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Abstract 

Peri-urban agriculture provides environmental, socio-economic functions and ecosystem services in the 

nearby urban areas. Nonetheless, crops grown in these areas are exposed to organic and inorganic 

contaminants from industrial emissions and road traffic, as well as the application of biosolids and the 

use of regenerated waters. 

In this regard, in the last years, there has been a growing concern about the presence of chemical 

contaminants in agricultural crops due to the evidence that plants are able to incorporate, translocate and 

accumulate them in their edible parts. Although the concentrations detected in food crops are generally 

low, little is known about the effects of these contaminants on human health. For this reason, field 

studies are necessary to properly evaluate their incorporation and potential risk to human health. 

Currently, there is no study that evaluates the exposure and presence of organic and inorganic 

contaminants simultaneously in agricultural crops in peri-urban areas. The few existing studies at field 

scale are based on the impact of regenerated water in agricultural crops, considering separately organic 

and inorganic contaminants. 

In this Thesis, it has been assessed the incorporation into plants in real field conditions of some trace 

elements and organic microcontaminants, chosen by their presence in the environment and their 

physicochemical properties. For this purpose, 4 agricultural parcels were selected located in the 

periurban area of Barcelona (NE Spain) and a rural agricultural plot far away from the periurban area, 

including different irrigation water quality and exposure to urban contamination. In this study, lettuce, 

tomato, cauliflower and beans were selected as a model plant (leaf, flower and fruit). 

The PhD dissertation is divided into six chapters. Chapter I gives an overview of the subject and presents 

the hypotheses and objectives of the PhD project. Chapter II assesses the occurrence of trace elements 

and organic microcontaminants in irrigation waters. Irrigation waters from peri-urban areas showed a 

higher abundance of the selected chemical contaminants than that water from the rural area. 

Nevertheless, none of the irrigation waters induced phytotoxic effects (seed germination, root 

elongation) or decrease crop productivity. Chapter III assesses the co-occurrence of these contaminants 

in soil and lettuce leaves, their bioaccumulation factors and how they affect lipid constituents and leaf 

sugars. The higher abundance of these contaminants in the irrigation waters and soils from the peri-

urban area had no impact on the chlorophyll, carbohydrates and lipid content of lettuce leaves. Chapter 

IV shows the occurrence of the chemical contaminants in the edible parts of different model crops 

(lettuce, tomato, cauliflower and broad beans) and estimates the human health risk associated with their 

consumption. The results obained show that human health risks associated were low and similar among 

crops grown in peri-urban and rural areas. Chapter V is devoted to the general discussion of three 

previous chapters, whereas Chapter VI presents the main conclusions of the Thesis. 
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Resum 

L'agricultura periurbana proporciona funcions ambientals, soci-econòmiques i serveis ecosistèmics a les 

zones urbanes properes. Malgrat això, els cultius conreats en aquestes zones estan exposats a 

contaminants orgànics i inorgànics procedents d’emissions industrials i del trànsit rodat, així com de 

l’aplicació de biosòlids i l’ús d’aigües regenerades.  

En aquest sentit, en els darrers anys, ha sorgit una preocupació creixent sobre la presència de 

contaminants químics en els cultius agrícoles degut a l'evidència de que les plantes poden incorporar-

los, translocar-los i acumular-los en les seves parts comestibles. Tot i que les concentracions detectades 

en els cultius alimentaris són generalment baixes, es coneix poc sobre els efectes d'aquests contaminants 

sobre la salut humana. Per aquest motiu, els estudis de camp són necessaris per avaluar adequadament 

la seva incorporació i el seu risc potencial per a la salut humana. Actualment no existeix cap estudi que 

avaluï l’exposició i presència de contaminats orgànics i inorgànics de manera simultània en cultius 

agrícoles de zones periurbanes. Els pocs estudis existents a escala de camp es basen en l’impacte 

d’aigües regenerades en cultius agrícoles, considerant de manera separada contaminats orgànics i 

inorgànics. 

En aquesta Tesi, s'ha avaluat la incorporació en les plantes en condicions de camp reals d'alguns 

elements traça i microcontaminants orgànics, seleccionats en funció de la seva presència en el medi 

ambient i les seves propietats fisicoquímiques. Amb aquesta finalitat, es varen seleccionar 4 parcel·les 

agrícoles situades a la zona periurbana de Barcelona (NE Espanya) i una parcel·la agrícola rural llunyana 

de la zona periurbana, incloent diferents qualitats d'aigua de reg i exposició a la contaminació urbana. 

Com a cultius objecte d’estudi es van seleccionar l’enciam, el tomàquet, coliflors i faves com a vegetals 

model (fulla, fruit i flor).  

La present Tesi Doctoral es divideix en sis capítols. En el capítol I s’ofereix una visió general de la 

temàtica de la Tesi i presenta les hipòtesis i objectius del projecte de doctorat. El Capítol II avalua la 

presència d’elements traça i microcontaminants orgànics en aigües de reg. Les aigües de reg de les zones 

periurbanes van mostrar una major abundància de contaminants químics seleccionats en relació a l'aigua 

de la zona rural. Malgrat això, cap de les aigües de reg va induir efectes fitotòxics (germinació de llavors, 

elongació de l'arrel) o minvar la productivitat del cultiu. El capítol III incideix en la coexistència 

d'aquests contaminants al sòl i a les fulles d’enciam, els seus factors de bioacumulació i com afecten als 

constituents lipídics i sucres de les fulles. La major abundància d'aquests contaminants en les aigües de 

reg i sòls de la zona periurbana no va alterar el contingut en clorofil·les, hidrats de carboni i lípids de 

fulles d’enciam. El capítol IV mostra la presència dels contaminants químics en la part comestible de 

diferents cultius model (enciam, tomàquet, coliflor i faves) i avalua el risc potencial per a la salut humana 

associat al seu consum. Els resultats obtinguts mostren que els riscos associats a la salut humana eren 

baixos i similars entre els cultius que creixen en les zones periurbana i rural. El capítol V està dedicat a 
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la discussió general dels tres capítols anteriors, i finalment el capítol VI presenta les principals 

conclusions de la tesi. 
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Resumen 

La agricultura periurbana proporciona funciones ambientales, socio-económicas y servicios 

ecosistémicos en las zonas urbanas cercanas. Sin embargo, los cultivos cultivados en estas zonas están 

expuestos a contaminantes orgánicos e inorgánicos procedentes de emisiones industriales y del tráfico 

rodado, así como de la aplicación de biosólidos y el uso de aguas regeneradas. 

En este sentido, en los últimos años, ha surgido una preocupación creciente sobre la presencia de 

contaminantes químicos en los cultivos agrícolas debido a la evidencia de que las plantas pueden 

incorporarlos, traslocarse los y acumularlos en sus partes comestibles. Aunque las concentraciones 

detectadas en los cultivos alimentarios son generalmente bajas, se conoce poco sobre los efectos de estos 

contaminantes sobre la salud humana. Por este motivo, los estudios de campo son necesarios para 

evaluar adecuadamente su incorporación y su riesgo potencial para la salud humana. Actualmente no 

existe ningún estudio que evalúe la exposición y presencia de contaminantes orgánicos e inorgánicos de 

manera simultánea en cultivos agrícolas de zonas periurbanas. Los pocos estudios existentes a escala de 

campo se basan en el impacto de aguas regeneradas en cultivos agrícolas, considerando de manera 

separada contaminados orgánicos e inorgánicos. 

En esta Tesis, se ha evaluado la incorporación en las plantas en condiciones de campo reales de algunos 

elementos traza y microcontaminantes orgánicos, seleccionados en función de su presencia en el medio 

ambiente y sus propiedades fisicoquímicas. Con este fin, se seleccionaron 4 parcelas agrícolas situadas 

en la zona periurbana de Barcelona (NE España) y una parcela agrícola rural alejada de la zona 

periurbana, incluyendo diferentes calidades de agua de riego y exposición a la contaminación urbana. 

Como cultivos objeto de estudio se seleccionaron la lechuga, el tomate, coliflores y habas como 

vegetales modelo (hoja, fruto y flor). 

La presente Tesis Doctoral se divide en seis capítulos. En el capítulo I se ofrece una visión general de 

la temática de la Tesis y presenta las hipótesis y objetivos del proyecto de doctorado. El Capítulo II 

evalúa la presencia de elementos traza y microcontaminantes orgánicos en aguas de riego. Las aguas de 

riego de las zonas periurbanas mostraron una mayor abundancia de contaminantes químicos 

seleccionados en relación al agua de la zona rural. Sin embargo, ninguna de las aguas de riego indujo 

efectos fitotóxicos (germinación de semillas, elongación de la raíz) o mermó la productividad del 

cultivo. El capítulo III incide en la coexistencia de estos contaminantes en el suelo y en las hojas de 

lechuga, sus factores de bioacumulación y cómo afectan a los constituyentes lipídicos y azúcares de las 

hojas. La mayor abundancia de estos contaminantes en las aguas de riego y suelos de la zona periurbana 

no alteró el contenido en clorofilas, hidratos de carbono y lípidos de hojas de lechuga. El capítulo IV 

muestra la presencia de los contaminantes químicos en la parte comestible de diferentes cultivos modelo 

(lechuga, tomate, coliflor y habas) y evalúa el riesgo potencial para la salud humana asociado a su 

consumo. Los resultados obtenidos muestran que los riesgos asociados a la salud humana eran bajos y 

similares entre los cultivos que crecen en las zonas periurbana y rural. El capítulo V está dedicado a la 
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discusión general de los tres capítulos anteriores, y finalmente el capítulo VI presenta las principales 

conclusiones de la tesis. 
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Motivations and structure of the Thesis 
 

Motivations  

In the recent years, a great progress has been achieved in the development of analytical technologies, 

which has allowed the identification and quantification of microcontaminants (organic and inorganic) 

in different environmental compartments at ultra-trace concentration levels. Several studies have 

demonstrated the incorporation of these compounds into crops irrigated with reclaimed waters or grown 

in polluted soils, as well as their incorporation and translocation into the edible parts of vegetables. 

Although a great progress has been made in assessing the mechanisms that may affect their 

incorporation, most of the existing studies on organic microcontaminangts (OMCs) have been 

performed in the laboratory or in greenhouses, which do not represent the common agricultural practices 

of commercial agriculture. Furthermore, in any case the simultaneous assessment of trace elements 

(TEs) and OMCs has been performed. Therefore, field studies are required to properly evaluate their 

incorporation and elaborate databases to assess the human health risk of the consumption of vegetables 

exposed to chemical contaminants. This figure  could be more pronounced in peri-urban agriculture, 

where vegetables are exposed to TEs and OMCs through industrial and domestic activities such as the 

use of wastewater treatment plants ( WWTP) effluents for irrigation, soil amending with biosolids, and 

vehicular emissions, among others (Calderón-Preciado et al., 2011; Singh and Kumar, 2006). 

Nevertheless, there is no available study in the literature that assesses the effect of that exposure in terms 

of agricultural productivity and human health implications. 

This Thesis assesses for the first time in Spain the exposure and uptake of 50 chemical contaminants 

(OMCs and TEs) by food crops under real field-scale conditions. Furthermore, this is the first study 

worldwide that evaluates the implications of the peri-urban agriculture exposition to chemical 

contaminants on crop productivity and human health. For that propose, 4 farm fields located in the peri-

urban area of the city of Barcelona and one rural site, outside the peri-urban area of influence, were 

selected. Whereas sites in peri-urban area were exposed to atmospheric pollution from the city and 

irrigated with reclaimed, ground or surface water, the rural site was less affected by urban pollution and 

irrigated with rainwater/groundwater. Lettuce, tomatoes, cauliflowers and broad beans were selected 

because of their importance in the agricultural production of the area. 

Structure of the Thesis 

The PhD dissertation is structured as follows. 

Chapter I provides an introductory overview of the concerns regarding plant uptake of contaminants in 

peri-urban horticulture, describes the relevant contaminants and their main sources as well as their 

known effects on plants and human health. Moreover, an overview of the selected compounds is 

detailed.  The hypotheses and the objectives of the Thesis are stated 
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The results obtained along this Thesis as well as their discussion are compiled in chapters III, IV and V.  

Chapter II describes the occurrence of the selected contaminants (34 OMCs and 16 TEs), conventional 

quality parameters and nutrients in the irrigation waters used in the sampling area, which includes four 

peri-urban and one rural farm plots. Water samples were taken during the growing period of some crops 

of interest (lettuce and tomato), between February and September of 2016. Moreover, the effects of the 

presence of contaminants were assessed through a seed germination test (Lactuca sativa L.) and the crop 

productivity (Lycopersicon esculentum Mill. cv. Bodar and Lactuca sativa L. cv. Batavia). Data 

analysis, including PCA on the entire dataset that classifies the irrigation waters, is included.  

This Chapter is based on the paper Margenat, A., Matamoros, V., Díez, S., Cañameras, N., Comas, J., 

& Bayona, J. M. (2017). Occurrence of chemical contaminants in peri-urban agricultural irrigation 

waters and assessment of their phytotoxicity and crop productivity. Science of the Total Environment, 

599–600, 1140–1148. 

In Chapter III, is provided the occurrence of these contaminants in soil and lettuce leaves grown in 

peri-urban and rural areas, and their bioaccumulation factors. Lettuce crops were sampled in two 

growing seasons, winter and summer, as they were planted in February-March and June of 2016 and 

harvested in May and June of 2016. 

The effects of the contaminants on the leaf constituents (e.g. chlorophyll, nitrate, lipid and carbohydrate 

contents) are also detailed and, finally, contains a PCA analysis that sheds light on the most relevant 

factors in the presence of contaminants in lettuce crops.  

This Chapter is based on the paper Margenat, A., Matamoros, V., Díez, S., Cañameras, N., Comas, J., 

& Bayona, J. M. (2018). Occurrence and bioaccumulation of chemical contaminants in lettuce grown in 

peri-urban horticulture. Science of the Total Environment, 637–638, 1166–1174.  

Chapter IV expands the study of the presence of the contaminants to the edible parts of different 

vegetables (lettuce, tomato, cauliflower and broad beans) grown in two peri-urban and one rural farm 

plots, and evaluates the potential risk of their consumption, individual and altogether, to human health. 

Statistical data analysis on the whole dataset is detailed.  

This Chapter is based on the paper under review Margenat, A., Matamoros, V., Díez, S., Cañameras, 

N., Comas, J., & Bayona, J. M. Occurrence and human health implications of chemical contaminants in 

vegetables grown in peri-urban agriculture. Environment International. 

Finally, a general discussion (Chapter V) and conclusions (Chapter VI) are included so as to provide 

an overview of the data obtained along the PhD. 
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 Chapter I: Introduction 

1.1 Contamination exposure in peri-urban agriculture 

1.1.1 Peri-urban agriculture 

Peri-urban agriculture, as well as urban agriculture, emerged due to the urban population expansion 

(UN-HABITAT, 2006). The movement of people towards cities has accelerated in the past 40 years, 

particularly in the less-developed regions. While in 1960 just one-third of the world population was 

living urban areas, half of it was urban in 2008 and it is expected that by 2050, it will reach two-thirds 

of the total population (FAO, 2011). Therefore, it is necessary to find solutions to guarantee the food 

supply to this population.  

Peri-urban agriculture is undertaken at the surrounding of urban areas. However, there is still no 

consensus on the definition of urban and peri-urban agriculture. One of the most widely used definition 

was established by the Organization for Economic Cooperation and Development (OECD) which 

defines peri-urban agriculture as the one that is being performed in a ratio of 20 km from the urban 

nucleus with more than 200.000 inhabitants and from 10 km of ratio from the cities between 50.000 and 

100.000 inhabitants (OCDE, 1979). 

Important productive sectors of urban and peri-urban agriculture include horticulture, livestock, fodder, 

milk and dairy production, aquaculture and agroforestry; where horticulture is its component and 

comprises vegetables, fruit crops and tubers, ornamentals, mushrooms and condiments. 

There are many advantages of peri-urban agriculture. First of all, the proximity to urban nucleus results 

in a decrease in transport cost and in the carbon footprint associated with long distance transport. 

Furthermore, availability of treated wastewater (TWW) of proper quality is guaranteed throughout the 

year and the availability of biosolids is also viable for use as organic amendments and fertilizers.  

Nonetheless, competition for resources with other urban sectors, uncertainty of land ownership and 

presence of diverse hazards derived from its proximity to urban areas (vehicle and industrial emissions, 

water and soil contamination), constitute some of its major threats (Montasell Dorda and Roda Noya, 

2003; Ortolo, 2017). In addition, it is important to notice that urban and peri-urban agriculture is exposed 

to different contamination sources (contamination originated from air, water, soil, and agricultural 

practices). 

1.1.2 Sources of contaminants 

Air 

One of the current risks of peri-urban agriculture is the proximity to sources of atmospheric pollution 

that threaten food production and quality.  The air pollutants can be emitted either from anthropogenic 

or natural sources (primary aerosols) and emitted directly or formed in the atmosphere (secondary 
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aerosols). Concerns have been raised as these pollutants have numerous impacts on the human health 

and environment (European Environment Agency, 2016). In this regard, Ortolo et al  (2017) classified 

the main urban air chemical pollutants in function of their role in the plant uptake (Figure 1.1).  

 

Figure 1.1 Classification of main air pollutants 

Not accumulated by plants 

Major air pollutants are not accumulated by plants such as O3 formed by photochemical reactions of 

precursor pollutants as NOx and volatile organic compounds (VOC) originated from traffic emissions. 

CO which is most due to incomplete combustion specially from vehicular exhaust, SOx emitted by 

volcanos and industrial processes, gaseous nitrogen compounds from chemical industrial emissions or 

emissions from fertilizer application and CH4 produced principally in agriculture (mostly from ruminant 

animals), followed by waste management and energy production (European Environment Agency, 

2016). However, these contaminants can potentially affect food crops altering their plant growth 

(Pearson and Stewart, 1993), causing foliar chlorosis or necrosis (Markert et al., 2003) or cause the 

stomata to close and consequently reduction of the transpiration water loss (Barnaby and Ziska, 2012), 

among others effects. 

Transport vector of pollutants 

Particulate matter (PM) consists on a mixture of solid particles and liquid droplets suspended in the air 

made of organic and inorganic substances, which can serve as a transport vector of elements. They are 

either directly emitted (e.g. dust, fuel burn) or indirectly formed (e.g. when gaseous pollutants previously 

emitted to air turn into particulate matter) and are classified into three main categories depending on 

their size: PM10 (2.5-10 µm), PM2.5 (mainly formed aerosols) and PM0.1 (ultra-fine particles). PM can 

cover plant’s leave and reduce light penetration, blocking the opening of stomata. Also, bounded to 
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organic pollutant can acquire lipophilic nature and, therefore, enter the wax layer that covers the leaves 

and young twigs (Janhäll, 2015). 

Relevant atmospheric pollutants in peri-urban regions 

Dioxins and furans 

Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are by-

products produced unintentionally in industrial processes involving chlorine (e.g. waste incineration, 

chemical and pesticide manufacturing). They can be taken up by the plant’s leaves in the vapor phase, 

via stomata and the wax layer, whilst the particulate phase can be deposited on leaves (Chrostowski and 

Foster, 1996; Dopico and Gómez, 2015). Dioxins are accumulated in plants, but the risk occurs via 

meat/dairy products consumption due to magnification along the trophic chain. 

Heavy metals 

Heavy metals can be found naturally in the environment, in soils, rocks, sediments, waters and 

microorganisms. Some of the heavy metals are essential nutrients at low concentrations but most of 

them become toxic at large concentrations. Moreover, heavy metals are persistent in the environment 

and can be mobilized between different environmental compartments, but they cannot be biodegraded 

(Ortolo, 2017). The main contaminants being relevant for urban atmospheric pollution risk assessment 

are cadmium (released through mining and smelting, phosphate fertilizers and various industrial uses 

and it is also correlated to traffic exposure as added to fuels as preservatives), copper (break wear, 

automobile emissions, soil and coal via inhalation, fertilizers), lead (the remaining emissions are from 

the industry sector) and mercury (breakdown of minerals in rocks and soil, human activities such as 

fertilizers, fungicides and municipal solid waste and industrial wastewater). 

Polycyclic aromatic hydrocarbons (PAHs) 

PAHs are found in the atmosphere mainly as aerosols, but naphthalene and its derivatives occur 

depending on temperature in the gas phase. They are persistent and widespread organic pollutants in the 

environment, whose concern is related to the human health impact since they are carcinogenic, 

mutagenic and teratogenic. A marginal contribution can be associated to a natural origin such as fires or 

volcanoes, but the principal sources are anthropogenic and include motor vehicles, stationary power 

plants and domestic as well as deliberate biomass burning (Holman, 1999). 

Water 

Reclaimed water 

Overall, the 70% of global freshwater withdrawals are used for agriculture and this figure can increase 

up to 90% in underdeveloped countries (UN-WWAP, 2015). The agricultural production in arid and 

semiarid countries relies on irrigation, especially during the dry season. On the Mediterranean coast, 
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available surface or groundwater resources suitable for irrigation are insufficient and sometimes of low 

quality (high content of salts) to sustain agriculture demands. Therefore, wastewater reuse has become 

an effective solution to overcome this issue. 

The reclaimed water can be used indirectly if the TWW is released to a waterway (river, canal. stream…) 

from where it will be taken and used later by farmers; or directly when the TWW is used directly without 

mixing with other water bodies and distributed by pipeline networks. 

There are several countries that actively apply reclaimed water in agricultural irrigation, including Israel, 

USA, Mexico and Spain (Figure 1.2) (Jiménez and Asano, 2008). Spain is the fifth country to use higher 

volumes of reclaimed water in irrigation and the fifteenth if the data is given in volume per million 

capita.  

 

Figure 1.2. Countries that use major volumes of TWW per in-habitant for agricultural irrigation (Jiménez and Asano, 
2008) 

Regarding to Catalonia, around 70% of the water resources are used for agriculture. However, in 2015 

only 30 hm3 of the 700 hm3 of WWTPs releases were reused (ACA, 2016). Moreover, only 7% of this 

reclaimed water was used for agricultural uses (Figure 1.3). 

 

Figure 1.3. Percentages of reuses of regenerated water in Catalonia (ACA, 2016) 
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Legislation 

In Spain, Royal Decree 1620 of 2007 provides the legal framework for the reuse of TWW based on the 

final use, taking as fundamental criteria the health risk. The five types of uses of regenerated water 

recognized are: 1) urban (green areas, street cleaning, fires and car wash), 2) agricultural (irrigation and 

aquaculture), 3) recreational (field irrigation of golf, ponds, ornamental water flow with forbidden 

access), 4) industrial (process and cleaning waters) and 5) environmental (recharge of aquifers, forestry, 

maintenance of minimum levels).  

Several quality criteria have been established for reclaimed water according to the fate or use, as well 

as some controls to ensure it does not pose health risks. These are intestinal nematode eggs, Escherichia 

coli, suspended solids and turbidity; for which there is a maximum admissible value according to the 

final use. In the case of the agricultural use of reclaimed water, the Decree includes the maximum levels 

(mg L-1) permitted for some metals and metalloids, but although it refers to the organic priority 

pollutants listed in the Water Framework Directive (2000/60/EC), no maximum level is specified. 

Advantages and threats of wastewater reuse 

Using TWW for irrigation not only provides crops the necessary water to growth, but also improves soil 

conditions due to the presence of nutrients, micronutrients, and organic matter that remain in wastewater 

after treatment (Table 1.1). Nevertheless, one of the major concerns regarding the use of reclaimed water 

in agriculture is crop exposure to contaminants.  

Table 1.1 Advantages and risks associated with the use of reclaimed water (Colon and Toor, 2016) 

Benefits Risks 

Reliable and economic water source  

Improvement of soil conditions  

Reduced use of fertilizers 

Presence of salts 

Presence of biohazards* 

Presence of contaminants  

Excess of nutrients  

*Bacteria, viruses, helminths, etc... 

 

Reliable and economic water source. Its availability is guaranteed not being subject to the variability of 

climatic conditions. In addition, the cost of producing regenerated water is lower than that of 

desalination. 

Improvement of soil conditions. They are improved due to the presence of nutrients, micronutrients and 

organic matter remaining in TWW after treatment (Chen et al., 2013). In addition to the two primary 

nutrients (nitrogen and phosphorus), reclaimed water also provides micronutrients required by plants 

such as iron, manganese, zinc, copper, molybdenum, boron, nickel and cobalt (Bedbabis et al., 2014; 

Lubello et al., 2004; Qian and Mecham, 2005). 
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Reduced use of fertilizers. Reclaimed water can serve as a reserve of essential nutrients for the growth 

of plants, which are nitrogen, phosphorus, potassium and some micronutrients. Nevertheless, it can 

cause many problems, such as nutritional imbalances and groundwater contamination by nitrate 

(Candela et al., 2007). Total nitrogen concentration in secondary and tertiary effluents from WWTPs 

are, typically, around 10-20 mg·L-1 (Lubello et al., 2004; Pedrero et al., 2010). Unless specific treatment 

processes (nitrification / denitrification) are used, nitrogenous compounds are not eliminated during the 

water reclamation treatment. Therefore, reclaimed water can provide a significant portion of the nutrient 

demand and reduce the need of fertilizers in the production of crops (Chen et al., 2013). In addition, 

nitrogen excess can cause adverse effects on plants, such as excessive vegetative growth, delays in 

maturation or decrease in food quality (Chen et al., 2013). 

Presence of salts. Salinity in reclaimed water is approximately 1.5-2 times higher than in tap water, so 

it can affect the quality of the soil and the growth of plants (Chen et al., 2013). It could damage the plant 

in several ways: 1) it makes difficult the absorption of water and nutrients from the roots (osmotic stress) 

and 2) the constant accumulation of sodium ions in plant tissues inhibits essential cellular processes (e.g. 

photosynthesis) (Jorge et al., 2016). 

Presence of heavy metals. Conventional wastewater treatment processes effectively eliminate the 

presence of heavy metals (Qdais and Moussa, 2004). As a result, its presence in reclaimed water is 

largely insignificant and the concentrations are comparable to the levels found in fresh water. However, 

heavy metal pollution is significant in peri-urban areas due to industrial activities and the use of fossil 

fuels (Nabulo et al., 2010). The plant uptake of heavy metals could reduce the productivity of crops by 

affecting various plant physiological processes, including seed germination, plant growth and 

photosynthesis (Abbas et al., 2015). 

Organic microcontaminants. OMCs can be classified into persistent organic pollutants (POPs) and 

emerging ones. POPs are toxic chemicals, resistant to degradation, that accumulate in tissues of living 

beings, can be transported to long-range distance from the source of contamination and generate toxic 

effects on human health and the environment. According to the Stockholm Convention, they can be 

divided into intentional (used or produced in an industrial process, e.g. pesticides, perfluorooctane 

sulfonate (PFOS), polybrominated diphenyl ethers (PBDE), pentachlorobenzene (PECB) and 

Hexabromobiphenyl (HBB) compounds) and unintentional (originated as a by-product of chemical 

reactions or processes, e.g. polychlorinated biphenyls (PCBs), PAHs, dioxins and furans). 

Emerging organic contaminants (EOCs) can be defined as contaminants that are not included in routine 

monitoring programs but that may be suggested for future regulations. This is due to the research on its 

toxicity, potential health effects and monitoring data on its presence in the different environmental 

compartments. This group includes surfactants, flame-retardants, personal care products (PCPs), 

gasoline additives and their degradation products, biocides, polar pesticides and their degradation 

products and other compounds suspected of causing endocrine disruption. 

Since conventional wastewater treatments have not been designed specifically to eliminate these 

chemical compounds, PCPs are widely detected in reclaimed water at concentration levels between 
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ng·L-1 and μg·L-1 (Calderón-Preciado et al., 2013; Chen et al., 2005). Consequently, the use of reclaimed 

water for agricultural irrigation results in the crop exposition to EOCs. 

Soil 

Soil pollution can cause numerous detrimental effects on ecosystems, human, plants and animal health. 

These harmful effects may come from direct contact with polluted soil or from contact to other 

resources, such as water or food, which has been grown or been in direct contact with polluted soil. 

Sources of soil contamination can be differentiated between non-site related causes and site related ones 

(Figure 1.4).  

 

 

 

Figure 1.4. Diagram of contaminant sources in the peri-urban environment (Meuser, 2010). 
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and from dust deposition, mainly caused by industrial emission. Whereas, linear sources include 

emission along traffic roads and utility networks pipes as well as flood occurrences in alluvial 
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Figure 1.5. Comparison of the total Pb concentrations in soils ranging from high-traffic urban roads to suburban 
low-traffic places in the city of Kampala (Nabulo et al., 2006) 

Numerous contaminant sources are related to traffic. In the past, leaded gasoline emitted Pb and despite 

the introduction of unleaded gasoline, still trace levels of Pb can be found in soils due to its persistence 

(Borchers et al., 2010). Residues from tyre and brake wear (Cr, Cu, Ni) can be released to the 

environment, as well as heavy metals from products of corrosion (Cd, Cu, Zn) and new contaminants 

based on current car technology  (catalytic filter systems) such as platinum and rhodium have arisen 

(Meuser, 2010). 

On the other hand, site related sources of contaminants comprise contaminants that have been used in a 

specific area (horticultural and agricultural activities) and contaminants generally site-specific such as 

contaminated derelict sites, heaps, etc. Finally, soils intended for horticultural purposes are potentially 

exposed to contaminants from fertilizers containing problematical mineral compounds and application 

of sewage sludge, wastewater and pesticides. 

 

Legislation 

In Spain, the Royal Decree 9/2005 (Ministerio de la Presidencia, 2005) establishes generic reference 

levels (GRL) for certain organic contaminants in soils for human health (industrial, urban or other uses) 

and ecosystems (agricultural and forest areas or the rest) protection. Additionally, the Regional Decree 

5/2017 (Generalitat de Catalunya, 2017) provides the GRL levels for metals and metalloids (Table 1.2). 
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Table 1.2. GRL values for metals and metalloids established in soils in Catalonia for protection of human health and 
ecosystems (Regional Decree 5/2017). 

 

GRL values for protection of human health 
(mg/kg soil dw) 

GRL values for protection of ecosystems 
(mg/kg soil dw) 

Element Industrial use  Urban use  Other uses1  
Agricultural and  

forest areas2 
The rest3      

Antimony (Sb) 30 * 6 ** 6 ** 6,0 6,0 

Arsenic (As) 30 ** 30 ** 30 ** 30 30 

Barium (Ba) 1.000 *** 880 500 500 270 

Beryllium (Be) 90 40 10 10 4,5 

Cadmium (Cd) 55 * 5,5 2,5 2,5 0,6 

Cobalt (Co) 90 45 25 ** 25 25 

Copper (Cu) 1.000 *** 310 90 90 55 

Chromium (III) 1.000 *** 1.000 *** 400 400 85 

Chromium (VI) 25 10 1 1,0 1,0 

Tin (Sn) 1.000 *** 1.000 *** 50 50 7 

Mercury (Hg) 30 * 3 2 ** 2,0 2,0 

Molybdenum (Mo) 70 * 7 * 3,5 ** 3,5 3,5 

Nickel (Ni) 1.000 *** 470 * 45 ** 45 45 

Lead (Pb) 550 * 60 ** 60 ** 60 60 

Selenium (Se) 70 * 7 * 0,7 0,7 0,5 

Thallium (Tl) 45 * 4,5 * 1,5 ** 1,5 1,5 

Vanadium (V) 1.000 *** 190 135 ** 135 135 

Zinc (Zn) 1.000 *** 650 * 170 ** 170 110 

1In the soils where NGRs are applicable to other uses in the protection of human health, the representative surface 

area of the soil will be that resulting from a homogeneous sample of the first 50 cm, once the natural coverage of 

the terrain has been removed (the first 5-10 cm); 2The NGR column defined as agricultural and forestry area will 

be applicable to all those soil subjected to agricultural fertilization practices. In this case the surface 

representative sample of the soil will be that resulting from a homogeneous sample of the first 50 cm, once the 

natural coverage of the ground (5-10 cm) has been removed; 3Reference levels: upper limit of the confidence 

interval of Percentile 95 calculated from natural soil samples. 
*In application of the criterion of contiguity; **in application of the reference values; ** in application of the 

reduction criterion 

 

Agricultural practices 

Agricultural practices might have influence in the chemical contamination of food crops. As mentioned 

previously, the use of TWW for irrigation, use of pesticides and fertilizers and soil amendments together 

with mulching may constitute an exposure to a wide group of chemicals.  

Mulching 

The use of field mulching alters the plant microenvironment in order to promote plant growth and thus, 

increases crop yield. It is useful as a water conservation technique, which increases water infiltration 

into the soil, reduces soil erosion and surface runoff (Prosdocimi et al., 2016). In addition, plastic 

mulching suppresses weed growth and reduces competition with weeds for water and nutrients 

(Abouziena et al., 2008). 
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The materials applied for mulching can be separated into three main categories: organic (e.g. plant 

products and animal wastes), inorganic (e.g. plastic and biodegradable plastic film) and special materials 

(e.g. sand and concrete, which are barely used) (Kader et al., 2017). 

The migration of heavy metals from soil to plant, influenced by mulching has been investigated up to a 

certain point. Li et al. (2010) reported that mulching (semi-transparent plastic film) affects the 

bioavailability of metals in soil as it slightly increased the bioconcentration factor (BCF) (calculated 

with the labile portion of metal) for most metals (by 16-58% for Fe, Zn and Cd).  

Pesticides 

Pesticide application is widespread in agricultural areas in order to provide plant protection. 

Approximately, from 1 to 2.5 million tons of active pesticides ingredients are applied worldwide every 

year. They are used to prevent crops from being harmed by disease and infestation and they comprise 

herbicides, fungicides, insecticides, acaricides, plant growth regulators and repellents. They are divided, 

based on the chemical constituents, into dithiocarbamates (7.1%), organophosphates (6.7%), phenoxy 

alkanoic acids (4.7), amides (4.2), bipyridyls (3.2), triazines (2.3), triazoles and diazoles (2%), 

carbamates (2%), urea derivatives (1.7%) and pyrethoids (1.3%) (Fenner et al., 2013a). 

Although their registration for use depends on their non-persistence in the environment after their period 

of use, their residues are found ubiquitously in the environment from ng·L-1 to low µg·L-1 and not only 

in ground water, but also in surface waters. Moreover, these substances are often harmful to non-target 

organisms through consumption of food crops (Li et al., 2010). Hence, the Regulation EC 396/2005 

established maximum residue levels (MRL) for residues of pesticides in foodstuff in Europe.  

Agricultural soil amendment 

Soil amendment includes organic and inorganic substances mixed into the soil in order to improve soil 

conditions regarding plant productivity. Organic amendments are usually derived from vegetables, by-

products from processing plants or mills or waste disposal plants (e.g. processed sewage sludge, compost 

and biosolids). However, the enhanced physical, chemical and biological properties of soil may promote 

the migration of heavy metals from soil to crops and thereby constitute a pathway of heavy metal 

accumulation in crops (Li et al., 2010). 

On the other hand, the use of biosolids is one of the major environmental concerns worldwide as they 

usually contain many toxicants such as heavy metals, pesticides, EOCs, toxic organics, hormone 

disruptors, detergents and various salts in addition to organic material.  Although the presence of 

nutrients improves the plant growth, a high accumulation of certain heavy metals (such as Cd, Pb and 

Ni) in seeds has also been reported (Singh and Agrawal, 2010). Therefore, it could serve as a pathway 

of entering toxic elements into the food chain (Alvarenga et al., 2015; Fijalkowski et al., 2017). 
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1.2 Plant uptake, translocation and metabolism 

1.2.1 Key physical-chemical properties of contaminants 

Plant uptake of contaminants is affected by physicochemical properties of contaminants, but also by soil 

and plant physiology (Dolliver et al., 2007; Khan et al., 2015; Paterson et al., 1990; Trapp and Legind, 

2011). The most relevant physical-chemical properties of contaminants and their implication in the plant 

uptake are detailed below. 

 Half-life (t1/2) 

It is defined as the time required by a certain amount of a compound to be reduced by half. Contaminants 

must be stable in the soil to be incorporated into the plant. Specifically, contaminants with half-life time 

greater than 14 days are more likely to be incorporated by plants (O’Connor, 1996). On the other hand, 

compounds with shorter half-lives may suffer degradation during treatment in WWTPs or in water 

supply networks.  

 Chemical Speciation 

Speciation is an important parameter to take into account during plant uptake of TEs. It refers to the 

distribution of an element amongst chemical species. It should be highlighted that the total metal 

contents in soil do not show the biogeochemical behaviour of a metal because its different chemical 

species have influence (Shahid et al., 2017b). For instance, chromium exhibits contrary effects among 

its different chemical forms, being Cr (III) and Cr (VI) the most stable and predominant in the nature. 

However, Cr (VI) is much more mobile in the soil and extremely toxic to organisms compared to Cr 

(III) as it is highly reactive with other elements (Amin et al., 2013). Meanwhile, Cr (III) is less toxic and 

mobile due to its precipitation at natural pH values (Shahid et al., 2017b). In addition, both chemical 

forms are incorporated through different mechanisms (active and passive) and Cr (VI) is known to 

interfere with the plant uptake of some essential nutrients due their ionic resemblance (e.g. K, Fe, Mn, 

Mg, Ca and P) (Gardea-Torresdey et al., 2004). 

 Solubility 

Solubility is the ability for a given substance (solute) to dissolve in a solvent and it is measured as the 

maximum amount of solute dissolved in a solvent at equilibrium. High water solubility compounds tend 

to have higher soil mobility and, hence, will be less likely to accumulate, bioaccumulate, volatilize and 

persist in the environment. Generally, the biodegradation and metabolization of these compounds by the 

microorganisms will be easier with respect to compounds with less solubility.  
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 Octanol-water partition coefficient (Kow) 

One of the factors that most affects the distribution and bioavailability of a compound is its 

hydrophobicity, or tendency to dissolve preferably in a lipid phase. Hydrophobicity is measured from 

the octanol-water partition (Kow) coefficient and represents the distribution of a compound between two 

immiscible solvents, water (polar solvent) and octanol (relatively non-polar, which represents lipids). 

 
𝐾𝑂𝑊 =

𝐶𝑜𝑐𝑡𝑎𝑛𝑜𝑙

𝐶𝑤𝑎𝑡𝑒𝑟
 (1.1) 

The translocation of organic contaminants in plants takes place with log Kow values between 1 and 4 

(Calderón-Preciado et al., 2013; McCutcheon and Schnoor, 2004), with the maximum translocation 

around log Kow of 1.78 (Briggs et al., 1982). The compounds that have log Kow values in this range, have 

a higher probability of being incorporated by the plants because they would be sufficiently hydrophobic 

to mobilize through the lipid bilayer of the cell membranes and would be sufficiently soluble in water 

to be transported. A high value of log Kow (> 4) represents a high hydrophobicity and would indicate 

that the compound can be fixed to the organic matter of the soil. Therefore, it would be barely 

bioaccesible and would rarely be incorporated by the plant via root. On the contrary, if the hydrophilic 

compound were not set in organic matter, it would have a great mobility to the ground so that it could 

contaminate the aquifer (Calderón-Preciado et al., 2013). 

However, the octanol-water partition coefficient is important only for neutral compounds, since ionic 

compounds are usually more polar and soluble in water and have been observed to behave differently 

(Trapp and Legind, 2011). Other mechanisms such as attraction or electrostatic repulsion, and ion trap 

may affect their accumulation in roots (Wu et al., 2015). Therefore, the incorporation of ionic 

compounds via root cannot be related to their hydrophobicity, the acidity constants of compounds and 

variations in the pH of the medium (Trapp, 2004, 2000) are more important. 

 Constant of acidity (pKa) 

As it has mentioned above this value is of great importance since most of the pharmaceutical compounds 

are ionizable substances (Boxall et al., 2012). Depending on the pH conditions, these compounds can 

be neutral, cationic, anionic or zwitterionic by having different functionalities in the same molecule and 

therefore, it will change its possible incorporation and translocation into the plants. 

 Soil-water partition coefficient (Kd) 

It is the constant distribution of an organic substance between the soil and the water in equilibrium at a 

given temperature.  

 
𝐾𝑑 =

𝐶𝑠𝑜𝑟𝑏𝑒𝑑 𝑖𝑛 𝑠𝑜𝑖𝑙

𝐶𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 𝑖𝑛 𝑤𝑎𝑡𝑒𝑟

(L·kg‐1)  (1.2) 
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 Organic carbon soil - water partition coefficient (Koc) 

It represents the capacity of a compound to be adsorbed by the organic matter present in the soil. 

Therefore, a high value of this parameter would indicate that the compound has a strong affinity to the 

soil and that a lower proportion of the compound can move through the interstitial water of the ground, 

so it would be unacceptable to be incorporated by the plants. 

 

 
𝐾𝑂𝐶 =

𝐾𝑑 · 100

% 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑐𝑎𝑟𝑏𝑜𝑛 𝑖𝑛 𝑠𝑜𝑖𝑙
(L · kg‐1) (1.3) 

 

 Henry constant (KH) 

It is the relation between the concentration of a compound in the air respect to its concentration in 

equilibrium in the water. Therefore, it indicates the volatilization potential of a compound from the 

water or soil. In addition, the higher the vapour pressure, the greater the potential of volatilization has a 

compound. 

