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0. INTRODUCTION

This thesis deals with the electronic structure of low dimensional metals in the

form of either single layers or bulk. Low dimensional metals were predicted long-

time ago to exhibit a distinctive physical behaviour [1, 2] because of the special

topology of their Fermi surface, which is prone to sustain different instabilities like

charge density waves (CDW) or spin density waves (SDW). A CDW electronic

instability is usually coupled with a periodic lattice distortion which opens a gap

at the Fermi level thus leading to a metal to insulator transition. This is the well

known Peierls distortion [3]. In the case of a SDW it is the spin density which is

modulated and in that case the instability is not coupled to a noticeable structural

distortion although is also associated with a metal to insulator transition. How-

ever, for many years these theoretical predictions could not be tested because of

the lack of appropriate materials. The first one-dimensional material for which the

Peierls distortion could be well characterized (nature of the structural modulation,

occurrence of a Kohn anomaly1) was the Krogman salt [4]. This work was very

important in calling the attention of the solid state community to low dimensional

conductors.

It was during the seventees of the last century that several types of low dimen-

sional metals could be prepared or rediscovered. The seminal work by Wilson,

DiSalvo, and Mahajan [5] and by Williams, Parry and Scruby [6] on group IV

and V transition metal dichalcogenides, was very important in showing that two-

dimensional materials could be the locus of different structural CDW modulations

associated with metal to metal and metal to insulator transitions. These mod-

ulations were proposed to originate from the so called nesting of the Fermi sur-

face, a generalization of the Peierls mechanism for two-dimensional metals. This
1The origin of the Kohn anomaly is discussed in 1.2.
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work stimulated a huge activity on inorganic low dimensional metals. Very soon

one of the paradigmatic low dimensional metals, NbSe3, exhibiting two successive

CDWs was prepared and characterized [7]. NbSe3 and the blue bronzes A0.3MoO3

(A= K, Rb), were the first pseudo-one-dimensional materials exhibiting non-linear

trasport [8, 9] as a result of depinning of their CDWs thus confirming one of the the-

oretical predictions concerning low dimensional metals. Such discovery launched

a huge interest on these conductors. Both low dimensional transition metal ox-

ides and chalcogenides were intensely studied trying to unveil the physics of low

dimensional metals.

Almost simultaneously another crucial discovery in this field was realized. Al-

though several highly conducting organic donor-acceptor salts had already been

prepared, the successful marriage of the TTF donor and TCNQ acceptor in the

TTF-TCNQ molecular metal [10, 11] opened the route towards the preparation

of highly conducting molecular metals. With a partial charge transfer of ρ = 0.55

electrons from TTF to TCNQ, TTF-TCNQ exhibits not only a room temperature

conductivity of 500 S· cm−1 but also a metallic type behaviour in a large tempera-

ture range reaching a 104 S· cm−1 conductivity around 50 K, just before suffering

a drastic drop due to the occurrence of a Peierls metal-to-insulator transition.

The discovery of organic superconductivity at the beginning of the 1980s in the

(TMTSF)2X (X= PF6, ClO4, NO3, etc.), Bechgaard salts [12], boosted a whole

new area of research. Molecular organic metals are interesting not only due to

their superconducting properties but also because of their complex temperature-

pressure phase diagrams exhibiting a large number of competing insulating ground

states.

Both inorganic and organic low dimensional metals have been intensely studied

since then and a plethora of new materials and unusual phenomena have been

reported [13]. Recently, with the advent of successful techniques for the manipula-

tion of layered materials it has been possible to prepare thin slabs with a reduced

number of layers or even single-layers of these materials [14, 15]. This makes it
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possible to study how the reduced electronic screening brought about by lowering

the dimensionality from bulk to layers of different thicknesses influences the com-

petition between electronic instabilities like superconductivity, CDW, etc. Layered

transition metal chalcogenides have become again the focus of an enormous at-

tention. In particular, the group IV and V transition metal dichalcogenides which

played a crucial role in the development of the field have been reexamined as

single-layers or a few-layers slabs and remarkable differences with the bulk mate-

rials have been reported.

With no doubt, the impressive development concerning low dimensional conduc-

tors is partly due to the fact that relatively simple ideas have led to the rational-

ization of many physical observations. A central role in most of the theoretical

approaches is played by the notion that the electronic modulations occurring in

these materials originate from Fermi surface nesting. Yet a careful examination

of the experimental information casts strong doubts about the appropriateness of

such notion for a considerable number of these conductors, including some of those

studied since the very beginning of the field. The object of the present thesis is

an appraisal of this situation based on the calculation of the Lindhard response

function as well as the phonon band structure for a series of low dimensional con-

ductors based on accurate first-principles DFT calculations.

We have studied a large number of systems which exhibit this type of anoma-

lies:

• Single-layers: TiSe2, TiTe2, NbSe2,

• Oxides: Blue Bronzes (K0.3MoO3), Monophospate Tungsten Bronzes, AnBnO3n+

2, Mo8O23,

• Chalcogenides: NbS3, NbSe3, TaS3, TaTe4, Ta2NiSe7, T

• Intermetallics: LaAgSb2, YAgSb2, Y2Ir3Si5, Y5Ir4SI10,

• Molecular Metals: Bechgaard salts, α−(ET)2KHg(SCN)4.
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As we suspected only some of these compounds exhibit density wave instabilities

which are clearly related to Fermi surface nesting (e.g. Blue Bronzes, Bechgaard

salts, Monophospate Tungsten Bronzes, α−ET2KHg(SCN)4), while the others are

related to phonon mediated mechanisms (e.g. TiSe2, NbSe2, TaTe4, Mo8O23,

(TaSe4)2I, Y2Ir3Si5).



1. THEORETICAL BACKGROUND

1.1 Electronic structure approaches

The starting point for determining the ground state properties of a quantum sys-

tem is to solve the Schrödinger equation:

ĤΨ = EΨ, (1.1)

where Ĥ is the Hamilton operator (or most commonly the Hamiltonian), Ψ is the

wave-function and E is the energy level of the system.

The type of physical systems that we are going to examine in this thesis consist

of electrons and nuclei, and their Hamiltonian can be written as follows:

Ĥ = − ~2

2me

n∑
i

∇2
i −

~2

2

m∑
j

1

Mj

∇2
j

+
1

2

n∑
i6=j

e2

|ri − rj|
+

1

2

m∑
i6=j

ZiZje
2

|Ri −Rj|
−

n,m∑
i,j

Zje
2

|ri −Rj|
+ V̂ext

= T̂e + T̂N + V̂ee + V̂NN + V̂eN + V̂ext ,

where n and m are the number of electrons and nuclei in the system, the first

two terms (Te and TN ) express the kinetic energy of the electrons and the nuclei,

respectively, the third term (Vee) is the electron-electron Coulomb repulsion, the

fourth term (VNN) is the nuclei-nuclei Coulomb repulsion, the fifth term (VeN)

is the electron-nuclei electrostatic attraction and, finally, Vext accounts for other

potentials applied externally, like magnetic or electric fields.
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The wave-function in solving the Schrödinger equation for the many particle prob-

lem is dependent on the position of both electrons and nuclei.

ĤΨ(~r1, ..., ~rn, ~R1, ..., ~Rm) = EΨ(~r1, ..., ~rn, ~R1, ..., ~Rm)

The complexity of this equation makes it impossible to obtain the analytical so-

lution of even very simple molecules (considering that we have 3n+3m degrees of

freedom, the difficulty rises quickly even for a couple of particles). A very handy

approximation was proposed by Born and Oppenheimer[16] where the movement of

the nuclei (and implicitly their kinetic energy) is neglected due to the low momen-

tum transfer between nuclei and electrons. In this approximation we can decouple

the electronic degrees of freedom from the nuclear ones, and we can express the

wave-function of the system as follows:

Ψ(~r1, ..., ~rn, ~R1, ..., ~Rm) = Φe(~r1, ..., ~rn, {~R1, ..., ~Rm})φN(~R1, ..., ~Rm), (1.2)

where Φe is the electronic wave-function dependent on the electrons positions with

the nuclei positions as parameters since they are considered fixed, and φN repre-

sents the nuclear wave-function.

In the Born-Oppenheimer approximation we can rewrite our electronic Hamilto-

nian as:

Ĥe = T̂e + V̂ee + V̂eN + V̂ext (1.3)

with its corresponding Schrödinger equation:

ĤeΦe(~r1, ..., ~rn, {~R1, ..., ~Rm}) = EeΦe(~r1, ..., ~rn, {~R1, ..., ~Rm}), (1.4)

The treatment of the nuclear dynamics is another problem in itself which is out-

side the scope of this thesis, but the nuclear motion is relevant in calculating the

phonon dispersion. For this purpose the nuclei are considered to move in an effec-

tive potential created by the electrons (Ee({R})) and the phonons are calculated

by solving the normal modes in the harmonic approximation.
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In the past century, there have been several attempts to find the ground state so-

lution to the electronic many body problem. Very early on with the emergence of

the quantum theory, an approximate method to the many body wave-function was

proposed, namely that the wave-function could be reasonably described by a single

Slater determinant, finally reducing the many body problem to a one particle vari-

ational problem; this method is called the Hartree-Fock method.[17, 18, 19, 20, 21]

Within this method, though, by assuming a one electron in an average non-local

electron potential, one neglects the correlation effects between electrons.

In parallel with the Hartree-Fock method, the first density functional method was

proposed by Thomas[22] and Fermi[23]. Even though this method had consid-

erable shortcomings, due to neglecting exchange and correlation effects between

electrons, it expressed the kinetic energy of the system entirely as a functional

of the electronic density. Of course, a density functional based theory was very

appealing due to the enormous reduction of degrees of freedom from 3N in the

Schrödinger equation to 3 in a density functional based one. A more detailed

description of the evolution of the electronic structure theory can be found in R.

Martin’s book[24].

1.1.1 Density Functional Theory

Hohenberg and Kohn provided a rigorous basis for calculating the exact ground

state solution for a system of quantum particles by enunciating the following

theorems[25] as put in[24]:

Theorem 1: For any system of interacting particles in an external

potential vext(~r), the potential vext(~r) is determined uniquely, except for a constant,

by the ground state particle density n0(r)

Corollary 1: Since the Hamiltonian is thus fully determined, except for
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a constant shift of the energy, it follows that the many-body wave function for all

states (ground and excited) are determined. Therefore all properties of the system

are completely determined given only the ground state density n0(~r).

Theorem 2: A universal functional for the energy E[n] in terms

of the density n(r) can be defined, valid for any external potential vext(~r). For any

particular vext(~r), the exact ground state energy of the system is the global mini-

mum value of this functional, and the density n(r) that minimizes the functional

is the exact ground state density n0(r).

Corollary 2: The functional E[n] alone is sufficient to determine the

exact ground state energy and density.

The first theorem basically states that there is a direct mapping between an ex-

ternal potential applied to a system and its ground state density, yet it doesn’t

provide any explicit direction on how to solve the many body problem. The second

theorem calls for knowing the actual functional in order to obtain the exact solu-

tion to the ground state. These two theorems constitute the foundational basis of

Density Functional Theory(DFT).

Thus we get to the Khon-Sham approach, which provides a practical scheme for

exploiting the basic DFT theorems, by assuming a particular representation of the

charge density in terms of non-interacting one-particle wave functions. This leads

to the replacement of the many body problem by an independent one-particle

problem placed in an effective potential that takes into account both exchange

and correlation effects.[26]

The Kohn-Sham approach follows two assumptions:

1. The ground state density of an auxiliary system of non-interacting particles can

represent the exact ground state, with the charge density given by:

ρ(~r) =
∑
σ

N∑
i=1

|Ψσ
i (~r)|2, (1.5)
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with Ψσ
i (~r) - one particle wave functions.

2.The auxiliary Hamiltonian is chosen to act as the usual kinetic operator and

provide an effective local potential vKS(~r) acting on an electron of spin σ at point

~r.

Ĥσ
aux = −1

2
∇2 + vσKS(~r), (1.6)

with the first term being attributed to the kinetic energy, while the second term to

the potential energy that encompasses all the effects in the systems. The kinetic

energy term in the Kohn-Sham picture can be written as:

Ts = −1

2

∑
σ

N∑
i=1

〈Ψσ
i |∇2|Ψσ

i 〉 =
1

2

∑
σ

N∑
i=1

∫
d3r|∇Ψσ

i (~r)|2 (1.7)

and the Kohn-Sham effective potential as:

vσKS = Vext + VHartree + VNN + VXC (1.8)

with Vext coming from the interaction with nuclei and other external fields, VNN is

the interaction between nuclei, VHartree is the self-interacting energy of the electron

density and VXC is the exchange-correlation term where all the many-body effects

are included. The VXC is the only term that has no known analytical formulation

and the predictive power of this method is limited only by the approximations one

makes to this term. Finally the ground state energy functional can be written as:

EKS = Ts[ρ] + EHartree[ρ] + ENN [ρ] + EXC [ρ] +

∫
d~rVext(~r)ρ(~r). (1.9)

1.1.2 Approximating the Exchange-Correlation

In treating the exchange-correlation (XC) terms approximations have to be made,

since there is no universal functional known for this. There are many approxima-

tions available to the XC, such as local density approximation (LDA), generalized-

gradient approximation (GGA), hybrid functionals etc. For many purposes LDA

and GGA proved to be reliable enough in describing the electronic properties of
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many materials, although there are well known defficiencie which, in some cases,

can be overcomed by using more sophisticated functionals.

The LDA approximation is based on the idea that the range of the exchange

and correlation effects is short, so the XC energy density is assumed to follow the

homogeneous electron gas energy density at each point:

ELDA
XC [ρ(~r)] =

∫
ρ(~r)ε[ρ(~r)]d~r (1.10)

LDA proved to work well in many situations, especially to those being closer to

having a homogeneous electron density, but otherwise it proved to overestimate

the binding energy, which in turn could severely underestimate lattice parameters

in the case of crystal structures.

GGA comes as a natural step in dealing with the shortcomings of LDA, since

in many materials one encounters rapidly varying charge densities. GGA takes

into account not only the charge density, but also its gradient:

EGGA
XC [ρ(~r)] =

∫
f(ρ(~r),∇ρ(~r))ε[ρ(~r)]d~r. (1.11)

Even though GGA corrects some parts of LDA, it overestimates the bonding dis-

tances. It has to be remarked that both of these XC functionals perform extremely

poorly with strongly correlated systems of electrons and for this purpose other

methods have to be considered. However these approaches to treating the XC

functional proved successful in predicting the fundamental properties for a large

number of classes of materials. Throughout this thesis we will resume ourselves

to treat DFT mostly within GGA.

1.1.3 The SIESTA method

Apart from the XC treatment and the different approximations considered up so

far for treating many body systems, one has to find proper numerical ways to
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describe the electronic wave-function in solving the Schrödinger equation. For

this purpose there have been many approaches over the past decades, but most

common implementations involved either atomic spheres, plane-waves or a linear

combination of atomic orbitals. Throughout this thesis we have used the imple-

mentation of the self-consistent Kohn-Sham density functional theory available in

the SIESTA package.[27, 28]

The SIESTA method involves two further approximations and a slight modifi-

cation to the standard Kohn-Sham Hamiltonian[27]. The first approximation in

the SIESTA code, which is common to many other approaches including the most

widely used ones based on plane-waves, is the replacement of the core electrons by

an effective potential that acts on the valence electrons and providing an explicit

description only for the valence electrons. This method of using a pseudopotential

comes very handy in studying problems involving valence electrons and presents

several advantages due to the reduction of the number of electrons, such as the

reduction of the basis size since we are dealing with states involving only the

valence electrons, the use of a uniform spatial grid instead of a logarithmically

dense grid closer to the center of the atom that could have been needed due to the

acute localization of the core electrons and, most importantly, the replacement of

the true wavefunction that contains nodes with a smooth function without nodes.

The replacing function gives an exact match of the true wavefunction beyond the

pseudopotential cut-off radius rc, radius that can be fine tuned for each angular

channel independently.

The second approximation is to use numerical pseudo-atomic orbitals (NAOs).

Since the valence wavefunctions of condensed matter systems retain to a large

extent the shape of the atomic wavefunctions (perturbed by the presence of the

nearby atoms), atomic orbital bases achieve sufficient accuracy with a finite (and

a quite small) number of functions. The NAOs are made up of a numerical radial

function and a spherical harmonic, as follows:

φIlmn(~r) = φIln(rI)Ylm(r̂I), (1.12)
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where I is the atoms’s index, l is the angular quantum number, m is the magnetic

quantum number, n is the principal quantum number and r̂I = ~r − ~RI (~RI -

position of atom I). Inside the SIESTA package one can choose to use between

one and multiple radial function for each angular momentum channel. In the case

when one uses one radial function for each l-channel, it is referred as a single-ζ

function (or basis set), otherwise it is referred as multiple-ζ basis set. To describe

the second-,third-,ζ functions, one keeps the same (finite) extent (rmax) and the

same tail within some range (rs ≤ r ≤ rmax) as the first-ζ function, and below rs

a polynomial behaviour is employed[27].

φ2ζ
l (r) =

r
l(al − blr2) if r < rsl

φ1ζ
l (r) if r ≥ rsl .

(1.13)

Another important aspect in building the basis set is the use of polarization or-

bitals in order to account for the distortion of the atomic orbitals induced by the

bond formation. One can do this in two ways in SIESTA: automatically by in-

cluding the polarization flag in the basis description, in which case SIESTA will

generate a l + 1 basis function for the polarized orbital, or manually where one

could parametrize and optimize the polarization function included.

The localization and, implicitly, the finite range of the atomic wave-function is

preserved by defining a confinement potential. In SIESTA one finds the extent of

the radial component of the wave-function by solving the Schrödinger equation for

the atom in a box including a soft-confinement potential of the form, as defined

in[29]:

V (r) = V0
e−(rc−ri)/(r−ri)

rc − r
, (1.14)

with V0 as a parameter, rc as the confinement radius where the potential asymp-

totically tends to infinity and ri as the starting point for the potential.



Chapter 1. Theoretical Background 15

1.2 Charge (and Spin) Density Waves

The idea of an electronic instability has its roots in the 1930s when Peierls estab-

lished that a one dimensional (1D) electron gas would be unstable against a peri-

odic distortion of the the right periodicity leading to a perturbing potential that

would produce [1]. The reorganization of electrons, nonetheless, has consequences

on the underlying lattice in a real material due to the presence of electron-phonon

couplings. The conjunction of the band gap opening around the FL and the peri-

odic lattice distortion (PLD) that sets in as a consequence of the electron-phonon

coupling was later determined by Peierls[3] and Fröhlich[2]. In the same decade,

Kohn determined that the phonons of an uniform electron gas will experience a

sharp frequency variations in dispersion when the phonon wavevector matches the

diameter of the (electronic) Fermi sphere[30]; this notion was later referred to as

the Kohn anomaly. This cooperative manifestation of the electrons and phonons

in metallic systems gave rise to the notion of charge density waves (CDW). Nowa-

days, after 60 years, the CDW notion has reached broader connotations due to the

variety of scenarios that a CDW can be set in different kinds of materials, metallic

or otherwise. We will try in this manuscript to describe a comprehensive picture

about the CDW manifestation, at least at the level of the studied materials in this

thesis.

Let us first start with the reiteration of the CDW manifestation in (quasi-) 1D

materials. We refer to materials as being quasi-one dimensional (1D) due to the

nature of their electronic structure. Quasi-1D materials present a high energy

dispersion along one particular direction around the FL, respectively weak to van-

ishing energy dispersion along the other directions. Most commonly, quasi-1D

materials are prone to a phase transition from their initial metallic state into a

CDW state below a certain temperature, Tc. The CDW transition is accompanied

by both an electronic density modulation and a PLD, both being dependent on

the topology of the Fermi surface (FS). We illustrate, as a case example, the be-

haviour of an equally spaced 1D linear chain (fig. 1.1.a.I.) which shows a uniform
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charge density, ρ0, throughout the structure, typical for a metallic system. The

electronic dispersion at half filling (i.e. 1 e− per site in this case) has the FL cross-

ing at kF = ±π/(2 · a) (Fig. 1.1.b.I). The Fermi surface in this case consists of

two points at ±kF and they could be connected/nested by a wavevector q = 2kF .

In a 3D representation, the FS would be a pair of planes perpendicular to the a

direction. The translation of Fermi surface states by a unique wavevector q that

gives a perfect overlap between these states is called Fermi surface nesting (FS

nesting). This scenario is commonly employed in describing the CDW formation

in quasi-1D materials. The wavevector that produces such a match is responsible

for the CDW formation in materials that present such a FS topology. More often

than not, Peierls scenario is misrepresented in the literature. We would like to

point out that FS nesting is intimately linked to the Peierls transition and where

another mechanism drives the CDW formation, it should be referred to according

to its origin.

The FS nesting, as represented in this simple model, allows for the spontaneous

breaking of the symmetry in this system, which in turn has two effects: the reor-

ganization of the charge density in a wave-like pattern with a periodicity dictated

by the nesting wavevector (Fig. 1.1.a.II) with its corresponding reorganization of

the underlying lattice due to the coupling between electrons and phonons, and the

opening of a gap at the FL at the edge of the zone boundary of the modulated

system (Fig. 1.1.b.II). The gap opening that occurs shows that the energy gain

due to the reduction of the energy of the electronic states at the FL is larger than

the elastic modulation of the lattice.

Throughout this thesis we have employed calculations of the electronic suscep-

tibility function, also know as the Lindhard response function[31], to check the

existence of the FS nesting and the possibility of a Peierls scenario for the CDW

formation. We would like to emphasize that the calculations employed in this

thesis are based on a first-principles DFT approach and use the detailed crystal

structure of the systems, while most of the published body of work on the topic
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uses mostly model analytical functions.
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Figure 1.1: Linear metallic chain equally spaced (a.I.) before the phase transition.
The chain after the phase transition with the induced lattice distortion and charge
density reorganization (a.II.). The band dispersion in the undistorted phase is
depicted in b.I.(red line) and one can note that the system is metallic, while in the
CDW phase there is forbidden energy region due to a gap opening of 2∆ (b.II. red
line). The nesting of the electrons corresponds to a q = 2kF nesting wavevector.
This process is called Fermi surface nesting and it gives rise to a metal-insulator
transition. In c.I. we show the two scenarios for the occurrence of the phonon
softening in a material at the T = TCDW : a sharp or a broad softening around the
wave vector responsible for the CDW transition. In c.II we show the development
of the phonon softening as we approach the CDW transition temperature.
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We would like to reiterate the derivation and approximations considered in the

Lindhard response function and we follow Ref. [32, 33] for this purpose. We

start by assuming an external potential φext(~r, ω) as the perturbation to the ideal

electron gas; this would lead to an induced density fluctuation ρind(~r, ω) with an

induced potential φind(~r, ω). This perturbative potential would account for the

total potential as following:

φtot(~r, ω) = φext(~r, ω) + φind(~r, ω), (1.15)

with ρind(~r, ω) linked to the external potential within a linear response approach:

ρind(~r, ω) = e2

∫
ddr′χ(~r, ~r ′, ω)φtot(~r ′, ω), (1.16)

where χ(~r, ~r ′, ω) is the electronic response function. This function can be cal-

culated within Random Phase Approximation (RPA) and it can be expressed as

χ(~q, ~q ′, ω) in momentum space.

χ(~q, ~q ′, ω) = lim
η→0

∑
ij

fi − fj
~(ω − ωij)− iη

× 〈i|ei~q~r
′
|j〉 〈i|ei~q

′~r ′′ |j〉 . (1.17)

In the Lindhard approximation, the electron gas is considered non-interacting and

the electron-electron correlations are ignored, thus having the Lindhard response

function expressed as:

χ(~q, ω) =
2

~

∫
d~kf~k(1− f~k+~q)

[
1

ω + (ε~k − ε~k+~q) + iη
− 1

ω − (ε~k − ε~k+~q) + iη

]
,

(1.18)

with f being the Fermi-Dirac distribution function, ε - the electron’s energy eigen-

values and ω - the oscillation frequency of the external field.

In the Kohn anomaly picture, the electronic excitations on the Fermi surface re-

quire no energy transfer, so we can consider ω = 0 and we are left with the

imaginary and real part of Eqn. 1.18 as follows:

Im[χ(~q)] =
1

2π2

∫
BZ

d~k(f~k − f~k+~q)δ(ε~k − ε~k+~q), (1.19)
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and

Re[χ(~q)] = − 2

(2π)3

∫
BZ

d~k
f~k − f~k+~q

ε~k − ε~k+~q

. (1.20)

The real part of the Lindhard function1 provides information about the possible

nesting vectors and it can also be plugged in to calculate the renormalized phonon

mode (i.e. the softening of the vibrational phonon mode) involved in the lattice

distortion, in the following way(see for eg. refs. [34, 33]):

ω(~q)2 = ω0(~q)2 + 2ω0(~q)|g(~q)|2Re[χ(~q)], (1.21)

where ω(~q) is the renormalized phonon mode, ω0(~q) is the bare phonon mode in

the absence of electron-phonon coupling (EPC) and g(~q) is the electron-phonon

coupling matrix which most of the time is assumed wavevector independent and

simply called the electron-phonon coupling constant. One can already have some

intuition over the phonon renormalization from the shape of the Lindhard response

function (LRF). If the LRF presents sharp peaks, the renormalized phonon will

also present a sharp feature( a sharp dip if one may, see Fig. 1.1.c.I) which in

turn would correspond to a weak EPC in the CDW manifestation. When the

corresponding renormalization has a broad feature (see Fig. 1.1.c.I); this scenario

would correspond to the strong EPC driven CDW formation; in this case there is

no FS nesting present.

In Fig. 1.2.a we show the behaviour of the LRF for the ideal one-, two- and

three-dimensional free electron gases. In the case of the 2D and 3D free electron

gases there is no nesting. Only the 1D case presents a logarithmic discontinu-

ity, indicative of an electronic instability in the system2. FS nesting can occur

in two possible scenarios. The obvious case would be the one depicted in Fig.

1.2.b where one would have a metallic system with one partially filled band dis-

playing a perfectly parallel pair of Fermi surface sheets. In this case the nesting
1We will call it Lindhard reponse function heareafter because throughout this thesis we will

calculate only the real part of the Lindhard function.
2However,real 2D systems can exhibit partial nesting features which can be responsible for

metal to metal anomalies.
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Figure 1.2: Lindhard function representation in reciprocal space for a 1D, 2D or
3D free electron gas at 0 K.(a) Note that only the 1D case shows a logarithmic
divergence indicating the presence of an electronic instability. Fermi surface of an
ideal metallic system with a partially filled band(b). Fermi surface of a metallic
system with 3 partially filled bands(c). Fermi surface of an ideal 2D electron
gas(d).
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wavevector would be fixed by the Fermi wave vector along X direction, while be-

ing independent on the second or third directions components since they are all

equally feasible to give raise to FS nesting. A similar behaviour is expected when

one would have more than one pair of Fermi surface sheets parallel along the same

direction or plane (depending on the dimensionality of system). A more subtle

case is when one would deal with pairs of Fermi surface sheets, open or closed,

displaying a 2D character each of them coming from a partially filled band, as dis-

played in Fig. 1.2.c. Here the convolution of all the pairs of Fermi sheets gives rise

to parallel segments in the entirety of the Fermi surface, making them suitable for

nesting. This behaviour is called hidden Fermi surface nesting due to the apparent

inadequacy of the FS for nesting.[35] In comparison with this, in Fig. 1.2.d the

2D nature of the FS doesn’t allow for nesting and it would give rise to a plateau

up to 2kF followed by a smooth decrease in the LRF rather than a logarithmic

discontinuity.

Another situation when the LRF could present a logarithmic discontinuity would

be in a system that presents a Spin Density Wave(SDW) instability. Like in the

case of CDW, the SDW mechanism involves as well a Fermi surface that favours

nesting. The oversimplified interpretation of the LRF in the CDW picture stands

for the likelihood of pairing electrons and holes at the Fermi level, i.e. mixing

occupied and unoccupied states with the same spin; on the other hand, in the

SDW picture, LRF accounts for the mixing of occupied and unoccupied states

with opposite spin. Unlike the CDW picture, the driving force in this case is not

the (weak) electron-phonon coupling, but the electronic exchange interaction is

the one which favours the energy lowering of the system. In fact, in the SDW sce-

nario there is no lattice modulation associated with the phase transition, therefore

there is no Kohn anomaly present[36]. The SDW breaks the spin degeneracy and

gives rise to different modulations for each spin sub-band in such a way that it

leaves the charge density unaffected(this is to say that both spin sub-bands have

the same wavevector of the modulation but a π phase difference).[34] In this the-

sis we have considered a paradigmatic case of these materials: the Bechgaard salts.
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In Table 1.1 we show how the CDW manifest in different kinds of materials rep-

resentative of the classes that they belong to, but also paradigmatic altogether

for the study of CDWs. One can notice immediately the common features of

a Peierls scenario and in what classes of materials this kind of CDW behaviour

prevails. Blue bronzes display a quasi-one dimensional electronic structure, and

the driving mechanism in these material would be the Peierls one. In the case of

NbSe3, representative of the class of transition metal trichalcogenides, the elec-

tronic structure displays a more plentiful FS which contains 4 pairs of (almost)

parallel Fermi sheets, but preliminary calculations indicate that current LRF ap-

proximations will not suffice. On the opposite side we have the metallic (NbSe2)

and semi-metallic (TiSe2) transition metal dichalcogenides, and transition metal

tetrachalcogenides(TaTe4) where there is no nesting and in which the CDW arises

due to the strong electron-phonon coupling mechanism.

Peierls
model

Blue
Bronze NbSe3 NbSe2 TiSe2 TaTe4

Kohn
Anomaly Sharp[30] Sharp[37] No[38] Broad[39] Broad[40] Broad[41]

FS nesting Yes[34] Yes[42] Yes[43] No[44] No[40] No[41]

EPC Weak Weak[42] Strong Strong[45] Strong[40] Strong

Gap opening @FL[1] @FL[46] @FL[47] @BZ[48] @BZ[40] @BZ[41]

LRF Sharp[34] Sharp[42] Broad[43] Broad[44] Broad[40] Sharp[41]

Coherence
Length » a » a[49] ∼ a[43] ∼ a[50] ∼ a[50] ∼ a[13]

ρ anomaly Yes Yes[51] Yes[47] No[52] Yes[53] NA

Phase transition M-I[1] M-I[49] M-M-M[47] M-M[52] SM-SM[53] M-M[41]

Table 1.1: CDW signs of manifestation in well studied materials representative for
the category that they fall into compared to the standard Peierls model. Legend:
@FL: at the Fermi level; @BZ: in the whole Brillouin zone; M-I: metal-insulator;
M-M: metal-metal; SM-SM: semi-metal to semi-metal.
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INTRODUCTION

Layered transition-metal dichalcogenides(TMDCs) have been the object of large

attention for around four decades because they exhibit a rich variety in physical

properties [5, 50]. Most notably, these materials have provided a fertile ground

for the study of the competition between several electronic instabilities like com-

mensurate and incommensurate charge-density-waves (CDW), superconductivity

(SC), etc. A remarkable aspect is that their layered nature makes the alteration

of the band filling and the transport properties possible through chemical inter-

calation. Very recently, the interest in these materials has experienced a sudden

resurgence because of the exciting possibility of preparing and studying thin slabs

with a reduced number of layers or even single-layers [14, 15]. This makes it pos-

sible to study how the reduced electronic screening brought about by lowering the

dimensionality from bulk to layers of different thickness influences the competition

between electronic instabilities.

