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Resumen

Esta tesis se centra en los desarrollos recientes de la teoría microscopía de la flex-
oelectricidad y sus aplicaciones prácticas con tal de estudiar la respuesta física en
sistemas concretos. La flexoelectricidad es la propiedad electromecánica de todos
los aislantes de desarrollar una respuesta polar a una perturbación uniforme del
gradiente de deformación.

Una teoría formal de tal efecto se ha establecido recientemente en el marco de la
teoría de perturbación del funcional densidad (DFPT). Aun así, para alcanzar una
metodología valiosa para la automatización del cálculo de la respuesta flexoeléc-
trica para un cristal genérico, quedan algunos detalles conceptuales y prácticos.
Estos están relacionados con las rotaciones locales de la muestra que pueden seguir
una perturbación de gradiente de deformación. En esta tesis nos ocuparemos de
tal cuestión; la solución se basa en la introducción de una nueva perturbación del
cristal, la perturbación métrica, que se define como un fonón acústico descrito en
el sistema de referencia que se mueve conjuntamente con los átomos. Después de
presentar su implementación formal en el contexto de DFPT y en la aproximación
de pseudopotencial separable, emplearemos esta nueva herramienta para calcular
el tensor flexoeléctrico para materiales seleccionados.

A los logros anteriores les sigue una aplicación práctica de la teoría flexoeléc-
trica a la ingeniería del diseño de dispositivos "flexovoltaicos", es decir dispositivos
fotovoltaicos cuyos principios fundamentales de trabajo se basan en el efecto flex-
oeléctrico. En la práctica, gracias a la estrecha conexión entre la teoría de la flex-
oelectricitad y y la teoría de los potenciales absolutos de deformación, mostramos
cómo se puede calcular el perfil de bandas electrónicas en nanodispositivos dobla-
dos utilizando pocos y bien definidos parámetros. Dichos parámetros dependen de
las condiciones de contorno electrostático impuesto.

Finalmente centraremos nuestra atención en la respuesta polar mostrada por las
paredes del dominio (PdD) ferroeelástico en SrTiO3, recientemente detectado. En
general, las PdD se consideran una fuente prometedora de efectos físicos inusuales
que pueden ser de interés práctico para aplicaciones de dispositivos electrónicos.
Para mejorar la aplicabilidad de tales efectos físicos, es imprescindible entender su
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origen. Inspirados en la teoría de la flexoelectricidad, en este trabajo desarrollamos
una metodología original para estudiar el caso de las PdD ferroelásticos en SrTiO3,
que se basa en la construcción de un modelo energético efectivo, construido en base
a calculos de primeros principios, y eso incluyendo los efectos de los acoplamientos
entre diferentes distorsiones inhomogeneas del cristal. Se discuten los efectos de
cada contribución a la polarización total en las PdD.
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Summary

This thesis focus on the recent developments of the microscopic flexoelectric theory
and its practical applications to study the physical response in concrete systems.
Flexoelectricity is the electromechanical property of all insulators of developing a
polar response to a uniform strain gradient perturbation.

A formal theory of such effect has been recently established in the framework
of density functional perturbation theory (DFPT). Still, in order to reach a valuable
methodology to facilitate the calculation of the bulk flexoelectric response for a
generic crystal, some conceptual and practical subtelties remains. They are related
with local rotations of the sample that can follow a strain gradient perturbation. In
this thesis we will deal with such issue; The solution is based on the introduction of
a novel crystal perturbation, the metric perturbation, which is defined as an acous-
tic phonon described in the reference frame that is co-moving with the atoms. After
presenting its formal implementation in the context of the DFPT within the sepa-
rable pseudopotential approximation, we will employ such new tool to perform
extensive calculations of the flexoelectric tensor for selected materials.

The previous achievements are followed by a practical application of the flexo-
electric theory to engineering the design of “flexovoltaic” devices, i.e. photovoltaic
devices that base their fundamental working principles on the flexoelectric effect.
In practice, thanks to the close connection between the flexoelectric theory and the
theory of absolute deformation potentials, we show how the electron band profile
of bended nanodevices can be calculated, in a mesoscopic semiclassical framework,
using few and well defined parameters. Such parameters vary with respect to the
type of electrostatic boundary conditions imposed.

Finally, we will focus our attention on the polar response shown by the ferroe-
lastic domain walls (DWs) in SrTiO3, recently detected. In general, DWs are consid-
ered a promising source of unusual physical effects that can be of practical interest
for electronic device applications. For improving the applicability of such physical
effects it is essential to understand their origin. Inspired by the theory of flexoelec-
tricity we develop an original methodology to study the case of the ferrolastic DWs
in SrTiO3, which is based on the construction of an effective energy model, full
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from first principles, and that includes the effects of gradient mediated couplings
between different crystal distortions. The effects of each identified contribution to
the total polarization at the DWs is discussed.
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2 Chapter 1. Introduction

Conversion of mechanical energy into electrical one and vice versa is nowadays
the fundamental building block in many of the technological devices employed in
a wide variety of fields such as high performance electronics, medical diagnosis
instruments and automotive industry. The electromechanical properties of crystals
describe precisely the possibility for an external mechanical deformation to induce
a crystal electrical response, or the reverse effect. Among them, the most famous
example is piezoelectricity, which is defined as the polarization generated by the
application of a uniform strain. Such effect was first discovered in 1880 by Pierre
and Jacques Curie in quartz, topaz and Rochelle salt crystals. Subsequent studies
and improvements of piezoelectric materials have lead them to be extensively used
in sensor, actuator, high voltage generators and transducers.

Flexoelectricity is another electromechanical property, and it describes the po-
larization, Pα, that is linearly induced by a strain gradient deformation, ∂εγδ/∂xβ,

Pα = µαβγδ
∂εγδ

∂xβ
, (1.1)

where µαβγδ is the flexoelectric (FxE) tensor. One of the main differencses between
the piezoelectric and flexoelectric effect is that the latter is a universal property of all
crystals, while the former, being expressed via a third-rank tensor, is only allowed
in crystals that break inversion symmetry (see Fig. 1.1).

The flexoelectric effect was theoretically predicted in the 60s [44, 53], and the
first clear experimental evidence was reported by Bursian and Zaikovskii back in
1968 [10]. Two key features of the flexoelectric response were immediately clear:
it is proportional to the dielectric constant [9] and it is inversely proportional to
the sample size [10] (indeed at smaller scales, a strain variation can induce a huge
strain gradient). Due to the latter, at the beginning the new effect did not surge to
a popular topic among the condensed matter community, since the available tech-
nology only allowed to work at scales where flexoelectricity has negligible effects.
On the contrary, thanks to the recent achievements on the fabrication of micro and
nano devices, flexoelectricity has experienced a boost in popularity.

From the experimental side, the “revival” of the flexoelectric response was initi-
ated by Ma and Cross at the beginning of 2000s [47–49]. Their attention was mainly
addressed to ceramic compounds, since they are known to have a much higher di-
electric constant respect to conventional semiconductors. More recently, a turning
point was the systematic study performed by Zubko et al. [95] to measure the flex-
oelectric tensor components of the cubic phase of SrTiO3 the single crystal. Then,
it was experimentally shown that the electric response induced by strain gradient
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FIGURE 1.1: Schematic effects of a uniform strain deformation (a)
and of a uniform strain gradient deformation (b) on a centrosym-

metric crystal. Figure from Ref [96].

deformations is capable of rotating [14] or even switching [46] the spontaneous
polarization of ferroelectric materials. Different flexoelectric devices have been al-
ready proposed and tested as sensors and transductors [17, 94], actuators [6, 7], and
as an effective charge separator for solar cell applications [15].

These experiments identified the following points: (i) by means of the current
technology, it is impossible to measure all the independent components of the bulk
flexoelectric tensor; (ii) the flexoelectric tensor components greatly differ, even by
more than one order of magnitude, between the results reported by independent
groups; (iii) it is not clear if and, in case, how the surfaces influence the total re-
sponse. These open questions were a strong motivation for a robust theoretical
support, in order to develop a predictive theory of flexoelectricity, starting from
its microscopic origins. Moving from the reference work by Born and Huang [8],
Tagantsev developed, back in the 1986 [80], a first microscopic model based on a
point-charge crystal. Despite the simplicity of such a model, which could account
for the polarizability of the atoms, this work is the base of the more recent develop-
ments on the FxE effects.

Starting from the late ’70s, density functional theory (DFT) simulations have
surged to a popular and reliable computational tool in order to investigate the
quantum-mechanical origin of effects belonging to physics, materials science, chem-
istry, mineralogy and biology. What makes them so appealing is the fact that they
are ab initio calculations, i.e. their only external input is the chemical information
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on the atomic specied, and they show a perfect balance between accuracy and com-
putational efficiency. Unfortunately, a direct DFT simulations of a strain gradi-
ent deformation is difficult. Indeed in practical implementations of DFT, periodic
boundary conditions are commonly enforced.

Apart from a couple of remarkable early attempts [35, 50], the development of
a formal theory of flexoelectricity only started in 2010 with Resta [64]. Inspired by
the seminal paper on piezoelectricity by Martin [51], Resta based its analysis on
the microscopic charge density response to atomic displacements. This theory was
subsequently employed by Hong and Vanderbilt [37] for calculating, within DFT,
the electronic flexoelectric response for selected materials.

Soon it became clear, however, that the charge density response doses not con-
tain enough information, at the bulk level, to extract all the independent compo-
nents of the FxE tensor, even for the simplest cubic crystals [36, 77]. The issue is
that the first-order charge density, being defined as a divergence, only retains the
longitudinal components of the microscopic currents that adiabatically flow in the
course of a mechanical deformation. This implies that, in order to capture the trans-
verse components of the FxE tensor, one has to look at the current-density response
itself; the latter, however, is not part of the standard capabilities of first-principles
linear-response theory. Thus, at the time this doctoral project started, the problem
of calculating the bulk flexoelectric tensor was not solved yet. The electronic con-
tribution – which had proved to be the trickiest one to define and compute – still
resisted the theoretical attempts that had been made thus far.

During this thesis, the first-principles theory of flexoelectricity has seen a num-
ber of impressive methodological advances, to which the present work has signifi-
cantly contributed. To contestualize such developments, which will be detailed in
Chapter 4, it is useful to recall one of the biggest obstacles in the treatment of me-
chanical deformations within a quantum-mechanical linear-response framework.
At difference with conceptually simpler perturbations (e.g., phonons) a strain field
changes the periodicity of the lattice, or even breaks it altogether if the strain is
inhomogeneous. As such, it is hard to describe it in terms of a well-defined para-
metric dependence of the electronic Hamiltonian. The uniform strain problem has
been elegantly solved by Hamann et al. [33] about fifteen years ago. The trick con-
sists in expressing the total energy in reduced crystal coordinates. Then, the cell
remains fixed to a unit cube, which alleviates the aforementioned difficulties – all
the information about the deformation is encoded in the metric of space, which
can now be treated as a formally sound perturbation parameter. As we shall see
in Chapter 4, calculation of flexoelectricity is greatly facilitated as well by using
similar ideas, that we have implemented by generalizing the theory of Ref. [33] to
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the case of spatially modulated “metric waves”. This not only provides a computa-
tionally efficient framework to calculate the full flexoelectric tensor, including the
problematic transverse components, but also yields a physically appealing descrip-
tion of some peculiar contributions, coming from the gradients of the local rotation,
that are related to orbital paramagnetism.

These developments, in principle, open the way to a systematic screening for
materials with optimal flexoelectric properties, to be used as active elements in ad-
vanced pseudo-piezoelectric units. In this Thesis, however, we have taken a slightly
different route, and initiated instead an exploration of other physical phenomena
and systems (i.e., not necessarily electromechanical) where strain gradients are ex-
pected to play a significant role. One of the many “unconventional” (but potentially
very important) applications of flexoelectricity has recently been demonstrated in
the area of photovoltaics. Why flexoelectricity would enhance the photocurrent is
intuitively clear: a strain gradient generally breaks inversion symmetry, which is
the most important prerequisite for having a net drift of the photoexcited carriers
within the sample. Ref. [92] possibly describes the most impressive realization of
this idea: by applying pressure with an AFM tip (Fig. 1.2) the authors could in-
duce a remarkable photoelectric response even in cubic single crystals. For our
theoretical study we used a simpler material, bulk Si, as a testcase; strained semi-
conductor nanostructures are themselves been regarded as excellent candidates for
photovoltaic applications [91]. As we shall see in Chapter 5, the theory of flexoelec-
tricity can be an invaluable tool for the rational design of such systems: via a slight
generalization, one can obtain a complete description of the electronic energy lev-
els (in a mesoscopic semiclassical framework) of a sample subjected to an arbitrary
deformation field, in terms of a small number of material-specific constants. Note
that this is, a priori far from obvious, as one needs to cope with many subtleties
regarding shape, surfaces and electrical boundary conditions, among others.

Domain walls (DWs), the regions separating different phase of the same ma-
terial, are considered a promising source of peculiar physical effects that are not
present in the bulk domains. Thanks to the modern advances in experimental tech-
niques, the new field of domain wall nanoelectronics has flourished [13], whose
core business is to exploit the DWs in ferroic materials as the active elements for ap-
plications. Based on the typical properties displayed by different DWs, they were
proposed to be employed, for example, in electro-optic, photovoltaic and memory
devices. Clearly, understanding the physical origin of the particular DWs proper-
ties is essential to boost the field of nanoelectronics. In Chapter 6 we will focus on
the ferroelastic DWs in the antiferrodistortive phase of SrTiO3 that show a peculiar
polar behaviour, absent in the bulk domains. Since ferroelastic DWs are defined has
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FIGURE 1.2: Schematic representation of the experimental setup
for measuring the current induced by the flexo-photovoltaic effects.

Figure from Ref. [92].

the walls separating two regions with opposite uniform strain, they are expected to
sustain a remarkable strain gradient which ultimately can induce a notable flexo-
electric effect. By employing the microscopic FxE theory, we will carry out a quanti-
tative study of this effect in the case of SrTiO3. In practice, we will build an effective
energy model, based on full first-principles calculations, that include different gra-
dient mediated couplings between the most relevant lattice distortions. We will
find that the flexoelectric contribution is not the only important term to quantify
the DW polarity, but other terms emerge. These new terms allows a close connec-
tion with the theory of cycloidal multiferroics, where the polarization is induced by
gradients of the magnetic order parameter.

Before the three Chapters containing the original results of the present work,
we have reported an extensive introduction on DFT and the recent developments
on the flexoelectric theory. In Chapter 2 DFT together with its main applications
to fields closely related to flexoelectricity are briefly sketched. In Chapter 3, we
will give a summary of the main achievements of the flexoelectric theory that are
fundamental to understand the following original results.
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In this Chapter we will briefly summarize the main outlines of density func-
tional theory (DFT) and density functional perturbation theory (DFPT), which are
the main methodologies employed all across this work. Many reviews [5, 57] and
books [52] on these topics exist in the literature, therefore the choice here is to fo-
cus mainly on the aspects of the formalism that are most relevant to the results
presented in this thesis. In particular, we will: (i) sketch the general ideas that
lie behind DFT and DFPT, (ii) present the most significant equations for a practi-
cal implementation. Point (ii) is essential to fully understand the main difficulties
and solutions faced during the formulation of a consistent theory of flexoelectricity
from first principles (Chapter 3).

With these aims in mind, in the first section we will discuss the density-functional
theory from a general point of view. In particular, we will review the Kohn and
Sham formulation, and its explicit expressions in the case of plane wave basis set.
Then, in the second section, we will present the foundations of DFPT, together with
its specific application to the case of atomic displacements, uniform strain and uni-
form polarization response to mechanical deformations.

The final Section of this Chapter is devoted to outline the recent extension of the
polar response to a monochromatic lattice displacement. Even though this is not
a standard topic in common DFPT codes, it is of fundamental importance for the
following derivations and to appreciate the original results of Chapter 4, where a
new mechanical perturbation is presented and implemented.

2.1 Density functional theory

The non-relativistic Hamiltonian that describes the coupled motion of electrons and
nuclei in a crystal can be written as

Ĥ = T̂n + T̂e + V̂ee + V̂nn + V̂ne (2.1)

where T̂n and T̂e are the kinetic contribution of the nuclei and the electrons re-
spectively, while V̂ee, V̂nn and V̂ne describe the electron-electron, nucleus-nucleus
and electron-nucleus interactions respectively. In order to solve the corresponding
many body Schrödinger problem it is necessary to perform various number of ap-
proximations. The first one is the Born-Oppenheimer approximation: due to the
mass difference between electrons and nuclei ( 10−15), their dynamics can be re-
garded as decoupled. This approximation simplifies the previous Hamiltonian, by
removing the nuclear kinetic energy. Therefore one is left with the problem of find-
ing the electronic ground state in a fixed ionic configuration, and the Hamiltonian
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reduces to
Ĥe = T̂e + V̂ee + V̂ext + Enn (2.2)

where Vext = Vne. Note that in the electronic problem, Eq. 2.2, the effects of the
nucleus-nucleus interactions are just an additive constant, and for simplicity it can
be removed in the following derivation; nevertheless its presence in the final formu-
lation is of fundamental importance in order to correctly treat the overall Coulomb
interactions in extended systems [52].

Still, the Schrödinger equation associated to the Hamiltonian 2.2 involves a
many-body wave function, Ψ, which is a function of 3N spatial coordinates (N
is the number of particles); for N > 10 a direct solution becomes quickly out of
reach even for modern supercomputers. In order to make this problem tractable,
Hohenberg and Kohn established two theorems [34]: first, given the ground state
density, the external potential, Vext, acting on a system of interacting electrons is
unique, apart from a trivial additive constant; second, given an external potential,
the ground-state energy of any many-body system can be obtained as the varia-
tional minimum of a functional, E[n], that only depends on the electronic density,

EGS = min
n

E[n], (2.3)

with the requirement that the density integrates to the total number of particles,∫
n(r)d3r = N. The energy functional can be written as the sum of the external

potential energy plus a universal term, F[n], as

E[n] = F[n] +
∫

Vext(r)n(r) d3r (2.4)

Despite the generality of the two theorems, they do not provide any explicit recipe
to construct the universal functional F[n].

The next step forward in order to make the previous results computationally
useful, is based on the ansatz by Kohn and Sham [45]. They assumed that the many
body ground state density, n0, is equal to the electronic density of some auxiliary
independent-particle system, nKS. In the new independent-particle framework the
charge density is

n(r) = ∑
i

fi|ψi(r)|2, (2.5)

where fi is the occupation factor of the i-th state, and the functional F[n] can be
rewritten as

FKS[n] = T̃[n] + EH [n] + Exc[n]. (2.6)
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The tilde on the first term indicates that only the independent-particle kinetic en-
ergy is included, which is commonly expressed as functional of the wavefunctions,
T̃ = ∑i fi〈ψi|∇2

i |ψi〉; the electron-electron Hartree energy has been isolated in the
term EH [n], and all the remainder of the many-body effects have been grouped
into the exchange-correlation energy, Exc[n]. In Eq. 2.6 the only unknown func-
tional is the universal term Exc[n], whose knowledge would in principle allow
one to access the exact solution of the many-body problem by solving the auxil-
iary independent-particle system. Despite the fact that an explicit formula for the
exchange-correlation term is not available, many different approximation were pro-
posed; clearly the higher the quality of the approximation, the closer the solution
of the auxiliary system is to the real many-body solution. We will discuss in the fol-
lowing section 2.1.1 the approximation used for Exc[n] in this thesis. Here instead
we sketch how the independent-particle problem can be solved.

The solution of the Kohn and Sham ground-state problem can be obtained by
minimizing the functional 2.6 with respect the independent particle wavefunctions,
ψi, together with the requirement that these wavefunction must be an orthonormal
set. This operation is equivalent to solving the following one-particle Schrödinger
equation (

−1
2
∇2 + V̂H + V̂ext + V̂xc

)
|ψi〉 = εi|ψi〉 (2.7)

where V̂ext is the electron-nucleus interaction (in practical implementations this is
replaced by a pseudopotential, see Sec.2.1.2), and

V̂H(r) =
∫

d3r′
n(r′)
|r− r′|

V̂xc(r) =
δExc[n]
δn(r)

.
(2.8)

Note that the Hartree and the exchange-correlation potential appearing in Eqs. 2.7
depend on the charge density, which is ultimately function of the electronic wave-
functions, ψi, via Eq. 2.5. Indeed the KS equations must be solved self-consistently.
With the aim of highlighting the self-consistent nature of the previous problem, it
is convenient to rewrite the Hamiltonian, H, appearing on the left hand side of the
Schrödinger equation 2.7 as

H = H + Vsc f , (2.9)

where H = −∇2/2 + Vext includes the non self-consistent contributions, while
Vsc f = VH + Vxc includes the self-consistent terms.
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Finally, the energy of the original problem can be rewritten, using the auxiliary
systems and its ground-sate wavefunctions, as [52]

Ee = ∑
i

fi 〈ψi|H|ψi〉+ EH [n] + Exc[n] + Enn (2.10)

where we have reinserted the nucleus-nucleus energy.

2.1.1 Local density approximation

The exact analytical expression for the exchange-correlation energy is not known.
In this thesis we will employ the local density approximation (LDA), in which the
effects of the exchange and correlation are explicitly treated as local. Despite such
choice could appear to be too crude, it has proved to give remarkably good re-
sults even for strongly inhomogeneous cases. In such approximation, the exchange-
correlation energy is written as

Exc[n] =
∫

d3r εxc(n)n(r), (2.11)

where εxc(n) is the exchange-correlation energy per electron of a uniform electron
gas that has the same density as the electron gas at point r. Different parametriza-
tion for εxc(n) are available, whose coefficients can be extracted via Monte Carlo
methods. In this work we employ the Perdew-Wang 92 parametrization [58].

Finally, in the LDA approximation the exchange-correlation potential is

Vxc =
δExc[n]

δn
=

dεxc(n)
dn

n + εxc(n). (2.12)

2.1.2 External potential

In order to reduce the computational cost it is useful to observe that the core elec-
trons are almost inert to the environment surrounding each atom. This means
that only the valence electrons participate in the chemical bonding and need to
be treated explicitly, while the combined effect of nucleus and core electrons is re-
placed with effective ionic potentials called pseudopotentials. They are constructed
with the constraint of reproducing (to some approximation) the scattering proper-
ties of the all-electron atom as seen by the valence wavefunctions. The scattering
properties are different for each angular momentum component (defined by the az-
imuthal and magnetic quantum number, {l, m}) of the valence wavefunction. Then
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the pseudopotential, vpsp
κ , of a given atomic species, κ, becomes a non-local func-

tion of r and r′. For convenience, a pseudopotential is constructed by identifying
two contributions, a long-range local term, vloc

κ (r), and a separable non-local term,
Vsep

κ (r, r′), [52, 57]:

vpsp
κ (r, r′) = vloc

κ (r)δ(r− r′) + vsep
κ (r, r′). (2.13)

The local term is spherically symmetric while the separable term written in the
Kleinman-Bylander (KB) form is [42]

vsep
κ (r, r′) = ∑

µ

eµκζµκ(r−Rlκ)ζ
∗
µκ(r

′ −Rlκ), (2.14)

where µ runs on the angular momentum components, {l, m}, ζµκ(r) are the KB
projectors, and eµκ are the corresponding coefficients.

In the case of a crystal lattice, the external potential is written in terms of the
single atomic pseudopotentials as

Vext(r, r′) = ∑
iκ

vpsp
κ (r−Raκ , r′ −Raκ) (2.15)

where a labels the unit cell, κ runs on the sublattices and Raκ identifies the position
of the ion κ in the unit cell a.

2.1.3 Plane waves

In order to solve the KS equations in bulk crystals, it is common to take advantage
of the periodicity of the system; this allows to perform the calculations in a prim-
itive cell within periodic boundary conditions (PBC). In particular, thanks to the
discrete translational symmetries enforced by the PBC, it is possible to use Bloch
wavefunctions,

ψn,k(r) =
1√
Ω

eir·kun,k(r) (2.16)

where Ω is the unit cell volume, n identifies the bands, k is a vector in reciprocal
space and it is restricted to the first Brillouin zone, and un,k(r) is a periodic function
in real space. The electronic density is then defined as

n(r) =
Ω

(2π)3

∫
BZ

d3k ∑
n

fn,k|un,k(r)|2, (2.17)
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where fn,k is the occupation factor. Inserting the Bloch functions into the KS prob-
lem results in a new Schrödinger-like problem for the cell-periodic part, un,k(r),
where the original Hamiltonian, Eq. 2.9, is replaced by its cell-periodic counterpart,

Ĥk = e−ik·rĤeik·r′ . (2.18)

With the aim of fixing the notation that will be used in the rest of this work, we
report the explicit expression for the cell-periodic part of the different terms in the
Hamiltonian 2.18. Using the plane-wave basis set, the Bloch functions read as

un,k(r) = ∑
G

Cn,k+Geir·G (2.19)

and Cn,k+G are the Fourier expansion coefficients.
The kinetic term is diagonal in the reciprocal space,

Tk(G, G′) =
1
2
(k + G)2δG,G′ . (2.20)

The pseudopotential terms are respectively

V loc
k (G) =

 1
Ωcell

∑κ e−iG·τκ vloc
κ (G) when G 6= 0

0 when G = 0

Vsep
k (G, G′) =

1
Ωcell

∑
µκ

eµκ

(
e−i(k+G)·τκ ζµκ(k + G)

) (
ei(k+G′)·τκ ζ∗µκ(k + G′)

)
(2.21)

where vloc
κ (G) and ζµκ(k + G) are the Fourier components of vloc

κ (r) and ζµκ(r) re-
spectively. Note that we have excluded from the local potential the G = 0 com-
ponent, since it diverges. This is common practice, and it is justified by the fact
that it cancels out with a similar Coulomb divergences in the electron-electron and
ion-ion interactions [52]. The Hartree potential in reciprocal space is given by

VH
k (G) =

 4π
n(G)
|G|2, when G 6= 0

0 when G = 0
(2.22)

where n(G) is the Fourier transform of the electronic density, and again the diverg-
ing component has been removed. Finally the XC term, already diagonal in real
space, is calculated using Eq. 2.12 with the charge density 2.17.

The previous expressions cover all the terms appearing in Ĥ, Eq. 2.9, and are



14 Chapter 2. First-principles background

sufficient to solve the Schrödinger problem 2.7. However, remind that the total
energy of the system, defined in Eq. 2.2, contains also the constant ion-ion energy,
Enn . In order to calculate such term the Ewald method is commonly employed,
which is an efficient way of performing the Coulomb summation over the periodic
lattice.

As last remark, note that the plane wave basis set is in principle infinite, and
then the sum in Eq. 2.19 is infinite as well. However the coefficients Cn,k+G asso-
ciated to plane waves with lower kinetic energy, (1/2)|k + G|2, are more relevant
than those with a higher energy. Therefore, one usually define an energy cutoff,
Ecuto f f , which identifies a sphere in reciprocal space, and only the plane waves
that fall inside such sphere are used while all the others are discarded. In other
words only plane waves with wavevectors that satisfy the following relation are
considered: (1/2)|k + G|2 < Ecuto f f . This approximation is especially suitable for
practical calculations, and the most convenient value for Ecuto f f must be identified
with convergence tests.

2.2 Density functional pertrubation theory

Linear response in the context of DFT can be efficiently calculated in the framework
of density functional perturbation theory (DFPT). In this section we will start by
briefly summarizing the main concepts and formulas of DFPT; in the following
subsections we will give practical examples of their applications in cases that are
particularly relevant to the present thesis.

The starting point to develop a perturbation theory is that the external poten-
tial, the wavefunctions, the electronic density and the total energy of the electronic
problem can be expanded as function of some perturbation parameter, λ [67]:

Vext = ∑
n

λnV(n)
ext

ψ(r) = ∑
n

λnψ(n)(r)

n(r) = ∑
n

λnn(n)(r),

E = ∑
n

λnE(n),

(2.23)

where the superscript is the perturbation order, and the zero order elements are
the ground state quantities presented in the previous section. By plugging the elec-
tronic charge density expansion into Eq. 2.5 we obtain that the first order electron
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density,

n(1)(r) = 4Re
occ

∑
i

ψ∗i (r)ψ
(1)
i (r), (2.24)

specialized to a nonmagnetic insulator with the occupation factors, fi = 2 for
the occupied states and zero otherwise. Similarly, to calculate the response func-
tions, ψ(n), one has to substitute the expressions 2.23 into the Schrödinger problem,
Eq. 2.7, and group together the terms of the same order. At first order one recovers
the following Sternheimer equation [5]

(H(0) + aPv − ε
(0)
i )|ψ(1)

i 〉 = −QcV(1)|ψ(0)
i 〉, (2.25)

where Pv and Qc are the projectors on the valence and conduction bands respec-
tively, a is a generic non zero value that avoids the singularity of the l.h.s., ε

(0)
i is

the unperturbed eigenvalue of Eq. 2.7,H(0) is the ground state Hamiltonian defined
in Eq. 2.9, and finally V(1) is the first order potential, which is [5]

V(1) = V(1)
ext +

∫ n(1)(r)
|r− r′| d3r′ +

∫ dV(0)
xc (r)

dn(r′)
n(1)(r′) d3r′. (2.26)

(Here the second and third terms on the r.h.s. come from the Hartree and exchange-
correlation potential respectively.) The explicit presence of Pv and Qc in Eq. 2.25
automatically enforces the parallel transport gauge [27], which prescribes to take
the first-order wavefunctions orthogonal to the manifold of the valence states:

〈ψ(0)
i |ψ

(1)
j 〉 = 0 ∀{i, j} ∈ occ. (2.27)

Eq. 2.25, 2.26 and 2.24 establish a closed set of equations that must be solved
selfconsistently for the first-order wavefunctions, |ψ(1)

n 〉, and charge density re-
sponse, n(1)(r).