 
𝐾𝐻 =

𝑣𝑎𝑝𝑜𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑖𝑛 𝑙𝑖𝑞𝑢𝑖𝑑

𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑠𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦
(Pa·m3·mol‐1 o atm·m3·mol‐1)  (1.4) 

 
𝐾𝐻′ =

𝐶𝑔𝑎𝑠 𝑝ℎ𝑎𝑠𝑒

𝐶𝑙𝑖𝑞𝑢𝑖𝑑 𝑝ℎ𝑎𝑠𝑒

(dimensionless) 
(1.5) 

Substances with KH'> 10-4 tend to move in the interstitial spaces of the soil, while with values of                

KH > 10-6 they move fundamentally in the water. Although the Henry constant is between these two 

values, the compound will be mobile in the air and in the water so that its potential for incorporation in 

plants is greater (Linde, 1994).    

 Octanol-air partition coefficient, Koa 

It is a measure of the distribution of a compound between the octanol and the gas phase. Octanol 

represents the tissue of plants and therefore, this parameter indicates the possible bioaccumulation of 

the compound in plants from the air. 

 
𝐾𝑂𝐴 =

𝐶𝑜𝑐𝑡𝑎𝑛𝑜𝑙

𝐶𝑎𝑖𝑟

 (1.6) 

 

Aside from the specific factors of the physicochemical properties of the compound, there are also factors 

that depend on the plant. For example, the incorporation of contaminants may vary between plant 

species. It has been observed that the incorporation of contaminants from the soil is higher in root 

vegetables such as carrots than in fruit trees such as apples. However, the incorporation of contaminants 

from the air is considered to be greater in the opposite case (Trapp and Legind, 2011). Other plant factors 
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are the root system, the shape and size of the leaves and the lipid content. Some studies have shown that 

plants with a higher lipid content accumulate higher concentrations of contaminants such as PAHs 

(Simonich and Hites, 1995).   

1.2.2 Uptake and translocation 

As mentioned above, the greatest concern about the presence of these contaminants in soils is the 

evidence that they can be incorporated into the plant and accumulated, not only in the roots, but also in 

the edible parts of plants (Bartha et al., 2010; Khan et al., 2015). Therefore, these contaminants will be 

incorporated into food chains, which represents a way of exposure for humans. Although the 

concentrations measured in vegetables are generally low, little is known about the long-term effects of 

these contaminants on human health (Boxall et al., 2006). The figure 1.6 shows the main plant uptake 

pathways of contaminants by plants: root uptake from soil solution, dry and wet deposition of particles 

and gaseous deposition to leaf via cuticle and stomata.  

 

Figure 1.6. Principal plant uptake pathways of chemical contaminants by plants (Collins, 2007) 

 

Root uptake 

Although the general uptake pathways are similar, plant uptake mechanisms by roots are very different 

for organic and inorganic contaminants. This difference remains in the fact that organic contaminants 

are usually xenobiotic to the plants, so there are no specific transporters for these compounds in the 

plant membranes (Pilon-Smits, 2005). 

  



40 
 

Inorganic contaminants 

In general, TEs such as metal ions are absorbed to soil particles in an insoluble form (e.g. Fe hydroxides 

in alkaline soil). However, plant roots can influence by releasing protons via membrane H+-ATPases, 

which acidify the rhizosphere and create a large membrane potential responsible of cation uptake. While 

the protons participate in the cation exchange, releasing divalent metal ions that are strongly bounded 

to soil particles, the acidified rhizosphere can release metals from their hydroxides (Alloway, 2012). 

Once heavy metals are incorporated into the roots from the soil solution, they can reach the xylem 

through same pathways as organic contaminants (symplastic or apoplastic pathways, see figure 1.7). 

Therefore, although they can migrate into the root apoplastic space, the impermeable Casparian strip in 

the endodermal cell layer will block this route and then, they have to be actively transported across 

plasma membrane into the symplast.  

In stark contrast to organic contaminants, inorganic transport is mediated by transport proteins in the 

xylem (Thakur et al., 2016). These transport proteins are naturally found in plants because inorganic 

elements can be nutrients or chemically similar to them, so they can also be incorporated (e.g. arsenate 

is incorporated by phosphate transporters, selenate by sulfate transporters). However, transition-metal 

cations are generally bound by organic ligands upon entry to the symplasm to protect essential 

cytoplasmic functions (Figure 1.7). 

 

Figure 1.7. Transport proteins in the plasma membranes of root cells implicated in the movement of heavy metals 
from the rhizosphere to the xylem through the symplasm (White, 2012)  VICC: voltage-insensitive cation channels, 
DACC: depolarization-activated calcium channels, HACC: hyperpolarization activated calcium channels (HACC), ZIP, 
IRT1: iron-regulated transporter (IRT)-like protein gene family, Z1P4, CTR, NRAMP: natural resistance associated 
macrophage protein gene family, SULTR: sulphate transporter gene family, YSL: yellow stripe 1 like  

Heavy metals can be redistributed from stem and leaf cells through both the xylem and phloem. Selective 

movement of heavy metals in the phloem allows the delivery of essential elements to developing tissues, 

tubers, fruits and seeds, whilst toxic elements are retained in older leaves (White, 2012).  
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Organic contaminants 

Plants can incorporate organic contaminants from the soil through the roots (Paterson et al., 1990). The 

concentration in the soil water of a contaminant is determined by the Kd and as non-ionic organic 

contaminants are mainly sorbed onto the organic fraction of the soil’s solid phase, Kd can be defined in 

terms of the soil organic carbon content (Kd=Koc·foc, where foc=fraction organic carbon) (Collins et al., 

2007). Correlations between Koc and Kow revealed that soil sorption increases with the Kow, reducing 

the availability of high Kow compounds for plant uptake (Karickhoff, 1981). Moreover, increases in the 

foc diminishes the total amount of contaminant absorbed by vegetation and the optimum Kow for plant 

uptake. 

The uptake of contaminants by plant roots usually is performed by diffusion, which is the simplest 

passive transport, as it does not require the cell to use energy (Calderón-Preciado et al., 2012; Trapp and 

Legind, 2011). By contrast, some hormone-like contaminants are incorporated by the active route 

although it is considered not to be the most important route in the incorporation of organic contaminants 

as it requires energy to move nutrients and contaminants through the cell membrane (Trapp and Legind, 

2011). 

Uptake of non-ionic contaminants into plant roots consists of two steps: 1) “equilibration” of the aqueous 

phase in the plant root with the concentration in the surrounding solution, and 2) “sorption” of the 

chemical into the lipophilic root solids (lipids in membranes, cell walls, etc.) (Collins et al., 2007). 

Briggs et al. (1982) reported the linear relationship between the Kow of non-ionic contaminants and the 

observed root concentration factor (RCF=C in the root/ C in the external solution) in studies about the 

uptake and translocation of O-methylcarbamoyloximes and substituted phenylureas in barley plants. 

Furthermore, Wild and Jones (1992) published that non-ionic contaminants with logKow>4 have a high 

potential for retention in plant roots. 

The compounds enter the root with the flow of water and move through the plant through 3 possible 

pathways (Fig. 1.8): apoplastic (along cell walls through the intercellular space), symplastic (between 

cells through interconnecting plasmodesmata) and transmembrane route (between cells through cells 

walls and membranes) (Miller et al., 2016). 
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Figure 1.8. Cross-sectional diagram of a root (Miller et al., 2016). 

The compound can be mobilized by the apoplast and avoid entering the cells until reaching the 

endodermis where it has to cross the plasma membranes to enter the symplast and finally reach the 

xylem from where they can be translocated (Mc Farlane and Trapp, 1994). Nevertheless, for chemicals 

incorporated in the plant roots must penetrate at least one lipid bilayer to reach the xylem, which are 

epidermis, cortex, endodermis and pericycle. The pathway used depends on the ability of the compound 

to cross cell membranes. The Casparian strip acts as hydrophobic barrier between the apoplast and the 

vascular tissue. Therefore, compounds following the apoplastic route cannot cross the Casparian strip 

and they must cross at least one lipid bilayer to enter the xylem or phloem. Higher lipophilic 

contaminants will show more rapid diffusion across lipid bilayers and then, partitioning to lipids and 

membrane permeability are often estimated from Kow, an approach accurate only for non-ionic organic 

contaminants because organic ions can be more easily accommodated in lipid bilayers than can n-

octanol. Ion trapping occurs when a compound is neutral in the apoplast (pH 4-6) but ionizes inside the 

cell (pH 7-7.5) leading to accumulation within cells (Trapp, 2004). Once contaminants enter through 

the roots, they are translocated to the aerial parts through xylem, which is responsible for moving water 

and nutrients from roots to the upper parts of the plant. 

Additionally, Briggs et al. (1982) found the optimal value of log Kow ca. 1.8 (Figure 1.9) for a maximum 

transpiration stream concentration factor (TSCF) defined as the concentration in xylem respect to the 

concentration in external solution. Some other authors (Burken and Schnoor, 1998; Hsu et al., 1990) 

studied this relationship, however, there are significant differences in the TSCF at high (>4) and low log 

Kow (<1) depending on which model is used (Fig. 1.9). 
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Figure 1.9. Variation in the prediction of the transpiration stream concentration factor (TSCF) with KOW (Collins et al., 
2007) 

It seems that high polar chemicals are less able to cross hydrophobic lipid membranes, while, lipophilic 

contaminants also cross the endodermis less efficiently, possibly because they become retained in lipids. 

In conclusion, the physicochemical properties of the contaminants are very important to evaluate their 

potential plant uptake. If the octanol-water partition coefficient is very high, it means that the compound 

is highly hydrophobic, such as PCBs, PAHs. These compounds would be strongly bounded to the soil 

and would not dissolve in water, therefore their potential for incorporation would be low (Ryan et al., 

1988). It is widely accepted that log values of Kow between 1 and 4 are associated to a greater potential 

for incorporation (McCutcheon and Schnoor, 2004). With these values the compounds are sufficiently 

hydrophobic to move through the bilipid layer of cell membranes and sufficiently soluble in water to be 

transported by cellular fluids (Pilon-Smits, 2005). 

Foliar uptake  

Inorganic contaminants 

As organic contaminants, inorganic can be accumulated in plants leaves due to deposition of 

atmospheric particles on the leaf surfaces. Unlike root metal uptake, which has been largely studied little 

is known about foliar metal uptake (Shahid et al., 2017a). The exact mechanism of metal uptake from 

leaves is not well known, but probably involves gas exchange through the stomata. Heavy metal uptake 

by leaf surfaces takes place through stoma, cuticular cracks, lenticels, ectodesmata and aqueous pores 

(Fernández and Brown, 2013). Indeed, the absorption is predominantly through ectodesmata, which 

consists on non-plasmatic channels positioned mainly in subsidiary and guard cells in the cuticular 

membrane or epidermal cell wall (Figure 1.10). 
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Figure 1.10. Foliar pathways of heavy metal entrance to plants (Shahid et al., 2017a) 

Generally, foliar uptake refers to enhanced metal contents in foliar tissues, but it is not easy to 

differentiate between foliar uptake and transfer inside the plants.  

Organic contaminants 

Contaminants can be incorporated into the plant via cuticle or stomata by the volatilization of 

contaminants from soil and deposition on the surface of the plant. This can be an important incorporation 

pathway for volatile compounds with a Henry's constant exceeding 10-4 (Pilon-Smits, 2005). 

Contaminants in the vapour phase can be taken from the interstitial air of the soil by the roots (O'Connor, 

1996), be dissolved in drops of water or adsorbed to particles that are deposited on the surface of the 

plants and consequently be spread in the plant (Hellström, 2004). Incorporation from the air is 

simultaneously influenced by other factors such as temperature, humidity, plant species, contaminant 

concentration and hydrophobicity of the compound. 

Dry deposition (free gaseous molecules or dust particles) or wet deposition (contaminants dissolved in 

water) is the most relevant pathways of foliar exposition to contaminants. The compounds that are 

deposited on the surface of the plant can be incorporated through the lipid membrane of the cuticle 

(Riederer, 2002). However, they can also access through the stomata, which are small pores located on 

the surface of the leaves and which allow the entry of carbon dioxide and other atmospheric gases 

(Paterson et al., 1990). Once the molecules enter the stomata, they can be translocated by the phloem to 

other parts of the plant tissue, including the roots (Calderón-Preciado et al., 2012). In this case, the 

hydrophobicity of the organic contaminant is of great importance, a greater incorporation and 

translocation has been reported through the stems for compounds with log Kow values between 1 and 3 

(Mc Farlane and Trapp, 1994). Unlike the root, the contaminants present in the stems do not have to 

cross the endodermis, which allows a greater mobility of the polar compounds. The translocation of 
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hydrophobic compounds is limited by their sorption to the cuticle. In addition, they are not easily 

translocated by the phloem due to their low solubility. In this sense, it has been observed that the 

permeability of plant cuticles to organic contaminants is linearly related to the Kow of the chemical and 

inversely related to its molecular volume (Riederer, 2002). 

1.2.3 Plant detoxification 

Organic contaminants 

Awareness that plants can transform xenobiotic compounds, arose in the 1940s, when it was shown that 

plants had metabolized pesticides (Sandermann, 1994).  

Plant detoxification mechanism has been described as the "green liver" model due to its similarities with 

the processes that occur in liver animals (Sandermann, 1994) (Figure 1.11). According to this model, 

plants, as autotrophic organisms, do not need organic compounds synthesized by other organisms as a 

source of carbon, energy and nitrogen. As it is shown in figure 1.11, plants use a three-phase process to 

convert contaminants, such as herbicides or pharmaceuticals, into intermediate products with less 

phytotoxicity (phases I, II and III). The ultimate result of these metabolic conversions is often the 

compartmentation of the contaminant into the vacuole of the plant cell or incorporation into cells walls.  

  

Figure 1.11. Phases of ‘’green liver’’ model (Van Aken, 2008) 

 

Therefore, phase I of xenobiotic metabolism consists in the transformation of the compound by 

oxidation, reduction or hydrolysis. Functional groups are introduced making the molecules more polar, 

chemically active and more soluble in water (Komives and Gullner, 2005). The first phase is typically 

an oxygenation carried out by the P-450 cytochrome enzymes. Phase II reactions are called conjugation 

processes and their products are glycosylated, amino acids or peptides conjugates of the xenobiotic 

compound. The resulting molecule is significantly less toxic than the original molecule or its derivatives 
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of phase I. An enzymatic mediated process by using the glutathione S-transferase isoenzyme 

superfamily is frequently used for the detoxification of a wide-range of toxic chemicals such as 

herbicides and pharmaceutical compounds (Hu, 2014; Theodoulou et al., 2003). Finally, phase III of 

the xenobiotic metabolism of the plant consists of the storage of soluble conjugates in vacuoles and 

insoluble conjugates in the cell walls. These molecules resist solubilization in common laboratory 

solvents and, therefore, are not accessible for the standard waste analysis. 

It has been found that metabolized residues from phase I and II may be present in quantities greater than 

the primary contaminant and, therefore, could represent a source of significant exposure to consumption 

(Sandermann, 2004). For example, Malchi et al. (2014) found that of the total number of carbamazepine 

(CBZ) species, only 11 ± 2% in sweet potato leaves and 28 ± 3% in carrot leaves were the parent 

compound of  CBZ, which suggested metabolization of CBZ on the leaves of plants (Malchi et al., 2014) 

(Fig. 1.12). Similarly, Goldstein et al. (2014) observed the occurrence of these contaminants and 

metabolites in leaves of tomatoes and cucumbers. 

 

Figure 1.12. Distribution of CBZ and its metabolites, 10,11-epoxycarbamazepine and 10,11-dihydroxycarbamazepine 
in the bulk, soils, soil aqueous extracts, roots, and leaves of carrots and sweet potatpes (Malchi et al., 2014) 

Likewise, LeFevre et al (2015) reported aminoacid conjugates and glycosylated metabolites after 

benzotriazole plant uptake by Arabidopsis spp. (phase II). In addition, in the same study glycosylated 

benzotriazole conjugates were observed to be excreted by the plants into the hydroponic medium as a 

detoxification mechanism. 

Inorganic contaminants 

Baker (1981) defined three plant categories regarding their metal accumulation pattern.  

- Excluders, plants that restrict the amount of toxic metal that is transferred to the above-ground 

biomass 

- Accumulators, those plants that tolerate high levels of toxic metals, accumulating them in the 

above-ground tissues (hyperaccumulators are those that accumulate metals more than 0.1–1 % 

of the dry weight) 

- Indicators, plants whose metal concentration is proportional to the metal concentration in soil  
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Heavy metals, especially non-essential heavy metals, at higher accumulation generate adverse effects in 

the functioning of plant cells. Once heavy metals are incorporated in plants, several different types of 

strategies are employed by the plants to combat the situation. Response of plants to heavy metal depends 

mainly on efficiency of metal uptake, translocation, and sequestration of heavy metal in specialized 

tissues or in vacuoles. 

The possible mechanisms undertaken by plants in response to heavy metals include exclusion, inclusion 

and accumulation of heavy metals, binding to the cell wall, reduced transport across the plasma 

membrane, active efflux, compartmentalization, and chelation (Viehweger, 2014; White, 2012). 

Other plant detoxification mechanisms 

In addition to plant metabolization, organic and inorganic chemicals can be subject to other 

detoxification processes diminishing their concentration in the plant system. Indeed, contaminants can 

undergo transformation processes previously in the rhizosphere, inside the plant and on the plant surface. 

Once inside the plant, chemicals contaminants may undergo photolytic degradation, phytodegradation 

(or metabolism), phytoexcretion or phytovolatilization. For the contaminants that are not removed in 

the aforementioned routes, concentration will increase with chance of causing toxicity, unless growth 

dilution could counteracts (Limmer and Burken, 2016).  

Photolytic degradation on plant surfaces 

It may be an important process as the leaves have the tendency to orient themselves to maximize the 

reception of sunlight (Trapp and Matthies, 1995). The degree of this process on leaf surfaces will 

influence the aerial deposition and direct contact plant uptake pathways. Trapp and Matthies (1995) 

discovered that it was the main loss process for 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in their generic 

one-compartment model for the uptake of organic chemicals by foliar vegetation. 

Phtytoexcretion 

There is little information about this process, but may be an important loss mechanism in some plants 

for hydrophilic and ionized species, where these compounds can be excreted from the leaf through 

aqueous pores. For instance, Manousaki et al. (2008) found out that Tamarix smyrnensis plants grown 

on contaminated saline soils, excreted Cd via salt glands on the surface of the leaves as a detoxification 

mechanism, which raised as the soil salinity augmented and afterward this Cd was redeposited on the 

top soil. 

Phytovolatilization 

Consists on a process in which plants take up contaminants from soil and release them as volatile form 

into the atmosphere through transpiration. Organic chemical contaminants with high water solubility 

and vapour pressure, such as VOCs, can volatilization from foliage to air as plant transpiration flux 



48 
 

moves chemicals to sub-stomatal tissues. Moreover, it has been widely detected for inorganic 

contaminants, as volatile forms of these elements such as Se, As, and Hg (Limmer and Burken, 2016). 

Jia et al. (2012) reported the As volatilization from rice plants after the uptake of different methylated 

As species, which was positive related to the trimethylarsine oxide concentration in rice shoots and roots 

previously exposed to different As concentration levels. However, volatilization from the rice plants 

accounted just for 0.4 - 3.2% of the total As volatilized from the whole soil-plant system. 

Growth dilution 

The importance of this process has not been clearly established. There are two scenarios where it can be 

important: 1) where there is an acute exposure event a growth results in dilution of this peak 

concentration of contamination, and 2) where the uptake of this contaminants per unit mass is slower 

than the accumulation of dry matter per unit mass (Collins et al., 2007). Li et al. (2018) reported that the 

imidacloprid concentration in six leafy vegetable tissues varied significantly according to the plant 

variety and growth stage (seedling, rapid growth and maturation stages), probably due to growth 

dilution. It was observed a negative correlation between the daily transpiration, which increases with 

growth stages, and the log BCF, so it seems that higher daily transpiration values are related to larger 

shoot biomass, which resulted in lower concentration of imidacloprid in the shoots. 

1.3 Effects of environmental contamination in horticulture and human health 

Plant uptake of diverse contaminants has become a global concern as contaminants have shown harmful 

effects to plants and human health directly by their occurrence in plants and/or indirectly, by causing 

changes in plant metabolism and therefore on nutritional values (Gaweda, 2007; Hurtado et al., 2017; 

Khan et al., 2015).  

This PhD Thesis is focused on the effect of the occurrence of TEs, CECs and pesticides in irrigation 

water and soil in crop productivity. The occurrence of POPs (PCBs, PAHs, dioxins…) has not been 

assessed as they are widely legislated, and they are not expected to be present in harmful concentrations.  

1.3.1 Effects on plants 

Heavy metals, unlike organic substances, are non-biodegradable and hence tend to accumulate in the 

environment. Then, these elements can be accumulated in living organisms (bioaccumulation) and their 

concentrations increase as they pass from lower trophic levels to higher trophic levels 

(biomagnification). Therefore, heavy metals exert different toxicological effects on plants and animals 

depending on organism and metal (Khan et al., 2015).  

Nevertheless, some heavy metals are also essential nutrients for plant growth and development. Plants 

require 17 nutrients, including water, oxygen, carbon dioxide and 14 mineral elements that can be 

distinguished in two categories, depending on the relative amount need for plant growth. Macronutrients 

are generally found in plants at concentrations greater than 0.1% of dry weight (dw) tissue  (N, P, K, 
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Ca, S and Mg), while micronutrients or TEs are generally found at concentrations less than 0.01% of 

tissue dw (Fe, Zn, Mn, Cu, B, Cl, Mo and Ni). The supply of the first three nutrients (C, H and O) is 

guaranteed by air and water. However, the remaining 14 mineral nutrients should be present in the plant 

growth medium in a proper concentration (Fageria et al., 2009). These mineral nutrients have numerous 

functions (Table 1.3) such as being structural components in macromolecules, as cofactors in enzymatic 

reactions, as osmotic solutes need to maintain proper water potential or as ionized species to provide 

charge balance in cellular compartments (Grusak, 2001). 

Table 1.3. Essential heavy metals for plants (Barker and Pilbeam, 2007; McCauley et al., 2011; Mengel and Kirby, 2004)  

Essential  
nutrients 

Chemical 
symbol 

Function Deficiency 

Boron B 
Cell wall  
component 

Chlorosis of young leaves and terminal bud death 

Calcium Ca 
Cell wall  
component 

Distorted and dark green leaves, weak stems and 
poor germination 

Chlorine Cl Photosynthesis reactions Chlorotic and necrotic spotting along leaves  

Copper Cu 
Chlorophyll production, respiration and 
protein synthesis 

Chlorosis in young leaves, stunted growth, delayed 
maturity, lodging and in some cases, melanosis 
(brown discoloration) 

Iron Fe Chlorophyll synthesis Interveinal chlorosis, stunted growth 

Potassium K 
Activation of enzymes, photosynthesis, 
protein formation and sugar transport 

Reduction of growth rate, chlorosis and necrosis in 
later stages, older leaves show mottled or chlorotic 
areas with leaf burn at margins 

Magnesium Mg 
Part of chlorophyll and co-factor for 
ATP production 

Interveinal chlorosis and leaf margins becoming 
yellow or reddish-purple  

Manganese Mn 
Activates enzymes, cofactor, 
chloroplast production 

Interveinal chlorosis in young leaves 

Molybdenum Mo 
Involved in N fixation and in enzyme 
activity 

Stunted growth and chlorosis 

Nitrogen N 
Proteins, nucleic acids (DNA and 
RNA) and chlorophyll 

Chlorosis of lower leaves, stunted growth and 
necrosis of older leaves 

Nickel Ni 
Component of enzymes 
Required for proper seed germination  

Chlorosis and interveinal chlorosis in young leaves 
that progress to plant tissue necrosis, poor seed 
germination and decreased crop yield 

Phosphorus P 
ATP (energy), sugars and nucleic 
acids 

Stunted growth, dark green plants 

Sulfur S Amino acids and proteins Light green, spindly and small plants 

Zinc Zn 
Hormone production and important for 
internode elongation 

Interveinal chlorosis, severe stunting 

In addition to essential nutrients, more than half of the elements in the periodic table have been detected 

in some plant tissues. Most of them do not have known benefits to the plant, and many, such as cadmium 

(Cd) or chromium (Cr), can be detrimental to plant growth (Grusak, 2001). Regarding their role in 

biological systems, heavy metals and metalloids are classified as essential and non-essential. Heavy 

metals needed by organisms in tiny quantities for vital physiological and biochemical functions (Fe, 

Mn, Mn, Cu, Zn, and Ni) are considered as essential, while the ones not needed (Cd, Pb, As, Hg and Cr) 

are non-essential (Ali et al., 2013). Although small concentrations of some heavy metals are essential 

for plant growth, high concentrations of them can exert harmful effects on plant growth, hampering the 

plant germination, growth and production (Ghosh and Sethy, 2013). 
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The effects on plants shown can be classified in, either seed germination and growth, plant structure or 

nutritional values. 

1.3.2 Seed germination and growth 

Seed germination is one of the most important stages in crop development that influences in crop health, 

better growth and yield at the later growth stages. There are many factors affecting seed germination, 

such as the light, temperature, germination time, salinity, water availability and mineral composition of 

soil (Ahmad and Ashraf, 2011; Gray, 1975). 

The main effects that heavy metals exert on seeds consist on a decrease in seed germination, reduced 

root and shoot elongation, dry weight, membrane alteration, altered sugar and protein metabolism and 

nutrient loss among others, which result in seed toxicity and productivity loss (Ahmad and Ashraf, 

2011). For instance, it has been reported that Ni and Cu inhibit the amylase and other enzymes involved 

in the breakdown of food reserves (e.g. starch and sucrose), thereby retarding seed germination of many 

crops (Ahmad et al., 2009; Zhang et al., 2009) (Figure 1.13). It must be stated that the assayed 

concentrations are much higher than most of the agricultural soils. 

 

Figure 1.13. Effect of Cu on rice radicle elongation. Rice seeds were treated with the indicated concentrations of Cu 
for 4, 6 or 8 d. Values shown represent means + s.e. (n = 3) for three different experiments. Means denoted by the 

same letter did not differ significantly (p ≥ 0.05 according to Duncan’s multiple range test) 

Even though low concentrations of some heavy metals have shown to improve seed growth, high levels 

are likely to be toxic to plants and inhibit their growth. In addition, high concentrations of some metals 

may interfere with mineral nutrient uptake. Among the most affected nutrients, the fact that Fe has 

several resemblances with other heavy metals regarding chemical structure, behaviour, and availability 

in soils or uptake by plant roots (e.g. Zn, Co, Ni, Cd and Mn) resulted in a Fe plant deficiency, being Zn 

the most inducing heavy metal (Lešková et al., 2017).   

On the other side, effects on seed germination by the occurrence of OMCs have also been studied. Moore 

and Kröger (2010) studied the effect of three insecticides (diazinon, fipronil, lambda-cyhalothrin) and 

two herbicides (atrazine, metolachlor) on germination, radicle (root) and coleoptile (shoot) of rice 

(Oryza sativa L.). Although no germination effects of pesticide exposure were observed, significant 

growth effects were detected between pesticide treatments. Coleoptile growth significantly (p ≤ 0.05) 
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diminished in most of the pesticide exposures, compared with controls. On the contrary, radicles of 

seeds were larger (p ≤ 0.05) compared to controls. 

1.3.3 Plant structure 

Bini et al. (2012) showed that the presence of a cocktail of potentially toxic heavy metals (Cu, Fe, Pb, 

Zn) in soil and plants, is related to micro-morphological changes on the leaf anatomy, such as reduction 

in leaf thickness, changes in intercellular spaces and in cell structural organization. Balaguer et al. (1998) 

found that the tomato plant growth was negatively influenced by increasing levels of Ni in the nutrient 

solution (at 10 and 20 mg·L-1), being strongly altered the fresh weight of stem, branches and leaves but 

not the water content. Symptoms of Ni toxicity were also reported by Palacios et al. (1998) at nutrient 

solution containing 15 and 30 mg·L-1 of Ni, showing chlorosis, necrosis and stunted growth after 2 

weeks of Ni treatments.  

In addition, Hurtado et al. (2017) observed that exposure of lettuce to CECs at significant environmental 

concentrations (0-50 μg·L-1) in irrigation water can cause metabolic alterations in plants as well as the 

associated morphological changes (height of the leaf and stem width) and variation in the chlorophyll 

content (Figure 1.14). 

 

Figure 1.14. Box-plots of different agronomic parameters for different concentrations of pollutants in irrigated water 
(Hurtado et al., 2017). 

Bellino et al. (2018) exposed tomato seeds (Solanum lycopersicum L.) to 5 mL of 0, 0.1, 1, 10, 100 and 

1000 mg·L-1 of a mix of four antibiotics during 10 and 7 days for seed germination and root elongation 

tests, respectively. Results revealed that the four antibiotics could have phytotoxic effects on tomato 

root development but not on seed germination, at concentrations from 10 mg·L-1 (spectinomycin), 100 

mg·L-1 (chloramphenicol) to 1000 mg·L-1 (spiramycin and vancomycin). This could be due to the 

reduced permeation of antibiotics through the seed coat, which aims to protect seeds from the noxious 
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effects produced by these molecules (An et al., 2009). Nevertheless, the concentrations tested (ppm) 

were much higher than the concentrations that are generally found in the environment. 

1.3.4 Nutritional values  

Heavy metals frequently increase the production of reactive oxygen species (ROS) in plants, resulting 

in oxidative damages of proteins, lipids, and nucleic acids, which are responsible for several 

physiological disorders such as growth retardation, nutrient deficiency, reduced transport of nutrients, 

genotoxicity, and retarded photosynthesis (Khan et al., 2015).  

 Effects on carbohydrates 

Carbohydrate synthesis can be inhibited by an excessive build-up of toxic elements that might destroy 

the photosynthetic electron transport chain and production of ROS (Sandalio et al., 2001). Gaweda 

(2007) investigated changes in the carbohydrate content of six vegetable crop species (lettuce, spinach, 

radish, carrot, red beet and onion) with 0, 250 and 500 mg·kg-1 dw of Pb in the substrate; a higher Pb 

dose, caused a decrease in sucrose content and an increase in starch in the edible part of the plants. 

Moreover, at high Cd concentration, a general decrease in carbohydrate metabolism occurred 

(Rodríguez-Celma et al., 2010). 

On the other hand, Christou et al. (2019) reported the effects of three pharmaceutical compounds 

(diclofenac, sulfamethoxazole and trimethoprim), individually and mixed together (10 µg·L-1), on the 

quality of tomato fruits. It resulted in no significant alteration of crop productivity, but a significant 

increase in the soluble solids content and in the transcripts related to the biosynthesis and catabolism of 

sucrose like and consequently, an increase in the carbohydrate content, which is related to the taste of 

the fruits.  

 Effects on proteins and amino acids  

Nitrogen and sulphur are the essential nutrients required for synthesis of proteins and amino acids and 

plant growth. Therefore, the lack of them may affect the metabolic processes (Carfagna et al., 2011). 

High Cd concentration may impede protein metabolism by modifying physiological functions and 

synthetic activities (Sandalio et al., 2001) and can also have effects on the decomposition of protein 

contents (Z. Wu et al., 2014). Likewise, high metal concentrations inhibit protein synthesis by altering 

the pigment-lipoprotein complex accumulation in photosystems I and II (Wang et al., 2009) and effect 

ribulose-1,5-bisphosphate carboxylase/oxygenase enzymes (Krantev et al., 2008). 

 Effects on lipids 

Little knowledge is available on heavy metal impact on lipid content (Upchurch, 2008). Khanna-Chopra 

(2012) determined that heavy-metal-induced oxidative stress results in chloroplast degradation and lipid 

peroxidation affecting the nutritional status of the contaminated plant.  
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 Effects on vitamins  

Although leafy vegetables are considered as a good source of nutrients (Gupta and Bains, 2006), they 

can be affected by the presence of heavy metals. Environment has a strong influence on vitamin contents 

and in extreme conditions with high heavy metal concentrations, temperature, and pH, the vitamin 

contents are significantly reduced (Ipek et al. 2005). Moreover, lipid peroxidation can also reduce 

vitamin content (Seven et al., 2012). Indeed, there is a negative correlation between heavy metals and 

vitamins (Widowati, 2012), as a Cd increase resulted in a decrease of 61.7% of vitamin A and a decline 

of 74.7% in vitamin C in three aquatic vegetables. 

1.4 Effects on human health 

Entrance of TEs into human body is possible by different pathways such as consumption of 

contaminated food, drinking water and/or air. It has been highlighted the contribution of vegetables to 

the total metal intake in human diet, accounting for around 90%, while the other 10% is due to dermal 

contact and inhalation of dust contamination (Martorell et al., 2011). Moreover, these elements may 

accumulate in vital body organs such as liver, heart, kidney, and brain disturbing normal biological 

functioning. Some of these elements (e.g. Zn, Cu, Mg, Co…) as occurred for plants are essential for 

human body but ingested at higher concentrations may be toxic. By contrast, some other heavy metals 

(Pb, Hg…) do not have known favourable effects on human health and they become toxic once they are 

accumulated in the body (Rehman et al., 2018). Toxic heavy metals can cause different health problems 

depending on the heavy metal concerned, its concentration and oxidation state, etc. Table 1.4 shows 

some examples of harmful effects of selected heavy metals on human health. 

Moreover, OMCs constitute a broad family of compounds, but in this work only CECs and pesticides 

have been selected. The assessment of CECs in vegetables is important because the risk they might pose 

to human health is not fully understood. To date, CECs have not been included yet guidelines and 

regulations. However, information about human health effects resulting from the use of pesticides has 

been widely reported. 

The type of pesticide, the duration and route of exposure, and the individual health status are relevant 

to assess the possible health effect, also pesticides may be metabolized, excreted, stored, or 

bioaccumulated in the body fat (Pirsaheb et al., 2015). Furthermore, it should be noted that washing and 

peeling vegetables and fruits cannot completely remove pesticide residues (Reiler et al., 2015). The 

numerous of negative health effects (Table 1.4) that have been associated with chemical pesticides 

include, among other effects, dermatological, gastrointestinal, neurological, carcinogenic, respiratory, 

reproductive, and endocrine effects.  
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Table 1.4.Harmful effects of the chemicals studied on human health with oral exposure according to  different 
sources (Ali et al., 2013; ATSDR, 2018; EPA, 2018; Fenner et al., 2013b; Pereira et al., 2015; World Health Organization, 
2003)  

Chemical Harmful effects 

As As (V) (as arsenate) is an analogue of phosphate and thus interferes with metabolic processes 

such as ATP synthesis and oxidative phosphorylation 

Hyperpigmentation, keratosis and possible vascular complications 

B Most ingested boron is absorbed and leaves the body within 4 days. 

Decreased fetal weight (developmental) 

Ba Barium is a competitive potassium channel antagonist that block the passive efflux of 

intracellular potassium, results in a decrease of K in the blood plasma. 

Hypokalemia, which can result in ventricular tachycardia, hypertension and/or hypotension, 

muscle weakness, and paralysis. 

Cd Carcinogenic, mutagenic, and teratogenic; endocrine disruptor; interferes with calcium 

regulation in biological systems; causes renal failure and chronic anemia 

Co Has both beneficial and harmful effects on human health. It is a part of the vitamin B12, has 

been used for the treatment of anemia because it causes red blood cells. 

Cr Chromium is a human carcinogen mainly by   inhalation exposure in occupational sceneries. 

Hair loss 

Cu Elevated levels have been found to cause brain and kidney damage, liver cirrhosis and chronic 

anemia, stomach and intestinal irritation 

Hg Anxiety, autoimmune diseases, depression, difficulty with balance, drowsiness, fatigue, hair 

loss, insomnia, irritability, memory loss, recurrent infections, restlessness, vision disturbances, 

tremors, temper outbursts, ulcers and damage to brain, kidney and lungs 

Li A single large dose may result in vomiting and diarrhea. 

Mn Central nervous system effects 

Mo Increases uric acid levels 

Ni Allergic dermatitis known as nickel itch; inhalation can cause cancer of the lungs, nose, and 

sinuses; cancers of the throat and stomach have also been attributed to its inhalation; 

hepatotoxic, immunotoxin, neurotoxic, genotoxic, reproductive toxic, pulmonary toxic, 

nephrotoxic, and hepatotoxic; causes hair loss 

Pb Its poisoning causes problems in children such as impaired development, reduced intelligence, 

loss of short-term memory, learning disabilities and coordination problems; causes renal 

failure; increased risk for development of cardiovascular disease. 

Sb Affects longevity, blood glucose, and cholesterol 

Zn Over dosage can cause dizziness and fatigue. 

Amide pesticides Their symptoms include abdominal cramps, anemia, ataxia, dark urine, cyanosis, hypothermia, 

collapse, convulsions, diarrhea, etc. 
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Bipyridyl herbicides The main effects are dehydration (resulted from vomiting), their high oxidative stress causes 

necrosis in the gastrointestinal tract, kidney tubules, liver, and lung; in the latter case, 

respiratory failure and pulmonary fibrosis may take place. 

Carbamate pesticides They poorly penetrate the blood-brain barrier. Their main symptoms of carbamates intoxication 

are miosis, salivation, sweating, tearing, rhinorrhoea, behavioural change, abdominal pain, 

vomiting, diarrhea, urinary incontinence, bronchospasm, dyspnea, and so on. 

Dithiocarbamate 

pesticides 

Low acute oral and dermal toxicity due to their slow absorption. 

The metabolite that derives from dithiocarbamates biotransformation is ethylenethiourea, 

which induces thyroid cancer and modifies thyroid hormones. 

Organophosphate 

pesticides 

The skin, conjunctiva, gastrointestinal tract, and lungs rapidly absorb most these compounds 

and their metabolites arise 12 to 48 h. 

The main symptoms are the muscarinic syndrome, nauseas, vomiting, and diarrhea; and 

provokes urinary incontinence, bronchospasm, miosis, and bradycardia. 

Phenoxy alkanoic 

acids herbicides 

They are mostly absorbed by the gastrointestinal tract rather than by the lungs or skin, and 

they are not stored in the fat. 

The main symptoms are nausea, dizziness, vomiting, burning in the mouth, constipation, 

abdominal pain, numbness, diarrhea, gastrointestinal bleeding, among others. 

Pyrethroid pesticides After their absorption, fast distribution occurs in the organism, where they undergo 

biotransformation via two mechanisms. 

Some of their injuring symptoms are tremors, spasms, incoordination, drooling, convulsions, 

and hypersensitivity to stimuli. 

Triazine herbicides Human exposure has been associated with carcinogenicity and endocrine disruption, but these 

effects are still debatable. 

Triazole, diazole 

pesticides 

Propiconazole was classified as a possible human carcinogen by EPA and its ingestion of can 

irritate the gastric mucosa. 

Urea derivative 

pesticides 

For example, isoproturon has been in commercial use for a short period and no cases of 

human poisoning have been reported. 

Regarding to the occurrence of CECs in edible parts of vegetables, although the effect they pose to 

human health risk is not fully understood, there are some studies that consider that the consumption of 

some vegetables could represent a risk to human health, principally due to the presence of genotoxic 

compounds. Malchi et al. (2014) observed, in a field study watered with TWW, higher concentrations 

of pharmaceuticals compounds in leaves rather than in roots and CBZ metabolites, mainly EPOCBZ 

(10,11-epoxycarbamazepine, genotoxic compound), rather than the parent compound. Although for 

CBZ and caffeine, hundreds of kilograms of carrots or sweet potatoes should be ingested by an adult to 

reach the threshold of toxicological concern (TTC), for lamotrigine and EPOCBZ the TTC could be 

surpassed easily. A child (25 kg) and an adult (70 kg) could reach the threshold of toxicological concern 

(TTC) by consuming half carrot (~60 g·day-1) and two carrots a day (~180 g·day-1), respectively. Thus, 

indicating that specific toxicity analysis of these contaminants is needed. Riemenschneider et al. (2016) 

reported the uptake of 28 microcontaminants and CBZ metabolites in 10 field-grown vegetable species 

irrigated with TWW and evaluated the human health risk associated to the consumption of these crops. 
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For most of the compounds assessed, no risk is shown according to the TTC approach as at least 9 kg 

of vegetable is allowable. However, for the genotoxic ciprofloxacin and EPOCBZ, further toxicological 

data are required. The TTC value for EPOCBZ and ciprofloxacin could be surpassed by an adult (70 

kg) by consuming only one potato (~100 g·day-1) or half an eggplant (~177 g·day-1).  Another field study 

(Christou et al., 2017b), reported that the estimated TTC and hazard quotient (HQ) values of tomatoes 

watered with TWW in three consecutive years, represents a de minimis risk to human health as low 

values (≤ 0.015) of HQ were obtained and the daily consumption of tomato by an adult (70 kg) or a 

toddler (12 kg) to reach the TTC at least is 9.04 and 1.55 kg·day-1, respectively. Therefore, in order to 

conduct a human health risk assessment on the occurrence of TEs, pesticides and OMCs in vegetables, 

hazard quotient (HQ) and TTC approaches can be used. For further details on HQ and TCC approaches, 

see Chapter 4 section 4.2.6. 

1.5 Overview of the selected contaminants 

In this Thesis, chemical contaminants were selected based on their occurrence in the in peri-urban 

agriculture due to its proximity to relevant contaminant sources (e.g. WWTP effluents, industrial runoff 

and road networks), and their potential to be incorporated and accumulated into edible parts of plants. 

Nevertheless, pesticides applied by farmers to control pests, including weeds, were also included in the 

study, as well as TEs listed in the Spanish Royal Decree 1620/2007 for water reuse. In fact, consumption 

of vegetables has shown to be the main source of human exposure to heavy metals (Martorell et al., 

2011). In addition, the selected OMCs comprise pesticides used in the area of study and CECs with a 

high plant uptake potential, presence in irrigation waters, persistence in the environment and potential 

harmful effects for human health. 