Single-layered materials demonstrate complex phase diagrams and a phenomeno-

logical understanding of their behaviour is essential in further advancements of

electronic devices at a reduced physical scale. Furthermore the accumulated

knowledge can serve as the building block for the next, more complex scenar-

ios of heterostructures built from single-layered materials. It is not intuitively

easy to predict what will happen when one combines single-layers that present

different phases in specific physical conditions. From the theoretical point of view,

these studies can serve as well as a benchmarks for improving our current tools of

study. In the next three chapters we will focus on studying the mechanism behind

the CDW manifestation in different layered TMDCs. In Chapter 2 we follow the

formation of the 3Q CDW and the full gap opening that it is led by said 3Q mech-

anism in TiSe2. We show that the CDW character in single-layer TiSe2 can be

25
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easily altered under doping with either electrons or holes where the CDW has first

a commensurate-incommensurate phase transition followed by a total suppression

of the instability and structural recovery of the high temperature symmetry under

large enough doping values. We continue with the discussion in Chapter 3 about

how well particular ways of describing electron exchange-correlation phenomenon

in a physical system can predict the formation of the CDW; in this thesis we re-

port on a rather surprising material: single-layer TiTe2, known for its inability to

form a CDW state in bulk, but for which recently has been shown to undergo a

CDW instability in the single-layer. We observe that we can enhance the CDW

state in single-layer TiTe2 by applying a small amount of strain on the lattice

and we successfully predict the appearance of a CDW phase in the few-layers

configuration under these conditions. We conclude this part with Chapter 4 by

studying the beautiful display of different CDW modulations in 2H-NbSe2 . By

correlating theoretical and experimental results we can filter the co-existence down

to two 3×3 CDW states in 2H-NbSe2 out of the 6 theoretically predicted. As

a general remark to these 3 chapters, condensation of multiple phonons always

leads to the lowest modulated CDW structures. Moreover their manoeuvrability

or manipulation depends on the strength of interaction between electrons and their

corresponding lattices.



2. NATURE OF THE 2X2 CDW IN

SINGLE-LAYER TISE2

2.1 Introduction

1T -TiSe2 holds a special position among the conductive layered transition-metal

dichalcogenides in that it is formally a d0 compound, so that its normal state

must be either a semimetal or a semiconductor with a very small gap, a feature

that has long been debated [5, 50, 54]. This is in contrast with the situation for

most of the other CDW-bearing transition metal dichalcogenides which are for-

mally d1 compounds like 1T - and 2H-MX2 (M = Nb, Ta; X = S, Se) and thus

exhibit a partially filled conduction band. In addition, neither bulk 1T -TiS2 nor

bulk 1T -TiTe2 exhibit any CDW. However a 2 × 2 CDW has been reported for

single-layer 1T -TiTe2 whereas no sign of the instability has been found in bilayers

or multilayers. [55] On the basis of DFT calculations it has also been reported an

incipient stabilization of the CDW in sheets of 1T -TiS2 with four or less layers [56].

The bulk structure of 1T -TiSe2 is built from hexagonal layers of Ti atoms in

an octahedral coordination (see Fig. 2.1a) [57]. Short Se-Se contacts occur within

the layer but there are also relatively short interlayer Se-Se contacts providing a

substantial interlayer coupling. Bulk 1T -TiSe2 exhibits a CDW transition around

200 K which has been controversial for four decades [5, 50, 54, 58, 59, 60, 61, 62,

63, 64, 65, 66]. It leads to a 2 × 2 × 2 commensurate phase (see Fig. 2.1b) with-

out the occurrence of any intermediate incommensurate phase [53]. In contrast

with many of the CDW materials the origin of the instability in bulk 1T -TiSe2 is

not Fermi surface nesting. Both excitonic and phononic type mechanisms have

27
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been suggested and their relative merits are still under discussion.[67] Although

1T -TiSe2 is not superconducting at low temperature, the CDW may be suppressed

either by Cu intercalation [68] or applying pressure [69] and under such circum-

stances superconductivity may be stabilized (maximum Tc = 4.15 K for Cu0.08TiSe2

or 1.8 K at ∼ 3 GPa). On the basis of these observations the possible relationship

with the phase diagram of electron doped MoS2 has been considered [70].

The layered nature of the material as well as the above mentioned interplay be-

tween SC and CDW orders in the bulk make 1T -TiSe2 an ideal candidate for

studies of the physics associated with these electronic instabilities at the two-

dimensional (2D) limit. Recently, a scanning tunneling microscopy (STM) study

of single-layer 1T -TiSe2 provided evidence for the existence of a 1×1 structure at

room temperature but a 2×2 superstructure at low temperature [71], although no

details about the electronic structure of the single-layers were reported. More re-

cently, two angle-resolved photoemission spectroscopy (ARPES) studies of single-

layer 1T -TiSe2 on bilayer graphene (BLG) terminated SiC(001) provided detailed

but somewhat conflicting results about the system. For instance, whereas Sug-

awara [72] found that the CDW occurs at ∼ 200 K, a value very similar to that

for bulk 1T -TiSe2 , 202 K, and lower than that for exfoliated films with thickness

smaller than 100 nm (∼ 240 K), Chen [73] reported that the CDW temperature is

∼ 232 K. The last authors also reported the existence of a small band gap already

at room temperature whereas Sugawara [72] observe an electron pocket at the

Brillouin zone (BZ) corner above the CDW. It is possible that electron doping of

the samples could be at the origin of some of these seemingly conflicting results.

The two studies however agree in suggesting that the CDW is more robust in the

single-layer than in bulk. Raman spectra studies showed that the CDW transition

temperature increases when moving from the bulk to sheets at the nanometer range

although it can decrease for very thin ones probably because of surface oxidation

or defects [74, 75]. Let us also note that, because of the existence of Se-Se contacts

shorter than the sum of the van der Waals radii, the electronic structure near the

Fermi level in bulk and single-layers can be somewhat different, which can have
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Figure 2.1: (a) Crystal structure of 1T -TiSe2. (b) Schematic representation of the
displacements occurring in a single-layer of the 2×2×2 CDW structure of TiSe2.
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important consequences for a system with either a small semimetallic overlap or

a very small semiconducting gap. For instance, the well-known pancake-like hole

pocket occurring in bulk for the related 2H-NbSe2 [76] does not occur at all in

single-layers of the same material [48]. In addition, because of the observation of

the suppression of the CDW under Cu intercalation in bulk 1T -TiSe2, the struc-

tural and electronic dependence of the CDW occurrence with the charge-carrier

density in single-layers becomes a topic of utmost importance. Recent work with

single-crystals of 1T -TiSe2 with thicknesses less than 10 nm, in which the charge

carrier density was modified by means of electric field gating, indeed demonstrated

a very remarkable phase diagram [77].

There is a considerable number of theoretical studies of the electronic structure of

bulk 1T -TiSe2, many of them devoted to the discussion of the origin of the CDW

[78, 79, 80, 81, 82, 83, 84, 85, 86, 87]. However, only in more recent works [88, 89]

the structural dependence of the electronic and vibrational properties were consid-

ered in detail. Fu and coworkers [90, 91] analyzed the effect of doping and biaxial

strain on the soft phonons giving rise to the CDW in the bulk. For single-layer

1T -TiSe2 we are aware of only a few theoretical reports. In the earlier one by Fang

[82] the electronic structure was discussed on the basis of the room temperature

bulk structure without any type of structural relaxation. In the recent work by

Sugawara [72] the band structure near the Fermi level was calculated for the nor-

mal and CDW phase. More recently, Singh [92] studied the phonon dispersion and

showed the presence of an unstable phonon mode but the charge-carrier density

dependence of the results was not studied. Yet, in view of the above mentioned

recent experimental results the charge-carrier dependence is a truly essential as-

pect to consider. Chen [93] looked for dimensional effects on the CDW transition

by means of ARPES and DFT calculations on sheets with one to six TiSe2 layers.

In order to provide ground for the discussion and rationalization of the recent

exciting results concerning the physics of 1T -TiSe2 at the 2D limit [71, 72, 73, 77],
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we report here a detailed first-principles DFT study (see section 2.5 for computa-

tional details) of 1T -TiSe2 single-layers. We will consider in detail the subtleties

of the CDW mechanism and how the structural, electronic and vibrational features

evolve as a function of the charge-carrier density. From now on we will refer to

1T -TiSe2 simply as TiSe2.

2.2 Intrinsic single-layer properties

In this Section we discuss the electronic structure and the CDW instability for the

free-standing TiSe2 single layer, in the case where there are no externally induced

charge carriers. We will refer to it as the ‘intrinsic’ case, in contrast with the

one in which we consider the presence of externally induced and controlled charge

carriers, which will be refereed to as the ‘doped’ case (although the origin of the

charge carriers may not necessarily be the presence of dopant impurities, but other

external factors such as electric field gating as in Ref. [77]).
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Figure 2.2: Band structure for undistorted, intrinsic, single-layer TiSe2.
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Figure 2.3: Representation of the Brillouin zone of single-layer TiSe2. Black, red
and green show the contours of the BZ of the primitive cell and the 2×1 and 2×2
cells, respectively. The notation of the high symmetry points is also indicated.

Fig. 2.2 shows the calculated band structure for the intrinsic, undistorted TiSe2

single-layer. The notation for the high symmetry points (Γ, M and K) of the

BZ is indicated in Fig. 2.3. We obtain a semimetallic behavior, with a ‘negative

gap’ of 0.5 eV between the two bands crossing the Fermi level near the Γ point

(which are degenerate at that point in the absence of spin-orbit interactions), and

the upper band that has its minimum at the M point. These two sets of bands

lead to two pockets of holes around the Γ point and a pocket of electrons around

each of the M points of the BZ of the undistorted crystal lattice. Our results are

consistent with recent calculations for the single-layer by Chen et al. [73], although

they find a smaller negative gap of 0.2 eV. This is due to the different DFT func-

tionals used in both calculations: while they use a Heyd-Scuseria-Ernzerhof (HSE)

hybrid functional [94] (which usually provides gap energies in good agreement to

the experimental data), we use a GGA functional, which tends to underestimate

the gap energies (leading in this case to a too large overlap between the two bands,

and an overestimated negative gap). A second minor difference with the results of

Chen et al. [73] is the splitting of the bands at Γ induced by the spin-orbit cou-

pling term introduced in their calculations, which is not considered in the results
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of Fig. 2.2. Nevertheless, we have checked that introduction of the spin-orbit cou-

pling does not alter in any significant way the results for both the undistorted and

CDW distorted structures (see Fig. 2.5) so that from now on we will only report

calculations without spin-orbit effects. Effect of the Spin-Orbit (SO) coupling on

the band structure and CDW distortion of single-layer TiSe2 in Fig. 2.5 shows

the calculated band structure including or not the spin-orbit corrections, both for

the undistorted (a) and 2×2 CDW (b) structures of single-layer TiSe2. We have

also calculated the energy difference between the undistorted and the 2×2 CDW

phases including the SO coupling. We find a value of 6 meV per formula unit, the

same as the one obtained without SO coupling.

The band leading to the electron pockets at M is an almost exclusively Ti-based

band that, at Γ, is built from one of the three t2g orbitals of Ti (see Fig. 2.2).

In this t2g block, located between 0.5 and 1 eV above the Fermi level, two of the

bands are degenerate at Γ and the other one is non-degenerate. Assuming a local

coordinate system in which the three-fold symmetry axis of the octahedron oc-

curs along the z direction, the non-degenerated band is essentially built from the

Ti dz2 orbital which occurs slightly higher in energy than the doubly-degenerate

pair because of the slight rhombohedral distortion. The doubly-degenerate set is

mainly built from the Ti dx2−y2 and dxy orbitals which are somewhat tilted be-

cause the plane of the Ti atoms is not a symmetry plane. All the way along the

Γ-M line (i.e. along the a* direction), the only symmetry element preserved is

the symmetry plane perpendicular to the layer and going along the a* direction

(the plane noted σ in Fig. 2.4a). Although at Γ the symmetry is higher, the two

doubly-degenerate levels can be described as symmetric and antisymmetric crystal

orbitals with respect to this plane. It is the symmetric one (schematically shown

in Fig. 2.4b and Fig. 2.4c for Γ and M , respectively) which leads to the electron

pockets at M . At Γ, such crystal orbital is almost exclusively made of slightly

tilted Ti dx2−y2 orbitals, each of which makes antibonding interactions with those

of four nearest-neighbor octahedra (shown by red arrows in Fig. 2.4b). From Γ to

M the phase changes in such a way that these antibonding interactions turn into
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Figure 2.4: (a) Calculated structure of the undistorted single-layer TiSe2. Orange
(blue) circles denote Se (Ti) atoms. In (b) and (c) we show a schematic repre-
sentation of the crystal orbital of the band leading to the electron pockets for
the undistorted single-layer TiSe2 at Γ (b) and M (C). Orange (green) circles de-
note up (down) Se atoms. The red/blue arrows indicate the antibonding/bonding
metal-metal interactions changing from Γ to M . In (a), σ denotes the plane of
symmetry preserved by those wave-functions along the Γ−M line.



Chapter 3. 2x2 CDW in single-layer TiSe2 35

-2

-1

0

1

2

Γ M2x2 K2x2 Γ

E
 -

 E
F

(e
V

)

-2

-1

0

1

2

Γ M2x2 K2x2 Γ

E
 -

 E
F

(e
V

)
a)

b)

SO -

SO -

no SO -

no SO -

Figure 2.5: Comparison of the calculated band structure including (continuous
black lines) and not including (dashed red lines) spin-orbit (SO) corrections for
the undistorted (a) and 2×2 CDW (b) structures of single-layer TiSe2. Note that,
in both cases, the bands are plotted using the Brillouin zone of the 2×2 cell, to
facilitate comparison.
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bonding (see Fig. 2.4c) and lead to the band dispersion towards higher binding

energies. The metal-metal interactions are then responsible for the semi-metallic

character of the material, as the dispersion of the Ti dx2−y2 band is such that it

reaches energies around theM point which are below those of the Se-based valence

bands which have their maximum at Γ, thus creating the electron and hole pockets

centered atM and Γ, respectively. Of course, the same analysis holds for the other

equivalentM points in the BZ, with the appropriate Ti d orbital rotations by 120◦

and 240◦ around the three-fold symmetry axis.

Γ

K

M

Figure 2.6: TiSe2 single-layer Fermi surface (a) is composed of two closed Fermi
sheets around Γ coming from the Se 4p orbitals and one closed Fermi sheet around
the middle of the BZ edges originating in Ti 3d orbitals. Lindhard response func-
tion (b) for the undistorted, intrinsic, single-layer TiSe2 demonstrates the un-
favourable nesting scenario driving the periodic lattice distortion.

In order to study the stability of the single-layer, we have performed calculations

for both the Lindhard response function and the phonon band structure for the

optimized, undistorted 1×1 structure. The calculated Lindhard response function

is shown in Fig. 2.6 next to the correspoding Fermi surface. As it can be noted,

there are no sharp maxima around the M points of the BZ which could justify a

Fermi surface nesting driven mechanism of the CDW, but rather a shallow regions
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Figure 2.7: Phonon dispersion for the undistorted, intrinsic, single-layer TiSe2 in
the Γ − M segment of the BZ. Negative phonon frequency refers to imaginary
phonon modes.

around the Γ and M points. The phonon calculation results are shown in Fig. 2.7.

One of the phonon branches becomes clearly unstable around the M point, simi-

larly to what was found for the bulk crystal [88, 89, 90] for the M and L points of

the bulk BZ. The pattern of the distortion associated with the unstable phonon at

M is shown schematically in Fig. 2.8. The displacements of the Ti and Se atoms

are perpendicular to the phonon wave vector q. We find that the ratio between

the Ti and Se displacements is 3.22, in excellent agreement with the value reported

in a recent X-ray study of single-layer TiSe2, 3.3 [95]. It is also very close to that

found for the bulk CDW experimentally [53] (3.0±0.9) and from DFT [88] (in the

range from 2.3 to 2.9, depending on the choice of the functional and lattice con-

stants). The resulting structure has a 2×1 periodicity: single in the direction of

the lattice vector perpendicular to the wave vector q, and double in the direction

of the other lattice vector.

The presence of phonons with imaginary frequency around the M points indicates

that the lattice is unstable against distortions with 2×1 (and symmetry-equivalent)

periodicity. This has been confirmed by computing the energy as a function of
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the amplitude of the phonon mode in a 2×1 supercell. An energy minimum is

found, 3 meV per formula unit lower than the undistorted 1×1 structure. A fur-

ther relaxation in which the 2×1 periodicity is imposed but the internal degrees

of freedom are not constrained to follow the unstable phonon mode, produces a

negligible energy gain.

The instability of a single M phonon does not lead by itself to the 2×2 CDW

distortion pattern. To understand how does the 2×2 CDW structure develops, we

notice that, as in the bulk crystal [79, 88], the combination of the three distortions

shown in Fig. 2.8a-c, corresponding to the unstable phonons of the three equiva-

lent M points, leads to a structure with 2×2 periodicity and precisely the same

displacement pattern of the 2×2 CDW shown in Fig. 2.1b. The energy gained by

this triple-q (or 3Q) combined distortion is 6 meV per formula unit, which is twice

as large as that of each individual, single-q (or 1Q), M phonon distortion with

2×1 periodicity. This is an interesting result, showing that, as in the bulk, the

concerted motion combining the three M phonons leads to an enhanced energy

gain, with a displacement pattern similar to that of the experimental 2×2 CDW

distortion in the bulk.

Fig. 2.9 shows the relaxed 3Q, 2×2 distorted single-layer TiSe2 structure, which

should be compared with the undistorted 1×1 shown in Fig. 2.4a. In the undis-

torted structure there is only one type of octahedra, with the six Ti-Se bonds

having identical lengths (2.590 Å) and a small rhombohedral distortion. In the

2×2 distorted structure there are two different types of octahedra (one of type I

and three of type II per unit cell). Those at the origin of the 2×2 primitive cell

plotted in Fig. 2.9 (octahedra I) have the six Ti-Se bonds of identical length (2.593

Å) and very similar to those of the undistorted structure. These bonds are shown

in black in Fig. 2.9. Octahedra II have two short, two long and two intermediate

Ti-Se bonds which are shown in red, green and blue colors respectively in Fig. 2.9.

Along two of the four-fold axes of the octahedra II (the axes passing though the

central Ti atom and the two Se atoms on opposite vertices; these are not true
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Figure 2.8: Scheme showing the atomic displacements corresponding to the unsta-
ble phonon at the M point (see Fig. 2.7) for the intrinsic single-layer TiSe2. Each
panel shows the displacement pattern for q vectors corresponding to the three
equivalent M points of the BZ. The combination of the three modes produces the
3Q structural distortion of the 2×2 CDW precisely as shown in Fig. 2.1b



Chapter 3. 2x2 CDW in single-layer TiSe2 40

2.593

2
.5

9
32

.5
9
3

2.593

2
.5

9
3

2
.5

9
3

2
.5

8
9

2
.5

8
9 2.5112

.5
1
1

2.687

2
.6

8
7

o

a a

(b)

Figure 2.9: Calculated structure for the 2×2 distorted single-layer TiSe2. The
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Figure 2.10: Band structure for the intrinsic single-layer TiSe2. Broken lines
correspond to the 2×1 structure corresponding to the displacement of the unstable
M phonon (left panel), and for the 2×2 CDW structure (right panel). Full lines
show the bands of the 1×1 undistorted structures, respectively. The bands are
represented in the BZ of the 2×1 (left) and 2×2 structures (right), and therefore
are folded with respect to those shown in Fig. 2.2. The origin of the energy scale is
the Fermi level of the undistorted phase. The Fermi level of the distorted phases
is indicated by the dotted horizontal lines.
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symmetry axes because of the small angular distortions, but we use them as sim-

ple descriptors) there is a Se-Ti..Se bond alternation with one bond shorter (2.511

Å) and one bond longer (2.687 Å) than those in the undistorted phase (2.590 Å).

Along the third four-fold axis the two bonds are identical (2.589 Å), and very

similar to that in the undistorted phase. In turn, every regular octahedron of type

I is surrounded by six type II octahedra sharing two Se atoms with the central

one in such a way that these two Se atoms are making two short (red) or two long

(green) Ti-Se bonds. Consequently, the three-fold symmetry axis going through

the Ti atom of the octahedra I is preserved, and a hexagonal lattice is also ob-

tained for the 2×2 distorted single-layer TiSe2.

We now analyze the correlation between the structural distortions of the single

layer and the changes in the electronic structure, which is ultimately at the origin

of the instability of the undistorted phase. Fig. 2.10a shows the change in the

electronic band structure induced by a 1Q distortion. The bands are compared to

those of the undistorted lattice, and shown in the BZ of the 2 × 1 cell. The M

point of the 1× 1 cell in the direction of the double periodicity is now folded into

the Γ point of the 2×1 supercell, and the corresponding electron pockets can now

interact with the hole states from Γ, opening some gaps around the Fermi level.

However, the S point of the 2×1 supercell coincides with one of theM points of the

undistorted cell, as can be seen in Fig. 2.3 (since one of the original periodicities

is maintained), thus still leading to a pocket of electrons at this point of the BZ,

and a metallic band crossing the Fermi level near this point (and, correspondingly,

a hole pocket and a metallic band at Γ). The 1Q distortion therefore reduces the

metallic character of the band structure, by splitting some of the bands around

the Fermi level, but is not able to open a full gap. This is fully consistent with

the symmetry analysis presented above, as the 1Q distortion breaks the symmetry

with respect to the σ plane. The Ti dx2−y2 band is practically Ti-Se non-bonding

as far as the symmetry plane σ is kept in the structure. However, if the Ti atom

moves out of this plane, the symmetry is lost and the Ti and Se orbitals around

the Fermi level can effectively mix, thus leading to an energy gain and opening of
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a gap. In view of the nature of the Ti d orbitals in Fig. 2.4, the most effective

Ti movement to produce such mixing is a displacement perpendicular to the a*

direction, because in that way two Se-Ti..Se bond alternations are produced while

leaving the other two Ti-Se bonds barely changed. Such bond alternations are

known to be globally stabilizing because the bonding gained in the two red bonds

outweighs the bonding lost in the two green ones [81]. This is precisely the type

of displacement brought about by the unstable M phonon, as shown in Fig 2.8.

The 3Q CDW distortion reduces further the symmetry, as now all the three equiv-

alent M points of the undistorted BZ fold into Γ, and therefore the bands leading

to the three electron pockets can interact with those leading to the hole pockets.

The result is that a clean gap opens up now, as shown in Fig. 2.10b. The full open-

ing of the gap as severalM phonons are combined to form the 3Q distortion is the

reason for the energy gain of the 3Q phase with respect to the single-phonon 1Q

phase. This can be seen clearly in the electronic density of states (DOS), shown in

Fig. 2.11. Comparing the DOS around the Fermi level for the undistorted layer,

and for 1Q, 2Q and 3Q distortions (i.e., combining one, two and three equivalent

M phonons), the DOS around EF decreases as successive phonons are included in

the distortion, until a clean gap develops for the 3Q CDW. Also, the position of

the Fermi level shifts towards lower energies. Both changes lead to the energy sta-

bilization of the CDW phase. Evolution of the Density of States with the inclusion

of unstable phonons in the structure in Fig. 2.11 compares the electronic density

of states (DOS) around the Fermi level for the undistorted layer, and for 1Q, 2Q

and 3Q distortions (i.e., combining one, two and three equivalent M phonons).

The DOS around EF decreases as successive phonons are included in the distor-

tion, until a clean gap develops for the 3Q CDW. Also, the position of the Fermi

level shifts towards lower energies. Both changes lead to the energy stabilization

of the CDW phase.

Both the metal-metal interactions which lower the energy of the Ti dx2−y2 or-

bitals from Γ to M , and Ti-Se interactions which lead to the gap opening through
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Figure 2.11: Electronic Density of States for single-layer TiSe2, in the vicinity
of the Fermi level. The black curve corresponds to the undistorted structure,
while the red, green and blue ones to the 1Q, 2Q and 3Q distorted structures,
respectively (see text for details). The position of the Fermi level for each case is
shown with a vertical dashed line.

the mixing allowed by the symmetry breaking, cooperate in providing the energy

stabilization produced by the 2×2 modulated structure. This is in contrast with

the case of single-layer 1H-NbSe2 where the driving force for the low temperature

3×3 modulated structure is the optimization of the metal-metal interactions [48].

Note that the mechanism described above relies on the specific movement of Ti

atoms so as to create a Se-Ti...Se bond alternation along two of the four-fold

axes of type II octahedra. This is the microscopic description of the consequences

of the band mixing made possible by the phonon instability and providing the

stabilization of the 2×2 modulated structure. It is clear that essentially the same

mechanism will stabilize the system even in the case of a small band gap situation.

2.3 Influence of doping

The injection of charges in the TiSe2 single-layer may have important consequences

on its structure and physical properties, as shown by the rich phase diagram un-

der chemical [68] and electrostatic [77] doping. Here, we analyze these effects by
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introducing extra charges (either positive or negative) explicitly in our DFT cal-

culations. Details are given in section 2.5.

For each value of the doping, we optimize the structure of the undistorted crystal,

using the 1×1 periodicity. For the range of doping values considered, we do not see

any significant changes in the lattice constant with respect to the undoped case.

As a consequence, the positions of the Ti atoms remain unchanged with doping,

as well as the in-plane location of the Se atoms. The height of the latter does

change with doping, as will be shown below. We then follow the same procedure

as for the undoped case, and compute the phonon structure in order to determine

the drive towards structural instabilities as a function of doping. The resulting

phonon band structures in the Γ-M line are summarized in Fig. 2.12 for electron

(top) and hole doping (bottom), respectively.

For small values of the doping, the phonon spectra are qualitatively similar to

the undoped case. In particular, the presence of an unstable mode around the

M points of the Brillouin zone is observed. However, the imaginary frequency of

this mode evolves significantly with the doping level. The evolution is shown in

Fig. 2.13a. The phonon at M becomes stable at a certain value of the doping,

which is around -0.23 and +0.07 |e| per formula unit for electron and hole doping,

respectively. For each value of the doping, we have also performed structural re-

laxations to obtain the distortion of the 2×2 structure. In all casfes, we obtain a

3Q pattern as the one obtained for the intrinsic layer. Fig. 2.13b shows the energy

difference between the undistorted 1×1 phase and the 2×2 distorted structure as

a function of doping. The 2×2 distortion disappears at the same doping values as

those for which the M phonon becomes stable.

Fig. 2.14 presents the variation of the structural distortions associated with the

3Q, 2×2 phase as a function of doping. The in-plane displacements of the Ti and

Se atoms following the pattern of Fig. 2.1b, and the height z of the Se atoms

from the plane of the Ti atoms are shown in Figs. 2.14a and 2.14b, respectively.
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Figure 2.12: Phonon dispersion for the undistorted single-layer TiSe2 in the Γ−M
segment of the BZ, for different values of doping δ (in electrons per formula unit).
The upper (lower) panels correspond to electron (hole) doping. The regions of
stability of the 2×2 CDW, incommensurate CDW and no CDW are indicated
above and below the panels. The arrows indicate the position of the minimum of
the unstable phonon branch for the incommensurate cases.

For reference, we also include the evolution of the Se height for the non-distorted

1×1 phase, and that of the two types of Se atoms in the 2×2 phase. Again, we

observe that the distortions away from the 1×1 symmetry disappear at the same

values as the instability of the M phonon.

The mechanism for the stabilization of the 2×2 CDW state in the doped case

is the same as in the intrinsic one: the hybridization of the hole and electron

pockets allowed by the symmetry breaking, and the consequent opening of a sig-

nificant band gap around the Fermi level. As we showed before, for the intrinsic

case, the Fermi level lays within the gap, making the system a semiconductor.



Chapter 3. 2x2 CDW in single-layer TiSe2 46

This is imposed by electron counting (as the number of electrons in the system

is an integer). For the doped case, the distortion provokes a similar gap in the

band structure, but the extra carriers (either electrons or holes) must accommo-

date within the conduction or valence bands, and the system remains metallic.

Nevertheless, for sufficiently small doping values, the distortion still produces a

lowering of the energy, driven by the reduction of the DOS near the Fermi level,

and the increase of states at lower energies (at the peak defining the band edge).

This situation only holds when the doping levels are sufficiently small, so that the

Fermi level lays at energies with a significantly modified DOS. A simple model in

which the energy gain is estimated from the change of the DOS leads to values of

the critical doping for which the 2×2 phase is stable that are quite similar to the

ones obtained above, with a difference in a factor of two for the range of stability

of electrons and hole doping (not far from the factor of 3 that we obtained in our

calculations). As the doping level increases and the Fermi level goes further into

the valence or conduction bands, the energy gain due to the distortion is reduced,

making the structural distortion progressively less pronounced, until the system

recovers the 1×1 periodicity.

It is interesting, however, to realize from Fig. 2.12 that the evolution of the un-

stable phonons with doping is more complex than the one just described, which

took into account only the behaviour of the M phonon. As the doping level

increases, the minimum of the unstable phonon frequency displaces from M to

smaller values of q, along the Γ −M line. This implies that, for such doping

values, the CDW would not have 2×2 periodicity, but would be incommensurate,

with wavevector corresponding to the position of the minimum of the unstable

phonon branch. Also, for values of the doping where the M phonon is already

stable, there is still an unstable part of the branch, with a minimum at an incom-

mensurate value of q along the Γ−M line, which evolves with the doping value.

