems still base their reasoning mainly on pairwise interactions
or information on individual entities, like item attributes or ratings assigned
to them by users. The widely used methodologies, like Collaborative Filtering
(CF) and Content-Based (CB) tend to recommend users items that have been
liked by similar users or items similar to those they have already used and liked
in the past, based on the assumption that users’ preferences remain stable over
time. In general, these approaches focus on isolated item characteristics, or
simple ratings and tend to ignore the underlying structure of users’ preferences
and selections. Thus they provide a limited insight into users’ behaviour.

However, in various everyday situations, similar to playlists, users consume
items as sets, or sequences, referred to also as collections or packages (Golbeck &
Hansen, 2011; Interdonato et al., 2013). Therefore, their satisfaction depends on
the characteristics of the entire set of items to be used together, more than on the
characteristics of a specific item. In such cases, the item interactions within a set
may be crucial for the acceptance of an item (complementary or incompatible
items) and the quality of the set, as users evaluate the whole set more than
selecting items from the top-N list (Maillet et al., 2009). In these application
domains, the “independence assumption” that users select items based only
on item characteristics, and their preferences over those, without taking into
account the rest of the selected items, is not valid. The item interactions,
the scope and the context under which those sets were performed may be more
crucial that the general user preferences. For instance, although, a user may like
from classical to rock music, usually would not place songs of these categories
into the same playlist. More likely, he/she would organise songs of similar styles
into coherent playlists that could listen to in different occasions (Jannach et al.,
2015). For example, a user might select an instrumental playlist when studying

1.3. SCOPE 5

and to an alternative rock one when preparing to get out.
The above example aims to highlight a slightly different perspective of the

recommendation problem that has been less investigated, the recommendation
of sets, or sequences, of items, that in the music domain can be captured as the
recommendation of playlists, or playlist continuations (Logan, 2004; Bonnin &
Jannach, 2014)

Therefore, the specifications of a RS used for this problem, should be slightly
different from the usual. Further than the user-item relationships, the similar-
ities between items and users and the generation of a set of top-N candidates,
the items that are selected within the same, or similar, sessions have to be anal-
ysed and evaluated. The aim is to extract meaningful information about the
structures of the sets, and the parameters that may influence their quality and
acceptance by the users. In general, there should be some level of coherence,
excluding items that do not fit within a given concept, while at the same time be-
ing of some diversity, and permitting novel items to be recommended. Enabling
the discovery of varied items that a user would not be find otherwise, instead
of presenting only closely similar items to the existing ones, might increase the
user interest.

Finally, as users’ joint selections may be varied, depending on various pa-
rameters, the starting part of the set/list each time is of high importance, as it
defines the actual style of a user at a specific moment. Therefore, the ability
of a system to analyse this initial set, and identify the important parameters
based on which the resulting set should be built, is of high importance. We
could suppose that the general style of a set would be heavily influenced by the
context within which it is built, but such information may not always be avail-
able. Thus, first a general style, or concept, of the set should be identified, and
then evaluate whether the available explicit contextual information improves
the similarity approximations or not.

1.3 Scope

The scope of this thesis is the investigation of the possible alternatives to treat
the recommendation problem in domains where items are consumed as “sets”
or “sequences”, and item co-occurrences affect further item selections, while the
treated cases may be characterised of rich content and semantic data, like in the
music domain.

More precisely, the proposed system aims to generate recommendations of
sets of music items to complete a started playlist, not related to a specific user,
but to a specific concept. User taste and needs are highly related to the context
within which they are generated and consumed. Thus, the same user may
look for very different items in different moments. Therefore, the recommended
items should be liked by the user, but more crucially they should fit well within
a started list.

A hybrid recommendation system for automatic playlist continuation (APC),
has been designed and implemented and will be presented. In general, APC is
considered as a variation of automatic playlist generation (APG). More than
generating entire playlists based on a seed song or some constraints set by a
user, APC consists of forming a pleasant continuation of a started playlist, by
adding a number of songs to it, while having some target characteristics in

6 CHAPTER 1. INTRODUCTION

common (Schedl, Zamani, et al., 2017). More precisely, given a started list, the
focus is set on recommending sets of songs able to complete it, being relevant,
coherent and of some diversity degree, in order to provide a more exciting user
experience. These recommendations are generated independently of the user
who has started the list, and without the necessity of having explicit contextual
information.

Nevertheless, although its feasibility is illustrated by its application to the
music domain, the designed recommendation approach is generic, and could be
easily adapted to other item collection recommendation domains with similar
needs, such as multimedia sequential domains, travel recommendations, etc.
The initial idea of this research work came from the previously implemented
Master Thesis (Gatzioura, 2013) where, based on the fact that joint item se-
lections follow some underlying patterns, the possible alternatives to treat the
Market Basket Analysis recommendation problem were evaluated.

1.4 Why music playlist recommendations?

As Frank Zappa1 had said, “without music to decorate it, time is just a bunch
of boring production deadlines or dates by which bills must be paid”. Following
this notion, although the proposed approach is generic, the focus is set on APC
recommendations. Increased emphasis has been placed lately on this topic also
in the RSs’ community, defining it among the current RSs research challenges
(Schedl, Knees, & Gouyon, 2017).

Playlists contain the notion of item sequences and set characteristics, while
being profoundly affected by the context in which they were generated and
consumed (Kaminskas et al., 2012), as this is perceived and reflected by each
user, depending on his/her personality characteristics (Ferwerda et al., 2017).
To generate a pleasant playlist being able to complete an existing one, first of
all it must be aligned with the style and the characteristics of the started list in
order to form an appropriate continuation. Apart from the general music style,
additional features, like the existing level of coherence and diversity, should be
maintained. For instance, in cases that users seem not to care about preserving
some specific style and enjoy more diverse songs the recommended set may also
be more diverse. On the other hand, users with more specific preferences would
place more importance on the coherence of the initial and the recommended
set. This is the reason why the recommendation approach should first evaluate
the attributes of the started list and then try to identify the most suitable
recommendations.

This application domain, except from highlighting the importance of the
joint item selections is also heavily affected by the so-called semantic gap, char-
acterising the majority of multimedia, information retrieval and recommenda-
tion applications. In these domains, users, in general, describe their needs
through high-level requirements while the treated items are associated with
low-level, application specific characteristics (Kim et al., 2010). Therefore, it is
important to find recommendation techniques capable of overcoming this gap.
An effective mapping of the user requests into item specifications is crucial to
identify the items that best fit within a given concept, as this has been defined
in a started playlist.

1https://www.rollingstone.com/music/artists/frank-zappa/biography

1.5. WHY USING A HYBRID APPROACH? 7

However, there is still a lack of reliable methods combining users’ cognitive
perception of music with sound characteristics. Therefore, it becomes even
more difficult to capture users’ perception of a music playlist and specify the
characteristics that the songs composing a “good” playlist should have. This
notion can be highly subjective, depending on various parameters like a user’s
music knowledge, general preferences and current emotional state, context and
intent (Schedl, Zamani, et al., 2017).

1.5 Why using a hybrid approach?

The functionalities that a music playlist recommender, as collection recom-
menders in general, must serve are slightly different from those of the usual
RSs. Therefore, this thesis hypothesises that a recommendation approach, in
order to capture the additional dimensions, and serve the needs of the spe-
cific problem, should follow a different design and a corresponding evaluation
methodology.

Current popular recommendation approaches, like CF and CB, have different
scopes and mainly use the user-item matrix to explode the past interactions and
estimate users’ future preferences in terms of isolated items. These techniques
come along with specific hypothesis, and do not explore the joint item selections
or the circumstances under which those were performed. Thus, they have a
limited performance when it comes to recommendations of sets of items. This is
due to the fact that these techniques try to predict the suitability of an item for a
user, and not the suitability of an item for a specific concept. Furthermore, users
may construct various sets and select different items under given circumstances,
being highly different between them, and not always made of their favourite
items or the most popular ones. Thus, simply predicting if an item would be
liked by a user and recommending it, without evaluating the whole concept, is
not enough and usually leads to lower performance, especially in domains where
each user performs a lot of transactions and where the popularity of an item
does not increase its utility value. In addition, in domains when we have many
single item occurrences and user preferences cannot be ranked, these methods
also have a low performance.

Furthermore, although widely used in commercial applications, CF recom-
mendation systems, due to their reasoning that is based on the opinions of
users on items, still face cold-start2 and popularity-bias3 problems that limit
their performance (Su & Khoshgoftaar, 2009). They are domain independent
and generally ignore the multi-aspect concept of user experience that has to
be supported from various perspectives in order to be complete. In contrast,
CB approaches, that in music applications have mainly used sound related at-
tributes, may treat new items but show limited diversity of the recommended
items and may lead to recommendations’ overspecialization4 (Lops et al., 2010;
Bogdanov et al., 2010).

2Lack of ability to recommend new, yet un-rated items, and to perform well when new
users come, until they have enough information about them

3Tendency towards the recommendation of popular items, those that have been rated more
times

4Focus on the characteristics of the items that users have liked, and recommendation of
closely similar ones

8 CHAPTER 1. INTRODUCTION

Therefore, this thesis hypothesises that a hybrid solution (R. Burke, 2002)
designed for the specific domain would be more appropriate to address the prob-
lem’s needs without facing the limitations of the current RSs. Further than the
user-item relationships and similarities, the items selected within the same and
similar sessions and concepts have to be analysed, to extract information about
these sessions, like their structures and the item styles in them. In addition,
more than focusing only on their predictive ability, these systems should go
beyond accuracy and incorporate parameters related to the recommendations’
quality, as perceived by the user, and present interesting alternatives that the
users would not discover otherwise (Konstan & Riedl, 2012).

1.6 Contributions

In this thesis, we present HybA, (whose name was inspired by the title of the
Radiohead album, Kid A) a hybrid recommendation approach for APC, that
aims to generate recommendations of playlist continuations of improved quality,
not restricted to a specific user, but related to a specific “cognitive concept”.

The user should like the recommended items, but most important, they
should fit well within the started list, as user tastes and item needs, are highly
related to the concept within, or for, which they are generated and consumed
(Pichl et al., 2015). Therefore, this recommender, given a list of already selected
songs, aims to find and recommend the set of songs that seem more adequate
to complete this list. The proposed approach evaluates the similarity among
playlists based on the general concepts expressed in them, along with the joint
distributions of music styles and songs’ characteristics in them. When a new
playlist is introduced, the system follows the general Case-Based Reasoning
(CBR) cycle (López de Mántaras, 2001) to find the past most similar playlists,
and based on their inherit characteristics and the specifications of the items
co-occurring in those, to identify the most adequate way to complete the new
list. The degree of similarity of music items is calculated based on the density of
their connections in a graph model that connects them through their common
attributes and appearances in playlists.

The basic functionalities that differentiate HybA from the commonly used
techniques, which also form the contributions of this work, can be summarised
in the following points:

• The generated recommendations are not restricted to specific, or refer-
ring to similar, users but are addressing similar concepts. The proposed
approach focuses on the characteristics of entire playlists constructed in
different time moments, and under different circumstances. The term
“playlist concept” is introduced to capture the semantic characteristics of
playlists, being beyond explicitly defined context or music attributes.

• Item ratings are not taken into account. Although the selection of an item
is treated as a sign of preference, we do not use the opposite statement.
More specific, due to the data sparsity5 and the popularity bias usually
observed, a non-selection cannot be always classified as a low, or negative,

5Despite the huge amount of item alternatives, each user accesses only a small percentage
of them and rates even less

1.7. RESEARCH QUESTIONS 9

rating. It could simply be a consequence of the long tail6 item popularity
distribution, especially when items with similar characteristics have been
used in similar concepts. We rather treat the selection of an item as a sign
of preference towards the cluster of items with the item’s characteristics.

• Two abstraction levels are used, to evaluate the general characteristics of
playlists and then the items in those. Playlist latent concepts and music
style co-occurrences are first evaluated, using songs’ content descriptions
or the metadata associated with them. Therefore, more than the presence
or absence of a specific item within a set is evaluated.

• The two-level reasoning of the designed algorithm permits the evaluation
and incorporation into the final recommendations of parameters beyond ac-
curacy, related to playlists’ quality. In contrast to most recommendation
techniques, that aim simply at maximising some similarity, or minimising
a distance function in to find the top-N most relevant items, this system
retrieves the most appropriate past cases and then constructs the recom-
mendation list based also on additional parameters, like coherence and
diversity.

• The combined use of accuracy and quality related evaluation metrics is
proposed in order to set more emphasis on the parameters related to user
perception of playlist quality. In general, when evaluating a RS accurate
recommendations are considered as better. However, recommendations
being only relevant may fail in addressing users’ expectations and deliver-
ing an added value from the system’s use. Users would probably discover
those items without being recommended them, or maybe these items do
not form a pleasant joint result.

1.7 Research Questions

Based on the defined scope and the characteristics of the proposed RS, the
following research questions will be addressed in this document, and finally
evaluated:

1. Are the currently used recommendation algorithms able to efficiently han-
dle automatic playlist continuation, and item collection, recommendations?
Does the proposed algorithm manage to address the needs of the specific
problem in a better way?

2. How does the use of additional parameters, related to the quality charac-
teristics and user perception of the sets of music items, affect the recom-
mendation results?

3. Are the commonly used evaluation metrics suitable when recommending
item collections? Which other factors should be evaluated?

6In the majority of RSs applications, there is a small group of items frequently used and
recommended while the majority of items remain un-discovered by the users

10 CHAPTER 1. INTRODUCTION

1.8 Overview

The document at hand, after this introductory chapter, is followed by two basic
parts. One related to the necessary background and state of the art review and
one associated with the primary contribution of this thesis: the description of
the designed and developed system, its evaluation and comparison with other
state of the art recommendation techniques.
More specific, the rest of the document is structured as follows:

As the proposed system tries to address a slightly different problem, by
applying a hybrid approach, different from the commonly applied techniques,
various topics and research domains are first presented to enable the further
comprehension of this document. In the second chapter, the general background
of recommender systems and the commonly used techniques can be found. From
those, more information on Case-Based Reasoning, case-based recommenders,
probabilistic topic models and latent semantic analysis are presented, as these
are the methodologies used in the development the proposed hybrid solution.
Further, in chapter 3, music information retrieval and music recommender sys-
tems, as well as the basic approaches to automatic playlist generation and con-
tinuation are described. The characteristics that differentiate this application
domain and the reasons that make it challenging are also introduced. Finally,
the additional dimensions of the recommendation problem, that shift its fo-
cus from accuracy to quality and user experience, especially related to music
recommenders, are presented.

Going on, in chapter 4, the detailed description of the proposed system, its
architectural design, the used data models and similarity functions, as well as the
recommendation methodology, along with its gradual evolution, are presented
in more detail. In chapter 5, the evaluation of the system is provided. First,
some details on the used evaluation datasets, the evaluation metrics and the
compared techniques, used as baseline are presented. Then, from one part the
evaluation of the various versions of the designed system, the effect of the several
parameters used, and the definition of the “optimal” version of the HybA can
be found. Following, the comparison of its results with those of the previously
presented state of the art techniques is presented.

Finally, in chapter 6, some conclusions and the relevant findings of this thesis,
forming its contributions, are described. In continuation, a brief presentation
of the main ongoing and future planned, research issues, can be found. The
document is ended with a list of relevant publications by the author, followed
by a list of bibliographic references related to the presented work that have been
studied.

Part II

Related Work

11

Chapter 2

Recommendation
Techniques

In this part, the state of the art of the basic concepts and areas that this
thesis examines are presented. Specifically, the definition of Recommender Sys-
tems (RSs), their main techniques and some historical data are first described.
The designed system expands the usual recommendation approaches, and more
than recommending single items, songs to users, focuses on the recommenda-
tion of playlist continuations, being sets of songs that seem most appropriate
to complete a user’s experience concerning relevance and quality. Moreover,
the distinctive characteristics of sets of items and the basic dimensions that
differentiate these recommendations are presented. Furthermore, the basics of
Case-Based Reasoning (CBR), case-based recommenders, Latent Analysis and
Probabilistic Topic Models with focus on Latent Dirichlet Allocation (LDA),
along with some of their applications are described, as the proposed approach
is based on the combined use of these techniques.

2.1 Recommender Systems

The amount of items being able to support the same or very similar needs
has increased in recent years. As a result, the number of alternative choices and
information about them, that users have to find and review, has increased. This
fact also increases the complexity of the related decision-making processes. The
knowledge, and even more the evaluation, of all the possible alternatives by one
person, have been transformed into a non-feasible problem (Bollen et al., 2010).
Thus, average (non-expert) users seek support from friends and/or experts in
fields that they lack of expertise. Recommender Systems have been identified as
a promising solution as they “mime” these behaviours, they can efficiently filter
the current information overload and support users in their search and decision
making processes (Ricci et al., 2010).

Recommender (or Recommendation) Systems (RSs) are software tools and
techniques for information retrieval (IR) and filtering used to generate and pro-
vide meaningful and accurate recommendations of items, that is expected that
the active user would like to use (Melville & Sindhwani, 2010). These systems
apply knowledge discovery techniques and possibly adapt the results through

13

14 CHAPTER 2. RECOMMENDATION TECHNIQUES

personalised models to provide accurate recommendations to users seeking for
support to their decisions (Jannach et al., 2010).

The initial ideas and techniques on which the development of RSs was
based come from the extensive work previously done in the fields of informa-
tion retrieval, forecasting techniques, cognitive science as well as management,
marketing and customers’ preference modelling. RSs, as part of an indepen-
dent research field, emerged around the 1990s with the first commercially used
recommender systems being mainly based on collaborate filtering algorithms,
(Adomavicius & Tuzhilin, 2005). These systems were initially inspired by the
necessity to handle the increased amount of information that people receive
through electronic mail and discussion lists on the web. In 1992, in order to
enable people in subscribing to newsgroups and receiving only documents of
interest to them, the first commercial RS that used a “social” collaborative
filtering approach, called Tapestry, was developed (Goldberg et al., 1992). In
1994, GroupLens1 developed another collaborative filtering system for Usenet
newsgroups with scope to enable users in finding articles of interest to them,
using past users’ subjective evaluations of articles to predict other users’ interest
in articles, (Konstan et al., 1997; Resnick et al., 1994).

In recent years, RSs have received an increased amount of interest, from
both academic and industrial research centres. Their potential ability to handle
the information overload and supporting users in finding new items able to ful-
fil their needs, while on the other hand supporting providers in increasing the
amount and diversity of the items that they sell, has led to their establishment
as an independent research area. In addition, the range of RSs’ applications has
faced a significant increase transforming them into an essential part of many
frequently visited internet sites, especially in e-commerce applications and on-
line marketing as efficient personalised RSs increase the possibility of a user
purchasing an item (Prasad, 2003). Currently, recommendation techniques are
also used in leisure time and travel activities, music and multimedia, reading
and information sharing.

In 2006, Netflix2, recognising the importance of an effective and accurate
RSs, to improve the prediction accuracy of the recommendation algorithm that
was using, announced a competition for the implementation of the best col-
laborative filtering algorithm with a high prize for the winner, (Takács et al.,
2008; Schafer et al., 2001). Some of the actual well-known RSs’ applications
are Amazon3, Youtube4, Ebay5, Moviefinder6, Last.fm7, IMDd8, etc. The usu-
ally applied recommendation methodologies in those RSs are based both on
item-to-item and user-to-user correlations.

In the Amazon book section, for example, the “Customers who bought”
feature can be found in the information page of each item (book) and it provides
two recommendation lists, one containing books that are usually purchased by
customers who bought the concrete book, while the second suggests authors
whose books are frequently purchased together with books of the author of the

1http://grouplens.org/
2https://www.netflix.com
3http://www.amazon.com/
4https://www.youtube.com/
5http://www.ebay.com/
6http://www.moviefinderonline.com/
7http://www.last.fm
8http://www.imdb.com/

2.1. RECOMMENDER SYSTEMS 15

selected book (Linden et al., 2003). In CDNow, the album advisor feature also
works in two different modes, the single album mode that generates a list of
ten albums that may be of interest to the user based on an album he/she has
already selected, while on the multiple artist mode, a list of ten recommended
albums is generated based on the user’s selection of up to three artists. The
Moviefinder’s Match Maker enables users in finding movies with similar mood,
theme or cast to a particular movie. The recommendations are also generated
in two lists, one with the suggested films and one containing links to other films
by the director and/or key actors of the film (Schafer et al., 2001).

RSs either generate a set of recommendations/suggestions of the (top-N)
items that are expected to be useful for a user, or intend to predict whether a
specific item will or not be of interest to him/her, based on his/her previous
preferences as well as on the preferences of similar users.

In its simplest form, the set of recommendations provided is a list of ranked
items. The term item refers to the type of entity being recommended by each
recommender (ex: products, songs, web pages, information, services, etc.) to
users, and of course, depends on the application domain and the scope of the
specific system. The term transaction refers to a recorded interaction between
a user and a system (Deshpande & Karypis, 2004). Transactions are log-like
data that contain important information collected and/or generated through
the interaction of the user with the system, that can be used to infer addi-
tional information and improve future recommendations. A transactional model
contains references to previously selected items, that depending on the recom-
mendation methodology used, may be expressed in terms of ratings (implicitly
or explicitly collected), likes, descriptions of their context, comments or another
adequate way for the application representation (Ricci et al., 2010).

RSs primary refer to users with limited or no personal experience and knowl-
edge in a specific area, and therefore, without the ability to evaluate and/or
select among the offered items in this category. These users would traditionally
seek help from friends or experts in order to complete their selection. To retrieve
their preferences and based on them to gain the ability to generate meaningful
and personalised suggestions, RSs observe and try to gather explicit or infer im-
plicit user preferences, while taking into account possible constraints arising or
imposed by those users. The core recommendation algorithm generally consists
of a particular type of a data mining algorithm that includes adequate data
preprocessing, analysis and interpretation (Amatriain et al., 2011).

The main components/data important for the use of a RS, as shown in figure
2.1, can be divided into:

• Background knowledge that consists of the information/data necessary for
the system before the instantiation of the recommendation process. These
data may be related to users, items, context, sentimental and emotional
factors as well as characteristics of the application domain and/or the
specific methodology being used.

• Input data that is the information that the active user provides to the
system to receive recommendations that may be submitted in terms of a
specific request or as seed item(s). Usually, this information is entered
through a user interface that may map the user requirements to specific
parameters that are then used by the rest of the system.

16 CHAPTER 2. RECOMMENDATION TECHNIQUES

• The core component of the recommender is the recommendation algorithm
that combines and processes the background and input data in order to
generate meaningful recommendations in line with the active user’s request
(Deshpande & Karypis, 2004). The exact functionality of this component
depends heavily on the type and scope of the system, together with the
data that this system is required to process.

Figure 2.1: Basic components of a Recommender System

In general, the basic idea behind a RS is that a rational user, who is aware
of the existing alternative items and their characteristics would always select
the item(s) that can best serve his/her needs, to maximise his/her utility under
certain circumstances. Therefore, in order to be successful, a recommendation
algorithm has to identify those items, concerning the needs and preferences of
the current active user, within a reasonable response time. Thus, the recom-
mendation problem can be transformed into the estimation of a utility function
able to best capture the level of utility a user would obtain from the use of
not yet used items, and the recommendation of those that maximise the user’s
utility.

The utility of an item can be represented by a rating showing the level of its
likeliness for a user. Recommending users items able to maximise their utility
may increase their satisfaction of using both the items and the recommendation
system, thus leading to increased trust in it (Adomavicius & Tuzhilin, 2005).

On the other hand, a system failing to recommend adequate items to the
users that interact with it, or generating recommendations with a substantial
delay, most probably will lead to the dissatisfaction of users and their unwill-
ingness to keep using the concrete system (Huang, 2011). Hence, the adequate
modelling of the traded items, the target users with their needs and expecta-
tions, as well as the situation within which the item selection takes place is
crucial for the outcome of the recommendation process and the system’s popu-
larity. The use of inappropriate representations of the user profiles that do not
reveal the needs and preferences of users, as well as the low quality of the used
data collections have been identified among the common issues that restrict the

2.2. MAIN RECOMMENDATION APPROACHES 17

effectiveness of RSs (Park & Tuzhilin, 2008).

2.1.1 Problem Formalization

Therefore, the aim of a RS can be defined, as follows. Given:

• A set of users, U , that interact with the system

• A set of items, I, that may be recommended (songs, products, etc.)

• A utility function v which measures the utility that a user from U gets by
using an item from I, v : U × I → R, where R is a totally ordered set.

• Recommend a user u ∈ U the item(s) i′ ∈ I that maximises the expected
utility, thus:

u ∈ U, ∀i ∈ I : i′ = argmax{v(u, i)} (2.1)

However, among the main problems that come from, is the fact that usually
both the set of users and items are very large, and as a result, each user only
uses a very small percent of items making the accurate estimation of the utility
function more difficult.

2.2 Main Recommendation Approaches

The widely used recommendation methodologies in commercial applications can
be mainly divided into Collaborative Filtering and Content-Based. However,
due to the extended use of RSs in various areas, along with the shortcomings
that these two methodologies come with, other recommendation techniques are
also being investigated and used. The primary categories of recommendation
techniques identified in the literature (Ricci et al., 2010) are listed below,

• Collaborative Filtering (memory-based, model-based)

• Content-based Filtering (probabilistic models, Nave Bayes classifier,
Artificial Neural Networks)

• Knowledge-based (Case-based, constraint-based)

• Context-based

• Utility-based

• Rule-based

• Demographic

• Hybrid

• Other

18 CHAPTER 2. RECOMMENDATION TECHNIQUES

2.2.1 Collaborative Filtering

In Collaborative Filtering (CF) recommendation techniques, items among those
liked by similar users (neighbours) are recommended to the active user. CF tech-
niques have been identified among the most successful approaches for building
RSs and have been successfully used in many commercial applications (Su &
Khoshgoftaar, 2009; Adomavicius & Tuzhilin, 2005). However, due to their
reasoning, collaborative RSs still face cold-start and popularity-bias problems,
that limit their performance. The primary approaches of CF can be divided
into neighbourhood and latent factor, models.

Neighbourhood Models

Neighbourhood models use the hypothesis that users have a stable buying be-
haviour in time, i.e., if two users have rated some items similarly in the past,
they are most probably going to evaluate other items in the future in a similar
way. Therefore, they build user profiles of the items that have been highly rated
by them and the similarity of users’ tastes is deducted from their previous rat-
ings. Users and items may be represented through the user-item (or preference)
matrix where each cell, rij represents the rating the i-th user (line index) has
assigned to the j-th item (column index) or zero in case that this user has not
used this item before, like in figure 2.2 (Melville & Sindhwani, 2010).

For a given request these techniques first identify the neighbours of the active
user, based on their previous interactions usually expressed through ratings.
Then, from the set of their highly rated candidate items, they recommend those
that the active user has not yet tried.

Figure 2.2: Preference matrix example for a CF recommendation process

Based on the use of the user-item matrix that they perform, CF techniques
can be divided into memory-based and model-based recommendation techniques.
Memory-based techniques use the whole user-item matrix to generate item sug-
gestions, while model-based approaches use this matrix to train the system and
based on the learned relationships to generate recommendations.

Latent Factor Models

Latent factor models try to explain users’ rating patterns based on the latent
factors inferred from them. One of their most successful implementations are
matrix factorization (MF) models, closely related to singular value decomposi-
tion (SVD). MF models have been found able to outperform nearest-neighbours
approaches while better handling with additional information sources (Bell et
al., 2009).

2.2. MAIN RECOMMENDATION APPROACHES 19

MF models map both users and items to a joint latent space of dimensionality
f , being Rf , and model their interactions as inner products on that space. More
specific, each user u is associated with a vector pu ∈ Rf and each item i with
a vector qi ∈ Rf . These vectors represent, respectively, the factors which a
user is highly interested in, and the factors that an item possesses. Therefore
the interaction of a user and an item is the resulting dot product between their
latent vectors being qTi pu.

When used for recommendations, the approximation of the rating rui, of
user u on item i, with bui being the bias associated with the rating, can be
computed as, (Cremonesi et al., 2010):

r̂ui = bui + qTi pu (2.2)

The main approaches used for learning the user and item vectors are the
alternating least squares (ALS) and the stochastic gradient descent (SGD) (Bell
et al., 2009). One of the main challenges that these technique face is that many
times explicit feedback, users directly rating items, is not available. Therefore
they have to implicitly extract user preferences, and the majority of these tech-
niques treats all the missing data as negative feedback. However, in many cases,
this assumption degrades the learning efficiency and, as a consequence, the rec-
ommendation performance. Various improvements have been proposed aiming
to better capture the dynamic nature of online data, by learning from positive
only data streams (Vinagre et al., 2014) or changing the uniform item weighting
schema (He et al., 2016).

2.2.2 Content-Based

Content-Based (CB) RSs recommend users items similar to those they have
shown preference in the past, (Adomavicius & Tuzhilin, 2005). In CB systems,
user profiles are built from the characteristics of the items that a user has rated
highly, and the items that she/he has not tried yet are compared to them. The
items with the higher estimated possibility of being liked by the active user,
as deducted from his/her past preferences, are then recommended (Melville &
Sindhwani, 2010). An example can be found in figure 2.3 where a user has used
and liked items i1 and i2 while the analysis of the items with their attributes
explain the CB recommendation example is shown in figure 2.4.

Figure 2.3: Preference matrix example for a CB recommendation process

20 CHAPTER 2. RECOMMENDATION TECHNIQUES

Figure 2.4: Item-attribute matrix for the CB recommendation example

CB approaches mainly handle the item recommendation problem mostly
as an information retrieval, or an item classification problem. Thus, machine
learning techniques can be used. In addition, as CB techniques rely on more
specific information about users and items, the creation of appropriate user and
item profiles becomes more crucial. A profile that accurately reflects user pref-
erences increases the system’s recommendation effectiveness. This is something
that has become of great importance in the recently evolved business strategies
in e-commerce (Prasad, 2003). These techniques are able to recommend new
items that could cover the user’s needs. However, as they always recommend
items similar to those that a user has already used and liked, the main problems
that they have to overcome are the recommendations’ limited diversity and the
possible overspecialization (Lops et al., 2010).

2.2.3 Utility-Based

Utility-based RSs generate recommendations based on the computation of the
expected utility of each item for the active user. A common approach to utility-
based RSs can be designed based on multi-attribute utility theory and constraint
optimization, aggregating the total utility value of an item based on the values
of its attributes along with the importance of these characteristics to the target
user (Huang, 2011). As a result, these RSs do not face cold start and sparsity
problems. However, in order to be effective and able to provide accurate recom-
mendations to users, these systems should develop a different utility function for
each user, or for small groups of really similar users, based on their preferences
to capture their real needs and the importance that he/she assigns to each of
the items’ attributes, depending on the application domain (Adomavicius et al.,
2011).

2.2.4 Rule-Based

Rule-based recommendation techniques generate item recommendations based
on a set of rules extracted from a data corpus. Association rules (AR) mining
refers to the observation of transactions with the aim to discover interesting
hidden patterns and frequent associations among the existing items, usually
expressed in the form of “if-then” statements, (Agrawal et al., 1993). Similarly,
when it comes to sequential data, itemsets that occur in specific order, sequential
pattern mining that follows similar principles with AR but also evaluates the
relative order of events, can be used (Cavique, 2007).

In general, given two non-over-lapping sets of items, X and Y , with X and
Y being subsets of the set of available items and X ∩ Y = ∅ an association

2.2. MAIN RECOMMENDATION APPROACHES 21

rule is an implication of the form X → Y which indicates the existence of a
strong relationship among the presence of X and Y . When implementing a
recommender system based on such rules, when the items of the antecedent X
are found in a given set, the items of Y seem as the most suitable to complete
this based on the observed correlation that indicates their joint selection in past
transactions. In order to evaluate the strength and usefulness of the rules found
in a dataset, support,confidence and interest or lift, of a rule are used.

• Support of a rule determines how often a rule is applicable to a given
transactional dataset, and it can be defined as the relative number of
transactions, that contain all items from both X and Y , in other words it
is an estimation of the joint probability of X and Y , s = Pr(X ∪ Y).

• Confidence, in general, gives a measure of the reliability of a rule. It is
the parameter that determines how frequently items in the consequent
appear in transactions that contain the antecedent. Therefore, it is an
estimation of the conditional probability of X given that Y has occurred,

c = Pr(X∩Y)
Pr(X) .

