UNIVERSITAT POLITECNICA
DE CATALUNYA
UF BARCELONATECH

CLASSICAL AND QUANTUM ASPECTS OF THE
OPTICAL RESPONSE AT THE NANOSCALE

DOCTORAL THESIS

Dissertation submitted by
JOSE RAMON MARTINEZ SAAVEDRA
in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

Supervisor: PROF. FRANCISCO JAVIER GARCIA DE ABAJO

ICFO?®

ICFO - INSTITUT DE CIENCIES FOTONIQUES

BARCELONA, 2018






This doctoral dissertation has been carried out in the Nanophotonics Theory Group
at ICFO - The Institute of Photonic Sciences in Castelldefels, Barcelona, thanks to
the funding of a predoctoral grant from the FI programme of the Agency for the
Management of University and Research Grants (AGAUR), of the Catalan Government
(Ref. FI_B 00492-2015).

@°®e
. -
@nanophotonics.es@






A mis padres:

incluso estando a cientos de kilémetros
no han permitido que les eche en falta
ni un solo dia en estos cinco anos...

... y al café, por supuesto.






‘O Bloc Peaybe, 1 8¢ téyvn woen’t

Hippocrates

LArt is long, life is short






Acknowledgments

¢Ya esta? Pues si que se han pasado rapido estos cinco afios. Atn asi, ha dado tiempo a
hacer tantas cosas, a crecer tanto, y a conocer a tantas y tantas personas que, mirando
atras, uno empieza a escribir esta secciéon de agradecimientos sabiendo que se va a
dejar a muchisima gente en el tintero.

En cualquier caso, empezarla es muy sencillo, ya que tengo clarisimo con quién tengo
la mayor deuda de gratitud: Javier, ha sido un privilegio ser tu estudiante durante
estos cinco afios, y no solamente por todo lo que he aprendido este tiempo bajo tu
supervisién. Gracias por todo y por tanto. Si, alld donde vaya, soy capaz de transmitir
siquiera una parte de la pasién y la energia que, dia tras dia, pones en el grupo (y, en
incontables ocasiones, en mi directamente), no solo consideraré que soy un hombre
afortunado, sino que ademads aprendi de ti la mejor leccién que un director de tesis
puede impartir.

Ademads de Javier, he tenido el lujo de trabajar al lado de personas tan maravillosas
como mis compaiieros del grupo de Nanofotdnica Tedrica: Ivan, Ana, Joel, Sandra,
Andrea, Renwen, Lijun, Deng, Wei, Vahagn, Alvaro, Eduardo, Valerio, Hani,... gracias
por haber hecho todo el trabajo bajo esta tesis mucho mas liviano entre cenas, risas,
cafés... y chuletones. También quisiera dar las gracias a los estudiantes de verano que
tuve bajo mi supervisién: David, Alba y Anil; espero que fuese capaz de ensefiaros, al
menos, una minima parte de lo que yo aprendi de vosotros.

Seria injusto no hacer una mencién especial a mis queridisimas Ana y Sandra, quienes
habéis sido (y no solo con respecto a la tesis) un verdadero apoyo en los momentos
mas duros de estos cinco afios; espero que no dejéis de serlo nunca (y tampoco dejar
de serlo yo).

Por supuesto, no puedo dejar de agradecer al ICFO y a todos los ICFOnians el enorme
apoyo que he encontrado siempre en todos ellos. En particular, me gustaria destacar
a tres ICFOnians que me han acompafiado desde el primer dia que pisé Barcelona:
David Alcaraz, Josep Canals y Carlos Abellan, para quienes solo tengo palabras de
elogio y buenos deseos. Por supuesto, gracias a las chicas de la cafeteria (Juani, Esther,
Montse, Paqui, Sura y Maria), quienes me han ayudado a mantenerme despierto estos
cinco afios.

ix



También quiero agradecer a toda la gente con la que trabajé en Xerox PARC el haber
convertido mi estancia ahi en una experiencia inica en la vida. Gracias, en particu-
lar, a los miembros del grupo de metamateriales: Bernard, George, Armin, Krishnan,
Quentin, Christopher, Clinton, Joe, Jerome,...; a Maha y Sandy, de Metawave, para
quienes fue genial trabajar; y, por supuesto, a Shakti y Quentin, compafieros de fati-
gas: lo que pasa en Las Vegas... No puedo olvidarme tampoco de mis compaferos de
Quside: Carlos, Waldo, Dome, Ferran, Sergio y Miquel, quienes me han acompafiado
y apoyado en la etapa final de esta tesis.

Sin embargo, esta tesis no es solo un trabajo de cinco afios, sino que se ha ido ge-
stando poco a poco: cada profesor que he tenido a lo largo de mi vida académica
ha contribuido con una pieza mas a este resultado; algunos, como Caridad, Paco,
Ana, Juan Carlos y Gemma habéis sido verdadera inspiracién a lo largo de todo este
tiempo: muchas gracias a todos.

De igual modo, la tesis no es solo el entorno académico que la rodea: en mi caso, al
menos, todos mis amigos han sido fundamentales todos estos afios, imuchas gracias
a todos! En especial, gracias a mis queridos Carlos y Javi: KITP; mis también queridos
Dani y Ana (iViva Gauss!); y por supuesto, «siempre nos quedaran California y el
Carabirubi», Héctor.

También en este tiempo he tenido la gran suerte de encontrarme con gente con
quienes he pasado momentos muy preciados: gracias a Rubén, a Juanra, a Carlos y
a todas aquellas personas que habéis hecho los dias mucho mas entretenidos y las
noches mucho menos solitarias.

Por tltimo, por supuesto, muchas gracias a toda mi familia: sois tantos y habéis hecho
tanto que necesitaria otro documento aparte para escribir los agradecimientos que
os merecéis: abuelos, tios, primos,... Permitidme por tanto que reserve el parrafo
de agradecimientos para darles las gracias a mis hermanos, Lucia, Javier y Gonzalo;
gracias a Juani, quien se ha comportado como una madre practicamente desde que
la conozco. Y, por supuesto, mama y papd, no hay palabras en ningtin idioma que
hagan justicia a lo mucho que os quiero.

Gracias a todos, iy no se venguen tantos olvidados!



Contents

List of Figures Xv
List of Acronyms xvii
Abstract 1
Resumen 3
Resum 5
1 Introduction 7
1.1 Fundamentals of Nanophotonics . . . . . ... ................ 10
1.1.1 Classical electromagnetism in materials . . . . ........... 10

1.1.2 Fundamentals of Plasmonics . . . . .. ... ............. 13

1.2 Microscopic treatment of material properties . . .............. 18
1.2.1 Many-bodyproblem . . ... ......... . ... ... ... 19

1.2.2 Density functional theory (DFT) . .................. 19

1.2.3 Time-dependent density functional theory (TD-DFT) . . ... .. 20

1.2.4 Linearresponsetheory . ... ......... ... ... .. 21

1.3 Graphene Nanophotonics . ... ....................... 24
1.3.1 Electronic properties . . . ... ... ..ot 25

1.3.2 Optical properties . . ... ... ... ... 27

1.3.3 Plasmons in extended graphene . . . . ... ............. 28

1.3.4 Nonlinear response . .. ... ... ... ... 29

1.4 Vibrational modes in nanostructures . .. ... ............... 30

1.5 Interaction with electronbeams . ... .................... 32

2 Enhanced nonlinear response through plasmon focusing 35
2.1 Introduction . . . .. .. ... it e e 37
2.2 Theoreticalmodel . . . . ... .. ... . .. ... 39
2.2.1 General formalism . . ........... ... . .. ... ... 39

2.2.2 Application to semicircularedges . . . .. ... ... ... ... .. 40

Xi



2.3 Harmonics generation . . . .. ... .. .. ...ttt
2.4 Control of the focal position . ... ......................
2.5 ConclusionS. . . . . v vttt e

3 Hot-electrons in metallic nanostructures: dynamics and thermalisation
3.1 Introduction . .. ... .. ... ...
3.2 Theoreticalmodel . . . . ... ... ... ...

3.2.1 Preliminaryremarks . . . ... ... . ... ... ... . ... ...
3.2.2 Modelling the transition coefficients . . . ..............
3.2.3 Dielectric function of the nanoparticle: potential well approxi-
mation (PWA) . . . . . . . e
3.2.4 Chemical potential and specificheat . . . ... ...........
3.2.5 Determination of the equivalent temperature in non equilib-
rium distributions . . . ... ... L L
3.3 Dependence of electronic thermalisation on geometrical and illumina-
tion conditions . . . . . . .. ...
3.3.1 Sizedependence . ... ....... ...
3.3.2 Dependence on illumination conditions . . . ... .........
3.3.3 Figures of merit for thermalisation and relaxation . .......
3.4 Individual and collective relaxation phenomena ..............
3.4.1 Half-lifetime of electrons under electron-electron collision pro-
CESSES « & v e e e e e e e e e e e e e e e
3.4.2 Collective relaxation time . ......................
3.5 ConcluSionS. . . . o it

4 Visible optical resonances in electrically doped DNA

4.1 IntroduCtion . . . . .. ... ..ttt
4.2 The polariton wave-functions formalism . . ... ..............
4.2.1 Single-molecule case: derivation of the linear susceptibility . . .
4.2.2 Extension to the multiple moleculescase . ... ..........

4.2.3 Long-distance limit: recovering the Discrete Dipole Approxima-
1510 ) o

4.2.4 Derivation of the linear polarizability in the dipole-dipole inter-
action limit . . ... ... L.
4.3 Optical response of charged single-stranded DNA . ............
4.3.1 Optical response of charged DNA nucleobases . . . ... .....

4.3.2 Response of multiple charged nucleobases within the Polariton
Wavefunction formalism . .. .....................
4.4 Charged double-strand DNA . ... ... ... ... .............
4.5 Conclusions. . . . . ..ot e

Xii



5 Modelling of plasmon-phonon hybridisation in two-dimensional materi-

als 83
5.1 Introduction ... ... ... ... ... 85
5.2 Theoreticalmodel . . . .. ... ... ... 86
5.2.1 Coupling to phononsnear theI'point . . .. ............ 86
5.2.2 Self-consistent description of phononic conductivity . ... ... 86

5.2.3 Relationship between surface conductivity and non-interacting
susceptibility . . . ... ... . ... 88
5.2.4 Dipole moments and phononic polarizability . . . .. ... .... 89
5.3 Plasmon-phonon coupling in graphene structures . ............ 91
5.4 Plasmon-phonon coupling between different layers . .. ... ... .. 92
5.5 Conclusions. . . . ... v ittt e e e 94
6 Scanning vibrational modes using electron energy loss spectroscopy 95
6.1 Introduction . .. ... . ... ...ttt 97
6.2 Theoreticalmodel . . . .. ... ... ... ... 98
6.2.1 Electron-phonon interaction model. . . . .. ... ... ..... 98
6.2.2 Calculation of the EELS probability for vibrational modes . . . . 99
6.2.3 Equivalence with the general EELS theory . ........... 101
6.3 Vibrational mode excitation in graphene nanostructures using EELS . . 102
6.4 Local Density of Vibrational States Inspection using EELS . ... ... 104
6.5 ConcluSionS. . . . . ..o i ittt 105
Conclusions 109

Appendices

A The plasmon wave function formalism 115
B Atomic units 123
List of publications and conference contributions 127
Bibliography 131

Xiii






1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3
2.4
2.5

3.1
3.2

3.3
3.4

3.5

3.6
3.7
3.8

4.1
4.2
4.3

4.4

5.1

List of Figures

Continuity conditions for the electromagnetic field at sharp boundaries 12

Fresnel coefficients . . .. ... ... ... ... ... 12
Surface plasmon-polaritons in an air-gold interface . ........... 14
Localised plasmon resonances for different geometries . . ... ... .. 17
Band structure and electronic transitions in graphene . . . . . ... ... 26
Plasmon focusing on two-dimensional nanostructures. . . . . . ... .. 38
Plasmonic hotspots in graphene structures . . . . . ... ... ....... 41
Third harmonic generation by plasmon focusing . . ... ......... 42
Linear field enhancement factor and third harmonic emission power . 43
Control of the focal position by changing the light incidence angle . . . 45

Scheme of the generation, evolution and thermalisation of hot electrons 50
Potential Well Approximation (PWA) for the dielectric functions of gold

and silver nanoparticles . .. ... ... ... .. . ... 55
Temperature-dependent system parameters . . . .. ... ......... 57
Time evolution of hot electron distribution for silver particles of differ-

