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Abstract 
 

The continuously increasing share of renewable energy sources and European Union 

targets for carbon dioxide (CO2) emission reduction need significant changes both on a 

technical and regulatory level. Carbon dioxide capture and utilization (CCU) is an 

effective method for achieving CO2 mitigation while simultaneously keeping energy 

supplies secure. While the demand for reduction in CO2 emissions is increasing, the 

improvement of energy-efficiency and the cost of CO2 capture processes remains a 

limiting factor for industrial applications. The present work studies the Vacuum Pressure 

Swing Adsorption process (VPSA) using high selectivity adsorbents for separating CO2 

from flue gas as an alternative method to the traditional absorption process with amines. 

A screening analysis for CO2 capture was conducted on ten commercial adsorbents, 

including carbon molecular sieves (CMS) and zeolites. The textural properties, the 

adsorption capacities and the adsorbent cyclic behaviors were determined to compare 

their performance in the context of CO2 separation from nitrogen (N2). Subsequently, the 

single component adsorption isotherms were measured in a magnetic suspension 

balance at four different temperatures (283, 298, 232 and 323 K) and over a large range 

of pressures (from 0 to 10 bara). Data on the pure component isotherms were correlated 

using the Toth, Sips and Dual Site Langmuir (DSL) models. 

Three laboratory units were designed and built to perform the VPSA experiments. The 

first was used for the production and control of CO2 and N2 gas mixtures at a maximum 

pressure of 9 bara. Adsorption equilibrium measurements with a mixture that resembles 

the composition of combustion gases (15/85% CO2/N2 v/v) were obtained using the 

second unit that was built. Afterwards, the Aspen Adsorption® program was used to 

simulate the experimental system, where the predictions of the DSL model agree with 

the breakthrough curves and the temperature profiles of the experimental fixed bed 

results. In addition, dynamic studies were performed to evaluate the zeolites 5ABL and 

13XBL using a discontinuous VPSA process for the CO2 separation of N2. The process 

was automated and operated with a PLC interface, using a control strategy developed in 

this work. Based on the comparison results of the zeolites, it was found that the 13XBL 

zeolite was the one most suitable for the proposed VPSA process. The experimental 

results were verified by numerical simulations in the Aspen Adsorption® software and 

the validated model was used to perform a two-factor complete design of experiments 

(26) using 13XBL simulations in a discontinuous configuration. 



 

Carbon dioxide capture and utilization by VPSA: a sustainable development. II 

The third experimental unit was built with three adsorption columns which included the 

developed control strategy and the recirculation of N2 and CO2 rich streams. Three 

experiments were carried out using zeolite 13XBL as an adsorbent for the proposed 8-

step VPSA cyclic process by changing the control parameters of the automated process. 

Through the experiments, the objectives were achieved in terms of CO2 purity (> 90%) 

and energy consumption (> 2.5 kWh/kgCO2). Based on the experimental and simulated 

results, a pilot-scale demonstration plant for CO2 capture from flue gas in an existing 

industrial boiler in a Spanish company was carried out. 

The pilot-scale CO2 capture plant consisted of a pre-treatment process for flue gases, a 

VPSA unit coupled with a dehumidification unit and an industrial application for the use 

of CO2. In the pretreatment unit the flue gases were cooled from 70°C to 25°C and then 

denitrified. In the dehumidification unit, the water vapor was removed from the denitrified 

gas by adsorption with alumina. Subsequently, the three columns’ eight-step VPSA 

process developed with zeolite 13XBL was used. The results were a product purity of 85 

to 95% of CO2, a recovery of 48 to 56%, a productivity of 0.20 to 0.25 gCO2/(gads٠h) and 

an energy consumption of 1.48 kWh/kgCO2. The recovered CO2 was then used to replace 

the use of mineral acids in the pH regulation stage of the existing wastewater treatment 

plant. Therefore, it is concluded that the developed process is an effective alternative to 

separate the CO2 from the emission points of industrial combustion gases and to use the 

recovered CO2 as raw material for industrial applications. The use of CO2 captured in 

these emission sources has two clear advantages. On the one hand, it reduces the CO2 

emissions to the atmosphere. On the other hand, it allows the reuse and transformation 

of an environmental pollutant into neutral compounds. 
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Resumen 
 

El continuo incremento en el uso de las energías renovables y los objetivos para la 

reducción de las emisiones de dióxido de carbono (CO2) requieren cambios 

significativos tanto a nivel técnico como a nivel normativo. La captura y utilización de 

dióxido de carbono (CCU, por sus siglas en inglés) es un método eficaz para lograr la 

mitigación del CO2 y al mismo tiempo mantener de forma segura los suministros de 

energía. Si bien la demanda en la reducción de las emisiones de CO2 está aumentando, 

la eficiencia energética y el costo de los procesos de captura de CO2 siguen siendo un 

factor limitante para las aplicaciones industriales. En el presente trabajo se estudia el 

uso del proceso de adsorción por oscilación de presión y vacío (VPSA, por sus siglas 

en inglés) con adsorbentes de alta selectividad para separar el CO2 de los gases de 

combustión, como un método alternativo al proceso de absorción tradicional con aminas. 

Se realizó una selección entre diez adsorbentes comerciales para la captura de CO2, 

incluidos los tamices moleculares de carbón (CMS, por sus siglas en inglés) y las 

zeolitas. Se determinaron las propiedades texturales, la capacidad de adsorción y el 

comportamiento cíclico de los adsorbentes para comparar su comportamiento en la 

separación del dióxido de carbono del nitrógeno. Posteriormente, se midieron las 

isotermas de adsorción de un solo componente en la balanza de suspensión magnética 

a cuatro temperaturas diferentes (283, 298, 232 y 323 K) y en un amplio margen de 

presiones (de 0 a 10 bara). Los datos sobre las isotermas de componentes puros se 

correlacionaron utilizando los modelos Toth, Sips y Dual Site Langmuir (DSL). 

Se diseñaron y construyeron tres unidades de laboratorio para realizar la 

experimentación del proceso VPSA. La primera unidad se usó para la producción y el 

control de mezclas gaseosas de CO2 y N2 a una presión máxima de 9 bara. En la 

segunda unidad se llevaron a cabo las mediciones de los equilibrios de adsorción con 

una mezcla de composición semejante a la de los gases de combustión (15/85% de 

CO2/N2 v/v). Con el programa Aspen Adsorption® se simuló el sistema experimental, 

obteniendo que las predicciones del modelo DSL reproducen suficientemente bien los 

resultados experimentales de las curvas de ruptura y los perfiles de temperatura en el 

lecho fijo. Además, se hicieron estudios dinámicos para evaluar las zeolitas 5ABL y 

13XBL usando el proceso VPSA discontinuo para la separación CO2 de N2. La unidad 

dos se dotó de un sistema de control con una interfaz PLC que facilita su operación y 

automatización, usando una estrategia de control desarrollada en este trabajo. En base 

a los resultados obtenidos con la unidad dos y su simulación, se encontró que la zeolita 
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13XBL era la que la más adecuada para el proceso VPSA propuesto. Los resultados 

experimentales se usaron para alimentar el diseño de la unidad dos en Aspen 

Adsorption® y validar el modelo usado que a su vez se utilizó para realizar un diseño 

completo de experiencias de dos factores (26) en configuración discontinua.  

La tercera unidad experimental consta de tres columnas de adsorción donde se incluyó 

la estrategia de control desarrollada para la unidad dos y se incluyó la recirculación de 

las corrientes ricas en N2 y CO2. Se llevaron a cabo tres experimentos en el proceso 

VPSA cíclico de 8 pasos cambiando los parámetros de control del proceso automatizado 

y usando la zeolita 13XBL como adsorbente. Se logró satisfacer los objetivos en 

términos pureza de CO2 (>80%) y consumo energético (<2.5 kWh/kgCO2). Sobre la base 

de los resultados experimentales y simulados, se realizó una demostración a escala 

piloto de la captura de CO2 del gas de combustión de una caldera de vapor en una planta 

industrial situada en la provincia de Barcelona.  

La planta piloto de captura de CO2 consta de un proceso de pretratamiento de los gases 

de combustión, una unidad VPSA acoplada con una unidad de deshumidificación y una 

aplicación industrial para el uso del CO2. En la unidad de pretratamiento, los gases de 

combustión se enfriaron de 70ºC a 25ºC y desnitrificaron. En la unidad de 

deshumidificación, se eliminó el vapor de agua del gas desnitrificado mediante adsorción 

con alúmina. Posteriormente, se empleó el proceso VPSA de ocho pasos con tres 

columnas usando zeolita 13XBL, en la que se obtuvo una corriente enriquecida de CO2 

de 85 a 95% de pureza de CO2, con una recuperación del 48 a 56%, una productividad 

de 0.20 a 0.25 gCO2/(gads∙h) y un consumo energético de 1.48 kWh/ kgCO2. El CO2 

recuperado se usó para reemplazar el uso de ácidos minerales en la etapa de regulación 

del pH de la planta de tratamiento de aguas residuales existente en la fábrica. Por lo 

tanto, el proceso desarrollado es una alternativa efectiva para separar el CO2 de los 

puntos de emisión de gases de combustión industrial y utilizar el CO2 recuperado como 

materia prima para aplicaciones industriales. El uso de CO2 capturado en estas fuentes 

de emisión tiene dos ventajas claras. Por un lado, redujeron las emisiones de CO2 a la 

atmósfera. Por otro lado, permitió reutilizar y transformar un contaminante ambiental en 

compuestos neutros. 
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Resum 
 

El continu increment en l'ús de les energies renovables i els objectius per a la reducció 

de les emissions de diòxid de carboni (CO2) requereixen canvis significatius tant a nivell 

tècnic com a nivell normatiu. La captura i utilització de diòxid de carboni (CCU, per les 

sigles en anglès) és un mètode eficaç per aconseguir la mitigació del CO2 i al mateix 

temps mantenir de forma segura els subministraments d’energia. Si bé la demanda a la 

reducció de les emissions de CO2 està augmentant, l’eficiència energètica i el cost dels 

processos de captura de CO2 segueixen sent un factor limitant per a les aplicacions 

industrials. En el present treball s'estudia l’ús del procés d'adsorció per oscil·lació de 

pressió i buit (VPSA, per les sigles en anglès) amb adsorbents d'alta selectivitat per 

separar el CO2 dels gasos de combustió, com un mètode alternatiu al procés d'absorció 

tradicional amb amines. 

Es realitza un estudi preliminar mitjançant Anàlisi Tèrmica per determinar la capacitat 

d’adsorció i el comportament cíclic de la captura de CO2 per deu adsorbents comercials, 

inclosos els tamisos moleculars de carboni (CMS) i les zeolites. L'anàlisi es va fer amb 

CO2 pur, N2 pur i mescles dels dos gasos en la proporció 15%/85% que correspon a la 

composició d’un gas de combustió normal; s’usen les zeolites comercials 13X, 5A, 4A 

sense i amb aglomerants i tres tamisos moleculars de carboni (CMS) en l’interval de 

pressió de 0 a 10 bar i a 283K, 298K, 232K i 323 K de temperatura. Els resultats s’han 

ajustat amb els models Toth, Sips i Dual Site Langmuir (DSL). 

Es va realitzar una selecció entre deu adsorbents comercials per a la captura de CO2, 

inclosos els tamisos moleculars de carbó (CMS, per les sigles en anglès) i les zeolites. 

Es van determinar les propietats texturals, la capacitat d'adsorció i el comportament 

cíclic dels adsorbents per comparar el seu comportament a la separació del diòxid de 

carboni del nitrogen. Posteriorment, es van mesurar les isotermes d'adsorció d'un sol 

component en la balança de suspensió magnètica a quatre temperatures diferents (283, 

298, 232 i 323 K) i en un ampli marge de pressions (de 0 a 10 bara). Les dades sobre 

les isotermes de components purs es van correlacionar utilitzant els models Toth, Sips i 

Dual Site Langmuir (DSL). Es van dissenyar i construir tres unitats de laboratori per 

realitzar l'experimentació del procés VPSA. La primera unitat es va usar per a la 

producció i el control de mescles gasoses de CO2 i N2 a una pressió màxima de 9 bara. 

En la segona unitat es van dur a terme la determinació dels equilibris d'adsorció amb 

una barreja de composició semblant a la dels gasos de combustió (15/85% de CO2/N2 

v/v). Amb el programa Aspen Adsorption® es va simular el sistema experimental, 
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obtenint que les prediccions del model DSL reprodueixen suficientment bé els resultats 

experimentals de les corbes de ruptura i els perfils de temperatura en el llit fix. A més, 

es van fer estudis dinàmics per avaluar les zeolites 5ABL i 13XBL usant el procés VPSA 

discontinu per a la separació CO2 de N2. La unitat dos es va dotar d'un sistema de control 

amb una interfície PLC que facilita la seva operació i automatització, usant una 

estratègia de control desenvolupada en aquest treball. En base als resultats obtinguts 

amb la unitat dos, tant experimentals com simulats, es va trobar que la zeolita 13XBL 

era la més adequada per al procés VPSA proposat. Els resultats experimentals es van 

emprar per alimentar el disseny de la unitat dos a Aspen Adsorption® i validar el model 

usat que al seu torn es va utilitzar per realitzar un disseny complet d'experiències de dos 

factors (26) en configuració continua. 

La tercera unitat experimental consta de tres columnes d'adsorció on es va incloure 

l'estratègia de control desenvolupada per la unitat dos i es va incloure la recirculació dels 

corrents rics en N2 i CO2. Es van dur a terme tres experiments del procés VPSA cíclic 

de 8 passos canviant els paràmetres de control del procés automatitzat i usant la zeolita 

13XBL com adsorbent. Es va aconseguir satisfer els objectius en termes puresa de CO2 

(> 80%) i consum energètic (<2.5 kWh/kgCO2). Sobre la base dels resultats experimentals 

i simulats, es va realitzar una demostració a escala pilot de la captura de CO2 del gas 

de combustió d'una caldera de vapor en una planta industrial a situada a la província de 

Barcelona. La planta pilot de captura de CO2 consta d'un procés de pretractament dels 

gasos de combustió, una unitat VPSA acoblada amb una unitat de deshumidificació i 

una aplicació industrial per a l'ús del CO2. A la unitat de pretractament, els gasos de 

combustió es van refredar de 70ºC a 25ºC i es van desnitrificar. A la unitat de 

deshumidificació, es va eliminar el vapor d'aigua del gas desnitrificat mitjançant adsorció 

sobre alúmina. Posteriorment, es va emprar el procés VPSA de vuit passos amb tres 

columnes usant zeolita 13XBL, en la qual es va obtenir un corrent enriquit de CO2 de 85 

a 95% de puresa de CO2, amb una recuperació del 48 a 56%, una productivitat de 

0.20- 0.25 gCO2/(gads·h) i un consum energètic de 1.48 kWh/kgCO2. El CO2 recuperat es 

va usar per reemplaçar l'ús d'àcids minerals en l'etapa de regulació del pH de la planta 

de tractament d'aigües residuals existent a la fàbrica. Per tant, el procés desenvolupat 

és una alternativa efectiva per separar el CO2 dels punts d'emissió de gasos de 

combustió industrial i utilitzar el CO2 recuperat com a matèria primera per a aplicacions 

industrials. L'ús de CO2 capturat en aquestes fonts d'emissió té dos avantatges clars. 

D'una banda, es van reduir les emissions de CO2 a la atmosfera. De l'altra, va permetre 

reutilitzar i transformar un contaminant ambiental en compostos neutres. 
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Symbols and nomenclature 
 

µ Dynamic viscosity of gas mixture, Pa s LES Required stoichiometric capacity  

µg  Viscosity of gas mixture, cP LUB Length of unused bed  

ACs Activated carbons mads Mass of the adsorbed phase  

b Affinity constant parameter, 1/bara MEA Monoethanolamide 

BET Brunauer-Emmett-Teller  MOFs Metal organic frameworks  

CCS Carbon Capture and Storage  ms Mass of adsorbent, mg 

CCU Carbon Capture and Utilization MTC Mass transfer coefficient  

ci  Molar fraction of component i MTCi Mass transfer coefficient of component i, 1/s 

Cin Inlet concentrations, % v/v MTZ Mass transfer zone 

CMS Carbon molecular sieves MW Adsorbate molecular weight, g/mol 

CO2 Carbon dioxide Mw  Molecular weight of gas mixture, kg/kmol 

Cout Outlet concentrations, % v/v n Sips parameter 

Cpai  Specific heat capacity of the adsorbed gas, 
MJ/kmol K n Component loading 

Cps  Specific heat capacity of the adsorbent, 
MJ/kmol K NOX Nitrogen oxides 

Cpw  Specific heat capacity of the wall, MJ/kmol K P  Gas pressure, bar (a) 

Cvg  Specific gas phase heat capacity at constant 
volume, MJ/kmol K P  Gas pressure, bar (a) 

DA Dubinin-Astakhov  PC Power consumption 

DB  Internal diameter of column, m pi  Partial pressure of component i, bar (a) 

DEA Diethanolamine Pr Productivity 

DL  Dispersion coefficient, m2/s PR Purge 

DP Depressurization PSA Pressure Swing Adsorption  

DSC Differential scanning calorimetry  PT Adsorption pressure  

DSL Dual-site Langmuir model PV Vacuum pressure on the regeneration step  

EOR Enhanced Oil Recovery  q Absolute amount adsorbed, mmol/g 

EP Provided pressure equalization  QEX Stop point by vacuum pump flowrate 

ER Received pressure equalization qexc Excess amount adsorbed, mmol/g 

eTSA Energy consumption QFD Feed flowrate  

EU European Union qi 
Adsorbent loading of component i per unit mass of 
adsorbent, kg/kmol 

FD Feed qi
* 

Adsorbent in equilibrium with its partial pressure in 
gas phase, kg/kmol 

FP Pressurization  QRN Rinse flowrate  

GHG Greenhouse gas qs Saturation capacity, mmol/g 

hb  Heat transfer coefficient between column 
and ambient, W/m2 K qTGA Adsorption capacity, mmol/g 

ht  Heat transfer coefficient between void tank 
and ambient, W/m2 K QV Vacuum flowrate  

HTC Heat transfer coefficient between gas and 
solid, W/m2 K R Ideal gas law constant, kJ/K٠mol 

hw Heat transfer coefficient between gas and 
wall W/m2 K R  Universal gas constant, (kPa m3)/(kmol K) 

IPCC The International Panel of Climate Change r  Radial co-ordinate of the adsorbent, m 

kg  Heat conductivity of gas, W/m K R&D Research and Development  

ks  Heat conductivity of adsorbent, W/m K rAB  Characteristic length, Å 

kw  Heat conductivity of wall, W/m K Re  Reynolds number 
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LDF Linear driving force kinetic model  RG Regeneration 

 

 

 

 

  

RH Relative humidity  Vads Adsorbed volume of the gas, L 

RN Rinse VDACO2 
Narrow micropore volumes obtained from the 
CO2 applying DA equation, cm3/g 

rp  Particle radius, m vg  Superficial gas velocity, m/s 

SBET 
Specific surface areas were calculated 
using the BET method, cm2/g Vm Molar volume, L 

Sc Schmidt number VPSA Vacuum Pressure Swing Adsorption  

SC-CO2 Supercritical CO2  VSA vacuum swing adsorption  

Seq Equilibrium selectivity wi Working capacity  

SFD Stop feed point  Wr  Wall thickness, m 

Skin Kinetic selectivity  z Axial distance coordinate, m 

SOX Sulfur oxide αp  
Specific particle surface area per unit length of 
bed, 1/m 

SPR Stop purge point  ΔHads Adsorption heat, kJ/mol 

SRN Stop rinse point  ΔHdes Desorption heat, kJ/mol 

t Toth heterogeneity parameter ΔHi  Enthalpy of adsorption for component i, kJ/mol 

T  Gas temperature, K ΔHindium Melting heat of indium, J/gindium 

Tads Adsorption temperature, K ΔTw 
Difference between the adsorption and 
desorption temperature  

tcycle Total cycle time ρ  Gas specific density, kg/m3 

Tenv  Environmental temperature, K ρb  Bulk density of adsorbent, kg/m3 

TGA Thermogravimetric analysis ρg Density of the gas, g/L 

TRLs Technology Readiness Level ρg  Gas molar density, kmol/m3 

Ts  Adsorbent temperature, K ρL  Adsorbed phase density, g/L 

TSA Temperature swing adsorption  ρw  Column wall density, kg/m3 

Tt Column jacket temperature ψ Particle shape factor 

tV Desorption time at the vacuum pressure  𝜀i  Bed voidage 

Tw Column wall temperature, K 𝜀p  Particle voidage 

UNFCCC United Nations Framework Convention on 
Climate Change   
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Carbon dioxide (CO2) emissions result in the global warming effect, which is one of the 

most urgent problems that threatens the habitability of the Earth. Although some 

governmental laws and protocols have limited the amount of emissions, the rates remain 

so high that the accumulation of CO2 has caused the global climate to change (Leung et 

al., 2014). Efforts are being made continuously to limit the degree of further climate 

changes due to the increase in greenhouse gas (GHG) emissions. The International 

Panel of Climate Change (IPCC) estimates that by the year 2100, the CO2 content in the 

atmosphere shall reach 570 ppmv, the sea level will increase by 3.8 m and the global 

mean temperature will rise by 2ºC (IPCC, 2014). Continued emission of GHG will cause 

further warming and long-lasting changes in all components of the climate system, 

increasing the likelihood of severe, pervasive and irreversible impacts for people and 

ecosystems (see Figure 1). 

Limiting climate change would require substantial and sustained reductions in GHG 

emissions. In December 2015, the Paris Agreement was signed by 195 Parties at the 

United Nations Framework Convention on Climate Change (UNFCCC) where the 

Chinese and US governments made their historic participation. The purpose of the Paris 

agreement is to prevent the global temperature from rising by 2 ºC above preindustrial 

levels within this century, and try to control the rise to no more than 1.5 ºC (UNFCCC. 

Conference of the Parties (COP), 2015). The European Union (EU) has committed to 

achieve an economy-wide domestic target of at least 40% GHG emission reductions 

(from 1990 levels) by 2030 and at least 80% GHG reductions by 2050. This should allow 

the EU to contribute in keeping global warming well below 2°C (Fortunato and Heuer, 

2018). However, on the 1st of June 2017, the U.S. declared to withdraw from the Paris 

Agreement. Trump's formal declaration of withdrawal caused worldwide reaction. Trump 

will use the withdrawal to build his political reputation and to renegotiate the Paris 

Agreement despite its negative effects on the political credibility, international 

relationships, and potential long-term economic growth of the U.S. (Zhang et al., 2017). 

In general, the withdrawal of the U.S. from the Paris Agreement will not change the 

development of low-carbon technologies and the transformation trend of the global 

climate governance regime. However, the long-term goals and international cooperation 

on climate change will be affected by budget cuts in American climate change research 

and the cancelation of donations from the multilateral environmental fund of the U.S (Dai 

et al., 2017; Zhang et al., 2017). If the Paris Agreement is renegotiated, the common but 

differentiated principle of responsibility of the UNFCCC will be challenged again.  
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Nevertheless, climate change governance remains a main theme of future sustainable 

development. Instead of national governments, local governments and non-

governmental organizations will develop strategies for technical innovation and 

emphasize pragmatic cooperation, thus expanding their roles in climate change 

governance. From a global view, although the effectiveness of the Paris Agreement is 

A 

B 

C 

Figure 1: (A) Global average surface temperature change, (B) change in average surface 
temperature from 2006 to 2100 and (C) change in average precipitations as determined by 

multi-model simulations (IPCC, 2014). Time series of projections and a measure of uncertainty 
(shading) are shown for scenarios RCP2.6 (blue) and RCP8.5 (red). 
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not as high as before because of the withdrawal of the U.S., other parties will still make 

active efforts to implement its policies and fulfill their commitments (Zhang et al., 2017). 

Achieving those reduction targets requires the deployment of new and efficient 

technologies, appropriate policies and legislative initiatives, as well as investments in 

research and development (R&D) and an appropriate financial framework to facilitate the 

demonstration and deployment of technologies in the higher level of TRLs (Technology 

Readiness Level). The EU is part of the Clean Energy R&D Focus Area on carbon 

capture and utilization (CCU) and carbon capture and storage (CCS) (“European Union 

– Mission Innovation,” n.d.). A total of 61 projects on CCU technologies were funded 

from 2008 until 2018 under FP7 and Horizon 2020 for a total of 243 M€. A prize is funded 

under Horizon 2020 (“Horizon prize CO2 reuse”) to reward innovative products utilizing 

CO2 that could significantly reduce the atmospheric emissions of CO2 when deployed at 

a commercial scale (European Commision, 2018).  

Carbon based fossil fuels have the precise energy concentration and most probably will 

continue to be the main energy source in the short-medium term, but it is necessary to 

control the CO2 emissions to the atmosphere(Tan et al., 2016). About 80% (Figure 1) of 

the world’s energy needs are currently supplied by fossil fuels (Quadrelli and Peterson, 

2007). CO2 emissions from industrial sources are very important and represent 25% of 

the global emissions (The global status of CCS 2015, 2015).  

The concentration of CO2 in the atmosphere now is greater than at any other time in 

modern history. Although the transition of the existing infrastructures from carbon-based 

sources to cleaner alternatives would be ideal in this regard, such a change requires 

considerable modifications to the current energy framework, and many of the proposed 

technologies are not yet sufficiently developed to facilitate largescale industrial 

implementation. Thus, CCS and CCU technologies that efficiently capture CO2 from 

existing emission sources will play a vital role until more significant modifications to the 

energy infrastructure can be implemented. 

One scenario in which CO2 capture technologies could be rapidly implemented is at 

stationary point sources, such as coal and natural gas-fired power plants. In the EU 

41,6% of the total electricity generation is generated by fossil fuel combustion (European 

Climate Foundation, 2010), and hence the installation of effective capture systems to 

existing plant configurations could offer a large reduction in emissions. The captured CO2 

would then be subjected to permanent sequestration, where the CO2 is injected into 

underground geological formations, such as depleted oil reservoirs or salt water aquifers. 

Similar technologies are already established in the context of processes such as 

enhanced oil recovery (EOR), and several trial CO2 sequestration sites are in 
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construction (Feron, 2010). Note that the reuse of the captured CO2 as a reactant in 

chemical transformations presents an alternative sequestration pathway, although it 

would not be a viable long-term strategy owing to the tremendous scale of worldwide 

CO2 emissions (ca. 30 Gt per year) (Thambimuthu et al., 2005) resulting in the market 

for any commodities prepared therefrom being rapidly saturated.  

Figure 2: EU CO2 emission reduction pathways towards an 80% reduction by 2050 
(European Climate Foundation, 2010) 

 

CCU is one of the most promising strategies to achieve these emissions reductions, 

together with the improvements on the energy efficiency and the switch from fossil fuels 

to renewable energy. A significant reduction in the energy consumption of CO2 capture 

systems remains a challenge. Furthermore, the source and type of the energy used by 

the capture plants will play an important role in the overall operating cost (Zenz et al., 

2009). Many researchers are currently exploring energy integration options with power 

plants for the potential use of cheaper, low-grade thermal energy or heat recovered from 

flue gas cooling in order to offset part of the energy requirements for the CO2 capture 

systems as a means of reducing operating cost (Sculley et al., 2013).There are three 

general approaches to CO2 capture for fossil-fuel power plants, which are: pre-

combustion, post-combustion and oxy-combustion (Leung et al., 2014). 

 

1.1. Pre-combustion Capture 
 

It is a process in which the fuel (normally coal or natural gas) is decarbonated prior to 

combustion, resulting in zero carbon dioxide production during the combustion step 

(Sumida et al., 2012a) (see Figure 3). Here, coal is gasified, generally at high 
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temperature and pressure, to produce synthesis gas, which is a mixture of mostly H2, 

CO. This gas mixture is then run through the water-gas shift reaction to produce H2 and 

CO2 (syn gas) at high pressure and slightly elevated temperature (5 to 40 barg and 40 °C, 

depending on the production plant) (Leung et al., 2014). Pre-combustion CO2 capture, 

which refers to the separation of CO2 from H2 within this gas mixture, can then be 

performed to obtain pure H2, which is subsequently combusted in a power plant to 

generate electricity. For non-gaseous feedstock, the gas stream generally must be 

cleaned to remove species containing sulphur, nitrogen (cyanides and ammonia), 

chlorides and others which either pose a threat to hardware or which are regulated by 

environmental requirements.  

 

 

1.2. Oxy-combustion Technology 
 

The oxyfuel combustion technology involves replacement of combustion air with a 

mixture of recycled CO2 rich flue gas recycle and high purity oxygen for combustion (see 

Figure 3) (Sumida et al., 2012b). An air separation unit is required to supply a stream of 

Figure 3: Basic schemes showing the types of CO2 capture relevant to the present doctoral 
thesis. The processes for post-combustion capture, pre-combustion capture, and oxy-fuel 

combustion (Sumida et al., 2012b). 
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highly pure oxygen. A major part of the flue gas must be recycled back to the boiler plant 

for providing a primary flue gas recycle stream to transport pulverized fuel and a 

secondary oxyfuel flue gas recycle to the burners and furnace. The resulting flue gas 

from an oxyfuel boiler is predominantly CO2 and water, with trace species such as NOx 

and SO2. The CO2 rich flue gas needs to be cleaned and dried prior to compression for 

storage or other uses. The most widely considered technology for oxygen production is 

cryogenic air separation (García et al., 2014; Leung et al., 2014). The auxiliary power 

consumption of a cryogenic air separation unit is high and has a major impact on the 

overall efficiency of the power plant. Integration of the heat cycle of plants fitted with 

oxyfuel capture is essential to minimize the impact of the capture process on the overall 

plant efficiency. 

1.3. Post Combustion Capture 
 

CO2 is removed from the flue gas that results after combustion of the fuel in air (see 

Figure 3). The combustion of fossil fuel in air generates a flue gas composed of mostly 

N2, CO2 (15-16%) and other minor components such as H2O, O2, CO, NOX, and SOX. 

The gas stream is released at a total pressure of approximately 1 bara. Since SOx and 

NOx removal would precede CO2 capture, the flue gas would be expected at 

temperatures between 40 and 60 °C (Sumida et al., 2012a).  

The major challenges for CO2 capture methods are stated briefly as follows. In oxyfuel 

combustion capture the main problems are related to the high energy consumption for 

the supply of pure oxygen and the lack of readiness for this technology, given that  there 

is very little experience on the commercial scale (Quadrelli and Peterson, 2007). In pre-

combustion capture, the challenges include high cost, insufficient technical know-how 

for good operability, absence of single concise process for overall operational 

performance; and lack of development for industrial application. For the post-combustion 

capture case, the difficulties include: the additional energy requirement for compression 

of captured carbon dioxide, need for treatment of high gas volumes, because CO2 has 

low partial pressure and concentration in flue gas and large energy requirement for 

regeneration of sorbent e.g. amine solution.  

In recent years, post-combustion capture has been the topic of much research, because 

it is easier to integrate into an existing plant, without needing to substantially change the 

configuration or combustion technology of the plant. Moreover, it is more suitable for gas 

plants than the Oxy-Combustion or the Pre-Combustion plants, its maintenance does not 

stop the operation of the power plant and it can be easily regulated or controlled (Ben-

Mansour et al., 2016; Songolzadeh et al., 2014). Post-combustion CO2 capture 
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technology is widely employed in chemical processing. However, the application of this 

technology to specific applications needs further investigation, especially in optimizing 

CCU systems for fixed and mobile sources. The priority activities in this task are: the 

development of better materials for post-combustion CO2 capture, identifying optimal 

capture process designs including ways of integrating the capture systems with the 

emission sources to minimize the energy losses and environmental impact, identifying 

advantages and limitations of precipitating systems (e.g., carbonates) (Songolzadeh et 

al., 2012; Sumida et al., 2012a) and carrying out a detailed assessment of the 

environmental impact of various CO2 capture technologies (Songolzadeh et al., 2014; 

Tan et al., 2016). Post-combustion capture technologies would enable the world to 

continue to use fossil fuels, but with much reduced net emissions of CO2 while other low 

CO2 emission energy sources are developed and introduced on a large scale (Ben-

Mansour et al., 2016). 

 

Based on economic and environmental considerations, it is necessary to apply efficient 

and suitable technology for CO2 separation with low operating costs and energy 

consumption. There are several gas separation technologies being investigated for post-

combustion capture such as absorption, membranes, cryogenics, adsorption, and other 

advanced concepts as the micro-algae bio-fixation (Ben-Mansour et al., 2016). Figure 4 

briefly describe these methods (Metz et al., 2005).  

Figure 4: Post combustion carbon capture processes (Metz et al., 2005). 
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In absorption of CO2, Figure 5 (or “scrubbing”) a liquid sorbent is used to separate the 

CO2 from the flue gas. The sorbent can be regenerated through a stripping or 

regenerative process by heating and/or depressurization. This process is the most 

mature method for CO2 separation. Typical sorbents include monoethanolamine (MEA), 

diethanolamine (DEA) and potassium carbonate (Leung et al., 2014). The process takes 

place in columns (“towers”) known as scrubbers, in which turbulent flow promotes rapid 

CO2 transfer from gas to liquid. Differences in density make it easy to separate the 

emerging gas and liquid. To recover the captured CO2, the loaded solvent is pumped to 

a “stripper” in which it is exposed to a hotter CO2-free gas, typically steam. Heating of 

the solvent causes the desorption of the CO2 (and traces of nitrogen). The stripped liquid 

is pumped back to the scrubber, while the steam/CO2 mixture is cooled to condense the 

steam, leaving high-purity CO2 suitable for compression and, after transportation to an 

appropriate site sequestration or use (Metz et al., 2005).  

Some of the absorption disadvantages are: high heat/power requirement for solvent 

regeneration, the need for corrosion control measures and the sensitivity of the solvents 

to losses in chemical purity or quality due to infiltrations from other by-products (e.g. SOx, 

NOx, etc.) in the flue gas streams, which leads to reduction in efficiencies and increment 

in costs of power supply (Ben-Mansour et al., 2016). 

 

Microalgal bio-fixation is another potential technique for the removal of CO2 from flue 

gases. This technique entails the use of photosynthetic organisms (microalgae) for 

anthropogenic CO2 capture (see Figure 6). Aquatic microalgae have been suggested to 

have greater potential because of their higher carbon fixation rates than land plants 

(Kassim and Meng, 2017; Zhou et al., 2017). Nonetheless, the implementation of large-

scale microalgae-based carbon sequestration technologies has yet to be realized. 

Figure 5: Schematics of absorption carbon capture process using amines (Ben-Mansour et al., 
2016). 
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Innovation and improvement in the following areas are necessary before microalgae 

based technologies can be commercialized: development of technologies to address 

carbon sources with different chemical forms and distribution characteristics, screening 

and genetic engineering of high performance strains, improved utilization of industrial 

waste gases, better understanding of microalgae-based carbon fixation mechanisms, 

enhanced CO2 transfer and oxygen desorption, cultivation process optimization including 

scaling up, cost-effective photobioreactors, high efficiency microalgae harvesting and 

conversion technologies, value-added products development, and system integration 

(Ravindran et al., 2016; Zhou et al., 2017). The understanding and improvement of 

economic feasibility must be achieved through techno-economic analysis using 

production facilities with reasonable scales (Ho et al., 2011; Nakamura et al., 2003).  

 

Membrane separation of carbon dioxide (Figure 7) involves the use of polymer ceramic 

membranes to sieve out the CO2 gas from the flue gas (Khalilpour et al., 2015). 

Differences in permeation rates are generally due (in the case of porous membranes) to 

the relative sizes of the permeating molecules or (in the case of dense membranes) their 

solubilities and/or diffusion coefficients (i.e., mobilities) in the membrane material. 

Because permeation rates vary inversely with membrane thickness, membranes are 

made to be as thin as possible without compromising mechanical strength (which is 

frequently provided by non-selective, porous support layers) (Song et al., 2017b). 

Challenges are still being faced in the application of this technique on a large scale, and 

in the design of membranes that would operate efficiently for the desired purpose at 

relatively high temperatures (Khalilpour et al., 2015). Membrane permeation is generally 

pressure-driven, the feed gas is compressed and/or the permeate channel operates 

Figure 6: Principles of the microalgae production integration with wastewater treatment 
(Ravindran et al., 2016). 

By-products  

(fertilizer, 

animal feed, 

etc.) 
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under vacuum and/or a sweep gas is employed. Due to the low partial pressure of CO2 

in the flue gas, this constitutes a major challenge for the membrane-based approach 

compared to liquid absorbents or solid adsorbents that are thermally regenerated (i.e., 

heated to strip the captured CO2). Most significantly, for membranes to be competitive 

with amine-based absorption for capturing CO2 from flue gases, their CO2/N2 selectivity 

(i.e., permeability ratios) must be in the range of 200 (Brunetti et al., 2010).  

 

Cryogenic distillation (Figure 8) is a gas separation process using distillation at very low 

temperature and high pressure (due to the low boiling points). For CO2 separation, flue 

gas containing CO2 is cooled to de-sublimation temperature (-100ºC to -135ºC) and then 

solidified CO2 is separated from other light gases and compressed to a high pressure of 

100 to 200 atm. The amount of CO2 recovered can reach 90 to 95% of the flue gas. Since 

the distillation is conducted at extremely low temperature and high pressure, it is an 

energy intensive process (Tuinier et al., 2011). Typically high CO2 concentrations (higher 

than 50%) are more suitable for this process (Song et al., 2012). Several patented 

processes have been developed and research has mainly focused on cost optimization 

(Song et al., 2017a, 2012; Tuinier et al., 2010).  

 

Figure 7: Schematics of membrane carbon capture process (Ben-Mansour et al., 2016). 

Figure 8: Schematics of cryogenic carbon capture process (Ben-Mansour et al., 2016). 
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In chemical adsorption by chemical looping, a metal oxide is used as an oxygen carrier 

instead of directly using pure oxygen for the combustion, as in the case of oxyfuel 

combustion (see Figure 9). During this process, the metal oxide is reduced to metal while 

the fuel is oxidized to CO2 and water. The metal is then oxidized in another stage and 

recycled in the process. Water, the process by-product, can be easily removed by 

condensation, while pure CO2 can be obtained without consumption of energy for 

separation (Leung et al., 2014). There are a wide variety of metal oxides that are of low-

cost and suitable for this process including CaO, Fe2O3, NiO, CuO and Mn2O3. The 

effectiveness of different metal oxides in this process has been studied by various 

researchers (Kang et al., 2018; Nandy et al., 2016; Protasova and Snijkers, 2016; Zhu 

et al., 2018, 2017). Challenges are still being faced in the application of this technique 

since: the process is still under development and there is no large-scale operation 

experience, operational problems exist due to low fluxes, there are high energetic 

requirements and fouling (Erlach et al., 2011; Nazir et al., 2017). 

 

 

Adsorptive separation is a mixture separating process, which works on the principle of 

differences in adsorption/desorption properties of the constituents of the mixture. The 

word adsorption is defined as the adhesion of ions, atoms or molecules from a liquid, 

gas or dissolved solid to a surface. The adhered ions, atoms or molecules are called the 

adsorbate, while the surface onto which they are attached is called the adsorbent. 

Adsorption is different from absorption because in absorption, the fluid (absorbate) is 

dissolved by a solid or liquid (absorbent). Adsorption occurs on the surface while 

absorption entails the whole material volume. Adsorption may take place physically via 

weak Van der Waals forces (physisorption), which consumes relatively less energy, 

resulting in better adsorbent durability and greater stability after several 

Figure 9: Schematics of chemical looping carbon capture process (Nandy et al., 2016). 
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adsorption/desorption cycles (see Figure 10). In physisorption, new chemical bonds are 

not formed between the adsorbate and adsorbent, therefore much less energy is 

required for CO2 regeneration when compared with chemical absorbents such as amines 

(Songolzadeh et al., 2012).  

Adsorption has a major advantage to other approaches due to the ease of adsorbent 

regeneration by temperature or pressure modulation, reducing the energy consumption 

of post-combustion carbon capture. Important factors in adsorption processes include: 

ease of regeneration of adsorbed CO2, durability of adsorbent, selectivity of adsorbent 

for CO2, adsorption capacity and stability of adsorbent after several 

adsorption/desorption cycles (Songolzadeh et al., 2012). Regarding to CO2 capture by 

adsorption, the most used technology in industrial scale is Pressure Swing Adsorption 

(PSA). It is a cyclic adsorption process, but it is commonly adapted via the use of multiple 

adsorption columns for operating in a continuous mode. PSA is performed by periodic 

changes of pressure which aim to minimize the amount of product contaminants, and is 

considered energetically viable for separation of CO2 from flue gases containing about 

5-15% v/v (Da̧browski, 2001; Kast, 1985). 

 

Adsorption technology is becoming increasingly popular for CO2 capture because of its 

potential low energy consumption, simple operation, easy maintenance and flexibility in 

Figure 10: The principle of adsorption capture (APEC, 2012) 
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design to meet different demand requirements (Ling et al., 2014; Riboldi and Bolland, 

2017a; Yu, 2012). The interest in applying this technology in the industrial scale is driving 

further developments in the energy efficiency of the CO2 adsorbent regeneration. 

Available regeneration techniques include pressure swing adsorption (PSA), vacuum 

swing adsorption (VSA), temperature swing adsorption (TSA) (see Figure 11) and hybrid 

processes (PTSA or VPSA). There are several variants of the TSA technique which use 

different methods to increase the temperature, one such example being electric swing 

adsorption (ESA) which conducts electricity through the adsorbent.  

 

In PSA, adsorption is typically performed at pressures higher than atmospheric pressure, 

while desorption is performed at atmospheric pressure. In VSA, adsorption operates at 

atmospheric pressure and near-room temperature, while desorption operates at lower 

pressures. Both PSA and VSA are performed by altering the pressures. Generally, the 

adsorbents with high adsorption capacity and high selectivity toward CO2 are preferred. 

Because the pressure in flue gas streams is approximately equal to 1.0 bara and CO2 

concentration in the feed gas is commonly higher than 10%, VSA is considered more 

economical for CO2 capture than PSA (where significant compression of the feed gas is 

required) (Kacem et al., 2015; May et al., 2017; Wang et al., 2013a; Webley et al., 2017). 

The TSA technique can be designed to directly utilize cheaper, low-grade thermal energy 

resources from power plants for regeneration to reduce the operating cost. However, the 

longer time required for heating/cooling limits its application for CO2 capture. With the 

long cycle time, productivity will be lower compared to other adsorption technologies. 

The product may also be diluted by the purge gas if regeneration is performed by direct 

hot gas purge as used in conventional systems (Joss et al., 2017; Ntiamoah et al., 2016; 

Pahinkar, 2016; Zhao et al., 2017). 

Figure 11: Schematic diagrams of idealized temperature swing adsorption (TSA), pressure 
swing adsorption (PSA), and vacuum swing adsorption (VSA). 
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The temperature range of flue gases varies by their sources and pre-treatment 

processes that may be available. Taking a typical coal-based power plant for instance, 

the flue gas stream may be available at a temperature ranging from 70 to 90ºC or even 

higher, depending on the extent of heat recovery from the stream(Ling et al., 2014). The 

VSA performance is sensitive to the feed gas temperature, so a further heat treatment 

may be required to condition the flue gas before feeding it to the VSA plant, which will 

inevitably impact on the separation efficiency and economics of the process.  

A variety of PSA cycle configurations have been developed for concentrating CO2 from 

stack and flue gases. Given the atmospheric pressure level of these gases, the most 

common PSA processes in post-combustion applications rely on sub-atmospheric 

adsorbent regeneration (VPSA). As an alternative to vacuum pressures, an upstream 

flue gas compression has been studied, but this approach has demonstrated to be 

unfeasible due to the large energy requirement involved (Riboldi and Bolland, 2015). 

Many combinations of process steps may be able to meet the targets in terms of CO2 

purity and recovery, so the primary factor to optimize becomes the energy consumption 

for implementing the gas separation process.  

Some recent studies have highlighted the true potential of the two adsorption 

technologies, including vacuum pressure swing adsorption (VPSA) (Fujiki et al., 2017; 

Kacem et al., 2015; Li et al., 2016; Ling et al., 2015; Maring and Webley, 2013; Wang et 

al., 2013a) and pressure-temperature swing adsorption (PTSA), for CO2 capture (Joss 

et al., 2017; Pahinkar, 2016; Plaza et al., 2010; Song et al., 2015). Adsorption based 

technologies, are attractive due to the non-volatility of solid sorbents, the potential low 

energy consumption, the moderate heat of adsorption (between 30 kJ/mol and 70 

kJ/mol) and the moderate regeneration temperature, which might offer attractive heat 

integration opportunities using low-grade heat sources (Lively et al., 2010).  

Table 1 shows some VPSA capture systems of CO2 from a desulfurized flue gas was 

demonstrated on a pilot plant scale in an existing coal-fired power plants with flow rates 

between 32- 60 Nm3/h (Torkkeli, 2014; Wang et al., 2013a, 2013b). The best 

performance achieved for VPSA cycle in a two-stage configuration was 95% purity, 73% 

recovery with a productivity of 0.036 gCO2/(gAds∙h) and an energy consumption of 

0.6  kWh/ton CO2 (Wang et al., 2013b). The reported works are based on dry flue gas 

with no impurities (SOX, NOX), therefore it does not address the real process economics.  
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A 2-stage VPSA system is likely necessary to efficiently meet the requested separation 

performance. Commonly, the first stage provides high CO2 recovery, while the second 

stage achieves the CO2 purity level desired. Some studies seem to show that a single 

stage process may become able to reach similar performance with competitive energy 

consumption (Andersen et al., 2013; Du et al., 2017; Fujiki et al., 2017; Maring and 

Webley, 2013; Webley et al., 2017) but would require high vacuum conditions, which are 

not simple to implement on large systems (Riboldi and Bolland, 2017b). Moreover, 

experimental results on the same PSA system arrangements do not always fully agree 

with the simulation outputs (Torkkeli, 2014), stressing the degree of complexity of these 

systems and the necessity of further results validation. Table 1 gives an overview of the 

expected performances of the adsorption techniques, and reports some of the most 

meaningful results from the literature.In general, it was found that the power consumption 

of the vacuum pump VPSA unit accounts for two-thirds of the total power consumption 

in the carbon capture experiments (Wang et al., 2013a), so it is very important to reduce 

the power consumption of the vacuum pump under a high vacuum to improve this 

process. Also, the effect of the fuel gases temperature, moisture and impurities are 

important issues that should be taken in to consideration when applying this technology 

on an industrial scale. Some studies on carbon capture from wet flue gas demonstrate 

the negative impact on the adsorbent performance for adsorption based capture process 

(Li et al., 2008; Zhang et al., 2009). 