• Lift is used in cases that X and Y are statistically independent to evaluate
whether they occur together more often than expected, and it can be
defined as the ratio of the rules’ confidence to its expected confidence.

Among the main drawbacks of using association rule analysis is its compu-
tational difficulty when applied to large scale data, as well as the difficulty to
evaluate all of the discovered patterns (Leake, 1996). More precisely, depending
on the underlying data, low values of minimum support permit the extraction of
rules that rarely occur, therefore may lead to misleading recommendations. On
the other hand, using high support levels may result in very strict constraints
that do permit the extraction of enough rules to generate recommendations.

2.2.5 Knowledge-Based

Knowledge-based recommendation methods insert knowledge models into the
recommendation process, usually by techniques based on the inference of users’
needs and preferences. These techniques may extract functional knowledge
about the relationships between a user and an item and the way this item
is able to meet a concrete user’s need. Therefore, they may be especially useful
in domains of complex products or in complex purchasing techniques.

Knowledge-based and especially Case-based recommenders (More details on
CBR and Case-Based recommenders can be found in sections 2.4.1 and 2.4.2,
respectively) have mainly emerged as an alternative to CF recommenders in-
tending to overcome their shortcomings, while efficiently handling the current
information overload (Lorenzi & Ricci, 2005). As knowledge-based RSs have
functional knowledge about the relationship between a user and an item, they
can be used in more complex cases. Case-based recommenders implement a
type of content-based recommendation that relies on a structured representa-
tion of problems as cases, usually as sets of well-defined characteristics with
their values. These systems generally search and recommend items similar to
those that the active user has described in his/her request based on previous
similar requests that have been satisfied (R. D. Burke, 2004).

22 CHAPTER 2. RECOMMENDATION TECHNIQUES

2.2.6 Semantic Analysis and Probabilistic Models

Recently, semantic analysis, latent factors and probabilistic topic models, arising
from the area of Natural Language Processing (NLP), and afterwards applied to
information retrieval, have also been applied to RSs, starting from tag recom-
mendations. The basic idea behind those models is that people when writing a
document have specific ideas in mind that can be expressed by including topics
related to these ideas in the document. Topics are seen as sets of words coming
from an existing vocabulary. Therefore, depending on the writers’ intentions,
documents are formed as probability distributions over the existing topics.

These techniques, aim to reveal the underlying meaning of words and doc-
uments based on the structure of their co-occurring patterns in data corpora
without the support of additional knowledge bases. These techniques have been
found able to reach higher accuracy than some of the commonly used techniques
while better handling sparsity problems, (Steyvers & Griffiths, 2007). As Latent
Dirichlet Allocation is among the techniques used in the development of the RS
of this thesis, more details on latent analysis and probabilistic models will be
provided in section 2.5.3.

2.2.7 Hybrid approaches

As hybrid is referred any recommendation approach that combines at least two
recommendation methodologies. The intention of these techniques is, depend-
ing on the application domain, to combine the characteristics of other popular
recommendation techniques, in a way that permits them to use their important
functionalities, in order to overcome the limitations of each one and generate im-
proved recommendations (R. Burke, 2002). In general, hybridisation techniques
may be:

• Weighted : the scores generated by the various recommendation techniques
are combined to generate a single recommendation

• Switching : the systems switches between the different recommendation
techniques based on some criterion

• Mixed : the recommendations generated by the different recommenders are
presented together

• Feature combination: the features coming from different sources are used
together in the same recommendation model

• Cascade: one technique refines the recommendations generated by another

• Feature augmentation: the output of one technique being used as an input
feature to another

• Meta-level : the model generated by one technique are used as the input
of another

From the above list, the first four combinations are order-insensitive, as the or-
der in which these are applied does not change the result while the last three are
inherently ordered as the recommendation techniques are applied sequentially,
thus the relative order in which they are applied differentiates the final result.

2.3. FROM ITEMS TO COLLECTIONS 23

In addition, in recent years the application of various novel approaches, aris-
ing or being influenced by other domain specific research paradigms, have been
proposed and tested. For example, due to the evolution of mobile devices and
the use of recommender systems in applications that highly depended on the
location or the context in which those are performed, mobile and context-aware
recommenders have lately received increased attention (Ricci, 2010; Adomavi-
cius & Tuzhilin, 2011; Braunhofer et al., 2013).

2.3 From Items to Collections

As it can be seen from the presentation of the main recommendation techniques
that took place, these techniques focus on past user-item interactions aiming
mainly to improve the accuracy of the predicted matchings. Usually, this kind
of interactions are modelled based on past selections, user similarities and item
characteristics, to generate as output a ranked list of the top-N items most likely
to satisfy a user.

However, in many cases more than a single item, or various alternatives
among really similar items, what a user would need in order to fulfil a specific
need, is a collection of items (also referred to as set, list, compilation or package),
similar to playlists (Cunningham et al., 2006; Bonnin & Jannach, 2013).

For example, when a user has bought a computer that she liked, more than
recommending more similar computers or the ones that similar users liked, the
user would be interested in receiving recommendations for complementary prod-
ucts, like maybe an external hard disk, headphones, etc. When searching for
travel recommendations, more than generating recommendations for similar des-
tinations, when having selected a destination a user may be interested in orga-
nizing the trip, so that more than getting a list of the 10 most famous museums
in a city, the set of a museum, a nice caf or restaurant and some outdoor ac-
tivities close to it, may be more useful. Similarly, a user that in general likes
beer would find as more useful the recommendation of a good white wine when
having fish for dinner, more than other brands of beer. In some cases, like in
the market basket analysis, where users tent to purchase together some item
groups with higher frequency than others, sometimes preferences and associ-
ation among item groups may seem obvious due to the type of the selected
products (for example buying coffee and sugar), while in other cases, it may
be difficult to identify the underlying relationships and the rationale behind
the joint selection of some product groups (for example a high number of men
buying beers and diapers on Thursday afternoons has been observed in US)
(Cavique, 2007).

The importance of item collections for user satisfaction, as the above exam-
ples highlight, was first mentioned about ten years ago, but still little research
has been done towards the recommendation of item collections. Even in cases
that the recommended items are presented as a set, in the majority of cases,
these items have not been selected or designed in order to work well together,
but rather form alternative solutions for the same problem. Lists, forming more
than simple aggregations of item recommendations coming from the top-N list,
have been found to deliver an added value to the user. Therefore, although in
some domains the human factor is the most important in order to construct a
collection of high quality, adding automatic reasoning and support to this pro-

24 CHAPTER 2. RECOMMENDATION TECHNIQUES

cess could further improve the quality of the resulting sets and speed up the
construction process (Hansen & Golbeck, 2009).

Hansen and Golbeck define a collection recommender as a system that “rec-
ommends compilations of at least two items” where each compilation is used
and evaluated as a whole. They propose a general domain independent frame-
work for item collections that defines the following four basic features, in order
to properly characterize a collection (Golbeck & Hansen, 2011):

• Unit or Selection: Unit collections are designed to be treated as being one
item as a whole, (like playlists) while selections exist as a set from which
a user can further select a subset to use (like libraries).

• Ordered or unordered : depending on the importance of the items’ order in
them, for example order is generally considered as important in a playlist
while not in the market basket.

• Constrained or unconstrained : refers to domains where constraints on
specific values have to be met in order the collection to be considered as
useful (like in a medical diet).

• Finite or infinite: Although in practice there are no infinite collections,
this attribute refers to whether they have a fixed, small enough size so
that it could be considered at once or are designed to be of an increasing
size. For example a playlist is finite, while a streaming service starting
from this playlist and sampling music continuously could be considered as
infinite.

In addition, they define the following list of attributes that could be used
for properly evaluating the quality of a set:

• Individual item values: forms the basic focus of item recommender systems
and are also important in collections. However, although users’ preferences
on individual items are important, the tolerance on a lower item values is
higher in collections.

• Order interaction: may be absolute or relative. More specific, absolute
refers to placing specific items at given positions, while relative placement
refers to the ordering of the items within a collection.

• Co-occurrence effects: the interaction of items within collections. Inde-
pendently of being ordered or not and of the rates of each item, some
items may not work well together. This attribute is mostly important for
unit collections and is among the factors that may define the success or
the failure of a collection.

• Size: refers to the number of items in a finite collection and generally de-
pends on the domain and the purpose. Even if all the items in a collection
work well together and their order is good, a very small set may result
being insufficient, while the opposite could be tiring (a playlist consisting
only of just three songs would be considered as too short.)

• Item distribution: within a collection items should follow given patterns
to make it pleasant and successful, in terms of the diversity of items in

2.3. FROM ITEMS TO COLLECTIONS 25

it, its coverage and balance. More specific, diversity refers to the variety
of item styles in a collection in order to capture different user’s interests,
while coverage refers to the subset of item styles included in the collection.
Balance, on the other hand, refers to the item distributions in categories.

For instance, when referring to playlists, among those features, the authors
report as more important the songs individual values, their co-occurrence effects
on a pair-wise and larger scale, as well as their order and items’ distribution in
them.

2.3.1 Initial Approaches

Although various cases of complementary items that, when consumed together,
the value of each item is increased due to their combination have been reported,
still the majority of sites referring to item collections mainly support their man-
ual continuation rather than generating proper recommendations completing
the started collections (Golbeck & Hansen, 2011).
The initial approaches to sets’ composition and recommendations treated the
problem mainly through:

• Rule-based approaches with aim to discover interesting hidden patterns,
and frequent associations among items purchased together (Cavique, 2007;
Mild & Reutterer, 2002; Chen et al., 2005).

• Graph-models to capture the structure of usual connections and joint se-
lections among items (Interdonato et al., 2013; Guerraoui et al., 2017).

• Cost constraint optimization, aiming to compose the optimal package from
the existing item alternatives (Xie et al., 2012).

For instance, searching for frequently purchased together items based on a
set of past transactional data, using the Apriori algorithm (Agrawal et al., 1993)
would lead to a set of association rules of the form {a, b} → {c} interpreted as
“if a customer has bought {a, b} he probably will also purchase {c}”. Therefore,
when implementing a recommender system based on such rules, the item c
would be recommended to a user that has already selected a and b based on
their observed correlation (Cavique, 2007).

Guerraoui et al. use the term consumed item pack (CIP), as a notion of a
higher level abstraction of item sequences consumed by a user (Guerraoui et al.,
2017). Furthermore, they model the problem data as an undirected graph, with
the items being the vertices where an edge exists between two of them, if some
minimal number of users have consumed both items in a short interval (being
two or three continuous consumption logs). Further they apply a community
detection algorithm and study the structure of the network by the evaluation
of its modularity. This evaluation leads to the discovery of some communities
densely connected by specific latent features, that however, cannot be reduced
simply to the genre of the items (for example movies or music genres). In
addition, a smaller distance among some of the observed communities is found.

Interdonato et al. also use a graph-based approach and refer to recommen-
dations of groups, or sets, of items of various types as package recommendations
and address this problem through a graph-based approach (Interdonato et al.,
2013). However, the proposed model still focuses on user preferences, rather

26 CHAPTER 2. RECOMMENDATION TECHNIQUES

that package patterns, expressed through predicted ratings over the packages
based on the items belonging to each and the ratings users have assigned to
those. In order to generate package recommendations, first a package recom-
mendation network is built, being the probability distribution over the existing
sets of packages, for any user, based on which then the transition probabilities
and the packages ranking, are defined.

Xie et al. inspired by real life examples like travel planning services and
tweeter following selections, consider composite recommendations that consist
of sets of items (Xie et al., 2012). They consider that every item has a rating
and a cost, while each user has a bounded budget that can be offered for the
finally selected item set. Their scope is to identify the top K packages as rec-
ommendations to address the above problem, that is NP-complete. However,
they treat the problem mainly as a constraint-based cost optimization problem
rather than pure recommendation.

2.4 Other Methodologies

2.4.1 Case-Based Reasoning

Case-Based Reasoning (CBR) is a problem solving paradigm closely related to
the human way of reasoning and acting in everyday situations, when facing
new problems. CBR in order to solve new problems, uses old experiences that
adapts to current situations, based on the following sentence, known as the
CBR assumption, “Similar problems have similar solutions”. Several results
of cognitive and psychological research have confirmed the claim that CBR
simulates this type of human problem solving behaviour, particularly seen in
early learning (López de Mántaras, 2001; Richter & Weber, 2013).

A situation experienced in a way that it has been captured and learnt, is
referred to as past/previous case and is stored in the case base. A new situation
asking for solution forms the description of a new/target case. An important
part of the CBR methodology is its learning ability that comes as a natural
result of its problem solving process, as the case base is updated each time a
new experience is obtained from a problem solution. This knowledge may be
reused when needed without implementing the whole process from scratch, or
highlight a methodology that should be avoided in a similar case. This way,
case-based reasoners are able to use the knowledge gained through previous
cases, as well as to improve their problem solving performance over time through
new experiences. In addition, as these techniques derive their reasoning from
complete cases rather than decomposing then into simple rules, they are more
appropriate for domains with limited understanding or high complexity where
rule-based techniques usually fail to provide an efficient solution (Aamodt &
Plaza, 1994; Leake, 1996).

In CBR, a case is not a rule. A case denotes a problem situation in a wider
term and does not necessarily need to refer to finding a concrete solution to
an application. Depending on the domain that is analyzed, cases may be rep-
resented as simple collections of attribute-value pairs of specific characteristics
that occurred in a situation or, in more complicate domains hierarchical or
graph representations may be more adequate. Except from the adequate cases
modeling, the parameters that highly affect the performance of a case-based

2.4. OTHER METHODOLOGIES 27

reasoner are its previous experiences, its ability to understand and adapt to
new situations, based on those and finally its ability to evaluate the reasoning
results and incorporate the feedback of the process (Bergmann, 1991).

In general, a case in a CBR system can be denoted as an ordered pair
c = (p, q) with p ∈ P and q ∈ Q being the problem description and solution,
coming from the sets of the problem descriptions P and solutionsQ, respectively.
The case base can be defined as the set of all the known cases, therefore denoted
as C = (P,Q).

When a new problem, a new case, has to be solved, first of all, based on
the comparison of their problem descriptions, the most similar case(s) that
have been previously experienced have to be retrieved from the case base. In
this step, similarity measures are involved to provide an appropriate ranking
of the existing cases based on the appropriate features. The solution is then
obtained by reusing the retrieved cases’ solutions with a proper adaptation,
so that it becomes adequate for the current situation. The solution can be
modified either manually by the users wishing to define some characteristics
of interest, or automatically by the system based on domain knowledge and
solution generators able to adapt the solution to the current requests. The
new solution is then evaluated in order to ensure that it can address the initial
problem and to verify that its quality and performance will be the expected.
Finally, the new experience is incorporated in the case base, providing additional
solution knowledge or highlighting a methodology that should be avoided in the
future in similar problems (Kolodner, 1992).

The CBR solving and learning process can be described as a cyclical process
comprising of four steps, also known as the four REs, or as the CBR cycle,
that can be seen in figure 2.5 below. Each of those may be further divided
into subtasks depending on the domain and the scope of the system (Richter &
Weber, 2013; Lopez De Mantaras et al., 2005).

In more detail, the four REs refer to the following steps:

• Retrieve: the most relevant previous case(s) from the case base.

• Reuse: the information and knowledge provided in the retrieved case(s)
in an adequate way for the new problem.

• Revise: the solution obtained to ensure that its performance will be the
expected.

• Retain: the parts of the solution/experience that are likely to be reused
(or should be avoided) in the future, and incorporate this new knowledge
into the case base.

28 CHAPTER 2. RECOMMENDATION TECHNIQUES

Figure 2.5: CBR Cycle

As it can be derived from the above, a key factor of a CBR system is the
similarity function used to identify the most similar past cases from the sys-
tem’s case base. The similarity function is a metric used to estimate the level
of resemblance between a new and the existing cases. This metric provides an
approximation of the level of utility the solution could provide related to its
re-usability, with the intention to provide an approximation as close to the real
value of re-usability as possible, while at the same moment being easily com-
putable and interpretable (Xiong & Funk, 2006). As cases may be represented
through various ways, depending on the application domain, various are also
the similarity metrics that can be used for each of the cases. The values of the
similarity function range in the set of [0 . . . 1], where 0 is assigned to totally
different cases and 1 to cases that are regarded as identical according to a given
similarity measure.

In general, similarity measures can be defined at a local and global case
level. Local similarity metrics are used to capture the similarity of the different
features that the cases are composed of. On the other hand, global similarity
metrics provide an overall approximation of the cases’ similarity by aggregating
local similarities along with appropriate importance factors assigned to each

2.4. OTHER METHODOLOGIES 29

of them. An appropriate similarity (or distance) function able to capture the
hidden relationships among the various objects associated, and reflect the level
of their similarity (or dissimilarity) with the cases enables the system to provide
an increased performance (Liao et al., 1998; Finnie & Sun, 2002).

Let sim(fi
N , fi

R) be the local similarity function used for the comparison
of the i-th among the n different attributes that the cases consist of, that have
values fi

N , fi
R in the new fN and the retrieved fR case respectively, or for a

distance function being:

d(fi
N , fi

R) = 1− sim(fi
N , fi

R) (2.3)

On the other hand, let Sim(fN , fR) be the global similarity that can be
found as an aggregation of the local similarities. Therefore, if wi is the impor-
tance weighting factor of each of the case’s i = 1 . . . , n features, when using a
k-nearest neighbours approach, the global similarity can be calculated as in the
following equation,

Sim(fN , fR) =

∑n
i=1 wi × sim(fi

N , fi
R)∑n

i=1 wi
(2.4)

2.4.2 Case-Based Recommenders and Applications

Lately, the CBR paradigm has been applied to domains further from its tra-
ditional knowledge related applications, to areas like scheduling, decision mak-
ing support, electronic commerce, product retrieval and recommender systems
intending to decrease the observed gap between user requirements and item
characteristics (R. D. Burke, 2004).

Case-based recommenders follow the general CBR cycle and rely on the core
CBR concepts of similarity and retrieval. The recommendation process is in-
stantiated when a new user looking for recommendations accesses the system
and introduces his/her requirements. The user request serves as a new problem
description while the available items form the possible solutions that can be
found in the case base of the system. These items can be retrieved according
to their similarity to the user query, computed through an appropriate sim-
ilarity function. In case-based item recommenders, the inserted parameters/
constraints of a user refer to the item’s specifications. Therefore, the level of
user request specification heavily influences the outcome of the CBR recom-
mendation process, as both an overspecialized and an underspecified query will
most probably result in solutions unable to cover user needs, (Lorenzi & Ricci,
2005; Prasad, 2003).

These recommenders evolved as an alternative mainly to CF in order to
overcome the shortcomings that these systems come with. CBR recommenders
perform a kind of content-based analysis, usually based on structured represen-
tations of cases as sets of attribute-value pairs, and generate recommendations
based on the user request and not on the items’ ratings. They analyze the re-
quest and the constraints imposed by the user and try to find items with charac-
teristics that match these requirements in the best possible way. This existence
of a common and structured way of representing both the query and the treated
items enables the system in calculating and understanding similarities among
items, generating meaningful recommendations, as well as, the evaluating and
incorporating the feedback in the process (Bridge et al., 2005). An additional

30 CHAPTER 2. RECOMMENDATION TECHNIQUES

advantage of CBR recommenders is that they can include in the recommenda-
tion generation process semantics and characteristics that were present during
past item selections.

In recent years, there has been observed an expansion of on-line stores and e-
commerce applications selling different types of physical and information goods.
Although recommender systems are being used in the majority of these sites in
order to enable users in finding the most suitable items, most of these appli-
cations lack of proper customer support. CBR has been proposed as the main
methodology being able to provide an intelligent product selection support, able
to support the request submission and dialog through between the user and the
system, selecting the most appropriate products according to the user needs
more than recommending the most popular items (Bergmann, 1991). Finally,
the item(s) that seem as more appropriate for the user are recommended, some-
times along with a presentation and/or explanation of the reasons that led to
this selection. In such approaches, items and cases are considered as identi-
cal objects. The requested characteristics describe the target product and the
system tries to find the item in the product database (that is the case base of
the system) that best matches this description. The effectiveness of the system
highly depends on the characteristics selected to describe the cases, as well as
on its ability to capture the similarity between the descriptions of the target
and the existing products (Lorenzi & Ricci, 2005; Bergmann, 1991).

As in CBR, cases’ modelling may differ according to the application do-
main, complicated domains where more details than simple user ratings have to
be taken into account can be analysed and solved by applying an appropriate
CBR approach. Another area where CBR recommenders have been successfully
applied is in travel planning recommendations. In this domain, both recom-
mendations for destinations or concrete types of activities may be requested, as
well as complete travel plans including accommodation and other activities in
a selected destination (Ricci et al., 2006).

Ricci and Werthner in (Ricci & Werthner, 2001) refer to those as travel
plans and travel services. More than presenting the travel choices as a list
of products among which the users are asked to select, the authors propose a
CBR recommendation system that starts from a simple destination model and
enables the user to update and reshape by setting his/her requirements and
constraints. The case base of the system consists of the travel plans previously
made by other users satisfying their preferences. In (Ricci et al., 2002) the
factors that influence travel selections are divided into two groups, user and
item related, named personal (socio-economic and psychological/cognitive) and
travel (purpose, length, distance etc.) respectively. The proposed approach
is based on a case base of travel bags (coherent sets of travel items without
temporal scheduling), follows a hierarchical case modelling of the travel factors
while taking into account a human choice model, extracted from the analysis
of travellers’ behaviour. When building a new travel plan, the system focuses
more on previous cases in similar contexts than on previous selections of the
active user.

An interesting CBR approach to automatic playlist generations, treating
playlists as cases being sequences of items, can be found in chapter 3 that refers
to music recommender systems, in section 3.4.2.

2.5. SEMANTIC ANALYSIS AND PROBABILISTIC TOPIC MODELS 31

2.5 Semantic Analysis and Probabilistic Topic
Models

Semantic analysis and probabilistic topic model approaches are thought to be
able to provide a better insight into human cognition and support explanatory
approaches related with fundamental cognitive science questions like language
acquisition, learning and processing (Steyvers & Griffiths, 2007; Blei, 2012).

These approaches were initially used to handle problems related to docu-
ments’ semantic retrieval, as various linguistic studies have revealed that these
techniques are able to match human text learning processes, where the mean-
ing of words is defined through the concepts in which these words were present
and absent, (Si & Sun, 2009). They aim to discover the signification of words
and to find their similarity based only on the similarity of the context within
which they appear without using any additional knowledge base. In addition,
they follow the bags of words assumption, meaning that the semantics are de-
termined only from their lexical level, neither from the words’ order nor from
the syntactic structure of the sentences in which those appeared.

Due to the shortcomings of the mainly used recommendation techniques, like
cold start and overspecialisation, these techniques have recently gained more
ground and have been effectively applied to the area of recommender systems,
starting mainly from those related with some kind of text items. One of the
major strengths of these techniques is their ability to reveal hidden relationships
among the items of a corpus, through the analysis of co-occurring patterns which
these recommender systems intent to reveal and use.

2.5.1 Latent Semantic Analysis

Latent Semantic Analysis (LSA) is a knowledge induction and representation
theory for the representation of the contextual meaning of words, through the
application of statistical computations to large text sets. It was initially devel-
oped with the purpose of improving information retrieval and better handling
problems related to text semantic meaning retrieval.

LSA is thought to be closely related to neural network models but it is based
on SVD that reduces the latent representation space and then ignores the less
significant dimensions (regarded as noise or non-essential factors) of the new
representation space in order to achieve the best possible dimensionality. This
has as a result that, words occurring in similar contexts are matched to more
similar vectors and therefore result in a higher similarity rating.

LSA is based on the idea of mapping high dimension vectors into lower di-
mensional representations in a latent semantic space (Landauer et al., 1998).
More specific, LSA uses the assumption that semantic information can be de-
rived by dimensional reduction of the document-word co-occurrence matrix and
these documents and words can be represented as points in the Euclidean space.
A word document co-occurrence matrix can be decomposed by singular value
decomposition (SVD) into a word vectors’, a diagonal and a document vectors’
matrix, like shown in figure 2.6.

LSA induces the words’ and documents’ meaning only from the underlying
text, based on the co-occurring words, with words being considered as similar
if they appear in similar documents, while documents are considered as similar

32 CHAPTER 2. RECOMMENDATION TECHNIQUES

to the extent that they contain similar words (Landauer et al., 1998). The
word representation is close to a kind of average meaning of the contexts that it
appears in, while a document is regarded as an average of the meanings of words
present in it. However, these characteristics may be regarded as both LSA’s
strengths and weaknesses depending on its application domain and purpose.

Figure 2.6: SVD performed by the LSA

2.5.2 Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis (pLSA) initially known as Probabilistic
Latent Semantic Indexing (pLSI) is a statistical technique that defines a gener-
ative data model for the analysis of two-mode and co-occurrence data, with ap-
plications in information retrieval, natural language processing, computational
linguistics, machine learning from text and other.

pLSA aims at identifying and distinguishing among different significations
of words, according to the context of their usage without the use of a dictionary.
It can be regarded as a statistical view of LSA that associates a latent context
variable with each word co-occurrence and was the first probabilistic approach
towards modelling text documents. The starting point of pLSA is a statistical
model called aspect model (Hofmann, 2001) a latent variable model for data co-
occurrence that associates an unobserved class variable with each observation of
a word’ s occurrences in a particular document. This model was first proposed
for language modelling, where it is referred to as aggregate Markov model,
based on the assumption that observations or sets of observations come from an
underlying latent class.

Although highly influenced by LSA, pLSA is an unsupervised learning method
that uses a generative latent class model in order to perform a probabilistic
mixture decomposition. Furthermore, pLSA defines a proper generative data
model, enabling the use of standard statistics techniques for the model fitting,
selection and control, and was found to improve the results achieved by the
standard LSA (Hofmann, 1999).

2.5.3 Latent Dirichlet Allocation

Topic models are models of probabilistic nature that aim to reveal the under-
lying semantic structure of large sets of documents. They are based on the
hypothesis that a document consists of various topics, and each topic is a prob-
ability distribution over words. Therefore a topic model is a generative model

2.5. SEMANTIC ANALYSIS AND PROBABILISTIC TOPIC MODELS 33

for documents that specifies a probabilistic procedure by which documents may
be generated.

The basic idea behind their application is that a person writing a document
has specific ideas in mind that can be expressed by selecting various topics
related to these ideas, and specifying a distribution over them. The words
that will appear in the document are selected from the topics in the generated
topics’ distribution. Based on this approach, documents with different content
can be created by selecting different topic distributions (Krestel et al., 2009).
These algorithms are based on statistical methods and analyse the words within
the documents, in order to discover the themes that run through them, the way
they are connected to each other, and how do they change over time. The topics
emerge from the analysis of the given documents, without the necessity of prior
knowledge of the topics in text corpus or previous annotations of the text, while
the topic distributions arise by computing the hidden structure generated by
the collection of documents in the corpus.

Latent Dirichlet Allocation (LDA) is a generative probabilistic model for
collections of discrete data, such as text corpora (Krestel et al., 2009). It is
a three-level hierarchical Bayesian model where items are modelled as finite
mixtures over an underlying set of topics. Therefore, in the case of applied to
text modelling, the representation of a document is provided explicitly by the
set of its topic probabilities (Blei, Ng, & Jordan, 2003). Apart from the bag of
words assumption, LDA works based on the assumptions that the number of
the existing topics in a corpus is fixed and known, and that the order of the
documents in it is not important, that may not be suitable for corpus composed
of document collections that vary through years (Hofmann, 1999; Blei et al.,
2003).

In generative probabilistic models, the data are treated as arising from a gen-
erative process with hidden variables that define a joint probability distribution
over both the observed and the hidden variables. This distribution is also called
posterior distribution. The observed variables are the words of the documents
while the hidden variables are the topic structure. The computational problem
that arises refers to inferring this hidden topic structure, therefore to compute
the posterior distribution, the conditional distributions of the hidden variables
given the documents.

A topic is defined as a distribution over a fixed vocabulary, while for each
document the words are generated in a two stage process, first a distribution
over topics is randomly chosen and for each word in the document a topic of
the above distribution is chosen and a word from the corresponding distribution
over the vocabulary (Steyvers & Griffiths, 2007; Blei, 2012). Therefore, the
word-document matrix is split into two parts, rather than three like in LSA, the
word-topic and the topic-document matrix, each representing the corresponding
probability distributions, as it can be seen in figure 2.7 (Steyvers & Griffiths,
2007).

34 CHAPTER 2. RECOMMENDATION TECHNIQUES

Figure 2.7: Matrix factorization performed by the the topic model

Problem Formalization

LDA, although not restricted to text data applications, as it was initially related
with those, uses the terms “words”, “documents” and “corpora” for the problem
entities. The problem can be formalized as follows:

• A word is the basic item unit coming from a given vocabulary. It can be
represented as a vector with a single component equal to one and the rest
of the components equal to zero, as:

w = {0, . . . , 1 . . . , 0} (2.5)

• A document is a sequence of N words, with wn being the n-th word in it,
denoted as:

w = {w1, w2, . . . , wN} (2.6)

• A corpus is a collection of M documents denoted as:

D = {d1, d2, . . . , dM} = {w1,w2, . . . ,wM} (2.7)

Based on those,

• P (wi/d) is the probability of the i-th word in document d.

• θ(d) = P (z) is the multinomial distribution over topics z in document d.
Therefore P (zi = j) is the probability that the j-th topic was sampled for
the i-th word token.

• ϕ(j) = P (w/z = j) is the multinomial probability distribution over words
w for topic j, thus P (wi/zi = j) is the probability of word wi occurring
under topic j.

• For a number of topics equal to T , the model specifies the distribution
over words within a document as:

P (wi/d) =

T∑
j=1

P (wi/zi = j)P (zi = j/d) (2.8)

P (wi) =

T∑
j=1

P (wi/zi = j)P (zi = j) (2.9)

2.5. SEMANTIC ANALYSIS AND PROBABILISTIC TOPIC MODELS 35

Comparison

LDA extends pLSA by specifying the way θ is generated. For a given number
of latent topics, LDA estimates the topic-word P (w/z) and the document-topic
P (z/d) distributions by using Dirichlet priors. More precisely, given the ob-
served words w, the Gibbs sampling algorithm is used to estimate the posterior
distribution over z, as it is considered an efficient method for extracting sets of
topics from large corpus (Steyvers & Griffiths, 2007; Krestel et al., 2009; Si &
Sun, 2009). In addition, the performance of LDA when assigning probabilities
to new documents has been found higher and with a lower perplexity than pLSA
that works based on the Expectation Maximization (EM) algorithm (Blei et al.,
2003).

On the other hand, LDA differs from LSA in the representation part, as it
expresses the semantic properties of words and documents through probabilistic
terms, which enables the interpretation of each topic. Furthermore, two words
are thought to be similar to the extent that they appear in same topics and
two documents are thought as similar to the extent that same topics appear in
them. The increased utility provided by topic models comes from their ability
to resemble the thematic structure of a data collection by the inferred hidden
structure (Blei, 2012).

2.5.4 Topic Model Recommenders and Applications

Having extracted the set of topics from a corpus, in order to find the similarity
of new concepts, words or documents, the similarity of their topic distributions
is calculated using an appropriate similarity metric. Thus, for recommendation
applications, given a new query, being a document, its topic distribution is
found and then similarity computations based on the topic distributions of the
documents in the corpus, take place in order to find the most similar ones.
Recommendations are then generated from the top words of the main topics of
the most similar documents found.

Tags coming from a “tag cloud” can be used to characterize documents and
multimedia items, like photos, videos, songs. The items can be then represented
through their tags and latent models may be used in order to infer the tags’
topic distribution of each item. Based on the similarities of the extracted topic
distributions, items coming from the set of items with the most similar topic
distribution, are recommended (Krestel et al., 2009). Similarly, an article recom-
mender system based on the Wikipedia corpus is presented in (Haruechaiyasak
& Damrongrat, 2008). The advantage of this approach is that is able to dis-
cover articles with relevant topic profiles, coming from different fields/subjects,
which would not be reached through the existing hyperlinks and keywords, and
would not be recommended through recommendation techniques that focus on
the user ratings.

