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Abstract

A variety of applications need to manage collections of multidimensional data,
where each object is identified by a point in some real or abstract space, a
prime example being Geographical Information Systems. These applications
often require multidimensional data structures that allow associative queries—
those that specify conditions for more than one coordinate—in addition to the
traditional operations of insert, update, delete and exact search. One of the main
types of associative queries is partial match (PM), where only some coordinates
are specified and the goal is to determine which objects match them. Partial
match queries are particularly important because their analysis forms the basis
of the analysis of other types of associative queries, such as orthogonal range
queries (which points fall inside a given (hyper)rectangular area?), region queries
(e.g. which points are within a given distance of some other given point?) or
nearest neighbor queries (find the k closest neighbors to a given point). In this
thesis we analyze in depth the average performance of partial match queries
in several representative multidimensional search trees, a significant subclass of
multidimensional data structures.

Multidimensional search trees, in particular quad trees and K-d trees, were
introduced in the mid 1970s as a generalization of binary search trees. Partial
match queries on them are answered by performing a recursive traversal of
some subtrees. For several decades their analysis in multidimensional search
trees was done with the important, and frequently implicit, assumption that in
each recursive call new coordinates of the partial match query were generated
randomly. The reason for this simplifying assumption was that, for expected
costs, such analysis is equivalent to analyzing the performance of the partial
match algorithm when the input is a random PM query. Early in this decade,
a few teams started the average-case analysis of partial match queries without
such assumption: the specified coordinates of the query remain fixed throughout
all the recursive calls. These queries are called fixed PM queries. The goal of
this relatively recent approach is to analyze the performance of the partial match
algorithm, but with the quantities of interest depending on the particular query
q given as input. The analysis of fixed PM queries, together with that of random
ones—which turns out to play an important role in the analysis of the former—
give us a very detailed and precise description of the performance of the partial
match algorithm that could be extended to other relevant associative queries.
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The main contribution of this thesis is to deepen and generalize previous
work done in the average-case analysis of partial match queries in several types
of multidimensional search trees. In particular, our focus has been the analysis
of fixed PM queries. Our results about them generalize previous results which
covered the case where only one coordinate is specified in the PM query—
and for any dimension—or the case of 2-dimensional data structures. Using a
combinatorial approach, different to the probabilistic approaches used by other
researchers, we obtain asymptotic formulas for the expected cost of fixed PM
queries in relaxed and standard K-d trees. We establish that, in both cases,
the expected cost satisfies a common pattern in the relationship with the ex-
pected cost of random PM queries. Moreover, the same pattern appeared in
the analysis, previously done by other researchers, of the expected cost of fixed
partial match in 2-dimensional quad trees. Those results led us to conjecture
that such formula would be pervasive to describe the expected cost of partial
match queries in many different multidimensional trees, assuming some addi-
tional technical conditions about the family of multidimensional search trees
under consideration. Indeed, we prove this to be the case also for K-dimensional
quad trees.

However, we disprove that conjecture for a new variant of K-d trees with
local balancing that we define: relaxed K-dt trees. We analyze the expected
cost of random PM queries and fixed PM queries in them and, while we do not
find a closed-form expression for the expected cost of fixed PM queries, we prove
that it cannot be of the same form that we had conjectured.

For random PM queries in both relaxed and standard K-dt trees, we obtain
two very general results that unify several specific results that appear scattered
across the literature. Finally, we also analyze random PM queries in quad-K-d
trees—a generalization of both quad trees and K-d trees—and obtain a very
general result that includes as particular cases previous results in relaxed K-d
trees and quad trees.
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Resumen

Son muchas las aplicaciones en las que se necesita administrar colecciones de
datos multidimensionales, en las que cada objeto es identificado por un punto
en un espacio real o abstracto; un ejemplo paradigmático son los sistemas de
información geográfica. Estas aplicaciones a menudo requieren estructuras de
datos multidimensionales que permitan consultas asociativas—aquellas que es-
pecifican condiciones para más de una coordenada—además de las operaciones
tradicionales de inserción, actualización, eliminación y búsqueda exacta. Uno
de los principales tipos de consultas asociativas es la búsqueda parcial, donde
solamente se especifican algunas coordenadas y el objetivo es determinar qué
objetos coinciden con ellas. Las búsquedas parciales son particularmente impor-
tantes porque su análisis forma la base del análisis de otros tipos de consultas
asociativas, tales como las consultas por rangos ortogonales (¿qué puntos están
dentro de un área (hiper)rectangular dada?), las consultas por región (por ejem-
plo, dados un punto y una distancia ¿cuáles puntos están a dicha distancia o
menos de ese punto?) o las consultas del vecino más cercano (encontrar los k
puntos más cercanos a un punto dado). En esta tesis analizamos en profundidad
el rendimiento promedio de las búsquedas parciales en varios árboles multidi-
mensionales de búsqueda representativos, los cuales constituyen una subclase
significativa de las estructuras de datos multidimensionales.

Los árboles multidimensionales de búsqueda, en particular quadtrees y árboles
K-d, fueron definidos a mediados de la década de los años 1970 como una gene-
ralización de los árboles binarios de búsqueda. Las búsquedas parciales en ellos
se responden realizando un recorrido recursivo de algunos de sus subárboles.
Durante varias décadas su análisis en árboles multidimensionales de búsqueda
se hizo con la suposición importante, y con frecuencia impĺıcita, de que en
cada llamada recursiva se generaban al azar nuevas coordenadas de la con-
sulta de búsqueda parcial. La razón de esta suposición simplificadora fue que,
para los costes esperados, dicho análisis es equivalente a analizar el rendimiento
del algoritmo de búsqueda parcial cuando la entrada es una búsqueda parcial
aleatoria. A principios de esta década, algunos equipos comenzaron a analizar
el caso promedio de búsquedas parciales sin dicha suposición: las coordenadas
especificadas de la consulta permanecen fijas a lo largo de todas las llamadas
recursivas. Estas consultas se llaman búsquedas parciales fijas. El objetivo de
este enfoque reciente es analizar el rendimiento del algoritmo de búsqueda par-
cial, pero ahora las cantidades de interés dependen de la consulta particular q
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dada como entrada. El análisis de búsquedas parciales fijas, junto con el de
las aleatorias—que resulta desempeñar un papel importante en el análisis de
las primeras—nos da una descripción muy detallada y precisa del rendimiento
del algoritmo de búsqueda parcial que podŕıa ser extendida a otras consultas
asociativas relevantes.

La principal contribución de esta tesis es profundizar y generalizar resultados
anteriores referentes al análisis en caso medio de búsquedas parciales en varios
tipos de árboles multidimensionales de búsqueda. En particular nos enfocamos
en el análisis de búsquedas parciales fijas. Nuestros resultados sobre ellas gene-
ralizan resultados previos que cubren el caso donde solamente una coordenada
es especificada en la búsqueda parcial—y para cualquier dimensión—o el caso
de estructuras de datos de dos dimensiones. Usando un enfoque combinato-
rio, diferente a los enfoques probabiĺısticos utilizados por otros investigadores,
obtenemos fórmulas asintóticas para el costo esperado de búsquedas parciales
fijas en árboles K-d relajados y estándares. Establecemos que, en ambos ca-
sos, el costo esperado satisface un patrón común en la relación con el costo
esperado de búsquedas parciales aleatorias. Además, el mismo patrón apareció
en el análisis, previamente hecho por otros investigadores, del costo esperado
de búsquedas parciales fijas en quadtrees de dos dimensiones. Esos resultados
nos llevaron a conjeturar que tal fórmula seŕıa generalizada para describir el
costo esperado de consultas de búsqueda parcial en muchos árboles multidimen-
sionales diferentes, asumiendo algunas condiciones técnicas adicionales sobre
la familia de árboles multidimensionales de búsqueda bajo consideración. De
hecho, demostramos que este también es el caso en quadtrees de K dimensiones.

Sin embargo, definimos una nueva variante de árboles K-d con reorgani-
zación local que cumplen tales condiciones, los árboles K-dt relajados, analiza-
mos el costo esperado de búsquedas parciales aleatorias y fijas en ellos y, aunque
no encontramos una expresión cerrada para el coste esperado de las búsquedas
parciales fijas, demostramos que no puede ser de la misma forma que hab́ıamos
conjeturado.

También obtenemos dos resultados muy generales para búsquedas parciales
aleatorias en árboles K-dt relajados y estándares que unifican varios resulta-
dos espećıficos que aparecen dispersos en la literatura. Finalmente, analizamos
búsquedas parciales aleatorias en una generalización de quadtrees y árboles K-d,
llamada árboles quad-K-d, y obtenemos un resultado general que incluye como
casos particulares resultados previos en árboles K-d relajados y quadtrees.
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Resum

Són moltes les aplicacions en què es requereix administrar col·leccions de dades
multidimensionals, en les quals cada objecte és identificat per un punt en un
espai real o abstracte; un exemple paradigmàtic són els sistemes d’informació
geogràfica. Aquestes aplicacions fan servir sovint estructures de dades mul-
tidimensionals que permetin consultes associatives—aquelles on s’especifiquen
condicions per a més d’una coordenada—a més de les operacions tradicionals
d’inserció, actualització, eliminació i cerca exacta. Un dels principals tipus de
consultes associatives és la cerca parcial, on només s’especifiquen algunes coor-
denades i l’objectiu és determinar quins objectes coincideixen amb elles. Les
consultes de cerca parcial són particularment importants perquè la seva anàlisi
forma la base de l’anàlisi d’altres tipus de consultes associatives, com ara les
cerques per rangs ortogonals (quins punts estan dins d’una àrea (hiper)rectangular
donada?), les consultes per regió (per exemple, donats un punt i una distància,
quins punts estan a aquesta distància o menys d’aquest punt?) o les consultes
del véı més proper (on cal trobar els k punts més propers a un punt donat). En
aquesta tesi analitzem en profunditat el rendiment mitjà de les cerques parcials
en arbres multidimensionals de cerca representatius, els quals constitueixen una
subclasse significativa de les estructures de dades multidimensionals.

Els arbres multidimensionals de cerca, en particular els quadtrees i els arbres
K-d, van ser definits a mitjans de la dècada dels anys 1970 com una genera-
lització dels arbres binaris de cerca. Les consultes de cerca parcial s’hi responen
realitzant un recorregut recursiu d’alguns subarbres. Durant molts anys l’anàlisi
en arbres multidimensionals de cerca es va fer amb la suposició important, i so-
vint impĺıcita, que en cada crida recursiva es generen a l’atzar noves coordenades
de la consulta de cerca parcial. La raó d’aquesta suposició simplificadora va ser
que, per als costos mitjans, aquesta anàlisi és equivalent a analitzar el rendiment
de l’algorisme de cerca parcial quan l’entrada és una consulta de cerca parcial
aleatòria. A principis d’aquesta dècada, alguns equips van començar a analitzar
el cas mitjà de cerques parcials sense aquesta suposició: les coordenades especi-
ficades de la consulta romanen fixes durant totes les crides recursives. Aquestes
consultes s’anomenen cerques parcials fixes. L’objectiu d’aquest enfocament
recent és analitzar el rendiment de l’algorisme de cerca parcial, però ara les
quantitats d’interès depenen de la consulta particular q donada com a entrada.
L’anàlisi de cerques parcials fixes, juntament amb el de les aleatòries —que té un
paper important per a l’anàlisi de les primeres—ens dóna una descripció molt
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detallada i precisa del rendiment de l’algorisme de cerca parcial que podria ser
estesa a altres consultes associatives rellevants.

La principal contribució d’aquesta tesi és aprofundir i generalitzar resultats
previs referents a l’anàlisi en cas mitjà de les cerques parcials en diversos tipus
d’arbres multidimensionals de cerca. En particular ens enfoquem en l’anàlisi de
les cerques parcials fixes. Els nostres resultats en generalitzen resultats previs
els quals cobreixen el cas on només una coordenada està especificada a la cerca
parcial—i per a qualsevol dimensió—o el cas d’estructures de dades de dues
dimensions. Usant un enfocament combinatori, diferent als enfocaments proba-
biĺıstics utilitzats per altres investigadors, obtenim fórmules asimptòtiques per
al cost esperat de cerques parcials fixes en arbres K-d relaxats i estàndards.
Establim que, en tots dos casos, el cost esperat satisfà un patró comú en la
relació amb el cost esperat de cerques parcials aleatòries. A més, el mateix
patró va aparèixer en l’anàlisi, prèviament fet per altres investigadors, del cost
esperat de cerques parcials fixes en quadtrees de dues dimensions. Aquests
resultats ens van portar a conjecturar que tal fórmula seria general per descriure
el cost esperat de consultes de cerca parcial en molts arbres multidimensionals
diferents, assumint algunes condicions tècniques addicionals sobre la famı́lia
d’arbres multidimensionals de cerca sota consideració. De fet, demostrem que
aquest és també el cas pels quadtrees de K dimensions.

Tanmateix, definim una nova variant de arbres K-d amb equilibri local que
compleixen aquestes condicions, els arbres K-dt relaxats, n’analitzem el cost
esperat de cerques parcials aleatòries i fixes i, tot i no trobar una expressió
tancada per al cost esperat de les cercques parcials fixes, demostrem que no pot
ser de la mateixa forma que hav́ıem conjecturat.

També obtenim dos resultats molt generals per a les cerques parcials aleatòries
en arbres K-dt relaxats i estàndards, els cuals unifiquen diversos resultats es-
pećıfics que apareixen dispersos a la literatura. Finalment, analitzem cerques
parcials aleatòries en una generalització de quadtrees i arbres K-d, anomenada
arbres quad-K-d, i obtenim un resultat general que inclou com a casos partic-
ulars resultats previs en arbres K-d relaxats i quadtrees.
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— Randall Munroe, xkcd.com

Analysis of algorithms is the area of computer science devoted to the study of
the amount of resources, or computational complexity, needed for the execution
of an algorithm. In this area we assume that an algorithm is correct and we
analyze its efficiency. The resources considered are typically storage space and
time but we will focus on the latter complexity. Therefore, we want to find
a function that expresses how much running time a particular algorithm will
take as a function of the input size. We call this the cost function, or simply
the cost or time, of the algorithm. To make the analysis independent of the
machine, the output of the cost function is neither expressed in seconds, nor
in any other standard time unit, but as the number of some specific operations
that the algorithm would have to perform. In a large number of cases it is not
feasible to find precise formulas and so we find asymptotic ones. Usually this is
sufficient as it is of more interest to analyze the algorithms’ behavior for large
input data sets.

In analysis of algorithms one of the most common approaches to measure
the performance of an algorithm is by its cost in the worst case of its possible
inputs of a given size. However, in many occasions the worst case is unlikely and
the analysis of the average case has more practical value1. In order to perform
the latter we need to know, at least to a very reasonably degree, the probability
distribution of the input data parameterized by its size.

This thesis is about the average-case analysis of particular algorithms, par-
tial match (PM) queries, in a specific class of multidimensional data structures,
multidimensional search trees. The prime example of multidimensional data
is Geographical Information Systems, for instance, the NASA Center for Cli-
mate Simulation website: https://maps.nccs.nasa.gov. Samet, in his reference
book [Sam06], mentions several other applications that require multidimensional
data structures such as the following, with references to examples that use mul-
tidimensional search trees for indexing the data:

• Pattern recognition, e.g. [LVV03].

• Image processing, e.g. [Ada+09].

• Game programming, e.g. Chapter 16 of [Tre04].