ENESIZES . . . o e 60
Time evolution of conduction electron distribution for silver particles

under different illumination conditions . . . . .. ... ........... 61
Figures of merit for thermalisation and relaxation . . ........... 62
Individual relaxation times of electrons. . . . .. ... ........... 64
Collective relaxation time . . . ... ... ... . ... ... ..., 65

Optical response from charged DNA nucleobases in the visible regime . 75

Visible optical response of neighboring charged NBs. . . . ... ... .. 78
Variation of the optical response with the number of charges present

in single-stranded DNA chains . .. ... ................... 79
Effect of charging in double-strand DNA (dDNA). . ............ 80

Optical phonons and associated dipole moments in atomically flat two-
dimensional structures . . . . . ... ... 90



5.2
5.3

6.1
6.2
6.3
6.4

Plasmon-phonon hybridisation in graphene and bilayer graphene ... 91
Plasmon-phonon hybridisation between neighboring layers . . ... .. 93

Spatial distribution of the phonon excitation probability in triphenylene102
Effect of the spatial spread of the beam on the EELS probability . ... 103
Comparison between EELS and the local density of vibrational states . 106
Selective excitation of vibrational modes . . . . ... ............ 107



2D
a.u.
CMOS
CRT
DFT
EELS
FD
h-BN
HK
KS
LDOS
LDVS
LSP
ML
PWA
PWF
RPA
SEIRA
SERS
SPP
TB

List of Acronyms

Two-dimensional

Atomic Units

Complementary Metal-Oxide Semiconductor
Collective Relaxation Time

Density Functional Theory

Electron Energy-Loss Spectroscopy
Fermi-Dirac

Hexagonal Boron Nitride
Hohenberg-Kohn

Kohn-Sham

Local Density of Optical States

Local Density of Vibrational States
Localised Surface Plasmon

Monolayer

Potential-Well Approximation

Plasmon Wave Function

Random-Phase Approximation
Surface-Enhanced Infrared Absorption
Surface-Enhanced Raman Spectroscopy
Surface Plasmon-Polariton

Tight Binding

TD-DFT Time-Dependent Density Functional Theory

xvii



TDKS Time-Dependent Kohn-Sham
TEM Transmission Electron Microscope
THG Third-Harmonic Generation

ZLP Zero-Loss Peak

xviii



Abstract

Nanophotonics is one of today’s basic sciences and technologies: an in-depth under-
standing of the interaction between light and matter on the nano-scale, besides its
intrinsic associated scientific interest, enables the precise control of light, that is rele-
vant for technology in diverse applications such as telecommunications, energy and
medicine.

Plasmonics —the study of the collective oscillations of conduction electrons in materials
with a metallic behaviour- has become one of its most essential sub-branches in recent
years: the strong confinement of the electromagnetic energy density and its high
sensitivity to the environment render plasmons as a key tool for the control of light
at the nanoscale.

In this thesis, we explore several new paths that open up to Nanophotonics in gen-
eral, and Plasmonics in particular, with the appearance on stage of materials such as
graphene, which host optical excitations of increasingly smaller wavelengths, there-
fore requiring increasingly more compact structures. This new scenario demands new
theoretical models that capture the structure of matter on an atomic scale.

After introducing the necessary fundamental concepts in Chapter 1, the thesis pro-
ceeds by exploring processes that can still be treated in terms of classical models for
the optical response, such as geometrical plasmon focusing. Specifically, we apply
this idea in Chapter 2 to graphene nanostructures, proposing a lens design capa-
ble of focusing plasmons and enhancing the third-order nonlinear response of this
material.

We then move to more microscopic models of light-matter interaction: the description
of the optical response of a nanoparticle from the individual response of its electrons
allows us to explore in Chapter 3 the plasmon decay into hot-electron distributions,
as well as the subsequent relaxation of these electrons back to their equilibrium state,
thus presenting a complete picture of ultrafast plasmon and hot electron dynamics
in nanoparticles.

From here on, we explore collective oscillations in molecular-sized structures, which
demand the use of microscopic models incorporating many-body electronic response



by massively demanding the numerical solution of Schrédinger’s equations including
the interaction with incident light. In particular, in Chapter 4 we have applied time-
dependent density-functional theory (TD-DFT) to model the optical response of DNA
that, besides being ubiquitous in biological organisms, we claim it to have some
potential uses in nanotechnology.

Finally, we study light-matter interactions associated with ionic displacements of struc-
tures, quantised as phonons. In Chapter 5, we study the coupling between these ex-
citations and plasmons supported in 2D materials: the distortions introduced into
the electronic structure by ionic vibrations allow us to explain recent experiments in
which the presence of vibrational modes modifies the plasmonic dispersion. We also
studied, in Chapter 6, the possibility of directly exciting and analysing these vibra-
tional modes, not by optical methods, but rather with electron beams, in clear analogy
with plasmonic modes in nanostructures.

To summarise, this thesis explores the use of different theoretical models in Plas-
monics, covering a wide gap between entirely classical macroscopic descriptions and
quantum-mechanical atomic modelling, which we hope will contribute to a deeper
understanding of optical phenomena at the nanoscale.



Resumen

La nanofotdnica es una de las ciencias y tecnologias basicas en la actualidad: una pro-
funda comprension de la interaccidn entre la luz y la materia en la nanoescala, ademas
de su innegable interés cientifico asociado, permite el control preciso de la luz, lo que
resulta relevante en aplicaciones tecnologicas diversas como las telecomunicaciones,
la energia y la medicina.

La plasmonica —el estudio de las oscilaciones colectivas de los electrones de conduc-
cién en materiales— se ha convertido durante los dltimos afios en una de sus subramas
mas importantes: el gran confinamiento de la densidad de energia electromagnética
y su alta sensibilidad al entorno hacen de los plasmones una herramienta clave para
el control de la luz en la nanoescala.

En esta tesis exploramos varios nuevos caminos que se abren a la nanofoténica en
general, y a la plasmodnica en particular, con la aparicién en escena de materiales como
el grafeno, que soportan excitaciones épticas de longitudes de onda de menor tamafio,
requiriendo por tanto estructuras cada vez mas compactas. Este nuevo escenario
reclama nuevos modelos tedricos que capturen la estructura de la materia a escala
atémica.

Una vez introducidos los conceptos fundamentales necesarios en el Capitulo 1, la tesis
procede a explorar los procesos que siguen teniendo cabida en los modelos clasicos
de respuesta optica, como la focalizacién geométrica de plasmones. Concretamente,
en el Capitulo 2 aplicamos esta idea a nanoestructuras de grafeno, planteando un
disefio de lente capaz de enfocar plasmones y realzar la respuesta no lineal de tercer
orden de este material.

A continuacion, nos adentramos en modelos mds microscopicos de interaccion luz-
materia: la descripcion de la respuesta dptica de una nanoparticula a partir de la
respuesta individual de sus electrones nos permite explorar en el Capitulo 3 el de-
caimiento de los plasmones en distribuciones de electrones fuera del equilibrio, asi
como su posterior relajacion, presentando asi una imagen completa de la dindmica ul-
trarrdpida de los plasmones y de los electrones dentro de estas nanoparticulas.



De aqui en adelante, exploramos las oscilaciones colectivas en estructuras de dimen-
siones moleculares, las cuales exigen el uso de modelos microscépicos que incorporan
la respuesta electrénica de multiples cuerpos mediante la solucién (numéricamente
exigente) de las ecuaciones de Schrédinger, incluyendo la interaccién con la luz inci-
dente. En particular, en el Capitulo 4 aplicamos la teoria del funcional de la densidad
dependiente del tiempo (TD-DFT por sus siglas en inglés) para modelar la respuesta
optica del ADN: una estructura que, ademds de ser ubicua en los organismos bioldgi-
cos, se le atribuyen usos potenciales en nanotecnologia.

Finalmente, estudiamos las interacciones luz-materia asociadas con desplazamientos
ionicos de estructuras, cuantizadas en forma de fonones. En el Capitulo 5 se estudia
el acoplamiento entre estas excitaciones y los plasmones soportados por materiales
2D: las distorsiones introducidas en la estructura electrénica por las vibraciones i6ni-
cas permiten explicar experimentos recientes en los que el comportamiento de los
plasmones se ve alterado por la presencia de modos vibracionales. También estudi-
amos, en el Capitulo 6, la posibilidad de excitar y analizar directamente estos modos
vibracionales, no empleando métodos 6pticos, sino mediante haces de electrones, en
clara analogia con los modos plasménicos en nanoestructuras.

En resumen, esta tesis explora el uso de diferentes modelos tedricos en plasmonica,
cubriendo el espacio entre las descripciones macroscopicas, totalmente cldsicas, y el
modelado atémico mecanico-cuantico, con el fin de contribuir a una comprensién
mas profunda de los fendmenos épticos en la nanoescala.



Resum

La nanofotonica és una de les ciencies i tecnologies fonamentals avui en dia: el
coneixement profund de la interaccié entre la llum i la materia en I'escala nanometrica,
a més del propi interes cientific que té associat, permet el control precis de la llum,
el qual la converteix en una tecnologia rellevant en aplicacions aparentment tan
diferents com les telecomunicacions, ’energia i la medicina.

Una de les seves subbranques més importants en els dltims anys és la plasmonica, o
l'estudi de les oscil-lacions col-lectives dels electrons de conduccié en materials: el
gran confinament de la densitat d’energia electromagnetica i la seva alta sensitivi-
tat a 'entorn converteixen els plasmons en peces clau pel control de la llum en la
nanoescala.

En aquesta tesi, explorem les noves vies que se li obren a la nanofotonica en general,
i a la plasmonica en particular, amb I’entrada en escena de materials com el grafe,
que suporten excitacions optiques de longituds d’ona menors, requerint per tant es-
tructures cada vegada més compactes. Aquest nou escenari requereix de nous models
teorics que capturin 'estructura de la materia a escala atomica.

Després d’'introduir els conceptes fonamentals necessaris en el Capitol 1, 1a tesi comenca
explorant processos que encara accepten un tractament en termes de models classics

de resposta optica, com per exemple processos de focalitzacié de plasmons. En con-

cret, en el Capitol 2 apliquem aquests estudis a nanoestructures de grafe, i proposem

un disseny de lent capac de focalitzar plasmons i potenciar la resposta no lineal de

tercer ordre en aquest material.

A continuacid, avancem cap a models més microscopics d’interaccié llum-matéria: la
descripcié de la resposta optica d’una nanoparticula a partir de la resposta individual
dels seus electrons ens permet explorar, en el Capitol 3, el decaiment dels plasmons
en distribucions d’electrons fora de 'equilibri, aixi com la relaxacié de tornada al seu
estat d’equilibri, presentant aixi una imatge completa de la dinamica ultrarapida dels
plasmons i dels electrons en l'interior d’aquestes nanoparticules.

D’ara en endavant, explorem les oscil-lacions col-lectives en estructures de mida molec-
ular, que exigeixen 1'is de models microscopics que incorporen la resposta electronica



de multiples electrons mitjancant la solucié (numeéricament farragosa) de les equa-
cions de Schrodinger, incloent la interaccié amb la llum incident . En particular, en
el Capitol 4 apliquem la teoria del funcional de la densitat depenent del temps (TD-
DFT per les seves sigles en anglés) per a modelar la resposta optica de ’ADN: una
estructura que, a més de ser ubiqua en els organismes biologics, se li atribueixen usos
potencials en nanotecnologia.

Finalment, aquesta tesi també estudia els efectes dels desplacaments ionics de les
estructures, quantitzats en forma de fonons. En el Capitol 5 s’estudia 'acoblament
entre aquestes excitacions i els plasmons suportats per materials 2D: les distorsions
introduides en l'estructura electronica per les vibracions ioniques permeten explicar
resultats experimentals recents en qué el comportament dels plasmons es veu alterat
per la presencia de modes vibracionals. També vam estudiar, en el Capitol 6, la pos-
sibilitat d’excitar i analitzar directament aquests modes vibracionals, no mitjancant
metodes optics, sind emprant feixos d’electrons, en clara analogia amb els modes
plasmonics en nanoestructures.

En resum, aquesta tesi explora I'is de diferents models teorics en plasmonica, cobrint
I'espai entre les descripcions macroscopiques, totalment classiques, i el modelatge
atomic mecanic-quantic, en 'objectiu de contribuir a una comprensié més profunda
dels fenomens optics en la nanoescala.



Introduction

In this chapter, we introduce the theoretical foundations of this thesis. After briefly
covering the fundamental principles of Photonics and Nanophotonics, we explore the
connection between macroscopic and microscopic models of light-matter interaction,
linear and nonlinear response, the interaction with electron beams, vibrational modes
of nanostructures, and the properties of emerging materials in Nanophotonics.