1.5.1 TEs 

Many different sources contribute to the release of TEs into the environment. Some of the most 

significant natural sources consist on weathering of minerals, erosion and volcanic activity; while 

anthropogenic sources include mining, smelting, pesticides, fertilizers, sewage sludge, atmospheric 

deposition, among others (Ansari et al., 2016). From 58 elements analysed in this Thesis, only 16 were 

finally studied being the most frequent and relevant elements in irrigation waters (Table 1.5). 
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Table 1.5. Anthropogenic sources of selected inorganic contaminants in the environment 

Element Sources Reference 

As Pesticides, veterinary pharmaceuticals and wood preservatives 9 

B 
Production of glass, ceramics, surfactants, fire retardants, pesticides, cosmetics, photographic 

materials and high energy fuels 
10 

Ba Petroleum and steel industry, production of semiconductors and medicinal uses 5 

Cd 
Cd-Ni battery production, paints, pigments for plastics and enamels, fumicides, phosphate 

fertilizers and electroplating and metal coatings  
7, 9 

Co Steel and alloy production, paint and varnish drying agent and pigment and glass manufacturing  9  

Cr 
Tanneries, steel industries, fly ash, chromium plating and allows in motor vehicles are 

considered to be a more probable source  
4 

Cu 
Pesticides, fertilizers, industry and sewage sludge, textile mills, cosmetic manufacturing and 

hardboard production sludge 

4, 9 

 

Hg 

Electrical apparatus manufacture, electrolytic production of Cl and caustic soda, 

pharmaceuticals, paints, plastics, paper products, Hg batteries, pesticides and burning of coal 

and oil  

9 

Li Lithium batteries  1 

Mn Fertilizers, sewage sludge and ferrous smelters 4 

Mo 
Super alloys, nickel base alloys, lubricants, chemicals, glass workings, ink, pigments and 

electronics 
2 

Ni 
Production of stainless steel, alloys, automobiles batteries, storage batteries, spark plugs, 

magnets and machinery 
8, 9 

Pb 
Emission from combustion of leaded gasoline in the past, battery manufacture, herbicides and 

insecticides 
9, 11 

Rb Used in electronics, special glass and in the production of semi-conductors and photocells. 3 

Sb 
Plastics, pigments of paints, liners of automobile brakes, red rubber production, ceramics, fire 

retardants, electronics, and glass industries 
6 

Zn 
Mining, smelting and industrial processing of ores and metals, coal combustion, batteries, 

accumulators, plastics and paints 
11 

1. Aral and Vecchio-Sadus (2008); 2. Halmi and Ahmad (2014); 3. Kabata-Pendias and Mukherjee (2007); 4. Khan et al. ( 

2007); 5. Kravchenko et al. ( 2014); 6. Mubarak et al. (2015); 7. Pulford and Watson (2003); 8 Tariq et al. (2006); 9. 

Thangavel and Subbhuraam (2004); 10. USEPA (2008); 11. Wuana and Okieimen (2011) 
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1.5.2 OMCs 

The OMCs selected in this study can be classified in the following categories (Table 1.6): 

Table 1.6. Classification of organic analytes 

Category Analytes 

Anticonvulsants and antidepressants and related 

metabolites 

primidone, lamotrigine, diazepam, lorazepam, oxazepam, 

carbamazepine, 10,11-epoxycarbamazepine 

Benzothiazoles 
benzothiazol, 2-mercaptobenzothiazole,  

2-hydroxybenzothiazole 

Benzotriazoles benzotriazole, 5-methyl-1H-benzotriazole  

Chlorinated flame retardants 
tris (1-chloro-2propyl) phosphate,  

tris (2-chloroethyl) phosphate  

Parabens 
methylparaben, ethylparaben, propylparaben, 

butylparaben 

Pesticides 

atrazine, simazine, diazinon, carbendazim, DEET, 

azoxystrobin, dimethomorph, pyrclostrobin, chlorpyrifos, 

indoxacarb, pymetrozin 

Plasticizers bisphenol A, bisphenol F 

Surfactants and derivatives surfynol 104, octylphenol 

Tert-butylphenols 2-tert-butyl-4mehtoxyphenol  

Anticonvulsants and antidepressants 

Benzodiazepines such as diazepam, lorazepam and oxazepam are usually prescribed against anxiety and 

related emotional disorders; as muscle relaxants and inducing agents in anaesthesiology. They have been 

detected in effluents from WWTPs and rivers. Diazepam and oxazepam concentrations in the Llobregat 

River were 3 and 20 ng·L-1, respectively (Huerta-Fontela et al., 2011). Carbamazepine, lamotrigine and 

primidone are used as anticonvulsant drugs that have shown potential to be translocated in plants 

(Goldstein et al., 2014; Wu et al., 2013). Although only up to 30% of CBZ is excreted unmodified from 

the human body, its inefficiency removal in WWTPs allow it to reach the environment and it is detected 

in surface water as well in groundwater (Riemenschneider et al., 2017). A plant metabolite from CBZ, 

EPOCBZ, has also been included in this study. Ben Mordechay et al. (2018) observed higher 

concentrations of CBZ and its metabolites in soils irrigated with TWW rather than in soils amended in 

biosolids, being the irrigation water a major contribution of uptake of contaminants. Moreover, it has 

been found in the leaves of root vegetables in a higher concentration than the parent compound (Malchi 

et al., 2014). 

Benzothiazoles 

Benzothiazoles are a class of high production volume chemicals with various applications in industry, 

but mostly used as vulcanization accelerators (Kloepfer et al., 2005). For instance, 2- 

mercaptobenzothiazole (2MBT) is a high-volume production product due to its use as a vulcanization 

accelerator in rubber manufacture, including vehicular tires (LeFevre et al., 2016). It is also used as a 
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corrosion inhibitor in antifreeze coolant, industrial fungicides, and in paper production as corrosion 

inhibitor (Kloepfer et al., 2005). They are continuously released through WWTP effluents and exhibit a 

significant lifetime in surface waters. 

Benzotriazoles 

Benzotriazoles are a broadly used corrosion inhibitors produced in a high volume and applied in 

dishwashing detergents, cooling and freezing fluids, metal processing, polymer stabilization, in the 

production of dyes, pharmaceutical, fungicides, as antifogging component in photographic applications 

and as ultraviolet stabilizers (Huntscha et al., 2014). Moreover, it is an ubiquitous compound in aquatic 

environment, found at concentrations up to10 µg·L-1: In fact, it has been described  as one of the most 

abundant contaminants in the aquatic environment (Giger et al., 2006; Huntscha et al., 2014). 

Chlorinated flame retardants 

Flame retardants are added to many products such as plastics, electronics, textiles, foams and furniture, 

automobile interiors and many others. The most extensively used were polybrominated diphenyl ethers 

(PBDEs) until their commercial mixtures were forbidden, and then alternative chemicals such as 

organophosphate flame retardants (OPEs) became available as substitutes. OPEs, such as TCPP (tris 

(chloroisopropyl phosphate) and TCEP (tris(2‐chloroethyl) phosphate) have been reported in river 

water, seawater and sediment as early as 1970s (Kurt-Karakus et al., 2018). In addition, they show high 

bioconcentration factors (>1) for leaf and seed with a disparity between crop species (Eggen et al., 2013). 

Parabens 

Parabens are ester of p-hydroxybenzoic acid and they include methylparaben (MPB), ethylparaben 

(EPB), propylparaben (PPB) and butylparaben (BPB), among others. They are mostly used as 

preservatives in cosmetics (like lotions and sunscreens), pharmaceuticals or in a limited range in 

foodstuffs. Because of their low economic costs and high effectiveness, these products are widely used 

and are currently ubiquitous in the environment (Czarczyńska-Goślińska et al., 2017; Nowak et al., 

2018). Although some of them are synthetized by bacteria or plants (Baardseth and Russwurm, 1978; 

Peng et al., 2006), all the parabens available are synthetically produced and the major source of 

contamination are WWTPs. Although the removal percentage in WWTPs is really high (96-99%), their 

high presence in the raw wastewater (up to about 80 000 ng·L-1 for MPB) make them detectable in the 

effluents (around 4000 ng·L-1 the most concentrated) (Błędzka et al., 2014) . 

Pesticides 

In the last decades, the widespread use of pesticides residues caused significant contamination of aquatic 

and terrestrial ecosystems. However, their occurrence and behavior in WWTPs has been barely reported 

due to the fact that agricultural applications represents the main source rather than urban use (Köck-

Schulmeyer et al., 2013). In this Thesis, 11 pesticides have been selected, including herbicides, 
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fungicides and insecticides.  Atrazine and simazine are triazine herbicides, which are commonly used 

for the control of broadleaf in agricultural and roadway applications (Hodgson, 2012; L. Li et al., 2018). 

Azoxystrobin, carbendazim, dimethomorph and pyraclostrobin are used as fungicides; while 

chlorpyrifos, diazinon, DEET, indoxacarb and pymetrozin are insecticides. Pesticides were selected due 

to their occurrence in irrigation waters from the area (González et al., 2012; Köck-Schulmeyer et al., 

2012; Masiá et al., 2015) and due to their use by local farmers (information provided by Baix Llobregat 

Agrarian Park). 

Plasticizers 

BPA (bisphenol A) is the monomer in the production of polycarbonates and epoxy resins commonly 

applied in food containers, electronics (CDs and DVDs), electronic equipment, medical devices, dental 

fillings, paper products (e.g., thermal receipts, water pipes and toys, etc.) (Česen et al., 2018). Moreover, 

BPF (bisphenol F) is one of the main substitutes of BPA and has many applications such as lacquers, 

varnishes, liners, adhesives plastics, and water pipes, as well as in dental sealants, oral prosthetic 

devices, tissue substitutes and coatings for food packaging (Chen et al., 2016). Despite the high removal 

efficiency of bisphenols in WWTPs (≥96.2%), they can still be detected in the WWTP effluents (Česen 

et al., 2018). Moreover, they have shown to cause endocrine disruptive effects (Czarczyńska-Goślińska 

et al., 2017). 

Surfactants and derivatives 

Surfynol 104 is the commercial name for 2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD), a non-ionic 

surfactant used as a wetting and defoamer agent in many waterborne applications such as coatings, 

paints, inks, adhesives, pigment manufacture, overprint varnishes and paper coatings, agricultural 

chemicals, among others (Ash and Ash, 2004). It has been found to be detrimental to fish and aquatic 

invertebrates only at high concentrations (Guedez and Püttmann, 2014).  In addition, effluents from 

WWTPs must be the major source of Surfynol 104 in aquatic environment, as its removal in WWTPs is 

incomplete (33-68%) (Guedez and Püttmann, 2011). 

Alkylphenols (APs) are used for surfactants and antioxidants production (Siddique et al., 2016). OP (4-

tert-octylphenol) is mainly used in the production of octylphenol ethoxylates, and in a minor proportion 

for the obtainment of phenolic resins, for tyres and ink production (Miyagawa et al., 2016). It is an 

endocrine disrupter and its released to the environment as a degradation product of its ethoxylated 

derivatives in WWTPs effluents (Höhne and Püttmann, 2008). 

Tert-butylphenols 

Synthetic phenolic antioxidants (SPAs) are widely used as an antioxidant and preservative in food, 

cosmetics, plastics, rubber and pharmaceuticals; where 2-tert-butyl-4-methoxyphenol (BHA) is one of 
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the most commonly used SPAs, but recent studies have associated its occurrence with adverse health 

effects in animals (Wang and Kannan, 2018).   

Physical-chemical properties of the selected organic contaminants in the environment 

A summary of the physical-chemical properties of each class of OMCs is provided in Table 1.7 (see     

Chapter 2, Table S2.1 for further information).  

Table 1.7. Summary of the physical-chemical properties of the selected organic contaminants 

Category 

Molecular 
weight 

Solubility 
(mg/L) 

Log KOW 
Log D  

(pH=7.4) 
Log KOA Log KAW 

Min Max Min Max Min Max Min Max Min Max Min Max 

Benzothiazoles 135 167 120 4300 2.2 2.9 2.09 2.21 6.8 8.2 -5.8 -4.8 

Benzotriazoles 119 147 914 22580 0.1 1.7 0.07 1.69 1.5E-05 6.9 -5.2 -5.1 

Chlorinated flame retardants 285 328 1200 7000 1.6 2.9 1.42 2.32 5.3 8.2 -5.6 -3.9 

Parabens 152 180 207 2500 2.0 3.6 2.09 3.12 8.8 10 -6.8 -6.5 

Pesticides 191 528 0.1 666 0.9 5.5 1.61 4.78 8.3 19 -13 -3.9 

Anticonvulsants, antidepressants 
and its related metabolites 

218 321 21 500 0.7 3.3 0.61 2.92 9.0 12 -11 -8.1 

Plasticizers 200 228 120 543 3.1 3.6 2.90 3.63 12.6 12.7 -9.7 -9.4 

Surfactant and derivatives 206 226 3.1 26 3.6 5.5 2.94 5.47 8.6 9.2 -5.0 -3.7 
 

tert-butylphenols 180 213 3.5 3.14  9.0 -6.5 

The probable uptake pathways of these contaminants by plants can be discussed from the physical-

chemical properties point of view. At first glance, these compounds possess low values of log Kow (<4), 

which could mean that they will not be mainly absorbed in the organic matter of the soil and therefore, 

they will be available for root uptake.  

There is a wide disparity in the solubility of each category of compounds due to disparate chemical 

structures within the same category. The parameters log KOA and log KAW (dimensionless Henry’s law 

constant) are indicator of whether these compounds will be incorporated from the atmosphere or from 

the soil. All the studied OMCs show negative log KAW values (dimensionless Henry’s law constant), 

which indicates that are non-volatile compounds. Moreover, most of the log KOA values are below 11, 

therefore confirms that gaseous uptake probably will not be the main uptake pathway. 

1.5.3. Occurrence of the selected organic contaminants in the environment 

Table 1.8 shows the concentrations of the studied OMCs reported in the aquatic environment. As it is 

shown, their concentration decline from raw wastewater to surface water due to the WWTP treatment, 

but for some compounds such as carbamazepine or lamotrigine, these concentrations are similar, which 

indicates that they are not eliminated by WWTP processes.   
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Table 1.8. Occurrence of the selected OMCs in the aquatic environment 

Compound 

WWTP 

influent 

(ng·L-1) 

WWTP 

effluent 

(ng·L-1) 

Surface 

water 

(ng·L-1) 

Reference 

Anticonvulsants, antidepressants and its related metabolites 

Carbamazepine nd-1680 0.03-2100 5-11581 25, 32, 34 

10,11-epoxycarbamazepine nd-69 nd-117 nd-282 1, 11, 29 

Diazepam nd-8.0 nd-72 nd-75.5 2, 8, 32 

Lamotrigine 144-1270 353-1726 455 3, 13, 31 

Lorazepam nd-334 nd-227 1.1-5.7 32, 34 

Oxazepam nd-77 nd-94 1.2-5.5 14, 32, 34 

Primidone 180 430-710 nd-180 19 

Benzothiazoles 

Benzothiazole 500-1050 70a-2530 nd-200 20, 23 

2-hydroxybenzothiazole 160a-660 60a-2200 nd-300 20, 23 

2-mercaptobenzothiazole 20a-260 nd-50a nd 20, 23 

Benzotriazoles 

Benzotriazole 500-210000 nd-100000 7000 20 

5-methyl-1H-benzotriazole nd-8000 20-17000 nd-2160000 20 

Chlorinated flame retardants 

TCEP 0.06-0.50 0.06-2.40 nd-79.5 21, 25 

TCPP 0.18-4 0.10-21 3.30-214 25 

Parabens 

Methylparaben nd-79500 nd-3830 nd-27500 9, 18 

Ethylparaben nd-10500 nd-290 nd-30500 9, 18 

Propylparaben nd-40000 nd-230 nd-52100 9, 18 

Butylparaben nd-5600 nd-1000 nd-19900 9, 18 

Pesticides 

Atrazine 0.02-28 0.004-0.73 nd-1400 6, 10, 25 

Azoxystrobin - - nd-59.8 6, 26 

Carbendazim 14-78 60-80 nd-45 6, 15, 28 

Chlorpyrifos   1.01-65.0 6, 26 

DEET 2560-3190 6.4-15800 2.0-69 15, 22, 25 

Diazinon 4.0 0.7-4160 0.12-20.39 24, 25 

Dimethomorph - - nd 5, 26 

Indoxacarb - - -  

Pymetrozin - - -  

Pyraclostrobin - - -  

Simazine 7.27 169 nd-47.95 6, 24 

Plasticizers 

Bisphenol A nd-11800 nd-4090 nd-1950 9, 12 

Bisphenol F nd-16.4 nd nd-2850 7, 33 

Surfactants and derivatives 

Surfynol 104 572-1877 335-950 514 16, 17 

4-tert-octylphenol Nd-8.7 0.004-1.3 1-641 25 

Tert-butylphenols 
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BHA nd-48.7 nd-75 134-256 4, 27, 30 

1. Bahlmann et al.(2014); 2. Baker and Kasprzyk-Hordern (2013); 3. Bollmann et al. (2016); 4. Calderón-Preciado et al. (2011); 
5. Casado et al. (2018); 6. Ccanccapa et al. (2016); 7. Česen et al. (2018); 8. Clara et al. (2005); 9. Czarczyńska-Goślińska et 
al. (2017); 10. De Gerónimo et al. (2014); 11. de Jongh et al. (2012); 12. Deblonde et al. (2011); 13. Ferrer and Thurman 
(2012); 14. Golovko et al. (2014); 15. Gonzalez-Rey et al. (2015); 16. Guedez and Püttmann (2011); 17. Guedez et al. (2010); 

18. Haman et al. (2015); 19. Hass et al. (2012); 20. Herrero et al. (2014); 21. Kim and Kannan (2018); 22.Kim et al. (2017); 

23. Kloepfer et al. (2005); 24.Köck-Schulmeyer et al. (2013); 25. Luo et al. (2014); 26. Reilly et al. (2012); 27. Rodil et al. 
(2010); 28. Singer et al. (2010); 29. Valcárcel et al. (2011); 30. Wang and Kannan (2018); 31. Writer et al. (2013); 32. Wu et 
al. (2015); 33. Yamazaki et al. (2015); 34. Yuan et al. (2013) 
a Values between LOD and LOQ; - not reported, nd non-detected 

 

1.5.4. Occurrence of the studied contaminants in edible parts of vegetables in field-scale studies       

Although there is no much information available on the occurrence of OMCs in edible vegetables at real 

field scale, the Table 1.9 provides a compilation of existing studies for TEs and OMCs. This table shows 

that pesticides, parabens, chlorinated flame retardants and benzotriazole compounds are the most 

abundant OMCs, whereas Zn and Mn are the most abundant TEs in vegetables.  

Table 1.9. Occurrence of the selected contaminants in vegetable tissues

Compound Crop Concentration  Reference 

Anticonvulsants, antidepressants and its related metabolites (ng·g-1 fw) 

Carbamazepine Lettuce 0.001-0.002b 19 

 Tomato nd 19 

Primidone Lettuce nd 19 

Benzotriazole (ng·g-1 fw) 

Benzotriazole Lettuce 0.46-3.99b 

0.27-6.89b 
9 

 Lettuce 

Chlorinated flame retardants (ng·g-1 fw) 

TCEP Lettuce 0.7-2.3 2 

TCPP Tomato 2.8-4.7 2 

 Lettuce 1.7-2.5 2 

Parabens (ng·g-1 dw) 

Methylparaben Bean products nd 13 

 Fruits 150 13 

 Vegetables 50  13 

 Lettuce nd-1500  3 

Ethylparaben Bean products 980 13 

 Fruits 960 13 

 Vegetables 70 13 

Propylparaben Bean products nd 13 

 Fruits 960 13 

 Vegetables 20 13 

Butylparaben Bean products 60 13 

 Fruits nd 13 

 Vegetables nd 13 

Pesticides (ng·g-1 fw) 

Azoxystrobin Lettuce nd-290 10, 12 
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Carbendazim Lettuce 210 4 

Chlorpyrifos Cauliflower 5-440 1, 6, 8,  11, 18  

 Lettuce 5.2-1524 4, 6, 12 

 Tomato 3.8-295 1, 4,6, 8, 12, 18, 21 

Diazinon Tomato 0.3-29.5 21 

Dimethomorph Lettuce 120 10 

Indoxacarb Tomato 12-8 4 

Pymetrozin Lettuce 80 10 

 Tomato 45-380 4, 10 

Pyraclostrobin Lettuce 80 10 

 Tomato 10 10 

Plasticizers (ng·g-1 fw) 

Bisphenol A Tomato 1.6-8.4  2 

 Lettuce 3.3-8.4  2 

4-tert-octylphenol Tomato nd  20 

 Lettuce nd  20 

TEs (mg·kg-1 fw) b 

As Cauliflower 0.01 15 

As Lettuce 0.01-0.03 5, 22 

As Tomato 0.002-0.003 22 

Ba Vegetables 0.49a 7 

Cd Cauliflower nd-0.09  15 

Cd Lettuce nd-0.03 5, 15, 22 

Cd Tomato 0.004-0.039 14, 22 

Cr Vegetables 0.16a  7 

Cr Cauliflower 0.04 15 

Cr Lettuce 0.002-0.056 5, 15 

Cu Vegetables 0.94a  7 

Cu Cauliflower nd-1.47 16,17 

Cu Lettuce 0.03-0.04 22 

Cu Tomato 0.01-0.10 14, 22 

Hg Cauliflower 0.001 15 

Hg Lettuce 0.002 15 

Mn Vegetables 2.24a  7 

Mo Vegetables 0.16a  7 

 Ni Vegetables  0.36a  7 

Ni Cauliflower 0.063 15 

Ni Lettuce 0.05 15 

Pb Cauliflower nd-0.02  15, 16 

Pb Lettuce nd-0.08 5,15, 22  

Pb Tomato 0.01-1.06 14, 22 

Sb Vegetables 0.01a  7 

Zn Vegetables 5.69a  7 

Zn Cauliflower 1.85-6.28 16,17 

Zn Tomato 0.24-0.73 14, 22 

nd non-detected; a Median value is given; b data has been transformed to fw using as lettuce’s moisture 95.5%, tomato’s 
moisture 80.7% and 91.4% from cauliflower. 
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1. Alamgir et al. (2013); 2. Albero et al. (2017); 3. Aparicio et al. (2018); 4. Bakirci et al. (2014); 5. Chang et al. (2014); 6. Chen 
et al. (2005); 7. Generalitat de Catalunya (2015); 8. Latif et al. (2011); 9. LeFevre et al. (2017); 10. Lemos et al.(2016); 11. 
Lozowicka (2015); 12. Mac Loughlin et al. (2018); 13. Maher et al. (2018); 14. Mohod (2015); 15. Pan et al. (2016); 16.Singh 
and Singh (2014); 17.Singh and Kumar (2006); 18. Sinha et al. (2012); 19. Wu et al. (2014); 20. Yang and Ding (2005); 21. 
Yu et al. (2016); 22. Zhou et al. (2016) 

 

1.6 Hypothesis and objectives 

Taking into consideration the evidence on the absorption of chemical contaminants by plants reported 

in the literature, the following hypothesis were proposed: 

1. Peri-urban agriculture is exposed to a greater concentration of chemical contaminants through 

water irrigation, air or soil may end up with vegetables, which have high concentration of 

chemical contaminants. 

2. Vegetables from peri-urban agriculture exposed to a higher concentration of contaminants may 

have negative yield and human health implications compared to rural farming. 

 

To address these hypotheses, the following objectives were established. 

The overall aim of this Thesis is the evaluation of the occurrence of several chemical contaminants in 

peri-urban agriculture (irrigation water, soil and vegetables) as well as their effect on crop productivity 

and human health, compared with rural agriculture.  

Therefore, in order to accomplish the general objective, this Thesis comprises the following specific 

objectives: 

 

1. Evaluate the presence of the selected chemical contaminants (OMCs and TEs) in the irrigation 

waters used in the four peri-urban and one rural farm plots located in the Baix Llobregat 

Agrarian Park (Barcelona, Spain), 

2. Assess the effect of the above-mentioned irrigation waters on seed germination and crop 

productivity. 

3. Evaluate the effect of seasonality on the presence of the contaminants in soil and lettuce leaves 

and estimate their bioconcentration factors.  

4. Assess the effects of the studied chemical contaminants in lettuce leave components 

(chlorophyll, nitrate, lipid and carbohydrate content). 

5. Evaluate the concentration of contaminants (OMCs and TEs) in different food crops (i.e. lettuce, 

tomato, cauliflower and broad beans) grown under peri-urban and rural agriculture. 

6. Evaluate the potential human health risk of the consumption of vegetables grown under peri-

urban agriculture in comparison to those grown under rural agriculture by applying HQ and 

TTC approaches. 
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 Chapter II: Occurrence of chemical contaminants in peri-urban 

agricultural irrigation waters and assessment of their phytotoxicity 

and crop productivity 
 

This chapter is based on the article: 

Margenat, A., Matamoros, V., Díez, S., Cañameras, N., Comas, J., & Bayona, J. M. (2017). 

Occurrence of chemical contaminants in peri-urban agricultural irrigation waters and 

assessment of their phytotoxicity and crop productivity. Science of the Total Environment, 

599–600, 1140–1148.  

 

Water scarcity and water pollution have increased the pressure on water resources worldwide. This pressure is 

particularly important in highly populated areas where water demand exceeds the available natural resources. In 

this regard, water reuse has emerged as an excellent water source alternative for peri-urban agriculture. 

Nevertheless, it must cope with the occurrence of chemical contaminants, ranging from TE to OMCs. In this study, 

chemical contaminants (i.e., 15 TEs, 34 OMCs), bulk parameters, and nutrients from irrigation waters and crop 

productivity (Lycopersicon esculentum Mill. cv. Bodar and Lactuca sativa L. cv. Batavia) were seasonally 

surveyed in 4 farm plots in the peri-urban area of the city of Barcelona. A pristine site, where rain-groundwater is 

used for irrigation, was selected for background concentrations. The average concentration levels of TEs and 

OMCs in the irrigation water impacted by TWW were 3 (35 ± 75 μg·L−1) and 13 (553 ± 1050 ng·L−1) times higher 

than at the pristine site respectively. Principal component analysis was used to classify the irrigation waters by 

chemical composition. To assess the impact of the occurrence of these contaminants on agriculture, a seed 

germination assay (Lactuca sativa L.) and real field-scale study of crop productivity (i.e., lettuce and tomato) were 

used. Although irrigation waters from the peri-urban area exhibited a higher frequency of detection and 

concentration of the assessed chemical contaminants than those of the pristine site (P1), no significant differences 

were found in seed phytotoxicity or crop productivity. In fact, the crops impacted by TWW showed higher 

productivity than the other farm plots studied, which was associated with the higher nutrient availability for plants. 
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2.1 Introduction 

Water scarcity is increasing with global changes and already affects almost every continent and >40% 

of the world's population (UN-WATER 2016). Agriculture accounts for 70% of global water 

withdrawals, a figure that rises to 80% in arid and semiarid regions. In this context, the direct or indirect 

reuse of TWW for crop irrigation can be considered a reliable and strategic water supply, quite 

independent from seasonal drought and weather variability and able to cope with peaks in water demand. 

This can be very beneficial to farming activities that rely on a continuous water supply during the 

irrigation period, reducing the risk of crop failure and income losses (EC 2016). Appropriate nutrient 

appraisal in TWW could also reduce fertilization needs, resulting in environmental benefits and a 

reduction in production costs (Haruvy, 1997). This is particularly important in peri-urban agriculture, 

which is characterized by a high water demand and proximity to TWW (Kurian et al., 2013).  

However, TWW may contain pollutants and pathogens, which can constitute a threat to human health 

when the TWW is used for agricultural irrigation (Becerra-Castro et al., 2015; Prosser and Sibley, 2015). 

Those contaminants include so-called CECs, chemicals of a synthetic origin or deriving from a natural 

source that have recently been found to have possible harmful effects on environmental and public 

health, although the extent of the risk has yet to be determined (Naidu et al., 2016). Moreover, the use 

of TWW also raises the levels of metals, such as Cu, Zn, Fe, Pb, and Ni, in the receiving soils and, as a 

consequence, in the medium term can affect agricultural productivity and human health if they are 

uptaken by crops (Rattan et al., 2005). Therefore, although the occurrence of some metals in crops is 

already regulated in different countries due to their human health implications (Khan et al., 2015, 2013) 

CECs remain unregulated. 

Recent reports have shown that the occurrence of OMCs in irrigation waters is highly dependent on the 

source of water used. For instance,  Calderón-Preciado et al. (2013) observed that irrigation water from 

a secondary TWW contains a higher concentration of OMCs such as pharmaceuticals and personal care 

products (772 ng L−1 on average) than groundwater (31 ng L−1 on average). Recent laboratory and 

greenhouse studies have shown that OMCs can produce phytotoxic, morphological and physiological 

changes in crop plants (Carter et al., 2015; Carvalho et al., 2014; Christou et al., 2016; Marsoni et al., 

2014; Shahid et al., 2015), but until now there is no evidence of their effect on crop productivity at real 

field scale. Rattan et al. (2005) observed that irrigation with TWW for 20 years resulted in a significant 

build-up of extractable TEs such as Zn (208%), Cu (170%), Fe (170%), Ni (63%), and Pb (29%) 

compared to adjacent soil irrigated with tube-well water. According to the FAO, the threshold levels of 

TEs for crop production depend on the crop and the element (FAO 1985). For instance, As toxicity to 

plants ranges from 12 mg L−1 for Sudan grass to <0.05 mg L−1 for rice. Co is phytotoxic to tomato plants 

at 0.1 mg L−1 in nutrient solution, and Cu is phytotoxic at 0.1 to 1.0 mg L−1. Zn is phytotoxic to many 

plants at widely varying concentrations, while Ni is phytotoxic to a number of plants at 0.5 to 1.0 mg L

−1; in both cases, toxicity is reduced at neutral or alkaline soil pH. Finally, while 0.2 mg L−1 of B in water 
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is essential for some crops, at concentrations of 1 to 2 mg L−1 it becomes phytotoxic. Recent findings 

suggest that the presence of macronutrients (e.g. N, P, K, Ca, Mg) and micronutrients (e.g. Cu, Fe, Zn, 

Mn, etc.) in the TWW leads to an increase in crop productivity (Li et al., 2015; Urbano et al., 2017). 

Notwithstanding these findings, there is no information about the co-occurrence of OMCs and TEs in 

irrigation waters impacted by TWW effluents and their potential effect on crop productivity in real field 

conditions. 

This study aimed to assess the occurrence of chemical pollutants (15 TEs, 34 OMCs, and nutrients) in 

irrigation waters, as well as their effect on crop phytotoxicity (i.e., seed germination) and productivity 

(i.e., lettuce and tomato) in 4 farm plots located in the peri-urban area of the city of Barcelona (NE 

Spain). The results were also compared with background concentrations from a farm plot located far 

away from the peri-urban area. 

2.2 Material and methods 

2.2.1 Description of the study area 

The area of study was located in the delta and low valley of the Llobregat River (NE Spain). This 

traditionally rich farmland, also known as the Baix Llobregat Agrarian Park (BLAP), is a protected 

farmland precinct spanning 3300 ha in the metropolitan area of Barcelona (Paül and McKenzie, 2013). 

In this region, farmland, the river, and natural or semi-natural sites exist side by side with urban sprawl, 

with the concomitant population pressure and environmental impact. The peri-urban area of the BLAP 

is characterized by a gradient of atmospheric and irrigation water pollution originating from industrial, 

urban, and agricultural activities. In this study, 5 plots were selected based on their irrigation water 

source. The plots included 4 farm plots located inside the peri-urban area (P2-P5, <50 m asl) and 1 

pristine site (P1) located 400 m asl on a Karstic massif in the west of the BLAP (Fig. 2.1). 
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Figure 2.1 Map of the sampling area. P1. Begues; P2. Prat de Llobregat P3. Sant Joan Despí; P4. Sant Boi de Llobregat; 
P5. Viladecans. 

Each farm plot had a surface area of over 0.1 ha planted with different seasonal vegetables (i.e., lettuce, 

tomato, onion, and cauliflower). The soil in the peri-urban sites is formed by rich sediments deposited 

over the years by the river from which this area takes its name. All places have coastal Mediterranean 

climate. The soil analysis performed prior to lettuce cultivation indicated for the 5 sites an adequate 

level of fertility to grow vegetables (N-NO3 > 2 mg L−1; P > 15 mg L−1; K+ > 180 mg L−1) and similar 

electrical conductivity (2.2 - 2.8 dS m−1) and pH (7.6 -7.8). The 5 plots presented very permeable soils, 

P1, P3 and P4 soil's texture was sandy loam and P2 and P5 sandy. 

Most of the BLAP area (1240 ha) is watered with irrigation water from the Llobregat River. The river's 

average flow rate is 137 hm3 year−1, and it drains an area of 4948 km2. The Llobregat River and its two 

main tributaries, the Cardener River and Anoia Stream, receive discharges from 80 urban and industrial 

WWTPs. Furthermore, the central area of the basin receives brine leachates from natural salt formations 

and mining operations, which have caused an increase in water salinity downstream. The river water in 

the BLAP area flows through interconnected open-air concrete distribution channels (P2 and P4), but 

additional water sources such as well water are also used (P5). The irrigation water for site P3 originates 

in the Infanta Channel, which is mostly made up of TWW from 10 WWTP effluents (Rubí Creek). 

Therefore, whereas irrigation waters from P2 and 4 are a clear example of unplanned indirect water 

reuse, P3 is of planned indirect water reuse. Most of the WWTPs impacting irrigation waters (P2-P4) 

consisted of conventional activated sludge treatments without any additional polishing system. The 

sampling site located in Viladecans (P5) uses well water impacted by industrial and road runoff. 
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Additionally, a reference site (P1) was selected for the purposes of comparison in a pristine area in the 

Littoral Mountains where ground-rainwater is used for irrigation. 

Drip irrigation system was used in the reference plot (P1), while furrow irrigation was applied in the 

other farm plots (P2 - P5). The volume of irrigation water supplied to the cultures was similar among 

sites P2 - P5 (lettuce: 150 - 170 mm irrigation + 120 mm precipitation; tomato: 570 mm irrigation + 80 

mm precipitation) and P1 (lettuce: 80 mm irrigation + 160 mm precipitation; tomato: 520 mm irrigation 

+ 70 mm precipitation). 

2.2.2 Sampling plan 

Irrigation water 

The sampling was carried out between February and September of 2016 during the growing period of 

the different crops of interest (lettuce and tomato). Fig.2.1 shows the location of both the sampling points 

in the irrigation network from the peri-urban area of the BLAP (P2 - P5) and the reference site (P1). In 

each farm plot, between four and ten irrigation water samples were analysed (Table 2.1). All water 

samples were collected directly from the irrigation canals, except in the P5 were water samples were 

collected in the irrigation pipeline, after the ferti-irrigation system. Water samples for TE determination 

were collected in acid-washed (2% HNO3) 125 mL fluorinated ethylene propylene (FEP) bottles 

(Thermo Scientific Nalgene, Rochester, NY, USA). After each field campaign, < 2h after their collection 

and once in the laboratory, the water samples were filtered (< 0.45 μm) with nylon membranes using a 

syringe filtration unit acidified with nitric acid (pH < 2). The samples were then stored in the fridge in 

a pre-cleaned bottle until analysis by ICP-MS and ICP-OES. Water samples for the determination of 

OMCs and conventional water quality parameters were collected in pre-cleaned 2.5 L amber glass 

bottles. All samples were kept refrigerated during transport to the laboratory, where they were stored at 

4 °C until they were analyzed. 

Crops 

Lettuce (Lactuca sativa L. cv. Batavia) and tomatoes (Lycopersicon esculentum Mill. cv. Bodar) were 

harvested when they reached commercial size. The lettuce seedlings were planted in March 2016, and 

the plants were harvested in May 2016 (P1 - P5), whereas the tomato seedlings were planted in May - 

June and harvested in September 2016 (P1, P3, and P5). In each farm plot, 50 lettuces and 50 tomatoes 

fruits were randomly harvested, weighted over an area of 0.1 ha (P1 - P5). The same integrated 

management plan (fertilization and pesticide application) was used in all farm plots from the BLAP. 

2.2.3 Analytical procedures 

Water quality parameters 

Conventional water quality parameters, including ammonium nitrogen (NH4
+-N), NO3-N, total 

phosphorous (TP), and total suspended solids (TSS), were determined in all the water samples. The 

nutrients were measured with Hach Lange NH4
+-N, NO3-N, and TP cell tests (LCK 303, 304, 339, and 
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349) on a spectrophotometer (Hach Lange DR 1900 Portable Spectrophotometer). Measurements of 

water pH, conductivity, temperature, and dissolved oxygen (DO) were taken using Hach Lange sensors. 

Trace elements 

The TEs were selected due to their inclusion in the Spanish Royal Decree 1620/2007 for water reuse, 

and since their accumulation by food crops, particularly vegetables, is of increasing concern because of 

the potential human health risks to the consumers (Khan et al., 2008). An inductively coupled plasma 

optical emission spectrometer (Thermo Scientific, iCAP 6500 ICP-OES) and an inductively coupled 

plasma mass spectrometer (Thermo Scientific, XSeries 2 ICP-MS) were used for the determination of 

TEs in the water samples. The most frequently found elements (i.e., 13 out of the 58 elements analyzed) 

were divided into three categories: major TEs (Ba, B, Mn, and Li), most common TEs (Mo, Pb, Zn, Cu, 

Ni, Co, and Cr), and other non-common TEs (Rb and Sb). Reagent water was used as a blank matrix, 

and laboratory reagent blank (LRB) was treated exactly the same as a sample, including exposure to all 

glassware, equipment, solvents, and reagents used with the other samples. A limit of detection (LOD) 

of 0.2 μg L−1 was determined from three times the standard deviation obtained from the analysis of ten 

runs of blank samples on the same day as the determinations. Similarly, the limit of quantification (LOQ) 

was calculated by multiplying the standard deviation by ten (0.67 μg L−1). 

Organic microcontaminants (OMCs) 

In this survey study, the prioritization of OMCs was based on the compounds' potential plant uptake, 

log Kow < 4.0 (Table S2.1), occurrence in irrigation waters, persistence, and potential harmful effects 

for human health (Banjac et al., 2015; Ginebreda et al., 2010; Prosser and Sibley, 2015). The 

determination of OMCs was performed as described by Matamoros and Bayona (2006). Briefly, 250 

mL of filtered water samples was spiked with 100 ng of a surrogate standard mixture (see section 2.5.2). 

The samples were then percolated through a conditioned 200 mg STRATA X solid-phase extraction 

cartridge (Phenomenex, Torrance, USA). Elution was performed with 15 mL of ethyl acetate. After that, 

the eluted extract was evaporated under a gentle nitrogen stream until ca. 250 μL and 100 ng of 

triphenylamine was added. Derivatized and non-derivatized aliquots of the sample extracts were 

analyzed with an EI-GC–MS/MS Bruker 450-GC gas chromatograph coupled to a Bruker 320-MS 

triple-stage quadrupole mass spectrometer (Bruker Daltonics Inc., Billerica, MA, USA).  

The derivatization of samples was carried out by methylation of the acidic hydroxyl groups in a 

programmed temperature vaporizing (PTV) injector of the gas chromatograph by adding 10 μL TMSH 

to a 50 μL sample aliquot before injection. A volume of 5 μL was injected into a Bruker 450-GC gas 

chromatograph coupled to a Bruker 320-MS triple quadrupole mass spectrometer (Bruker Daltonics, 

Billerica, MA, USA) fitted with a 20 m × 0.18 mm ID, 0.18 μm film thickness Sapiens X5-MS capillary 

column coated with 5% diphenyl 95% dimethyl polysiloxane from Teknokroma (Sant Cugat del Vallès, 

Spain). The PTV injector was set at 60 °C for 0.5 min and then rapidly heated up to 300 °C at 200 °C 
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min−1 and held for 10 min. It was then cooled to the initial 60 °C at 200 °C min−1. The gas flow rate was 

set at 0.6 mL min−1. The ion source temperature and transfer line were both held at 250 °C. A solvent 

delay of 7 min was applied. Argon gas was used for CID at a pressure of 1.8 mTorr, and the optimum 

collision energy (CE) was selected for each transition. 

Qualitative and quantitative analyses were performed based on retention time and the selection reaction 

monitoring (SRM) mode of two product ions, and the ratio between the product ions was used for 

confirmation. The LOD and LOQ were defined as the mean background noise in a blank triplicate plus 

three and ten times, respectively, the standard deviation of the background noise from three blanks. The 

LOD ranged from 0.1 to 50 ng L−1, and the LOQ from 0.3 to 80 ng L−1, except for benzotriazole and 

derivatives, which exhibited an order of magnitude higher. The monitoring ions, CEs, LODs, LOQs, 

and recoveries can be found in the supporting information (Tables S2.2–2.5). 

2.2.4 Seed germination bioassay and crop productivity 

The seed germination assay was performed as previously described by (Marsoni et al., 2014). Briefly, 

lettuce seeds (Vilmorin Jardin, St Quentin Fallavier Cedex, France) were sterilized with 2.5% sodium 

hypochlorite for 15 min and thoroughly washed with distilled water. Hydrated seeds were transferred to 

Petri dishes (100 mm diameter) containing a GF/F filter in the presence of 5 mL of distilled water 

(control) or irrigation waters. For each irrigation water, 10 dishes containing 10 seeds each (n = 100 per 

irrigation water type) were prepared and incubated in the dark at 25 °C. After 72 h, the germinated seeds 

were counted. Seeds were considered germinated when root elongation was >3 mm; a minimum of 80% 

germinated seeds in the control dishes was required. 