1If the probability distribution is unknown, changes or if it varies for different applications,
hybrid models between worst-case and average-case analysis—like smoothed analysis— can
be more useful, see [Rou19] for a review of different approaches to analysis of algorithms.
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• Finite-element analysis, e.g. in computational physics [KH07].

Multidimensional data can be point data, specific locations in space, or
spatial data, that is lines or regions of two or more dimensions. In this thesis
we are going to focus on the former, where each record is identified by a key
composed of many fields, that is its coordinates.

For all examples of multidimensional data in this section and the next, we
assume that the number of dimensions, K, is 2 and we use the data in Table 1
assuming that we insert the points in alphabetical order into an initially empty
data structure.

Table 1: Sample data for examples

Label X coordinate Y coordinate

A 0.7 0.5
B 0.1 0.4
C 0.3 0.2
D 0.8 0.7
E 0.5 0.9
F 0.9 0.8

Any data structure used to represent multidimensional point data must allow
not only exact queries, to check if a specific point is part of a multidimensional
dataset, but also associative queries, in which there are conditions for more than
one coordinate but not all coordinates of the key are specified. Among the most
important associative queries we have:

• Nearest neighbor queries: Given a point, which is the closest point in the
dataset? An example could be: which is the closest pharmacy to our
current location?

• Orthogonal range queries: Which members of the dataset are in a given
rectangular area? For example, which Peruvian restaurants are in a rect-
angular area of Barcelona’s Eixample?

• Partial match queries: Given some specified coordinates, which points
of the dataset match those coordinates? For instance, which YouTube
political videos were created by Russian IP addresses?

Besides their intrinsic importance, partial match queries are of particular
interest because analysis of nearest neighbor and orthogonal range queries can
be done using the analysis of PM queries [CDZ01; DM02; DJM14]. In Figure 1
we present an example of a partial match query in 2 dimensions.

Many multidimensional data structures have been defined and analyzed since
the 1960s; see Section 6.5 of Volume 3 of Knuth’s The Art of Computer Program-
ming [Knu98] for a review. Some of those data structures partition the space
independently of the data (tries) while others do it based on the data (trees).
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Figure 1: Table 1 data and a partial match query q = (∗, 0.6).

As mentioned before, this thesis is dedicated to the average-case analysis of PM
queries in several types of multidimensional search trees.

A generalization of binary search trees for multidimensional keys, quad trees,
were introduced in 1974 by Finkel and Bentley [FB74]. In quad trees all the
nodes split the space in each of the coordinates of the key. In the case of two
dimensions each node splits the space into four quadrants, hence the name quad
trees. In computer graphics, 3-D quad trees are called octrees [Mea80].

In 1975 Bentley introduced K-d trees [Ben75], another generalization of bi-
nary search trees where each node splits the space by only one of the coordinates
of the key: the root of the tree classifies by the first coordinate, its children by
the second, and so on in a cyclical manner: nodes at level i classify by coordi-
nate i mod K. Figure 2 shows the standard 2-d tree produced from Table 1
and the partition that it induces in the square [0, 1]2.

For randomly generatedK-d trees, Bentley claimed that partial match queries
with s specified coordinates could be performed, measured in the number of
nodes visited, in expected time O(n1−s/k) but in 1986 Flajolet and Puech [FP86]
disproved that claim by proving that the expected time is O(n1−s/k+θ(s/k))
where θ(u) is a strictly positive function of u in the interval [0, 1]. This paper
was extremely influential as it was the first precise analysis of partial match
queries. Additionally, it was one of the first to use complex analysis techniques
that were later generalized in a seminal paper by Flajolet and Odlyzko [FO90].

In 1993 Flajolet and others [Fla+93] analyzed partial match queries in quad
trees. They found that the partial match expected time has the same order as
in K-d trees, O(n1−s/k+θ(s/k)), but with different multiplicative constants.

Those analyses of partial match queries were done with the implicit as-
sumption that in each recursive call a new partial match query was generated
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Figure 2: A standard 2-d tree produced from Table 1 and the partition that it
induces in [0, 1]2.

randomly. Early in this decade several teams started the analysis of PM queries
where the parameters of the query remain fixed throughout all the recursive
calls. To distinguish them, the first type of PM queries are called random and
the latter fixed.

In 1998, Duch, Estivill-Castro and Mart́ınez [DEM98] introduced a variant of
K-d trees, relaxed K-d trees, where each time a node is created its discriminant
coordinate is chosen at random instead of being predefined in a cyclical way.
To distinguish them from relaxed K-d trees, the original K-d trees defined by
Bentley [Ben75] are called standard K-d trees.

Structure of the thesis

This thesis is organized as follows. In Part II, in Chapter 1 we give formal defi-
nitions of the associative queries, the data structures and the search algorithms.
We describe the probabilistic model in Chapter 2, including a more detailed
distinction than the one in the articles of the different random variables used
in the analysis of partial match queries. In Chapter 3, we explain the general
mathematical tools used for our theoretical analyses; there, we also explain the
methodology used for the experimental studies included in many of our articles.
We finish Part II with Chapter 4, where we give the state of the art.

We present the articles that have been published as part of this research in
Part III. Chapter 5 includes the first two articles, where we analyze fixed PM
queries in K-d trees. In the first article [DLM14], we generalize the formula for
relaxed K-d trees with s = 1, which was obtained in 2012 by Duch, Jiménez
and Mart́ınez [DJM14], to any s specified coordinates.

In the second article [DLM16a], the journal version of the first, we addition-
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ally find a formula for fixed PM queries in standard K-d trees. We prove that
in both cases the expected cost Pn,q of a fixed partial match query q ∈ [0, 1]n

in a tree that contains n data points satisfies:

Pn,q = Θ

(
 ∏

i:qi is specified

qi(1− qi)



α/2

· nα
)

(1)

where α is the exponent, depending only on s and K, of the expected cost of
random PM queries (each family of multidimensional trees has a characteristic
α). We conjectured there that a similar relationship between the cost of random
PM queries and fixed PM queries holds for quadtrees and other variants of K-d
trees and we conjectured that for another variant, the squarish K-d trees, Pn,q
satisfies:

Pn,q = Θ(n1−s/K) (2)

with the hidden constant factor of the main term independent of q.
In Chapter 6, in the article [DL17], we introduce a new K-d tree variant:

relaxed K-dt trees, where every subtree of size ≤ 2t+1 is locally rebalanced and
the discriminant coordinate at each node is randomly chosen. Standard K-dt
trees were defined by Cunto, Lau and Flajolet in the late 1980s [CLF89]. We
analyze the average cost of random PM queries in this new variant and prove
that formula (1) is not valid for fixed PM queries in K-dt trees, even though we
could not find a closed-form formula for their expected cost.

In Chapter 7, in the article [DLM18], we analyze fixed PM queries in quad
trees and, under the assumptions of the existence of the limit

lim
n→∞

Pn,q
nα

and uniformity of the coordinates of the data points, we prove that formula (1)
holds, and thus thatK-dimensional quad trees satisfy our conjecture in [DLM16a].
Under those assumptions, we generalize Curien and Joseph’s results [CJ11] as
they had analyzed fixed PM queries in quad trees with K = 2.

In Chapter 8, in the last article [DLM16b], we analyze random PM queries in
quad-K-d trees, which are a generalization of both relaxed K-d trees and quad
trees that were defined by Bereczky, Duch, Németh and Roura in 2014 [Ber+16].

We finalize the thesis by presenting the conclusions and open problems of
this research in Part IV.
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Part II

Preliminaries
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Chapter 1

Associative Queries and
Search Trees

In this chapter we describe the historical motivation for associative queries and
give formal descriptions of both partial match queries and the multidimensional
search trees that we study in this thesis.

1.1 Associative Queries

In 1973, in the first edition of Volume 3 of The Art of Computer Program-
ming [Knu73], in the Searching chapter, Knuth studied searching for primary
keys and also retrieval on secondary keys. The first problem consists of, given
a set of records identified by keys—that belong to a set with a total order—
and a value for that key, finding which record has its key equal to that value.
The second problem requires searching records given values of fields other than
the primary key. The first problem is also known as searching for a single or
unidimensional key, while the second is also called searching for a composite or
multidimensional key. We use the latter terminology as well as the term coor-
dinates instead of fields. More formally, we define a file F as a finite subset of
a domain D = D0 × · · · × DK−1, K ≥ 1, where each Di is a totally ordered set.
We refer to the elements of D as keys. We assume, without loss of generality,
that Di = [0, 1] for all i, that is D = [0, 1]K .

For retrieval on secondary keys, Knuth described three types of queries:

• Simple queries, one value is specified for one coordinate.

• Range queries, a range of values is specified for one coordinate.

• Boolean queries, the combination of the previous types using the opera-
tions AND, OR and NOT.
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These type of queries are part of what are known as associative queries. We
will focus on the partial match ones but before, for completeness, we describe
in detail nearest neighbor and orthogonal range queries.

1.1.1 Nearest neighbor query

This type of query is best illustrated with a real life example. If, using your
smartphone, you want to find the nearest taxi to your current location then
your application is doing a nearest neighbor query.

Definition 1. Given a file F of K-dimensional keys and a query point q, a
nearest neighbor query consists of finding the key in the file closest to q according
to some predefined distance measure d. This is,

{x ∈ F | d(q, x) ≤ d(q, y),∀y ∈ F}.
Figure 3 has an example of a nearest neighbor query.
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Figure 3: Given q = (0.5, 0.5) a nearest neighbor query under Euclidean distance
returns A.

1.1.2 Orthogonal Range Query

In an orthogonal range query a contiguous range of values is specified for each
coordinate. In two dimensions this specifies a rectangle and in three dimensions
a rectangular cuboid.

Definition 2. Given a file F of K-dimensional keys and a hyperrectangle

q = [a0, b0]× [a1, b1]× · · · × [aK−1, bK−1],

an orthogonal range query returns the subset of keys in F which belong to q.
That is, the set

{x = (x0, . . . , xK−1) ∈ F | ai ≤ xi ≤ bi,∀i ∈ {0, . . . ,K − 1}}.
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In general, combinations of Knuth’s range queries using the operation AND
are orthogonal range queries. Figure 4 shows an orthogonal range query.
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Figure 4: An orthogonal range query q = [0.2, 0.4]× [0.1, 0.6].

1.1.3 Partial Match Query

In a partial match query, only some of the coordinates of the requested points
are specified. For instance, in two dimensions this would mean specifying a line
parallel to the x or y axis, as the example in Figure 5 shows. In three dimensions
it would be a line parallel to one of the axes or a plane parallel to one of the
planes that contains two of the axes.

Definition 3. Given a query q = (q0, q1, . . . , qK−1) where each qi is either an
element of [0, 1] (it is specified) or ∗ (it is unspecified), a partial match (PM)
query returns the subset of keys x in F whose coordinates coincide with the
specified coordinates of q. Defining the PM hyperplane associated to the PM
query q as the set

H(q) = {x = (x0, . . . , xK−1) ∈ D | xi = qi,∀qi ∈ [0, 1]}.

the query returns H(q) ∩ F .

For simplicity, in figures we use the label q for the hyperplane H(q).
Knuth’s simple queries are partial match queries with just one coordinate

specified. Combinations of Knuth’s simple queries using the operation AND
are partial match queries.

Sometimes it will be necessary to distinguish between extreme specified co-
ordinates, the ones that have qi = 0 or qi = 1, and the rest of them, the regular
specified coordinates. We assume that the number s of specified coordinates
satisfies 0 < s < K and the number s0 of extreme specified coordinates satisfies
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0 ≤ s0 ≤ s. The ratios ρ := s/K and ρ0 := s0/K will be of particular interest
in several cases. The query pattern is a string u(q) = u0 u1 · · · uK−1, such that
ui = S if qi 6= ∗ and ui = ∗ if qi = ∗. To distinguish between extreme and
regular specified coordinates we will use ui = E for the extreme coordinates.
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Figure 5: The partial match query q = (∗, 0.6) with query pattern u = ∗S.

1.2 Trees and Point Search Trees

Going back to The Art of Computer Programming [Knu73], among the data
structures used for the problem of searching for primary keys, Knuth described
and analyzed binary search trees, B-trees, tries and hashing while for the re-
trieval on secondary keys he described inverted files and combinatorial hashing
among others. For the latter problem in the second edition [Knu98] he included
grid files, quad trees and K-d trees. We show that the search trees used in both
problems can be seen in a unified way. For that purpose, we start by defin-
ing trees and point search trees in a generic way that includes unidimensional
structures, like binary search trees, B-trees and tries, as well as multidimen-
sional search trees, like quad trees and K-d trees, and we explain concepts that
apply to both cases.

For all the data structures that we mention in this work we refer the reader
to the handbooks [Sam06; MS18] and references therein for more information
about them.

Definition 4. A rooted ordered tree, or simply a tree, is either

• a leaf, or

• a node, called the root, attached to a sequence of trees.
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We use the term trees for rooted ordered trees because we are not going to
work with more general kinds of trees; see [FS13] for a detailed description of the
tree nomenclature found in the literature. The trees in the sequence attached to
a node are called the first, second, and m-th, subtrees of that tree, or, abusing
language, of that node. The subtrees of its subtrees are also subtrees of a tree.
We will always show the root of a tree drawing it at the top of each figure. The
children of a node are the nodes/leaves directly below it, its descendants are
the ones farther down. The parent of a node/leaf is the node directly above it,
its ascendants or ancestors are the nodes farther up in the path from the root
to the node/leaf. The root has no parent. In the literature leaves and nodes
are sometimes called external and internal nodes respectively. The number of
children at each node can vary and is called the branching factor or degree. The
size of a tree is its number of nodes. An important particular case of trees are
binary trees:

Definition 5. A binary tree is a tree where each node has degree 2.

The first subtree of a node in a binary tree is called the left subtree and the
second one is called the right subtree. In the figures we represent leaves by
and nodes by ©. Figure 6 shows an example of a binary tree.

Figure 6: A binary tree. The root is at the top of the figure.

Intuitively, a point search tree T is a tree with one or more keys associated
to each node in such a way that the keys in the root determine a partition of
the set of keys, with each part associated to a child of the root. More precisely:

Definition 6. A point search tree T that stores a file F ⊂ [0, 1]K of n keys, and
has a bounding box BB(T ) = [0, 1]K , is a tree with the following properties:

• When n = 0, T is empty (T consists of a leaf).

• When n > 0, T has as children point search trees T1, . . . , Tm that store
respectively F1, . . . , Fm ⊂ F and have respectively bounding boxes BB(T1),
. . . , BB(Tm) such that:

15



– the root of T stores a subset R ⊂ F of r keys,

– for each x ∈ R, the root of T has associated total order relations, the
discriminant rules, {≺x,k}1≤k≤m such that for y ∈ F \ R:

y ∈ Fk ⇐⇒ y ≺x,k x.

– BB(T1), . . . , BB(Tm) is a partition of BB(T ). We say that R and
the set of discriminant rules induce such partition.

– F1, . . . , Fm is a partition of F \ R such that for all k, 1 ≤ k ≤ m,
Fk ⊂ BB(Tk).

Intuitively, the set {≺x,k} allows us, for any y ∈ [0, 1]K , to determine which
Tk could store y by performing comparisons between some (eventually all) of
the coordinates of y and the coordinates of the elements of R. For example, in
binary search trees, see Definition 7 below, the relations ≺x,k are ≺x,1≡< and
≺x,2≡≥. Note that the set {≺x,k} could vary with each node depending on the
type of point search tree.