Thanks to the knowledge of |ψ(1)
n 〉 and n(1)(r), it is then possible to calculate

the correction to the total energy of the system, E(2); in the case of time-reversal
symmetry it is:

E(2) =
occ

∑
i
〈ψ(1)

i |V̂
(1)
ext |ψ

(0)
i 〉+

occ

∑
i
〈ψ(0)

i |V
(2)
ext |ψ

(0)
i 〉. (2.28)

The above expression is a special case of the “(2n + 1) theorem” [25] that states that
the derivatives of the total energy of a system, E(n), can be obtained with the only
knowledge of the wavefunction corrections up to the n-th order. In particular, for
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the first order correction to the energy, the (2n + 1) theorem reduces to the famous
Hellmann-Feynman theorem:

E(1) =
occ

∑
i
〈ψ(0)

i |V
(1)
ext |ψ

(0)
i 〉. (2.29)

2.2.1 Phonon pertrubation

In the following microscopic theory of flexoelectricity, one of the key quantities will
be the first order electronic density response to monochromatic lattice displace-
ments. The crystal response to such perturbations is well known the context of
DFPT, and here we shell briefly recap the main concepts by specializing the general
equations presented in the previous section.

The common procedure, as for example reported by Gonze and Lee [28], con-
sists in considering a monochromatic atomic displacement of the κ atom in the unit
cell l along the direction α, defined as

λ→ λκαeiq·Rl , (2.30)

where Rl identifies the position of the unit cell l. The advantage of using a monochro-
matic perturbation is that, although in general its periodicity is not commensurate
with the crystal lattice periodicity, the first order wavefunctions and charge density
can be written in a Bloch type form [28],

ψ
(κα)
mk,q(r) =

1√
Ω

ei(k+q)·ru(κα)
mk,q(r)

n(κα)
q (r) = eiq·rn(κα)

q (r) = eiq·r
occ

∑
m

4Ω
(2π)3

∫
d3k u(0)∗

mk (r)u(κα)
mk,q(r)

(2.31)

where ψ
(κα)
mk,q(r) and n(κα)

q (r) are the total response functions, while u(κα)
mk,q(r) and

n(κα)
q (r) are cell-periodic.

In order to calculate the first order functions, it is possible to specialize the Stern-
heimer equation 2.25, to the case of monochromatic atomic displacements; then
Eq. 2.25 becomes [28]

(Ĥ(0)
k+q + αP̂k+q − ε

(0)
i,k )|u

(κα)
m,k,q〉 = −Q̂k+qV̂(κα)

k,q |u
0
m,k〉, (2.32)

where Pk = ∑occ
n |u0

n,k〉〈u
0
n,k| is the projector operator on the valence bands, Q̂k =

1− P̂k is the projector on the conduction bands, and V̂(κα)
k,q is the periodic part of the
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first order perturbation potential, V̂(κα)
k,q = e−i(k+q)·rV̂(κα)eik·r, which can be written

as [28]
V̂(κα)

k,q = V̂sep,(κα)
k,q + V̂ loc,(κα)

q + V̂H,(κα)
q + V̂XC,(κα)

q . (2.33)

The explicit expression for the terms of Eq. 2.33 in the case of the plane wave basis
set are [28]:

V̂ loc,(κα)
q (G) = − i

Ω
(G + q)α e−i(G+q)·τκ vloc

κ (G + q)

V̂sep,(κα)
k,q (G, G′) =

i
Ω ∑

µ

eµκ e−i(G−G′+q)·τκ
[
i(G′ −G− q)α

]
ζµκ(k + q + G)ζ∗µκ(k + G′)

V̂H,(κα)
q (G) = 4π

nτκα
q (G)

|G + q|2

V̂XC,(κα)
q (r) = KXCn(τκα)

q (r)

(2.34)

where the Kernel of the XC term is defined as

KXC =
δVxc

δn
(2.35)

As stressed by Eq. 2.28, using the only knowledge of the first order wavefunc-
tions, it is possible to calculate the second derivative of the total energy; in the
present case this would give the atomic force constant matrix

Cl
κα,κ′β =

∂2E
∂u0

κα∂ul
κ′β

, (2.36)

where ul
κα is the displacement of the κ atom in the cell l along the direction α. In

practice, for the monochrmatic perturbation 2.30 employing the response wave-
functions to the monocromatic perturbation 2.30, one get the Fourier component of
the dynamical matrix, defined as

Cq
κα,κ′β = ∑

l
Cl

κα,κ′β eiq·Rl (2.37)

The explicit expression for Cq
κα,κ′β as function of |u(κα)

mk,q〉 can be found for example
in Ref. [29].

We conclude this section by noting that the choice of the phase in Eq. 2.30 is the
standard one because it ensures periodicity in q-space; however, it is not the most
convenient when working in a long wave limit, as we will do in the next Chapters.
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Indeed, throughout this work, if it is not explicitly mentioned otherwise, we will
consider a different choice for the phase of the monochromatic perturbation:

λ→ λκαeiq·(Ra+τκ), (2.38)

where τκ is the position of the atom κ inside the cell Ra. The extra phase in Eq. 2.38
is essential when performing a long wave analysis since it assigne the correct phase
to each sublattice inside a given unit cell [77]. From a practical point of view, the re-
definition of the monochromatic perturbation can be easily incorporated as a post-
processing step. For example, the electronic response density to the new perturba-
tion, n(τκα)

q (r), can be obtained starting by the standard response function, n(κα)
q (r),

as follows [77]:
n(τκα)

q (r) = n(κα)
q (r)eiq·τκ , (2.39)

where note the change in the superscript. In a similar way, using Eq. 2.37, the force
constant matrix in the case of the new perturbation is obtained as

Φq
κα,κ′β = Cq

κα,κ′β eiq·(τκ′−τκ). (2.40)

2.2.2 Uniform strain perturbation

Another perturbation that is routinely available is the crystal response to a uniform
strain. Some of the difficulties encountered for its implementation in the DFPT
framework have a common root with the case of uniform strain gradient deforma-
tions that we will address in the next Chapter 3. Then, the theory developed by
Hamann et al. [33] for a uniform strain plays an important conceptual role for this
work. Moreover, in our study on inhomogeneous mechanical deformations the re-
sults of Ref. [33] will be an important benchmark for the results obtained in Chapter
4. For these reasons here we will briefly revise the theory by Hamann et al..

The main difficulty that hides behind the DFPT formulation of the uniform
strain perturbation is that it induces boundary changes of the primitive cell. Indeed
the pristine and strained structure have different cell parameters, and therefore the
Hilbert space associated to the two crystal structures is different. This clashes with
the requirement that the first order wavefunctions can be expanded on the same
basis of the unperturbed wavefunctions. The key idea to solve this issue relies on
avoiding the use of the Cartesian coordinates, and instead employing the reduced
coordinates; in this way the cell size and shape do not change as consequence of a
uniform strain, but only the metric tensor does.
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Moving to the practical relations, it is possible to specialize the generic pro-
cedure outlined previously, to the case of a uniform strain perturbation, εαβ. In
particular, the response density function, Eq. 2.24 becomes

n(αβ)(r) =
4

(2π)3

occ

∑
n

∫
d3k u(0)∗

n,k (r)u(αβ)
n,k (r) (2.41)

where |u(0)
n,k〉 are the ground state wavefunctions, and |u(αβ)

n,k 〉 are the first order re-
sponse functions. The latter can be calculated using the Sternheimer Eq. 2.25, where
the perturbation potential, V(1), is obtained by, first, changing the coordinates in the
ground state Hamiltonian to the reduced ones, and then deriving such expression
respect to the strain component, εαβ, reminding that only the metric tensor is explic-
itly dependent by the strain. When moving to the reduced coordinates, it is easy
to see that also the kinetic term shows an explicit dependence by the metric tensor;
then in the present case, V(1) can be written as

V(1) → H(αβ)
k = T(αβ)

k + V loc,(αβ)
k + Vsep,(αβ)

k + VH,(αβ)
k + Vxc,(αβ)

k . (2.42)

Since in the following Chapter 4 we will recover the explicit formulas for H(αβ)
k

as a special case of a more general theory, here we report the results of Ref. [33], by
using the Cartesian coordinates and the plane wave basis set. Each single term of
Eq. 2.42 becomes (for convenience we set K = k + G):

T̂(αβ)
k =KαKβ

V loc,(αβ)
k =

1
Ω ∑

κ

e−iG·τκ

[
−δαβvloc

κ (G) +
v′ loc

κ (G)

|G| GαGβ

]

Vsep,(β)
k (G, G′) =

i
Ω ∑

µκ

eµκe−i(G−G′)·τκ

[
−δαβζµκ(K)ζ∗µκ(K

′)

+K′β
ζµκ(K)

∂Kα
ζ∗µκ(K

′) + Kβζµκ(K)
∂ζ∗µκ(K′)

∂Kα

]
(2.43)

VH,(αβ)
k =

4π

|G|2

[
n(αβ)

G − n(0)
G

(
δαβ +

GαGβ

|G|2

)]
,

where the separable esternal potential defined in Eq. 2.14 has been used. Finally,
the exchange-correlation term is most conveniently treated in real space:

Vxc,(αβ)(r) = Kxc

(
−δαβn(0)(r) + n(αβ)(r)

)
. (2.44)
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2.2.3 Polarization response

In this thesis we are mainly interested in calculating the polarization response to
generic mechanical deformations of crystals, with particular focus on uniform strain
gradient. Currently, only the polar response to a cell-periodic deformation λ is a
well established topic in the framework of DFPT. For convenience one can divide
the total polarization response into two contributions, a pure electronic term, P,
and a lattice-mediated term, Pion, and writing

∂P
∂λ

=
∂P
∂λ

+
∂Pion

∂λ
. (2.45)

This splitting usually has the advantage that the lattice mediate term is easily cal-
culated as in a point charge model. On the contrary, P must be treated in a full
quantum-mechanical fashion, and now we will summarize how it can be calcu-
lated using the DFPT results.

The frozen-ion polarization response can be written as [5]

∂Pα

∂λ
= 2

occ

∑
n
〈ψ(0)

n |r̂α|ψ(λ)
n 〉+ c.c., (2.46)

where r̂ is the position operator. It is well known that such operator is ill-defined
in periodic systems. Recalling that, at first order, a perturbation only mixes valence
and conduction states, one can rewrite the previous equation as [4]

∂Pα

∂λ
= 2

occ

∑
v

empty

∑
c

〈ψ(0)
v |

[
Ĥ(0), r̂α

]
|ψ(0)

c 〉

ε
(0)
v − ε

(0)
c

〈ψ(0)
c |ψ

(λ)
v 〉+ c.c., (2.47)

where Ĥ(0) and ε
(0)
m is the ground-state Hamiltonian and the associated eigenvec-

tors, the sums over c and v are intended on the conduction (empty) and valence
(occupied) states, respectively. The commutator appearing in the last equation is[
Ĥ(0), r̂α

]
= −i p̂α + [VNL, r̂α], where the last term is due to nonlocal peseudopo-

tentials. This is well defined in periodic boundary conditions [4], and using plane
waves basis, in the separable case, one obtains [23]:

〈k + G|[V, r̂α]|k + G′〉 = −i
∂

∂kα
Vsep

k (G, G′) (2.48)
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Then, after some manipulation, Eq. 2.47 becomes [5, 28]

∂Pα

∂λ
= − 4

(2π)3

∫
d3k 〈iu(kα)

nk |u
(λ)
nk 〉, (2.49)

where u
(kβ)

m,k (r) is a new auxiliary quantity that is defined as the ground state deriva-
tive with respect its wave vector in the parallel transport gauge, Eq. 2.27,

u
(kβ)

m,k (r) =
∂u(0)

m,k(r)

∂kβ
, (2.50)

and it can be calculated in the framework of DFPT by using the following Stern-
heimer equation [28]

(Ĥ(0)
k + αP̂k − ε

(0)
m,k)|u

(kα)
m,k 〉 = −Q̂k

∂Ĥ(0)
k

∂kα
|u(0)

m,k〉. (2.51)

Note that the k-derivative of Ĥ(0)
k , in the case of separable pseudopotentials pre-

cisely coincides with the commutator in Eq. 2.47: ∂Ĥ(0)
k /∂kα = 〈k + G|[Ĥ(0), r̂α]|k + G′〉.

We now proceed to specialize this result, Eq. 2.49, to the case of the two per-
turbations previously discussed: the atomic displacements, and the uniform strain.
The polarization response induced by a uniform displacement of a given sublattice,
λκ , is related to the Born effective charges, Z∗α,κβ, which are defined as [29]

Z∗α,κβ = Ω
∂Pα

∂λκβ
, (2.52)

where P is the total macroscopic polarization. They can be split, following Eq. 2.45,
as

Z∗α,κβ = Zκδαβ + ∆Z∗α,κβ, (2.53)

where Zκ is the bare pseudopotential charge, while ∆Z∗α,κβ is the electronic contri-
bution; the latter can be obtained via Eq. 2.49, where the generic perturbation λ is
replaced with the perturbation defined in Eq. 2.30, at q = 0. Then, one obtains [29]

∆Z∗α,κβ = −4
Ω

(2π)3

∫
d3k

occ

∑
n
〈iu(kβ)

n,k |u
(κα)
n,k,q=0〉, (2.54)

where u(κα)
m,k,q=0(r) is the q = 0 component of Eq. 2.31.
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In a similar way one can look at the macroscopic polarization response to a
uniform strain deformation, εαβ, which defines the piezoelectric tensor,

eαβγ = Ω
∂Pα

∂εβγ
. (2.55)

Again, one can separate the clamped-ion contribution, eαβγ, from the rest [89]

eαβγ = eαβγ + ∆Z∗α,κδΓκ
δβγ, (2.56)

where Γκ
δβγ describes the atomic relaxations induced by the strain εβγ and is defined

in term of the routinely available force-response internal-strain, Λκ
αβγ as [89]

Γκ
αγδ = Φ̃(0)

κα,κ′βΛκ′
βγδ (2.57)

with Φ̃(0)
κα,κ′β the pseudo-inverse of Φq=0

κα,κ′β.
The frozen-ion term can be calculated by using the first order electronic re-

sponse function to a uniform strain, u(αβ)
n,k (r). Indeed, specializing Eq. 2.49, one

can demonstrate that [33]

eαβγ = 2
Ω

(2π)3

∫
d3k

occ

∑
n
〈iu(kα)

n,k |u
(βγ)
n,k 〉. (2.58)

2.2.4 Microscopic current density

In the previous subsection we have discussed the macroscopic polar response to a
uniform mechanical deformation. However, in this work we are mainly interested
in nonuniform effects, and specifically on strain gradients. Recently an extension of
the previous theory was developed [19] in the context of DFPT; here we will briefly
revise the main concepts, since they are of fundamental importance for the results
presented later.

In order to be able to study the polarization response to a inhomogeneous me-
chanical deformation, λ, one should explore its intimate connection with the mi-
croscopic current density, Jα(r). In the linear regime, the induced polarization,
Pλ

α (r) = ∂Pα(r)/∂λ, is given by: Pλ
α (r) = ∂Jα(r)/∂λ̇, where λ̇ is the velocity of

the perturbation.
In quantum-mechanical terms, the microscopic current density due to a static

perturbation λ is
∂Jα(r)

∂λ
= 2

occ

∑
v
〈ψv| Ĵα(r)|ψλ

v 〉+ c.c. (2.59)
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where Ĵα(r) is the current density operator. Since in the following it will be conve-
nient to work in the reciprocal space, one can define the Fourier transform of the
current density operator, Ĵ(q) = 1/Ω

∫
cell d3r Ĵ(r)e−iq·r.

In the case of local external potential, the explicit expression for such operator
is the well known textbook formula [67]

Ĵ0
α(r) = −

p̂α|r〉〈r|+ |r〉〈r| p̂α

2
(2.60)

(the superscript “0” reminds that this definition holds only for local potentials), and
its Fourier transform is [79]

Ĵ0
α(q) = −

1
Ω

∫
cell

d3r
(

p̂α +
qα

2

)
e−iq·r. (2.61)

However when nonlocal potential are employed, the definition in Eq. 2.60 breaks
down, and an extra nonlocal contribution appears, ĴNC, [19]

Ĵ(q) = Ĵ0(q) + ĴNL(q). (2.62)

ĴNL(q) shall fulfill some sensible requirements such as satisfying a generalized con-
tinuity equation and vanishing in the case of local external potentials. The topic of
defining an explicit expression for the nonlocal current density operator is quite
complex and was recently treated by Dreyer et al. [19]. Since in Chapter 4 we will
be interested in a long wave expansion (i.e. q → 0) of this operator, here we limit
ourself to report only the final expression, in such limit, for the cell periodic nonlo-
cal current density operator, ĴNL

k,q = e−k·r ĴNL(q)e(k+q)·r [19] :

ĴNL
αk,q ≈ −

(
∂V̂NL

k
∂kα

+
qβ

2
∂2V̂NL

k
∂kαkβ

+
qβqγ

6
∂3V̂NL

k
∂kαkβ∂kγ

)
(2.63)

where V̂NL
k is defined in Eq. 2.21.

As we said, the induced polarization is related to the perturbation velocity. Us-
ing the linear time-dependent perturbation theory, in the case of a monochromatic
mechanical deformation defined by the vector q, one obtains [19, 79]

dPq
α

dλ
= 2 ∑

v
〈ψ(0)

v | Ĵα(q)|δψ
(λ)
v (q)〉+ c.c., (2.64)
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where |δψ
(λ)
v (q)〉 are the adiabatic response generated by the external potential,

Ĥλ(q), and it is defined as

|δψ
(λ)
v (q)〉 = −i

empty

∑
c
|ψ(0)

c 〉
〈ψ(0)

c |Hλ(q)|ψ(0)
v 〉

(ε
(0)
v − ε

(0)
c )2

. (2.65)

In practice the adiabatic function can be calculated by solving the following Stern-
heimer equation

(Ĥ(0)
k+q + αP̂k+q − ε

(0)
n,k)|δu(τκα)

n,k,q〉 = −iQ̂k+q|u
(τκα)
n,k,q〉. (2.66)

Eq. 2.64 is a generalization to inhomogeneous cases of the theory presented in
Sec. 2.2.3, and it will be fundamental for deriving some of the main results of Chap-
ter 3 and 4.

As sanity check, one can show that in the homogeneous limit Eq. 2.64 reduces to
Eq. 2.49. This result follows immediately after observing that for q = 0 the current
density operator reduces to the commutator appearing in Eq. 2.47: Ĵα(q = 0) =

[Ĥk, r̂α].
Finally, it is useful for the next Chapter 3, to explicitly rewrite the induced po-

larization, Eq. 2.64, in the case of a monochromatic atomic displacement as defined
in Eq. 2.38:

Pq
α,κβ = 2

occ

∑
n
〈ψ(0)

n | Ĵα(q)|δψ
(τκβ)
n (q)〉, (2.67)

and the adiabatic wavefunctions are

|δψ
(τκβ)
v (q)〉 = −i

empty

∑
c
|ψ(0)

c 〉
〈ψ(0)

c |H(τκβ)(q)|ψ(0)
v 〉

(ε
(0)
v − ε

(0)
c )2

. (2.68)
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Theory of flexoelectricity
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In this Chapter we will summarize the state of the art about the recent micro-
scopic theory of the flexoelectric (FxE) effect, together with its implementation in
the context of DFPT.

After a formal definition of the flexoelectric tensor, in Sec.3.1.2, we will start by
giving the basis of the long wave approach applied to mechanical deformations of
crystals. This will allows to establish a general bulk theory of flexoelectricity. As
results we will identify three contributions to the FxE tensor: a pure ionic contribu-
tion, a pure electronic contribution and a mixed term. The long-wave method will
also allows us to recover the microscopic piezoelectric response.

In Sec. 3.1.4 we will discuss the surface contributions, in order to understand
their impact on the total FxE response of a macroscopic object. In general, a detailed
analysis of this topic is quite complicated; here we will limit ourself to a simplified
geometry, which in any case will allow to grasp the main physical effects induced
by the surfaces.

Following the results of the long wave analysis, in Sec. 3.2 we will discuss dif-
ferent ways to make the FxE theory computational tractable in the context of DFPT;
advantages and disadvantages of the different methods will be reported.

Finally, in Sec. 3.43, in order to obtain a more profound physical meaning of
the various contributions to the bulk flexoelectric response, we will summarize the
main results of the recent work by Stengel and Vanderbilt [79]. In particular, we will
introduce the concept of curvilinear coordinates, which constitute the theoretical
background of the original work presented in Chapter 4.

3.1 General theory

3.1.1 Definition of FxE tensor

The flexoelectric effect is defined as the polarization response, P, induced by a
strain gradient deformation. It is linear respect to the displacement vector field,
u(r, t). This allows to settle the theory of flexoelectricity in the framework of linear-
response theory, where a generic transformation of the unperturbed coordinates, r,
is written as follows

r′(r, t) = r + u(r, t), (3.1)

where r′ are the perturbed coordinates. Starting from the displacement field, u(r),
one can define the unsymmetrized “deformation gradient”:

ε̃αβ =
∂uα(r)

∂rβ
, (3.2)



3.1. General theory 27

where the Greek letters identify the Cartesian coordinates. The tensor ε̃αβ has a
symmetric and an antisymmetric part; the latter is related to rotations of the sample,
while the former is the symmetric strain tensor,

εαβ =
1
2
(ε̃αβ + ε̃βα). (3.3)

Two different strain gradient tensors exist, depending on whether one uses ε̃αβ or
εαβ in its definition. One can define it as a second gradient of the displacement field
(type-I),

ηα,βγ =
∂ε̃αβ

∂rγ
=

∂2uα

∂rβ∂rγ
, (3.4)

symmetric in β↔ γ, or as a gradient of the symmetric strain (type-II),

εαβ,γ =
∂εαβ

∂rγ
, (3.5)

which is symmetric in α ↔ β. Both strain gradient tensors have the same number
of independent components and they are related as follows [38]:

ηαβ,γ = εαβ,γ + εγα,β − εβγ,α. (3.6)

Since two different strain gradient tensors exist, then also the FxE tensor has
two possible definitions

µI
αβ,γδ =

∂Pα

∂ηβ,γδ

µI I
αδ,βγ =

∂Pα

∂εβγ,δ
.

(3.7)

Both are symmetric in the two last indices, but the meaning of the indices is not the
same for the two tensors. Then, in general their individual components differ. Yet,
both FxE tensors have 54 independent components for the lowest crystal symmetry.
Indeed, a one-to-one relation exists between the two definitions,

µI I
αβ,γδ = µI

αβ,γδ + µI
αγ,δβ − µI

αδ,βγ. (3.8)

The simplest type of crystals for studying the flexoelectric effect are the cubic
ones, since they only have three independent components of the flexoelectric tensor.
They are usually identified as the longitudinal, µ11, the transverse, µ12, and the
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FIGURE 3.1: The independent strain gradient deformations for a
cubic crystal, for both the type-I and type-II strain gradient defini-

tion (from Ref. [77]).

shear, µ44, which are connected to the type-II definition of Eq. 3.7 as follows:

µ11 = µI I
xx,xx µ12 = µI I

xx,yy µ44 = µI I
xy,xy = µI I

yx,xy. (3.9)

A schematic representation of the associated strain gradient deformation is given
in Fig. 3.1.

From Eq. 3.7 it easy to see that in the case of cubic crystals the tensors are sym-
metric also in the interchange of the first two indices; therefore for cubic crystals
the FxE tensor has the same symmetry as the elastic tensor.

3.1.2 Long wave analysis

Long wave analysis has proved to be a really valuable theoretical tool in order to
study the macroscopic response of crystals to a variety of perturbations. A notable
systematic employment of this method dates back to the Born and Huang’s mile-
stone book, “Dynamical Theory of Crystal Lattices” [8]. The great advantage of
the long-wave approach is especially clear when dealing with non-periodic pertur-
bations; indeed its key feature is the reformulation of a perturbation as sinusoidal
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functions. Thanks to the Fourier transform, periodic functions are easier to treat for
establishing a formal theory. Moreover, from a practical point of view, a periodic re-
formulation is essential to take advantage of DFPT. Chronologically, Tagantsev [80]
was the first to employ systematically the long wave approach to study flexoelec-
tricity. His work was based on rigid-ion model. In this section we will present a
more general theory of flexoelectricity, based on the work of Stengel [77]. The lat-
ter has the double advantage of being based on the long wave analysis, and not
restricting itself to the case of point-charge atoms. A previous detailed review can
be found in [76].

In continuum theory one can work with the Fourier components of the displace-
ment field of Eq. 3.1 and define a monochromatic mechanical deformation as

uα(r, t) = Uαeiq·r−iωt, (3.10)

where q is the propagation wave vector, Uα is the displacement of a material point
in direction α, and ω is the frequency of the perturbation. Such perturbation locally
induces a strain and strain gradient deformation that are, respectively,

ε̃αβ(r, t) = iqβUαeiq·r

ηα,βγ(r, t) = −qβqγUαeiq·r.
(3.11)

[Note that the deformations in Eq. 3.11 are written in type-I form; similar relations
can be written for type-II tensors.]

In a microscopic theory, as it is the case of DFT where the crystal is treated as a
discrete lattice, a generic monochromatic phonon is defined as

ul
κα = Uq

καeiq·Rl
κ−iωt, (3.12)

where l is the index running on different unit cells, κ identifies the sublattice, the
Greek letters stands for Cartesian directions, and ω is the frequency. Focusing now
on the acoustic phonons, which are defined as the lattice displacements associated
to the phonon branches that have zero frequency at q = 0, and by applying the
long wave analysis to their equations of motion [8], one arrives at the following
result (see Appendix A):

Uq
κα = Uβ(δαβ + iqγΓκ

αβγ − qγqδNκ
αβγδ) + .... (3.13)

Each quantity in the above expansion has a precise physical meaning: at order zero
in q, Uq

κα is the same for each sublattice, Uα; this coincide with a uniform translation
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of the whole crystal. The first-order term in Eq. 3.13 contains the tensor Γκ
αβγ, which

describes the sublattice atomic displacement induced by a uniform strain, εβγ, we
defined in Eq. 2.57. In a similar way, the second order term in Eq. 3.13 describes the
sublattice displacements induced by the strain gradient deformation, ηβ,γδ (Nκ

αβγδ

is the type-I flexoelectric internal-strain tensor). Both internal relaxation tensors,
Γκ

αβγ and Nκ
αβγδ, can be calculated using the force-constant matrix (as shown in

Appendix A), which is a standard quantity available in most code implementations
of DFPT.

In addition to the crystal distortion that is associated with the acoustic phonon,
the other key quantity that defines the flexoelectric tensor is the polarization re-
sponse. As we have already pointed out, flexoelectricity is linear with respect to
the atomic displacements; thus the macroscopic polarization induced by the collec-
tive atomic displacement, ∑l ul

κα, is

Pα(t) = Pq
α,κβUq

κβeiq·r−iωt (3.14)

where Pq
κβ is the polarization response to the perturbation Eq. 3.12.

Assuming for the moment that we can expand the polarization response func-
tion in q, as we did for the displacements, Eq. 3.13, we write:

Pq
α,κβ = P(0)

α,κβ − iqγ1 P(1,γ1)
α,κβ −

qγ1 qγ2

2
P(2,γ1γ2)

α,κβ + ..., (3.15)

where we have adopted the following convention

P(n,γ1...γn)
α,κβ = (−i)n

∂nP(q)
α,κβ

∂qγ1 ...∂qγn

∣∣∣∣∣∣
q=0

(3.16)

In Eq. 3.15 it is easy to recognize that the zero-th order term coincides with the Born
effective charges, P(0)

α,κβ = Z?
κ,αβ, defined in Eq. 2.53. It is convenient to rewrite the

total polar response by splitting the electronic, Pκβ and ionic contributions,

Pq
κβ = Pion q

κβ + Pq
κβ. (3.17)

By inserting Eq.s 3.13 and 3.15 into Eq. 3.14 and collecting the terms up to the
second order in q, one can finally write

Pα(t) = εβγ(t)eαβγ + ηβ,γδ(t)µI
αβ,γδ, (3.18)

where we have used the definitions 3.11. The first term on the r.h.s of Eq. 3.18 is the
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piezoelectric contribution, where eαβγ was defined in Eq. 2.56. Interestingly here
we have derived an alternative expression for the clamped-ion contribution that is

eαβγ = −∑
κ

P(1,γ)
α,κβ . (3.19)

Moving to the flexoelectric part of Eq. 3.18, one get that the flexoelctric coeffi-
cient is [77]

µI
αβ,γδ = µI

αβ,γδ −
1
2
(Γκ

ρβγP(1,λ)
α,κρ + Γκ

ρβλP(1,γ)
α,κρ ) +

1
Ω

Z?
κ,αρNκ

ρβγλ, (3.20)

where the clamped-ion term is

µI
αβ,γδ =

1
2 ∑

κ

P(2,γδ)
α,κβ . (3.21)

Via Eq. 3.8, it is possible to rewrite the FxE coefficient in the type-II form,

µI I
αβ,γδ = µI I

αβ,γδ − Γκ
ρβγP(1,λ)

α,κρ +
1
Ω

Z?
κ,αρLκ

ρβγλ, (3.22)

where Lκ
ρβγλ is the correspondent type-II form of Nκ

ρβγλ (see Appendix A). Note
that in both Eq. 3.22 and Eq. 3.20, three different contributions to the flexolectric
tensor are identified: the first term is a pure electronic term, the last term is a pure
lattice-mediated term and the second term is a mixed contribution.

In conclusion, we have established a formalism to define the flexoelectric re-
sponse in a generic crystal. The lattice contribution can be connected with the
theory developed in Ref. [80], where a rigid ion-model was considered. In addi-
tion, the present derivation also contains the electronic response to a mechanical
deformation, which is encoded into the q-expansion of the polarization response
function, Pq

α,κβ. These quantities are the trickiest to calculate. Therefore the bulk of
this chapter, starting from the next section, is dedicated to the a detailed analysis
of how to deal with the q-expansion terms of the electronic polarization response
function. For such presentation we will adopt a DFT point of view, since Pq

κβ is
a genuine quantum-mechanical property. Before closing this section however, we
will discuss two important points: (i) the validity of the long wave expansion ap-
plied to any response functions, such as Eq. 3.15; (ii) the physical impact of surfaces
on the global flexoelectric response of a finite sample.



