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Abstract

Nanophotonics is one of today’s basic sciences and technologies: an in-depth under-
standing of the interaction between light and matter on the nano-scale, besides its
intrinsic associated scientific interest, enables the precise control of light, that is rele-
vant for technology in diverse applications such as telecommunications, energy and
medicine.

Plasmonics –the study of the collective oscillations of conduction electrons in materials
with a metallic behaviour– has become one of its most essential sub-branches in recent
years: the strong confinement of the electromagnetic energy density and its high
sensitivity to the environment render plasmons as a key tool for the control of light
at the nanoscale.

In this thesis, we explore several new paths that open up to Nanophotonics in gen-
eral, and Plasmonics in particular, with the appearance on stage of materials such as
graphene, which host optical excitations of increasingly smaller wavelengths, there-
fore requiring increasingly more compact structures. This new scenario demands new
theoretical models that capture the structure of matter on an atomic scale.

After introducing the necessary fundamental concepts in Chapter 1, the thesis pro-
ceeds by exploring processes that can still be treated in terms of classical models for
the optical response, such as geometrical plasmon focusing. Specifically, we apply
this idea in Chapter 2 to graphene nanostructures, proposing a lens design capa-
ble of focusing plasmons and enhancing the third-order nonlinear response of this
material.

We then move to more microscopic models of light-matter interaction: the description
of the optical response of a nanoparticle from the individual response of its electrons
allows us to explore in Chapter 3 the plasmon decay into hot-electron distributions,
as well as the subsequent relaxation of these electrons back to their equilibrium state,
thus presenting a complete picture of ultrafast plasmon and hot electron dynamics
in nanoparticles.

From here on, we explore collective oscillations in molecular-sized structures, which
demand the use of microscopic models incorporating many-body electronic response
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by massively demanding the numerical solution of Schrödinger’s equations including
the interaction with incident light. In particular, in Chapter 4 we have applied time-
dependent density-functional theory (TD-DFT) to model the optical response of DNA
that, besides being ubiquitous in biological organisms, we claim it to have some
potential uses in nanotechnology.

Finally, we study light-matter interactions associated with ionic displacements of struc-
tures, quantised as phonons. In Chapter 5, we study the coupling between these ex-
citations and plasmons supported in 2D materials: the distortions introduced into
the electronic structure by ionic vibrations allow us to explain recent experiments in
which the presence of vibrational modes modifies the plasmonic dispersion. We also
studied, in Chapter 6, the possibility of directly exciting and analysing these vibra-
tional modes, not by optical methods, but rather with electron beams, in clear analogy
with plasmonic modes in nanostructures.

To summarise, this thesis explores the use of different theoretical models in Plas-
monics, covering a wide gap between entirely classical macroscopic descriptions and
quantum-mechanical atomic modelling, which we hope will contribute to a deeper
understanding of optical phenomena at the nanoscale.
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Resumen

La nanofotónica es una de las ciencias y tecnologías básicas en la actualidad: una pro-
funda comprensión de la interacción entre la luz y la materia en la nanoescala, además
de su innegable interés científico asociado, permite el control preciso de la luz, lo que
resulta relevante en aplicaciones tecnológicas diversas como las telecomunicaciones,
la energía y la medicina.

La plasmónica –el estudio de las oscilaciones colectivas de los electrones de conduc-
ción en materiales– se ha convertido durante los últimos años en una de sus subramas
más importantes: el gran confinamiento de la densidad de energía electromagnética
y su alta sensibilidad al entorno hacen de los plasmones una herramienta clave para
el control de la luz en la nanoescala.

En esta tesis exploramos varios nuevos caminos que se abren a la nanofotónica en
general, y a la plasmónica en particular, con la aparición en escena de materiales como
el grafeno, que soportan excitaciones ópticas de longitudes de onda de menor tamaño,
requiriendo por tanto estructuras cada vez más compactas. Este nuevo escenario
reclama nuevos modelos teóricos que capturen la estructura de la materia a escala
atómica.

Una vez introducidos los conceptos fundamentales necesarios en el Capítulo 1, la tesis
procede a explorar los procesos que siguen teniendo cabida en los modelos clásicos
de respuesta óptica, como la focalización geométrica de plasmones. Concretamente,
en el Capítulo 2 aplicamos esta idea a nanoestructuras de grafeno, planteando un
diseño de lente capaz de enfocar plasmones y realzar la respuesta no lineal de tercer
orden de este material.

A continuación, nos adentramos en modelos más microscópicos de interacción luz-
materia: la descripción de la respuesta óptica de una nanopartícula a partir de la
respuesta individual de sus electrones nos permite explorar en el Capítulo 3 el de-
caimiento de los plasmones en distribuciones de electrones fuera del equilibrio, así
como su posterior relajación, presentando así una imagen completa de la dinámica ul-
trarrápida de los plasmones y de los electrones dentro de estas nanopartículas.
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De aquí en adelante, exploramos las oscilaciones colectivas en estructuras de dimen-
siones moleculares, las cuales exigen el uso de modelos microscópicos que incorporan
la respuesta electrónica de múltiples cuerpos mediante la solución (numéricamente
exigente) de las ecuaciones de Schrödinger, incluyendo la interacción con la luz inci-
dente. En particular, en el Capítulo 4 aplicamos la teoría del funcional de la densidad
dependiente del tiempo (TD-DFT por sus siglas en inglés) para modelar la respuesta
óptica del ADN: una estructura que, además de ser ubicua en los organismos biológi-
cos, se le atribuyen usos potenciales en nanotecnología.

Finalmente, estudiamos las interacciones luz-materia asociadas con desplazamientos
iónicos de estructuras, cuantizadas en forma de fonones. En el Capítulo 5 se estudia
el acoplamiento entre estas excitaciones y los plasmones soportados por materiales
2D: las distorsiones introducidas en la estructura electrónica por las vibraciones ióni-
cas permiten explicar experimentos recientes en los que el comportamiento de los
plasmones se ve alterado por la presencia de modos vibracionales. También estudi-
amos, en el Capítulo 6, la posibilidad de excitar y analizar directamente estos modos
vibracionales, no empleando métodos ópticos, sino mediante haces de electrones, en
clara analogía con los modos plasmónicos en nanoestructuras.

En resumen, esta tesis explora el uso de diferentes modelos teóricos en plasmónica,
cubriendo el espacio entre las descripciones macroscópicas, totalmente clásicas, y el
modelado atómico mecánico-cuántico, con el fin de contribuir a una comprensión
más profunda de los fenómenos ópticos en la nanoescala.
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Resum

La nanofotònica és una de les ciències i tecnologies fonamentals avui en dia: el
coneixement profund de la interacció entre la llum i la matèria en l’escala nanomètrica,
a més del propi interès científic que té associat, permet el control precís de la llum,
el qual la converteix en una tecnologia rellevant en aplicacions aparentment tan
diferents com les telecomunicacions, l’energia i la medicina.

Una de les seves subbranques més importants en els últims anys és la plasmònica, o
l’estudi de les oscil·lacions col·lectives dels electrons de conducció en materials: el
gran confinament de la densitat d’energia electromagnètica i la seva alta sensitivi-
tat a l’entorn converteixen els plasmons en peces clau pel control de la llum en la
nanoescala.

En aquesta tesi, explorem les noves vies que se li obren a la nanofotònica en general,
i a la plasmònica en particular, amb l’entrada en escena de materials com el grafè,
que suporten excitacions òptiques de longituds d’ona menors, requerint per tant es-
tructures cada vegada més compactes. Aquest nou escenari requereix de nous models
teòrics que capturin l’estructura de la matèria a escala atòmica.

Després d’introduir els conceptes fonamentals necessaris en el Capítol 1, la tesi comença
explorant processos que encara accepten un tractament en termes de models clàssics
de resposta òptica, com per exemple processos de focalització de plasmons. En con-
cret, en el Capítol 2 apliquem aquests estudis a nanoestructures de grafè, i proposem
un disseny de lent capaç de focalitzar plasmons i potenciar la resposta no lineal de
tercer ordre en aquest material.

A continuació, avancem cap a models més microscòpics d’interacció llum-matèria: la
descripció de la resposta òptica d’una nanopartícula a partir de la resposta individual
dels seus electrons ens permet explorar, en el Capítol 3, el decaïment dels plasmons
en distribucions d’electrons fora de l’equilibri, així com la relaxació de tornada al seu
estat d’equilibri, presentant així una imatge completa de la dinàmica ultraràpida dels
plasmons i dels electrons en l’interior d’aquestes nanopartícules.

D’ara en endavant, explorem les oscil·lacions col·lectives en estructures de mida molec-
ular, que exigeixen l’ús de models microscòpics que incorporen la resposta electrònica
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de múltiples electrons mitjançant la solució (numèricament farragosa) de les equa-
cions de Schrödinger, incloent la interacció amb la llum incident . En particular, en
el Capítol 4 apliquem la teoria del funcional de la densitat depenent del temps (TD-
DFT per les seves sigles en anglès) per a modelar la resposta òptica de l’ADN: una
estructura que, a més de ser ubiqua en els organismes biològics, se li atribueixen usos
potencials en nanotecnologia.

Finalment, aquesta tesi també estudia els efectes dels desplaçaments iònics de les
estructures, quantitzats en forma de fonons. En el Capítol 5 s’estudia l’acoblament
entre aquestes excitacions i els plasmons suportats per materials 2D: les distorsions
introduïdes en l’estructura electrònica per les vibracions iòniques permeten explicar
resultats experimentals recents en què el comportament dels plasmons es veu alterat
per la presència de modes vibracionals. També vam estudiar, en el Capítol 6, la pos-
sibilitat d’excitar i analitzar directament aquests modes vibracionals, no mitjançant
mètodes òptics, sinó emprant feixos d’electrons, en clara analogia amb els modes
plasmònics en nanoestructures.

En resum, aquesta tesi explora l’ús de diferents models teòrics en plasmònica, cobrint
l’espai entre les descripcions macroscòpiques, totalment clàssiques, i el modelatge
atòmic mecànic-quàntic, en l’objectiu de contribuir a una comprensió més profunda
dels fenòmens òptics en la nanoescala.
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1
Introduction

In this chapter, we introduce the theoretical foundations of this thesis. After briefly
covering the fundamental principles of Photonics and Nanophotonics, we explore the
connection between macroscopic and microscopic models of light-matter interaction,
linear and nonlinear response, the interaction with electron beams, vibrational modes
of nanostructures, and the properties of emerging materials in Nanophotonics.
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The science and technology associated with light, most commonly known as Photonics,
is nowadays in a position in which we may, not only study light at levels never reached
before, but also control its effects as we could never have imagined not so long ago:
we are now able to focus light in regions well below the diffraction limit, to compress
it over time until we observe the real-time dynamics of electrons in molecules within
femtosecond timescales, to gather its power until it causes nuclear fusion, to transmit
information and with higher fidelity through optical fibers, to individually manipu-
late atoms in quantum computing systems, and a long list of capabilities that make
Photonics one of the most prominent disciplines of modern science.

Among all areas of Photonics, Nanophotonics (the study of the light-matter interaction
at the nanometric scale) is one of its most prolific branches, both from a fundamen-
tal and technological perspectives: at these scales, where the wavelength of light is
comparable to the characteristic length of those structures with which it interacts, the
classical models of Optics give way to a whole world of exciting effects: from useful
optical antennae to such exotic phenomena as the Casimir effect.

Amidst these outcomes, the appearance on stage of plasmons (the collective oscilla-
tions of electrons in metals) has generated substantial expectation for technological
developments. Their ability to confine light to regions well below the wavelength and
their high sensitivity to the dielectric environment make them suitable for use in de-
tection devices, as well as other promising applications in the fields of photovoltaics,
photochemistry and medical physics, among others.

These properties of plasmons have resulted, in recent years, in the evolution of Plas-
monics into a multidisciplinary field: the increasingly smaller structures used to con-
fine these excitations, as well as their applications in apparently unrelated fields, such
as Biophysics, have emerged as useful tools for chemists and biologists; with their
knowledge and techniques, they, in turn, stimulate new research directions to be
explored.

In order to examine these applications, in this introduction, we review the necessary
physical foundations: after a review of the principles of Nanophotonics and Plasmon-
ics, we quickly cover the most relevant models for the optical response of nanostruc-
tures at the atomic scale. The emergence of graphene as one of the most promising
materials in the field demands an introduction to its electronic and plasmonic proper-
ties, as well as its nonlinear features. Finally, we also cover the foundations of phonons
and electron beams which, although not directly related to Photonics, they both are
enabling tools for the discovery of new technologies.
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1. IN T R O D U C T I O N

1.1 Fundamentals of Nanophotonics

1.1.1 Classical electromagnetism in materials

From a classical perspective, light is characterised as an electromagnetic wave which
is generated by a series of charge and current densities, ρ and j, and thus it fulfils
Maxwell’s equations[1] In the Gaussian unit system (used throughout this thesis),
Maxwell’s equations are written as

∇ ·D (r, t) = 4πρ (r, t), (1.1a)

∇ ·B (r, t) = 0, (1.1b)

∇× E (r, t) = −
1
c
∂

∂ t
B (r, t), (1.1c)

∇×H (r, t) =
1
c

�

∂

∂ t
D (r, t) + 4π j (r, t)

�

, (1.1d)

which relate the electric field, E, and the magnetic field, H, to the electric displace-
ment fields, D, and magnetic induction, B, from within the material under considera-
tion.

To solve these equations, it is necessary to know the dependence of the material
fields on the electromagnetic fields applied to the material; in other words, it is
necessary to complement the equations through constitutive relations D = D [E,H]
and B = B [E,H]. In the typical situation of a linear, isotropic, homogeneous and
non-magnetic medium (µ= 1), these relationships take the form

D (r, t) =

∫

dr′
∫

d t ′ε(r− r′, t − t ′)E (r′, t ′), (1.2a)

H (r, t) = B (r, t), (1.2b)

where ε is the permittivity (or dielectric function) of the material.

For conventional materials, it is usual to find a dependence of the fields at time t on
the values of the fields applied in previous times t ′ < t, a phenomenon known as
temporal dispersion. However, the dependence of the field at position r on the field
at other positions r′ (spatial dispersion, or nonlocality) only arises in structures of
very small size, close to the Fermi wavelength of the electrons in the material: in most
cases, we can disregard this nonlocal dependence on the response of the material.
Under these assumptions, we can write

D (r, t) =

∫

d t ′ε(r, t − t ′)E (r, t ′).
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1.1 Fundamentals of Nanophotonics

To remove the time convolution in this expression, it is convenient to convert Maxwell’s
equations to the frequency domain ω, using the Fourier transform.

E (r,ω) =

∫

d t E (r, t)eiωt , (1.3a)

E (r, t) =

∫

dω
2π

E (r,ω)e−iωt , (1.3b)

where the reality condition of the functions in the real space-time E (r, t) ∈R imposes
the condition E∗ (r,ω) = E (r,−ω) on the transformed fields. We find

∇ ·D (r,ω) = 4πρ (r,ω),
∇ ·B (r,ω) = 0,

∇× E (r,ω) = ikB (r,ω),

∇×H (r,ω) = −ikD (r,ω) +
4π
c

j (r,ω),

where we define the wave number k =ω/c. The constitutive relations (equation 1.2),
thus, become

D (r,ω) = ε(ω)E (r,ω),
H (r,ω) = B (r,ω),

in which the permittivity of the material, ε(ω), contains all the required information
for the knowledge of its optical response.

From these equations, we can also state that Maxwell’s equations guarantee the local
conservation of charge: in fact, we can directly derive the continuity equation both
in real and frequency domains from Eqs. 1.1

∂

∂ t
ρ(r, t) +∇ · j (r, t) = 0, ∇ · j (r,ω) = iωρ(r,ω).

The above results are applicable inside any homogeneous material; however, at
the boundary between two materials with different permittivities the fields satisfy
certain boundary conditions derived from Maxwell’s equations. At the sharp boundary
between two media, the interface conditions are as follows:[2]

n12 × (E2 − E1) = 0, (1.5a)

n12 · (D2 −D1) = 4πσs, (1.5b)

n12 · (B2 −B1) = 0, (1.5c)

n12 × (H2 −H1) =
4π
c

js, (1.5d)
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1. IN T R O D U C T I O N

Figure 1.1: Continuity conditions for the electromagnetic field at sharp bound-
aries. We represent the interface conditions (equations 1.5) at the sharp boundary
between two materials with different permittivities ε1 and ε2.

p-polariseds-polarised

Figure 1.2: Fresnel coefficients. We represent the incident, reflected and transmit-
ted fields at the sharp boundary between two materials with different permittivities
ε1 and ε2, for both perpendicular s and parallel p polarisations, in terms of their
corresponding Fresnel coefficients (equations 1.6).
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1.1 Fundamentals of Nanophotonics

where n12 is the normal vector from medium 1 to the medium 2, σs is the charge
surface density between the two media and js is the current surface density.

The first two equations, in particular, make it possible to predict the behaviour of
incident electromagnetic waves at the interface: the reflected and transmitted waves
are related to the incident wave using the so-called Fresnel coefficients for reflection,
r, and transmission, t. For a non-magnetic material, they adopt the expression

rp =
ε2k1⊥ − ε1k2⊥

ε2k1⊥ + ε1k2⊥
tp =

√

√ε2

ε1

k1⊥

k2⊥

�

1− rp

�

, (1.6a)

rs =
k1⊥ − k2⊥

k1⊥ + k2⊥
ts = 1+ rs, (1.6b)

where ki⊥ is the component of the wave vector in the medium i perpendicular to
the interface, which is in turn related to the dielectric constant of the material εi
and the angle θi with respect to the normal to the surface through the expression
ki⊥ =

p
εik cosθi . The subscripts of each of the coefficients refer to the polarisation

of the incident field: parallel (p) or perpendicular (s, from German senkrecht) to the
plane containing the incident, reflected and transmitted wave vectors: for s, E is out of
plane and perpendicular to ki; for p, H is out of plane and perpendicular to ki .

The above expressions are still valid when we consider evanescent fields, or even me-
dia with complex permittivity (e.g., metals in general); we then assume translational
invariance of the interface along directions R= (x , y), thus the fields present a depen-
dence eik‖R with well defined parallel wave vector k‖; the perpendicular wave vectors

are then ki⊥ =
Ç

k2εi − k2
‖ + i0+, with the square root chosen to yield a positive

imaginary part.

1.1.2 Fundamentals of Plasmonics

Light can give rise to multiple phenomena when it interacts with matter: from the
polarisation of dielectric materials to the formation of electron-hole pairs, excitons,
polaritons, and a plethora of different types of excitations, each of them ruled by
different physical processes.

In metals, the main contribution to their optical response comes from the electrons in
their conduction band. These electrons are capable of sustaining collective excitations,
which correspond to oscillations of the electronic charge density: the quanta associ-
ated with these excitations are known as plasmons, and the branch of Nanophotonics
that studies them is called Plasmonics.

It is customary to classify plasmons depending on the region in which the charge os-
cillations take place. In particular, we have bulk plasmons, which are associated with
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1. IN T R O D U C T I O N

Figure 1.3: Surface plasmon-polaritons in an air-gold interface. We represent the
real and imaginary parts of the dispersion relation of surface plasmons in an air-gold
interface, given by equation 1.8. We use a Drude model (equation 1.10) to describe
the metal, with parameters εb = 9.5, ωp = 9.06 eV and γ= 71 meV.

longitudinal excitations of the electric field within the material (∇×E= 0); neverthe-
less, their high characteristic energies make them of little appeal to Nanophotonics,
so we focus mainly on the study of two other types of plasmons: surface plasmon-
polaritons (SPP) and localised surface plasmons (LSP).

Surface plasmon-polaritons

From a theoretical perspective, we can define SPPs as the optical modes located at
the interface between a metal and a dielectric. Its interface condition, mathemati-
cally, turns a plasmon into a homogenous solution of the wave equation (from Eqs.

14



1.1 Fundamentals of Nanophotonics

1.1)

∇×∇× E(r,ω)− k2ε(r,ω)E(r,ω) = 0. (1.7)

Equivalently, the modes of this equation correspond to the poles of the Fresnel co-
efficients, 1.6. For s polarisation, we find the condition k1⊥ = −k2⊥, which cannot
be fulfilled with conventional non-magnetic materials.[3] In contrast, for parallel p
polarisation, we get the condition ε2k1⊥ + ε1k2⊥, corresponding to the vanishing of
the denominator in the Fresnel coefficient, Eq. 1.6: from this expression we can cal-
culate the momentum of the propagating mode along the surface in terms of the
permittivities of the metal, εm, and of the dielectric, εd, as

kspp =
ω

c

√

√ εmεd

εm + εd
. (1.8)

Physical restrictions on this parameter, such as generating excitations that propagate
through the interface, which implies Re

�

kspp

	

6= 0, and that these excitations are
located on the surface (i.e. they decay in the direction perpendicular to the surface)
forces the permittivities to meet the conditions Re {εmεd} < 0 and Re {εm + εd} < 0.
Additionally, losses should be small in order to have well-defined plasmons, so that
Im {εm} � Re {εm}.

Metals (especially noble metals such as gold and silver) have a relatively large neg-
ative permittivity compared to typical dielectrics such as air or glass; therefore, the
interfaces between these materials and metals support these plasmonic excitations.
Physically, they are a hybrid between the electrons oscillating in the metal (plasmon)
and electromagnetic fields in the surrounding material, possibly involving polarisation
charges (the polaritonic component).

For the permittivity of the metal, εm, to have a negative real part, its electrons must
oscillate in phase opposition to the incident light field: this only occurs when the
frequency of the incident light is below the plasma frequency of the metal, defined
as[4]

ωp =

√

√

√
4πne2

m∗e
, (1.9)

where n is the electron density in the conduction band, m∗e is the (effective) electron
mass, and e is the electron charge. For frequencies above the plasma frequency, the
electrons in the material are not able to follow the field oscillations, resulting in a
dielectric behaviour for ω>ωp.
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1. IN T R O D U C T I O N

A simple model for the permittivity of metals, accounting for all these physical phe-
nomena, is the Drude model,

ε(ω) = εb −
ω2

p

ω(ω+ iγ)
, (1.10)

in which electrons are considered to be free, in a dielectric environment given by εb,
subjected to the action of a harmonic restoring force of elastic constant α= meω

2
p,[5]

and with a term γ associated with inelastic collisions.

The main properties of surface plasmons are their confinement factor with respect
to the incident light and their propagation distance, related to their lifetimes. Both
magnitudes can be defined in terms of the plasmon wave vector, equation 1.8, as

λspp

λ0
=

2π
λ0

1

Re
�

kspp

	 , (1.11a)

Lspp =
1

2Im
�

kspp

	 , (1.11b)

where the plasmon propagation length, Lspp, is defined as the distance at which the
intensity of the plasmon field has been reduced by a factor of 1/e with respect to the
initial intensity.

