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Introduction and Motivation

Cosmology is the study of the origin, evolution and fate of the Universe. The Uni-

verse is not static and in 1929 EdwinHubble discovered it is expanding, which is under-

stood as a natural consequence of the Big Bang. Also, since Albert Einstein developed

his theory of General Relativity in 1915, we know that the geometry and the dynamics

of the Universe are governed by its content. In particular, the total energy density of

the Universe dictates its geometry, whether it is flat, open or closed, while its dynamics

is determined by the fractional densities of the different forms of energy present in it.

If we are able to know the evolution of the energy density of each component of the

Universe from the Big Bang until today, we will be able to predict how the Universe

will evolve in the future and its ultimate fate. That is why measuring the content of the

Universe and its evolution with high precision has become one of the major goals of

modern cosmology and in particular one of the motivations for this thesis.

Observations made during the previous century have enabled major advancements

in the field. They indicated that the components of the Universe that have dominated

its energy density are radiation at early times andmatter after that (mostly darkmatter),

clustered forming structures in the late Universe such as galaxies living in dark matter

halos. However, this picture became incomplete when, only two decades ago, it was

found that the expansion of the Universe was accelerating, against everyone’s intuition.

Neither the presence of radiation nor the one of matter could explain the positive ac-

celeration of the expansion of the Universe. Before that, it had always been assumed

that the expansion of the Universe had been decelerating because of the presence of

matter in the Universe, which acts as a binding force due to gravity. At that moment,

the concept of dark energy emerged: a special kind of energy density that would be

capable of causing a positive acceleration in the expansion of the Universe. If dark en-

ergy has to explain the accelerated expansion, it has to dominate the energy density

of today’s Universe, being higher than the one of matter. However, even though it has

been possible to measure the amount of dark matter and dark energy present in the

Universe, their intrinsic natures remain unknown. Understanding the nature of these

mysterious entities, which represent the majority of the energy in today’s Universe, has

become anothermajor goal of modern cosmology. Particularly, it is specially important
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Introduction and Motivation

to learn how dark energy evolves with time, since the fate of the Universe depends in

great measure on it.

The other option still on the table to explain the observed acceleration is that Gen-

eral Relativity is not valid at the largest scales. This could make us think that the ex-

pansion of the Universe is accelerating when it is actually not. However, many modi-

fied gravity theories have already been ruled out by observations and therefore, as time

passes, the hypothesis of the existence of dark energy gains strength and is currently

considered as the most likely one. Throughout this thesis, we work under the assump-

tion that dark energy exists and that General Relativity is valid at all scales, but also

present some tests of this theory, which is still under examination.

To try to answer the big current questions of cosmology presented above, one of

the approaches we are taking as a scientific community is to build instruments that

are able to map the observable Universe, every time faster and deeper. We are creat-

ing maps of the Universe, called galaxy surveys, that allow us to probe the geometry

and the growth of structure of the Universe as a function of time. These quantities are

affected by the relative amount of dark energy and dark matter in the Universe and

their evolution, and therefore we can measure it with such surveys. The first galaxy

survey, CfA Redshift Survey (Huchra et al., 1983), was completed in 1982 after map-

ping around two thousand galaxies. Today we are in the era of big data, and over 500

million galaxies have been observed since then. Sloan Digital Sky Survey(SDSS) pio-

neered this explosion building both a spectroscopic and an imaging survey and was a

turning point in the field. Other past and current imaging surveys include the Canada-

France Hawaii Telescope Legacy Survey (CFHTLens), the Kilo-Degree Survey(KiDS),

the Physics of the Accelerating Universe Survey (PAUS), the Hyper Suprime-Cam Sub-

aru Strategic Program (HSC) and the Dark Energy Survey (DES). DES is the primary

survey used in this thesis. It has covered 5000 square degrees taken during six years of

observations that finished in January 2019, detecting over 300 million galaxies. Also,

there are already a few planned future generation imaging surveys, such as the Large

Synoptic Survey Telescope (LSST), the Euclid Survey and the Wide Field Infrared Sur-

vey Telescope (WFIRST), which will start observations soon and together will map all

the sky which is not obscured by our galaxy during the next decade.

One of the reasons imaging galaxy surveys have recently become so popular is that

they allow us to measure the shapes of galaxies. Galaxy shapes are one of the indispens-

able elements tomeasure gravitational lensing effects. Gravitational lensing is produced

when light from background objects is deflected due to some foregroundmass distribu-

tion that curves the space-time canvas. In particular, weak gravitational lensing, which

can only be measured in a statistical manner, has emerged as one of the most power-

ful probes of cosmology, being sensitive to both the geometry of the Universe and the

history of structure growth, and is one of the main techniques used in this thesis.

Besides weak lensing, imaging galaxy surveys can measure other probes of cosmol-
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ogy at low redshift which in combination break degeneracies between parameters and,

with the rise of large and deep galaxy surveys, are becoming competitive with high red-

shift probes such as the Cosmic Microwave Background, which used to be more con-

straining in relative terms. The comparison between cosmological results from these

two epochs is a required test for the current Standard Cosmological Model, that for the

first time we will be able to perform with comparable constraining power. The main

topic of this thesis is studying weak gravitational lensing measurements from the Dark

Energy Survey, which are one of the key ingredients for performing this comparison. In

particular, this thesis is focused on measuring weak lensing cross-correlations between

foreground galaxy positions and background galaxy shapes and orientations, known as

galaxy-shear cross-correlations or galaxy-galaxy lensing.

In addition, galaxy surveys are not only suited to measure the composition of the

Universe or the expansion rate as a function of time but are incredibly useful to learn

about the formation and evolution of galaxies, about the relation between galaxies and

dark matter, and many other subjects. Actually, these topics, besides already being in-

teresting on their own, are key to properly model all scales in cosmological analyses

that use weak gravitational lensing and the spatial distribution of galaxies in the Uni-

verse, since galaxies are biased tracers of the underlying dark matter field. Therefore,

to fully exploit all the constraining power available in galaxy surveys, it is crucial to un-

derstand the relationship between galaxies and dark matter, the so-called galaxy bias.

In this thesis, besides using galaxy-galaxy lensing to obtain cosmological information,

we also use it to study the galaxy bias using early DES data.

An alternative way of performing weak lensing measurements without relying on

(usually quite noisy) galaxy shape estimates from galaxy surveys is to use the light from

the CosmicMicrowave Background (CMB). The CMB light is a relic from the very early

Universe, which was emitted when the Universe became transparent, before structures

were formed, and has been traveling since then filling all space. This light, in the same

way as the light of background galaxies, is deflected by the curvature in the space-time

produced by foreground structures. Therefore, the CMB provides an independent way

of performing weak lensing studies which is sensitive to higher redshift information.

Carrying so much information, there exist many experiments dedicated to observing

this microwave light. In this thesis we have used data from the South Pole Telescope

(SPT) and Planck satellite, which are current state-of-the art CMB surveys, to mea-

sure CMB lensing cross-correlations with foreground structure detected by the Dark

Energy Survey. Specifically, we have obtained cosmological constraints just from geo-

metrical information, taking appropriately defined ratios of CMB lensing and galaxy-

galaxy lensing measurements.

This thesis is structured in the following way. In Part I, we introduce the cosmo-

logical background necessary to understand the rest of the thesis, and present in more

detail the Dark Energy Survey. In Part II, we use galaxy-galaxy lensing measurements

3
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to study the galaxy bias using early DES data. This project was published in Prat et al.

(2018b). In Part III, galaxy-galaxy lensing measurements are used to probe cosmology

(Prat et al., 2018a), and in combination with other probes, cosmological constraints are

obtained and discussed. In Part IV, we use CMB lensing and galaxy-galaxy lensing to

obtain constraints on the geometry of the Universe, published in Prat et al. (2019). We

finally conclude in the end.
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Part I

Preliminars

This first part contains the theoretical background needed to understand the rest of

the thesis, including first a general cosmological framework, followed by a

description of weak gravitational lensing. Then we proceed to introduce the Dark

Energy Survey and some of the main techniques used to measure galaxy shapes

and redshifts in such a survey.
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Chapter 1

Cosmological background

This chapter is intended to provide a comprehensive introduction to the standard

cosmological model that will be used throughout this thesis and other crucial cosmo-

logical concepts.

1.1 Thecosmological principle andthe expandinguniverse

The cosmological principle states that at large scales the Universe is homogeneous,

i.e. there is no preferred observing position, and isotropic, i.e. it looks the same in every

direction. In 1929 Hubble measured the distances and the velocities of several galaxies

and foundmost of themweremoving away fromus, moving faster the further theywere

from us. In combination with the cosmological principle, this led to the development

of the Big Bang theory, which describes the Universe as expanding from an initial very

high density and high temperature state. As theUniverse is expanding, distances change

over time. Hence, it is useful to define a scale factor a(t) to describe this expansion. The
physical or proper distance �r between two simultaneous events (�χ, t) and (�χ+ d�χ, t) is

�r = a(t)d�χ, (1.1)

where �χ is called comoving distance. It is usual to take a0 ≡ a(t0) = 1, so at the present

time the proper and comoving distances are equal. If we could place a ruler and mea-

sure the distance between any two objects today, that distance would be the comoving

distance. The physical distance between two objects in the past, again measured with

this hypothetical ruler, would have been smaller than today by a factor of a(t). All

the changes due to expansion are therefore captured by the scale factor; the comoving

distance remains constant throughout, exceptuating changes due to peculiar velocities

coming from local interactions.

7



Cosmological background

1.2 The metric of the Universe

In the case of a smooth expanding universe, the scale factor connects the comoving

distancewith the physical distance. Generally, themetric is used to perform this conver-

sion and is therefore an essential tool to make quantitative predictions in an expanding

universe. The only metric that can describe a universe that is expanding, homogenous

and isotropic is the Friedmann–Lemaître–Robertson–Walker (FLRW) metric. It is an ex-

act solution of Einstein’s field equations of general relativity, although Einstein’s equa-

tions are not needed in deriving the general form for themetric: it follows directly from

the geometric properties of homogeneity and isotropy. In this metric, the space-time

separation between two events (�χ, t) and (�χ+ d�χ, t+ dt) in spherical coordinates is:

ds2 = −c2dt2 + a2(t)
[
dχ2 + S2

k(χ)dΩ
2
]
, (1.2)

where Ω is the solid angle, χ is the radial comoving distance and Sk depends on the

curvature k of the Universe:

Sk(χ) =

⎧⎨
⎩

sinχ (k = 1, closed Universe)

χ (k = 0, flat Universe)

sinhχ (k = −1, open Universe)

(1.3)

A big advantage of the metric is that it can incorporate gravity. Instead of thinking

of gravity as an external force and considering particles moving in a gravitational field,

we can include gravity in the metric and consider particles moving freely in a curved

space-time. For instance, to quantify gravitational lensing later in this thesis, we need

to consider light propagation in an inhomogeneous Universe, discussed in detail later

in Chapter 2.

The line element for a general metric that describes an expanding Universe with

first-order perturbations to its homogeneity is given by

ds2 = −
(
1 +

2Ψ

c2

)
c2dt2 + a2(t)

(
1− 2Φ

c2

)
dl2, (1.4)

where dl2 = dχ2 + S2
k(χ)dΩ

2. The two potentials Ψ and Φ describe weak gravita-

tional fields with Ψ, Φ � c2. This condition is fulfilled for all masses M and poten-

tials Ψ, Φ ∼ GM/R = (c2/2)(Rs/R) whose extents R are much larger than their

Schwarzschild radius Rs, where G is Newton’s gravitational constant. In general rel-

ativity the two potentials are equal, Ψ = Φ. Also, if there are no perturbations, the

metric reduces to the FLRWmetric.

8



1.3 Redshift and the Hubble Law

1.3 Redshift and the Hubble Law

As we anticipated at the beginning of this chapter, Hubble found evidence for the

expansion of the Universe by discovering that most of the galaxies were receding from

us. However, the velocity of a galaxy is not an observable quantity and he instead mea-

sured the relative shift between the observed spectrumof a galaxy and the onewewould

expect if it was at rest. This is known as the redshift since the Universe is expanding and
therefore the emitted wavelength λe is typically stretched and observed redder, as λ0.

Using the Doppler effect, the redshift z can be converted to the radial velocity v:

z ≡ λ0 − λe

λe
=

√
1 + v/c

1− v/c
− 1 � v

c
, (1.5)

where the last approximation holds for lowvelocities. Then, Hubble related the redshift,

or velocity, of several galaxies to their distances, finding there was a linear relation

between these two quantities, which is exactly what one would expect in an expanding

universe. This relation is known as the Hubble Law:

v � zc = H0r, (z � 1) (1.6)

only valid at low redshifts. H0 is the Hubble constant today, which according to the

latest Planck results is 67.4 ± 0.5 km s−1 Mpc−1 (Planck Collaboration 2018) and is

usually expressed asH0 = 100h km s−1Mpc−1. The value ofH , called theHubble rate,
changes over time and quantifies the rate of expansion of the Universe. Since r = aχ

and v = ṙ = ȧχ in the absence of peculiar velocities (χ̇ = 0), the Hubble rate can be

written as

H(a) =
ȧ

a
, (1.7)

where the derivatives are with respect to time.

The redshift is a very useful quantity, because besides being observable it can be re-

lated to the scale factor a. The relation is only exact in the absence of peculiar velocities,

that is to say, the scale factor can only be related to the cosmological redshift, the one that
is due to the expansion of the Universe. In order to derive this relationship, consider

light that was emitted at a time te and is observed by us at a later time t0. Since light

travels along null geodesics (ds = 0), then cdt = a(t)dχ for light in a FLRW metric.

Thus, the comoving distance traveled by light is

χ = c

∫ t0

te

dt

a(t)
. (1.8)

Now, suppose the light is emitted with a wavelength λe. Then, consider two successive
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wave crests emitted at times te and te + λe/c and observed at times t0 and t0 + λ0/c,

respectively. For the second wave crest, the traveled comoving distance is

χ = c

∫ t0+λ0/c

te+λe/c

dt

a(t)
. (1.9)

Comparing (1.8) and (1.9) yields

∫ t0

te

dt

a(t)
=

∫ t0+λ0/c

te+λe/c

dt

a(t)
. (1.10)

If we subtract the integral ∫ t0

te+λe/c

dt

a(t)
(1.11)

from each side of equation (1.10), we obtain

∫ te+λe/c

te

dt

a(t)
=

∫ t0+λ0/c

t0

dt

a(t)
, (1.12)

which means that the integral of the inverse of the scale factor between the emission

of successive wave crests is equal to the same integral between the observation of suc-

cessive wave crests. Also, since the Universe does not have time to expand a significant

amount between the emission or observation of two successive wave crests, a(t) is ef-

fectively constant in the integrals of (1.12). Therefore,

λe

a(te)
=

λ0

a(t0)
. (1.13)

Finally, using the definition of redshift (1.5), we can relate it to the scale factor:

1 + z =
a(t0)

a(te)
=

1

a
. (1.14)

The redshift cannot only be related to the scale factor as we have seen above, but it can

also be related to the cosmological time through the Hubble rate, using the equation we

have just derived:

H(t) =
1

a

da

dt
= − 1

1 + z

dz

dt
=⇒ dt = − 1

H(z)(1 + z)
dz. (1.15)

Together with the Friedman equation (1.26), which we will introduce later, this

expression is useful to compute the age of the Universe at a certain redshift. Also, com-

bining Eq. (1.15) with (1.8) we can obtain the last relation we will derive in this section,

10
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which is the one between redshift and comoving distance:

χ(z) = c

∫ ze

0

dz

H(z)
. (1.16)

This relation is illustrated in Fig. 1.4, for different expansion historiesH(z).

1.4 The Cosmic Microwave Background

Besides the discovery that most objects are getting away from us displayed in Hub-

ble’s diagram, there is another crucial piece of observational evidence for the expansion

of the Universe and the Big Bang theory: the Cosmic Microwave Background (CMB).

Figure 1.1: Intensity of CMB radiation as a function

of frequency (and wavelength) for the COBE FIRAS

experiment (Mather et al., 1994), showing impressive

agreement with a blackbody sepctrum (note that er-

rorbars are magnified by a factor of 400 in the plot!).

After the observation of an expand-

ing Universe, cosmologists could con-

clude that the Universe was smaller in

the past. As a result, the radiation filling

the Universe was more energetic (or hot-

ter) than it is today. This is because the

energy of radiation is inversely propor-

tional to its wavelength, and the wave-

length is proportional to the scale factor,

which was smaller in the past for an ex-

panding universe. Applying the first law

of thermodynamics to an expanding uni-

verse, it can be derived that the temper-

ature of radiation is also related to the

scale factor, as T (t) = T0/a(t), where

T0 is the temperature of the radiation to-

day. Therefore, the temperature of the

Universemust have been very high at early times, possibly high enough to be able to ion-

ize atoms such as hydrogen and helium. If the baryonic matter was completely ionized,

the free electrons were coupled with the photons via Thomson scattering, and there-

fore the mean free path of the photons was very short, effectively making the Universe

opaque. Also, any hydrogen atoms being formed in that period were quickly ionized

by ambient photons. Because of these constant interactions, photons were in equilib-

rium during that time, and therefore they should have had a blackbody spectrum. As

the Universe cooled and expanded, the energy of ambient photons was no longer high

enough to ionize hydrogen, and the mean free path of photons grew drastically, effec-

tively making the Universe transparent and in principle able to transmit that light until

us today.
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In the mid twentieth century, cosmologists started looking for the remnants of this

radiation coming from the very early Universe, as a proof of the Big Bang theory. The

Cosmic Microwave Background (CMB) was first detected serendipitously by Penzias

& Wilson (1965), in a single wavelength. This first detection was further confirmed

by other experiments, but it was the COsmic Background Explorer (COBE) satellite,

launched in 1989, that impressively extended it to a broad range ofwavelengths (Mather

et al., 1994), confirming its agreementwith a blackbody spectrum as seen in Fig. 1.1, and

hence providing direct observational evidence for the Big Bang. Also, the CMB is called

like this for its higher intensity in the microwave part of the radio spectrum today.

 Cobe (1992)

 WMAP (2003)

Planck (2013)

Figure 1.2: Anisotropies in the CMB (color scales

show differences of the order of 105) as shown by

three different satellites: COBE, WMAP and Planck,
which are the three existing CMB full-sky surveys up

to this date.

After COBE, many experiments like

the satellites WMAP and more recently

Planckhave characterized theCMBprop-

erties. Nowadays we know that CMB ra-

diation arises from the Universe when it

was about 400,000 years old (redshift z �
1100), and its frequency spectrum today

corresponds to a blackbody at an equiv-

alent temperature of T0 = 2.72548 ±
0.00057K (Fixsen, 2009), ∼ 1100 times

lower than the temperature of the Uni-

verse when it became transparent of ∼
3000K , as a result of the expansion of the

Universe.

Even though the CMB represents the

most precise blackbody spectrum in na-

ture, and it looks the same in all di-

rections without variations at the per-

cent level (what is known as the CMB

monopole), it is not perfectly isotropic.

First, there exists an anisotropy of the or-

der of 1 part in 103 which corresponds to

the Doppler effect caused by the move-

ment of the Earth with respect to the

CMB reference rest frame; this is known

as the CMB dipole anisotropy, since one

half of the sky is slightly blueshifted to higher temperatures, and in the other half the

spectrum is slightly redshifted to lower temperatures. More interestingly, after the

dipole distortion is subtracted away, there are temperature fluctuations at the level of 1

part in 105. These temperature fluctuations, first detected by COBE (Smoot et al., 1992)

but later confirmed with higher accuracy by the following experiments WMAP (Ben-
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1.5 The Standard Cosmological Model

nett et al., 2013) and Planck (Planck Collaboration, 2018), can be seen in Fig. 1.2. They

carry a huge amount of information since they are caused by the density fluctuations in

the early Universe, which eventually led to the structures we see today (galaxies, clus-

ters of galaxies, filaments...). One of themain effects imprinted in the CMB anisotropies

comes from the oscillations of the coupled baryon-photon plasma in the early Universe.

Gravity tries to compress the photon-baryon fluid sitting on primordial gravitational

potential wells, while radiation pressure acts in the opposite way, resulting in acoustic

(pressure) oscillations. In general these anisotropies provide an enormous insight on

the composition of the Universe and hence can be used to measure the cosmological

parameters, introduced in the following section. In fact, some of the current tightest

constraints on cosmological parameters come from the analysis of the latest full-sky

CMB experiment, the Planck satellite. These constraints, which are coming from the

early universe, can then be compared with results from late-type probes, obtained with

surveys such as the Dark Energy Survey. Only if the two agree the current cosmological

model will be sufficient.

1.5 The Standard Cosmological Model

In this section we will derive the equations for the current standard cosmological

model. Inserting the FLRWmetric, described in Sec. 1.2, into Einstein’s field equations

of general relativity, we obtain the Friedmann-Lemaître equations:

(
ȧ

a

)2

=
8πGρ

3
− k

a2

ä

a
= −4πG

3
(ρ+ 3p) ,

(1.17)

where ρ is the energy density and p is the pressure. The above equations highlight the

idea of general relativity that the metric is determined by the matter and energy in the

region of interest. Looking at the first equation, it reveals that the rate of expansion

of the UniverseH = ȧ/a depends on its geometry and total energy density. The sec-

ond equation is telling us that the acceleration of this expansion (and its sign) depends

both on the energy density and the pressure associatedwith thematerial filling the Uni-

verse — if the energy density and pressure are both positive, then it provides a negative

acceleration. Therefore, these equations emphasize that it is crucial to determine the

geometry, pressure and energy density of the components of the Universe as a function

of time and its relative abundance to learn about the dynamics of the Universe. In order

to do that, following from these equations we can derive the continuity equation for a

perfect fluid:
∂ρ

∂t
+ 3

ȧ

a
(ρ+ p) = 0, (1.18)
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which does not provide independent information but it is useful to derive the evolution

of the energy density with time. However, we still need an extra piece of information,

which is the relation between the pressure and energy density, also called equation of

state. In general, equations of state can have complicated nonlinear expressions. For-

tunately, cosmology usually deals with dilute gases, for which the equation of state is

simple and can be written as:

p = wρ, (1.19)

where w is a dimensionless number. Using the equation of state, we can rearrange the

continuity equation to yield

dρ

ρ
= −3(1 + w)

da

a
. (1.20)

Then, integrating each side and assuming w is constant we obtain

ρ = ρ0a
−3(1+w) = ρ0(1 + z)3(1+w). (1.21)

Figure 1.3: Energy density as a function of the scale

factor for different components of the Universe, fol-

lowing Eq. (1.21). All energy densities are normalized

by the critical density today. It shows that dark en-

ergy, in this case a cosmological constant, and matter

dominate the density of the Universe today, while in

the early Universe radiation used to dominate. The

time at which matter and radiation are equal is aeq.

Figure from Dodelson (2003).

Thus, we can already predict how each

component of the Universe evolves with

time. Let’s go through the list of known

components of the Universe. There is

nonrelativist matter, which has effec-

tively zero pressure (and hence has w ≈
0). Then, its density falls as ρm ∝ a−3.

This is expected since the density of par-

ticles is inversely proportional to the vol-

ume as the Universe expands. For sim-

plicity, in general we will refer to the

component of the Universe that consists

of nonrelativistic particles as “matter”.

For instance, this includes baryonic mat-

ter and also dark matter, which actually

represents most of the matter in the Uni-

verse.

The Universe also contains photons

and other relativistic particles, which we

will refer to as “radiation”. Radiation has

pressure pr = ρ/3, resulting in ρr ∝
a−4. This also agrees with intuition,

since in the case of radiation its energy density decreases with the expansion of the
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Universe because of the same reason as matter but also because the wavelength of the

light increases by a factor of a, decreasing its energy by the same factor. Figure 1.3 illus-

trates the evolution of matter and radiation with time, where we can see that because

of the different dependency, radiation dominated the total energy density in the very

early Universe until matter took over.

If the Universe would only contain matter and radiation, its expansion would be

slowing down, as given by the second Friedmann-Lemaître equation. This is what ev-

eryone was expecting when in 1998 there was a big surprise. Two independent ex-

periments found observational evidence that the expansion was accelerating, instead

of decelerating. From Friedmann-Lemaître second equation, we deduce that if the ac-

celeration of the expansion is positive, there must be something in the Universe with

w < −1/3. This hypothetical substance is generically referred to as “dark energy”. A

particular case is w = −1, which is referred to as a cosmological constant because its

energy density does not evolve with time, as can be seen from Eq. (1.21). The cosmo-

logical constant has p = −ρ and is designated by the letter Λ. The famous model that

includes dark energy in the form of a cosmological constant and Cold (which basically

means non-relativistic) Dark Matter is called ΛCDM, and is considered the Standard

Cosmological model so far. The model comprising general dark energy instead of a

cosmological constant is referred to as wCDM. Summarizing, for each component:

p = wρ

⎧⎪⎪⎨
⎪⎪⎩

Matter wm = 0 ρm ∝ a−3

Radiation wr =
1
3 ρr ∝ a−4

Cosmological constant wΛ = −1 ρΛ = ρ0
Dark energy wde = w(a) < −1

3 ρde ∝ a−3 [1+w(a)]

(1.22)

where in its most general form, dark energy’s equation of state can evolve with time

and is usually parametrized as

w(a) = w0 + (1− a)wa +O(1− a)2. (1.23)

In order to measure the expansion and acceleration of the Universe, besides having to

know how each component evolves with time, we are left to figure out their relative

abundances. For this purpose, it is useful to define the following dimensionless param-

eters, also simply called cosmological parameters:

Ωi,0 ≡ ρi,0
ρcr

, (1.24)

where ρi,0 is the density of the component i today, normalized by the critical density:

ρcr =
3H2

0

8πG
, (1.25)
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which is the particular value of density obtained when setting the curvature k = 0 in

the first Friedmann equation, given some value of H0. If the total energy density is

greater than this value, the Universe will be closed, and if it is less than this value, it

will be open. Combining the previous equations, we can express the first Friedmann

equation as

H2(z) = H2
0

[
Ωm(1 + z)3 +Ωr(1 + z)4 +Ωk(1 + z)2 +Ωde(1 + z)3(1+w)

]
,

(1.26)

where Ωk = − k
H2

0
. Hereafter we use Ωi to refer to Ωi,0 for simplicity and w for the

parameter describing dark energy equation of state, since for the rest of the components

it is a known parameter. The equation above implies the following consistency relation:

∑
i

Ωi +Ωk = 1, (1.27)

where i refers to every component besides curvature.

At this point we have defined all cosmological parameters necessary to describe the

dynamics of the expansion of the Universe. A minimal set is: {Ωi},Ωk, H0, w. One of

the goals of modern cosmology is to measure these parameters to sufficient accuracy

to understand the history and fate of the Universe we are living in. Using data from

the Cosmic Microwave Background (CMB), it has already been possible to place tight

constraints on some of them. Nowadays, we know that our Universe is nearly flat,

with Ωk = 0.001 ± 0.002 from combined Planck + BAO constraints from Planck

Collaboration 2018. Also, we know that radiation is a really small component of our

Universe now, as opposed to the early Universe, which was radiation dominated (see

Fig. 1.3). Quantitatively,Ωr ∼ 10−5 today. Then, the current Universe is dominated by

matter,Ωm = 0.315±0.007 (PlanckCollaboration, 2018), and dark energy. Thematter

component is further divided between cold dark matter (CDM) and baryonic matter,

Ωbh
2 = 0.0224±0.0001 also from the latest Planck results. Then, CMBmeasurements

indicate that dark matter is far more abundant than baryonic matter.

Eventhough we have been able to measure each of these parameters with high ac-

curacy, the nature of dark matter and dark energy is still unknown, which means that

we do not understand yet the nature of most of the content of our Universe today. On

top of that (or because of that), one of the other main questions that remain to answer

is whether the dark energy density evolves with time or whether it is a cosmological

constant. This translates on measuring w for dark energy, and checking whether it

is compatible with -1. Measuring w and providing independent measurements from

the CMB on the other cosmological parameters is the main reason for the existence of

galaxy surveys such as the Dark Energy Survey and of studies such as this thesis. In

Chapter 6, we will present the results obtained for this parameter and for the other
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components described above using data from the first year of observations of the Dark

Energy Survey.

1.6 Distances

Figure 1.4: Relation between distance and redshift for dif-

ferent universes and distance estimators. Distances are

larger in universes where there is more dark energy and

less matter.

As we have seen in Section 1.3,

we can relate the redshift, which is

observable, to the comoving distance

via Eq. (1.16) if we know the his-

tory of expansion of the Universe,

given by H(z). Alternatively, if

we are able to measure the distance

to an object independently from its

redshift, we can measure the cos-

mological parameters that appear in

Eq. (1.26) using the distance-redshift

relationship. This relation is illus-

trated in Fig. 1.4 for different values

of Ωm for a flat Universe with mat-

ter and a cosmological constant. Ac-

tually, this distance-redshift relation

is what was used to discover the pos-

itive acceleration of the expansion of

the Universe, using Type Ia Supernovae to extend Hubble’s diagram to higher redshift.

However, neither the comoving distance, which remains fixed as the Universe expands,

nor the physical (or proper) distance, which grows because of the expansion, are directly

related to observations. Instead, we introduce here two alternative distance estimators

which are more easily related to observable quantities.

1.6.1 Angular diameter distance

One is the angular diameter distance, which can be obtained if we know the physical

size of an object, l, and we can measure the angle it subtends, θ. For small angles:

DA =
l

θ
. (1.28)

Also, the comoving size of the object will be l/a. Then, since the angle subtended is also

θ = (l/a)/χ, we can relate the angular diameter distance to the comoving distance as:

Dflat
A = aχ =

χ

1 + z
, (1.29)
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for a flat Universe. Therefore, the angular diameter distance is very similar to the co-

moving distance at low redshift, but it decreases at large redshift as seen in Fig. 1.4,

counterintuitively making objects which are at very high redshifts appear larger than

objects at intermediate redshift, at least in a flat universe. For open or closed universes,

the angular diameter distance generalizes to:

DA =
a

H0

√|Ωk|

{
sinh

(√
ΩkH0χ

)
Ωk > 0

sin
(√−ΩkH0χ

)
Ωk < 0

(1.30)

Both of these expressions reduce to the flat case in the limit that curvature goes to zero.

1.6.2 Luminosity distance

Another way of inferring distances in astronomy is to measure the flux from an

objectwith known luminosity, such as Type Ia Supernovae. The fluxF weobserve from

an object at a distance d with luminosity L without taking into account the expansion

of the Universe is

F =
L

4πd2
, (1.31)

since the total luminosity is shared between a spherical shell with area 4πd2. In an

expanding universe, the distance between the observer and the source evolves with

time, as well as the luminosity, and thus we need to write each quantity as a function of

the scale factor:

F (a) =
L(a)

4πχ2(a)
. (1.32)

L(a) is the luminosity that goes through a comoving spherical shell with radius χ(a)

and it changes because of expansion due to two reasons. First, the energy of the photons

will be smaller today by a factor of a than at emission, because of the expansion. If we

assume all photons were emitted with the same energy to simplify, then L(a) is this

energy multiplied by the number of photons passing through a (comoving) spherical

shell per unit of time, and therefore is reduced by a factor of a. Secondly, the number

of photons crossing a shell in a fixed time interval will be smaller today than at emission

also by a factor of a, reducing the observed luminosity by the same factor since they are

directly proportional. This is because photons travel farther on the comoving grid at

early times than at late times since the associated physical distance at early times is

smaller.

Then, the luminosity being transmitted at the time the observer receives the light

will be reduced by a factor a2 with respect to the luminosity at the source:

L(a) = Lsourcea
2. (1.33)

18



1.7 The Inhomogeneous Universe

Then, the flux we observe will be:

F =
Lsourcea

2

4πχ2(a)
, (1.34)

and if we define the luminosity distance as:

DL ≡ χ

a
, (1.35)

we can write the observed flux in an expanding universe as:

F =
Lsource

4πD2
L(a)

. (1.36)

The relation between the different distance definitions is represented in Fig. 1.4 for

different values of Ωm in a flat Universe with matter and a cosmological constant.

1.7 The Inhomogeneous Universe

Figure 1.5: Redshift cones from the 2dF Galaxy Red-

shift Survey, evidencing the existence of large-scale

structures in the Universe (Colless et al., 2001).

TheUniverse can be approximated as

being homogeneous and isotropic only

on very large scales. On smaller scales, it

is clear that this is not the case, as on some

spots there are super-clusters of galaxies

while on other places empty space dom-

inates. This is evidenced by galaxy sur-

veys such as the one shown in Fig. 1.5,

or in the anisotropies from the CMB,

shown in Fig. 1.2. Actually, a completely

homogeneous density field cannot exist:

quantum fluctuations must occur on mi-

croscopic scales. However, the observed

fluctuations are way too large compared to those expected from evolving fluctuations

with gravity originated from a pure quantum process in an expanding universe. Then

the following question arises: how did the structures we observe today form?

1.7.1 Structure Formation

The inflationary theory (Guth, 1981), which describes a period of exponential ex-

pansion of space in the early Universe, was initially proposed as a way to solve the flat-

ness and the horizon problems. These refer, respectively, to the fact that the Universe
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appears to be flat (too flat to be a coincidence), and also homogeneous and isotropic on

scales much larger than the distance light had time to travel since the Big Bang, called

cosmological horizon, and that therefore had never been in causal contact (again too

homogeneous and too isotropic to be a coincidence). Besides solving these two prob-

lems, inflation also provides an explanation for the observed structures in the Universe:

quantum fluctuations in the very early Universe were magnified to cosmic size due to

the exponential expansion, becoming the seeds of the anisotropies observed in theCMB

and, at later times, the Large-Scale Structure (LSS) of the Universe.

After inflation, structure formation startedwith small density fluctuations that grew

in time and became the known structures of the Universe today, such as galaxies, galaxy

clusters and voids. The basic mechanism for growing large structures is called gravita-
tional instability. A slightly overdense region has a somewhat higher self-gravity than

the average region of the Universe, so its expansion rate will be slightly lower than that

of the Universe as a whole. As a result of slower expansion, the density contrast of this

region increases further, retarding expansion more, and so on. In order to statistically

describe the inhomogeneous Universe, let’s define the dimensionless overdensity field δ,
also called density contrast, which describes the energy density fluctuations at any 3D

position �x and time t with respect to the mean energy density ρ̄:

δ(�x, t) ≡ ρ(�x, t)− ρ̄(t)

ρ̄(t)
. (1.37)

δ < 0 corresponds to underdense regions while δ > 0 corresponds to overdense

regions. Note that −1 ≤ δ < ∞, as δ = −1 corresponds to ρ(�x) = 0, while there is

no upper bound for δ.

1.7.2 Statistics of the matter density field

Even though above we have defined the density contrast as a function of position

and time, no theory predicts that a galaxy will form in a given position in the Universe

or if a particular region will be overdense or underdense. Instead, in order to compare

observations to theoretical predictions, we need to measure how matter is distributed

on average, for which we can make theoretical predictions. The simplest statistic we

can obtain is the mean of δ(�x), which by its definition in Eq. (1.37) vanishes:

〈δ(�x)〉 = 0, (1.38)

where the angular brackets refer to taking the average over all the space. The next

simplest statistic we could take is the variance of fluctuations: σ2 ≡ 〈
δ2(�x)

〉
. However,

there is a more sophisticated two-point statistic called two-point correlation function,
that encodes information about the typical lengths over which matter is clustered, and
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how clustered a distribution is — the higher the value of the correlation function, the

more clustered matter is. It is defined as

ξ(�x, �y) ≡ 〈δ(�x) δ(�y)〉 = ξ(|�x− �y|), (1.39)

and since the Universe is homogeneous and isotropic, the correlation function ξ cannot

depend on the exact position or direction and therefore it only depends on the magni-

tude of the distance difference |�x− �y|.
The two-point correlation function is the most straightforward quantity that can

be computed from the data, but in order to compare to theoretical predictions there

is a more useful statistic called power spectrum, which is just the Fourier transform of

the two-point correlation function. In order to define the power spectrum, let’s first

express the matter density fluctuations in Fourier Space. Also, since δ is defined in

a three-dimensional space (rather than on the surface of a sphere) we expand δ(�x) in

terms of its 3D Fourier components:

δ(�x) =
1

(2π)3

∫
d3k δ̃(�k) ei

�k·�x (1.40)

which can be inverted to yield:

δ̃(�k) =

∫
d3x δ(�x)e−i�k·�x. (1.41)

Then, the Fourier transform of the two-point correlation function ξ(�x− �y) is

〈
δ̃(�k) δ̃∗(�k′)

〉
=

∫
d3x e−i�k·�x

∫
d3y ei

�k′·�y ξ(�x− �y) =

=

∫
d3x e−i(�k−�k′)·�x

∫
d3α e−i�k′·�α ξ(�α)

(1.42)

wherewe have defined the variable �α = �x−�y. Then, switching the order of integration:

〈
δ̃(�k) δ̃∗(�k′)

〉
= (2π)3 δ3D(

�k − �k′)
∫

d3α e−i�k′·�α ξ(�α) =

= (2π)3 δ3D(
�k − �k′)P (k),

(1.43)

where to avoid confusion with the density contrast, δ3D is the Dirac Delta. P (k) is the

matter power spectrum, which only depends on the magnitude of its argument k, since

the Universe is isotropic. The equation above indicates that the power spectrum is re-

lated to the variance of the distribution, that is to say, if there are lots of very under- and

overdense regions, the power spectrumwill be large, while if it is small, the distribution
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is smooth. Also, notice that the different Fourier modes are uncorrelated. An example

of a predicted dark matter power spectrum in shown in the left panel of Fig. 1.6.

In Eq. (1.43) and in (1.39) so far we have interpreted the angular brackets as aver-

aging over all space, but it actually also means that we are averaging over all realiza-

tions of the density field. This is understood in the following way. The cosmic density

field is one realization of a random process, in which, early on, every Fourier mode

δ̃(�k) was drawn randomly accordingly to some distribution. This distribution is usu-

ally assumed to be a Gaussian random field, which means that it will be proportional to

exp {−|δ̃(�k)|2/(2P (k))}.

Assuming it was a Gaussian distribution is justified because most inflationary sce-

narios predict that the density fluctuations created by inflation were an isotropic and

homogeneous Gaussian field, and besides that, there is no observation contradicting

this so far. For instance, the cosmic microwave background probes fluctuations from

the very early Universe, mostly in the linear regime, and they have been measured to

be very Gaussian (seen in Fig. 1.2). However, non-linear structure formation at late

times destroys Gaussianity and generates the filamentary cosmic web (seen in Fig. 1.5).

Searching for primordial non-Gaussianities to probe departures from simple inflation

is a very hot topic but no convincing evidence for primordial non-Gaussianities has yet

been found. Also, if a Gaussian field is homogeneous and isotropic, then all its statisti-

cal properties are summed up in the power spectrum P (k). For instance its variance in

real space can be obtained from integrating it over all the Fourier modes, as seen below:

σ2 ≡ 〈
δ2(�x)

〉
=

∫
d3k

(2π)3

∫
d3k′

(2π)3
ei �x(

�k−�k′)
〈
δ̃(�k) δ̃∗(�k′)

〉
=

=

∫
d3k

(2π)3
P (k) =

∫ ∞

0

dk

k

k3P (k)

2π2
,

(1.44)

where we have initially transformed both δ(�x) and then used Eq. (1.43) to simplify.

Thinking of the above integral as the sum over logarithmic bins in k: d ln(k) = dk/k,

in each bin, the contribution to the variance is given by the dimensionless combination

k3P (k)/2π2. When this number is small, the fluctuations on the scale k are small, and

since it is dimensionless, in particular it means that if it is approximately smaller than

one, the fluctuations are linear, while if it is larger than one, the fluctuations have gone

nonlinear. This is illustrated in the right panel of Fig. 1.6, where we compare the linear

and nonlinear matter power spectrum, the later having been obtained with numerical

simulations, as we will detail in the next section when we discuss non-linear evolution

of the matter density field.
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Figure 1.6: Left: The dark matter power spectrum, assuming DES Y1 best fit cosmological parameters

(DES Collaboration, 2018b). Solid lines show the linear power spectrumwhile dashed lines show the non-

linear power spectrum obtained with Halofit (Takahashi et al., 2012) . Right: Dimensionless parameter

which is less than one where the Universe is smooth and more than one where the density has gone non-

linear, at small scales. The dotted line indicates unity to make this comparison, which is the point at which

the linear and non-linear power spectrum start to differ.

Smoothed density fields

The power spectrum is theoretically determined when knowing the composition

and expansion of theUniverse except for an overall normalization. Oneway tomeasure

the normalization of the power spectrum is by considering density fluctuations on a

given sphere, since in practice it is impossible to measure the density perturbation δ(�x)

at a particular point. Thus, we replace the density field δ(�x) by a smoothed field,

δ(�x) =

∫
d3�x′ W (�x′)δ(�x+ �x′), (1.45)

whereW (�x′) is a window function. The most common window function is a spherical

top-hat of radius R: WR(r) = 3/(4πR3) for r < R andWR(r) = 0 for r > R. The

Fourier transform of this particular window function is W̃R(kR) = 3j1(kR)/(kR),

where j1(kR) is the spherical Bessel function of the first kind of order one. As we did

before, the dispersion of a smoothed density with this window function WR field is

then

σ2
R ≡ 〈

δ2R(x)
〉
=

1

2π2

∫
k2P (k) |W̃ (kR)|2dk. (1.46)

The case R = 8 Mpc/h, using the Fourier transform of the top-hat as the window

function, defines the cosmological parameter σ8:

σ2
8 =

1

2π2

∫
k2P (k)

[
3j1(kR)

kR

]2
dk, (1.47)
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which is used to provide the normalization of the power spectrum. The relative fluctua-

tions of the galaxy number density in the local Universe are of order unity if one consid-

ers spheres of radiusR = 8Mpc/h, which is the typical scale of massive galaxy clusters.

If one assumes that galaxies accurately trace the underlying dark matter field, this ob-

servation would imply that the fluctuation δ(�x), averaged over a scale ofR = 8Mpc/h,

has a dispersion ∼ 1. However, there is no guarantee that the galaxy number density

field closely follows the darkmatter distribution. One often summarizes our ignorance

about the relative distribution of galaxies and dark matter in what we call the galaxy

bias, which we describe in detail in Sec. 1.7.4. Therefore, the galaxy bias and σ8 are

highly degenerate parameters when we obtain cosmological parameters from the dis-

tribution of a sample of galaxies. From the latest Planck results, σ8 = 0.811 ± 0.006

(Planck Collaboration, 2018).

1.7.3 Evolution of the density field

The inflationary theory predicts the initial power spectrum of density fluctuations,

referred to as the primordial power spectrum, to be

P0(k) = Ask
ns , (1.48)

which has a scale-invariant, power-law form, where As is the amplitude of the pri-

mordial power spectrum and ns is called the spectral index, and has a favored value

of close to one from observations and theory. From the latest Planck measurements,

ns = 0.965 ± 0.004 (Planck Collaboration, 2018). Also, inflation predicts a spectral

index that is smaller but very close to unity. The preferred primordial power spectrum,

P (k) ∝ k is called theHarrison-Zeldovich spectrum (Harrison, 1970; Zeldovich, 1972).

In Fig. 1.6, we can appreciate that the fluctuations grow with time, as at lower redshift

the power spectrum is higher. We can understand how this initial spectrum evolves

as the Universe expands and becomes more inhomogeneous using linear perturbation

theory. This evolution is often quantified in terms of the transfer function T (k, z),

which connects the primordial power spectrum to the linear matter power spectrum

today:

P (k, z) = T 2(k, z)P0(k). (1.49)

The transfer function depends on the contents of the Universe and is hence a function

of the particular cosmological model, and therefore the power spectrum depends on

the cosmological parameters. Just as an example, the position of the peak of the power

spectrum is sensitive to the time when the universe reached matter-radiation equality,

and hence is a probe of Ωγ/Ωm.