Even though there are families of search trees not covered by Definition 6,
like segment and metric trees, frequently we will, abusing language, refer to the
point search trees simply as search trees. Definition 6 covers a wide range of
data structures, including unidimensional search trees (K = 1) as well as the
multidimensional search trees (K > 1) studied in this thesis.

The number of keys stored at each node can vary. We will assume that T has
n nodes, that is that it has size n. We will call the tree obtained by dropping
the keys from the nodes of T the underlying tree of T . Given two point search
trees T1 and T2, we will write T1 ∼ T2 when T1 and T2 have the same underlying
tree. It is clear that ∼ is an equivalence relation. All the point search trees with
the same underlying tree form an equivalence class by that relation.

Given a point search tree Tv with root node v, sometimes, abusing the
term, we will call the bounding box of Tv simply the bounding box of v. Each
node splits its bounding box into a partition. The structure of the search tree
provides a hierarchy of more and more refined partitions of the initial bounding
box BB(T ), which simply coincides with the full domain D (D = [0, 1]K with
our assumption), starting with {BB(T )} and finishing with the partition formed
by the bounding boxes of its leaves, which we will call the partition induced by
the search tree.

Historically, the first point search trees that were studied were the binary
search trees. They are binary trees with a single key associated to each node,
that is their domain is unidimensional:

Definition 7. A binary search tree is a point search tree with a totally ordered
domain D, where each node has degree 2 and stores one key with the property
that all the keys in its left subtree are smaller than such key and all the keys in
its right subtree are greater than or equal to such key.

Figure 7 shows a binary search tree with domain D = [0, 1] and the bounding
boxes of its nodes and leaves. There the root splits [0, 1] into {[0, 0.6), [0.6, 1]},
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node 2 splits [0, 0.6) into {[0, 0.2), [0.2, 0.6)} and so on. The tree in Figure 6 is
the underlying tree of the binary search tree in Figure 7.
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Figure 7: A binary search tree with domain [0, 1] annotated with the bounding
boxes of its nodes and leaves. Its underlying tree is the tree in Figure 6.

Table 2 shows a taxonomy of unidimensional search trees.

Table 2: Taxonomy of unidimensional point search trees

Partition Keys Locally Type of
type per balanced? unidimensional

node point search tree

Space driven 0 or 1 Tries

Data driven 1 No Binary search trees (BSTs)

Yes BSTs with fringe heuristic

≥ 1 B-trees

The first criterion to classify them is how the partition of the data is per-
formed in each node: indepedently of the data (space-driven) or driven by it.
We will focus on the case of data-driven search trees, that is, those where the
induced partition is governed by the data points stored in the search tree, as
opposed to space-driven search trees, such as tries or digital search trees for
K = 1. The second criterion to classify point search trees is the number of keys
stored in each node. We will not explore any further search trees with many
keys per node (r > 1), such as (unbalanced) m-ary search trees or B-trees for
K = 1.
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We will explain the binary search trees with fringe heuristic in Section 1.3.4,
when we introduce their multidimensional counterpart.

Typically a search tree is built adding one node at a time to an initially
empty search tree. If the branching factor m is constant, then the number of
leaves is (m − 1)n + 1 because, starting with one leaf, every time we add one
node we replace one leaf by m leaves.

1.3 Multidimensional Search Trees

1.3.1 A Taxonomy

There are several multidimensional point search trees, depending on how the
partition of the space is decided, by how many and by which dimensions the
space is split and if there are local rebalances to obtain a more balanced struc-
ture. Table 3 shows a taxonomy of multidimensional point search trees. The
first two criteria to classify them are the same as in the unidimensional case:
the partition type and the number of keys per node. We will study the case
of data-driven search trees and we will not enter into more details about mul-
tidimensional space-driven search trees, such as K-d tries [Ore82; FP86], quad
tries and quad-K-d tries. Samet, in [Sam90; Sam06], calls the K-d tries and
quad tries PR k-d trees and PR quadtrees respectively (P for point and R for
Region). Quad-K-d tries are the space driven variant of quad-K-d trees and
can be defined analogously to K-d tries and quad tries. Regarding the number
of keys per node, in all the trees that we study the nodes hold a single key,
therefore the size of such tree is equal to the number of keys stored in it.

The next criterion to classify multidimensional point search trees, the num-
ber of discriminating dimensions for each node, has to do with the relations
{≺x,k}1≤k≤m. In the families of trees that we are going to study these rela-
tions will be derived from choosing for each node d discriminant dimensions,
i1, i2, . . . , id, then each of the relations {≺x,k}1≤k≤m corresponds to one of the
possible combinations of comparisons yil < xil or yil ≥ xil , l = 1, ..., d. There-
fore in these families of search trees the branching factor is always a power of
2: m = 2d.

We defer the explanation of the next criterion, if there are local rebalances
or not, to Section 1.3.4. The last criterion, rule for discrimination, refers to how
it is decided which are the discriminating dimensions in each node.
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Table 3: A taxonomy of multidimensional point search trees

Partition Keys # of discriminating Locally Rule for discrimination
type per dimensions balanced? All (Quad)/ Random Longest

node (per node) Cyclically (K-d) edge

Space 0 or 1 K Quad tries

driven 1 K-d tries

d, 1 ≤ d ≤ K Quad-K-d tries

Data 1 K Quad trees

driven 1 No Standard Relaxed Squarish
K-d trees K-d trees K-d trees

Yes Standard Relaxed
K-dt trees K-dt trees

d, 1 ≤ d ≤ K Quad-K-d trees
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1.3.2 Quad trees

In 1974 Finkel and Bentley [FB74] introduced a simple generalization of binary
search trees for composite keys, where each node stores a key and uses the
values of its coordinates to discriminate by all of them, that is the number
of discriminating dimensions d is equal to K. They described in detail the
two-dimensional case, in which each node partitions its bounding box into four
quadrants, analogous to NE, NW, SW and SE on a map, hence the name quad
trees. They explained that this data structure could easily be generalized to
any number of dimensions.

Definition 8 (Finkel and Bentley [FB74]). A quad tree T that stores a file
F ⊂ [0, 1]K of n keys is either

• empty when n = 0, in which case we call it a leaf, or

• its root stores a record with key x = (x0, . . . , xK−1) and pointers to its 2K

children that store the n−1 remaining records as follows: each child, let us
call it Tw, is associated with a string w = w0w1 . . . wK−1 ∈ {0, 1}K , such
that ∀w ∈ {0, 1}K , Tw is a quad tree and, for any key y = (y0, . . . , yK−1) ∈
Tw and 0 ≤ i < K, it holds that

– if wi = 0 then yi < xi

– if wi = 1 then yi ≥ xi.

Given that in quad trees all the nodes have 2K children, any quad tree of
size n induces a partition of the domain [0, 1]K into (2K − 1)n+ 1 regions, each
corresponding to a leaf in the quad tree. Figure 8 shows an example of a quad
tree and the partition that it induces in [0, 1]2.
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Figure 8: A quad tree produced from Table 1 and the partition that it induces
in [0, 1]2.
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1.3.3 K-d trees

In 1975 Bentley [Ben75] introduced K-d trees, another generalization of binary
search trees, where each node stores a multidimensional key and uses the values
of only one of its coordinates to discriminate or partition its bounding box.
That is, in this case the number of discriminating dimensions d is equal to 1.

Definition 9 (Bentley [Ben75]). A K-dimensional tree (K-d tree) T that stores
a file F ⊂ [0, 1]K of n keys is either

• empty when n = 0, in which case we call it a leaf, or

• its root stores a record with key x = (x0, . . . , xK−1), a discriminant i,
0 ≤ i < K, and pointers to two subtrees, the left subtree TL and the
right one TR, that store the n − 1 remaining records with the following
constraints:

– if y = (y0, . . . , yK−1) ∈ TL then yi < xi

– if y = (y0, . . . , yK−1) ∈ TR then yi ≥ xi.
Since all its nodes have two children, any K-d tree of size n induces a par-

tition of its domain into n+ 1 regions, each corresponding to one of its leaves.
We denote by 〈x, i〉 a node that contains a key x with discriminant i. In

a K-d tree, if a node 〈x, i〉 has bounding box [x0,0, x0,1] × · · · × [xi,0, xi,1] ×
· · · × [xK,0, xK,1] then the bounding box of its left subtree is [x0,0, x0,1] ×
· · · × [xi,0, xi) × · · · × [xK,0, xK,1] and the bounding box of its right subtree
is [x0,0, x0,1]× · · · × [xi, xi,1]× · · · × [xK,0, xK,1].

In the original variant of K-d trees, which we call standard, the discriminant
coordinate rotates cyclically.

Definition 10 (Bentley [Ben75]). A standard K-d tree is a K-d tree where
nodes at level i of it discriminate by coordinate i mod K. The root of the K-d
tree is considered to be at level 0, therefore it discriminates by coordinate 0.

Figure 9 shows a standard K-d tree and the partition induced by it.
In 1998 Duch, Estivill-Castro and Mart́ınez [DEM98] proposed another vari-

ant of K-d trees: relaxed K-d trees. For these, when each node is created, the
discriminant coordinate is randomly chosen. Analysis of the PM expected cost
in relaxed K-d trees is simpler as it leads to a single equation, while for standard
K-d trees a system of equations is needed.

Definition 11 (Duch, Estivill-Castro and Mart́ınez [DEM98]). A relaxed K-d
tree is a K-d tree where each node is assigned, and stores, a random discrimi-
nant uniformly and independently drawn from {0, . . . ,K − 1}.

Figure 10 shows a relaxed K-d tree and the partition induced by it.
In order to improve the performance of searches, in 2000 Devroye, Jabour and

Zamora-Cura [DJZ00] introduced another variant, squarish K-d trees, where the
discriminant is chosen in a way that provides a more balanced partition of the
space.
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Figure 9: A standard 2-d tree produced from Table 1, annotated with some
bounding boxes, and the partition that it induces in [0, 1]2.

Definition 12 (Devroye, Jabbour and Zamora-Cura [DJZ00]). A squarish K-d
tree is a K-d tree where each node is assigned a discriminant along the coordi-
nate for which the bounding box of the node is most elongated.

Figure 11 shows a squarish K-d tree and the partition induced by it.
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Figure 10: A relaxed 2-d tree produced from Table 1 and the partition that it
induces in [0, 1]2.
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Figure 11: A squarish 2-d tree produced from Table 1 and the partition that it
induces in [0, 1]2.
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1.3.4 K-dt trees

To introduce the concept of locally balanced search trees, also known as search
trees with fringe heuristic or fringe-balanced search trees, it is worth explaining
the analogy between binary search trees and the quicksort algorithm [Hoa62].
Given a set of keys in a totally ordered domain, to sort them, quicksort starts
by choosing one of them as a pivot. Using the divide-and-conquer principle
quicksort splits the keys into two subsets: the ones that are smaller and the
ones that are larger than the pivot. These two subsets are recursively sorted.
The partition of the set of keys is analogous to a binary search tree with the
pivot stored in the root.

As a way to improve quicksort, particularly the worst case, when the keys
are already sorted, Singleton [Sin69] proposed to choose the pivot as the median
of a sample of size three. The analogue in binary search trees is that every time
we insert a node that would be the only child of an only child, we rotate the
last three nodes in that branch to have the median of the three keys in the root
of that subtree, see Figure 12. No other rebalance is performed in the search
tree, so they are always done at the fringe of the search tree, hence the name
fringe heuristic.

Definition 13. Given an integer t > 0, the t-fringe of a binary tree is the set
of subtrees of size ≤ 2t such that if they are subtrees of another tree, the size of
such subtree is > 2t.

The 0-fringe of a binary tree is the set of its leaves.

3

5

8

8
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3

8
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8

3

5
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5

3 8

Figure 12: Local rebalance examples, with t = 1, in a binary search tree. After
the rebalance the root is outside the 1-fringe, that is above the red dashed line,
and, assuming only insertions, it will not be subject to any more rebalances.

The median-of-three strategy to select the pivot in quicksort can be gener-
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alized to the median of 2t + 1 for any integer t > 0. Analogously, Bell [Bel65]
and Walker and Wood [WW76] defined the locally balanced binary search trees
or fringe-balanced binary search trees, where the insert, update and delete oper-
ations are such that any subtree of size greater than 2t has at least t elements in
each of its left and right subtrees. Devroye [Dev93] analyzed the expected height
of fringe-balanced binary search trees and Poblete and Munro [PM85] computed
the expected number of comparisons, and its variance, in fringe-balanced binary
search trees. Cunto, Lau and Flajolet [Lau88; CLF89] adapted the local rebal-
ance approach to K-d trees:

Definition 14 (Cunto, Lau and Flajolet [CLF89]). A K-dt tree is a K-d tree
in which each subtree of size greater than 2t has at least t elements in each of
its left and right subtrees. Equivalently, a K-dt tree is a K-d tree in which any
node just above the t-fringe has at least t elements in each of its left and right
subtrees.

Note that when t = 0 a K-dt tree is a K-d tree. This definition is indepen-
dent of the way in which discriminants are assigned to nodes. Figure 13 shows
an example of a standard K-dt tree with K = 2 and t = 1, the local rebalances
performed when inserting the keys in Table 1 alphabetically, and the partition
that it induces in [0, 1]2. Note that this partition is very different from the one
induced by standard K-d trees (Figure 9). When there is a rebalance, Figure
13 shows the search tree in an intermediate step: after the insertion and before
the rebalance is performed. In the search trees in such intermediate steps a
node just above the t-fringe has less than t elements in one of its subtrees and
therefore it needs a local rebalance. In future inserts, only the nodes in the
fringe are subject to rebalances.
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Figure 13: A standard K-dt tree (K = 2, t = 1), the local rebalances performed
when inserting the keys alphabetically, and the partition that it induces in
[0, 1]2. The subtrees just below the red lines are the fringe. In the intermediate
search trees, just before a rebalance, a node just above the t-fringe has less than
t elements in one of its subtrees. In future inserts, only the nodes in the fringe
are subject to rebalances.
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1.3.5 Quad-K-d trees

In 2014 Bereczky, Duch, Németh and Roura [Ber+14; Ber+16] introduced quad-
K-d trees a generalization of both K-d trees and quad trees. In quad-K-d trees
each node discriminates by a variable number of coordinates.

Definition 15 (Bereczky, Duch, Németh and Roura [Ber+16]). A quad-K-d
search tree (quad-K-d tree) T that stores a file F ⊂ [0, 1]K of n keys is either

• empty when n = 0, in which case we call it a leaf, or

• its root stores a record with key x = (x0, . . . , xK−1), a coordinate split
bit-vector δ = (δ0, . . . , δK−1) that contains exactly d ones (i.e., it is of
order d), with 1 ≤ d ≤ K, and pointers to 2d subtrees that store the n− 1
remaining records as follows: each of those subtrees, let us call it Tw, is
associated with a string w = w0 . . . wK−1 ∈ {0, 1,#}K , such that ∀w ∈
{0, 1,#}K , Tw is a quad-K-d tree and, for any key y = (y0, . . . , yK−1) ∈
Tw and 0 ≤ i < K, it holds that

– if δi = 0 then wi = #

– if δi = 1 and wi = 0, then yi < xi

– if δi = 1 and wi = 1, then yi ≥ xi.