Lettuce and tomato yields were determined at commercial size in 0.1 ha plots in commercial fields. The 

time needed for them to reach commercial size was also recorded. Crop productivity for lettuce was 

calculated by multiplying the measured fresh weight per a survival factor of 0.8 by the number of crops 

per square meter (6.5 plants m−2). 50 tomatoes fruits (10 fruits × 5 sections × plot) were sampled to 

determine their average weight. 

2.2.5 Data analysis 

The experimental results were statistically evaluated using the SPSS v. 22 package (Chicago, IL, US). 

All data sets were checked for normal distribution using the Kolmogorov–Smirnov test to ensure that 

parametric statistics were applicable. The comparison of means of the occurrence of chemical pollutants 

between farm plots was performed with a two-paired (Wilcoxon) signed-rank test (the concentration of 

each compound was compared between farm plots). A Mann-Whitney U test was used for the 

comparison of conventional quality parameters, and a one-way ANOVA was used for the productivity 

studies (n =50-100). Principal component analysis (PCA) was conducted on the concentration levels of 

TEs, OMCs, and nutrients. Once the data matrix had been completed, it was autoscaled to have zero 

mean and unit variance (correlation matrix). Statistical significance was defined as p ≤0.05. 
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2.3 Results and discussion 

2.3.1 Conventional water quality parameters 

Table 2.1 shows the conventional water quality parameter values for the 5 irrigation plots studied. 

Irrigation waters from the peri-urban area of Barcelona had higher electrical conductivity than irrigation 

waters from the pristine zone (site P1). This can be attributed mainly to two factors: 1) the high impact 

of TWW on irrigation sites P2, P3, and P4) the impact of salt mining on the Llobregat River Basin 

(Momblanch et al., 2015). Additionally, the high electrical conductivity observed in the groundwater 

from the Llobregat Delta (site P5) may be due to seawater intrusion and agricultural activities (Miracle, 

1989; Otero and Soler, 2002). Similarly, the concentration of TSS was higher at sites P2, P3, and P4 

than at sites P1 and P5 (p < 0.05) and ammonium was lower at sites P1, P2, and P4 than at sites P3 and 

P5 (p < 0.05). This is in keeping with the fact that the irrigation waters of the former (i.e., P2, P3, and 

P4) originated from surface water bodies (i.e., Llobregat River and TWW effluents), whereas the 

irrigation water source of sites P1 and P5 was groundwater. The high concentration of TP, ammonium, 

and nitrates at site P5 was accounted for by the fact that the water samples were collected in the irrigation 

pipeline, after the ferti-irrigation system. When the P5 site was excluded, P3 showed the highest levels 

of conductivity and nutrients (p < 0.05). This is consistent with the fact that the water from the Infanta 

Channel is fed by Rubí Creek, a stream that is mainly composed of worse-quality TWW than that of the 

Llobregat River  (González et al., 2012). Nevertheless, the irrigation water quality complied with the 

Spanish guidelines for water reuse in accordance with the general quality parameters assessed in this 

study (Royal Decree 1620/2007). In addition to these parameters, Spanish Royal decree also includes 

intestinal parasites, Salmonella sp., Escherichia coli (not included in this study), and the TEs listed in 

Table 2.2. 

Table 2.1 Minimum, maximum and average levels of general quality parameters in the studied irrigation waters. 
Levels below the LOD were replaced by ½ LOD. 

 Plot 1 (n = 5) Plot 2 (n = 4) Plot 3 (n = 10) Plot 4 (n = 8) Plot 5 (n = 4)a 

Conductivity (μS cm− 1) (968–1211) 1049 (1519–1645) 1584 (1490–2148) 1944 (1255–1707) 1482 (1272–2370) 1663 

NH4+–N (mg L− 1) (0.002–0.167) 0.05 (0.1–0.7) 0.3 (3–47) 14 (0.1–0.6) 0.2 (0.1–12.8) 4.2 

Nitrates (mg L− 1) (2.8–4.6) 3.9 (1.8–2.7) 2.1 (3.4–7.4) 5.4 (1.5–2.5) 2.0 (4–175) 55 

TP (mg L− 1) (0.03–3.0) 0.6 (0.2–2.4) 0.8 (0.6–2.5) 1.5 (0.2–0.7) 0.3 (0.6–6.2) 2.5 

TSS (mg L− 1) (10–55) 21 (13–84) 33 (14–94) 46 (13–90) 63 (2–40) 18 

pH (7.5–8.6) 8.1 (8.1–8.6) 8.4 (7.7–8.1) 7.9 (6.7–8.6) 8.1 (6.8–7.8) 7.4 

TP: total phosphorous; TSS: total suspended solids. 
a Water samples collected from the irrigation pipeline (may contain chemical fertilizers due to ferti-irrigation). 
 

2.3.2 Occurrence of trace elements (TEs) 

Table 2.2 shows that 13 out of the 58 TEs studied were detected above the LOQ in all irrigation waters. 

The TEs detected at the highest concentrations in all irrigation waters were B and Ba. This high 

abundance is consistent with their predominant geogenic origin (Kabata-Pendias and Mukherjee, 2007), 
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although B can also be anthropogenically derived and can be distinguished by stable isotopic 

fractionation (Bassett et al., 1995). The total average concentration of TEs per site was as follows: 164 

μg L−1 (P1), 259 μg L−1 (P2), 269 μg L−1 (P4), 330 μg L−1 (P5), and 550 μg L−1 (P3). A two-paired test 

showed that irrigation water from the pristine site (P1) was less polluted by TEs than the irrigation 

waters from the peri-urban area of Barcelona (p < 0.05) and that site P3 was the most polluted. Sites P3 

and P5 showed the highest concentration of Zn (from 34 to 68 μg L−1 on average) and Mn (23 to 63 μg 

L−1 on average). Zn is phytotoxic, but at much higher concentrations than those found in the irrigation 

waters in this study. Bouain et al. (2014) observed that a concentration higher than 23 mg L−1 of Zn was 

required to reduce shoot and root dry weight in hydroponic lettuce cultures. Mn is an essential 

micronutrient that participates in the structure of photosynthetic proteins and enzymes (Millaleo et al., 

2010), but it is also used in pesticide formulations as an active ingredient (e.g., mancozeb). This is in 

keeping with the presence of high levels of industrial, urban, and agricultural activity in the peri-urban 

area of Barcelona. 

The detected TE concentration levels were consistent with those previously detected in the Llobregat 

River, TWWs, and groundwater (Cabeza et al., 2012). It should be noted that Cabeza et al. (2012) only 

monitored the occurrence of 4 TEs (Cd, Ni, Hg, and Pb), and only Ni and Pb were found at the 

concentration range of μg L−1 in all types of waters with a frequency of detection (FOD) higher than 

25%. The results of this study were slightly lower than those reported for Pb, but with a similar order of 

magnitude to those reported for Ni, especially in groundwater. The content of the TEs analyzed in all 

the irrigation water samples complied with both standards, i.e., Spanish Royal Decree 1620/2007 (SRD, 

2007) for the agriculture use of TWW and the UN Food and Agriculture Organization guidelines (FAO, 

1985), as shown in Table 2.2. 

Table 2.2 Frequency of detection (FOD), minimum, maximum and average concentration of metals and metalloids in 
the water irrigation from the different studied plots. The threshold levels of trace elements for crop production of the 
Spanish Royal (SRD, 2007) and the Food and Agriculture Organization (FAO, 1985) are shown. Levels below the LOD 
were replaced by ½ LOD. 

 Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 
SRD 

(mg L− 1) 
FAO 

(mg L− 1) 
 FOD 

(%) 
Concentration 

(μg L− 1) 
FOD 
(%) 

Concentration 
(μg L− 1) 

FOD 
(%) 

Concentration 
(μg L− 1) 

FOD 
(%) 

Concentration 
(μg L− 1) 

FOD 
(%) 

Concentration 
(μg L− 1) 

As 100 (2.9–3.3) 3.1 100 (1.6–2.6) 2.3 100 (4.6–7.0) 5.6 100 (2.5–3.1) 2.9 100 (2.9–17) 8.5 0.1 0.1 

B 100 (98–131) 112 100 (47–84) 62 100 (276–334) 298 100 (85–182) 123 100 (113 − 123) 119 0.5 n/a 

Ba 100 (57–66) 60 100 (37–79) 49 100 (30–42) 36 100 (51–64) 58 100 (37–59) 49 n/a n/a 

Cd nd < 0.2 nd < 0.2 nd < 0.2 nd < 0.2 nd < 0.2 0.01 0.01 

Co 100 (0.6–1.1) 0.8 100 (1.3–2.5) 1.7 100 (2.2–4.8) 3.1 100 (0.7–1.2) 0.9 100 (0.5–1.2) 0.8 0.05 0.05 

Cr 100 (1.4–3.4) 2.2 100 (0.2–0.7) 0.4 100 (2.3–7) 4.8 100 (0.6–1.9) 1.4 100 (0.3–0.6) 0.5 0.1 0.1 

Cu 100 (1.2–2.8) 2 100 (2.2–7.3) 3.4 100 (2.8–4.7) 3.7 100 (0.9–2) 1.5 100 (3.7–17.6) 8.4 0.2 0.2 

Li 100 (18.8–21) 20 100 (22–29) 26 100 (22.6–46.9) 35.6 100 (12.8–19.8) 16.5 100 (11–15.1) 13.8 n/a 2.5 

Mn 100 (7.5–23.8) 16 100 (0.3–2.5) 1.5 100 (27.8–96.1) 63.3 100 (5.7–43.4) 21.6 100 (8.4–37.5) 22.8 0.2 0.2 

Mo 100 (2.3–3.5) 3 100 (2–3) 2.3 100 (6.1–16.2) 9.7 100 (2.1–6.5) 3.3 100 (3–7.2) 4.4 0.01 0.01 

Ni 100 (11.6–17.5) 14.5 100 (2.4–3.9) 2.9 100 (11–17.5) 13.5 100 (10.4–20.4) 16.8 100 (2.7–47.4) 17.9 0.2 0.2 

Pb 100 (0.2–0.2) 0.2 nd < 0.1 86 (0.1–0.4) 0.3 nd < 0.1 67 (0.1–0.6) 0.4 n/a 5 

Rb 100 (11.4–11.9) 11.7 100 (2.5–3.2) 2.7 100 (13.9–20) 16.5 100 (8.9–11.8) 10.4 100 (6.7–21.4) 16.5 n/a n/a 
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 Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 
SRD 

(mg L− 1) 
FAO 

(mg L− 1) 
 FOD 

(%) 
Concentration 

(μg L− 1) 
FOD 
(%) 

Concentration 
(μg L− 1) 

FOD 
(%) 

Concentration 
(μg L− 1) 

FOD 
(%) 

Concentration 
(μg L− 1) 

FOD 
(%) 

Concentration 
(μg L− 1) 

Sb 100 (0.7–1.3) 1 100 (0.7–1) 0.8 100 (2.2–5.2) 3.2 100 (0.8–1.2) 1 nd < 0.2 n/a n/a 

Zn 100 (11–14) 12 100 (3–14) 8 100 (29–38) 34 100 (9–17) 12 100 (26–110) 68 n/a 2 

n/a: no data available; nd: not detected 

 

2.3.3 Occurrence of organic microcontaminants (OMCs) 

Table 2.3 shows the FOD and concentration of OMCs in the 5 irrigation plots. As can be seen, 3 of the 

34 OMCs were below the LOD in all the irrigation waters (i.e., EPB, indoxacarb, and TCCP). The FOD 

ranged from 20% at the pristine site (P1) to 100% at all sites. The other sites exhibited intermediate 

values (59% at P2, 55% at P4, and 43% at P5). The concentration of OMCs ranged from <1 to 12,745 

ng L−1 for 5-TTri. Surfynol 104 was the most abundant contaminant in all the irrigation waters of the 

BLAP area (>1000 ng L−1), with values ranging from 55 to 4933 ng L−1 (average 2095 ng L−1). This is 

in keeping with previously reported studies that found this compound to be one of the most abundant 

contaminants in surface waters (Guedez et al., 2010). Indeed, higher Surfynol 104 concentrations have 

been reported in rivers (up to 63.5 μg L−1) and in TWW effluents (up to 310 μg L−1) affected by industrial 

effluents (paper recycling industry and factories producing paint and printing ink) in Germany (Guedez 

and Püttmann, 2014). In fact, Surfynol 104 is a non-ionic surfactant used as an industrial defoaming 

agent that has various benefits in coatings, wood finishes, varnishes, cements, and metalworking fluids. 

A two-paired test showed that the concentration of OMCs in irrigation waters collected from 

groundwater (i.e., sites P1 and P5) was much lower than in those collected from surface waters (i.e., 

sites P2, P3, and P4) (p < 0.05). This is consistent with the previously reported low occurrence of OMCs 

in groundwater compared to surface waters (Sui et al., 2015). Site P3 presented the highest concentration 

of OMCs. In addition to Surfynol 104, 2-MBT, 5-TTri, BTri, and EPOCBZ were the most abundant 

(>1000 ng L−1). A high concentration of 2-MBT was found in irrigation water from site P3 originating 

from TWW, which is consistent with previous studies that reported high levels of this compound in 

treated water (Matamoros et al., 2010). Benzotriazole compounds (5-TTri, BTri), which are used as 

anticorrosive agents in industry, have also been found at high concentration levels in TWW effluents 

and Llobregat River water samples (Asimakopoulos et al., 2013; Banjac et al., 2015; Matamoros et al., 

2010). This result is consistent with the high concentration of these compounds in raw wastewater, as 

well as their moderate removal in WWTPs (Matamoros et al., 2010). Finally, results for EPOCBZ, 

which is the biotic transformation product of carbamazepine (Martínez-Hernández et al., 2016), show 

that the ratio between this compound and the parental counterpart (carbamazepine) was almost constant 

in all irrigation waters (3.1 ± 1.0). This result is consistent with the ubiquity and recalcitrance of 

carbamazepine in the aquatic environment and the fact that EPOCBZ is mainly formed by the 

detoxification phase I (oxidation), which occurs after human intake or crop uptake of carbamazepine 

(Malchi et al., 2014; Paltiel et al., 2016). These results suggest that both compounds are recalcitrant in 

the studied irrigation water bodies and should be targeted in crop uptake studies. 
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Table 2.3 Frequency of detection (FOD), minimum, maximum and average concentration of CECs in the studied 
irrigation waters. Levels below the LOD were replaced by ½ LOD for the calculation of the average concentration. 

 Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 

 
FOD 
(%) 

Concentration 
(ng L− 1) 

FOD 
(%) 

Concentration 
(ng L− 1) 

FOD 
(%) 

Concentration 
(ng L− 1) 

FOD 
(%) 

Concentration 
(ng L− 1) 

FOD 
(%) 

Concentration 
(ng L− 1) 

Atrazine nd < 2 50 (< 2–7) 4 100 (13–43) 22 13 (< 2–8) 3 nd < 2 

Azoxystrobin nd < 4 nd < 4 50 (< 4–57) 11 nd < 4 25 (< 4–9) 4 

2-tert-Butyl-4-methoxyphenol 
(BHA) 

nd < 3 nd < 3 100 (4–44) 20 nd < 3 25 (< 3–18) 6 

Chlorpyrifos nd < 10 nd < 10 30 (< 10–75) 24 13 (< 10–16) 6 100 (75–149) 119 

DEET 20 (< 17–33) 14 100 (33–48) 39 100 (86–813) 395 88 (< 17–62) 45 100 (48–52) 51 

Diazepam nd < 1 100 (3 − 10) 5 100 (28–1019) 163 88 (< 1–5) 3 50 (< 1–2) 1 

Diazinon nd < 1 100 (8–12) 11 100 (20–115) 49 100 (3–27) 15 100 (4–37) 13 

Dymethomorph 40 (< 1–9) 3 75 (< 1–2) 1 10 (1–106) 21 75 (< 1–3) 2 75 (< 1–2) 1 

Indoxacarb nd < 18 nd < 18 nd < 18 nd < 18 nd < 18 

Simazine nd < 4 nd < 4 20 (< 4–24) 5 nd < 4 nd < 4 

Surfynol 104 100 (55–683) 343 100 
(2234–3374) 
2860 

100 
(607–4564) 
2393 

100 (711–4933) 2332 100 (58–157) 113 

TCEP 40 (< 5–7) 5 100 (27–51) 38 100 (56–171) 100 100 (10–56) 26 100 (7–8) 8 

2-Mercaptobenzothiazole  
(2-MBT) 

40 (< 18–61) 23 100 (78–157) 114 100 
(618–8844) 
2391 

100 (28–515) 144 50 (< 18–172) 54 

5-Methyl-2H-benzotriazole  
(5-TTri) 

20 (< 12 − 30) 12 100 (267–507) 356 100 
(1070–12,745) 
4190 

100 (95–412) 263 75 (< 12–92) 67 

Bisphenol A (BPA) 100 (9–210) 62 100 (66–74) 69 100 (70–274) 165 100 (26–109) 55 100 (6–42) 16 

Bisphenol B (BPB) nd < 1 nd < 1 10 (< 1–7) 1 nd < 1 nd < 1 

Bisphenol F (BPF) 60 (< 14–291) 79 100 (26–302) 167 90 (7–390) 97 63 (7–361) 93 100 (52–189) 111 

1,3-Benzothiazole (BT) 60 (< 32–173) 66 100 (50–115) 85 100 (48–154) 93 100 (22–166) 71 100 (37–111) 61 

Benzotriazole (BTri) nd < 670 nd < 670 100 
(1064–5849) 
2617 

nd < 670 nd < 670 

Carbamazepine nd < 10 100 (149–261) 186 100 (373–1280) 891 100 (47–191) 133 50 (< 10 − 13) 10 

Carbendazim 20 (< 2–3) 2 100 (28–110) 57 100 (53–2411)599 100 (8–132) 47 100 (9–24) 20 

Ethyl paraben (EPB) nd < 26 nd < 26 nd < 26 nd < 26 nd < 26 

Lorazepam nd < 3 100 (28–48) 36 100 (42–420) 207 100 (8–42) 27 nd < 3 

Methyl paraben (MPB) 60 (< 56–191) 75 100 (57–90) 79 80 (< 56–142) 86 38 (< 56–119) 57 50 (28–120) 66 

1-Hydroxybenzotriazole 
(OHBT) 

60 (< 10–35) 14 100 (32–64) 48 100 (299–900) 530 100 (17–159) 56 100 (21 − 113) 50 

Octylphenol (OP) nd < 10 nd < 10 100 (17–38) 25 nd < 10 nd < 10 

Oxazepam nd < 2 100 (29–50) 36 100 (37–307) 178 100 (11–49) 25 nd < 2 

Propyl paraben (PPB) 60 (< 2–25) 8 75 (< 2–5) 3 nd < 2 75 (< 2–6) 3 50 (< 2–3) 2 

Primidone nd < 4 100 (18–35) 26 100 (88–215) 145 100 (12–28) 21 25 (< 4–22) 7 

Lamotrigine nd < 6 nd < 6 20 (< 6–46) 12 nd < 6 nd < 6 

Pymetrozin nd < 2 nd < 26 40 (< 2–7) 3 20 (< 2–4) 2 nd < 2 

Pyraclostrobin 100 (2–2) 2 nd < 1 40 (< 1–29) 6 nd < 1 nd < 1 

Carbamazepine-10,11-
epoxide (EPOCBZ) 

nd < 48 100 (447–767) 573 100 
(1176–3304) 
2447 

100 (163–706) 490 nd < 48 

Tris(1-chloro-2-propyl) 
phosphate (TCPP) 

nd < 197 nd < 197 nd < 197 nd < 197 nd < 197 
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2.3.4 Irrigation water sample classification 

PCA was performed on the whole data set to gain further insight into their sources and the distribution 

behaviour of the different assessed parameters in the irrigation waters (Table 2.4). The PCA reduced the 

43 measured variables to 7 principal components with eigenvalues >1, which explains the 99% of the 

total variability observed. Components explaining small data variance (i.e., <5%) were not retained and 

were assumed to be mostly due to background and noise contributions. Therefore, only the first three 

principal components, which accounted for 64% of total variability, were studied.  

The first principal component (PC1), which accounted for 47% of the variance, had high positive loading 

values (>0.8) for electrical conductivity, ammonium, B, Cr, Mn, Co, Mo, Sb, atrazine, TCEP, 5-TTri, 

BTri, carbamazepine, lorazepam, OHBT, OP, oxazepam, primidone, and EPOCBZ, indicating a 

common source for these compounds.  The positive loadings of these compounds correlated with a high 

TWW impact; the highest contribution was for irrigation waters from site P3. This result indicated that 

PC1 was associated with TWW discharges.  

PC2 accounted for 11% of the variance, with high positive loadings (<0.7) for TP, Cu, Zn, As, Pb, and 

chlorpyrifos. The positive loadings of this component explained the groundwater pollution by TEs and 

chlorpyrifos at site P5. Finally, the third principal component (PC3) accounted for 6% of the variance. 

It had a high positive loading (>0.5) for Surfynol 104, but negative loadings for nitrates and 2-MBT. 

This negative correlation between parameters indicates that whereas nitrates and 2-MBT were 

ubiquitously distributed in all the irrigation waters (except for site P3), Surfynol 104 was only detected 

at higher concentrations in the surface irrigation waters. The higher hydrophobicity of Surfynol 104 (log 

Kow=3.6) and its lower groundwater mobility compared to nitrates and 2-MBT (log Kow = 2.7) could 

explain this different behaviour. The positive loadings for Surfynol 104 were associated with surface 

irrigation waters.  

Table 2.4 Variance explained and loadings for the two PCAs. 

 
All irrigation water samples Excluding irrigation water from site 3 

PC1 PC2 PC3 PC1 PC2 PC3 

Percent of variance 47 11 6 29 20 9 

Cumulative percentage 47 58 64 29 49 58 

Conductivity 0.820 0.088 0.215 0.763 0.315 0.390 

NH4+–N 0.818 0.058 − 0.186 0.091 0.695 0.125 

Nitrates 0.630 0.154 − 0.523 − 0.684 0.030 –0.133 

TP 0.309 0.805 0.219 − 0.067 0.884 –0.043 

TSS 0.129 − 0.159 − 0.267 0.380 − 0.108 0.245 

Li 0.759 − 0.214 0.031 − 0.372 − 0.560 –0.223 

B 0.886 0.108 − 0.190 0.492 0.387 0.603 

Cr 0.817 − 0.106 − 0.032 0.762 − 0.204 0.025 

Mn 0.862 0.065 0.041 0.538 0.513 − 0.120 

Co 0.827 − 0.111 0.029 − 0.494 − 0.400 0.225 

Ni 0.123 0.196 0.328 0.457 0.340 –0,019 

Cu 0.056 0.819 − 0.024 − 0.275 0.728 0.001 
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All irrigation water samples Excluding irrigation water from site 3 

PC1 PC2 PC3 PC1 PC2 PC3 

Zn 0.307 0.779 0.086 − 0.077 0.860 − 0.070 

As 0.279 0.777 − 0.008 − 0.068 0.760 0.124 

Rb 0.571 0.628 0.104 0.473 0.839 0.042 

Mo 0.849 0.159 0.175 0.272 0.600 0.099 

Sb 0.820 − 0.148 − 0.124 0.387 − 0.761 0.088 

Ba − 0.521 − 0.035 0.441 0.387 0.044 0.668 

Pb 0.473 0.753 0.219 0.023 0.901 − 0.017 

Atrazine 0.958 − 0.104 0.085 0.435 − 0.094 -0.045 

BHA 0.712 − 0.047 0.233 − 0.092 0.497 − 0.172 

Chlorpyriphos − 0.030 0.841 − 0.125 − 0.277 0.847 0.041 

DEET 0.733 0.075 0.011 0.511 0.534 − 0.243 

Diazepam 0.409 0.012 − 0.318 0.748 − 0.153 − 0.108 

Diazinon 0.791 0.019 0.116 0.442 0.410 − 0.172 

Dimethomorph 0.255 − 0.066 − 0.499 − 0.184 − 0.239 − 0.198 

Surfynol 104 0.435 − 0.373 0.525 0.819 − 0.212 − 0.138 

TCEP 0.864 − 0.179 0.172 0.904 − 0.148 -0.073 

2-MBT 0.517 − 0.020 − 0.689 0.349 − 0.152 0.682 

5-TTri 0.819 − 0.122 0.306 0.930 − 0.076 -0.097 

BPA 0.706 − 0.291 0.107 0.234 − 0.343 -0.420 

BPF 0.092 − 0.072 0.180 0.281 − 0.055 -0.414 

BT 0.286 − 0.133 0.067 0.338 − 0.069 − 0.302 

BTri 0.889 − 0.077 0.051 − 0.245 − 0.186 0.878 

CBZ 0.945 − 0.138 0.073 0.924 − 0.195 − 0.080 

CBDZN 0.751 − 0.161 0.329 0.708 0.020 − 0.110 

Lorazepam 0.888 − 0.110 − 0.066 0.916 − 0.219 0.024 

MPB 0.275 − 0.108 0.225 − 0.056 − 0.053 –0.031 

OHBT 0.899 − 0.008 − 0.191 0.462 0.024 0.005 

OP 0.879 0.029 − 0.288 0.245 0.186 0.878 

Oxazepam 0.946 − 0.158 0.082 0.898 − 0.200 0.024 

Primidone 0.928 − 0.075 − 0.159 0.868 0.068 0.170 

EPOCBZ 0.928 − 0.110 − 0.007 0.856 − 0.200 − 0.036 

In bold the variables with the highest loading values. 

Fig. 2.2a shows the score plot for PC1 vs. PC2, since it was the only plot that grouped samples. The plot 

separated the irrigation water samples into three distinct groups. Group I includes the irrigation waters 

with polluted groundwater (site P5), Group II includes the samples highly impacted by TWW (site P3), 

and Group III includes the irrigation waters less impacted by the discharge of TWW effluents and 

groundwater pollution (sites P1, P2, and P4). 

To gain further insight into the sources of the remaining samples, the irrigation water samples from site 

P3 were excluded, and a new PCA was performed on water samples from sites P1, P2, P4, and P5 (Fig. 

2.2b). The loadings are reported in Table 2.4. Two principal components with eigenvalues >1 were 

extracted, and the PCA method led to a reduction of the initial size of the data set to three components 

explaining 58% of the data variation. PC1 accounted for 29% of the variance and had positive loadings 
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(>0.8) for Surfynol 104, TCEP, 5-TTri, carbamazepine, lorazepam, oxazepam, and primidone. These 

OMCs are highly recalcitrant compounds that have already been detected in the Llobregat River at high 

concentration levels (Banjac et al., 2015). Thus, the positive loadings for these components were 

associated with the Llobregat River irrigation water. In contrast, PC2 (20%) had positive loadings for 

TP, Zn, Rb, Pb, and chlorpyrifos. 

These results are consistent with the presence of Pb and chlorpyrifos in previous studies carried out with 

Llobregat Delta groundwater (Cabeza et al., 2012). Therefore, this component was associated with 

groundwater pollution. Fig. 2.2b shows the score plot for PC1 vs. PC2. Interestingly, the samples formed 

three different groups: Group I includes the irrigation water from the Llobregat Delta groundwater (site 

P5), while Group II includes the irrigation water from the Llobregat River (sites P2 and P4). Group III 

clusters the irrigation water samples from the pristine site (i.e., site P1, the least polluted location). These 

results are consistent with a similar water quality for sites P2 and P4 characterized by a mixture of river 

water and TWW effluents. 

 

Figure 2.2  Principal Component Analysis (PCA) results. (a) PC 1 vs. PC2 score plot with all irrigation water samples 
(P1–P5), (b) PC1 vs. PC2 score plot excluding irrigation water samples from site P3. 
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2.3.5 Phytotoxicity studies (lettuce seed germination) 

Table 2.5 shows that germination was higher in seeds watered with irrigation waters than with distilled 

water (88 vs. 98-99%). This may be explained by the higher concentration of macro- and micronutrients 

such as nitrates and salts in the irrigation waters that would help break dormancy to facilitate seed 

germination (Hilton, 1985; Rezvani et al., 2014). The root elongation was higher at the sampling site P4 

than in the distilled water (p = 0.01), but no differences were found among the irrigation waters from 

sites P1, P3, and P4 (p > 0.05). Likewise, no differences were observed between distilled water and the 

irrigation water for sites P1 and P3 (p > 0.05). Therefore, the higher FOD and concentration of OMCs, 

TEs, and nutrients in the irrigation water from site P3 did not affect seed germination. Similar results 

were reported by Marsoni et al. (2014), who observed that pharmaceutical compounds only affected 

seed germination at concentrations higher than 10 mg L−1. 

Table 2.5 Effect of irrigation waters on in vitro seed germination of lettuce (n=100). 

 Control* Plot 1 Plot 3 Plot 4 

Germination (%) 88 98 98 99 

Root elongation (mm) 17.2 ± 0.9d 19.4 ± 0.8 19.5 ± 0.8 20.8 ± 0.9a 

*Seeds were grown in distilled water; Significant differences between plots are shown (control = a, P1 = b, P3 = c, and P4 = d), 
statistical differences at p = 0.05. 

 

2.3.6 Crop productivity: a field study 

Many authors reported the importance of the pedological conditions related to agricultural and 

horticultural production systems (Andrews et al., 2002; Armenise et al., 2013; Bouma and Droogers, 

1998; Mukherjee and Lal, 2014; Vasu et al., 2016), but in our study soil composition was similar; 

therefore, differences may be related to the water irrigation quality. Unfortunately, crop productivity 

can also be affected by other environmental conditions. For instance, the pristine site (P1) was located 

at 400 m asl, whereas the other plots were at sea level. Table 2.6 shows the crop productivity for lettuce 

and tomato fruits in the 5 farm plots (P1-P5). The productivity values for tomatoes fruits and lettuce 

were in keeping with those found in other studies. For instance, Serna et al. (2012) reported a lettuce 

plant yield of 34,000 ± 1000 kg ha−1. The results from farm plot P3 should be approached with caution, 

since they were harvested after 77 cropping days (yield of 96,428 Kg ha−1), whereas the other plots were 

harvested after 61- 69 days (yield of 40,178–52,187 Kg ha−1). Casals et al. (2010) observed an average 

tomato fruit weight of 138 g, which is in the range of the yield observed at the pristine site (P1), whereas 

the average tomato weight observed in the peri-urban area was slightly higher (189 to 208 g per fruit on 

average). Therefore, the results showed that lettuce and tomato productivity was significantly higher in 

the farm plot in which indirect water reuse with TWW prevails (P3) (p < 0.05), probably due to the 

higher nutrient content (Table 2.1). Suspended, colloidal, and dissolved solids present in TWW contain 

macronutrients (e.g. N, P, K, Ca, Mg) and micronutrients (e.g. Cu, Fe, Zn, Mn, etc.) required by many 

crops (Abu-Zeid., 1998). This is in keeping with the results found by Urbano et al. (2017) who observed 
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that the concentration of some soil nutrients (e.g. K, Ca, Al, and S) increased after irrigation with TWW 

and that lettuce production (in terms of fresh weight) was higher in lettuce cultivated in TWW than in 

those cultivated by conventional fertilization. Similarly, Li et al. (2015b) observed that irrigation with 

TWW increased tomato biomass and yield by 9%. Furthermore, the productivity results are consistent 

with the fact that the concentration levels of TEs in irrigation waters were between 10 and 100 times 

lower than the values observed to produce phytotoxicity (see Table 2.2). 

Table 2.6 Fresh weight per unit, crop growing time and productivity for lettuce and tomatoes in the 5 farm plots 
studied. 

Statistical differences at p = 0.05; super index letters show significant differences between plots (P1 = a, P2 = b, P3 = c, 
P4 = d, and P5 = e); f time required to reach commercial size. g fresh weight. Statistical assessment for lettuce yield is the 
same than for lettuce. 

These results and the non-effect of the presence of chemical contaminants on lettuce seed germination 

and crop productivity suggest that the use of water impacted by TWW effluents for crop irrigation is 

beneficial due to the reduction of fertilization costs and water availability over the production cycle. 

2.4 Conclusions 

The results of this study show that the occurrence of OMCs, TEs, and nutrients in irrigation waters 

depends on the water source used (surface water vs. groundwater). Nevertheless, irrigation waters from 

peri-urban areas are more likely to contain chemical contaminants than those from pristine areas. The 

following key conclusions can be drawn: 

- The irrigation waters from the peri-urban area of the BLAP showed higher conductivity and 

nutrient levels than the pristine site. 

- Ba and B were the TEs with the highest concentration in all irrigation waters, whereas the 

irrigation water from the peri-urban area of the BLAP had the highest concentration levels of 

Zn and Mn.  

- Irrigation waters originating from surface water bodies had a higher FOD and concentration of 

OMCs than irrigation water originating from groundwater, and Surfynol 104 was the most 

abundant compound. 

- The irrigation water from site P3 (Infanta Channel) was the most impacted by nutrients, TEs, 

and OMCs since it is mainly made up of TWW. 

- The higher occurrence of TEs and OMCs in the peri-urban irrigation waters did not affect seed 

germination, root elongation, or crop productivity. 

Although our study shows that peri-urban agriculture is exposed to a higher concentration of TEs and 

OMCs and this did not affect crop productivity, further research is needed to exclude possible adverse 

 Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 

Lettuce (g, fresh weight) 773 ± 38c,d 795 ± 37 c,d 1854 ± 71 a,b,d,e 1004 ± 44 a,b,c,e 805 ± 40c,d 

Lettuce (growing time, days)f 61 62 77c 69 66 

Lettuce yield (kg ha− 1, fresh weight)g 40,178 ± 6342 41,332 ± 9640 96,428 ± 13,264 52,187 ± 6753 41,877 ± 12,332 

Tomatoes (g, fresh weight per unit) 157 ± 41c,d – 207 ± 39a 189 ± 46a – 
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human health effects or nutritional crop changes associated with the use of irrigation waters containing 

these substances. 
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2.5 Supporting Information 

2.5.1 Materials and Reagents 

Flame retardants (i.e, TCEP and TCPP), benzotriazoles and benzothiazoles (i.e., 1,3-benzothiazole, 2-

mercaptobenzothiazole, benzotriazole, 5-methyl-2H-benzotriazole and 1-hydroxybenzotriazole), 

parabens (methylparaben, etylparaben,butylparaben and propylparaben), antioxidant (i.e., butylated 

hydroxyanisole (BHA)), plastifiers (bisphenol A, bisphenol F and 4-tert-octylphenol), tensioactive 

(2,4,7,9-tetramethyl-5-decyne-4,7-diol (surfynol 104)), some pharmaceuticals (i.e., carbamazepine, 

diazepam, lamotrigine, lorazepam, primidone, oxazepam) and some pesticides (i.e., azoxystrobin, 

dymethomorph, pyraclostrobin, chlorpyrifos, diazinon, pymetrozin, indoxacarb, DEET) were purchased 

from Sigma-Aldrich (Bornem, Belgium).  

Other pesticides (i.e., carbamazepine-10,11-epoxide, carbendazim, atrazine and simazine) were 

supplied by Fluka (Buchs, Switzerland). 

Surrogates used were bisphenol A-d16, carbamazepine-13C6, diazepam-d5, 5,6-dimethyl-1H-

benzotriazole (XbTri), ethylparaben-13C and lamotrigine-13C15N4 purchased from Sigma-Aldrich 

(Bornem, Belgium) and caffeine-13C3 obtained from Fluka (Buchs, Switzerland). Internal standard 

triphenylamine (TPhA, 98%) was purchased from Sigma-Aldrich (St. Louis, MO, USA) and 

trimethylsulfonium hydroxide (TMSH) was obtained from Fluka (Buchs, Switzerland). Suprasolv® 

grade methanol, hexane, ethyl acetate were purchased from Merck (Darmstadt, Germany).  Reagent 

water was deionized using the ultrapure water system Arium 611 from Sartorius (Aubagne, France). 

Strata-X solid phase extraction (SPE) cartridges (200mg / 6 mL) were purchased from Phenomenex 

(Torrance, CA, USA) and 0.70µm of glass filters 47mm in diameter were obtained from Whatman 

(Maidstone, UK). 

2.5.2 Sample extraction 

CECs in wastewater and interstitial water samples were analyzed following a previously described 

methodology (Matamoros and Bayona, 2006). 

A sample volume of 250 mL was spiked at 0.25 ppb of a surrogate standard mix. The spiked sample 

was percolated through a polymeric solid-phase extraction cartridge, 200 mg Strata X from Phenomenex 

(Torrance, CA). Cartridges were conditioned with 6 mL of n-hexane, 6 mL of ethyl acetate, 10 mL of 

methanol and 10 mL of distilled water (pH=7). The spiked samples were percolated through the 

cartridges under vacuum, were allowed to dry for 30 min and eluted with 15 mL ethyl acetate. Then, the 

extract was evaporated until ca. 250 µL under a gentle nitrogen stream, and 25µL of triphenylamine 

(TPhA) as internal standard was added.  

2.5.3 GC-MS/MS determination 

Aliquots of the sample extracts were analyzed with an EI-GC-MS/MS Bruker 450-GC gas 

chromatograph coupled to a Bruker 320-MS triple-stage quadrupole mass spectrometer (Bruker 
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Daltonics Inc., Billerica, MA, USA). The linearity range was from 0.80 to 500 µg·L-1. The correlation 

coefficients (R2) of the calibration curves were always higher than 0.99. Physicochemical properties of 

the CECs of study (Table S2.1), monitoring ions (Table S2.2 and Table S2.3), LODs and LOQs (Table 

S2.4) and recoveries of the surrogates used (Table S2.5) can be found in the supplementary information. 
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Table S2.1 Physicochemical properties of the CECs of study 

Name Molecular structure 
CAS 

Number 
Molecular 

Weight 
Molecular 
formula 

pKa1 
Solubility 
(mg L-1) 

Log 
KOW2 

Log DOW 

(pH=7.4) 
Log 

KOA2 

Henry 
LC (atm-
m3/mole) 

Log        
KAW2 

Parabens 

Methyl paraben 

 

99-76-3 152.15 C8H8O3 8.50[0/-] 2500(a) 2.00 2.09 8.791 
3.61E-

009 
-

6.831 

Propylparaben 

 

94-13-3 180.21 C10H12O3 8.50[0/-] 500(a) 2.98 2.81 9.624 
6.37E-
009 

-
6.584 

Ethylparaben 

 

120-47-
8 

166.18 C9H10O3 8.50[0/-] 885(a) 2.49 2.48 9.178 
4.79E-
009 

-
6.708 

Butylparaben 

 

94-26-8 194.23 C11H14O3 8.47[0/-] 207(a) 3.57 3.12 10.032 
8.45E-
009 

-
6.462 

Tert-butylphenols 

2-tert-Butyl-4-methoxyphenol 
(BHA) 

 

121-00-
6 

180.25 C11H16O2 10.57[0/-] 212.8 3.50 3.14 8.956 
 

8.56E-
008 

-
5.456 

Benzotriazoles 

Benzotriazole (BTri) 

 

95-14-7 119.12 C6H5N3 8.37[0/-] 5957 1.44 - 6.661 
1.47E-
007 

-
5.221 
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5-Methyl-2H-benzotriazole  
(5-TTri) 

 

136-85-
6 

133.15 C7H7N3 
0.77[+/0] 

8.85[0/-] 
1769 1.71 1.69 6.889 

1.62E-
007 

-
5.179 

1-Hydroxybenzotriazole (OHBT) 

 

2592-
95-2 

135.13 C6H5N3O 6.88[0/-] 2.258E+004 0.11 0.07 - - - 

Benzothiazoles 

1,3-Benzothiazole (BT) 

 

95-16-9 135.18 C7H5NS 2.28[+/0] 4300(a) 2.17 2.09 6.826 
3.74E-
007 

-
4.816 

2-Mercaptobenzothiazole 
(2MBT) 

 

149-30-
4 

167.24 C7H5NS2 10.90[0/-] 120(c) 2.86 2.21 8.249 
3.63E-
008 

-
5.829 

Plasticizers 

Bisphenol A 
 

80-05-7 228.29 C15H16O2 
9.78[0/-] 

10.39[-/2-] 
120(d) 3.64 3.63 12.747 

9.16E-
012 

-
9.427 

Bisphenol F 
 

620-92-
8 

200.24 C13H12O2 
9.84[0/-] 

10.45[-/2-] 
542.8 3.06 2.90 12.582 

5.2E-
012 

-
9.672 

Anticonvulsants, antidepressants and its related metabolites 

Carbamazepine 

 

298-46-
4 

236.28 C15H12N2O 13.9[0/-] 112(e) 2.25 2.28 10.805 
1.08E-
010 

-
8.355 

Carbamazepine-10,11-epoxide 

 

36507-
30-9 

252.27 C15H12N2O2 
15.96 
[0/-] 

276.8 0.95 1.31 11.503 
6.84E-
013 

-
10.553 

 
Primidone 

 

125-33-
7 

218.26 C12H14N2O2 

2.36[+/0] 
3.94[0/-] 
5.42[-/2-

] 

500(c) 0.73 0.61 9.011 
1.94E-
010 

-
8.101 
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Lamotrigine 

 

84057-
84-1 

256.10 C9H7Cl2N5 

 
8.53[+/0] 

9.21[0/-] 
 

 
139.7 

 
0.99 

1.68 
 

11.612 

 
2.22E-
011 

 
-

9.042 

 
 

Diazepam 

 

439-14-
5 

284.75 C16H13ClN2O 
2.92[+/0] 

 
50(c) 2.70 2.92 9.647 

3.64E-
009 

-
6.827 

 
Lorazepam 

 

846-49-
1 

321.16 C15H10Cl2N2O2 

 
10.61[0/-] 
12.46[-/2-] 

 

80(g) 2.41 2.49 10.166 
4.1E-
010 

-
7.776 

Oxazepam 

 

604-75-
1 

286.71 C15H11ClN2O2 
1.55[+/0] 
10.9[0/-] 

20.71 3.34 2.06 10.101 
4.24E-
009 

-
6.761 

Chlorinated flame retardants 

 
Tris(1-chloro-2-propyl) 
phosphate (TCPP) 

 

13674-84-
5 

327.57 C9H18Cl3O4P 
-9.8[0] 

 
1200(b) 2.89 2.32 8.203 

5.96E-
008 

-
5.613 

Tris(2-Chloroethyl) Phosphate 
(TCEP) 

 

115-96-
8 

285.49 C6H12Cl3O4P 
-9.06[0] 

 
7000(h) 1.63 1.42 5.311 

3.29E-
006 

 
-

3.871 

Pesticides 
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Diazinon 

 

333-41-
5 

304.35 C12H21N2O3PS 
 

4.19[+/0] 
 

40(i) 3.86 3.80 9.145 
1.13E-
007 

-5.335 

 
Carbendazim 

 

10605-21-
7 

191.19 C9H9N3O2 

 
1.12[+/0] 

2.76[0/-] 
12.64[-/2-] 

29(j) 1.55 1.61 10.582 
2.12E-
011 

-9.062 

N,N-Diethyl-meta-toluamide 
(DEET) 

 

134-62-
3 

191.27 C12H17NO - 666 2.18 2.24 8.250 
2.08E-
008 

-6.070 

Simazine 

 

122-34-
9 

201.66 C7H12ClN5 1.62[+/0] 6.2 2.18 2.30 9.594 
3.37E-
009 

-7.414 

Atrazine 

 

1912-24-9 215.68 C8H14ClN5 
1.60 

[+/0] 
34.7 2.61 2.66 9.626 

4.47E-
009 

-
7.016 

Chlorpyrifos 

 

2921-
88-2 

350.59 C9H11Cl3NO3PS - 1.12(k) 4.96 4.78 8.882 
2.52E-
006 

-
3.922 

Pymetrozin 

 

123312-
89-0 

217.23 C10H11N5O 

4.37 
[+/0] 
11.4 [0/-

] 

290(j) 0.89 - 11.729 
3.54E-
013 

-
10.839 

Pyraclostrobin 

 

175013-
18-0 

387.82 C19H18ClN3O4 0.44[0/-] 0.08 5.45 4.07 18.778 
1.15E-
015 

-
13.328 

Indoxacarb 

 

144171-
61-9 

527.83 C22H17ClF3N3O7 -   3.69    
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Dimethomorph 

 

110488-
70-5 

387.86 C21H22ClNO4 - 18.72 2.68 3.31 16.064 
1.01E-
015 

-
13.384 

Azoxystrobin 

 

131860-
33-8 

403.39 C22H17N3O5 
0.94 

[+/0] 
10(j) 2.50 3.54 14.049 

8.01E-
014 

-
11.549 

Surfactants and derivatives 

Octylphenol (OP) 

 

 
27193-28-

8 

 
206.33 

 
C14H22O 

 
10.30[0/-] 

 

 
3.114 

 
5.50 

5.47 
 

9.235 

 
4.5E-
006 

 
-

3.735 

 
Surfynol 104 

 

 
126-86-

3 

 
226.36 

 
C14H26O2 

 
13.15[0/-] 
13.83[-/2-] 

 

 
26.35 

 
3.61 

2.94 
 

8.611 

 
2.44E-
007 

 
-

5.001 

1 Dissociation reaction, [0]: neutral; [+]: cationic; [-]: anionic. 
2 Log KOW, Log KOA, Henry LC and Log KAW from database provided by Episuite v4.11 (http://www.epa.gov/opptintr/exposure/pubs/episuite.htm) 
Note: Log KOW, Log KOA, Henry LC and Log KAW are estimate values. 