To study how large scale structure evolves with time, we need to know how small

fluctuations in density grow in amplitude in the presence of a gravitational field. New-
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1.7 The Inhomogeneous Universe

tonian gravity is an adequate approximation of general relativity on scales well inside

the Hubble radius or horizon (dH = c/H0) and when describing non-relativistic mat-

ter (for which the pressure P is much less than the energy density ρ). In particular,

we can use the Newtonian treatment to describe sub-Hubble fluctuations for cold dark

matter (CDM) and baryons after decoupling. Also, if the amplitude of fluctuations re-

mains small (|δ| � 1) we can use Newtonian linear perturbation theory to describe the

evolution of δ (Peebles 1980). In this case, the matter density contrast which, given our

assumptions is essentially the total energy density contrast ρ = ρm, is related to the 3D

gravitational potential Φ via the Poisson equation in comoving coordinates,

∇2Φ(�x, t) =
4πG

c2
ρ̄m(t) a2(t) δ(�x, t) (1.50)

where the factor c2 accounts for the fact that the density ρ̄m is the mean energy in mat-

ter density, not the mass density. This equation reflects a battle between two effects.

On the one hand, in an expanding universe the gravitational potential gets diluted. On

the other hand, the energy fluctuations grow with time due to gravity attracting more

matter around an already overdense region. For non-relativistic matter, the two effects

balance and the gravitational potential remains constant with time. As we saw previ-

ously, the matter density scales as ∼ a−3 with the expansion. Thus, if non-relativistic

matter is the dominant form of energy, the overdensity δ grows as a.

In general the winning effect will depend on the dominant form of energy in the

Universe, which can be derived using other expressions still in the context of Newto-

nian gravity, such as the Euler equation. During the radiation-dominated epoch, dark

matter density fluctuations grew only at a logarithmic rate, intuitively due to the high

pressure of radiation. At late times, when the Universe is dominated by dark energy,

the growth is suppressed as well, due to the accelerated expansion. In particular, if

it is dominated by a cosmological constant, the matter fluctuations reach a constant

fractional amplitude. Therefore, studying the history of growth of structures in the

Universe gives us information about its composition as a function of time. Specifically,

measuring the two-point correlation function or power spectrum of galaxies, which

encapsulates this information, we can infer the cosmological parameters.

Non-linear evolution

When an overdense region reaches an overdensity of δ ∼ 1, its evolution can no

longer be treatedwith a simple linear perturbation approach. This happens for instance

in the process needed to form a galaxy. In ΛCDM, the formation of structures is hier-

archical: first small structures are formed around peaks in the initial density field, col-

lapsing into virialized dark matter halos, and larger structures form later, either from

the accretion of mass in the neighborhood or from the merging of smaller halos. Over-
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densities collapse to form a gravitationally bound dark matter halo when they exceed a

given value for δ, known as the critical density δc, under the Spherical Collapse model

(Press & Schechter, 1974; Mo & White, 1996). At the time this happened, even though

cold dark matter (CDM) was able to form gravitationally bound structures, the tem-

perature of baryonic matter was still too high to form bound objects from their own

gravitational field. Then, baryonic matter falls into already formed dark matter halos

by feeling their gravitational attraction, allowing for galaxy formation to happen.

The non-linear gravitational collapse of dark matter halos, the possible merging

between them and the successive galaxy formation processes are so complicated that

most predictions of the non-linear power spectrum are the result of large N-body sim-

ulations. The matter structures generated in the simulations are used to obtain fitting

formulas for the non-linear power spectrum, as in e.g. Smith et al. (2003) and more re-

cently Takahashi et al. (2012), such as the non-linear power spectrum shown in Fig. 1.6

for a given set of cosmological parameters.

1.7.4 Galaxy bias

Structure formation is dominated by the dark matter component, but we can only

observe the galaxies directly. Therefore, we are interested in knowing the exact relation

between baryonic matter (or galaxies) and dark matter. Galaxies are good tracers of the

dark matter distribution since they live in dark matter halos, but they are not unbiased

estimators of the dark matter distribution. This is because the galaxy formation laws

are highly complex and non-linear. The statistical relationship between the galaxy and

matter distribution is known as galaxy bias. The simplest model of biasing, called linear

deterministic biasing, relates thematter density fluctuations δ to the galaxy fluctuations

δg linearly through the galaxy bias b:

δg = b δ. (1.51)

This relation translates into a connection between the galaxy and matter two-point

correlation functions, or between the power spectra of galaxies and matter:

ξgg(r) = b2ξδδ(r), Pgg(k) = b2Pδδ(k). (1.52)

The bias is expected to be linear and scale independent at large scales, where the density

field is still in its linear evolution. However, in general it will be a function of scale and

redshift, b (r, z), or b (k, z) in Fourier Space. The galaxy bias relates the amplitude of

the fluctuations, which are generally larger for galaxies than for matter, since galaxies

form at the peaks of the underlying dark matter distribution. In addition, the peaks of

the two distributions can be at different locations, since there is also some stochasticity

involved in the galaxy formation process. This difference is encapsulated in the cross-
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Figure 1.7: Illustration of the galaxy bias b and cross-correlation coefficient r between distributions. When

r = 0, the peaks of the distribution are not correlated, and when the bias is large, the peaks of the distri-

bution are much more pronounced.

correlation coefficient r, which in general will also depend on scale and redshift:

r =
ξδg√
ξδδ ξgg

, r =
Pδg√
Pδδ Pgg

, (1.53)

where ξδg is the galaxy-matter cross-correlation function, which is then related to the

matter correlation function in the following way, and analogously for the power spec-

tra:

ξδg = b · r ξδδ, Pδg = b · r Pδδ. (1.54)

In Fig. 1.7 we show two distributions which are not correlated with each other (r = 0),

and two distributions which are completely correlated (r = 1). In there we can also

appreciate the effect of the bias between two distributions: when the bias is large, for

instance in the figure b = 10, only the most pronounced peaks of the distribution

are sampled while when b = 1, the amplitude of the fluctuations is the same in both

distributions.

On large enough scales, we expect the galaxy and matter distributions to trace the

same structures and hence the cross-correlation coefficient to approach unity. There-

fore, due to the different dependencies on the galaxy bias, measuring both the galaxy

and the galaxy-matter correlation functions we will be able to break degeneracies be-

tween the galaxy bias and the matter two-point correlation function, which encloses

the cosmological information. In order to measure the galaxy two-point correlation

function it is enough to measure the position of a large sample of galaxies. To probe
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the galaxy-matter cross-correlation function though, we need to probe matter directly,

which cannot be done by just measuring galaxy positions. Instead, we will need to use

a technique called weak gravitational lensing, that will allow us to probe the matter

distribution directly, and which we describe in detail in the following chapter.
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Chapter 2

Weak Gravitational Lensing

Figure 2.1: Illustration of the gravitational lensing effect:

light from a background galaxy is bent when going through

a foregroundmass distribution, in this case a galaxy cluster.

As we saw in previous sections,

from general relativity we learned

that the mass content in the uni-

verse shapes its metric, with mas-

sive bodies curving the space-time

canvas around them. Gravitational

lensing is caused by light traveling

in such a curved space time, accord-

ing to some gravitational potential,

as illustrated in Fig. 2.1. Light from

distant galaxies is bent as it passes

close to massive objects. In some

cases, the bending of the light is so

significant that multiple images of

the galaxy are actually formed. This

is referred to as strong gravitational lensing. In other cases, this bending is small, and

the images of galaxies are distorted, stretched and magnified in small amounts. This

is referred to as weak gravitational lensing. In this section we will develop the weak

lensing formalism, deriving the equations that describe the deflection of light rays in

the presence of massive bodies, introducing the concept of shear and the relevant quan-

tities that are used throughout this thesis.

2.1 Light propagation and the deflection angle

Photons propagate on null geodesics, ds2 = 0. That means that the time of light

ray travel can be obtained from the metric equation (1.4), which we described at the

beginning of the previous chapter. In general relativity and forweak gravitational fields
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(Φ/c2 � 1), we obtain:

t =
1

c

∫ (
1− 2Φ

c2

)
dr, (2.1)

where the integral is along the light path in physical coordinates r. Then, we can do

an analogy between the gravitational potential and a medium with variable refractive

index n = 1 − 2Φ/c2. Actually, this is the origin of the name of gravitational lensing.

After that, we can use Fermat’s principle that says that the light travels by theminimum-

time path, δt = 0. Therefore, we get the Euler-Lagrange equations for the refractive

index. Integrating these equations along the light path one can obtain the expression

for the deflection angle α̂, that is the difference between the directions of the emitted

and received light rays, illustrated in Fig. 2.2:

α̂ = − 2

c2

∫
∇p

⊥Φdr. (2.2)

The gradient of the potential is taken perpendicular to the light path, with respect to

physical coordinates. As it stands, this equation for the deflection angle is not very use-

ful, as we would have to integrate over the actual light path, which is unknown. How-

ever, since Φ/c2 � 1, we expect the deflection angle to be small. Then, we can adopt

the Born approximation and integrate over the unperturbed light path, as illustrated

in Fig. 2.3. Considering a point-like body of mass M whose gravitational potential is

Φ = −GM/r, and using the Born approximation, the deflection angle reduces to:

α̂ =
4GM

bc2
, (2.3)

where b is the distance of closest approach to the lens, called impact parameter. This

result assuming general relativity gives twice the classical prediction for the deflection

angle using Newtonian dynamics. This factor of two comes from the fact that the per-

turbedMinkowski metric has equal perturbations in both its temporal and spatial com-

ponents. In 1919, a team led by Franck Watson Dyson and Arthur Eddington, proved

that general relativity gave the correct factor by measuring the change in position of

stars as their light passed near the sun during a solar eclipse.

We can now consider another particular case of a single lens, but extended in the

transverse direction (perpendicular to the line of sight). This extension is still much

simpler than a general gravitational potential but realistic enough in a wide number of

cases. For instance even in the case of lensing by galaxy clusters, the physical size of the

lens is generally much smaller than the distances between observer, lens and source.

The deflection therefore arises along a very short section of the light path, and we can

adopt the so-called thin lens approximation, where the distribution of matter is assumed

to be in the lens plane. Within this approximation, the lens matter distribution is fully
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2.1 Light propagation and the deflection angle

Figure 2.2: Sketch of a gravitational lens system from Bartelmann & Maturi (2017). The optical axis runs

from the observer O through the center of the lens. The angle between the source S and the optical axis

is β, the angle between the image I and the optical axis is θ. The light ray towards the image is bent by the

deflection angle α̂, measured at the lens. The reduced deflection angle α is measured at the observer.

described by its surface density,

Σ(�ξ) =

∫
ρ(�ξ, z) dz, (2.4)

where �ξ is a two-dimensional vector on the lens plane, also illustrated in Fig. (2.2), and

ρ is the three-dimensional density. As long as the thin lens approximation holds, the

total deflection angle is obtained by summing the contribution of all the mass elements

Σ(�ξ)d2�ξ:

�̂α(�ξ) =
4G

c2

∫
(�ξ − �ξ′)Σ(�ξ′)

|�ξ − �ξ′|2
d2�ξ′ (2.5)

2.1.1 The lens equation

Figure 2.2 illustrates a thin-lens system. Although not obvious from the figure,

the angles have both an amplitude and a direction. The amplitude describes how the

incoming ray is tilted with respect to the z-axis, where the line connecting the observer

to the center of the lens is chosen to be the z-axis, or optical axis. The directions of the

angles specify the locations in the plane perpendicular to the line of sight, the plane of

the sky. Thus, the source S tranverse position in the z = Ds plane is given byDs
�β and

the image position is given by Ds
�θ, where Ds is the angular diameter distance to the

source. Looking at the diagram and assuming the angles are small, we can relate these
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Image

Source

Figure 2.3: Born approximation visualization. The true path taken by the light from the source at position
�β, curved because of gravitational lensing by the structure along the line of sight, compared to the line

back to the image inferred from the arrival direction �θ. The Born approximation is sufficient for most

applications.

two positions to the deflection angle �̂α through the so-called lens equation

Ds
�β = Ds

�θ −Dls �̂α, (2.6)

whereDls is the angular diameter distance between the lens and the source (note angu-

lar diameter distances are not additive). As Fig. 2.2 shows, the lens equation is trivial to

derive and only requires that the following Euclidean relation should exist between the

angle enclosed by two lines and their separation: separation = angle× distance. It is not

obvious that the same relation should also hold in curved spacetimes. However, angu-

lar diameter distances are defined exactly so that this relation holds (see Sec. 1.6.1), and

thus the lens equation holds. Dividing by Ds and introducing the reduced deflection

angle:

�α(�θ) ≡ Dls

Ds
�̂α(�θ) (2.7)

leads to the lens equation in its simplest form:

�β = �θ − �α(�θ), (2.8)

which actually hides quite a bit of complexity: the mapping from lens coordinates �θ to

source coordinates �β may be non-linear and have multiple solutions (only in the strong

lensing regime) so that a given single point source at �β has multiple images �θ.

2.1.2 Lensing potential

Still in the context of the thin-lens approximation, an extended distribution of mat-

ter is characterized by its effective lensing potential, obtained by projecting the three-

dimensional potential along the z−axis (notice here z does not refer to the redshift, but
to the physical coordinate z of the line of sight):

ψ(�θ) =
2

c2
Dls

DlDs

∫
Φ(Dl

�θ, z) dz. (2.9)
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2.2 Linearised lens mapping: Shear and magnification

Figure 2.4: Mapping between the source coordinates �β and the image coordinates �θ described by the

Jacobian matrixA, via the convergence and the shear.

From the equation above we can learn in which cases the effect of gravitational lensing

will be stronger. The contribution to Φ from inhomogeneities close to the source is

suppressed by theDls factor and when the angular distance to the lens is similar to the

angular distance between the lens and the source the effect will be larger. Also, in the

equation abovewe are using again the Born approximation, since we are integrating the

potential along the line of sight between the apparent positionDl
�θ and us, not along the

path the light actually traveled, as illustrated in Fig. 2.3. More generally, if the potential

is constant across the sky, there is no deflection. Lensing emerges then from changes in

the projected gravitational potential across the sky. Mathematically, this is expressed

by the gradient of the lensing potential, which yields the deflection angle �α:

�α(�θ) = �∇�θ
ψ. (2.10)

Moreover, the Laplacian of the potential is proportional to the surface-mass density at

the lens plane positionDl
�θ via the Poisson equation:

∇2
�θ
ψ =

Σ(Dl
�θ)

Σcrit
≡ 2κ(�θ), (2.11)

where we have defined the dimensionless parameter κ, called convergence, and the ge-

ometrical factor

Σcrit =
c2

4πG

Ds

DlDls
, (2.12)

also called critical surface mass density.
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γ1 > 0 γ2 > 0 κ > 0

γ1 < 0 γ2 < 0 κ < 0

Figure 2.5: The effects of the elements of the Jacobian matrix shear γ = (γ1, γ2) and convergence κ on

an initially circular background object (dotted circles).

2.2 Linearised lens mapping: Shear and magnification

Using Eq. (2.10), the lens equation (2.8) can be written in terms of the lensing po-

tential in the following way:
�β = �θ − �∇ψ. (2.13)

If the extent of a source is much smaller than the scale of variation in the deflection

angle, we can linearise the lens equation by defining the Jacobian matrix A and Taylor

expanding the lens equation:

δ�β ≈ Aδ�θ (2.14)

withA having the components

Aij =
∂βi
∂θj

= δij − ∂αi

∂θj
= δij − ∂i∂jψ, (2.15)

where the partial derivatives are with respect to �θ. This matrix describes the linear

mapping between the lensed, �θ, and the unlensed, �β, coordinates. In the absence of

a lensing potential, the lens mapping is simply identity. In the presence of a lens, the

local properties of the lens mapping are determined by the curvature of the lensing

potential, expressed by thematrix of second derivatives ofψ. Moreover, for the physical

interpretation of the Jacobian matrix, it is convenient to parametrize it in terms of the

two-component shear field γ ≡ γ1 + iγ2 = |γ|e2iϕ (see Fig. 2.4 for an illustration of
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ϕ) and the scalar convergence κ as

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
. (2.16)

That means that the shear and the convergence can be expressed as second derivatives

of the lensing potential ψ:

κ =
1

2
(∂1∂1 + ∂2∂2)ψ =

1

2
∇2ψ

γ1 =
1

2
(∂1∂1 − ∂2∂2)ψ

γ2 = ∂1∂2ψ,

(2.17)

as we had already anticipated for the convergence in Eq. (2.11). We can also rewrite A

as

A = (1− κ)

(
1 0

0 1

)
− |γ|

(
cos(2ϕ) sin(2ϕ)

sin(2ϕ) − cos(2ϕ)

)
, (2.18)

where we can see that the (1 − κ) term only affects the size and not the shape of the

observed image. Thus, the convergence quantifies the isotropic change in size of the

source image and the shear quantifies an anisotropic stretching, that is a change in shape

of the image, turning a circle into an ellipse, as illustrated in Fig. 2.5.

The Jacobian matrix actually tells us the inverse of what we typically want to know

from weak gravitational lensing, that is going from source coordinates to lensed coor-

dinates. To obtain this other mapping, if A has a non-zero determinant, we can invert

it:

δ�θ ≈ A−1δ�β. (2.19)

The Jacobi determinant is

detA = (1− κ)2 − |γ|2 ≈ 1− 2κ (2.20)

with |γ|2 = γ21 + γ22 , where the last approximation is only valid in the weak lensing

regime with γ, κ � 1. Thus, we can assume that in the weak lensing regime the linear

lens mapping is invertible and that the inverse of the Jacobian matrix is

A−1 =
1

detA

(
1− κ+ γ1 γ2

γ2 1− κ− γ1

)
(2.21)

The overall factor in this expression indicates that the solid angle spanned by the image

is changed compared to the solid angle covered by the source by themagnification factor

35



Weak Gravitational Lensing

μ:

μ =
1

detA
=

1

(1− κ)2 − |γ|2 ≈ 1 + 2κ, (2.22)

where again the last approximation only holds in the weak lensing regime. Thus, in

weak lensing, the magnification of an image is essentially determined by the conver-

gence, not by the shear.

Regarding the shape distortions produced by the shear, a hypothetical circular source

is deformed to become an ellipse whose semi-major and semi-minor axes, a and b re-

spectively, illustrated in Fig. 2.4, are proportional to the eigenvalues λ± of the inverse

Jacobi matrixA−1:

λ± =
1− κ± |γ|

detA
=

1

1− κ∓ |γ| . (2.23)

Then, the image ellipticity ε of an originally circular source is:

ε ≡ a− b

a+ b
=

λ+ − λ−
λ+ + λ−

=
γ

1− κ
. (2.24)

The equation above shows that the ellipticity is determined by the reduced shear quan-
tity, which involves both the shear and the convergence:

g ≡ γ

1− κ
. (2.25)

Then, since galaxy shear measurements are based on the measurement of galaxy shapes

(ellipticities) because we cannot observe the source prior to lensing, the relevant quan-

tity is the reduced shear g rather than the shear itself. Thus, from galaxy shapes mea-

surements we can only obtain information on the reduced shear. If κ � 1, which is

generally the case for weak lensing, then the reduced shear is a good approximation to

the shear.

In the expressions above we have been considering an originally circular source to

understand the effect of weak lensing in the shapes of galaxies. However, in general the

source will have some intrinsic ellipticity εs. In that case, the general expression for the

relation between shear and ellipticity is given by

ε =
εs + g

1 + g∗εs
, (2.26)

where the asterisk denotes complex conjugation. When εs = 0, it reduces to Eq. (2.24).

Also, note that this expression depends on the convention used to define the ellipticities.

There are two common conventions used in weak lensing, which lead to different rela-

tions between the ellipticity and the reduced shear. The expression above corresponds

to the same convention used in Eq. (2.24) and in Section 2.3 in Eqs. (2.28).
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2.3 Measurement of galaxy shapes and estimation of shear

So far we have looked at the effect shear and magnification produce on the source

images. Now we turn into general procedures used to estimate these quantities with

photometric surveys. Magnification is in general much harder to measure than shear.

In very short terms, this is because the intrinsic galaxy size cannot be averaged out

as it can be done with the intrinsic ellipticities of the galaxies. The result is that to

get a significant measurement of magnification, one has to beat much more noise than

for shear. As a result, up until this moment most of the weak lensing studies, and in

particular this thesis, use shear as the main observable. Thus, in the following sections

we will focus on describing how to measure shear specifically.

2.3 Measurement of galaxy shapes and estimation of shear

The ellipticity can be quantified in terms of moments of the surface brightness.

The surface brightness I is defined as the flux of energy per unit time per unit area per

solid angle, so has units of Energy Time−1 Length−2 steradian−1 and is conserved in

gravitational lensing processes. The quadrupole momentsQij of the surface brightness

are

Qij =

∫
d2θ I(�θ)θiθj , i, j = 1, 2. (2.27)

From these moments we can measure the two components of the ellipticity:

ε1 =
Q11 −Q22

2NQ
, ε2 =

Q12

NQ
, NQ ≡ 1

2
trQ+

√
detQ. (2.28)

Measuring ellipticities of distant galaxies is a highly non-trivial task. There are several

algorithms dedicated to this, with very different approaches. In the following chap-

ter we will describe some of the most commonly used techniques in surveys such as

the Dark Energy Survey. But for now, assuming we have a good method to measure

the ellipticities, how can we go from these observables to quantities with cosmologi-

cal information such as the shear? The galaxy sources typically used in weak lensing

measurements are of course not circular, but intrinsically elliptical. Taking the weak

lensing limit of Eq. (2.26), the intrinsic source ellipticity εs and the ellipticity caused by

gravitational lensing can be added:

ε ≈ εs + γ. (2.29)

If the intrinsic ellipticities of the galaxies are randomly aligned, the mean of the ob-

served ellipticity is an unbiased estimator of the shear, since 〈εs〉 = 0,

〈ε〉 ≈ γ. (2.30)
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In practice, this estimator is biased by the presence of intrinsic galaxy alignment, which
happens when the shapes of galaxies are correlated in the absence of gravitational lens-

ing, due to gravitational interactions between galaxies. Because galaxy ellipticities are

no longer randomly oriented, intrinsic alignments can add an excess of correlation be-

tween the galaxy shapes that can bias the results.

Then, in the weak lensing regime, the shear cannot be estimated for a single galaxy.

This is because the typical value of the shear will usually not be larger than γ ∼ 0.01,

much smaller than the typical intrinsic ellipticity RMS σεs =
〈|ε|2〉1/2 ≈ 0.2 (Bartel-

mann & Maturi 2017). The noise due to intrinsic ellipticities is usually referred to as

shape noise. The S/N for a given lens would hence be:

S

N
=

γ

σεs

√
Ns, (2.31)

so it scales with the square root of the number of source galaxiesNs used to estimate the

shear. Thus, in general weak lensing relies on shape measurements for a large number

of background galaxies in order to beat down the noise.

Observationally, there are other effects different from gravitational lensing that can

alter the shape of galaxies when they are detected. Effectively, galaxy images are also

convolved by a kernel, known as the Point Spread Function (PSF), which describes the

response of the telescope to a point-like source. If the PSF is isotropic, it will make

galaxies look rounder, hence erasing the shear effect, while an ansitropic PSF will di-

rectly contaminate the shear signal by making galaxies look more elongated in the di-

rection of the anisotropy. Therefore, we also need to deconvolve the effect of the PSF

on the galaxy images to recover an unbiased estimate of the shear.

2.3.1 SphericalDistribution: Tangential andCross Components of the

Shear

The shear components γ1 and γ2 are defined relative to a reference Cartesian co-

ordinate frame. However, because of the way background galaxies are distorted by a

foreground mass, it is useful to consider the shear components in a rotated reference

frame. For example, in the case of a spherical distribution of matter, the shear at any

point will be oriented tangentially to the direction toward the center of symmetry as

can be seen in a real image in Fig. 2.6, where a massive cluster is bending the light of

galaxies behind it. The lensed images, in some cases arcs, form in this tangential way

because of the spherical symmetry, and also because the light passing closer to the lens

gets more deflected, as illustrated in Fig. 2.7. This tangential pattern expected by grav-

itational lensing for a circularly-symmetric matter distribution is also depicted in the

left part of Fig. 2.8.

Then, for a given lens-source pair of galaxies it is useful to define the tangential and
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2.3 Measurement of galaxy shapes and estimation of shear

Figure 2.6: The massive foreground cluster (Abell 1689) causes the images of the background galaxies to

be distorted, forming arcs, due to strong gravitational lensing. The arcs are tangentially aligned, and so

their ellipticity is oriented tangent to the direction of the foreground mass, in this case the cluster. Image

taken with the Advanced Camera for Surveys on board the Hubble Space Telescope. Credits: NASA.

Figure 2.7: (a) The source circular galaxy is behind a foreground mass distributions (points). (b) The light

from the source galaxy is bent as it goes by the mass distribution. The rays passing closer to the lens get

more deflected. (c) Resulting image is an arc, similar to those observed in Fig. 2.6. From Dodelson (2003).
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E-Mode B-Mode

Figure 2.8: Left panel: The shear pattern around a point mass. All shears are oriented perpendicular to

the line connecting with the center, and therefore are tangential. All the signal from galaxy-galaxy lensing

is captured by this component, and thus is referred as E-mode. Right panel: Cross shear pattern that

cannot be produced by gravitational lensing, neither by overdensities nor by underdensities. That is why

it is also referred to as B-mode. If this pattern is detected at levels above the noise, it indicates there could

be a systematic problem affecting the data. The pattern of the cross-component corresponds to rotating

the shears from the left diagram by 45 degrees.

cross components of the shear

γt = −Re
[
γe−2iφ

]
, γ× = −Im

[
γe−2iφ

]
, (2.32)

where φ is the position angle of the source galaxy with respect to the horizontal axis of

the cartesian coordinate system, centered at the lens galaxy, as represented in Fig. 2.9.

This can be expanded to yield

γt = −γ1 cos(2φ)− γ2 sin(2φ)

γ× = γ1 sin(2φ)− γ2 cos(2φ).
(2.33)

The tangential component will capture all the gravitational lensing signal produced

by a spherically symmetric distribution ofmass, while the cross-component of the shear

γ× vanishes if themass distribution is spherically symmetric. Both components are rep-

resented in Fig. 2.8. In there we can see that the cross-component has a curl pattern,

something that cannot be produced by a scalar field such as the convergence κ. That is

why, making an analogy with electromagnetism, where the magnetic field is the gradi-

ent of a scalar field and the magnetic field is the curl of a vector field, this cross pattern

is sometimes called the B-mode, and the tangential component is usually called the E-

mode. Therefore, γ× can be used as a null test, a diagnostic to check the measurement

is free of systematics.
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2.3 Measurement of galaxy shapes and estimation of shear

Figure 2.9: Illustration of the tangential com-

ponent of the shear of a source galaxy with

respect to a lens position, on the plane of the

sky. If γt > 0 it is produced by an overden-

sity and if γt < 0, by an underdensity.

It should also be noted that, like the carte-

sian components, the tangential and cross-

components of the shear cannot be observed

for a single galaxy, but they can only be mea-

sured for a large number of lens-source pairs,

after averaging out the random component of

the intrinsic ellipticity of the galaxies. Thus, in

order to perform these measurement, we ac-

tually need to project the ellipticity for each

source galaxy to the tangential or cross com-

ponent for each lens-source pair, which can be

defined in full analogy to the shear, and then

average over all the pairs. The tangential shear

measurement is one of the main observables of

galaxy-galaxy lensing, described in the follow-

ing section.

To better understand the physical interpretation of the tangential shear measure-

ment, the deflection angle from a spherically symmetric distribution is equal to (Dodel-

son, 2017)

�α(�θ) =
�θ

θ2
M(θ)

πD2
l Σcrit

(2.34)

whereM(θ) is the mass enclosed within a cylinder of angular radius θ. Obtaining the

Cartesian shear components γ1 and γ2 by deriving the deflection angle with respect to

the image position �θ, as given in Eq. (2.15), we can then rotate them to the tangential

projection:

γt(θ) = − θ

2πD2
LΣcrit

∂

∂θ

[
M(θ)

θ2

]
, (2.35)

which is the tangential shear in an annulus with radius θ produced by a spherical mass

distribution. Performing the derivative we obtain

γt(θ) = κ̄(≤ θ)− κ(θ), (2.36)

where κ is the surface density divided by the critical surfacemass densityΣcrit, as given

in Eq. (2.11) and κ̄ is the average of the convergence within the angular radius θ. If

we multiply the expression above by the critical surface mass density we obtain the

definition for the surface mass excessΔΣ:

ΔΣ ≡ γt(θ)Σcrit = Σ̄(< θ)− Σ(θ), (2.37)

which is a slightly more physical quantity.
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2.4 Galaxy-galaxy lensing

Galaxy-galaxy lensing (GGL) measures the effect some foreground galaxies (lenses)

have on the shapes that we see of some other background galaxies (sources) due to the

foreground galaxy masses, dominated by their dark matter halos. Since it is a corre-

lation between the shear of the source galaxies and the position of the lens galaxies, it

is sometimes referred as galaxy-shear correlation. The distortions in the shapes of the

background galaxies can be plotted as a function of their projected distance from the

center of a foreground galaxy. The density profile of the galaxy, including all its mass,

affects the shape of this shear vs. distance curve. Therefore, galaxy-galaxy lensing is

a powerful way to probe the relation between the mass and the luminosity of galax-

ies, i.e. between dark and baryonic matter. The tangential component of the shear,

described in the previous section, measured as a function of scale is one of the main

observables of galaxy-galaxy lensing. The tangential shear measurement is obtained

by grouping pairs of foreground and background galaxies by the angular separation

θ between them, measuring the tangential component of the ellipticity of the source

galaxies for each lens-source pair and finally averaging this tangential component in

each angular bin.

The first attempt to detect such a galaxy-galaxy lensing signalwas reported inTyson

et al. (1984), but the observational results of their study were inconclusive. A few years

later, Brainerd, Blandford & Smail (1996) presented the first detection and analysis of

galaxy-galaxy lensing. Since then, several surveys have measured this effect, including

theDark Energy Survey, for instancewith the tangential shearmeasurements presented

in this thesis.

Another galaxy-galaxy lensing estimator is the surface mass excessΔΣ, defined in

Eq. (2.37). If we wanted to estimateΔΣ for large separations between the lens and the

source galaxies, for instance much larger than the visible part of the foreground galaxy,

which usually extend up to 5–10 kpc, we could assume the signal is produced by a point

mass (if all the mass of the galaxy was contained in the visible part). For a point mass,

Σ(θ) is zero everywhere except at the origin, thus

ΔΣpoint mass(R) =
M

πR2
. (2.38)

Then for a point mass the signal falls asR−2, whereR is the projected distance between

the lens and the source galaxy. If we consider that a darkmatter halowith an isothermal

profile ρ ∝ r−2 surrounds the visible part of the galaxy, the point mass approximation

is no longer valid1. For an isothermal profile,ΔΣ has the following form:

1Usually r is used to refer to the 3D distance between galaxies andR to the projected one in the plane

of the sky.
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Figure 2.10: Predictions for the galaxy-galaxy lensing ΔΣ profile of background galaxies produced by a

foreground galaxy as a function of the projected distance between the two, from Dodelson (2017). The

point mass is meant to represent a galaxy with no dark matter and the isothermal halo one with a dark

matter halo. The two values of the point mass correspond to the mass of the isothermal halo within 10 kpc

(7× 1010M�) and 100 kpc (7× 1011M�). The two profiles are significantly different and observations
only agree with the isothermal halo profile.

ΔΣisothermal halo(R) =
σ2

2GR
, (2.39)

whereσ is the velocity dispersion of the elements that comprise the distribution (stars in

this case), which also serves as an indicator of themass of the galaxy. In Fig. 2.10, we can

see the difference in the two lensing signals. Current galaxy-galaxy lensing observations

of galaxy profiles are not compatible with a point mass (Dodelson, 2017). Therefore,

galaxy-galaxy lensing provides evidence for the existence of dark matter and can be

used to test galaxy profiles.

Besides being a very sensitive probe to the relation between baryonic matter and

dark matter, galaxy-galaxy lensing can also be used to constrain cosmological parame-

ters in combination with other probes, as we describe in the following sections and put

in practice in Part III of this thesis.

2.5 Cosmological weak lensing

In this section we want to relate weak lensing observables to cosmological param-

eters, in order to understand how we can extract cosmological information from mea-

surements such as the tangential shear. We will also describe the relation between the

tangential shear and other quantities such as the galaxy bias and show how we can

model it.
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2.5.1 Generalization of the lensing potential

First it is useful to generalize the lensing potential from Eq. (2.9) to extended lenses

in redshift, i.e. beyond the thin-lens approximation, since this approximation is not

appropriate to describe the lensing by the large-scale structures of the Universe. To

achieve this, we only need to move the distance factors inside the integral and it will

also be useful to convert the angular diameter distances we have been using so far to

comoving distances. Doing these changes and assuming a flat universe, the lensing po-

tential now reads as:

ψ(�θ) =
2

c2

∫ χs

0

χs − χl

χsχl
Φ′(χl

�θ, χl) dχl, (2.40)

where we have replaced the factor of angular diameter distances to:

Dls

DlDs
−→ (1 + zl)

χs − χl

χsχl
. (2.41)

Notice that angular diameter distances are not additive sinceDls is defined as:

Dls ≡ χs − χl

(1 + zs)
(Flat universe) (2.42)

in a flat universe. We also replaced the differential dz from Eq. (2.9), which was in

proper distance, to dz = 1/(1 + zl)dχ, using Eqs. (1.1) and (1.14). Also, notice the

3D Newtonian potential Φ is now a function of comoving distance and therefore has

a different form than in Eq. (2.9) and is labeled as Φ′. Finally, even though here we are

assuming a flat geometry for simplicity, the general reasoning of the rest of the section

is still valid with non-zero curvature, replacing the above distance changes with general

curvature ones and propagating them in every equation below.

2.5.2 Convergence as the projected matter density

Copying here again the 2-D Laplacian of the lensing potential (2.17) and the 3-D

Poisson equation (1.50) in comoving coordinates,

κ =
∇2ψ

2
, ∇2Φ =

4πG

c2
ρ̄m a2 δ (2.43)

and using the expression for the generalized lensing potential (2.40) and the one for the

mean matter density

ρ̄m =
3H2

0

8πG
Ωma−3 (2.44)
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we can relate the convergence κ to the density contrast δ to obtain:

κ(�θ, χ) =
3H2

0Ωm

2c2

∫ χ

0
dχ′χ′(χ− χ′)

χ

δ(χ′�θ, χ′)
a(χ′)

. (2.45)

Then, we can think of the convergence κ as the 2D projected analogue of the matter

overdensity δ, weighted by the lensing efficiency factor. For a redshift distribution of

sources nz(z)dz = nχ(χ)dχ, the convergence becomes:

κ(�θ) =

∫ χlim

0
dχnχ (χ)κ(�θ, χ) =

3H2
0Ωm

2c2

∫ χlim

0
dχ g(χ)χ

δ(χ�θ, χ)

a(χ)
, (2.46)

where χlim is the limiting comoving distance of the source galaxy sample and g(χ) is

the source-redshift weighted lens efficiency factor:

g(χ) =

∫ χlim

χ
dχ′ nχ(χ

′)
χ′ − χ

χ′ , (2.47)

which indicates the lensing strength of the combined source distribution at a distance

χ.

In the equations above, it already becomes apparent that weak lensing quantities

such as the convergence are directly related to the cosmological parameters which we

defined in the previous chapter, and not only through the direct proportional factors

from Eq. (2.45), but also through the relation between redshift and comoving distance

hidden in the same equation, through the scale factor and density contrast. However,

the convergence κ alone can only be measured directly through magnification, as seen

in Eq. (2.22), and this is hard to accomplish. Instead, the shear is the main observable

used in this thesis. However, deriving the equations for the convergence is simpler and

later we will see they can be easily related to the ones of shear.

2.5.3 Projected densities for the foreground distribution

The tangential shearmeasurement is the cross-correlation between the positions of

a foreground galaxy sample (usually projected in 2D) and the tangential component of

the shear of a source galaxy sample, also projected in 2D. One of the goals of this section

is to be able to relate the tangential shear measurement to cosmological parameters. To

achieve that it will be useful to first consider the expressions for projected densities of

the foreground galaxy sample, also simply called the lenses.
Consider a population of lens galaxies with a spatial number density n(�χ). The

number density of these galaxies on the sky at �θ is then N( �θ ) =
∫
dχ ν(χ)n(χ �θ),

where ν(χ) is the selection function, describing which fraction of galaxies at comoving

distance χ are included in the sample. In addition, ν(χ) accounts for the fact that for
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large distances, only the more luminous galaxies will be in the observed galaxy sample,

among other effects (Schneider, Kochaneck & Wambsganss 2006). The mean number

density of galaxies on the sky is N̄ =
∫
dχ ν(χ) n̄(χ) and the line of sight distribution

will be pf (χ) = ν(χ) n̄ (χ)/N̄ . Then, defining the 3D density contrast of galaxies

analogously to the one of matter

δg(�χ, z) ≡ ng(�χ, z)− n̄(z)

n̄(z)
, (2.48)

one finds that the projected number density of galaxiesN(�θ) is

N(�θ) = N̄

[
1 +

∫
dχ pf (χ) δg (χ �θ)

]
. (2.49)

Then, we can define the 2D fractional number density contrast κg as:

κg( �θ ) ≡ N( �θ )− N̄

N̄
=

∫
dχ pf (χ) δg(χ �θ), (2.50)

which is the 2D projection of the 3D galaxy density contrast δg .

2.5.4 Angular correlation function and angular power spectrum

As already discussed in Sec. 1.7.2, no theory is able to predict the exact positions of

overdensities and underdensities in the Universe, but only the statistical properties of

the density field. Thus, in the same way, we cannot predict the lensing effects produced

by this density field along one particular line of sight. Moreover, themean of the density

contrast vanishes 〈δ〉 = 〈κ〉 = 0, also in the 2D case with the convergence. Then, just

as in the 3D case, the information resides in the statistical properties of the distributions

beyond the mean. That is why in lensing we also use two-point correlation functions

(described also in Sec. 1.7.2) to compare with the theory predictions. They capture the

degree towhich lensing quantities such as the lensing potential, the deflection angle, the

convergence and the shear are correlatedwith each other, constituting the lensing auto-
correlations, or how they correlate with the density field, comprising the so-called cross-
correlations. As an example for the lensing auto-correlations, if some image distortion

is measured in one direction, the image distortion measured nearby should be similar.

The smaller the angle between the two directions, themore correlated they are expected

to be. The same happens for cross-correlations, the lensing distortions are expected to

be correlated with the density field producing them.

Here we are describing angular two-point correlation functions, which are the ones

commonly used in photometric surveys such as theDark Energy Survey, where the red-

shift is not knownwith enough accuracy to measure 3D correlation functions. Angular
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two-point correlation functions are a 2D projection of the 3D version, integrating over

all galaxies in a certain redshift range, i.e. correlating 2D quantities instead of 3D ones.

In analogy to Eq. (1.39), they are defined as:

ξαβ(θ) ≡
〈
α(�θ′)β(�θ′ + �θ)

〉
, (2.51)

whereα and β are the two quantities being correlated at the angular position �θ′ and �θ is
the angular separation between two positions. Ifα = β and it is a lensing quantity, then

ξ is a lensing autocorrelation function, often referred to as cosmic shear. If one of the two
quantities is the projected density field of foreground galaxies, ξ is a cross-correlation

between lensing and the density field, such as the tangential shear correlation in which

this thesis is particularly focused. As in the 3D case we derived in Sec. 1.7.2, the angular

two-point correlation function only depends on the absolute value of θ, but not on its

orientation due to the isotropy of the Universe. The corresponding Fourier-transform

of the correlation function, called angular power spectrum, is more convenient in some

occasions and is defined as

C(�) =
∫

d2θ ξ(θ) e−i�
·�θ, (2.52)

where �� is the two-dimensional wave vector conjugate to the angular separation �θ.

However, to reduce computing time, quite often the lensing power spectra are cal-

culated using the Limber approximation. It states that if the quantities α(�θ) and β(�θ)

defined in two dimensions are a projection of the quantities a(�r) and b(�r) defined in

three dimensions with a window functionW (χ), as in here

α(�θ) =

∫ χlim

0
dχWa(χ) a(χ�θ, χ), β(�θ) =

∫ χlim

0
dχWb(χ) b(χ�θ, χ), (2.53)

then the angular cross-power spectrum of α and β is given by

Cαβ(�) =
∫ χlim

0
dχ

Wα(χ)Wβ(χ)

χ2
Pab

(
�

χ

)
, (2.54)

wherePab(k) is the 3D cross-power spectrumofa and b, taken at the three-dimensional

wave number k = �/χ. Limber’s approximation holds if a, b vary on length scales

much smaller than the typical length scale of the window functionsWa,Wb. Thus, the

Limber approximation allows us to compute the statistics of any projected quantity as

an integral over the statistics of the 3D quantity. The above equation also gives the

relation for auto-correlations, when a = b, and then α = β.
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Lensing power spectra

Using Limber’s approximation described above, we are ready to compute the con-

vergence power spectrum and express it in terms of the 3Dmatter power spectrumPδδ .

This is useful because there are many efforts aimed at computing the 3D matter power

spectrum, using either linear theory or non-linear fitting formulas obtained from N-

body simulations, for instance as in Takahashi et al. (2012), which can be used to later

move to the lensing power spectra using the equations derived below. Equation (2.46)

shows that the convergence is a projection of the density contrast δ with the window

function

Wκ(χ) =
3H2

0Ωm

2c2
g(χ)χ

a(χ)
, (2.55)

Then, using Eq. (2.54), we obtain the convergence power spectrum

Cκκ(�) = 9H4
0Ω

2
m

4c2

∫ χlim

0
dχ

g2(χ)

a2(χ)
Pδδ

(
�

χ

)
, (2.56)

which becomes a projection of the 3D matter power spectrum. In this way, we can

also obtain the power spectrum of the cross-correlation between the convergence and

a foreground galaxy distribution, parametrized as the projected galaxy density κg , de-

fined in Eq. (2.50): 〈
κ̃(��) κ̃∗g(��)

〉
= (2π)2 δD(��− ��′) Cκg(�), (2.57)

by using the window function from Eq. (2.50):

Wκg = pf (χ) (2.58)

and the one from (2.55) again using Limber’s approximation, we obtain the angular

cross-power spectrum as a function of the 3D cross-power spectrum Pδg

Cκg(�) = 3H2
0Ωm

2c2

∫
dχ

g(χ)pf (χ)

a(χ)χ
Pδg

(
�

χ
, χ

)
, (2.59)

where pf (χ) is the radial distribution of the lens galaxy sample.