If for all the nodes of a quad-K-d tree T the associated split vector δ contains
all the K coordinates (δi = 1 for all i) then T is a quad tree, and if, again for
all the nodes, it contains exactly one coordinate then T is a relaxed K-d tree.
Figure 14 shows an example of a quad-K-d tree with domain [0, 1]2 and the
partition that it induces.

29



A 11

B 10

00

0#

C 01

1#

#0 #1

E 11

01

00 01 10 11

10

D 01

11

#0

F 01

#1

#0 #1

Ab
Bb

Cb

Db

Eb
Fb

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 14: A quad-K-d tree produced from Table 1, annotated with the split
vector of each node and the associated string of each subtree, and the partition
that it induces in [0, 1]2. 30



1.4 Search Algorithms

There are several types of associative searches where we search for a subset of
the domain, that is a region within it. In an exact search the specified region is
a single point, in a partial match we look for the keys that belong to the query
hyperplane, and in an orthogonal range search we look for the keys falling inside
a given hyperrectangle. For these three types of queries we are going to define a
generic region search algorithm. Note that there are other types of associative
searches like nearest neighbor not included in this algorithm. Given a subset Q
of [0, 1]K and a search tree T , Algorithm 1 is a generic search algorithm that
retrieves all the records in the given region Q.

Algorithm 1 Generic region search in a point search tree

procedure RegionSearch(Q, T )
if T is a leaf then return
x← key of the root of T
if x ∈ Q then

Report x

m← number of children of T
for k = 1 to m do

if Q intersects BB(Tk) then
RegionSearch(Q, Tk)

In the case of partial match queries instead of the region Q the parameter is
a PM query q because in that case the region is the PM hyperplane H(q). As an
example, we show in Algorithm 2 the partial match algorithm for the particular
case of K-d trees. The algorithms for other variants of multidimensional point
search trees are analogous.

For all the search trees the exact, or full match, search is simply a Region-
Search where the region specified is a single point.

The insertion algorithm is an exact search. Upon conclusion of an unsuccess-
ful search, the leaf in which the search ends is replaced by a new node with the
new key that is being inserted. In the case of K-dt trees, if needed, a rebalance
is then performed.
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Algorithm 2 Partial match algorithm in a K-d tree

procedure KdtreesPartialMatch(q, T )
if T is a leaf then return
x← key of the root of T
if xi = qi,∀qi ∈ [0, 1] then

Report x

i← discriminant of the root of T
. TL is the left subtree of T
. TR is the right subtree of T
if qi = ∗ then

KdtreesPartialMatch(q, TL)
KdtreesPartialMatch(q, TR)

else
if qi < xi then

KdtreesPartialMatch(q, TL)
else

KdtreesPartialMatch(q, TR)
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Chapter 2

Probabilistic Model

In this chapter we start by explaining the probabilistic model that we use in the
average-case analysis of partial match queries. We then describe the different
random variables used in a more precise way than what is usual in the literature.
We finalize by giving some relationships between the random variables that are
useful in our analysis.

2.1 Random Search Tree Model

Throughout this thesis, we shall measure, as it is usual in the literature, the
cost of the partial match search algorithm by the number of visited nodes in
the search tree. Abusing language, we will refer to the cost of the partial match
search algorithm simply as the cost of the PM query. Taking into account that
a search tree is built adding one node at a time to an initially empty search
tree, the order in which the data is inserted is a crucial factor in the cost of
any search. For that reason, given a type of search tree, instead of considering
all the possible search trees as equally likely (the uniform model), the standard
model in the field is the random permutation or random search tree model. In
this model all the coordinates of all the keys are independent and identically
distributed (i.i.d.) random variables with a continuous distribution. Given our
assumption that Di = [0, 1] for all i, this continuous distribution is on the
interval [0, 1].

Given an input sequence of keys x1, . . . ,xn where xj = (x
(0)
j , . . . , x

(K−1)
j ),

the underlying tree of the point search tree built by inserting the elements of the

sequence in that order only depends on how the coordinates are sorted. Let r
(i)
j

be the rank of x
(i)
j in {x(i)

1 , . . . , x
(i)
n }, that is, r

(i)
j is the number of coordinates

x
(i)
j′ , 1 ≤ j′ ≤ n such that x

(i)
j′ < x

(i)
j and let rj = (r

(0)
j , . . . , r

(K−1)
j ) be the

rank vector associated to the data point xj. Then the underlying tree of the
point search tree depends only on the rank vectors r1, . . . , rn, or equivalently, it

depends only on the K permutations of order n (r
(i)
1 , . . . , r

(i)
n ), i = 0, . . . ,K−1.
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To assume that all coordinates of all data points are independently drawn from
a continuous distribution 1 on the interval [0, 1] is then equivalent to assuming

that the K permutations (r
(i)
1 , . . . , r

(i)
n ) are random permutations of order n, in-

dependently drawn from one another. To simplify, unless we state the opposite,
we assume that the continuous distribution used to generate all the coordinates
is Uniform(0,1).

In other words, in the random search tree model the n!K possible input
sequences of rank vectors are equiprobable; see Section 2.3 of [Mah92] for a
formal proof of this fact for the case K = 1. Note that two different input
sequences of rank vectors could generate the same point search tree. As an
example, for the case of binary search trees (K = 1) of size n = 3, Table 4

shows all 3! permutations (r
(0)
1 , r

(0)
2 , r

(0)
3 ) of the set {1, 2, 3}, the binary search

trees built with them as inputs, their underlying trees and their probabilities.
The two permutations (2, 1, 3) and (2, 3, 1) generate the same binary search
tree, therefore neither the binary search trees nor their underlying trees are
equiprobable.

Table 5 illustrates the case of standard 2-d trees with three keys. There are
two permutations to consider, one for each coordinate. The table shows some
examples of the standard K-d trees generated by the permutations, all the
underlying trees and their probabilities. In the underlying trees we emphasize
with red lines the discriminating coordinates of each node: a vertical line for
nodes that discriminate by the first coordinate and a horizontal one for the ones
that discriminate by the second coordinate.

In the case of K-d trees the probabilities of the underlying trees are the same
as in the case of binary search trees, see [Mah92]. In this case the random tree
model can also be described as one in which the j-th inserted data point xj is
equally likely to fall in any of the j leaves. Finally, it can also be characterized
as one where all the potential sizes of the left (right) subtree are equally likely,
that is, the probability that the left (right) subtree has size j is 1/n for all
j = 0, . . . , n − 1 (if the root is a node then the subtrees are at most of size
n− 1). These characterizations do not apply to quad trees and quad-K-d trees
as their underlying trees are not binary ones.

In the cases where there is randomness in the discriminant, namely relaxed
K-d trees and quad-K-d trees we should extend the concept of underlying tree
to include the discriminant coordinate of each node because that is relevant in
the partial match cost.

In the case of quad-K-d trees, the number of discriminating coordinates
for each node, d, is chosen uniformly at random from {0, . . . ,K − 1} and any
subset of d coordinates out of K is equally likely to be the set of discriminating
coordinates, see [DLM16b] for more details about this case.

Finally, note that our assumption that the coordinates are independently
drawn from a continuous distribution on the interval [0, 1] implies that, for any

two distinct keys xj and xj′ , the probability that x
(i)
j = x

(i)
j′ is zero. Therefore

1Actually, we can assume that the i-th coordinates of all data points are independently
drawn from some continuous distribution Fi on the interval [0, 1], i = 0, . . . ,K − 1.
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to simplify the analysis we assume, without loss of generality, that no two keys
in the file have the same value in any of the coordinates.

Table 4: Permutations, BSTs generated and underlying tree probabilities

x coordinate Binary Underlying Underlying
permutation: search tree tree

r
(0)
1 , r

(0)
2 , r

(0)
3 tree (BST) probability

1

2

3
1
6

1, 2, 3

1

3

2
1
6

1, 3, 2

2

1 3
1
3

2, 1, 3
2, 3, 1

3

1

2
1
6

3, 1, 2

3

2

1
1
6

3, 2, 1
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Table 5: Permutations, examples of 2-d trees generated, underlying trees and
their probabilities. The sequences in bold are the ones that generate the ex-
amples. The red lines in the nodes of the underlying trees indicate by which
coordinate each node discriminates

x coordinate y coordinate Standard Underlying Underlying
permutation: permutation: 2-d tree tree tree

r
(0)
1 , r

(0)
2 , r

(0)
3 r

(1)
1 , r

(1)
2 , r

(1)
3 example probability

1, 2, 3 1, 2, 3 1,2

3,1

2,3

1, 2, 3 2, 1, 3
1
6

1, 2, 3 3, 1, 2
1, 3, 2 1, 2, 3
1, 3, 2 2, 1, 3
1, 3, 2 3, 1, 2

1, 2, 3 1, 3, 2 1,2

2,3

3,1

1, 2, 3 2, 3, 1
1
6

1, 2, 3 3, 2, 1
1, 3, 2 1, 3, 2
1, 3, 2 2, 3, 1
1, 3, 2 3, 2, 1

2,3

1,2 3,1
1
3

2, 1, 3 Any
2, 3, 1 Any

3, 1, 2 1, 2, 3 3,2

2,1

1,3

3, 1, 2 2, 1, 3
1
6

3, 1, 2 3, 1, 2
3, 2, 1 1, 2, 3
3, 2, 1 2, 1, 3
3, 2, 1 3, 1, 2

3, 1, 2 1, 3, 2 3,1

1,3

2,2

3, 1, 2 2, 3, 1
1
6

3, 1, 2 3, 2, 1
3, 2, 1 1, 3, 2
3, 2, 1 2, 3, 1
3, 2, 1 3, 2, 1
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2.2 Queries and Ranks

Given a point search tree T and a partial match query q, the rank vector of q
with respect to T is the vector r(q, T ) = (r0, . . . , rK−1) defined as follows: if
qi = ∗ then ri = ∗; if qi 6= ∗ then ri is the number of keys x in the file stored
in T such that xi ≤ qi. Note that, given we are focused on search trees where
each node holds a single key, each specified ri ranges between 0 and n, the size
of T . Most of the time it will be clear to which tree T we are referring and we
will just write r(q) instead of r(q, T ).

Analogously to the query pattern, the rank vector pattern is defined as fol-
lows. Given a rank vector r, its pattern is a string u(r) = u0 u1 · · · uK−1, such
that ui = S if ri 6= ∗ and ui = ∗ if ri = ∗.

If two partial match queries q and q′ are such that r(q) = r(q′) then, for
any multidimensional point search tree of any type, the comparisons to search
for q and q′ will take exactly the same path in the search tree and therefore
the cost 2 of q will be the same as the cost of q′, which is illustrated in Figure
15. This is similar to the fact that the underlying tree of a point search tree
depends only on the rank vectors of the input.

In the next section, where we define the random variables that we study, we
take advantage of the fact that the cost of a partial match query q only depends
on the rank vector r(q).
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Figure 15: Any two partial match queries q and q′ in the red region have the
same rank vector and the same cost.

2Sometimes, to abbreviate, instead of the cost of the partial match search algorithm with
input q we will say the cost of the partial match query q or simply the cost of q.
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2.3 Random Variables for Partial Match Queries

We will start by defining the different random variables used in the analysis of
partial match queries and then give the relationships between them. We are
going to systematically use calligraphic letters, e.g. P, and variants with sub-
and superscripts, to denote random variables, and the corresponding uppercase
letters, e.g. P , to denote expectations, thus P = E[P]. We will use V , eventually
with sub- and superscripts, to denote the variance of the random variable of
interest.

2.3.1 Random Partial Match Queries

For several decades since the introduction of multidimensional search trees in
the 1970s, the analysis of partial match queries in these data structures focused
on random queries. Given a random search tree and a query pattern u, Q =
(Q0, . . . , QK−1) is a random PM query with pattern u if for all i, 0 ≤ i ≤ K−1:

Qi =





∗ if ui = ∗
random variable i.i.d. as the coordinates if ui = S

of the keys in the random search tree

P̂n,Q is the random variable representing the cost of the partial match al-
gorithm with a random PM query Q and a random search tree of size n as
input.

Sometimes it suffices to describe the random PM query Q by some param-
eters, in which case we will denote by P̂n,a the random variable of the cost of
the partial match algorithm with a random query that has the characteristics
described by a, which could be one or more additional parameters. For example,
a could be the query pattern u = u(Q), or the ratio ρ of the number of specified
coordinates s to the dimension K. For instance, P̂n,u is the random variable of
the cost of the partial match algorithm with a random query Q with pattern u
and a random search tree of size n as input.

2.3.2 Randomized Partial Match Algorithm

Analysis of the expected cost of random PM queries is usually done based on
recurrences which imply that in each recursive call a new set of values is used
for the query specified. We call such theoretical algorithm randomized partial
match. In order to more clearly see the difference between this algorithm and
the partial match algorithms presented in Section 1.4 we show in Table 6, as an
example, both types of algorithms for the particular case of K-d trees. These
differences for other types of point search trees are totally analogous.
P ′n,u is the random variable representing the cost of the randomized partial

match algorithm with the pattern u and a random search tree of size n as input.
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Table 6: Partial match algorithms for K-d trees

K-d tree Randomized PM algorithm K-d tree PM algorithm
Input: A query pattern u = u0 u1 · · · uK−1 Input: A query q = (q0, q1, . . . , qK−1)
where each ui ∈ {S, ∗} where each qi ∈ [0, 1] ∪ {∗}
and a K-d tree T . and a K-d tree T .

procedure RandomizedPartialMatch(u, T ) procedure PartialMatch(q, T )
if T is a leaf then return if T is a leaf then return
x← key of the root of T x← key of the root of T

if xi = qi,∀qi ∈ [0, 1] then
Report x

i← discriminant of the root of T i← discriminant of the root of T
B TL is the left subtree of T B TL is the left subtree of T
B TR is the right subtree of T B TR is the right subtree of T
if ui = ∗ then if qi = ∗ then
RandomizedPartialMatch(u, TL) PartialMatch(q, TL)
RandomizedPartialMatch(u, TR) PartialMatch(q, TR)

else else
B BB(x) = Bounding box(x)
B BB(x) = [a0, b0]× · · · × [aK−1, bK−1]
Generate a value qi v Uniform (ai, bi)
if qi < xi then if qi < xi then
RandomizedPartialMatch(u, TL) PartialMatch(q, TL)

else else
RandomizedPartialMatch(u, TR) PartialMatch(q, TR)
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2.3.3 Fixed Partial Match Queries

In the early 2010s several research groups started to tackle the analysis of partial
match algorithms taking into account that the coordinates of the query specified
remain fixed throughout all the recursive calls. To emphasize this characteristic,
and to distinguish them from the analysis of random PM queries, these types
of queries are called fixed PM queries.
Pn,q is the random variable of the cost of the partial match algorithm with

the query q and a random search tree of size n as input.
Pn,r is the random variable of the cost of the partial match algorithm with

a query q with rank vector r and a random search tree of size n as input.

2.3.4 Random PM Queries vs Randomized PM Algorithm

Even though the randomized partial match algorithm is not used in practice,
its implicit use in the analysis of random PM queries is justified because their
expected cost is the same. More precisely:

Proposition 2.1. Let Q be a random PM query,

E
[
P ′n,u

]
= E

[
P̂n,Q

∣∣Q is a random query with pattern u
]

or simply P ′n,u = P̂n,u.

This proposition has been widely used, many times implicitly, in the analysis
of random PM queries.

Note that, given that the second moment is not linear, for their variances
we have

V
[
P ′n,u

]
6= V

[
P̂n,Q

∣∣Q is a random query with pattern u
]
,

or simply V ′n,u 6= V̂n,u.