While the demand for reduction in CO2 emissions is increasing, the cost of CO2 capture 

processes remains a limiting factor for large-scale applications. Reducing the cost of the 

capture system by improving the process and the adsorbent used must be prioritized to 

apply this technology in the future. Experimental and theoretical work on a pilot-scale 

VPSA separation of CO2 with a suitable adsorbent is essential for the evaluation of CO2 

capture from power plants.  

 

 

 

 

 

 

 

 



 

Carbon dioxide capture and utilization by VPSA: a sustainable development. 18 

Table 1: Performances of various PSA arrangements for CO2 capture from flue gas. 

Type 
Cycle 

Config. Adsorbent 
Flue gas 
Temp. 

(ºC) 

Pres. 
(barg) 

Reg. Vac. 
or Temp. 
(barg) or 

(ºC) 

Purity 

% 
Rec. % 

Enr. cons. 
(kWh/kgCO2) 

Prod. 
(gCO2/gAds∙h) 

Result 
type 

Flue gas source 

Flue gas 
comp. 
CO2/N2 

 (% vol) 

Feed 
flowrate 

(Nm3/h) 
Ref. 

VPSA 
3-bed 

 7-step 
Zeolite 5A 25-30 1.2 0.02 85 79 0.7 0.041 Exp. 

Coal-fired power 

plant*, 

desulfurized. 
15/85 46 

Liu et al., 

2012 

VPSA 
3-bed 

 9-step 

Granulated 

Activated 

Carbon 

25 2.0 0.05 90-99 55 - - Exp. Synthetic. 13/87 6 
Na et al., 

2002 

VSA 
3-bed 

 9-step 

Zeolite 13X APG 

3 
60 1.1 0.08 53 87 - - Exp. Synthetic. 15/85 0.08 

Ling et al., 

2015 

VPSA 
3-bed 

 9-step 
UiO-66 MOF 55 2 0.05 60 70 - - Exp. Synthetic. 15/85 0.02 

Andersen et 

al., 2013 

PSA 
3-bed 

 9-step 

Zeolite 5A 

binderless 
35 4 0.3 62 80 0.4 0.035 Exp. Synthetic. 20/80 0.03 

Patrícia A P 

Mendes et 

al., 2017 

TSA 
2-bed 

 5-steps 
Zeolite 13X 30 1.3 147 88-99 70-90 0.9 - Sim. Simulated 15/85 1.3 

Joss et al., 

2017 

Two-stage 

VPSA 

4-bed  

7-steps  
Zeolite 5A 25 1.5 0.1 96 89 0.2 0.020 Sim. Simulated 15/85 0.06 

Liu et al., 

2011a 

VSA 
2-bed 

 4-steps 
Zeolite 13X 20 1.5 0.01 95 89 0.5 0.038 

Pilot 

scale 

Coal-fired power 

plant, dry and 

desulfurized. 

15/85 60 
Torkkeli, 

2014 

VPSA 
3-bed 

 8-step 
13X APG 30-50 1.2 0.02 73-82 84-95 0.5-0.6 0.036-0.044 

Pilot 

scale 

Coal-fired power 

plant* 

desulfurized 

16.5/83.5 32-45 
(Wang et al., 

2013a) 

Two-stage 

VPSA 

3-bed 

8-step 

1st:13X APG 

2nd: A. Carbon 
30 1.3 0.07 95 83 0.7 - 

Pilot 

scale 

Coal-fired power 

plant, 

desulfurized 

16.5/83.5 37 
Wang et al., 

2013b 

* The energy used to dry the flue gas not included in the energy consumption estimation 
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1.4. Adsorbents 
 

The adsorbent determines the overall CO2 capture performance in VPSA technology. 

With a relatively low concentration of CO2 (15-16%) and large quantities of N2 (73-77%) 

on the fossil fuel exhaust stream, a high selectivity toward CO2 is crucial. Several 

challenges are being faced by scientists and engineers alike with respect to the 

commercialization of these materials. The researched materials require further work to 

improve their performance and stability. Suitable materials for carbon capture must 

account for the size of gas molecules and the electronic behavior of such molecules. 

There is not much difference in the kinematic diameters of gas molecules; this makes it 

difficult to base CO2 separation solely on gas molecule size (CO2: 3.30 Å, N2: 3.64 Å) (Li 

et al., 2011). However, electronic properties like quadrupolar moments and polarization 

have been of great help, as bases of separation as they are significantly different for 

each gas (Ben-Mansour et al., 2016). 

An ideal adsorbent for capturing CO2 from post-combustion flue gas would exhibit a high 

selectivity for CO2 over the other flue gas components, high gravimetric and volumetric 

CO2 adsorption capacities, minimal energy penalty for regeneration, long-term stability 

under the operating conditions, and rapid diffusion of the gas through the adsorbent 

material (Songolzadeh et al., 2012). Adsorption processes rely on the use highly porous 

organic or inorganic materials which are either commercially available or under 

development through research on material science and engineering. Different 

adsorbents have been developed for CO2 capture (Zhao et al., 2015) such as activated 

carbons (ACs) (Rashidi and Yusup, 2016; Zhao et al., 2015), zeolites (Cheung and 

Hedin, 2014; Gleichmann et al., 2016; Linda Shi and Hurst, n.d.; Patrícia A.P. Mendes 

et al., 2017; Silva et al., 2012), metal organic frameworks (MOFs) (Ben-Mansour et al., 

2016; Sreenivasulu et al., 2015; Zhang et al., 2014), silica or porous polymers (Lee and 

Park, 2015). Every type of adsorbent has different properties (such as the specific 

surface area, total micropore volume, etc.), which make them more appropriate for 

different operational conditions. The choice of the adsorbent is critical to the effective 

operation of an adsorption unit. The properties of the adsorbents are one of the most 

important aspects of the unit performance for a given cycle configuration (Maring and 

Webley, 2013). For adsorption processes, carbon molecular sieves (CMS) and zeolites 

are feasible adsorbents and are the current adsorbent of choice in many instances, while 

MOF and amine functionalized adsorbents have displayed interesting potentials but are 

still under development (Sumida et al., 2012b). MOFs require further research in their 

chemical and thermal stability as well as their large-scale production process. In contrast, 

these properties are already well-established for the case of zeolites. A comparison of 
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the CO2 capture characteristics of zeolites and MOFs is given by Krishna and Van 

Battem (Krishna and Van Baten, 2012).  

The pore structures of adsorbents such as zeolites and metal-organic frameworks 

comprise regular arrays of uniform channels of molecular dimensions, thus offering the 

possibility of size selective (molecular sieve) separations (Ruthven, 2011). The concept 

of size exclusion is straightforward: Molecules that are too large to enter the pores are 

simply excluded, giving rise (at least in principle) to a highly selective separation. In this 

context, the most appropriate measure of molecular size is the critical molecular 

diameter, which is defined as the diameter of the smallest cylinder that can just 

circumscribe the molecule in its equilibrium conformation.  

While the number of new adsorbent materials reported has proliferated, only a very 

select few will undergo bench-top testing and even fewer will pass on to pilot testing 

stage. This is partly due to the limited availability of production materials in the large 

scale which is often overlooked in the initial materials research. Therefore, the adsorption 

process design for CO2 capture still focuses on commercially available materials such 

as zeolites, ACs and CMS which can be purchased in bulk and tested in pilot or field 

installations (Ben-Mansour et al., 2016; Siriwardane et al., 2001; Songolzadeh et al., 

2012). 

 

1.4.1. Commercial CO2 Adsorbents 
 

Due to their unique properties, zeolite molecular sieves are one of the most utilized 

adsorbents in industry (Yang, 2003). Typical applications for the zeolite types A (Figure 

12 A) and X (Figure 12 B) are drying, purification and separation of gases and liquids. 

Many syntheses and shaping technologies for molecular sieves were developed over the 

last decades. In dynamic adsorption processes, where the adsorbent must be 

regenerated frequently, the fluid dynamics (e.g., the pressure drop over the fixed bed of 

molecular sieves) must be considered. Therefore, the zeolite must be applied in a 

suitable particle size (usually in the form of stable mechanically shaped macroscopic 

particles such as beads/spheres or extrudates/cylinders). 

Because pure zeolite powder does not exhibit binding properties, an appropriate binder 

needs to be applied to form the above-mentioned macroscopic particles. Mineral binders 

such as bentonite, attapulgite, or kaolin are common as well as synthetic binders such 

as alumina, silica or a mixture thereof. To create a defined secondary pore system 

thermally or chemically, removable spacers (e.g., cellulose fibers or soluble salts) are 
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added to the pre-mixture. In most of the bulk zeolite molecular sieves, a binder content 

of around 20% (anhydrous basis) is used. But also lower (down to around 5%) and higher 

(above 30%) binder amounts are described (Gleichmann et al., 2016). 

 

 

 

 

 

 

 

 

 

 

 

 

The binding mechanism of activated binder-containing zeolite molecular sieves is based 

on the generation of a network of binder material, wherein the zeolite crystals are 

embedded. Figure 13 shows SEM pictures of zeolite 13X crystal agglomerates (A) and 

the binder (B). Figure 13 (C) shows the surface of a zeolite 5A bead with binder and (D) 

shows the physical shape bound formed. To avoid the above-mentioned disadvantages 

of binder-containing zeolite molecular sieve bulk materials such as adsorption capacity 

reduction by the adsorption of inert binders or influence of the secondary pore structure 

of the binder material, the so-called ‘binderless’ zeolite molecular sieves were developed.  

Commercial zeolites contain 20% or more of adsorptive inert clay binder (cement) to give 

the necessary mechanical strength to the pellets or beads to be used in packed-columns. 

Such binder usually does not contribute to the adsorption. That means the total 

adsorption capacity is reduced at about the percentage of the added binder. Recently a 

new type of 13X zeolite made with a binder that is itself zeolite 13X (binderless beads) 

(Schumann et al., 2012) proved to increase the sorption capacity of CO2 and CH4 by 

20% (Silva et al., 2012) equal to the proportion of otherwise inert binder material. In 

another study it was also shown that binderless zeolite 5A has a superior CH4 adsorption 

capacity over H2 (Yu et al., 2012).  

Figure 12: (A) Molecular Sieve Type X, (B) Molecular Sieve Type A. (Xinyan Technology, 
2014) 
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There are different manufacturing procedures for binderless molecular sieves described 

in the literature (Gleichmann et al., 2016). Thus, it is possible to generate binderless 

zeolite shapes using temporary binder. A mixture of temporary binder material such as 

kaolin, metakaolin Figure 14 (B) or silica, and zeolite powder Figure 14 (A) are converted 

into zeolite matter. During the chemical conversion of the non-zeolitic components into 

zeolite matter, the binding mechanism changes. In the case of kaolin/metakaolin-based 

systems, the mechanical stability of the shapes is now based on intergrowths between 

zeolite crystals in the single shape Figure 14 (C and D). Said intergrowths are formed 

during the conversion of the metakaolin into a polycrystalline zeolite matter (Schumann 

et al., 2012).  

Despite the different manufacturing procedures of binder-containing and binderless 

zeolite bulk material, the mechanical stability of the resulting shapes is similar 

(Gleichmann et al., 2016). A further interesting observation is, that in the above-

described special manufacturing process for binderless molecular sieves, a very open 

secondary pore system is generated, which allows faster kinetics compared to 

conventional binder-containing zeolite molecular sieves with the (usual) binder content 

of around 20% (Schumann et al., 2012). 

 

 
Figure 13: SEM pictures of the raw materials. (A) (Gleichmann et al., 2016) zeolite 13X 

crystal agglomerates, (B) (Gleichmann et al., 2016) Mineral binder, (C) (Liu et al., 2011b) 
Bead surface of zeolite 5A binder containing, (D) (Liu et al., 2011b)Bead fracture of zeolite 

5A binder containing 

A B 

C D 
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However, besides all obvious advantages of binderless over binder-containing molecular 

sieves mentioned earlier, noted that, at least in the case of the kaolin/metakaolin based 

systems, the structure of the binderless shapes is more rigid than the related binder-

containing shapes. This can easily be explained by the different binding mechanisms: 

intergrowths in the case of the binderless structures, embedment in the case of binder-

containing structures.  

CMSs have been extensively used for the separation of nitrogen and oxygen from the 

air (Ahmad et al., 2008; Son et al., 2005), carbon dioxide and methane (Liu et al., 2016; 

Technologies, 2007; Vu et al., 2002) and, propane and propylene (Liu et al., 2015). 

Because they are less hydrophilic than zeolites but have molecular sieving properties, 

CMS can be used more efficiently in separation processes involving wet-gas streams. 

Their molecular sieving properties derive from their unique pore structure (see Figure 
15).  

Because of the aforementioned and several other promising features, CMS’s have 

attracted considerable interest. Because the finishing step in producing CMS’s is carbon 

deposition in an inert atmosphere at a moderately high temperature, the surface of 

CMS’s is quite uniformly covered by carbon. Unlike activated carbon that has a 

 

A B 

C D 

Figure 14: Binderless zeolite molecular sieve shapes (bulk material) (A) (Gleichmann et al., 
2016) Zeolite 13X, (B) (Gleichmann et al., 2016) Mineral temporary binder (Metakaolin), (C) 

(Gleichmann et al., 2016) Bead surface of binderless zeolite 13X, (D) (Gleichmann et al., 2016) 
Bead fracture of binderless zeolite 13X. 



 

Carbon dioxide capture and utilization by VPSA: a sustainable development. 24 

considerable amount of surface functionality, CMS’s do not have a detectable surface 

functionality. Moreover, they should have fewer exposed inorganic compounds than 

activated carbon, and do not have cations. Consequently, the adsorption of gas 

molecules on CMS’s involves only nonspecific dispersion forces. 
 

 

For these reasons, CMS’s should also be more hydrophobic than activated carbon. The 

main use for CMS’s is nitrogen production from air and CH4/CO2 separation, both by 

PSA. Separations using CMS are based on kinetics and not on equilibrium, i.e., 

separations are obtained by differences in the diffusion rate and/or adsorption rate 

constants of the species involved. The adsorption kinetics do not always depend only on 

molecular size, it is a complex function of size, shape and electronic structure to absorb 

the gas molecules in relation to the micropore type, size and to the surface functional 

groups present on the material (Nabais et al., 2006). 

In addition to CCU, efforts are also being focused on using captured CO2, both directly 

as a working fluid and in chemical conversion processes, as a key strategy for mitigating 

climate change and achieving resource efficiency. CO2 is used as a refrigerant for food 

preservation, beverage carbonation agent, supercritical solvent, inert medium (such as 

fire extinguisher), pressurizing agent, chemical reactant (urea, etc.), neutralizing agent, 

and as gas for greenhouses (see Figure 16).  

Supercritical CO2 (SC-CO2) can be used as either a solvent for separation or as a 

medium for chemical reaction, or as both a solvent and a reactant. The use of 

supercritical SC-CO2 allows contaminant free supercritical extraction of various 

substances ranging from beverage materials (such as caffeine from coffee beans), foods 

(such as excess oil from fried potato chips), and organic and inorganic functional 

materials, to herbs and pharmaceuticals. (Koytsoumpa et al., 2018) Various chemicals, 

materials, and fuels can be synthesized using CO2. These processes require large 

amounts of energy, which should be provided sustainably in the long term when 

Figure 15: (A) Photograph, (B) SEM images of CMS (Liu et al., 2015). 

A B 
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renewable sources of energy such as solar energy is used as the energy input for the 

chemical processing (Alper and Orhan, 2017). CCU stands for the capture of 

anthropogenic CO2 and its subsequent use in an industrial process, transforming CO2 

into another product with commercial value (Jarvis and Samsatli, 2018). 

 

GasN2 as a company which provides of technology for the separation of gases together 

with the PQAT laboratory of IQS detected an opportunity area to develop a technology 

for CO2 capture from combustion gases which can be used inside a variety of industrial 

processes, including both the recovery and the utilization as added-value product. In 

2015 in collaboration with the Catalan government, the research project for developing 

technology for CO2 capture was started through the industrial doctorate program with 

European founding (2014 DI 057).  

GasN2 is a Catalan company on which business growth is based on the continuous 

search of innovative solutions to their clients. To achieve this, the company participates 

in internal R&D projects, as well as in R&D projects of their clients, collaborators and 

academic partners. One of the main interests of the company is the business line based 

in the development of technology for gas separations for their clients. GAN2 has a wide 

experience in the development of equipment to separate nitrogen and oxygen from air.  
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Figure 16: Carbon dioxide applications and uses. 
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1.5. Objectives 
 

 

 

The main objective of this thesis is to develop a cyclic adsorption process to obtain 

carbon dioxide from flue gas streams with a purity higher than 95%, with high recovery 

efficiency, and with a feasible and cheap adsorbent. 

To do that, the following partial objectives are stablished: 

1. Study approach of the Temperature Swing Adsorption (TSA) process by Thermal 

Analysis.  

2. Study approach of the Vacuum Pressure Swing Adsorption (VPSA) to determine 

equilibrium data and capacity of several commercial adsorbents. 

3. Single column binary dynamic adsorption experiments and simulations of VPSA. 

4. Multicolumn VPSA binary dynamic adsorption experiments and simulations. 

5. Design, construction and operation of a multicolumn VPSA pilot plant to produce 

CO2 from a real industrial flue gas. 
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2. Materials and experimental methodology 
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2.1. Materials 
 

A large number of materials have been synthesized and examined at laboratory scale 

as candidates for CO2 adsorbents, but only very few undergo field testing due to the 

limited availability of kilogram scale amounts (Choi et al., 2009; Hedin et al., 2013; Seul-

yi and Park, 2014). Two groups of commercial adsorbent materials were used in this 

work for CO2 capture: zeolites and carbon molecular sieves (CMSs). The main 

characteristic properties of the selected adsorbents were summarized in Table 2. The 

studied zeolites were divided into two types, zeolites with binder (5A, 13XNa, 13X-APG 

and APG-III) and binderless zeolites (13XBL, 5ABL and 4ABL). Zeolite 13X was selected 

as a ‘‘benchmark’’ commercial adsorbent for CO2 capture because of its high CO2 

adsorption capacity and high CO2 selectivity (Ling et al., 2015). Commercially available 

zeolite 13X, is a sodium form of the type X crystal structure, an alkali metal 

aluminosilicate of faujasite framework type (FAU). Its Si/Al molar ratio is 2.35 (Schumann 

et al., 2012), which is widely used in gas separation applications which adsorb molecules 

with critical diameters of up to 10 Å. Zeolite 13X-APG is a FAU framework type with a 

Si/Al ratio of 1.23. This zeolite was designed to be regenerated at high temperatures 

repeatedly (Wang et al., 2012). The APGIII zeolite is an advanced type of 13X zeolite 

that has a higher capacity to work at temperatures of up to 60 °C (Ling et al., 2015). The 

preparation and activation of these commercial zeolites was similar to the classical 13X 

zeolite. Zeolites 4A and 5A are alkali metal aluminosilicates with type A framework (LTA). 

These zeolites possess different charge-balancing cations (calcium in zeolite 5A and 

sodium in zeolite 4A) which tune the effective pore size in Å to approximately that given 

in its name. The binderless zeolites 13XBL (Schumann et al., 2012; Silva et al., 2014), 

5ABL (Patrícia A.P. Mendes et al., 2017) and 4ABL (Müller et al., 2015) were produced 

with metakaolin (Kaorock) instead of the use of inert binder materials (Gleichmann et al., 

2016).  

CMSs belong to the activated carbon (AC) family. The modification of these carbons to 

a molecular sieve type is made by a thermal treatment of the porous structure (Jüntgen 

et al., 1981; Vaduva and Stanciu, 2007). Three different CMSs were used in this work. 

The CMS-F sample from bituminous coal, which will be named as CMS-I in this work. 

The commercial molecular sieves CMS-260 and CMS-330, which will be named as 

CMS- II and CMS-III respectively, are both produced using coconut shells and are 

activated with steam at temperatures of approximately 800° C (Mokhatab and Corso, 

2016; Xiaowei et al., 2016).  
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Table 2: Main characteristics of adsorbents. 

Adsorbent Origin Form 
Particle 

diameter 
(mm) 

Nominal 
Pore 

Diameter 
(Å) 

Average 
Bulk 

Density 
(g/L) 

Supplier 

Zeolites 
13X-APG FAU with binder Spherical 1.6 - 2.4 8 609 UOP 
APG-III FAU with binder Spherical 1.2 - 2.0 8 775 UOP 

13X FAU with binder Spherical 1.2-2.0 8 677 CWK 
13XBL Binderless FAU Spherical 1.2-2.0 8 660 CWK 

5A LTA with binder Spherical 1.2-2.0 5 660 CWK 
5ABL Binderless LTA Spherical 1.2-2.0 5 660 CWK 
4ABL Binderless LTA Spherical 1.2-2.0 4 660 CWK 

Carbon molecular sieves 
CMS-I Hard coal based Cylindrical 1.6 - 2.0 >10 630 Carbotech 
CMS-II Coconut shell based Cylindrical 1.3 - 1.7 >10 630 SHL 
CMS-III Coconut shell based Cylindrical 0.8 - 1.2 >10 650 SHL 
 

2.2. Characterization of textural properties of materials 
 

The textural properties studied in this work (surface area and narrow micropore volume) 

of the different adsorbents were measured with a nitrogen adsorption isotherm at 77 K 

and a carbon dioxide isotherm at 273 K on a static adsorption analyzer ASAP 2020 

(Micrometrics, USA). The isotherms of CO2 and N2 adsorption on the adsorbent were 

also obtained with the same apparatus at discrete temperatures within the pressure 

range of 0–114 kPa. To remove any remaining water in the pores, the samples were 

degassed for 6 hours at 623 K for zeolites, and 393 K for ACs and CMSs, applying in all 

cases vacuum under 3 mm Hg for 17 hours prior to each adsorption experiment. Specific 

surface areas were calculated using the Brunauer−Emmett−Teller (SBET) method, with 

an appropriate relative pressure range selected to ensure a correct fitting for the 

correlation coefficient (Parra et al., 1995; Rouquerol et al., 2007). Narrow micropore 

(<0.7 nm) volumes (VDACO2) were obtained from the CO2 isotherms by applying the 

Dubinin-Astakhov (DA) equation to the adsorption data. 

 

2.3. Methodology for fast screening adsorbent materials for CO2 
adsorption for TSA process. 

 

The main challenge on the design of TSA systems is to achieve a high efficiency in the 

heat transfer. The operational cost due the heating and the cooling processes during the 

cyclic adsorption/desorption represents an important constraint in terms of the total 
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energy consumption. So, to reduce the column regeneration time and energy 

consumption can lead to recovering more of the adsorbed CO2 per unit of time with a 

lower cost. The standard methods used to determine the adsorption capacity of 

adsorbents in the studies found in the literature are mainly differential gas adsorption 

manometry (Liu et al., 2011b; Su and Lu, 2012; Webley et al., 2017) and gas adsorption 

gravimetry (Cavenati et al., 2004; Garcia et al., 2013; Rouquerol et al., 2014a). However, 

these methods are very time consuming (between 1 to 2 days each measurement). In 

this work is described a faster screening methodology to select the suitable adsorbent 

and working temperature range (adsorption and desorption) for a TSA process with a 

simple thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). 

The presented methodology allows the evaluation of the adsorption/desorption capacity 

of an adsorbent over an entire temperature range; and similarly, qualitative information 

about the initial adsorption/desorption rates.  

 

2.3.1. Determination of the CO2 adsorption capacity and adsorption heat 

for TSA process. 
 

The adsorption capacity (qTGA), adsorption heat (ΔHads) and desorption heat (ΔHdes) of 

the selected materials were determined to evaluate their practicability in a TSA process, 

comparing qCO2 at a low-pressure value (0.30 barg) and the heat required to regenerate 

the adsorbents. qCO2 was determined in TGA by measuring the mass difference between 

the CO2 adsorption and the desorption process by increasing the temperature. The 

characteristic curve for the TGA/DSC experiments for CO2 adsorption is shown in Figure 
17. 

TGA experiments were carried out on a Mettler Toledo horizontal balance TGA/DSC-1 

with simultaneous TGA and DSC. The temperature and calorimetric accuracies were 

0.5 °C and 0.0001 mg respectively. This instrument has up to 6 temperature sensors 

which were in the measurement pan. CO2 ΔHads and ΔHdes were determined using a 

differential scanning calorimeter DSC 821, Mettler Toledo with 50 temperature sensors, 

which makes it more precise than the TGA/DSC-1. The temperature and calorimetric 

accuracies of the DSC 821 were 0.01 °C and 0.01 mJ respectively. Prior to the 

adsorption experiments, the temperature of the instrument’s furnace and heat flow of 

both equipment were calibrated using a single point indium melting event. The TGA 

balance requires a minimum protection flow of N2 of 20 ml/min to secure the instrument 

from any possible chemical interaction between the reactive gas and the sensors. The 

balance of both equipements were calibrated using a certified weight of indium. The 
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melting point and melting heat of indium (ΔHindium) at atmospheric pressure is 156.6 °C 

and 28.43 J/g respectively.  

 

 

The qTGA, ΔHads and ΔHdes were determined following the methodology described in Table 

3. First, carbonaceous adsorbents and zeolites were dehydrated at 200ºC for 15 minutes 

and 350 °C for 60 minutes respectively. Subsequently, the adsorbents were cooled down 

Figure 17: (A) CMS-I TGA curve for adsorption of CO2, (B) CMS-I DSC curve for adsorption of 
CO2. 

 

A 

B 
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to 40 °C and then the CO2 adsorption was performed with 70 ml/min of a mixture of 15% 

CO2/ 85% N2 at 40°C until the adsorption equilibrium was reached. All gases used were 

provided by Linde Group and used as received: carbon dioxide 4.5 and nitrogen 5.0 

(purity greater than 99.995% and 99.999%, respectively). The mixture of 15% CO2/ 85% 

N2 was produced setting the flow ratio of the feed gases into the TGA/DSC-1 or DSC 

821 control system and measuring the feed CO2 concentration with a non-dispersive 

infrared sensor (GSS, UK). 

 

Table 3: TGA/DSC analysis method for the determination of q and ΔH for CMSs and zeolites. 

 Stage 
CMS Zeolites 

Temperature (°C) Time (min) Temperature (°C) Time (min) 

Dehydration 200 15 350 60 
Cool down 200-40 32 350-40 62 
Adsorption 40 20 40 80 
Desorption 40-200 6 40-350 10 
Isothermal 200 10 350 60 

 

The qTGA (mmol/g) ΔHads (kJ/mol) and ΔHdes (kJ/mol) were calculated with Equation (1) 

and Equation  

(2), respectively. 

𝑞𝑇𝐺𝐴 =
(𝑤𝑒𝑞 −𝑤0) × 103

𝑚𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑛𝑡 ×𝑀𝑊
 

. 

(1) 

 

∆𝐻𝑎𝑑𝑠 =
∆𝐻𝑖𝑛𝑑𝑖𝑢𝑚 ∙ (

𝐴𝑠𝑎𝑚𝑝𝑙𝑒

𝐴𝑖𝑛𝑑𝑖𝑢𝑚
) ∙ (

𝑚𝑖𝑛𝑑𝑖𝑢𝑚
𝑚𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑛𝑡

)

𝑞
 

 

(2) 

 

where weq is the weight (mg) when the adsorption reaches the equilibrium and w0 is the 

initial weight of the adsorbent (mg) obtained from the TGA analysis. madsorbent is the mass 

of the adsorbent (mg) and MW is the molecular weight of CO2 (44 g/mol). In the 

determination of ΔHads, ΔHindium is the melting heat of indium (J/gindium), Asample is the 

integral area of exothermic peak due to the adsorption of CO2, Aindium is the integral area 

of endothermic peak due to the melting of indium, mindium is the mass of indium (mg). 

Blank tests without adsorbent were also conducted to correct buoyancy effects 

subtracting the blank curve from the experimental curve. The calibration of these 

instruments is done periodically by the technician of the service, however the result of 

equation 2 is directly calculated by the instrument and is not directly handled by the user. 
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The reproducibility of the methodology was validated using different amounts of zeolite 

APG-III beads (from 1 to 5 beads) by triplicate. 

 

2.3.2. Study of the Temperature Swing Adsorption cyclic behavior. 
 

The TSA cyclic behavior was carried out during 7 cycles of adsorption/desorption with a 

flow of 70 ml/min of a mixture of 15% CO2/ 85% N2. For this study three methodologies 

were used. The first methodology is shown in Table 4 and it was used to compare the 

behavior of zeolites and CMSs at conventional TSA working temperatures (40 ºC for 

adsorption and 120 ºC for desorption). In this part of the study the selected adsorbents 

CMS-I and APG-III were used as representative of carbonaceous and zeolite materials. 
 

Table 4: Methodology for the cyclic performance analysis of CMS-I and APG-III. 

 Stage Temperature (°C) Time (min) 

Cool down 120 - 40 20 
Adsorption 40 20 
Desorption 40 - 120 5 
Isothermal 120 5 

 

With this first methodology, it was observed that zeolite APG-III was not completely 

regenerated during the desorption stage at 120ºC. For that reason, an additional 

experiment was carried out with APG-III increasing the desorption temperature up to 

350ºC (Table 5) with the objective of comparing the cyclic performances of APG-III and 

CMS-I under conditions of complete regeneration. 
 

Table 5: Methodology for the cyclic performance analysis at complete regeneration of APG-III. 

Stage Temperature (°C) Time (min) 

Cool down 350-40 70 
Adsorption 40 20 
Desorption 40-350 15 
Isothermal 350 5 

 

The influence of the desorption temperature on the TSA performance was studied with 

the methodology described on Table 6, a set of experiments was carried out varying the 

desorption temperature from 60ºC to 150ºC while the adsorption temperature was kept 

at 40°C.  
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Table 6: Methodology for study the influence of desorption temperature in the cyclic 
performance of APG-III. 

Experiment Adsorption 
Temperature (ºC) 

Desorption 
Temperature (ºC) 

Cycle time 
(min) 

1 40 60 142 
2 40 90 156 
3 40 120 163 
4 40 150 161 

 

On the other hand, flue gases typically are at high temperatures (90ºC to 120ºC). 

Therefore, the influence of the adsorption temperature on the TSA performance was 

studied with the methodology described on Table 7. To investigate this impact a set of 

experiments was carried out using different adsorption temperatures, from 40ºC to 120ºC 

while the desorption temperature was kept at 150°C. The selected range of temperatures 

in this study was selected according to the literature (Ling et al., 2015). Zeolite APGIII 

was used in the experiments, and all the experiments were performed with 70 ml/min of 

a mixture of 15% CO2/ 85% N2. 
 

Table 7: Methodology for study the influence of adsorption and desorption temperatures for 
APG-III. 

Experiment Adsorption 
Temperature (ºC) 

Desorption 
Temperature (ºC) 

Cycle 
time 
(min) 

1 40 150 161 
2 60 150 155 
3 90 150 148 
4 120 150 144 

 

 

2.4. Adsorption equilibrium isotherms for pure components. 
 

Adsorption equilibrium isotherms of pure gases on different adsorbents were performed 

in a magnetic suspension microbalance (Rubotherm-VTI, Germany) operated in a closed 

system. The sample of adsorbent is weighted and placed in a basket suspended by a 

permanent magnet through an electromagnet (magnetic suspension coupling). The cell 

in which the basket is housed is then closed, and vacuum is applied. An analytical 

balance connected to the magnetic coupling receives the weight values measured inside 

the cell, and through an acquisition system, records the data in a computer (see Figure 
18). A description of the gravimetric unit operation is given elsewhere (Cavenati et al., 

2004). Prior to the experiment, the adsorbents were degassed under a vacuum at 350°C 
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for zeolites and 150ºC for CMSs at high vacuum conditions (1x10-8 mbara). 

Monocomponent adsorption of N2 and CO2 were measured at 283 K, 298 K, 323 K, 343 K 

in the range of 0 to 1000 KPa. The reversibility of the isotherms was confirmed 

performing the desorption measurements without hysteresis. The heating rate to reach 

this temperature was 5 K/min with an accuracy of 0.01 K and an accuracy for weight 

measurement of 1µg. Corrections for buoyancy effects were performed in the pressure 

range studied. 

 

2.4.1. Monocomponent adsorption data handling  
 

In the high-pressure magnetic suspension balance, absolute adsorption cannot be 

obtained directly from the gravimetric measurement, and the excess mass adsorbed is 

obtained instead. The excess and absolute adsorption are correlated as follows 

(Cavenati et al., 2004): 

𝑞 = 𝑞𝑒𝑥𝑐 +
𝜌𝑔𝑉𝑎𝑑𝑠

𝑚𝑠𝑀𝑊
 

. 

(3) 

 

where q (mmol/g) is the absolute amount adsorbed, qexc (mmol/g) is the excess amount 

adsorbed, ρg (g/L) is the density of the gas, Vads (L) is the adsorbed volume of the gas, 

ms is the mass of adsorbent (g), and MW (g/mol) is the adsorbate molecular weight. 

Although in gas adsorption under a sub-atmospheric pressure range Vads is negligible, it 

cannot be neglected in a high pressure range (Hamon et al., 2014; Murata et al., 2002). 

Figure 18: Experimental set-up of the closed unit used for gravimetric measurements: V1 and 
V2, on-off valves; VT1, three-port valve; PT, pressure transducer; VP, vacuum pump 

(Dreisbach et al., 1999) 
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In this case, either the density or volume of the adsorbed phase must be known, which 

are not readily accessible by an experimental measurement. Thus, estimates of the 

adsorbed phase density or volume are usually employed. Herein, the volume of the 

adsorbed phase is approximated by (Dreisbach et al., 1999)  

𝑉𝑎𝑑𝑠 ≅
𝑚𝑎𝑑𝑠

𝜌𝐿
 

. 

(4) 

where mads (g) is the mass of the adsorbed phase and ρL (g/L) is the adsorbed phase 

density, which is assumed to present a density similar to that of the liquid phase at the 

adsorption temperature (Tads). The adsorbate liquid phase density is then calculated as 

𝜌𝐿 =
𝑀

𝑉𝑚
 

. 

(5) 

Vm (L) is the molar volume calculated by the Gunn-Yamada method (Poling et al., 2001) 

when Tads < Tc (Tc is the critical temperature of the adsorbate) and equals the van der 

Waals co-volume of the adsorbate, b, when Tads ≥ Tc. By replacing equation (4) into 

equation (3), we get that the absolute adsorption capacity can be calculated from the 

following equation (Garcia et al., 2013):  

𝑞 =
𝛥𝑚 + 𝜌𝑔(𝑉𝑆 + 𝑉𝑖)

𝑚𝑠𝑀
∙

𝜌𝐿
𝜌𝐿 − 𝜌𝑔

 
. 

(6) 

where Δm (g) is the microbalance signal when adsorption equilibrium is reached, ρg (g/L) 

is the density of the gas at measuring conditions, and (VS+Vi) are the adsorbent volume 

and measuring cell volume, respectively. These volumes are measured by adsorption 

isotherm measurements with helium as adsorbate and assuming that it accesses the 

total pore volume of the sample without being adsorbed. Helium measurements were 

done at 338 K and pressures that were similar to conditions during an adsorption run 

with adsorptive gases. Prior to the measurements, the measuring cell with the adsorbent 

was dried under vacuum at 373 K for 120 min. The cell was then cooled down to the 

measuring temperature, and pressurization was attained with He in a stepwise mode 

(Garcia et al., 2013). 

 

2.4.2. Monocomponent isotherm models 
 

The Langmuir equation (equation (7), describes monolayer surface adsorption on an 

ideal and flat surface assuming surface homogeneity, localized adsorption on the solid 

surface, and energetically equivalent adsorption sites, were q (mmol/g) is the total 
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adsorbed amount and P (bara) is the pressure in the system (Do, 1998). The equation 

contains two parameters: the saturation capacity, qs (mmol/g), and the affinity constant 

parameter, b (1/bara). It is important to have the temperature dependence form of an 

isotherm equation, so that adsorption equilibrium at various temperatures can be 

described. The affinity constant’s dependence on temperature is described using an 

Arrhenius-type equation (equation  

(2) with parameters b0 (1/bar) and ΔHi (kJ/mol), which correspond to a pre-exponential 

factor and the isosteric heat of sorption respectively. T (K) is the system’s temperature, 

and R (kJ/K٠mol) is the ideal gas law constant. 

𝑞 =
𝑞𝑠𝑏𝑃

1 + 𝑏𝑃
 

. 

(7) 

𝑏𝑖 = 𝑏0exp⁡(
−𝛥𝐻𝑖

𝑅𝑇
) 

. 

(8) 

Adsorption in real solids, however, is a heterogeneous process because solids present 

complex porous and surface structures, which rarely satisfy the basic assumptions made 

in the Langmuir theory. This heterogeneity is characteristic of the specific solid-adsorbate 

pair rather than the solid alone. Thereby, many semiempirical approaches have been 

successfully developed to describe equilibrium data, such as the ones described next. 

The Sips equation (equation (9) sometimes called the Langmuir-Freundlich equation in 

the literature because it has the combined form of Langmuir and Freundlich equations, 

has three model parameters, the saturation capacity, qs (mmol/g), the affinity constant 

parameter, b (1/bar) and the parameter “n”. Parameter n characterizes the system 

heterogeneity for ideal surfaces. The system heterogeneity could stem from the solid or 

the adsorbate or a combination of both. The parameter n is usually greater than unity, 

and therefore the larger is this parameter the more heterogeneous is the system. The 

temperature dependence of b is taken from that of the Langmuir equation. The difference 

between this equation and the Langmuir equation is the additional parameter “n" in Sips 

equation. If the parameter “n” is one, the Langmuir equation is recovered. 

𝑞 =
𝑞𝑠(𝑏𝑃)

1
𝑛⁄

1 + (𝑏𝑃)
1
𝑛⁄

 
. 

(9) 

The Freundlich equation is not valid at the low and high ends of the pressure range 

because it does not possess the correct Henry’s law type behavior. One of the empirical 

equations that is popularly used and satisfies the low and high limits is the Toth equation. 

This equation describes well many systems with sub-monolayer coverage, and it has the 

following form 
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𝑞 =
𝑞𝑠𝑏𝑃

[1 + (𝑏𝑃)𝑡]
1
𝑡⁄
 

. 

(10) 

Here “t” is the Toth heterogeneity parameter, which is usually less than unity. The 

parameters b (1/bar) and t are specific for adsorbate-adsorbent pairs. When t is one, the 

Toth isotherm reduces to the famous Langmuir equation; hence like the Sips equation 

the parameter t is said to characterize the system heterogeneity. If it deviates more from 

unity, the system is said to be more heterogeneous. Because of its simplicity in form and 

its correct behavior at low and high pressures, the Toth equation is recommended as the 

first choice of isotherm equation for fitting data of many adsorbates such as 

hydrocarbons, carbon oxides, hydrogen sulfide and alcohols on activated carbon as well 

as zeolites. The Sips equation presented in the last section is also recommended but 

when the behavior in the Henry’s law region is needed, the Toth equation is the better 

choice (Do, 1998).  

An alternative model to fit the pure component data is the single gas dual-site Langmuir 

(DSL) four parameters model qs1 (mmol/g), qs2 (mmol/g), b1(1/bar) and b2 (1/bar), which 

describes the adsorption of a pure component on a heterogeneous adsorbent that is 

composed of two homogeneous but energetically different sites (Bhadra et al., 2012; 

Ritter et al., 2011). All the assumptions of the Langmuir model apply to each patch, with 

no interactions between the two patches. The amount adsorbed would be given by 

equation (11): 

𝑞 =
𝑞𝑠1𝑏1𝑃

1 + 𝑏1𝑃
+

𝑞𝑠2𝑏2𝑃

1 + 𝑏2𝑃
 

. 

(11) 

where qs1 and qs2 are the saturation capacities at site 1 and 2, respectively, so the total 

saturation capacity is the sum of those on each patch or site (qs=qs1+qs2); b1 and b2 are 

the affinity parameters or free energy for site 1 and 2, respectively, which are considered 

to be temperature-dependent as expressed in equation (12), where the subscript j 

represents the free energy level of site 1 or 2, b0, j are the pre-exponential factors or 

adsorption entropies, and ΔHj (kJ/mol) are their corresponding adsorption energies. 

𝑏𝑗 = 𝑏0,𝑗exp⁡(
−𝛥𝐻𝑗

𝑅𝑇
) 

. 

(12) 

In equation (12), j=1 always denotes the higher adsorbate-adsorbent free energy as 

opposed to j=2 that always denotes the lower adsorbate-adsorbent free energy. The free 

energy of site 1 is always higher than that of site 2 for single-gas adsorption (Ritter et al., 

2011). 
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2.4.3. Binary dynamic adsorption experimental procedure. 
 

Binary dynamic experiments were carried out in a fixed bed previously saturated with N2 

with 13XBL and 5ABL. The experiments were performed at 293 K, 313 K, 333 K and 

363 K over a range of absolute pressures from 1.3 bara to 8 bara. These values cover 

the temperature conditions likely to be found in a post combustion capture scenario, 

where CO2 needs to be separated from a CO2/N2 gas stream. The experiments were 

performed using a mixture of 15% CO2 and 85% N2, with a flowrate of 5 L/min. The 

adsorbent saturation is reached when the concentrations on the inlet (Cin) and the outlet 

(Cout) streams are the same, in order to assess the maximum dynamic adsorption 

capacity of the adsorbent.  

 

 

The concentration profiles of N2 in Figure 19 show that this component is detected from 

the beginning of the adsorption step since it is not adsorbed on the solids bed, while CO2 

is not detected over a period of time and thus adsorbed. Once reached the saturation of 

CO2 and N2, the pressure is increased from 1.3 to 8.0 bars, reaching on each pressure 

the column saturation. Through the breakthrough curves it is possible to calculate the 

accumulated moles of CO2 and N2 of the binary adsorption by subtracting the area under 

the curves of the input and the output streams and multiplying by the molar flow of each 

substance (see Figure 19). As the column is previously saturated with nitrogen, the 

volume of nitrogen must be subtracted for the calculation of the initial adsorption. Prior 

Figure 19: N2 and CO2 binary adsorption breakthrough curves of binderless zeolite 5ABL in a 
fixed bed at 298 K. 
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to each experiment, degassing of the adsorbent was carried out under vacuum at 423 K 

overnight. All gases used were provided by Linde Group and used as received: carbon 

dioxide 4.5 and nitrogen 5.0 (purity greater than 99.995% and 99.999%, respectively). 

 

2.4.4. Binary adsorption equilibrium equations.  
 

Successful prediction of binary adsorption equilibria relies entirely on an accurate 

measurement of single component data and on a reliable correlation of these data with 

an isotherm model (Garcia et al., 2013). Using the pure component isotherm parameters, 

adsorption equilibria of binary mixtures can be predicted by extending the corresponding 

single component equations to binary adsorption equations. 

Thus, the amount adsorbed of component i of a binary mixture is given by equations 

(13), (14) and (15), which are known as the extended binary Toth, Sips, and DSL 

equations, respectively.  

𝑞𝑖 =
𝑞𝑠,𝑖𝑏𝑖𝑦𝑖𝑃

[1 + (∑ 𝑏𝑘𝑦𝑘𝑃
𝑛
𝑘=1 )𝑡𝑖]1 𝑡𝑖⁄

 
. 

(13) 

𝑞𝑖 =
𝑞𝑠,𝑖(𝑏𝑖𝑦𝑖𝑃)

1 𝑛𝑖⁄

1 + (∑ 𝑏𝑘𝑦𝑘𝑃
𝑛
𝑘=1 )1 𝑛𝑖⁄

 
(14) 

𝑞𝑖 =
𝑞𝑠1,𝑖𝑏1,𝑖𝑦𝑖𝑃

1 + (∑ 𝑏1,𝑘𝑦𝑘𝑃
𝑛
𝑘=1 )

+
𝑞𝑠2,𝑖𝑏2,𝑖𝑦𝑖𝑃

1 + (∑ 𝑏2,𝑘𝑦𝑘𝑃
𝑛
𝑘=1 )

 
(15) 

 

In equations (13), (14) and (15), i stands for the species for which the isotherm qi is being 

evaluated, y would be the gas mole fraction of the corresponding component (denoted 

by subscript i or k), and n is the total number of components in the gas mixture.  

 

2.5. Key adsorption performance indicators. 
 

The optimization of a TSA or VPSA process involves minimizing its costs, namely both 

the capital and operating costs, which are controlled primarily by the productivity and the 

specific energy consumption, respectively (Joss et al., 2017).The performance of an 

adsorbent for a separation depends on several factors. One of the most important is its 

working capacity (w; mmol/g). This is defined as the difference between the uptake at 

the feed pressure and the uptake at the regeneration pressure.  
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wi =
(madsorbed −mdesorbed) × 103

madsorbent ×MW
 

. 