Ultimately, for larger values of the doping, the whole branch becomes stable, as

shown in the panels with the largest values of both electron and hole doping in
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Fig. 2.12. We expect, therefore, that there will be a transition between a commen-

surate 2×2 and an incommensurate distortion upon increasing the doping of the

layer, until the undistorted 1×1 structure is recovered for sufficiently high doping

values The wavelength of the incommensurate distortion is expected to increase

for increasing doping values, as the minimum of the imaginary frequency of the

unstable phonon shifts towards lower momenta. We have checked that this picture

is correct, by considering explicitly the case for δ = −0.24 doping, for which the

phonon at M is stable, but it is unstable for values of q around 1/3 of the Γ−M

line. Therefore, the 2×2 structure is not stable with respect to the undistorted one,

as shown in Fig.2.13b), but one would expect a CDW with an incommensurate

modulation close to 3×3. We have explicitly obtained the energy gain for several

commensurate modulated structures with periodicity vectors very close to that of

the (incommensurate) minimum, and find that they are lower in energy than the

undistorted structure by a fraction of a meV per formula unit (see 3 Q phonon

pattern in App. A). Therefore, we conclude that, indeed, there should be a range

of doping values for which the most stable structure should be incommensurate

with a wavevector which varies with the doping value, and with a small energy

gain with respect to the 2×2 or the undistorted structures.
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2.4 Conclusions

In summary, a detailed first principles analysis (using Density Functional Theory)

has been carried to identify the origin and characteristics of the CDW distortion

in single-layer TiSe2. We identify the origin of the 2×2 CDW from the analysis of

a phonon branch that becomes stable around the M point of the Brillouin zone.

The atomic displacements of this phonon mode allow the mixing of states at the

top of the valence band at the Γ point and the bottom of the conduction band at

M (both responsible for the metallicity of the undistorted structure), which leads

to partial band gap openings that, in turn, lowers the total energy of the system.

The combination of three such phonons for the three equivalent M points allows

a full band gap opening and a further energy lowering. This 3Q structure has a

2×2 periodicity which closely matches the CDW in-plane distortion of the bulk

material. Doping the layer with externally injected charges modifies this picture

only slightly for small doping levels: the energy gain due to the structural dis-

tortion is reduced when doping is present, as the Fermi level does not fall at the

energy gap opened by the distortion. This makes the atomic displacements and

the stabilization energy to decrease with increasing doping level, so that the CDW

transition temperature is also expected to decrease, as observed experimentally

both in the bulk [68] and in samples of thin layers [77]. Furthermore, our cal-

culations show that, for larger doping levels, the phonon band-structure changes
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significantly, in such a way that the unstable phonon branch has its minimum

at intermediate points of the Γ −M segment, while the phonon at M becomes

stable. It could therefore be expected that the CDW can become incommensu-

rate for certain values of the doping. Further increase of the doping level makes

all the phonon branches to become stable, and therefore the system recovers the

undistorted 1×1 structure.

2.5 Computational details

The geometrical optimizations, eletronic and phononic band structures were car-

ried out using a numerical atomic orbitals density functional theory (DFT) [96, 97]

approach implemented in the Siesta code [27, 28]. The Perdew-Burke-Ernzerhof

(PBE) functional was used to account for the exchange-correlation energy [98].

The core electrons have been replaced by norm-conserving scalar relativistic pseu-

dopotentials [99] factorized in the Kleinman-Bylander form [100]. We include the

3p shell of Ti explicity in the valence, as semicore states. We have used a split-

valence double-ζ basis set including polarization functions [101]. The non-linear

core-valence exchange-correlation scheme [102] was used for all elements. In the

direction normal to the single-layer we chose a vacuum space of 50 Å in order to

avoid possible interactions between the layer and its images. In the case of geo-

metrical optimization calculations, the atomic coordinates were relaxed until the

forces on them were below 0.004 eV/Å. In all calculations, we use a cutoff of 550

Ry for the real space integrals, and a tolerance of 10−5 and 10−4 eV on the density

matrix ant the total energy, respectively, for the convergence of the SCF cycle. To

sample the Brillouin cell for the electronic states, a Monkhorst-Pack [103] k-point

grid of 36×36×1 was used for the undistorted minimum cell and it was scaled

accordingly where supercell calculations were performed. The phonon band struc-

tures were calculated using the finite differences method.

For the geometrical optimization we have relaxed the undistorted and modulated

structures in their respective symmetries as described in tables 2.1 and 2.2, i.e.
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for the 1×1 cell we have 3 atoms in the unit cell: 1 Ti atom and 2 Se atoms;

for which we assign their respective Wyckoff coordinates thus imposing the sym-

metry constraints. In this particular case only the z-coordinate of the Se atoms

is a degree of freedom. For the 2×2 cell we have 12 atoms in the unit cell: 1

immovable Ti (1a Wyckoff position) atom, 3 Ti atoms (3e Wyckoff position) with

in-plane degrees of freedom, 2 Se atoms (2d Wyckoff position) with an out-of-plane

degree of freedom, respectively 6 Se atoms (6g Wyckoff positions) with both in-

and out-of- plane degrees of freedom.
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Table 2.1: Wyckoff positions of the space group 164 (P3̄m1) used in describing the
internal coordinates of the single-layer TiSe2 undistorted structure.

Atom Multiplicity Wyckoff
letter Coordinates

Ti 1 a (0,0,0)

Se 2 d (1/3,2/3,z) (2/3,1/3,−z)

Table 2.2: Wyckoff positions of the space group 150 (P321) used in describing the
internal coordinates of the 2×2 TiSe2 modulated structure.

Atom Multiplicity Wyckoff
letter Coordinates

Ti 1 a (0,0,0)

Ti 3 e (x,0,0) (0,x,0) (−x,−x,0)

Se 2 d (1/3,2/3,z) (2/3,1/3,−z)

Se 6 g (x,y,z) (−y,x−y,z) (−x+y,−x,z)
(y,x,−z) (x−y,−y,−z) (−x,−x+y,−z)





3. 2X2 CHARGE DENSITY WAVE

IN SINGLE-LAYER TITE2

3.1 Introduction

Transition metal dichalcogenides of the groups IV and V rank among the most con-

troversial materials exhibiting charge density wave (CDW) instabilities [50, 104].

The possibility of strong or weak electron-phonon coupling scenarios in group V

2H-MX2 (M = Nb, Ta; X = S, Se) and either phonon mediated or excitonic mech-

anisms in group IV 1T -TiSe2 have been discussed for decades [50]. Many of these

systems also exhibit superconductivity (SC) under certain conditions and the com-

petition between the two instabilities remains an important question still unan-

swered [105, 76]. These materials are built from MX2 layers interacting through

weak van der Waals forces and thus are easily exfoliated [15]. Consequently, they

offer the possibility to examine the above mentioned issues at the two-dimensional

(2D) limit as well as by smoothly varying the density of carriers through gate

doping. This is at the origin of the huge revival of interest recently raised by these

materials [106, 72, 55, 107, 77, 73].

Indeed, intriguing differences of these few-flake or even single-layer materials with

their bulk counterparts have been discovered. Recent reports on the existence

of a very weak pseudo-gap at the Fermi energy in single-layer NbSe2 [106, 48] or

the possible occurrence of incommensurate modulations for slightly electron doped

TiSe2 crystals of thicknesses less than 10 nm [77, 40] make clear that we are still far

from a full understanding of the physics of CDW materials and more particularly

when the screening is reduced.

53
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In this context, the recent report of a 2×2 CDW in single-layer TiTe2 by Chen

et al. [55] came as a very intriguing surprise. Since long [108, 109, 110] it has

been known that bulk 1T -TiTe2 does not exhibit the 2×2×2 CDW that occurs in

isostructural 1T -TiSe2 [53]. In addition, the 2×2 CDW is not observed anymore

in pristine multi-layer TiTe2 [55], but the 2×2 CDW phase have been stabi-

lized up to room temperature in multi-layers TiTe2 under applied strain [111]. In

contrast, the 2×2 CDW instability is observed in pristine TiSe2 from the single-

layer, for ultrathin films with up to six layers [93], and for the bulk crystal [53].

The experimental indication of the occurrence of the CDW in single-layer TiTe2

is even more surprising when considering that first-principles density functional

theory (DFT) calculations found that single-layer TiTe2 shows no tendency to

distort towards the 2×2 CDW structure at the generalized gradient approxima-

tion (GGA) level [55]. Yet, calculations of the same quality successfully predict

that the 2×2 CDW structure is more stable than the non-distorted structure for

single-layer TiSe2 [93, 92, 40]. Overall, these observations suggested the hypothe-

sis that something really new and challenging is at work in single-layer TiTe2 [55].

However, one should note that the CDW transition occurs at 100 K in single-

layer TiTe2 [55] but at a considerably higher temperature, 232 K, in single-layer

TiSe2 [73]. Hence, the driving force for the distortion must be considerably weaker

in single-layer TiTe2. Before concluding that a new scenario is needed to grasp

the origin of the unexpected 2×2 CDW in this material, one should wonder about

the appropriateness of the so far successful GGA-type of DFT approaches to the

CDW instabilities in single-layer group IV and V dichalcogenides. Such an ap-

praisal is needed because it impinges on very fundamental questions concerning

CDW instabilities at the 2D limit. Note that it has been recently shown [87] that

GGA-type functionals like PBE [98] overestimate the overlap between the Ti 3d

and Se 4p levels in bulk 1T -TiSe2. This can be corrected by using hybrid function-

als like HSE06 [94, 112] leading to an improvement of the electronic description

of bulk TiSe2 [87]. In the following, we report a DFT study of the likeliness of
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Figure 3.1: Single-layer TiTe2 structure. Side and top views of a layer.

a 2×2 CDW in single-layer TiTe2 employing both PBE and HSE06 functionals

which provides useful insight on the origin of the CDW instability in single-layer

TiTe2[113].

3.2 Results and Discussion

An isolated layer of 1T -TiTe2 is made of an hexagonal lattice of Ti atoms in an

octahedral environment of Te atoms (Fig. 3.1). The repeat unit of the hexagonal

bulk crystal structure contains just one of these layers. A detailed description of

our calculation method is presented in 3.4. Let us start our analysis by briefly

considering the PBE description of the electronic structure. The optimized a cell
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Figure 3.3: (a) GGA phonon dispersion in the Γ -M segment of the Brillouin Zone
(BZ) for the undistorted structure.(b) Frozen-phonon total energy calculation as
a function of the soft phonon mode amplitude at M, calculated with the GGA
functional. Energies are given in meV per formula unit relative to the undistorted
phase.
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parameter is 3.804 Å for the single layer and 3.815 Å for the bulk, in good agree-

ment with the bulk experimental value of 3.777 Å [114]. Within a single-layer there

are several Te...Te contacts shorter than the sum of the van der Waals radii so that

the valence bands, which have their maximum at Γ and are mostly built from Te

5p orbitals, are considerably wide and overlap with the bottom part of the Ti 3d

bands, which have their minima at the M point (Fig. 3.2). As expected from the

fact that in the bulk there are short Te...Te contacts in the direction perpendicular

to the layer, the semimetallic overlap is 19% larger in the bulk. Note that, as it

is clear from Fig. 3.2, inclusion of spin-orbit coupling effects does not have any

noticeable effect and therefore it will not be considered anymore in the following.

Thus, according to the PBE calculations single-layer TiTe2 is a semimetal exactly

as the bulk. In contrast with the case of single-layer TiSe2, for which the same

type of calculations led to a phonon with imaginary frequency at the M point [40],

our calculations with the GGA functional for single-layer TiTe2 (Fig. 3.3a) show

no phonons with imaginary frequency, in agreement with those of Chen et al. [55].

Although there is some remnant of the instability at M (notice the optical branch

that disperses downwards and shows the lowest frequency at the M point, reminis-

cent of the mode that becomes unstable for TiSe2), there is no definite indication

of a phonon instability that may lead to the 2×2 distortion of the structure. De-

tailed structural optimizations of 2×2 supercells confirmed this result. However,

as indicated by the frozen-phonon total energy calculation as a function of the

soft phonon mode amplitude at M (Fig. 3.3b), the GGA potential energy surface

is extremely flat. Under such circumstances, even if strictly speaking the PBE

calculations disagree with the experimental results in that no tendency toward the

2×2 CDW distortion is found, the results are somewhat inconclusive and a closer

look is needed.

The very flat frozen-phonon energy curve of Fig. 3.3b) suggests that small exter-

nal perturbations could be able to change the relative stability of the undistorted

and 2×2 CDW structures. This could occur, for instance, by the effect of strain.

Thus, we studied the evolution of the band structure and the relative stability
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Table 3.1: Evolution with tensile strain of: (i) the energy difference between the
undistorted structure and the relaxed 2×2 CDW structure, and (ii) displacement of
the Ti atoms in the plane parallel to the layer from their position in the undistorted
phase. All values obtained using the PBE functional.

Tensile Strain (%) ∆E (meV/f.u.) ∆ Ti(Å)
0 0.00 0.000
1 -0.001 0.007
2 -0.09 0.057
3 -0.29 0.061
4 -0.47 0.067
5 -0.74 0.080
6 -1.27 0.095
7 -2.04 0.118

Figure 3.4: Calculated GGA band structures for the stable 2×2 CDW structure
of single-layer (a)-(c) and double-layer (d)-(f) TiTe2 under tensile biaxial strain.
Γ = (0, 0, 0), M = (1/2, 0, 0) and K = (1/3, 1/3, 0) in units of the reciprocal
hexagonal lattice vectors.
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of the undistorted 1×1 and 2×2 CDW structures as a function of biaxial tensile

strain(allowing the atomic positions to relax for each strain applied). The strain

is defined as s = δm/m0 where m0 is the unstrained cell parameter and m0 + δm

the strained cell parameter. Thus, positive values correspond to tensile strains.

As shown in Table 3.1, a tensile stress as small as 1% is sufficient to make the

2×2 CDW structure slightly more stable than the undistorted one. For strains

larger than 2%, the 2×2 CDW is definitely favored. Also we can clearly see the

appearance of an imaginary phonon mode with the minimum at the M point in

the BZ for the structure under 6% biaxial strain in Fig. 3.5.
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Figure 3.5: GGA phonon dispersion along the high symmetry lines of the Brillouin
Zone (BZ) for the 6 % strained structure. Under a large enough bi-axial strain
one of the acoustic branches becomes unstable at M indicating an instability of
the undistorted structure.

The development of the 2×2 distortion is accompanied with the opening of energy

gaps at the crossings between the folded valence and conduction bands. However,

as shown in Figs. 3.4a-c, the distorted structure is still semimetallic and only for

relatively large tensile strains (between 5 and 6%) a full band gap occurs at the

Fermi level. As shown in Fig. 3.4a, in the folded band structure of the initial

unstrained layer there is a band crossing slightly below the Fermi level at approx-

imately halfway of the Γ-M line. Under a slight tensile strain, the semimetallic
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overlap decreases and this crossing occurs exactly at the Fermi level thus leading

to the opening of a gap at that energy. Nevertheless, the second Te-based valence

band centered at Γ (the one with a larger effective mass) still crosses the Fermi

level: it does hybridize with theM -point bands, but the resulting gap opens about

0.1 eV above the Fermi level. These results are in good agreement with the ex-

perimental ARPES data [55], which indicate that the valence band with larger

effective mass remains metallic for temperatures below the CDW transition Tc,

whereas the band with smaller effective mass does develop a gap at the Fermi

level below Tc. The calculated densities of states (DOS) reflect the same result,

with a pseudo-gap occurring at the Fermi level for small strains under which the

2×2 CDW structure is already stable (∼2-3%)(see Fig. 3.6) . This also compares

favourably with the pseudo-gap observed in the experimental STS spectra (Fig. 4

in [55]), which has a similar width as the one observed in ARPES.

Judging from the comparison of the previous results with the ARPES data of

Chen [55] it appears that the GGA-PBE description of single-layer TiTe2 is only

consistent with the experimental situation when a slight tensile strain is imposed

in the calculation, as the GGA functional overestimates the overlap between con-

duction and valence bands, which is then compensated by the imposed tensile

strain. The main effect of the strain is a decrease of the intralayer Te...Te short

contacts which leads to a decrease of the Te 5p bandwidth and, consequently, of

the semimetallic overlap. Only when this overlap decreases with respect to the

PBE description of the system the 2×2 CDW becomes more stable. This obser-

vation is consistent with the fact that, when Te...Te interlayer interactions come

into play in the bulk or even in the double-layer, the semimetallic overlap increases

and the 2×2 CDW is not observed anymore. As shown in Figs. 3.4 (d)-(f) the

semimetallic overlap increases from single- to double-layers. Note that the band

structure for the TiTe2 double-layer with ∼6% strain is very similar to that of

the single-layer with a 3% strain. These results are reminiscent of the above men-

tioned work concerning the functional type dependence of the semimetallic overlap

of bulk TiSe2 [87] and prompted us to reconsider the stability of the unistorted vs.
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Figure 3.6: Density of states for the 2×2 structure of the single-layer TiTe2 under
tensile biaxial strain within PBE functional. A pseudogap at the Fermi level is
obtained for a small bi-axial strain (panel b), while a full gap develops for large
strain values (panel c).
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Figure 3.7: Energy difference (in meV per formula unit) between the undistorted
and 2×2 CDW structures of an unstrained TiTe2 single-layer according to DFT
calculations using the hybrid HSE06 functional.

2×2 CDW structures using the hybrid type functional HSE06 [94, 112]. Shown in

Fig. 3.7 is a frozen-phonon calculation of the energy difference between the undis-

torted structure and the 2×2 CDW structure following the soft phonon mode

distortion. The curve clearly shows that, at the HSE06 level, unstrained single-

layer TiTe2 is indeed unstable towards the 2×2 CDW distortion. By relaxing the

structure around the minimum of the frozen-phonon curve we have obtained an

energy gain of 3.8 meV/formula unit. This stabilization energy is much lower than

the value obtained for a TiSe2 monolayer using a PBE functional, 6 meV/f.u [40].

Hellgren et al. [87] showed that for bulk TiSe2 hybrid functionals predict a much

higher stabilization energy than the PBE functional. Thus, it is understandable

that according to our PBE type studies single-layer TiTe2 does not tend to ex-

perience a 2×2 CDW instability. Overall, our data suggest a weak driving force

for the distortion. Since this is a significant result let us consider in more detail

the region of the semimetallic overlap. A fatband analysis of the PBE and HSE06

band structures is shown in Figs. 3.8a and b, respectively. A close inspection at

the region around Γ points out some clear differences between the results of both

functionals. For PBE, above the (partially empty) top of the valence band at Γ
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Figure 3.8: Calculated band structure for TiTe2 single-layer using the PBE (a) and
hybrid HSE06 (b) functionals. The size of the green and red circles is proportional
to the Te and Ti character, respectively.

there is a non-degenerate band and a pair of degenerate bands at a higher energy.

The order is the opposite for the HSE06 functional (Fig. 3.8b), for which the two

degenerate bands are lower in energy. Around the Fermi level a heavy mixing of

the t2g levels of the Ti atom and the 5p levels of the Te atoms occurs. Assuming

a local coordinate system in which the three-fold symmetry axis of the octahe-

dron occurs along the z direction, the non-degenerate Ti-based band is essentially

built from the Ti dz2 orbital, whereas the top of the valence band, which is dou-

bly degenerate at Γ, is mainly built from the Ti dx2−y2 and dxy orbitals which

are somewhat tilted because the plane of the Ti atoms is not a symmetry plane.

The single band at Γ is slightly higher in energy than the doubly-degenerate pair

because of the slight rhombohedral distortion. The upper, doubly degenerate, Te-

based bands are built from the Te px and py orbitals. Having identified the nature

of these levels it is immediately clear that the Te-based doubly degenerate set is

higher in energy for the PBE-type calculation. This means that, in the absence of

Ti-Te hybridization, the Te px/py valence bands would raise up to higher energies

at Γ than in the HSE06-type calculations. Consequently, when the hybridization
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is switched on, a larger number of electron and hole carriers is induced. Indeed, a

careful look at the band structures in Fig. 3.8 shows that there is a significantly

larger overlap between the top of the valence band around Γ and the bottom of

the conduction band at M for the PBE functional than for HSE06. The smaller

overlap in the HSE06 band structure is also clear from the decrease of the the area

of the constant energy plot at 0.25 eV below the Fermi level [55] for the undistorted

TiTe2 single-layer calculated with the HSE06 functional (compare Figs. 3.9 and

3.10). We note that the PBE-type band structure for single-layer TiSe2, which

provides a satisfactory description of the relative stability of the undistorted and

2×2 CDW in this system [40, 92], shows exactly the same topology and particu-

larly, the same band ordering as the HSE06 band structure of Fig. 3.8b.

As soon as one moves along the Γ-M line (i.e. along the a* direction), the only

symmetry element preserved is the symmetry plane perpendicular to the layer and

going along the a* direction. One of the two Ti-based doubly degenerate levels at

Γ and the Ti dz2 mix and interact with one of the Te p bands near Γ leading to

the slowly descending band from Γ-M which is associated with the electron pock-

ets near M . With the local system of axes mentioned above, the crystal orbitals

around M are almost exclusively made of tilted Ti dx2−y2 orbitals (i.e. a mixing

of Ti dx2−y2 and Ti dz2 which leads to the tilting of the orbital) exactly as we have

discussed in Sec. 2.2 for the TiSe2 single-layers [40]. We refer the reader to this

section for a detailed analysis of the nature of the band structure which entirely

applies to the HSE06 one reported in Fig. 3.8b.

The HSE06 band structure and density of states for both the undistorted and

the 2×2 CDW structures are reported in Figs. 3.11. As shown in both figures

the stabilizing 2×2 CDW distortion opens a gap at the Fermi level. The analysis

of the nature and origin of the distortion goes along the same lines presented in

detail in the Sec. 2.2 on TiSe2 single-layer and will not be repeated here [40].

However, we note that the non-activated conductivity is kept in single-layer TiTe2

below the CDW transition temperature [55] so that no gap should occur at the
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Figure 3.9: Constant energy contour at 0.25 eV below the Fermi level for the 2×2
structure of the single-layer TiTe2 under tensile bi-axial strain. Note that the
energy contours calculated within PBE functional are slightly smaller in radius
than the experimental one.
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Figure 3.10: Constant energy contour at 0.25 eV below the Fermi level of the
single-layer TiTe2 calculated with the hybrid HSE06 functional.

Fermi level. Consequently, the HSE06 calculations exaggerate the tendency to-

wards the transition. As mentioned above, the PBE calculations suggest that

under reasonable tensile strain a 2×2 CDW is favored without the development

of a band gap. Only when the strain is relatively large (i.e. around 5-6%, see

Fig. 3.4) a band gap really opens. The HSE06 band structure of Fig. 3.11a is

similar to that in Fig. 3.4c corresponding to a 6% tensile strength. We believe

that the HSE06 functional exaggerates the stability of the 2×2 CDW and that the

real situation concerning the weaker stabilization of the CDW phase and the lack

of a full bandgap opening would rather correspond to that of the PBE functional

with a moderate tensile strain. This observation, together with previous results

on bulk TiSe2 [87] suggest that a predictive description of these TiX2 systems is

attainable by using the HSE06 functional and tuning the actual contribution of

the exact exchange. However, from the viewpoint of the physical origin of the

CDW we do not find any noticeable difference with the analysis in Sec. 2.2 of the

2×2 CDW instability of TiSe2 single-layers.

To further assess our conclusion we carried out HSE06 calculations for a TiTe2

double-layer. Two single-layers with the optimized structure were placed with the

interlayer bulk distance. The stabilization energy of the 2×2 CDW is reduced to

practically one-half the value in the single-layer. Taking into account the small

(and exaggerated) value for the single-layer, the driving force for the 2×2 CDW
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Figure 3.11: HSE06 band structure (a) and Density of States (DOS) (b) for single-
layer TiTe2. Broken red lines correspond to the 2×2 CDW structure and black
continuous lines to the undistorted structure. The bands are represented in the
BZ of the 2×2 structure and therefore are folded with respect to that in Fig. 3.2.
The origin of the energy scale is the Fermi level of the undistorted structure.
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distortion in the TiTe2 double-layer must be extremely small or most likely nil, as

experimentally found.

Our study points out an interesting possibility. Since tensile strain has been found

to be a useful technique to induce modifications in single-layer or few-flake ma-

terials [115, 116, 117, 118], it is possible that the 2×2 CDW can be induced in

double-layers or triple-layers of TiTe2 by using a small tensile strain. 1 This

prediction was confirmed shortly after the publication of our study in [111] were

the CDW state was stable at room temperature in up to 50 layers under strain.

Another useful hint provided by our study is that the 2×2 CDW in single-layer

TiTe2 may be more stable and result with a band gap under tensile strain or may

be suppressed under a slight compresive strain.

3.3 Conclusions

A density functional theory study concerning the origin of the 2×2 CDW dis-

tortion recently reported experimentally for single-layer TiTe2 has been carried

out. This report is surprising because neither double-layer nor bulk TiTe2 exhibit

the 2×2 distortion and a PBE-based DFT study predicts that the undistorted

structure is also more stable for the single-layer. Our study shows that, whereas

calculations employing the semi-local functional PBE favor the undistorted struc-

ture, the hybrid functional HSE06 correctly predict the 2×2 distortion. However,

the HSE06 calculations seem to exaggerate the stability of the distorted phase

and, as a consequence, a noticeable band gap of more than 0.1 eV is induced at

the Fermi level. This is in contrast with the metallic character of the TiTe2 single-

layers below the transition temperature. Interestingly, PBE type calculations for

the case where the single-layer is subject to a slight tensile strain also favor the

2×2 distortion while keeping the semimetallic overlap. The study suggests that

the magnitude of the semi-metallic overlap is a key factor controlling the tendency
1Note that tensile strain has been shown to decrease the semimetallic overlap and eventually

lead to a band gap without changing the size of the unit cell both in single-layer [119] and bulk
1T -TiS2) [120].
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towards the distortion and consequently only functionals describing such overlap

very accurately can provide a truly predictive description of the electronic struc-

ture.

According to the present study the mechanism of the CDW instability in single-

layer TiTe2 seems to be the same phonon mediated mechanism acting for single-

layer TiSe2[40] although now the driving force is smaller and the semimetallic

character is kept below the transition temperature. As mentioned above, the

magnitude of the semimetallic overlap seems to be one of the key factors in con-

trolling the likeliness of the 2×2 CDW. Taking into account that the overlap should

increase in these TiX2 systems when the number of short Te...Te contacts increase

or when they become stronger, the overlap should increase from single-layers to

bulk and from X=S to X=Te. Since the instability is not observed in bulk TiS2 nor

in double-layer TiTe2, it seems that only a relatively narrow range of semimetallic

overlaps is associated with the instability. In this respect, a significant result of

the study is that tensile strain stabilizes the 2×2 CDW distortion in single-layer

TiTe2. This could be used to induce the instability in double- or triple-layers of

TiTe2 which in the absence of strain remain undistorted, to induce a stronger dis-

tortion leading to the creation of a band gap in single-layer TiTe2 or most likely

to suppress the 2×2 CDW under a small compression. Such studies could provide

useful insight on the CDW mechanism of group IV 1T -TiX2 phases.

3.4 Computational details

The geometrical optimizations, electronic and phononic band structures were car-

ried out using a numerical atomic orbitals density functional theory (DFT) [96, 97]

approach implemented in the Siesta code [27, 28]. The Perdew-Burke-Ernzerhof

(PBE) functional was used to account for the exchange-correlation energy [98].

The core electrons have been replaced by norm-conserving scalar relativistic pseu-

dopotentials [99] factorized in the Kleinman-Bylander form [100]. We include the
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3p shell of Ti explicity in the valence, as semicore states. We have used a split-

valence double-ζ basis set including polarization functions [101]. The non-linear

core-valence exchange-correlation scheme [102] was used for all elements. In the

direction normal to the single-layer we chose a vacuum space of 50 Å in order to

avoid possible interactions between the layer and its images. In the case of geo-

metrical optimization calculations, the atomic coordinates were relaxed until the

forces on them were below 10−5 eV/Å. In all calculations, we use a cutoff of 2500

Ry for the real space integrals, and a tolerance of 10−7 and 10−6 eV on the density

matrix and the total energy, respectively, for the convergence of the SCF cycle. To

sample the Brillouin cell for the electronic states, a Monkhorst-Pack [103] k-point

grid of 300×300×1 was used for the undistorted minimum cell and it was scaled

accordingly where supercell calculations were performed.

All HSE06 hybrid functional [94, 112] calculations were performed using the VASP

code [121]. Core electrons were treated by means of the projector augmented wave

method [122, 123] including semicore states for Ti. We used a planewave basis set

with an energy cutoff of 330 eV. A Monkhorst-Pack [103] k-point grid of 24×24×1

was used to sample the Brillouin zone.



4. COEXISTENCE OF DIFFERENT

MODULATIONS IN THE CDW

STATE OF NBSE2 SINGLE-LAYERS

4.1 Introduction

The genuine origin of the charge density wave (CDW) state in NbSe2 has been

a matter of continuous debate[50, 124]. Clearing up this point is an unavoidable

issue in any attempt to understand the interplay between CDW and supercon-

ducting (SC) states in this paradigmatic material[105]. Bulk 2H-NbSe2 is a

room temperature metal which at 33 K undergoes a transition towards an atyp-

ical CDW state[104] with practically no resistivity change through the transi-

tion. Below 33 K the system exhibits a modulated almost quasi-commensurate

3×3 structure[125] and at 7 K enters into a SC state[126]. It has been recently

shown that the CDW order remains intact in single-layer NbSe2 [106]. In contrast

with 2H-NbSe2, the CDW modulation in bulk 2H-TaSe2 is 3×3 commensurate

at low temperature[125]. Dichalcogenides of the 2H-MX2 family provide promis-

ing playground for the study of competing electronic instabilities in the 2D limit,

2H-NbSe2 being specially challenging because of the incommensurability of its

CDW.

Single-layers of 2H-NbSe2 (from now on we will refer to them simply as NbSe2

) are hexagonal layers of Nb atoms in a trigonal prismatic environment of Se

atoms (Fig. 4.1).[127] Although the superlattice periodicity (quasicommensu-

rate 3×3) has been accurately measured by different techniques, the microscopic

71
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structure of the elastic distortion that accompanies the CDW phase still remains

elusive. The layers of bulk 2H-NbSe2 were recently found to exhibit a contin-

uous pattern of overlapping star-shaped Nb atom clusters extending along the

layer.[128] More recently, a first-principles DFT study of our group on single-layer

NbSe2 assuming a commensurate 3×3 modulation revealed that several struc-

tures with nearly equal stability but different distortion patterns are compatible

with a 3×3 modulation[48]. This suggests a very flat potential energy surface and

a plausible coexistence of the different modulations. This potentiality stimulated

two subsequent theoretical works.[129, 130] However, a comprehensive picture of

the exact elastic modulations cannot be solved from a purely theoretical DFT ap-

proach since (i) the real modulation is strictly non-commensurate, and (ii) the re-

sulting competing modulations have very similar energetic stability. Because of the

simultaneous occurrence of these two features, theoretically optimized 3×3 com-

mensurate structures can only be taken as suggestions of different possibilities to

be carefully examined by suitable experimental techniques. STM is well suited for

this purpose since it can image with atomic resolution the spatial rearrangement

of the electronic charge of the CDW phase. Such electronic rearrangements can

be compared to those simulated for the different calculated elastic modulations.

In this work we have collaborated with the experimental group of Dr. Miguel M.