2.3.5 Random PM Queries vs Fixed PM Queries

There is an alternative way to define the random variable P̂n,u based on Pn,r.
Remember that in the random search tree model the n!K possible input se-
quences of rank vectors are equiprobable. If we were to insert a new key, the
(n + 1)!K new permutations would be equiprobable as well. We have an ex-
tra factor (n + 1)K due to the new key because in each coordinate there are
n + 1 equally likely ranks for that coordinate of the new key. We can think of
a random PM query Q as a potential “new” key where only s coordinates have
been specified and therefore there are (n + 1)s possibilities for its rank vector.
More formally, given a pattern u, we define the set of possible rank vectors with
pattern u as:

Rn,u =
{

r = (r0, ..., rK−1)
∣∣ri = ∗ if ui = ∗ and 0 ≤ ri ≤ n if ui = S

}
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then P̂n,u is Pn,R, where R is taken uniformly at random among the (n + 1)s

elements of Rn,u.
The definition above implies an important relationship between the expected

costs of random and fixed PM queries that we use to compute the constants in
the expressions that we obtain for the latter.

Proposition 2.2. Given a pattern u of specified/unspecified coordinates, the
expected cost, P̂n,u, of a random PM query with pattern u is the average of
the expected costs of all the possible fixed PM queries Pn,r, that have the same
pattern:

P̂n,u =

∑
r∈Rn,u Pn,r

(n+ 1)s
.

Higher order moments of P̂n,u can be obtained from the higher order mo-
ments of Pn,r.

2.3.6 Fixed PM Queries vs Fixed PM Ranks

On Section 3.1, Queries and ranks, of [DLM16a] we explain in detail the close
relationship between Pn,q and Pn,r.

Proposition 2.3. Assume that the coordinates of the random search tree are
uniformly distributed on the interval [0, 1]. Given a fixed PM query q = (q0, . . . , qK−1),
if we define r = nq as ri = nqi if qi 6= ∗, else otherwise ri = ∗, then

Pn,q = Θ(Pn,r).

Proposition 2.4. Assume that the coordinates of the random search tree are
uniformly distributed on the interval [0, 1]. Given a rank vector r = (r0, . . . , rK−1),
if we define q = r/n as qi = ri/n if 0 ≤ ri ≤ n, else otherwise qi = ∗, then

Pn,r = Θ(Pn,q).
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Chapter 3

Methods

In this chapter we present a few of the general mathematical techniques used
to carry out the theoretical analysis, as well as the experimental methods that
we applied to validate the theoretical models and to estimate their range of
applicability. For example, several of our results apply in the asymptotic regime,
that is, when “n is large enough”. Careful experiments allow us to conclude that
with n ≥ 5000—and even less—the asymptotic estimates that we obtain from
the theoretical analysis give very good approximations and elicit meaningful
predictions about the practical performance.

3.1 Mathematical Tools

3.1.1 Generating functions

The use of generating functions to solve linear recurrences (also called difference
equations) has a long history, having been introduced by Abraham de Moivre
early in the 18th century [Knu97]. We illustrate how they can be used with one
of the first sequences analyzed this way, the Fibonacci sequence:

F0 = 0, F1 = 1,

Fn = Fn−1 + Fn−2 for n ≥ 2. (3.1)

This can be seen as a linear difference equation that is homogeneous and has
constant coefficients. Its generating function is the formal power series1:

F (z) =
∑

n≥0

Fnz
n. (3.2)

1A formal power series is a polynomial with an infinite number of terms. Unlike a power
series its variable cannot take a numerical value so convergence is not an issue.

43



If we multiply (3.2) by z and by z2 we obtain respectively:

zF (z) =
∑

n≥0

Fnz
n+1 =

∑

n≥1

Fn−1z
n (3.3)

z2F (z) =
∑

n≥0

Fnz
n+2 =

∑

n≥2

Fn−2z
n (3.4)

Then we compute (3.2) - (3.3) - (3.4):

(1− z − z2)F (z) = F0 + (F1 − F0)z +
∑

n≥2

(Fn − Fn−1 − Fn−2)zn

and using the definition (3.1)—including the initial conditions—the right side
simplifies to z. Therefore:

F (z) =
z

1− z − z2
.

Factorizing the denominator and doing some algebra we get:

F (z) =
z

(1− ϕz)(1− ϕ̂z) . (3.5)

where ϕ is the golden ratio (1 +
√

5)/2 and ϕ̂ = (1 −
√

5)/2. Using partial
fraction decomposition:

F (z) =
1√
5

(
1

1− ϕz −
1

1− ϕ̂z

)
.

Using the geometric series identity
∑
n≥0 x

n = 1/(1− x):

F (z) =
1√
5

(∑

n≥0

ϕnzn −
∑

n≥0

ϕ̂nzn

)
=
∑

n≥0

ϕn − ϕ̂n√
5

zn.

Given that two formal power series are equal if and only if all their coefficients
are equal, we have a solution to the difference equation (3.1):

Fn =
ϕn − ϕ̂n√

5
.

We can compute the asymptotic behavior of the Fibonacci sequence by el-
ementary considerations. Given that ϕ ≈ 1.618 > 1 and |ϕ̂| ≈ 0.618 < 1, ϕn

increases with n and |ϕ̂n| decreases with n. Therefore for large values of n we
have:

Fn ≈
ϕn√

5
. (3.6)

We can use the expression of F (z) as a rational function (3.5) to give a very
basic example of singularity analysis. This is a very powerful technique devel-
oped by Flajolet and Odlyzko [FO90] that considers the generating functions
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not only as formal power series but as functions in a circle of convergence in the
complex plane (as suggested by the use of z for the variable name).

In the case of a rational generating function that has a unique pole2 1/β of
smallest absolute value, the dominant term of the sequence is Cβnnν−1 where
ν is the multiplicity of 1/β and C is a constant for which there is an explicit
formula; see Theorem 4.1 (Asymptotics of linear recurrences) in [FS13].

For the Fibonacci sequence, given (3.5), it is clear that the singularities of
F (z) are 1/ϕ and 1/ϕ̂. The dominant singularity is the one with smaller absolute
value, so in this case it is 1/ϕ, and its multiplicity is 1. The explicit formula for
C gives the value 1/

√
5, therefore the dominant term of the sequence is ϕn/

√
5

as stated in (3.6).
In a similar way, in singularity analysis there are a variety of transfer lemmas

that allow direct deduction of the asymptotic behavior of a sequence from the
asymptotic expansion of its generating function near its dominant singularities.
It is a standard tool of analytic combinatorics [FS09]. The use of complex
analysis to obtain asymptotic estimates in analytic combinatorics is similar to
its use in analytic number theory.

Wilf’s generatingfunctionology [Wil90] is a textbook on generating func-
tions while Flajolet and Sedgewick’s An Introduction to the Analysis of Al-
gorithms [FS13] introduces them, as well as analytic combinatorics, with appli-
cations to the analysis of algorithms. The application of generating functions
to solve linear difference equations is totally analogous to the application of the
Laplace transform to solve linear differential equations. Mackey [Mac80] ex-
plains that the use of generating functions in probability theory3 is one of three
independent origins of harmonic analysis, the other two being analytic number
theory and mathematical physics.

3.1.2 Random Partial Match Queries

We analyze random PM queries in [DLM14; DLM16a; DL17; DLM16b]. In all
those cases, either explicitly or implicitly, we start by finding a linear recurrence,
or system of linear recurrences, for the expected cost(s) P̂n,a of the random PM
queries, where a represents one or more additional parameters. We then define
the generating function(s) P̂a(z) for the sequence(s) P̂n,a:

P̂a(z) =
∑

n≥0

P̂n,az
n.

We then translate the linear recurrence(s) into an integral equation (system
of integral equations) for the generating function(s) P̂a(z). From these equa-
tions, taking derivatives or applying some convenient differential operators, we

2A pole of a rational function in reduced form is a value that makes the denominator zero.
3One of the first applications of generating functions was to compute probabilities. In 1718

Abraham de Moivre introduced, at least implicitly, probability generating functions in The
Doctrine of Chances, the first textbook on probability theory. Pierre-Simon Laplace in Théorie
analytique des probabilités, published in 1812, coined the term “generating functions” and
extended the theory of difference equations to equations in several variables [Sea49; Mac80].
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deduce a linear differential equation (system of linear differential equations) with
variable coefficients for the generating function(s) P̂a(z).

Only on Theorem 2 of [DLM14] are we able to solve the differential equation
that we derive, but that is not a requisite to be able to obtain the asymptotic
estimate for P̂n,a. In [DLM16b] we continue the analysis using Roura’s Contin-
uous Master Theorem (CMT) [Rou01]. This is a powerful result to derive the
asymptotic behavior of the solution of divide-and-conquer recurrences, such as
those arising in the analysis of random PM queries [Duc04; DEM98]. Given its
importance we include it in Appendix A.1.

As an example of how to apply Roura’s CMT, we now apply it to the re-
currence that appears in the proof of Theorem 5 of [DLM16a] (also Theorem 2
of [DLM14]). For the expected cost P̂n,ρ,ρ0 of random PM queries with s spec-
ified coordinates, 0 < s < K, and s0 extreme specified coordinates, 0 ≤ s0 ≤ s,
in a random relaxed K-d tree of size n we have there the following recurrence
(in this section to abbreviate we just call it P̂n):

P̂0 = 0,

P̂n = 1 +
2(s− s0)

K

1

n

n−1∑

j=0

j + 1

n+ 1
P̂j +

2(K − s) + s0

K

1

n

n−1∑

j=0

P̂j for n ≥ 1. (3.7)

Using ρ = s/K and ρ0 = s0/K, we can rewrite the recurrence as

P̂n = 1 +

n−1∑

j=0

(
2(ρ− ρ0)

n

j + 1

n+ 1
+

2− 2ρ+ ρ0

n

)
P̂j .

Using the terminology of Roura’s CMT (Definition 16):

tn = 1, ωn,j =
2(ρ− ρ0)

n

j + 1

n+ 1
+

2− 2ρ+ ρ0

n
.

In order to apply Lemma A.1, we rewrite the weights of the recurrence in the
following way:

ωn,j =
(2− 2ρ+ ρ0)n+ 2(ρ− ρ0)j + 2− ρ0

n(n+ 1)

and we define
ω(z) := (2− 2ρ+ ρ0) + 2(ρ− ρ0)z.

Then we compute

∫ 1

0

ω(z) dz =

∫ 1

0

(
(2− 2ρ+ ρ0) + 2(ρ− ρ0)z

)
dz = 2− ρ

which, given that ρ < 1, is greater than 1. Therefore the conditions of Lemma
A.1 are satisfied, so the recurrence for P̂n is continuous and ω(z) is its shape
function.
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Now in order to apply Theorem A.2 we note that the toll function is of the
form tn ∼ Kna lnb(n) with K = 1, a = 0 and b = 0 and we compute:

H = 1−
∫ 1

0

zaω(z) dz = 1− (2− ρ) = ρ− 1,

which, given that ρ < 1, is lower than 0. Therefore we can apply the third case
of Theorem A.2 and, given that P̂n ≥ 0 for every n ≥ 0, get

P̂n = Θ(nα)

where α is the unique non-negative real solution to the equation

∫ 1

0

zαω(z) dz = 1.

Computing the integral this equation becomes:

(ρ− ρ0)
2

α+ 2
+ (1− ρ+ ρ0/2)

2

α+ 1
= 1. (3.8)

It is easy to verify that, given 0 < ρ < 1 and 0 ≤ ρ0 ≤ ρ, when α = 0 the
left-hand side of this equation is greater than 1 and when α = 1 it s lower than
1, therefore it has a solution in (0, 1).

We know from singularity analysis, see below, that

P̂n = βnα + o(nα)

for a constant β. However the CMT can only give us here that P̂n = Θ(nα)
and cannot be used to establish the existence of β, let alone get its value. On
the other hand, the CMT gives the precise value of α and is much easier to
understand and be applied by non-experts than other more sophisticated math-
ematical techniques. We recommend the reader to see [Rou97] for a detailed
description of the application of the CMT to the analysis of random PM queries
in standard K-d trees.

The solution in (0, 1) to equation (3.8) is the one given on Theorem 2
of [DLM14]:

α =
1

2

(√
(3− ρ0)2 − 8(ρ− ρ0)− 1− ρ0

)
. (3.9)

In [DLM14; DLM16a; DLM18] instead of using Roura’s CMT we decided
to use singularity analysis. Given that we use it so frequently we include the
relevant Transfer Lemma in Appendix A.2. To contrast both methods we are
going to analyze the same example, that is recurrence (3.7), using singularity
analysis. The first step is to define the generating function

P̂ (z) =
∑

n≥0

P̂nz
n.
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Then we multiply the recurrence (3.7) by zn and add for all n ≥ 0. Us-
ing operations on generating functions like the following [FS13], given A(z) =∑
n≥0 anz

n:

zA(z) =
∑

n≥1

an−1z
n,

A′(z) =
∑

n≥0

(n+ 1)an+1z
n,

A(z)

1− z =
∑

n≥0

( ∑

0≤k≤n
ak

)
zn,

we obtain the differential equation:

P̂ ′′(z) + P̂ ′(z)
2− (4− ρ0)z

z(1− z) − P̂ (z)
4− 2ρ− (2− ρ0)z

z(1− z)2
=

2

z(1− z)3
.

That is a second order linear differential equation with initial conditions P̂ (0) =
0 and P̂ ′(0) = 1 (because P̂0 = 0 and P̂1 = 1). With similar tecniques
to [MPP01] we are able to find the solution—mentioned in [DLM16a]—of this
differential equation:

P̂ (z) =
1

1− ρ

(
2F1

(
1−α−ρ0,−α

2

∣∣ z
)

(1− z)α+1
− 1

1− z

)
,

where 2F1

(
a,b
c

∣∣∣ z
)

denotes the hypergeometric function [DLMF, Chap. 15] and

α is as in (3.9).
To get the asymptotic estimate for P̂n we only need to study the asymptotic

behavior of P̂ (z) near its dominant singularity at z = 1. The second term of
P̂ (z) is negligible and the hypergeometric function is analytic at z = 1, therefore:

P̂ (z) ∼ β′(1− z)−α−1 +O((1− z)−1))

with β′ = 1
1−ρ 2F1

(
1−α−ρ0,−α

2

∣∣ 1
)
. We can evaluate this using the identity [DLMF,

Subsec. 15.4(ii)]

2F1

(
a, b

c

∣∣∣∣ 1

)
=

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) .

Using the transfer lemma Lemma A.3 of Flajolet and Odlyzko [FO90; FS09] we
have

P̂n ∼
β′

Γ(α+ 1)
nα.

Therefore:

β =
1

1− ρ
Γ(2α+ 1 + ρ0)

Γ(α+ 1 + ρ0)(α+ 1)α2Γ2(α)
.
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Note that—when we are able to solve the differential equation for the gen-
erating function—this method allows us to find a closed analytic formula not
only for α but also for β in terms of K, s and s0.

Another method to analyze random PM queries that we used was the one
developed in [Lau88; CLF89] based on classic asymptotic analysis [Bru58], see
Appendix B.1 for details.

