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Abstract

The Zss-additive codes are subgroups of Z5., and can be seen as a gener-
alization of linear codes over Zy and Z4. A Zss-linear Hadamard code is a
binary Hadamard code which is the Gray map image of a Z,s-additive code.
It is known that either the rank or the dimension of the kernel can be used
to give a complete classification for the Z,-linear Hadamard codes.

The aim of this thesis is to classify the family of Zgs-linear Hadamard
codes obtained from the Carlet’s generalized Gray map through the rank
and dimension of the kernel. First, we give a recursive construction of the
generator matrices of the corresponding Zgs-additive Hadamard codes. By
using this construction, we present a new proof to show that the generated
codes are indeed Hadamard. The kernel of these Zgs-linear Hadamard codes
of length 2! and its dimension are established for any s > 2, and it allows
to give a partial classification of such codes. Moreover, we prove that this
invariant provides a complete classification for some values of ¢t and s. Later,
the rank of these codes is computed for s = 3, and it is proved that this
invariant, along with the dimension of the kernel, provides a complete clas-
sification for Zg-linear Hadamard codes, once t > 3 is fixed. In this case, the
number of nonequivalent such codes is also established. Finally, we prove
that some families of Zjs-linear Hadamard codes of length 2¢ are equivalent,
once t is fixed. This allows us to improve the previous results on the partial
classification of these codes. An upper and a lower bound are given for the
amount of nonequivalent Zss-linear Hadamard codes of length 2!. Moreover,
after some computations, the exact amount of nonequivalent such codes of
length 2 up to t = 11 is found.
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Resum

Els codis Zgs-additius son subgrups de I'anell Z5. i poden considerar-se com
una generalitzacié dels codis lineals sobre Zy i Z4. Es diu codi Hadamard
Zos-lineal a un codi binari Hadamard que és la imatge, via I’aplicacié de Gray,
d’un Zss-additiu. Esta demostrat que per donar una classificacié completa
dels codis Hadamard Z,-lineals es pot usar el rang o la dimensi6 del nucli.
L’objectiu d’aquesta tesi és classificar la familia dels codis Hadamard Zos-
lineals obtinguda a través de ’aplicaci6 de Gray generalitzada definida per
Carlet, usant el rang i la dimensié del nucli. Primer, donem una construc-
ci6 recursiva de les matrius generadores dels codis Hadamard Zos-additius
corresponents. Gracies a aquesta construccid, donem una demostracié nova
de que les imatges, via l'aplicaci6 de Gray generalitzada, dels codis generats
son Hadamard. Construim el nucli dels codis Hadamard Zs,s-lineals de lon-
gitud 2! per a s > 2, obtenim la seva dimensi6 i la usem per obtenir una
classificacio parcial d’aquests codis. A continuacié, donem el rang d’aquests
codis per a s = 3 i demostrem que, juntament amb la dimensié del nucli,
podem obtenir una classificacié completa dels codis Hadamard Zg-lineals,
fixant ¢ > 3. També, per a s = 3, establim la quantitat exacta de codis no
equivalents d’aquest tipus. Finalment, provem que algunes families de codis
Hadamard Zss-lineals de longitud 2' son equivalents fixant ¢ > 3. Aixo ens
permet millorar els resultats anteriors relacionats amb la classificacié parcial.
També donem cotes superiors i inferiors per a la quantitat de codis Hadamard
Zys-lineals no equivalents de longitud 2!. Més encara, calculem la quantitat

exacta de codis no equivalents fins a ¢t = 11.

X






Resumen

Los codigos Zgs-aditivos son subgrupos del anillo Z3. y pueden considerarse
como una generalizacion de los codigos lineales sobre Zs y Z4. Se llama
codigo Hadamard Zss-lineal a un co6digo binario Hadamard que es la imagen,
via la aplicacion de Gray, de uno Zss-aditivo. Estd demostrado que para dar
una clasificacion completa de los codigos Hadamard Z,-lineales se puede usar
el rango o la dimension del ntcleo.

El objetivo de esta tesis es clasificar la familia de los c6digos Hadamard
Zsos-lineales obtenida a través de la aplicacion de Gray generalizada definida
por Carlet, usando el rango y la dimensiéon del niicleo. Primero, damos una
construccion recursiva de las matrices generadoras de los coédigos Hadamard
aditivos sobre Zgs correspondientes. Gracias a esta construccion, damos una
demostracion nueva de que las imagenes, via la aplicacion de Gray general-
izada, de los codigos generados son Hadamard. Construimos el ntcleo de los
codigos Hadamard Zgs-lineales de longitud 2! para s > 2 , obtenemos su di-
mension y la usamos para obtener una clasificacion parcial de estos codigos.
A continuacién, damos el rango de estos codigos para s = 3 y demostramos
que, junto con la dimension del ntcleo, podemos obtener una clasificacion
completa de los c6digos Hadamard Zg-lineales, fijando ¢t > 3. También, para
s = 3, establecemos la cantidad exacta de codigos no equivalentes de este
tipo. Por 1ltimo, probamos que algnas familias de codigos Hadamard Zss-
lineales de longitud 2¢ son equivalentes fijando ¢ > 3. Esto nos permite mejo-
rar los resultados anteriores relacionados con la clasificacion parcial. También
damos cotas superiores e inferiores para la cantidad de c6digos Hadamard
Zss-lineales no equivalentes de longitud 2¢. Mas atin, calculamos la cantidad

exacta de codigos no equivalentes hasta ¢ = 11.
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Chapter 1

Introduction

“Education never ends, Watson. It is a series of

lessons, with the greatest for the last."
—Sir Arthur Conan Doyle, The last bow

Initially, coding theory appeared as a solution to an engineering problem
related with the transmission of information without errors from a source to
a receiver. The medium, through which the message is sent from the source
to the receiver, is called channel. The general scheme of a communication is

the following:

Source Channel |—— | Receiver

Figure 1.1: Scheme of communication

In general, the channel we use for communications may produce errors in
our messages. When the channel produces errors, it is called noisy channel
and it is for those channels for which coding theory makes sense. Since
we need to solve the problems derived from the use of noisy channels, we
introduce error-correcting codes and a process to encode and decode in the
communication scheme as it is shown in Figure [1.2]

In a noisy channel, if we want to correct the errors, the process of com-

munication is as follows. The source generates a message m, which we need
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Source |— | Encoder |— | Channel |— | Decoder |— | Receiver

Figure 1.2: Scheme of accurately communication incorporating error-
correcting codes

to encode by using error-correcting codes that add some redundancy. Once
m is encoded, we obtain a codeword c, which will be sent through the noisy
channel where errors may happen. These errors change the sent codeword
producing a received vector . Now, to decode, we need to detect and correct
the errors obtaining an estimation ¢ from r that hopefully will coincide with
the original codeword c. Since there is a one-to-one correspondence between
codewords and messages, we therefore obtain an estimation m of the original
message m from ¢.

Despite coding theory was an engineering problem, this theory has been
developed by using mathematical techniques such as linear algebra, theory
of groups and discrete mathematics. Thus, nowadays, coding theory has
become an active part of mathematical research.

Coding theory has its origins in lately 1940’s in [Sha48| and [Ham50]| by
Shannon and Hamming, respectively. Specifically, the theory was developed
so that electronic information could be transmitted and stored without errors.
In general, the information is represented as series of zeros and ones, since
the electronic information is represented by using these symbols. Therefore,
the binary field, Fo, was rapidly selected as the alphabet for coding theory,
and the codes over this alphabet are called binary codes.

Later, the results were generalized for fields with ¢ elements, F,, and
all the research related to coding theory was developed over finite fields.
In the early 1970’s, in |[Bla72| and |Bla75|, Blake initiates the incursion of
rings into coding theory. However, it was with the paper [HKC™94| that the
study of codes over rings starts to increase. The interest in these codes is
due to the discovery that certain nonlinear binary codes, which have twice
as many codewords as the best known comparable linear code, were the

images of linear codes over Z, under a nonlinear map called Gray map. Some



of these codes, and the ones studied in later works, belong to well-known
families of codes such as extended Hamming, Hadamard, QRM, ZRM and
Reed-Muller codes, which have been studied and classified [Kro01, [BPRO03,
PRV06, BEP05, BEP0S, PPV11, [PRS09]. The study of codes over Z, quickly
encouraged the study of codes over the rings Z; or commutative rings of order
4, and their binary images under Gray maps [AS14] [AS13] [Car91, BGL03,
Kro07, [DF11L [TV03|. Further information on codes over commutative rings
can be found in [DoulT7].

In this dissertation, we concentrate our efforts in the study of binary non-
linear Hadamard codes with associated structures over Zss. The initial point
of this work was the paper |[Kro0l|, which studies the Z,-linear Hadamard
codes. There are many possible generalizations of Z,-linear Hadamard codes.
One of them gives rise to the so-called ZsZ,4-linear Hadamard codes studied
in [PRV06, KVI5]. Giving one more step in this direction, in [MRI5] the
Hadamard Z,Z,Qg-codes were introduced. Finally, another possible gener-
alization of Z4-linear Hadamard codes are the Zgs-linear Hadamard codes
[Car91l [Kro07|, which are the main studied codes in the present thesis. The

overview of the dissertation is the following:

e Chapter [2| provides an introduction to coding theory so that this dis-
sertation is as self contained as possible. Firstly, we review basic defini-
tions and results about binary codes emphasizing the concepts related
to two invariants for binary codes, the rank and dimension of the kernel.
We also give definitions related to the well-known family of Hadamard
codes which, in general, are nonlinear. Secondly, we give a brief survey
about Zj-additive, Zy-linear and Z4-linear Hadamard codes. Later, we
present the generalized Gray map that will be used in this dissertation.
Finally, we review basic definitions and properties of Zgs-additive and

Zigs-linear codes, which are the main topic of this thesis.

e Chapter 3| provides a recursive construction of the Z,s-additive Hada-
mard codes whose images under the generalized Gray map give the
Zos-linear Hadamard codes. By making a study of this Gray map, we

provide ourselves with tools, first, to show that, in fact, the images of
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the constructed codes are Hadamard codes and, secondly, to see for

which types of these codes the obtained binary codes are linear.

e In Chapter [ we generalize the computation of the kernel and its di-
mension for Zgs-linear Hadamard codes with s > 2 and give a partial
classification of these codes by using this invariant. As in the previous
chapter, the study of some properties of the generalized Gray map,
allows us to provide ourselves with tools to achieve a construction of
the kernel for Zss-linear Hadamard codes. Once we have the kernel, we
also obtain its dimension and we use it to give a partial classification
for these codes. Finally, we also give some bounds on the amount of

nonequivalent such codes when ¢ is fixed.

e Chapter[j|presents a full classification of the Zjs-linear Hadamard codes
for s € {2,3}. In this chapter, first, we provide a construction of the
span of the codes with s = 3, since for s = 2 is already done. Then, we
obtain the rank of the codes for s = 3 and a complete classification for
them by using both invariants, the rank and dimension of the kernel.
Finally, we give the full classification for all these codes with s € {2,3}
and the amount of nonequivalent codes that there exists for a given
length 2°.

e In Chapter[6, we improve the partial classification presented in Chapter
First, we establish some equivalent relations among the Zos-linear
Hadamard codes with 2 < s < ¢ 4 1. Finally, by using these rela-
tions, we also enhance the previous partial classification and refine the
bounds, given in Chapter [4] on the amount of nonequivalent codes

when ¢ is fixed.

e Chapter [7| presents our conclusions and proposes future research lines

on this topic.

Finally, we must mention that part of the research included in this disser-

tation was presented at several conferences and published in their proceedings
[EVV16, FVV1T, FVV18al:



[FVV16]

[FVV17]

[FVV18a]

C. Fernandez-Cordoba, C. Vela, and M. Villanueva, “Construc-
tion and classification of the Zys-linear Hadamard codes,” in Proc.
of the Discrete Mathematics Days, JMDA16. Electronic Notes in
Discrete Mathematics, 54, pp. 247-252 (2016).

C. Fernandez-Cordoba, C. Vela, and M. Villanueva, “On the ker-
nel of Zgs-linear Hadamard codes,” in Proc. of the 5th Interna-
tional Castle Meeting on Coding Theory and Applications, ICM-
CTA 2017. Lecture Notes in Computer Science, 10495, pp. 107—
117 (2017).

C. Fernandez-Coérdoba, C. Vela, and M. Villanueva, “On the rank
of Zg-linear Hadamard codes,” in Proc. of the 2nd IMA Con-
ference on Theoretical and Computational Discrete Mathematics.
FElectronic Notes in Discrete Mathematics, to be published (2018).

The results showed in Chapter [f|have been presented in Sizteenth
International Workshop on Algebraic and Combinatorial Coding
Theory (ACCT), held in Svetlogorsk (Kaliningrad region), Rus-
sia. The given talk was entitled “On some equivalent Zgs-linear

Hadamard codes”.

Moreover, the results presented in Chapters [3| and [4] have already been pub-
lished in a journal [EVVI8D)], whereas those of Chapter[flhave been submitted

[FVVI&d:

[FVV18b] C. Fernandez-Cordoba, C. Vela, and M. Villanueva, “On Zss-

[FVV1&c|

linear Hadamard codes: kernel and partial classification,” to ap-

pear in Designs, Codes and Cryptography (2018).

C. Fernandez-Cordoba, C. Vela, and M. Villanueva, “On Zg-linear
Hadamard codes: rank and classification,” submitted to IEEFFE

Transactions on Information Theory (2018).

This work has been partially supported by the Spanish MINECO under
Grants TIN2013-40524-P, TIN2016-77918-P (AEI/FEDER, UE) and also
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MTM2015-69138-REDT, and by the Catalan AGAUR under Grant 2014SGR-
691.

Finally, T visited Prof. Dr. Joachim Rosenthal at the Department of
Mathematics at University of Zurich, in Zurich, Switzerland, from 17 Jan-
uary to 19 April 2018 with the objective of getting in touch with the dif-
ferent research lines about codes that there are in this department. My
research during this visit was focused on networking codes. More specifically,
on equidistant codes, orbit codes, equidistant subspace codes and rank met-

ric codes. For more information about these codes, the reader is referred to
[TMB™11, [GR16l [Gab85, [ER14, [Lam13].



Chapter 2

State of art

“The mind is not a vessel to be filled, but a fire

to be kindled."”
~Plutarch

The aim of this chapter is to introduce previous concepts which are nec-
essary to understand the main results of this dissertation. First, in Section
[2.1] we describe the main concepts about linear and nonlinear binary codes.
Secondly, in Section [2.2] we introduce two invariants for the binary codes,
the rank and the dimension of the kernel. Since the Hadamard codes are the
main family of codes that we study, Section is dedicated to them. Later,
in Sections and [2.5] as a motivation for the thesis, we see the definition
and some properties of the Z,-linear codes and Z,-linear Hadamard codes,
since these codes have been deeply studied. As a necessary step, in Section
2.6, we study some generalizations of the Gray map and see in more detail
the one we use in this dissertation to map linear codes over Zss to (possibly
nonlinear) binary codes. Finally, in Section we see the definition and

some basic properties of Zss-linear codes.

2.1 Basic concepts of binary codes

Let Zsy be the ring of integers modulo 2 and let Z% denote the set of all binary
vectors of length n. Any nonempty subset C' of Z% is a binary code of length

7



8 Chapter 2. State of art

n, and a subgroup of Z% is called a binary linear code of length n. From now
on, the elements of a code will be called codewords. A binary linear code
of length n can also be seen as a linear subspace of ZJ. In this case, the
dimension k of the code is defined as the dimension of the linear subspace
over Zs.

The Hamming weight of a binary vector u € Z%, denoted by wty(u), is
the number of nonzero coordinates of u. The minimum Hamming weight of a
binary code C, denoted by wty(C'), is the minimum value of wty (u) with u €
C and u # 0, where 0 is the all-zero vector. The Hamming distance of two
binary vectors u, v € Z%, denoted by dy(u, v), is the number of coordinates in
which they differ. Note that dy(u,v) = wty(v—u). The minimum Hamming
distance of a binary code C'is d(C) = min{dg(u,v) :u,ve C,u # v}. It is
well known that if C' is a binary linear code, d(C) = wty(C). The minimum
Hamming distance of a binary code will be denoted by d only if the code we

are referring to is clear from the context.

The minimum Hamming distance d of a binary code C' determines the
number of errors that the code can correct. Let y be a received vector (as in
Figure . If the amount of errors that occur in the corresponding message
m is less than or equal to |(d — 1)/2], then there is only one codeword ¢ € C
such that d(c,y) < |[(d —1)/2]. The parameter

t=1[(d-1)/2]

is called the error-correcting capability of the code, which is said to be a
t-error-correcting code. Another parameter also related to the minimum
distance of a binary code is the detection capability, that is the amount of

errors that a code is able to detect, and it is given by the expression (d — 1).

The most common ways to describe a linear code are with either, a gen-
erator or a parity check matrix. A generator matriz for a linear code C' of
length n and dimension k is a k x n matrix G whose rows form a basis of C.
In general, there are different generator matrices for a linear code. A parity
check matriz H for a linear code C' is a (n — k) X n matrix of dimension

n — k whose null space is the code C, i.e., uH” = 0 for all u € C, where H”
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denotes the transpose matrix of H. A generator matrix G and a parity check
matrix H for the linear code C satisfy GHT = 0. A generator matrix G is
said to be in standard form if its first k£ columns form the identity matrix of
size k, denoted by Idg. If G = (Idg |A) is a generator matrix for the linear

code C' in standard form, then
H = (~A"|1d, ) (2.1)

is a parity check matrix for C. A parity check matrix H as in (2.1 is said

to be in standard form.

The inner product of two vectors u,v € Z} is defined as

n
<11, V> = Zuivi S ZQ‘
i=1

If (u,v) = 0, then u and v are called orthogonal. Denote the set of vectors

which are orthogonal to all codewords of a binary code C by C*, that is,
Ct={xeZy: (x,u)=0, forallu e C}.

Note that C* is always a linear code. When C is linear, then C* is called
the dual of the code C, otherwise C* is called the orthogonal code. If G and
H are a generator and a parity check matrix, respectively, for C', then H and

G are a generator and a parity check matrix, respectively, for C*.

Let S, be the symmetric group of permutations on the set {1,...,n}.
Two binary codes, C; and C5, are said to be permutation equivalent if there
exists a permutation of coordinates m € S,, such that Cy = {7(c) : c € C4}.
They are equivalent if there exists a vector a € ZJ and a permutation of
coordinates m € S, such that Cy = {a+ 7(c) : c € C4}.

We take as an example, one of the very first binary codes being defined,
the Hamming code [Ham50]. For ¢ > 2, the ¢ x (2" — 1) matrix whose columns
are the binary expansion of the numbers 1,2,...,2" — 1 is the parity check
matrix of a binary linear code of length 2! — 1, dimension 2! — 1 — ¢ and

minimum Hamming distance 3. Any rearrangement of the columns of this
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matrix gives an equivalent code, and any one of these equivalent codes will
be called binary Hamming code of length 2 — 1. A binary simplez code of
length 2! — 1, denoted by S;, is the dual of a binary Hamming code of length
2t — 1.

Example 1. For t =4, the matriz

10001001101 O01171
- 0601 00110101T1T1T1Q02®O0
00100110101T1T110Q0
0oo0o0o1o0o0110101T1T171

has as columns all the 2* —1 = 15 nonzero vectors in Z3. Then, H 1is a parity
check matriz for a binary Hamming code of length 15. The matriz H is also

a generator matriz in standard form for a binary simplex code Sy.

For more information about linear and nonlinear codes, the reader is
referred to [HPO03, IMS77| and [Zen14], respectively.

2.2 Invariants for binary codes

Two structural properties of binary codes are the rank and the dimension of
the kernel. The rank of a binary code C' is simply the dimension of the linear
span, (C'), of C. The kernel of a binary code C, denoted by K(C), is defined
as the set of all codewords that leaves the code invariant by translation
IBGHS3,

K(C)={xeZy:x+C=C}.

If the all-zero vector belongs to C, then K(C') is a linear subcode of C. Note
also that if C' is linear, then K(C) = C = (C). Otherwise, if C' is nonlinear,
then K(C) ¢ C & (C) as shown in Figure 2.1] Therefore, we can take them
as a measure of the nonlinearity of the code.

We denote the rank of a binary code C as rank(C') and the dimen-
sion of the kernel as ker(C'). These parameters can be used to distin-

guish between nonequivalent binary codes, since equivalent ones have the
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same rank and dimension of the kernel. Note that if two codes have dif-
ferent rank or dimension of the kernel, then they are nonequivalent. In
IBPRO3|, Kro01l, PRV06, [PPV11], the authors compute the rank and the di-
mension of the kernel of different families of binary codes. In these cases,
these invariants are used to give a classification and determine nonequivalent

codes.

K(C)
<C>
C

Figure 2.1: Scheme of a nonlinear code C, its kernel and its span

Example 2. Let C be the binary code that contains the following codewords:

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1),
0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1),
0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0),
0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1),
0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0),
0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0),
01,10,1,0,0,1,0,1,1,0,1,0,0,1
0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1
0,0,1,1,0,1,0,1,1,1,0,0,1,0,1,0),
0,1,0,1,0,0,1,1,1,0,1,0,1,1,0,0),
01,1,00,1,1,0,1,0,0,1,1,0,0,1),
0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0),
0,0,1,1,1,0,1,0,1,1,0,0,0,1,0,1),
0,1,0,1,1,1,0,0,1,0,1,0,0,0,1,1),
0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0),

( )
( )
( )
( )
( )
( )
( )
( ),
( ),
( )
( )
( )
( )
( )
( )
( )
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and their complements. It is easy to check that the span of C is a binary

linear code generated by

10010000O0O1T1O011T1T1
01 01001101O01O0O011
00110011001 1O0O011
000010010O0O0O0OT1O0QO01
060000011TO0O0O0O0OO0OO0O1T1O0
0o0o0000O0OO0OI1T1TT1TT1TT11T11

It is also possible to compute the kernel of C, which is the linear code K (C')
generated by

o O =
o = O
o = O
o O =
_ o O
e e
— =
— o O
o O =
o = O
o = O
o O =
_ O O
— = =
— =
_ o O

Therefore, we have that rank(C) = 6 and ker(C) = 3, and we know that C

15 a binary nonlinear code.

2.3 Binary Hadamard codes

A Hadamard matriz H of order n is a n x n matrix of +1’s and —1's such
that HH' = n1d,,. Tt is well known that if a Hadamard matrix H or order
n exists, then n is 1,2 or a multiple of 4 [MS77, Ch.2 §3] [AK92]. Two
Hadamard matrices are equivalent if one matrix can be obtained from the
other by permuting rows and (or) columns and multiplying rows and (or)
columns by —1. We can change the first row and column of H into +1's and
we obtain an equivalent Hadamard matrix H’, which is called normalized.
If +1's are replaced by 0's and —1’s by 1's, H' is changed into a binary
Hadamard matriz ¢(H'). The binary code consisting of the rows of ¢(H')
and their complements is called a binary Hadamard code [MST7, Ch.13 §3].

A binary Hadamard code of length n is a binary code with 2n codewords

and minimum distance n/2. In a binary Hadamard code, all codewords,
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except the all-one and all-zero codewords, have Hamming weight n/2. In
general, binary Hadamard codes are nonlinear. In fact, it is well known that
there is a unique binary linear Hadamard code H; of length n = 2¢, for any
t > 2, which is the dual of the extended Hamming code of length 2 [MS77,

Ch.2]. A generator matrix G for H; can be constructed as follows:

1 1
G:(O G/), (2:2)

where G’ is a matrix having as columns the 2' — 1 nonzero vectors from Z5.
Note that G’ can be seen as a generator matrix of the binary simplex code
S of length 2¢ — 1, as noticed in Section [2.1]

Example 3. Let Hy be the binary linear Hadamard code of length 16 with

generator matriz

@Q

I
O O O O =
SO O O = o=
S O = O =
S = O O =
_ o O O =
S O = ==
O R = O
_ = O O
= e T e i

1
1
0
1
0

_ O = O
O = =
— = = O
e e e
= = O ==
_— O O = =

e

[\]

w

S—

constructed as in , where G’ is the generator matrixz for the binary sim-
plex code Sy of length 15 given in Ezample [1]

It is also well known that if H is a Hadamard matrix of order n, then

H H
(1) »

is a Hadamard matrix of order 2n [Syl1867|. Starting from the Hadamard
matrix Sop = (1) of order 1 and applying (2.4), we can recursively define
matrices Sy, called Sylvester matrices, of order 2! for t > 1. The binary
Hadamard code corresponding to S; is the binary linear Hadamard code and
is also known as the first order Reed-Muller code of length 2¢ [MS77, Ch.13

§3].
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14

(1) and applying , we obtain the

Example 4. By starting with S

following matrices:

-1

1

—1
1
1

-1
—1

—1

1

-1 -1 -1

—1

-1 -1 -1 -1
—1

1
—1

1

S3

-1

1

—1

1

-1

1

-1
1
1

-1

-1

—1
—1

—1

-1

1
1

-1 1 -1 -1
-1 -1
-1
-1

-1
-1

-1 -1

1

-1

—1
—1
-1

—1
—1
—1

—1

-1
1
-1

-1

-1

1

-1

-1
-1

-1 1 1
-1 -1 -1 -1 -1 -1

-1
—1

-1

1
1

-1
—1

-1
—1

-1
1
-1

1

—1

—1
—1
—1

1

-1
1
1

-1

-1

-1

—1
—1

-1 -1

1

-1 -1 -1

—1

—1

—1
—1
-1

-1
1
-1

—1

1

-1

-1
-1

—1

-1

-1

-1

-1

1

Sy =
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The corresponding binary Hadamard matriz of Sy is

0000O0OO0OO0OO0OO0OO0OO0OOO0OO0O®O0O®O
01 0101010101O010O01
001 10011001T1O0QO0T171
01 100110011O0O0T1T1020
0000111100001 1T11
010110100101 1O0T1O0
00111100001T1T1T1Q00®O0
o(Sy) = 01 101001011O010O0¢01
00000O0OO0OO0OO0O11T1T1T1T171
0101010110101O0T1O0
0601100111100T1T1T02®O0
01 1001101001T1QO0¢01
00001111111 100¢00O0
010110101010010O01
0011110011O0O0O0O0T171
01 1010011001O0T1T10Q0

Note that the binary code consisting of the rows of this last matriz ¢(S4) and
their complements is linear. Moreover, it is permutation equivalent to the

code Hy given in Example [3

Example 5. Let H be the following (normalized) Hadamard matriz

(o0 o)
p(S3) —p(Ss) ’

where Sz is the matriz given in Ezample [4, and p = (2,3) € Sis. The
corresponding binary Hadamard code coincides with the one given in Example

13, so it is a nonlinear binary Hadamard code.

The rank and the dimension of the kernel of binary Hadamard codes have
been deeply studied in [Kro01l, PRV05, PRV06, RR13, MR15, [KV15, [DRV15]

RS17]. In some of these papers, the authors consider binary Hadamard
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codes having linear structures over different rings. Also in some of them,
bounds for these invariants are given. In this dissertation, we study the
binary Hadamard codes which have associated a linear structure over Zos
with s > 2.