The science and technology associated with light, most commonly known as Photonics,
is nowadays in a position in which we may, not only study light at levels never reached
before, but also control its effects as we could never have imagined not so long ago:
we are now able to focus light in regions well below the diffraction limit, to compress
it over time until we observe the real-time dynamics of electrons in molecules within
femtosecond timescales, to gather its power until it causes nuclear fusion, to transmit
information and with higher fidelity through optical fibers, to individually manipu-
late atoms in quantum computing systems, and a long list of capabilities that make
Photonics one of the most prominent disciplines of modern science.

Among all areas of Photonics, Nanophotonics (the study of the light-matter interaction
at the nanometric scale) is one of its most prolific branches, both from a fundamen-
tal and technological perspectives: at these scales, where the wavelength of light is
comparable to the characteristic length of those structures with which it interacts, the
classical models of Optics give way to a whole world of exciting effects: from useful
optical antennae to such exotic phenomena as the Casimir effect.

Amidst these outcomes, the appearance on stage of plasmons (the collective oscilla-
tions of electrons in metals) has generated substantial expectation for technological
developments. Their ability to confine light to regions well below the wavelength and
their high sensitivity to the dielectric environment make them suitable for use in de-
tection devices, as well as other promising applications in the fields of photovoltaics,
photochemistry and medical physics, among others.

These properties of plasmons have resulted, in recent years, in the evolution of Plas-
monics into a multidisciplinary field: the increasingly smaller structures used to con-
fine these excitations, as well as their applications in apparently unrelated fields, such
as Biophysics, have emerged as useful tools for chemists and biologists; with their
knowledge and techniques, they, in turn, stimulate new research directions to be
explored.

In order to examine these applications, in this introduction, we review the necessary
physical foundations: after a review of the principles of Nanophotonics and Plasmon-
ics, we quickly cover the most relevant models for the optical response of nanostruc-
tures at the atomic scale. The emergence of graphene as one of the most promising
materials in the field demands an introduction to its electronic and plasmonic proper-
ties, as well as its nonlinear features. Finally, we also cover the foundations of phonons
and electron beams which, although not directly related to Photonics, they both are
enabling tools for the discovery of new technologies.



1. INTRODUCTION

1.1 Fundamentals of Nanophotonics

1.1.1 Classical electromagnetism in materials

From a classical perspective, light is characterised as an electromagnetic wave which
is generated by a series of charge and current densities, p and j, and thus it fulfils
Maxwell’s equations!™] In the Gaussian unit system (used throughout this thesis),
Maxwell’s equations are written as

V- D(r,t)=4np(r,t), (1.1a)
V- -B(r,t)=0, (1.1b)
VxE(r,t)z—liB(r,t), (1.10)
cdt
VxH(r,t)z%[%D(r,t)+4nj(r,t)], (1.1d)

which relate the electric field, E, and the magnetic field, H, to the electric displace-
ment fields, D, and magnetic induction, B, from within the material under considera-
tion.

To solve these equations, it is necessary to know the dependence of the material
fields on the electromagnetic fields applied to the material; in other words, it is
necessary to complement the equations through constitutive relations D = D[E, H]
and B = B[E, H]. In the typical situation of a linear, isotropic, homogeneous and
non-magnetic medium (u = 1), these relationships take the form

D(r,t)= f dr’f dt’e(r—r', t —t)E(r',t"), (1.2a)
H(r,t) =B(r,¢t), (1.2b)

where € is the permittivity (or dielectric function) of the material.

For conventional materials, it is usual to find a dependence of the fields at time ¢t on
the values of the fields applied in previous times t’ < t, a phenomenon known as
temporal dispersion. However, the dependence of the field at position r on the field
at other positions 1’ (spatial dispersion, or nonlocality) only arises in structures of
very small size, close to the Fermi wavelength of the electrons in the material: in most
cases, we can disregard this nonlocal dependence on the response of the material.
Under these assumptions, we can write

D(r,t)= J dt’e(r,t —t)E(r, t).

10



1.1 Fundamentals of Nanophotonics

To remove the time convolution in this expression, it is convenient to convert Maxwell’s
equations to the frequency domain w, using the Fourier transform.

E(r,w)= f dtE(r, t)e*t, (1.3a)
de it
E(r,t)= | — E(r,w)e ", (1.3b)
27

where the reality condition of the functions in the real space-time E(r, t) € R imposes
the condition E* (r, w) = E(r,—w) on the transformed fields. We find

V -D(r,w) =4mnp (r, ),
V- -B(r,w)=0,
V X E(r, w) = ikB (r, w),

V xH(r,w) =—ikD(r, w) + 4—nj (r, w),
c

where we define the wave number k = w/c. The constitutive relations (equation 1.2),
thus, become

D(r,w) = e(w)E(r, w),
H(r,w) =B (r,w),

in which the permittivity of the material, e(w), contains all the required information
for the knowledge of its optical response.

From these equations, we can also state that Maxwell’s equations guarantee the local
conservation of charge: in fact, we can directly derive the continuity equation both
in real and frequency domains from Egs. 1.1

1)
PO+ =0, V-j(re)=iop(r ).

The above results are applicable inside any homogeneous material; however, at
the boundary between two materials with different permittivities the fields satisfy
certain boundary conditions derived from Maxwell’s equations. At the sharp boundary
between two media, the interface conditions are as follows:[?]

n;, x (E;, —E;) =0, (1.52)
n;, - (D, —D;) =4no,, (1.5b)
n;,-(B,—B;)=0, (1.50)

41,
ny, x (Hy—H;) = U (1.5d)

11
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Figure 1.1: Continuity conditions for the electromagnetic field at sharp bound-
aries. We represent the interface conditions (equations 1.5) at the sharp boundary
between two materials with different permittivities €; and e,.
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Figure 1.2: Fresnel coefficients. We represent the incident, reflected and transmit-
ted fields at the sharp boundary between two materials with different permittivities
€, and €,, for both perpendicular s and parallel p polarisations, in terms of their
corresponding Fresnel coefficients (equations 1.6).

12



1.1 Fundamentals of Nanophotonics

where n,, is the normal vector from medium 1 to the medium 2, o is the charge
surface density between the two media and j; is the current surface density.

The first two equations, in particular, make it possible to predict the behaviour of
incident electromagnetic waves at the interface: the reflected and transmitted waves
are related to the incident wave using the so-called Fresnel coefficients for reflection,
r, and transmission, t. For a non-magnetic material, they adopt the expression

€,k —e.k €y k
= 2K11 —€1K91 £, =\ _ZLJ-(l_rP)’ (1.6a)

egkyy +erky) €1 kot
kig —kyy
Ts ki +ko| s Ts (1.6b)

where k;; is the component of the wave vector in the medium i perpendicular to
the interface, which is in turn related to the dielectric constant of the material ¢;
and the angle 6; with respect to the normal to the surface through the expression
k;, = /€;kcos ;. The subscripts of each of the coefficients refer to the polarisation
of the incident field: parallel (p) or perpendicular (s, from German senkrecht) to the
plane containing the incident, reflected and transmitted wave vectors: for s, E is out of
plane and perpendicular to k;; for p, H is out of plane and perpendicular to k;.

The above expressions are still valid when we consider evanescent fields, or even me-
dia with complex permittivity (e.g., metals in general); we then assume translational
invariance of the interface along directions R = (x, y), thus the fields present a depen-
dence e*I® with well defined parallel wave vector k,; the perpendicular wave vectors

are then k;; = ,/k?¢; —kﬁ +i0*, with the square root chosen to yield a positive
imaginary part.

1.1.2 Fundamentals of Plasmonics

Light can give rise to multiple phenomena when it interacts with matter: from the
polarisation of dielectric materials to the formation of electron-hole pairs, excitons,
polaritons, and a plethora of different types of excitations, each of them ruled by
different physical processes.

In metals, the main contribution to their optical response comes from the electrons in
their conduction band. These electrons are capable of sustaining collective excitations,
which correspond to oscillations of the electronic charge density: the quanta associ-
ated with these excitations are known as plasmons, and the branch of Nanophotonics
that studies them is called Plasmonics.

It is customary to classify plasmons depending on the region in which the charge os-
cillations take place. In particular, we have bulk plasmons, which are associated with

13



1. INTRODUCTION

Aspp = 27 /kispp
—

polariton

-

plasmon

N W A~ Ot

Trwey

huw, (eV)

Light line

0 . . .
0 1 2 3 4 D

hc - kspp (€V)

Figure 1.3: Surface plasmon-polaritons in an air-gold interface. We represent the
real and imaginary parts of the dispersion relation of surface plasmons in an air-gold
interface, given by equation 1.8. We use a Drude model (equation 1.10) to describe
the metal, with parameters €;, = 9.5, w, =9.06 €V and y = 71 meV.

longitudinal excitations of the electric field within the material (V x E = 0); neverthe-
less, their high characteristic energies make them of little appeal to Nanophotonics,
so we focus mainly on the study of two other types of plasmons: surface plasmon-
polaritons (SPP) and localised surface plasmons (LSP).

Surface plasmon-polaritons

From a theoretical perspective, we can define SPPs as the optical modes located at
the interface between a metal and a dielectric. Its interface condition, mathemati-
cally, turns a plasmon into a homogenous solution of the wave equation (from Egs.

14



1.1 Fundamentals of Nanophotonics

1.1)

V x V x E(r, w) — k%e(r, w)E(r, w) = 0. 1.7

Equivalently, the modes of this equation correspond to the poles of the Fresnel co-
efficients, 1.6. For s polarisation, we find the condition k;, = —k,, which cannot
be fulfilled with conventional non-magnetic materials.l*) In contrast, for parallel p
polarisation, we get the condition e€,k; | + €;k,,, corresponding to the vanishing of
the denominator in the Fresnel coefficient, Eq. 1.6: from this expression we can cal-
culate the momentum of the propagating mode along the surface in terms of the
permittivities of the metal, €.,,, and of the dielectric, €4, as

w €m€q

k

PP e, +eq (1.8)
Physical restrictions on this parameter, such as generating excitations that propagate
through the interface, which implies Re {kspp} # 0, and that these excitations are
located on the surface (i.e. they decay in the direction perpendicular to the surface)
forces the permittivities to meet the conditions Re {e,e4} < 0 and Re {e,, + €4} < 0.
Additionally, losses should be small in order to have well-defined plasmons, so that
Im{e,} < Re{e,}.

Metals (especially noble metals such as gold and silver) have a relatively large neg-
ative permittivity compared to typical dielectrics such as air or glass; therefore, the
interfaces between these materials and metals support these plasmonic excitations.
Physically, they are a hybrid between the electrons oscillating in the metal (plasmon)
and electromagnetic fields in the surrounding material, possibly involving polarisation
charges (the polaritonic component).

For the permittivity of the metal, €, to have a negative real part, its electrons must
oscillate in phase opposition to the incident light field: this only occurs when the
frequency of the incident light is below the plasma frequency of the metal, defined

asl4]
4 2
w, = | =, (1.9)
mg

where n is the electron density in the conduction band, mz is the (effective) electron
mass, and e is the electron charge. For frequencies above the plasma frequency, the
electrons in the material are not able to follow the field oscillations, resulting in a
dielectric behaviour for w > w,.
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1. INTRODUCTION

A simple model for the permittivity of metals, accounting for all these physical phe-
nomena, is the Drude model,

2

e(w)=¢ (1.10)

p

w(w +iy)’

in which electrons are considered to be free, in a dielectric environment given by €y,

subjected to the action of a harmonic restoring force of elastic constant a = m, wﬁ,m
and with a term y associated with inelastic collisions.

The main properties of surface plasmons are their confinement factor with respect
to the incident light and their propagation distance, related to their lifetimes. Both
magnitudes can be defined in terms of the plasmon wave vector, equation 1.8, as

As

LI 2—";, (1.11a)
Ao Ao Re{kspp}

1

Lgp=——,
PP 2Im {kypp}

(1.11b)

where the plasmon propagation length, Ly, is defined as the distance at which the
intensity of the plasmon field has been reduced by a factor of 1/e with respect to the
initial intensity.

There are two major problems associated with the use of plasmons: the high plasmon
confinement drastically reduces the coupling between the plasmon and the incident
light, due to the mismatch between the wave vectors of both excitations, which must
be identical by momentum conservation. Additionally, the values of the propagation
distance L, are usually very small, which limits the half-lifetime of the plasmon to
a few cycles, thus constricting its possible uses.

localised surface plasmons

Inspired by the case of extended interfaces, we can extend the definition of plasmons
to electron oscillations in nanostructures, resulting in the so-called localised surface
plasmons (LSP). These are also homogeneous solutions of the wave equation (1.7),
under the boundary conditions of the geometry we are interested.