There are two major problems associated with the use of plasmons: the high plasmon
confinement drastically reduces the coupling between the plasmon and the incident
light, due to the mismatch between the wave vectors of both excitations, which must
be identical by momentum conservation. Additionally, the values of the propagation
distance Lspp are usually very small, which limits the half-lifetime of the plasmon to
a few cycles, thus constricting its possible uses.

localised surface plasmons

Inspired by the case of extended interfaces, we can extend the definition of plasmons
to electron oscillations in nanostructures, resulting in the so-called localised surface
plasmons (LSP). These are also homogeneous solutions of the wave equation (1.7),
under the boundary conditions of the geometry we are interested.

Directly solving these equations is often a complex problem, from both analytical and
numerical perspectives. However, the small particle size relative to the wavelength
of incident light allows us to ignore the retardation effects in some cases (in other
words, we can assume that the speed of light is infinite in Maxwell’s equations). At
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1.1 Fundamentals of Nanophotonics

Figure 1.4: Localised plasmon resonances for different geometries. We represent
the extinction cross-section and transversal cuts for the near-field intensity profiles
(as insets) for a) a sphere of radius 50 nm, b) a cylinder of radius 50 nm and height
100 nm, c) a torus of radius 50 nm, and inner radius 10 nm. We use a Drude model
(equation 1.10) to describe all of them, with parameters εb = 9.5, ωp = 9.06 eV
and γ = 71 meV (i.e., those for gold). We see, after illumination with a plane-wave
coming from the z axis and polarised along the x direction, radical differences on
their extinction cross-sections (normalised to their projected areas on the x y-plane
for each structure) associated solely with geometrical effects.
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1. IN T R O D U C T I O N

the c→∞ limit, the electromagnetic field gets decomposed into its electrostatic and
magnetostatic components, so the first component satisfies the equations

∇ ·D (r,ω) = 4πρ (r,ω),
∇× E (r,ω) = 0.

The fact that the electric field turns into a longitudinal vector implies that we can
define it in terms of a scalar potential as E = −∇Φ. Therefore, the study of homo-
geneous modes, such as that of localised plasmons, is reduced to solving Poisson’s
equation

∇ ·D(r,ω) = −∇ · [ε(r,ω)∇Φ(r,ω)] = 0 (1.13)

under the appropriate boundary conditions, given by the geometry.

These modes, unlike plasmon-polaritons in planar interfaces, may present certain
polarizability α that allows them to couple directly to the incident light: thus, they
can be studied from an observational perspective regarding their effective extinction
and scattering cross-sections, which we can derive from the optical theorem as[6]

σext =
4πω

c
Im {α} , (1.14a)

σsc =
8πω4

3c4
|α|2 , (1.14b)

and from where we can compute the absorption cross-section as σabs = σext −σsc,
which is approximately σabs ∼ σext for very small particles.

1.2 Microscopic treatment of material properties

So far, we have considered that our permittivity ε(ω) is known: from its knowledge,
we have been able to calculate the optical properties of the medium. However, the
determination of this permittivity from a theoretical viewpoint requires a thorough un-
derstanding of the electronic properties of materials, as well as a microscopic picture
of the effects of the electric field on the electronic dynamics.

In this section, we first study the electronic structure of materials within the framework
of the density functional theory; then, we extend this theory to potentials that are
time-dependent. Finally, we present key results associated with the linear response in
this theoretical framework and compare them with the classical results in the context
of Plasmonics.

18



1.2 Microscopic treatment of material properties

1.2.1 Many-body problem

The electronic structure of a material with N electrons, as well as its response func-
tions, are determined by the solution of the Schrödinger equation that they satisfy;
in the presence of a potential v(r) the Hamiltonian of the system is given by the
expression

H(r1, r2, · · · , rN ) =
N
∑

i=1

�

−ħh2∇2
ri

2me
+ v(ri)

�

+
1
2

∑

i 6= j

vC(ri , r j), (1.15)

where ri are the electron coordinates i, vC(ri , r j) is the Coulomb interaction between
the electrons i and j, and me is the electron mass. Solving the Schrödinger equation
for this Hamiltonian is known as the many-body problem, and it is extraordinarily
complex to solve due to the exponential growth of the solution space with the number
of electrons under consideration.

Throughout the 20th century, there have been multiple approaches to solving this
equation: one of the first ones, derived by Hartree,[7] consists on describing the wave
function of the entire system Ψ({ri}) as a product of wave functions of each individual
electron, ψ(ri), which satisfy Schrödinger’s equation for an electron in the presence
of the mean field produced by all the other electrons in the structure. This solution,
however, does not have into consideration the fermionic character of the electrons:
this is taken into account through Slater determinants,[8] resulting in the well-known
Hartree-Fock method,[9,10] widely used for the study of the electronic structure since
then.

This method, which gave rise to the field of Quantum Chemistry, takes into account
both the presence of the mean field and the interaction between electrons with the
same spin (exchange interaction); however, it ignores the interaction between elec-
trons of different spin (correlation interaction). Efforts to add this interaction to
the solution of the many-body problem resulted in the creation of both perturbative
methods, such as the Møller-Plesset scheme,[11] as well as more rigorous methods,
such as the configuration interaction,[12] which provides the exact solution of the
Schrödinger equation and thus its complexity grows as well exponentially with the
number of electrons under consideration.

1.2.2 Density functional theory (DFT)

A significant milestone in the solution of the many-body problem was the formulation
of the Hohenberg-Kohn theorem (HK),[13] which states that

The ground state of a non-degenerate system of interacting electrons is
determined by the electronic density n(r) of the system.
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This result allows us, in turn, to extract all the relevant physical properties of the
structure (in its ground state) just from the knowledge of the electron density.

The HK theorem, despite its relevance, does not offer any guidelines for obtaining
the electronic density of the system: for this purpose, Kohn and Sham derived on the
basis of the HK theorem a method similar to the Hartree-Fock scheme,[14] in which
the electron density associated with the interacting electron system is identified with
the density produced by the combination of N electronic densities of independent
electrons, so that the wave functions of each of these electrons,ψi , satisfy the so-called
Kohn-Sham equations (KS):

hKS [n(r)]ψi(r) = ħhωiψi(r), (1.16)

where ħhωi is the energy of the state labeled by i and hKS [n( r)] is the Kohn-Sham
Hamiltonian for an individual electron,

hKS [n(r)] =
−ħh2∇2

2me
+ v(r) + vKS [n(r)] (r), (1.17)

with v(r) being the time-independent external potential applied to the system.

The Kohn-Sham potential, vKS [n( r)](r), is a functional of electron density, and can
be broken down into two distinct terms: the first is the mean field or Hartree term;
the second is the so-called exchange-correlation potential

vKS [n(r)] (r) = vH [n(r)] (r) + vxc [n(r)] (r) =

∫

dr′
n(r′)
|r− r′|

+ vxc [n(r)] (r). (1.18)

Thus, the results of the KS method depend on the functional structure of the exchange-
correlation potential, vxc, not established by the KS method itself: different expressions
for this functional give rise to different approaches within the DFT methods.

1.2.3 Time-dependent density functional theory (TD-DFT)

The preceding results, despite their generality, only provide information about the
system in its ground state; they are not applicable to systems that have time-dependent
potentials applied: therefore, DFT theories do not allow for direct determination of the
excited states of materials, nor for related outcomes such as optical responses.

Fortunately, the DFT theory has an extension to time-dependent potentials: analogous
to the HK theorem, the Runge-Gross theorem[15] states:

Given a system of electrons in a certain initial state Ψ(t0), there is a one-
to-one correspondence between the external potential, vext(r, t) and the
time-dependent electronic density, n(r, t) associated with this system, for
all t > t0.
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1.2 Microscopic treatment of material properties

This relationship leads to a procedure similar to the KS method, which transforms the
solution of Schrödinger’s equation for the complete system into the combination of the
individual solutions for each electron, which satisfy their respective time-dependent
Kohn-Sham (TDKS) equations

iħh
∂

∂ t
ψi(r, t) =

�

−ħh2∇2

2me
+ vKS [n(r, t)] (r, t)

�

ψi(r, t), (1.19)

where Kohn-Sham’s potential now takes into account the time dependence of the
electron density as well as of the external potential vext(r, t)

vKS [n(r, t)] (r, t) = vext(r, t) +

∫

dr′
n(r′, t)
|r− r′|

+ vxc [n(r, t)] (r, t), (1.20)

which is functionally similar to DFT.

1.2.4 Linear response theory

To obtain the optical properties of a system, we consider its response to external elec-
tromagnetic fields: for electrostatic fields, in particular, we aim to study the response
of these systems concerning disturbances to the external potential, δvext(r, t). In lin-
ear response theory, the variation in electron density δn due to this potential is given
by the system’s susceptibility χ as

δn(r, t) =

∫

dr′
∫

d t χ(r, r′, t − t ′)δvext(r
′, t ′).

To handle the temporal dispersion of the system more comfortably, as we did for
Maxwell’s equations, we can convert these expressions into the frequency domain

δn(r,ω) =

∫

dr′χ(r, r′,ω)δvext(r
′,ω). (1.21)

From the induced density we can calculate interesting magnitudes from the optical
response perspective; for example, the dipole moments induced on the structure are
given by

δp(ω) =

∫

dr rδn(r,ω) =

∫

dr

∫

dr′ rχ(r, r′,ω)δvext(r
′,ω).

If we also consider that the external disturbance comes from a constant field along a
direction i, δvext(r′,ω) = −ûi ·δE, this ratio allows us to calculate the polarizability
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tensor of the system

α̂(ω) =

∫

dr

∫

dr′
�

r⊗ r′
�

χ(r, r′,ω), (1.22)

where ⊗ denotes the dyadic product. This result allows us, through the optical theo-
rem, to define the effective extinction cross-section of the system as

σext(ω) =
4πω

c
1
3

Tr [Im {α̂(ω)}] ,

which is consistent with equation 1.14a for a homogeneous system.

Linear susceptibility from Schrödinger’s equation

Let us consider a system that is characterised by its density operator ρ̂(r) and exposed
to an external potential δvext(r, t). The interaction between both is described, in the
Schrödinger picture, by the interaction Hamiltonian

H int =

∫

dr ρ̂(r)

∫

dω
2π
δvext(r,ω)e−iωt ,

for which we have taken the Fourier transform of the external potential.

The wave function of our system, |ψ〉, may be expressed in terms of the eigenstates
of the Hamiltonian |n〉, each of them associated with an energy ħhωn, n= 0, 1, 2, . . . .
Assuming initially that only state n = 0 is populated, we construct the wave function
as

|ψ〉= a0 |0〉e−iω0 t +
∑

n 6=0

ane−iωn t |n〉 ≈ |0〉e−iω0 t + |δψ〉 ,

where an ∈ C is the coefficient of state n, which (to first order in perturbation theory)
satisfies the differential equation

ȧn =
−i
ħh

eiω0 t



n
�

�H int
�

�0
�

.

By expressing the potential in terms of its Fourier transform, we can solve the preced-
ing equation by integrating directly from time t0→−∞,

an =
−1
ħh

∫

dω
2π

ei(ωn0−ω)t

ωn0 −ω− i0+

∫

dr 〈n |ρ̂(r)|0〉δvext(r,ω),

whereωn0 ≡ωn−ω0, and the i0+ term comes from taking into account the adiabatic
approximation for the potential for times t0→−∞.
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Once the wave function coefficients are obtained, we can calculate the induced charge
density at time t as the difference between the total charge densities at time t and
the initial one

δn(r, t) = 〈ψ |ρ̂(r)|ψ〉 − 〈0 |ρ̂(r)|0〉 ≈ 〈0 |ρ̂(r)|δψ〉+ 〈δψ |ρ̂(r)|0〉

Where the approximation comes from considering only the linear terms in the external
potential. Expanding the expressions for |δψ〉, we get

δn(r, t) =
−1
ħh

∫

dω
2π

e−iωt
∑

n 6=0

∫

dr′
〈0 |ρ̂(r)|n〉 〈n |ρ̂(r′)|0〉

ωn0 −ω− i0+
δvext(r

′,ω)

+
−1
ħh

∫

dω
2π

eiωt
∑

n 6=0

∫

dr′
〈0 |ρ̂(r′)|n〉 〈n |ρ̂(r)|0〉

ωn0 −ω+ i0+
δv∗ext(r

′,ω).

From this expression, by directly comparing it with 1.21, we derive a closed expression
for the susceptibility in the frequency domain,

χ(r, r′,ω) =
−1
ħh

∑

n6=0

� 〈0 |ρ̂(r)|n〉 〈n |ρ̂(r′)|0〉
ωn0 −ω− i0+

+
〈0 |ρ̂(r′)|n〉 〈n |ρ̂(r)|0〉

ωn0 +ω+ i0+

�

,

where the numerators depend solely on the value of the density operator ρ̂(r) of the
system.

Noninteracting susceptibility from the TDKS equations

The possibility of adding time-dependent potentials to the solution of Kohn-Sham’s
equations enables us to identify the variation of electron density, δn(r,ω), in turn,
with the variations in Kohn-Sham’s potential, δvKS(r,ω), through the susceptibility
between non-interacting electrons χ0

δn(r,ω) =

∫

dr′χ0(r, r′,ω)δvKS(r
′,ω), (1.23)

where the non-interacting susceptibility χ0 is written in terms of the wave functions
of the time-independent problem, ψ(r), and its respective occupations fi as

χ0(r, r′,ω) =
∑

i j

( fi − f j)
ψi(r)ψ∗j (r)ψ j(r′)ψ∗i (r

′)

ħhω j −ħhωi +ħhω+ i0+
. (1.24)
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Variations of Kohn-Sham’s potential, δvKS(r,ω), can be expressed in terms of the
functional derivatives of each of its components in equation 1.20

δvKS(r,ω) = δvext(r,ω) +

∫

dr′
δn(r′,ω)
|r− r′|

+

∫

dr′
δvxc(r,ω)
δn(r′,ω)

δn(r′,ω).

The two terms within the integral correspond to the corrections induced by the charge
density, mediated respectively by the Coulomb potential, vC(r, r′) = e2 |r− r′|−1 and
the so-called exchange-correlation kernel,

fxc(r, r′,ω) =
δvxc(r,ω)
δn(r′,ω)

.

These results allow us to write the susceptibility χ in terms of the non-interacting
susceptibility χ0 through the Dyson equation, which we obtain by combining equa-
tions 1.21 and 1.23,

χ(r, r′,ω) = χ0(r, r′,ω) +

∫

dsχ0(r, s,ω)

∫

ds′
�

vC(s, s′) + fxc(s, s′,ω)
�

χ(s′, r′,ω).

In compact form, this expression reads

χ = χ0 · (1+ (vC + fxc) ·χ). (1.25)

The exchange-correlation kernel, as we see from its definition as a functional deriva-
tive, takes into account changes in the correlation due to the presence of the external
field. In many systems, these effects are negligible (on average), thus allowing us to
disregard the term fxc in Dyson’s equation:

χ = (1−χ0 · vC)
−1 ·χ0. (1.26)

The solution we find this way is the Random-Phase Approximation (RPA), typically
adopted in Theoretical Plasmonics.

1.3 Graphene Nanophotonics

As stated above, one of the notable problems Plasmonics faces nowadays regards
the high damping rates of plasmons in noble metals, such as gold or silver. These
reduce the half-lifetime of the plasmonic excitations in these materials to a few cycles,
thus severely limiting the range of applications accessible to Plasmonics. Aiming to
compensate for this situation, the Plasmonics community has been looking for new
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1.3 Graphene Nanophotonics

materials and techniques:[16–18] from the improvement of nanostructures to the use
of other materials with lower losses.[19,20]

Among all these materials, an outstanding one of these has been graphene: an atom-
ically thin layer composed of carbon atoms in a honeycomb arrangement. Since its
discovery in 2004,[21] it has represented a genuine revolution in nanotechnology, es-
pecially for its mechanical and electronic properties.[22,23] Moreover, it has motivated
the study of other two-dimensional materials such as transition metal dichalcogenides,
with potential applications in Photonics.[24–27]

In particular, regarding Nanophotonics, doped graphene structures (either chemically
or by the application of an electrostatic potential) are capable of sustaining plasmons
in the far infrared range.[28] These plasmons are extremely sensitive to the doping con-
ditions of the material, thus allowing for dynamic control of the plasmon properties;
they also present very high lifetimes in comparison with typical plasmonic materials.
Besides, graphene also has extraordinary capabilities as a nonlinear material,[29,30]

which are enhanced in the presence of plasmons.[31,32]

In this section, we briefly introduce the main properties of graphene from the elec-
tronic, optical and plasmonic perspectives, as well as a summary of its nonlinear
capabilities.

1.3.1 Electronic properties

The electronic properties of graphene are mainly determined by the hybridisation of
the orbitals of its constituent carbon atoms: carbon has a sp2 or trigonal hybridisation:
the orbital 2s and the orbitals 2px y 2py hybridize together, forming σ links between
the atoms, conferring most of the mechanical properties of graphene. In turn, the 2pz
orbitals appear perpendicular to the plane, and the hybridisation between them is
produced by π links, much weaker than the σ ones. These bonds, characteristic of
aromatic organic molecules 1, are mainly responsible for the electronic properties of
graphene at low energies.

Mathematically, graphene is described as a triangular lattice with a double base: the
vectors

a± =
a0

2

�

3,±
p

3
�

,

1In fact, the origin of the name “graphene” comes from the addition to the root of “graphite’ of suffix
“–ene”, which is characteristic of polycyclic aromatic molecules.
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1. IN T R O D U C T I O N

Figure 1.5: Band structure and electronic transitions in graphene. a) We show the
valence and conduction bands of graphene in its first Brillouin zone (violet hexagon),
according to equation 1.27. Near the K and K′ points, the band structure has a conical
shape, leading to a linear dispersion for electrons. b) We describe the intraband and
interband processes allowed in the Dirac cone, for a graphene sheet doped up to a
Fermi energy EF. Interband transitions with energies < 2EF are forbidden, due to the
excess electrons occupying the corresponding final states.
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1.3 Graphene Nanophotonics

define its real basis, where a0 = 1.42Å is the distance between two neighbouring
carbon atoms. These result in a basis for the reciprocal space given by

b± =
2π
3a0

�

1,±
p

3
�

.

To model the electronic response of graphene, we can restrict ourselves to a tight bind-
ing model (TB) between neighbouring 2pz orbitals: considering only first neighbours,
the energy bands in the reciprocal space Ek are given by the expression

Ek = ±t

√

√

√

1+ 4cos2

�p
3a0

2
ky

�

+ 4 cos

�p
3a0

2
ky

�

cos
�

3a0

2
kx

�

, (1.27)

where t = 2.8 eV is the hopping energy between neighbouring orbitals.[23]

We can verify that the valence and conduction bands (negative and positive signs in
the previous equation, respectively) intersect at two different points K and K′,

K=
2π
3a0

�

1,
1
p

3

�

, K′ =
2π
3a0

�

1,−
1
p

3

�

for which EK = EK′ = 0.

For wave vectors around these points, k = K+ q, the dispersion relation is approxi-
mated by the linear expression

Eq = ħhvF |q| ,

with vF = 3ta0/2ħh∼ c/300 being the Fermi velocity of electrons. By representing the
band diagram (figure 1.5), the states around the K y K′ points can be seen to form a
cone-like shape. These are called Dirac cones since the linear dispersion relation of
these electrons is such that they fulfill an equation functionally similar to the Dirac
equation for massless fermions.[23]

1.3.2 Optical properties

Its dispersion relation gives graphene two fascinating properties from an optical per-
spective: in the case of undoped graphene, it shows a constant absorption coefficient
A = πα ∼ 2.3% over a wide energy range,[33] due to the symmetry between the
conduction and valence bands, allowing for light absorption over the entire range of
energies for which the Dirac cone picture holds.
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Besides, the linear dispersion of graphene makes its density of states within the Dirac
cone, given by

ρ(q) =
3
p

3a2
0

πħhvF
|q| ,

a very low quantity, enabling radical changes in the Fermi energy EF of the system
by injecting a relatively low number of electrons into the graphene. Specifically, EF =
ħhvF
p
πn, with n the charge density of additional carriers. These additional carriers

are usually inserted into the graphene by the application of a constant field E across
the sheet, resulting in a screening charge density n = −|E|/4πe, or by chemical
functionalization.

The shift in Fermi energy modifies the graphene’s responsiveness; the local-RPA con-
ductivity usually gives a reasonable description of this:[33]

σ(ω) =
−e2

πħh2

i
ω+ iγ

∫ ∞

−∞
dE



|E|
∂ fE

∂ E
+

E/|E|

1−
�

2E
ħh(ω+iγ)

�2 fE



 , (1.28)

where fE is the distribution of electrons at an energy E, usually given by the Fermi-
Dirac distribution at temperature T ,

fE =
1

1+ exp [(E − EF)/kBT]
(1.29)

The expression for the conductivity has two well-differentiated terms in the integral:
the first of them takes into account the intraband transitions of the electrons. At the
T → 0+limit, it yields a conductivity functionally identical to the Drude model

σ(ω) =
e2

πħh2

i|EF|
ω+ iγ

(1.30)

The second term describes the interband transitions between valence and conduction
bands, which are significant only if very high doping or relatively small structures are
used.

1.3.3 Plasmons in extended graphene

The ability to vary the Fermi level enables graphene to have electrons in the con-
duction band: these electrons, in the same way as for metals, behave as if they were
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1.3 Graphene Nanophotonics

free electrons, which in principle makes them susceptible to sustain collective oscilla-
tions.

As in the case of metal and dielectric interfaces, the dispersion relation of plasmons
in graphene is obtained from the pole of the Fresnel coefficient (1.6), which can
be generalised to calculate the reflection produced by a thin film of conductivity σ,
resulting in

rp =
ε2k1⊥ − ε1k2⊥ +

4πσ
ω k1⊥k2⊥

ε2k1⊥ + ε1k2⊥ +
4πσ
ω k1⊥k2⊥

.

From the pole of this coefficient, we obtain the dispersion relation of these plas-
mons,

ε1
q

k2
spp − ε1k2

+
ε2

q

k2
spp − ε2k2

= −
4πiσ(ω)
ω

.

For very confined plasmons (something that generally occurs in the electrostatic
limit[33]), we can consider the momentum of the plasmon to be much more significant
than the momentum of the incident light, kspp� k, so the expression above can be
approximated as

kspp =
ε1 + ε2

2
iω

2πσ(ω)
,

and from where we can easily extract the confinement factor and the losses by sub-
stituting in equation 1.11.

1.3.4 Nonlinear response

For the vast majority of materials, the response to optical stimuli can be described
through linear response: the external potentials generally do not introduce much
distortion into the electron density. However, technological advances such as lasers
have made it possible to confine a large amount of energy into optical fields, which
is enough to cause distortions beyond the linear response: nonlinear optics describes
this phenomenon.[34]

From a formal perspective, this forces the constitutive relations of the material ( 1.2)
to have a permittivity that depends on the external field. Mathematically, this converts
the polarizability (defined in terms of electric displacement as D = E+ 4πP) into a
function of the electric field

P (t) = χe [E] (t),
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with χe the electrical susceptibility, and where we ignore the position dependence r
for simplicity.