On a side note, in the literature other methods have been applied over
the years to the analysis of random PM queries. An elementary probabilis-
tic method is used in [Zam00; CDZ01]. The contraction method introduced
by Rösler [Rös91] to analyze Quicksort is applied for instance in [Nei99; Nei00].
This powerful technique has been used, among other results, to analyze the vari-
ance and the limiting distribution of both random and fixed PM queries. For
the mathematically inclined reader, in this method recursive sequences of dis-
tributions of random variables are seen as functional equations in metric spaces.
Then the limits of those sequences of distributions are characterized as fixed
points of contraction maps.

3.1.3 Fixed Partial Match Queries

We analyze fixed PM queries in [DLM14; DLM16a; DL17; DLM18]. In all
those articles we take advantage of the equivalences explained on Section 2.2
and we analyze the expected cost Pn,r = E[Pn,r] instead of the expected cost
Pn,q = E[Pn,q]. To focus on the ranks of the query’s coordinates instead of their
values allows us to use a combinatorial approach.

We then find recurrence(s) for Pn,r. These are considerably more complex
than the ones obtained for random PM queries beacuse we need to take into
account several cases; for example, if the discriminating coordinate of the root is
specified or not and in which subtrees the partial match search should continue.
Again, we define the generating functions Pr(z) for the sequences that we study:

Pr(z) =
∑

n≥0

Pn,rz
n

With considerably more work than in the case of random PM queries, we trans-
late the linear recurrence(s) into an integral equation (system of integral equa-
tions) for the generating function(s) Pr(z).

From these equations, taking derivatives or applying some convenient dif-
ferential operators, we deduce a linear differential equation (system of linear
differential equations) with variable coefficients for the generating function(s)
Pr(z).

To solve differential equations, to bound errors between sums and integral
approximations and to prove that the solutions found are indeed solutions of the
integral equations we use a variety of results from classical analysis including:

• Solutions to the hypergeometric differential equation [DLMF, Sec. 15.10].

• Laplace’s method [FS13] for estimating values of sums and integrals.
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• Euler-Maclaurin summation formula again for estimating the value of sums
and integrals [DLMF, Subsec. 2.10(i)].

• De Moivre-Laplace limit theorem [Fel68] to approximate sums with the
normal distribution.

• Binomial approximation to the hypergeometric distribution [JKK92].

• Holmgren’s theorem and Cauchy-Kovalevskaya theorem [Fol95; Zwi97])
for the existence and uniqueness of solutions to analytic partial differential
equations.

Finally, during the work done to analyze fixed PM queries in [DLM16a]
we discovered a lemma that significantly simplifies such analysis as it leads to
a proof that does not require knowledge of the expected cost of random PM
queries with extreme specified coordinates, that is Theorem 5 of [DLM16a]
(also Theorem 2 of [DLM14]). This discovery was made too late to be included
in thst article but we consider it worth mentioning here. Due to its detailed
and technical nature we leave the statement and the proof of such lemma to
Appendix B.2.

3.2 Experiments

As Flajolet and Sedgewick state in An Introduction to the Analysis of Algorithms
2nd ed. [FS13], p. 5: “This approach is scientific: we build mathematical models
to describe the performance of real-world algorithm implementations, then use
these models to develop hypotheses that we validate through experimentation.”
In order to test our results we build actual implementations of the point search
trees and execute on them the partial match algorithms that we are studying.
We count the number of nodes visited in each partial match search, that being
the measure of the cost we use. Based on statistics of those costs we compute
empirical estimates of the parameters that describe the expected costs—α, β and
ν—and compare them with the theoretical values that we predict. This way we
can have reasonable estimates of the errors introduced by some approximations
and can also get an idea of the magnitude of n for which the asymptotic regime
is reached.

There are other cases where we are able to perform experiments before having
theoretical results at all, when we only have conjectures. That occurred during
the work of [DLM16a] where our experiments helped us to refine the conjecture
proposed there for squarish K-d trees.

Each run of our experiments for fixed PM queries can be described by the
following parameters:

• T , the type of point search tree

• q, the query

• n, the size of the trees in the sample
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• M , the size of the sample

For each run we generate M random point search trees of type T and size n.
In each tree we perform a PM search with query q, counting the total number
of visited nodes and taking the corresponding sample mean of those realized
costs.

For fixed PM queries we performed a variety of ad-hoc experiments described
in [DLM14; DLM16a]. Here we present some experimental results obtained for
fixed PM queries in quad trees after the article [DLM18].

Given the symmetry of quad trees we assume, without loss of generality,
that the s specified coordinates of q are the first s coordinates, 0 < s < K, and
therefore that q = (q0, . . . , qs−1, ∗, . . . , ∗). We write q = (q0, . . . , qs−1) with the
convention that the implicit K − s remaining components are all ∗’s.

In all the graphs the theoretical curves or surfaces are the smooth ones. For
the case K = 2, s = 1, Figure 16 shows the theoretical and empirical estimates
of Pn,q as a function of q0 with a sample size M = 500. Figure 17 shows for the
case K = 6, s = 3 the estimates as a function of q2 for some fixed values of q0

and q1 with a sample size M = 100. Finally, Figure 18 shows for the same case
the estimates as a function of q1 and q2 for some fixed values of q0 again with a
sample size M = 100. In all cases there is a good match between the theoretical
estimates and the empirical ones, similar to the ones obtained for K-d trees in
[DLM14; DLM16a].

All programs used in the experiments for quad trees were written in the C++

programming language and compiled with the GNU gcc compiler version v4.2.1.
The experiments were run on an Intel Core i5, 3.1 GHz, 4 cores processor.
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Figure 16: Quadtrees Experiments vs Theory 1

Figure 17: Quadtrees Experiments vs Theory 2
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Experiment

Theory

Figure 18: Quadtrees Experiments vs Theory 3
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Chapter 4

State of the Art

In this chapter we present the results for both random and fixed PM queries
that were known prior to this work.

4.1 Random Partial Match Queries

4.1.1 Standard K-d trees

In 1986 Flajolet and Puech, in their influential paper [FP86], proved the below
theorems for random PM queries in random K-d trees and K-d tries. They
analyzed standard K-d trees. One reason why this paper is so important is
because prior to it the analysis of PMs assumed, wrongly, that the average
performance of the K-d tree would be as if it were perfectly balanced. Another
reason is that it was one of the first examples of the use of singularity analysis
to obtain asymptotic estimates, something which Flajolet and Odlizko would
systematize in [FO90].

Theorem 4.1 (Flajolet and Puech [FP86]). The expected cost P̂n,u of a ran-
dom PM query with pattern u—where exactly s, 0 < s < K, coordinates are
specified—in a random standard K-d tree of size n satisfies

P̂n,u = βun
αρ + o(nαρ), (4.1)

where βu depends on the query pattern u and αρ depends on the ratio ρ = s/K
due to it being the unique solution in the interval (0, 1) of the equation:

(
2

α+ 2

)ρ(
2

α+ 1

)1−ρ
= 1. (4.2)

This paper—[FP86]—only contains some numeric values for βu. At that
time finding an explicit formula for βu was considered a difficult open problem.
In 2006 Chern and Hwang [CH06] published explicit, although quite intricate,
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expressions for the βu of Theorem 4.1. We refer the reader to that article for
the details.

As we shall see, similar results to the ones obtained by Flajolet and Puech
for random PM queries were then proved for other variants of K-d trees and
other multidimensional data structures.

4.1.2 Standard K-dt trees

In 1988 Cunto, Lau and Flajolet [Lau88; CLF89] generalized Theorem 4.1 for

standard K-dt trees. We denote by xk the rising factorial power x(x+1) . . . (x+
k − 1) [GKP94].

Theorem 4.2 (Cunto, Lau and Flajolet [Lau88; CLF89]). The expected cost
P̂n,t,u of a random PM query with pattern u—where exactly s, 0 < s < K,
coordinates are specified—in a random standard K-dt tree of size n satisfies

P̂n,t,u = βt,un
αt,ρ + o(nαt,ρ),

where βt,u depends on t and the query pattern u and αt,ρ depends on t and the
ratio ρ = s/K due to it being the unique solution in the interval (0, 1) of the
equation:

(
(t+ 2)t+1

(α+ t+ 2)t+1

)ρ(
(t+ 2)t+1

(α+ t+ 1)t+1

)1−ρ

= 1. (4.3)

Theorem 4.1 is the particular case t = 0 of Theorem 4.2.

Cunto, Lau and Flajolet also proposed, for the first time, a formula for the
variance of the cost of random PM queries for K-d trees as well as K-dt trees.
In that work the distinction between random PM queries and the randomized
partial match algorithm—that is between P ′n,t,u and P̂n,t,u—was not made
explicitly.

Theorem 4.3 (Cunto, Lau and Flajolet [Lau88; CLF89]). The variance V ′n,t,u
of the randomized partial match algorithm—where exactly s, 0 < s < K, coor-
dinates are specified—in a random standard K-dt tree of size n satisfies

V ′n,t,u = β′t,un
2αt,ρ + o(n2αt,ρ),

where β′t,u depends on t and the pattern u and αt,ρ is the same as in Theorem
4.2.

In 2006 Chern and Hwang [CH06] published, in the same article where they
provided expressions for the βu of Theorem 4.1, even more intricate expressions
for the βt,u of Theorem 4.2, that is the leading constant coefficients in the
asymptotic approximations of the expected cost of PMs in K-dt trees. We
again refer the reader to that article for details.
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4.1.3 Quad trees

In the early 1990s Flajolet, Gonnet, Puech, and Robson published the anal-
ysis of random PM queries in quad trees; the final version was published in
1993 [Fla+93].

Theorem 4.4 (Flajolet, Gonnet, Puech, and Robson [Fla+93]). The expected
cost P̂n,s,K of a random PM query—where exactly s, 0 < s < K, coordinates
are specified—in a random quad tree of size n satisfies

P̂n,s,K = βs,Kn
αρ + o(nαρ),

where βs,K depends on s and K and αρ is the same as in Theorem 4.1.

In the early 2000s Chern and Hwang [CH03] used a new approach for the
analysis of random PM queries in quadtrees that allowed them to obtain an
explicit expression for the constant βs,K of Theorem 4.4.

Theorem 4.5 (Chern and Hwang [CH03]). The leading constant coefficient in
the asymptotic approximation of the expected cost of a random PM query—where
exactly s, 0 < s < K, coordinates are specified—in a random standard quad tree
of size n, that is the βs,K of Theorem 4.4, is

βs,K =
1

(2K−s − 1)Γ(αρ)K−sΓ(αρ + 1)s

∏

2≤j≤K

Γ(αρ − αj)
Γ(1− αj)

, (4.4)

where Γ is the Gamma function and the αj’s are the solutions of the indicial
equation (4.2):

αρ = α1 > <(α2) ≥ · · · ≥ <(αK).

4.1.4 Relaxed K-d trees

Some initial analysis results for random PM queries in relaxed K-d trees were
obtained in 1998 by Duch, Estivill-Castro and Mart́ınez [DEM98]. The analysis
was completed by Mart́ınez, Panholzer, and Prodinger in [MPP01].

Theorem 4.6 (Duch et al. [DEM98], Mart́ınez et al. [MPP01]). The expected
cost P̂n,ρ of a random PM query—where exactly s, 0 < s < K, coordinates are
specified—in a random relaxed K-d tree of size n satisfies

P̂n,ρ = βρn
αρ + o(nαρ),

where both βρ and αρ depend on the ratio ρ = s/K:

αρ =
1

2

(√
9− 8ρ− 1

)

and

βρ =
Γ(2α+ 1)

(1− ρ)(α+ 1)α3Γ3(α)
.
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Note that αρ is the unique solution in the interval (0, 1) of the equation:

ρ
2

α+ 2
+ (1− ρ)

2

α+ 1
= 1. (4.5)

Even though the exponent αρ of relaxed K-d trees is higher than the one
for standard ones, the analysis of the relaxed case is simpler given that their
definition leads to a single recurrence equation instead of a system of recurrence
equations. This allows an easier way to obtain a formula for βρ.

Mart́ınez, Panholzer, and Prodinger [MPP01] also gave a formula for the
variance of the cost of random PM queries in relaxed K-d trees. Again, in that
work the distinction between random PM queries and the randomized partial
match algorithm—that is between P ′n,ρ and P̂n,ρ—was not made explicitly.

Theorem 4.7 (Mart́ınez, Panholzer, and Prodinger [MPP01]). The variance
V ′n,ρ of the randomized partial match algorithm—where exactly s, 0 < s < K,
coordinates are specified—in a random relaxed K-dt tree of size n satisfies

V ′n,ρ = β′ρn
2αρ + o(n2αρ),

where αρ is the same as in Theorem 4.6 and

β′ρ =
8Γ(2α+ 2)

(α+ 1)2α2(2α+ 1)(3α+ 1)Γ4(α+ 1)
− 4Γ2(2α+ 2)

(α+ 1)4α2(2α+ 1)2Γ6(α+ 1)
.

4.1.5 Squarish K-d trees

In 2000 Devroye, Jabour and Zamora-Cura [DJZ00] introduced the squarish
K-d trees and analyzed the expected performance of random PM queries in
them.

Theorem 4.8 (Devroye, Jabour and Zamora-Cura [DJZ00]). The expected cost
P̂n,s,K of a random PM query—where exactly s, 0 < s < K, coordinates are
specified—in a random squarish K-d tree of size n satisfies

P̂n,s,K = Θ(nαρ),

where αρ depends on the ratio ρ = s/K: αρ = 1− ρ.

The constant coefficient hidden in the Θ notation is unknown. Asymptoti-
cally the cost of random PM queries in squarish K-d trees is optimal.

4.2 Fixed Partial Match Queries

4.2.1 Quad trees

Only recently have a handful of papers studied the performance of PM search
with given fixed queries. In [CJ11], the authors give the expectation of a fixed
PM search in 2-dimensional quad trees.
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Theorem 4.9 (Curien and Joseph [CJ11]). For a 2-dimensional random quad
tree of size n the expected cost Pn,q of a PM search with fixed query q ∈ (0, 1)
where exactly 1 out of the 2 coordinates of the query is specified satisfies

Pn,q ∼ ν · (q · (1− q))α/2 · nα, (4.6)

where α = α1/2 is the same exponent as in the expected cost of random PM
queries (Theorem 4.4), that is α is the unique solution in the interval (0, 1) of
equation (4.2) with ρ = 1/2:

α =

√
17− 3

2

and ν is the following constant:

ν =
Γ(2α+ 2)Γ(α+ 2)

2Γ3(α+ 1)Γ2(α2 + 1)
.

In 2012, using the contraction method, Broutin, Neininger and Sulzbach [Sul12;
BNS12; BNS13] obtained the limit distribution and variance of fixed PM queries
in 2-dimensional quad trees.

Theorem 4.10 (Broutin, Neininger and Sulzbach [BNS13]). For a 2-dimensional
random quad tree of size n the variance of the cost Vn,q = V[Pn,q] of a PM search
with fixed query q ∈ (0, 1) where exactly 1 out of the 2 coordinates of the query
is specified satisfies

Vn,q ∼
(

2B(α+ 1, α+ 1)
2α+ 1

3(1− α)
− 1

)
(q · (1− q))α · n2α, (4.7)

where B(a, b) :=
∫ 1

0
xa−1(1− x)b−1dx denotes the Eulerian beta integral (a, b >

0) and α is the same as in Theorem 4.9.

4.2.2 Relaxed K-d trees

In 2012 Duch, Jiménez and Mart́ınez [DJM14] analyzed the expected perfor-
mance of fixed PM queries in relaxed K-d trees when s = 1, that is when
exactly one coordinate is specified. They wrote the theorem in terms of ranks
instead of queries but, as we have explained on Section 2.3.6, they are equivalent.