2.5.5 Modeling of the tangential shear

With all the above ingredients in place, now we can proceed to express the tangen-

tial shear as a function of the matter power spectrum as well. There is one subtlety

that we need to address first, though, since the tangential shear is a cross-correlation

between the lens galaxy positions and the source galaxy shears, not their convergence,
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while in the above equations we have derived the expressions for convergence auto-

and cross-power spectrum. Fortunately, a simple derivation shows that the shear and

convergence have identical power spectrum. To see this, we transform into Fourier

space the defining equations for κ and γ from Eq. (2.17):

κ̃(��) = −�2

2
ψ̃(��), γ̃1(��) =

−(�21 − �22)

2
ψ̃(��), γ̃2(��) = −�1�2ψ̃(��) (2.60)

Then,

4|γ̃|2 = [
(�21 − �22)

2 + 4�21�
2
2

] |ψ̃|2 = (�21 + �22)
2|ψ̃|2 = 4|κ̃|2, (2.61)

which shows that the convergence and the shear power spectra are the same Cκκ = Cγγ ,
and equivalently for the cross-power spectrum Cκg = Cγg . Then, if we express the
tangential shear γt(θ) as a function of the angular cross-power spectrum Cγg we will
be able to use expression (2.59) derived above. The tangential shear around a galaxy at

the origin is

γt(θ) ≡
〈
γt(�θ)κg(�0)

〉
=

= −
∫

d2�

(2π)2

∫
d2�′

(2π)2
e−2iφe−i �θ·�
′

〈
γ̃(��′) κ̃∗g(��)

〉
=

=

∫
d�

2π
� J2(θ�) Cγg(�),

(2.62)

where in the first step we have used expression (2.32) for the rotation to the tangential

component and applied the Fourier transform to the shear and galaxy convergence. In

the second step we have used the equivalent of Eq. (2.57) for shear and the definition

of the second order Bessel function of the first kind J2, which involves in an integral

over the variable φ. The expression for the tangential shear above can be reinterpreted

as the average tangential shear around many lens galaxies. Then, combining Eq. (2.62)

and (2.59), together with the fact that the power spectrum of shear and convergence are

the same, yields:

γt(θ) =
3H2

0Ωm

2c2

∫
d�

2π
� J2(θ�)

∫
dχ

g(χ)pf (χ)

a(χ)χ
Pδg

(
�

χ
, χ

)
. (2.63)

Finally, using the relation between the cross power spectrum and the matter power

spectrum from Eq. (1.54), the product b · r appears:

γt(θ) = b · r 3H2
0Ωm

2c2

∫
d�

2π
� J2(θ�)

∫
dχ

g(χ)pf (χ)

a(χ)χ
Pδδ

(
�

χ
, χ

)
, (2.64)
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which can be outside of the integral only if the galaxy bias and cross-correlation coef-

ficient are scale and redshift independent in the interval considered. Therefore, from

this expression we can see that the components needed to model the tangential shear

are: the matter power spectrum, the redshift distribution of the lens and source galaxy

samples, the scale factor, the galaxy bias and cross-correlation coefficient and a cos-

mological model. Alternatively, tangential shear measurements can be used to measure

cosmological parameters using this expression, in combination with other probes such

as galaxy clustering to break degeneracies with the galaxy bias, as we will do in Part. III

of this thesis.

2.6 CMB Lensing
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Figure 2.11: Lensing kernel of the CMB (solid line)

compared with the redshift distributions of DES Y1

source galaxies, divided in four tomographic bins

(shaded areas). DES source galaxies are only sensitive

to LSS in front of them, with the highest sensitivity be-

ing at approximately half the distance between us and

the source, while CMB lensing is able to probe struc-

tures at higher redshift. From Omori et al. (2018a).

Instead of using the light of galax-

ies to measure gravitational lensing ef-

fects produced by the large scale struc-

ture present between us and the source

galaxies, we can use the photons com-

ing from the Cosmic Microwave Back-

ground as the source of light. These

photons will be deflected in the same

way as the light from galaxy sources.

Using the CMB as the source of light

has the advantage that it allows to probe

structures at higher redshift, since the

CMB shell is at z � 1100 and therefore

its lensing kernel peaks around z ∼ 2,

as seen in Fig. 2.11 . Moreover, the red-

shift of the CMB is known with much

higher accuracy than the redshifts of

source galaxies from photometric sur-

veys, which is a major asset when mod-

eling the expected signal. On the other

hand, current CMB lensing maps are

usually noisier than galaxy shape measurements. Overall CMB lensing provides a com-

plementary and independent way of probing the large scale structure of the Universe.

The unlensed CMB: primordial anisotropies

Before going into the CMB lensing formalism we will discuss the unlensed CMB

in more detail, following from Section 1.4, where we discussed the origin of the CMB
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Figure 2.12: Planck 2018 temperature power spectrum (Planck Collaboration, 2018).TheΛCDM theoret-

ical spectrum best fit to the Planck likelihoods is plotted in light blue. The dashed vertical line is used to

indicate the change at � = 30 from logarithmic to linear in the horizontal.

photons and qualitatively described the anisotropies imprinted in the CMBmap. These

anisotropies, which are of the order of∼ 10−5, are caused by the density fluctuations in

the early Universe, arising from acoustic oscillations in the primordial photon-baryon

fluid. Hence, the CMB is a snapshot of those spatially varying oscillations a the time of

recombination, when photons decoupled from baryons. The small size of the pertur-

bations means that linear perturbation theory is very accurate, and the acoustic oscil-

lations can be modelled accurately to give robust predictions. Also, at the time of re-

combination, the correlations were homogeneous, which leads to the fact that Fourier

modes were uncorrelated with each other. This is reflected in the temperature power

spectrum: 〈
T̃ (��)T̃ ∗(��′)

〉
= (2π)2 δ2D(

��− ��′) C
, (2.65)

which characterizes the temperature anisotropies in the CMB. Thus, measuring tem-

perature fluctuations we can obtain the CMB power spectrum. The perturbations on

this high redshift last-scattering surface are themain contribution to theCMBanisotropy

observed, with additional large-scale anisotropies from the integrated Sachs-Wolfe (ISW)

effect from evolving potentials along the line of sight.

In Fig. 2.12 it is shown the CMB spectrummeasured from Planck data. The hot and
cold spots from the CMB have typical sizes of order a degree, and this corresponds to

the first peak at multipole � ∼ π/1◦ ∼ 200, as seen in the figure. Overall, the CMB

power spectrum carries an enormous amount of information coming mostly from the
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early Universe which can be used to constrain cosmological parameters. For this pur-

pose, the lensing of the CMB is important as a contaminant. However, in Part. IV of

this thesis we will use the CMB lensing map as the main signal.

The lensed CMB

Figure 2.13: An exaggerated example

of the lensing effect on a 10o × 10o

field, from Hu & Okamoto (2002a). Top:
unlensed temperature field. Bottom:
Lensed temperature field by a spherically

symmetric deflection field.

The deflections of the CMB photons due to

lensing are small, of order arcminutes, but the

structures producing the lensing are much larger,

subtending degree scales. Thus, in the con-

text of CMB lensing, measuring the small scale

anisotropies gives us information about the large-

scale structure of the Universe. In other words, the

types of structure that produce CMB anisotropies

are long wavelength, linear density fluctuations.

These fluctuations themselves are Gaussian and

hence CMB lensing is lensing of a Gaussian ran-

dom field by a Gaussian random field, in contrast

to cosmic shear.

To perform CMB lensing measurements we

need to transform the CMB temperature map to

a convergence map. Extracting the lensing map

out of the temperature map is not an immediate

process, since both effects are mixed. However we

can use the fact that realizations of the temperature

spectrum would be the same in every region of the

sky in the absence of lensing, while lensing distorts

the spectrum depending on how much mass there

is along each line of sight, e.g., when the CMB pho-

tons pass by a region of nonzero convergence, they

get deflected. For instance, when they pass through

a hot spot, with κ > 0, the lensed image appears

larger, in the same way as we illustrated in Fig. 2.5.

If the hot spot can be approximated as a circle in the sky with angular radius θ, then its

observed radius will be θ′ = θ (1+ κ). This effect is shown in Fig. 2.13. Then, without

lensing, since the correlation function does not depend on position, the Fourier modes

are uncorrelated with each other, and
〈
T̃ (��)T̃ ∗(��′)

〉
is proportional to a Dirac delta

function with argument �� − ��′. The inhomogeneity induced by the convergence leads

to a break down of this relation: in the presence of lensing themodes with different val-

ues of ��will be correlated. We can use these correlations to reconstruct the lensing map
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Figure 2.14: CMB lensing map from combined South Pole Telescope and Planck data on the SPT field in

the South Hemisphere, overlapping with the Dark Energy Survey footprint The map has been smoothed

with a Gaussian kernel with FWHM = 2 degrees. This map is presented in Omori et al. (2017).

in the following way. The observed lensed temperature field is equal to the unlensed

temperature at position �θ − �α:

T len(�θ) = T unl(�θ − �α). (2.66)

Then, performing a Taylor expansion for small deflection angles �α:

T len(�θ) = T unl(�θ)− ∂T unl

∂θi
αi, (2.67)

and, using the fact that the deflection angle is the gradient of the potential, leads to

(Dodelson, 2017):〈
T̃ (��)T̃ ∗(��′)

〉
�
�=�
′

� C�
′��′ · (��− ��′) Φ̃(��− ��′) + c.c., (2.68)

in Fourier space and where c.c. stands for complex conjugate. Hence, since the con-

vergence field κ is also related to the gravitational potential, the lensing map can be

recovered using this method. In Fig. 2.14 we show a CMB lensing map obtained from

a combination of South Pole Telescope (SPT) and Planck data. In Omori et al. (2017)

more details on how to reconstruct CMB lensing maps can be found.
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Chapter 3

The Dark Energy Survey

The Dark Energy Survey (DES) is designed to probe the origin of the accelerating

expansion of the Universe and help understand the nature of dark energy by measur-

ing the history of cosmic expansion with high precision, as well as the history of the

growth of structure in the Universe. More than 400 scientists from 25 institutions in

the United States, Spain, the United Kingdom, Brazil, Germany, Switzerland and Aus-

tralia are working on the project. A map locating the institutes that are part of the DES

collaboration is shown in Fig 3.1. The collaboration has built an extremely sensitive

570-Megapixel digital camera with a 3 deg2 field-of-view, DECam (Flaugher et al. 2015;

Honscheid, DePoy et al. 2008), which is shown in Fig. 3.2, mounted at the prime focus

of the Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory (CTIO),

in northern Chile. DECam was installed in the second semester of 2012. In Fig. 3.3 we

show its first image.

The Dark Energy Survey officially began taking data in August 2013 and finished in

January 2019, after 758 nights of observations. The survey covers∼5000 square degrees

of the southern sky. After processing all images taken, DES will have measured shapes,

photometric redshifts and positions for 300 million galaxies. Also, it will have detected

tens of thousands of galaxy clusters and about 3000 type Ia SNe. DES represents an

increase in volume over the Sloan Digital Sky Survey (SDSS) of roughly a factor of 7

(Flaugher et al. 2015). DECam observes in 5 broadband optical filters grizY , shown in

Fig. 3.4, with a nominal limiting magnitude of iAB � 24. DES conducts two distinct

multi-band imaging surveys: a ∼5000 deg2 wide-area survey in the grizY bands and

a∼27 deg2 deep supernova survey observed in the griz bands with a∼7-day cadence

(Diehl et al. 2014, Kessler et al. 2015). The wide-field survey uses exposure times of 90s

for griz and 45s for Y band.

A single raw DECam exposure is ∼0.5 GB in size (compressed), and DES collects

∼300 science exposures per night, depending on the season, survey strategy, and on

the SN fields schedule. These data are transferred to NOAO for archiving and to NCSA
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Figure 3.1: Insitutions that are part of the Dark Energy Survey Collaboration.

for further evaluation and processing by the DESDM system. Reduction consists of

standard image corrections of the raw CCD information to remove instrumental sig-

natures and artifacts and the joining of these images into 0.5 square degree combined

images, called “tiles”. Then, galaxies and stars in the images are identified, catalogued,

and finally their properties measured and stored in a database.

TheDark Energy Survey has the potential to combine four different probes to study

dark energy. The first two probes are purely geometrical and will help constrain the

expansion of the Universe. On the other hand, the last two probes have information

on both the geometry and the evolution of the matter distribution in the Universe. The

four probes are:

1. Type Ia Supernovae (SN): These objects are nearly “standard candles”, which

means that they almost have equal luminosity when they reach their brightest

phase. Hence, we can use their apparent magnitude in order to estimate their

distance. Comparing the redshift with the luminosity distance (Hubble diagram)

for a large number of supernovae, we can derive the history of the expansion rate

of the Universe.

2. Baryon Acoustic Oscillations (BAO): The Baryon Acoustic Oscillations refer

to fluctuations in the density of matter in the Universe, caused by acoustic waves

in the primordial photon-baryon plasma. This early-Universe phenomenon gets

imprinted in the large scale structure of the matter distribution in the Universe.
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Figure 3.2: TheDark EnergyCamera, mounted at the Blanco telescope at the Cerro Tololo Inter-American

Observatory in Chile. The Dark Energy Camera features 62 charge-coupled devices (CCDs) for imaging

and 12 CCDs for guiding and focus, which record a total of 570 megapixels per snapshot. Credit: Reidar

Hahn/Fermilab.

Then, there is a slight increase in the chance of finding lumps ofmatter and there-

fore galaxies, separated by a certain distance, defined by the sound horizon dis-

tance, which provides a “standard ruler” for cosmological distancemeasurements

at recombination.

3. Weak Gravitational Lensing (WL): This is the main probe used in this thesis

and described in detail in Chapter 2. The general relativistic deflection of light

rays by matter allows a statistical reconstruction of the gravitational potential in

the sky. It probes the distribution of not only visible matter but also dark matter.

WL effects depend both on how clumped the distribution of dark matter is and

on the distances to the lensing structure and the object being lensed.

4. Galaxy Clusters (GC): The number of galaxy clusters of a given mass within

a given volume of the Universe as a function of time carries information about

the history of growth and geometry of the Universe. This is because dark energy

influences how the Universe expands, so it affects how the volume grows over

time, and also since the formation of a galaxy cluster depends on bothmatter and

dark energy.

The fact that DES will be able to use all four probes is one of its big advantages, as

demonstrated in DES Collaboration (2018a). This thesis is focused on the weak lensing

one using data from the DES Science Verification (SV) period and from the first year

of observations (Y1). SV data were taken from November 2012 to February 2013 and

∼ 250 square degrees of the sky were covered to the nominal DES depth, iAB � 24.
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Figure 3.3: Left: DECam’s first image in September 2012, with the Fornax Cluster. In a typical deep

exposure, DECam can observe 150000 galaxies in a single shot. Credit: Dark Energy SurveyCollaboration.

Right: DES footprint. In red it is shown the Science Verification (SV) footprint, in green the footprint from
the first year of observations (Y1), and in blue the final DES footprint. Credit: Nacho Sevilla.

Figure 3.4: Standard Bandpasses for the DECam g, r, i, z and Y filters. The bandpasses represent the

total system throughput, including atmospheric transmission (airmass = 1.2) and the average instrumental

response across the science CCDs (Abbott et al., 2018b).
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Y1 images were taken between August 2013 and February 2014 reaching a limiting

magnitude of ≈ 22.5 in the i-band (with a mean of 3 exposures out of the planned 10

for the full survey). In Fig. 3.3 the footprints from each of these data sets are shown. In

this thesis, both for SV and for Y1 data, only the largest contiguous area is used from

each data set. For SV, this corresponds to the part contained in the South Pole Telescope

East (SPT-E) observing regionwith 60◦ < RA < 95◦ and−61◦ < Dec < −40◦, which
covers 163 sq. deg. For Y1, this corresponds to the contiguous region of 1321 sq. deg.

which also overlaps with the South Pole Telescope footprint.

In this thesis we make use of two main data products measured within the DES

collaboration that are essential to perform weak lensing studies. These are the redshift

and shape measurements of the galaxies, which are both obtained via complex pro-

cesses. Below we aim to briefly describe the principal methods used within the field,

and particularly within the DES collaboration, to compute the redshifts and the shapes

of galaxies in a photometric survey.

3.1 Redshift estimation

The redshift is a very important quantity because it is the main observable which

is related to the scale factor and to the comoving distance of an object. As we saw in

Sec. 2.5, it is essential to characterize the redshift distribution of the samples involved in

weak lensing analyses in order to model the expected signal. In this section we describe

three main ways to estimate it:

• The spectroscopic redshift (spec-z) of an object can be computed using its spec-

trum, which is obtained with an spectrograph. Then, to determine the redshift,

one searches for features in the spectrum such as absorption lines, emission lines,

or other variations in light intensity. If found, these features can be compared

with known features in the spectrum of local galaxies. If the same spectral line

is identified in both spectra at different wavelengths, then the redshift can be

calculated using Eq. (1.5).

• The photometric redshift (photo-z) of an object can be obtained using the pho-
tometry, that is, the flux of the object viewed through various standard filters,

each of which lets through a relatively broad spectrum of colors. There are two

main ways to estimate photometric redshifts: template fitting and training meth-

ods. In template fittingmethods, themeasured broadband galaxy spectral energy

distribution obtained from the fluxes is compared to a set of redshifted galaxy

templates until a best match is found, thereby determining both the galaxy spec-

tral type and its redshift. On the other hand, in trainingmethods, a set of galaxies

with known spectroscopic redshifts is used to train amachine-learning algorithm
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(an artificial neural network, for example), which is then applied over the galaxy

set of interest.

• For a set of galaxies, there is an alternative to photometric redshifts, which has

been developed recently and makes use of the clustering information. The clus-
tering redshift technique (cluster-z) allows us to obtain the redshift distribution
of a sample of galaxies by measuring the clustering between the sample of in-

terest and another sample for which we have accurate redshift information (the

reference sample). The reference sample is usually split in narrow redshift bins,

for which the angular cross-correlation with the sample of interest is measured.

The redshift distribution is then proportional to the amplitude of the clustering

in each of the redshift bins. This method has proven very useful in recent cos-

mological analyses despite its main current limitations which are being able to

model the galaxy bias of each of the samples and the scarcity of reference samples

at high redshift.

In DES, even though only photometric and clustering redshifts can be obtained

directly, spectroscopic redshifts coming from other surveys are used to calibrate and/or

validate photometric redshift information. In particular, the Science Verification (SV)

area was chosen to overlap with several deep spectroscopic surveys, such as VVDS (Le

Fèvre et al., 2005), ACES (Cooper et al., 2012) and zCOSMOS (Lilly et al., 2007) to be

able to calibrate the photo-z’s. This is not an easy task and currently there exist several

photometric redshift codes with different performances that were discussed in detail

in Sánchez et al. (2014), for DES SV, and in Bonnett et al. (2016) for the shape catalogs

of this initial data set. In Bonnett et al. (2016), the four best performing photo-z codes

according to Sánchez et al. (2014) were studied: TPZ (Carrasco Kind & Brunner, 2013),

BPZ (Benitez, 2000; Coe et al., 2006), SkyNet (Graff et al., 2014; Bonnett, 2015) and

ANNz2 (Sadeh, Abdalla & Lahav, 2015). A brief description of each of these photo-z

codes is given below (see Sánchez et al. (2014) for a more extended one):

• BPZ is a template-based method that provides the probability density distribution

p(z|mi, σi) that a galaxy with magnitudes in each bandmi ± σi is at redshift z.

• TPZ is a training-based code based on prediction trees and random forest algo-

rithms.

• SkyNet is a training-based method using a neural network algorithm to classify

galaxies in classes, in this case redshift bins.

• ANNz2 is the updated version of ANNz (ArtificialNeuralNetwork). It is a training-

based method which relies on Artificial Neural Networks (ANNs), and in the up-
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dated version ANNz2, also on BoostedDecision Trees (BDTs) andK-NearestNeigh-

bours (KNNs), as implemented in the TMVA package (Hoecker et al., 2007).

These codes became the most used for weak lensing studies in the SV period, in

particular to estimate the N(z) of the shape catalog. On the other hand, BPZ was

the code preferentially used to estimate the redshift distribution of the source galaxy

catalog in DES Y1 weak lensing studies. Details about the BPZ aplication to DES Y1

data can be found in Sec. 5.3.3 and more extensively in Hoyle et al. (2018).

3.2 Shape estimation

Galaxy shapemeasurements are essential to performweak lensing studies. Actually,

having a shape catalog is the main driver for the existence of photometric surveys. In

Sec. 2.3 we already introduced the basic equations related to the estimation of galaxy

shapes and here we focus on the application to these methods to DES data, particularly

on the different codes that were applied to DES SV and DES Y1 data.

Figure 3.5: A HEALPix map of the SPT-E region,

with the SV area. The white background shows the

full baseline catalog, called the “Gold” catalog. The

colours show the galaxy density in the ngmix shape

catalog for SV. The map for im3shape is qualitatively

similar, although about 40% shallower. Figure from

Jarvis et al. (2016).

In general, one of the features that

every shape catalog needs to have is a

validation procedure. Typically, this is

done using simulations. The basic idea

is to simulate what measurements from

surveys look like given a known shear

and test how well the shape measure-

ment code recovers the input shear. The

quantitative metric usually employed for

these tests includes the possibility that

the measured shears retrieve the true

shears multiplied by constant and with

some offset:

γmeasured
i

1− κ
= mi

γtruei

1− κ
+ ci, (3.1)

where mi and ci are called multiplica-

tive and additive shear bias, respectively.

Note that we use the reduced shear for

this, although the difference between the

reduced and bare shears is irrelevant for most weak lensing applications.

In DES SV, the ngmix and im3shape pipelines were used, which were both based

on validation with simulations. They are two independent shape estimation pipelines

both based on model-fitting algorithms, which are discussed in more detail in Jarvis

61



The Dark Energy Survey

Figure 3.6: The DES Y1 shape catalog footprint with galaxy density of the Metacalibration catalog

shown with the nominal 5-year DES footprint outline overlayed. im3shape is qualitatively similar, but

slightly shallower. Figure from Zuntz et al. (2018).

et al. (2016). In Fig. 3.5 we show the DES SV ngmix shape catalog.

For DES Y1, the ngmix code was upgraded to become the Metacalibration cata-

log, that is based on a newly developed technique which allows to use the data itself to

calibrate the shape measurements. Instead of multiplicative and additive shear biases

as described above, Metacalibration uses the so-called responses, explained in more

detail in Sec. 5.4.1. In Fig. 3.6 we show the Metacalibration number density over the

DESY1 footprint. Moreover, im3shapewas also applied toDESY1, althoughwith some

modifications with respect to the SV code. More information on the exact application

of these methods to DES Y1 can be found in Zuntz et al. (2018). Here we summarize

the main features of each pipeline:

• im3shape: It is based on the algorithm in Zuntz et al. (2013), modified according to

Jarvis et al. (2016) for SV, and with the additions described in Zuntz et al. (2018) for

DES Y1. It performs a maximum likelihood fit using a bulge-or-disk galaxy model

to estimate the ellipticity of a galaxy, i.e. it fits de Vaucouleurs bulge and exponential

disk components to galaxy images in the r band, with shear biases calibrated from

realistic simulations (Zuntz et al., 2018; Samuroff et al., 2018).

• ngmix: The ngmix shape pipeline (Sheldon, 2014) for the DES SV catalogs uses an

exponential disk model for the galaxy, which is fit simultaneously in the riz bands.

To estimate the ellipticity, the lensfit algorithm (Miller et al., 2007) is used. The

lensfit method requires a prior on the ellipticity distribution p (e), taken from the
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galaxies in the COSMOS catalog (Koekemoer et al., 2007).

• Metacalibration: Metacalibration (Huff & Mandelbaum, 2017; Sheldon &

Huff, 2017) is a recently developedmethod to accuratelymeasureweak lensing shear

using only the available imaging data, without need for prior information about

galaxy properties or calibration from simulations. The method involves distorting

the image with a small known shear, and calculating the response of a shear estima-

tor to that applied shear. This new technique can be applied to any shear estimation

code provided it fulfills certain requirements. For DES Y1, it has been applied to the

ngmix shape pipeline, which fits a Gaussian model simultaneously in the riz bands

to measure the ellipticities of the galaxies. The details of this implementation can be

found in Zuntz et al. (2018). In this thesis, we will refer to the ngmix shape catalog

calibrated using that procedure as Metacalibration.
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Part II

Galaxy bias

In this part we use early DES data to measure the galaxy bias of the benchmark

Science Verification sample using galaxy-galaxy lensing and compare our results

with those obtained using galaxy clustering in Crocce et al. (2016), and analogous

results using CMB lensing from Giannantonio et al. (2016).
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Chapter 4

Galaxy bias from galaxy-galaxy lensing in the

DES Science Verification Data

4.1 Introduction

Studying the large-scale structure of the Universe provides valuable information

about its composition, origin and ultimate fate. Since most of the mass in the Uni-

verse is in the form of invisible dark matter, observations of galaxies must be used as

a proxy to trace the dark matter on cosmological scales. However, galaxies are not

perfect tracers of the underlying mass distribution, and thus, it is important to under-

stand the relationship between the large-scale distribution of (mostly dark) matter and

that of galaxies. Most of the cosmological information in the matter distribution can

be encapsulated in the power spectrum of matter density fluctuations (all in the case

of a Gaussian random field), Pδδ(k, z), as a function of wavenumber k and redshift z.

The power spectrum of the galaxy number density fluctuations, Pgg(k, z), can then be

related to the matter power spectrum as (Kaiser, 1984; Bardeen et al., 1986):

Pgg(k, z) = b2(k, z)Pδδ(k, z) , (4.1)

where b (k, z) is the so-called galaxy bias parameter, which is expected to be indepen-

dent of k at large separations (small enough k). It is therefore important to learn about

the properties of the galaxy bias.

One way to measure the galaxy bias is to use galaxy clustering, comparing the an-

gular two-point correlation function of galaxies (essentially the Fourier transform of

Pgg) with the theoretically-predicted matter two-point correlation function, to extract

directly b (z) at large-enough separation scales. Anotherway to probe thematter distri-

bution is to use gravitational lensing (see Bartelmann & Schneider, 2001 for a review).

A usual approach to measure gravitational lensing is to correlate some estimate of the

lensing power with a tracer of the matter density field, such as galaxies. However, in
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this case, in the standard parametrization given by (4.1), an additional factor appears

to relate the matter power spectrum and the galaxy-matter cross-power spectrum Pgδ

(Dekel & Lahav, 1999):

Pδg(k, z) = b (k, z) r (k, z)Pδδ(k, z), (4.2)

where the cross-correlation parameter r (k, z) (Pen, 1998) connects not the amplitudes

but the phases of the two distributions. If the distributions are completely correlated

and thus the mapping between them is deterministic, then r = 1. On the other hand, if

stochasticity and/or non-linearities are present in the relationship between the galaxy

and matter distributions, then r �= 1 (Simon et al., 2007). At large scales, however, r is

expected to be close to 1 (Baldauf et al., 2010).

One possibleway to probe the galaxy-matter cross-power spectrum is to use galaxy-

CMB cross-correlations, first detected in Smith, Zahn & Doré (2007), where lensing

maps of the Cosmic Microwave Background photons are cross-correlated with a den-

sity map of some foreground galaxies. Another possibility is to use galaxy-shear cross-

correlations, orwhat is usually called galaxy-galaxy lensing (Tyson et al., 1984; Brainerd,

Blandford & Smail, 1996), which is the measurement of the tangential shear of back-

ground (source) galaxies around foreground (lens) galaxies. The amount of distortion

in the shape of source galaxies is correlated with the amount of mass causing the light

to curve. Galaxy-galaxy lensing at large scales has been used to probe cosmology, for

instance in Mandelbaum et al. (2013) and in Kwan et al. (2017), and at smaller scales to

learn about the dark matter haloes, as in Sheldon et al. (2004), Velander et al. (2014) and

Hudson et al. (2015).

The Dark Energy Survey (DES) Science Verification (SV) period of observations

took place between November 2012 and February 2013 that provided science-quality

imaging for almost 200 sq. deg. at the nominal depth of the survey. As described above,

there are many ways to obtain information on b (k, z), and several have already been

attempted with this DES-SV data set. In Crocce et al. (2016) (henceforth Cr16), galaxy

clustering measurements were performed to obtain the galaxy bias. The results, de-

picted in fig. 11 in Cr16, show a moderate increase of the galaxy bias with redshift,

an increase that is expected based on numerical simulations (Gaztañaga et al., 2012),

and also observed in other studies such as Coupon et al. (2012) from CFHTLS mea-

surements. In Giannantonio et al. (2016) (henceforth G16) galaxy-CMB lensing cross-

correlations of the same foreground galaxy sample as inCr16were presented, providing

another measurement of the relationship between the mass and galaxy distributions.

The results in G16, displayed in their fig. 21, show a moderate tension with those in

Cr16, of ∼ 2σ using the full galaxy sample at 0.2 < z < 1.2, and particularly at the

lowest redshift, where the tension is∼ 3σ. Since the two galaxy samples are identical,

the most straightforward way to reconcile the two measurements within the standard
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ΛCDM cosmological model is by assuming that r differs significantly from 1 (r � 0.6)

at redshift z ∼ 0.3, a somewhat unexpected result.

In this work, we provide a third probe to measure the galaxy bias, using galaxy-

galaxy lensing on the same foreground galaxy sample as the one used in Cr16 and

G16, so that we can readily compare our results and shed light on the apparent tension

mentioned above. The background set of galaxies we use is that introduced in Jarvis

et al. (2016), which was used in previous DES weak lensing analyses (Baxter et al., 2016;

Becker et al., 2016; Kacprzak et al., 2016; Kwan et al., 2017; Sánchez et al., 2017; DES

Collaboration, 2015). Particularly, Clampitt et al. (2017) performed a series of shear

tests using galaxy-galaxy lensing with the DES redMaGiC sample (Rozo et al., 2016)

as lenses. Note that the background (source) galaxy sample only serves to illuminate

the foreground (lens) sample, which is the one we will gain knowledge of. An advan-

tage of this method is that, since it involves the cross-correlation between source galaxy

shapes and lens galaxy density, it is, at least at first order, insensitive to those additive

systematic effects that affect only one of these two galaxy samples, such as additive shear

biases.

Along similar lines, Chang et al. (2016) used the ratio between the (foreground)

galaxy density maps and the mass maps obtained from weak lensing in DES-SV to de-

termine the galaxy bias parameter for the same galaxy sample as in Cr16 and G16. The

approach used in Chang et al. (2016) has the advantage of being weakly dependent on

the assumed cosmological parameters, such as the amplitude of the power spectrum of

matter fluctuations, σ8, but, on the other hand, in the relatively small DES-SV sample,

its statistical power is somewhat limited. Chang et al. (2016) assumed r = 1, and, as

shown in their fig. 6, their results are generally more in agreement with those in Cr16,

although the errors are large. The measurements presented in this work are sensitive

to the product b · r and therefore can help resolve the apparent discrepancy between

the results in G16 (that measure b · r as well) and Cr16 (that measure b).

Since themain goal of the chapter is to compare with the galaxy bias results in Cr16

and G16, the same lens galaxy sample is used, despite its limited resolution. Then, our

lens and source samples, defined in Sec. 4.3, significantly overlap in redshift. Other

studies of galaxy-galaxy lensing (Nakajima et al., 2012; Hudson et al., 2015) have cho-

sen to eliminate pairs of lens-source galaxies that are close in estimated redshift. We

instead model the overlap in the computation of the predicted signal, which relies on

the calibrated redshift distributions for lenses and sources, as described in Sánchez et al.

(2014), Cr16 and Bonnett et al. (2016). In the DES-SV papers that use galaxy-galaxy

lensing to obtain cosmological results (Clampitt et al., 2017; Kwan et al., 2017), an al-

ternative lens sample composed of luminous red galaxies selected using the redMaGiC

algorithm (Rozo et al., 2016) was instead used, with very precise photometric redshifts

(σ(z) � 0.02). A similar redMaGiC lens sample has been used for the DES Year 1

cosmological analysis, presented later in this thesis, in Part III.
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The outline of this chapter is as follows. First, in Sec. 4.2 we explain the theory and

the method employed to measure the galaxy bias using galaxy-galaxy lensing; next, in

Sec. 4.3 we describe the data that we use; then, in Sec. 4.4, we present the methodology

used to do our measurements and obtain the results, which are presented in Sec. 4.5;

then in Sec. 4.6 we discuss the possible implications potential systematics might have

on our measurements and finally, in Sec. 4.7 we further discuss our results comparing

them to previous work and conclude.

4.2 Theory and method

Our goal is to measure the galaxy bias using galaxy-galaxy lensing, which mea-

sures the effect some foreground mass distribution traced by galaxies (lenses) has on

the shapes that we observe of some other background galaxies (sources). This small

distortion on the shape of the galaxy image is referred to as cosmic shear. The main

observable of galaxy-galaxy lensing is the tangential shear, which can be expressed as

a function of the matter power spectrum Pδδ , as derived in Sec. 2.5.5 using Limber’s

approximation and through the galaxy bias b and the cross-correlation coefficient be-

tween matter and galaxy fluctuations r, defined in Sec. 1.7.4:

γt(θ) =
3H2

0Ωm

2c2

∫
d�

2π
� J2(θ�)

∫
dχ

[
g(χ)nl(χ)

a(χ)χ

b (k =
�

χ
, χ) r (k =

�

χ
, χ)Pδδ

(
k =

�

χ
, χ

)]
,

(4.3)

where χ is the comoving distance to a lens galaxy, nl(χ) is the distribution along the

line of sight of the lens sample, a(χ) is the scale factor and g(χ) is the lens efficiency

factor:

g(χ) =

∫ χh

χ
dχ′ ns(χ

′)
χ′ − χ

χ′ , (4.4)

where χlim is the limiting comoving distance of the source galaxy sample and ns(χ
′)

the distribution of the source sample in comoving distance. For this analysis, we mea-

sured the redshift distribution for both the lens and the source sample n′(z), which we
then converted to the distribution in comoving distance using the relation n′(z)dz =

n(χ)dχ.

In general, both the galaxy bias and the cross-correlation coefficient depend on

the scale and on the comoving distance to the lens galaxy χ, or similarly, on redshift.

However, if we assume b · r is redshift and scale independent in the lens sample con-

sidered, the factor b · r can be taken out of the integrals along the line of sight and

over the scales in 4.3. In this case, γt is directly proportional to b · r, which in reality
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is an effective average over the redshift range of the given bin and the scales consid-

ered in the measurement. This assumption is reasonable on large scales – larger than a

few times the typical size of a dark matter halo (Mandelbaum et al., 2013) – where the

galaxy bias tends to a constant value and we can use the linear bias approximation. The

cross-correlation coefficient is also expected to be scale independent at large scales, ap-

proaching unity (Baldauf et al., 2010). The dependence on χ, or equivalently redshift,

can beminimized using narrow-enough redshift bins and assuming the galaxy bias does

not evolve within them. Hence, the factor b · r of a lens galaxy sample can be measured

by comparing the predicted or modelled tangential shear using (4.3), with b · r = 1, to

the measured tangential shear around the lens galaxy sample.

To model the tangential shear, we assume a fiducial flat ΛCDM+ν (1 massive neu-

trino) cosmological model based on the Planck 2013 + WMAP polarization + highL

(ACT/SPT) + BAO best-fit parameters (Ade et al., 2014), consistently with Cr16 and

G16: Ωm = 0.307, Ων = 0.00139, Ωb = 0.0483, σ8 = 0.829, ns = 0.961,

τ = 0.0952 and h = 0.678, and we compute the non-linear power spectrum with

Halofit (Smith et al., 2003; Takahashi et al., 2012) using CosmoSIS1 (Zuntz et al.,

2015a).

4.3 Description of the data

In this chapter we use data from the Science Verification (SV) period from the Dark

Energy Survey (DES). During the SV period, � 200 sq. deg. of the sky were imaged to

the nominal DES depth, which produced a usable catalog for early science results. The

region used in this chapter is the largest contiguous area in the SV footprint, contained

in the South Pole Telescope East (SPT-E) observing region with 60◦ < RA < 95◦ and
−61◦ < Dec < −40◦, which covers 163 sq. deg.

The most numerous catalog of reliable objects in DES-SV is the SVA1 Gold Cata-

log2, which excludes objects that are known to be problematic in some way, because

of, for instance, failed observations or imaging artefacts. It is generated by applying

the cuts and conditions described in Jarvis et al. (2016). The SPT-E region of the Gold

Catalog covers 148 sq. deg. of the sky.

4.3.1 The lenses: The Benchmark sample

The foreground catalog for the galaxy-galaxy lensing measurements in this work

is the Benchmark sample, which is a subsample of the Gold Catalog. The Benchmark

sample was first introduced in Cr16 to perform galaxy clustering measurements, and it

1https://bitbucket.org/joezuntz/cosmosis/wiki/Home
2Publicly available at https://des.ncsa.illinois.edu/releases/sva1
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was used in G16 to perform measurements of CMB lensing around foreground galax-

ies. From the SPT-E region of the Gold Catalog, the Benchmark sample is selected by

applying the following selection criteria:

• Dec > −60◦: Conservative cut to remove any possible contamination from the

LMC3.

• 18 < i < 22.5: Magnitude cut in the i-band, where i refers to SExtractor’s
MAG_AUTO (Bertin & Arnouts, 1996).

• −1 < g − r < 3,−1 < r − i < 2,−1 < i− z < 2: Color cuts to remove outliers

in color space. In this case, the magnitude used is MAG_DETMODEL since it produces
more accurate colors than MAG_AUTO.

• WAVG_SPREAD_MODEL > 0.003: star-galaxy separation cut. SPREAD_MODEL is a

SExtractor parameter that measures the light concentration of an object (Desai

et al., 2012). WAVG_SPREAD_MODEL is the weighted average of the SPREAD_MODEL
values for all single epoch images used to coadd one object.

• More conservative cut to remove defective objects than the one applied in the Gold

Catalog4.

Furthermore, amaskwhich ensures the completeness of the sample is applied. Only

regions deeper than i = 22.5 are included (Cr16), providing a catalog with 2, 333, 314

objects remaining, covering 116.2 sq. deg.

4.3.2 The Sources: Shape Catalogs

The source catalogs for this work are the SV shape catalogs ngmix and im3shape,

which have been produced for a subset of objects of the DES-SV Gold Catalog in the

SPT-E region, as described in Sec. 3.2. Throughout this work, the ngmix shape catalog

is used as the fiducial source catalog, since it has a larger raw galaxy number density,

6.9 arcmin−2, as opposed to 4.2 arcmin−2 for im3shape (Jarvis et al., 2016), see Fig. 3.5

for ngmix. Also, more details on each shear pipeline are given in Sec. 3.2.

In this work, a weight factor ω related to the uncertainty in the measurement of the

galaxy shape is assigned to each object in the following way:

ω =
1

σ2
SN + σ2

e

, (4.5)

3Note that in G16 a slightly different cut of Dec > −61◦ was applied.
4Badflag≤ 1.
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Lens redshift bins Source redshift bins

1st
0.2 ≤ zTPZ < 0.4

0.55 < zSkyNet < 1.3
0.2 ≤ zBPZ < 0.4

2nd
0.4 ≤ zTPZ < 0.6

0.55 < zSkyNet < 1.3
0.4 ≤ zBPZ < 0.6

3rd
0.6 ≤ zTPZ < 0.8

0.83 < zSkyNet < 1.3
0.6 ≤ zBPZ < 0.8

Table 4.1: Definition of the lens and source redshift bins used throughout the chapter. The lens redshift

bins are identical to the ones in Cr16 and G16, defined with BPZ and TPZ as well. The source redshift

bins are the same studied in Bonnett et al. (2016) and used in other DES-SV weak lensing analyses, where

SkyNet is used to define the bins. zTPZ, zBPZ and zSkyNet stand for the mean of the photo-z probability

density function for each galaxy determined with each code.

where σSN represents the shape noise per component – the standard deviation of the

intrinsic ellipticities – and σe themeasurement uncertainty, estimated in different ways

for both shape catalogs, see Jarvis et al. (2016). Also, both for im3shape and ngmix,

the raw values in the catalogs are intrinsically biased estimators of the shear in the

presence of noise (Refregier et al. 2012; Kacprzak et al. 2012). This noise bias in the

shear measurement is characterized and corrected using additive and multiplicative

shear biases, as detailed in Jarvis et al. (2016).

4.3.3 Photometric redshifts

In this work, point estimates of the redshift are necessary to divide the galaxies

into redshift bins and therefore allow for a tomographic study of the galaxy bias. On

the other hand, the redshift distributions n(z)l,s of lenses and sources are also needed

to model the tangential shear and consequently to measure the galaxy bias. For this

reason, it is advantageous to estimate the whole redshift probability density function

P (z) for each galaxy, which can then be stacked for a collection of galaxies to obtain the

n(z). Point estimates of the redshift for each galaxy are obtained by taking the mean of

each P (z).

In this work we use the four best performing photo-z codes according to Sánchez

et al. (2014), which were furthermore studied in Bonnett et al. (2016) for the SV shape

catalogs: TPZ (Carrasco Kind & Brunner, 2013), BPZ (Benitez, 2000; Coe et al., 2006),

SkyNet (Graff et al., 2014; Bonnett, 2015) and ANNz2 (Sadeh, Abdalla & Lahav, 2015).

These codes are employed in this work to estimate the n(z) of the shape catalog. On

the other hand, in both Cr16 and G16 only two photo-z codes are used for the n(z) of

the Benchmark sample: TPZ and BPZ, which we will adopt in this work as well. A brief

description of each of these codes is given in Sec. 3.1.

73



Galaxy bias from galaxy-galaxy lensing in the DES Science
Verification Data

Lens redshift bin NTPZ NBPZ

0.2 ≤ zl < 0.4 398,658 551,257

0.4 ≤ zl < 0.6 617,789 647,010

0.6 ≤ zl < 0.8 586,298 494,469

Table 4.2: Number of galaxies in each redshift bin after the veto mask (see Sec. 4.3.4) has been applied.

Lens redshift bins

The lens sample is divided into three photo-z bins of width Δz = 0.2, from z =

0.2 to z = 0.8, as in Cr16 and G16, and as shown in Table 4.1. The objects are classified

into these lens redshift bins using the mean of the photo-z probability density function

determined with either BPZ or TPZ, like in Cr16 and in G16, for comparison. The

photo-z precision σ68 (half the width of the distribution, centered at themedian, where

68% of the data are enclosed) was measured to be ∼ 0.1 for BPZ and ∼ 0.08 for TPZ

in Sánchez et al. (2014). Therefore, it is suitable to use redshift bins of widthΔz = 0.2,

being approximately twice the photo-z precision σ68. The number of galaxies in each

redshift bin is given in Table 4.2.

In Cr16 and in G16 two additional high redshift bins were used, from z = 0.8 to

z = 1 and from z = 1 to z = 1.2. Both are omitted in this work, since the number

of source galaxies at z > 1 is too low to obtain enough galaxy-galaxy lensing signal for

this work.

Source redshift bins

For this work, the two high-redshift source bins studied in Bonnett et al. (2016)

are adopted, to be consistent with other DES-SV analyses (Becker et al., 2016; DES

Collaboration, 2015). These are defined from z = 0.55 to z = 0.83 and from z =

0.83 to z = 1.3, using the mean of the SkyNet probability density function as a point

estimate of the redshift to define the bins. For the two lower redshift bins of the lenses,

we use as source redshift bin the combination of both bins, from z = 0.55 to z = 1.3

to increase the number of sources and thus the signal to noise, while for the third lens

bin, only the higher source redshift bin, from z = 0.83 to z = 1.3 is used, as shown in

Table 4.1.

Photometric redshift distributions

We test the robustness of the galaxy bias measurement against different photo-z

codes to compute the n(z). For the lenses, we use BPZ to estimate the redshift dis-

tribution of the bins defined with BPZ, and analogously for TPZ, in agreement with
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Figure 4.1: Top panel: Normalized counts

(or normalized n(z)’s) of the foreground
redshift distribution of lens galaxies using

two photo-z codes: TPZ and BPZ, also

used in each case to define the galaxies

that belong to each bin (as described in Ta-

ble 4.1). Bottom panel: Normalized counts

of the background redshift distribution of

source galaxies from ngmix using the fol-

lowing four photo-z codes: SkyNet, TPZ,

BPZ and ANNz2, for both source redshift
bins. We choose SkyNet to be the fiducial

photo-z code to estimate the n(z) of the
source galaxies.

Cr16 and G16 (top panel of Fig. 4.1). Regarding the sources, we pick all four photo-z

codes described in Sec. 4.3.3 to estimate the n(z) (bottom panel of Fig.4.1). We choose

SkyNet to be the fiducial code for this purpose, in consistency with other DES-SV anal-

ysis (Becker et al., 2016; DES Collaboration, 2015).

4.3.4 Veto Mask

Besides the depth mask described in Sec. 4.3.1, a veto mask characterized in Cr16,

removing the areas most affected by systematics, is also applied in some of the redshift

bins. Using the maps of potential sources of systematics presented in Leistedt et al.

