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"George," said Fred, "I think we’ve outgrown full-time education."

"Yeah, I’ve been feeling that way myself," said George lightly.

"Time to test our talents in the real world, d’you reckon?" asked Fred.

"Definitely," said George.

— J.K. Rowling, Harry Potter and the Order of the Phoenix (2003)





ABSTRACT

Smart city logistics are a crucial factor in the creation of efficient and sustainable
urban transportation systems. Among other factors, they focus on the incorporation
of real-time data and the creation of collaborative business models in urban freight

transportation concepts, whilst considering rising urban population numbers, increasingly
complex customer demands, and highly competitive markets. This allows transportation
planners to minimize the monetary and environmental costs of freight transportation in
metropolitan areas. Many decision-making problems faced in this context can be formulated
as combinatorial optimization problems. While different exact solving approaches exist to find
optimal solutions to such problem settings, their complexity and size in addition to the need
for instantaneous decision-making regarding vehicle routing, scheduling, or facility location,
make such methodologies inapplicable in practice. Due to their ability to find pseudo-optimal
solutions in almost real-time, metaheuristic algorithms have received increasing attention
from researchers and practitioners as efficient and reliable alternatives in solving numerous
optimization problems in the creation of smart city logistics.

Despite their success, traditional metaheuristic techniques fail to fully represent the
complexity of most realistic systems. By assuming deterministic problem inputs and con-
straints, the uncertainty and dynamism experienced in urban transportation scenarios are
left unaccounted for. Simheuristic frameworks try to overcome these drawbacks by integrat-
ing any type of simulation into metaheuristic driven processes to account for the inherent
uncertainty in most real-life applications. This thesis defines and investigates the use of
simheuristics as a method of first resort for solving optimization problems arising in smart
city logistics concepts. Simheuristic algorithms are applied to a range of complex problem
settings including urban waste collection, integrated supply chain design problems, and inno-
vative transportation models related to horizontal collaboration among supply chain partners.
In addition to methodological discussions and the comparison of developed algorithms to
state-of-the-art benchmarks found in the academic literature, the applicability and efficiency
of simheuristic frameworks in different large-scaled case studies are shown.

i





RESUMEN

Las actividades de logística en ciudades inteligentes constituyen un factor crucial en la
creación de sistemas de transporte urbano eficientes y sostenibles. Entre otros factores,
estos sistemas se centran en la incorporación de datos en tiempo real y la creación

de modelos empresariales colaborativos en transporte urbano de mercancías, al tiempo que
considera el aumento del número de habitantes en las ciudades, la creciente complejidad de
las demandas de los clientes y los mercados altamente competitivos. Esto permite minimizar
los costes monetarios y ambientales del transporte de mercancías en las áreas metropolitanas.
Muchos de los problemas de toma de decisiones en este contexto se pueden formular como
problemas de optimización combinatoria. Si bien existen diferentes enfoques de resolución
exacta para encontrar soluciones óptimas a tales problemas, su complejidad y tamaño,
además de la necesidad de tomar decisiones instantáneas con respecto al enrutamiento,
la programación o la ubicación de las instalaciones, hacen que dichas metodologías sean
inaplicables en la práctica. Debido a su capacidad para encontrar soluciones pseudo-óptimas
casi en tiempo real, los algoritmos metaheurísticos están recibiendo cada vez más atención
por parte de investigadores y profesionales como alternativas eficientes y fiables para resolver
numerosos problemas de optimización en la creación de la logística de ciudades inteligentes.

A pesar de su éxito, las técnicas metaheurísticas tradicionales no representan comple-
tamente la complejidad de los sistemas más realistas. Al asumir insumos y restricciones de
problemas deterministas, se ignora la incertidumbre y el dinamismo experimentados en los
escenarios de transporte urbano. Los algoritmos simheurísticos persiguen superar estos in-
convenientes integrando cualquier tipo de simulación en procesos basados en metaheurísticas
con el fin de considerar la incertidumbre inherente en las mayoría de las aplicaciones de la
vida real. Esta tesis define e investiga el uso de las simheurísticas como método adecuado
para resolver problemas de optimización que surgen en la logística de ciudades inteligentes.
Se aplican algoritmos simheurísticos a una variedad de problemas complejos, incluyendo la
recolección de residuos urbanos, problemas de diseño de la cadena de suministro integrada
y modelos de transporte innovadores relacionados con la colaboración horizontal entre los
socios de la cadena de suministro. Además de las discusiones metodológicas y la comparación
de los algoritmos desarrollados con los de referencia de la literatura académica, se muestra la
aplicabilidad y la eficiencia de los algoritmos simheurísticos en diferentes estudios de casos a
gran escala.
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RESUM

La logística urbana intel·ligent constitueix un factor crucial en la creació de sistemes
de transport urbà eficients i sostenibles. Entre altres factors, aquests sistemes es
centren en la incorporació de dades en temps real i en la creació de models de negoci

col·laboratius en el transport urbà de mercaderies, tot considerant l’augment dels habitants
en les ciutats, la creixent complexitat de les demandes dels clients i els mercats altament
competitius. Això permet als que planifiquen el transport minimitzar els costos monetaris
i ambientals del transport de mercaderies a les àrees metropolitanes. Molts problemes de
presa de decisions en aquest context es poden formular com a problemes d’optimització
combinatòria. Tot i que existeixen diferents enfocaments de resolució exacta per trobar
solucions òptimes a aquests problemes, la seva complexitat i grandària, a més de la necessitat
de prendre decisions instantànies pel que fa a l’enrutament de vehicles, la programació o
la ubicació d’ instal·lacions, fan que aquestes metodologies no s’apliquin a la pràctica. A
causa de la seva capacitat per trobar solucions pseudo-òptimes en gairebé temps real, els
algorismes metaheurístics estan rebent una atenció creixent dels investigadors i professionals
com alternatives eficients i fiables per la resolució de nombrosos problemes d’optimització en
la creació de la logística de les ciutats intel·ligents.

Malgrat el seu èxit, les tècniques metaheurístiques tradicionals no representen plenament
la complexitat dels sistemes més realistes. En assumir inputs i restriccions de problemes
deterministes, la incertesa i el dinamisme experimentats en els escenaris de transport urbà
queden sense explicar. Els algorismes simheurístics persegueixen superar aquests inconve-
nients mitjançant la integració de qualsevol tipus de simulació en processos metaheurístics
per explicar la incertesa inherent a la majoria de les aplicacions de la vida real. Aquesta
tesi defineix i investiga l’ús d’algorismes simheurístics com el mètode més adequat per
resoldre problemes d’optimització derivats de la logística de les ciutats. Alguns algorismes
simheurístics s’apliquen a una sèrie de problemes complexos, com ara la recollida de residus
urbans, els problemes de disseny de la cadena de subministrament integrada i els models de
transport innovadors relacionats amb la col·laboració horitzontal entre els socis de la cadena
de subministrament. A més de les discussions metodològiques i la comparació d’algorismes de-
senvolupats amb els referents de la literatura acadèmica, es mostra l’aplicabilitat i l’eficiència
dels algorismes simheurístics en diferents casos de gran escala.
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INTRODUCTION

1.1 Motivation

The Law of Caesar on Municipalities —dating back to the year 44 B.C.— includes the first

known urban freight transport regulation. It states that "on the roads which are in the city of

Rome or will be within the area where will be lived joined tightly, no one is allowed after next

January 1st to drive or lead a carriage during the day after sunrise and before the tenth hour

of the day (...)" (Quak 2008).

While this shows that the creation of efficient urban transportation systems is not a recent

phenomenon, the challenges faced by modern day city planners are unprecedented. More than

ever, modern cities are the main global drivers of economic, social, and cultural development

(Keivani 2010). This trend is undermined by growing population numbers in metropolitan

areas around the world. As highlighted in Figure 1.1, urban population numbers are expected

to double until 2050 (United Nations - Department of Economic and Social Affairs 2015).

By that time, more than 80% of the world’s population will live in urban conglomerates,

accounting for over 90% of the global economic output (Dobbs et al. 2011).

This increasing urbanization directly influences public and private freight transportation

planners. On the one hand, municipalities need to efficiently reorganize public services such as

waste collection in order to provide healthy and livable environments for its citizens (Lindhol

2014). On the other hand, private freight carriers need to incorporate the complexity of
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Figure 1.1: Past and expected world population development (1980-2050).

urban transportation systems in decision-taking processes to stay competitive and effectively

respond to increasingly demanding customer requirements (Taniguchi 2014).

Apart from the economic aspects, cities and companies face the social responsibility to

consider the negative externalities of the transportation of goods in their planning processes.

Freight transportation vehicles are the source of excessive noise levels in urban areas affecting

as much as 41 million Europeans (European Environment Agency 2009). At the same time, the

Transportation & Logistics (T&L) sector is estimated to account for 27% in total greenhouse

gas emissions in the USA (U.S. Environmental Protection Agency 2013).

The various challenges faced by urban freight distribution planners in the development

of efficient and sustainable transportation systems are summarized in the concept of city

logistics. City logistics are defined by Savelsbergh and van Woensel (2016) as "finding efficient

and effective ways to transport goods in urban areas while taking into account the negative

effects on congestion, safety, and environment". Some of the main challenges addressed by

smart city logistic approaches in modern city planning initiatives include for example (DHL

Trend Research 2014, Savelsbergh and van Woensel 2016, Taniguchi et al. 2016):
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i the creation of last-mile logistic concepts.

ii the support of sustainable transportation operations.

iii the collection and use of vast amount of data provided by available Internet and Commu-

nication Technologies (ICT).

iv the rise of collaborative business models based on shared T&L assets between different

supply chain actors.

In this context, many of the operational, tactical, and strategic decision-taking problems

such as the vehicle routing between different delivery or pick-up points, customer clustering,

or the location of cargo transportation hubs around city centers can be formulated as com-

binatorial optimization problems (COPs). Especially in realistic problem settings that are

characterized by large problem sizes and numerous problem constraints, their complexity

makes them extremely hard to solve. Even though a range of exact solving approaches exist

that theoretically provide a guaranteed optimal solution to many COPs, their excessive

calculation times make them impractical in many situations. Supported by the need for near

instantaneous decision-taking, metaheuristic algorithms have established themselves as

alternative in finding solutions to complex COPs. While these approximate methods can-

not guarantee optimality, they are able to provide pseudo-optimal solutions in significantly

reduced computation times (Talbi 2009).

Notwithstanding academic and practical advances in the field of Operations Research

over the last few decades, a major drawback of traditional metaheuristics is their failure to

fully represent the complexity of many real-life systems. By assuming deterministic inputs,

objective functions, or problem constraints, many optimization techniques are only able to

address oversimplified system representations. Especially in complex environments such as

smart city logistics that are shaped by constant information flow and updates concerning

traffic times, client demands, customers, etc., the inherent model uncertainty needs to be

accounted for to provide valid and insightful solutions (Amaran et al. 2014).

The concept of simheuristics constitutes a possibility to include stochastic components

in complex optimization settings. Simheuristics are based on the extension of classic meta-

heuristic solving techniques by guiding the solution search through feedback provided by

different simulation paradigms. Apart from leading to more representative results to stochas-

tic optimization problems, this also supports the introduction of different risk and reliability

criteria during the assessment and analysis of alternative COP solutions (Juan et al. 2015a).
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This thesis solidifies and extends the general methodology of simheuristics. Especially its use

as a method of first resort for solving complex COPs in the context of efficient and sustainable

smart city logistics planning concepts is supported.

1.2 Objectives and outline

The two central goals of this thesis and the derived research objectives are:

I Solidification and extension of the general simheuristic framework

• Objective 1:
Development of new simulation-optimization algorithms according to the general

simheuristic framework.

• Objective 2:
Proposal of methodological extensions, definition of best-practices, and discussion

of potential future applications of simheuristic paradigms.

II Introduction of simheuristics as decision support tool for efficient and sus-
tainable smart city logistics planning

• Objective 3:
Application of simheuristic algorithms to rich combinatorial optimization problems

(of theoretical and practical nature) related to urban freight transportation on

operational (e.g., daily product delivery), tactical (e.g., clustering), and strategic

(e.g., warehouse location) planning levels.

• Objective 4:
Analysis of simheuristics as a decision support tool to generate managerial insights

in the development of smart city logistics.

• Objective 5:
Comparison of developed optimization algorithms to state-of-the-art academic and

real-life benchmarks.

Chapters 2-5 put forward the theoretical background of this thesis and highlight method-

ological advances proposed in this work. Chapter 2 introduces the concept of metaheuristics,

which serve as underlying optimization engine of simheuristics. The main metaheuristic
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procedures that are applied in this work are outlined in more detail. This includes well-known

optimization frameworks such as Variable Neighborhood Search (VNS), Simulated Annealing

(SA), the Greedy Randomized Random Search Procedure (GRASP), and Biased Randomiza-

tion (BR). Concerning the latter, a range of computational experiments are completed to

underline the efficiency of Biased Randomization in different optimization settings.

The integration of metaheuristics with different forms of simulation according to the

general simheuristic framework is outlined in chapter 3. A general introduction to the

simheuristic paradigm is provided, including a review of recent applications in state-of-the-

art literature and a discussion of the benefits and limitations of the simulation-optimization

approach.

Chapter 4 presents generic simheuristic solving frameworks for combinatorial optimiza-

tion problems under uncertainty. SimGRASP and SimVNS are introduced as simheuristic

extensions of GRASP and VNS. In both cases the integration of simulation into the meta-

heuristic solving frameworks is proposed as possibility to consider stochastic inputs in a given

optimization problem. While the elaborated algorithms are generic enough to be applied to

any kind of stochastic COP, they form the central solving frameworks for the applications in

the context of freight transportation in smart city logistics discussed in this dissertation.

To conclude the scientific background of this thesis, chapter 5 analyses the potential use

of simheuristics to represent the inherent uncertainty of modeling human network behavior

in complex systems such as manufacturing lines or city logistics. The analysis is based on

a detailed literature review and concludes in the proposal of an agent-based simheuristic

framework.

The main application areas of simheuristics in the context of efficient and sustainable

freight transportation in smart city logistics discussed in this work are outlined in Figure 1.2.

Chapter 6 introduces operational, tactical, and strategic optimization problems related to

municipal waste management, integrated supply chain design, and horizontal collaboration

concepts. The Waste Collection Problem (WCP), the time dependent Vehicle Routing Problem

(VRP), the multi-depot VRP (MDVRP), the multi-period Inventory Routing Problem (IRP),

and the two-echelon Location Routing Problem (2E-LRP) are formulated. Moreover, the

relationship of these problem settings to different degrees of horizontal collaboration in

supply chain management is outlined. For all problem settings, state-of-the-art solving

frameworks presented in the literature for deterministic and stochastic problem extensions

are reviewed.

The following chapters 7-10 present the application and analysis of developed simheuristic
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Figure 1.2: Main methodology and application areas discussed in this work.

frameworks in the environment of freight transportation in smart city logistics. Presented

algorithms are compared to state-of-the-art benchmarks retrieved from the literature or

derived from case studies completed in cooperation with private organizations. Obtained

results are analyzed to highlight the potentials of simheuristics as method of first resort in

urban freight transportation planning.

Chapter 7 focuses on stochastic optimization problems arising in smart urban waste

management. This includes the development of efficient simheuristic approaches for different

extensions of the Waste Collection Problem implemented as VRP adaptations. Computational

experiments are based on theoretical benchmarks with up to 2100 collection points and a

large scaled case-study completed with nearly 900 waste containers in the Catalan city of

Sabadell. The obtained results show the competitiveness, scalability, and applicability of

the presented algorithms in rich waste collection scenarios that incorporate time-windows,

time dependency, capacity constraints, and stochastic inputs. Moreover, the potential of

waste management collaboration in clustered urban areas is discussed. This includes the

development of a simulation-optimization approach to integrate customer clustering and

vehicle routing decisions, a problem setting formulated as multi-depot VRP.

Chapter 8 presents simheuristic solving frameworks for integrated supply chain design

problems. In particular, stochastic versions of the multi-period Inventory Routing Problem and

the two-echelon Location Routing Problem are addressed. The former optimization problem

6
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combines inventory replenishment with vehicle routing decisions, an integrated planning

approach that often arises in vendor managed inventory concepts. The latter integrates

operational vehicle routing and long-term (strategic) facility location decisions. This COP is

especially important in the creation of urban consolidation centers (UCCs), which is a common

city logistics concept to reduce monetary and environmental urban freight transportation

costs. The simheuristic algorithms elaborated to solve both problem settings are tested and

compared on theoretical and real-life benchmark instances.

All previously mentioned problem settings need to be solved in order to evaluate different

supply chain collaboration scenarios. The use of simheuristics to quantify different horizontal

collaboration (HC) cases that are based on cooperation agreements between stakeholders on

the same supply chain level is put forward in chapter 10. A competitive solving framework

based on Biased Randomization and VNS that is flexible enough to solve the optimization

problems related with different collaboration degrees (non/semi/fully-collaborative) is pre-

sented. Moreover, the monetary and environmental benefits of HC concepts in deterministic

and stochastic urban freight transportation cases are analyzed.

Finally, chapter 11 concludes this work. The main findings and research outcomes of this

thesis are summarized, the potential managerial impact of simheuristics is analyzed, and

potential future research lines steaming from the completed research are presented.

1.3 Main research outcomes

This document is based on research outcomes that are published in different ISI-JCR/Scopus

indexed journals and the proceedings of international peer-reviewed conferences. Relevant

publications by the author of this thesis are highlighted at the beginning of each chapter and

cited where necessary. The cover pages of the articles that serve as basis of this work can be

found in appendices A and B. The main research outcomes that are published or currently

in the review process of ISI-JCR indexed journals are listed below. Additionally, detailed

article information, the publication abstract, and the main contributions of the PhD-student

(Aljoscha Gruler) during article development is provided for each document.

• Gruler, A.; Fikar, C.; Juan, A.; Hirsch, P.; Contreras, C. (2017): Supporting multi-depot

and stochastic waste collection management in clustered urban areas via simulation-

optimization. Journal of Simulation, 11(1): 11-19 (indexed in ISI SCI, 2017 IF = 1.218,

Q3; 2017 SJR = 0.428, Q2). DOI: https://doi.org/10.1057/s41273-016-0002-4.
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– Abstract

Waste collection is one of the most critical logistics activities in modern cities with

considerable impact on the quality of life, urban environment, city attractiveness,

traffic flows and municipal budgets. Despite the problem’s relevance, most existing

work addresses simplified versions where container loads are considered to be

known in advance and served by a single vehicle depot. Waste levels, however,

cannot be estimated with complete certainty as they are only revealed at collection.

Furthermore, in large cities and clustered urban areas, multiple depots from which

collection routes originate are common, although cooperation among vehicles from

different depots is rarely considered. This paper analyses a rich version of the waste

collection problem with multiple depots and stochastic demands by proposing a

hybrid algorithm combining metaheuristics with simulation. This simheuristic

approach allows for studying the effects of collaboration among different depots,

thus quantifying the potential savings this horizontal supply chain collaboration

could provide to city governments and waste collection companies.

– Main contributions of PhD-candidate:

This work was completed in cooperation with Prof. Dr. Angel A. Juan from the

Universitat Oberta de Catalunya in Barcelona and Prof. Dr. Patrick Hirsch and

Dr. Christian Fikar from the University of Natural Resources and Life Sciences

in Vienna. As first and corresponding author of this publication, the PhD-student

was strongly contributing to the research question definition, the review of relevant

literature in the field, the design of the simulation-optimization algorithm, the

implementation of procedure in Java, the analysis of obtained results, and the

completion of the manuscript. Dr. Fikar developed major parts of the Java code,

while Prof. Dr. Hirsch and Prof. Dr. Juan supported the article development with

their expertise and guidance.

• Gruler, A.; Quintero, C.; Calvet, L.; Juan, A. (2017): Waste Collection Under Uncer-

tainty: a simheuristic based on variable neighborhood search. European Journal of

Industrial Engineering, 11(2): 228-255 (indexed in ISI SCI, 2017 IF = 1.085, Q3; 2017

SJR = 0.595, Q1). DOI: https://doi.org/10.1504/EJIE.2017.083257.

8

https://doi.org/10.1504/EJIE.2017.083257


1.3. MAIN RESEARCH OUTCOMES

– Abstract

Ongoing population growth in cities and increasing waste production has made

the optimization of urban waste management a critical task for local governments.

Route planning in waste collection can be formulated as an extended version of the

well-known vehicle routing problem, for which a wide range of solution methods

already exist. Despite the fact that real-life applications are characterized by high

uncertainty levels, most works on waste collection assume deterministic inputs. In

order to partially close this literature gap, this paper first proposes a competitive

metaheuristic algorithm based on a variable neighborhood search framework for

the deterministic waste collection problem. Then, this metaheuristic is extended to

a simheuristic algorithm in order to deal with the stochastic problem version. This

extension is achieved by integrating simulation into the metaheuristic framework,

which also allows a closer risk analysis of the best-found stochastic solutions. Dif-

ferent computational experiments illustrate the potential of this methodology.

– Main contributions of PhD-candidate:

This work was completed in cooperation with Prof. Dr. Angel A. Juan, Dr. Laura

Calvet, and Dr. Carlos Quintero-Araujo from the Universitat Oberta de Catalunya

in Barcelona. As first and corresponding author of this publication, the PhD-

student was strongly contributing to the research question definition, the review of

relevant literature in the field, the design of the simulation-optimization algorithm,

the implementation of procedure in Java, the analysis of obtained results, and the

completion of the manuscript. Dr. Calvet contributed by helping in the statistical

analysis of obtained results. Dr. Quintero-Araujo was responsible of formulating the

problem mathematically and implementing the model in the GAMS programming

language. Prof. Dr. Juan supported the article development with his expertise and

guidance.

• Gruler, A.; Panadero, J.; de Armas, J.; Moreno-Perez, J.; Juan, A. (2018): Combining

variable neighborhood search with simulation for the inventory routing problem with

stochastic demands and stock-outs. Computers and Industrial Engineering (indexed

in ISI SCI, 2017 IF = 3.195, Q1; 2017 SJR = 1.463, Q1). DOI: https://doi.org/10.

1016/j.cie.2018.06.036.
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– Abstract

Vendor managed inventory aims at reducing supply chain costs by centralizing

inventory management and vehicle routing decisions. This integrated supply chain

approach results in a complex combinatorial optimization problem known as the

inventory routing problem (IRP). This paper presents a variable neighborhood

search metaheuristic hybridized with simulation to solve the IRP under demand

uncertainty. This simheuristic approach is able to solve large sized instances for the

single period IRP with stochastic demands and stock-outs in very short computing

times. A range of experiments underline the algorithm’s competitiveness compared

to previously used heuristic approaches. The results are analyzed in order to provide

closer managerial insights.

– Main contributions of PhD-candidate:

This work was completed in cooperation with Prof. Dr. Angel A. Juan and Dr.

Javier Panadero from the Universitat Oberta de Catalunya in Barcelona, Dr. Jesica

de Armas from the Universitat Pompeu Fabra in Barcelona, and Prof. Dr. José

Moreno-Perez from the Universidad La Laguna in Teneriffe. As first and corre-

sponding author of this publication, the PhD-student was strongly contributing to

the research question definition, the review of relevant literature in the field, the

design of the simulation-optimization algorithm, the implementation of procedure

in Java, the analysis of obtained results, and the completion of the manuscript. Dr.

Panadero completed major parts of the Java code. Dr. de Armas helped in defining

the simheuristic algorithm. Prof. Dr. Juan and Prof. Dr. Moreno-Perez supported

the article development with their expertise and guidance.

• Gruler, A.; Panadero, J.; de Armas, J.; Moreno-Perez, J.; Juan, A. (2018): A Variable

Neighborhood Search Simheuristic for the Multi-Period Inventory Routing Problem with

Stochastic Demands. Int. Transactions in Operational Research (indexed in ISI SCI,

2017 IF = 2.400, Q1; 2017 SJR = 1.071, Q1). DOI: https://doi.org/10.1111/itor.

12540.
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– Abstract

The inventory routing problem (IRP) combines inventory management and de-

livery route-planning decisions. This work presents a simheuristic approach that

integrates Monte Carlo simulation within a variable neighborhood search (VNS)

framework to solve the multiperiod IRP with stochastic customer demands. In this

realistic variant of the problem, The goal is to establish the optimal refill policies

for each customer–period combination, that is, those individual refill policies that

minimize the total expected cost over the periods. This cost is the aggregation of both

expected inventory and routing costs. The proposed simheuristic algorithm allows

to consider the inventory changes between periods generated by the realization of

the random demands in each period, which have an impact on the quantities to be

delivered in the next period and, therefore, on the associated routing plans. A range

of computational experiments are carried out in order to illustrate the potential of

this simulation–optimization approach.

– Main contributions of PhD-candidate:

This work was completed in cooperation with Prof. Dr. Angel A. Juan and Dr.

Javier Panadero from the Universitat Oberta de Catalunya in Barcelona, Dr. Jesica

de Armas from the Universitat Pompeu Fabra in Barcelona, and Prof. Dr. José

Moreno-Perez from the Universidad La Laguna in Teneriffe. As first and corre-

sponding author of this publication, the PhD-student was strongly contributing to

the research question definition, the review of relevant literature in the field, the

design of the simulation-optimization algorithm, the implementation of procedure

in Java, the analysis of obtained results, and the completion of the manuscript. Dr.

Panadero completed major parts of the Java code. Dr. de Armas helped in defining

the simheuristic algorithm. Prof. Dr. Juan and Prof. Dr. Moreno-Perez supported

the article development with their expertise and guidance.
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– Abstract

In a global and competitive economy, efficient supply networks are essential for

modern enterprises. Horizontal collaboration (HC) concepts represent a promising

strategy to increase the performance of supply chains. HC is based on sharing

resources and making joint decisions among different agents at the same level of

the supply chain. This paper analyzes different collaboration scenarios concerning

integrated routing and facility-location decisions in road transportation: (a) a

non-collaborative scenario in which all decisions are individually taken (each en-

terprise addresses its own vehicle routing problem [VRP]); (b) a semi-collaborative

scenario in which route-planning decisions are jointly taken (facilities and fleets

are shared and enterprises face a joint multidepot VRP); and (c) a fully cooperative

scenario in which route-planning and facility-location decisions are jointly taken

(also customers are shared, and thus enterprises face a general location routing

problem). The completed analysis explores how this increasing level of HC leads

to a higher flexibility and, therefore, to a lower total distribution cost. A hybrid

metaheuristic algorithm, combining biased randomization with a variable neigh-

borhood search framework, is proposed to solve each scenario. This allows us to

quantify the differences among these scenarios, both in terms of monetary and

environmental costs. This solving approach is tested on a range of benchmark

instances, outperforming previously reported results.

– Main contributions of PhD-candidate:

This work was completed in cooperation with Prof. Dr. Angel A. Juan and Dr.

Carlos Quintero-Araujo from the Universitat Oberta de Catalunya in Barcelona,

and Dr. Javier Faulin from the Universidad Pùblica de Navarra in Pamplona.

As second author of this publication, the PhD-student was contributing to the

review of relevant literature in the field, the design of the simulation-optimization

algorithm, the analysis of obtained results, and the completion of the manuscript.

Dr. Quintero-Araujo was leading this research effort and was involved in all steps

of the article completion. Prof. Dr. Juan and Prof. Dr. Faulin supported the article

development with their expertise and guidance.
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• Ferone, D.; Gruler, A.; Festa, P.; Juan, A. (2018): Enhancing and Extending the Clas-

sical GRASP Framework with Biased Randomization and Simulation. Journal of the

Operational Research Society (indexed in ISI SCI, 2017 IF = 1.396, Q3; 2017 SJR =

1.002, Q1). DOI: https://doi.org/10.1080/01605682.2018.1494527.

– Abstract

Greedy Randomized Adaptive Search Procedure (GRASP) is one of the best-known

metaheuristics to solve complex combinatorial optimization problems (COPs). This

paper proposes two extensions of the typical GRASP framework. On the one hand,

applying biased randomization techniques during the solution construction phase

enhances the efficiency of the GRASP solving approach compared to the traditional

use of a restricted candidate list. On the other hand, the inclusion of simulation

at certain points of the GRASP framework constitutes an efficient simulation-

optimization approach that allows to solve stochastic versions of COPs. To show

the effectiveness of these GRASP improvements and extensions, tests are run with

both deterministic and stochastic problem settings related to flow shop scheduling,

vehicle routing, and facility location.

– Main contributions of PhD-student:

This work was completed in cooperation with Prof. Dr. Angel A. Juan and Dr.

Daniele Ferone from the Universitat Oberta de Catalunya in Barcelona, and Prof.

Dr. Paola Festa from the Universidad de Nápoles Federico II in Napoli. As second

author of this publication, the PhD-student was contributing to the the development

of the simulation-optimization algorithms, the design of computational experiments,

the analysis of obtained results, and the completion of the manuscript. Dr. Ferone

was leading this research effort and was involved in all steps of the article com-

pletion. Prof. Dr. Juan and Prof. Dr. Festa supported the article development with

their expertise and guidance.
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SJR = 1.071, Q1). ISSN: 0969-6016.
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CHAPTER 1. INTRODUCTION

– Abstract

A major operational task in city logistics is related to waste collection, which

can be formulated as a rich extension of the well-known vehicle routing problem.

Due to large problem sizes and numerous constraints, the optimization of real-life

waste collection problems (WCPs) on a daily basis requires the use of metaheuristic

solving frameworks to generate near-optimal collection routes in low computation

times. However, most existing optimization frameworks are based on simplifying

assumptions regarding the time dependency and stochasticity of input variables.

In order to overcome this drawback, this paper presents a simheuristic algorithm

for the time dependent WCP with stochastic travel times (TDWCPST). By com-

bining Monte Carlo simulation with a biased randomized iterated local search

metaheuristic, time-varying and stochastic travel speeds between different network

nodes are accounted for. The implementation and performance of the proposed

solving methodology is shown in a case study involving the waste collection of

several hundred garbage containers in Sabadell, a medium-sized city located in

the autonomous Spanish region of Catalonia.

– Main contributions of PhD-candidate:

This work was completed in cooperation with Prof. Dr. Angel A. Juan, Dr. Laura Cal-

vet, and Dr. Antoni Perez from the Universitat Oberta de Catalunya in Barcelona.

The article is currently in the review process of the cited ISI-JCR indexed jour-

nal. As first and corresponding author of this publication, the PhD-student was

strongly contributing to the research question definition, the review of relevant

literature in the field, the design of the simulation-optimization algorithm, the

implementation of procedure in Java, the analysis of obtained results, and the

completion of the manuscript. Moreover, the student was in direct contact with

the waste management service provider SMATSA to obtain data and define the

completed case-study. Dr. Calvet was contributing to the development of the Java

code. Prof. Dr. Juan and Prof. Dr. Perez supported the article development with

their expertise and guidance. Especially Prof. Dr. Perez helped in the completion

of the manuscript by guiding guiding the PhD-candidate in the necessary data

processing with Geographic Information Systems.

14



1.3. MAIN RESEARCH OUTCOMES

• Gruler, A.; De Armas, J.; Juan, A.; Goldsman, D. (under review): Modeling Human

Behavior in Social Networks: a survey and the need for simheuristics. Statistics and

Operations Research Transactions (indexed in ISI SCI, 2017 IF = 1.344, Q2; 2017 SJR

= 0.551, Q2). ISSN: 1696-2281.

– Abstract

The inclusion of stakeholder behavior in Operations Research / Industrial Engi-

neering (OR/IE) models has gained much attention in recent years. Behavioral and

cognitive traits of people and groups have been integrated in simulation models

(mainly through agent based approaches) as well as in optimization algorithms.

However, especially the influence of relations between different actors in social

networks is a broad and interdisciplinary topic that has not yet been fully investi-

gated. This paper analyzes, from an OR/IE point of view, the existing literature on

behavior-related factors in social networks. This review covers different application

fields, including: supply chain management, public policies in emergency situations,

and Internet-based social networks. The review reveals that the methodological

approach of choice (either simulation or optimization) is highly dependent on the

application area. However, an integrated approach combining simulation and opti-

mization is rarely used. Thus, the paper proposes the hybridization of simulation

with optimization — and, in particular, the use of simheuristics — as one of the

best strategies to incorporate human behavior in social networks and the resulting

uncertainty, randomness, and dynamism in related OR/IE models.

– Main contributions of PhD-student:

This work was completed in cooperation with Prof. Dr. Angel A. Juan from the

Universitat Oberta de Catalunya in Barcelona, Dr. Jesica de Armas of the Uni-

versitat Pompeu Fabra in Barcelona, and Prof. Dr. David Goldsman from the

Georgia Institute of Technology in Atlanta. The article is currently in the review

process of the cited ISI-JCR indexed journal. As first and corresponding author

of this publication, the PhD-student was strongly contributing to the research

question definition, the extensive review of related literature, and the development

of the proposed agent-based simheuristic. Dr. de Armas was involved in finding

related research papers and completing the manuscript. Prof. Dr. Juan and Prof.

Dr. Goldman supported the article development with their expertise and guidance.
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2
METAHEURISTICS IN COMBINATORIAL OPTIMIZATION

This chapter describes the theoretical background of metaheuristic algorithms in combinato-

rial optimization. The highlights of this chapter include:

• a short introduction to metaheuristic optimization.

• a detailed description of the main metaheuristic concepts applied in this work, including

Variable Neighborhood Search (VNS), Simulated Annealing (SA) Greedy Randomized

Adaptive Search Procedure (GRASP), and Biased Randomization (BR).

• a computational analysis of extending the traditional GRASP framework with Biased

Randomization. Results suggest significant improvements for the Permutation Flow

Shop Problem (PFSP), the Vehicle Routing Problem (VRP), and the uncapacitated

Facility Location Problem (UFLP) with no additional computational effort or parameters

in comparison to basic GRASP implementations (Ferone et al. 2016, 2018).1

1The work put forward by Ferone et al. (2016) is published in the SCOPUS indexed conference proceedings
of the Winter Simulation Conference 2016 in Washington D.C., USA. Its findings were presented by the PhD-
candidate Aljoscha Gruler. As co-author of this publication, the student was mainly responsible for the algorithm
design, literature review, and analysis of results.
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CHAPTER 2. METAHEURISTICS IN COMBINATORIAL OPTIMIZATION

2.1 General overview

A wide range of decision-taking processes related to transportation, supply chain manage-

ment, engineering, finance, or smart cities can be formulated as optimization problems.

Mathematically speaking, optimization problems are defined through a couple (S, f ), where

the solution search space S defines a set of feasible solutions, while f : S →R represents the

objective function to optimize. A representative solution search space with the corresponding

objective function values can be seen in Figure 2.1. The figure highlights different extrema of

the plotted function. On the one hand, local minima and maxima define different extreme

points within a specific neighborhood of the solution space. On the other hand, the global

minimum and maximum correspond to the lowest and largest values of the complete function

domain. The main goal of solving an optimization problem is to find a global optimal solution

s∗ ∈ S in such a way that f (s∗) ≤ f (s) for any solution s ∈ S (and vice versa in the case of

maximization) (Talbi 2009).

One subset of mathematical optimization with high relevance in applied operations

research and theoretical computer science is that of combinatorial optimization problems

Figure 2.1: Global and local minima and maxima in a solution search space. Retrieved from
Sveriges Universitets Matematikportal (2017)
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(COPs). These problems are characterized by solutions that are encoded with discrete vari-

ables within a finite solution search space, while their objective function and problem con-

straints can take any form (Papadimitriou and Steiglitz 1982, Pardalos and Resende 2002).

Among possible solving frameworks for COPs, exact (complete) algorithms based on meth-

ods from the branch-and-X family, dynamic programming, Bayesian search algorithms, or

successive approximation guarantee to find an optimal solution to a given problem. However,

many COPs are NP-hard in nature, which means that no algorithm exists that can solve

these problem settings within polynomial time (Festa 2014, Garey and Johnson 1990). The

risk of running into exponential computing times makes the use of exact algorithms imprac-

tical in many real-life applications, which are often characterized by large-scaled problem

instances, hard constraints, and complex mathematical functions. This has supported the

rising theoretical and practical interest in metaheuristic solving approaches over the last few

decades (Boussaïd et al. 2013, Gogna and Tayal 2013, Nesmachnow 2014).

Whereas early approximate methods for optimization problems were already discussed in

the 1940s (Polya 1945), the term metaheuristics was first coined by Glover (1986). It refers

to higher-level strategies to guide the solution search process to any given COP, regardless

of the specific problem type. Metaheuristics — if properly designed — have shown to be

promising alternatives to exact solving approaches in many situations by efficiently scanning

large solution spaces in the search for new solutions. Even though metaheuristics cannot

guarantee solving any given COP to optimality, they are able to find pseudo-optimal solutions

in very short calculation times in comparison to their exact counterparts (Blum and Roli

2003). Some of the pioneering contributions and widely-used metaheuristics include for

example Simulated Annealing (Kirkpatrick 1984), Tabu Search (Glover and Laguna 1998),

Genetic Algorithms (Goldberg 1989), Ant Colony Optimization (Dorigo 1992), or Variable

Neighborhood Search (Mladenović and Hansen 1997).

Within the design of metaheuristic algorithms, a general trade-off exists between in-

tensification (or exploitation) and diversification (or exploration) within the solution search

space. As visualized in Figure 2.2, the main focus of different metaheuristic procedures can

be characterized as (Blum and Roli 2003, Nesmachnow 2014, Talbi 2009):

i Intensification focused metaheuristics investigate the direct solution neighborhood of

promising COP solutions. Popular members of this class of algorithms include for example

Simulated Annealing (SA), Variable Neighborhood Search (VNS), or Iterated Local Search

(ILS). These approaches are also called single-solution (or trajectory) based methods, as
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they focus on creating and modifying a single candidate solution.

ii Diversification focused metaheuristics try to visit numerous solution neighborhoods

within the solution space to improve the current incumbent solution. These kind of

procedures are also known as population-based approaches and include algorithms such

as Ant Colony Optimization or Genetic Algorithms, which maintain a pool of promising

solutions with the aim of using population information to optimize a given objective

function.

iii Multi-start method are typically based on two altering phases to strategically scan the

solution space of a given COP: a randomized solution construction and the subsequent

local search. The solution construction in most multi-start methods — in contrast to

deterministic approaches — is typically based on some kind of randomized procedure

to ensure that a different solution is found every time a new solution is created. In

combination with some problem-specific local search procedure to find the local minimum

within the neighborhood of a constructed solution, multi-start methods such as the

Greedy Randomized Adaptive Search Procedure (GRASP) try to find a balance between

diversification and intensification of systematic solution space sampling (Martí et al.