32 Chapter 3. Theory of flexoelectricity

3.1.3 Analyticity of response function around Γ

The previous analysis is based on the long-wave expansion of the response to
atomic displacements. In practice, this means that one can expand the response
functions around q = 0 as a Taylor series, such as in eq. 3.14. However, from a
mathematical point of view, one could ask if this is allowed, i.e. if the response
functions are analytic in a neighbourhood of q = 0. Unfortunately this is not the
case for insulating crystals, because for q→ 0 their values depend on the direction
along which the Γ-point is approached.

The non-analyticity of insulators has its physical origin in the macroscopic elec-
tric fields generated by the displacement of charged atoms [59]. The monochro-
matic atomic displacements described by eq. 3.12 are periodic in the planes per-
pendicular to the phonon propagation direction, q̂, but in the longitudinal direction
they generate a macroscopic electrostatic field that interacts with the other atoms
and electronic clouds. This electric field is well known, for example in the context
of lattice dynamics, where it is responsible for the splitting between the longitudi-
nal and transverse optical branches at the Γ point. At the lowest order in q, the
macroscopic electric field, in the case of polar monochromatic phonon modes, can
be approximated as [76]

E(q→0) ∼ −4π

Ω

q̂ · Z?
κβ

q̂ · ε · q̂ , (3.23)

where ε is the electronic dielectric constant. From Eq. 3.23 is clear that the in-
duced electric field is function of the phonon propagation direction, q̂, and this de-
pendency propagates into all the response functions, causing their non-analyticity
around Γ.

Clearly, in order to be able to perform a long wave expansion one need to deal
with the macroscopic electric field. Every time that a long wave approximation is
performed in this work, it must be intended that the macroscopic electrostatic in-
teractions have been excluded. Such a choice not only solves the present problem
of removing the non-analyticity, but it also recovers the standard definition of all
the material constants, e.g. the effective charges, the piezoelctric tensor and the
flexoelectric tensor, that are defined in short-circuit electrostatic boundary condi-
tions [63].

From a conceptual point of view, the short-circuit electrostatic boundary con-
ditions could in principle be achieved, by adding to the insulator a low density
free electron gas [77], to screen the long range electrostatic interactions generated
by the atomic displacements. From a practical point of view, such a regime can
be achieved in DFT calculations by setting to zero the G = 0 components of the
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φtot

φsurf φtot
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0 L/2-L/2

pUε pUεpGpUε-pUε

FIGURE 3.2: (a) The pristine slab and the associated potential pro-
file. (b) the same slab under a uniform longitudinal strain; the vari-
ation of the surface dipoles, pU , are marked as red arrows; the vari-
ation of the surface dipole produce an dipper potential box; (c) the
same slab under a longitudinal strain gradient deformation; the
variation of the surface dipole is now in the same direction. The
yellow potential profile shows the only contribution of the bulk
flexovoltage response (the surface term is not taken into account),

while the the blue is the total flexovoltage, bulk+surface.

first-order electrostatic energy and potential, as done in Ref [78].

3.1.4 Surface contributions

The physical properties of crystals are usually divided into two categories based on
their behaviour in the limit of a macroscopic sample: a given physical property is a
truly bulk property if the details of the surface become irrelevant to determine the
total response; on the contrary, one speaks of a “surface property” if the surfaces
do matter. Understanding if a certain property has a truly bulk nature or not is
of fundamental interest both for theoretical and experimental purposes. Indeed, in
the former case, a sample can be prepared by focusing just on the quality of the bulk
crystal and without paying much attention to the surfaces, which are usually more
demanding to engineer. Theoretically, a bulk physical property can be calculated
using periodic boundary conditions, which allows to explicitly simulate only the
primitive cell of the crystal, with a considerable saving of time. An example of bulk
property is piezoelectricity, as it was demonstrated by Martin [51].

In order to understand where flexoelectricity stands regarding the above calssi-
fication, one can think of a free standing slab of a cubic crystal, with two symmetri-
cally terminated surfaces. For clarity, we consider here a slab centered in the origin,
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with the normal to the surfaces oriented along x̂ and thickness L, which is suffi-
ciently thick in order to recover locally in its center the bulk physical properties of
the constituent material (see Fig 3.2-a). Moreover, for simplicity, we will only con-
template longitudinal deformations in such a way that the problem reduces to one
dimension.

We start by analyzing the overall polar response of the slab to a uniform me-
chanical strain, ε (see Fig. 3.2-b). Since the crystal is not piezoelectric, the interior
of the slab will not produce any polar response. Moving to the surfaces, one can
note that they are by construction piezoelectric, since inversion symmetry is locally
broken. Then the uniform strain will result in a change of the surface dipoles. In
particular, by focusing on the right surface, one can quantify such change, defining
the absolute linear variation induced by a uniform strain as

pU =
2
L

∫ +∞

0
dx

∂P(x)
∂ε

, (3.24)

where P(x) is the local polarization along x̂, and in the present case is located at
the surface regions. However, the changes affecting the two surface dipoles have
opposite direction, pU

±L/2 = ±pU , because we assumed that the slab is symmetric.
It follows that the total polarization response to a uniform strain deformation of a
cubic slab is zero: Ptot = (pU

L/2 + pU
−L/2)ε = (pU − pU)ε = 0.

In the case of a strain gradient deformation, ∆ε (Fig. 3.2-c), flexoelectricity gen-
erates a bulk polar response,

pG =
1
L

∫ +∞

−∞
dx

∂P(x)
∂(∆ε)

. (3.25)

Regarding the surface response, here one can immediately see that the two sur-
faces experience an opposite strain. [With reference to Fig. 3.2-c, the local strain in
a generic point along the x̂ direction is: (∆ε)x; then the strain at the two surfaces is
opposite: ε±L/2 = ±(∆ε) L/2.] Therefore, in the case of a strain gradient deforma-
tion, the two surface dipole variations do not cancel each other, but they sum up to
a non zero surface contribution:

Psur f = pU
L/2εL/2 + pU

−L/2ε−L/2 = pU(∆ε)L. (3.26)

Adding together the bulk and surface contributions, one gets the total polar re-
sponse of the slab to a strain gradient deformation

P = pU(∆ε)L + pG(∆ε). (3.27)
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Then, by means of the previous schematic arguments, it is possible to conclude that
surface piezoelectricity has macroscopic effects, which must be added to the bulk
flexoelectric term in order to capture the total response of a finite crystal.

Another way to analyze the same problem consists in looking at the total flex-
ovoltage of the slab, ϕ; this is defined as the variation in the electrostatic potential
between the two opposite surfaces, ∆V, induced by a strain gradient, ∆ε,

ϕx = lim
L→∞

1
L

d∆V
d(∆ε)

. (3.28)

In order to make Eq. 3.28 a sensible definition, ∆V is defined in open circuit (OC)
electrostatic boundary conditions (field must vanish away far from the slab sur-
faces). Note that the flexovoltage quantity has a close relation to the experimental
results, since experiments directly measure the current induced by ∆V. Figs. 3.2-
[d-f] show the potential profile across the slab for the three different cases: pristine
slab, uniform strain, uniform strain gradient. The potential offsets between the vac-
uum and interior regions of the pristine slab are due to the surface dipoles, and they
both change by an equal amount as consequence of the uniform strain, Fig. 3.2-e.
Then no variation in the electrostatic potential between the two opposite surfaces
is induced. On the contrary, the case of a uniform strain gradient has a double ef-
fect on the electrostatic potential 3.2-f: on one side the bulk flexoelectric response
induces an internal electric field (yellow line); on the other side the surface dipoles
change of an opposite amount, producing an extra potential offset between the two
surfaces (red line). The sum of the two effects yields the total change in ∆V, and
the total flexovoltage can be written as the sum of a surface and bulk contribution,

ϕtot = ϕsur f + ϕbulk. (3.29)

The bulk term is related to the longitudinal FxE tensor via the relative and vac-
uum permittivit, ε and ε0 respectively, as: ϕbulk = µ/(ε0ε). Again, the surfaces
do contribute to the total response in a way that is usually comparable to the bulk
effect [78].

While the previous conclusions have been derived for the specific case of a lon-
gitudinal deformation, one can show that this result is general. To do this, however,
it is necessary to introduce more sophisticated tools: in particular the key point is
to settle the analysis of the electronic response of a slab to a strain gradient defor-
mation in a curvilinear frame [74]. This is defined as the frame that is co-moving
with the atoms, in such a way that they do not move in a course of a mechanical
deformation. A formal introduction to the curvilinear coordinates is presented in
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Sec. 3.2.2, while its application to the surface problem is reported in Appendix B.

3.2 Calculation of the electronic bulk FxE response

In this section we will describe a viable strategy to calculate the electronic contri-
bution to the bulk flexoelectric response, µαβ,γδ, defined in Eq. 3.21, with particular
attention to its practical application in the context of DFPT.

Historically, the first attempt was based on a generalization of the Martin’s the-
ory of piezoelectricity [51], where the key quantities to obtain the polar response to
a mechanical deformation are the space moments of the electronic density response
to atomic displacements. We will revise such theory in Sec. 3.2.1.

This method does not allows to calculate all the independent components of
the FxE tensor. In particular the transverse response are inaccessible via the elec-
tronic density. A more general theory to calculate the induced polarization, Pq

α,κβ,
was established; this is relies on its direct link with the current density induced by
the adiabatic atomic displacements. Combining the long wave expansion of the
polarization, Eq. 3.15, with the recent results on the microscopic current density
operator discussed in Sec. 2.2.4, we will show in the following Sec. 3.2.2 a feasible
way to calculate the full electronic FxE tensor.

3.2.1 Via charge density

Inspired by the seminal paper on piezoelectricity [51], the first remarkable attempt
to calculate the microscopic electronic response to a strain gradient deformation
was developed by Resta [64]. It is based on a multipolar expansion of the lo-
cal microscopic variations in the charge density induced by atomic displacements.
The key relation to recover the polar response from the electronic response density,
δρ(r), is the Poisson equation

∇ · P(r) = −δρ(r). (3.30)

This approach is particularly convenient for a practical application to DFT, since
in general the electronic density function is a fundamental and routinely available
quantity in the framework of DFT calculations.

Unfortunately, subsequent works [36, 77] have demonstrated that not all the
independent components of the FxE tensor can be extracted via the charge density
response. Still, revising this method is important because: (i) it is functional to
understand the following theoretical developments; (ii) it allows to easily establish
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general relations that will be used in this work, such as the famous relation between
the octupoles moments and the longitudinal FxE tensor; (iii) in the specific case of
cubic crystals, if combined with slab calculations, it can be used to extract all the
three independent bulk components of the FxE tensor. Here, our presentation will
follow closely Ref. [76]

The starting point for the present analysis are the microscopic electronic density

responses to a monochromatic lattice displacement, n
(τκβ)
q (r) (already available in

DFPT codes, see Sec. 2.2.1). Since here we are mainly interested in the macroscopic
response, it is convenient to introduce the cell integral of the microscopic periodic
function,

ρ
q
κβ =

e
Ω

∫
cell

d3r n
(τκβ)
q (r) (3.31)

where e is the electronic charge. Inspired by Eq. 3.14, in the linear approximation
the macroscopic charge density change induced by a monochromatic lattice dis-
placement is [77]

δρ(t) = ρ
q
κβUq

κβei(q·r−ωt) (3.32)

where Uq
κβ is defined in Eq. 3.13. With the same precaution discussed in section

3.1.3, we can now proceed in performing the long wave expansion of the charge
density function:

ρ
q
κβ = ρ0 − iρ(1,γ)

κβ qγ −
ρ
(2,γδ)
κβ

2
qγqδ + i

ρ
(3,γδλ)
κβ

6
qγqδqλ. (3.33)

Note that from a computational point of view, the terms of the previous expansion
can be obtained via DFPT; the q-derivative are calculated as finite difference of the
electronic response density to for different small value of q (of the order of 10−2 in
reduced units).

By substituting Eq. 3.14 and Eq. 3.32 into the Poisson equation 3.30 and group-
ing together the terms of the same order in q, one gets [76]

ρ
(n,γ1...γn)
κβ = ∑

l
P(n−1,γ1...[γl ]...γn)

γl ,κβ , (3.34)

where the symbol [γl ] identifies the absence of the element l from the list.
The previous equation 3.34 can be rewrite employing the more familiar Carte-

sian multipoles of the charge response to a single atomic displacement, also called
dynamical multipoles,

Q(n,γ1...γn)
κβ =

∫
all sapce

d3r fκβ(r)rγ1 ...rγn (3.35)
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where the integrand is the localized density response function in real space, fκβ(r−Rlκ) =

∂ρ(r)/∂ul
κβ. Using fκβ(r), the cell-periodic function is equal to [36]

e n
(τκβ)
q (r) = ∑

l
fκβ(r−Rlκ)eiq·(Rlκ−r), (3.36)

and therefore the derivatives of the cell average, Eq. 3.31, are

ρ
(n,γ1...γn)
κβ =

1
Ω

∫
cell

d3r
∂nρ

q
κβ(r)

∂qγ1 ...∂qγn

=
1
Ω

Q(n,γ1...γn)
κβ . (3.37)

In conclusion, ρ
(n,γ1...γn)
κβ are the dynamical multipoles per cell volume, and Eq. 3.34

connects the long wave expansion of the polarization response with the dynamical
multipoles of the induced charge density. The explicit form of the first four q-orders
of that relation are:

Q(0)
κβ

Ω
= 0

Z∗γ,κβ = P(0)
γ,κβ

Q(2,γδ)
κβ

Ω
= P(1,γ)

δ,κβ + P(1,δ)
γ,κβ

Q(3,γδλ)
κβ

Ω
= P(2,γδ)

λ,κβ + P(2,γλ)
δ,κβ + P(2,δλ)

γ,κβ

(3.38)

The first line of Eq. 3.38 is a consequence of the fact that the cell integral of
electronic charge-density response to an atomic displacement is zero, while in the
second line we have used the relation Q(1,γ)

κβ = Ω ∆Z?
γ,κβ, where ∆Z?

γ,κβ is the elec-
tronic contribution to the Born effective charge, Eq. 2.53. The third equation in 3.38
is related to the piezoelectric tensor (recall Eq. 3.21) and it can be inverted [77].
The result is the famous equation, first derived by Martin [51], for the electronic
contribution to the piezoelectric coefficients:

P(1,γ)
αβ =

1
2

[
Q(2,αγ)

β + Q(2,αβ)
γ −Q(2,βγ)

α

]
, (3.39)

where each term has been summed on the sublattice index, κ. Note that Eq. 3.39 is
quite similar to the formula that connects the type-I and type-II FxE tensor, Eq. 3.8.
Indeed, the quadrupoles Q(2,αγ)

β can be seen as the type-I electronic response to a

uniform strain gradient, and P(1,γ)
α,β as the type-II.

Finally, reminding that the electronic contribution to the FxE tensor is given by
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the second q-derivate of the polarization response, Eq. 3.21, then one would be
tempted to invert the last relation in Eq. 3.38, to get P(2,γδ)

α,κβ . However, just by count-

ing the independent components of both Q(3,βγδ)
κα and P(2,γδ)

α,κβ tensor, one get that the
former has only 30 while the latter has 54 independent entries [77], and this makes
impossible to invert the last relation in Eq. 3.38. Therefore, despite this approach is
very appealing from the point of view of DFPT calculations, this strategy does not
allow to determine all the clamped-ion independent components of the FxE tensor.

Another way to understand the impossibility of using the Poisson equation
in order to extract the full polarization response is based on the observation that
Eq. 3.30 only connects the longitudinal part of P (i.e. the curly free) to the charge
density. The information on the solenoidal component of P, which in general differs
from zero, can not be accessed via charge density. Summarizing, the knowledge of
the electronic charge density response function only gives access to the longitudi-
nal components of the FxE tensor. This can be expressed using the well known
relation between the longitudinal octupoles and the associated longitudinal flexo-
electric tensor component [64],

µq̂ =
Q(3)

q̂

6Ω
, (3.40)

where µq̂ = µαβγδq̂αq̂βq̂γq̂δ and Q(3)
q̂ = ∑κ Q(3,βγδ)

ακ q̂αq̂βq̂γq̂δ.
In the specific case of cubic crystals there are only two independent longitudi-

nal directions, which are usually identified with the [100] and [110] Cartesian direc-
tions. Therefore the corresponding longitudinal flexoelctric coefficients that can be
obtained using the charge density response are defined, in terms of the Cartesian
tensor 3.9, as follows:

µ[100] = µ11,

µ[110] = µ11 + µ12 + 2µ44. (3.41)

It is interesting to note that, only for cubic crystals, the transverse component, µ12,
can be calculated using a slab geometry [74]. The proof of this statement needs the
concept of curvilinear coordinates (Sec. 3.43) and is reported in Appendix B.

3.2.2 Via current density

In order to be able to get all the bulk independent components of the clamped-
ion flexoelectric tensor, one should explore the intimate connection between the
microscopic current density and the macroscopic inhomogeneous polarization.
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In quantum-mechanics terms we have already discuss the relation between the
microscopic current density operator and the macroscopic polarization response in
Sec. 2.2.4, together with its generalization to the case of nonlocal external poten-
tials. In practice, the electronic polarization induced by a monochromatic atomic
displacement, Eq. 3.21, can be calculated via Eq. 2.67,

µI
αβ,γδ = −

1
2 ∑

κ

∂2Pq
α,κβ

∂qγ∂qδ
. (3.42)

Note that the approximation of the current density operator in the case of non-local
pseudopotential, Eq. 2.63, is just enough for our purpose; indeed the electronic
FxE response is proportional to the second order term of the long wave expansion
of Pq

κβ, and in Eq. 2.63 is precisely reported the expression for the current density
operator up to the second order in q.

3.3 Revised analysis in curvilinear coordinates

When dealing with time-dependent problems, as in the case of the microscopic
current density induced by an adiabatic displacement, the boundary conditions of
the Hamiltonian change during the perturbation and therefore issues related to the
physical representation of the quantum-mechanical observables can rise. The ori-
gin of these issues can be understood using the case of uniform strain deformations;
Lets suppose to have an infinite one dimensional atomic chain and to be interested
in the response to a small uniform strain, ε. Then, the ion located at Ra will be
displaced of an amount ua = Raε. Unfortunately the perturbation ua has two prob-
lems: (i) it is not small for atoms that are far from the origin; (ii) it is implicitly
dependent by the arbitrary choice of the origin of the coordinate system. The for-
mer point clearly contradicts the hypothesis of small perturbations, while the latter
contrasts with the concept of proper mechanical response of crystals, which pre-
scribes that the response must only be function of the relative distances between
points in the crystals and not of their absolute position with respect to some arbi-
trary coordinate origin [85]. In order to solve such problems in the context of DFPT,
Hamann et al. [33] have derived the crystal response to a uniform strain perturba-
tion in reduced coordinates; then no explicit displacement of the atoms takes place
and the boundary conditions remain unchanged during the perturbation. We have
discussed some practical details of this procedure in Sec. 2.2.2. Clearly, these same
problems are expected to be even more severe in the case of strain gradient defor-
mations, where the displacement field of the atomic positions grows quadratically
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respect to the arbitrary coordinate origin.
Recently, Stengel and Vanderbilt [79], inspired by Hamann et al. [33], have tack-

led these issues from their very root, by considering a generic mechanical defor-
mation and incorporating a convenient coordinate transformation into the time-
dependent Schrödinger equation. It follows that the Schrödinger problem is for-
mulated in a curvilinear frame where the ions do not move, and all the effects of
the mechanical perturbation are incorporated in a change of the real space metric.

One of the main results of employing the curvilinear coordinates is that the
polarization response to an inhomogeneous deformation is naturally divided into
two contributions: a “static” term, which is linear in the amplitude of the distortion;
a “dynamic” term, which is proportional to the velocity of the distortion. This
same partition applies also to the flexoelectric response, where the dynamic term is
responsible for a peculiar contribution, proportional to the magnetic susceptibility
of the crystal. Since these results will be the starting point to develop an efficient
strategy in order to remove the dynamical term from the Cartesian Eq. 3.42, which
will be the central goal of the next Chapter, here we revise in some detail the main
conclusion of Ref [79].

In all generality one can consider the following time-dependent coordinate trans-
formation, corresponding to the mechanical deformation of Eq. 3.1,

r = ξ + u(ξ, t), (3.43)

where r and ξ are the Cartesian and curvilinear coordinates, respectively. Plugging
this transformation into the time dependent Schrödinger equation, one obtain the
following curvilinear Hamiltonian [79]:

ˆ̃H =
1
2
( ˆ̃pβ − Aβ)(g−1)βγ( ˆ̃pγ − Aγ) +

ˆ̃V + ˆ̃Vgeom −
1
2

φ (3.44)

where the tilde symbol identifies the curvilinear quantities, ˆ̃pβ = ∂/∂ξβ is the mo-
mentum operator, gβγ is the metric tensor defined as

gβγ =

(
∂ri
∂ξβ

∂ri
∂ξγ

)
, (3.45)
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Aβ and φ are a vector and scalar potential defined as

φ =
∂ri
∂t

∂ri
∂t

Aβ =
∂ri
∂ξβ

∂ri
∂t
|ξ ,

(3.46)

ˆ̃Vgeom comes from the kinetic term and is equal to

ˆ̃Vgeom =
1
2
AαgαβAβ +

1
2

∂α(gαβAβ)

Aα =
1

2h
∂h
∂ξα

h = det
(

∂ri
∂ξα

)
,

(3.47)

and ˆ̃V contains all the remaining potential terms written explicitly in curvilinear
coordinates.

In practice, for the purpose of the present discussion, we consider a monochro-
matic acoustic phonon perturbation: uaκ = λei(Raκ ·q−ωt), where Raκ identify the
position of the atom κ in the cell a. [Note that this perturbation of frame is asso-
ciated with the collective displacement of an acoustic phonon, since all the atoms
undergo to the same displacement λ.] Then, the associated coordinate transforma-
tion is given by Eq. 3.43, with

u(ξ, t) = λ(t)eiξ·q. (3.48)

By only retaining the term up to the first order in λ, we obtain that the scalar poten-
tial does not contribute, the geometric potential is simply an additive q-dependent
constant (see next Chapter), and the effective vector potential A, reduces to the
velocity of the perturbation, A = λ̇.

The explicit presence of the velocity of the perturbation in the curvilinear Hamil-
tonian allows to group its effect in a “dynamical” term. Then, the bulk polarization
can be written as the sum of two contributions [79]

Pq
αβ = Pq,stat

αβ + Pq,dyn
αβ ; (3.49)

the static term, Pq,stat
αβ , is the curvilinear equivalent of the Cartesian Eq. 2.67,

Pq,stat
αβ =2 ∑

v
〈ψv|Ĵα(q)|δψ

(β)
v (q)〉, (3.50)
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where Ĵ (q) is the Fourier transform of the current density operator defined in
Sec. 2.2.4, but now the Cartesian coordinates are replaced by the curvilinear, and
|δψ

(β)
n (q)〉 is the adiabatic response function generated by the static curvilinear

Hamiltonian,

Ĥ(β)(q) =
∂ ˆ̃H(q)

∂λβ
(3.51)

[where we have made explicit the q-dependence], and in analogy with Eq. 2.65 is
defined as

|δψ
(β)
v (q)〉 = −i ∑

c
|ψc〉
〈ψc|H(β)(q)|ψv〉

(εv − εc)2 . (3.52)

The explicit calculation of these response wavefunctions will be one of the main
achievements of the next Chapter 3. The dynamic term, Pq,dyn

αβ , is defined as

Pq,dyn
αβ = 2 ∑

v
〈ψv|Ĵα(q)|ψ

(λ̇β)
v (q)〉+ N

Ω
δαβ, (3.53)

where the second term on the r.h.s. originates from an additional piece that appears
in the curvilinear definition of current density operator [79], with N equal to the

total number of electrons in the valence band and Ω the cell volume, and |ψ(λ̇β)
v (q)〉

is [79]

|ψ(λ̇β)
v (q)〉 = ∑

c
|ψc〉
〈ψc|Hλ̇β(q)|ψv〉

(εv − εc)
. (3.54)

where Hλ̇ is dynamical first order contribution to the curvilinear Hamiltonian,

Ĥλ̇β(q) = ∂ ˆ̃H(q)
∂λ̇β

.

Clearly the same division as in Eq. 3.49 applies to the flexoelectric tensor,

µαβ,γδ = µ′αβ,γδ + µ
dyn
αβ,γδ (3.55)

where µ′αβ,γδ and µ
dyn
αβ,γδ are the static and dynamic contribution, respectively. In-

terestingly, it is possible to show that the dynamical term is proportional to the
magnetic susceptibility tensor, χ

mag
αβ , which is defined as the proportionality tensor

between the magnetization vector, M, and the magnetic field, B:

Mα = χ
mag
αβ Bβ (3.56)

This can be seen as follows: consider a monochromatic A-field that changes lin-
early in space, then it induces the following current density (remind the two basic
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relations B = ∇∧A and J = −∇∧M):

Jα = εαργ qρ χγδ εδωβ qω Aβ, (3.57)

where εαργ is the Levi-Civita symbol. Since in our case the effective vector potential
is equal to the velocity of the perturbation, then the derivative of Jα respect to A
gives the dynamical contribution to the polarization

Pq,dyn
αβ ∼ εαργ qρ χγδ εδωβ qω (3.58)

Finally, the corresponding flexoelectric tensor is obtained by performing the second
q-derivative of the previous expression [79], and the type-I expression is

µ
I dyn
αβ,γδ =

1
2 ∑

ωρ

(
εωαγερβδ + εωαδερβγ

)
χ

mag
ωρ , (3.59)

which is indeed proportional to the magnetic susceptibility tensor.
An easy understanding on the physical origin of the dynamical contribution

can be obtained by means of the schematic cartoons reported in Fig. 3.3, where we
consider a cubic crystal slab perturbed by a uniform shear strain gradient. The
decomposition of the crystal into small pieces, Fig. 3.3-(a), shows that each of these
pieces experience a rotation. By Larmor’s theorem, the effects of a uniform rotation
are equivalent to the effects of a uniform magnetic field. An external magnetic
field generates surface currents that ultimately produce a divergenceless surface
polarization. Since the pieces of the crystal are rotating of a different angle, which
linearly grows along the transverse direction, then the induced surface polarization
differs between each peace. Summing up to reconstruct the full crystal, one can
observe that an additional uniform bulk polarization contribution rises, the red
arrows in Fig. 3.3, which is is precisely Pq,dyn

β , Eq. 3.53.
Crucially, Fig. 3.3 also shows that surface currents are induced, green arrows in

Fig. 3.3. Clearly, they exactly cancel the previous bulk term, since both their origin
is the same divergenless polarization.

In a more formal way one can regard at the presence of an inhomogeneous ef-
fective vector potential, A, in the curvilinear Hamiltonian, Eq. 3.44, as describing an
external magnetic field acting on the system, which ultimately generates a solenoidal
current density. We have already shown that here the effective vector potential is
proportional to the velocity of the perturbation, λ̇, and therefore it describes the
effects of the local rotation of the sample, which are proportional to the curl of λ̇.
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FIGURE 3.3: The logical steps to understand the origin of an ex-
tra contribution to the bulk flexoelectric response that is generated
by the local rotation of the sample. The local gradient rotations of
the sample induce a solenoidal current density response (via the
Larmor’s theorem) whose effects is to induce a solenoidal polar-
ization. The bulk contribution of such polarization is different from
zero (red arrows), but is cancelled by an equal and opposite surface

term (green arrows).

Then, the effects of the gradient rotations that can follow a strain gradient pertur-
bation cause a solenoidal current that ultimately generates a divergenceless polar-
ization.

Since in the case of flexoelectricity surfaces do condition to the global response
of a bounded sample and what really matters in experimental measurements is the
sum of the bulk and surface response, it is a sensible choice is to discard µ

dyn
αβ,γδ and

define the bulk FxE tensor as simply µ′αβ,γδ. Obviously, the previous curvilinear
analysis is showing us the strategy to achieve such goal; one has to directly calcu-
late the adiabatic response to a mechanical perturbation in curvilinear coordinates,
using the Hamiltonian, Ĥ(β)(q). How it can be done in practice, in the framework
of DFPT, is the subject of the next Chapter 4.

We conclude this section, noticing that the dynamical contribution to the FxE
response can also be isolated by using the proportionality relation with the sus-
ceptibility tensor, Eq. 3.59. This was the strategy employed in Ref. [19], where the
authors have performed an independent calculation for the susceptibility tensor,
and removed the dynamical contribution in a post processing step. In particular
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for cubic crystals only the transverse and shear term have a nonzero dynamical
contribution, which are

µ
I I,dyn
11,22 = −2χmag µ

I I,dyn
12,12 = χmag, (3.60)
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The metric wave approach
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In Chapter 3 we have reviewed the recent developments of the microscopic
theory of flexoelectricity, based on a long wave expansion of the response to an
acoustic phonon. As a result, we have identified two contributions to the total bulk
FxE tensor: a clamped-ion and a lattice-mediated term. While the lattice-mediated
contributions are relatively easy to calculate, since they can be treated similarly to
the case of a point-charge model [80], the clamped-ion term is the most difficult
to obtain, since it needs the knowledge of the microscopic current-density opera-
tor. Despite its fundamental nature from a computational point of view, a practical
implementation of the microscopic current-density operator in the context of non-
local pseudopotentials is far from being trivial and only recently was developed
and implemented [19]. This has allowed for a methodological breakthrough in the
calculation of all the independent components of the bulk flexoelectric tensor, by
using a primitive cell, via Eq. 2.67.