Thanks to the great correction capability of Hadamard codes, these have
been used in real word applications. They were used in early satellite trans-
missions, for example, in the 70’s Mariner and Voyager missions to the planets
of the solar system [Hor07]. Modern CDMA cellphones use Hadamard ma-
trices to modulate transmission on the uplink and minimise interference with
other transmissions to the base station [LT94]. The Walsh-Hadamard Trans-
form [Wal23)| is in common use as a fast discrete transform for the transmis-
sion of information in image compression and image encoding [Jai89]. New
applications for these codes are pattern recognition [KB73|, neuroscience
|[Her12] and optical communication [HS79|, among others. In addition, they
are also used in cryptography and steganography [Hor(07].

Hadamard matrices of order n = 2!, ¢t > 0, were constructed for the first
time by Sylvester [Syl1867]. Later, in |[Had1893], Hadamard proved that
Hadamard matrices could exist for other orders. In fact, he proved that such
matrices could exist only if n is 1, 2 or a multiple of 4. This observation is the
basis of the Hadamard’s conjecture, which states that a Hadamard matrix of
order 4k exists for every positive integer k. Currently, the smallest order for
which no Hadamard matrix is known is 668 [KT05].

In order to attack the Hadamard’s conjecture, in [[to94) [F1a97, [LFHOQ,
RS14], the Hadamard matrices are related with different concepts as cocyclic
Hadamard matrices |[F1a97|, Hadamard groups [1t094), different sets [LFHOO
and Hadamard full propelinear codes [RS14]. These concepts have been stud-
ied in the last years in, for example, [It096, [Cat12] RS17, IAAFT09].

2.4 Zjs-linear codes

The study of codes over rings has its initial point in [Bla72| and |Bla75].

However, it became more significant with the paper [HKCT94|, where the
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codes were defined over the ring of integers modulo 4, Z,. For more infor-
mation about codes over Z, see [Wan97|, and codes over rings in general see
|[Doul7].

Let Z} be the set of all n-tuples over the ring Z,. Henceforth, the elements
of Z} will also be called vectors despite of the fact that Z} is not a vector
space. Any nonempty subset C of Zj is a quaternary code of length n and a

subgroup of Z} is called a quaternary linear code of length n.

The Lee weight of an element i € Z, is wt (i) = min{i,4 —i} and the Lee
weight of a vector u = (u1,ug, ..., u,) € Z} is wt(u) = >0 wtr(u;) € Zy.
The minimum Lee weight of a code, C, over Z4 denoted as wt.(C) is the
minimum value of wt(u) with u € C and u # 0. The Lee distance of two
vectors u, v € Z} is dp(u,v) = wtz(v — u). The minimum Lee distance of a
quaternary linear code C is dr,(C) = min{d.(u,v) : u,v € C,u # v}.

The usual Gray map, denoted by ¢, maps Z, to Z3 as follows:

¢(0) = (0,0), ¢(1) = (0,1), ¢(2) = (1,1), (3) = (1,0). (2.5)

We can define the Gray map ® as a coordinate-wise extension of the usual

Gray map, that maps Z} into Z3", that is,

D((Y1,---5yn)) = (0(11), -+, &(Yn))- (2.6)

Quaternary codes can be viewed as binary codes under the Gray map .
The Gray map is an isometry which transforms Lee distances over Zj into
Hamming distances over Z3". Therefore, the minimum Lee distance of a
quaternary code C coincides with the minimum Hamming distance of C' =
®(C), that is, di(C) = d(P(C)).

Two quaternary codes, C; and Cs, of length n are said to be permutation
equivalent if they differ only by a permutation of coordinates, that is, if there

is a permutation of coordinates 7 € S,, such that Co = {n(c) : c € C;}.

Let C be a quaternary linear code of length n. The image, under the
Gray map, of C is a binary code C' = ®(C) of length 2n, which is called Z,-

linear code. Since C is a subgroup of Z}, it is isomorphic to an abelian group
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Z3 x Z3 and we say that C (or equivalently, the corresponding Z,-linear code
C = ®(C)) is of type 274% as a group. The code C of type 274° has |C| = 27+%
codewords, where 27%9 of them have order two.

A quaternary linear code C of length n and type 274° can also be seen as
a Zs-submodule of Z}. As a Zs-module, C may or may not be free. Recall
that a Zs-module M is free if there exists a subset £ C M such that every
element in M is uniquely expressible as a linear combination over Z, of the
elements in £ [HP03]. Then, the quaternary linear code C is free if v = 0.
Although C is not a free module in general, there exist {u;};_; and {v;}J_,

such that every codeword is uniquely expressible in the form

¥ 1
Z A, + Z HjVis
i=1 j=1

where \; € {0,1} C Zy forall 1 < i <, u; € Zy for all 1 < j < ¢ and
u;, v; are codewords of C of order two and four, respectively. The matrix G
that has as rows the codewords {u;}]_; and {v;}_, is a generator matrix for
C. As for linear codes, there is a standard form for the generator matrix of
C. In [HKC*94|, it was shown that any quaternary linear code of type 274°
is permutation equivalent to a quaternary linear code Cg with a generator

matrix of the following form

2T 2Id, 0
_ , 2.7
s ( S R I ) >0

where R, T are matrices over Z, with entries in {0, 1} C Z, of size 6 x 7 and
v X (B —~—20), respectively; and S is a matrix over Z, of size § X (8 —~—9).

In general, a Z,-linear code is not necessarily linear. The following lemmas
are useful when dealing with the linearity of Zy-linear codes. Let uxv denote

the component-wise product of two vectors u,v € Zj}.

Lemma 6 (|[HKC™94, Wan97|). For all u,v € Z, we have

P(u+v)=0(u)+ ¢(v) + P(2uxv).
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Lemma 7 ([HKC™94) Wan97]). Let C be a quaternary linear code. The Zy4-
linear code C'= ®(C) is a binary linear code if and only if 2uxv € C for all
u,v eC.

One can strengthen Lemma [7| via the generators of order four of the
quaternary linear code. Specifically, if G is a generator matrix of a quaternary
linear code C of type 274° and {u;};_, and {v;}J_, are the rows of order two
and order four in G, respectively, then the Z,-linear code C' = ®(C) is a
binary linear code if and only if 2v; xv; € C, for all 1 <7 < j <. It is clear
that 2u;xv=0¢& Cforall 1 <i¢<~vyandveC;and 2v; xv; =2v; € C for
all 1 <5 <.

Example 8. Let C be the quaternary linear code of length 16 with generator

matriz

Q
I
o O =
S = =
S NN =
S W =
_ o =
— = =
— N
—_ W
N O =
I e

1
2
2

D W =
w O =
w =
W N =

1
3. (2.8)
3

Denote the ith row of matrix (@ by v;. It is straightforward to check that
2vy * vy = (0000020200000202) ¢ C.

Thus, by Lemmal7, the Zy-linear code C'= ®(C) is a binary nonlinear code.
The quaternary linear code C is permutation equivalent, by using the per-
mutation (1,14,11,8,5,16,13,10,7,4,2,15,12,9,6,3) € Si6, to a quaternary
linear code Cs with generator matriz Gs in standard form , where

Gs =

S N W
S W N
= o= W
= NN
— o

3 2
0 1
2 2

(SR NI
N W O

2
0
3

W ==
w N O
w W w
o O =
o = O

0

0 |. (2.9)
1

The code C is of type 2°43, so0 it has 4*> = 64 codewords.

Example 9. Let C be the quaternary linear code of length 16 with generator
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matriz
1 111 111111111111 Vi
o1 2 3 01230123012 3 A%
G = =1 2| (210
O 000 2222000022 22 u;
o0 o0 o0 o0o0o0©O02%2%2227222 us

It is easy to see that 2vy x vy = 2vy € C, so C' = ®(C) is a binary linear
code by Lemma [l The code C is permutation equivalent via the permuta-
tion (1,15,11,7,4,2,16,12,8,5,13,9,14, 10,6, 3) € Si¢ to a quaternary linear
code Cs with generator matriz Gs in standard form , where

00222 000222222000
0O 0000 222222202200
Gs = (2.11)
3203 203 210321110
231 2312301235000 1

The code C is of type 2242, so0 it has 224% = 64 codewords.

The inner product of two vectors u,v € Z} is defined as
n
(u,v) = Zuivi S Z4.
i=1

Given a quaternary linear code C of length n and type 274%, the quaternary
dual code of C, denoted by C*, is defined as

Ct={xe€Z}:(x,u) =0, forallu e C}.

The code Ct is a quaternary linear code of length n and type 2747779
[HKCT94]. The weight enumerator polynomial of C* is related to the weight
enumerator polynomial of C by the MacWilliams identity [MS77, Ch. 5]. The
corresponding binary code ®(C1) is denoted by (| and called the Zs-dual
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code of C'. We have the following scheme:

c—2-¢C
lL (2.12)

ct 2,0,

The codes C' and C'| are not necessarily linear, so they are not dual in the bi-
nary linear sense. However, the weight enumerator of C'; is the MacWilliams

transform of the weight enumerator of C' and they are called formally dual.

Since 1994, quaternary linear codes became significant because, in some
cases, after applying the Gray map, we obtain binary nonlinear codes bet-
ter than any known binary linear code with the same parameters: length,
number of codewords and minimum distance. This is the case, for example,
of Kerdock and Preparata codes. This discovery is due to the influential
paper [HKCT94| where, among other things, it is shown that the Kerdock
codes and some Preparata-like codes are Zy-linear codes and, moreover, the
Zy,-dual code of the Kerdock code is a Preparata-like code. Later, other Z,-
linear codes with the same parameters as some well known families of binary
linear codes (for example, extended Hamming, Hadamard, QRM, ZRM and
Reed-Muller codes) have been studied and classified [BPR03, [Kro01l [PRV06,
PRS09, PPVl [AA09, BVI6al, BPRZ03 FPV08, Wan97|.

After [HKCT94|, a lot of research has been done on quaternary linear
codes and linear codes over more general finite rings. Nevertheless, the ex-
amples of better-than-linear codes found since then are comparatively sparse.
In [KZ13|, the extended dualized Kerdock codes l@,’;H (k > 3 odd), which are
quaternary linear codes with high minimum Lee distance, are constructed.
In [KWZ16], it is shown that the codes K3 and K satisfy that the minimum
Hamming distance of their Gray map images is higher than the minimum
Hamming distance of any comparable binary linear code. A table with the
current better-than-linear codes can be found in [KWZ16]. For moderate
lengths, in order to determine whether a nonlinear code is better-than-linear
or not, the online tables [Gra09, BCES16| containing the best known linear

codes can be used. Tables with the best known Z,-linear codes and binary
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nonlinear codes are also available at [AAQ9] and [LRS99], respectively.

There are many possible generalization of Z,-linear codes. One of them
give rise to the so-called ZsZ,-linear codes. A code C is said to be ZyZy-
additive if the set of coordinates can be partitioned into two subsets X and
Y such that the punctured code of C by deleting the coordinates outside X
(respectively, Y') is a binary linear code (respectively, a quaternary linear
code). Their corresponding binary images, via the generalized Gray map
®: 79 x 7 — 72, where n = a + 24, defined as

O(x,y) = (%, ¢(1), - - - ¢(ys)), (2.13)

for any x € Z5, y € Zf, are called ZyZ,-linear codes. The fundamental
parameters as well as the standard forms for generator and parity check
matrices and the duality concepts for these codes are studied in [BFPT10,
BEP™14]. Other possible generalizations of Zs-linear codes are Zgs-linear
codes, which are defined as the binary image of linear codes over Zss by
generalized Gray maps in [Car91l [Kro07, BFROI, BFR09]. Finally, it is also
worth mentioning that in [AS13| [AS14] ZyZss-additive and Z,-Z,s--additive
codes are introduced, generalizing naturally both Z,Z,-additive codes and

linear codes over Zss, respectively.

2.5 Zs-linear Hadamard codes

As we said in the previous Section binary Hadamard codes are nonlinear,
in general. In this case, it is desirable to have a subjacent algebraic structure,
like a group or a ring. From the coding theory perspective, it is also desired
that the algebraic structure preserves the Hamming distance. This is the
case of Zs-linear codes. The quaternary linear codes that, under the Gray
map P, give a binary Hadamard code are called quaternary linear Hadamard
codes, and the corresponding Z,-linear codes are called Zy-linear Hadamard
codes.

The Zg4-linear Hadamard codes are completely classified [Kro01l, [PRVO06].
Specifically, for any ¢ > 3 and each § € {1,..., L%J}, there is a unique
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(up to equivalence) Z,-linear Hadamard code of length 2° which is the Gray
map image of a quaternary linear code H%" of length 8 = 2/~ and type
2749 where t = v 4+ 25 — 1. Moreover, for a fixed ¢, all these codes are
pairwise nonequivalent, except for 6 = 1 and § = 2, which are equivalent
to the binary linear Hadamard code H; of length 2! [Kro01]. Therefore, the
number of nonequivalent Z,-linear Hadamard codes of length 2¢ is L%J for
all ¢ > 3. Note that when § > 3, the corresponding Z,-linear Hadamard

codes are nonlinear.

Let H%7 be the quaternary linear Hadamard code of length 5 = 2!~! and
type 274%, where t = y+25 — 1, and let H%" = ®(H*") be the corresponding
Zs-linear code of length 23 = 2!. A generator matrix Gs. for H*? can be

constructed by using the following recursive constructions:

G5y G
g~ (% %), 21

Gsv Yoy Yoy G
] 21

starting with G; o = (1). First, the matrix Gsq is obtained from G, o by using
recursively 0 — 1 times (2.15), and then Gy, is constructed from Gs by using
v times (2.14). Note that the rows of order four remain in the upper part of

Gs~ while those of order two stay in the lower part.

Example 10. The code C introduced in Example 8 is the quaternary linear
Hadamard code H>P of length B = 16 and type 2°4%. The Z4-linear Hadamard
code H3? = ®(H3P) is a binary Hadamard code of length 32 with 64 code-
words and minimum Hamming distance 16. The code H3° is the smallest
Zy-linear Hadamard code which is nonlinear. The corresponding generator

matriz Gs o is constructed, starting with Gy = (1) and carrying on as follows:

o 111 1 ]
= an
20 012 3
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1111111111111111
Gso=|012301230123012 3
0000111122223333

As another example, the code C introduced in Example [ is the quaternary
linear Hadamard code H*? of length f = 16 and type 2242. The Zy-linear
Hadamard code H*?* = ®(H?*?) is the binary linear Hadamard code of length
32 with 64 codewords and minimum Hamming distance 16. The binary linear
Hadamard code of this length can also be obtained as the Gray map image
of HY*. Therefore, both codes H** and HY* are equivalent to the code Hy

given in Example (3. Finally, see that there are exactly

t—1 5—1
— | =—] =2
-1
nonequivalent Zy-linear Hadamard codes of length 2° = 32, which are either
the codes H>® and H*?, or the codes H*° and H*.

The Z4-linear Hadamard codes have been studied and classified in [Kro01,
PRV06] by using the invariants presented in Section On one hand, in
|[Kro01], the author gives a complete classification of these codes by using

the cardinal of the kernel.

Proposition 11 ([Kro01]). Let HO be a quaternary linear Hadamard code
with § > 2 and H*Y = ®(H*) the corresponding Zs-linear Hadamard code.

Then |K(H®Y)| = 207+ and the code H*" is nonlinear.

On the other hand, in [PRVO06], the classification is given by using the

rank of the codes.

Proposition 12 ([PRV06)|). Let H%Y be a quaternary linear Hadamard code
of length 2t~ and type 274°, where t = 25 +~ — 1, and let H*Y = ®(H*") be

t+1
the corresponding Z4-linear code of length 2t. Then, ford € {3,..., LLJ I3

2
S 5—1
we have that rank(H*7) =t + 1+ (°').
Hadamard matrices with different subjacent algebraic structures have

been extensively studied, as well as the links with other topics in alge-

braic combinatorics [Hor07]. This is the case, for example, of ZyZ,-linear
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Hadamard codes and Hadamard Z,Z,(Qs-codes. The Z,Z4-additive codes
such that, under the generalized Gray map ® defined in (2.13), give a binary
Hadamard code are called Z,Zs-additive Hadamard codes and the corre-
sponding ZyZ,4-linear codes are called Z,Z,-linear Hadamard codes. These
codes have been studied in [PRV06, RSV09, [KV15| and represent a general-
ization of the Z,-linear Hadamard codes presented in this section. Another
case are the Hadamard Z,Z4Q)s-codes, which are binary Hadamard codes af-
ter a suitable Gray map from a subgroup of direct products of Z,, Z4, and Qg
(where Qg is the quaternionic group of order eight); and have been studied
in [RR13, MRI5]. Finally, in a very intuitive way, the Zss-linear Hadamard
codes are introduce in [Kro07]. They are binary Hadamard codes that are
the image, under a suitable generalization of the Gray map, of codes over
the ring Zys for s > 2. This generalization of the Gray map is discussed in
the following Section

2.6 Generalized Gray map

In this section, we recall the definition of the Gray map and introduce dif-
ferent generalizations for it. One of the most useful properties of the usual
Gray map is that it is an isometry which transforms Lee distances over Z}
into Hamming distances over Z32".

In [HKC™94], the usual Gray map ¢ is define as follows:

In communication systems employing quadrature phaseshift keying
(QPSK), the preferred assignment of two information bits to the four pos-
sible phases is

1 =01

2119 (-1) ()9 0 — 00
|
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in which adjacent phases differ by only one binary digit. This mapping is
called Gray encoding and has the advantage that, when a quaternary code-
word is transmitted across an additive white Gaussian noise channel, the
errors most likely to occur are those causing a single erroneously decoded

information bit.

(Hammons et al., 1994)

In order to generalize the results about quaternary linear codes, first, we
see that there exist many generalizations of the usual Gray map ¢ that take
Zys into Z2 " or Z¥, where Zy. is the ring of integers modulo 2° with s > 1.
In [BEROI] and [BERQ9], the authors define a generalization ¢ that respects,
as the original one, that adjacent phases, i.e., the images of consecutive ele-

ments in Zss, differ just in one bit,

</ 021, 0<i<2M1
¢(2) = 2* . k—1 . k—1 (216)
12k—1+¢<2—2 ), 1> 2"
This generalization is also studied in [DF11].
Other two generalizations given in [Kro07| are
S 45 — zgm
¥ 2m 2 (217)
(1, xn) = (g, .-y ag,),
where A = {ay,...,as,_1} is a Hadamard code of length m with a; = 0 and
a; + iy = 1, and
D 7y — 2"
4 2m (2.18)
(T1,...,xy) +— Hy X+ xX H, |
where {Hy, ..., Hyy,—1} is a partition of Z2' into extended 1-perfect codes of

length m.

In this section, and also in the rest of the dissertation, we focus on the

Carlet’s generalization given in [Car98] and also studied in [TV03]. This
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generalization is the map ¢ : Zos — Z2" " defined as follows:

o(u) = (ug—1,. -, us—1) + (U, ..., us—2)Y, (2.19)

where u € Zgs, [ug,us, ..., us_1]2 is the binary expansion of u, that is u =
S0 2 (u; € {0,1}), and Y is a matrix of size (s— 1) x 2°~! which columns
are the elements of Z3 . Note that (u,_1,...,us_1) and (ug, ..., us_2)Y are
binary vectors of length 257!, We assume that the columns of Y are the
binary expansion of the elements of Zjs—1 in increasing order, since they are
all the elements of Z35~'. The matrix Y is the parity check matrix of a binary
Hamming code or the generator matrix of a simplex code after removing the
all-zero column. The rows of Y are also a basis for the first order Reed-Muller

code after adding the all-one row.

By definition, the Carlet’s generalization holds that the Hamming weight
of the image of any element u € Zos is half of the lenght, i.e., wty(op(u)) =
2572 except the images of 2°7! and 0 that are wty(4(2°71)) = 271 and
wtg(¢(0)) = 0, respectively. This property is also held by the usual Gray
map defined in [HKCT94].

The Carlet’s Gray map ¢ is a particular case of the map ¢ presented
in [Kro07], which satisfies that > \;¢(27) = ¢(>_ \i2%) as it was shown in
[EVVI8b| and will be recalled later. In fact, in [Kro07], the author mentions
that the generalization given in [Car98| can be seen as a particular case of ¢

when A is the binary linear Hadamard code.

Example 13. Let s = 3 and ¢, ¢, ¢ and @ be the generalized Gray maps de-
fined in [BFROL, [BFR0Y/, [Car98], |[Kro0d] and [Kro07], respectively. Let
A = {0000, 0101, 0011, 0110, 1111, 1010, 1100, 1001}, which is the only
Hadamard code of length 2% and is linear. Let Hy = {0000, 1111}, H; =
{0011, 1100},..., H; = {0001, 1110}. Then, we have that the corresponding
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images for each generalized Gray map are

Zg ¢ ¢ e P
0 ~— 0000 0000 0000 Hy
1 +~— 0001 0101 0101 H;
2 +—— 0011 0011 0011 H,
3 +—— 0111 0110 0110 Hj
4 +—— 1111 1111 1111 Hy
5 +—— 1110 1010 1010 Hs
6 +~—— 1100 1100 1100 Hg
7 +~—— 1000 1001 1001 H;.

Note that the images of ¢ and ¢ are the same, since there is no more

Hadamard codes of length 4 except the linear one.

Let @ : Z, — Z3*" be the component-wise Gray map of ¢ defined as

D((Y1, -5 yn) = (D(y1), - - -, O(Yn)),

where (y1,...,yn) € Z3.. In the rest of the paper, if we need to specify
that the domain is Zys and Z3., then we will denote the maps by ¢, and
®, instead of ¢ and P, respectively. Moreover, the matrix corresponding to
the definition of ¢, will be also denoted as Y,_; since its columns are the
binary expansion of the elements of Zys—1. We may consider, without loss of
generality, that the elements of Z,s—1 are in increasing order. Note that the

matrices Ys can be defined recursively, where Y7 = (01) and

m:(n*n*>. (2.20)

0 1

Recall that H, is the binary linear Hadamard code corresponding to the
Sylvester matrix S , that is, the first order Reed-Muller code of length
2%. Note also that any element u € Zss can be written uniquely as u = a(u)+
25728(u) + 257 'y(u), where a(u) € {0,...,2°72 — 1}, B(u),v(u) € {0,1}.
Since the Sylvester matrix Sy is constructed recursively by using (2.4)), the
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Gray map ¢ for Zss can also be defined recursively by using the Gray map

for Zos—1 as we see through the following lemmas:
Lemma 14. Let u € Zss. Then, we have that
() = Comr((au) + 27 *y(w), a(u) +2°72B(u) + 2°*y(u))).

Proof. Let u € Zos, which can be written as u = a(u) +2°728(u) + 25 1y(u).
Let [ug, ..., us_2,us_1]2 be the binary expansion of u. We have that a(u) =

S 20y, B(u) = us_g and y(u) = us_1, 50 we know that

Do ((r(w) + 2272 y(u), a(w) + 2272 (u) + 2°7*y(u)))

(2.21)
= (¢s1(afu) +2°72y(w)), ¢s1((u) + 2572 (B(u) +y(u))).

Note that [ug, ..., us 3, us_1]2 and [ug, ..., us_3,Us_o + us_1]o are the binary
expansion of a(u)+252y(u) and a(u)+2572(8(u)+~(u)), respectively. Then,
we have that (2.21) is equal to

((Us_l, CIE aus—l) + ('LLO, CRE 7us—3)}{s—27

(g1, ooy Us—1) + (Us—2y - Us—2) + (o, - - . ,Us—s)Ys—2)a

which can be written as

(usfla ce 71“[’871)_'_

+ [(Uo, e, Ug—3, US_Q) < Y;_2 ) s (Uo, ey, Ug—3, us_g) ( YVS_Q ) } (222)

0 1

Finally, we achieve that (2.22)) is the same as

Yoo Yo
(Us—ly‘--aus—l) + (UO,...,US_?,,US_Q) < 02 . 2 ) =

(st us—1) + (U0, - - oy Us—z, Us—2) Yes

by [2.20, and it is = ¢s(u) by [2.19] QED
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Lemma 15. Let H, 5 = {co,..
code of length 2572 and u € Zos.

Chapter 2. State of art

., Cos—1_1} be the binary linear Hadamard
Then, we have that

ifuef0,...,272 -1}

where € denote the complement of the binary vector c.

Proof. Straightforward from the results in [Kro07].

' 2572 95l
fue {27t . 32572 -1}
fue{3-2972, .. 25— 1},

QED

Example 16. The Gray map ¢3 : Zg — Zj can be defined by using the

Gray map ¢y : Zy — Z3 in the following way:

¢3(0) = 2((0,0)
¢3(1) = Po((1,1)
¢3(2) = 92((0,2)
¢3(3) = P2((1,3)
¢3(4) = 2((2,2)
¢3(5) = P2((3,3)
¢3(6) = P2((2,0)
¢3(7) = P2((3,1)

~— N N N N N N

= (¢2(0), 2(0)) = (0,0,0,0),
= (¢2(1), ¢2(1)) = (0,1,0,1),
= (¢2(0), 2(2)) = (0,0,1,1),
= (¢2(1),¢2(3)) = (0,1,1,0),
= (¢2(2),#2(2)) = (1,1,1,1),
= (#2(3), 92(3)) = (1,0,1,0),
= ($2(2), ¢2(0)) = (1,1,0,0),
= (¢2(3), ¢2(1)) = (1,0,0,1).

Let Hl = {CO> C1, Cg, C3}7 where Ci = ¢2(7’)72 € Z4; that iS, Hl - {(Oa 0)7 (07 1)7
(1,1),(1,0)}. Then, ¢3: Zg — Z3 can also be defined as follows:

<
o3
(o]

-
w
—_

©- < S
w w W
S Ot W DN
—_ D D D D O T
|

< hS S
3% o
/—\/\/\/&/—\A/\/-\

<
o3
\]

co, o) = (0,0,0,0)
ci,c1) =(0,1,0,1)
co,Co) = (0,0,1,1)
ci,¢1) =(0,1,1,0)
o, ¢) = (1,1,1,1)
cr,¢1) = (1,0,1,0)
<o, ¢o) = (1,1,0,0)
¢, ¢1) = (1,0,0,1).
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2.7 Zos-linear codes

In this section, we introduce the concept of Zss-linear codes and give a brief
description of them. We generalize concepts related to Zs-linear codes. Let
Zss be the ring of integers modulo 2° with s > 1. The set of n-tuples over
Zys is denoted by Zj.. Henceforth, the elements of ZJ. will also be called
vectors over Zys of length n. A nonempty subset, C, of Z%. is a code over Zys
of length n. If C is a subgroup of Z., then it is a linear code over Zys and
is called a Zgs-additive code. Note that, when s = 1, a Zss-additive code is a
binary linear code and, when s = 2, it is a quaternary linear code or a linear

code over Z,.

The Lee weight of an element ¢ € Zgs is wty(i) = min{i,2° — i} and the
Lee weight of a vector u = (u1, ua, ..., u,) € Z is wtg(u) = 330, wty(uy) €
Zss. The minimum Lee weight of a code, C, over Zss denoted as wt(C) is
the minimum value of wt;(u) with u € C and u # 0. The Lee distance of
two vectors u,v € Z%. is dp(u,v) = wt,(v — u). The minimum distance of

a code C, over Zys is dr,(C) = min{d.(u,v) :u,v € C,u # v}.