(2016), Cr16 studied the relationship between the galaxy density and several potential

systematics, such as seeing or airmass. In some cases, they found the galaxy density to

drop from itsmean value in areaswith extreme systematics contamination. The regions

corresponding to these systematics values are removed, which we denote as the veto
mask. In detail, they found the seeing to be the main quantity influencing the galaxy

density, differently for the various redshift bins. For the lowest redshift bin 0.2 ≤ zl <

0.4, 19.5% and 9.7% of the galaxies are removed, for the BPZ and TPZ redshift bins,

respectively. The veto mask for the 0.4 ≤ zl < 0.6 is the same for both the BPZ and

TPZ redshift bins, removing 14.8% and 14.4% of the galaxies, respectively. On the other

hand, the highest redshift bin 0.6 ≤ zl < 0.8 is found to be less affected by systematics,

and thus no further masking is applied. The final number of galaxies for each redshift

bin after implementing the veto mask is shown in Table 4.2. In each case, the same veto
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mask used for the lenses is applied to the sources, to reduce potential geometric effects

that could affect our measurements.

4.4 Measurement methodology

4.4.1 Measurement of the tangential shear and the cross-component

In this sectionwe describe how the tangential shear ismeasured, aswell as the cross-

component of the shear, which is expected to be null in the absence of systematics. For

a given lens-source pair j of galaxies we can define the tangential component of the

ellipticity εt and the cross-component ε× as

εt,j = −Re
[
εje

−2iφj

]
, ε×,j = −Im

[
εje

−2iφj

]
, (4.6)

where φj is the position angle of the source galaxy with respect to the horizontal axis

of the Cartesian coordinate system centered at the lens galaxy, as illustrated in Fig 2.9.

As derived in Sec. 2.3, the observed ellipticity can be approximated as the sum of the

intrinsic ellipticity and the part due to shear: ε � εs+γ. Assuming intrinsic ellipticities

are randomly aligned, which might not always be the case (see Sec. 4.6.5), we can obtain

the shear by averaging the ellipticity over a sample of galaxies γ � 〈ε〉. In our case,

we grouped the galaxy pairs in 11 log-spaced angular separation bins from 4 to 100

arcminutes. Thus, including the weighting factors from Eq. (4.5) the tangential shear

and cross-component are measured using TreeCorr5 (Jarvis, Bernstein & Jain, 2004)

in the following way:

γα (θ) =

∑
j ωjεα,j∑

j ωj
, (4.7)

where α denotes the two possible components of the shear from (4.6).

A possible sources of inaccuracy in the measurement are shear systematics. How-

ever, if the source galaxies are distributed isotropically around the lenses, additive shear

systematics should average to zero. Still, due to edge and mask effects, there is a lack of

symmetry on the sources distribution around the lenses. This effect can be accounted

for by removing from the main galaxy-galaxy lensing measurement the signal mea-

sured around random points, which will capture the geometric effects of additive shear

systematics. Thus, our final estimator for the tangential shear is:

γt(θ) = γt(θ)Lens − γt(θ)Random. (4.8)

Multiplicative shear bias can still be present andwe assess themas explained in Sec. 4.6.4.

5https://github.com/rmjarvis/TreeCorr
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4.4.2 Covariance matrix

The covariance matrix for the tangential shear is estimated using a combined ap-

proach between the jackknife method and a theory estimate, as in Cr16. In this section

we describe both procedures and how we merge them.

Jackknife method

The jackknife method (see for instance Norberg et al., 2009) is a resampling tech-

nique especially useful to estimate covariances. We divide the SPT-E area into 100

spatial jackknife regions of ∼ 1 sq. deg., comparable to the maximum angular scales

considered, of 100 arcminutes, using the kmeans algorithm6. We tested the case with

N = 50 and obtained comparable results, with error fluctuations at the 10% level.

Then, we perform the galaxy-galaxy measurement multiple times with a different re-

gion omitted each time tomakeN = 100 jackknife realizations. The covariancematrix

of the tangential shear estimated with jackknife is:

CovJKij (γi, γj) =
(N − 1)

N

N∑
k=1

[
(γi)

k − γi

] [
(γj)

k − γj

]
, (4.9)

where γi represents either γt(θi) or γ×(θi) and (γi)
k denotes the measurement from

the kth realization and the ith angular bin: γt(θi)
k . Then, the mean value is

γi =
1

N

N∑
k=1

(γi)
k. (4.10)

Clampitt et al. (2017) validated the jackknife method on simulations using 50 jack-

knife regions on a similar patch of the sky. In there, as well as in Shirasaki et al. (2016), it

was found that the jackknife method overestimates the true covariance on large scales,

where the covariance is no longer dominated by shape noise. However, recently, Singh

et al. (2016) performed an extended study on galaxy-galaxy lensing covariances which

concluded that subtracting the tangential shear around random points, as we do in

this work, removes the overestimation of jackknife errors that was previously seen in

Clampitt et al. (2017) and Shirasaki et al. (2016). A jackknife-estimated normalized co-

variance for a particular choice of photo-z and shear catalog is shown on the left panel

of Fig. 4.2.

6https://github.com/esheldon/kmeans_radec
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(Sec. 4.4.2).

Analytic covariance

We can also model the tangential shear covariance matrix to obtain a less noisy

estimate. Theoretical estimates of galaxy-galaxy lensing covariances have been studied

in Jeong, Komatsu & Jain (2009) and in Marian, Smith & Angulo (2015):

CovTHij (γt,i, γt,j) =
1

4πfsky

∫
ldl

2π
J̄2(lθi)J̄2(lθj)

×
[
C2
gκ(l) +

(
Cgg(l) + 1

nL

)(
Cκκ(l) + σ2

SN

nS

)]
,

(4.11)

where fsky is the fraction of the sky covered; nL and nS are the effective number den-

sity of the lenses and the sources, respectively, defined in Jarvis et al. (2016); Cgκ(l),
Cgg(l) and Cκκ(l) are the line of sight projections of the galaxy-matter, galaxy-galaxy

andmatter-matter power spectrum, respectively, obtained using Halofit (Smith et al.,

2003; Takahashi et al., 2012) with CosmoSIS; σSN is the shape noise per component and

J̄2 are the bin-averaged Bessel functions of order two of the first kind, defined as:

J̄2(lθi) ≡ 2π

A(θi)

∫ θi,max

θi,min

J2(lθ)θdθ, (4.12)

where A(θi) = π
(
θ2i,max − θ2i,min

)
is the area of the bin annulus. We integrate (4.11)

over 1 ≤ l < 4000, which covers the range of scales used in this work. A theory esti-

mated normalized covariance matrix is shown on the right panel of Fig. 4.2. It is much

smoother than the jackknife estimation (left panel), particularly far from the diagonal.

Combined approach

As shown on the left panel of Fig. 4.2, the jackknifemethod gives a rather noisy esti-

mate of the off-diagonal elements, due to the impossibility of increasing the number of

realizations without being forced to use excessively small jackknife regions. However,

it is relevant to obtain good estimates of the off-diagonal terms since adjacent angular
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bins are highly correlated. Moreover, the inverse of a noisy, unbiased covariance is not

an unbiased estimator of the inverse covariance matrix (Hartlap, Simon & Schneider,

2007), which is needed to fit the galaxy bias (see Sec. 4.4.3). We improve the estimation

of the covariance by obtaining a smooth correlation matrix from theory estimation,

shown on the right panel of Fig. 4.2.
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Figure 4.3: Comparison of the diagonal elements of the

covariance from the jackknife method and the theory pre-

dictions for the mid-z lens bin defined with BPZ.

On the other hand, concerning

now the overall normalization of the

covariancematrix, the jackknife pro-

cedure is capable of capturing ef-

fects that potentially exist in the data

and cannot be derived from theory,

such as shear systematics or mask ef-

fects, and can also reproduce non-

linearities although we expect these

to be small over the scales used. In-

deed, in G16, the jackknife method

was found to perform better on the

diagonal elements over the theory

estimates when compared to a co-

variance matrix derived from an N-

body simulation. Also, the diagonal

elements from jackknife are in prin-

ciple better estimated than the off-diagonal ones, since there is more signal-to-noise

in the diagonal. Then, following Cr16, we choose to combine both methods by nor-

malizing the theory-estimated covariance with the diagonal elements of the jackknife

covariance:

CovCOMB
θi,θj

= CorrTHθi,θjσ
JK
θi
σ
JK
θj
. (4.13)

The comparison between the diagonal elements from the jackknife method and from

theory predictions can be found in Fig. 4.3. The jackknife procedure yields larger di-

agonal elements for the covariance as a result of including additional sources of uncer-

tainties as discussed above.

4.4.3 Galaxy bias estimation

We can now put together all the required ingredients to measure the product of

the galaxy bias b times the cross-correlation coefficient r: the measured tangential

shear (Sec. 4.4.1), the modelled tangential shear (Sec. 4.2) and the covariance matrix
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Figure 4.4: Tangential shear γt as a function of angular scales from ngmix (red points) and from

im3shape (orange triangles) for the three lens redshift bins defined with BPZ. Note that the measure-

ments from ngmix and im3shape cannot be directly compared because of the lensing efficiency being

different in each case (see Sec. 4.5.1). Moreover, we show the cross-component (see Sec. 4.6.1 for discus-

sion) for both ngmix (black points) and im3shape (grey triangles), which is consistent with zero in all

redshift bins. The null χ2 for the cross-component are shown in Table 4.3. The shaded angular scales are

not considered for the final galaxy bias measurements, which are performed over the range of scales from

4 Mpc/h to 100 arcmin.

(Sec. 4.4.2). Then, b · r is measured minimizing the following χ2:

χ2 (b · r) =
∑
θ,θ′

(
γt(θ)− b · r γTHt (θ)

)
Cov−1

(
θ, θ′

)
× (

γt(θ
′)− b · r γTHt (θ′)

)
,

(4.14)

where γTHt assumes b · r = 1.

Range of selected scales

In this section we discuss the range of scales suitable to perform the fit described

above. There are some limitations that we need to consider both at large and small

scales. For instance, small scales are impacted by effects such as stochasticity, non-

local and scale dependence bias and cross-correlation coefficient. Since this behaviour

is hard to model, we need to identify the range of scales over which the product of the

galaxy bias b times the correlation parameter r is scale independent, free of stochasticity

and non-linear effects.

Nonetheless, it is difficult to remove all small scale information in real space, since

the tangential shear at each angular scale is an integration of all multipole moments �

– see Eq. (4.3) –, that is to say, it contains knowledge of all scales, weighted according

to the Bessel function. Then, applying a sharp cut-off in real space does not fully erase

the effects present below that cut-off. Even though there exists an alternative estimator
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Figure 4.5: Top panels: Tangential shear (red points) as a function of the transverse comoving distance

R (bottom axis) or the angular separation θ (top axis), together with the best-fitting theory prediction of

the tangential shear modelled with Halofit (solid orange line) with its corresponding uncertainty band.
Bottom panels: b · r as a function of scale (black points) with the best-fit (black solid line) using Eq. (4.14),

with its uncertainty band. TheN(z) of the source galaxies is estimatedwith SkyNet and the source catalog

is ngmix, which are the fiducial choices.

of the tangential shear (the annular differential surface density estimator) proposed by

Baldauf et al. (2010) and Mandelbaum et al. (2010) to remove all small scale informa-

tion, a conservative minimum scale cut-off should be sufficient to remove enough of it

for our purposes, given the current uncertainties in the measurement of the tangential

shear. However, this issue might have to be addressed more carefully in future work

involving larger area, which will significantly reduce the present uncertainties.

As a result of the non-linear effects at small scales, one does not expect a constant

value for either b or r over this range. On the other hand, in the linear bias regime, both

the galaxy bias and the cross-correlation parameter can be approximated to a constant.

The transition scale from the non-linear to the linear regime should be expressed as a

comoving distance R, as opposed to an angular scale θ. For galaxies acting as lenses

at different redshift, the same angle θ will correspond to different distances R. Thus,

it is convenient to convert the angle θ into the transverse comoving distance R that this

angle represents. Then, for small angles,R = χlens θ,where χlens is the radial comoving
distance to the lens galaxy, which can be related to the mean redshift of the lens redshift

bin. To compute χlens we assume the cosmology described in Sec. 4.2. In Fig. 4.5, both

scales are displayed: the angular separation θ at the top and the transverse comoving

distanceR at the bottom.

InCr16, it was studied the scale of linear growth, which is theminimum scalewhere

the linear and the non-linear (with Halofit) matter power spectrum are the same. The

linear growth scale for clustering was found to be ∼ 4Mpc/h, which they adopted as

a minimum comoving distance for their results. Jullo et al. (2012) studied the scale of

linear bias in the COSMOS field and determinedR = 2.3± 1.5Mpc/h to be the scale

beyond which bias evolves linearly.
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On the other hand, the cross-correlation coefficient dependence on scale has been

investigated in studies such as Baldauf et al. (2010) and Mandelbaum et al. (2013), find-

ing r � 1 and scale independent on scales larger than a few virial radius of galaxy

halos. Jullo et al. (2012) obtained r compatible with one for 0.2 < R < 15Mpc/h and

0.2 < z < 1. Hoekstra et al. (2002) measured the linear bias and cross-correlation co-

efficient on scales between R = 0.2 and 9.3 Mpc/h50 at z = 0.35. They found strong

evidence that both b and r change with scale, with a minimum value of r ∼ 0.57 at 1

Mpc/h50. However, on scales larger than 4 Mpc/h50 they obtained r is consistent with

a value of one. In App. A of Cr16 the cross-correlation coefficient r was measured in

the MICECATv2.0 simulation, which is an updated version of MICECATv1.0 (Fosalba

et al., 2015,?; Crocce et al., 2015; Carretero et al., 2014), including lower mass halos and

thus more similar to the benchmark sample. They found the cross-correlation coeffi-

cient to be in the range 0.98 ≤ r ≤ 1 for z > 0.3 in the range of scales 12 < θ < 120

arcmin, which approximately correspond to a comoving minimum scale of 3 Mpc/h.

Even though it is worth noting that different definitions of r may yield different esti-

mates and scale dependencies, it is relevant to this work the fact that, for the range of

scales we use, various studies agree on a value of r close to unity and showing little scale

dependence.

Overall, following Cr16, we choose a minimum scale cut-off of 4 Mpc/h. How-

ever, because the redshift bins have some non-negligible width, a significant fraction of

lenses will be below the mean redshift of the bin. Thus, when converting from angu-

lar to physical scale, we are effectively including some galaxy pairs that are separated

by less than 4 Mpc/h. We tested how important this effect is by, instead of using the

mean redshift of the bin to convert from angular to physical scale, using the mean value

minus one standard deviation of the redshift distribution. The variations induced by

that change in the final galaxy bias measurements are at the level of 0.5-3%, thus much

lower than the statistical errors.

Some limitations are present on large scales as well. The maximum valid scale is

restricted by the size of the SV SPT-E patch, of 116.2 sq. deg. Moreover, we are also

limited by the size of the jackknife regions used in this work to estimate covariances.

We follow the approach used in Kwan et al. (2017) of using 100 jackknife regions and a

maximum scale cut-off of 100 arcmin.

4.4.4 Non-linear bias model

As a further check, we have testedwhether the assumption of linear bias is valid over

the scales used – larger than 4 Mpc/h – by studying the robustness of the results when

using a non-linear bias scheme. In order to do so, we choose the non-linear bias model

adopted in Kwan et al. (2017) and originally developed in McDonald (2006), which is a

reparametrization of the model described in Fry &Gaztanaga (1993). In this model, the
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galaxy overdensity, δg , is written as:

δg = ε+ b1 δm + b2 δ
2
m + ... , (4.15)

where ε is the shot noise, b1 is the linear bias and b2 is the non-linear bias from the

second order term. Then, the relationship between the galaxy-matter power spectrum

and the matter power spectrum is given by

Pgδ = b1 Pδδ + b2A(k), (4.16)

since by definition ε is not correlated with δm, and where A(k), defined in Kwan et al.

(2017), can be calculated using standard perturbation theory. Comparing this relation

to (1.54), we identify b1 as b · r in the case of linear bias, corresponding to b2 = 0.

Applying this non-linear bias model to the fiducial case for the three redshift bins

defined with BPZ, we find that b1 is compatible with the results coming from the linear

bias model, and that b2 is compatible with zero, for all redshift bins. The uncertainties

we obtain on both b1 and b2 are large – in the case of b1 between 30% and up to twice as

large as for the fiducial case, depending on the redshift bin; thus, this indicates that we

are lacking statistical power on these large scales to obtain competitive constrains when

we introduce another parameter in the modelling. Overall, the linear bias assumption

holds for scales larger than 4 Mpc/h, given the current uncertainties. Hence, all the

results presented in the following sections are obtained using the linear bias model.

4.5 Results

In this section we present the main results of this work. First, we introduce the

tangential shear measurements to later proceed describing the galaxy bias results.

4.5.1 Tangential shear measurements

In this subsection we present the measured tangential shear as a function of the

angular separation, shown in Fig. 4.4. In that figure, BPZ is used to define the lens

bins and to estimate the n(z) of the lenses, and SkyNet is used to estimate the n(z)

of the sources. Also, the shaded angular scales from Fig. 4.4 are not considered for the

final galaxy bias measurements, which are performed on the range of separations from

4 Mpc/h to 100 arcmin (see Sec. 4.4.3).

We measured the tangential shear using two different shape catalogs: ngmix and

im3shape (see Sec. 4.3.2), which correspond to different galaxy samples, and thus, dif-

ferent redshift distributions. Then, the measurements for the tangential shear for ng-

mix and im3shape cannot be directly compared because of the lensing efficiency being
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Redshift bin χ2
null/ndf (γt) χ2

null/ndf (γ×) b · r χ2
fit/ndf

BPZ ngmix (F)

0.2 ≤ zl < 0.4 72.2/6 3.6/6 0.87± 0.11 3.4/5

0.4 ≤ zl < 0.6 138.2/8 4.9/8 1.12± 0.16 2.2/7

0.6 ≤ zl < 0.8 59.5/9 8.7/9 1.24± 0.23 1.4/8

BPZ im3shape

0.2 ≤ zl < 0.4 56.8/6 0.95/6 0.79± 0.12 3.8/5

0.4 ≤ zl < 0.6 79.0/8 5.2/8 1.03± 0.17 3.3/7

0.6 ≤ zl < 0.8 35.1/9 3.0/9 1.08± 0.25 7.5/8

TPZ ngmix (F)

0.2 ≤ zl < 0.4 61.1/6 2.3/6 0.77± 0.11 1.9/5

0.4 ≤ zl < 0.6 124.5/8 4.6/8 1.40± 0.21 1.9/7

0.6 ≤ zl < 0.8 93.0/9 4.1/9 1.57± 0.27 0.82/8

TPZ im3shape

0.2 ≤ zl < 0.4 48.8/6 0.98/6 0.78± 0.13 4.5/5

0.4 ≤ zl < 0.6 93.4/8 5.9/8 1.34± 0.22 0.83/7

0.6 ≤ zl < 0.8 53.5/9 4.5/9 1.36± 0.28 6.7/8

Table 4.3: Best-fitting galaxy bias results (b · r) for the four main different combinations of photo-z codes
and shape catalogs, shown also in Fig. 4.6. For instance, BPZ ngmix stands for lens redshift bins defined

with BPZ and ngmix as the source catalog. χ2
null/ndf (γt) is the null χ

2 of the tangential shear over the

number of degrees of freedom, covering the range of scales from 4 Mpc/h to 100 arcmin (not shadowed

region in Fig. 4.4), and the same for the cross-component γ×. χ2
fit corresponds to the galaxy bias fit

described in Sec. 4.4.3. All combinations use SkyNet as the photo-z code for the n(z) of the sources.

different in both cases. Nevertheless, we will be able to compare galaxy bias measure-

ments (see Fig. 4.6), which are independent of the source sample redshift distribution,

assuming an unbiased estimation of the n(z) (see Sec. 4.6.2). We choose ngmix to be

the fiducial shape catalog as it includes more galaxies, inducing less shape noise in the

measurement. This effect is especially noticeable at small scales, where the shape noise

contribution dominates the error budget.

In Table 4.3 we display the χ2 of the null hypothesis and the number of degrees

of freedom for the tangential shear signal over the selected range of scales, for all the

different redshift bins and photo-z codes. We measure a non-zero tangential shear sig-

nal over the aforementioned scales for all different photo-z and shape catalog choices.

Calculating the signal-to-noise as S/N =
√

χ2
null(γt)−Nbin, where Nbin is the num-

ber of angular bins considered for the galaxy bias measurements, the maximum S/Nwe

obtain is 11.4 for the mid-z BPZ + ngmix bin, and the minimum is 5.1 for the high-z

BPZ + im3shape bin.

4.5.2 Galaxy bias results

In Fig. 4.5 we present the galaxy bias fits for the fiducial photo-z codes and shape

catalog, using BPZ to define the lens bins and SkyNet to estimate then(z) of the sources

for the three redshift bins. On the top panels, we show the measured tangential shear

together with the best-fitting theory prediction for the tangential shear over the scales
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Figure 4.6: Fiducial galaxy bias results (F)

along with a comparison between results

obtained with different combinations of

photo-z codes and shape catalogs. For in-

stance, BPZ ngmix stands for lens red-

shift bins defined with BPZ and ngmix as

the source catalog. All combinations use

SkyNet as the photo-z code for the n(z)
of the sources. The points have been off-

set horizontally for clarity purposes.

of interest, which are from 4 Mpc/h to 100 arcmin. We display the comoving distance

R on the bottom axis and the angular scale θ on the top axis. On the bottom panels,

we show the galaxy bias as a function of separation with the best-fitting value, obtained

using Eq. (4.14).

In Figs. 4.6 and 4.7 we show our fiducial galaxy bias results (BPZ + SkyNet with

ngmix and TPZ + SkyNet with ngmix), along with the rest of combinations of photo-

z codes and shape catalogs. The results from Fig. 4.6 are also presented in Table 4.3,

together with the best-fit χ2. The low χ2 values in some of the cases might be due to an

overestimation of the uncertainties given by the jackknife method, which will only lead

tomore conservative conclusions. In Fig. 4.6 we compare the results varying the photo-

z code for the n(z) of the lenses. However, this comparison is not straightforward

due to the fact that galaxies in each lens sample are not the same – they have been

defined using either BPZ or TPZ to directly compare with the measurements from

Cr16 and G16, which use the same binning. Actually, the number of common galaxies

in each redshift bin is: 273133, 406858, 348376, compared to the number of galaxies

in each bin, given in Table 4.2. Hence, the galaxy bias might actually be different for
each case. Nevertheless, even though we observe variations in the galaxy bias values,

these differences are within the uncertainties. In Fig. 4.6 we also compare the galaxy

bias results from using the two different shape catalogs ngmix (fiducial) and im3shape.

We obtain agreement between the results from the two shear samples.

In Fig. 4.7 we test the robustness of our results under the choice of the photo-z

code used to estimate the n(z) of the sources. We detect variations in the galaxy bias

up to 6%, 9% and 14% for the three redshift bins, respectively. We include this source

of systematic in the error budget as described in Sec. 4.6.2.

Galaxy bias evolution

In Figs. 4.6 and 4.7, we observe the evolution of the galaxy bias with redshift, in all

combinations of photo-z codes and shape catalogs. There are twomain reasons for this
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evolution.

First, at high redshift (z ∼ 3), galaxies form at special locations in the density field

where they already trace the network of filaments emerging in the dark matter distri-

bution. The dark matter correlation function grows in time as mass moves into this

network from the surrounding regions, but the structure traced by galaxies stays rel-

atively unchanged, and the galaxy correlation function is only weakly dependent on

redshift (e.g. Weinberg et al. 2004). Then, because the dark matter correlation function

does evolve in time, we expect the galaxy bias to evolve as well. More precisely, we ex-

pect the galaxy bias to be larger than one at high redshift, which means that the galaxy

distribution is more clustered than the dark matter distribution.

Secondly, since we are studying a magnitude-limited sample of galaxies, in average

we are naturally observing a higher luminosity sample at higher redshift. We find an

increase of slightlymore than a unit in absolutemagnitude in the i band (corresponding

to a factor of∼3 in luminosity) between the low-z and the high-z lens bins. Since more

luminous galaxies tend to be more biased, we would already expect the bias to increase

with redshift even without intrinsic bias evolution.

4.6 Systematic effects in galaxy-galaxy lensing

In this sectionwe explore the different systematic effects that can potentially plague

our galaxy-galaxy lensing measurements. For that purpose, we perform some null tests

on the data and present a series of calculations, some of them using previous analyses

on the same data sample, which are all described in detail next. A summary of the

significant contributions from these systematics to the total error budget is presented

in Table 4.4.

4.6.1 Cross-component and tangential shear around random points

The cross-component of the shear γ×, which is rotated 45 degrees with respect to
the tangential shear, should be compatible with zero if the shear is only produced by

gravitational lensing. Hence, measuring γ× provides a test of systematic errors, such as

point-spread function (PSF) related errors, which can leak both into the tangential and

cross-components of the galaxy shear. PSF leakage could arise from errors in the PSF

model, as well as residual errors in correcting the PSF ellipticity to estimate the galaxy

shear; such correction is done by analyzing the shape of stars in the field. In Sec. 4.4.1

we describe how the measurement of the cross-component of the shear is performed

and in Fig. 4.4 is shown for the foreground redshift bins defined with BPZ. In order

to test whether the cross-component of the shear is compatible with zero, we compute

the null χ2 statistic:

χ2
null = γT

× · Cov−1 · γ×, (4.17)
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where the covariance matrix for the cross-component is estimated with the jackknife

method, described in Sec. 4.4.2. Since jackknife covariance matrices comprise a non-

negligible level of noise, in order to obtain an unbiased estimate of the inverse covari-

ance a correction factor of (N − p − 2)/(N − 1) has to be applied to the inverse

covariance, where N is the number of JK regions and p is the number of angular bins

(Hartlap, Simon & Schneider, 2007; Kaufman G.M, 1967). This factor corrects for the

fact that, as mentioned in Sec. 4.2.3, the inverse of an unbiased but noisy estimate of

the covariance matrix is not an unbiased estimator of the inverse of the covariance ma-

trix. In Table 4.3 we show all the χ2
null values for each of the redshift bins, which are all

consistent with zero.

A second test for galaxy-galaxy lensing is the measurement of the tangential shear

around random points. This measurement tests the importance and possible contri-

bution from geometrical effects in the signal. Although our estimator of galaxy-galaxy

lensing in Eq. (4.8) includes the subtraction of the random points signal, it is useful to

check that this correction is small. This measurement was presented in Clampitt et al.

(2017) with the same sources that we use, and they found the signal to be consistent

with zero.

4.6.2 Photometric redshift errors

In this section, we discuss the impact of photo-z errors on b · r uncertainties. Par-
ticularly, we focus on the effect caused by an overall shift on the redshift distribution of

the sources. We approach this subject by following the recommendation from Bonnett

et al. (2016) of adopting a Gaussian prior of width 0.05 for the shift δi on the mean of

the distribution of the source galaxies: ni(z) → ni(z− δi). We draw 1000 realizations

of the δi, measuring the galaxy bias each time. Then, we add the standard deviation of

the galaxy bias values in quadrature to the statistical error budget.

Including the photo-z error contribution represents a fractional increase of 7%,

38% and 42% to the galaxy bias statistical uncertainty for each redshift bin from low

to high redshift (see Table 4.1), after averaging over all different photo-z choices (for

ngmix only). Although almost the same source redshift distributions are used for the

first (0.2 ≤ zl < 0.4 and 0.55 < zs < 1.3) and second redshift bin (0.4 ≤ zl < 0.6 and

0.55 < zs < 1.3) – not exactly the same because the veto masks are applied, which are

different for each bin – the increase of the errors is significantly larger for the second

redshift bin because of the geometrical factors involved. On the other hand, on average

these photo-z uncertainties represent a 5%, 8% and 12% of the galaxy bias measured in

each bin, similar to the 6%, 9% and 14% of maximum variation of the galaxy bias, with

respect to the fiducial value, when changing the photo-z code to estimate the n(z) of

the source galaxies (see Sec. 4.5 and Fig. 4.7).
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Figure 4.7: Galaxy bias results varying the

photo-z code to estimate the redshift dis-

tribution of the source sample. For in-

stance, for the red points, the n(z) of the
sources is estimated with SkyNet (Fidu-

cial). We observe good agreement among

the different results. Top panel: Lens red-
shift bins are defined with BPZ and the

lens n(z) is estimated using BPZ as well.

Bottom panel: The same with TPZ. ng-

mix is the source catalog used for these

results. The points have been offset hori-

zontally for clarity purposes.

4.6.3 Reduced shear and magnification

In all the results presented in this work, we have assumed, due to the weak lens-

ing regime of our observations, κ � 1, |γ| � 1, that the observable reduced shear

is equivalent to the shear induced by foreground mass structures, g ≈ γ. Next, we

provide justification for this assumption, mostly based on the work by Clampitt et al.

(2017) (henceforth Cl16) presenting the galaxy-galaxy lensing measurements around

Luminous Red Galaxies (LRGs) in DES-SV along with multiple systematics tests.

The observable reduced shear g is related to the shear γ according to Eq. (2.25).

Lens z-bin σstat/(b · r) σp-z/(b · r) σm/(b · r) σIA/(b · r)
0.2 ≤ zl < 0.4 12%∗ 5%∗ 2% −
0.4 ≤ zl < 0.6 9%∗ 8%∗ 2% 8%

0.6 ≤ zl < 0.8 12%∗ 12%∗ 2% 8%

∗ Average for the ngmix sample.

Table 4.4: Summary of the systematic uncertainties to be added in quadrature to the statistical error budget.

σstat: Statistical uncertainty, as a fraction of the b · r values; σp-z : Photo-z uncertainty on the mean of the

source redshift distribution (see Sec. 4.6.2); σm: Mutiplicative shear biases (see Sec. 4.6.4); σIA: Intrinsic

alignments (see Sec. 4.6.5).
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Since the lensing convergence κ will always be larger for a smaller distance from the

halo center, the potential differences between g and γ will be largest at the lowest scales.

Cl16 estimate this difference for their smallest radial scale, R ∼ 0.1Mpc/h, and their

largest estimated halo mass, M ∼ 2 × 1012M�/h, and find it to be at most 0.7%.

The smallest radial scale used in this work is significantly larger than that, R ∼ 4

Mpc/h, and the mean halo mass of the benchmark galaxies is expected to be smaller

than the LRG sample in Cl16, since it includes galaxies from all types and luminosities.

Therefore, the error we make by ignoring non-weak shear effects will be smaller than

0.7%, and we neglect it in the analysis. Similarly, magnification can potentially affect

the galaxy-galaxy lensing measurements, but it only becomes important for lenses with

κ larger than the ones in the benchmark sample (see Mandelbaum et al., 2005 for a

discussion of this effect).

4.6.4 Multiplicative shear biases

Jarvis et al. (2016) studied the residual multiplicative shear biases for the ngmix and

im3shape shear catalogs, for the same redshift bins that we use in this analysis. The

residual multiplicative shear biases are shown in fig. 25 of that work, and for all the

redshift bins that we use are less than 1%, except for the bin of ngmix of 0.55 < z <

0.83, where they reach 2%. We decided to add 2% of error in quadrature to the other

sources of error, following the same approach as in Clampitt et al. (2017).

4.6.5 Intrinsic alignments

Intrinsic alignments (IA) in the shapes and orientations of source galaxies can be

produced by gravitational tidal fields during galaxy formation and evolution. IA can

induce correlations between the source ellipticity and the lens position if the two galax-

ies are physically close, essentially at the same redshift. We have worked under the as-

sumption that the observed ellipticity of a galaxy is an unbiased estimation of its shear.

However, a bias can arise since there is overlap in redshift between the lens and source

populations used in this analysis (see Fig. 4.1), and hence we expect a contribution from

IA in the observed tangential shear measurements.

At large scales, the dominant IA contribution arises from the alignment of galaxies

with the tidal field, described by the “tidal/linear alignmentmodel” (Catelan, Kamionkowski

& Blandford, 2001; Hirata & Seljak, 2004; Blazek, Vlah & Seljak, 2015). On smaller

scales, non-linear contributions, including angular momentum correlations from “tidal

torquing,” may be significant (e.g. Lee & Pen 2000). Tidal alignment is expected to be

strongest for elliptical galaxies, which are pressure supported and thus have shapes and

orientations that are less affected by angular momentum. Indeed, massive elliptical

galaxies exhibit stronger alignments than fainter or bluer galaxies (e.g. Hirata et al.
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2007; Mandelbaum et al. 2011). Including the non-linear evolution of the dark matter

clustering improves the linear alignment model on smaller scales, yielding the so-called

“nonlinear linear alignment model” (NLA) (Bridle & King, 2007).

We estimated the contribution of IA, assuming the NLA model, for the scenarios

with the most overlap between the lenses and the sources: 0.4 ≤ zl < 0.6 with

0.55 < zs < 1.3 and 0.6 ≤ zl < 0.8 with 0.83 < zs < 1.3. Assuming a fidu-

cial intrinsic alignment amplitude A = 1, a conventional normalization chosen by

Hirata & Seljak (2004) to match ellipticity correlations in the SuperCOSMOS survey

(Brown et al., 2002), a maximum fractional IA contamination on the tangential shear

|1− γIA/γt| of 4% was obtained for these samples. Also, we found the fractional IA

contamination to be nearly scale-independent, since lensing and IA are sourced by the

same underlying potential. DES Collaboration (2015) estimated the IA amplitude as

A = 2± 1 for the same DES-SV source sample. This result was model dependent, and

Awas found to be consistent with 0 for some cases. Following a conservative approach,

we add an IA contamination of 8% in quadrature to the error budget, corresponding to

an uncertainty at the level ofA = 2.

4.6.6 Splitting sources in redshift

For the following test, we split the source population into two separate redshift

bins. Although the tangential shear measurements from two source populations with

different redshift distributions n(z)will have different lensing efficiencies, we can still

compare the galaxy bias, since the theory predicted tangential shear also depends on the

sourcen(z). Thus, the dependency of the galaxy bias on the source redshift distribution

is cancelled in case of being able to determine it precisely. Otherwise, biases in the n(z)

can arise differences between the galaxy bias from the two source bins. Hence, in some

sense, this is also a photo-z test.

We have separated the sources from the ngmix shear catalog with 0.55 < zs <

1.3 into the two higher redshift bins used in other DES-SV weak lensing analyses (e.g.

DES Collaboration 2015), which are 0.55 < zs < 0.83, and 0.83 < zs < 1.3. We

have performed this test on the low-z lens bin from 0.2 to 0.4, to minimize the impact

intrinsic alignments effects could have on the test. For the BPZ lens bin, we obtain

b · r = 0.78 ± 0.15 for the low-z source bin and b · r = 0.90 ± 0.12 for the high-z

source bin. The two results are consistent, neglecting the correlation between the two

measurements.

4.6.7 Observational systematic effects

DES is a photometric survey and, as such, it is subject to changing observing condi-

tions that may affect the galaxy catalogs and the measurements performed with them.

90



4.7 Discussion and Comparison to previous work

Photo-z code Probe 0.2 ≤ zl < 0.4 0.4 ≤ zl < 0.6 0.6 ≤ zl < 0.8

BPZ

g-g lensing – This work (b · r) 0.87± 0.11 1.12± 0.16 1.24± 0.23
g clustering – Crocce et al. (2016) (b) 1.05± 0.07 1.23± 0.05 1.35± 0.04
g-CMB lensing – Giannantonio et al. (2016) (b · r) 0.36± 0.22 0.76± 0.24 1.13± 0.25

TPZ

g-g lensing – This work (b · r) 0.77± 0.11 1.40± 0.21 1.57± 0.27
g clustering – Crocce et al. (2016) (b) 1.07± 0.08 1.24± 0.04 1.34± 0.05
g-CMB lensing – Giannantonio et al. (2016) (b · r) 0.41± 0.21 0.75± 0.25 1.25± 0.25

SkyNet g-γ maps – Chang et al. (2016) (b/r) 1.12± 0.19 0.97± 0.15 1.38± 0.39

Table 4.5: Comparison between this work’s fiducial galaxy bias measurements for BPZ and TPZ lens

redshift bins, galaxy clustering measurements from Cr16, galaxy-CMB lensing real space measurements

from G16 and bias measurements for SkyNet lens bins from cross-correlations between galaxy density

and weak lensing maps from Chang et al. (2016).

Cr16 carried out a series of careful tests to determine and correct for any possible obser-

vational systematics in the data. In particular, they found a number of effects impacting

on the detection efficiency of galaxies and hence causing density variations across the

survey area. In order to study them, they used maps created from single-epoch proper-

ties potentially related to changes in the sensitivity of the survey, such as depth, seeing,

airmass, etc. (see Leistedt et al., 2016 for more details on the creation of the maps).

They reported significant effects of some of these quantities on the galaxy clustering

observable, especially depth and seeing variations, and they corrected for them in sev-

eral ways, including using cross-correlations between the galaxy and systematics maps,

and the application of a veto mask avoiding the regions most affected by these system-

atics.

On the other hand, Kwan et al. (2017) studied the impact of the same systematics

on galaxy-galaxy lensing, which being a cross-correlation is naturally more robust to

systematic errors. They found that the effect in the galaxy-galaxy lensing observables

is not significant given the statistical power of the observations in DES-SV. Based on

these findings, we do not apply any correction from cross-correlationswith systematics

maps, but we do apply the veto masks in Cr16 to eliminate regions with high concen-

trations of these observational systematics (see Sec. 4.3.4).

4.7 Discussion and Comparison to previous work

In this work, we aim to provide another angle to the discussion of the possible

tension between galaxy bias results in the DES-SV benchmark galaxy sample obtained

using galaxy clustering (Cr16) and galaxy-CMB lensing correlations (G16) by adding a

third probe to the discussion: galaxy-galaxy lensing.

InCr16, galaxy biaswasmeasured by finding the best-fit between the galaxy angular

correlation function (2PCF) and a prediction of the same function using the non-linear

darkmatter power spectrum. The ratio of themeasurement to the unbiased theory pre-
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Figure 4.8: Fiducial galaxy bias results

from this work using galaxy-galaxy lens-

ing (g-g lensing, red points) as a function

of redshift compared with previous mea-

surements on the same Benchmark sam-

ple using galaxy clustering (g clustering,

black down triangles) from Cr16 and the

real space analysis results from CMB lens-

ing (g-CMB lensing, gray upper triangles)

from G16. Top panel: Lens redshift bins
are defined with BPZ and the lensN(z) is
estimated using BPZ as well. Bottom panel:
Lens redshift bins are defined with TPZ

and the lensN(z) is estimated using TPZ

as well. The points have been offset hori-

zontally for clarity purposes.

diction yields the square of the galaxy bias, b2, fromwhich b can be directly derived. G16

measured the cross-correlations between the galaxy density field and the lensing of the

CMB, using both Planck and South Pole Telescope (SPT)maps. In that case, the compar-

ison to theory predictions returns the galaxy bias b times a factorALenswhich encapsu-

lates different effects that can influence the amplitude of the CMB lensing signal. If the

underlying true cosmologymatches their fiducialΛCDMmodel,ALens should be equal

to one provided the scales they use are not affected by stochasticity or non-linearities.

In the general case where those can be present, their estimator yields the galaxy bias

times the cross-correlation coefficient, b · r (cf. G16 Section 7.4). The tomographic

measurements of the galaxy bias were obtained using galaxy-SPT cross-correlations,

due to their higher significance. Also, both real- and harmonic-space analyses were

performed, yielding consistent results. All three analyses measure the galaxy bias of the

same sample of galaxies, the so-called Benchmark sample. Also, aiming for consistency,

the same fiducial cosmology is assumed in all three probes: a flat ΛCDM+ν (1 massive

neutrino) cosmological model based on the Planck 2013 +WMAP polarization + highL

(ACT/SPT) + BAO best-fit parameters from Ade et al. (2014).

In Fig. 4.8, as well as in Table 4.5, we compare our fiducial galaxy bias results with

those from Cr16 and G16. In the top panel, lens redshift bins defined with BPZ are

used and theN(z) of the lenses is computed with BPZ for all probes, and analogously

for TPZ on the bottom panel. However, different calculations of the galaxy bias cannot

92



4.7 Discussion and Comparison to previous work

be directly compared since the three probes do not measure exactly the same quantity.

Instead, only the galaxy clustering measurement gives a direct estimate of the galaxy

bias b. On the other hand, both galaxy-galaxy lensing and galaxy-CMB lensing are sen-

sitive to b · r. Nevertheless, the cross-correlation coefficient is expected to be close

to unity over the scales considered in this work, R > 4 Mpc/h (see Sec. 4.4.3). Also,

when comparing the different probes, their potential cross-covariance should be con-

sidered, since a significant covariance between them would make overall discrepancies

more significant. The cross-covariance between galaxy-galaxy lensing and galaxy clus-

tering is expected to be close to zero on small scales, where the errors are dominated

by the lensing shape noise. On large scales, it is expected to be slightly higher; Mandel-

baum et al. (2013) find values ∼ 10–15% but compatible with zero. Similarly, Baxter

et al. (2016) found that CMB-lensing and galaxy-galaxy lensing measurements on the

Benchmark sample are largely uncorrelated. For the following discussion, we assume

there is no correlation between probes, which is reasonable given the statements above

but should be noted. The different photo-z bins are also covariant to some extent, given

their partial overlap in redshift due to photo-z errors and the use of shared sources in

galaxy-galaxy lensing. Thus, since it is not easy to quantify the overall agreement of

the results of the three probes across the three photo-z bins, we discuss the differences

between probes on a bin by bin basis.

Then, as shown in Table 4.5, and neglecting the correlation between probes, our

results of b · r are compatible within 1σ with results of Cr16 in all redshift bins, except

for the low-z bin (0.2 < z < 0.4), with a 1.3σ difference in the BPZ case and a more

significant 2.3σ tension for TPZ. Similarly, our measurements are in moderate tension

with b · r results of G16 (1–2σ) at low and medium redshift (0.2 < z < 0.6), with a

maximum tension of 2.1σ for the low-z BPZ bin and 2.0σ for themid-z TPZ bin, while

they are compatible within 1σ at higher redshift (0.6 < z < 0.8). However, note that

theG16 results shown inTable 4.5 andFig. 4.8 come from real space analysis. The galaxy

bias results measured using harmonic space in G16 are closer to our measurements at

low and medium redshift but further at higher redshift: 0.57 ± 0.25, 0.91 ± 0.22,

0.68± 0.28, from the low-z to the high-z bin, defined with TPZ.

A fourth analysis (Chang et al. 2016, hereafter Ch16) also measured the galaxy bias

on DES-SV data cross-correlating weak lensing shear and galaxy density maps, using

the method described first in Amara et al. (2012) and later re-examined in Pujol et al.

(2016), which has the advantage that is only weakly dependent on the assumed fiducial

cosmology. Ch16measured the bias on the Benchmark sample assuming r = 1 over the

considered range of scales, and using the same lens redshift binning as the three other

analyses, but adopted SkyNet to define the lens redshift bins. Thus, the lens sample

slightly differs from the one used in the other three probes. In Ch16 the galaxy bias was

estimated in four tomographic bins; the results obtained for the first three redshift bins

can be found in Table 4.5, which agree at the 1–2σ level with our measurements.
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In Fig. 4.8 we observe that most of the differences between the results coming from

auto-correlations and the ones coming from cross-correlations could be partially ex-

plained if r < 1. This would be the case if the galaxies are either stochastically or

non-linearly biased, or a mixture of both (Pen, 1998; Simon et al., 2007). Consider a

general relation between the galaxy density contrast δg and the dark matter density

contrast δm:

δg = f(δm) + ε , (4.18)

where f is some function and ε a random variable (noise) that satisfy 〈ε f(δm)〉 =

〈ε δm〉 = 0, since ε is not correlated with either f or δm. If f is linear (δg and δm are

Gaussian random variables) and ε = 0, we have a linear deterministic relation between

δg and δm: δg = b1 δm. Otherwise, f being a non-linear function leads to non-linear

bias, and ε �= 0 introduces some dispersion in the relation, usually called stochasticity.