Directly solving these equations is often a complex problem, from both analytical and
numerical perspectives. However, the small particle size relative to the wavelength
of incident light allows us to ignore the retardation effects in some cases (in other
words, we can assume that the speed of light is infinite in Maxwell’s equations). At
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Figure 1.4: Localised plasmon resonances for different geometries. We represent
the extinction cross-section and transversal cuts for the near-field intensity profiles
(as insets) for a) a sphere of radius 50 nm, b) a cylinder of radius 50 nm and height
100 nm, ¢) a torus of radius 50 nm, and inner radius 10 nm. We use a Drude model
(equation 1.10) to describe all of them, with parameters €, = 9.5, w, = 9.06 eV
and y = 71 meV (i.e., those for gold). We see, after illumination with a plane-wave
coming from the z axis and polarised along the x direction, radical differences on
their extinction cross-sections (normalised to their projected areas on the xy-plane
for each structure) associated solely with geometrical effects.
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the ¢ — oo limit, the electromagnetic field gets decomposed into its electrostatic and
magnetostatic components, so the first component satisfies the equations

V- -D(r,w) =4mp (r, w),
V XE(r,w)=0.

The fact that the electric field turns into a longitudinal vector implies that we can
define it in terms of a scalar potential as E = —V®. Therefore, the study of homo-
geneous modes, such as that of localised plasmons, is reduced to solving Poisson’s
equation

V- -D(r,w)=—V-[e(r,w)V®(r,w)] =0 (1.13)

under the appropriate boundary conditions, given by the geometry.

These modes, unlike plasmon-polaritons in planar interfaces, may present certain
polarizability a that allows them to couple directly to the incident light: thus, they
can be studied from an observational perspective regarding their effective extinction
and scattering cross-sections, which we can derive from the optical theorem as®]

4w
c®*'= ——Im{a}, (1.14a)
c
8rw?
s¢ = lal?, (1.14b)
3ct
and from where we can compute the absorption cross-section as o3 = ¢ — g%,

abs

which is approximately 02" ~ o®** for very small particles.

1.2 Microscopic treatment of material properties

So far, we have considered that our permittivity e(w) is known: from its knowledge,
we have been able to calculate the optical properties of the medium. However, the
determination of this permittivity from a theoretical viewpoint requires a thorough un-
derstanding of the electronic properties of materials, as well as a microscopic picture
of the effects of the electric field on the electronic dynamics.

In this section, we first study the electronic structure of materials within the framework
of the density functional theory; then, we extend this theory to potentials that are
time-dependent. Finally, we present key results associated with the linear response in
this theoretical framework and compare them with the classical results in the context
of Plasmonics.
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1.2 Microscopic treatment of material properties

1.2.1 Many-body problem

The electronic structure of a material with N electrons, as well as its response func-
tions, are determined by the solution of the Schrédinger equation that they satisfy;
in the presence of a potential v(r) the Hamiltonian of the system is given by the
expression

N _H2x72
fi Vri 1
H(ry, 15,0 ,1y) = Z — +v(r) |+ 2 ZVc(ri:l‘j), (1.15)

— 2m, 2 &=

i=1 i#j
where 1; are the electron coordinates i, v¢(r;, r;) is the Coulomb interaction between
the electrons i and j, and m, is the electron mass. Solving the Schrodinger equation
for this Hamiltonian is known as the many-body problem, and it is extraordinarily
complex to solve due to the exponential growth of the solution space with the number
of electrons under consideration.

Throughout the 20th century, there have been multiple approaches to solving this
equation: one of the first ones, derived by Hartree,[”! consists on describing the wave
function of the entire system ¥({r;}) as a product of wave functions of each individual
electron, 1) (r;), which satisfy Schrodinger’s equation for an electron in the presence
of the mean field produced by all the other electrons in the structure. This solution,
however, does not have into consideration the fermionic character of the electrons:
this is taken into account through Slater determinants, ®! resulting in the well-known
Hartree-Fock method,[® %) widely used for the study of the electronic structure since
then.

This method, which gave rise to the field of Quantum Chemistry, takes into account
both the presence of the mean field and the interaction between electrons with the
same spin (exchange interaction); however, it ignores the interaction between elec-
trons of different spin (correlation interaction). Efforts to add this interaction to
the solution of the many-body problem resulted in the creation of both perturbative
methods, such as the Mgller-Plesset scheme,['!] as well as more rigorous methods,
such as the configuration interaction,['?) which provides the exact solution of the
Schrodinger equation and thus its complexity grows as well exponentially with the
number of electrons under consideration.

1.2.2 Density functional theory (DFT)

A significant milestone in the solution of the many-body problem was the formulation
of the Hohenberg-Kohn theorem (HK), 3! which states that

The ground state of a non-degenerate system of interacting electrons is
determined by the electronic density n(r) of the system.
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This result allows us, in turn, to extract all the relevant physical properties of the
structure (in its ground state) just from the knowledge of the electron density.

The HK theorem, despite its relevance, does not offer any guidelines for obtaining
the electronic density of the system: for this purpose, Kohn and Sham derived on the
basis of the HK theorem a method similar to the Hartree-Fock scheme,[**] in which
the electron density associated with the interacting electron system is identified with
the density produced by the combination of N electronic densities of independent
electrons, so that the wave functions of each of these electrons, v;, satisfy the so-called
Kohn-Sham equations (KS):

hys [n(r)] vy (x) = Few;;(r), (1.16)

where Aw; is the energy of the state labeled by i and hyg[n(r)] is the Kohn-Sham
Hamiltonian for an individual electron,

322
2m,

with v(r) being the time-independent external potential applied to the system.

hys [n(r)] =

+v(r) + vgs [n(r)] (1), 1.17)

The Kohn-Sham potential, vgg[n(r)](r), is a functional of electron density, and can
be broken down into two distinct terms: the first is the mean field or Hartree term;
the second is the so-called exchange-correlation potential

n(r)

r—r|

vgs [n(X)] (1) = vy [n(®)] (1) + vy [n(0)] (1) = J dr’ + Ve [n(®)] (r).  (1.18)
Thus, the results of the KS method depend on the functional structure of the exchange-
correlation potential, v,., not established by the KS method itself: different expressions
for this functional give rise to different approaches within the DFT methods.

1.2.3 Time-dependent density functional theory (TD-DFT)

The preceding results, despite their generality, only provide information about the
system in its ground state; they are not applicable to systems that have time-dependent
potentials applied: therefore, DFT theories do not allow for direct determination of the
excited states of materials, nor for related outcomes such as optical responses.

Fortunately, the DFT theory has an extension to time-dependent potentials: analogous
to the HK theorem, the Runge-Gross theorem!'>! states:

Given a system of electrons in a certain initial state ¥(t,), there is a one-
to-one correspondence between the external potential, v, (r, t) and the
time-dependent electronic density, n(r, t) associated with this system, for
all t > t,.
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1.2 Microscopic treatment of material properties

This relationship leads to a procedure similar to the KS method, which transforms the
solution of Schrodinger’s equation for the complete system into the combination of the
individual solutions for each electron, which satisfy their respective time-dependent
Kohn-Sham (TDKS) equations

2v72

ih%#)i(r,t)=[ + vgs [n(r, )] (r, t)} Y, (r,t), (1.19)

e

where Kohn-Sham’s potential now takes into account the time dependence of the
electron density as well as of the external potential v, (r, t)

,n(r', t)

+ Ve [n(r, )] (x, t), (1.20)
r—r/|

s [t O] (£ £) = Va5, £) + f dr

which is functionally similar to DFT.

1.2.4 Linear response theory

To obtain the optical properties of a system, we consider its response to external elec-
tromagnetic fields: for electrostatic fields, in particular, we aim to study the response
of these systems concerning disturbances to the external potential, &V (r, t). In lin-

ear response theory, the variation in electron density én due to this potential is given
by the system’s susceptibility y as

Sn(r,t) = J dr’f dt y(r, ', t =tV (¥, t).

To handle the temporal dispersion of the system more comfortably, as we did for
Maxwell’s equations, we can convert these expressions into the frequency domain

on(r, w) = J dr’ y (1,1, )8 Vey (¥, ). (1.21)

From the induced density we can calculate interesting magnitudes from the optical
response perspective; for example, the dipole moments induced on the structure are
given by

6p(w) = f drrén(r,w) = f drj dr'r y(r, 1, 0)8Vey (1, ).

If we also consider that the external disturbance comes from a constant field along a
direction i, 6V (1', w) = —; - 6E, this ratio allows us to calculate the polarizability
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tensor of the system

a(w) = f dr f dr' (rer) y(rr,w), (1.22)

where ® denotes the dyadic product. This result allows us, through the optical theo-
rem, to define the effective extinction cross-section of the system as

O_ext(w) — 4% %Tr [Im {&(0))}] 5

which is consistent with equation 1.14a for a homogeneous system.

Linear susceptibility from Schrédinger’s equation

Let us consider a system that is characterised by its density operator 6(r) and exposed
to an external potential v, (r, t). The interaction between both is described, in the
Schrédinger picture, by the interaction Hamiltonian

H™ = J dr ﬁ(r)J d—w5vext(r, w)e @t
271

for which we have taken the Fourier transform of the external potential.

The wave function of our system, |v)), may be expressed in terms of the eigenstates
of the Hamiltonian |n), each of them associated with an energy ficw,, n=0,1,2,....
Assuming initially that only state n = 0 is populated, we construct the wave function
as
) = 4o [0) 7 + > Ja,e™ " In) 2 10) €7 +[59)),
n#0

where a, € C is the coefficient of state n, which (to first order in perturbation theory)
satisfies the differential equation

a, = :ieia)ot <n }Hint} 0) .

I

By expressing the potential in terms of its Fourier transform, we can solve the preced-
ing equation by integrating directly from time t, — —00,

—1 dew ei(wno—w)t

A =— ——fdr (n]A(1)] 0) 6Vex(r, @),

h 27 wyg— w—i0+

where w,g = w,— wy, and the i0* term comes from taking into account the adiabatic
approximation for the potential for times t, — —oo.

22



1.2 Microscopic treatment of material properties

Once the wave function coefficients are obtained, we can calculate the induced charge
density at time t as the difference between the total charge densities at time t and
the initial one

&n(r, 1) = (Y [p(x)|y) — (01px)]0) ~ (015 (x) 5v) + (64 |/(1)] 0)

Where the approximation comes from considering only the linear terms in the external
potential. Expanding the expressions for |61)), we get

(e, )= =+ J 40 o5 ([ gy <0|p(r>|n> (nlpaNO 5 vy

n#0 —w—i0"
do ““Zjd’ ol @IP@I0) 5
w—@+i0r e

From this expression, by directly comparing it with 1.21, we derive a closed expression
for the susceptibility in the frequency domain,

sty = S [ QPO BPENG) 01O (1pE)0) )

h oy Wpo— w —i0* Wy + w +i0
where the numerators depend solely on the value of the density operator p(r) of the
system.

Noninteracting susceptibility from the TDKS equations

The possibility of adding time-dependent potentials to the solution of Kohn-Sham’s
equations enables us to identify the variation of electron density, 6n(r, w), in turn,
with the variations in Kohn-Sham’s potential, §vgs(r, w), through the susceptibility
between non-interacting electrons y°

on(r,w) = f dr’ y°(r, 7, )6 vis(r, w), (1.23)

where the non-interacting susceptibility y° is written in terms of the wave functions
of the time-independent problem, v(r), and its respective occupations f; as

e, w)—Z( . w(.)m_/) () Lo

Hw; +hAw +i0*
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Variations of Kohn-Sham’s potential, §vgs(r, w), can be expressed in terms of the
functional derivatives of each of its components in equation 1.20

/ 6n(r/) Cl)) + dr/ 5VXC(r’ w)
|r—r’| on(r', w)

The two terms within the integral correspond to the corrections induced by the charge
density, mediated respectively by the Coulomb potential, v.(r,r") = e? |r— | and
the so-called exchange-correlation kernel,

Ovs(T, ) = 6Vey(r, w) + J dr on(r', w).

O6v,.(r, )
LY, w)= ———.
e ¥, ) = ZH 2
These results allow us to write the susceptibility y in terms of the non-interacting
susceptibility y° through the Dyson equation, which we obtain by combining equa-
tions 1.21 and 1.23,

(1, w)= ', w)+ f dsy°(t,s, co)f ds’ (ve(s,8) + fue(s, 8", @) x (8, ¥, w).