Two Zss-additive codes, C; and Cy, of length n are said to be permutation
equivalent if they differ only by a permutation of coordinates, that is, if there

is a permutation of coordinates 7 € S,, such that Co = {n(c) : c € C;}.

Let C be a Zys-additive code of length n. We say that its binary image
over the generalized Gray map, that is C = ®(C), is a Zgs-linear code of
length 257n. Since C is a subgroup of Z%,, it is isomorphic to an abelian
structure Zs, x Z;i_l X e X fofl x 7k, and we say that C, or equivalently
C = ®(C), is of type (n;ty,...,ts). Note that |C| = 25120~ D2 ... 9ts

A Zss-additive code C of type (n;ti,...,ts) can also be seen as a Zos-
submodule of Zi.. As a Zgs-module, C may or may not be free. A Zys-module
M is free if there exists a subset £ C M such that every element in M is
uniquely expressible as a linear combination over Zgs of the elements in FE.
Then, the Zss-additive code C is free if t; = 0 for all i € {2,...,s}. Although

C is not a free module in general, every codeword is uniquely expressible in
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the form
st

SS9,
j=1 i=1

where )\Ej) € Zgs+1-5 for all 1 < 57 < s and ugj) are codewords of C of order

2571 for all 1 < j < s. The matrix G that has as rows the codewords ugj)

is a generator matrix for C. As for linear codes, there is a standard form for

the generator matrix of C. In [BDHT99|, it was shown that any Zjs-additive

code of type (n;ty,...,ts) is permutation equivalent to a Zgs-additive code

Cs with a generator matrix of the following form:

Idt1 AO,l AO,Q AO,S Ao,k
0 2 Idjg2 2A1’2 2/41’3 2A1,k
0 0 4ld, 4A,3 4Ask
Gg = . . , (2.24)
0
0 0 0 0 25'1d,, 25_1Ak_17k

where A; ; are matrices over Zss. Unlike linear codes over finite fields, linear
codes over a ring do not have a basis, but there exists a generator matrix with
) t5)7
then a generator matrix of C with minimum number of rows has exactly

ty +---+t, rows. Note that the matrix G with rows {uz(»j)}i,j and the matrix

minimum number of rows. If C is a Zgs-additive code of type (n;ty, ...

Gs have exactly t; + --- + t, rows.

Example 17. Let C be the Zg-additive code of length 16 with generator matrix

111111111111 1111
G=101234567012345¢67
0000O0O0OO0OO0M4444 444 4

The code C is permutation equivalent by subtracting the second row to the

first one and via the permutation (3,9) € Sig to a Zs-additive code Cg with
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generator matriz Gs in standard form , where

0
s = 1
4

N NN
s oW o
NGO
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B o w

2
7
4

o O =
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=~ O
S W O

3
4
0

S Ot
o O W

2
7
0

S N

The code C is of type (16;2,0,1), so it has 822! = 128 codewords.

In [Car91] the author says that the Carlet’s generalized Gray map is not
an isometry, i.e., there exist u,v € Zgs with s > 2 such that d(u,v) #
di(p(u), p(v)). Otherwise it is showed that it is translation-invariant dis-
tance, that means that the Hamming weigh of the difference of the Gray

image of two elements is the same of the Gray image of the difference:

Proposition 18 ([Car98|). Let u and v be two elements of Zss. The Ham-

ming distance between ¢(u) and ¢(v) is equal to the Hamming weight of
o(u —v).

In general, Zss-linear codes are not necessarily linear. For these codes,
there exist results, such as Lemma [7] for the Z,-linear codes, which help
us to deal with the problem of linearity. In [TV03| the operation “®” is
introduced. Let u,v € Zgs and [ug,uq,...,Us 1]z, [Vo, V1, ..., Vs 1]2 be the
binary expansions of u and v, respectively. The operation “®” on Zss is
defined as u ® v = 37— 2'u;v;. Note that the binary expansion of u @ v is
[ugVo, UIVT, - . ., Us_1Vs_1]2. Moreover, note that if s = 2, 2(u ©® v) = 2(u * v).

We denote in the same way “®”, the component-wise operation.

Proposition 19 ([TV03|). Let u,v € Zys. Then,

¢(u) + o(v) = d(u +v = 2(u O v)).

Theorem 20 ([TVO03|). Let C be a linear code over Zgs. Then, for s > 2,

the following statements are equivalent:
(i) ®(C) is linear.

(i) 2(u®v) € C for allu,v € C.
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Example 21. Let C be the Zg-additive code of length 16 as in Example [I7]
Let v; be the ith row of G. In this case, we can use Theorem [2( to see that
the corresponding Zs-linear code C = ®(C) is nonlinear. We have that 2(v,®
vy) = (0202020202020202). [t is easy to see that (0202020202020202) ¢ C,

therefore C' is nonlinear.

Note that, these two last results are a sort of generalization of Lemmas
[6] and [7] since as we said above, when s = 2 the operation “®” coincides

with the operation “*”

after multiplying by two. The result given by Lemma
is true just considering u,v € C heing generators of order four, as it is
mentioned after this lemma. However, for s > 2, we cannot strengthen last
theorem considering just the generators of the code.

Now, we see how to define the orthogonal code, Ct, of a Zys-additive
code C. The images under the generalized Gray map of these codes, C and
C+, are not always orthogonal, but we will see under which conditions these
codes are formally dual, i.e., their weight enumerators hold the MacWilliams
identity .

The inner product of two vectors u,v € Z7. is defined as

n
(u,v) = Zuivi € Zos.
i=1

Given a Zgs-additive code C of type (n;ti,...,ts), the dual code of C, denoted
by C*, is defined as

Ct={xecZj:(x,u) =0, forallueC}.

The dual code C* is also a Zjs-additive code. Let C| = ®(C*). Then, we
have an scheme as in (2.12]).

In [Car98], the author shows that the weight enumerator of C' and C are
not in general related by the MacWilliams identity itself, contrarily to the
case of Z4-linear codes. This means that these codes, in general, are neither
dual nor formally dual. In [Kro07], the author shows that the codes C' and
C'| are formally dual, by using two different generalized Gray maps, ®
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and ¢ (2.17), and following a very similar scheme to (2.12))

c—2 ¢
n , (2.25)

ct == C,
where p(C*) = C,. Finally, in [DF1I], the self dual Zgs-linear codes are
studied by using the generalized Gray map defined in (2.16)). The authors
determine when the Gray image of a code over Z,s generates a linear self-dual
code and give families of codes whose image generate binary self-dual codes.

Finally, the Zjs-additive codes that, under the Gray map, give a binary
Hadamard code are called Zos-additive Hadamard codes and the correspond-
ing Zos-linear codes are called Zgs-linear Hadamard codes. These codes are
the main object of study of this dissertation and we discuss about them all
along the rest of the chapters.

Recall that in [Car98|, the Gray map is defined as a map from Zys onto
the Reed-Muller code of order 1, RM (1, k — 1). The first order Reed-Muller
codes RM(1,k — 1) are in fact binary linear Hadamard codes. They could
be considered as the first Zss-linear Hadamard codes in history. Later, in
|[Kro(7|, the Zss-linear Hadamard codes were introduced for the first time
for s > 2. In [Kro(7|, the author proves the existence of these codes and,
furthermore, shows the nonexistence of other Zss-linear Hadamard codes. In
this thesis, the family of Zjs-linear Hadamard codes by using the Carlet’s
Gray map is constructed recursively. The kernel of these codes is studied
and also the rank for s = 3. Our main goal is to achieve a full classification

by using these invariants.






Chapter 3

Construction and linearity of

Zos-linear Hadamard codes

“Mathematical!”

—Finn, Adventure Time

The Zys-linear Hadamard codes obtained from the Carlet’s Gray map
were introduced in [Kro07]. The aim of this chapter is to give a recursive con-
struction of such codes and study their linearity. Specifically, in Section [3.1]
we give a recursive construction of the generator matrices with minimum
number of rows of these codes over Z,s. We also show that, in fact, the
Gray map image of the constructed Zsys-additive codes are binary Hadamard
codes. Finally, in Section we establish for which types, (n;t1,...,t5), the

Zos-linear Hadamard codes are linear or not.

3.1 Recursive construction

The description of a generator matrix having minimum number of rows for
a Zgs-additive Hadamard code, as long as recursive constructions of these
matrices, are given in [Kro0l]. In [Kro07|, the Z,s-additive Hadamard codes
with s > 2 are introduced and generator matrices with minimum number of

rows are given for these codes.

37
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In this section, we present a recursive construction of these generator
matrices. By using this construction, we establish that the Carlet’s Gray
map image of the constructed codes are binary Hadamard codes. This result,
which corresponds to Theorem was previously proved in [Kro07] by using
a different approach.

Let T, = {7-27' : 7 € {0,1,...,257""1 —1}} for all + € {1,...,s}.
Note that 77 = {0,...,2° — 1}. Let t, to,...,ts be nonnegative integers with
t; > 1. Consider the matrix A% whose columns are exactly all the vectors
of the form 27, z € {1} x TH" ' x T2 x -+ x T,

Example 22. For s = 3, for example, we have the following matrices:

A0 11 ALLO — 1111 4200 _ 11111111
04)° 0246/’ 01234567/

11111111 11111111 11111111
A =10246 0246 |, A**'=10123456701234567 |,
0000 4444 00000000 44444444

11111111 11111111 11111111 11111111
AP0 = [ 01234567 01234567 01234567 01234567
00000000 22222222 44444444 66666666

Let 0,1,2,...,2% — 1 be the vectors having the elements 0,1,2,...,2°—1
from Zss repeated in each coordinate, respectively. The order of a vector u
over Zss, denoted by ord(u), is the smallest positive integer m such that
mu = 0.

Any matrix A% can be obtained by applying the following recursive

construction. We start with A"00 = (1). Then, if we have a matrix
A= At for any i € {1,...,s}, we may construct the matrix
0- 21—1 1- 21—1 . (2$—z+1 _ 1) . 21—1

t

Finally, permuting the rows of A;, we obtain a matrix A% where th=1;
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for j # i and t, = t; + 1. Note that any permutation of columns of A; gives

. ! /
also a matrix Afbs,

Example 23. From the matriz A% = (1), we obtain the matriz A>%°; and
from A%%0 we can construct A%%!, where A%%0 and A*%1 are the matrices
given in Ezample[24. Note that we can also generate another matriz A>%! as
follows: from A0 = (1) we obtain the matriz A% given in Ezample

and from AY! we can construct the matriz

1111111111111111
A =10404040404040404
0011223344556677

Then, after permuting the rows of Ay, we have the matriz

1111111111111111
A1 = 10011223344556677 |,
0404040404040404

which is different to the matriz A*%' of Ezample [29. These two matrices

A2OY generate permutation equivalent codes.

Along this dissertation, we consider that the matrices A% are con-
structed recursively starting from AY%+9 = (1) in the following way. First,
we add t; — 1 rows of order 2°, up to obtain A% then t, rows of order
2571 up to generate A™:%29-0: and so on, until we add t, rows of order 2 to
achieve A't#2:ts Note that, this order in the recursive construction of the

ts implies that the columns are also exactly all the

generator matrices At
elements of {1} x T/~ x T#2 x - .- x Tts. Moreover, it determines completely
the matrices A%-!s from the values of t1,...,t,. If we change this order, we
obtain the same matrix, up to a permutation of rows and columns as it is

shown in Example [23]
Let H!t be the Zjs-additive code generated by the matrix A%t
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where t,...,t; > 0, with t; > 1. Let n = 2/=**!, where

= (i(s—i+1)~ti> -1

=1

this code is of type (n;tq,ta,...,t;). We denote ag H'»ts = §(H!ts) the

corresponding Zss-linear code.

Example 24. The code H' is generated by AM00 = (1), so HIO0 =
Zigs. This code has length n = 1, cardinality 2° and minimum distance 1.
Thus, H"0-0 = &(HYO0) has length N = 257, cardinality 2N = 2° and
minimum (Hamming) distance N/2 = 2572, so it is a binary Hadamard code.
Recall that, H"%0 = ®(Zys) is the binary linear Hadamard code of length
2571 [Car98], or equivalently, the first order Reed-Muller code of length 2571,
denoted by RM(1,s — 1) [MS77, Ch.13 §3].

In Example 24} we can see that the Gray map image of the smallest Zys-
additive code HY%Y is, in fact, a binary Hadamard code. Now, we prove
that the Gray map image of any Zss-additive code generated by a matrix
Attt ig a binary Hadamard code. With this purpose, first, we recall some
results and prove new ones related to the Gray map that we are considering.

The following Lemma [25] can be seen as a corollary of Proposition [19
Lemma 25. Let u € Zos and 0 < p < s — 1. Then,
d(u) + $(27) = pu+ 27 — 2y,
where [ug, uy ..., us 1] 18 the binary expansion of u.

Proof. By Proposition [19, we have that ¢(u) + ¢(2F) = ¢p(u+2P —2(u® 2P)).
The binary expansion of u®2?is [0, ...,0,u,,0,...,0], that is also the binary
expansion of u,2?P. Then, 2(u ® 2P) = 2Py, and the result holds. QED



3.1. Recursive construction 41

Corollary 26. Let u € Zys. Then,

Pu) +6(2771) = dlu+27).

Proof. Straightforward from Lemma QED
Lemma 27. Letu € {2°72,..., 2L —1}U{3-252,...,2°— 1} C Zys. Then,

o(u) + ¢(2572) = p(u + 2572 + 2571,

Proof. By Proposition [19] we have that ¢(u) + ¢(257%) = p(u+2°2 = 2(u®
2572)). The binary expansion of 272 is [0,...,0,1,0], and, if u € {2572, ...,
2571 —1}uU{3-2%72 ...,2%— 1}, the binary expansion of u is [ug, u1, . . ., Us_3,
1,us_1]2. Then, —2(u ® 2572?) = 257! and the statement follows. QED

Corollary 28. Let v € {22322} and U = {2572,..., 2271 —1} U {3-
2572 . ..,25 — 1} C Zos. Then,

dlut+v+27Y fuel

O(u) + ¢(v) = { d(u + v) if u € Zos \ U.

Proof. Straightforward from Lemmas [25] and QED
Proposition 29 ([Car98|). Let u,v € Zgs. Then,

du(6(u), p(v)) = wta(d(u —v)).

Lemma 30. Let u € Zos. Then,

di((u), 9(2°71)) + du(d(u), 6(0)) = 277

Proof. By the properties of the distance, we have that dg(¢(u), p(2571)) +

di(o(u), (0)) = wtg(d(2571) — d(u)) +wtg(p(u)). Then, since p(2571) = 1,
wtg(p(2571) — d(u)) = 2571 — wty(p(u)), and the result follows. QED

Corollary 31. Let u,v € Zos. Then,

dr(¢(u), (v +21)) + d(d(u), $(v)) = 277,



42 Chapter 3. Construction and linearity of Zss-linear Hadamard codes

Proof. Straightforward from Lemmas [25] and QED

The result given by Theorem [32] is already proved in [Kro07]. In that
paper, it is shown that each Zss-linear Hadamard code is equivalent to H'tts
for some tq,...,ts > 0 with ¢; > 1, considering a generalized Gray map that
includes the one given by Carlet. We present a new proof of this theorem, in
the case that Carlet’s Gray map is considered. This new proof does not use
neither the dual of the Zgs-additive codes nor another generalization of the
Gray map for these dual codes, unlike the proof given in [Kro07].

Let G be a generator matrix of a Zgs-additive code C of length n. Then,
(G- --G) is a generator matrix of the r-fold replication code of C, (C,...,C) =

{(c,...,c):ceC}, of length 7 - n.

Theorem 32 (|[Kro07|). Let tq,...,ts be nonnegative integers with t; > 1.
The Zas-linear code H™ ' of type (n;ty,ta,...,ts) is a binary Hadamard
code of length 2', witht = (3.;_(s—i+1)-t;) — 1 and n = 207571,

Proof. We prove this theorem by induction on the integers t;, i € {1,...,s}.
First, by Example 24, the code H1%° is a Hadamard code.

Let H = H!»% be the Zss-additive code of length n generated by the
matrix A = A", We assume that H = ®(H) is a Hadamard code of
length N = 2°7In. Let i € {1,...,s}. Define A; as in and let H;
be the Zss-additive code generated by the matrix A;. We have that H; is

Now, we shall prove that H; = ®(H;) is a Hadamard code.
Note that H; can be seen as the union of 2°~*! cosets of the 2°~*T!-fold

replication code of H, (H,...,H), which are
(H,...,H)+71-wy, (3.2)

forr € {0,...2°7 -1}, where w; = (0, 211, 2.2i71 (25711 _1).21°1),

The code H of length n has cardinality 2°n. It is easy to see that H;
has length n; = 257“"1n and cardinality 22~“*!n. Therefore, the length of
H;, = ®(H,;) is N; = 2°n; and the cardinality 2N;. Now, we just have to

prove that the minimum distance of H; is N;/2.
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By Proposition the minimum distance of H; is equal to the minimum
weight of H;. Thus, we just have to check that the minimum weight of
any coset is N;/2. When r = 0, we have that wtg(®((u,...,u))) =
257wty (®(u)) = 257 N/2 = N; /2. Otherwise, when 7 # 0, we consider

Wt (O((, ..., u) +7-w,)) = dy(D((u,. ... 0)), (r - wy)). (3.3)

Note that, by construction, the coordinates of any nonnegative multiple of w;
can be partitioned into two multisets V and V’ such that |V| = |V'| = 257¢
and there is a bijection from V to V’ mapping any element v € V into an
element v/ € V' such that v/ — v = 2571, Therefore, can be written as

D du(@(n), ®(v)) + Y dp(®(u), d(v)) =

vev vev’

> du(®(w), (v)) + du(®(u), d(v +2°1)) =

veV
V|- 257 n = 257257 In = N;/2, (3.4)
where (3.4)) holds by Corollary QED

Example 33. Let H>%0 be the Zs-additive code generated by A*%° given in
Ezample . The Zs-linear code H*"° = ®(H*%Y) has length N = 32, 2N =
64 codewords and minimum (Hamming) distance N/2 = 16. Therefore, it is

a binary Hadamard code.

Example 34. Let H*%! be the Zig-additive code generated by the matriz
A2001 that s

111111111711 11111 11111111111 11 111
0123456789101112131415 0123456789101112131415
00000000000 0 O O 0 0 44444444444 4 4 4 4 4

It is easy to see that the Zig-linear code H**01 = ®(H?O01) has length
N = 256 and 2N = 512 codewords. Not as easy to see but equally true is that
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its minimum (Hamming) distance is N/2 = 128. Therefore, it is a binary

Hadamard code.

3.2 Linearity

In this section, we establish for which types, (n;ti,...,t;), the Zgs-linear
Hadamard codes are binary linear codes, i.e., for which types the code is
permutation equivalent to the binary linear Hadamard code, Hy, of length
n = 2% In |Kro01, PRVO06], the linearity of these codes for s = 2 is proved.

Theorem 35 ([KroO1,[PRV06]). Let H'*2 be the quaternary linear Hadamard
code of length 2171 and type 224" where t =ty + 2t; — 1, and let H?2 =
O(H™"2) be the corresponding Zs-linear code of length 2¢. Then, only for

t1 € {1,2}, we have that H"'2 is permutation equivalent to the binary linear
Hadamard code H, of length 2¢.

Lemma 36. Let \; € Zy, i € {0,...,5s —2}. Then,

s—2 s—2
D A2 = 6D A2,
=0 =0

where 20 € Zys.

Proof. Let y; be the ith row of Y, where Y is a matrix of size (s — 1) x 2571
which columns are the elements of Z5 . Let e; be the vector that has 1 in
the ith position and 0 otherwise. By the definition of ¢ given by (2.19), we
know that S22 N (20) = S0 Niei1 Y = S0 Awiv1 = AY, where X =
(Mo, - -+, Aez). Since [Ao, ..., As_2, 0]y is the binary expansion of 377 \;2%,
then we have that AY = ¢(327-5 \;20). QED

1=

Proposition 37. The Zgs-linear Hadamard codes H%+° and H0-01.0

with s > 2, are linear.

Proof. By Example 24 we know that H'%? is linear.
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Now, we consider H = H 0010 and H = ®(H). Recall that the code
‘H is generated by

AI,O,.‘.,O,LO — 1 1 1 1 )
0 2372 2571 3_2372

Let B = (20,20,21,21) for 0 < i < s — 1, B, = (0,2°°1,0,2°") and By =
(0,2572,25713.2572). Let C be the linear code generated by B = {®(8;) :
0 <4 < s+ 1}. Now, we prove that C' C H. Let ¢ = Y7 \®(8,) € C,
where \; € Zy. By Corollary [26] we only have to see that

s—2

¢ = Xt 1P(Bsy1) + Z N®(B;) € H.

1=0

On the one hand, if A;;; = 0, then we have that ¢’ € H, since Zf;g NO(Bi) =
@(Zf:—g Aifi) by Lemma . On the other hand, if A\,;; = 1, then we have
that ¢/ = ®((0,2572,2571,3-2°"2)) + ®((u, u, u, u)), where u = 3 7-2 \;2. Let
U={252...,2271 =1} U{3-2%2...,2° — 1} C Zys. Then, by Corollary
¢ = ®((0,2°72,2571 3 2°72) + (u,u,u,u) + (0,2°71,0,2571)) if u € U,
and ¢/ = ®((0,25722°71 3. 2572) + (u, u,u,u)) if u € Zys \ U. In both cases,
¢ €H.

Since |C| = |H| = 2572, then C' = H, and thus H is linear. QED

Let u = (uy,...,u,) € Z5 and [u; 0, i1, ..., Ui s—1]2 be the binary expan-
sion of u;, 1 € {1,...,n}. Let p be an integer such that p € {0,...,s — 1}.
Then, we denote by ul® the binary vector having in the ith coordinate the

pth element of the binary expansion of u;, that is, u® = (uy,, ..., ).

Lemma 38. If v = 2°(0,1,...,2* — 1) € Z3, withn = 2% a > 1 and
a+b<s, then wty(v®) =291 forallp € {b,...,a+b—1}.

Proof. The 2% coordinates of v contain exactly the 2* elements of Zss which
have a binary expansion of the form [0,...,0, vy, Upr1,.- ., Varp-1,0,...,0]2
with v, € {0,1}, for all p € {b,...,a+b—1}. Note that we have 2 different

elements of Z,s, represented by exactly a binary coordinates. Hence, half
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of the coordinates of v satisfy that v, = 1 and the other half that v, = 0.
Therefore, wty(v?) =22/2 =2 forallp € {b,...,a+b—1}. QED

As it is shown in [Kro01], the codes H%* and H?', t, > 0, are the only
Zy-linear Hadamard codes which are linear. In [BGLO05|, it is proved that
the codes H19-0ts ¢ >0, are linear. The next result shows that, for s > 2
and t, > 0, the codes H%--0Lts and H10--0ts are linear, and they are the

only Zss-linear Hadamard codes which are linear.

Theorem 39. The codes HYO 0Lt qnd HYO00% with s > 2 and t, > 0,

are the only Zss-linear Hadamard codes which are linear.

Proof. First, we show that these codes are linear by induction on t,. By
Proposition [37] the codes H'0% and H%%10 are linear. We assume that
H = ®(H), where H = HO-0b—nts ¢ € {0,1} and t, > 0, is linear.
Now, we prove that H, = H0--0ts-vts+l ig Jinear. Since H is a linear
Hadamard code of length 2¢T2%-1=1 it is the Reed-Muller code RM (1,t, +
251 — 1) [MST77, Ch.13 §3]. By the iterative construction (3.1]), we have
that H, = {®((h,h) + (0,v)) : h € H,v € {0,2571}}. By Corollary
Hy, = {(®(h),®(h) + &(v)) : h € H,v € {0,25°1}} = {(W,h' + V') :
h' € H,v' € {0,1}}, which corresponds to the Reed-Muller code RM (1, s+
2ts_1). Therefore, Hy is linear.

Now, we prove the nonlinearity of H = ®(H), where H = H10-020 Let
r=(0,257225713.2572), Recall that H has length 16 and is generated by

1 1 1 1
= r r r r
0 2572 2571 3. 2572

AL0,,0.2,0

By Corollaries26)and 28] we have ®((r,r,r,1))+®((0,2572, 2571 3. 2572)) =
®(z), where z = (r,r,r,r) + (0,252 2571 3.252) 4 (0,u,0,u) and u =
(0,2571,0,2571). Since H is linear over Zys, z € H if and only if (0,u,0,u) €
H. Since wtg(P((0,u,0,u))) =4-25"1 = N/4, where N is the length of H,
®((0,u,0,u)) &€ H, so ®(z) ¢ H. Therefore, H = H"%020 i nonlinear.
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Next, we consider H = ®(H), where H = H'%0 and we prove that H; is
nonlinear for any i € {1,...,s—2}. Note that the generator matrix of H; has
two rows: w; = 1 and wo = 20710, 1,...,2°"17% — 1), By Corollary we
know that ®(ws)+®(21-1) = ®(wy+2i-1—2iw{™ ). Therefore, we just need
to show that ing_l) ¢ H;. We have that th(wg‘”) = 2°7" by Lemma
Since 20 ¢ {0,271}, wty(4(2)) = 2572, Then, wty(®(2iwl ")) =
257%. 2572 = 225721 Recall that the length of H is N = 2!, where t =
2s — i. Therefore, we have that wty(®(2'wl ")) = 20-2 = N/4, and then
(2wl ™) ¢ H,.

Finally, in general, for H = ®(H), where H = H"'= we prove that if H
is nonlinear, then H; is nonlinear for any i € {1,...,s}. Assume that H; is
linear. Then, by the iterative construction , for any u,v € H, we have
that (u,...,u),(v,...,v) € H,;. Moreover, since H; is linear, ®((u,...,u))+
O((v,...,v))=((a,...,a)+A-271(0,1,...,257"1 —1)) € H;, wherea € H
and A\ € Zys. Therefore, ®(u) + ®(v) = &(a) € H, and we have that H is
linear and the result follows. QED

Table shows the types for all Zys-linear Hadamard codes of length 2°,
with 4 <t <6 and 2 < s < 7. Moreover, the values for which the codes are
linear are shown in bold type. The pairs (r, k), where r is the rank and & the
dimension of the kernel, are also given in this table. Note that the values of

the rank and dimension of the kernel are the same in these cases.
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t=4 t=>5 t==6

(t1,...,ts) r, k) (t1,...,ts) (r, k) (t1,...,ts) (r, k)
(1,3) (5,5) (1,4) (6,6) (1,5) (7,7)
Zy (2,1) (5,5) (2,2) (6,6) (2,3) (7,7)
(3,0) (7,4) (3,1) (8,5)
(1,0,2) (5,5) (1,0,3) (6,6) (1,0,4) (7,7)
7 (1,1,0) (5,5) (1,1,1) (6,6) (1,1,2) (7,7)
s (2,0,0) (8,3) (1,2,0) (8,5)
(2,0,1) (9,4)
(1,0,0,1) (5,5) (1,0,0,2) (6,6) (1,0,0,3) (7,7)
Zag (1,0,1,0) (6,6) (1,0,1,1) (7,7)
(1,1,0,0) (9,4)
7 (1,0,0,0,0) (5,5) (1,0,0,0,1) (6,6) (1,0,0,0,2) (7,7)
32 (1,0,0,1,0) (7,7)
Ziga (1,0,0,0,0,0) (6,6) (1,0,0,0,0,1) (7,7)
Zi198 (1,0,0,0,0,0,0) (7,7)

Table 3.1: Types for all Zys-linear Hadamard codes of length 2¢.