Ugeda (San Sebastián) in order to provide compelling evidence for the coexistence

of different modulations in the CDW state of NbSe2 . In order to search for the

several possible competing phases, we perform total energy minimizations starting

from different distorted starting configurations. Some of the structures were only

found when a charge doping was initially considered. Once such structures are

located for a given doping value, their evolution with doping was also followed.

While some of the phases were found for the whole range of doping considered,

others were observed for some doping intervals. Doping is therefore used as a

practical way to unravel competing structures in our calculations. Nevertheless,

we note that our results of the stability of the several structures as a function

of doping can also be relevant to experiments where injection of carriers in the
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single layers is achieved through electric field gating.1 We also note again that our

commensurate 3×3 structural models are only (close) approximations to the true

experimental incommensurate structures.

Figure 4.1: Top and side view of a layer of the 2H-NbSe2 structure.

4.2 Results and discussion

Full optimization of the non-modulated structure of single-layer NbSe2 leads to a

lattice constant of 3.48 Å, which is in good agreement with plane-wave type DFT

studies,[129] 3.47 Å, and the experimental value for the bulk, 3.44 Å.[127] The band

structure and Fermi surface of single-layer NbSe2 in both modulated[48, 129, 130]

and non modulated[133, 134, 135] structures have been discussed before. Such

Fermi surface contains rounded hexagons and rounded triangles centered at Γ and

K points of the Brillouin zone (BZ), respectively (see Fig. 4.2). The calculated

Lindhard response function for the optimized non modulated single-layer NbSe2 is

shown in Fig. 4.3. As it occurs for the bulk,[136] there are no sharp maxima around
1Note that doping of transition metal dichalcogenide single layers can also be achieved by

growing the single layers on a Au(111) substrate.[131, 132]
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the (a*/3, 0) point and equivalent ones of the BZ which could justify a Fermi sur-

face nesting driven mechanism of the CDW, but a very shallow region around the

Γ - M direction. In contrast, as can be seen in the phonon band structure of the

optimized non modulated structure shown in Fig. 4.4, one of the phonon branches

becomes clearly unstable in a large part of the Γ - M segment of the BZ, with

a maximum imaginary frequency near but not exactly at the a*/3 point. The

presence of phonons with imaginary frequency around this point indicates that

the system is unstable with respect to incommensurate distortions with a period-

icity not far from 3×1 (and symmetry equivalent). The combination of the three

equivalent distortions (threefold symmetry, i.e. triple-q or 3Q mechanism), leads

to an incommensurate structure close to 3×3. We conclude that the modulation

of the single-layer NbSe2 is a strong-coupling CDW caused by electron-phonon

coupling, as it has been proposed for the bulk[136] and it was previously discussed

here for single-layers [48].

Γ

M

K

Figure 4.2: Fermi surface of the undistorted single-layer NbSe2.

We then performed structural optimizations imposing a 3×3 periodicity for the

pristine as well as for several doping levels of single-layer NbSe2. We also checked

that the phonon instability remains under doping. In Fig. 4.5 we show that the

effect of doping does not change this picture qualitatively, although the precise

shape of the unstable phonon branch and the position of the minimum experience
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Figure 4.3: Lindhard response function calculated for undistorted single-layer
NbSe2.
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Figure 4.4: Phonon dispersion along the high symmetry lines of the Brillouin zone
calculated for the undistorted single-layer NbSe2.
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some small changes. A summary of this study is reported in Fig. 4.6. Up to six dif-

ferent modulations compatible with a 3×3 cell were found. One of the structures

exhibits centered hexagonal clusters of Nb atoms and single Nb atoms in between

(noted Hexagons in Fig. 4.6). Another structure contains a continuous pattern of

overlapping star-shaped Nb atom clusters (noted Star in Fig. 4.6) which coincides

with the 3×3 modulation reported for the bulk.[128] Two structures contain tri-

angular clusters of 3 and 6 Nb atoms (T1 and T1´ in Fig. 4.6); whereas in T1 the

inner triangles of both clusters are centered by two Se atoms above and below the

Nb atoms plane, in T1´ they are centered by hollows. Finally, two more structures

contain a continuous pattern of overlapping triangular clusters of 6 Nb atoms of

two different types, with or without Nb-Nb short distances inside the large trian-

gles (T2 and T2´ in Fig. 4.6). Note that the six structures can be paired in three

groups: Hexagons/Star, T1 /T2 and T1/́T2´ so that within each pair the short

and long Nb-Nb bonds are interchanged. This suggests that the two structures

within each pair may be interconverted as a function of doping. This is indeed the

case for the T1 /T2 and T1/́T2´ pairs where a relatively simple gradual change

between the two structures is possible. However, the Hexagons/Star pair could

not be exchanged due to their complex arrangement. Consequently, for a given

carrier-density there are four different structures compatible with a 3×3 modu-

lation. Remarkably, for most doping levels the energy difference between these

structures is extremely small (between fractions of a meV and at most 2 meV) so

that it is likely that some of the structures experimentally coexist. Let us stress

that our calculations are carried out for a commensurate 3×3 CDW structure but

the real modulation is incommensurate. As a consequence of this fact and the very

small energy differences, the data in Fig. 4.6a should be only taken as suggesting

that some of these structures may coexist in real samples and weak changes in

doping, strain or internal pressure of the crystal may alter such coexistence.

We have performed the analysis of the stability of the six different structures

with 3×3 periodicity by obtaining the Γ phonon frequencies, as shown in Tab.

4.1. As some of the phases are only stable under charge doping, the frequencies
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Figure 4.5: Evolution of the phonon dispersion in the Γ-M segment of the BZ for
the undistorted NbSe2 single-layer .
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Figure 4.6: Different modulations compatible with a 3×3 periodicity and their rel-
ative energies for NbSe2 single-layer as a function of external doping (in electrons
per formula unit; negative values indicate electron doping). For a given doping
value the energy (in meV per formula unit) is given with respect to the optimized
non distorted system for the same doping level. Nb-Nb contacts shorter than in
the average structure are those shown in the structural drawings.
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were obtained using two doping values: 0 and -0.25 e/f.u.. For the pristine single

layer, we find that the Hexagons, T1 and T1´ structures, are stable and show no

imaginary frequencies, whereas the star phase does show three imaginary frequen-

cies, which is in agreement with the previous works.[129, 130] For the case of -0.25

e/f.u. doping, we find that this is consistent with the energy ordering of the phases

as a function of doping in Fig. 4.6; the phases which are found to have unstable

modes are the ones with higher energies (stars for zero doping and Hexagons for

-0.25 e/f.u. doping).

Table 4.1: Lowest six Γ-point phonon modes for the 3 × 3 CDW phases in the
non-doped case and in the 0.25 e−/f.u. doped case.

ωΓ(cm−1)
Lowest 6 modes

0.00 e−/f.u. 0.25 e−/f.u.
H T 1 T 1’ Star H T 2 T 2’ Star
0 0 0 -75 -89 0 0 0
0 0 0 -73 -83 0 0 0
0 0 0 -73 -83 0 0 0
6 46 54 0 0 57 28 39
7 49 58 0 0 57 29 39
66 64 61 0 0 70 59 72

In order to determine the possible coexistence from the 6 different calculated

phases, it is necessary to compare our simulated STM images with the experi-

mental findings. As mentioned before the experimental study was carried out in

the group of Dr. Miguel M. Ugeda. The images were produced by scanning the

surface of bulk 2H-NbSe2 by meants of Scanning Tunneling Microscopy(STM) at

T = 1 K. Because both bulk and NbSe2 exhibit a 3×3 CDW phase[106], the

experiments were carried out in its bulk fomr due to the much lower density of

defects (grain boundaries and domain edges are not present in bulk), which might

have altered the energy landscape of the CDW phase. Furthermore, the purely

two-dimensional character of the CDW order in NbSe2 allowed for the a direct

probing of the existence of the structural phases predicted for the single-layer

NbSe2 in the bulk form. The analysis of tens of different regions of bulk NbSe2

led to the identification of two different structural phases.
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Upper panel in Fig. 4.7 shows two experimental STM images of a representa-

tive region for unoccupied (Fig. 4.7a) and occupied (Fig. 4.7b) states. The STM

images reveal the coexistence of two different phases (depicted in blue/yellow) sep-

arated by an Å-scale boundary (black dashed line). Although the two phases show

the same 3×3 superlattice periodicity at both polarities, the relative intensity of

the nine Se atoms of each 3×3 unit cell (blue and yellow cells) vary differently,

thus giving rise to a unique pattern in each case. Figures 3c-f show close-up views

of these patterns for the two phases at each polarity. Such unique patterns al-

lowed us to compare both structural phases with simulated STM images from the

six stable structures, within the Tersoff-Hamann approximation pattern (see Figs.

4.8,4.9 and 4.10 for the images of the Star, T1´ and Hexagons phases not shown

in Fig. 4.7).[137] As a first result, the experimental phase labelled in blue can be

identified with the theoretical T2´ . Figures 4.7g and 4.7i show the simulated STM

images of this phase at ± 0.05 V that compare with the experimental STM images

in Figures 4.7c and 4.7e, respectively. The theoretical 3×3 unit cells reproduce

the relative intensity of the Se atoms within the unit cells simultaneously for both

polarities as well as their relative orientation. Regarding the yellow phase, it can

be identified with either the T1 or T2 phases since they exhibit almost the same

patterns at both polarities and, therefore, are practically indistinguishable. Fig-

ures 4.7h and 4.7j show the simulated STM images for the T1 phase at ± 0.05 V

(those for T2 are almost identical) for comparison with the experimental ones in

Figures 4.7d and 4.7f, respectively. Here, again, the patterns within the 3×3 unit

cells show a good agreement between theory and experiment. We therefore assign

the observed blue and yellow phases to the T2´ and T1/T2 phases. Although

this is the most likely correspondence between the experimental and theoretical

phases, the blue phase can also be identified as the Star phase according to the

superlattice. However, this would imply a rotation of 180 deg of the crystal lattice

with respect to the T1/T2 phase and, therefore, their mutual coexistence is not

compatible in light of the experimental data.
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In summary, on the basis of first-principles DFT calculations six different struc-

tures are found to be compatible with the 3×3 CDW structure of NbSe2 . All

these structures are found to coexist in a very narrow energy range of 2-3 meV.

Their relative stability can be subtly altered by doping or strain. Imaging the

surface of bulk 2H-NbSe2 with atomic resolution allowed us to identify two of

these structures, as anticipated by our theoretical simulations. Intriguingly, these

structures differ from the X-ray crystal structure reported for the bulk 3×3 CDW

which, in fact, is also one of the six DFT structures located for the single-layer.

Preliminary calculations for slabs with a different number of layers suggest that

the actual structure stabilized may change from layer to layer, i.e., the energetic

preference may depend also on the internal pressure. The coexistence of differ-

ent structures in 2H-NbSe2 has far-reaching consequences to fully understand

the electronic ground state of 2H-NbSe2. Thus, experimental work on slabs with

different number of layers is encouraged since it may provide important clues to

understand the puzzling physics of this correlated material.

4.3 Computational details

The geometrical optimizations, electronic and phononic band structures were car-

ried out using a numerical atomic orbitals density functional theory (DFT) [96, 97]

approach implemented in the Siesta code [27, 28]. We used the Perdew-Burke-

Ernzerhof (PBE) functional to account for the exchange-correlation energy [98].

A split-valence double-ζ basis set[101] was used to describe the valence electrons

wave function, while the core electrons were replaced by norm-conserving scalar

relativistic pseudopotentials[99] factorized in the Kleinman-Bylander form[100].

The 4p shell of Nb is included in the valence explicitly as semicore states. For a

good description of the free standing layer, we placed the single layer in a vacuum

space of 50 Å to avoid interactions between the layer and its images. We used

an energy cutoff of 2500 Ry for the real space integration. A tolerance of 10−5

and 10−4 on the density matrix and total energy, respectively, was used in order

to attain the convergence of the self-consistency cycle. Geometrical optimization
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Figure 4.7: Unoccupied (a) and occupied (b) STM images (14 nm x 14 nm) of the
same region of bulk NbSe2 showing the coexistence of two structural phases. The
black dashed line represents the boundary between them. Parameters: (a) VS =
50 mV , I = 0.5 nA and (b) VS = -50 mV , I = 0.5 nA. (c-f) Zoom-in STM images
from a and b of the two phases for unoccupied (c,d) and occupied (e,f) states.
(g-j) Simulated STM images for both phases and bias polarities (VS = ± 50 mV).
Reprinted with permission from Nano Lett.,2019,19,5,3027-3032 [138]. Copyright
2019 American Chemical Society.

calculations were performed to ensure a maximum interatomic force of 4×10−3

eV/Å−1. A Monkhorst-Pack[103] k-point grid of 72×72×1 was used to account for

the sampling of the Brillouin zone of the minimum unit cell and it was scaled ac-

cordingly where supercell calculations were performed. Phonon calculations were

done using the finite difference method. In the case of the phonon band structure

calculations, a k-point grid of 120×120×1 per minimum unit cell and a 5×10−3

eV Fermi-Dirac smearing were used.
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Figure 4.8: Unoccupied (a) and occupied (b) simulated STM images of the Star
structure for bias polarities ± 50meV. Note the incompatible pairing at both po-
larities with the experimental results.

Figure 4.9: Unoccupied (a) and occupied (b) simulated STM images of the
T1’ structure for bias polarities ± 50meV. Note the incompatible pairing at
both polarities with the experimental results. Also note the incompatible phase
change(180 deg rotation) from one polarity to the other even though the image
looks similar with T1 structure simulated images.
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Figure 4.10: Unoccupied (a) and occupied (b) simulated STM images of the
Hexagons structure for bias polarities ± 50meV. Note the incompatible pairing
at both polarities with the experimental results.
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INTRODUCTION

In the following chapters we will approach the family of bulk low-dimensional

metallic systems and their propensity towards electronic and structural instabili-

ties below certain temperatures. We refer to low dimensional materials in both of

its forms: crystal and electronic. Crystal-wise, low dimensional materials present

a covalent bonding in one or two crystallographic directions. They form chain-like

structures (like in the case of (NbSe4)2I, TaTe4), respectively slabs (like in the case

of ZrTe3 or Bechgaard salts) that are weakly coupled in the other direction(s) by

van der Waals forces. The electronic structure naturally inherits the anisotropy of

the crystal structure. However, there are also systems which are 3D in terms of the

structure yet they exhibit a low-dimensional behaviour in terms of the transport

properties. Mo8O23 or Li0.9Mo6O17 are two examples. The dimensional contrac-

tion of the electrons’ degrees of freedom down to one has a strong impact on the

physical properties. It was predicted by Peierls[1] that a one dimensional elec-

tron gas on a lattice would be unstable under a small perturbation, leading the

system into a metal-insulator phase transition due to its electron-hole pairing at

the Fermi level at 0 K. This model that implies a certain topology of the Fermi

surface, i.e. large portions of the Fermi sheets that can be connected by the same

wave-vector, can very well describe the manifestation of the charge density wave

in some of these low dimensional metals. But what can we learn from where this

scenario fails? In the previous chapters we have seen that TiSe2, TiTe2 and NbSe2

single layers are room temperature low dimensional metals which undergo some

kind of low temperature structural modulation associated with anomalies in the

transport properties and, yet, none of them originates from a Peierls like instability.

Our main focus in the next chapters is to determine what stands at the origin of

the modulation(s) in different classes of bulk low-dimensional metals. Our main
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tool will be the calculation of the Lindhard response function. When Fermi surface

nesting is at the origin of the CDW modulation, the Lindhard response function

exhibits a sharp maximum for a wave vector which coincides or is very near to that

of the CDW modulation, which results from the coupling of the CDW instability

with a periodic lattice distortion (the Peierls scenario). Fig. 4.11 clearly illustrates

this point. Whereas the Lindhard function of single layer NbSe2 does not exhibit

sharp maxima but plateaus, that of the blue bronze exhibits said sharp maxima.

As discussed in chapter 2, the CDW of the first one does not originate from a

Fermi surface instability, but as it will be discussed in the following chapter, the

metal to insulator transition of the Blue Bronze is a perfect example of a CDW

following the Peierls scenario.

Altogether we have studied from the first principles calculations standpoint the fol-

lowing classes of materials: oxides (blue bronze, monophosphate tungsten bronzes,

layered perovskite-related AnBnO3n+2 niobates and titanates, Magnéli phases Mo4O11

and Mo8O23), transition metal trichalcogenides(NbS3, NbSe3, TaS3, ZrTe3) and

tetrachalcogenides (TaTe4, (TaSe2)4I), Bechgaards salts ( (TMTSF)2X with X =

ClO4, NO3, PF6 ) and rare earth intermetallics (LaAgSb2). However, we will only

report here our results for three of these materials: the Blue Bronzes, the Bech-

gaard salts and TaTe4, which illustrate very clearly the diversity of phenomena

exhibited by low dimensional metals.

We will begin our incursion with the prototypical example of the blue bronze

(K0.3MoO3) which provides a perfect example of a pseudo-1D metal exhibiting a

CDW formation as a result of a Fermi surface nesting instability. As it will be

seen in the next chapter, our calculations provide compelling evidence that the

CDW formation follows the weak electron-phonon coupling scenario in the adi-

abatic approximation, something that had not yet been proved on the basis of

first-principles calculations for a real material. Then we will report our results for

three Bechgaard sals, (TMTSF)2PF6, (TMTSF)2ClO4 and (TMTSF)2NO3, which

undergo SDW instabilities at low temperature. In that case, the analysis of the
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variation of the wave vector and temperature dependence of the Lindhard function

leads to a rationalization of the electronic dimensional crossover and spin density

wave instability in these salts. In the case of (TMTSF)2ClO4 and (TMTSF)2NO3

the situation is even more complex because of the conccurrence of an anion or-

dering transition. Finally we will consider the case of TaTe4, a room temperature

metal exhibiting structural modulations which have been ascribed to a Peierls type

mechanism, an interpretation challenged by our calculations.

a)

Γ

X

Y

Γ

M

M

K

b)
K0.3MoO3

NbSe2

Figure 4.11: Comparison between the Lindhard function for the layered NbSe2 (a)
and the K0.3MoO3, Blue Bronze (b).





5. A PARADIGMATIC CASE: THE

BLUE BRONZE K0.3MOO3

5.1 Introduction

Many low dimensional metallic systems exhibit a charge density wave (CDW)

ground state where the electronic density is modulated with a wave number re-

lated to the shape of their Fermi surface [139, 140, 141]. In experimental situations

reported in the literature, the electronic modulation is stabilized by a periodic lat-

tice distortion (PLD) [142]. Thus, electronic and lattice degrees of freedom are

coupled by the electron-phonon coupling [143, 144]. The electronic energy gain is

caused by the fact that the new periodicity of the PLD opens a full gap in the

band structure for 1D electronic systems or partial gaps in electronic systems of

higher dimension [145]. In the case of 1D systems, the CDW/PLD modulation

is accompanied by a metal-insulator transition (i.e. Peierls transition in the lit-

erature) and the modulation wave vector, 2kF , is simply twice the Fermi wave

vector [146].

In the standard description of the Peierls transition [146] the electron-phonon

coupling is assumed to be small so that the electronic wave functions are weakly

perturbed by the lattice vibrations. In this limit, which relies on a PLD of small

amplitude, the instability towards the formation of electron-hole pairs is driven

by the thermal divergence at a well defined critical wave vector (qc= 2kF in the

1D case) of a sharp electron-hole (i.e. Lindhard [31]) response function of the
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non-perturbed electron gas. This response can be written as

χ(q) = −
∑
i,j

∑
k

fF (εi(k))− fF (εj(k + q))

εi(k)− εj(k + q)
, (5.1)

where fF is the Fermi function and εi(k) are the band eigenvalues.

In the weak electron-phonon coupling limit and within the adiabatic approxima-

tion where Ω0τeh < 1 (Ω0 being the frequency of the bare critical phonon Kohn

anomaly and τeh the lifetime of the electron-hole pair), the electron-hole pairs fluc-

tuate so fastly during the phonon oscillation period that they screen the coupling

between the atoms. This leads to a phonon softening around qc (i.e. to the occur-

rence of a Kohn anomaly) for lattice modes whose frozen displacements stabilize

the PLD below the Peierls transition. In the adiabatic approximation, the critical

lattice dynamics is of the displacive type with a progressive softening of the fre-

quency of the Kohn anomaly when approaching the Peierls transition, following

the thermal divergence of the electron-hole response [146]. In this limit the width

of the dispersion of the Kohn anomaly is related to the width of the electron-hole

response around qc (2/ξeh, where ξeh is the coherence length of the electron-hole

pair). Finally, in the standard theory of the Peierls transition, the entropy of the

critical phonon mode is neglected, an approximation valid if the Kohn anomaly

involves only a small fraction of the Brillouin zone (i.e. if ξeh2kF >> 1 in 1D).

In the weak coupling limit, the theory of the Peierls transition is of the BCS

type [146]. Note that in the presence of a broad electron-hole response spreading

over a sizeable fraction of the Brillouin zone (i.e. if ξeh2kF ∼ 1 in 1D) the phonon

entropy cannot be neglected [147]. In that case it is needed to go beyond the

weak coupling BCS formalism to describe the Peierls instability and theoretical

treatments suggest more likely strong electron-phonon coupling scenarios.

In the non-adiabatic approximation (Ω0τeh > 1) the critical qc phonon fluctuates

very fastly during the lifetime of the electron-hole pairs so that phonon modes

cannot efficiently couple with the electron-hole condensate. There is no screening

and thus no critical softening of a phonon branch. The long-living electron-hole
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condensate induces, via the electron-phonon coupling, a quasi-static local PLD

quite well decoupled from the phonon spectrum. The critical lattice dynamics of

the Peierls transition is thus of relaxation or order-disorder type [148]. Note that

such dynamics is also found in the strong electron-phonon coupling limit [149]

where the PLD fluctuations are of large amplitude.

The largest contribution of the Lindhard function (Eq. 5.1) originates from elec-

tronic energies leading to a vanishing denominator. This occurs for electronic

states located at the Fermi level such that

EF (k + q) = EF (k) (5.2)

Eq. (2) defines k states of the Fermi surface (FS) which coincide with other states

of the FS after application of a q translation. If there are large portions of the FS

exhibiting such a property the nesting of the FS by q will dominantly contribute

to χ(q) [145]. Such nesting process can simply account for the maxima of χ(q)

and provide a simple explanation for the occurrence of charge and spin density

wave instabilities found in many experimental systems [150]. For example, in 1D

systems where the FS is made of two planes at the +kF and -kF wave vectors, the

translation wave vectors q = ±2kF nest completely the FS leading to a divergence

of χ(q) and to the stabilization of a CDW-Peierls ground state [146]. However,

at finite T , because of the Fermi-Dirac distribution spreading over several kBT on

each side of EF , the contributions to the Lindhard function are not restricted to

the Fermi level. This is the case for a single band dispersion where FS nesting

connecting also electronic states with opposite Fermi velocities preserves the di-

vergence.

However, for a more complex band structure with different Fermi velocities, FS

nesting is not a sufficient condition to obtain a maximum of χ(q). We illustrate

this statement using a simple model for a 1D metal with two conduction bands

having the Fermi wave vector ±kIF and ±kIIF . If the dispersion of the two bands is
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Figure 5.1: Schematic illustration of why for a 1D system with two partially
filled bands with different Fermi velocities only certain inter-band nestings may
be effective.

parallel, the nesting process linking band dispersions with opposite Fermi veloci-

ties leads to maxima of χ(q) for q = 2kIF , 2kIIF and kIF + kIIF but not for kIF − kIIF
(Fig. 5.1a). This situation is relevant for the blue bronze considered below [151].

If the dispersion of the two bands is inverted, the nesting process linking band

dispersions with opposite Fermi velocities leads to maxima of χ(q) for q = 2kIF ,

2kIIF and kIF −kIIF but not for kIF +kIIF (Fig. 5.1b). This situation is relevant for the

charge transfer salts of the TTF-TCNQ family [152]. In conclusion, the sign of the

Fermi velocity of the different bands connected by the nesting process determines

the type of inter-band contribution leading to maxima of the Lindhard function.

With more complex band structures it has been also reported that maxima of χ(q)

could differ from the best FS nesting condition [153]. It is thus necessary to go

beyond the simple consideration of the nesting properties of the FS and to perform

the direct calculation of the Lindhard function to obtain the critical wave vectors

of the CDW instability. In the case of the blue bronze, the CDW-Peierls instability

has been proposed to be caused by the inter-band kIF +kIIF nesting proces [151, 49].

The Mo blue bronze A0.3MoO3, where A= K, Rb or Tl is a monovalent atom,

exhibits a complex C-type centred monoclinic structure [154]. Fig. 5.2a shows

that this structure is built from (b, a+2c) layers of MoO6 octahedra. In the per-

pendicular interlayer 2a*-c* direction vacancies incorporate an ordered sub-lattice

of A atoms. The essential building blocks of the layers are the clusters of ten

MoO6 octahedra highlighted in Fig. 5.2b (see Sect. 5.2 for a detailed structural

discussion). Both tight binding [151] and Density Functional Theory (DFT) [155]
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electronic structure calculations as well as ARPES measurements [156] show that

the blue bronze exhibits a quasi-1D band structure with two parallel conduction

bands leading to a slightly warped double sheet open Fermi surface. The repeat

unit of the crystal structure in the 1D direction is the cluster of ten octahedra. As

monovalent A atoms provide 3 electrons per cluster, the two bands are partially

filled with ρ= 3 electrons. The blue bronze is a 1D metal with a sizeable RT con-

ductivity of σb ∼ 103 S/cm and an anisotropy of conductivity [157] which follows

the structural anisotropy σb : σa+2c : σ2a∗−c∗ ∼ 1:10−2:10−3. Polarized reflectance

measurements show that the blue bronze is a true 1D metal exhibiting a metallic

Drude behaviour only if the light is polarized in the chain direction [158]. At Tp=

180 K the blue bronze exhibits a Peierls metal-insulator transition accompanied by

the setting of a CDW/PLD modulation of critical wave vector qc= (0, 1-(kIF +kIIF ),

0.5) or equivalently, within a reciprocal wave vector, of qc= (1, kIF + kIIF , 0.5). At

low temperature, the value of kIF + kIIF is ≈ 0.75 [157]. It exhibits a very sizeable

regime of quasi-1D CDW fluctuations [49] above Tp and the occurrence of a Kohn

anomaly in the phonon spectrum whose frequency continuously softens as Tp is

approached [159, 37].

In this work we confirm the interband kIF + kIIF nesting mechanism by a direct

calculation of the Lindhard function using the real DFT band structure for the

undistorted, high-temperature metallic phase of K0.3MoO3. Our calculation of the

thermal dependence of the shape and width of the peaks of the Lindhard function

for the metallic phase allows to quantitatively account for the standard weak cou-

pling scenario of the Peierls transition. Our results do not provide direct insight

on the CDW phase, such as the lattice distortions or the specific displacements

of the phonon mode exhibiting the Kohn anomaly, but on the driving mechanism

for the Peierls transition originating from the instability of the electron gas, and

the physical regime of weak electron-phonon coupling and adiabatic limit. To the

best of our knowledge, this type of validation of the weak coupling scenario based

on actual data for a real material has never been reported in the literature.
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Figure 5.2: Crystal structure of the blue bronzes. The lattice vectors shown in (a)
are those of the C-centered cell of Graham and Wadsley[154]. The three different
types of MoO6 octahedra are shown with different colors. The elementary building
block of the structure (i.e. a cluster of ten octahedra) and the octahedral chains
it generates along the b direction are shown in (b). An alternative description of
the octahedral chains associated with the red dashed line in (a) and the hump
octahedra is shown in (c).
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5.2 Electronic structure of K0.3MoO3

K0.3MoO3 crystallizes in a centered monoclinic structure and contains twenty for-

mula units per unit cell, i.e. K6Mo20O60 (Fig. 5.2)[154, 160]. In our DFT calcu-

lations we used a half-sized unit cell based on the centrosymmetric nature of the

crystal where the lattice parameters used are a′ = 1/2(a+ b) + c, b′ = b and c′ = c

where a, b and c are the lattice constants reported by Graham and Wadley.[154]

The crystal structure consists of slabs of MoO6 octahedra with the alkali metal

atoms in between these slabs. As mentioned, the structure contains three inequiv-

alent Mo atoms and thus three different types of MoO6 octahedra (see Fig. 5.2).

Although the structure of the blue bronzes is usually discussed on the basis of the

clusters of ten octahedra shown in Fig. 5.2b, an alternative description is more

convenient in order to understand the nature of the electronic structure [161]

(Fig. 5.2c). The Mo II and Mo III type octahedra form units of four corner-shared

octahedra (marked with a dashed red segment in Fig. 5.2a) which lead to quadru-

ple chains along the b axis by further corner-sharing along this direction. The Mo

I hump octahedra fill one every two outer holes of these quadrupole chains in an

zigzag way sharing two edges with Mo II octahedra (Fig. 5.2c). Consequently, the

chains along b are really built from a repeat unit of ten octahedra: two rows of

the four octahedral units and two type I hump octahedra. The cluster of ten Mo

octahedra which is the repeat unit of this chain is structurally equivalent to that

highlighted in Fig. 5.2b. The layers of the blue bronze result from the condensa-

tion of these chains along the a+2c direction through edge-sharing of octahedra

of the different chains.

The calculated band structure of K0.3MoO3 along the three main directions of

the Brillouin zone is shown in Fig. 5.3a. The Fermi level cuts two bands dispersive

along Γ−Y′ (i.e. not far from the intra-chain b direction, Γ-Y) but only slightly

dispersive along Γ-X′ (i.e. the inter-chain direction) and with a nil dispersion

along Γ−Z′ (i.e. the inter-layer direction). The band structure of Fig. 5.3a is in

very good agreement with the results of previous DFT calculations [155, 162] and
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Figure 5.3: DFT band structure (a) and density of states (DOS) (b) for K0.3MoO3.
In (a) the size of the blue, red and green dots are proportional to the Mo I, Mo
II and Mo III character. respectively. Γ= (0, 0, 0), X′= (1/2, 0, 0), Y′= (0, 1/2,
0) and Z′=(0, 0, 1/2) in units of the a′*, b′* and c′* reciprocal lattice vectors (see
beginning of Sect. 5.2 and Fig. 5.4). (b) In (b) the total DOS and Mo I, Mo II
and Mo III projected DOS are shown. The DOS is given in units of states per eV
per unit cell of 10 Mo and per spin direction.
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Figure 5.4: DFT Fermi surface for K0.3MoO3: (a) Representation using the rhom-
bohedral Brillouin zone, and (b) View along the perpendicular to the (a*,b*) plane.

different ARPES studies [156, 163, 164, 165, 166, 167, 168, 169, 170]. For instance,

the calculated values of the kIF and kIIF Fermi wave vectors are found to be 0.59π/b

and 0.91π/b respectively, which are within the range of values determined in dif-

ferent ARPES studies: between 0.55 and 0.69 for kIF and between 0.86 and 0.97

for kIIF [156, 163, 164, 165, 166, 167, 168, 169, 170]. In addition, the two calculated

band dispersions are also in good agreement with the ARPES studies. The ratio

of the calculated Fermi velocities of the two bands in the Γ-Y direction is ≈ 4.5

which compares well with the more recent ARPES studies, ≈ 4.6 [170]. Note also

that in the Peierls theory of inter-band nesting [49] an effective Fermi velocity can

be defined as vF = 2v1
Fv

2
F/(v

1
F + v2

F ), where v1(2)
F is the Fermi velocity of band 1

(2). Using the ARPES results of reference [170] one obtains vF ≈ 1.9 eV.Å, which

is in nice agreement with the vF ≈ 2 eV.Å value that we calculate from the slope of

the thermal dependence of the electron-hole inverse coherence length (see Fig.5.7).