In compact form, this expression reads

1 =1+ 0c+fid 2)- (1.25)

The exchange-correlation kernel, as we see from its definition as a functional deriva-
tive, takes into account changes in the correlation due to the presence of the external
field. In many systems, these effects are negligible (on average), thus allowing us to
disregard the term f,. in Dyson’s equation:

x=0Q—=x"vo) " 2" (1.26)

The solution we find this way is the Random-Phase Approximation (RPA), typically
adopted in Theoretical Plasmonics.

1.3 Graphene Nanophotonics

As stated above, one of the notable problems Plasmonics faces nowadays regards
the high damping rates of plasmons in noble metals, such as gold or silver. These
reduce the half-lifetime of the plasmonic excitations in these materials to a few cycles,
thus severely limiting the range of applications accessible to Plasmonics. Aiming to
compensate for this situation, the Plasmonics community has been looking for new
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materials and techniques:!'®'8] from the improvement of nanostructures to the use
of other materials with lower losses.!'% 2]

Among all these materials, an outstanding one of these has been graphene: an atom-
ically thin layer composed of carbon atoms in a honeycomb arrangement. Since its
discovery in 2004,2!) it has represented a genuine revolution in nanotechnology, es-
pecially for its mechanical and electronic properties.?>23] Moreover, it has motivated
the study of other two-dimensional materials such as transition metal dichalcogenides,
with potential applications in Photonics.[24-%7]

In particular, regarding Nanophotonics, doped graphene structures (either chemically
or by the application of an electrostatic potential) are capable of sustaining plasmons
in the far infrared range.!?®] These plasmons are extremely sensitive to the doping con-
ditions of the material, thus allowing for dynamic control of the plasmon properties;
they also present very high lifetimes in comparison with typical plasmonic materials.
Besides, graphene also has extraordinary capabilities as a nonlinear material,[2%-3°]
which are enhanced in the presence of plasmons.?'-32]

In this section, we briefly introduce the main properties of graphene from the elec-
tronic, optical and plasmonic perspectives, as well as a summary of its nonlinear
capabilities.

1.3.1 Electronic properties

The electronic properties of graphene are mainly determined by the hybridisation of
the orbitals of its constituent carbon atoms: carbon has a sp? or trigonal hybridisation:
the orbital 2s and the orbitals 2p, y 2p, hybridize together, forming o links between
the atoms, conferring most of the mechanical properties of graphene. In turn, the 2p,
orbitals appear perpendicular to the plane, and the hybridisation between them is
produced by 7 links, much weaker than the o ones. These bonds, characteristic of
aromatic organic molecules !, are mainly responsible for the electronic properties of
graphene at low energies.

Mathematically, graphene is described as a triangular lattice with a double base: the
vectors

a, = 2 (3,£3),

1n fact, the origin of the name “graphene” comes from the addition to the root of “graphite’ of suffix
“—ene”, which is characteristic of polycyclic aromatic molecules.
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Figure 1.5: Band structure and electronic transitions in graphene. a) We show the
valence and conduction bands of graphene in its first Brillouin zone (violet hexagon),
according to equation 1.27. Near the K and K’ points, the band structure has a conical
shape, leading to a linear dispersion for electrons. b) We describe the intraband and
interband processes allowed in the Dirac cone, for a graphene sheet doped up to a
Fermi energy Ep. Interband transitions with energies < 2E; are forbidden, due to the
excess electrons occupying the corresponding final states.
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1.3 Graphene Nanophotonics

define its real basis, where a, = 1.42A is the distance between two neighbouring
carbon atoms. These result in a basis for the reciprocal space given by

27
bi_g—%(1,i«/§).

To model the electronic response of graphene, we can restrict ourselves to a tight bind-
ing model (TB) between neighbouring 2p, orbitals: considering only first neighbours,
the energy bands in the reciprocal space E; are given by the expression

3 3 3
Ex= :I:td 1 +4c052(ca0 ky) +4cos(ca0 ky)cos(%kx), (1.27)

23]

where t = 2.8 eV is the hopping energy between neighbouring orbitals.!

We can verify that the valence and conduction bands (negative and positive signs in
the previous equation, respectively) intersect at two different points K and K/,

K_Zn(l 1) K,_Zrc(l 1)
3ap \ " v/3)’ 3a0\" V3

for which Ex = Ep =0.

For wave vectors around these points, k = K+ q, the dispersion relation is approxi-
mated by the linear expression

Eq = th |q| >

with vg = 3tay/2k ~ ¢/300 being the Fermi velocity of electrons. By representing the
band diagram (figure 1.5), the states around the K y K’ points can be seen to form a
cone-like shape. These are called Dirac cones since the linear dispersion relation of
these electrons is such that they fulfill an equation functionally similar to the Dirac
equation for massless fermions.[?*]

1.3.2 Optical properties

Its dispersion relation gives graphene two fascinating properties from an optical per-
spective: in the case of undoped graphene, it shows a constant absorption coefficient
A = ma ~ 2.3% over a wide energy range,[®*] due to the symmetry between the
conduction and valence bands, allowing for light absorption over the entire range of
energies for which the Dirac cone picture holds.
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1. INTRODUCTION

Besides, the linear dispersion of graphene makes its density of states within the Dirac
cone, given by

3v/3a;

Thvg

p(Q) = lal,

a very low quantity, enabling radical changes in the Fermi energy Ej of the system
by injecting a relatively low number of electrons into the graphene. Specifically, Ep =
hvpy/7tn, with n the charge density of additional carriers. These additional carriers
are usually inserted into the graphene by the application of a constant field E across
the sheet, resulting in a screening charge density n = —|E| /4me, or by chemical
functionalization.

The shift in Fermi energy modifies the graphene’s responsiveness; the local-RPA con-
ductivity usually gives a reasonable description of this:[>*]

—e2 i * of E/|E|
O'(w)z?w_“yf dE |E|a—g+ﬁf,5 , (1.28)
o 1-(rm)

where fj is the distribution of electrons at an energy E, usually given by the Fermi-
Dirac distribution at temperature T,

1
" T+exp[(E—Ep)/ksT]

fe (1.29)

The expression for the conductivity has two well-differentiated terms in the integral:
the first of them takes into account the intraband transitions of the electrons. At the
T — 07limit, it yields a conductivity functionally identical to the Drude model

e’ 1|EF|

o(w)= (1.30)

nh? w+1iy

The second term describes the interband transitions between valence and conduction
bands, which are significant only if very high doping or relatively small structures are
used.

1.3.3 Plasmons in extended graphene

The ability to vary the Fermi level enables graphene to have electrons in the con-
duction band: these electrons, in the same way as for metals, behave as if they were
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1.3 Graphene Nanophotonics

free electrons, which in principle makes them susceptible to sustain collective oscilla-
tions.

As in the case of metal and dielectric interfaces, the dispersion relation of plasmons
in graphene is obtained from the pole of the Fresnel coefficient (1.6), which can
be generalised to calculate the reflection produced by a thin film of conductivity o,
resulting in

4no
ek —erkyy + 707k kyy

P~ 7 :
€xky) +erkyy + 7k ko)

From the pole of this coefficient, we obtain the dispersion relation of these plas-
mons,

€, €, __Amio(w)

VK2, — ek i V2, — ek ©

Spp Spp

For very confined plasmons (something that generally occurs in the electrostatic
1imit!33]), we can consider the momentum of the plasmon to be much more significant
than the momentum of the incident light, k,, > k, so the expression above can be
approximated as

Spp

_ete  iw

kSPP - 2

2no(w)’

and from where we can easily extract the confinement factor and the losses by sub-
stituting in equation 1.11.

1.3.4 Nonlinear response

For the vast majority of materials, the response to optical stimuli can be described
through linear response: the external potentials generally do not introduce much
distortion into the electron density. However, technological advances such as lasers
have made it possible to confine a large amount of energy into optical fields, which
is enough to cause distortions beyond the linear response: nonlinear optics describes
this phenomenon.[34]

From a formal perspective, this forces the constitutive relations of the material ( 1.2)
to have a permittivity that depends on the external field. Mathematically, this converts
the polarizability (defined in terms of electric displacement as D = E + 47P) into a
function of the electric field

P(t) = x.[E](1),
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1. INTRODUCTION

with y, the electrical susceptibility, and where we ignore the position dependence r
for simplicity.

A common way to solve this expression, employing the frequency domain, is to expand
the electric field and polarisation in a series of harmonics[®®]

P(t)= Zp(wn)e—iwnt’ E(t)= ZE(wn)e—iwnt

and to expand the susceptibilities in terms of powers of the different components of
the field, E(w, ): thus, we have the linear term

Pi(wn) = Z ijl)(wn)E,(wn),
J

where the field amplitude only appears once per each term, and where i and j are the
Cartesian components (x, y,z) of the linear susceptibility tensor, 71). The next term,
on which the field amplitude appears twice, is the second-order nonlinear term

2
Pi(wn + wm) = Z Z Xl(Jk)(wn + W, Wy, wm)Ej(wn)Ek(wm)’
Jjk (nm)

where (nm) denotes the sum over all possible permutations of n and m. This suscep-
tibility is responsible, for example, for processes such as sum frequency generation
(w, # w,,), or second harmonic generation (w, = w,,). In the same way, we can also
establish the third order susceptibility as

3
Pi(wn + wWn + wo) = Z Z Xl(Jk)l(wn + Wy + Wy, Wp, Wiy, wo)Ej(wn)Ek(wm)El(wo):
jkl (nmo)

in which phenomena such as the Third Harmonic Generation (THG) or linear diffrac-
tion index corrections (Kerr effect) arise.

For extended graphene, the second-order susceptibilities are identically zero in the
local limit, since the material is centrosymmetric.[>*] Nevertheless, it presents a very
high third-order susceptibility in comparison with other materials.[>*-38] This property,
together with the large confinement factors associated with its plasmons, suggests
that graphene has excellent potential as a relevant material in the development of
nonlinear nanodevices.[°]

1.4 Vibrational modes in nanostructures

When calculating the electronic and optical properties of a material, the ions that
make up the structure are generally considered static. From a physical perspective,
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1.4 Vibrational modes in nanostructures

this is only an approximation, based on the vast difference between the time scales of
electronic and ionic dynamics; however, ions also have their dynamics, which can be
affected by the changes in electronic density associated with, for example, a transition
between states or the application of an electric field.

The primary outcome of this dynamics is the displacement of ions from their equi-
librium positions. Under the assumption of small displacements, we can consider
that the ions lie in a harmonic potential: the movements of the ions, therefore, are
oscillations around their equilibrium position.

Mathematically, for a structure with N ions these displacements are represented by a
3N-dimensional vector, u, in which the component u;; represents the displacement of
the [ atom along the i Cartesian direction. From these displacements, we can define
a series of normalised displacements w;; = u;;/,/m;, with m; the mass of the [-th ion,
and satisfying the eigenvalue equation

w?*w = Dw, (1.31D)

where the dynamic matrix D is defined in terms of the variations in the potential
experienced by the ions, U, as

b -1 2%U
him ;8% 0%

where JX;; indicates the derivative with respect to the i coordinate of the system
centered on the [ atom.

With these definitions, solving the eigenvalue equation for the dynamic matrix, (1.31),
provides a set of 3N normal vibrational modes v, each of them associated with a
vibrational frequency w, and with a displacement vector u,,.

The set of normal modes u,, is a complete orthonormal set, in the sense that any spatial
configuration of atomic displacements can be expressed both in Cartesian coordinates
and in this collection of normal modes: assuming for simplicity that all atoms have
the same mass (m; = M V1) the energy associated with these modes is given by the
Hamiltonian

H=ZP%+1Mco2q2
—2M 20 VT

an expression in which g, is the displacement along the generalised coordinate v,
and p, its associated conjugated momentum. This Hamiltonian, identical to that of a
harmonic oscillator, provides a hint for the quantisation of the normal modes. In this
way, the displacements of the structure are quantised, each one of these quanta has

31



1. INTRODUCTION

an energy Aw,, and each of them has an associated pair of creation and destruction
operators

B—‘M“”[+h a] Bi._1va[_h a]
L T Mw, dq, 1’ T\ o P Mw, dq, ]

From this expression, we can isolate g, in terms of the creation and destruction
operators to calculate the displacement of each atom [ as

h no n
RPN EWEYIRWEDS \J s (BB
v v v

which can be used, for example, to compute expectation values of the atomic displace-
ments (x;;) and its moments (x;})

1.5 Interaction with electron beams

Although light is the primary tool for Nanophotonics, electron beams are also capa-
ble of interacting with the optical modes of a system; in fact, the first experimen-
tal evidence of the existence of plasmons comes from electron microscopy experi-
ments.[4041]

Nowadays, electron beams and their associated techniques, such as electron energy-
loss spectroscopy (EELS), allow the study of material resonances, due to the ability
that this technique offers to map the permittivity of materials. This is not restricted
only to the energy spectrum: the ability to focus electron beams makes it possible to
study the spatial distribution of the modes as well.