A common way to solve this expression, employing the frequency domain, is to expand
the electric field and polarisation in a series of harmonics[35]

P (t) =
∑

n

P(ωn)e
−iωnt, E (t) =

∑

n

E(ωn)e
−iωnt

and to expand the susceptibilities in terms of powers of the different components of
the field, E(ωn): thus, we have the linear term

Pi(ωn) =
∑

j

χ
(1)
i j (ωn)E j(ωn),

where the field amplitude only appears once per each term, and where i and j are the
Cartesian components (x , y, z) of the linear susceptibility tensor, χ̂(1). The next term,
on which the field amplitude appears twice, is the second-order nonlinear term

Pi(ωn +ωm) =
∑

jk

∑

(nm)

χ
(2)
i jk (ωn +ωm,ωn,ωm)E j(ωn)Ek(ωm),

where (nm) denotes the sum over all possible permutations of n and m. This suscep-
tibility is responsible, for example, for processes such as sum frequency generation
(ωn 6=ωm), or second harmonic generation (ωn =ωm). In the same way, we can also
establish the third order susceptibility as

Pi(ωn +ωm +ωo) =
∑

jkl

∑

(nmo)

χ
(3)
i jkl(ωn +ωm +ωo,ωn,ωm,ωo)E j(ωn)Ek(ωm)El(ωo),

in which phenomena such as the Third Harmonic Generation (THG) or linear diffrac-
tion index corrections (Kerr effect) arise.

For extended graphene, the second-order susceptibilities are identically zero in the
local limit, since the material is centrosymmetric.[34] Nevertheless, it presents a very
high third-order susceptibility in comparison with other materials.[36–38] This property,
together with the large confinement factors associated with its plasmons, suggests
that graphene has excellent potential as a relevant material in the development of
nonlinear nanodevices.[39]

1.4 Vibrational modes in nanostructures

When calculating the electronic and optical properties of a material, the ions that
make up the structure are generally considered static. From a physical perspective,
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this is only an approximation, based on the vast difference between the time scales of
electronic and ionic dynamics; however, ions also have their dynamics, which can be
affected by the changes in electronic density associated with, for example, a transition
between states or the application of an electric field.

The primary outcome of this dynamics is the displacement of ions from their equi-
librium positions. Under the assumption of small displacements, we can consider
that the ions lie in a harmonic potential: the movements of the ions, therefore, are
oscillations around their equilibrium position.

Mathematically, for a structure with N ions these displacements are represented by a
3N -dimensional vector, u, in which the component uil represents the displacement of
the l atom along the i Cartesian direction. From these displacements, we can define
a series of normalised displacements wil = uil/

p
ml , with ml the mass of the l-th ion,

and satisfying the eigenvalue equation[4]

ω2w= D̂w, (1.31)

where the dynamic matrix D̂ is defined in terms of the variations in the potential
experienced by the ions, U , as

Dil, jm =
1

p

mim j

∂ 2U
∂ x̂ il∂ x̂ jm

,

where ∂ x̂ il indicates the derivative with respect to the i coordinate of the system
centered on the l atom.

With these definitions, solving the eigenvalue equation for the dynamic matrix, (1.31),
provides a set of 3N normal vibrational modes ν, each of them associated with a
vibrational frequency ων and with a displacement vector uν.

The set of normal modes uν is a complete orthonormal set, in the sense that any spatial
configuration of atomic displacements can be expressed both in Cartesian coordinates
and in this collection of normal modes: assuming for simplicity that all atoms have
the same mass (ml = M ∀l) the energy associated with these modes is given by the
Hamiltonian

H =
∑

ν

p2
ν

2M
+

1
2

Mω2
νq

2
ν,

an expression in which qν is the displacement along the generalised coordinate ν,
and pν its associated conjugated momentum. This Hamiltonian, identical to that of a
harmonic oscillator, provides a hint for the quantisation of the normal modes. In this
way, the displacements of the structure are quantised, each one of these quanta has
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an energy ħhων, and each of them has an associated pair of creation and destruction
operators

b̂ν =

√

√Mων
2ħh

�

qν +
ħh

Mων

∂

∂ qν

�

, b̂†
ν =

√

√Mων
2ħh

�

qν −
ħh

Mων

∂

∂ qν

�

.

From this expression, we can isolate qν in terms of the creation and destruction
operators to calculate the displacement of each atom l as

x l i =
∑

ν

qνuν,l i =
∑

ν

qνuν,l i =
∑

ν

√

√ ħh
2Mων

�

b̂†
ν + b̂ν

�

uν,l i ,

which can be used, for example, to compute expectation values of the atomic displace-
ments 〈x l i〉 and its moments 〈xn

li〉

1.5 Interaction with electron beams

Although light is the primary tool for Nanophotonics, electron beams are also capa-
ble of interacting with the optical modes of a system; in fact, the first experimen-
tal evidence of the existence of plasmons comes from electron microscopy experi-
ments.[40,41]

Nowadays, electron beams and their associated techniques, such as electron energy-
loss spectroscopy (EELS), allow the study of material resonances, due to the ability
that this technique offers to map the permittivity of materials. This is not restricted
only to the energy spectrum: the ability to focus electron beams makes it possible to
study the spatial distribution of the modes as well.

Also, due to the presence of evanescent modes in the electromagnetic field of the
electron, EELS allows the study of modes that cannot be coupled to free radiation
due to selection rules, and therefore cannot be studied using traditional techniques
in Nanophotonics.

Within a purely classical formalism,[42] we can calculate the energy loss associated
with EELS as the integral of the probability of energy loss, ΓEELS(ω)

∆E =

∫ ∞

0

dω ħhωΓEELS(ω).

For an electron travelling through space with a constant velocity v along a path re(t),
we can identify the associated energy loss ∆E suffered by the electron interacting
with the electric field back-induced on it by the neighbouring structures: this field is
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previously generated by the electron, resulting in a feedback mechanism that produces
an energy loss

∆E = e

∫ ∞

−∞
d t v · Eind[re(t), t],

which allows us to write the EELS probability as

ΓEELS(ω) =
e

πħhω

∫ ∞

−∞
d t Re

�

e−iωtv · Eind[re(t), t]
	

.

The field induced on the electron can be obtained as the field generated by the struc-
ture in response to the bare field produced by the propagating electron, which is given
by the expression

Ee(r,ω) =
2eω
v2γ

eiωz/v
�

i
γ

K0

�

ωR
vγ

�

ẑ− K1

�

ωR
vγ

�

R̂
�

,

where it is assumed (without loss of generality) that the electron propagates along the
z axis, R= (x , y), v is the electron speed, γ= 1/

p

1− v2/c2 is the Lorentz contraction
factor and Ki are modified Bessel functions of the second kind.
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2
Enhanced nonlinear response through

plasmon focusing

In this chapter, we explore the possibility of enhancing the nonlinear response of
materials by geometrically focusing plasmons on custom-designed structures. The
light coupled to the edges is geometrically concentrated in a region of the order of
the plasmon wavelength. This energy confinement boosts the nonlinear response of
the material, which in turn leads to an increase in the efficiency of processes such as
harmonic generation.
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2.1 Introduction

Research in Photonics can provide the ability to employ light to control light. Just as
in electronic circuits, where the creation of nonlinear devices such as transistors gave
rise to a genuine revolution from the scientific, technological and social perspectives,
the study and design of photonic devices with unprecedented nonlinear capabilities
could lead to a new social transformation.

Nevertheless, this possibility is limited by the weak nonlinear response of commonly
used materials in photonic devices. In order to compensate for this fact, one generally
relies on the concentration of light in small regions, thus enhancing nonlinear effects,
for which various strategies have been adopted; however, the most conventional
strategies, such as direct focusing of light using micrometric Fresnel lenses,[43] have
their focus size limited by the so-called diffraction limit, which prevents focusing in
regions smaller than approximately half of the light wavelength λ0.

Another possible strategy, more sophisticated, consists in using highly localised prop-
agating modes (i.e. with wavelengths shorter than that of light), such as plasmons
and phonon-polaritons[44–53]to enhance the nonlinear response. In particular, the
use of plasmons is desirable not only because of their ability to confine the field at
the nanometric scale but also because of the additional increase in field strength, a
phenomenon that has its roots in the coupling to evanescent fields.[54]

Besides, as these are propagating modes, it is possible to focus plasmons, further
increasing the intensity of the fields. This focusing has been investigated successfully
in self-similar particle chains,[55] in tapered geometries (both in ribbons[56,57] and
metallic particles[58]) and in plasmon concentrators,[59,60] which allow not only to
focus but also to control the angular momentum of the generated plasmons in the
process.

Two-dimensional materials such as graphene[33,61–65] or black phosphorus[66,67] They
are capable of sustaining plasmons in the infrared with wavelengths λp of the order
of a few nanometers, which dramatically increases the local electric field intensities
in these materials, and therefore, any potential nonlinear effects. This is particularly
true for graphene, whose band structure renders it a material with strong nonlinear
response,[53,68–70] which is further increased by the effect of plasmons.[35,37,39,71–75]

Also, ultrathin layers of noble metals can support plasmons with energies close to
the visible spectrum,[76] showing similar confinements as two-dimensional materials,
with propagating mode wavelengths as small as λp < 100 nm. This degree of confine-
ment, however, is not restricted to plasmonic materials: the polaritons that appear,
for example, in 2D van der Waals structures also have very small λp/λ0 confinement
factors.[27]

37



2. EN H A N C E D N O N L I N E A R R E S P O N S E T H R O U G H P L A S M O N F O C U S I N G

Figure 2.1: Plasmon focusing on two-dimensional nanostructures. (a) We con-
sider a two-dimensional structure with a semicircular profile of radius a (much greater
than λp, the plasmon wavelength) at one of the edges. (b) After illuminating with a
plane wave (represented by an external field Eext), light is converted into plasmons
along the edge, which are then focused on the centre of the structure.

However, high light confinements usually result in a very inefficient coupling between
light and plasmons, as they are excitations with very different wave vectors. There
are several ways to try to counterbalance for this; for example, by designing periodic
gratings to compensate for the difference in wave vectors,[77,78] or the use of tips,[5]

which permit the excitation of larger wave vectors thanks to the focusing of the
optical field. Despite this, the coupling coefficients between light and plasmons are
still a limiting factor for the use of plasmons in nonlinear optical instruments, such
as integrated devices,[49,51] or optical detection systems, based on Raman scattering
techniques (SERS)[79–82] or infrared light scattering (SEIRA).[83,84]

In this chapter, we propose a geometrically simple two-dimensional structure, capable
of coupling incident light to plasmons and focusing them on a ∼ λp-sized region, and
study their possible application for the efficient generation of harmonics. Specifically,
we focus on the structure described in figure 2.1, which consists of a semi-infinite
two-dimensional ribbon, with one of the edges outlined in the shape of a semicircle
of radius a � λp to which the incident light will be coupled, thereby generating
plasmons in the material. We chose this design for simplicity: the choice of other
profiles gives an added degree of control over the position and properties of the fo-
cus (see section 2.4), but the underlying physical principle is the same: the presence
of the ribbon terminations, similar to the use of tips discussed above, can compen-
sate for the difference in wave vectors between light and plasmons; these plasmons,
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due to the semicircular profile of the structure, focus on the centre of the semicircle
(2.1b).

2.2 Theoretical model

2.2.1 General formalism

To describe the electric field of the plasmon, we model the edge as a distribution of
dipoles with a dipole line density P s, depending on the edge position s. The dipoles
are oriented along the normal to each point of the boundary, nns.

Assuming a high confinement with respect to the incident light, characteristic of the
materials under study, we can work in the electrostatic regime (i.e. ignoring the
retardation effects); under these conditions, the electrostatic field generated by a
dipole p at the origin is reduced to the integral over the two-dimensional momentum
Q

E(1)(r,ω) =
i

2π

∫

d2Q
Q
(iQ−Qẑ) (1− rp)Q · peiQ·R−Qz , (2.1)

where R = (x , y) are the coordinates in the plane of the structure (z = 0) and rp is
the Fresnel reflection coefficient for p-polarized fields.[85] Assuming a 2D conductivity
σ(ω) for the material, we can rewrite this coefficient in the plasmon pole approxi-
mation[33] as rp ≈Q/(Q−Qp), where the plasmon wave number Qp = iεω/2πσ(ω),
appears, with ε being the dielectric permittivity of the environment. With these con-
siderations, we can now write the total field within our structure as the integral of
equation 2.1 along the entire edge,

E(1)(r,ω) =
Qp

2π

∮

ds

∫

d2Q
Q

Q+ iQẑ
Q−Qp

Q · nsPs eiQ·R−Qz . (2.2)

The dipole line distribution Ps depends on the coupling between the external field
and the plasmon field: Since the border has a soft profile in a mathematical sense (i.e.
no vertices), we can establish a relationship between Ps and the external field given
by the form Ps = C ns(ns · Eext), where C is the light-plasmon coupling coefficient
associated with the edge. From analytical derivations for the fields based on the
Wiener-Hopf method,[86] the value of this constant can be set to C = 1/πQp

2.

With this expression for the dipole density, we can perform the integration over Q
moments using complex contour integration techniques: the result of the integral is
reduced to the evaluation of its pole at Q = Qp, which leads to a closed expression
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in terms of Hankel functions H(1)n ≡ H(1)n

�

Qp|R− s|
�

. By defining t= R− s and φt as
the angle between t and the x axis, we can write a compact expression for the fields
in the plane of the structure,

E(1)x (R) =
iQpEext

2

∮

ds nx

�

H(1)0 nx −H(1)2 cos2φt nx −H(1)2 sin 2φt ny

�

, (2.3)

E(1)y (R) =
iQpEext

2

∮

ds nx

�

H(1)0 ny +H(1)2 cos 2φt ny −H(1)2 sin2φt nx

�

, (2.4)

in which we assume that the external field is polarized along the x axis.

2.2.2 Application to semicircular edges

For the case of a semicircular geometry, represented in figure 2.1, the line integrals
of equations 2.3 and 2.4 have a standard parameterization in terms of the angle that
forms the element of the border with the centre of the sphere φs: we can write, in
this case

E(1)x (R) =
iQpaEext

2

∫ π/2

−π/2
dφs nx

�

H(1)0 nx −H(1)2 cos 2φt nx −H(1)2 sin 2φt ny

�

,

E(1)y (R) =
iQpaEext

2

∫ π/2

−π/2
dφs nx

�

H(1)0 ny +H(1)2 cos 2φt ny −H(1)2 sin2φt nx

�

.

These expressions require evaluating the integral for each value of R; however, at the
origin (R = 0)Hankel’s functions acquire a constant value H(1)n

�

Qp|s|
�

= H(1)n

�

Qpa
�

,
which enables an analytical evaluation of the integrals,

E(1)x (0) =
iEext

2

πQpa

2

�

H(1)0 (Qpa)−H(1)2 (Qpa)
�

,

E(1)y (0) = 0.

The fact that the field has no component along the y axis is consistent with the struc-
tural symmetries: the component in the y direction generated by the (sx , sy) element
is compensated with the one generated by the element in the (sx ,−sy) symmetric
position.

Finally, as we are at the a � λp limit, by rewriting Qp in terms of the plasmon
wavelength λp we get Qpa ∼ 2πa/λp� 1, so it is safe to replace Hankel’s functions
with that of their asymptotic limit,

H(1)m (Qpa)≈

√

√

√
2

πQpa
eiQpae−iπ/4e−imπ/2,
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Figure 2.2: Plasmonic hotspots in graphene structures. We represent the focusing
of plasmons for a structure identical to that described in 2.1, made of graphene. The
resulting focus has a size comparable to the plasmon wavelength, λp, as shown by
the amplitude and field line graphs, represented in a square region of side 5λp. The
intensity profiles in the centre of the focal spot are shown on the sides, with their full
widths at half maximum normalised to λp. For calculations, we assume a semicircle
of radius a = 5λp, and a plasmon propagation distance (with an intensity of 1/e over
the starting intensity) of 10λp.

providing a simple final expression for the amplitude of the electric field at the focal
centre,

E(1)x (0) =
iEext

2
e−iπ/4

Æ

2QpaπeiQpa, (2.5)

in which it is clearly observed that the enhancement factor of the electric field by
geometrical means is Ex/E

ext ∼
Æ

Qpa or, in other words, proportional to the square

root of the confinement factor
Æ

a/λp.

All the results described above are general, and directly applicable to any two-dimensional
material that can support plasmons or polaritons. In our particular case we focus on
graphene structures, motivated by their intrinsic nonlinear properties, already dis-
cussed in 2.1. Figure 2.2 shows the electric field amplitude in the plane, obtained
from the expressions 2.3 and 2.4, for a graphene structure, with a semicircle of radius
a = 5λp. As expected, the focus is approximately equal in size to λp. The calculations
above assume a plasmon propagation distance of Lp = 10λp: this is defined as the
distance at which the intensity of the plasmon has dropped by a factor 1/e from the
initial intensity, which in turn implies Lp = 1/2Im{Qp}.
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Figure 2.3: Third harmonic generation by plasmon focusing. We show the angular
distribution (a) and the current lines of the nonlinear sources (b) associated with
third harmonic generation, under the same conditions as in figure 2.2.

It is worth noting that these results, as indicated in equation 2.5, only depend on the
radius of the structure a, the plasmon wavelength λp and its propagation distance
Lp, so these results allow for a universal characterization of the focusing process,
independently of the other material parameters.

2.3 Harmonics generation

Once the results for the linear field have been obtained, we can study the efficiency of
these structures as nonlinear components; in particular, we focus on third harmonic
generation processes (THG) for our semicircular structure1. The current density gen-
erated by THG is, by definition, at a frequency 3ω, and its amplitude is given by the
expression

j3NL(R) = σ
(3)E(1)

�

E(1) · E(1)
�

, (2.6)

where σ(3) is the third order conductivity for this process; for a graphene sheet doped
at a certain Fermi energy EF this expression becomes[35,87]

σ(3) =
3ie4v2

F

4πħh2EF

1
(3ω+ iγ)(2ω+ iγ)(ω+ iγ)

,

1Second-order processes in this case are highly inefficient, due to the centrosymmetry of the system
around the focal spot.
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Figure 2.4: Linear field enhancement factor and third harmonic emission power.
(a) Linear field enhancement factor for a semicircular structure similar to that of figure
2.1, as a function of its radius a and the plasmon propagation distance Lp. The discon-
tinuous curve represents the condition a = Lp of maximum field enhancement as a
function of Lp. (b) Emission power of third harmonic generation for a graphene struc-
ture with a Fermi energy EF = 0.4eV, illuminated by an optical source of irradiance
1013 W/m2 and with a plasmon energy ħhωp = 0.2 eV, corresponding to a wavelength
λp = 181 nm.

with a damping coefficient γ which is directly related to the properties of plasmon in
the linear regime by the expression Lp/λp =ω/4πγ.

With these considerations, figure 2.3 displays the resulting third order current, which
shows a spot with a slightly reduced size with respect to the linear case (approximately
a ∼ 1/

p
3 factor). This result is consistent with the relationship between full widths

at half maximum that exists between a Gaussian profile (similar to the linear one)
and its third power (an approximate way of estimating the pattern of third harmonic
generation). The radiation profile of the third harmonic, shown in figure 2.3(a), shows
an angular distribution whose maximum is approximately along the normal to the
structure, with a slight inclination contrary to the position of the semicircular edge,
which we relate to the direction of propagation of the plasmons in the material.
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In figure 2.4 we present an analysis of the performance of the structure, based on
the parameters a y Lp. From the expression of the linear field at the origin, 2.5, and
taking into consideration that λp = 2π/Re{Qp} ≈ 2π/|Qp|, we can get the intensity
enhancement factor at the origin to be

�

�

�

�

E(1)(0)
Eext

�

�

�

�

2

≈
π2a
λp

e−a/Lp , (2.7)

which reaches an optimal value under the condition a = Lp. This result implies
a compromise between the field accumulation by geometrical methods and its at-
tenuation due to propagation from the edge of the nanostructure. For reasonable
propagation distances Lp = 15λp,[65] the intensity enhancement factor can be as high
as ∼ 50.

This fact is remarkable if we consider that this field is the internal field of the material,
and not the field in the vicinity of the structure, as is the case with traditional plasmonic
structures, such as metal nanoparticles. In these structures, the enhancement factors
for the field are associated with the normal components on its surface; for some
resonant morphologies (such as structures with nanometric gaps or with very different
geometric ratios), these factors can reach dramatically high values. However, this
increase is accompanied by very high dielectric permittivities, which reduces the
electric field inside the structures by several orders of magnitude (otherwise, it would
violate the continuity condition for the electrical displacement).

Finally, we present in figure 2.4(b) the total power of the third harmonic (integrated
to all possible emission directions), which follows a profile similar to the sixth power
of the amplitude of the linear field, as expected from the expressions for the third
harmonic current, 2.6. The conversion efficiency for this process, defined as the ratio
between the irradiated power and the incident power on the semicircle, reaches values
of the order of ∼ 10−6.

2.4 Control of the focal position

Until now, we have always considered normal incidence of the external field: in this
way, all the elements of the axis were oscillating with the same initial phase. How-
ever, this fact can change if we impinge along the structure with a certain angle θ
with respect to the surface normal: in this case, two points on the edge separated
by a distance ∆x along the x axis acquire a relative phase between them, given by
∆φ = 2π/λ0∆x , where λ0 is the incident light wavelength. This allows the illumi-
nation angle of incidence to be used as an element capable of controlling the focal
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Figure 2.5: Control of the focal position by changing the light incidence angle.
(a) Displacement of the focal position for a structure with a semicircular edge as a
function of the angle of incidence θ with respect to the surface normal of the structure,
for a radius a = Lp = 25λp. The inner figure depicts the near field for an incidence
θ = 45◦. (b) Enhancement of the linear field (left, pink) and third harmonic power
(right, green) under the same conditions as (a), assuming a Fermi energy EF = 0.4 eV,
ħhωp = 0.2eV, and an irradiance of 1013 W/m2. The results obtained by evaluating
the expressions 2.3 and 2.4 (symbols) are compared with the analytical expressions
(curves), where the third harmonic power is considered proportional to the third
power of the linear field intensity.
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position; moreover, for more complex designs than those discussed in this chapter,
light polarisation may add another degree of freedom to these effects.

To illustrate this concept, we can analytically calculate the suitable edge for a plas-
monic structure that maximizes the field magnification factor for an incidence angle
θ . Assuming that this focus will be found at the origin x = y = 0, the desired profile
has an elliptical shape, given by the expression

α−(x − b)2 + y2 = a2α+,

where α± = 1±κ2 sin2 θ , b = (aκ/α−) sinθ , and κ= λp/λ0

For highly confined plasmons (κ� 1) the resulting profile is virtually identical to a
semicircle. However, the position of the focus x = b can be modified in an appreciable
fraction of the plasmon wavelength, as shown in figure 2.5(a). The field enhancement
factor and the third harmonic generation are equally indistinguishable between the
semicircle and the ellipsoid; the reduction of the values with the angle, in this case, is
perfectly justified by the dependence as cos2 θ of the component of the external field
normal to the surface.