Thus, in contrast with earlier tight-binding calculations [151], which led to a pair

of bands with similar and considerably smaller dispersion, DFT provides a sound

picture of the electronic structure of the blue bronzes. Also shown in Fig. 5.3a
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is the contribution of the three different Mo atoms to the different bands. Mo I

does not contribute to the two partially filled bands. In fact the orbitals of Mo I

only participate in levels between 1.0 and 2.5 eV higher than the Fermi level (see

Fig. 5.3b). The reason is that the Mo I octahedra exhibit two strong O-Mo...O

short/long bond alternations in the basal plane as a consequence of the fact that

half of the octahedron shares edges with Mo II and Mo III octahedra whereas

the other half does not share any edge, thus leading to a strong distortion. This

structural feature leads to a strong destabilization of the three t2g orbitals of the

Mo I atom [161]. Consequently, the carriers associated with the two partially filled

bands of K0.3MoO3 are confined within the quadruple chains of Mo II and Mo III

octahedra. This is in agreement with the fact that the participation of the Mo I

atoms in the structural modulation of the blue bronzes was found to be practically

nil in the X-ray study of Schutte and De Boer [171]. It is however remarkable that,

as discussed in detail by Machado-Charry et al. [172], using DFT calculations very

similar to the present ones, the brightest spots of the scanning tunneling micro-

scope images of the modulated blue bronzes originate from oxygen atoms of these

Mo I octahedra. These atoms are the uppermost oxygen atoms of the surface and

the STM experiment is mostly measuring the differences in the local density of

states of these O atoms as a result of the CDW.

Figure 5.5: DFT Lindhard response function for K0.3MoO3 at 10 K

The two partially filled bands result from the mixing of the Mo II and Mo III

orbitals (as well as the associated O p orbitals), although Mo III dominates in the
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lower band whereas Mo II dominates in the upper one. These bands are almost

exclusively built from the Mo dxz orbitals (here we assume a local system of axis

with z along the chain b direction and x along the dashed red line in Fig. 5.2a).

This feature originates from the local distortions of the Mo II and Mo III octa-

hedra, which lead to one strong O-Mo...O alternation in the basal plane of the

octahedra along the inter-layer direction. Such alternation strongly destabilizes

the Mo dyz and dx2−y2 orbitals but does not noticeably affect the dxz orbital. The

reason is that the Mo dyz and dx2−y2 orbitals make π-type antibonding interactions

with the O pz and py orbitals, respectively, and the destabilizing effect due to the

short Mo-O distance largely outweights the stabilizing effect of the long Mo-O

distance [161]. The inner Mo III octahedra dominate in the lower band because

the octahedral distortion is weaker than in Mo II octahedra. The dxz orbitals of

the more distorted Mo II octahedra dominate in the upper partially filled band.

K0.3MoO3 is thus a pseudo-1D metal because the dxz orbitals of the Mo II and

Mo III quadruple units undergo strong antibonding π-type interactions with the

O px orbitals along the chain direction but only weak inter-chain interactions as a

result of the unfavourable orientation of the dxz in different chains.

The calculated Fermi surface for K0.3MoO3 is reported in Fig. 5.4. It contains

two pairs of slightly warped sheets perpendicular to the b quadruple chains direc-

tion. The red sheets, originating from the Mo II octahedra are found to be slightly

more warped. The computed Fermi surface compares very well with those deter-

mined by ARPES [167, 170] which exhibit a weak but definite warping. In fact, as

it will be shown in the next section, the warping is practically irrelevant around

the temperature of the metal to insulator transition, Tp= 180 K [157] so that the

four sheets may be nested by a single inter-band nesting vector, q. The calculated

Lindhard response function associated with the two partially filled bands is shown

in Fig. 5.5 where a clear cusp occurs for q= 0.25b* (note that the chain direction

is along Γ-Y, the green dashed line in Fig. 5.5). Two weaker maxima are also

visible along the Γ-Y line. In the next sections we discuss in detail the significance

of these results to understand the workings of the CDW/PLD modulation at the
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Figure 5.6: Scans of the Lindhard response function along the Γ-Y chain direction
for different temperatures. This figure clearly shows the individual responses of
the three Fermi surface nesting processes (i), (ii) and (iii) defined in the text.

origin of the metal to insulator transition of K0.3MoO3.

5.3 Quantitative analysis of the Lindhard function

5.3.1 The three individual responses

The Lindhard function (Fig. 5.5) is made of three responses corresponding to three

different nesting processes between the four sets of open Fermi surfaces. Scans

along the b* chain direction (see Fig. 5.6) show (using the labelling of Fig. 5.1a)

three peaks at:

• 1-2kIIF = 0.09b* corresponding to the intra-band nesting of the blue FS,

• 1-2kIF= 0.41b* corresponding to the intra-band nesting of the red FS and

• 1-(kIF + kIIF ) = 0.25b* corresponding to the inter-band FS nesting.

The strongest response is for the inter-band FS nesting. This nesting process

achieves the Peierls transition of the blue bronze. With a single modulation all
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four FS sheets can be connected and thus a gap opens on the entire FS. The

intra-band I response is stronger than the intra-band II response, which agrees

with a lesser degree of warping of the corresponding FS. Upon cooling the inten-

sity of these responses increases but does not diverge at low T . Divergence is

predicted in the case of nested planar FS [145]. Here, the formation of residual

pockets in the nesting process between warped FS stops the divergence. Because

of the presence of nesting breaking pockets, the three responses exhibit a slightly

anisotropic profile at low T . The kIF + kIIF inter-band response exhibits a cusp

anomaly whereas a shoulder is exhibited by the 2kIF response and a tilted plateau

by the 2kIIF response (see Figs. 5.5 and 5.6). The maximum of the inter-band

response occurs for kIF +kIIF =0.75b*, which corresponds to the intra-chain compo-

nent of the experimental modulation wave vector measured at low T [49]. However,

the experimental intra-chain component decreases significantly by a few percent

upon heating [49] while Fig. 5.6 shows that the maximum of the Lindhard func-

tion stays constant at 0.25b* for whole temperature range considered. Thus, our

calculation shows that the experimental decrease of kIF +kIIF is not due to a shift of

the q dependence of the Lindhard function induced by thermal population effects

of the curved conduction bands, as previously suggested [173]. This point will be

further considered at the end of section 5.3.3.

5.3.2 Electronic parameters of the inter-band nesting pro-

cess and validation of the weak coupling scenario

Except at very low T when nesting breaking effects are relevant, each individual

Lindhard component exhibits a lorentzian profile in q. The half-width at half-

maximum (HWHM) of the Lorentzian in the chain direction gives the inverse

coherence length of the fluctuating 1D electron-hole pair, 1/ξeh‖(T ), which de-

pends on the temperature T and on the microscopic parameters of the 1D electron

gas [174]. Fig. 5.7 gives the thermal dependence of 1/ξeh‖(T ) for the inter-band

response component. This quantity increases linearly with the temperature, but

does not vanish at 0 K, as expected for planar nested FS. The intercept, which
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amounts to 1/ξ0
eh‖ = 0.015Å−1= 1.8%b*, represents the longitudinal size of the

pocket due to imperfect longitudinal nesting. One thus has

1/ξeh‖(T ) = 1/ξ0
eh‖ + 1/ξTeh‖ (5.3)

where 1/ξTeh‖ is the thermal length associated with the broadening of the FS at T .

According to the microscopic theory of refs. [174, 175]

ξTeh‖ = ~vF/πkBT. (5.4)

For the inter-band nesting process vF is an effective Fermi velocity defined in

ref [49]. Dividing Eq. 5.3 by <kF> = (kIF + kIIF )/2 (= 0.31 Å−1) leads to the

dimensionless expression

1/[< kF > ξeh‖(T )] = 1/[< kF > ξ0
eh‖] + T/Teff (5.5)

which, according to the data of Fig 5.7, gives a Teff ≈ 2400 K.

Figure 5.7: Thermal dependence of the inverse coherence lenghts along the chain
(‖) and the intra-layer (⊥) directions. These quantities are compared (dashed
dotted lines) with the inverse experimental CDW correlation lengths reported in
ref[176]
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Using the data of Fig. 5.7 it is found that above TP the value of < 2kF > ξeh‖(T ) is

≈ 16 at TP and ≈ 11 at room temperature (RT). Thus, only a very small fraction

of the Brillouin zone is affected by the Peierls critical instability. This justifies

the criteria for which the phonon entropy change can be neglected at the Peierls

transition. Consequently the weak coupling theory of the Peierls transition should

apply to the blue bronzes. Using Teff the cut-off energy (Ecut−off ) entering the

standard theory of the Peierls transition can be obtained as [145, 152, 175]

πkBTeff = ~vF < kF >= 0.65 eV (5.6)

This energy is comparable to the average Fermi energy of the two conduction bands

determined by DFT calculation (see Fig. 5.3) and ARPES measurements [156].

Eq. 5.6 gives an effective Fermi velocity of vF ≈ 2 eV·Å.

For a 1D free electron gas with perfect longitudinal 2kF nesting, the Lindhard

function should thermally diverge as [175]

χ(2kF ) = N(EF ) ln(Ecut−off/πkBT ) (5.7)

where N(EF ) is the density of states at the Fermi level and where the cut-off

energy Ecutoff is of the order of EF , as given by Eq. 5.6. This divergence does not

really occur at low T in the blue bronze because of the presence of residual pockets

due to the imperfect longitudinal nesting. Under such conditions it is better to

use 1/ξeh‖(T ), as given by Eq. 5.3, instead of the scaling variable T . This leads to

χ(2kF ) ∝ ln[kF ξeh‖(T )] (5.8)

and, as shown in Fig. 5.8, this logarithmic dependence is fulfilled by the peak

intensity of the inter-band Lindhard function of the blue bronze for all the tem-

perature range.

The BCS weak coupling relationship relates the Peierls gap at 0 K, 2∆0, with
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the reduced electron-phonon coupling constant λ [145, 152, 175]. For a parabolic

band dispersion agreeing with the DFT calculation (see Fig 5.3a) and ARPES

measurements [156] it is found that

∆0 = 4EF e
−1/λ (5.9)

Then, using the half-optical direct gap in the Peierls ground state [158], ∆0= 75

meV, and EF ≈ 0.65 eV (Eq. 5.6), a value of λ ≈ 0.28 is obtained. Using the

explicit expression for the reduced electron-phonon coupling [145]

λ = 2g2N(EF )/~Ω0, (5.10)

one can obtain, using the DFT density of states at the Fermi level, N(EF )= 2.36

eV−1 per cluster and spin direction (see Fig. 5.3b), together with a bare criti-

cal phonon frequency of Ω0= 1.7 THz (determined in Fig. 5.9), g = 20 meV. This

quantity is more than twice larger than the electron-phonon coupling g determined

by the same method for molecular conductors [177].

Figure 5.8: Logarithmic dependence of the electron-hole response for the inter-
band nesting process of the blue bronze according to Eq. 5.8.

The finding of λ<1 and of ∆0 << EF sustains the weak coupling approximation
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for the blue bronze. Fig. 5.7 compares the thermal dependence of the electron-

hole coherence length (ξeh‖(T )) with the longitudinal CDW structural correlation

length (ξCDW‖(T )) measured by X-ray scattering [49, 157, 176] and whose diver-

gence drives the Peierls transition at TP . The CDW/PLD fluctuation divergence

is driven by the coupling of the 1D electron gas with the critical phonon modes via

the electron-phonon coupling g [178, 179]. More precisely, Fig. 5.7 shows that at

high temperature (i.e. above RT) ξCDW‖(T ) tends asymptotically towards ξeh‖(T ).

Thus, above ∼ 2 TP , when the coupling to the lattice is not yet critical, the length

scale of the CDW fluctuations amount to the electron-hole coherence length, as

expected in the weak coupling scenario of the Peierls transition.

Figure 5.9: Fitting of the square of the frequency of the Kohn anomaly measured
at 230 K in ref [37] (see also Fig. 5.13a) with the calculated Lindhard function.
The best fit allows to determine the base line corresponding to the square of the
bare critical phonon mode Ω2

0(q).

5.3.3 Relation with the dynamics of the Peierls transition

Using the relation

ξeh‖ = vF τeh, (5.11)
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it is possible to obtain the lifetime of the electron-pair. It amounts to τeh ≈

10−16s at room temperature. Thus with Ω0= 1.7 THz, a very small dimensionless

quantity Ω0τeh ≈ 1.7·10−4 << 1 is obtained. This means that the electron-hole

pairs fluctuate so fastly during the phonon oscillation period that they are able to

screen the coupling constant between the atoms. The Peierls transition of the blue

bronze is thus located in the adiabatic limit where the screening effects lead to the

formation of a well defined Kohn anomaly in the vicinity of 2kF . Such a phonon

anomaly is experimentally observed [37]. With the screening effects treated in the

RPA approximation the square of the Kohn anomaly frequency is given as [146]

ω2
K(q, T ) = Ω2

0(q)[1− λχ(q, T )/N(EF )], (5.12)

which involves the Lindhard function χ(q, T ). In Eq. 5.12 we have explicitly in-

cluded the 3D dependence of the Kohn anomaly (with q= (q‖, q⊥)). Fig. 5.9 shows

that Eq. 5.12 quantitatively accounts for the q‖ dependence of the Kohn anomaly

of the blue bronze in the chain direction at 230 K using the Lindhard function

calculated with DFT. Note that the best fit of the experimental data with the cal-

culated Lindhard function shown in Fig. 5.9, allows the determination of the square

of the bare critical phonon frequency, Ω2
0(q). It is found that Ω0(kIF + kIIF ) ≈ 1.7

THz, which coincides with the frequency of the amplitude mode at low T [37, 46].

Note that in the fit of Fig. 5.9, the qb values of the Lindhard response func-

tion have been shifted by about -0.02b*. The reason is the following: whereas the

computed electron-hole response function exhibits a maximum at 0.25b* for the

whole temperature range (Fig. 5.6) because the total number of electrons filling

the two conduction bands in the calculation remains constant, the wave vector of

the experimental minimum frequency of the Kohn anomaly or the qb maximum of

the CDW fluctuations [49] continuously increases upon cooling to reach 0.25b*

at low temperature. The origin of such a wave vector shift is unclear. Beside the

simple yet unlikely explanation that, for some unknown reason, the total number
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Figure 5.10: Scans of the Lindhard response function along the intra-layer trans-
verse direction for different temperatures. Note that the maxima at about 0.12a’*
corresponds to 0a*.

of electrons is changing with temperature, it is possible that the reduced elec-

tron phonon coupling λ in Eq. 5.12 depends upon qb. According to Eq. 5.10, λ

should vary if the bare phonon frequency Ω0 and/or the electron-phonon coupling

constant g change with qb. The fit in Fig. 5.9 shows that this is indeed the case

for Ω0. The other possibility, a variation of g with qb, should also be seriously

considered because, as shown by Fig. 5.13 and discussed in Sec. 5.4, the Kohn

anomaly develops in a phonon branch resulting from a strong hybridization be-

tween the transverse acoustic TA2 branch and a low frequency optical branch. The

two vibration modes certainly involve different atomic displacements so that these

lattice deformations should lead to a different electron-phonon coupling. Thus,

with a mode mixture changing substantially with qb in the vicinity of kIF + kIIF ,

one should expect that the electron-phonon coupling g should exhibit a strong qb

dependence.

5.3.4 Inter-chain coupling

In a purely 1D electron-phonon coupled system the intra-chain correlation length

diverges at 0 K because the structural fluctuations prevent any ordering at finite
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temperature [178, 179]. The observation of a Peierls transition at finite T is due

to the inter-chain coupling between the CDW fluctuations [179]. In general inter-

chain coupling can occur through three different mechanisms [179, 148]:

• A transverse nesting of the FS. In that case the Lindhard function should

exhibit an inter-chain wave vector dependence (i.e. q⊥) along which direction

the FS is warped,

• An inter-chain Coulomb coupling between CDW’s, since each individual

CDW exhibits a charge modulation, or

• A transverse wave vector, q⊥, dependence of the bare critical phonon Ω0(q).

It is worth considering the likeliness of the three coupling mechanisms for the blue

bronze. Let us start with mechanism (i). Fig. 5.10 presents thermal scans of the

Lindhard function along the a+ 2c ≈ 2a*+c* intra-layer transverse direction (see

Fig. 5.2). It exhibits a very broad response centered at q⊥= 0 (in the a*,b* frame

defined in Fig. 5.4b) corresponding to an inter-chain coupling in-phase along the

a+2c direction. This wave vector achieves the best FS nesting of band I to band

II, as outlined in previous band structure calculations [151, 155]. Note however

that mechanisms (b) and (c), which will be considered below, give a similar phas-

ing. However the present calculation shows that the transverse response of the

Lindhard function is quite broad. From its HWHM on gets an inverse inter-chain

electron-hole coherence length ξ−1
eh⊥ ≈ 0.19 Å−1 at RT which very slightly decreases

upon cooling (Fig 5.7 ), reaching 0.18 Å−1 at TP . The inverse of this quantity leads

to a coherence length of ∼5.5 Å which is about the distance between the two outer

Mo III of the cluster but twice smaller than the distance (12 Å) between the two

outer Mo II of the segment defined in Fig. 5.2c. ξ−1
eh⊥ is larger than the inverse

CDW structural correlation length ξ−1
CDW⊥ ∼ 0.14-0.17 Å−1 measured along the

2a*+c* direction at RT [49, 176]. In addition, the non-detection of a transverse

plasma edge for light polarized in the transverse direction [176] shows that the

warping effect of the FS is not thermally relevant above TP . The blue bronze

thus remains a true 1D metal in the CDW fluctuating regime above TP . We thus
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conclude that mechanism (i) is not relevant for the blue bronze and we must con-

centrate on the other two mechanisms.

Let us first consider mechanism (ii) which was previously discussed in ref. [148].

According to the structural refinement of the modulated structure of the blue

bronze below TP [171] there is basically a longitudinal displacement of the Mo

atoms in the direction of each linear segment of four corner-sharing MoO6 octahe-

dra (see Fig. 5.2c). This in-phase displacement induces a ferroelectric polarization

of the segment, and the CDW modulates along b the amplitude of polarization of

linear segments with the 2kF= 0.75b* wave number. In this scenario, the inter-

chain electrostatic coupling mechanism occurs between dipolar CDW. Such a cou-

pling is quite anisotropic and as shown in Fig. 5.11:

• the intra-layer coupling along a+2c between polar CDWs in the dipole di-

rection, W‖, leads to a uniform inter-chain CDW order,

• the inter-layer coupling along 2a*-c* between polar layers of CDWs in the

perpendicular direction, W⊥, leads to a staggered inter-layer CDW order.

From the anisotropy of inter- and intra-layer transverse correlation lengths [142]

one gets an anisotropy of couplings of W‖ ≈ 8W⊥ (see Fig. 5.11). Finally, let us

consider mechanism (iii) above TP . This mechanism is compatible with mechanism

(ii) below TP . Mechanism (iii) relies on the presence of an incipient anisotropic

valley of low frequency phonons whose bare frequency Ω0(q) sizably varies with

q. In the blue bronze such an anisotropic dispersion along q⊥ is observed for the

acoustic phonon branch polarized along a+2c mixed with a polar optical branch

(see Sec. 5.4 for experimental evidence taken from the phonon spectrum). This

composite mode involves optical-like uniform off-center Mo displacements within

the four MoO6 octahedra of each segment. The correlated Mo displacement be-

tween neighboring corner-sharing octahedra should induce a local polarization

(Fig. 5.12a). When the correlated Mo displacements are in-phase between neigh-

boring overlapping segments of four octahedra separated by a/2+c (see Fig. 5.2a),
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Figure 5.11: Lateral phasing of the dipolar CDWs in K0.3MoO3.

a frequency softening of the composite acoustic/optical phonon branch should oc-

cur. This softening persists along the b* and 2a*-c* perpendicular propagating

wave vectors starting from each 2π/ | a/2 + c | reciprocal position. In reciprocal

space this should give rise to a sheet of low frequency phonons perpendicular to

the polar segment direction (Fig. 5.12c). The trace of such sheet of low frequency

phonons leads to an enhanced X-ray planar diffuse scattering (Fig. 5.12b) which

has been detected in the blue bronze at RT (see ref. [157, 148]). The CDW/-

PLD instability and the associated Kohn anomaly develop inside this valley of

soft phonons. Such a preexisting valley imposes the intra-layer CDW component

q⊥= 0. We thus suggest that mechanisms (ii) and (iii) are strongly intermingled

and are at the origin of the inter-chain coupling in the blue bronzes.

Similar low frequency planar valleys of mixed acoustic/polar phonons are observed

in ferroelectric perovskites such as BaTiO3 KNbO3 and KTaO3 [180, 181, 182]

or the chain-like ferroelectric SbSi [183]. Note that features similar to those
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of the blue bronze are observed in the CDW monophosphate tungsten bronzes,

(PO2)4(WO3)2m, which are built from segments of m corner-sharing WO6 octa-

hedra and which exhibit a tendency to ferroelectricity. Note that WO3, which

corresponds to the limit of this family when m → ∞ is an antiferroelectric. The

CDW/PLD instability in the monophosphate tungsten bronzes develops inside a

planar valley of low frequency phonons also perpendicular to the segment direc-

tions [184, 185]. The possible link between the CDW/PLD instabilities of the

blue bronzes, γ− and η−Mo4O11 Magnéli phases and monophosphate tungsten

bronzes suggested by our discussion is thus a challenging issue in the quest for

a full understanding of microscopic origin of the CDW instabilities in oxides and

bronzes.

Figure 5.12: Illustration of the low-frequency phonon coupling mechanism for
inter-chain coupling in the blue bronze and its detection. (a) Local polarization
induced by the correlated Mo displacements in neighboring corner sharing octahe-
dra. (b) Planar diffuse scattering developed in X-ray scatering measurements due
to (c) a sheet of low-frequency phonons perpendicular to the polarization direction
when the correlated Mo displacements are in-phase between neighboring segments.



Chapter 6. A paradigmatic case: the blue bronze 114

5.4 Critical low frequency phonon branches of K0.3MoO3

The phonon spectrum of K0.3MoO3 is quite complex because it contains many

optical branches of low frequency which hybridize with acoustic branches. Figure

5.13a shows the dispersion of some of these branches measured by inelastic neutron

scattering between 225 K and RT along the reciprocal directions defined in Figs.

5.13b and 5.13c [37, 186]. Since previous neutron scattering studies focused on

the dynamics of the Kohn anomaly, the phonon spectrum of the blue bronze has

never been analyzed. In this respect the true polarization of the critical phonon

branch has never been considered.

Let us first consider the acoustic branches. The orthogonal frame used to label

the acoustic modes is based on the structural anisotropy (see Fig. 5.2a) according

to the decrease in the bonding strength:

• the monoclinic b direction: label 1,

• the [102] direction: label 2,

• the perpendicular to the (-201) layer of MoO6 octahedra: label 3.

Using the slope of the acoustic branch one obtains the elastic constants given in

Table 5.1. The relative Cij values follow the structural anisotropy:

• for the compression deformation: C22> C11 » C33, the deformation energy

of the chain of clusters is stronger than that between clusters along the [102]

direction of the layer and much stronger than that in the inter-layer direction

incorporating alkaline atoms.

• for the shear deformation: C66> C44 ≈ C55, the shear deformation energy

of the (-201) layer of octahedra is stronger than that associated with their

relative shift.
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Figure 5.13: (a) Dispersion of the low-lying phonon branches of the blue bronze
measured between 225 and 295 K. The acoustic branches are labelled according to
their polarization defined in the text. The hybridized phonon branches involved
in the Peierls instability are colored in red and blue for the acoustic and optic
counterparts respectively. The empty green circles outline the phonon modes in
the vicinity of the Kohn anomaly drawn at 230 K. (b) and (c): Sections of the
Brillouin zone scanned during the inelastic scattering investigations (adapted from
refs. [157, 186]).

The dispersion of the phonon branch bearing the Kohn anomaly is not straight-

forward to analyze because it results from the hybridization of the acoustic mode

polarized in the segment direction (label 2 and red lines in Fig. 5.13a) with a low

lying optical phonon mode (blue lines in Fig. 5.13a) whose frequency is 1.4 THz

at the Γ point and 1.8 THz at the A point (blue empty circles in Fig. 5.13a; the

Γ and A points are defined in Figs. 5.13b and c). Although not measured from a

(2ξ, 0, -ξ) scan along ΓM, the TA2 branch should be very close to the TA1 branch

because C44 ≈ C55 (see Table 5.1). At the zone boundary M point one expects a
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mixing of the TA2 branch with the above mentioned optical branch reaching 0.9

THz at the M point along a different (2ξ, 0, ξ) scan (see Fig. 5.13a). Another

mixing between the two modes occurs near the A point, very close to the position

of the Kohn anomaly. As a result, the low frequency phonon branch sustaining

the Kohn anomaly should be strongly hybridized in the MA direction. The (2ξ, 0,

ξ) scan clearly shows an avoided crossing near the Γ point between the bare LA2

and the 1.4 THz optical branches. Beyond this crossing point the frequency of

the optical branch stays nearly constant until the γ zone boundary crossing point.

Then, the γM scan shows that its frequency drastically decreases to reach 0.9 THz

at the M point (where it should mix with the TA2 branch). Such dispersion, which

recalls that depicted in Fig. 5.12c, is the cut of a preexisting valley of soft phonons

discussed in the main text, where the frequency softening should be associated

to correlated 1D Mo displacements, ξ. From the inverse of the half-width of the

wave vector softening along γM it can be inferred a correlated Mo displacement

on ξ ≈ 9 Å, which is about the distance between two neighboring clusters in the

transverse layer direction (Fig. 5.2a).The dispersion along MA of the bottom of

the valley of soft acoustic/optic phonon is represented in Fig. 5.13a. Note that this

dispersion exhibits an extra screening with the 1D electron gas near 2kF , which

leads to the formation of a Kohn anomaly in the phonon spectrum.

Another difficulty to analyze the Peierls lattice instability resides in the presence

of four additional low-lying phonon modes at the position of the Kohn anomaly

(empty green circles in Fig. 5.13a).

5.5 Comparison with other charge density wave

systems

The present study shows that the CDW instability and the Peierls transition of

the blue bronze can be quantitatively understood within the weak electron-phonon

coupling scenario. As a consequence, there is a clear softening above TP of a sharp
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Table 5.1: Elastic constants obtained from the dispersion of the acoustic branches
shown in Fig. 5.13a. The direction of propagation q and the polarization e of the
acoustic branch used for each determination are indicated. The accuracy of the
determination is estimated to be of 5%. A comparison between our Cij values and
other measurements in the literature can be found in ref [187]

Elastic
constant q direction e direction Cij(102 GPa)

C11 2 2 1.5
C22 1 1 2.25
C33 3 3 0.31
C44 3/1 1/3 0.21
C55 2 3 0.22
C66 1/2 2/1 0.52

Kohn anomaly driven by the divergence of the electron-hole response function

(Fig. 5.9). This well pronounced Kohn anomaly leads to the emergence below

TP of two collective excitations of the amplitude and phase of the incommensu-

rate CDW modulation whose dispersion has been clearly measured by inelastic

scattering [37, 188, 189]. The phase excitation mode whose frequency tends to

zero at the 2kF wave vector and which stiffening of the linear dispersion increases

upon cooling [188, 189], is a basic ingredient allowing to understand the sliding of

the CDW of the blue bronze under electric fields [139, 140, 141]. This situation

should be contrasted with the case of NbSe3 where analogous CDW sliding effects

have been reported [13]. Two differences are worth noting. First, the Lindhard

function of the blue bronze shows a well decoupled 2kF sharp response for the

different intra- and inter-band FS nesting processes (Fig. 5.6) while NbSe3 shows

a broad electron-hole response in the chain direction where the different intra- and

inter-band FS nesting processes are superposed [42]. Second, up to now no Kohn

anomaly has been detected in NbSe3 by neutron and X-ray inelastic scattering

methods [190]. Such absence of Kohn anomaly has been interpreted as providing

evidence for a strong coupling scenario of the Peierls transition [190]. Note how-

ever that these measurements report an anomalous drop of the frequency of the

longitudinal acoustic (LA) branch for wave vectors tending to the zone boundary.

Thus, it is expected that in the next Brillouin zone the LA branch transforms

into an longitudinal optical (LO) branch. This LO branch, which has the right
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symmetry to achieve the out-of-phase longitudinal deformation of first neighbor

coupled NbSe3 chains required to form a π shifted CDW [191], could exhibit a soft

frequency on a large intra-chain wave vector range around the CDW critical wave

number. In this respect note that, in agreement with this hypothesis, both the

Lindhard function calculation [42] and the measurement of the intra-chain CDW

correlation length [192] give a small ξeh ∼ 5-10 Å at RT which leads to a product

2kF ξeh ∼ 2-4, more than three times smaller than 2kF ξeh ≈ 11, estimated here for

the blue bronze. This indicates that the phonon entropy should certainly not be

neglected when considering the mechanism of the Peierls transition of NbSe3. In

this respect, NbSe3 could bear a resemblance to the 2D CDW systems which will

be considered below.

It is also interesting to compare these findings to those for 2D CDW systems

such as the RTe3 (where R is a rare earth atom) tellurides and the transition

metal dichalcogenides. In TbTe3, the CDW lattice instability is revealed by the

formation of a broad Kohn anomaly in an optical branch where frequency softens

and damping increases at the critical CDW wave number when approaching the

Peierls transition (TP= 330 K) [193]. Furthermore, below TP the CDW modu-

lation develops with a critical wave vector slightly off the best nesting FS wave

vector [153, 193]. It is thus proposed [193] that a wave vector dependent electron-

phonon coupling could be responsible for this effect.