Also, due to the presence of evanescent modes in the electromagnetic field of the
electron, EELS allows the study of modes that cannot be coupled to free radiation
due to selection rules, and therefore cannot be studied using traditional techniques
in Nanophotonics.

Within a purely classical formalism,*?] we can calculate the energy loss associated
with EELS as the integral of the probability of energy loss, T s(w)

0

For an electron travelling through space with a constant velocity v along a path r.(t),
we can identify the associated energy loss AE suffered by the electron interacting
with the electric field back-induced on it by the neighbouring structures: this field is
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1.5 Interaction with electron beams

previously generated by the electron, resulting in a feedback mechanism that produces
an energy loss

AE = ef dtv-EM[r,(6),t],

which allows us to write the EELS probability as
¢ ~ —i in
Tiprs(w) = — f_oo dtRe{e 'v-EM[r(6),t]}.

The field induced on the electron can be obtained as the field generated by the struc-
ture in response to the bare field produced by the propagating electron, which is given
by the expression

2w . [ R R .
E°(r, ) = —o el [11(0 (w—)i—Kl (w—)R],
v2y r Oy vy

where it is assumed (without loss of generality) that the electron propagates along the
z axis, R = (x, y), v is the electron speed, y = 1/4/1 —v2/c2 is the Lorentz contraction
factor and K; are modified Bessel functions of the second kind.
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Enhanced nonlinear response through
plasmon focusing

In this chapter, we explore the possibility of enhancing the nonlinear response of
materials by geometrically focusing plasmons on custom-designed structures. The
light coupled to the edges is geometrically concentrated in a region of the order of
the plasmon wavelength. This energy confinement boosts the nonlinear response of
the material, which in turn leads to an increase in the efficiency of processes such as
harmonic generation.
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2.1 Introduction

2.1 Introduction

Research in Photonics can provide the ability to employ light to control light. Just as
in electronic circuits, where the creation of nonlinear devices such as transistors gave
rise to a genuine revolution from the scientific, technological and social perspectives,
the study and design of photonic devices with unprecedented nonlinear capabilities
could lead to a new social transformation.

Nevertheless, this possibility is limited by the weak nonlinear response of commonly
used materials in photonic devices. In order to compensate for this fact, one generally
relies on the concentration of light in small regions, thus enhancing nonlinear effects,
for which various strategies have been adopted; however, the most conventional
strategies, such as direct focusing of light using micrometric Fresnel lenses,[**] have
their focus size limited by the so-called diffraction limit, which prevents focusing in
regions smaller than approximately half of the light wavelength A,.

Another possible strategy, more sophisticated, consists in using highly localised prop-
agating modes (i.e. with wavelengths shorter than that of light), such as plasmons
and phonon-polaritons!“+53Jto enhance the nonlinear response. In particular, the
use of plasmons is desirable not only because of their ability to confine the field at
the nanometric scale but also because of the additional increase in field strength, a
phenomenon that has its roots in the coupling to evanescent fields.[>*]

Besides, as these are propagating modes, it is possible to focus plasmons, further
increasing the intensity of the fields. This focusing has been investigated successfully
in self-similar particle chains,’*) in tapered geometries (both in ribbons>®°7] and
metallic particlest®®)) and in plasmon concentrators,>>%°) which allow not only to
focus but also to control the angular momentum of the generated plasmons in the
process.

Two-dimensional materials such as graphenel®*61-%5] or black phosphorus[®>®7] They
are capable of sustaining plasmons in the infrared with wavelengths A4, of the order
of a few nanometers, which dramatically increases the local electric field intensities
in these materials, and therefore, any potential nonlinear effects. This is particularly
true for graphene, whose band structure renders it a material with strong nonlinear
response,[5% %870 which is further increased by the effect of plasmons.t3%37-3%71-75]
Also, ultrathin layers of noble metals can support plasmons with energies close to
the visible spectrum,!”®) showing similar confinements as two-dimensional materials,
with propagating mode wavelengths as small as A, < 100 nm. This degree of confine-
ment, however, is not restricted to plasmonic materials: the polaritons that appear,
for example, in 2D van der Waals structures also have very small 1,/A, confinement

factors.[?7]
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2. ENHANCED NONLINEAR RESPONSE THROUGH PLASMON FOCUSING

(a) (b
Ee xt |
plasmonic
ﬂ hotspot

Figure 2.1: Plasmon focusing on two-dimensional nanostructures. (a) We con-
sider a two-dimensional structure with a semicircular profile of radius a (much greater
than A4, the plasmon wavelength) at one of the edges. (b) After illuminating with a
plane wave (represented by an external field E**"), light is converted into plasmons
along the edge, which are then focused on the centre of the structure.

)

EexL

However, high light confinements usually result in a very inefficient coupling between
light and plasmons, as they are excitations with very different wave vectors. There
are several ways to try to counterbalance for this; for example, by designing periodic
gratings to compensate for the difference in wave vectors,!””>78] or the use of tips,®]
which permit the excitation of larger wave vectors thanks to the focusing of the
optical field. Despite this, the coupling coefficients between light and plasmons are
still a limiting factor for the use of plasmons in nonlinear optical instruments, such
as integrated devices,[*>>1 or optical detection systems, based on Raman scattering
techniques (SERS)[7%82] or infrared light scattering (SEIRA).[8%84]

In this chapter, we propose a geometrically simple two-dimensional structure, capable
of coupling incident light to plasmons and focusing them on a ~ A4,-sized region, and
study their possible application for the efficient generation of harmonics. Specifically,
we focus on the structure described in figure 2.1, which consists of a semi-infinite
two-dimensional ribbon, with one of the edges outlined in the shape of a semicircle
of radius a > A, to which the incident light will be coupled, thereby generating
plasmons in the material. We chose this design for simplicity: the choice of other
profiles gives an added degree of control over the position and properties of the fo-
cus (see section 2.4), but the underlying physical principle is the same: the presence
of the ribbon terminations, similar to the use of tips discussed above, can compen-
sate for the difference in wave vectors between light and plasmons; these plasmons,
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due to the semicircular profile of the structure, focus on the centre of the semicircle
(2.1b).

2.2 Theoretical model

2.2.1 General formalism

To describe the electric field of the plasmon, we model the edge as a distribution of
dipoles with a dipole line density &, depending on the edge position s. The dipoles
are oriented along the normal to each point of the boundary, n,s.

Assuming a high confinement with respect to the incident light, characteristic of the
materials under study, we can work in the electrostatic regime (i.e. ignoring the
retardation effects); under these conditions, the electrostatic field generated by a
dipole p at the origin is reduced to the integral over the two-dimensional momentum
Q

i

d? )
—J TQ (iIQ—Qz) (1—r,) Q- pe®™ ¥, (2.1)

EQ(r, w) =
(r,w) o

where R = (x, y) are the coordinates in the plane of the structure (z = 0) and r,, is
the Fresnel reflection coefficient for p-polarized fields.[®>] Assuming a 2D conductivity
o(w) for the material, we can rewrite this coefficient in the plasmon pole approxi-
mation(33] as r» 2 Q/(Q—Q,), where the plasmon wave number Q, = icw /270 (w),
appears, with e being the dielectric permittivity of the environment. With these con-
siderations, we can now write the total field within our structure as the integral of
equation 2.1 along the entire edge,

2 s A
EV(r, ) = 2 jﬁ dsf 4QQ+iQZ | 5 dor:, (2.2)
om Q2 Q-q,

The dipole line distribution &, depends on the coupling between the external field
and the plasmon field: Since the border has a soft profile in a mathematical sense (i.e.
no vertices), we can establish a relationship between % and the external field given
by the form &, = C ny(n, - E**), where C is the light-plasmon coupling coefficient
associated with the edge. From analytical derivations for the fields based on the
Wiener-Hopf method, %) the value of this constant can be set to C =1/ nsz.

With this expression for the dipole density, we can perform the integration over Q
moments using complex contour integration techniques: the result of the integral is
reduced to the evaluation of its pole at Q = Q,,, which leads to a closed expression
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2. ENHANCED NONLINEAR RESPONSE THROUGH PLASMON FOCUSING

in terms of Hankel functions H") = H") (Q,|R —s|). By defining t =R—s and ¢, as
the angle between t and the x axis, we can write a compact expression for the fields
in the plane of the structure,

1(2 Eext
ED(R) = P2 § dsn, (H"n, —HP cos2¢n, —Hsin2¢n, ), (2.3)
gy = LET M 0 W
E, R)= 5 dsn, (HO n,+H; cos2¢n, —H, sm2</)tnx), 2.4

in which we assume that the external field is polarized along the x axis.

2.2.2 Application to semicircular edges

For the case of a semicircular geometry, represented in figure 2.1, the line integrals
of equations 2.3 and 2.4 have a standard parameterization in terms of the angle that
forms the element of the border with the centre of the sphere ¢,: we can write, in
this case

iQ aEet n/2
ED(R) = pT J do,n, (H(()l)nx —H{ cos2¢,n, —H sin2¢rny),
—1/2

iQ € TL'/2 )
Eg,l)(R) = pT J do, n, (H(()l)ny +HW cos 2¢.n, —H{"sin 2¢’Jlx)-
—n/2

These expressions require evaluating the integral for each value of R; however, at the
origin (R = 0)Hankel’s functions acquire a constant value H,(ll) (Qplsl) = Hr(ll) (Qpa),
which enables an analytical evaluation of the integrals,

ED(0)= =~ Q" [H§P(@0) —H ()],
EP0)=0

The fact that the field has no component along the y axis is consistent with the struc-
tural symmetries: the component in the y direction generated by the (s,,s,) element
is compensated with the one generated by the element in the (s,,—s,) symmetric
position.

Finally, as we are at the a > A, limit, by rewriting Q,, in terms of the plasmon
wavelength A, we get Q,a ~ 2ma/A, > 1, so it is safe to replace Hankel’s functions
with that of their asymptotic limit,

elQpae—m/4e—1mrr/2,

HD(Q,ua) ~
m (Qpa) Qpa
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Figure 2.2: Plasmonic hotspots in graphene structures. We represent the focusing
of plasmons for a structure identical to that described in 2.1, made of graphene. The
resulting focus has a size comparable to the plasmon wavelength, 4, as shown by
the amplitude and field line graphs, represented in a square region of side 54,,. The
intensity profiles in the centre of the focal spot are shown on the sides, with their full
widths at half maximum normalised to A,. For calculations, we assume a semicircle
of radius a = 51,,, and a plasmon propagation distance (with an intensity of 1/e over
the starting intensity) of 104,,.

providing a simple final expression for the amplitude of the electric field at the focal
centre,

s ext
Wy — B in/4 iQ
ED(0) = S/, /2Q,ane®, (2.5)

in which it is clearly observed that the enhancement factor of the electric field by
geometrical means is E,./E®" ~ ,/Q,a or, in other words, proportional to the square

root of the confinement factor y/a/A,.

All the results described above are general, and directly applicable to any two-dimensional
material that can support plasmons or polaritons. In our particular case we focus on
graphene structures, motivated by their intrinsic nonlinear properties, already dis-
cussed in 2.1. Figure 2.2 shows the electric field amplitude in the plane, obtained
from the expressions 2.3 and 2.4, for a graphene structure, with a semicircle of radius

a =5A,. As expected, the focus is approximately equal in size to A,. The calculations
above assume a plasmon propagation distance of L, = 10 A,: this is defined as the
distance at which the intensity of the plasmon has dropped by a factor 1/e from the
initial intensity, which in turn implies L, = 1/2Im{Q,}.
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2. ENHANCED NONLINEAR RESPONSE THROUGH PLASMON FOCUSING

Figure 2.3: Third harmonic generation by plasmon focusing. We show the angular
distribution (a) and the current lines of the nonlinear sources (b) associated with
third harmonic generation, under the same conditions as in figure 2.2.

It is worth noting that these results, as indicated in equation 2.5, only depend on the
radius of the structure a, the plasmon wavelength A, and its propagation distance
L,, so these results allow for a universal characterization of the focusing process,
independently of the other material parameters.