However, following the curvilinear analysis of Ref. [79], we have also shown in
Chapter 3 that further subtleties affect the bulk FxE tensor as defined in Eq. 3.42.
It turns out that, even at the clamped-ion level, there are two contributions: a dy-
namic and a static term, Eq. 3.49. In particular, the dynamical term is a consequence
of the local rotations of the sample, and it is proportional to the diamagnetic sus-
ceptibility tensor. To understand its physical relevance, it is essential to remind that
the flexoelectricity is not a pure bulk property and surfaces contribute to the total
response of a finite sample, making the separation between the two contributions
not unique. Then, in a bounded sample only the static term is relevant to the elec-
tromechanical response, since the dynamical electronic response, which consist in a
purely solenoidal current, is exactly canceled by an opposite surface response. For
this reason, in Ref. [19] an independent calculation of the diamagnetic susceptibility
was performed in order to isolate the physically relevant static part.

Clearly a simpler and more efficient approach for calculating the static response
is directly using the curvilinear frame, eliminating the need of any post-processing
step connected with the diamagnetic correction. To this aim, one has to describe an
acoustic phonon in the frame that is co-moving with the atoms. Since in this frame
the atoms do not move and all the information on the perturbation is encoded in
the macroscopic displacement fields and in its gradients (e.g. the metric tensor), we
identify such perturbation as the “metric perturbation”.

In this Chapter we will provide the formalism to implement the metric perturba-
tion in the context of separable atomic pseudopotentials in the Kleinman-Bylander
[43] form. Remarkably, we will establish a rigorous link between the response in
the Cartesian and co-moving frames, which shows that the respective first-order
wave functions are related by a simple geometric contribution -i.e. one that can
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be expressed in terms of ground-state quantities-, together with the implications of
this result on the observables of interest (charge density and current).

Based on these results, we then proceed to the implementation and testing of
the monochromatic metric perturbation, identified by a (generally) incommensu-
rate wavevector q, in the context of DFPT. The wave-function response to such
a metric perturbation is then used as input for calculating the current-density re-
sponse, as recently developed in Ref. [19], and outlined in Sec. 2.2.4. This results in
a methodology that allows to calculate the flexoelectric coefficients with unprece-
dented accuracy and computational efficiency. In particular, our numerical tests
clearly demonstrate that the present method yields faster convergence with respect
to k-point mesh density and other computational parameters when compared with
previous approaches. All these results are rationalized in terms of the aforemen-
tioned relationship between the first-order wave functions in the curvilinear and
laboratory frames.

From the formal point of view, this work also establishes a direct link between
the perturbative treatment of phonon and uniform strain perturbations, which pre-
viously were regarded as two conceptually distinct sub-areas of DFPT.

The Chapter is organized as follows: We will first derive the explicit expression
of the linear metric perturbation Hamiltonian, which is suitable for an implementa-
tion into a DFPT code. Second, we will clarify the connection existing between the
first order response wave functions to a metric and to a standard acoustic phonon
perturbation. Third, we will report extensive tests of the metric perturbation im-
plementation, followed by the calculation of the static bulk FxE tensor for selected
materials.

4.1 Metric perturbation in the context of DFPT

The starting ingredient for the metric perturbation is a “clamped-ion” acoustic
phonon. This is a collective lattice mode where all atoms are displaced according
to uaκ = λeiRaκ ·q. (Note that in comparison with standard phonon perturbation,
Eq. 2.38, here the same displacement amplitude for all sublattices, λκβ = λβ, is
used.) Next, we describe such a monochromatic acoustic wave in the curvilinear
frame that is co-moving with the atoms (Fig. 4.1). This means that we combine the
aforementioned displacement pattern with a simultaneous coordinate transforma-
tion that brings every atom back to its original position,

r = ξ + λeiξ·q, (4.1)
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where ξ are the curvilinear coordinates.
By performing this double operation in the context of DFPT, we shall obtain the

“static” first-order Hamiltonian describing a monochromatic metric wave pertur-
bation, Eq. 3.51. After isolation the phase factors, Ĥ(β)

k,q = e−i(q+k)·rĤ(β)(q)eik·r,
this Hamiltonian can be conveniently written as

Ĥ(β)
k,q = Ĥ(β)

k,q + V̂(β)
q , (4.2)

where we have split the “external potential”, Ĥ(β)
k,q , from the self-consistent contri-

bution,
V(β)

q (r) =
∫

d3r′ KHxc(r, r′)eiq·(r′−r)n(β)
q (r′), (4.3)

that depends on the first-order charge density,

n(β)
q (r) =

4
Nk

∑
mk
〈u(0)

mk|r〉〈r|u
(β)
mk,q〉, (4.4)

via the Hartree, and exchange-correlation kernel,

KHxc(r, r′) =
δVHxc(r)

δn(r′)

∣∣∣
n(0)

=
δ2EHxc

δn(r)δn(r′)

∣∣∣
n(0)

. (4.5)

In contrast to most perturbations, however, the external potential here takes contri-
butions from all individual pieces of the Hamiltonian, including the kinetic, pseu-
dopotential, Hartree and exchange-correlation terms. (The situation is analogous to
the strain perturbation introduced by Hamann et al. [33].) In particular, taking ad-
vantage of the expression for the curvilinear Hamiltonian, reported in the previous
Eq. 3.44, one obtain for the self-consistent contribution of Eq. 4.2

Ĥ(β)
k,q = T̂(β)

k,q + V̂psp,(β)
k,q + V̂H0,(β)

q + V̂XC0,(β)
q + V̂geom,(β)

q . (4.6)

In Eq. 4.6, the kinetic term is originating from the linear part of the metric tensor
(which coincides with the strain tensor) and it is

T̂(β)
k,q = − i

2
[
( p̂kβ + qβ)q · p̂k + (p̂k + q) · q p̂kβ

]
, (4.7)

where p̂kβ = −i∂/∂ξβ + kβ is the canonical momentum operator in curvilinear
space. For notational purposes we shall write the remainder of the contributions as
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matrix elements on two plane waves, e.g.,

W(β)
k,q (G, G′) = 〈G + k + q|Ŵ(β)

k,q |G
′ + k〉 (4.8)

for an arbitrary operator Ŵ.
Regarding the pseudopotential term, it is the sum of a local and a separable

contribution, as shown in the ground state case by Eq. 2.13; the corrispondent first
order metric terms are (see Appendix C)

Vloc,(β)
q (G) =iGβ

1
Ω ∑

κ

e−iG·τκ vloc
κ (G)

− i(Gβ + qβ)
1
Ω ∑

κ

e−iG·τκ vloc
κ (G + q)

(4.9)

Vsep,(β)
k,q (G, G′) =

1
Ω ∑

µκ

eµκe−i(G−G′)·τκ

{
i(Gβ + kβ +

qβ

2
)ζµκ(G + k)ζ∗µκ(G

′ + k)

− i(Gβ − G′β + qβ)ζµκ(G + k + q)ζ∗µκ(G
′ + k)

− i(G′β + kβ +
qβ

2
)ζµκ(G + k + q)ζ∗µκ(G

′ + k + q)
}

,

(4.10)

where ζµκ(G + k) indicates the Fourier components of the KB projectors.
The two terms

VH0,(β)
q (G) = 4πi

(
−

Gβ + qβ

|G + q|2 +
Gβ

G2

)
n(0)(G), (4.11)

VXC0,(β)
q (G) = −iqβVxc,(0)(G) (4.12)

are the “geometric” (i.e., only depending on the unperturbed quantity, n(0)) contri-
butions to the Hartree (H) and exchange-correlation (XC) potentials, respectively.
Finally,

Vgeom,(β)
q = − i

4
qβ q2 (4.13)

is an additional geometric potential originating from the change of coordinates,
which we introduce here for completeness (this structureless potential is irrelevant
for either the uniform strain or the strain-gradient response, as it is of third order
in q).

Based on the above results, it is now easy to demonstrate the two following
points. First, the external perturbation Ĥ(β)

k,q identically vanishes in the limit q = 0.
This is a consequence of the fact that, in the co-moving frame, the Hamiltonian is
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(a) (b) (c)

FIGURE 4.1: Illustration of the coordinate transformation to the
co-moving frame. (a) Unperturbed crystal lattice; black circles rep-
resent the atomic sites, horizontal and vertical lines represent the
coordinate system. (b) Transverse acoustic phonon in the labora-
tory frame. (c) The same phonon in the curvilinear frame; note that
the atoms do not move in this coordinate system – the mechanical

deformation is described via the metric.

invariant under rigid translations. Second, the first q-gradient of the above expres-
sions recovers the treatment by Hamann et al. [33] for the uniform strain:

iH(αβ)
k =

∂H(β)
k,q

∂qα

∣∣∣∣∣∣
q=0

, (4.14)

which is symmetric under βγ exchange. We have, therefore, achieved the desired
generalization of the metric tensor formalism of Ref. [33] to a monochromatic dis-
placement wave of arbitrary q.

In conclusion, the explicit knowledge of the Hamiltonian Ĥ(β)
k,q allows to calcu-

late the associated first order-response functions, |u(β)
nk,q〉. By definition of metric

perturbation, the first-order response are zero for q = 0. Then when we will calcu-
late the static flexoelectric coefficient, µ′αβ,γδ, as the second q-derivative of the static
polarization, Eq. 3.50, the current density operator for non-local pseuopotential,
Eq. 2.63, is only needed up to the first order in q.

4.2 Relation between acoustic phonon in curvilinear

and Cartesian frame

In this section we establish the explicit link between the metric perturbation previ-
ously derived, defined in the co-moving frame, and the familiar phonon perturba-
tion, defined in the laboratory frame (and derived in Sec. 2.2.1). In particular, we
show that the corresponding response functions (“metric” versus “phonon”) differ
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by a geometric piece that depends only on ground-state quantities. The analytical
results of the present paragraph will prove to be important, on one side for find-
ing the connection between the current density response in the Cartesian frame,
Eq. 2.67, and its analogous in curvilinear coordinates, Eq. 3.50, and on the other
side for testing the numerical implementation of the metric perturbation, as shown
below.

The first-order external potential for a phonon perturbation consists of a local
potential plus a separable contribution (see Sec. 2.1.2),

V
ext τκβ

k,q (G, G′) = V
loc,τκβ
q (G−G′) + V

sep,τκβ

k,q (G, G′), (4.15)

where the two terms can be written as

V
loc,τκβ
q (G) = −i(Gβ + qβ)

1
Ω

e−iG·τκ vloc
κ (G + q), (4.16)

V
sep,τκβ

k,q (G, G′) = −i(Gβ + qβ − G′β)
1
Ω ∑

µ

e−i(G−G′)·τκ eµκζµκ(k + q + G)ζ∗µκ(k + G′).(4.17)

Note that the first order potential in Eq. 4.15 are related to the perturbation defined
in Eq. 2.38, which carry an extra phase factor, eiq·τκ , respect to the standard choice,
Eq. 2.30. Therefore Eq.s 4.16 and 4.17 have a slightly different structure factor com-
pared to Eq.s. 2.34.

In the laboratory frame, an acoustic phonon perturbation can be readily con-
structed as a sublattice sum of the above,

V
ext uβ

k,q (G, G′) = ∑
κ

V
ext τκβ

k,q (G, G′). (4.18)

Here and in the following we use the symbol uβ to indicate a laboratory-frame
acoustic phonon perturbation, not to be confused with the corresponding metric
perturbation labeled by (β). The corresponding first-order wavefunctions satisfy
the Sternheimer equation (similar to Eq. 2.32):(

Ĥ(0)
k+q + aP̂k+q − ε

(0)
mk

)
|uuβ

mk,q〉 = −Q̂k+qV̂
uβ

k,q|u
(0)
mk〉, (4.19)

where V̂
uβ

k,q is the first order potential respect to an acoustic wave.
Now, to see the relationship between the laboratory and curvilinear frame pic-

tures, it is convenient to take one step back, and consider the first-order Hamilto-
nians in the original Hilbert space, i.e. without factoring out the incommensurate
phases that belong either to the Bloch orbitals or to the first-order Hamiltonian. We
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shall postulate (and prove a posteriori that it is consistent with the results derived so
far) the relationship

V̂uβ(q) = Ĥ(β)(q) + i
[
Ĥ(0),

1
2

(
eiq·r p̂β + p̂βeiq·r

)]
. (4.20)

After reverting to the cell-periodic notation, the relation between laboratory-frame
and metricresponses in Eq. 4.20 becomes

V̂
uβ

k,q = Ĥ(β)
k,q + iĤ(0)

k+q

(
p̂kβ +

qβ

2

)
− i
(

p̂kβ +
qβ

2

)
Ĥ(0)

k . (4.21)

The correctness of this result can be verified by comparing the explicit formulas for
the perturbed Hamiltonians, derived in the previous paragraph, piece by piece. In
particular, the second and the third terms on the rhs of Eq. 4.21 precisely cancel the
kinetic and geometric contributions in Ĥ(β)

k,q, and they also account for the difference

between the pseudopotential, Hartree, and XC terms in Ĥ(β)
k,q and V̂

uβ

k,q.
If Eq. 4.21 is plugged into Eq. 4.19, one obtain an analogous Sternheimer equa-

tion with Ĥ(β)
k,q replacing V̂

uβ

k,q, and with the laboratory-frame first-order wavefunc-
tions related to the metric ones by

|uuβ

mk,q〉 = |u
(β)
mk,q〉+ |∆uβ

mk,q〉, (4.22)

where |∆uβ
mk〉 is a purely geometric contribution, i.e. it is defined in terms of the

ground-state orbitals only,

|∆uβ
mk,q〉 = −iQ̂k+q

(
p̂kβ +

qβ

2

)
|u(0)

mk〉. (4.23)

This constitutes the main result of this Section.
To illustrate its physical meaning it is useful, first of all, to calculate the contribu-

tion of |∆uβ
mk,q〉 to the first-order electron density, and check whether it satisfies the

expected relations between its laboratory-frame and curvilinear-frame representa-
tions. By combining the definition of the density response to a generic perturbation,
Eq. 2.24, with the specific Eq. 4.22, we get

n
uβ
q (r) = n(β)

q (r) + ∆nβ
q(r), (4.24)

where ∆nβ
q(r) is, again, a purely geometric object. One can arrive at an explicit for-

mula for ∆nβ
q(r) after observing that Q̂k+q = 1− P̂k+q, where P̂k+q is the projector

on the valence band states; this leads to two separate contributions to ∆nβ
q(r). The
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part that contains the band projector P̂k+q vanishes identically, which can be seen
in the following way. Any physical scalar field must be real, which implies

n(1)
−q(r) = n(1)∗

q (r). (4.25)

Thus, the contribution of P̂k+q to ∆nβ
q(r) can be written as

∑
mj

i〈u(0)
mk|r〉〈r|u

(0)
jk+q〉〈u

(0)
jk+q|

(
p̂kβ +

qβ

2

)
|u(0)

mk〉

−∑
mj

i〈u(0)
jk−q|r〉〈r|u

(0)
mk〉〈u

(0)
mk|

(
p̂kβ −

qβ

2

)
|u(0)

jk−q〉.
(4.26)

After operating a translation in k-space on the second line (this is irrelevant, as
the expression needs to be integrated over the whole Brillouin zone), the result
manifestly vanishes.

Eq. 4.23 is left with just the contribution of the identity operator, which can be
written as

∆nβ
q(r) = −

∂n(0)(r)
∂rβ

− iqβn(0)(r), (4.27)

In order to illustrate the meaning of Eq. 4.20 and 4.27, one can consider a uni-
form translation of a crystal. Then for the laboratory-frame perturbation we have

V̂
uβ

k,q=0 = i
[

Ĥ(0)
k , p̂kβ

]
, (4.28)

and therefore Eq. 4.20 yields immediately

Ĥ(β)
k,q=0 = 0, (4.29)

as one should expect since, as we said early, a uniform translation of the crystal
has no effect in its own co-moving reference frame. The same is true for the charge
density relation where a uniform translation in the Cartesian frame gives nuβ

q=0(r) =

− ∂n(0)(r)
∂rβ

, and therefore n(β)
q=0(r) = 0.

In other words, Eq. 4.20 and 4.27 corroborates the interpretation that the “met-
ric” wave effects do not induce atomic displacements but are expressed as a local
modification of the metric of space. From this perspective the geometric contribu-
tion, |∆uβ

mk,q〉 is essential for ensuring that the first-order density response complies
with the established transformation laws.
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-k

-q-k

FIGURE 4.2: Representation of the Fourier space in 2D. The small
black cross are the G-vectors, the black dot circle identifies the cut-
off sphere centered in Γ, the blue continue circle identifies nonzero
Fourier coefficients of |uk > , while the dashed green circle identi-

fies the Fourier coefficients of |uk,q > .

4.3 Implementation Considerations

The formulas derived in the previous section are formal, but when implement-
ing them we need to introduce approximations in order to make the calculations
tractable. In particular, we make a set of choices concerning the discrete sampling
of the Brillouin zone (BZ) with a finite mesh, and the plane-wave energy cutoff
used in the wave-function expansion. It is therefore important to clarify which of
the above relations remain exact in principle, once such a set of choices has been
made, and which should be expected to show discrepancies (of course, these will
diminish as more highly converged choices are made).

Our main focus will be on Eq. 4.27, describing the difference between the electron-
density response to a phonon perturbation in the laboratory frame, already avail-
able within the existing DFPT implementations, and the new metric response in-
troduced in this work.

First of all note that, in order to obtain Eq. 4.27, we have used the fact that
the expression in Eq. 4.26 vanishes; this, in turn, relies on the fact that it must be
integrated over the whole Brillouin zone. If the BZ is sampled by a discrete number
of k points, then Eq. 4.26 is only approximately satisfied; in fact, one can see that it
holds exactly only if the set of k-points is invariant under a translation by q, i.e., q
is commensurate with the k-points.

Still, the commensuration between q and the k-mesh does not automatically
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guarantee that Eq. 4.24 is exact. To see this, one can rewrite the geometric contribu-
tion, Eq. 4.27, as

∆nβ
q(r) = −

4i
Nk

∑
mk
〈u0

mk|r〉〈r|Q̂k+q( p̂kβ +
qβ

2
)|u0

mk〉

= − 4i
Nk

∑
mk
〈u0

mk|r〉〈r|( p̂kβ +
qβ

2
)|u0

mk〉
(4.30)

where Nk is the number of k-points (a uniform mesh is assumed), and the second
equality relies on the assumed commensuration between q and the mesh (see above
discussion). The previous equation only reduces to Eq. 4.27 in the case of an infinite
basis set. However, in practice, a finite basis set is always used, which means that
plane waves with a kinetic energy that is larger than Ecut are discarded from the cal-
culation. Crucially, the kinetic energy of a plane wave is calculated as |G + k|2/2,
which implies that different k points are characterized by different cutoff spheres
in reciprocal space, and hence by different basis sets. For example, the wavefunc-
tion u0

k(r) has non-zero coefficients only inside a cutoff sphere centred in −k (blue
sphere in Fig 4.2), while the sphere of both the phonon and metric response func-
tions u(1)

k+q(r) is centered in−(k + q) (green sphere in Fig 4.2). Therefore, in a DFPT
calculation the first order density response to both the phonon and metric pertur-
bation, n(1)

q (r) = 4/Nk ∑mk〈umk|r〉〈r|u
(1)
mk,q〉, has non-zero Fourier coefficients only

inside the intersection between the two sphere.
It follows that the computed difference between nβ and nuβ shall be equal to

∆ñ(β)
q (r) = − 4i

Nk
∑
mk
〈u0

mk|r〉〈r|( p̂k,β +
q
2
)|ũ0

mk〉 (4.31)

where ũ(0)
mk(r) is the same as u(0)

mk(r) in Eq. 4.30 except that it has nonzero Fourier
components only in the intersection between the green and blue circles of Fig. 4.2,
while u(0)

mk(r) is defined inside the whole blue solid circle. Since the first-order wave
functions are obtained through a self-consistent process, this error will propagate
to the potentials and back to the density; thus, at the end of the calculation even the
“revised” relationship 4.31 will not be exactly fulfilled. In any case, we can expect
that the error will be roughly linear in |q|, and should rapidly vanish upon increas-
ing the plane-wave cutoff; we shall see that both expectations are nicely fulfilled
in ourtests. As we shall show shortly, this discrepancy between the phonon and
metric approach results in a faster numerical convergence of the latter with respect
to plane-wave cutoff and k-point sampling.
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4.4 Numerical tests

To test our implementation of the metric perturbation, we compare it to the re-
sponse functions that are already present in public available DFPT codes: the phonon
perturbation [28] and the uniform strain perturbation [33]. In particular, we per-
form three different tests:

1- We benchmark the electron density response by numerically verifying Eq. 4.24,
where the geometric contribution, ∆nβ

q(r), is defined in terms of the ground
state wavefunctions as in Eq. 4.27.

In order to construct the response to an acoustic phonon (in the Cartesian
frame) we use n(uβ) = ∑κ n(τκβ), where n(τκβ) is the response to an individual
atomic displacements defined in Eq. 2.39.

2- We compare the electron density response of a uniform strain perturbation to
the electron density response of a metric perturbation at first order in q. We
have already explained how the metric wave can be consider a generaliza-
tion of the uniform strain perturbation. In the same way, their corresponding
density response are related by

in(αβ)(r) =
n(β)

q (r)
∂qα

∣∣∣∣∣
q=0

, (4.32)

where the r.h.s. is the first derivative of the microscopic metric perturbation
response, n(β)

q (r), respect to qα. Note that the first q-derivative of the metric
density is a pure imaginary function. In conclusion, testing Eq. 4.32 is partic-
ularly interesting in order to prove that indeed the metric perturbation can be
regarded as the generalization of a uniform strain deformation.

3- We compare the octupolar response calculated via the phonon to that ob-
tained via the metric perturbation. The octupolar tensor components can be
extracted via the long-wave expansion of the macroscopic (i.e., cell-integrated)
charge-density response

Q(3,αβγ)
δ = Im

∫
cell

d3r
∂3n(δ)

q (r)
∂qα∂qβ∂qγ

∣∣∣∣∣
q=0

(4.33)

where δ indicates the atomic displacement direction, and remind that also the
third q-derivative of the density response function is only imaginary. Clearly,



4.4. Numerical tests 59

since the geometrical term ∆nβ averages to zero, both the phonon and met-
ric calculations should, in principle, yield the same values of Q(3,αβγ)

δ . The
q-derivative can be performed by fitting the cell-integrated density as a func-
tion of q in a vicinity of q = 0, as described in Ref. [74]. Directly testing
the octupoles is important, since they are directly related to the longitudinal
clamped-ion flexoelectric tensor by Eq. 3.40.

Note that, whenever a 3D scalar field is involved (first and second tests), we
shall use the “distance”

d( f , g) =
1
Ω

∫
cell

d3r | f (r)− g(r)|, (4.34)

to gauge their overall difference, where functions f and g identify the left- and
right-hand sides of the given relation that is to be verified.

4.4.1 Computational setup

We have used two types of systems for our benchmark tests in the following sec-
tions: isolated noble gas atoms in large boxes, and cubic bulk solids. Regarding the
isolated atoms, we have tested three different noble gases, He, Ne and Kr. As for
the cubic solids, we have used crystalline Si in the diamond structure, and the cubic
perovskite phase of SrTiO3.

The calculations are performed in the framework of density-functional theory,
using the local-density approximation (we have employed the Perdew-Wang 92
parametrization [58] of the exchange and correlation). The core-valence interac-
tions are described by Troullier-Martins [83] norm-conserving pseudopotentials,
which was generated via the fhi98PP [22] code with the following electronic config-
urations: He=1s2; Ne=2s22p6; Kr=4s24p6; Si=3s23p2; Sr=4s24p5s2; Ti=3s23p63d24s2;
O=2s22p4. Note that the He pseudopotetial only contains a local part.

The noble gas atoms have been simulated in cubic boxes large enough to avoid
interaction between the replicas. The size of such box in the test are 5 Bohr for He,
7 Bohr for Ne, and 14 Bohr for Kr, with (unless specified), Monkhorst-Pack (MP)
k-meshes [54] of 8×8×8 for He and Ne, and 4×4×4 for Kr. For the calculation of
flexoelectric constants in Sec. 4.5, 14 Bohr boxes were used for all atoms, with a
4×4×4 k-mesh and a plane wave cutoff of 120 Ha.

The relaxed cubic lattice parameters obtained for Si and SrTiO3 are 10.102 and
7.267 Bohr respectively. Calculations are performed under short-circuit electrostatic
boundary conditions (see Refs. [77] and [19] for details). For Si and SrTiO3, MP k-
meshes from 4×4×4 to 16×16×16 and plane wave cutoffs from 20 to 100 Ha were
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tested to explore the convergence properties of the metric and phonon implemen-
tations. For the calculations of flexoelectric coefficients, a 12×12×12 k-mesh and 80
Ha plane wave cutoff were used.

Note that short circuit electrostatic boundary conditions (EBC) have been used
throughout this work. Indeed, here we are mainly interested in long-wave expan-
sions of the polarization (or charge-density) response; to do this, it is essential to
deal with an analytic function, and the short circuit EBC precisely remove the non-
analyticity generated by the presence of the macroscopic electric field [77]. This,
however, differs from the physical electrostatic conditions (“mixed” EBC) that char-
acterize the phonon response at nonzero q [36]. (The difference between the two
cases only concern the longitudinal components of the polarization, since mixed
EBC impose zero longitudinal displacement field.) Thus, if the metric perturba-
tion is to be employed for the realistic simulation of a finite-q acoustic phonon,
such longitudinal fields must be incorporated in the calculation [78]. For a metric
wave the short circuit EBC are obtained by simply removing the G = 0 component
from the self-consistent part of the first-order Hartree potential response, V̂(β)

q ; by
plugging this contribution back into the first-order Hamiltonian, we readily recover
the correct electrostatics. Thus, switching from short-circuit to standard electrical
boundary conditions is even simpler in the metric case than in the standard phonon
case.

4.4.2 Charge density response: Phonon vs. metric

First, we check the validity of Eq. 4.24, which connects the metric and phonon
charge density response functions via a geometric term. To make this test quan-
titative, we have taken advantage of the distance function defined in Eq. 4.34, with
f (r) = nuβ

q (r) and g(r) = n(β)
q (r) + ∆nβ

q(r). [We construct ∆nβ
q(r) in terms of

the ground-state density, following Eq. 4.27.] Tests are conducted on He, Ne and
Kr atoms. Due to periodic boundary condition these systems can be regarded as
crystals of isolated atoms, intended as a computational analog to the toy model of
Ref. [74], and discussed further in Sec. 4.5.1. The perturbations considered here are
longitudinal, and they propagate along one of the three equivalent Cartesian axis.
In Fig. 4.3 we report the values of d( f , g) as a function of the wavevector amplitude,
|q|, for different energy cutoffs.

The first interesting observation is the almost perfect linear trend shown by the
function d( f , g). As we anticipated in Section 4.3, this is a direct consequence of
using a finite plane-wave basis set: the larger the wavevector, the larger the shift of
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FIGURE 4.3: Plot of d(nuβ

q (r), n(β)
q (r) + ∆nβ

q(r)) [cf., Eq. (4.34)] as
function of the wave vector q (reduced coordinates), for different
the cutoff. All the results refer to longitudinal perturbations. From

the top to the the bottom: He, Ne and Kr.

the cutoff sphere, and hence one expects a discrepancy that is roughly proportional
to |q|.

Next, one can clearly appreciate, by comparing the slopes of the curves shown
in Fig. 4.3, that the discrepancy between the phonon and metric results decreases as
we increase the plane-wave cutoff. This happens because the discrepancy depends
on the magnitude of the plane-wave coefficient at the boundary of the cutoff sphere
(i.e., those falling outside the intersection of the two circles in Fig. 4.2); this is ex-
pected to decrease quickly with the cutoff, consistent with our results. Also, we see
that the discrepancy between the metric and phonon charge-density responses is
an order of magnitude smaller for Kr than He and Ne; This is a direct consequence
of the much softer pseudopotential associated to Kr as compared to Ne and He.

As a final comment we look at the calculated values corresponding to wavevec-
tors q that are not necessarily commensurate with the k-mesh. (For example we
have used an 8×8×8 MP k-mesh for He and Ne systems, so the point q = 0.1
doesn’t match the k-mesh.) The perfect linear trend of the distance function for all
q-values, irrespective of the exact or inexact cancellation in Eq. 4.26 (see discussion
in Sec. 4.3) is a clear proof that the k-mesh is dense enough, so that the finiteness of
the plane-wave cutoff is the main source of error in this test.

We stress that the discrepancies that we discussed above are perfectly in line
with the expected trends, and thus confirm the correctness of the implementation.
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tween the first order term of the long wave expansion applied to
the metric response density and the uniform strain response, cal-
culated as in Ref. [33], for an He atom in a box undergoing a lon-
gitudinal mechanical perturbation. The two curves refer to two
different values of the finite difference increment used for getting
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α (r).

4.4.3 Charge density response: Strain vs. metric

A second test of the metric implementation is based on its relationship with the
response to a uniform strain. Indeed, the first derivative respect to the wavevec-
tor q of the metric perturbation should coincide with the strain perturbation of
Hamann et al. [33], which is already implemented in the official release of the
ABINIT code [see Eq. 4.14]. To prove this point, here we use the distance function
of Eq. 4.34 to compare the charge-density response functions f (r) = −i∂nβ

q(r)/∂qα

and g(r) = n(αβ)(r), which should coincide according to Eq. 4.32. The derivative
respect to q of the metric response is performed by finite differences, and using two
different spacing values: ∆q = 2π

a0
{0.01; 0.001}, where a0 is the lattice parameter of

the primitive cubic cell. In Fig. 4.4 I show d( f , g) for the crystal of noninteract-
ing He atoms as function of the energy cutoff, Ecut. As expected, the discrepancy
rapidly goes to zero at larger values of Ecut, again proving the correctness of the
implementation. We also note that, by reducing the spacing value for the numer-
ical calculation of the q-derivative, the consistency between the metric and strain
results increases by one order of magnitude.
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TABLE 4.1: QL/6 for He and Ne atoms, in e Bohr2 (Short-circuit
electrostatic boundary conditions).