2.5 Conclusions

In this chapter, we have studied the possibility of focusing plasmons on two-dimensional
structures specifically designed for this purpose. Following a general derivation of
the underlying fundamental principles, for which we only need to assume a high
degree of plasmon confinement with respect to the incident light, we focus on the
application of all our general results to graphene structures in particular, which have
a meaningful potential for applications in Optics and Nonlinear Plasmonics.

We tested how the proposed geometry is able to concentrate the field in regions of the
size of the plasmon wavelength, as well as to generate the third harmonic of these
plasmons. We also studied the possibility of controlling the focal position by changing
the light angle of incidence, verifying that it is possible to displace the focus up to a
significant fraction of the plasmon wavelength.

This method of focusing plasmons has a direct extension to any structure capable of
supporting polaritons (including ultrathin metals and van der Waals materials) under
the condition that they have, in addition to the high confinement factors, propaga-
tion distances Lp large enough to create the foci. Besides the harmonics generation,
this concept has a direct application in detection devices, for example revealing the
presence of molecules near the focal region, and identifying them from their optical
response. Likewise, we could consider the reverse process, thus opening the way to
the conversion of plasmons into light.
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3
Hot-electrons in metallic nanostructures:

dynamics and thermalisation

Hot electrons play a fundamental role in processes such as photocatalysis or light
harvesting, attracting great interest in their behaviour and generation mechanisms.
In this chapter, we study the temporal evolution of these electrons in gold and silver
nanoparticles. After excitation by an optical pulse, we model the processes of ther-
malisation and relaxation of the electronic distribution, while studying the behaviour
of electrons both individually and collectively.
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3.1 Introduction

Thanks to their ability to support plasmons, metal nanostructures can confine and
increase the local light intensity in very small regions compared to their wavelength,
which allows us to increase and influence to some degree on the interaction between
light and electrons in these structures.[88,89] The possibility of manipulating this inter-
action opens the door to the control of processes based on it, such as photoemission
or photocatalysis, which have a wide range of applications, for example, in detection
devices,[90–95] photochemistry[96–100] or light harvesting devices.[98,101–105]

A large part of this interaction is not directly related to the plasmon but rather to the
so-called Landau damping, which is the main process of plasmon decay (especially in
small structures, where the radiative contribution to decay is negligible). Physically,
Landau’s damping is due to the plasmon interacting with electrons in the conduction
band, which are excited out of equilibrium, at levels with energies well above the
Fermi level.[96–98,100,103,106–116]

These electrons (and holes) out of equilibrium have enough energy to, for example,
activate chemical reactions,[96–100,114,117,118] harvest light,[98,101–105] stimulate the
nonlinear response of materials[119] or act as photodetectors.[109,111,120] This enor-
mous potential for technological applications has motivated an effort in the commu-
nity to try to understand its dynamics: for example, in experiments on the optical
response of ultra-thin layers[121,122] or metal nanoparticles.[123–127] Other properties
have also been studied, such as their mean free path,[121,128–131] as well as its gen-
eration and decay processes.[114,115,132–140] However, due to the complexity of the
problem, theoretical calculations based on fundamental principles are restricted to
the case of extended structures;[115,139,140] the theoretical results for other structures
at this moment[106,107,137] allow, at best, a qualitative approach to the problem: a
detailed description of the dynamics of these electrons for finite structures is still
missing, which limits the applicability of these excitations.

In this chapter, we describe from a theoretical perspective the excitation and evolution
of electrons in the conduction bands of small gold and silver particles, incorporating
detailed models and parameters for electron-electron collisions, calculated from the
screened interaction between them. We also study the possible influence of particle
size, irradiance or laser frequency on these processes. Figure 3.1 shows a schematic
diagram of all the processes under consideration, studied through a master equation
for conduction electrons that considers both the initial excitation due to a laser pulse
and the thermalisation and relaxation of the distribution.
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Figure 3.1: Scheme of the generation, evolution and thermalisation of hot elec-
trons. (a) A metal particle (gold or silver) is in thermal equilibrium with its envi-
ronment at a temperature T0. (b) A femtosecond laser pulse irradiates the particle,
generating plasmons that quickly decay (∼ 10 fs) in out-of-equilibrium electron-hole
pairs. (c) These electrons/holes evolve through their mutual electrostatic interactions,
generating a pseudo-equilibrium distribution in tens of femtoseconds and recovering
their initial equilibrium state (through coupling to phonons) on the picosecond scale.
The shaded areas represent the Fermi-Dirac (FD) distribution of the electronic states;
the vertical lines and symbols indicate the occupation of the various electronic levels,
and the solid curves in (c) represent the FD distribution at the pseudo-equilibrium
temperature T > T0, in the case of a silver particle with N = 10000 electrons in the
conduction band.
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3.2 Theoretical model

3.2.1 Preliminary remarks

Let us consider a metal nanosphere made of gold or silver. For the study of the dy-
namics of conduction electrons, we focus solely on the study of the s orbitals, whose
electrons are considered independent and confined in an infinite and spherically sym-
metrical potential well with the same diameter as the nanoparticle. After solving
Schrödinger’s equation, we find that the wave function ψi for each of the electronic
states i can be broken down into the product of a spherical Bessel function, j(r), with
a spherical harmonic, Ylm

ψi(r) = Ai jli

�

βni li
r/a

�

Yli mi
(Ωr), (3.1)

in which ni = 0,1, · · · , li = 0,1, · · · , ni y mi ∈ [−li , li] are the main, orbital and
azimuthal quantum numbers, respectively; Yli mi

is the spherical harmonic; βni li
is

the ni-th zero of the spherical bessel function jli
, and Ai =

Ç

2/[a3 j2
li+1(βni li

)] is a

normalization constant. The electron energies, Ei = ħh
2β2

ni li
/(2mea

2) form a spectrum
of discrete levels with degeneration 2(2li+1) for each value of ni , with the first factor
of 2 coming from spin degeneration.

Each atom of the nanostructure contributes with one electron to the conduction band,
so there is a clear relationship between the number of electrons in the latter, N , and the
radius of the nanoparticle, a. For the laser pulse energies under consideration, we can
rule out the effect of d electrons on the dynamics, being well below the Fermi energy
of the material.[98] This approximation is justified in the case of silver —-for which d
orbitals are at a distance of 4 eV from the Fermi level–, but in the case of gold (2.4 eV)
the plasmon excitation energies are similar, possibly slightly altering the dynamics.
In any case, the d orbitals are taken into account in the calculation of the screened
dielectric function (which governs the interaction between the s electrons), through
the εb(ω) background dielectric function; we also include it in the calculations of
the energy absorbed from the pulse by the nanoparticle, so that a large part of the
effects of the d orbitals on the dynamics of conduction electrons are already taken
into account.

For the study of temporal dynamics, we represent the electron configuration through
the occupation coefficients pi (one for each state i). These coefficients evolve follow-
ing the master equation

dpi(t)
d t

=− γe−ph(pi − p0
i ) +

∑

j 6=i

�

γex
i j (p j − pi)− γe−e

ji pi(1− p j) + γ
e−e
i j p j(1− pi)

�

,

(3.2)
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where the γ coefficients describe the transitions associated with each physical process
under consideration. Specifically, the effects of laser (ex) and electron-electron inter-
actions (e-e, second term in 3.2) are associated with the appropriate combinations of
occupation coefficients, in order to ensure that such transitions occur only between
occupied and unoccupied states. In addition, the laser may populate and depopulate
electronic states: using the symmetry γex

i j = γ
ex
ji (see 3.5), we obtain as a result the

factor p j − pi that accompanies this term. Finally, relaxation effects through electron-
phonon interaction (e-ph, first term of 3.2) restore the system back to its original
state, with occupation coefficients p0

i = fi(T0), where fi(T0) is the Fermi-Dirac (FD)
distribution at room temperature T0. Specifically,

fi(T ) =
1

e(Ei−µ(T ))/kB T + 1
, (3.3)

whereµ(T ) is the chemical potential, which in turn depends on the temperature.

3.2.2 Modelling the transition coefficients

Several approaches are needed to adequately describe each of the processes consid-
ered in 3.2, especially when calculating their transition coefficients.

Carrier generation via optical pulses

For the calculation of γex
ji , we consider that the particle is illuminated by a laser pulse

of duration ∆ = 10 fs. More specifically, we represent the pulse through the poten-
tial

φext(r, t) = −z E0

�

e−iω0 te−t2/2∆2
+ c.c.

�

,

where ω0 is the central frequency, and its maximum irradiance is related to the am-
plitude of the field by the expression I0 = c|E0|2/2π. After converting the external
potential to the frequency space, we can obtain the total potential (external+induced)
inside the sphere directly:[141] assuming the particle responds as if it were a homo-
geneous sphere of permittivity ε(ω), it is only necessary to multiply the external
potential in the frequency space by a factor of 3/[ε(ω)+2]. By converting the poten-
tial back into the time domain, we get

φ(r, t) = −
p

2π z E0∆

∫

dω
2π

e−iωt 3 F(ω)
ε(ω) + 2

, (3.4)

with F(ω) = e−(ω−ω0)2∆2/2 + e−(ω+ω0)2∆2/2.
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The transitions between conduction electrons can be described by the interaction
Hamiltonian Hint = −eφ; to first order in perturbation theory, we find that the transi-
tion probability from state ψi to state ψ j can be written as

Pex
ji =

24π2e2|E0|2∆2a8

ħh2|ε(ω ji) + 2|2
A2

jA
2
i R2

i j,3 M2
ji,10 F2(ω ji),

whereω ji = (E j−Ei)/ħh is the transition frequency, and we use the radial and angular
matrix elements,

R ji,n =

∫ 1

0

xnd x jli
(βni li

x) jl j
(βn j l j

x)

and

M ji,lm =

∫

dΩr Y ∗l j m j
(Ωr)Ylm(Ωr)Yli mi

(Ωr),

respectively. Gaunt’s integrals, M ji,lm,have an analytical expression in terms of Wigner’s
3 j coefficients.

To account for the Gaussian profile of the pulse, the resulting electronic transitions are
described by the time-dependent coefficients γex

ji , between the states i and j,

γex
ji (t) =

1
p
π∆

e−t2/∆2
Pex

ji , (3.5)

which preserve the light irradiance profile: these coefficients are the ones that enter
the master equation, 3.2.

Carrier thermalisation via electron-electron interactions

Coulomb’s screened interaction between the carriers causes transitions between the
i→ j,γe−e

ji , states, which we study in linear response. We also assume that the contribu-
tion of the electronic transition to electrostatic screening is negligible (many-electron
limit). Under these conditions, we can generalise the expressions of the existing tran-
sition coefficients in the literature[42,139,142,143] to include finite temperature effects,
and express them as

γe−e
ji =

2e2

ħh

∫

dr dr′ψ j(r)ψ
∗
i (r)ψ

∗
j (r
′)ψi(r

′) Im{−W (r, r′, |ωi j |)} [nT (|ωi j |) + θ (ωi j)],

(3.6)

where W (r, r′,ω) is the screened potential, defined as the potential produced in r by a
unit charge located at r′ and oscillating at a frequency ω; nT (ω) =

�

eħhω/kB T − 1
�−1

is
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the Bose-Einstein distribution at temperature T ;ωi j = (Ei−E j)/ħh is the transition fre-
quency; and X is Heaviside’s theta function, which only contributes for Ei > E j .

For our metal particle, described as a homogeneous sphere of permittivity ε(ω), the
screened potential accepts the analytical expression[42]

W (r, r′,ω) =
∞
∑

l=0

m=l
∑

m=−l

4π
2l + 1

Wl(r, r ′,ω)Ylm(Ωr)Y
∗
lm(Ωr′),

where

Wl(r, r ′,ω) =
r l
<

r l+1
> ε(ω)

+
�

2l + 1
l(ε(ω) + 1) + 1

−
1
ε(ω)

�

(r r ′)l

a2l+1
,

r< = min{r, r ′} and r> = max{r, r ′}. Substituting this expression in 3.6, we get the
final result for γe−e

ji that fits into the master equation,

γe−e
ji = −

8πe2a5

ħh
A2

i A
2
j

li+l j
∑

l=|li−l j |

M2
ji,lm j−mi

2l + 1
Im{Gl}

�

nT (|ω ji |) + θ (ωi j)
�

, (3.7)

where

Gl =
1

ε(|ωi j |)

∫ 1

0

d x jl j
(βn j l j

x) jli
(βni li

x)gl(x) +

�

2l + 1
l(ε(|ωi j |) + 1) + 1

−
1

ε(|ωi j |)

�

R2
ji,2+l ,

gl(x) = x1−l

∫ x

0

d y y2+l jl j
(βn j l j

y) jli
(βni li

y) + x l+2

∫ 1

x

d y y1−l jl j
(βn j l j

y) jli
(βni li

y),

and where only terms with l + li + l j even and |mi −m j | ≤ l contribute to the above
sum.

Relaxation via phonon coupling

The coupling to phonons draws energy from the electrons with a phenomenological
rate γe−ph (the first coupling term of the master equation, 3.2). This process relaxes
electrons from their current distribution pi to their initial distribution, p0

i = fi(T0),
with T0 the system’s initial temperature.

To model this phenomenon, a two-temperature model is generally used: one for elec-
trons and one for the ionic lattice;[144–146] we instead relate the coupling coefficient
to the heat capacity of the material ce(T ) by the expression[147]

γe−ph = G/ce(T ),
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Figure 3.2: Potential Well Approximation (PWA) for the dielectric functions of
gold and silver nanoparticles. We show the real (a,d) and imaginary (b,c,e,f) parts
of the polarizability α, calculated in the PWA (3.8), for gold (a-c) and silver (d-f)
particles of different sizes (see legends for diameter D and number of electrons N))
and for different electronic temperatures T . For comparison, we also represent the
classic limit of polarizability, α= (3V/4π)(ε− 1)/(ε+ 2) (black curves, using an ex-
perimental dielectric function ε[148]). Polarizabilities are normalized, for convenience,
to the volume of the sphere V = 4πa3/3.

in which the coupling coefficient between electrons and the lattice is GAu ≈ 3 ×
1016 W m−3 K−1 and GAg ≈ 3.5×1016 W m−3 K−1 for gold and silver, respectively.[144,145]

This coefficient, although temperature-dependent, has an almost constant value in the
temperature range under study. Note that this model ignores both thermal diffusion
outside the particle and changes in the phonon population, effects that we discard
for the sake of an easier understanding of the electron dynamics.
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3.2.3 Dielectric function of the nanoparticle: potential well ap-
proximation (PWA)

An essential component in the calculation of the coefficients γex
ji and γe−e

ji is the mate-
rial permittivity ε(ω); for small particles, this value may differ substantially from the
value calculated for an extended structure. Beyond the traditional phenomenological
description (through a size-dependent damping factor[149]), we can build a dielectric
function from the knowledge of the wave functions of the potential well3.1, which
we call potential well approximation (PWA).

First of all, we shall recall that a homogeneous dielectric sphere subjected to a uni-
form external field has a uniform total field inside. This fact allows us to assume as
a reasonable hypothesis that the field within our nanoparticle is itself uniform. In
addition, if we employ the RPA susceptibility,[150] we can write the dielectric function
in the PWA as[151,152]

εPWA(ω) = εb(ω) +ω
2
p

∑

i j

Si j

ω2
i j −ω(ω+ iγ)

, (3.8)

where the sum extends to all transitions between states i and j; ωi j = (Ei − E j)/ħh
is the transition frequency; ħhγ= 0.071eV (ħhγ= 0.024eV) is the phenomenological
damping coefficient obtained from optical measurements for gold (silver);[148]

Si j =
2mωi j

ħhN

�

f j(T )− fi(T )
�

|〈 j|z|i〉|2

is the transition coefficient (we consider, without loss of generality, polarisation along
the z axis), normalized to comply with the f-sum rule,

∑

i j Si j = 1; and ωp is the
plasma frequency of the material (ħhωp = 9.0eV for bulk gold and silver). This fre-
quency, for small particles like the ones under study, depends directly on the ra-
dius of the particle a and the number of electrons in the conduction layer N as
ωp =

p

3e2N/mea3.

To take into account the contributions of the orbitals d to the screening, we define in
3.8

εb(ω) = ε(ω) +
ω2

p

ω(ω+ iγ)
(3.9)

as the background conductivity, which takes into account interband transitions, as well
as the polarisation of the inner electrons. Specifically, ε(ω) is the dielectric function
of the bulk metal, which we get from optical measurements (Johnson & Christie[148]

for energies between 0.8− 6.5 eV, Palik[153] for higher energies, and a constant value
εb = 9.5 (εb = 4) below 0.8 eV for gold (silver)[148]). The Lorentzian in 3.9 suppresses
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Figure 3.3: Temperature-dependent system parameters. Temperature dependence
of (a) the chemical potential and (b) the electronic specific heat for particles with
different number of conduction electrons, N .

the contribution of conduction electrons in the experimental results, which we replace
with the results obtained for our particle 3.8.

Figure 3.2 shows the polarizability for small particles (with diameters in the range
D = 4 − 9.3nm), calculated in the PWA as α = a3(εPWA − 1)/(εPWA + 2). For the
smaller particles we consider, the contribution of electronic transitions produces a
substructure on the resonance, which disappears and converges to the classical case
α= a3(ε−1)/(ε+2) as the particle size increases. As an additional result, we observe
minor temperature dependence in the dielectric function εPWA (which contributes
through the FD distribution FD fi(T ); figure 3.2 c,f), so we can assume a temperature-
independent permittivity throughout the entire chapter.

3.2.4 Chemical potential and specific heat

Once we have defined the coupling coefficients and estimated the effects of a small
number of electrons on the dielectric function of the material, all that remains is
the numerical solution of the equation 3.2 for different sizes and illumination condi-
tions.

For a system with discrete energy levels like this, it is convenient to define a density
of electronic states (DOS)

ρS = 2
∑

i∈S

pi , (3.10)
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where the sum runs through all the subsets S = {ψi} of degenerated orbitals with
the same energy ES = Ei , and the 2 factor comes from degeneration in spin. In these
processes, the number of electrons N =

∑

S ρS must remain constant throughout the
calculation; in particular, when the thermal equilibrium is set at a temperature T , we
have pi = fi(T ) (ecuación 3.3), which allows us to determine the chemical potential
µ(T ) needed to keep the number of particles N constant.

Figure 3.3a shows this temperature-dependent dependence of the chemical potential.
Since both gold and silver have similar electronic densities, the results apply to both
cases. Note the tendency of µ(T ) to recover its value for the bulk (5.5 eV). Also, it
seems to show a non-monotonous behaviour with temperature (especially for small
particles), a fact that has been previously attributed to the insufficient screening effect
of the Coulomb potential.[154–156]

As a necessary component to evaluate the electron-phonon coupling coefficients,γe−ph,
we also derive the specific heat of the particle as a function of temperature[157]

ce(T ) =
∂ (E/V )
∂ T

=
2
V
∂

∂ T

∑

i

Ei fi(T ),

which has the expected linear behaviour with temperature for large particles (figura 3.3b).
Again, it shows non-monotonous behaviour for particles with few electrons.

3.2.5 Determination of the equivalent temperature in non equi-
librium distributions

When evaluating the above expressions, or the temperature dependence of the electron-
electron interaction coefficients γe−e

i j (T ), there is a problem with the definition of
temperature: as it is an equilibrium parameter, it is only defined in the case where the
material is in thermal equilibrium. However, the distribution of electrons may differ
from the equilibrium distribution (especially in the initial moments, when the pulse
is striking the nanoparticle).

In this way, we define an effective temperature based on the condition of energy con-
servation in electron-electron elastic collisions: mathematically, this requires meeting
the condition

∑

i j

Ei

�

γe−e
ji pi(1− p j)− γe−e

i j p j(1− pi)
�

= 0.

The values obtained for temperature are equal to those expected when electronic
populations follow a FD distribution.
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3.3 Dependence of electronic thermalisation on geo-
metrical and illumination conditions

3.3.1 Size dependence

Figure 3.4 presents the time evolution of the electronic population in silver particles,
after being excited by a laser pulse of 10 fs duration, with a maximum irradiance of
1014 W/m2 and a central energy of 3.5eV, similar to the plasmon energies observed
in silver particles for the sizes D under consideration.

After the pulse incidence, the distribution shows disturbances centered around the
chemical potential of the particle in equilibrium (5.87 eV at T0 = 300 K),in great
agreement with the Fermi energies of s electrons for bulk gold and silver (5.53 eV and
5.49 eV, respectively[4]).

The initial distribution, once the pulse vanishes, evolves very rapidly during the first
femtoseconds through electron-electron collisions, which concentrate the electrons
around the chemical potential and thermalise them in tens of femtoseconds after the
irradiation of the pulse. Finally, the relaxation to phonons phenomenon gradually
decreases the electronic temperature.[158]

The finite size effects are easier to see for the smallest particle we have considered
(D = 4.01 nm), in which the excited populations have a markedly discrete character.
On the other hand, the larger particle (D = 6.87nm) shows a larger excited popula-
tion, with two prominences sharply placed at ∼ 3.5 eV (the pulse energy) from the
chemical potential. This difference between populations with respect to size presum-
ably originates in the larger transition dipoles that appear in the larger structures.
Besides, relaxation is slower in large particles, requiring several picoseconds to restore
equilibrium conditions.

3.3.2 Dependence on illumination conditions

We study in figure 3.5 the dependence of the distribution on the parameters of the
laser pulse for a particle of diameter D = 6.87nm. It is clear that when moving the
laser out of the plasmon resonance frequency the distribution of electrons is not as
excited as in resonance, showing the role of the plasmon as a fundamental element
for the formation of these non-equilibrium distributions.

On the other hand, at lower irradiance (figura 3.5b), although the distribution remains
qualitatively the same, it is clear that the disturbances are quantitatively smaller than
at higher irradiance. This translates into lower electronic temperatures, which have a
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Figure 3.4: Time evolution of hot electron distribution for silver particles of dif-
ferent sizes. We consider three different diameters, D, with their corresponding num-
ber of associated electrons, N . We represent the difference |ρS −ρ0

S | (líneas naranjas
y símbolos) (orange lines and symbols) between the density of states (3.10) and
that of equilibrium, as well as the contribution of each of these to the total energy
[ES −µ(T0)]

�

�ρS −ρ0
S

�

� (purple lines and symbols), where µ(T0) (vertical black lines)
is the chemical potential at the initial temperature T0 = 300 K. These magnitudes are
represented as a function of the energies ES for each subset of degenerated states S
(horizontal axis). Gray lines represent the FD distribution for each effective tempera-
ture T , displayed on each graph. The central energy, pulse duration and maximum
irradiance are, respectively, 3.5 eV, 10 fs y 1014 W/m2. The middle part of the pulse
hits the nanoparticle at time t = 0 (upper graphs).
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Figure 3.5: Time evolution of conduction electron distribution for silver particles
under different illumination conditions. Same as in figure 3.4, for different values
of (a) the central energy of the pulse ω0 and (b) the maximum irradiance. The silver
particle has a diameter D = 6.87 nm (N = 104 electrones).
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direct effect on the thermalisation and relaxation processes, resulting in much faster
relaxation for less irradiance.