Then, r < 1 can be generated by the presence of either non-linearities or stochasticity,

or both, following from Eq. (1.53):

r =
〈δmδg〉√
〈δ2m〉 〈δ2g〉 =

〈δmf(δm)〉√
〈δ2m〉

(〈
[f(δm)]2

〉
+ 〈ε2〉

) . (4.19)

Next, we proceed to discuss the potential reasons for the possible tension between

the galaxy bias estimations of the different probes, including non-linear and stochastic

bias, whichwould both lead to r < 1, aswell as how the choice of the fiducial cosmology

can affect the bias results and what is the impact of systematics effects.

4.7.1 Non-linear bias

In Sec. 4.4.4, we have tested the impact of using a non-linear bias modelling for

scales larger than 4 Mpc/h, obtaining results consistent with the linear bias values.

Thus, linear bias theory is currently sufficient over this range of scales given our current

uncertainties. Also, other DES-SV studies have been performed on the scale of linear

bias. For instance, Kwan et al. (2017) followed a different approach to study it on the

SV redMaGiC sample (Rozo et al., 2016), finding a slightly larger value of∼5.5 Mpc/h,

as expected for a red sample of galaxies.

In G16 smaller scales were used (down to 2.4 arcmin, which approximately cor-

responds to 0.6 Mpc/h at z = 0.3 and to 1.2 Mpc/h at z = 0.7), in order to ex-

tract as much signal as possible, since in their case the theoretical uncertainties due to

non-linearities were much smaller than the statistical errors. Then, it is possible that

non-linear bias is present over this range of scales. Refer to Sec. 4.4.3 for an extended

discussion on the range of scales considered in this work.
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4.7.2 Stochasticity

Assuming non-linear bias can be ignored on the scales of interest and also that the

fiducial cosmology (defined in Sec. 4.2) is fixed, it is possible to attribute the differ-

ences between the results of different probes to stochasticity. In this special case, G16

measured r = 0.73 ± 0.16 using a novel linear growth bias-independent estimator –

denoted by DG in G16 – which would imply a 1.7σ measurement that there is some

stochasticity. In G16, the measurement was extended to lower separations, where r

might deviate from one. Thus, this could partially explain the systematically lower re-

sults at low redshift of G16 compared to Cr16 and our measurements.

In our case, neglecting the correlation with Cr16, in the low-z bin we measure

r = 0.83±0.12, that is, 1.3σ away from one, for BPZ, and r = 0.71±0.11, 2.6σ away

fromone, for TPZ,when comparing our resultswith those ofCr16. In the other redshift

bins, the significance is much lower. Since Cr16 results and this work are potentially

correlated, the given confidence levels are a lower limit.

4.7.3 Fiducial cosmology dependence

Another possibility for the differences in the galaxy bias results is that the true cos-

mology does not match the fiducial cosmology, since the various probes might depend

differently on the cosmological parameters. Then, even if the same fiducial cosmology

is assumed (defined in Sec. 4.2), which is the case for Cr16, G16 and this work, this

could still produce variations in the galaxy bias results. Regarding Ch16, even though a

different fiducial cosmology is assumed – the MICE cosmology (Fosalba et al., 2015,?;

Crocce et al., 2015; Carretero et al., 2014) – their approach is only weakly dependent

on it. On the contrary, the galaxy bias measurements in Cr16, G16 and this work are

significantly dependent on cosmology.

Particularly, the three probes are especially sensitive to σ8 and Ωm. At large scales,

if Ωm is fixed, the galaxy bias becomes independent of scale and is hence fully degen-

erate with the amplitude of the matter power spectrum, σ8. However, the dependency

is different for each probe. At large scales, the galaxy clustering correlation function

depends on σ8 like ωgg(θ) ∝ b2σ2
8 , the tangential shear as γt ∝ b · r σ2

8 and the

galaxy-CMB lensing correlation function as ωκg
CMB ∝ b · r σ2

8 . Then, the bias from the

auto-correlation depends differently on σ8 than the bias from the cross-correlations:

b ∝ σ−1
8 , b · r ∝ σ−2

8 . Hence, for instance, if the true value of σ8 was lower than

Planck’s, as hinted by CFHTLenS (Heymans et al., 2013), b would increase, but b · r
would increase even more, reducing the tension between probes in most of the cases.

As an illustration to this, also involving the other cosmological parameters, G16

studied how changing the fiducial cosmology from Planck to MICE affects the galaxy

bias results. MICE simulations are based on theΛCDMcosmological parameters: Ωm =

0.25, ΩDE = 0.75, Ωb = 0.044, σ8 = 0.8, ns = 0.95 and h = 0.7. This variation
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of the cosmological parameters produces an increase of the galaxy bias of ∼ 4% for

galaxy clustering and of ∼ 21% for CMB lensing (G16), for the whole redshift range

0.2 < zl < 1.2. For galaxy-galaxy lensing, we obtain an increase of ∼ 22%, for the

redshift bin whose mean value is closest to the one G16 uses. Thus, the relative in-

creases of the galaxy bias would reduce the existing tension between probes in most of

the cases.

Furthermore, we studied how the results vary performing a more plausible change

in the fiducial cosmology. Using Planck 2015 + External cosmology (TT, TE, EE + lowP

+ Lensing + BAO + SN Ia): Ωm = 0.307, Ωνmass = 0.00139, Ωb = 0.0486, σ8 = 0.816,

ns = 0.967 and h = 0.677 (Ade et al., 2016), which corresponds to a 1σ variation

of σ8 with respect to the Planck 2013 value, represents an increase of ∼ 4% in the

bias from galaxy-galaxy lensing, not enough to account for all the difference between

probes. Further discussion on how the various cosmological parameters and models

impact the bias measurements can be found in G16.

4.7.4 Photo-z errors and systematics

Another possible reason for the tension between probes are systematic errors. In

Sánchez et al. (2014) it was found that the absence of u band could have led to imprecise

photo-z measurements, particularly in the lowest redshift bin, which could potentially

induce larger uncertainties in the redshift distribution of galaxies, which can affect dif-

ferently each probe. For instance, auto-correlations are more sensitive to the width of

the N(z) distribution, while cross-correlations are more sensitive to its mean. More-

over, the shape of the CMB lensing kernel could increase the impact of photo-z un-

certainties at low-z (see G16 for an extended discussion of how photo-z can influence

each probe).

Other systematics, such as stellar contamination, can also alter the galaxy bias re-

sults in a different manner for each probe. For instance, in the case of stellar contami-

nation, the measured galaxy clustering amplitude would be higher than otherwise, in-

creasing the bias as well. This is already taken into account in Cr16. On the other hand,

the tangential shear amplitude and the galaxy-CMB lensing cross-correlation would

decrease, and so would the bias. The stellar contamination of the DES galaxy sample in

the COSMOS field was found to be at most 2% in Cr16. Although this might contribute

to the observed differences in the bias, such a small contamination would produce neg-

ligible variations compared to the statistical errors.

Overall, as a conclusion for the discussion presented in this section, we find no

strong evidence that the cross-correlation coefficient is smaller than one, except per-

haps at low redshift. In the 0.2 < zl < 0.4 bin, we measure r = 0.83± 0.12 for BPZ,

and r = 0.71± 0.11 for TPZ, provided the differences between probes are attributed
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only to the cross-correlation parameter being smaller than one. Both non-linear bias

and stochasticity can cause r < 1, but, since the linear bias model is found to be a good

fit for our data given the current uncertainties, our findings favor stochasticity.

Another possibility is that the differences do not have a single origin, but that they

result from a combination of a few of the effects presented during this discussion. Some

of these potential reasons, such as a mismatch between the fiducial cosmology and the

underlying true cosmology or photo-z errors, while unlikely to account for the differ-

ences separately, might be able to explain them when combined.

The DES-SV data used in this analysis represents only about 3% of the final survey

coverage. With these data, we have acquired some hints of possible causes that might

have generated the differences between the results from the three probes (Cr16, G16

and thiswork), whichwill be useful for futuremeasurements. Additional data fromDES

will significantly reduce the statistical uncertainties as well as allowing to probe larger

scales, which will enable more precise studies of galaxy bias. In Section 5.7 of this thesis

we revisit this topic, and compare galaxy biasmeasurements from galaxy clustering and

from galaxy-galaxy lensing using DES data from the first year of observations.
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Part III

Galaxy-galaxy lensing to probe
cosmology

In this part we use DES data from the first year of observations to measure the

galaxy-galaxy lensing data vector and test its robustness against a set of potential

systematics, which we present in the first chapter of this part. These measurements

are then used in the 3x2pt DES Y1 cosmological analysis, which combines weak

lensing and galaxy clustering probes to obtain cosmological parameters. The

cosmological results from this powerful and robust combination are shown in the

second chatper of this part.
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Chapter 5

Dark Energy Survey Year 1 Results:

Galaxy-Galaxy Lensing

5.1 Introduction

Weak gravitational lensing refers to the small distortions in the images of distant

galaxies by intervening mass along the line of sight. Galaxy-galaxy lensing refers to the

cross-correlation between foreground (lens) galaxy positions and the lensing shear of

background (source) galaxies at higher redshifts (Tyson et al., 1984; Brainerd, Bland-

ford & Smail, 1996; Dell’Antonio & Tyson, 1996). The component of the shear that is

tangential to the perpendicular line connecting the lens and source galaxies is a mea-

sure of the projected, excess mass distribution around the lens galaxies. Galaxy-galaxy

lensing at small scales has been used to characterize the properties of dark matter ha-

los hosting lens galaxies, while at large scales it measures the cross correlation between

galaxy and matter densities. The measurements have many applications, ranging from

constraining halomass profiles (Navarro, Frenk &White, 1997) to estimating the large-

scale bias of a given galaxy population to obtaining cosmological constraints (Cacciato

et al., 2009;Mandelbaum et al., 2013; Cacciato et al., 2013;More et al., 2015; Kwan et al.,

2017; van Uitert et al., 2017a). Recent surveys such as CFHTLenS (Heymans et al., 2012;

Erben et al., 2013) have presented measurements on galaxy-galaxy lensing (Gillis et al.,

2013; Velander et al., 2014; Hudson et al., 2015). Similarly, measurements from KiDS

(de Jong et al., 2013; Kuijken et al., 2015) have also studied the galaxy-mass connection

using galaxy-galaxy lensing (Sifon et al., 2015; Viola et al., 2015; van Uitert et al., 2016;

Joudaki et al., 2017). The galaxy-mass connection has also been studied in Sheldon et al.

(2004); Mandelbaum et al. (2006) and by Leauthaud et al. (2012) at high redshift.

In this thesis we present measurements and extensive tests of the tomographic

galaxy-galaxy lensing signal from Year 1 data of the Dark Energy Survey (DES). Our

goals are to present the measurements of galaxy-galaxy lensing with DES, carry out

a series of null tests of our measurement pipeline and the data, and carry out related
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analyses of the lensing and photometric redshift (photo-z) performance that are critical

for the Y1 cosmological analysis (DES Collaboration, 2018b). We use five redshift bins

for the lens galaxies and four bins for the source galaxies. The detailed tests presented

here will serve as a foundation for future work relying on galaxy-galaxy lensing mea-

surements, such as Halo Occupation Distribution (HOD) analyses (Berlind &Weinberg,

2002; Cooray & Sheth, 2002). The galaxy-galaxy lensing studies with the DES Science

Verification (SV) data, such as the work presented in the previous chapter (Prat et al.,

2018b), serve as precursors to this part of the thesis (Clampitt et al., 2017; Park et al.,

2016; Kwan et al., 2017).

The lens galaxy sample used is the red-sequence Matched-filter Galaxy Catalog

(redMaGiC, Rozo et al. 2016), which is a catalog of photometrically selected luminous

red galaxies (LRGs). The redMaGiC algorithm uses the redMaPPer-calibrated model

for the color of red-sequence galaxies as a function of magnitude and redshift (Rykoff

et al., 2014, 2016). This algorithm constructs a galaxy sample with far more reliable

redshift estimates than is achievable for a typical galaxy in DES.

For the source galaxy redshifts, we rely on less well-constrained photo-z estimates,

calibrated in two independent ways (Hoyle et al., 2018; Gatti et al., 2018; Davis et al.,

2017). In this thesis, we use the expected behavior of the galaxy-galaxy lensing sig-

nal with the distance to source galaxies (the shear-ratio test) to validate the photo-z

estimates and calibration. The scaling of the galaxy-galaxy lensing signal with source

redshift for a given lens bin is mostly driven by the geometry of the lens-source config-

uration, with cosmology dependence being subdominant to potential biases in the red-

shift estimation of the galaxies involved. Therefore, such measurements provide useful

constraints on the redshift distribution of source galaxies, which we then compare to

findings by independent studies.

The DES Y1 cosmological analysis (DES Collaboration, 2018b) relies on the as-

sumption that the cross-correlation coefficient between galaxies and matter is unity on

the scales used for this analysis. In this work we provide validation for this assumption

by showing the linear galaxy bias estimates from galaxy-galaxy lensing to be consistent

with those obtained from galaxy clustering using the same galaxy sample (Elvin-Poole

et al., 2018).

The plan of the chapter is as follows. In Section 5.2, we present the modelling. Sec-

tion 5.3 describes our data, including basic details ofDES, descriptions of the lens galaxy

sample, pipelines for source galaxy shape measurements, and the photometric redshift

estimation of lens and source galaxies. We also describe a set of lognormal simula-

tions used for tests of the measurement methodology. The details of the measurement

and covariance estimation, together with our galaxy-galaxy lensing measurements, are

presented in Section 5.4. Tests of potential systematic effects on the measurement are

shown in Section 5.5. Section 5.6 presents the use of tomographic galaxy-galaxy lensing

to test the photo-z’s of source galaxies. Finally, in Section 5.7 we compare the galaxy
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bias estimates from galaxy-galaxy lensing to those obtained using the angular clustering

of galaxies (Elvin-Poole et al., 2018), and we conclude in Section 5.8.

5.2 Theory

Galaxy-galaxy lensing is the measurement of the tangential shear of background

(source) galaxies around foreground (lens) galaxies (see Bartelmann & Schneider (2001)

for a review). The amplitude of distortion in the shapes of source galaxies is correlated

with the amount of mass that causes passing light rays to bend. Assuming that lens

galaxies trace themass distribution following a simple linear biasingmodel (δg = bδm),

the galaxy-matter power spectrum relates to the matter power spectrum by a single

multiplicative bias factor. In this case, the tangential shear of background galaxies in

redshift bin j around foreground galaxy positions in redshift bin i at an angular sepa-

ration θ can be written as the following integral over the matter power spectrum Pδδ :

γijt (θ) = bi
3

2
Ωm

(
H0

c

)2 ∫ d�

2π
� J2(θ�)×

×
∫

dz

[
gj(z)ni

l(z)

a(z)χ(z)
Pδδ

(
k =

�

χ(z)
, χ(z)

)]
, (5.1)

where we are assuming bi(z) = bi within a lens redshift bin, J2 is the second order

Bessel function, l is the multipole moment, k is the 3D wavenumber, a is the scale

factor, χ is the comoving distance to redshift z, ni
l(z) is the redshift distribution of

foreground (lens) galaxies in bin i and gj(z) is the lensing efficiency for background

galaxies in bin j, computed as

gj(z) =

∫ ∞

z
dz′ nj

s(z
′)
χ(z′)− χ(z)

χ(z′)
, (5.2)

where nj
s(z) is the corresponding redshift distribution of background (source) galaxies

in bin j. The tangential shear in Eq. (5.1) depends on the cosmological parameters not

only through the explicit dependencies but also through the matter power spectrum

Pδδ . Nonetheless, the dependence on the cosmological parameters is heavily degenerate

with the galaxy bias of the lens galaxy population, bi.

It is also useful to express the tangential shear in terms of the excess surface mass

density ΔΣ. This estimator is typically used to study the properties of dark matter

halos (see for instance Mandelbaum et al. (2006)). However, with the large scales used

in this analysis, the lensing effect is caused by general matter overdensities which are

traced by galaxies. In this work, we make use of this estimator because the geometrical
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Figure 5.1: (Top panel): Redshift distribu-
tions of redMaGiC lens galaxies divided in

tomographic bins (colors) and for the com-

bination of all of them (black). The n(z)’s
are obtained stacking individual Gaus-

sian distributions for each galaxy. (Bot-
tom panel): The same, but for our two

weak lensing source samples, Metacal-

ibration and im3shape, using the BPZ

photometric redshift code.

dependence of the lensing signal becomes more evident. The estimator reads:

γt =
ΔΣ

Σcrit
, (5.3)

where the lensing strength Σ−1
crit is a geometrical factor that depends on the angular

diameter distance to the lensDl, the sourceDs and the relative distance between them

Dls:

Σ−1
crit(zl, zs) =

4πG

c2
DlsDl

Ds
, (5.4)

with Σ−1
crit(zl, zs) = 0 for zs < zl, and where zl and zs are the lens and source galaxy

redshifts, respectively. Since the redshift distributions of our lens and source samples,

nl(z), ns(z) respectively, have a non-negligible width and even overlap, we take this

into account by defining an effective Σ−1
crit integrating over the corresponding redshift

distributions. For a given lens bin i and source bin j, this has the following form:

Σ−1 i,j
crit,eff =

∫ ∫
dzldzs n

i
l(zl)n

j
s(zs) Σ

−1
crit(zl, zs). (5.5)

We need to assume a certain cosmology (flat ΛCDM with Ωm = 0.3) when cal-

culating the angular diameter distances in Σ−1
crit. The results presented in this analysis

depend only weakly on this choice of cosmology, as we will further discuss in the rele-

vant sections (see Sec. 5.6).
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5.3 Data and simulations

The Dark Energy Survey is a photometric survey that will cover about one quarter

of the southern sky (5000 sq. deg.) to a depth of r > 24, imaging about 300 million

galaxies in 5 broadband filters (grizY ) up to redshift z = 1.4 (Flaugher et al., 2015;

DES Collaboration, 2016). In this work we use data from a large contiguous region of

1321 sq. deg. of DES Year 1 observations which overlaps with the South Pole Telescope

footprint −60 deg. < δ < −40 deg. and reaches a limiting magnitude of ≈ 23 in the r-

band (with a mean of 3 exposures out of the planned 10 for the full survey). Y1 images

were taken between 31 Aug 2013 and 9 Feb 2014.

5.3.1 Lens sample: redMaGiC

The lens galaxy sample used in this work is a subset of the DES Y1 Gold Catalog

(Drlica-Wagner et al., 2018) selected by redMaGiC (Rozo et al., 2016), which is an algo-

rithm designed to define a sample of luminous red galaxies (LRGs) withminimal photo-

z uncertainties. It selects galaxies above some luminosity threshold based on how well

they fit a red sequence template, calibrated using redMaPPer (Rykoff et al., 2014, 2016)

and a subset of galaxieswith spectroscopically verified redshifts. The cutoff in the good-

ness of fit to the red sequence is imposed as a function of redshift and adjusted such that

a constant comoving number density of galaxies is maintained. The redMaGiC photo-

z’s show excellent performance, with a scatter of σz/(1 + z) = 0.0166 (Elvin-Poole

et al., 2018). Furthermore, their errors are very well characterized and approximately

Gaussian, enabling the redshift distribution of a sample, n(z), to be obtained by stack-

ing each galaxy’s Gaussian redshift probability distribution function (see Rozo et al.

(2016) for more details).

The sample used in this work is a combination of three redMaGiC galaxy sam-

ples, each of them defined to be complete down to a given luminosity threshold Lmin.

We split the lens sample into five equally-spaced tomographic redshift bins between

z = 0.15 and z = 0.9, with the three lower redshift bins using the lowest luminosity

threshold of Lmin = 0.5L� (named High Density sample) and the two highest redshift

bins using higher luminosity thresholds of Lmin = 1.0L� and Lmin = 1.5L� (named

High Luminosity and Higher Luminosity samples, respectively). Using the stacking

procedure mentioned above, redshift distributions are obtained and shown in Fig. 5.1.

Furthermore, redMaGiC samples have been produced with two different photometric

reduction techniques, MAG_AUTO and Multi-object fitting photometry (MOF), both de-

scribed in Drlica-Wagner et al. (2018). We follow the analysis of Elvin-Poole et al. (2018)

and we use MAG_AUTO photometry for the three lower redshift bins and MOF photom-

etry for the rest, as it was found in Elvin-Poole et al. (2018) that this combination was

optimal in minimizing systematic effects that introduce spurious angular galaxy clus-
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tering.

5.3.2 Source samples: Metacalibration and im3shape

See section 3.2 for a description of the im3shape andMetacalibration algorithms.

Due to conservative cuts on measured galaxy properties, e. g. signal-to-noise ratio and

size, that have been applied to both Metacalibration and im3shape, the number of

galaxies comprised in each shear catalog is significantly reduced compared to that of

the full Y1 Gold catalog. Still, the number of source galaxies is unprecedented for an

analysis of this kind. Metacalibration consists of 35 million galaxy shape estimates,

of which 26 are used in the cosmological analysis due to redshift and area cuts, and

im3shape is composed of 22 million galaxies, of which 18 are used for cosmology. The

fiducial results in this chapter, for instance in Sec. 5.6 and Sec. 5.7, utilize Metacali-

bration due to the higher number of galaxies included in the catalog.

5.3.3 Photometric redshifts for the source sample

Galaxy redshifts in DES are estimated from griz multiband photometry. The per-

formance and accuracy of these estimates was extensively tested with Science Verfica-

tion (SV) data, using a variety of photometric redshift algorithms and matched spec-

troscopy from different surveys (Sánchez et al., 2014; Bonnett et al., 2016).

The fiducial photometric redshifts used in this work are estimated with a modified

version of the Bayesian Photometric Redshifts (BPZ) code (Benitez, 2000; Hoyle et al.,

2018). BPZ defines the mapping between color and redshift by drawing upon physical

knowledge of stellar populationmodels, galaxy evolution and empirical spectral energy

distributions of galaxies at a range of redshifts.

Such photo-z’s are used to split our source samples into four tomographic bins

by the mean of the estimated individual redshift probability density functions (p(z))

between z = 0.2 and z = 1.3. For Metacalibration in particular, where potential

selection biases need to be corrected for (cf. Equation 5.4.1), this is done using photo-

z estimates based on Metacalibration measurements of multiband fluxes. For both

shear catalogs, the corresponding redshift distributions come from stacking random

draws from the p(z) and are shown in Fig. 5.1. Details of this procedure are described

in section 3.3 of Hoyle et al. (2018).

The photo-z calibration procedure we follow in Y1 is no longer based on spec-

troscopic data, since existing spectroscopic surveys are not sufficiently complete over

the magnitude range of the DES Y1 source galaxies. Instead, we rely on complemen-

tary comparisons to 1) matched COSMOS high-precision photometric redshifts and 2)

constraints on our redshift distributions fromDES galaxy clustering cross-correlations.

We refer the reader to the four dedicated redshift papers (Hoyle et al., 2018; Davis et al.,
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2017; Gatti et al., 2018; Cawthon et al., 2018). In addition, in this work we will provide

further independent validation of their calibration, using weak gravitational lensing

(Sec. 5.6).

5.3.4 Lognormal simulations

Lognormal models of cosmological fields, such as matter density and cosmic shear,

have been shown to accurately describe two-point statistics such as galaxy-galaxy lens-

ing on sufficiently large scales. Furthermore, the production of lognormal mock cata-

logs that reproduce properties of our sample is significantly less demanding in terms

of computational expenses thanN-body simulations such as those detailed in DeRose

et al. (2017). One of the first descriptions of lognormal fields in cosmological analyses

was outlined in Coles & Jones (1991). The assumption of lognormality for these cos-

mological fields has shown good agreement withN-body simulations and real data up

to nonlinear scales (Kayo, Taruya & Suto, 2001; Lahav & Suto, 2004; Hilbert, Hartlap &

Schneider, 2011). Thus, lognormalmock simulations provide a way to assess properties

of the galaxy-galaxy lensing covariance matrix that are particularly dependent on the

number of simulations produced, due to their low-cost nature of production.

We use the publicly available code FLASK1 (Xavier, Abdalla & Joachimi, 2016), to

generate galaxy position and convergence fields consistent with our lens and source

samples, and produce 150 full-sky shear and density mock catalogs. The maps are pix-

elated on a HEALPix grid with resolution set by an Nside parameter of 4096. At this

Nside, the typical pixel area is 0.73 arcmin2 and the maximum multipoles resolved for

clustering and shear are � = 8192 and � = 4096, respectively. We mask out regions

of the grid to then produce eight DES Y1 footprints for a given full-sky mock. This

produces a total of 1200 mock surveys that mimic our sample.

To correctly capture the covariance properties of this sample, such as shot noise, we

match the number density of the mock tomographic bins to those of the data. We add

noise properties to the shear fields according to the same procedure detailed in Troxel

et al. (2018). Galaxy bias is introduced in the lens samples through the input angular

auto and cross power spectra between bins, and is also chosen to approximately match

the data. The tracer density fields are subsequently Poisson sampled to yield discrete

galaxy positions.

1http://www.astro.iag.usp.br/∼flask/
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5.4 Measurement and covariance

5.4.1 Measurement methodology

Herewe describe the details of the tangential shearmeasurement 〈γt〉. Similarly, we

can measure the cross-component of the shear 〈γ×〉, which is a useful test of possible

systematic errors in the measurement as it is not produced by gravitational lensing. For

a given lens-source galaxy pair jwedefine the tangential (et) and cross (e×) components

of the ellipticity of the source galaxy as

et,j = −Re
[
eje

−2iφj

]
, e×,j = −Im

[
eje

−2iφj

]
, (5.6)

where ej = e1,j + i e2,j , with e1,j and e2,j being the two components of the ellipticity

of the source galaxy measured with respect to a Cartesian coordinate system centered

on the lens, and φj being the position angle of the source galaxy with respect to the

horizontal axis of the Cartesian coordinate system. Assuming the intrinsic elliptici-

ties of individual source galaxies are randomly aligned, we can obtain the mean weak

lensing shear
〈
γt/×

〉
averaging the ellipticity measurements for each component over

many such lens-source pairs. However, note that the assumption of random galaxy

orientations is broken by intrinsic galaxy alignments (IA), which lead to non-lensing

shape correlations (e.g. Troxel & Ishak 2015), which are included in the modelling of

the combined probes cosmology analysis (DES Collaboration, 2018b)). Then:

〈γα (θ)〉 =
∑

j ωjeα,j∑
j ωj

, (5.7)

where θ is the angular separation, α = t or× denotes the two possible components of

the shear and wj = wlwswe is a weight associated with each lens-source pair, which

will depend on the lens (wl, see 5.5.4), on the source weight assigned by the shear cat-

alog (ws, see 5.4.1 & 5.4.1) and on a weight assigned by the estimator (we, see App. A).

These estimates need to be corrected for shear responsivity (in the case of Metacali-

bration shears, 5.4.1) ormultiplicative and additive bias (in the case of im3shape, 5.4.1).

Also note that in this workwe = 1 becausewe are using the γt estimator, whichweights

all sources uniformly. Another optionwould be to choose an optimal weighting scheme

that takes into account the redshift estimate of the source galaxies tomaximize the lens-

ing efficiency, as it is the case of the ΔΣ estimator. In the context of a cosmological

analysis combining galaxy-galaxy lensing and cosmic shear, using uniform weighting

for the sources has the considerable advantage that nuisance parameters describing the

systematic uncertainty of shear and redshift estimates of the sources are the same for

both probes. In Appendix A, we find the increase in signal-to-noise ratio due to the

optimal weighting scheme to be small given the photo-z precision of source galaxies
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in DES, and hence we use the γt estimator in this work to minimize the number of

nuisance parameters in the DES Y1 cosmological analysis (DES Collaboration, 2018b).

In all measurements in this work, we grouped the galaxy pairs in 20 log-spaced an-

gular separation bins between 2.5 and 250 arcmin. We use TreeCorr2 (Jarvis, Bernstein
& Jain, 2004) to compute all galaxy-galaxy lensing measurements in this work.

One advantage of galaxy-shear cross-correlation over shear-shear correlations is

that additive shear systematics (with constant γ1 or γ2) average to zero in the tangential

coordinate system. However, this cancellation only occurswhen sources are distributed

isotropically around the lens and additive shear is spatially constant, two assumptions

that are not accurate in practice, especially near the survey edge or in heavily masked

regions, where there is a lack of symmetry on the source distribution around the lens.

To remove additive systematics robustly, we also measure the tangential shear around

random points: such points have no net lensing signal (see Sec. 5.5.1), yet they sample

the survey edge and masked regions in the same way as the lenses. Our full estimator

of tangential shear can then be written as:

〈γα(θ)〉 = 〈γα(θ)Lens〉 − 〈γα(θ)Random〉 . (5.8)

Besides accounting for additive shear systematics, removing the measurement around

random points from the measurement around the lenses has other benefits, such as

leading to a significant decrease of the uncertainty on large scales, as was studied in

detail in Singh et al. (2016). We further discuss the implications the random point sub-

traction has on our measurement and covariance in App. B.

Metacalibration responses

In theMetacalibration shear catalog (Huff &Mandelbaum, 2017; Sheldon&Huff,

2017; Zuntz et al., 2018), shears are calibrated using the measured response of the shear

estimator to shear, which is usually the ellipticity e = (e1, e2). Expanding this estima-

tor in a Taylor series about zero shear

e = e|γ=0 +
∂e

∂γ

∣∣∣∣
γ=0

γ + ...

≡ e|γ=0 +Rγγ + ... ,

(5.9)

we can define the shear responseRγ , which can be measured for each galaxy by artifi-

cially shearing the images and remeasuring the ellipticity:

Rγ,i,j =
e+i − e−i
Δγj

, (5.10)

2https://github.com/rmjarvis/TreeCorr
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Figure 5.2: Tangential shear measurements for Metacalibration and im3shape together with the best-

fit theory lines from the DES Y1 multiprobe cosmological analysis (DES Collaboration, 2018b). Scales

discarded for the cosmological analysis, smaller than 12h−1Mpc in comoving distance, but which are

used for the shear-ratio test, are shown as shaded regions. Unfilled points correspond to negative values

in the tangential shear measurement, which are mostly present in the lens-source combinations with low

signal-to-noise due to the lenses being at higher redshift than the majority of sources. HiDens, HiLum
and HigherLum correspond to the three redmagic samples (High Density, High Luminosity and Higher

Luminosity) described in Sec. 5.3.1.
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where e+i , e
−
i are the measurements made on an image sheared by +γj and −γj , re-

spectively, and Δγj = 2γj . In the Y1 Metacalibration catalog, γj = 0.01. If the

estimator e is unbiased, the mean response matrix 〈Rγ,i,j〉will be equal to the identity
matrix.

Then, averaging Eq. (5.9) over a sample of galaxies and assuming the intrinsic ellip-

ticities of galaxies are randomly oriented, we can express the mean shear as:

〈γ〉 ≈ 〈Rγ〉−1 〈e〉 (5.11)

It is important to note that any shear statistic will be effectively weighted by the same

responses. Therefore, such weighting needs to be included when averaging over quan-

tities associated with the source sample, for instance when estimating redshift distri-

butions (cf. Hoyle et al. (2018), their section 3.3). We are including these weights in all

the redshift distributions measured on Metacalibration used in this work.

Besides the shear response correction described above, in theMetacalibration frame-

work, whenmaking a selection on the original catalog using a quantity that could mod-

ify the distribution of ellipticities, for instance a cut in S/N, it is possible to correct for

selection effects. In this work, we are taking this into account when cutting on S/N

and size (used in Sec. 5.5.3 to test for systematics effects) and in BPZ photo-z’s (used to

construct the source redshift tomographic bins). This is performed by measuring the

mean response of the estimator to the selection, repeating the selections on quantities

measured on sheared images. Following on the example of the mean shear, the mean

selection response matrix 〈RS〉 is

〈RS,i,j〉 = 〈ei〉S+ − 〈ei〉S−

Δγj
, (5.12)

where 〈ei〉S+ represents the mean of ellipticities measured on images without applied

shearing in component j, butwith selection based onparameters frompositively sheared

images. 〈ei〉S− is the analogue quantity for negatively sheared images. In the absence

of selection biases, 〈RS〉 would be zero. Otherwise, the full response is given by the

sum of the shear and selection response:

〈R〉 = 〈Rγ〉+ 〈RS〉 . (5.13)

The application of the response corrections depends on the shear statistic that is being

calibrated; a generic correction for the two point functions, including the tangential

shear, which is our particular case of interest, is derived in Sheldon & Huff (2017). In

this workwemake use of two approximations that significantly simplify the calculation

of the shear responses. First, in principle we should take the average in Eq. (5.13) over

the sources used in each bin of θ, but we find no significant variation with θ and use a
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constant value (see App. C). Therefore, the correction to the tangential shear becomes

just the average response over the ensemble. Second, we assume the correction to be

independent of the relative orientation of galaxies, so that we do not rotate the response

matrix as we do with the shears in Eq. (5.6). Overall, our simplified estimator of the

tangential shear for Metacalibration, which replaces the previous expression from

Eq. (5.7) is:

〈γt,mcal〉 = 1

〈Rγ〉+ 〈RS〉

∑
j ωl,j et,j∑

j ωl,j
, (5.14)

summing over lens-source or random-source pairs j and where ωl,j are the weights

associated with the lenses.

The measured selection effects due to sample selection and photo-z binning for

each tomographic bin are 0.0072, 0.014, 0.0098 and 0.014, which represent 0.99%,

2.1%, 1.5% and 2.4% of the total response in each bin.

im3shape calibration

For the im3shape shear catalog, additive and multiplicative corrections need to be

implemented in the following manner, replacing the previous expression from Eq. (5.7)

(Zuntz et al., 2018):

〈γt,im3shape〉 =
∑

j ωl,j ωs,j et,j∑
j ωl,j ωs,j (1 +mj)

, (5.15)

summing over lens-source or random-source pairs j, where mj is the multiplicative

correction and the additive correction cj has to be applied to the Cartesian components

of the ellipticity, before the rotation to the tangential component, defined in Eq. (5.6),

has been performed. ωl,j are the weights associated with the lenses and ωs,j the ones

associated with the im3shape catalog.

From here on, we will refer to the mean tangential shear 〈γt〉 as γt for simplicity.

5.4.2 Measurement results

We present the DES Y1 galaxy-galaxy lensing measurements in Fig. 5.2. The total

detection significance using all angular scales for the fiducial Metacalibration cata-

log corresponds to S/N = 73. Signal-to-noise is computed as in Troxel et al. (2018),

S/N = (γdatat C−1γmodel
t )/(

√
γdatat C−1γmodel

t ), whereC and γmodel
t are the covari-

ance matrix and the best-fit models for galaxy-galaxy lensingmeasurements in the DES

Y1 cosmological analysis (DES Collaboration, 2018b). A series of companion papers

present other two-point functions of galaxies and shear on the same data sample, as well

as the associated cosmological parameter constraints from the combination of all these
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two-point functionmeasurements (Elvin-Poole et al., 2018; Troxel et al., 2018;DESCol-

laboration, 2018b). The shaded regions from this figure correspond to scales that are

excluded in themultiprobe cosmological analysis, i.e., scales smaller than 12h−1Mpc in

comoving distance for the galaxy-galaxy lensing observable (Krause et al., 2017). In the

top panelwe present themeasurements for theMetacalibration shear catalog, and for

im3shape in the bottom panel. Note that the measurements from the two shear cata-

logs cannot be directly compared, since their populations and thus their corresponding

redshift distributions differ. For each of the five lens redshift bins, we measure the tan-

gential shear for four tomographic source bins, which result in 20 lens-source redshift

bin combinations. The relative strength of the galaxy-galaxy lensing signal for a given

lens bin depends on the geometry of the lens-source configuration. This feature is ex-

ploited in the shear-ratio test, presented in Sec. 5.6, where we constrain the mean of the

source redshift distributions using the small scales that are not used in the cosmological

analysis (shaded in Fig 5.2).

5.4.3 Covariance matrix validation

Galaxy-galaxy lensing measurements are generally correlated across angular bins.

The correct estimation of the covariance matrix is crucial not only in the usage of these

measurements for cosmological studies but also in the assessment of potential system-

atic effects that may contaminate the signal. While a validated halo-model covariance is

used for the DES Y1multiprobe cosmological analysis (Krause et al., 2017), in this work

we use jackknife ( JK) covariance matrices given the requirements of some systematics

tests performed here, such as splits in area, size or S/N. A set of 1200 lognormal sim-

ulations, described in Section 5.3.4, is used to validate the jackknife approach in the

estimation of the galaxy-galaxy lensing covariances. We estimate the JK covariance us-

ing the following expression:

C
JK
ij (γi, γj) =

NJK − 1

NJK

NJK∑
k=1

(
γki − γi

) (
γkj − γj

)
, (5.16)

where the complete sample is split into a total of NJK regions, γi represents either

γt(θi) or γ×(θi), γki denotes the measurement from the kth realization and the ith

angular bin, and γi is the mean ofNJK resamplings.

Jackknife regions are obtained using the kmeans algorithm3 run on a homogeneous

random point catalog with the same survey geometry and, then, all foreground catalogs

(lenses and random points) are split in NJK = 100 subsamples. Specifically, kmeans
is a clustering algorithm that subdivides n objects into N groups (see Appendix B in

Suchyta et al. (2016) for further details).

3https://github.com/esheldon/kmeans_radec
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Figure 5.3: Correlation matrices obtained from the jackknife method on the data (top-left panel), from

the mean of jackknife covariances using 100 FLASK realizations (top-middle panel) and from the 1200

lognormal simulations FLASK (top-right panel), for an example redshift bin (0.3 < zl < 0.45 and

0.63 < zs < 0.90). In the bottom-middle and bottom-right panels, we show the differences between

the covariance matrices shown in the upper panels normalized by the uncertainty on the difference, for

the same example redshift bin. On the bottom-left panel, we display the normalized histograms of these

differences (20× 20 for each covariance, corresponding to 20 angular bins) for all the 5× 4 lens-source
redshift bin combinations, compared to a Gaussian distribution centered at zero with a width of one.
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In the upper panels of Fig. 5.3 we present the different covariance estimates con-

sidered in this work, namely the jackknife covariance in the data (Data JK), the mean

of 100 jackknife covariances measured on the lognormal simulations (FLASK JK) and
the true covariance from 1200 lognormal simulations (FLASK True), for a given lens-

source redshift bin combination (0.3 < zl < 0.45 and 0.63 < zs < 0.90). On the

lower panels of this figure, we show the differences between them normalized by the

corresponding uncertainty. The lower left panel shows the distribution of these differ-

ences and its agreement with a normal distribution with μ = 0 and σ = 1, as expected

from a pure noise contribution, using all possible lens-source bin combinations, and

the lower middle and right panels show the same quantity element-by-element for the

redshift bin combination used in the upper panels. The uncertainty on the data jack-

knife covariance comes from the standard deviation of the jackknife covariances mea-

sured on 100 lognormal simulations. The uncertainties on the two other covariance

estimates are significantly smaller; in the mean of 100 jackknife covariances it is
√
N

times smaller, whereN = 100 in our case. On the other hand, the uncertainty on each

element of the true covariance from 1200 lognormal simulations is calculated using

(ΔCij)
2 = (CiiCjj +CijCij)/(N − 1), whereN = 1200 in our case. The lower left

panel shows an overall good agreement between the covariance estimates, even though

the larger tail of the orange histogram with respect to a normal distribution indicates a

potential slight overestimation of the covariance obtained with the jackknife method.

In Fig. 5.4 we compare the diagonal elements of the covariance for the 20 lens-

source redshift bin combinations, obtaining good agreement for all cases and scales. As

in Fig. 5.3, the uncertainty on the data jackknife covariance comes from the standard

deviation of the jackknife covariances measured on 100 lognormal simulations. The

uncertainties on the two other error estimates are also shown on the plot, but are of the

same order or smaller than the width of the lines.

Overall, we have validated the implementation of the jackknife method on the data

by comparing this covariance to the application of the same method on 100 lognormal

simulations and to the true covariance obtained from 1200 lognormal simulations, and

finding good agreement among them, both for the diagonal and off-diagonal elements.

5.5 Data systematics tests

In order to fully exploit the power ofweak gravitational lensing, we need tomeasure

the shapes of millions of tiny, faint galaxies to exceptional accuracy, and possible biases

may arise from observational, hardware and software systematic effects. Fortunately,

weak lensing provides us with observables that are very sensitive to cosmology and the

physical properties of the objects involved but also with others for which we expect no

cosmological signal. By measuring such observables, we can characterize and correct
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Figure 5.4: Comparison of the diagonal elements of the covariance obtained from the jackknife method

on the data (Data JK), from the mean of jackknife covariances using 100 FLASK realizations (FLASK JK)
and from the 1200 lognormal simulations FLASK (FLASK True), for all the lens-source combinations.

116



5.5 Data systematics tests

10 100

θ [arcmin]

−8

−6

−4

−2

0

2

4

6

8

γ
×
×
θ

×10−3

0.15 < zl < 0.30

0.20 < zs < 0.43

0.15 < zl < 0.30

0.20 < zs < 0.43

METACALIBRATION

IM3SHAPE

0 10 20 30 40 50 60
χ2
Null

0.00

0.02

0.04

0.06

0.08

0.10

METACALIBRATION

IM3SHAPE

χ2 pdf (ndf= 20)

Figure 5.5: (Top panel): Cross-component
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tent with zero.
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for systematic effects in the data. In this section, we perform a series of tests that should

produce a null signal when applied to true gravitational shear, but whose non-zero

measurement, if significant, would be an indication of systematic errors leaking into

the galaxy-galaxy lensing observable.

5.5.1 Cross-component

The mean cross-component of the shear γ×, which is rotated 45 degrees with re-

spect to the tangential shear and is defined in Eq. (5.6), should be compatible with zero

if the shear is only produced by gravitational lensing, since the tangential shear captures

all the galaxy-galaxy lensing signal. Note that the cross-component would also be null

in the presence of a systematic error that is invariant under parity.

In the top panel of Fig. 5.5 we show the resulting cross-shear measured around

redMaGiC lenses (including random point subtraction) for one lens-source redshift bin

combination and for both shear catalogs. In the bottom panel we display the null χ2

histogram coming from all 5 × 4 lens-source γ× measurements, computed using the

jackknife covariance for the cross-component, described and validated in Sec. 5.4.3.

To compute the null χ2, i.e. χ2
null = γT× C−1 γ×, we need an estimate of the inverse of

the covariance matrix, but since jackknife covariance matrices contain a non-negligible

level of noise, we need to correct for the fact that the inverse of an unbiased but noisy

estimate of the covariance matrix is not an unbiased estimator of the inverse of the

covariance matrix (Hartlap, Simon & Schneider, 2007). Thus, we apply the Hartlap

correcting factor (NJK − p − 2)/(NJK − 1) to the inverse covariance, whereNJK is

the number of jackknife regions and p the number of angular bins. Our results indicate

the cross-component is consistent with zero.

5.5.2 Impact of PSF residuals

The estimation of source galaxy shapes involves modeling them convolved with the

PSF pattern, which depends on the atmosphere and the telescope optics and which we

characterize using stars in our sample. Next, we test the impact of residuals in the PSF

modeling on the galaxy-galaxy lensing estimator, and we compare the size of this error

to the actual cosmological signal.

Explicitly, the PSF residuals are the differences between the measured shape of the

stars and the PSFExmodel (Bertin, 2011; Zuntz et al., 2018) at those same locations. In

Fig. 5.6 we show the measured mean of the tangential component of the PSF residu-

als around redMaGiC galaxies, including the subtraction of the same quantity around

random points, in the same manner as for the tangential shear signal. We find it is

consistent with zero, and also much smaller than the signal (cf. Figure 5.2).
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5.5.3 Size and S/N splits

Potential biases in shape measurements are likely to be more important for galaxies

which are either small or detected at low signal-to-noise (S/N). Even though the shape

measurement codes utilized in this work are calibrated in a way such that these effects

are taken into account, it is important to test for any residual biases in that calibration.