CutOff He, 5 Bohr Ne, 7 Bohr Kr, 14 Bohr
(Ha) metr phon metr phon metr phon
40 0.4392 0.4660 1.7338 1.7928 5.8433 5.8382
60 0.4392 0.4322 1.8129 1.8208 5.8635 5.8618
80 0.4396 0.4418 1.8135 1.8111 5.8635 5.8635

100 0.4398 0.4398 1.8135 1.8135 5.8635 5.8635

TABLE 4.2: QL/6 along the [100] direction for Si and along the
[110] direction for SrTiO3. Values are in unit of e Bohr2 (SC electro-
static boundary conditions). The two different columns for Si refer
to two different k-mesh used: 12×12×12 and 16×16×16, respec-

tively.

CutOff Si(12) Si(16) STO3
(Ha) metr phon metr phon metr phon
20 478.379 478.456 478.391 478.409
40 478.597 478.644 478.597 478.605
60 478.601 478.653 478.601 478.612 111.793 111.658
80 478.601 478.653 111.662 111.666

100 478.601 478.653 111.684 111.673

4.4.4 Octupoles

We now compare the longitudinal octupoles calculated either using the metric or
the standard acoustic phonon perturbation.

In order to extract the dynamical octupoles from both n(β)
q and n

uβ
q one has to

perform the third derivatives respect to q, Eq. 4.33. In practice they can be cal-
culated by a fitting procedure of the cell-integrated electronic density response
functions to monochromatic perturbations with different values of q around the
Γ-point. In the specific case of the octupoles we only focus on the imaginary part,
see Eq. 4.33.

For this test we have employed the three noble gas atoms (He, Ne, and Kr), Si
in the diamond structure, and cubic SrTiO3. The directions chosen to calculate the
longitudinal octupole are [100] and [110] for Si and SrTiO3, respectively, while the
wavevector amplitudes that we use for the cubic fit are qi = {0.01; 0.02; 0.03} (in
reduced units of 2π/a0). Note that, in the case of the phonon response, the elec-
tronic charge also has a non-zero linear term as a function of q, whose slope gives
the electronic contribution to the Born effective charge of the displaced sublattice.
Such a linear term is not present in the metric response, as the atoms are not moving
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in the curvilinear frame.
In Table 4.1 we report the values of QL/6 for the He, Ne and Kr atoms, while the

corresponding values for bulk Si and SrTiO3 are shown in Table 4.2. As expected,
the agreement between the metric and the phonon results increases with increasing
the plane wave cutoff; such an agreement becomes essentially perfect in the case
of the isolated noble-gas atoms at an energy cutoff of 100 Ha. The metric results
converge much faster as a function of Ecut than the phonon results. Moreover, the
test between the silicon octupole calculated with a 12×12×12 and a 16×16×16 MP
k-mesh shows that the metric calculation also converges much faster with respect
to the number of k-points.

The relatively worse convergence behavior in the phonon case can be tracked
down once again to the geometric term, ∆nβ

q(r). Indeed, if Eq. 4.24 was exactly
satisfied, the cell integral of nβ

q(r) would vanish identically, and would not con-
tribute to the calculated octupolar moment. However, in practical calculations
Eq. 4.24 is violated, as we have already commented in Section 4.4.2 and summa-
rized by Fig. 4.2. The violations is bigger at lower-energy cutoffs or coarser k-point
samplings, and it can introduce an additional, spurious O(q3) contribution to the
macroscopic density response. Since ∆nβ

q(r) is rather large, this can have a negative
impact on the overall convergence. Thus, the numerical tests in Tab. 4.1 and 4.2
reveal a further (and formerly unexpected) advantage of the metric perturbation
presented here, i.e., a significant economy in terms of computational resources com-
pared with the standard phonon treatment.

4.5 FxE tensors from metric perturbation

Finally, here we calculate the bulk clamped-ion FxE coefficients using the wave-
functions response to the metric perturbation. Following the results of Sec. 2.2.4,
the wavefuncition response to a metric perturbation is employed to calculate the
curvilinear adiabatic functions, |δu(β)

nk,q〉, which allows to obtain the static polariza-

tion response, via Eq. 3.50. Then, the second q-derivative of Pstat
αβ gives the clamped-

ion flexoelectric tensor, µ′αβ,γδ. As done for the previous results, these derivatives
are taken numerically with ∆q = (2π/a0)0.005. Interestingly note that, since the
metric response to a uniform translation is zero, |u(β)

n,k,q=0〉 = 0, then the current
density operator for non-local pseudopotential, Eq. 2.63, is only needed up to the
first order in q.
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In the following we will always compare our results to the values obtained with
a Cartesian phonon perturbation, which have been conveniently corrected remov-
ing the extra contribution proportional to the diamagnetic tensor (see Sec. 3.3).

All the reported flexoelectric tensor components are in type-II form, and, since
here we are dealing with cubic crystals, the flexoelectric tensor has only three in-
dependent components, which are indicated as the longitudinal (µ11), transverse
(µ12), and shear (µ44) flexoelectric coefficients henceforth (also remind that in cubic
crystals the diamagnetic susceptibility is isotropic, χ

mag
γλ = δγλχmag).

4.5.1 Isolated spherical atoms

We start by considering the toy model of a material made of isolated (i.e., nonin-
teracting), spherical charge densities. This isolated rigid charge (IRC) model was
already studied in the context of flexoelectricity [74, 76, 79], since it has an analytic
expression for the FxE tensor components in terms of the isotropic quadrupole mo-
ment of the ground-state charge distribution,

QNG =
∫

d3r ρGS(r)x2. (4.35)

Such schematic IRC model can be seen as a good approximation of a fictitious lat-
tice of isolated noble gas (NG) atoms. Clearly a solid of this kind does not exist
because there is no force keeping the atoms together; however it represents a good
numerical test for the metric implementation.

On one side, since in a IRC model the atoms almost do not interact between
each other, then it is possible to caclulate directly the induced current density and
the related FxE tensor. They are

µNG
11 = ε

QNG

2Ω

µNG
44 =

QNG

2Ω
,

(4.36)

where ε is the isotropic clamped-ion dielectric constant, εij = εδij (the subscript
“NG” remind that the results are valid for noble gases). The explicit presence of
the dielectric constant in µNG

11 is taking into account the macroscopic electric field
induced by longitudinal atomic displacements in mixed EBC. In practice this is
small in the case of the IRC model [19].

The dynamical contribution is proportional to the magnetic susceptibility. This
model is a perfect example of system that satisfies the requirements of the Langevin
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µ′11 µ′12 µ′44 (10−3)
metr phon metr phon εQNG/2Ω metr phon χmag

He −0.479 −0.479 −0.479 −0.479 −0.479 0.0 −0.3 −0.464
Ne −1.843 −1.844 −1.841 −1.842 −1.842 −0.7 −0.6 −1.655
Kr −6.477 −6.470 −6.476 −6.476 −6.479 −0.3 −0.5 −5.921

TABLE 4.3: Clamped-ion flexoelectric coefficients calculated using
the metric and phonon implementations, as well as the quadrupole
moments of the ground-state charge density. All quantities are in

units of pC/m.

theory of diamagnetism, which relates the magnetic susceptibility to the quadrupole
moment of the spherical ground state charge

χmag =
QNG

2Ω
, (4.37)

where again the dielectric constant is needed to correct the slight polarizability of
the atoms.

Then, reminding the results in Eq. 3.60, one can immediately remove the dy-
namical contributions from the values in Eq. 4.36, and obtain the static FxE coeffi-
cients:

µ′,NG
11 = µ′,NG

12 = ε
QNG

2Ω
µ′,NG

44 = 0.
(4.38)

Note that these values were also obtained in Ref. [74], by consideration on the in-
duced bulk flexoevoltage.

Table 4.3 gives the clamped-ion FxE coefficients calculated for noble gas atoms
using the metric and phonon implementations; the latter have been obtained by re-
moving the contribution proportional to the diamagnetic contribution. By compar-
ing the µ′,NG

11 , µ′,NG
12 , and εQNG/2Ω columns, one can see that Eq. 4.38 is perfectly

satisfied for both the metric and phonon methods, as well as µ′,NG
44 vanishes. The

main source of error is the numerical differentiation of the induced polarization,
Pq,stat

αβ , with respect to q. The results of Table 4.3 indicate that the metric implemen-
tation is an accurate method for calculating flexoelectric coefficients, with increased
efficiency as discussed above.
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µ′11 µ′12 µ′44
metr phon metr phon metr phon

SrTiO3 −0.885 −0.884 −0.826 −0.826 −0.082 −0.083
Si −1.411 −1.410 −1.049 −1.050 −0.189 −0.190

TABLE 4.4: Flexoelectric constants for SrTiO3 and Si calculated
using the phonon and metric implementations (units are nC/m);
their orbital magnetic susceptibilities, χmag, are respectively−8.3×

10−3 and 10.2× 10−3nC/m.

4.5.2 Cubic materials

We will now focus on the bulk clamped-ion FxE coefficients for two prototypical
materials: SrTiO3 (in the high-temperature cubic phase) and Si. The second deriva-
tive respect to q of Eq. 2.67 gives the type-I FxE coefficients using the phonon re-
sponse. As before, the phonon values are corrected with a contribution propor-
tional to χmag, as prescribed by Eq. 3.60. We can see from Table 4.4 that the agree-
ment between the metric and phonon implementations is excellent.

As observed in previous calculations of the clamped-ion FxE coefficients [19,
78], the following relation holds between the order of magnitude of the FxE tensor
components: µ′11 ' µ′12 � µ′44.

In spite of the small magnitude of χmag, these results are sufficiently converged
to see clearly that the rotation-gradient correction is required for accurate agree-
ment between the metric and phonon implementations. Indeed, if this correc-
tion is neglected, then one get µ′12 = −0.810 and µ′44 = −0.091 for SrTiO3, and
µ′12 = −1.070 and µ′44 = −0.180 for Si, which have clear discrepancies with the
metric results in Table 4.4.

In Figs. 4.5 the convergence of the FxE coefficients of SrTiO3 and Si is shown
as a function of k-point mesh. It results that the metric implementation is signifi-
cantly more rapid to converge than the phonon implementation (they have similar
convergence behavior with respect to plane-wave cutoff). The slower convergence
of the phonon approach may have several possible origins. First, there may be ad-
ditional numerical errors associated with the separate calculation of χmag that is
needed for the phonon implementation but not for the metric. Second, as men-
tioned in Ref. [19], the expansion of the nonlocal contribution to the current density
operator in the case of the metric implementation can be truncated to a lower order
in q than in the phonon case. Third, the two implementations differ with respect to
the treatment of the local potential at q = 0, as we shall briefly discuss hereafter.

It is well known that the “external potential” of a phonon perturbation diverges
in the limit of q → 0. Such divergence is carried by the G = 0 Fourier component
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FIGURE 4.5: Convergence of the FxE coefficients of SrTiO3 and Si
with k-point mesh for the phonon and metric implementations.

of the local potential (sum over sublattices of Eq. 4.16),

∑
κ

V
loc,τκβ
q (G = 0) = −iqβ

1
Ω ∑

κ

vloc
κ (q), (4.39)

where the contribution of each individual sublattice goes like

vloc
κ (q) ∼ 4π

Zκ

q2 . (4.40)

(Recall that Zκ is the total pseudopotential charge.) The local pseudopotential con-
tribution to the metric perturbation, Eq. 4.9, is characterized by an analogous di-
vergence, but the latter is exactly cancelled by an equal and opposite divergence in
the geometric Hartree term, Eq. 4.11,

VH0,(β)
q (G = 0) = 4πi

qβ

q2 n(0)(G = 0) (4.41)

[recall that n(0)(G = 0) = (1/Ω)∑κ Zκ , as the cell must be overall charge-neutral].
Then Ĥ(β)

k,q remains finite (in fact, it vanishes) in the limit q → 0, and this might
also help explain the superior numerical behavior of the metric perturbation in the
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convergence tests.
In summary, these calculations have clearly demonstrated the superiority of the

metric implementation for determining the clamped-ion FxE coefficients in terms
of computational cost. For the case of SrTiO3, for example, a calculation of the in-
duced transverse polarization for a perturbation of a given q [i.e, Eqs. 2.67 and 3.50]
using the metric implementation took less than 17% of the cpu time of the phonon
implementation, mostly because separate calculations for the different sublattices
was not required. Additional savings in the calculation of the FxE coefficient also
come from the fact that a calculation of χmag is not required for the metric imple-
mentation.
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Chapter 5

Flexoelectricity for practical
applications: Silicon
flexovoltaic devices
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5.1 Introduction

In this chapter we will describe a practical application of the theory of flexoelectric-
ity to a prototypical solar-cell device, whose field of research already counts a tight
synergy between scientific community and industry.

A central issue to improving the efficiency of a solar cell, and ultimately in-
creasing the total photocurrent, consists in reducing the recombination rate of the
photo-excited carriers. Since they typically need to travel a long way before reach-
ing the electrodes, nanostructuring, either in the form of wires or membranes, has
been explored in recent years as a means of avoiding the above drawback [39]. On
one hand, the higher surface-to-volume ratio guarantees that a larger fraction of
the electron-hole pairs reaches the boundary; on the other hand, the reduced size
allows for a much greater design flexibility, as the bulk material properties can be
modified (almost) at will via an appropriate control of morphology and surface
chemistry. These effects, however, largely depart from the established working
principles of solar cells in use today, calling for a substantial advance in their fun-
damental understanding in order to be harnessed and exploited in applications.

In this context, mechanical deformations have attracted considerable attention
as they can be used, in principle, to enhance the photovoltaic efficiency of an arbi-
trary nanostructure without degrading the transport properties of the constituent
material. Indeed, earlier first-principles calculations of silicon nanowires [90] and
nanomembranes [31] indicate that inhomogeneous strain fields can lead to a spatial
separation of the wavefunctions associated to the hole and electron states. Recently,
very promising experimental results [30, 92] have corroborated the previous theo-
retical results. However, the theoretical studies performed so far have focused on
capturing the total response of a mechanically deformed device, without disentan-
gling the effects of surfaces, quantum confinement and macroscopic deformations.
This implies that it is currently difficult to predict whether a given morphology and
strain field is beneficial or detrimental to the photovoltaic efficiency of a nanostruc-
ture, unless it exactly matches the already studied cases.

The aim of this work is precisely to show how the recent developments in the
theory of flexoelectricity allow for an elegant, systematic solution to such key ques-
tions. As we will see shortly, flexoelectricity is intimately related to the concept of
“absolute deformation potentials”, describing the tilt of a given electron band in-
duced by a strain gradient. This connexion will allow us to predict the “effective
electric” field acting on the carriers in terms of a small set of materials constants.

The Chapter is structured as follows: in Sec. 5.2 we will present the working
principles of a “flexovoltaic” device, i.e. a photovoltaic device whose performance
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FIGURE 5.1: In a centrosymmetric material, the photoexited car-
riers have no preferential direction where to migrate, and the re-
combination rate is high. On the contrary, in presence of a strain-
gradient deformation, as induced by simple bending, inversion
symmetry is broken, the electronic bands tilt and electron and holes
are actively split towards the opposite boundaries generating a

flexo-photovoltage.

is enhanced by the flexoelectric effect. The theory to analyze the response of such
device is presented in Sec. 5.3. Finally in Sec. 5.4 and 5.5 we will apply this theory to
crystalline silicon in different geometries and with different electrostatic boundary
conditions (EBC).

5.2 The flexovoltaic idea

In order to define the flexoelectric contribution to the photocurrent, the authors of
Ref. [30] use the following formula (analogues to the p-n junction case):

J = −µenEe + µh pEh, (5.1)

where µe and µh are the mobility of the electrons in the CBM and of the holes in
the VBM respectively, n and p are the electron and hole densities, and Ei are the ef-
fective electric fields experienced by the electrons and the holes respectively. Such
fields are generated by a strain gradient deformation and in general are different
as consequence of the fact that the band edges respond differently to the applied
strain. The idea is schematically illustrated in Fig. 5.1. Of course, we can not a
priory exclude additional contributions to the flexo-photovoltaic effect (e.g. “shift-
current” effects to the breakdown of inversion symmetry); we shall defer a more
complete analysis to a future study and assume that Eq. 5.1 is the dominant contri-
butions henceforth.
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Within such picture, the main ingredients that one needs in order to estimate
the performance of flexovoltaic devices are the strain-induced internal fields, Ei,
that are “seen” by a photoexcited carrier in a certan energy level i. These quantities
are commonly known as absolute deformation potentials (ADPs) [86] in the con-
text of electronic-structure theory, and their calculation might appear, at first sight,
straightforward. However the established theory, [62, 86], only addresses the case
of longitudinal deformations, and neglects the potential contribution of surface ef-
fects; both limitations are too drastic for the accurate description of a nanostructure
subjected to a realistic deformation field. It was only very recently that, by ex-
ploiting the intimate connection between flexoelectricity and the theory of ADPs,
it was possible to generalize their definition to an arbitrary strain-gradient compo-
nent [73], thereby setting the stage for the first-principles design of “flexovoltaic”
devices. In the next section we will precisely show the link between the ADP theory
and flexoelectricity.

5.3 The theory of absolute deformation potentials

In the previous section we have stressed the importance of studying the variation
of the energy levels induced by strain gradient deformations, since they quantify
the effective electric field, Ei.

One of the aims of the ADP theory is to establish if the variation of the electronic
levels induced by an inhomogeneous strain deformation can be rigorously defined
using bulk quantities (and eventually how). If the answer were positive, the ADPs
would be truly bulk properties, which do not depend on the surface and geometry
of the sample, with remarkable advantages both theoretically and experimentally.
Unfortunately this is not always the case. Here we start to revise such theory for
the case of an infinite solid, showing its connection to the flexoelectric theory.

First, it is important to observe that the absolute value of any energy level in
an infinite solid is defined modulo an arbitrary constant, which is the same for all
levels. This arbitrariness reflects the fact that there no a unique choice for the refer-
ence energy in an infinite system. (On the contrary, in a finite system this constant
is uniquely defined by the geometry of the system and the EBC.) It is sensible to de-
fine the difference between a given electronic level Enk and the average electrostatic
potential, φ,

Ẽnk = Enk − φ, (5.2)

where k is the wave number and n is the band index, which in the present discus-
sion is restricted to be v for the VBM or c for the CBM. From Eq. 5.2 it is clear that
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Ẽnk is well defined at the bulk level, since both Enk and φ are affected by the same
arbitrariness.

We now consider an inhomogeneous strain, εαβ(r), that linearly varies along the
q̂ direction, εβγ(r) = ε̄βγ q̂ · r, and we consider (i) a non piezoelectric crystal, and
(ii) well defined EBC along q̂. Adopting a semi-classical picture, in such a way that
the inhomogeneous strain varies on a scale much bigger than the crystal unit cell,
the ADP, Dβγ

nk , related to the electronic band extreme1, {nk}, is defined as [61, 73]

Dβγ
nk εβγ =

∂Ẽnk
∂εβγ

εβγ + ∆φ. (5.3)

The first term in Eq. 5.3 is the band structure (BS) term, which is local in space and
describes the response of the electronic energy band to a uniform strain, εβγ, calcu-
lated respect to the average electrostatic potential. This is a bulk property and it can
be easily obtained using an infinite crystal; it was already treated in the past [12].
The second term in Eq. 5.3 describes the electrostatic potential changes induced by
the uniform strain gradient. This term embodies the dependence of ADPs on the
macroscopic electric field generated by the strain gradient perturbation [86], and
the requirement (ii) is necessary to uniquely define ∆φ.

Clearly ∆φ is non-local since the electrostatic variation in general depends on
the charge density response in all space, and therefore one would wonder if it is
possible to define such contribution in terms of bulk quantities. Ref. [62] demon-
strated that this is the case for of an infinite non-polar crystal (i.e. its Born effective
charges are zero), with the constraint of preserving the translational periodicity
in the plains perpendicular to q̂. More recently Stengel [73] relaxed the previous
requirements by establishing a connection between the flexovoltage coefficients,
introduced in Sec. 3.1.4, and ∆φ. In practice, for a non-piezoelectric crystal, the
average electrostatic variation induced by a generic strain gradient that linearly
increases along q̂ is [73]

∆φ = −e ϕq̂, (5.4)

ϕq̂ =
µαλ,βγ

ε0εq̂
q̂α q̂λ q̂β q̂γ, (5.5)

where −e is the electron charge and ϕq̂ is the flexovoltage (FxV) coefficient, and we
have assumed open circuit (OC) EBC along q; εq̂ = q̂ · ε · q̂ is the relative permit-
tivity, and ε0 is the vacuum permittivity.

1for a generic energy level an additional term dependent by the group velocity is present
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The established connection between ∆φ and the flexoevoltage allows to use
Eq. 5.3 in a much broader class of deformations, e.g. involving flexural modes of
finite slabs. In particular, the relation 5.5 and 5.4 hold in the latter case, as bending
is associated with a strain gradient that is oriented along the radial direction; an
unsupported membrane naturally impose OC conditions along the same direction.

We now show how the two contributions to the ADPs can be calculated, with
particular reference to the case of silicon. In Sec. 5.5 we will perform an exten-
sive analysis of a silicon membrane in OC EBC. Then, we will move to discuss the
changes that affect Eq. 5.5 when SC EBC are considered.

5.3.1 Macroscopic electrostatic term

In the present section we focus on how to extract from first principles the second
term of Eq. 5.3, that is the macroscopic electrostatic contribution, via Eq. 5.5.

As shown in Chapter 3, the total flexolectric tensor, Eq. 3.22, is the sum of three
contributions: a purely electronic (clamped-ion) term, a “mixed” and a lattice-
mediated contribution. In Si only the former two are active, since the Born effective
charges identically vanish.

Regarding the mixed contribution, the piezoelectric internal-relaxation term Γκ
ρβγ

can be calculated looking at the forces on the atom κ along the Cartesian direc-
tion ρ induced by a uniform strain εβγ. The polarization response tensor, P(1,λ)

α,κρ , is
completely determined by the quadrupoles of the induced charge response to an
acoustic phonon, Eq. 3.39. In the case of Silicon crystal [62] the bulk piezoelectric
internal-strain tensor has only one independent component, Γκα

βγ = (−1)κ |εαβγ|γ,

and the same holds for polarization response tensor, P(1,α)
β,κγ = (−1)κ |εαβγ|P

(1).
We have already discussed different strategies to calculate the electronic flexo-

electric contribution. In particular, the most general approach presented in this the-
sis consists in using the metric wave perturbation together with the current density
response, as discussed in Chapter 4. However, since this work on the flexoelectric
response of Si was performed before the development of such tools, here we will
report the results for the electronic felxoelectric contribution obtained following the
strategy of Ref. [78] and outlined in Sec. 3.2.1 for a cubic crystal.

In practice, the three independent components can be calculated as follows: first
the two longitudinal tensor components along the [100] and [110] crystalllographyc
direction, defined in Eq. 3.41, are obtained through the octupolar moments, via
Eq. 3.40. Next, in order to obtain the missing independent component of the elec-
tronic flexoelectric tensor, we calculate the transverse flexovoltage coefficient by
using a slab geometry, as prescribed by Ref. [74, 78]. Indeed, for such geometry
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FIGURE 5.2: Electronic bands of bulk Si in the diamond structure
using our pseudopotential. The Fermi level is set to zero. The inset
shows the Brillouin zone and its high symmetry points (figure from

Ref. [72]).

one can demonstrate that the surface contributions do not induce any net charge
accumulation (see Appendix B), and therefore the interior electrostatic response is
fully determined by the bulk flexoelectric component, µ12, provided that the slab is
sufficiently thick.

5.3.2 Band-structure term

The first term of Eq. 5.3 is the so-called band-structure (BS) term, which is the rela-
tive (referred to the macroscopic electrostatic potential) response of the valence (v)
and conduction (c) band edges to a uniform strain. The evaluation of both BS edges
is well known [18], and is facilitated by the use of crystal symmetry. In the case of
silicon, both the valence band maximum (VBM) and conduction band minimum
(CBM) are three-fold degenerate (for simplicity we do not take into account the
spin orbit splitting), and they are located respectively at the Γ point and along the
three equivalent ∆ directions (See Fig. 5.2). The band splitting of the VBM due to a
strain (εαβ) is described by the eigenvalues of the following matrix [12, 18]:

δĤBS
v,Γ =

lεxx + m(εyy + εxx) nεxy nεzx

nεyx lεyy + m(εxx + εzz) nεyz

nεzx nεyz lεzz + m(εxx + εyy)

 , (5.6)

where (l + m)/2 describes the isotropic BS term, while (l − m)/2 and n quantify
the splitting induced by a longitudinal and shear strain, respectively. The BS term
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related to the CBM located along the direction k̂ in the Brillouin zone is [2]

DBS
c,k̂i

= α tr(ε) + βk̂i · ε · k̂i, (5.7)

where the index i identifies the CBM along the direction k̂i in the reciprocal space
(Cartesian coordinates, i = x, y, z), and due to the cubic symmetry, k̂i · ε · k̂i = εii.
In Eq. 5.7, α is the uniform shift due to an isotropic deformation and β specify the
relative shift between the different valleys.

5.4 Results

After calculating all the independent parameters presented before in order to de-
scribe the ADPs related to the VBM and CBM of silicon, we will use these results to
study the electronic response of different membranes. In the present case a mem-
brane is defined as a slab which is sufficiently thick to recover the bulk properties
in its interior. This includes systems down to few nanometers thick. In the present
section we will study the voltage drop in such unsupported systems for different
type of strain gradient deformations. In particular we will report the voltage drop
in OC EBC, which is the electrostatic condition used to define the open-circuit volt-
age. In the next section, we will discuss how the results changes in the case of SC
EBC.

5.4.1 Bulk material constants

Our calculations are performed in the framework of the local-density approxima-
tion to density-functional theory as implemented in the ABINIT [26] code. The
core-valence interaction is described by Troullier-Martins [83] norm-conserving pseu-
dopotentials. We used a plane-wave cutoff of 30 Ha and sampled the Brillouin zone
of the Si cell by means of a 8× 8× 8 Monkhorst-Pack [54] mesh. With these param-
eters, we obtain an equilibrium lattice parameter of a0=10.10 bohr and the elastic
constants that are C11 = 159.8 GPa, C12 = 61.7 GPa and C44 = 76.3 GPa, and the
relative permittivity is ε = 13.2, which are in line with literature values.

To calculate the flexoelectric tensor for silicon we focus on the electronic and
mixed terms, appearing in Eq. 3.22, separately. We start by calculating the electronic
one. Following the procedure detailed in the previous sections and in Ref. [78], first
it is required to calculate the longitudinal dynamical octupoles along the [100] and
[110] direction, Q(3)

[100] and Q(3)
[110]. The two octupoles can be obtained as in Eq. 4.33,
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FIGURE 5.3: Fitting procedure to get the longitudinal octupoles,

Q(3)
[100] and Q(3)

[110].

and discussed in Sec. 4.4.4. In Fig. 5.3 we report the imaginary part of ∑κ ρ
q
κq, cal-

culated for q = {0.1, 0.2, 0.3} (in reduced units of 2π/a0), and for both the lon-
gitudinal phonons along the [100] and [110] directions. The cubic fitting of these
results gives the following octupolese values (atomic units) Q(3)

[100] = −28.05 bohr2

and Q(3)
[110] = −56.39 bohr2, and by Eq. 3.40 they allow to calculate the electronic

contribution to the flexoelectric response.
In order to disentangle the information about µ12 and µ44 contained in µ[110],

we have followed the strategy of Ref. [78], analyzing the response density of a sil-
icon slab geometry (oriented along the (100) direction) to get the transverse flex-
oelectric tensor, µ12. In practice, we use a slab that is thick five and half conven-
tional bulk cubic cells along the out-of-plane direction, and free surfaces are pas-
sivated with H atoms. Such a response is then processed via an external mod-
ule that solves the Poisson equation in curvilinear coordinates [74]. This gives
ϕ12 = −8.93 V. Using the previous calculated values, and reminding the defini-
tions of the two longitudinal FxV coefficients analogous to Eq. 3.41, ϕ[100] = ϕ11

and ϕ[110] = ϕ11 + ϕ12 + 2ϕ44, we are able to obtain all the three independent flex-
ovoltage coefficients, which are reported in Tab. 5.2.
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(V) This work HV RCB
ϕ[100] -12.03 -11.97 -12.0

ϕel
[110] -24.19 – –

ϕ[110] ϕmix
[110] 1.84 – –

ϕtot
[110] -22.35 -22.22 -22.2

TABLE 5.1: Here are listed the value of the two longitudinal flexo-
voltage, ϕtot

[100] and ϕtot
[110], which are the only two independent val-

ues that can be calculated using the bulk charge density response
respectively along the [100] and [110] direction, together with ref-
erence values. HV and RCB stand respectively for Ref. [36] and
Ref. [62], and remind the difference in the definition of µ[110] be-
tween this work and HV’s work. For µ[110] we have disentangled
the two contributions, the electronic and mixed term, tanks to our

calculation of Q(2) and Γ.