(16) 

MW (g/mol) is the molecular weight, madsorbed (g) and mdesorbed (g) were the mass of CO2 

adsorbed and desorbed respectively. For any given adsorbent, working capacity 

depends partly on the isotherm shape. Figure 20 shows the pressure-swing and 

temperature swing cycles in PSA and TSA, where n is the equilibrium amount adsorbed 

and P is pressure, and the working capacity i in each case is given by nads-ndes. Lowering 

Pdes in VPSA increases nads-ndes, as does increasing Tdes in TSA. Then, for TSA, the 

working capacity is the difference between the uptakes at the feed temperature and the 

regeneration temperature at the working pressure and for VPSA it is the difference 

between the uptakes at the feed pressure and the regeneration pressure at the working 

temperature. The steeper the isotherm in the operating pressure range at the process 

temperature, the greater the working capacity (for an adsorbent with a given saturation 

uptake). 

 
Figure 20: Adsorbent’s working capacity depends on the shape of its isotherm (Broom, 

2018). 

 

The adsorbent used in a TSA or VPSA process must thereby fulfill certain specifications, 

which are a minimum working capacity, mechanical and thermal stability. However, for 

an optimal separation the equilibrium selectivity is more important. Selectivity (Seq), is 

usually defined as: 

S𝑒𝑞 =
𝑛1 𝑛2⁄

𝑝1 𝑝2⁄
 

. 

(17) 

where n1 (mol) and n2 (mol) are the molar loadings of Species 1 and 2 at partial pressures 

of p1 (bar) and p2 (bar), respectively under the process conditions. For an adsorption 

process the kinetic selectivity (Skin) depends on the ratio of the uptakes in a given time 
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which, for a diffusion controlled process, kinetic selectivity meanwhile, can be expressed 

as (Ruthven, 2011): 

S𝑘𝑖𝑛 =
𝑞1
𝑞2

=
𝐾1
𝐾2

√
𝐷1
𝐷2

 
. 

(18) 

where q1 and q2 are total adsorbed amount of species 1 and 2, the K1 and K2 are the 

Henry’s law constants and D1 and D2 are the diffusivities of species 1 and 2, respectively. 

Equilibrium selectivity therefore depends on the relative equilibrium quantities of each 

component adsorbed under the process conditions, whereas kinetic selectivity depends 

on differences in diffusion rates. The productivity (Pr) is defined as the working capacity 

divided by the total cycle time. The productivity was given with the following equation:  

𝑃𝑟 =
𝑚𝐶𝑂2

𝑡𝑐𝑦𝑐𝑙𝑒 ∙ 𝑚𝑎𝑑𝑠
 (19) 

 

Where tcycle (h) is the total cycle time, mads is the mass of the adsorbent and mCO2 is the 

weight of CO2 recovered (gCO2). Besides, the energy consumption (eTSA) of the 

TSA/VPSA was evaluated measuring the amount of energy used to adsorb and desorb 

the CO2 over the cycle time. For TSA process, the energy consumption was determined 

with DSC analysis by integrating the heat by mass of adsorbent (kJ/gads) used during the 

desorption (ΔHdes) and adsorption (ΔHads) steps in each cycle per unit time and CO2 

adsorbed amount (mmol/gads). 

eTSA =
∆Hdes + ∆Hads

q𝑖 ∙ tcycle
 

. 

(20) 

 

In the case of VPSA, the energy consumption was determined measuring the power 

consumption (PC) used during the process with a power meter measuring watts per unit 

time (W٠h) divided by the weight of CO2 recovered. 

eVPSA =
𝑃𝐶

mCO2
 

. 

(21) 

 

 

  



 

Carbon dioxide capture and utilization by VPSA: a sustainable development. 44 

 

  



 

Angel Eduardo Gutiérrez Ortega 
45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Cyclic adsorption design and experimental procedure. 
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3.1. Process description based on the VPSA process for CO2 capture 
from flue gas. 

 

For CO2 capture from flue gases needs to be concentrated from a low concentration 

stream (9 to 15% CO2 v/v). Therefore, the scheduling of the VPSA process should be 

based on this requirement (Ling et al., 2014; Riboldi and Bolland, 2017b). Usually, two 

modifications to the Skarstrom cycle have been proposed to improve the heavy product 

purity or enrichment, namely, the addition of a cocurrent depressurization step or the 

addition of a high pressure rinse (i.e., heavy reflux) step.(Liu et al., 2011a) The use of 

residual flows is applied to reduce energetic consumption related to compression energy 

to economize the process. In this work, an eight step VPSA process was employed to 

produce high-purity CO2 as follows: The steps of this cycle are displayed in Figure 21  

(1) Pressurization (FP): The pressure is increased from low pressure to a higher 

pressure with feed of flue gas.  

(2) Feed (FD): When the working pressure is achieved, the column outlet is 

opened. In this step, the CO2 is preferentially absorbed, and the N2 as the 

element less retained (termed as raffinate) flows through the adsorbent to the 

outlet.  

(3) Depressurization (DP): After the feed step, the pressure of the column is 

reduced to atmospheric pressure (concurrently to feed).  

(4) Rinse (RN): Part of the CO2 is recycled to the column before desorption. The 

product gas, which is already highly enriched in CO2, displaces the N2 from the 

adsorbed phase near the feed end of the column and flushes it downstream 

towards the N2 end of the column. 

(5) Provided pressure equalization (EP). This step is performed by putting two 

columns at different pressure levels into contact to save energy. The high 

pressure of the column can be reduced. 

(6) Regeneration (RG). In this step, CO2 is removed from the adsorbent. In VPSA 

technology for CO2 capture, high-purity CO2 will be recovered in this step. The 

blowdown is carried out at lower pressure. 

(7) Purge (PR): To remove the CO2 from the adsorbent, a counter-current purge 

with N2 exiting from the other column at the feed step is carried out. This step 

is also carried out at the lowest pressure of the system. 

(8) Received pressure equalization (ER): The column is connected with the 

provided pressure equalization column to receive the compression energy and 

reduce the energy consumption on the pressurization stage.  
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3.1.1. Single column batch configuration. 
 

To study the competitive adsorption kinetics of CO2 and N2 in a fixed-bed experiment, a 

batch configuration of the cycle previously described is shown in Figure 22. In the 

process sequence, each cycle is explained in a series of steps or events. These batch 

configuration steps are the co-current pressurization with feed, high pressure feed, 

countercurrent depressurization to atmospheric pressure, counter-current regeneration 

at low pressure, countercurrent purge at low pressure with nitrogen to displace carbon 

dioxide from the product end and a pressure equalization using an auxiliary tank. 

The operating conditions and each step duration employed in the VPSA single column 

batch configuration are the following: column jacket temperature (Tt), constant 

adsorption pressure (PT), desorption time at the vacuum pressure (tV). The kinetic control 

based on the continuous monitorization of section 3.4.1 is included in said configuration. 

The control parameters for the process of each step are: the three-output stop point 

variables SFD, SPR and SRN, the vacuum pressure on the regeneration step (PV) and the 

flowrates on the feed (QFD), rinse (QR) and the vacuum (QV) streams. 

 

 

 

Figure 21: Eight steps VPSA cycle in a column representation. 
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Figure 22: Schematic diagram of a VPSA batch description for fixed bed experiments. 

 
 

 

3.1.2. Three-column cyclic configurations for VPSA for CO2 capture from 

flue gas  
 

To arrange the steps in continuous sequence, three columns were chosen for this work 

(Liu et al., 2012). The Figure 23 shows the different interconnections in the three column 

VPSA process steps. When the column is in the feed step, the stream is rich in nitrogen 

from the raffinate stream, and this is then used for the purge step in a different column. 

The CO2 separated in the process is then recirculated in the rinse step. In the equilibrium 

step the energy pressure of one column filled with CO2 after the rinse step is transferred 

to another column that is going to be pressurized for the pressurization step. 

Figure 23 also shows the scheduling of the eight process steps combined sequentially 

in three columns represented through the numbers 1, 2 ,3. Each column step and step 

stream is represented with a different color as follows: Feed and pressurization, green; 

depressurization, orange; rinse, red; provided or received equalization, yellow; 

regeneration, blue and purge, purple. The CO2 is stored in a tank after the desorption 

through the vacuum pump (VP) for later reflux. 
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Figure 23: Interconnections on the three column VPSA process. VP; vacuum pump. 

 

3.2. Experimental set‐ups. 

3.2.1. Equipment to produce gas mixtures. 
 

The experimental set-up allows to work with binaries gas mixtures from 1 to 99% v/v of 

CO2/N2. The diagram of the experimental apparatus employed to produce CO2/N2 

mixtures is shown in Figure 24. The apparatus consists of a gas static mixer connected 

to a N2 generator GN-03 (GasN2, Spain) of 99.999% of N2 purity and a CO2 gas cylinder 

of 99.995%of purity. The system can work between 0.1 to 4 bara of pressure on the low-

pressure mixture tank and until 9 bara in the high-pressure tank, with a product flowrate 

between 1.2 to 69.1 g/min of mixture 15% CO2, 85%N2 v/v. The CO2 concentration was 

analyzed with a nondispersive infrared absorption sensor I-208 (Gas Sensing Solutions, 

Scotland). The flow of CO2 was controlled with a mass-flow controller I-207 (M+W 

Instruments GmbH, Germany), the flow of N2 was fixed with a needle valve V-201. The 

pressure of both gases is controlled by pressure controllers I-206 and I-207 (SMC, 

Japan), and the setup is equipped with two pressure transmitters I-210 and I-211 (Wika, 

Spain) for monitoring the pressure on the mixture generation. The pure gas streams are 

previously filtered by two centrifugal filters (one on each gas line). A static mixer with 

intern deflectors ensures the constant mixing profile and avoid the stratification of the 

 

1 1 11 1 1

2 2 22 2

3 3 333 3 3

1

2

1

2
CO2

2

3 VP



 

Angel Eduardo Gutiérrez Ortega 
51 

mix and a solenoid valve (Metalwork, Italy) control the mixture gas generation. A 

programmable logic controller (PLC) with a data-acquisition system (Schneider Electric, 

France) was used to automate the processes. Figure 25 shows a photograph of the 

installation of the developed mixture equipment system. 

 

 

 

The pipes are made of stainless steel of ¼ diameter (Inoxpress, Italy), the flexible tubing 

is made polyamide (Parker, U.S.) and all connections are automatic push in fitting "R" 

series (Metalwork, Italy). The nitrogen was provided by a nitrogen generator GN-03 

(GasN2, Spain) of 99.999% of N2 purity.  

Figure 24: Equipment to produce gas CO2/N2 gas mixtures. Symbols: PCV, Pressure controller 
valve; PCI, Pressure controller and indicator; PI, Pressure Indicator; FTC, flow transmitter and 

controller, pressure transmitter; QT, Concentration transmitter. 

Figure 25: Picture of the mixer equipment developed. 
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3.2.2. Single column VPSA laboratory setup for dynamic equilibrium 

experiments. 
 

A single column VPSA laboratory setup was built to carry out dynamic equilibrium 

experiments. The adsorption column was designed with Solidworks® as a tube and shell 

exchanger with service fluid to control the temperature of the adsorbent in the column. 

The column was built with an inner aluminum tube of 25 mm of diameter, 340 mm of 

length and 3.4 mm of thickness. The tube is enclosed by a second aluminum tube of 53 

mm of diameter with a 2.5 mm of thickness, the total length of the column is 340 mm. In 

both cases an aluminum alloy 6060 (Aalco, England) was used as a construction 

material. The jacket formed between the two concentric tubes is used to keep the internal 

bed temperature constant. The temperature of the column was controlled and adjusted 

by a thermostat (JULABO GmbH, Germany) for the adsorption process and for 

adsorbent degassing. Figure 26 shows the 3D design of the adsorption column. 

 

The diagram of the experimental apparatus is shown in Figure 28, the column is 

equipped with three pressure transmitters I-106, I-111 and I-120 and a vacuum pressure 

transmitter I-115 (Wika, Spain). The temperature of the column was monitored with two 

thermocouples (Electricfor, Spain) located at 5 cm I-113 and 33 cm I-114 from the bottom 

of the column. The range of operating conditions was between 0.1 to 8 barg of pressure 

and temperatures between 10ºC to 160ºC, with a feed flowrate between 0.2 to 69 g/min 

Figure 26: 3D design of the adsorption column. 
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of a mixture 15% CO2, 85% N2 v/v. The inlet and the outlet gas temperature were 

measured with two thermocouples I-110 and I-114 respectively (Electricfor, Spain). The 

flow of the gas in the column inlet I-107 was controlled with a mass-flow controller (M+W 

Instruments GmbH, Germany), the column outlet I-118 and the regeneration I-123 

streams were measured with two mass-flow meters (M+W Instruments GmbH, 

Germany).  

 

 

 

The CO2 concentration was analyzed with nondispersive infrared absorption (Gas 

Sensing Solutions, Scotland) sensors I-109, I-117 and I-122. The pressure of all the 

columns is controlled by a backpressure regulator valve I-116. To keep the pressure 

constant over the CO2 sensors, a second backpressure regulator valve I-119 and two 

pressure regulator valves I-108, I-121 were used. For the desorption steps a diaphragm 

vacuum pump P-101 (Thermo Fisher Scientific, Spain) was used. A PLC with a data-

acquisition system (Schneider Electric, France) was used to automate the processes. 

Figure 27 shows the installation of the developed VPSA system setup installed with a 

single column.  

Figure 27: Picture of the single column VPSA laboratory developed. 



 

Carbon dioxide capture and utilization by VPSA: a sustainable development. 54 

The diagram of the experimental apparatus employed to measure the dynamic 

adsorption equilibrium is shown in Figure 28. Table 8 gives the details of the column 

used in the fixed bed experiments. The instrument specifications and accuracies are 

listed along the Table 11 and Table 12 on section 3.4.3 for the control and automatization 

set-up. 

 

Table 8: Column specifications used in the fixed bed experiments and simulations. 

Parameter Value 

Column radius m 0.025 

Column length m 0.38 

Density of column wall kg/m3 2720 

Column wall thickness m 0.0034 

Wall heat capacity J/(kg٠K) 887 

Wall thermal conductivity W/(m٠K) 147 
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Figure 28: Schematic experimental set-up for single column VPSA. Symbols: PCV, Pressure controller valve; FTC, flow transmitter and controller; FTI, flow 

transmitter and indicator; PT, pressure transmitter; VPT, vacuum pressure transmitter, QT, concentration transmitter. 
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3.2.3. Three columns VPSA setup for cyclic experiments. 
 

The equipment was designed for two column sizes, a set of three jacketed columns of 

same as those described on section 3.2.2 and a set of three columns with jackets (a tube 

and shell exchanger) of internal diameter 5.0 cm and packing length 70.0 cm. The tube 

is enclosed by a second tube of 76 mm of diameter with a 3.0 mm of thickness. In both 

cases an aluminum alloy 6060 (Aalco, England) was used as a construction material. 

The VPSA prototype was designed with Solidworks®. Figure 29 (A) shows the VPSA 

apparatus design represented with a 3D model with the 5.0 cm diameter set of columns, 

Figure 29 (B) displays the internal configuration of the apparatus and Figure 29 (C) 

shows how the VPSA apparatus was as built with the 2.5 cm diameter set of columns. 

 

  

The diagram of the VPSA experimental prototype employed to measure the cyclic 

adsorption is shown in Figure 30. The experimental prototype allows to work in a wide 

range of operating conditions for a cyclic VPSA process. The pilot setup can work 

between 0.1 to 8 barg of pressure and temperatures between 10ºC to 160ºC, with a feed 

flowrate between 0.5 to 138 g/min of a mixture 15% CO2, 85% N2 v/v.  

Figure 29: (A) VPSA apparatus render design, (B) Internal configuration, (C) Image of the 
VPSA cyclic prototype. 
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Figure 30: Simplified schematic diagram of the three bed VPSA experimental prototype. Symbols: PCV, Pressure controller valve; FTC, flow transmitter 

and controller; FTI, flow transmitter and indicator; PT, pressure transmitter; VPT, vacuum pressure transmitter, QT, concentration transmitter. 

 



 

Carbon dioxide capture and utilization by VPSA: a sustainable development. 58 

The temperature of the columns was monitored with two thermocouples (Electricfor, 

Spain) located at 5 cm (I-326, I-329 and I-332) and 60 cm (I-325, I-328 and I-331) from 

the bottom of each column, the inlet gas temperature was measured with the 

thermocouple I-306. A control flowmeter and two flow meters (M+W Instruments GmbH, 

Germany) were installed on the feed I-309, raffinate I-319 and product lines I-311 to 

measure the designed flowrates, while purge, rinse and pressure equalization rates are 

controlled by needle valves. A dry claw vacuum pump (Busch, United States) was used 

for regeneration. During the runs, gas samples were continuously analyzed with 

nondispersive infrared absorption CO2 sensors (Gas Sensing Solutions, Scotland) from 

product/purge I-315, rinse I-322, feed I-305 and raffinate lines I-318. In addition, a 

product storage tank E-301 is also provided. Cycle operation is entirely automated and 

realized by switching solenoid valves (Metalwork, Italy) to change the direction of gas 

flow for the different steps of the cycle according to a programmed PLC logic. A PLC with 

a data acquisition system (Schneider Electric, France) was used to automate the 

processes. The equipment is operated from a PLC controller interface HMISTU655 LCD 

touch screen of 5.7”. The pipes are made of flexible polyamide tubing (Parker, U.S.) and 

all connections are automatic fitting series (Metalwork, Italy). The instrument 

specifications and accuracies are listed along the Table 13 and Table 14 on section 3.4.3 

for the control and automatization set-up. 

 

3.3. Industrial VPSA setup. 
 

The industrial plant set-up for CO2 capture and the in-site utilization is divided in three 

stages: Flue gases pre-treatment, CO2 capture and storage plant and CO2 utilization for 

pH control. 

3.3.1. Flue gases pretreatment setup. 
 

The diagram of the pretreatment setup is shown in Figure 31. The pretreatment was 

designed to cool down the flue gases from an industrial boiler from 75 ºC (+/- 5ºC) to 28 

ºC (+/- 5ºC) and to remove NOx, SOx without adversely affecting the concentration of 

CO2. The pretreatment setup allows to work in a range of operating conditions between 

10ºC and 100ºC, with a feed flowrate between 100 to 350 m3/h. Flue gas is conducted 

from the chimney with a polypropylene multilayer pipe of diameter of 160 mm reinforced 

with mineral fibres (ABN, Spain). The pipe has external protection to ultraviolet radiation 



 

Angel Eduardo Gutiérrez Ortega 
59 

(UV), internal protection to chemical corrosion, incrustations and it is resistant in a range 

of temperatures from -20°C to 90°C. An adiabatic cooling unit E-401 works with a cooling 

water stream at a flow rate of 6 m3/h. The unit dimensions are 800 mm of internal 

diameter and 2000 mm of high. The E-401 is made of galvanized steel with a coating of 

a bicomponent polyurethane polyurea waterproofing membrane (Maris Polymers, 

Spain). The water is stored and returned to the cooling water return through a centrifugal 

pump E-402 (Bloch, Spain) controlled by a float level switch connected to a frequency 

inverter (Coelbo, Spain). The unit has three automatic purge and a strainer filter to collect 

all the condensed water on the cooling stage. 

 

 

E-405 and E-406 are connected in series to decrease the humidity and to remove the 

NOx from the combustion gases. The first column (E-405) is filled with two different 

adsorbents, the first adsorbent is Sorbead WS (BASF, Germany) an alumina resistant to 

temperatures up to 60ºC, this material removes a small part of the humidity and acts as 

protection to the second adsorbent. The second section of adsorbent is the molecular 

sieve alumina water resistant KC-Trockenperlen WS (BASF, Germany), this material has 

a surface area of 650 m2/g. The humidity is decreased using physical adsorption to a 

relative humidity (RH) between 20 to 30%. The second column (E-406) is filled with a 

Figure 31: Schematic of the flue gas pretreatment setup system.  
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molecular sieve alumina Alphasorb 8 (Alphachem, Spain) impregnated with potassium 

permanganate (KMnO4) to remove NOX by chemical adsorption from the flue gas stream. 

The two columns are made of galvanized steel with a coating of a bicomponent 

polyurethane polyurea waterproofing membrane (Maris Polymers, Spain). The 

dimensions of the both columns are 355 mm of diameter and 1000 mm of high.  

 

A filter holder E-403 was made with two type of particle filters, the first one was a prefilter 

of 50 to 70% efficiency on particles from 3.0 to 10 µm (Venfilter, Spain). The second filter 

Figure 32: 3D design of the pretreatment system. 

Figure 33: Picture of the pretreatment system. 
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is water resistant fine particles filter of 64 to 79% of efficiency on particles from 1.0 to 3.0 

µm (Venfilter, Spain). A centrifugal gas compressor E-403 (Mattei, Italy) aspirates flue 

gas through the pre-treatment system to compress it from 2 to 8 barg. After the 

compressor unit a centrifugal water separator E-407 is installed to remove condensed 

water (Beko, Germany), and a set of 20 µm and activated carbon filters are used to 

remove solid particles and oil traces (Beko, Germany). The desulfurized/denitrified gas 

is stored in a 2000 L tank at a maximum pressure of 8 barg. The diameter of the tank is 

1100 mm with a height of 2490mm, the tank is made of carbon steel with internal coating 

RAL 5005 anticorrosive ALM (Baglioni, Italy). The pneumatic valves V-401 and V-402 

(Bürkert, Germany) of 1 ½” allows to purge the initial load for 2 minutes to ensure the 

homogeneity of the treated gas. The pipes for high pressure treated gas are stainless 

steel of 1 ½” of diameter (Inoxpress, Italy). The pretreatment system was designed with 

Solidworks® using Aspen Hysys® for energy mass balances. Figure 32 shows a 3D 

drawing of the pretreatment system on the installation point, Figure 33 shows a picture 

of the installation of the built system. 

 

3.3.2. CO2 capture and storage plant. 
 

A simplified schematic of the pilot plant is shown in Figure 35 along with the instrument 

specifications. The industrial carbon capture plant consisted of two main units. The 

dehumidifying unit removes the water vapor from the denitrified flue gas before it enters 

the VPSA process. Six columns of 156 mm diameter and 2 m height made of aluminum 

alloy 6060 were packed with 26 kg alumina KC-trockenperlen WS of a 3-5 mm pellet 

diameter (BASF, Germany). The alumina is used as the desiccant (dew point, around 

- 50°C) the six columns were set in two groups and connected in series to operate in 

PSA configuration. The flue gas humidity was measured continuously with a dew point 

sensor I-502 (Beko, Germany). A representative render made with SolidWorks software 

® of the dryer unit is shown in Figure 34. 

The VPSA unit was used to capture and concentrate CO2 from the dehumidified flue gas, 

where a three-bed VPSA process was employed. The unit is equipped with three 

identical sets of six adsorption columns of 156 mm diameter and 2 m height made of 

aluminum alloy 6060 where each one was packed with 23 kg of 13XBL (bed voidage of 

0.35 and particle size in the range 1.2-2.0 mm). The columns where mounted onto 

aluminum plugs with internal distribution channels were the pipe, valves and pressure 

sensors were set. 
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The equipment was designed to work in a range of operating conditions for a cyclic VPSA 

process. The industrial setup can work between 0.5 to 8 barg of pressure and 

temperatures between 10ºC to 50ºC, with a feed flowrate between 100 to 450 Nm3/h. 

Two flow meters (SMC, Japan) were installed on the feed (I-503) and raffinate (I-504) 

lines to measure the designed flowrates, while purge, rinse and pressure equalization 

rates are controlled by needle valves. A dry claw vacuum pump E-501 (Busch, United 

States) was used for evacuation. During the runs, gas lines are continuously analyzed 

with nondispersive infrared absorption CO2 sensors (Gas Sensing Solutions, Scotland) 

from the feed (I-505), product (I-501), rinse (I-502), purge (I-503) and raffinate lines 

(I- 504). A low-pressure product storage tank E-502 of 1100 mm diameter and 2490mm 

height, made of carbon steel with internal coating RAL 5005 anticorrosive ALM (Baglioni, 

Italy) is provided from which the recovery gas can be compressed by the piston 

compressor E-503 (Frascold, Italy). The compressed stream rich on CO2 recovered is 

stored in a second storage tank E-504 of 1200 mm diameter and 2990mm height, made 

of carbon steel with internal coating RAL 5005 anticorrosive ALM (Baglioni, Italy) from 

which the CO2 recuperated can be recycled to the columns when required by the cycle 

design. The pressures at the inlet and outlet of the columns were measured using the 

pressure transducers I-511, I-521 and I-531 and a vacuum pressure transmitter I-515 

(Wika, Spain). The working pressure and the flowrate were controlled with a pneumatic 

regulator valves (SMC, Japan).  

Figure 34: PSA dryer unit render made with SolidWorks software ® 
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Figure 35: Simplified schematic diagram of the VPSA pilot plant.  Symbols: PCV, Pressure controller valve; FTC, flow transmitter and controller; FTI, flow 
transmitter and indicator; PT, pressure transmitter; VPT, vacuum pressure transmitter, QT, concentration transmitter. 
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The temperature of feed gas was monitored with a PT- 100 thermocouple (Electricfor, 

Spain). A plate heat exchanger (Swep, Sweden) was installed at the compressor outlet 

to recover the heat energy to heat the raffinate stream and regenerate the columns of 

the drying unit by countercurrent flow. The pipes are inox stainless of 1” diameter 

(Inoxpress, Italy). The CO2 separation plant was designed with Solidworks®. Figure 36 

(A) shows the VPSA industrial plant represented with a 3D model render, Figure 36 (B) 

display the internal configuration of the plant.  

 

All the pneumatic valves, flow controllers and meters, pressure transducers, 

thermocouples and CO2 analyzers were connected to a PLC with a data-acquisition 

Figure 36: VPSA industrial plant design represented with a 3D model render (A) Front, (B) 
Back. 

A 

B 
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system (Schneider Electric, France) which was used to automate the processes, and the 

equipment is operated from a PLC controller interface HMISTU655 LCD touch screen of 

5.7”. Both a dehumidifying unit and a CO2 capture unit were operated automatically by 

the PLC. Figure 29 (C) shows a representative picture of the CO2 capture industrial plant. 

The instrument specifications and accuracies are listed along the Table 16 and Table 15 

on section 3.4.3 for the control and automatization set-up. 

 

3.3.3. CO2 utilization for pH control. 
 

The CO2 separated from flue gases is used to reduce the pH of the wastewater of the 

factory replacing the prior usage of a mineral acid (sulfuric acid). A simplified schematic 

of the injection control unit is shown in Figure 38 along with the instrument specifications. 

The application was developed to inject CO2 into the pipe that transports the wastewater 

from the production plant to the storage tank E-602 for further treatment in the 

wastewater plant. The CO2 injection application setup allows to work in a range of 

operating injection conditions between 2 to 8 barg, with a feed flowrate between 2 to 50 

nm3/h of CO2. The CO2 is transported from the storage tank E-601 to the dual in-line 

injection control unit with stainless steel pipes 316L of ½” diameter using press-fitting 

systems (Inoxpress, Italy) for the interconnection. The working pressure is set with a 

membrane pressure regulator I-602 (SMC, Japan), the pressure is monitored with a 

pressure transmitter I-602 (Wika, Spain). The flow is measured with a CO2 flowmeter 

I- 604 (Beko, Germany) and two needle valves (Metalwork, Italy) are calibrated with 

different flowrates at 10 nm3/h (V-61 named as the high flow line) and 6 m3/h (V-62 

Figure 37: Picture the VPSA industrial plant for CO2 capture and storage. 
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named as the low flow line). Two stainless steel solenoid valves V-63 and V-64 (SMC, 

Japan) control the gas flow of each pipe; when the two valves are open the flowrate is 

named as maximum flow (16 nm3/h). The pH is measured upstream with pH transmitters 

with temperature compensation (Hanna Instruments, Germany) in three points, 1 meter 

before the first injection point I-605, 1 meter before the second injection point I-606 and 

on the storage tank I-60. CO2 is injected in the wastewater pipe with two fine bubble 

diffusers to increase the gas-liquid contact and homogenization. A PLC with a data-

acquisition system (Schneider Electric, France) was used to automate the processes, 

and the equipment is operated from a PLC controller interface HMISTU655 LCD touch 

screen of 5.7”. The instrument specifications and accuracies are listed along the Table 
17 and Table 18 on point 3.4.3 for the control and automatization set-up. Figure 39 shows 

some pictures of the CO2 injection application setup. 
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Figure 38: Simplified schematic diagram of the use of CO2 for waste water treatment. Symbols: 
PCV, Pressure controller valve; FT, flow transmitter; PT, pressure transmitter and JT, pH 

transmitters. 
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3.4. Control and automatization set-up. 

3.4.1. CO2 separation kinetic control strategy based on VPSA system 
 

The behavior in a fixed bed is based on the concept of the mass transfer zone (MTZ). 

This concept corresponds to a macro approach, the structured movement of the MTZ 

during adsorption operation, and is considered as the portion of the bed on which the 

adsorbate in the feed solution is transferred to the solid phase-adsorbent. As a result of 

this treatment, a complete design method is obtained considering equilibrium and 

kinetics. This method is applicable to the system when there is a rapid formation on the 

stable zone of mass transfer. Due to these facts, the adsorption process becomes 

limited, preferably to a partial region of the bed, which flows gradually at a constant rate 

within a short time after the beginning of the process (Ruthven, 2002). This shift is 

determined by the operation flow of adsorbate concentration and the maximum 

adsorption capacity of the adsorbent.  

The monitoring of the MTZ is accomplished by monitoring the concentration of the 

adsorbate at the outlet of the fixed bed column. The progressive movement of the MTZ 

in the bed is known as the breakthrough curve; illustrated in Figure 40. 

A B C 

Figure 39: Picture of the CO2 injection application setup. (A) Injection point on 800 mm tube 
diameter, (B) pH transmitter I-605, (C) CO2 injection control unit for pH 
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The curvilinear behavior of the breakthrough curve delineates a region of the bed in 

which MTZ is taking place. A short MTZ length indicates a higher efficiency, representing 

a system closer to ideality.  

The breakthrough curve is the behavior of adsorption on a fixed bed column adsorbent 

over time, where the dispersion effects and the mass transfer to its full saturation is 

considered, that is to say, when equilibrium is achieved. Therefore, from a breakthrough 

curve it is also possible to obtain the adsorption equilibrium capacity as obtained in the 

equilibrium adsorption isotherm. In a kinetic PSA process, the duration of the adsorption 

and the desorption steps are critical design elements. Conventional PSA cycles have 

been developed for enrichment of the raffinate product, such as the N2 separated from 

the air. However, the recovery of the retained product, as it is the case of CO2 capture, 

has been limited. During the adsorption step in PSA cycles, species with faster diffusing 

capacity are retained inside the column, and the components with slower diffusing 

capacity are recovered as a raffinate product at the high-pressure outflow. 

In fixed-bed adsorption, the concentrations in the fluid phase and the solid phase change 

with time and the position in the bed, as the concentration in the fluid decrease 

exponentially when reaching the end of the bed. This concentration gradient becomes S 

shaped, and the region where most of the change in concentration occurs is called the 

Figure 40: Scheme of a breakthrough curve at fixed bed 
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mass transfer zone. In a separation where the retained substance is the desired product, 

the process productivity will depend on the maximum use of the transfer area.  

For a step-function feed with constant concentration introduced into a clean bed, the 

concentration front will change in every cycle until the Cyclic Steady State (CSS) is 

reached. CSS is defined as the equilibrium between the uptake at the adsorption 

pressure and the uptake at the regeneration pressure over the cyclic repetitions. Then, 

for an efficient operation the run must be stopped just before the concentration increases 

exponentially. In the present study, the kinetic control system is referred to the 

determination of the process times of the different stages thought the constant CO2 

monitoring on three different process streams. 

Consequently, the control of the stop point in the feed stage is defined as the stop feed 

point (SFD). On the other side, purge and rinse times have a direct impact on the global 

production performance parameters. The principle of the rinse step is to displace the 

light component (N2) from the adsorbed phase near the end of the column (at H=100%, 

see Figure 40) and flush it downstream toward the light-product end of the column. In an 

opposite way, the purge step removes the heavy gas (CO2) from the gas phase, and 

then a contercurrent inert gas (N2 in this case) is introduced to displace the heavy gas 

(CO2) from the end of the column to the feed point in downstream configuration. The 

correct duration of these steps can improve the extract product purity when the lighter 

species are co-adsorbed in large amounts with heavier components. Hence, the rinse 

and purge stop points were selected as control variables, named as the stop purge point 

(SPR) and stop rinse point (SRN).  

In an industrial application with different client facilities, different emission gas 

composition and different CO2 specifications, there will be a need for a robust control 

strategy flexible enough to adapt to different conditions. The fuel type or the substance 

calorific value can lead to different CO2 concentration on the fuel streams. The fuel 

stream rates on an industrial boiler operation depend on the production campaigns and 

the season influence. In the open-loop model, the desired purity and recovery cannot be 

exactly tracked due to its errors and disturbances. Thus, a feedback control strategy is 

necessary for the compensation of control errors of the VPSA plant. Such a multivariable 

system requires a strong control strategy to track the set-point of the product 

performance indicators. The use of conventional methods, such as PID tuning, is not 

efficient in handling cases interacting within two control loops. Therefore, CO2 separation 

kinetics control has been implemented to eliminate the effects of the different CO2 
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composition on the flue gas and to handle the control parameters without effect on the 

scale. 

The control system was built using SoMachine software® (Schneider electric, France), 

based on the continuous monitorization of the three-output stop point variables SFD, SPR 

and SRN with the CO2 concentration measured by inline sensors and switching the 

corresponding valve set (ON-OFF operation). The kinetic control system is referred to 

the determination of the process times of the different stages thought the constant CO2 

monitoring on three different process streams. The logic-mathematical criteria of each 

parameter are not published in the present work because of confidentiality purposes. 

The publication of any information related to the process or the program design is 

property of the company GasN2 and it is protected by the patent application send to the 

European patent office with reference number 18382203.0-1104 “Process for separating 

a heavy gas component from a gaseous mixture”. 
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3.4.2. PLC programing 
 

Once the whole CO2 capture operation unit has been characterized, the control and 

automatization of the designed units were developed using PLC. PLCs have been widely 

used for many applications, e.g. pumping systems, motor control, energy research, 

system monitoring, etc. Although PLCs are similar to conventional computers in terms of 

hardware architecture, they have several advantages suited for industrial control: 

(Alphonsus and Abdullah, 2016) 

(i) They are more rugged and have noise immune capability. 

(ii) Modular approach in construction, allowing easy replacement/addition of 

units (e.g. I/O). 

(iii) Standard I/O miniaturized connections and signal levels, offering powerful 

machine control at a low price (less than 300 €). 

(iv) High-end control grows exponentially: although cost and size are dropping on 

the low end, the capabilities of large PLC systems expand as well.  

(v) The ability to network and distribute the control using numerous proprietary 

and international network standards permits PLCs to take control of entire 

manufacturing systems and production plants. 

PLCs are designed to be programmed with schematic or ladder diagrams instead of 

common computer languages. All the control systems designed in the present work were 

programed with Grafcet language. GRAFCET (from the French acronym of GRAphe 

Fonctionnel de Commande Etape/Transition meaning Step Transition Function Charts) 

is a graphical method for specifying industrial automation. Simple syntax, graphical 

representation, powerful and concise commands make Grafcet easy to learn and use 

(Baracos, 1992). In its most simple form, Grafcet includes the full power of Boolean logic 

and has the capability to handle the arithmetic used in many continuous functions and 

more complex functions such as PID. 

A graph is a drawing of steps, transitions, links and statements. Typically, steps are 

arranged into a sequence corresponding to some series of control actions to be executed 

by the controller. The actions to be executed are written in a box to the right of each step. 

The transitions and steps are connected by links, but two steps cannot be directly linked, 

as the link must pass through a transition (Bolton, 2009). Each step has a trigger 

condition which specifies when to stop executing one step and start executing the next.  

SoMachine software ® (Schneider electric, France), is a user tool designed to develop 

projects in to a usable program and commission all of the elements in Schneider Electric 



 

Carbon dioxide capture and utilization by VPSA: a sustainable development. 72 

controllers. It can convert applications created in an operator interface for a remote 

graphic display unit. The program is organized in POUs (program organization units) or 

sections. These sections consist of rungs (networks) to simplify both reading and 

navigation within the program. The POUs are associated with various tasks of the 

application: master, periodic, and events. They can be programmed in: Instruction List 

(IL) language, Ladder (LD) language, Grafcet graphic language, Structured Text (ST) 

operations or User-defined function blocks. 

A simplified block diagram of the CO2 prototype is shown in Figure 41. Due to 

confidentiality purposes the logic diagrams and the programming code are not published 

in the present work, as mentioned in section 3.4.1 this information is protected by the 

application number 18382203.0-1104. 

 

Vijeo designer ® (Schneider electric, France) was used as the configuration software for 

creating operator interface applications for Human Machine Interface (HMI). It offers 

advanced script functions, alarm and data management, remote access, e-mail and 

multi-protocol connectivity. Vijeo designer® features a screen graphics editor, including 

simple objects, a library of animated objects (bara graphs, meters, charts and tanks), 

and preconfigured advanced objects (buttons, lamps, numeric and message displays 

and enumerated lists). Figure 42 shows the developed design for one of the multiple 

human interface applications for the VPSA pilot plant unit. 

Figure 41: Diagram block used for the programming in SoMachine software® 
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3.4.3. Instrumentation and PLC set-up 
 

The automatization through a PLC provides an intelligent control system for the different 

experimental apparatus developed, and it belongs to the technical field of control 

systems. All designed control systems in the present work comprise a microcontroller 

unit Modicon M251 Logic Controller (Schneider electric, France), with a display screen 

HMISTU655 LCD touch screen of 5.7”. The intelligent control system has the advantages 

of a simple modular structure and compact design, and it can collect parameters such 

as yield, CO2 purity, flow, pressure, dew point and temperature in real time, being able 

to analyze and process data to automatically regulate the process parameters according 

to set control parameters thereby realizing self-adaptive regulative full-automatic 

running.  

The M251is a PLC, a special form of microprocessor-based controller that uses 

programmable memory to store instructions and to implement functions such as logic, 

sequencing, timing, counting, and arithmetic calculations to control machines by logic 

conditions and processes parameters. The M251 include an embedded SD card slot to 

storage process data that allows export on “.txt” format for further data processing. The 

M251 Logic Controller was configured and programmed with the SoMachine software®.  

A PLC configuration consists of a controller with its embedded input and output signal 

channels arranged in expansion modules. The modules are used to customize the 

number of channels and/or functions with flexibility in the control design. Expansion 

modules are connected directly by simple interlocking with the controller. The input and 

Figure 42: HMI example from Vijeo Designer ® (Scheider electric, France) developed in this 
work. 
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output sections are where the processor receives information from external devices and 

communicates information to external devices. Digital devices can essentially be 

considered discrete devices which give a sequence of on−off signals. Analogue devices 

give signals whose size is proportional to the size of the variable being monitored 

(Alphonsus and Abdullah, 2016). The following tables list the digital output relay modules 

of 24 V c 50/60 Hz and the analog input modules for each instrument or sensor 

communicated with the PLC interface with its corresponding specifications used to 

control each developed equipment.  
 

a) Mixture equipment PLC expansion modules 

Table 9: Mixture equipment output modules in PLC. 

Chanel Module Position Label Signal Description 
1 

TM
3A

TI
4G

 0 I-205 4…20 mA Pressure controller 1 a 10 Barg; 0.01 barg 
2 1 I-206 4…20 mA Pressure controller 1 a 10 Barg; 0.01 barg 
3 2 I-207 4…20 mA Flow controller 1 a 50 L/min; 0.01 L 
4 3 V-204 24 V Solenoid valve 5 W, 24VDC 

 

Table 10: Mixture equipment input modules in PLC 

Chanel Module Position Label Signal Description 
5 

TM
3A

I8
G

 

0 I-205 4…20 mA Pressure transmitter 0 -10 Barg, accuracy 0.1 barg  
6 1 I-206 4…20 mA Pressure transmitter 0 -10 Barg, accuracy 0.1 barg  
7 2 I-207- 4…20 mA Flow transmitter 1 a 50 L/min; 0.1 L 
8 3 I-210 4…20 mA Pressure transmitter 0 -16 Barg, accuracy 0.1 barg  
9 4 I-211 4…20 mA Pressure transmitter 0 -16 Barg, accuracy 0.1 barg  

10 5 I-208 0…5 V Infrared CO2 sensor, 0-100% v/v; accuracy 0.01% 
11 6 V-204 24V Solenoid valve 5 W, 24VDC 

 

 

b) Single column VPSA PLC expansion modules. 

Table 11: Single column VPSA output modules in PLC. 

Chanel Module Position Label Signal Description 
1 

TM
3D

Q
16

TG
 

0 V-101 24V Solenoid valve 5 W, 24VDC 
2 1 V-102 24V Solenoid valve 5 W, 24VDC 
3 2 V-103 24V Solenoid valve 5 W, 24VDC 
4 3 V-104 24V Solenoid valve 5 W, 24VDC 
5 4 V-105 24V Solenoid valve 5 W, 24VDC 
6 5 V-106 24V Solenoid valve 5 W, 24VDC 
7 6 V-107 24V Solenoid valve 5 W, 24VDC 
8 7 V-108 24V Solenoid valve 5 W, 24VDC 
9 8 V-109 24V Solenoid valve 5 W, 24VDC 

10 9 V-111 24V Solenoid valve 5 W, 24VDC 
11 10 RC 24V Contactor 230 V 
12 TM3DQ16TG 0 I-107 4…20mA Mass flow controller 0-100 g/min, 0.06 l/min 
13 1 I-106 4…20mA Pressure transmitter 0 -10 Bar, accuracy 0.1 bar 
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Table 12: Single column VPSA input modules in PLC 

Chanel Module Position Label Signal Description 
17 

TM
3A

I8
G

 

0 I-106 4…20mA Pressure transmitter 0 -10 Bar, accuracy 0.1 bar  
18 1 I-107 4…20mA Mass flow meter 0-100 g/min, accuracy 0.06 l/min 
19 2 I-123 4…20mA Mass flow meter 0-50 g/min, accuracy 0,06 l/min 
20 3 I-118 4…20mA Mass flow meter 0-5 g/min, accuracy 0.06 l/min 
21 4 I-115 4…20mA Vacuum transmitter-1-1 Bar, accuracy 0.001 bar 
22 5 I-109 4…20mA Infrared CO2 sensor, 0-60% v/v; accuracy 0.01% 
23 6 I-117 0…5 V Infrared CO2 sensor, 0-60% v/v; accuracy 0.01% 
24 7 I-122 0…5 V Infrared CO2 sensor, 0-100% v/v; accuracy 0.01% 
25 

TM
3A

Q
4G

 0 I-111 4…20mA Pressure transmitter 1 a 10 Bar, accuracy 0.01 bar 
26 1 I-116 4…20mA Pressure transmitter 1 a 10 Bar, accuracy 0.01 bar 
27 2 I-119 4…20mA Pressure transmitter 1 a 10 Bar, accuracy 0.01 bar 
28 3 I-120 4…20mA Pressure transmitter 1 a 10 Bar, accuracy 0.01 bar 
31 

TM
3T

I4
G

 0 I-114 PT100 Temperature transmitter -60 to 400ºC; accuracy 0.1ºC 
32 1 I-113 PT100 Temperature transmitter -60 to 400ºC; accuracy 0.1ºC 
33 2 I-112 PT100 Temperature transmitter -60 to 400ºC; accuracy 0.1ºC 
34 3 I-110 PT100 Temperature transmitter -60 to 400ºC; accuracy 0.1ºC 

 

 

c) Three columns VPSA PLC expansion modules. 

Table 13: Three columns VPSA output modules in PLC. 