In order to perform such a test, we split the source galaxy samples in halves of either

low or high size or S/N, and examine the differences between the galaxy-galaxy lensing

measurements using the different halves of the source galaxy samples. For this test,

we use the lower redshift lens bin to minimize the overlap in redshift with the source

samples. The sources are all combined into a single bin, to maximize the sensitivity to

potential differences between the halves.

In order to estimate the size of galaxies, for Metacalibration we use round mea-

sure of size (T_r), and for im3shapewe use theRgpp/Rp size parameter, both defined in

Jarvis et al. (2016). We estimate the S/N of galaxies using the roundmeasure of S/N for

Metacalibration, (s2n_r), and the snr quantity for im3shape, both defined in Jarvis

et al. (2016). Splitting the source galaxy samples in halves of low and high galaxy S/N or

size, we measure the corresponding galaxy-galaxy lensing signals, and we check their

consistency.

Since these quantities can correlate with redshift, differences can arise in the red-

shift distributions between the halves of S/N and size splits, as seen in the upper panels

of Fig. 5.7. When comparing the tangential shear signals of each half of the split, we

therefore need to account for the differences in the lensing efficiency given by the two

redshift distributions. We do this in the following way. From Eq. (5.3), the ratio be-

tween the tangential shear measurements for each half of the split in the absence of

systematics effects is

γ
l,shigh
t

γl,slowt

=
Σ
−1 l,shigh
crit,eff

Σ−1 l,slow
crit,eff

, (5.17)

since γ
l,shigh
t and γl,slowt share the same lens sample and thus the sameΔΣ. Σ−1

crit,eff , de-

fined in Eq. (5.5), is a double integral over the lens and source redshift distributions and

the geometrical factor Σ−1
crit, which depends on the distance to the lenses, the sources

and the relative distance between them. Then, to check the consistency between the

tangential shear measurements for each half of the source split we will compare the

ratio between them to the ratio between the corresponding Σ−1
crit,eff ’s.

Then, the validity of this test to flag potential biases in shape measurements related

to S/N and size is linked to an accurate characterization of the redshift distributions.

The ensemble redshift distributions are estimated by stacking the redshift probabil-

ity density functions of individual galaxies in each split, as given by the BPZ photo-z

code. As described in Hoyle et al. (2018) and a series of companion papers (Gatti et al.,
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2018; Davis et al., 2017; Cawthon et al., 2018) we do not rely on these estimated red-

shift distributions to be accurate, but rather calibrate their expectation values using

two independent methods: a matched sample with high-precision photometric red-

shifts from COSMOS, and the clustering of lensing sources with redMaGiC galaxies

of well-constrained redshift. These offsets to the BPZ estimate of the ensemble mean

redshift, however, could well be different for the two halves of each of the splits.

To estimate these calibration differences between the subsamples, we repeat the

COSMOS calibration of the redshift distributions (see Hoyle et al. (2018) for details),

splitting the matched COSMOS samples byMetacalibration size and signal-to-noise

ratio at the same thresholds as in our data. We find that the shifts required to match

the mean redshifts of the subsamples with the mean redshifts of the matched COSMOS

galaxies are different by up to |Δ(Δz)| = 0.035 for the overall source sample.

In the upper panels of Fig. 5.7, the mean values of the redshift distributions have

been corrected using the results found in the analysis described above, and these cor-

rected n(z)’s are the ones that have been used in the calculation ofΣ−1
crit,eff in Eq. (5.17).

The ratio ofΣ−1
crit,eff ’s is shown in the lower panels of Fig. 5.7 and its uncertainty comes

from the propagation of the error in the mean of the source redshift distributions for

each half of the split, i.e.
√
2 times the non-tomographic uncertainty as estimated in

Hoyle et al. (2018) using COSMOS.

Regarding the left-hand side of Eq. (5.17), to avoid inducing biases from taking the

ratio between two noisy quantities, we fit an amplitude for each half of the split to

a smooth tangential shear measurement that we obtain from the mean of tangential

shear measurements on 100 independent log-normal simulations. Then, we take the

ratio between the amplitudes fitted for each half of the split. We repeat this procedure

for each data jackknife resampling, obtaining a ratio for each of those, whose mean and

standard deviation are shown in the lower panels of Fig. 5.7 (points), compared to the

ratio of Σ−1
crit,eff ’s (boxes).

Given the uncertainties in both the measurements and the photometric redshift

distributions presented in Fig. 5.7, we find no significant evidence of a difference in the

galaxy-galaxy lensing signal when splitting the Metacalibration or im3shape source

samples by size or S/N. Specifically, we find a 1.6σ (0.24σ) difference for the Meta-

calibration (im3shape) S/N split and a 0.90σ (1.3σ) difference for the Metacalibra-

tion (im3shape) size split.

5.5.4 Impact of observing conditions

Time-dependent observing conditions are intrinsic to photometric surveys, and

they may impact the derived galaxy catalogs, for instance, introducing galaxy density

variations across the survey footprint. In this section we test for potential biases in

the galaxy-galaxy lensing measurements due to these differences in observing condi-
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tions and their effect in the survey galaxy density. We use projected HEALPix (Gorski

et al., 2005) sky maps (with resolution Nside = 4096) in the r band for the following

quantities:

• AIRMASS:Mean airmass, computed as the optical path length for light from a ce-

lestial object through Earth’s atmosphere (in the secant approximation), relative

to that at the zenith for the altitude of CTIO.

• FWHM:Mean seeing, i.e., full width at half maximum of the flux profile.

• MAGLIMIT:Mean magnitude for which galaxies are detected at S/N = 10.

• SKYBRITE:Mean sky brightness.

More information on these maps can be found in Drlica-Wagner et al. (2018) and

Elvin-Poole et al. (2018).

In order to test for potential systematic effects, we split eachmap into halves of high

and low values of a given quantity, andmeasure the galaxy-galaxy lensing signal in each

half. We are using the same configuration as in the S/N and size splits, i.e. the lower

redshift lens bin and a single non-tomographic source bin between 0.2 < zs < 1.3.

In this case, we are splitting both the lens and the source samples, since the split is

performed in area.

To check the consistency between the measurements in each half we follow the

same approach as for the S/N and size splits, described in detail in the previous section,

where we take into account the differences in the redshift distributions of the sources.

We find the correlation between observing conditions and redshift to be very mild for

the source sample, as can be seen in Fig. 5.8, where the ratios of Σ−1
crit,eff ’s are all com-

patible with unity. For the lens sample this correlation is even smaller, consistent with

the lens sample containing brighter and lower-redshift galaxies. The differences on the

mean redshift between the lens redshift distributions of the two halves are of the order

of 0.001 or smaller for all maps, which is negligible for this test, although we have not

performed independent calibration of redshift biases for these split samples.

The results for these area splits are shown in Fig. 5.8 for Metacalibration and

im3shape. In most cases, the ratio between the measurements on each half of the splits

lie within 1σ of the corresponding ratio ofΣ−1
crit,eff ’s, and at slightly more than 1σ in the

remaining cases. Thus, we do not encounter any significant biases on the galaxy-galaxy

lensing signal due to differences in observing conditions.

The effect of the same variable observing conditions in the galaxy clustering mea-

surements using the same DES redMaGiC sample is studied in detail in Elvin-Poole

et al. (2018). In that analysis, maps which significantly correlate with galaxy density are

first identified, and then a set of weights is computed and applied to the galaxy sample
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in the r band, with angular scales used in the cosmology analysis (12h−1Mpc). We compare the ratio of

Σ−1
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Figure 5.9: Comparison between themean ratio of tangential shearmeasurements using 1200 independent

log-normal simulations and the ones calculated from theory, for all lens-source bin ratio combinations

sharing the same lens bin. The errorbars correspond to the standard deviation of the measurement on

individual simulations, thus being representative of the errors that we will obtain from the data.

so that such dependency is removed, following a method similar to that presented in

Ross et al. (2012, 2017). The resulting set of weights from that analysis has been also

used in this work, for consistency in the combination of two-point correlation func-

tions for theDESY1 cosmological analysis. Nonetheless, the impact of such aweighting

scheme in the galaxy-galaxy lensing observables is found to be insignificant, consistent

with the tests presented above in this section and with previous studies (see Kwan et al.

2017).

5.6 Shear-Ratio test

In previous sections we have seen that the variation of the galaxy-galaxy lensing

signal with source redshift depends solely on the angular diameter distances relative to

foreground and background galaxy populations. Such dependency was initially pro-

posed as a probe for dark energy evolution in Jain & Taylor (2003). The shear-ratio is,

however, a weak function of cosmological parameters, and more sensitive to errors in

the assignment of source or lens redshifts (Kuijken et al., 2015). Since redshift assign-

ment is a crucial but difficult aspect of robust cosmological estimate for a photometric

survey like DES, the shear-ratio test is a valuable cross-check on redshift assignment. In

the context of the DES Y1 cosmological analysis, the usage of high-quality photometric

redshifts for lens galaxies allows us to put constraints on the mean redshift of source
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Figure 5.10: Boost factor correction accounting for clustering between lenses and sources in each lens-

source bin used in this analysis. Non-shaded scales correspond to scales used in the DES Y1 cosmological

analysis, while shaded regions are used for the shear-ratio geometrical test in this Section. Boost factors

are unity or percent-level for the former, but can be significantly larger for the latter in some cases, and

hence they are applied in our analysis of the shear-ratio test.
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galaxy distributions.

In this section we present a general method to constrain potential shifts on redshift

distributions using the combination of ratios of galaxy-galaxy lensing measurements.

First, we present the details of the implementation, and we test it on lognormal sim-

ulations. Then, we use the galaxy-galaxy lensing measurements shown in Fig. 5.2, re-

stricted to angular scales which are not used in the DES Y1 cosmological analysis, to

place independent constraints on the mean of the source redshift distributions shown

in the lower panel of Fig. 5.1. Finally, we compare our findings with those obtained

from a photometric redshift analysis in the COSMOS field and from galaxy angular

cross-correlations.

The ratio of two galaxy-galaxy lensing measurements around the same lens bin,

hence having equivalentΔΣ, can be derived from Eq. (5.3) and is given by:

γl,sit

γ
l,sj
t

=
Σ−1 l,si
crit,eff

Σ
−1 l,sj
crit,eff

, (5.18)

whereΣ−1
crit,eff is the double integral over lens and source redshift distributions defined

in Eq. (5.4). Therefore, for two given γt measurements sharing the same lens population

but using two different source bins, we can predict their ratio from theory by using the

estimated redshift distributions involved. In addition, we can allow for a shift in each of

those redshift distributions and use the γt measurements to place constraints on them.

In this section we generalize this approach by including all possible combinations

of ratios of galaxy-galaxy lensing measurements sharing a given lens bin, and allowing

for independent shifts in their redshift distributions. With the purpose of providing

constraints on the shifts of redshift distributions which are independent of the mea-

surement involved in the fiducial DES Y1 cosmological analysis, we restrict the galaxy-

galaxy lensing measurements used for this shear-ratio test to scales smaller than the

ones used by the cosmological analysis but which have still been tested against system-

atic effects in this work.

In order to estimate the ratio of galaxy-galaxy lensing measurements, which can

be noisy and thus bias their ratio, we fit each measurement involved in the ratio, both

around the same lens bin, to a power law fit of the highest signal-to-noise γt measure-

ment for the same lens bin. That fixes the shape of the galaxy-galaxy lensing signal

around that lens galaxy sample. Then, fits to the amplitude of this power law are used

to obtain the shear ratio.

5.6.1 Testing the method on simulations

With the purpose of testing our method to estimate ratios of galaxy-galaxy lensing

measurements and our ability to recover the expected values from theory, we use the
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lognormal simulations described in Sec. 5.3.4, where we know the true lens and source

redshift distributions. For that case, we should be able to find good agreement between

measurements and theory, without the necessity of allowing for any shifts in the redshift

distributions.

Figure 5.9 shows all the possible ratios of two γt measurements in the FLASK sim-

ulations sharing the same lens bin using the lens-source binning configuration used

throughout this chapter (as depicted in Fig. 5.1), with the error bars coming from the

variance of the 1200 simulations. It also shows the expected values for the ratios given

from theory, using the true corresponding redshift distributions with no shifts applied.

The agreement between measurements and theory is excellent, demonstrating that the

method described in this section is able to recover the true values of γt measurements

from theory when the redshift distributions are known.

5.6.2 Application to data

Now we turn to data, and utilize this shear-ratio method to constrain possible bi-

ases in the mean of redshift distributions. The lens and source redshift bins considered

and their fiducial estimated redshift distributions are depicted in Figure 5.1. The high-

precision photometric redshifts of the redMaGiC sample ensure the lens redshift distri-

butions are well known, with potential shifts found to be very small and consistent with

zero in Cawthon et al. (2018), and hence we keep them fixed. On the contrary, source

galaxies are generally fainter and have a much larger uncertainty in their redshift dis-

tributions. Therefore, we allow for an independent shift Δzi in each of the measured

source redshift distributions ni
obs(z), such that

ni
pred(z) = ni

obs(z −Δzi), (5.19)

to be constrained from the combination of ratios of galaxy-galaxy lensing measure-

ments through their impact in the Σ−1
crit,eff factors in Eq. (5.18).

When turning to the data case, we also have to consider effects which are not in-

cluded in the simulations. In particular, next we take into account the effects of poten-

tial boost factors and multiplicative shear biases in the measurements.

Boost factors

The calculation of the mean galaxy-galaxy lensing signal in Eq. (5.1) correctly ac-

counts for the fact that some source galaxies are in front of lenses due to overlapping

lens and source redshift distributions, but only under the assumption that the galaxies

in those distributions are homogeneously distributed across the sky. As galaxies are not

homogeneously distributed but they are clustered in space, a number of sources larger

than the nobs(z) suggests may be physically associated with lenses. These sources are
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Figure 5.11: Comparison between the ra-

tio of tangential shear measurements on

Metacalibration (blue points) to the ones
calculated from theory, both without ap-

plying any shift to the original source

n(z)′s (dashed orange line) and applying

the best-fit shifts with a 1σ uncertainty

band (gray band).

not lensed, causing a dilution of the lensing signal which can be significant at small

scales. In order to estimate the importance of this effect, we compute the excess of

sources around lenses compared to random points (Sheldon et al., 2004):

B(θ) =
Nr

Nl

∑
l,swl,s∑
r,swr,s

(5.20)

where l, s (r, s) denotes sources around lenses (random points),wl,s (wr,s) is the weight

for the lens-source (random-source) pair, and the sums are performed over an angular

bin θ. Figure 5.10 shows this calculation for every lens-source bin in this analysis. The

shaded regions in the plot mark the scales used for the shear-ratio test (unused by the

cosmological analysis). The importance of boost factors at small scales can be as large as

10%, while on the large scales used for cosmology it does not depart from unity above

the percent level. The data measurements used for the shear-ratio test in this section

have been corrected for this effect.

Multiplicative shear biases

Multiplicative shear biases are expected to be present in the galaxy-galaxy lensing

signal and need to be taken into account. This potential effect is included as an inde-

pendent parameter mi for each source redshift bin, parametrized such that the shear

ratios in Eq. (5.18) look like the following:

γl,sit

γ
l,sj
t

=
(1 +mj) Σ

−1 l,si
crit,eff

(1 +mi) Σ
−1 l,sj
crit,eff

. (5.21)
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Figure 5.12: Comparison of the constraints obtained on the source redshift distribution shifts using dif-

ferent methods: Shear-ratio test, photo-z studies in the COSMOS field (COSMOS, Hoyle et al. 2018) and

cross-correlation redshifts (WZ, Davis et al. 2017; Gatti et al. 2018).
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Table 5.1: Priors and posteriors on the mean of source redshift distributions (Δz) and multiplicative shear

biases (m) for the first three source bins defined in this work (Fig. 5.1), using the shear-ratio test. Priors

are uniform inΔz and Gaussian onm, and posteriors are given as the mean value with 68% constraints.

Δz Prior Δz Posterior m Prior m Posterior

Source bin 1 Uniform(−0.5,0.5) 0.046+0.017
−0.023 Gaussian(0.012,0.021) 0.018+0.020

−0.021

Source bin 2 Uniform(−0.5,0.5) −0.005+0.028
−0.031 Gaussian(0.012,0.021) −0.012+0.017

−0.016

Source bin 3 Uniform(−0.5,0.5) 0.10+0.13
−0.12 Gaussian(0.012,0.021) 0.035+0.016

−0.019
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Figure 5.13: Prior and posterior distribu-

tions for multiplicative shear biases (m)

for the first three source bins defined in

this work (Fig. 5.1). The shear-ratio test

appears to be informative on the multi-

plicative shear biases for the second and

third source bins, reducing the priorwidth

by asmuch as 20%, even though posteriors

are all consistent with the priors at better

than 1-σ level.

Results

In practice, the sensitivity of the shear-ratio geometrical test to shifts in the mean

of redshift distributions decreases significantly the higher the distribution is in redshift,

due to the relative differences in distance with respect to the lenses and the observer

being smaller for that case. For that reason, the sensitivity to shifts in the highest source

redshift bin defined in this work is very small, and as there are strong correlations with

the other shifts, we left out the fourth source bin. We also leave out the two highest lens

redshift bins as the galaxy-galaxy lensing S/N for these cases is very small and they add

little information to this test.

In order to find the best-fit shifts for all combinations of fixed-lens γt ratios using

these redshift bins, we set a Monte-Carlo Markov Chain (MCMC) to let the shifts vary,

with a broad flat prior of [-0.5,0.5] for each shiftΔzi. We follow the recommendations

in Zuntz et al. (2018) and include a Gaussian prior of μ = 0.012 and σ = 0.021 on the

multiplicative shear biasesmi for each source bin i. As the covariance is estimated from

JK resampling, the corresponding Hartlap factor is applied to the covariance. Some re-

cent studies have discussed and presented further corrections to that procedure (Sell-

entin & Heavens, 2016). Given that in our case the Hartlap factor is � 0.9, such cor-

rections would result in a small change to the parameter contours, and have not been
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considered in this analysis. However, a more detailed treatment of noisy covariances

may need to be considered in forthcoming, more sensitive, DES analyses.

Figure 5.11 shows the equivalent of Fig. 5.9 for the data case, including the theory

prediction with no shifts and with best-fit shifts from the MCMC run, and the shear-

ratio case in Fig. 5.12 shows the Δz constraints from the MCMC, marginalizing over

multiplicative shear biases m, where very clear correlations can be observed between

the different shifts. In addition, Table 5.1 presents the derived constraints on Δz and

m for the different source bins considered. Even though Σcrit depends on cosmology

through Ωm, the results are insensitive to that parameter to the extent that no signif-

icant changes on the shifts are observed when marginalizing over it with a broad flat

prior of 0.1 < Ωm < 0.5. Also, the boost factor correction from Eq. (5.20) has no

significant effect on the derivedΔz constraints.

In the past, several studies have proposed shear self-calibration techniques, either

from galaxy-galaxy lensing only Bernstein (2006), or using combinations of observables

(e. g. Huterer et al. 2006; Bernstein 2009a). Interestingly, the shear-ratio test can also

be used as a way to calibrate potential multiplicative shear biases (m) present in the

data. Figure 5.13 displays them priors and posteriors for the three source redshift bins

considered, where the posteriors show a reduction of up to 20% in the width of the

priors (see also Table 5.1) for the second and third bins, therefore showing potential as

a method to internally constrain shear biases in the data.

Caveats and future work

The redshift evolution of the ΔΣ profile of the lens sample within a redshift bin

could potentially affect the shear-ratio test and would not be noticeable in the FLASK

simulations. This would especially influence the ratios between lens and source bins

that are close in redshift. However, the usage of relatively thin lens tomographic bins,

of 0.15 in redshift, and the little galaxy bias evolution of the redMaGiC sample for the

first three lens bins, as shown in Fig. 5.14 below and Clampitt et al. (2017), suggest that

this effect is small compared to our current error bars. On the other hand, mischar-

acterization of the tails in the fiducial (unshifted) redshift distributions of the source

galaxies, especially for those close to the lenses, could also affect the results of the shifts

obtained with the shear-ratio test. Studying the impact of such effects in the shear-ratio

geometrical test usingN-body simulations is beyond the scope of this chapter and it is

left for future work.

In addition, intrinsic alignment (IA) between physically associated lens-source galaxy

pairs can potentially affect the shear ratio measurement (see, e. g., Sheldon et al. 2004;

Blazek et al. 2012). While IA on larger scales is modeled when measuring cosmology or

the galaxy bias, we have not included this effect on the small scales used here. The boost

factor measurements in Fig. 5.10 yield an estimate of the fraction of physically associ-
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ated pairs in all our measurements. As seen in Blazek et al. (2012), for typical lensing

sources the impact of IA contamination on the observed lensing signal is smaller than

that of the boosts themselves. Since the boost corrections here are small and have a

minimal effect on the derived source photo-z shifts, we expect the impact of IA to be

highly subdominant. However, it will be beneficial in future work to include the impact

of IA when performing shear ratio tests.

Comparison ofΔz constraints and conclusions

In Fig. 5.12 we also compare the shear-ratio constraints with those obtained in-

dependently from photo-z studies in the COSMOS field (Hoyle et al., 2018) and from

galaxy cross-correlations (Davis et al., 2017; Gatti et al., 2018), and we find consistency

among the three independent studies, with χ2/dof = 5.57/6 for the combination of the

three cases. As expected, the constraining power of the shear-ratio test for the shifts on

the source distributions decreases rapidly the higher the redshift of the distributions is,

so that the 1-D marginalized constraints on the first tomographic bin are competitive

with those from the other probes, and for the third tomographic bin they add very little

information. However, on the 2-D space, the shear-ratio contours show great potential

in breaking degeneracies with other probes. Therefore, the use of this method with

forthcoming data sets can have a major impact in determining possible photometric

redshift biases, especially from source distributions at low redshift.

The importance of an accurate photometric redshift calibration in DESwas already

noticed in the analysis of Science Verification data, where it proved to be one of the

dominant systematic effects (DES Collaboration, 2015). For this reason, showing the

consistency of constraints derived from galaxy-galaxy lensing only to those frommore

traditional photo-z methods and from galaxy angular cross-correlations represents an

important demonstration of the robustness of the companion DES Y1 cosmological

analysis.

5.7 redMaGiC galaxy bias

Galaxy-galaxy lensing is sensitive to cosmological parameters and the galaxy bias

of the corresponding lens galaxy population, as expressed in Eq. (5.1). Similarly, the

galaxy clustering of the same lens population also depends on both cosmology and the

galaxy bias, but with a different power of the latter (Elvin-Poole et al., 2018). There-

fore, the combination of galaxy clustering and galaxy-galaxy lensing breaks the degen-

eracy between the galaxy bias and cosmological parameters. This combination is one of

the more promising avenues to understand the underlying physical mechanism behind

dark energy, and has been used together with cosmic shear measurements to produce

cosmological results from DES Y1 (DES Collaboration, 2018b).
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Figure 5.14: Comparison of the galaxy

bias results obtained from galaxy cluster-

ing measurements (bA, Elvin-Poole et al.

2018) and from the galaxy-galaxy lens-

ing measurements in this work (b×), by
fixing all cosmological parameters to the

3x2 cosmology best-fit from DES Collab-

oration (2018b). The vertical dotted lines

separate the three redMaGiC samples,

which have different luminosity thresh-

olds Lmin, defined in Sec. 5.3.1.

Alternatively, fixing all cosmological parameters, the measurements of galaxy clus-

tering and galaxy-galaxy lensing can provide independent measurements of the galaxy

bias of a given lens population. TheDESY1 cosmology analysis relies on the assumption

that the linear bias from galaxy clustering and from galaxy-galaxy lensing is the same,

which is known to break down on the small-scale regime (Baldauf et al., 2010). To ver-

ify this assumption over the scales used in the DES Y1 cosmology analysis, we measure

the galaxy bias from each probe separately. In Fig. 5.14 we show the bias constraints

from galaxy clustering (or galaxy autocorrelations, bA) and galaxy-galaxy lensing (or

galaxy-shear cross-correlations, b×) on the five lens redMaGiC tomographic bins de-

fined in this work, fixing all cosmological parameters to the best-fit obtained in the

DES Y1 cosmological analysis (DES Collaboration, 2018b). We use comoving angular

separations larger than 8h−1Mpc for galaxy clustering, and larger than 12h−1Mpc for

galaxy-galaxy lensing, which correspond to the scales used in the DES Y1 cosmologi-

cal analysis. In order to obtain these results, the clustering measurements from Elvin-

Poole et al. (2018) and the galaxy-galaxy lensing measurements from this work have

been analyzed with the same pipeline used in DES Collaboration (2018b), including the

covariance between the two probes andmarginalizing over all nuisance parameters like

photometric redshift, shear calibration and intrinsic alignments uncertainties. We find

the obtained constraints on the galaxy bias from galaxy-galaxy lensing to be in good

agreement with those obtained from galaxy clustering.

The results in Fig. 5.14 can also be interpreted by allowing a non-unity cross-correlation

parameter between the galaxy and matter distributions. This parameter is usually ex-

pressed in terms of the matter and galaxy power spectra, Pδδ and Pgg respectively, and

the galaxy-matter power spectrum Pgδ , as

r (k, χ(z)) =
Pgδ(k, χ(z))√

Pδδ(k, χ(z))Pgg(k, χ(z))
, (5.22)
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r between galaxies and dark matter ob-

tained by comparing the galaxy bias from

galaxy clustering (bA) and from galaxy-

galaxy lensing only (b×), fixing all cosmo-

logical parameters to three different cos-

mologies from DES Y1 cosmological re-

sults (DES Collaboration, 2018b): (i) 3x2

best-fit (All), (ii)ω(θ)+γt best-fit, and (iii)
cosmic shear best-fit.

where we have explicitly included its possible scale and redshift dependence. In the

context of this model, the galaxy power spectrum remains unchanged with respect to

r = 1, Pgg = b2Pδδ , but the galaxy-matter power spectrum changes from Pgδ = bPδδ

to Pgδ = b rPδδ . That introduces an r factor in the galaxy-galaxy lensing expression in

Eq. (5.1), and hence the two estimates of the galaxy bias in Fig. 5.14 can be transformed

to:

b = bA ; r = b×/bA, (5.23)

and this allows us to place constraints on the r parameter using our measurements. If

ri refers to the cross-correlation parameter in lens bin i, the constraints we obtain read:

r1 = 1.094 ± 0.080, r2 = 0.975 ± 0.059, r3 = 0.911 ± 0.078, r4 = 1.02 ± 0.13,

r5 = 0.85± 0.28, shown also in Fig. 5.15.

In addition, it is important to note that the specified constraints on the galaxy bias

and the cross-correlation coefficient are not independent of the assumed cosmology.

The values given above are obtainedwith the 3x2 best-fit cosmological parameters from

the DES Y1 main cosmological analysis (DES Collaboration, 2018b), which favours the

cross-correlation coefficient being consistent with one, since the cosmology is deter-

mined assuming the galaxy bias for galaxy clustering and for galaxy-galaxy lensing is

the same. This is also true for the 2x2 cosmology, from ω(θ)+ γt. On the contrary, the

cosmological parameters obtained only from the cosmic shear analysis are independent

of the galaxy bias and the cross-correlation coefficient and therefore provide a way to

test the r = 1 assumption. In Fig. 5.15, we present the r constraints for each of these

three cosmologies, which we find all to be consistent with r = 1. The r constraints

presented in this section provide further justification for assuming r = 1 in the main

DES Y1 cosmological analysis.

Previously, different studies had analyzed the consistency between different esti-

mates of the galaxy bias of a given galaxy population. In the context of DES, a number

of different analyses using galaxy clustering in Crocce et al. (2016), CMB lensing in Gi-
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annantonio et al. (2016), galaxy-galaxy lensing in Prat et al. (2018b), and projected mass

maps inChang et al. (2016) usedDES ScienceVerification (SV) data to obtain constraints

on the galaxy bias of themain galaxy population (so-calledDES-SVBenchmark sample),

finding mild differences in those estimates that were explored as potential differences

between clustering and lensing. Outside DES, other studies have also examined poten-

tial differences between clustering and lensing. In particular, in Leauthaud et al. (2017)

the authors perform a galaxy-galaxy lensing measurement around BOSS CMASS spec-

troscopic galaxies using data from the CFHTLenS and SDSS Stripe 82 surveys, and find

the lensing signal to be lower than that expected from the clustering of lens galaxies and

predictions from standard models of the galaxy-halo connection. In this study, as ex-

pressed in the r values reported above, and more broadly in the DES Y1 cosmological

analysis presented in DESCollaboration (2018b), we find the clustering and lensing sig-

nals to be consistent within our uncertainties, though we note that the Leauthaud et al.

(2017) analysis was done on significantly smaller scales.

5.8 Conclusions

This chapter is part of the Dark Energy Survey Year 1 (DES Y1) effort to obtain cos-

mological constraints by combining three different probes, namely galaxy clustering,

galaxy-galaxy lensing and cosmic shear. The main goal of this work is to present and

characterize one of these two-point correlations functions, the galaxy-galaxy lensing

measurement. Besides this principal task, we use source tomography to put constraints

on the mean of the source redshift distributions using the geometrical shear-ratio test.

Finally, we obtain the galaxy bias from this probe and we compare it to the correspond-

ing result from galaxy clustering.

Our lens sample is composed of redMaGiC galaxies (Rozo et al., 2016), which are

photometrically selected luminous red galaxies (LRGs) with high-precision photomet-

ric redshifts. This allows us to divide the lens sample into five equally-spaced tomo-

graphic bins between 0.15 and 0.9 in redshift. Regarding the source sample, we use

two independent shear catalogs, namely Metacalibration and im3shape, which are

described in detail in Zuntz et al. (2018). We split the source galaxies into four tomo-

graphic bins between 0.2 and 1.3 in redshift using BPZ, a template-based photometric

redshift code.

In order to characterize the DES Y1 galaxy-galaxy lensing measurements, we test

them for an extensive set of potential systematic effects. First, we show that the cross-

component of the shear is compatible with zero, which should be the case if the shear

is only produced by gravitational lensing. Second, PSF residuals are considered and

found to leave no imprint on the tangential shear measurements. Next, we split the

source sample into halves of high and low signal-to-noise or size, observing no signif-
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icant differences between the measurements in each half of the split. Finally, we study

the impact of the survey observing conditions, i.e. airmass, seeing, magnitude limit and

sky brightness, on the galaxy-galaxy lensing signal, finding no significant dependence.

To estimate the significance of these tests we use covariancematrices obtained from the

jackknife method, which we validate using a suite of log-normal simulations. Overall,

we find no significant evidence of systematics contamination of the galaxy-galaxy lens-

ing signal. Besides serving as crucial input and validation for the DES Y1 cosmological

analysis, this set of systematics tests will also be useful for potential future work relying

on DES Y1 galaxy-galaxy lensing measurements.

In addition to the systematics testing, we apply the shear-ratio test to our source

tomographic measurements. Given a fixed lens bin, we make use of the geometrical

scaling of the tangential shear for different source redshift bins to constrain the mean

of the source tomographic redshift distributions, which is one of the dominant sources

of uncertainty in the DES Y1 cosmological analysis. For this test, we restrict the scales

to those ignored in the cosmological analysis, so that it is independent of the constraints

obtained there. Our results are in agreement with other photo-z studies on the same

data sample (Hoyle et al., 2018; Davis et al., 2017; Gatti et al., 2018), thus showing the

robustness of the photometric redshifts used in the DES Y1 cosmological analysis. We

also find this method to be informative of multiplicative shear biases in the data, hence

showing potential as a way of self-calibrating shear biases in future data sets.

Finally, restricting to the scales used in the cosmological analysis, we use the galaxy-

galaxy lensing measurements in this work to obtain galaxy bias constraints on the red-

MaGiC galaxy sample by fixing all the cosmological parameters but leaving free the

nuisance parameters as in DES Collaboration (2018b). We compare these constraints

from the ones obtained using the corresponding galaxy clustering measurements in the

same lens sample in Elvin-Poole et al. (2018) and using the same cosmological model,

finding good agreement between them. This agreement can also be understood as a

consistency test of the assumption that the galaxy-matter cross-correlation coefficient

r = 1, made in the cosmology analysis.
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Chapter 6

Dark Energy Survey Year 1 Results:

Cosmological Constraints from Galaxy

Clustering and Weak Lensing

6.1 Introduction

In the chapter above we presented one of the three two-point correlation func-

tions that, along with galaxy clustering and cosmic shear, are used in the DES 3x2pt

cosmological analysis of Y1 data. The work from the previous chapter needs to be un-

derstood in the broader context in which it is embedded. That is why, in this chapter,

we summarize the main results of the DES Y1 cosmological analysis obtained from the

combination of galaxy clustering and weak lensing, explaining the motivation behind

using this combination and discussing the consistency of the results with those from

other cosmological probes.

The discovery of the acceleration of the expansion of theUniverse (Riess et al., 1998;

Perlmutter et al., 1999) established the cosmological constant (Λ) (Einstein, 1917) +Cold

Dark Matter (ΛCDM) model as the standard cosmological paradigm that is able to ex-

plain awide range of events, from the origin and evolution of large-scale structure to the

current epoch of accelerated expansion (Lahav & Liddle, 2014; Weinberg et al., 2013).

The success of ΛCDM, however, must be counterpoised by its apparent implausibility:

three new entities beyond the Standard Model of particle physics — one that drove an

early epoch of inflation, another that operates as dark matter, and a third that is driving

the current epoch of acceleration— are required, and it is not clear how to connect any

of them to the rest of physics (Frieman, Turner & Huterer, 2008). Experiments such

as the Dark Energy Survey are devised to test ΛCDM and more generally aim to dis-

tinguish the mechanism causing the current epoch of acceleration, which could be the

vacuumenergy associatedwith the cosmological constant, another formof dark energy,

a modification of General Relativity, or something else more extreme not envisioned
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yet.

The spatial distribution of galaxies – the so-called galaxy clustering–, and its evolu-
tion in time, is sensitive to the physics of the early Universe, as well as to the details of

structure evolution in the late Universe, hence providing tests to predictions ofΛCDM.

However, the data–model comparison in this case depends on the galaxy bias (Kaiser,

1984), the relation between the galaxy spatial distribution and the theoretically pre-

dicted matter distribution. Therefore, in order to break degeneracies with the galaxy

bias, it is necessary to include other probes in the analysis, such as weak gravitational

lensing, which has become one of the principal probes of cosmology. In particular, cos-
mic shear, the correlation of the observed shapes of pairs of galaxies, sheared by fore-

ground structures provides a direct measurement of the matter distribution, indepen-

dently from the galaxy bias. On the other hand, further information on the galaxy bias

can be obtained from galaxy–galaxy lensing, the cross-correlation of lens galaxy posi-

tions and source galaxy shapes.

This combination, of galaxy clustering, cosmic shear and galaxy-galaxy lensing, also

called 3x2pt since it involves three two-point correlation functions, besides being able

to break degeneracies between the galaxy bias and cosmological parameters, has been

recognized for more than a decade to contain a tremendous amount of complementary

information, and to be remarkably resilient to the presence of nuisance parameters that

describe systematic errors and non-cosmological information (Hu & Jain, 2004; Bern-

stein, 2009b; Joachimi & Bridle, 2010; Nicola, Refregier & Amara, 2016). Such a combi-

nation of large-scale structure and weak lensing measurements powerfully constrains

structure formation in the late Universe. Then, by comparing the results from this

combination to those from the cosmic microwave background (CMB), we can perform

a primary test of ΛCDM which is whether measurements of cosmological parameters

from late-universe probes are consistent with measurements from the early Universe.

The DES Y1 data set analyzed in this chapter is exactly the same as the one de-

scribed in the chapter above, therefore we refer the reader to Sec. 5.3 for more details.

Summarizing, it covers about∼ 1500deg2, and provides 650,000 lens galaxies and the

shapes of 26 million source galaxies, each of them divided into redshift bins.

In Fig. 6.1 we show a flowchart displaying the relations between the different pa-

pers involved in the DES Y1 3x2pt cosmological analysis, where the results from this

thesis, published in Prat et al. (2018a), are presenting one of the three two-point cor-

relation function measurements. In this chapter, in Sec. 6.2 we describe each of the

three two-point correlation function measurements and corresponding modeling used

in the analysis. Then, in Sec. 6.3 we describe the cosmological models and methodol-

ogy used to infer cosmological parameters. Finally, we present the results in Sec. 6.4

and conclude.
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DES Y1 3x2pt cosmological analysis.
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6.2 Two-point measurements and modeling

In the 3x2pt analysis three two-point correlation function measurements are used:

(i) Galaxy clustering, the angular correlation function of the lens galaxies, w(θ) (ii)

Galaxy-galaxy lensing, precisely the correlation of the tangential shear of sources with

lens galaxy positions, γt(θ) and (iii) Cosmic shear, the correlation functions of differ-

ent components of the ellipticities of the source galaxies, ξ±(θ). To infer cosmological

information from these two-point measurements, we model these functions in terms

of the cosmological parameters, but also need to add some nuisance parameters to ac-

count for astrophysical and observational uncertainties. The nuisance parameters we

included consider uncertainties in photometric redshifts, shear calibration, the galaxy

bias, and the contribution of intrinsic alignment to the shear spectra. All these param-

eters and corresponding priors are shown in Table. 6.1, together with the cosmological

parameters.

Also it is important to note that the measurements are only used on scales where it

has been verified that the model is good enough to describe the data. For galaxy clus-

tering and galaxy-galaxy lensing the limiting factor is the galaxy bias modeling, which

restricts the analysis for scales above 8 Mpc/h for galaxy clustering and for 12 Mpc/h

for the tangential shear, where the difference is arising from the fact that γt is non-local

as opposed to w(θ). For cosmic shear, the limiting factor are baryonic effects, impact-

ing ξ+/− at small scales. Especifically, all data points having a fractional contribution

from baryonic interactions exceeding 2% are removed from the analysis, with scale cuts

ranging between∼ 3−8 arcmin for ξ+ and between∼ 40−100 arcmin for ξ−, which
is more affected. Below, we describe howwe measure and model each of the two-point

functions.

6.2.1 Galaxy Clustering: w(θ)

For imaging galaxy surveys such as DES, the angular clustering of galaxies is the

simplest measurement we can perform, which is defined as the overabundance of pairs

at angular separation θ above that expected in a random distribution. It is sensitive to

how inhomogeneous the distribution of matter in the Universe is, modulo the galaxy

bias. The main difficulty of this measurement is that there are other effects besides the

intrinsic clustering of galaxies that can also cause spacial correlations between galaxies.

For instance, variations in the depth of the survey or other observing quantities across

the sky can produce “fake” correlations which need to be accounted for. Other effects

such as star contamination in the sample can introduce biases in the measurement. For

theDESY1 3x2pt analysis, a thorough study and correction of these effects is performed

in Elvin-Poole et al. (2018).

We model the projected (angular) density contrast of galaxies in redshift bin i by
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Table 6.1: Parameters and priors used in the 3x2pt analysis modeling. Flat denotes a flat prior in the

range given while Gauss(μ, σ) is a Gaussian prior with mean μ and width σ. TheΔzi priors listed are for
Metacalibration galaxies and BPZ photo-z estimates (see Hoyle et al. (2018) for other combinations).

The parameter w is fixed to−1 in the ΛCDM runs.

Parameter Prior

Cosmology
Ωm flat (0.1, 0.9)

As flat (5× 10−10, 5× 10−9)

ns flat (0.87, 1.07)

Ωb flat (0.03, 0.07)

h flat (0.55, 0.91)

Ωνh
2 flat(5× 10−4,10−2)

w flat (−2,−0.33)

Lens Galaxy Bias
bi(i = 1, 5) flat (0.8, 3.0)

Intrinsic Alignment
AIA(z) = AIA[(1 + z)/1.62]ηIA

AIA flat (−5, 5)
ηIA flat (−5, 5)

Lens photo-z shift (red sequence)
Δz1l Gauss (0.008, 0.007)
Δz2l Gauss (−0.005, 0.007)
Δz3l Gauss (0.006, 0.006)
Δz4l Gauss (0.000, 0.010)
Δz5l Gauss (0.000, 0.010)

Source photo-z shift
Δz1s Gauss (−0.001, 0.016)
Δz2s Gauss (−0.019, 0.013)
Δz3s Gauss (+0.009, 0.011)
Δz4s Gauss (−0.018, 0.022)

Shear calibration
mi

Metacalibration(i = 1, 4) Gauss (0.012, 0.023)
mi

im3shape(i = 1, 4) Gauss (0.0, 0.035)
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δig, the convergence field of source tomography bin j as κj , the redshift distribution of

the redMaGiC/source galaxy sample in tomography bin i as ni
g/κ(z), and the angular

number densities of galaxies in this redshift bin as

n̄i
g/κ =

∫
dz ni

g/κ(z) . (6.1)

The radial weight function for clustering in terms of the comoving radial distance χ is

qiδg(k, χ) = bi (k, z(χ))
ni
g(z(χ))

n̄i
g

dz

dχ
, (6.2)

where bi(k, z(χ)) is the galaxy bias of the redMaGiC galaxies in tomographic bin i, and

the lensing efficiency

qiκ(χ) =
3H2

0Ωm

2c2
χ

a(χ)

∫ χh

χ
dχ′ni

κ(z(χ
′))dz/dχ′

n̄i
κ

χ′ − χ

χ′ , (6.3)

whereH0 is the Hubble constant, c the speed of light, and a the scale factor. Under the

hybrid Limber approximation1, the angular correlation function for galaxy clustering

can be written as

wi(θ) =

∫
d� �

2π
J0(�θ)

∫
dχ

qiδg

(

+1/2

χ , χ
)
qjδg

(

+1/2

χ , χ
)

χ2

× PNL

(
�+ 1/2

χ
, z(χ)

) (6.4)

wherePNL(k, z) is the non-linearmatter power spectrum atwave vector k and redshift

z.

6.2.2 Galaxy–galaxy lensing: γt(θ)

We will not get into many details about this probe since it was already extensively

described in the previous chapters. In Fig. 5.2 we showed the measurements of galaxy–

galaxy lensing in all pairs of lens-source tomographic bins, including the model pre-

diction for our best-fit parameters. The plots include bin pairs for which the lenses

are nominally behind the sources, which are expected to have no gravitational lensing

signal. However, they can still be useful in constraining the intrinsic alignment param-

1Standard Limber approximation uses k = �/χ, while an extended version of this approximation uses

k = (�+1/2)/χ, both in the prefactor and power-spectrum argument. This extended version is actually a

worse approximation than standard Limber, since the approximated prefactor converges only withO(�).
Better is a hybrid version, with � in the prefactor, but �+ 1/2 in integral.
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eters in our model (see, e.g., Troxel & Ishak (2014)). In the previous chapter we carried

out a number of null tests to ensure the robustness of these measurements, none of

which showed evidence for significant systematic uncertainties besides the ones char-

acterized by the nuisance parameters in this analysis. Here, we write the modeling of

the tangential shear specifically for the cosmological analysis:

γijt (θ) = (1 +mj)

∫
d� �

2π
J2(�θ)

∫
dχ

qiδg

(

+1/2

χ , χ
)
qjκ(χ)

χ2

× PNL

(
�+ 1/2

χ
, z(χ)

) (6.5)

wheremj is the multiplicative shear bias, and J2 is the 2nd-order Bessel function.

6.2.3 Cosmic shear: ξ±(θ)

For galaxy shapes correlations, a pair of two-point functions are used to capture

the relevant information: ξ+(θ) and ξ−(θ) are the sum and difference of the products

of the tangential and cross components of the shear, measured with respect to the line

connecting each galaxy pair. For more details, see Troxel et al. (2018). The cosmic shear

signal is independent of galaxy bias but shares the same general form as the other sets

of two-point functions. The theoretical predictions for these shear-shear two-point

functions are

ξij+/−(θ) = (1 +mi)(1 +mj)

∫
d� �

2π
J0/4(�θ)

×
∫

dχ
qiκ(χ)q

j
κ(χ)

χ2
PNL

(
�+ 1/2

χ
, z(χ)

) (6.6)

where the efficiency functions are defined above, and J0 and J4 are the Bessel functions

for ξ+ and ξ−.