2013).

Figure 2.2: Diversification vs. intensification in metaheuristic solution search. Retrieved from
Nesmachnow (2014).
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2.2 Selected metaheuristic frameworks

The following subsections describe the main metaheuristic paradigms that are applied in

this work. This includes Variable Neighborhood Search, Simulated Annealing, GRASP, and

Biased Randomization. Especially the latter technique is applied at different points of this

work. For this reason, its potentials in the context of transportation & logistics optimization

are shown through a range of numerical experiments.

2.2.1 Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a single-solution-based metaheuristic first presented

by Mladenović and Hansen (1997). It is based on systematic neighborhood changes to find

increasingly distant solution structures with reference to the current incumbent solution.

Within each solution neighborhood, problem-specific local search methods are applied to find

local optima. This combination of diversification-focused neighborhood changes with local

search methods during the intensification phase makes VNS an efficient metaheuristic that

has been applied to a wide range of theoretical and practical problem settings including

routing, scheduling, or artificial intelligence (Duarte et al. 2017, Moreno-Vega and Melián

2008).

The basic VNS procedure is outlined in Algorithm 1. An initial solution is constructed and

set as current incumbent baseSol (line 1). In the following, the solution structure of baseSol

is altered by applying a problem-specific shaking operator and creating a new neighborhood

structure Nk(k = 1,2, ...,kmax). The neighborhood structure of k is locally optimized through

some kind of problem-specific local descent procedure (line 8). If the locally optimized solution

is more competitive than baseSol, newSol is set as current incumbent solution and k is set

to 1. If newSol does not outperform baseSol, a new neighborhood structure is created by

incrementing k (k = 1 if k = kmax). In any case, this process is repeated until the stopping

criterion is reached. Apart from problem-specific decisions that need to be established in the

definition of a VNS algorithm — including the defined stopping criterion, the neighborhood

change (shaking) strategies, or the local search operators —, different VNS extensions have

been investigated over the years that extend the basic VNS outlined in this description. They

include concepts such as variable neighborhood descent, the skewed VNS, or the reduced

VNS (Hansen et al. 2010).
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Algorithm 1: General VNS framework

1 baseSol ← construct initial solution
2 while stopping criteria not reached do
3 k ← 1
4 repeat
5 newSol ← shake(baseSol, k)
6 improving ← true
7 while improving do
8 newSol* ← localDescent(newSol, randomLSoperator)
9 if costs(newSol*) ≤ costs(newSol) then

10 newSol ← newSol*
end

11 else
improving ← false

end
end

12 if costs(newSol) < costs(baseSol) then
13 baseSol ← newSol
14 k ← 1

end
15 else

k ← k+1
end

until k > kmax

end
16 bestSol ← baseSol
17 return bestSol

2.2.2 Simulated Annealing

Simulated Annealing (SA) in the context of combinatorial optimization was first presented

over three decades ago (Kirkpatrick 1984). Its name is based on the algorithms’ characteristic

of miming the process undergone by misplaced atoms during the cooling process of heated

metals, which strive towards minimum lattice energy state. With the goal of finding a global

optimal solution, the algorithm applies different hill-climbing moves to escape local solution

space extrema. As outlined in Algorithm 2, the procedure starts by creating an initial solution

that is set as current incumbent solution currentBest. In the following, new solutions are

created within a predefined stopping criterion (e.g., number of iterations or a maximum
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running time). Each new solution newSol is accepted as new current best solution if its

objective function value outperforms that of currentBest. Moreover, newSol is also accepted

as new current best solution according to a certain probability P(t,newSol, currentBest)=
e(qualitynewSol−qualitycurrentBest)/t that is compared to a random uniform number within the range

[0,1].

On the one hand, the probability of selecting newSol is close to 0 if newSol is significantly

worse than currentBest. On the other hand, if both solutions are of similar quality, the

probability of selecting newSol as new incumbent solution is relatively high. Furthermore,

the probability is directly affected by temperature parameter t (0< t). If t is close to 0, the

fraction will also be a large number and thus decrease the probability of accepting worse

solutions, and vice versa for higher values of t. Typically, SA algorithms start by setting a

high value of t, focusing on the exploitation of the solution space. With each newly created

solution, the value of t is reduced, thus intensifying the focus on the current best solution

(Luke 2011, Nikolaev and Jacobson 2010).

Algorithm 2: General Simulated Annealing framework

1 currentBest ← construct initial solution
2 while stopping criteria not reached do
3 newSol ← localSearch(currentBest)
4 t ← temperature, initially a high number
5 if quality(newSol) > costs(baseSol) or randomUniform(0,1) > P(t, newSol,

currentBest) then
6 currentBest ← newSol

end
7 decrease t

end
8 bestSol ← currentBest
9 return bestSol

2.2.3 Greedy Randomized Adaptive Search Procedure

The Greedy Randomized Adaptive Search Procedure (GRASP) is a well-studied constructive

and randomized metaheuristic which has been successfully applied to a wide range of complex

COPs in different environments (Festa and Resende 2009a,b, Resende and Ribeiro 2003). Its

iterative procedure is based on two stages: a construction phase and a local search phase.
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The general multi-start GRASP framework can be seen in Algorithm 3. During the solution

construction (lines 1 and 4), a feasible COP solution is generated. All solution elements are

hereby added to a candidate list CL that is sorted according to the incremental costs c(·) of

including element e ∈ CL in the solution (Algorithm 4). Then, the solution is iteratively built

(lines 4–12). At each iteration, an element is chosen from a restricted candidate list (RCL)

according to a uniformly distributed probability function. The size of the RCL is defined by

a threshold value thr, which defines the quality of including an element in the currently

constructed solution within the highest and lowest incremental costs of any element e ∈ CL.

Threshold parameter α defines the size of the RCL, with α= 0 equal to a completely greedy

algorithm and α = 1 leading to a completely randomized approach in which any element

might be chosen. After including an element in the current solution, the incremental costs of

the remaining CL elements are recalculated and the CL is reordered accordingly.

Algorithm 3: General GRASP framework

1 s0 ← GenerateSolution
2 s∗ ← LocalSearch(s0)
3 while stopping criterion not reached do
4 s∗∗ ← GenerateSolution
5 s∗∗ ← LocalSearch(s∗∗)
6 if f(s∗∗) < f(s∗) then
7 s∗ ← s∗∗

end
end

8 return Best solution s∗

Any generated feasible solution s∗∗ is not guaranteed to be locally optimal. For this reason,

it is beneficial to apply a problem-specific local search procedure to the newly constructed

solution. Solution s∗∗ is locally improved within a suitable neighborhood structure N(s∗∗)

until no better solution can be found. Generally, the quality of the final solution directly

depends on the neighborhood definition, the local search technique, and the starting solution

applied for the specific problem (Festa and Resende 2009a).

2.2.4 Biased Randomization

The randomized construction of COP solutions in most multi-start metaheuristics is guided by

information about the quality of solution elements. For example, the general GRASP frame-
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Algorithm 4: Solution construction phase in GRASP algorithms
Input: α ∈ [0,1]

1 s ←;
2 initialize candidate set: CL ← E
3 order the Candidate List (CL) elements according to c(·)
4 while solution s is not complete do
5 cmin ←minx∈CL{c(x)}
6 cmax ←maxx∈CL{c(x)}
7 thr ← cmin +α(cmax − cmin)
8 RCLsize ←|{x ∈ CL : c(x)≤ thr}|
9 pos ← UniformRand(1,2, . . . ,RCLsize)

10 s ← s∪ {CL[pos]}
11 CL ← CL \{CL[pos]}
12 Reorder CL

end
13 return s

work includes a restricted candidate list of ranked solution elements, which are chosen at

each algorithm construction step according to a uniform distribution. Biased Randomization

techniques extend this ’common sense’ heuristic by attributing higher selection probabilities

to more promising solution elements. This concept can be applied at different algorithm

stages, e.g. during solution construction processes or local search procedures.

Instead of relying on a restricted candidate list, a bias function assigns non-negative

weights to all elements that are potentially eligible. The bias function can hereby follow any

kind of skewed probability function. An example of sorted solution elements can be seen in

Figure 2.3. Each potentially eligible element of the candidate list — e.g., edges of a routing

problem, machine jobs, replenishment levels in inventory management, etc. — is represented

on the x-axis. They are ranked according to some criteria (e.g., priority rule, heuristic value),

which defines the selection probability according to some theoretical skewed probability

function. In the outlined example, the left figure corresponds to a geometric distribution

(with a geometric distribution parameter of 0.2), while the right figure depicts the selection

probabilities of a decreasing triangular probability function. Generally, the use of skewed

probabilities offers two main advantages over using empirical distributions: (i) they contain

at most one simple parameter, and (ii) they can be sampled using well-known analytical

expressions, which from a computational perspective is typically faster than other sampling

27



CHAPTER 2. METAHEURISTICS IN COMBINATORIAL OPTIMIZATION

techniques involving the use of loops (Grasas et al. 2017, Juan et al. 2013a). A constructive

procedure to create COP solutions based on Biased Randomization is described in Algorithm

5.

To show the benefits of using skewed probabilities during the solution construction phase,

a biased randomized version of GRASP (BR-GRASP) is compared to the performance of a

general GRASP implementation. Both algorithms have been applied to well-known problem

settings in the field of transportation and logistics, namely the PFSP, the VRP, and the UFLP.

Figure 2.3: Use of skewed distributions in Biased Randomization. Retrieved from Grasas et
al. (2017).

Algorithm 5: Solution construction phase with Biased Randomization
Input: Non-symmetric distribution function D; Distribution parameter β

1 s ←;
2 initialize candidate set: CL ← E
3 order the Candidate List (CL) elements according to c(·)
4 while solution s is not complete do
5 Randomly select pos ∈ {1, . . . , |CL|} according to distribution D(β)
6 s ← s∪ {CL[pos]}
7 CL ← CL \{CL[pos]}
8 Reorder CL

end
9 return s
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Figure 2.4 depicts multiple boxplots showing the percentage differences of the traditional

GRASP solution construction in comparison to BR-GRASP with reference to the best-known

solutions (BKSs) of various problem instances. The detailed results and the experiment

settings are listed in Appendices C-E.

Figure 2.4: Comparison of %-gaps of traditional GRASP and BR-GRASP to BKSs of different
COPs.

It can be concluded that the use of skewed probability functions outperforms the a

uniform selection strategy in all cases. However, the significance of the improvements differs

between the problem settings. In order to evaluate the statistical differences between both

algorithm implementations, the nonparametric Mann-Whitney-U test with regards to the

percentage differences to the BKS for all tested instances of each problem setting was

completed. Significant differences can be observed for the VRP (p−value = 1.567×10−7) and

the UFLP (p−value = 0.0009862). For the PFSP however, no significant differences can be

deducted from the obtained results (p−value = 0.6037).
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3
SIMHEURISTICS FOR COMPLEX DECISION MAKING PROBLEMS

UNDER UNCERTAINTY

As shown in chapter 2, metaheuristics are able to solve complex decision-taking problems in

short calculation times. However, one major drawback of traditional metaheuristic techniques

is their disability to consider stochastic inputs in the solution search procedure. This chapter

outlines simheuristics as general simulation-optimization approach to solve complex COPs

under uncertainty in different application areas. The highlights of this chapter include:

• an introduction to the general simheuristic framework based on recent methodological

advances and best practices defined by research completed within this dissertation.

• a comparison of simheuristics to other optimization and simulation techniques.

• a literature review of relevant publications presenting simheuristic algorithms to

address different COPs under uncertainty.
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UNCERTAINTY

3.1 General framework of simheuristic algorithms

Traditional metaheuristic frameworks are based on simplifying assumptions, which can lead

to questionable optimization outcomes. By assuming deterministic optimization problem

inputs and constraints, they fail to fully represent the inherent uncertainty and dynamism

experienced in complex real-life systems such as smart city logistics (Chica et al. 2017).

As outlined in Figure 3.1, the concept of simheuristics is based on the integration of

simulation in any of its forms into metaheuristic optimization methodologies to account for

stochasticity in different COPs. It focuses on so called a priori stochastic optimization. In

contrast to dynamic or reactive optimization approaches that reveal problem information

during the execution of a predefined process, a priori optimization methodologies assume

that some information (e.g., based on historical data) about the stochastic variable is already

available during the planning phase. This information is incorporated during the optimization

process by modeling random variables through some kind of probability distribution. Such

simulation-optimization techniques are able to establish competitive solutions under the

consideration of uncertainty experienced in the represented system. Apart from an estimated

objective function value, the stochastic COP solution also provides information on its ’ro-

bustness’ (i.e., risk-level) in stochastic environments (Bianchi et al. 2009, Juan et al. 2015a,

Ritzinger et al. 2016).

Figure 3.1: General difference between metaheuristics and simheuristics in solving COPs.
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Early works on the combination of simulation and optimization include, for example,

Glover et al. (1996, 1999) and April et al. (2003). The discussed methodologies are mostly

simulation-focused, and have led to "black-box" optimization engines such as OptQuest,

which are now distributed with well-known commercial simulation software such as Simio or

Arena (OptTek 2018). From an optimization-focused point of view, the early integration with

simulation to evaluate different stochastic COP solutions was mainly done in the context of

engineering (Talbi 2009).

Properly implemented simheuristic frameworks extend earlier simulation-optimization

procedures. On the one hand, the metaheuristic solution search is guided by feedback obtained

through the simulation engine. On the other hand, an important feature of simheuristics is

the inclusion of a risk and reliability analysis to assess different high-quality solutions to

stochastic problem settings. As will be shown throughout this thesis, this information can

lead to valuable managerial insights in complex decision-taking environments such as city

logistic systems.

Simheuristics are able to extend any kind of metaheuristic framework through the inte-

gration of simulation to account for input uncertainty. Hereby, the quality of the stochastic

solution is directly correlated to the efficiency of the underlying optimization methodology,

which supports the use of high-quality metaheuristics as underlying solution search engine.

Regarding the integrated simulation paradigm, any of the four most significant simulation

approaches can be used. This includes Monte Carlo simulation (MCS), system dynamics,

discrete event simulation (DES), and agent based simulation (ABS). On the one hand, MCS

is used to model risk in an uncertain environment where the outcome is subject to chance

through repeated random sampling. On the other hand, system dynamics intents to represent

reality through continuous stocks and flows. Finally, DES and ABS are closely related simu-

lation approaches which aim to model a given system as a discrete event of sequences in time.

While DES takes a (top down) process oriented approach, ABS focuses on modeling different

discrete entities and the interactions between them (bottom up). A closer comparison of both

modeling frameworks is provided in chapter 5 (Gutenschwager et al. 2017, Raychaudhuri

2008, Robinson 2004, Siebers et al. 2010).

The selection of a suitable simulation approach strongly depends on the questions to

be answered by the model. A general guideline to select the right simulation paradigm is

provided by Kleijnen et al. (2005). The authors stress that the main goals of the simulation

technique are:
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i the facilitation of a basic understanding of the modeled system.

ii the definition of robust policies and decisions.

iii the comparison and analysis of different policies and decisions.

Well-designed simheuristic algorithms are generally defined by the stages depicted in

Figure 3.2. The first stage regarding the preparation of input data is of special importance

when solving real-life problem settings. Depending on the specific optimization case, this step

directly affects the applicability and quality of the results (the importance and challenges

of data preparation are closer discussed in the large-scaled case study described in chapter

5). Once the input data are of the required quality, the first simulation-optimization stage is

started. Hereby an initial set of simheuristic solutions is defined by applying a fast simulation

procedure. This enables a first rough estimate of ’promising’ COP solutions and their behavior

in uncertain environments. The simulation component of the simheuristic does not only

provide a natural way to model the real system, but it also provides valuable information

to the metaheuristic component (i.e., the search process is simulation-driven). Thus, it can

be used as a first quick filter of low quality solutions during this stage of the simheuristic.

The fast simulation with a reduced number of simulation runs is applied to avoid overloading

the process with simulation, which might jeopardize computing times allocated to the search

of high-quality metaheuristic solutions. During the second simulation-optimization stage, a

more thorough simulation stage is used to closer analyze the performance of promising solu-

tions in a stochastic environment. This allows for creating different ’elite’ solutions. Finally,

the last step in the general simheuristic paradigm includes a detailed risk or robustness

analysis of the set of elite solutions (Chica et al. 2017).

The risk analysis completed within the simheuristic process involves the use of statistical

methods to create additional decision-taking dimensions and closer managerial insights which

go beyond the sole consideration of cost optimization. Especially in complex decision-taking

environments such as city logistics, the objective function might not be the only variable of

interest. For example, solutions with a promising expected objective function value might

experience higher variability than alternative solutions. Consequently, decision-takers can

rely on information provided by the simheuristic to decide which solution to choose based

on her or his utility function and risk aversion. Even more advanced optimization methods

such as multi-objective optimization algorithms could be applied at this point, to have a set
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Figure 3.2: Typical stages of a simheuristic algorithm.

of solutions with different trade-offs between expected cost value and robust environment

behavior (Juan et al. 2015a).

The simheuristic paradigm is not a purely sequential process. Rather, the stages should

be repeated when necessary. Moreover, a participatory modeling process between all involved

stakeholders is preferable to ensure a clear understanding and knowledge sharing between

the simulation-optimization modeler and final decision-takers (Voinov and Bousquet 2010).

3.2 State-of-the-art simheuristic approaches in the literature

Various applications of simheuristics have been presented — mainly in the context of trans-

portation and logistics — in recent years. A strong focus of research efforts has been put on
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the field of routing optimization in different environments. Initial applications still had a

limited integration of the simulation into metaheuristic optimization frameworks, as com-

putational issues were neglected and the feedback provided through simulation was not yet

fully investigated.

One of the early simheuristic proposals was put forward by Juan et al. (2011). To reduce

the probabilities of route failures, the authors propose the use of safety capacities in the

Vehicle Routing Problem with stochastic demands. Through a two-stage algorithm, vehicle

routes are first established through a routing heuristic and then evaluated through Monte

Carlo simulation. This allows a performance evaluation of proposed vehicle routes in different

uncertainty and safety capacity scenarios. While reduced vehicle capacities during the route

planning phase might lead to higher initial routing costs, the reliability and associated route

failure costs through vehicle stock-outs can be reduced (and vice versa if safety capacities are

reduced). Similarly, Juan et al. (2014d) propose a simheuristic with a reduced integration

of simulation and metaheuristics for the single period Inventory Routing Problem under

demand uncertainty. In this problem setting, vehicle routing and inventory replenishment

decisions are centralized. As customer demands are modeled as random variables, inventory

holding costs and inventory stock-out costs are considered in the evaluation of different

solutions.

More recent applications extend these initial simheuristic approaches. On the one hand,

a higher simulation-optimization integration is outlined in these works by using feedback

from the simulation component to drive the metaheuristic solution search. Typically, this

is achieved by using a stochastic cost-driven base solution from which new solutions are

generated. On the other hand, the latest simheuristic algorithms reduce the risk of excessive

computational times by applying the concept of short and long simulation runs. Moreover,

the potentials of a risk analysis as additional decision taking dimension to extend purely

monetary objectives are highlighted.

Gruler et al. (2017c) develop an efficient simheuristic for the Waste Collection Problem

with stochastic demands formulated as Vehicle Routing Problem extension. The algorithm is

tested on a large-scaled benchmark with several thousand garbage containers, showing the

trade-off between costs and reliabilities through a detailed risk analysis of created solutions.

Gruler et al. (2017a) propose a simheuristic approach for the stochastic multi-depot Waste

Collection Problem. The authors argue that this problem setting supports the creation of

horizontal collaboration techniques between waste management service providers in clustered

metropolitan areas and large cities. The Arc Routing Problem with stochastic demands is
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addressed in the work of Gonzalez-Martin et al. (2018), who use Monte Carlo simulation

techniques to extend the RandSHARP algorithm elaborated in the work of González-Martín

et al. (2012). In contrast to the Vehicle Routing Problem in which demands are modeled on

customer nodes, this problem setting represents client demands along the edges between

different network points. The simheuristic approach for the Inventory Routing Problem

with stochastic demands put forward by Juan et al. (2014c) is extended in the work of

Gruler et al. (2018b) and Gruler et al. (2018c), who consider the single and multi-period

problem extension, propose an efficient Variable Neighborhood Search based simulation-

optimization algorithm, and achieve a close integration between the metaheuristic and the

simulation component. Stochastic versions of the uncapacitated and capacitated Facility

Location Problem are addressed through simheuristic procedures by de Armas et al. (2017)

and Pagès-Bernaus et al. (2017). On the one hand, the former integrate simulation into an

efficient Iterated Local Search Procedure for the uncapacitated case of facility location. On

the other hand, the latter put forward a simheuristic for the capacitated version of the Facility

Location Problem. Their model represents alternative distribution policies in e-commerce

environments. Also addressing a routing related topic, Fikar et al. (2016) discuss the use of

discrete-event simulation in a simheuristic process for dynamic home service routing with

synchronized trip-sharing.

Concerning flow shop scheduling, Juan et al. (2014e) present a simheuristic procedure

for the permutation flow-shop problem with stochastic processing times. The distributed

assembly permutation flow shop problem, in which different parts of a product are completed

in a first stage by a set of distributed flow shop lines and then assembled in a second stage

is analyzed by González-Neira et al. (2017). This work considers a stochastic version of

the problem, where both processing and assembly times are modeled as random variables.

Some publications have applied simheuristics in application areas outside the logistics

and transportation context, A simulation-optimization approach to deploy Internet services

in large-scale systems with user-provided resources is presented by Cabrera et al. (2014).

Concerning the area of finance, Panadero et al. (2018) recently presented a SimVNS algorithm

for project portfolio selection under uncertainty. Methodological discussions on simheuristics

showing the potential applications with a strong focus on problem settings related to logistics

and transportation include the presentation of SimILS (Grasas et al. 2016) and SimGRASP

(Ferone et al. 2016, 2018).
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3.3 Benefits and limitations

A visual comparison of simheuristics, exact approaches, metaheuristics, and simulation along

different dimensions can be seen in Figure 3.3. The methodologies are ranked from 1 (→
lowest score) to 3 (→ best score). The considered dimensions include:

• The optimality dimension refers to the quality of obtained solutions with reference to

the global optimal of the modeled problem setting.

• The modeling dimension compares the capability of accurately modeling and repre-

senting real-life systems.

• The scalability dimension rates the behavior of solution methods with increasing

problem sizes.

• The computing time dimension compares the computational times that are needed to

reach a solution.

• The uncertainty dimension refers to the ability to cope with stochastic input variables

that are inherent to most real-life problem settings.

Exact solving approaches stand out regarding the optimality dimension of modeled COPs,

as these purely analytical methods guarantee finding optimal solutions in a given solution

search space. In comparison to simheuristics, however, they show clear limitations regarding

their scalability, modeling capacity, and uncertainty. On the one hand, their scalability

is reduced through exponentially rising computing times with increasing problem sizes

(Blum and Roli 2003). On the other hand, the modeling capacity is constrained through

necessary oversimplifications. Especially simulation techniques show clear advantages in

fully representing complex systems (Lucas et al. 2015).

As discussed in the previous chapter, the main advantages of metaheuristics lie in their

scalability and computational times. Even though they are not able to guarantee finding

optimal solutions, they can find pseudo-optimal solutions in reasonable computing times.

However, metaheuristics are unable to address the stochasticity inherent to most real-life

systems (Talbi 2009).

One of the main advantages of simulation techniques can be found in their modeling

flexibility, which makes them a powerful tool to realistically represent real-life models and
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Figure 3.3: Multi-dimensional comparison of simheuristics to other solving approaches for
COPs.

system uncertainty. Nonetheless, simulation in itself is not an optimization tool, as it focuses

on the evaluation of pre-defined scenarios (Robinson 2004).

Well-implemented simheuristics leverage the advantages of both simulation and op-

timization methodologies. By using the modeling capabilities of simulation to guide the

metaheuristic optimization, system uncertainty in different environments can be accounted

for. At the same time, a suitable trade-off between short and long simulation runs supports

reasonable computational times for problem instances of different sizes. Another major

advantage of simheuristics lies in the risk/reliability analysis of obtained outputs. This infor-

mation can be used to create additional decision-taking dimensions and improve the system

understanding of involved stakeholders. One of the drawbacks of simheuristic frameworks

in comparison to other methodologies is that results are not expected to be truly optimal.

Rather, they directly depend on the quality of the underlying metaheuristic optimization
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procedure. For this reason, it is recommended to use an efficient metaheuristic algorithm

to scan the solutions search space. Moreover, the use of simheuristic algorithms requires

additional stakeholder involvement compared to "black-box" solvers of stochastic COPs. This

additional effort is necessary to properly define the system and available inputs, including, for

example, the modeling of stochastic behavior or data preparation to fully represent real-life

systems (Juan et al. 2015a).
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4
GENERIC SIMHEURISTIC SOLVING FRAMEWORKS FOR

COMBINATORIAL OPTIMIZATION PROBLEMS UNDER

UNCERTAINTY

As discussed in the previous chapters, one of the main drawbacks of well-studied meta-

heuristics such as the Greedy Adaptive Randomized Search Procedure (GRASP) or Variable

Neighborhood Search (VNS) is their inability to incorporate stochastic input variables. This

chapter outlines two simheuristic extensions to the these solving approaches, namely Sim-

GRASP and SimVNS. While this dissertation exclusively tests these frameworks on problem

settings related to logistics and transportation with special focus on an city logistics envi-

ronment, the elaborated algorithms are generic enough to be applied to any combinatorial

optimization problem (COP) under uncertainty. The main research contributions of this

section include:

• the introduction of SimGRASP as generic solving framework for stochastic COPs.

Apart from outlining the integration of simulation in the GRASP metaheuristic, the

application and performance of the algorithm is tested on a range of problem settings in

the field of logistics and transportation, including vehicle routing, flow shop scheduling,

and facility location (Ferone et al. 2016, 2018)1.

1The work put forward by Ferone et al. (2016) is published in the SCOPUS indexed conference proceedings

41



CHAPTER 4. GENERIC SIMHEURISTIC SOLVING FRAMEWORKS FOR
COMBINATORIAL OPTIMIZATION PROBLEMS UNDER UNCERTAINTY

• the presentation of the generic SimVNS algorithm, which is based on the combination

of the VNS metaheuristic with simulation. SimVNS serves as the central solving

framework for stochastic COPs in the context of urban freight distribution addressed in

the application focused chapters 7-9 of this dissertation (Gruler et al. 2017c, 2018b,c).

4.1 Extending the GRASP metaheuristic with simulation

The general SimGRASP framework is outlined in Algorithm 6. Given a stochastic COP,

the problem setting is transformed into its deterministic counterpart (line 1). Based on a

set X of stochastic variables, each variable x ∈ X is transformed into a deterministic value

x∗ by considering the expected values E[x] = x∗. Using the deterministic values, an initial

solution baseSol is constructed using the GRASP metaheuristic (lines 2-3) and set as current

incumbent solution. As the algorithm performance is directly related to the underlying

optimization procedure, the use of the BR-GRASP framework discussed in chapter 2.2.4 is

proposed.

In order to evaluate baseSol in an uncertainty environment, a first ‘short’ simulation run

is completed (line 4). The term ‘short simulation’ refers to a reduced number of simulation

iterations, which generates just rough estimates but does not require an excessive computing

time in this exploratory stage. Thus, during nItershort simulation runs, all stochastic vari-

ables are simulated from any suitable empirical or theoretical probability distribution, using

the expected values x∗ as distribution mean. Different variance levels can be considered for

the random variables. Note that as variance levels converge to zero, the deterministic case is

approached. The output of this simulation procedure is a first estimation of the stochastic

objective function value s f (baseSol) in combination with key system performance statistics

(e.g.: mean, variance, quartiles, etc.).

In the following, new BR-GRASP solutions are generated within a predefined stopping

criterion (such as number of iterations or maximum running time). Each created solution

newSol is evaluated using the short simulation procedure. If the stochastic objective function

estimate s f (newSol) outperforms that of the current best solution baseSol, newSol is set

as current incumbent solution and added to a set of elite solutions (lines 10-11). Once the

multi-start GRASP has reached its stopping criterion, all elite solutions undergo a more

of the Winter Simulation Conference 2016 in Washington D.C., USA. Its findings were presented by the PhD-
candidate Aljoscha Gruler. As co-author of this publication, the student was mainly responsible for the algorithm
design, literature review, and analysis of results.

42



4.1. EXTENDING THE GRASP METAHEURISTIC WITH SIMULATION

detailed simulation procedure (lines 12-13). At this stage, the number of simulation iterations

is increased to nIter long. This second simulation phase allows a more detailed analysis of the

most promising solutions with regards to the robustness and reliability of different stochastic

COP solutions.

Algorithm 6: General SimGRASP framework

1 Transform stochastic COP into deterministic counterpart
2 baseSol ← GenerateSolution
3 baseSol ← LocalSearch(baseSol)
4 (baseSol, s f (baseSol), statistics) ← Simulation (baseSol, short)
5 while GRASP stopping criterion not reached do
6 newSol ← GenerateSolution
7 newSol ← LocalSearch(s∗∗)
8 (newSol, s f (newSol), statistics) ← Simulation (newSol, short)
9 if sf(newSol) < sf(baseSol) then

10 EliteSolutions ← add(newSol)
11 baseSol ← newSol

end
end

12 foreach solution eliteSol ∈ EliteSolutions do
13 (eliteSol, s f (eliteSol), statistics) ← Simulation (eliteSol, long)

end
14 return Set of stochastic solutions

The results of applying SimGRASP to the PFSP, the VRP, and the UFLP are outlined in

Appendices C-E. In all cases, SimGRASP is implemented with a uniform and a skewed (Biased

Randomization) element selection strategy and compared to other simheuristic approaches.

It can be seen that the tested SimILS algorithms reach the most competitive results for the

PFSP and the UFLP, while Biased Randomization in the solution construction of SimGRASP

outperforms a traditional GRASP implementation in all cases. This underlines one of the

best practices in constructing simheuristic algorithms outlined in the previous chapter,

stating that the performance of any simheuristic algorithm will depend on the quality of the

applied metaheuristic for the underlying deterministic problem setting. When comparing

SimGRASP with a multi-start based simheuristic for the stochastic VRP, SimGRASP with

Biased Randomization yields the most competitive results.
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4.2 Extending the VNS metaheuristic with simulation

A closer integration of the simulation output into the metaheuristic optimization procedure

is achieved in the SimVNS framework depicted in Algorithm 7. As can be observed in lines

1-3, the creation of an initial solution baseSol is similar to the process described for the

SimGRASP algorithm. After turning the random variables of interest into their deterministic

counterparts, the initial solution is constructed with any suitable problem-specific solving

framework. In order to get a first intuition of the behavior of the initial solution in a stochastic

environment, a short simulation process is applied.

In the following, new VNS solutions are created within a predefined algorithm stopping

criterion. As outlined in chapter 2.2.1, new solutions newSol are created by applying a

problem-specific shaking operator k and creating new neighborhood structures from Nk(k =
1,2, ...,kmax). Each newly created solution then undergoes a local search procedure to find the

local minimum of the created solution structure (lines 7-8). At this stage, the newly created

solutions are compared to the current incumbent baseSol with reference to the deterministic

objective function value of the considered solutions. If newSol outperforms baseSol in the

deterministic scenario, it is deemed promising and evaluated through a short simulation

procedure to get an estimate of the stochastic objective function value s f (newSol) (line 10).

If the stochastic objective function estimate improves the performance of baseSol (i.e.,

s f (newSol) < s f (baseSol) in the case of a minimization problem), newSol is set as new

incumbent solution and k is set to 1 according to the general VNS algorithm. Moreover, the

solution is added to a set of elite solutions that undergo a more detailed simulation procedure

at the end of the simheuristic procedure to gain more detailed estimates of the stochastic

objective function values and the reliability of created solutions.

The SimVNS algorithm is the central solving framework for the application to a range

of COP settings in the context of urban freight transportation, outlined in chapter 6. Its

competitiveness and behavior is tested on several large scaled problem settings derived from

the literature and different case-studies described in chapters 7-9.
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Algorithm 7: General SimVNS framework

1 Transform stochastic COP into deterministic counterpart
2 baseSol ← create initial solution
3 (baseSol, s f (baseSol), statistics) ← Simulation (baseSol, short)
4 while VNS stopping criteria not reached do
5 k ← 1
6 repeat
7 newSol ← shake(baseSol, k)
8 newSol ← localSearch(newSol)
9 if detCosts(newSol) < detCosts(baseSol) then

10 (newSol, s f (newSol), statistics) ← Simulation (newSol, short)
11 if sf(newSol) < sf(baseSol) then
12 EliteSolutions ← add(newSol)
13 baseSol ← newSol
14 k ← 1

end
15 else

k ← k+1
end

end
until k > kmax

end
16 foreach solution eliteSol ∈ EliteSolutions do

(eliteSol, s f (eliteSol), statistics) ← Simulation (eliteSol, long)
end

17 return Set of stochastic solutions
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5
ON THE POTENTIAL USE OF SIMHEURISTICS TO MODEL HUMAN

NETWORK BEHAVIOR IN TRANSPORTATION AND LOGISTICS

Chapter 3 outlines simheuristics as promising simulation-optimization approach to solve

stochastic optimization problems. While the methodology is flexible enough to incorporate

any kind of simulation paradigm, especially Monte Carlo simulation has been used to model

system uncertainty in simheuristic applications. This chapter discusses the potential use

of simheuristics in agent based models to represent the inherent uncertainty found in

social networks shaped by strong interactions between different stakeholders. In particular,

applications in the context of supply chain management are reviewed. From this critical

analysis of existing simulation and optimization models, a second contribution emerges:

arguments supporting the need for hybridizing simulation with optimization methods as a

natural way to include social network behavior in OR models are provided, concluding in the

proposal of an agent based simheuristic framework. Highlights of this chapter include:

• a detailed literature review on simulation and optimization approaches to model hu-

man behavior in social networks. Special focus is put on literature found on operations

research methodologies to model behavioral traits in transportation and logistics chal-

lenges, e.g. manufacturing and production systems or urban city logistics (Gruler et al.

2016, in review process 2018a).1

1The work put forward by Gruler et al. (2016) is published in the SCOPUS indexed conference proceedings

47



CHAPTER 5. ON THE POTENTIAL USE OF SIMHEURISTICS TO MODEL HUMAN
NETWORK BEHAVIOR IN TRANSPORTATION AND LOGISTICS

• the conclusion that especially agent based simulation is currently used to model the

inherent uncertainty and dynamism of such complex and large scaled systems (Gruler

et al. in review process 2018a).

• the proposal of an agent based simheuristic framework that combines agent based

models with metaheuristics. This represents a novel simulation-optimization approach

to model and solve large-scaled optimization problems shaped by the complexity of

stakeholder interaction in social networks (Gruler et al. in review process 2018a).

5.1 Operations research approaches to model human
behavior in social networks

Operations Research (OR) methods such as simulation and optimization are frequently em-

ployed in the design, development and optimization of complex networks and systems (Derigs

2009). The realistic representation of these systems and networks through suitable models

is hereby of major importance. Even though complex systems and networks from different

application fields have been extensively studied by the OR community, the consideration of

realistic stakeholder behavior in these models is not so usual (Crespo Pereira et al. 2011,

Elkosantini 2015, Neumann and Medbo 2009).

However, behavioral factors (either associated to isolated individuals or complete collective

entities) are usually among the most important components in any real-life system. As such,

simplifying behavioral assumptions neglecting the major impact of uncertainty, randomness,

and dynamism that characterizes individual stakeholder behavior often make OR methods

inapplicable in practice (Bendoly et al. 2006, Schultz et al. 2010, Wang et al. 2015).

Nevertheless, the consideration of behavioral factors related to cognitive and social psy-

chology is only one side of the coin. As individual agents are highly influenced by the contacts,

ties, and connections shaping the group- and system dynamics of the social networks in which

they operate, the modeling of social network interrelations is also of highest importance

(Renfro 2001, Russel and Norvig 2003). Knoke and Yang (2008) even suggest that structural

relations between different network actors follow the same patterns:

of the International Conference in Smart Cities 2016 in Málaga, Spain. Its findings were presented by the
PhD-candidate Aljoscha Gruler. As first author of this publication, the student was mainly responsible for the
review design and the collection and summary of related and relevant research documents.
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i they are often more important in explaining behavior than individual traits such as age,

gender, etc.

ii they affect the perceptions, beliefs, and actions of individual network agents through

structural mechanisms of social networks.

iii they are dynamic over time.

The inclusion of human behavior in simulation and optimization models has received

increased attention in recent years. Figure 5.1 shows a clear increase in Scopus-indexed

publications related to human behavior in the context of simulation or optimization. Especially

in the areas of computer science, engineering, and mathematics the incorporation of complex

system dynamics through behavioral traits seems to be of interest (Figure 5.2).

Simulation is mostly used to evaluate complex systems in which multiple actors interact

in specific multi-agent social networks, similar to the one outlined in Figure 5.3. In this

context, agent based simulation (ABS) arose with the desire to study complex and adaptive

systems and their behaviors (Heath and Hill 2010). Individual agents are thus modeled with

unique attributes and behaviors, reacting to the actions, perceptions, and interrelations with

other stakeholders in the modeled system environment (Bandini et al. 2009, Kennedy 2010,

Macal and North 2010, Siebers et al. 2008).

While ABS is the most common simulation approach to model behavioral traits in a social

network environment, discrete event simulation (DES) has also been applied to represent

such environments (Robinson 2004). A clear difference of ABS and DES focused modeling

is still not fully achieved in the context of OR (Siebers et al. 2010). Generally, ABS models

represent a bottom up approach to represent different entities (agents) and their interactions,

while DES is based on a process oriented, top down modeling approach. Table 5.1 compares

the main characteristics of ABS models and DES models. The review of relevant literature

completed in the following sub-sections characterizes existing models according to these

criteria.