Chanel Module Position Label Signal Description 
1 

TM
3D

Q
16

TG
 

0 V-301 24V Solenoid valve 5 W, 24VDC 
2 1 V-302 24V Solenoid valve 5 W, 24VDC 
3 2 V-303 24V Solenoid valve 5 W, 24VDC 
4 3 V-304 24V Solenoid valve 5 W, 24VDC 
5 4 V-305 24V Solenoid valve 5 W, 24VDC 
6 5 V-306 24V Solenoid valve 5 W, 24VDC 
7 6 V-307 24V Solenoid valve 5 W, 24VDC 
8 7 V-308 24V Solenoid valve 5 W, 24VDC 
9 8 V-309 24V Solenoid valve 5 W, 24VDC 

10 9 V-311 24V Solenoid valve 5 W, 24VDC 
11 10 V-312 24V Solenoid valve 5 W, 24VDC 
12 11 V-313 24V Solenoid valve 5 W, 24VDC 
13 12 V-314 24V Solenoid valve 5 W, 24VDC 
14 13 V-315 24V Solenoid valve 5 W, 24VDC 
15 14 V-316 24V Solenoid valve 5 W, 24VDC 
16 15 V-317 24V Solenoid valve 5 W, 24VDC 
17 

TM
3D

Q
16

TG
 

0 V-318 24V Solenoid valve 5 W, 24VDC 
18 1 V-321 24V Solenoid valve 5 W, 24VDC 
19 2 V-322 24V Solenoid valve 5 W, 24VDC 
20 3 V-323 24V Solenoid valve 5 W, 24VDC 
21 4 V-324 24V Solenoid valve 5 W, 24VDC 
22 5 V-325 24V Solenoid valve 5 W, 24VDC 
23 6 V-326 24V Solenoid valve 5 W, 24VDC 
24 7 V-327 24V Solenoid valve 5 W, 24VDC 
25 8 V-328 24V Solenoid valve 5 W, 24VDC 
26 9 V-331 24V Solenoid valve 5 W, 24VDC 
27 10 V-332 24V Solenoid valve 5 W, 24VDC 
28 11 V-333 24V Solenoid valve 5 W, 24VDC 
29 12 V-334 24V Solenoid valve 5 W, 24VDC 
30 13 V-335 24V Solenoid valve 5 W, 24VDC 
31 14 V-336 24V Solenoid valve 5 W, 24VDC 
33 

TM3DQ16TG 

0 V-337 24V Solenoid valve 5 W, 24VDC 
34 1 V-338 24V Solenoid valve 5 W, 24VDC 
35 2 V-339 24V Solenoid valve 5 W, 24VDC 
40 7 RC 24V Triphasic power contactor; 0.75 kW 
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Table 14: Three columns VPSA input modules in PLC 

Chanel Module Position Label Signal Description 
49 

TM
3A

I8
G

 

0 PG 4…20mA Pressure transmitter 0 -16 Bar, accuracy 0.1 bar  
50 1 Hr 4…20mA Dew Point Transmitter-20 to 30°C  
51 2 Qin 4…20mA Mass flow meter 0-100 g/min, accuracy 0.06 l/min 
52 3 Qout 4…20mA Mass flow meter 0-50 g/min, accuracy 0.06 l/min 
53 4 Qpr 4…20mA Mass flow meter 0-5 g/min, accuracy 0.06 l/min 

54 5 Pv 4…20mA Vacuum pressure transmitter-1-0.6 Bar, accuracy 0.001 
bar 

55 6 Crn 0…5 V Infrared CO2 sensor, 0-60% v/v; accuracy 0.01% 
56 7 Cout 0…5 V Infrared CO2 sensor, 0-60% v/v; accuracy 0.01% 
57 

TM
3A

M
6G

 

0 Cpr 0…5 V Infrared CO2 sensor, 0-100% v/v; accuracy 0.01% 
58 1 Pc1 2.5…20mA Pressure transmitter -1 a 10 Bar, accuracy 0.01 bar 
59 2 Pc2 2.5…20mA Pressure transmitter -1 a 10 Bar, accuracy 0.01 bar 
60 3 Pc3 2.5…20mA Pressure transmitter -1 a 10 Bar, accuracy 0.01 bar 
61 0 QC 4…20mA Mass flow controller 0-50 l/min, accuracy 0.06 l/min 
62 1 PC 4…20mA Pressure controller 0 -10 Bar, accuracy 0.1 bar  
63 

TM
3T

I4
G

 0 T1in PT100 Temperature transmitter -60 to 400ºC; accuracy 0.1ºC 
64 1 T1out PT100 Temperature transmitter -60 to 400ºC; accuracy 0.1ºC 
57 2 T2in PT100 Temperature transmitter -60 to 400ºC; accuracy 0.1ºC 
58 3 T2out PT100 Temperature transmitter -60 to 400ºC; accuracy 0.1ºC 
59 

TM
3T

I4
G

 0 T3in PT100 Temperature transmitter -60 to 400ºC; accuracy 0.1ºC 
60 1 T3out PT100 Temperature transmitter -60 to 400ºC; accuracy 0.1ºC 
61 2 Tin PT100 Temperature transmitter -60 to 400ºC; accuracy 0.1ºC 
62 3 Cin 0…5 V Infrared CO2 sensor, 0-20% v/v; accuracy 0.01% 

 

 

d) Industrial plant PLC expansion modules. 

Table 15: Industrial plant input modules in PLC 

Chanel Module Position Label Signal Description 
49 

TM
3A

I8
G

 

0 I-505 4…20mA Pressure transmitter 0 -16 Bar, accuracy 0.1 bar  
50 1 I-502 4…20mA Dew Point Transmitter-20 to 30°C  
51 2 I-503 4…20mA Mass flow meter 300-6000 L/min, accuracy 0.06 l/min 
52 3 I-516 4…20mA Mass flow meter 300-6000 L/min, accuracy 0.06 l/min 
53 4 I-509 4…20mA Mass flow meter 0-200 L/min, accuracy 0.01 l/min 
54 5 I-508 4…20mA Vacuum pressure transmitter-1 to 1 Bar, 0.01 bar 
55 6 I-506 0…5 V Infrared CO2 sensor, 0-60% v/v; accuracy 0.01% 
56 7 I-513 0…5 V Infrared CO2 sensor, 0-60% v/v; accuracy 0.01% 
57 

TM
3A

I8
G

 

0 I-517 0…5 V Infrared CO2 sensor, 0-100% v/v; accuracy 0.01% 
58 1 I-519 0…5 V Infrared CO2 sensor, 0-100% v/v; accuracy 0.01% 
59 2 I-511 4…20mA Pressure transmitter -1 a 10 Bar, accuracy 0.01 bar 
60 3 I-521 4…20mA Pressure transmitter -1 a 10 Bar, accuracy 0.01 bar 
61 4 I-531 4…20mA Pressure transmitter -1 a 10 Bar, accuracy 0.01 bar 
 5 I-541 4…20mA Pressure transmitter -1 a 10 Bar, accuracy 0.01 bar 
 6 I-551 4…20mA Pressure transmitter -1 a 10 Bar, accuracy 0.01 bar 

62 7 I-510 4…20mA Pressure transmitter -1 a 10 Bar, accuracy 0.01 bar 
63 

TM3TI4G 
0 I-504 Pt-100 Temperature transmitter -60 to 400ºC; accuracy 0.1ºC 

64 1 I-515 4…20mA Pressure transmitter -1 a 10 Bar, accuracy 0.01 bar 
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Table 16: Industrial plant output modules in PLC. 

Chanel Module Position Label Signal Description 
1 

TM
3D

Q
16

TG
 

0 V-501 24V Solenoid valve 5 W, 24VDC 
2 1 V-502 24V Solenoid valve 5 W, 24VDC 
3 2 V-503 24V Solenoid valve 5 W, 24VDC 
4 3 V-504 24V Solenoid valve 5 W, 24VDC 
5 4 V-505 24V Solenoid valve 5 W, 24VDC 
6 5 V-506 24V Solenoid valve 5 W, 24VDC 
7 6 V-507 24V Solenoid valve 5 W, 24VDC 
8 7 V-508 24V Solenoid valve 5 W, 24VDC 
9 8 V-509 24V Solenoid valve 5 W, 24VDC 

10 9 V-511 24V Solenoid valve 5 W, 24VDC 
11 10 V-512 24V Solenoid valve 5 W, 24VDC 
12 11 V-513 24V Solenoid valve 5 W, 24VDC 
13 12 V-514 24V Solenoid valve 5 W, 24VDC 
14 13 V-515 24V Solenoid valve 5 W, 24VDC 
15 14 V-516 24V Solenoid valve 5 W, 24VDC 
16 15 V-517 24V Solenoid valve 5 W, 24VDC 
17 

TM
3D

Q
16

TG
 

0 V-518 24V Solenoid valve 5 W, 24VDC 
18 1 V-521 24V Solenoid valve 5 W, 24VDC 
19 2 V-522 24V Solenoid valve 5 W, 24VDC 
20 3 V-523 24V Solenoid valve 5 W, 24VDC 
21 4 V-524 24V Solenoid valve 5 W, 24VDC 
22 5 V-525 24V Solenoid valve 5 W, 24VDC 
23 6 V-526 24V Solenoid valve 5 W, 24VDC 
24 7 V-527 24V Solenoid valve 5 W, 24VDC 
25 8 V-528 24V Solenoid valve 5 W, 24VDC 
26 9 V-531 24V Solenoid valve 5 W, 24VDC 
27 10 V-532 24V Solenoid valve 5 W, 24VDC 
28 11 V-533 24V Solenoid valve 5 W, 24VDC 
29 12 V-534 24V Solenoid valve 5 W, 24VDC 
30 13 V-535 24V Solenoid valve 5 W, 24VDC 
31 14 V-536 24V Solenoid valve 5 W, 24VDC 
33 

TM
3D

Q
16

TG
 

0 V-537 24V Solenoid valve 5 W, 24VDC 
34 1 V-538 24V Solenoid valve 5 W, 24VDC 
35 2 V-539 24V Solenoid valve 5 W, 24VDC 
40 3 RC 24V Triphasic power contactor; 0.75 kW 
41 4 V-541 24V Solenoid valve 5 W, 24VDC 
42 5 V-542 24V Solenoid valve 5 W, 24VDC 
43 6 V-543 24V Solenoid valve 5 W, 24VDC 
44 7 V-544 24V Solenoid valve 5 W, 24VDC 
45 8 V-551 24V Solenoid valve 5 W, 24VDC 
46 9 V-552 24V Solenoid valve 5 W, 24VDC 
47 10 V-553 24V Solenoid valve 5 W, 24VDC 
49 13 V-554 24V Solenoid valve 5 W, 24VDC 
50 14 V-401 24V Solenoid valve 5 W, 24VDC 
51 15 V-402 24V Solenoid valve 5 W, 24VDC 

 

 

e) CO2 Injection application 

Table 17: CO2 Injection application output modules in PLC. 

Chanel Module Position Label Signal Description 
1 

TM3DQ8TG 

0 V-61 24V Solenoid valve 5 W, 24VDC 
2 1 V-62 24V Solenoid valve 5 W, 24VDC 
3 2 V-63 24V Solenoid valve 5 W, 24VDC 
4 3 V-64 24V Solenoid valve 5 W, 24VDC 
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Table 18: CO2 Injection application input modules in PLC 

Chanel Module Position Label Signal Description 
49 

TM
3A

I8
G

 0 I-603 4…20mA Pressure transmitter 0 -16 Bar, accuracy 0.1 bar  
50 1 I-604 4…20mA Mass flow meter 0-100 g/min, accuracy 0.06 l/min 
51 2 I-605 4…20mA Ph meter 0-13, -5 to 80ºC; Pt100; 6 Bar 
52 3 I-606 4…20mA Ph meter 0-13, -5 to 80ºC; Pt100; 6 Bar 
56 4 I-607 4…20mA Ph meter 0-13, -5 to 80ºC; Pt100; 6 Bar 

 

 

3.5. Process modeling and simulation. 

3.5.1. Simulation of indirect heating exchange of column for CO2 

adsorption with TSA 
 

Simulation experiments were performed to study the viability of CO2 capture process 

using the zeolite 13XBL by TSA. Tdyn® software was used to simulate the suitable 

operating conditions of heat exchange and a possible design for a fixed bed TSA column. 

Three strategies were studied for heating exchange on the fixed bed. The first one, 

consists of a packed column with a CO2 hot gas inlet to heat up the saturated adsorbent. 

In the second one, the column was designed as a tube and shell exchanger with hot 

water as a service fluid to heat up the adsorbent in the column, and the third was a hybrid 

model of the previous strategies.  

The column model was designed with an inner aluminum tube of 25 mm of diameter, 

340 mm of length and 3.4 mm of thickness. The tube is enclosed by a second aluminum 

tube of 53 mm of diameter with a 2.5 mm of thickness, and the total length of the column 

is 340 mm. The model of the column was drawn in Autocad® and has been exported to 

Tdyn®, to perform the simulation. The following assumptions were considered: 

• Pressure changes have not been considered. 

• The heating fluid circulates in the jacket formed by the space between the tubes 

and enters through the bottom of the column, considering the effect of gravity. 

• The gas flows countercurrent through the inner tube. 

• Stationary-wall-film boundary conditions were used, meaning the velocity of the 

fluid in contact with the walls of the column and the jacket is zero. 

• The properties of the used fluids have been defined from the Tdyn® database. 

• Large Eddy Simulation models (LES) were used on the flow simulations. 

• The temperature increment due to the adsorption was not considered. 
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To represent the filling in the three-dimensional model, beads of 1.5 mm of radius were 

arranged in a triangular mesh separated equidistantly (Figure 43). The equidistant 

disposition is caused by the presence of a second layer of pearls placed between the 

spaces first layer, forming a triangular arrangement of pearls between first and second 

layer. The three-dimensional adsorbent model filling was done by the repetition of this 

triangular 3D distribution along the column. Since Tdyn® did not have the characteristics 

of the zeolite 13XBL in its database, it has been indicated that the spheres were made 

of clay for the first approach. Figure 44 represents the model employed to simulate the 

heat exchange on the fixed bed. 

 

The model parameter values, kept constant while simulating all the runs, are listed in 

Table 19, whereas the values of the operating parameters (vIN=inlet velocities and 

THF=temperatures of the heating fluid) that varied during the simulation of individual runs 

are listed in  

Table 20.  

Figure 43: Adsorbents beads filling distribution in triangular arranged mesh. 

Figure 44: Column model employed to simulate heating exchange on the fixed bed 
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Table 19: Constant parameter values used for all simulations. 

Design parameters Symbol  Units 

Length of column Lc 340 mm 
Length of jacket Lj 340 mm 

Diameter of column Dcolumn 25 mm 
Diameter of jacket Djacket 53 mm 

Density of column wall ρw 8238 kg/m3 
Specific heat of the column wall Cpw 500 J/(kg K) 

Column wall thickness x 25 Mm 
Operating parameters    
Initial temperature gas TGo 20 ºC 

Initial temperature adsorbent. TSo 20 ºC 
Working Pressure PW 1 barg 

Adsorbent properties    
Radius of the adsorbent particle rP 1.5 mm 

Bulk density ρB 660  
Simulation Parameters    

Nodes ns 9135  
Simulation time ts 30 sec 

Time steps tst 0.01 sec 
 

Table 20: Values of the operating parameters used simulation experiments. 

Run Gas inlet 
velocity Heating fluid velocity Temperature 

feed gas 
Temperature 
heating fluid 

Heating by indirect fluid  
A 0.10 m/s - 60ºC - 
B 0.25 m/s - 60ºC - 
C 0.50 m/s - 60ºC - 
D 0.60 m/s - 60ºC - 

Heating by direct hot gas 
A - 0.01 m/s - 80ºC 
B - 0.05 m/s - 80ºC 
C - 0.10 m/s - 80ºC 
D - 0.20 m/s - 80ºC 

Direct and indirect heating 
A 0.01 m/s 0.10 m/s 60ºC 80ºC 
B 0.05 m/s 0.10 m/s 60ºC 80ºC 
C 0.10 m/s 0.10 m/s 60ºC 80ºC 
D 0.50 m/s 0.10 m/s 60ºC 80ºC 

 

Before the column simulation, a simple simulation of heat exchange on a bead was 

solved with three different mesh configurations as described in Table 21 . The first (Mesh 

number 1) has a total of 9135 nodes and 51899 elements (volumes delimited by the 

nodes). The second (Mesh number 2) has 615 nodes and 3248 elements. The last one 

(Mesh number 3) has only has 40 nodes that delimit 160 elements. In all three cases, 

the same time step was used: 0.01 seconds. 
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Table 21: Simple simulations of heat exchange on a bead was solved with three different mesh 
configurations 

Run Nodes Time steps Temperature  Simulation 
time 

A 9135 0.01 s 80ºC 30 s 
B 615 0.01 s 80ºC 30 s 
C 40 0.01 s 80ºC 30 s 

 

3.5.2. Modelling and simulation of fixed bed adsorption experiments in 

Aspen Adsorption®. 
 

A simulation model was developed in Aspen Adsorption® to match the experimental 

equilibrium data obtained with zeolites 13XBL and 5ABL. The adsorption process is 

simulated by applying the so-called ‘Single Bed Approach’ with rigorous pressure flow 

relationships as well as mass and energy balances. The gas properties of the gas of the 

mixtures and the thermodynamic package are all imported from Aspen properties.  

To reduce the computational effort while ensuring reliable simulation results, the 

following assumptions are considered in this work: 

• Gas phase material balance was described by ideal gas behavior. 

• Linear driving force kinetic model (LDF) was used to describe the flux between the 

gas and adsorbed phases with constant mass transfer coefficients. 

• Convection with axial dispersion was considered with gas phase accumulation in 

the interparticle void space and flux between the gas and adsorbed phases. 

• Constant axial dispersion was described by a fixed axial dispersion coefficient. 

• Non-linear competitive adsorption isotherms were expressed as a function of 

partial pressures through the Dual site Langmuir model. 

• Porosity of bed and adsorbent particle was uniform along the bed (each adsorbent 

was identical). 

• Rigorous energy balance of gas-phase convection and solid-phase conduction 

was included. 

Aspen Adsorption® solves the governing model equations for adsorption, consisting of 

a set of partial differential equations describing the mass, momentum and energy 

transport between the gas and solid phases (Zhang et al., 2016), as well as various 

equilibrium isotherm models. The basic assumptions and governing equations used in 

the simulation of the adsorbent bed are listed in Table 22. The pressure drop through 

the adsorbent bed is estimated by the Ergun equation (equation (22), which is valid for 
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both laminar and turbulent flow regimes. Mass transfer is described by the solid phase 

lumped parameter linear driving force model (equation (24). Values of the mass transfer 

coefficient (MTC) were estimated by considering resistances in the solid film and in the 

micropores of the particle (equation (30), thus accounting for limiting diffusivity (equation 

(31) (Poling et al., 2001).  
 

Table 22: Governing equations used in the model 
 

  

 Description Equation  

Momentum 
balance 

Pressure drop 
described by 
Ergun equation 

∂P

∂z
=±(

150×10‐5μg(1‐εi)
2

(2rpψ)
2εi

3
νg+

1,75 × 10−5𝑀𝑤𝜌𝑔(1 − 𝜀𝑖)

(2𝑟𝑝𝜓)
2𝜀𝑖

3 𝜈𝑔
2) 

(22) 

Mass 
balance 

Plug flow with axial 
dispersion 

𝜕(𝜐𝑔𝑐𝑖)

𝜕𝑧
+ [𝜀𝑖 + (1 − 𝜀𝑖)𝜀𝑝]

𝜕𝑐𝑖
𝜕𝑡

+ 𝜌𝑏
𝜕𝑞𝑖
𝜕𝑡

− 𝜀𝑖𝐷𝐿
𝜕2𝑐𝑖
𝜕𝑡2

= 0 
(23) 

Linear 
driving force 
kinetic 
model 

Adsorption rate 
described by 
constant MTC 

𝜕𝑞𝑖
𝜕𝑡

= 𝑀𝑇𝐶𝑖(𝑞𝑖
∗ − 𝑞𝑖) 

(24) 

Isotherm 
model 

Dual site Langmuir 
with competitive 
adsorption 

𝑞 =
𝑞𝑠1𝑏1𝑃

1 + 𝑏1𝑃
+

𝑞𝑠2𝑏2𝑃

1 + 𝑏2𝑃
 

(25) 

Energy 
balance Gas phase 

‐kgεi
∂2T

∂𝑧2
+Cνgνgρg

∂T

∂z
+[εi+(1‐εi)εp]Cνgρg

∂T

𝜕𝑡
+ 𝑃

∂νg

𝜕𝑧
+ ℎ𝑔𝑠𝑎𝑝(𝑇 − 𝑇𝑠)

+
4ℎ𝑤
𝐷𝐵

(𝑇 − 𝑇𝑤) = 0 

(26) 

 Solid phase −𝑘𝑠
𝜕2𝑇𝑠
𝜕𝑧2

− 𝑘𝑠
1

𝑟

𝜕

𝜕𝑟
(
1

𝑟

𝜕𝑇𝑠
𝜕𝑟

) + 𝜌𝑠𝐶𝑝𝑠
𝜕𝑇𝑠
𝜕𝑡

+ 𝜌𝑠∑(

𝑛

𝑖=1

𝐶𝑝𝑎𝑖𝑞𝑖)
𝜕𝑇𝑠
𝜕𝑡

+ 𝜌𝑠∑(

𝑛

𝑖=1

∆𝐻𝐼

𝜕𝑞𝑖
𝜕𝑡

)

− 𝐻𝑇𝐶𝑎𝑝(𝑇𝑔 − 𝑇𝑠) = 0 

(27) 

 Column wall 
−𝑘𝑤

𝜕2𝑇𝑊
𝜕𝑧2

+ 𝜌𝑤𝐶𝑝𝑤
𝜕𝑇𝑤
𝜕𝑡

− ℎ𝑤
4𝐷𝐵

(𝐷𝐵 +𝑊𝑟)
2 −𝐷𝐵

2
(𝑇 − 𝑇𝑊)

+ ℎ𝑏
4(𝐷𝑏 +𝑊𝑟)

2

(𝐷𝑏 +𝑊𝑟)
2 −𝐷𝐵

2
(𝑇𝑊 − 𝑇𝑒𝑛𝜐) = 0 

(28) 

Heat 
transfer 
coefficient(Bi
rd et al., 
2007) 

Gas−solid  𝐻𝑇𝐶 = 𝑗𝐶𝑝,𝑔𝑣𝑔𝜌𝑔𝑃𝑟
−2 3⁄  

(29) 

Mass 
transfer 
coefficient 

with the solid film 𝑀𝑇𝐶𝑖 = 15
𝐷𝑒𝑓𝑐𝑖

𝑟𝑐
2

 
(30) 

Micropore 
diffusivity 
(Liu et al., 
2011b) 

at the adsorbent 𝐷𝑒𝑓𝑐𝑖 = 𝐷𝑒𝑓𝑐𝑖
0 · exp⁡(

−𝐸𝑎
𝑅𝑔𝑇𝑠

) 
(31) 

Varying axial 
dispersion 

Varying dispersion 
coefficient 
depending on υs 

𝐷𝐿 = 2𝜐𝑖𝑟𝑝(
20

𝑅𝑒 ∙ 𝑆𝑐
+
1

2
) 

(32) 

Heats of 
adsorption 

Clausius−Clapeyro
n relation 𝛥𝐻𝑎𝑑𝑠 = −𝑅 [

𝜕𝐼𝑛⁡𝑝

𝜕(1 𝑇⁄ )
]
𝑛

 
(33) 

Ideal gas 
behavior 

Gas phase 
material 𝑃𝑦𝑖 = 𝑅𝑇𝑔𝑐𝑖 (34) 
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The energy balance model selected is the rigorous energy balance incorporating both 

gas-phase convection and solid-phase conduction. The model considers independent 

balances in the fluid (equation (26), solid (equation (27), and wall phases (equation (28). 

The general wall balance equation includes a term for the heat transfer coefficient of the 

wall, which is based on the specified values of the wall density and the specific heat 

capacity of the wall material. Gas-solid heat transfer is expressed in terms of a film 

resistance, where the heat transfer area is proportional to the area of the adsorbent 

particles, as given in the rate of heat transferred per unit volume (HTC). HTC is also 

estimated by the software based on the Colburn j-factor correlation (equation (29). Heats 

of adsorption (ΔHads) of CO2 and N2 as a function of loading were calculated from the 

measured isotherm data by using the Clausius−Clapeyron relation (equation (34). 

Heat transfer coefficients of zeolites 13XBL and 5ABL were not experimentally available 

but were estimated from standard correlations within the software. The input parameters 

used in the simulations including column and adsorbent characteristics, and gas physical 

properties are shown in Table 23. 
 

Table 23: Adsorbent characteristics used in the Aspen 

Parameter Units 13XBL 5ABL 

Sorbent mass used per bed  kg 0.195 0.125 

Packing density  kg/m3 689 700 

Inter-particle porosity, 𝜀i m3 void/m3 bed 0.35 0.35 

Intra-particle porosity, 𝜀p m3 void/m3 
bead 0.6 0.6 

Adsorbent shape factor (Sphericity), Sfac  0.83 0.83 

Adsorbent specific heat capacity, Cps kJ/kg·K 1.00 0.92 

Heat of adsorption -ΔHCO2 MJ/kmol -35.00 -36.05 

Heat of adsorption -ΔHN2 MJ/kmol -16.00 -16.84 

constant mass transfer coefficient MTCCO2 1/s 0.5 0.1 

constant mass transfer coefficient MTCN2 1/s 0.3 0.05 

Constant adsorbed phase heat capacity CO2 kJ/kmol·K 25.814 36.732 

Constant adsorbed phase heat capacity N2 kJ/kmol·K 15.50 29.105 

 

A simulation flowsheet based on the ‘Single Bed Approach’, was adopted, which 

simulates the behavior of one bed. Dead volumes at both ends of the experimental 

system were estimated and are considered in the simulations. The typical flowsheet 

simulation from Aspen Adsorption ® is shown in Figure 45. 
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3.5.3. Simulation of VPSA cycles in Aspen Adsorption 
 

VPSA dynamic cyclic experiments on a fixed-bed were performed to study the cycle 

performance of zeolites 5ABL and 13XBL. The commercial software Aspen Adsorption® 

simulator was used to simulate the process cycle for the purposes of interpreting the 

experimental data and understanding the process basics. The model equations were 

solved using the same assumptions and governing equations established in section 3.5.2 

on single bed experiments. A rigorous model was used with the application of the DSL 

model, the linear driving force model and Ergun equation to represent the adsorption 

equilibrium, mass transfer rate and pressure drop across the bed respectively. The 

column/bed characteristics and the adsorbent properties are the same ones that were 

used in the section 3.5.2. Pure component isotherms equilibrium models of section 2.4 

were used to predict the mixed-gas adsorption process simulations using the ideal 

adsorbed solution theory (IAS).  

 

 

 

Figure 45: Simple flowsheet used for the simulation of the equilibrium relationship in Aspen 
Adsorpton®. 
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The single column configuration is the same used in the section 0. The cycle organizer 

of Aspen Adsorption® was used to specify the process steps, interactions and the events 

for step control on the cyclic operation. Rinse and purge steps were carried out with fresh 

carbon dioxide 4.5 and nitrogen 5.0 (purity greater than 99.995% and 99.999%, 

respectively). Cyclic Steady State (CSS), which is the nature of periodic adsorption 

processes, implies a steady state in which the conditions at the end of each cycle are 

identical to those at the beginning. The criteria used to confirm attainment of CSS was 

when thermal and concentration profiles at the end of a cycle is within a relative tolerance 

value of 0.01% compared to the values of the previous cycle.  
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4. Results and discussion 
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4.1. Adsorbent material screening for CO2 adsorption for TSA. 
 

CO2 capture using organic and inorganic porous materials (e.g. carbonaceous materials 

and zeolites respectively) consumes less energy when compared to CO2 capture with 

chemical absorbents such as amines. This is because new bonds are not formed 

between the adsorbate and the adsorbent, and therefore much less energy is required 

for the CO2 regeneration. Different adsorbents have been developed on a commercial 

scale for CO2 capture (Zhao et al., 2015) such as activated carbons (ACs) (Rashidi and 

Yusup, 2016; Zhao et al., 2015), carbon molecular sieves (CMS) (Liu et al., 2016; Nabais 

et al., 2006; Verma and Walker, 2015), zeolites (Cheung and Hedin, 2014; Gleichmann 

et al., 2016; Linda Shi and Hurst, n.d.; Patrícia A.P. Mendes et al., 2017; Silva et al., 

2012), metal organic frameworks (MOFs) (Ben-Mansour et al., 2016; Sreenivasulu et al., 

2015; Zhang et al., 2014), and silica or porous polymers (Lee and Park, 2015). Every 

type of adsorbent has different properties (such as the specific surface area, total 

micropore volume, etc.), which make them more appropriate for different operational 

conditions. Then CO2 adsorption efficiency can therefore be improved by selecting an 

appropriate adsorbent material.  

While the number of new adsorbent materials reported has proliferated, only a very 

select few will undergo bench-top testing and even fewer will pass on to pilot testing 

stage, partly due to the limited availability of production materials. Therefore, the 

adsorbent screening focuses on commercially available zeolites and CMS. For 

adsorbent material screening, the starting point for sorbent selection is to examine the 

fundamental properties that can influence the adsorptive separation. The adsorptive 

separation is achieved by one of three mechanisms: steric, kinetic, or equilibrium effect. 

The steric effect derives from the molecular sieving properties of zeolites and molecular 

sieves. In this case, only small and properly shaped molecules can diffuse into the 

adsorbent, whereas other molecules are totally excluded. Kinetic separation is achieved 

by the differences in diffusion rates of different molecules. A large majority of processes 

operate through the equilibrium adsorption of mixture and hence are called equilibrium 

separation processes. Steric separation is unique with zeolites and molecular sieves 

because of the uniform aperture size in the crystalline structure. This type of separation 

is generally treated as equilibrium separation. CO2 separation by PSA using zeolite is 

based on the preferential adsorption of CO2 over N2.  
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4.1.1. Textural properties determination. 
 

Textural parameters SBET and VDACO2 obtained from the N2 and CO2 adsorption 

isotherms of CMSs and zeolites are shown in Table 24. The results revealed that the 

SBET and VDACO2 of zeolites were higher than for CMSs. The presence of narrow 

micropores in the adsorbent is important because they can increase the diffusion rate of 

CO2 compared to larger pores (Schroter and Carbon, 1993). 

Table 24: Specific surface area (SBET) and narrow micropore volume (VDACO2) on various 
adsorbents. 

Sample Adsorbent type SBET  VDACO2 Maximum CO2 
adsorbed at 0ºC 

(cm2/g) (cm3/g) (mmol/g) 

CMS-I 
Carbon Molecular 

Sieve 

554 0.20 2.94 
CMS-II 425 0.16 2.32 
CMS-lll 450 0.18 2.36 

13X 

Zeolite with binder 

725 0.25 5.62 
13X-APG 655 0.26 5.50 

5A 622 0.21 4.75 
APG-III 756 0.26 5.68 
13xBL 

Zeolite binderless 
782 0.30 6.59 

5ABL 709 0.24 5.84 
4ABL 573 0.22 4.95 

 

Adsorption/desorption isotherms of N2 for zeolites and CMS are shown in Figure 46. 

Zeolites exhibit a type I shape according to IUPAC classification. It can be observed, that 

at the beginning of the isotherms, a rounded knee is formed at a very low relative 

pressure (until 0.05 of relative pressure, defined as the sample pressure divided by the 

absolute pressure on the instrument). This effect is interpreted as the presence of the 

microporous structure. After an increase up to 0.95 of the relative pressure, the zeolites 

with binder, displayed a fast increment compared to the binderless zeolites, showing a 

steeper slope. This effect was produced by the different mesoporous structure between 

the two types of zeolite families and can be interpreted as a higher mesopore volume for 

the zeolites with binder. Thus, it can be deducted that the binder used in the production 

of the pellet beads, influenced directly on the mesoporous volume. Contrarily, the 

formation of a low mesopore volume in the binderless materials was achieved due to the 

application of spacers in the production process of this type of material (Gleichmann et 

al., 2016; Schumann et al., 2012). Finally, the volume of N2 adsorbed on zeolite 4A and 

CMSs was practically zero because at cryogenic temperature N2 has kinetic restrictions 

to enter the narrow micropores of these sieves (Martin-Calvo et al., 2014). As in the case 

of zeolites, it can be observed at low relative pressures a steeply slope associated to the 
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micropores and at relative pressures higher than 0.9 a slope related to the presence of 

mesopores.  

 

 

 

 

Figure 46: (A) N2 adsorption isotherm for zeolites at 77 K, (B) N2 adsorption isotherm zeolites at 
77 K logarithmic plot. 

B 

A 
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Adsorption/desorption isotherms of CO2 at 273 K are shown in Figure 47 for zeolites and 

CMS. Clearly, it can be observed that the CO2 adsorption capacity is higher for zeolites 

than for CMSs. Increasing the relative pressure, 13XBL was the material with the highest 

CO2 adsorption capacity (6.59 mmol/g). On the other hand, 4ABL and 5A were the 

zeolites with the lowest CO2 adsorption capacity (4.75-4.95 mmol/g).  

 

 

Figure 47: (A) CO2 adsorption isotherms for zeolites at 273 K, (B) CO2 adsorption isotherms for 
zeolites at 273 K logarithmic plot. 
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In Figure 47 (B) the isotherms were plotted on a logarithmic scale to differentiate the 

effects of the different materials at very low pressure, it can be observed that the CO2 

adsorption capacity was higher at low relative pressures with the binderless materials 

and the zeolite APG-III. On the other side, after 0.005 of relative pressure the CO2 

adsorption capacity had an asymptotic tendency (see Figure 47 A). The binderless 

materials adsorbed a higher amount of CO2 (17% for 13XBL and 23% for 5ABL) than the 

analogous binder containing material (13X and 5A respectively). This percentage was 

proportional to the mass of the inert mineral binder in the adsorbent (about 20 wt% of 

binder for all commercial zeolites). Consequently, the adsorption capacities of binder 

zeolites were lower by approximately the amount of containing binder. Among the CMSs, 

CMS-I had the highest CO2 adsorption capacity (2.94 mmol/g) and CMS-II and CMS-III 

had similar CO2 adsorption capacity (2.3 mmol/g). 

 

4.1.2. Determination of CO2 adsorption capture, heat of adsorption and 

adsorption equilibrium time with the TGA-DSC method 
 

The qTGA and ΔHads/ΔHdes and the time needed to reach adsorption equilibrium (teq) of 

the selected materials (Table 25) were determined from TGA and DSC characteristics 

curves shown in Figure 17. The total adsorption capacity between the adsorbate 

molecules and the adsorbent is the sum of their non-specific contributions (dispersion 

and repulsion energy) and the electrostatic contributions (electric fields created by dipole 

and quadrupole interactions) (Yang, 2003). As an approach, it can be considered that 

the determination of the ΔH represents the contribution of the total potential energies of 

adsorption (Yang, 2003). From Table 25, it can be observed that CMSs had 

approximately one third of the total capacity of the zeolites. This agrees with the previous 

results from CO2 adsorption isotherms where it was observed that zeolites had a higher 

CO2 adsorption capacity.  

The zeolites had a higher qTGA due to their adsorption potentials not only depends on 

their electrostatic energies as in the case of CMSs. These materials had an additive 

contribution on their non-electrostatic energies, such as the polarizability of the 

adsorbate molecule (Yang, 2003). Zeolites 13XBL and 5ABL showed the highest values 

of ΔH what agrees with the fact that they are the adsorbents with a higher qTGA. These 

two materials also showed the highest adsorption capacity in the CO2 adsorption 

isotherms experiments at 0ºC. It was observed from the experiments with TGA that the 

teq of zeolites was almost the double than for CMS. 
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Table 25: The adsorption capacity (q), adsorption heat (ΔH) and time to reach adsorption 
equilibrium (teq) on various adsorbents obtained from TGA and DSC analysis. 

Sample Adsorbent type q  ΔH teq 
(mmol/g) (kJ/mol) (min) 

CMS-I 
Carbon Molecular 

Sieve 

1.13 45.74 65.40 
CMS-II 0.92 32.64 60.95 

CMS-lll 0.91 33.09 61.82 

13XNa 

Zeolite with binder 

3.62 56.84 118.70 
13X-APG 2.86 54.27 118.05 

5A 3.96 57.23 117.98 
APG-III 4.69 59.02 120.38 

13xBL 
Zeolite binderless 

5.48 65.42 121.08 
5ABL 4.95 62.41 108.01 

4ABL 3.46 54.72 106.88 

 

As it can be observed in Figure 48 (A), there is a linear correlation between qTGA and 

ΔHads with the studied adsorbents. The maximum CO2 adsorbed in the experiments with 

the ASAP 2020HD (Figure 48 B) equipment at 0ºC also correlates quite well with qTGA. 

The methodology proposed in this work took from 3 to 5 hours (including set-up, 

degasification, adsorption, and desorption) in comparison with gravimetric and 

volumetric adsorption measurements that can need longer times (around 1-2 days) and 

more resources.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48: (A) Influence of ΔH on qTGA of the studied adsorbents. B) Influence of the maximum CO2 adsorbed 
at 0ºC on qTGA on the of the studied adsorbents. ● Zeolites; ○ CMS’s. 
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4.1.3. Influence of the textural Properties on CO2 adsorption. 
 

The influence of textural properties, SBET and VDACO2, on qTGA was also evaluated (Figure 

49) in order to see which of both properties is more important in the prediction of the CO2 

adsorption capacity of the adsorbents. It can be observed how there is a lack of 

correlation of SBET with qTGA (Figure 49 A) and with VDACO2 (Figure 49 B). Apparently 

SBET is a more suitable parameter to predict the CO2 adsorption capacity, but the points 

are a great distance away from the size of the error bars, so our results are inconsistent 

with a linear relationship between. 

  

Figure 49: Influence of A) SBET and B) VDACO2 on qTGA of zeolites and CMSs. ● Zeolites; ○ CMS’s. 
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total electrostatic interactions potentials promoted by the polarizability values of the Na+ 

ions over Ca+ (Rouquerol et al., 2014a). 

 

4.2. Temperature swing adsorption study approach. 

4.2.1. Study of cyclic behavior of the materials for its use in TSA. 
 

Cyclic adsorption separation processes are based on the selective adsorption of one or 

more components in a gas mixture, with the adsorbent regeneration by pressure 

(PSA/VSA) or by temperature (TSA). The adsorption is shown as an alternative of 

separation that has very efficient applicability since the adsorbent shows high adsorption 

capacity, high selectivity, good mechanical properties, ease of regeneration and stability 

to repeated cycles of adsorption/desorption. 

The cyclic or periodic characteristic of the separation processes is fundamental from the 

viewpoint of intensification, because it determines the duration of the cycles, hence the 

productivity. As a result, the main objective is to shorten the duration of the cycles in 

order to intensify the process. One important feature of adsorption processes is that 

mass and heat transfer characteristics are strongly related. Low temperature promotes 

the adsorption while high temperature encourages the desorption (regeneration of the 

adsorbent). Hence the productivity of such a process depends strongly on the frequency 

at which we are capable of varying the temperature of the adsorbent bed, i.e. heating or 

cooling the adsorbent as quickly as possible to reach the temperature set-points for 

adsorption and desorption, respectively (Cruz et al., 2003).  

To capture CO2 with TSA, it is very important to understand the cyclic behavior of the 

adsorbents. Therefore, a methodology based in TGA/DSC was applied to study the 

CMSs and the zeolites using different operating conditions listed in the section 2.3.2. 

CMS-I and APG-III were previously selected as representative materials. CMS-I was 

selected since it showed a higher qTGA in the previous section. APGIII was selected since 

it is a benchmark zeolite which is well-known to work well at high temperatures (>60°C) 

(Ling et al., 2015; Molsiv, 2015; Wang et al., 2013a, 2012). In Figure 50 (A), the evolution 

of qTGA of CMS-I and APG-III during the adsorption-desorption cycles is observed. CMS-

I was studied at a desorption temperature of 120ºC (methodology of Table 4). For 

APG- III two analyses were carried out, one with desorption at 120ºC (methodology of 

Table 4) and other with desorption at 350ºC (methodology of Table 5). For CMS-I, qTGA 

was quite constant during the different cycles (see Figure 50 A), which means that the 
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desorption was complete at 120ºC. In the case of the cycling experiment with APG-III 

desorbing at 120ºC, qTGA decreased from 1.4 mmol/g in the first cycle until stabilizing in 

1.2 mmol/g at the fifth cycle. This was caused because at 120ºC APG-III was not 

completely regenerated, resulting in lost working capacity on each cycle. As discussed 

before, zeolites have a higher adsorption capacity than CMSs, and they require more 

energy in order to be regenerated completely. To compare the cyclic performance of 

both adsorbents at conditions of total regeneration, experiments with APG-III at 

desorption temperature of 350ºC were carried. 

 

In Figure 50 (A) it can be observed how qTGA of APG-III regenerated at 350ºC was steady 

during all the cycles as in the case of CMS-I. It was evident that the increase of the 

desorption temperature increased the APG-III cycle time. In one cycle performed with 

APG-III desorbing at 350ºC, it was possible to carry out three cycles with CMS-I 

Figure 50: Adsorbents cyclic performance of CMS-I, APG-III at 120 ºC and 350 ºC of 
desorption temperature. (A) Cyclic CO2 adsorption capacity, (B) Cyclic productivity 

performance and cyclic energy consumption. 
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desorbing at 120ºC during the same amount of time. Despite that, in one cycle of APG- III 

the qTGA was higher (4.11 mmol/g) than the sum of all the qTGA of the three cycles carried 

out with CMS-I (2.40 mmol/g) during the same period. Figure 50 (B) shows the evolution 

of productivity and energy consumption during these cycle experiments. After 7 cycles, 

the productivity of APG-III desorbing at 120ºC increases from 0.5 mmol/kg٠h to 1.1 

mmol/kg٠h and the energy consumption went from 311 kJ/mol٠h to 203 kJ/mol٠h. The 

adsorption of CO2 with APG-III on the first cycles was high but the recovered material 

was limited in each cycle due to the uncompleted desorption step which was not at the 

desorption temperature of 120ºC, therefore the amount of recovered material per cycle 

time is increased once the adsorbent reaches a steady state having an equilibrium 

between their adsorption and desorption rates. In the case of CMS-I, the productivity 

(0.75 mmol/kg٠h) and the energy consumption (226 kJ/mol٠h) remained constant along 

the consecutive 7 adsorption-desorption cycles.  

This cyclic stability of CMS-I was explained by the total desorption of CO2 at the 

desorption temperature of 120ºC. It can also be observed that at the regeneration 

temperature of 350ºC, APG-III presents an invariable productivity and energy 

consumption showing a good cycle stability. From Figure 50 (B) it can be concluded that 

the productivity of APG-III desorbing at 350ºC (1.92 mmol/kg٠h) was 2.5 times higher 

than the one of CMS-I desorbing at 120ºC. The energy consumption of APG-III 

(108 kJ/mol٠h) is reduced 52% in comparison with CMS-I despite the fact that the 

desorption temperature was increased up to 350ºC. Comparing the results of Figure 50, 

it can be concluded that the productivity and energy consumption of the zeolite APG-III 

was improved even by increasing the desorption temperature and cycle time. The energy 

consumption invested per gram of adsorbent was compensated by a higher desorption 

of CO2 and a better utilization of the adsorption capacity on the same cycle time.  

 

4.2.2. Effect of desorption and adsorption temperature on zeolite for TSA 

performance. 
 

To study the influence of the desorption temperature on the TSA cyclic configuration a 

set of experiments was carried out using the methodology described in Table 5. In Figure 
51 (A), it can be observed that the desorption temperatures have a considerable impact 

on the adsorption capacity, low desorption temperatures causes an increment on the 

qTGA induced by the accumulation of non-desorbed CO2. On the other hand, the study of 

the influence of the adsorption temperature was performed using the methodology 
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described on Table 6. Figure 51 (B) shows the results of the experiments, and the qTGA 

keeps almost constant over the cycles; nevertheless, its capacity increments 

proportionally at low adsorption temperatures. Therefore, it can be affirmed that the 

higher is the difference between the adsorption and desorption working temperature 

(ΔTw) the better is the working capacity for CO2 capture. 

 

The CO2 productivity and energy consumption are shown in Figure 52 for both sets of 

experiments. It can be observed in all experiments that the changes on adsorption and 

desorption temperatures had a high impact on the productivity and energy consumption 

in the first cycle. After the first cycle, the productivities were stabilized without significant 

variations through the consecutive cyclic repetitions. However, the behavior of the 

energy consumption in both sets of experiments was different. The energy consumption, 

when the adsorption temperature was kept at 40 ºC (Figure 52 A), was more stable at 

the desorption temperatures of 120ºC and 150ºC than at 60ºC and 90ºC (from 21 to 

106  kJ/mol). The energy consumption was penalized by the poor CO2 recovery during 

the desorption, inflicted by a low differential of temperature between adsorption and 

Figure 51: Zeolite APG-III cyclic performance, (A) Influence of desorption temperature, (B) 
Influence of adsorption temperature. 
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desorption (ΔT) at the desorption temperatures of 60ºC and 90ºC (ΔT=20°C and 

ΔT=50°C respectively). In both figures, the values with a lower energy consumption were 

those with a higher ΔT. The highest productivities were obtained with the highest 

desorption temperatures (0.69 mmol/kg at 150ºC and 0.57 kJ/mol at 120ºC). On the other 

hand, when the desorption temperature was kept at 150 ºC (Figure 52 B) the adsorption 

temperatures with a higher productivity and lower energy consumption were 40 ºC and 

60 ºC. Again, it was shown that a high ΔT is beneficial for both productivity and energy 

consumption.  

 

From these temperature intervals, the strategy for an optimal energy efficiency of TSA 

can be formulated using an adsorption temperature of 60ºC and a desorption 

temperature of 150 ºC, this means a saving of energy on the process due to less energy 

Figure 52: (A) APG-III productivity and energy consumption performance at 40°C of adsorption temperature 

and different desorption temperatures of cyclic CO2 adsorption capacity, (B) APG-III productivity and energy 

consumption performance at 150°C of desorption temperature and different adsorption temperatures. 

 

0

20

40

60

80

100

120

0,0

0,5

1,0

1,5

2,0

2,5

1 2 3 4 5 6 7 8 9

e c
yc

le
(k

J/
m

ol
٠
hr

)

Pr
 (m

m
ol

/k
g·

hr
)

Number of Cycles 
40ºC to 60ºC Pr 40ºC to 90ºC Pr 40ºC to 120ºC Pr
40ºC to 150ºC Pr 40ºC to 60ºC e.cycle 40ºC to 90ºC e.cycle

A 

0

20

40

60

80

100

120

0,0

0,5

1,0

1,5

2,0

2,5

1 2 3 4 5 6 7 8 9

e c
yc

le
(k

J/
m

ol
٠
hr

)

Pr
 (m

m
ol

/k
g·

hr
)

Number of Cycles 
40ºC to 150ºC Pr 60ºC to 150ºC Pr 90ºC to 150ºC Pr
120ºC to 150ºC Pr 40ºC to 150ºC e.cycle 60ºC to 150ºC e.cycle

B 



 

Angel Eduardo Gutiérrez Ortega 
101 

being needed to cool down the gases in the adsorption stage. The decision can be 

formulated taking into consideration the heat integration of remaining energy sources 

available on an industrial scenario. For example, the use of residual steam from an 

existent industrial boiler or the use of existent cooling tower.  

Finally, a new methodology (Table 26) was used to evaluate the TSA cyclic behavior of 

different zeolites (13X, 13X-APG, APG-III, 13XBL, 5A and 5ABL) under optimal energy 

efficiency working conditions.  

Table 26: Optimized methodology for cyclic performance analysis of zeolites. 

 Stage Temperature (°C) Time (min) 

Cool down 150-60 20 
Adsorption 60 20 
Desorption 60-150 5 

 

Before each experiment, the zeolites were regenerated at 350ºC. The adsorption-

desorption profiles of the cycle experiments are shown in Figure 53, where it is observed 

that the evolution of qTGA was different for each zeolite. The zeolites adsorbed at their 

maximum capacity in the first cycle and then, they lose adsorption capacity during the 

next cycles due to their low desorption rate. Despite this effect at the beginning of the 

cycle, the qTGA is stabilized in the after the sixth cycle. 