Chapter 4

Kernel of Zos-linear Hadamard

codes

“Sometimes science is a lot more art, than

science. A lot of people don’t get that.”
— Rick Sanchez, Rick and Morty

The computation of the kernel (and also of the rank) and its dimension
for Zs-linear Hadamard codes is given in [KroO1l [PRV06]. In these papers,
a complete classification of these codes, up to permutation equivalence, just
by using the dimension of the kernel (or the rank) is given. As a first step in
the generalization of the results for Z,-linear Hadamard codes, in [FPV10,
KV15, MR15]|, the dimension of the kernel for Z,Z,-linear Hadamard codes
and Hadamard Z,Z4Qg-codes is computed.

The aim of this chapter is to generalize the computation of the kernel and
its dimension for Zss-linear Hadamard codes with s > 2, in order to give a
partial classification of these codes by using this invariant. In Section we
describe the kernel and compute its dimension whenever they are nonlinear.
In Section [4.2] through several examples, we show that, unlike for s = 2,
the dimension of the kernel is not enough to classify completely Zgs-linear
Hadamard codes for some values of ¢ and s. Moreover, we give the exact
amount of nonequivalent such codes up to t = 11 for any s > 2, by using

also the rank.

49
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4.1 Computation of the kernel

In this section, we study the kernel and its dimension of the Zjs-linear
Hadamard codes with s > 2. Specifically, we give a basis of the kernel
for the codes which are nonlinear, and we stablish its dimension.

Let H't be a Zgs-additive Hadamard code and H' % its correspond-
ing Zgs-linear code. Let A"'s be the generator matrix of H™'  consid-
ered along this dissertation, and let w; be the ith row vector of Attt By
construction, wy = 1 and ord(w;) < ord(w;) if i > j.

In Section [3.2] we determine which Zs-linear Hadamard codes H»ts
of length 2' are linear. For all these cases which are linear, we have that
ker(H"t) = rank(H"»') = ¢ 4+ 1, since |H"»ts
this case, the set {®(2Piw;) : 1 < i < t; +--- 4+ 1,0 < p; < 0;} where
ord(w;) = 27, is a basis of K(H" ') and (H"»").

= 2!+l Moreover, in

Example 40. Considering all nonnegative integer solutions with t; > 1 of
the equation 5 = 3t1 42ty +t3— 1, we have that the Zg-linear Hadamard codes
of length 2t = 32 are the following: H*%3, H"'' and H**°. By Theorem [39,
we have that H"*? and H""' are linear, so ker(H"*?) = ker(H""') = 6. By

the same theorem, we also have that H*"° is nonlinear, so ker(H*%Y) < 6.

We define o € {1,...,s} as the integer such that
ord(wy) = 257177, (4.1)

Note that 0 = 1 if t; > 1, and o = min{i : t; > 0,0 € {2,...,s}} if t; = L.
In the case o = s, the code is HY0%% which is linear. In what follows, we
will see that this parameter, o, is a sort of measure of nonlinearity, like the

rank and dimension of the kernel.

Example 41. Considering all nonnegative integer solutions with t; > 1 of
the equation 7T = 4t +3ta+2t3+1t4,— 1, we have that the Zig-linear Hadamard
codes of length 2! = 128 are the following: H094, H10.12 p1.0.20 11,01
and H?%90 The corresponding value of o for each code is 4,3,3,2 and 1,

respectively.



4.1. Computation of the kernel 51

Proposition 42. Let H = H" ' be the Zgs-additive Hadamard code of
type (n;ty1, ..., ts) such that ®(H) is nonlinear. Let H,, be the subcode of H
which contains all the codewords of order two. Let P = {2P}'—2 if o > 2,
and P =0 if o = 1. Then,

<<1><%b>,<1><P>,<I><Z 2i>> C K((H))

=0

and ker(®(H)) > o+ >0 L.

Proof. Let H = ®(H) and 7 = 7 | t;. Let Q = {(ord(w,)/2)w,}7_,. Since
H, contains all the elements of H of order two, we have that the set ®(Q)
is a basis for the binary linear subcode H, = ®(H,) of H. By Corollary 26
for all b € H, and u € H, we have that ®(b) + ®(u) = (b + u) € H and,
therefore, H, C K(H).

Assume o > 2. Now, we prove that ®(2P) € K(H) for all p € {0,...,0—
2}. Equivalently, we show that ®(2P) 4+ ®(u) € H for allu € H. If u € H,
then u = \-1+u’, where A\ € Zys and ord(u’) < ord(wy) = 257177, Let u =
(ug,...,up) € Z% and [u;0, Ui1,...,u;s—1]2 be the binary expansion of w;,
i€ {l,...,n}. Let [Ao, A1, ..., As_1]o be the binary expansion of \ € Zjs. By
Corollary 25} we have that ®(2P)+®(u) = &(2P +u—2"'u®), where u® =
(U1, - -+, Unyp). Note that if v € Zys is of order 27, then its binary expansion
is of the form [0,...,0,1,v5_j+1,...,0s-1]2. Since p € {0,...,0 — 2} and
ord(u’) < 25¥179  we have that u®® = ()\,,...,),). Therefore, 2¢*'u® =
Ap2P Tt € H and ®(2P) + ®(u) = P(2P +u — \,2PH) € H.

Next, we show that ®(3°"22%) € K(H). Let u = (uy,...,u,) € H and
v = (v1,...,0,) = Zf;g 2'. First, we prove that ¢(v;) + ¢(u;) = é(v; +
w; — 2u;) for all ¢ € {1,...,n}. Note that the binary expansion of v; and w;
are [1,...,1,0]2 and [u;0, 1, .., Uis—1]2, respectively. Then, it is easy to
check that 2(v; ©® u;) = 2u;. Therefore, by Proposition 19 ¢(v;) + ¢(u;) =
o(vi + u; — 2u;). Hence, &(v) + ®(u) = ¢(v+u—2u) € H for all u € H.

Finally, we have to see that the elements belonging to the set {®(Q), ®(P),

@(Zf:—g 21)} are linearly independent. By construction, the generator matrix
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Attt is a block upper triangular matrix, so it is easy to see that the code-
words in ®(Q) are linearly independent of the ones in {®(P), ®(37_7 2')}.
Note that o < s since H is nonlinear. Thus, by Lemma it is easy to see
that the codewords in {®(P), ®(327-7 2%)} are linearly independent. There-
fore, we have that the dimension of the linear span of this set is ¢ 4+ 7, so
ker(H) > o+ . QED

Lemma 43. Let v € Zos and \; € Zo, i € {0,...,s —1}. Then,

s—1 s—1

i=0 i=0
Proof. Let v € Zgs and [vg, vq, ..., Us_1]2 its binary expansion. By definition,
we have that v ® >0, L2 = Zf:_é v X2t Note that ;7,28 = v © \;2%, so
v O ITIN2 =30 v e A2L QED

Lemma 44. Let H = H!t be the Zos-additive Hadamard code of type
(nsty, ooote). Let N = {3072  N20: N € Zoy\ {302 (21} ifo <s—1.
Then, ®(N)N K(®(H)) = {0}.
Proof. Let H = ®(H). Let u=>:">
We want to prove that u = 0.

S0 1 A2' € N such that ®(u) € K(H).

By construction, the second row wy of Alt»ts is a 2t=25+t9_fold replication
of v.=27"10,1,...,2°"179 — 1), and ord(wy) = 2°7179. By Proposition
we have that ®(wy) + ®(u) = ®(wy + u — 2(wy ®u)). Since ®(u) € K(H),
2(wy @ u) € H. Note that, by Lemma we have that 2(wy © u) =
25972 wooA2 =232 Awl2ie H.

Let 7 = >0  t;. If 7 = 2, then H has length 25777 and the only
rows in A"t are 1 and wo = v. If 7 > 3, for ¢ € {3,...,7}, the ith
row w; of Affs contains zeros in the first 2°t177 coordinates by con-
struction. Since ¢ < s — 1, 7 > 2, and hence any element of H re-
stricted to the first 2°7177 coordinates is of the form ;1 + pev for some
1, to € Zos. We have that 22?;3_1 /\Z-vvg)T restricted to the first 25177
coordinates is 221 o
22@0 LAVl = 1+ v

Av®2 50 we have to find p, 1o € Zogs such that
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Since the first coordinate of v is 0, the first coordinate of v is 0 for all
i. Then, we have that y; = 0, so 2372 \v2i = MQV Note that v =
S v02i =Sl v@2i Therefore, 237072 A vD2i = 1, 370 v )2Z
Since u € N, there exists j € {oc —1,...,5 — 2} such that A\; = 0. Then,

regrouping the terms, we obtain that

s—2

D (2 = 22) v 4 v D27 4 ppv T2 <,

i=a—1

i#
Note that {v(W}:Z! | is a subset of a basis of the RM(1,t). Then, we have
that (e — 2X\)2° = 0, for i € {o —1,--- ;s — 2} \ {j}, 2’ = 0 and
(o257t = 0. Asaresult, yp = 0and \; =0 foralli € {oc —1,---,5s —2}.
Hence, u = Z ;21 = 0, and the result holds. QED

1=0—1

Lemma 45. Let H = H ! be the Zos-additive Hadamard code of type
(nyty, ..., ts). Let w; be the ith row of A"t and 7 =7 | t;. Let M =
{v = ZT FANW N € Zos,ord(v) > 28, M= {30022 20\ € Zo) )\
{322 21} ifo < s—1 and M+N = {vy+vy : v € MU{O}, vy € N}
Then, ®(M +N)N K(®(H)) = {0}.

Proof. Let H = ®(H), which has length N = 2 = n-257!. By Lemma {44 we
already know that ®(N)NK(H) = {0}. Now, we prove that D(M)NK(H) =
0.

Let v = .7 \w; € M. Since ord(v) > 2 and ord(w;) < 25177,
ord(v) = 27 for some 2 < p < s+ 1 — 0. By the iterative construction ((3.1))
of Af-!s we know that all the elements of Zys of order equal to or less than
2P appear as a coordinate of v. Moreover, exactly half of the coordinates of
v are of order 2P. We consider two cases depending on the value of p.

First, we consider that 2 < p < s+1—0. We have that ®(v)+®(257P) =
P(v+257P 25 PHly(s—p)) by Corollary As before, it is enough to see that
25 P+ly(s=P) & 9 to prove that ®(v) € K(H). Since half of the coordinates
of v are of order 2P and the other half are of order less than 2P, we have
that half of the coordinates of 25~ PT1v(5=P) are equal to 2°7P*! and the rest

of coordinates are zero. Note that 25771 & {0, 257!} since p > 2. Therefore,
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since wty(¢(2°7Pt1)) = 2°72, we have that wty(®(25PHvED)) = n/2.
2572 = 272 = N/4 and hence ®(v) & K(H).

Next, we consider that p = 2, that is, ord(v) = 4. Then, ord(\;w;) = 4 or
Ai =0 forallie{2,....,7—t;}. By Proposition [19) ®(v) + ®(2°7"tw,) =
O(v + 2577wy — 2(v ® 25777 wy)). Again, it is enough to see that 2(v ®
2577"lw,) & H to show that ®(v) & K(H). Note that 257 lwy is a 207571
fold replication of by = (0,252,271 3.2572). Now, we consider the coordi-
nates divided into groups of 4 consecutive coordinates, which will be referred
to as blocks. Note that every block of \;w; contains the same value in its 4
coordinates, for all i € {3,...,7 —t5}.

If Ay = 0, then every block of v also contains the same value in its 4
coordinates. Thus, every block in 2(v ® 277~ lwy) is of the form 2(k ® by)
for some k € {0,2°72, 2571 3 .22}, We have that

(0,0,0,0)  if ke {0,271}

2k ®by) =
(kOb) {(0,28—1,0,28—1) if k€ {252,322},

By construction, note that v contains the same number of blocks k for
each k € {0,2572,2571 3. 2572} Then, it is easy to see that wty(®(2(v ®
2577 wy))) = wtg(p(257Y)) -4 - n/16 = 2571 - n/4 = 272 = N/4, so
®(v) € K(H) in this case.

Otherwise, if Ay # 0, then every block of v is of the form b; + k, for some
i€ {1,2} and k € {0,2°72,2571 3. 252} where by = (0,252,257 3. 2572)
and by = (0,3 25722571 2572) Then, we have that

(0,0,0,0)  if ke {2°72,3.2:72}

%erQQbﬁ:{(QTAﬁJ*U if k€ {0,207},

for ¢ € {1,2}. Again, by construction, v contains the same number of blocks
b; +k for each k € {0,257% 2571 3.2572}. Therefore, as before, wty (®(2(v©®
2577"1w,))) = N/4, and ®(v) ¢ K(H). We have just shown that ®(M) N
K(H) = 9.

Now, we prove that ®(M +N)N K(H) = {0}. Let v = vy + vy €
M+ N\{0}, where vy € M and vy € N. We just proved that ®(v) &
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K(H) if vpr = 0 or vyr = 0. Therefore, we can assume that vy # 0 and
vy # 0.

We know that vy = (v,...,v). Let [vg,v1,...,0s_1]2 be the binary ex-
pansion of v. Let vy, and vy, be the elements of Zos having binary ex-
pansion [0,...,0,vs_p,...,vs_1]2 and [vo,...,Vs—p-1,0,...,0]2, respectively.
Then, vy = v, + Vay, Where vy, = (vns,...,up;) for ¢ € {1,2}. Since

ord(vy) = 27 with 2 < p < s+ 1 — o, the binary expansion of each one of
its coordinates is of the form [0,...,0, (Up1)s—ps - - -, (Um)s—1]2. Note that we
also have that ord(vy,) < ord(va) by construction.

On the one hand, we consider 2 < p < s+ 1 — 0. It is easy to see
that 2(va, © 257P) = 0. Therefore, wty (®(2(v ® 257P))) = wtgy(P(2((vaq +
vy, ) © 2°7P))). Since ord(vy,) < ord(va), it is easy to see that there
exists a permutation of coordinates 7 such that m(va 4+ v,) = vaq. Thus,
Wi (P2((Vm+va,) ©2%7P))) = wty (P(2(va ©2%7P))) and the result holds
by using the same arguments as above.

On the other hand, we consider that p = 2. Note that ord(v) = 4, and
then ord(vy,) = 4. Tt is easy to see that 2(vy, ® 2°77'wy) = 0, hence we
have that wty (®(2(v ® 2577 twy))) = wtg(P(2((var + vay) © 25777 1wy))).
Recall that 2577 1w, is the 20757 1-fold replication of b;. Taking into account
that vy = Z;Qt A:w;, note that the blocks of vaq + vy, are of the form
k for some k € {0,257%2571 3. 2572} if Ay = 0; or b; + k for some k €
{0,257225713 . 2572} and ¢ € {1,2} if Ay # 0. Therefore, the proof is
analogous to the above one to show that ®(v) ¢ K(H) with v.€ M. Then,
the result holds. QED

Theorem 46. Let H = H! b be the Zos-additive Hadamard code of type
(n;ty, ..., ts) such that ®(H) is nonlinear. Let Hy be the subcode of H which
contains all the codewords of order two. Let P = {29};;3 if o > 2, and
P=0ifo=1. Then,

<<1><’Hb>7 a(P), ¢<22i>> — K(3(H)

1=0

and ker(®(H)) =0+ >, L.
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Proof. The result follows by Proposition Lemma and Lemma
QED

Corollary 47. Let H = H't be the Zgs-additive Hadamard code of type
(n;t1, ..., ts) such that ®(H) is nonlinear. Let w; be the ith row of AM-1's
and 7 =7 t;. Let Q = {(ord(w,)/2)w,}7_y and P = {2P}7°¢ if o > 2,
and P = () if o = 1. Then, {®(Q), ®(P), ®(37-7 2")} is a basis of K(B(H)).

Proof. Straightforward from Proposition [{2] and Theorem QED

Example 48. Let H?%° be the Zgs-linear Hadamard code considered in Fz-
ample . By Theorem we have that ker(H**%) = 3. Moreover, we
can construct K(H*®Y) from a basis, by Corollary . First, we have that
Q =1{4,(0,4,0,4,0,4,0,4)}. Since 0 =1, in this case, we have that P = ).
Thus,

K(H*") = (®(4),®((0,4,0,4,0,4,0,4)), ®(3)).

4.2 Partial classification of Z,s-linear Hadamard

codes

The classification of the Z4-linear Hadamard codes of length 2¢, for any ¢t > 3,
using the rank or the dimension of the kernel is shown in [Kro01l, [PRV06].
In this section, we show that the dimension of the kernel can not be used to
establish a complete classification of the Zs,s-linear Hadamard codes of length
2! in general, for any ¢t > 3 and s > 2. However, we see that this invariant
allows us to show some partial results on the classification of these codes,
through some examples and give bounds in the amount of nonequivalent
Zss-linear Hadamard codes with the same length 2°.

First of all, recall that, for any ¢ > 3, only the Z,-linear Hadamard codes
HY“2 and H** of length 2! are linear [Kro01], so these are equivalent to the
Reed-Muller code RM (1,t). By Theorem , for any ¢ > 3 and s > 2, there
are also at most two Zss-linear Hadamard codes of length 2¢, H0-01ts and
HY0--0s "that are linear. Moreover, the following result implies that we can

focusont > 5 and 2 < s <t — 2 to try to classify the nonlinear ones.
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Theorem 49. Let A, ; be the number of nonequivalent Zos-linear Hadamard
codes of length 2¢. Then,

0 ift>3ands>t+2
Ais =49 1 ift>3andse{t—1,t,t+1}
1 ift=4and s =2,

and the Zgys-linear Hadamard code is linear when Ay s = 1. Moreover, if t > 5
and 2 < s <t —2, then Ay s > 2, and there is one code which is linear and

at least one code which is nonlinear.

Proof. First, if t > 3 and s > t + 2, then the equation

t:(}j@—i+1yu>—L (4.2)
i=1

with ¢; > 1, does not have any nonnegative integer solution, so A;, = 0. If
t >3and s =t+1, then has only one solution (t1,...,t,) = (1,0,...,0).
Ift>3and s =t, has only the solution (1,0,...,0,1). If £ > 4 and
s=1t-—1, has exactly two solutions (1,0,...,0,2) and (1,0,...,0,1,0).
By Theorem [39] for all the above solutions, we obtain a linear code H'»ts.
Note that, when t = 3 and s = 2, the solutions are (1,2) and (2,0); and
when ¢ =4 and s = 2, they are (1,3) and (2, 1), which also give linear codes
H%2 by Theorem [35]

Finally, if t > 5 and 2 < s < t — 2, always has the solutions
(1,0,...,0,t —s+1) and (1,0,...,0,1,¢t — s — 1), which give a linear code.
However, for these cases, there is at least another solution. On one hand, if
s =2, As = |(t—1)/2] > 2 since t > 5 [Kro01]. On the other hand, if
s=3,(2,0,---,0,t —2s+ 1) is a solution since t > 2s — 1 when ¢ > 5; and
if s >4, (1,0,---,0,1,0,t — s — 2) is a solution. Therefore, for all the cases,
Ais > 2 by Theorem [39} QED

The following example shows that the dimension of the kernel can not
be used, in general, to classify completely all nonlinear Zss-linear Hadamard
codes of length 2!, once t > 5 and 2 < s <t — 2 are fixed.
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Example 50. The Zg-linear Hadamard codes of length 2t = 256 (t = 8)
are the following: HY%6 HLL4 ml22 pl30 203 2Ll gnd H300  The
first two are equivalent as they are linear by Theorem [39.  The remaining
ones have kernels of dimension 7,6,6,5 and 4, respectively, by Theorem [{6]
Therefore, by using this invariant, we can say that all of them are nonequiva-
lent, with the exception of HY30 and H*%3 which have the same dimension of
the kernel. For these two codes, by using the computer algebra system Magma
[BCEST6], we have computed that rank(H'3%) = 12 and rank(H*°3) = 11,
so they are also nonequivalent. Actually, all these nonlinear codes have ranks
10,12,11,13 and 17, respectively, so we can use the rank instead of the di-
mension of the kernel to classify completely the Zg-linear Hadamard codes of
length 256.

As shown in the next example, for some values of t > 5and 2 < s <t—2,
it is indeed possible to establish a complete classification by using just the

dimension of the kernel, like it happens for any ¢ > 5 and s = 2 [Kro01].

Example 51. By Theorem [{6], it is possible to check that for any 5 <t <7
and 2 < s < t—2, all nonlinear Zys-linear Hadamard codes of length 2 have
a different dimension of the kernel, so this invariant allows us to classify
them. Fort =8, t =9,t =10 and t = 11, it also works, excepl when
s € {3}, s € {3,4}, s € {3,4,5} and s € {3,4,5,6}, respectively. For these
given values of t and s, we can just obtain a partial classification by using
the kernel.

By using Magma [BCFS16|, we have also computed the rank of the non-
linear Zos-linear Hadamard codes of length 2!, for any 5 < ¢ < 11 and
2 < s <t—2. Tables [1.]] and show the values of (t,...,t,) and
the pair (r, k), where r is the rank and k the dimension of the kernel, for all
nonlinear Zys-linear Hadamard codes of length 2°, for 5 < ¢ < 11. Note that
the results given in Examples [50] and [5I] can also be checked by looking at
these tables. These tables also show that all nonlinear Zss-linear Hadamard
codes of length 2¢ have different values of the rank, once 5 < ¢t < 11 and
2 < s < t—2 are fixed. Therefore, for these cases, as in Example
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t=5 t=6 t="7 t=38
(b, b)) (k) | (bt (1K) |t ts) (k) | (.o ts) (k)
7 (3,0) (7,4) (3,1) (8,5) (3,2) (9,6) (3,3) (10,7)
! (4,0) (11,5) (4,1) (12,6)
(2,0,0)  (83) | (1,2,0) (85) | (1,2,1) (9,6) (1,2,2) (10,7)
(2,0,1)  (94) | (2,0,2)  (10,5) (1,3,0) (12,6)
Zg (2,1,0)  (12,4) (2,0,3) (11,6)
(2,1,1) (13,5)
(3,0,0) (17,4)
(1,1,0,0)  (9.4) | (1,0,2,0)  (9,6) (1,0,2,1) (10,7
z (1,1,0,1)  (10,5) | (1,1,0,2)  (11,6)
16 (2,0,0,0)  (14,3) | (1,1,1,0)  (13,5)
(2,0,0,1)  (15,4)
(1,0,1,0,0) (10,5) | (1,0,0,2,0) (10,7)
Ls: (1,0,1,0,1)  (11,6)
(1,1,0,0,0)  (15,4)
Zga (1,0,0,1,0,0) (11,6)

Table 4.1: Rank and kernel for all nonlinear Z,s-linear Hadamard codes of
length 2°.

we have that the codes are pairwise nonequivalent, so we have a complete
classification by using the rank and we can establish the following result.

Let X, be the number of nonnegative integer solutions of the equation
t=0"_(s—i+1)-t;) —1 with ¢; > 1, that is,

Xio=H(t1,. .. ts) eN°: t = (Z(s —i+ 1)-@-) —1, t; > 1. (43)
i=1
Theorem 52. Let A; s be the number of nonequivalent Zos-linear Hadamard
codes of length 2t. Then, for anyt >3 and 2 < s <t —1,
At,s S Xt,s - 1.

Moreover, for any 3 <t <11 and 2 < s <t — 1, this bound is tight.
Proof. Straightforward from Theorem [39] the proof of Theorem [49] and Ta-
bles [4.1] [4.4] and QED

By Theorems [49|and 52| (or Tables , and , we can obtain exactly

the number of nonequivalent Zgs-linear Hadamard codes of length 2! for
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some values of ¢ and s. Table [4.2] shows these numbers, for 3 <¢ < 11 and
2 < s < 9. The cases where the dimension of the kernel is not enough to
classify these codes are shown in bold type. However, in all these cases, the

rank can be used to obtain the classification.

t 314(5|/6|7[8[9|10 |11
Zy ||1]1]12(2]3]3[4] 4|5
Zg 1111234679 |11
Zig |[1]1]1]2|4|5|8|10]| 14
Zgs |01 ]1]1|2/4,6| 9 |12
Zesy |00 1 |1 |1)124)| 6 |10
Ziog |O]0]0 |1 1|12 4| 6
Ziosg |O]O0]0]0 |1 |1 |1 2 | 4
Zsio |O]010]0|0O] 1|1 1 2

Table 4.2: Number A, ; of nonequivalent Zys-linear Hadamard codes of length
2t

The values of A;o given in Table where already proved in [Kro01].
Specifically, in that paper, it is shown that there are L%j nonequivalent
Z4-linear Hadamard codes of length 2¢ for all ¢ > 3. Next, we focus on estab-
lishing some relationships between the already known Zys-linear Hadamard
codes with s = 2 and the ones with s > 2, once only the length 2¢ is fixed.
First, Example shows that there are Zss-linear Hadamard codes, with
s > 2, which are not equivalent to any Zj,-linear Hadamard code. Then,
Example [54] also shows that there are Z4-linear Hadamard codes which are

not equivalent to any Zss-linear Hadamard codes with s > 2.

Example 53. Let H*%° be the Zg-linear Hadamard code of length 32 con-
sidered in Ezamples [35 and[48 Recall that ker(H*°°) = 3 by Theorem
and hence H*%Y is nonlinear. It is known that there are three Z,-linear
Hadamard codes of length 32, H%*, H*? and H3°. The first two are linear,
and the last one has ker(H*") = 4 by Theorem or [Kro0l|]. Hence, there
15 no Zy-linear Hadamard code equivalent to the Zg-linear Hadamard code
200

Example 54. By Table for t = 5, there are only two nonlinear Zgs-
linear Hadamard codes, H>° and H?*°. In Example we have seen that
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they are not equivalent, since they have different dimension of the kernel.
Other examples like this one can be found when t is odd. For example, by
Tables A and [{.3, fort = 7, t = 9 and t = 11, there are Zy-linear
Hadamard codes, H*®, H>® and HSC, respectively, which are not equivalent
to any Zos-linear Hadamard codes with s > 2 of the same length, by using

both invariants, the rank and the dimension of the kernel.

The classification of ZyZ,-linear Hadamard codes of length 2! with o # 0
is given in [PRV06], where it is shown that there are | £ | nonequivalent of such
codes, for all £ > 3; and either the rank or the dimension of the kernel can be
used to classify them, like for Z,-linear Hadamard codes. Recall that there
are |51 | nonequivalent Zj-linear Hadamard codes of length 2 for all ¢ > 3
[Kro01]. However, in [KV15], it is shown that each ZyZ,-linear Hadamard
code with a = 0, that is, each Z4-linear Hadamard code, is equivalent to a
ZoZ4-linear Hadamard code with « # 0, so there are only L%j nonequivalent
ZsZ4-linear Hadamard codes of length 2.