 

(a) Yalkowsky, S.H. (2003): Handbook of Aqueous Solubility Data. CRC Press. 
(b) Chemicals Inspection and Testing Institute (1992): Biodegradation and Bioaccumulation Data of Existing Chemicals Based on the CSCL Japan. Japan Chemical Industry Ecology - Toxicology 

and Information Center. 
(c) Yalkowsky, S.H., Dannenfelser, R.M. (1992): Aquasol database of aqueous solubility. Coll. Pharmacy, Univ. Arizona, Tucson, AZ. 
(d) Dorn PB et al. (1987): Chemosphere 16: 1501-7  
(e) Ferrari, B., Paxéus, N., Giudice, R. Lo, Pollio, A., Garric, J. (2003): Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and 

diclofenac. Ecotoxicol. Environ. Saf. 55, 359–370 
(g) Budavari, S. (1996): The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. Merck 
(h) Muir DCG (1984): Handbook of Environmental Chemistry. Germany: Springer-Verlag 3: 41-66  
(i) Sharom MS et al. (1980): Water Res 14: 1095-100  
(j) Tomlin, C.D.S. (1997): The Pesticide Manual, British Crop Protection Council, 11th ed., Surrey, UK.  
(k) Yalkowsky, S.H., He, Y., Jain, P. (2016):  Handbook of Aqueous Solubility Data, Second Edition. CRC Press. 
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Table S2.2 Monitoring ions in GC-MS/MS of the underivatized contaminants 

Segment Compound RT (min) 
Precursor 
ion (m/z) 

Product 
ion (m/z) 

Collision 
energy (eV) 

1 Surfynol 104 9.34 
151 109 9 
109* 67 11 

2 BHA 10.23 
180 165 14 
165* 137 12 

3 DEET 11.36 
190 145 21 
119* 91 12 

4 Simazine 13.39 
201* 173 10 
201 138 15 

4 Atrazine 13.46 
215* 200 15 
215 173 15 

4 TCEP 13.55 
249* 125 15 
249 99 30 

5 TCPP 13.95 
125 99 16 
99* 81 21 

5 Diazinon 13.91 
304* 179 15 
179 137 24 

6 Caffeine-13C3 14.74 
197* 111 18 
111 57 14 

6 Tonalide-d3 14.79 
261 246 12 
246* 190 10 

7 Chlorpyrifos 16.22 
313 258 17 
97* 79 16 

8 TPhA 16.91 
245* 167 30 
245 141 21 

9 Carbamazepine-10,11-epoxide 17.49 
178 150 23 
207* 178 26 

10 Pymetrozin 18.85 
113* 98 11 
98 70 14 

11 Lamotrigine-13C15N4 22.16 
262 187 22 
185* 114 22 

11 Lamotrigine 22.08 
255* 185 16 
185 123 18 

11 Diazepam-d5 21.84 
289 261 20 
261* 226 17 

11 Diazepam 21.85 
284 256 16 
256* 221 13 

12 Pyraclostrobin 26.23 
164* 132 15 
132 77 21 

13 Indoxacarb 26.97 
203* 134 17 
203 106 25 

14 Dimethomorph 27.77 
387 301 19 
301* 165 16 

14 Azoxystrobin 27.53 
388 360 14 
344* 329 17 

* Transition used for quantification 

 

 

 

 

 

 



91 
 

Table S2.3 Monitoring ions for derivatized compounds in GC-MS/MS 

Segment Compound 
RT 

(min) 
Precursor ion 

(m/z) 
Product ion 

(m/z) 
Collision energy 

(eV) 

1 1,3-Benzothiazole (BT) 7.85 
135* 108 20 
108 82 14 

2 Benzotriazole (Btri) 9.09 
133* 105 12 
105 90 19 

2 Methylparaben (MPB) 9.12 
166 135 13 
135* 77 18 

3 Etylparaben (EPB) 9.89 
180 152 11 
135* 77 18 

3 Etylparaben-13C (EPB 13C) 9.91 
186 158 12 
141* 82 20 

4 5-methyl-2H-benzotriazole (5TTri) 10.40 
147 118 14 
118* 77 17 

5 Propylparaben (PPB) 11.05 
194 152 12 
135* 77 18 

5 4-tert-octylphenol (OP) 11.00 
220 149 12 
149* 121 15 

6 1-hydroxybenzotriazole (OHBT) 11.55 
165* 136 17 
136 109 17 

6 2-mercaptobenzothiazole (2MBT) 11.89 
181* 148 16 
148 104 14 

7 5,6-dimethyl-1H-benzotriazole (XbTri) 12.30 
161 132 16 
132* 91 16 

7 Butylparaben (BPB) 12.34 
208 152 12 
152* 135 14 

8 Carbendazim 14.68 
219* 160 15 
160 132 16 

9 Carbamazepine 16.51 
193* 191 23 
193 167 18 

9 Carbamazepine-13C6 16.53 
199 197 29 
199 171 22 

9 Bisphenol F (BPF) 16.21 
228* 197 15 
197 165 17 

10 Primidone 16.62 
218 175 17 
146* 117 15 

10 Triphenylamine (TPhA) 16.90 
245* 167 30 
245 141 21 

11 Bisphenol A (BPA) 17.32 
256 241 13 
241* 133 15 

11 Bisphenol A-d16 (BPA d16) 17.23 
270 252 14 
252* 139 20 

12 Oxazepam 24.43 
314 209 21 
228* 193 17 

13 Lorazepam 25.58 
348* 209 20 
209 165 35 

* Transition used for quantification 
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Table S2.4 Limits of detection (LOD) and quantification (LOQ) of the selected ECs  

Compound 
LOD 

(ng·L-1) 
LOQ 

(ng·L-1) 

1,3-Benzothiazole (BT) 32.3 46.6 

1-hydroxybenzotriazole (OHBT) 2.03 3.12 

2-mercaptobenzothiazole (2MBT) 17.6 32.2 

5-methyl-2H-benzotriazole (5TTri) 12.5 15.9 

Atrazine 2.40 2.63 

Azoxystrobin 4.04 4.12 

Benzotriazole (Btri) 672 755 

Butylhydroxyanisol (BHA) 3.35 3.42 

Bisphenol A (BPA) 3.91 5.62 

Bisphenol F (BPF) 13.5 20.7 

Butylparaben (BPB) 0.91 1.04 

Carbamazepine 10.3 12.2 

Carbamazepine-10,11-epoxide 47.5 57.4 

Carbendazim 1.63 2.31 

Chlorpyrifos 9.78 13.0 

DEET 17.0 27.9 

Diazepam 1.00 1.30 

Diazinon 0.64 0.87 

Dimethomorph 1.19 1.52 

Etylparaben (EPB) 26.7 29.1 

Indoxacarb 17.7 18.9 

Lamotrigine 5.90 5.91 

Lorazepam 3.19 3.72 

Methylparaben (MPB) 55.9 74.5 

4-tert-octylphenol (OP) 10.7 13.7 

Oxazepam 2.92 4.01 

Primidone 4.00 6.00 

Propylparaben (PPB) 2.24 3.39 

Pymetrozin 2.42 2.51 

Pyraclostrobin 0.14 0.30 

Simazine 4.40 5.11 

Surfynol 104 16.3 20.4 

TCEP 4.92 8.03 

TCPP 197 310 
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Table S2.5 Recoveries of the surrogates  

Compound Recovery (%) 

Bisphenol A-d16 75±9 

Caffeine-13C3 106±8 

Carbamazepine-13C6 102±10 

Diazepam-d5 95±8 

5,6-dimethyl-1H-benzotriazole (XbTri) 104±9 

Etylparaben-13C 93±9 

Lamotrigine-13C15N4 52±12 
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 Chapter III: Occurrence and bioaccumulation of chemical 

contaminants in lettuce grown in peri-urban horticulture 
 

This chapter is based on the article: 

Margenat, A., Matamoros, V., Díez, S., Cañameras, N., Comas, J., & Bayona, J. M. 

(2018). Occurrence and bioaccumulation of chemical contaminants in lettuce grown in 

peri-urban horticulture. Science of the Total Environment, 637–638, 1166–1174.  

 

Peri-urban horticulture performs environmental and socio-economic functions and provides 

ecological services to nearby urban areas. Nevertheless, industrialization and water pollution have 

led to an increase in the exposure of peri-urban vegetables to contaminants such as TEs and 

OMCs. In this study, the occurrence of chemical contaminants (i.e., 16 TEs, 33 OMCs) in soil 

and lettuce leaves from 4 farm fields in the peri-urban area of the city of Barcelona was assessed. 

A rural site, outside the peri-urban area of influence, was selected for comparison. The 

concentration of TEs and OMCs ranged from non-detectable to 803 mg kg-1 dw and from non-

detectable to 397 μg kg-1 dw respectively in the peri-urban soil, and from 6·10−5 to 4.91 mg/kg fw 

and from non-detectable to 193 μg kg-1 fw respectively in lettuce leaves. Although the 

concentration of Mo, Ni, Pb, and As in the soil of the peri-urban area exceeded the environmental 

quality guidelines, their occurrence in lettuce complied with human food standards (except for 

Pb). The many fungicides (carbendazim, dimethomorph, and methylparaben) and chemicals 

released by plastic pipelines (tris(1-chloro-2-propyl)phosphate, bisphenol F, and 2-

mercaptobenzothiazole) used in agriculture were prevalent in the soil and the edible parts of the 

lettuce. The occurrence of these chemical pollutants in the peri-urban area did not affect the 

chlorophyll, lipid, or carbohydrate content of the lettuce leaves. PCA showed that soil pollution, 

fungicide application, and irrigation water quality are the most relevant factors determining the 

presence of contaminants in crops.  
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3.1 Introduction 

Peri-urban horticulture performs environmental and socioeconomic functions and provides 

ecological services to nearby urban areas. These include fresh vegetables with a low carbon 

footprint, as well as the provision of recreational, landscape structure, and other ecological 

services (Veenhuizen, 2007). Nevertheless, peri-urban agriculture is exposed to atmospheric and 

water pollution. For instance, air pollution associated with transportation infrastructure (airports, 

harbours, highways) or the use of reclaimed water containing OMCs and TEs for irrigation lead 

to their accumulation in soil and potentially in plants (Colon and Toor, 2016; Liacos et al., 2012). 

In particular, the application of manure and biosolids for soil amendment and of reclaimed water 

for irrigation have been reported as the main sources of OMCs in agriculture (Eggen and Lillo, 

2012).  

On the other hand, as water scarcity is increasing due to climate change and population growth, 

the application of reclaimed water for crop irrigation in peri-urban agriculture is becoming a 

reliable alternative water supply, especially in arid and semi-arid regions (WHO, 1989). Despite 

the widespread occurrence of OMCs such as pharmaceuticals or personal care products in 

reclaimed water, their concentrations are generally low, ranging from ng L-1 to μg L-1; their 

continual release into the environment coupled with their transformation products makes them 

behave in a “pseudo-persistent” way  (Daughton and Ternes, 1999). Reclaimed water irrigation 

is also one of the main sources of TEs in agriculture, along with biosolid and manure amendments 

and atmospheric deposition (Liacos et al., 2012; Lough et al., 2005; Nabulo et al., 2006). As a 

result, TEs have a significant impact on peri-urban agriculture (Singh and Kumar, 2006). 

Bioaccumulation of OMCs have been frequently observed in crops grown under field conditions 

irrigated with treated wastewater (X. Wu et al., 2014). The highest concentrations have been 

detected in the edible parts of leafy vegetables (carbamazepine and its metabolites at 347 ng g-1 

dw lettuce) rather than in root or fruit-bearing vegetables (Riemenschneider et al., 2016). 

Knowledge about the bioaccumulation of OMCs in vegetables irrigated with treated wastewater 

under field conditions is scarce (Calderón-Preciado et al., 2011). One long-term study (3 

consecutive years) revealed that a longer duration of treated wastewater irrigation may lead to a 

significant uptake and bioaccumulation of some OMCs (Christou et al., 2017b). Moreover, TEs 

such as Pb, Cd, and Zn have been found at greater concentrations in crops grown on the roadside 

in peri-urban areas than in those from rural sites (Nabulo et al., 2010, 2006). Therefore, concerns 

regarding human exposure to OMCs and TEs have arisen as they have been detected in the edible 

parts of plants (Khan et al., 2008; X. Wu et al., 2014). However, only field studies can fully assess 

the incorporation of these compounds in real scenarios (Colon and Toor, 2016), and to date few 

such studies exist (Malchi et al., 2014; X. Wu et al., 2014). Another important adverse effect of 
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the use of reclaimed water in agriculture is its high nitrate content. Nitrate content in vegetables 

is the major human dietary source of nitrate, and 5% of ingested nitrate is transformed into the 

toxic form nitrite (Santamaria, 2006). In this regard, nitrate fertilization and the reuse of treated 

wastewater contribute to nitrate uptake by food crops (Castro et al., 2009). 

The occurrence of TEs and OMCs in agricultural soils can also lead to morphological and 

physiological changes in the exposed plants. For instance, Hurtado et al. (2017) observed that the 

occurrence of OMCs in irrigation waters at environmentally relevant concentrations resulted in a 

decrease in the chlorophyll content, morphological changes, and alterations in the metabolic 

profile of lettuces. Carter et al. (2015) observed a reduction in biomass productivity and changes 

in hormone and nutrient content in zucchini due to the presence of carbamazepine and verapamil 

at environmentally relevant concentrations (0.005–10 mg L−1 in soil). The occurrence of heavy 

metals such as Pb in plants can inhibit chlorophyll biosynthesis and decrease vegetable 

carbohydrate content (Gaweda, 2007; Peralta-Videa et al., 2009), while the occurrence of Cd can 

cause lipid peroxidation (Monteiro et al., 2007; Rodríguez-Serrano et al., 2006). However, there 

is no available information about the impact of the co-occurrence of OMCs and TEs in crops in 

real-life scenarios. 

Furthermore, although the occurrence of TEs and pesticide residues in food products is regulated 

in the EU (EFSA), USA (FDA), China, and Australia-New Zealand, and the FAO has published 

international guidelines (Codex Alimentarius) (FAO, 2016), no regulations exist for the other 

detected OMCs. 

In a previous study, several chemical pollutants were detected in irrigation waters from the peri-

urban horticultural area of the city of Barcelona (Margenat et al., 2017). The present study aims 

to assess the occurrence of these pollutants (16 TEs and 33 OMCs) in lettuce cultivation (soils 

and plants), as well as bioaccumulation factors and their potential impacts on leaf constituents 

(i.e. chlorophyll, nitrates, lipids, and carbohydrate content). The study was conducted in 4 farm 

fields located in the peri-urban area of Barcelona (NE Spain) and a remote organic farming plot 

located in a rural area. 

3.2 Material and methods 

3.2.1 Sampling site description 

Five locations in the Llobregat River delta and its lower valley (NE Spain) were sampled. Further 

information is described in section 2.2.1. 
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3.2.2 Sampling strategy 

Soil 

Soil was sampled in May of 2016 when the lettuce was harvested. A composite soil sample from 

a horizon of 0 to 20 cm was obtained from five subsamples in each farm plot. Soil samples were 

sieved through a 2.0 mm mesh and stored at -20 °C. According to the USDA (1987) classification, 

soil samples from farm plots P1, P3, and P4 were loamy sand, while the soils from farm plots P2 

and P5 were sandy. The soil samples were also characterized by UNE-EN ISO/IEC 17025:2005 

accredited laboratories. 

Table S3.1 provides information about the physicochemical properties of each of the studied soils. 

Lettuce 

Lettuce was selected for being one of the most cultivated vegetables in the peri-urban agricultural 

area of Barcelona. The lettuces (Lactuca sativa L. cv. Batavia) were harvested when they reached 

their commercial size. The lettuce seedlings were planted in February-March and June 2016, and 

the plants were harvested in May 2016 (P1-P5) and June 2016 (P3-4) for the winter and summer 

seasons respectively (Fig. 2.1). Each farm field was divided in 5 sections, and 10 lettuces were 

collected per section. For each section, a quarter of each lettuce was mixed and comminuted 

together using liquid nitrogen and a porcelain mortar. These samples were then stored at -20 °C 

until they were analyzed. Thus, 5 samples were obtained per plot. 

3.2.3 Analytical procedures 

The chemicals and reagents used for the analytical methodologies described below are listed in 

section 3.5.1. 

Nitrate content in lettuce 

Extraction was performed according to the procedure recommended by the AOAC (AOAC, 1997; 

Guadagnin et al., 2005). Briefly, 40 mL of Milli-Q water were added to a tube containing 5 g of 

fresh weight (fw) lettuce leaves, and it was heated to 70 °C for 15 min. Once the extract was at 

room temperature, Milli-Q water was added to a total volume of 100 mL. It was then filtered 

through a filter paper (Whatman No. 4) prior to spectrophotometric measurement. Nitrate content 

was measured with a Hach-Lange spectrophotometer (DR 1900 Portable Spectrophotometer) at 

a wavelength of 460 nm as nitrate nitrogen (NO3-N). 
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Lipids and carbohydrate extraction in lettuce leaves 

The method was adapted from that described by (Yang et al., 2016). Extraction was carried out 

by adding 15 mL of ethanol/hexane (1:1, v/v) to a glass tube with 3 g of fw sample. The sample 

was sonicated for 15 min and centrifuged at 2500 rpm for 15 min. It was then filtered through a 

0.22 μm nylon filter (Scharlab, Barcelona, Spain) into a preweighed glass tube. After removing 

the solvent by purging and drying with nitrogen gas, the tube and filter were weighed. The sample 

remaining in the tube was operationally defined as lipid content, whereas the sample on the filter 

was operationally defined as carbohydrates. 

Chlorophyll content in lettuce 

Chlorophyll content in lettuce was measured with a chlorophyll meter (CCM200Plus, Opti-

Sciences) (Hudson, NH, USA) in triplicate based on the outer and inner leaf absorbance of each 

head of lettuce. A calibration curve was obtained to relate the chlorophyll content to the 

absorbance previously measured with the chlorophyll content meter. To this end, rounded samples 

of leaves (4 cm diameter) were extracted with 5 mL of N,N-dimethylformamide (DMF) and kept 

in the dark at 4 °C for 48 h before the spectrophotometric determination.  The extracts were 

measured at two wavelengths, 647 and 664.5 nm, so that chlorophylls (a, b, and total) could be 

calculated using Inskeep and Bloom's coefficients (Inskeep and Bloom, 1985; Porra, 2002). 

Trace element (TE) extraction 

 Soil 

A slightly modified pseudo-total digestion method (Lee et al., 2006) using a strong acid (HNO3-

HClO4) was used. A portion of 0.1 g of homogenized, dried sample was sieved through 2 mm 

mesh (CISA, Spain) and placed in a polyethylene tube. Then, 10 mL of 65% HNO3 and 10 mL of 

concentrated HClO4 were added, and the mix was heated up to 135 °C for 16 h. The digested 

samples were then evaporated, resuspended with 3mL of HNO3, and then heated to ensure 

dissolution. A 1 mL aliquot was diluted with 24 mL of Milli-Q water, and the sample was filtered 

(0.2 μm) prior to analysis. An inductively coupled plasma optical emission spectrometer (Thermo 

Scientific, iCAP 6500 ICP-OES) and an inductively coupled plasma mass spectrometer (Thermo 

Scientific, XSeries 2 ICP-MS) were used for the determination of major and minor TEs 

respectively in both the soil and lettuce samples. The content of Hg was determined using an 

advanced mercury analyser (AMA-254, Altec, Prague, Czech Republic). 
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 Lettuce 

A portion of 1 g of plant leaf tissues, dried and sieved, was digested with 4 mL (1:1) HNO3 and 

10 mL of (1:4) HCl in a closed Teflon vessel using a six-position EvapoClean heating block 

(EvapoClean, Deltalabo, France) at 95 °C for at least 3 hosed. Afterwards, samples were 

transferred to a 100-mL volumetric flask and centrifuged; then, a 10 mL aliquot was diluted with 

40 mL Milli-Q water prior to analysis. The determination method was the same as for the soil, 

but values are expressed in fw basis. The applied methodology was validated by NIST 1570a 

(Gaithersburg, USA), with certified values for As, B, Cd, Co, Cu, Mn, Hg, Ni, Zn in lettuce. For 

accuracy, excellent extraction efficiencies were noted for these elements (92-107%). Further 

information is provided in section 3.5.2. 

Organic microcontaminant (OMC) extraction 

Physicochemical properties (molecular weight, pKa, solubility, and log KOW,) of the studied 

OMCs are provided in Table S2.1. 

 Soil 

Soil extraction was adapted from a previously reported method (Xu et al., 2008). Briefly, 5 g of 

soil (fw), homogenized and sieved through 2.0mm mesh, were placed in a glass tube. It was 

fortified with 31.25 ng of a mixture of 6 surrogates and left to equilibrate for 30 min. The 

extraction was performed by sonication for 15 min three times with 5 mL of acetone/ethyl acetate 

(1:1, v/v). The extract was then centrifuged at 3100 rpm for 10 min and the supernatants were 

combined and evaporated to ca. 0.5 mL under a gentle stream of nitrogen. 

Next, 2 mL of methanol were added to the final extract, which was reconstituted with 250 mL of 

deionized water prior to percolation through previously conditioned SPE cartridges (STRATA X, 

100 mg, 6 mL). The cartridges were dried under vacuum and eluted with 10 mL of ethyl acetate. 

The extracts were concentrated to ca. 250 μL under a stream of nitrogen and 37.25 ng of 

triphenylamine (TPhA) were added as an internal standard. Finally, a 50 μL aliquot was analyzed 

by GC-MS/MS without derivatization, and another 50 μL aliquot was analyzed derivatized with 

10 μL of TMSH. The analytical quality parameters (LOD, LOQ, and recoveries) are provided in 

Tables S3.2-3.4 in the SI section. 

 Lettuce 

The extraction of OMCs from plant leaf tissues was performed according to Calderón-Preciado 

et al. (2009). Briefly, the extraction of samples (0.5 g fw) was performed with a matrix solid-

phase dispersion method previously spiked with 12.5 ng of a mixture of surrogates and 
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equilibrated for 30 min. Neutral-basic and acid fractions were obtained by solvent partitioning at 

neutral and acid pH, respectively. 

After clean-up, fractions were reduced to ca. 80 μL and 37.25 ng of TPhA were added. A 50 μL 

aliquot and another one derivatized with 10 μL of TMSH were analyzed in GC-MS/MS. The 

extraction of CBZ and EPOCBZ from lettuce samples was carried out by sonication followed by 

liquid chromatography tandem mass spectrometry (LC-MS/MS). To this end, 0.5 g of fw lettuce 

was spiked with 50 ng of carbamazepine-13C and left to stand for 30 min. 

Samples were sonicated with 10 mL of MeOH for 15 min and centrifuged 15 min at 3000 rpm. 

The extraction was performed twice, and the extracts were combined and reduced to ca. 1 mL 

with nitrogen gas and reconstituted with 10 mL of LiChrosolv water. The samples were then 

percolated through SPE cartridges (STRATA X, 100 mg·6 mL), previously conditioned with 1 

mL of MeOH and water, respectively. The cartridges were washed with water/methanol (95:5, 

v/v) and eluted with 2 mL of a mixture of MeOH/ethyl acetate (1:1, v/v). The final extracts were 

reduced almost to dryness, resuspended in 1 mL of water, and filtrated (0.22 μm) prior to LC-

MS/MS analysis. The LODs and LOQs were calculated for each analyte as three and ten times 

the signal from the baseline noise (S/N ratio), respectively. Analytical quality parameters (LOD, 

LOQ, and recoveries) are provided in Tables S3.5-7 in the SI section. Further details on the GC–

MS/MS and LC-MS/MS are provided elsewhere (section 3.5.2). 

3.2.4 Data analysis 

Data values for the soil and plants are presented in dw and fw respectively. This is in agreement 

with legislated units for each of the studied matrices. The bioconcentration factor (BCF) was 

calculated for TEs and OMCs as the ratio between the concentrations (mg·kg-1 dw) in the edible 

parts of lettuce plants and soil content. The units used were mg/kg dw for TEs and μg/kg dw for 

OMCs. 

 
𝐵𝐶𝐹 =

𝐶 𝑖𝑛 𝑒𝑑𝑖𝑏𝑙𝑒 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑡 

𝐶 𝑠𝑜𝑖𝑙
 

 

(3.1) 

The experimental results were statistically evaluated using the SPSS v. 22 package (Chicago, IL, 

US). All data sets were checked for normal distribution using the Kolmogorov–Smirnov test to 

ensure that parametric statistics were applicable. The comparison of means of the occurrence of 

chemical pollutants between farm plots was performed with a two-paired (Wilcoxon) signed-rank 

test (the concentration of each compound was compared between farm plots). Principal 

Component Analysis (PCA) was conducted on the concentration levels of TEs, OMCs, lettuce 
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constituents (chlorophyll, nitrates, lipids, and carbohydrates), and soil properties. Once the data 

matrix had been completed, it was autoscaled to have zero mean and unit variance (correlation 

matrix). Statistical significance was defined as p ≤ 0.05.  
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3.3 Results and discussion 

3.3.1 Occurrence of trace elements (TEs) 

Soil 

Table 3.1 shows the concentration of 16 TEs in the soil samples and their corresponding 

maximum values established for agricultural use by Catalan Law 5/2017 in accordance with 

Spanish Royal Decree 9/ 2005. The TE concentrations ranged from non-detectable (Cd in all plots 

except P3) to 802 mg/kg dw (Mn in P5). The most abundant TEs were Mn, Ba, Cr, Pb, Zn, Cu, 

and B in all the sampling sites. The total median concentration of TEs per site was as follows: 

824 mg/kg dw (P1), 1353 mg/kg dw (P2), 1518 mg/kg dw (P3), 1623 mg/kg dw (P4), and 1896 

mg/kg dw (P5). Based on these results, P1 was thus the least polluted site, and P5 the most 

polluted. A two-paired test showed that soil from the rural site (P1) was less polluted by TEs than 

any of the soils from the peri-urban area of Barcelona (P2-P5, p< 0.05). In fact, the concentration 

of Mo, Ni, Pb, Zn, and As in the soils of the peri-urban area (P2-P5) exceeded the maximum soil 

concentration limit established for agricultural use in the regional decree (Generalitat de 

Catalunya, 2017). These results are consistent with the abundance of Mn (103–13,584 mg/kg dw), 

Zn(23–214mg/kg dw), Cr (12–57 mg/kg dw), Ni (9–111 mg/kg dw), Cu (4–170 mg/kg dw), Cd 

(0.1–130 mg/kg dw), and Pb (20–86 mg/kg dw) reported in soil from the Baix Llobregat area 

(Zimakowska-Gnoińska et al., 2000). Finally, the high concentration of As in the peri-urban soil 

was in agreement with the fact that phosphatic fertilizers generally contain the highest 

concentrations of most heavy metal(loid)s including As, Cd, U, Th and Zn (Alloway, 2012), 

whereas in the rural site organic amending was used for soil fertilization. 
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Table 3.1 Concentration of TEs (mg/kg dw) in the agricultural soil from the different studied plots. The generic 
reference levels (GRL, mg/kg dw) of these elements for contaminated soils in Catalonia are shown. 

 Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 GRL agricultural use 

B 92 132 94 81 58 – 

Ba 86 257 226 305 412 500 

Cd <0.56 <0.56 0.79 <0.50 <0.60 2.5 

Co 5.7 11 9.7 10 17 25 

Cr 26 42 45 44 62 400 

Cu 33 68 89 178 89 – 

Li 10 27 26 28 43 – 

Mn 361 439 520 494 803 – 

Mo 2.0 3.7 3.6 2.0 2.9 3.5 

Ni 17 31 57 33 49 45 

Pb 15 83 216 164 77 60 

Rb 28 35 37 39 58 – 

Sb <0.56 <0.56 <0.54 <0.50 <0.60 6.0 

Zn 132 195 148 208 198 170 

As 16 27 45 38 27 30 

Hg 0.01 0.30 0.37 0.37 0.19 2 

The high concentration levels of Pb are consistent with the fact that, in the past, Pb particles were 

widely released into the environment through vehicle emissions from leaded gasoline engines 

(half-life in soil of about 53,000 years). Industrial emissions and paints can also contribute to the 

release of Pb into the environment (Nabulo et al., 2006). Ba and Mn come mainly from natural 

sources in both urban and rural areas (Davis et al., 2009), while the source of B can be either 

geogenic or anthropogenic (fertilizers, households detergents, discharges from industrial plants, 

etc.) (Pedrero et al., 2010). Finally, Zn is naturally present in all soils in concentrations typically 

ranging from 10 mg/kg to 100 mg/kg; and human activities have enriched them through 

atmospheric deposition, fertilizers, and sewage sludge (Alloway, 2012). The proximity of road 

networks can also lead to considerable exposure to Zn through brake and tire wear, tailpipe 

emissions of motor oil, and anti-wear additives (Lough et al., 2005). 

Lettuce 

Table 3.2 shows the minimum, maximum, and median concentrations (mg/kg fw) of TEs in 

lettuce samples. B, Ba, Mn, and Zn were the most abundant TEs, in keeping with the occurrence 

of these elements in soil samples (Table 3.1). The detected levels were in the same range as those 

published for garden-grown vegetables (leafy greens, herbs, roots, and fruits) (McBride et al., 

2014) for Ba (3.7 mg/kg fw) and Cd (0.028 mg/kg fw), but slightly higher for Pb (0.099 mg/kg 

fw). The values of Cd were compliant with Commission Regulation (EC) No 1881/2006 of 19 

December 2006, which sets maximum levels for certain contaminants in food stuffs. In contrast, 

Pb in P3 in the summer season slightly exceeded the maximum legislated concentration. Since 
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the winter levels were below the regulated concentrations, further studies are needed to establish 

the significance of these data. 

Table 3.2 Minimum, maximum and median concentration (mg/kg fw) of TEs in lettuce samples. Only Plots 3 
and 4 were planted during the summer season. 

 
Plot 1 
winter 

Plot 2 
winter 

Plot 3 
winter 

Plot 3 
summer 

Plot 4 
winter 

Plot 4 
summer 

Plot 5 
winter 

Maximum 
value 

legislated 

B 
(1.50–2.12) 

1.76 
(1.43–1.89) 

1.73 
(1.54–2.44) 

1.98 
(1.62–2.02) 

1.86 
(1.56–2.43) 

1.92 
(1.58–2.42) 

2.00 
(1.30–1.97) 

1.58 
– 

Ba 
(0.62–1.16) 

0.83 
(0.56–0.66) 

0.59 
(0.38–0.66) 

0.48 
(0.55–0.80) 

0.62 
(0.44–0.71) 

0.60 
(0.48–0.85) 

0.61 
(0.40–0.58) 

0.47 
– 

Cd 
(0.004–

0.008) 0.006 
(0.02–0.04) 

0.03 
(0.02–0.03) 

0.02 
(0.03–0.03) 

0.03 
(0.01–0.02) 

0.02 
(0.01–0.02) 

0.01 
(0.01–0.02) 

0.01 
0.20 

Co 
(0.02–0.03) 

0.02 
(0.01–0.02) 

0.01 
(0.00–0.01) 

0.01 
(0.01–0.02) 

0.01 
(0.01–0.02) 

0.01 
(0.01–0.02) 

0.01 
(0.01–0.02) 

0.02 
– 

Cr 
(0.12–0.34) 

0.20 
(0.10–0.20) 

0.14 
(0.08–0.26) 

0.15 
(0.08–0.78) 

0.25 
(0.09–0.54) 

0.20 
(0.20–0.57) 

0.33 
(0.11–0.17) 

0.13 
– 

Cu 
(0.40–0.66) 

0.49 
(0.57–0.78) 

0.67 
(0.46–0.69) 

0.59 
(0.48–0.76) 

0.65 
(0.64–0.89) 

0.78 
(0.60–0.96) 

0.78 
(0.45–0.81) 

0.57 
– 

Li 
(0.04–0.07) 

0.05 
(0.05–0.05) 

0.05 
(0.02–0.04) 

0.03 
(0.04–0.08) 

0.06 
(0.03–0.05) 

0.04 
(0.03–0.05) 

0.04 
(0.04–0.07) 

0.06 
– 

Mn 
(2.77–4.91) 

3.60 
(1.29–1.77) 

1.47 
(2.65–4.20) 

3.32 
(3.29–4.28) 

3.59 
(1.50–2.46) 

1.89 
(1.73–2.79) 

2.16 
(1.89–2.70) 

2.33 
– 

Mo 
(0.02–0.03) 

0.03 
(0.02–0.03) 

0.02 
(0.02–0.04) 

0.03 
(0.02–0.06) 

0.03 
(0.02–0.05) 

0.03 
(0.03–0.06) 

0.04 
(0.02–0.03) 

0.02 
– 

Ni 
(0.05–0.16) 

0.09 
(0.05–0.09) 

0.07 
(0.04–0.10) 

0.06 
(0.08–0.61) 

0.21 
(0.05–0.41) 

0.13 
(0.19–0.32) 

0.25 
(0.05–0.12) 

0.09 
– 

Pb 
(0.03–0.08) 

0.05 
(0.09–0.15) 

0.11 
(0.08–0.19) 

0.13 
(0.13–0.45) 

0.28 
(0.13–0.21) 

0.16 
(0.13–0.25) 

0.20 
(0.13–0.22) 

0.19 
0.30 

Rb 
(0.32–0.50) 

0.37 
(0.41–0.49) 

0.45 
(0.28–0.53) 

0.40 
(0.30–0.42) 

0.35 
(0.37–0.59) 

0.50 
(0.39–0.60) 

0.50 
(0.33–0.56) 

0.44 
– 

Sb 
(0.02–0.07) 

0.03 
(0.02–0.02) 

0.02 
(0.01–0.01) 

0.01 
(0.02–0.03) 

0.02 
(0.01–0.01) 

0.01 
(0.02–0.02) 

0.02 
(0.01–0.02) 

0.01 
– 

Zn 
(1.00–1.52) 

1.23 
(2.36–3.41) 

2.78 
(1.73–2.92) 

2.28 
(1.30–1.96) 

1.71 
(2.15–3.12) 

2.53 
(2.01–2.95) 

2.50 
(1.47–2.69) 

1.91 
– 

As 
(5.75·10−5–
6.51·10−4) 
4.10·10−4 

(5.10·10−4–
8.55·10−4) 
6.77·10−4 

(2.16·10−4–
9.36·10−4) 
6.01·10−4 

(5.67·10−4–
2.30·10−3) 
1.54·10−3 

(4.45·10−4–
1.17·10−3) 
8.35·10−4 

(4.19·10−4–
1.10·10−3) 
6.88·10−4 

(2.67·10−4–
1.40·10−3) 
8.43·10−4 

– 

Hg 
(3.01·10−4–
4.59·10−4) 
3.65·10−4 

(3.65·10−4–
1.67·10−3) 
1.06·10−3 

(5.20·10−4–
1.12·10−3) 
8.37·10−4 

(6.95·10−4–
1.45·10−3) 
1.07·10−3 

(6.90·10−4–
1.56·10−3) 
9.74·10−4 

(5.26·10−4–
8.56·10−4) 
7.45·10−4 

(6.36·10−4–
1.66·10−3) 
1.01·10−3 

– 

 

A two-paired test was used to compare differences between sampling points regarding the TEs 

present in lettuce samples. No statistical differences (p > 0.05) were obtained for Cr, Mn, or Ba 

content at the study sampling sites. In contrast, they were obtained among sites for the rest of the 

TEs. The most polluted crops were found in site P3 (total concentration of 192 mg/kg fw in winter 

and 170 mg/kg fw in summer), whereas crops least polluted by TEs (total concentration 140 
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mg/kg fw) were grown in the rural farm plot. Nevertheless, no statistical differences were found 

in the total metal concentration measured in vegetable crops from each farm plot (p > 0.05). 

3.3.2 Bioconcentration factor for TEs 

Table S3.8 shows the BCFs of selected TEs in lettuce for each of the studied farm plots. The 

BCFs ranged from 0.0002 (As in P5) to 1.78 (Cd in P2). Sb and Cd were the TEs with the highest 

BCFs. Ratios > 1 denote a positive accumulation of metals in plant organs. Only Cd (P2 and P4) 

and Sb (P1, P2, P3, and P5) exhibited values above 1. Although most of the values obtained were 

<1, it must be recalled that only the edible part of the plant was analyzed. The BCF of a TE 

depends on the plant cultivated and the soil properties, such as pH, OMC, and the distribution of 

metals in different soil fractions (Kos et al., 2003). These results are in keeping with other studies 

in which Cd is the TE most likely to accumulate in leafy vegetables, with BCFs ranging from 

0.01 to 3.10 (Chang et al., 2014). 

3.3.3 Occurrence of organic microcontaminants (OMCs) 

Soil 

Table 3.3 shows that only 25 of the 33 OMCs studied in the sampled agricultural soils were 

detected over the LOQs in at least one site. Unexpectedly, the concentrations of OMCs ranged 

from non-detectable to 397 ng/g dw for TCPP (P1). The highest concentration values were 

recorded for TCPP and bisphenol F (Plots 1 and 5). The high values of TCPP and BPF could be 

due to the use of plastic tubing for drip and sprinkler irrigation. In fact, TCPP is used as a raw 

material in the manufacture of polyester, plastic foam, binder, and resins, while bisphenol F and 

other bisphenol analogues have gradually emerged as substitutes for bisphenol A in various 

applications, such as the plastic and canning industries, due to their similar physicochemical 

properties (Regueiro and Wenzl, 2015). The concentrations of OMCs detected in the soils of the 

area of study were in the same range as those published in the peri-urban horticultural area of La 

Plata (Buenos Aires, Argentina) for azoxystrobin (0.8–153 ng/g dw) and lower than those for 

chlorpyrifos (79–2258 ng/g dw) (Mac Loughlin et al., 2017). The average concentration of OMCs 

in soil was higher in P1 and P5 (>14 ng/g dw) than in P2- P4 (<4 ng/g dw). This is probably due 

to the use of plastic tubing for water irrigation in these two farm plots. Paired t-tests showed 

statistical differences (p < 0.05) in all the sites. 
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Table 3.3 Concentration of OMCs (ng/g dw) in soil samples during the summer campaign. 

 Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 

Azoxystrobin nd nd nd 3.82 nd 

Chlorpyrifos nd nd nd 6.68 nd 

N,N-Diethyl-meta-toluamide (DEET) 1.4 <0.22a <0.22 0.48 0.56 

Diazinon nd nd nd nd 3.24 

Dimethomorph nd nd 8.96 nd 16.9 

Surynol 104 <0.10 <0.10 <0.10 <0.10 <0.10 

Tris(2-chloroethyl) phosphate (TCEP) 1.1 nd 0.23 nd 2.3 

2-Mercaptobenzothiazole (2MBT) <4.3 <4.3 5.4 <4.3 <4.3 

5-Methyl-2H-benzotriazole (5TTri) <0.12 <0.12 <0.12 <0.12 <0.12 

Bisphenol A (BPA) <4.2 <4.2 <4.2 <4.2 <4.2 

Butylparaben <0.15 nd nd nd 0.28 

Bisphenol F (BPF) 199 <9 10 <9 106 

Benzothiazole <4.1 <4.1 7.9 <4.1 18 

Benzotriazole <0.41 <0.41 6.8 <0.41 13 

Carbamazepine <0.12 <0.12 0.62 0.14 0.34 

Carbendazim nd nd nd nd 1.27 

Lorazepam <5.91 nd <5.91 nd <5.91 

Metylparaben (MPB) <6.2 30 <6.2 <6.2 18 

1-Hydroxybenzotriazole (OHBT) 5.6 5.5 5.8 5.8 6.8 

Octylphenol <0.63 <0.63 <0.63 <0.63 <0.63 

Propylparaben <0.19 <0.19 <0.19 <0.19 0.48 

Pymetrozin 2.0 1.4 2.4 1.3 2.1 

Pyraclostrobin nd nd 0.23 nd 2.7 

Carbamazepine-10,11-epoxide nd <0.21 <0.21 <0.21 <0.21 

Tris (chloroisopropyl) phosphate (TCPP) 397 <21 <21 <21 114 

nd = not detected, concentration values have been corrected by the recoveries. 
a Values between LOQ and LOQ are shown. 

Lettuce 

Table 3.4 shows that 8 of the 25 compounds detected in soil samples were above the LOQs in the 

lettuce samples. Similarly, as in the agricultural soil, methylparaben (106-193 ng/g fw in P1), 2-

mercaptobenzothiazole (2.39-40.5 ng/g fw in P1) and bisphenol F (17.8-104 ng/g fw in P3) were 

among the ones detected at highest concentrations. Whereas the occurrence of bisphenol F and 

2MBT can be attributed to the presence of plastic materials in the agricultural fields (pipelines or 

plastic mulch or film), the high abundance of MPB may be due to its use as a fungicide in 

agriculture, although it can also be biosynthesized by some plants (Calvo-Flores et al., 2018). 

MPB is also released into water bodies via domestic and industrial wastewater (Becerra-Herrera 

et al., 2018). Fungicides, dimethomorph, and carbendazim were only detected in winter in P3 and 

P5, at concentrations up to 39 ng/g fw (Table 3.4). This is consistent with the need for an early 

application of fungicide in winter to reduce downy mildew and lettuce drop disease. Hence, direct 

https://www.sciencedirect.com/science/article/pii/S004896971831667X?via%3Dihub#tf0005
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foliar application of these fungicides could be the main source of their presence in lettuce crops. 

These results are higher than the concentration levels at which carbendazim has been detected in 

lettuce (2-7 ng/g fw) sold at farmers' markets from January to March in Hatay (Turkey) (Esturk 

et al., 2014). In addition, carbamazepine, one of the most widely reported pharmaceuticals in 

crops due to its high plant uptake, and its transformation product (epoxy-carbamazepine) were 

detected in almost all the farm plots. This is in keeping with the results reported Malchi et al. 

(2014), where CBZ and EPOCBZ were detected in carrots and sweet potatoes irrigated with 

secondary treated wastewater under field conditions. 

Table 3.4 Minimum, maximum and median concentration (ng/g fw) of the OMCs detected in lettuce samples 
during summer and winter campaigns. Only Plots 3 and 4 were planted during the summer season. 
Concentration values have been corrected by recoveries. 

 
Plot 1 
winter 

Plot 2 
winter 

Plot 3 
winter 

Plot 3 
summer 

Plot 4 
winter 

Plot 4 
summer 

Plot 5 
winter 

Dimetomorph nd nd 
(15.3–20.5) 
19.5 

nd nd nd 
(0.42–0.62) 
0.59 

Surfynol 104 <4.07 <4.07 
(<4.07–8.10) 
7.57 

<4.07 <4.07 <4.07 (<4.07–6.77) 

2MBT 
(2.39–40.5) 
15.3 

<0.66 <0.66 <0.66 
(<0.66–
0.74) 

<0.66 
(<0.66–1.74) 
1.51 

BPF 
(1.11–1.91) 
1.61 

(1.58–3.92) 
3.01 

(17.8–104) 
62.0 

(1.34–3.41) 
2.28 

(15.9–31.2) 
22.2 

(13.3–49.6) 
15.5 

(0.59–2.32) 
2.16 

Carbamazepine 
(0.18–0.23) 
0.20 

(0.11–0.13) 
0.12 

(0.13–0.32) 
0.23 

(0.33–0.56) 
0.36 

(0.08–0.18) 
0.11 

(0.10–0.51) 
0.16 

(0.13–0.20) 
0.14 

Carbendazim nd nd 
(<0.24–2.61) 
2.24 

<0.24 nd nd 
(<0.24–38.9) 
19.9 

MPB 
(106–
193)136 

(45.2–47.2) 
46.4 

(24.9–31.9) 
28.7 

(23.6–31.5) 
25.0 

(25.2–47.9) 
31.6 

(25.8–41.4) 
34.9 

(48.3–83.3) 
64.3 

Carbamazepine 
epoxide 

(0.19–0.24) 
0.21 

nd 
(0.05–0.07) 
0.06 

(0.08–0.10) 
0.09 

(0.08–0.25) 
0.16 

0.09 
(0.08–0.13) 
0.11 

nd= not detected 

In summary, although previous studies have reported the occurrence of 33 OMCs in the irrigation 

waters (Margenat et al., 2017), only two were taken up by plants from the water (i.e. 

carbamazepine and surfynol 104). Therefore, this study shows that the occurrence of OMCs in 

irrigation waters is not the main source of OMCs in crops, as other pollutants released by the 

irrigation system or pesticide applications (carbendazim, dimethomorph, 2MBT, BPF, and MPB) 

were detected in higher concentrations. Based on the two-paired test, it was concluded that the 

concentrations of OMCs in groundwater irrigated vegetables (P1 and P5) are statistically different 

(p < 0.05) from those observed in surface water irrigated crops (P2 to P4). Higher occurrence of 

2MBT in groundwater irrigated crops (P1) can be attributed to the use of drip and sprinkle 

irrigation, whereas the higher occurrence of MPB is of unknown origin. Conversely, although 

BPF appeared only in soil samples from drip (P1) and sprinkle irrigation fields (P5), it was 

detected in the crops of all farm plots, which demonstrates its ubiquity. The values of the detected 
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fungicides - carbendazim and dimethomorph (P3 and P5) - were compliant with the levels 

established for lettuce by Regulation (EC) No 396/2005 on maximum residue levels of pesticides 

in food (EC, 2005), as the legislated values are about 15 mg/kg fw for dimethomorph and 0.1 

mg/kg fw for carbendazim. 

3.3.4 Bioconcentration factors for OMCs 

The BCFs for detected compounds ranged from to 1 to 375 (Table S3.9). The compounds to show 

the highest BCFs were carbendazim, due to its direct application as a fungicide (375), and 

bisphenol F, which is released by the drip irrigation system (200). Except for these two 

compounds, all other BCF values were in the range of those observed in plants grown in soil but 

lower than those observed in plants grown under hydroponic conditions (Wu et al., 2015). For 

instance, in a real field-scale study, Wu et al. (2015) found that carbamazepine had BCF values 

up to 20 as it is easily transferred from soil to plant, which is in keeping with the values found in 

the present study (6 to 53). BCFs from crops harvested in summer were lower than those from 

winter season. This can be explained by the higher lipidic content in summer (Table 3.5). 

Table 3.5 Minimum, maximum and average levels of different lettuce quality parameters studied (n = 5). 

 
Plot 1 
winter 

Plot 2 
winter 

Plot 3 
winter 

Plot 3 
summer 

Plot 4 
winter 

Plot 4 
summer 

Plot 5 
winter 

Water content (%) 95.0 95.3 96.1 95.2 95.7 95.2 95.8 

ChlT (mg/cm2) 
(0.40–0.80) 
0.58 

(0.4–0.7) 
0.6 

(0.4–0.7) 0.6 (1.1–1.2) 1.2 
(0.5–0.6) 
0.6 

(1.1–1.2) 1.1 (0.2–0.6) 0.4 

Nitrates (mg/kg) 
(1113–1543) 
1331 

(729–862) 
793 

(1467–1854) 
1648 

(1264–1411) 
1316 

(739–1039) 
843 

(628–835) 
736 

(1202–1827) 
1427 

Lipids (%) 
(0.13–0.17) 
0.15 

(0.10–0.23) 
0.16 

(0.10–0.16) 
0.13 

(0.22–0.23) 
0.23 

(0.13–0.23) 
0.20 

(0.17–0.27) 
0.22 

(0.17–0.33) 
0.24 

Carbohydrates (%) 
(4.03–4.46) 
4.20 

(3.78–5.53) 
4.37 

(3.36–4.23) 
3.66 

(2.76–5.23) 
4.20 

(4.58–5.94) 
5.15 

(5.20–6.96) 
5.71 

(4.64–5.43) 
5.03 

 

3.3.5 Effects of the occurrence of chemical pollutants in lettuce 

The chlorophyll, nitrate, lipid, and carbohydrate content of the sampled lettuces were analyzed to 

evaluate the effects of chemical pollutants in fresh lettuces (Table 3.5). Lettuces harvested in 

summer showed statistically higher chlorophyll concentration levels (p < 0.05) than those 

harvested in winter, which can be accounted for by the longer exposure to sunlight during the 

summer season (Gent, 2014). The concentration of nitrates ranged from 628 to 1854 mg/kg. 

Although nitrate concentrations in vegetables are considered to be of low toxicity, nitrate is easily 

reduced to nitrite, which can pose a risk to human health (Guadagnin et al., 2005). The European 

Union established maximum values for nitrate content in lettuce produced in open fields of 2500 

mg/kg in summer and 4000 mg/kg in winter (Regulation (EC) No 1881/2006) (EC, 2006). None 

of the harvested lettuce showed values above the maximum legislated levels. Since the nitrate 

concentration in vegetables depends on the harvesting period, agricultural system, maturation 
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stage, and plant part, almost all the sampling sites had a statically different (p < 0.05) nitrate 

content from the other sites. Furthermore, unlike other (Guadagnin et al., 2005; Woese et al., 

1997), the organic farming plot (P1) was not found to have lower nitrate concentrations. This 

could support the idea that nitrate content is subject to many factors. For instance, in this study 

nitrate content in irrigation waters (Margenat et al., 2017) seemed to be a relevant factor since it 

was higher in P1, P3, and P5. Fig. S3.1 shows a strong relationship between nitrate content in 

lettuce and irrigation water (Pearson correlation coefficient of 0.897 and p-value < 0.05), which 

means that the main source of nitrates in crops is plant uptake from irrigation water. 

Finally, the lipid and carbohydrate content were analyzed, as the lipid portion has been shown to 

be a major reservoir for the storage of OMCs (Yang et al., 2016). The concentration of lipids and 

carbohydrates was shown to be strongly dependent on both the farm plot and the season. 

Specifically, P4 and P5 had a higher carbohydrate content than the other farm plots studied, and 

lettuce harvested in summer had higher lipid and carbohydrate content than lettuce harvested in 

winter (P3). This is consistent with the fact that greater sunlight intensity in summer promotes 

higher sugar accumulation in plants (Gent, 2014). Furthermore, the results show a negative 

relationship between nitrate content and sugar content, as has been previously reported for the 

stabilization of osmotic potential in plant tissues (Blom-Zandstra and Lampe, 1985). 

3.3.6 Correlation analysis (PCA) 

PCA with Varimax normalized rotation was performed, reducing the 76 measured variables to 

six principal components with eigenvalues >1 explaining 95.7% of the total variance observed. 

The first principal component (PC1), which explains 31.4% of the variance in the dataset, showed 

strong positive loadings (>0.8, Table S3.10) for some OMCs in soil (PPB, carbendazim, surfynol 

104, BPB, BT, TCEP, dimethomorph), other OMCs in lettuce (carbendazim), TEs in soil (Mn, 

Rb, Mg, Co, Cr, Li, and K), a few TEs in lettuce (Li), soil moisture, and soil cation-exchange 

capacity. The positive loadings of these compounds correlated with a high chemical pollution in 

the soil as well as fungicide application in lettuce (carbendazim); the highest contribution was for 

the P5 site. This finding indicates that PC1 was associated with pollution. 

Another 25.0% of the variance is explained by the second principal component (PC2), which has 

high positive loading values (Table S3.10) for TEs in soil (Hg, Ca, Na), TEs in lettuce (Hg, Zn), 

EPOCBZ in soil, and total organic carbon (TOC) in soil. This correlated with sampling sites 

collated in the peri-urban area, where Na and TOC values are high. Negative loading values were 

found for MPB in lettuce and TCPP and BPF in soil, which correlates with the control site. 

Finally, the third principal component (PC3) explains 19.9% of the variance in the dataset and 

has high loadings for soil electrical conductivity, some OMCs in soil (2MBT, carbamazepine, 
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pymetrozin), Mn and carbamazepine in lettuce, and nitrate content in lettuce. This correlates with 

the impact of reclaimed water (P3), as has previously been determined in the characterization of 

the irrigation waters (Margenat et al., 2017), a finding that is consistent with the higher soil 

conductivity and carbamazepine concentration observed in this farm plot. 

 

Figure 3.1 Principal Component Analysis (PCA) results. a) Scores plot PC1 vs PC2 (ID1=Plot1 winter, ID2=Plot2 
winter, ID3=Plot3winter, ID4=Plot4 winter, ID5=Plot5 winter, ID6=Plot3 summer, ID7=Plot4 summer), b) Scores 
plot PC1 vs PC3 

Fig. 3.1a shows the three main groups differentiated with regard to the first two PCs. The three 

main groups are the rural plot (I), P5 (II), and P2–P4 (III). As can be seen, the first differential 

characteristic depends on the proximity of the sampling site to the urban area. P2–P5 are located 

in the peri-urban area, whereas P1 is located in a rural area unexposed to urban pollution. 

However, P5 is impacted by industrial effluents and other soil pollution due to the use of urban 
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biosolids and pesticides. This makes this farm plot the most polluted site. Fig. 3.1b shows the 

score plots of PC1 vs PC3. As can be seen, the farm plots from the peri-urban area can be grouped 

into 3 clusters: the plots irrigated with river water (group IV, P2 and P4), the farm plot irrigated 

with reclaimed water (group III, P3), and the farm plot irrigated with groundwater (group II, P5). 

Therefore, the main differences observed in this second score plot (Fig. 3.1b) with regard to 

pollution (organic and inorganic) in soil and lettuce are due to the quality of the irrigation water. 

3.4 Conclusions 

The results of this study demonstrate that peri-urban pollution increases the occurrence of 

pollutants but does not affect lipid and carbohydrate content. 

- The concentrations of TEs and OMCs ranged from 0.790 to 803 mg/kg dw and from <0.1 

to 397 ng/g dw, respectively, in the peri-urban soil, whereas they ranged from 6·10−5 to 

5 mg/kg fw and from b0.1 to 193 ng/g fw, respectively, in the lettuce crops.  

- The concentrations of metals in the soil from the rural area were always below the 

Catalonian guidelines, but limits were exceeded for Mo, Ni, Pb, and As in the soils of the 

peri-urban area. However, their occurrence in lettuce complied with human food safety 

standards (except for Pb in peri-urban area). 

- The many fungicides (carbendazim, dimethomorph, and MPB) and chemicals released 

by plastic pipelines (TCPP, BPF, and 2-MBT) used in agriculture were prevalent in the 

soil or the edible parts of the lettuce. In contrast, chemicals from irrigation waters 

(carbamazepine, surfynol 104) were not. 

- The BCFs of TEs ranged from 0.0002 to 2, whereas for OMCs such as pesticides and 

plastic-related compounds it depended on whether or not they came into direct or indirect 

(use of plastic pipelines) contact with the lettuce leaf surface. 

- Chlorophyll, lipid, and carbohydrate content in crops grown in the peri-urban area were 

not affected by soil or irrigation water pollution, whereas nitrate content depended on the 

irrigation water quality. 

- PCA showed that peri-urban pollution and water irrigation quality could explain a large 

share of the variance in the dataset. 

Although the present study showed that lettuce exposure to peri-urban pollution did not affect 

lipid and carbohydrate content, further studies are necessary to assess changes in agri-food quality 

associated with peri-urban pollution. Similarly, further work is needed on the potential effects of 

chemical pollutants released by plastic irrigation pipes on crops. 
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3.5 Supporting Information 

3.5.1 Materials and reagents  

Most of the reagents, OMCs and surrogates are described in section 2.5.1.  

N,N-dimethylformamide was obtained from Merck and and 0.70 µm of glass-fiber filters 47 mm 

in diameter were obtained from Whatman (Maidstone, UK). 

3.5.2 Analytical determination of chemical pollutants in soil and crop samples 

ICP-MS and ICP-OES determination  

An inductively coupled plasma optical emission spectrometer (Thermo Scientific, iCAP 6500 

ICP-OES) and an inductively coupled plasma mass spectrometer (Thermo Scientific, XSeries 2 

ICP-MS) were used for the determination of TEs.  

Major elements were determined by ICP-OES (Ba and Mn), while the rest of TEs were 

determined by ICP-MS.  

Reagent water was used as a blank matrix, and laboratory reagent blank was treated exactly the 

same as a sample. A limit of detection (LOD) of 0.2 μg/L in the solution analyzed was determined 

from three times the standard deviation obtained from the analysis of ten runs of blank samples 

on the same day as the determinations. 

GC-MS/MS determination (SI) 

GC-MS/MS determination is described in section 2.2.3. 

LODs, LOQs, recoveries of the surrogates and recoveries of the targeted compounds are reported 

in Tables S3.2-3.4 and Tables S3.5-3.7. 

LC-MS/MS determination  

Samples extracted by sonication, were analyzed with a Waters Acquity Ultra-Performance liquid 

chromatography system coupled to a Waters TQ-Detector (Manchester, UK). Autosampler was 

set at 15ºC and a volume of 10 µL of sample was injected to the liquid chromatography system 

fitted with an Ascentis Express RP-Amide column (5 cm x 2.1mm, 2.7 µm particle size, Supelco, 

Bellefonte, USA) and with a guard column (0.5 cm x 2.1 mm) containing the same packing 

material. 

The flow rate was 0.35 mL/min and the gradient conditions of mobile phase A (acetonitrile 0.1% 

formic acid) and mobile phase B (water + 0.1% formic acid) were set as follows: 0-1 min 3% of 

A, 1-7 min 3-25% of A, 7-10 min 25-95% of A, 10-15 min 95% of A, 15-17% min, 15-17 min 

95-3%, 17-23 min 3% of A. Column oven was set at 25ºC. Ions were generated with an 
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electrospray in positive mode (ESI+). Source and desolvation temperature were set to 80ºC and 

350ºC, respectively.  Qualitative analysis was performed as in GC-MS/MS, quantitative analysis 

was performed through matrix-matched calibration. 

 

Table S3.1. General parameters of soil samples 

 Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 Methodology 

Humidity at 105ºC (%) <1 <1 <1 <1 <1 Gravimetry 

Nitrogen-nitric (mg/Kg) 9 19 10 2 12 Colorimetry 

Phosphorous (mg/Kg) 64 15.6 67 35 102 Spectrophotometry UV-VIS 

Potassium (mg/Kg) 375 183 309 346 512 Spectrophotometry ICP-OES 

Calcium (mg/Kg) 2984 6422 6498 6561 6598 Spectrophotometry ICP-OES 

Magnesium (mg/Kg) 379 330 390 360 510 Spectrophotometry ICP-OES 

Sodium (mg/Kg) 32 152 161 136 109 Spectrophotometry ICP-OES 

Cation exchange capacity (mS·cm-1) 7.5 8.0 9.3 9.7 11.5 Volumetric titration 

pH 7.6 7.8 7.6 7.7 7.8 Potentiometry 

Electrical conductivity (mS·cm-1) 2.3 2.3 2.8 2.2 2.3 Conductimetry 

Texture Sandy loam Sand Sandy loam Sandy loam Sand Granulometry 
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Table S3.2 Limits of detection (LOD) and quantification (LOQ) of soil samples 

Analyte LOD (ng/g dw) LOQ (ng/g dw) 

Atrazine 0.44 0.46 

Azoxystrobin 0.36 0.37 

2-tert-Butyl-4-methoxyphenol (BHA) 0.03 0.04 

Chlorpyrifos 0.04 0.06 

N.N-Diethyl-meta-toluamide (DEET) 0.19 0.22 

Diazepam 0.11 0.12 

Diazinon 0.36 0.37 

Dimethomorph 0.29 0.30 

Indoxacarb 0.29 0.30 

Simazine 0.37 0.38 

Surfynol 104 0.96 1.01 

Tris(2-Chloroethyl) Phosphate (TCEP) 0.17 0.18 

2-Mercaptobenzothiazole (2-MBT) 4.33 4.51 

5-Methyl-2H-benzotriazole (5-TTri) 0.12 0.13 

Bisphenol A (BPA) 4.22 4.24 

Butylparaben (BPB) 0.14 0.16 

Bisphenol F (BPF) 9.57 10.06 

1,3-Benzothiazole (BT) 4.04 4.09 

Benzotriazole (Btri) 0.39 0.40 

Carbamazepine (CBZ) 0.46 0.47 

Carbendazim 0.22 0.23 

Ethyl paraben (EPB) 3.09 3.63 

Lorazepam 5.91 5.92 

Methyl paraben (MPB) 6.18 6.92 

1-Hydroxybenzotriazole (OHBT) 10.8 11.0 

Octylphenol (OP) 0.63 0.64 

Oxazepam 0.51 0.52 

Propyl paraben (PPB) 0.20 0.21 

Primidone 0.17 0.18 

Pymetrozin 0.88 0.89 

Pyraclostrobin 0.04 0.06 

Carbamazepine-10,11-epoxide (EPOCBZ) 0.21 0.40 

Tris(1-chloro-2-propyl) phosphate (TCPP) 20.9 21.4 

 

Table S3.3 Recoveries (%) of surrogates in soil samples 

Surrogate R(%) at 7 ng/g dw 

Bisphenol A-d16 88±5 

Caffeine-13C3 10±0.9 

Carbamazepine-13C6 65±5 

Diazepam-d5 68±8 

5,6-dimethyl-1H-benzotriazole (XbTri) 50±6 

Etylparaben-13C 67±3 
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 Table S3.4 Absolute recoveries (%) of analytes in soil samples 

Compound R(%) at 7 ng/g dw 

Atrazine 39±5 

Azoxystrobin 71±0.3 

Chlorpyrifos 32±4 

N.N-Diethyl-meta-toluamide (DEET) 49±5 

Diazepam 38±5 

Diazinon 33±4 

Dimethomorph 61±9 

Indoxacarb 46±1 

Simazine 62±1 

Surfynol 104 44±5 

Tris(2-Chloroethyl) Phosphate (TCEP) 50±0.8 

5-Methyl-2H-benzotriazole (5-TTri) 54±5 

Bisphenol A (BPA) 72±9 

Butylparaben (BPB) 42±0.6 

Bisphenol F (BPF) 66±21 

1.3-Benzothiazole (BT) 76±16 

Benzotriazole (Btri) 10±0.8 

Carbamazepine (CBZ) 58±3 

Carbendazim 75±7 

Ethyl paraben (EPB) 54±4 

Lorazepam 68±6 

Methyl paraben (MPB) 120±22 

1-Hydroxybenzotriazole (OHBT) 85±13 

Octylphenol (OP) 46±2 

Oxazepam 56±3 

Propyl paraben (PPB) 53±2 

Carbamazepine-10,11-epoxide (EPOCBZ) 84±6 

Tris(1-chloro-2-propyl) phosphate (TCPP) 87±13 

nd: non detected  
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Table S3.5 Limits of detection (LOD) and quantification (LOQ) of lettuce’s samples 

Compound LOD (mg/kg fw) LOQ(mg/kg fw) 

Atrazine 0.11 0.18 

Azoxystrobin 0.22 0.35 

2-tert-Butyl-4-methoxyphenol (BHA) 0.025 0.028 

Chlorpyrifos 0.56 0.94 

N.N-Diethyl-meta-toluamide (DEET) 0.32 0.7 

Diazepam 0.03 0.05 

Diazinon 0.35 0.63 

Dimethomorph 0.03 0.06 

Indoxacarb 0.49 0.83 

Simazine 0.19 0.3 

Surfynol 104 4.1 6.5 

Tris(2-Chloroethyl) Phosphate (TCEP) 0.82 1.5 

2-Mercaptobenzothiazole (2-MBT) 0.66 1 

5-Methyl-2H-benzotriazole (5-TTri) 0.26 0.43 

Bisphenol A (BPA) 0.24 0.39 

Butylparaben (BPB) 0.16 0.22 

Bisphenol F (BPF) 0.51 0.77 

1.3-Benzothiazole (BT) 1.2 1.7 

Benzotriazole (Btri) 0.96 1.6 

Carbamazepine (CBZ) 0.05 0.15 

Carbendazim 0.24 0.33 

Ethyl paraben (EPB) 0.39 0.66 

Lorazepam 0.82 1.3 

Methyl paraben (MPB) 0.81 0.99 

1-Hydroxybenzotriazole (OHBT) 0.38 0.6 

Octylphenol (OP) 0.11 0.18 

Oxazepam 0.38 0.63 

Propyl paraben (PPB) 15 24 

Primidone 0.26 0.33 

Pymetrozin 3.2 5.1 

Pyraclostrobin 3.7 6.6 

Carbamazepine-10,11-epoxide (EPOCBZ) 0.1 0.3 

Tris(1-chloro-2-propyl) phosphate (TCPP) 16 23 

 

Table S3.6 Recoveries (%) of surrogates in lettuce’s samples 

Surrogate R(%) at 10 ng/g fw 

Bisphenol A-d16 38±3 

Caffeine-13C3 46±4 

Carbamazepine-13C6 111±14 

Diazepam-d5 15±2 

5.6-dimethyl-1H-benzotriazole (XbTri) 73±7 

Etylparaben-13C 74±8 
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Table S3.7 Absolute recoveries (%) of analytes in lettuce’s samples 

Compounds R(%) at 10 ng/g fw 

1-hydroxybenzotriazole (OHBT) 76±5 

2-mercaptobenzothiazole (2MBT) 85±6 

2-tert-Butyl-4-methoxyphenol (BHA) 74±4 

4-tert-octylphenol (OP) 48±3 

5-methyl-2H-benzotriazole (5TTri) 71±1 

Azoxystrobin 35±8 

Benzothiazole 66±1 

Benzotriazole 86±3 

Bisphenol A 34±2 

Bisphenol F 20±2 

Butylparaben 39±4 

Carbamazepine 152±6 

Carbamazepine-10.11-epoxide (EPOCBZ) 95±14 

Carbendazim 40±2 

DEET 46±3 

Dimethomorph 35±3 

Etylparaben 60±4 

Indoxacarb n.a. 

Lamotrigine n.a. 

Lorazepam n.a. 

Methylparaben 58±8 

Oxazepam 96±2 

Primidone 52±5 

Propylparaben 72±3 

Pymetrozin 70±6 

Pyraclostrobin n.a. 

Simazine 41±1 

Surfynol 104 89±13 

Tris(1-chloro-2-propyl) phosphate (TCPP) 44±6 

Tris(2-chloroethyl) phosphate (TCEP) 37±4 

n.a. not evaluated 
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Table S3.8 BCF for the TEs selected in this study 

 Plot 1 
winter 

Plot 2 
winter 

Plot 3 
winter 

Plot 3  
summer 

Plot 4 
winter 

Plot 4  
summer 

Plot 5 
winter 

B 0.36 0.28 0.50 0.41 0.54 0.47 0.62 

Ba 0.19 0.05 0.05 0.06 0.05 0.04 0.03 

Cd -* - 0.69 0.79 - - - 

Co 0.07 0.03 0.02 0.02 0.02 0.02 0.03 

Cr 0.12 0.06 0.07 0.06 0.06 0.15 0.05 

Cu 0.28 0.20 0.15 0.16 0.10 0.08 0.13 

Li 0.09 0.04 0.03 0.04 0.03 0.03 0.03 

Mn 0.19 0.07 0.15 0.14 0.09 0.08 0.07 

Mo 0.22 0.14 0.16 0.13 0.28 0.46 0.18 

Ni 0.07 0.04 0.03 0.04 0.05 0.17 0.05 

Pb 0.06 0.03 0.01 0.03 0.02 0.02 0.06 

Rb 0.24 0.27 0.25 0.19 0.29 0.24 0.17 

Sb -* - - - - - - 

Zn 0.17 0.29 0.35 0.25 0.28 0.23 0.22 

As 0.00045 0.0005 0.0003  0.0008 0.0006 0.0004 0.0002 

Hg 0.64 0.07 0.06 0.07 0.05 0.04 0.12 

*soil concentration below LOD 

 

Table S3.9 BCF of the CECs selected in this study 

 
Plot 1 
winter 

Plot 2 
winter 

Plot 3 
winter 

Plot 3  
summer 

Plot 4 
winter 

Plot 4 
 summer 

Plot 5 
winter 

Dimetomorph * * 64 * * * 1 

2-MBT * * * 30 * * * 

BPF 1 * 200 6 * * 2 

Carbamazepine * * 10 6 53 24 8 

Carbendazim * * * * * * 375 

MPB * 30 * * * * 85 

*soil concentration below LOD 
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Table S3.10 Loadings for PCA. 

  

Component 

1 2 3 4 5 6 

PPB (ng/g) soil .980 -.175 -.040 -.080 .016 -.037 

Carbendazim (ng/g) soil .978 -.176 -.039 -.092 .015 -.040 

Carbendazim (ng/g) lettuce .976 -.152 .026 -.111 .105 -.021 

Mn (ng/g) soil .974 .206 .081 .013 .048 .028 

Moisture (%) soil .972 -.154 -.058 .164 .031 .029 

Rb (ng/g) soil .969 .184 -.144 .069 -.020 .034 

BPB (ng/g) soil .945 .296 -.090 -.099 .041 .020 

Mg (mg/Kg) soil .928 -.209 .301 .046 .028 -.029 

BT (ng/g) soil .918 .071 .273 -.024 -.030 .278 

Co (ng/g) soil .901 .334 -.214 -.170 .035 .014 

CAP.Interc.Cat. (meq/100g) soil .868 .349 .025 .322 .070 .128 

Cr (ng/g) soil .866 .489 -.040 -.068 .054 .049 

Li (ng/g) lettuce .847 -.050 .052 -.418 -.220 -.234 

Li (ng/g) soil .843 .488 -.205 -.061 .049 .061 

TCEP (ng/g) soil .830 -.545 .042 -.072 -.009 -.087 

Dimethomorph (ng/g) soil .829 .119 .522 -.150 .039 -.051 

Btri (ng/g) soil .814 .173 .386 .001 -.048 .396 

K (mg/Kg) soil .770 -.407 .154 .461 .031 .060 

Ba (ng/g) soil .770 .524 -.298 .081 .142 .131 

P (mg/Kg) soil .712 -.310 .621 .087 .025 -.051 

B (ng/g) soil -.696 .168 -.160 -.663 -.055 -.141 

MPB  (ng/g) lettuce .030 -.987 .011 -.113 -.011 -.107 

TCPP (ng/g) soil -.070 -.981 .115 .031 -.058 -.123 

BPF (ng/g) soil .167 -.971 .112 .010 -.054 -.116 

Hg (ng/g) soil -.113 .967 -.006 .149 .064 .160 

Na (mg/Kg) soil -.050 .939 .290 -.157 .054 .061 

TOC(%) soil .258 .926 .206 -.157 .062 .066 

Ca (mg/Kg) soil .357 .916 -.125 -.022 .064 .119 

Hg  (ng/g) lettuce .357 .829 .376 -.194 .018 -.081 

2MBT  (ng/g) lettuce -.277 -.821 .320 .076 -.314 -.205 

As (ng/g) soil .004 .799 .056 .393 -.449 .052 

Zn  (ng/g) lettuce .037 .786 -.458 -.042 .412 -.016 

Cu  (ng/g) lettuce -.127 .783 -.343 .495 .059 .068 

Cd  (ng/g) lettuce -.190 .774 .415 -.336 -.034 -.279 

Pb (ng/g) soil -.053 .768 .064 .422 -.471 .049 

B  (ng/g) lettuce -.216 .713 .235 .123 .609 -.061 

Carbamazepine epoxide (ng/g) lettuce -.050 -.680 -.091 .620 .063 -.373 

Co  (ng/g) lettuce .644 -.676 -.308 -.158 -.034 -.087 

Zn (ng/g) soil .306 .568 -.541 .089 .470 .249 

As  (ng/g) lettuce .411 .504 .428 .158 -.474 -.381 

Mn  (ng/g) lettuce .090 -.166 .968 .087 .131 -.044 

Carbamazepine  (ng/g) lettuce -.127 .182 .952 -.036 -.209 -.001 

Pymetrozin (ng/g) soil .234 -.071 .951 -.159 .018 -.104 

Conductivity (mS) soil -.107 .291 .931 -.179 .028 -.063 

Lorazepam (ng/g) soil -.181 .360 -.900 .108 .000 .125 
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2-MBT (ng/g) soil .061 .429 .897 -.074 .047 -.017 

Nitrates(mg/Kg) lettuce .187 -.232 .879 -.091 .328 -.153 

Carbamazepine (ng/g) soil .212 .459 .860 -.033 .055 .000 

pH soil .404 .251 -.849 -.227 -.006 .024 

Ni (ng/g) soil .411 .632 .645 -.104 .063 .017 

N-NO3 (mg/Kg) soil .113 -.044 .046 -.957 -.054 -.253 

MPB (ng/g) soil .304 .067 -.508 -.785 -.045 -.162 

Mo (ng/g) soil .066 .478 .447 -.738 .008 -.152 

Carbohydrates(%) lettuce .264 .216 -.527 .697 -.341 .060 

Cu (ng/g) soil .038 .549 -.403 .678 .065 .266 

Sb (ng/g) soil .598 -.329 .302 -.632 .104 -.181 

Moisture(%) lettuce .384 .226 .222 .043 .854 -.143 

BPF  (ng/g) lettuce -.199 .383 .273 .225 .819 .133 

Dimethomorph  (ng/g) lettuce -.102 .217 .557 -.155 .762 .165 

Cd (ng/g) soil -.024 .327 .600 -.032 -.699 -.207 

Surfynol 104  (ng/g) lettuce .539 .075 .456 -.193 .668 .117 

Sb  (ng/g) lettuce -.483 -.380 .415 -.155 -.649 .071 

Pb (ng/g) lettuce .405 .555 .328 .256 -.577 .143 

ChlT(mg/cm2) lettuce -.376 .443 .276 .304 -.571 .409 

Rb  (ng/g) lettuce .163 .504 -.525 .343 .559 .116 

Lipids(%) lettuce .406 .307 -.247 .524 -.530 .354 

Cr  (ng/g) lettuce -.043 -.002 -.190 .274 .077 .939 

Mo  (ng/g) lettuce .040 .290 -.199 .261 .174 .881 

Ni  (ng/g) lettuce .189 .193 -.149 .307 -.277 .857 

Ba  (ng/g) lettuce -.351 -.463 -.140 .409 -.137 -.676 

 

 
 
Figure S3.1 Dispersion diagram and linear correlation between nitrate content in water and in lettuce
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 Chapter IV: Occurrence and human health implications of chemical 

contaminants in vegetables grown in peri-urban agriculture 
 

This chapter is based on the article under review: 

Margenat, A., Matamoros, V., Díez, S., Cañameras, N., Comas, J., & Bayona, J. M. Occurrence 

and human health implications of chemical contaminants in vegetables grown in peri-urban 

agriculture. Environment International. 

 

Recent studies have proven that vegetables cultivated in peri-urban areas are exposed to a greater 

concentration of OMCs and TEs than those grown in rural areas. In this study, the occurrence and 

human health risk of chemical contaminants (16 TEs and 33 OMCs) in edible parts of lettuce, tomato, 

cauliflower, and broad beans from two farm fields in the peri-urban area of the city of Barcelona and 

one rural site outside the peri-urban area were assessed. The concentration of TEs and OMCs ranged 

from non-detectable to 17.4 mg kg-1 and from non-detectable to 256 µg kg-1, respectively. Tomato fruits 

showed the highest concentration of TEs and OMCs. Principal component analysis indicated that the 

occurrence of chemical contaminants in crops depended on the commodity rather than the location 

(peri-urban vs rural). Risk assessment using hazardous quotient (HQ) and threshold of toxicological 

concern (TTC) approaches showed that the risk for the consumption of target vegetables in the peri-

urban area was low and similar to that observed for the rural site. Total HQ values for TEs were always 

below 1, and a minimum consumption of 150 g day-1 for children and 380 g day-1 for adults is required 

to reach the TTC due to the presence of pesticides. Further studies are needed to estimate the combined 

effect of TEs and OMCs on human health. 
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4.1 Introduction 

The consumption of vegetables grown with peri-urban agriculture has grown exponentially due to the 

increase in urban demand (Olsson et al., 2016). Nevertheless, recent studies have highlighted that 

vegetables cultivated in peri-urban areas are generally exposed to a higher concentration of chemical 

contaminants than those grown in rural areas (Christou et al., 2017b; Säumel et al., 2012). 

Many studies have demonstrated that industrial activities, dense traffic flows, and the reuse of treated 

wastewater for irrigation are important sources of contamination of food crops (Christou et al., 2017a; 

Kalavrouziotis et al., 2008; Khan et al., 2008; Nabulo et al., 2006). Therefore, concerns about the 

chemical contamination of vegetables grown on peri-urban farms have risen due to the potential human 

health risk implications of consuming contaminated vegetables (Augustsson et al., 2018; Huang et al., 

2018). The main health risks associated with peri-urban horticulture include the contamination of 

vegetables with agrochemical residues and TEs such as heavy metals (Birley and Lock, 1999). 

Nevertheless, it is important to notice that soil amending may result in a higher vegetable exposure to 

heavy metals (Antisari et al., 2015). Conversely, the use of reclaimed water for crop irrigation might 

end with a reduction of heavy metals uptake in crops caused by antagonist effects (Kalavrouziotis and 

Koukoulakis, 2010), but it can also increase crop exposition to OMCs. 

The detection of OMCs in the edible parts of plants has recently raised concerns regarding human 

exposure to these contaminants (Kalavrouziotis et al., 2012; Khan et al., 2008; Pan et al., 2014). In this 

regard, it has been reported that the presence of OMCs such as lamotrigine and 10,11-

epoxycarbamazepine in sweet potatoes and carrots could have adverse effects on human health (Malchi 

et al., 2014; Prosser and Sibley, 2015). In the case of TEs such as heavy metals, although the potential 

risk associated with their presence in peri-urban vegetables is minimal, it may exceed the target hazard 

quotient for vulnerable populations such as children or pregnant woman (Hough et al., 2004; Nabulo et 

al., 2010). Nevertheless, few field studies exist on the occurrence of OMCs in vegetables (Malchi et al., 

2014; X. Wu et al., 2014), and no risk assessment study has been done on the co-occurrence of metals, 

pesticides, and OMCs in peri-urban horticulture.  

Estimation of the dietary exposure to chemical contaminants requires data on food consumption and 

the occurrence of each contaminant, which must then be compared with the pertinent health-based 

guidance value for the chemical of concern (WHO, 2008). Risk assessment can be based on either 

deterministic or probabilistic approaches. Deterministic approaches use a single value, such as a mean 

or percentile, to describe model variables. Their main drawback is thus the lack of insight they offer 

into the range of possible exposures and the proportion of the population that remains at risk. In contrast, 

probabilistic approaches, which are increasingly widely used (Quijano et al., 2017), account for the 

variability in food consumption and consumer body weight (BW), as well as the variability in the 
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occurrence of the contaminant. Thereby, they address uncertainty and variability (Mondal and Polya, 

2008), taking all possible scenarios into account (EFSA, 2012; FAO, 2009).  

Although risk assessment methodologies have mainly focused on individual chemicals and a single 

exposure route (oral, inhalational, or dermal), many of these chemicals act on the same target receptor 

by similar pathways. Therefore, the cocktail effect has been deemed an important factor in assessing 

the interaction between chemicals (WHO, 2017). This effect can take the form of an independent action, 

a dose addition (whereby one compound in the mixture is replaced by another) or an interaction (either 

synergistic or antagonistic compared to the predicted values based on dose addition) (Borchers et al., 

2010). A conservative risk assessment approach consists of the sum of the hazard quotients (HQs), 

assuming that the effect of exposure to the individual chemical contaminants is additive and there are 

no synergistic or antagonistic effects (Prosser and Sibley, 2015). 