 

The productivity and the energy consumption obtained with each zeolite was shown in 

Figure 54 (A) and Figure 54 (B) respectively. The zeolite with the highest productivity 

was 13XBL (1.94 mmol/kg٠h) while 5A was the zeolite with the lowest (1.15 mmol/kg٠h). 

The lower energy consumption was for 13XBL (98 kJ/mol٠h) and the highest for 5A (165 
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kJ/mol٠h). Likewise, the binderless materials (5ABL and 13XBL) showed higher 

productivity and lower energy consumptions than their analog binder-based materials 

(5A, 13X). These results confirmed that despite of the high mechanical and thermal 

resistance of the binder containing zeolites, the binderless zeolites have a stable cyclic 

behavior, since these materials did not show a decrease on their cyclic performance. On 

the other hand, it was confirmed that the zeolite APG-III had a better productivity than 

the 13X-APG with an equivalent energy consumption and that these two materials had 

a higher productivity and lower energy consumption than their analog zeolite 13X. In the 

last place, the 5A zeolites (binder and binderless) had the lowest productivity and the 

highest energy consumption.  

  

With these considerations, it can be concluded that for a TSA configuration, the material 

with a better performance is the zeolite 13X binderless, using as adsorption and 

desorption temperatures 60ºC and 150ºC respectively. As it can be noticed, the initial 

regeneration of the adsorbent had a considerable impact independent of working on low 

or high temperatures of adsorption. For this reason, it was interesting to study different 

Figure 54: Zeolites (A) productivity and (B) energy consumption with 60°C of adsorption 
temperature and 120ºC of desorption temperature. 

85

125

165

205

245

285

325

1 2 3 4 5

e c
yc

le
(k

J/
m

o
l٠

h
)

Number of Cycles 

5ABL 5A 13X APG-III 13XBL 13X APG

B 

0,5

0,7

0,9

1,1

1,3

1,5

1,7

1,9

1 2 3 4 5

P
r

(m
m

o
l/

kg
٠

h
)

Number of Cycles 

5ABL 5A 13X APG-III 13XBL 13X APG

A 



 

Angel Eduardo Gutiérrez Ortega 
103 

initial regeneration times to understand the influence of this stage on the overall TSA 

process performance. Figure 55 (A) shows three experiments carried out using zeolite 

13XBL at 150 ºC as the regeneration temperature at different regeneration times.  

  

 

 

After the initial regeneration, the cycles were performed with zeolite 13XBL following the 

methodology of Table 26. It can be observed how the initial regeneration time had a 

strong effect at the beginning of the process, but this effect decreased along the cycle 

repetitions. Nevertheless, the productivity (Figure 55 B) showed a slight difference 

between the three initial regeneration times in the last cycle performed. With the cyclic 

repetitions, the adsorption productivity stabilized for all the initial regeneration times to a 

close value. With an initial regeneration time of 10 min the productivity was 

1.54 mol/(kg٠h), while with 120 min it was 1.70 mol/(kg٠h). At longer initial regeneration 

times, other adsorbed molecules (such as H2O and different fraction of atmospheric 

gases) were desorbed resulting in more available adsorption surface. 
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A qualitative methodology using TGA and DSC analysis has been developed to select 

adsorbents that could be applied in TSA for CO2 capture in post combustion processes. 

The performed analysis unveiled the effect of the adsorption and desorption steps and 

the cyclic performance to show their potential on a continuous TSA process. The CO2 

adsorption capacity, adsorption heat and time to reach adsorption equilibrium for ten 

commercial adsorbents (3 CMSs and 7 zeolites) were determined using a mixture of 

15% CO2/ 85% N2. The binderless zeolites 13XBL, APG-III and 5ABL showed the highest 

values of CO2 adsorption capacity and heat of adsorption over the different studied 

materials. However, despite 5ABL having a high qTGA, it shows a low productivity (1.15 

mmol/kg٠h) limited by the poor desorption rate at the range of process temperatures 

(150ºC for desorption and 60ºC for adsorption) which is reflected by the high energy 

consumption (165 kJ/mol٠h) of CO2 recovery. On the other hand, the highest productivity 

(1.94 mmol/kg٠h) and the lower energy consumption (98 kJ/mol٠h) was achieved by 

13XBL. 

The productivity for CMSs is almost constant in every adsorption-desorption cycle, 

showing a complete and fast regeneration even working at low temperatures. In the case 

of zeolites, the difference between the adsorption and desorption temperatures, ΔTW, 

has a strong effect on the adsorbent cycling performance. If the operating ΔTW with 

zeolites is low, then the productivity is low, and the energy consumption is high. This is 

because the adsorption process is limited in each cycle by the desorption which is much 

slower than in CMSs. Binderless zeolites (5ABL and 13XBL) showed higher 

productivities and lower energy consumptions than their analog binder-based zeolites 

(5A, 13X).  

For zeolites, an adsorption temperature of around 60ºC is preferred as this represents 

an appropriate balance on the adsorbent productivity and energy consumption. At 

maximum regeneration temperature (350ºC), the zeolites show a constant productivity 

and energy consumption, showing a good cycle stability. Two strategies for energy 

efficiency can be formulated, the first one using low working temperatures in a range of 

60ºC for adsorption and 150ºC for desorption, and the second one, at high process 

temperatures in a range of 90ºC to 350ºC.  

This fast screening methodology through TGA/DSC can be useful on the screening 

stages of the research of different adsorbents for CO2 capture, taking into consideration 

the longer analysis times and resources needed on the application of the classic physical 

adsorption measurements methodologies of analysis (gravimetric and volumetric 

adsorption measurements). Because many operating conditions were considered, the 
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obtained results can serve as a basis to guide the cycle design adapted to given 

separation process targets, adsorbent design, adsorbent modification, or adsorbent 

optimization as the first approach, mainly when there is not enough time and resources.  

 

4.2.3. Heating exchange simulations for CO2 adsorption by TSA. 
 

Significant reduction in the energy consumption of CO2 capture systems remains a 

challenge. Clearly, the source and type of the energy used by the capture plant will play 

an important role in the overall operating cost. Many capture researchers are currently 

exploring integration options with power plants for the potential use of cheaper, low-

grade thermal energy or heat recovered from flue gas cooling to offset part of the energy 

requirements of the capture process (Zenz et al., 2009). The TSA process is of interest 

due to its ability to directly utilize these low-grade thermal energy resources for 

regeneration. Table 27 shows the regeneration methods being employed in some studies 

at laboratory scale. In conventional TSA applications such as air and natural gas drying, 

the adsorbent is often regenerated by direct purge with a hot non adsorbing gas or 

steam.(Kast, 1985). Hence, as shown in Table 27, the bed is often first heated indirectly 

to the desired regeneration temperature using several means including heating jackets, 

electric heating tapes, or coils wrapped around the adsorbent, and hot/cold fluid carrying 

tubes.  

The aim of the present section is to evaluate the potential of the combination of the 

indirect and direct heat TSA process for CO2 capture. For this purpose, simulations were 

carried out with different operating conditions, and the performances were evaluated 

based on CO2 productivity. The simulation was carried out using Tdyn® to provide an 

initial assessment of a column design for a TSA process. Tdyn® allows adding more 

elements in the mesh for sensitive areas, but also reduce the number of nodes in more 

trivial solution areas. A poorly planned and inefficient mesh can cause the calculation to 

not converge and/or cause excessively high calculation times. To determine the suitable 

number of mesh elements, some previous simulations were performed to assure the 

number of elements needed for reasonable results. 

To have a correct precision and an operative simulation time, it is important to configure 

a correct model mesh. Three simulations of a single bead have been resolved with three 

different mesh configurations. The first mesh (case A) with 9135 nodes and 51899 

elements. The second (case B) has 615 nodes and 3248 elements, 16 times smaller 
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than the first. The last one with 40 nodes and 160 elements. The time step used in the 

three cases was 0.01 seconds. 

 

Description 
Regeneration 

method 
Adsorbent. Ref. 

Three TSA cycle configurations with heat integration by 

parametric analysis. 
Indirect heating Zeolite 13X 

(Joss et 

al., 2017) 

Modelling for energy-efficiency analysis based on 

carbon pump, two adsorption cycles based in carbon 

pump. 

Indirect heating Zeolite 5A 
(Zhao et 

al., 2017) 

Cyclic experiments using a hot CO2 rich gas for 

regeneration on a single adsorption column. 
Hot CO2 rich gas 

Zeolite 

NaUSY 

(Ntiamoah 

et al., 

2016) 

Adsorbent-coated microchannels configuration Indirect heating 
Polymer 

matrix 

(Pahinkar, 

2016) 

Chemical heat integration to reduce energy requirement Indirect heating 
Zeolium F9-

HA 

(Song et 

al., 2015) 

Concentric tubes with heat-conducting oil and additional 

hot N2 purge 

Direct and 

indirect heating 

Zeolite 13X-

APG 

(Wang et 

al., 2012) 

Internal concentric tubes fin heat-exchanger packed in 

the annulus created by the tubes. 
Indirect heating 13X and 5A 

(Merel et 

al., 2008) 

Bed is heated indirectly by means of steam 

condensation. 
Indirect heating Zeolite 5A 

(Clausse 

et al., 

2011) 

Bed is heated by a heating tape coiled around the 

column and hot N2 purge 

Direct and 

indirect heating 

Activated 

carbon 

(Plaza et 

al., 2010) 
 

Figure 56 shows the effect of the mesh size on the heat flow resolution. In all the 

simulations the adsorbent bead is exposed to CO2 at 85ºC on three-time intervals (10, 

20 and 30 seconds). In the simulation case C, it can be observed that there are some 

temperature profiles with a square contour which is clearly inconsistent. It is evident that 

case A is the simulation with more definition, showing more accurate results compared 

to the cases B and C. However, comparing case A and case B, the first one offers more 

precision on the results, but this configuration requires more calculation capacity and two 

times more calculation time (It took about 6, 3 and 2 minutes to solve meshes A, B and 

C, respectively). Therefore, the case A mesh configuration was used for the simulation 

of the three strategies described on Table 21. To reduce the calculation time, a square 

section of 2.5 cm of column was simulated. 

Table 27: Some studies on CO2 capture by TSA, showing the regeneration methods used. 
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4.2.4. Heating using direct hot gas strategy. 
 

The used conditions for the simulation of the conduction heat transfer by a direct hot gas 

are described on  

Table 20. The Figure 57, shows the velocity profile and the heating flow over the 

simulated a section of the column. The adsorbent beads are placed in a triangular mesh 

separated equidistantly as described on section 3.5.1. The initial temperature in the 

system was fixed at 20ºC. The feeding process fluid was CO2 at 60ºC entering from the 

top of the column. The simulation was performed over 30 seconds with four different inlet 

velocities: 0.10 m/s (case A), 0.25 m/s (case B), 0.50 m/s (case C) and 0.60 m/s (case 

D). 

A B C 

Figure 56: Simulated heat flow in an adsorbent bead at 10, 20 and 30 seconds. A) 9135 
nodes, B) 615 nodes, C) 40 nodes. 

20 seconds 10 seconds 30 seconds 

A B C 
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From Figure 57 it can be observed that the feeding velocity of CO2 (profiles in A1, B1, 

C1 and D1) has an important effect on the heating exchange with the adsorbent (profiles 

in A2, B2, C2 and D2). In Figure 57 A2, the temperature of the first adsorbent layer is 

about 45ºC, while for the last layer it is about 30ºC. However, in Figure 57 D2 on the 

same referred adsorbent layers the temperature seems to reach a uniform temperature 

of about is 56ºC.  

 

Figure 58 plots the temperature profile of the previous simulations with feed flow speeds 

from 0.01 m/s to 0.60 m/s over 30 seconds. The plotted temperatures profiles were the 

average temperature of the beads. It is evident that at higher speeds the heat exchange 

Figure 57: Simulated velocity profile at different gas inlet velocities: A1) 0.10 m/s, B1) 0.25 
m/s, C1) 0.50 m/s, D1) 0.60 m/s. Simulated heat flow at different gas inlet velocities: A2) 

0.10 m/s, B2) 0.25 m/s, C2) 0.50 m/s, D2) 0.60 m/s. 

B1 

A1 A2 

B2 

C1 C2 

D1 D2 
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between the hot gas and the solid increased. Nevertheless, this increment become less 

efficient on the heating exchange at feed flow speed higher than 0.25 m/s since the 

change of a speed of 0.60 m/s only increases the temperature 2ºC.  

 

 

For the application of this heating strategy, the CO2 stream can be heated by an electrical 

resistance or a thermodynamic cycle and be recycled until the desired desorption 

temperature on the adsorbent is reached. 

 

4.2.5. Conductive heat transfer strategy by a heating fluid  
 

To study the conduction heat transfer through the column wall by a heating fluid the 

column model was adapted to a concentric tube heat exchanger as described on 

section  3.5.1. The experimental conditions are described on  

Table 20, the initial temperature in all the columns was fixed at 20ºC and the temperature 

of the heating fluid was defined in the countercurrent flow at 80ºC. The simulation was 

performed over 30  seconds, changing the heating fluid speed flow from 0.01m/s to 0.20 

m/s. Figure 59 shows the temperature profiles of the adsorbent beads, as well as the 

temperature profile on the jacket at the different hot fluid feed speeds flows. 

It is possible to see that in Figure 59 (A) at 0.01 m/s of heating fluid feed flow speed, the 

adsorbent beads in contact with the column wall reached approximately the temperature 

of 40ºC, while the rest of the adsorbent kept at 20ºC of temperature. Due to the low 

speed value on the feed flow of the heating fluid, the column wall had a temperature of 

about 58ºC, with a low temperature transition profile from the hot liquid to the column 

wall, which makes it obvious that the low heating rate is due to the low feed flow speed. 

Figure 58: Temperature profile on the second adsorbent layer at different CO2 feed 
speeds. 
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On the other hand, in Figure 59 (D) (at 0.60 m/s of flow speed) it can be observed that 

the adsorbent beads in contact with the wall had a temperature of about 62ºC were the 

column wall almost reached the same temperature of the heating fluid (85ºC). But the 

rest of the beads keep having the initial temperature of 20ºC.  

Figure 60 plots the temperature profile of the different heating fluid feed flow speed (from 

0.01 to 0.20 m/s) over 60 seconds of simulation time. The plotted temperature profiles 

were the average temperature of the beads in contact with the column wall. 

From Figure 60 it can be observed that at higher fluid velocities, the heat exchange 

between the fluid and the adsorbent bead was also higher; but, the effect was negligible 

for the rest of the beads that were not in contact with the column wall. Increasing the 

feed flow speed from 0.01 to 0.2 m/s, the increment was about 13°C, while increasing 

the feed flow speed from 0.01 to 0.1, the increment was about 12°C. Therefore, the feed 

flow speed increments become less efficient on the heating exchange at feed flow 

speeds higher than 0.10 m/s.  

 

B 

A 

C 

D 

Figure 59:Simulated velocity profile at different gas inlet velocities: A) 0.10 m/s, B) 0.25 m/s, 
C) 0.50 m/s, D1) 0.60 m/s.  
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As it is well known, heat exchange can be promoted by including baffles on the column 

jacket. As seen in Figure 60, this heat exchange strategy has a low temperature 

transition through the adsorbent to the center of the packed column. The adsorbent 

beads don’t have full contact between each other, leaving some free space occupied by 

the gas (CO2). The low heat capacity of the gas as well as the adsorbent inhibit the heat 

flow, thus the heat exchange is poor across the rest of the package bead. 

 

4.2.6. Heating transfer strategy by a heating fluid and hot gas feed. 
 

To study the heat transfer through the column wall from a heating fluid and hot gas feed, 

the previous concentric tube heat exchanger column model was used, with experimental 

conditions as described on  

Table 20. The initial temperature in the column was fixed at 20ºC, the CO2 feed was set 

at 60ºC and the temperature of the heating fluid was defined in countercurrent flow at 

80ºC and the heating fluid velocity was fixed at 0.1 m/s. The simulation was performed 

over 30 seconds with variations in the hot gas fluid feed flow speed between 0.01 m/s to 

0.50 m/s. Figure 61 shows the temperature and the velocity profiles of the adsorbent 

bed, as well as on the jacket (formed on the inner space between the concentric tubes). 

On Figure 61 (A1) at 0.01 m/s of heating fluid feed flow speed, it is possible to see that 

the adsorbent beads that were in contact with the column wall reach 55ºC (A2), and the 

first layer of adsorbent reaches a temperature about 50ºC. The rest of the adsorbent 

shows gradual a heat profile from 38ºC for the beads of the second layer to 20 ºC at the 

last adsorbent layer. In Figure 61 (B1) at 0.25 m/s the temperature change from 60ºC to 
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Figure 60:Temperature profile on the second adsorbent layer at different heating fluid 
speeds. 



 

Carbon dioxide capture and utilization by VPSA: a sustainable development. 112 

33ºC for the adsorbent in contact with column wall (B2). At 0.10 m/s in experiment C1 

the variation of temperature is from 60ºC to 50º (C2), wile for 0.50 m/s in the experiment 

D1 is almost a homogeneous temperature of 60ºC (D2). 

 

 

Figure 62 plots the average temperature profile of the beads at different heating fluid 

feed flow speeds (from 0.01 m/s to 0.50 m/s) over 60 seconds of simulation time. The 

plotted temperature profiles were the temperatures of the beads in contact with the 

column wall. The results obtained were quite like those obtained by heating the beads 

with the hot gas feed. Increasing the feed flow speed to 0.1 m/s the temperature is about 

64ºC and doing it to 0.5 m/s the temperature only increases at 68ºC.  

Therefore, the temperature profiles were compared for each strategy. In all cases, the 

fastest heating was achieved at high CO2 feed flow speeds (0.5 m/s). Observing the 

temperature profiles, the best strategy is to heat the filling directly with the hot gas flow, 

without using the heating fluid in a concentric tube heat exchanger. The conduction heat 

exchanger strategy is limited by the poor heat flow capacity of the porous adsorbent 

Figure 61: Simulated velocity profile at different gas inlet velocities: A1) 0.01 m/s, B1) 0.25 m/s, 
C1) 0.10 m/s, D1) 0.50 m/s. Simulated heat flow at different gas inlet velocities: A2) 0.01 m/s, 

B2) 0.05 m/s, C2) 0.10 m/s, D2) 0.50 m/s. 

B1 

A1 A2 

B2 

C1 C2 

D1 D2 



 

Angel Eduardo Gutiérrez Ortega 
113 

beads and the gas. This limitation can be reduced by expanding the effective surface 

contact by using a finned tube inside the adsorption column. Nevertheless, the design 

for its application on industrial scale is impractical if it is compared with the recirculation 

stream of preheated gas feed.  

 

A critical factor in the regeneration of the TSA process is the energy required to heat the 

adsorbent bed to the specified regeneration temperature. In a practical point of view, the 

application of the TSA process has the limitation of poor exchanging heat on materials 

with low heating capacity. Therefore, the recirculation of a hot source of gas is attractive 

for the efficient heat exchange for the TSA process. However, for the CO2 capture 

application, the adsorbate is the desired product; thus, a large volume of purge gas is 

required to heat the bed (because of the low heat capacity of gases). However, the 

indirect heating modes are likely to have scale-up issues and are not practical for large 

scale beds (>2 m diameter) (Tlili et al., 2009). It is noted that the source of energy and 

the potential energy losses associated with the method of heat exchange with the 

regeneration gas may impact the total energy consumption. Likewise, using a low CO2 

purity stream can result in significant dilution of the extracted CO2 product when hot 

nonadsorbing gas is used for regeneration. Therefore, the application of a recirculation 

stream of preheated gas feed for desorption process requires a thermodynamic cycle 

and/or electrical resistance to heat the stream gas and a compressor to recirculate the 

stream through the adsorbent bed. The simulation results of heating exchange on a TSA 

column suggest that this process had higher energy consumptions compared with the 

VPSA, this supposition is confirmed through the energetic consumption values showed 

on Table 28. 
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Figure 62: Temperature profile on the second adsorbent layer at different heating fluid speeds. 
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Therefore, a critical factor in the regeneration of the TSA process is the energy required 

to heat up the adsorbent bed to the specified regeneration temperature. The best 

strategy is to heat the packed adsorbent directly with the hot gas stream, without using 

the heating fluid in a concentric tube heat exchanger. Nevertheless, the conduction heat 

exchanger strategy is limited by the poor heat flow capacity of the porous adsorbent beds 

and the gas. The simulation results of the heating exchange on a TSA column suggest 

that this process had higher energy consumptions compared to the VPSA.  

Table 28 shows the energetic consumption values of scrubbing with amines versus TSA, 

TPSA and VPSA processes. Currently, the significant energy penalty and performance 

limitation of energy consumption are the main technical barriers to the large-scale 

applications of CO2 capture (Vaccarelli et al., 2016). However, despite the TSA strategy 

being a process with more energy consumption (1.0 to 1.3 kWh/kgCO2) than the VPSA 

process (0.6 kWh/kgCO2) it has lower energy consumption than the typical absorption 

process with amines (1.1 to 1.7 kWh/kgCO2).  

 

Table 28: Comparison of Performances among different Processes for CO2 Capture from Flue 
Gas 

Process Material 
yCO2,feed 

(%) 

Purity 

(%) 

Recovery 

(%) 

Power 

Consumption 

kWh/kgCO2 

Result 

type 

 

Reference 

Absorption MEA 13 >99.0 90.0 1.1-1.7 Exp.  (Ho et al., 2008) 

Absorption MEA 15 99 98 1.2-1.3 Sim. (Abu-zahra et al., 2007) 

TSA 13X 12 96.0 90.0 1-1.2 Sim .(Joss et al., 2017) 

TSA NaUSY 15 91.4 83.6 1.3 Sim. (Ntiamoah et al., 2016) 

VPSA 13X-APG 15 95.6 90.2 0.7 Exp.  (Wang et al., 2013a) 

TPSA 5A 15 >99.0 84.5 1.0 Sim. (Zhao et al., 2017) 

VPSA 5A 15 >99.0 84.5 0.8 Sim. (Zhao et al., 2017) 

TSA ZeolumF 5-40 >90.0 70-95.0 1.0 Sim. (Song et al., 2015) 

VPSA silica gel 15 >99 >99 0.6 Exp. (Li et al., 2016) 

 

Desorption under vacuum seems to be simpler for large-scale applications (Zhao et al., 

2017). Nevertheless, it is found that the actual power consumption of vacuum pump for 

VPSA, accounts for two thirds of the total power consumption and is greater than the 

theoretically predicted value by the conventional adiabatic pump-down calculation 

(Wang et al., 2013a). Because deep vacuum levels (<50 mbara) are not practical on a 

large scale, there is a strong necessity to develop a VPSA efficient process that can work 

with vacuum pressures of up to 250 mbara, to reduce the energy consumption. 
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Therefore, VPSA performance can be enhanced with a good VPSA cyclic design and 

the appropriate sizing of the vacuum pump.  
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4.3. Vacuum pressure swing adsorption study approach. 
 

The aim of this section is to evaluate the performance of available commercial zeolites 

and CMS for CO2 capture by Vacuum Pressure Swing Adsorption configuration. 

Adsorption equilibrium measurements of pure gases were performed in a magnetic 

suspension microbalance (Rubotherm, Germany) operated in a closed system. As 

described in section 2.4, adsorption equilibrium data of CO2 and N2 at 283 K, 298K, 323K 

and 343 K in the range of 0 to 10 bara for CMS-I, CMS-III, 4ABL, 5ABL and 13XBL were 

reported. The full set of data was fitted with Toth, Sips and Dual Site Langmuir (DSL) 

models. Next, an adsorption model based on the DSL for the mass transfer was 

developed and validated with the breakthrough experimental data, considering the 

energy and momentum balances. 

The adsorption equilibrium and the adsorption kinetics are the essential set of data 

required for the process design. Binary equilibrium data was compiled for CO2 and N2 

over the different adsorbents, as described in section 2.4.3 in a temperature of 293 K 

and a pressure range from 1 bara to 8 bara on a fixed-bed configuration. Subsequently, 

the adsorption equilibrium and kinetics of CO2 or N2 on zeolite 5ABL and 13XBL were 

studied at different temperatures. The experimental work was compared with numerical 

simulations through the Aspen Adsorption® modeling software. The comparison 

between these materials was made based on the following criteria: adsorption capacity 

and selectivity. 

 

4.3.1. Monocomponent adsorption isotherms of CO2 and N2. 
 

The adsorption isotherms were determined using the high-pressure magnetic 

suspension balance (see section 2.4) in a temperature range of 293 K to 363 K and a 

pressure range of 0.1 bara to 10 bara. The experimental values are shown as symbols 

in Figure 63 shows for CO2 and Figure 63 for N2. All isotherms were completely reversible 

at all pressures. It can be observed that CO2 always adsorbed more strongly than N2 on 

all the adsorbents at all temperatures. In all cases, the CO2 adsorbed increases with 

pressure and a gradual flattening is observed when pressure is higher than 5 bara for 

CMS and 3 bara for zeolites.  
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The steeper shape of the isotherm in the low-pressure range evidences the higher 

working capacity of zeolites (6.03 mol/kg at 1 bar and 283 K) compared with CMS (1.98 

mol/kg at 1 bar and 283 K). Concerning the N2 isotherms (Figure 63) the N2 adsorbed 

increases almost linearly with pressure for all the adsorbents. Therefore, the materials 

with higher CO2 adsorption capacity have the following order 13XBL > 4 ABL > 5ABL > 

CMS-I > CMS-II. 

 

Figure 63: Single-gas adsorption equilibrium isotherms with CO2 for (A) CMS-I, (B) CMS-II, (C) 4ABL, (D) 
5ABL, (E)  13XBL at different temperatures (symbols: absolute experimental loading; lines: fitted DSL 

equation): ♦, T=283 K; ■,  T=298 K; ▲, T=323 K; ●, T=343 K. 
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4.3.2. Modeling the adsorption isotherms of CO2 and N2  
 

The experimental data of adsorption equilibria (absolute amounts adsorbed) of the pure 

gases on CMS-I, CMS-II, 13XBL, 5ABL and 4ABL were correlated with Toth, Sips, and 

Dual-Site Langmuir (DSL) isotherm models. A nonlinear regression procedure was 

carried out using the Excel tool solver. In particular, the values of the different fitting 

parameters were found by minimizing the sum of the squared relative errors (SSE) 

 

Figure 64: Single-gas adsorption equilibrium isotherms with N2 for (A) CMS-I, (B) CMS-II, (C) 4ABL, (D) 
5ABL, (E) 13XBL at different temperatures (symbols: absolute experimental loading; lines: fitted DSL 

equation): ♦, T=283 K; ■ , T=298 K; ▲, T=323 K; ●, T=343 K. 
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(Garcia et al., 2013), by minimizing the relative differences between the predicted and 

experimental amounts adsorbed at all temperatures for a particular adsorbate-adsorbent 

system. The objective function that was used in Solver is given by equation (35). 

𝑆𝑆𝐸(%) = √[(𝑞𝑒𝑥𝑝,𝑖 − 𝑞𝑚𝑜𝑑,𝑖)/𝑞𝑒𝑥𝑝,𝑖]
2

𝑁 − 1
× 100 

. 

(35) 

 

where qexp,i and qmod,i are the experimental and predicted amounts adsorbed, 

respectively, and N is the number of data points. The experimental data of CO2 and N2 

of the studied adsorbents are presented in the appendix 7.1. The best fit among the 

different models will correspond to the minimum SSE. The fitted parameters from the 

Toth, Sips, and DSL isotherm models, as well as the SSEs are tabulated in Table 29 for 

CMSs and Table 30 for binderless zeolites.  

 

Table 29: DSL, Sips and Toth model parameters for single-component adsorption of CO2 and 

N2 on CMSs. 

CMS-I 

DSL 
qs1 

[mol/kg] 
b1 [-bar] 

-ΔH1,1 
[kJ/mol)] 

-ΔH1,2 
[kJ/mol] 

qs2 
[mol/kg] 

b2 [-bar] 
-ΔH2,1 

[kJ/mol] 
-ΔH2,2 

[kJ/mol] 

CO2 2.363 5.59E-05 27.593 29.767 2.473 0.000 27.593 26.996 

N2 0.001 0.532 16.160 10.543 0.935 0.001 16.160 14.163 

SIPS 
qs 

[mol/kg] 
b0 [-bar] 

-ΔH 
[kJ/mol] 

n0 
α(1-T0) 

[K] 
   

CO2 4.345 3.61E-04 19.398 1.349 0.000       

N2 2.486 2.88E-04 15.553 1.090 1.30E-07       

Toth 
qs 

[mol/kg] 
b0 [-bar] 

-ΔH 
[kJ/mol] 

t     

CO2 5.206 6.68E-05 26.354 0.503         

N2 89.430 5.03E-06 19.053 0.254         

CMS-II 

DSL 
qs1 

[mol/kg] 
b1 [-bar] 

-ΔH1,1 
[kJ/mol)] 

-ΔH1,2 
[kJ/mol] 

qs2 
[mol/kg] 

b2 [-bar] 
-ΔH2,1 

[kJ/mol] 
-ΔH2,2 

[kJ/mol] 

CO2 4.36E-02 7.04E-04 30.701 23.746 1.951 7.79E-04 17.161 16.349 

N2 1.26E-04 3.090 16.239 6.363 0.600 1.11E-03 15.246 12.613 

SIPS 
qs 

[mol/kg] 
b0 [-bar] 

-ΔH 
[kJ/mol] 

n0 
α(1-T0) 

[K] 
   

CO2 3.627 3.56E-04 19.323 1.324 0.000       

N2 1.994 3.50E-04 15.140 1.072 1.88E-07       

Toth 
qs 

[mol/kg] 
b0 [-bar] 

-ΔH 
[kJ/mol] 

t     

CO2 4.399 7.25E-05 25.823 0.509         

N2 1.740 6.64E-04 14.057 0.916         

 

Although the Toth parameter fitting shows a correct behavior for CO2 with the different 

adsorbents, it fails to describe the experimental values for N2 adsorption at high 

pressures (4 to10 Bara) reflected in high SSE values as can be seen in Table 31 

(CMS- I=7.4%, CMS-III=5.6%, 4ABL=12.3%, 5ABL=5.4% and 13XBL=11.8%). In this 
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case, experimental data differ considerably from the values predicted by the fitted 

equation, because the data approaches the behavior of Henry’s law in the low-

concentration region (the amount adsorbed increases linearly with pressure), and to the 

saturation limit qs at high concentrations. The affinity constant b, for CO2 is larger than 

the one for N2 for zeolites on all models (Table 29 and Table 30).  
 

Table 30: DSL, Sips and Toth model parameters for single-component adsorption of CO2 and 

N2 on zeolites. 

4ABL 

DSL 
qs1 

[mol/kg] 
b1 [-bar] 

-ΔH1,1 
[kJ/mol)] 

-ΔH1,2 
[kJ/mol] 

qs2 
[mol/kg] 

b2 [-bar] 
-ΔH2,1 

[kJ/mol] 
-ΔH2,2 

[kJ/mol] 

CO2 1.607 3.22E-02 21.776 19.658 0.863 3.19E-02 9.279 6.995 

N2 2609.599 1.54E-04 17.794 55.597 2.154 1.54E-04 17.794 16.325 

SIPS 
qs 

[mol/kg] 
b0 [-bar] 

-ΔH 
[kJ/mol] 

n0 
α(1-T0) 

[K] 
   

CO2 9.430 8.23E-02 5.990 4.749 0.000       

N2 4.524 1.03E-04 16.919 1.041 1.29E-07       

Toth 
qs 

[mol/kg] 
b0 [-bar] 

-ΔH 
[kJ/mol] 

t     

CO2 7.294 6.84E-02 31.042 0.225         

N2 90.189 4.39E-06 19.800 0.260         

5ABL 

DSL 
qs1 

[mol/kg] 
b1 [-bar] 

-ΔH1,1 
[kJ/mol)] 

-ΔH1,2 
[kJ/mol] 

qs2 
[mol/kg] 

b2 [-bar] 
-ΔH2,1 

[kJ/mol] 
-ΔH2,2 

[kJ/mol] 

CO2 3.588 2.28E-04 30.597 29.896 1.820 2.27E-04 17.404 18.562 

N2 0.029 6.72E-03 19.739 19.737 3.227 6.14E-05 19.739 19.737 

SIPS 
qs 

[mol/kg] 
b0 [-bar] 

-ΔH 
[kJ/mol] 

n0 
α(1-T0) 

[K] 
   

CO2 5.680 2.25E-03 20.340 1.585 0.000       

N2 4.008 1.20E-04 17.615 1.125 1.29E-07       

Toth 
qs 

[mol/kg] 
b0 [-bar] 

-ΔH 
[kJ/mol] 

t     

CO2 5.747 2.34E-04 32.217 0.560         

N2 90.215 5.85E-06 19.832 0.260         

13XBL 

DSL 
qs1 

[mol/kg] 
b1 [-bar] 

-ΔH1,1 
[kJ/mol)] 

-ΔH1,2 
[kJ/mol] 

qs2 
[mol/kg] 

b2 [-bar] 
-ΔH2,1 

[kJ/mol] 
-ΔH2,2 

[kJ/mol] 

CO2 2.150 1.77E-04 34.216 32.812 2.640 1.44E-04 23.486 23.105 

N2 2027.165 8.31E-05 17.929 0.000 4.084 8.31E-05 17.929 17.854 

SIPS 
qs 

[mol/kg] 
b0 [-bar] 

-ΔH 
[kJ/mol] 

n0 
α(1-T0) 

[K] 
   

CO2 7.698 7.81E-03 14.526 2.245 0.000       

N2 4.505 9.66E-05 17.291 1.021 2.14E-07       

Toth 
qs 

[mol/kg] 
b0 [-bar] 

-ΔH 
[kJ/mol] 

t     

CO2 8.212 8.31E-04 32.629 0.331         

N2 52.239 3.84E-06 19.681 0.406         

 

This constant is a measure of how strong adsorbate molecules are attracted onto a 

surface, and it is also directly related to the Henry constant K (K=bqs). Hence, it seems 

obvious that CO2 is more strongly attracted to the adsorbent surface than N2. In an 

exothermic process like adsorption, b decreases with temperature for all the adsorbates, 



 

Angel Eduardo Gutiérrez Ortega 
121 

so at higher temperature the isotherms become less sharply curved (see Figure 63 and 

Figure 64). The Sips equation fits the experimental data significantly better than the Toth 

equation, as it can be seen in the SSE values for each adsorbate (Table 31). 
 

Table 31: SSE obtained with the DSL, Sips and Toth models for the monocomponent 

adsorption of CO2 and N2 on CMSs and zeolites. 

SSE (%) CMS-I CMS-II 4ABL 5ABL 13XBL 

DSL 
CO2 1.72 0.91 1.44 0.87 1.20 

N2 1.28 1.82 13.70 2.71 1.83 

SIPS 
CO2 2.05 2.10 1.57 1.65 0.61 

N2 1.52 2.04 12.52 2.37 2.62 

Toth 
CO2 1.58 1.48 2.02 1.50 0.65 

N2 7.41 5.68 12.32 5.45 11.19 

 

Even though Sips fitting significantly improves, an important feature to note is, again, the 

high scatter for the N2 fitting, mainly in the low-pressure region. From the same fitting 

tables, the parameter n is greater than unity for all the adsorbents, suggesting some 

degree of heterogeneity of the adsorbent structure. The larger this parameter is, the 

higher the degree of heterogeneity is (Do, 1998). When considering the whole 

experimental pressure range, the DSL isotherm fits better than the Toth and Sips models. 

Figure 63 and Figure 64 show the degree of goodness of the fit between experimental 

values (symbols) and the mathematical model using the DSL equations (solid line), 

respectively. This agrees with the lower SSE values obtained for the CO2 and N2 fitting 

(Table 31) except for the CO2 fitting in CMS-I and 13XBL. In particular, the SSE values 

for the N2 fitting decrease in the DSL model with respect to the other two models.  

Therefore, the DSL parameters are selected for the simulation of the different adsorbents 

to predict the adsorption behavior. Note that the adsorption is dependent on the 

temperature. This effect was used to estimate the CO2 working capacity of the different 

adsorbents, by using the 283 K isotherm as an adsorption temperature and 343 K 

isotherm as the desorption temperature at 10 bars. The results revealed that the 

adsorbents with higher temperature dependence, impacting on their working capacity, 

are the CMS-I, CMS-II and zeolite 4ABL (1.05, 1.22 and 1.18, respectively). On the other 

hand, the adsorbents with lower dependence on the temperature are the binderless 

zeolites 13XBL and 5ABL with 0.02 and 0.61, respectively at same conditions. 

Next, an estimation of the wCO2 and wN2 of the different adsorbents was calculated using 

the 298 K isotherm with the equation (16) at 5 bara of adsorption pressure and 0.1 bar 

of desorption pressure. The Seq(CO2) and Skin(CO2) were calculated using equations (17) 
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and (18) respectively. The results of these estimations, tabulated on Table 32, shows 

that the wCO2 of zeolites were almost double of that of CMS, while for wN2 were almost 

half. On the other side, Skin(CO2) display a smaller difference between the different 

adsorbents, where the best selectivity values correspond to 13XBL (2.34) and 5ABL 

(2.29). Unlike the results of wCO2, CMS-I and CMS-II have slightly a higher Skin(CO2) (1.88 

and 1.83, respectively) than 4ABL (1.77). This difference is mainly caused due to the 

high value of wN2. Seq(CO2) values have a similar tendency than wCO2 following the order: 

13XBL > 5ABL > 4ABL > CMS-I > CMS-III. Seq(CO2) depends on the relative equilibrium 

quantities of each component adsorbed under the process conditions, whereas Skin(CO2) 

depends on differences in diffusion rates. Therefore, due to its low temperature 

dependence and its higher selectivity, the adsorbents with higher potential for VPSA 

process are the 13XBL and 5ABL. 

Table 32: Working capacity and selectivity at a temperature of 298 K and pressures from 5 bara 

to 0.1bara. 

Adsorbent 
CO2 N2 wCO2  wN2  

Skin(CO2) Seq(CO2) 
qads qdes qads qdes (mol/kg) (mol/kg) 

5ABL 4.87 1.78 1.41 0.07 3.09 1.35 2.29 19.52 
13XBL 5.42 2.34 1.36 0.04 3.08 1.32 2.34 22.64 
4ABL 4.35 2.19 1.26 0.04 2.16 1.22 1.77 19.54 

CMS-III 1.45 0.12 0.76 0.03 1.33 0.73 1.83 10.84 

CMS-I 1.80 0.15 0.92 0.04 1.65 0.88 1.88 11.10 

 

4.3.3. Fixed-bed experiments for binary adsorption equilibria. 
 

The binary dynamic adsorption equilibria for both CO2 and N2 were obtained using the 

methodology described in section 2.4.3 with the experimental set-up described on 

section 3.2.2 to analyze the suitability of the different adsorbents for CO2 capture with 

VPSA. Figure 65 shows the CO2 adsorption dynamic equilibria of the eight selected 

materials at 293 K. Comparing the results obtained from the binary adsorption equilibria, 

it was observed that with all tested adsorbents the qCO2 increases with increasing CO2 

partial pressures. In general, the results showed that zeolites have a higher qCO2 (almost 

double) than CMS materials. 

The two tested CMS materials seem to have a similar CO2 adsorption capacity, reaching 

a higher qCO2 of 2.0 mmol/g at total pressure of 8 bara, approximately. Contrarily, the 

CO2 adsorption capacity in zeolites differs among them. The zeolite with a higher CO2 

adsorption capacity was 13XBL, reaching an qCO2 of 4.5 mmol/g at 8 bara, approximately. 
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All the binary adsorption equilibria of the zeolites 13XBL, 13X, 13X-APG and APG-III 

have approximately a similar slope, while 5A and 5ABL present a more horizontal slope 

with higher capacities in the low-pressure range (1 to 2 bara). 13XBL has the highest 

capacity in the range from 2 till 8 bara. The CO2 adsorption capacity under dynamic 

column conditions at high pressures follow the next trend for the tested adsorbents: 

13XBL > 5ABL > APG-II I> 13X-APG > 5A > 13X > CM-II > CMS-I. At lower pressures, 

the trend is quite similar: 5AB L> 13XBL > APG-III > 5A > 13X-APG >13X>CM-I = 

CMS- II. 

 

Among them, 13XBL and 5ABL zeolites have the most interesting properties. The 13XBL 

zeolite adsorbs both components in large amounts at wide ranges of working pressures 

(2-8 bara). The 5ABL zeolites adsorbs more CO2 at the low-pressure range (1 to 2 bara) 

but at higher pressures no great contribution to the CO2 uptake is observed. The CMS-I 

and CMS-II are very similar when the CO2 multicomponent adsorption equilibrium for 

both are compared. After discussing the differences of the CO2 adsorption isotherms 

between CMS and zeolites, 13XBL and 5ABL are considered the most suitable 

adsorbents to analyze their adsorption capacity under dynamic column conditions. 
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Figure 65: CO2 binary dynamic adsorption equilibria at 293 K with different CMS and zeolites. 
● 13X, ○ 13XBL, ♦ CMS-I, ◊ CMS-II, ■ 5A, □ 5ABL, ▲ 13X-APG, Δ APG-III. 
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4.3.4. Column breakthrough and validation of the simulation model. 
 

A simulation model was developed in Aspen Adsorption® to match the experimental 

binary adsorption data studied on section 4.3.3. The governing equations used in the 

model were described in section 3.5.2.. Aspen Adsorption® solves the governing model 

equations for adsorption, consisting on a set of partial differential equations describing 

the mass, momentum and energy transport between the gas and solid phases, as well 

as various equilibrium isotherm models. The first-order Upwind Differencing Scheme 

(UDS1) was selected (with 150 nodes) as the method for spatial discretization, with the 

integration of the resulting ordinary differential equations performed by the Implicit Euler 

integrator 

Several specifications and assumptions were made (section 3.5.2) in modelling the 

process in order to match the stream experimental system. The global heat transfer 

coefficient and the film heat transfer coefficient between the gas phase and the column 

wall were obtained by fitting the temperature profiles. These estimations were performed 

with the Aspen Adsorption® software based on the conditions of the experimental 

column. For this purpose, an initial calculated set of values of the transfer coefficients 

were proposed and used to calculate the breakthrough curve, which was compared to 

the experimental one. The deviations were then minimized by fitting the transfer 

coefficients until a good match was achieved between predicted and experimental 

breakthrough curves. 

Figure 66 (A) shows the good match between predicted breakthrough and the 

experimental results at inlet feed gas concentrations of 15%/85% CO2/N2 (resembling 

the composition of post-combustion flue gases of power stations), absolute pressure of 

2 bar, feed gas velocity of 0.42 m/s and 294K of initial temperature on 13XBL. The 

movement of the temperature front during the breakthrough run is also shown in Figure 
66 (B), is evident that the temperature increase is generated by the adsorption process, 

where this effect is showed first at the entrance of the column and after 210 seconds at 

the exit of the column . As can be seen, the bed has not yet been saturated with CO2 

(i.e., Co/C <1.0) and hence the temperature has not cooled to the feed value. Simulated 

and experimental breakthrough curves form similar pattern fronts in (Figure 66 A), with 

the center of the waves matching very well until the feed composition is approached, 

while the experimental curve shows a more dispersed front. CO2 breakthrough occurred 

earlier at the 565th second in the simulation, while in the experiment it happened at the 

608th. A possible explanation for the discrepancy is the presence of dead volume in the 



 

Angel Eduardo Gutiérrez Ortega 
125 

experimental system between the end of the column and the CO2 analyzer, that 

contributes to delay breakthrough in the experimental system.  

 

 

 

4.3.5. Binary dynamic adsorption equilibria experiments and simulation. 
 

Based on the study done in section 4.3.3 of the adsorption kinetics of CO2/N2 and the 

DSL model developed, a set of experiments were performed with the zeolites 5ABL and 

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0 500 1000 1500 2000

y C
O

2
(k

m
ol

/k
m

ol
)

Time (s)

A

Figure 66: (A) Breakthrough curve for CO2 and (B) temperature profiles from experiment and 
simulation. (symbols are the experimental data: ◊ CO2 mole fraction, ○ temperature at 5 cm, □ 

temperature at 33 cm; lines: simulation). 
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13XBL to study their qCO2 at different temperatures (see Figure 65). Simulations were 

performed for up to 8 bara using the commercial Aspen Adsorption® simulator. The 

equilibrium data were calculated through the breakthrough experiments according to the 

procedure previously described in Section 2.4.3. Figure 67 shows the predictions of 

mixed-gas adsorption equilibria for CO2/N2, where the symbols represent the 

experimental data and the dotted lines represent DSL model predictions. 

 

The experiments were used to verify the accuracy of the mathematical model and the 

transport parameters. Table 33 shows the %SSE calculated as the difference between 

the DSL model predictions and the experimental data for the different temperatures. In 

general, the model has a close representation of CO2 and N2 equilibrium versus the 

experiments, although the %SSE increases slightly with the temperature. Thereby, and 

according to the results presented herein, the DSL model with the binary adsorption 

CO2/N2 predicts the gas-mixture behavior of this adsorbate−adsorbent system with an 

average accuracy of 10.98% for 5ABL and 5.75% for 13XBL keeping in mind that the 

better results are temperatures lower than 333 K. 

 
Figure 67: CO2 adsorption of binary equilibria on (A) 5ABL; (B) 13XBL and. N2 adsorption of binary 

equilibria on (C) 5ABL and (D) 13XBL. (symbols: absolute experimental loading; dotted lines: fitted DSL 
model simulation); ♦, T=293 K; ■, T=313 K; ▲, T=333 K; ●, T=363 K. 
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Table 33: SSE (%) of the DSL model parameters for binary adsorption of CO2 and N2 in 5ABL 
and 13XBL. 