Recently, these approaches have been applied also to market domains of
both physical and electronic stores. In (Christidis et al., 2010), a topic model
recommendation approach for the market basket analysis problem is presented.
In this approach, items coming from different item topics are treated like words
placed with some probability within different market baskets, that can be seen
as documents created of these items. The baskets are compared based on their
topic probability distributions, and when a new user having already placed

36 CHAPTER 2. RECOMMENDATION TECHNIQUES

some items in his/her basket comes, the basket’s topic profile is compared to
the past ones. The items coming from the baskets with most similar topic
distributions, having not yet been selected are recommended. Other topic model
recommenders for market analysis that additionally insert into the model the
prices of the purchased items can be found in (Iwata et al., 2009; Iwata &
Sawada, 2013).

2.6 Conclusions

In this chapter, the first part of the theoretic background of this thesis, has been
presented. More specific, the basic information on RSs, their basic assumptions,
categorization and common limitations have been described.

A summary of the basic characteristics of the commonly used recommenda-
tion techniques, along with their main limitations and advantages, can be found
in the following table:

RS Core Input/Output Limitations Advantages
CF-NN Nearest user ratings/ cold start commercially

neighbours topN items popularity bias successful
CF-MF Latent user ratings/ missing data commercially

vectors topN items modelling successful
CB Item user ratings/ overspecialisation specialized

attributes topN items limited diversity domains
AR Rules antecedent/ computation cost co-occurring

consequent eval. difficulty patterns
Utility Optimis. user request/ limited no cold-start

function topN items personalization or sparsity
CBR Similarity case description/ data quality learning ability

function case solution dependence handle complex.
LSA SVD documents/ information reveal hidden

topic distributions loss relationships
LDA Dirichlet documents/ less stable reveal hidden

priors topic distributions performance relationships

Table 2.1: Recommendation techniques’ basic characteristics

Special emphasis has been placed on CBR and LDA as these are the tech-
niques that have been further used in the implementation of a hybrid RS for
automatic playlist continuation. Therefore these techniques have been presented
in more detail. In addition, the necessity of implementing techniques that gener-
ate recommendations of item sets, being more than a ranked list of alternatives,
has been presented along with the basic characteristics that these systems should
take into account.

Chapter 3

Music Recommender
Systems

In this chapter, first of all, some of the unique characteristics of music items
and their consumption are presented. Then the basic concepts of Music Rec-
ommender Systems (MRSs), Music Information Retrieval (MIR) and automatic
playlist generations (APG) are described, as automatic playlist continuation
(APC) forms the basic application domain of the developed recommender sys-
tem. Moreover, due to the unique characteristics of music items that complicate
their recommendation processes, additional characteristics that influence users’
music selections are presented. More specific the definitions, modelling and ways
of supporting beyond accuracy parameters and contextual factors related to the
user perception of playlist quality, and satisfaction, can be found.

3.1 Music Items and Consumption

Although music is present in everyday life of a lot of people, the human per-
ception of music, the rationale behind music selections, and their emotional
influences still remain undefined from a cognitive perspective.

The recent capabilities of digital music production through specialized soft-
ware programs have enabled the creation and public distribution of music, with-
out geographic limits and with lower costs, creating new opportunities for both
artists and users. New, and yet less known, artists manage to produce, distribute
and introduce their work to a larger audience without having to overcome the
financial limitations and entry barriers of the past, usually set by record compa-
nies (Logan, 2004). On the other hand, along with the shift from CDs to mp3
formats, this has resulted in an increased amount of music items and informa-
tion about them, being publicly available online for the users (Domingues et al.,
2013). In addition, a change in the way that music is “consumed” has been ob-
served. More than “owning” songs in their personal collections, users now tend
to listen to them online (Schedl, Knees, & Gouyon, 2017). Furthermore, this
has created numerous issues related to music access, discovery and navigation,
as well as sharing and information services that need to be facilitated. There is
a need for new systems, and communities, enabling users in finding new music
items, or accessing specific music they are looking for, and may have difficulties

37

38 CHAPTER 3. MUSIC RECOMMENDER SYSTEMS

in discovering. This way, like in other areas facing information overload prob-
lems, music recommender systems have evolved in order to handle these issues
(Celma, 2010).

When referring to music items, those can be songs, genres, artists, albums
and radio stations. Therefore, music recommendations can be addressed at dif-
ferent levels of abstraction, grouping items by genres, artists or albums (Schedl
et al., 2015). As these items form the result of a complicated synthesis process,
their analysis, in term of content characteristics, requires more in-depth domain
knowledge. In addition, when it comes to the music recommendation problem,
there are some unique characteristics of this domain that differentiate it from
other item recommendation domains, and can be described as (Schedl, Zamani,
et al., 2017):

• Item duration: The short consumption time of songs (usually being of
some minutes) compared to movies (hours) or books (days or weeks), that
makes them more disposable. It is also closely related to the time during
which the user creates an opinion on the item.

• Magnitude of items: The size of the item catalogues. In contrast to their
smaller size, per item, in comparison to other multimedia items, the num-
ber of the totally available music items is much larger, being of millions of
pieces. Therefore, support for scalability becomes of higher importance.

• Repeated recommendations: A music item could be consumed multiple
times, even repeatedly, while other multimedia items usually are consumed
once or at most a few times. Therefore, in music recommendations, users
may accept and even find useful recommendations of already known items,
in a different or later time moment.

• Sequential consumption: Songs are rarely listened to in isolation (McFee
& Lanckriet, 2011). Users rather tend to create sessions that consist
of sequences of songs, placing more importance on the songs within a
sequence and their relative order.

• Consumption behaviour : Music may also be consumed passively, meaning
that the user is performing other activities while having music in the
background. As a result, no implicit feedback or information on user
preferences may be retrieved from the user’s behaviour, as there is no
direct interaction (skipping or liking songs).

• Listening intent and context : Various dimensions related to the music
consumption moment and scope, like the performed activity, mood, loca-
tion, time, company, etc., during the consumption moment may heavily
influence the music item selections.

• Emotional connotation: Music is well known to evoke emotions while at
the same time the users’ music needs are influenced by their actual emo-
tional situation and mood.

Pachet and Roy (Pachet & Roy, 1999) define the three main goals behind
music selection and consumption as repetition, surprise and exploitation of cat-
alogues. The “desire of repetition” is related to users’ musical perception and
their tendency to listen to songs they know and like, or similar to those. On the

3.2. MUSIC RECOMMENDER SYSTEMS 39

other hand, the contradictory, “desire for surprise” is related to their tendency
to discover new music, in terms of songs, bands or music styles. Therefore, the
key issue is to manage presenting the users music that they do not know yet,
but it is similar to what they like. Finally, the exploitation of catalogues is more
related with the distribution of music items within large collections in a manner
that they would be accessible and also coherently organized. To this direction,
for a MRS to be efficient, and deliver recommendations of improved quality, the
special characteristics of music items should be understood and supported, in
order to balance among the various dimensions of music consumption (Celma
& Lamere, 2011).

3.2 Music Recommender Systems

Music Recommender Systems (MRSs) are a special category of recommender
systems, with aim to filter and reduce the information overload related to mu-
sic. These systems have their basis both in fields of recommender systems and
classical multimedia information retrieval and especially in the field called Music
Information Retrieval (MIR), (Kim et al., 2010). They retrieve and present to
a user the music items that seem more appropriate for him/her, deducted from
his/her profile or based on a specific request. Therefore they have to deal with
the common limitations of both areas (Casey et al., 2008; Byrd & Crawford,
2002).

Furthermore, one of the main issues of MRSs, as in MIR, and multimedia
information retrieval systems in general, is the semantic gap between the items’
content description and the users’ perception of these items (Celma et al., 2006).
As most of the MIR techniques use low level signal characteristics, they lack of
ability to capture aspects related to music tracks that are closer to the human
perception, while users tend to provide their queries through high level descrip-
tions. Kaminskas and Ricci outline the necessity of finding systems able to
represent music items at a higher representation level closer to human percep-
tion in order to provide conceptual explanations and be easier understandable
by the users (Kaminskas & Ricci, 2012).

Traditional MIR techniques use content-based audio related techniques that
apart from the general limitations of CB systems, like overspecialization and
limited diversity, require a deeper knowledge of the application domain (Casey
et al., 2008; Lamere, 2008). On the other hand, CF techniques focus mainly on
isolated user ratings to predict the ratings a user would assign to a previously
unknown song, based on the behavior of similar users. Thus they heavily suffer
from cold-start and long tail effect limitations (Su & Khoshgoftaar, 2009). In
addition, the majority of music recommender systems show a tendency towards
the recommendation of popular items, and do not take into account the situa-
tional and other contextual parameters under which the selection of an item is
done, which may heavily affect the final result (Park & Tuzhilin, 2008; Levy &
Bosteels, 2010).

CF techniques are domain independent, thus do not take into account do-
main specific attributes. These techniques try to predict the ratings a user
would assign to a previously unknown song only based on the ratings similar
users have assigned to the specific song. As in their other application areas,
these techniques are restricted by limitations like the cold-start, data-sparsity

40 CHAPTER 3. MUSIC RECOMMENDER SYSTEMS

and long tail effect (Herlocker et al., 2004). An example of a well-known CF
music recommender is last.fm1 that creates personalized music recommenda-
tions starting form an artist selection from the user side. Its main drawback is
that it is not able to recommend novel, not popular music. On the other hand
Genius, the recommendation software introduced by iTunes2, starting from a
given song generates a playlist for a user from his/her library by comparing this
library with the libraries of other iTunes users.

Apart from CF approaches that follow their neighbourhood based reason-
ing, and do not enhance the specific characteristics of the music domain, the
other recommendation approaches used mainly focus on content and context
information related to music, and to its consumption in order to generate rec-
ommendations.

CB approaches for MRSs in general require a deeper knowledge of the ap-
plication domain. Therefore, given the complexity of the music items and the
related information, their application is far more complicated (Shao et al., 2009).
Content information on music items can be mainly of two categories, related to
audio and musical features, like timbral, temporal and time-domain and tonal
features, and semantic annotations, as distributions over tags, automatically
extracted using machine learning techniques (Celma, 2010). Usually, in CB
recommenders music items are described mainly through their low level charac-
teristics, using the retrieval and analysis methods that will be presented below.
These techniques face the general limitations imposed by CB techniques, like
the overspecialization of the recommended items, and additionally, they are
more exposed to the semantic gap of music information analysis. One of the
most popular CB music recommenders is Pandora3, which provided a song or
an artist name, generates recommendations of songs that have similar charac-
teristics with the introduced seed song. The comparison is done based on music
features of the songs like tonality, instrumental arrangement and other (Shao et
al., 2009).

On the other hand, metadata can be of various types, like manual annota-
tions provided by experts, usually following some kind of taxonomy (editorial
metadata including genre, artist, release year, etc.), social tags coming from user
generated tags from social tagging services usually being more varied but also
more noisy, or web annotations like keywords extracted directly from related
web pages (Schedl et al., 2015). Bogdanov and Herrera evaluate the quantity of
metadata needed in order to generate music recommendations of high quality.
As especially user-generated metadata may insert additional noise, they propose
the use of content-based information extracted from the music items combined
with the minimum amount of genre related metadata. Based on the conducted
listening experiment, while using different distance metrics, they suggest this
method to be suitable also for recommendations in the long-tail (Bogdanov &
Herrera, 2011).

1last.fm
2www.apple.com/itunes
3www.pandora.com

3.3. MUSIC INFORMATION RETRIEVAL 41

3.3 Music Information Retrieval

Traditional music information retrieval techniques use audio content analysis
and describe music items based on low level characteristics. An audio signal
analysis process is performed in order to extract the basic information about
tracks. In order to retrieve and recommend music items based on a given query,
the classic MIR methods use three approaches (Kaminskas et al., 2012):

• Query by example uses an audio signal as input while the expected out-
put consists of the metadata related to this input audio, like title, genre,
artist, etc. This methodology uses fingerprinting techniques that repre-
sent an audio as a unique set of low-level audio features. A widely known
system based on this paradigm is the Shazam4 music recognition applica-
tion, which generates an audio fingerprint from 10 seconds of a recorded
audio, and then searches its database of audio fingerprints for matching
fingerprints and their related metadata.

• Query by humming takes as input a melody sung by a user and intends
to find the alternative versions of a song. This kind of retrieval systems
is suitable only for melodic music, as the input provided by the user is
monophonic. As the majority of the existing popular west music is poly-
phonic, these recommendation techniques have first to retrieve from the
database the various individual melodies that compose the songs included
in the database, in order to be able to match them against the query.

• Genre classification is rather a classification process, and not a search
methodology like the previous two, with the main audio signal features
used for classification being timbre, melody and rhythm. The problem
with this technique is the absence of a defined taxonomy of music genres.
Existing libraries use different specifications, and each one has its own
hierarchy in order to specify music genres. In addition, as music genres
evolve, the problem becomes even more complicated.

Furthermore, when analysed regarding the level of retrieval task that they
perform, MIR systems can be divided into four main categories, namely genre,
artist, work and instance level. Genre level refers to searching for types of music,
like pop, rock, etc. while, artist level refers to searching for similar artists to a
given one. For instance, search at work level refers to looking for cover songs of
a given song, while finally instance level search refers to identifying a specific
song (Casey et al., 2008).

3.4 Playlists

Music items are rarely consumed in isolation but rather as sequences, like CDs or
radio programs with specific properties as a whole, aiming to create a particular
atmosphere (Pachet & Roy, 1999). Therefore, playlists can be defined as sets of
music items designed to be consumed as a sequence, similar to traditional radio
broadcasts (Bonnin & Jannach, 2013; Cunningham et al., 2006).

Bonnin and Jannach state the difference between playlists, that are arranged
in a certain order, and song sets, or mixes, where songs are shuffled (Bonnin &

4www.shazam.com

42 CHAPTER 3. MUSIC RECOMMENDER SYSTEMS

Jannach, 2014). Playlists can be of several types, depending on their scope (tar-
get characteristics) and origin/basis (music dataset on which they were made),
mainly belonging to the following categories:

• Broadcasting radio playlists: made by professionals in radio stations, usu-
ally being relatively homogeneous based on a certain audience and often
contain popular (for the specific audience) tracks.

• Personalized radio playlists: generated by web music services, after users’
interaction with those. Thus, their characteristics depend on user prefer-
ences and goals (for example discovery).

• Amateur playlists: made by music enthusiasts. Their characteristics de-
pend on the creation scope (for example playlist for work, travel etc.) and
each user’s music knowledge.

• Club playlists: made by djs in order to be reproduced at clubs and usually
contained danceable and popular songs.

• Album tracklists: sequences of songs of one or a group of artists, usually
made by labels and artists.

• Compilation tracklists: similar to album tracklists but made by popular
songs grouped around a given theme, or artist.

Therefore, when it comes to music consumption, more than simply predicting
whether a music item would be highly rated, the underlying structure of joint
selections should be evaluated. Furthermore, the presence of a song within a
concrete concept should be captured in order to recommend sets of songs de-
signed to be consumed together, satisfying at the same time cognitive properties
like relevance, variety, coherence and diversity (Schedl et al., 2015). Variety
refers to not repeating the same song or artist in the recommended sequence
(or at least not often), while coherence refers to the order of the items within
the sequence, as their changes should be smooth without destructing the user
listening to them (Maillet et al., 2009).

Although a user may enjoy listening to songs of different genres or of different
tempo, depending on his/her current mood, when generating a playlist like a
professional dj would do, the selected songs should not be of the same artist, and
more than just belonging to the same genre, should have some coherence and
their changes should be smooth without destructing the users listening to them
(Maillet et al., 2009). In general, song order has been reported as being less
important when treating playlists built on popular items in contrast to playlists
created from long tail items (Celma & Cano, 2008).

On the other hand, a large set of songs being almost equal in terms of
melody and bit rates would result in the users’ boredom. The lack of diversity
in a playlist has been reported among the common limitations of the majority
of automatically generated playlists. Finally, as important criteria influencing
a user’s opinion of the playlist quality is the user’s familiarity with the songs,
the creation intention and its suitability for this specific purpose, as well as
personal preferences on individual songs, have been reported. Especially when
it comes to songs disliked or hated, those might lead to a negative impression
of the whole playlist (Schedl, Zamani, et al., 2017).

3.4. PLAYLISTS 43

In general, a playlist in order to be considered as interesting, should have
enough diversity and at the same should maintain enough uniformity between
songs to avoid generating disruptive changes in its flow or mood (Andric &
Haus, 2006). However, as there are no solid methods combining users’ per-
ception of music with sound characteristics, it is difficult to specify the exact
characteristics that all the items of a playlist should have. Various techniques
have been proposed in order to somehow infer the structure of “good” playlists,
and identify the characteristics that the songs played together should have, in
order to compose a nice result being pleasant and satisfactory for the listener,
usually identifying music items similarities based on the metadata associated
with them, or through sound related data (Shao et al., 2009).

Cunningham et al. refer to playlists’ and mixes’ creation as an “art”, and
present the basic characteristics that a playlist should have in order to be con-
sidered as “nice”, according to user experiments and interviews (Cunningham
et al., 2006). Playlists may be designed for a specific purpose, forming the
background of an activity, thus their theme should be somehow related to this
activity. On the other hand, they may be the result of a particular mood, or
emotion, of their creator in a given moment, like sadness or depression. In gen-
eral a good playlist or mix has been found to follow an organizing principle or to
have a central theme, transmitting a message or presenting a perspective that
would not have be seen otherwise. As basic principles based on which playlists
are organized, have been identified their style (that can also be the artist or
genre), the activity and mood to which they are related, and their message.
Finally, as an additional important feature the songs’ order has been identi-
fied, as users stated that consecutive songs should have complementary sounds,
avoiding both boring repetitions and excessive changes, while special attention
should be placed on the first and last songs in a list. Finally, mixes, more than
playlists, usually should be of a specific length that in the past used to depend
on the medium on which they would be recorded (ex: CD), and are usually
defined by some theme.

Pichl et al. (Pichl et al., 2015) set their focus on human created playlists,
rather than automatically generated ones, in order to identify the rational and
patterns behind those selections. They tried to observe and explain the acousti-
cal differences among playlists, and evaluate whether those could serve users in
organizing their music. The authors use the aggregation of the characteristics
of songs in playlists to represent the later, and then try to classify the playlists,
based on their genre, into playlist clusters with characteristics like instrumen-
tal and acoustic, valence and danceability, speechiness and finally tempo and
energy. In contrast to automatically generated playlists, users in general were
found to listen to playlists of various kinds of music, on average belonging to
three clusters, with some even having playlists in all clusters, where some of
those were placed closer, representing more common combinations in contrast
to others that never co-occurred.

3.4.1 Automatic Playlist Generation

As currently more and more online sites either incorporate some music repro-
duction into their environment, or focus purely on presenting music sets, auto-
matic playlist generation (APG) and recommendation has emerged as among
the interesting issues in the music recommendation domain. The scope is to

44 CHAPTER 3. MUSIC RECOMMENDER SYSTEMS

help users in finding and consuming the music they would like while having a
more complete experience, or/and support them when they seek for organizing
appropriately their music libraries.

Automatic playlist generation refers to the automatic creation of sequences
of music items based on some target characteristics. More precisely, the APG
problem can be defined as follows (Andric & Haus, 2006).
Given:

• a large collection of available music pieces of any kind

• a background knowledge database

• some target characteristics for the new playlist

How to use the first two in order to construct the sequence of songs that best
matches the target characteristics in order to maximize user’s satisfaction.

On the other hand, Automatic playlist continuation (APC) which is a vari-
ation, or sub-case, of APG, consists in adding a set of music items to a playlist
in a way that it would fit with its initial target characteristics. Therefore APC
consists in the selection of the most appropriate tracks, among the quantity of
the available, and the construction of a sequence of improved quality according
to specific characteristics inferred from a started playlist (Bonnin & Jannach,
2014). APC is considered among the current challenging issues in MRSs as it
could bring benefits to both listening and creating playlists, and has not yet
been studied enough. Moreover, when it comes to user experience, APC would
enable listeners continuing their listening sessions after a finite-length playlist,
while on the same time, it could support the easier and quicker creation of
playlists. The ability to first effectively infer the purpose and style of a started
playlist is of high importance, as well as the capability of creating a relevant
continuation of improved quality, based on it (Schedl, Zamani, et al., 2017).

However, there are various factors that may influence users’ listening habits
and as a consequence, the perceived satisfaction of a playlist. Some of the basic
parameters influencing users’ listening habits have been identified as:

• Education

• Age

• Social and cultural influences

• Individual differences (gender, character, personality)

• Social context

• Time context (mood)

• Environmental factors

In addition, when reffering to listening habits, there is a differentiation between
musical taste and music preferences. As musical taste we refer to a person’s
slowly evolving long term commitment to some music idiom, while as music
preference we refer to a person’s temporal liking of a particular music content,
in a particular period or context. Therefore, the musical taste of a user can

3.4. PLAYLISTS 45

be represented through his/her entire music collection, while the current pref-
erences can be depicted through a playlist, that may be, or not, aligned with
the style observed in long term preferences (Andric & Haus, 2006).

This differentiation highlights the necessity of developing systems that ob-
serve the current tendencies in playlists rather than entire user profiles. Proba-
bly, users’ musical tastes could be evaluated through the traditional recommen-
dation methodologies, like CF, in contrast to actual music preferences which,
may change depending and being influenced by several parameters.

3.4.2 Automatic Playlist Generation Approaches

APG approaches are related with the domains of MIR, in terms of finding and
ranking all the items that may address a given query, with RSs, in terms of col-
lection recommendations and with MRSs, as song attributes have to be taken
into account and properly evaluated (Bonnin & Jannach, 2014). Furthermore,
APG algorithms work based on constraints or hints, being a seed item pro-
vided by the user, and can be divided mainly into the following three categories
(Andric & Haus, 2006):

• Constraint satisfaction methods that aim to generate playlists based on
some user entered criteria.

• similarity heuristics that given a seed music item, it may be a song or an
artist, use some similarity function with aim to identify the most similar
ones.

• machine learning approaches that use a training set of playlists in order
to build a model and based on this to recommend playlists.

Some interesting approaches following different designs and coming from these
categories are further presented in this section.

As important issues in music playlists are the co-occurrence of songs and
the smooth transition among them, Markov models using songs as states, and
association rules or sequential patters mining are among the techniques used in
this domain. The usual recommendation approaches treating playlists as users,
and comparing them through cosine similarity measures or combined with rank
prediction algorithms or content based approaches finding tracks with similar
musical features with the seed song, can also be used. The major limitations
of these methods are that they are computationally expensive, and sometimes
work based on strong assumptions, while their overall effectiveness depends
heavily on the type of the used data. Finally, due to the long tail distribution
present in the music domain, Bonnin and Jannach propose two popularity-based
recommendations approaches that also include some artist information (Bonnin
& Jannach, 2013).

Related to the more general item set recommendation problem described
in chapter 2 (section 2.3), playlist generations have initially followed similar
lines. Therefore, when addressing playlist recommendations as items set rec-
ommendations, mainly graph-based and constraint optimization methods have
been proposed. In addition, when trying to specifically address and match the
songs order, Markovian processes and sequential rules mining have been also
reported.

46 CHAPTER 3. MUSIC RECOMMENDER SYSTEMS

For example, Logan refers to the song set completion (Logan, 2004). He uses
the term song set, rather than playlist, as the order of the songs in the set is
not taken into account. Furthermore, these songs are thought as representative
of a specific sound that the user is seeking for. Thus, he proposes treating song
sets as one long song, and using distance metrics on acoustic characteristics to
identify the next song to be added to the set. He supports the use of more audio
data related to songs, rather than metadata added to them by experts. Pachet
and Roy also refer to music sets, and focus on the specifications that a music set
should have, and then, treat those as constraints that must be satisfied (Pachet
& Roy, 1999). They treat the playlist generation as a constraint satisfaction
problem with explicitly defined constraints, rather than extracting those from
the music patterns.

Maillet et al. propose the use of a similarity function that takes audio files
as input, and generates the probability of those files to be played successively in
a playlist. They use both the songs audio features and their past observations
in playlists that have been made by professional radio stations (Maillet et al.,
2009). The recommended playlists are then generated using a seed song selected
by a user, and the transitional probabilities of this song and the rest, that
arise from the similarity model and a tag cloud created by the active user to
express personal preferences. Slaney and White also base their analysis on low
level sound related features, that when combined, permit them to represent
each song as a single point in a multidimensional genre-space (Slaney & White,
2006). The aim of their work is to approximate the diversity of user’s tastes
and music playlists, as it is considered as an important parameter towards user
satisfaction.

Flexer et al. also base their study of APG only on songs’ audio analysis,
without the use of any kind of metadata (Flexer et al., 2008). In contrast
to many playlist generation algorithms that start from a seed song or set of
songs aiming to identify the continuation, many times leading to too uniform
playlists, the authors take as input a start and an end song and the desired
playlist length aim to generate playlists having an inherent sequential order,
with smooth temporal transitions while requiring little user interaction. The
proposed methodology can be divided into two phases, the first devoted to
the pre-computation of song similarities, and the second on the creation of the
playlists based on these similarities and the divergence ratios from the start
and the end. As a main problem of this method can be identified the lack of a
smooth transition, mainly in the middle of the generated playlists.

Ragno et al. present an approach that extracts the similarity of musical
objects without measuring the distance between them (Ragno et al., 2005).
The authors base their reasoning on the implicit likeliness that can be found in
the playlists generated by professionals like music radio stations and djs. Usu-
ally, the items placed into those sets together with higher frequency, have some
common characteristics like a particular genre, pairwise suitability, relative pop-
ularity etc. However, in order to extract this information, a large number of
streams of high quality has to be exploited. In order to model the transmissions
between musical items, a graph representation is used. Songs are represented as
the nodes of a graph where undirected arcs are drown between adjacent songs.
The number of times that each adjacency is observed is set as the arc weight.
Finally after exploring the complete training set, the resulting graph is trans-
formed into a Markov random field. In order to generate a playlist, a random

3.4. PLAYLISTS 47

walk is performed, starting from a given song and using the Markov transition
probabilities. This methodology is able to introduce the desired variability into
the final playlist.

McFee and Lanckriet consider playlist generations as a natural language
processing, rather than an information retrieval, problem, with playlists being
constructed as generative models of strings of songs of an unknown language
(McFee & Lanckriet, 2011). Therefore, the quality of the resulting lists should
also be evaluated using a corresponding evaluation methodology. As the gen-
eral scope of a playlist algorithm is to improve user experience through music
consumption, from the previously proposed evaluation strategies, namely hu-
man evaluation, semantic cohesion and sequence prediction, human evaluation
seems as more appropriate to capture this notion. However, this evaluation
method that consists in direct human evaluation, is being less used due to its
practical limitations.

Vall et al. when addressing the problem of automatic playlist generation,
also refer to language models, as they use similarly the term “song context”
(Vall, Quadrana, et al., 2017). Rather than using this term like in the majority
of RSs, when incorporating general contextual information, with song context
they refer to the current song and the set of the previous ones. Based on those
they try to rank all the song candidates, according to how likely they are to
appear next in the list. Due to the popularity bias, they claim that this song
context supports accurate predictions of songs belonging to the long tail.

Zhang et al. through the use of an appropriate social tag annotation of
songs, propose the use of “tag clouds” for the songs, being treated as the “bag
of words” of a probabilistic topic model (Y. C. Zhang et al., 2012). Therefore,
a topic model is used to infer the topic distribution of the different songs found
in a playlist. Based on this representation, playlists can be created and then
compared given the number of songs they contain, and the number of topics in
their probabilistic topic model. Their aim is to achieve a reduced dimensionality
while presenting meaningfully the recommended items in a playlist.

Baccigalupo and Plaza present an interesting CBR playlist recommendation
approach that aims to recommend a varied and coherent playlist based on a
seed song and the desired length of the playlist (Baccigalupo & Plaza, 2006).
Every playlist is treated as a case, and the relevance among those is computed
based on song co-occurrences in them. However, the effectiveness of this ap-
proach could be biased by the songs’ popularity, the used sub-lists’ length, and
the normalization factors applied. In addition, the recommendation process is
slightly distinct from the usual CBR approaches, as the case base of the system
contains only problem solutions (entire playlists) without problem descriptions.
This methodology does not recommend playlists among the existing ones in the
case base, but combines the items of the most similar lists in order to present a
new list to the user.

These last two approaches follow some similar research lines with the rec-
ommender system presented in this thesis. However, HybA, as it will be further
presented in chapter 4 in more detail, is a hybrid RS using both CBR and LDA.
It treats music items at a higher abstraction level, in order to better capture the
characteristics of the songs that appear in playlists of a specific concept. In ad-
dition, it aims to deliver recommendations of playlist continuations of improved
quality.

48 CHAPTER 3. MUSIC RECOMMENDER SYSTEMS

3.5 Additional Dimensions

3.5.1 Contextual Factors

The majority of recommender systems treat the recommendation problem at
two dimensions, simply taking into account two entities, namely users and items,
and based on those, try to identify the most relevant items for a specific user.
They generally ignore all the other information related to the recommendation
moment, like time, location, weather, possible user’s company or scope. How-
ever, this kind of data may provide additional information that highly affects
the recommendation results, especially in domains where items associated with
emotional dimensions are treated, like in music (Wang et al., 2013).

Incorporating contextual information into the recommendation problem re-
sults in increasing the input data dimensions from two to three, namely users,
items and context, with aim to better refine the data. However, as the listening
context plays an important role on song selections, when correctly evaluated
and incorporated into the recommendation model, it may lead to a significant
increase of accuracy (Knees & Schedl, 2013; Vall, Quadrana, et al., 2017).

Initially, context was defined as any information referring to the user’s lo-
cation, the people and the resources around him/her and the changes in those
elements (Schilit et al., 1994). In computer systems in general, as context, we
refer to any information that can be used to characterize the situation of an
entity (that may be a person, a place or an object) that is considered relevant
to the interaction between a user and an application (Dey et al., 2000).

Various classifications of contextual parameters have been proposed in liter-
ature with their differences coming mainly from the application domain. When
referring to music consumption, context, initially defined as any “information
describing where you are, whom you are with, and what resources are nearby”
is generally mapped to the user’s situation in terms of time, mood, activity and
other people’s presence, when consuming the music items. It can be categorized
according to several criteria and purposes as:

• Fully observable, partially observable or unobservable

• Primary and secondary

• Environmental and user related

Where the primary and environmental criteria can be used to derive the sec-
ondary and user related ones, respectively. In music recommendations, as pri-
mary, or basic environmental attributes, affecting users’ music selections have
been identified the location, time and weather, while as secondary, or user-
related, are considered the activity, emotional state or mood, social and cultural
context(Dey et al., 2000; Kaminskas & Ricci, 2012).

A context-aware, or context-based, recommendation process refers to the
estimation of user contextual preferences, and based on those, on the generation
of the most relevant recommendations. These, depending on which point of the
reasoning process the contextual information is taken into account (pre, post,
model), can be generally categorized as (Adomavicius & Tuzhilin, 2011):

• Contextual pre-filtering : or contextualization of recommendation input,
that refers to the selection or construction of the relevant data set that

3.5. ADDITIONAL DIMENSIONS 49

will be further used for the recommendations’ generation based on the
information about a specific context.

• Contextual post-filtering : or contextualization of recommendation output,
where an initial recommendation set is generated from the entire data set
using the traditional recommendation approaches, and then it is adjusted
based on the contextual information of the active user.

• Contextual modelling : or contextualization of recommendation function,
in which contextual parameters and information are inserted into the mod-
elling technique, and are used as part of the recommendation process, or
in order to transform the items into a different dimension.

Explicitly defined contextual information related to playlists may be of dif-
ferent types, like location, time moment, mood, or a combination of those. Pichl
et al. propose the use of playlist names to identify implicit contextual informa-
tion, in order to overcome the necessity of aggregating different types of con-
textual information. They use playlist names to extract information on user’s
behaviour, like the playlist creation moment or purpose based on which they
create contextual clusters, that are then incorporated into the recommendation
process (Pichl et al., 2015). However, the efficiency of this approach heavily
depends on the data quality, as sometimes names assigned to playlists may be
highly subjective and may lead to sparse clusters that are not valuable for the
recommendation process. On the one hand, playlists names containing objective
information like “winter”, “Christmas”, etc., may lead to clusters improving the
recommendation accuracy, while clusters of playlist names containing words like
“my favourite”, “best”, etc., do not provide any improvement. In addition, this
approach is dataset specific, as in many cases playlists are saved only along with
an id or the timestamp of their creation moment, without names or additional
information.