The following example shows that there are Z,Z,4-linear Hadamard codes
(with a # 0) which are not equivalent to any Zss-linear Hadamard codes
with s > 2.

Example 55. Fort = 4, there is a ZoZs-linear Hadamard code (with o #0)
which is not equivalent to any Zs-linear Hadamard code [KV15]. This code
has parameters (r,k) = (6,3) [PRV06], so it is not equivalent to any Zos-
linear Hadamard code with s > 2, since all of them are linear by Theorem
[49. Other examples like this one can be found when t is even. For example,
fort=06,t=8 andt =10, there is also a ZoZ,-linear Hadamard code (with
a # 0) which is not equivalent to any Zs-linear Hadamard code [KV15].
They have parameters (10,4), (15,5) and (21,6) [PRV06], respectively, so

again they are not equivalent to any Zss-linear Hadamard code with s > 2 of

length 25, 28 and 2'°, respectively, by Tables and [{.5,

Finally, we focus on establishing how many nonequivalent Zys-linear Hada-
mard codes of length 2¢ there are, once only the length 2¢ is fixed for some

values of t. First, we give some lower and upper bounds. From Tables [£.1]
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and we can determine a lower bound (K) taking into account just
the dimension of the kernel. This lower bound can be improved (RK) if we
consider both invariants, the rank and the dimension of the kernel. Note
that there are codes having the same dimension of the kernel with different
ranks (for ¢t = 7,8,9,10,11), and codes having the same rank with different
dimensions of the kernel (for t = 9,10, 11). These results are summarized in
Table where we give these bounds for all 3 <t < 11.

t 314|5/6[ 7|89 1011

lower bound K || 113 3|5 |5 |7 | 719
lower bound RK || 1 {1336 | 7 |11]13] 20
upper bound 111]3]5]10]16 26| 38|57

Table 4.3: Bounds for the number A; of nonequivalent Zss-linear Hadamard
codes of length 2°.

An upper bound can be given easily by considering all nonequivalent Zos-
linear Hadamard codes of length 2¢, once t and s are fixed, as it is shown in

the next theorem. These values for all 3 < ¢ < 11 are also shown in Table

4.3l

Theorem 56. Let A, ; be the number of nonequivalent Zos-linear Hadamard
codes of length 2'. Let A; be the number of nonequivalent Zos-linear Hadamard
codes of length 2¢, for any s > 2. Then,

t—

[\

A < (Xt,s —-2)+1 (4.4)
s=2
and
t—2
A< S (A — 1) + 1. (4.5)
s=2

Theorem 57. There are exactly 1,1,3,3 and 6 nonequivalent Zos-linear

Hadamard codes of length 2¢ for t equal to 3,4,5,6 and 7, respectively.

Proof. For t equal to 3,4 and 5, the result is true, since the lower and upper
bounds given in Tablecoincides. By using Magma [BCFS16], it is possible
to check that, for t = 6, both Zss-linear Hadamard codes having the same



4.2. Partial classification of Zss-linear Hadamard codes 63

parameters (r, k) = (8,5) are equivalent; and the ones having (r, k) = (9,4)
are also equivalent. Therefore, in this case, the upper bound goes from 5 to
3, and then coincides with the lower bound given in Table Similarly, or
t =17, it is also possible to check that the codes having the same parameters
(r, k) are all equivalent, so the upper bound became equal to the lower bound
6, and the result also holds. QED
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Table 4.4: Rank and dimension of the kernel for all nonlinear Zss-linear

Hadamard codes of length 2°.
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Chapter 5

Rank of Zg-linear Hadamard

codes

“All that 1s gold does not glitter, not all those

who wander are lost.”

—J. R. R. Tolkien, The Lord of the Rings, The
Fellowship of the Ring

The classification of the Z4-linear Hadamard codes by using the rank and
the dimension of the kernel is given in [Kro01, PRV06]. In fact, it is shown
that it is possible to classify these codes just by using one of these invariants.
In the previous chapter, in order to classify the Zss-linear Hadamard codes,
we compute the kernel and its dimension for these codes and show that it is
not enough to obtain a complete classification by using only this invariant.
The aim of this chapter is to classify the Zis-linear Hadamard codes for
s € {2,3}. First, in Section we compute the rank of the Zg-linear
Hadamard codes by giving a basis that generates their span when the codes
are nonlinear. Later, in Section [5.2] we show through an example that the
rank by itself is not enough to classify these codes. Nevertheless, we give a
complete classification of the codes by using both invariants, the rank and
the dimension of the kernel. Finally, in Section we find equivalences
among the Z,-linear and Zg-linear Hadamard codes and achieve the goal of

this chapter.

67
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5.1 Computation of the rank

The rank of a Zy-linear Hadamard code of type (2714, t;), where t +1 =
2ty +ta, is 2ty + 1o+ (")) if t1 > 2, and 2¢; 4+, if ¢; = 1 or 2 by Proposition
[12] In this section, we establish the rank of the Zg-linear Hadamard codes of
type (207251, ty, t3), where t + 1 = 3ty + 2t + t3, in terms of the parameters
t1, to and t3 by finding a set of linear independent vectors that generate the
span of these codes.

All results that we show on the Carlet’s generalized Gray map are only
proved for s = 3, that is, for Zg-linear Hadamard codes. In this case, the

generalized Gray map ¢ : Zg — Zj is defined as follows:

#(0) = (0,0,0,0) o(4)=(1,1,1,1)
#(1) = (0,1,0,1) o(5) = (1,0,1,0)
»(2) =(0,0,1,1) »(6) =(1,1,0,0)
»(3)=1(0,1,1,0) (7)) =(1,0,0,1)

The construction of the generator matrices of the Zjs-additive Hadamard
codes, given in Chapter [3| allows us to present the following remark in order

to make easier the comprehension of the proofs of the succeeding sections:

Remark 58. Let H!'00 be a Zys -additive Hadamard code of type (n; 11,0, ...,
0). Let w; be the ith row of A00 with 1 <4 <t;. Let

Wi1
W = : ,
Wiq
where 2 < iy < -+ < iy < t3. By construction, we have that each one of
the 2% elements of Zi. appears 23(;;1) = 25(h=a=Y) times as a column of W.

Therefore, there exists a permutation of coordinates p € S,, such that
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Note also that w; is the 2°1 =9~V _fold replication of wi™" for all2 < i < q+1.

Example 59. Let H*° be the Zy-linear Hadamard code of type (64;4,0)
generated by A*°. Let

w— [ W)_[uwuuu uuuu uuuu uuuu
~\w,/ \ 0000 1111 2222 3333 )’
where u = 0123. Then, applying the permutation p = (5,17)(6,18)(7,19)(8,
20)(9, 33)(10, 34)(11, 35)(12, 36)(13, 49)(14, 50) (15, 51)(16, 52) (25, 37)(26, 38)

(27,39)(28,40)(29, 53)(30, 54) (31, 55) (32, 56) (45, 57) (46, 58) (47, 59)(48, 60) €

Se4, we have that
Wo UuuUuU UUuUuUUuU uUuuuU uuuu
p(W) = = :
W3 0123 0123 0123 0123

Proposition 60. Let ty,t,...,ts be nonnegative integers with t, > 1. Then,
rank(®(HM b)) = t, + rank(®(HL-ts-10)).

Proof. We prove this result by induction on the integer ¢, > 0. First, for
ts = 0, the result holds trivially.

Let H' = Hbts and H = Hiv-ts-1ts=1 Tet t, > 1 and suppose that
the result is true for t;, — 1. By the recursive construction , H' can be
seen as the union of two cosets, that is, H' = Cy U C}, where Cy = (H,H)
and C; = (H,H) + (0,2°71). By Corollary 26, we have that ®((H,H) +
(0,25°1)) = O((H,H))+®((0,2571)), so rank(®(H')) = 1 +rank(P(H)). By
the induction hypothesis, rank(®(H')) = 1+ t; — 1 + rank(P(H11-10)) =
ts + rank(P(H1ta-10)), QED

Lemma 61. Let w,v € Zys such that ord(v) = 2¢ with i < s. Then, 207 ((w+
U) ® 237'[) — 22'71(,w ® 2371') + 21'71(1} ® 2572')'

Proof. The binary expansion of v and w+wv are [0,...,0, 1,05 ;11,...,0s 12
and [wo,...,ws; + 1, (W +0)s_i41,--., (W + v)s_1]o, respectively. Then, we
have that the binary expansion of w ® 2°7% v ® 2°7" and (w + v) ® 2°7" are
[0, ... wy—i,0,...,00 [0,...,0,1,0,....0]y and [0,...,0,w,_; + 1,0,...,0s,
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respectively. Note that, multiplying by 2:7!, the binary expansions are
0,...,0,ws_4]2, [0,...,0,1] and [0,...,0,w,_; + 1]3, respectively. There-
fore, 27 (w ® 257%) + 207 (v © 257%) = 27 ((w + v) ® 2577). QED

In order to simplify the notation in the following results, we define p(w) =
—2(w ® 2) for any w € Z7. Note that ord(u(w)) =2 if w # 0.

Lemma 62. Let w,v € Z such that ord(v) < 8. Then, u(w +v) =
(W) + ().
Proof. We may assume that v # 0. If ord(v) = 4, then 2((w +v) ® 2) =

2(w®2)+2(v©2) by Lemmal61] so the result follows. Finally, if ord(v) = 2,
then the result also holds since vo2=0and (wW+v)©02=w®2. QED

Lemma 63. Let H'""0 be a Zg-additive Hadamard code of type (n;t1,0,0).
Let w; be the ith row of A0 with 1 <i <t,. Then,

p(Wi + W + wy) =
(Wi +w;) 4+ p(w; + wy) + p(w; + wyi) + p(w;) + p(w;) + p(wg) (5.1)

forall1 <i<j <k <ty. Furthermore, for all2 <i < j <t and k € Zs,

pk +w; +w;) =
p(k +w;) + p(k +w;) + p(wi +w;) + pk) + p(wi) + p(w;).

Proof. First, consider the Zg-additive Hadamard code H*%0. In this case, it
is easy to check that p(w} +wj+w}) = p(w} +w]) 4+ p(wi +wyp) + p(wji +
wi) + p(wi) + p(wj) 4+ p(wy) for all 1 <4 < j < k < 4. Then, the result
follows by Remark |58 and the fact that wy, ..., wy € H%0 are an 81 ~4-fold
replication of wi, ..., wj € H¥%0 respectively. By using the same argument,
the second equation also holds. QED

Let mg € S,, be the following permutation of coordinates:
8t1-2—1

ms= J] (8i+1,8i+2,8i+38i+4,8 +58i+68i+7,8i+8), (5.2)

=0
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_ .. . . )
where n = 23175, Let 7§ be the composition of 7g, k times, i.e., 76 = mgo - - -

omg. Note that 7&(wy) = wy + k and 7f(w;) = w; for all i € {3,...,q}.
Moreover, note that

T§ O H = poTy. (5.3)

Example 64. Let H*%Y be the Zg-linear Hadamard code of type (8;2,0,0)
generated by A*°0. Let wy = (01234567) be the second row of A>*°. Then,
we have that wy +1 = (01234567) + (11111111) = (12345670) =
ms(Wa). By induction, we also have that 78 (wy) = 8 (Wo+1) = 7571 (wy)+
l=wy+k—1+1=wy+k for any k € Zs.

Lemma 65. Let H100 be a Zg-additive Hadamard code of type (n;t1,0,0).
Let w; be the ith row of A0 with 1 <4 <t,. Let E C {1,...,t;}. Then,

P we) = 37 i w,) + (] mod2) 3 pu(w).

i€E ijeE i€E
i<j
Proof. Assume E C {2,...,t1}, and let ¢ = |E|. By Remark without
loss of generality, we can assume that £ = {2,...,¢g+ 1}. Now, we prove
this lemma by induction on the integer ¢ > 1.
For ¢ = 1 the result holds. Assume ¢ > 2 and suppose that it is true for
q—1. Consider Y% w; = 3% wi+w, 1. Let y = 3%, w?. We have that

S wi = (y,...,y) is the 81%fold replication of y. Then, >-%*} w; is the
811=9=1_fold replication of (y + 0,y +1,...,y + 7). The result holds if

q q+1
pO witwe) = Y p(wi+wy) + (qmod2) Y p(w).  (5.4)
i=2 2<i<j<q+1 i=2
That is, for all k£ € {0,...,7}, we have to prove that
wly + k) = ZW Z p(wi +wi)+
2<i<j<q
q q

+ Y (Wi +k) + (q mod 2)(u(k) + ) u(wi)). (5.5)

=2 =2
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Note that, by the induction hypothesis, the statement holds for >/ , w; =
(y,...,y) and hence,

q

= Y pwiwh (gD mod2) Y pwh). (5.

2<i<j<q =2

Let mg € S, be the permutation of coordinates defined in (5.2). We
have that u(y +k) = u(r5(y)) = 7&(u(y)) by the properties of 74 and

(B-3). By applying (p-6), nly +k) = Yocicjey m(u(w] + wi)) + (g —

1) mod 2) >, 7k (u(w?)). By using the properties of 7§, we have that

ply +k) = > p(wi+wi+

3<i<j<q
q q
+) p(wi 4 wi+ k) + (g — 1) mod 2)(Y ~ p(wi) + p(wh +k)).
i=3 =3

By Lemma [63, we have that u(w! + wi + k) = u(wi + k) + p(w! + k) +
p(ws+wi) + p(w3) + p(wi) + p(k). Therefore, u(y+k) =D acicicg W] +
wi) + D, (Wi 4+ k) + (g mod 2)(p(k) + X1, pu(wf)) and (B.3) holds.

Now, assume 1 € E, and let ¢ = |E|. By Remark B8] without loss of
generality, we can assume that £ = {1,...,¢}. In this case, when ¢ = 1 the
result holds trivially since #(W1) = 0. Assume ¢ > 2 and suppose that it is
true for ¢ — 1. Consider %, w; = S ) wi + w,. Let y = S0, wi'. We
have that Zq W = (y,... ,y) is the 81=9+1_fold replication of y. Then,

7, w; is the 877 9-fold replication of (y + 0,y +1,...,y + 7). Therefore,
w1+ Y ¢, w; is the 817 9-fold replication of (y + 1,y +2,...,y + 7,y +0).
Again, the result holds since holds, that is, for all k& € {0,...,7}, we
have that holds. QED

Corollary 66. Let H'*'2' be a Zg-additive Hadamard code of type (n;t1, ta, t3).
Let w; be the ith row of A2t 1 <i<ty. Let E C{1,...,t1}. Then,

p(3 W) = 37 i+ w;) + (1] mod2) 3 pu(w).

icE i,jEE icE
i<j
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Proof. Note that H'v!2% contains the 222%%_fold replication code of H100,

Therefore, the result follows from Lemma |65] QED

Proposition 67. Let t; and ty be nonnegative integers with t1 > 1. Then,
rank(®(H2T10)) = rank(®(H20)) + 2t + ¢ + (t12_1)'

Proof. By (3.1), the generator matrix of H' = H!-12T10 jg

a0 _ A A A A
0 2 4 6 )’

where A = A0 is the generator matrix of H = H!20. Let r = rank(®(H)).
Note that H' can be seen as the union of four cosets of the 4-fold replication
code of H, (H,H,H,H), which are

Co: (H,H, H,H)

Ci: (H,H,H,H) + (0,2 4,6)
Co: (H,H,H,H) + (0,4,0,4)
Cs: (H,H,H,H) + (0,6, 4,2).

We have that rank(®(Cy)) = rank(®(H)) = r. Let {®(g1),...,P(g,)} be
a basis of (H). Then, a basis of (®(Cy)) is {®(g}),...,P(g.)}, where g} =
(8,8, 8i,8) for all : € {1,...,r}. By Corollary we have that (®(Cp U
Cy)) = (P(g)), ..., ©(g),®((0,4,0,4))). Note that, if u’ € Cs, then u’ =
(u,u+6,u+4,u+2) = (u,u+2,u+4,u+6)+(0,4,0,4) with u € H. Thus,
it is easy to see that (P(H')) = (P(CoUCLUC,UCS)) = (P(CoUCyLUCY)),
again by Corollary

Let v’ = (u,u,u,u) € Cy, u € H, and v = (0,2,4,6). By Proposition
we know that &(u')+®(v') = ¢(u'+v' —2(u’'©V’')). Since —2(v'OV’) is a
vector of order 2, we have that ®(u'+v’) = &(u')+P(v')+P(—2(u’' ©V')) by
Corollary 26| Let M' = {—2(u'® V') : v’ € Cp} = {(0, p(u), 0, p(u)) :u e
H}. Then, (P(H')) = (P(g)),...,P(g.), ((0,4,0,4)), D(v'),P(M")). Note
that, if u =2 € H, then v’ = 2 € Cj and —2(v' © V') = (0,4,0,4) € M".
Thus, (P(H')) = (P(g)),...,P(g)), P(V'),P(M’')). Tt is easy to see that
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®(v') and the elements of {®(g}),...,P(g.)} and ®(M’) are linearly in-
dependent, because of the form of every gi, i € {1,...,r}, and the el-
ements of M’'. Therefore, rank(®(H')) = r + 1 + dim((®(M'))). Since

— {(0,u(w), 0, p(w) : u € A}, dim((B(M))) = dim((B(M))), where
M:{u( ):u€H}

Let w; be the ith row of A0 € {1,...,#1}, and v, the (¢; +j)th row,
j€{1,...,t2}. Note that ord(w;) = 8 and ord(v;) =4 foralli € {1,...,t;}
and j € {1,...,t2}. Then, By = {wWq,..., Wy, V1, ..., Vi, 2W1, ..., 2W; ,
2vy, .., 2V, AWy, ..., dwy, }is a 2-base of H. Let u € H. We know that
u= Z?t11+2t2 Aib;, where b; € By is the ith element of By and \; € {0,1}. By
Lemma [62] and the fact that u(2v,) = ,u(4w,) =0forallie{l,...,t;} and
j € {1,...,t}, we have that pu(u) = (3 1, \by) + thltfflu( b;). Let
E={1<i<t:\ #0}. Since b; = w; for all i€ {l,...,t1}, by Corollary
[66}

Z)\b Z p(w; +w;) + (| E| mod2)z,u(wi).

1,jEE el
1<J

Moreover, since w; = 1, we have that pu(w;) = 0 and it is easy to check that

p(wy + wi) = p(wi) + p(2wi) = pu(bs) + (b, e,44) for all i € {2,... 11}
Therefore,

2t1 412
pu)= > pbi+b)+ > pu(Xby)
i,jEB\{1} i=2

i<j

for some A, € {0,1}. Let M; = {u(b;+b;) : 2 <i < j <t} and My =
{n(b;) : 2 < i < 2t; +to}. Recall that ord(u(w)) = 2 for all w # 0. Then,
by Corollary [26] dim((®(M))) = dim((®(M;), ®(M>))). Since the elements
in ®(M;) U &(Ms) are linearly independent, we have that rank(®(H')) =
r+l+42t +t—1+ (") =r+2t +t+ (")1). QED

Lemma 68. Let q be a positive integer and [qo, q1,qe, - - |2 its binary expan-
sion. Then, (73") + a0("3") + (a0 + )(a — 1) + qolgo + 1) = 1 mod 2

Proof. If ¢ =0 mod4, then ¢y = ¢; = 0 and (qgl) = 1 mod 2 since (¢ —2)/2,
g—1 and ¢—3 are odd numbers. Similarly, if ¢ = 1 mod4, thengy=1,¢; =0
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and (1)) + (7)) +(¢—1)+1=040+0+1=1mod2. If ¢ = 2 mod4, then
g0 =0,q =1and (qgl)—k(q—l) =041 =1 mod2. Finally, if ¢ = 3 mod 4,

then ¢; =1, ¢ = 1 and (qgl) + (5 =0+1=1mod2. QED
Lemma 69. Let q be a positive integer and [qo, q1, G2, - - -]2 its binary expan-
sion. Then,

(i) ¢ —4 = go mod 2,

(ii) (*,") = 1 mod2,

(iii) (*3°) = qo + ¢ mod 2,
(iv) (qu) = qo(qo + ¢1) mod 2.

Proof. These congruences can be proved easily considering the different val-
ues of ¢ modulo 4, as in the proof of Lemma QED

Lemma 70. Let H''* be a Zg-additive Hadamard code of type (n;t1,0,0).
Let E C {1,...,t1}, ¢ = |E| and [qo0, 1, @2, - - .]2 the binary expansion of q.
Let w; be the ith row of A% i € E. Then,

O wi)= Y (Wit Wi+ wi+w,) +q0( Y D(Wi+ W, +wi))+

S 1,5,k,pEE i,5,k€E

1<j<k<p 1<j<k
+ (g0 + ) (D B(w; + W) + qolgo + 31) (Y B(wi)).
1,jEE i€ER
1<J

Proof. First, assume £ C {2,...,¢;}, and let ¢ = |E|. By Remark 58]
without loss of generality, we can assume that £ ={2,...,¢+ 1}. Now, we
prove this lemma by induction on the integer ¢ > 1.

For ¢ < 5, it is easy to check that the result holds. Note that, for

q = 5, it is enough to check the result for w§, ..., wg. Assume ¢ > 6 and
suppose that the statement is true for |F| = ¢ — 1. Consider 3221 w; =
! wi +wepr. Lety =>7 ,wl. We have that > 7 ,w; = (y,...,y) is

the 8~9=2fold replication of y. Then, 3>-%F) w; is the 81-91-fold replication
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of (y+0,y+1,...,y+ 7). The result holds if

q
@(wa—i—k) = Z d(wi +wi +wi +wi)+
=2 2<i<j<k<p<q
Z O(wi +wj+w+k)+
2<i<j<k<q
o DY ewi+witwh+ > O(w!+wl+k))+
2<i<j<k<q 2<i<j<q
q
(+a)( Y Swi+wh+> o(w!+k))+
2<i<j<q i=2

q

q0(qo + %)(Z d(wi) + (I)(k)> (5.7)

=2

for all £k € {0,...,7}.

Let mg € S, be the permutation of coordinates defined in . Let
7¥ € 84, be a permutation such that ® o 78 = 7 o ®. We have that
(X, wi + k) = O(mg (X, wi)) = 73S, w{)) by the properties of
7¥. By induction, taking into account that (¢ — 1) = ¢o + 1 mod2 and
(¢ —1)1 = g+ ¢ + 1 mod 2, and using again the properties of 7§ and the

fact that ® o 7§ = X o @, we have that

q
@(Zwijtk) = Z d(wi +wi +wl+wl)+
=2 3<i<g<r<p<q
Z O(wh +wi +wi +wl+k)+(q+1) Z d(wi +wi +wi)+
3<i<j<r<q 3<i<j<r<q
(+1) Y witwitwitk)+q Y d(w!+wi)+
3<i<j<q 3<i<j<q
q

q

0 Z O(wi+w!+k)+aq(q+1) Z (w!) + q1(qo + 1)P(we + k). (5.8)
i=3 =3

By applying again the induction hypothesis to ®(wj+w{ +w+w/+k), and

z,yef{i,j,r}, z<y (I)(Z + Wg +

WZ) = (¢—4) Ezging ‘I’(Z+W?+W3) and 23§i<j<r§q Exe{i,j,r} P(z+wi) =

noting that for any z € Zg we have » o, ;.. >~
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(qgg) !, ®(z+ w}), we obtain that

Z d(ws +wi +wi+wl+k)= Z d(wy + w] +wi +wi)+

3Si<j<rsq 3<i<j<r<q
(q—4) > o(wi+wi+w!+k)+ Z ¢(W‘?+w§+w$+k)+
3<i<j<q 3<i<
Z CI)( +Wq+wq q_ ) Z Wg‘f—W;}—I—W?){—
3<i<j<r<q lici<q
q
q—3
=3 3<i<j<q
q
(g—4) Z <I>(W3+W3)+< 5 >Z©(W§+Wf)+< ) )Z@(Wg+k)+
3<i<i<q i—3 —
q ¢—3\ v\ q-— q—2
d k b (wi o o(k
(3) (wo + )+<2); (z>+<3> (w2)+<3) (k)

By replacing into expression (5.8), and using items (7), (iii) and (iv) of
Lemma [69, we have that holds.

Finally, consider 1 € E. By Remark (8 we can assume that E =
{1,...,¢}. Then, &>, pw;) = ®(>_7 ,w; + 1), and we can apply the

same arguments as above. QED

The previous lemma also works when repeated elements appear in the

sum, as shown in the next result.

Lemma 71. Let H'"*0 be a Zg-additive Hadamard code of type (n;t1,0,0).
Let g € Z and [qo, q1, G2, - - |2 its binary expansion. Let w; be the ith row of
A0 Then,

@(Zsi) = Z D(s; +s;+sk+5Sp) + qol Z P(s; +s;+sK))+
i=1 1<i<j<k<p<q 1<i<j<k<q

Flo+a)( S Blsi+s,) +aolao+a)(> Dlsy)

1<i<j<q i=1
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where s; € {w1, W, ..., Wy, } foralli e {1,2,...,q}.

Proof. We prove this lemma by induction on the integer ¢ > 1. It is easy
to check by computer that for ¢ < 5 the result holds. Assume ¢ > 6 and
suppose that the statement is true for all positive integers until ¢ — 1.

Let r; be the multiplicity of w;, i € {1,...,%;}, that is, the number
of elements w; that appear in the multiset S = {s1,...,s,}. If there is
an element w; with multiplicity r; > 4, then we may consider that s, =
Sq—1 = Sq—2 = S4—3 = W;. Note that the right-hand side of the equation of
the statement can be easily rewritten by replacing ¢ by ¢ — 4 and adding
®(4w;). Moreover, by Corollary , the left-hand side of the equation is
@(Zf;f s;) + ®(4w;). Therefore, we may assume that r; < 3 for all i €
{1,...,t:}.

Let W be the set containing the elements of S without repetition. On the
one hand, if w; € S, taking into account the multiplicity of each element in W
and Remark we may assume that W = {wy, ..., wy}, wherery <.+ <y
and s; = -+ =8, = Wa,...,S; 4,41 = -+ = Sq = Wg. On the other hand,
if w; € S, we assume that ¢ > r; + ro. Otherwise, if ¢ = r, + 79, since
g > 6 and 71,7y < 3, then we have to show that the statement is true for
O (wWo+wo+Wwo+wi+Wwi+wy), which can be checked easily. Since ¢ > r1+rs,
we can order all elements sy, ...,s, as above, placing the r; vectors w; just
before the r; vectors wy.

Consider > 7 |'s; = ?;f”“d) Si+Y it Wity it wy. Lety = Zg;l(’“ﬁ”)
s¢~1. We have that Eg;l(”wd) s; = (y,...,y) is a fold replication of y. Then,

7 . s; is a fold replication of

(Y +rwi 0y + w1y w7 4T =

(y+mly+(ri+rgl,...;y + (r1 + 7rg)l).