2.3 Harmonics generation

Once the results for the linear field have been obtained, we can study the efficiency of
these structures as nonlinear components; in particular, we focus on third harmonic
generation processes (THG) for our semicircular structure!. The current density gen-
erated by THG is, by definition, at a frequency 3w, and its amplitude is given by the
expression

jiL(R) = oc®ED (E(l) . E(l)) , (2.6)

where o® is the third order conductivity for this process; for a graphene sheet doped
at a certain Fermi energy E this expression becomes[>>87]

3ietv? 1

3) —
O. - J
4nh?E; (Bw +iy)(2w +iy)(w +iy)

1Second-order processes in this case are highly inefficient, due to the centrosymmetry of the system
around the focal spot.
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Figure 2.4: Linear field enhancement factor and third harmonic emission power.
(a) Linear field enhancement factor for a semicircular structure similar to that of figure
2.1, as a function of its radius a and the plasmon propagation distance L. The discon-
tinuous curve represents the condition a = L, of maximum field enhancement as a
function of L. (b) Emission power of third harmonic generation for a graphene struc-
ture with a Fermi energy Ep = 0.4 eV illuminated by an optical source of irradiance
10" W/m? and with a plasmon energy fw, = 0.2V, corresponding to a wavelength
A, =181nm.

with a damping coefficient y which is directly related to the properties of plasmon in
the linear regime by the expression L,/A, = w/4my.

With these considerations, figure 2.3 displays the resulting third order current, which
shows a spot with a slightly reduced size with respect to the linear case (approximately
a ~ 1/4/3 factor). This result is consistent with the relationship between full widths
at half maximum that exists between a Gaussian profile (similar to the linear one)
and its third power (an approximate way of estimating the pattern of third harmonic
generation). The radiation profile of the third harmonic, shown in figure 2.3(a), shows
an angular distribution whose maximum is approximately along the normal to the
structure, with a slight inclination contrary to the position of the semicircular edge,
which we relate to the direction of propagation of the plasmons in the material.
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2. ENHANCED NONLINEAR RESPONSE THROUGH PLASMON FOCUSING

In figure 2.4 we present an analysis of the performance of the structure, based on
the parameters a y L. From the expression of the linear field at the origin, 2.5, and
taking into consideration that A, = 27/Re{Q,} ~ 27/|Q,|, we can get the intensity
enhancement factor at the origin to be

> n2a
N~ — e 2.7)

Ap

E(l)(O)
Eext

which reaches an optimal value under the condition a = L. This result implies
a compromise between the field accumulation by geometrical methods and its at-
tenuation due to propagation from the edge of the nanostructure. For reasonable
propagation distances L, = 157Lp,[65] the intensity enhancement factor can be as high
as ~ 50.

This fact is remarkable if we consider that this field is the internal field of the material,
and not the field in the vicinity of the structure, as is the case with traditional plasmonic
structures, such as metal nanoparticles. In these structures, the enhancement factors
for the field are associated with the normal components on its surface; for some
resonant morphologies (such as structures with nanometric gaps or with very different
geometric ratios), these factors can reach dramatically high values. However, this
increase is accompanied by very high dielectric permittivities, which reduces the
electric field inside the structures by several orders of magnitude (otherwise, it would
violate the continuity condition for the electrical displacement).

Finally, we present in figure 2.4(b) the total power of the third harmonic (integrated
to all possible emission directions), which follows a profile similar to the sixth power
of the amplitude of the linear field, as expected from the expressions for the third
harmonic current, 2.6. The conversion efficiency for this process, defined as the ratio
between the irradiated power and the incident power on the semicircle, reaches values
of the order of ~ 107°.

2.4 Control of the focal position

Until now, we have always considered normal incidence of the external field: in this
way, all the elements of the axis were oscillating with the same initial phase. How-
ever, this fact can change if we impinge along the structure with a certain angle 6
with respect to the surface normal: in this case, two points on the edge separated
by a distance Ax along the x axis acquire a relative phase between them, given by
A¢ =2m/AyAx, where A, is the incident light wavelength. This allows the illumi-
nation angle of incidence to be used as an element capable of controlling the focal
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Figure 2.5: Control of the focal position by changing the light incidence angle.
(a) Displacement of the focal position for a structure with a semicircular edge as a
function of the angle of incidence 6 with respect to the surface normal of the structure,
for a radius a = L, = 25A,,. The inner figure depicts the near field for an incidence
6 = 45°. (b) Enhancement of the linear field (left, pink) and third harmonic power
(right, green) under the same conditions as (a), assuming a Fermi energy Ep = 0.4€V,
Aw, = 0.2eV, and an irradiance of 10" W/m?. The results obtained by evaluating
the expressions 2.3 and 2.4 (symbols) are compared with the analytical expressions
(curves), where the third harmonic power is considered proportional to the third
power of the linear field intensity.
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position; moreover, for more complex designs than those discussed in this chapter,
light polarisation may add another degree of freedom to these effects.

To illustrate this concept, we can analytically calculate the suitable edge for a plas-
monic structure that maximizes the field magnification factor for an incidence angle
6. Assuming that this focus will be found at the origin x = y = 0, the desired profile
has an elliptical shape, given by the expression

a_(x—b)*+y?=a%a,,

where a, =1+ «x?sin®6, b = (ax/a_)sin6, and k = 4,/2,

For highly confined plasmons (x < 1) the resulting profile is virtually identical to a
semicircle. However, the position of the focus x = b can be modified in an appreciable
fraction of the plasmon wavelength, as shown in figure 2.5(a). The field enhancement
factor and the third harmonic generation are equally indistinguishable between the
semicircle and the ellipsoid; the reduction of the values with the angle, in this case, is
perfectly justified by the dependence as cos? 6 of the component of the external field
normal to the surface.

2.5 Conclusions

In this chapter, we have studied the possibility of focusing plasmons on two-dimensional
structures specifically designed for this purpose. Following a general derivation of
the underlying fundamental principles, for which we only need to assume a high
degree of plasmon confinement with respect to the incident light, we focus on the
application of all our general results to graphene structures in particular, which have
a meaningful potential for applications in Optics and Nonlinear Plasmonics.

We tested how the proposed geometry is able to concentrate the field in regions of the
size of the plasmon wavelength, as well as to generate the third harmonic of these
plasmons. We also studied the possibility of controlling the focal position by changing
the light angle of incidence, verifying that it is possible to displace the focus up to a
significant fraction of the plasmon wavelength.

This method of focusing plasmons has a direct extension to any structure capable of
supporting polaritons (including ultrathin metals and van der Waals materials) under
the condition that they have, in addition to the high confinement factors, propaga-
tion distances L, large enough to create the foci. Besides the harmonics generation,
this concept has a direct application in detection devices, for example revealing the
presence of molecules near the focal region, and identifying them from their optical
response. Likewise, we could consider the reverse process, thus opening the way to
the conversion of plasmons into light.
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Hot-electrons in metallic nanostructures:
dynamics and thermalisation

Hot electrons play a fundamental role in processes such as photocatalysis or light
harvesting, attracting great interest in their behaviour and generation mechanisms.
In this chapter, we study the temporal evolution of these electrons in gold and silver
nanoparticles. After excitation by an optical pulse, we model the processes of ther-
malisation and relaxation of the electronic distribution, while studying the behaviour
of electrons both individually and collectively.
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3.1 Introduction

Thanks to their ability to support plasmons, metal nanostructures can confine and
increase the local light intensity in very small regions compared to their wavelength,
which allows us to increase and influence to some degree on the interaction between
light and electrons in these structures.[88:8%] The possibility of manipulating this inter-
action opens the door to the control of processes based on it, such as photoemission
or photocatalysis, which have a wide range of applications, for example, in detection
devices,'°>%%) photochemistryt®®1% or light harvesting devices.[?8101-105]

A large part of this interaction is not directly related to the plasmon but rather to the
so-called Landau damping, which is the main process of plasmon decay (especially in
small structures, where the radiative contribution to decay is negligible). Physically,
Landau’s damping is due to the plasmon interacting with electrons in the conduction

band, which are excited out of equilibrium, at levels with energies well above the
Fermi level] [96-98,100,103,106-116]

These electrons (and holes) out of equilibrium have enough energy to, for example,
activate chemical reactions, 6-100:114.117.118] haryest light,[98 1011051 stimulate the
nonlinear response of materials!!'®) or act as photodetectors.[10%111:120] Thjs enor-
mous potential for technological applications has motivated an effort in the commu-
nity to try to understand its dynamics: for example, in experiments on the optical
response of ultra-thin layerst'>"122] or metal nanoparticles.l'>*-127] Other properties
have also been studied, such as their mean free path,['?1:128-131] 35 well as its gen-
eration and decay processes.!!1411%.132-140] However, due to the complexity of the
problem, theoretical calculations based on fundamental principles are restricted to
the case of extended structures;[115-139:140] the theoretical results for other structures
at this moment!'°%107:137] allow, at best, a qualitative approach to the problem: a
detailed description of the dynamics of these electrons for finite structures is still
missing, which limits the applicability of these excitations.

In this chapter, we describe from a theoretical perspective the excitation and evolution
of electrons in the conduction bands of small gold and silver particles, incorporating
detailed models and parameters for electron-electron collisions, calculated from the
screened interaction between them. We also study the possible influence of particle
size, irradiance or laser frequency on these processes. Figure 3.1 shows a schematic
diagram of all the processes under consideration, studied through a master equation
for conduction electrons that considers both the initial excitation due to a laser pulse
and the thermalisation and relaxation of the distribution.
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Figure 3.1: Scheme of the generation, evolution and thermalisation of hot elec-
trons. (a) A metal particle (gold or silver) is in thermal equilibrium with its envi-
ronment at a temperature T,. (b) A femtosecond laser pulse irradiates the particle,
generating plasmons that quickly decay (~ 10fs) in out-of-equilibrium electron-hole
pairs. (c) These electrons/holes evolve through their mutual electrostatic interactions,
generating a pseudo-equilibrium distribution in tens of femtoseconds and recovering
their initial equilibrium state (through coupling to phonons) on the picosecond scale.
The shaded areas represent the Fermi-Dirac (FD) distribution of the electronic states;
the vertical lines and symbols indicate the occupation of the various electronic levels,
and the solid curves in (c) represent the FD distribution at the pseudo-equilibrium
temperature T > T, in the case of a silver particle with N = 10000 electrons in the
conduction band.
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3.2 Theoretical model

3.2.1 Preliminary remarks

Let us consider a metal nanosphere made of gold or silver. For the study of the dy-
namics of conduction electrons, we focus solely on the study of the s orbitals, whose
electrons are considered independent and confined in an infinite and spherically sym-
metrical potential well with the same diameter as the nanoparticle. After solving
Schrédinger’s equation, we find that the wave function v; for each of the electronic
states i can be broken down into the product of a spherical Bessel function, j(r), with
a spherical harmonic, Y;,,

V(1) =A; ji, (B r/a) Vi, (), (3.1

in which n; = 0,1,---,; = 0,1,---,n; y m; € [—1;,1;] are the main, orbital and
azimuthal quantum numbers, respectively; Y; ,, is the spherical harmonic; f3,; is

the n;-th zero of the spherical bessel function j; , and A; = ,/2/ [a3j12i 1 (Brg )] is a

normalization constant. The electron energies, E; = /1> 3»1_ /(2m,a?) form a spectrum
of discrete levels with degeneration 2(2[; + 1) for each value of n;, with the first factor
of 2 coming from spin degeneration.

Each atom of the nanostructure contributes with one electron to the conduction band,
so there is a clear relationship between the number of electrons in the latter, N, and the
radius of the nanoparticle, a. For the laser pulse energies under consideration, we can
rule out the effect of d electrons on the dynamics, being well below the Fermi energy
of the material.[?®! This approximation is justified in the case of silver —-for which d
orbitals are at a distance of 4 €V from the Fermi level-, but in the case of gold (2.4 eV)
the plasmon excitation energies are similar, possibly slightly altering the dynamics.
In any case, the d orbitals are taken into account in the calculation of the screened
dielectric function (which governs the interaction between the s electrons), through
the e,(w) background dielectric function; we also include it in the calculations of
the energy absorbed from the pulse by the nanoparticle, so that a large part of the
effects of the d orbitals on the dynamics of conduction electrons are already taken
into account.