Gillhofer and Schedl analyze the relationships between the several dimen-
sions of context, and the resulting user listening habits and preferences, to
identify whether contextual information permits the accurate prediction of mu-
sic items (Gillhofer & Schedl, 2015). Furthermore, they evaluate contextual
influences on different categories of music items, namely song, genre, artist and
mood, and if so, which are the aspects that relate more and support this pre-
diction. On the other hand, among the contextual attributes evaluated they
focus on time, location, weather, device, phone, task, network, ambient, mo-
tion, player and activity. From those attributes, device, task, weather and time
have been found as the most important, being able to cover almost the same
information as all categories when combined. However, due to the data sparsity
characterizing music recommendation problems, when addressing music recom-
mendations at song level, the performance was very low, while when it comes to
genre or artist prediction, the use of additional contextual information indeed
was found to improve the classification accuracy.

As the context within which a music item is consumed, or a playlist is gen-
erated, is of high importance, Domingues et al. present an interesting method-
ology for incorporating contextual, and other additional parameters within a
recommendation model. More than performing a pre- or post- filtering based
on the actual context, they model contextual characteristics as additional at-
tributes of the treated items, and represent them as “virtual items” (Domingues

50 CHAPTER 3. MUSIC RECOMMENDER SYSTEMS

et al., 2011). These items are included only during the model building phase that
can be performed using classical user-item recommendation algorithms, with-
out increasing their variables from two to three. Their results show that these
additional dimensions provide extra information able to improve recommenda-
tions’ accuracy when combined with the usual recommendation algorithms. In
addition, their results confirm that contextual modelling may also enable the
access to novel, or less popular, but still relevant items (Domingues & Rezende,
2013; Cremonesi, 2009).

3.5.2 Beyond Accuracy Dimensions

Throughout many years, starting with the Netflix Prize, the main focus of the
research related with recommender systems was placed on improving the recom-
mendation accuracy by better deducting and predicting users’ needs. However,
as recommender systems evolve their scope, this dimension is not sufficient for
capturing user interests and delivering recommendations of added value (Vargas
& Castells, 2011). Furthermore, their scope has moved towards the improvement
of the recommendation utility, facilitating users’ access to items, information
and services that may be useful for them and would not have otherwise found
(Adomavicius & Kwon, 2012). As important concepts, the recommendations’
diversity and novelty have been identified, in order to support three essential
ground concepts related to user selection and satisfaction, namely choice, dis-
covery and relevance.

More specific, generating recommendations that a user has already used,
liked and obviously will keep on using may be of high accuracy. However, it does
not provide any added value, as the user would also find and use these items
without having been recommended them. An ideal recommendation should
mimic the behaviour of a trusted friend with more knowledge on a given topic,
providing recommendations balancing between the desired level of accuracy
while enhancing diversity, novelty and serendipity. Thus, the challenge arising
is to provide recommendations for highly relevant items that users would not
discover otherwise, and give them the possibility to enjoy variety and surprising
alternatives, instead of getting bored by receiving trivial recommendations. To
this direction the dimensions of novelty and diversity become crucial as they
may provide a wider perspective to the recommendation problem (Y. C. Zhang
et al., 2012).

Diversity

Diversity refers to the variety present in a given recommendation list (Y. C. Zhang
et al., 2012). Adomavicious and Kwon (Adomavicius & Kwon, 2012) define dif-
ferent perspectives of diversity, as individual and aggregate diversity.

• Individual diversity, also referred to as intra list diversity (ILD) or as in-
tra list distance, measures the diversity of the recommendations for an
individual user. It can be modeled as the average aggregated pairwise
dissimilarity of the items in a given recommendation set. After having
defined a proper distance metric d(i, j) for the items in the recommenda-
tion list Lst, intra list diversity according to (Castells et al., 2015), can be

3.5. ADDITIONAL DIMENSIONS 51

calculated as:

ILD =
1

|Lst|(|Lst| − 1)

∑
i∈Lst

∑
j 6=i∈Lst

d(i, j) (3.1)

• Aggregate diversity aims to measure the total recommendations’ impact.
It approaches the concept of diversity across the total of recommendation
sets generated by the system for different users. For example, recommend-
ing to every user the same set of n very different among them, items could
lead to high individual diversity but low aggregate one (Adomavicius &
Kwon, 2012).

Recommendations’ diversity is considered of high importance, and especially in
CB methods it could increase the recommendations’ quality (Yu et al., 2009).
However, many times a high value of diversity may have a negative effect on
recommendations’ accuracy, thus it is still among the current research issues
to identify methods that would recommend a set of items being above some
predefined accuracy threshold while having a certain degree of diversity (Castells
et al., 2011).

Adomavicius and Kwon have shown that the use of re-ranking approaches,
and especially by parametrizing the common ranking functions with a rak-
ing threshold, is able to lead to a balance between diversity and accuracy
(Adomavicius & Kwon, 2012). They propose the use a graph theoretic ap-
proach where the user-item relations form the nodes of a directed graph based
on which, following a maximum flow approach, the set of N highly diverse items
are identified, and then used as recommendation candidates, ranked with a stan-
dard ranking approach. Shi also bases the analysis on a graph-based approach,
with the users and items being the nodes of a directed graph with 1st order
Markovian, whose transition costs are designed to combine data related to long
tail, accuracy and diversity at the same time. The recommendations are then
generated based on a minimal cost flow concept (Shi, 2013).

Novelty

In recent years, novelty has also been considered as an important parameter,
providing added value to a recommender system and being able to increase the
recommendations’ quality (Celma & Lamere, 2011). As novelty, we generally
refer to difference between present and past experiences. From a global per-
spective, the novelty of an item can be defined as the opposite of its popularity,
considering as novel an item that is located in the long tail of the popularity
distribution, thus few people are aware that it exists (Castells et al., 2011).

Using an approach similar to the inverse document frequency, referred to as
inverse user frequency, if Ui is the set of users that have interacted with item i,
we can model the user-item interactions as IUF = −log2|Ui|/|U |. Based on this
definition the novelty of a recommendation set can be defined as the average
novelty of the items in the list Lst, thus can be calculated as (Castells et al.,
2015):

AvIUF = − 1

|Lst|
∑
i∈Lst

log2|Ui|/|U | (3.2)

52 CHAPTER 3. MUSIC RECOMMENDER SYSTEMS

However, also more personalized perspectives of novelty can be evaluated by
calculating whether a specific item or specific items attributes have been expe-
rienced by a user in the past (Celma & Herrera, 2008). From these definitions
also arises the term of user unexpectedness, that reflects how surprising an item
may be for a user, given his/her past observations (Castells et al., 2015). The
authors in (Vargas & Castells, 2011) differentiate between popularity and dis-
tance based novelty, where the first is related to what has been already observed,
and has a negative correlation with the popularity of an item, while the latter
measures the distance of an item and a context of experience, and is modelled
as an attribute of an item that can be related with a set of other items from an
Euclidean point of view. When referring to a recommender system, novelty can
be seen as the ability of the system to present users with items that they have
not experienced before, and in certain percentage it may have a positive effect
on the users’ trust of the system.

Novelty and diversity are related, but however they measure different di-
mensions of the recommendation problem. Novelty refers to the difference with
respect to what a user has already seen, while diversity refers to the difference
of items with respect to each other within a list. Therefore, novelty supports
the notion of discovery by presenting users with items they would not otherwise
have access to, while diversity intends to extend the range of presented alter-
natives to the user. However, although having different definitions and scopes,
Zhang and Hurley provide two definitions of diversity, as average dissimilarity
and average rarity. Related to the second definition, they propose that support
to novelty leads to an additional amount of diversity in a set, as highly novel
items are usually at least slightly different with the already selected according
to some perspective (M. Zhang & Hurley, 2008).

Serendipity

Serendipity represents the unusualness, or surprise, of the recommendations
leading to a positive emotional response. Serendipity is usually measured in
terms of semantic distance between the recommended items, and the expected
ones, in order to find the degree of deviation from a user’s traditional behaviour
(Adamopoulos & Tuzhilin, 2014). Some authors consider serendipity as the con-
junction of novelty and relevance, that is also closely related to the long tail items
distribution in the majority of recommendation problems (Castells et al., 2015).
Serendipity can be assessed using some distance function on the item properties,
or through its opposite, un-serendipity, that measures the average similarity be-
tween new recommendations and items in user’s history (Y. C. Zhang et al.,
2012), or simply the items provided by a primitive method (Ge et al., 2010).
Serendipity is also closely related to the term of unexpectedness (Murakami et
al., 2008). However, in order to correctly capture these terms, the real actual
expectations of a user have to be efficiently identified, as well as the utility of a
recommendation, that is closely related to its quality.

Supposing that EX is the set of expected items within a recommendation
list Lst, the degree of unexpected items in general can be defined as (Castells
et al., 2015; Adamopoulos & Tuzhilin, 2014),

Unexp = |Lst− EX|/|Lst| (3.3)

However, only the set of useful items among the unexpected ones leads to a

3.5. ADDITIONAL DIMENSIONS 53

positive response from the user. Thus, the degree of serendipity can be measured
as (Adamopoulos & Tuzhilin, 2014),

Serendipity = |Unexp ∩ Useful/|Lst| (3.4)

Coherence

Finally, coherence has been used to evaluate the transition effects among songs,
especially important in automatically generated playlists. More precisely, co-
herence evaluates the pairwise suitability of two consequent music items in a
list (Castells et al., 2011). Although the order of songs may be not as impor-
tant for non-expert users, when addressing the needs of more demanding users,
with higher music knowledge, the transitions between songs may highly affect
the playlists’ quality, as non-coherent changes may lead to a disruptive result
(Shao et al., 2009). Therefore, the coherence of a playlist, as resulting from
the songs co-occurring effects and their ordering is evaluated, as it has been
reported among the important parameters defining playlists’ quality (Jannach
et al., 2015; Kamehkhosh & Jannach, 2017).

Given a local similarity metric among music items sim(i, j) the coherence
of a list Lst can be calculated as the average similarity among the pairs of
consequent items in the list, calculated as:

Coherence =
1

|Lst| − 1

∑
i∈Lst

sim(i, i+ 1) (3.5)

In contrast to novelty, that has been found to positively relate with diversity,
the opposite occurs with coherence. Therefore, it is still among the main issues
in APG, to generate playlists able to balance among coherence and diversity, as
both have been reported as being important for the users.

3.5.3 Individual Perception

Still there is a lot left to further investigate in relation to individuals’ perception
of music and the way this is reflected in their music preferences and selections.
For sake of completeness, even though these factors are not directly addressed in
the thesis at hand, we also present shortly some basic emotional and cultural di-
mensions related to music perception and consumption. These factors in general
are hard to be captured and analysed, therefore the majority of MRSs still does
not evaluate them directly. However, their incorporation into a MRS would
significantly improve the quality of the recommendation results (Ferwerda &
Schedl, 2014).

Emotional

Music itself has been characterized as the expression of emotions. However, this
can be highly subjective and difficult to model, or capture automatically, as
this would require also a solid and global model of emotion. In addition there is
an important distinction between the emotion(s) expressed and the emotion(s)
induced by music. Both of these dimensions are also affected by the general
social context and the personal motivation on a given moment (Kim et al.,
2010).

54 CHAPTER 3. MUSIC RECOMMENDER SYSTEMS

Although there is an influence of ones culture on his/her judgement of mu-
sical emotions, Balkwill and Thompson state there may also be universal influ-
ences of musically expressed emotions. They define as “psychophysical dimen-
sion” any property that can be perceived independently of musical expertise,
knowledge or enculturation, like speed of pulse, tempo, timbre and loudness, and
show that emotional judgements and psychophysical dimensions have strong re-
lations (Balkwill & Thompson, 1999). Furthermore, music can be considered
both as a social phenomenon, as it is at the centrer of many social activities and
a way to communicate specific believes or express an identity, while it is able to
address needs of individuals beyond the social context. For instance, individuals
may seek for particular music styles in order to regulate their emotional states
(Rentfrow & Gosling, 2003).

MIR systems mainly use categorical or dimensional psychometrics, to clas-
sify emotional responses to music. The first ones find and organize related tags
based on their relevance to some music pieces/styles, while the latter suggest
that mood can be scaled on various dimensions. Thus it can be represented
by its positioning on a space of independent axes. For example, in the two
dimensional Valence-Arousal space, emotions are positioned based on their in-
tensity and polarity. Additional sources on the music items could be used, like
lyrics, web pages, social tags, etc., to derive emotional information indirectly
from related sources, through the use of NLP like with other types of metadata
related to music pieces. However, as emotions can be influenced by attributes
like the tempo, the timbre, the harmony and the loudness of a song, emotional
classification can be also done based on acoustic features like dynamics, timbre,
harmony, register, rhythm and articulation (Kim et al., 2010).

Personality

Music has been also found as the second most used strategy to change, create,
maintain, or enhance emotions. However, as emotion is less stable than person-
ality, the way that users select emotionally laden music pieces under different
emotional situations also depends on their personality (Ferwerda et al., 2017).
Personality in general influences individuals’ behaviour and preferences.

One of the widely used models to categorize personality is the five factors
model (FFM) that consists of five general dimensions to characterise and clas-
sify personality. Each of those (being openness, conscientiousness, extraversion,
agreeableness, neuroticism) is further associated with a cluster of primary re-
lated factors. Personality traits have been found to be related to music prefer-
ences, therefore knowing a user’s personality would enable the generation of im-
proved music recommendations (Ferwerda & Schedl, 2014; Rentfrow & Gosling,
2003).

Users may show clear preferences for specific types of music over others,
suggesting that there are some links to users’ personalities that define these
preferences. The studies performed by Rentflow and Gosling have led to the
categorisation of 14 music genres (like blues, jazz, rock etc.) according to 4
factors, namely reflective and complex, intense and rebellious, upbeat and con-
ventional, energetic and rhythmic. In order to then map user preferences over
those factors with users’ personality characteristics, they have analysed and
computed the correlations of music preference dimensions to these factors. For
instance, based on the resulting correlations individuals who prefer intense and

3.5. ADDITIONAL DIMENSIONS 55

rebellious music (being rock, alternative and heavy metal) tend to be curious
about different things, open to taking risks and physically active and consider
them selves as intelligent. On the other hand, those who prefer reflective and
complex music (like blues, jazz, classical and folk) tend to be inventive, with
active imagination that reject conservative ideals (Rentfrow & Gosling, 2003).

On the other hand, Ferwerda et al. have conducted real experiments to
measure user taxonomic choices, in terms of mood, activity and genre. related to
their personalities. Based on the observed interactions they suggest that users’
personality traits could be used to define their preference towards taxonomies in
streaming services. For instance, they have found positive correlations between
openness to experience and likeliness to choose for mood, high conscientiousness
and preference for activity and finally users scoring high on neuroticism being
more likely to choose for activity or genre (Ferwerda, Yang, et al., 2015). Thus
these preferences could also be used to personalise music recommendations.

Cultural

In general the majority of the research held in MRSs has been done based on
the so-called “western music”. People in general, like with language, tend to
recognise better the musical patterns that they are more familiar with (Morrison
& Demorest, 2009).

However, although listening habits and music consumption may differ also
subject to demographic factors, few analysis have been done towards this direc-
tion. To this direction Schedl, using the last.fm dataset presented in (Schedl,
2016), performs an analysis of music preferences per country. He constructs
“country-specific” genre profiles and aims to identify listening patterns and
similarities between the different countries (Schedl, 2017). The observed genre
popularity ranking is quite consistent, with rock and electronic genres being the
most popular in the majority of the 47 presented countries. In some cases, like
in China and Japan pop music is preferred to alternative, while in Hungary and
Romania the same applies to electronic music. In addition, the similarities of
country genre preferences are presented showing that listeners in some groups
of countries share certain listening characteristics, like for instance in USA, UK,
Canada, and Australia, while in others differ significantly for the rest, and from
the considered as “mainstream attitude”.

Finally, Ferwerda et al. based on the same dataset, suggest that the de-
sired levels of recommendations’ diversity, related to different music variables,
also vary through the analysed 47 countries. They analysed the relationship
between listening preference characteristics, namely desired diversity of genres
and artists, with six basic cultural characteristics along the different countries.
Various correlations were identified, highlighting that there is a difference in
the listening patterns across countries. This fact probably should be taken
into account both when generating recommendations and when evaluating their
perceived quality, especially when no other user-related or contextual data are
available (Ferwerda et al., 2016).

56 CHAPTER 3. MUSIC RECOMMENDER SYSTEMS

3.6 Conclusions

In this chapter, the theoretical background and the basic functionalities of MRSs
and MIR systems have been presented. Furthermore, as the focus of this thesis
is on APC, an analysis of the main APG categories, the special characteristics
of music items, and the additional dimensions of playlists that require special
attention during their recommendation process, have been described.

As the focus is set on recommendation of playlists being relevant, but also
addressing parameters beyond accuracy, the importance and influence of those
parameters on playlist recommendations has been explained. In addition, music
selections are heavily influenced by users’ listening behaviour, the consumption
context and emotional parameters that may be related to both the consumption
context and the user’s character. The general contextual dimensions affecting
music consumption and some interesting approaches of capturing those, within
music recommendations, have been also presented.

In table 3.1, an overview of the basic characteristics of the main approaches
that have been applied to APG recommendations, with their main limitations
and advantages, can be found.

Method Core Limitations Advantages
Constraint cost function strict constrains address explicit
optimization requests
Markov models transition only previous coherent

probabilities state transitions
Sequential patterns/rules computat. cost co-occuring
patterns eval. difficulty patterns
NLP probability subject to reveal hidden

distributions noise relations
CBR similarity data quality capture

function dependence tendencies

Table 3.1: APG techniques’ basic characteristics

Part III

Proposed Recommender
System

57

Chapter 4

Methodology

The main goal of this thesis is the study, design and implementation of a hybrid
recommendation system able to recommend playlist continuations that seems
more appropriate to complete users’ experience. The generated recommenda-
tions are based on the concept of the started playlist and the co-occurring pat-
terns of the music styles included. These patterns are derived from previous
playlists instead of comparing standalone song properties or trying to predict
user ratings. More precisely, this approach aims to identify the specifications of
items that seem able to satisfy a user based on past joint selections, and to fur-
ther enable the presentation of diverse items that the user maybe was not aware
of before, but after trying would be keen on using again. The design of this RS,
its basic functionalities and their evolution are presented in this chapter.

4.1 Problem Description

The starting point of this thesis was the idea that human item selections in
many cases are performed as sets or within sessions, thus are not affected only
by the characteristics of each item or users’ past preferences. Furthermore, they
are based on some rationale that defines joint item selections in order to deliver
a more complete user experience.

In most recommendation cases, when trying to determine user preferences,
the focus is placed on user similarities, pairwise interactions or information on
individual items, like item attributes or ratings assigned to them by users. How-
ever, there are many situations where a user needs to obtain a set (or a sequence)
of items in order to cover a specific need. In such cases, simply ranking the items
and presenting the user the top-N of them would not provide the optimal so-
lution, as this set may contain many closely similar alternatives. In addition,
items in a given set may interact in various ways that increase or decrease the
resulting utility of the set (complementary or incompatible items, respectively).
This delivered set must have some characteristics as a whole that will ensure
the user’s satisfaction, like variety and coherence of the included items, while
being relevant with a specific request, at the same time. Moreover, especially
in services that are being frequently used, the novelty of the proposed items
also affects the user perception of the system, of course, when the recommended
items are relevant and of high quality according to the active user.

59

60 CHAPTER 4. METHODOLOGY

The above applies also to playlist generations. Although users may like
various songs, possibly of different types, those in many cases would do not
provide a smooth transition from one to another. For example, somebody may
like from classical to hard rock music, but normally would not put songs of
these categories into the same playlist, but rather organise songs of similar
styles into coherent playlists that could listen to in different occasions. This
example highlights the existence of an “underlying music concept” behind the
selection of songs for a playlist. Due to users’ cognitive perception of music
and the semantic dimensions of songs, there should be some level of coherence
in a playlist, excluding songs that do not fit within a concept, which may be
related to their lyrics, tempo, general style or purpose. Furthermore, coherence
heavily depends on the kind of user, expert or novice (Lee, 2014), as expert
users tend to place higher importance on the playlists’ continuity compared to
inexperienced users that may listen to music in shuffle mode (Liu & Hsieh, 2009).
The purpose of the playlist’s construction also affects the desired coherence level.
For instance, in playlists used as “background music” less importance is placed
on coherence, compared to playlists that are made to serve a specific purpose,
like dj sets or mixes made for a party.

In addition, generating playlists being of some diversity may increase the
user excitement. In contast, presenting only closely similar music items, like
only songs from the same album or artist, might result in the user getting
bored or even annoyed after having been presented a few times the same set
of songs (Ziegler et al., 2005; M. Zhang & Hurley, 2008). Finally, permitting
the recommendation of novel items, enabling the discovery of items that users
would not have found otherwise could increase their interest and engagement
to the system (Lee & Lee, 2011). Like in all recommender systems, results’
accuracy and response time are among the critical parameters, for a system to
gain users trust. Users in general expect to receive recommendations within
a reasonable amount of time, and especially during the first uses will accept
“bad” recommendations only a few times before giving up the use of the specific
system, (desJardins et al., 2006).

The existence of underlying patterns that define the joint item selections has
been initially observed in areas like market research and customer behaviour
analysis. However, as described in previous chapters, the majority of the cur-
rently used recommendation techniques, when trying to predict the items that
a user is going to select, focuses on isolated items or user characteristics, and
does not evaluate the circumstances at the decision moment and/or the other
items selected together. More than using the usual CB and CF methods that
focus on single item recommendations, recommendations of sets of items have
been mainly analysed by applying association or sequential rules to mine these
item correlations. Recently, the application of latent factor analysis and proba-
bilistic models has been applied to this area in order to overcome the common
drawbacks of the rule-based techniques.

Playlist, and music consumption in general is considered to be highly af-
fected by the context, and the emotional state of the user, under which they
were generated and consumed (Ferwerda, Schedl, & Tkalcic, 2015; Pichl et al.,
2015). However, there may be various dimensions of context, perceived differ-
ently by users depending on their personality and general preferences, thus are
differently reflected in their music selections. Therefore, as the selection pat-
terns are mainly influenced and driven by user behavioural factors they cannot

4.1. PROBLEM DESCRIPTION 61

be easily specified and predicted. However, more light can be set on users’
habits and behaviour through the evaluation of the patterns behind the sets of
co-occurring music items.

Apart from the difficulties and special issues that collection RSs have to
address, in domains related to music and multimedia they also face the problem
of the semantic gap (Celma et al., 2006), as shown in figure 4.1.

Figure 4.1: The semantic gap in music (recommendation and information re-
trieval) applications

The used recommendation techniques usually model music items through
low-level sound-based characteristics (like beats per minute, tempo etc.), while
users describe their needs through high level requirements (expressed through
terms like “relaxing music”, “smooth transitions” etc.) (Kim et al., 2010). In
order to overcome this issues MRSs tend to relate requests to metadata asso-
ciated with the music items or focus only on their ratings and usually fail to
capture the structure behind users’ behaviour. In order to generate meaningful
recommendations, the systems first have to overcome this gap, and model user
preferences and joint selections in a way that it would permit their comparison
and exploration. Such a modelling would enable the observation of user selec-
tions, and provide more details on the rationale, and possibly on emotional and
other factors related to music perception, leading to these selections.

In addition, there is the need of recommender systems focusing on param-
eters beyond accuracy in order to deliver a more complete user experience
(Konstan & Riedl, 2012). These systems should have the ability to present
users with recommendations being relevant to a given concept, that has to be
deduced from the underlying data patterns. In figure 4.2, a general schema of
such a cognitive architecture for playlist recommendations is presented.

62 CHAPTER 4. METHODOLOGY

Figure 4.2: General schema behind a cognitive playlist recommendation ap-
proach

4.2 Motivation and Goal

The motivation of this research work arises from the lack of efficient recom-
mender systems to handle the above issues, and efficiently recommend sets of
items that would fit within a started concept, especially in domains associated
with complex content or sentiment data, like in playlist continuation recommen-
dations.

4.3. IMPORTANT ISSUES 63

The designed approach aims to provide more insight into users listening
habits and preferences, and based on them, to generate recommendations of
music items able to complete the active user’s experience. Therefore, an effective
mapping between user requirements, as those have been expressed through their
past selections, and sets of items with specific attributes has to be performed.
In order to, not only predict whether a music item, a song or an artist, will be or
not liked by a user, but also alleviate the popularity bias and long tail problems
that CF recommender systems face, the specifications of the items appearing
within different concepts have to be detected.

As the proposed methodology aims to address similar semantic concepts,
rather than similar users, it does not require the construction of a complicated
user profile, therefore it could perform better in new user, cold-start situations.
More specific, the recommendations are based on the styles of the items appear-
ing in similar concepts. In order to identify those, as well as the similarity of
item concepts, a graph-based knowledge model is proposed. Furthermore, the
evaluation of users’ previous selections is not based on a an exact item match
but on a similarity metric. Therefore, less popular items with similar specifi-
cations, that appeared in similar situations in the past, and could fit into the
current, could be recommended, supporting the discovery of new items that
could fit into users’ expectations.

Market basket analysis (MBA) is one of the basic areas where the sets of
items already selected together influence the items that will be further selected.
Therefore, the starting point of this work was to model this problem and then
to extend it to more complicated domains. More precisely, the initial design
was based on CBR together with a hierarchical item model used to identify the
properties of the items appearing in specific concepts. Further, as the inten-
tion was to extend this approach to domains with more cognitive dimensions,
where the treated items may be associated also with rich content or possibly
semantic data, the focus was shifted to music recommendations and especially
to the automatic playlist continuation (See Chapter 3 for more details on this
area). In order to handle the music items selected together in this use case,
in a more flexible and less domain knowledge dependent way, the hierarchical
item model was changed with a graph-based model. This model is used for the
representation of songs and music styles, as well as for the computation of their
similarities.

4.3 Important Issues

Among the main difficulties when treating recommendations of items collections
is the fact that there are no negative ratings or opinions. When a user selects
and purchases some items we infer his/her likeliness towards those items using
their selection frequency. However, not selecting other items cannot be inferred
as a non-preference or a low rating, as this may also result from the fact that
the user does not know those item or that they do not fit within the current
concept. There still has not been done enough research towards this direction
of recommender systems.

Another important dimension of this problem that has to be specified is
the difference between sets of items (or collections) and sequences of items. A
collection, or set, of items is the set of items that are selected together while

64 CHAPTER 4. METHODOLOGY

the sequence of items refers to a sorted set of items. Therefore in the case of
evaluating sets of items, only the joint selection of items is evaluated, while
when treating sequences of items the selection order is also important. In the
case of item sequences, there is also a temporal factor that should be taken into
account in order to specify when each item was selected. This could be also
treated as a two-step process, first defining the set of the selected items and
then their exact sequence, using for example time-stamped data.

Finally, the solution design may heavily depend on whether the items con-
sumed together are of the same or different categories. For instance, when
referring to playlist recommendations all of the items are music items, while
when referring to leisure activities or market basket recommendations, the rec-
ommended sets in general consist of items of different types.

4.4 Problem Formalization and Data Modelling

In contrast to most RSs, that work mainly based on user-item interactions,
captured through ratings like U × I → R, in HybA interactions are modelled
through sessions (or transactions).

A session is defined as the set of items that have been selected together
or sequentially in close time moments, by the same user. Each playlist is a
session, containing a set of songs, selected by a user at some time moment
under given circumstances (Vall, Eghbal-zadeh, et al., 2017). For example, a
low tempo electronic playlist could be enjoyable a late winter night while a soul
funk mid-tempo playlist would most probably be heard during a Sunday sunny
afternoon.

Thus, first the problem data have to be transformed from selection events to
sessions using the additional information available, like the events’ timestamps,
the playlist id or title, as the same user may construct different playlists in
different time moments. The user and the explicit time moment, where available,
form additional characteristics that depending on the application domain may,
or not, have an effect on the playlist characteristics. The emphasis is set on the
co-occurring patterns of music styles in playlists more than on the user or the
explicit contextual information that could be associated with them.
The problem domain entities can be described as:

• a given dataset D containing a set of z songs I = {i1, . . . , iz}

• a set of tags T where each song ij ∈ I can be represented as a distribution
over tags as ij = {tj1, tj2, . . . , tjm}, tjk ∈ T, k = 1, . . . ,m

• a set of previously reproduced playlists L = {l1, . . . , lk} that each can be
written as the set of songs that it consists of, being lj = {ij1, . . . , ijn},
ijt ∈ I, t = 1, . . . , n

• a set of users U = {u1, . . . , uv} that have formed those playlists

These entities may be associated with additional characteristics, like sound-
related metadata, editorial information (genre, tempo, artist, lyrics, etc.), tem-
poral or contextual data (event’s timestamp, source of reproduction etc.) and
demographic information, (age, gender, origin, etc.), respectively.

4.4. PROBLEM FORMALIZATION AND DATA MODELLING 65

Emphasizing on the song descriptions, based on which their similarity can
be calculated, the used tags could be attributes that characterise their music
style, like editorial metadata, user reviews or sound features possibly coming
from some proper sound or signal analysis process, like in the majority of pure
MRSs. In general user generated tags, especially from non-expert users, tend
to add sparsity and noise to the recommendation problem as they are highly
subjective. Therefore, it is preferable to describe songs based on more accurate
information (Bogdanov & Herrera, 2011).

In order to identify the possible interactions between the diverse entities,
we further model the entities of the playlist generation and recommendation
problem as:
An undirected graph G = (V,E) where:

• V is the set of nodes (vertices) being the diverse entities, namely users,
playlists and songs, thus V = {U,L, I}

• E is the set of edges connecting nodes with some kind of relationship

Depending on the kind of nodes that the edges e ∈ E connect, as shown in
figure 4.3, we may have the following, as well as their inverse, relationships:

• Users “make” playlists u ∈ U, l ∈ L, e(u, l) ∈ E

• Playlists “contain” songs l ∈ L, i ∈ I, e(l, i) ∈ E

• Songs “have characteristics” i ∈ I, ti ∈ T, e(i, ti) ∈ E

Figure 4.3: Playlist and song distributions

66 CHAPTER 4. METHODOLOGY

However, this graph model is used only for the representation of the problem
entities, to identify their connections and enable the similarity computations,
and not directly for generating recommendations, like in (Guerraoui et al., 2017;
Interdonato et al., 2013).

4.5 Hybrid Recommender System Architecture

HybA follows the basic idea of CBR, that “Similar problems have similar solu-
tions” and relies on the general CBR process (CBR Cycle) and its basic concepts
of similarity and retrieval. CBR as a problem solving methodology is closely
related to the basic cognitive decision making process followed by humans when
facing new problems, generally referred to as new cases. In these situations, in
order to find an appropriate solution people first try to identify the most similar
experienced cases, in order to re-use them in an appropriate way to solve the
new problem (Richter & Weber, 2013; Lopez De Mantaras et al., 2005).

Similarly, the designed algorithm, given a new playlist lN = {iN1, . . . , iNk}
identifies the current style and looks for the past most similar ones. The charac-
teristics of those are then used to construct, and recommend, the set of n songs
lrec = {iN(k+1), . . . , iN(k+n)} that seem as the most appropriate for completing
the current list. As users’ taste and needs may vary along time, being in general
related to the context within which they are generated, the same user may look
for very different items in different moments. For example, in some cases, users
seem to not care about maintaining some specific style and enjoy more diverse
songs, thus the recommended set may also be more diverse. On the other hand,
for users with more specific preferences more importance should be placed on
the coherence of the recommended set. Therefore, this system does not base
its reasoning on user related data, but it aims to identify and address similar
playlist concepts.

The reasoning process of HybA, follows the basic “steps” shown in figure 4.4.
It takes as input a new playlist, analyses its characteristics, and ends with the
generation and recommendation of an appropriate continuation. When the new
playlist is entered, the set of already selected items is compared to those in the
existing cases, and the k most similar case(s) are retrieved in order to identify
how cases with similar descriptions were structured in the past. The similarity
of the playlists is calculated based on their general conceptual characteristics as
well as on the music styles of the songs in them. After these candidate lists have
been found, the music items found in them are used in order to construct the
playlist continuation. An important factor is the value of k, being the number
of past cases that will be retrieved, as well as the additional, beyond accuracy
parameters, that are taken into account during the candidates’ ranking phase
and their relative importance. Depending on those factors, the items that will
be used to generate the playlist continuation will be finally extracted.