6.3 Inferring cosmological parameters

We use these measurements from the DES Y1 data to estimate cosmological param-

eters in the framework of two cosmological models: ΛCDM and wCDM, both already

discussed in Chapter 1. In summary,ΛCDM contains three energy densities in units of

the critical density: the matter, baryon, andmassive neutrino energy densities,Ωm,Ωb,

andΩν . Note that in Eq. (1.26) from Sec. 1.5 baryons were included in the form of mat-

ter, and neutrinos in the form of radiation, but the same equations apply. The density
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parameter of neutrinos is defined as

Ωνh
2 =

∑
mν

93eV
(6.7)

for neutrinos of mass in the range 5 × 10−4 eV to 1 MeV, where the sum is over all

families with mass in that range (Patrignani et al., 2016). The energy density in massive

neutrinos is a free parameter here although it is often fixed in cosmological analyses

to either zero or to a value corresponding to the minimum allowed neutrino mass of

0.06 eV from oscillation experiments (Patrignani et al., 2016). The mass is split equally

among the three eigenstates, hence assuming a degenerate mass hierarchy for the neu-

trinos. Note that even if neutrinos account for a very small fraction of the total energy

density, they can have an observable effect on the formation of structure, as neutrino

free-streaming damps the growth of perturbations.

Apart from the energy densities, ΛCDM has three more free parameters: the Hub-

ble parameter today,H0, and the amplitude and spectral index of the primordial scalar

density perturbations, As and ns, defined in Eq. (1.48). Since this model is based on

inflation, which predicts a flat universe, we fixΩk here and assumeΩΛ = 1−Ωm. In a

subsequent DES study (DES Collaboration et al., 2018) some extended models includ-

ing curvature as a free parameter were considered, but the constraining power resulted

poorwithout combiningwith external data. Moreover, it is common to replaceAswith

the RMS amplitude of mass fluctuations on 8 h−1 Mpc scale in linear theory, σ8, which

can be derived from the other parameters, andwhichwe defined in Eq. (1.47). However,

σ8 andΩm are usually very correlated in posteriors coming from weak lensing studies.

Therefore, it is useful to define another parameter removing this correlation:

S8 ≡ σ8

(
Ωm

0.3

)0.5

. (6.8)

The other model considered in this work is wCDM, which allows for dark energy

to evolvewith time. Within thewCDMmodel, the dark energy equation of state param-

eter w is taken as an additional free parameter instead of being fixed at w = −1 as in

ΛCDM.wCDM thus contains 7 cosmological parameters, while ΛCDM has 6 of them.

In a subsequent study presented in DES Collaboration et al. (2018) extended models in

which w is allowed to vary in time are also considered.

In addition to the cosmological parameters, both models include 20 nuisance pa-

rameters, which are are the nine shift redshift parameters,Δzi, for the source and lens

redshift distributions in each bin, the five redMaGiC galaxy bias parameters, bi, the four

multiplicative shear biases,mi, and two parameters,AIA and ηIA that parametrize the

intrinsic alignment model.
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6.3.1 Likelihood analysis

The basic function used to infer cosmological parameters from a set of measure-

ments, in this case the two-point correlation functions, is the likelihood, which is the

probability that a given experiment would get the data it did given a theory. Gener-

ally, from a statistical point of view, the observations are a random sample from an

unknown population, and the goal of a statistical analysis is to inference the population

that is most likely to have generated the sample, specifically the probability distribution

corresponding to the population. For instance, in cosmology, and specifically here, the

two-point correlation functions measured from the data are one sample of all possi-

ble two-point correlation functions that could be measured from all realizations of the

density field (see discussion in Sec. 1.7.2). Assuming the two-point correlation func-

tions Di are multivariate random variables, we can use a Gaussian likelihood to infer

the cosmological parameters. Then, we can determine the parameters �p of the theory

along with errors, which we will call posterior “contours”, by sampling the likelihood

in the many-dimensional parameter space:

lnL(�p) = −1

2

∑
ij

[Di − Ti(�p)]C
−1

ij [Dj − Tj(�p)] , (6.9)

where �p include both the cosmological and nuisance parameters and Ti(�p) are the the-

oretical predictions as given in Eqs. 6.4, 6.5 and 6.6. To form the posterior, we multiply

the likelihood by the priors, P(�p) specified in Table 6.1.

AssumingDi are drawn from a Gaussian distribution is very common (there is no

realistic alternative nowadays) but it does not necessarily mean it is correct. Density

fluctuations at low redshift, after undergoing gravitational evolution for the past 13

billion years, have become non-Gaussian, and therefore it could be that two-point cor-

relation functions obtained from an underlying non-Gaussian filed would actually not

follow a Gaussian distribution. In that case, using a Gaussian likelihood would be a

source of systematic error and could bias the posteriors. Studies such as Sellentin &

Heavens (2018) suggest this is still a subdominant effect but might need consideration

in future analyses.

Also, the covariance matrix C enters the likelihood function, since each of the

measurements might be correlated with all the others, including between angular and

redshift bins. The DES Y1 3x2pt data vector contains 457 points and hence the co-

variance is a symmetric 457 × 457 matrix. The covariance matrix is obtained using

CosmoLike (Krause & Eifler, 2017), which computes the relevant four-point functions

in the halomodel, as described inKrause et al. (2017). Parallel pipelines, CosmoSIS2 (Zuntz
et al., 2015b) and CosmoLike, are used to compute the theoretical predictions and to

2https://bitbucket.org/joezuntz/cosmosis/

145



Dark Energy Survey Year 1 Results: Cosmological Constraints from
Galaxy Clustering and Weak Lensing

0.70

0.75

0.80

0.85

0.90
S
8

0.2 0.3 0.4 0.5

Ωm

0.60

0.75

0.90

1.05

σ
8

DES Y1 Shear
DES Y1 w + γt

DES Y1 All

0.70 0.75 0.80 0.85 0.90

S8

Figure 6.2: ΛCDM constraints

from DES Y1 on Ωm, σ8, and

S8 from cosmic shear (green),

redMaGiC galaxy clustering plus

galaxy–galaxy lensing (red), and

their combination (blue). Here,

and in all such 2D plots below,

the two sets of contours depict the

68% and 95% confidence levels.

generate the Monte Carlo Markov Chain (MCMC) samples that map out the posterior

space leading to parameter constraints.

Also, and end-to-end analysiswas also performedon twodifferent cosmologicalN-

body simulations, Buzzard (Busha et al., 2013) andMICE (Fosalba et al., 2015) where all

the steps of the analysis were applied, checking that the true cosmological parameters

could be recovered (MacCrann et al., 2018). Finally, a blinding procedure was carefully

followed throughout all the analysis to avoid confirmation biases.

6.4 DES Y1 3x2pt Cosmological Results and Conclusions

We first consider the ΛCDM model with six cosmological parameters. The 3x2pt

combination is most sensitive to two cosmological parameters, Ωm and S8, and hence

herewe focus on constraints on these parameters. In Fig. 6.2we show the constraints on

Ωm andS8, and also on themore correlated parameter σ8. The results are displayed for

the whole 3x2pt analysis, but also for two subsets of the data, one with galaxy clustering

and galaxy-galaxy lensing only, which is already sufficient to break degeneracies with

the galaxy bias, and the other for cosmic shear only, to demonstrate they are consistent

before they are combined. The combined results lead to the following constraints

Ωm = 0.267+0.030
−0.017

S8 = 0.773+0.026
−0.020

σ8 = 0.817+0.045
−0.056.

(6.10)
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For wCDM, results are shown in Fig. 6.3 forΩm, S8, and w. Again, the constraints

from cosmic shear and from galaxy–galaxy lensing + galaxy clustering are depicted,

showing they agree with one another before they are combined. w is found to be con-

sistent with -1, thus being compatible with dark energy being a cosmological constant.

Finally, the results from the DES Y1 3x2pt analysis are compared with findings

from other experiments. On the left side of Fig. 6.4, we compare them with Planck
results coming from the CosmicMicrowave Background. Note the Planck contours are
obtained after marginalizing over the neutrino energy density parameter, in the same

way as the DES contours are. The CMBmeasures the state of the Universe when it was

380,000 years old, while DES measures the matter distribution in the Universe roughly

ten billion years later. Then, comparing these results is a very important test for the

current standard cosmological model. Moreover, to perform a more stringent test, we

combined results from different low-redshift experiments besides DES, such as Baryon

Acoustic Oscillations (BAO) and Type Ia Supernovae, and compared their combination

with the CMB Planck results, shown on the right side of Fig. 6.4. On the displayed

Ωm − σ8 2D plane, a mild tension is apparent both when comparing DES alone with

Planck and when low redshift probes are combined. This tension is however diluted

when the whole 26 parameter space is considered. Future analysis including larger

data sets for DES and other galaxy surveys will shed light on this mild tension and will

provide more decisive tests of ΛCDM.

Concluding, we have presented cosmological results from a combined analysis of

galaxy clustering and weak gravitational lensing, using photometric data from the first

year of observations of the Dark Energy Survey. These combined probes demonstrate

that galaxy surveys have now achieved comparable constraining power to that of the

cosmic microwave background in the Ωm–S8 plane, starting a new era in cosmology,

and have been able to test the ΛCDM and wCDMmodels. The results at this level of

accuracy are not conclusive, but pave the path for upcoming cosmological analysis with

larger data sets. The next round of cosmological analyses of DES data will include data

from the first three years of the survey (DES Y3), which cover more than three times

as much area to greater depth than Y1, and will incorporate constraints from clusters,

supernovae, and cross-correlation with CMB lensing, providing more insight on dark

energy and cosmic acceleration.
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Part IV

Cosmological Constraints
from Lensing Ratios

In this part we present a measurement of lensing ratios using galaxy position and

lensing data from the Dark Energy Survey, and CMB lensing data from the South

Pole Telescope and Planck. We use the ratio measurements to generate cosmological

constraints, focusing on the curvature parameter. We demonstrate that

photometrically selected galaxies can be used to measure lensing ratios, and argue

that future lensing ratio measurements with data from a combination of LSST and

Stage-4 CMB experiments can be used to place interesting cosmological constraints,

even after marginalizing over systematic uncertainties.
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Chapter 7

Cosmological lensing ratios with DES Y1, SPT

and Planck

7.1 Introduction

As photons from a distant light source traverse the Universe, their paths are per-

turbed by the gravitational influence of large scale structure. Since galaxies trace this

structure, the projected galaxy density on the sky, δg , is correlated with the strength

of gravitational lensing, as quantified via the convergence, κ. Two-point correlation

functions between δg and κ are sensitive to the cosmological growth of structure and

to the geometry of the Universe (e.g. Bianchini et al., 2015; Giannantonio et al., 2016;

Prat et al., 2018a). We refer to the galaxies used to compute δg as tracer galaxies since
we use them as tracers of the large scale structure.

Extracting useful cosmological information from tracer-lensing correlations is com-

plicated by the need to model the relationship between the galaxy density field and the

underlying matter field, i.e. galaxy bias (Benson et al., 2000). Furthermore, at small

angular separations, lensing-galaxy two-point functions become sensitive to the small

scale matter power spectrum, which is difficult to model due to e.g. nonlinearities

and baryonic effects (van Daalen et al., 2011; Takahashi et al., 2012). For these rea-

sons, many recent analyses (e.g. DES Collaboration, 2018b) have restricted the usage of

galaxy-lensing correlations to the regime where a simple linear bias model can be as-

sumed and baryonic effects on the matter power spectrum can be neglected. While this

approach has the advantage of decreasing the complexity of the required modeling, it

comes at the cost of increased statistical uncertainty.

Several authors (e.g. Jain & Taylor, 2003; Bernstein, 2006; Hu, Holz & Vale, 2007;

Das & Spergel, 2009) have pointed out that if one considers suitably defined ratios be-
tween lensing-galaxy two-point functions, the dependence of these ratios on the galaxy-

matter power spectrum cancels, but the ratio is still sensitive to the angular diameter

distances to the tracer galaxies and to the sources of light used to measure lensing. This
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sensitivity can be used to constrain cosmology via the distance-redshift relation. The

cancellation of the galaxy-matter power spectrum is valid when two conditions are

met: (1) the ratio is between two two-point functions that involve the same set of tracer

galaxies, but sources at two different redshifts, and (2) the tracer galaxies are narrowly

distributed in redshift.

In principle, any two sources of light could be used to compute a lensing ratio.

However, as pointed out by Hu, Holz & Vale (2007) and Das & Spergel (2009), lens-

ing ratios that involve galaxy light as one of the source planes and CMB light as the

other are especially interesting cosmological probes. There are two reasons for this.

First, the CMB provides a very long redshift lever arm, which increases the sensitivity

of the ratios to cosmological parameters. Second, the redshift of the CMB is known

very precisely and is not subject to e.g. photometric redshift uncertainty. In contrast,

lensing ratios involving only galaxy lensing are more sensitive to photometric redshift

and shear calibration errors, and less sensitive to cosmology because both source planes

are then at low redshift. Indeed, the recent galaxy-galaxy lensing analysis of Prat et al.

(2018a) used lensing ratios to place constraints on the photometric redshifts of source

galaxies, and demonstrated their ability to inform shear calibration priors as well. On

the other hand, Kitching et al. (2015) used lensing ratio measurements involving only

galaxy lensing with galaxy clusters as lenses to measure the distance-redshift relation,

and infer cosmological parameters in combination with other probes.

In this work, we present measurements of lensing ratios involving galaxy lensing

and CMB lensing using data from the Dark Energy Survey (DES), the South Pole Tele-

scope (SPT) and Planck. The DES data is used to construct samples of tracer galaxies

and to generate weak lensing convergence maps. The SPT and Planck data are used to
construct CMB lensing convergence maps. We measure angular correlations between

the tracer galaxy samples and the convergence maps, and use these measurements to

constrain lensing ratios for multiple source and tracer galaxy redshift bins. The mea-

sured ratios are then used to constrain cosmology, focusing on the curvature parameter,

Ωk .

For current data, with measurement uncertainty on the lensing ratios of roughly

10%, the cosmological constraints obtained from the ratio measurements are fairly

weak. We therefore also explore the potential of future data to constrain cosmology

using lensing ratios. In particular, we consider how the presence of systematic errors

in estimated redshifts and shears can degrade the cosmological constraints from lensing

ratio measurements. As part of this analysis, we consider how future lensing ratio con-

straints can potentially be improved by using photometrically identified tracer galaxies

rather the spectroscopically identified galaxies, sacrificing some redshift precision for

increased number density and increased overlap on the sky with planned CMB exper-

iments.

An analysis of lensing ratios formedwith galaxy lensing and CMB lensingmeasure-
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ments was recently presented by Miyatake et al. (2017). In addition to using different,

more constraining data, the present work differs from that of Miyatake et al. (2017)

in two important respects. For the first time, we use a set of tracer galaxies obtained

from a photometric survey. This is possible because of the redMaGiC algorithm (Rozo

et al., 2016), which produces a selection of galaxies with tightly constrained photomet-

ric redshifts, whose error distributions are very well understood. Second, we perform a

complete cosmological analysis to obtain parameter constraints from the lensing ratios.

Our measurements of the correlations between tracer galaxies and both galaxy and

CMB lensing are similar to those of Baxter et al. (2016). However, in that work, the

measured correlation functions were fit directly, rather than being used to compute

lensing ratios. The complications of galaxy bias and baryonic effects at small scales

were circumvented by introducing additional freedom into the model for the small-

scale galaxy-matter power spectrum. The main advantage of the present work over

Baxter et al. (2016) is the reduced complexity of the modeling and the fact that the con-

straints obtained here are purely geometrical in nature. Similarly, forthcoming analyses

fromDES and SPTwill perform a joint analysis of cross-correlations betweenDES data

products and CMB lensing maps produced from a combination of SPT and Planck data
(see Baxter et al. 2019 for an overview of the analysis andmethodology and Abbott et al.

2018a for the results). While such joint two-point analyses can place tight cosmologi-

cal constraints, they are limited by our ability to model the data across a wide range of

angular scales.

This paper is organized as follows. In Sec. 7.2 we introduce the basic formalism

for describing the lensing ratios; in Sec. 7.3 we describe the data sets used in this work;

in Sec. 7.4 we describe the process of extracting constraints on the lensing ratios from

the data; in Sec. 7.5 we extend our modeling to include important systematic effects,

and describe tests of the model’s robustness; the results of our analysis of the data are

presented in Sec. 7.6; we make forecasts for future experiments in Sec. 7.7, with em-

phasis on the impact of systematic errors in measurement of source galaxy redshifts;

we conclude in Sec. 7.8.

7.2 Formalism

In this section we present the theory relevant to computing the lensing ratios of

two point correlation functions between some set of tracer galaxies and gravitational

lensing convergence, which can be reconstructed using either galaxy shear measure-

ments at redshift of z ∼ 1 or using the CMB at redshift of z ∼ 1100. The lensing

convergence, κ, in the direction θ̂ is given by

κ(θ̂) =
3

2
ΩmH

2
0

∫
dχ d2A(χ)

qs(χ)

a(χ)
δ(θ̂, χ), (7.1)
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where Ωm is the matter density parameter today, H0 is the Hubble constant today, χ

is comoving distance, dA(χ) is the angular diameter distance to χ, a(χ) is the scale

factor, and δ(θ̂, χ) is the overdensity at a particular point along the line of sight. We

have defined the lensing weight function

qs(χ) =
1

dA(χ)

∫ ∞

χ
dχ′Ws(χ

′)
dA(χ, χ

′)
dA(χ′)

, (7.2)

where Ws(χ) is the normalized distribution of source light as a function of redshift

and we use the notation dA(χ, χ
′) to represent the angular diameter distance between

comoving distance χ and χ’. For the CMB source plane, the source distribution can be

approximated as a Dirac δ function centered at the comoving distance to the surface of

last scattering, χ∗. In this case, the lensing weight function becomes

qCMB(χ) =
dA(χ, χ

∗)
dA(χ∗) dA(χ)

. (7.3)

We are interested in correlations between κ and the projected density of the tracer

galaxies on the sky, δg(θ̂). For tracer galaxies whose normalized redshift distribution

is described byWl(χ), the projected density on the sky can be written as

δg(θ̂) =

∫
dχWl(χ) δ

3D
g (θ̂, χ), (7.4)

where δ3Dg (θ̂, χ) is the 3D galaxy overdensity.

We write the two-point angular correlation between tracer galaxies and the lensing

convergence aswiκ(θ), where i labels the redshift bin of the lenses and κ can represent

either the galaxy lensingmap (κjs for the lensingmap derived from the jth galaxy source

bin) or the CMB lensing map (κCMB). It is also useful to define the harmonic space

cross-spectrumbetween the galaxy density and lensing fields, whichwewrite asCiκ(�).

Using the Limber and flat sky approximations, we have

Ciκ(�) =
3

2
ΩmH

2
0

∫
dχWl(χ)

q(χ)

a(χ)
b

(
�

dA(χ)
, χ

)
PNL

(
�

dA(χ)
, χ

)
, (7.5)

where q(χ) is the lensing weight function corresponding to κ. We have written the

galaxy-matter power spectrum as a bias factor, b(k, χ), multiplied by the non-linear

matter power spectrum, PNL(k, χ). We can now convert the harmonic space cross-

correlation to the angular two-point function:

wiκ(θ) =
∑ 2�+ 1

4π
F (�)P
(cos(θ))C

iκ(�), (7.6)
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where P
 is the �th order Legendre polynomial and F (�) describes additional filtering

that is applied to the κmaps.

As described in Baxter et al. (2019), modes below � < 30 and above � � 3000 in the

CMB κmaps generated by Omori et al. (2017) can be very noisy, or potentially biased.

We therefore filter the CMB maps to remove these modes. Since we are interested in

ratios between correlationswithκCMB andwithκs, we apply the same filter toκs as we

use for κCMB; this ensures that the expectation of the ratio of the correlation functions

remains a constant function of angular scale. Following Baxter et al. (2019), we adopt

the filter function

F (�) = exp(−�(�+ 1)/�2beam)Θ(�− 30)Θ(3000− �), (7.7)

where �beam ≡ √
16 ln 2/θFWHM ≈ 2120 and Θ(�) is a step function. The use of the

Gaussian smoothing reduces ringing as a result of the low-pass filtering.

In the limit that the tracer galaxies are narrowly distributed in redshift, theW (χ)

factor in Eq. (7.5) can be replaced by W (χ) = δ(χ − χl), where χl is the comov-

ing distance to the tracer galaxies. After transforming to an integral over redshift, the

ratio of the galaxy-CMB lensing cross-correlation to the galaxy-galaxy lensing cross-

correlation can then be expressed as

rij =
wi κCMB(θ)

wiκj
s(θ)

=
dA(z

i
l , z

∗)

dA(z∗)
∫∞
zil

dz nj
s(z)

dA(zil ,z)

dA(z)

, (7.8)

where nj
s(z) is the normalized redshift distribution of the source galaxies and zil is the

redshift of the tracer galaxies in the ith bin. Eq. 7.8 depends only on the redshift to

the tracer galaxies, the source galaxies, and the surface of last scattering. Therefore,

the lensing ratios depend only on the distance-redshift relation in this limit. This is

the main selling point of lensing ratios as cosmological observables: they contain in-

formation about the expansion history of the Universe, but do not require modeling

galaxy bias or the matter power spectrum to extract this information. Bernstein (2006)

has also pointed out that similar cosmographic measurements using a combination of

gravitational lensing and observations of the transverse baryon acoustic oscillation fea-

ture can constrain curvaturewithout assuming anything about the dynamics or content

of the Universe. This is in contrast to other cosmological observables — including the

angular scale of the CMB power spectrum and measurements of the distances and red-

shifts of supernovae — for which the dynamics must be specified in order to translate

constraints on the distance-redshift relation to a constraint on curvature. In this work,

however, we will specify the dynamics by considering models with dark energy param-

eterized by an equation of state w.

In the analysis presented here, the tracer galaxies have a non-zero extent in red-
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Figure 7.1: The estimated redshift distributions of the tracer and source galaxies for the different bins used

in this analysis. Shaded bands represent the selection functions for the bins; galaxies are placed into bins

according to the mean of their redshift probability distribution functions.

shift, so the δ-function approximation made above is questionable. However, we will

show in Sec. 7.5.3 that the width of the tracergalaxy redshift distribution is sufficiently

narrow, and the error bars on the ratio measurements are sufficiently large, that the

redshift distribution of the tracer galaxies can be approximated as infinitely narrow.

Additionally, the above model description assumes that all redshift and shear measure-

ments are performed without biases. In Sec. 7.5 we will extend the model to include

parameterizations for systematic errors in the measurements.

7.3 Data

In this work, we measure correlations between the tracer galaxies and lensing con-

vergencemaps generated from both the CMB and source galaxies. We use data from the

first year observations of DES (Flaugher et al., 2015; DES Collaboration, 2016; Drlica-

Wagner et al., 2018) for both the tracer galaxy sample and the galaxy lensing conver-

gence maps (Chang et al., 2018). For the CMB convergence map, we use the map de-

scribed in Omori et al. (2017), which used a combination of CMB data from SPT and

Planck. Below we describe in more detail the tracer galaxies and the convergence maps

used in this work.

7.3.1 Tracer galaxies

For the foreground tracer galaxies, we use a sample of galaxies referred to as “red-

MaGiC.” This sample is the same galaxy sample used in the DES Y1 cosmological anal-

ysis (DES Collaboration, 2018b). redMaGiC galaxies are luminous red galaxies selected

based on goodness of fit to a red sequence template, as described in Rozo et al. (2016).
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The main advantage of the redMaGiC galaxy sample is that it is constructed to have

very small photo-z uncertainties. In particular, the DES Y1 redMaGiC photo-zs have a

scatter of σz = 0.0166(1 + z). The tracer redshift distributions shown in Fig. 7.1 are

computed from the sum of Gaussians with σ = σz , centered on the redshift estimates

computed by redMaGiC for each galaxy. For a more detailed description of the tracer

galaxy sample, see Elvin-Poole et al. (2018) and Prat et al. (2018a).

We divide the tracer galaxies into three redshift bins between redshift 0.15 and 0.6,

using the same z-binning as in the DES Y1 cosmology analysis (DES Collaboration,

2018b). The redshift distributions for these bins are estimated as the sum of the indi-

vidual redshift probability distribution functions (PDF) for each redMaGiC galaxy, and

are shown in Fig. 7.1. Galaxies were divided into bins based on the mean of the redshift

PDF estimate for each galaxy. In this work we do not use the two higher redshift bins

used by DES Collaboration (2018b) in order to minimize the overlap between tracers

and sources. The uncertainty on the mean redshift for each of the redshift bins was

studied in Cawthon et al. (2018), finding photometric redshift biases of |Δ z| < 0.01.

7.3.2 Galaxy lensing convergence maps

We use the ∼ 1300 sq. deg. weak lensing convergence maps described in Chang

et al. (2018). These maps were generated from the DES Y1 Metacalibration shear

catalog (Zuntz et al., 2018), using the same sample that was used to obtain the DES Y1

3x2pt cosmology results (DES Collaboration, 2018b). Metacalibration is a recently

developedmethod to calibrate galaxy shear measurements from the data itself, measur-

ing the response of a shear estimator to an artificially applied shear, without relying on

calibration from simulations (Sheldon & Huff, 2017; Huff &Mandelbaum, 2017). More

details about the source sample and how the response corrections have been applied to

the maps can be found in Troxel et al. (2018) and in Chang et al. (2018).

The galaxy convergence maps of Chang et al. (2018) were constructed using an im-

plementation of the Kaiser-Squires method (Kaiser & Squires, 1993; Schneider, 1996)

on a sphere (Heavens, 2003; Castro, Heavens & Kitching, 2005; Heavens, Kitching &

Taylor, 2006; Leistedt et al., 2017; Wallis et al., 2017), which converts the shear, γ, into

the convergence κ. The galaxy κ maps used here were generated on HEALpix maps

with nside = 2048, as opposed to the maps described in Chang et al. (2018), which

have nside = 1024. To match filtering applied to the CMB lensing maps described

below, the galaxy κ maps were smoothed with a 5.4 arcmin (FWHM) Gaussian, and

were filtered to remove modes with l < lmin = 30 and l > lmax = 3000.

We use the two higher redshift (0.63 < z < 0.9 and 0.9 < z < 1.3) mass maps

constructed in Chang et al. (2018) for this work. The redshift distributions of the source

galaxies used to construct these maps are shown in Fig. 7.1, which have been obtained

stacking a random sample from the redshift probability distribution of each galaxy. The
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source galaxy samples that were used to construct these two maps correspond to the

two high-redshift source bins used in the DES Y1 cosmological analysis, and hence they

have been studied extensively for both their photo-z characteristics, (Hoyle et al., 2018;

Gatti et al., 2018; Davis et al., 2017; Prat et al., 2018a) and their shear measurement

biases (Zuntz et al., 2018; Samuroff et al., 2018). Briefly, their photometric redshift

distributions have been estimated using the BPZ code (Benitez, 2000), and calibrated

using COSMOS galaxies and galaxy clustering cross-correlations with the redMaGiC

sample. This allows us to use the results of these studies as priors in our model-fitting,

which is essential for extracting cosmological information from the lensing ratios.

7.3.3 CMB lensing map

The CMB lensing map used in this analysis is presented in Omori et al. (2017), and

we refer readers to thatwork formore details. Briefly, Omori et al. (2017) combined 150

GHz maps from SPT and 143 GHz maps from Planck using inverse variance weighting
to generate a combined CMB temperature map. A quadratic lensing estimator (Hu &

Okamoto, 2002b) was then applied to the combined CMB temperature map to estimate

κCMB. Bright point sources detected in the flux density range 50 < F150 < 500 mJy

and F150 > 500 mJy in the 150 GHz band were masked with apertures of radius 6’

and 9’, respectively, prior to reconstruction. Modes in the κCMB maps with � < 30 and

� > 3000were removed to reduce the impact of mean-field calibration and to suppress

potential biases due to foregrounds, and a 5.4 arcmin Gaussian smoothing was applied,

consistently with the galaxy κmaps.

We note that using the joint SPT+Planckmap fromOmori et al. (2017) significantly

improves the total signal-to-noise of the tracer-CMB lensing correlationmeasurements

relative to using a CMB lensing map derived from Planck alone, and it also improves

the results we would obtain with SPT alone.

7.4 Measurements of the lensing ratios

In this sectionwe describe the procedure for obtaining constraints on lensing ratios

from the combination of DES, SPT and Planck data. We begin by describing the proce-

dure used to measure the galaxy-lensing correlation functions and their corresponding

covariance matrix. Next, we describe corrections for possible tSZ contamination of the

CMB lensing maps. Finally, we describe our fitting procedure for using the measured

correlation functions to constrain the amplitudes of the lensing ratios.
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7.4.1 Measuring the tracer-lensing two-point functions

Wemeasure the angular two-point correlation function between the pixelized lens-

ing convergencemapsκ and the galaxy distribution δg by summing over tracer–convergence

pixel pairs g, separated by angle θ. We subtract the corresponding correlation with a

sample of random points in place of the tracer galaxies, where the sum is over random–

convergence pairs r separated by θ. The final estimator is

wiκ(θ) =

∑
g ωgκg∑
g ωg

(θ)−
∑

r ωrκr∑
r ωr

(θ), (7.9)

where ωg and ωr are the weights associated respectively with each tracer galaxy and

random point. This estimator is analogous to that used in tangential shear measure-

ments in galaxy-galaxy lensing (see e. g. Prat et al. 2018a). For the random points we set

ωr = 1, and for the galaxies this weight was computed in Elvin-Poole et al. (2018) to

reduce the correlation with observational systematics. For the fiducial measurements

in this work, we grouped the tracer-convergence pairs in five log-spaced angular sepa-

ration bins between 2.5 and 100 arcmin. We use TreeCorr 1 (Jarvis, Bernstein & Jain,

2004) to measure all two-point correlation functions in this work. The measured cor-

relation functions are shown in Fig. 7.3.

7.4.2 Covariance matrix of the two-point functions

We estimate the covariance matrix between the measurements using the jackknife

method. In this approach, the survey area is divided intoNJK regions (‘jackknife patches’),

and the correlation functionmeasurements are repeated oncewith each jackknife patch

removed for the tracer sample, while we keep the convergence map untouched. The es-

timate of the covariance of measurements is then

CJK
iκθ,i′κ′θ′ =

NJK − 1

NJK

NJK∑
n=1

(
wiκ
n (θ)− wiκ(θ)

) (
wi′κ′
n (θ′)− wi′κ′(θ′)

)
, (7.10)

where i denotes the tracer galaxy bin, κ denotes the convergence map, n denotes the

jackknife patch being removed, and wiκ(θ) is the mean across the NJK resamplings.

The jackknife provides a data-based estimate of the covariance. It is well motivated

here since our analysis focuses on the small scales of the tracer-lensing correlations

(down to 2.5’) which are difficult to model theoretically. Although the jackknife cannot

capture super sample covariance (Takada & Hu, 2013) since by definition no samples

are available outside the survey, this contribution to the covariance is expected to be

negligible over the scales considered (i.e. below 100’). Moreover, at small scales, jack-

1https://github.com/rmjarvis/TreeCorr
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knife estimates have been extensively validated; see e.g. Prat et al. (2018a) and Omori

et al. (2018b).

The jackknife regions are obtained using the kmeans algorithm2 run on a homoge-

neous random point catalog with the same survey geometry. We choose NJK = 500,

which corresponds to jackknife regions whose typical size matches the maximum scale

used in this work, of 100 arcmin.

7.4.3 Correcting the two-point functions for thermal Sunyaev-Zel’dovich

contamination

A study of the systematics affecting the wiκCMB measurements using the DES red-

MaGiC galaxies and the Omori et al. (2017) CMB lensing map was performed in Baxter

et al. (2019). In that work, the presence of the thermal Sunyaev-Zel’dovich (tSZ) effect

in the CMB lensing map from Omori et al. (2017) was identified as a potentially signif-

icant source of contamination. To reduce this contamination, Baxter et al. (2019) took

the conservative approach of excluding the small angular scales from the analysis that

were estimated to be most contaminated.

Here, we take a more aggressive approach by explicitly modeling the tSZ contami-

nation in our analysis. We use the model of tSZ contamination from Baxter et al. (2019)

for this purpose (see their Eq. 22). The Baxter et al. (2019) model was derived in the fol-

lowingmanner. First, the tSZ signal over the SPT patch was estimated using catalogs of

galaxy clusters detected by DES, SPT and Planck. The tSZ signal for each cluster was es-

timated using a β-model (Cavaliere & Fusco-Femiano, 1976) fit to the observed cluster

tSZ profile (for SPT-detected clusters) or by adopting a model profile given an estimate

of the cluster mass (for DES and Planck detected clusters). The resulting tSZ map was

then processed through the κ estimation pipeline of Omori et al. (2017) to calculate

spatially varying tSZ contamination in the κCMB maps. Finally, the contaminant maps

were correlated with the DES redMaGic catalogs to estimate the bias inwiκCMB(θ) due

to tSZ contamination. Fitting functions for the measured biases are provided in Baxter

et al. (2019), and we adopt those fitting functions here.

We test the sensitivity of our results to themodel for tSZ contamination in Sec. 7.5.3.

Note that in this analysis, we make the same masking choices as in Baxter et al. (2019)

so that the tSZ model derived therein is appropriate; this includes masking the most

massive galaxy clusters across the SPT field. Note that in Baxter et al. (2019) the effects

of such masking on the correlation functions was found to be negligible relative to the

statistical uncertainties.

2https://github.com/esheldon/kmeans_radec
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7.4.4 Extracting constraints on the lensing ratios

Given the measurements of the tracer-lensing correlation functions, we wish to

extract constraints on the ratios of these correlations. Simply taking the ratios of the

correlation function measurements is not optimal when the two measurements have

non-zero uncertainties and can lead to biased results. Instead, we take the approach

described below to measure the ratios.

We model the correlation functions as

wiκj
s (θa) = βijαia (7.11)

wiκCMB(θa) = βiCMBαiaf
tSZ
i (θa) (7.12)

where αia, βij and βiCMB are free parameters. Here, f tSZ
i (θ) is the tSZ bias model

for each tracer bin i described in Sec. 7.4.3. Without loss of generality, we set βi0 = 1.

In effect, the αia control the shape of the correlation function between the ith tracer

redshift bin and each of the convergence maps.

On the other hand, the βij and βiCMB (which we can group as βiκ), control the

amplitudes of the correlation functions of different convergence maps with the tracer

galaxies in redshift bin i; we will use the βs to extract constraints on the lensing ratios.

Given ourmodel for themeasured correlation functions, we define a Gaussian like-

lihood for themeasurements, {wiκ(θ)}, whereκ can either beκCMB or the galaxymass

map in redshift bin j, κjs:

lnL({wiκ(θ) }|{αi(θ), βiκ}) = −1

2

∑
iκθ i′κ′θ′

(
wiκ(θ)− ŵiκ(θ)

)
× [

C−1
]
iκθ,i′κ′θ′

(
wiκ′

(θ′)− ŵiκ′
(θ′)

)
. (7.13)

In the equation above ŵ represents the correlation function model from Eq. 7.11

and Eq. 7.12, and C is the covariance matrix of the observations, as estimated with

the jackknife method described in Sec. 7.4.1. We apply the so-called Hartlap factor

(Hartlap, Simon & Schneider, 2007) to the inverted covariance to account for the noise

in the jackknife covariancematrix estimate. We assume flat priors on theα andβ, so the

posterior on these parameters is simply proportional to the likelihood. We sample from

themodel posterior using aMonteCarloMarkovChain (MCMC)method implemented

in the code emcee (Foreman-Mackey et al., 2013).

Ultimately, we are not interested in the α or β themselves, but rather the ratios of

the correlation function measurements for pairs that use the same tracer galaxy bin.

We can obtain the posterior on the ratios by computing these ratios at each point in the
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Markov chains for the β’s. At each point in the chains, we compute

rij =
βiCMB

βij
. (7.14)

The distribution of rij then provides the posterior of the ratios, without loss of infor-

mation. By choosing to keep the (noisier) galaxy-CMB lensing two-point functions in

the numerator of the ratio, we reduce the possibility of divergences in the ratios of the

βs (which can occur if the posterior on a β has support at β = 0). Hereafter, we use the

term lensing ratio to refer to this definition of such ratios.

7.5 Modeling the lensing ratios

Above we have developed a model for the correlation functions that allows us to

extract constraints on the lensing ratios in Eq. 7.14. Wenowdescribe our parameterized

model for the measured lensing ratios, including prescriptions for various systematic

uncertainties, in order to extract constraints on cosmology.

7.5.1 Modeling photometric redshift and shear calibration bias

As noted above, we assume that all of the tracer galaxies are located at a single red-

shift, zl. We obtain zl from the mean of the redshift distributions of the redMaGiC

galaxies shown in Fig. 7.1. For the source galaxies, we use the full ns(z)when comput-

ing the model for the ratios.

Following Krause et al. (2017), we parameterize redshift uncertainties in the esti-

mated tracer and source galaxy redshift distributions with the bias parameters,Δzl and

Δzs, respectively. This means that in Eq. (7.8) we make the replacements

nj
s(z) → nj

s(z −Δzjs) (7.15)

and

zil → zil +Δzil , (7.16)

where Δzjs and Δzil are treated as free parameters (with priors) for each source and

tracer galaxy redshift bin, respectively.

We parameterize shear calibration bias with the parameter m such that the ob-

served shear is related to the true shear via γobs = (1 +m) γtrue. This means that we

make the replacement

rij → rij
1 +mj

, (7.17)

wheremj is a free parameter for each source galaxy redshift bin.
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7.5.2 Complete model for the lensing ratio

Following from Eq. (7.8) and including the above prescriptions for systematic un-

certainties, our complete model for rij is:

r̂ij (�θcosmo, �θsys) =
(1 +mj) dA (zil +Δzil , z

∗)

dA(z∗)
∫∞
zil+Δzil

dz nj
s(z −Δzjs)

dA(zil+Δzil ,z)

dA(z)

, (7.18)

where �θcosmo is the set of cosmological parameters and �θsys is the vector of systematics

parameters. We use Astropy for computing cosmological distances (Astropy Collabo-

ration et al., 2018).

The posterior on the parameters given the set of measured ratios, {r}, is given by

P (�θcosmo, �θsys|{r}) = P ({r}|{r̂(�θcosmo, �θsys)})Pprior(�θcosmo)Pprior(�θsys), (7.19)

where Pprior(�θcosmo) is the prior on the cosmological parameters, and Pprior(�θsys) is

the prior on the systematics parameters. For the likelihood P ({r}|{r̂}) we adopt a
multivariate Gaussian approximation to the posterior from Sec. 7.4.4:

lnP ({r}|{r̂}) = −1

2
(r − r̂)C−1

r (r − r̂)T . (7.20)

We compute the covariance matrix of the ratio estimates,Cr , from the Markov chains

for the ratios described in Sec. 7.4.4. We discuss the accuracy of the Gaussian approxi-

mation to the true posterior in Appendix D.

7.5.3 Model Validation

Narrow tracer bin approximation

A fundamental assumption of our analysis is that in our modeling, we can approx-

imate the tracer galaxy redshift distribution with a δ function centered at the mean

of full redshift distribution. Only in the δ function limit does the cancellation of the

galaxy-matter power spectrum occur. However, as described in Sec. 7.3.1, the tracer

galaxies used in this work are not all at the same redshift, but they are distributed over

a relatively narrow redshift interval. Furthermore, as seen in Fig. 7.1, there is some

overlap in the redshift distributions of the third tracer bin, and first source bin. This

overlap, which is not included in our modeling, will reduce the lensing signal (since

sources at lower redshift than the tracers will not be lensed).

To test the impact of the narrow tracer bin approximation on our analysis, we gen-

erate simulated correlation function measurements using Eq. (7.6). To do this, we as-

sume a linear bias model with b = (1.45, 1.55, 1.65) for each of the tracer galaxy
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Figure 7.2: Test of the narrow tracer bin ap-

proximation used in this analysis. We com-

pute the error in the ratio,Δr(θ), incurred
by assuming the tracer galaxies are dis-

tributed in infinitely narrow redshift bins.

This quantity is plotted relative to the sta-

tistical errors in the ratio measurements, σ,
which is the uncertainty from all angular

bins combined. At most, the error incurred

by assuming narrow tracer bins is ∼ 25%
of the statistical error on the ratio, and we

therefore ignore it in this analysis.

redshift bins, following the analysis of DES Collaboration (2018b). Thus, for this test,

we are assuming that the galaxy bias is independent of scale and of redshift within each

tracer bin. The angular dependence of the ratio can then be computed from the sim-

ulated data vectors and compared to the approximate value of the ratio computed as-

suming infinitely narrow tracer redshift bins; we denote the difference between the

true ratio and the approximated ratio asΔr.

We plot the angular dependence ofΔr relative to the error bars on the ratio mea-

surements in Fig. 7.2. We see that for all tracer-source bin combinations, the error

induced by the narrow tracer bin approximation is small compared to the error bars

on the ratio. Note that the decline inΔr/σ close to 100 arcmin is due to the high-pass

filtering that is applied to the lensing convergence maps.

Lensing dilution and galaxy lensing boost factors

When there is overlap in redshift between the source and the tracer galaxies two

different effects occur. The first one is already mentioned in the section above, which

is the dilution of the lensing signal when source galaxies are in front or at the same

redshfit of tracer galaxies. In our analysis we make use of the narrow tracer bin ap-

proximation and therefore some of this dilution is not naturally accounted for in the

theory prediction. Thus, to test for the impact of this effect, we have removed the bin

combination which shows the largest overlap in redshift, which is the third tracer bin

and first source bin combination (as seen in Fig. 7.1), and found that removing it has

negligible impact on the inferred cosmological parameters.

The second effect results from the tracer and source galaxies being physically cor-

related, since they both trace the large scale structure. This changes the galaxy lensing

signal since it will change the true n(z) on the sky in a way that is not captured by the

full survey n(z). Generally, this effect reduces the lensing signal since source galaxies
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behind the tracer galaxies will be on average closer to the tracer galaxies than what it

is predicted by the full survey n(z). To take into account this effect in the modelling

we would need to measure the redshift distributions of the galaxies included in each

of the angular bins. Alternatively, one can correct for this effect using the so-called

boost factors. This correction is scale dependent and is bigger at small scales, where

the clustering is also larger. Using the same data as employed here, Prat et al. (2018a)

estimated the magnitude of this effect (i.e. the boost factor) by measuring the excess

of sources around tracers compared to random points, as a function of scale, for ev-

ery tracer-source bin combination (cf. their Figure 10). For the tracer-source binning

configurations and for the choice of scales used in this analysis, the results in Prat et al.

(2018a) demonstrate that the boost factors are 1% or less over all angular scales, allow-

ing us to safely ignore this effect in our analysis. This makes sense, because we have

attempted to use only tracer and source galaxy combinations that are well separated in

redshift, so as to make the narrow tracer bin approximation more accurate.

Intrinsic alignments

Another systematic effect related to the overlap in redshift between the tracer and

source galaxies is the intrinsic alignments (IA) of the shapes and orientations of source

galaxies resulting from gravitational tidal fields during galaxy formation and evolution.

IA can generate correlations between the source ellipticity and the lens position if the

two galaxies are physically close.

In Eq. (7.8) we have assumed that there is no contribution from IA in the cross-

correlation measurements with the galaxy convergence maps. IA are detected in the

multiprobe correlation function analysis of DESCollaboration (2018b). However, since

here we analyze only those tracer and source redshift bin combinations that are widely

separated in redshift, we expect the contribution from IA to beminimal for our analysis.