3.3.3 Figures of merit for thermalisation and relaxation

Figure 3.6: Figures of merit for thermalisation and relaxation. Time evolution of
(a) the distance to initial equilibrium E0 (3.11) (b) the distance to instantaneous
equilibrium E (3.12) and (c) the electronic temperature T for particles of different
sizes. LThe central power and pulse duration are 3.5 eV and 10 fs, respectively. The
initial equilibrium temperature is T0 = 300 K.

To quantitatively study the difference between the current distribution and the equi-
librium distribution, we define the so-called distance to initial equilibrium.

E0 =
1
N

∑

S

|ES −µ(T0)||ρS −ρ0
S |, (3.11)

which gives an approximate representation of the excess energy in the electronic
system after absorbing it from the pulse. Similarly, we can also define the distance to
instantaneous equilibrium,

E =
1
N

∑

S

|ES −µ(T )|
�

�ρS − 2
∑

i∈S

fi(T )
�

�, (3.12)

where we compare the energies and populations with the chemical potential and the
FD distribution corresponding to the effective temperature T , which in turn depends
on time: if the distribution at time t is similar to an FD distribution, this parameter is
close to zero.
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Figure 3.6 represents the time evolution of these two magnitudes for the same par-
ticles studied in the figure 3.4. In particular, we can see how the effective temper-
ature T rises very quickly during irradiation, dropping to room temperature over
several picoseconds. Even more interesting is the fact that the maximum value of T
is hardly dependent on the size of the particle, nor its temporal evolution. However,
as also shown, this maximum value does depend dramatically on the irradiance of
the pulse.

The evolution of the distance to total equilibrium E0 (figura 3.6a) also shows an
abrupt jump during irradiation, followed by a sustained decay. In our case, this is en-
tirely due to the inelastic processes of electron-phonon relaxation (since the processes
of electron-electron interaction are elastic). Eventually, the distance to total equilib-
rium becomes zero at about ∼ 10 ps, in contrast to the distance to instantaneous
equilibrium E (figura 3.6b), which rapidly decays in tens of femtoseconds; a result
compatible with the electronic distributions observed in figures 3.4 and 3.5.

3.4 Individual and collective relaxation phenomena

3.4.1 Half-lifetime of electrons under electron-electron collision
processes

The role of electron-electron interaction in the non-equilibrium electron dynamics
can be better understood if we examine the average lifetimes of each of the carriers
separately. For simplicity, we will perform this analysis on the relaxed system (T = T0):
the lifetimes are obtained from the coupling coefficients as

1/τe−e
i =

∑

j

γe−e
ji (1− f j) (3.13)

for electrons and

1/τe−e
i =

∑

j

γe−e
i j f j (3.14)

for holes.

Figure 3.7 shows the values of these expressions for particles of different sizes de-
pending on the energy of each state E = Ei . The lifespan for electrons and holes
are similar, apparently independent of particle size, and diverge for energy values
close to chemical potential (due to the lack of final states at which these levels may
decay). These results are reasonably compared with calculations ab initio of electron
lifetimes,[140] included in figure 3.7 for comparison.
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Figure 3.7: Individual relaxation times of electrons We represent the contribution
of electron-electron collision processes to the lifetime of electrons (E > µ(T0), 3.13,
solid circles) and holes (E < µ(T0), 3.14, open circles) as a function of their energy E
relative to the initial chemical potential µ(T0) for gold (a) and silver (b) particles of
different sizes. The results of ab initio simulations for extended geometries[140] are
also shown as a comparison.

Collision processes between electrons dominate the temporal dynamics of excited
states for short times: in these cases, electrons have relatively high energies, for
which τe−e

i is in the femtosecond range. Eventually, phonon coupling dominates over
all electrons with energies < 1eV, relative to the chemical potential. It is therefore
expected that long-term evolution will be affected by both electron-electron and
electron-phonon interactions.

3.4.2 Collective relaxation time

The occupation pi of a given electronic state i is modified, in first instance, by the
effect of the laser; later, the electron-electron and electron-phone-interactions drain
these states. However, states may face not only the effect of depopulation, but also
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Figure 3.8: Collective relaxation time of electrons(solid circles) and holes (open
circles), defined in 3.15, for (a) particles of different sizes and under different irra-
diances, at the same central laser energy (ħhω = 3.5 eV) and (b,c) different central
energies and fixed size (D = 6.87nm, N = 104), setting in each case the irradiance
((b), I0 = 1014 W/m2) or the total energy absorbed ((c), ∆E = 15eV).

the effect of repopulation through transitions from other states; the balance between
these two types of processes allows to define for each state i a collective relaxation
time τCRT

i , defined such that the difference between the population of the state pi and
its equilibrium population p0

i is approximately 37% (i.e. a factor of 1/e) with respect
to its maximum p1

i ; mathematically,

�

�pi

�

τCRT
i

�

− p0
i

�

�=
1
e

�

�p1
i − p0

i

�

� . (3.15)

Specifically, for these calculations we use an illuminating pulse represented by a Dirac
delta, which allows us to identify p1

i = pi(0+). We also rule out transitions to states
prohibited by the selection rules.

Figure 3.8 shows τCRT
i for electrons and holes as a function of their energy Ei relative

to the chemical potential. Note that τCRT
i is arguably much longer than the half-

lifetime of individual electrons (∼ 9 fs/∼ 31 fs in gold/silver). The CRT decreases
as the energy separates from the chemical potential: these high-energy states decay
into lower-energy states, which keeps the population of the latter high over a long
period; the same argument holds in the case of holes. The dependence on the pulse
parameters is clear from the graphs (figure 3.8a,b), and is partly explained by the
differences in the energy absorbed, as can be seen by using different parameters for
the pulse, but fixing the energy absorbed by the nanoparticle (figure 3.8c).
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3.5 Conclusions

The study of the dynamics of the out-of-equilibrium electrons carried out in this chap-
ter supports the existence of three differentiated periods of evolution: the excitation
of the system by means of an optical pulse, a fast thermalisation (within tens of
femtoseconds) to Fermi-Dirac distributions with high electronic temperatures and
the subsequent relaxation processes to ambient temperature over a period of several
picosecond.

The present formalism, restricted in this case to spherical particles, is in any case of
great generality and can be extended to any kinds of nanoparticles, opening up the
possibility of studying the effects of shape on these electron distributions,[124] and of
adapting them to specific applications.

From an experimental perspective, the dynamics investigated in this chapter are exper-
imentally accessible with the use of ultrafast lasers.[159,160] Also, in-depth knowledge
of the temporal evolution of these electrons and their dependence on parameters
such as size, shape and composition are essential for the successful development of
applications.
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4
Visible optical resonances in electrically

doped DNA

Deoxyribonucleic acid (DNA) has emerged in recent decades as a leading material for
nanotechnology, thanks to its mechanical, electrical, and optical properties. However,
the lack of response in the visible range limits the potential optical applications of
this molecule. Here, we develop a computationally efficient procedure to simulate
the optical response of large DNA molecules employing tractable TDDFT simulations
as building blocks. We reveal the emergence of electrically-tunable resonances in the
visible spectral range. We further study the use of doped DNA for light modulation
and detection of mutagens in double-helix DNA, as examples of the potential of DNA
for optoelectronics and biosensing applications.
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4.1 Introduction

Deoxyribonucleic acid (DNA) is widely known as the molecule of life: all living or-
ganisms rely on it as the universal engine of their operation. Its discovery by Watson,
Crick,[161] and Franklin[162] revolutionised the field of Biology: fundamental phenom-
ena such as protein synthesis or genetic inheritance would not be understood today
without the fundamental role played by DNA.[163–166]

In recent times, DNA applications have extended way beyond biology: its mechanical,
electrical, and optical properties render DNA as a promising active metamaterial.[167]

Mechanically, its flexibility and systematic pair hybridisation have enabled techniques
such as DNA origami[168] and DNA kirigami,[169] which allow the employment of DNA
as a scaffold for the design of arbitrarily shaped nanostructures.[170,171] Its chemical
sensitivity also allows dynamic modification of the nanostructure spatial conforma-
tion,[172] which has been recently used in the so-called plasmonic walkers.[173] From
an electrical perspective, the DNA double helix has been postulated as a nanoscale
wiring material.[174] In addition, DNA’s natural use as a genetic information stor-
age and improvements in bioengineering techniques make it possible to use it both
as a storage system,[175,176] and as a platform for biologically-based computing sys-
tems.[177–180]

From an optical viewpoint, the response of neutral DNA presents its dipole-active elec-
tronic transitions at ultraviolet frequencies,[181,182] thus behaving as a transparent
dielectric in the visible range. This transparency limits the scope of DNA applications
in Nanophotonics to purely passive ones, such as a scaffold for the geometrical arrange-
ment of the active elements. Similar behaviour is also found in large neutral polycyclic
aromatic hydrocarbons (PAHs), which however display plasmon-like resonances when
they are electrically doped:[183] the addition or removal of a single electron from these
molecules dramatically modifies their optical response, shifting it from the ultraviolet
into the technologically interesting visible region.[184] This result has been previously
studied in the literature, both from an atomistic perspective[183] and from an approach
more compatible with the image of charge densities.[185] Extrapolating this concept
to DNA itself suggests that its optical response may be shifted to lower energy regions
of the electromagnetic spectrum, such as infrared or the visible light range, by same
means. This idea, in combination with the existing techniques for manipulating the
geometric configuration of DNA and its ubiquity in biological media, would render
this genetic molecule as a promising platform for active nanophotonics.

In this chapter, we study the optical response of charged DNA from first principles,
with a focus in the visible region, and explore various potential applications rang-
ing from light modulation to sensing. Specifically, we study the optical response of
neutral and charged DNA from first principles by combining time-dependent density-
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functional theory (TDDFT) to describe individual nucleobases (NBs) and classical
inter-NB interaction to deal with large DNA molecules. Our calculations are made
possible by introducing an efficient scheme to express the optical response through
polaritonic wave functions (PWFs), which we define to capture quantum-mechanical
atomistic details of the NB responses while allowing us to cope with large single and
double DNA strands. We present a detailed study of individual NBs and large single
DNA strands that illustrates the electro-optical response of this material, revealing
the potential of DNA for sensing.

4.2 The polariton wave-functions formalism

Studying complex DNA structures, with a multitude of bases, is an intractable problem
from a computational perspective: the inherent complexity of the existing methods
to estimate the optical response of nanostructures makes it practically impossible to
obtain it directly from ab-initio calculations for large structures.

For the efficient calculation of the optical response of multiple NBs, in this chapter, we
employed the plasmon wave function formalism (PWF), which are generally defined
as gradients of the normal electric field modes in the system. For molecular structures,
however, the standard PWF formalism has to be adapted to consider the transitions
between molecular states1.

4.2.1 Single-molecule case: derivation of the linear susceptibil-
ity

We begin by describing the current quantum state of the molecule as a linear combi-
nation of the different states the electrons can be found in: the ground state |g〉, with
probability |c0|2, and the different excited states

�

�e j

�

, each of them with an energy
ħhω j , and with a certain occupation probability |c j |2

|ψ〉= c0(t) |g〉+
∑

j

c j(t)e
−iω j t

�

�e j

�

.

These are eigenstates of the molecular Hamiltonian Ĥ0; thus, they fulfil the condi-
tions

Ĥ0 |g〉= 0, Ĥ0

�

�e j

�

= ħhω j .

1The general derivation of the PWF formalism for three and two-dimensional structures can be found
in Appendix A
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Next, we apply an electric field to the system: mathematically, this is modeled as an
additional perturbing term Ĥ1 to the total Hamiltonian

Ĥ1 = −e

∫

V (r, t)ρ̂(r) d3r.

Applying first-order perturbation theory, and assuming that our molecule can be found
initially on its ground state (i.e., c0(0) = 1), we find the equations fulfilled by the
wave functions coefficients c j(t)

Ĥ1 |g〉 c0 +
∑

j

eiω j t Ĥ1

�

�e j

�

c j = iħh |g〉 ċ0 + iħh
∑

j

e−iω j t
�

�e j

�

ċ j ,

with · representing the derivative with respect to time. If now we define the transition
charge densities ρ j(r) between the ground and the different excited states of the
molecule as

ρ j(r)≡



e j |ρ̂(r)| g
�

,

we can cast the previous equation into a more compact expression, in terms of these
new defined elements

c j(t) =
ie
ħh

∫ t

−∞
d t

∫ ∞

−∞

dω
2π

ei(ω j−ω)t

ω j −ω− iγ

∫

d3r′V (r′,ω)ρ j(r
′).

Once we have the whole quantum state of the molecule under the effects of the
perturbing field, we can compute the induced charge densityρind of the system (which,
eventually, will allow us to compute the linear susceptibility χ of the molecule). Up
to first order,

ρind(r, t) = −e (〈ψ |ρ̂|ψ〉 − 〈g |ρ̂| g〉)

≈ −e
∑

j

�

c jρ
∗
j (r)e

−iω j t + c∗jρ j(r)e
iω j t
�

.

To simplify the calculation, we transform the induced charge density to the frequency
space, where it has a linear dependence with the susceptibility χ as

ρind(r, t) =

∫ ∞

−∞

dω
2π

e−iωt

∫

d3r′ χ(r, r′,ω)V (r′,ω)

This allow us to write a closed form for the molecular susceptibility in terms of the
transition charge densities of the system, for which we assume the transition charge
densities to be real quantities

χ(r, r′,ω) =
∑

j

Dj(ω)ρ j(r)ρ j(r
′),
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where the coefficients Dj condense all the information regarding the frequency de-
pendence of the susceptibility, and read

Dj(ω) =
e2

ħh
2ω j

(ω+ iγ)2 −ω2
j

.

4.2.2 Extension to the multiple molecules case

Each of the molecules, labelled by l, is geometrically defined through their center-of-
mass position Rl , and rotated with respect their natural orientation axes. This is done
through the rotation matrix Ûl , such that the transition between the global space axes
and the molecule’s natural one is given by ul = Û

−1
l u′l , with u′l the unitary vectors of

the molecule’s axes.

Together with these geometrical considerations, each molecular species µ has a par-
ticular set of excited states, labelled by j, characterized by two different magnitudes:
on one hand, the energies of each of the states ħhωµ j; on the other hand, the transition
charge densities from the ground state ρµ j(u′), which we assume to be real.

Once we fulfil these two requirements, we can get an expression for the induced
charge density in terms of the transition charge densities of the system

ρind(r) =
∑

l j

cl jρl j

�

Ûl(r−Rl)
�

=
∑

l

ρind
l (r)

Where now the induced charge density condenses the response to two different
sources: the external field and the fields generated by the transition charge densities
of the surrounding molecules

ρind
l (r) =

∫

dr′χl(r, r′,ω)



V ext(r′) +
∑

l ′ 6=l

∫

dr′′

|r′ − r′′|
ρind

l ′ (r
′′)





︸ ︷︷ ︸

V total(r′)

.

Identifying the positions of each molecule Rl , and the rotations with respect their
natural axes Ûl , we can write this expression in terms of the transition charge densities
as

ρind
l (r) =

∑

j

Dl j(ω)ρl j

�

Ûl(r−Rl)
�

∫

dr′ρl j

�

Ûl(r
′ −Rl)

�

·



V ext(r′) +
∑

l ′ 6=l

cl ′ j′

∫

dr′′

|r′ − r′′|
ρl ′ j′

�

Ûl(r
′′ −Rl ′)

�



 (4.1)
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4.2 The polariton wave-functions formalism

Again, the expression above can be further simplified, and casted into a simple equa-
tion for the coefficients cl j

cl j = Dl j(ω)



c0
l j +

∑

l ′ 6=l

∑

j′
Ml jl ′ j′ · cl ′ j′



 ,

where we defined for simplicity

c0
l j =

∫

drρl j(r)V
ext
�

Rl + Û
−1
l r
�

as the effect of the external field on the molecule, and

Ml jl ′ j′ =

∫∫

drdr′
ρl j(r)ρl ′ j′(r′)

�

�

�Rl −Rl ′ + Û
−1
l r− Û

−1
l ′ r′

�

�

�

,

as the contribution from the neighbouring molecules.

4.2.3 Long-distance limit: recovering the Discrete Dipole Approx-
imation

The expression we derived above can be used, in principle, for any two non-overlapping
charge densities. However, the calculation of the Ml jl ′ j′ coefficients can be numerically
challenging. Nevertheless, for very long distances between molecules, the Coulomb
interaction can be expanded in the following, well-known scheme

1
�

�ξ+ α
�

�

=
1
x
−
ξ · α
x3
+

1
2

�

3
(ξ · α)(ξ · α)

x5
−
α · α
x3

�

+O(1/x4)

This leads to a simplification of the Ml jl ′ j′ , becoming proportional to the dipole-dipole
Green function, and thus recovering the DDA scheme for the interaction between
molecules

Ml jl ′ j′ ≈ −Gl jl ′ j′ =
p̃l j · p̃l ′ j′

R3
l l ′

− 3
(Rl l ′ · p̃l j) · (Rl l ′ · p̃l ′ j′)

R5
l l ′

,

where we defined the transformed dipole for the transition j and the molecule l, p̃l j ,
as

p̃l j = Û
−1
l pl j ≡ Û

−1
l

∫

dr rρl j(r)
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4.2.4 Derivation of the linear polarizability in the dipole-dipole
interaction limit

If now we write the external potential as the one generated by a constant, uniform,
external electric field

V (r,ω) = −r · E

We can compute the induced dipole moment of the molecule directly from the induced
charge density, as

p(ω) =

∫

d3rρind(r,ω)r= −
∫

d3r

∫

d3r′ χ(r, r′,ω)(r⊗ r′) · E

If we define the individual dipole for each of the transition charge densities, d j

d j =

∫

d3rρ j(r)r,

we can write the induced dipole of the molecule in terms of these, as

p(ω) =
e2

ħh

∑

j

2ω j

ω2
j − (ω+ iγ)2

(d j ⊗ d j) · E≡ α̂(ω) · E,

where we have defined the polarizability

α̂(ω) =
e2

ħh

∑

j

2ω j(d j ⊗ d j)

ω2
j − (ω+ iγ)2

4.3 Optical response of charged single-stranded DNA

4.3.1 Optical response of charged DNA nucleobases

We perform first principle simulations of the optical response of isolated NBs and
3-NB sDNA strands using the Gaussian 16 computational chemistry suite[186]. We
first carry out a DFT optimization of the atomic structure at the B3LYP/6-311++g
theory level, followed by the computation of its first 20 excited states by means of a
TDDFT calculation at the same theory level. While not being the most advanced level
available, using this level of theory allows us to make reasonable physical assessments
of the behaviour of DNA molecules, without over-complicating the calculations. Figure
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Figure 4.1: Optical response from charged DNA nucleobases in the visible regime.
a) Atomic structure of a double-strand DNA showing a characteristic example of the
position and distance of neighboring NBs. b-e) We show the molar attenuation coeffi-
cient (left vertical axes) and absorption cross-section (right axes) for each of the four
possible types of NBs with positive (red) or negative (blue) doping (i.e., by removing
or adding one electron, respectively). The spectra for neutral NBs (gray) takes much
smaller values and is only visible in the lowerleft part of the plots. Simulations for indi-
vidual NBs performed by TDDFT (dashed curves) are compared with polaritonic wave
function (PWF) calculations (solid curves) in which each charged NB X is flanked by
two other NBs in a single-strand DNA (sDNA) YXZ configuration. We plot different
realizations of the latter (i.e., YXZ, with X, Y, and Z running over the four types of
NBs), which are hardly distinguishable on the scale of the plots. The orientations of
the induced dipoles associated with different spectral features are shown as insets.

4.1 presents the results of the optical response of the DNA NBs obtained from TDDFT
simulations,[186] for the different charge states of the molecules: either neutral (gray),
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with an additional electron (blue) or without it (red). In the case of neutral DNA
bases, their optical response is concentrated in the ultraviolet, and they do not exhibit
any response in the visible spectrum. In clear contrast to the neutral case, the four
NBs present a clear response in the visible regime, both under positive and negative
doping. All of them, in turn, exhibit significant differences in their optical response,
both between the different bases and between the positive and negative doping of
the same base. This would suggest the potential ability to discriminate the bases
regarding the resonance position and charge state.

The average amplitudes of the resonances (around 104 M−1cm−1) are also of the
same order of magnitude as the responses of the neutral molecules in the ultraviolet,
with purines (adenine (A) and guanine (G)) displaying roughly a factor of 2 higher
peaks than pyrimidines (cytosine (C) and thymine (T)). Specifically, we find a rather
high response of the negatively charged adenine, at around 700 nm; a response that
spreads along the visible spectrum when the molecule is positively charged, with
peaks at 500 nm. Similar results with respect to response dispersal can be found in
all molecules. In addition to the absorption spectra, we present the transition dipoles
for each relevant resonance in the spectra: many of these dipoles appear along the
symmetry axis of the molecule’s scheme, slightly deviated towards regions with higher
electronegativity, suggesting a relevant role for the individual atoms in the optical
responses.

The TDDFT simulations presented in Fig. 4.1 are strictly valid only if the NBs are
isolated. However, the existence of a deoxyribose skeleton in DNA strands (which
is not considered in the optical response, due to its very high excitation energies
∼ 7 eV[187]) rearranges the whole macromolecule in characteristic patterns. We intend
to study the interaction among NBs in DNA strands using the PWF formalism under
the assumption of negligible mutual electronic overlap.

In order to corroborate the validity of this approach, we also show in Fig. 4.1b-e calcu-
lations based on this PWF formalism for sequences of three NBs, with the central one
in either neutral or doped states. This analysis reveals a limited influence of neutral
neighbouring NBs on the central NB is small (i.e., all combinations of neutral neigh-
bours produce nearly identical spectra for each choice of central NB). Additionally, the
results are similar to those obtained from TDDFT simulations. This further confirms a
low degree of hybridisation between the charge densities of the excited states in the
NBs. Although this does not affect our study, we observe significant effects associated
with hybridisation in the UV regime (not shown), where the different excited states of
the surrounding neutral NBs affect the optical response of the entire NB chain.
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4.3.2 Response of multiple charged nucleobases within the Po-
lariton Wavefunction formalism

Previous results suggest that the optical response of charged NBs may be affected in
the particular case where two charged NBs are very close together: in such cases, the
modes of these two molecules are in the same energy range, which may facilitate their
hybridisation. These cases, moreover, are not just hypothetical: adjacent pairs of NBs
with opposing charges, called exciplexes, arise naturally in the relaxation processes as-
sociated with UV excitation of neutral DNA.[182] Nonetheless, as the transition charge
densities are mostly located around each molecule, we can still use the PWF formal-
ism in an attempt to estimate the optical response of multiple charged NBs. We start
by analysing the optical response of exciplexes in Fig.4.2a, where we consider three
different examples of neighbouring NBs, but the results are qualitatively similar in
all kinds of possible combinations. The first conclusion from these calculations is
that the exciplexes display a strong optical response in the visible region, in contrast
to the neutral bases, which show essentially negligible absorption. Additionally, the
response is given to a good approximation as the sum of the responses of the charged
NBs that form the exciplex (cf. solid and dashed curves in Fig. 2a). We interpret this
lack of interaction between neighbouring NBs as the result of the mismatch in their
absorption resonances (see Fig. 1). Exciplexes are thus a rather simple example of
charged sDNA that can be formed by irradiating with UV light, and whose optical
response is easy to interpret as the direct sum of their charged constituents.