For the study of temporal dynamics, we represent the electron configuration through
the occupation coefficients p; (one for each state i). These coefficients evolve follow-
ing the master equation

dp;(t) _ X _ _
— = e+ D[ —p) - —p) + 15— p)],
j#

3.2)
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where the y coefficients describe the transitions associated with each physical process
under consideration. Specifically, the effects of laser (ex) and electron-electron inter-
actions (e-e, second term in 3.2) are associated with the appropriate combinations of
occupation coefficients, in order to ensure that such transitions occur only between
occupied and unoccupied states. In addition, the laser may populate and depopulate
electronic states: using the symmetry yf]" = )/]ef (see 3.5), we obtain as a result the
factor p; — p; that accompanies this term. Finally, relaxation effects through electron-
phonon interaction (e-ph, first term of 3.2) restore the system back to its original
state, with occupation coefficients p? = fi(T,), where f;(T,) is the Fermi-Dirac (FD)
distribution at room temperature T,. Specifically,

1
eE—u(M)/ksT 4 1°

fi(T)= (3.3)

where u(T) is the chemical potential, which in turn depends on the temperature.

3.2.2 Modelling the transition coefficients

Several approaches are needed to adequately describe each of the processes consid-
ered in 3.2, especially when calculating their transition coefficients.

Carrier generation via optical pulses

For the calculation of }fj?z‘, we consider that the particle is illuminated by a laser pulse
of duration A = 10fs. More specifically, we represent the pulse through the poten-
tial

¢™(r,t)=—3E, [e_i""”fe_tz/2A2 + c.c.] ,

where w, is the central frequency, and its maximum irradiance is related to the am-
plitude of the field by the expression I, = c|E,|?/27. After converting the external
potential to the frequency space, we can obtain the total potential (external+induced)
inside the sphere directly:['#!) assuming the particle responds as if it were a homo-
geneous sphere of permittivity e(w), it is only necessary to multiply the external
potential in the frequency space by a factor of 3/[e(w) + 2]. By converting the poten-
tial back into the time domain, we get

d(r,t) =—+2mz EOAJ d—we*i“’t?)F—(w)

27 e(w)+2° 3.4

with F(w) = e—(w—wo)zAz/z + e_(""*wo)zAz/Z.
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The transitions between conduction electrons can be described by the interaction
Hamiltonian Hj,, = —e¢; to first order in perturbation theory, we find that the transi-
tion probability from state 1); to state 1); can be written as

- 24m2e?|Ey|>A2%a®
! n*le(ew;;) + 2/

2202 a2 g2
AGAT R 5 M 1 F2(@050),

where wj; = (E;—E;)/h is the transition frequency, and we use the radial and angular
matrix elements,

1
Rjin= fo x"dx ji, (B2, %) ji,(Bn1, %)
and
M = f A9, Yy, (90) Vi (20) Vi, (),
respectively. Gaunt’s integrals, M;; ;,,,,have an analytical expression in terms of Wigner’s

3j coefficients.

To account for the Gaussian profile of the pulse, the resulting electronic transitions are
described by the time-dependent coefficients y]e;‘, between the states i and j,

1 —t2/A? pex
me Pji 5 (35)

which preserve the light irradiance profile: these coefficients are the ones that enter
the master equation, 3.2.

O

Carrier thermalisation via electron-electron interactions

Coulomb’s screened interaction between the carriers causes transitions between the
i—j, Y;—e, states, which we study in linear response. We also assume that the contribu-
tion of the electronic transition to electrostatic screening is negligible (many-electron
limit). Under these conditions, we can generalise the expressions of the existing tran-
sition coefficients in the literaturel#>13%142.143] o include finite temperature effects,
and express them as

— 262 * *
Y5 = H f drdr’ 4 ;(£)y; ()9 ) (r) Im{—W (r,’, | D} [nr(lwi;)) + 0(w;))],
(3.6)
where W (r, 1/, w) is the screened potential, defined as the potential produced in r by a

unit charge located at r’ and oscillating at a frequency w; ny(w) = [eh‘”/ kT 1]_1 is
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the Bose-Einstein distribution at temperature T; w;; = (E;—E;)/H is the transition fre-
quency; and X is Heaviside’s theta function, which only contributes for E; > E;.

For our metal particle, described as a homogeneous sphere of permittivity £(w), the
screened potential accepts the analytical expressiont#?]

oo m=l
47 .
W, o)= > oo = Wil o)Yin( @)Y, (),
=0 m=—1
where
l
r 20+1 1 70
4% 5 /: = = +|: - ] >
o) =5 5 @+ D1 e@) | @

r. =min{r, '} and r. = max{r, r’}. Substituting this expression in 3.6, we get the
final result for )f;?l.—e that fits into the master equation,

e—e __ 87‘562615 2 A2 gl szi,lmjfmi 0
i ——TAiAfl_llZl a1 MO [nr(le;D+6(@)], G
=i,
where
1
1 20+1 1
G = dxj; (B x)j (B X)g (x)+[ — }RZ.. ’
l 6(|6L)ij|)J;) [;\Fn;l; L\l l l(e(lwij|)+1)+1 e(lwijD ji,2+41

1

X
g(x)=x"" f dyyz”jz,.(ﬂnjzjy)jzi(/iniziy)+xl+2f dyy i, By, Y )i, (Bat, )
0

X

and where only terms with [ +[; +[; even and |m; —m;| <[ contribute to the above
sum.

Relaxation via phonon coupling

The coupling to phonons draws energy from the electrons with a phenomenological
rate y* P (the first coupling term of the master equation, 3.2). This process relaxes
electrons from their current distribution p; to their initial distribution, p? = fi(Ty),
with T the system’s initial temperature.

To model this phenomenon, a two-temperature model is generally used: one for elec-
trons and one for the ionic lattice;!'#+146] we instead relate the coupling coefficient
to the heat capacity of the material c,(T) by the expression!'4”]

ro P = G/co(T),
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Figure 3.2: Potential Well Approximation (PWA) for the dielectric functions of
gold and silver nanoparticles. We show the real (a,d) and imaginary (b,c,e,f) parts
of the polarizability a, calculated in the PWA (3.8), for gold (a-c) and silver (d-f)
particles of different sizes (see legends for diameter D and number of electrons N))
and for different electronic temperatures T. For comparison, we also represent the
classic limit of polarizability, @ = (3V /4m)(e — 1)/(e + 2) (black curves, using an ex-
perimental dielectric function el148]y polarizabilities are normalized, for convenience,
to the volume of the sphere V = 4ma®/3.

in which the coupling coefficient between electrons and the lattice is G, ~ 3 x
10 Wm 3 K and Gag ~ 3.5x10' Wm™ K ! for gold and silver, respectively.! 144 14]
This coefficient, although temperature-dependent, has an almost constant value in the
temperature range under study. Note that this model ignores both thermal diffusion
outside the particle and changes in the phonon population, effects that we discard
for the sake of an easier understanding of the electron dynamics.
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3.2.3 Dielectric function of the nanoparticle: potential well ap-
proximation (PWA)

An essential component in the calculation of the coefficients Yff and ngi—e is the mate-
rial permittivity e(w); for small particles, this value may differ substantially from the
value calculated for an extended structure. Beyond the traditional phenomenological
description (through a size-dependent damping factor!'#%)), we can build a dielectric
function from the knowledge of the wave functions of the potential well3.1, which
we call potential well approximation (PWA).

First of all, we shall recall that a homogeneous dielectric sphere subjected to a uni-
form external field has a uniform total field inside. This fact allows us to assume as
a reasonable hypothesis that the field within our nanoparticle is itself uniform. In
addition, if we employ the RPA susceptibility,[*>°) we can write the dielectric function
in the PWA asl151152]

Sij

epwalw) = ep(w)+ w Z T—l—l}’) (3.8)

where the sum extends to all transitions between states i and j; w;; = (E; —E;)/h
is the transition frequency; iy = 0.071 eV (fiy = 0.024eV) is the phenomenological
damping coefficient obtained from optical measurements for gold (silver) ;48]

2mow;;
5= = L[5, (D] Gl

is the transition coefficient (we consider, without loss of generality, polarisation along
the z axis), normalized to comply with the f-sum rule, Zij Sij = 1; and w,, is the
plasma frequency of the material (hwp = 9.0eV for bulk gold and silver). This fre-
quency, for small particles like the ones under study, depends directly on the ra-
dius of the particle a and the number of electrons in the conduction layer N as
w, = v/3e2N/m.ad.
To take into account the contributions of the orbitals d to the screening, we define in
3.8
5
ep(w)=€e(w)+ ———— 3.9

p(w) = e(w) (e +i7) (3.9)
as the background conductivity, which takes into account interband transitions, as well
as the polarisation of the inner electrons. Specifically, e(w) is the dielectric function
of the bulk metal, which we get from optical measurements (Johnson & Christiel148]
for energies between 0.8 — 6.5 eV, Palik!'>%! for higher energies, and a constant value
€, = 9.5 (€, = 4) below 0.8 eV for gold (silver)!'48)). The Lorentzian in 3.9 suppresses
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Figure 3.3: Temperature-dependent system parameters. Temperature dependence
of (a) the chemical potential and (b) the electronic specific heat for particles with
different number of conduction electrons, N.

the contribution of conduction electrons in the experimental results, which we replace
with the results obtained for our particle 3.8.

Figure 3.2 shows the polarizability for small particles (with diameters in the range
D = 4—9.3nm), calculated in the PWA as a = a>(epys — 1)/(€pwa + 2). For the
smaller particles we consider, the contribution of electronic transitions produces a
substructure on the resonance, which disappears and converges to the classical case
a = a3(e—1)/(e+2) as the particle size increases. As an additional result, we observe
minor temperature dependence in the dielectric function epy, (which contributes
through the FD distribution FD f;(T); figure 3.2 c,f), so we can assume a temperature-
independent permittivity throughout the entire chapter.

3.2.4 Chemical potential and specific heat

Once we have defined the coupling coefficients and estimated the effects of a small
number of electrons on the dielectric function of the material, all that remains is
the numerical solution of the equation 3.2 for different sizes and illumination condi-
tions.

For a system with discrete energy levels like this, it is convenient to define a density
of electronic states (DOS)

ps =2 p,, (3.10)

i€s
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where the sum runs through all the subsets S = {v;} of degenerated orbitals with
the same energy Eg = E;, and the 2 factor comes from degeneration in spin. In these
processes, the number of electrons N = )¢ pg must remain constant throughout the
calculation; in particular, when the thermal equilibrium is set at a temperature T, we
have p; = f;(T) (ecuacién 3.3), which allows us to determine the chemical potential
w(T) needed to keep the number of particles N constant.

Figure 3.3a shows this temperature-dependent dependence of the chemical potential.
Since both gold and silver have similar electronic densities, the results apply to both
cases. Note the tendency of u(T) to recover its value for the bulk (5.5 eV). Also, it
seems to show a non-monotonous behaviour with temperature (especially for small
particles), a fact that has been previously attributed to the insufficient screening effect
of the Coulomb potential.l154-156]

As a necessary component to evaluate the electron-phonon coupling coefficients, y*P!
we also derive the specific heat of the particle as a function of temperaturel57]

(=5 = L D A,

which has the expected linear behaviour with temperature for large particles (figura 3.3b).
Again, it shows non-monotonous behaviour for particles with few electrons.

3.2.5 Determination of the equivalent temperature in non equi-
librium distributions

When evaluating the above expressions, or the temperature dependence of the electron-
electron interaction coefficients ij_e(T), there is a problem with the definition of

temperature: as it is an equilibrium parameter, it is only defined in the case where the

material is in thermal equilibrium. However, the distribution of electrons may differ

from the equilibrium distribution (especially in the initial moments, when the pulse

is striking the nanoparticle).

In this way, we define an effective temperature based on the condition of energy con-
servation in electron-electron elastic collisions: mathematically, this requires meeting
the condition

SE vl —p)—7Ep(1—p)] =0
ij

The values obtained for temperature are equal to those expected when electronic
populations follow a FD distribution.
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3.3 Dependence of electronic thermalisation on geometrical and illumination
conditions

3.3 Dependence of electronic thermalisation on geo-
metrical and illumination conditions

3.3.1 Size dependence

Figure 3.4 presents the time evolution of the electronic population in silver particles,
after being excited by a laser pulse of 10 fs duration, with a maximum irradiance of
10**W/m? and a central energy of 3.5 eV, similar to the plasmon energies observed
in silver particles for the sizes D under consideration.

After the pulse incidence, the distribution shows disturbances centered around the
chemical potential of the particle in equilibrium (5.87 €V at T, = 300K),in great
agreement with the Fermi energies of s electrons for bulk gold and silver (5.53 eV and
5.49 eV respectively ).

The initial distribution, once the pulse vanishes, evolves very rapidly during the first
femtoseconds through electron-electron collisions, which concentrate the electrons
around the chemical potential and thermalise them in tens of femtoseconds after the
irradiation of the pulse. Finall<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>