Theorem 4.11 (Duch, Jiménez and Mart́ınez [DJM14]). For a query q with
rank vector r = (r0, . . . , rK−1) such that r0 = z0n+ o(n), 0 < z0 < 1 and ri = ∗
for all i, 1 ≤ i < K, the expected cost of the partial match in a random relaxed
K-d tree of size n is

Pn,r = ν · (z0(1− z0))
α/2 · nα + o(nα),

where α = α1/K =
(√

(9− 8/K − 1
)
/2 is the same exponent as in the ex-

pected cost of random PM queries, Theorem 4.6, and, with β1/K as given in
that theorem, ν is:

ν = β1/K
Γ(α+ 2)

Γ2(α/2 + 1)
.
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4.2.3 Standard K-d trees

Duch, Jiménez and Mart́ınez [DJM14] also analyzed the expected performance
of fixed PM queries in standard K-d trees. Again they did it for the case of
only one specified coordinate (s = 1) and in terms of ranks instead of queries.

Theorem 4.12 (Duch, Jiménez and Mart́ınez [DJM14]). For a query q with
rank vector r = (r0, . . . , rK−1) such that rj = zjn + o(n), 0 < zj < 1 for some
0 ≤ j < K and ri = ∗ for all i, 0 ≤ i < K, i 6= j, the expected cost of the partial
match in a random standard K-d tree of size n is

Pn,r = ν · (z0(1− z0))
α/2 · nα + o(nα),

where α = α1/K is the same exponent as in the expected cost of random PM
queries, Theorem 4.1, that is it is the unique solution in the interval (0, 1) of
equation (4.2) with ρ = 1/K:

(
2

α+ 2

)1/K(
2

α+ 1

)1−1/K

= 1,

and ν is:

ν =
Γ(α+ 2)

Γ2( 1
2α+ 1)

βj =
Γ(α+ 2)

Γ2( 1
2α+ 1)

2j

(α+ 1)j
β0,

where βj is the constant factor in the cost of random PM queries in a standard
K-d tree where only the j-th coordinate is specified.

From the work of Chern and Hwang published in 2006 [CH06], an explicit
formula for β0 can be obtained. We do not include it due to its intricacy.
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Part III

Results
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Chapter 5

K-d trees

This chapter contains the articles, [DLM14] and [DLM16a], in which we analyze
fixed PM queries in K-d trees. Notice that the second article is the journal
version of the first so they overlap substantially.

A by-product of the analysis of the algorithms introduced in [DJM14] was
the average-case analysis of fixed PM queries with just one specified coordinate
in random K-d trees, both relaxed and standard. We continued that analysis
first by working on relaxed K-d trees and then on standard ones.

The main result of the first article [DLM14] is an asymptotic formula for the
expected cost of fixed PM queries in random relaxed K-d trees for any number
s of specified coordinates. That is a generalization of Theorem 4.11 (Theorem
3 of [DJM14]), where s = 1 is assumed. See Theorem 1 in page 3 of the first
article (page 67 of this thesis).

The main additional result of the second article [DLM16a] is an asymptotic
formula for the expected cost of fixed PM queries in random standard K-d trees
for any number s of specified coordinates. This result generalizes Theorem 4.12
(Theorem 4 of [DJM14]), where s = 1 is assumed, to any s specified coordinates.
See Theorem 7 in page 22 of the second article (page 100 of this document).

A by-product of the analysis of fixed PM queries in [DLM14] is the average-
case analysis of random PM queries with extreme specified coordinates in re-
laxed K-d trees. That is a generalization of Theorem 4.6. Remember that given
a PM query q = (q0, q1, . . . , qK−1), extreme specified coordinates are ones that
have qi = 0 or qi = 1. See Theorem 2 in page 4 of the first article (page 68 of
this thesis).

Analogously to the case of relaxed K-d trees, a by-product of the analysis
of fixed PM queries in [DLM16a] is the average-case analysis of random PM
queries with extreme specified coordinates in standard K-d trees. This is a
generalization of Theorem 4.1. See Theorem 6 in page 21 of the second article
(page 99 of this document).

Note that, given the equivalence between the expected cost of a given rank
and a given query (Section 2.3.6) in both cases, relaxed and standard K-d trees,
we have that the expected cost Pn,q of a fixed partial match query q ∈ [0, 1]n
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Pn,q = Θ 
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α/2 

qi(1 − qi) · n 
 

 
 

where α is the exponent of the respective expected cost of random PM queries. 
In these articles we conjectured that a similar relationship between the cost of 
random PM queries and the fixed PM queries holds for quadtrees and other 
variants of K-d trees. We also, based on experiments as mentioned on Section 
3.2, conjectured in [DLM16a] that for another variant, the squarish K-d trees, 
Pn,q satisfies: 

Pn,q = Θ(n1−s/K ). 

Note that in these articles we use P̃   or P̄ , with subscripts, for the expected 
cost  of  random  PM  queries  instead  of  P̂ .  In  [DLM14]  we  use  t as  a  subindex 
while in [DLM16a] we use t for s s0, the number of specified coordinates that 
are not extreme. In later articles we avoided those uses of t because in [DL17] 
we use t for the local rebalance parameter. 

 

5.1 Article: Fixed PM Queries in Relaxed K-d 
Trees 

This article is [DLM14]: 
Amalia Duch, Gustavo Lau, and Conrado Mart ı́nez. “On the Average Per- 

formance of Fixed Partial Match Queries in Random Relaxed K-d Trees”. In: 
25th International Conference on Probabilistic, Combinatorial and Asymptotic 
Methods for the Analysis of Algorithms (AofA 2014). Ed. by M. Bousquet- 
Mélou  and  M.  Soria.   Discrete  Mathematics  &  Theoretical  Computer  Science 
(Proceedings). 2014, pp. 97–108. url: https://hal.inria.fr/hal- 01077251v2/ 
document#page=106 

 
 

 
Attention¡¡ 

Pages 65 to 76 of the thesis are available at the editor’s web 
https://hal.inria.fr/hal-01077251v2 

 
 
 
 
 
 
 
 
 

64 

i:qi  is specified 

α 

https://hal.inria.fr/hal-01077251v2/document#page%3D106
https://hal.inria.fr/hal-01077251v2/document#page%3D106
https://hal.inria.fr/hal-01077251v2


 

5.2. ARTICLE: FIXED PM QUERIES IN K-D TREES 77 
 

5.2 Article: Fixed PM Queries in K-d Trees 

This article is [DLM16a]: 
Amalia Duch, Gustavo Lau, and Conrado Martínez. “On the Cost of Fixed 

Partial Match Queries in K-d Trees”. In: Algorithmica 75.4 (2016), pp. 684– 
723. doi: 10.1007/s00453-015-0097-4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Attention¡¡ 
Pages 78 to 120 of the thesis are available at the editor’s web 

https://link.springer.com/article/10.1007%2Fs00453-015-0097-4 
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Chapter 6

K-dt trees

In the article in this chapter [DL17] we introduce a new K-d tree variant, relaxed
K-dt trees, adding local rebalances to relaxed K-d trees, and we analyze both
random PM queries and fixed PM queries in them. On Theorem 4.1 of this
article (page 128 of this document) we give the expected cost of random PM
queries in relaxed K-dt trees. This theorem generalizes Theorem 4.6 in two
different ways. First, by doing the analysis for any value of t instead of the case
of no rebalance (t = 0) and second, by analyzing the PM query with s0 extreme
specified coordinates, Theorem 4.6 is the particular case s0 = 0.

In Figure 19 and Figure 20 we show a couple of graphs that we could not
include in the article due to lack of space. Figure 19 shows the exponents α of
the expected costs of random PM queries for both relaxed and standard K-dt
trees for t = 0, t = 1 and t = 2 as a function of ρ = s/K. We also show the
lower bounds of both variants, relaxed and standard, the latter being 1 − ρ,
which is the diagonal in the graph. For more clarity, in Figure 20 we show the
same data, plus the cases t = 3 and t = 4, but subtracting 1 − ρ from α. This
graph illustrates the fact that, for both relaxed and standard K-dt trees, the
biggest reduction in the exponent α is when going from t = 0 to t = 1, and that
as t increases the improvements become less and less (this was already known
for the standard case).

The other main result of [DL17] is to prove that the expected cost of fixed PM
queries in random relaxed K-d trees is not of the form conjectured in [DLM16a]:

Pn,q = Θ

(
 ∏

i:qi is specified

qi(1− qi)



α/2

· nα
)
.

See Proposition 7.1 (page 131 of this thesis).
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Figure 19: α vs ρ.

Figure 20: α− (1− ρ) vs ρ.
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6.1.   ARTICLE: PM QUERIES IN RELAXED K-DT TREES 123 

Regarding random PM queries, we report here some further, unpublished, 
advances that we have achieved after [DL17] for both relaxed and standard K-dt 
trees.  We denote by xk the rising factorial power x(x+1)     (x+k −1) [GKP94]. 

Theorem 6.1.  The  expected  cost  P̂n,t,ρ,ρ0   of  a  random  PM  query—where  ex- 
actly  s,  0  < s < K, coordinates  are  specified  and  exactly  s0,  0   s0   s,  of 
the specified coordinates are extreme—in a random relaxed K-dt tree of size n 
satisfies 

P̂n,t,ρ,ρ0 = βt,ρ,ρ nαt,ρ,ρ0 + o(nαt,ρ,ρ0 ), 

where both βt,ρ,ρ0 and αt,ρ,ρ0 depend on t and the ratios ρ = s/K and ρ0 = s0/K. 
The exponent αt,ρ,ρ0 is the unique solution in the interval (0, 1) of the equation: 

(t + 2)t+1 (t + 2)t+1 (t + 2)t+1 
ρ0 

2(α + t + 1)t+1 
+ (ρ − ρ0)

(α + t + 2)t+1 
+ (1 − ρ)

(α + t + 1)t+1 
= 1. (6.1)

 

Theorem 6.1 is a more precise version of Theorem 4.1 of [DL17] because in 
that theorem we only stated that P̂n,t,ρ,ρ0 = Θ (nα). Theorem 5 of [DLM16a] is 
the particular case t = 0 of Theorem 6.1. 

Theorem 6.2. The expected cost P̂n,t,u of a random PM query with pattern u— 
where exactly s, 0 < s < K, coordinates are specified and exactly s0, 0   s0    s, 
of the specified coordinates are  extreme—in a random standard K-dt tree  of size  
n satisfies 

P̂n,t,u = βt,unαt,ρ,ρ0  + o(nαt,ρ,ρ0 ), 

where βt,u depends on t and the query pattern u and αt,ρ,ρ0 depends on  t and 
the ratios ρ = s/K and ρ0 = s0/K due to it being the unique solution in the 
interval (0, 1) of the equation: 
  

(t + 2)t+1 
pρ0

 

(t + 2)t+1 
pρ−ρ0

 

(t + 2)t+1 
p1−ρ 

 

 
 

Theorem 4.2 is the particular case ρ0 = 0 of Theorem 6.2 and Theorem 6 
of [DLM16a] is the particular case t = 0 of Theorem 6.2. 

We have written the equations (6.1) and (6.2) in a way that emphasizes 
their similarity. Both have on the left-hand side weighted means of same three 
terms, in the case of relaxed K-dt trees is an arithmetic mean and in the case 
of standard ones is a geometric one. 

We provide the proofs of Theorems 6.1 and 6.2 in Appendix B.1. 
 

6.1 Article: PM Queries in Relaxed K-dt trees 

This article is [DL17]: 
Amalia Duch and Gustavo Lau.   “Partial Match Queries in Relaxed K-    

dt trees”. In: Proc. of the Fourteenth ACM-SIAM Workshop on Analytic 
Algorithmics and Combinatorics (ANALCO). 2017, pp. 131–138. doi: 10.1137/ 
1.9781611974775.13 

 
 

Attention¡¡ 
Pages 124 to 132 of the thesis are available at the editor’s web 

https://epubs.siam.org/doi/10.1137/1.9781611974775.13 
 

 
 

= 1. (6.2) 
2(α + t + 1)t+1 (α + t + 2)t+1 

https://doi.org/10.1137/1.9781611974775.13
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Chapter 7

Quad trees

The main result of the article in this chapter [DLM18] is the average-case anal-
ysis of the cost of fixed PM queries in quad trees, see Theorem 3 in page 11 of
the article in this chapter (page 145 of this thesis). Under the assumption that
the limit of Pn,r/n

α when n → ∞ exists, this result generalizes, to any values
of K and s, Theorem 4.9 where K = 2 and s = 1 is assumed.

7.1 Article: Fixed PM Queries in Quadtrees

This article is [DLM18]:
Amalia Duch, Gustavo Lau, and Conrado Mart́ınez. “Fixed Partial Match

Queries in Quadtrees”. In: 29th International Conference on Probabilistic,
Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA
2018). Ed. by J. A. Fill and M. D. Ward. Vol. 110. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2018, 20:1–20:18. isbn: 978-3-95977-078-1.
doi: 10.4230/LIPIcs.AofA.2018.20
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1 Introduction

One of the fundamental features of any hierarchical multidimensional data structure such as
quadtrees is to efficiently support partial match (PM) queries. These queries are as follows.
Given a collection F of K-dimensional (K ≥ 2) tuples of the form x = (x0, . . . , xK−1), with
each xi (0 ≤ i < K) belonging to a totally ordered domain Di, and a query q = (q0, . . . , qK−1)
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20:2 Fixed Partial Match Queries in Quadtrees

such that qi ∈ Di ∪ {∗} (0 ≤ i < K), the goal of a PM query is to find all those tuples in F
such that xi matches qi whenever qi 6= ∗. Coordinates such that qi 6= ∗ are called specified,
otherwise they are called unspecified; we assume that the number s of specified coordinates
satisfies 0 < s < K.

The average-case analysis of PM queries in random quadtrees and other multidimensional
data structures has a long history. In the case of quadtrees, a fundamental milestone was
the paper by Flajolet, Gonnet, Puech, and Robson [7] where the authors proved that the
expected cost of random PM queries with s specified coordinates in random K-dimensional
quadtrees of n nodes is βs,K nα(s/K) + l.o.t. for some constant βs,K ; and α = α(s/K) the
unique real solution in [0, 1] of the indicial equation

(α+ 2)s(α+ 1)K−s = 2K . (1)

The exponent α turns out to be exactly the same as in the expected cost of random PM
queries in standard K-d trees. It was not until 2003 that Chern and Hwang [2] obtained an
explicit expression for βs,K , for general s and K, this is:

βs,K = 1
(2K−s − 1)Γ(α+ 1)K−sΓ(α+ 2)s

∏

2≤j≤K

Γ(α− αj)
Γ(−αj)

, (2)

for 0 < s < K and K ≥ 2 and where Γ is the Gamma function and the αj ’s are the roots
of equation (1) and α = α1 > <(α2) ≥ · · · ≥ <(αK). Note that Chern and Hwang [2] used
the indicial equation for α+ 1 so they gave a formula for βs,K as a function of α′j = αj + 1,
j = 1, . . . ,K − 1.

In 2011 fixed PM queries were studied for the first time in 2-dimensional quadtrees by
Curien and Joseph [3] where the authors computed the expected cost E {Pn,q} of a fixed
PM query in 2-dimensional quadtrees. In particular, they showed that if q = (q, ∗), then
Pn,q = E {Pn,q} ∼ ν1,2 · (q · (1− q))α/2 · nα, where α = α(1/2) = (

√
17− 3)/2 is the same

exponent as in the expected cost for random PM queries [7], and ν1,2 = Γ(2α+2)Γ(α+2)
2Γ3(α+1)Γ2(α2 +1) .