4.6. DESIGN AND IMPLEMENTATION EVOLUTION 67

Figure 4.4: General CBR APC process

4.6 Design and Implementation Evolution

Previous to the design of the actual, and final recommender system, HybA,
various approaches were proposed and tested to gradually identify vulnerabilities
and limitations that had to be overcome, as well as to enrich each time the
system with additional functionalities.

The starting point of HybA could be summarized as the idea of implementing
an approach similar to MBA (Gatzioura & Sànchez-Marrè, 2015), where items
frequently co-occurring in transactions justify the existence of some underlying
patterns related to users’ perception of items’ joint utility. Starting from a
similar model, adapted to the needs of playlist recommendations domain, till the
final conceptualized hybrid recommender, the basic characteristics and purposes
of the different designed recommendation approaches could be summarized as
the following:

1. MusCBR: Initial version of a Music Case-based Recommender with focus
on the playlists similarity aiming to accurately recommend sets of music
items (music styles or artists) forming appropriate playlist continuations.

2. CMusCBR: The Contextual Music Case-based Recommender. Improves

68 CHAPTER 4. METHODOLOGY

the MusCBR algorithm by including a contextual pre-filtering based on
the playlist context, the generation time moment (day time). Focusing on
playlists’ similarity with aim to recommend relevant sets of song clusters,
of the same music style or artist.

3. MusHR: The Music Hybrid Recommender, extending the reasoning model
of MusCBR by using a two-level reasoning model, with focus mainly on
similarity aiming to recommend sets of songs forming relevant and inter-
esting playlist continuations. Furthermore, beginning from this recom-
mender, the emphasis shifts towards attributes beyond accuracy, like di-
versity and long-tail presence. Therefore, additional variations of MusHR
were tested, in order to evaluate these dimensions in the recommended
playlist. A maximum acceptable level of diversity deviation from the
started list, and a minimum long tail percent in the recommended playlist
continuations were set as target attributes.

4. HybA: The final hybrid recommendation system, combining the two level
reasoning model initially designed for MusHR, while incorporating a pre-
filtering similar to CMusCBR. Furthermore, the use of explicit context
is extended to a more general conceptual pre-filtering, based on implicit
information retrieved from songs’ music styles. HybA aims to recommend
playlist continuations in terms of lists of songs, being relevant, coherent
and of some diversity level. In addition, various versions of HybA were
tested before selecting the most adequate one, each time setting more
emphasis, apart from the similarity between playlist patterns, on their co-
herence and/or diversity level. However, in this version, more than speci-
fying the desired tendencies by threshold values or intending to maximise
a specific parameter, those are extracted from the started playlist. Fur-
thermore, the aim is to follow the tendencies observed in the new playlist.

4.7 Recommendation Approach Overview

In order to support the needs of the specific problem, the functionalities of the
RS are performed in two phases and using two abstraction levels. More specific,
during the offline (pre-processing) phase, the parameters requiring costly calcu-
lations and not changing their values during the recommendation process, like
song similarities and past playlist characteristics, are calculated. Then, during
the online (recommendations’ generation) phase, based on those values and on
the characteristics of the seed playlist, each time the playlist candidates are
identified and recommendations are generated based on them.

Furthermore, two similarity levels are used in order to capture the similarities
of items, and the similarities of playlists formed based on these items, referred to
as local and global similarity respectively. The local similarities of the existing
music items are calculated during the offline phase, while the global ones are
approximated each time a new playlist is started.

4.7.1 MusCBR and CMusCBR

The first two approaches of the proposed RS, namely MusCBR and CMusCBR,
were designed with the aim to capture the specifications of music items selected

4.7. RECOMMENDATION APPROACH OVERVIEW 69

together. Their reasoning processes follow the general CBR Cycle while their
emphasis was mainly placed on the recommendation of song clusters of some
common characteristics, rather than songs. Furthermore, they have been found
able to identify and recommend accurately artists or music styles that would
better complete started playlists (Gatzioura & Sànchez-Marrè, 2017a, 2017b).
The overviews of their core algorithms can be found in figures 4.5 and 4.6,
respectively.

Figure 4.5: MusCBR recommendation algorithm

CMusCBR extends MusCBR by performing, during the offline phase, a con-
textual clustering (using the playlist creation hour) of the playlists in the case
base. After that, for each new playlist CMusCBR retrieves the most similar past
playlists only from the corresponding contextual cluster, rather than searching
in the whole case base.

70 CHAPTER 4. METHODOLOGY

Figure 4.6: CMusCBR recommendation algorithm

4.7.2 MusHR

As two-level similarity metrics have been found to perform better than single-
level metrics (Campos et al., 2017) the initial similarity and CBR core model, of
MusCBR and CMusCBR, was extended into a hybrid two-level model, in order
to better capture the cognitive characteristics of the lists. In more detail, in
MusHR playlist similarities are calculated based on their general characteristics
and on the music styles of the songs in them, and then, further calculations
take place incorporating additional song attributes and user experience related
parameters. This two-level process, except from capturing more attributes re-
lated to a playlist’s style, also permits the control of additional quality related
dimensions, like coherence and diversity.

The aim of the initial two level model, MusHR, extends the previous two,
and the generated recommendations are playlist continuations of specific songs.
More precisely, MusHR uses song clusters, of songs of the same artist or style,
mainly to better identify the most similar past cases. The emphasis during the
retrieval process was set only on the playlists similarity while the support to
additional parameters, like diversity and long tail, was performed during the
reuse phase, as it is shown in figure 4.7.

4.7. RECOMMENDATION APPROACH OVERVIEW 71

Figure 4.7: MusHR recommendation algorithm

In MusHR the evaluation and control of the additional, beyond accuracy,
parameters was done by the use of threshold values, forming soft constraints.
More specific, if during the candidates’ retrieval phase, no candidate items able
to compose a playlist with the desired characteristics were found, then the rec-
ommended playlist continuation would be the one generated using accuracy
related parameters. In contrast, in the final approach, HybA, the desired qual-
ity characteristics are incorporated into the retrieval phase and treated at a
higher level, before extracting the candidate items, as it is shown in figure 4.8.

4.7.3 HybA

With aim to improve the recommendation accuracy, and also reduce the com-
putational time during the playlist candidates’ retrieval, especially when used
on large datasets, a prior clustering of the case base had to be performed.

To this direction, a contextual pre-filtering based on the playlist generation
moment (time of the day) had been used in CMusCBR, to test this assumption
and was found to provide improved results when recommending artists or mu-
sic styles (Gatzioura & Sànchez-Marrè, 2017b). In HybA, first this contextual
model, taking into account the playlist generation time (the hour of the day
and the month), was evaluated. However, as many times explicit contextual in-
formation, related to the playlist generation moment, is not provided, in order
to further improve the performance of MusHR a more general clustering and
pre-filtering of the case base was designed and incorporated in HybA. Further-
more, this model aims to capture more general, implicit, playlist characteristics,
extracted from their latent topic distributions, referred to as “playlist concept”
(Gatzioura, Jorge, et al., 2018).

72 CHAPTER 4. METHODOLOGY

Figure 4.8: HybA recommendation algorithm

Similarly, (Pichl et al., 2015) propose a contextual clustering and filtering
using Natural Language Processing (NLP) and the implicit contextual informa-
tion found in playlist titles. This approach could be useful when titles contain
words like “Christmas”, “party” or “summer” but subjective titles like “my
favourite music” or “top songs” may lead to clusters not valuable for improving
the recommendation process. However, many times even the same given context
may be differently perceived by the users, thus not being equally reflected on
their music preferences.

An overview of the HybA approach, showing its main functionalities can be
found in figure 4.8 and will be described in more detail in the following sections.
Line 1 refers to the offline data pre-processing phase during which song and
music style similarities are calculated and the characteristics of past playlists
are analysed in order to find their diversity and coherence degrees. In addition,
the underlying latent dimensions are used in order to identify the general playlist
concepts and perform an appropriate clustering of the case base. On the other
hand, line 2 refers to the analysis of the started playlist, the identification of its
concept that is followed by a “conceptual pre-filtering” of the case base (line 3)
leading to the extraction only of the playlists addressing the same concept that
will be then used for further calculations.

In lines 4-8, from the cluster of playlists of the same concept, the playlist
candidates’ are retrieved based on their similarity degrees with the new playlist,
while in lines 9-13 the recommendations’ generation takes place. In line 9 the
item candidates are extracted from the candidate playlists and in line 10 are
rated based on the total aggregated rating of the playlist(s) in which they ap-
peared. In this step, depending on the recommendation scope and the RS
version used, the rating function evaluates the global similarity level and possi-
bly the coherence or/and the diversity degree of the candidate playlist. Finally,

4.8. HYBA OFFLINE PHASE: DATA PRE-PROCESSING 73

in line 11 the candidates are sorted and the continuation of the playlist is con-
structed (line 12) and recommended (line 13).

4.8 HybA Offline Phase: Data Pre-processing

4.8.1 Song Models

The focus of the developed system is placed on the similarity among semantic
concepts rather than similarities among users. This approach aims to capture
the tendencies and patterns present in those concepts, as they may reflect the
users’ perception of music and playlist quality. Therefore, HybA aims to identify
first the music styles of the songs placed together in pleasant playlists, rather
than finding the exact songs. Due to the high number of existing songs that
could possibly be used to serve the same, or a very similar, purpose, when fo-
cusing on the exact songs placed in playlists, meaningful information on user
preferences cannot be directly extracted. In general, music style selections de-
pend on the user’s taste and the playlist creation scope, while the final song
selections may be heavily influenced by songs’ popularity.

Therefore, before analysing the playlist-song distributions it is important to
identify the playlist-music styles distributions. More specific, an appropriate
clustering of the songs, based on their styles, as defined by their characteristics,
should be first performed. These characteristics could be either sound-related
attributes or metadata. Thus, the starting point was to identify a proper model
for the songs, enabling the representation of their characteristics, their compari-
son and calculation of similarity, and a proper clustering based on it. The songs
in each of the resulting clusters should be closely similar, sharing the same music
style, that is not restricted only to their artist and/or music genre. Each song
cluster is represented by one music style, being the result of the combination
of the features that its songs have in common. When personal preferences re-
lated to artists are not taken into account, these songs could be used to address
the same cases and could be “interchanged” in playlists without degrading the
listening result, in terms of quality.

Having items described as distributions over a set of attributes, being web-
mined or user generated tags, real features or latent descriptions, would permit
modelling them as vectors, graphs or through hierarchical models. Among these
schemas, finally the graph model has been selected as the most appropriate for
our goal, as it provides more flexibility than a hierarchical model while leading
to same or improved results, and it is computationally more efficient than using
a vector representation in domains of sparse descriptions.

Hierarchical Item Model

Initially, a hierarchical knowledge model was tried in order to categorise the
items into clusters of almost identical ones, without having to analyse the values
of all their low-level attributes, or using complicated domain specific methods.

This hierarchical model follows a tree structure, as in figure 4.9, where start-
ing from the general item concept, at each level the set of existing items are
divided into clusters of the more similar ones. Based on the various categories
and subcategories that each item belongs to, the resulting divisions follow the
paths from the tree root towards the item’s position.

74 CHAPTER 4. METHODOLOGY

Figure 4.9: Items’ general hierarchical model

At each level, the items that have common ancestors and are not differen-
tiated at the current level are clustered together, and are treated as identical.
This classification of items, depending on the application domain, may come
from a proper ontology or may be extracted from a dataset structure. Given
the level of abstraction that we wish in our recommendations, the level at which
the items will be modelled is set. For example, as same items at the third level
are regarded the items belonging to the same categories at the first two levels
that have the same characteristics at the third level.

Two item representations, iN and iR, are thought to be similar to the ex-
tent to which they share the same path from the tree root to their position.
Therefore, for items modelled as shown in figure 4.9 and, having specified the
level of abstraction required, their local similarity level is calculated based on
the length of their common paths, thus is given from the following equation:

sim(iN , iR) =
lengthOfCommonPath(iN , iR)

level(iN)
(4.1)

For example, in the market basket use case, a possible classification of the
products sold in a store is shown in figure 4.10. For instance, in drinks we would
have milk, semi-skimmed, glass bottle of 1 litre of some brand. As our intention
is to capture the specifications of the items that appear within similar sets, we
possibly would not care about the brand name or the distributional package
but on the selection of items of a concrete type (like the selection of milk or
semi-skimmed milk). Our focus, depending on the abstraction level used and
the scope of the system, would be on the recommendation of groups of items
described at the second and third hierarchical level (which correspond to the
levels of Group and Subgroup respectively).

4.8. HYBA OFFLINE PHASE: DATA PRE-PROCESSING 75

Figure 4.10: Example of product hierarchical classification

Another example of this hierarchical item classification can be found in fig-
ures 4.11 and 4.12 for music items (songs), where apart from the general type
classification of songs into rock, hip hop, funk, jazz, etc., and their tempo char-
acteristics, there can be various subtypes, like for example in rock there is indie,
progressive, alternative, pop rock, hard rock, etc. However, when referring to
songs, as the importance of certain characteristics may be highly subjective or
may depend on the scope of a specific application, an a-priori hierarchical cat-
egorisation cannot be performed. For instance, one user may categorise songs
first based on their genre, and last by their artist, like in figure 4.11, while an-
other user would emphasize mostly on their lyrics’ language and least on their
tempo, like in figure 4.12.

The problem that arises from the use of an hierarchical schema in more
complicated domains, like in music recommendations, is that in general, the
relative importance of some attributes cannot be decided a priori without having
the necessary domain knowledge. The appropriate subtypes, their definitions, as
well as the importance of different attributes, may depend on subjective factors
related to each user’s perception of music that are not always clear. Finally,
many times the differences between song styles definitions may be very small,
or there may be artists that have songs of different styles, belonging to various
subtypes.

76 CHAPTER 4. METHODOLOGY

Figure 4.11: Example of first possible songs hierarchical classification

Figure 4.12: Example of second possible songs hierarchical classification

4.8. HYBA OFFLINE PHASE: DATA PRE-PROCESSING 77

A hierarchical model requires domain knowledge specifying the relative im-
portance of the item attributes in order to correctly categorise them. Therefore,
such a model could be convenient when referring to sets of items of different
types, where the parameters that mostly differentiate the items are placed higher
in the hierarchy, like in market basket analysis, where it has been found to per-
form well (Gatzioura & Sànchez-Marrè, 2015). However, when treating items
of rich content, like songs, a more flexible model has to be used.

Graph Item Model

As an alternative, a graph-based model, extending the problem entities’ graph
was designed. The song nodes of the graph are connected with the tags that
compose their specifications, and their similarity is computed as a function of
the density of common connections. In contrast to the hierarchical model, in this
model the specifications of the songs are considered as of the same importance.
Furthermore, when combined, the songs that have almost identical descriptions,
lead to clusters of songs that could eventually be used in the same cases. In
general we refer to the different feature combinations, each associated with a
song cluster, as music styles.

In order to initiate the system, as part of the offline process, we parse the
problem graph to identify the existing relationships and calculate the similarity
levels between songs and song clusters. We model music items using metadata
or latent features related to their style, that in the case of songs described
through editorial information, would be category, subcategory, tempo, language,
vocal, artist etc. The artist performing a song can be regarded simply as one
more tag present or absent in the item description, although sometimes it may
heavily influence song styles and user selections. Therefore, when available, this
information could be given an increased weight.

Let T be the set of existing tags, music metadata used to describe the songs.
Each song can be written as ij = {tj1, . . . , tjm}, tjk ∈ T, k = 1, . . . ,m. Given
the desired detail level, and the data sparsity, we may use all or some of the
songs’ tags, having thus more specific or abstract item descriptions.

The similarity of two items depends on the density of their common features
and the number of unique characteristics of each. More precisely:

• Given two songs described as ia = {ta1, . . . , tal} and ib = {tb1, . . . , tbk}

• Given that n(a∩ b) is the number of tags that ia and ib have in common,
n(a \ b) is the number of tags associated with ia and not ib, while n(b \ a)
is the number of tags that only ib, and not ia, has

• Their similarity level, refered to as local similarity is calculated using
the following formula (Gatzioura & Sànchez-Marrè, 2017a; Sánchez et al.,
2012):

sim(ia, ib) = 1− log2
(

1 +
n(a \ b) + n(b \ a)

n(a ∩ b) + n(a \ b) + n(b \ a)

)
(4.2)

An example can be found below, using the songs Exit Music (For a Film)
and Let Down by Radiohead, The Weeping Song by Nick Cave and the Bad
Seeds and Le Vent Nous Portera by Noir Desir. When using the music style

78 CHAPTER 4. METHODOLOGY

characteristics assigned to them, and the artist that they are performed by, we
can describe those as follows:

Let Down={Let Down, Rock, Alternative Rock, English, Male,Mid Tempo, Ra-
diohead}
Exit Music (For a Film)={Exit Music (For a Film), Rock, Alternative Rock,
English, Male, Low Tempo, Radiohead}
The Weeping Song={The Weeping Song, Rock, Alternative Rock, English, Male,
Mid Tempo, Nick Cave and the Bad Seeds}
Le Vent Nous Portera={Le Vent Nous Portera, Rock, Pop Rock, French, Male,
Mid Tempo, Noir Desir}

We can see that Let Down and Exit Music (For a Film), both performed by Ra-
diohead have almost the same characteristics but one is characterised as mid and
the other as low tempo, while Let Down and The Weeping Song seem to have
the same style characteristics but are performed by different artists. Therefore,
depending on the decision whether the artist will form an additional feature of
the song’ style or not, the previously mentioned songs could be categorised in
the same or in different clusters, according to their “style”.

In figure 4.13, we present an example of the songs’ graph for these songs,
where their level of similarity can be approximated through the density of the
tags they have in common.

Figure 4.13: Example of songs graph based representation

Item Models’ Comparison

As described previously, for the calculation of the local item similarities, and the
items’ clustering based on their styles, a proper item model is needed. Among
the tested ones, an hierarchical model would require a prior definition of the

4.8. HYBA OFFLINE PHASE: DATA PRE-PROCESSING 79

importance of the items’ attributes. The attributes that mostly differentiate
the items, and define their categories should be placed at a higher hierarchi-
cal level, gradually dividing items into groups of the most similar ones. This
model requires some domain related knowledge or an additional ontology or
taxonomic schema that would enable its automatic extraction. Additionally, in
many application domains, the notion of more “similar items” may be exposed
to subjective and application related parameters. For example, in multimedia
recommendations, when treating songs or movies, the novelty of an item may
be of high importance for a user, clearly focusing on novel items, therefore dif-
ferentiating new from old items. On the other hand, the genre may be more
important according to another user who focuses basically on the item’s style.

The proposed graph-based item model seems able to capture the degree of
items’ similarity without the need of an additional knowledge base while being
more flexible. It uses the density of shared descriptions, without differentiating
the importance on the various attributes. This similarity calculation enables,
at the same moment, the approximation of the coherence and diversity degrees
between couples of items and among entire item sets, that may be of high impor-
tance for the user experience. Additionally, it seems to be more interoperable,
as any item that can be described as a distribution over the existing tags of the
items in the system can be modelled according to this schema, and its similarity
with the previous items can be calculated. In addition, this model is easier to
integrate with the rest of the problem data. Finally, calculating item similar-
ity based on feature vectors would be usually computationally more expensive,
when sparse tags form the item descriptions, like when user generated tags are
used.

An important dimension affecting the item model selection, refers to whether
the treated items are of the same or different item categories. For example,
when we focus on playlist recommendations, all the items in the recommended
set are music items, songs, genres or artists, while when we perform market
basket recommendations, we will recommend a set of items that may be of dif-
ferent categories, maybe alimentary and stationery items sold in the same store.
Therefore, when recommending sets of items of different categories, hierarchical
models may be used to model the items as their principal category is the one
that mostly differentiates them. In contrast, when treating items of the same
type, the construction of such a model may be highly subjective, heavily af-
fecting the recommendation results, while requiring domain knowledge. Indeed,
tests performed on an initial small scale music database showed a great variance
in accuracy, depending on the selected attributes hierarchy. Thus, more flexible
models are thought to be more appropriate in such domains.

However, each time that new items are inserted to the system database
they would have to be tagged carefully, usually by an expert, in order to avoid
adding noise to the system. The main drawback of this metric, compared with
the initially proposed hierarchical model, is that it is computationally more
expensive, as all the attributes of the items are evaluated, instead of evaluating
only the number of common ancestors, being the number of subcategories that
two items have in common. On the other hand, this is the reason why this
method is able to provide recommendations of higher accuracy even when using
more abstract item descriptions.

80 CHAPTER 4. METHODOLOGY

4.8.2 Playlist General Concept

A playlist is a collection of music items, reproduced as a meaningful sequence
that should have some special characteristics as a whole (Bonnin & Jannach,
2014; Cunningham et al., 2006; Casey et al., 2008).

As our focus is placed on the entire playlists’ characteristics, more than on
the exact songs appearing in them, we want to exploit the additional semantic
information related to the entire playlists. From the state of the Art review
presented in chapter 3, the following categorisation of playlists’ characteristics
is proposed, being:

• Internal or content related : As “content” of a playlist we refer to the music
items that it consists of. The characteristics of these items, which may be
songs, artists or song clusters, define on a grand extend the style of the
entire playlist.

• External or environmental related : As external, we refer to the all the
parameters related with the playlist, that may define its content, but are
not directly described in it. For example, the user that makes/reproduces
the list, its purpose, the context within which this is done, that could be
the time, the company, the location, the weather, etc. and the influence
these factors have on the user’s emotional state and music perception.

Although not always explicitly reflected in terms of formulation, the context
and the other external parameters related to a playlist have been found as among
the important parameters that influence its general style and the songs placed
in it. However, as music perception is highly subjective, and may be heavily
affected by circumstances under which is consumed, by the personality and the
emotional state of the user, it is hard to establish a direct and stable connection
between users, and the playlists they would enjoy in a given context.

The term playlist concept is introduced as a wider term to capture the general
characteristics of a playlist, being the result of the combination of both internal
and external parameters, beyond the explicilty defined context. In figure 4.14,
that is a generalization of figure 4.3 previously presented, the important param-
eters related to playlists, on which the proposed approach bases its reasoning,
are shown. More specific, playlists are formulated to serve a specific semantic
concept, and are treated as distributions over music styles. Finally, music styles
form the result of different combinations of songs’ characteristics.

4.8. HYBA OFFLINE PHASE: DATA PRE-PROCESSING 81

Figure 4.14: Playlist distribution over music styles

As this kind of information is not always explicitly stated, it has to be de-
duced from the data patterns in the consumed playlists. Therefore, in order to
capture the general concept of the playlists, without focusing on their specific
content or when no additional information, like their names or explicitly de-
fined context, the playlists’ latent topic distribution, based on the music styles
included in them, is used.

A probabilistic topic model using Latent Dirichlet Allocation (LDA) (Blei
et al., 2003) is built to extract the underlying latent topics from the playlists in
the problem case base, and the music styles in them, like in figure 4.15.

Having every playlist described as a distribution over music styles permits
us to find its probability distribution over the existing latent topics. Then, the
dominant topic(s) of each playlist are used as a representation of its general
concept. We consider the general concept of a playlist as part of its cognitive
definition, related to its purpose and mood, reflected on its music perception,
and usually captured through quality-related parameters (like its coherence,
diversity etc.), as shown previously in figure 4.2.

82 CHAPTER 4. METHODOLOGY

Figure 4.15: Playlists’ latent distributions over music styles

In general, Probabilistic Topic Models, follow the assumption that docu-
ments are formed as probability distributions over topics that consist of words
from an existing dictionary. Thus, depending on the basic idea to be expressed
in a document, words from different topics are selected with different probabil-
ities and the overall documents’ probability distributions will vary (Steyvers &
Griffiths, 2007; Blei, 2012). These models have been successfully used in NLP
and Information Retrieval (IR) applications.

4.9 HybA Online phase: Recommendation Al-
gorithm

The HybA RS uses a hybrid two-level model, that models entire playlists as
cases, being distributions over music items, which may be songs, artists or music
styles. It is based on a meta-level hybridization where first LDA is applied to the
set of past playlists, described as distributions over music styles, to define their
concepts. After that, CBR is applied on a refined set of cases LC ⊆ L, being
the result of a conceptual pre-filtering of the problem’s case base. In figure 4.16,
the followed CBR cycle for APC recommendation process, previously shown in
figure 4.4, is presented in more details, highlighting the important functionalities
and processes that take place, from the moment the new playlist is entered, till
its continuation is generated and recommended.

Playlists can be treated as distributions over song styles through which they
are connected to songs, or as distributions over songs, and songs as distributions
over features. More specific, the algorithm uses sub-graphs of the whole problem
graph (similar to figures 4.3 and 4.14) to identify the characteristics of the song
clusters that the playlists are formed of, and based on them, calculates the
playlists’ degree of similarity. When a new playlist is started, first the most
similar past ones are found, and based on them, the continuation of the new
playlist is generated and recommended.

Following the general case description in CBR systems, as an ordered pair
c = (p, q) where p is the problem description and q the problem solution, with
p ∩ q = ∅, we model each music playlist as a case lj ≡ c = {ij1, . . . , ijm}.
Furthermore, for the recommendation problem we use as problem description
the “new” (N) playlist lN ≡ p = {iN1, . . . , iNk} being the set of the initially
selected songs, while the solution is the recommended (rec) playlist continuation
of length n, lrec ≡ q = {iN(k+1), . . . , iN(k+n)}.

4.9. HYBA ONLINE PHASE: RECOMMENDATION ALGORITHM 83

Figure 4.16: Detailed CBR APC process

84 CHAPTER 4. METHODOLOGY

4.9.1 Candidates’ Retrieval

An important process of a CBR system that highly affects its performance, is
its ability to identify the characteristics of a new case, and identify within an
acceptable response time, the past cases that seem as most appropriate for this
problem.

Therefore, it is of high importance to capture the special characteristics of
a new playlist in order to efficiently retrieve the globally acceptable candidates.
An appropriate clustering of the past playlists should be performed based on
parameters leading to playlist clusters of some special characteristics. Then,
given a new playlist lN the algorithm retrieves only the instances of the most
relevant cluster LC ⊆ L, forming the input for further analysis.

From those playlists the k most similar to lN are identified. Those are the
playlists with global similarity that maximises the following equation,

l′ ∈ LC : ∀lR ∈ LC , l
′ = argmax{Sim(lN , lR)} (4.3)

Candidates Pre-filtering

In order to find globally acceptable candidates for more complicated queries, in
terms of user experience, various parameters related to the playlists, contextual
and user related, were evaluated. The scope is to perform a pre-filtering of the
case base, based on parameters capable of identifying the group of past playlists
being most relevant with the new one, according to some criteria. These playlists
will be used for further computations, finally leading to the identification of the
k most appropriate candidates, like in figure 4.17.

Figure 4.17: Candidates’ pre-filtering

As the aim of the system is to address similar playlist concepts, not restricted

4.9. HYBA ONLINE PHASE: RECOMMENDATION ALGORITHM 85

to the users that constructed them, first the additional attributes associated with
the playlists were evaluated. These attributes, that are not directly associated
with the items included in the lists, could be the user who constructed them, and
the time moment at which this happened, that were initially analysed. Users’
similarity could be calculated based on both their demographic attributes, where
available, and their past preferences. However, in many cases, demographic
information may not be available or may contain a lot of missing values. After
analysing both, on an initial testing dataset, past preferences have been found
as more important towards the identification of similarities among users.

The use of contextual parameters, in general has been found to improve
recommendation accuracy. In addition it has been proposed (Domingues et al.,
2011) that context-aware recommenders are able to perform better for long tail
and novel items. As the music datasets that were used did not provide infor-
mation on the actual user status (in terms of location, activity and emotional
state) while “consuming” the playlists, among the contextual parameters that
can be evaluated is the time moment (date and time) at which this happened.

The initial evaluation of the above assumptions, revealed that especially the
hour of the day, seems to influence the music playlists generated in the given
time and to be related to their style. Thus, an initial contextual clustering based
on the hour of the day was performed in order to identify the “neighbourhood”
of each hour, in terms of the hours at which similar lists are constructed. Ini-
tially, this contextual pre-filtering was performed based on the explicit contex-
tual information related to the playlist generation moment (construction time).
This process has been found to increase the recommendation accuracy when
recommending song styles or artists, and at the same moment decrease the
computational effort needed, as similarity calculations take place only for the
playlists in the most similar contextual cluster (Gatzioura & Sànchez-Marrè,
2017b).

Furthermore, we tested the influence of the following contextual dimensions
related to the playlist consumption moment:

• the month, based on the notion that the general mood is closely associated
with the weather that changes during the year

• the hour of the day, that affects both the user activities, and his/her mood,
therefore are closely related with the music selections performed

• both the hour and month when a playlist was constructed, or consumed,
are evaluated

Three contextual version of HybA were designed to evaluate the above ten-
dencies on large scale datasets. From those, given a new playlist:

• cntxT, uses the cluster LH of playlists generated in close hours

• cntxM, uses the cluster LM of playlists reproduced in close months

• cntxC, uses the cluster LComb that combines the hour of the day and the
month when playlists were made

As it will be presented in the next chapter, those methods have similar
performances and the combination of month and day hour, generally leads to

86 CHAPTER 4. METHODOLOGY

improved results compared to the use of only one of them (Gatzioura, Sànchez-
Marrè, & Jorge, 2018).

Nevertheless, many times explicit contextual information is not available, or
may have different influences on user preferences, depending on their character
and their emotional state. For example, it has been found that users depending
on their character and emotional state perform different music selections un-
der similar circumstances (Ferwerda et al., 2017). People with more extrovert
personalities tend to rely on “happy” music under sad or stressful situations,
in order to “cheer” themselves up, while introverts tend to rely on more sad or
depressive music similar to their emotional state.

Thus, explicit contextual information, even if available, could lead to the
extraction of very general playlist clusters (for example, sad music on rainy
days) that would not manage to capture the specific user preferences and actual
music tendencies. In order to overcome this common limitation, during the
retrieval phase, the contextual pre-filtering was extended to a conceptual pre-
filtering, where the playlists’ conceptual similarities are evaluated. More specific,
based on the music styles’ distribution in the started playlist, and the on the
topics extracted from the LDA model on the case base, the topic distribution of
the new list, specifying its concept, is identified. Based on this attribute, as a
first part of the retrieval process, the instances of the corresponding conceptual
cluster LC are retrieved. These playlists, that address the same concept with
the new started playlist, form the initial candidates’ set that will be used for
the rest of the computations. This conceptual pre-filtering has been found to
provide important improvements of the recommendation results, in terms of
both accuracy and playlists’ quality, compared to the use of explicit context
(Gatzioura, Sànchez-Marrè, & Jorge, 2018).

Candidates’ Global Similarity

After having filtered the playlists based on their concepts, in order to find the
lists that further address (4.3), HybA performs a two level similarity calculation.
First the similarity degree of each item in the new list is specified, based on
the similarity values found with all the items in a retrieved list, as shown in
figure 4.18, and then using those values the global similarity of the two lists is
calculated aggregating those values.

Figure 4.18: Comparing a new and a retrieved list

Let two compared playlists be, a new lN = {iN1, . . . , iNn} and a retrieved
one lR = {iR1, . . . , iRm}, lR ∈ LC , of length nN = |n| and nR = |m|, with the
i-th item in each being iNi and iRi, respectively.