In previous studies, we found that vegetables cultivated in peri-urban areas are exposed to a higher 

concentration of chemical contaminants than those from rural sites, but the occurrence of these 

contaminants in lettuce vegetables was similar (Margenat et al., 2018). The present study aims to expand 

on those results and assess the occurrence of these contaminants (16 TEs and 33 OMCs) in several 

vegetables (lettuce, tomato, cauliflower, and broad beans), as well as to assess the potential risk to 

human health associated with the consumption of vegetables grown on peri-urban farms. This work was 

carried out on two farm plots located in the peri-urban area of Barcelona (NE Spain) and a rural plot 

located in a pristine area. The hypothesis was that the higher contamination exposure in peri-urban 

agriculture could result in a greater occurrence of contaminants in eatable vegetables and, consequently, 

in a greater human health risk.  

4.2  Material and methods  

4.2.1 Sampling site description 

The study was carried out in the Llobregat River delta and its low valley (NE Spain) (Fig.2.1). Only 

farm plots P1, P3 and P4 were sampled. More details are provided in section 2.2.1 

4.2.2 Sampling regime 

Four types of vegetables (lettuce, tomato, cauliflower and broad beans) were sampled, as they are some 

of the most consumed vegetables in the metropolitan area of Barcelona city. Vegetables were collected 

when they reached its commercial size and only the edible part was used for analysis.  

Lettuce (Lactuca sativa L. cv. Batavia) was planted in March 2016 and harvested in May 2016. More 

information of lettuce sampling is given in section 3.2.2. Tomatoes seedlings (Lycopersicon 

esculentum) were cultivated in summer 2016 and picked them up in September 2016. Cauliflower 
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(Brassica oleracea L. cv Skywalker) and broad beans were planted in winter and harvested in March 

2017. All vegetables were planted in all studied sites, except broad beans which were not planted in P1. 

Each farm plot was divided in 5 sections and from 5 to 15 specimens of vegetables or fruits were 

collected per section. A quarter of every lettuce and cauliflower were mixed and comminuted together 

with the aid of liquid nitrogen and a porcelain mortar, while tomatoes and broad beans were entirely 

used. Finally, they were stored at -20ºC until they were analyzed.  

4.2.3 Analytical procedures 

Chemicals and reagents used for the analytical methodologies are described in the supporting 

information section 4.5.1. 

Trace element (TEs) extraction  

A 1 g of vegetable tissue, previously dried, was extracted using HNO3/HCl4 digestion at 95ºC for 3h 

(EPA, 1994). The samples were then transferred to a 100-mL volumetric flask and centrifuged. A 10 

mL aliquot was then diluted with 40 mL Milli-Q water prior to analysis in ICP-MS and ICP-OES. 

Further information is provided in section 4.5.2. of the SI. 

OMCs extraction 

Briefly, 2 g of fresh sample (cauliflowers, tomato and broad beans), previously spiked with 12.5 ng of 

a surrogate mix (section 4.5.1. SI), were transferred to a glass centrifuge tube containing 4 g Na2SO4 

and 1 g of NaCl. Then, 10 mL of ACN were added to the tubes, and they were sonicated 15 min and 

centrifuged at 3000 rpm. The supernatant was collected and transferred to another tube, and 75 mg of 

C18, 75 mg of PSA, and 1350 mg of Na2SO4 were added. The tube was sonicated for 15 min and 

centrifuged as above. 

Finally, the supernatant was evaporated under a gentle stream of nitrogen to approximately 1 mL, and 

50 mL of water were added. The samples were percolated through SPE cartridges (100 mg/6mL), 

preconditioned with 2mL methanol and 2mL of MilliQ water, and eluted with ethyl acetate. The final 

extracts were evaporated to ca. 100 µL and spiked with 37 ng of TPhA. A 50 µL aliquot was directly 

analyzed by GC-MS/MS, and another 50 µL aliquot was derivatized by adding 10 µL of TMSH in the 

chromatograph injector port. 

Extraction of carbamazepine and 10,11-epoxycarbamazepine from vegetable samples was carried out 

by sonication followed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) 

(Tadić et al., n.d.). For this purpose, 0.5 g of fresh-weight vegetable was spiked with 50 ng of 

carbamazepine-13C6 and left to equilibrate for 30 min. The samples were then sonicated with 10 mL of 

MeOH for 15 min and centrifuged 15 min at 3000 rpm. The extraction was performed twice, and the 
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extracts were combined and reduced to ca. 1 mL with nitrogen gas and reconstituted with 10 mL of 

LiChrosolv water. The samples were subsequently percolated through SPE cartridges (STRATA X, 100 

mg/6 mL), previously conditioned with 1 mL of MeOH and water, respectively. The cartridges were 

washed with water/methanol (95:5, v/v) and eluted with 2 mL of a mixture of MeOH/ethyl acetate (1:1, 

v/v). The final extracts were reduced almost to dryness, resuspended in 1 mL of water, and filtered (0.22 

µm) prior to LC-MS/MS analysis.  

LODs and LOQs were calculated for each analyte as three and ten times the signal from the baseline 

noise (S/N ratio) of 3 blank samples, respectively. Further details on the GC-MS/MS and LC-MS/MS 

and analytical quality parameters (LOD, LOQ, and recoveries) are provided elsewhere (section 4.5.2 

and tables S4.1-4.3).  

It is important to notice that the extraction method used for the determination of OMCs in lettuce, as 

well as the analytical quality parameters are likewise reported in section 3.2.3. 

4.2.4 Human health risk assessment 

TEs- Hazard Quotient (HQ) 

The potential risk to human health resulting from consumption of TEs in vegetables was conducted 

through the hazard quotient (HQ) approach, which was calculated as follows: 

 
HQ=

EDI

RfD
 (4.1) 

 

where RfD (reference dose) is the maximum tolerable daily intake (µg/kg bw/day) of a specific metal 

(EPA, 2015; WHO, n.d.) that does not result in any harmful health effect, and EDI is the estimated daily 

intake (µg/kg bw/day). The EDI was calculated as follows: 

 
EDI=

DI×CM

BW
 (4.2) 

 

where DI denotes the daily intake of edible parts of vegetables in g per day (the DI for each of the 

vegetables and population classes is given in Table S.4.4), CM is the 95th percentile value for the 

concentration of each TE in the vegetable tissue (µg/g fresh weight (fw)), and BW is the body weight 

(kg) of the target individual. The DI of fresh vegetables in Spain used in the calculations was taken 

from the EFSA’s Comprehensive Food Consumption Database. For these data, all varieties of lettuce 

were considered, as well as tomatoes and tomato by-products, cauliflower, and all types of beans. An 

EDI value for a specific TE in excess of the corresponding RfD (i.e., HQ>1) implies a potential risk to 

consumers. RfD values are obtained from chronic oral exposure studies (IRIS, n.d.). Finally, the total 
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hazard quotient (THQ) of each sampling site was calculated as the sum of all the HQs for all the 

chemicals to which an individual might be exposed. The values for selected metals are shown in Table 

4.3. The RfD value for Cr was calculated considering the Cr3+ form, as it is the main chromium species 

present in lettuce (Asfaw et al., 2017). 

OMCs - Threshold of toxicological concern (TTC) 

The human health risk associated with the intake of the selected OMCs through the consumption of the 

vegetable crops was assessed with the threshold of toxicological concern (TTC) approach using Toxtree 

software (Toxtree V2.6.13), which is based on the decision trees of Cramer and Kroes (Cramer et al., 

1976; Kroes et al., 2000). This method is suitable for evaluating chemical compounds found at low 

concentrations in food products without toxicity data (Kroes et al., 2000). As a result, the OMCs were 

classified into three categories (I, II, III), corresponding to increasing toxicity or their potential 

genotoxicity and carcinogenicity. Class I contains substances with simple chemical structures with 

efficient modes of metabolism, suggesting a low order of oral toxicity. Class II consists of intermediate 

compounds and substances. Class III includes those that allow for no strong initial presumption of safety 

or may even suggest significant toxicity. 

The selected TTC values were 30, 9, and 1.5 μg/kg bw/day for Classes I, II, and III, respectively (Munro 

et al., 1996). For the genotoxic substances, a TTC value of 0.0025 mg/kg bw/day was selected (Kroes 

et al., 2004). TTC values were calculated based on analysis of the chronic toxicity data of chemicals in 

three structural classes identified according to the Cramer decision tree (Cramer et al., 1976). The intake 

of OMCs above TTC values could pose a potential risk of exposure and requires a specific toxicity 

analysis of the targeted OMCs. In this study, the average body weights of a Catalan male adult (20-65 

years) and child (4-9 years) were used, i.e. 70 and 24 kg, respectively (Generalitat de Catalunya, 2015). 

The daily consumption (DC, kg/day) by an adult or child to reach the TTC was calculated as follows: 

 
𝐷𝐶 =

𝑇𝑇𝐶 × 𝐵𝑊

𝐶𝑂𝑀𝐶
 (4.3) 

where COMC is the 95th percentile value for the concentration of each OMCs in the vegetable tissue 

(µg/kg fw). 

4.2.5 Data analysis 

The experimental results were statistically evaluated using the SPSS v. 22 package (Chicago, IL, US). 

All data sets were checked for normal distribution using the Kolmogorov–Smirnov test to ensure that 

parametric statistics were applicable. The overall comparison of the occurrence of chemical 

contaminants between farm plots (rural vs peri-urban) was performed with a paired-sample t-test 
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(dependent samples), whereas the comparison of the concentration of each chemical contaminant 

between plots was analyzed by independent samples t-test. Statistical significance was defined as p ≤ 

0.05. Principal component analysis (PCA) was performed on the concentration of TEs and OMCs in 

vegetables by using a correlation matrix. 

4.3 Results and discussion 

4.3.1 Occurrence of trace elements (TEs) 

Table 4.1 shows the occurrence of TEs in vegetable crops from different sampling sites. Different 

vegetable species and cultivars differ in their ability to uptake, accumulate, and tolerate heavy metals. 

The concentration of TEs in vegetables ranged from non-detectable to 17 mg/kg fw. Zn, B, and Mn 

were the most abundant, each of them with a concentration higher than 1 mg/kg fw. No statistical 

differences were generally observed between the rural and peri-urban sites (paired t-test taking into 

account all compound differences between sites, p-value>0.05). Nevertheless, the concentrations of As, 

Cd, Pb, Mo, and Hg were greater in vegetables harvested in the peri-urban area (p-value <0.05; broad 

beans were not included due to the lack of data for the rural site), except for Ba, Co, Mn and Sb which 

showed higher abundance in vegetables from rural agriculture. These findings are consistent with a 

previous study conducted in the same area for lettuce, in which Cd and Pb showed greater 

concentrations in the peri-urban site than in the rural one (Margenat et al., 2018). They were also similar 

to those of other studies carried out in urban gardens (0.014 mg/kg fw Cd in fruit and 0.028 mg/kg fw 

Cd in leafy vegetables) (McBride et al., 2014). 

The total concentration of TEs per vegetable was as follows (calculated as the average of the total 

concentration of TEs in the 3 plots): 26 mg/kg fw (broad beans), 19 mg/kg fw (tomato fruits), 9.0 mg/kg 

fw (lettuce), and 8.9 mg/kg fw (cauliflower). Zn, Cu, B, and Mn, were the most abundant TEs in broad 

beans (14 mg/kg fw for Zn, 4.0 mg/kg fw for Cu, 2.9 mg/kg fw for B, and 3.0 mg/kg fw for Mn, on 

average) and tomato fruits (8.0 mg/kg fw for Zn, 3.1 mg/kg fw for Cu, 4.1 mg/kg fw for B, and 2.5 

mg/kg fw for Mn, on average), whereas Cu and B were lower than 0.7 and 2.0 mg/kg fw respectively 

in lettuce and cauliflower. Mn concentration was similar in all of the studied vegetables. These results 

are in keeping with those of other studies conducted in the Basque Country (Spain) (Trebolazabala et 

al., 2017), which showed that Zn and Cu were detected in tomato fruits in a similar range of 

concentrations (12.43-26.7 mg/kg fw for Zn and 3.563-16 mg/kg fw for Cu). Similarly, in a study 

carried out in Turkey (Bagdatlioglu et al., 2010), Cu was detected at a higher concentration in tomato 

fruits than in lettuce. Furthermore, in the same study broad beans showed maximum levels for both Cu 

and Zn. Another study conducted in Bangladesh observed that the concentration of Cu was higher in 

tomato fruits than in the rest of vegetables studied (brinjal, bean, carrot, green chilli, onion, and potato) 

(Shaheen et al., 2016). 
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Finally, it should be noted that Li, Cd, Sb, and As were only detected in lettuce, due to their higher 

accumulation in the edible parts of this crop compared to root and fruit vegetables (Singh, 2012). The 

values of Cd and Pb were compliant with the maximum levels for these TEs in foodstuffs set out in 

Directive 1881/2006/EC of 19 December 2006 (0.2 mg/kg and 0.05 mg/kg fw for Cd in lettuce and the 

other vegetables, respectively, and 0.3 mg/kg and 0.10 mg/kg fw for Pb in lettuce and cauliflower and 

in tomatoes and broad beans, respectively). 
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Table 4.1 Average and 95th percentile concentration values of selected TEs in vegetables (mg/kg fw). Average and standard deviation of TEs in vegetables grown in rural 
and peri-urban agriculture. 

* broad beans were not included for the statistical analysis, when values were <LOD, LOD/2 value has been considered ** p-value<0.005. 

 

 Lettuce Tomato Cauliflower Broad beans 
Rural* Peri-urban* 

 Plot 1 Plot 3 Plot 4 Plot 1 Plot 3 Plot 4 Plot 1 Plot 3 Plot 4 Plot 3 Plot 4 

As 3.38·10-4 
(6.28·10-4) 

5.94·10-4 
(9.17·10-4) 

8.41·10-4 
(1.14·10-3) 

<10-4 <10-4 <10-4 <5·10-5 <5·10-5 <5·10-5 <10-4 <10-4 1.38·10-

4±2.08·10-4 
2.73·10-

4±3.68·10-4** 
B 1.77 (2.11) 2.00 (2.38) 1.91 (2.33) 3.98 (4.14) 3.77 (4.85) 4.60 (5.18) 2.35 (2.74) 1.69 (1.84) 1.99 (2.13) 3.12 (3.99) 2.62 (2.94) 2.70±1.00 2.66±1.21 

Ba 0.83 (1.09) 0.50 (0.63) 0.60 (0.70) 0.19 (0.21) 0.16 (0.20) 0.21 (0.33) 0.21 (0.23) 0.19 (0.23) 0.21 (0.23) 0.28 (0.30) 0.17 (0.19) 0.41±0.33 0.31±0. 
19** 

Cd 0.01 (0.01) 0.02 (0.03) 0.02 (0.02) <0.008 <0.008 <0.008 <0.004 <0.004 <0.004 <0.008 <0.008 0.004±0.002 0.009±0.009** 

Co 0.02 (0.03) 0.01 (0.01) 0.01 (0.02) <0.008 <0.008 <0.008 <0.004 <0.004 <0.004 <0.008 <0.008 0.009±0.010 0.005±0.003** 

Cr 0.20 (0.32) 0.15 (0.24) 0.18 (0.46) 0.18 (0.19) 0.14 (0.16) 0.17 (0.18) 0.15 (0.20) 0.13 (0.14) 0.12 (0.13) 0.27 (0.28) 0.28 (0.29) 0.17±0.06 0.15±0.08 

Cu 0.49 (0.62) 0.61 (0.69) 0.76 (0.88) 3.28 (4.77) 2.83 (3.54) 2.87 (3.55) 0.61 (0.75) 0.44 (0.48) 0.46 (0.54) 3.89 (4.09) 4.01 (4.21) 1.57±1.57 1.33±1.13 

Hg 3.66·10-4 
(4.43·10-4) 

8.34·10-4 
(1.09·10-3) 

9.76·10-4 
(1.47·10-3) 

3.15·10-4 
(4.36·10-4) 

5.33·10-4 
(5.82·10-4) 

2.80·10-4 
(3.31·10-4) 

3.55·10-4 

(6.12·10-4) 
1.74·10-4 

(2.02E-04) 
1.54·10-4 

(2.44E-04) 
1.67·10-4 

(1.86·10-4) 
2.10·10-4  

(3.50·10-4) 
3.50·10-

4±1.36·10-4 
4.92·10-

4±3.63·10-4** 
Li 0.04 (0.06) 0.03 (0.04) 0.04 (0.05) <0.008 <0.008 <0.008 <0.004 <0.004 <0.004 <0.008 <0.008 0.013±0.018 0.014±0.016 

Mn 3.59 (4.73) 3.33 (4.05) 1.89 (2.38) 3.00 (3.61) 2.12 (2.40) 2.38 (2.99) 1.56 (1.87) 2.13 (2.30) 1.64 (1.74) 3.31 (3.61) 2.67 (2.81) 2.76±1.05 2.25±0.64** 

Mo 0.03 (0.03) 0.03 (0.04) 0.03 (0.05) <0.008 0.07 (0.12) 0.12 (0.16) <0.004 <0.004 <0.004 1.18 (1.46) 1.04 (1.17) 0.01±0.01 0.04±0.05** 

Ni 0.09 (0.15) 0.06 (0.09) 0.11 (0.34) <0.008 0.07 (0.12) 0.12 (0.19) <0.004 <0.004 <0.004 0.38 (0.44) 0.29 (0.32) 0.03±0.05 0.06±0.09 

Pb 0.05 (0.07) 0.14 (0.18) 0.16 (0.20) <0.008 <0.008 0.15 (0.19) <0.004 <0.004 <0.004 <0.008 <0.008 0.02±0.03 0.08±0.08** 

Rb 0.37 (0.47) 0.40 (0.51) 0.50 (0.59) 0.95 (1.33) 1.17 (1.27) 0.60 (0.70) 0.32 (0.39) 0.29 (0.33) 0.29 (0.31) 0.40 (0.44) 0.24 (0.29) 0.57±0.37 0.54±0.31 

Sb 0.02 (0.03) 0.01 (0.01) 0.01 (0.01) <0.008 <0.008 <0.008 <0.004 <0.004 <0.004 <0.008 <0.008 0.009±0.010 0.005±0.003** 

Zn 1.23 (1.51) 2.29 (2.85) 2.50 (3.01) 7.45 (9.61) 6.98 (7.36) 9.13 (11.3) 3.79 (4.17) 3.56 (3.82) 4.60 (4.85) 14.03 (14.70) 14.09 
(16.60) 

4.16±2.59 4.85±2.6 
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4.3.2 Occurrence of OMCs 

Only 10 of the 33 OMCs assessed in the vegetables were detected in at least one site. Overall, 

carbamazepine was the most frequently detected OMC (75%) (Table 4.2). This is consistent with the 

demonstrated ubiquity of this compound in surface water samples, as well as its high plant uptake in 

greenhouse and field-grown experiments. Due to its neutral molecular form in a wide range of pH values 

and its log Kow (2.45), meaning it is rapidly uptaken by plants and accumulated at higher concentrations 

(Franklin et al., 2016; Goldstein et al., 2014; Riemenschneider et al., 2016). The concentration of OMCs 

in vegetables ranged from non-detectable to 256 µg/kg fw (dimethomorph). Dimethomorph (110-256 

µg/kg fw for tomato fruits in the peri-urban site P3), methyl paraben (106-193 µg/kg fw for lettuce in 

P1), bisphenol F (32-92 µg/kg for tomato fruits in P4), and TCEP (97-124 µg/kg fw for tomato fruits in 

P4) were among the OMCs detected at the highest concentrations. This is consistent with the fact that 

direct application of fungicides, WWTP effluents (methylparaben), and chemicals released by plastic 

pipelines (bisphenol F) have been demonstrated to be the main sources of pollution in lettuce (Margenat 

et al., 2018).  Similarly, dimethomorph has already been detected in tomato fruits due to its direct 

application in agriculture (Walorczyk, 2013). Although the paired t-test did not reveal statistical 

differences between the concentrations of OMCs in vegetables from the rural and peri-urban areas (p-

value>0.05), individual analyses showed that the concentrations of dimethomorph, TCEP, and MPB 

were different between the two areas (p-value<0.05). The higher concentrations of dimethomorph and 

TCEP in the peri-urban area can be explained due to the application of fungicide and the wet/dry 

deposition of the fire-retardant compound on the vegetable surface, respectively. The occurrence of fire-

retardant compounds in the atmosphere in areas close to cities has already been demonstrated (Ren et 

al., 2016), mostly in the particle phase (gas phase <5%), and it has been found that rainfall can lead to a 

scavenging effect, promoting the wet deposition of these compounds.  

The total concentration of OMCs per vegetable was as follows (calculated as the average of the total 

concentration of OMCs in the 3 plots): tomato fruits (163 µg/kg fw), lettuce (104 µg/kg fw), broad beans 

(19 µg/kg fw), and cauliflower (5 µg/kg fw). The highest average concentrations were found in tomato 

fruits for TCEP (64 µg/kg fw) and bisphenol F (33 µg/kg fw). Finally, it is important to note that the 

concentration of pesticides (dimethomorph, carbendazim, and indoxacarb) in vegetables complied with 

the maximum residue levels of pesticides in or on food and feed of plant and animal origin under Council 

Directive 91/414/EC (EC, 2006) (Table S4.5). 
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Table 4.2 . Average and 95th percentile concentration values of selected OMCs in vegetables (µg/kg fw). Average 

and standard deviation of TEs in vegetables grown in rural and peri-urban agriculture. Minimum, maximum and 

median concentrations of TEs (ng g-1 fw) in vegetable samples 

 Lettuce Tomato Cauliflower Broad beans 

 Plot 1 Plot 3 Plot 4 Plot 1 Plot 3 Plot 4 Plot 1 Plot 3 Plot 4 Plot 3 Plot 4 

Dimethomorph <0.29 
18.7 

(20.4) 
<0.29 

12.9 
(17.7) 

172 
(247) 

0.58 
(0.98) 

<0.03 <0.03 <0.03 
2.04 

(2.91) 
<0.03 

Surfynol 104 <4.07 
7.57 

(8.04) 
<4.07 <4.1 <4.1 <4.1 <4.1 <4.1 <4.1 <4.1 <4.1 

2-
mercaptobenzothiazole 

18.3 
(37.2) 

<0.66 <0.66 <4.80 <4.80 <4.80 <4.80 <4.80 <4.80 <4.80 <4.80 

Bisphenol F 
1.56 

(1.88) 
61.6 (101) 22.83(30.35) 

55.6 
(55.7) 

50.5 
(62.2) 

65.2 
(88.9) 

<0.51 <0.51 <0.51 <0.51 <0.51 

Carbamazepine 
0.20 

(0.23) 
0.23 

(0.31) 
0.12 (0.17) 

0.16 
(0.19) 

0.12 
(0.14) 

0.13 
(0.21) 

<0.05 <0.05 <0.05 
0.15 

(0.22) 
0.18 

(0.30) 

Carbendazim <0.22 1.00(2.46) <0.22 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 

Methylparaben 
150 

(192) 
28.5 

(31.7) 
34.1 (46.2) 

23.3 
(30.2) 

12.5 
(17.2) 

15.4 
(22.5) 

<0.81 <0.81 <0.81 <0.81 
28.7 

(34.9) 
Carbamazepine 

epoxide 
0.21 

(0.23) 
0.06 

(0.07) 
0.16 (0.24) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 

TCEP <0.17 <0.17 <0.17 <0.82 
64.3 

(78.8) 
<0.82 <0.82 <0.82 <0.82 <0.82 <0.82 

Indoxacarb <0.29 <0.29 <0.29 <0.49 <0.49 <0.49 
0.80 

(0.89) 
3.63 

(6.11) 
<0.49 <0.49 

2.15 
(2.92) 

* FOD: frequency of detection 
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4.3.3 Sources and Distribution of chemical pollutants (PCA) 

Principal component analysis (PCA) was performed on the whole data set to gain further insight into 

the sources and distribution behavior of the various parameters assessed in the irrigation waters (Table 

S4.6). The PCA reduced the 23 measured variables to 6 principal components with eigenvalues > 1, 

which explained 75% of the total variability observed. Components explaining small data variance (i.e., 

< 10%) were not retained and were assumed to be mostly due to background and noise contributions. 

Therefore, only the first three principal components, accounting for 55% of the total variability, were 

studied. The first principal component (PC1), which accounted for 23% of the variance, had high 

positive loading values (> 0.6) for B, Cu, and Mo, but negative loadings for Co, Ba, and MPB. This 

negative correlation between parameters indicates that while the positive variables were not 

accumulated in plants, the negative ones were. This fit perfectly with the lettuce plants. The second 

component explained 18% of the variance and had positive loadings (>0.6) for Cr, Mn, Co, Ni, Mo, 

carbamazepine, and MPB. This component correlated with the chemicals that were highly abundant in 

lettuce and broad beans. The third component accounted for 13% of the variance and had positive 

loadings (>0.6) for B, Rb, TCEP, and BPF. It correlated with the chemicals found to be most abundant 

in tomato fruits.  

Fig. 4.1 shows the score plots for PC1 vs PC2 (PC1 vs PC3 is provided in Fig. S4.1). Both plots grouped 

samples in 4 groups depending on the vegetable (lettuce, tomato, cauliflower, or broad bean). Hence, 

the abundance of chemicals in the various samples collected depended on the vegetable rather than the 

location. 

 

Figure 4.1 Principal Component Analysis (PCA) results. Scores plot PC1 vs PC2 (ID1= Plot 1 lettuce, ID2= Plot 3 

lettuce, ID3= Plot 4 lettuce, ID4= Plot 1 tomato, ID5= Plot 3 tomato, ID6= Plot 4 tomato, ID7= Plot 1 cauliflower, ID8= 

Plot 3 cauliflower, ID9= Plot 4 cauliflower, ID11=Plot 3 broad beans and ID12= Plot 4 broad beans). 
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4.3.4 Potential human health risk associated with the consumption of vegetables 

Risk assessment for TEs exposure 

The estimated daily intake (EDI) of TEs was compound and vegetable dependent. On average, Zn was 

the compound with the highest intake (9.0  10-3 and 1.0  10-2 mg/day for adults and children, 

respectively), whereas tomatoes had the highest concentration of TEs on average per farm plot (4.3 - 7.2 

mg/kg fw). Oral reference doses (RfDs) were used to assess the human health risk (Table 3), except for 

Co, Hg, Li, and Rb, for which the oral RfD was not available. Therefore, the risk assessment was 

evaluated for 12 TEs.  HQs ranged from 4.8  10-8 to 0.2 for As in broad beans and Pb in tomato fruits 

(P3), respectively. Of these 12 TEs, on average, Pb posed the greatest health risk to adults and children, 

followed by Zn, As, Mn, B, Mo, Cd, Cu, Ni, Ba, As, and Cr. These findings are consistent with those of 

other studies carried out in China and Ethiopia (Chang et al., 2014; Dziubanek et al., 2017; Woldetsadik 

et al., 2017), where food crops irrigated with either river water or treated wastewater in rural and urban 

sites did not pose risks to human health.  

Pb was also assessed with three Benchmark Dose Lower Confidence Limits (BMDLs) to evaluate the 

effects of lead exposure in humans: BMDL10 for chronic  kidney  disease development at 0.63 μg/kg 

bw/day, BMDL01 for systolic blood pressure effects at 1.5 μg/kg bw/day, and BMDL01 for 

developmental neurotoxicity (which would apply to fetuses and infants) at 0.5 μg/kg bw/day, as 

determined by the WHO (1986) and EFSA (2010). The EDI values found for Pb in the present study 

due to the ingestion of these vegetables (Table S4.7) were in the range of 5.2· 10-5 to 5.2 ·10-1 μg/kg 

bw/day. These values were lower than all three of the aforementioned BMDLs, except for tomato fruits 

in Plot 3. This is in agreement with the high lead content found in the soil from this plot (164 mg/Kg 

dw) in a previous study (Margenat et al., 2018).  

The THQs obtained for all age groups were less than 1 for all vegetables and sites studied. Tomato fruits 

showed the highest THQ on average (0.40 and 0.57 on average for adults and children, respectively), 

followed by lettuce (0.23 and 0.30 for adults and children, respectively), cauliflower (0.02 and 0.003 for 

adults and children, respectively), and broad beans (0.0001 and 0.005 for adults and children, 

respectively). The fact that the highest THQ was observed for tomatoes is probably due to the high 

consumption of this fruit in Spain compared to the other studied vegetables (see the Material and 

Methods section). Nevertheless, no statistical differences were observed in the individual and total HQs 

between vegetables grown in the peri-urban area and rural site (paired t-test, p > 0.05). Although for 

some TEs such as Pb in tomatoes and Zn in lettuce the HQs were greater in the peri-urban agriculture, 

statistical analysis, comparing rural and peri-urban vegetables (including all vegetables), resulted in no 

statistical differences between both areas for any of the studied TEs. The total sums of the THQs (for 
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adults) for each farm plot, taking into consideration all TEs and the consumption of all the studied 

vegetables, were as follows: 0.82 (P4), 0.59 (P3), and 0.54 (P1). Farm plots irrigated with unplanned 

reclaimed water (de facto reuse) showed the highest risk (P3-4), although it was still less than 1 for 

adults; hence no risk was assumed (Zeng et al., 2018). These findings are consistent with previous 

studies, which have found that farm plots irrigated with treated wastewater result in a higher risk due to 

the occurrence of TEs than control plots irrigated with groundwater (Khan et al., 2008).  

Although the THQs obtained were lower than 1 in all sites, it should be taken into account that the 

assessment included only the consumption of the analyzed vegetables. The values could be higher if 

other vegetables are considered. Therefore, future studies should evaluate the risk associated with other 

vegetables consumed per person and day in a real-life scenario. 
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Table 4.3 HQ and THQ of TEs in vegetable samples for an adult (70 kg) and a child (24 kg). 

  Lettuce Tomato Cauliflower Broad beans RfD        

    (µg/kg bw/day)    Plot 1 Plot2 Plot 3 Plot 1 Plot2 Plot 3 Plot 1 Plot2 Plot 3 Plot2 Plot 3 

As Adult 2.59·10-3 3.79·10-3 4.69·10-3 4.66·10-4* 4.66·10-4* 4.66·10-4* 5.80·10-5* 5.80·10-5* 5.80·10-5* 4.78·10-8* 4.78·10-8* 
0.3** 

  Child 3.31·10-3 4.83·10-3 5.99·10-3 6.55·10-4* 6.55·10-4* 6.55·10-4* 8.33·10-6* 8.33·10-6* 8.33·10-6* 2.15·10-6* 2.15·10-6* 

B Adult 1.31·10-2 1.47·10-2 1.44·10-2 5.79·10-2 6.77·10-2 7.24·10-2 4.77·10-3 3.20·10-3 3.72·10-3 5.73·10-6 4.22·10-6 
200** 

  Child 1.67·10-2 1.88·10-2 1.84·10-2 8.14·10-2 9.52·10-2 1.02·10-1 6.85·10-4 4.59·10-4 5.34·10-4 2.58·10-4 1.90·10-4 

Ba Adult 6.77·10-3 3.93·10-3 4.34·10-3 2.94·10-3 2.76·10-3 4.68·10-3 4.06·10-4 4.04·10-4 4.08·10-4 4.36·10-7 2.70·10-7 
200** 

  Child 8.65·10-3 5.02·10-3 5.54·10-3 4.10·10-3 3.87·10-3 6.58·10-3 5.83·10-5 5.80·10-5 5.85·10-5 1.96·10-5 1.21·10-5 

Cd Adult 9.74·10-3 3.74·10-2 2.25·10-2 1.12·10-2* 1.12·10-2* 1.12·10-2* 6.96·10-4* 6.96·10-4* 6.96·10-4* 1.15·10-6* 1.15·10-6* 
1** 

  Child 1.24·10-2 4.78·10-2 2.87·10-2 1.57·10-2* 1.57·10-2* 1.57·10-2* 1.00·10-4* 1.00·10-4* 1.00·10-4* 5.16·10-5* 5.16·10-5* 

Cr Adult 2.61·10-4 2.00·10-4 3.81·10-4 3.46·10-4 2.89·10-4 3.38·10-4 4.58·10-5 3.17·10-5 2.92·10-5 5.40·10-8 5.61·10-8 
1500** 

  Child 3.33·10-4 2.55·10-4 4.87·10-4 4.87·10-4 4.07·10-4 4.75·10-4 6.57·10-6 4.55·10-6 4.20·10-6 2.43·10-6 2.52·10-6 

Cu Adult 1.93·10-3 2.13·10-3 2.72·10-3 3.33·10-2 2.47·10-2 2.48·10-2 6.56·10-4 4.22·10-4 4.72·10-4 2.93·10-6 3.02·10-6 
400*** 

  Child 2.46·10-3 2.72·10-3 3.47·10-3 4.68·10-2 3.48·10-2 3.49·10-2 9.41·10-5 6.06·10-5 6.78·10-5 1.32·10-4 1.36·10-4 

Mn Adult 4.18·10-2 3.58·10-2 2.11·10-2 7.21·10-2 4.79·10-2 5.97·10-2 4.65·10-3 5.71·10-3 4.34·10-3 7.40·10-6 5.76·10-6 
140** 

  Child 5.34·10-2 4.57·10-2 2.69·10-2 1.01·10-1 6.74·10-2 8.40·10-2 6.68·10-4 8.20·10-4 6.22·10-4 3.33·10-4 2.59·10-4 

Mo Adult 8.13·10-3 9.02·10-3 1.19·10-2 2.24·10-3* 6.77·10-2 9.06·10-2 1.39·10-4* 1.39·10-4* 1.39·10-4* 8.38·10-5 6.69·10-5 
5** 

  Child 1.04·10-2 1.15·10-2 1.52·10-2 3.14·10-3* 9.52·10-2 1.27·10-1 2.00·10-5* 2.00·10-5* 2.00·10-5* 3.77·10-3 3.01·10-3 

Ni Adult 9.10·10-3 5.78·10-3 2.12·10-2 5.59·10-4* 1.71·10-2 2.67·10-2 3.48·10-5* 3.48·10-5* 3.48·10-5* 6.27·10-6 4.66·10-6 
20** 

  Child 1.16·10-2 7.38·10-3 2.70·10-2 7.86·10-4* 2.41·10-2 3.75·10-2 5.00·10-6* 5.00·10-6* 5.00·10-6* 2.82·10-4 2.10·10-4 

Pb Adult 2.64·10-2 6.22·10-2 7.18·10-2 3.19·10-3* 3.19·10-3* 1.49·10-1 1.99·10-4* 1.99·10-4* 1.99·10-4* 3.28·10-5* 3.28·10-7* 
3.5 

  Child 3.37·10-2 7.94·10-2 9.17·10-2 4.49·10-3* 4.49·10-3* 2.10·10-1 2.86·10-5* 2.86·10-5* 2.86·10-5* 1.47·10-5* 1.47·10-5* 

Sb Adult 9.29·10-2 4.49·10-2 4.07·10-2 2.79·10-2* 2.79·10-2* 2.79·10-2* 1.74·10-3* 1.74·10-3* 1.74·10-3* 2.87·10-6* 2.87·10-6* 
0.4** 

  Child 1.19·10-1 5.73·10-2 5.20·10-2 3.93·10-2* 3.93·10-2* 3.93·10-2* 2.50·10-4* 2.50·10-4* 2.50·10-4* 1.29·10-4* 1.29·10-4* 

Zn Adult 6.22·10-3 1.18·10-2 1.24·10-2 8.95·10-1 6.86·10-2 1.05·10-1 4.84·10-3 4.43·10-3 5.63·10-3 1.41·10-5 1.59·10-5 
300** 

  Child 7.95·10-3 1.50·10-2 1.59·10-2 1.26·10-1 9.64·10-2 1.48·10-1 6.95·10-4 6.36·10-4 8.09·10-4 6.32·10-4 7.14·10-4 

THQ Adult 2.19·10-1 2.32·10-1 2.28·10-1 3.02·10-1 3.40·10-1 5.73·10-1 1.82·10-2 1.71·10-2 1.75·10-2 1.25·10-4 1.05·10-4  

  Child 2.80·10-1 2.96·10-1 2.91·10-1 4.24·10-1 4.78·10-1 8.06·10-1 2.77·10-3 2.45·10-3 2.51·10-3 6.01·10-3 4.73·10-3  

*Calculated from the LOD/2 **(EPA, 2015) ***(WHO, n.d.) 
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Risk assessment for OMCs exposure 

The health risk associated with the occurrence of OMCs in the different studied vegetables was assessed 

using the TTC approach. Only compounds identified above the LOQ were considered for the risk 

assessment study (10 of the 33 monitored compounds). The OMCs were classified as Class III 

(dimethomorph, surfynol 104, 2-MBT, BPF, CBZ, carbendazim, TCEP, and indoxacarb), Class I 

(MPB), and genotoxic (10,11-epoxycarbamazepine). Table 4 shows the DC required to reach TTC levels 

for each of the studied OMCs. The DC ranged from 0.38 kg/day (dimetomorph in tomatoes, P3) to 7000 

kg/day (dimethomorph in cauliflowers and broad beans, except for P3) for adults, and from 0.15 kg/day 

to 2400kg/day for children.  Hence, in the worst-case scenario, the daily consumption of tomato fruits 

grown in P3 required for a child or an adult to reach the TCC level is 150 g/day and 380 g/day, 

respectively, which would not be a typical DI for tomato fruits and by-products (94.3 g/day and 196 

g/day for children and adults, respectively, as shown in Table 4-SM). Similarly, the daily consumption 

of lettuce, tomato, and broad beans did not reach the TCC for any of the studied OMCs and therefore 

did not pose a risk to human health. Nevertheless, exposure to other compounds, such as 10,11-

epoxycarbamazepine, should be taken into consideration in lettuce as the TTC can be reached with a 

consumption of 700 g/day or 300 g/day of lettuce for adults and children, respectively. These findings 

are consistent with those of Riemenschneider et al. (2016), who studied 28 OMCs (including 9 CBZ 

metabolites) in 10 vegetable species, including lettuce and tomato fruits irrigated with TWW. In that 

study, the daily consumption of lettuce required to reach the TCC was higher than 9 Kg for all the 

studied OMCs, except 10,11-epoxycarbamazepine, for which it was 40 g for lettuce for adults; in 

contrast, it was higher than 300 kg for tomato fruits.   

Since pesticides were the most important compounds in the risk assessment obtained with the TTC 

approach, and because they are already regulated through maximum residue levels (MRLs), the risk 

(HQ) for consumers was also assessed. This was done using the quotient between the EDI and the ADI, 

where the ADI was obtained from the MRL established by EFSA for pesticides in each vegetable and 

the daily intake (EC, 2005). Table 8-SM shows the HQs for pesticides in the different vegetables. As 

indicated by the TTC approach, dimethomorph posed the highest risk in tomatoes (HQ=0.56), whereas 

the other pesticides showed HQs less than 0.04. The risk for pesticides is considered unacceptable when 

the HQ exceeds 1; thus, the risk was not noticeable. These findings are consistent with other studies 

carried out in pesticides for several vegetables and fruits with HQ values always below 1 (Lemos et al., 

2016; F. Li et al., 2017; Lozowicka, 2015). In general, the risk associated with pesticide application was 

found to be more relevant than that associated with other OMCs that can originate from irrigation or soil 

pollution.  
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Table 4.4 The daily consumption (kg/day) required to reach TTC levels for the selected OMCs in an adult (70 kg) and in a child (24 kg). 

  Lettuce Tomato Cauliflower Broad beans 

  Plot 1 Plot 3 Plot 4 Plot 1 Plot 3 Plot 4 Plot 1 Plot 3 Plot 4 Plot 1 Plot 3 Plot 4 

Dimethomorph Adult 724* 5.2 724* 5.9 0.4 107 7000* 7000* 7000* 7000* 32 7000* 

 Child 248* 1.8 248* 2.0 0.1 37 2400* 2400* 2400* 2400* 12 2400* 

Surfynol 104 Adult 52* 13 52* 51* 51* 51* 51* 51* 51* 51* 51* 51* 

 Child 18* 4.5 18* 18* 18* 18* 18* 18* 18* 18* 18* 18* 

2-mercaptobenzothiazole Adult 2.8 318* 318* 318* 318* 318* 318* 318* 318* 318* 318* 318* 

 Child 1.0 109* 109* 109* 109* 109* 109* 109* 109* 109* 109* 109* 

Bisphenol F Adult 56 1.0 3.5 1.9 1.7 1.2 412* 412* 412* 412* 412* 412* 

 Child 19 0.4 1.2 0.6 0.6 0.4 141* 141* 141* 141* 141* 141* 

Carbamazepine Adult 466 338 619 553 763 500 4200* 4200* 4200* 64 426 313 

 Child 160 116 212 189 262 171 1440* 1440* 1440* 24 164 120 

Carbendazim Adult 955* 43 955* 875* 875* 875* 875* 875* 875* 875* 875* 875* 

 Child 327* 15 327* 300* 300* 300* 300* 300* 300* 300* 300* 300* 

Methylparaben Adult 11 66 45 70 122 93 5185* 5185* 5185* 73 63 54 

 Child 3.7 23 16 24 42 32 1778* 1778* 1778* 28 24 21 

Carbamazepine epoxide Adult 0.8 2.4 0.7 3.5* 3.5* 3.5* 3.5* 3.5* 3.5* 3.5* 3.5* 3.5* 

 Child 0.3 0.8 0.3 1.2* 1.2* 1.2* 1.2* 1.2* 1.2* 1.2* 1.2* 1.2* 

TCEP Adult 1235* 1235* 1235* 256* 1.3 256* 256* 256* 256* 256* 256* 256* 

 Child 424* 424* 424* 88* 0.5 88* 88* 88* 88* 88* 88* 88* 

Indoxacarb Adult 724* 724* 724* 429* 429* 429* 105 15 429* 429* 58 32 

 Child 248* 248* 248* 147* 147* 147* 20 3 147* 147* 11 6 

*Calculated from the LOD/2
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4.4 Conclusions 

Although the occurrence of some chemical contaminants, such as Pb or dimethomorph, was greater in 

vegetables grown in the peri-urban area than the rural one, the abundance of chemical contaminants 

depended on the vegetables evaluated (cauliflowers, tomatoes and lettuce). The following key 

conclusions can be drawn: 

- The concentrations of TEs ranged from non-detectable to 4.9 mg/kg fw in lettuce, from 2.3  

10-4 to 12 mg/kg fw in tomato fruits, from 1.1  10-4 to 4.9 mg/kg fw in cauliflower, and from 

1.5  10-4 to 17 mg/kg fw in broad beans. In contrast, the concentration of OMCs ranged from 

non-detectable to 193 µg/kg fw in lettuce, from non-detectable to 256 µg/kg fw in tomato fruits, 

from non-detectable to 156 µg/kg fw in cauliflower, and from non-detectable to 206 µg/kg fw 

in broad beans. 