 

 

 

 

In Figure 67, it is observed how the CO2 adsorption capacity of 5ABL is slightly higher 

than that of 13XBL in the absolute pressure range from 1.4 to 2.0 bars and in the 

temperature range of 313 to 363 K. Nevertheless, at pressures higher than 2 bara and 

at low temperature range (293 to 333 K), 13XBL has a higher CO2 adsorption capacity 

than the 5ABL. Meanwhile, N2 adsorption capacity in 5ABL is higher than in 13XBL at all 

temperature and pressure ranges. The above discussion suggests a better CO2 

selectivity of 13XBL due to its higher uptake in combination with its lower N2 uptake. As 

it can be seen from the equilibrium isotherms (Figure 64), the adsorbents are very 

selective to CO2.  

A preferential adsorption of CO2 over N2 indicates that the adsorbent can be used for the 

separation of CO2 from flue gases. The influence of temperature and pressure on the 

equilibrium Seq(CO2) with a mixture of 15/85% v/v CO2/N2 of 5ABL and 13XBL at different 

temperatures was calculated with equation (17), and the results are shown in Figure 68. 

It is evident that the Seq(CO2) decreases with increasing pressure. Nevertheless, the effect 

on the equilibrium Seq(CO2) is more remarkable on 5ABL (Figure 68 A), having high values 

on the low-pressure range (25-35) and low values in pressure values greater than 3 bar 

(10-15). On the opposite side, the pressure has a low influence on the Seq(CO2) of 13XBL 

(Figure 68 B) of a 20-35 in the whole pressure range. Concerning the temperature, it has 

a lower dependence on the Seq(CO2) of 13XBL (0.25 units per K) than 5ABL (0.38 units 

per K). Based on this estimation, the 13XBL zeolite shows a better Seq(CO2) over the 

different pressure values, demonstrating higher values at low pressures and low 

temperatures. These results show that the 13XBL can be considered as the benchmark 

adsorbent material for CO2/N2 separations. 

SSE (%)  293 K 313 K 333 K 363 K 
 CO2 N2 CO2 N2 CO2 N2 CO2 N2 

5ABL - - 2.5 10.6 7.3 18.6 10.2 16.7 

13XBL 2.1 3.3 1.6 4.7 7.7 8.1 13.5 5.0 
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4.4. VPSA process studies for CO2 separation  
 

The choice of the sequence of steps is then defined as a function of separation and the 

target mixture. The selective adsorption of CO2 is normally carried out at the highest 

pressure of the system and then it is desorbed at lower pressure, involving the use of a 

vacuum. Desorption under vacuum seems to be simpler for large-scale applications 

(Zhao et al., 2017). Nevertheless, using a vacuum instead of heating as a regeneration 

strategy leads to a residual amount of CO2 retained in the adsorbent, and this amount 

will depend on the limit vacuum pressure of the pump and in the different conditions of 

the cyclic process. Therefore, through the efficient design of the VPSA cycle and the 

appropriate definition of the control process, it is possible to improve the process 

performance and make it economically and environmentally viable. 

Based on the fixed-bed results obtained in a batch configuration in the previous section, 

a set of laboratory-scale experiments were performed in a cyclic configuration, using the 

control system developed in section 3.4.1. The experimental work was divided into two 

main parts: Single column batch and three-column cyclic experiments for VPSA 

continuous operation. Subsequently, the experimental work was compared with 

numerical simulations through VPSA simulations with Aspen Adsorption software® 

(validated on section 4.3.4), where the energy consumption and cycle productivity were 

studied during the separation process as performance indicators. 

Additionally, a VPSA process for industrial-scale CO2 capture including rinse and 

pressure equalization steps was built and tested in an industrial flue gas. Before the 

VPSA process, H2O, SOX, and NOX were removed in a pretreatment process. Later, the 

recovered CO2 was used to replace the use of mineral acids in the pH regulation stage 

and reduce the CO2 emissions in the atmosphere. This allowed for the use of a 

compound that in many cases is a by-product in alkaline water and is an effective, 

reliable, self-buffering and economical method of controlling pH levels. Finally, the 

feasibility of concentration, capture and utilization of CO2 was discussed for industrial 

applications. 
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4.4.1. Design of experiments. 
 

To reach the knowledge of a complex process affected by multiple variables with the 

minimum number of experiments a fractional factorial design was applied. This 

statistically method involves simultaneous adjustment of experimental factors at two 

levels. By restricting the tests to only two levels (2k-p), the number of experiments is 

minimized  (Box et al., 2005; Box and Hunter, 2016; Montgomery, 2013). The contrast 

between levels gives necessary information for process improvement at the beginning 

of the investigation where many factors must be considered. There is also the possibility 

to include a third level for every factor, but this would produce a prohibitively large 

number of runs. Consequently, three levels of a factor are only considered when you get 

close to the optimum. 

To investigate a VPSA process for CO2 separation with a target purity of 95%, is 

described next: Use two-level factorial designs as screening tools to separate the key 

impacting factors (including interactions) from the those that have no significant impact 

for zeolites 13XBL and 5ABL. Follow up by doing an in-depth investigation of the 

surviving factors. Generate a full factorial design 2k using simulation tools from an 

engineering perspective, with emphasis on the practical aspects. 

In a first approximation, up to 7 different factors, have been identified. The studied 

parameters where the three-output stop point variables SFD, SPR and SRN, the vacuum 

pressure on the regeneration step (PV) and the flowrates on the feed (QFD), rinse (QRN) 

and the vacuum (QV) streams. As a result, the number of experiments of a full factorial 

experiment design with seven factors and two discrete possible values or “levels” (27) is 

128. This amount of experiences is excessive, considering that each experiment takes 

approximately 8-10 hours. However, when screening factors, it is not necessary to run 

the full combination of high and low levels; often a fraction is enough. To obtain the 

maximum amount of information with the minimum experiments seven factors in sixteen 

experiments, which can be symbolized mathematically as 27-3, where studied. The levels 

of each variable were designated in Table 34 in accordance to previous studies done in 

the researching group (Serracan, 2017). Even if this design is not a two-level fractional 

factorial high resolution (represented by 27-2 with 32 experimental runs), it provides sound 

estimates of the main effects and two factor interactions, assuming that three-factor and 

higher interactions will not be significant. Generally, this is a safe assumption, but there 

should always be confirmation runs to verify experimental findings.  
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To know which effect is confounded with the main effect, the definition relations were 

stablished as I1 = QF٠QR٠QV٠SRN, I2 = QR٠QV٠PV٠SFD and I3 = QF٠QV٠PV٠SPR (Box and 

Hunter, 1961). The codified matrix or experimental matrix (27-3) is shown at Table 35.  

 

Table 34: High and low levels of studied variables in fixed column. 
 

QFD 
(g/min) 

QRN 
(g/min) 

QV 
(g/min) 

PV 
(bar) 

SRN 
(%) 

SFD 
(%) 

SPR 
(%) 

Low level (-) 9 9 9 -0.75 110 10 30 

High level (+) 11 11 11 -0.95 130 50 70 

 

Table 35: Codify matrix for the fractioned factorial design 27-3. 

Exp. nº QFD QRN QV PV SRN SFD SPR 

1 - - - - - - - 

2 + - - - + - + 

3 - + - - + + - 

4 + + - - - + + 

5 - - + - + + + 

6 + - + - - + - 

7 - + + - - - + 

8 + + + - + - - 

9 - - - + - + + 

10 + - - + + + - 

11 - + - + + - + 

12 + + - + - - - 

13 - - + + + - - 

14 + - + + - - + 

15 - + + + - + - 

16 + + + + + + + 

 

The experimental apparatus employed to perform the study was the same employed to 

measure the dynamic adsorption equilibrium, described on section 3 using the 

automatization control system developed on section 3.4.1. 5ABL and 13XBL were 

studied as the benchmark adsorbents for CO2 capture from a gas mixture of 15% CO2 

and 85% N2. The experiments were performed during 20 cycles with the column jacket 

at 293 K of temperature (TT), keeping a constant adsorption pressure (PT) of 4 barg and 

a desorption time of 420 seconds (tV) once the vacuum pressure was reached. Rinse 
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and purge steps were carried out with fresh CO2 and N2 (purity greater than 99.995% 

and 99.999%, respectively).  

It is important to note that the results of this approach will only become an approximation, 

as the real process uses recycled feed streams with lower purity. However, this analysis 

is useful to understand the basic effects of the process unit. The purpose here is to focus 

on the effects of cyclic design and operation parameters on the process performance, 

therefore a continuous feed was not employed. 

The experimental matrix conditions are summarized in Table 36. The QFD stream flowrate 

and stop points were controlled by the automated control system. QRN, QV were 

calibrated prior to each experiment by the percentage opening of the flow control valves 

at the operating pressure. Since the effluent of the product rinse step was recycled, it 

can be considered as an internal recycle process and therefore its effect is not discussed 

here. Note the balanced array of plus (high) and minus (low) levels in the test matrix 

(Table 35). Each column contains eight pluses and eight minuses. The matrix offers a 

very important statistical property called “orthogonality”, which means that factors are not 

correlated. As factors become more and more correlated, the error in estimation of their 

effects becomes larger and larger. Orthogonal test matrices make effect estimation neat 

and easy. 

Table 36: Operating conditions of the fractioned factorial design 27-3. 

Exp.nº QFD 
(g/min) 

QR 
(g/min) 

QV 
(g/min) 

Pv 
(barg) 

SRN 
(%) 

SFD 
(%) 

SPR 
(%) 

1 9 9 9 -0.75 110 10 30 

2 11 9 9 -0.75 130 10 70 

3 9 11 9 -0.75 130 50 30 

4 11 11 9 -0.75 110 50 70 

5 9 9 11 -0.75 130 50 70 

6 11 9 11 -0.75 110 50 30 

7 9 11 11 -0.75 110 10 70 

8 11 11 11 -0.75 130 10 30 

9 9 9 9 -0.95 110 50 70 

10 11 9 9 -0.95 130 50 30 

11 9 11 9 -0.95 130 10 70 

12 11 11 9 -0.95 110 10 30 

13 9 9 11 -0.95 130 10 30 

14 11 9 11 -0.95 110 10 70 

15 9 11 11 -0.95 110 50 30 

16 11 11 11 -0.95 130 50 70 
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4.4.2. VPSA fixed-bed experiments for Zeolite 5ABL. 
 

The cyclic performance of the different adsorbents for CO2 capture with VPSA was first 

studied for the 5ABL zeolite doing a total of 16 experiments. Purity and Recovery were 

selected as response variables, and the experimental results obtained are summarized 

in Figure 69 . In this Figure, the CO2 purity ranges between 68% to 94% and the 

recovery ranges between 45 to 65 %. The highest values are 98% and 81%, respectively, 

reached at the experiment number 13. Purity and recovery averages are 87.8% and 

59.3%, respectively, with experiments from 10 to 16 presenting high purity values in the 

range of 94% to 98%. On the other hand, experiments from 9 to 16 present the highest 

CO2 recovery values, in the range of 69% to 81%. These experiments have in common 

the high-level vacuum pressure factor (-0.95 barg). 
 

 
Figure 69: CO2 purity and recovery performance for 5ABL on fixed column experiments. 

 

Productivity and electrical consumption were calculated as cyclic performance 

indicators. Figure 70 shows the experimental results for the 16 experiments: the 

productivity ranges between 0.16 and 0.26 gCO2/(gAds·h), while the electrical consumption 

oscillates from 1.4 to 8.7 kWh/kgCO2. Checking the Figure in more detail, it is seen that 

the series of experiments 9 to 16 provide a higher productivity than experiments 1 to 8, 

whose productivity was in the range 0.09 to 0.17 gCO2/(gAds·h). The main difference 

between these two groups of experiments is the vacuum pressure. In addition, it can be 

deduced that the productivity has an inverse relation with the electrical consumption 

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

%

Experiments

Recovery  Purity



 

Carbon dioxide capture and utilization by VPSA: a sustainable development. 134 

value (the productivity is high when the electrical consumption is low). As an example, 

experiment 13 have a high productivity 0.26 gCO2/(gAds·h) and a low energy consumption 

1.4 kWh/kgCO2. 

º  
Figure 70: CO2 productivity and electric consumption performance for 5ABL on fixed column 

experiments. 

 

With the results obtained (see appendix 7.2), a statistical ANOVA analysis (Box et al., 

2005) was performed to determine the influence of the different factors on each 

performance indicator. The effect of the different factors on the performance is plotted in 

Figure 71. Each point represents a contrast between the response averages at low 

versus high factor levels. The steeper is the factor representation line, the more 

significant the effect is. When the lines do not intersect, they are not part of a significant 

interaction. On the other side, the crossing lines indicate that the effects interact or can 

be enhanced. Through the analysis of the effect plots (Figure 71), it is possible to 

differentiate the significant parameter with higher impact in the measured key 

performance responses. Clearly, factor PV needs to be set at its high level (-0.95 barg) 

to get maximum recovery, purity and productivity on the CO2 separation cyclic process. 

At the high level, the purity average is 95%, while at low level, the average purity drops 

nearly by 15% up to 81%. Unfortunately, a high PV level also has strong impact on the 

process energy consumption. This effect is related to the fact that the vacuum pump is 

the component with the highest energy requirements on the VPSA experimental 

apparatus; hence, high levels of vacuum represent an extended use of the vacuum 

pump, which is reflected in a higher energy consumption. Besides the importance of PV, 

it is difficult to pick out the factors with more importance on the process, since they seem 

to have interaction between each other and not all factors have the same importance. 
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An ANOVA Pareto chart analysis represents in columns the percentage of contribution 

of the total variability of the matrix data. This analysis includes the possible effects 

caused for the interaction of the different parameters. Figure 72 shows that the 

parameters SFD and SRN have also influence, after PV in the purity and productivity. 

 

Parameters SFD (feed stop point) and SRN (rinse stop point) are in the second position of 

importance, with impact mainly in the purity and productivity. Through Figure 73, it is 

possible to differentiate the kind of effect over the response. SFD has a positive effect for 

purity, recovery and productivity, but it had a negative effect on the energy consumption. 

On the other hand, SRN has the opposite effect, with a negative effect for purity, recovery 

and productivity but a positive effect on the energy consumption. The negative effect 

means that the results with greater performance will be those that keep these parameter 

values at low levels. After SFD and SRN, we have QR, QF and two possible interactions of 

second order It1=QFD٠SRN+QR٠QV+PV٠SFD and It2=QF٠PV +QV٠SPR+SRN٠SFD. Finally, the 

parameters with a lower impact on the results are QV and SPR. Nevertheless, no 

parameter can be 100% discarded since its importance can be confused with some 

second-order interaction.  

 
Figure 71: Effect plots for 5ABL CO2 cyclic adsorption experiments. (A) Purity, (B) Recovery, 

(C) Productivity, D) Energy consumption in CO2 separation. 
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Figure 73: 5ABL Effect representation chart CO2 cyclic adsorption experiments. (A) Purity, (B) 
Recovery, (C) Productivity, D) Energy consumption. 

Figure 72: 5ABL Pareto chart for CO2 cyclic adsorption experiments. (A) Purity, (B) Recovery, 
(C) Productivity, D) Energy consumption. 
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The half-normal graph (Montgomery, 2013) plot is used to differentiate if the effects are 

significant or can be considered insignificant and can be associated as a part of 

experimental error. In this representation, the effects are set with their assigned 

probability, a line is draw through the group near-zero effects, and anything significant 

will fall off to the right of the line. Figure 74 shows the half-normal plot of effects, where 

the significant effects are labelled. The near-zero effects fall on a straight line exhibiting 

normal dispersion. 

 

Figure 74 shows the effects with more weight on the process performance. Nevertheless, 

the interaction It1 and It2 shows a significant contribution on the energy consumption. To 

disentangle the interactions, the analysis was performed representing the possible 

interactions between QFD and PV, QV and SPR or SRN and SFD, and the respective separate 

representation for It2. The main effects are represented on Figure 75, where it can be 

noticed that the factor QV in its low level and SPR in its high level have more energy 

consumption. This low interaction and the low effect on the global contribution suggest 
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that the parameter QV must be kept at the high level, as the effect is expressed by the 

weak interaction with the parameter SPR. On the other side, the parameters QR and SPR 

at their high level have a certain impact on the energy consumption, but the effect is 

drastically changed to lower values of energy consumption when the SPR changes to its 

low value. 

 

Table 37 summarises the results for 5ABL cyclic experiments and suggests the 

experimental matrix design that leads to find the optimal working conditions. The vacuum 

is the critical parameter for high purity, recovery and productivity. However, using the 

vacuum at high values leads to higher energetic consumption. SPR, QF and QR are the 

following factors on importance. 

 

Table 37: Results from the analysis of overall analysis criteria and variables for the Zeolite 

5ABL. (E) Energy consumption; (R) Recuperation; (P) Purity, (T) Productivity. 

Factor 
Low level 

- 
High level 

+ 
Impact Response effect 

QF 6 9 low E 

QR 6 9 by interaction E 

QV  11 negligible E 

PV  -0.95 High R, P, T, E 

SRN 80 110 medium R, T 

SFD 8 16 medium E, P, T 

SPR 20 40 medium P 
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As a first approach to the process, the design of experiements brings an idea of the 

factors with greater importance, but nevertheless more experiments are needed to clarify 

the real impact of the rest of the factors and to resolve the interaction confusion. In the 

following set of experiments, the effect of QV is not considered due to its low influence 

on the response, while PV must be studied at its highest value to better differentiate the 

influence of the other parameters. Likewise, the range of factors must move towards the 

levels that show better results, as is recommended in Table 37. 

 

4.4.3. VPSA fixed-bed experiments for Zeolite 13XBL. 
 

The same design of 27-3 experiments procedure (section 4.4.1) was done for the VPSA 

fixed-bed experiments for zeolite 13XBL as adsorbent. 16 experiments were performed 

obtaining their respective responses. In Figure 76, the CO2 purity and recovery ranges 

are plotted for all experiments. The results range between 63 to 99.5% for the purity and 

35 to 89% for the recovery, with an average of 92% and 62%, respectively. The highest 

value of purity was 99.5% (at experiment 11), while the highest CO2 recovery value was 

89% (at experiment 9). 

 
Figure 76: CO2 purity and recovery cyclic performance for 13XBL on fixed column 

experiments. 

 

Productivity and electrical consumption experimental results for 13XBL are shown in 

Figure 77. From the figure, it can be seen the productivity is in a range of 0.06 to 0.35 

gCO2/(gAds·h) and the electrical consumption oscillates from 0.37 till 8.05 (kWh/kgCO2). 
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Their respective averages are 0.19 gCO2/(gAds·h) and 3.09 (kWh/kgCO2). Experiment 9 has 

a high productivity, 0.35 gCO2/(gAds·h) and it is observed that when the productivity is at 

its maximum value, the electrical consumption is in a low value of 3.2 kWh/kgCO2. On the 

other hand, the lower energy consumption is on experiment 10 with 0.35 kWh/kgCO2.  

 

 

A statistical ANOVA analysis was also performed with the obtained results (see 

appendix 7.2) to determine the influence of the different factors on each performance 

indicator objectively. Figure 78 shows that the factor with more impact in all the 

responses is PV, where the high level of vacuum pressure leads to high purity, recovery 

and productivity values, although it also results on high energy consumption values. QF 

and QR provide better purity results (Figure 78 A) when these factors are on their low 

level, having a similar impact than PV. The high level of SPR is the second parameter with 

stronger influence over the recovery (Figure 78 B). From Figure 78 (C), it is observed 

that QF on its low value and SPR on its high value are the second and third parameters 

with more influence in high productivity values, respectively. Finally, SPR, QF and QR on 

their high levels have a similar impact achieving high energy consumption values (Figure 
78 D).  
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The plot of the contributions Figure 79, reveals that besides the individual importance of 

the parameters, some interactions between them have a significant impact over the 

response. For purity, an important interaction It3=QFD٠QR + QV٠SRN + SPR٠SFD is detected 

with almost the same impact (20%) on the total contribution than PV (21%), QR (20%) 

and QF (18%). For CO2 recovery, a weak interaction (It4=QF٠SFD + PV٠SRN + QR٠SPR) 

represents the 7.7 % of the contribution when PV (60%) and SPR (17%) clearly shows 

more relevance. For the productivity, the interaction It5=QR٠PV +QV٠SFD+SRN SPR shows 

the third position on relevance after PV (22%) and before SPR (22%) and QF (11%).  

Finally, for the energy consumption, the contribution is distributed quite equally over 

different parameters, but PV (21%) has the most noticeable impact over the rest. 

Additionally, a half-normal probability plot (Figure 80 D) was made for the rest of the 

parameters to confirm that the results of the analysis are relevant. From the qualitative 

evaluation of the plot, it can be concluded that the point for PV does not follow a normal 

distribution, confirming its relevance. The graphic representation also confirmed that the 

other parameters do not represent a significant effect, as those points follow the normal 
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distribution. Therefore, these factors can be discriminated since they are considered part 

of the experimental error. 
 

For purity (Figure 80 A) the relevance of the factors PV, QR, QF is confirmed, as well as 

and the interaction It3 is confirmed. Besides, the interactions It5 and It4 do not follow a 

normal distribution, showing their relevance but with low impact on their contributions 

(7.9% and 6.3% respectively). Likewise, it is confirmed from Figure 80 B that PV and SPR 

are the parameters with more importance, although the interactions It3, It4 and It5 can also 

be considered but with lower impact on their contribution (7.7, 5.6 and 5.5 respectively). 

Finally, on Figure 80 (C), PV, SPR and the interaction It5 confirms that are the relevant 

values on the productivity because they do not follow the normal distribution. 

Figure 81 summarizes the impact (in terms of weight) of the different effects over the 

response and the process performance. Overall, SPR is the second parameter in 

relevance with negative effects on the purity and productivity, which means that the 

results with better performance will be those that keep this parameter at low levels. QR 

and QF have a positive effect for purity. On the third position, we have two possible 

confused interactions of second order It4 and It3. The lowest impact on the results 

correspond to QV and SFD; nevertheless, no parameter can be discarded, since its 

importance can be confused with some second-order interaction. 

 

Figure 79: 13XBL Pareto contribution chart of CO2 cyclic adsorption experiments. (A) Purity, 
(B) Recovery, (C) Productivity, D) Energy consumption. 
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This analysis is finally concluded with the factor interaction charts plotted in Figure 81 

and showing the representation of the main second order interactions. It can be observed 

that SRN and SFD (Figure 82 A) have a similar impact on the purity through their 

interaction: when SFD is at the high level, a change on SRN represents 13% of purity 

decrease. The interaction of SPR and SRN (Figure 82 B) shows a direct impact on purity, 

with better values achieved when both factors are either on their high or low levels. 

The interaction between PV and QR represents a significant impact on the recovery of 

33% when QR is at high value and PV is at low value. Likewise, the productivity is also 

affected by this interaction, as higher levels of productivity are achieved at higher values 

of PV and QR.  

Figure 80: 13XBL CO2 cyclic adsorption experiments half normal probability chart. (A) Purity, 
(B) Recovery, (C) Productivity, D) Energy consumption. 
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Figure 82: The main possible effects interaction representation for 13XBL experiments. 

Figure 81: 13XBL Effect representation chart CO2 cyclic adsorption experiments. (A) Purity, 
(B) Recovery, (C) Productivity, D) Energy consumption. 
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In summary, the parameter that has a more important impact on the VPSA process using 

13XBL is the PV at its high value, followed by SPR, where better results on the recovery, 

the productivity and the energy consumption are achieved when this parameter is at the 

low level. The possible interaction with SRN suggests further studies to understand how 

the dependence works. The third parameter on importance is QF, and the study reveals 

that high levels lead to a better result on purity and productivity. Finally, the factor QR 

represents an important contribution to the productivity and recuperation through the 

possible interaction with PV. Table 38 summarises the results for the 13XBL cyclic 

experiments and suggests the experimental matrix design that leads to find the optimal 

working conditions. It is important to remark that this design of experiences brings an 

idea of the factors with more importance, but more experiments are needed to clarify the 

real importance and impact of the rest of the factors and to resolve the interaction 

confusion.  

Based on the conclusions of this section, the following set of experiments will not 

consider the variable QV due to its low influence on the response. Moreover, PV will be 

fixed at its highest value to better differentiate the influence of the other parameters. The 

range of factors with the recommended levels for an optimal performance is given in 

Table 38. 

 

Table 38: Results from the analysis of the overall analysis criteria and variables for the Zeolite 
13XBL. (E): Energy consumption; (R) Recuperation; (P) Purity, (T) Productivity. 

Factor 
Low level 

- 
High level + Impact Response effect 

QF (g/min) 10 15 medium P, E 

QR (g/min) 10 15 medium P 

QV (g/min)  11 negligible P, E 

PV (barg)  -0.95 High R, P, T, E 

SRN (%) 130 180 medium E 

SFD (%) 8 16 by interaction P 

SPR (%) 20 40 medium R, T 
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4.4.4. Adsorbent comparison for VPSA fixed-bed experiments. 
 

Table 39 compares the effects of the different VPSA process performance indicators in 

zeolites 13XBL and 5ABL under the same conditions. Zeolite 13XBL has better 

performance than 5ABL in all indicators achieving higher average values on their purity 

and recovery. The highest values of purity and recovery for zeolite 13X are 99.5% and 

88.5% respectively, representing a 1.4% and 9.5% more compared to the highest CO2 

values obtained with 5ABL. Concerning the productivity and the energy consumptions, 

they depend on the impact of the different factors over the total cycle time. This means 

that, if the total cycle time is too high, the productivity will be low even with high purity 

and recovery values. 

 

Table 39: Zeolites 13XBL and 5ABL VPSA average performance comparison for CO2 capture. 

Adsorbent 
Recovery  Purity Productivity Energy C. 

% % gCO2/(gads٠min) kWh/kgCO2 

13X 62.03 91.85 0.19 3.10 
5A 59.31 87.81 0.17 3.71 

 

Figure 83 shows the average response of the parameters for 5ABL and 13XBL 

adsorbents. Despite the high impact of PV in both adsorbents, this parameter has more 

importance for the 5ABL performance (58.6% of contribution) than for 13XBL (30.9% of 

contribution). This difference can be attributed to their different isotherm shapes (see 

Figure 63 D and F). For 13XBL, the stepper slope is reflected in a higher working 

capacity, due to its capacity to desorb more quantity of adsorbed material. Although 

zeolite 5ABL has similar qCO2 at the working pressure (see Figure 67 B and D), it desorbs 

less at the same pressure level, so the impact of the other parameters is much lower.  

The regeneration of adsorbents is always an energy-intensive procedure in all the 

adsorption processes. For the VPSA process, the evacuation of adsorbed gas from 

adsorbents consumes more than 70% of the total power consumed by the VPSA 

process. The vacuum pressure level is therefore the most important parameter related 

to the CO2 operating cost and VPSA performance. In previous reports from various 

research groups (Ling et al., 2015; Liu et al., 2011a; Webley et al., 2017; Xiao et al., 

2008), high CO2 purity (>90%) and high recovery (>70%) were achieved only at deep 

vacuum pressure (-0.95 barg). However, deeper vacuum levels usually require 

multistage vacuum units and large vacuum lines and valves, which are not always 
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economically practical. In general, the vacuum or regeneration step is longer because 

the vacuum pump takes much longer to reach the required pressure. 

 

 

On the 5ABL experiments, SFD and SRN are the second and third most relevant 

parameters, representing a 24% of the global contribution. On the other side, 13XBL 

results reveal that the second important factor is SPR (13% of contribution) in its low level. 

The purge flow is a flow of high pure inert gas (N2) fed counter-current to regenerate the 

column after the vacuum stage. When the gas is introduced to the column, the partial 

pressure of the of the adsorbate is decreased. This causes a desorption of the adsorbate, 

cleaning the column for the next cycle of operation. Lower levels of this stop point allow 

a better bed regeneration and, consequently, a greater CO2 adsorption. 

QF is the third importance factor (10%) for 13XBL and better results are achieved at high 

values, as the total cycle time is decreased. The flowrate of the feed influences on the 

superficial velocity of the gas throughout the column. This is determinant for the kinetics 
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Figure 83: VPSA average parameter contribution. (A) 5ABL, (B) 13XBL. 
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of the adsorption process and for the stop point of SFD. The feed stage time will increase 

if QF is decreased. The adsorption time is generally shorter than the breakthrough time 

in the case of the PSA process recovering a light component. In the case of recovering 

a heavy component (CO2), the adsorption time is longer than the breakthrough time to 

minimize the fraction of light component (N2) inside the column. However, at high level 

values of SFD low recovery results were observed since some significant amounts of CO2 

were lost at the outlet of the column. An optimization must to be done to determine the 

optimal SFD. Results obtained in the 5ABL experiments at the low level of the SFD (10%) 

resulting in all the performance parameters improving with exception for the energy 

consumption. The impact was an increase in purity (10%), recuperation (5%) and 

productivity (18%), and a decrease of the electrical increased (40%). However, the effect 

of this variable was different for the 13XBL results, performed at the high level of SFD 

(50%). In this case, the purity, productivity and electrical consumption increased by 4%, 

1.6% and 18% respectively, while the recuperation decreased by 0.3%.  

There is an important contribution from QR (rinse flow) through its interactions with the 

stop points SFD, SRN and SPR which sums up to 33% of the contribution. The rinse flow is 

a flow of highly pure CO2 fed co-current through the column to increase the heavy 

component (CO2) fraction inside the column and displace the light fraction (N2) to the 

outlet after the feed of the mix. In 5ABL experiments, a low QR (9 g/min) increases the 

recuperation and productivity by 0.2% and 5.9%, respectively. But this also resulted in 

an increase in the electrical consumption by 14%. On the other side, purity is increased 

by 1.3% with QR (11 g/min). With zeolite 13XBL, a low QR (9 g/min) provides and 

increment of 10% purity respect to the high QR (11 g/min). Moreover, high QR produces 

an increase of the productivity and electric consumption by 17% and 88%, respectively. 

In summary, based on the above discussion, the more suitable adsorbent for the VPSA 

process is zeolite 13XBL. However, more experiments are needed to understand the 

interdependencies of some parameters and to refine the optimal conditions on the 

proposed cyclic process. In addition, the study must be proved in a cyclic process, since 

pure recirculation streams in the purge and rinse flows were used on the single column 

approach, hence the results do not strictly represent thoroughly the real process. 
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4.4.5. VPSA process simulations in Aspen Adsorption. 
 

In this section, Aspen Adsorption software was used to simulate the cycles studied 

experimentally on section 4.4.3, in order to better understand the dynamic behavior and 

the importance of the process parameters. By using the pure component isotherm fitting 

parameters, the adsorption equilibrium was then predicted for binary gas mixtures using 

the DSL models. The simulation model was previously described on section 3.5.2 and 

the methodology for VPSA cyclic simulations was already explained on section 0. The 

equilibrium data was calculated through the breakthrough experiments and validated 

through the column binary dynamic experiments at different absolute pressure and 

temperature values as previously discussed in Section 4.3.3.  

As deep vacuum levels (<50 mbar) are not practical at the large scale, vacuum pressures 

of up to 50 mbar were tested in simulation experiments. An Inlet CO2 concentration of 

15% with a fixed operation temperature of 20°C was studied to represent the 

concentration and temperatures expected in industry. The study was conducted using a 

single bed system to match the experimental data of section 4.4.3. The bed is assumed 

to be initially saturated with N2 at 1.1 bara and at the designed temperature of 20ºC. All 

the results such as recovery, purity, profiles of pressure and temperature can be 

collected after the VPSA system reaches continuous steady state (CSS). The running 

conditions in the simulation are adjusted to exactly those used in the real experiments. 

The performance of one cycle at CSS is calculated with following expressions: 

Purity𝐶𝑂2 =
∑𝑦𝐶𝑂2𝑄𝑣𝑎𝑐∆𝑡

∑𝑄𝑣𝑎𝑐∆𝑡
 

. 

(36) 

Recovery𝐶𝑂2 =
∑𝑦𝐶𝑂2𝑄𝑣𝑎𝑐∆𝑡

15%(∑𝑄𝐹∆𝑡 + ∑𝑄𝑟𝑖𝑛𝑠𝑒∆𝑡)
 

(37) 

where QF, QV and QR are the instantaneous flue gas flow rate of adsorption step, vacuum 

expulsion and rinse step (g/min), respectively, yCO2 is the instantaneous mole fraction of 

CO2 (%) and Δt is the time interval (min).  

In this simulation, a seven-step Skarstrom-type VPSA cycle has been considered to 

understand the CO2 capture process from flue gas by 13XBL. Before executing the 

design of experiments, the model was compared with an experiment to verify the 

representativity of the simulation. The uptake results after CSS are shown in Figure 
84 (A), where each step is represented with a colored area along the graph. It is observed 

that the CO2 uptake is adsorbed earlier in the feed step, and later for the desorption on 
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the regeneration and purge simulation. This kinetic issue is similar to the effect of the 

breakthrough adjustments on section 4.3.4, where it was found that the model 

estimations were predicting less capacity than in the experiments. The dead volume 

existing in the experimental system between the end of the column and the CO2 analyzer 

could also contribute to the later breakthrough in the experimental system. The SSE vale 

estimation of the simulated model is of 3.73%, confirming that the approximations done 

are acceptable.  

Another interesting observation is the fact that the regeneration is the step (light blue) 

that takes longer time on the process. At the beginning of the regeneration step (in the 

range of 160 to 400 seconds), the ratio of desorption is 1.75 mol/h, desorbing the 67% 

of the total CO2 uptake. From 400 to 1050 seconds, the desorption ratio decreases to 

0.15 mol/h with a low variation of the CO2 uptake (15% of the total). This fact could 

indicate that the regeneration time of CO2 is not highly efficient. The steeper CO2 

isotherm of 13XBL facilitates a faster desorption at the beginning of the step; 

nevertheless, after this fast rate of desorption, 73% of the regeneration time is used to 

recover 15% of the total CO2 uptake. Taking in consideration this effect, once the vacuum 

pressure is reached, the desorption time (tV) was decreased from 420 to 60 seconds to 

study its impact on the cyclic performance. 

Figure 84 (B) shows the CO2 load column profile on the different steps of the VPSA cycle. 

In this graph, the different steps and their impact on the accumulation of CO2 at the 

adsorption column are plotted. The feed stage is represented with the green area Figure 
84 (A), from where the beginning of the column is clearly saturated with CO2, but after 

40% of the total length of the column, the CO2 saturation profile starts to decrease 

gradually. It can be appreciated how at the end of the feed step the adsorbent has not 

become saturated due to the low stop condition used and how impactful the rinse step 

is to purify the adsorbed gas.  

In the depressurization (represented by the orange line) the load of the column 

decreases as material is allowed to escape to equalize the pressure with the 

atmosphere. On the rinse step, the loading of the column increases since CO2 is injected 

from the entrance of the column, and in consequence the N2 is displaced to the end of 

the column where the profile almost reaches the same level obtained on the feed step. 

On the regeneration step (blue line) the CO2 load is desorbed because of the decreases 

in the pressure. In the purge step (black line) a N2 flow is circulated counter-current 

displacing the CO2 form the end of the column to the beginning on the flow direction. 
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Figure 84: Cyclic simulation results for a single column after CSS was reached (A) 
Experimental and simulated results of CO2 uptake; (B) CO2 load column profile on the different 

cyclic steps. Simulation results (solid line), experimental results (dotted line). 
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4.4.6. Analysis of cycle performance 
 

The cycle configuration was set using the control methodology proposed in section 3.4.1 

utilizing the stop points of SFD, SPR and SRN. The QV flowrate was set at the maximum 

possible value and PV was set constant to -0.95 barg during the cycle step. The purge 

flowrate (QPR) was set at the same level value as QF. The levels of each factor were fixed 

based on the results of the ANOVA analysis of section 4.4.3. Dead volumes at both ends 

of the experimental system were estimated and considered in the simulations. The 

equalization step was handled in the simulation by specifying the pressure levels 

reached at the end of each equalization in the cycle organizer, which were based on the 

values achieved in the experiments. In this study, the working pressure (PT) is included 

to study the interaction of the selectivity with the rest of parameters. Table 40 

summarizes the levels of the studied parameters for the design of simulations 

experiments. 

Table 40: High and low levels of studied variables in fixed column simulations for 13XBL. 
 

QFD 
(g/min) 

QRN 
(g/min) 

PT 
(barg) 

SRN 
(%) 

SFD 
(%) 

SPR 
(%) 

Low level 5 5 2 130 5 50 

High level 9 9 4 180 10 80 

 

The experiments were performed to study the cyclic VPSA performance of 13XBL during 

20 cycles at a temperature of 20ºC. The dimensions and properties of the column are 

the same as that used in the fixed bed experiments (see Table 8). Using the simulation, 

a full factorial design can be used since no extra resources are needed to perform the 

experiments and the time is reduced considerably from 8 hours (time to perform a real 

experiment) to 30 minutes (time of the simulation run). A full factorial experiment design 

with six factors and two levels (26) was realized with 64 simulated experiments. 

Productivity, purity and recovery were selected as the response variables. The 

experimental matrix with the simulated conditions is summarized in Table 41. The 

process sequence is the same as illustrated in Figure 22. 

A summary of the results obtained is plotted in Figure 85. The CO2 purity range is found 

in all cases between 93% and 96.5%, while the recovery range is wider (72 to 90%). The 

highest values are 96.8% and 91%, respectively, both reached at experiment number 

43. The purity and recovery averages are 94.8% and 77.5%, respectively. These 

averages are better than those obtained on the experiments of the section 4.4.3 
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However, any experiment was capable to reach the maximum purity value found in the 

previous experiments (99.5%). Cyclic steady state was reached in all the experiments 

and simulations after approximately 15 cycles. 

 

Table 41: Operating conditions of the full factorial design 26 

Exp 
QFD QRN 

SRN SFD SPR 
PFD 

Exp 
QFD QRN 

SRN SFD SPR 
PFD 

g/min g/min barg g/min g/min barg 
1 5 5 130 5 50 2 33 5 5 130 5 50 4 
2 9 5 130 5 50 2 34 9 5 130 5 50 4 
3 5 9 130 5 50 2 35 5 9 130 5 50 4 
4 9 9 130 5 50 2 36 9 9 130 5 50 4 
5 5 5 180 5 50 2 37 5 5 180 5 50 4 
6 9 5 180 5 50 2 38 9 5 180 5 50 4 
7 5 9 180 5 50 2 39 5 9 180 5 50 4 
8 9 9 180 5 50 2 40 9 9 180 5 50 4 
9 5 5 130 10 50 2 41 5 5 130 10 50 4 
10 9 5 130 10 50 2 42 9 5 130 10 50 4 
11 5 9 130 10 50 2 43 5 9 130 10 50 4 
12 9 9 130 10 50 2 44 9 9 130 10 50 4 
13 5 5 180 10 50 2 45 5 5 180 10 50 4 
14 9 5 180 10 50 2 46 9 5 180 10 50 4 
15 5 9 180 10 50 2 47 5 9 180 10 50 4 
16 9 9 180 10 50 2 48 9 9 180 10 50 4 
17 5 5 130 5 80 2 49 5 5 130 5 80 4 
18 9 5 130 5 80 2 50 9 5 130 5 80 4 
19 5 9 130 5 80 2 51 5 9 130 5 80 4 
20 9 9 130 5 80 2 52 9 9 130 5 80 4 
21 5 5 180 5 80 2 53 5 5 180 5 80 4 
22 9 5 180 5 80 2 54 9 5 180 5 80 4 
23 5 9 180 5 80 2 55 5 9 180 5 80 4 
24 9 9 180 5 80 2 56 9 9 180 5 80 4 
25 5 5 130 10 80 2 57 5 5 130 10 80 4 
26 9 5 130 10 80 2 58 9 5 130 10 80 4 
27 5 9 130 10 80 2 59 5 9 130 10 80 4 
28 9 9 130 10 80 2 60 9 9 130 10 80 4 
29 5 5 180 10 80 2 61 5 5 180 10 80 4 
30 9 5 180 10 80 2 62 9 5 180 10 80 4 
31 5 9 180 10 80 2 63 5 9 180 10 80 4 
32 9 9 180 10 80 2 64 9 9 180 10 80 4 
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Productivity was calculated as cyclic performance indicator. Figure 86 shows the 

experimental results, where the productivity range is 0.10 to 0.36 gCO2/(gAds·h). The 

average productivity is 0.23 gCO2/(gAds·h), representing an increment of 21% in 

comparison to the experiments performed on section 4.4.3. The new range of the level 

parameters represent an important improvement on the performance indicator, 

expressed mainly in the recuperation and reflected in the productivity. 
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Figure 85: CO2 purity and recovery performance for 13XBL fixed column simulation 
experiments. 

Figure 86: Figure 72: CO2 productivity for 5ABL on fixed column experiments. 
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A statistical ANOVA analysis was performed to determine the influence of the different 

factors on the design of experiments (see appendix 7.3). The effects on the performance 

indicators by the parameters of the simulations are represented in Figure 87 The factors 

with more influence are PT and QRN in their low level for the purity (Figure 87 A) SFD, PT 

and QRN in their low level for the recovery (Figure 87 B), and QF followed by a similar 

impact of QR, SFD and PT, all of them at their high level, for the productivity (Figure 87 C). 

 

 

 

 

 

 

 

 

Figure 87: Effect plots for 13XBL CO2 simulated cyclic adsorption from a full factorial design 26. (A) 
Recovery, (B) Purity and (C) Productivity in CO2 separation. 

 

The results illustrate that, when PT decreases, better recovery and purity results are 

reached. This can be explained based on the higher CO2 selectivity for 13XBL (see 

section 4.3.5) and the steeper slope of its isotherm at low pressure (Figure 67). On the 

other side SFD has a strong impact on the recovery but a relatively low effect on the purity.  
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Figure 88 (A) represents the total contribution of the parameters over the response. For 

the purity, the most relevant parameter is SFD with a 56% of the contribution. The 

relevance of this parameter is confirmed in Figure 89(A) through the half-normal 

probability plot. In addition, from a qualitative evaluation, it can be concluded that the 

point SFD do not follow a normal distribution confirming its relevance. For the recovery, 

PT has a contribution of 55.6% and of QRN 38.4% (Figure 88 B) confirming their relevance 

through Figure 89(B). Finally, for the productivity, the effect of the parameters is more 

spread out, but there is a clear contribution from QFD of 51% of the contribution (Figure 
88 C). 

These simulations have provided a better understanding of the process. The results 

confirm the inverse proportionality of some parameters on their response. For example, 

a low level of SFD contributes to higher purity values, but also leads to low recovery values 

and therefore a low productivity result. Furthermore, a low value on the SFD stop point 

represents a shorter cycle time, so the amount of CO2 recuperated on the same time is 

lower too, decreasing the productivity. These results suggest that the process can be 

adapted to increase the purity by a decrease on the recovery or vice versa. On the other 

hand, SRN had a low relevance in the response, but QRN seems to represent a high impact 

on the response. 

A B 

C 

Figure 88: 13XBL Pareto contribution chart of CO2 cyclic adsorption experiments. (A) Purity, 
(B) Recuperation, (C) Productivity. 
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Even if this design of experiences brings an idea of the most significant factors, a setup 

with the complete process is needed to clarify the real importance and impact of the rest 

of the factors. In any case, the understanding of the effects of the parameters over the 

process shows the importance of PV and PT on the overall process performance. 

Therefore, a maximum PV of -0.95 barg, a maximum QV and a low-pressure value of 

2 barg are recommended for process experiments with the reflux streams of purge and 

rinse on three columns. QF, QR and the stop points SFD, SPR and SRN will be analysed in 

the continuous process. 
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Figure 89: 13XBL CO2 cyclic adsorption experiments half normal probability chart. (A) Purity, 
(B) Recuperation, (C) Productivity. 
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4.5. Three column VPSA experiments for CO2 capture. 

4.5.1. VPSA process parameters controlled by a SFD of 5%. 
 

The design of a continuous process for CO2 capture from flue gas streams was done 

using a three-column equipment, as described on section 3.2.3, performing the process 

detailed on section 0. Continuous experiments were carried out to study the CO2 

adsorption from a gas mixture of 15% CO2 and 85% N2 using 13XBL in cyclic 

configuration. The reflux of nitrogen in the process was included to perform the purge 

stage and a CO2 recirculation was also done to perform the rinse stage. An eight-step 

Skarstrom-type VPSA cycle in a three column arrangement was used to achieve a 

continuous CO2 separation from flue gases. Figure 23 shows the different 

interconnections between the three column VPSA process stages. The column streams 

interconnections allow to recycle both gases (N2 and CO2) and to transfer the 

pressurization energy after rinse stage to another column in the equalization. 

The set of three columns with an internal diameter of 5.0 cm described on section 3.2.3 

was selected on these experiments, using the equipment to produce gas mixtures shown 

in section 3.2.1. The experimental process parameters were based on the results 

obtained from section 4.4.5 to validate the cyclic performance and functionality in a 

continuous separation process. As discussed before, the purity and the recovery provide 

inversely proportional responses (higher purity values lead to a lower recovery and 

productivity). On this experiment, the factors were chosen to achieve high purity results 

based on the results of the previous sections (4.4.3 and 4.4.5) . The power consumption 

was measured by a power meter installed on the electrical connection. The execution of 

the 8 steps on each column is considered one cycle on the process based on the 

representative scheduling table of Figure 23. Table 42 shows the process parameters 

selected for the cyclic experiment, from now named as process controlled by a SFD of 

5%. 

Figure 90 shows the column temperature and pressure of the 5% SFD controlled VPSA 

experiment on the adsorbent bed. Because the variation of the different parameter 

evolution during each cycle was quite small, the parameter history is shown only in part 

to be more easily identified. Figure 90 (A) show the pressure profile of one column is 

shown over the different steps, where the pressure changes on the process from 2 barg 

to -0.9 barg are clearly visible. The graph reveals a problem on the control of the pressure 

in the feed stage, as the pressure increases slowly from 1.91 to 1.98 barg. On the other 

side, the vacuum pressure of each cycle does not reach the desired value of - 0.95 barg, 



 

Angel Eduardo Gutiérrez Ortega 
159 

due to the mass transference resistance of the column, as it was discussed on 

section 4.4.5. To avoid longer times of regeneration, a maximum regeneration time was 

set on the PLC in case the desired vacuum pressure was not reached on the column. 