Controversial interpretations have been proposed during many years concerning

the mechanism of the CDW instability of the layered transition metal dichalco-

genides. According to a recent review [50], predictions based on the mean-field

model agree only semi-quantitatively with experimental data and it appears that

generally there is no real dominant factor favoring the CDW formation. A recent

inelastic X-ray investigation of 2H-NbSe2 evidences the formation of a broad and

damped Kohn anomaly in a longitudinal acoustic branch whose frequency criti-

cally softens at the CDW wave number when reaching TP= 33 K (contrary to

earlier neutron scattering investigations) with a damping diverging at the CDW
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transition [64]. As it is the case for TbTe3 [193], it was proposed [64] that in

the presence of a broad electron-phonon response, which does not really select a

particular FS nesting mechanism [153], the q-dependent electron-phonon coupling

should be incorporated into the explanation of the CDW instability.

Compared to NbSe3, rare-earth tellurides and transition metal dichalcogenides,

the blue bronze, which exhibits a CDW instability that can be accounted for

by the standard (weak electron-phonon coupling) Peierls scenario, appears to be

unique. This is due to the fact that it exhibits a sharp 2kF electron-hole response,

due to a simple FS nesting mechanism, which drives the formation of a sharp

Kohn anomaly which softening drives the Peierls/CDW instability. In rare-earth

tellurides and transition metal dichalcogenides, the electron-hole response is broad

and leads to the formation of a broad Kohn anomaly. In the latter 2D CDWmetals

the way by which the critical CDW wave vector is selected remains unclear. It has

been recently proposed that a wave vector dependent electron-coupling is essential

for that purpose [64]. Another important question concerns the mechanism of the

CDW/Peierls instability. In the presence of a broad Kohn anomaly, where the

softening involves a large number of wave vectors of the Brillouin zone, the lattice

degrees of freedom play a more important role (in particular through its entropy)

than that assigned in the standard theory of the Peierls transition, where only

the elastic energy cost is considered. A full account of lattice effects, considered

earlier by McMillan [147], should invalidate the BCS-type theory for the Peierls

transition and should lead to strong coupling scenarios.

Finally, let us mention that other 2D transition metal Mo and W metallic oxides

and bronzes exhibit a succession of CDW instabilities [141, 139]. In contrast with

the transition metal dichalcogenides, the electronic structure of these oxides can be

described by a 2D lattice of interpenetrating and differently oriented chains [194].

As a consequence, their Lindhard function, which is dominated by the 2kF FS

nesting processes of individual chains, exhibits in reciprocal space a collection of

differently oriented and well-defined chain-like electron-hole responses similar to
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that calculated for the blue bronze [195, 196]. The CDW instability occurs at the

crossing point of the differently oriented chain responses, whose associated 1D-like

CDW fluctuations have been detected by X-ray diffuse scattering methods [197].

The CDW transition of these materials thus presents a Peierls character [185].

However since inelastic scattering measurements have not been performed, the

CDW lattice dynamics is still unknown.

5.6 Concluding Remarks

The wave vector and temperature dependencies of the electron-hole (i.e. Lind-

hard) response function of the blue bronze K0.3MoO3 have been calculated on the

basis of its first-principles DFT electronic structure. This response has three

components corresponding to three possible nesting processes of its warped dou-

ble sheet quasi-1D FS. We have quantitatively analyzed the kIF + kIIF inter-band

electron-hole component which is responsible for the Peierls instability of the blue

bronze. We have shown that the electron-hole coherence length of this response

determines the length scale of the experimental intra-chain CDW correlations.

In addition, the intra-chain q‖ dependence of such response also determines the

shape of the Kohn anomaly experimentally measured. All these features prove

that the Peierls transition of the blue bronze can be well accounted for by the

weak electron-phonon coupling theory of this transition in the adiabatic approx-

imation. To the best of our knowledge this is the first time that such theory,

already established in the 1970s, is quantitatively verified. Finally, the calcula-

tion of the intra-layer transverse q⊥ dependence of this response shows that the

warping effect of the FS above TP does not provide a pertinent mechanism for the

CDW interchain coupling. We propose that such inter-chain coupling is achieved

through the Coulomb coupling between dipolar CDWs. Furthermore, we show

that the dipolar nature of the CDW modulation is due to the condensation at TP

of a critical phonon mode resulting from the hybridization of an acoustic branch

polarized in the MoO6 intra-layer segment direction, and an optical polar branch
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similar to those found in ferroelectric perovskites. We suggest that such an inter-

chain coupling mechanism also occurs in CDW oxides and bronzes such as the

monophosphate tungsten bronzes.

5.7 Computational details

DFT calculations [96, 97] were carried out using a numerical atomic orbitals ap-

proach, which was developed for efficient calculations in large systems and im-

plemented in the Siesta code [27, 28]. We have used the generalized gradient

approximation (GGA) to DFT and, in particular, the functional of Perdew, Burke

and Ernzerhof [98]. Only the valence electrons are considered in the calculation,

with the core being replaced by norm-conserving scalar relativistic pseudopoten-

tials [99] factorized in the Kleinman-Bylander form [100]. The non-linear core-

valence exchange-correlation scheme [102] was used for all elements. We have used

a split-valence double-ζ basis set including polarization functions [101]. The energy

cutoff of the real space integration mesh was 350 Ry. To build the charge density,

the Brillouin zone (BZ) was sampled with the Monkhorst-Pack scheme [103] using

grids of (21×45×21) k-points. The Lindhard response function (Eq. 5.1) was ob-

tained from the computed DFT values of the band eigenvalues εi(k). The integral

over k-points of the BZ was approximated by a direct summation over a dense,

regular grid of points. As the Lindhard function is more sensitive to the accuracy

of the BZ integration than the total energy, especially in very anisotropic systems,

and/or in the presence of hot spots in the band structure (e.g. saddle points with

the corresponding van Hove singularity in the DOS), the k-points grid used for its

calculation must be more dense than in the standard self-consistent determination

of the charge density and Kohn-Sham energy. The calculations are done, neverthe-

less, using the eigenvalues obtained in the DFT calculation for the coarser grid, and

interpolating their values in the denser grid, using a post-processing utility avail-

able within the Siesta package. In this work, for the calculation of the Lindhard

response function, the BZ was sampled using a grid of (256×256×16) k-points.

The two partially filled bands were those taken into account in the calculations.





6. ELECTRONIC DIMENSIONAL

CROSSOVER AND FERMI SUR-

FACE NESTING INSTABILITIES

IN THE BECHGAARD SALTS RE-

VEALED BY THE LINDHARD RE-

SPONSE FUNCTION

6.1 Introduction

The study of one dimensional (1D) systems was initially developed to obtain exact

quantum and thermodynamic solutions for the many body problem in interacting

magnetic and electronic systems [198]. However, it was only during the 1970s that

became possible experimental studies of solids built from a collection of weakly

coupled magnetic or conducting chains in order to test the theoretical predictions

(at least for the temperature range where thermal fluctuations overcome the inter-

chain coupling energy). Thus, in order to rationalize the data obtained from 1D

thermal and/or quantum fluctuations in real anisotropic or quasi-1D systems it

was necessary to evaluate the anisotropy of the inter-chain vs. intra-chain cou-

plings since the former drives the system towards a three dimensional (3D) ground

state at finite temperature. This feature contrasts with exact theoretical results

stipulating that a 1D system cannot exhibit a phase transition at finite tempera-

ture (only a phase transition at 0 K is possible for the classical chain and no phase

123
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transition at all for the quantum chain).

The chain coupling is achieved by inter-chain exchange coupling in magnetic sys-

tems [199] and by inter-chain tunnelling and/or Coulomb coupling in metallic

systems [200]. Note that in quasi-1D metals the presence of various types of 1D

fluctuations with different kinds of inter-chain couplings generally leads to complex

phase diagrams including competing ground states which could end into a quan-

tum critical point. One of the best examples of this situation can be found among

the isostructural Fabre (TMTTF)2X and Bechgaard (TMTSF)2X 1D organic salts

[TMTTF is tetramethyltetrathiafulvalene, TMTSF is tetramethyltetraselenafulva-

lene and X is a monovalent anion such as PF−6 , ClO
−
4 and NO−3 ] whose 3D ground

state evolves upon changing the TMTTF donor by TMTSF and/or by increasing

pressure from a spin-Peierls to an antiferromagnetic ground state, then to a 2kF

spin density wave (SDW) where 2kF is the Fermi wave vector of the 1D electron

gas, and finally to a superconducting state (see Fig. 6.1) [201].

Among the different inter-chain interactions occurring in anisotropic metals an es-

sential role is played by the inter-chain transfer integrals, t⊥. Earlier studies have

clearly pointed out the difference between inter-chain diffusive electron transfer

and coherent electron transfer mechanisms [200, 203]. In the first case there is

no coherence between Bloch functions located on neighbouring chains. Thus, one

has a true 1D metal where the warping of the Fermi surface (FS) is not relevant

and there is no transverse plasma edge detected by optics. In the second case,

the electronic wave function is 2D or 3D delocalized over several chains and t⊥

is a relevant interaction. More precisely, for a non-interacting electron gas the

coherent regime occurs for kBT< t⊥/π = kBTCO, where TCO is the 1D to 2D/3D

crossover temperature [203, 204]. Below TCO a transverse plasma edge should

be detected. It has been predicted [205, 206] that the crossover transition TCO

between the diffusive and coherent regimes decreases in the presence of sizeable

intra-chain Coulomb repulsion because the latter interaction tends to localize the

electron wave pockets so that the effective inter-chain tunnelling process should
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Figure 6.1: Generalized phase diagram for Fabre (S-X) and Bechgaard (Se-X)
salts where X is a centrosymmetrical anion. The pressure scale corresponds to
(TMTTF)2PF6. Vertical arrows place (TMTTF)2Br and (TMTSF)2PF6 at atmo-
spheric pressure in the phase diagram. CO, SP, AF, SDW and SC refer to charge
ordered, Spin-Peierls, antiferromagnetic and superconducting ground states. QCP
is a quantum critical point between the SP and AF ground states. Tρ indicates
the onset temperature for charge localization (Loc in the Figure) as detected in
the conductivity measurements. TCO is the crossover temperature from a 1D (in
the stack direction, a) to a 2D (in the (a, b) donor layer) delocalized electron gas
according to ref [202]. On the right hand scale there is also a crossover to a 3D
delocalization regime along c through the anion cavities at a temperature of the
order of tc∗. The nesting breaking term tb

′ introduced in the text is also indicated.
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Figure 6.2: Crystal structure of the (TMTSF)2PF6 Bechgaard salt: (a) Quasi-
planar organic molecules stack along the a axis and are separated along the c*
direction by PF−6 anions. (b) Projection of the (TMTSF)2PF6 structure along the
stack direction.

be reduced. This leads to a renormalized TCO where there is a deconfinement

transition from a 1D Luttinger liquid to a 2D or 3D Fermi Liquid [207]. However

beyond this qualitative picture many important theoretical questions remain to be

solved in order to quantitatively describe the deconfinement transition [208]. These

considerations should particularly apply to organic conductors. For instance, in

TTF-TCNQ(F-Q) NMR experiments lead to the estimation of t⊥ ∼ 5 mev [200],

sizeably smaller than tcQQ ∼ 17 meV and ta±cQF ∼ 12 meV according to DFT calcula-

tions [209]. Thus, the Peierls transition of TTF-TCNQ (TQ= 52 K) occurs in the

diffusive regime above TCO ∼ 20 K [200] so that the inter-chain coupling should

be due to Coulomb interactions between charge density waves (CDW) located on

different chains. In the present work we will consider in detail the situation in the

Bechgaard salts.

The structure of a typical Bechgaard salt, (TMTSF)2PF6, is shown in Fig. 6.2 [210]

where slightly dimerized zig-zag stacks of the TMTSF donor molecules run along

the a direction. Organic stacks form (a,b) layers which delimitate cavities along

c* filled by monovalent (X−) anions. According to the present DFT calculations

the transfer integrals for the PF6 salt at 300 K are ta ≈ 210 meV, teffb ≈ 28 meV

and tc∗ ≈ 0.8 meV along the a, b and c* directions, respectively. As expected

from the crystal structure, these values imply a highly anisotropic system. The

temperature-pressure (T-P) phase diagram of (TMTSF)2PF6 is shown in Fig. 6.1.

At ambient pressure this salt exhibits a SDW insulating ground state below TSDW
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= 12 K. However, TSDW significantly decreases under pressure. When the metallic

state is restored above ∼ 9.5 kbar, (TMTSF)2PF6 becomes a superconductor at

TS ≈ 1.2 K. In (TMTSF)2PF6 the 1D to 2D deconfinement temperature TCO is

measured to be around 100 K at ambient pressure from the change (from an acti-

vated behaviour to a metallic dependence) of the transverse electrical conductivity

along c* [211] and from the detection of a transverse plasma edge when an electric

field is applied along b* [202]. This crossover temperature sizeably increases under

pressure (see Fig. 6.1). Note that the ambient pressure TCO ∼ 100 K compares

nicely with our estimation of ∼ teffb /π. When pressurized, (TMTSF)2PF6 becomes

metallic and as shown in Fig. 6.1 there is a lower 2D-3D temperature crossover

estimated to occur around tc∗ ∼ 3-5 K (see Fermi surface warping in App. C)

obtained from DFT calculations with different 4 K crystal structures (this work).

In contrast, the Fabre salt (TMTTF)2PF6 despite having quite similar transfer

integrals (ta ≈ 180 meV, teffb ≈ 24 meV and tc*≈ 0.5 meV at 300K) exhibits a

very different phase diagram whose main difference is the occurrence within the

1D electronic regime of a high temperature 4kF hole localisation on the bonds of

the donor zig-zag chains. This effect is due to the intra-stack Coulomb repulsions

assisted by an enhanced interaction with the 4kF potential of the anion sublattice

(for a recent review see [177]). The charge localization, which is apparent from the

occurrence of an activated intra-chain conductivity below Tρ ∼ 230 K [212], leads

to a spin-charge decoupling. Due to the charge localization phenomenon TCO is

renormalized to 0 K [201].

Below TCO, (TMTSF)2PF6 exhibits a SDW ground state at TSDW= 12 K whose

“ 2kF ” instability has been interpreted, due to the coincidence of the SDW criti-

cal wave vector measured by NMR [213, 214] with the best nesting vector of its

warped FS [215], as resulting from a FS nesting process. However, since a closer

inspection of the FS shows that there is a wide range of possible nesting vectors,

in what follows we determine the best nesting condition by a direct calculation of

the Lindhard response function using the DFT band structure of (TMTSF)2PF6.

We will also study the thermal and wave vector dependence of this electron-hole
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Figure 6.3: Calculated band structure (a) and Fermi surface (b) for (TMTSF)2PF6

using the 4 K crystal structure.The energy zero corresponds to the Fermi level. Γ
= (0, 0, 0), X = (1/2, 0, 0), Y = (0, 1/2, 0), Z = (0, 0, 1/2) and M = (1/2, 1/2,
0) in units of the triclinic reciprocal lattice vectors.

response through the various crossover temperatures previously considered.

The Lindhard response function for two other salts, (TMTSF)2NO3 and

(TMTSF)2ClO4, which exhibit a SDW ground state under different conditions will

also be calculated and analyzed. (TMTSF)2NO3 exhibits a SDW ground state be-

low TSDW= 9 K after a (1/2, 0, 0) anion ordering (AO) transition occurring at

TAO ≈ 43 K, which is not believed to sizeably affect the nesting properties of

the FS. (TMTSF)2ClO4 exhibits a SDW ground state below TSDW ≈ 6.5 K when

samples are quenched through the TAO= 24 K (0, 1/2, 0) AO transition with the

result that the absence of long range AO leaves intact the FS nesting properties.

In complete contrast, when the (0, 1/2, 0) AO is fully achieved in the relaxed

samples, the SDW ground state is replaced by superconductivity. This effect is

interpreted as being due to the killing of the SDW instability by nesting break-

ing terms in the reconstructed FS caused by the onset of new AO periodicities

in the system. Although the reconstructed FS due to AO in (TMTSF)2NO3 and

(TMTSF)2ClO4 have been recently reported by some of us [216], we present here

a more quantitative estimation of their nesting properties through the calculation

of the Lindhard function in their respective AO ground states.
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Figure 6.4: Calculated Fermi surface for: (a) (TMTSF)2ClO4 in the (0, 1/2, 0)
AO phase , and (b) (TMTSF)2NO3 in the (1/2, 0, 0) AO phase. In (a) Y’ refers
to (0, 1/2, 0) in units of the triclinic reciprocal lattice vectors of the a × 2b × c
superlattice. In (b) X’ refers to (1/2, 0, 0) in units of the triclinic reciprocal lattice
vectors of the 2a× b× c superlattice.

6.2 Electronic Structure

The calculated band structure near the Fermi level for the 4 K crystal structure of

(TMTSF)2PF6 is shown in Fig. 6.3a. The two bands are almost exclusively built

from the HOMO of TMTSF and because of the stoichiometry they contain one hole

so that the upper band is half-filled. The total dispersion of these bands is 1.23 eV

and the dimerization gap at X is 96 meV. The two bands exhibit quite different

dispersion along the b* interchain direction, the upper one being considerably

flatter. These features are very similar to previously reported band structures,

both the first-principles and extended Hückel ones [217, 215, 218, 219]. Fitting the

DFT results to the tight-binding model of Yamaji [220, 221] leads to the following

values of the transfer integrals for the PF6 salt at 300 K: ta ≈ 210 meV, teffb ≈

28 meV and tc∗ ≈ 0.8 meV along the a, b and c* directions, respectively. Thermal

contraction up to 4 K leads to increases of 23% and 33 % for ta and teffb and a

decrease of 37% for tc∗ , respectively. For the same temperature range the variation

is considerably smaller in the isostructural (TMTTF)2PF6 Fabre salt: 13% and

11% increase for ta and teffb respectively, and 5% decrease for tc∗ . In understanding
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Figure 6.5: 2D (a) and 3D (b) plots of the Lindhard function of (TMTSF)2PF6 in
the (a*,b*) reciprocal plane at 200 K. (c)-(e) 3D plots at 100 K, 50 K and TSDW

= 12 K, respectively.
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Figure 6.6: Thermal dependence of the transverse b* scans across the Lindhard
function of (TMTSF)2PF6 at 0.5a* [i.e. (0.5a*, b*) scans] (a) and transverse
tilted q scans along the q2-q3 line defined in part (c). The red dashed line in the
temperature scale indicates the temperature at which the single maximum leads
to a tilted segment of maxima in (a). Note in (b) the progressive development
of a double maxima below about 100 K. In c) we present a legend for the scans
directions where ~r2 = −(1 + tan(|~q3 − ~q2|))a∗ + b∗. Positive values are designated
for q points above the Γ-X direction.

the T-P phase diagram of the Bechgaard salts an important parameter is the so-

called unnesting (or nesting breaking) parameter [221, 220, 222],

t′b =
1

2
√

2

t2b
ta

(6.1)

which measures how much the actual FS differs from the perfect nesting condition

within Yamaji’s tight-binding model. For (TMTSF)2PF6 t
′
b is estimated from the

above transfer integrals to be -21.7 K, which compares well with the value esti-

mated (4t′b ∼ 75 K), from the difference between the direct optical (100 K [223])

and indirect thermal (25-30 K [200]) SDW gaps. As mentioned above, the present

calculations also provide an excellent estimation of the TCO crossover tempera-

ture for (TMTSF)2PF6. Elsewhere we have discussed in detail the evolution of

the transfer integrals of the (TMTSF)2ClO4 and (TMTSF)2NO3 salts with tem-

perature and pressure based on DFT calculations [216]. The calculated anion

ordering gap and the SDW transverse component for both salts were shown to be

in very good agreement with experimental results. We thus conclude that DFT

seems to provide a reasonable description of the main interactions influencing the

electronic structure of these Bechgaard salts.
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BOW of (TMTSF)2PF6 measured in ref. [224].

The calculated FS for (TMTSF)2PF6 at 4 K is shown in Fig. 6.3b. The shape

of this FS is common to all Bechgaard salts which only differ in subtle details of

the warping. However such subtle differences have strong consequences for their

low temperature behaviour since, as discussed in Sect. 6.3 on the basis of the cal-

culated Lindhard function, such warping influences the FS nesting vector. The

two salts (TMTSF)2ClO4 and (TMTSF)2NO3 with non-centrosymmetrical anions

exhibit however an AO transition doubling the periodicity of the cell along dif-

ferent directions, i.e. b for the first but a for the second. Consequently their

appropriate FSs below the AO transition essentially result from the folding and

hybridization of a FS like that of Fig. 6.3b. Since the folding occurs along differ-

ent crystallographic directions the calculated DFT Fermi surfaces exhibit different

shapes (see Fig. 6.4). The DFT AO gaps (∆0) are calculated to be 14 and 8.9 meV

for (TMTSF)2ClO4 and (TMTSF)2NO3, respectively. The different directions of

the AO leads to the development of AO gaps at different zones of the original

FS, a feature that has important consequences for the physical behavior of these

salts below TAO. For instance, the FS after AO for (TMTSF)2ClO4 is made of a

series of warped planes separated by small AO gaps (Fig. 6.4a) which develop at

the regions of the original FS with better nesting. In contrast, for (TMTSF)2NO3

after AO the FS is made of a series of elongated cylinders (Fig. 6.4b) such that
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the AO gaps develop at regions of the original FS where the nesting is not very

good so that the AO exerts a considerably smaller influence on the nature of the

SDW of this salt.

6.3 Analysis of the Lindhard function

In this section we will first study the temperature and wave vector dependencies

of the Lindhard function calculated for the high-temperature metallic phase of the

Bechgaard salts (TMTSF)2X with X = PF6, ClO4 and NO3. Later on we will

consider the response for the ClO−4 and NO−3 salts in their AO phase, i.e. below

TAO = 41 K for the (1/2, 0, 0) AO phase of (TMTSF)2NO3 [225] and below TAO

= 24 K for the (0, 1/2, 0) AO phase of (TMTSF)2ClO4 [226].

6.3.1 (TMTSF)2PF6

Shown in Fig. 6.5 are the intensity plots of the Lindhard function for (TMTSF)2PF6

in the (a*, b*) reciprocal plane calculated at 200 K, 100 K, 50 K and 12 K (TSDW ).

Let us note that the Lindhard response does not vary with the interlayer c* wave

vector component. At 200 K (Fig. 6.5a) there is a broad response centered at

around q1D = 0.5 a* in the chain direction, which corresponds to the 2kF wave

number of the quasi-1D electron gas. This response, which is slightly modulated

along b* exhibits a broad maximum at ∼ 0.23 b* (Fig. 6.5a).

Upon cooling the modulation of the Lindhard response along b* increases. Fig. 6.6a

shows that the intensity of the broad maximum at q0 = (0.5, 0.23) increases. When

T decreases the shape of the Lindhard response becomes sinusoidally modulated

along a* (Fig. 6.5b). As a consequence, the response along a* becomes broader at

the X (0.5, 0) and M points (0.5, 0.5) than in-between, near q0 (0.5, 0.25). This

is quantitatively illustrated in Fig. 6.7 by the thermal dependence of the intra-

chain inverse electron-hole coherence length ξ−1
eh‖, measured by the half-width at

half-maximum (HWHM) of the response along a* at the X and q0 points. These
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Figure 6.8: Schematic illustration of the three nesting vectors at the origin of the
arcs of the Lindhard function.

T = 5 K
T = 10 K
T = 15 K
T = 20 K
T = 30 K
T = 40 K
T = 50 K
T = 60 K
T = 70 K
T = 80 K
T = 90 K
T = 100 K
T = 110 K
T = 120 K
T = 130 K
T = 140 K
T = 150 K
T = 160 K
T = 180 K

T = 1 K

0.6

1.2

1.8

2.4

3.0

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

(a
.u

.)

0.6

1.2

1.8

2.4

3.0

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

(a
.u

.)

r1(a.u.) r3(a.u.)

q1
q2 q1q3

c)

LEGEND X

M

q
1

q
2

q
3

r
1

r
2

r
3

b)a)

Figure 6.9: Thermal dependence of the scans across q1-q2(a) and q3-q1(b) lines
of the Lindhard function for (TMTSF)2PF6. Note the tilted plateau which con-
tinuously develops upon cooling. The red dashed line in the temperature scale
indicates the temperature at which the single maximum leads to a tilted segment
of maxima. The kinks observed for q1-q2 ∼ 0 and q3-q1 ∼ 0 and 0.4 correspond to
the crossing of singularity lines mentioned in the text which separate the light blue
to dark blue regions in Fig. 6.10b. In c) we present a legend for the scans directions
where ~r1 = (1−tan(|~q1 − ~q2|))a∗+b∗, respectively ~r3 = −(1+tan(|~q3 − ~q2|))a∗+b∗.
Positive values are designated for q points above the Γ-X direction.
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quantities slightly decrease upon cooling, but do not vanish. This effect is due

to the onset of FS nesting breaking terms which prevent the divergence of the

electron-hole response (see below). Note also that the HWHM of the q depen-

dence of the Lindhard function along b* (Fig. 6.6a) gives an inter-stack transverse

electronic length ξeh⊥ of the order of b which means that there is no sizable inter-

chain coupling, so that one can consider the electron-hole divergence as being

essentially 1D. However, this picture remains only valid until about 100 K because

below this temperature the shape of the Lindhard function is modified.

Fig. 6.5d shows a 3D plot of the intensity of the Lindhard function at 50 K,

where arcs of intensity maxima can be clearly distinguished. The formation of

arcs is revealed by a transverse scan slightly off the 0.5a* wave vector. In the

scans shown in Fig. 6.6b crossing the extremities of the arc, i.e. between q2 and q3

defined in Fig. 6.10c, one clearly observes the passage for a temperature about 90

K from a high temperature broad maximum at 0.23 b* toward two stronger and

narrower maxima around ∼ 0.30 b* and ∼ 0.14 b* for lower temperatures. Also

below 100 K the q0 maximum progressively shifts to q1= (0.48, 0.23). The origin

of these arcs can be understood on the basis of a plot of the (a*, b*) section of the

FS for a triclinic lattice. As schematically illustrated in Fig. 6.8 which is based on

our calculations for the (TMTSF)2PF6, three different nesting processes are pos-

sible. Those associated with q2 and q3 nest the zones around the inflection points

of the warped lines. Because of the triclinic geometry q2 and q3 are different and
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since these zones around the inflection points are relatively flat they both lead to a

linear segment with high values of the Lindhard function with opposite slope (and

varying intensity). The crossing point of these two linear fragments corresponds

to the third nesting process, q1. Since none of these nestings is perfect so that

different small pockets are left in any of the three nesting processes, the Lindhard

response intensity can vary with temperature.

Upon further cooling, the b* scan of Fig. 6.6a shows that in fact a tilted seg-

ment of maxima develops at low temperature. More precisely, the 3D plot of the

intensity of the Lindhard function at TSDW= 12 K (Fig. 6.5) reveals the presence

of a tilted triangular plateau of maxima. This plateau which has more likely the

shape of a boomerang is limited by the q1-q2 and q1-q3 segments and the q2-q3 arc

previously described, and whose peak coordinates, as indicated in Fig. 6.10b, are

q1 = (0.48, 0.23), close to q0, q2 = (0.52, 0.30) and q3 = (0.53, 0.14). Fig. 6.9 shows

more precisely by means of q1-q2 and q1-q3 scans that the plateau develops slightly

above TSDW around ∼ 15-20 K. Fig. 6.6b shows that the q2 and q3 peak intensities

grow sharply upon cooling and Fig. 6.9 shows that concurrently with this growth

a continuum of intensity develops with the q1 peak. At low temperature the ab-

solute maximum of the Lindhard response is not located at q1 ≈ q0, as expected

from the temperature extrapolation of the high temperature data, but at q2 which

exhibits the strongest low temperature divergence (Fig. 6.9). However at TSDW=

12 K the q1 and q2 responses are of similar intensity. This triangular shaped max-

ima of the Lindhard function was first predicted for an electronic dispersion in

the presence of a single nesting breaking term t′b for an orthorhombic lattice [227].

It has also been recently calculated in ref. [228] for a triclinic lattice with several

nesting breaking terms more relevant to describe the case of the Bechgaard salts.

Finally, note that the low temperature plateau is delimited by several sinusoidal

lines of singularities calculated in ref.[229] which are visible in Figs. 6.5d and e

and Fig. 6.10. Along these lines there is a continuous sliding of the two sheets of

the FS on onto another. Note that q1, q2 and q3 belong to these sinusoidal lines.
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An unexpected result of our study is provided by the low temperature calcula-

tion of the Lindhard response in (TMTSF)2PF6-H12 under a pressure of 7 kbar

(where there is a strong reduction of TSDW to ∼ 4 K and the onset of coexis-

tence between the SDW modulation and the superconductivity [230]) and in 98

% deuterated (TMTSF)2PF6-D12 (corresponding to a negative pressure of 5 kbar

with respect to (TMTSF)2PF6-H12 at atmospheric pressure, Patm, [231]). Fig. 6.10

compares the section of the Lindhard function at 5 K for these two salts (Figs. 6.10c

and a, respectively) as well as for (TMTSF)2PF6-H12 at Patm (Fig. 6.10b). It is

clear that the shape of the triangular maximum of the Lindhard function is not

changing appreciably when the effective pressure increases (from (Fig. 6.10a to b

and c).

6.3.2 (TMTSF)2NO3 in the absence of AO transition

The shape of the Lindhard function for (TMTSF)2NO3 bears a resemblance with

that of (TMTSF)2PF6. Fig. 6.11a shows the 3D plot of the Lindhard function

at 120 K. 2kF scans along b* show the existence of a broad maximum for q0 =

(0.5, 0.27) which grows in intensity when temperature decreases (Fig. 6.12). This

maximum is slightly shifted with respect to that of (TMTSF)2PF6.

The shape of the maximum changes into arcs below ∼ 70 K. Fig. 6.11b reports the

3D plot of the Lindhard function at 40 K, close to the (1/2, 0, 0) AO critical tem-

perature (TAO = 41 K) of the (TMTSF)2NO3 salt [225]. It is interesting to remark

that the AO critical wave vector corresponds to the X point of the Brillouin zone

where the Lindhard function exhibits a minimum (Fig. 6.12). In consequence, the

response of the organic salt to the (1/2, 0, 0) AO potential should be weak. Thus,

one does not expect a strong 2kF stack distortion below TAO = 41 K, which agrees

with the structural refinement of the AO superstructure [232].

Upon fast cooling the AO superstructure does not develop at TAO for kinetic

reasons [232]. In that case the appropriate plot of the Lindhard function is that of
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Fig. 6.11e. As for (TMTSF)2PF6 a triangular shaped maximum of the Lindhard

function also appears between 15 and 20 K although for slightly different qi val-

ues: q1 = q0 = (0.50, 0.27), q2 = (0.52, 0.29) (strongest maximum) and q3 = (0.52,

0.24). However, upon further cooling the triangular plateau is subtly modified.