4.9. HYBA ONLINE PHASE: RECOMMENDATION ALGORITHM 87

Having found the local similarity sim(iNi, iRj) during the offline phase, the
global similarity of two playlists, Sim(lN , lR), is the aggregated similarity of
the similarity levels of the items in them. As two similarity aggregations are
performed, first defining the similarity level of each item, and then for the lists,
we first evaluated which is the most suitable aggregation method for each level.
Minimum value computations provided the worse results, therefore the following
combinations of maximum and average value computations were tested:

• Max(max): for each item in the first set we find the maximum similarity
value among all the items in the other set and then the maximum of those
is taken as the set similarity,

SimMM (lN , lR) = maxni=1

{
maxmj=1{sim(iNi, iRj)}

}
(4.4)

• Av(max): for each item in the first set we find the maximum similarity
value among all the items in the other set and then the average value of
those is taken as the set similarity,

SimAM (lN , lR) =
1

|n|

n∑
i=1

maxmj=1{sim(iNi, iRj)} (4.5)

• Max(av): we find the average similarity value of each item in the first set
and all the items in the other set and then the maximum value of those is
taken as the set similarity,

SimMA(lN , lR) = maxni=1

{ 1

|m|

m∑
j=1

sim(iNi, iRj)
}

(4.6)

• Av(av): we find the average similarity value of each item in the first set
and all the items in the other set and then the average value of those is
taken as the set similarity,

SimAA(lN , lR) =
1

|n|

n∑
i=1

{ 1

|m|

m∑
j=1

sim(iNi, iRj)
}

(4.7)

After having tested the above aggregation combinations, the best results were
obtained when using the average of the maximum among the local values.
Therefore, for each item in the first list we first determine its similarity level,
compared to all the items in the second case, and then the global similarity
Sim(lN , lR) of the two cases is calculated as the average similarity of the simi-
larity levels of all the items included in them, thus calculated like below,

Sim(lN , lR) = SimAM (lN , lR) =
1

|n|

n∑
i=1

maxmj=1{sim(iNi, iRj)} (4.8)

As it can be seen, as the sum of similarities is averaged by the length of the new
list, the used similarity metric is not symmetric, meaning that two lists lN and
lR may have Sim(lN , lR) 6= Sim(lR, lN).

88 CHAPTER 4. METHODOLOGY

As explained before, HybA searches for the k playlists that maximise (4.3),
thus those that fulfil the following equation:

l′ ∈ LC : ∀lR ∈ LC , l
′ = argmax{Sim(lN , lR)} ⇒

l′ = argmax
{ 1

|n|

n∑
i=1

maxmj=1{sim(iNi, iRj)}
}

(4.9)

When the aim is to identify the exact songs that a user would select, the
data sparsity and the computational complexity, usually limit the performance
of recommendation methods. On the other hand, if the focus is set on recom-
mending relevant songs, these would possibly be the ones belonging to the same
song clusters with the ones that a user had selected and not only the selected
ones. Therefore, identifying first the song clusters, being artists or music styles,
that would fit within a started playlist is of high importance. Thus, first the
ability of the recommender to correctly identify the song clusters that would fit
within started playlists, was evaluated. Finding the k most similar past lists
using (4.9) and recommending the music items in them, has been found to be
efficient when treating more abstract descriptions, like song clusters based on
their music styles or artists (Gatzioura & Sànchez-Marrè, 2017a).

Extending this initial model, HybA first uses a higher abstraction level for
the identification of the most similar playlists based on their general charac-
teristics, like their concept and the music styles of the songs in them. Using
the graph connections among playlists and songs, and songs with their styles,
playlists can be treated as distributions over songs or as distributions over song
styles (Gatzioura, Jorge, et al., 2018). Thus each playlist can be written as
l = {sj1, . . . , sjm} ∈ LS where,

i ∈ I, l ∈ LC , s ∈ S : ∀i, e(i, l) ∈ E, e(i, s) ∈ E → e(l, s) ∈ LS (4.10)

Therefore, the similarity of playlists is calculated based on the music styles in
them, and the most similar past playlists are found from the following equation:

l′ ∈ LS : ∀lR ∈ LS , l
′ = argmax{Sim(lN , lR)} ⇒

l′ = argmax
{ 1

|n|

n∑
i=1

maxmj=1{sim(sNi, sRj)}
}

(4.11)

Where sNi and sRj are the music styles of the song clusters that songs iNi

and iRj , belong to, respectively.

4.9.2 Candidates’ Ranking

As the scope of HybA is to deliver relevant playlist continuations, while address-
ing additional aspects beyond accuracy, more dimensions related to playlist
quality and music perception, have been incorporated into the reuse process.
More precisely, in addition to playlists’ similarity levels, their coherence and
diversity degrees are evaluated. The aim was to evaluate and include the most
adequate of them, in a manner that the overall recommendation accuracy would
not decrease, while the user would perceive an added value in terms of experi-
ence.

4.9. HYBA ONLINE PHASE: RECOMMENDATION ALGORITHM 89

In general, due to its reasoning model, HybA already during the retrieval
phase extracts the most similar, to a started one, playlists. Thus, for example
if a very diverse list has been started, playlists with similar specifications, being
very diverse, will be retrieved. However, various alternatives of HybA were
designed and tested, with aim to emphasize on these aspects and reach possible
improvements. The quality related attributes are incorporated at the second
phase of the reasoning process, after the candidate lists have been found based
on their conceptual and music style similarities, to ensure that a minimum
relevance level has been reached, and then its quality may be further enriched.

Variations of the HybA recommendation approach

Let L′
S ⊆ LC ⊆ L be the set of playlist candidates that have been found based

on their similarity with the seed list, using equation (4.11).
HybA then assigns to each playlist lR ∈ L′

S a rating rlR , 0 ≤ rlR ≤ 1, being
a function r(lN , lR) of characteristics of both the started and the candidate
playlist, and looks for the candidate playlists with higher ratings. Therefore,
ranks playlists in descending order of the corresponding rating like in equation
(4.12):

l′′ ∈ L′
S : ∀lR ∈ L′

S , l
′′ = argmax{rlR} = argmax{r(lN , lR)} (4.12)

Several variations of HybA have been designed and tested, each placing
more emphasis on a different quality dimension, therefore using a different rating
function. To sum up, depending on the application scope, the following versions
of the HybA RS have been implemented and could be used:

• HybA: The emphasis is set on the similarity of the started and the retrieved
playlists (MaxSim) and the lists in L′

S are ranked on descending order of
rlR , being:

rlR = Sim(lN , lR) (4.13)

• HybA-d : The emphasis is placed on both similarity and diversity (Max-
Div). From the playlists in L′

S those with higher diversity degrees are
rated higher, using:

rlR = Sim(lN , lR)Div(lR) (4.14)

• HybA-c: The emphasis is placed on both similarity and coherence (Max-
Coh). Similar to HybA-d, now playlists in L′

S are rated using:

rlR = Sim(lN , lR)Coh(lR) (4.15)

• HybA-dd : The emphasis is placed on similarity and diversity. However,
more than maximizing, the aim is to follow the diversity degree observed
in the started playlist, lN . More precisely, the aim is to minimise the
difference of the diversity in the new lN and a retrieved lR list (MinDDiv).
Let this difference be dDiv(lN , lR) = |Div(lN)−Div(lR)|.
Therefore the playlists in L′

S are rated using:

rlR = Sim(lN , lR)(1− dDiv(lN , lR)) (4.16)

90 CHAPTER 4. METHODOLOGY

• HybA-dc: Similar to HybA-dd but with aim to follow the coherence of the
started playlist (MinDCoh). Let the difference in the coherence levels of
the new lN and a retrieved lR list be dCoh(lN , lR) = |Coh(lN)−Coh(lR)|.
The playlists in L′

S are rated using:

rlR = Sim(lN , lR)(1− dCoh(lN , lR)) (4.17)

• HybA-db: Similar to the previous two, but evaluating both the differences
of diversity and coherence levels (MinDBoth). The relative importance
of these dimensions is defined by the corresponding weights wC and wD,
with wC + wD = 1.
The playlists in L′

S that follow both the coherence and diversity degrees
of the started playlist are now rated higher, as:

rlR = Sim(lN , lR)
(
wC(1 − dCoh(lN , lR)) + wD(1 − dDiv(lN , lR))

)
(4.18)

With aim to achieve a balance between those dimensions equal importance
was placed on them, setting wC = wD = 0.5.

As it can be seen, two variations of HybA aim at maximizing, apart from
similarity, additional quality parameters. More specific, as the coherence of a
playlist is considered as an important parameter affecting its quality, in HybA-c,
among the most similar playlists the more coherent ones are rated higher. On
the other hand, in HybA-d instead of coherence the more diverse among the
similar playlists are rated higher.

However, each person at the moment of creating a music playlist has a spe-
cific cognitive state in mind, in terms of music styles and characteristics, affect-
ing his/her actual preferences and cognitive perception of the playlist quality.
Rather than independently selecting an optimisation factor, it would be desired
to have similar tendencies in the recommended and the seed playlist. For exam-
ple, if a user that has started a playlist that consists of songs only of one or two
artists, might find useful the recommendation of some of their newest songs, or
from some less known albums, or by a really similar artist. On the other hand,
a user having started a list, with a lot of different artists and a bigger variety
of styles would probably find boring the previous recommendations.

Therefore, the rest of HybA’s versions tend to follow the exact tendencies
observed in the started list. Instead of selecting the playlists that maximise
the degree of one quality related parameter, their target value is defined by the
new list from the candidate playlists. In HybA-dc and HybA-dd playlists with
coherence or diversity degrees closer to the corresponding ones observed in the
seed list are rated higher. Finally, in HybA-db candidate playlists having similar
levels of both diversity and coherence with the seed list are rated higher. Then,
these playlists are ranked based on their final total rating.

As it will be shown in the next chapter, all the above variations of HybA
have been found to perform well and similarly. Among those, HybA-bd was
found to have the most “balanced” performance, in terms of achieving good
accuracy results while having a good trade-off between coherence and diversity.
Therefore, this variation was used for further testing and comparison with other
recommendation techniques.

4.10. CONCLUSIONS 91

4.9.3 Recommendations’ generation

Last but not least, an important process in a case-based recommender is the
way the past cases are reused, in order to formulate the actual recommendation.
It may be an exact reuse of a past case solution or a composition of a new one,
using the retrieved ones and a specific generative processes.

In the developed system, two reuse methodologies were initially tested, rating
each time the candidate music items based on their appearance frequency or
based on the total rating (depending on the system’s version) of the case(s)
in which those appear. The initial testing has found the rating-based one to
perform better, therefore it was selected and further used.

Moreover, after having identified the set L′′ ⊆ L′
S ⊆ LC ⊆ L of the k higher

rated playlists, like previously described, HybA extracts the recommendation
candidates, the set of items I ′′, that were initially placed in those playlists, as

∀i′′ ∈ I ′′, l′′ ∈ L′′ and e(i′′, l′′) ∈ E (4.19)

These candidate items are rated based on aggregated final rating of the can-
didate playlist(s) in which they appeared. Given that rlj is the rating assigned
by HybA to a playlist lj ∈ L′′, the final score rik of a candidate music item
ik ∈ I ′′ can be computed as:

rik =
∑

lj∈L′′,e(ik,lj)∈E

rlj (4.20)

The candidate items are finally ranked based on the total score assigned to
them. Depending on the HybA version, this score is a function of the similarity
ratings of the candidate playlists in which the item appeared, and possibly of
the diversity and/or the coherence level of those lists. These parameters are
considered of high importance, as they could affect the user’s perception of the
playlist and influence his/her opinion on the provided recommendations.

Including additional dimensions of the problem into the recommendation
model may sometimes lead to a slight decrease of the recommendation accuracy
(Shi, 2013). On the other hand, depending on scope and the user’s selection
history, these factors are able to increase the user experience that is of equal im-
portance in modern recommender systems. Furthermore, as it will be presented
in the experimentation chapter, HybA is able to achieve a balanced perfor-
mance in terms of relevance and quality. It recommends playlist continuations
of coherence and diversity levels similar to the started lists, without facing an
important decrease, and even sometimes showing slight improvements, in the
recommendations accuracy.

4.10 Conclusions

In this chapter, the idea behind the HybA recommendation system, its goals
and main functionalities have been presented. This hybrid CBR algorithm forms
the final version, after gradual testing and improvements that have been also
described in this chapter, of the core of a hybrid RS for automatic playlist
continuation.

Starting from a notion similar to MBA and probabilistic topic models, that
songs usually placed together into playlists would follow some common patterns

92 CHAPTER 4. METHODOLOGY

and share cognitive characteristics, this algorithm aims to identify the set of
songs to properly complete a started playlist. In contrast to most MRSs, HybA
does not evaluate user-item relations, music sound attributes or user similarities,
but aims to address similar cognitive concepts. More than consisting, only
of relevant songs, the delivered recommendations are designed to compose a
pleasant listening result for the user by addressing the semantic concept and
the cognitive tendencies observed in the started list.

In order to better capture the general characteristics of a playlist, influenced
by the music styles of the songs in it, and by the user’s perception of the context
in which it was consumed, the term “playlist concept” has been introduced. This
term extends the notion of explicit context, and is used to perform a pre-filtering
of the playlist case base with aim to improve the system’s response time, as well
as to address more demanding requests.

Among the beyond accuracy dimensions, related to the user perception of
playlist quality, evaluated and incorporated to the system are the playlist diver-
sity and coherence degrees. From the definitions and scopes of those parameters,
indications of negative relations have been detected. Therefore their relative im-
portance and their desired levels have to be specified from the started playlist,
like in the HybA-db algorithm.

Chapter 5

Evaluation

The aim of this chapter is to present the evaluation results that justify that the
proposed RS is able to address the research questions stated in chapter 1.

In order to evaluate the proposed RS through its different versions, various
experiments were performed on real streaming and playlist datasets. First,
its performance was evaluated subject to various parameters, and after having
specified the optimal values of those, the designed system was compared with
some of the commonly used recommendation techniques. From its initial design,
the aim of HybA was the automatic generation and recommendation of playlist
continuations, being relevant with the started playlist, while also forming a
pleasant listening result. Therefore, for its evaluation both accuracy and quality-
related metrics have been used.

The evaluation results presented in this chapter correspond to the various
implemented recommendation approaches and follow the evolution of HybA, as
described previously in chapter 4. For the testing of the first three approaches,
namely MusCBR, CMusCBR and MusHR, a relatively small and well defined
music database was used. Based on the observed results and directions, each
time changes and improvements were implemented until the final version of
HybA.

Furthermore, the testing of this final version took place during a research
stay performed at the LIAAD1 group associated with INESC TEC2 Institute,
located in Porto, Portugal. Larger databases were used, in order to confirm
whether the initial smaller scale results and observed tendencies had a solid
basis, as well as to test and improve, the scalability of the designed schema. In
addition, as the initial dataset contained metadata related with the songs and
additional information related to the playlists (the users and the time moment
on which those were constructed), the performance of the system had to be
evaluated also on datasets containing less structured information.

More information on the datasets, the compared algorithms and the used
evaluation metrics, followed by the experimentation results, are presented in this
chapter. The results of the three initial versions of the system can be found in
section 5.3. Following, the evaluation of HybA, the final version of the proposed
recommendation system is presented in section 5.4 in more detail. The perfor-
mance of its variations related to contextual and conceptual dimensions, and

1http://www.liaad.up.pt/
2https://www.inesctec.pt/en

93

94 CHAPTER 5. EVALUATION

beyond accuracy parameters, is analysed in section 5.4.2, while its comparison
with other recommendation techniques can be found in 5.4.3. Next, in figure
5.1, an overview of the complete experimentation process is presented.

Figure 5.1: Evaluation process overview

5.1. EVALUATION METRICS 95

5.1 Evaluation metrics

In general, the evaluation approaches of music playlist recommendations can be
organised into the following four categories: user studies, log analysis, objective
measures and comparison with hand crafted lists (Bonnin & Jannach, 2014).
More specifically:

• User studies help us to determine the perceived quality of playlists by the
users. Among the common drawbacks of this method may be the song
popularity bias. Many times users when evaluating lists based on their
metadata, focus on the songs they already know, or the styles they are
more comfortable with. On the other hand, when users are asked to listen
to the whole playlists in order to evaluate their quality, this methodology
may be time consuming and expensive. In addition, if the users’ set size
is small, the results may not be of the desired confidence.

• Log analysis may be used as an alternative in order to implicitly obtain
the acceptance of playlists by users, like for example through the times of
listening to a list or the use of like/dislike expressions.

• Objective measures are measures that can be automatically computed for
a given playlist, and intent to approximate the quality that a user would
perceive from listening to it. Such a measure could be the diversity or
homogeneity of a playlist, the novelty level, the consistency or smooth
transitions between the included items, etc. However, as in other meth-
ods based on users’ predicted utility or quality, these methods may be
heavily affected by the real differences, between the objective and sub-
jective perception of quality and users’ needs, that many times may be
difficult to capture.

• Comparison of the patterns in the generated playlists with the real ones
is also being used, as APG aims to generate playlists being similar, ac-
cording to some criteria, to the manually created ones. This comparison
is done mainly by using information retrieval accuracy metrics, like pre-
cision, recall, hit rate, etc., or average log likelihood when the generation
process is based on some probabilistic method.

5.1.1 Accuracy-based

As the scope of APC is to automatically generate playlists being similar to the
manually created ones, the comparison of the patterns in the recommended and
the real playlists is usually evaluated using IR accuracy metrics.

Moreover, the used datasets were divided each into a training (80%), used
for building the recommendation models, and a testing (20%) part used for
evaluation purposes. As user tastes may change over time, the time order of
the recorded events was respected. Therefore, the first part of each dataset was
used for training the recommendation models, and the rest for testing purposes.
The usual cross fold validation was not performed, as it could lead to using more
recent events to predict earlier ones, that would bias the experimental results. In
addition, due to their reasoning processes the majority of the tested algorithms
have a stable performance through experimental repetitions. As an exception,

96 CHAPTER 5. EVALUATION

the LDA model, due to its probabilistic nature, may have slight differences in
repeated experiments.

Furthermore, the playlists in the test part are divided into two parts. Each
time the initial part of the playlist is kept and the rest is hidden, that would be
equivalent to asking a user to submit a new playlist, and based on it recommen-
dations are generated. The ability of the various recommendation algorithms
to correctly identify the hidden items is then evaluated, and compared, using
IR metrics like average precision, recall and F-measure.

• Precision is defined as the ratio of the number of correct recommendations:
the missing items that were successfully identified, over the total number
of recommendations.

Precision = #RelevantRecommendedItems/#RecommendedItems
(5.1)

• Recall is defined as the ratio of the number of relevant items that are
present in the recommendation set, the correct recommendations, over
the total number of relevant items.

Recall = #RelevantRecommendedItems/#RelevantItems (5.2)

• F-measure is defined as the harmonic mean of precision and recall.

F −measure =
2PrecisionRecall

Precision+Recall
(5.3)

• Hit ratio can be used as a more general metric to measure the percentage
of times that a user would get at least one correct recommendation.

HitRatio = #RelevantRecommendations/#Recommendations (5.4)

Although, due to the experimental settings where from the test part we
“hide” and recommend the same number of items, the values of precision and
recall appear very close, we rather use precision to evaluate the generated rec-
ommendations. This is due to the fact that our focus is on the accuracy of
the presented items, rather than on the percent of “relevant” items that are
retrieved. Moreover, the number of relevant items could be high, exceeding the
number of items that were placed in a specific list.

However, the problem when using the IR accuracy-based evaluation metrics
is that they are “too strict”. These methods classify recommendations as suc-
cessful only when the hidden items are correctly identified. Therefore, when
similar items, probably relevant, that could make good recommendations and
possibly were not selected due to popularity-bias, are recommended, those are
not positively evaluated. In addition, the recommendation of song clusters was
also tested in the initial versions of the designed recommender, as an approx-
imation of its ability to correctly identify relevant music styles placed within
given playlists.

Furthermore, in order to have a view of “how close” the real (hidden), and
the recommended lists were, based on the characteristics of the items in them,
more than on their presence or absence, we propose the use of the average

5.1. EVALUATION METRICS 97

similarity between the real lrec and the recommended lreal playlists, of length
|n|. It can be calculated using equation (4.8), being:

Sim(lrec, lreal) =
1

|n|

n∑
i=1

maxnj=1{sim(ireci , irealj)}

5.1.2 Beyond accuracy

Apart from the usual challenges and limitations of RSs, an important issue in
playlist recommendations is to assess the quality of the generated playlists, in
terms of coherence, variety and freshness. As the scope of these systems is to
address user satisfaction, the best way to determine the quality of a playlist, as
perceived by the users, would be to measure their satisfaction. This could be
done through monitoring of listening times, user ratings, etc.

However, due to the limitations of these evaluation methods, more objec-
tive criteria beyond accuracy, with focus on user experience and related factors
should be used. Based on users’ expectations from music selections, along with
the specific attributes of music items, like their immediately and consecutive
consumption, metrics like the playlist’s coherence, diversity or its similarity
with a desired pattern, would be useful (Bonnin & Jannach, 2013).

• Coherence is used to evaluate the pairwise suitability of two consequent
items (Castells et al., 2015). Given a song similarity metric, the coherence
of a set can be calculated as the average similarity among the pairs of
consequent items in a list Lst, calculated as:

Coherence =
1

|Lst| − 1

∑
i∈Lst

sim(i, i+ 1) (5.5)

• Diversity or Intra List Diversity (ILD) is computed as the average aggre-
gated pairwise dissimilarity of the items in the list. Given a similarity or
a distance metric between two items, related as d(i, j) = 1− sim(i, j) the
diversity of a list or set of size |Lst| can be calculated as (Adomavicius &
Kwon, 2012; Castells et al., 2015):

ILD =
1

|Lst|(|Lst| − 1)

∑
i∈Lst

∑
j 6=i∈Lst

d(i, j) (5.6)

Or given that item distance and similarity are symmetric we have,

ILD =
2

|Lst|(|Lst| − 1)

∑
i∈Lst

∑
j∈Lst,j>i

d(i, j) (5.7)

• F-measure of precision and diversity (Borràs, Moreno, & Valls, 2017) could
be used to evaluate the overall performance of the algorithms related to
both accuracy and diversity, being:

Fd −measure =
2PrecisionDiversity

Precision+Diversity
(5.8)

98 CHAPTER 5. EVALUATION

The balance between diversity and accuracy is still an open problem, as these
parameters may have a negative effect on each other. Very diverse recommen-
dations or many unknown items may fail to address users’ expectations, being
able to harm the system’s reputation.

In addition, apart from the effect that increased diversity values may have
on recommendation accuracy, the relations among quality-related parameters
should be evaluated properly. As already mentioned in chapter 3 on MRSs,
coherence and diversity arise from contradictory user goals related to music
consumption. Therefore, they may have a negative relation.

From its definition, diversity is a function of the dissimilarity of all pairs of
items in a set while coherence is a function of the similarity of the consequent
among those pairs. Therefore, increasing the coherence of some items in the list
will lead to the decrease of the total average diversity. On the other hand, as
diversity depends only on the items in a set, and not on their relative order, while
it takes into account the similarities of all the pairs of items in the list, for a given
diversity level, still different coherence degrees could be achieved. Coherence
takes into account only the pairs of consequent items. Therefore, after specifying
the diversity level of a playlist, its final coherence may be further improved by
selecting the appropriate items’ ordering among the existing combinations.

We follow the notion that coherent lists provide a more pleasant listening
result (Kamehkhosh & Jannach, 2017). Thus, they are considered as “better”.
On the other hand, the desired diversity degree may depend on various param-
eters like the user’s music knowledge, familiarity with the songs’ genre, current
style, etc. In general, to have a pleasant result, both dimensions should be
taken into account, with their relative importance and levels depending on the
application domain, the actual user’s general preferences or by the seed playlist.
Delivering recommendations able to balance between those tendencies is still a
challenge.

5.2 Compared Methods

Except from the proposed methodology and its variations, other popular rec-
ommendation techniques have been evaluated on the same datasets, in order to
evaluate the comparative results, that are also presented in this chapter.

The majority of the datasets used for recommender systems research consist
of user-item instances and ratings. Therefore, among the main points that have
to be taken into account in this application domain, and when treating data
based on transactional logs or interaction events, are:

• There are no ratings present. The selection frequency of an item, can
be used to capture the degree of preference towards this item. However,
the inverse statement, that unobserved interactions would be equivalent
to negative ratings, may not be true. It may simply be a consequence of
the long tail effect that causes that users focus on a small subset of the
offered items, usually because they are not aware of the rest.

• Interactions are modelled as sessions or transactions that each consists of
the set of items selected together, or sequentially, in close time moments by
the same user. Therefore, some additional information that reveals these

5.2. COMPARED METHODS 99

joint selections, like the sequence of items, the corresponding timestamps,
the playlist’s title or id, has to be taken into account.

Next, the different recommendation algorithms evaluated are presented. De-
pending on their characteristics, along with the characteristics of the evaluation
datasets, they were tested on the first, on the second or on both datasets.

5.2.1 Popularity-based

Due to the long tail distribution of the items, usually observed in music rec-
ommendation domains, when focusing only on recommendations’ accuracy, the
idea of using item popularity seems reasonable, and especially, when addressing
the needs of non-expert users it may be efficient.

Bonnin and Jannach propose the use of items popularity along with artist
information in user history. They identify user’s favourite artists, based on their
history, and recommend the most popular items of those artists. As an improve-
ment, they include the most popular songs of the artists usually collocated in
playlists with the user’s favourite artists, based on the hypothesis that artists’
co-occurring frequencies in playlists may serve as a measure of their similarity
(Bonnin & Jannach, 2013).

Two popularity-based recommendation approaches have been implemented
based on this idea: one based on user’s favourite artists (where this information
is available) and one based on users’ favourite styles, as defined based on the
metadata related to songs, except from the artist that performs them. These
methods first analyse users’ past selections to identify their favourite artists
(popA) and styles (popSt) respectively, and then, recommend the most popular
items of those. These approaches were tested only on the first dataset, where
information on songs’ artists was available and there was a popularity effect. In
general, those were found to perform well in terms of accuracy, and their per-
formance improves when more abstract item descriptions are used. Especially,
when recommending song styles these methods are hard to overcome, as users
generally place songs of their favourite styles into their playlists. On the other
hand this fact lowers the importance of those results, as they do not provide
additional information on user preferences, and cannot overcome the cold start
problem as they heavily depend on the analysis of user history.

5.2.2 Rule-based

Association rules’ (ARs) and Sequential patterns’ (SPs) mining are among the
usual techniques applied when searching for co-occurrence patterns in transac-
tional data. Given a transactional database, ARs’ mining refers to identifying all
the rules or patterns with support and confidence values among some predefined
threshold values.

In order to generate AR-based recommendations, the A-priori algorithm was
used in order to extract rules, with different minimum support and confidence
values, from the playlists in the train part of the datasets. Then, based on these
rules, and on the items appearing each time in a started playlist, playlist contin-
uations were generated and recommended. However, in many cases, even with
low threshold values, this method was found unable to generate accurate rec-
ommendations, probably due to the data sparsity present in the used datasets.

100 CHAPTER 5. EVALUATION

Some common patterns were extracted, but in many cases no significant rules
were identified based on those patterns.

5.2.3 Latent Models

As already mentioned before, Semantic Analysis and Latent Models, initially
used in text retrieval and classification as well as in Natural Language Processing
(NLP) are now also used in other domains related to information retrieval and
recommender systems. First a topic model is built based on the past playlists,
using a certain number of latent topics. After, the similarity of playlists can be
calculated based on the similarity of their topic distributions. Recommendations
for a new playlist are generated based on its topic distribution, being the most
popular items from its dominant topics.

The Latent Dirichlet Allocation (LDA) implementation of the mallet3 frame-
work was used to build the topic model used for recommendations. The param-
eters that heavily influence the performance of such a model, apart from the
values of a and b of the Dirichlet model, are the number of topics that will be
extracted and the number of iterations that the system is going to perform dur-
ing its training phase. The number of topics used, affects the interpretability of
the results, as selecting a low number of topics usually leads to the extraction
of few general topics that do not provide any additional information, while se-
lecting a large number may lead to idiosyncratic topics that are difficult to be
interpreted. On the other hand, the number of iterations that the model will
perform before being used for recommendations, heavily affects its stability and
final state, referring the final probabilities distribution and the extracted topics.
A low number of iterations may result in a less stable model, while on the other
hand, an increased number of iterations results in increased computational cost
of the system.

5.2.4 Collaborative Filtering

Although CF does not address exactly the given problem, as it is among the
most popular and widely used recommendation techniques, its results are also
listed here. Furthermore, CF approaches use user-item interactions expressed
through user ratings, and generate recommendations based on user similarities
without evaluating item co-occurrences in transactions.

As these algorithms first identify the “nearest neighbours” of the active user,
among the parameters that mainly influence their performance is the similarity
function used for the neighbourhood approximation, and the neighbourhood size,
or similarity threshold selected, as a small number of neighbours may fail in
generating sufficient recommendations, while a large one may result in many
generic recommendations that will finally fail to satisfy the active user.

Users past song sessions, together with the initial part of the playlist in the
test part of the databases were analysed, in order to identify users’ preferences
and the most similar users of each. Based on those, playlist continuations of
different sizes were generated for the users in the test part. The Apache Mahout
user based CF4 recommendation algorithm was used, as it was found to have a

3http://mallet.cs.umass.edu/
4https://mahout.apache.org/users/recommender/recommender-documentation.html

5.3. INITIAL EVALUATION 101

better performance, according to IR metrics, than the Lenskit CF5 algorithm.

5.2.5 Incremental Matrix Factorization

As Matrix Factorization (MF) is currently gaining ground and being more widely
used, especially on large datasets, in order to overcome data sparsity and im-
prove the performance of CF techniques, also the results of a MF algorithm
were evaluated.

ISGD, the incremental MF approach presented by Vinagre in (Vinagre,
2016), that treats song appearences as sequential data and works with positive-
only feedback, has been tested. ISGD has been found to outperform both other
CF and incremental factorization algorithms in most cases while also having a
good runtime performance (Vinagre et al., 2014). As in the case of the CF im-
plementation, for MF also users’ past sessions and the initial part of their new
playlists in the test part of the databases, were used to identify their preferences.
Then, the recommendations were generated based on users’ song streams.

5.3 Initial Evaluation

5.3.1 Dataset details

For the initial testing we used a real music database containing approximately
3500 songs, mainly rock and alternative, and 3000 playlists of one hour, formed
based on them. These lists had been constructed by the author and other radio
producers of the Greek internet radio station TrollRadio6.

In addition, for each song in this database the following information was
available:

• its name

• its unique id

• the artist who performs it

• a set of metadata used to specify its style, being:

– general music category (ex: rock)

– subcategory (ex: alternative)

– tempo (low/mid/up/very high)

– origin (mainly Greek/other)

– lyrics language (English/Greek/other)

– vocalist type (male, female, duet)

– release year (in some cases)

This information has been added by experienced users in the form of tags coming
from a specific dictionary. Therefore, it can be used as a source of additional
information about the songs. Furthermore, when only these metadata, without

5http://lenskit.org/documentation/algorithms/
6www.trollradio.gr

102 CHAPTER 5. EVALUATION

the artist that performs the song, are used for the songs’ descriptions, these are
referred to as music style, while when also the artist name is taken into account,
those are referred to as complete style. Both well known and newer songs, and
artists, of similar styles, thus possibly forming pleasant, coherent, playlists, were
contained in this database.

The frequency with which the songs, complete music styles, music styles and
the artists that perform them were placed in playlists, was also used to calculate
the popularity and the long tail distribution of these terms, considering a music
item as belonging to the long tail if it appeared less than in 1% of the cases. In
table 5.1 below, we present more statistical information on this dataset.

Number Long Tail %
Events 38934
Playlists 3245
Songs 3452 92
Complete Styles 1654 74
Artists 833 51
Styles 114 44

Table 5.1: Small scale dataset

Indeed, as shown in table 5.1, the long tail percentage is lower in higher
abstraction levels showing that music items that are found in the long tail are
probably characterised by styles, or belong to artists, that users would place in
their playlists. It was found than less than 2% of the songs in the long tail were
also found in the long tail at higher abstraction levels, highlighting that there
may exist songs in this dataset that belong to the long tail, while having char-
acteristics that would probably make them fit within some of the constructed
playlists. Therefore, these songs could form relevant recommendations.

In this dataset, there was also some information related to the playlists and
the users that reproduced them. Apart from the set of n songs of which each
playlist consists, it is also associated with the time moment on which it was
made, provided by the timestamp of each song’s streaming. From the set of
users that formed the existing playlists, each one is associated with the playlists
he/she made, along with some basic demographic characteristics, like age and
gender.

Specific parameters’ values

Except from MusCBR and CMusCBR, for the other recommendation techniques
presented in the previous section, their best results, presented in tables 5.2–5.4,
were obtained for the following values of their important parameters:

• ARs-based (ARs): The A-priori algorithm was used with minimum sup-
port equal to 0.5%, and minimum confidence set to 15%.