 

Table 42: VPSA process parameters for CO2 separation controlled by a SFD of 5%. 

Process 
Parameter 

Value Unit 

PT 2.00 Barg 

PV -0.95 Barg 

QF 10.00 L/min 

QR 5.00 L/min 

QP 10.00 L/min 

SRN 120.00 % 

SFD 5.00 % 

SPR 50.00 % 

 

A total of 20 cycles were performed in the experiment, and the cyclic steady state (CSS) 

was considered achieved once the difference between the temperature profiles of the 

last two cycles were less than 0.1%. As observed in Figure 90 (B), CSS was achieved in 

the VPSA process after about 17 cycles (at 8500 sec.). Another interesting feature is the 

fact that the variation of the temperature in the column inlet (Ttop1, blue line) was 2ºC less 

than at the outlet (Tbottom1, orange line), indicating that the regeneration was not highly 

efficient during the VPSA cycles. In addition, SFD, SRN and SPR stop points can be easily 

differentiated. The temperature profile of each cycle, depicted in Figure 90 (B), is 

identified with the different steps of the cycle. A first increment on the temperature from 

19 to 21ºC is detected in the bottom temperature sensor, and from 19 to 22ºC in the top 

temperature sensor. This is followed by a flat zone, observed on the top temperature 

sensor, corresponding to the depressurization step. A second steeper increment from 22 

to 28ºC in the bottom temperature sensor, and from 22 to 30ºC in the top temperature 

sensor corresponds to the rinse step. Finally, the regeneration step is represented by 

the fast decrease on the temperature in both sensors, while the purge step is only 

detected in the bottom temperature sensor, where a change on the temperature 

decrease rate is observed at 23ºC. Once the purge step is finished, the stream 

temperature is around 20ºC. 
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Figure 90: (A) Pressure and (B) Temperature profiles of one column on the VPSA process 

controlled by a SFD of 5%. 

 

 

Table 43 shows the numerical results of the capture process with the parameters shown 

in Table 42. The results illustrate a low productivity value of 0.028 gCO2/(gads٠h) compared 

to the results obtained on section 4.4.3 (average productivity of 0.19 gCO2/(gads٠h)) or the 

simulated values obtained from section 4.4.5 (0.23 gCO2/(gads٠h)). This low productivity is 

the consequence of the low recuperation of CO2 (yield of 22%) and the long stand-by 

time. Stand-by stages mean that the column is waiting for the other columns to finish 

some parallel steps so as to synchronize the VPSA cycle. On the other hand, the purity 

result had a high value of 83%, although this value is 10% lower than those from the 

previous experiments. 
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Table 43: Results of the VPSA process controlled by a SFD of 5%. 

Performance 
indicator 

Value Unit 

Purity 83. % 

Productivity 0.028 gCO2/(gads٠h) 

Power consumption 6.44 kWh/(kgCO2) 

Yield 9.24 %CO2  

Stand-by time 43.2 % 

Cycle time 1198 sec 

 

The time scheduling of the column process is shown in Figure 91, where each step of 

the VPSA process is represented by a bar of different color. The white bars represent 

the “stand-by” mode, and therefore it is evident that each column is waiting for 43% of 

the total cycle time as indicated in Table 43. The regeneration step (blue) is the process 

that takes longest time, making it the “bottle neck”. These long regeneration times can 

lead to a longer operation time on the vacuum pump. The combination of long 

regeneration times and low yield is reflected on a high energy consumption of 

6.4 kWh/(kgCO2) (see Table 43). On the other hand, the rinse step (red) is the second step 

with a longer cycle time. The rest of the process steps are quite small compared with 

those two steps. 

 

 
Figure 91: Cycle time for a three column VPSA process for CO2 / N2 separation controlled by 

a SFD of 5%. Pressurization and feed (green), Depressurization (yellow), Rinse (rinse), 
Equalization (orange), Regeneration (Blue), Purge (black).  
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Figure 92 shows the CO2 uptake of one adsorption column. The different process steps 

are differentiated in a similar way as in Figure 90 (B). The first increment corresponds to 

the CO2 load contributed by the feeding stage. The second increment with a slow rate of 

adsorption corresponds to the CO2 uptake during the stand-by step before the rinse 

stage. The third increment corresponds to the rinse step, where the main increment on 

the load is obtained, corresponding approximately to 91% of the total CO2 uptake. Unlike 

the last experiment and the simulations of the previous sections, the CO2 is recycled 

from the product recuperated from the process, so the purity of CO2 depends on the 

purity of the CO2 recovered. This unbalanced uptake proportion is the main reason of 

the low yield results, since just a small part of the feed is processed in each cycle. 

After the rinse step, two uptake decrements are shown on the cyclic graph. The first 

decrement represents the CO2 recovered by effect of the reduction on the pressure in 

the regeneration step, desorbing approximately 75% of the total CO2 adsorbed. The 

second decrement corresponds to the desorption of CO2 by the countercurrent flow of 

N2 on the purge stage. This means that the CO2 recovered stream is diluted with the N2, 

causing a decrease in global purity. 

Figure 92: CO2 molar balance of one column on the VPSA process controlled by a SFD of 

5%. 

 

The low proportion of CO2 recovered suggests a change in the experimental operating 

conditions. The initial hypothesis was based on a low SFD stop point value, in order to 

avoid the loss of CO2 in the partial breakthrough of the outlet column. However, this front 

creates a waste rate during the feed step and reduces the CO2 recovery. In order to 

overcome this issue, a higher SFD value of 40% has been set, while an increment of QF 

to 15 L/min has been chosen to avoid a long feed step time.  
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In addition, 25% of the CO2 was being desorbed in the purge step, lowering the overall 

purity. Therefore, a higher SPR of 80% is proposed to avoid the dilution of the CO2 

recovered. The rest of the conditions has been kept on the same values then the previous 

experiment. 

 

4.5.2. VPSA process parameters controlled by a SFD of 40%. 
 

The operating VPSA process conditions of the experiment controlled with a 40% of SFD 

are reported in Table 44. 

 

Table 44: VPSA process parameters for CO2 separation controlled by a SFD of 5%. 

Process 
Parameter 

Value Unit 

PT 2.00 barg 

PV -0.95 barg 

QF 15.00 L/min 

QR 5.00 L/min 

QP 15.00 L/min 

SRN 120.00 % 

SFD 40.00 % 

SPR 80.00 % 

 

Figure 93 shows the pressure and temperature profiles of the 40% SDF controlled 

experiment. As in the previous experiment, a total of 20 cycles were performed, while 

only a part of the parameter history is shown in the graphs to better identify the variables 

changes. The homogeneous control over the SFD stop point is shown in Figure 93 (A) is 

shows the pressure profile of one column over the cyclic process. The main difference 

of this graph respect with respect to the previous experiments is the enhanced pressure 

control at the feed step. For this stream experiment, the PLC control pressure block was 

reprogramed to keep the inlet flow and the column pressure constant. In the previous 

experiment, the PID control was affected by the noise created by the adsorption capacity 

of the column adsorbent, despite the algorithm being programmed to keep the pressure 

constant controlling the outlet flowrate with I-319 as a back pressure controller (see 

Figure 30 on page 56). However, the controller actions of the inlet pressure performed 

by the instrument by I-302 were in conflict with the feed flowrate. The non-linearity of the 
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system and the noise created by the changing rate of adsorption impacted directly on 

the proportional and integral PID constants. To solve the problem, a cascade PID control 

was included, connecting the two PID controllers together to yield better dynamic 

performance, as it can be seen in the graph, where the pressure remains constant over 

the feed step in a value of 1.95 barg. 

 

In Figure 93 (B), the temperature profile is depicted. The main difference respect to the 

previous experiment is the first increment of temperature, going approximately from 20 

to 24ºC in the bottom temperature sensor, and from 20 to 25ºC in the top temperature 

sensor. These temperature increments along the column are 2ºC more in each position 

with respect to the previous experiment and mean that a greater CO2 adsorption takes 

place during the feed stage. 
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Figure 93: (A) CO2 molar balance, (B) pressure and (C) temperature profiles of one column on 
the VPSA process controlled by a SFD of 40%. 
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Table 43 shows the performance of the VPSA process with the process controlled with 

an SFD of 40%. The results show an improvement of the productivity and the purity 

compared to the previous experiment. This result is a consequence of the increment on 

the yield and the decrement of the stand-by times. On the other hand, the power 

consumption has decreased as well with the modification of the feed step parameters. 

Nevertheless, while the overall results are better than in the previous case, the process 

productivity still remains too low when compared to the results obtained on section 4.4.3 

(0.19 gCO2/(gads٠h). 

 

Table 45: Results of the VPSA process controlled by a SFD of 40%. 

Performance 
indicator 

Value Unit 

Purity 89.8 % 

Productivity 0.035 gCO2/(gads٠h) 

Power consumption 5.63 kWh/(kgCO2) 

Yield 22.31 %CO2  

Stand-by time 27.3 % 

Cycle time 1355 sec 

 

Figure 94 shows the time scheduling of the column process as controlled in the case of 

40% of SFD. Compared to the previous case, a better synchrony is shown, with a 

reduction of 15% of the total stand-by step duration. Therefore, each column is capturing 

more CO2 from the feed step and more time of the total cycle is employed in the process. 

In the time-lapse between 12 000 and 15 000 sec., a difference on the feed steps 

between the three columns time is observed. This difference is stabilized throughout the 

cycles until reaching the CSS from 27 000 sec. This column synchronization is the result 

of the SFD stop points being designed to achieve the time synchrony, regardless of the 

CO2 concentration and variation in the stream feed.  

In general, the steps with longer process time are the feed and regeneration steps, using 

approximately the 60% of the cycle time (30% each). The stand-by time accounts for 

27.3% and the rinse step represents only the 12%. The time occupied by the 

depressurization and purge steps is residual, being only 1 and 4%, respectively. The 

equalization was not executed in the two performed cyclic experiments.  

As it shown in Figure 93 (A), the pressure decreases from 1.95 to 0.07 barg in the 

depressurization step, while during the rinse step the pressure increases until 0.22 barg. 
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However, the long stand-by before the equalization steps produces a gradual decrease 

of the pressure inside the column until 0.1 barg.  

This pressure drop occurs despite the fact that the column output is closed, and the 

cause is a continued CO2 adsorption effect towards the equilibrium, where this kinetic 

effect is normally limited by the mass transference coefficient of the adsorbent. 

Therefore, the remaining pressure is not enough to satisfy the requirements for the 

equalization stage and is automatically skipped by the PLC program. 

 
Figure 94: Cycle time for a three column VPSA process for CO2 / N2 separation controlled by 

a SFD of 40%. Pressurization and feed (green), Depressurization (yellow), Rinse (rinse), 
Equalization (orange), Regeneration (Blue), Purge (black). 

 

The CO2 molar uptake profile of one adsorption column is shown in Figure 95 The molar 

uptake in the feed step is 22%, being 13% more compared to the previous experiment 

(5% SFD controlled). Despite the improvement in the feed step, 78% of the CO2 uptake 

is adsorbed during the rinse step, which means that most of the energy consumed is 

used to recirculate the CO2 recovered in the previous cycles (as it was previously 

discussed, higher SRN values increase the average purity). These results are very 

different than what was obtained in section 4.4.3, where the study was performed in one 

column without the stream interactions and using pure gas on the recirculation of CO2 

and N2 for the rinse and purge steps. This fact suggests that the purity of CO2 has an 

important effect on the adsorption dynamics. In fact, in the cyclic experiment the CO2 

purity on the rinse stage depends on the product purity achieved on the previous column 

cycle. This low CO2 purity leads to a longer rinse step due to the competitive adsorption 

between CO2 and N2. Therefore, more time is needed to reach the desired stop point, 

promoting higher rinse recirculation rates. 
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The CO2 recovered in the purge stage is 12.5%, being a lower fraction compared to the 

previous experiment, which had a value of 24%. This difference implies a lower amount 

of N2 in the product stream, which was reflected in the increase of the overall purity up 

to 90%. 

 
Figure 95: CO2 molar balance of one column on the VPSA process controlled by a SFD of 

40%. 

 

Overall, these results indicate that there is still room for the reduction of the energy 

consumption. Hence, a third test with a higher SFD of 95% is set to decrease the rinse 

step time. If the column is saturated with CO2 from the feed stage, a lower quantity of 

CO2 recycled will be expected to achieve the stop point SRN. The main source of electric 

consumption is the vacuum pump. As discussed in section 4.4.5, at the beginning of the 

regeneration step, 67% of the total CO2 uptake was desorbed in 240 seconds, and to 

desorb 15% more the regeneration stage requires 650 seconds more. Therefore, a new 

control over the regeneration step was designed based on the regeneration flow. The 

stop point is the minimum flowrate at expulsion (QEX) on the vacuum pump, while the 

vacuum pump operates at its maximum vacuum capacity of PV= -0.95 barg. The rest of 

the conditions are kept on the same values than the previous experiments. 
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4.5.3. VPSA process parameters controlled by a SFD of 95%. 
 

The operating VPSA processes conditions of the experiment controlled with a 95% of 

SFD are reported in Table 46. 

Table 46: VPSA process parameters for CO2 separation controlled by a SFD of 95%. 

Process 
Parameter 

Value Unit 

PT 2.00 Barg 

PV -0.95 Barg 

QF 15.00 L/min 

QR 5.00 L/min 

QP 15.00 L/min 

QEX 0.5 L/min 

SRN 120.00 % 

SFD 95.00 % 

SPR 80.00 % 

 

The impact on process performance with the changes made on the process conditions 

is analyzed in Figure 96. Figure 96 (A) it is shown how the feed step lasts longer 

compared to the previous cyclic experiments, which is expected from the extension of 

the value of the SFD parameter used in this experiment. However, the vacuum pressure 

reaches a maximum value of -0.82 barg, slightly higher than in the previous experiments 

(-0.84 barg). This change on the vacuum pressure is caused by the QEX stop point. 

Finally, the temperature profile is plotted in Figure 96 (B). Now, the height of the peaks 

of the first increment of both sensors reaches higher values than in previous 

experiments, moving from 20 to 28ºC in the bottom temperature sensor, and from 20 to 

25ºC in the top temperature sensor. Nevertheless, in the second increment the bottom 

temperature sensor shows a lower value of 25.9ºC, while the top sensor shows a similar 

behavior, reaching 29ºC. These differences in the shape of the peaks suggest a higher 

amount of CO2 adsorbed during the feed step than the one adsorbed on the rinse step. 

The main effects of the scheduling of the different process steps with the changes made 

on the process parameters are shown in Figure 97. The scale of the graphs was reduced 

in order to distinguish the size of the rinse step. Compared to the previous experiments, 

the duration of the rinse step was reduced from 247 to 143 seconds, representing only 

9% of the total cycle time. The feed step, with 36%, and the regeneration step, with 29%, 
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represent the steps with longer process times, while the stand-by time remains in a 

similar level as before (25%). 

The results obtained on the process are listed in Table 47 First, it is important to note an 

increment on the CO2 purity up to 93.44% of CO2. This is almost 10% more than the 

process controlled with a SFD of 40%. Nevertheless, the main improvement was found in 

the productivity with a value of 0.278 gCO2/(gads٠h) being even a better value than, not 

only the previous two experiments, but also the results achieved in section 4.4.5 of 0.230 

gCO2/(gads٠h). 

 

 

A 

B 

C Figure 96: (A) CO2 molar balance, (B) pressure and (C) temperature profiles of one column 
on the VPSA process controlled by a SFD of 95%. 
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Figure 97: Cycle time for a three column VPSA process for CO2 / N2 separation controlled by 

a SFD of 95%. Pressurization and feed (green), Depressurization (orange), Rinse (rinse), 
Equalization (yellow), Regeneration (Blue), Purge (black). 

 

This higher productivity confirms the previous assumption that the higher value on the 

SFD stop point allows to compute more CO2 from the feed stage. This is also confirmed 

through the CO2 uptake profile on one column, which is shown in Figure 98. It can be 

observed that 70% of CO2 uptake was adsorbed during the feed stage, while the 

remaining 30% was absorbed during the rinse stage. Additionally, an important reduction 

on the power consumption up to 2.67 kWh/(kgCO2) was obtained, due to the reduction on 

the operation of the vacuum pump, as a consequence of the higher amount of CO2 

recovered from the inlet mixture. 

 

Table 47: Results of the VPSA process controlled by a SFD of 95%. 

Performance 
indicator 

Value Unit 

Purity 93.4 % 

Productivity 0.278 gCO2/(gads٠h) 

Power consumption 2.67 kWh/(kgCO2) 

Yield 47.86. %CO2  

Stand-by time 27.3 % 

Cycle time 1420 sec 
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Figure 98: CO2 molar balance of one column on the VPSA process controlled by a SFD of 

95%. 

 

Therefore, the CO2 recovery efficiency increases with an increasing SFD stop point. This 

behavior suggests that the duration of the feed step might be a useful operating 

parameter for controlling product purity and recovery. As is detailed in this Table 47, with 

an increase in the SFD, the experimental energy consumption decreased. The purity of 

the CO2 obtained as a product was still low compared to the requirements for CO2 

storage (purity higher than 95%). One proposed solution to increase the purity of the CO2 

recovered is to optimize the rinse and purge stages. 
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4.6. Industrial VPSA experiments for CO2 capture. 
 

The results of the industrial plant set-up for CO2 capture and the in-site utilization are 

divided in three stages: Flue gase pre-treatment, CO2 capture and storage and CO2 

utilization application. 

 

4.6.1. Flue gases pretreatment. 
 

Previous to the VPSA process, a pre-treatment stage is requiered to cool down the flue 

gases and to remove the impurities using the system designed on section 3.3.1. The pre-

treatment set-up was installed in an industrial boiler chimney of 11000 kW that burns 

from 126 to 966 Nm3/h of CH4. An analysis of the flue gase composition was performed 

using a KIMO KIGAZ 310 analyser. The instrument has electrochemical sensors to 

measure the concentration of O2, CO2, CO, NOx, CH4 and SOx. It also has sensors to 

measure the temperature and the dew temperature of the combustion gas. The results 

of the flue gas analysis are shown in Table 48. 

Table 48: Results from flue gases of the chimney with KIMO KIGAZ 310 analyzer. 

Parameter Result 

Temperature 65 – 75 °C 

O2 2.5 – 3.5 % 

CO ND 

SOX ND 

CO2 10.4 – 12 % 

NOX 76 – 96 ppm 

Dew Point 45ºC – 55ºC 
 

 

Due to the previous CH4 desulfuration stage, SOx compounds were not found in the flue 

gas. However, a level of 96 ppm of NOX was detected, produced by the oxidation of CH4 

with excess air (Xu et al., 2005). This can negatively impact on the CO2 separation 

processes, as NO can be oxidized to NO2, N2O3, N2O5 and eventually react with the 

adsorbent (Zhang et al., 2009).Therefore, the pre-treatment was designed to cool down 

the flue gas stream and to eliminate the NOX impurities without decreasing the 

concentration of CO2.  
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The major NOX components generated by fuel combustion are NO and NO2, although 

equilibrium small amounts of N2O4 and N2O3 exist. The quite complex mechanism of 

absorption of these nitrogen oxides into water results in the formation of nitric and nitrous 

acids, through the following reactions occurring in the gas phase (Liémans et al., 2011). 

 

2⁡𝑁𝑂(𝑔) + 𝑂2(𝑔) → 2⁡𝑁𝑂2(𝑔) (38) 

2⁡𝑁𝑂2(𝑔) ⁡⇄ ⁡𝑁2𝑂4(𝑔) (39) 

𝑁𝑂(𝑔) ⁡+ ⁡𝑁𝑂2(𝑔) ⇄⁡𝑁2𝑂3(𝑔) (40) 

⁡𝑁𝑂(𝑔) ⁡+ ⁡𝑁𝑂2(𝑔) +𝐻2𝑂(𝑔) ⇄⁡2𝐻𝑁𝑂2(𝑔) (41) 
 

The adiabatic cooling unit E-401 (see Figure 31) cools down the flue gas from 70ºC to 

30ºC using water sprays. Small liquid droplets cool the exhaust stream more quickly than 

large droplets because they evaporate more easily. Therefore, less liquid is required. 

The E-401 unit also removes a fraction of the NOx. The process for NOX absorption into 

water involves several multiple reversible reactions in both the gas and the liquid phase. 

The gases NO2, N2O4 and N2O3 are absorbed in the aqueous phase and react with water 

as follows: 

𝑁𝑂2(𝑔) → 𝑁𝑂2(𝑙) (42) 

𝑁2𝑂4(𝑔) → 𝑁2𝑂4(𝑙) (43) 

𝑁2𝑂3(𝑔) → 𝑁2𝑂3(𝑙) (44) 

2𝑁𝑂2(𝑙) +𝐻2𝑂(𝑙) ⇄⁡𝐻𝑁𝑂3(𝑙) +𝐻𝑁𝑂2(𝑙) (45) 

𝑁2𝑂4(𝑙) +𝐻2𝑂(𝑙) ⇄⁡𝐻𝑁𝑂3(𝑙) +𝐻𝑁𝑂2(𝑙) (46) 

𝑁2𝑂3(𝑙) +𝐻2𝑂(𝑙) ⇄⁡2𝐻𝑁𝑂2(𝑙) (47) 
 

It is usually assumed that the equilibrium between NO2 and N2O4, (equation (39) is 

instantaneously established. The reactions (45) and (46) are competing and it is known 

that reaction (45) makes a major contribution to the absorption of tetravalent oxide 

(NO2+N2O4) when their concentration is relatively large (higher than 1000 ppm). At low 

concentrations the major absorption occurs via reaction (45). Reactions (45) and (46) 

can also occur in the gas phase. Nitrous acid produced by reactions (45) to (47) 

decomposes in the liquid phase according to the following equations: (Joshi et al., 1985)  

3𝐻𝑁𝑂2(𝑙) ⇄⁡𝐻𝑁𝑂3(𝑙) + 2𝑁𝑂(𝑙) +𝐻2𝑂(𝑙) (48) 

2𝐻𝑁𝑂2(𝑙) ⇄⁡𝑁𝑂(𝑙) +𝐻2𝑂(𝑙) +𝑁𝑂2(𝑙) (49) 
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The absorption of NOX gas into water results into two oxyacids namely nitric acid and 

nitrous acid. Several equilibria exist between NOX and oxyacids, both in the gas and 

liquid phases. Absorption and desorption operations occur simultaneously. Further, the 

absorption is accompanied by a chemical reaction and the desorption is also preceded 

by a chemical reaction. E-401 has an efficient defogger, which solve the problem of water 

removal from the absorbent solution by the gas. In addition, the liquid absorption solution 

can be recycled or reutilized. 

The low solubility of NO that accounts for more than 90% of all NOX and NO2 in water 

compared with other waste gases, such as CO2, SO2 and NH3 is a problem because low 

solubility results in a high mass transfer resistance of water (Joshi et al., 1985). 

Therefore, a gas absorption system using alkaline solution or oxidants is usually adopted 

to decrease NOX concentration in waste gases. However, using alkaline solutions such 

as NaOH can react with CO2 to form Na2CO3, removing this substance from the flue gas 

stream and leading into high operations cost and a high level of residual coproducts. 

Liquid oxidants are used as absorbents, such as HNO3, sodium chlorite, hydrogen 

peroxide and potassium permanganate (KMnO4).  

For the complete NOx removal, a chemical absorption with KMnO4 was employed on the 

unit E-406 (see Figure 31). Alphasorb 8 adsorbent is a spherical alumina impregned in 

KMnO4. This is a commercial and common solution to remove a large spectrum of 

pollutants. The reactions utilized for the NOx removal were the following: 

 

𝐾𝑀𝑛𝑂4 +𝑁𝑂 → 𝐾𝑁𝑂3 +𝑀𝑛𝑂2 (50) 

5𝑁𝑂2 + 𝐾𝑀𝑛𝑂4 +⁡𝐻2𝑂 → 2𝐻𝑁𝑂3 +𝑀𝑛(𝑁𝑂3)2 + 𝐾𝑁𝑂3 (51) 
 

The E-405 (see Figure 31) unit avoids that the saturated flue gas JOSHI the impregnated 

KMnO4 from the alumina by taking advantage of the excess of water present in the flue 

gases. Thus, E-405 works as an adsorption dryer to remove water vapor from the gas 

by passing it through an adsorbent desiccant material based on the principle that 

moisture always migrates to the driest possible medium. Upon entering in contact with 

the adsorbent material, the water vapor is transferred from the gas to the dry desiccant. 

The flue gas flows through a vessel containing the desiccant and stays into intensive 

contact with the desiccant.  

On the other hand, the unit E-406 (see Figure 31) protects the compressor unit E-403 

from particles between 3.0 to 10 µm in size. Once the flue gas was denitrified and filtered, 

the gas is compressed until 8 bars in the unit E-403. The E-407 unit separates the water 
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condensed from the compression work by a centrifugal effect. Table 49 shows the 

average results of the monitorization on different points of the pre-treatment stage during 

two weeks of operation.  

Table 49: Pre-treatment results from flue gases with KIMO KIGAZ 310 analyser. 

Parameter Chimney Before 
E-401 

After 
E-401 

After 
E-405 

After 
E-406 E-404 

Gases temperature (ºC) 70.7 69.4 30.2 26.2 26.4 25.3 
O2 (%) 5.4 5.1 5.1 5.1 5.2 5.2 
NO (%) 74.0 74.0 54.0 49.0 0.0 0.0 
SO2 (%) 0.0 0.0 0.0 0.0 0.0 0.0 

CO2 (%) 11.1 11.0 11.1 11.2 11.2 11.0 

NOX (ppmv) 77.0 77.0 55.0 51.0 0.0 0.0 

Relative humidity (%) 36.9 42.5 100 28.93 26.5 37.7 
 

As it can be seen on Table 49, NOx were totally removed without affecting the CO2 

content. The removal efficiency in E-401 was 29% of the NOx inlet concentration, 

removing mainly the gases NO2, N2O4 and N2O3. E-405 removed 6.5% and the E-406 

completely removed the remaining NOX from the flue gases. As it can be seen the O2 

present because of the excess of air during the combustion was not removed. This gas 

is separated in later stages.  

 

4.6.2. CO2 capture and storage pilot plant 
 

The CO2 removal capability can be dramatically affected by the presence of water in the 

flue gases by the formation of carbonates or bicarbonates on zeolites. A relative humidity 

(RH) below 0.5 % is needed to avoid affecting the CO2 removal capability (Wang and 

LeVan, 2010). The drying unit E-505 of the VPSA pilot plant (see Figure 35) operates by 

a reversible adsorption process with molecular alumina as desiccant. The desiccant 

removes moisture from the compressed flue gases and stores it in its internal structure. 

The dryer can additionally capture small amounts of SOx and NOx present in the flue gas, 

which are easily adsorbed on and difficult to desorb from zeolites (Ishibashi et al., 1996). 

With continuous moisture loading of the desiccant, the dryer performance is reduced 

until the desiccant is saturated with moisture. Therefore, when an adsorption column was 

used for drying the compressed flue gas, the other column performed the regeneration 

phase. The continuous operation of the drying unit E-505 was achieved with two 
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adsorption columns that are operated alternately in a three-process cycle described 

follows: 

1. The moist compressed flue gas is supplied via a prefilter to the drying unit E-505. 

The main valve (V-441/V-552) forwards the compressed flue gas to the vessel 

which is in adsorption mode (e.g. CS-01 see Figure 99). In the lower part of the 

vessel the compressed flue gas is decelerated and distributed over the vessel 

cross-section and slowly flows through the desiccant bed. The compressed flue 

gas exits the vessel via the exit valves (V-444/V-554), and the dew point sensor 

(I-502 see Figure 35) checks the dryer performance at the compressed air outlet. 

During this time the second vessel (e.g. CS-02 see Figure 99) is in regeneration 

mode and waits for operation. 

2. The switch-over of the vessel is carried out by turning the main valve (V-441/V-

552) form vessel (CS-01 see Figure 99) from vessel (CS-02). The compressed 

flue gas flow changes from one vessel to the other. A free flow path through the 

dryer is available at any time during switchover. As a result, the task of drying is 

passed on to the other vessel without interruption. 

 

3. After the wet vessel (e.g. CS-01 see Figure 99) has completed the adsorption 

phase and passed on the tank to the second vessel (e.g. CS-02 see Figure 99), 

the first vessel (offline vessel) runs the regeneration phase. After the vessel 

switch-over the expansion valve (V442/V552) is opened and the wet vessel is 

depressurised. The compressed air flows to the outside via the silencer. After the 

vessel pressure has almost reached atmospheric pressure, dry N2 from the VPSA 

unit (regeneration gas) flows into the column (e.g. CS-01 see Figure 99) to 

Figure 99: Dryer adsorption phase. 
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regenerate the desiccant. The dry and pressure-less regeneration gas is 

distributed throughout the vessel cross-section and passed through the 

desiccant. The dry regeneration N2 vaporises the water stored in the desiccant. 

In the form of steam, the water together with the regeneration N2 flow, is then 

sent via valve (V-442/V-552) to the regeneration outlet.  

4. After the regeneration phase has expired, the pressurization phase begins. The 

pressurisation phase ensures that the two drying columns have the same 

pressure prior to the column switch-over. The regeneration N2 valve (V-442/V-

552) was closed and dry compressed N2 continues to flow into vessel (e.g. C-01 

see Figure 99) gradually equalising the pressure in both vessels. The next phase 

begins when the vessel pressure is almost the same in both vessels. 

Figure 104 shows the experimental CO2 concentration and humidity (RH) monitoring 

results on one cycle of a dryer column. The dry flue gas CO2 concentration oscillates 

between 10.3 to 10.8%, while the RH moves from 0.24 to 0.70% with an average value 

of 0.37%. On one side, a competitive physical adsorption is produced between H2O and 

the CO2. On the other side, the RH increases over the time taking 333 minutes to achieve 

a value above 0.5%. In any case, the time of the cycle is fixed in 3 hours to ensure a RH 

lower than 0.3% to ensure the adequate operation of the equipment. 

 
Figure 100: Characterization of the outlet dry flue gas of the adsorption dryer E-505 with a 

constant flowrate of 3000 L/min at 2 barg. (Δ) CO2 concentration, (●) % RH.  
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Once the flue gas is dried to a RH below 0.5%, it enters the CO2 VPSA separation unit. 

Based on the results achieved in section 4.5 the design conditions to carry out a CO2 

separation with zeolite 13XBL were set to scale the process up. In the stream process, 

the length of unused bed (LUB) method was applied for the scaling-up. The variables 

were scaled from the process controlled with a SFD of 95% from the section 4.5, the 

process conditions for the CO2 separation with zeolite 13XBL was selected for the 

industrial set-up.The variables are scaled from the process controlled with a SFD of 95% 

from the section 4.5 obtained with cyclic laboratory equipment. The parameters PT, PV, 

SRN, SFD and SPR are directly applicable since these do not dependent on the equipment 

scale. The flowrates QF, QR, QP and QEX were scaled respecting the same superficial 

velocity through the pilot experiments. 

The LUB can therefore be measured at the design velocity in a small-scale laboratory 

column packed with the selected adsorbent. The design of the full-scale adsorption 

column was obtained by simply adding the LUB to the length of bed needed to achieve 

the required stoichiometric capacity (LES). The Table 50 shows the process parameters 

applied to the industrial cyclic experiment. 

 

Table 50: Conditions for the VPSA industrial plant for CO2 separation. 

Process 
Parameter 

Value Unit 

PT 2.00 Barg 

PV -0.95 Barg 

QF 2000 L/min 

QR 600 L/min 

QP 2000 L/min 

QEX 60 L/min 

SRN 120.00 % 

SFD 95.00 % 

SPR 80.00 % 

 

The denitrified flue gas passes through the dehumidifier with a relative humidity less than 

0.5% as needes for the carbon capture unit. The concentration of CO2 in the dry flue gas 

is 9.5-11.0%, while the temperature of the dry flue gas is about 18ºC. Figure 101 shows 

the pressure evolution profiles during the three-bed eight-step VPSA operation for CO2 

capture from flue gas. The industrial set-up was designed to obtain a robust commercial 

product by reducing the costs and the complexity of the operational and production 



 

Angel Eduardo Gutiérrez Ortega 
179 

processes. The pressure control system was designed just with one regulator valve in a 

PID control system, simplifying the laboratory set-up, which had two control valves in a 

PID cascade control configuration. From the figure, it is possible to observe that the 

pressure control on the feed step presents some variations from the pressure set-point, 

mainly caused by the sensitivity of 0.1 bar of the pneumatic regulation valve used. 

Although it presents a lower precision compared to the lab control configuration (caused 

by the dispersion of the values), the pressure values are spread over the set-point in a 

narrow range, becoming acceptable for operational purposes.  

Figure 101 shows the scheduling of the three columns on the industrial process. In 

general, the synchronization of the step process times was similar to the one obtained in 

the laboratory and plotted on Figure 97. The main contribution on the cycle times are the 

feed and regeneration steps forming 31% and 33% of the total respectively. On the other 

hand, the regeneration step represents only a 4% of the cycle time but, unlike the 

previous results, the pressure after the rinse was kept at 0.5 barg (see Figure 101). 

Therefore, the equalization step was executed occupying an 9% of the cycle time. The 

pressure equalization steps were performed from a pressure of 0.5 barg on the 

equalization provided pressures to a 0.15 barg of on the equalization received pressure. 

 

 
Figure 101: Pressure profiles measured for the industrial three-bed eight step VPSA 

process. 
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Figure 102: Cycle time for the industrial VPSA process for CO2/N2 separation controlled. 
Pressurization and feed (green), Depressurization (orange), Rinse (rinse), Equalization 

(yellow), Regeneration (Blue), Purge (black). 

 

The experiment was performed continuously during 7 h, executing 28 cycles. The Figure 
103 shows the purity profile of the CO2 captured from flue gas by the three-bed eight-

step VPSA process. As showed in the graph, the purity varies from 84.9% to 94.7 % of 

CO2 v/v with an average of 88.9%. It can be observed that the purity gradually increases 

until it apparently stabilizes around 90% after 13 cycles. 

 
Figure 103: CO2 product purity obtained the VPSA industrial plant. 
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power consumption for the CO2 industrial separation unit was 0.326 kWh/(kgCO2). The 

energy consumption on the industrial process was higher than the results obtained in the 

laboratory (section 4.5). This is because the power consumption measured in the lab did 

not include the power for the CO2 compression, the energy to increase the pressure on 

the feed gas related to the purge, and the energy to increase the CO2 product for the 

rinse steps. Also, the pressure and heat losses throughout the setup contribute 

significantly to the energy and should be included for the real power consumption. 

Table 51: Results of the industrial VPSA process. 

Performance 
indicator 

Value Unit 

Purity 85- 95 % 

Productivity 0.21 - 0.25 gCO2/(gads٠h) 

Power consumption 1.48 kWh/(kgCO2) 

Yield 48 - 56. %CO2  

Stand-by time 21 % 

Cycle time 973 sec 

CO2 product capacity  9 - 10 m3/h 

Energy cost 0.1 €/kWh 

CO2 recuperation cost 0.29 €/Nm3CO2 

 

The pressure drop of the flow from the outlet of the compressor E-403 (see Figure 31 on 

page 58) to the feed entrance of the drying unit E-505 (see Figure 35 on page 61) was 

about 0.2 bar, and the pressure drop from the drying unit to the feed end of the column 

was 0.3 bar. This second pressure drop was significantly affected by the outlet pressure, 

being even slightly higher than that for the vacuum pump E-501 (see Figure 35).  

These results indicate that there is more room for the reduction of the energy 

consumption by the compressing stage than the vacuum pump. To further reduce the 

power consumption, the quite large pressure drop should be avoided. Therefore, the 

separation performance for CO2 capture from flue gas by adsorption technology does 

not simply depend on the CO2 adsorption capacity of adsorbent, and other properties 

such as adsorption/desorption kinetics and fluid dynamics should be considered 

simultaneously.  

On the other hand, The performance parameters of the VPSA process for capturing CO2 

using zeolite 13XBL, such as CO2 purity, CO2 recovery, and specific power consumption, 

were compared with those of other adsorption processes for CO2 capture reported 

previously in the literature, as summarized in Table 1 and Table 28. It can be observed 
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that most of the studies used the zeolites 13X or 5A as the adsorbent, which have the 

highest CO2 capacities and selectivity among the commercial adsorbents. The energy 

consumption varied from 0.5 to 1.3 kWh/kgCO2 because of the different processes 

employed and different amounts of flue gas processed. However, in all cases, yields, 

purities, energy consumption and productivity are published using a desulfurized and 

dehumidified combustion gas. In addition, the data published on most occasions has 

been obtained from numerical simulations or experimental prototypes on a laboratory 

scale. Only a minimum number of articles (3) present data from real installations at pilot 

scale, but processing previously treated combustion gases, by unspecified methods. 

Another major obstacle presented in the bibliographic comparison was that all 

publications are focused on petroleum or coal combustion fuels with a higher 

concentration of carbon dioxide of 12 to 16%, while for the installation of gas capture the 

combustion used in this thesis is natural gas and the CO2 concentration is always lower 

than 11%. As is well known, the concentration of CO2 in the gases entering the capture 

system is very critical when the concentration is low. 

Therefore, the specific power consumption required in this study is not comparable to 

other reports, but it can be observed that the capture power consumption for the VPSA 

process was lower than that of the amine scrubbing process of 1.76 kWh/(kgCO2) (Ho et 

al., 2008). Moreover, compared with the VPSA system, the amine scrubbing process 

usually needs large areas for its installation, which makes it difficult to use existing power 

plants. As an example, a 500 MW coal-fired power station of 670 Nm3/s flue gas flow 

rate (Ho et al., 2008) where the amine scrubbing is used, is a process with two columns 

of 35 m length and 12 m diameter (total volume of 7913 m3) plus two regenerators and 

heat exchangers.  

Productivity is one of the performance indicators with more relevance over the process, 

a process with high purity and high recovery is not necessarily the best option if the 

process cycle time is too long. Despite the lack of publications that consider this indicator 

and the fact that the results cannot be compared objectively, the present process shows 

very encouraging results of 0.21 to 0.25 gCO2/gAds∙h, while the values of the publications 

range between 0.02 and 0.044 gCO2/gAds∙h with similar results in the yield, and the purity. 

Consequently, it can be confirmed that the capture of CO2 from a real industrial flue gas 

was demonstrated on a pilot plant scale processing 2000 L/min (120m3/h) of flue gas 

represents an opportunity to apply this technology in an economically and 

environmentally sustainable way. The flue gas containing 9 to 11% of CO2 was denitrified 

and dehumidified to a water content lower than 0.5% of relative humidity. Using an eight-
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step VPSA, 48 to 56% CO2 is recovered from the flue gas with 85 to 95% purity in product 

gas with a power consumption of 1.48 kW٠h/(kgCO2), with a productivity of 1.18 

gCO2/(gAds٠min). 

 

4.6.1. CO2 utilization application 
 

The recovered CO2 was used to replace the use of mineral acids in the pH regulation 

stage in an existent wastewater plant. Replacing mineral acid with CO2 in alkaline water 

is an effective, reliable, self-buffering and economical method of controlling pH levels 

(Gaur et al., 2009; Gelb and Palley, 2014). CO2 is a safer alternative than mineral acids 

and an effective chemical for lowering the pH of various kinds of alkaline waters. For 

several years, sulfuric acid was used in water treatment facilities to control alkalinity. 

However, this acid is hard to handle because of its poisonous nature, storage problem, 

secondary contaminant availability, and salt formation in water can affect the pump 

selection and increase the maintenance cost. 

The system for the pH regulation described on Figure 38 was installed into the pipe of 8” 

which transports the waste water from the factory to the homogenization tank. Figure 
104 shows the industrial wastewater plant set-up, where the wastewater of the plant was 

pumped to a homogenization tank through a battery of centrifugal pumps. The water flow 

was controlled depending on the wastewater production and the level of the 

homogenization tank. After the homogenization tank, the water is transported to a 

second tank where the pH is regulated with a mineral acid (H2SO4). Once the pH is 

regulated, a biological treatment is used to minimize the organic matter with an aerobic 

digestion. Finally, the mud (product of the aerobic digestion) is separated in a decanter 

from the clean water to return the treated water to a river. 

The pH of the water is measured upstream before the pH regulation and after the CO2 is 

injected in the wastewater. CO2 gas is highly soluble in water. For pure water in 

equilibrium with a partial pressure of one atmosphere of CO2, the solubility is about 

1.5g/L at 25°C. Initially, dissolved CO2 forms carbonic acid, which subsequently 

dissociates into bicarbonates, carbonates and hydrogen ions. The hydrogen ions in turn 

reduce the pH. (Norwater - Nordic Road Water, 2014). The following reactions are 

relevant for describing the process where CO2 gas dissolves in water. 
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𝐶𝑂2(𝑔) +𝐻2𝑂 ⇄ 𝐻2𝐶𝑂3
∗ (52) 

𝐻2𝐶𝑂3
∗ ⇄ 𝐻+ +𝐻𝐶𝑂3

− (53) 

𝐻𝐶𝑂3
− ⇄ 𝐻+ + 𝐶𝑂3

2− (54) 

𝐻2𝑂 ⇄ 𝐻+ + 𝑂𝐻− (55) 
 

With the configuration described in Figure 38, a volumetric gas flow from 6 to 12 Nm3/h 

of CO2 is injected to keep the pH of the wastewater between in the homogenization tank 

between 7.0 to 8.0. Gas-liquid mixing was carried out by two gas in line injectors, where 

the first is separated by 20 m from the second, and the second injector is 15 m prior to 

the homogenization tank. CO2 is introduced into the high pH water by means of a diffuser, 

which is typically installed in the existing pressurized pipe. Small CO2 bubbles are then 

released by the diffusers into the high pH water. Two pH probes are installed upstream 

on each gas injection point, thus measuring pH in the water before absorption and CO2 

reaction. The first pH meter (I-605 see Figure 38) measure the pH value and act over 

the first CO2 injection point to regulate the pH value. The second inline pH meter (I-606) 

confirms the value after the first injection point and injects more CO2 if the pH was out of 

the desirable range. On the other side the pH of the homogenization tank was 

continuously monitored with pH meter I-607. Figure 105 shows the pH profiles on CO2 

injection process for the pH stabilization. The red line represents the first injection point 

the with the initial pH on the wastewater, the blue line represents the pH of the adjusted 

wastewater after the first injection point and the gray line shows the pH on the 

homogenization tank. 

Figure 104: Flowsheet diagram of the wastewater treatment plant 
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Figure 105: pH profiles on CO2 injection for the pH stabilization. pH-1: first injection point; 

pH- 2: second injection point; pH-H: homogenization tank 

 

Even though the wastewater is usually alkaline, it had a range of pH values from 2 to 

12.8. This was caused by the cleaning agent used at that time on the process. The low 

pH was caused by the usage of HNO3 and the high pH was caused by NaOH. Therefore, 

the control system must evaluate the difference on pH between the inlet and the mixed 

wastewater in the homogenization tank to regulate the CO2 injected, and to avoid to 

wasting CO2 in acid pH values. As is shown Figure 105 the grey line was in the desired 

regulation range (marked by green dotted lines). 

CO2 is a gas, which once dissolved into water produces as weak acid: carbonic acid. 

This substance reacts immediately with alkalis such as NaOH, Na2CO3 and Ca(OH)2 

turning them into neutral carbonates and bicarbonate salts. Carbonic acid is a mild acid 

present in water as ions H+ and HCO3, which are highly reactive. They will immediately 

react with ions responsible for alkalinity of water. 

 

𝐶𝑂2(𝑔) +𝐻2𝑂 ⇄ 𝐻2𝐶𝑂3 (56) 

𝐻2𝐶𝑂3 + 2𝑁𝑎𝑂𝐻 → 𝑁𝑎2𝐶𝑂3 + 2𝐻2𝑂 (57) 

𝐻2𝐶𝑂3 +𝑁𝑎2𝐶𝑂3 → 2𝑁𝑎2𝐻𝐶𝑂3 (58) 

 

There is no secondary pollution introduced into the treated water by salts such as 

chlorides (from HCl) or sulphates (from (H2SO4). The introduction of CO2 will contribute 
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to the chemical equilibrium of water by forming neutral carbonates and bicarbonates. 

Therefore, CO2 is better than strong acids for controlling pH because it forms a mild but 

highly reactive acid which minimizes risks of overt acidification and rapidly responds to 

any variations of the incoming pH or water flowrate. Over or under treatment with mineral 

acids will often result in a pH, which rapidly deviates from the compliance range. Figure 
106 shows the comparative curves of H2SO4 and CO2 for the neutralization of an 

industrial effluent. 

The past few years have seen prices spike for both HCl and H2SO4. Transportation is a 

significant part of the cost of mineral acids (on the order of 50% for HCl), and costs for 

diesel and other fuels are trending upward (this exerts greater pressure on distributor 

pricing). Beyond raw material costs are storage, safety and handling issues. The highly 

corrosive acids can take a toll on storage and processing equipment. Worker safety and 

maintenance procedures are constant concerns. Unexpected pipe or equipment failures 

can cause injuries and quickly drive up operating costs and worker compensation claims. 

 
Figure 106: Comparative Neutralization Curves of an Industrial Effluent 

(Gregg, 2013). 
 

Due to increasing raw material and environmental costs for mineral acids, CO2 

wastewater treatment systems are highly competitive. In many cases, capital and 

operating costs may in fact be lower for an equivalent system, especially when “soft 

costs” are considered. CO2 neutralization does not produce acid-reaction by-products 
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that can foul or corrode equipment internals and create other downstream control 

concerns. The use of CO2 captured in these emission sources has two clear advantages. 