(V) ϕel ϕmix ϕtot

(a) (b) (c)
11 -12.15 -12.14 -12.03 – -12.03
12 -9.03 -9.03 -8.93 – -8.93
44 -1.63 -1.63 -1.61 0.92 -0.69

TABLE 5.2: Final values of the three independent bulk flexovolt-
ages for silicon. The electronic contributions are compared with
other two independent results: (a) are from Ref. [65]; (b) are from
the the previous Chapter 4, Tab. 4.4; (c) are the values calculated

here.
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VB CB
l -14.96 α -11.61
m -7.91 β 9.00
n -9.80

TABLE 5.3: The parameters that describe the BS deformation po-
tential of silicon to a generic mechanical deformation. Values in

eV.

b d Ξu (Ξd +
1
3 Ξu − a) a Ξd

this work -2.35 -5.65 9.00 1.65 -10.26 -11.61
Ref. [87] -2.35 -5.32 9.16 1.72 – –

TABLE 5.4: DP, comparison with values reported in Ref. [87].
The relations connecting the present notation to Ref. [87] are: b =

( l−m
3 ); d = n√

3
; Ξu = β; Ξd = α; a = l+2m

3 .

Still, the case of [110] the total flexoelectric coefficient has also a non-zero mixed-
term contribution, while for µ[100] it is zero. The value of the quadrupole has been
calculated with a fitting procedure similar to the octupole case, and the results is
Q(2) = 1.02 bohr, while the internal atomic relaxation is Γ = 0.70 bohr. Summing
up all the contributions we obtain the values for µ[100] and µ[110] that are reported
in Tab. 5.1, compared with previous references.

Regarding the band-structure parameters, we use the finite difference method;
in particular, they are calculated by performing simulations of appropriately strained
(we use strains of the order of 0.5%) bulk cells. The BS terms for the VBM and CBM
are defined by the eigenvalues of δĤBS

v,Γ and by Eq. 5.7, respectively. The five pa-
rameters appearing in Eq. 5.6 and Eq. 5.7 are reported in Tab. 5.3 and a comparison
with Ref. [87] is reported in Tab. 5.4, where our parameters have been conveniently
converted. The agreement is generally excellent.

5.4.2 Optimal Flexovoltaic silicon membrane

The powerfulness of the present approach illustrated by the number of different
membrane geometries for which we are now able to analyze the absolute CBM an
VBM response, based on the few parameters calculated in the previous section. As
an example, here we have considered membranes oriented along the [100], [111]
and [110] direction; their response has been studied as function of the deformation
type and its orientation in the surface plane. For sake of clarity, in order to define
the deformations treated in the following we refer to Fig. 5.4 where the membrane
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FIGURE 5.4: The two type of deformations considered here: (a) the
plate bending; (b) the beam bending. The red line identify the main
bending direction, which varies in the green plane and is identified

by the angle α.

is oriented along x̂ and the main bending is along ŷ; we consider two different
bending types: (I) simple bending plus the longitudinal internal relaxation along
the direction normal to the membrane (plate bending), which is defined by the
following local effective strain

εI
e f f = εyy − νIεxx

νI =
C12

C11

(5.8)

(II) the previous bending, with the longitudinal relaxation, plus the anticlastic relax-
ation in the third direction (beam bending limit) which is defined by the following
effective local effective strain

εI I
e f f = εyy − νI I

x εxx − νI I
z εzz

νI I
x =

C12C13 − C11C23

C13C13 − C11C33

νI I
z =

C13C23 − C33C12

C13C13 − C11C33
.

(5.9)

Both deformations are sketched in Fig. 5.4. In practice, for both deformations we
vary the main bending direction (red in Fig. 5.4), which is identified by the angle
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FIGURE 5.5: (a)-(c) show the ADP for a silicon membrane oriented
along the [100] direction and deformed as a plate banding and a
beam bending respectively. The ADP values are plotted as func-
tion of the α parameter that describes the in-plane rotation of the
membrane (b)-(d) show the ADP for a silicon membrane oriented
along the [11-1] direction, again for the two different types of de-
formations considered in the text. The α = 0 geometry coincide

with the pictures represented in Fig. 5.4.

in the surface plane, α, measured anticlockwise from the following reference crys-
tallographic directions (case α = 0): [010], [-110] and [1-11] respectively for the slab
oriented along the [100], [111] and [110] direction. Therefore for each α value, the
definitions in Eq. 5.8 and Eq. 5.9 must be conveniently rotated.

Using the theory described in Sec. 5.3, specialized to the present geometries, we
get the ADPs for each single band as function of the α parameter. These results
are shown as thin lines in Fig.s 5.5 and 5.6 for the three slabs and the two bending
types. It is immediately clear that the single band splitting shows a quite complex
response, with both CBM and VBM band subspace displaying splits associated to
positive and negative ADPs.

In order to extract a more accessible picture for possible photovoltaic applica-
tions, we focus on the ADP averages of the CBM and VBM (the thicker lines in
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FIGURE 5.6: (a)-(b) show the ADP for a silicon membrane oriented
along the [110] direction and deformed as a plate banding and a
beam bending respectively. The ADP values are plotted as func-
tion of the α parameter that describes the in-plane rotation of the
membrane The α = 0 geometry coincide with the y-direction that

coincides with [1-11].

Fig.s 5.5 and 5.6). Interestingly all the cases studied her show that the VB response
is always more negative than the CB. This is a consequence of the fact that under
a volume dilation the energy gap of silicon increases. Moving back to our flexo-
voltaic device, the best geometry that minimizes the electron-hole recombination
can be identified by requiring that photo-excited electrons and holes are pushed to-
wards the two opposite surfaces of the membrane. This means that, since electrons
and holes have opposite charge, the average ADPs of the conduction and valence
band should have the same sign; that is the two type of carriers experience forces in
opposite direction. Looking at the [100] membrane results, we see that the average
ADPs for both the VB and CB have the same sign (negative). On the contrary this
is never satisfied for the [111] case, while it is true only for specific α-values in the
[110] geometry. We can conclude that only for silicon membrane oriented along the
[100], the electrons in the CB and the holes in the VB are pushed on the two op-
posite surfaces, independently by the in-plane main bending direction. It is finally
worth noting that the average ADPs show a clear non trivial α-dependence only for
the [110] membrane and in the specific case of beam-bending deformation for the
[100] membrane.

Note that in all the directions that we studied, the degeneracy splittings are
about an order of magnitude larger than the average (volumetric) shift of the band
edges. This means that the response may be more complex than the naive picture
of Eq. 5.1.
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Comparison with previous works

The previous analysis can be loosely related with the results of Ref. [31], where
the authors have carried out the explicit ab initio simulation of bent silicon nanos-
tructures with different orientations. While comparing the results obtained in the
previous sections with those of Ref. [31] one should keep in mind that the latter are
related to systems that are only few atomic layers thick (between 5 and 8 depend-
ing by the surface orientation) while the analysis performed in the present Chapter
is intended for membranes with thickness around ten nanometers or more.

As result of their study, Guo and Van Hove were able to identify the locations
in space of the absolute VBM and CBM. They can be compared with the results
obtained for the ADPs of each single splitted band. In particular one must identify
the biggest absolute value for both the ADPs of the valence and conduction band
subspaces; then their sign indicates on which surface is located the edge. For ex-
ample, Guo and Van Hove obtained that the bended membrane corresponding to
our [111]-oriented case with α = 0, shows a perfect spatial split of the band edges,
located at the two opposite surfaces. The same conclusion can be obtained just
looking at Fig. 5.5-(b) and using the above considerations: The highest absolute
value between the ADPs of the splitted VBM is −7.67 eV, while for the CBM it is
−2.59 eV; since these two band edges have ADPs with the same sign, they must be
located on the opposite surfaces of the membrane (remind that electron and hole
have opposite charges and thus experience opposite forces.)

Another system explicitly studied in Ref. [31] is the membrane oriented along
the [110] with α = 0. In this case their main conclusion was that the global wave-
function associated to the CMB is not confined on one of the two surfaces but is
homogeneously spread along all the thickness of the membrane. Again, the same
result can be deduced by looking at Fig. 5.6-(a): the ADPs associated with the CBM
are almost zero suggesting a quite flat valence-band edge.

While the present theory is good for unsupported membranes with insulating
surfaces, a realistic device, however, needs to have metallic electrodes in order to
collect the photocurrent. To describe uch case, the theory developed so far needs
to be generalized to the short circuit (SC) case. As we shall see shortly, this can
be achieved at the price of only few extra supercell simulations necessary in order
to study the band alignment at the interface between the membrane and the metal,
and its changes with respect to the applied strain. This is discussed in the next para-
graph where we use, as test system, silicon membranes with titanium electrodes.



86Chapter 5. Flexoelectricity for practical applications: Silicon flexovoltaic devices

5.5 Metallic electrodes

The previous study was performed in OC EBC, with major emphasis on the elec-
tronic response inside the membrane. As mentioned before, in that particular case
the electronic response of the interior of the bended membrane is a bulk property.
Here we will focus in more details on the effects produced by SC EBC, which in
a realistic setup are enforced by sandwiching the membrane between two short-
circuited metallic electrodes. The ADP definition 5.3, where the BS term has been
split from the electrostatic response, allows to recast all the changes due to the dif-
ferent EBC in ∆φ. We will start by a formal analysis; then we will present the
numerical results for our target case.

Consider a symmetric membrane, with metallic electrodes grown on both sur-
faces, in such a way that the unperturbed system is symmetric respect the center of
the dielectric. It is useful to develop our analysis by comparing the SC case with an
unsupported membrane in OC, and proceed by steps (refer to Fig. 5.7).

We start applying an uniform effective strain, εe f f . For the unsupported system
the steps in the electron potential energy profile, ΦDV , corresponding to the surface
dipoles vary of the same quantity, ∆ΦDV = dΦDV/dεe f f . By keeping constant
the potential in the vacuum region outside the dielectric and comparing with the
unperturbed case, we observe that the electron potential energy has been shifted by
an amount proportional to ∆ΦDV (Fig. 5.7-(b)). In the SC system the electrostatics
is governed by the requirement that the Fermi level of the two metallic electrodes
must be always aligned. Since also the electrodes are experiencing the same strain
of the dielectric, the difference between the electrostatic potential and the Fermi
level in the metal, ε̃F = εF − φ, changes proportionally to ∆ε̃F = dε̃F/dεe f f , which
is conveniently calculated as the bulk variation of ε̃F induced by εe f f at fixed εF. It
follows that the electron potential energy inside the dielectric is rigidly shifted of
∆ε̃F (green line in Fig. 5.7-(e)). However, as in the OC case, also the interface dipole
varies, ∆ΦDM. Then, the total variation inside the dielectric of the electron potential
energy respect to the unperturbed case is the sum of the two contributions: ∆ε̃F +

∆ΦDM; the first one is a bulk property of the metal, while the second is a interface
property.

We now move to the bending case, The effective strain in the center of the mem-
brane is zero, while the surfaces are experiencing an opposite local strain. As
already discussed in Sec. 3.1.4, for the unsupported membrane in OC the previ-
ous surface effects are now opposite. Moreover, inside the membrane the electron
potential energy will be tilted due to the bulk FxE response. Then, we have re-
obtained the conclusions of Sec. 3.1.4, stating that the internal electrostatic response
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FIGURE 5.7: Electronic potential energy profile across the dielec-
tric membrane for the unsupported open circuit case (a,b,c), and
for the short circuit case, in which it has been added two metallic
electrodes (d,e,f). (a,d) show the unperturbed systems; (b-e) show
the effects of a uniform strain (ε = 1); (c-f) show the effects of a
uniform strain gradient (∆ε = 1/t where t is the thickness of the
membrane). Legend of colors for the electronic energy profile: red
is the unperturbed case; green-dashed (only for the SC cases) is an
intermediated step, where only the effects of ∆ε̃F are considered;
blue is the final results for the mechanically perturbed cases. Fi-

nally, the black lines in the SC cases are the Fermi level.
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is simply a bulk property. On the contrary, both surface and bulk effects will con-
tribute to the total response of the membrane (Fig. 5.7-(c)): the electron potential
energy difference between the two vacuum regions is proportional to ∆ΦDV + ∆φ,
where ∆φ was defined as minus the flexoevoltage response, Eq. 5.5, in eV units.

To understand the bending effects in SC EBC, the starting point is again the
Fermi level inside the two opposite electrodes, which must be aligned. Since the
metallic electrodes are also experiencing a strain gradient deformation, their elec-
trostatic potential is tilted. This would induce a tilt in the electron potential energy
inside the dielectric, which is proportional to ∆ε̃F (green line in Fig. 5.7-(f)). Still,
this is not the only contribution, since also the interface dipoles change of an op-
posite quantity, generating a further tilt in the electron potential energy of the di-
electric that is proportional to ∆ΦDM. By means of the previous analysis we can
conclude that in the SC case, the bulk flexoelectric response is completely screened,
but the dielectric still experiences an effective electric field. In the framework of the
ADFs theory, Eq. 5.3, this can be included by substituting Eq. 5.5 with

∆φ = (∆ΦDM + ∆ε̃F)

(
εe f f

∣∣∣
surfR
− εe f f

∣∣∣
surfL

)
, (5.10)

where εe f f is the local effective strain on right (R) and (L) surface.
In conclusion the electron potential energy inside the dielectric undergoes to a

tilt respect to the unpertrubed case, ∆φ, which is entirely deremined by the metal
and the surface specific properties.

We now specialize the previous analysis to a concrete case: a silicon membrane
oriented along the [100] direction and perturbed by a flexural deformation in the
plate-bending regime (in our previous notation it would be a type I deformation
with α = 0). The metallic electrodes considered here are Ti; in particular we impose
the Ti crystal to be in a FCC structure distorted to a tetragonal shape, with an in-
plane lattice parameter compressed of 5 % respect to its pristine structure, in order
to match half the diagonal of the silicon cubic face. Due to geometry considerations,
there are two obvious choices to define the interface between the two elements; the
first Ti layer can be aligned with the first or the second to the last Si layer. We adopt
the latter case since it is energetically favourable. Even though this structure is arti-
ficial, it allows to highlight the main features of the present analysis. By employing
a supercell with 22 Si layers and 20 Ti layers, we get the band-alignment diagram
shown in Fig. 5.8.

Using a finite difference method, where we compare the variation of the elec-
trostatic potential line-up due to a uniform effective strain defined by Eq. 5.8, we
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FIGURE 5.8: Bands end electron potential energy alignment at the
Si-Ti interfaces. Values in eV.

obtain ∆ΦDM = 4.30 eV. From bulk simulation of our strained FCC reference struc-
ture for the Ti atom we calculate ∆ε̃F = 2.16 eV. Finally, the bulk BS values for the
average VBM and CBM manifold for the present case are−6.30 eV and−5.28 eV, re-
spectively. With these values, we are able to calculate the band profile for a generic
bending value, ∆εe f f . In Fig. 5.9 we report the result for an effective strain gradient
that is equal to ∆εe f f = 0.1/t, where t is the thickness of the membrane.

As we have done for the introductory analysis related to Fig. 5.7, we compare
this result with a the correspondent OC silicon membrane, whose dangling bonds
at the surface have been passivated with H atoms, and experiencing the same effec-
tive strain. For such geometry we obtain ∆ΦDV = −4.60 eV, while using the result
reported in Tab. 5.2 we obtain a bulk flexovoltage contributions of ∆φ = 4.34 eV.
Using the same BS terms as before, we obtain the band profile of Fig. 5.10.

We observe that in both cases there is a partial cancellation between ∆φ and the
BS terms. Nevertheless, the VBM and CBM still are tilted across the longitudinal
direction of the membrane, resulting in a non-zero effective field experienced by
the photo-excited carriers. In particular we observe that in the two different config-
uration the effective electric field change sign, and while in the OC case the VBM is
more tilted than the CBM, in the SC case is the other way around.

In conclusion, we believe to have given a remarkable proof of the possible appli-
cation of the FxE theory, when combined with the theory of ADPs, to engineering
optimal flexovoltaic devices.
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FIGURE 5.9: Electron potential energy and band profiles for the
silicon membrane with short-circuited Ti electrodes, oriented along
the [100] direction in the plate bending regime. The applied strain
gradient is: ∆εe f f = 0.1/t, where t is the membrane thickness. This

corresponds to a curvature radius of R = 10t.
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Chapter 6

Polar ferroelastic twin walls in
SrTiO3
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6.1 Introduction

The first-principles theory of flexoelectricity developed in the first half of this work
was employed in Chapter 5 in order to study how different silicon geometries can
be engineered for solar-cell applications. In this Chapter we will discuss another
example where the flexoelectric response of an insulating crystal plays a remarkable
role and its correct description is essential to capture the global physical response of
the system. In addition to the focus on flexoelectricity itself, one of the main aims of
this Chapter consists in presenting a generalized methodology to study the crystal
response to other inhomogeneous perturbations. This generalization, which closely
follows Ref. [73], is based on a long-wave expansion of the dynamical matrix, and it
establishes an ideal foundation to develop accurate effective models starting from
full ab initio results.

Effective models are essential to study a variety of systems that are too large to
be treated fully from first principles and/or when the goal is to rationalize a given
physical effect by using only the most relevant order parameters. These models are
inspired to the phenomenological Landau theories, especially useful to capture the
essential physics involved in phase transitions. Here we will develop an effective
energy expansion in order to study the polarity at the ferroelastic domain walls in
SrTiO3 (STO).

Domain walls (DWs) usually show up in the low-temperature phases of fer-
roic crystals, which are characterized by a lower symmetry respect to the higher
temperature phase. The transition can be understood by identifying a primary or-
der parameter, associated with a given crystal distortion that condensates below
the transition temperature. The energy landscape of the low temperature phase is
characterized by different minima, all with the same energy. These minima corre-
spond to equivalent structures, but with the primary order parameter pointing in
distinct spatial directions. All these equivalent structure typically coexist in the low
temperature phase, in different regions called “domains”. Connecting the domains
there are the domain walls (DWs) that are the regions where the primary order
parameter shows a discontinuity and changes sign.

DWs, especially in ferroic materials, are a recognized source of unusual phys-
ical effects. Indeed, in the DW region one or more degrees of freedom undergo
to a large variation on a short length scale, which means that gradient couplings
(e.g., flexoelectricity) can have a strong impact on the local physics. Recently these
unusual physical effects where employed for electronic device applications [13].
Therefore a theoretical understanding and rationalization of the DW properties is
crucial.
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Here we focus on the emergence of polarity at DWs that divide two nonpo-
lar phases. More specifically we will focus on ferroelastic twin boundaries (TBs),
which are walls separating twin phases where a strain component changes sign.

In this context the orthorhombic CaTiO3 (CTO) is the first and best studied ex-
ample. CTO is a cubic perovskite at high temperature that undergoes to a phase
transition to an anti-ferrodistortive (AFD) phase, which is characterized by the
non-polar rotations of the oxygen octahedra. The AFD phase in CTO is defined
by a complex pattern of octahedron rotations that is the combination of two anti-
phase rotations along two Cartesian axis and an in-phase rotation along the third
one (a−a−c+ in Glazer notation). The ferroelastic DWs of the low temperature
non-polar phase were first theoretically predicted to show a local polarity via an
empirical atomistic model [24], and later transmission electron microscopy results
confirmed [1] the prediction. Recently a first-principles [3] analysis on the origin of
the ferroelastic DWs in CTO has postulated an improper origin of the polarization,
which would emerge from trilinear couplings between tilt modes that are enabled
in the domain-wall region. Therefore, while the polar behaviour of the TBs in CTO
is now demonstrated, its origin seems to be quite complex involving both gradient-
mediated and anharmonic terms.

STO is another perovskite with a ferroelastic phase that is induced by AFD tilts
below 105 K, but with a simpler structure: the oxygen octhaedron rotate in anti-
phase along one of the three fold Cartesian axis (a0a0c−) only. The oxygen rotations
also induce a deformation of the original cubic cell that becomes tetragonal (elon-
gated in the same direction of the octahedron rotation axis). Moreover STO is an
incipient ferroelectric, i.e. it has a very soft polar mode, and it can become ferro-
electric, for example, by just applying external strain [32]. At DWs the inversion
symmetry of the teragonal phase is locally broken, and hence DWs could show a
polar behaviour, even if the bulk ferroelastic domains are nonpolar [68]. Therefore
TBs of STO are very promising candidates where looking for a polar response of
non polar crystals.

Existing phenomenological works emphasized a flexoelectric origin of the po-
larization at twin boundaries in SrTiO3 since it is a universal effect of all insula-
tors [55]. Such an interpretation was confirmed by numerical simulations based
on a simplified atomistic model [70]. However one could wonder if flexoelectric-
ity is the only main contribution to the polar response of TWs in STO, or if other
”improper” mechanisms, for example similar to the tri-linear coupling proposed
for CTO [3], play a relevant physical role. Direct experimental evidence of polarity
at the TWs of STO is scarce, and mostly indirect evidence of a polar response was
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reported [69]. Thus for STO, in contrast to CTO, even a clarification on the real exis-
tence of a polar response at the TBs is needed. [Only very recent work has reported
a direct signal of polarity at the TWs in STO [21].]

In this scenario, two are the main points that we plan to address in the present
work: (i) demonstrate the polarity at the TBs in STO on the base of an ab initio study:
phenomenological theories and empirical potentials can hardly push their accuracy
beyond order-of-magnitude estimates (many of the relevant coupling coefficients,
e.g. the flexoelectric tensor, are difficult to access experimentally); (ii) understand
the microscopic physical origin of this polarity, by looking at the couplings that may
induce a polar response, including gradient-mediated and “improper” couplings.

In order to answer to these questions we will construct an effective energy ex-
pansion, which is function of few relevant order parameters, by starting from full
DFT calculations and performing a series of well defined approximations. This is a
novel procedure that is based on the long-wavelength expansion of the linear and
nonlinear interatomic force constants (IFCs) of the reference bulk phase. It is a quite
general procedure that can be applied to other systems where gradient terms play
a relevant role. Therefore the first part of this Chapter is devoted to presenting
the approach for extracting the effective energy expansion. In the second part, this
continuum model is employed in order to study the polarity at the TWs of STO.

6.1.1 Geometry of the problem

First of all it is important to fix the geometry of ferroelastic DWs in STO. The con-
ventional tetragonal cell of the unrelaxed AFD phase (a0a0c−) is shown in Fig. 6.1-
(a). Its volume is four times the primitive cubic cell, with translation vectors a1 =

a0/
√

2(1, 1, 0), a2 = a0/
√

2(−1, 1, 0) and a3 = a0(0, 0, 1), and the AFD axis oriented
along the third. We shall use the 20-atoms cell for the high temperature phase,
Fig. 6.1-(d), and we will refer to it as the “conventional tetragonal cell” of the cubic
phase.

Moving now to the ferroeleastic DWs, the plane of the walls is oriented perpen-
dicular to the [110] pseudocubic direction, ŝ direction, and it separates two AFD
domains, whose respective oxygen tilt axes are oriented at 90◦ with respect to each,
Fig 6.1. This geometry has the great advantage that originates a one-dimensional
(1D) problem [11, 55]. Indeed one can identify the relevant vector or tensor quan-
tities by projecting them on the perpendicular, ŝ, or parallel, r̂=[1-10], directions to
the wall, while the third remaining direction coincides with the Cartesian axis x̂.
The AFD pseudovector, which identifies the oxygen octahedral rotations, has two
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components, φs and φr, respectively. In this scenario it is the shear tensor compo-
nent, εrs, that change sign across the ferroelestic DW. Moreover, by symmetry, the
only in-homogeneous spacial direction is ŝ, while the macroscopic polar response
is only allowed by symmetry along the r̂ direction. (The polarization response is
always perpendicular to the gradient direction.) This last observation will be es-
sential while developing a microscopic theory, in order to work in well defined
electrostatic boundary conditions. Note that two different twin wall (TW) types
exist in STO, differing by the AFD pseudovector component, φr or φs, that changes
sign across the wall. We shall indicate as “head-to-tail” (HT) and “head-to-head”
(HH) the case where respectively φr and φs changes sign (see Fig. 6.1.(e-f)); They
are respectively equal to the “tail-to-head” (TH) and “tail-to-tail” (TT) case.

In the result section we will perform a detailed comparison on the polar origin
at the TWs in STO for the two types. As result we get that the two DWs have a
different total polarization response and therefore they can be potentially identified
by its interaction with an external electric field.

6.2 A multiscale harmonic approach

In order to build phenomenological energy expansions, the most popular strategy
can be summarized as follows: (i) choose the relevant order parameters for describ-
ing the system under study; (ii) build an expression for the energy as function of
the previously identified order parameters by taking into account the symmetries
of the crystal (which can eventually forbid given coupling terms); (iii) set the value
of the coupling coefficients for example using experimental results or calculating
them by first principles simulations. Clearly, employing ab initio simulations in or-
der to extract coupling coefficients has the advantage of corroborate the study on
a strong background that is free of phenomenological inputs. The power of this
approach has been shown for studying bulk homogeneous phases and phase tran-
sitions [93], where only coupling between uniform order parameters are involved,
and thus they can be easily calculated within bulk simulations.

When dealing with inhomogeneous systems, where one or more order param-
eters are function of the position in space, e.g. the case of DWs, then gradient-
mediated terms can not be discarded and they must be included into the energy
expansion. As an example one can specialize the model in Ref. [20] to the ge-
ometry described in section 6.1.1 for ferroelastic DWs in STO; the results is a 1D
phenomenological energy expansion that is function of the polarization P along
the direction r̂, the strain, εαβ, and the two AFD order parameters, φr and φs. The
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FIGURE 6.1: (a): Un-relaxed tetragonal cell of the AFD phase; (b):
Simplified sketch that compare the primitive cubic cell of the high
temperature phase (yellow cube) with respect the tetragonal cell;
(c) Cubic primitive cell of the High temperature phase; (d): Con-
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(a) but here the phase structure is the cubic one; (e-f): Schematic il-
lustration of the two different TBs considered in this work, respec-
tively HH (e) and HT (f) configurations; dashed square indicates
the primitive cell of the cubic reference phase and arrows indicate

the local tilt vector.
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explicit expression is

E =
Cαβ,γδ

2
εαβεγδ +

1
2χ0

P2 +
k
2
|φ|2 + A|φ|4 − eαεααP2 − Rijαβφiφjεαβ −Qiφ

2
i P2

+
Di
2
(∂φi)

2 +
G
2
(∂P)2 − f P∂εrs,

(6.1)

where the Latin indices run over {r̂, ŝ}while the Greek indices run over {r̂, ŝ, x̂}. All
independent order parameters in Eq. 6.1 are only function of the s coordinate, thus
all the derivate must be intended along the ŝ direction. In Eq. 6.1 the homogeneous
couplings are the elastic coefficient, Cαβ,γδ, the isotropic electric susceptibility, χ0,
the quadratic and quartic energy coefficients associated to the oxygen tilts, κ and A,
which describe the double well potential associated to the tilts, the electrostricition
coupling eα, the rotostriction coupling, Rijαβ, the biquadratic coupling, Qi; on the
other side the gradient mediated couplings are the self-dispersion of the polariza-
tion and the oxygen rotations, respectively G and Di, and the flexoelectric coupling
f .

The presence of gradient-mediated couplings brings up the problem of how
they can be calculated ab initio. Indeed, as discussed in Chapter 3, the periodic
boundary conditions enforced in first principles calculations clash with the concept
of spacial gradients. To overcome these difficulties, inspired by the bulk theory
of flexoelectricity, we will generalize the concept of long wave expansion of the
forces induced by an acoustic phonon to the case of an arbitrary lattice distortion.
The idea is that the real-space gradient of a given order parameter can be related
to the dispersion of specific microscopic modes around the Γ point. Therefore, by
identifying a connection between a specific set of normal modes at the Γ point with
the continuum vector fields it is possible to obtain a macroscopic model starting
from the dynamical matrix.

In contrast to the normal procedure, where DFT calculations are employed only
as a final step to calculate the energy couplings, here we shall enforce a much
deeper connection to the full DFT Hamiltonian, and construct the effective con-
tinuum model via a series of well defined approximations. In the following of this
section we will show in detail this procedure using the ferroelastic DWs of STO as
a test case. The final result will be an effective energy expansion similar to Eq. 6.1,
where each coefficient is connected to a well defined microscopic ab initio quantity,
including the gradient-mediated couplings.
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6.2.1 The microscopic model

The first step consists in building a microscopic model that describes the energetics
of the crystal distortions; the aim is to get phonon dispersions that match the full ab
initio results. In the harmonic approximation, the Lagrangian density as function
of the atomic displacements, ul

κ , is

L(ulκα, u̇lκα) =
1

2Ω ∑
lακ

mκ(u̇lκα)
2 − 1

2Ω ∑
lκl′k′

ul
κ ·Φll′

κk′ · u
l′
κ′ . (6.2)

where κ label the atomic spice and l the unit cell, and Φll′
κk′ is the force constant

matrix. Taking advantage of the periodicity of the crystal, one can use the Fourier
transform of the displacement vectors

ul
κ =

Ω
(2π)2

∫
BZ

d3q uq
κ eiq·Rl . (6.3)

Then, by defining the Lagrangian density in reciprocal space as [75]

∫
Ω
L d3r =

Ω
(2π)3

∫
Lq d3q, (6.4)

one obtains

Lq(uq
κα, u̇q

κα) =
1

2Ω ∑
ακ

mκ(u̇
q
κα)

2 − 1
2Ω ∑

κk′
uq

κ ·Φ
q
κk′u

q
κ′ (6.5)

where Φq
κα,κ′β is defined in Appendix A.

Following a common procedure, it is possible to solve the previous dynamical
problem by using the normal modes and decoupling the sublattice displacements
into the sum of independent harmonic oscillators:

Lq(vq
w, v̇q

w) =
1

2Ω ∑
w

Mw

((
v̇q

w
)2 −

(
ω

q
w
)2 vq

w
2
)

, (6.6)

where vq
w is the amplitude of the normal mode, w, Mw are for the moment arbitrary

mass constants and their values are chosen by the physical units that we will assign
to the amplitudes of each mode, and

(
ω

q
w
)2 are the eigenvalues of the dynamical

matrix,

D̂q
κα,κ′β = |κα〉

Φq
κα,κ′β√
mκm′κ

〈κ′β|. (6.7)
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[For clarity of notation one has 〈wq|D̂q|lkq〉 = δwk
(
ω

q
w
)2, where |wq〉 are the uni-

tary lattice distortion.] The normal modes are related to the collective atomic dis-
placements, uwq

κα , by

uwq
κα = vq

w

√
Mw

mκ
〈κα|wq〉. (6.8)

As we will show shortly, the amplitudes vq
w of the Γ modes will be the link be-

tween the microscopic theory to the macroscopic continuum model, since they can
be identified as the macroscopic order parameters.