Apart from simulation techniques as natural way to incorporate human behavior dynamics

and the resulting randomness in the evaluation of social network structures, optimization

is usually required to increase the efficiency of related processes. Resulting optimization

problems are either addressed by exact solution methods for smaller instances, or approximate

methods such as metaheuristics for larger problem settings (Talbi 2009, Vazirani 2012).
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Figure 5.1: Evolution of publications related to human behavior in combination with simula-
tion and/or optimization in Scopus indexed journals.

Figure 5.2: Subject area of publications related to human behavior in combination with
simulation and/or optimization in Scopus indexed journals.
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Figure 5.3: Representation of a multi-agent social network.

Table 5.1: Main characteristics of ABS models and DES models. Retrieved from Siebers et al.
(2010).

ABS Models DES Models
Focus on modeling entities and their interactions Focus on modeling the system and its processes
Bottom up modeling approach Top down modeling approach
Each agent has its own thread of control Single thread of control
Passive entities Active entities
Queues are a key element No concept of queues

The following review of OR approaches to model social network environments is limited

to the field of supply chain management (SCM), in which agent behavior and stakeholder

interrelations plays a decisive role. Apart from presenting applications in the context of

logistics & transportation (especially in urban environments), the review also includes models

created for usage in manufacturing & production backgrounds. Main applications addressed

in the reviewed publications are summarized in Table 5.2. Furthermore, Table 5.3 outlines

the reviewed papers in detail, highlighting the proposed OR modeling approach.
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Table 5.2: Overview of reviewed social network environment.

Social Network
Environment Main Application Focus

Supply Chain
Management

Manufacturing & Production
x Cooperation among workers
x Workload balance and corporate social responsibility
x Workers initiative and autonomy
x Ergonomic conditions at work
x Robustness of social network with increasing size
Logistics & Transportation
x Personal attitudes towards uncertainty in demands
x Collaborative transportation management
x Horizontal cooperation among carriers
x Collaboration of urban freight stakeholders
x Coordination in the use of shared parking spots

Table 5.3: Summary of reviewed papers

Area Paper Simulation OptimizationABS DES Other

Manufacturing
&

Production

Spier and Kempf (1995) X
Okuda et al. (1999) X
Yang et al. (2007) X
Li et al. (2011) X
Crespo Pereira et al. (2011) X
Zhang et al. (2015) X
Putnik et al. (2015) X

Transportation
&

Logistics

Taniguchi et al. (2007) X X
Yuan and Shon (2008) X
Boussier et al. (2009) X
Yu et al. (2010) X
Tamagawa et al. (2010) X X
Chan and Zhang (2011) X
Li and Chan (2012) X
Teo et al. (2012) X X
Duin et al. (2012) X X
Wangapisit et al. (2014) X X
Okdinawati et al. (2014) X
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5.2 Human network behavior in transportation and logistics

The following subsections review operations research approaches to model behavioral traits in

the context of transportation & logistics. In particular, the modeling of network interactions

in manufacturing and urban freight transportation systems is emphasized.

5.2.1 OR approaches to model behavioral traits in manufacturing
systems

The importance of considering human behavior in manufacturing systems by integrating

psychological and emotional aspects is stressed by Elkosantini and Gien (2009). In their

work, they suggest a graphical and mathematical representation of production line workers,

whereby special attention is paid to individual behavior and social relationships between

workers. The authors highlight the influence of social interaction among employees on

individual performance levels. Other OR models in the context of manufacturing & production

address individual human factors such as fatigue, motivation, education, or personalities

(Digiesi et al. 2009, Elkosantini 2015, Huerta et al. 2007, Khan et al. 2012, Riedel et al.

2009, Silva et al. 2013). Also in this context, Grosse et al. (2015) developed a framework that

enables the integration of human-related factors into models associated with the planning of

tasks.

Spier and Kempf (1995) were among the first authors in proposing the inclusion of human

interrelations in simulation models. The authors use object oriented simulation (Garrido

2009) to test learning effects among workers in a small manufacturing line, showing that

proactive and cooperative agents provide the best company performance. More recent work

on similar issues apply ABS or DES to analyze, simulate, and evaluate production lines,

workforce allocation in manufacturing cells, or the impact of engineers in the product design

process. Okuda et al. (1999) stress that cooperation can be a key attribute in the planning

of efficient production lines. The authors test different production process designs (e.g. U-

shaped production lines and manufacturing cells) in terms of workload balance and total

throughput in small-lot manufacturing, characterized by a high need for production flexibility.

By using ABS, the impact of cooperation through human-oriented production lines is assessed.

The paper concludes that human-oriented production processes achieve the most balanced

working times and the highest company output through inter-worker learning effects.

Various simulation models focusing on workforce allocation in production lines have been
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developed in the past. However, most of them do not consider the impact of human behavior

and collaboration in their models. Zhang et al. (2015) overcome this drawback by integrating

different models of human agents in the context of dynamic systems with a discrete-event

behavior, which they use to evaluate changeover processes in manufacturing processes. By

modeling and simulating the dynamics of work processes together with the dynamics of

human behavior, the authors show that the incorporation of different cooperation styles and

skill levels can have noticeable effects on the expected throughput of the system. From the

reported simulation experiments, it can also be concluded that changeover assignments based

on collaborative strategies lead to the best system performance.

The effects of collaborative product design processes are studied by Yang et al. (2007).

They argue that many simulation methods applied in the planning of efficient product design

processes are very task-oriented and do not represent the central role of designers in the

process, which is deeply impacted by human initiative and autonomy, but also by collaboration

within project teams. They elaborate an agent based model (ABM) to predict, manage,

evaluate, and improve manufacturing design processes. Therefore, the design evaluation

depends on the degree of cooperative behavior among the product design team members.

Furthermore, human factors such as efficiency of designer and organization, human workload,

errors, and collaboration levels are taken into account.

Another ABM to represent the dominant role of product designers in product design

processes is proposed by Li et al. (2011). The designer agents in their model have distinctive

characteristics such as initiative, autonomy, and collaboration skills. They construct a simula-

tion model of a motorcycle design project, allowing for the analysis of product design process

traits such as organizational structure, scheduling strategies, and partner selection while

considering individual and social behavioral traits.

ABS seems to be the predominant method of choice for modeling and simulating social

interactions in manufacturing systems. However, there are some works that address the

issue by using DES approaches. Crespo Pereira et al. (2011) propose a manufacturing DES

environment to conduct training and research on how human operations take place. Their

experimental system allows for considering human factors such as inter-group differences,

worker experience, buffer capacities, work-sharing, and process state perception. Experi-

mental results based on a real-life case show that inter-group variations, experience, and

ergonomic conditions have a significant impact on the process outcome. Also using DES,

Putnik et al. (2015) test the robustness of large production networks in environments with

demand uncertainty. By modeling the behavior of socially connected individuals, their work
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shows that system robustness and production rates depend on system sizes and social net-

works. According to their simulation experiments, large social networks with lots of business

relations positively impact network robustness, while the production rate exhibits a nontrivial

relation to the number of connections.

5.2.2 OR approaches to model behavioral traits in urban freight
transportation

In the face of increasing market complexity driven by rapidly changing customer preferences,

globalization, and fierce competition, the need for effective supply chain management (SCM)

among suppliers, manufacturers, distributors, and retailers leads to complex dynamic systems.

In response to this, many innovative planning models of logistics and transportation systems

such as collaborative transportation management (CTM) or city logistics (CL) are based on

the idea of stakeholder collaboration (Crainic et al. 2009, Taniguchi et al. 2012, Benjelloun

and Crainic 2009). Consequently, behavioral factors on an individual and network level

have to be considered in the design of sustainable and integrated transportation & logistics

structures (Geary et al. 2006, Sarimveis et al. 2008).

In the context of CTM, different simulation approaches have been used to include cognitive

behavior (e.g., individual thinking, deciding, and reasoning processes) and social factors

(e.g., relationships and inter-organizational influences). As such, Yuan and Shon (2008)

propose a CTM model based on the collaboration in transportation management among

different supply chain partners. Their simulation tool is developed as realistic representation

of a beer supply chain with four levels. The authors show that transportation costs and

vehicle utilization levels can be significantly improved by collaboration and coordination of

transportation activities. Chan and Zhang (2011) use MCS to evaluate benefits of CTM in

long-term relationships between retailers and carriers. The authors illustrate the concept

of carrier flexibility to optimize delivery lead times. Their results show that collaboration

between both parties can reduce retail costs while improving service levels.

A conceptual framework for a behavioral multi-agent model considering the impact of

cognitive and social behavior is presented by Okdinawati et al. (2014). They propose the

inclusion of Drama Theory (see Bryant (2003, 2004)) in their model. This allows for consid-

ering stakeholder behavior in conflict and collaboration scenarios during the hierarchical

decision-taking process of CTM strategies on an operational, tactical, and strategic level.

Using ABS, Li and Chan (2012) describe the impact of CTM on SCM with stochastic
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demands. They simulate a three-level supply chain while taking into account factors such

as company characteristics, their types of action, and changes in company behavior. By

comparing the efficiency level reached in non-cooperative scenarios with the cooperative case,

the authors show that CTM can reduce global costs while increasing supply chain flexibility.

Their work concludes that CTM is an efficient approach to tackle demand disruptions.

Yu et al. (2010) use DES to test different information sharing scenarios between supply

chain members. More specifically, they consider information sharing about demand, inven-

tories, capacities, and their different combinations. Their results suggest that especially

information sharing concerning customer demands is critical for supply chain success. Fur-

thermore, they show that a full cooperative scenario based on shared information and assets

is ideal for obtaining higher levels of efficiency in most supply chains. There are some meta-

heuristic approaches that address similar concepts (e.g. Horizontal Cooperation) in which

interactions between network actors are highly important (Juan et al. 2014a, Pérez-Bernabeu

et al. 2015), but these optimization methods have not yet reached the same integration level

of behavioral issues as simulation approaches.

Related to CL, Tamagawa et al. (2010) develop a multi-agent methodology to evaluate

different CL measures (road pricing, truck bans, motorway tolls) taking into account the

behavior of partners in urban freight transportation. More specifically, the modeled agents

represent motorway operators, administrators, residents, shippers, and freight carriers. The

authors develop an acceptable network environment for all stakeholders by considering

conflicting objectives, transportation cost, profits, and environmental effects. To evaluate

different road networks, they apply a genetic algorithm to calculate different routing options

from the resulting Vehicle Routing Problem (VRP) with time windows. Furthermore, a

learning prototype affecting the behavior of different agents is implemented. This paper

extends a similar work of Taniguchi et al. (2007), in which the authors show that the

implementation of road pricing can reduce pollution emissions but may increase freight

shipment costs. To avoid such effects, cooperative freight transportation systems are proposed.

Teo et al. (2012) test government measures affecting urban road networks (e.g., road

pricing for trucks) in an e-commerce delivery system. Their ABM considers the behavior of

major stakeholders in the transportation environment. In particular, they propose a reinforce-

ment learning strategy for administrators to represent realistic agent behavior. Furthermore,

the resulting routing problem is optimized with an insertion heuristic. According to their

outcomes, when the government administrator considers freight vehicle road pricing, truck

emissions can be significantly reduced.
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A multi-agent approach to evaluate the financial and environmental impact of imple-

menting urban distribution centers in urban areas is presented by Duin et al. (2012). The

authors consider and test the dynamic behavior among different CL stakeholders. Moreover,

the impact of stakeholders’ behavior and actions towards city measures like tolls, operational

subsidies, time windows, and entry restrictions within city centers is evaluated. Experimental

results suggest that the development of a positive business environment for urban freight

consolidation centers depends not only on physical factors such as traffic congestion, but also

on the actions and behavior of each system agent. Their ABM also incorporates a genetic

algorithm for routing optimization.

Joint delivery systems, urban distribution centers, and car parking management within

city centers are the CL measures analyzed by Wangapisit et al. (2014). Their focus lies on

the interaction and cooperation among urban freight stakeholders when CL measures are

implemented. The authors use ABS combined with reinforcement learning and an insertion

heuristic to solve extended VRP versions with pick-up-and-delivery and time windows. Their

results suggest that urban distribution centers and joint delivery systems can improve the

environmental impact of urban freight transportation. They fine-tune the distribution center

implementation by applying urban parking management and subsidies for shopping street

associations. Car parking management in an ABM is also the matter of research in the paper

by Boussier et al. (2009). Their simulation models considers the behavior of different agents,

focusing of shared parking spaces between private and commercial vehicles. Furthermore,

the use of electric vehicle fleets in the development of ‘greener’ transportation systems is

taken into account in some works (Juan et al. 2014b, 2016).

5.3 The need for an integrated simulation-optimization
approach

Simulation techniques seem to offer a natural and efficient way to model both uncertainty

and system dynamics over time. In particular, ABS has been successfully applied in a range

of different application fields. Simulation itself, however, is not an optimization tool. Thus,

whenever the problem at hand requires maximization or minimization of a given objective

function (or several ones in the case of multi-objective optimization), simulation alone is not

enough. A logical way to proceed in those cases is to combine simulation with optimization

techniques. Since most social networks tend to be large-scale, the integration of simulation

57



CHAPTER 5. ON THE POTENTIAL USE OF SIMHEURISTICS TO MODEL HUMAN
NETWORK BEHAVIOR IN TRANSPORTATION AND LOGISTICS

with metaheuristics (i.e., simheuristics) might become an effective way to include human

factors inside NP-hard combinatorial optimization problems. As analyzed in Juan et al.

(2013b), these hybrid algorithms can also benefit from parallel and distributed computing

techniques.

Accordingly, an open research line in modeling human factors inside large-scale social

networks is the one related to exploring the fundamentals and potential applications of ‘agent

based simheuristics’, where metaheuristic-driven algorithms make use of ABS to account for

the uncertainty and dynamism present in these networks. As depicted in Figure 5.4, given

an optimization problem involving human factors in social networks (i.e., a stochastic and

dynamic large-scale system), the metaheuristic algorithm acts as an engine that proposes

’promising’ solutions (one at a time) to the ABS module. Each of these solutions is then

analyzed by the ABS component, which provides estimates on the real performance of the

proposed solution under the uncertainty and dynamic conditions associated with human

factors. The feedback from the ABS module is used by the metaheuristic to guide the search

process. This iterative process continues until a time-related ending condition is met. At that

point, the best-found solution (or a set of top solutions with different properties) is offered to

the decision-taker.

Figure 5.4: Agent based simheuristic framework.
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PROMISING APPLICATION AREAS IN URBAN FREIGHT

DISTRIBUTION

Urban freight distribution planning in the context of smart city logistics concepts are shaped

by diverse stakeholders, multiple facility layers, and different modes of transportation (Bektaş

et al. 2015). Similar to any kind of complex system, related optimization problems involve

decision making challenges on operational, tactical, and strategic levels. On the operational

side, issues related to schedules of workers and vehicles along with the control and adjustment

of established plans must be addressed. Tactical planning approaches assist the deployment

of resources, e.g. by defining departure times, vehicle loads, or customer allocations. The

strategic planing level is related to the system design and the evaluation of long-term

scenarios. Typical optimization problems include for example the opening of new facilities or

the quantification of long-term strategic collaboration agreements (Benjelloun and Crainic

2009).

This dissertation develops metaheuristic and simheuristic algorithms for a number of

problem settings. In the context of municipal waste management, the Waste Collection Prob-

lem is addressed by extending the well-known Vehicle Routing problem (VRP) to incorporate

additional landfill visits, time dependency, vehicle capacities and multiple collection fleet de-

pots. Regarding the design of integrated supply chain networks, rich versions of the Inventory

Routing Problem and the Location Routing Problem are discussed. All of the aforementioned
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Figure 6.1: Complexity and decision-taking integration of central problem settings addressed
in this thesis.

problem settings are consolidated in the quantification of supply chain collaboration concepts.

The central underlying combinatorial optimization problems (COPs) discussed in this

dissertation are summarized in Figure 6.1. On the one hand, the outlined figure compares

the problem settings according to their relative complexity from an algorithmic point of view.

On the other hand, the level of decision-taking integration related to the discussed COPs

is shown. Typically, increasing decision-taking integration based on collaborative supply

chain design leads to higher complexity regarding the underlying optimization problems. To

summarize, the highlights of this chapter include:

• the presentation of the Waste Collection Problem (WCP) as underlying optimization

problem in operational waste management. A rich problem version incorporating

capacitated vehicles, time windows, and driver lunch breaks is formulated. Moreover,

the effects of time dependency in waste collection and the integration of customer

clustering decisions formulated as multi-depot Vehicle Routing Problem (MDVRP) are

depicted (Gruler et al. 2017a,c, in review process 2018b).

• a mathematical formulation of the Inventory Routing Problem (IRP) and Location

Routing Problem (LRP). In particular, the former is presented as multi-period problem
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extension, while the latter is outlined as multi-echelon LRP arising in the creation of

urban consolidation centers (Gruler et al. 2018b,c).

• a discussion of the optimization problems arising in different horizontal collaboration

scenarios. Different levels of collaboration agreements between value chain actors

are defined. Furthermore, the optimization problems arising with each collaboration

scenario are highlighted (Quintero-Araujo et al. 2016, 2017b,c).1,2

• a detailed literature review on related state-of-the-art solving approaches found in the

literature. The main focus of this review is put on metaheuristic approaches to address

deterministic and stochastic versions of the presented problem settings.

6.1 Problem settings arising in municipal waste
management

In the face of rising population densities in urban areas around the world, a large number

of cities are currently reorganizing their municipal responsibilities (United Nations - De-

partment of Economic and Social Affairs 2015). In this context, solid waste management is

arguably "the most important municipal service" a city provides for its residents (The World

Bank 2012). A number of strategic, tactical, and operational issues — for example related to

the location of disposal sites or landfills, clustering of service territory, vehicle routing, etc. —

need to be addressed (Ghiani et al. 2014a).

Especially the collection phase is highly important. On the one hand, uncollected garbage

can lead to pollution of the environment and health issues, while noise and road congestions

through extensive use of waste collection vehicles decrease urban living standards. On the

other hand, waste collection represents up to two thirds of operational waste management

costs (Malakahmad et al. 2014, Son 2014, Tavares et al. 2009). Consequently, the Waste

Collection Problem (WCP) for effective route planning in municipal waste collection is of high

practical importance, especially in the context of smart city initiatives (Neirotti et al. 2014).
1The work put forward by Quintero-Araujo et al. (2016) is published in the SCOPUS indexed conference

proceedings of the Spanish National Conference on Metaheuristics and Evolutionary and Bio-inspired Algorithms
(MAEB) 2016 in Salamanca, Spain. Its findings were presented by the IN3-researcher Carlos Quintero-Araujo.
As co-author of this publication, the student was mainly responsible for the literature review, experiment design,
and analysis of results.

2The work put forward by Quintero-Araujo et al. (2017b) is published in the SCOPUS indexed journal
Progress in Artificial Intelligence. As co-author of this publication, the student was mainly responsible for the
algorithm framework, experiment design, and analysis of results.
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On the one hand, this dissertation proposes use of simheuristics for a rich version of

the WCP including time windows, driver lunch breaks, vehicle capacities, and stochastic

demands. On the other hand, the effect of time-dependent vehicle routing in a waste collection

environment under the consideration of travel time uncertainty is discussed. Finally, the

multi-depot vehicle routing case in which customers need to be assigned to different vehicle

fleet terminals is discussed in the context of garbage collection in clustered urban areas.

6.1.1 The Waste Collection Problem

Typically, the WCP is either modeled as a rich Vehicle Routing Problem (VRP) (Toth and Vigo

2014, Caceres-Cruz et al. 2014) or as an Arc Routing Problem (ARP) (Corberán and Laporte

2014), depending on the type of waste to be collected. While the collection of household refuse

in small bins from private homes is often modeled as an ARP, the VRP as node routing

model is more suitable for the collection of waste from larger containers, which are often

located close to retailers, construction sites, or waste collection points of building blocks in

metropolitan areas. This work addresses the WCP as a VRP in the following. The reader

is referred to Ghiani et al. (2014b) and Han and Ponce-Cueto (2015) for a more detailed

discussion of both modeling types.

Extending the classical VRP formulation, the WCP consists of a set of waste containers

(customers) with associated waste levels (demands) and a central depot in which a capacitated

vehicle fleet is located. Furthermore, there is a set of landfills at which collected waste is

disposed. The arcs (edges) connecting any two nodes are characterized by travel costs, e.g.

distance, time, or CO2 emissions. Figure 6.2 illustrates an example of a WCP solution with

two routes. Vehicles start at the central depot to visit a number of waste containers. A WCP-

specific problem constraint is that vehicles start and end their routes empty. For this reason,

at least one additional landfill trip is included on every route before the collection vehicle

returns to the central depot. As can be seen in Route 2, multiple landfill visits during the

same trip are also possible. Thus, a vehicle might visit a disposal site once its capacity is

reached and then continue the same trip as long as no further route constraints (e.g., time

windows, maximum number of stops, etc.) are violated.

Given the practical nature of the WCP, realistic problem instances discussed in the

literature typically include several hundred waste containers and several constraints related

to maximum route travel times, driver lunch breaks, time windows, etc. (Benjamin and

Beasley 2010, Buhrkal et al. 2012, Kim et al. 2006). These impose certain limits on the use
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Figure 6.2: Illustration of the Waste Collection Problem.

of exact methods to solve this NP-hard problem, calling for the application of metaheuristic

algorithms that are able to generate near-optimal solutions to large-scaled and realistic WCP

settings in calculation times of only a few seconds/minutes.

6.1.1.1 Problem description

The general WCP can be described as extension to the VRP on a graph G = (V , A), where

the set of nodes V = V d ∪V f ∪V c ∪V b includes: (i) a set of starting and ending depots

V d = {0,0′} (in practice both depots could be the same), with the starting depot being the

initial location of a fleet of homogeneous vehicles K = {1,2, . . . ,k}, each of them having a

capacity C; (ii) a set V f = {1,2, . . . ,m} describing m landfills at which collected waste must

be disposed at least once before visiting the ending depot; (iii) a set of waste containers

(customers) V c = {m+1, . . . ,m+n} with associated waste levels qi > 0 (∀i ∈ V c); and (iv) a

set V b = {0∗} representing a virtual lunch break node that has to be included in each route

(see Figure 6.3). Each node i ∈V \V d has an associated time window represented by [ai,bi]

(with 0≤ ai < bi). Necessary service times for emptying any container and the duration of the

lunch break are formulated as r i > 0 (∀i ∈V c ∪V b).

Likewise, the set A = {(i, j)/i, j ∈V , i 6= j} describes the arcs connecting any pair of different

nodes. Each pair is characterized by its respective travel costs, ci j = c ji ≥ 0, and travel times,

ti j = t ji ≥ 0. The travel time associated with going from any node i ∈V∪V b to the virtual lunch
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Figure 6.3: Graphical description of lunch node formulation for the WCP.

break node (and vice versa) is equal to zero, i.e.: ti0∗ = t0∗ i = 0. The travel costs associated

with ‘crossing’ the virtual lunch break node are given by the travel costs of the origin and

destination nodes, i.e.: ci0∗ + c0∗ j = ci j . The decision variables xi jl (∀(i, j) ∈ A, ∀l ∈ K) equal 1

if arc (i, j) is employed by vehicle l and 0 otherwise.

The mathematical model for the WCP outlined in the following extends the one proposed

in Buhrkal et al. (2012) (e.g. by including the lunch break constraints) and the one proposed

in Sahoo et al. (2005) (which only considers traveling times). In the mathematical model, dil

represents the accumulated load of vehicle l before serving node i, hil represents the service

starting time of vehicle l at node i, and M1 is a large-enough constant that can be defined as

M1 =max{bi}(∀i ∈V \V d)+max{si}(∀i ∈V \V d)+max{ti j} (∀(i, j) ∈ A).

The objective function of minimizing total cost is formulated in Equation (6.1), which

represents the costs of the edges selected (including the ones ‘crossing’ a lunch break node).

Constraints (6.2) imply that each vehicle leaves the starting depot, while constraints (6.3)

impose that each vehicle must visit a landfill right before reaching the ending depot. Con-

straints (6.4) ensure that each container is visited exactly once. Constraints (6.5) guarantee

that inflow and outflow to each non-depot node must be equal. Constraints (6.6) force to the

compliance of time windows. Constraints (6.7) define the earliest possible starting time for

the next customer taking into account service and travel times. Constraints (6.8) reset the

vehicle load to zero when leaving from or arriving at a depot. Constraints (6.9) take care

of the accumulating load levels after visiting each container. Constraints (6.10) force that

vehicles are empty after a visit to a landfill. Constraints (6.11) and (6.12) introduce a lunch

break during each route. Constraints (6.13) impose that travel times between the stops before
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and after the lunch break are taken into account to fix the earliest possible starting time

of the next container. Constraints (6.14) limit the maximum waste a vehicle may carry at

any time. Constraints (6.15) define the costs of crossing a virtual lunch break node. Notice

that these costs are calculated as the travel cost between the origin- and destination node,

i.e.: ci0∗ + c0∗ j = ci j. Thus, ci0∗ and c0∗ j are not inputs but decision variables satisfying the

aforementioned constraint. Finally, constraints (6.16) and (6.17) define variable domains.

(6.1) Min
∑

(i, j)∈A
ci j

∑
l∈K

xi jl

Subject to:∑
j∈V\V d

x0 jl = 1 ∀l ∈ K(6.2)

∑
i∈V f

xi0′l = 1 ∀l ∈ K(6.3)

∑
i∈V

∑
l∈K

xi jl = 1 ∀ j ∈V c(6.4) ∑
i∈V
i 6= j

xi jl =
∑
i∈V
i 6= j

x jil ∀ j ∈V \V d,∀l ∈ K(6.5)

ai ≤ hil ≤ bi ∀i ∈V \V d,∀l ∈ K(6.6)

hil + r i + ti j ≤ h jl + (1− xi jl)M1 ∀(i, j) ∈ A,∀l ∈ K(6.7)

dil = 0 ∀i ∈V d,∀l ∈ K(6.8)

d jl +C(1− xi jl)

d jl −C(1− xi jl)≤ dil + qi ≤ ∀i ∈V c ∪V b ∪ {0},∀ j ∈V \V d,∀l ∈ K(6.9)

d jl ≤ C(1− xi jl) ∀i ∈V f ,∀ j ∈V c ∪V b,∀l ∈ K(6.10) ∑
i∈V

xi0∗l = 1 ∀l ∈ K(6.11) ∑
j∈V

x0∗ jl = 1 ∀l ∈ K(6.12)

h jl + (2− xi0∗l − x0∗ jl)(M1 + r0∗)

hil + r i + r0∗ + ti j ≤ ∀(i, j) ∈ A,∀l ∈ K(6.13)

dil ≤ C ∀i ∈V f ,∀l ∈ K(6.14)

ci0∗ + c0∗ j ≥ ci j ∀(i, j) ∈ A(6.15)

dil ≥ 0 ∀i ∈V ,∀l ∈ K(6.16)
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xi jl ∈ {0,1} ∀(i, j) ∈ A,∀l ∈ K(6.17)

6.1.1.2 Literature review

Probably the first work to address municipal solid waste collection was introduced by Beltrami

and Bodin (1974). Since then, various solution techniques for different variants of the WCP

and its extensions have been proposed. While some works formulating the WCP as an ARP

can be found (Ghiani et al. 2005, Bautista et al. 2008), the following discussion focuses on

recent publications using VRP formulations. More extensive literature reviews are provided

by Beliën et al. (2014), Ghiani et al. (2014b), Golden et al. (2014) and Han and Ponce-Cueto

(2015).

Most works on the deterministic WCP focus on case studies with some problem extension,

e.g.: combined routing and vehicle scheduling. For example, Baptista et al. (2002) elaborated

an extension of the Christofides and Beasley heuristic for the multi-period WCP (Christofides

and Beasley 1984), modeled as a periodic VRP (PVRP) to combine vehicle scheduling over

multiple time periods with route planning. The authors used their approach to improve

municipal waste collection in a Portuguese city. Also addressing a multi-period WCP, Teixeira

et al. (2004) developed a cluster-first route-second heuristic to schedule and plan waste

collection routes for different waste types in a case study in Portugal with over 1600 collection

sites. Nuortio et al. (2006) presented a guided variable thresholding metaheuristic to solve a

multi-period WCP with several thousand collection points in Eastern Finland.

Hemmelmayr et al. (2013) addressed the PVRP with different waste types and up to

288 containers, which they solved with a VNS metaheuristic. They consider the landfills as

intermediate facilities, which are inserted in pre-constructed routes using dynamic program-

ming. In the same work, the authors also discussed the single period WCP with multiple

depots, in which the landfills serve as vehicle depots and disposal sites at the same time.

Later, Hemmelmayr et al. (2014) discussed the integrated vehicle routing and bin allocation

problem using the same real-life problem set, which they solved with a combination of a

VNS metaheuristic for the routing part and a mixed integer linear programming-based exact

method for the bin allocation. Ramos et al. (2014) extended the typical objective of minimizing

routing costs in order to include environmental concerns, considering multiple waste types

and numerous vehicle depots in a case study in Portugal.

Only focusing on waste collection routing, Kim et al. (2006) developed an extension

of Solomon’s insertion algorithm (Solomon 1987) to optimize routes of a North American
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waste management service provider, considering a capacitated vehicle fleet, time windows,

and driver lunch breaks. The authors reported reduced routing distances of up to 10%.

Furthermore, a benchmark set of 10 realistic instances based on the original case study

ranging from 102-2100 nodes is provided. This benchmark set was later employed by Ombuki-

Berman et al. (2007) to test a multi-objective Genetic Algorithm. Furthermore, the same

benchmark set was used by Benjamin and Beasley (2010) and Buhrkal et al. (2012) to test

their metaheuristic solution methods. Benjamin and Beasley (2010) combined Tabu Search

with VNS. By exchanging containers and landfills within and between routes, the solution

search space is systematically increased. Buhrkal et al. (2012) put forward an Adaptive Large

Neighborhood Search metaheuristic. Based on an initial solution, this approach applies a

range of destroy-and-repair methods to examine several solution neighborhoods. It is called

adaptive since the choice of methods depends on the solution quality obtained during the

construction of earlier solutions. Moreover, an acceptance criterion for new solutions based

on Simulated Annealing is included. Recently, Markov et al. (2016) presented a multiple

neighborhood search heuristic for a real-word application of the waste collection VRP with

intermediate facilities. The authors consider a heterogeneous vehicle fleet and flexible depot

destinations in their approach.

Concerning the WCP with stochastic demands, the literature is more scarce. Ant Colony

Optimization and a hybrid approach based on a Genetic Algorithm and Tabu Search for a case

study with 50 containers in Malaysia is presented in Ismail and Irhamah (2008) and Ismail

and Loh (2009). After planning a priori routes, waste levels are simulated according to a

discrete probability distribution. Routes undergo a recourse action (i.e., an additional disposal

trip) whenever actual demand exceeds the planned collection amount. Nolz et al. (2014)

formulated a collector-managed Inventory Routing Problem for a case study on the collection

of infectious waste. By using real information obtained through radio frequency identification,

their Adaptive Large Neighborhood Search algorithm is able to consider stochastic inputs.

Alshraideh and Abu Qdais (2017) combined a multi-period WCP with time windows and

stochastic demands in an areal case study of medical waste collection from 19 hospitals in

Northern Jordan. They used a Genetic Algorithm and a probability constraint regarding a

pre-defined service level to solve the problem.

Related to the dynamic WCP in combination with modern Information- and Commu-

nication Technology (ICT), Johansson (2006) tested the introduction of volumetric sensors

in Malmoe (Sweden) through analytic modeling and discrete-event simulation. She com-

pares static routing with its dynamic counterpart in which containers raise alarms when
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a certain waste level is exceeded, suggesting that dynamic waste collection routing could

lead to improved operations. Later, Faccio et al. (2011) elaborated a real-time tractability

system for multi-objective waste collection in an Italian city. They discuss the use of ICT (e.g.,

volumetric sensors, Radio Frequency Identification, GPS, etc.) to connect containers, vehicles,

and the operations center in an economic feasibility analysis. More related to simulation than

optimization, Wang (2001) developed an integrated simulation model for solid waste collection

with both deterministic and stochastic waste generation and household set-out rates. The

proposed decision support tool can be used to evaluate collection systems concerning environ-

mental and operational costs and optimize the system design under different circumstances.

Also related to stochastic waste collection, Yeomans (2007) integrated grey programming into

evolutionary simulation-optimization to solve solid waste collection problems with high levels

of uncertainty.

6.1.2 Time-dependent vehicle routing

Time dependency is an important aspect in the modeling of realistic vehicle routing scenarios.

Especially in urban areas, factors such as traffic congestions lead to substantial variations

in travel speeds. For example, traffic peaks can typically be expected during morning and

evening hours. Municipal route planners need to incorporate expected speed variations in

order to establish efficient vehicle routing schedules (Figliozzi 2012). Especially in the context

of urban waste collection time dependency is an important issue, as traffic peaks should be

avoided to minimize the negative implications of garbage collection regarding traffic flows

and ensure smooth waste collection operations.

6.1.2.1 Problem description

Figure 6.4 illustrates the effects of time-dependent and stochastic travel speeds. Given the

distance of traversing any edge in a routing problem, the travel durations to pass this edge

can be calculated as quotient of travel distance and the expected vehicle speed. In time-

dependent routing scenarios, driving velocities vary according to different time periods within

the route planning horizon. Apart from the expected travel speeds, realistic problem settings

should also consider travel time variances due to different levels of planning uncertainty.

The effects of different travel time assumptions are highlighted as optimistic and pessimistic

vehicle speeds below, showing that variances in vehicle velocities can significantly impact the

necessary time to visit a number of nodes, whereas the traveled distance is the same in all
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cases. This input uncertainty naturally occurs in most real-life routing problems, especially in

metropolitan areas where actual travel times between different points are almost impossible

to predict.

An important aspect in time-dependent vehicle routing models is the no-passing/first-in-

first-out (FIFO) property. This ensures that a vehicle leaving node i at time t to visit node

j arrives at the destination node before any similar vehicle traversing the same route with

starting time t+ε (ε> 0) (Figliozzi 2012).

Figure 6.4: The effect of stochastic travel durations due to time-varying vehicle speeds in
time-dependent routing scenarios.

6.1.2.2 Literature review

In the field of vehicle routing optimization, time dependency was not considered up to the

early 2000s apart from a few exceptions. Malandraki and Daskin (1992) formulated travel

times as a step function of the time of day. This drawback in the travel time function was

improved by Hill and Benton (1992), who developed the first travel-time-model based on

time-varying vehicle speeds, which implies the FIFO characteristic. Later, Ichoua et al. (2003)

used an improved version of this vehicle speed model in combination with a parallel tabu

search heuristic to show the benefits of time-dependent vehicle routing compared to its static
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counterpart. The impact of time-dependent travel times to avoid traffic congestions was also

addressed more recently in the work of Kok et al. (2012), who showed that late arrivals at

customers and extra duty times through traffic jams can be significantly reduced through

smart congestion avoidance strategies.

An iterated local search algorithm for the time-dependent VRP with time windows

(TDVRPTW) was presented by Hashimoto et al. (2008). Computational experiments include a

variety of problem instances with up to 1000 nodes. The TDVRPTW was also addressed in

the works of Balseiro et al. (2011) and Harwood et al. (2013). The first-mentioned authors

developed an ant colony system hybridized with insertion heuristics which is tested on

problem instances with up to 100 clients. The latter established quick estimates of time-

dependent travel times for the single vehicle VRP (traveling salesman problem). Their

results show that their estimations can lead to significant computational time reductions in

neighborhood-based metaheuristics.

The TDVRP with simultaneous pickup and deliveries was addressed by Zhang et al.

(2014) through an integrated ant colony and tabu search approach. A total of 100 customers

are considered. Recently, much attention has also been paid to the environmental effects

of routing (in the context of so called pollution routing problems). Kuo (2010) developed a

simulated annealing algorithm for establishing emission-minimizing vehicle routes while

taking into account varying edge traversing times. Computational results are provided using

benchmark instances with up to 100 customers. The trade off between travel times and CO2

emissions in time-dependent VRPs was analyzed by Jabali et al. (2012). The time-dependent

pollution routing problem was also analyzed in the work of Franceschetti et al. (2013). The

authors proposed an integer linear programming formulation for cases without any traffic

congestion. Environmental considerations are also included in the work of Soysal et al.

(2015a), who addressed the time-dependent two-echelon VRP through a comprehensive mixed

integer linear programming (MILP) formulation.

All previously cited works focused on the deterministic version of the TDVRP. For stochas-

tic problem settings the literature is more scarce. Lecluyse et al. (2009) developed a tabu

search metaheuristic for the TDVRP with stochastic travel times. Nahum and Hadas (2009)

developed an extended version of the well-known savings algorithm to address the stochastic

TDVRP. Taş et al. (2014) proposed a tabu search and adaptive large neighborhood search

metaheuristic for the TDVRP with soft time windows and stochastic travel times.
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6.1.3 The multi-depot Vehicle Routing Problem

A well-known VRP extension is the MDVRP, in which the final delivery of products is

done from several depots to a set of customers (Montoya-Torres et al. 2015). In contrast

to the simple vehicle routing case with a single depot, customers have to be allocated to

different depots in a combinatorial assignment problem, before each depot–node assignment

combination is solved as VRP. In particular, this problem setting is discussed in this thesis in

the context of collaborative transportation & logistics concepts in waste collection of clustered

urban areas.

6.1.3.1 Problem description

A simple example of the benefits of integrating customer allocation and vehicle routing

decisions in urban waste collection can be seen in Figure 6.5. In the non-collaborative

scenario (a), waste management service providers (each represented by a single depot) do not

share information about waste containers to be emptied and plan their respective collection

routes individually. It can be intuitively observed that the collaborative scenario (b) in

which containers, landfills, and depots are shared leads to lower routing costs, less traffic,

higher service levels, and a lower environmental impact through the waste transportation

activities. Applications of this horizontal collaboration concept in waste collection can be

especially beneficial in large clustered cities with various waste management service providers

responsible for different areas of a municipality and highly clustered metropolitan areas (e.g.

the Ruhr area in Germany or greater Barcelona).