On the one hand, it reduces the CO2 emissions in the atmosphere, and it allows to use 

a compound that in many cases is a by-product of different reactions, or that can even 

be considered as a waste. In addition, as it is a non-toxic, non-flammable and abundant 

compound in nature, it is considered a "green" solvent, that is, environmentally benign, 

compared to other compounds that it replaces in numerous applications (as is the case).  

Another potential to decrease the CO2 cost and to increase the added value is related to 

the carbon credit market. Carbon pricing and the credits system provide incentives for 

businesses to invest in sustainable products and reduce their carbon footprint, thus 

benefiting them financially. The price of carbon credits depends on several factors, 

including its market and economic value, supply and demand, size and type of project 

and more. In this industry, costs fluctuate over small intervals and over continents. 

However, a trend towards higher values of the carbon credit is evident. One substantial 

change was the growth in the European Union Allowance price from €5/tCO2 emitted to 

€13/tCO2 emitted. Future regulations of the European Union ETS in the post-2020 period 

will also increase this values (Pfahler et al., 2018). On October 1, 2018, for example, one 

ton of carbon dioxide equivalent was worth $24.80.  
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5. Conclusions  
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The main outcomes of the work carried out during this thesis are summarized in the 

following bullets:  

• A qualitative fast screening methodology using TGA and DSC analysis was 

developed to select adsorbents that could be applied in TSA for CO2 capture in 

post combustion processes. The performed analysis unveiled the effect of the 

adsorption and desorption steps and the cyclic performance to show their 

potential on a continuous TSA process. The CO2 adsorption capacity, adsorption 

heat and time to reach adsorption equilibrium for ten commercial adsorbents (3 

CMSs and 7 zeolites) were determined using a mixture of 15% CO2/ 85% N2. The 

zeolites 13XBL and 5ABL showed the highest values of CO2 adsorption capacity 

and heat of adsorption over the different studied materials. The productivity for 

CMSs was almost constant in every adsorption-desorption cycle, showing a 

complete and fast regeneration, even working at low temperatures. Two 

strategies for energy efficiency were formulated, the first one using low working 

temperatures in a range of 60ºC for adsorption and 150ºC for desorption, and the 

second one, at high process temperatures in a range of 90ºC to 350ºC.  

This fast screening methodology through TGA/DSC can be considered a useful 

tool on the screening stages of the research of different adsorbents for CO2 

capture, better than the classic physical adsorption measurements 

methodologies of analysis (gravimetric and volumetric adsorption 

measurements), which require longer analysis times and more resources. As 

many operating conditions were considered, the obtained results can serve as a 

basis to guide the cycle design adapted to given separation process targets, 

adsorbent design, adsorbent modification, or adsorbent optimization as a first 

rapid approach.  

 

• A simulation of coupled fluid dynamics and heat exchange using Tdyn® to 

evaluate the potential of the combination of the indirect and direct heat TSA 

process for CO2 capture. For this purpose, simulations were carried out at 

different operating conditions, and the performances were referred to the heat 

flow velocity. A critical factor in the regeneration of the TSA process is the energy 

required to heat up the adsorbent bed to the specified regeneration temperature. 

The best strategy is to heat the packed adsorbent directly with the hot gas stream, 

without using the heating fluid in a concentric tube heat exchanger. Nevertheless, 

the conduction heat exchanger strategy is limited by the poor heat flow capacity 

of the porous adsorbent beds and the gas. The simulation results of the heating 
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exchange on a TSA column suggest that this process had higher energy 

consumptions compared to the VPSA. 

 

• A collection of adsorption equilibrium data of several available commercial 

adsorbents was measured by the gravimetric method. A set of adsorption 

isotherms for pure CO2 and N2 on CMS-I, CMS-II, 4ABL, 5ABL and 13XBL 

materials for pressures ranging from 0 to 10 bara and for temperatures ranging 

from 283 to 343 K was presented. The experimental data were described with 

the Thoth, Sips, and DSL isotherms. The most accurate predictions of the CO2 

loadings in the gas mixture−adsorbent system were attained with the extended 

DSL model. Adsorption equilibria of CO2/N2 mixtures were measured at 293 K, 

313 K, 333 K and 363 K at 15/85 %v/v CO2/N2 gas phase composition and varying 

total pressure in a fixed-bed set-up. Experimental data from mixed-gas 

adsorption were compared to isotherms calculated with the DSL model. 

According to the results presented herein, the DSL model with the binary 

adsorption CO2/N2 predicted the gas-mixture behavior of this 

adsorbate−adsorbent system with acceptable accuracy. Zeolite 13XBL showed 

a better selectivity over the different pressure values having higher values at low 

pressures and low temperatures. The equilibrium data was used to model and 

simulate the competitive CO2/N2 adsorption and to correctly select an appropriate 

adsorbent.  

 

• Design, construction and operation of three experimental laboratory units with a 

single adsorption column for performing VPSA experiments and the development 

of a Vacuum Swing Adsorption process to obtain enriched CO2 product from a 

feed mixture of 15% CO2/ 85% N2 are built up. The control and automatization of 

all the designed units were developed using PLCs. Based on the experimental 

equilibrium and kinetic data collected for the 13XBL and 5ABL zeolite and the 

simulations carried out with Aspen adsorption simulator, an eight step VPSA 

process was designed to obtain high purity CO2. An average purity of 87% with 

recovery of 62% and a productivity of 0.19 gCO2/(gAds٠min) was obtained with the 

13XBL zeolite. For the 5ABL zeolite using the same VPSA cycle, a purity of 88%, 

a recovery of 59% with a productivity of 0.17 gCO2/(gAds٠min) was obtained. In 

general, purity over 95%, recoveries between 20 and 40% with productivity in the 

range of 0.75-1.2 mol/kg∙h are easily obtained with both adsorbents using the 

VPSA unit.  
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• Based on the results obtained, cyclic experiments were performed in the three-

column laboratory unit. A VPSA process including rinse and pressure 

equalization steps was studied for CO2 capture from flue gas to obtain high CO2 

recovery and purity, also checking the power consumption. The CO2 adsorbent 

selected was zeolite 13XBL. The composition of the feed flue gas entering the 

VPSA process was 15.0 vol % CO2, 85.0 vol % N2. Three VPSA runs were 

performed with a feed stop point of 95%. With a three-bed eight-step VPSA 

process, 93% CO2 was obtained with a recovery of 48% from flue gas. The 

measured energy consumption was 2.7 kW٠h/(kgCO2) with a productivity of 0.27 

gCO2/(gAds٠min). The effects of adsorption duration and regeneration step 

pressures were studied.  

 

• The capture of CO2 from a real industrial flue gas was demonstrated on a pilot 

plant scale. In it, 2000 L/min of flue gas were denitrified and dehumidified. Then, 

the conditioned flue gas containing 9 to 11% of CO2 with less than 0.5% relative 

humidity is treated in the VPSA three-columns CO2 capture unit with zeolite 

13XBL designed and developed in this work. 48 to 56% CO2 is recovered from 

the flue gas with 85 to 95% purity in product gas. Using an eight-step VPSA, the 

measured power consumption was 1.48 kW٠h/(kgCO2), with a productivity of 1.18 

gCO2/(gAds٠min).  

 

• The recovered CO2 was used to replace the use of mineral acids in the pH 

regulation stage in an existent wastewater plant. The use of CO2 captured in 

these emission sources has two clear advantages. On the one hand, it reduces 

the CO2 emissions in the atmosphere. On the other hand, it allows to use a 

compound that in many cases is a by-product of different reactions, or that can 

even be considered as a waste. 
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7.1. Experimental data of adsorption isotherms of CO2 and N2 at 283 K, 
298 K, 324 K and 345 K 

 

7.1.1. CMS-I. 

N2 CO2 

Temp. Pres. Absolute 
weight  

Adsorbate 
weight q Pres. Absolute 

weight  
Adsorbate 

weight q 

K Bar g g  mol/kg Bar g g  mol/kg 

284 

0.00 1.193 0.00E+00 0.000 0.00 1.193 0.00E+00 0.000 

0.10 1.195 2.07E-03 0.062 0.10 1.240 4.73E-02 0.901 

0.31 1.198 5.51E-03 0.165 0.30 1.273 8.02E-02 1.529 

0.51 1.201 8.45E-03 0.253 0.50 1.292 9.92E-02 1.891 

0.71 1.204 1.10E-02 0.330 0.71 1.305 1.13E-01 2.148 

1.02 1.207 1.44E-02 0.432 1.01 1.320 1.27E-01 2.426 

1.24 1.210 1.72E-02 0.515 1.19 1.330 1.37E-01 2.609 

1.39 1.211 1.87E-02 0.560 1.40 1.336 1.43E-01 2.732 

1.65 1.214 2.09E-02 0.626 1.61 1.342 1.49E-01 2.841 

1.80 1.215 2.22E-02 0.664 1.82 1.347 1.54E-01 2.934 

2.00 1.217 2.38E-02 0.712 2.02 1.351 1.58E-01 3.012 

2.94 1.223 2.98E-02 0.893 3.05 1.365 1.73E-01 3.288 

5.05 1.232 3.95E-02 1.184 5.10 1.382 1.89E-01 3.605 

7.18 1.239 4.65E-02 1.393 7.10 1.391 1.99E-01 3.784 

10.03 1.246 5.33E-02 1.597 9.92 1.400 2.07E-01 3.944 

299 

0.00 1.185 0.00E+00 0.000 0.00 1.185 0.00E+00 0.000 

0.10 1.186 1.50E-03 0.045 0.10 1.219 3.40E-02 0.652 

0.31 1.189 3.99E-03 0.120 0.30 1.246 6.14E-02 1.177 

0.51 1.191 6.21E-03 0.187 0.51 1.263 7.83E-02 1.502 

0.71 1.193 8.22E-03 0.248 0.71 1.276 9.08E-02 1.741 

1.02 1.196 1.09E-02 0.330 1.01 1.290 1.05E-01 2.007 

1.24 1.198 1.31E-02 0.396 1.20 1.298 1.13E-01 2.166 

1.44 1.200 1.47E-02 0.444 1.40 1.305 1.20E-01 2.296 

1.59 1.201 1.59E-02 0.479 1.61 1.310 1.26E-01 2.408 

1.81 1.202 1.74E-02 0.523 1.80 1.315 1.31E-01 2.504 

2.01 1.204 1.87E-02 0.564 2.03 1.320 1.35E-01 2.596 

3.00 1.209 2.43E-02 0.731 3.04 1.336 1.51E-01 2.904 

5.03 1.218 3.28E-02 0.988 5.09 1.355 1.70E-01 3.266 

7.20 1.224 3.94E-02 1.187 7.09 1.366 1.81E-01 3.473 

10.04 1.231 4.59E-02 1.383 9.91 1.376 1.91E-01 3.657 
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N2 CO2 

Temp. Pres. Absolute 
weight  

Adsorbate 
weight q Pres. Absolute 

weight  
Adsorbate 

weight q 

K Bar g g  mol/kg Bar g g  mol/kg 

324 

0.00 1.193 0.00E+00 0.000 0.00 1.192 0.00E+00 0.000 
0.10 1.193 9.18E-04 0.028 0.10 1.211 1.88E-02 0.358 
0.31 1.195 2.44E-03 0.073 0.31 1.231 3.82E-02 0.728 
0.51 1.196 3.84E-03 0.115 0.51 1.244 5.14E-02 0.979 
0.71 1.198 5.17E-03 0.155 0.71 1.254 6.16E-02 1.175 
1.01 1.199 6.96E-03 0.209 1.01 1.266 7.36E-02 1.403 
1.24 1.201 8.29E-03 0.248 1.20 1.274 8.12E-02 1.547 
1.44 1.202 9.45E-03 0.283 1.40 1.280 8.71E-02 1.661 
1.60 1.203 1.03E-02 0.309 1.61 1.285 9.28E-02 1.768 
1.80 1.204 1.14E-02 0.341 1.80 1.290 9.76E-02 1.859 
2.01 1.205 1.24E-02 0.371 2.00 1.295 1.02E-01 1.946 
3.01 1.209 1.68E-02 0.504 3.02 1.311 1.19E-01 2.268 
5.05 1.217 2.40E-02 0.718 5.10 1.333 1.40E-01 2.671 
7.20 1.222 2.97E-02 0.889 7.10 1.345 1.53E-01 2.909 

10.05 1.228 3.55E-02 1.064 9.93 1.357 1.64E-01 3.127 

345 

0.00 1.192 0.00E+00 0.000 0.00 1.192 0.00E+00 0.000 
0.10 1.193 7.12E-04 0.021 0.10 1.204 1.15E-02 0.220 
0.31 1.194 1.76E-03 0.053 0.31 1.218 2.57E-02 0.490 
0.51 1.195 2.81E-03 0.084 0.51 1.228 3.61E-02 0.687 
0.71 1.196 3.76E-03 0.113 0.71 1.237 4.44E-02 0.847 
1.02 1.198 5.11E-03 0.153 1.01 1.247 5.45E-02 1.040 
1.23 1.198 6.05E-03 0.181 1.20 1.254 6.11E-02 1.165 
1.42 1.199 6.84E-03 0.205 1.40 1.259 6.67E-02 1.271 
1.63 1.200 7.69E-03 0.230 1.61 1.264 7.18E-02 1.368 
1.81 1.201 8.40E-03 0.252 1.81 1.269 7.65E-02 1.457 
2.01 1.202 9.19E-03 0.275 2.01 1.273 8.05E-02 1.534 
3.03 1.205 1.28E-02 0.383 3.04 1.289 9.67E-02 1.844 
4.80 1.210 1.80E-02 0.540 5.10 1.310 1.18E-01 2.244 
7.06 1.216 2.33E-02 0.697 7.09 1.323 1.31E-01 2.493 

10.03 1.221 2.87E-02 0.858 9.92 1.336 1.43E-01 2.729 
 

7.1.2. CMS-III. 
 

N2 CO2 

Temp. Pres. Absolute 
weight  

Adsorbate 
weight q Pres. Absolute 

weight  
Adsorbate 

weight q 

K Bar g g  mol/kg Bar g g  mol/kg 

284 

0.00 1.226 0.00E+00 0.000 0.00 1.226 0.00E+00 0.000 

0.10 1.228 1.79E-03 0.052 0.10 1.264 3.83E-02 0.710 

0.31 1.231 4.45E-03 0.130 0.30 1.293 6.68E-02 1.238 

0.51 1.233 6.89E-03 0.201 0.51 1.309 8.30E-02 1.539 

0.71 1.235 9.15E-03 0.267 0.71 1.321 9.47E-02 1.755 

1.01 1.238 1.21E-02 0.352 1.01 1.333 1.07E-01 1.988 

1.23 1.240 1.41E-02 0.410 1.20 1.341 1.15E-01 2.128 

1.45 1.242 1.58E-02 0.461 1.40 1.347 1.21E-01 2.237 

1.61 1.243 1.71E-02 0.498 1.61 1.352 1.26E-01 2.329 

1.80 1.245 1.85E-02 0.539 1.82 1.356 1.30E-01 2.411 

2.00 1.246 1.99E-02 0.579 2.01 1.360 1.34E-01 2.476 

3.01 1.252 2.54E-02 0.739 3.03 1.373 1.47E-01 2.724 

5.03 1.260 3.35E-02 0.975 5.10 1.388 1.62E-01 3.008 

7.19 1.266 3.96E-02 1.155 7.09 1.397 1.71E-01 3.168 

10.00 1.272 4.55E-02 1.325 9.91 1.405 1.79E-01 3.311 
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N2 CO2 

Temp. Pres. Absolute 
weight  

Adsorbate 
weight q Pres. Absolute 

weight  
Adsorbate 

weight q 

K Bar g g  mol/kg Bar g g  mol/kg 

299 

0.00 1.216 0.00E+00 0.000 0.00 1.216 0.00E+00 0.000 

0.10 1.217 1.17E-03 0.034 0.10 1.242 2.67E-02 0.499 

0.31 1.219 3.24E-03 0.095 0.30 1.266 5.08E-02 0.949 

0.51 1.221 5.12E-03 0.151 0.51 1.281 6.52E-02 1.219 

0.71 1.223 6.85E-03 0.201 0.71 1.292 7.59E-02 1.419 

1.02 1.225 9.16E-03 0.269 1.01 1.303 8.78E-02 1.641 

1.24 1.227 1.12E-02 0.329 1.20 1.311 9.50E-02 1.776 

1.45 1.228 1.26E-02 0.370 1.40 1.316 1.01E-01 1.883 

1.60 1.229 1.36E-02 0.400 1.61 1.321 1.06E-01 1.978 

1.80 1.231 1.48E-02 0.435 1.82 1.326 1.10E-01 2.063 

2.00 1.232 1.60E-02 0.469 1.98 1.329 1.13E-01 2.121 

2.99 1.236 2.07E-02 0.607 2.98 1.343 1.28E-01 2.389 

5.06 1.244 2.81E-02 0.824 5.09 1.361 1.45E-01 2.716 

7.19 1.249 3.36E-02 0.987 7.10 1.371 1.55E-01 2.899 

10.03 1.255 3.91E-02 1.150 9.91 1.379 1.64E-01 3.062 

324 

0.00 1.226 0.00E+00 0.000 0.00 1.226 0.00E+00 0.000 

0.10 1.227 7.96E-04 0.023 0.10 1.241 1.48E-02 0.274 

0.31 1.228 2.10E-03 0.061 0.31 1.257 3.13E-02 0.581 

0.51 1.229 3.40E-03 0.099 0.51 1.268 4.25E-02 0.788 

0.71 1.230 4.52E-03 0.132 0.71 1.277 5.12E-02 0.949 

1.02 1.232 6.10E-03 0.178 1.02 1.287 6.14E-02 1.139 

1.24 1.233 7.35E-03 0.214 1.21 1.294 6.79E-02 1.260 

1.40 1.234 8.11E-03 0.236 1.41 1.299 7.28E-02 1.350 

1.63 1.235 9.18E-03 0.268 1.61 1.303 7.75E-02 1.438 

1.81 1.236 9.99E-03 0.291 1.82 1.308 8.19E-02 1.518 

2.00 1.237 1.08E-02 0.315 2.03 1.312 8.59E-02 1.592 

2.91 1.240 1.42E-02 0.414 3.04 1.326 1.00E-01 1.863 

5.04 1.246 2.05E-02 0.598 5.10 1.345 1.19E-01 2.202 

7.21 1.251 2.54E-02 0.739 7.09 1.355 1.30E-01 2.404 

10.04 1.256 3.02E-02 0.881 9.93 1.366 1.40E-01 2.594 

345 

0.00 1.216 0.00E+00 0.000 0.00 1.216 0.00E+00 0.000 

0.10 1.216 5.73E-04 0.017 0.10 1.225 9.26E-03 0.173 

0.31 1.217 1.46E-03 0.043 0.31 1.237 2.10E-02 0.392 

0.51 1.218 2.30E-03 0.068 0.51 1.245 2.97E-02 0.556 

0.71 1.219 3.25E-03 0.095 0.71 1.252 3.68E-02 0.687 

1.02 1.220 4.39E-03 0.129 1.02 1.261 4.53E-02 0.847 

1.24 1.221 5.30E-03 0.156 1.21 1.266 5.09E-02 0.951 

1.44 1.222 6.00E-03 0.176 1.40 1.271 5.53E-02 1.035 

1.60 1.222 6.55E-03 0.193 1.61 1.275 5.99E-02 1.119 

1.81 1.223 7.23E-03 0.212 1.82 1.279 6.38E-02 1.193 

2.00 1.223 7.87E-03 0.231 2.04 1.283 6.76E-02 1.263 

3.01 1.226 1.08E-02 0.318 2.95 1.296 8.01E-02 1.497 

5.05 1.231 1.58E-02 0.464 5.11 1.315 9.92E-02 1.855 

7.06 1.235 1.97E-02 0.578 7.11 1.326 1.11E-01 2.066 

9.62 1.239 2.36E-02 0.693 9.92 1.337 1.21E-01 2.268 
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7.1.3. Zeolite 4ABL. 
 

N2 CO2 

Temp. Pres. Absolute 
weight  

Adsorbate 
weight q Pres. Absolute 

weight  
Adsorbate 

weight q 

K Bar g g  mol/kg Bar g g  mol/kg 

284 

0.00 1.105 0.00E+00 0.000 0.00 1.104 0.00E+00 0.000 

0.10 1.107 2.07E-03 0.067 0.12 1.294 1.90E-01 3.902 

0.31 1.110 5.82E-03 0.188 0.30 1.315 2.11E-01 4.334 

0.51 1.114 9.35E-03 0.302 0.51 1.327 2.22E-01 4.573 

0.71 1.117 1.27E-02 0.410 0.71 1.335 2.30E-01 4.737 

1.02 1.122 1.73E-02 0.560 1.02 1.343 2.39E-01 4.910 

1.24 1.126 2.13E-02 0.689 1.20 1.348 2.43E-01 5.008 

1.44 1.129 2.42E-02 0.783 1.40 1.352 2.47E-01 5.090 

1.59 1.131 2.62E-02 0.847 1.60 1.355 2.51E-01 5.159 

1.79 1.133 2.88E-02 0.930 1.82 1.358 2.54E-01 5.226 

2.00 1.136 3.13E-02 1.011 2.00 1.361 2.57E-01 5.279 

2.97 1.146 4.12E-02 1.332 3.03 1.371 2.67E-01 5.486 

5.04 1.161 5.61E-02 1.814 5.07 1.384 2.80E-01 5.752 

7.18 1.171 6.66E-02 2.153 7.07 1.392 2.88E-01 5.923 

10.02 1.181 7.60E-02 2.458 9.89 1.400 2.96E-01 6.087 

299 

0.00 1.171 0.00E+00 0.000 0.00 1.170 0.00E+00 0.000 

0.10 1.172 1.49E-03 0.086 0.12 1.347 1.77E-01 3.614 

0.31 1.175 4.00E-03 0.172 0.30 1.366 1.96E-01 3.976 

0.51 1.177 6.32E-03 0.253 0.51 1.377 2.07E-01 4.194 

0.71 1.179 8.65E-03 0.324 0.71 1.385 2.14E-01 4.344 

1.02 1.183 1.19E-02 0.424 1.01 1.393 2.23E-01 4.503 

1.24 1.185 1.42E-02 0.494 1.20 1.398 2.27E-01 4.597 

1.44 1.187 1.64E-02 0.560 1.41 1.402 2.31E-01 4.672 

1.60 1.189 1.80E-02 0.609 1.60 1.405 2.35E-01 4.736 

1.80 1.191 1.99E-02 0.668 1.82 1.408 2.38E-01 4.795 

2.01 1.193 2.19E-02 0.727 2.01 1.411 2.40E-01 4.844 

3.00 1.201 3.01E-02 0.979 3.07 1.421 2.50E-01 5.037 

5.06 1.214 4.34E-02 1.384 5.09 1.433 2.62E-01 5.273 

7.19 1.224 5.33E-02 1.686 7.08 1.441 2.70E-01 5.425 

10.04 1.234 6.29E-02 1.980 9.90 1.448 2.78E-01 5.574 

324 

0.00 1.105 0.00E+00 0.000 0.00 1.104 0.00E+00 0.000 

0.10 1.105 8.42E-04 0.027 0.10 1.256 1.51E-01 3.112 

0.31 1.107 2.31E-03 0.075 0.30 1.278 1.73E-01 3.566 

0.51 1.108 3.73E-03 0.121 0.51 1.289 1.84E-01 3.792 

0.71 1.110 5.12E-03 0.166 0.71 1.296 1.92E-01 3.947 

1.02 1.112 7.19E-03 0.232 1.02 1.304 2.00E-01 4.113 

1.24 1.114 8.95E-03 0.290 1.20 1.309 2.05E-01 4.213 

1.44 1.115 1.03E-02 0.333 1.40 1.313 2.08E-01 4.290 

1.60 1.116 1.13E-02 0.365 1.61 1.316 2.12E-01 4.360 

1.80 1.117 1.26E-02 0.407 1.82 1.319 2.15E-01 4.424 

2.01 1.118 1.38E-02 0.447 2.02 1.322 2.18E-01 4.480 

3.00 1.124 1.95E-02 0.630 3.04 1.332 2.27E-01 4.681 

5.05 1.134 2.95E-02 0.955 5.08 1.344 2.40E-01 4.929 

7.20 1.142 3.79E-02 1.226 7.08 1.352 2.47E-01 5.085 

10.02 1.151 4.65E-02 1.502 9.89 1.359 2.54E-01 5.235 
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N2 CO2 

Temp. Pres. Absolute 
weight  

Adsorbate 
weight q Pres. Absolute 

weight  
Adsorbate 

weight q 

K Bar g g  mol/kg Bar g g  mol/kg 

345 

0.00 1.105 0.00E+00 0.000 0.00 1.105 0.00E+00 0.000 

0.10 1.106 6.63E-04 0.021 0.12 1.237 1.32E-01 2.719 

0.31 1.107 1.73E-03 0.056 0.30 1.259 1.54E-01 3.171 

0.51 1.108 2.71E-03 0.088 0.51 1.272 1.67E-01 3.433 

0.71 1.109 3.68E-03 0.119 0.71 1.280 1.75E-01 3.600 

1.02 1.110 5.08E-03 0.164 1.01 1.288 1.83E-01 3.772 

1.23 1.111 6.05E-03 0.195 1.21 1.293 1.88E-01 3.877 

1.44 1.112 7.02E-03 0.227 1.40 1.297 1.92E-01 3.956 

1.61 1.113 7.78E-03 0.251 1.61 1.301 1.96E-01 4.029 

1.80 1.114 8.71E-03 0.281 1.82 1.304 1.99E-01 4.094 

2.00 1.114 9.57E-03 0.309 2.03 1.306 2.02E-01 4.151 

3.03 1.119 1.40E-02 0.452 3.03 1.316 2.11E-01 4.350 

5.05 1.126 2.16E-02 0.698 5.11 1.328 2.24E-01 4.600 

7.19 1.133 2.83E-02 0.915 7.11 1.336 2.31E-01 4.755 

10.04 1.141 3.56E-02 1.152 9.94 1.343 2.38E-01 4.904 

 

7.1.4. Zeolite 5ABL. 
 

N2 CO2 

Temp. Pres. Absolute 
weight  

Adsorbate 
weight q Pres. Absolute 

weight  
Adsorbate 

weight q 

K Bar g g  mol/kg Bar g g  mol/kg 

284 

0.00 1.244 0.00E+00 0.000 0.00 1.244 0.00E+00 0.000 

0.10 1.248 4.16E-03 0.119 0.10 1.479 2.35E-01 4.286 

0.31 1.254 1.00E-02 0.288 0.30 1.507 2.63E-01 4.809 

0.51 1.259 1.49E-02 0.428 0.51 1.516 2.72E-01 4.979 

0.71 1.263 1.91E-02 0.549 0.71 1.522 2.78E-01 5.080 

1.02 1.269 2.46E-02 0.707 1.02 1.528 2.84E-01 5.183 

1.24 1.272 2.82E-02 0.810 1.20 1.531 2.87E-01 5.243 

1.45 1.275 3.15E-02 0.905 1.40 1.533 2.89E-01 5.289 

1.61 1.278 3.38E-02 0.970 1.60 1.536 2.92E-01 5.328 

1.80 1.280 3.64E-02 1.046 1.81 1.537 2.94E-01 5.363 

2.01 1.283 3.91E-02 1.123 2.03 1.539 2.95E-01 5.397 

3.11 1.293 4.91E-02 1.411 3.04 1.546 3.02E-01 5.512 

5.03 1.309 6.51E-02 1.869 5.09 1.554 3.10E-01 5.663 

7.19 1.321 7.66E-02 2.198 7.10 1.559 3.15E-01 5.762 

10.02 1.331 8.75E-02 2.512 9.92 1.565 3.21E-01 5.863 
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N2 CO2 

Temp. Pres. Absolute 
weight  

Adsorbate 
weight q Pres. Absolute 

weight  
Adsorbate 

weight q 

K Bar g g  mol/kg Bar g g  mol/kg 

299 

0.00 1.245 0.00E+00 0.000 0.00 1.244 0.00E+00 0.000 

0.10 1.248 2.48E-03 0.071 0.10 1.455 2.11E-01 3.850 

0.31 1.252 6.50E-03 0.187 0.30 1.492 2.48E-01 4.523 

0.51 1.255 1.00E-02 0.287 0.51 1.503 2.59E-01 4.732 

0.71 1.258 1.31E-02 0.377 0.71 1.510 2.65E-01 4.850 

1.02 1.262 1.74E-02 0.498 1.02 1.516 2.72E-01 4.966 

1.24 1.266 2.08E-02 0.598 1.20 1.520 2.75E-01 5.031 

1.44 1.268 2.34E-02 0.671 1.40 1.522 2.78E-01 5.080 

1.60 1.270 2.52E-02 0.722 1.61 1.525 2.80E-01 5.124 

1.79 1.272 2.74E-02 0.786 1.81 1.527 2.83E-01 5.161 

2.01 1.275 2.96E-02 0.849 2.00 1.528 2.84E-01 5.193 

2.99 1.284 3.85E-02 1.104 3.04 1.535 2.91E-01 5.317 

5.04 1.297 5.23E-02 1.501 5.10 1.543 2.99E-01 5.469 

7.19 1.308 6.29E-02 1.805 7.11 1.549 3.05E-01 5.564 

10.02 1.318 7.33E-02 2.104 9.64 1.553 3.09E-01 5.650 

324 

0.00 1.244 0.00E+00 0.000 0.00 1.244 0.00E+00 0.000 

0.10 1.246 1.55E-03 0.044 0.12 1.413 1.69E-01 3.079 

0.31 1.248 3.88E-03 0.111 0.29 1.455 2.11E-01 3.852 

0.51 1.250 6.02E-03 0.173 0.50 1.474 2.30E-01 4.205 

0.71 1.252 7.99E-03 0.229 0.71 1.485 2.41E-01 4.395 

1.01 1.255 1.07E-02 0.308 1.01 1.494 2.50E-01 4.561 

1.24 1.257 1.27E-02 0.363 1.21 1.499 2.55E-01 4.653 

1.44 1.258 1.44E-02 0.413 1.40 1.502 2.58E-01 4.714 

1.65 1.260 1.61E-02 0.463 1.61 1.505 2.61E-01 4.771 

1.80 1.261 1.73E-02 0.496 1.81 1.508 2.64E-01 4.820 

2.00 1.263 1.88E-02 0.539 2.02 1.510 2.66E-01 4.863 

3.00 1.269 2.55E-02 0.732 3.02 1.518 2.74E-01 5.006 

5.05 1.281 3.68E-02 1.057 5.10 1.528 2.83E-01 5.177 

7.19 1.290 4.58E-02 1.316 7.11 1.533 2.89E-01 5.277 

10.03 1.299 5.52E-02 1.584 9.92 1.538 2.94E-01 5.370 

345 

0.00 1.236 0.00E+00 0.000 0.00 1.221 0.00E+00 0.000 

0.10 1.237 1.05E-03 0.030 0.12 1.344 1.23E-01 2.289 

0.31 1.239 2.57E-03 0.074 0.29 1.388 1.66E-01 3.096 

0.51 1.240 4.04E-03 0.117 0.50 1.416 1.95E-01 3.632 

0.71 1.242 5.40E-03 0.156 0.70 1.433 2.12E-01 3.941 

0.99 1.243 7.17E-03 0.207 1.01 1.447 2.26E-01 4.203 

1.24 1.245 8.60E-03 0.248 1.21 1.455 2.34E-01 4.350 

1.44 1.246 9.77E-03 0.282 1.40 1.460 2.39E-01 4.441 

1.61 1.247 1.08E-02 0.311 1.60 1.464 2.43E-01 4.522 

1.81 1.248 1.19E-02 0.344 1.82 1.468 2.47E-01 4.592 

2.01 1.249 1.32E-02 0.380 2.02 1.471 2.50E-01 4.647 

3.02 1.255 1.85E-02 0.534 2.90 1.480 2.59E-01 4.811 

5.04 1.264 2.75E-02 0.794 5.08 1.492 2.70E-01 5.030 

7.20 1.272 3.56E-02 1.028 7.07 1.498 2.77E-01 5.146 

10.02 1.280 4.38E-02 1.265 9.89 1.503 2.82E-01 5.252 
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7.1.5. Zeolite 13XBL 
 

N2 CO2 

Temp. Pres. Absolute 
weight  

Adsorbate 
weight q Pres. Absolute 

weight  
Adsorbate 

weight q 

K Bar g g  mol/kg Bar g g  mol/kg 

284 

0.00 1.279 0.00E+00 0.000 0.00 1.279 0.00E+00 0.000 

0.10 1.282 2.51E-03 0.070 0.10 1.524 2.45E-01 4.351 

0.31 1.286 7.07E-03 0.197 0.35 1.585 3.06E-01 5.434 

0.51 1.291 1.13E-02 0.315 0.50 1.596 3.17E-01 5.631 

0.71 1.294 1.52E-02 0.425 0.71 1.607 3.28E-01 5.835 

1.02 1.300 2.07E-02 0.579 1.02 1.619 3.40E-01 6.034 

1.23 1.305 2.57E-02 0.718 1.20 1.625 3.46E-01 6.146 

1.45 1.308 2.92E-02 0.814 1.40 1.630 3.51E-01 6.232 

1.60 1.311 3.14E-02 0.878 1.61 1.634 3.55E-01 6.307 

1.80 1.314 3.44E-02 0.961 1.82 1.638 3.59E-01 6.372 

2.01 1.317 3.73E-02 1.041 2.02 1.641 3.62E-01 6.427 

2.97 1.328 4.90E-02 1.367 3.05 1.651 3.72E-01 6.618 

5.04 1.347 6.75E-02 1.883 5.09 1.664 3.85E-01 6.849 

7.18 1.360 8.11E-02 2.263 7.10 1.672 3.93E-01 6.989 

10.02 1.373 9.40E-02 2.625 9.91 1.679 4.00E-01 7.116 

299 

0.00 1.279 0.00E+00 0.000 0.00 1.279 0.00E+00 0.000 

0.10 1.281 1.78E-03 0.050 0.11 1.498 2.19E-01 3.892 

0.31 1.284 4.93E-03 0.138 0.29 1.546 2.67E-01 4.743 

0.51 1.287 7.91E-03 0.221 0.50 1.569 2.90E-01 5.146 

0.71 1.290 1.08E-02 0.300 0.71 1.582 3.03E-01 5.379 

1.02 1.294 1.48E-02 0.412 1.01 1.594 3.15E-01 5.601 

1.24 1.298 1.86E-02 0.518 1.21 1.602 3.23E-01 5.732 

1.44 1.300 2.11E-02 0.589 1.41 1.607 3.28E-01 5.826 

1.59 1.302 2.29E-02 0.640 1.60 1.611 3.32E-01 5.902 

1.80 1.305 2.53E-02 0.707 1.81 1.615 3.36E-01 5.976 

2.01 1.307 2.76E-02 0.770 2.02 1.619 3.40E-01 6.039 

2.98 1.317 3.73E-02 1.041 3.03 1.631 3.52E-01 6.246 

5.03 1.332 5.32E-02 1.485 5.11 1.645 3.66E-01 6.505 

7.19 1.345 6.58E-02 1.837 7.09 1.654 3.75E-01 6.657 

10.00 1.357 7.82E-02 2.183 9.91 1.662 3.83E-01 6.798 

324 

0.00 1.279 0.00E+00 0.000 0.00 1.279 0.00E+00 0.000 

0.10 1.280 9.61E-04 0.027 0.13 1.456 1.77E-01 3.143 

0.31 1.282 2.80E-03 0.078 0.30 1.496 2.17E-01 3.850 

0.51 1.284 4.57E-03 0.128 0.50 1.521 2.42E-01 4.298 

0.71 1.285 6.29E-03 0.176 0.71 1.537 2.58E-01 4.588 

1.02 1.288 8.79E-03 0.245 1.01 1.553 2.74E-01 4.864 

1.24 1.290 1.12E-02 0.314 1.20 1.562 2.83E-01 5.025 

1.45 1.292 1.29E-02 0.360 1.40 1.568 2.89E-01 5.139 

1.59 1.293 1.40E-02 0.392 1.61 1.574 2.95E-01 5.239 

1.80 1.295 1.56E-02 0.436 1.80 1.578 3.00E-01 5.323 

2.01 1.296 1.71E-02 0.478 2.00 1.583 3.04E-01 5.400 

3.00 1.303 2.40E-02 0.669 3.02 1.597 3.19E-01 5.660 

5.04 1.315 3.60E-02 1.006 5.09 1.615 3.36E-01 5.964 

7.20 1.325 4.64E-02 1.296 7.09 1.625 3.46E-01 6.143 

10.02 1.336 5.72E-02 1.597 9.92 1.634 3.55E-01 6.309 
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N2 CO2 

Temp. Pres. Absolute 
weight  

Adsorbate 
weight q Pres. Absolute 

weight  
Adsorbate 

weight q 

K Bar g g  mol/kg Bar g g  mol/kg 

345 

0.00 1.273 0.00E+00 0.000 0.00 1.279 0.00E+00 0.000 

0.10 1.274 7.71E-04 0.022 0.10 1.413 1.34E-01 2.388 

0.31 1.276 2.02E-03 0.057 0.30 1.457 1.78E-01 3.165 

0.51 1.277 3.23E-03 0.091 0.50 1.483 2.04E-01 3.620 

0.71 1.278 4.42E-03 0.124 0.71 1.500 2.21E-01 3.931 

1.02 1.280 6.22E-03 0.174 1.01 1.518 2.39E-01 4.242 

1.24 1.281 7.45E-03 0.209 1.21 1.528 2.49E-01 4.431 

1.44 1.282 8.64E-03 0.242 1.40 1.536 2.57E-01 4.563 

1.61 1.283 9.59E-03 0.269 1.60 1.542 2.63E-01 4.681 

1.80 1.284 1.06E-02 0.298 1.82 1.549 2.70E-01 4.792 

2.01 1.285 1.17E-02 0.329 2.01 1.553 2.75E-01 4.878 

3.01 1.291 1.70E-02 0.477 3.06 1.571 2.92E-01 5.191 

5.04 1.300 2.64E-02 0.740 5.10 1.591 3.12E-01 5.539 

7.20 1.308 3.49E-02 0.978 7.10 1.602 3.23E-01 5.745 

10.03 1.318 4.41E-02 1.237 9.89 1.613 3.34E-01 5.933 

 

7.2. Results of fixed-bed experiments 
 

7.2.1. Relation of the statistical variables with process variables. 
Statistical variable Process variable Description 

A QF Feed flowrates 

B QR Rinse flowrates 

C QV Vacuum flowrates 

D PV Vacuum pressure 

E SRN Rinse breack point 

F SFD Feed breack point 

G SPR Purge breack point 
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7.2.2. VPSA fixed-bed results for Zeolite 5ABL 

Ex
p

. CO2 rec. CO2 Pur. Prod. Energy C. 

% % gCO2/(gads٠min) kWh/kgCO2 

1 43.0 83.0 0.14 3.7 
2 48.0 87.0 0.17 3.6 
3 39.0 79.0 0.13 3.5 
4 48.0 67.0 0.10 8.7 
5 47.0 84.0 0.14 3.5 
6 41.0 67.0 0.09 7.0 
7 50.0 87.0 0.15 3.4 
8 53.0 93.0 0.15 3.1 
9 72.0 85.0 0.19 3.9 

10 74.0 98.0 0.24 2.7 
11 73.0 97.0 0.22 2.6 
12 70.0 96.0 0.24 2.7 
13 81.0 98.0 0.26 1.4 
14 69.0 96.0 0.24 1.7 
15 69.0 94.0 0.16 4.0 
16 72.0 94.0 0.19 3.9 

 

7.2.3. VPSA fixed-bed results for Zeolite 13XBL 
 

 E
xp

. CO2 rec. CO2 Pur. Prod. Energy C. 

% % gCO2/(gads٠min) kWh/kgCO2 

1 43.7 95.5 0.14 2.0 
2 60.9 96.0 0.25 7.3 
3 53.6 93.8 0.12 1.8 
4 38.7 63.7 0.17 8.1 
5 68.7 93.8 0.18 2.4 
6 39.1 93.3 0.15 2.8 
7 53.6 93.7 0.22 5.6 
8 35.1 67.8 0.06 4.2 
9 88.5 96.9 0.35 3.2 

10 58.5 98.0 0.07 0.4 
11 77.8 99.5 0.29 1.9 
12 87.4 97.7 0.28 3.9 
13 61.5 98.4 0.23 1.2 
14 75.5 99.3 0.08 0.5 
15 63.3 98.4 0.24 1.8 
16 86.6 83.8 0.31 2.5 
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7.3. Results of fixed-bed simulation experiments 
 

Exp Qfd Qrn sRN sFD sPR PT Purity Recovery Productivity 

1 -1 -1 -1 -1 -1 -1 96.3% 81.9% 0.16 

2 1 -1 -1 -1 -1 1 94.5% 77.1% 0.28 

3 -1 1 -1 -1 -1 1 93.1% 74.5% 0.24 

4 1 1 -1 -1 -1 -1 94.9% 79.8% 0.26 

5 -1 -1 1 -1 -1 1 94.9% 77.0% 0.18 

6 1 -1 1 -1 -1 -1 96.7% 83.9% 0.24 

7 -1 1 1 -1 -1 -1 95.1% 78.3% 0.18 

8 1 1 1 -1 -1 1 93.8% 75.6% 0.36 

9 -1 -1 -1 1 -1 1 94.3% 75.6% 0.19 

10 1 -1 -1 1 -1 -1 95.9% 75.7% 0.27 

11 -1 1 -1 1 -1 -1 94.5% 72.2% 0.24 

12 1 1 -1 1 -1 1 93.1% 73.9% 0.33 

13 -1 -1 1 1 -1 -1 96.0% 75.4% 0.18 

14 1 -1 1 1 -1 1 94.9% 76.3% 0.27 

15 -1 1 1 1 -1 1 93.6% 74.1% 0.22 

16 1 1 1 1 -1 -1 94.9% 73.3% 0.32 

17 -1 -1 -1 -1 1 1 94.4% 78.4% 0.18 

18 1 -1 -1 -1 1 -1 96.6% 90.7% 0.15 

19 -1 1 -1 -1 1 -1 94.8% 80.9% 0.17 

20 1 1 -1 -1 1 1 93.2% 80.0% 0.31 

21 -1 -1 1 -1 1 -1 96.7% 85.3% 0.11 

22 1 -1 1 -1 1 1 95.0% 78.6% 0.26 

23 -1 1 1 -1 1 1 93.8% 75.5% 0.23 

24 1 1 1 -1 1 -1 95.3% 87.0% 0.20 

25 -1 -1 -1 1 1 -1 95.8% 75.4% 0.19 

26 1 -1 -1 1 1 1 94.4% 76.5% 0.26 

27 -1 1 -1 1 1 1 93.2% 77.9% 0.23 

28 1 1 -1 1 1 -1 94.4% 73.8% 0.28 

29 -1 -1 1 1 1 1 94.7% 76.2% 0.20 

30 1 -1 1 1 1 -1 96.3% 77.1% 0.26 

31 -1 1 1 1 1 -1 95.0% 73.7% 0.22 

32 1 1 1 1 1 1 93.6% 75.1% 0.32 
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Exp Qfd Qrn sRN sFD sPR PT Purity Recovery Productivity 

33 1 -1 -1 -1 -1 -1 96.4% 83.8% 0.23 

34 -1 1 -1 -1 -1 -1 94.7% 77.9% 0.22 

35 -1 -1 1 -1 -1 -1 96.5% 81.9% 0.16 

36 1 1 1 -1 -1 -1 95.3% 81.0% 0.26 

37 -1 -1 -1 1 -1 -1 95.7% 74.5% 0.21 

38 1 1 -1 1 -1 -1 94.5% 73.0% 0.31 

39 1 -1 1 1 -1 -1 96.2% 76.1% 0.27 

40 -1 1 1 1 -1 -1 95.1% 73.2% 0.22 

41 -1 -1 -1 -1 1 -1 96.4% 84.8% 0.14 

42 1 1 -1 -1 1 -1 95.0% 86.2% 0.21 

43 1 -1 1 -1 1 -1 96.8% 91.2% 0.11 

44 -1 1 1 -1 1 -1 95.3% 81.4% 0.17 

45 1 -1 -1 1 1 -1 95.9% 76.5% 0.28 

46 -1 1 -1 1 1 -1 94.6% 73.0% 0.23 

47 -1 -1 1 1 1 -1 96.1% 75.7% 0.18 

48 1 1 1 1 1 -1 94.9% 74.1% 0.30 

49 -1 -1 -1 -1 -1 1 94.4% 76.5% 0.18 

50 1 1 -1 -1 -1 1 93.3% 75.0% 0.30 

51 1 -1 1 -1 -1 1 94.9% 77.5% 0.25 

52 -1 1 1 -1 -1 1 93.8% 75.2% 0.24 

53 1 -1 -1 1 -1 1 94.4% 76.0% 0.28 

54 -1 1 -1 1 -1 1 93.2% 73.8% 0.23 

55 -1 -1 1 1 -1 1 94.7% 76.0% 0.20 

56 1 1 1 1 -1 1 93.5% 74.4% 0.33 

57 1 -1 -1 -1 1 1 94.6% 78.0% 0.22 

58 -1 1 -1 -1 1 1 93.1% 74.8% 0.21 

59 -1 -1 1 -1 1 1 94.9% 77.3% 0.19 

60 1 1 1 -1 1 1 93.7% 76.4% 0.31 

61 -1 -1 -1 1 1 1 94.3% 76.0% 0.19 

62 1 1 -1 1 1 1 93.1% 74.4% 0.33 

63 1 -1 1 1 1 1 94.9% 76.9% 0.29 

64 -1 1 1 1 1 1 93.6% 74.5% 0.22 
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