The next step towards a macroscopic model consists in rewriting Eq. 6.5 by ex-
plicitly using only the vectors associated to the Γ point, |w0〉. This is justified by
the fact that |w0〉 is a complete basis for representing all the relevant modes in the
conventional 20-atom cell, and moreover the displacements at Γ are by definition
macroscopic distortions of the lattice. Then, the projection of the generic normal
mode, |kq〉, on the Γ basis set, |w〉 = |w0〉, gives

Lq(vk, v̇k) =
1

2Ω

(
∑
k

Mk(v̇k)
2 −∑

kw

√
Mk Mw〈k|D̂q|w〉 ṽq

k ṽq
w

)
, (6.9)

where ṽq
w = ∑k′ v

q
k′〈w|k

′q〉. Note that now the dynamical matrix at a generic q
point can couple different eigenmodes, w 6= k.

Eq. 6.9 is still exact, i.e. it is just a different form of writing Eq. 6.2. Now, we
will perform the long wave expansion of Eq. 6.9. In practice the dynamical matrix
must be expanded as shown in Ref. [75]. Here we have decided to include up to the
flexoelectric terms. Since the lattice mediated flexoelectric contribution is related to
the second derivative of the force constant matrix respect to q (see Chapter 3), then
we carry out the expansion up to the q2 terms. Therefore the dynamical matrix in
Eq. 6.9 is replaced by the following approximation

Dq ≈ D(0) − iqγD(1,qγ) −
qγqδ

2
D(2,qγqδ), (6.10)

where the same notation of Eq. 3.15 has been used. From a mathematical point of
view the approximation 6.10 holds as far as the ṽq rapidly vanish far from Γ (i.e.
the associated continuum parameter defined in Eq. 6.14 is a smooth on the scale of
the lattice spacing).

The expansion 6.10 has the usual problem related to the fact that the dynamical
matrix is not analytic in a neighbourhood of Γ. This issue was already discussed in
paragraph 3.1.3, and it is caused by longitudinal macroscopic electric fields induced
by polar displacements. However, since our present focus is on the polarization
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parallel to the wall plane, r̂, and we are working within a 1D problem, macroscopic
field are irrelevant and no further precaution is needed.

Before moving on and dealing with a second crucial approximation, it is im-
portant to discuss the symmetry of the |w〉 modes. As we have stressed before,
for the STO case the dynamical matrix is related to the conventional tetragonal cell
of the undistorted cubic phase. However, since the primitive cell of such phase is
the cubic one, which is four times smaller than the conventional cell, then the Γ
eigenvectors of the former coincide, by a one-to-one relation, with the eigenvectors
associated to the Γ′, R’, M’ and X’ point of the irreducible BZ of the cubic primi-
tive cell - the prime is added to distinguish points in the BZ related to the cubic
primitive cell. Then each mode |w〉 uniquely belongs to one of the four high sym-
metry points in the irreducible Brillouin zone (BZ) of the cubic primitive cell. It
follows that the Lagrangian 6.9 can be rewritten in a clearer form, since at the har-
monic level couplings between eigenmodes of different symmetry are not allowed;
therefore one obtains

Lq = Lq
Γ′ + L

q
R′ + L

q
L′ + L

q
X′ , (6.11)

where each term on the r.h.s. refers to the point that is specified by the subscript
letter.

Now it is easy to recognize that, although the eigenvectors |w〉 are a complete
basis, not all the lattice distortions contribute to the physical effects studied here.
Then, we shall perform a second approximation by choosing a subset of modes,
|{w}〉, of the conventional unit cell, |{w}〉 ⊂ |w〉; this will include: (i) the soft
polar mode along the r̂ direction, |O〉, since it is the one that most contribute to the
total polarization response [82]; (ii) the oxygen rotations along r̂ and ŝ, since they
define the AFD domains, |φr〉 and |φs〉; (iii) all three acoustic modes, |Aα〉, which
define the local strain, as we will show in the next paragraph. Note that on one
side the modes of point (i) and (iii) belong to the Γ′ symmetry, and we will identify
them as: |Γ̃′〉 = {|Aα〉 ⊕ |O〉}; on the other side the oxygen rotations belong to the
R′ symmetry, and for convenience in we define |R̃′〉 = {|φr〉 ⊕ |φs〉}. Then, the
subspace |{w}〉 is defined as:

|{w}〉 = {|Γ̃′〉 ⊕ |R̃′〉}. (6.12)

With this approximation applied to Eq. 6.11, the Lagrangian becomes

Lq ≈ Lq
Γ̃′
+ Lq

R̃′ , (6.13)
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where the two terms on the r.h.s. are containing the contributions from the |Γ̃′〉 and
|R̃′〉modes, respectively.

Finally the microscopic model, which has the aim of reproducing the full ab initio
results in a neighborhood of Γ, is obtained by plugging the the dynamical matrix
expansion, Eq. 6.10, into Eq. 6.9 and retaining only the subset of lattice displacement
defined in Eq. 6.12. Note that there is no coupling between the polar and acoustic
modes, mediated by the D̂(1,q) matrix, since in the cubic phase of STO each atomic
position coincides with a point of center inversion symmetry.

To conclude, we want to stress that the choice of the subspace 6.12, which was
postulated using three sensible considerations about the physical problem studied
here, must be verified. Indeed we will show in the following that in order to recover
an acceptable agreement between the prediction of the present microscopic model
and the full DFT results, it is necessary for STO to include explicitly in |{w}〉 an-
other crystal distortion, describing the antiferroelectric (AF) mode of the Ti atoms.

6.2.2 Connections to continuum models

Following Ref. [75], the contact point between the continuum energy functional and
the microscopic dynamics is conveniently performed in reciprocal space, where the
amplitude of the lattice distortions, ṽq

k , can be related to the macroscopic order
parameters, vk(r), by the Fourier transform

vk(r) =
1√
(2π)3

∫
d3q ṽq

k eir·q. (6.14)

Applying such transform to Lagrangian functions, Lq
Γ̃′

and Lq
R̃′ , one obtains the

following effective energy expressions

EΓ̃′ =
Cαβ,γδ

2
εαβεγδ +

1
2χ0

P2 +
G
2
(∂P)2 − f P∂εrs

ER̃′ =
k
2
|φ|2 + Di

2
(∂φi)

2,
(6.15)

which are precisely the harmonic terms of Eq. 6.1. The advantage of the present
derivation is that for all the harmonic coupling coefficients we have obtained a
microscopic expression, as function of the dynamical matrix.

In order to get the explicit microscopic formulae for each coefficient of Eq. 6.15,
one has to assign the correct units to the amplitudes ṽq

k , to recover the standard
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definition of the macroscopic order parameters. For the acoustic case we set

Uq
α = ṽq

Aα
(6.16)

where Uq
α are the Fourier components of the macroscopic displacement field, uα(r).

Note that Eq. 6.16 holds only if the mass MA is equal to the total mass of the unit
cell [75],

MA = M = ∑
κ

mκ , (6.17)

as one can easily understand by reminding Eq. 6.8. For the soft polar mode, in order
to recover the macroscopic polarization, P, one has to set [75]

Pq =
Zr̂r̂(ṽ

q
O)

Ω
, (6.18)

where Zαβ is the effective charge tensor of the soft polar mode; this is defined as

Zαβ = ∑
κγ

Zκ∗
αγ

√
M
mκ
〈κγ|Oβ〉, (6.19)

where Zκ∗
αγ is the Born effective charge of each sublattice κ, Eq. 2.53, and |Oβ〉 is the

soft polar mode in direction β.
Using these choices one recovers the type-I elastic tensor [79],

[αβ, γδ] = − M
2Ω
〈Aα|D̂(2,γδ)|Aβ〉, (6.20)

which is define in Appendix A, Eq. A.12. This is connected to the familiar (type-II)
elastic tensor, Cαβ,γδ, by Eq. A.16. In a similar way, one obtains

(χ0)
−1 =

M
Ω

(Z)−1
r̂γ 〈Oγ|D̂(0)|Oγ〉 (Z)−1

r̂γ

G = − M
2Ω

(Z)−1
r̂ρ 〈Oρ|D̂(2,ŝŝ)|Oω〉 (Z)−1

r̂ω

f =
M
4Ω

(Z)−1
r̂ρ 〈Oρ|D̂(2,ŝŝ)|Ar̂〉.

(6.21)

We now move to the AFD energy, ER̃′ . Generally speaking, since the oxygen
rotations are small (in the bulk AFD phase of STO the rotations are ∼ 2◦), it is
convenient to express φi as the displacement of the rotated oxygen atoms projected
on its own cube face, in length units [11]. This choice sets the amplitudes ṽq

φi
equal

to the Fourier components of the continuum parameter φi, and fix once and for all
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the value Mφ to be
Mφ = 2mO, (6.22)

where mO is the oxygen mass. [Note that the relation 6.22 holds specifically when
the conventional tetragonal cell of twenty atoms is used.] With this choice, the
coefficients in ER̃′ , can be calculated as follows

κ =
2mO

Ω
〈φi|D̂(0)|φi〉

Di = −
2mO

Ω
〈φi|D̂(2,ŝŝ)|φi〉.

(6.23)

6.2.3 Anhamronic couplings

Up to here we have developed an harmonic model. However, anharmonic cou-
plings are essential to describe the energy landscape that includes the AFD crystal
phase. Moreover, in the case of STO a polar response can only be triggered through
anharmonic couplings between the polarization and the other order parameters.
Indeed, in previous studies [71] great emphasis was given to the biquadratic cou-
pling, since it directly connects the polarization and the oxygen rotations, which
drive the phase transition to the AFD phase. Note that in general anharmonic terms
can mix distortions that belongs to different Brillouin points, lifting the prescription
that the Γ̃′ and R̃′ modes can not couple.

Using the previously identified order parameters (i.e. the strain, εαβ, the polar-
ization, P, and the oxygen rotations, φi), in the case of STO one see that the homo-
geneous anharmonic terms allowed by symmetry are exactly the ones appearing in
Eq. 6.1,

Eanh = A|φ|4 − eαεααP2 − Rijαβφiφjεαβ −Qiφ
2
i P2. (6.24)

Since they are all function of common homogeneous parameters, they can be easily
calculated by first principles, via a series of finite-difference calculations of total
energies related to crystal structure, in which the different order parameters have
been froze-in. Example of such calculations can be fund in literature [40, 60, 93],
included a specific study on the combined effects of strain and oxygen rotation for
an homogeneous phase of STO [66].

6.3 New coupling terms

In this section we will discuss additional couplings that have been taken intro ac-
count in the present 1D effective model for the ferroelastic DWs of STO. The are
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named “new” because, to our knowledge, their explicit inclusion into effective en-
ergy models based on first-principles calculations was never reported before.

In the first paragraph we will present an extra gradient-mediated anharmonic
coupling, and the strategy in which it can be calculated by fist principles, using the
methodology presented before. In the second paragraph instead we will discuss the
new terms that must be added to the effective model as consequence of including
the AF mode of the Ti atoms as an explicit parameter.

6.3.1 Rotopolar coupling

Here we are interested in perform a systematic study of all the possible mecha-
nisms that can induce a polar response at the TWs of STO. In particular, we shall
include all the relevant gradient mediated couplings; based on symmetry consider-
ationsone can show that exist an extra tri-linear coupling that can not be discarded
a priori: the rotopolar coupling. This directly connects the polarization and the
gradient of the oxygen rotations, and in the case of our geometry it is

Erot = WijPφj∂φi. (6.25)

Note that Wij bears some similarities to the “flexoantiferrodis-tortive” (FxAFD) cou-
pling described in Ref. [20]; however, at difference with FxAFD, the rotopolar cou-
pling have two different values for Wrs and Wsr, i.e. it is not symmetric under
permutation of the two indices.

The first principles calculation of the coupling coefficients Wij presents two dif-
ficulties: this is a tri-linear coupling and it involves inhomogeneous terms. Ideally,
the inhomogeneous issue can be solved by using a long wave expansion, as done
before with the dynamical matrix, applied now to the Fourier components of the
third derivative of the lattice energy variation respect to the atomic displacements,

Nll′ l′′
κα,κ′β,κ′′γ

=
∂3E

∂ul
κα∂ul′

κ′β∂ul′′
κ
′′

γ

. (6.26)

However, this tensor is not directly accessible within standard DFPT codes. Here, to
overcome this difficulty we have calculated the elements of Eq. 6.26 by performing
one of the three lattice derivatives by finite difference. In practice, one can rewrite
the previous quantity as

Nq
κα,κ′β,κ′′γ

=
∆Φq

κα,κ′β(uκ
′′

γ
)

λ
, (6.27)
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where ∆Φq
κα,κ′β(uκ

′′
γ
) =

(
Φq

κα,κ′β(u
q
κ
′′

γ
)−Φq

κα,κ′β

)
, and Φq

κα,κ′β(uκ
′′

γ
) is the dynam-

ical matrix related to the reference crystal structure where the κ
′′

atom is displaced
of a λ amount in direction γ. For the present discussion it is more convenient to
work directly with collective atomic displacements associated to the lattice distor-
tions of Eq. 6.12. Then, proceeding as before, after the long wave expansion of
the the Nq

κα,κ′β,κ′′γ
tensor one can obtain the following expression for the rotopolar

coupling:

Wij = i
√

2mO M
2Ω

〈P|∆D̂(1,ŝ)(φj)|φi〉
λ

(6.28)

where ∆D̂(1,ŝ)(φj) is it the first term of the long wave expansion applied to the
dynamical matrix related to the conventional tetragonal cell with the oxygen atoms
distorted of a λ amount according to the mode |φj〉 (more details on the practical
calculation of all the coefficients can be found in the following Sec. 6.4).

6.3.2 Anti-ferroelectric mode of the Ti atoms

Choosing the subspace |{w}〉 is always a delicate step because one can accidentally
omit lattice distortions that are essential to establish a physically correct continuum
model. Therefore it is always necessary to go trough a verification of such choice, by
comparing the model outcomes with full DFT results. We will discuss the practical
side of this testing procedure in Sec. 6.4.1, where the results for the STO case are
presented. The major outcome of such testing procedure is that the displacements
defined in Eq. 6.12 alone fail to correctly describe the phonon dispersion associated
to the φr distortion (this is shown in Fig.6.2). In order to improve this dispersion,
which ultimately is related to the inhomogeneous effects of φr, it is reasonable to
look for all the extra displacements that couple with |φr〉.

Due to symmetry constrains [20, 66], it turns out that, at the lowest order in a
long wave expansion, only the anti-ferroelectric (AF) displacements of the Ti atoms,
|AFTiα〉, couple with the AFD modes. |AFTiα〉 belong to the R’ set of displacements,
and at the harmonic level the most general expression for its coupling with |φβ〉 is

− i
2

εαβγ

√
MAFTiα

Mφβ
〈AFTiα |D

(1,γ)|φβ〉, (6.29)

where εαβγ is the Levi-Civita symbol. Note that this is a gradient mediated term,
since the first q-derivative of the dynamical matrix appears.

In the specific case of the 1D model for ferroelastic DWs in STO, only the AF
mode in direction x̂ is involved, and it precisely couples with φr. To incorporate
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explicitly the effects of the AF mode, we have redefined the subset of lattice dis-
placements, |R̃′〉, by adding |AFTix 〉:

|R̃′〉 → {|φr〉 ⊕ |φs〉 ⊕ |AFTi〉}, (6.30)

where from now on we will omitted the redundant subscript x from the AF mode.
By exploring other couplings that can be triggered by the explicit treatment of the
AF mode, one finds that exists another tri-linear contribution to the polarization, in-
duced by the AFD mode along the s direction, which we will call N. In conclusion,
the extra terms that we have included in our effective model for STO are

ETi =
κTi

2

(
uTi
)2

+ SP(∂φr) + NPuTiφs, (6.31)

where uTi is the macroscopic order parameters describing the AF distortion of the
Ti atoms, and each coefficient can be written in terms of microscopic quantities as

κTi =
MTi
Ω
〈AFTi|D̂(0)|AFTi〉

S =− i
2

√
2mO MTi〈AFTi|D(1,ŝ)|φr〉

N =

√
2mTi M
2Ω

∆〈P|D̂(0)(φr)|AFTi〉
λ

.

(6.32)

As before, the factor MTi is arbitrary, and it is fixed by choosing the physical units
for the continuum parameter, uTi. The most natural choice are length units, which
sets

MTi = 2mTi, (6.33)

where mTi is the mass of the Ti atoms. [Note that Eq. 6.33 is valid for the specific
case of the conventional tetragonal cell.]
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6.4 Continuum model for STO

For the ferroeleastic DWs of STO, summing up all the results of the previous sec-
tions, one get the following 1D model:

E =
Cαβ,γδ

2
εαβεγδ +

κ

2
|φ|2 + A|φ|4 +

χ−1
0
2

P2

− Riαφ2
i εαα −Qiφ

2
i P2 − eαP2εαα

+
Di
2
(∂φi)

2 +
G
2
(∂P)2 − f P∂εrs −WijP(∂φi)φj

+
κTi

2
(uTi)2 + NPuTiφs + S(∂φr)uTi,

(6.34)

where the Latin index run over {r̂, ŝ} while the Greek index dun over {r̂, ŝ, x̂}. Al-
though it is similar to the phenomenological expression 6.1, this model 6.34 has
been derived staring from full ab initio results, and via two well controlled approx-
imations: (i) the long wave expansion of the dynamical matrix, Eq. 6.10; (ii) the
selection of an explicit subspace of lattice distortion , Eq. 6.30;

This allows, on one side, to systematically identify and include in our effective
model all the coefficients that fall inside the well defined boundaries of the ap-
proximations. On the other side, we have obtained an explicit microscopic formula
to calculate each coupling appearing in Eq. 6.34, including the gradient mediated
terms. Then all those coefficients can be readily extracted by performing a bunch
of DFTP calculations, and projecting the long wave dynamical matrix expansion on
the selected set of lattice displacements.

In practice the most tricky part is to get the dynamical matrix expansion itself.
We shall calculate the q-derivatives of D̂q

κκ′ by using the real space moments of the
dynamical matrix,

D̂(n,q̂)
κκ′ = ∑

l

Φl
κ,κ′√

mκmκ′
[q̂ · (Rl + τκ − τκ′)]

n eiq·(Rl+τκ−τκ′ ), (6.35)

where τκ are the undistorted position of the sublattices in the conventional tetrago-
nal cell. Φl

κ,κ′ can be derived by performing DFPT calculations for a strip of q-points
along the direction q̂, followed by a Fourier transform. Since we have expressed the
anharmonic terms as function of the dynamical matrix of a distorted structure, see
Eq. 6.27, then the same procedure to calculate its q-derivatives holds also for the
anharmonic couplings, with the only difference that now the DFPT caluculation
must be performed using the distorted structure where one of the lattice distortion
has been frozen-in. For example, in the case of the rotopolar coupling Wsr, we have
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built a crystal structure with the oxygen atoms rotated along the r̂ direction, by a λ

amount, and the related force constant matrix projected on the polar mode and |φs〉
shall give Wsr, as prescribed by Eq. 6.28.

The final list of values for each coefficient in Eq. 6.34 is reported in Tab. 6.1.

Details on the Ab initio calculations The ab initio calculations have been per-
formed with norm-conserving pseudopotentials, taking into account explicitly 10

US SV this work a.u.
κ −3.01 −22.5 −20.62 10−6 Ha bohr−5

A 5.16 4.92 5.26 10−5 Ha bohr−7

C11 11.43 13.02 13.14 10−3 Ha bohr−3

C12 3.64 3.30 3.83 10−3 Ha bohr−3

C44 4.32 4.16 10−3 Ha bohr−3

R11 1.23 1.68 1.95 10−4 Ha bohr−5

R12 −2.37 −2.70 −2.74 10−4 Ha bohr−5

R44 −2.18 −2.42 10−4 Ha bohr−5

Qr −0.28 10−1 Ha bohr−1

Qs −1.95 10−1 Ha bohr−1

N −1.53 10−2 Ha bohr−3

χ0 120.00 Ha bohr
κTi 3.54 10−3 Ha bohr−5

Dr 1.95 10−3 Ha bohr−3

Ds 1.00 10−3 Ha bohr−3

S 1.29 10−3 Ha bohr−4

ex −0.18 Ha bohr
es 1.31 Ha bohr
er 1.84 Ha bohr
G 5.43 Ha bohr3

f −4.70 10−2 Ha
Wrs 2.11 10−3 Ha bohr−2

Wsr 0.29 10−3 Ha bohr−2

TABLE 6.1: Calculated model parameters compared with the avail-
able literature data (US=Uwe and Sakudo [84], SV=Sai and Vander-
bilt [66]). The elastic and rotostriction coefficients are repoted in the
more common Voigt notation for the Cartesian axis The calculated
value of κ is reported in italics, as we have replaced it with a phe-
nomenological function of temperature, Eq. 6.36. Note that the χ0
value calculated within the zero-temperature first-principles calcu-
lations, matches with the experimental value of the dielectric con-

stant at T ∼ 80 K [88]; 4πχ0 ∼ 1500.
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electrons for Sr, 12 for Ti and 6 for O. The pseudopotentials have been generated us-
ing the FHI98PP code and the exchange-correlation term has been treated using the
local-density approximation (LDA). Finally the energy cut-off used is 70 Ha and
in all the first-principles simulations we have employed a Monkhorst-Pack mesh
equivalent to 8x8x8 grid in the primitive cubic cell. With these input parameters
we obtain a bulk lattice constant value for the cubic structure of 7.2675 bohr.

The coefficient κ needs a deeper discussion. The values reported in Tab. 6.1 was
calculated with DFT simulations. However it is well known that DFT systemati-
cally overestimate κ [66], and ultimately inducing an higher AFD value at T = 0
K than the experimental findings. This is due to the fact that κ is connected to the
frequency of soft AFD phonon modes which are highly sensitive to the pseudopo-
tential approximation.

Actually, in a Landau theory picture, the quadratic coupling of the unstable or-
der parameter is the only one that shows an explicit dependence of the temperature,
changing from a positive to a negative value as moving across the transition tem-
perature. Following this reasoning, for obtaining the results presented in the sec-
tion below, we will replace the DFT value of κ with a function that linearly change
respect to the temperature:

κ(T) = α0(T − Tφ), (6.36)

where Tφ is the transition temperature from the cubic to the AFD phase in STO,
Tφ = 105 K, and α0 is the linear coefficient chosen in order to recover the exper-
imental value of φAFD = 2.1◦ at T = 0 K [16], which means α0 = 0.047 · 10−6

Hartree/bohr2.

6.4.1 Validating the macroscopic model

Testing the microscopic model is crucial in order to check the accuracy of the effec-
tive energy expansion. In practice, the aim here is to verify that the chosen subspace
of normal modes at the Γ point, |{w}〉, is sufficient to reproduce all the relevant
physical effects in which we are interested here. For simplicity here we will only
focus on the harmonic terms; then the macroscopic model is given by the sum of
EΓ̃′ , ER̃′ and the harmonic terms of ETi, Eq.s 6.15 and 6.31. Since the initial goal as
to build an approximation for the phonon dispersions of selected normal-modes,
|{w}〉, in an neighborhood of Γ, then we will directly compare the phonon dis-
persion curves obtained using full ab initio calculations to those provided by the
macroscopic model.
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In fig. 6.2 we report the phonon dispersion curves associated to the normal
modes of the 1D model for STO. In panel (a) the dispersion of the three acous-
tic modes and the soft polar mode are shown. The solid lines are the full DFT
results (the ticker solid lines highlight the transverse branches that are the relevant
for the present 1D model), while the dot-dashed blue lines represent the results of
the macroscopic harmonic model. Fig. 6.2 illustrates that the model describes the
phonon dispersion associated to the transverse acoustic mode and transverse polar
mode to a good approximation. This gives us the confidence that the spatial gradi-
ents of εrs and P are correctly treated. In the same panel the red dashed lines are the
results of a modified macroscopic model where we remove the flexocoupling be-
tween the optical and acoustic branches, f . Clearly, the acoustic (red) branch shows
a worse agreement with respect to the DFT result, corroborating the idea that the
flexoelectric coupling has an important role in spatially inhomogeneous systems.

In panel (b), the phonon dispersions associated to the oxygen octahedron rota-
tions φs and φr are shown. Again the black thick lines are the full DFT results, while
the blue dashed lines are calculated using our model.

This test was extremely important in order to identify the importance of the AF
mode of the Ti atoms on the φr dispersion. Indeed, in the same panel (b), we show
(light blue dashed line) the results of the macroscopic model without including the
S coupling, i.e. the result as simply obtained by ER̃′ in Eq. 6.15. It is clear that the
agreement with the DFT line is poor, and the Ti mode plays an important role in
the modulated tilt patterns.

In conclusions the testing procedure is an essential step that gives a quite impor-
tant indication on the degree of reliability of the macroscopic model, and ultimately
of the continuum effective expansion that is build on top of it. Moreover the testing
procedure can unveil new couplings that can introduce new physical effects, as it
is the case here with the AF mode of the Ti atoms.

6.5 Twin walls in STO

6.5.1 Details on the solution of the continuum model

Here we present the details on the conjugate gradient minimization of Eq.6.34. The
continuum fields have been discretized to a one dimensional mesh along the di-
rection ŝ, and the spacing has been set equal to a[110] = a0/

√
2, where a0 is the

equilibrium lattice parameter of STO as calculated from first principles. Thus, the
mesh coincides with the atomic layers of the Sr atoms along the [110] direction.
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FIGURE 6.2: Phonon frequencies as function of the wavevector q in
reduced coordinates, where a[110] = a0

√
2 and a0 is the cubic lattice

parameter of STO. In panel (a) the phonon dispersions are plotted
along the Γ-M direction, adn in panel (b) along the R′-X’ (see inset).
Solid curves are first-principles data, while dashed and dot-dashed

are the results of the model (see text).
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FIGURE 6.3: Evolution of the strain across the ferroelastic twin
walls. (a) and (b): illustrations of the two types of ferroelastic twin
walls considered in this work (respectively HH and HT). Note that
these are just schematic illustrations of how the order parameter
evolves from one domain to the next - as discussed in the main
text, the actual length scale of the transition is much larger than
suggested by the cartoons. (c): Evolution of the individual strain
components across the two DWs. Note that εrr and εxx are uniform
and fixed to their bulk value, in order to reproduce the correct me-

chanical boundary conditions for the domain wall structure.
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The gradients of a given continuum field, f , are expressed as effective nearest-
neighbor interactions between the mesh points. This is equivalent to adopting the
following finite-difference formula:

∂ fi+1 =
fi+2 − fi
2a[110]

(6.37)

where the subscript indicates the mesh point at which the field (or its gradient) is
sampled.

Periodic boundary conditions have been enforced; as consequence, the simu-
lated geometries always involve supercells that include at least two equal and op-
positely oriented twin walls. For example, in order to study a H-T DW, the supercell
includes an H-T and a T-H boundary, or to study a H-H one has to include an H-H
and T-T boundary. To avoid interactions between the two DWs, a supercell size of
300 a[110] has been set.

The relaxation of the strain components must be performed with care, in order
to respect the mechanical compatibility conditions of the problem. Indeed, the fer-
roelastic DWs must preserve translational symmetry along the r̂ and x̂ direction.
Therefore, the transverse strain components (referring to the DWs orientation) εrr

and εxx must be uniform throughout the structure. Their values have been fixed
to the respective equilibrium bulk values of the distorted tetragonal phase. Con-
versely, εss and εrs are free to relax during the energy minimization, in order to fit
the local distortion that occur in a neighborhood of the ferroelastic TWs.

As an example, the starting conditions for simulating an H-H configuration con-
sist in setting the φs parameter to a sinusoidal profile with period to the supercell
length and φr to a constant value. Then the minimization procedure will give the
result shown in Fig.s 6.3, where profiles of the strain components across the su-
percell are shown. Note that if the supercell is too small, then it is energetically
convenient for the system restore a unique uniform AFD phase, since the disper-
sion coefficients, G carry the main contribution to the energy. However, a supercell
length of 600 a[110] is more than enough to obtain two well separated TWs at 80 K.

6.5.2 Thickness and energy

In Fig.6.4 we show the relaxed structural order parameter profile for the two types
of DW. Note that, the AFD component that changes sign across the DWs show an
antisymmetric profile with respect to s → −s. The analytic solution (with some
simplifications) [11, 68] is proportional to tanh(s/ξ), where 2ξ is defined as the
DW thickness. The present model matches fairly well such trend; then, we used
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FIGURE 6.4: (a),(b) Schematic illustration (not to scale) of the two
different types of TBs considered in this work, respectively HH (a)
and HT (b). Sr (large green balls), O (small red balls), and the oxy-
gen octahedra are shown; the dashed square indicates the primi-
tive cell of the cubic reference phase; the arrows indicate the local
tilt vector. (c) Evolution of φs and φr across the two TBs. A local
decomposition of the tilt vector (black arrows) into ŝ (green) and
r̂ (red) is also shown. The shaded area indicates the nominal wall
thickness 2ξ. (d) Amplitude of the uTi mode in arbitrary units. The
inset illustrates the AFE character of the Ti displacements, resem-
bling spins in a G-type antiferromagnet. The length scale is in units

of ξ.
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FIGURE 6.5: (a) Domain wall thickness 2ξ as a function of tem-
perature. (b) Formation energy per surface unit as a function of

temperature.

a fit to tanh(s/ξ) to extract the DW’s thickness. On the other hand, the constant
component of the AFD mode across the DW shows a characteristic bump in cor-
respondence of the boundary. Again, this is in agreement with earlier analytical
works [11]. The presence of a bump on the inversion-symmetric AFD component
is due to the fact that the system tries to preserve a constant amplitude for the oxy-
gen tilt pseudovector.