This situation changes when considering symmetric pairs of charged NBs (see Fig.
4.2b): the interaction between resonances at the same frequency in each of the neigh-
bouring NBs can lead to substantial modifications in the optical response (cf. solid
and dashed curves in Fig. 2b). This effect is particularly strong in A−−A− , which was
expected from the results of Fig. 1 because A− shows the strongest resonances among
the charged NBs.

The presence of multiple charges, therefore, is fundamental for tailoring the optical
response of DNA in the visible regime; however, injecting of multiple charges into a
DNA strand require these charges to get inserted and redistributed, thus becoming a
fundamental problem.

For large DNA strands, Figure 4.3 shows a way of injecting and distributing these
charges: a single-stranded DNA strand, functionalized to a metal layer. By applying
a potential to the metal, charges migrate within the DNA strand. We estimate their
distribution by enforcing the minimisation of the total energy, which we calculate at
first order as the combination of the chemical energies of each NB (which may depend
on its charge state) and the Coulomb interaction between the total charges of each
molecule. This interaction, while ignoring higher order couplings such as dipoles, is
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Figure 4.2: Visible optical response of neighboring charged NBs.a) Absorption
spectra of exciplexes formed by different combinations of NBs with opposite charges.
b Absorption spectra produced by identical neighboring charged NBs. Solid (dashed)
curves are PWF calculations with (without) inclusion of Coulomb coupling between
the two neighboring NBs.
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Figure 4.3: Variation of the optical response with the number of charges present
in single-stranded DNA chains. We study the variation in the absorption cross-
section of a positively charged sDNA chain as we increase the number N of positively
charged NBs in the molecule. We show in (a) the absorption spectra corresponding
to different values of N (normalised to N in each case) with a distribution of positive
charges as shown in (b). We consider a 50-NB chain, randomly generated with the
same NB abundance as in human DNA, and with a self-consistent distribution of the
positive charges that takes into account their electrostatic interactions, the NB ion-
ization energies, and the presence of a bias DC field of 0.3 V/nm. c,d)Same as a,b
for two different homogeneous sDNA chains composed of either A or G and negative
doping charges. Charges injected in a,b and c,d are positive and negative, respec-
tively, as determined by where the sDNA chain is attached to a lead. The DC fields
are considered to be aligned with the chain in all cases. NBs with positive, negative,
and zero charge are written in red, blue, and gray colors, respectively.
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Figure 4.4: Effect of charging in double-strand DNA (dDNA). Absorption spectra
of charged Watson-Crick pairs.

nevertheless sufficient for a first approximation of the charge distribution, especially
at low charge densities.

As for the optical response, it is possible to estimate the combined effect of all these
charges by using the polaritonic wave function formalism. Figure 4.3 shows the
effective cross-sections (normalised to the number of injected charges) for a randomly
generated DNA strand that follows the typical distribution of DNA bases for humans.
As expected, normalised absorption converges to its average value for isolated bases,
with a relatively high response for multiple charges. The results suggest a strong
optoelectronic response from this type of material.

4.4 Charged double-strand DNA

One of the most determining features of DNA is its ability to generate double helixes,
through Watson-Crick pair formation. When this occurs, the emergence of hydrogen
bonds between the adenine-thymine and cytosine-guanine pairs impedes the use of
polaritonic wave functions, as there are variations in transition charge densities due
to these hydrogen bonds.

However, we note that an extension of this method can still be applied when PWFs
are defined for the A-T and C-G combinations. We present results for charged Watson-
Crick pairs in Fig. 4.4, where we observe radical changes in the optical response of
neutral pairs. However, only a small part of these changes emerge in the visible region,
mostly as extended absorption features whose magnitude is significantly weaker than
in sDNA. This effect seems to be associated with the redistribution of the added
charge among the two NBs in the pair so that each of them is doped with a fraction
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of an elementary charge (in contrast to doping in sDNA) and therefore undergoes a
comparatively smaller modification in its optical response.

4.5 Conclusions

In summary, we have studied the optical response of charged DNA nucleobases, show-
ing that the addition or subtraction of an electron induces radical changes in their
optical responses, including the emergence of resonances in the visible spectrum,
where the molecules show a featureless response in the absence of charging. These
results can find a wide range of applications given the ubiquity of DNA, combined
the availability of methods to manipulate and integrate it in nanostructured environ-
ments.

Our results support the potential of DNA for optoelectronics since under the exposure
to strong DC fields produced in gating devices could trigger colour changes, and
mould the spectral transmission on demand. As a main conclusion of our work, we
show that sDNA displays a much stronger response than dDNA in the visible, thus
making it more suitable for applications.

Although a standard way of doping nanostructures consists in physically attaching
them to gates that provide charge injection, we have also revealed the strong potential
of sDNA to display an electrically tunable visible response by exposing large chains to
DC fields, whereby the molecules remain neutral, although charges of opposite sign
are induced in them to minimize their energy in those fields. These results support
DNA as a potential active material in Nanophotonics, thanks to its active modulation
ability by adding or subtracting charges from nucleobases.
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5
Modelling of plasmon-phonon

hybridisation in two-dimensional
materials

Optical modes in two-dimensional materials attract considerable interest due to their
unique properties compared to other materials; including the ability to hybridize
with the modes of their adjacent layers or with different non-optical modes of the
same layer. In this chapter, we develop a simple, but general enough model to study
the interaction between plasmons and phonons of two-dimensional materials. This
model provides a microscopic insight into the plasmon-phonon coupling, as well as
a straightforward extrapolation to hybridisation between modes of other atomically
thin materials.
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5.1 Introduction

Two-dimensional materials have brought a revolution to Plasmonics: plasmons sup-
ported by elements such as graphene have extraordinarily large confinement capa-
bilities;[188–190] simultaneously, they also exhibit much longer lifetimes than similarly
confined modes in traditional plasmonic materials (such as gold or silver),[65] thus
being suitable for applications such as waveguides or nonlinear devices,[68,71,191–194]

biosensors[195] and photodetectors,[196] which are widely used in modern electronics.
The ability to stack atomic layers of different van der Waals materials provides flex-
ibility to tailor the plasmonic (and in general polaritonic) response,[27,28] generally
involving the interaction between plasmons and phonons.

On the theoretical front, classical electromagnetism generally provides a good descrip-
tion of 2D plasmons, described in terms of surface conductivities and the dielectric
functions of the surrounding media.[33,189,197] Additionally, phonons in materials
such as hexagonal BN (h-BN) imprint spectral features in their generally anisotropic
dielectric response, which provide a good description for their hybridisation with
plasmons,[198–201] giving rise to characteristic anti-crossing dispersion diagrams that
most popular models cannot predict directly.

These interactions are typically described using classical electromagnetism theories,
which require prior knowledge of the dielectric function of the material and, thus, can-
not be easily extended to cases such as plasmon coupling with phonons in monolayer
and bilayer graphene. A more microscopic level of description is then required, which
generally demands involved first-principles simulations. In this line, a recent report
describes plasmon-phonon coupling using model Hamiltonians for finite graphene
nanostructures,[202] revealing considerable mode shifts and splitting.

In this chapter, we explore the possibility of predicting the effects of optical phonons
on the plasmon response of these two-dimensional materials. We cast the phononic
response in terms of an effective surface conductivity, whose parameters are derived
from first-principles calculations. We further illustrate this for graphene plasmon
coupling to intrinsic phonons in monolayer and bilayer graphene, as well as in mono-
layer h-BN. Our parameter-free calculations predict negligible coupling in monolayer
graphene, as well as sizeable mode splitting in bilayer graphene and the interaction
with h-BN, in good quantitative agreement with available experimental results. We
also address the potential extension of the applicability of the model to the study of
composite structures, such as graphene-h-BN, in which the individual modes of each
of the structures are hybridised between them.
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5.2 Theoretical model

5.2.1 Coupling to phonons near the Γ point

We aim to describe the optical response of extended two-dimensional structures; in
such arrangements, the propagating optical modes are defined through a wave vector
in the k‖ plane. Due to momentum conservation, the interaction between plasmons
and phonons will only take place if both excitations have the same value of k‖. In this
case, as with the coupling of plasmons and light, phonons have typically much larger
wave vectors than plasmons, which limits interaction with phonons to those whose
linear momentum is close to zero (i.e. the interaction takes place around the Γ point
in the first Brillouin zone).

Specifically, we can consider the case of graphene plasmons, which are extraordinarily
confined (k‖�ω/c), and associated with wave vectors of magnitude k‖ ∼ kF =

p
πn,

with n the doping carrier density . For high charge densities, n = 7 × 1013 cm−2

(equivalent to a Fermi energy EF = 1eV), the maximum value of the momentum
kF = 1.5nm−1 is still relatively small compared to the typical phonon moments of
this lattice, π/a = 12.8 nm−1, with a =

p
3× 0.142 nm associated with the graphene

lattice constant. This conclusion can be extended to other two-dimensional materials,
after examination of their dispersion relations.[27,203]

Since only phonons confined to the surroundings of the Γ point can interact with plas-
mons in two-dimensional materials, it is safe to approximate the vibrational dynamics
by those of phonons in the Γ point directly (in other words, ignoring the effect of the
wave vector on their dispersion relation). Another argument in favour of this hypoth-
esis is the observation that these modes have virtually flat dispersion relations (i.e.
no apparent changes in mode energy) around Γ so that their properties remain more
or less unaffected throughout the momentum space that plasmons may cover.

5.2.2 Self-consistent description of phononic conductivity

To describe the optical response of plasmon-phonon hybrid systems, we adopt a self-
consistent approach to the problem: the properties of the material are represented by
the non-interacting susceptibility, χ0, resulting from the separate combination of the
contributions of the two subsystems under consideration (electrons and phonons, in
our case). The interaction between the two is governed by the interaction of Coulomb,
v, which allows us to construct the complete susceptibility as[150]

χ =
χ0

1− v ·χ0
.
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The non-interacting susceptibility is defined in such a way that ρind = χ0 · φ is
the charge density induced by a certain self-consistent scalar potential φ. For two-
dimensional materials, it is convenient to work with these expressions in the ω fre-
quency space and with parallel wave vectors k‖. In these spaces, we can assume for
the potentials generated by plasmons or phonons a dependence φ ∝ eik‖·R−iωt in
terms of the in-plane position R and time t. Under these conditions, we can write the
electric field as −∇φ = −ik‖φ, from which we can get the induced current jind after
multiplying by the conductivity σ.

By using the continuity equation, −∂tρ
ind =∇· jind, we can write the induced charge

density as ρind = (−iσk2
‖/ω)φ. Comparing these results with the above expression

for ρind in terms of χ0, we can then write the surface conductivity

σ = iωχ0/k2
‖ , (5.1)

allowing us to decompose the surface conductivity in independent terms for phonons
and electrons.

For simplicity, we use the Drude model for conductivity associated with conduction
electrons, σel. In the case of graphene, conductivity takes the expression[189]

σel(ω) =
e2

πħh2

iEF

ω+ iγel
,

where γel is a phenomenological constant to represent electronic damping. This model,
despite its simplicity, is accurate enough to describe low energy plasmons, which are
relatively far from the region of electron-hole pair formation in graphene dispersion
diagrams.[33] Henceforth, we calculate the phononic conductivity σth and combine it
with the electronic one to build the total conductivity

σ(ω) = σel(ω) +σph(ω),

which we will use to simulate the electron-phonon coupling in graphene, bilayer
graphene and hybrid graphene h-BN systems.

The phononic conductivity, σph(ω), can be directly related to the polarisation that re-
sults from the displacements associated with the vibrational modes of the system. For
this purpose, we treat the two-dimensional material as a periodic array of polarizable
elements (one per unit cell), characterised by a phononic polarizability αph.

Each phonon mode j contributes to the polarizability through its unit cell induced
dipole moment, p j . From linear response theory, we can write[150]

αph(ω) =
2
ħh

∑

j

ω j p2
j

ω2
j −ω(ω+ iγ j)

, (5.2)
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where ω j and γ j are the energies and damping factors associated with the j-th vibra-
tional mode. In the calculation of this polarizability we have implicitly assumed that
we are employing an isotropic material (from the perspective of its vibrational modes);
however, this study can easily be generalised to the case of anisotropic phonon dis-
persions.

5.2.3 Relationship between surface conductivity and non-interacting
susceptibility

The relationship between the phononic polarizability αph and its associated phononic
conductivity σph is established through the Fresnel coefficients obtained for each of
these magnitudes. In particular, for a thin sheet of conductivity σph, these coefficients
take the form

rph
s =

−1
1+ωk⊥/2πk2σph

,

rph
p =

1
1+ω/2πk⊥σph

,

for parallel and perpendicular polarisations to the plane of incidence, respectively.
In these expressions, k =ω/c, and k⊥ =

Ç

k2 − k2
‖ represents the component of the

wave vector that lies outside the plane of the sheet.

Additionally, the Fresnel coefficients for a periodic two-dimensional distribution of
polarizable elements of polarizability αph are[204]

rph
s =

−1
1+ iAk⊥ (1/αph −Re{G}+ 2ik3/3)/2πk2

,

rph
p =

1
1+ iA(1/αph −Re{G}+ 2ik3/3)/2πk⊥

, (5.3)

for parallel and perpendicular polarisations to the plane of incidence, with A the
area of the unit cell. Comparing both expressions, we find that the results for both
polarisations are identical if the relationship

σph(ω) =
−iω

A
1

1/αph −Re{G}+ 2ik3/3
(5.4)

is satisfied.

For modes such as phonons, extraordinarily confined with respect to incident light,
it is safe to ignore the 2ik3/3 term of the denominator. Likewise, the term Re{G} de-
scribes the Coulomb interaction between polarizable elements; that is, it introduces
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self-consistency between dipoles in the calculation. This self-consistency is naturally
included in the calculation of αph from first principles (see 5.2.4), so it is not ap-
propriate to add this term to the expression. Therefore, the expression for phononic
conductivity reduces to

σph(ω) =
−iωαph(ω)

A
=
−2iω

Aħh

∑

j

ω j p2
j

ω2
j −ω(ω+ iγ j)

. (5.5)

Near a dominant mode, we can approximate ω j ≈ωph, γ j ≈ γph, and p j ≈ pph as an
independent parameter of j, taking these magnitudes as their values at the Γ point.
The terms in the equation 5.5 are therefore independent of j, and we can set an
effective dipole moment per unit cell pph

eff, defined such that
∑

j p2
j → A(pph)2/4π2 ≡

(pph
eff)

2

5.2.4 Dipole moments and phononic polarizability

To calculate the induced dipole moments per unit cell, we start by numerically calcu-
lating the normal modes (restricting ourselves to the plane) of our two-dimensional
system. These modes, labelled by the µ index, are obtained by diagonalisation of the
dynamical matrix of the system around the Γ point, from which we get the energies of
the phonons ħhωµ and their associated atomic displacements, as shown in figure 5.1.
This diagonalisation is provided already by the SIESTA chemistry suite,[205] employing
the PBE functional[206] within a DFT framework.

The atom displacements induced by these normal modes produce disturbances of the
electronic charge density with respect to the equilibrium charge density: the difference
between them results in the ability to define an induced charge density ρµind(r,α),
linked with the displacements of atoms along the µ mode a certain distance α, which
we take as the average displacement associated with that mode α= ħh

p

1/2Mħhωµ. In
the case of graphene, where M is the mass of the carbon atom and ħhωph ∼ 0.2 eV is
the energy of the optical phonon, we get α∼ 3 pm. From these charge distributions,
we can obtain their multipolar moments, such as the induced dipole moment

pµind =

∫

dr rρµind(r), (5.6)

where we extend the integration region to the entire volume covered by the unit cell
(including the direction normal to the layer).

The results obtained through this procedure are summarised in figure 5.1, for the
three structures under study (graphene, bilayer graphene and hexagonal boron ni-
tride, h-BN). The results show two different behaviours: firstly, the displacements
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Figure 5.1: Optical phonons and associated dipole moments in atomically flat
two-dimensional structures. We depict the displacements associated with the in-
plane normal modes around the Γ point, for graphene, bilayer graphene and h-BN,
together with their energies and induced dipole moments (in debyes), calculated
using the SIESTA chemistry suite.[205]
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Figure 5.2: Plasmon-phonon hybridisation in graphene and bilayer graphene. We
show the dispersion relation of plasmons through the imaginary part of the Fresnel
coefficient in perpendicular polarisation, Im{rp}, given by equation 5.3 for graphene
and bilayer graphene. (a) The graphene phonons have no net dipole moment around
the Γ point, so their coupling to the plasmons is negligible. (b) In contrast, for bilayer
graphene the plasmon-phonon interaction causes an anticrossing, with a coupling
energy of ∆≈2 meV.

that preserve the symmetry of the charge distribution (as in the case of graphene)
present induced dipolar moments close to zero; secondly, the modes that break this
symmetry (some of the bilayer graphene) present relatively high dipolar moments
in comparison, which suggests a potential coupling between these phonons and the
propagating plasmons. The same is true for h-BN, where the partially polar character
of the ionic bonds and the asymmetry of the displacement vectors are responsible for
the breakdown of the symmetry of the original atomic lattice.

5.3 Plasmon-phonon coupling in graphene structures

Phonons in graphene and bilayer graphene are in the same energy range as the surface
plasmons that these structures can support. Therefore, there is a high probability
that both excitations hybridise with each other, especially when the phonon-related
displacements distort the plasmon-induced charge density (as may be the case with,
for example, phonons with non-zero induced dipole moment).

Figure 5.2 represents the imaginary part of Fresnel’s reflection coefficient, Im{rp}, for
graphene (a) and bilayer graphene (b) structures. This parameter, being a reliable
representation of the dispersion relation of plasmons in two-dimensional materials,
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reveals the effects that the plasmon-phonon coupling may have on the response of
the former.

As expected, we find a dependent behaviour on the number of layers under consider-
ation: for graphene, the fact that its induced dipolar moments are negligible results
in a practically zero phonon-related conductivity, σph ∼ 0. Therefore, there should
be no coupling effects between plasmons and phonons, as confirmed by the results
shown in figure 5.2(a), which represents Im{rp} in the phonon surroundings: the
results obtained both taking and not taking into account the phononic conductivity
are identical.

In clear contrast with the above result, the phononic conductivity severely alters the
behaviour of the bilayer graphene plasmons, since the induced dipolar moments are
much higher than in the case of graphene. As shown in figure 5.2(b), the inclusion of
conductivity results in the splitting of the dispersion relation, clearly demonstrating
the coupling between the vibrational and plasmonic modes of the structure.

5.4 Plasmon-phonon coupling between different lay-
ers

The model previously used for the study of plasmon-phonon couplings is not limited
to the situation where both excitations are from the same material; in fact, it can
be extended with relative ease to study the plasmon-phonon coupling between the
different layers of Van der Waals heterostructures.

As an example, we consider a graphene structure that rests on a monolayer of h-
BN, as shown in figure 5.3(a). Each of the structures is defined by its respective
conductivities, σML = σel and

σBN(ω) = (1− εBN(ω))
iωt
4π

,

where t = 3.33 is the effective thickness of the h-BN and εBN(ω) is its relative permit-
tivity, broken down into a background term εBN,0 = 4.95[207] and the phonon contri-
butions, introduced using the phonic conductivity described in equation (5.5).

The coupling between phonons and plasmons (and therefore the reflection coefficient
of the system as a whole) depends on the separation d between the two layers. In this
configuration, the field induced by the plasmon is enclosed between these two layers
and reflected from one to the other. This argument results in a scheme similar to that
of a Fabry-Perot, in which the effective reflection coefficient can be written in terms of

92



5.4 Plasmon-phonon coupling between different layers

Figure 5.3: Plasmon-phonon hybridisation between neighboring layers. (a) We
consider a graphene layer on top of an h-BN layer, separated by a distance d. (b)
Dispersion relation for d = 0.33 nm, taken from the Fresnel coefficient of the system
as a whole Im{rp}. Coupling between graphene plasmons and phonons in the h-BN
produces an anticrossing with a coupling∆∼ 10 meV. (c) Dependence of the coupling
∆ on the distance between layers.
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the individual reflection coefficients rML and rBN by means of the expression

reff(d) = rML + t2
MLrBN

e−2kMLd

1− rMLrBNe−2kMLd
,

where tML = 1 − rML and kML = Re
¦

iω
2πσML

©

is the real part of the plasmon wave
number.

The dispersion relation obtained through this effective reflection coefficient is shown
in figure 5.3(b). The effects of the plasmon-phonon coupling are still clear: the disper-
sion relation still shows a separation∆ at the phonon frequency of h-BN. We compare
our predictions with experimental results for a typical distance d = 3.3 Å[208](red line
in figure 5.3(b)).

As an additional study, figure 5.3(c) examines the energy splitting ∆ as a function of
the distance between the layers of the heterostructure, showing a trend to decrease
exponentially. In the limit case d →∞, we can check that we recover the dispersion
relation of graphene, reff→ rML.

This model is highly dependent on the distance between layers, which is characteris-
tic of Fabry-Perot-based configurations. To further study this effect, we compare this
model with the predictions resulting from considering each of the layers indepen-
dently: in other words, considering rcomb = r(σML +σhBN). These predictions appear
as the blue line in figure 5.3(b), giving similar results to the case d = 3.3 Å

5.5 Conclusions

In this chapter, we introduced a theoretical model for the study of the hybridisation
between plasmons and phonons in two-dimensional materials. We have modelled the
effect of phonons around the Γ point on the electron density as polarizable elements,
whose properties we calculated ab initio. These polarizable elements can be included
in the conductivity of the system by defining an “effective conductivity”, which can,
in turn, be written in terms of the polarizable elements.

We have successfully applied the model to monolayer and bilayer graphene, showing
a strong hybridisation between plasmons and phonons only in the case of bilayer
graphene, whose vibrational modes break the symmetries of the charge distribution
and generate non-zero induced dipole moments.

Afterwards, we studied the extensibility of these results to the case of graphene-h-BN
composite structures, exploring the dependence of the coupling on parameters such
as the distance between both layers. The flexibility of the model renders it useful to
study phonon coupling effects in any composite two-dimensional structure.
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6
Scanning vibrational modes using
electron energy loss spectroscopy

The state-of-the-art techniques of energy loss electron spectroscopy (EELS), owing
to their spatial resolution at the atomic scale, enable the excitation and study of
vibrational modes (phonons) in molecules and nanostructures. In this chapter, we
explore the interaction of these ultra-compact electron beams with the vibrational
modes of graphene nanostructures from a theoretical perspective. We analyse their
ability to map the local density of vibrational states and explore the possibility of
selectively exciting these modes.
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6.1 Introduction

One of the most efficient ways to excite plasmonic modes, apart from using light, is
through the use of electron beams; in fact, the first experimental findings of their
existence come from electron energy loss spectroscopy (EELS) studies.[40,41] To over-
come the momentum mismatch –responsible for the inefficient coupling between
light and plasmons–, the presence of evanescent fields in the electron vicinity (asso-
ciated with relatively high values of the momentum[42]) allows a relatively efficient
coupling between the electron beams and the plasmonic structures; Moreover, the
control of the position and size of the beam in a transmission electron microscope
(TEM) allows to map these plasmonic modes with high precision, both spectral and
spatially.[209–212]

Recent developments in electron microscopy allow the use of electron beams with
unprecedented spatial resolution (sub-nanometric, even reaching beams with few
angstroms in width). The use of monochromators also increases the resolution in the
energy range up to a resolution width of < 10 meV.[213] Furthermore, the emergence
of ultra-fast spectroscopy techniques, in which the electron beams are themselves
confined to ultra-short pulses,[214–216] provides the possibility of mapping the time
evolution of the modes under investigation.[217,218] All these new techniques promise
a breakthrough in the way electron spectroscopy is performed nowadays.