• Latent Dirichlet Allocation (LDA): The LDA model was built with 50
topics and performing 1000 iterations.

• Collaborative Filtering (CF): The Pearson Correlation Similarity was used
for user similarities, and for each user his/her 5 nearest neighbours were
used.

5.3. INITIAL EVALUATION 103

5.3.2 MusCBR and CMusCBR Evaluation

In tables 5.2–5.4 the average precision values for playlist continuation recom-
mendations of different lengths, generated by the various methods can be found.
Each time music items are treated at different abstraction levels, namely com-
plete music styles (artist and music style), artists, and music styles.

#Recommendations 4 6 8 10 12
AR 0.055 0.063 0.052 0.052 0.035
LDA 0.049 0.061 0.068 0.081 0.094
PopA 0.039 0.054 0.058 0.067 0.064
PopSt 0.043 0.048 0.053 0.064 0.064
CF 0.045 0.058 0.068 0.08 0.079
MusCBR 0.078 0.078 0.076 0.086 0.083
CMusCBR 0.097 0.090 0.090 0.096 0.098

Table 5.2: Average precision for complete music style recommendations

#Recommendations 4 6 8 10 12
AR 0.052 0.087 0.108 0.115 0.096
LDA 0.034 0.050 0.075 0.087 0.093
PopA 0.044 0.073 0.098 0.115 0.117
CF 0.048 0.078 0.102 0.118 0.119
MusCBR 0.095 0.103 0.115 0.127 0.131
CMusCBR 0.096 0.108 0.124 0.139 0.135

Table 5.3: Average precision for artist recommendations

#Recommendations 4 6 8 10 12
AR 0.261 0.32 0.363 0.367 0.372
LDA 0.202 0.345 0.167 0.264 0.317
PopA 0.34 0.346 0.336 0.334 0.337
PopSt 0.38 0.402 0.394 0.394 0.395
CF 0.185 0.259 0.292 0.315 0.345
MusCBR 0.386 0.39 0.397 0.396 0.395
CMusCBR 0.392 0.403 0.4 0.401 0.401

Table 5.4: Average precision for music style recommendations

When recommending songs, or when using their complete music styles that
include both genre and artist descriptions, we are facing increased data sparsity,
given that in most playlists there are no songs of the same artist. Therefore, the
problem complexity is almost the same. In these cases, the AR methodology was
not able to generate recommendations for a lot of lists, due to the low number
of underlying patterns among data. On the other hand, when approaching
items just through their style, it is far easier to find similar playlists, and the
recommendations in terms of styles are far more accurate for all methods.

As it can be observed from the previous tables, MusCBR is able to perform
equally and even better than the compared recommenders, even when using

104 CHAPTER 5. EVALUATION

more specific item descriptions. Incorporating contextual information, about
the playlist construction hour, in the pre-filtering phase of the recommendation
model, further improves the algorithm’s performance. CMusCBR performs bet-
ter than the compared algorithms and also delivers improved recommendations
compared to MusCBR, that does not evaluate any contextual dimensions of the
playlists. Even for less abstract items descriptions, where the majority of the
other techniques show a low performance.

However, all the recommenders show a weak performance, according to the
used IR evaluation metrics, when recommending specific items, with MusCBR
and CMusCBR reaching the highest, being around 5–6%. The results for the
recommendations of songs’ are presented in the next section for the extended
model.

5.3.3 MusHR Evaluation

In this section, the experimental results for the recommendation of lists of differ-
ent lengths using the MusHR algorithm, are presented, in comparison to other
recommendation methodologies.

First, the possible item abstractions that could be used in the Hybrid Music
Recommender (MusHR) are evaluated to identify which leads to the best perfor-
mance. In table 5.5, the recommendations’ average precision is shown, when no
item abstraction, and when complete music style or artist abstractions, is used.
Using MusHR without item abstraction would be equivalent to using MusCBR
for direct recommendation of songs, instead of song clusters.

#Recommendations 4 6 8 10 12 14
Complete style 0.239 0.234 0.218 0.197 0.164 0.129
Artist 0.189 0.176 0.162 0.142 0.139 0.142
Without 0.063 0.055 0.051 0.051 0.060 0.058

Table 5.5: Recommendations’ precision for MusHR with different abstractions

As it can be observed, changing the reasoning model from one to two lev-
els, thus using more abstract item descriptions for the extraction of candidate
playlists, significantly improves the performance of the recommender, both when
complete styles or artists are used. Using complete style descriptions for the
modelling of music items, and extracting the candidate cases based on those,
performs better for almost all recommendation sizes. Therefore, it was used for
the rest of the experimentations.

Below, in tables 5.6–5.8, the recommendation results of MusHR are presented
in comparison to those of other recommendation algorithms, in terms of average
precision, diversity and Fd measure, respectively, for playlist continuations of
different lengths. Following, in table 5.9, the average long tail percent in the
playlist continuations recommended by the different methods, is presented.

5.3. INITIAL EVALUATION 105

#Recommendations 4 6 8 10 12 14
LDA 0.048 0.065 0.081 0.085 0.084 0.115
PopA 0.018 0.028 0.031 0.033 0.033 0.040
PopSt 0.017 0.018 0.021 0.030 0.037 0.048
CF 0.025 0.031 0.038 0.042 0.053 0.063
MusHR 0.239 0.234 0.218 0.197 0.164 0.129

Table 5.6: Average precision for the different methods

#Recommendations 4 6 8 10 12 14
LDA 0.618 0.535 0.639 0.612 0.556 0.635
PopA 0.287 0.353 0.512 0.521 0.450 0.553
PopSt 0.366 0.402 0.501 0.533 0.050 0.55
CF 0.537 0.527 0.575 0.586 0.57 0.616
MusHR 0.54 0.553 0.562 0.568 0.585 0.600

Table 5.7: Average recommendations’ diversity for the different methods

#Recommendations 4 6 8 10 12 14
LDA 0.089 0.116 0.144 0.149 0.146 0.195
PopA 0.034 0.052 0.058 0.062 0.061 0.075
PopSt 0.032 0.034 0.040 0.057 0.043 0.088
CF 0.048 0.059 0.071 0.078 0.097 0.114
MusHR 0.331 0.329 0.314 0.293 0.256 0.212

Table 5.8: Fd-measure of the recommended playlists for the different methods

#Recommendations 4 6 8 10 12 14
LDA 0.731 0.738 0.723 0.642 0.526 0.196
PopA 0.0 0.0 0.0 0.0 0.0 0.035
PopSt 0.0 0.0 0.0 0.0 0.0 0.0
CF 0.13 0.138 0.150 0.152 0.20 0.19
MusHR 0.314 0.34 0.361 0.355 0.324 0.266

Table 5.9: Recommendations’ long tail percent for the different methods

As it can be seen from the initial recommendation results, the proposed
methodology seems able to deliver results of improved accuracy while maintain-
ing a diversity level similar to that of the real playlists, that was 55–60%. In
addition, 25–35% of the items in the playlist continuations recommended by
MusHR, come from the long tail, while the target was set on achieving at least
20% in each playlist.

In general, the majority of the commonly used techniques showed a low per-
formance. Especially ARs, even when using low threshold values for minimum
support and confidence to enable the extraction of rules, failed to generate rel-
evant recommendations. This is the reason why the results of this method were
finally not included. Session-based methods (LDA and MusHR), that focus on
the characteristics of entire playlists, were found to significantly outperform the

106 CHAPTER 5. EVALUATION

methods based on user preferences. Although LDA recommendations may be
more diverse, and retrieve even more items from the long tail, this has as a result
a significant accuracy drop. In addition, this method due to its probabilistic
nature has been found to show a less stable performance. As expected, the
popularity-based and CF approaches are almost not able to provide recommen-
dation of items coming from the long tail. Although they present some diversity
in their recommendations, this is mainly due to the diverse preferences of the
users.

Despite the fact that MusHR does not perform neither a contextual pre-
filtering nor provides additional support to diversity, given that its reasoning
process is based on the similarity of playlists, in general it manages to identify
the lists with tendencies similar to the list that has to be completed. However, in
order to perform well also on larger datasets, and/or datasets containing songs
not associated with well-defined attributes, this algorithm was further extended
to HybA, whose evaluation is presented in the next section using larger scale
real music datasets.

5.4 Final Evaluation

The focus of this section is two-fold: first, to present the recommendation results
for the variations of HybA recommender and evaluate the influence of the differ-
ent parameters on their performance, and secondly, to compare its performance
with other recommendation techniques.

In section 5.4.2 we present the results of the different versions of HybA and
select the most adequate, and then in section 5.4.3, its comparison with other
RSs, using both accuracy and quality related metrics, is shown.

5.4.1 Datasets’ details

The databases that were used for evaluation of the HybA algorithm are music
databases containing information on users streaming specific tracks or putting
those into their playlists.

Moreover, four datasets of the Palco Principal7, a Portuguese music social
network that gathers non-mainstream musicians with fans, were used. This
website allows free music streaming and users can organise their favourite music
tracks in personal playlists. It is characterised by a high long tail presence, as
the majority of the songs presented are not popular songs. Furthermore, the
percentage of long tail items is higher than 99% in all datasets. Thus, evalu-
ating the number of long tail items recommended in each playlist continuation
cannot be considered as an indicator about the recommendations’ novelty and
quality. This was also the reason why popularity-based algorithms did not pro-
vide considerable results. More information on the used datasets’ statistics can
be found in table 5.10.

7http://palcoprincipal.com/

5.4. FINAL EVALUATION 107

Dataset Listening1 Listening2 Playlisting Plc
Events 1171849 295044 111942 508705
Songs 29786 22986 26117 25262
Users 21815 5543 10392 20875
Playlists 86174 22108 22132 253415
Songs/Playlist 13.6 13.35 5.06 2
Playlists/User 3.95 4 2.13 12.14
Users with
one playlist 11544 2673 6840 7909
Test users 8166 1286 2141 3033
Test users with
one playlist 5540 670 1458 273

Table 5.10: Palco Principal datasets

From these databases8, the first two are streaming logs, containing informa-
tion on users listening to songs on specific moments, while the others contain
information on users adding tracks to their personal playlists at a given time
moment. From those, only the forth (Plc) contained additional content infor-
mation on song features, namely artist and genre. For the rest of the datasets,
latent features from usage data were used to characterise the songs. On the
other hand, the forth dataset did not contain information related to the time
moment that the playlists were created. Therefore, it could not be used for the
evaluation of the contextual dimensions of the problem.

The first two datasets (Listening1 and Listening2) have a similar distribution
of events. Especially the average playlist length and the average number of
playlists per user are almost equal. Additionally, from the user interactions in
the first three datasets, approximately 50% of the users had only one session,
while more than 50% of the users in the test part had only one interaction. In
general, the high percent of “new” users, without historical data to derive their
preferences forms a problem for user-based techniques. On the other hand, in
the last dataset (Plc) users, in average, appear to have performed more but
shorter sessions. Furthermore, there is a smaller percentage, compared to the
other datasets, of users with only one sessions. Finally, from the users in the
test part, less than 10% were new users users. Thus, the new user cold start
problem should have less impact on this dataset. The short average length of
the playlists could negatively effect the recommendation results when generating
longer playlist continuations.

Although coming from platforms situated in different countries and having
a significant size difference, both the initial and final testing datasets contained
mainly alternative music and had the scope to enable less popular songs, and
artists, to be reproduced. According to the analysis of music genre preferences
accross countries, provided by Schedl, rock and alternative genres in general are
the most prefered (Schedl, 2017).

Specific parameters’ values

When testing the performance of the recommendation algorithms presented in
section 5.2, on the large scale datasets, ARs and popularity-based were found

8The first three are publicly available from https://rdm.inesctec.pt/dataset

108 CHAPTER 5. EVALUATION

to have a very weak performance. Therefore, their results were not included in
this section. This low performance is probably due to the extended long tail and
data sparsity that characterises the used datasets were the majority of songs are
not mainstream songs and each is listened to only by few users.

For the other methods, their best results that are presented, were obtained
when the following parameters’ values were used:

• LDA: The parameters of the LDA model were set at 200 topics and per-
forming 1000 iterations.

• CF : The Euclidean Similarity function was used for the user similarities
and the neighbourhood of each user is set as his/her 10 nearest neighbours.

• ISGD : The number of factors was set at 250, while the option of recom-
mending already known items was enabled.

5.4.2 HybA Evaluation

We hypothesise that:

1. A “conceptual” rather than a “contextual”, based on explicitly described
parameters, clustering and pre-filtering of the problem case base would
perform better, and

2. More dimensions related to the playlists should be incorporated and taken
into account during the recommendations’ generation process.

Therefore, as a starting point, the influence of the different contextual dimen-
sions on the recommendation results was observed to confirm that the pro-
posed conceptual pre-filtering is able to better characterise, and identify, sim-
ilar playlists. Afterwards, in addition to playlists similarity, more parameters
related to users’ perception of playlist quality were incorporated into the recom-
mendations generation phase, and their influence on the RS will be presented.
Both accuracy (precision, hit ratio and average similarity) and quality (average
coherence and diversity) related metrics are used.

Contextual Dimensions

We present graphically the results of HybA, using the proposed conceptual
clustering and pre-filtering, compared with the use of three different contextual
clusterings. More specific, for a new playlist, cntxT, uses the cluster LH of
playlists generated in close hours, cntxM, the cluster LM of playlists reproduced
in close months while cntxC uses the cluster LB that includes playlists generated
on close day hour and month with the new playlist. The tests were performed
using the first three datasets that contained explicit contextual information
related to the playlists’ creation time moment.

Next in figures 5.2–5.4, precision, hit ratio and average similarity, respec-
tively, of the different contextualised algorithms are presented.

5.4. FINAL EVALUATION 109

Figure 5.2: Recommendations’ precision using different contextual dimensions

Figure 5.3: Recommendations’ hit ratio using different contextual dimensions

110 CHAPTER 5. EVALUATION

Figure 5.4: Average similarity between the real and the recommended playlist
continuations when using different contextual dimensions

As it can be seen, the three pre-filtering approaches, using the explicit con-
textual parameters related to the playlist generation time, lead to similar results
in terms of accuracy. Among those, cntxT, that evaluates only the hour of the
day leads to the worst results. cntxM and cntxtC, that also evaluate the month,
have a better performance, while their differences vary with the playlist contin-
uation length and the evaluation dataset.

The proposed conceptual clustering and pre-filtering provides an important
improvement in precision and hit ratio, while also having equal or better average
similarity values.

Figures 5.5 and 5.6, present the average coherence and diversity of the rec-
ommended playlist continuations by the different versions. As it can be seen,
cntxT, cntxM and cntxC have very similar performances at both dimensions,
while HybA generates significantly more coherent playlist continuations, being
of better quality.

5.4. FINAL EVALUATION 111

Figure 5.5: Recommendations’ coherence using different contextual dimensions

Figure 5.6: Recommendations’ diversity using different contextual dimensions

112 CHAPTER 5. EVALUATION

Beyond Accuracy Dimensions

After having confirmed that using a conceptual pre-filtering, rather than explicit
contextual information in HybA, leads to improved results, the performance of
the different versions of HybA is evaluated.

Starting from accuracy related metrics, in figures 5.7 and 5.8, respectively,
we present the precision and average similarity values achieved by the different
versions of the RS that place increased emphasis on different quality aspects,
for tests performed on the four different datasets.

From these plots, we can observe that all the HybA versions have a similar
performance in terms of accuracy. When evaluating using precision (recall and
F-measure are closely similar) only HybA-d has been found to perform worse
than the others. However, when evaluating using the average similarity, HybA-
d performs equally, and even better in one dataset, than the other algorithms.
The hit ratios achieved by all the versions of HybA are closely similar therefore
their graphical representations are not included.

Figure 5.7: Recommendations’ precision for the HybA versions

5.4. FINAL EVALUATION 113

Figure 5.8: Average similarity of the real and the recommended playlist contin-
uations by the different HybA versions

Next, in figures 5.9–5.11, the algorithms’ performance as captured by the
levels and the relations of quality related parameters, namely coherence and
diversity, can be found.

As it can be observed from figures 5.9 and 5.10, where the levels of coherence
and diversity of the recommended playlist continuations are shown, depending
on the algorithm’s scope, there is a clear difference in the levels of those pa-
rameters. HybA-c and HybA-d that, except from similarity, aim at maximizing
an additional parameter generate playlist continuations of significantly higher
coherence or diversity degrees correspondingly. As those parameters depend on
the similarity, or dissimilarity, of the items in the playlist, setting the desired
level of one of them, a priori, also limits the range of values that the other
parameter may have.

In figure 5.11, we present graphically also the relations between average
coherence and diversity as achieved by the different HybA variations.

114 CHAPTER 5. EVALUATION

Figure 5.9: Recommendations’ coherence for the HybA versions

Figure 5.10: Recommendations’ diversity for the HybA versions

5.4. FINAL EVALUATION 115

Figure 5.11: Average coherence in relation to average diversity of the various
recommended playlist continuations

As it can be seen, when instead of maximizing one of those parameters,
the aim is to follow the seed playlist tendencies, the three HybA variations,
HybA-dc, HybA-dd and HybA-db, show a very similar, and more balanced,
performance, at all dimensions. Among those, we select the HybA-db as it
achieves good accuracy results while having a good level of both coherence and
diversity.

Finally, we observe that the algorithms that manage increased coherence
levels may also provide improved accuracy results, according to IR metrics,
compared to those that emphasise on diversity, especially when treating larger
lists.

5.4.3 Comparison with other techniques

After having evaluated the HybA versions and selected the HybA-db, as showing
the best balance between accuracy, coherence and diversity, its comparison with
other recommendation algorithms is presented in this section.

In figures 5.12–5.14 the graphical results for accuracy related metrics, namely
precision, hit ratio and average similarity for recommendations of playlist con-
tinuations of different lengths, on the four different datasets, can be found. In
figures 5.15 and 5.16, the average coherence and diversity of the recommenda-
tions is presented, while in figures 5.17–5.19 the combined performance of the
algorithms, in relation to pairs of parameters, is evaluated.

116 CHAPTER 5. EVALUATION

Figure 5.12: Recommendations’ precision for the various techniques

Figure 5.13: Recommendations’ hit ratio for the various techniques

5.4. FINAL EVALUATION 117

Figure 5.14: Average similarity with the real playlists for the various techniques

From figures 5.12 and 5.13, where precision and hit ratio of the recommended
playlists are shown, we observe that they follow similar evolution patterns for
all the evaluated algorithms. In addition, as depicted in figure 5.14, average
similarity plots are in-line with those patterns, but their corresponding plots
have smaller inclinations. Therefore, their values appear as less dependent on
the number of recommended items. This fact supports our hypothesis that
more metrics, beyond the strict IR ones, could be used to evaluate the quality
of recommendations. The combination of hit ratio and average similarity seems
able to capture the relevance of the recommendations presented, while being
more flexible than precision or F-measure. In addition, average similarity, if
correctly combined with novelty, could also serve as an indicator of serendipity.

In general, HybA and LDA, that focus on the entire sessions’ characteris-
tics, have a better performance, supporting our hypothesis that conventional
recommendation techniques fail to capture the specific cognitive characteristics
beyond item co-occurrences in item sets. Especially HybA-db, has been found
to outperform the other algorithms in all the used datasets.

Among the compared algorithms, CF had a low performance, probably due
to the fact that its focus is on the recommendation of items to users, while
the current focus is on the recommendation of items fitting into specific con-
cepts, generated by users, but not restricted to users. Therefore, more than the
user-item relationships, mainly concept-item relationships and similarities be-
tween concepts have to be identified, rather than the user-concept connections.
Although, the ISGD algorithm also works based on user-item relations, as its
reasoning is based on data streams it is able to perform better than the pure
CF. However, the increased data sparsity and long tail percent in the evalua-
tion datasets should be also taken into account, as it significantly affects the

118 CHAPTER 5. EVALUATION

performance of user-based algorithms.

In addition, we observe that HybA-db and LDA follow similar patterns as
both methods base their reasoning on probabilistic topic models. However,
HybA-db performs a Latent Analysis at a more abstract level, using songs’
styles rather than songs, and is further combined with an additional item sim-
ilarity model, that improves its accuracy and makes it more flexible in han-
dling additional parameters, than pure LDA. LDA, on the other hand, based on
the probability distribution of a playlist directly recommends the most popular
songs of its dominant topic. The advantage of these models is that they are
able to relate items based on their semantic dimensions. Therefore items that
may seem as distinct at first, may be related based on their co-occurrences in
common topics in the past.

Before presenting the levels of average coherence and diversity in the playlist
continuations recommended by the different algorithms in figures 5.15–5.17, in
table 5.11, the corresponding values of the playlists in the various datasets can
be found. These threshold values were found by evaluating playlists of different
lengths, specifically equal to the length of the generated recommendations (3,
5, 10, 15 and 20 music items).

Quality dimensions Listening1 Listening2 Playlisting Plc
Coherence 0.45-0.52 0.45-0.50 0.50-0.56 0.58-0.63
Diversity 0.53-0.66 0.57-0.66 0.50-0.60 0.45-0.65

Table 5.11: Playlists’ coherence and diversity ranges in the various datasets

Figure 5.15: Recommendations’ coherence for the various techniques

5.4. FINAL EVALUATION 119

Figure 5.16: Recommendations’ diversity for the various techniques

Figure 5.17: Average coherence in relation to average diversity of the various
recommended playlist continuations

120 CHAPTER 5. EVALUATION

From figures 5.15 and 5.16, where average coherence and diversity for the rec-
ommended playlists of different lengths are shown, we see that, again, depending
on the algorithm’s emphasis and reasoning, there is a clear difference between
the levels achieved. Among the tested algorithms, HybA-db recommends the
most coherent playlists. Although being less diverse than those by the other
algorithms, those playlists continuations are the ones showing the best “trade-
off” between relevance, coherence and diversity. This is due to the common
emphasis placed on both coherence and diversity during the recommendations’
generation phase, as explained in sections 4.9.2 and 4.9.3.

In figure 5.17, the joint evolution of the diversity and coherence in the gen-
erated recommendations is presented. HybA and LDA manage to recommend
lists characterised by good levels of both coherence and diversity while the user-
based approaches generate less coherent playlist continuations. Shortest plots
reveal a more stable behaviour, as the characteristics of the generated playlists
are less affected by the length of the recommended playlist.

Additionally, the playlist continuations recommended by HybA, have diver-
sity levels similar to the ones in the initial databases, as the algorithm’s aim is to
maintain the diversity level of a started list, instead of maximising it. Further-
more, although being more diverse, as they follow the diversity tendencies in
user profiles, the recommendations by the user-based algorithms do not manage
to combine diversity with accuracy. Their accuracy levels are significantly lower
than the ones achieved by HybA-db, and their combined performance related
to precision and diversity, as shown in figure 5.19, is also lower.

Finally, the F-measure and the Fd-measure for recommendations of playlist
continuations of 10 items, are presented.

Figure 5.18: F-measure for recommendations of 10 songs

5.4. FINAL EVALUATION 121

Figure 5.19: Fd-measure for recommendations of 10 songs

Thus, HybA manages to have a good performance when evaluating jointly
accuracy dimensions or additional beyond-accuracy dimensions, like diversity
and overperforms the other methods.

Recall@N

Finally, although our focus has been set mainly on precision when “hiding”
and recommending the same number of items for every playlist, for the sake of
completeness, in this section, we present also the results for recall@N. When
evaluating next item recommendations for playlist continuations, or in top-N
recommendation tasks, this factor has been also used to evaluate the ability of
the different algorithms to identify relevant items (Cremonesi et al., 2010).

Therefore, we use a slightly different experimental setting. From the lists in
the test part, we hide each time one item (the last one) and generate recom-
mendations for playlist continuations of different lengths. Each time the ability
of the recommendation techniques to correctly identify the hidden item is eval-
uated, that would be equal to hit ratio, the percentage of times that a user is
recommended at least one relevant item. In figure 5.20, below, recall@N for
different values of N, for the compared algorithms for tests performed on the
four datasets is presented.

122 CHAPTER 5. EVALUATION

Figure 5.20: Recommendations’ recall@N for the various techniques

Once again, the recommendation techniques that focus on entire “sessions”
perform better than the ones that focus on users. HybA provides significantly
higher recall values.

5.5 Conclusions

In this chapter, the experimentation results that have been reported, during the
gradual implementations and testing of the several versions of HybA, have been
presented. A relatively small music dataset containing songs with well-defined
metadata, has been used for the evaluation of the initial versions of the RS.
Next, four large scale real datasets have been used for the evaluation of the
final version of the algorithm to ensure that it is able to efficiently address the
principal research questions stated in chapter 1.

Through the evolution of the designed solution, its extension was made in
order to handle more dimensions, and overcome the usual limitations of playlist
recommenders. Furthermore, as the system’s purpose has been gradually ex-
tended, the scope of the final evaluation part (section 5.4) has been two-fold.
In general, the results presented in this section show that the proposed term
of playlist concept, implicitly capturing the contextual dimensions of playlists,
constructed under given circumstances, based on their music style combinations,
better identifies playlist similarities, compared to explicit contextual dimensions.
HybA has been found to perform better than the compared techniques, and in
addition, to be able to have a good performance in terms of accuracy, while
taking into account more cognitive dimensions of the playlist recommendation
problem. In addition, our initial hypothesis that a hybrid approach, designed

5.5. CONCLUSIONS 123

to address the characteristics of the specific problem, would be able to perform
better than the usual recommendation techniques has been confirmed.

Finally, additional evaluation metrics have been described and used to pro-
vide more insight on the relevance and the quality of the recommended playlist
continuations. The purpose was to provide an additional way of evaluating
playlist continuation recommendations, leading to an improved performance in
more dimensions.

124 CHAPTER 5. EVALUATION

Part IV

Conclusions and Future
Work

125

Chapter 6

Conclusions

The majority of MRSs, and RSs in general, still treat the recommendation
problem at two dimensions, namely users and items, while aiming to maximize
the accuracy of their predicted behaviour. However, especially when it comes to
more complicated domains, like music, the specific characteristics of the treated
items, namely music items, have to be taken into account.

Music items are rarely consumed in isolation, but rather as well organized
sequences designed for a specific purpose or aiming to transmit a desired mes-
sage. In addition, due to their complicated nature, that both creates and is
subject to emotional and cultural parameters, there is a necessity to identify
user preferences under specific concepts. Furthermore, apart from personal user
preferences towards songs, the designed collections must balance between the
user’s desire for repetition and surprise, thus being coherent and of some diver-
sity degree. Finally, as the aim of these systems is to deliver recommendations of
improved quality, additional focus should placed on attributes beyond accuracy.

In this thesis, we have presented several recommender systems for automatic
playlist continuation aiming to address the above issues. Especially HybA, a
hybrid recommendation approach that aims to generate recommendations for
playlist continuations of improved quality, related to given cognitive concepts.
More than evaluating the user who constructs a playlist, each time the current
concept has to be extracted from the started playlist. Based on the defined scope
and the characteristics of the proposed approach, in chapter 1 the following
research questions had been stated. For convenience, we repeat those below
along with the contribution and conclusions arising from each of them.

6.1 Contributions

1. Are the currently used recommendation algorithms able to efficiently han-
dle automatic playlist continuation, and item collection, recommendations?
Does the proposed algorithm manage to address the needs of the specific
problem in a better way?

Although there is the necessity of treating, and evaluating, item collections
as a whole in many application domains, like in MBA, APG and APC,
the mainly used recommendation techniques still lack of support towards
this direction. Even when presenting a list of items to the user, these

127

128 CHAPTER 6. CONCLUSIONS

usually have not been designed to work well together, and rather form the
different alternatives for a given query. Therefore, when used together,
those fail to address more complicated user needs.

Furthermore, even when designed to perform well together, as a pack-
age like in APG, in APC, it is of high importance to correctly identify
the purpose of a started playlist. Usually, this goes beyond the classical
user preference estimation problem, as the even same user may construct
different playlists under different circumstances.

Our initial hypothesis, that a solution designed to address the needs of
this specific problem would perform better than an adaptation of the usual
techniques, has been confirmed. As shown by the experimental results in
section 5.4.3, “session-based” approaches with focus on the entire playlists
perform better than the user-based ones. The recommendation results
in general were of higher accuracy, while presenting also more coherent
playlist continuations.

The proposed algorithm, combines LDA and CBR for the playlists’ mod-
elling, in order to capture their underlying semantic concepts and calculate
their similarities. It has been found to over-perform the other commonly
used recommendation techniques, in terms of accuracy, while enhancing
more parameters related to user listening experience, like playlist coher-
ence.

2. How does the use of additional parameters, related to the quality charac-
teristics and user perception of the sets of music items, affect the recom-
mendation results?

In general, support to some of the beyond accuracy dimensions, like diver-
sity, in many cases has been found to negatively affect recommendation
accuracy. Furthermore, depending on the purpose of the applied recom-
mendation algorithm, usually a clear emphasis is placed on some of the
parameters that can be detected in the corresponding results. As it can be
seen in the results presented in the previous chapter, in section 5.4.3, the
majority of the algorithms used, have clear tendencies, coming from their
reasoning process, and clearly boost one of those dimensions. Especially
user-based techniques, due to their focus on the entire user histories and
the preferences of similar users, were find to generate very diverse playlists.
This increased diversity, that overtook the average diversity tendencies ob-
served in the test datasets, had a negative effect on their recommendation
accuracy.

However, as it has been shown, it is possible to achieve balanced solutions
that perform well from both accuracy and quality perspectives. Espe-
cially support to coherence, if correctly captured, may result in accuracy
improvements. Furthermore, when adequately combined, like in the case
of HybA, both a good level of coherence and diversity in a playlist can
be achieved. Thus, an acceptable solution in terms of quality may be
provided, without decreasing the results’ relevance.

3. Are the commonly used evaluation metrics suitable when recommending
item collections? Which other factors should be evaluated?

6.1. CONTRIBUTIONS 129

The commonly used IR evaluation metrics focus only on the accuracy of
recommendations without providing any information on the collections’
quality. Furthermore, these techniques are “too strict” to be applied to
application domains, characterised by contextual and sentimental dimen-
sions, as they only evaluate the presence, or absence, and sometimes the
position, of a specific item within a set.

In actual application domains, due to the existing data sparsity and the
popularity bias, it is more important to capture “how close” a recommen-
dation is to the user’s expectations, in terms of item characteristics. In
the case of collection recommendations, this would be mapped to collec-
tion characteristics. This is the reason why we proposed the use of the
average similarity between playlists combined with the achieved hit ratio.
The first, to evaluate the ability of a system to identify interesting alter-
natives that, as a whole, are close to the user’s expectations, while the
other captures the general accuracy level achieved.

In addition, when recommending sets of items, apart from their relevance,
their quality should be evaluated. When referring to a playlist, to be
considered as a nice result, it should be coherent, as the smoothness of
song transitions influences its effect on listeners. However, due to the
fundamental goals behind music consumption, it should also be of some
diversity degree to generate some excitement to the listener. Therefore,
the levels of these parameters should be also evaluated. However, as the
perception of these dimensions, especially diversity, is highly subjective,
being subject to user actual preferences, and possibly additional domain
specific parameters, their exact values cannot be set a priori. Regarding
APC, the levels of these parameters depend on the corresponding ones in
the started playlist, because a playlist continuation, apart from its quality,
has to fit well within the started playlist.

In general, coherent playlists are thought as better. Thus, the coherence
level could serve as a metric of quality. In addition, coherence has been
found to possibly have a positive relation with recommendations’ accuracy,
while it could be also combined with long tail presence.

6.1.1 Limitations

Although the described approach has been found to outperform the used as
baseline recommendation techniques, it still comes with some limitations that
may affect its performance.

First of all, due to its reasoning model, this approach highly depends on the
data used for its training and reasoning processes, both at song and playlist
level. If the metadata related to songs is of high quality, the resulting song
clusters and music styles, will be informative enough, and could be used to
capture the tendencies observed in playlists. In contrast, if this information is
sparse and noisy, the resulting song clusters and the computed similarity degrees
will probably fail to reflect the real similarity levels. On the other hand, the
number and the quality of the playlists in the case base, has an influence on the
resulting conceptual clusters. These clusters should reflect the existing music
tendencies in order to effectively address future user needs. This is due to the
fact that, when a new playlist continuation is required, first the concept of the

130 CHAPTER 6. CONCLUSIONS

started playlist is identified. Then, the playlists of the same conceptual cluster
are retrieved, and form the basis for further computations, that lead to the
recommendations’ generation.