The result holds if the statement is true for ®(327" ") s~ 4 (r) 4k -74)1)

for all k € {0,...,7}. Moreover, as before, we may assume that r1+k-ry < 4,
so we have to check that the statement is true for ®( ;1;1(m+w) st 4 rwih),

d—1

where 7 = (1 + k- 74) mod 4, or equivalently for & (37" IH gd=1y where
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si=wyforallie{g—(r+ry)+1,....,q—(r1+ry) +7}if 7> 1.

If ri +r4 —7 > 0, we can apply the induction hypothesis to obtain
the result. Otherwise, let mg = H?:(;Q_l(Si + 1,8+ 2,8 + 3,8 + 4,8 +
5,8 + 6,8 + 7,8/ + 8) € S, be a permutation of coordinates. Note that
mg(Wa) = wo + 1 and 7mg(w;) = w; for all j € {3,...,d}. Let g € Sy, be a
permutation such that ®omg = go®d. Therefore, we have that ®(>72, wy '+

3:5;"1;{”) si '+ (P =)l + 7’21) = d(ms(Xo2, Wy T+ 2L f;ﬂrd) sy '+
(T —re)l)) = m(P(X2 1W2 Ly Y- T;ﬂrd s™1 4+ (F — r5)1)). Note that
=l — wy forall i € {qg— (r +
re) +1,...,q— (1 +rq) + (7" — o)} if 7 —ry > 1, it is enough to show the
statement for s (@(3 72, w4 YT 1)) = w050 s0),

where r* =ri +ro+ 1y — 1.

T > 11 +1rq9 > 1q > 1r9. Then, considering s;

Now, in order to be able to apply the hypothesis induction to (> 7/ s -1,
we have to verify that r* > 0. First, note that if , € {0,1} for all
i€ {1,...,t1}, then the statement is true by Lemma Therefore, we can
assume that for some ¢ € {1,...,t;}, r; > 2, so at least one of r; or r; must
be greater than 1. We also have that r, 7y € {1,2,3} and r; € {0,1,2,3}.
On the one hand, if 7, = 0, we have that r4 € {2,3}. Then, if 7 < 3, clearly
r* > 0; and if ¥ = 3, k- ry = 3 mod4 which implies that r; = 3 and r* > 0.
On the other hand, if r > 0, r4 € {1,2,3} and r + ro + 4 > 3 which also
gives that r* > 0.

With the aim of verifying the statement, we consider 7g(®(37 s¢1))
under different cases depending on the value of 7o € {1,2,3}. First, consider
that o = 1, i.e., s = wy and s; # wy for all © € {2,3,...,¢}. Then, by
using the same arguments as in the proof of Lemma [70, we have that the
result holds. Next, consider that 7o = 2. By induction hypothesis, taking
into account that (¢ —2)p = ¢ mod2 and (¢ —2); = ¢; +1 mod 2, and using
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again the properties of g and the fact that ® o 7y = 73 o ®, we have that

q—2
O(wi+wi+ ) si+141)=
i=3
Z D(s + s + s +s0) + Z O(wg +wi+s! +sI+141)+
3<i<yj<k<p<q—2 3<i<j<qg—2
o Y eslasiesh+ Y @(wiiwitsie1+1)]+
3<i<j<k<q—2 3<i<q—2

(qo+q1+1)[ > <1>(s§+s;?)+<1>(wg+wg+1+1)]+
3<i<j<q—2
wldo+a+1) D> O(s). (5.10)

3<i<q—2

By applying again the induction hypothesis to the terms of (5.10) having
more than four addends, that is, ®(w9 + w9 +s?+ 1 +1) and &(w$ + w9 +
s{ +s%+ 14 1), we obtain that

Y oowitwisi+14+1)= > o(s)+

3<i<q—2 3<i<q—2
dooo(witwitsh+ Y (s +14+1)+
3<i<q—2 3<i<q—2

(q —4) [@(wg Fwlt14+1) 4+ o(wi+wh) +d(1+1)| (5.11)
and

dod(witwidsitsiH141) = ) O(s!+s0)+
3<i<j<q—2 3<i<j<q—2

d o d(wi+widsitsh)+ Y O(sf+sf+1+1)+

3<i<j<q—2 3<i<j<q—2

(q . 4) |O(wg+ Wi+ 1+ 1) + O(wh + W) + (1 +1)|. (5.12)

By replacing (5.11]) and (5.12)) into expression (5.10)), and using items (i) and
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(ii) of Lemma [69] we have that (5.10) is equal to

Y (s sl sitsh+ > B(wh+wh s +s0)+

3<i<j<k<p<qg—2 3<i<j<q—-2

> (! +sf+1+1) + (wy+wh+1+1)+

3<i<j<q—2

qo[ Z D(s! +s7) Z d(wi + wi +s9) Z @(sf—i—l—i—l)]—l—

3<i<j<q—2 3<i<q-2 3<i<q—2

(+a)| D @l +s))+O(wh+wh) +O(1+1)]+

3<i<j<q—2

wlgo+a) Y, (s

3<i<q—2

Note that all the terms that are missing in order to obtain the result appear
repeated in pairs, so they sum zero. Finally, the case with r = 3 can also

be proved by using similar arguments. Therefore, the result holds. QED

Lemma 72. Let H"00 be a Zg-additive Hadamard code of type (n;ty,0,0).
Let w; be the ith row of A0 1 <4 <t,. Then, giveni,j, k € {1,...,t},

O(w;) + ©(w;) + 2(2w;) + D(2w,) + O(w; + wy) + D(w,; + wy)+
+ O2w; + wi) + (2w, + wy) + P(2w; + w;) + P(2w; + wy). (5.13)

Proof. Suppose that 2 < i < j < k. By Remark it is enough to see that
(5.13) holds for wo, w3, wy. In fact, it is enough to show that it is true for
wi wi k for all k€ {0,1,...,7}. Let A be the right-hand side of (5.13)).

On the one hand, if w;, = k, we need to show that

(2w + wi + k) + B(wd + 2wi + k) =
®(w3) + ®(w3) + D(2wd) + ®(2w}) + B(wi + k) + D(w] + k)+
+O(2w) + k) + ©(2wh + k) + ©(2wh + W) + ©(2w) + wi) (5.14)

for all £ € {0,1,...,7}. Let A; be the right-hand side of (5.14)). First,
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for k = 0, it is easy to see that holds. Note that, by Proposition
L9 ®(2w; + 1) = ®(2w;) + P(1) for all 1 < ¢ < ¢;. Then, for k = 1,
Ap = ©(w3) +@(w5) + P(w3 +1) + D(Wi+ 1) + (2w5 + w3) + P(2w3 +w3).
By the same proposition, we also have that ®(w;)+ ®(w; +2w;) = ®(2w,) +
O(—2(w; ©® 2w;)) for all 7, j € {2,3}. Thus,

Ay = O(2w3) + P(2w3) + O(wh + 1) + (Wi + 1)+
+ O(—2(2wj O wy)) + P(—2(2w5 O w3)).

Again, by Proposition[l9] ®(2w;)+®(w;+1) = ®(2w;+w;+1)+P(—2(2w,;©
(w; +1))) for all 4, j € {2,3}, so

Ay = O2wWi+Wi+1)+P(Wi+2wi+1)+P(—2(2wiow;) ) +P(—2(2wiow)) )+
+ ®(=2(2w3 © (Wi + 1)) + &(—2(2w; © (w3 + 1))).

Let x = (0,0,4,4,0,0,4,4), y = (0,4,4,0,0,4,4,0), and z = (0,4,0,4,0,4,0,4).
It is easy to check that

—2(2w3 O w3) = (0,x,0,x,0,x,0,x)
—22wi © (w3 +1)) = (0,y,0,y,0,y,0,y) (5.15)
—20wiowl) = (0,0,2,2,0,0,z72) '

(

—22ws ® (wi+1)) = (0,%,%,0,0,z%,z0).

The sum of the four vectors in is zero, since x +y +z =0, so A; =
P(2wi+wi+1)+P(wi+2ws+1) and holds. For k = 2, it is easy to see
that the result holds by Lemma For k = 3, it follows also from Lemma
the previous result for £ = 1, and the fact that ®(2w;+1) = &(2w;)+P(1) for
all 1 <1 <t;. Finally, for the rest of the cases, if w, = k+4, k € {0, 1,2, 3},
then ®(2wy + w3 + k +4) + &(wy + 2wz + k +4) = ¢(2wy + wy + k) +
®(wq + 2w3 + k) and the result holds since wy, appears 4 times in A.
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On the other hand, if w; = k (or w; = k), we need to show that

2k + wj + wi) + P(k + 2wi + w3) =
(k) + ®(wy) + P(2k) + P(2wy) + D(k + w3) + P(Wi + w3)+
+ ®(2k + w3) + ®(2wh + wi) + ®(2wi + k) + ®(2k + w3) (5.16)

for all k € {0,1,...,7}. Let Ay be the right-hand side of (5.16)). First, for
k =0, it is easy to see that (5.16) holds. For k = 1, by applying Proposition
to ®(ws + wi) + ®(2) and (w3 + 1) + ®(2w3), we have that

Ay = ®(2+wj +wi) + P(1 + 2w) + wi)
+ d(—2((ws + W) ©2)) + &(—2((Wi + 1) ©2w3)) + B(1) + d(w))
+ ®(2+ wj) + P(2ws + w3) + P(2ws + 1) + P(2 + w3).

Again, applying Proposition[19[to the terms ®(2+w3), ®(2wi+w}), P(2wi+
1) and ®(2 + w3) of Ay, we obtain that

Ay = ®(2+wj +wi) + P(1 + 2w) + wi)
+ ®(=2((wh +w3) ©2)) + O(—=2((w3 + 1) ®2w3))
+®(=2(20 W)+ 0(—2(2ws O W) + B(—2(2 0 w3)).

It is easy to check that

P(—2(Ws+wd)o2) = (xy,x+4,y+4,xy,x+4,y+4)
O(—2((wi+1)o2w3)) = (0,2,%,0,0,2,z%,0)
O(—2(2ws © w3)) = (0,0,%,2,0,0,z,2)
P(—2(20w3)) = (0,0,4,4,0,0,4,4)
P(—2(2 O w3)) = (x,%,X,X,X,X,X,X).
(5.17)
The sum of the five vectors in is zero, since x +y +z = 0, so Ay =
®(2 +wi +wi) + ®(1 + 2wi + wi) and holds. For k € {2,3}, it
is easy to see that the result holds by Lemma [71] Finally, if w; = k + 4,
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k€ {0,1,2,3}, then ®(2k + 8 + wo + w3) + O(k + 4 + 2wy + w3) = $(4) +
O (2k + wy + w3) + (k4 2wy + w3) and the result follows since w; appears
3 times in A.

Now, suppose that some of the elements ¢, 7, k are equal. If i = 7 =k or
i = j, then holds trivially. If i = k (or j = k), then it is enough to
show that

O3k + w3) + P(2k + 2w3) =
P (k) + O(w3) + P(2w3) + (3k) + O(k + w3) + P(2k + w3) (5.18)

for all k& € {0,1,...,7}. Let A3 be the right-hand side of (5.18]). First, for
k = 0, it is easy to see that (5.18)) holds. For & = 1, note that, by Proposition
19 ®(2) = ©(3) + ¢(1) and (W) + P(2) + P(wy + 2) = O(—2(w2 © 2)).

Therefore,

A3 = ®(2w3) + ®(ws + 1) + &(—2(w; © 2))
= 0(2w3) + D(2) + &(wi + 1) + (2) + O(—2(w; © 2)).

Again, by Proposition [I9] we have that

Az = ®2wi + 2) + &(wi + 3) + &(—2(ws ©2))+
+ ®(—2(2wi ® 2)) + ®(—2((wi +1) © 2)).

It is easy to check that the sum of the three last terms is x+z+y = 0. In
a similar way, it holds for £ = 3. The rest of the cases, k € {2,4,5,6,7}, can
also be checked easily, so holds.

Now, we consider that, at least one of 7, j, kisequalto 1. If i = j =k =1,
or i = j = 1, then the result is trivial. If i = k =1 (or j = k = 1), the result
is equivalent to prove (5.18)) with k = 1. Finally, if £ = 1, it is equivalent
to (5.14) with k = 1, and if i = 1 (or j = 1), it is equivalent to (5.16) with
k = 1. Therefore, the result holds. QED

Lemma 73. Let H''° be a Zg-additive Hadamard code of type (n;t1,0,0).
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Let w; be the ith row of A0 1 <4 <t,. Then, given i,j, k € {1,...,t},

O(w; +w; +1) = (2w;) + (2w;) + (1) + ¢(w; + 1)+
+ &(w; + 1) + O(w; + w;) + 22w, + w;) + O(w; + 2w;),

(w; +w; +wi+1) =D(w; + 1)+ &(w; + w;) + P(w; +2w,)+
+ Q2w; +w;) + O(w; + 1) + &(wy) + P(2wy) + O(wy, + 1)+
+ (2w, + wi) + C(2w; + wy) + @(w; + w; + 2wy) + O(W; + W, + Wy).

Proof. First, if 2 < i < j < k, by Remark 5§ the above equations can
be showed to be true by checking that they hold for w3, w3, k for all k €
{0,1,...,7}. It is also easy to see that they hold if some of the elements

1,7,k are equal, or at least one of them is equal to 1. QED

Lemma 74. Let H' 2% be a Zg-additive Hadamard code of type (n;ty, s, t3).

Let w be a row of A0, Then,
P(3w) = O(3) + P(w) + O(w + 1) + P(w + 2).

Proof. Let A = ®(3) + ®(w) + ®(w + 1) + ®(w + 2). By Proposition [19]
we have that ®(w + 1) + d(w 4+ 2) = P2w + 3 —2((w + 1) © (w + 2))).
It easy to check that ord(—2((w + 1) ® (W + 2))) = 2, s0 A = ®(3) +
O(w)+P(2w+3)+P(—2((W+1)®(w+2))). Now, by applying Lemma[7]]
to the term ®(2w + 3) and using that (1) + ®(2) = $(3), we obtain that
A=0(3)+d(W)+P(-2(W+1)O(W+2)))+P(2w+2)+P(2w+1)+P(2w).
By Proposition [19} we have that ®(2w) + ®(w) = (3w) + O(—2(w © 2w)),
thus

A=9(3)+P3Bw) +P2w+2) + (2w + 1)+
+O(—2(wo2w))+P(—2((W+1) © (W +2))).

It easy to check that ®(—2(w ©2w)) +P(—2((w+ 1) © (W +2))) = $(4w).
Finally, since ®(—2((2w + 1) ® (2w + 2))) = 0, we have that ®(2w + 2) +
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(2w + 1) = ®(4w + 3) = O(4w) + D(3). Therefore, A = (3w) and the
result holds. QED

Proposition 75. Let t; be a positive integer. Then, rank(®(H1T100)) =
rank(®(HO0)) + 4ty +2(" 1) + 1+ (1),

Proof. By (3.1)), the generator matrix of H' = H1 1100 ig

At1+1,0,0_ A A A A A A AA
Vo123 4586 7))

where A = A"0%0 is the generator matrix of H = H*% Note that H’
can be seen as the union of eight cosets of the 8-fold replication code of H,

(H,H,H,H,H,H,H,H), which are

Co: (M, H,H, H,H, M H H)

Coo (M, H, M, H, HHHH) + (0,1,2,3,4,5,6,7)
Co: (M, H, M, H, H,HHH + (024,602 4,6)
Cy: (H,H,H, H HH HH + (0,361,472 5)
Cot (H,H, M, H,HH HH) + (0,4,04,0, 4,0, 4)
Cs: (H,H, M, H, HH HH + (0,527,416 3)
Co: (M, H,H, H, H,H,HH) + (064,206 4,2)
Cro (M, H, H, H, HHHH + (0,765 4,3, 2 1).

Note that rank(®(Cy)) = rank(®(H)) = r. Let {®(gi1),...,P(g.)} be a
basis of (H). Then, a basis of (®(Cy)) is {P(g}),...,P(g))}, where g} =
(8,8, 8i, 8ir 8, i, 8, 8) foralli € {1,...,r}. Letw’ =(0,1,2,3,4,5,6,7).
By the proof of Proposition we have that (®(Co U Cy U Cy U Cp)) =
(D(Co U Cy U Cy)) = (D(g)),...,0(g), P(2wW'), P(M')), where M’ is de-
fined as in the mentioned proof using 2w’ = (0,2,4,6,0,2,4,6) instead of
v = (0,2,4,6).

Note that, if u’ € Cs, then v’ = (u,u+5,u+2,u+7,u+4,u+1,u+6,u+
3)=(u,u,u,u,u,u,u,u)+w +(0,4,0,4,0,4,0,4) with u € H. Similarly,
ifu € C;, then ' = (u,u+7,u+6,u+5u+4u+3,u+2u+l)=
(u,u,u,u,u,u,u,u)+3w'+(0,4,0,4,0,4,0,4) with u € H. Thus, it is easy
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to see that (®(CoUCTUC,UC3UC,UC5UCY)) = (P(CouCUC,UC3UCY)), by
Corollary Now, we will find a base for (P(CoUC,UC,UCY)) by extending
the given base for (®(Co U Cy U Cy)). After that, we will see that (®(C5)) is
linearly dependent of (®(Cy U Cy U Cy U Cy)).

Let By = {wy,wa, ..., Wy, 2wy, ..., 2wy, 4wy, ..., 4w, } be a 2-base of
H and recall that ord(w;) = 8 for all i« € {1,...,t;}. Let u € H. We
know that u = Zfill A;b;, where b; € B, is the ith element of By and
ANi € {0,1}. Let E={1<i<3t; : N\ #0}, By ={1<i<t:ic¢€
EFltu{l<i<ti:ti+1€ E}U{l <i<t;:t+1i€ E} as a multiset,
and By, = {1 <i <t :2t;+i€ E}. Let v = (u,u,u,u,u,u,u,u) and
wi = (wy, w;, w;, w;, w;, w;, w;, w;) for all i € {1,...,¢t;}. Let s; be the ith
element of the ordered multiset {w} : i € E,}. Now, we consider the element
w'+w' € Cy. By Corollary 26] ®(u'+w') = &(37, ., Wit+w')+35, 5 P(4w)).

Therefore, by Lemma [71] we have that ®(u’ + w') =

= Dien, P(4w))
T icjcnapeq P(Si T8+ 8k +8p) + 30 ipeg Bsi +85 + 56 + W)
+qo( 2i<j<k<q D(si + 5 +sp) + Zi<j<q P(s; +s; + W’))
+o +q1) ( Zi<j<q D(s; +s5) + Zi<q D(si + Wl))
+qo(qo + @) ( Xoic, Bsi) + (W),

where ¢ = |Fy| + 1 and [qo, ¢1, - . ]2 is the binary expansion of ¢. We know
that Zie& O(4w}), O(s;+s;+ sk +5p), D(s; +s;+sk), D(s; +5,), and P(s;)
belong to (®(Ch))-

We will see that ®(u'+w') =3, p ®(4w}) € (P(CoUCy)ULULyUL3U
{®(w')}), where L) = {®(W,+w') : 1 <i <t U{P2wW+W):1<i<t},
Ly ={®(wj+wj+w):2<i<j<t},and Ly = {®(w]+ W +w, +wW):
2 <i<j<k<t}. First, it is clear that ®(s; + w') € L;. Now, we
consider the terms of the form A = ®(s; +s; +w'). If A = &(2w]+w’), then
AeLi;if A=d(1+w,+w') with 2 <i <t, then A € (&(CyUCy) U Ly)
by Lemma [73} and if A = ®(w; + W} +w') with 2 < i < j < ¢, then
A € Ly. Next, we consider the terms of the form B = ®(s; + s, + s + w').
If B=®2w,+w + w}), then B € (®(Cy U Cy) U Ly U{P(w')}) by using
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Lemma [72| and taking ®(w} + 2w’ +w}) € ®(Cy) as the other addend in the
left-hand side of the equation of the lemma. If B = ®(1+w;+w} +w’) with
2 <i<j<ty,then B e (®(CoUCy) UL ULyU{®(w')}) by Lemma [73]
Finally, if B = ®(w; +w} +w +w') with 2 <i < j <k <, then B € Ls.

The elements of Lq, Ly and L3 are linearly independent from each other.
Therefore, the elements of Ly U Ly U Ly U {®(w’)} are linearly independent
and rank((L; ULy ULsU{®(w)})) = 2t; + (" 1) + ("5 ') + 1. It is also easy to
see that they are linearly independent from the elements in (®(CoUC,UCY)),
so rank((P(CoUCTUC,UCY))) = r+4ty +2(t12_1) +1+ (“3_1) by Proposition
(¢!

Finally, we will show that (®(CoUC;UC,UC3UCY)) = (P(CouC;UCU
Cy)). We consider the element u'+3w’ € C3. By Corollary [26] ®(u'+3w’) =
DD icp, Wi+ 3W) + > cp, ®(4w]). Therefore, by Lemma |71} we have that
O(u' + 3w') =

- Zi€E4 P (4wy)
+ D icickep<qs P(Si+ 85+ 8k +8) + D ey 3 P(si + 85+ sk + W)
+ Zi<j§q—3 CD(Si +s;+ w + W/) + Zigqﬁ‘s (I)(Si +w +w + W,)
+qo( ZKK’“S‘F?’ D(si +s; +s) + Zi<j§q—3 ®(si + 85+ W)
+ g s Osi W+ W) + D(W + W 4 W)
0 + 41 (Xicjegs P(si +85) + X< 3 si + W) + (W' + W)
+a0(a0 + 01) ( Xi<gms D(si) + B(W)),

where ¢ = |E1|+ 3. All the addends belong to (®(CoUC; UCyUCY)), except
the ones of the form ®(w' + w’' + w’) and ®(s; + w' + w' + w’'). First, we
have that ®(3w’) € (®(Cy U C; UCy U Cy)) by Lemma [74l Finally, by using
Lemma |72] with ®(s; + 2w’ + w') and ©(2s; + W' + w') € ®(C5), we have
that (s, + w + w' +w') € (P(Co U Cy U Cy U Cy)). Therefore, the result
holds. QED

Lemma 76. Let t,k € N. Then,

i (z) (t+1 k)" +(/<;—1)(,1€)‘

k)~ k1

i=1
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Proof. Straightforward by induction on the integer ¢. QED

Corollary 77. Let t, be a positive integer. Then,

3 352 Tt
e e e

rank(@(H ) = o — 5t 51 T 1a

Proof. We know that rank(®(H!%%)) = 3. By applying Proposition |75| re-

cursively, we have that

t1—1 t1—2 . t1—2 .
RO =344 i+23 (1) + (4 -1 ).
rank(®( ) + ;Z—i— ; 5 + (t )—l—; 5
Finally, by Lemma it is easy to see that the result holds. QED

Corollary 78. Let t; and ty be nonnegative integers with t{ > 1. Then,
t
rank(®(H"0)) = rank(®(H"20)) + Ez(tf +t+ta+1).

Proof. By applying Proposition [67] recursively, it is easy to see that

—1 —1
rak(B(40)) = rank(®(H ) 41y (204 (1) £ BT

Since to(2t1 + (") 1) + 251) = 2(¢2 + ¢, +t, + 1), the result follows. QED

Theorem 79. Let H = H 2% be a Zg-additive Hadamard code. Then,

o 352 Tt
=L T L 2Rt ity F 1) s+ L

rank(@H)) =2, 5t o1 T2 3

Proof. Straightforward from Proposition[60/and Corollaries[77]and[78] QED

5.2 Classification of Zg-linear Hadamard codes

The classification of the Z4-linear Hadamard codes of length 2¢, for any ¢ > 3,
can be established by using either the rank or the dimension of the kernel
|[Kro01, PRV06]. In Chapter [4] it is shown that, in general, for s > 2, the
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dimension of the kernel is not enough to establish a complete classification
of the Zys-linear Hadamard codes of length 2!, for any ¢ > 3. In this section,
we show that for s = 3, a complete classification can be given by using both
invariants: the dimension of the kernel and the rank, computed in Chapter
and the previous section, respectively.

First, recall that the dimension of the kernel for Zg-linear Hadamard codes

is given by the following proposition that is, Theorem (46| for s = 3:

Proposition 80. Let H = H""2 be a Zg-additive Hadamard code. If ®(H)
is nonlinear, then ker(®(H)) = t1 +to + t3 + 0y,, where oy, =1 if t1 > 2 and
Oy = 2 thl =1.

In Chapter 4] it is also shown that, in order to obtain a complete classi-
fication of nonlinear Zss-linear Hadamard codes of length 2¢, it is enough to
focus on t > 5, since all Zgs-linear Hadamard codes of length 2! are linear
for t < 5. Tt is also mentioned in Chapter [4] that, at least for any 3 <t < 11,
these codes can be fully classified by using only the values of the rank. This
pointed out that, maybe, it was possible to obtain a complete classification
for any ¢ > 5 by using just this invariant. However, the following example
shows that both invariants, the rank and the dimension of the kernel, are

necessary in some cases.

Example 81. Consider the Zs-linear Hadamard codes of length 2'7 = 131072,
(t = 17), H*%Y and H*"'. By Theorem we have that rank(H?*%%) =
rank(H*'%) = 47. However, since ker(H*%°) = 9 and ker(H*'*) = 10 by
Proposition |80, they are not equivalent even though they have the same rank.
The rest of 23 nonlinear such codes of length 2'7 have a different rank, so

we have that there are exactly 26 nonequivalent Zg-linear Hadamard codes of
length 217,

Although we cannot completely classify the Zg-linear Hadamard codes
by using only the rank, the following result shows that if two such nonlinear
codes have the same dimension of the kernel, then their values of the rank

are different.
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Theorem 82. Let 5 <t € Z. Then, for every pair, H'Vt2% and H'vR% ) of
nonlinear Zs-linear Hadamard codes of length 2" with (n;t1,ta,t3) # (n;t), th, t5)
and ker( H"1243) = ker(H''213), we have that rank(H 23 # rank(H%%15),

Proof. Let k = ker(H"2%) = ker(H"'"). By Proposition we have
that k =t + ty + t3 + 0¢,. Moreover,

t1+t2+t3+0}51 = k tg = O'tl—]{?—f—t—f—l—Ztl
3t1—|-2t2—|—t3 = t—|—1 tg = t1—|—2k’—20't1—t—1.
(5.19)

By replacing the formulas in (5.19)) into the expression of the rank, given by
Theorem [79] we have that

tt 3 3513 N Tt
24 12 24 12
(o, —k+t+1—-2t) 3+t +op, —k+t+1—2t +1)+

rank( H""213) =

+

N —

tt 42k — 20, —t—1+1.

Since the above expression does not depend on ¢, and t3, we will write

rank(ty, t, k) instead of rank( H'*23). Moreover, we have that this expression

is equal to
13, 711
rank(t1,t, k) = i - Et‘f +(ggtalt—k+ o1, ) )t —
11 3 1
—(E+§(t—k+o—t1))t1+5((t—k:+o—t1)2+t+k:—atl+2).

Now, we suppose that rank(H!*>%) = rank(H"%%) for (n;ty, ta, t3) #
(n;t},th,t5) or, equivalently, rank(t1,t, k) = rank(t),t, k) for t; # t;. With-
out loss of generality, we can assume that ¢} < ;. Note that if ] = t;, then

to = t, and t3 = t}, so both codes are equal.