The enormous possibilities that all these techniques open up for applications, however,
are in direct conflict with what currently is the limiting factor for Plasmonics: the very
short half-lives of these modes. However, the increase in the energy resolution enables
the possibility of studying other types of modes –up to now unattainable–, such as
vibrational modes.[219] These modes show similar properties to plasmonic modes,
with the added advantage of higher quality factors (and therefore longer lifetimes).
Combined with the recent advances in electron spectroscopy, this may result not only
in an improved understanding of phonons from a fundamental perspective but also
in a significant leap in their potential applications, using electrons, for example, to
create and manipulate these vibrational modes at will.

In this chapter, we study the possibility of excitation and manipulation of phonons
from a theoretical perspective, using electron spectroscopy techniques. We introduce
a quantum formalism for the study of the interaction between the normal modes of
vibration of a two-dimensional structure and an electron beam in normal incidence
to it. We predict relatively high EELS probabilities, which are highly correlated with
the local density of vibrational states (LDVS), suggesting the possibility of selectively
exciting vibrational modes by modifying the beam position.
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6.2 Theoretical model

The general theory for modelling EELS processes is well known and can be found
in multiple references.[42,220–222] In our case, we use this general theory to define
an interaction Hamiltonian, which describes the inelastic scattering processes be-
tween these electrons and the vibrational modes of our two-dimensional structure.
The equivalence between this model and the general theory is discussed in depth in
6.2.3.

6.2.1 Electron-phonon interaction model

In our model, we describe the vibrational modes employing a second quantisation
formalism, with an external classical potential modelling the incident electron; for
simplicity, we ignore retardation effects. Thus, the electron-phonon interaction is
given by the Hamiltonian

H =
∑

n

�

ħhωn b̂†
n b̂n + gn(t)(b̂

†
n + b̂n)

�

,

where n labels the vibrational modes of the structure, the b̂n, b̂†
n operators are the

destruction/creation operators of the vibration quanta (phonons) associated with the
n-th mode, and gn(t) is the coupling coefficient between the n-th phonon and the
electron. Similar Hamiltonians have previously been used to describe EELS phenom-
ena associated with other excitations in two-dimensional structures, such as graphene
plasmons.[85]

The interaction coefficient between the n-th mode and the electron accepts the ex-
pression

gn(t) = −e

∫

d3r
ρn(r)
|r− re(t)|

, (6.1)

which is nothing more than the electrostatic energy associated with the phonon-
induced charge density, ρn(r), in the presence of the electron, which moves along the
path re(t). This displacement of the electron is what gives the coefficient gn(t) its
time dependence.

The charge density associated with the phonon, ρn(r), is obtained from the atomic
displacements of the material related to this mode of vibration, un

l , with l labelling
atoms; these displacements, estimated with respect to the equilibrium position of the
atoms, rl = (Rl , z = 0), assume there is a single quantum of vibration in the system,
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and ignore the possible self-consistent reconfigurations of the electronic distribution;
they also satisfy the orthogonality relation

∑

n

un
l · u

n
l ′ =

ħh
2
Æ

Ml M
′
lωn

δl l ′ .

With these definitions, ρn(r) can be written as

ρn(r) =
∑

l

�

ρl(R−Rl − un
l , z)−ρl(R−Rl , z)

�

, (6.2)

where ρl(r) is the charge density associated with the atom l, and r= (R, z).

6.2.2 Calculation of the EELS probability for vibrational modes

Since the EELS probability is numerically small,[42] we can rigorously describe the
excitation of normal modes within the formalism of first-order perturbation theory.
To do this, we consider that the structure is initially in its fundamental state; each
normal mode n can be described independently of the others, so the probability
of being excited after interaction with the electron can be obtained by integrating
Schrödinger’s equation: the amplitude of the n-th mode is written as[85]

ξn =
−i
ħh

∫ ∞

−∞
d t eiωn t gn(t), (6.3)

which corresponds to a probability |ξn|
2 that the electron will undergo a energy loss

of ħhωn. Therefore, we can express the EELS probability distribution as

Γ EELS(ω) =
γ

2π

∑

n

|ξn|
2

(ω−ωn)2 + (γ/2)2
, (6.4)

in which we introduce a phenomenological width in energies ħhγ = 10meV (much
greater than the width associated with the vibrational mode), directly related to the
width of the zero-loss peak (ZLP).

If we assume that the electron moves with constant velocity v in a normal direction to
the plane of the structure, the integral in time of 6.3 accepts an analytical expression,
which allows rewriting the amplitude of the n-th mode as

ξn =
2ie
vħh

∫

d3reiωnz/vρn(r)K0(ωn |R−Re|/v),
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with Km the modified Bessel function of m-th order. Substituting ρl(r) for its expres-
sion, we get

ξn =
2ie
vħh

∑

l

�

Fn(Re −Rl − un
l )− Fn(Re −Rl)

�

, (6.5)

where

Fn(R) =

∫

d3r′ eiωnz′/vρl(r′)K0(ωn

�

�R′ −R
�

�/v).

Since the displacements un
l are generally small compared to interatomic distances,

we can seek a series expansion of 6.5 in a power series, retaining only the linear
components. In doing so, the expression for the transition amplitude is

ξn ≈
2ie
vħh

∑

l

un
l ·Gn(Re −Rl), (6.6)

where

Gn(R) =
ωn

v

∫

d2R′ ρ̃l(R′) K1

�

ωn

�

�R−R′
�

�/v
� R−R′

|R−R′|
(6.7)

and in which we have introduced the integrated charge density along the normal
plane direction,

ρ̃l(R) =

∫ ∞

−∞
dz eiωnz/vρl(R, z). (6.8)

The phase that appears in this integral can be taken as a constant: for the typical
values of beam energies in the TEM ( 80 − 300keV, corresponding to propagation
velocities v/c ≈ 0.50 − 0.78) and for the characteristic energies of the vibrational
modes ħhωn ≤ 0.1eV, we estimate v/ωn > 500nm, a magnitude much higher than
the regions where the atomic charge density ρl takes appreciable values; therefore,
we can approximate this expression as

ρ̃l(R)≈
∫ ∞

−∞
dz ρl(R, z). (6.9)

For the same reason, we can take in 6.7 the approximation of Bessel’s function for
near-zero arguments, i.e. K1(θ )≈ 1/θ , resulting in a relatively simple expression to
evaluate as

Gn(R)≈
∫

d2R′

R′
ρ̃l(R−R′) R̂

′
.
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Finally, it is convenient to break down the charge distribution of the atom into its
nuclear (charge eZ) and electronic (charge density n(r)), components, in the form
ρl(r) = e [Zδ(r)− n(r)]. By changing the previous integral to polar coordinates, we
obtain

Gn(R) = e

�

Z
R
− 2

∫ π

0

dϕ cosϕ

∫ ∞

0

dR′ ñ (d)

�

R̂, (6.10)

where we define d =
Æ

R2 + R′2 − 2RR′ cosϕ, and use ñ(R) =
∫

dz n(r) in the same
way as in 6.9

It is worth noting that for energetic enough beams, the velocity of the electron v
appears in this formalism as a multiplicative factor of 1/v in the transition amplitude
ξn, so that the calculations shown below for a typical energy of 100 keV (v ≈ 0.55 c)
are directly scalable to electrons of different energies.

6.2.3 Equivalence with the general EELS theory

To establish a relationship between this Hamiltonian formalism and other more stan-
dard methods, it is convenient to write 6.1 as gn(t) = −eφn[re(t)], where φn(r) =
∫

d3r′ρn(r′)/|r− r′| s the electrostatic potential generated by the charge distribution
ρn, associated with the n-th vibrational mode.

In the more general case where the external excitation does not come from an electron,
but from an arbitrary potential, we can rewrite the coupling coefficients as gn(t) =
−
∫

d3rρext(r, t)φn(r), which allows us to write[85]

W ind(r, r′,ω) =
2
ħh

∑

n

ωnφn(r)φn(r′)
ω2 −ω2

n + i02
, (6.11)

where W ind is the screened induced interaction, defined in such a way that
∫

d3r′W ind(r, r′,ω)ρext(r′,ω)

is the electrostatic potential in r induced by ρext in the ω frequency space. From this
expression, we can obtain as final result for the EELS probability[42]

Γ EELS(ω) =
∑

n

|ξn|
2 δ(ω−ωn),

where ξn is consistent with the definition given in 6.3. Finally, this expression becomes
6.4 by converting the Dirac functions into replicas of the ZLP (i.e., into Lorentzians
of width γ), so that we can identify the general formalism with the hamiltonian
formalism used in this chapter.

101



6. SC A N N I N G V I B R AT I O N A L M O D E S U S I N G E L E C T R O N E N E R G Y L O S S

S P E C T R O S C O P Y

6.3 Vibrational mode excitation in graphene nanostruc-
tures using EELS
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Figure 6.1: Spatial distribution of the phonon excitation probability in tripheny-
lene. We show the EELS spectrum (continuous line) for an incident electron with an
energy of 100 keV, centred on the position indicated by the grey arrow on the local
EELS probability map, filtered at an energy of 0.19 eV. We also show the atomic dis-
placements associated with one of the vibrational modes at 0.19 eV, by using arrows
centred on each of the atoms. The discontinuous curve in the spectrum represents
the local density of vibrational states at the incidence position of the beam.

The results presented in the previous section can be applied, in principle, to any two-
dimensional material; in our case, we focus on the study of graphene nano-islands
of different sizes: from the smallest aromatic hydrocarbons to nanostructures with
thousands of atoms. From now on, we assume a planar structure, with all the carbon
atoms in the plane z = 0.

For simplicity, we take the electronic charge density of carbon nl(r) identical to that
of an isolated carbon atom (i.e., ignoring the variations in charge density due to the
presence of neighbouring atoms). Likewise, we rule out the contribution of the inner
electrons of the atom, so we can effectively treat it as a Z = 4 atom with electronic
density n(r) = 2|ψ2s(r)|2 + |ψ2p(r)|2(R2/2+ z2)/r2: two electrons in the 2s orbital,
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Figure 6.2: Effect of the spatial spread of the beam on the EELS probability. The
EELS probability is represented, under the same conditions as in figure 6.1, for a
beam centred at one of the inner bonds. We assume a Gaussian profile with a variable
standard deviation σ for the beam.

one in the XY plane, and one in the off-planar orbital (z/r)ψ2p, which we get from
tabulated results.[223]

Likewise, we ignore the presence of hydrogen atoms passivating the structure, assum-
ing that they do not participate in the vibrational response; for the calculation of the
latter, we use a simplified model,[224] that only takes into account stretching effects
between neighbouring atoms.

An illustrative example of how to use electrons to excite vibrational modes in these
structures is shown in figure 6.1, in which the electron beam interacts with a tripheny-
lene molecule. The spectrum, which corresponds to an electronic path that crosses
one of the internal bonds of the molecule, presents resonances and features charac-
teristic of different vibrational modes. The graph also shows the spatial distribution
of losses for a given vibrational mode as a function of the position of the electron,
from which it can be induced that it is located in the interior of the molecule.

When studying the possibility of resolving vibrational states with electrons, it is impor-
tant to consider the effect of beamwidth on the EELS probability. Figure 6.2 studies
these effects on the EELS probability, assuming a Gaussian profile with different beam
widths σ, under the same conditions as in figure 6.1. It should be noted that the EELS
probability is not maximal for an infinitely localised pulse: the increasing width of the
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pulse allows a greater portion of the electrons to travel closer to the atoms; however,
the probability eventually declines for very large values of σ, when the electrons are
too dispersed to excite the modes. For simplicity, the results shown in the rest of this
chapter assume an infinitely localised pulse, being similar to those of a beam of size
2σ ∼ 0.5nm.

6.4 Local Density of Vibrational States Inspection us-
ing EELS

EELS studies of photonic structures are capable of revealing information about the
so-called local density of optical states (LDOS).[225] In the same way, losses due to
excitation of vibrational modes may provide information on the spatial and spectral
distribution of these modes.

A preliminary indication of this appears after comparing the EELS probability with the
local density of vibrational states in figure 6.1; an analysis that we extend in depth
in figure 6.3, where we generalise it to structures of different sizes.

We define the local density of vibrational states analogously to the density of elec-
tronic states[4] as the spectral and spatial distribution of vibrational modes; specifi-
cally, ρLDVS

l (ω) =
∑

n

�

�un
l

�

�

2
δ(ω−ωn), with l and n indices that run through atoms

and modes, respectively. To facilitate comparison with EELS, we added a certain spa-
tial width to the LDVS by convolving it with Lorentzian functions, so the LDVS reads
(δr/2π)

∑

l ρ
LDVS
l /

�

|R−Rl |2 + (δr/2)2
�

. Additionally, we added a spectral width iden-
tical to that of the ZLP. In figure 6.3 we observe a clear but not perfect correlation
between the EELS and LDVS distributions, which is present throughout all the struc-
tures considered, including the extended graphene limit (lower panel). We also find
a correlation in the spatial dependence of both magnitudes.

The different spatial distributions of the modes suggest the possibility of selectively
exciting them by merely shifting the electron beam through various positions in
the structure. Figure 6.4 shows that a certain degree of selectivity can be achieved
between modes of different energy; for example, for a beam passing through the
structure near its edge, the mode is preferably excited at 0.17,eV, while the innermost
paths have a preference for the mode at 0.19,eV.
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6.5 Conclusions

In this chapter, we studied the possibility of using electron beams to excite vibrational
modes (phonons) in two-dimensional structures. We established a theoretical model
based on an interaction Hamiltonian, equivalent to the general EELS theory, and
applied it to graphene structures of different size. In all the cases under analysis,
we found a high correlation between the EELS probability and the local density of
vibrational states, both in the spectral and spatial domains.

Our results also suggest the possibility to selectively excite these vibrational modes,
focusing the electron beam in regions of maximum vibrational density. This situation,
similar to the case of plasmonic structures, opens the door to employing phonons in
signal generation and manipulation devices, enjoying some of their advantages, such
as long lifetimes.
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Figure 6.3: Comparison between EELS and the local density of vibrational states.
Comparison between the EELS spectrum (continuous lines) and local EELS proba-
bility maps (upper maps each corresponding to the labelled resonances) with the
local density of vibrational states (discontinuous curves and lower maps) for carbon
nanostructures of different sizes. The EELS probability is shown in absolute units (eV
probability of loss), while the LDVS is shown in arbitrary units. The position of the
electron beam is represented by an arrow on the local EELS probability maps.
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Figure 6.4: Selective excitation of vibrational modes. We show the EELS probability
for electrons passing through a carbon nanotriangle (90 atoms), as a function of the
central position of the beam (represented by crosses). The color code relates each
position to its associated spectrum.
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Conclusions

This thesis explores multiple research lines currently open in Plasmonics: from non-
linear phenomena, for which classical electromagnetism models are still applicable,
this thesis naturally evolves towards more detailed studies of light-matter interaction,
for which an in-depth description of structures electron by electron provides a deeper
insight into the underlying physical phenomena.

In summary, the main results of this thesis are:

• Enhanced nonlinear response by plasmon focusing. In Chapter 2, we pro-
pose a general method for the design of plasmonic lenses, capable of focusing
optical fields and producing an enhanced nonlinear response: in these struc-
tures, the incident light is coupled to the edge, generating plasmons that are
propagated through the material. Further engineering of these structures allows
the focusing of plasmons, producing field hotspots that can lead to an increase
of nonlinear phenomena in that region.

In our case, we apply the general model to the study of third-harmonic genera-
tion in semicircular graphene nanostructures. Besides, we explore the possibility
of controlling the focal position by modifying experimental parameters, such
as edge redesign or modification of the angle of incidence of the external field.

• Study of the dynamics and thermalisation of hot-electrons. In Chapter 3,
we study the behaviour of hot-electrons in metallic nanostructures, which are
generated after the decay of the localised plasmons that these structures support.
Our theoretical model allows the individual tracking of the dynamics of each
electron separately; such dynamics is governed by a master equation, which
takes into account the electron coupling to the external fields, the elastic colli-
sions between them (mediated by the Coulomb interaction) and their coupling
to the vibrations of the ionic network.
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Our model predicts the existence of three stages for electronic dynamics, each of
them associated with one of these physical phenomena, with distinctly differen-
tiated time scales: the excitation by the laser field, lasting tens of femtoseconds;
the thermalisation of electrons, in hundreds of femtoseconds; and the relax-
ation to the thermal equilibrium state, on the order of picoseconds. We also
study the half-lifetime of each of the electrons, further reinforcing the image of
thermalisation and relaxation resulting from our master equation simulations.

• Study of the optical response of doped DNA strands. In Chapter 4, we
develop and implement a hybrid model for the study of the optical response
of complex nanostructures. In this model, the response of each of the various
components of the system is obtained from first-principle methods (such as
TD-DFT), while the response of the entire assembly is obtained employing an
extension of the polariton wave function formalism.

We employ this method to study the optical response of DNA strands with
multiple additional charges, which have optical response in the visible range
(unlike neutral nucleobases), which increases as we introduce more charges
into the strand, suggesting the potential use of DNA as an active material in
Nanophotonics.

• Study of plasmon-phonon coupling in two-dimensional materials. In Chap-
ter 5, we explore the possible effects that the vibrations of the ionic network
(quantised as phonons) have on the plasmonic dispersion relation, specifically in
the case of two-dimensional materials. From ab initio simulations, we estimate
the induced charge density associated with the ion displacements generated
by the phonon. For vibrations that give rise to a non-centre-symmetric charge
distribution, the emergence of a dipolar moment induced by the phonon makes
it possible to couple it with the charge density of the plasmon, modifying its
dispersion.

In this thesis, we have verified this hypothesis by studying the plasmon disper-
sion in monolayer and bilayer graphene: for the first one, the dispersion relation
is not affected by the phonons, as these preserve the symmetry of the charge
distribution; in patent contrast, the phonons in graphene bilayer are susceptible
to coupling to plasmons, producing an anti-crossing of the dispersion relation.

We also extend the model to study the coupling in heterogeneous structures
between the plasmons of a graphene layer and the phonons of a neighbouring
h-BN monolayer: we find a phenomenon similar to that of bilayer graphene,
with the additional possibility of modulating the anti-crossing gap by changing
the distance between the two layers.

• Excitation of vibrational modes by means of Electron beams and EELS.
Finally, in Chapter 6, we study the possibility of exciting vibrational modes
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using electron beams, inspired by the capabilities of state-of-the-art electron
microscopes. Our model of coupling to these excitations, equivalent to the con-
ventional formalism of electron spectroscopy, explores the effect on the electron
of the field generated by the charge densities associated with ion displacements.

Specifically, we study the energy loss of electrons when they impinge on two-
dimensional carbon nanostructures. We find that the loss probability in both
the spectral and position spaces is strongly correlated with the local density of
vibrational states, which is linked to both the spectral and spatial distributions
of the vibrational modes, thus suggesting the possibility of using EELS for the
study of these modes, in clear analogy with plasmons.

We hope all these results will prove useful in the advancement of fields as appealing
and relevant as Plasmonics, Nanophotonics and Photonic Sciences in general.
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A
Analytical description of nanoscale

optical resonances: the plasmon wave
function formalism

The precise study of the optical response of nanostructures requires solving the
Maxwell equations for a given material and geometry, which is demanding from a
computational perspective. However, in the electrostatic limit, solving these equations
can be reduced to calculating the normal modes of the geometry under study. In this
appendix, we briefly introduce the basics of this formalism and explain its potential
for simplifying the calculations of the optical response of nanostructures, both of a
single one and of several in mutual interaction. We follow the notation and methods
of several works in the literature.[85,185,226]

A1 Field modes of nanostructures

The main target of our study, from which we will extract the rest of the relevant
physical magnitudes, is the total electric field generated in a structure E(r,ω), in
response to an external incident field Eext(r,ω). In the electrostatic regime, these
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fields can also be expressed as gradients of their respective potentials Φ(r,ω). This
allows both the total electric field and the total potential to be broken down into its
external and induced components,

E(r,ω) = Eext(r,ω) + Eind(r,ω) Φ(r,ω) = Φext(r,ω) +Φind(r,ω),

which satisfy the relationship E(r,ω) = −∇Φ(r,ω) between them.

The induced component of the field (or potential) can be constructed from the knowl-
edge of the conductivity of the material, σ(r,ω), which relates the induced current
Jind(r,ω) with the electric field applied E(r,ω) through Ohm’s law„ Jind(r,ω) =
σ(r,ω)E(r,ω). Note that E is the total field inside the structure, and not just the
external one.

This induced current can be related, through the continuity equation, with the induced
charge at each point ρind(r,ω) = (−i/ω)∇ · Jind(r,ω). Once ρind(r,ω) is known, the
potential induced at any point in the nanostructure r ∈ V is nothing more than the
potential generated by these induced charges: mathematically,

Φind(r,ω) =

∫

V

d3r’
|r− r’|

ρind(r,ω) =
−i
ω

∫

V

d3r’
|r− r’|

∇′ ·σ(r’,ω)E(r’,ω),

where ∇′ represents the gradient with respect to the primed coordinates. Rewriting
now the total field in terms of the total potential, we find a self-consistent expression
for the latter:

Φ(r,ω) = Φext(r,ω) +
i
ω

∫

V

d3r’
|r− r’|

∇′ ·
�

σ(r’,ω)∇′Φ(r’,ω)
�

.

These expressions are valid at any point r inside the nanostructure. To make this
fact apparent in the equations (and thus to be able to extend the integration domain
to the whole space) we define a filling function f (r), so that f (r) = 1 if r is inside
the structure, and f (r) = 0 otherwise. This allows, for example, for separating the
position and frequency dependencies for the conductivity of the material, σ(r,ω) =
f (r)σ(ω):

Φ(r,ω) = Φext(r,ω) +
iσ(ω)
ω

∫

d3r’
|r− r’|

∇′ ·
�

f (r’)∇′Φ(r’,ω)
�

,

where the integral now extends seamlessly throughout the whole space.

Solving the above expression allows to calculate the potential for any given geometry:
however, it does not yet preserve the scale invariance of Maxwell’s equations. To
restore it, we rewrite the position vector in terms of a characteristic length of the
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nanostructure, D, so that r = Dθ. By performing the change of variable, we can
obtain the invariant scale expression for the potential:

Φ(θ,ω) = Φext(θ,ω) +
iσ(ω)
ω

∫

d3θ′

|θ − θ′|
∇θ′ ·

�

f (θ′)∇θ′Φ(θ
′,ω)

�

.