- The concentrations of TEs and pesticides in vegetables were compliant with EC Directives 

1881/2006/EC and 396/2005/EC, respectively. 

- PCA showed that the abundance of chemicals in the different plot sites depended on the 

vegetable rather than the farm location. 

- THQs for TEs were below 1 in all studied vegetables and ranged from 0.0001 to 0.40 on average 

in adults and from 0.0005 to 0.57 in children.  

- The daily consumption of food crops required to reach the TTC values for OMCs was 150 g/day 

for children and 380 g/day for an adult. As the actual daily consumption of these vegetables is 

below these values, no risk due to the intake of these food crops is foreseen, although more 

toxicological data is needed. 

The present study showed that the occurrence of target chemical contaminants in peri-urban agriculture 

did not affect the human health risk. However, further research is required, especially on the potential 

human health risk of the combined effects of OMCs and TEs. 
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4.5 Supporting Information 

4.5.1 Materials and reagents  

Most of the reagents, CECs and surrogates are detailed in sections 2.5.1 and 3.6.1. 

Sodium chloride was purchased from Sigma-Aldrich (Bornem, Belgium), sodium phosphate from 

Merck (Darmstadt, Germany), C18 from Millipore (Bedford, MA, USA) and PSA was bought from 

Agilent Technologies (Santa Clara, CA, USA). 

4.5.2 Analytical determination of chemical pollutants in soil and crop samples 

ICP-MS and ICP-OES determination  

Total TEs concentrations were determined by an inductively coupled plasma optical emission 

spectrometer (Thermo Scientific, iCAP 6500 ICP-OES) and an inductively coupled plasma mass 

spectrometer (Thermo Scientific, XSeries 2 ICP-MS). Major elements were determined by ICP-OES 

(Ba and Mn), while the rest of TEs were determined by ICP-MS.  

The Hg concentration was determined using an advanced mercury analyzer (AMA-254, Altec, Prague, 

Czech Republic). 

Method validation was carried out by NIST 1570a (Gaithersburg, USA), with certified values for As, B, 

Cd, Co, Cu, Mn, Hg, Ni, Zn. For accuracy, excellent extraction efficiencies were noted for these 

elements (92–107%).  

Reagent water was used as a blank matrix, and laboratory reagent blank was treated exactly the same as 

a sample. A limit of detection (LOD) of 0.2 μg/L in the solution analyzed was determined from three 

times the standard deviation obtained from the analysis of ten runs of blank samples on the same day as 

the determinations. 

GC-MS/MS determination  

Description of the GC-MS/MS determination and quantification is provided in section 2.3.3. LODs, 

LOQs, recoveries of the surrogates and recoveries of the targeted compounds are reported in Tables 

S4.1-4.3. 

LC-MS/MS determination  

Details on the LC-MS/MS determination and quantification of CBZ and EPOCBZ is given in section 

3.5.2. LODs, LOQs, recoveries of the surrogates and recoveries of the targeted compounds are detailed 

in Tables S4.1-4.3. 
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Table S4.1 LODs and LOQs of the studied OMCs in vegetables (tomatoes, cauliflowers and broad beans). 

Compound LOD (µg/kg fw) LOQ (µg/kg fw) 

Atrazine 0.26 0.46 

Azoxystrobin 0.19 0.31 

2-tert-Butyl-4-methoxyphenol (BHA) 0.22 0.29 

Chlorpyrifos 21 38 

N.N-Diethyl-meta-toluamide (DEET) 0.45 0.8 

Diazepam 0.05 0.06 

Diazinon 0.26 0.61 

Dymethomorph 0.013 0.015 

Indoxacarb 0.15 0.18 

Simazine 1.47 2.28 

Surfynol 104 11.2 11.5 

Tris(2-Chloroethyl) Phosphate (TCEP) 0.28 0.55 

2-Mercaptobenzothiazole (2-MBT) 4.80 10.8 

98 5-Methyl-2H-benzotriazole (5-TTri) 0.19 0.29 

Bisphenol A (BPA) 2.89 5.36 

Butylparaben (BPB) 0.27 0.71 

Bisphenol F (BPF) 13.8 31.6 

1.3-Benzothiazole (BT) 1.2 1.7 

Benzotriazole (Btri) 2.53 5.72 

Carbamazepine 0.03 0.10 

Carbendazim 0.39 0.45 

Ethyl paraben (EPB) 0.75 0.98 

Lorazepam 3.17 4.92 

Methyl paraben (MPB) 7.44 7.66 

1-Hydroxybenzotriazole (OHBT) 5.72 12.0 

Octylphenol (OP) 0.40 0.72 

Oxazepam 2.0 2.7 

Propyl paraben (PPB) 0.24 0.48 

Primidone 0.38 0.59 

Pymetrozin 4.45 6.71 

Pyraclostrobin 0.31 0.45 

Carbamazepine-10.11-epoxide (EPOCBZ) 0.05 0.16 

Tris(1-chloro-2-propyl) phosphate (TCPP) 38.7 55.6 
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Table S4.2 Recoveries of the surrogates in vegetables 

Surrogate 
R (%) 

 tomato  

 

in tomato 

R (%) 

cauliflower 

R (%) 

broad beans 

Bisphenol A-d16 52±4 54±1 48±6 

Caffeine-13C3 53±8 60±1 52±9 

Carbamazepine-13C6 72±12 64±7 83±14 

Diazepam-d5 52±8 78±2 69±7 

5.6-dimethyl-1H-benzotriazole (XbTri) 62±10 55±5 71±3 

Etylparaben-13C 57±7 58±8 52±7 
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Table S4.3 Recoveries of the studied OMCs in vegetables 

Compounds 
R (%)  

tomato  

 

in tomato 

R (%) 

  cauliflower 

R (%)     

broad beans 

1-hydroxybenzotriazole (OHBT) 43±2 66±5 53±3 

2-mercaptobenzothiazole (2MBT) 89±5 81±8 85±1 

2-tert-Butyl-4-methoxyphenol (BHA) 91±16 7.7±10 89±9 

4-tert-octylphenol (OP) 84±2 55±9 55±2 

5-methyl-2H-benzotriazole (5TTri) 54±3 42±10 47±2 

Atrazine 71±5 54±12 78±4 

Azoxystrobin 90±8 47±5 98±1 

Benzothiazole 54±14 38±13 40±3 

Benzotriazole 43±6 58±6 38±3 

Bisphenol A 51±8 59±10 66±9 

Bisphenol F 44±6 57±11 55±7 

Butylparaben 51±2 58±2 76±2 

Carbamazepine 92±26 152±24 52±10 

Carbamazepine-10.11-epoxide (EPOCBZ) 134±31 95±14 93±4 

Carbendazim 110±10 88±5 84±3 

Chlorpyrifos n.d. n.d. 41±10 

DEET 83±7 86±5 73±5 

Diazepam 53±8 81±5 66±1 

Diazinon 96±9 79±8 87±8 

Dimethomorph 94±1 87±5 89±7 

Etylparaben 73±4 84±10 75±4 

Indoxacarb 69±5 65±3 70±7 

Lorazepam n.d.  35±5 61±1 

Methylparaben 92±11 81±7 86±4 

Oxazepam 70±11 60±4 78±4 

Primidone 49±3 51±3 52±6 

Propylparaben 54±3 52±4 

12.967 5.967 48 51 

13.714 6.714 54  

13.536 6.536 52  
 

58±1 
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Pymetrozin n.d. n.d. n.d. 

Pyraclostrobin n.d. n.d. 47±7 

Simazine 66±5 54±12 77±2 

Surfynol 104 86±6 97±9 82±3 

Tris(1-chloro-2-propyl) phosphate (TCPP) 98±9 103±2 99±2 

Tris(2-chloroethyl) phosphate (TCEP) 73±1 64±10 77±5 
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Table S4.4 Daily consumption in Spain for each of the studied vegetables and population class 

Vegetable Population 
class 

Dietary survey Nº 
subjects 

Nº 
consumers 

Value Consumption 
(g/day) 

Lettuce Adult AESAN-FIAB 981 662 P95 86.7 

 Other 
children 

Food patterns of 
Spanish school     

children and 
adolescent 

156 45 P95 38.0 

Tomato Adult AESAN 410 370 P95 196 

 Other 
children 

Food patterns of 
Spanish 

schoolchildren and 
adolescent 

156 92 P95 94.3 

Cauliflower Adult AESAN-FIAB 981 88 P95 24.4 

 Other 
children 

Nutrition survey2005 399 7 Mean 1.20 

Broad beans Adult AESAN-FIAB 981 567 P95 0.02 

 Other 
children 

Nutrition survey2005 399 256 P95 0.31 
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Table S4.5 Maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending 
council directive 91/414/EEC 

 

Vegetable 

Carbendazim and benomyl 

(sum of benomyl and 

carbendazim expressed as 

carbendazim) 

Indoxacarb 

(sum of indoxacarb 

and its R 

diastereomer) 

Dimethomorph 

(sum of isomers) 

Tomato 0.3 0.5 1 

Cauliflower 0.1 0.3 0.6 

Lettuce 0.1 3 15 

Beans (without 

pods) 

0.1 0.02 0.04 

 

  



149 
 

Table S4.6 Loadings for PCA 

 Component 

 1 2 3 4 5 6 

B 0.6 0.0 0.6 -0.2 -0.1 -0.2 

Cr 0.3 0.7 -0.1 0.1 -0.2 0.2 

Mn -0.1 0.8 0.2 0.0 0.3 -0.2 

Co -0.7 0.6 0.2 -0.2 0.0 0.1 

Ni 0.4 0.7 -0.1 0.3 -0.2 0.2 

Cu 0.8 0.4 0.3 0.0 0.1 0.0 

Zn 0.9 0.4 0.0 0.1 0.0 0.0 

Rb 0.3 -0.1 0.8 -0.3 0.3 0.2 

Mo 0.6 0.6 -0.3 0.2 0.0 0.1 

Ba -0.8 0.5 0.1 0.0 -0.1 0.1 

Pb -0.4 0.1 0.5 0.4 -0.5 0.0 

Hg -0.4 -0.2 0.3 0.5 0.0 0.5 

Indoxacarb 0.2 0.0 -0.4 0.0 0.0 0.0 

Dimetomorph 0.2 -0.2 0.5 -0.2 0.4 0.4 

TCEP 0.3 -0.1 0.6 0.0 -0.5 -0.4 

Surfynol -0.2 -0.1 0.0 0.6 0.4 -0.3 

MBT -0.5 0.4 0.0 -0.4 0.1 -0.2 

BPF 0.0 -0.1 0.6 0.2 -0.3 0.0 

Carbamazepine 0.0 0.6 0.4 0.2 0.2 0.0 

EpoxyCBZ -0.5 0.3 0.1 -0.2 -0.1 0.2 

Carbendazim -0.2 0.0 0.1 0.6 0.4 -0.3 

MPB -0.6 0.6 0.1 -0.3 0.1 -0.1 
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Table S4.7 EDI (mg/kg bw/day) of TEs in vegetables for an adult (70 kg) and a child (24 kg). *Calculated from the 
LOD/2 

  Lettuce Tomato Cauliflower Broad beans 

   Plot 

1 

Plot 

3 

Plot 

4 

Plot 1 Plot3 Plot 4 Plot 1 Plot 3 Plot 4 Plot 3 Plot 4 

As Adult 7.77·

10-7 

1.14·

10-6 

1.41·

10-6 

1.40·1

0-7* 

1.40·1

0-7* 

1.40·1

0-7* 

1.74·1

0-8* 

1.74·1

0-8* 

1.74·1

0-8* 

1.43·1

0-11* 

1.43·1

0-11* 

  Child 9.94·

10-7 

1.45·

10-6 

1.80·

10-6 

1.96·1

0-7* 

1.96·1

0-7* 

1.96·1

0-7* 

2.50·1

0-9* 

2.50·1

0-9* 

2.50·1

0-9* 

6.46·1

0-10* 

6.46·1

0-10* 

B Adult 2.62·

10-3 

2.94·

10-3 

2.88·

10-3 

1.16·1

0-2 

1.35·1

0-2 

1.45·1

0-2 

9.55·1

0-4 

6.40·1

0-4 

7.43·1

0-4 

1.15·1

0-6 

8.45·1

0-7 

  Child 3.35·

10-3 

3.76·

10-3 

3.68·

10-3 

1.63·1

0-2 

1.90·1

0-2 

2.03·1

0-2 

1.37·1

0-4 

9.18·1

0-5 

1.07·1

0-4 

5.16·1

0-5 

3.80·1

0-5 

Ba Adult 1.35·

10-3 

7.86·

10-4 

8.67·

10-4 

5.83·1

0-4 

5.51·1

0-4 

9.36·1

0-4 

8.12·1

0-5 

8.07·1

0-5 

8.15·1

0-5 

8.72·1

0-8 

5.40·1

0-8 

  Child 1.73·

10-3 

1.01·

10-3 

1.11·

10-3 

8.19·1

0-4 

7.75·1

0-4 

1.32·1

0-3 

1.17·1

0-5 

1.16·1

0-5 

1.17·1

0-5 

3.93·1

0-6 

2.43·1

0-6 

Cd Adult 9.74·

10-6 

3.74·

10-5 

2.25·

10-5 

1.12·1

0-5* 

1.12·1

0-5* 

1.12·1

0-5* 

6.96·1

0-7* 

6.96·1

0-7* 

6.96·1

0-7* 

1.15·1

0-9* 

1.15·1

0-9* 

  Child 1.25·

10-5 

4.78·

10-5 

2.88·

10-5 

1.57·1

0-5* 

1.57·1

0-5* 

1.57·1

0-5* 

1.00·1

0-7* 

1.00·1

0-7* 

1.00·1

0-7* 

5.17·1

0-8* 

5.17·1

0-8* 

Cr Adult 3.91·

10-4 

3.00·

10-4 

5.72·

10-4 

5.19·1

0-4 

4.34·1

0-4 

5.07·1

0-4 

6.86·1

0-5 

4.75·1

0-5 

4.39·1

0-5 

8.10·1

0-8 

8.41·1

0-8 

  Child 5.00·

10-4 

3.83·

10-4 

7.31·

10-4 

7.30·1

0-4 

6.10·1

0-4 

7.13·1

0-4 

9.86·1

0-6 

6.82·1

0-6 

6.30·1

0-6 

3.65·1

0-6 

3.79·1

0-6 

Cu Adult 7.70·

10-4 

8.51·

10-4 

1.09·

10-3 

1.33·1

0-2 

9.90·1

0-3 

9.92·1

0-3 

2.62·1

0-4 

1.69·1

0-4 

1.89·1

0-4 

1.17·1

0-6 

1.21·1

0-6 

  Child 9.84·

10-4 

1.09·

10-3 

1.39·

10-3 

1.87·1

0-2 

1.39·1

0-2 

1.39·1

0-2 

3.77·1

0-5 

2.42·1

0-5 

2.71·1

0-5 

5.28·1

0-5 

5.44·1

0-5 

Mn Adult 5.86·

10-3 

5.01·

10-3 

2.95·

10-3 

1.01·1

0-2 

6.71·1

0-3 

8.36·1

0-3 

6.51·1

0-4 

8.00·1

0-4 

6.07·1

0-4 

1.04·1

0-6 

8.06·1

0-7 

  Child 7.49·

10-3 

6.41·

10-3 

3.77·

10-3 

1.42·1

0-2 

9.43·1

0-3 

1.18·1

0-2 

9.35·1

0-5 

1.15·1

0-4 

8.71·1

0-5 

4.66·1

0-5 

3.63·1

0-5 

Mo Adult 4.07·

10-5 

4.51·

10-5 

5.95·

10-5 

1.12·1

0-5* 

3.39·1

0-4 

4.53·1

0-4 

6.96·1

0-7* 

6.96·1

0-7* 

6.96·1

0-7* 

4.19·1

0-7 

3.34·1

0-7 

  Child 5.20·

10-5 

5.76·

10-5 

7.61·

10-5 

1.57·1

0-5* 

4.76·1

0-4 

6.37·1

0-4 

1.00·1

0-7* 

1.00·1

0-7* 

1.00·1

0-7* 

1.89·1

0-5 

1.51·1

0-5 

Ni Adult 1.82·

10-4 

1.16·

10-4 

4.23·

10-4 

1.12·1

0-5* 

3.42·1

0-4 

5.33·1

0-4 

6.96·1

0-7* 

6.96·1

0-7* 

6.96·1

0-7* 

1.25·1

0-7 

9.32·1

0-8 

  Child 2.33·

10-4 

1.48·

10-4 

5.41·

10-4 

1.57·1

0-5* 

4.82·1

0-4 

7.50·1

0-4 

1.00·1

0-7* 

1.00·1

0-7* 

1.00·1

0-7* 

5.64·1

0-6 

4.20·1

0-6 

Pb Adult 9.23·

10-5 

2.18·

10-4 

2.51·

10-4 

1.12·1

0-5* 

1.12·1

0-5* 

5.22·1

0-4 

6.96·1

0-7* 

6.96·1

0-7* 

6.96·1

0-7* 

1.15·1

0-9* 

1.15·1

0-9* 

  Child 1.18·

10-4 

2.78·

10-4 

3.21·

10-4 

1.57·1

0-5* 

1.57·1

0-5* 

7.34·1

0-4 

1.00·1

0-7* 

1.00·1

0-7* 

1.00·1

0-7* 

5.17·1

0-8* 

5.17·1

0-8* 

Sb Adult 3.72·

10-5 

1.79·

10-5 

1.63·

10-5 

1.12·1

0-5* 

1.12·1

0-5* 

1.12·1

0-5* 

6.96·1

0-7* 

6.96·1

0-7* 

6.96·1

0-7* 

1.15·1

0-9* 

1.15·1

0-9* 

  Child 4.75·

10-5 

2.29·

10-5 

2.08·

10-5 

1.57·1

0-5* 

1.57·1

0-5* 

1.57·1

0-5* 

1.00·1

0-7* 

1.00·1

0-7* 

1.00·1

0-7* 

5.17·1

0-8* 

5.17·1

0-8* 

Zn Adult 1.87·

10-3 

3.53·

10-3 

3.73·

10-3 

2.68·1

0-2 

2.06·1

0-2 

3.15·1

0-2 

1.45·1

0-3 

1.33·1

0-3 

1.69·1

0-3 

4.22·1

0-6 

4.76·1

0-6 

  Child 2.39·

10-3 

4.52·

10-3 

4.77·

10-3 

3.77·1

0-2 

2.89·1

0-2 

4.43·1

0-2 

2.09·1

0-4 

1.91·1

0-4 

2.43·1

0-4 

1.90·1

0-4 

2.14·1

0-4 

*Calculated from the LOD/2 
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Table S4.8 HQ of the studied OMCs in the vegetable samples 

 Lettuce Tomato Cauliflower Broad beans 

 Plot 1 Plot 3 Plot 4 Plot 1 Plot 3 Plot 4 Plot 1 Plot 3 Plot 4 Plot 3 Plot 4 

Dimethomorph 9.7·10-

6* 
1.4·10-

3 
9.7·10-

6* 
0.04 0.56 2.2·10-

3 
7.1·10-

6* 
7.1·10-

6* 
7.1·10-

6* 
1.7·10-

4 
8.7·10-

7* 
Carbendazim 1.1·10-

3* 
0.02 1.1·10-

3* 
9.0·10-

4* 
9.0·10-

4* 
9.0·10-

4* 
3.4·10-

4* 
3.4·10-

4* 
3.4·10-

4* 
2.8·10-

6* 
2.8·10-

6* 
Indoxacarb 4.8·10-

5* 
4.8·10-

5* 
4.8·10-

5* 
1.1·10-

3 
1.1·10-

3 
1.1·10-

3 
8.4·10-

4 
0.01 2.3·10-

4* 
1.9·10-

4 
3.4·10-

4 

*Calculated by using the LOD/2 value 

 

 

 

Figure S4.1 Principal Component Analysis (PCA) results. Scores plot PC1 vs PC3 (ID1= Plot 1 lettuce, ID2= Plot 3 
lettuce, ID3= Plot 4 lettuce, ID4= Plot 1 tomato, ID5= Plot 3 tomato, ID6= Plot 4 tomato, ID7= Plot 1 cauliflower, ID8= 
Plot 3 cauliflower, ID9= Plot 4 cauliflower, ID11=Plot 3 broad beans and ID12= Plot 4 broad beans).  
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 Chapter V: General Discussion 

Peri-urban agriculture performs environmental, social and economic functions and services to the nearby 

urban areas (FAO, 2011). Nevertheless, industrialization and irrigation with TWW have led to an 

increase of the peri-urban agricultural exposure to chemical contaminants. For example, heavy metal 

accumulation in soil caused by industrial run-off, airborne pollution by traffic or industrial emissions, 

or the use of reclaimed water with a high content of CECs (Nabulo et al., 2010; X. Wu et al., 2014). 

Concerns regarding human exposure to chemical contaminants have arisen since they have been 

detected in the edible parts of food crops at detectable levels (Pan et al., 2014), but the risk that 

accumulated residues may pose to humans via crop consumption is still not well documented. 

Furthermore, most of the current studies available in the literature are conducted in hydroponic cultures, 

or greenhouse settings, but real scale conditions have barely been studied for OMCs (Riemenschneider 

et al., 2016). Currently, there are only few field studies done at real scale, none of them in Spain, which 

demonstrate the uptake of micropollutants, needless to say the co-occurrence of organic and inorganic 

contaminants, in vegetables irrigated with reclaimed water (Christou et al., 2017b). Therefore, this 

Thesis aimed to evaluate the presence of OMCs and TEs in irrigation water and later in the soil-plant 

system in different farming conditions and evaluates their possible plant and human health risk effects. 

This study has been conducted in four farm plots located in the peri-urban area of Barcelona (NE Spain) 

and a pristine farm plot far away from the peri-urban area for comparison. A summary of the principal 

distinctive of each farm plot is provided in Chapter II. .Many studies reported the presence of OMCs in 

TWW due to an incomplete removal of these chemicals in WWTPs as well as  their posterior plant 

uptake (Calderón-Preciado et al., 2011; de Jongh et al., 2012; Gonzalez-Rey et al., 2015; Masiá et al., 

2015). In this regard, Chapter II conducted an assessment of the occurrence of the selected chemical 

contaminants in irrigation waters (TEs and OMCs) from peri-urban area of Barcelona. As it was 

expected, Plot 3, located in the peri-urban area, showed the highest concentration levels for TEs and 

OMCs (Tables 2.2 and 2.3) due to their irrigation water impacted by WWTP effluents and the proximity 

to a traffic network. On the contrary, Plot 1, outside the peri-urban area, showed lower concentration 

levels of TEs and FOD of OMCs.  Additionally, PCA analysis provided an insight into irrigation water 

nutrients and contaminants and classified these waters in four main groups: ground water (P1), surface 

water (P2 and P4), surface water impacted by WTTP effluents (P3) and groundwater impacted by 

industrial run-off (P5). However, the irrigation waters analyzed did not affect either seed germination, 

root elongation and crop productivity, indicating the suitability of using TWW for agricultural irrigation. 

Gvozdenac et al., (2016) assessed the phytotoxicity of the water from the Stara Tisa meander (Serbia), 

which contained low TEs and pesticides levels (<2 µg L-1) in 6 vegetable seedlings and observed that 

while some species (sunflower, cucumber, maize and white mustard) are sensitive to abiotic stress, 
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others (cabbage and radish) are tolerant showing little alterations. D’Abrosca et al. (2008) also observed 

different sensitivity among plant species in phytotoxicity assays probably due to different plant 

physiology. Therefore, in view of these studies, other seed species should be tested to assess the 

phytotoxicity of irrigation waters on seed germination. 

Once chemical contaminants reach agricultural soil, their fate and behaviour depend on several factors. 

OMCs can undertake chemical changes or degrade into products with different toxicity than the parent 

compound. Whereas TEs cannot break down, their characteristics can be altered and thereby, their 

ability to be taken up by plants. Chapter III provides co-occurrence of TEs and OMCs in soil and lettuce 

irrigated with the irrigation waters reported in Chapter II. Two-thirds of the farm plots (P1, P3 and P4) 

sampled contained sandy loam soils with a smaller proportion of clay particles. The soils in the sampling 

area had the following TOC content: 0.77% for P1, 2.86% for P2, 2.65% for P3, 3.53% for P4 and 1% 

for P5. Examining table S3.8 about TEs’ BCF, it would seem that generally food crops grown in soils 

with lower TOC content (P1 and P5) bioaccumulate TEs more than soils with a lower TOC content (P2-

P4). This is consistent with the fact TEs present in the soil phase are able to undergo precipitation and 

decomposition, ionic exchange and adsorption and desorption; depending on the pH and the presence 

of clay minerals, humic substances, iron oxides and hydroxides, and manganese found in the soil 

(Petruzzelli et al., 2010). The importance of clay minerals and soil texture in the distribution of TEs 

between soil solid and liquid phases, affects the TEs bioavailability of plants. In sandy soils, TEs are 

more soluble and available for plant uptake than in clay soils. However, the organic fraction has a great 

influence on metal mobility and bioavailability due to the tendency of metals to bind with humic 

compounds in both the solid and solution phases in soil. Similarly, the mobility of OMCs in the soil 

compartment will depend on compounds and soil characteristics and basically consists on adsorption or 

desorption processes on solid soil phase. Generally, compounds with high KOW values and low solubility 

will be mostly retained in the soil and consequently, less available for plant uptake. Indeed, compounds 

with log KOW > 4.0 hardly mobilize. On the contrary, organic contaminants with log KOW<1 will not be 

retained in soil, so they could be mobile and finally found in aquifers.  In general, BCF for OMCs were 

lower in summer than in winter cultivation campaigns, this might be due to the rapid growth of summer 

crops (1 month) compared to winter crops (4-5 months) which could have cause growth dilution. PCA 

analysis determined the most relevant factors determining the presence of OMCs and TEs in lettuce 

crops, which were soil pollution, fungicide application, and irrigation water quality. 

Finally, in Chapter IV, the occurrence of chemical contaminants in different vegetables crops and the 

human health risk by their consumption were examined. As it has been reported in the literature, 

vegetable species differ widely in their ability to take up and accumulate TEs, even among cultivars and 

varieties within the same species (Zhou et al., 2016). For example, Säumel et al. (2012) reported that Zn 
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concentrations in green beans, tomato, potato, kohlrabi, and carrots were significantly lower than the 

concentrations in leafy vegetables. Moreover, Singh (2012) reported the pattern of some TEs (Zn, Cu, 

Pb and Ni) distribution in different vegetable types and observed a major concentration of these elements 

in roots (Cu, Cd and Ni) or leaves (Pb) being the minor translocation into fruit crops. However, other 

processes such as element interactions may alter the uptake patterns. The presence of heavy metals in 

TWW irrigation waters could become worse by the adverse effects of element interactions, that is 

continuously occurring among nutrients, heavy metals, soil physicochemical and biological properties 

within the TWW, soil and plants (Kalavrouziotis, 2017). The mechanism of synergistic interactions is 

still not well documented. On the contrary, the antagonist effects of the elemental interactions consist 

on the competition between essential nutrients and heavy metals occurring in the plants and soil. During 

the transfer of ions from the soil solution into the cytoplasm were there is a binding at transport sites in 

the plasma membrane, is where competition between ions with the same electrical charge may occur 

(Marschner, 1995) . 

OMCs uptake and translocation also varied between types of food crops. For instance, uptake of 

contaminants from soil is likely to be higher in root vegetables (e.g., carrots) than tree fruits (e.g., apples) 

because root crops are in close contact to soil, whereas tree fruits are not. By contrast, uptake of 

contaminants directly from air is expected to be higher for tree fruits than root crops (Trapp and Legind, 

2011). Many other plant parameters may influence in the assimilation of contaminants including the 

root system, transpiration rate, shape and size of leaves, and lipid content. Collins et al. (2007) published 

a summary of the principal crop nutrients in function of the principals crop classes (Table 5.1): 

Table 5.1 Details of water, lipid, carbohydrate, and fiber content of crops relevant to risk assessment 

Crop class % water % lipids % carbohydrates % fiber 

Leafy crops 94.1 0.16 3.5 1.5 

Bulbs, stems, tubers 83.6 0.16 13.9 1.8 

Roots crops 83.9 0.27 13.7 3.9 

Fruit crops 88.4 0.36 7.9 2.0 

It can be noticed from the table above that leafy crops contain the major value of water content and the 

minor value of carbohydrate percentage, whereas root and fruit crops are the ones with highest values 

regarding lipid composition. There are few researches that point out that the lipid content is of 

significance in plant uptake, while others required also the fiber and carbohydrate content (Zhan et al., 

2013). However, other plant constituents such as waxes, lignin and suberin may also absorb OMCs (Q. 

Li et al., 2017). 
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In this section, PCA analysis indicated that the occurrence of chemical contaminants in crops depended 

on the commodity rather than the location (peri-urban vs rural). 

Furthermore, it should be remarked that chemical contaminants assimilated by plants could be 

metabolized. In some cases, these metabolites present a similar bioactivity than the parent compound. 

Malchi et al. (2014) observed that CBZ was rapidly metabolized in carrots and sweet potatoes, being 

EPOCBZ the metabolite that a demonstrated a greater toxic effect than the parent compound (Tomson 

et al., 1990).  

Metabolism likely controls the final accumulation of PPCPs in plants but is in general poorly understood 

for CECs (Fu et al., 2017). Chuang et al. (2018) published that after 6 days of the experiment, the 50% 

of caffeine was dissipated in lettuce grown in a hydroponic culture, 20% due to demethylation and 8 

metabolites (phase I) were found. Likewise, Hurtado et al. (2018) reported that the conjugated fraction 

(phase II metabolites) of several CECs accounted from 27 to 83% of the parent compound and generally 

increased with the hydrophobicity and concentration. Therefore, current research should focus on the 

identification of the metabolites generated after the uptake of chemical contaminants in order to perform 

a proper health risk assessment. 

Hypothesis validation 

At the beginning of this study, a pair of hypotheses were raised. Firstly, it was raised the question on 

whether crops watered with irrigation waters of different physicochemical properties would provide 

vegetable with differential quality properties (p<0.05) and secondly, whether peri-urban agriculture may 

result in vegetables of low food quality and subsequent human health risk associated compared to rural 

farming. 

Nevertheless, both of two hypotheses have been rejected along the experiments comprised in this Thesis 

as no statistically differences (p>0.05) in crop constituents (e.g. chlorophyll, nitrate, carbohydrate and 

lipid content) were obtained in lettuce samples irrigated with different water qualities (e.g. ground and 

surface waters, some impacted by industrial run-off and WWTP effluents) or cultivated under different 

farming conditions (peri-urban and rural horticulture). 

The fact that some researchers reported significant differences in crop constituents at closely 

environmental concentrations of contaminants (10 and 0.5 µg L-1) (Christou et al., 2019; Hurtado et al., 

2017) strengths the conclusion that neither irrigation water quality nor farming practices covered in this 

study, were sufficient to significantly impact on crop composition. 
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5.1 Future research needs 

Metabolomic response 

From the present study it has been revealed that chemical contaminants, from TWW irrigation water 

and other urban anthropogenic sources, can be incorporated and translocated into edible parts of the 

plants in detectable concentrations; but the crop components (chlorophyll, nitrate, carbohydrate and lipid 

content) tested were not significantly different (p>0.05) comparing peri-urban and rural sites and 

seasonality. However, it is widely reported in the literature that plant metabolism is involved in 

physiological regulation and defense response to biotic and abiotic environmental stress factors, such as 

drought, salt, low oxygen due to waterlogging or flooding of the soil, temperature, light, and oxidative 

stress (Jorge et al., 2016).  

Recent progress in metabolomics techniques has allowed the analysis of plant metabolic changes. Plant 

metabolomics aims to study the plant system at the molecular level to provide a non-biased 

characterization of the total metabolite pool (metabolome) of a plant’s tissue in response to its 

environment (Jorge et al., 2016). It comprises the analysis of a wide range of chemical compounds from 

ionic inorganic compounds to biochemically derived hydrophilic carbohydrates, organic and amino 

acids, and a range of hydrophobic lipid-related compounds; an estimated 200,000 different metabolites 

in the plant kingdom (Fiehn, 2001), with a wide range of physicochemical properties and thereby, 

powerful analytical tools are requiring for the separation, characterization and quantification of this vast 

compound diversity present in plant matrix. Consequently, no single analytical technology can cover 

the whole metabolome due to metabolite’s chemical diversity and broad dynamic range in cellular 

abundance. Thus, different extraction techniques and combinations of analytical methods are often 

employed to achieve adequate metabolite coverage. Analytical methodologies based on gas 

chromatography-mass spectrometry (GC-MS), liquid chromatography (LC)-MS, capillary 

electrophoresis (CE)-MS and nuclear magnetic resonance spectroscopy (NMR) are commonly used in 

plant metabolomics research. Nevertheless, NMR has poor sensitivity and poor dynamic range 

compared to MS, so it is only able to properly evaluate the most abundant metabolites and it is used as 

a fingerprinting technique, in other words, a forerunner to metabolic profiling (Jorge et al., 2016).  

Few plant metabolomic research has been done for metals (e.g. Pb and Cd) and some pesticide 

application (e.g. Cu(OH)2 nanoparticles) (Wang et al., 2015; Zhao et al., 2018, 2016). For example, 

Wang et al. (2015) reported greater accumulation of glucose, galactose and fructose under Pb treatment 

and a decrease of maltose, turanose, α-D-glucopyranoside and β-D-glucopyranose in radish roots, 

suggesting that photoassimilates were stored as hexoses in radish after Pb exposure. However, 

metabolomic studies on plant response to CECs exposure have been barely performed up to date. 
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Recently, Hurtado et al. (2017) demonstrated that plant exposure to relevant environmental 

concentrations of CECs (from 0.05 to 50 µg L-1) could affect plant morphology and plant physiology. 

Changes related to metabolic variations in plants (carbohydrate metabolism, the citric acid cycle, 

pentose phosphate pathway and glutathione pathway) were observed in leaf high, stem width and 

chlorophyll A and B content of lettuce at the low concentration of 0.05µg L-1. 

Aside from evaluating the effects of chemical contaminants in the metabolome, the use of metabolomics 

for food identification purposes (e.g. geographical origin, farming practices, vegetable varieties, etc.) 

has gained interest (Yang et al., 2018). Llano et al. (2017) explored the effect of organic and 

conventional conditions on specific chemicals (carotenoids, ascorbic acid and pesticides) using targeted 

metabolomics and examined overall phytochemicals by untargeted metabolomics approach. Even 

though metabolome level of the golden berry fruits tested was influenced by farming practices, no 

significant differences were found regarding carotenoids and ascorbic acid content. Despite the fact that 

some studies reported changes in metabolome due to organic and conventional farming (Novotná et al., 

2012; Vallverdú-Queralt and Lamuela-Raventós, 2016) the limited number of available reports makes 

impossible to achieve an accurate conclusion. 

In this regard, obtaining conclusions from a metabolomic study of vegetables grown in the different 

farm plots studied in this PhD is difficult, since in addition to the effect of the presence of the studied 

chemical contaminants, other constituents from water, soil or air may play an important role. Therefore, 

it would be better to study factors separately. This implies to study irrigation water, soil, air pollution 

individually under controlled conditions, preferably in a greenhouse facility. 

Risk assessment approaches and other compounds of concern  

The co-occurrence of contaminants in edible parts of food crops have been scarcely considered in field 

studies. Nevertheless, it is convenient to take an overview of the chemical contaminants present in 

foodstuff for a reliable risk assessment. In this context, the study of antibiotics, antibiotic resistant 

bacteria and antibiotic resistant genes is of great interest due to their spread by the application of manure 

and biosolids amendment, and irrigation with TWW (Christou et al., 2017a). Metabolites of chemical 

contaminants in plant tissues ought to be monitored, they may surpass the concentration of the parent 

compounds and show more acute toxicity in some cases (Christou et al., 2017b; Prosser and Sibley, 

2015). Similarly, the nonexistence of risk assessment approaches regarding co-occurrence of organic 

and inorganic contaminants and the lack of information about the toxicity of CECs and metabolites 

remain a current limitation. As toxicological profile data is not available for CECs, the TTC approach 

appears a suitable option to estimate their potential risk associated by comparing the chemical structures 



158 
 

of these contaminants with other ones from which toxicity data are accessible. Hence, there is the need 

of obtaining the toxicological data of these compounds. 

In addition, the major drawbacks of field experiments are their less controllable and reproducible 

conditions, that could originate variances among individual plant samples (Riemenschneider et al., 

2016). Although in this study, no significant differential (p>0.05) effects on plant composition were 

found among different irrigation systems and water qualities; it remains unclear the possible release of 

plasticizers and vulcanization agents from the irrigation tubing used in drip and sprinkle irrigation. 

Therefore, it should be recommended to deepen the effects of the irrigation system used in the release 

of contaminants into agricultural fields. In the same way, more research studies are needed to assess 

other agricultural practices such as mulching. The presence of microplastics in the soil could change 

soil properties and microplastics may be transported by soil organisms or act as vectors for other soil 

pollutants.  Li et al. (2010) reported the influence of plastic mulching on the translocation of some 

elements, particularly of Fe in broad beans). Besides, Du et al. (2009) investigated the uptake of di-(2-

ethylhexyl)phthalate from plastic mulch film by 10 vegetable plants; where wax gourd, cucumber and 

pumpkin crops appeared to be a potential source of this contaminant in human diet. Consequently, 

further studies are needed to appropriately estimate the contribution of agricultural practices to food 

contamination and quality. 

  



159 
 

  



160 
 

 Chapter VI: Conclusions 

The general main conclusions extracted from the research conducted in this Thesis are summarized as 

follows: 

 Crops irrigated with surface waters in peri-urban areas are exposed to a higher FOD and 

concentration of TEs and OMCs than those irrigated with groundwater from the rural areas. 

 B and Ba were the TEs with the highest concentration in all irrigation waters, while Zn (34-68 μg 

L−1 on average) and Mn (23-63 μg L−1 on average) were the most abundant in peri-urban irrigation 

waters. Surfynol 104 (113-2860 ng L-1 on average) was the most abundant OMCs in all irrigation 

waters. 

 The high concentration levels of TEs, OMCs and nutrients found in surface irrigation waters, 

especially in those impacted by WWTP effluents (P3), did not affect seed germination, root 

elongation (Lactuca sativa L. cv. Batavia), or crop productivity (Lactuca sativa L. cv. Batavia and 

Lycopersicon esculentum Mill. cv. Bodar). 

 Seasonal cultivation of lettuce (winter vs. summer) did not result in a significant difference in the 

total TE concentration. However, fungicides such as dimethomorph and carbendazim were only 

detected in the winter season. 

 BCF for TEs ranged from 0.0002 to 1.79 but only Cd and Sb exhibit BCF above 1 in several farm 

plots. BCF for OMCs varied between 1 and 375 highlighting the predominance of some OMCs that 

may be introduced directly from pesticide application or the irrigation system (use of plastic 

pipelines). 

 The higher abundance of chemical compounds (TEs and OMCs) in peri-urban agriculture did not 

impact chlorophyll, carbohydrate and lipid content in lettuce leaves. Nevertheless, chlorophyll 

content varied because of seasonality and nitrate content depended on the irrigation water quality. 

 Concentration levels of TEs and OMCs varied between different types of vegetables, having tomato 

fruits the highest concentration for OMCs and together with broad beans for TEs.  

 The risk associated with the consumption of the selected food crops (lettuce, tomato, cauliflower 

and broad beans) grow in the area of study was estimated to be low and similar between peri-urban 

and rural sites. THQ for TEs were below 1 and a minimum consumption of 150 g/day for children 

and 380 g/day for adults is required to surpass the TTC due to the presence of pesticides. 

Nevertheless, the combined effect of TEs and OMCs could not be assessed. 

 Statistical analysis revealed that the variance of the concentration of chemical contaminants from 

different vegetable crops depended on the crop rather than the farm location (peri-urban and rural 

agriculture). In addition, the variance in a single vegetable type was principally explained by the 

irrigation water, which aided to classify its origin.
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