First, we consider that 2 < | < ¢;. In this case, we have to see that
rank(ty,t, k) — rank(t},t, k) # 0. Since t1,t} > 2, 0, = 0y = 1 and we have
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that

rank(ty,t, k) — rank (¢}, t, k) =

o113, 71 1 , 11 3

LYy — b (t—k+1)E—(=+(t—k+ 1)t

51 121+(24+2( + 1))t} (12+2( + 1))t +
7

13 1 1 11
L S (— =k + I+ (= + (= k+ 1),
St = G+ 3= kI + (5 + 5= kD))

w

By using the identity z* — y* = (z + y)(z — y), we have that

rank(ty,t, k) — rank(t}, ¢, k) =

1
% [(t1+8)) (ET4HE7) =267+t + 7 )+ (81 +1,) (83+12(t— k) —58—36(t—k)] =

1
% [(t1 4+ ) (8] + 7 +83) — 26(8; + tt) +177) — 58

+12(t — k)(t, + £, — 3)], (5.20)

which can be written as rank(¢y, ¢, k)—rank (¢}, t, k) = f(t1,t))+({t—k)g(t1, 1)),
where f(ty,t)) = 1/24[(t + 1) (¢} + 17 + 83) — 26(¢5 + t1t} + ¢) — 58] and
g(ti,t)) = 1/2(t; + t| — 3). Note that (t — k)g(t1,t}) > 0 for all integer
pairs (t1,t)) € D, where D = {(t1,t}) : 2 < t} < t;}. It is easy to see
that f(t1,t}) > 0 for all ¢} > 26, since we can rewrite this expression in the

following form:
tH(ty + 1)) 17t + 1)) + 83(t, + ) > 2665 + 26t (t; + ;) — 58,  (5.21)

and we can observe that t2(t; + t]) > 2613, t2(t; + t}) > 26t (t; + t}) and
83(t; + t}) > —58. Similarly, f(t1,t}) > 0 for all ¢; > 26, considering the
left-hand side of as 26t (t; +t}) + 26t — 58. Therefore, if there exists
a pair of integers (tq,t}) such that rank(t¢y, ¢, k) — rank (¢}, ¢, k) = 0, this pair
has to be in R = {(t1,t]) : 2 < t] < t1,t] < 26,t; < 26} C D. There are
1+2+---+23 =276 pairs (t1,t]) € R, and it can be checked that any of

them is a solution of the equation.

Finally, we consider that 1 = ¢] < ;. In this case, we have to prove that
rank(ty,t, k) — rank(t},t, k) # 0. Then, since t; > 2 and t} = 1, 04, = 1

Y
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oy = 2, and we obtain that

rank(tl, t, k?) - rank(L t, k) =

#o13, 71 1 , 11 3
LS (o =k I — (— 4 2(t—k+ 1))t
24 121+(24+2( 1))t (12+2( + 1))t
1
+§((—k+1)2+t+k+1)—
1 13 71 1 11 3 1
T — k4 D+ =+t —k+2)—=((t—k+2)? .
24+12 o 2(15 k+ )+12+2(t k+2) 2((t k+2)"+t+k)

By simplifying, we have that

1
rank(t,,t, k)—rank(1,t, k) = 5 [t1—26t5+83t7—58t1+12(t—k) (£ —3t1)].

Let f(t1,t, k) = rank(t1,t,k) — rank(1,¢,k). We know that ¢t — k = 2t; +
ty —2 > 2t; — 2. Since 12(t — k)(t? — 3t;) > 0 for t; > 3, we have that

1
flti,t k) > g(ty) = ﬂ[t;L — 2613 + 83t2 — 58t; + 12(2t; — 2)(2 — 3t)] =

1

ﬁ[tl(ﬁ’ — 2t? — 13t; + 14)]. By computing the zeros of the polynomial g(t)
and analyzing its behavior, we have that f(t1,¢,k) > g(t1) > 0 for t; > 5.
Therefore, we just need to compute f(t1,t,k) when ¢; € {2,3,4}. For these

cases, we have that

fLk) = 1—(t—k) =0 o t—k=1
f3.Lk) = -2
fA k) = 20—k —13 = 0 < t—k=13/2.

Note that if t; = 2, then t — k =t +2 > 2, so t — k # 1. Therefore, for
t1 € {2,3,4}, f(t1,t, k) # 0 and the result holds. QED

Recall that it is already known that there are |5!] nonequivalent Z,-
linear Hadamard codes of length 2!, ¢t > 3 [Kro01]. Now, we establish how
many nonequivalent Zg-linear Hadamard codes of length 2' there are, once
the length 2! if fixed, for ¢ > 5. In Chapter [4, some upper and lower bounds
are given for certain values of t. By Theorems and [82] we know that

. roar g . .
if Htvt28 and H'2% are nonlinear Zg-linear Hadamard codes of the same
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length with (t1,2,t3) # (t),t5,t5), then their corresponding pairs, (r,k),
where r is the rank and k£ is the dimension of the kernel, are different. Then,

we have the following result:

Theorem 83. Let A, 3 be the number of nonequivalent Zg-linear Hadamard
codes of length 2'. Then, for any t > 5,

L(t+1)/3]

Avg = {%J + Y {#J ~1.

i=1

Proof. An upper bound is given, by Theorem [52] for the amount of different
nonequivalent Zos-linear Hadamard codes for any t > 3 and 2 < s <t — 1.

In particular, when s = 3, we have the following bound:

Az < |{(t1,to,t3) EN? 1t =3t + 2+ 13— 1, t, > 1} - 1. (5.22)

By Theorems [79] and [82] we know that this bound is tight. Therefore, we
just have to see that

L(¢+1)/3]

t+1
{(t1, o ts) € NP+ £ = 3,425 tt5—1, £ > 1}] = L%F 3

=1

t+1—3
5 .

This means that we need to compute the amount of different solutions,

(t1,t9,t3), of the equation t = 3t + 2ty + t3 — 1 with ¢; > 1.

t+1
It is easy to see that 1 < t; < L%J Once the value of t; is fixed,

t+1—3t
we can see that £, is bounded by 0 < ¢, < {¥J

t; and ty are fixed, there is a unique value for ¢3. Then, the amount of
different solutions of ¢ = 3t; + 2ty + t3 — 1 with t; > 1, or equivalently
{(t1,t2,t3) € N® 1t =3ty + 2ty +t3 — 1, t; > 1}, is

. Note that, once

“”z”:m (V+1—3z‘J +1) B VHJ +“t§):/3j V+1—3zJ
i=1 2 N 3 i=1 2 7

so the result holds. QED
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5.3 Equivalences among Z,-linear and Zg-linear

Hadamard codes

Next, we show that there are Zg-linear Hadamard codes which are equivalent
to a Z4-linear Hadamard code. Actually, we will see that these codes coincide
with the ones that have the same invariants, rank and dimension of the kernel.
Table shows the type, rank, and dimension of the kernel for all Zys-linear
Hadamard codes of length 2¢, with s € {2,3} and 6 <t <9, where the types
of the ones having the same invariants are unified.

From now on, in order to avoid any confusion, let ®, : Z? — Z3" and
g : Z2 — 73" be the Gray maps over Z; and Zg, respectively. Let v =
(2,3) € S;. Then, for n =1 we have that

®5((0)) = (0,0,0,0) = ~((0,0,0,0)) = v(24((0,0)))
P5((1)) (0,1,0,1) 7((0,0,1,1)) = 7(P4((0,2)))
®5((2)) = (0,0,1,1) = ~((0,1,0,1)) = v(P4((1,1)))
B(3) = OLL0) = A(OLL0) =@M
D5((4)) (L,1,1,1) = ~((1,1,1,1)) = 7(P4((2,2)))
P5((5)) (1,0,1,0) 7((1,1,0,0)) = 7(P4((2,0)))
P5((6)) = (1,1,0,0) = ~((1,0,1,0)) = v(P4((3,3)))
5((7)) = (1,0,0,1) = ~((1,0,0,1)) = v(P4((3,1))).
We can define the function 7 : Zg — Z2? given by
7(u) = ' (v (@s(w))), (5.24)

for u € Zg. Note that, for u € {0,1,2,3}, we have that 7(2u) = (u,u) and

7(4u) = 2(u,u). Moreover, we have the following result:
Lemma 84. Let u; € {0,2,4,6} fori€{2,...,n} and uy € Zg . Then,

n n

T w) = T(w). (5.25)

=1 =1

Proof. Let u; = 2v;, v; € {0,1,2,3} for i € {2,...,n} and v; = A + 2v;
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for A € {0,1}, v; € {0,1,2,3}. By it is easy to see that 7(\ +
201) = 7(A) + 7(2v1). Then, Y7 7(w;) = 7(N) + i, 7(20;) = A(0,2) +
Yima(wivi) = A0,2) + (i vi 2y o) = T(A) + 7230 vi) = (A +
2> v) = T( wi)-

QED

Corollary 85. Let u; € {0,2,4,6} forie{2,...,n} and u; € Zg . Then,

n n

05 " uy) = (2> 7(w))). (5.26)
i=1 i=1
Proof. Straightforward from Lemma QED

Note that Corollary [85| also works for codewords such that ord(u;) < 8
and ord(u;) <4 fori € {2,...,n}.

t=7 t=38 t=9
type (r,k) type (r,k) type (r, k)
1,6)  (88) | (I, (99 | (1.8) (10,10)

Zy| (2,4) (88 | (2,5) (9,9 | (2,6) (10,10)

(4,0)  (11,5) (5,0)  (16,6)
(3,3) (3,4)

2l 3,2 }(96) (1,2,2) }<1O’7) (1,2,3) }(11’8>
(1,2,1) Ph (4, 1) (4,2)

Zs (1,3,0) }(12’6) (1,3,1) }(13’7)
(1,0,5) (8,8) | (1,0,6) (9,9 | (1,0,7) (10,10)
(1,1,3)  (8,8) | (1,1,4) (9,9 | (1,1,5) (10,10)

7| (2,0,2) (105) | (2,0,3) (11,6) | (2,0,4) (12,7)

121,00 (124) | (2,1,1)  (13,5) | (2,1,2) (14,6)

(3,0,0) (17,4) | (2,2,0) (17,5)
(3,0,1) (18,5)

Table 5.1: Type, rank and kernel of all Zs-linear and Zg-linear Hadamard
codes of length 2.

Now, we component-wise extend 7 in (5.24) to 7 : Z§ — Z2" and define
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7 =plor, where p € S, is defined as

1 2 ... 7 n n+1l ... n+1 ... 2n . (5.27)
1 3 ... 2i1—1 ... 2n—1 2 .20 ... 2n

If u = (uy,ug,...,u,) € Z% and 7(u;) = (uj,u?) for all i € {1,...,n}, then
7(u) = (ul,u? ud, v, .. ul w?) and 7(u) = (ul,. .. ul u?, ... ,ui)

Let w; and w; be the ith row of A%%2 and A0 respectively, 1 < i < ti;
and v; and v; be the (t; + j)th row of A2 and A2 respectively, 1 <
j < ty. Note that w; = 1 and w; = 1 by construction and, for 1 < i < ¢y,
1 < j < ty, we have that w; is a codeword of order 8, w; and v; are codewords

of order 4, and v; is a codeword of order 2.

Lemma 86. Let wi, vy, ..., vy 1 be the rows of AV =10 and wy, ... Wy, vy
the rows of A"t. Then,

(Z) %(Wl) = ‘71) 7:(2W1) — Wl; 71(4W1) = 2W17
(ZZ) 7:(V2> = V_VH_1 and %(QVZ) = 2Wi+1; 1 S 1 S tl — 1.

Proof. First, we have that 7(w;) = 7(1) = (0,2) = vy, 7(2wy) = 7(2) =
(1,1) = w, and 7(4w,) = 7(4) = (2,2) = 2w,

Note that if u = (uy,...,u,) € Z§, with u; € {0,1,2,3} for all i €
{1,...,n}, then 7(2u) = (u,u) and 7(4u) = 2(u,u). Let v} be the vector
whose coordinates are in {0, 1,2,3} and 2v} = v;, for all i € {1,...,t; — 1}.
Note that w;11 = (vi,v}) by construction. Therefore, 7(v;) = 7(2v}) =
(vi,vi) =w; and 7(2v;) = 7(4v)) = 2(vi,v)) = 2W,41. QED

Proposition 87. Let t| € Z, with t; > 1. Then, the Hadamard codes H'*

and H"1 =19 gre permutation equivalent.

Proof. Let H'! be the Zj-additive code such that H'! = @, (H!!) and
H111710 be the Zg-additive code such that HY1710 = @g(H11=10) Since
H'band HY1=10 have both length 2!, where ¢t = 2t;, the length of H!
and H1 L0 are 2071 and 2072, respectively.

Let wi, vq,..., vy, 1 be the rows of AY1=10 and wy, ..., Wy, , v the rows

of A1 If we consider Bg = {b¥,..., b5, .1} = {w1, 2wy, 4wy, vy, ..., vy 1,
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2v1,...,2vy, 1} the 2-base of H'"' 10 and B, = {bf,... b3, 1} = {vi, Wy,
2W1, Wa, ..., Wi, 2Wo, ..., 2W;, } the 2-base of H!'1| then we have that 7(b?)
bf for 1 <i<2t;+1hby Lemma

Let p € Syt be a permutation such that &, 0 p = p o &4, where p is
defined as in . Let v = H?;_OLI(ZLZ’ +2,4i + 3) € Sy, i.e., the permu-
tation that permute the two coordinates in the middle of each block of four
coordinates. Then, by (2), s(bS) = 7(@4(r(b))) = 7(D4(p(F(b))) =
Y(A(24 (b)) = (7 0 p)(Pa(b])).

Now, let w = S_7 7 \;b¥ be a codeword of H1~10 where \; € {0,1}.
Then, by Corollary [85, we have that

2t1+1 2t1+1
— By Z AbY) = (70 p)(@4( > Ab}))
=1
Since Z%H i b4 € H'!', we have that the result holds. QED

Example 88. Let H'''0 be the Zg-additive Hadamard code, which is gener-

ated by
qiro_ 111
0246 |’

and H*' be the Z4-additive Hadamard code, which is generated by

1111 1111
AL = | 0123 0123
0000 2222

Let wi, vy be the rows of A0 and Wy, Wo, vy be the rows of A*'. The set
Bs = {bf,... b8} = {wy,2wy, 4wy, v1,2v,} is a 2-base of H"'O and B, =
{bl,... b} = {vi, Wy, 2w, Wy, 2Wo} a 2-base of H*'. Let v = (2,3)(6,7)
(10,11)(14,15) € Sig. Let

1 23456 78
p= € Ss,
1 357 2 4 6 8

1 1,2 2 — 1,2 ,1 .2 1,2 P
80 p((ul,...,u4,u1,...,u4)) - (ul>u17u27u2>"'7u47u4)7 and p e 816 such
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that @40 p = o d,. We have that (30 \b?) =~v0po @y (320 \bl) =
v o ®y(p(37_, \ibH), \i € {0,1}. Actually, for the elements of the 2-base,

we have that

Ps(w1) = Bs(1111) = 7(P4(p(¥1))) = 7(€4(02020202))
By(2w1) = D(2222) = Y(Da(p(W1))) = Y(P4(11111111))
Py (4w1) = Bs(4444) = 7(D4(p(2W1))) = 7(04(22222222))
— 7(94(00112233))
) = 7(®4(00220022)).

Therefore, the codes H*' = ®4(H>') and H"'0 = Og(HVLO) of length 16 are

permutation equivalent.

Example 89. Let H'20 be the Zg-additive Hadamard code, which is gener-

ated by
1111 1111 1111 1111

AY20 = 0246 0246 0246 0246 |,
0000 2222 4444 6666

and H>' be the Zy-additive Hadamard code, which is generated by

1111 1111 1111 1111 1111 1111 1111 1111
0123 0123 0123 0123 0123 0123 0123 0123
0000 1111 2222 3333 0000 1111 2222 3333
0000 0000 0000 0000 2222 2222 2222 2222

A3,l —

Let wi,v1, vy be the rows of AY2Y and Wy, Wq, W3, v, be the rows of A>!.
The set Bs = {b§,... b5} = {wy, 2wy, 4wy, vy, Vo, 2vy, 2V} is a 2-base of
H20 and By = {bf,..., bt} = {Vi, W1, 2W, Wo, W3, 2Wy, 2W3} a 2-base of
31, Let v = (2,3)(6,7)(10, 11)(14, 15)(18, 19)(22, 23) (26, 27)(30, 31)(34, 35)
(38,39)(42, 43) (46,47)(50, 51)(54, 55) (58, 59) (62, 63) € Sys. Let

1 2 ... 7 ... 16 17 ... 16+7¢ ... 32
p= ) . € Ss,
1 3 ... 2¢—1 ... 31 2 ... 21 ... 32

1 1,2 2 1.2 1,2 1,2 ~
so p((ug, ..., ujgui, ..., ujg)) = (uj,ui, us,us3, ..., ujg uig), and p € S



100 Chapter 5. Rank of Zg-linear Hadamard codes

such that ®,0p = po®,. We have that @g(31_, \bS) = yopod, (301, \ib}) =
v o ®y(p(X2, Mibh), A € {0,1}. Actually, for the elements of the 2-base,

we have that

Dg(wy) = Pg(1111111111111111) = y(P4(p(¥1)))

= ~(9,4(02020202020202020202020202020202))
D5 (2222222222222222) = (P4 (p(W1)))

= ~(P,(11111111111111111111111111111111))
Dy(dwy) = Bg(4444444444444444) = ~(D4(p(2W1)))

= ~(D,4(22222222222222222222222222222222))
Dg(vy) = 0g(0246024602460246) = ~(P4(p(W2)))

= ~(94(00112233001122330011223300112233))
Dg(vy) = $g(0000222244446666) = ~(D4(p(Ws3)))

= ~(®4(00000000111111112222222233333333))
Dg(2vy) = @5(0404040404040404) = ~(D4(p(2W)))

= ~(94(00220022002200220022002200220022))
Dg(2vy) = D5(0000444400004444) = ~(D4(p(2w3)))

= ~(®,4(00000000222222220000000022222222)).

(138(2W1)

Therefore, the codes H>' = ®,(H>') and HY* = &g(H20) of length 2° are

permutation equivalent.

Theorem 90. Let tq,t9 € Z, with t;1 > 1 and to > 1. Then, the Hadamard

codes H'"2 gnd HY"=1%2=1 gre permutation equivalent.

Proof. We proof this theorem by induction on the integer ¢,. Note that, by
Proposition the statement holds for t, = 1. Now, we suppose that it is
true for t5. Let p € So¢ be the permutation such that HbM1—b2=1 = p( ftntz)
and we define p' = (p, p) € Spr+1.

By construction, we have that H'" 12 = CyUCy + (0,4) and Hi2t! =
CHUC{+(0,2), where Cp = (Kbl ybh-bia=1)y and Cf = (K2, HivER).
Then, ®g(HV1712) = &g(Cyh U Cp + (0,4)) = Dg(Cy) U Pg(Cy + (0,4)).

On one hand, by the induction hypothesis, ®g(Cpy) = Pg((H11— 1271
HLu-Leo1)) = (fUheLeel flaleoly = (e )Y = (@, ((
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Hivt2 HU2))) = o (Dy(CY)). On the other hand, by Corollary [26] and tak-
ing into account that ®5((0,4)) = $4((0,2)) = p'(P4(0,2)), we also have
that @4(Co + (0, 4)) = B5(Co) + Ds((0,4)) = P(D4(CL)) + F(®4((0,2))) =
J(@4(C)) + 84((0,2))) = /(B(Ch + (0,2)).

Therefore, H'1 712 = Og(HL12) = o/ (D, (CL)) U p/'(D4(CH+(0,2))) =
P (@4(CHLUCE +(0,2)) = p/(H2T1) and the result holds. QED

Now, we know that there are nonlinear Hadamard codes which are both,
Zy-linear and Zg-linear. From the above results, we can finally give the

classification of the Zy.-linear Hadamard codes for s € {2, 3}.

Proposition 91. Every Z,-linear Hadamard code of length 2! is equivalent
to a Zs-linear Hadamard code, except the Z,-linear Hadamard code H /20
with t > 5 odd. Therefore, the number of nonequivalent Zos-linear Hadamard
codes of length 2" with s € {2,3} coincides with A3 if t is even or t < 3,
and with Ays+ 1 if t is odd and t > 5.

Proof. First of all, we know that for ¢ < 4, all Zss-linear Hadamard codes
are linear, so they are permutation equivalent to the binary linear Hadamard
code of length 2¢. Recall that, for s = 2, we have that t = 2¢; + ¢, — 1.
Then, if ¢ is even, all the solutions for t = 2t; 4+ t, — 1 satisfy that o > 1.
Then, by using Theorem 00, we have that every Z,-linear Hadamard code
H'"'2 of length 2! is permutation equivalent to the Zg-linear Hadamard code
Flti—1ta—1

If ¢ is odd, then there exists one solution for t = 2t; + t5 — 1 with t, =
0, that is, when ¢; = (¢ + 1)/2. For the rest of solutions with to > 1,
again by using Theorem [90] we know that each Zj-linear Hadamard code
is permutation equivalent to a Zs-linear Hadamard code. Finally, we have
to see that the code H+1)/20 ig not permutation equivalent to a Zs-linear
Hadamard code.

Suppose that there exists a Zg-linear Hadamard code H''2% that is
permutation equivalent to H®**1/20 We know that both codes should have
the same length and dimension of the kernel. Recall that ker(H®1)/20) =
(t+1)/2+ 1 since t > 5 [Kro01]. We also have that ker( H"'2%3) = ¢; + ¢, +
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t3 + oy, where 0y, = 1if t; > 2 and o, = 2 if t; = 1 by Proposition 80} On
the one hand, if ¢, = 1, then 0, = 2 and from the equations t+1 = 3+2t5+13
and (t+1)/24+1 =1+ ty + t3 + 2 we obtain that t3 = —1. On the other

hand, if ¢t; > 2, then oy, = 1 and we have the following equations

t+1 = 3t + 2+ 15 tsy = H
t+1 = t+1—4t
o tl = ittt = ——5—

These two codes should also have the same rank, so rank(H!-(H1=41)/2t1) —
rank(H1/29) By Proposition we have that if t; > 1 and ¢, > 0, then

—1
rank((I)(Htl’t2)) = 2t1 + t2 + (tl 9 )

Moreover, by Theorem [79| and after simplifying, we obtain that
t] — 26t + (6t + 65)t; — 18t — 4 = 0. (5.28)

Note that the right-hand side of equation is strictly positive for t; >
26, since we can rewrite it as 3 + (6t + 65)t; > 26t2 + 18t + 4. For t; €
{3,6,8,9,10,12,...,25}, equation has no any integer solution for t.
For t; = 1, it has solution ¢t = 3, but recall that ¢ > 4. For t; = 4, it has
solution ¢ = 16, but in this case ty = 1/2 ¢ Z. Finally, for t; € {2,5,7,11},
it has solutions t = 5,17, 20, 23, respectively, but in all these cases, to < 0.
Therefore, the result holds. QED

We have shown that the classification of the Zgs-linear Hadamard codes
for s € {2,3} is complete. Specifically, there exists only one binary nonlinear
Hadamard code of length 2! that is Z4-linear, but not Zg-linear, when ¢
odd. When t is even, all the Z,-linear Hadamard codes of length 2! are also
Zg-linear. This means that to generate all the Zss-linear Hadamard codes
with s € {2,3} of a certain length, it is enough to generate all the Zg-linear
Hadamard codes and, if ¢ is odd, add the code H¢+1)/2.0,



Chapter 6

Equivalent Zys-linear Hadamard

codes

“Logic merely sanctions the conquests of the

intuition. "
—Jacques Hadamard

In Chapter 4] the dimension of the kernel for Zss-linear Hadamard codes
with s > 2 is established, and it is proved that this invariant only provides
a complete classification for some values of ¢ and s. The rank is computed
in Chapter [5| only for s = 3, and it is proved that in this case the rank
together with the dimension of the kernel provides a full classification for any
t > 3. Furthermore, it is shown that it gives a full classification for Zss-linear
Hadamard codes with s € {2,3}. Along this thesis, we have observed that
there are many nonlinear such codes having the same rank and dimension of
the kernel for different values of s, once the length 2' is fixed (see Tables ,
and 5.1} and Examples 50 and [81). In Chapter [} we show that these
codes, the ones having the same rank and dimension of the kernel, are in
fact equivalent, which allows us to obtain a more accurate classification than
the one given in Chapter [4 More specifically, in Section [6.1] we show that
there exist families of equivalent codes with different values of s, once t is
fixed. Finally, in Section we improve the partial classification given in

Chapter [4] by refining the upper bound on the number of nonequivalent such

103
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codes of length 2¢, denoted by A;; and we show that this bound is tight for
3<t <11

6.1 Equivalences among Zss-linear Hadamard

codes

In this section, we give some properties of the generalized Gray map ¢ and
some equivalence relations among the Zss-linear Hadamard codes of length

2t once t is fixed.

Recall that, to specify that the domain is Zss and Z3., we will denote the
Gray maps by ¢s and @, instead of ¢ and P, respectively. Let 75 € Sps—1 be

the permutation defined as

1 2 ... 2572 257241 2572492 .. 2571
1 3 ... 2571 2 4 Dt

For example, we have that y3 = (2,3) € S, and 74 = (2,3,5)(4,7,6) € Ss.
Then, we can define the generalization of function 7 given in (5.24), 7, :
Los — L3,y as

7o(u) = 0.4 (7, (¢s(w)), (6.1)

for u € Zos.

Example 92. For s = 3, the relations that define the map 13 are shown in
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. For s = 4, we have that
64(0) = (0,0,0,0,0,0,0,0) = 74((0,0,0,0,0,0,0,0)) = 74(®3((0,0))
éa(1) = (0,1,0,1,0,1,0,1) = 74((0,0,0,0,1,1,1,1)) = 74(D3((0,4)))
¢4(2) =(0,0,1,1,0,0,1,1) = 74((0,1,0,1,0,1,0,1)) = v4(P3((1,1)))
$a(3) = (0,1,1,0,0,1,1,0) = 74((0,1,0,1,1,0,1,0)) = 74(P3((1,5)))
da(4) = (0,0,0,0,1,1,1,1) = 74((0,0,1,1,0,0,1,1)) = 74(P5((2,2)))
64(5) = (0,1,0,1,1,0,1,0) = 74((0,0,1,1,1,1,0,0)) = 74(®s((2,6)))
¢4(6) = (0,0,1,1,1,1,0,0) = 14((0,1,1,0,0,1,1,0)) = v4(P3((3, 3)))
6a(7) = (0,1,1,0,1,0,0,1) = 74((0,1,1,0,1,0,0,1)) = 74(P3((3,7)))
6a(8) = (1,1,1,1,1,1,1,1) = v4((1, 1,1,1,1,1,1,1)) = 74(P3((4,4)))
¢4(9) = (1,0,1,0,1,0,1,0) = 74((1,1,1,1,0,0,0,0)) = 74(®5((4,0)))
64(10) = (1,1,0,0,1,1,0,0) = 74((1,0,1,0,1,0,1,0)) = 74(P3((5,5)))
éa(11) = (1,0,0,1,1,0,0,1) = v4((1,0,1,0,0,1,0,1)) = 74(P5((5,1)))
$(12) = (1,1,1,1,0,0,0,0) = v4((1,1,0,0,1,1,0,0)) = 74(P3((6,6)))
¢4(13) = (1,0,1,0,0,1,0,1) = 74((1,1,0,0,0,0,1,1)) = v4(P3((6,2)))
¢4(14) = (1,1,0,0,0,0,1,1) = 4((1,0,0,1,1,0,0,1)) = 74(P5((7,7)))
¢4(15) = (1,0,0,1,0,1,1,0) = 74((1,0,0,1,0,1,1,0)) = v4(P3((7, 3))).
These equalities define the map 74 : Zys — Z3 as 74(0) = (0,0), 74(1) = (0, 4),
74(2) = (L, 1), 7a(3) = (1,5), ma(4) = (2,2), 7a(5) = (2,6), 7a(6) = (3,3),
4(7) = (3,7), 7a(8) = (4,4), 4(9) = (4,0), 74(10) = (5,5), 174(11) = (5, 1),
74(12) = (6,6), 74(13) = (6,2), 4(14) = (7,7) and 14(15) = (7, 3).