Moreover, Blazek et al. (2012) found that when boost factors are not significant, IA can

be ignored as well.

tSZ validation

Our model of tSZ contamination of the measured two-point functions relies on

estimating the tSZ signal for galaxy clusters across the SPT field. To estimate possible

systematic errors in our anlaysis associated with these modeling estimates, we recom-

pute the bias corrections by modifying the assumed masses of the DES-detected clus-

ters used when generating the contaminant maps. The DES clusters dominate our esti-

mate of the tSZ bias because the more massive SPT-detected clusters are masked. The

difference between the estimated biases for the fiducial and perturbed models should

therefore provide a reasonable estimate of our modeling uncertainty. We generate two
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Figure 7.3: Tracer-lensing correlation function measurements, together with the best fit ratio model de-

scribed in Sec. 7.4.4. The model for the galaxy-CMB lensing correlations has been corrected for the tSZ-

induced bias as explained in Sec. 7.4.3. We also show the uncorrectedmodel in dashed lines for comparison.

perturbed models by increasing and decreasing the amplitude of the assumed mass-

richness relationship. The fiducial mass-richness model is based on the weak lensing

calibration of Melchior et al. (2017); the perturbed models adjust the amplitude of the

normalization by±1σ, where σ represents the statistical uncertainty on the amplitude

from theMelchior et al. (2017) analysis. Note that the updated weak lensing calibration

of DES redMaPPer clusters by McClintock et al. (2019) is consistent with that of Mel-

chior et al. (2017), albeit with smaller error bars; using the 1σ error fromMelchior et al.

(2017) is therefore a conservative choice. We show the result of analyzing the data using

our fiducial tSZ bias model and the two perturbed models in Sec. 7.6. Note that sim-

ply varying the amplitude of the assumed mass-richness relation does not necessarily

capture all of the uncertainty in the tSZ bias model. However, since the tSZ amplitude

scales strongly with mass, we expect the mass uncertainty to capture a dominant part

of the total tSZ bias uncertainty.

7.6 Results

We now present the constraints obtained on the lensing ratios and cosmological

parameters from our analysis of data from DES, SPT and Planck. We note that in order

to avoid confirmation bias, our analysis was blinded during testing by replacing the true
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Figure 7.4: Measurements of the lensing ratios (points with error bars) as a function of lens redshift for two

different source galaxy redshift bins (orange and gray curves). The corresponding redshift distributions

for these bins are shown in Fig. 7.1. Also shown are theoretical predictions (curves) for ΛCDM models

withΩm = 0.3, but with different values ofΩk . Solid curves correspond toΩk = 0, while the dashed and
dotted curves change Ωk to −0.5 and 0.5, respectively. Relative to the concordance flat ΛCDM model,

the ratio measurements prefer an amplitude of A = 1.1 ± 0.1, indicating consistency with this model.

While the highest redshift data points appear in some tension with the Ωk = 0.0model, these points are

covariant; the χ2 per degree of freedom relative to that model is 8.5/5, corresponding to a probability to
exceed of p.t.e = 0.13.

measurements with simulated data vectors. The real data was used only after we were

confident that the analysis pipelines were working correctly and the model had been

validated.

7.6.1 Correlation function and ratio constraints

The measurements of the two-point correlation functions between galaxies and

(galaxy and CMB) lensing are shown as a function of angular scale in Fig. 7.3 (points),
together with the best-fit ratio model described in Sec. 7.4.4 (lines). For the cross-

correlations with the κCMB map, we show both the model corrected by the tSZ effect

(solid), as described in Sec. 7.4.3, and the uncorrected model (dashed) for comparison.

The corresponding constraints on the lensing ratios are shown in Fig. 7.4 as a func-

tion of the mean lens redshift. The full posteriors on the lensing ratios are shown in

Fig. D.1. In total, we constrain six lensing ratios at the 13-23% level. The highest signal-

to-noise ratio constraints are those corresponding to the highest lens redshift bin.

We first fit the measured ratios using a fiducial cosmological model. We compute

the expectation value of the ratios using the best-fit cosmology from theTT,TE,EE+lowP
+ lensing+ext analysis in Ade et al. (2016). We call these values rPlanck and fit the

measured ratios with a model of the form r̂ = ArPlanck, where A is a free parameter.
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We find A = 1.1± 0.1. This measurement demonstrates that the ratio measurements

are consistent with the fiducial cosmologywithin the statistical error bars, and aremea-

sured a combined precision of roughly 10%. For comparison, the measurement of lens-

ing ratios presented in Miyatake et al. (2017) using CMASS galaxies as tracers, galaxy

shapes fromCFHTLenS and Planck data, reports a 17% uncertainty on a joint measure-

ment of the ratio, obtained from combining results from three tracer galaxy redshift

bins and a single source galaxy bin. The χ2 per degree of freedom for the measure-

ments relative to the rPlanck model is 8.5/5, corresponding to a probability to exceed

of 0.13. This indicates a reasonable fit to the Planck model. Note that the ratio mea-

surements for different source bins but the same tracer galaxy bin are highly covariant,

as can be seen in Fig. D.1.

7.6.2 Cosmological constraints

We now use the ratio measurements presented above to constrain cosmological

parameters. As an illustration of the cosmological sensitivity of the ratios, Fig. 7.4 shows

the theoretical predictions for two cosmological ΛCDM models with different values

ofΩk , withΩm fixed to 0.3. Throughout this analysis, we fix the redshift of the surface

of last scattering to z∗ = 1090. From this figure, we see that negative values ofΩk have

a significantly greater impact on the lensing ratios than positive values. This is due to

the fact that the angular diameter distance to the surface of the last scattering changes

more with curvature for negative Ωk than for positive Ωk .

To obtain cosmological constraints we use the methodology described in Sec. 7.5.2.

We consider curved ΛCDM models where we vary the cosmological parameters Ωk

andΩm and the systematics parameters described in Sec. 7.5.1. We use the priors on the

multiplicative shear bias derived in Zuntz et al. (2018) and the redshift bias parameters

from Hoyle et al. (2018); Davis et al. (2017); Gatti et al. (2018).

Fig. 7.5 shows the resultant marginalized posterior density (colored region) as a

function Ωm and Ωk . We find that the data strongly rule out low values of Ωm and

very negative values of Ωk . However, at each Ωm, we obtain only a lower limit on

Ωk . Consequently, we focus on how the data constrain Ωk . We derive limits on Ωk in

the following way. For each value of Ωm, we determine the value of Ωk such that the

marginalized posterior onΩk is lower than the peak of the posterior by a factor of 1/e
2.

For a Gaussian distribution, this would correspond to the 2σ lower limit. This limit is

shown in Fig. 7.5 as the solid red line. Consistent with the marginalized posterior, we

rule out very negative Ωk , with the limit tightening for lower values of Ωm.

As seen in Fig. 7.5, the data somewhat prefer models with negative curvature over

models with Ωk = 0. This preference is driven by the high redshift data points seen in

Fig. 7.4. However, this preference is not statistically significant. For Ωk � −0.1, the

posterior onΩk is quite flat for allΩm. This is consistent with the finding noted above
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Figure 7.5: The constraints on Ωm and Ωk resulting from analysis of the measured lensing ratios. The

background color shows the marginalized posterior density for these two parameters. The data strongly

rule out regions of parameter space with low Ωm and very negative Ωk . At each Ωm, we identify a lower

limit on Ωk by identifying the value of Ωk for which the marginalized posterior falls by 1/e2 relative to

the maximum, which for a Gaussian distribution would correspond to the 2σ lower limit. This limit is

illustrated with the red solid curve. We also show (dashed curves) the changes to these limits when using

two variations on the fiducial tSZ model, as described in Sec. 7.4.3.

that the amplitude of the lensing ratios is consistent (to 1σ) with the prediction from

flat ΛCDM, which has Ωk = 0.

Fig. 7.5 also shows the impact of using the high and low-amplitude tSZ models

(see discussion in Sec. 7.5.3) on the cosmological constraints with the green and orange

dashed curves, respectively. The uncertainty on the tSZ amplitude contributes a non-

negligible amount of systematic uncertainty to our analysis, but it is subdominant to

the statistical uncertainty.

We have tested that the constraints obtained by varying only the cosmological pa-

rameters, and not marginalizing over the shear and photometric redshifts systematics

parameters are essentially identical to those obtained when the systematics parameters

are varied. Therefore, we conclude that at the current level of statistical uncertainty on

the lensing ratios, the impact of systematics errors in photometric redshifts and shear

calibration are not significant. Note that the systematics parametersΔzis,Δzil , andmi

are strongly prior dominated.
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7.7 Forecasts

Upcoming data from DES, SPT and future surveys have the potential to signif-

icantly reduce the statistical uncertainty on measurements of lensing ratios. Das &

Spergel (2009) calculated the uncertainty on lensing ratios that could be obtained with

the combination of a lens galaxy sample from a futuristic spectroscopic survey, a LSST-

like galaxy weak lensing survey, and a CMB lensing map from a CMBPOL-like survey.

They found that a roughly 1% constraint on the lensing ratio could be obtainedwith this

combination of experiments, and that such a constraint could contribute useful cosmo-

logical information that is complementary to e.g. Planck and future measurements of

the baryon acoustic oscillation (BAO) feature in the galaxy distribution.

Here, we extend the analysis of Das & Spergel (2009) to account for the effects of

systematic errors in the redshift and shear measurements. We also update the forecasts

given current expectations for future survey designs. Finally, we show how using a lens

galaxy population identified with photometric data from LSST can be used to decrease

the error bars on the ratio measurements. For this analysis, we consider curvedwCDM

cosmological models, parameterized byΩm,Ωk andw, the equation of state parameter

of dark energy.

As discussed in Sec. 7.5, there are several potential sources of systematic error that

could affect measurement of lensing ratios beyond errors in the source redshift dis-

tributions and shear calibration errors. In particular, tSZ bias in the κCMB maps is a

potentially significant concern. Here, we ignore bias due to tSZ contamination of the

κCMB map under the assumption that future experiments will use lensing estimators

based on CMB polarization data (which is much less severely impacted by tSZ), or that

they will use some multi-frequency cleaning strategy, such as that discussed in Mad-

havacheril & Hill (2018).

7.7.1 Calculation of projected uncertainty

To estimate the error on the lensing ratios with future data we use a methodology

similar to Das & Spergel (2009). We define

Z
 = C
κCMBδg

 − r C

κsδg

 , (7.21)

and a corresponding χ2 via

χ2(r) =
∑
l

Z2
l

σ2(Zl)
, (7.22)

170



7.7 Forecasts

where σ2(Zl) is the variance of Zl. The uncertainty on the ratio, σ(r), can then be

calculated as
1

σ2(r)
=

1

2

∂2χ2(r)

∂r2
. (7.23)

To computeZl, wemust extend the formalism ofDas & Spergel (2009) to include partial

overlap between surveys. Given a fiducial value of the ratio, r0, the variance of Zl can

be computed using the expressions in White, Song & Percival (2009). We find

σ2 (Z
) =
1

(2�+ 1)

[
1

f
κCMBδg
sky

(
C̃κCMBκCMB
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(
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r20
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κCMBδg
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,

(7.24)

where

C̃XX

 = CXX


 +NXX

 , (7.25)

and N
 is the corresponding noise power spectrum. The Poisson noise for the tracer

sample is N
δgδg

 = 1/ng , where ng is the number density of tracer galaxies per stera-

dian. We computeNκsκs

 as

Nκsκs

 =

σ2
ε

ns
, (7.26)

where σε is the standard deviation of the weighted galaxy shapes and ns is the number

density of the source galaxies per steradian used to produce the lensingmaps. We adopt

σε = 0.26 below. The various noise curves used in the forecasts are shown for the

different surveys in Fig. 7.6.

The fsky factors in Eq. (7.24) approximately take into account the fact that the vari-

ance of the C
 measurements is increased for partial sky coverage. We define f
κCMBδg
sky

and f
κsδg
sky as the sky fractions over which C

κCMBδg

 and C

κsδg

 are measured, respec-

tively, and f
κCMBκsδg
sky is the sky fraction over which the δg , κCMB and κs measure-

ments all overlap. In the case that there is no overlap between all three measurements,

C
κCMBδg

 and C

κsδg

 are uncorrelated and the variance of Zl is given by the sum of the

variances of the two terms in Eq. (7.21). In the case where there is overlap between

the lens galaxies, source galaxies, and CMB lensing measurements, some reduction of

variance can be obtained via sample variance cancellation.

Finally, σ(r) is calculated by substituting Eqs. (7.22) and (7.24) into Eq. (7.23). For

the purposes of these forecasts, we adopt the best-fit ΛCDM cosmological model from
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Surveys Lens z range Nlens bins Source z range Nsource bins σr,stat [min, max]

DES Y1 + SPT-SZ (current measurements) 0.15 < zl < 0.6 3 0.6 < zs < 1.3 2 [0.13, 0.23]

DES Y5 + SPT-SZ 0.15 < zl < 0.6 3 0.6 < zs < 1.3 2 [0.098, 0.15]

DES Y5 + CMB-S3 0.15 < zl < 0.6 3 0.6 < zs < 1.3 2 [0.042, 0.060]

DESI + LSST + CMB-S4
0.2 < zl < 0.4 (BGS)
0.8 < zl < 1.0 (ELG)

4

2
1.0 < zs < 1.6 1

[0.018, 0.019] (BGS)
[0.040, 0.054] (ELG)

LSST + CMB-S4 0.2 < zl < 0.7 10 1.0 < zs < 1.6 1 [0.013,0.015]

Table 7.1: Forecasts for precision of ratio measurements for the future experiment configurations de-

scribed in Sec. 7.7.2, except for the first row, which corresponds to the measurements presented in this

paper in Fig. 7.4. Last column represents the minimum and maximum statistical errors on the ratios over

all tracer and source galaxy bin combinations.
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the analysis of TT,TE,EE+lowP+lensing+ext datasets in Ade et al. (2016).

7.7.2 Future experiment configuration

We consider several future experimental configurations using both current and fu-

ture surveys, which are also summarized in Table 7.1:

• DES Y5 + SPT-SZ: this represents what can be achieved with full-survey DES

data and current SPT-SZ data. We assume an overlapping area of 2500 sq. deg.

(i.e. the full area of the SPT-SZ survey). For the tracer and source galaxies, we

adopt the current redshift bins and the same number densities for the tracer

galaxies; we assume an increased source density of a factor of two with respect

to the Y1 density, due to the higher depth of Y5 data. The assumed CMB noise

power, NκCMBκCMB

 , is taken from Omori et al. (2017). Finally we assume that
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tSZ bias can be mitigated using multi-frequency information, allowing us to ex-

ploit all angular scales.

• DES Y5 + Stage 3 CMB: this represents what can be achieved with full-survey

DES data and a near-term, Stage 3 CMB experiment (CMB-S3). Stage 3 CMB

experiments include SPT-3G (Benson et al., 2014) and Advanced ACTPol (Hen-

derson et al., 2016). We assume an overlapping area of 5000 sq. deg. and use the

CMB-S3 noise curve from Abazajian et al. (2016). We adopt the same tracer and

source galaxy bins as the current analysis, with a source density of twice the Y1

density.

• DESI + LSST + Stage 4 CMB: this represents one possible use of future survey
data to constrain lensing ratios. We assume that the tracer galaxies are spec-

troscopically identified using the Dark Energy Spectroscopic Instrument (DESI

Collaboration et al., 2016), allowing us to ignore redshift errors for this sample.

The tracer galaxies are assumed to be drawn from two DESI populations: a set

of low-z galaxies from the Bright Galaxy (BGS) sample and a set of high-z galax-

ies from the Emission Line Galaxy (ELG) sample. The BGS tracer galaxies are

divided into four redshift bins between z = 0.2 and z = 0.4, and the tracer

galaxy bias is assumed to be 1.34/D(z), whereD(z) is the linear growth factor,

normalized to D(z = 0) = 1; the ELG galaxies are divided into two redshift

bins between z = 0.8 and z = 1.0, and are assumed to have a bias of 0.84/D(z)

(DESI Collaboration et al., 2016). The tracer galaxy density for the BGS redshift

bins (width ofΔz = 0.05) is assumed to be 75 per sq. deg. and 150 per sq. deg

for the ELG redshift bins (width of Δz = 0.1). We assume that LSST (LSST

Dark Energy Science Collaboration, 2012) is used to measure shapes of source

galaxies, with a source density of 25 galaxies per sq. arcmin and redshift range

from z = 1.0 to z = 1.6.

The CMB lensing map is assumed to come from a Stage 4 (CMB-S4) like ex-

periment (Abazajian et al., 2016); we adopt the minimum variance CMB lensing

noise curve from Schaan et al. (2017). Finally, we assume overlapping area be-

tween DESI and CMB-S4 of 16500 sq. deg., overlap between DESI and LSST of

3000 sq. deg., and overlap between all three surveys of 3000 sq. deg.

• LSST + CMB-S4: another possible use of future survey data for measuring lens-

ing ratios is to define a tracer galaxy sample using photometric data from LSST.

As we have shown above, algorithms like redMaGiC can be used to define galaxy

populations that are sufficiently narrowly distributed in redshift for the purposes

of measuring lensing ratios. We assume that the LSST tracer galaxy sample is di-

vided into 10 bins between z = 0.2 and z = 0.7, with number density of 100

galaxies per square degree for each bin. Such densities are comparable to what
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is currently achieved with DES redMaGiC. We make the same source galaxy and

CMB lensing assumptions as above.

In addition to the survey assumptions described above, we must adopt some pre-

scription for the expected systematic errors on shear calibration and photometric red-

shift determination. We assume that the multiplicative shear bias from LSST can be

calibrated to σ(m) = 0.001, which is the requirement set in LSST Science Collabo-

ration et al. (2009) and also of the order of what is expected from Schaan et al. (2017).

When using DESI to create the tracer galaxy sample, we ignore redshift errors in the

analysis; for LSST we assume that with a redMaGic-like algorithm, the tracer galaxy

redshifts can be calibrated to σ(Δzl) = 0.005. We assume that the source photo-zs

measured by LSST can be calibrated to the level of σ(Δzs) = 0.01 (LSST Science Col-

laboration et al., 2009).

Note that in the forecasts below, we ignore the issue of the finite width of the tracer

galaxy redshift bins. For the survey assumptions defined above, we have tested that the

errors on the ratios induced by the narrow lens approximation are significantly below

the statistical uncertainties on the ratios. Furthermore, given the small assumed redshift

errors of the lens galaxies, we could in principle divide the tracer galaxies into more

redshift bins and the narrow lens approximation would improve. We find, however,

that doing so does not appreciably change our results.

7.7.3 Future constraints on lensing ratios

There are three sources of statistical noise in the measurements of the lensing ra-

tios: noise in the measurement of galaxy density, noise in the galaxy lensing maps, and

noise in the CMB lensing maps. For current data, all of these components make signif-

icant contributions to the total uncertainty on the ratios, although noise in the CMB

lensing map and galaxy density dominate. For instance, increasing the number density

of tracers by a factor of two would decrease the uncertainty on the ratios by roughly

15%. Significant improvement could also be obtained by reducing the noise in the κ

maps, especially κCMB. Halving the noise in the CMB κmaps would decrease the ratio

uncertainty by 25%, while the same improvement in the galaxy κ maps would reduce

the ratio uncertainty by 5%. Finally, doubling the area of the surveys would reduce

by 40% the uncertainty on the ratios. The future survey configurations described in

Sec. 7.7.2 make improvements to the lensing ratio constraints in all of these ways.

The projected cosmological constraints on Ωm, Ωk and w obtained from the fore-

casted lensing ratio constraints for DESI, LSST and CMB S4 are shown in Fig. 7.7,

assuming the tomographic ratio measurements are independent. This is a reasonable

assumption because for these configurations there is only one source bin (see Table. 7.1)

and the covariance betweenmeasurements using different tracer bins is small, as shown
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Figure 7.7: Projected cosmological constraints from lensing ratios when using LSST + DESI + CMB-S4

vs. LSST + CMB-S4, using the geometrical Planck prior, which is also shown in the figure. We have

marginalized over parameters describing systematic uncertainties in lens and source galaxy redshifts, and

systematic errors in source galaxy shears. We alsomarginalize overh andΩb as these appear in the geomet-

rical Planck prior (see text). The constraints that can be obtained using a photometrically identified tracer

galaxy population (LSST+CMB-S4) are tighter than those that can be obtained from a spectroscopically

identified tracer galaxy population (DESI+LSST+CMB-S4). Apparently, the increased number density of

the tracer galaxies with the photometric survey outweighs the increased redshift uncertainties.
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Figure 7.8: (a) Degeneracy betweenΩm and source redshift bias,Δzs, for the case of one lens and source
redshift bin when the lensing ratio is measured to 1% precision. Since there is only one ratiomeasurement,

the constraint onΩm is completely degenerate with the redshift bias. (b) Projected constraints onΩk and

w for different priors on the redshift bias parameter, Δzs. We have assumed the projected constraints

for LSST+CMB S4 in this figure. Uncertainty onΔzs significantly degrades the cosmological constraints.

For the projected level of constraints, σ(Δzs) = 0.01, the degradation is small, but non-zero.

in Fig. D.1. When generating this figure, we have adopted priors from the Planckmea-

surement of the CMB power spectrum in Ade et al. (2016). Since the lensing ratio mea-

surements are purely geometrical in nature, we choose to use only geometric informa-

tion from the CMBpower spectrum. For this purpose, we use the geometric CMBprior

defined in Aubourg et al. (2015). Sincemost of the information in this prior comes from

the first few peaks of the CMB temperature power spectrum, constructing this prior

from the Planck constraints is a reasonable approximation for future surveys. Since

the CMB prior depends on h and Ωb, we have marginalized over these quantities in

generating Fig. 7.7. Additionally, in Fig. 7.7 we have marginalized over the systemat-

ics parametersΔzl,Δzs andm for each redshift bin, imposing the priors described in

Sec. 7.7.2.

Fig. 7.7 makes it clear that the lensing ratios contribute information beyond that

contained in the geometrical CMB prior. Because of the "geometrical degeneracy" in

the CMB power spectrum (Efstathiou & Bond, 1999), the CMB constraints on Ωm, Ωk

and w are quite weak when all three parameters are varied simultaneously (the red

contours). However, future lensing ratio constraints help to break these degeneracies.

The combination of the lensing ratio and geometric CMB prior is particularly powerful

in the space ofΩk andw. The main impact of the lensing ratio constraints is to remove

regions of parameter spacewith negativeΩk andwith smallw in absolute value, leading
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Figure 7.9: Posteriors on the source redshift bias parameter,Δzs, when using only one lens bin and source
bin (one ratio) vs using three lens and one source bins (three ratios). Usingmultiple lens redshift bins allows

one to obtain some self-calibration of the photo-z bias. However, the level of self-calibration achieved is

not as tight as expected priors, σ(Δzs) = 0.01.

to a tight degeneracy between Ωk and w. This degeneracy can be broken using e.g.

information from BAO (Das & Spergel, 2009). Alternatively, if flatness is assumed (i.e.

Ωk = 0), the resultant constraint is w = −1.0± 0.1 (grey dashed curve in lower right

panel).

Additionally, from Fig. 7.7 it can be seen that the cosmological constraints obtained

fromusing LSST redMaGiC-like galaxies as the tracers are tighter thanwhat is obtained

by using DESI galaxies as the tracers. This is one of the main findings of our analysis:

because of the tight photometric redshift errors that can be obtained with a redMaGiC-

like algorithm, lensing ratios can be measured to high precision using a combination of

photometric galaxymeasurement andCMB lensing. A spectroscopic lens galaxy catalog

is not necessary for the purposes of measuring lensing ratios. For fixed w = −1, the

constraint obtained onΩk for the case of DESI tracers isσ(Ωk) = 0.014; for the case of

LSST tracers, it is σ(Ωk) = 0.009. Similarly, for fixedΩk = 0, the constraint obtained

on w for the case of DESI tracers is σ(w) = 0.15; for the case of LSST tracers, it is

σ(w) = 0.09.

7.7.4 Impact of systematic errors on lensing ratios

We now investigate in more detail the impact of systematic errors on future ratio

measurements. For illustrative purposes, we first consider the case of a ratio measure-

ment using a single lens and source galaxy bin, for which we adopt a 1% error typical

of the LSST + CMB-S4 forecasts. In this case, since there is only a single ratio mea-
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surement, systematic errors on shear calibration and photometric redshift bias will be

completely degeneratewith the cosmological constraints. This degeneracy is illustrated

for the case ofΩm in Fig. 7.8a. Without a prior onΔzs,Ωm cannot be constrained at all

(orange contour). Given the projected prior onΔzs of 0.01, we can obtain a constraint

on Ωm (light green contour). However, in this case the cosmological constraint will be

strongly determined by the accuracy of our prior onΔzs and the constraining power

on Ωm will be reduced by photo-z uncertainties.

In Fig. 7.8b we show the impact of source redshift errors in thew−Ωk plane when

more cosmological parameters are added into the model, and also when multiple ratios

coming from different lens and source bin combinations are used. For this figure, lens-

ing ratio constraints are taken from LSST + CMB-S4 forecasts, which match the ones

fromFig. 7.7 for the contoursmarginalizing overΔzswith the fiducial prior (light blue).

In this figure, we also show the results of marginalizing overΔzs with a wide, flat prior

(orange), and fixingΔzs = 0 (grey). Degeneracy between the cosmological parameters

and Δzs can have a large impact, as evidenced by the change in constraints in going

fromΔzs = 0 to marginalizing overΔzs with the wide, flat prior. However, with the

assumedΔzs priors of 0.01 we find that the effect of source redshift uncertainty on the

lensing ratios constraints is fairly small, but also not negligible.

If multiple lens redshift bins are used to measure multiple lensing ratios, the de-

generacy betweenΔzs and the cosmological parameters can be broken somewhat. To

illustrate this point, Fig. 7.9 shows the posteriors on Δzs when using a single ratio or

multiple ratio measurements. With only a single ratio measurement (orange curve), the

ratio is highly degenerate with the systematic uncertainty on the redshift bias parame-

ter,Δzs, so the posterior onΔzs is very broad. Using multiple ratios allows for some

self-calibration of the photo-z bias (blue curve); in this case, the ratio measurements

alone are being used to calibrateΔzs. However, we see that the level of self-calibration

of Δzs remains weaker than the prior (black dashed curve) and, therefore, not using

anyΔzs prior in the cosmology analysis would result in some degradation of the cos-

mology constraints. Note that the preference for largeΔzs exhibited in Fig. 7.9 for the

case of a single ratio measurement is due to the projection of the higher-dimensional

parameter space to the one-dimensional constraints onΔzs.

We have also investigated the impact of shear calibration uncertainty on the con-

straints, as parameterized viam. SinceΔzs andm both affect all ratio measurements

for a single source galaxy bin, their impacts on the lensing ratios are largely degener-

ate. Consequently, even for multiple lens redshift bins, when bothΔzs andm are left

completely free, no useful level of self-calibration can be achieved, and the cosmolog-

ical constraints are significantly degraded. However, for the projected priors on m of

σ(m) = 0.001, the impact of marginalizing over m on the cosmological constraints

is negligible, given the projected statistical error bars on the ratios. Note that the cos-

mological constraints presented in Fig. 7.7 include marginalization over m with the
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fiducial σ(m) = 0.001 prior.

7.8 Conclusions

Using a combination of galaxy position measurements and galaxy lensing maps

from DES, and CMB lensing measurements from SPT and Planck, we have measured

several cosmological lensing ratios. These ratios have the attractive feature that they can

be modeled using only geometrical information (i.e. distances as a function of redshift),

and do not depend on the galaxy-matter power spectrum. Although lensing ratios use

the CMB as a source plane, they are completely independent of the physics of baryon

acoustic oscillations in the primordial plasma, making them a useful cross-check of ge-

ometrical constraints from the CMB and the BAO feature in the galaxy distribution.

Similarly, lensing ratios provide a test of cosmological distances that is completely in-

dependent of constraints from supernovae.

Enabled by the well-understood photometric redshifts of the redMaGic galaxies,

we have for the first time measured lensing ratios without the use of spectroscopic

galaxy samples. Each lensing ratio is constrained to 13 to 23% precision, and the com-

bined constraint from all ratios is roughly 10%. Using these measurements, we place

constraints on curved ΛCDM cosmological models, finding consistency with the con-

cordance cosmological model. Our most interesting cosmological constraint is on Ωk

and is shown in Fig. 7.5.

We have also predicted the constraining power on lensing ratios of future experi-

ments. While previous forecasts have focused on spectroscopic identification of tracer

galaxies, we argue that photometrically identified galaxies can be used, provided their

redshifts can be constrained with redMaGiC-like accuracy. Given this observation, we

argue that the combination of data from LSST and CMB-S4 experiments will provide

tight constraints on lensing ratios, achieving roughly 1.5% precision for tracers dis-

tributed over z ∈ [0.2, 0.7]. Additionally, we showed that systematic uncertainty in the

redshift estimates for the source galaxies significantly degrades the cosmological con-

straints from lensing ratios. However, given the expected priors on the source galaxy

redshift biases, the degradation from the source redshift uncertainty will be smaller

than the statistical uncertainties. Moreover, we have found that using multiple lens and

source bins allows for some self-calibration of the photometric redshifts, but not to

the level of the expected priors. We have ignored the complication that photometric

redshift errors may not be adequately parameterized by a single shift parameters as in

Eq. (7.16). Exploring the consequences of more generic redshift bias models is one av-

enue for future work. We have also found that multiplicative shear biases will not be a

limiting factor for lensing ratios given the expected priors on these parameters.

When combined with geometrical constraints from the CMB, the lensing ratios ex-
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plored in this work offer the possibility of deriving purely geometric constraints on the

curvature of the Universe and the equation of state parameter of dark energy. Analy-

ses with future data sets will be able to significantly improve on current lensing ratio

measurements, as seen in Table 7.1 and Fig. 7.7. While such future constraints would be

interesting in their own right, their geometric nature also means that comparisons to

cosmological probes that use growth and power spectrum information are particularly

interesting. Modified gravity, for instance, is expected to lead to differences in cosmo-

logical models inferred from geometry and growth measurements (e.g. Ruiz & Huterer,

2015). Exploring these possibilities with lensing ratios is another exciting avenue for

future work.

Part of the appeal of lensing ratios is their simplicity: they do not require compli-

cated modeling of the two-point functions that they depend on. Unfortunately, this

simplicity comes at the cost of reduced sensitivity to cosmological parameters. While

lensing ratios have already been used to provide competitive constraints on systematics

parameters (e.g. Prat et al., 2018a), competitive cosmological constraints with lensing

ratios have yet to be demonstrated. Still, the geometric nature of the constraints, the

fact that they are independent of the physics of BAO, and the fact that their sensitiv-

ity spans a wide range of redshifts make lensing ratios worth exploring with future

data. Furthermore, assuming cosmologists continue to measure two-point functions

between galaxy density and gravitational lensing, lensing ratio constraints on cosmol-

ogy come essentially for free.
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Summary and conclusions

In this thesis we have studied cosmology and the galaxy-matter connection with

weak gravitational lensing using data from the Dark Energy Survey (DES), the South

Pole Telescope (SPT) and Planck. In particular, we have used cross-correlations be-

tween a background source of light, such as distant galaxies or the Cosmic Microwave

Background (CMB), and galaxy positions in the foreground, tracing the Large-Scale

Structure producing the lensing. On one hand, these weak lensing cross-correlations

are sensitive to the history of growth of structure and to the geometry of the Universe,

allowing us to constrain cosmological parameters in combination with other probes.

On the other hand, they are also sensitive to the relation between the baryonic matter

forming galaxies and the underlying (mostly) dark matter field, a relation that is encap-

sulated in the so-called galaxy bias.

In Part II of this thesis, we have used tangential shear measurements to constrain

the galaxy bias. The tangential shear is one of the main observables of galaxy-galaxy

lensing, which aims to detect the effect some foreground galaxies (lenses) have on the

shapes that we see of some other background galaxies (sources) due to the foreground

galaxy masses, dominated by their dark matter halos. In this thesis, we have measured

the tangential shear of background galaxies around lens galaxies contained in a mag-

nitude limited sample, using the DES Science Verification data set. Then, fixing cos-

mology, we have been able to put constraints on the galaxy bias of the lens sample, and

have compared our results with galaxy biasmeasurements on the same sample obtained

from other probes, such as galaxy clustering fromCrocce et al. (2016) and CMB lensing

from Giannantonio et al. (2016), finding some mild tension which could be due to the

combination of various reasons, discussed in detail in Chapter 4.

The main work of this thesis is presented in Part III, where in Chapter 6 we show

the results from the DES Y1 cosmological analysis coming from the combination of

galaxy clustering and weak lensing, the so-called 3x2pt, since it involves three two-

point correlation function measurements: (i) cosmic shear, (ii) galaxy-galaxy lensing

and (iii) galaxy clustering. This combination, besides being able to break degeneracies

between the galaxy bias and cosmological parameters, has been recognized for more

than a decade to contain a tremendous amount of complementary information, and to
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be remarkably resilient to the presence of nuisance parameters that describe systematic

errors and non-cosmological information. For the first time, the precision of the DES

Y1 cosmological constraints rivals that from the Planck cosmic microwave background

measurements, allowing a comparison of structure in the very early and late Universe

on equal terms, testing the ΛCDM model. Under the DES Y1 tension metrics frame-

work, DES cosmology results from 3x2pt are found compatible with Planck results and
therefore combined, deriving very tight constraints on cosmological parameters. This

thesis has contributed to this highly collaborative effort providing the measurement

and careful systematics treatment of one of the three probes involved in the analysis,

the galaxy-galaxy lensing part, which is presented in Chapter 5. In that chapter we also

constrain the galaxy bias and test the linear bias assumption used in the whole 3x2pt

analysis, by comparing the galaxy bias results obtained from galaxy clusteringmeasure-

ments with the ones obtained using galaxy-galaxy lensing, finding agreement.

Moreover, in Chapter 5 and still in the context of the DES Y1 3x2pt analysis, we

perform the so-called shear-ratio test, which uses the geometrical information of the

tangential shear measurements to put constraints on the redshift distributions of the

source sample. In order to place these constraints we use the fact that the scaling of the

tangential shear for different source redshift bins sharing the same lens sample depends

only on the angular diameter distances relative to the foreground and background sam-

ples, in the limit where the lens galaxies are narrowly distributed in redshift. Such de-

pendency was initially proposed as a probe for dark energy evolution, but we found the

shear-ratio to have negligible cosmological dependency and that instead it ismuchmore

sensitive to uncertainties in the redshift distributions. We find agreement between the

results obtained using the shear-ratio method developed in this thesis and the results

from other methods, including calibration from the high-quality photometric redshifts

of the multi-band COSMOS survey and angular cross-correlation redshifts.

Finally, in Part IV, we present cosmological constraints obtained just from geo-

metrical information, taking appropriately defined ratios of CMB lensing and galaxy-

galaxy lensing measurements using DES Y1, South Pole Telescope (SPT) and Planck

data. Such lensing ratios depend only on the angular diameter distances to the tracer

objects and to the gravitational lensing source planes, similarly to the shear-ratio test.

However, including the much longer distance to the CMB shell makes this measure-

ment sensitive to cosmological parameters. Because of their simple cosmological de-

pendence, such ratios can exploit available signal down to small angular scales, even

where directly modeling the correlation functions is difficult and is usually left out of

conventional cosmological analyses. Also, we found that future lensing ratio measure-

ments with data from a combination of LSST and Stage-4 CMB experiments can be

used to place interesting cosmological constraints, even after considering the system-

atic uncertainties associated with photometric redshift and galaxy shear estimation.
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Appendix A

ΔΣ and γt

When we measure the mean tangential alignment of background galaxies around

lenses, we need to make a choice as to how we weight each of the lens-source pairs.

In this appendix, we discuss the implications of using either a uniform weight for all

source-lens pairs in a given combination of source and lens redshift bins, or a weight

that takes into account the photometric redshift estimate of the source to yield a mini-

mum variance estimate of the surface mass density contrast of the lens.

In the first case, and without a shape noise weighting of sources, our measurement

γt is simply the arithmetic mean of the tangential components of ellipticities of sources

i:

γt = N−1
N∑
i=1

et,i . (A.1)

In the second case, we weight each lens-source pair by a weight we,i,

γt =

∑N
i=1we,iet,i∑N
i=1we,i

. (A.2)

For optimal signal-to-noise ratio and uniform shape noise of our sample of source

galaxies, we,i should be chosen to be proportional to the amplitude of the signal in

each lens-source pair, i.e.

we,i ∝ DlDls

Ds
. (A.3)

We note that, for a given cosmology, the mean shears of both Eq. (A.1) and Eq. (A.2)

can be converted to an estimate of surface mass density ΔΣ, by multiplying with the

(weighted) estimate ofΣ−1
crit, as in Eq. (5.3). In the case of Eq. (A.2) with theweights equal

to the expectation value of Eq. (A.3), this is identical to the common ΔΣ estimator of

Sheldon et al. (2004).

The unweighted mean of Eq. (A.1) has the considerable advantage that nuisance pa-
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Figure A.1: Relative signal-to-noise ratio

of lensing signal recovered when weight-

ing sources uniformly (commonly called

γt, circles) and with “ΔΣ weighting” ac-

cording to a DES-like photometric red-

shift point estimate (squares) with σp =
−0.1 (1 + z) + 0.12 (1 + z)2 scat-

ter around the true redshift (Hoyle et al.,

2018). The point estimate is used to select

source bins of widthΔz = 0.25.

rameters describing the systematic uncertainty of shear and redshift estimates of the

source redshift bins are identical to the ones determined for a cosmic shear analy-

sis using the same samples (Troxel et al., 2018; Hoyle et al., 2018; Zuntz et al., 2018).

This is of particular importance when joining cosmic shear and galaxy-galaxy lensing

measurements into one combined probe (DES Collaboration, 2018b). The question at

hand therefore is whether the increase in signal-to-noise ratio (S/N) due to the optimal

weighting of Eq. (A.2) would warrant the added complication.

We make a simple estimate of the loss in S/N incurred by uniform weighting of

sources. To this end, we simulate a source sample with overall Gaussian distribution

of true redshifts zt with a mean 〈zt〉 = 0.6 and width σt = 0.3. We split sources into

redshift bins of widthΔzp = 0.25 by a point estimate zp of their redshift. For a given

source redshift bin centered on zm, we emulate the latter by adding a Gaussian scatter

of σp = −0.1 (1 + z) + 0.12 (1 + z)2 to zt, which is a realistic scatter for DES-Y1

photo-z’s (Hoyle et al., 2018).

Figure A.1 compares the recovered S/N of the galaxy-galaxy lensing signal to that

of weighting each source by the optimal weight using its true redshift for two cases: (1)

uniformweighting of all sources in a redshift bin (circles) and (2) weighting each source

by Eq. (A.3) evaluated at the source redshift point estimate (squares). Except in the case

of source redshift bins overlapping the lens redshift, uniform weighting does not con-

siderably lower the S/N of the measured galaxy-galaxy lensing signal. The photo-z

resolution results in a bigger gain when using optimal weighting compared to uniform

weighting. For instance, for zl = 0.4 and zs = 0.425, the gain of using photo-z op-

timal weighting is 6.4% for the fiducial photo-z scatter while it goes up to 25% if we

improve the resolution by a factor of two. In a case with less overlap between the lens
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and source redshift distributions the improvement is reduced, as expected. For exam-

ple, for zl = 0.4 and zs = 0.625, the gain of using photo-z optimal weighting is 1.6%

for the fiducial photo-z scatter while it is 2.1% for a photo-z resolution that is twice as

good. Therefore, we conclude that, even though optimal weighting can be important,

for the photo-z precision and the source binning used in this work, photo-z-dependent

weighting of sources does not significantly improve the constraining power, and decide

to use uniformly weighted tangential shears in this analysis.
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Appendix B

Effect of random point subtraction in the

tangential shear measurement

Our estimator of galaxy-galaxy lensing in Eq. (5.8) includes subtracting the mea-

surement around random points that trace the same survey geometry. This measure-

ment, using a set of random points with 10 times as many points as lens galaxies, is

shown in Fig. B.1. Even though this is a correction included in the measurement, it is

nonetheless useful to confirm that it is small at all scales used in the analysis. The mea-

surement tests the importance of systematic shearwhich is especially problematic at the

survey boundary, and allows us to compare the magnitude of the systematic shear with

the magnitude of the signal around actual lens galaxies. We find the tangential shear

around random points to be a small correction, consistent with the null hypothesis, as

it is seen in the top left panel of Fig. B.2.

Even though the random point subtraction is a mild correction to the signal, it has

an important effect on the covariance matrix. Subtracting the measurement around

random points removes a term in the covariance due to performing the measurement

using the over-density field instead of the density field, as it was studied in detail in

Singh et al. (2016). As seen in Fig. B.2, we observe this effect on scales larger than 20

arcmin., where the covariance is no longer dominated by shape noise. When subtracting

the measurement around random points, we detect both a significant decrease on the

uncertainty of the tangential shear (top right panel) and a reduction of the correlation

between angular bins (lower panels).

Finally, another argument that strongly favours applying the random points sub-

traction is the following. In Sec. 5.4.3 we validated the jackknife method using log-

normal simulations, showing that the uncertainties on the tangential shear are com-

patible when using the jackknife method and when using the true variance from 1200

independent FLASK simulations (Fig. 5.4). We have performed this comparison both

with and without the random point subtraction, finding that there is only agreement

between the different methods when the tangential shear around random points is re-
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Effect of random point subtraction in the tangential shear
measurement
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Figure B.1: Tangential shear around random points for Metacalibration and im3shape.

moved from the signal.
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Figure B.2: We show the impact the random point subtraction has on the tangential shear measurement

and its corresponding jackknife covariance matrix for an example redshift bin (0.3 < zl < 0.45 and

0.63 < zs < 0.90 for Metacalibration).
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Appendix C

Metacalibration responses scale dependence

As explained in Sec. 5.4.1, when applying the Metacalibration responses we ap-

proximate them as being scale independent. In this appendix we test the validity of this

approximation by measuring the scale dependence of the responses for all the tomo-

graphic lens-source bin combinations.

In Fig. C.1 we display the Metacalibration responses for all the lens-source red-

shift bins combinations averaged in 20 log-spaced angular bins using the NK TreeCorr
correlation function. Comparing to the mean of the responses over the ensemble in

each source redshift bin, we find the variation with θ to be very small compared to the

size of our measurement uncertainties and thus decide to use a constant value for sim-

plicity. Future analyses using Metacalibration on larger data samples with smaller

uncertainties may need to include the scale-dependent responses in their measure-

ments.
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Figure C.1: Metacalibration responses scale dependence and mean values. We compare the responses

averaged in 20 log-spaced angular bins between 2.5 and 250 arcmin in each lens-source redshift bin combi-

nation (Rnk) to the average of the responses in each source redshift bin (Rmean). Themaximum difference

between them is at the 0.2% level.
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Appendix D

Test of Gaussian approximation to ratio

posteriors

In Fig. D.1 we show the posteriors on the lensing ratios obtained from the fitting

procedure to the two-point correlation functions using an MCMC, described in detail

in Sec. 7.4.4. These posteriors serve as the likelihood to then measure the cosmologi-

cal parameters running a second MCMC, as can be seen in Eq. (7.19). In our analysis,

for simplicity, we assume this likelihood is a multivariate Gaussian with a covariance

coming from the fitting procedure of Sec. 7.4.4. We test this assumption in Fig. D.1,

where we compare the measured lensing ratio posteriors with contours drawn from a

multivariate Gaussian centered at the same value, and using the measured covariance,

finding that they are indeed very similar.
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Figure D.1: Measured posteriors on the lensing ratios compared to a multivariate Gaussian drawn from

the measured covariance between the ratios centered in the same value. rij is the ratio between the mea-

surements in the CMB lensing map and the lens bin i and the convergence map in source bin j and same

lens bin, as defined in Eq. (7.14).
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