Solving this equation, however, remains challenging: the kernel of the integral equa-
tion, for example, involves derivatives of the unknown function, which makes it dif-
ficult even to implement the method numerically. However, we can manipulate the
kernel by integrating one of the ∇ operators by parts:

Φ(θ,ω) = Φext(θ,ω) +
iσ(ω)
ω

∫

d3θ′
�

∇θ

1
|θ − θ′|

�

·
�

f (θ′)∇θ′Φ(θ
′,ω)

�

.

We still have an integral kernel with differential operators that act on the total poten-
tial Φ(θ′,ω). However, by using the relationship E(r,ω) = −∇Φ(r,ω), we can define
normalized fields

ε(θ,ω)≡ −
Æ

f (θ)∇θΦ(θ,ω),

and rewrite the self-consistent relation in terms of these normalized fields, by merely
taking the gradient of the expression for the potential:

ε(θ,ω) = εext(θ,ω) +
iσ(ω)
ω

∫

d3θ′
�

Æ

f (θ)
Æ

f (θ′) (∇θ ⊗∇θ)
1

|θ − θ′|

�

· ε(θ′,ω)

≡ εext(θ,ω) +
iσ(ω)
ω

∫

d3θ′ M̂(θ,θ′) · ε(θ′,ω). (A.1)

This expression, unlike the previous ones, has an integral kernel M̂(θ,θ′) with in-
teresting properties from a mathematical perspective: particularly, M̂ can be shown
to be a real, symmetric (M̂(θ,θ′) = M̂(θ′,θ)) and bounded kernel (in the case of
studying finite geometries). These properties guarantee the existence of the normal
modes (eigenfunctions) of the integral operator, ε j(θ), each of them associated with
an eigenvalue 1/η j , and which satisfy the equation

ε j(θ) = η j

∫

d3θ′ M̂(θ,θ′) · ε j(θ
′), (A.2)

where η j ≡ iσ(ω j)/ω j defines the normal frequency of the mode, ω j , depending on
the properties of the material, condensed in the conductivity σ(ω). This capability to
isolate the material properties of the nanostructure from its geometrical properties
is one of the most remarkable features of the method: thanks to this, the bulk of
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the necessary calculations is reduced to solving the eigenvalue problem posed in the
equation A.2, these results being directly applicable to all structures sharing the same
geometry, regardless of their size and composition.

In addition, it can be shown that the set of eigenfunctions
�

ε j(θ)
	

j forms an or-
thonormal and complete base of the electrostatic fields within the nanostructure,
which allows any electrostatic field to be expanded in a linear combination of these
normal modes; mathematically

∫

d3θ ε∗j (θ)ε j′(θ) = δ j j′ , (A.3)
∑

j

ε∗j (θ)⊗ ε j′(θ
′) = δ(θ − θ ′) I3, (A.4)

where I3 is the identity matrix in three-dimensional space. In particular, the solution
of equation A.1 can be formulated in closed form in terms of these modes as

ε(θ,ω) =
∑

j

c j(ω)

1− η(ω)
η j

ε j(θ), (A.5)

where η(ω)≡ iσ(ω)/ω, and in which the coefficients c j are only proportional to the
external field

c j(ω) =

∫

d3θ ε∗j (θ) · ε
ext(θ,ω).

The induced field can be obtained merely as εind(θ,ω) = ε(θ,ω) − εext(θ,ω). Ex-
panding the external field in normal modes

εext(θ,ω) =
∑

j

c j(ω)ε j(θ)

we get a closed expression for the induced field

εind(θ,ω) =
∑

j

c j(ω)
η j

η(ω) − 1
ε j(θ).

A2 Plasmon wave functions

The results obtained in the previous section are not restricted to the study of electric
fields; thanks to the use of the continuity equation, for example, it is possible to
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construct a similar formalism for charge densities. Mathematically, we can try to
define the eigenfunctions for the charge density as the gradients of the normal modes
for the electric field.

ρ j(θ) =∇θ ·
�
Æ

f (θ )ε j(θ)
�

. (A.6)

In this way, we can try to expand the distribution of induced charges in a particular
geometry in terms of these eigenfunctions ρ j(θ), which could be considered as the
normal modes of oscillation of charges within the nanostructure. The similarity of
this definition to that of a plasmon (modes of oscillation of free electrons in a metallic
material) suggests that these eigenfunctions may be called plasmon wave functions
(PWF).

Unlike the normal modes of the electrostatic field, PWFs do not satisfy a condition
of direct orthonormality between them: however, from the normalisation condition
for the fields (equation A.3) and integrating by parts, it can be verified that the PWFs
satisfy the orthogonality relation

∫

d3θ

∫

d3θ′
ρ∗j (θ)ρ

∗
j′(θ

′)

|θ − θ′|
= −

δ j j′

η j
. (A.7)

The total induced charge density, therefore, can be expressed as a linear combination
of these charge densities: for this, we start from the expression A.5 and construct the
total electric field as E(θ,ω) = − 1

D
p

f (θ)
ε(θ,ω), where the term 1

D comes from the

substitution ∇r = (1/D)∇θ. From the total field, we construct the charge density by
means of the continuity equation

ρind(θ,ω) = −
iσ(ω)
ωD

∇θ · [ f (θ)E(θ,ω)] =
η(ω)

D2
∇θ ·

�
Æ

f (θ )ε(θ,ω)
�

=
η(ω)

D2

∑

j

c j(ω)

1− η(ω)
η j

∇θ ·
�
Æ

f (θ )ε j(θ,ω)
�

=
1
D2

∑

j

c j(ω)
1

η(ω) −
1
η j

ρ j(θ)≡
∑

j

a j(ω)ρ j(θ). (A.8)

These expressions are valid for any external field incident in the nanostructure: how-
ever, we can consider the case of a monochromatic uniform external field Eext(r, t) =
Eexteiωe t+ c.c.→ εext(θ, t) = −D

p

f (θ )
�

Eexteiωe t+ c.c.
�

. In this particular case, the
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expansion coefficients can also be written in terms of the PWFs as

c j(ω) = −Dδ(ω−ωe)

∫

d3θ
Æ

f (θ )ε∗j (θ) · E
ext

= −Dδ(ω−ωe)E
ext ·

�∫

d3θ θ ∇θ ·
�
Æ

f (θ )ε∗j (θ)
�

�

= −Dδ(ω−ωe)E
ext ·

�∫

d3θ θ ρ∗j (θ)

�

≡ −Dδ(ω−ωe)E
ext · ζ∗j , (A.9)

where ζ j represents the dipole moment associated with the charge distribution.

Once the induced charge density is known, we can construct the physical quantities
relevant for the study of the optical response: for example, we can estimate the total
dipole

p(ω) = D4

∫

d3θθ ρind(θ,ω) = D2
∑

j

c j(ω)
1

η(ω) −
1
η j

∫

d3θ θ ρ j(θ)

= D2
∑

j

c j(ω)ζ j
1

η(ω) −
1
η j

. (A.10)

If we now consider that this dipole is produced, in turn, by a monochromatic and
uniform external field, we can find an expression for the polarizability tensor α̂ from
the relation p(ω) = α̂(ω) · Eext, where

α̂(ω) = D3
∑

j

ζ j ⊗ ζ∗j
1
η j
− 1
η(ω)

. (A.11)

A3 Interaction between neighbouring structures

Until now, we have only considered a single nanostructure: in these cases, the only
field other than the induced one was the external field. When several nanostructures
are interacting with the external field, however, their respective induced fields may, in
turn, have an effect on the total field applied to the surrounding nanostructures, thus
initiating a self-consistent process that modifies the result of the expansion coefficients
c j and, therefore, the optical response of the system as a whole.

Mathematically speaking, let’s assume that we have N nanostructures in proximity
to each other: each of these nanostructures is characterised, as explained above,
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by a complete set of eigenvalues and associated PWFs
�

ηn j ,εn j

	

j . The expansion
coefficients

an j(ω) =
1
D2

n

cn j(ω)
1

ηn(ω)
− 1
ηn j

,

from equation A.8, take into account not only the external field but also the fields
generated by the rest of the structures. In other words,

cn j(ω) =

∫

d3θ ε∗n j(θ) ·



εext(θ,ω) +
∑

n′ 6=n

εnn′(θ,ω)





≡ cext
n j +

∑

n′ 6=n

∫

d3θ ε∗n j(θ) · ε
nn′(θ,ω), (A.12)

where εnn′(θ,ω) is the field generated by the structure n′ on the n. This field is
expressed in terms of the induced charge density as

εnn′(θ,ω) = −
Æ

f (θ)D3
n′∇θ

∫

V ′n

d3θ′
ρn′(θ ′)

|Dnθ − Dn′θ′ + dnn′ |
, (A.13)

with dnn′ the distance between the origins of each of the structures. Integrating by
parts, we have a self-consistent equation for the coefficients an j(ω)

an j(ω) =





1
D2

n

1
1

ηn(ω)
− 1
ηn j





 

cext
n j +

∑

n′ 6=n

∑

j, j′
Vn jn′ j′an′ j′(ω)

!

,

where Vn jn′ j′ is the interaction potential between the j modes of the n structure and
the j′ of the n′ structure,

Vn jn′ j′ = D3
n′

∫

Vn

d3θ

∫

V ′n

d3θ′
ρ∗n j(θ

′)ρn′ j′(θ ′)

|Dnθ − Dn′θ′ + dnn′ |
.

A4 PWF formalism in two-dimensional structures

The formalism described in the previous sections is intended for three-dimensional
structures; however, the introduction of new two-dimensional materials in Nanopho-
tonics makes the extension of this formalism to lower dimensions desirable.

The process is similar to the one described above, so only the expressions that undergo
some modification are listed below; generally, the modification is reduced to modify
the D scaling factor of the expressions, to take into account
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• That the 3D conductivities σ(ω) become 2D conductivities, so to preserve the
non-dimensional nature of the η eigenvalue it is necessary to redefine it as
η2D = η3D/D.

• That magnitudes such as the induced charge density ρind have units of 1/L2 in
2D, compared to 1/rmL3 in 3D.

Applying these principles to the expressions, apart from the obvious changes in the
integration dimension (d3θ→ d2θ), we have:

ε(θ,ω) = εext(θ,ω) +
iσ(ω)
ωD

∫

d2θ′ M̂(θ,θ′) · ε(θ′,ω)., (A.1’)

η j =
iσ(ωj)

ω j D
, η(ω)≡

iσ(ω)
ωD

,

ρind(θ,ω) =
1
D

∑

j

c j(ω)
1

η(ω) −
1
η j

ρ j(θ), (A.8’)

p(ω) = D3

∫

d2θ θ ρind(θ,ω) = D2
∑

j

c j(ω)ζ j
1

η(ω) −
1
η j

. (A.10’)

All other expressions, taking into account the changes in dimensionality, are function-
ally identical to the three-dimensional case.
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Atomic units

When handling expressions on the atomic scale, the use of the International System of
Units (SI) can be cumbersome, since it requires multiple constants in the expressions
that can obstruct the derivations. Besides, as a system designed for everyday phenom-
ena, the magnitudes at the nanoscale are usually very small, so they can reduce the
accuracy of the numerical calculations. In an attempt to solve both problems, we use
atomic units (a.u.), which greatly simplify algebraic and computational manipulation.
In this appendix, we present the main magnitudes of this system, as well as their
relationship between them and SI units.
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B.1 Common magnitudes in atomic units

Atomic units are defined by setting the following four physical quantities equal to
unity:

Quantity Symbol Value

Electron mass me 9.109383× 10−31 kg

Fundamental charge e 1.6021766× 10−19 C

Reduced Planck constant ħh 1.0545718× 10−34 J·s
6.58212× 10−16 eV·s

Coulomb constant ke =
1

4πε0
8.98755× 109 m/F

Any other magnitude is derived from these, in relation to the hydrogen atom’s prop-
erties:

• Length: Bohr radius (radius of the innermost orbit of the hydrogen atom),

1 a.u. of length= a0 =
4πε0ħh

2

mee2
= 5.29177× 10−11 m= 0.529177 Å.

• Velocity: electron velocity in the innermost orbit of the hydrogen atom,

1 a.u. of velocity= v0 =
ħh

mea0
=

e2

4πε0ħh
= αc = 2.18769× 106 m

s
,

where α ≈ 1/137 is the fine structure constant, and c ≈ 3 × 108 m/s is the
speed of light in vacuum.

• Energy: hartree (twice the binding energy of the hydrogen atom),

1 a.u. of energy= Eh =
e2

4πε0a0
= 4.3597× 10−18 J = 27.21139 eV.

• Time: time required to travel a Bohr radius a0 with an speed v0,

1 a.u. of time= t0 =
a0

v0
=
ħh
Eh
=
(4πε0)2ħh

3

mee4
= 2.41888× 10−17 s.
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B.2 Relation between Gaussian a.u. and SI units

We find it useful to use atomic units (a.u.) for computing Nanophotonics quantities,
including EELS. Here is the equivalence table of 1 a.u. of different magnitudes in SI
units:

Magnitude 1 a.u. in SI units

Electric field 5.14221× 1011 V/m

(51.422 eV/Å)

Potential 27.2114 V

Electric current 6.6236× 10−3 A

Current density 2.36534× 1018 A/m2

Conductivity 4.59985× 106 S/m

Polarizability 1.64878× 10−41 F·m2

Dipole moment 8.47835× 10−30 C·m
(2.541746 D)

Force 8.23873× 10−8 N

(51.422 V/Å)

125





List of publications
and conference contributions

The research carried out throughout this thesis period has led to the following publi-
cations and conference contributions:

Articles on which this thesis is based

1. Visible optical resonances in electrically doped DNA.
J. R. M. Saavedra, and F. J. García de Abajo.
Submitted for publication

2. Modeling plasmon-phonon hybridization in two-dimensional materials.
J. R. M. Saavedra, and F. J. García de Abajo.
Submitted for publication

3. Enhanced graphene nonlinear response through geometrical plasmon fo-
cusing.
J. R. M. Saavedra, and F. J. García de Abajo.
Applied Physics Letters 112, 061107 (2018).

4. Strong plasmon-phonon splitting and hybridization in 2D materials re-
vealed through a self-energy approach.
M. Settnes, J. R. M. Saavedra, K. S. Thygesen, A. P. Jauho, F. J. García de Abajo,
and N. A. Mortensen.
ACS Photonics 4, 2908-2915 (2017).

5. Intrinsic plasmon-phonon interactions in highly doped graphene: A near-
field imaging study.
F. J. Bezares∗, A. De Sanctis∗, J. R. M. Saavedra∗, A. Woessner, P. Alonso-González,
I. Amenabar, J. Chen, T. H. Bointon, S. Dai, M. M. Fogler, D. N. Basov, R. Hillen-
brand, M. F. Craciun, F. J. García de Abajo, S. Russo, and F. H. L. Koppens.
Nano Letters 17(10), 5908-5913 (2017).
* Equal contribution

6. Hot-Electron Dynamics and Thermalization in Small Metallic Nanoparti-
cles.
J.R.M. Saavedra, Ana Asenjo-García, and F. J. García de Abajo.
ACS Photonics 3, 1637-1646 (2016).

7. Phonon excitation by electron beams in nanographenes.
J. R. M. Saavedra and F. J. García de Abajo.
Phys. Rev. B 92, 115449 (2015).

127

http://dx.doi.org/10.1063/1.5017120
http://dx.doi.org/10.1063/1.5017120
http://dx.doi.org/10.1063/1.5017120
http://dx.doi.org/10.1063/1.5017120
http://dx.doi.org/10.1021/acsphotonics.7b00928
http://dx.doi.org/10.1021/acsphotonics.7b00928
http://dx.doi.org/10.1021/acsphotonics.7b00928
http://dx.doi.org/10.1021/acsphotonics.7b00928
http://dx.doi.org/10.1021/acsphotonics.7b00928
http://dx.doi.org/10.1021/acs.nanolett.7b01603
http://dx.doi.org/10.1021/acs.nanolett.7b01603
http://dx.doi.org/10.1021/acs.nanolett.7b01603
http://dx.doi.org/10.1021/acs.nanolett.7b01603
http://dx.doi.org/10.1021/acs.nanolett.7b01603
http://dx.doi.org/10.1021/acs.nanolett.7b01603
http://dx.doi.org/10.1021/acs.nanolett.7b01603
http://dx.doi.org/10.1021/acsphotonics.6b00217
http://dx.doi.org/10.1021/acsphotonics.6b00217
http://dx.doi.org/10.1021/acsphotonics.6b00217
http://dx.doi.org/10.1021/acsphotonics.6b00217
http://dx.doi.org/10.1103/PhysRevB.92.115449
http://dx.doi.org/10.1103/PhysRevB.92.115449
http://dx.doi.org/10.1103/PhysRevB.92.115449


L I S T O F P U B L I C AT I O N S A N D C O N F E R E N C E C O N T R I B U T I O N S

Other articles related to this thesis

1. Plasmonic Quantum Computing with Graphene Nanoribbons.
I. Alonso Calafell, J. D. Cox, M. Radonjic, J. R. M. Saavedra, F. J. García de
Abajo, L. A. Rozema, and P. Walther.
Submitted for publication.

2. Imaging ultrafast skeletal deformations in polyatomic molecules using
laser-induced electron diffraction.
K. Amini, M. Sclafani, T. Steinle, A. Sanchez, C. Müller, L. Yue, J. R. M. Saavedra,
A.T. Le, M. Hammer, M. Lewenstein, R. Moshammer, T. Pfeiffer, M. G. Pullen, J.
Ullrich, B. Wolter, R. Moszynski, C.D. Lin, F. J. García de Abajo, S. Gräfe, and J.
Biegert.
arXiv 1805.06793 (2018).

3. Optical harmonic generation in monolayer group-VI transition metal dichalco-
genides.
A. Autere, H. Jussila, A. Marini, J. R. M. Saavedra, Y. Dai,A. Säynätjoki, L. Karvo-
nen, H. Yang, B. Amirsolaimani, R. A. Norwood, N. Peyghambarian, H. Lipsanen,
K. Kieu, F. J. García de Abajo, and Z. Sun.
Phys. Rev. B. In press (2018).

4. Analytical modeling of graphene plasmons.
R. Yu, J. D. Cox, J. R. M. Saavedra, and F. J. García de Abajo.
ACS Photonics 4, 3106-3114 (2017).

5. Smith-Purcell radiation emission in aperiodic arrays.
J. R. M. Saavedra, D. Castells-Graells, and F. J. García de Abajo.
Phys. Rev. B 94, 035418 (2016).

Oral and invited contributions to international conferences

• Graphene-plasmon lenses for enhanced harmonic generation.
J. R. M. Saavedra, and F. Javier García de Abajo.
SPIE Optics+Photonics, San Diego, United States. August 2017. Oral contribu-
tion.

• Hot-Electron Dynamics and Thermalization in Small Metallic Nanoparticles.
J. R. M. Saavedra, A. Asenjo-García, and F. Javier García de Abajo.
SPIE Optics+Photonics, San Diego, United States. August 2016. Oral contribu-
tion.

• Complete optical absorption of ultrashort pulses by plasmons in nanostructured
graphene.
J. R. M. Saavedra, , S. Wall, G. Cerullo, V. Pruneri, and F. J. García de Abajo.

128

https://arxiv.org/abs/1805.06793
https://arxiv.org/abs/1805.06793
https://arxiv.org/abs/1805.06793
https://arxiv.org/abs/1805.06793
http://dx.doi.org/10.1021/acsphotonics.7b00740
http://dx.doi.org/10.1103/PhysRevB.94.035418


L I S T O F P U B L I C AT I O N S A N D C O N F E R E N C E C O N T R I B U T I O N S

SPIE Optics+Photonics, San Diego, United States. August 2016. Oral contribu-
tion.

• Electron beams for Nanophotonics in the atomic scale.
J. R. M. Saavedra, and F. Javier García de Abajo.
Optical Technologies for Society CSIC-British Council, Madrid, Spain. October
2015. Invited contribution.

• Effect of electron-phonon coupling on the plasmon lifetimes in nanographene.
J. R. M. Saavedra, and F. Javier García de Abajo.
CLEO Europe, Munich, Germany. June 2015. Oral contribution.

• Probing nanographene phonons with electron energy-loss spectroscopy.
J. R. M. Saavedra, and F. Javier García de Abajo.
ImagineNano, Bilbao, Spain. March 2015. Oral contribution.

Additionally, the research performed during this period has resulted in 12 poster
contributions to conferences, defended by the author.

129





Bibliography

[1] J. C. Maxwell, Treatise on Electricity and Magnetism, Dover, New York (1891).
(see p. 10)

[2] J. D. Jackson, Classical Electrodynamics, Wiley, New York (1975). (see p. 11)

[3] J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, Theory of surface
plasmons and surface-plasmon polaritons, Rep. Prog. Phys. 70, 1–87 (2007).
(see p. 15)

[4] N. W. Ashcroft and N. D. Mermin, Solid State Physics, Harcourt College Pub-
lishers, New York (1976). (see pp. 15, 31, 59, and 104)

[5] L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge University
Press, New York (2006). (see pp. 16 and 38)

[6] H. C. van de Hulst, Light Scattering by Small Particles, Dover, New York (1981).
(see p. 18)

[7] D Hartree, The wave mechanics of an atom with a non-coulomb central field.
part i. theory and methods, Mathematical Proceedings of the Cambridge Philo-
sophical Society 24, 89–110 (1928). (see p. 19)

[8] J C Slater, The theory of complex spectra, Phys. Rev. 34, 1293–1322 (1929).
(see p. 19)

[9] V Fock, Näherungsmethode zur lösung des quantenmechanischen mehrkörper-
problems, Z. Physik 61, 126 (1930). (see p. 19)

[10] J C Slater, Note on hartree’s method, Phys. Rev. 35, 210–211 (1930). (see p.
19)

[11] C Møller and M S Plesset, Note on an approximation treatment for many-electron
systems, Phys. Rev. 46, 618–622 (1934). (see p. 19)

[12] E U Condon, The theory of complex spectra, Phys. Rev. 36, 1121–1133 (1930).
(see p. 19)

131



B I B L I O G R A P H Y

[13] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, B864–
B871 (1964). (see p. 19)

[14] W Kohn and L J Sham, Self-consistent equations including exchange and corre-
lation effects, Phys. Rev. 140, A1133 (1965). (see p. 20)

[15] W Kohn and L J Sham, Density-functional theory for time-dependent systems,
Phys. Rev. Lett. 52, 997–1000 (1984). (see p. 20)

[16] P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva,
Searching for better plasmonic materials, Laser Photonics Rev. 4, 795–808
(2010). (see p. 25)

[17] Alexandra Boltasseva and Harry A. Atwater, Low-loss plasmonic metamaterials,
Science 331, 290–291 (2011). (see p. 25)

[18] Gururaj V. Naik, Vladimir M. Shalaev, and Alexandra Boltasseva, Alternative
plasmonic materials: Beyond gold and silver, Adv. Mater. 25, 3264–3294 (2013).
(see p. 25)
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