Lemma 93. Let s > 2. Then,

(i) (1) = (0,2°7%),

(ii) Ts(2%u) = 27 (u,u) foralli € {1,...,

Proof. First, 7,(1) = &' (77
®.1,((0,1)) = (0,2°72), and (i) holds.
In order to prove (i), let u € Zgs and [uo, . . .,

sion. The binary expansion of 2% is [0, ...,

s—1} andu € {0,1,...,25 1~

H0s(1)) = @5 (71((0,1,0,1,....

O,Uo,...,

).

,0,1)))

Us—1)2 be its binary expan-

Us—i—1]2 and we have
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that gzﬁs(QZu) = (us_i_l, e ,us_i_l) + (0, Ce ,0, Up, - - - 7us—i—2)}/s—1- It is casy

to see by (2.20) that

Vi) = ( v ) . 62)

Then, we have that

7 (9s(2'0)) =

s— ; 0 1
= (us_io1, @D us_i 1) + (0, D0, ug, . . ., Us_i_o) ( Y Yo, )

—1

= (us—i—1, @ ugi1) + (0,710, ug, ..., us—io) ( Yo Yso >
= (¢s—1(2i_1u)> ¢5—1(2i_1u)) = ®5—1(2i_1(u7 U))

Therefore, 7,(2'u) = ®. ', (771 (#s(2'u))) = 27" (u, u), and (ii) holds. QED

Proposition 94. Let s > 2 and \; € {0,1} C Zos, i € {0,...,s—1}. Then,

6.3 A2) = (@1 (Y m2). (6.3)

Proof. By Lemma we know that for all i € {1,...,s — 1}, 7,(2) =
(2071, 2771) and 7,(1) = (0,2°72). Then, by Lemma [36, we have that

—_
—_

S— S—

Yo (Ps—1( TS(/\iT))) = 7,( q)s—l(TS()‘iQi)))'

7

Il
=)

i

I
=)

Moreover, since 75 commute with the summation, and applying the definition
(6.1) of 75, we obtain that

s—1 s—1 s—1
Vs(Ps—1( TS(/\Z'T))) = Z%(q)s—l(TS()‘iT))) = Z Qbs()‘iQi)v
i=0 i=0 i=0
which is equal to ¢(3 75 Ai2%), by Lemma . QED

Now, we extend the permutation 7, € Sys—1 to a permutation 7, €
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Sys-1,, such that restricted to each set of 2571 coordinates {25717 + 1,251 +
2,25 i + 1)}, i € {0,...,n — 1}, acts as v, € Sps-1. Then, we
component-wise extend function 7, defined in (6.1) to 7y : Z% — Z3*, and

define 7, = p~! o 7,, where p € S, is defined as

1 2 ... 1 n n+l ... n+i ... 2n

13 ... 2-1 ... 2n—1 2 ... 2 .. 2n)°
If u=(up,ug,...,u,) €Z3% and 74(u;) = (u},u?) for all i € {1,...,n}, then
s(0) = (ui,u?, ud,u3, ... ,ul u?) and 7o(u) = (ul,...,ul w2, ... u?). Note
also that

O (1) = 75(Ps1 (p(7s(0))))

for all u € Z3,, since 7,(u) = p~1(7,(n)) = p~ (P, (771 (Ds(w)))).
wgs) =1 and ord(wgs)) < ord(wj(s)) if i > j. Let o; be the integer such that

ord(wgs)) = 2%, Then, Bitrts = {2”"W§s) 1 <i<t 4 +t,0<p <
o; — 1} is a 2-base of Hits,

Example 95. Let H>! and HY10 be the Z,-additive and Zg-additive Hadamard

codes, which are generated by

11
At =101
0 0

S NN =
o W o=
N O =

respectively. The corresponding 2-bases are B> = {(1,1,1,1,1,1,1,1),(2,2,2,
2,2,2,2,2),(0,1,2,3,0,1,2,3),(0,2,0,2,0,2,0,2),(0,0,0,0,2,2,2,2)}, and
B0 = {(1,1,1,1),(2,2,2,2),(4,4,4,4),(0,2,4,6),(0,4,0,4) }.

Proposition 96. Let t, > 1, and H!'ts and HI1—bt2ets—1t=1 he the 7. -
additive and Zgs+1-additive Hadamard codes with generator matrices Att-ts
and Abt—Utzetsntsl pegpectively. Let w'® and w™ be the ith row of

Altets gnd Abti=bizetsoits=l “pegpectively. Then, we have that

(i) 7o (2PwTy = 20w for all i o€ {2, .ty 4+ -+ t, — 1} and
pi € {0,...,0; — 1}, where o; is the integer such that ord(wgs)) = 27i;
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(i) For (WD) = 2w for all j € {0,..., s —1};

(iii) Tora (W) = wi?.
Proof. Consider A!s with t, > 1, and WES) its ith row for i € {1,...,t; +
-+ +ts}. Then, the matrix over Zgs+1

W
2w

2W, ke,

is, by definition, Alf1=biz-wts=1ts Noreover, by construction we have that

Abti—=Lto,ts—1ts =1 ALli=1ta, s 1,05 —1
Alytlflvt%--wtsfl»ts —
0 28

Therefore, if W(SH) is the ith row of ALti=bizetamnte=l for 4 € {2t +

to+ -+ +t, — 1}, we have that (W™ wi*™) = 2w and ord(w!?) =

(w SH)) = 0;. Let V(SJrl be the vector over Zgs+1 such that WESH) =

and w'* = (V(S+1)7V£8+1)). Let (v*™); be the jth coordinate of

(2

ord
2V(s+1)

)

VES—H). By the definition of 75,1 and Lemma for p; € {0,...,0;, — 1}, we
have that

For1 (20w (s+1) )

P (e (2PWETD)) = p (rga (2P V) =
sl s+1 s+1 s+1
P (v () (v, (V) =

(2 K3

— 2]71' (VES-'FI) VZ(S-‘FI)) — 2piw(5)

and (7) holds.
Since wi¥ = (Wi wi™™) = 1 and w®) = (0,2571), then the equalities
in items (i¢) and (444) hold, by the definition of 7,4, and Lemma[03] QED

Note that, from the previous proposition, we have that 7, is a bijection

between the 2-bases, Bit-fs and Bhtt—Lls—1ts =1,
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Example 97. Let H'0 and H*' be the same codes considered in Example
98, The length of HY'0 is n = 4. Then, the extension of v = (2,3) € Sy is
Y5 = (2,3)(6,7)(10,11)(14,15) € Syq, and

12345678
= € Ss. 6.4
p(13572468> i (6.4)

In this case, we have that

D5((1,1,1,1)) =75(P2(0,2,0,2,0,2,0,2)) =~3(P(p(0,0,0,0,2,2,2,2)))
D5((2,2,2,2)) =75(P2(1,1,1,1,1,1,1,1)) = 5(Pa(p(1,1,1,1,1,1,1,1)))
D3 ((4,4,4,4)) = 75(92(2,2,2,2,2,2,2,2)) =75(P2(p(2,2,2,2,2,2,2,2)))
®5((0,2,4,6)) =75(P2(0,0,1,1,2,2,3,3)) =3(P2(p(0,1,2,3,0,1,2,3)))
D5((0,4,0,4)) =75(P2(0,0,2,2,0,0,2,2)) =~3(P2(p(0,2,0,2,0,2,0,2)))

Since P3(u) = v3(Po(p(73(n)))) for all u € Z3, the map 73 sends the elements
of the 2-base BY10 into the elements of the 2-base B>'. That is, as it is shown
in Proposition [96],

7 (wi) =d5((1,1,1,1))=(0,0,0,0,2,2,2,2) =w”

(2w =d,5((2,2,2,2))=(1,1,1,1,1,1,1,1) :w§

P (Awi) = B5((4,4,4,4)) =(2,2,2,2,2,2,2,2) = 2w} (6.5)
(wi) =5((0,2,4,6))=(0,1,2,3,0,1,2,3) =w’

7 (2ws)) = @5((0,4,0,4)) = (0,2,0,2,0,2,0, 2):2w§2),

so T3 18 a bijection between both 2-bases. By Proposition it is easy to
check that the corresponding binary codes of length 16, H>! = ®o(H>') and

HYYO = &5(HYL0), are, in fact, equivalent.

The following theorem determines which Z,. -linear Hadamard codes are
equivalent to a given Zys-linear Hadamard code H® . We denote by 0/ the
all-zero vector of length j. Let o be the integer such that ord(wés)) = 2stl-o

so o =s+1—o0o,.

Theorem 98. Let H'»t be a Zys-linear Hadamard code.
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(i) If o = 1 and t, > 1, then H"' is equivalent to the Zysie-linear
Hadamard code HYO Hti—Lizetsrits=t for e {1 ¢},

(ii) If o > 1, then (t1,...,ts) = (1,092 ty, ..., ts) and H" % is equiva-
lent to the Zysre-linear Hadamard code HYOT * torts=t for € {2 —

O,...,ts}, and to the ZLos—o+1-linear Hadamard code H'oThtottmtsamttato—l,
Proof. Straightforward from Propositions [94] and [96] QED

Corollary 99. Let H't be a Zys-linear Hadamard code. Then, there exists
a ZLoste-linear Hadamard code equivalent to H'*' for all{ € {1—o0,... t.}.
Example 100. The Zos-linear Hadamard code H*'3, with 0 = 1 and t3 =
3 > 1, is equivalent to the following Z,. -linear Hadamard codes: H'12,
HYOLLY gnd HBO0LL0 apith s = 4,5 and 6, respectively. An example with
o > 1 is the Zos-linear Hadamard code H“O%%2 with o = 4. In this case, the
code is equivalent to H3S, HY24 {1023 10022 FL00021 gp g [r10,00020

with s =2,3,4,5,6 and 7, respectively.

If H'ts is a Zgs-linear Hadamard code with ¢ = 1 and ¢, = 0, then
Theorem (98| cannot be applied. In this case, we conjecture that H' s is
not equivalent to any other code Htll""’tls’, for s’ # s. From Tables ,
and we can see that this conjecture is satisfied for ¢ < 11. The values of
(t1,...,ts) for which the codes H'' are not equivalent to any other such
code can be found in Table for ¢t <11.

Example 101. There is no other Zos-linear Hadamard code H' s of length

27 equivalent to H>'.

In Tables [4.1] and for t < 11 and s € {2,...,t + 1}, we show
all possible values (ti,...,t;) for which there exists a Zgs-linear Hadamard

code H™"+t of length 2'. For each one of them, the values (r, k), where
r is the rank and £ is the dimension of the kernel, are also shown. These
two invariants have been computed by using the computer algebra system
Magma |[BCES16, [PV17]. Note that if two codes have different values (r, k),
then they are not equivalent. Now, by Theorem [98] we have that the Zss-
linear Hadamard codes of length 2! with ¢ < 11 having the same values (r, k)

are equivalent.
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t=5 | (3,0), (2,0,0)

t="7 1 (4,0), (2,1,0), (2,0,0,0)

t=38 | (3,0,0)

t=9 | (5,0), (2,2,0), (2,0,1,0), (2,0,0,0,0)

t=10 (3,1,0) (2,1,0,0)

t=11| (6,0), (2,3,0), (4,0,0), (2,0,2,0), (3,0,0,0), (2,0,0,1,0), (2,0,0,0,0,0)

Table 6.1: Type of all Zys-linear Hadamard codes of length 2! with o0 = 1
and t, = 0.

Example 102. From Table we can see that there are four Zgs-linear
Hadamard codes of length 28 having rank equal to 10 and dimension of the
kernel equal to 7: the Zy-linear Hadamard code H*3, the Zg-linear Hadamard
code HY??2, the Zg-linear Hadamard code HY**', and the Zsy-linear Hadamard

code H"0020 By Theorem [98, all these codes are equivalent.

6.2 Improvement of the partial classification

In this section, we improve some partial results, given in Section on the
classification of the Zss-linear Hadamard codes of length 2¢, once t is fixed.

Given t > 3 and 2 < s <t + 1, recall that we define A; ; as the number
of nonequivalent Zos-linear Hadamard codes of length 2. Given t > 3, A,
denote the number of nonequivalent Zys-linear Hadamard codes of length 2¢
with any s > 2. In Section [£.2] Theorems [52] and [56] give upper bounds for
Ay s and Ay, respectively.

In Table 6.2 for ¢ € {3,...,11}, the lower bound given by the number
of different dimensions of the kernel and the upper bound given by in

Theorem [56] are shown.

Corollary 103. Let H' ' be a Zos-linear Hadamard code. Then, H s

is equivalent to exactly one Zyo -linear Hadamard code HY b with t > 1.

Proof. 1f t; > 1, then ' = s and t; = t; for all i € {1,...,s}. Otherwise, if
t1 = 1, the result holds by (ii) of Theorem QED

By Corollary we have that any Zss-linear Hadamard code H'»% is
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t 3145671819 1011

lower bound 111335 |>5 | 7]7]9
upper bound (6.6) || 1 |1[3|3| 6 | 7 [11|13] 20
upper bound (6.7) || 1 | 1|34 ] 9 | 12|22 |28 |47
upper bound (4.4) | 1|13 |5]10| 16 | 26 | 38 | 57
upper bound (4.5) || 1 |13 |5 ]10| 16 | 26 | 38 | 57

Table 6.2: Bounds for the number A; of nonequivalent Zss-linear Hadamard
codes of length 2! with ¢ € {3,...,11}.

equivalent to o + t5 Zys-linear Hadamard codes (including H'*). More-
over, Corollary tells us that, always, exactly one of these o +t, equivalent
codes has ¢t; > 1.

Example 104. Fort = 7, by Theorem @ we can see that the codes H>?,
HY21 HLO20 gre equivalent and only one of them, H>?, has t; > 1 as it is
shown in Corollary[108. Similarly, the codes H>*2, HO1 and HWO100 gre

also equivalent and one of them, H*%?2, satisfies that t, > 1.

Corollary 105. Let H be a nonlinear Zgs-linear Hadamard code of length 2¢.
Ifse{|(t+1)/2] +1,...,t+ 1}, then there ezists an equivalent Z,. -linear
Hadamard code of length 2 with 8" € {2,...,|[(t+1)/2]}.

Proof. Let H"»' be a Zgs-linear Hadamard code with s € {[(t + 1)/2] +
1,...,t +1}. Since > . (s+1—1d)t; =t + 1, then t; = 1 and we have

equivalent to the Zgs—o+1-linear Hadamard code H = Hiotllotits-ptsto=1

Now, we just need to see that s—o+1 < [(t+1)/2]. Since the length of H
is 2!, we have that t+1 = (s—o+1)(t,+1)+ 300 (s—0+2—i)ty_14i+0—1.
Therefore, (s —o+1)(t, +1) <t+land s—o+ 1< (t+1)/(t, +1). By
the definition of t,, we know that t, > 1,s0 s—o+ 1< [(t+1)/2]. QED

From the previous two corollaries, note that we can focus on the Zos-
linear Hadamard codes of length 2° with s € {2,...,|(¢t + 1)/2]} in order
to classify all such codes for a given t > 3. Let Xm = {(t1,...,ts) €
Nect4+1=>57 (s—i+1t;, t1 > 2} for s € {3,...,[(t+1)/2]} and
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Xt,2 = |{(t1,t2) € N> 1 t +1 = 2t; + t5, t; > 3}|. Note that we define )N(m
with ¢; > 3 because, if t; = 2, the code is linear [Kro(1].

Theorem 106. Fort > 3,

A1+ ) X, (6.6)
s=2
and
L4
A1+ ) (A —1) (6.7)
s=2

Moreover, for 3 <t < 11, first bound is tight.
Proof. Straightforward from Theorem [98] QED

This last result improves the partial classification given in Section [4.2]
since it gives a better bounds for A;. It is easy to see that is a better
upper bound than since )N(t,s < X, foralltand s € {2,...,t—2}, and
also the amount of addends is lower. It is also trivial to see that is a
better bound than since the amount of addends is lower.






Chapter 7

Conclusions

“Even the very wise cannot see all ends.”
—-J. R. R. Tolkien, Gandalf, The Lord of the

Rings, The Fellowship of the Ring

7.1 Summary

In [HKCT94], a linear structure over Z, is provided for some families of non-
linear binary codes such that Kerdock, Preparata, Goethal and related codes.
Later, in [KroO1, [PRV06], also the well-known family of binary Hadamard
codes having a linear structure over Z, are studied and classified. The main
goal of this dissertation is to generalize this research line. We consider a
family of the binary Hadamard codes having linear structures over Zsys con-
structed in [Kro07] and study their classification by using two invariants, the
rank and dimension of the kernel.

In Chapters [I] and [2| we contextualize the research presented in this dis-
sertation. We also give basic concepts and previous known results on binary
codes, binary Hadamard codes, rank and kernel of binary codes, Zgs-linear
codes, and generalized Gray maps.

Later, in Chapter |3, we give a recursive construction of the generator
matrices with minimum number of rows of the Zys-additive Hadamard codes.

We also show that the Gray map images of the constructed codes, called
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Zos-linear Hadamard codes, are, in fact, binary Hadamard codes. We also

determine for which types the Zgs-linear Hadamard codes are linear.

In Chapter 4] the kernel of Zgs-linear Hadamard codes of length 2¢ has
been studied for s > 2. We compute the kernel of these codes and its di-
mension in order to classify them. In general, we have seen that we cannot
completely classify these codes by using only the dimension of the kernel,
once t and s are fixed. Nevertheless, we have determined for wich values of
t <11 and any s, we can use this invariant to distinguish between nonequiv-
alent Zos-linear Hadamard codes of length 2°. Computationally, for these
values of ¢ and s, we have also shown that the rank is enough to classify
them. Finally, we have established some bounds for the exact number of
nonequivalent Zys-linear Hadamard codes of length 2!, when both ¢ and s
are fixed, and also when just ¢ is fixed; denoted by A; ; and A;, respectively.
Again, computationally, we have provided their exact values for ¢ < 11.

In Chapter b, we focus on s = 3. We study the rank of the Zg-linear
Hadamard codes of length 2f, giving an explicit construction of the linear
independent vectors that generate the span. We observe that the rank, by
itself, is not enough to obtain a complete classification. The first value of
t for which the rank does not classify is t = 17. However, we prove that
the full classification is possible by using both of the invariants, the rank
and dimension of the kernel. We also provide the amount of nonequivalent
Zg-linear Hadamard codes of length 2! for a given ¢. Finally, we show that
all the generated Z4-linear Hadamard codes are permutation equivalent to a

Zg-linear Hadamard code except the codes of type (n;t;,0) with ¢; > 3.

The results presented in Chapter [6] allow us to improve the partial clas-
sification of the Zs.-linear Hadamard codes of length 2¢, given in Chapter
and obtained by using the rank and dimension of the kernel, once t is fixed.
Specifically, we establish that there are some families of such codes which are
equivalent. This result permit us to give a new upper bound on the number
of nonequivalent such codes, once t is fixed. Moreover, we have that this

upper bound coincides with the lower bound and is tight for any 3 <t < 11.
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7.2 Future research

In this section, we give some open problems that derive from this dissertation

which may be considered for future research on this topic:

e The Z-linear Hadamard codes can be classified by using just the di-
mension of the kernel [Kro0I]. Establish for which values of ¢ and s, the
dimension of the kernel is enough to classify the Zis-linear Hadamard
codes of length 2¢. From the results up to t = 11, given in Chapter [4]
we conjecture that only for any ¢t > 8 and s € {2,t —4,t — 3,t — 2} the
dimension of the kernel can be used to classify all Z,s-linear Hadamard

codes of length 2! once we fix s and t.

e For Zys-linear Hadamard codes of length 2¢, with ¢ < 11, we have seen
that the dimension of the kernel belongs to {3, ...,t—1,¢t+1} if ¢ is odd,
and it belongs to {4,...,t — 1,¢t + 1} if ¢ is even. Establish whether
this fact is also true for any fixed t. Moreover, prove that there exists a

Zos-linear Hadamard code having any possible dimension of the kernel.

e In Chapter 5] a basis of the span and its dimension, the rank, for the
Zg-linear Hadamard codes, in terms of the type of the code, are com-
puted. This result for Z,-linear Hadamard codes is given in [PRV0G].

Generalize these results for the Zss-linear Hadamard codes with s > 4.

e In case that an explicit formula for the rank of the Zjs-linear Hadamard
codes with s > 4 is not found, compute the values for such codes when
t > 12 and s > 4. Up to t = 11, these values have been found by using
Magma [BCFSI6] and our own developed functions. When ¢ > 12, it
takes too long, so it is necessary to use another approach to speed up

the computations.

e The Z4-linear Hadamard codes can be classified by using just the
rank [PRV06]. From the formula that gives the rank of the Zgs-linear
Hadamard codes, given in Chapter b, we have that this invariant al-

lows us to classify these codes for any ¢ < 16; and it is not possible for
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t = 17. Determine for which values of ¢ > 18, the rank is enough to
classify them. In general, determine for which values of ¢ and s > 3,
the rank classifies all Zys-linear Hadamard codes of length 2¢ once we
fix s and ¢.

There are values of ¢t and s for which neither the dimension of the
kernel nor the rank, independently, can be used to classify Zss-linear
Hadamard codes of length 2'; for example, for t = 17 and s = 3.
However, in Chapter 5] we have shown that for any ¢ and s = 3, the
classification is possible by using both invariants. Prove that it is also

possible for any ¢t and s > 4 or find counterexamples in this direction.

Recall that A, is the number of nonequivalent Zos-linear Hadamard
codes of length 2'. An explicit expression for s = 2 is given in [Kro01].
In Chapter 4] an upper bound for A, is established. Moreover, com-
putationally, the exact values for any ¢ < 11 and s > 3, which coincide
with the upper bound, have been found. Determine an explicit expres-

sion for A; ¢ for any ¢ and s > 3.

Recall that A; is the number of nonequivalent Zss-linear Hadamard
codes of length 2° with any s > 2. When only ¢ is fixed, we have seen
that it is necessary to take into account the rank and dimension of
the kernel to distinguish between nonequivalent Zsgs-linear Hadamard
codes of the same length. A lower bound for A; considering these two
invariants can be defined. Computationally, the exact values for any
t < 11, which coincide with this lower bound, have been determined in
Chapter [6 An upper bound is also given from the number of different
nonlinear such codes. Improve these bounds or determine an explicit

expression for A, for any t.

In Chapter [5] we have shown that Z,-linear Hadamard codes of length
2!t > 5, and type (n;t1,tz) = (2071 (t 4+ 1)/2,0) are not equivalent
to any Zg-linear Hadamard code. Note that in this case ¢ is odd and
t; > 1. Later, in Chapter [6] we have seen that Zys-linear Hadamard
codes of type (n;ty,--- ,ts) with t; > 1 and ¢, = 0 are not equivalent
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to any other Z,.-linear Hadamard code with s # s’ for t < 11. Find
for which types (n;ti,...,ts) the code is not equivalent to any other

Zqyo-linear Hadamard code of the same length.

e Establish whether all Zss-linear Hadamard codes of the same length,
having the same rank and dimension of the kernel, are equivalent. This
is equivalent to prove whether it is enough to use both invariants to
classify all Zys-linear Hadamard codes of length 2!, once ¢ is fixed. In

this dissertation, we have seen that this fact is true for ¢ up to t = 11.

e Show all equivalence relations among the Zss-linear Hadamard codes
considered in this dissertation, that is, the ones obtained from the Car-
let’s Gray map. This map is a particular case of the Krotov’s general-
ization of the Gray map [Kro07]. Consider other families of Zy.-linear
Hadamard codes obtained from a Krotov’s Gray map, and establish
whether there exist nonequivalent nonlinear Hadamard codes in the
new families. Compare the new families with the one studied in this
dissertation to determine whether there are other Zos-linear Hadamard
codes that are not equivalent to those obtained as images of the Carlet’s

Gray map.

e The classification of all Z,Z4-linear Hadamard codes of length 2¢ with
a # 01is given in [PRVO0G]. In [KVT15], it is shown that each ZyZ4-linear
Hadamard code with o # 0 is equivalent to a Z4-linear Hadamard code,
except the one of type 2'4° as a group when ¢ = 24 is even. In Chapter
[ through an example, we have seen that these ZyZ4-linear Hadamard
codes for t € {4,6,8,10} are not equivalent to any Zss-linear Hadamard

code with s > 3. Prove whether this is also true for any ¢ > 12 even.

e In [BBFV15]|, a permutation decoding algorithm is described for ZyZ,-
linear codes, and in particular for Zs-linear ones. In [BV15, BV16al,
PD-sets with minimum number of elements were given, to perform a
partial permutation decoding for some families of Z,-linear codes, in-

cluding Z,-linear Hadamard codes. Generalize these results describing
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a permutation decoding algorithm for Zss-linear codes and finding PD-
sets for the ones that are Hadamard. In a more general approach, find
other efficient decoding algorithms for Zss-linear codes in general, and

for Zss-linear Hadamard codes in particular.

All computational results given in this dissertation have been done us-
ing the computer algebra system Magma [BCFS16]. We have also used
some functions from the packages [PPV12, [PV17|, which are for linear
codes over Z, and for nonlinear codes over finite fields, respectively.
New functions to deal with Zss-additive codes and their corresponding
Gray map images, based on these packages, have been implemented.
Complete these functions in order to develop a new Magma package

for these codes.

In [SWK18§|, the results given in |[Kro07] are generalized. Specifically,
the authors show that, considering two different generalized Gray maps
¢ and ¢, if C is a Z,Zys-additive code and C* its dual, the weight
enumerators of ¢(C) and p(Ct) are formally dual. Moreover, they
prove the existence of 1-perfect codes over mixed alphabets of the form
Liylapy2 - - - Lpys . Classify, and obtain similar results to the ones given in
this dissertation, for the dual of these 1-perfect codes codes over the

mixed alphabets, which represent generalized Hadamard codes over Z,,.
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