A study on the DWs’ thickness as function of temperature is reported in Fig. 6.5.
As we mentioned earlier, the temperature has been introduced into the continuum
model by varying the κ coefficient according to the Curie-Weiss law, Eq. 6.36.

In Fig. 6.5 we plot the DW width. Interestingly, for a temperature around 80
K, we get widths that are 2ξ ∼ 11− 14 nm, which is almost one order of magni-
tude thicker than the established literature values for either SrTiO3 [11, 55] or other
ferroelastic materials [68]. This discrepancy can be traced back to the Di gradient
coefficients. The values calculated here from first principles are much larger than
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the values commonly used in literature [11]. Moreover HT thickness is always big-
ger than in the HH case because the gradient coupling Dss is smaller than Drs. We
remind that here all the gradient-mediated coefficients have been calculated on the
base of phonon band dispersions, for which DFT is known to have an excellent
degree of accuracy.

The thickness of the DWs predicted by the present model fits with the experi-
mental observation that they are highly mobile, even at the lowest temperatures [41].
Moreover, in retrospect, this result also justifies the continuum approximation em-
ployed in this Chapter, instead of a direct DFT study that would be computationally
inaccessible.

Another important quantity that characterizes the ferroelastic DWs’ formation
is the formation energy. Comparing the relative formation energy between the two
types of DWs, Fig. 6.5, another surprise emerges: the HT walls, which were for-
merly believed [55] to be the “easy” type of twin boundaries, are in fact more costly
than HH walls. Again, this can be traced back to the gradient coefficients Di.

Finally, it is interesting to note that the expected [11] scaling of the thickness, 2ξ,
and energy, E, as a function of κ and the Di coefficients are accurately respected by
our results: ξi ∼

√
Di/κ and Ei ∼ κ2√Di/κ.

6.5.3 Domain wall polarity

We move now to the main result of this work, regarding the induced electrical po-
larization at either type of domain boundary. For the following results, we shall
work at a reference temperature of Tref = 80 K. which is chosen out of convenience.
Indeed also the χ0 parameter shows a temperature dependence [88]; however DFT
calculations, which are formally performed at 0 K, usually overestimate such coef-
ficient. Here, the calculated value of χ0 matches the experimentally measured [88]
dielectric constant of SrTiO3 precisely at 80 K. Therefore, in order to be consistent
in the following results we will restrict our analysis to Tref. It is important to stress
that the main conclusions that will be presented in the following are, nevertheless,
valid at any temperature below the ferroelastic transition.

Looking back at the effective energy, Eq. (6.34), one can see that there are three
improper (linear in P) mechanisms that can induce a polarization at the wall: flexo-
electricity, rotopolar copuling, and the trilinear coupling mediated by uTi. In order
to quantitatively appreciate the impact of each one of these mechanisms, we ana-
lyze them by introducing one by one. We shall start with an Hamiltonian where
Wij, S and N are artificially set to zero; then progressively they are switched on
and at the same time their impact on the total (integrated) polarization at either
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wall (〈P〉HH,HT) is monitored. As example a profile of the macroscopic polariza-
tion, P(s), at the two DWs is reported in Fig.6.6. Note that the electrostriction and
biquadratic couplings also have an impact on 〈P〉, although they fall in a different
category since they both go like P2. Therefore, in order to quantify their importance,
we shall perform the computational calculations twice, either with or without the
latter two terms (see the difference between full and empty circles in Fig. 6.6).

The total integrated polarization for both the TWs is reported in Fig. 6.6. The A
points are the results for the simplest artificial case (Wij = S = N = 0), showing
that the polarity of HH and HT walls is essentially the same. This is understood
by the fact that the flexoelectric contribution acting on 〈P〉, which is the only mech-
anism of order P at play here, can only depend [70] on the total discontinuity in
the shear strain component, ∆εrs, and this is the same at both types of walls. Then,
the small difference between 〈P〉HH and 〈P〉HT is only due to the P2 terms, i.e. the
electrostriction and biquadratic couplings.

In retrospect, we have also got the important result that the P2 contributions to
the total polarization are much less remarkable that the flexoelectric coupling.

Next, by switching on the new rotopolar coupling, Wij, we get the results B. This
mechanism introduce a great difference on the total polarization between the two
TWs. Indeed its contribution to 〈P〉 is dominated by Wrs at HT walls, and by Wsr

at the HH walls. Since Wsr is very small 6.1, at HH walls the polarization is almost
unaffected; conversely, Wrs is large and almost cancels the flexoelectric effect at HT
walls.

If the analysis was stopped, then one would be forced to conclude that the total
polarization at the HH ferroelastic DW is bigger than the HT case, 〈P〉HH > 〈P〉HT.
However the procedure to built an effective model, starting from the microscopic
DFT results has already proved the importance of introducing the uTi order param-
eter. This couple via a trilinear coupling with P and the AFD tilts. Then, turning
on the N coupling has a dramatic impact on 〈P〉, to the point that it reverses (C
point) the ordering of 〈P〉HH and 〈P〉HT The trilinear coupling can be thought as
an effective additional contribution to Wrs, while its contribution to Wsr vanishes.
Therefore the most affected wall type is the HT, where φr changes sign. This ex-
plains why uTi has a much larger amplitude at the HT wall, Fig. 5.1.

By looking at the empty circles of Fig. 5.1, calculated by excluding the biquadratic
/ electrostrictive couplings, one concludes that the effects of these couplings are
a systematic suppression, somewhat stronger at the HH walls, of the gradient-
induced polarization. This observation implies that the P2 terms alone are unlikely
to trigger a ferroelectric state at either type of twin boundary, and corroborates im-
proper mechanisms as the main driving force for P.
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FIGURE 6.6: (a) Polarization profile across the two DWs; the
dashed line refers to the result B, i.e., without including uTi in the
simulation. (b): Total polarization integrated across the DW as a
function of the addition of different couplings in the Hamiltonian.
The empty and filled symbols refer to the results obtained while
excluding or including the biquadratic and electrostrictive terms.
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twin boundary.
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FIGURE 6.7: An AFD cycloid.

6.5.4 Conclusions

As result of our analysis, we have obtained that the two different types of ferroelas-
tic DWs in STO have a polar character, and the total polarization at the two walls is
different. In particular we have identified two main causes that induce a different
polar response between the HH and HT configuration: the rotopolar coupling and
the activation of the AF mode.

Interestingly, if in the former we take replace φ with the magnetization vector
(M), we obtain the Lifshitz invariant already discussed in the context of inhomo-
geneous magnetic materials, Ref. [56], where it was suggested that spin cycloids
can induce a macroscopic polarization response. Similarly, by engineering the fer-
roeleastic domain walls in STO, one could induce a macroscopic ferrielectric-like po-
larization, Pmac, in a periodic twin wall structure. It suffices to alternate HT and
HH wall types, as illustrated in Fig. 6.7, to obtain (L is the average domain width)
Pmac = (〈P〉HH−〈P〉HT)/(2L) 6= 0. This result can be easily understood even with-
out doing the calculations. There is an insightful visual proof that such a structure
indeed does break macroscopic inversion symmetry: By following the evolution of
the AFD pseudovector across the structure, one can easily identify a counterclock-
wise rotation of φ for increasing s.

In conclusions, these results open new perspectives for breaking macroscopic
inversion symmetry (and hence engineering an effective piezoelectric and/or py-
roelectric behavior) via twinning – Ref. [70] explored the potential of defects (kinks,
junctions, vortices) in the domain wall topology, while here we demonstrate that a
macroscopic P can emerge even in “ideal” ferroelastic structures. These arguments
can be readily generalized to other materials systems: For example, the improper
mechanism pointed out [3] at CaTiO3 twins can be simply (and quantitatively) ra-
tionalized as a rotopolar coupling. More generally, our work open new avenues
for materials design via domain wall engineering, an increasingly popular strategy
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where new functionalities emerge from spatial inhomogeneities, rather than the
uniform crystalline phase itself.
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Chapter 7

Conclusions
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This work is a contribution to the development of a consistent microscopic de-
scription of the flexoelectric effect. This has been accomplished on one hand with
the more fundamental work presented in Chapter 4, which focuses on the calcu-
lation of the bulk flexoelectric tensor within a first-principles electronic-structure
framework. On the other hand, in Chapter 5 and 6 we have presented two different
applications of the theory of flexoelectricity to real physical systems. In particular,
we have studied flexoelectrically enhanced photovoltaic devices, where the elec-
tric fields generated by strain gradients facilitate the migration of the carriers to
the electrodes, and functional domain walls in ferroelastic SrTiO3, which acquire a
polarity in spite of the bulk material structure being centrosymmetric.

The main conclusion of this work can be summarise in the following points:

• Through the formulation and implementation of the novel metric perturba-
tion, defined as an acoustic phonon described in the frame that is co-moving
with the atoms, we have achieved an efficient methodology to calculate the
bulk FxE tensor for a generic crystal. Via an extensive numerical validation,
we have demonstrated, that this procedure has clear advantages in terms of
efficiency and ease of use with respect to earlier approaches. Interestingly,
the metric-wave perturbation recovers the treatment of the uniform strain of
Hamann et al. [33] as special case. In this regard, we have established the
formal link between the already available “phonon” and “uniform strain”
perturbations, which were previously considered to be conceptually distinct
within the context of DFPT.

• Thanks to the recently established connection between the theory of ADPs
and the flexoelectric theory, we were able to take advantage of the computed
bulk FxE tensor of Si in order to study the electronic band response of a nano-
membrane. In practice we have stressed their possible application to engi-
neering an efficient nano-flexovoltage device, i.e. a solar cell device in which
the photoexcited carrier pair is separated by the FxE effect. On one hand,
our study of unsupported bent membranes unambiguously determines the
(100)-oriented system to be the most effective at separating the photoexcited
carriers. On the other hand, the application of metallic electrodes has the con-
sequence of suppressing the bulk flexoelectric response, but remarkably an
effective electric field is still acting on the photoexited carriers.

• Using our effective model we have identified three main mechanisms that
quantify the polar response at the ferroelestic DWs in SrTiO3: (i) the flexo-
electric coupling, (ii) the rotopolar term, which is an inhomogeneous coupling
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between the polarization and the antiferrodistortive tilts, and (iii) a tri-linear
coupling involving the antiferroelectric mode of the Ti atoms, which again is
activated by the inhomogeneous behaviour of the antiferrodistortive parame-
ter close to the ferroelastic DWs. All these three terms must be carefully taken
into account since their contribution to the total energy of the system are of
the same order, resulting in mutual suppressions or enhancement.

The work presented in this thesis has opened many opportunity for the future
research. The most recent calculations of the FxE tensor [65], aimed to finalizing a
public implementation of flexoelectricity, is heavily based on the metric perturba-
tion. Regarding the flexoevoltaic idea, this is a first example of how the theory of
flexoelectricity can be used to understand the interplay between photocurrent and
mechanical deformations. In light of the recent promising experimental results [92]
on the flexophotovoltaic effect, we regard our study as a starting point for further
boosting this field of research. Finally, the study on the ferroelastic domain walls in
SrTiO3 clearly open new prospectives for novel device concepts based on domain
walls properties, which are currently of great interest in the scientific community.
For example one can further explore the connection between cycloid of the antifer-
roditortive parameter in SrTiO3 and the theory of cycloid in multiferroics, where
the polarization is induced by gradients of the magnetic parameter.
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Appendix A

Ionic response to a strain
gradient deformation

In order to calculate the internal atomic relaxation induced by a monochromatic
acoustic phonon in the long wave approximation, one can start from the equation
of motion

mκ üκα(t) = Φl
κα,κ′βul

κ′β(t), (A.1)

where ul
κα(t) is the atomic displacement of the sublattice κ in the cell l, and Φlκα,mκ′β

is the force constant matrix. Using the expression 3.12, one get

mκ (ω
q)2 Uq

κα = Φq
κα,κ′βUq

κα (A.2)

where
Φq

κα,κ′β = ∑
l

Φl
κα,κ′β eiq·(Rl+τκ−τκ′ ). (A.3)

We now proceed to solve the previous Eq. A.2 for small wavevectors, i.e. q→ 0. To
this aim we express q as function of a small adimensional parameter ε (q → εq),
which gives the following expressions

ωq = εω(1,q) +
ε2

2
ω(2,q) + ...

Uq
κα = U(0,q)

κα − iεU(1,q)
κα − ε2

2
U(2,q)

κα + ...

Φq
κα,κ′β = Φ(0)

κα,κ′β − iεΦ(1,q)
κα,κ′β −

ε2

2
Φ(2,q)

κα,κ′β + ...,

(A.4)

where we have used the convention of Eq. 3.15. Note that the zero order term of
ωq is zero since here we are considering an acoustic phonon.
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Inserting the previous expressions into Eq. A.2, and isolating the zero order in
ε, one get

Φ(0)
κα,κ′βU(0,q)

κ′β = 0, (A.5)

which is satisfied only if
U(0,q)

κ′β = U(0)
β , (A.6)

i.e. the displacement of all the sublattices is the same.
The first order equation is

Φ(0)
κα,κ′βU(1,q)

κ′β + U(0)
β qγ ∑

κ′
Φ(1,γ)

κα,κ′ ,β = 0 (A.7)

and the requirements for a non-singular solution is

∑
κκ′

Φ(1,γ)
κα,κ′β = 0. (A.8)

Then the solution of the first order equation is

U(1,γ)
κ′α = −Γκ

αβγU(0)
β qγ

Γκ
αβγ = Φ̃(0)

κα,κ′δΛκ′
δβγ,

(A.9)

where Γκ
αβγ is the internal relaxation tensor induce by a uniform strain deformation,

εβγ, Λκ′
δβγ is the piezoelectric force-response tensor, Λκ

αβγ = ∑κ′ Φ
(1,γ)
κα,κ′β, and Φ̃(0)

κα,κ′δ
is the pseudoinverse of the force constant matrix [89].

Finally the second order equation is:

− 1
2

Φ(0)
κα,κ′′λU(2,q)

κ′′λ = mκ

[
ω(1,q)

]2
U(0)

α − qγqδTκ
αβ,γδU(0)

β , (A.10)

where
Tκ

αβ,γδ = −
1
2 ∑

κ′
Φ(2,γδ)

κα,κ′β +
1
2

[
Φ(1,γ)

κα,κ′ρΓκ′
ρβλ + Φ(1,λ)

κα,κ′ρΓκ′
ρβγ

]
. (A.11)

Following Born and Huang [8], one can define

[αβ, γδ] =− 1
2Ω ∑

κκ′
Φ(2,γδ)

κα,κ′β

(αδ, βγ) =
1
Ω ∑

κ

Φ(1,δ)
κακ′ρΓκ′

ρβγ.
(A.12)
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The requirement for a non-singular solution for Eq. A.10 gives(
M
(

ω(1,q)
)2

δαβ − qγqδTαβ,γδ

)
U(0)

β = 0, (A.13)

where M = ∑κ′ mκ and Tαβ,γδ = ∑κ′ Tκ
αβ,γδ. Eq. A.13 can be recognized as the

sound-wave equation [77]. Combining Eq.s A.10 and A.13, one get

U(2,q)
κα = 2U(0)

β qγqδNκ
αβγδ

Nκ
αβγδ = Φ̃(0)

κακ′ρT̂κ′
ρβ,γδ

T̂κ
αβ,γδ = Tκ

αβ,γδ −
mκ

M
Tαβ,γδ

(A.14)

where Nκ
αβγδ is the type-I flexoelectric internal-strain tensor.

Combining the results A.6, A.9 and A.14, it gives Eq. 3.13.
Finally, note that the elastic tensor is closely related with the tensor Tαβ,γδ; in

practice one can shows that [8, 77]

Cαβ,γδ = −
1
Ω
(
Tαδ,βγ + Tαγ,δβ − Tαβ,γδ

)
, (A.15)

or equivalently

Cαβ,γδ = −[αβ, γδ] + [αγ, δβ] + [αδ, βγ]− (αβ, γδ). (A.16)
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Appendix B

Detailed analysis of surfaces in
curvilinear coordinates

Beyond the surface contribution originating from the gradient rotations of the sam-
ple that exactly cancels the dynamical bulk term (Sec. 3.2.2), there is the surface
piezoelectric response that have an non zero macroscopic effect on the FxE response
of a finite object, as already discussed heuristically in section 3.1.4.

Here, using the curvilinear coordinates, we conduct a more detailed analysis
of the surface response to a strain gradient deformation. As mentioned before, for
slabs systems the key quantity to look at is the flexovoltage, defined in Eq. 3.28, i.e.
the change in the open circuit voltage drop across the slab, ∆V, as function of the
applied strain gradient, εβ,γδ. Our attention for the flexoevoltage of a slab has two
main justifications: (i) it is directly related to the experimentally measurable quan-
tity ∆V; (ii) the voltage drop induced by the strain gradient deformation uniquely
defines the local voltage drop is uniquely defined (up to a uniform constant that
is fixed by the electrostatic boundary conditions) by the microscopic electric field
E(r), E(r) = −∇∆V(r), which in turn can be calculated from the the microscopic
charge density response, using the Gauss equation.

In curvilinear coordinate the Gauss equation becomes [74]:

∇ · ∆Ẽ = −∇ · Emet +
∆ρ̃

ε0
, (B.1)

where Emet is a geometric term originating from the change of coordinates (more
specifically from the linear term of the metric tensor in the curvilinear frame) and
it is only function of the electric field of the unperturbed system, E(r):

Emet
α (r) = εβγ(r)[δβγEα(r)− δαβEγ(r)− δγαEβ(r)]. (B.2)
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FIGURE B.1: Polarization response in a slab under: (a) uniform
transverse strain deformation; (b) uniform transverse strain gradi-
ent deformation; (c) uniform shear strain; (d) uniform shear strain

gradient deformation. Figure from Ref. [74].
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The tilde symbol in Eq. B.1 identifies the curvilinear response functions, and in full
generality one can write the generic curvilinear response function , f̃ (ξ), as

f̃ (ξ) = εβγ(ξ) f U
βγ(ξ) + εβγ,δ(ξ) f G

βγ,δ(ξ), (B.3)

where f U
βγ(ξ) and f G

βγ,δ(ξ) are the response to a uniform strain and uniform strain
gradient, respectively. The advantage of working in the curvilinear frame is that
in Eq. B.3 any response to a uniform translation of the crystal is already excluded.
Note also the similarity of expression B.2 with Eq. 3.18; yet the latter is a macro-
scopic relation, while the former is a microsocpic relation.

In order to carry out an analysis on the surface and bulk contributions to the
microscopic electric field and ultimately to the flexovotlage, it is essential to move
back to the polarization response. The Poisson equation in curvilinear coordinates
has the same form then in the Cartesian frame, with P̃ enjoying an expression as
Eq. B.3.

For shake of clarity here we consider a non piezoelectric slab centered in the
origin and oriented along the x̂ axis. Then PU

α,βγ(ξ) is non zero only close to the sur-
faces (due to the surface piezoelectric response), while the strain gradient response
function inside the slab is related to the flexoelectric tensor as follows

PG
αδ,βγ(ξ ∼ 0) =

µαδ,βγ

εr
, (B.4)

where εr is the electronic dielectric constant that appears since PG
αδ,βγ is defined in

OC while µ is defined in SC.
Combining the Gauss and Poisson equations, the following relation between

the longitudinal component of P and the electric field holds:

1
ε0
∇ · P = −∇ · E−∇ · Emet. (B.5)

In order to proceed further, one has to specialize the previous Eq. B.5 for a de-
fined deformation. Here we consider slabs of cubic crystals, which have three in-
dependent types of strain gradient deformations: the longitudinal, transverse and
shear (Fig. B.1). The difference is that the first two deformations have a strain gra-
dient that linearly grows in the same direction of the slab, preserving the in-plane
periodicity, while in the shear case the strain gradient breaks the in the in-plane
periodicity. Than two different dissertation must be done.

To avoid the unecessary complications, the following analysis focus only on the
clamped ion electronic response of a slab. The atomic internal relaxation induced
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by a strain gradient perturbation can be easily reincorporated following Ref. [74].

longitudinal and transverse case With reference to the Fig. B.1, the local strain
along the slab is εαα(x) = εx,ααx, and the polarization has only the x̂ component,
which is

Px(x) =
(

PU
x,αα(x)x + PG

xx,αα(x)
)

εx,αα (B.6)

[setting α = x or α = y one recover the longitudinal or transverse case, respec-
tively]. Then Eq. B.5 involves only the longitudinal components (the problem is
one dimensional), and therefore the divergence can be remove, getting

EU
x,αα(x) =− 1

ε0
PU

x.αα(x)− Ex(x)(1− 2δαx)

EG
xx,αα(x) =− 1

ε0
PG

xx,αα(x)
(B.7)

Since PU
x,αα(x) and Ex(x) are non zero only on the surface of the slab and they are

antisymmetric respect to the origin, also EU
x,αα(x) is antisymmetric and localized

only on the surface.
The potential drop across the slab is ∆V = −

∫ +∞
−∞ dx Ex(x), and reminding

the definition of the flexovoltage, Eq. 3.28, toghether with relation B.4, one can
write [76]

ϕxx,αα = −
∫ +∞

0
dx EU

x,αα(x) +
µxx,αα

ε0εr
(B.8)

where the two right hand side terms can be identified as

ϕ
sur f
xx,αα =−

∫ +∞

0
dx EU

x,αα(x)

ϕbulk
xx,αα =

µxx,αα

ε0εr
.

(B.9)

Then in the longitudinal and transverse case the total flexovoltage of a slab can
be decomposed in a surface and bulk contribution. The former is related to the
piezoelectric surface response, while the latter is connected to the bulk flexoelectric
response. Note that the electric field inside the slab, is uniquely determined by the
bulk crystal FxE response.

shear case In the shear case the strain gradient is perpendicular to the slab, and
following Fig. B.1 the local strain is εxy(y) = εy,xyy. Then the polarization response
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is

P(r) = εy,xy

PG
xy,xy(x)

PU
y,xy(x)y

0

 (B.10)

and EU
xy(r) vanishes. Substituting these informations into Eq. B.5, one get

∂xEG
xy,xy(x) = − 1

ε0
PU

y,xy(x)− 1
ε0

∂xPG
xy,xy(x) + Ex(x) (B.11)

where now PU
y,xy(x) is symmetric respect to the origin (see Fig. B.1).

We can now calculate the voltage-drop, and the total flexovoltage response of
the slab; the result is

ϕxy,xy =
1

ε0εr

[
µxy,xy −

∫ +∞

0
dx PU(x)− ε0φ0

]
, (B.12)

where φ0 =
∫ +∞

0 dx Ex(x) is the potential offset before the perturbation. Again, it
is possible to identify a bulk term and a surface term as

ϕ
sur f
xy,xy =− 1

ε0εr

[∫ +∞

0
dx PU(x) + ε0φ0

]
ϕbulk

xy,xy =
µxy,cy

ε0εr
.

(B.13)

However the important difference between the present deformation and the lon-
gitudinal or transverse case is that the bulk electric field EG

xy,xy(x ∼ 0) is not only
function of the bulk FxE response. Indeed Eq. B.11 is showing that the bulk elec-
tric field is function also of the surface contributions. In other words, the surface
contributions in Eq. B.11 represent a surface charge density, σxy,xy = ε0εr ϕ

sur f
xy,xy.

In conclusion, the flexovoltage response of a perturbed slab can be always writ-
ten as the sum of a surface and a bulk term,

ϕtot
αδ,βγ = ϕ

sur f
αδ,βγ + ϕbulk

αδ,βγ, (B.14)

showing that the global flexoelectric response of a finite object has a surface depen-
dence. Moreover, the electrostatic response in the bulk region, can show a direct de-
pendence from the surfaces, as in the shear case. However, the splitting of Eq. B.14,
defined by Eq.s B.9 and B.13, allows to tackle the problem of studying the FxE
response of a finite object by studying separately the bulk and surface response.
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Finally, note also that the surface and bulk contributions due to the local gra-
dient rotations of the sample, discussed in the Sec. 3.2.2, are already automatically
removed, since one can identified the P(ξ) response function, in the curvilinear
frame, only with the static contribution of Eq. 3.50.

Cubic crystals: Full bulk flexoelectric tensor by surface response

In Sec. 3.2.1 we have discussed that only the longitudinal flexoelectric response is
accessible via the charge density response function. In particular, for cubic crystals
the two independent longitudinal components of Eq. 3.41 can be calculated.

As first noted in Ref. [74], for the specific case of cubic crystals there is a strategy
to calculate the third missing independent component of the electronic FxE tensor
using the charge density response function as fundamental quantity. This is based
on the results obtained for the slab geometry and in particular about the surface
contribution to a slab response.

In particular, in the case of a slab with a transverse strain gradient distortion,
no charge is accumulated at the surface and therefore the surface piezoelectric re-
sponse is local; in other words the bulk electric field in open circuit EBC is only
induced by the local strain gradient deformation (provided that the slab is thick
enough), and therefore it is directly related to the bulk flexoelectric response. The
solution of the Poisson equation in curvilinear coordinates, as shown in Ref. [78]
and summarized in the previous section, can lead to value of ϕbulk

xx,yy and µbulk
xx,yy. This

extra information together with the knowledge of µ[110], Eq. 3.41, is sufficient to
obtain all the three independent FxE tensor components.
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Metric Hamiltonian

Here we carry out explicitly the derivation of the first-order pseudopotential terms
in curvilinear coordinates, Eq.s 4.9 and 4.10,

Local potential

Following the results of Ref. [79], a generic (non-local) pseudopotential operator in
the curvilinear coordinates is

Ṽpsp,(0)(ξ, ξ′) =
√

h(ξ)Vpsp,(0)(r(ξ), r(ξ′))
√

h(ξ′), (C.1)

where h(ξ) is the determinant of the deformation gradient tensor, hαβ = ∂xα
∂ξβ

, that
in the linear approximation is

h(ξ) = 1 + iq · λeiξ·q (C.2)

By using the transformation properties of the Dirac delta, one can easily verify
that the factors of

√
h cancel out in the local part,

Ṽloc,(0)(ξ) = Vloc,(0)(r(ξ)). (C.3)

Using Eqs. 2.34 and 4.1, this immediately leads to

Ṽloc,(0)(ξ) = ∑
lκ

vloc
κ [ξ −Rlκ + λ (eiξ·q − eiRlκ ·q)]

= Vloc,(0)(ξ) + eiξ·q ∑
lκ
[1− ei(Rlκ−ξ)·q]×

λ ·∇vloc
κ (ξ −Rlκ). (C.4)
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and therefore, for the cell-periodic part of the first-order contribution,

Vloc,(β)
q (ξ) = ∑

lκ
[1− ei(Rlκ−ξ)·q]

∂

∂ξβ
vloc

κ (ξ −Rlκ). (C.5)

Note the fact that the first-order potential vanishes identically at q = 0, which is a
consequence of adopting the curvilinear reference system.

To evaluate the Fourier transform it is useful to bring the derivative sign out of
the lattice sum in Vloc,(β)

q (ξ), obtaining the following three pieces,

Vloc,(β)
q (ξ) =

∂

∂ξβ
∑
lκ

vloc
κ (ξ −Rlκ)

− ∂

∂ξβ

{
∑
lκ

eiq·(Rlκ−ξ)vloc
κ (ξ −Rlκ)

}
−iqβ ∑

lκ
eiq·(Rlκ−ξ)vloc

κ (ξ −Rlκ) (C.6)

By performing the Fourier transform of the local atomic potential, we can readily
obtain Eq. 4.9.

Separable potential

To evaluate the separable part, we restart from Eq. C.1 and we recall the following
relations:

√
h = 1 +

i
2

λ · q eiξ·q, (C.7)

ζµκ(r(ξ)− r(Rlκ)) = ζµκ(ξ −Rlκ) +

eiξ·q [1− ei(Rlκ−ξ)·q]×

λ ·∇ζµκ(ξ −Rlκ). (C.8)

It is also useful to remind some basic properties of the Fourier transformation of
separable operators. Assume that we wish to express, in Fourier space, the follow-
ing cell-periodic function

F(r, r′) = ∑
l

f (r−Rlκ)g∗(r′ −Rlκ). (C.9)
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We have, following Eq. (A19) of Ref. [28],

F(G + k, G′ + k) =
1
Ω

ei(G′−G)·τκ f (G + k)g∗(G′ + k).

(C.10)

Another basic relationship that we need is∫
d3r f ∗(r)eiK′ ·r =

( ∫
d3r f (r)eiK′ ·r

)∗
= f ∗(K′). (C.11)

Combining all the previous results, after some algebra, we get

Vsep,(β)
k,q (G, G′) =

1
Ω ∑

κµ

eµκei(G′−G)·τκ f (β,q)
κµ (K, K′), (C.12)

with (the first two terms come from the volume factors, third and fourth from the
linear variation of ζ, fifth and sixth from ζ∗)

f (β,q)
κµ (K, K′) =

i
2

qβ ζ(K) ζ∗(K′)

+
i
2

qβ ζ(K + q) ζ∗(K′ + q)

+ iKβ ζ(K) ζ∗(K′)

−i(Kβ + qβ) ζ(K + q) ζ∗(K′)

−i(K′β + qβ) ζ(K + q) ζ∗(K′ + q)

+ iK′β ζ(K + q) ζ∗(K′) (C.13)

This expression can be further simplified as follows,

f (β,q)
κµ (K, K′) = i(Kβ +

qβ

2
) ζ(K) ζ∗(K′)

−i(K′β +
qβ

2
) ζ(K + q) ζ∗(K′ + q)

−i(Kβ − K′β + qβ) ζ(K + q) ζ∗(K′).

(C.14)

The final result is precisely Eq. 4.10.
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