The MDVRP can be formally described on a graph G = (V ,E), where V is a set of nodes

and E the set of connecting edges. Node set V is further partitioned into two subsets:

Vc = (v1,v2, ...,vN ) and Vd = (vN+1,vN+2,vM), which represent the customer and depot nodes,

respectively. Each customer vi ∈Vc has a non-negative demand di, while each arc in E has an

associated travel cost ci j. The nodes are visited by a fleet of K vehicles with capacity C based

at each depot. The problem consists in defining a set of vehicle routes in such a way that: (i)

each route starts and ends at the same depot, (ii) each customer is visited exactly once, (iii)

the total demand of each route does not exceed the vehicle capacity, (iv), each route starts

and ends at the same depot, and (v) the total cost of the distribution is minimized (Renaud et

al. 1996).
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Figure 6.5: Non-collaborative (a) and collaborative (b) scenarios in waste management.

6.1.3.2 Literature review

The most efficient solving approaches for the MDVRP are based on metaheuristic approaches.

Pisinger and Ropke (2007) propose an adaptive large neighborhood search metaheuris-

tic which requires the fine-tuning of as much as 14 parameters. Vidal et al. (2012) use a

hybrid genetic algorithm to solve different VRP variants, among them the MDVRP. The

integration of Biased Randomization techniques inside an ILS framework designed to solve

routing problems with multiple depots is discussed in the work of Juan et al. (2015b). The

proposed methodology first allocated customers to the available depots, before each customer-

depot-assignment is solved as a single-depot VRP instance through a multi-start procedure.

Similarly, the MDVRP is decomposed into an customer assignation problem and the re-

sulting single depot VRP by de Oliveira et al. (2016). The authors propose a cooperative

co-evolutionary algorithm to solve the COP. Mancini (2016) formulates the MDVRP with a
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heterogeneous vehicle fleet and multiple periods, and proposes an efficient adaptive large

neighborhood search matheuristic to solve the problem. Regarding stochastic versions of the

MDVRP, Calvet et al. (2018) propose a simheuristic based the combination of simulation and

a multi-start metaheuristic to solve MDVRP while integrating stochastic demands. Moreover,

the authors consider a limited depot capacity in their approach. For a more detailed literature

review on recent solving approaches for different MDVRP extensions, the reader is referred

to Karakatič and Podgorelec (2015) and Montoya-Torres et al. (2015).

In contrast to the general MDVRP, the literature is scarce for the special case of waste

collection routing, even non-existent for the stochastic case. A closely related problem setting

to the multi-depot WCP (MDWCP) is discussed by Crevier et al. (2007), who apply an adaptive

memory principle combined with integer programming and tabu search metaheuristics to

consider the MDVRP with inner-route replenishment points. Hemmelmayr et al. (2013)

consider multiple depots and landfills in a case study for node routing for the collection of

waste from public waste delivery points to landfills by applying a hybrid approach. Combining

variable neighborhood search and dynamic programming, the authors solve smaller problem

instances with up to 75 collection points. Additionally, Ramos et al. (2014) improve the

economic and environmental impacts of recyclable waste collection by solving the WCP with

multiple depots as a mixed integer linear programming model.

6.2 Problem settings arising in integrated distribution
network design

Supply chain management is of micro- and macroscopic importance. On the one hand, the costs

associated with moving and storing goods constitute a major economic factor for organizations

of different sectors (European Commission 2011). On the other hand, the usage of freight

delivery vehicles leads to negative externalities such as air pollution, excessive noise, and

traffic congestion (Hall et al. 2012, United Nations 2011, U.S. Environmental Protection

Agency 2013).

Decision takers generally face three main tasks in the design and management of dis-

tribution networks: (i) operationally focused vehicle routing, (ii) tactical decisions regarding

inventory replenishment levels, and (iii) the strategic decision of facility location. These

decisions are closely related and should be made jointly to optimize overall supply chain man-

agement costs (Li et al. 2013). From an optimization point of view, the creation of integrated
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supply chain networks yields different challenging problem settings. This thesis addresses

rich versions of the Inventory Routing Problem (IRP) and the Location Routing Problem

(LRP), which are closer described in the following.

6.2.1 The multi-period Inventory Routing Problem

The concept of vendor managed inventories (VMI) is based on the transfer of inventory

management decisions to the central supplier. In a VMI, a total of n retail centers (RCs) is

stocked from a single supplier located at a central warehouse. Inventory levels at each RC

and necessary replenishment quantities delivered by the supplier are defined through final

customer demands. In non-collaborative supply chains, each RC defines its own replenishment

levels based on its own inventory management decisions, which directly effects the delivery

route planning process of the supplier. On the contrary, the implementation of VMI centralizes

inventory and routing decisions at the supplier, allowing the optimization of both decisions

from an overall supply chain perspective (Andersson et al. 2010, Coelho et al. 2013).

From an optimization point of view, this supply chain strategy is represented by the

Inventory Routing Problem (IRP). This combinatorial optimization problem (COP) can be

seen as an extension to the well-known Vehicle Routing Problem (VRP), making the problem

setting NP-hard (Caceres-Cruz et al. 2014, Lenstra and Kan 1981). A visual representation

of the multi-period IRP case is provided in Figure 6.6. Due to the inherent complexity of

the IRP, especially metaheuristic solving methodologies are used to create inventory and

routing plans for large sized IRP instances. As is the case of other COP’s however, most

solving frameworks are only capable of providing oversimplified problem solutions, in which

the natural uncertainty of most real-life systems is left unaccounted for.

6.2.1.1 Problem description

The symbols and variables used to mathematically describe the multi-period IRP are listed

in Table 6.1. Let V = {0,1, . . . ,n} denote a finite set of locations consisting of the depot (node 0)

and n RCs. The set of RCs will be denoted by V∗ =V \{0}. With the goal of minimizing total

expected cost, the stochastic and periodic IRP combines inventory and routing decisions over

a finite planning horizon P with |P| ≥ 1 periods. The customers’ aggregated demand at each

RC i ∈V∗ during a period p ∈ P is a random variable, D ip, which follows a known probability

distribution. In this work, it is assumed that these random demands are independent across

RCs and throughout periods –although they do not need to be identically distributed. Likewise,
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Figure 6.6: A simple 2-period Inventory Routing Problem.

it will be assumed that the customers’ aggregated demand at each RC and period will always

be satisfied. Thus, should a stock-out occur during a period p at RC i, an additional shipment

from the depot to i will be placed by the end of period p to cover the non-satisfied demand.

The cost of this extra shipment will be accounted as stock-out cost.

Regarding inventory management, the decision variables refer to the quantity of product,

qip ≥ 0, that must be served at RC i at the beginning of period p (∀i ∈V∗, ∀p ∈ P). If l+i > 0

denotes the maximum storage capacity of RC i, and L0
ip denotes the initial stock available at

RC i during period p (0≤ L0
ip ≤ l+i ), then qip ≤ l+i −L0

ip.

The initial stock level for the first period (p = 1) is given as an input, i.e., L0
i1 = l0

i1, ∀i ∈V∗.

By the end of each period, once the customers’ aggregated demands are known, the initial

stock level for the next period can be computed as L0
i(p+1) = max{L0

ip + qip −D ip,0}. Likewise,

at this point the holding- or stock-out inventory cost at RC i and period p can be obtained by

using Equation 6.18, where λ represents the unitary cost of holding surplus inventory by the

end of a period, and c0i represents the cost of a direct shipment from the depot to RC i (this
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Table 6.1: Symbols used in the mathematical multi-period IRP formulation.

Symbol Indices Meaning
P p = 1, ..., |P| Set of periods included in the planning horizon
K k = 1, ..., |K | Set of (homogeneous) vehicles
V i, j = 0,1, ...,n Set of locations, including the depot 0 and n RCs
V∗ i, j = 1, ...,n Set of RCs (V∗ =V \{0})
ci j i, j ∈V Cost of traveling from i ∈V to j ∈V
h > 0 Maximum vehicle capacity
l+i > 0 i ∈V Maximum storage capacity of RC i
L0

ip i ∈V Initial stock available at RC i during period p
D ip i ∈V∗, p ∈ P Customers’ aggregated demand at RC i during a period p
qip ≥ 0 i ∈V∗, p ∈ P Quantity served at RC i at the beginning of period p
yip ≥ 0 i ∈V∗, p ∈ P Binary variable that defines if RC i is visited at period p
xpk

i j i, j ∈V ,k ∈ K Binary variable that defines if vehicle k goes from i to j at period p

value is multiplied by 2 in order to account for the return trip to the depot):

(6.18) f (qip,D ip)=
λ(L0

ip + qip −D ip) if surplus L0
ip + qip ≥ D ip

2 · c0i if stock-out L0
ip + qip < D ip

Accordingly, the total inventory cost can be expressed as shown in Equation 6.19:

(6.19) I(qip,D ip | i ∈V , p ∈ P)= ∑
p∈P

∑
i∈V∗

f (qip,D ip)

For each period p ∈ P, a VRP needs to be solved for those RCs i with qip > 0. As discussed

in Toth and Vigo (2014), the VRP can be defined on a complete and undirected graph G =
(V ,E), where V includes the depot from which n demand points (RCs) are served with a set

K of homogeneous vehicles, and E is the set of edges connecting each pair of facilities in V .

Each of the vehicles in the fleet has a maximum loading capacity given by h > 0. There is a

traveling cost, ci j = c ji > 0 associated with moving from a facility i to a different facility j

(∀i, j ∈ V , i 6= j). The routing cost at period p depends on the binary decision variables xpk
i j ,

which define whether or not the edge connecting facilities i and j is traversed at period p

by a vehicle k ∈ K . Notice that this might depend upon the specific values of the customers’

demands D ip, i.e., xpk
i j = xpk

i j (D ip). Accordingly, the total routing cost across all periods can be

expressed as shown in Equation 6.20:

(6.20) R(xpk
i j ,D ip | i, j ∈V , p ∈ P,k ∈ K)= ∑

p∈P

∑
i∈V

∑
j∈V

∑
k∈K

ci jx
pk
i j
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The objective of simultaneously setting the qip and xpk
i j decision variables in order to

minimize the expected overall inventory and routing cost is formulated in Equation 6.21:

(6.21) E[I(qip,D ip)+R(xpk
i j ,D ip)]= ∑

p∈P

( ∑
i∈V∗

E[ f (qip,D ip)]+ ∑
i∈V

∑
j∈V

∑
k∈K

ci jE[xpk
i j ]

)

Constraints 6.22 define the range of each inventory-refill decision variable:

(6.22) 0≤ qip ≤ l+i −L0
ip ∀i ∈V∗,∀p ∈ P

Equation 6.23 relates the aggregated demand at period p with the initial inventory levels

at the next period:

(6.23) L0
i(p+1) = max{L0

ip + qip −D ip,0} ∀i ∈V∗,∀p ∈ {1,2, . . . , |P|−1}

Equations 6.24 and 6.25 state that, for each RC i, yip = 1 if qip > 0 and yip = 0 otherwise

(where M is a very large number):

(6.24) qip ≤ l+i yip ∀i ∈V∗,∀p ∈ P

(6.25) yip ≤ Mqip ∀i ∈V∗,∀p ∈ P

Given the set of RCs that are served at period p (qip > 0), the established vehicle routes

are stated by setting the variables xpk
i j , ∀i, j ∈V ,k ∈ K . For all i ∈V∗ and p ∈ P, let yip be a

binary variable that takes the value 1 if RC i has to be serviced at the beginning of period p

(i.e., if qip > 0), and takes the value 0 otherwise.

Constraints 6.26 imply that each vehicle k leaves from, and returns to, the depot exactly

once each period:

(6.26)
∑

i∈V∗
xpk

0i = ∑
i∈V∗

xpk
i0 = 1 ∀k ∈ K ,∀p ∈ P

Constraints 6.27 guarantee that each visited RC i ∈V∗ is left after the service operation

of any time period:

(6.27)
∑

j∈V\{i}
xpk

i j + ∑
j∈V\{i}

xpk
ji = 2 · yip ∀i ∈V∗,∀k ∈ K ,∀p ∈ P

Equations 6.28 are subtour elimination constraints (the set of RC of a subtour would

violate the corresponding constraint) for each period:

(6.28)
∑
i∈S

∑
j∉S

xpk
i j ≤ 2

∑
i∈S

yip ∀S ⊂V∗,∀k ∈ K ,∀p ∈ P
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Meanwhile, Equations 6.29 avoid RC supplies exceeding vehicle loading capacities:

(6.29)
∑

i∈V∗

∑
j∈V

xpk
i j qip ≤ h ∀k ∈ K ,∀p ∈ P

Finally, Constraints 6.30 and 6.31 enforce binary conditions on the auxiliary and routing

decision variables:

(6.30) yip ∈ {0,1} ∀i ∈V∗,∀p ∈ P

(6.31) xpk
i j ∈ {0,1} ∀i, j ∈V ,∀k ∈ K ,∀p ∈ P

The multi-period IRP with stochastic customer demands consists in minimizing the

objective function 6.21 subject to the constraints 6.22 to 6.31.

6.2.1.2 Literature review

Two extensive literature reviews on different IRP settings and solving techniques are pre-

sented by Andersson et al. (2010) and Coelho et al. (2013). Apart from other structural

problem variants related to vehicle fleet compositions and further routing related aspects,

the most important IRP problem alternatives are highlighted in Table 6.2. For a clearer

distinction, the characterization of this work and the most closely related publications are

depicted. In this context, the problem setting addressed in this thesis establishes inventory

and routing plans over multiple time periods in a one-to-many supply chain setting. In

contrast to an order-up-to-level inventory strategy which defines a global refill stock level for

all RC’s, this dissertation discusses the maximum-level strategy, which defines an individual

inventory plan at each client for every time period. Furthermore, the possibility of product

stock outs at the end of each period is considered. Final customer demands are considered

to be of stochastic nature. Some metaheuristic solving methodologies for deterministic and

stochastic IRP variants are discussed in more detail in the following.

Liu and Lee (2011) propose a variable neighborhood tabu search (VNTS) for the IRP with

time windows. Based on an initial solution, different neighborhood structures in reference to

vehicle routing and inventory control strategies are investigated within the TS framework.

The authors consider up to 100 customers over 100 planning periods. Different neighborhood

structures are also used in the adaptive large neighborhood search (ALNS) metaheuristic
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Table 6.2: Structural IRP variants and relationship of this paper to closely related works.

Dimension Structural Variants
Time horizon Single-periodb Multi-period∗,a,c Cyclic -

Supply Chain structure One-to-one One-to-many∗,a,b,c Many-to-many Many-to-one
Inventory policy Maximum-level∗,b Order-up-to levela,c - -

Inventory decisions Stock outs∗,b Backlogginga,c Non-negative -
Input variables Deterministic Stochastic∗,a,b,c - -

∗this thesis
aBertazzi et al. (2013)

bJuan et al. (2014c)
cSolyalı et al. (2012)

developed by Aksen et al. (2014). The authors study a selective and periodic IRP in the

collection of vegetable oil from different origin nodes. Problem settings with up to 100 source

nodes and a 7 day planning horizon are addressed. Popović et al. (2012) develop a VNS

algorithm for a multi-product, multi-period IRP in fuel delivery with homogeneous multi-

compartment vehicles. A two-phased VNS for the multi-product IRP is discussed by Mjirda

et al. (2014). During the first solution stage, the associated VRP is solved, which is then

iteratively improved considering both transportation and inventory costs. Unlike previously

cited authors, a many-to-one supply chain network in which different suppliers serve a single

assembly line is discussed.

Abdelmaguid et al. (2009) put forward a heuristic approach for the finite multi-period

IRP with backlogging. After applying a constructive heuristic to estimate the transportation

costs for each customer in each considered period, an improvement heuristic is applied. Then,

customer delivery amounts are exchanged between periods to improve the initial solution.

They report solutions for problem settings with up to 15 customers and a 7 day planning

horizon. The multi-period IRP is also addressed by Archetti et al. (2012). However, stock out

situations are not considered in their work. The authors develop a hybrid heuristic based on

a Tabu Search scheme combined with ad-hoc designed mixed-integer programming models.

A three-phase heuristic for the multi-product, multi-period IRP is discussed by Cordeau et

al. (2015), whereby each stage represents a decision process. First, replenishment plans are

constructed using a Lagrangian-based method, specifying which customer to serve and how

much to deliver during each period. Secondly, the vehicle routes are constructed. Finally,

planning and routing decisions are combined into a mixed-integer linear programming model.

They solve problems with up to 50 customers and 5 different products.
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The same case of inbound logistics with up to 98 suppliers is also studied by Moin et al.

(2011) to test their hybrid genetic algorithm (GA) for the multi-product, multi-period IRP.

The algorithm follows the allocation-first, route-second strategy. A GA for the multi-period

IRP in a one-to-many supply chain network and the consideration of lost sales was recently

presented by Park et al. (2016). Their experiments are performed using problem sets with up

to 12 customers and 12 time periods. The special case of inventory routing in the petroleum

and petrochemical industry is addressed by Li et al. (2014), who propose a TS metaheuristic.

With the objective of minimizing route travel times, particularities of this problem setting

include the high importance of avoiding stock-outs and other operational constraints. A

population-based Simulated Annealing algorithm for the multi-product, multi-retailer IRP

with perishable goods is presented by Shaabani and Kamalabadi (2016).

Nambirajan et al. (2016) also extend the classic IRP formulation. A closer supply chain

collaboration is considered by including replenishment activities at a central depot and

different warehouses in a three echelon supply chain. First, the replenishment policy of a

set of manufacturers to a single depot is defined. Then, the routing of the central depot

to multiple warehouses is planned by using a three stage heuristic based on clustering,

allocation, and routing. An iterated local search algorithm for the cyclic IRP over an infinite

planning horizon is discussed by Vansteenwegen and Mateo (2014). Other heuristic and

metaheuristic techniques for the cyclic IRP have also been presented by Chitsaz et al. (2016),

Raa and Dullaert (2017), and Zachariadis et al. (2009).

Unlike for the deterministic case, literature on the IRP under uncertainty is more scarce.

Random demands for inventory routing over an infinite horizon is addressed in Jaillet et al.

(2002), who present incremental cost approximations in a rolling horizon framework. The

stochastic IRP is formulated as Markov decision process by Adelman (2004). The author

applies cost approximations by using dual prices of a linear program. Further approximation

methods for the IRP with demand uncertainty modeled as a Markov decision problem are

discussed by Kleywegt et al. (2004). Another approach in which the stochastic IRP is modeled

as Markov decision process is presented in Hvattum and Løkketangen (2008) and Hvattum et

al. (2009). The authors model random demand through general discrete distributions, while

their solution framework is based on the use of scenario trees. Solutions to the scenario tree

problem are obtained by using a standard MIP-solver, a greedy randomized adaptive search

procedure (GRASP), and a progressive hedging algorithm (PHA).

More recent work on stochastic inventory routing include the one of Bertazzi et al.

(2013), who consider an IRP with stock outs and a finite horizon, solved with a dynamic
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programming model and a hybrid roll-out algorithm. Bertazzi et al. (2015) address the

IRP with stochastic demand and transportation procurement by developing a rollout-based

matheuristic algorithm. A similar problem is addressed in a robust optimization approach

through MILP formulations by Solyalı et al. (2012). Especially the works of Bertazzi et al.

(2013) and Solyalı et al. (2012) discuss other variants of the problem addressed in this paper.

Thus, while the former considers an order-up-to level inventory strategy –in which each retail

center is filled to its maximum capacity each time it is visited–, the main goal in our version

is precisely to find out the optimal values for these refill strategies. Also, our approach allows

modeling customers’ demands by using different probability distributions, while Solyalı et

al. (2012) is a robust-based approach which assumes a uniform random behavior for these

demands.

Huang and Lin (2010) develop a modified ant colony optimization metaheuristic for the

multi-product IRP with demand uncertainty. A robust inventory routing policy, considering

stochastic customer demands and replenishment lead-times, is discussed by Li et al. (2016).

The robustness of inventory replenishment and customer selection policies for the dynamic

and stochastic IRP is addressed in Roldán et al. (2016). Yu et al. (2012) solve the stochastic IRP

with split deliveries and service level constraints. Soysal et al. (2015b) include environmental

concerns in their solution for the IRP with demand uncertainty by estimating CO2 emissions

in the route planning process. Greenhouse gas emissions are also minimized in the work of

Niakan and Rahimi (2015), who propose a fuzzy probabilistic approach to a multi-objective

IRP for medical drug distribution. Rahim et al. (2014) solve the multi-period IRP with

stochastic stationary demand through a deterministic equivalent approximation model. Also

addressing the IRP with stochastic demands, Chen and Lin (2009) consider a real life multi-

period, multi-product case. In addition, the authors incorporate risk aversion into their model.

Finally, Juan et al. (2014c) propose a hybrid simulation-optimization approach, combining

a multi-start metaheuristic with MCS, to address the single-period IRP with stochastic

demands.

6.2.2 The two-echelon Location Routing Problem

The establishment of efficient and sustainable city logistics systems is of major importance in

the creation of livable, environmentally-friendly, and healthy urban areas (Taniguchi et al.

2016). In this context, collaborative supply chain strategies constitute promising approaches

to reduce the negative effects of road freight transportation (Leitner et al. 2011, Pomponi
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et al. 2015). One promising collaboration concept to reduce the negative externalities of

urban road freight transportation involving an advanced level of company interaction is

the construction of urban consolidation centers (UCCs). Instead of directly serving a large

number of customers located within city borders from different delivery points, consolidated

final customer deliveries from one or several companies are completed from these satellite

facilities, which are typically situated in close proximity to city centers (Allen et al. 2007). This

enables the use of smaller delivery trucks with higher vehicle utilization levels (Savelsbergh

and van Woensel 2016).

Through the construction of UCCs, multi-level distribution networks are supported from

which a range of COPs can be deducted. While satellite locations are typically defined through

the Location Routing Problem (LRP) (Prodhon and Prins 2014, Quintero-Araujo et al. 2017a),

multi-level VRPs such as the two-echelon VRP arise in the creation of efficient delivery routes

(Cattaruzza et al. 2017). The two-echelon LRP (2E-LRP) addressed in this thesis combines

these NP-hard optimization problems. An illustrative 2E-LRP example solution can be seen

in Figure 6.7. Apart from establishing first-level (from the central depots to the UCCs) and

second-level (from the UCCs to the final customers) routing plans, the most efficient satellite

facilities from a set of possible locations needs to be defined.

Figure 6.7: Example of a 2E-LRP solution.
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6.2.2.1 Problem description

The LRP is defined on a graph G = (V , A), where the set V = I ∪ J includes different types

of nodes: (i) a finite set of customers I, each of them with a demand di > 0 (∀i ∈ I); and (ii)

a finite set of potential depot locations J, being D j > 0 the capacity of depot j (∀ j ∈ J) and

O j ≥ 0 the cost of opening that depot. A is the set of arcs linking each pair of nodes and, for

each a ∈ A, Ca represents the cost of traversing this arc. A set K of homogeneous vehicles

is available, being Q > 0 the capacity of each vehicle. It is also assumed that there is a fixed

cost, V F, per vehicle (route) employed. Let S be a subset of nodes, and δ+(S) (respectively

δ−(S)) the set of arcs leaving (respectively entering) S. Finally, let L(S) be the set of arcs with

both ends in S. As pointed out in Prins et al. (2006), the LRP can be formulated as follows,

where Y j refers to whether or not depot j is opened, X i j defines whether or not customer i is

assigned to depot j, and fak indicates whether or not arc a is traversed by vehicle k:

(6.32) Min Z =
∑
j∈J

O jY j +
∑
a∈A

∑
k∈K

Ca fak +
∑
k∈K

∑
a∈δ+(J)

V F fak

Subject to:∑
k∈K

∑
a∈δ−(i)

fak = 1 ∀i ∈ I(6.33)

∑
i∈I

∑
a∈δ−(i)

di fak ≤Q ∀k ∈ K(6.34)

∑
a∈δ+(v)

fak −
∑

a∈δ−(v)
fak = 0 ∀k ∈ K ,∀v ∈V(6.35)

∑
a∈δ+(i)

fak ≤ 1 ∀k ∈ K ,∀i ∈ I(6.36)

∑
a∈L(S)

fak ≤ |S|−1 ∀S ⊆ I,∀k ∈ K(6.37)

∑
a∈δ+( j)∩δ−(I)

fak +
∑

a∈δ−(i)
fak ≤ 1− X i j ∀i ∈ I,∀ j ∈ J,∀k ∈ K(6.38)

∑
i∈I

di X i j ≤ D jY j ∀ j ∈ J(6.39)

fak, X i j,Yi ∈ {0,1} ∀a ∈ A,∀k ∈ K ,∀i ∈ I,∀ j ∈ J(6.40)

The objective function (6.32), is the minimization of total costs, including: opening costs,

traversing costs, and fixed costs associated with the use of vehicles. Constraints (6.33) estab-

lish that each customer is visited exactly once. Vehicle capacity constraints are represented
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by (6.34). Constraints (6.35) and (6.36) guarantee the continuity of each route and the return

of any vehicle to the origin. Sub-tour elimination constraints are represented by inequalities

(6.37). Expressions (6.38) guarantee that a customer is only assigned to an open depot. Con-

straints (6.39) specify that the depot capacity cannot be exceeded. Finally, expressions (6.40)

define the domain of the decision variables.

6.2.2.2 Literature review

A comprehensive survey on two-echelon routing problems was recently presented by Cuda et

al. (2015). The authors highlighted three problem extensions according to the involved level

of tactical and/or strategical planning decisions:

i the tactically focused two-echelon VRP, in which routing plans between different echelons

are established.

ii the two-echelon LRP, in which strategic facility location decisions are included.

iii truck-and-trailer problems, in which customers are served by different trucks and trailers

according to a set of restrictions.

The authors concluded that the current literature on two-echelon routing problems is still

lacking the consideration of input uncertainty.

Drexl and Schneider (2015) reviewed relevant literature on variants and extensions of the

location-routing problem. Even though multi-echelon problem settings were not considered,

the authors highlighted the use of simulation to solve the LRP with stochastic demands

as done by Mehrjerdi and Nadizadeh (2013). These authors proposed a greedy clustering

method to solve the capacitated LRP. Customer demands are hereby simulated using fuzzy

logic. While their solving methodology has similarities to the one described in this thesis, the

authors do not consider multiple echelons. Furthermore, the simheuristic allows for applying

any kind of probability function instead of relying on fuzzy logic to account for demand

stochasticity.

Recently, further extensions to the 2E-LRP have been presented. Rahmani et al. (2016)

proposed a mixed-integer linear model for small-scale instances and extensions of some

nearest neighbor and insertion approaches for the same problem setting. The authors devel-

oped new clustering-based approaches for LRPs. Computational experiments showed that

the clustering approach is very competitive and outperforms other heuristics for smaller
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problem instances with less than 200 nodes. Dalfard et al. (2013) applied hybrid genetic and

simulated annealing algorithms for the "E-LRP with vehicle fleet capacity and maximum

route length constraints. The authors compared their results to solutions obtained with the

software LINGO, suggesting that their proposed algorithm is more effective. Vidović et al.

(2016) presented a mathematical formulation of a two-echelon location-routing problem in

case of recycling logistics networks. Collecting points between end customers and transfer

stations are defined using a mixed-integer linear programming model that maximizes the

profit and creates a distance-dependent collection rate. For solving large problem instances,

the authors put forward heuristic solving approaches.

6.3 Horizontal collaboration concepts in urban freight
transportation

Current business environments are shaped by globalized markets, real-time communication,

and rapidly changing customers’ demands. Accordingly, companies are forced to efficiently

reorganize their logistic processes to stay competitive by quickly reacting to market changes.

In this context, horizontal collaboration (HC) is a promising supply chain management

strategy to reduce transportation and logistics (T&L) costs while increasing customer service

levels. HC is defined by Bahinipati et al. (2009) as “a business agreement between two or

more companies at the same level in the supply chain or network in order to allow ease of

work and collaboration towards achieving a common objective".

Regardless whether they are competitors or organizations operating in different markets,

companies involved in HC agreements share information and resources to reduce T&L-related

costs. This includes the potential reduction of negative environmental impacts associated

with transportation activities (Lera-López et al. 2012). The importance of sustainable supply

chain management is underlined by the fact that road transportation is estimated to account

for around 18% of total greenhouse gas emissions in the EU (Hall et al. 2012). Even higher

percentages have been reported for other parts of the world, such as the Asia and Pacific

region (United Nations 2011) or the United States (U.S. Environmental Protection Agency

2013).
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6.3.1 Collaboration scenarios and resulting optimization problems

Changing monetary and environmental impacts of different HC levels when facing integrated

routing-and-facility-location decisions can be defined (Table 6.3):

i delivery-routes and facility-locations are individually defined by each company in a

non-collaborative scenario.

ii a semi-collaborative scenario involving customer-service exchanges between different

companies is considered. By sharing client information and vehicle capacities, joint

routing plans are supported. In these routing plans, customers might be assigned to

different depots.

iii a fully-collaborative scenario involving integrated routing and facility location decisions.

This scenario represents an advanced HC concept, in operational, tactical, and strategic

decisions are jointly taken.

Each of the aforementioned HC scenarios corresponds to a different combinatorial op-

timization problem. Thus, each company faces a VRP in the non-collaborative scenario

(Caceres-Cruz et al. 2014). Likewise, in the semi-collaborative scenario, centralized routing

decisions result in a MDVRP. Finally, the fully-collaborative scenario requires the solution of

a LRP, in which decisions on route planning and facility locations are combined.

A simple problem setting and three alternative HC scenarios regarding route- and facility-

location planning are outlined in Figure 6.8. Diamond-shaped nodes represent depots of

Table 6.3: Overview of considered horizontal collaboration scenarios

Collaboration
scenario

Non-
collaborative

Semi-
collaborative

Fully-
collaborative

Joint
decisions None

Route planning,
customer allocation

Route planning,
customer allocation,

facility location investment

Shared
resources None

Customer demands,
vehicle capacities,

logistics facilities capacity

Customer demands,
vehicle capacities,
logistics facilities

Related
optimization

problem

Multiple
non-related

VRPs
One common MDVRP One common LRP
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distinct companies (A, B, and C), while the remaining nodes play the part of customers (notice

that customers with a look-alike shape belong to the same company). The initial location of

different depots and their associated customers can be seen in Fig. 6.8a. In a non-collaborative

scenario (Fig. 6.8b), both routing and facility-location decisions are decentralized. Therefore,

every company establishes its own routing plans starting and ending at its central depot.

From an optimization perspective, this leads to a different VRP (Toth and Vigo 2014) for each

company, as it tries to establish efficient delivery tours.

The degree of joint decisions increases in the semi-collaborative supply chain scenario. By

sharing customer information, storage facilities, and vehicle capacities, route planning can be

improved through a more efficient customer-to-depot allocation. This situation corresponds

to a MDVRP (Pérez-Bernabeu et al. 2015, Montoya-Torres et al. 2015), in which customer-

allocation and routing decisions are combined (Fig. 6.8c). Notice that in this semi-collaborative

scenario routing distances have been reduced with respect to the non-collaborative case.

Finally, Fig. 6.8d shows the fully-collaborative scenario, where routing and facility-location

decisions are jointly taken by all the companies. This situation is represented by the LRP,

which summarizes: (i) facility-location decisions; (ii) customer-to-depot-assignment; and (iii)

delivery-route planning (Prodhon and Prins 2014). This simple example illustrates how an

integrated routing-and-location decision might even vary the number of depots employed to

serve all customers.

6.3.2 Literature review on horizontal collaboration concepts

Collaboration agreements can take place across vertical or horizontal levels of the supply

chain. In the context of land-side T&L, vertical collaboration has been extensively analyzed

in the literature. This has led to concepts such as vendor managed inventories, efficient

customer response, etc. Meanwhile, the literature on HC in T&L is less explored (Leitner

et al. 2011, Pomponi et al. 2015). After a general overview on works in the context of HC in

road T&L, this section presents some HC frameworks outlining different collaboration stages.

For an extensive literature review on HC in T&L, the reader is referred to Cruijssen et al.

(2007c).

One of the first works on the topic was presented by Caputo and Mininno (1996), who

discussed different policies including the standardization of electronic documents, pallets,

and cartons. They also analyzed the use of multi-supplier warehouses, coordinated route

planning, and load consolidation to support HC in the Italian grocery industry. Another early
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Figure 6.8: Graphical representation of different HC scenarios

work on HC was elaborated by Erdmann (1999), who proposed a simulation model to quantify

the benefits associated with different levels of HC among freight carriers.

Cruijssen and Salomon (2004) studied how orders sharing among freight carriers can lead

to savings between 5% and 15% due to improved transport planning. Joint route planning

under varying market conditions was analyzed by Cruijssen et al. (2007a). Özener et al.

(2011) discussed how customer exchanges among freight carriers with different levels of

information sharing can lead to cost savings for the participating companies. Nadarajah

(2008) showed possible route savings and increased vehicle utilization through cooperative

vehicle routing and strategic location of consolidation points for less-than-truckload carriers.

HC in the context of conjoint transportation planning of less-than-truckload shipments was

also studied by Wang and Kopfer (2014), who introduced exchange mechanisms for customer

request re-allocations and compared this scenario to isolated planning. Furthermore, HC

has been investigated in the context of backhauling, with the aim of combining delivery and

90



6.3. HORIZONTAL COLLABORATION CONCEPTS IN URBAN FREIGHT
TRANSPORTATION

pickup operations to increase vehicle utilization levels.

An optimization approach addressing backhauling routes was presented by Adenso-Díaz et

al. (2014), who developed a GRASP algorithm to solve the problem of conjoint delivery routes.

A similar problem was addressed by Bailey et al. (2011), who estimated that the percentage of

cost savings for empty backhaul routes can reach up to 27% through consolidated shipments.

The potential costs and emission savings through backhauling in a case study of a Spanish

food distributor was discussed by Ubeda et al. (2011). A fair cost and benefit-allocation among

HC participants was addressed in Audy et al. (2012), Dai and Chen (2012), and Krajewska et

al. (2008).

Juan et al. (2014a) analyzed the VRP with clustered backhauls as a particular case of HC.

Following their work, Pérez-Bernabeu et al. (2015) presented a study on the quantification

of potential savings in road transportation through HC. The authors analyzed cooperation

between carriers and shippers controlled by the same companies in a semi-collaborative

scenario (equivalent to a MDVRP) and two non-collaborative scenarios (multiple VRPs

with clustered and scattered customer distributions). The reported results suggest that

collaborative transport planning typically outperforms its non-collaborative counterpart in

terms of both distance and CO2 emissions, with distance-based savings of up to 15% and

even higher reductions in the environmental impact.

Real-life applications of HC in urban distribution can be found in Montoya-Torres et al.

(2016). These authors compared a non-cooperative scenario with a cooperative one related to

tactical and operational decision-taking. For that, they used real-life data from three retail

companies located in the city of Bogotá (Colombia). The non-collaborative case was solved as

a VRP for each single company, whereas the collaborative case was based on shared depots

and vehicle capacities, and thus modeled as a MDVRP. An extension of the previous work

that considers stochastic customer demands was analyzed by Muñoz-Villamizar et al. (2015).

Possible benefits through HC were quantified in terms of total distance, CO2 emissions,

number of routes, and vehicle utilization levels. Results showed benefits such as a reduction

of 9% in the number of routes or savings up to 25% in routing distance. Furthermore, the

application of HC strategies led to decreased CO2 emissions with higher vehicle utilization

levels. Quintero-Araujo et al. (2017a) developed a simheuristic algorithm to quantify the

potential savings generated through HC when considering stochastic demands. Results

showed an average saving of 4% in costs. They also showed an increased reliability of the

planned routes when considering HC strategies.

Very few works have been presented showing the advantages of collaborative along the
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integrated routing and location decision process. Groothedde et al. (2005) introduced a design

methodology for collaborative hub networks (CHN) in the context of fast moving consumer

goods in the Netherlands. A CHN determines the best hub combinations to minimize total

shipping costs between hub and non-hub nodes. Moreover, the CHN strategy is combined

with direct trucking for short distance deliveries and for serving exceeding demand that

cannot be transported through the CHN. Thus, this combination provides both high capacity

(due to inland barges) and flexibility (due to road transportation), guaranteeing economies of

scale and scope. Because of higher lead times generated by using the CHN, the corresponding

shipments must be sent in advance. A relaxed version of the hub network design problem was

used to determine the optimal CHN configuration. The relaxed constraints were the following

ones: (i) hubs are not fully interconnected; (ii) nodes can be assigned to different hubs; and (iii)

non-hub nodes can be directly connected between them. An average logistics cost reduction of

14% was achieved for origin-destination relations that used the CHN strategy. A cooperative

supply chain scenario in the medium-sized less-than-truckload industry was addressed by

Hernández et al. (2012). The authors formulated a p-hub location problem which they solved

with Langrangian relaxation to show the benefits of a centralized multi-carrier collaborative

network. A Tabu Search metaheuristic was later developed for a similar problem-setting in

the work of Wang and Kopfer (2014).

Pan et al. (2013) presented the concept of pooling supply chains for inter-supply chain

freight consolidation. The value chain is represented by a three-echelon network modeled as a

mixed integer linear programming. Their objective is the optimization of CO2 emissions using

both road and rail transportation for a French retail chain. Additionally, the authors estimated

potential CO2 reductions of 14% due to road transportation pooling. When combining road and

rail transportation, the authors suggested that reductions could rise to 52%. An extension of

the previous pooling concept was presented in Pan et al. (2014). Here, the authors introduced

the concept of logistics pooling, which “corresponds to the co-design by partners (suppliers,

clients, carriers, etc.) with a common objective of a logistics network, the resources of which are

pooled (warehouses, platforms, transport resources, etc.) in order to share logistics networks

and provide one or more third parties with the data required for management.” In that sense,

pooling involves a win-win relationship for all participants in the collaborative agreement,

and ensures that applied network configuration is globally optimal for the partnership. These

authors also propose three scenarios of network pooling, and compare them to the current

situation (using environmental and economic indicators) of a distribution network in the

French food industry.
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Even though HC is receiving increased attention, different impediments still prevent

a widespread application of conjoint activities among companies. On the one hand, HC

requires a high level of trust among participating companies, since many of them are usually

competitors and reluctant to share valuable information (Özener and Ergun 2008). On

the other hand, supply chains are specifically designed for different industries or retailers,

making an active cooperation among supply chain members more difficult. Another key issue

for HC practices is the fact that benefits associated with collaborative strategies cannot

be easily quantified for a single company, but are rather visible on an aggregated supply

chain level (Cruijssen et al. 2007b). Generally, the success of any cooperation agreement is

highly dependent on commitment, trust, and information sharing between the participating

organizations (Singh and Power 2009).