In relation with the computational cost, this is high mainly during the offline
phase of the system, as the pairwise similarities of the existing items styles have
to be calculated. Therefore, the corresponding song clusters are found, and
then the playlist latent topics and resulting concepts are analysed. When new
items are added to the system, if they share the characteristics of an existing
song cluster no additional computations are required. Otherwise, its similarities
with all the existing music styles have to be identified.

On the other hand, although appearing able to improve the recommendations
quality, it is difficult to capture the “real” user’s perception of playlist quality
without having performed experiments with real users. In general, there are
many factors that impact music consumption, and are not being recorded, in
the majority of music datasets, in a way that it could support the design on
more user perception oriented methods. However, this has an impact on the
majority of current MRSs.

6.2 Future Work

The limitations identified in the previous section form also the basic topics of our
ongoing and scheduled future work, towards the improvement of the developed
RS. In addition, some other functionalities are planned to be evaluated and
possibly incorporated in order to extend the system.

When treating music recommendations, an important factor is the possible
degree of discovery and excitement, that may be caused to a user by presenting
yet unknown but relevant items. Therefore, support to novelty is among the
principal parameters that will be analysed in depth, in order to identify an
adequate way of incorporating it to the model (Celma & Herrera, 2008). In
contrast to coherence and diversity, novelty could have a positive relation with
both coherence and diversity (Vargas & Castells, 2011). Furthermore, support
to novelty could be one way of increasing the diversity of the recommended
playlist continuation (M. Zhang & Hurley, 2008).

The relation between coherence and diversity will be further monitored in
order to investigate possible ways of achieving an optimal “equilibrium” among
them. As these factors are related with the user perception of quality, of the
recommended playlist, identifying a standard “point” among them could be
used also for evaluation purposes. Finally, the design of real user experiments,
in order to capture users’ real perception of quality, and the attributes that
mostly influence them, has been defined among the important future steps.
At the moment, the system focuses on the three first steps of the CBR cycle.
Having users’ feedback on the generated recommendations could support the
implementation of the forth, the retain, step.

List of Related Publications

Gatzioura, A., & Sànchez-Marrè, M. (2015). A Case-Based Recommendation
Approach for Market Basket Data. IEEE Intelligent Systems, 30 (1), 20–
27.

Gatzioura, A., & Sànchez-Marrè, M. (2017a). A Case-Based Reasoning Frame-
work for Music Playlist Recommendations. In 4th IEEE International
Conference on Control, Decision and Information Technologies, CoDIT
2017, Barcelona, Spain, April 5-7, 2017 (pp. 242–247).

Gatzioura, A., & Sànchez-Marrè, M. (2017b). Using Contextual Information in
Music Playlist Recommendations. In Recent Advances in Artificial Intel-
ligence Research and Development - Proceedings of the 20th International
Conference of the Catalan Association for Artificial Intelligence (CCIA
2017), Deltebre, Terres de l’Ebre, Spain, October 25-27, 2017 (pp. 239–
244).

Gatzioura, A., Sànchez-Marrè, M., & Jorge, A. M. (2018). A Study on Con-
textual Influences on Automatic Playlist Continuation. In Proceedings of
the 21th International Conference of the Catalan Association for Artificial
Intelligence (CCIA 2018), Roses, Spain, October 8-10, 2018.

Gatzioura, A., Jorge, A. M., Sànchez-Marrè, M., & Vinagre, J. (2018). A Hybrid
Recommendation Algorithm for Improving Automatic Playlist Continua-
tion. Submitted to: Cognitive Computation, Special Issue on : Bridging
Cognitive Models and Recommender Systems.

131

132 List of Related Publications

References

Aamodt, A., & Plaza, E. (1994). Case-based reasoning: Foundational issues,
methodological variations, and system approaches. AI communications,
7 (1), 39–59.

Adamopoulos, P., & Tuzhilin, A. (2014). On unexpectedness in recommender
systems: Or how to better expect the unexpected. ACM TIST , 5 (4),
54:1–54:32.

Adomavicius, G., & Kwon, Y. (2012). Improving aggregate recommendation
diversity using ranking-based techniques. IEEE Trans. Knowl. Data Eng.,
24 (5), 896–911.

Adomavicius, G., Manouselis, N., & Kwon, Y. (2011). Multi-criteria rec-
ommender systems. In Recommender systems handbook (pp. 769–803).
Springer.

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible exten-
sions. Knowledge and Data Engineering, IEEE Transactions on, 17 (6),
734–749.

Adomavicius, G., & Tuzhilin, A. (2011). Context-aware recommender systems.
In Recommender systems handbook (pp. 217–253). Springer.

Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules
between sets of items in large databases. In Acm sigmod record (Vol. 22,
pp. 207–216).

Amatriain, X., Jaimes, A., Oliver, N., & Pujol, J. M. (2011). Data mining
methods for recommender systems. In Recommender systems handbook
(pp. 39–71).

Andric, A., & Haus, G. (2006). Automatic playlist generation based on tracking
user’s listening habits. Multimedia Tools Appl., 29 (2), 127–151.

Baccigalupo, C., & Plaza, E. (2006). Case-based sequential ordering of songs for
playlist recommendation. Advances in Case-Based Reasoning , 286–300.

Balkwill, L.-L., & Thompson, W. F. (1999). A cross-cultural investigation of
the perception of emotion in music: Psychophysical and cultural cues. ,
17 (1), 43–64. doi: 10.2307/40285811

Bell, R., Koren, Y., & Volinsky, C. (2009, 08). Matrix factorization techniques
for recommender systems. Computer , 42 , 30-37.

Bergmann, R. (1991, 01). An introduction to case-based reasoning. , 6 .
Blei, D. (2012, 4). Probabilistic topic models. , 55 , 77-84.
Blei, D., Ng, A., & Jordan, M. (2003, 3). Latent dirichlet allocation. , 3 ,

993-1022.
Bogdanov, D., Haro, M., Fuhrmann, F., Gómez, E., & Herrera, P. (2010).

Content-based music recommendation based on user preference exam-

133

134 References

ples. In Womrad 2010 workshop on music recommendation and discovery
(p. 6).

Bogdanov, D., & Herrera, P. (2011, 01). How much metadata do we need in
music recommendation? a subjective evaluation using preference sets. In
(p. 97-102).

Bollen, D., Knijnenburg, B. P., Willemsen, M. C., & Graus, M. (2010). Un-
derstanding choice overload in recommender systems. In Proceedings of
the fourth ACM conference on recommender systems - RecSys 1́0. ACM
Press.

Bonnin, G., & Jannach, D. (2013). A comparison of playlist generation strategies
for music recommendation and a new baseline scheme. In Workshops at
the twenty-seventh aaai conference on artificial intelligence.

Bonnin, G., & Jannach, D. (2014). Automated generation of music playlists:
Survey and experiments. ACM Comput. Surv., 47 (2), 26:1–26:35.

Borràs, J., Moreno, A., & Valls, A. (2017, Nov 01). Diversification of recommen-
dations through semantic clustering. Multimedia Tools and Applications,
76 (22), 24165–24201.

Braunhofer, M., Kaminskas, M., & Ricci, F. (2013). Location-aware music
recommendation. IJMIR, 2 (1), 31–44.

Bridge, D. G., Göker, M. H., McGinty, L., & Smyth, B. (2005). Case-based
recommender systems. Knowledge Eng. Review , 20 (3), 315–320.

Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User
modeling and user-adapted interaction, 12 (4), 331–370.

Burke, R. D. (2004). Hybrid recommender systems with case-based components.
In Advances in case-based reasoning, 7th european conference, ECCBR
2004, madrid, spain, august 30 - september 2, 2004, proceedings (pp. 91–
105).

Byrd, D., & Crawford, T. (2002, March). Problems of music information re-
trieval in the real world. Inf. Process. Manage., 38 (2), 249–272.

Campos, R., Dias, G., Jorge, A. M., & Nunes, C. (2017). Identifying top relevant
dates for implicit time sensitive queries. Inf. Retr. Journal , 20 (4), 363–
398.

Casey, M. A., Veltkamp, R. C., Goto, M., Leman, M., Rhodes, C., & Slaney,
M. (2008). Content-based music information retrieval: Current directions
and future challenges. Proceedings of the IEEE , 96 (4), 668–696.

Castells, P., Hurley, N. J., & Vargas, S. (2015). Novelty and diversity in
recommender systems. In Recommender systems handbook (pp. 881–918).

Castells, P., Wang, J., Lara, R., & Zhang, D. (2011). Workshop on novelty and
diversity in recommender systems-divers 2011. In Proceedings of the fifth
acm conference on recommender systems (pp. 393–394).

Cavique, L. (2007). A scalable algorithm for the market basket analysis. Journal
of Retailing and Consumer Services, 14 (6), 400 - 407. (Data Mining
Applications in Retailing and Consumer Services)

Celma, Ò. (2010). Music recommendation and discovery. Springer Berlin Hei-
delberg.

Celma, Ò., & Cano, P. (2008). From hits to niches? In Proceedings of the 2nd
KDD workshop on large-scale recommender systems and the netflix prize
competition - NETFLIX 0́8. ACM Press.

Celma, Ò., & Herrera, P. (2008). A new approach to evaluating novel recom-
mendations. In Proceedings of the 2008 ACM conference on recommender

References 135

systems - RecSys 0́8. ACM Press.
Celma, Ò., Herrera, P., & Serra, X. (2006). Bridging the music semantic gap.
Celma, Ò., & Lamere, P. (2011, oct). If you like radiohead, you might like this

article. AI Magazine, 32 (3), 57.
Chen, Y.-L., Tang, K., Shen, R.-J., & Hu, Y.-H. (2005). Market basket analysis

in a multiple store environment. Decision Support Systems, 40 (2), 339 -
354.

Christidis, K., Apostolou, D., & Mentzas, G. (2010). Exploring customer pref-
erences with probabilistic topics models.

Cremonesi, P. (2009). Top-n recommendations on unpopular items with con-
textual knowledge..

Cremonesi, P., Koren, Y., & Turrin, R. (2010). Performance of recommender
algorithms on top-n recommendation tasks. In Proceedings of the fourth
acm conference on recommender systems (pp. 39–46). New York, NY,
USA: ACM.

Cunningham, S. J., Bainbridge, D., & Falconer, A. (2006). ’more of an art
than a science’: Supporting the creation of playlists and mixes. In IS-
MIR 2006, 7th international conference on music information retrieval,
victoria, canada, 8-12 october 2006, proceedings (pp. 240–245).

Deshpande, M., & Karypis, G. (2004, jan). Item-based top-n recommendation
algorithms. ACM Trans. Inf. Syst., 22 (1), 143–177.

desJardins, M., Eaton, E., & Wagstaff, K. L. (2006). Learning user preferences
for sets of objects. In Proceedings of the 23rd international conference on
machine learning (pp. 273–280). New York, NY, USA: ACM.

Dey, A. K., Salber, D., Abowd, G. D., & Futakawa, M. (2000). Providing
architectural support for context-aware applications (Tech. Rep.).

Domingues, M. A., Gouyon, F., Jorge, A. M., Leal, J. P., Vinagre, J., Lemos, L.,
& Sordo, M. (2013, Mar 01). Combining usage and content in an online
recommendation system for music in the long tail. International Journal
of Multimedia Information Retrieval , 2 (1), 3–13.

Domingues, M. A., Jorge, A. M., & Soares, C. (2011). Using contextual
information as virtual items on top-n recommender systems. CoRR,
abs/1111.2948 .

Domingues, M. A., & Rezende, S. O. (2013, Oct). The impact of context-
aware recommender systems on music in the long tail. In 2013 brazilian
conference on intelligent systems (p. 119-124).

Ferwerda, B., & Schedl, M. (2014). Enhancing music recommender systems
with personality information and emotional states: A proposal. In Umap
workshops.

Ferwerda, B., Schedl, M., & Tkalcic, M. (2015). Personality & emotional
states: Understanding users’ music listening needs. In Posters, demos,
late-breaking results and workshop proceedings of the 23rd conference on
user modeling, adaptation, and personalization (UMAP 2015), dublin, ire-
land, june 29 - july 3, 2015.

Ferwerda, B., Tkalcic, M., & Schedl, M. (2017). Personality traits and music
genres: What do people prefer to listen to? In Proceedings of the 25th con-
ference on user modeling, adaptation and personalization, UMAP 2017,
bratislava, slovakia, july 09 - 12, 2017 (pp. 285–288).

Ferwerda, B., Vall, A., Tkalcic, M., & Schedl, M. (2016). Exploring music
diversity needs across countries. In Proceedings of the 2016 conference on

136 References

user modeling adaptation and personalization (pp. 287–288). New York,
NY, USA: ACM.

Ferwerda, B., Yang, E., Schedl, M., & Tkalcic, M. (2015). Personality traits
predict music taxonomy preferences. In Proceedings of the 33rd annual
acm conference extended abstracts on human factors in computing systems
(pp. 2241–2246). New York, NY, USA: ACM.

Finnie, G. R., & Sun, Z. (2002). Similarity and metrics in case-based reasoning.
Int. J. Intell. Syst., 17 (3), 273–287.

Flexer, A., Schnitzer, D., Gasser, M., & Widmer, G. (2008). Playlist generation
using start and end songs. In ISMIR 2008, 9th international conference
on music information retrieval, drexel university, philadelphia, pa, usa,
september 14-18, 2008 (pp. 173–178).

Gatzioura, A. (2013, 06). Design and implementation of a customer personalized
recommender system.

Gatzioura, A., Jorge, A. M., Sànchez-Marrè, M., & Vinagre, J. (2018). A hybrid
recommendation algorithm for improving automatic playlist continuation.
Cognitive Computation, Special Issue on: Bridging Cognitive Models and
Recommender Systems.

Gatzioura, A., & Sànchez-Marrè, M. (2015). A case-based recommendation
approach for market basket data. IEEE Intelligent Systems, 30 (1), 20–
27.

Gatzioura, A., & Sànchez-Marrè, M. (2017a). A case-based reasoning framework
for music playlist recommendations. In 4th ieee international conference
on control, decision and information technologies, codit 2017, barcelona,
spain, april 5-7, 2017 (pp. 242–247).

Gatzioura, A., & Sànchez-Marrè, M. (2017b). Using contextual information
in music playlist recommendations. In Recent advances in artificial intel-
ligence research and development - proceedings of the 20th international
conference of the catalan association for artificial intelligence (ccia 2017),
deltebre, terres de l’ebre, spain, october 25-27, 2017 (pp. 239–244).

Gatzioura, A., Sànchez-Marrè, M., & Jorge, A. M. (2018). A study on contextual
influences on automatic playlist continuation. In Proceedings of the 21th
international conference of the catalan association for artificial intelligence
(ccia 2018), roses, spain, october 8-10, 2018.

Ge, M., Delgado-Battenfeld, C., & Jannach, D. (2010). Beyond accuracy.
In Proceedings of the fourth ACM conference on recommender systems -
RecSys 1́0. ACM Press.

Gillhofer, M., & Schedl, M. (2015). Iron maiden while jogging, debussy for
dinner? In X. He, S. Luo, D. Tao, C. Xu, J. Yang, & M. A. Hasan
(Eds.), Multimedia modeling (pp. 380–391). Cham: Springer International
Publishing.

Golbeck, J., & Hansen, D. L. (2011). A framework for recommending collections.
In Proceedings of the workshop on novelty and diversity in recommender

systems, divers 2011, at the 5th ACM international conference on recom-
mender systems, recsys 2011, chicago, illinois, usa, 23 october 2011 (pp.
35–42).

Goldberg, D., Nichols, D. A., Oki, B. M., & Terry, D. B. (1992). Using col-
laborative filtering to weave an information tapestry. Commun. ACM ,
35 (12), 61–70.

References 137

Guerraoui, R., Merrer, E. L., Patra, R., & Vigouroux, J. (2017). Sequences,
items and latent links: Recommendation with consumed item packs.
CoRR, abs/1711.06100 .

Hansen, D. L., & Golbeck, J. (2009). Mixing it up: recommending collections
of items. In Proceedings of the 27th international conference on human
factors in computing systems, CHI 2009, boston, ma, usa, april 4-9, 2009
(pp. 1217–1226).

Haruechaiyasak, C., & Damrongrat, C. (2008). Article recommendation based
on a topic model for wikipedia selection for schools. In Digital libraries:
Universal and ubiquitous access to information, 11th international con-
ference on asian digital libraries, ICADL 2008, bali, indonesia, december
2-5, 2008. proceedings (pp. 339–342).

He, X., Zhang, H., Kan, M.-Y., & Chua, T.-S. (2016). Fast matrix factorization
for online recommendation with implicit feedback. In Proceedings of the
39th international acm sigir conference on research and development in
information retrieval (pp. 549–558). New York, NY, USA: ACM.

Herlocker, J., Konstan, J., Terveen, L., & Riedl, J. (2004). Evaluating collabo-
rative filtering recommender systems. ACM Transactions on Information
Systems (TOIS), 22 (1), 5–53.

Hofmann, T. (1999). Probabilistic latent semantic analysis. In Proceedings of the
fifteenth conference on uncertainty in artificial intelligence (pp. 289–296).
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Hofmann, T. (2001, Jan). Unsupervised learning by probabilistic latent semantic
analysis. Machine Learning , 42 (1), 177–196.

Huang, S. (2011). Designing utility-based recommender systems for e-commerce:
Evaluation of preference-elicitation methods. Electronic Commerce Re-
search and Applications, 10 (4), 398–407.

Interdonato, R., Romeo, S., Tagarelli, A., & Karypis, G. (2013). A versatile
graph-based approach to package recommendation. In 2013 IEEE 25th
international conference on tools with artificial intelligence, herndon, va,
usa, november 4-6, 2013 (pp. 857–864).

Iwata, T., & Sawada, H. (2013). Topic model for analyzing purchase data with
price information. Data Min. Knowl. Discov., 26 (3), 559–573.

Iwata, T., Watanabe, S., Yamada, T., & Ueda, N. (2009). Topic tracking model
for analyzing consumer purchase behavior. In IJCAI 2009, proceedings of
the 21st international joint conference on artificial intelligence, pasadena,
california, usa, july 11-17, 2009 (pp. 1427–1432).

Jannach, D., Lerche, L., & Kamehkhosh, I. (2015). Beyond ”hitting the hits”:
Generating coherent music playlist continuations with the right tracks.
In Proceedings of the 9th acm conference on recommender systems (pp.
187–194). New York, NY, USA: ACM.

Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Recommender
systems: An introduction. Cambridge Univ Pr.

Kamehkhosh, I., & Jannach, D. (2017). User perception of next-track music
recommendations. In Proceedings of the 25th conference on user model-
ing, adaptation and personalization (pp. 113–121). New York, NY, USA:
ACM.

Kaminskas, M., Fernández-Tob́ıas, I., Ricci, F., & Cantador, I. (2012).
Knowledge-based music retrieval for places of interest. In Proceedings
of the second international ACM workshop on music information retrieval

138 References

with user-centered and multimodal strategies, MIRUM ’12, nara, japan,
october 29 - november 02, 2012 (pp. 19–24).

Kaminskas, M., & Ricci, F. (2012, may). Contextual music information retrieval
and recommendation: State of the art and challenges. Computer Science
Review , 6 (2-3), 89–119.

Kaminskas, M., & Ricci, F. (2017). Emotion-based matching of music to places.
In Emotions and personality in personalized services - models, evaluation
and applications (pp. 287–310).

Kim, Y. E., Schmidt, E. M., Migneco, R., Morton, O. G., Richardson, P., Scott,
J., . . . Turnbull, D. (2010). Emotion recognition: a state of the art
review. In 11th international society for music information and retrieval
conference.

Knees, P., & Schedl, M. (2013, dec). A survey of music similarity and recom-
mendation from music context data. ACM Transactions on Multimedia
Computing, Communications, and Applications, 10 (1), 1–21.

Kolodner, J. L. (1992). An introduction to case-based reasoning. Artif. Intell.
Rev., 6 (1), 3–34.

Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., &
Riedl, J. (1997). Grouplens: Applying collaborative filtering to usenet
news. Commun. ACM , 40 (3), 77–87.

Konstan, J. A., & Riedl, J. (2012, Apr 01). Recommender systems: from algo-
rithms to user experience. User Modeling and User-Adapted Interaction,
22 (1), 101–123.

Krestel, R., Fankhauser, P., & Nejdl, W. (2009). Latent dirichlet allocation
for tag recommendation. In Proceedings of the 2009 ACM conference on
recommender systems, recsys 2009, new york, ny, usa, october 23-25, 2009
(pp. 61–68).

Lamere, P. (2008, jun). Social tagging and music information retrieval. Journal
of New Music Research, 37 (2), 101–114.

Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent
semantic analysis. Discourse Processes, 25 (2-3), 259-284.

Leake, D. B. (1996). Cbr in context : The present and future..
Lee, K. (2014). Using dynamically promoted experts for music recommenda-

tion.
Lee, K., & Lee, K. (2011). My head is your tail: applying link analysis on

long-tailed music listening behavior for music recommendation. In Pro-
ceedings of the 2011 ACM conference on recommender systems, recsys
2011, chicago, il, usa, october 23-27, 2011 (pp. 213–220).

Levy, M., & Bosteels, K. (2010). Music recommendation and the long tail. In
Womrad 2010 workshop on music recommendation and discovery.

Liao, T. W., Zhang, Z., & Mount, C. (1998). Similarity measures for retrieval
in case-based reasoning systems. Applied Artificial Intelligence, 12 (4),
267–288.

Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: Item-
to-item collaborative filtering. IEEE Internet Computing , 7 (1), 76–80.

Liu, N. H., & Hsieh, S. J. (2009). Intelligent music playlist recommendation
based on user daily behavior and music content. Advances in Multimedia
Information ProcessingPCM 2009 , 671–683.

Logan, B. (2004). Music recommendation from song sets. In ISMIR 2004, 5th
international conference on music information retrieval, barcelona, spain,

References 139

october 10-14, 2004, proceedings.
López de Mántaras, R. (2001). Case-based reasoning. In Machine learning and

its applications, advanced lectures (pp. 127–145).
Lopez De Mantaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw,

S., . . . others (2005). Retrieval, reuse, revision and retention in case-based
reasoning. The Knowledge Engineering Review , 20 (03), 215–240.

Lops, P., de Gemmis, M., & Semeraro, G. (2010, oct). Content-based recom-
mender systems: State of the art and trends. In Recommender systems
handbook (pp. 73–105). Springer US.

Lorenzi, F., & Ricci, F. (2005). Case-based recommender systems: A unifying
view. In Lecture notes in computer science (pp. 89–113). Springer Berlin
Heidelberg.

Maillet, F., Eck, D., Desjardins, G., & Lamere, P. (2009). Steerable playlist
generation by learning song similarity from radio station playlists. In Pro-
ceedings of the 10th international society for music information retrieval
conference, ISMIR 2009, kobe international conference center, kobe, japan,
october 26-30, 2009 (pp. 345–350).

McFee, B., & Lanckriet, G. R. G. (2011). The natural language of playlists.
In Proceedings of the 12th international society for music information re-
trieval conference, ISMIR 2011, miami, florida, usa, october 24-28, 2011
(pp. 537–542).

Melville, P., & Sindhwani, V. (2010). Recommender systems. In Encyclopedia
of machine learning (pp. 829–838).

Mild, A., & Reutterer, T. (2002). An improved collaborative filtering approach
for predicting cross-category purchases based on binary market basket
data..

Morrison, S. J., & Demorest, S. M. (2009). Cultural constraints on music
perception and cognition. In J. Y. Chiao (Ed.), Cultural neuroscience:
Cultural influences on brain function (Vol. 178, p. 67 - 77). Elsevier.

Murakami, T., Mori, K., & Orihara, R. (2008). Metrics for evaluating the
serendipity of recommendation lists. In K. Satoh, A. Inokuchi, K. Nagao,
& T. Kawamura (Eds.), New frontiers in artificial intelligence (pp. 40–46).
Berlin, Heidelberg: Springer Berlin Heidelberg.

Pachet, F., & Roy, P. (1999). Automatic generation of music programs. In Prin-
ciples and practice of constraint programming - cp’99, 5th international
conference, alexandria, virginia, usa, october 11-14, 1999, proceedings (pp.
331–345).

Park, Y.-J., & Tuzhilin, A. (2008). The long tail of recommender systems
and how to leverage it. In Proceedings of the 2008 ACM conference on
recommender systems - RecSys 0́8. ACM Press.

Pichl, M., Zangerle, E., & Specht, G. (2015). Towards a context-aware music
recommendation approach: What is hidden in the playlist name? In
IEEE international conference on data mining workshop, ICDMW 2015,
atlantic city, nj, usa, november 14-17, 2015 (pp. 1360–1365).

Prasad, B. (2003). Intelligent techniques for e-commerce. J. Electron. Commerce
Res., 4 (2), 65–71.

Ragno, R., Burges, C. J. C., & Herley, C. (2005). Inferring similarity between
music objects with application to playlist generation. Proceedings of the
7th ACM SIGMM international workshop on Multimedia information re-
trieval MIR 05 , 73–80.

140 References

Rentfrow, P., & Gosling, S. (2003, 07). The do re mi’s of everyday life: The
structure and personality correlates of music preferences. , 84 , 1236-56.

Resnick, P., Iacovou, N., Sushak, M., & Bergstrom, P. (1994). Grouplens – an
open architecture for collaborative filtering of netnews. In Proceedings of
the computer supported collaborative work conference (acm conference).

Ricci, F. (2010). Mobile recommender systems. J. of IT & Tourism, 12 (3),
205–231.

Ricci, F., Arslan, B., Mirzadeh, N., & Venturini, A. (2002). ITR: A case-
based travel advisory system. In Advances in case-based reasoning, 6th
european conference, ECCBR 2002 aberdeen, scotland, uk, september 4-7,
2002, proceedings (pp. 613–627).

Ricci, F., Cavada, D., Mirzadeh, N., & Venturini, A. (2006). Case-based travel
recommendations. Destination Recommendation Systems: Behavioural
Foundations and Applications, 67–93.

Ricci, F., Rokach, L., & Shapira, B. (2010, oct). Introduction to recom-
mender systems handbook. In Recommender systems handbook (pp. 1–35).
Springer US.

Ricci, F., & Werthner, H. (2001, 01). Case base querying for travel planning
recommendation. , 4 , 215-226.

Richter, M., & Weber, R. (2013). Case-based reasoning: a textbook.
Sánchez, D., Batet, M., Isern, D., & Valls, A. (2012). Ontology-based semantic

similarity: A new feature-based approach. Expert Syst. Appl., 39 (9), 7718–
7728.

Schafer, J., Konstan, J., & Riedl, J. (2001). E-commerce recommendation
applications. Data mining and knowledge discovery , 5 (1), 115–153.

Schedl, M. (2016). The lfm-1b dataset for music retrieval and recommendation.
In Icmr.

Schedl, M. (2017, Mar 01). Investigating country-specific music preferences and
music recommendation algorithms with the lfm-1b dataset. International
Journal of Multimedia Information Retrieval , 6 (1), 71–84.

Schedl, M., Knees, P., & Gouyon, F. (2017). New paths in music recommender
systems research. In Proceedings of the eleventh ACM conference on rec-
ommender systems, recsys 2017, como, italy, august 27-31, 2017 (pp.
392–393).

Schedl, M., Knees, P., McFee, B., Bogdanov, D., & Kaminskas, M. (2015).
Music recommender systems. In Recommender systems handbook (pp.
453–492).

Schedl, M., Yang, Y., & Herrera-Boyer, P. (2017). Introduction to intelligent
music systems and applications. ACM TIST , 8 (2), 17:1–17:8.

Schedl, M., Zamani, H., Chen, C., Deldjoo, Y., & Elahi, M. (2017). Current
challenges and visions in music recommender systems research. CoRR,
abs/1710.03208 .

Schilit, B., Adams, N., & Want, R. (1994, Dec). Context-aware computing
applications. In 1994 first workshop on mobile computing systems and
applications (p. 85-90).

Shao, B., Ogihara, M., Wang, D., & Li, T. (2009). Music recommendation
based on acoustic features and user access patterns. IEEE Trans. Audio,
Speech & Language Processing , 17 (8), 1602–1611.

Shi, L. (2013). Trading-off among accuracy, similarity, diversity, and long-
tail. In Proceedings of the 7th ACM conference on recommender systems

References 141

- RecSys 1́3. ACM Press.
Si, X., & Sun, M. (2009). Tag-lda for scalable real-time tag recommendation. ,

6 (1), 23–31.
Slaney, M., & White, W. (2006). Measuring playlist diversity for recommenda-

tion systems. In Proceedings of the 1st acm workshop on audio and music
computing multimedia (pp. 77–82). New York, NY, USA: ACM.

Smyth, B., & McClave, P. (2001). Similarity vs. diversity. Case-Based Reasoning
Research and Development , 347–361.

Steyvers, M., & Griffiths, T. (2007). Probabilistic topic models. Handbook of
latent semantic analysis, 427 (7), 424–440.

Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering
techniques. Adv. Artificial Intellegence, 2009 , 421425:1–421425:19.

Takács, G., Pilászy, I., Németh, B., & Tikk, D. (2008). Matrix factorization and
neighbor based algorithms for the netflix prize problem. In Proceedings
of the 2008 ACM conference on recommender systems - RecSys 0́8. ACM
Press.

Vall, A., Eghbal-zadeh, H., Dorfer, M., Schedl, M., & Widmer, G. (2017). Music
playlist continuation by learning from hand-curated examples and song
features: Alleviating the cold-start problem for rare and out-of-set songs.
In Proceedings of the 2nd workshop on deep learning for recommender
systems, dlrs@recsys 2017, como, italy, august 27, 2017 (pp. 46–54).

Vall, A., Quadrana, M., Schedl, M., Widmer, G., & Cremonesi, P. (2017). The
importance of song context in music playlists. In Proceedings of the poster
track of the 11th ACM conference on recommender systems (recsys 2017),
como, italy, august 28, 2017.

Vargas, S., & Castells, P. (2011). Rank and relevance in novelty and diver-
sity metrics for recommender systems. In Proceedings of the fifth ACM
conference on recommender systems - RecSys 1́1. ACM Press.

Vinagre, J. (2016, 06). Scalable adaptive collaborative filtering.
Vinagre, J., Jorge, A. M., & Gama, J. (2014). Fast incremental matrix factoriza-

tion for recommendation with positive-only feedback. In User modeling,
adaptation, and personalization - 22nd international conference, UMAP
2014, aalborg, denmark, july 7-11, 2014. proceedings (pp. 459–470).

Wang, M., Kawamura, T., Sei, Y., Nakagawa, H., Tahara, Y., & Ohsuga, A.
(2013). Context-aware music recommendation with serendipity using se-
mantic relations. In Semantic technology - third joint international con-
ference, JIST 2013, seoul, south korea, november 28-30, 2013, revised
selected papers (pp. 17–32).

Xie, M., Lakshmanan, L. V. S., & Wood, P. T. (2012). Composite recom-
mendations: from items to packages. Frontiers of Computer Science, 6 ,
264-277.

Xiong, N., & Funk, P. (2006). Building similarity metrics reflecting utility in
case-based reasoning. Journal of Intelligent and Fuzzy Systems, 17 (4),
407–416.

Yu, C., Lakshmanan, L., & Amer-Yahia, S. (2009). It takes variety to make
a world: Diversification in recommender systems. In Proceedings of the
12th international conference on extending database technology: Advances
in database technology (pp. 368–378). New York, NY, USA: ACM.

Zhang, M., & Hurley, N. (2008). Avoiding monotony. In Proceedings of the 2008
ACM conference on recommender systems - RecSys 0́8. ACM Press.

142 References

Zhang, Y. C., Séaghdha, D. Ó., Quercia, D., & Jambor, T. (2012). Auralist. In
Proceedings of the fifth ACM international conference on web search and
data mining - WSDM 1́2. ACM Press.

Ziegler, C.-N., McNee, S. M., Konstan, J. A., & Lausen, G. (2005). Improving
recommendation lists through topic diversification. In Proceedings of the
14th international conference on world wide web - WWW 0́5. ACM Press.