The calculated Lindhard function at 1 K is shown in Fig. 6.13a. Although at first

sight it may look almost unchanged with respect to that at 40 K this is not so.

As shown in Fig. 6.13b where we plot the overlap of two sections of the Lindhard

function, those for the qc∗ components of 0.0 and 0.5, in the region of q3 there are

two well separated contributions marked with white arrows. The inner of these

contributions corresponds to the plane with qc∗= 0. and the outer, which is more

elongated, to that with qc∗= 0.5. In the region around q2 the two contributions

remain on top of each other. These changes originate from the 3D interactions, i.e.

the weak warping of the FS along c* in the region leading to the triangles. This

warping varies along the FS and is non-negligible for quenched (TMTSF)2NO3 in

the regions leading to the q3 nesting but much less in the regions leading to the q2

nesting. The result is that the region of the triangular plateau around q3 is spread

along the direction of the initial linear component of the arc whereas that around

q2 does not. Consequently, the triangular plateau spreads somewhat in this direc-

tion and becomes more inclined. Thus, the prevalence of q2 at low temperatures

is enhanced by the interlayer interactions. This effect starts to be visible in our

calculations around 12-15 K. Of course, in the full calculation of the Lindhard

function of Fig. 6.13a these effects are not easy to see because the effect of the

interlayer interactions is smmoth. This feature was not accounted for in the model

study of refs. [229, 228] because 3D effects were neglected. Interestingly, we do not

find this feature in our calculations for (TMTSF)2PF6. In that case the warping

of the FS affecting the region of the triangles is around three times smaller than in

quenched (TMTSF)2NO3 so that the effect becomes practically undetectable and

the triangular plateau is not affected by the interlayer interactions.
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Figure 6.11: 2D plot of the Lindhard function of (TMTSF)2NO3 in the (a*,b*)
reciprocal plane at 120 K (a), 40 K (c) and 1 K (e). 3D sections of the Lindhard
function of (TMTSF)2NO3 around the X-M direction at 120 K (b), 40 K (d) and
1 K (f).
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Figure 6.12: Thermal dependence of the transverse b* scans across the Lindhard
function of (TMTSF)2NO3 at 0.5 a*. The red dashed line in the temperature scale
indicates the temperature at which the single maximum leads to a tilted segment
of maxima.

6.3.3 (TMTSF)2ClO4 in the absence of AO transition

The Lindhard function of (TMTSF)2ClO4 slightly differs from that of (TMTSF)2PF6.

Figs. 6.14a and b show this response at 200 K. It exhibits a broad maximum

around the X point. This is well illustrated by the b* transverse scan for 2kF

= 0.5a* (Figs. 6.15). This figure shows that the broad maximum splits into two

sharper maxima at q0 = (0.5, ±0.14) around 130 K. Around 100 K the maxima be-

come an arc as previously found for the (TMTSF)2PF6 and (TMTSF)2NO3 salts.

Figs. 6.14c and d show plots of the Lindhard function at 50 K. The minimum of re-

sponse remains at the M point for all the temperature range. Fig. 6.14 shows that

the Lindhard function is more sinusoidally modulated along b* in (TMTSF)2ClO4

than in (TMTSF)2PF6 (compare also Figs. 6.17 and 6.7). The HWHM of the

Lindhard function along a* gives the inverse electron-hole coherence length ξ−1
eh‖.

The calculated values at the X and q0 points (see Fig. 6.17) weakly decrease upon

cooling from ∼ 0.1 Å−1 at 200 K to ∼ 0.07 Å−1 at 15 K. These values are com-

parable to those found for ξ−1
eh‖ in (TMTSF)2PF6 (Fig. 6.7), but are much smaller

than ξ−1
eh‖ ∼ 0.14 Å−1 measured at the M point.

For quenched samples preventing the establishment of the (0, 1/2, 0) AO super-

structure, a triangular plateau begins to form below about 20-30 K (see Fig. 6.15)

which is close to TAO. This is clearly illustrated in Fig. 6.16a showing a 2D plot of
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Figure 6.13: Magnified section of the Lindhard function for (TMTSF)2NO3 with-
out AO at 1 K (a). Overlap of the Lindhard response function sections calculated
at planes parallel with (a*,b*) for qc∗= 0 and qc∗= 0.5 at 1 K in the non-ordered
phase (b) of (TMTSF)2NO3. Note the white arrows indicating the effect of 3D
interactions.
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Figure 6.14: 2D plot of the Lindhard function of (TMTSF)2ClO4 in the (a*,b*)
reciprocal plane at 200 K (a), 50 K (c) and 1 K (e). 3D sections of the Lindhard
function of (TMTSF)2ClO4 around the X-M direction at 200 K (b), 50 K (d) and
1 K (f).
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Figure 6.15: Thermal dependence of the transverse b* scans across the Lindhard
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Figure 6.16: Section of the Lindhard function in quenched (TMTSF)2ClO4 in
the (a*,b*) reciprocal space plane at TSDW = 6 K (a). Overlap of the Lindhard
response function sections calculated at planes parallel with (a*,b*) for qc∗= 0 and
qc∗= 0.5 at 1 K (b).

the Lindhard function at 6 K. The plateau is spanned between maxima located in

q1 = q0 = (0.5, 0.14), q2 = (0.56, 0.21) and q3 = (0.57, 0.07) (strongest maximum).

Note that the 1 K Lindhard function also exhibits the 3D features discussed for

(TMTSF)2NO3 (see Fig. 6.16b) although slightly weaker. The warping of the FS

in the region of the triangles is found to be in between that of (TMTSF)2NO3,

for which the effect was clearly visible, and that of (TMTSF)2PF6, for which we

could not detect it.
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6.3.4 (TMTSF)2NO3 in the AO phase

At the (1/2, 0, 0) AO transition, the electronic structure of (TMTSF)2NO3 is

modified. Such structural transition is accompanied by a metal to semi-metal

transition with the formation of an electron pocket (red pocket in Fig. 6.4b) and

a hole pocket (blue pocket in Fig. 6.4b) per unit cell [216]. As a consequence,

the Lindhard response function must change. However, since the stack modula-

tion is quite weak the Lindhard function of the semi-metallic phase (Figs. 6.18a

and b) bears some resemblance with that of the metallic phase (Fig. 6.11). In

Fig. 6.18c to e the total Lindhard response is decomposed into the inter-pocket

and two intra-pocket components. Only the inter-pocket component (a 3D plot

is also shown in Fig. 6.19) exhibits a strong response under the form of an in-

tensity modulated warped line at q1D = 0a′* (note that the AO unit cell with a

doubling of the a parameter is used here so that a′*≈ a*/2). In contrast with the

Lindhard response in the absence of AO, the maximum in the triangular plateau

has been transformed into a sharp maximum at (0.01, 0.29) which wave vector

is close to q1 of the metallic phase. Because of the folding and gap opening as a

result of the AO there is a further thickening of the walls of the triangular plateau.
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Figure 6.18: 3D plot of the Lindhard response of (TMTSF)2NO3 in its AO phase
at 8 K (=TSDW ) (a). 2D plots of the decomposition of this Lindhard function (b)
into its interpocket (c), pocket 1 (d) and pocket 2 (e) components. See Fig. 6.4b.
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Figure 6.19: 3D plot of the inter-pocket Lindhard function of (TMTSF)2NO3 in
its AO phase at 8 K (=TSDW ). The maximum response occurs at (0.01,0.29)

Note that there is accumulating evidence that the (1/2, 0, 0) AO superstructure

changes into a (0,1/2, ?) one by application of∼ 7.5± 1 Kbar in (TMTSF)2NO3 [234].

In which case the Lindhard function should drastically change under pressure. If

the (0, 1/2, 0) AO superstructure is stabilized, one should expect the formation

of two non-equivalent donor stacks along b. By analogy with the results obtained

in the AO phase of (TMTSF)2ClO4 (see Sect. 6.3.5), one should also expect the

occurrence of a quasi-1D Lindhard response. If the (0, 1/2, 1/2) AO superstruc-

ture is stabilized as in pressurized (TMTSF)2ReO4 [235], all the donor stacks

must remain equivalent and the Lindhard function should be different from those

considered in the present work. Magnetotransport measurements performed in

pressurized (TMTSF)2NO3 suggest the occurrence of a quasi-1D FS. [234].

6.3.5 (TMTSF)2ClO4 in the AO phase

At the (0, 1/2,0) AO transition the electronic structure of (TMTSF)2ClO4 is mod-

ified. There are two differently modulated donor stacks per unit cell and an anion

gap opens at the zone boundary [216]. Fig. 6.20 shows that the Lindhard function

is considerably modified. The 3D (a) and 2D (b) plots show that this response is

more similar to that of a 1D system with a broad line of maxima for q1D = 0.5a*.

Along this line two broad maxima leading to an arc can be distinguished around ±
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0.3b*. This Lindhard response does not look like that modelled in ref. [228] where

only the anion gap has been considered. Since the major modification induced by

the AO concerns the electronic structure of the stack, the Lindhard function is

modified via the introduction of new nesting processes between the two quasi-1D

bands of the unit cell. This is quantitatively illustrated by parts (b) to (e) of

Fig. 6.20 where a decomposition of the total Lindhard function into two intra-

band and one inter-band components is shown. The intra-band components of the

response are the typical ones for a nesting process between warped FSs. The best

nesting conditions within the same set of bands give rise to broad maxima with

the shape of arcs. However these arcs of maximum intensity are located at quite

different position in the Brillouin zone; namely around (0.6, 0.5) and (0.4, 0.3) for

the two types of bands in the (a*, b′*) reciprocal plane (note that the AO unit

cell with a doubling of the b parameter is used here so that b′*≈ b*/2). It is the

inter-band nesting process which exhibits the strongest response under the form

of a q1D= 0.5a* line of maxima resembling that of the Lindhard response of a 1D

system such as the blue bronze [42]. This response can be fitted along b* by two

broad Lorentzians centered at +/- 0.29b′*. This maximum is completely different

from that exhibited by the Lindhard function in the non AO phase (see Fig. 6.16).

The HWHM of the inter-band response along a* and b′* leads to electron-hole

correlation lengths of 17 Å and 9 Å along a and b respectively. Finally note that

the inter-band response does not vary with temperature between 24 K (TAO) and

1K.

6.4 Discussion

6.4.1 Electronic dimensional crossover and detailed struc-

ture of the Fermi surface

The main result of the present investigation is the finding of a Lindhard response

with a shape varying substantially with temperature. Such variation should be
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associated with a change of dimensionality of the electron gas located on the donor

stacks. At high temperature (i.e. above 100 K) the Lindhard function shows a

line maximum at q1D = 0.5a* which corresponds to the 2kF critical wave vector of

the quasi-1D band structure. This line, which is slightly modulated in intensity,

exhibits a broad maximum at q0. Such maximum corresponds to the best nest-

ing wave vector of the thermally warped high temperature Fermi surface. Below

around 90-100 K (70 K in the (TMTSF)2NO3 salt) the line of maxima transforms

progressively into an arc limited by the q2 and q3 wave vectors which are outside

the q1D line and q0 shifts to q1 in (TMTSF)2PF6. The q2 - q1 - q3 arc of maxima

should correspond to a broad range of good nesting wave vectors of the warped

FS (Fig. 6.8. The change of shape occurs at the 1D to 2D crossover temperature,

TCO (see Fig. 6.1 of the electron gas detected by the observation of a transverse

plasma edge when the electric field is applied along the inter-stack direction b [202]

and by the change of the nature of electron transport along c* [211]. At TCO the

transverse warping of the FS becomes relevant for a large range of qi wave vec-

tors. Upon cooling below TCO the arc broadens and transforms into a boomerang.

Then, the intensity of the q2 and q3 maxima of the Lindhard response increases

substantially, which means that FS nesting processes other than q0 become promi-

nent. Below 15-20 K a line of maxima links q2 to q1 ≈ q0 and q3 to q1 ≈ q0. This

leads to a tilted triangular plateau limited by a q2 - q3 arc. Such a triangular

shape of maxima has been analytically calculated when nesting breaking terms

are included in the FS dispersion [227, 229, 228].

As mentioned in Sect. 6.2, the magnitude of the FS nesting breaking trans-

verse integral t′b can be estimated for a quarter-field band modeled by an or-

thorhombic thigh-binding band dispersion with two ta and tb transfer integrals

as in Eq. 6.1 [221]. Note that in the real triclinic structure of the Bechgaard

salts, because of the lower symmetry, there are several other transverse trans-

fer integrals [228] and thus, more FS breaking terms are required. Nevertheless,

in a simplified model with tb = 36.8 meV and ta= 256 meV, issued from our

parametrization of the DFT band structure at 4K, one can estimate a t′b value of
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1.87 meV ≈ 21.7 K, which nicely corresponds to the temperature below which the

triangular shaped maximum of the Lindhard function is observed.

It is worth noting the finding of very similar triangular maxima for the Lind-

hard function in (TMTSF)2PF6 at atmospheric pressure (Patm) and under 7 Kbar

(where there is a strong reduction of TSDW ∼ 4 K and the onset of coexistence

between the SDW modulation and superconductivity [230]) as well as in 98 %

deuterated (TMTSF)2PF6-D12 (corresponding to a negative pressure of 5 Kbar

with respect to (TMTSF)2PF6-H12 at Patm [231]). Since, according to ref. [229],

the triangular shape is controlled by the presence of different nesting breaking

effects, the finding of the same area of the triangular maxima and of the limiting

qi wave vectors (Fig. 6.10) means that nesting breaking effects are not varying

significantly in pressurized (TMTSF)2PF6. In connection with this note that our

DFT electronic structure calculations reveal only a very small increase of the ef-

fective inter-stack transfer integral tb from 35.6 meV to 36.8 meV and to 37.3 meV

in (TMTSF)2PF6-D12, (TMTSF)2PF6-H12 at Patm and 7 Kbar, respectively. More

quantitatively, using Eq. 6.1 one gets a negligible increase of t′b from 1.87 meV

to 1.88 meV by applying 7 Kbar to (TMTSF)2PF6. This finding contradicts the

explanation generally admitted in the literature [221] that the SDW ground state

vanishes under pressure because of the enhancement of nesting breaking terms.

Thus the vanishing of the SDW ground state under pressure (Fig. 6.1) could be

more likely ascribed to a decrease of the direct SDW gap, related to effective

Coulomb repulsions, under pressure.

6.4.2 Relationship with the density wave instability

When a 2kF maxima of the electron-hole Lindhard response function occurs, a

quasi-1D electron gas can be driven towards a 2kF density wave electronic in-

stability. When the electron-phonon coupling is non-negligible a charge density

wave (CDW) instability should generally occur accompanied by a bond order wave

(BOW) instability where the phonon field modulates the bond distances. In the
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presence of sizeable electron-electron exchange interactions, a spin density wave

(SDW) should occur. At high temperature the Bechgaard salts exhibit both kinds

of instabilities. Pretransitional SDW fluctuations have been detected by NMR

below 200 K in (TMTSF)2PF6 and (TMTSF)2ClO4 salts. For the former salt the

SDW fluctuations diverge critically below ∼ 21 K when approaching the 12 K

SDW transition [236].

Quasi-1D 2kF BOW fluctuations are detected by diffuse scattering methods below

200-175 K in the PF6 [233], AsF6 [237] and ClO4 [233] salts. Furthermore, the

intra-chain correlation lengths of these BOW fluctuations nicely corresponds to the

electron-hole coherence length ξeh‖ deduced from the width of the Lindhard func-

tion at the q0 point (see Figs. 6.7 and 6.17). However, the correlation length of the

BOW fluctuations, ξBOW , only follow the evolution of ξeh‖ with temperature. They

are not enhanced upon cooling as it happens for electron-phonon driven Peierls

systems such as the blue bronze [42]. This means that, although occurring, the

CDW fluctuations are not critical in the Bechgaard salts. Furthermore, the BOW

fluctuations vanish below ∼ 50K in the PF6 and AsF6 salts probably when the

lattice becomes more rigid because of the enhancement of the donor-anion hydro-

gen bond linkage [177, 231]. Such a rigidity does not occur in the ClO4 salt whose

anions remain free to order in a superstructure at a lower temperature TAO= 24 K,

so that the BOW fluctuations remain present [233, 224, 238]. CDW fluctuations

have also been detected at low temperature in the ClO4 salt by optical means [239].

Finally it is interesting to recall that in spite of the opening of an anion gap

in sections of the well nested parts of the high temperature FS, (TMTSF)2ClO4

exhibits below TAO a well pronounced 2kF quasi-1D inter-band response. This

is a surprising result which also questions the reason for which a density wave

instability does not develop instead of supercondivity in relaxed (TMTSF)2ClO4.

Tentatively, the H-bond linkage of anions to donor stacks could prevent a lattice

instability and the inter-stack charge transfer of about 0.04 holes [216] could dis-

favor the onset of a charge or spin density wave instability involving neighboring
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stacks along b. Note also that the inter-band Lindhard function was found to be

independent of the temperature in the AO phase.

6.4.3 Relationship with the SDW modulated ground state

In the weak coupling limit and the random phase approximation (RPA) the max-

imum of the Lindhard function should select the critical SDW wave vector which

develops at TSDW . This criterium is partly validated by our first-principles cal-

culations. The SDW modulation wave vector has been experimentally determined

by fitting the NMR line-shape assuming that the a* component of the modulation

is q1D =2kF = 0.5 a*. With this assumption it is found that the qb transverse

SDW modulation wave vector in (TMTSF)2PF6 should be in the range 0.20 ±

0.05b* [213] or 0.24 ± 0.03b* [214]. Within experimental errors these wave vectors

nicely correspond to the calculated q1 = (0.48, 0.23) wave vector. In quenched

(TMTSF)2ClO4, NMR studies give a qb transverse SDW modulation wave vector

of 0.12 b* [240, 241] close to the calculated q0= (0.5, 0.14). Finally, in the AO phase

of (TMTSF)2NO3 it is found by NMR that qb ∼ 0.25 b* [242, 243], which approx-

imate value is close to the calculated q0 = (0.5, 0.27) for the non-AO phase and

(0.01, 0.29) for the AO superstructure. However, the calculation of the Lindhard

function brings more information than expected. Indeed, for temperatures be-

low 20-15 K, slightly above TSDW , the Lindhard response of (TMTSF)2PF6 and

quenched (TMTSF)2ClO4 exhibit a sizable triangular q2 - q0/q1 - q3 maximum,

where one of the summits is the q0 maximum determined by NMR. Furthermore,

the absolute maximum is associated with the doubly incommensurate wave vector

q2 in (TMTSF)2PF6 and q3 in quenched (TMTSF)2ClO4. It is only in the AO

phase of (TMTSF)2NO3 that the Lindhard function exhibits a single maximum.

Our calculation of the Lindhard response in (TMTSF)2PF6 and quenched (TMTSF)2ClO4

leaves the possibility that the SDW modulation could occur with any wave vector

inside the q2 - q0/q1 - q3 triangle. Thus, this modulation could be doubly incom-

mensurate. The presence of an incommensurate a* component makes easier the
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sliding of the SDW which is at the origin of a non-linear conductivity when the

electric field is applied along a [244]. Another possibility could be that, in a doubly

incommensurate situation, the SDW wave vector varies with temperature. Also,

the presence of a wide range of maxima means that different sets of modulation

waves could be simultaneously established without any prohibitive cost in energy.

In other words, the SDW ground state could be very fallible. This could explain

the glassy behavior observed inside the SDW ground state [13]. In relation with

recent NMR results [245], note that the commensurate SDW wave vector (1/2,

1/4), which is located inside the triangular maximum of (TMTSF)2PF6 can be

locally stabilized in the 4 K sub-SDW phase. It should be remarked that in the

presence of a continuum of triangular shaped electron-hole instabilities it is not

clear how a single SDW modulation wave vector can be selected at TSDW . This

seems to be particularly the case of (TMTSF)2PF6 where at TSDW the Lind-

hard function presents two maxima at q1 and q2. This should involve a mechanism

which goes beyond the standard Peierls-like scenario describing the metal-insulator

transition due to the divergence of a single 2kF electron-hole instability (see for

example [221, 244]). A more elaborate mechanism taking into account the q2-q1-q3

triangular set of fluctuations could be responsible of the first order order nature

of the SDW transition of (TMTSF)2PF6 [246] since it is known that enhanced

fluctuations induce a first order transition [247, 248]. Another possibility could be

a lock-in of the modulation at the commensurate q1D = a*/2 component which

differs from the incommensurate one entering in the q2 = (0.52, 0.30) modula-

tion wave vector for which the Lindhard function exhibits an absolute maximum.

The lock-in process could be facilitated by the coupling of the SDW with the lat-

tice which exhibits (within experimental errors) q0 and 2q0 charge density wave

modulations [249].
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6.4.4 Relationship with the mechanism of superconductiv-

ity

The mechanism of superconductivity in organic conductors is still the object of

a long debate [250]. In the case of Bechgaard salts experimental evidence has

been accumulated in favor of a pairing mechanism due to incipient SDW fluctua-

tions [251]. Theoretical analysis has recently pointed out that superconductivity

should emerge from an extended quantum critical region of the phase diagram

which is a function of nesting deviation of the FS [252]. In this framework the

shape of the electron-hole instability in the P-T region near the superconduct-

ing transition TS, together with its relationship with the FS nesting properties,

could be of key importance. The q-dependent Lindhard function calculated at

1 K corresponding to TS in relaxed (TMTSF)2ClO4 is shown in Fig. 6.20. This

figure should be compared to the q-dependent Lindhard function in pressurized

(TMTSF)2PF6 at 7 kbar (Fig. 6.10c) where SDW and superconductivity coex-

ist [230]. The Lindhard function of these two salts exhibits a broad maximum for

a sizeable number of q wave vectors which should favor the existence of a sizable

mixture of q-dependent SDW fluctuations. However, since the maximum of the

Lindhard function has a quasi-1D shape in relaxed (TMTSF)2ClO4 while it has a

triangular shape for a large range of pressures in the case of (TMTSF)2PF6, the

SDW fluctuations near TS should significantly differ in their anisotropy. Such dif-

ference, related to a substantially different electronic structure, is pointed out for

the first time by the present Lindhard function calculations. How an anisotropy

variation of the SDW fluctuations could modify the superconducting pairing mech-

anism is another challenging question to answer.
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6.4.5 Relationship with the Field Induced and Magneto-

transport Phenomena

Nesting breaking effects play an important role in the reorganization of the FS in

the presence of a modulation. They are at the origin of magnetic quantum oscil-

lations in quasi-1D conductors. In this respect Bechgaard salts offer a large range

of possibilities which can be probed by the so-called rapid magnetic oscillation

phenomena. Such effects have been recently reviewed and analyzed for the case of

an orthorhombic energy dispersion approach for which the nesting deviations are

well modeled [251]. Our calculation of the Lindhard function shows that the real

triclinic structure offers a larger possibility of different nesting effects (see Fig. 6.8

attested by the finding of a large range of q wave vectors (forming a triangular

plateau) presenting equally good nesting conditions. How such an effect can mod-

ify the present theory of rapid magnetic oscillations is another challenging question.

In addition nesting breaking terms are a key ingredient in the theory of field

induced SDW (FISDW) phases of Bechgaard salts [221]. Nesting breaking effects

control the maxima of the Lindhard function in the presence of a magnetic field as

considered in ref. [227] for an orthorhombic lattice with one nesting breaking term

t′b and in ref. [229] for a triclinic lattice with several nesting breaking terms. Here

our calculations give the true shape of the Lindhard function of the Bechgaard

salts at zero magnetic field from which the field effects should be included in order

to construct the FISDW phase diagram. The relative value of the different nesting

breaking components accounts also for subtle low temperature effects such as the

sign reversal of the quantum Hall effect [253].

6.5 Conclusions

In this study we have performed a high-q resolution first-principles DFT study of

the electron-hole Lindhard response function for the (TMTSF)2PF6, (TMTSF)2NO3



Chapter 7. Bechgaard salts 156

Γ X

Z
a)

b)

Figure 6.21: 2D plot of the Lindhard function of the α-(BEDT-TTF)2KHg(SCN)4

in the (a*, c*) reciprocal plane at 10 K (a). 3D plot of the region around the
maxima of the Lindhard function.

and (TMTSF)2ClO4 Bechgaard salts both in their metallic phase and their differ-

ent AO superstructures. These calculations allowed us to relate the variation of

shape of the response function to the change from 1D to 2D delocalized regimes

around TCO and, at very low temperature, to the crossover toward the 3D delocal-

ized regime around tc∗ . Our calculation shows unexpectedly that the electron-hole

response function exhibits a broad triangular maxima at temperatures just above

the SDW transition whose features have been related to multiple nesting condi-

tions of the warped FS. This feature should have important consequences for the

analysis of the physical properties of the SDW ground states. Our calculation also

shows that minute modifications of the electronic dispersion upon crossing the AO

critical line lead to considerable modifications of the Lindhard function. In par-

ticular, an unexpected result is the finding of a 2kF quasi-1D inter-band response
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for relaxed and superconducting (TMTSF)2ClO4.

Our calculations have been performed assuming that the DFT electronic structure

calculation accounts for the band dispersion of the Bechgaard salts. In particular

our calculations assume that there is no reduction of the inter-chain coupling due

to sizable intra-stack Coulomb repulsions. In their presence one expects a reduc-

tion of transverse inter-chain hopping which should reduce the FS warping and the

magnitude of the FS nesting breaking terms. However, the fact that our calcula-

tions correctly account for the experimental 1D to 2D TCO crossover temperature,

the experimental determination of the effective nesting breaking term t′b and the

thermal dependence of the BOW correlation length, ξ−1
BOW , of the (TMTSF)2PF6

and (TMTSF)2ClO4 salts (Figs. 6.7 and 6.17) casts some doubt on the relevance

of renormalization effects of the transverse integrals in the Bechgaard salts.

Some of the unexpected features reported here for the Lindhard function response

due to the presence of nesting breaking terms in the FS nesting process are in fact

quite general. One thus expects to obtain somewhat similar plateaus of maxima of

the Lindhard response for systems exhibiting open and sizably warped FSs. As an

example, we show in Fig. 6.21 the intensity-wave vector plot of the Lindhard re-

sponse of the 2D α-(BEDT-TTF)2KHg(SCN)4 organic metal which contains both

open and close FS sheets. Comparison of the Lindhard response with X-ray diffuse

scatering results for this salt proved the FS nesting origin of its low temperature

resistivity anomaly [254]. The present calculation of the Lindhard function with

a better resolution clearly shows that the quasi-1D 2kF ∼ 0.17a* maxima of the

electron-hole response associated to the warped open FS, exhibits indeed a curved

triangular-like shape implying also the presence of a set of good FS nesting wave

vectors with transverse components between 0.1 and 0.4 c*.
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6.6 Computational details

DFT calculations [96, 97] were carried out using a numerical atomic orbitals ap-

proach, which was developed for efficient calculations in large systems and im-

plemented in the Siesta code [27, 28]. We have used the generalized gradient

approximation (GGA) to DFT and, in particular, the functional of Perdew, Burke

and Ernzerhof [98]. Only the valence electrons are considered in the calculation,

with the core being replaced by norm-conserving scalar relativistic pseudopoten-

tials [99] factorized in the Kleinman-Bylander form [100]. The non-linear core-

valence exchange-correlation scheme [102] was used for all elements. We have used

a split-valence double-ζ basis set including polarization functions [101]. The energy

cutoff of the real space integration mesh was 350 Ry. To build the charge density,

the Brillouin zone (BZ) was sampled with the Monkhorst-Pack scheme [103] using

grids of (45×45×18) k-points in the non-anion ordered phases and (31×15×15)

k-points in the anion ordered phases. The Lindhard response function,

χ(q) = −
∑
i,j

∑
k

fF (εi(k))− fF (εj(k + q))

εi(k)− εj(k + q)
, (6.2)

where fF is the Fermi function and εi(k) are the band eigenvalues, was obtained

from the computed DFT values of the band eigenvalues εi(k). The integral over

k-points of the BZ was approximated by a direct summation over a dense, regu-

lar grid of points. As the Lindhard function is more sensitive to the accuracy of

the BZ integration than the total energy, especially in very anisotropic systems,

and/or in the presence of hot spots in the band structure (e.g. saddle points with

the corresponding van Hove singularity in the DOS), the k-points grid used for its

calculation must be more dense than in the standard self-consistent determination

of the charge density and Kohn-Sham energy. The calculations are done, neverthe-

less, using the eigenvalues obtained in the DFT calculation for the coarser grid, and

interpolating their values in the denser grid, using a post-processing utility avail-

able within the Siesta package. In this work, for the calculation of the Lindhard
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response function, the BZ was sampled using a grid of (400×400×16) k-points.

The partially filled bands were those taken into account in the calculations.





7. ORIGIN OF THE CDW IN TATE4

7.1 Introduction

Transition metal tellurides usually exhibit crystal structures and transport proper-

ties noticeably different from those of the corresponding selenides or sulphides [255].

The tellurium valence p orbitals are considerably more diffuse than those of sele-

nium or sulphur and they are able to interact with other tellurium atoms which

are considerably farther away. As a result the filled tellurium p bands are wider

than those of selenides or sulphides and may overlap substantially with the bot-

tom part of the transition metal based d bands causing a non-negligible electron

transfer from tellurium to the transition metal [256]. In other cases, the result of

this overlap between Te difuse p orbitals may lead to the opposite effect. For in-

stance, when the Te sublattice contains Te2 dimers, the Te-Te empty antibonding

levels can interact and spread into wide bands so that their bottom part overlaps

with filled transition metal levels leading to a reverse electron transfer from the

transition metal to tellurium. A consequence of these electron transfers is that

the formal electron counting for the tellurium atoms and fragments of transition

metal tellurides is sometimes not quite obvious [257, 258], a problem that does

not generally occur in transition metal sulphides and selenides. As a consequence

of these transfers the anion sublattice of transition metal tellurides often contains

tellurium fragments larger than dimers and even large polianionic units [259, 258].

These electron transfers have strong implications for their structural and, conse-

quently, transport properties.

Recently, the transition metal teratellurides NbTe4 [260] and TaTe4 [261] have

been the object of considerable attention in the context of the search for materials

161
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with high magnetoresistance and the competition between CDWs and supercon-

ductivity [262, 263, 264, 265]. Structural modulations towards a 2a × 2a × 3c

commensurate phase occur in both Ta and Nb tetratellurides. TaTe4 has a direct

transition to the commensurate phase at around 450 K [266], while its isostructural

counterpart, NbTe4, crosses several incommensurate phases before locking into the

final commensurate one at 50 K [267, 268]. Because of the presence of chains of

transition metal atoms coordinated with Te atoms and the metallic character, these

modulations have been attributed to CDW formation as in other pseudo-1D met-

als [269, 270, 271]. In contrast with other pseudo-one-dimensional chalcogenides

exhibiting structural modulations like NbSe3 or monoclinic-TaS3 [255], the resis-

tivity change when the structural modulation occurs is small. Thus, the usual

Fermi surface driven mechanism behind the CDW formation may not be at work

here as it was the case in 2H-NbSe2 (see Chapter 2.3). The origin of the CDW in

these tetratellurides has been discussed for longtime but to the best of our knowl-

edge there have not been detailed first-principles studies of their Fermi surface and

Lindhard response function. In this section we present a first-principles DFT study

of the origin of the CDW state in TaTe4. We focus in TaTe4 for practical reasons

because of the commensurate nature of the structural modulation although very

similar arguments should also apply for NbTe4.