Lambert et al. (1999) were the first authors to propose a HC taxonomy depending on the

time horizon of the agreement. They identified three types of HC: type I is related to short-

term, which is mainly operations-oriented; type II involves business-planning integration

among partners; type III refers to strategic alliances among companies on the same supply

chain level. A similar classification of cooperation agreements was suggested by Verstrepen

et al. (2009). The authors highlighted differences in the scope and intensity of HC initiatives

along operational, tactical, and strategic planning levels. They suggested that operational

cooperation is mainly focused on joint execution and sharing of information, whereas HC on

a tactical planning level involves more intensive planning and shared investments. Finally,

strategic collaborative is aimed at joint long-term partnerships according to their framework.

Furthermore, the paper described the typical life cycle of such partnerships, and suggested a

conceptual framework for managing HC in logistics.

Leitner et al. (2011) defined reduced costs, increased responsiveness, and improved service

levels as the relevant benefits of HC. The authors also developed a two-dimensional taxonomy

to characterize different levels of HC, based on the degree of cooperation and the product-flow

consolidation potential. In a more recent work, Pomponi et al. (2015) elaborated a theory-

based framework for HC in logistics, developing coherent pairs of aims and shared assets

for different collaborative stages, including operational, tactical, and strategic levels. While

these authors characterized operational HC as related to shared information with the aim of

cost reductions, collaborative on a tactical level involves shared logistics facilities and enables

concepts such as multi-modal deliveries. In their view, the most advanced HC agreement

is based on strategic partnerships, which includes joint investments and a high degree of

commitment among the participating organizations. In general, all discussed works stressed
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the importance of mutual trust among companies to enable a successful partnership, whereby

higher trust is necessary as collaborative agreements are enhanced. Moreover, most authors

mentioned that the development of different HC stages is a continuous process. Thus, a

successful supply chain collaborative typically starts with combined activities that request a

low involvement of the participating actors before more advanced cooperation projects are

started.
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7
SUPPORTING SMART URBAN WASTE COLLECTION UNDER

UNCERTAINTY

Waste management is among the most critical planing activities in modern cities, as it directly

impacts urban living standards, traffic flows, and municipal budgets. This chapter proposes

simheuristics as efficient decision support tool for different variants of stochastic Waste

Collection Problem (WCP) extensions. The highlights of this chapter include:

• the proposal of an efficient Variable Neighborhood Search (VNS) algorithm to solve the

deterministic waste collection case (see chapter 6.1.1). The presented metaheuristic

outperforms state-of-the-art benchmark algorithms on a set of large-scaled problem

instances (with up to 2100 nodes) by over 2.5%. The VNS algorithm is compared to

a GAMS implementation solved with CPLEX, emphasizing the superior scalability

and calculation times of the metaheuristic over exact solving techniques (Gruler et al.

2017c).

• the application of the SimVNS algorithm to the WCP with stochastic demands. Man-

agerial insights provided by the developed simheuristics are particularly highlighted

through a detailed risk and reliability analysis of the obtained results (Gruler et al.

2017c).
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• the development of a simheuristic framework for time-dependent vehicle routing under

travel time uncertainty (see chapter 6.1.2). The algorithm is tested as decision-support

tool in a real-life case study with nearly 900 waste collection points completed in

the medium-sized Catalan city of Sabadell. As opposed to applying simheuristics to

theoretical instances taken from the literature, especially the importance of suitable

data preparation in such real-life optimization cases is pointed out. Results show

operational cost savings of over 10% (Gruler et al. in review process 2018b).

• the proposal of a simulation-optimization approach based on Biased Randomization

and Variable Neighborhood Search for the multi-depot WCP (see chapter 6.1.3) with

stochastic demands arising in clustered urban areas. Obtained results suggest that

collaborative activities among waste management service providers in metropolitan

areas yield potential cost-savings of over 30% in some cases (Gruler et al. 2017a).

The VRP with time windows (VRPTW) and the MDVRP (with different realistic exten-

sions) are the central COP settings addressed in this chapter. As highlighted in Figure 7.1,

the complexity of these COPs is relatively low compared to other optimization problems

discussed in this dissertation. Both problem settings are mainly focused on operational

decisions regarding vehicle routing (VRPTW) and combined routing and customer allocation

(MDVRP). However, their computational interest and importance in the context of urban

waste collection is underlined by the large amount of network points to be considered, the

inherent complexity and uncertainty of urban transportation activities, and the need for

near-instantaneous decision-taking on a daily basis.

7.1 A simheuristic based on Variable Neighborhood Search
for urban waste collection under demand uncertainty

The following subsections describe the development of a simheuristic algorithm based on a

VNS simheuristic (SimVNS) as described in chapter 4.2. The competitiveness of the underly-

ing metaheuristic is shown on a range of experiments, before the integration of simulation to

consider stochastic demands is outlined.
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Figure 7.1: Complexity and decision-taking integration of central problem settings addressed
in chapter 7.

7.1.1 A VNS metaheuristics for the the deterministic WCP

7.1.1.1 Algorithm description

In order to solve the deterministic WCP, a VNS metaheuristic as described in chapter 2.2.1 is

proposed. An initial solution is obtained by applying the well-known savings routing heuristic

(Clarke and Wright 1964) and its biased randomized extension as described in Faulin et

al. (2008) and Juan et al. (2013a). This procedure is adapted to the special case of waste

collection by changing the calculation of savings values used for merging two customers i

and j, originally calculated as si j = ci0 + s0 j − ci j (Figure 7.2 - left). In the WCP, the costs of

traveling between a customer and the depot are asymmetric due to the additional landfill

visit. To address this new situation, a simple transformation based on the average savings

associated to each arc is employed (Figure 7.2 - right).

Based on the initial solution baseSol, different neighborhood structures Nk(k = 1, ...,kmax)

are created. The shaking procedures applied in this work to create new solution structures are

outlined in Table 7.1. Within each neighborhood Nk(baseSol), different local descent heuris-

tics described in Table 7.2 are randomly applied to find the local minimum of Nk(baseSol).

To conclude the local search phase, a quick solution improvement procedure based on a cache
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Figure 7.2: Savings of the original CWS heuristic (left) and expected savings proposed for the
WCP (right).

memory technique (Juan et al. 2013a) is implemented: the best-known order of traveling

between a set of nodes establishing a sub-route — i.e., starting at the depot or a landfill

and ending at a disposal site — is stored in a hash-table data structure, thus allowing

for new solutions benefiting from previously constructed ones. Whenever the local search

phase leads to a more competitive objective function value than that of baseSol, baseSol is

updated and k is returned to its initial value of 1. If baseSol cannot be improved through

the local minimum of Nk, k is incremented by 1 and the next shaking operator is applied.

Once each neighborhood has been constructed (k = kmax), the process is repeated until a

certain predefined stopping criterion (e.g.: time, iterations, etc.) has been reached. The list of

neighborhood operators is shuffled every time k > kmax. A description of the VNS procedure

for the deterministic WCP can be seen in Algorithm 8.

Table 7.1: VNS shaking operators to solve the WCP

Operator (k) Description
Customer Swap Inter-Route Swaps two random customers between different routes.
2-Opt Inter-Route Interchanges two chains of randomly selected customers between different routes.
Reinsertion Inter-Route Inserts a random customer in a different route.
Cross-Exchange Interchanges positions of 2-4 random, non-consecutive customers from

different routes.
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Table 7.2: Local Search operators to improve WCP solutions

Operator (LS-Scheme) Description
Best Position Insertion Reinserts the container with the highest objective function increase into the best

available position of any route.
Re-allocate all Iteratively calculates the objective function increase of each container and

reinserts it at the best possible position.
Random Swaps Randomly selects and interchanges two nodes (from the same or different routes)

if the objective function improves.

Algorithm 8: A VNS metaheuristic for the deterministic WCP

1 baseSol ← solve biased randomized CWS for the WCP // Juan et al. (2013a)
2 while stopping criteria not reached do
3 shuffle(ListOfShakingOperators)
4 k ← 1
5 repeat
6 newSol ← shake(baseSol, k) // see Table 7.1
7 improving ← true // Start Local Search
8 while improving do
9 newSol* ← localDescent(newSol, randomLSoperator) // see Table 7.2

10 if costs(newSol*) ≤ costs(newSol) then
11 newSol ← newSol*

end
12 else

improving ← false
end

end
13 cacheSubRoutes(newSol) // End Local Search
14 if costs(newSol) < costs(baseSol) then
15 baseSol ← newSol
16 k ← 1

end
17 else

k ← k+1
end

until k > kmax

end
18 bestSol ← baseSol
19 return bestSol
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7.1.1.2 Performance compared to an exact approach

In order to show the performance of the VNS metaheuristic in comparison to an exact

approach, the mathematical WCP model formulated in chapter 6.1.1.1 is implemented in

GAMS (Version 23.5.2). The CPLEX solver (Version 12.2.0.0) was used to solve the smallest

instance provided by Kim et al. (2006), which has 1 depot, 99 containers, and 2 landfills.

However, the solver ran out of memory after 54 minutes of computation. Therefore, three

smaller instances with 20, 24, and 44 containers were generated. The number of landfills

used was 2, as in the original instances. The CPLEX solver was allowed to run for a maximum

time of 48 hours or until a gap lower than 1% was reached.

Table 7.3 shows the result comparison of CPLEX and the described VNS algorithm for

the aforementioned instances. For each solving method, the best solution found (Z), the time

consumed to find that solution (TC Z) and the maximum computing time allowed (TC) is

included. Notice that both methods provide optimal solutions for the first two instances,

but the VNS clearly outperforms the exact method in computing times (less than 1 second

compared to 126 and 854 seconds required by CPLEX, respectively). Regarding the third

instance, CPLEX ran out of memory after 5864 seconds. The best solution found by the exact

method — after 2306 seconds — has an objective value of 70.85 (relative gap of 65% with

respect to the lower bound), while the VNS algorithm provides an objective value of 63.09

in 1.5 seconds. These results reveal how difficult it becomes for the CPLEX solver to find

optimal or near-optimal solutions in low computing times, even for small instances of the

basic WCP version.

Table 7.3: Results comparison of CPLEX vs VNS metaheuristic for the WCP

CPLEX VNS
Instances Z TC Z (sec.) TC (sec.) Z TC Z (sec.) TC(sec.) GAP

Kim102(20) 38.19 126.31 8916 38.19 <1 300 0.00%
Kim102(24) 24.88 854.05 3641.51 24.88 <1 300 0.00%
Kim102(44) 70.85 2306.55 5864.28* 63.09 1.5 300 -10.95%

Average -3.65%

The following restrictions, which significantly increase the difficulty of the problem,

are added to the basic version described before: (i) the number of vehicles used is not

predetermined, only the maximum number of available vehicles is given; (ii) the lunch break

is automatically included in a route whenever a certain time window is reached; (iii) there is
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a maximum number of stops at containers and landfills per route; (iv) there is a maximum

amount of waste that can be collected on a single vehicle route; and (v) the depot also has a

time window.

7.1.1.3 Performance compared to benchmarks from the literature

To test the competitiveness of the outlined algorithm, the benchmark instances provided by

Kim et al. (2006) are used, which were later also adopted by Benjamin and Beasley (2010)

and Buhrkal et al. (2012) to validate their solution approaches for the WCP. This benchmark

set includes 10 realistic instances, ranging from 102-2100 nodes with time windows, multiple

landfills, a single depot, a driver lunch break during each route, and a homogeneous vehicle

fleet. Furthermore, the approach is compared to the clustered instances presented by Buhrkal

et al. (2012). A clustering procedure is applied to nodes with the same location and time

windows to change the total number of nodes. The algorithm was implemented as Java

application and run on a personal computer with an Intel®Xeon™CPU E5-2630 v2 @ 2.60GHz

processor. The initial solutions constructed with the biased randomized version of the savings

heuristic are based on a distribution parameter randomly chosen within the range (0.4, 0.5)

at each solution construction step.

The results are summarized in Table 7.4. Column (1) reports the best known solution

(BKS) for each instance (listed as Kim_numberOfNodes) as reported in the works of Kim et

al. (2006), Benjamin and Beasley (2010) and Buhrkal et al. (2012). The computational times

(CT) (in seconds) to reach each solution can be seen in column (2), while column (3) lists

the average results with 10 different random number seeds as presented in the benchmark

papers. Notice that the benchmark papers use different computers, computational times, and

programming languages to implement and execute their described algorithms, making a

fair comparison difficult. For this reason, the VNS metaheuristic is tested with two different

stopping criteria. On the one hand, the best solution (achieved with 10 different random

number seeds) when applying the CTs listed in column (2) is reported in column (4). On the

other hand, the average solution with 10 different random number seeds (5) and the best

solution (6) with a stopping criterion of 300 seconds per instance as suggested by Benjamin

and Beasley (2010) is listed.

It can be seen that the proposed algorithm outperforms current BKS’s by an average of

-0.85% and -2.65%. Moreover, the VNS procedure reaches 9 new BKS’s (11 with the extended

algorithm running time). As can be observed, the percentage gap compared to the BKS
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Table 7.4: Computational results for the deterministic case and comparison with BKSs

Instance (1)
BKS

(2)
CT BKS

(s)

(3)
BKS

average

(4)
Best
sol1

(5)
Sol

average2

(6)
Best
sol2

(7)
CT

best sol (s)

%-Gap
(1)-(4)

%-Gap
(1)-(6)

Kim102 174.5 3 176.03 158.61 158.64 154.62 5 -9.11 -11.39
Kim277 447.6 8 455.7 472.73 457.14 450.6 299 5.61 0.67
Kim335 182.1 10 196.49 189.79 187.36 184.22 298 4.22 1.16
Kim444 78.3 18 78.99 80.22 80.09 79.49 292 2.45 1.52
Kim804 604.1 72 650.65 603.17 601.14 593.2 300 -0.15 -1.80
Kim1051 2250.6 194 2387.7 2128.37 2119.50 2077.37 294 -5.43 -7.70
Kim1351 871.9 105 891.17 929.5 929.40 910.6 238 6.61 4.44
Kim1599 1337.5 252 1385.3 1184.67 1208.54 1182.58 292 -11.43 -11.58
Kim1932 1162.5 285 1192.2 1149.45 1169.95 1136.34 273 -1.12 -2.25
Kim2100 1749 356 1916.8 1595.48 1622.29 1603.93 293 -8.78 -8.29

Clustered Instances
Kim86 174.5 3 176.6 155.68 158.35 155.68 10 -10.79 -10.79

Kim267 450.7 8 456.4 460.4 455.96 449.41 294 2.15 -0.29
Kim322 182.4 10 190.7 189.78 185.93 184.26 298 4.05 1.02
Kim444 78.6 18 79.2 80.22 80.09 79.49 292 2.06 1.13
Kim602 586.2 72 647.8 610.52 593.25 586.11 297 4.15 -0.02
Kim1011 2295.2 116 2370.5 2151.51 2131.00 2102.23 299 -6.26 -8.41
Kim536 850 105 850.9 885.83 877.69 850.46 292 4.22 0.05
Kim870 1170.2 252 1230.6 1156.15 1180.07 1145.83 286 -1.20 -2.08
Kim1860 1128.7 285 1180.9 1129.89 1154.48 1138.6 295 0.11 0.88
Kim1877 1594.2 266 1650.8 1620.89 1642.20 1604.33 186 1.67 0.64
Average 868.44 122 908.27 846.64 849.65 833.47 257 -0.85 -2.65

1computational times per instance equal to column (2)
2computational times per instance equal to column (7)

extends to more than 10% in some cases. These differences are supported by results described

in a technical report by Markov et al. (2015), in which the authors use the five smallest

(non-clustered) instances of the applied benchmark set to test a heuristic for the WCP.

Some final remarks concerning the algorithm can be made. The initial solution for all

instances is constructed in under 3 seconds (only a few milliseconds for the smaller problem

cases). In comparison to the previous BKS’s, the average gap of the initial solutions is 8.92%.

A similar comparison to the best solution is done with the different local search operators.

When only running the algorithm with the “best position insertion", the “re-allocate all"

and the “random-swaps" local search, the average percentage gaps are -0.38%, 1.28%, and

2.34% respectively. While performance differences between the operators can be observed,

these results suggest that the combination of various local search techniques is useful in the

solution of the WCP.
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7.1.2 A VNS-based simheuristic for the WCP with stochastic demands

7.1.2.1 Algorithm description

In contrast to deterministic cases of the WCP, waste levels cannot be predicted with full

certainty when solving a more realistic stochastic version of the problem. The fact that actual

waste levels in containers are only known when reaching designated pick-up points can lead

to route failures whenever collected garbage exceeds the planned collection amount. In these

cases, the collection vehicle needs to add an additional and expensive landfill visit to its route.

The proposed simheuristic methodology outlined in Algorithm 9 enables an estimation of the

solution quality of previously created outputs using the VNS metaheuristic proposed in the

previous section by integrating Monte Carlo simulation (MCS) into the solution procedure.

The simheuristic structure for the WCP can theoretically be combined with any metaheuristic

approach addressing the problem setting. As has been discussed in chapter 3 however, the

quality of the stochastic solution is directly related to the results obtained in the deterministic

metaheuristic process. For this reason, the use of an efficient deterministic solution process

such as the proposed VNS metaheuristic is beneficial.

Once detCosts(baseSol), stochCosts(baseSol), and totalCosts(baseSol) have been de-

fined, new deterministic solution neighborhoods are constructed and locally improved as

described previously. A newly constructed solution newSol is considered as promising when-

ever it yields lower deterministic costs than the current base solution. The behavior of

each promising solution under waste level uncertainty is then evaluated by applying a

short simulation run, leading to a first estimation of the total solution costs. Whenever

totalCosts(newSol) < totalCosts(baseSol), the current base solution is updated and k is

returned to its initial value. Furthermore, the solution is stored as elite stochastic solution.

With each elite solution, a more extensive simulation run is started for longSimIter itera-

tions once the metaheuristic stopping criteria has been reached. In order to avoid jeopardizing

computational times, a restricted number of solutions is considered for the more extensive

simulation run at this stage. The number of stored eliteSols is limited to a maximum of 10.

Even though a larger number of solutions could be stored at this point, an augmented elite

solution list has not shown any significant changes in the final ranking of the best stochastic

solutions.

In addition to calculating the stochastic objective function value of promising deterministic

solutions, the outlined methodology allows for estimating solution reliabilities by considering

the proportion of runs where the solution plan can be implemented without any route failure
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Algorithm 9: A VNS based simheuristic for the stochastic WCP with stochastic de-
mands
1 replace stochastic waste levels by expected values // Creation of det. inputs
2 baseSol ← solve biased randomized CWS for the WCP
3 shortSimulation(baseSol) // MCS
4 while stopping criteria not reached do
5 k ← 1
6 repeat
7 newSol ← shake(baseSol, k)8 localSearch(newSol)9 if detCosts(newSol) <

detCosts(baseSol) // Solution is promising
then

10 shortSimulation(newSol) // MCS
11 if totalCosts(newSol) < totalCosts(baseSol) then
12 update(eliteSols)
13 baseSol ← newSol
14 k ← 1

end
15 else

k ← k+1
end

end
until k > kmax

end
16 foreach eliteSol do
17 longSimulation(eliteSol)
18 estimateReliability(eliteSol)

end
19 return Pareto non-dominated eliteSols

(a route failure occurs whenever the actual demand at any container exceeds the vehicle

capacity, which forces the vehicle to visit a disposal site before resuming the original route).

Thus, the reliability reliabr of each route r of any solution S is computed as the quotient of

the number of runs in which a route failure occurs divided by the total number of simulation

runs, i.e. reliabr = simRunsWithRouteFailue/simRuns. Each route in a solution can be

seen as an independent component of a series system (i.e., the proposed solution will fail if,

and only if, a failure occurs in any of its routes). Therefore, the overall reliability of a solution

with R routes can be computed as
R∏

r=1
reliabr. This leads to another valuable decision variable
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for waste collection route planners, especially due to the fact that more than one solution is

evaluated in the same manner when applying the described reliability calculation to each

elite solution. Furthermore, it allows for conducting a closer risk and sensitivity analysis of

the considered solutions, as explained in the following section.

7.1.2.2 Computational experiments and analysis of results

Since there is a lack of stochastic benchmark instances with similar characteristics, the non-

clustered instances of Kim et al. (2006) are used as reference. The deterministic instances are

then transformed into stochastic ones by using random waste levels following a log-normal

distribution with expected values equal to the original deterministic value. This probability

distribution has been chosen because it is quite flexible and among the most popular ones

when modeling non-negative random variables. Other probability distributions, like the

normal one, are rarely employed to model non-negative random variables. Nevertheless, the

simheuristic approach could be used with any other probability distribution (e.g., Weibull,

gamma, etc.). Note that any probability distribution will allow the easy construction of

the deterministic case by putting the variance level V ar[wi] of any container equal to

0, considering that the deterministic values provided by the instances are used as the

distribution mean.

The approach is tested with low (V ar[wi] = 0.05), medium (V ar[wi] = 0.15), and high

variance levels (V ar[wi]= 0.25) concerning the waste level distribution at any container. The

number of short simulation runs is set to 500, while a more extensive simulation with 5000

runs is applied only to the elite solutions. Moreover, this thesis proposes the inclusion of

vehicle safety stocks k to better deal with unexpected demands, as discussed in more detail

by Juan et al. (2011). Instead of considering the complete available vehicle capacity C in the

construction of the deterministic solution, a decreased capacity C∗ = C∗ (1−k) is applied.

On the one hand, high levels of k will, on average, lead to higher deterministic costs

(and increased solution reliabilities), as the considered vehicle capacity during the route

construction is reduced. On the other hand, it can be expected that the stochastic route failure

costs will decrease. For the following analysis and discussion of results 6 different safety stock

levels k are considered: 0, 0.02, 0.04, 0.06, 0.08, and 0.1. Combined with the three variance

levels, this leads to a total of 18 different scenarios for each instance. Tables 7.5-7.7 show

the deterministic costs (1), the total costs including the expected route failure penalties (2),

and the related reliability calculated as described in the previous section (3) of each tested
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scenario, where listed results refer to the best obtained solution according to the overall costs.

The average calculation time (to complete the VNS procedure and the subsequent extensive

simulation for the elite solutions) of all scenarios was 351.92 seconds.

Figure 7.3 shows the expected total costs and reliabilities for the average of all tested

instances for each waste variance level/safety capacity factor combination. As can be observed,

the highest total costs for each waste variance level are obtained when no safety capacity

factor is considered as a result of high expected route failure costs. Furthermore, it can be

seen that the lowest total costs over all instances for a low variance level are obtained with a

safety capacity factor of 2%. For medium and high waste variance, a safety capacity factor of

4% seems to yield the most promising results concerning total costs. As expected however, the

reliability levels (also calculated as an average of all instances) increase for all variance levels

as the vehicle safety capacity is increased. It can also be concluded that the inclusion of only

a small safety capacity already significantly increases reliability levels (up to around 60% in

the most extreme case). In contrast to the stochastic case, safety capacity levels negatively

impact the deterministic results as vehicle capacity levels are reduced. This can be clearly

seen in Figure 7.4, showing the average deterministic costs of all instances and variance

levels with different safety stock levels.

A more detailed risk analysis is done in Figure 7.5, which shows a boxplot of the long

simulation outputs for the three most competitive elite solutions of the Kim277 instance. In

this specific case, the first solution seems to be the most promising one, as it has the lowest

mean and the lowest quartiles. However, this is not necessarily always the case. In Table 7.8,

the mean and standard deviation of the results from the long simulation concerning total

costs of the three best solutions of each instance (obtained with a single random-number seed)

are listed. From the table it can be concluded that the solution with the lowest mean does not

always have the lowest standard deviation (see, for example, Kim444). Thus, this information

can be used by decision-takers to select the solution that he/she prefers according to his/her

risk preference. In a similar manner, the proposed solution approach allows for considering

different risk-aversion levels of decision takers by comparing solutions with different safety

capacity levels. A more risk-averse route planner will choose to construct routes with higher

safety capacity levels, which typically lead to higher routing costs while experiencing lower

route failure, and vice versa.

To assess the relationship between reliability levels and associated solution costs, Pear-

son’s product-moment correlation test has been completed by calculating the normalized

values of the reliabilities, expected route failure costs, and the total costs of all elite solutions
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Table 7.8: Comparison of different elite solutions in terms of the mean and standard deviation
of total costs

Elite
Solutions Best 1 Best 2 Best 3

Instance
Name Mean St. Dev. Mean St. Dev. Mean St. Dev.

Kim102 157.05 3.54 157.14 3.38 157.22 3.65
Kim277 498.66 4.53 499.07 4.45 499.12 4.59
Kim335 187.84 1.81 187.96 1.84 188.25 1.85
Kim444 87.79 0.84 87.80 0.79 91.35 0.82
Kim804 633.97 5.93 634.34 5.74 635.00 5.90
Kim1051 2342.85 16.67 2343.58 15.48 2345.62 16.29
Kim1351 1009.88 26.48 1012.78 26.57 1025.50 26.54
Kim1599 1290.02 24.34 1291.67 23.40 1292.07 23.83
Kim1932 1199.85 29.77 1202.21 30.50 1245.03 30.14
Kim2100 1742.47 13.97 1742.81 14.62 1748.34 13.83

for each instance. Hereby, a 4% vehicle safety capacity and all variance levels have been con-

sidered. When comparing reliability levels and total solution costs, only a very weak negative

correlation of -0.072 (p-value = 0.3035) can be observed. As could be expected, however, the

negative correlation between reliability levels and expected route failure costs is more clear,

with a Pearson correlation of -0.674 (p-value < 2.2e-16).

7.2 A simheuristic algorithm for time-dependent waste
collection management with stochastic travel times

The following subsections outline a simheuristic procedure to solve the time-dependent Waste

Collection Problem with stochastic travel times. The elaborated algorithm is applied to a

large-scale case study regarding waste collection in the Catalan city of Sabadell.

7.2.1 A time-dependent travel speed model for the WCP

The applied travel speed model for time-varying vehicle velocities is based on the discussions

of Ichoua et al. (2003). The planning horizon (defined by the depot opening hours) is divided

into p time periods T1,T2, . . . ,Tp. Travel durations tteT to cross any edge in e ∈ E can be

calculated as the quotient of travel distances and vehicle speeds vT (T ∈ {T1,T2, . . . ,Tp}), such

that tteT = de/vT . In the specific case of waste collection in Sabadell, different travel speeds
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Figure 7.3: Expected total costs (a) and reliabilities (b) over all instances.
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Figure 7.4: Deterministic costs over all instances and variance levels.
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Figure 7.5: Boxplot of total costs of each long simulation run of the Kim277 instance for the
best three solutions considering a high waste variance level and a 2% safety capacity level.
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can be defined for different edges, e.g., due to rush hour traffic or other events such as opening

or closing hours of schools. For this reason, edge set E is partitioned into S subsets with Es

(s = 1,2, . . .S). Thus, travel speeds can be formulated as ttsT to show the travel speed of any

edge of the edge subset Es during time period T. This step-wise travel speed model along

different times of the planning horizon is a natural way of estimating travel durations of

different edges in real-world conditions. Furthermore, it implies the satisfaction of the FIFO

property.

7.2.2 The Waste Collection Problem in Sabadell

Sabadell is a medium-sized city of roughly 200,000 inhabitants located within the autonomous

Spanish region of Catalonia. Collection vehicles are located at a central depot and collected

garbage is disposed in a single landfill. Expected waste levels in each container, average

service times at each node, and the average vehicle travel speeds during different time periods

are known. The problem setting consists of a total of 921 paper waste containers which are

currently visited on 9 different routes. The locations of the vehicle depot, the landfill, waste

containers, and the original route assignation can be seen in Figure 7.6 (the central depot

and the landfill are marked by the square symbols).

Time is a major issue for the waste collection service provider with whom this study

was completed. On the one hand, the operational times directly affect the operational costs

associated with the waste collection process in terms of necessary wages and vehicle usage

costs. On the other hand, an important routing constraint is that collection routes need to be

completed between 9 a.m. and 4 p.m., as these are the opening hours of the central depot at

which the collection vehicles are stationed. Moreover, different time periods within the daily

planning horizon can be identified regarding expected traffic speeds:

• heavy traffic on all streets is expected during the rush hour from 9 a.m. to 10 a.m. and

from 1 p.m. to 2 p.m.

• traffic jams are expected in streets close to primary schools in the time periods of 9 a.m.

to 10a.m., 12 p.m. to 1 p.m., and 3 p.m. to 4 p.m.

Especially the latter observation is of importance in the planning of waste collection

routes. Containers in the affected streets should not be visited within the depicted time

period. Due to parents picking up their children from primary schools, streets within a
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Figure 7.6: Node locations and original route assignation.

certain distance radius of the school building should be avoided in the given period if possible.

According to the experience of the decision-taker, a radius of 500 m around primary schools

is considered. Apart from delays in the collection process, visiting these streets during the

most busy hours affects many citizens and can even be dangerous due to children exiting the

primary school facilities. The influenced streets in the city center of Sabadell for which the

additional constraints apply are highlighted in Figure 7.7.

7.2.3 Algorithm description

The different stages of the proposed simheuristic solving methodology for the TDWCPST

are summarized in Figure 7.8. By integrating simulation into a biased randomized VNS

algorithm (BR-VNS), a set of promising stochastic solutions are constructed. These solutions

are then refined in a more intensive simulation procedure. Finally, the defined set of solutions

undergoes a more detailed risk analysis according to different criteria.
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Figure 7.7: Streets to be avoided during highly occupied traffic periods.
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Figure 7.8: Simheuristic solving framework for the TDWCPST.
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A simheuristic procedure to solve the TDWCPST is outlined in Algorithm 10. Similar to

the approach described in chapter 7.1.1.1, the elaborated simheuristic starts by creating an

initial WCP solution by applying the Clarke-and-Wright savings heuristic. The use of the

randomized edge selection process and the adoption to the WCP is proposed at this stage.

Once an initial solution is constructed and set as the current incumbent baseSol and bestSol

solutions, an VNS procedure is started. As shaking operator a double-bridge move is applied.

Hereby, a solution is partitioned into four pieces of random size, which are subsequently joint

in a arbitrary order. As local search movement a 2-opt algorithm is used.

Up to this point, deterministic (expected) travel durations between the network nodes

are considered. In order to account for uncertainty in input variables, MCS is applied to any

promising solution found in the metaheuristic search. A TDWCP solution newSol is deemed

promising if its deterministic travel durations outperform those of the currently incumbent

baseSol or if a Simulated Annealing-like acceptance criterion is met. The travel durations

between all edges of a promising solution are simulated from a log-normal probability

distribution during nSim simulation runs. At this stage, any other probability distribution

could be applied, but the log-normal one is a “natural” choice to model non-negative random

variables.

During each simulation iteration, expected travel durations ttsT between any two points

are defined as distribution mean of the probability function. Variance factor k defines travel

duration variance levels. With E[ttsT ]= ttsT and V ar[ttsT ]= k · ttsT , the location parameter

µi and scale parameter σi defined for the probability function can be formulated as:

µi = ln(E[ttsT ])− 1
2
· ln

(
1+ V ar[ttsT ]

E[ttsT ]2

)

σi =
∣∣∣∣∣
√

ln
(
1+ V ar[ttsT ]

E[ttsT ]2

) ∣∣∣∣∣
As a result of time varying travel speeds, the variability in solution waste collection

durations estimated after each simulation run can be expected to increase with higher

variance levels. In particular, waste collection close to primary school locations is penalized

by significantly reduced travel speeds during predefined time periods. After the simulation

phase, the stochastic travel durations of newSol are defined the average of all simulation

results.

If the stochastic costs of the considered solution outperform the estimated stochastic travel

durations of the incumbent baseSol and/or bestSol, they are updated respectively. Moreover,
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Algorithm 10: A simheuristic for the TDWCPST
Input: nodes, costMatrix, α, nSimshort, nSimlong, k

1 initSol ← generateBRSolution(nodes, costMatrix, α) // BR-CWS
2 baseSol ← initSol
3 stochDuration(baseSol) ← infinite
4 bestSol ← baseSol
5 elitSols ← ;
6 while stopping criterion not reached do
7 newSol ← perturbate(baseSol, costMatrix) // perturbation stage
8 newSol ← localSearch(newSol, costMatrix) // local search stage
9 delta ← detDuration(baseSol) - detDuration(newSol)

10 if delta ≥ 0 then
11 credit ← delta
12 stochDuration(newSol) ← simulation(newSol, nSimshort, k)
13 if stochDuration(newSol) ≤ stochDuration(baseSol) then
14 includeInEliteSolutionSet(newSol)
15 baseSol ← newSol // simulation driven baseSol
16 if stochDuration(newSol) < stochDuration(bestSol) then
17 bestSol ← newSol

end
end

end
18 else if -delta ≤ credit then
19 credit ← 0
20 stochDuration(newSol) ← simulation(newSol, nSimshort, k)
21 baseSol ← newSol

end
end

22 for eliteSol ∈ eliteSols do
23 stochDuration(eliteSol) ← simulation(eliteSol, nSimlong, k)

end
24 return bestSol

each solution that is defined as incumbent baseSol during any stage of the simheuristic

procedure is included in a TDWCPST solution set eliteSols. After the algorithm stopping

criterion is reached, solutions included in this exclusive set of elite solutions undergo a more

intensive simulation phase defined by a higher number of simulation runs. This enables

a more accurate estimation of the best found time-dependent WCP solutions in stochastic

travel time scenarios.
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7.2.4 Computational experiments and analysis of results

The proposed simheuristic solving framework is applied to the real-life Waste Collection

Problem setting of Sabadell described in chapter 7.2.2. The algorithm is implemented as

a Java application and tests are run on a personal computer with 4GB RAM and an Intel

Pentium®processor with 2.16GHz. Necessary algorithm parameters to complete the described

tests are specified as follows:

• Geometric distribution parameter α: 0.3

• nSimshort: 100

• nSimlong: 1000

• BR-VNS topping criterion per instance: 30 seconds

According to the observations of the decision-taker, the average vehicle speed in normal

traffic conditions is 25 km/h. The travel speed is divided by 5 and 25 during heavy traffic and

traffic jams, respectively. Average vehicle service times at each container are set to 90 seconds,

while 45 minutes are necessary to empty a vehicle at the landfill. Distances between any

two points are calculated with Djikstra’s shortest path algorithm (Dijkstra 1959). A detailed

process description of creating a realistic distance-matrix between various points using open

source software is given in Appendix F.

Stochastic travel times are generated with three different variance factors k = 1,2.5,10,

representing different (low/medium/high) uncertainty levels. All variance scenarios are

represented in Figure 7.9, showing the travel times of edge subset s during time period T

with an expected traversing time of E[ttsT ]= 25 time units. The shadowed area under each

curve represents 95% of the simulated values. In the low-variance scenario (k = 1), 95% of

actual driving times fall between 16.64 and 36.15 time units with a high density around the

expected value. As the variance level is increased, the density of the simulated times for all

edges decreases and a higher variability can be observed. The overall driving duration of a

solution will increase as the expected travel time uncertainty increases. Moreover, the special

case of k = 0 is equivalent to the deterministic routing case.

In order to evaluate the performance of the outlined simheuristic algorithm, its results

are compared to the 9 paper waste collection routes currently completed on a daily basis in

Sabadell. The comparison of the current routes and the best found solution of the BR-VNS
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Figure 7.9: Log-Normal distribution of different variance levels around an expected travel
time of 25 time units.

algorithm in different variance scenarios is listed in Tables 7.9 (deterministic case and low

variance) and 7.10 (medium and high variance). Each route holds between 79-122 waste

containers to be emptied. To enable a fair comparison, the current order of visiting waste

containers is evaluated in accordance with the necessary algorithm parameters described

before.

In all travel duration variance scenarios, the biased randomized VNS is able to signifi-

cantly outperform the current waste collection routes (by over 12% on average). Moreover,

the solution travel durations in different uncertainty scenarios provided by the metaheuristic

show that estimated travel durations increase with higher variance levels. The best results

with the simheuristic algorithm are obtained when considering all 921 waste containers in

a “global” waste collection instance. In this case, new route-to-container assignments are

established instead of solely focusing on reordering pre-established waste collection routes.

For example, in the deterministic routing case, and using a running time of 120 seconds, the
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Table 7.9: Driving durations (in minutes) of currently completed routes in comparison to best
algorithm solution (deterministic case and low variance scenario)

Route k = 0 %-Diff
[1]-[2]

k = 1 %-Diff
[3]-[4]Current

[1]
Best
[2]

Current
[3]

Best
[4]

1 392.5 357.3 -9.0 391.3 362.7 -7.3
2 379.9 265.0 -30.2 381.3 271.6 -28.8
3 470.8 345.5 -26.6 455.5 346.0 -24.0
4 386.4 342.3 -11.4 384.2 341.8 -11.0
5 374.3 335.1 -10.5 387.9 342.7 -11.7
6 396.2 371.4 -6.2 397.1 388.7 -2.1
7 372.8 340.4 -8.7 364.2 340.6 -6.5
8 393.9 326.7 -17.0 399.8 342.1 -14.4
9 407.9 323.0 -20.8 411.1 323.6 -21.3

Total 3,574.5 3,006.7 -15.9 3,572.3 3,059.9 -14.3

Table 7.10: Driving durations (in minutes) of currently completed routes in comparison to
best algorithm solution (medium and high variance scenario)

Route k = 2.5 %-Diff
[1]-[2]

k = 10 %-Diff
[3]-[4]Current

[1]
Best
[2]

Current
[3]

Best
[4]

1 391.6 363.0 -7.3 392.7 367.5 -6.4
2 381.4 281.3 -26.2 388.1 293.4 -24.4
3 457.9 349.8 -23.6 460.2 363.3 -21.0
4 383.9 342.6 -10.7 384.2 340.2 -11.4
5 389.7 342.7 -12.0 395.4 355.2 -10.2
6 397.2 386.9 -2.6 397.3 387.5 -2.5
7 362.3 337.7 -6.8 360.4 340.1 -5.6
8 398.8 344.0 -13.8 398.9 355.0 -11.0
9 410.6 329.4 -19.8 414.0 346.5 -16.3

Total 3,573.3 3,077.3 -13.9 3,591.1 3,148.7 -12.3

global solution yields an overall driving duration of 2,820.5 minutes, with only 8 necessary

garbage collection routes.

Apart from focusing on solution quality dimensions — such as the the expected travel

durations or the expected driving distance required to collect all waste —, the simulation
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phase of the simheuristic framework can be used to obtain more detailed insights into the

robustness of different TDWCPSD solutions. Thus, statistical values such as the standard

deviation of travel durations, the median, or the third quartile can be obtained during the

simulation runs without increasing the computing effort.

Table 7.11 shows different attributes of three elite solutions of the global TDWCPSD with

all garbage containers in a high variance scenario (k = 10). The deterministic and stochastic

travel duration, driving distance, standard deviation, median, third quartile, and the number

of waste collection routes of each TDWCPST solution can be seen. As highlighted in the radar

chart shown in Figure 7.10, each solution outperforms the others in a different decision-taking

dimension. While solution B is the most promising solution regarding deterministic travel

durations, solution A shows the best results in terms of expected travel times and overall

travel distance. However, the standard deviation of travel durations obtained during the

long simulation run (which can be seen as a reliability indicator of a given solution) is the

lowest for solution C. This solution behavior is also observed in the multiple boxplot shown in

Figure 7.11. It can be clearly seen that the most promising deterministic solution B yields

the highest travel duration variance, suggesting a low reliability of the constructed waste

collection routes. Likewise, the median and third quartile could be considered in a closer risk

analysis according to the preferences of the waste collection route planner.

Table 7.11: Analysis of different TDWCPST solutions (high variance scenario)

Solution
Det.

Duration
(min)

Stoch.
Duration

(min)

Distance
(km)

Stand.
Dev. Median Third

Quartile
#

Routes

A 2,879.61 2,936.05 264.58 31.98 2,932 2,956 8
B 2,827.49 2,938.67 278.45 64.59 2,930 2,969 9
C 2,897.58 2,952.18 280.27 26.46 2,951 2,967 8
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Figure 7.10: Ranking of TDWCPST solutions according to different quality dimensions.

Figure 7.11: Comparison of simulation results for different TDWCPST solutions.
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7.3 Supporting multi-depot and stochastic waste collection
management in clustered urban areas

The following paragraphs outline a simheuristic framework based on Biased Randomization

(BR), Variable Neighborhood Search (VNS) and Monte Carlo simulation (MCS) to address

the multi-depot WCP with stochastic demands (MDWCPSD). This approach supports the

analysis of possible benefits of applying collaboration concepts on an operational level through

shared information and facilities between different waste management service providers in

clustered urban areas.

7.3.1 Algorithm description

In contrast to a deterministic WCP setting in which input variables are considered to be

known during the route planning phase, actual garbage loads to collect are only revealed

once a collection vehicle reaches a pick up point in reality. Given a WCPSD, the first step

of the applied simheuristic procedure is to transform the stochastic problem setting into its

deterministic counterpart. Hereby, the expected waste levels of each container on a waste

collection route are used as deterministic input variables. This deterministic WCP is then

solved using an efficient optimization approach. Therefore, a randomized version of the well-

known Clarke-and-Wright savings (CWS) heuristic is applied. By adapting this multi-start

routing algorithm to the WCP with the algorithm adoptions described in chapter 7.1.1.1,

a number of predefined (a-priori) solutions are constructed during a predefined stopping

criterion, as shown in Algorithm 11.

After the generation of multiple solutions, a set of d deterministic solutions is tested

for its behavior in a stochastic environment by repeatedly sampling random waste levels

using MCS. In order to keep computational efforts reasonable, not all deterministic solutions

are tested at this point, but only the most ‘promising’ deterministic solutions are sent to

the simulation stage. Hereby, the waste levels of each container to be served are modeled

using a log-normal distribution with waste level variance Var and the expected waste level at

each container as mean. During nIterSim simulation runs, a tested predefined solution is

completed considering the uncertainty of pick-up amounts by only revealing the actual waste

level at a container once a collection vehicle reaches it. Hereby, the order of containers to visit

is not changed. However, limited vehicle capacities will lead to route failures when collected

garbage exceeds the initially planned amount, making additional landfill trips necessary. The
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Algorithm 11: Solution generation for the MDWCP

1 S ← ; // set of elite solutions
2 while stopping criteria not reached do
3 sol ← solveBiasedRandomizedCWS
4 if isEliteSolution(sold, d) // save d best deterministic sols

then
5 S.add(sol)

end
end

6 i ← 1
7 while i ≤ d // Run short simulation on promising sol

do
8 evaluateReliability(Si, V ar, nIterShort)
9 i ← i + 1

end
10 S ← resortSolutions(S)
11 return S

proposed solving framework penalizes route failures with an additional round trip to the

closest landfill, before the planned route is continued.

By summing up total route failure costs in all simulation runs and dividing them by

nIterSim, an unbiased estimation of expected route failures can be obtained. At this stage,

it often happens that the most promising deterministic WCP solutions turn out to be less

competitive in a stochastic environment due to high expected additional routing costs. Beside

expected route failure costs as quality indicator of the predefined route under uncertainty,

the described procedure allows for estimating the solution reliability by considering the

proportion of routes in which a route failure occurs during the simulation runs. Finally, the

solutions are re-ranked according to the total of routing and expected route failure costs. If

necessary at this point, a longer simulation run can be conducted with the most promising

stochastic solutions to get more reliable results of a number of stochastic elite solutions.

In order to consider multiple depots in the planning of waste collection routes with

stochastic waste levels, Biased Randomization and VNS are integrated (BR-VNS) at different

stages of the simulation-optimization approach, as shown in Algorithm 12. Considering a

WCP with multiple depots, the first step in the solution process is to solve the node-depot

assignment problem to define which waste containers are emptied from which depot. For this
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Algorithm 12: Simheuristic procedure for the MDWCP

1 S ← ; // set of elite solutions
2 D ← ; // set of depot-node allocation maps
3 D ← generateInitialMaps(nMaps) // Generate node-depot maps
4 S ← generateEliteSolutions(D) // Run simheuristic on each map
5 while stopping criteria not reached do
6 D∗←perturbate(D) // perturbate elite maps
7 S∗←generateEliteSolutions(D∗)
8 if acceptNewSolution(S, S∗) then
9 D ← D∗ // Update current map

10 S ← S∗ // Update elite solutions
end

end
11 i ← 1
12 while i ≤ d // Run extensive simulation on promising sol

do
13 evaluateReliability(Si, V ar, nIterShort)
14 i ← i + 1

end
15 S ← resortSolutions(S)
16 return S

purpose, a priority list of containers for each depot is constructed according to a distance-

based criterion. After calculating the distance of each waste container to each depot k ∈Vd, a

priority list based on the marginal savings µk
i of emptying container i from depot k compared

to serving it from the best alternative depot k∗, such that µk
i = ck∗

i − ck
i is built. Next, the

nodes are randomly assigned to the depots according to a round-robin criterion. Hereby, the

depots iteratively ‘choose’ an (unassigned) container to serve.

The process of assigning nodes to a depot is randomized but using a skewed distribution

instead of a uniform one. After sorting the priority list of containers, a skewed geometric

distribution is applied in such a way that containers with a higher position in the priority list

are more likely to be selected by the respected depot (thus making the randomized selection

process ‘biased’ or ‘oriented’). The exact probabilities of each container to be included in a

specific node-depot collection map are defined through a distribution parameter p (0< p < 1).

This randomized process allows for constructing of nMaps different node-depot allocation

maps. The competitiveness of each map is evaluated by solving the deterministic WCP setting
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for the depot and its assigned nodes, before the WCP costs for each depot are summed up to

obtain a preliminary MDWCP solution. After all maps have been constructed, the d most

promising node-depot allocations are defined.

With each promising solution, a short simulation run with nIterShort iterations is

started next to evaluate the performance of the pre-defined routing plan in a stochastic

environment. Based on the deterministic routing and route failure costs, a stochastic initial

solution is defined and used as initial upper limit (currentBest) in the VNS process started

in the following. The node-depot allocation maps are hereby perturbed by applying a destroy-

and-repair method to the current best solution during a time-based termination criteria

(maxTimeV NS). During each perturbation, p∗ percent of containers are exchanged between

different node-depot allocations before a new short simulation is performed to assess the

quality of the newly constructed map and compare it to the current best.

Whenever a new best solution considering total costs is found, the new solution is listed

as promising (in promisingSolsStoch) and replaces the current best. In order to escape

local minima in the solution search, an acceptance criterion is implemented allowing a

solution worsening if the last iteration from x to x∗ (such that f (x∗) < f (x)) was an im-

provement and the difference between the current best and new solution is not greater

than the latest improvement. Once the VNS procedure is finished, the m best solutions in

promisingSolsStoch undergo a long simulation run to define the expected route failure

costs and the solution reliabilities more closely. Finally, a list of elite MDWCPSD with the

respective total costs and solution reliabilities are returned by the process.

7.3.2 Computational experiments and analysis of results

In order to test the proposed solving approach, the benchmarks provided by Kim et al.

(2006) are adapted. The original set of instances considers different-sized (102–2100 nodes)

deterministic WCPs with a single depot, multiple landfills and capacitated vehicles. In order

to make them suitable for the MDWCPSD, the deterministic load levels at each container are

used as expected waste levels and the mean of the log-normal distribution from which waste

levels are modeled during the assignment problem is redundant in the non-collaborative

scenario without HC, it is not possible to consider different container allocations and their

respective routing costs. The algorithm is implemented as Java application on a personal

computer with an Intel BYT-M 4CoreTM processor with 2.66 GHz and 4 GB RAM, using the

following parameters:
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• nMaps: 100 (initial node-depot assignment maps created)

• V ar: 0.05 (waste level variance)

• d: 5 (promising deterministic solutions)

• m: 5 (promising stochastic solutions)

• nIterSimShort: 500 iterations

• I terSimLong: 5,000 iterations

• detSolTime: 5 seconds

• maxTimeV NS: 300 seconds

• p∗ 0.3% (nodes exchanged during perturbation)

• p: 0.4 (distribution parameter for Biased Randomization)

• maxDemand: 60%

In Table 7.12, the best found solutions for the collaborative and non-collaborative scenario

of each instance (and one row with the total over all tested problem settings) are listed.

Column (1) shows the number of used vehicles. The opened depots are listed in column

(2), before columns (3)–(5) show the fixed costs, variable (route-failure) costs and total costs,

respectively. Furthermore, the percentage difference of total costs for each scenario is outlined.

The obtained results concerning total costs, used vehicles and opened depots for the

collaborative scenario (i.e. the MDWCPSD solution) and the non-collaborative counterpart

are outlined in Figure 7.12. Concerning the total expected costs, the routing costs of each

instance can be improved, with an average gap of -12% over all instances. Next to possible

route savings, HC leads to fewer used vehicles (91 compared to 105 in the non-collaborative

scenario over all instances) and fewer opened depots (41–55). While the objective function

of this thesis application was to reduce total routing costs, the number of used vehicles

and opened depots can also be an important driver for HC in practice, as municipalities

need to consider acquisition and maintenance costs for collection vehicles. Moreover, opening

costs and running expenses of vehicle depots should not be neglected. Looking at the results

more closely, the large differences on the positive effects of HC concerning total costs can be

explained with the topology, i.e. the geographical distribution of the containers with respect to
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Table 7.12: Numeric comparison of collaborative and non-collaborative waste management

Instance Scenario Vehicles
(1)

Depots
(2)

Fixed Costs
(3)

Variable Costs
(4)

Total Costs
(5)

Kim102
Collaborative 4 3 154.46 0 154.46

Non-Collaborative 3 3 190.99 0.28 191.27
%-Difference -19.25

Kim277
Collaborative 2 2 495.47 17.59 513.06

Non-Collaborative 2 2 503.52 12.54 516.06
%-Difference -0.58

Kim335
Collaborative 6 3 194.99 1.38 196.37

Non-Collaborative 8 5 304.88 1.77 306.65
%-Difference -35.96

Kim444
Collaborative 11 2 74.61 0.85 75.45

Non-Collaborative 11 2 79 0.91 79.91
%-Difference -5.91

Kim804
Collaborative 9 9 925.02 5.57 930.59

Non-Collaborative 20 20 1579.69 3.66 1583.35
%-Difference -41.23

Kim1051
Collaborative 17 2 2133.22 55.36 2188.58

Non-Collaborative 18 3 226.68 46.74 2273.42
%-Difference -3.73

Kim1351
Collaborative 9 4 902 12.8 914.8

Non-Collaborative 9 4 909.28 27.61 936.89
%-Difference -2.36

Kim1599
Collaborative 12 3 1098.3 21.57 1119.87

Non-Collaborative 13 3 1307.04 19.53 1326.57
%-Difference -15.58153735

Kim1932
Collaborative 9 5 1105.75 14.28 1120.03

Non-Collaborative 9 5 1119.67 17.21 1136.88
%-Difference -1.48

Kim2100
Collaborative 12 8 1560.26 9 1569.26

Non-Collaborative 12 8 1573.71 10.08 1583.79
%-Difference -0.92

Total
Collaborative 91 41 8644.08 138.4 8782.47

Non-Collaborative 105 55 9794.46 140.33 9934.79
%-Difference -11.6
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Figure 7.12: Comparison of total costs between collaborative and non-collaborative waste
management scenarios.

the potential depots. Obviously, instances in which only scattered depot–node allocation maps

can be established tend to yield significantly improved results in collaborative scenarios.
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8
SOLVING STOCHASTIC INTEGRATED DISTRIBUTION NETWORK

DESIGN PROBLEMS

The application of simheuristics to problem settings related to municipal waste management

in chapter 7 have shown the potentials of the simulation-optimization methodology. While

that chapter emphasized the use of simheuristic frameworks in large-scaled operational

problem settings related to vehicle routing and customer clustering, this section focuses

on the collaborative design of efficient distribution networks. In particular, the complex

integration of several supply chain decision-taking problems on operational, tactical, and

strategic levels is discussed. The highlights of this chapter include:

• the elaboration of a SimVNS simheuristic to solve the multi-period Inventory Routing

Problem (IRP) with stochastic demands. Hereby, route planning and inventory replen-

ishment decisions are centralized to reduce overall supply chain costs. The algorithm’s

competitiveness and performance for complex problem instances is shown. Moreover,

the additional managerial insights through the simheuristic procedure are analyzed

(Gruler et al. 2018b,c).

• the development of a simulation-optimization approach for the two-echelon Location

Routing Problem (2E-LRP) arising in the creation of urban consolidation centers (UCCs).

Computational experiments are completed on real-life data involving the location of
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multiple UCCs in a fast-moving consumer goods supply chain with over 100 customers

in the Greek capital Athens. In comparison to a non-collaborative city logistics concepts,

the use of UCCs suggests overall freight transportations savings of over 30%. Moreover,

computational results suggest higher solution robustness regarding input uncertainty

with an increasing number of open satellite locations (Gruler et al. 2017b).1

In comparison to the VRP with time windows and the MDVRP addressed in the previous

chapter, the central problem settings of this chapter are shaped by higher complexity through

increased decision-taking integration (as outlined in Figure 8.1). While the complexity of

the multi-period IRP and the LRP are comparable from an algorithmic point of view, the

latter optimization problem involves a higher degree of decision integration, as it combines

operational routing with strategical facility location arrangement.

8.1 A Variable Neighborhood Search simheuristic for the
multi-period Inventory Routing Problem with stochastic
demands

The following sub-sections describe the simheuristic solving approach for the multi-period IRP

with stochastic demands. Subsequently, a range of computational experiments is completed

on benchmarks found in the literature to show the performance and applicability of the

elaborated algorithm.

8.1.1 Algorithm description

A possible solution to the problem described in chapter 6.2.1 has the form of a matrix with

|V∗| rows and |P| columns, where element (i, p) in this matrix will represent the refill policy

associated with RC i at period p (∀i ∈ V∗, ∀p ∈ P). The proposed approach to solve the

stochastic multi-period IRP consists of three different stages:
1The work of Gruler et al. (2017b) was completed in cooperation with Prof. Dr. Angel A. Juan from the Uni-

versitat Oberta de Catalunya in Barcelona and Astrid Klueter (full-time PhD-student) and Prof. Dr. Markus Rabe
from the Technical University in Dortmund. The findings were presented at the ASIM Dedicated Conference on
Simulation in Production and Logistics 2017 in Kassel (Germany) by Astrid Klueter. The PhD-candidate strongly
contributed to this work through the development of the simheuristic solving algorithm, the implementation of
the simulation-optimization procedure in Java, and the analysis of obtained results. Astrid Klueter was mainly
responsible for the completed literature review and provided the case-study data, which was obtained within
the U-Turn project (U-Turn 2018). Prof. Dr. Juan and Prof. Dr. Rabe contributed through their expertise and
guidance.
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Figure 8.1: Complexity and decision-taking integration of central problem settings addressed
in chapter 8.

1 Firstly, a constructive heuristic is employed to generate an initial solution. This initial

solution will be a ‘homogeneous’ matrix containing the same value in all its cells, i.e.: it

will propose a unique refill policy that will be systematically applied to all the RCs across

the different periods. This strategy will generate a particular expected inventory cost

(sum of all expected inventory costs for each RC-period combination) as well as a specific

expected routing cost (sum of all expected routing costs for each period). Notice that both

the inventory cost associated with each RC at the end of period p as well as the routing

cost at period p+1 will depend on the precise values of the random demands of each RC at

period p (since these values will determine the inventory levels associated with each RC at

the end of period p).

2 Secondly, the constructive heuristic is integrated inside the destruction-construction phase

of a VNS framework and then combined with Monte Carlo simulation in order to iteratively

enhance the initial solution. This procedure is based on the construction of a number of

different solution neighborhoods and the subsequent local search phase that explores a

neighborhood of the current solution. MCS is employed here to generate realizations of

the random demands and then obtain an estimate of both expected inventory and routing

costs.
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3 Finally, a refinement stage using a higher number of simulation runs is applied to the

most ‘promising’ or ‘elite’ solutions obtained in the previous stage in order to obtain a more

accurate estimation of the expected cost and select the final solution matrix.

With the aim of generating an initial solution, a constructive heuristic has been developed.

The idea behind this heuristic is to assign a common policy to each RC and period. The

policy selected will be the one providing the lowest expected total cost, which will include

both expected inventory and routing costs. The heuristic is split into two phases. During

the first one, different refill policies are tested, and the associated quantities to serve are

estimated together with the expected inventory costs. During the second phase, routing costs

are computed for each of these refill policies. In this phase, the quantities to serve generated

in the previous phase are used. Finally, the policy providing the lowest total expected cost is

implemented at every RC and period.

Algorithm 13 depicts the constructive heuristic in more detail. The input parameters are:

the set of RCs, the set of time periods, the initial inventory levels, the maximum storage

capacity of each RC, the random demand of each RC at each time period, the set of refill

policies, and the maximum number of simulation runs that must be executed. In this thesis,

the possible refill policies considered are:

• No stock refill, i.e., the RC can only count on its current stock level to satisfy the demand

of its customers during the next period.

• Refill up to one quarter of total inventory capacity (1/4-refill), i.e., if necessary, additional

product will be served from the depot to reach that level.

• Refill up to half of total inventory capacity (1/2-refill).

• Refill up to three quarters of total inventory capacity (3/4-refill).

• Refill up to full capacity (full-refill).

Thus, for each policy and RC, a short number of simulation runs is executed (e.g., 30 to

100 runs) to obtain initial estimates. During each of these runs, the quantity to be served is

obtained for each RC-period combination (line 8). This quantity is used in the second phase of

the heuristic, and it is computed considering the maximum storage capacity of the RC and its

initial inventory level. For each RC and period, the specific value of the random aggregated

demand is generated using random sampling (line 9). Hence, it is possible to compute the
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Algorithm 13: Generate initial IRP solution
Inputs:
V = {0,1, . . . , |V |}: Set of depot (0) and RCs (V∗)
P = {1,2, . . . , |P|}: Set of time periods
L0

i1: Initial inventory level of RC i at period 1
l+i : Maximum storage capacity of RC i
D ip: Customers’ aggregated demand at RC i during period p
T: Refill policies as a % of l+i (e.g., 0%, 25%, 50%, 75%, 100%)
maxRuns: Maximum number of runs in the Monte Carlo simulation
% Phase 1: Compute avg. multi-period inventory costs for each center-policy combination

1 foreach refill policy t ∈ T do
2 expInvCost[t]← 0 % expected inventory cost associated with policy t

end
3 foreach RC i ∈V∗ do
4 accumInvCost ← 0
5 iter ← 0
6 while iter < maxRuns do
7 foreach period p ∈ P do
8 qip[t][iter]←max{t · l+i −L0

ip,0}
9 dip ← generate random observation of D ip % Monte Carlo simulation

10 L0
i(p+1) ←max{L0

ip + qip[t][iter]−dip,0}
11 invCost ← computeInventoryCost(t,L0

i(p+1))
12 accumInvCost ← accumInvCost+ invCost
13 iter ← iter+1

end
14 avgInvCostRC ← accumInvCost/maxRuns % avg. inventory cost of RC i under

policy t
15 expInvCost[t]← expInvCost[t]+avgInvCostRC

end
end
% Phase 2: Compute avg. multi-period routing cost and total cost for each policy

16 initSol ← emptySol
17 cost(initSol)←∞
18 foreach refill policy t in T do
19 accumRoutingCost ← 0
20 iter ← 0
21 while iter < maxRuns do
22 foreach period p ∈ P do
23 routingCost ← estimateRoutingCost(q1p[t][iter], . . . , q|V |p[t][iter]) % use

savings heuristic
24 accumRoutingCost ← accumRoutingCost+ routingCost

end
25 iter ← iter+1

end
26 expRoutingCost ← accumRoutingCost/maxRuns
27 totalCost ← expInvCost[t]+ expRoutingCost

if totalCost < cost(initSol) then
28 initSol ← setAllRe f illDecisionsToV alue(t)
29 cost(initSol)← totalCost

end
end

30 return initSol
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inventory level at the end of the current period (line 10), which will be the initial inventory

level for the next period. This is computed as the sum of the initial inventory level and the

quantity served minus the aggregated customer demand. If a stock-out occurs, a penalty cost

is applied and the final inventory level is set to 0 (it can never be negative at the beginning of

a new period). The system evolves considering the dependencies between the realization of

the demands at one period and the inventory levels at the beginning of the next one.

Finally, the inventory cost is computed (line 11) for each RC and policy. As pointed out

already, if a stock-out occurs, the cost of a round trip to the depot is charged as part of the

inventory cost. Otherwise, the inventory cost is obtained as the number of units in stock

multiplied by a λ parameter. In the computational experiments this parameter is set to 0.25,

as suggested by other authors (Juan et al. 2014c). This process (lines 6-13) is repeated until

the total number of simulation runs has been reached. Inventory costs are accumulated in

each run (line 12), and then average inventory costs are computed for each RC (line 14). The

resulting value is added to the total expected inventory cost associated with the current policy

(line 15).

At the end of this first phase, the expected inventory costs for each considered replenish-

ment policy are obtained. Also, the computed quantities to serve, for each RC and period, are

stored for each simulation run. These quantities are used in the second phase to estimate the

expected routing costs associated with each policy. Thus, for each series of delivery quantities

the Clarke-and-Wright savings heuristic is employed to estimate the associated routing cost

(line 23). Finally, the expected routing cost is computed (line 26). At the end of this phase, the

policy involving the lowest expected total cost (inventory plus routing) is chosen.

During the second stage of the simheuristic methodology, the classical descendant VNS

algorithm as described in chapter 2.2.1 is applied. Algorithm 14 describes the process. In the

first phase the VNS keeps a given number of elite solutions consisting of the best solutions

found in trajectory. It starts by assigning the initial solution generated by Algorithm 13

to the current base solution baseSol and adding it into a an empty pool of elite solutions

eliteSols. Then, it continues with the main VNS loop, which is applied until a predefined

stopping criteria is reached. Inside this loop, the VNS constructs k-neighborhoods by a

shaking operator (line 6), in order to allow the movement through the neighborhoods.

The shaking operator works as follows. The number of policies to be modified from the

original policy matrix is given by the value k. These policies are then reset (destruction

process) and re-defined (re-construction process) by using the constructive heuristic designed

to obtain the initial solution (the only difference is that now it only affects to a subset of
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elements in the policy matrix). Then it performs (line 7) the subsequent local search procedure

to get a local minimum within the current solution neighborhood. This local search consists

in selecting one policy matrix element at random and changing the associated policy for the

one providing the best result. The process is iteratively repeated while new improvements in

total expected costs are achieved. Each time a local minimum is generated, it is included into

the set of elite solutions eliteSol if the number of solutions has not reached its size (lines

8-9) or it is better than the worst elite solution (lines 11-12). As in classical VNS, if the local

minimum is better than the base solution it is the new base solution and the value of k is set

again to 1 (lines 13-15). Otherwise, this value is increased by 1 (line 17) until the maximum

number kmax.

The aim of this stage is to refine the elite solutions achieved by the VNS algorithm

(Algorithm 14, lines 18-22). In order to achieve this goal, the constructive heuristic is applied

to each of these solutions using a larger number of simulations (maxLongRuns). Finally, the

solution exhibiting the minimum total expected cost is returned in form of a matrix including

the replenishment policy for each RC-period combination.

8.1.2 Computational experiments and analysis of results

A set of computational experiments has been carried out to illustrate the utility of the

simheuristic approach for solving the multi-period IRP with stochastic demands. The set of

27 VRP instances proposed by Augerat et al. (1998) and adapted for the IRP by Juan et al.

(2014c) are used as a testbed. These instances contain between 27 and 80 RC nodes, a single

central depot, and a fleet of 5-10 homogeneous vehicles. The algorithm is implemented as a

Java application and executed with the following parameter specifications:

• Inventory holding cost: λ= 0.25.

• Algorithm stopping criteria: 100 seconds × number of considered periods.

• # Simulation runs in Phase 1: 30.

• # Simulation runs in the Refinement phase: 1000.

• Maximum value for the shaking operator k: 40%.

The aggregated customer demands are assumed to follow a log-normal probability distri-

bution with the same average values as the ones proposed in the original instances. Moreover,

137



CHAPTER 8. SOLVING STOCHASTIC INTEGRATED DISTRIBUTION NETWORK DESIGN
PROBLEMS

Algorithm 14: SimVNS for the periodic IRP
Inputs:
V = {0,1, . . . , |V |}: Set of depot (0) and RCs (V∗)
P = {1,2, . . . , |P|}: Set of time periods
maxRuns: Maximum number of simulation runs in the VNS phase
maxLongRuns: Maximum number of runs in the refinement phase
kmax: Maximum percentage of policies to reset (defines the number of neighborhoods)
eliteSetSize: Number of best solutions for the second phase initSol: initial solution
% Phase 1: VNS with Monte Carlo simulation

1 baseSol ← generate initial solution using Al gorithm 1
2 eliteSols ← {baseSol}
3 while stopping criteria not met do
4 k ← 1
5 repeat
6 newSol ← shaking(k,maxRuns,baseSol)
7 newSol ← localSearch(newSol)
8 if number of sols in eliteSols < eliteSetSize then
9 eliteSol ← add(eliteSol,newSol)

end
10 else
11 if cost(newSol) < cost(worstSol(eliteSols)) then
12 eliteSols ← update(eliteSols,newSol)

end
end

13 if cost(newSol)< cost(baseSol) then
14 baseSol ← newSol
15 k ← 1

end
16 else
17 k ← k+1

end
until k > kmax

end
% Phase 2: Refinement of best solutions

18 bestSol ← baseSol
19 for each sol ∈ eliteSols do
20 sol ← longSimulation(sol,maxLongRuns)
21 if cost(sol) < cost(bestSol) then
22 bestSol ← sol

end
end

23 return bestSol
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following Juan et al. (2014c) three different variance levels are considered: low (factor = 0.25),

medium (factor = 0.50), and large (factor = 0.75). As the main novelty with respect to previous

works, three different planning horizons are analyzed: 3, 5, and 7 time periods. The obtained

results are reported in Tables 8.1 to 8.3. The number of retail centers n and vehicles k in each

problem setting are reflected in the instance name. For each considered planning horizon and

demand variance level, the results for a single period planning approach (i.e., planning one

period at a time) and the multi-period framework discussed in this thesis are outlined. In

contrast to the holistic multi-period framework put forward in this work, the single period

approach does not consider future periods by simply minimizing total costs for a single period

before updating the initial stock levels for subsequent periods. While this typically leads to

low stock levels at the end of each single period, it neglects the increasing transportation

costs in subsequent planning periods, leading to significantly higher total costs in comparison

to a multi-period planning approach.

The average total costs over all instances for each variance level and planning horizon of

the holistic multi-period planning framework can be seen in Figure 8.2. Cumulated routing

and inventory costs are depicted for the initial solution –in which the same replenishment

policy is applied at all retail centers in each individual period– and our best solution (OBS)

found by the simheuristic for the multi-period IRP. In both approaches increasing costs can

be observed with higher levels of demand-uncertainty, which can be explained with higher

inventory (holding or stock-out) costs.

Furthermore, it can be seen that the improved inventory decision provided by the algo-

rithm decreases the average total costs in all cases. The same holds for the distribution of

the average percentage improvement of the initial solution with the best algorithm solution

for the tested benchmark set, as shown in Figure 8.3. The output in form of an individual

replenishment policy matrix across all time periods for each RC reaches an average improve-

ment of over 3%. Finally, Figure 8.4 shows the expected routing- and inventory costs for

different replenishment policies and variance levels. For each variance level, higher inventory

replenishment levels lead to lower expected inventory (stock-out and holding) costs. At the

same time, higher replenishment levels lead to an increased proportion of routing costs in all

cases.
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Figure 8.2: Expected total costs over all instances for different variance levels and planning
horizons.
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Figure 8.3: Boxplot of %-gaps between initial- and best found solution for different planing
horizons and demand variance levels.
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Figure 8.4: Expected routing and inventory costs for different replenishment policies and
variance levels (5 period planning horizon).
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8.1. A VARIABLE NEIGHBORHOOD SEARCH SIMHEURISTIC FOR THE MULTI-PERIOD
INVENTORY ROUTING PROBLEM WITH STOCHASTIC DEMANDS
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8.2 A simulation-optimization approach for the Location
Routing Problem arising in the creation of urban
consolidation centers

The following sub-sections describe the simheuristic solving approach for the two-echelon LRP

with stochastic demands. Subsequently, a range of computational experiments is completed on

real-life benchmarks retrieved from a fast-moving consumer goods supply chain in the Greek

capital of Athens to show the performance and applicability of the elaborated algorithm.

8.2.1 Algorithm description

A flowchart of the simheuristic solving framework for the 2E-LRP with stochastic demands

can be seen in Figure 8.5. During a predefined stopping criterion (a maximum number of

iterations is used in this work), m satellite facilities are randomly opened while ensuring

that the overall UCC capacity is able to serve the total expected final customer demands.

Within each algorithm iterations, the first-level routing costs between the central depots and

the opened UCC locations are calculated with a nearest neighbor heuristic. It is assumed

that a single vehicle tour is enough to stock all opened UCCs. Moreover, different routing

maps established by assigning a sub-set of all final customers to each opened UCC via a

round-robin criterion. Hereby, each UCC iteratively ‘chooses’ the next customer to be served

from the non-assigned clients according to its geographical proximity.

Subsequently, different delivery routing plans are established for each routing map

(consisting of a satellite location and the assigned sub-set of final customers). Within a multi-

start framework, an efficient routing plan is created by using a biased randomized version of

the Clarke-and-Wright savings heuristic.

During this optimization phase, deterministic (expected) final customer demands E[di]

are considered at each client i. Whenever the deterministic costs of a new single VRP so-

lution newSol outperform the deterministic costs of the currently incumbent best solution

currentBest, it undergoes a simulation phase to account for demand uncertainty. The simu-

lation procedure is only applied to promising deterministic single VRP plans in order to avoid

jeopardizing computational times through extensive simulation runs. For each promising

newSol, final customer demands are simulation from a log-normal probability distribution

during nSim simulation runs. The outlined simheuristic methodology is flexible enough to

incorporate any other kind of suitable probability function at this stage. In order to construct
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Figure 8.5: Flowchart of Simheuristic solving methodology for the 2E-LRP.
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the log-normal distribution, expected demand values E[di] are used as distribution mean.

Furthermore, stochastic demands are formulated as Var[di] = k × E[di], which allows for

considering different demand variance levels k.

Due to the stochastic nature of customer demands, a vehicle completing a pre-established

delivery route might run out of stock before the planned route is completed whenever the

simulated demands exceed the vehicle capacity. In cases of such route failures, an additional

trip to the UCC is necessary. For this reason, a route failure is penalized with a round trip

from the customer at which the vehicle runs out of stock to the respective satellite location.

The total route failure costs occurring during the simulation phase are summed and finally

divided by the total number of applied simulation iterations in order to define the expected

stochastic costs of an established solution. Thus, the total costs of a new single VRP solution

are defined as the sum of the deterministic routing costs and the expected route failure costs

obtained during the simulation phase. Whenever the total costs of any newSol outperform

the total costs of the current best found solution currentBest, the incumbent solution is

updated.

Once the multi-start algorithm for a single UCC and its assigned clients is completed, the

described process is repeated for all opened satellite locations. Finally, the quality of a 2E-LRP

is defined as the total routing costs (considering the deterministic and stochastic values) of

serving all clients in addition to the first-level routing costs to stock all UCC locations. The

inclusion of simulation in the described procedure leads to several advantages. On the one

hand, a reliable estimate of the overall solution costs in an uncertainty scenario is obtained.

On the other hand, the expected route failure costs calculated during the simulation are

used to define incumbent VRP solutions for each UCC in order to guide the metaheuristic

solution search under the consideration of stochastic customer demands. Moreover, the

simulation phase enables the comparison of different 2E-LRP solutions along additional

decision dimensions instead of solely focusing on expected routing costs. Indeed, decision-

takers might be interested in information such as the standard deviation or different quantiles

of results obtained during the simulation runs, as a possible measure of a solution’s reliability.

8.2.2 Computational experiments and analysis of results

The simheuristic algorithm is implemented as Java application and run on a personal

computer with 4GB RAM and an Intel Pentium processor with 2.16GHz. The necessary

algorithm parameters to complete the tests described in the following are defined as follows:

148



8.2. A SIMULATION-OPTIMIZATION APPROACH FOR THE LOCATION ROUTING
PROBLEM ARISING IN THE CREATION OF URBAN CONSOLIDATION CENTERS

• Geometric distribution parameter α: 0.3

• Stopping criterion 1: 10 iterations

• Stopping criterion 2: 200 iterations

• Simulation runs nSim: 500

• Demand variance k: 2

• UCC capacity: 1000

• First-level vehicle capacity: 5000

• Second-level vehicle capacity: 100

The simheuristic solving framework is validated on a real-life case-study based on a

fast moving consumer goods supply chain operating in the metropolitan area of Athens

(Greece). A total of 342 customers scattered around the Athen’s city center are currently

directly supplied from five different depots (highlighted with the warehouse symbols in Figure

8.6). All depot, UCC, and customer locations are given as geographic Longitude/Latitude

coordinates. Distances between any two nodes are calculated as Euclidean distances by

transforming the location information into x/y coordinates. The costs (calculated with the

biased randomized CWS in combination with simulation as described above by considering

the current depot/customer maps) of serving all customers with the current depot/customer

assignments and no satellite locations are outlined in Table 8.4. As can be seen, all clients

are currently served with a deterministic routing distance of 1895.12 km. Additionally, route

failure costs amount to an expected value of 179.69 km.

Table 8.4: Current costs of serving all customers without the use of UCCs.

Depot #
UCCs

#
Customers Demand Det

Costs
Stoch
Costs

Total
Costs

#
Routes

1 0 63 372 375.04 32.3 407.34 4
2 0 87 479 586.79 75.34 662.12 5
3 0 105 607 413.46 36.01 449.47 7
4 0 42 213 215.39 11.87 227.26 3
5 0 45 230 304.44 24.17 328.61 3

Total 0 342 1901 1895.12 179.69 2074.8 22
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To test the effect of collaboration among suppliers in a city logistics context, five random

UCC locations around the city center are defined. Figure 8.6 outlines the geographic locations

of all potential satellite locations (star symbols). As a larger vehicle is used to complete the

first level-routes, the routing costs for stocking all opened UCCs are multiplied by 2, as

proposed by Nguyen et al. (2012).

Figure 8.6: Location of central depots and and potential UCCs.

The ten most competitive 2E-LRP solutions are listed in Table 8.5. As can be seen, the best

solution yields total costs of 1284.62, outperforming the current non-collaborative solution by

over 38%. Moreover, the results suggest that a lower number of opened UCCs leads to the

best overall 2E-LRP results. However, the stochastic costs seem to decrease with a higher

number of opened UCCs, due to the fact that a higher number of satellite locations decreases

the penalization costs of returning to the UCC in case of route failures.
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Table 8.5: Overview of different 2E-LRP solutions

Sol #
UCCs

Det
Costs

Stoch
Costs

First-level
Costs

Total
Costs

#
Routes

1 2 975.69 76.19 232.75 1284.62 20
2 2 1047 96.6 222.63 1366.23 21
3 2 1033.23 93.72 240.28 1367.23 20
4 2 1093.78 81.35 232.75 1407.88 20
5 3 1158.11 80.03 240.19 1478.33 20
6 4 1302.81 81.99 247.58 1632.38 21
7 4 1332.76 49.89 254.74 1637.4 22
8 4 1341.67 55.27 241.11 1638.06 22
9 4 1438.87 68.47 241.62 1748.96 22
10 5 1556.02 68.69 251.1 1875.81 22
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QUANTIFYING HORIZONTAL COLLABORATION CONCEPTS IN

URBAN FREIGHT TRANSPORTATION

A promising supply chain management approach in the creation of efficient and sustainable

logistics and transportation processes is that of horizontal collaboration (HC). The concept

refers to different collaboration scenarios regarding coordinated practices based on joint

decisions and shared resources among companies operating at the same level in the market.