7.2 Crystal Structure and Electron Counting

7.2.1 Crystal Structure

TaTe4 crystallizes in a tetragonal structure with Ta atoms coordinated by 8 Te

atoms in a chain like fashion. The Ta atoms are located in the center of a square

antiprism of Te atoms, where the two Te4 square units are rotated 45◦ with respect

to each other as shown in Fig. 7.1. The crystal structure of TaTe4 is a tetragonal
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array of chains of this type (Fig. 7.2). The space group symmetry has been deter-

mined by Bjerkelund and Kjeskus [261] to be P4/mcc for the average structure1

with the experimentally found lattice parameters a= 6.514 Å and c= 6.809 Å.

Their corresponding Wyckoff positions are 2a for Ta atoms situated in (0, 0, 1/4)

and (0, 0, 3/4) in fractional units, respectively 8m for Te atoms situated in (x, y,

0) and its equivalent positions, where x = 0.1440 and y = 0.3280. We carried out

a relaxation of the internal coordinates while forcing the space group symmetry

giving us x = 0.1501 and y = 0.3296, values which are in good agreement with the

experimental ones. The structure of the 2a× 2a× 3c commensurately modulated

phase was solved by Bronsema et al. [266]. Let us note that weak superlattice

reflections at (1/2, 0, 1/3), (0, 1/2, 1/3), and very weak ones at (0, 0, 1/3) were

also observed [269, 266] although the last ones are most likely second harmonics

satellites.

Figure 7.1: Lateral view of a chain in
TaTe4. Ta atoms are represented in
orange and Te in blue.

Figure 7.2: Top view of TaTe4. Red
lines represent Te-Te bonds.

1The denomination of average structure comes from the fact that the measurements were
performed at room temperature when the structure is already modulated in its 2a × 2a × 3c
phase. Thus, since superlattice reflections were not taken into account, information can be
provided only for a subcell (here our average structure) of the already modulated structure in
order to understand the characteristics of an undistorted structure.
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7.2.2 Electron counting

For a better understanding of both the crystal and electronic structure, we need

to determine how many electrons fill the Ta-based bands. The first thing to do

is to look at the Te−Te distances. Those within a Te4 square unit (3.29 Å) are

shorther than the sum of the van der Waals radii of Te (4.12 Å), but too long to

be considered as a real Te-Te bond (2.7 - 2.9 Å). At a careful inspection of the

structure we can observe that the shorter Te-Te contacts are not those in the Te4

square units but those connecting the squares of neighbouring chains (red bonds

in Fig. 7.3: 2.93 Å), which are of the same order as many Te-Te single bonds.

Under these considerations the structure should be viewed as a 3D lattice of Ta-Te

and Te-Te bonds as shown in Fig. 7.3, in contrast with the usual description of

this structure as a tetragonal array of TaTe4 chains (see Fig. 7.2).

Because of the occurrence of Te-Te bonds the tellurium atoms should be con-

sidered as (Te2)2−, which means that only one electron is left to fill Ta-based

bands (i.e. Ta atoms are formally d1). Thus only the bottom Ta d based bands

may be partially filled. The d orbitals of a transition metal in this coordination

environment are such that the lowest energy orbital is a dz2 orbital and slightly

higher in energy there are the two dxy and dx2−y2 orbitals. These two orbitals will

be very weakly dispersive along the Ta chains direction whereas the dz2 orbital

creates strong interactions and will thus lead to a wide band. Consequently, the

bottom Ta-based band will be a dispersive dz2 band. Since there is just one elec-

tron to fill this band, the bottom part of the Ta based bands will be most likely a

half-filled Ta dz2 band.

On the basis of this formal electron counting we can predict that if the solid be-

haves as a 1D system around the Fermi level, it should be unstable to some kind

of dimerization that would open a gap at the Fermi level. However, this is in con-

flict with the experimental observations. To begin with the modulated structure is

metallic. Moreover the observed superlattice spots all have a 1/3 component along

the c-direction (the direction of the Ta chains). Thus, if the system can be treated
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Figure 7.3: Top view of TaTe4. Red lines represent the shorter Te-Te bonds of the
structure

as electronically 1D, the Ta band should not be half-filled but 1/3rd or 2/3rds

filled. The second possibility can be easily understood; it simply means that there

is some electron transfer from the Te valence band towards the Ta dz2 band. This

is indeed likely because of the short Te. . . Te contacts between the Te2 units which

may raise the top of the Te valence band. Thus, the top of the valence band may

end up being higher than the Fermi level. At first sight the second possibility may

appear to be unlikely because according to the occurrence of (Te2)2− units the Te

valence band is already full. Consequently, to acquire some electrons from the Ta

atoms some of the Te-Te bonds should be broken, which is not the case according

to the crystal structure [266]. However, let us remind that although the Te...Te

contacts of the Te4 squares are longer than those between the squares, they are

considerably shorter than the sum of the van der Waals radii. Taking into account

both types of Te...Te contacts, one can see that one plane of Te atoms is made

of a series of orthogonal almost linear Te4 units. Thus there must be very strong

Te...Te interactions along the layer so that the bottom of a very wide band built

from the interchain antibonding σ* Te-Te levels could overlap with the filled d

levels and result with a Ta to Te electron transfer that would lead to a less than

half-filled Ta dz2 band.
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The previous considerations raise some serious questions: do the Te-Te short inter-

chain contacts confer the electronic structure around the Fermi level with a 2D or

3D character? In that case the probability to have good Fermi surface nesting vec-

tors is unlikely. In that case the CDW would not be Fermi surface nesting driven.

In addition, it is doubtful that the electronic transfer leads to a commensurate

filling of the dz2 band. This objection can be somewhat dismissed by noting that

the isostructural and isoelectronic NbTe4 undergoes a series of incommensurate

modulations along the c-direction before becoming commensurate at low temper-

ature. Thus, maybe in TaTe4 (but not in NbTe4) the electron transfer is very

near the commensurability. Note also that whatever it is the sense of the electron

transfer, even if the Ta-based bands lead to a Fermi surface nesting driven CDW

and thus to the opening of a gap at the Fermi level, the Te-based bands may not

be necessarily affected so that the metallic character of the bands can be kept after

the CDW sets in the material, as it is in fact observed. Thus, it is not at all clear

from simple electron counting arguments that the modulation exhibited by TaTe4

originates from a Fermi surface nesting phenomena, as in many low-dimensional

materials, or from a phonon driven instability, as for instance in single-layers of

2H-NbSe2 (see Chapter 2.3)

7.3 Electronic structure of the average structure

The only electronic structure calculations available at the moment of writing were

performed by Bullet [272] and Whangbo and Gressier [270]. Bullet argues that

the strong interchain Te-Te interaction confers a 3D character to the electronic

structure, argument which naturally applies for both Nb- and Ta- tetratellurides.

A more detailed theoretical band structure calculation using the extended Hückel

method was done by Whangbo and Gressier whom argument lies in Te-Te inter-

chain distances conferring a 3D character to the structure. They also argue that

the CDW formation originates in the Fermi surface nesting, yet with a shorter wave

vector component along the metallic atoms chain (calculated 1/4 c* compared to

experimental ∼1/3 c* for NbTe4). The work of Zwick et al. [273] presents the
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ARPES spectra which exhibit a combination of 1D and 3D Fermi surface com-

ponents. The experiment doesn’t clarify though if there are two decoupled Fermi

surface components, nor if the Fermi surface nesting plays a role in the structural

modulation. To make some progress we decided to carry out a first-principles DFT

study for the average and modulated structures of TaTe4.
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Figure 7.4: Fatband structure of TaTe4 (see Fig. 7.5d for the labeling of the
special points). The red and blue full circles are associated with the Te p and Ta
dz2 contributions.

The weighted band dispersion calculation of the TaTe4 average structure (Fig. 7.4)

reveals that there are essentially two types of bands crossing the Fermi level. The

band crossing from Γ to Z is dominated by Ta dz2 orbitals and it is actually a folded

band because there are two Ta atoms along the c direction in the unit cell related

by a screw axis. Since the lower component is only partially filled it appears that

the formal electron count for Ta is lower than d1. Note also that the Te content

of this pair of bands is quite sizeable and in several lines of Fig. 7.4 even seems to

dominate. However this is due to the 1:4 stoichiometry which increases the total

weight of the Te orbitals. What is however quite clear is that whereas these Ta dz2

bands are strongly dispersive along the c direction they are also engaged in inter-

chain interactions (see for instance the Γ-M and X-M lines in Fig. 7.4) because of

the short interchain Te-Te contacts highlighted in Fig. 7.3. This band should thus

have a strong memory of the 1D type interactions associated with the Ta dz2-Ta

dz2 interactions along the chain but exhibit a non-negligible warping due to the
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interchain interactions. There is a second band crossing the Fermi level which is

mostly based on p Te orbitals exhibiting a large dispersion on both directions,

perpendicular (see Γ-M and M-X in Fig. 7.4) and parallel (see M-S in Fig. 7.4)

to the TaTe4 chains. This mostly Te-based band should thus have a 3D charac-

ter. In fact, the two bands overlap and interact quite strongly, thus interchanging

character, along different parts of the Brillouin zone (see for instance the Z-S line

in Fig. 7.3). Thus, one should expect a relatively complex Fermi surface resulting

from the interaction between the Ta dz2 and Te based bands for non-modulated

TaTe4.
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Figure 7.5: Fermi surface of the TaTe4 average structure. a) and b) are two views
of the component mostly originating in the Ta d2

z orbitals. c) Component originat-
ing in the Te p orbitals. d) Brillouin zone representation of a tetragonal lattice.
The high symmetry points have the following coordinates: Γ = (0, 0, 0), X =
(0.5, 0, 0),M = (0.5, 0.5, 0), Z = (0, 0, 0.5), R = (0.5, 0, 0.5), S = (0.5, 0.5, 0.5) in
units of the reciprocal lattice vectors.d)

The Fermi surface of TaTe4 is shown in Fig. 7.5. It is made of two different

contributions originating from the two different types of bands crossing the Fermi

level. As expected, one of the components is relatively flat (Figs. 7.5a and b)
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although bearing a very substantial degree of warping and even holes. In fact, the

two sheets making this portion of the Fermi surface touch at many points of the

Brillouin zone thus making a complex slab with holes and closed empty regions

inside. Coming to the second component of the Fermi surface, we notice that it has

a multi-dimensional topology since the band generating this Fermi surface com-

ponent crosses the Fermi level in several directions like Γ-M, M-X, but also along

M-S where the band mixes with the Ta band. In fact, because of the degeneracy

of the bands in the outer plane of the Brillouin zone (see the traject Z-R-S-Z in

Fig. 7.4) there is a third band crossing the Fermi level leading to the closed almost

sperical pockets around the corners of the Brillouin zone (point S) in Fig. 7.5c.

The warped Fermi surface of Fig. 7.5a is associated with less than 2 electrons

per unit cell which is the filling associated with Ta atoms with an electron count-

ing of d1. This result confirms that, in contrast with the usual situation in many

transition metal tellurides, there has been a formal electron transfer from the

Ta to the Te sublattices (i.e. the formal electron counting for Ta is d1−δ) with

δ ∼ 0.2, in between those of a one-third field (δ= 2/3) and half-filled (δ= 0). It

is because of this transfer than the "double pillow" pockets of Fig. 7.5c are created.

In order to clarify if the structural modulation originates in a Fermi surface nest-

ing phenomena we have performed Lindhard function calculations across several

planes in both a∗-a∗ and a∗-c∗. According to the experimental findings, we should

find sharp maxima in the Lindhard function calculations for 1/2a∗ and 1/3c∗ com-

ponents, i.e. in the corners of Fig. 7.6b. However, this is not the case. In the a∗-a∗

plane where we vary the qc∗ component (Fig. 7.6), the maximum in the Lindhard

function occurs for a qc∗ = 1/2 and not 1/3. Even so, the occurring maximum is

not a typical logarithmic dispersion for a Fermi surface nesting driven instability,

but it covers a rather broad region of suitable nesting vectors for the qa∗ in the

[0.1 : 0.5] interval. It could be argued that the 1/2 components of the modu-

lation along the interchain directions originate from Coulomb coupling between

intrachain modulations. However, in the case where we calculate the Lindhard
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function in the a∗-c∗ plane and vary the second qa∗ component (Fig. 7.6), we find

that the maximum response is given by q = (0, 0, 0.4). Again, this is not a proper

nesting vector to explain the modulation mechanism. Let us note that this wave

vector does not correspond to the 2kF value of a folded dz2 band for Ta ∼ d0.8. In

fact, this wave vector is associated with an interband nesting. We thus conclude

that the Lindhard function does not contain maxima with a (1/3) c* component

so that we may dismiss the possibility of a Fermi surface driven instability that

leads to the structural modulation manifested in TaTe4.

7.4 Structural modulation

The next step we considered in our analysis of the origin of the modulation was

calculating the phonon dispersion. We found imaginary phonon modes with 1/2

a* and 1/3 c* components, matching the experimental results, and another one

with a 1/4 c* component and no a* contribution. These calculations suggest that

trimerizations of the Ta chains coupled with a dimerization along one or two in-

terchain directions, presumably to relieve the strain generated in the Te network

connecting these chains, or tetramerizations of the Ta chains which apparently can

occur without generating much strain in the Te network can stabilize the system.2.

However, as surprising as this might be, this is not necessarily conflicting with the

experimental results, but it indicates the possible existence of another modulated

phase of TaTe4.

Assuming no prior knowledge of the modulated structure of this material, the

clear-cut answer of phase stability/ordering, whichever they might be, is provided

by the energy gain of each phase with respect to the undistorted structure. We

have performed internal coordinates relaxation of each of the possible phases and

the lowest energy state we obtained was the 2a×2a×3c phase. All the other stable
2As a general note on the behaviour of the phonons, the broad imaginary phonon bands are

also an indicator that the modulation is driven by a collection of wave vectors instead of one
single wave vector as it is the case of Fermi surface nesting, dismissing once again Fermi surface
nesting driven instability for this material.
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a)

b)

c)

d)

e)

f)

Figure 7.6: 2D mapping of the calculated Lindhard function of TaTe4 in the a*-a*
plane for different qc∗ components(a-c), respectively in the a*-c* plane for different
secondary qa∗ components (d-f). The bars represent the Lindhard function value
in arbitrary units.
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phases were higher in energy than the a 2a×2a×3c phase as presented in Table 7.1.

One possible reason for which the 1a×1a×4c phase is not observed in experi-

ments is due to the establishing of 2a×2a×3c phase at a much higher tempera-

ture. Although we did not find an unstable phonon with 1a×1a×3c wave vector

we checked that an optimization for this phase leads to the average structure. We

can infer from these calculations that the charge density wave modulation of TaTe4

is electron-phonon coupling based.

Table 7.1: Energy gain of each phase (as indicated by the imaginary phonon mode
minimums) with respect to the TaTe4 average structure.

Periodicity Energy gain(meV/f.u.)
1a×1a×4c -13
2a×1a×3c -38
2a×2a×3c -57

7.4.1 Modulated structure

The charge density wave structure and lattice symmetry have been determined ex-

perimentally by van Smaalen, Bronsema and coworkers.[266] It was later restated

by Corbett et al.[274] that the modulated structure symmetry is indeed P4/ncc.

We present in Table 7.2 a comparison between the experimental structure and

our calculated structure of the lowest energy state. The calculated structure is in

excellent agreement with the experimental one.

The calculated 2a×2a×3c phase as well as the 2a×1a×3c one can be described

on the basis of Fig. 7.7. The unit cell of both phases contains two different TaTe4

chains with different trimerization patterns labelled A and B. In chain A (Fig. 7.7b)

three different Ta-Ta distances are generated (see Table 7.3); two are shorter than

in the average structure and one is longer whereas in chain B (Fig. 7.7c) there

are only two different distances; the two shorter Ta-Ta distances are identical in

that case but different in chain A. The average value of the two shorter distances

in chain A (3.128 Å) is very similar to the short distance in chain B (3.133 Å).



Chapter 8. Origin of the CDW in TaTe4 173

A B

b) c)

2x2x3

2x1x3

a)

A

B

B' A'

Figure 7.7: Unstable phonon modes correspondence to each chain type in the
2×2×3 and 2×1×3 TaTe4 supercells.
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Table 7.2: Comparison between the experimental coordinates (taken from [266])
and those calculated for the TaTe4 modulated structure in its 2a×2a×3c phase.

Experimental Calculated
Atom
type

Wyckoff
Position x y z x y z

Ta 1 8e 0.0000 0.0000 0.09652 0.0000 0.0000 0.09668
Ta 2 4a 0.0000 0.0000 0.25000 0.0000 0.000 0.25000
Ta 3 4c 0.0000 0.5000 0.41827 0.0000 0.5000 0.41828
Ta 4 4c 0.0000 0.5000 0.26351 0.0000 0.5000 0.26385
Ta 5 4c 0.0000 0.5000 0.07030 0.0000 0.5000 0.07005
Te 1 16g 0.0611 0.1579 -0.00300 0.0832 0.1653 -0.00176
Te 2 16g 0.5802 0.1655 0.00170 0.5911 0.1874 -0.00049
Te 3 16g 0.1656 0.0789 0.16860 0.1828 0.0933 0.16734
Te 4 16g 0.6665 0.5747 0.16970 0.6774 0.5796 0.16336
Te 5 16g 0.6687 0.0700 0.16330 0.6673 0.0827 0.16871
Te 6 16g 0.1561 0.5648 0.16750 0.1717 0.5817 0.16943

Table 7.3: Ta-Ta contacts in the average structure and in the two types of chains
in the modulated structure. Please note that the distortion is allowed within the
experimental lattice parameters. Refer to Fig. 7.8 for labels.

d(Å) Average Type A Type B #

Ta-Ta 3.406
3.156 3.952 (a)
3.101 3.133 (b)
3.960 3.133 (c)

Table 7.4: Te-Te contacts in the average structure and in the two types of chains
in the modulated structure. Both the interchain and the intrachain distances are
included. A particular case represents chain type B where the square symmetry
is broken and we have two types of distances within the rectangle. Moreover the
planes containing these two consecutive rectangles are rotated by 90◦ with respect
to each other (Thus the order of writing in the table). Note that the distortion is
allowed within the experimental lattice parameters. Refer to Fig. 7.8 for labels.

d(Å) Average Interchain Average Square in A Square in B #

Te-Te 2.959
2.974

3.337
3.143 3.389 - 3.471 Sa

2.965 3.414 3.471 - 3.389 Sb
2.929 3.447 3.146 Sc
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Table 7.5: Ta-Te contacts in the average structure and in the two types of chains
in the modulated structure. Note that the distortion is allowed within the exper-
imental lattice parameters. Refer to Fig. 7.8 for labels.

d(Å) Average Type A Type B #

Ta-Te 2.910

2.845 2.969 1
2.982 2.843 2
2.971 2.945 3
2.836 2.926 4
2.935 2.839 5
2.934 2.982 6

Type A

Type B

1 2 3 4 5 6

(a) (b) (c)

(a) (b) (c)

1 2 3 4 5 6

Sa Sb Sc

Sa Sb Sc

Figure 7.8: Distances labels in the different chains.

Trimerized units or clusters are thus formed in every chain.

Although as shown in Figs. 7.7b and c the structural variations are strongly lo-

cated on the Ta sublattice, the occurrence of these triplets induces a response of

the Te sublattice. There are two different types of Te squares (they are really

squares in chain A but rectangles in chain B): one-third of them have shorter

Te...Te contacts whereas two-thirds have longer Te...Te contacts (see Table 7.4).

Those being contracted are those in between Ta atoms which have moved apart;
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this is easy to understand since the TaTe4 chains tend to keep the Ta-Te bonding.

The variation of these Te...Te distances is considerably larger (one order of mag-

nitude) than the variation of the Te-Te interchain bonds (see Table 7.4). Thus,

it is clear that the system tries to keep the Te-Te bonds as stable as possible.

The rotations and shifts undergone by the Te atoms under the modulation have

this purpose. The variation of the Ta-Te bonds (Table 7.5) can be analyzed in

the same way. All structural variations noted for the optimized structures mirror

those of the experimental ones. In summary it appears that optimization of the

metal-metal bonding subject to inducing the minimum alteration of the Te sublat-

tice is the driving force for the CDW irrespective of the nature of the Fermi surface.

Using this structure we have calculated the band structure of the CDW phase.

As it was also found experimentally, the modulated phase is clearly metallic as

one can see in Fig. 7.9. The extensive folding leads to the four components of the

Fermi surface shown in Fig. 7.10. It is clear from this Fermi surface that TaTe4

in the CDW structure is a 3D metal, in agreement with the experimental obser-

vation of ρc/ρa ∼ 1 [271]. Since TaTe4 is already in the modulated phase at room

temperature it is not possible to know the resistivity change when the transition

occurs. However, for NbTe4 which is structurally and electronically very similar,

the change in the resistivity is very small without variation of the anisotropy [271].

This is also consistent with the 3D character of the Fermi surfaces calculated for

the average and modulated structures of TaTe4. The different components of the

Fermi surface in Fig. 7.10 contain numerous closed circuits which are consistent

with recent studies reporting a very large magnetoresistance for TaTe4 in the CDW

state.

7.5 Conclusions

We have discussed the possible character of the electronic structure of TaTe4 and

argued that it has a 3D behaviour. This behaviour comes primarily from the adja-

cent interchain coupling due to Te atoms. The Te atoms distances are of the order
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Figure 7.9: Band structure for the 2a×2a×3c modulated TaTe4 structure

Figure 7.10: Calculated Fermi surface for the 2a×2a×3c modulated TaTe4 struc-
ture

of most Te-Te bonds in this compound. Secondly we have dismissed the Fermi sur-

face driven instability as origin of the modulated structure based on our Lindhard

function calculations. We have calculated the phonon dispersion and described the

ordering of the possible modulated phases. The optimized 2a×2a×3c structure

is found to be the more stable in agreement with the experimental observations.

The nature of the distortions with respect to the average structure suggest that

the driving force for the distortion is the maximization of Ta metal-metal bonding

subject to inducing the minimum decrease in bonding of the Te sublatice. Thus,

as it was the case for 2H-NbSe2, the CDW in TaTe4 does not originate from an

instability of the Fermi surface.

7.6 Computational details

The eletronic band structure calculations were carried out using a numerical atomic

orbitals density functional theory (DFT) [96, 97] approach implemented in the
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Siesta code [27, 28]. The Perdew-Burke-Ernzerhof (PBE) functional was used

to account for the exchange-correlation energy [98]. The core electrons have been

replaced by norm-conserving scalar relativistic pseudopotentials [99] factorized in

the Kleinman-Bylander form [100]. We have used a split-valence double-ζ basis

set including polarization functions [101]. In all calculations, we use a cutoff of 800

Ry for the real space integrals, and a tolerance of 10−4 and 10−3 eV on the density

matrix and the total energy, respectively, for the convergence of the SCF cycle. To

sample the Brillouin cell for the electronic states, a Monkhorst-Pack [103] k-point

grid of 32×32×30 was used for the undistorted unit cell and scaled accordingly to

the supercell calculations.
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8. CONCLUSIONS

In this thesis we have considered low dimensional materials both in single-layers

(part 2) and bulk (part 3). Some of the materials considered like the blue bronzes,

the Bechgaard salts, TiSe2 or NbSe2 rank among the more studied and controver-

sial materials of this type. The main conclusions of this work are the following:

1) The origin of the 2×2 CDW of TiSe2 is construed from the analysis of a phonon

branch which becomes unstable around the M point of the Brillouin zone. The

atomic displacements of this phonon mode allow the mixing of states at the top

of the valence band at the Γ point and the bottom of the conduction band at M

(both responsible for the metallicity of the undistorted structure). The combina-

tion of three such phonons for the three inequivalent M points allows a full band

gap opening. This 3Q structure has a 2×2 periodicity which closely matches the

CDW in-plane distortion of the bulk material. Doping the layer with externally in-

jected charges modifies this picture only slightly for small doping levels. However,

for larger doping levels, the phonon band structure changes significantly, in such

a way that the unstable phonon branch has its minimum at intermediate points

of the Γ −M segment, while the phonon at M becomes stable. It could there-

fore be expected that the CDW can become incommensurate for certain values of

the doping. Further increase of the doping level makes all the phonon branches

to become stable, and therefore the system recovers the undistorted 1×1 structure.

2) The mechanism of the unexpected CDW instability in single-layer TiTe2 seems

to be the same phonon mediated mechanism acting for single-layer TiSe2 although

the driving force is smaller and the semimetallic character is kept below the tran-

sition temperature. The magnitude of the semimetallic overlap is one of the key

factors in controlling the likeliness of the 2×2 CDW. It has been shown that tensile

181
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strain stabilizes the 2×2 CDW distortion in single-layer TiTe2. We propose that

this fact could be used to induce the instability in double- or triple-layers of TiTe2

which in the absence of strain remain undistorted, to induce a stronger distortion

leading to the creation of a band gap in single-layer TiTe2 or most likely to sup-

press the 2×2 CDW under a small compression. The first of these predictions was

experimentally verified after the publication of our results.

3) We have found six different structures compatible with the 3×3 CDW structure

of NbSe2 . All these structures are found to coexist in a very narrow energy range of

2-3 meV so that their relative stability can be subtly altered by doping or strain.

Imaging the surface of bulk 2H-NbSe2 with atomic resolution and comparison

with the STM images calculated for the different structures allowed the experi-

mental group of Dr. M. Ugeda (San Sebastián) to identify two of these structures.

Intriguingly, these structures differ from the X-ray crystal structure reported for

the bulk 3×3 CDW which, in fact, is also one of the six DFT structures located

for the single-layer. Preliminary calculations for slabs with a different number of

layers suggest that the actual structure stabilized may change from layer to layer,

i.e., the energetic preference may depend also on the internal pressure. The coex-

istence of different structures in 2H-NbSe2 has far-reaching consequences to fully

understand the electronic ground state of 2H-NbSe2.

4) The wave vector and temperature dependencies of the electron-hole (i.e. Lind-

hard) response function of the blue bronze K0.3MoO3 has three components corre-

sponding to three possible nesting processes of its warped double sheet quasi-1D

FS. We have quantitatively analyzed the kIF + kIIF inter-band electron-hole com-

ponent which is responsible for the Peierls instability. We have shown that the

electron-hole coherence length of this response determines the length scale of the

experimental intra-chain CDW correlations and the intra-chain q‖ dependence of

such response also determines the shape of the Kohn anomaly experimentally mea-

sured. All these features prove that the Peierls transition of the blue bronze can be

well accounted for by the weak electron-phonon coupling theory of this transition
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in the adiabatic approximation. This is the first time that such theory, already

established in the 1970s, is quantitatively verified on the basis of first-principles

calculations for a real material. In addition, we propose that the inter-chain cou-

pling is achieved through Coulomb coupling between dipolar CDWs.

5) We have studied the electron-hole Lindhard response function for three Bech-

gaard salts (TMTSF)2PF6, (TMTSF)2NO3 and (TMTSF)2ClO4 both in the metal-

lic and anion ordered phases. The Lindhard response is found to change consid-

erably with temperature and these changes are clearly associated with dimen-

sional crossovers. Near the spin density wave instability it has the shape of a

broad triangular plateau as a result of the multiple nesting associated with the

warped quasi-one-dimensional Fermi surface. The thermal dependence of the in-

verse electron-hole coherence length based on these calculations compares very

well with the thermal evolution of the 2kF Bond Order Wave correlation lengths

measured for the (TMTSF)2PF6 and (TMTSF)2ClO4 salts. The existence of a

triangular plateau of maxima in the low temperature Lindhard response of these

salts should favor a substantial mixing of q-dependent fluctuations which can have

important consequences in understanding the nature of the spin density wave tran-

sition, the mechanism of superconductivity and the magneto-transport of these

paradigmatic quasi-one-dimensional materials.

6) Secondly we have dismissed a Fermi surface driven instability as the origin

of the 2a×2a×3c modulated structure of TaTe4 based on the Lindhard function

calculation. We have calculated the phonon dispersion and described the ordering

of the possible modulated phases. The optimized 2a×2a×3c structure is found to

be the more stable in agreement with the experimental observations. The nature

of the distortions with respect to the average structure suggests that the driving

force for the distortion is the maximization of Ta metal-metal bonding subject to

inducing the minimum decrease in bonding of the Te sublatice. The band structure

both in the average and modulated phases is found to exhibit an extensive mixing
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of the Ta dz2 and Te p bands, in contrast with the usual situation in transition

metal sulphides and selenides.

7) The results of this study pave the way for future studies on low-dimensional

metals as for instance: (i) the generalization of the inter-chain coupling mecha-

nism proposed for the blue bronze to other CDW oxides and bronzes such as the

monophosphate tungsten bronzes, (ii) the extension of the work concerning the

implications of the existence of a triangular plateau of maxima to other molecular

conductors with warped open Fermi surfaces, and (iii) since our work suggests

that transition metal chalcogenides have a weaker tendency than transition metal

oxides and bronzes to exhibit Fermi surface nesting driven instabilities, the origin

of the CDWs occurring in low dimensional transition metal chalcogenides should

be reconsidered.



A. PHONON PATTERN OF DOPED TISE2 SINGLE-LAYERS

NEXT TO THE INCOMMENSURATE PHASE

Figure A.1: 3×3 approximation to the incommensurate CDW phase of TiSe2

single-layers doped with 0.24 e−/f.u. In the figure above we present the 3Q phonon
displacement pattern which further lowers the energy of the 3×3 supercell.
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B. STM IMAGE COMPARISON OF TITE2
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C. FERMI SURFACE WARPING OF BECHGAARD SALTS
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Figure C.1: Fermi surface warping of (TMTSF)2PF6 along the c∗ direction. One
can note that (TMTSF)2PF6 has basically no warping along this direction within
the precision of the method.
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Figure C.2: Fermi surface warping of (TMTSF)2ClO4 along the c∗ direction. One
can note that (TMTSF)2ClO4 has non-negligible warping along this direction
within the precision of the method.
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Figure C.3: Fermi surface warping of (TMTSF)2NO3 along the c∗ direction. One
can note that (TMTSF)2NO3 has non-negligible warping along this direction
within the precision of the method.
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