Especially in complex scenarios such as urban freight distribution, this leads to challenging

optimization scenarios. The different degrees of collaboration discussed in this section incor-

porate the levels of complexity and decision-taking integration outlined in chapters 7 and 8.

Highlights of this chapter include:

• the presentation of a metaheuristic algorithm based on Variable Neighborhood Search

(VNS) and Biased Randomization (BR) to solve related optimization problems. With only

minor modifications, this framework is able to solve the Location Routing Problem (fully-

collaborative scenario), the multi-depot Vehicle Routing Problem (semi-collaborative

scenario), and the capacitated Vehicle Routing Problem (non-collaborative scenario).

The frameworks competitiveness is shown on a range of computational experiments

(Quintero-Araujo et al. 2017b).

• a detailed result analysis that compares the different scenarios regarding monetary
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and ecological costs in freight distribution planning. Significant cost savings in terms of

distance and CO2 emissions are reported with increasing collaboration levels (Quintero-

Araujo et al. 2017b).

• the proposal of a simheuristic algorithm to include stochastic input variables in the

analysis and comparison of HC concepts. The outlined approach allows for quantifying

collaboration scenarios according to additional decision-taking dimensions such as the

expected solution reliability under different degrees of customer demand variability

(Quintero-Araujo et al. 2016, 2017c)1,2.

As depicted in Figure 9.1, the different horizontal collaboration scenarios outlined in

this chapter involve all decision-taking problems discussed in previous sections. Depending

on the collaboration degree, companies need to address the VRP (non-collaborative case),

the MDVRP (semi-collaborative case), or the LRP (fully-collaborative case). The Inventory

Routing Problem (IRP) is a typical example of vertical collaboration between subsequent

actors in a value creation chain.

9.1 Metaheuristic solving approach

The following sub-section describes the generic BR-VNS algorithm to address the problem

settings arising with different HC stages outlined in chapter 6.3. Subsequently, a range of

computational experiments show the potentials of the algorithm in quantifying HC scenarios

from a monetary and environmental standpoint.

9.1.1 Algorithm description

As a general approach for solving the distinct optimization problems modeling the considered

HC scenarios, a hybrid metaheuristic algorithm that combines BR techniques with VNS (BR-

VNS) is proposed. The BR-VNS approach is outlined in Figure 9.2. With minor modifications,

1The work put forward by Quintero-Araujo et al. (2016) is published in the SCOPUS indexed conference
proceedings of the Spanish National Conference on Metaheuristics and Evolutionary and Bio-inspired Algorithms
(MAEB) 2016 in Salamanca, Spain. Its findings were presented by the IN3-researcher Carlos Quintero-Araujo.
As co-author of this publication, the student was mainly responsible for the literature review, experiment design,
and analysis of results.

2The work put forward by Quintero-Araujo et al. (2017b) is published in the SCOPUS indexed journal
Progress in Artificial Intelligence. As co-author of this publication, the student was mainly responsible for the
algorithm development, experiment design, and analysis of results.
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Figure 9.1: Complexity and decision-taking integration of central problem settings addressed
in chapter 9.

it can solve the three problem settings associated with the alternative scenarios: the fully-

collaborative one (LRP), the semi-collaborative one (MDVRP), and the non-cooperative one

(VRPs).

BR techniques are applied at two stages of the algorithm: (i) the generation of customer-

to-depot allocation maps; and (ii) the subsequent planning of delivery routes. On the one

hand, customers are allocated to different depots according to the savings sid of serving any

customer i from any depot d. The value of sid is defined as the cost difference of serving

customer i from depot d instead of the closest alternative depot d∗, such that sid = cid − cid∗ .

Once each depot-specific savings list has been created, the customer-to-depot allocation maps

are randomly generated following an iterative round-robin process. At each iteration, a

different depot chooses the next customer to serve according to the geometric distribution

parameter β. On the other hand, delivery routes are constructed using a biased randomized

version of the Clarke-and-Wright savings heuristic.

During the construction of feasible solutions, upper- and lower bounds (UB/OB) con-

cerning the number of facilities to be opened are computed by considering the aggregated

customers’ demands and depots’ capacities. Then, different random combinations of n de-

pots (LB ≤ n ≤ UB) are generated. After that, initial customers-to-depots allocation and
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Figure 9.2: Flowchart of the BR-VNS Algorithm.
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delivery-route planning are generated. This process is repeated multiple times to quickly

generate a list of random — but promising by construction — initial solutions. From these

initial solutions, the most promising ones are stored within a set of baseSols. Each potential

solution is then further improved using a VNS framework.

In particular, the proposed VNS shaking procedure consists in randomly exchanging the

depot allocation of a percentage p of all potential customers. In order to consider different

neighborhood structures, this percentage is increased at each iteration. In particular, p

takes ascending values in the set {0.05,0.1, ...,0.95}. Since the shaking procedure aims at

exchanging customers among depots (i.e., modifying of allocation maps), this procedure is not

considered in the non-cooperative scenario.

Once the solution structure of baseSol has been transformed to create a new solution

newSol, a local search procedure is applied to find the local minimum within the current

solution neighborhood. The local search operator applied in the BR-VNS consists in improving

delivery routes by exchanging customers among intra-company routes. Thus, newSol is

accepted as an updated baseSol if the cost of the former is better than the one of the

latter. Moreover, an acceptance criterion based on Simulated Annealing is applied. This

criterion uses an initial temperature, T0, and a ‘cooling’ constant, coolingFactor. This

cooling constant is applied to reduce, at each iteration, the temperature T used in the

acceptance criterion. Finally, the current bestSol is updated whenever newSol outperforms

its current value. The entire procedure is repeated for each initial solution until a stopping

criterion (maxIter) is met.

As the underlying optimization problem differs across the three HC scenarios considered

in this work, small variations in the described algorithm must be adopted. In particular, the

modifications are as follows:

• In the non-cooperative and semi-collaborative scenarios, the number of depots to be

opened is no longer a decision variable but rather an algorithm input. Thus, UB and

LB are set as the number of depots in the problem instance.

• In the non-cooperative scenario, customer allocation is not a decision variable but an

instance input. In this case, the biased-randomized allocation procedure is turned off

and the number of promising solutions, nInit, is set to 1.

• As the shaking operators aim at modifying customer-to-depot allocation maps, which is

not allowed in the non-cooperative scenario, they are turned off in this scenario.
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9.1.2 Computational experiments and analysis of results

In order to test the competitiveness of the BR-VNS algorithm for strategic location-routing

decisions, it is applied to the well-known Prodhon’s instances (Belenguer et al. 2011). This

set constitutes a classical benchmark for the LRP. It includes a total of 30 instances, ranging

from 5 to 10 potential facilities and from 20 to 200 customers. The solutions generated by the

algorithm for these instances are compared to the ones provided in the recent LRP literature.

Thus, Figure 9.3 shows a visual comparison of the BR-VNS algorithm against three state-

of-the-art algorithms for the LRP: (i) a GRASP combined with integer-linear programming

(GRASP+ILP) discussed in Contardo et al. (2014); (ii) a granular variable tabu neighborhood

search (GVTNS) introduced by Escobar et al. (2014); and (iii) a sequential combination of

Biased Randomization techniques with an Iterated Local Search (ILS) framework proposed by

Quintero-Araujo et al. (2017a). The results achieved by the BR-VNS algorithm are comparable

to the ones provided in these recent publications.

Figure 9.3: Visual comparison of different algorithms for the LRP.
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In addition to the aforementioned Prodhon’s instances, two additional benchmark sets

were considered. The one proposed by Barreto (2004) contains a total of 17 instances, with 2 to

15 possible depot locations and 12 to 150 customers. The one introduced by Akca et al. (2009)

includes 12 instances, with 5 depots and 30 to 40 customers. Each instance consists of a set of

possible facility locations and numerous customers to be served by a homogeneous vehicle fleet.

The objective for the LRP is to minimize the overall distribution costs, including opening costs,

routing costs, and use of vehicles. In the non-cooperative and semi-collaborative scenarios,

it is assumed that all possible facility locations are used. Then, in the non-cooperative case,

customers are randomly assigned to the open depots. An estimation of the environmental

impact is provided according to the load- and distance-based CO2 emission calculations

proposed in Ubeda et al. (2011). Thus, CO2 emissions are hereby calculated according to

travel distances and vehicle loads, as outlined in Table 9.1. This load dependency leads to

asymmetric emission estimations for each established route, depending on the direction in

which the delivery route is completed –the vehicle load on a given edge will be different

depending on the direction of the route. Therefore, CO2 emissions for each route are computed

in both directions, and the one with the lowest value is selected.

Table 9.1: Estimation of emission factors, adapted from Ubeda et al. (2011)

Vehicle
Load

Load
Percentage

Consumption
(l/100km)

Conversion factor
(kg CO2/l)

Emission factor
(kg CO2/km)

Empty [0-25%) 29.6

x 2.61

0.773
Low [25-50%) 32 0.831
Half [50-75%) 34.4 0.900
High [75-100%) 36.7 0.958
Full 100% 39 1.018

As a complement to the use of the aforementioned classical benchmarks, the algorithm

is also tested in the more realistic scenario described in Muñoz-Villamizar et al. (2015).

These authors discuss the impact of HC strategies in the context of city logistics. In their

work, a total of 10 instances were considered. These instances represent different situations

concerning customers’ demands, with 3 depots supplying up to 61 clients scattered around

the city of Bogotá (Colombia). The authors compare two scenarios, the non-cooperative and

the collaborative ones. While the non-cooperative scenario is equivalent to the one described

in this thesis, their cooperative scenario corresponds to the semi-collaborative setting, i.e.,

they do not consider a fully-collaborative scenario as defined in this work.
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The BR-VNS algorithm was implemented as a Java application and tested on a personal

computer with a core i5 processor and 8GB RAM. Each instance was solved using ten different

random seeds. The reported results correspond to the best-found solution. After some quick

fine-tuning process, the following values were selected for the parameters of the algorithm:

• nIterSols = 300

• nInitSols = 2+bnodes/100c

• maxIter = 350

• routingIterationsRandomCWS = 150

• α ∈ (0.05,0.20)

• β ∈ (0.05,0.80)

• T0 = 50

• coolingFactor = 0.98

Tables 9.2-9.4 show detailed results concerning opening, vehicle, routing, environmental

and total costs in different HC scenarios. In the case of Prodhon’s instances, a fixed vehicle

cost of 1,000 units per used truck is applied, and the reported distances are multiplied by

100 and rounded up to the nearest integer in order to compute routing costs. Results for

this set are summarized in Table 9.2, in which small-size instances refer to those with 20

customers and 5 potential locations, mid-size instances are the ones with 50-100 customers

and 5 potential locations, and large-size instances refer to those with 100-200 customers and

10 potential locations.

Table 9.2: Summary of results for Prodhon’s set

Type of instances Semi- vs Non-cooperative Fully- vs Non-cooperative
Gap total costs Gap CO2 Gap total costs Gap CO2

Small-size -30.26% -59.76% -55.84% -56.33%
Mid-size -29.57% -58.44% -51.25% -54.93%

Large-size -15.90% -66.60% -68.11% -59.29%
Average -24.55% -61.71% -58.29% -56.79%
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While the semi-collaborative scenario leads to an average reduction in total cost of

about 24.55% (with respect to the non-cooperative one), this value increases up to 58.29%

when considering the fully-collaborative scenario. Similarly, both the semi- and the fully-

collaborative scenarios reported noticeable reductions in CO2 emissions with respect to the

non-cooperative one. For this benchmark set, the highest reduction in CO2 is obtained with

the semi-cooperative scenario. This is due to the fact that the fully-collaborative scenario

aims at minimizing total costs, which might require opening fewer depots and thus employing

larger routes.

The Barreto and Akca benchmarks do not envisage any fixed cost for the vehicle usage.

For Barreto’s set, reported results provide an average gap of 42.37% in total costs when

comparing the semi-collaborative scenario against the non-cooperative one. This gap grows

up to a 61.64% when the fully-collaborative scenario is considered. Regarding CO2 emissions,

the respective average gaps are 58.85% for the semi-cooperative scenario and 55.78% for the

fully-cooperative one. Once more, emissions are lower in the semi-collaborative scenario than

in the fully-cooperative one due to the fact that the former uses more depots and, hereby,

shorter routes. The outcomes for the Akca’s set are similar: the average gap in total costs is

about 42.07% for the semi-cooperative scenario and about 55.37% for the fully-collaborative

one; likewise, the average gaps related to CO2 emissions are 55.77% and 52.74%, respectively.

Figures 9.4 to 9.6 illustrate these gaps in a more visual way. As outlined in Figure 9.4,

huge savings in opening costs are obtained when fully-collaborative concepts are applied.

On the other hand, savings in distance-based routing costs are usually higher in the semi-

collaborative scenario –which leads to a higher reduction in CO2 emissions.

Apart from using classical benchmarks to compare different HC scenarios, the Bogotá

dataset provided in Muñoz-Villamizar et al. (2015) is considered, which contains 10 instances

based on real-life data. For the non-cooperative scenario, the presented approach was able

to outperform the results reported in the aforementioned article, with an average gap of

4.93% (Table 9.5). Similarly, for the semi-collaborative scenario, the BR-VNS algorithm was

also able to outperform the previously reported results, with an average gap of 4.81% (Table

9.6). Finally, three different HC scenarios are compared using the proposed algorithm (Table

9.7). Notice that both the semi-collaborative and the fully-collaborative scenarios render

Significant distance savings in comparison to the non-cooperative one. In some instances (I1,

I5, I8) the semi- and fully-collaborative scenarios yield the same routing distances, with a

lower number of open depots in the latter scenario. In these instances, the solution of the

semi-collaborative scenario only uses two out-of-the three depots given as inputs.
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9.1. METAHEURISTIC SOLVING APPROACH

Figure 9.4: Summary of average results for Prodhon’s instances

Figure 9.5: Summary of average results for Barreto’s instances
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Figure 9.6: Summary of average results for Akca’s instances

Table 9.5: Result comparison VRP

Instance Muñoz-Villamizar et al. (2015) Proposed approach %-Gap
kmkm Depots km Depots

I1 289.05 3 279.79 3 -3.20
I2 310.02 3 282.94 3 -8.73
I3 283.8 3 279.81 3 -1.41
I4 295.51 3 282.94 3 -4.25
I5 323 3 277.61 3 -14.05
I6 307.22 3 287.34 3 -6.47
I7 284.17 3 279.21 3 -1.75
I8 297.32 3 316.35 3 6.40
I9 332.42 3 288.14 3 -13.32
I10 290.37 3 282.94 3 -2.56

Average -4.93

9.2 Including stochastic input variables in the assessment of
HC concepts

In the following, a simheuristic algorithm for the multi-depot VRP (MDVRP) with stochastic

demands arising in semi-collaborative HC scenarios is described. A detailed analysis of
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Table 9.6: Result comparison MDVRP

Instance Muñoz-Villamizar et al. (2015) Proposed approach %-Gap
kmkm Depots km Depots

I1 215.13 3 210.91 3 -1.96
I2 227.51 3 215.83 3 -5.13
I3 229.81 3 214.76 3 -6.55
I4 228.01 3 212.04 3 -7.00
I5 215.01 3 210.04 3 -2.31
I6 258.43 3 215.21 3 -16.72
I7 216.56 3 211.78 3 -2.21
I8 223.93 3 215.53 3 -3.75
I9 220.08 3 217.58 3 -1.14

I10 222.76 3 219.86 3 -1.30
Average -4.81

Table 9.7: Result comparison LRP

Instance

Proposed approach
non-cooperative

(1)

Proposed approach
semi-cooperative

(2)

Proposed approach
fully-cooperative

(3)
Distance

%-Gap
(1)-(3)

Distance
%-Gap
(2)-(3)Distance Depots Distance Depots Distance Depots

I1 279.79 3 210.91 3 210.91 2 -24.62 0.00
I2 282.94 3 215.83 3 215.83 3 -23.72 0.00
I3 279.81 3 214.76 3 210.04 2 -24.93 -2.20
I4 282.94 3 212.04 3 211.89 2 -25.11 -0.07
I5 277.61 3 210.04 3 210.04 2 -24.34 0.00
I6 287.34 3 215.21 3 215.21 3 -25.10 0.00
I7 279.21 3 211.78 3 209.09 2 -25.11 -1.27
I8 316.35 3 215.53 3 215.53 2 -31.87 0.00
I9 288.14 3 217.58 3 215.58 2 -25.18 -0.92

I10 282.94 3 219.86 3 211.58 2 -25.22 -3.77
Average -25.52 -0.82

results subsequently highlights the potentials of the approach in the quantification of HC

agreements under demand uncertainty.

9.2.1 Algorithm description

Regarding the MDVRP with stochastic demands, the solving approach consists of two main

phases. First, different customer-depot allocation maps which are then routed using a biased-

randomized version of the savings heuristic are created. This process is then integrated

into a VNS framework to create a large number of allocation maps. Then, Monte Carlo

simulation (MCS) to evaluate the behavior of the most promising allocation maps in a

stochastic environment is applied.

To create different customer-depot allocation maps, a biased round-robin criterion is used.
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That is, a distance-based priority list of potential customers for depot k is created based

on the marginal savings µk
i of serving a customer i from each depot k ∈ Vd (set of depots),

compared to serving it from the best alternative depot k∗ (such that µk
i = ck∗

i − ck
i , where

ck∗
i , ck

i are the corresponding allocation costs),

Next, the nodes are randomly assigned. Each depot iteratively selects an unassigned

customer to serve from its priority list. At each step, the probability of adding the customer

with the highest potential savings to the map is defined by a geometric distribution of

parameter α, with 0<α< 1.

Once all customers have been assigned, the resulting customers-to-depot assignment map

can be seen as a series of VRPs, which are then solved using the biased randomized version of

the savings heuristic. In order to test different customer-depot allocation maps, the described

procedure is integrated into a VNS framework. Thus, the deterministic counterpart of the

stochastic problem is considered by using expected demands at each customer. After finding

an initial solution (which is set as currentBest) and the corresponding allocation map, the

latter is modified by applying a destroy-and-repair strategy, in which p% of customers are

exchanged among the depots.

After each modification, the new allocation map is solved again by using the previously

cited routing algorithm. Accordingly, the current best solution is updated when necessary.

Furthermore, an acceptance criterion is included, which permits a base solution worsening in

some cases. More specifically, base solutions are accepted when the last iteration from x to

x∗ was an improvement ( f (x)> f (x∗)), and the difference between the current base solution

and the new solution x∗∗ is not bigger than the last improvement step (| f (x)− f (x∗)| <
f (x∗∗)− f (x∗)). This increases the solution search space and avoids the algorithm running

into local minima. The described VNS procedure is run for pertubTime seconds, during

which the m most promising (deterministic) solutions are defined. See Algorithm 15 for an

overview over the applied approach.

Each of the most promising solutions obtained for the deterministic environment are then

evaluated in a stochastic environment. Here, it is assumed that there is a positive correlation

between high-quality deterministic solutions and high-quality stochastic solutions, which

makes sense for stochastic environments with a moderate level of uncertainty (random

variables with moderate variance). By simulating only the most promising deterministic

customer-depot allocation maps, the computational effort is kept manageable. To test the

behavior of each solution considering stochastic demands, random demands are repeatedly

sampled using MCS. That is, during each of a total of nIter simulation runs, the demand D i
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Algorithm 15: Generation of promising solutions
Inputs: Vd; I; α; p
% Depots, customers, distribution parameter, customers to be exchanged
M ←; % Set of Promising Solutions
Priority List ← establish customer priorities ∀d ∈V
establish customer-depot allocation map(α)
initSol ← solve map using randomized CWS
initSol ← currentBest
while elapsed time < max time do

pertubate current map(p)
newSol ← solve map using randomized CWS
if newSol < currentBest or acceptance criterion is met then

newSol ← currentBest
end

end
return Set M of promising solutions for the deterministic problem

of each customer i is sampled from a probability function using the expected demands as

mean and considering a demand variance V ar[D i] = hE[D i], with h > 0. In the numerical

experiments a log-normal distribution is applied, but the approach allows for applying any

other theoretical (e.g., Weibull, gamma, etc.) or empirical probability distribution.

The stochastic costs can be estimated via the simulation process. As vehicle capacities are

limited, a higher-than-expected overall demand will lead to route failures. That is, the vehicle

has to return to the depot to fill up its stock before continuing its route. Accordingly, route

failures are penalized by adding additional costs for a round trip from the current customer

to the depot and back. The expected variable cost is estimated by adding the costs of all round

trip failures during each simulation run n and dividing it by the total number of simulation

runs, i.e.:

(9.1) expectedStochCosts =
∑nIter

n=0 RouteFailCostn

nIter
.

Route failures also affect the reliability of the solution. Thus, for each route, its reliability

is estimated using the following formula:
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(9.2) RouteReliabil ity= (1−

nIter∑
n=0

RouteFailuresCount

nIters
)∗100%

This formula corresponds to the percentage of times that a route does not lead to a failure

during the nIter simulation runs. Therefore, the value obtained using this equation provides

an idea of the robustness of a route when it faces different stochastic scenarios. The reliability

of an entire solution (set of independent routes) can be obtained by simply multiplying the

individual reliabilities of its routes.

The simheuristic approach described before allows for obtaining an estimate of the ex-

pected total cost by adding the deterministic and expected variable costs. At this stage, the

use of short and long simulation runs is suggested. By applying a short simulation with

nIterShort iterations to each promising solution, a first estimate of the overall stochastic so-

lution can be obtained. After this first simulation, the promising solutions are re-ranked to de-

fine e elite solutions through a more time-consuming simulation with more runs, nIterLong.

Finally, the presented framework returns a list of ranked solutions. See Algorithm 16 for a

pseudo-code description of the simulation procedure.

Algorithm 16: Simulation of stochastic demands
Input: M; nIter; V ar[di]
% Set of promising deterministic solutions, number of simulation runs (short and long),

and demand variance level
E ←; % Set of Elite Solutions
for each solution ∈ M do

run short simulation (nIterShort)
estimate expectedStochCosts
if solution among best e stochastic solutions then

include solution in E
end

end
for each solution ∈ E do

run long simulation (nIterLong)
end
return Set of elite solutions for the stochastic problem
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Table 9.8: Chosen instances and their features

Instance Depots Customer Vehicles x depot Vehicle capacity BKS
P01 4 50 4 80 576.87
P02 4 50 2 160 473.53
P03 5 75 3 140 641.19
P05 2 100 5 200 750.03
P09 3 249 12 500 3858.66
P10 4 249 8 500 3631.11
P18 6 240 5 60 3702.85
P19 6 240 5 60 3827.06
P20 6 240 5 60 4058.07
P22 9 360 5 60 5702.16

9.2.2 Computational experiments and analysis of results

In order to test the proposed paradigm and contrast collaborative versus non-collaborative

scenarios, tests have been carried out on the benchmark instances proposed by Cordeau et al.

(1997) for the multi-depot VRP. Particularly, ten representative instances of different sizes

are chosen. Their features are summarized in Table 9.8. Each instance was transformed to

fit the non-collaborative scenario by using a greedy distance-based heuristic (round robin

process) which iteratively assigns each customer to its closest facility. The non-collaborative

scenario was solved by using the routing algorithm proposed in Juan et al. (2011), whereas the

collaborative case was solved by means of the biased-randomized VNS algorithm explained

before. Both algorithms were implemented as Java applications and run on a Macbook Pro

Core i5-2.4GHz processor with 8 Gb RAM. The following values were used for the different

parameters during the test execution:

• nIterShort (short simulation runs): 30

• nIterLong (long simulation runs): 5000

• α (geometric parameter for customer allocation): random in (0.05,0.8)

• p (percentage of customers allocated to new depots): random in (10%,50%)

• m (number of promising deterministic solutions): 10

• e (number of elite stochastic solutions): 5

After analyzing the effects of HC in a deterministic environment, the analysis is extended

to the stochastic environment, i.e., one in which uncertainty is present and, therefore, a
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Table 9.9: Results in low demand variance scenario

Non-collaborative Collaborative Gap

Instance
Expected

Total Costs
Expected

Reliability
Expected

Total Costs
Expected

Reliability
Expected

Total Costs
Expected

Reliability
P01 638.06 96.31% 591.35 100.00% 7.90% 3.83%
P02 511.64 97.72% 491.83 100.00% 4.03% 2.33%
P03 682.25 98.84% 671.41 100.00% 1.61% 1.17%
P05 790.29 99.57% 773.09 100.00% 2.22% 0.43%
P09 4113.53 97.93% 4047.19 98.56% 1.64% 0.64%
P10 3.914.09 99.30% 3902.52 98.51% 0.30% -0.80%
P18 4.228.57 91.25% 3855.56 100.00% 9.67% 9.59%
P19 4.227.91 91.37% 3923.45 100.00% 7.76% 9.45%
P20 4.227.57 91.39% 4080.35 100.00% 3.61% 9.42%
P22 6.341.26 91.38% 5899.48 100.00% 7.49% 9.43%

Average 4.62% 4.55%

simulation-optimization approach — as the one introduced in the previous section — is

required. Table 9.9 shows the results for a low-variance demand (V ar[D i]= 5% E[D i]). For

each scenario, the expected total costs and the expected reliability of the best-found solution

are included. The last two columns depict the improvements achieved by the collaborative

scenario in terms of expected total cost and reliability. It can be seen that the collaborative

scenario outperforms — in terms of total expected costs — the non-collaborative case in all

considered instances. Additionally, the reliability of the solutions increases in the collaborative

scenario, i.e., route failures occur less frequently. Similar results are shown in Table 9.10 and

Table 9.11 for medium-variance demand (V ar[D i]= 10% E[D i]), and high-variance demand

(V ar[D i]= 15% E[D i]).

Figure 9.7 shows box-plot graphics that summarize the distribution of the results for the

different variance levels in Tables 9.9, 9.10, and 9.11 in order to find a general pattern. As can

be seen, the higher the variance level the higher the savings obtained by using HC strategies

instead of the non-collaboration ones. Similarly, and at least for the instances considered

in this work, the HC scenarios seem to provide solutions with higher reliability levels than

those obtained in the non-collaborative scenario.
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Table 9.10: Results in medium demand variance scenario

Non-collaborative Collaborative Gap

Instance
Expected

Total Costs
Expected

Reliability
Expected

Total Costs
Expected

Reliability
Expected

Total Costs
Expected

Reliability
P01 644.34 95.30% 591.35 100.00% 8.96% 4.93%
P02 514.17 97.03% 491.83 100.00% 4.54% 3.06%
P03 686.92 97.85% 671.41 100.00% 2.31% 2.20%
P05 802.23 97.84% 773.09 100.00% 3.77% 2.21%
P09 4178.24 96.08% 4083.71 99.97% 2.31% 4.05%
P10 3949.39 98.47% 3921.84 98.87% 0.70% 0.41%
P18 4294.17 88.68% 3855.62 99.99% 11.37% 12.75%
P19 4291.28 88.65% 3923.51 99.99% 9.37% 12.79%
P20 4292.20 88.67% 4080.35 100.00% 5.19% 12.78%
P22 6439.76 88.64% 5899.56 99.99% 9.16% 12.80%

Average 5.77% 6.80%

Table 9.11: Results in high demand variance scenario

Non-collaborative collaborative Gap

Instance
Expected

Total Costs
Expected

Reliability
Expected

Total Costs
Expected

Reliability
Expected

Total Costs
Expected

Reliability
P01 650.40 94.42% 591.35 100.00% 9.99% 5.91%
P02 512.92 98.63% 491.83 100.00% 4.29% 1.39%
P03 690.49 97.04% 671.41 100.00% 2.84% 3.05%
P05 796.21 98.18% 773.09 100.00% 2.99% 1.85%
P09 4205.89 95.37% 4111.02 95.20% 2.31% -0.18%
P10 3983.54 97.89% 3936.38 97.94% 1.20% 0.05%
P18 4336.48 87.32% 3855.88 99.94% 12.46% 14.45%
P19 4332.61 87.40% 3923.74 99.94% 10.42% 14.35%
P20 4337.97 87.11% 4080.45 99.97% 6.31% 14.76%
P22 6502.50 87.32% 5899.89 99.94% 10.21% 14.45%

Average 6.30% 7.01%
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FINAL CONCLUSIONS

10.1 Main research contributions

This thesis solidifies and extends the general simheuristic paradigm. In particular, it intro-

duces and supports the use of the simulation-optimization framework as decision support tool

in the creation of efficient and sustainable smart city logistics. Several research contributions

according to the established investigation objectives can be identified:

• Objective 1: Development of new simulation-optimization algorithms according to the

general simheuristic framework.

Various simulation-optimization procedures are developed according to the general

simheuristic paradigm. Problem-specific algorithms for stochastic versions of different combi-

natorial optimization problems (COPs) are outlined. Special focus is put on solving frame-

works to address different stages of urban freight transportation planning such as vehicle

routing, customer clustering, facility location, and integrated supply chain design problems.

The elaborated algorithms are flexible enough to be applied to a wider range of optimiza-

tion problems under uncertainty. Especially SimGRASP and SimVNS are highlighted as two

extensions to well-known metaheuristic procedures that can handle any kind of COP. On the

one hand, SimGRASP is tested on the permutation Flow Shop Problem, the Vehicle Routing

Problem, and the uncapacitated Facility Location Problem. In all cases it is shown that
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SimGRASP constitutes a competitive and easy-to-implement framework to solve stochastic

optimization problems in different environments. On the other hand, an even higher integra-

tion of simulation and optimization is achieved by SimVN through a stochastically-driven

base solution from which new solutions are generated. The algorithms’ performance and

behavior is tested on stochastic versions of problem settings related to operational, tactical,

and strategic problem settings arising in smart city logistics concepts. Even though the prob-

lem settings differ in their complexity and level of decision-taking integration, the proposed

algorithm is able to find competitive solutions to large-scaled problem instances in only a few

seconds or minutes.

• Objective 2: Proposal of methodological extensions, definition of best-practices, and

discussion of potential future applications of simheuristic paradigms.

Simheuristics constitute a relatively new simulation-optimization approach that has been

gaining increased attention in recent years. Research completed for this dissertation has

directly supported the solidification and extension of the general framework. The following

best practices in the creation of simheuristic algorithms are emphasized:

i It is shown that the performance of simheuristic results is directly related to the underly-

ing optimization engine. The use of state-of-the-art metaheuristic procedures to ensure

high-quality COP solutions is proposed.

ii The integration of two different simulation stages is highly recommended. By filtering

promising solutions in a first (short) simulation phase, it can be avoided that a more

extensive (long) set of simulation runs jeopardizes computational times.

iii Obtained simulation-optimization results show the potential of simheuristics regarding an

additional risk analysis for further decision-taking insights. The creation of performance

indicators such as the mean or standard deviation of expected results in order to rank

created solutions along different dimensions is suggested. Tested scenarios include the

evaluation of vehicle safety stocks, the effect of time-dependency in stochastic systems,

customer allocation under different demand variance levels, and the location of facilities

in complex environments. The completed risk and reliability analyses and their associated

visualization — in the form of boxplots, radar charts, etc. — serve as illustrative examples

for a wider range of potential applications.
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Moreover, two major methodological extensions to the general simheuristic paradigm

are proposed in this work. The importance of data preparation and continuous stakeholder

involvement during the modeling process in real-life application scenarios is outlined. Ad-

ditionally, an agent-based simheuristic framework that combines agent based simulation

with metaheuristics is proposed. This represents a novel simulation-optimization approach to

model and solve large-scaled optimization problems shaped by the complexity of stakeholder

interaction in social networks.

• Objective 3: Application of simheuristic algorithms to rich optimization problems (of

theoretical and practical nature) related to urban freight transportation on operational,

tactical, and strategic planning levels.

Developed algorithms are applied to a range of stochastic problem settings related to

urban freight transportation planning. On the one hand, smart urban waste management

is supported. This includes the development of simheuristic approaches to optimize the

operational task of waste collection in urban areas. The problem settings are formulated as

rich vehicle routing problem extensions under the consideration of time-windows, capacity

constraints, multiple depots, time dependency, driver-lunch breaks, and input uncertainty

regarding waste levels and travel times. Numerical tests are completed on well-known

academic benchmark settings with up to 2100 collection points and a large-scaled case study

in the Catalan city of Sabadell with nearly 900 waste containers.

On the other hand, presented simheuristic algorithms are presented and tested on

stochastic optimization problems with higher complexity derived from an increased level

of decision-taking integration. This includes a simulation-optimization approach for the

multi-period and stochastic Inventory Routing Problem arising in vendor managed inventory

concepts, which combines vehicle routing and inventory replenishment decisions. Experiments

are completed on theoretical benchmarks with up to 80 retail centers that are served from a

central depot. Furthermore, the two-echelon Location Routing Problem is addressed. This

problem setting occurs in the creation of urban consolidation centers, a concept that aims at

reducing the negative externalities of freight transportation in cities. The proposed simulation-

optimization procedure is tested on real-life data from a fast-moving goods supply chain with

100 delivery points in the Greek capital of Athens.

Finally, a simheuristic algorithm is proposed to support the development of horizontal

collaboration concepts, which are based on joint decisions and resources of different supply
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chain actors operating on the same market level. Depending on the collaboration scenario,

this involves the solution of COPs that differ in their operational, tactical, and strategic

planning scope. Through various computational experiments, it is shown that simheuristics

can be an important decision-support tool to assess any stage of collaboration agreements in

different uncertainty scenarios.

• Objective 4: Analysis of simheuristics as a decision support tool to generate managerial

insights in the development of smart city logistics.

Various research outcomes support the use of simheuristics as decision-support tool to

generate managerial insights in the development of smart city logistics. In all discussed

problem settings — regardless of their planning horizon, complexity, or decision integration

—, simheuristics are able to provide results within a few seconds or minutes. Even large-

scaled scenarios with several thousands of network nodes are solved within reasonable

computational times, emphasizing the scalability of the simulation-optimization framework.

Moreover, it is shown that the suggested algorithms are able to compete with exact solving

approaches and state-of-the art academical and real-life benchmarks.

The main additional managerial insights through simheuristics are provided by their

ability to account for uncertainty in a smart way. Apart from providing expected objective

function values with regard to different levels of input variability, obtained simulation results

are used for an additional risk and reliability analysis of obtained results. Examples outlined

in this thesis include a reliability analysis of waste collection routes with different capacity

safety stocks or stochastic travel times in time-dependent route planning, an analysis of

expected routing and inventory costs with different demand variance levels, and a stock-out

risk comparison between collaborative and non-collaborative supply chains. This information

directly extends the decision-taking flexibility of urban freight transportation planners, as

he or she is able to choose proposed solutions according to his or her utility function or risk

adversity.

Furthermore, this thesis shows that simheuristic frameworks can support the analy-

sis, quantification, and development of smart city logistics concepts. It is outlined how the

paradigm can be used to evaluate different collaboration scenarios in urban freight trans-

portation along monetary and environmental dimensions. This includes different levels of

shared resources and joint decisions, including customer allocation, capacity sharing, or the

creation of urban consolidation centers.
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• Objective 5: Comparison of developed optimization algorithms to state-of-the-art aca-

demic and real-life benchmarks.

Whenever possible, the elaborated metaheuristic and simheuristic algorithms are eval-

uated against state-of-the-art benchmarks found in relevant academic publications. This

underlines the competitiveness of the proposed solving frameworks in comparison to other

algorithms put forward in the literature. Moreover, real-life data are used to show the

applicability of developed paradigms in practical optimization scenarios.

The underlying Variable Neighborhood Search metaheuristic of the SimVNS algorithm

proposed in the context of urban waste collection outperforms previously reported results for

an extensive set of waste collection problem instances by over 2.5% on average. Likewise,

the algorithm is compared to a GAMS implementation of an analytic problem formulation.

Results outline superior modeling capabilities, scalability, and computational times of the

developed metaheuristic. Regarding the case study in Sabadell, the proposed simulation-

optimization algorithm improves current waste collection plans completed by the waste

management service provider on a daily basis by over 10%. Moreover, collaborative waste

collection in clustered urban areas is supported by showing that improved customer allocation

yields potential operational cost savings of up to 30%.

For the Inventory Routing Problem addressed in the context of integrated supply chain

design, it is shown that a multi-period planning horizon significantly outperforms the single

period approach outlined in previous works. Moreover, the advantages of creating an indi-

vidualized inventory replenishment matrices for each delivery point are emphasized. The

potential benefits of creating urban consolidation centers on city borders are highlighted by

solving the two-echelon Location Routing Problem. Computational experiments are completed

on real-life data from a fast-moving goods supply chain in the Greek capital Athens. The

application of the outlined simheuristic shows that up to 38% of routing costs can be saved

through this city logistics concept.

Finally, the elaborated metaheuristic procedure to solve all optimization problems arising

in the context of horizontal concepts is extensively compared to state-of-the-art algorithms

found in relevant academic publications. Reported results suggest that the solving framework

is generic enough to provide competitive solutions for the VRP, the MDVRP, and the LRP with

only minor adjustments. Regarding the comparison of different supply chain collaboration

degrees, the solving framework is able to quantify significant differences in terms of routing,

facility location, vehicle usage, and external costs in the form of CO2 emissions.
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10.2 Potential future research lines

Various potential future research lines steam from this work. New simulation-optimization

paradigms such as the proposed agent-based simheuristic framework could be tested. Ad-

ditional insights on the behavior and performance of the established approach in different

environments would allow a more detailed definition regarding the necessary steps and

best-practices of this agent-based concept. A more detailed study of parallel and distributed

computing systems for simheuristic paradigms could be especially (but not exclusively)

interesting in this context.

Similarly, the elaborated simheuristic extensions to well-known metaheuristics such as

SimGRASP or SimVNS could be explored in a wider range of application environments.

While the proposed frameworks are thoroughly tested and applied to a range of stochastic

optimization problems arising in the context of smart city logistics concepts throughout

this dissertation, the presented algorithms are flexible enough to be applicable in other

optimization settings such as flow shop scheduling, airline crew rostering, etc.

Research for this dissertation has led to the solidification of the general simheuristic

framework, for example by showing that the use of a reduced simulation run can filter

promising solutions to reduce the computational effort of a more detailed simulation phase. An

interesting extension in this context would be a more focused study of different data analysis

concepts to further improve the performance of simheuristic algorithms. This might include

parameter fine-tuning algorithms, parallelization techniques, solution search predictions, or

similar techniques.

Yet another interesting research area is the integration of machine learning techniques

in simheuristic and metaheuristic approaches as natural approach for solving optimization

problems with dynamic inputs. This makes the hybridization of simheuristics and machine

learning a potential approach to deal with the increasing stochasticity and dynamism of

real-world problems in complex environments such as urban freight transportation and

logistics.

Finally, a more intensive investigation of simheuristics as "optimization-as-a-service"

toolbox for real-life optimization settings would increase the applicability of the simulation-

optimization paradigm. The methodological implications of applying metaheuristics in real-

life settings are shown in this thesis through large-scaled case studies, which emphasize the

importance of data preparation and a continuous stakeholder involvement for a successful

implementation of the proposed approach. On the one hand, further research in the form of
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different case studies could be completed to test and improve the applicability of simheuristics

in practical scenarios. On the other hand, more detailed research regarding the technical

aspects of industrializing and implementing specialized simheuristic algorithms to provide

their functionalities (e.g. regarding the development of smart city logistics concepts) to a

wider audience would be of both theoretical and practical interest.

10.3 Summary of research output

The discussions and results presented in this work are based on numerous research outputs

in the form of publications in ISI-SCI and SCOPUS indexed journals and the proceedings of

peer-reviewed international conferences. Developed research dissemination includes:

• Papers published in ISI-SCI indexed Journals

– (A1) Gruler, A.; Fikar, C.; Juan, A.; Hirsch, P.; Contreras, C. (2017): Supporting

multi-depot and stochastic waste collection management in clustered urban areas

via simulation-optimization. Journal of Simulation, 11(1): 11-19 (indexed in ISI

SCI, 2017 IF = 1.218, Q3; 2017 SJR = 0.428, Q2). DOI: https://doi.org/10.

1057/s41273-016-0002-4..

– (A2) Gruler, A.; Quintero, C.; Calvet, L.; Juan, A. (2017): Waste Collection Under

Uncertainty: a simheuristic based on variable neighborhood search. European Jour-

nal of Industrial Engineering, 11(2): 228-255. DOI: 10.1504/EJIE.2017.10003619

(indexed in ISI SCI, 2017 IF = 1.085, Q3; 2017 SJR = 0.595, Q1). DOI: https:

//doi.org/10.1504/EJIE.2017.083257.

– (A3) Gruler, A.; Panadero, J.; de Armas, J.; Moreno-Perez, J.; Juan, A. (2018):

A Variable Neighborhood Search Simheuristic for the Multi-Period Inventory

Routing Problem with Stochastic Demands. Int. Transactions in Operational

Research (indexed in ISI SCI, 2017 IF = 2.400, Q1; 2017 SJR = 1.071, Q1). DOI:

https://doi.org/10.1111/itor.12479.

– (A4) Quintero, C.; Gruler, A.; Juan, A.; Faulin, J. (2017): Using Horizontal Co-

operation Concepts in Integrated Routing and Facility Location Decisions. Int.

Transactions in Operational Research (indexed in ISI SCI, 2017 IF = 2.400, Q1;

2017 SJR = 1.071, Q1). DOI: https://doi.org/10.1111/itor.12540.
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– (A5) Ferone, D.; Gruler, A.; Festa, P.; Juan, A. (2018): Enhancing and Extending

the Classical GRASP Framework with Biased Randomization and Simulation.
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Q3; 2017 SJR = 1.002, Q1). DOI: https://doi.org/10.1080/01605682.2018.

1494527.
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Combining variable neighborhood search with simulation for the inventory routing

problem with stochastic demands and stock-outs. Computers and Industrial En-

gineering (indexed in ISI SCI, 2017 IF = 3.195, Q1; 2017 SJR = 1.463, Q1). DOI:

https://doi.org/10.1016/j.cie.2018.06.036.

• Papers published in Scopus indexed Journals

– (B1) Quintero, C.; Gruler, A.; Juan, A.; De Armas, J.; Ramalhinho, H. (2017): Us-

ing Simheuristics to promote Horizontal Collaboration in Stochastic City Logistics.

Progress in Artificial Intelligence (indexed in Scopus, 2015 SJR = 0.124, Q4). DOI:

https://doi.org/10.1007/s13748-017-0122-8.

– (B2) Ferone, D.; Festa, P.; Gruler, A.; Juan, A. (2017): Combining simulation

with a GRASP metaheuristic for solving the permutation flow-shop problem with

stochastic processing times. Proceedings of the 2016 Winter Simulation Conference,

2205-2215 (Indexed in ISI Web of Science and Scopus, 2015 SJR = 0.115). DOI:

10.1109/WSC.2016.7822262.

– (B3) Agustin, A.; Gruler, A.; De Armas, J.; Juan, A. (2016): Optimizing airline

crew scheduling using biased randomization: A case study. Advances in Artificial

Intelligence. CAEPIA 2016. Lecture Notes in Computer Science, vol 9868 (indexed

in ISI Web of Science and Scopus, 2014 SJR = 0.339, Q2). DOI: https://doi.org/

10.1007/978-3-319-44636-3_31.

– (B4) Quintero, C.; Gruler, A.; Juan, A. (2016): Quantifying potential benefits of

Horizontal Cooperation in urban transportation under uncertainty: A simheuristic

approach. Advances in Artificial Intelligence. CAEPIA 2016. Lecture Notes in

Computer Science, vol 9868 (indexed in ISI Web of Science and Scopus, 2014 SJR

= 0.339, Q2). DOI: https://doi.org/10.1007/978-3-319-44636-3_26.
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– (C1) Gruler, A.; Perez, T.; Calvet, L.; Juan, A. (under review): A Simheuristic

Algorithm for Time-Dependent Waste Collection Management with Stochastic

Travel Times. Int. Transactions in Operational Research (indexed in ISI SCI, 2017

IF = 2.400, Q1; 2017 SJR = 1.071, Q1). ISSN: 0969-6016.

– (C2) Gruler, A.; De Armas, J.; Juan, A.; Goldsman, D. (under review): Modeling
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1.344, Q2; 2017 SJR = 0.551, Q2). ISSN: 1696-2281.

• Presentations in peer-reviewed international conferences

– (D1) Gruler, A.; Klueter, A.; Rabe, M.; Juan, A. (2017): A simulation-optimization
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urban consolidation centers. 17th ASIM Dedicated Conference on Simulation.

Kassel, Germany. September 20-22.

– (D2) Raba, D.; Gruler, A.; Riera, D.; Gelada, J.; Juan, A. (2017): Combining
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– (D5) Gruler, A.; Juan, A.; Steglich, M. (2015): A Heuristic Approach for smart

Waste Collection Management. 2015 Metaheuristics International Conference.
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PERFORMANCE OF BR-GRASP AND SIMGRASP FOR THE

PFSP

One of the most studied scheduling problems is related to the optimization of flow shop

operations (Pinedo 2008). It consists of a set J of jobs which has to be processed by m ∈ M

machines. The machines sequentially perform the operations Oi j related to each job i ∈ J,

whereby each operation requires a specific processing time. The permutation Flow Shop

Problem (PFSP) is a special scheduling case, in which the order of processing the operations

on the machines is the same for all jobs. The objective function of the problem setting

typically consists of the minimization of the overall completion time (known as makespan) of

processing all jobs on all machines. This NP-hard problem (Garey and Johnson 1990) has a

wide range of applications in different sectors, including manufacturing, pharmaceuticals, or

the telecommunications sector.

To test BR-GRASP and SimGRASP, the benchmarks for the deterministic PFSP presented

by Taillard (1993) are used. The problem settings range from 20-500 jobs and 5-20 machines,

with the objective of minimizing total makespan. These benchmark cases were later applied

by Zobolas et al. (2009) and Juan et al. (2014e). While the former address the deterministic

problem setting with a hybrid metaheuristic based on a Genetic Algorithm enriched with

VNS, the later develop a simheuristic algorithm based on the combination of simulation and

ILS. More specifically, the authors solve the PFSP with stochastic processing times (PFSPST),
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in which processing times pi j of job i and machine j are formulated as stochastic variables.

For the deterministic problem setting, both the traditional GRASP metaheuristic and

BR-GRASP were implemented with a maximum running time of 30 seconds. After some

preliminary testing, the threshold parameter defining the size of the RCL was set to α= 0.7,

while the geometric distribution parameter β defining the biased randomization probabilities

was set to 0.1. To allow a fair comparison to other simheuristic approaches for the PFSPST,

the maximum running time was defined as tmax = 0.03×# jobs×#machines in the stochastic

case.

The performance of the algorithms are outlined in Table C.1. Compared to the best known

solutions (BKSs) for the deterministic PFSP variant as put forward by Zobolas et al. (2009),

the traditional GRASP metaheuristic yields an average percentage gap of 1.8%. This gap is

reduced to 1.63% when applying BR-GRASP. Concerning to the stochastic problem version,

SimGRASP is compared to the SimILS approach discussed by Juan et al. (2014e). These

authors present a generalized PFSPST benchmark set by creating stochastic processing times

Pi j based on the deterministic processing time values as a mean, and modeling the stochastic

processing times within a log-normal distribution with different variance levels k. The table

reports results for a variance level of k = 0.5. As it can be seen, the obtained average gap over

all instances lies at 0.37%.
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Table C.1: Performance of BR-GRASP and SimGRASP for the PFSP

Instance BKS
(1)

GRASP
(2)

BR-GRASP
(3)

%-Gap
(1)-(2)

%-Gap
(1)-(3)

SimILS
(4)

SimGRASP
(5)

%-Gap
(4)-(5)

tai007_20_5 1234 1236 1239 0.16 0.41 1240.1 1240.63 0.04
tai009_20_5 1230 1230 1230 0.00 0.00 1237.3 1237.73 0.03
tai010_20_5 1108 1108 1108 0.00 0.00 1113.9 1113.59 -0.03

tai011_20_10 1582 1586 1586 0.25 0.25 1587.9 1587.76 -0.01
tai013_20_10 1496 1501 1508 0.33 0.80 1503 1503.4 0.03
tai027_20_20 2273 2291 2284 0.79 0.48 2277.1 2277.04 0.00
tai036_50_5 2829 2829 2829 0.00 0.00 2829.8 2831.98 0.08
tai040_50_5 2782 2782 2782 0.00 0.00 2783.1 2782.99 0.00

tai044_50_10 3063 3102 3093 1.27 0.98 3067.8 3070.32 0.08
tai045_50_10 2976 3068 3053 3.09 2.59 2999.7 3025.96 0.88
tai046_50_10 3006 3075 3079 2.30 2.43 3018.3 3038.43 0.67
tai047_50_10 3093 3158 3150 2.10 1.84 3131.6 3138.33 0.21
tai052_50_20 3704 3846 3828 3.83 3.35 3726 3767.71 1.12
tai055_50_20 3610 3747 3737 3.80 3.52 3631.5 3679.19 1.31
tai062_100_5 5268 5268 5268 0.00 0.00 5271.1 5270.1 -0.02
tai067_100_5 5246 5250 5246 0.08 0.00 5256.4 5262.94 0.12

tai078_100_10 5617 5695 5672 1.39 0.98 5646.3 5662.14 0.28
tai082_100_20 6183 6434 6416 4.06 3.77 6249.7 6305.68 0.90
tai087_100_20 6268 6519 6488 4.00 3.51 6351.8 6400.66 0.77
tai094_200_10 10889 10917 10893 0.26 0.04 10895.2 10893.1 -0.02
tai097_200_10 10854 10914 10885 0.55 0.29 10878.2 10893.12 0.14
tai102_200_20 11203 11617 11580 3.70 3.37 11390.2 11452.68 0.55
tai103_200_20 11281 11671 11694 3.46 3.66 11462 11526.96 0.57
tai104_200_20 11275 11672 11631 3.52 3.16 11386.6 11480.78 0.83
tai105_200_20 11259 11581 11535 2.86 2.45 11375.3 11435.16 0.53
tai107_200_20 11360 11741 11679 3.35 2.81 11511.9 11556.31 0.39
tai108_200_20 11334 11678 11687 3.04 3.11 11497 11563.86 0.58
tai112_500_20 26520 27084 27048 2.13 1.99 26757.9 26867.79 0.41
tai113_500_20 26371 26858 26801 1.85 1.63 26559.4 26631.68 0.27
tai118_500_20 26560 27051 26990 1.85 1.62 26713 26802.02 0.33

Average 1.80 1.63 0.37
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The Vehicle Routing Problem (VRP) is typically formulated on a graph G = (V ,E), whereby

customer set V = 0,1, . . . ,n describes n clients with demand di, i ∈V \{0}, which have to be

served by a set of vehicles located at the central depot 0 ∈V . Travel distances between any

two nodes are described by a set E of weighted edges. Typically, the objective function consists

of the minimization of overall travel distances or costs (Toth and Vigo 2014).

In order to compare BR-GRASP with the traditional GRASP metaheuristic implementa-

tion, threshold parameter α was set to 0.3, while the geometric distribution parameter β was

set to 0.5 respectively. As test instances, the sets A and B of the well-known benchmark set

for the capacitated VRP proposed by Augerat et al. (1998) are used. The algorithms running

time for the deterministic case was set to 30 seconds for both algorithm implementations. All

results are compared to the optimal results for the chosen instances elaborated in the work of

Fukasawa et al. (2006). Furthermore, the VRP with stochastic demands (VRPSD) was used

to evaluate the performance of the SimGRASP methodology. As performance indicator, the

results obtained with the simheuristic based on a multi-start heuristic procedure discussed

by Juan et al. (2013b) are used. As done in their paper, the deterministic demand levels di

given by the benchmarks are turned into their stochastic counterpart by applying different

variance levels k, whereby a variance level of k = 0.25 is used to obtain the results reported

in this work. Computational running times are set to 10 seconds for the stochastic case.

As summarized in Table D.1, the traditional implementation of GRASP is on average
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Table D.1: Performance of BR-GRASP and SimGRASP for the VRP

Instance BKS
(1)

GRASP
(2)

BR-GRASP
(3)

%-Gap
(1)-(2)

%-Gap
(1)-(3)

SimMultiStart
(4)

SimGRASP
(5)

%-Gap
(4)-(5)

A-n32-k5 787.08 807.09 787.2 2.54 0.02 993.20 890.95 -10.30
A-n33-k5 662.11 687.91 662.11 3.90 0.00 815.40 750.63 -7.94
A-n33-k6 742.69 768.84 742.69 3.52 0.00 912.60 837.63 -8.21
A-n37-k5 664.8 707.81 685.26 6.47 3.08 795.00 734.44 -7.62
A-n38-k5 716.5 768.13 747.14 7.21 4.28 885.10 824.37 -6.86
A-n39-k6 822.8 863.08 835.25 4.90 1.51 1010.60 926.11 -8.36
A-n45-k6 938.1 1006.45 957.06 7.29 2.02 1184.30 1091.36 -7.85
A-n45-k7 1139.3 1199.98 1155.22 5.33 1.40 1502.00 1336.08 -11.05
A-n55-k9 1067.4 1099.84 1088.45 3.04 1.97 1408.40 1258.72 -10.63
A-n60-k9 1344.4 1421.88 1363.58 5.76 1.43 1795.70 1579.79 -12.02
A-n61-k9 1022.5 1102.23 1042.96 7.80 2.00 1330.60 1224.44 -7.98
A-n63-k9 1607 1687.96 1649.33 5.04 2.63 2203.70 1897.29 -13.90
A-n65-k9 1166.5 1239.42 1197.49 6.25 2.66 1555.30 1437.84 -7.55

A-n80-k10 1754 1860.94 1798.01 6.10 2.51 2328.40 2177.10 -6.50
B-n31-k5 676.09 681.16 676.09 0.75 0.00 855.70 757.60 -11.46
B-n35-k5 956.29 978.33 961.77 2.30 0.57 1255.50 1098.00 -12.54
B-n39-k5 549 566.71 553.27 3.23 0.78 695.90 621.34 -10.71
B-n41-k6 826.4 878.3 844.7 6.28 2.21 1103.20 1005.62 -8.84
B-n45-k5 747.5 757.16 754.23 1.29 0.90 904.60 828.04 -8.46
B-n50-k7 741 748.8 744.23 1.05 0.44 945.80 859.48 -9.13
B-n52-k7 745.8 764.9 755.85 2.56 1.35 944.40 848.71 -10.13
B-n56-k7 704 733.74 719.03 4.22 2.13 920.00 845.37 -8.11
B-n57-k9 1596 1653.42 1602.92 3.60 0.43 2199.70 1885.69 -14.27
B-n64-k9 859.3 921.56 903.43 7.25 5.14 1179.60 1064.53 -9.75

B-n67-k10 1024.4 1099.95 1086.01 7.38 6.01 1404.50 1247.67 -11.17
B-n68-k9 1263 1317.77 1305.32 4.34 3.35 1754.70 1515.88 -13.61
Average 4.59 1.88 -9.81

4.59% worse than the optimal solution. This gap can be significantly reduced to 1.88% by

introducing a biased randomized edge selection process. When comparing the combination of

a multi-start heuristic with simulation to the outlined SimGRASP algorithm, it can be seen

that SimGRASP outperforms previous simulation-optimization approaches by -9.81%.
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PERFORMANCE OF BR-GRASP AND SIMGRASP FOR THE

UFLP

The uncapacitated Facility Location Problem (UFLP) consists of defining the necessary

number of facilities in order to serve a set of customers. Associated costs consist in the sum

of the setup-costs for each facility and the costs for serving all customers. In this thesis, the

NP-hard (Cornuejols et al. 1990) UFLP with deterministic and stochastic customer demands

is solved (Wolf 2011).

The benchmark instances are the ones originally proposed by Ahn et al. (1988) in their

work on the p-median problem, ranging from 10-1000 potential facility locations from which

500-3000 clients have to be served. The results of the traditional GRASP and BR-GRASP for

the selected deterministic instances are listed in Table E.1. Both the threshold- and geometric

distribution parameter were set to 0.3. The algorithm running times were set to 30 seconds

per instance. As benchmark results, the work presented by Resende and Werneck (2006) is

used. On the other hand, the stochastic UFLP is compared to the SimILS approach discussed

by de Armas et al. (2017). As algorithm stopping criterion for the stochastic demand scenario,

300 seconds of running time are defined.

As for the previously presented problem setting, BR-GRASP outperforms the traditional

GRASP implementation, with percentage gaps to the BKS by 2.72% and 4.07% respectively.

When comparing SimGRASP to the SimILS for the UFLP with stochastic demands, an
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Table E.1: Performance of BR-GRASP and SimGRASP for the UFLP

Instance BKS
(1)

GRASP
(2)

BR-GRASP
(3)

%-Gap
(1)-(2)

%-Gap
(1)-(3)

SimILS
(4)

SimGRASP
(5)

%-Gap
(4)-(5)

500-10 798577 817829 810525 2.41 1.50 2804875.3 2962061.99 5.60
500-100 326805.4 337105 331548 3.15 1.45 1166560.96 1178299.6 1.01

500-1000 99169 99300 99382 0.13 0.21 196806.67 192601.25 -2.14
1000-10 1434185.4 1475360 1473421 2.87 2.74 5367175.13 5467900.1 1.88

1000-100 607880.4 635610 620130 4.56 2.02 2211856.7 2223186.38 0.51
1000-1000 220560.9 224157 224227 1.63 1.66 603844.02 637491.97 5.57
1500-10 2001121.7 2066830 2054635 3.28 2.67 7723274.25 7819403.63 1.24

1500-100 866493.2 913517 893552 5.43 3.12 3303763.47 3319480.69 0.48
1500-1000 334973.2 344566 343247 2.86 2.47 1112816.36 1101848.44 -0.99
2000-10 2558120.8 2651555 2653412 3.65 3.73 9634858.71 9995791.03 3.75

2000-100 1122861.9 1183304 1159781 5.38 3.29 4283233.52 4326248.99 1.00
2000-1000 437690.7 454544 449637 3.85 2.73 1533026.75 1517522.93 -1.01
2500-10 3100224.7 3203874 3182487 3.34 2.65 11625433.27 12181196.86 4.78

2500-100 1347577.6 1419451 1391502 5.33 3.26 5230296.48 5232375.46 0.04
2500-1000 534426.6 557839 546963 4.38 2.35 1862652.94 1847852.18 -0.79
3000-10 3570818.8 3732263 3670865 4.52 2.80 13678703.33 14168356.46 3.58

3000-100 1602530.9 1686475 1649050 5.24 2.90 6172594.29 6212876.89 0.65
3000-1000 643541.8 673503 659208 4.66 2.43 2302997.41 2288101.2 -0.65
Averages 4.07 2.72 1.36

average percentage difference 1.36% can be observed.
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CREATING A REAL-LIFE DISTANCE MATRIX FOR VEHICLE

ROUTING PROBLEMS WITH QGIS AND OTHER OPEN-SOURCE

SOFTWARE

This report presents the use of the open source geographic information system QGIS to obtain

a distance matrix between different locations based on real life information. All necessary

tools and steps to create a routable network from OpenStreeMap (.osm) including the use of

PostgreSQL databases, the PostgreSQL spatial database extensions PostGIS and pgRouting,

and .osm file converter osm2po are described. The main goal is the creation of a distance

matrix based on a large data set of longitude/latitude locations in the medium-sized Catalan

city of Sabadell, which is used as illustrative example throughout this report.

The data was obtained through a collaboration agreement between the Internet Com-

puting & Systems Optimization (ICSO) and the company SMATSA, who is responsible for

the collection of waste in the inner-city area of Sabadell (around 200.000 inhabitants). The

problem setting involves the waste disposal vehicle routing in order to find efficient routes

between 886 paper waste containers. A single depot and landfill are considered. A distance

matrix between all points which are initially given as Longitude/Latitude (Long/Lat) locations

is created.
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APPENDIX F. CREATING A REAL-LIFE DISTANCE MATRIX FOR VEHICLE ROUTING
PROBLEMS WITH QGIS AND OTHER OPEN-SOURCE SOFTWARE

OpenStreetMaps

OpenStreetMaps (OSM) provides a free editable map of the world. One of its main functions

is the ability to download .osm data files of any selected area. These type of files are coded in

XML, and contain geographic data in a structured/ordered format. In order to download an

.osm file from a given area, look for the area of interest and export the file. Figure F.1 shows

a screenshot of the process when downloading a .osm file of Sabadell. Note that .osm files

are not routable. Thus, the data needs to be adopted in order to make meaningful routing

networks and connections.

Figure F.1: Downloading the .osm file of Sabadell in OSM

QGIS

QGIS is a free and open-source geographic information system (GIS). It enables users to

create, edit, visualize, and publish geospatial information on any operating system. At the

time of this report the latest QGIS version is 2.18, which is used in the following tutorial.

Many QGIS features need to be imported through the use of different plug-ins, which are

directly available from the software (in the "Plugins" tab). We will work with the plug-ins

listed below. Furthermore, a screenshot from QGIS with the OSM layer can be seen in Figure

F.2.

• DB Manager (allows the management of databases from within QGIS)

• OpenLayers (provides layers of different maps)

• NNJoin (finds closest point from a list A of points of each node of a list B of points)
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Figure F.2: QGIS screen with enabled OSM layer

PostgreSQL

PostgreSQL (postgres) is an an object-relational database. It enables the creation and manage-

ment of geospatial databases. Furthermore, QGIS offers the possibility of directly changing

and working with postgres databases within QGIS. We will use postgres with the free

database management tool pgAdmin (version 4). In order to create geospatial databases, the

postgres extensions PostGIS and pgRouting need to be included in each new database which

is supposed to allow location queries to be run in SQL. To these extensions run the SQL query

shown in Figure F.3.

Figure F.3: SQL query to include PostGIS and pgRouting in a SQL database

osm2po

osm2po is a .osm file converter, which converts .osm files downloaded from OSM into routable

data. The output of osm2po is a executable SQL query for PostGIS enables SQL databases.

For this work we use the osm2po version 5.1.0. Download the .zip file and unzip the folder

into a suitable location of your choice.
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PROBLEMS WITH QGIS AND OTHER OPEN-SOURCE SOFTWARE

Get OSM data

First, the geographic information of the area of interest needs to downloaded from OSM.

Export the .osm file (in our case Sabadell.osm) and save it in a folder of your choice.

Using osm2po to make routable PostGIS enabled SQL database

osm2po needs to be managed from the command prompt. Open the command prompt and

type in the script outlined in Figure F.4. This reads the .osm file from a given destination

(in this case "C:/Users/-defaultuser0/OneDrive/PhD/GIS/Sabadell2/Sabadell.osm" and

create a new folder with the prefix "Sabadell" inside the osm2po folder. Inside the new folder

there should now be an executable SQL file called Sabadell_2po_4pgr.sql. Be careful, as

there are some issues with the newest version (5.1.0) of osm2po in creating this file. If the

query runs correctly but does not return the SQL file, it is likely that the issue discussed and

solved in has occurred.

Figure F.4: Script to convert .osm files into SQL file

Run SQL file in pgAdmin and visualize output in QGIS

The executable SQL query can now be run in pgAdmin to create a table with all geographic

ways in a PostGIS enabled database. The table includes the geographic information (i.e.,

length, start/end points, etc.) of the area exported as .osm file. The output can be directly

visualized in QGIS by using the "Add PostGIS table" function. An example showing all ways

of Sabadell included in the original .osm file over the OSM layer of QGIS can be seen in

Figure F.5.

Obtaining network points

In order to make a routable network the geographic information of the start and end points of

each way obtained in the previous step need to be saved in a separate file in which all nodes

are stored. This can be done with the SQL query depicted in Figure F.6. As done before, the
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Figure F.5: Illustration of geographic information table created with osm2po

nodes are imported to QGIS with the "Add PostGIS table" function. The output is highlighted

in Figure F.7.

Figure F.6: Creation of nodes table with start and end points of ways obtained with osm2po

Making a routable network topology and a first example

In order to make a routable network, the a topology of the ways table (Sabadell_2po_4pgr in

our case) needs to be created. This can be done by running the SQL query described in Figure

F.8. Finally, the real-life distance between different points in the network can be calculated

and visualized. In order to directly do this in QGIS we use the DB manager plug in. In DB

manager, connect to the postgre database and run the query seen in Figure F.9. This will
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PROBLEMS WITH QGIS AND OTHER OPEN-SOURCE SOFTWARE

Figure F.7: QGIS file with nodes and ways

calculate the shortest path (using Djikstra’s algorithm) between two given points (in this

case 1 and 500) on the network. Load the output as new layer. On the one hand, the distance

between the starting and end point (as sum of all distances between the traversed points) can

be obtained in the attribute table. On the other hand, the new layer allows for visualizing the

output as can be seen in Figure F.10.

Figure F.8: Creating a topology of ways

Create a geographic table of points

Given a set of long/lat locations (from which the resulting distance matrix is to be established),

a geographic PostGIS table needs to be created. This is similar to the processes described

before. A screen shot of an excel file with all locations can be seen in Figure F.11. These points

can be imported into a PostGIS enabled SQL table as described later on. Once the table is

created, it can be uploaded into QGIS with the "Add PostGIS layers" function. The resulting

QGIS map is shown in Figure F.12 (the green points are the network nodes, the blue points

are the uploaded points).
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Figure F.9: Calculating the shortest path between two points on the network

Figure F.10: Shortest path between two points on network

Figure F.11: Example of excel input with long/lat locations of different points
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Figure F.12: Network nodes and imported point location layer

Figure F.13: Calculating the nearest neighbor of two point shapes with NNJoin

Calculating the nearest neighbor

Using the two point layers (of the containers and the network start/end points, respectively),

we use the QGIS plug in NNJoin to calculate the nearest neighbors between all containers and

the start/end points of the routable road network.A screen shot of the NNJoin interface can

be seen in Figure F.13. The output is a new point-shapefile and the corresponding attribute

table as seen in Figure F.14, which shows the nearest node of the routable network to the

container point shapefile.
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Figure F.14: Attribute table of NNJoin output

Figure F.15: Making a distance matrix based on the Djikstra algorithm between various
points

Making a distance matrix with the Djisktra routing function of pgRouting
and PostGIS

Finally, we can make a distance matrix in pgAdmin using the postgres extensions pgRouting

and PostGIS. This can be done with the SQL query highlighted in Figure F.15. In this case,

the distance in km is set ad costs (km AS cost), and a distance matrix of between the first 10

nodes is established.
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Mladenović, N. and Hansen, P. (1997), ‘Variable neighborhood search’, Computers & Opera-

tions Research 24(11), 1097–1100.

Moin, N., Salhi, S. and Aziz, N. (2011), ‘An efficient hybrid genetic algorithm for the multi-

product multi-period inventory routing problem’, International Journal of Production

Economics 133(1), 334–343.

lxxv

http://transp-or.epfl.ch/documents/technicalReports/MarVarBier2015.pdf
http://transp-or.epfl.ch/documents/technicalReports/MarVarBier2015.pdf


BIBLIOGRAPHY

Montoya-Torres, J. R., Franco, J. L., Isaza, S. N., Jiménez, H. F. and Herazo-Padilla, N. (2015),

‘A literature review on the vehicle routing problem with multiple depots’, Computers &

Industrial Engineering 79, 115–129.

Montoya-Torres, J. R., Muñoz-Villamizar, A. and Vega-Mejía, C. A. (2016), ‘On the impact of

collaborative strategies for goods delivery in city logistics’, Production Planning & Control

27(6), 443–455.

Moreno-Vega, J. M. and Melián, B. (2008), ‘Introduction to the special issue on variable

neighborhood search’, Journal of Heuristics 14(5), 403–404.

Muñoz-Villamizar, A., Montoya-Torres, J. R. and Vega-Mejía, C. A. (2015), ‘Non-collaborative

versus collaborative last-mile delivery in urban systems with stochastic demands’, Procedia

CIRP 30, 263–268.

Nadarajah, S. (2008), Collaborative Logistics in Vehicle Routing, PhD thesis, University of

Waterloo, Canada.

Retrieved from https://uwspace.uwaterloo.ca/bitstream/handle/10012/4083/

nadarajah-thesis.pdf.

Nahum, O. E. and Hadas, Y. (2009), Developing a model for the stochastic time-dependent

vehicle-routing problem, in ‘Proceedings of the 2009 International Conference on Computers

Industrial Engineering (Troyes, France)’, pp. 118–123.

Nambirajan, R., Mendoza, A., Pazhani, S., Narendran, T. and Ganesh, K. (2016), ‘Care:

Heuristics for two-stage multi-product inventory routing problems with replenishments’,

Computers & Industrial Engineering 97, 41–57.

Neirotti, P., De Marco, A., Cagliano, A. C., Mangano, G. and Scorrano, F. (2014), ‘Current

trends in smart city initiatives: some stylised facts’, Cities 38, 25–36.

Nesmachnow, S. (2014), ‘An overview of metaheuristics: Accurate and efficient methods for

optimisation’, International Journal of Metaheuristics 3(4), 320–347.

Neumann, W. P. and Medbo, P. (2009), ‘Integrating human factors into discrete event simula-

tions of parallel flow strategies’, Production Planning & Control 20(1), 2–16.

lxxvi

https://uwspace.uwaterloo.ca/bitstream/handle/10012/4083/nadarajah-thesis.pdf
https://uwspace.uwaterloo.ca/bitstream/handle/10012/4083/nadarajah-thesis.pdf


BIBLIOGRAPHY

Nguyen, V.-P., Prins, C. and Prodhon, C. (2012), ‘Solving the two-echelon location routing

problem by a GRASP reinforced by a learning process and path relinking’, European

Journal of Operational Research 216(1), 113–126.

Niakan, F. and Rahimi, M. (2015), ‘A multi-objective healthcare inventory routing problem; a

fuzzy possibilistic approach’, Transportation Research Part E: Logistics and Transportation

Review 80, 74–94.

Nikolaev, A. G. and Jacobson, S. H. (2010), Simulated annealing, in M. Gendreau and J.-Y.

Potvin, eds, ‘Handbook of Metaheuristics’, Springer, Boston, pp. 1–39.

Nolz, P., Absi, N. and Feillet, D. (2014), ‘A stochastic inventory routing problem for infectious

medical waste collection’, Networks 63(1), 82–95.

Nuortio, T., Kytöjoki, J., Niska, H. and Bräysy, O. (2006), ‘Improved route planning and

scheduling of waste collection and transport’, Expert Systems with Applications 30(2), 223–

232.

Okdinawati, L., Simatupang, T. M. and Sunitiyoso, Y. (2014), A behavioral multi-agent

model for collaborative transportation management (CTM), in ‘Proceedings of the 2014

Transportation and Logistics (T-Log) conference (Bangkok, Thailand)’.

Retrieved from http://www.academia.edu/9805860/A_Behavioral_Multi_Agent_

Model_for_Collaborative_Transportation_Management_CTM_.

Okuda, Y., Nakamura, Y., Kishi, M., Ishikawa, N. and Hitomi, M. (1999), Simulation of

human-oriented production systems considering workers’ cooperation, in ‘Proceedings

of the 8th IEEE International Workshop on Robot and Human Interaction (Pisa, Italy)’,

pp. 381–386.

Retrieved from https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=900300.

Ombuki-Berman, B. M., Runka, A. and Hanshar, F. T. (2007), Waste collection vehicle routing

problem with time windows using multi-objective genetic algorithms, in ‘Proceedings of

the third IASTED International Conference on Computational Intelligence’, pp. 91–97.

OptTek (2018), ‘Optquest - the world’s leading simulation optimization engine’, http://www.

opttek.com/products/optquest/.

lxxvii

http://www.academia.edu/9805860/A_Behavioral_Multi_Agent_Model_for_Collaborative_Transportation_Management_CTM_
http://www.academia.edu/9805860/A_Behavioral_Multi_Agent_Model_for_Collaborative_Transportation_Management_CTM_
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=900300
http://www.opttek.com/products/optquest/
http://www.opttek.com/products/optquest/


BIBLIOGRAPHY

Özener, O. O. and Ergun, O. (2008), ‘Allocating costs in a collaborative transportation pro-

curement network’, Transportation Science 42(2), 146–165.

Özener, O. O., Ergun, O. and Savelsbergh, M. (2011), ‘Lane-exchange mechanisms for truck-

load carrier collaboration’, Transportation Science 45(1), 1–17.

Pagès-Bernaus, A., Ramalhinho, H., Juan, A. A. and Calvet, L. (2017), ‘Designing e-commerce

supply chains: a stochastic facility–location approach’, International Transactions in Oper-

ational Research pp. 1–22, DOI 10.1111/itor.12433.

Pan, S., Ballot, E. and Fontane, F. (2013), ‘The reduction of greenhouse gas emissions from

freight transport by pooling supply chains’, International Journal of Production Economics

143(1), 86–94.

Pan, S., Ballot, E., Fontane, F. and Hakimi, D. (2014), ‘Environmental and economic issues

arising from the pooling of smes’ supply chains: case study of the food industry in western

france’, Flexible Services and Manufacturing Journal 26(1), 92–118.

Panadero, J., Doering, J., Kizys, R., Juan, A. and Fito, A. (2018), ‘A variable neighborhood

search simheuristic for project portfolio selection under uncertainty’, Journal of Heuristics

pp. 1–23, DOI 10.1007/s10732-018-9367-z.

Papadimitriou, C. H. and Steiglitz, K. (1982), Combinatorial Optimization: Algorithms and

Complexity, Prentice-Hall, New Jersey.

Pardalos, P. and Resende, M., eds (2002), Handbook of Applied Optimization, Oxford Univer-

sity Press, Oxford.

Park, Y.-B., Yoo, J.-S. and Park, H.-S. (2016), ‘A genetic algorithm for the vendor-managed

inventory routing problem with lost sales’, Expert Systems with Applications 53, 149–159.

Pérez-Bernabeu, E., Juan, A. A., Faulin, J. and Barrios, B. B. (2015), ‘Horizontal cooperation in

road transportation: a case illustrating savings in distances and greenhouse gas emissions’,

International Transactions in Operational Research 22(3), 585–606.

Pinedo, M. L. (2008), Scheduling: Theory, Algorithms, and Systems, 3rd edn, Springer, Boston.

Pisinger, D. and Ropke, S. (2007), ‘A general heuristic for vehicle routing problems’, Computers

& Operations Research 34(8), 2403–2435.

lxxviii

http://dx.doi.org/10.1111/itor.12433
http://dx.doi.org/10.1007/s10732-018-9367-z


BIBLIOGRAPHY

Polya, G. (1945), How to Solve It - A New Aspect of Mathematical Method, Princeton University

Press, New Jersey.

Pomponi, F., Fratocchi, L. and Tafuri, S. R. (2015), ‘Trust development and horizontal collabo-

ration in logistics: a theory based evolutionary framework’, Supply Chain Management: An

International Journal 20(1), 83–97.

Popović, D., Vidović, M. and Radivojević, G. (2012), ‘Variable neighborhood search heuristic

for the inventory routing problem in fuel delivery’, Expert Systems with Applications

39(18), 13390–13398.

Prins, C., Prodhon, C. and Calvo, R. W. (2006), ‘Solving the capacitated location-routing

problem by a GRASP complemented by a learning process and a path relinking’, 4OR

4(3), 221–238.

Prodhon, C. and Prins, C. (2014), ‘A survey of recent research on location-routing problems’,

European Journal of Operational Research 238(1), 1–17.
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