The asymptotic distribution was obtained for this particular case by Broutin, Neininger and
Sulzbach in 2012 [1].

In this work, we extend the results of [3] to give a precise asymptotic estimate of the
expected cost of a fixed PM query in random K-dimensional quadtrees, for general K and s.
In particular, we show that this cost is of the form

νs,K ·


 ∏

i:qi 6=∗
qi(1− qi)



α/2

· nα + l.o.t.,

where νs,K is a constant that depends on s, K and the particular query q and α = α(s/K)
is the same as for random PM queries (see above).

The paper is organised as follows. In Section 2 we give some preliminaries. We explain
our methodology in Section 3 through the simplest case K = 2 (Subsection 3.1). We continue
with the general case of arbitrary s and K (Subsection 3.2). To complete the analysis one
needs to solve an integral equation; that is the subject of Subsection 3.3. Section 4 contains
some final remarks as well as some future lines of work.

2 Preliminaries

Let F be a collection of n multidimensional records, each one endowed with a K-dimensional
key x = (x0, . . . , xK−1), with coordinate xj drawn from a totally ordered domain Dj . For
convenience, here we will assume that, for all 0 ≤ j < K, Dj = [0, 1].
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Figure 1 A 2-dimensional quadtree of file F = {A,B,C,D,E, F,G} and the partition that it
induces of the space. In this example F00 = {G}, F01 = {B,C,E} and F0∗ = {B,C,E,G}.

I Definition 1. A quadtree T of size n is a 2K-ary tree storing a collection F of n K-
dimensional records. T is either empty (when n = 0) or each one of its n nodes holds a key
from F , such that the root node of T stores a record with key x and pointers to 2K subtrees,
that hold the remaining n− 1 records of F . Every subtree of T , let say Tw, is associated to
a bitstring w = w0w1 . . . wK−1 ∈ {0, 1}K , in such a way that Tw is a quadtree, and for any
key y ∈ Tw, it holds that yj ≤ xj if wj = 0 and yj > xj if wj = 1, for all 0 ≤ j < K.

Any quadtree of size n induces a partition of the domain into (2K − 1)n+ 1 regions, each
corresponding to a leaf (or equivalently empty subtree) in the quadtree. An example of a
quadtree and the partition of the space that it induces is shown in Figure 1. To build a
quadtree starting from an empty tree, each insertion of a new record with key x follows a
path from the root to a leaf; at each step, we compare x and the key at the current node
to determine in which of the 2K subtrees the insertion should continue recursively, and the
process ends when a leaf is reached and it is replaced by a new node containing x and 2K
empty subtrees. The region associated to the substituted leaf is called the bounding box of
the subtree rooted at x. Following the same convention used for the names of the subtrees,
we will denote by Bw the bounding boxes of subtrees Tw associated to the tree rooted at x
and by Fw the subset of data points of F that fall inside Bw.

Consider a string v over the alphabet Σ = {0, 1, ∗}. We define as L(v) the set of binary
strings matching v; that is, where each occurrence of the symbol ∗ stands for a 0 or a 1. For
instance, L(001) = {001}, L(0∗1) = {001, 011} and L(1∗∗00) = {10000, 10100, 11000, 11100}.
With this notation let us define the following extension of the notion of bounding box
Bv =

⋃
w∈L(v)

Bw.

Likewise Fv is the union of the (disjoint) Fw’s with w matching v. For example, in two
dimensions B∗∗ = [0, 1]2 is the bounding box of the root of the quadtree, F0∗ is the subset of
all those keys with first coordinate smaller than the first coordinate of the root, that is, the
ones stored in T00 and T01 (see Figure 1).

To perform a PM search with query q, the quadtree is recursively explored as follows.
First, we check whether the root x matches q or not, to report it in the former case. Then,
we make recursive calls in all the 2K−s subtrees Tw such that the first s bits of w are such
that wi = 0 whenever qi 6= ∗ and qi ≤ xi, and wi = 1 whenever qi 6= ∗ and qi > xi, 0 ≤ i < s,
and the remaining K − s bits can be either 0 or 1.

One key observation about the PM search in quadtrees (or similar data structures) is
that, except for eventual matches, only the relative ranks of the coordinates matter. Let
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us call the rank vector of a query q the vector r(q) = (r0, . . . , rK−1) such that ri = ∗, if
qi = ∗, and ri is the number of records x in the collection F such that xi ≤ qi (0 ≤ ri ≤ n),
if qi 6= ∗. Then for any two given queries q and q′ with equal rank vectors r(q) = r(q′) the
PM procedure described above will visit exactly the same set of nodes of the tree. In our
analysis, we shall be using rank vectors instead of the queries themselves (as done in [6]) and
consider, for instance, the cost Pn,r of a PM query with given rank vector r in a random
quadtree of size n. The probability model for random quadtrees that we will use throughout
this work is that the tree is built by inserting in any order n keys drawn independently at
random (coordinate by coordinate) from a continuous distribution. For the sake of simplicity,
we can safely assume that the distribution is Uniform(0, 1). Because of the symmetry of the
model we can also assume that the s specified coordinates of q are the first s coordinates,
0 < s < K, and therefore that q = (q0, . . . , qs−1, ∗, . . . , ∗) and r = (r0, . . . , rs−1, ∗, . . . , ∗).
We shall write hence q = (q0, . . . , qs−1) and r = (r0, r1, . . . , rs−1) with the convention that
the implicit K − s remaining components are all ∗’s.

3 Analysis

Our goal in this section is to find the expected cost Pn,r = E {Pn,r}, measured as the number
of visited nodes, of a PM query with a fixed rank vector r in a random quadtree of n nodes.

In order to show our methodology and to give some intuition on the problem we are
going to start our analysis with the easiest case K = 2 in Subsection 3.1. Afterwards, in
Subsection 3.2, we analyze the general case.

In both subsections we are going to obtain a recurrence for Pn,r. Then, in order to solve
the general recurrence, we translate it into an integral equation whose solution will give us
the leading term in the asymptotic estimate for Pn,r. The solution of the integral equation is
given in Subsection 3.3.

3.1 The case K = 2
Given a 2-dimensional quadtree T , its root splits the space into four rectangles: B00 (south-
west of the root), B01 (north-west of the root), B10 (south-east of the root) and B11
(north-east of the root). These four rectangles are the corresponding bounding boxes of the
four subtrees T00, T01, T10 and T11 from Definition 1. Recall also that B0∗ = B00 ∪B01 and
B∗0 = B00 ∪B10 are, respectively, the rectangles west and south of the root. For any string
u ∈ {0, 1, ∗}2, the number of data points in Bu (equivalently, the cardinality of Fu) will be
denoted Nu. For a random quadtree the Nu’s are random variables.

Let us now address the recurrence for Pn,r, and to simplify let us write Pn,r0 , as r = (r0, ∗).
The basis of recursion is trivially P0,r0 = 0. If n > 0, let j = (j0, j1) be the rank vector of the
root. Since q contains only one specified coordinate, the relation between j0 and r0 determines
whether the query intersects either B0∗ or B1∗. If r0 ≤ j0, then the query intersects B0∗;
otherwise it intersects B1∗. In our recurrence for Pn,r0 the value j0 = N0∗ = |F0∗| run
from r0 to n − 1, leading to a non-empty intersection of B0∗ and the query, or from 0 to
r0 − 1, leading to a non-empty intersection of B1∗ and the query. Because of the randomness
assumptions, each possible value of N0∗ has probability 1/n and hence this factor will weight
the expected cost of the PM query conditioned to N0∗ = j0.

The number of data points in B0∗ is j0 by definition, and the number of data points
in B1∗ is n − 1 − j0. If the query intersects B0∗ then the rank of the query with respect
to B0∗ is still r0, but if it intersects B1∗ then its rank with respect to B1∗ is r0 − 1 − j0.
So the contribution to Pn,r0 coming from the recursive traversal of B0∗ involves a set of j0
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Figure 2 A partial match in a two-dimensional quadtree. The first diagram shows the case
r0 ≤ j0, the second one the case j0 < r0 and the third one how the east-west symmetry converts the
second case into the first one.

points and the rank of the query is r0 while the contribution coming from B1∗ involves a set
n − 1 − j0 points and, because of the symmetry Pn,r0 = Pn,n−r0 , the rank of the query is
n− r0. Hence, we can reduce the case j0 < r0 to the case r0 ≤ j0, see Figure 2.

In the general case we would have to consider 2s regions Bw described by bitstrings
w = w0 · · ·ws−1 ∗ · · · ∗, where each wi is 0 or 1 depending on whether ri ≤ ji or not; as we
consider all possible j, the query will intersect these 2s different regions, and we will be able
to use these “east-west” symmetry considerations to reduce their analysis to the analysis of
one of them, say, B00...0∗...∗.

Let us come back to K = 2. The region B0∗ is the union of the two bounding boxes B00
and B01 (in general we will consider regions Bw that contain 2K−s bounding boxes) and
our goal is to use further symmetries to reduce the analysis of the cost of traversing both
bounding boxes to the analysis of just traversing one of them, say, B00.

Let Qj0,r0 be the contribution to the expected cost of a PM query due to the recursive
call in T00, when the query has rank r0 in the first coordinate and given that there are
j0 ≥ r0 nodes to the west of the root.

Suppose that N00 = n00. The rank vector of the query in the recursive call to T00 will be
(r̂0, ∗), and the contribution to the expected cost will then be Pn00,r̂0 . So it only remains to
determine: a) the probability that N00 = n00, given the rank vector of the root j and, b) the
probability that the rank vector of the query with respect to B00 is (r̂0, ∗). Let us define
the subsets of data points F ′v and the corresponding bounding boxes B′v like Fv and Bv,
but with respect to the given query, instead of the root. The value r̂0 is the number of data
points in the intersection between B00 and B′0∗, see Figure 2. We will use R〈0〉 := |F00 ∩F ′0∗|.

In general, 〈i〉 := ∗i0∗K−1−i, so using this convention, we can also write N〈0〉 = j0 and
|F ′〈0〉| = r0. Conditioned on the sizes of F00, F〈0〉 and F ′〈0〉, the random variable R〈0〉 obeys
a hypergeometric distribution:

Pr
{
R〈0〉 = r̂0 | N00 = n00,N〈0〉 = j0, |F ′〈0〉| = r0

}
=
(
n00
r̂0

)(
j0−n00
r0−r̂0

)
(
j0
r0

) .

Now if we look at the contribution to the expected cost due to the traversal of T01, we
have that N01 = j0 − n00 and the rank of the query with respect to B01 is (r0 − r̂0, ∗).
The fact that the second coordinate is unspecified allow us to do the analysis above with
n01 instead of n00 and we would have obtained symmetric formulas. We can exploit this
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north-south symmetry that will give us a factor of 2. Taking into account the visit to the
root and our discussion so far we can write

Pn,r0 = 1 + 2
n

(
r0−1∑

j0=0
Qn−1−j0,n−r0 +

n−1∑

j0=r0

Qj0,r0

)
, (3)

where, for n0∗ ≥ r, we have

Qj0,r0 =
j0∑

n00=0
Pr
{
N00 = n00 | N〈0〉 = j0

} r0∑

r̂0=0

((
n00
r̂0

)(
j0−n00
r0−r̂0

)
(
j0
r0

) Pn00,r̂0

)
. (4)

To complete the recurrence for Pn,r0 we need only to obtain the probability thatN00 = n00,
conditioned on N〈0〉 = j0. Since N〈1〉 can take any value in [0..n−1] with identical probability,
the number of points in B00 will take any value between 0 and j0 with identical probability
1/(j0 + 1). Plugging this probability and (4) into (3) yields to the desired recurrence for
Pn,r0 .

An asymptotic estimate of the main term of Pn,r0 follows by deriving an integral equation
for f(z0) := limn→∞ Pn,z0n/n

α and solving that integral equation. We give the details of
the derivation of the integral equation in the case of K = 2 in Lemma 4.

3.2 The general case
Let r = (r0, r1, . . . , rs−1) be the query rank vector and let j = (j0, . . . , js−1) be the first s
coordinates of the rank vector for the root of the random quadtree. Thus we have that ji
is the value of |F〈i〉| = N〈i〉. These K strings of the form 〈i〉 constitute a “basis” in the
sense that we can obtain any region Bw by complementation (B∗i1∗K−1−i = B∗···∗ \B〈i〉) and
intersection of the appropriate B〈i〉’s.

Like we did for K = 2 our goal is to use the symmetries of the problem to reduce the
whole analysis to the analysis of the contribution to the total cost of one particular subtree,
namely, T0s . Again, call Qj,r the contribution of the recursive call in T0s , conditioned to
ri ≤ ji for all i, 0 ≤ i < s. This condition guarantees that the PM search will recursively
continue in that subtree.

Then, because of the K − s symmetries on unspecified coordinates (like the north-south
symmetry of the case K = 2) and because of the s symmetries for specified coordinates (like
the east-west symmetry when K = 2), we can express Pn,r in terms of Qj,r ’s. In particular,
considering all the possibilities for j gives a factor 1/ns, and a summation over all bitstrings
w of length s to cover the cases where the query intersects Bw. Finally the factor 2K−s
stems from the 2K−s bounding boxes that each Bw contains. Hence,

Pn,r = 1 + 2K−s
ns

∑

w∈{0,1}s

∑

j0

· · ·
∑

js−1

Qj′w(j),r′w(r), (5)

where the summation ranges are ri ≤ ji ≤ n− 1 if wi = 0, and 0 ≤ ji ≤ ri − 1 if wi = 1, and
the rank vectors j′w = (j′0, . . . , j′s−1) and r′w = (r′0, . . . , r′s−1) are defined as follows: if wi = 0
then j′i = ji and r′i = ri, otherwise if wi = 1 then j′i = n− 1− ji and r′i = n− ri.

For any i, 0 ≤ i < K, we will denote 0i the string 0i∗K−i, that is, a string of length K
consisting of i zeros, followed by K − i ∗’s.

The method to obtain a formula for Qj,r consists of the following steps: 1) First we use
Lemma 5 to obtain the probability distribution of the number of data points N0s in the
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“corner” hyperrectangle, by intersecting the sets F〈0〉, F〈1〉, . . . , F〈s−1〉, with sizes j0, . . . ,
js−1, respectively. This will be expressed by s − 1 “hypergeometric” sums that will give
us the probability that N0s = `s; 2) Given that the last K − s coordinates are unspecified,
and conditioned on ji = N〈i〉, 0 ≤ i < s, all the potential sizes of N〈i〉 = |F〈i〉|, s ≤ i < K,
are equiprobable. This will be expressed by K − s “uniform” sums that will allow us to
derive the probability distribution for N0K , and 3) Now conditioning on N0K = |F0K |, and
given r we intersect F0K with each of F ′〈0〉, F ′〈1〉, . . . , F ′〈s−1〉 to obtain the components of
r0K = (r̂0, . . . , r̂s−1). We will denote R〈i〉 = |F0K ∩ F ′〈i〉| the random variable that gives the
i-th component of r0K . As in the case K = 2, the probability distribution of the R〈i〉’s is
hypergeometric and it will lead to s additional “hypergeometric” sums.

Therefore the general formula for Qj,r is:

Qj,r =
js−1∑

`s=0
Pr
{
N0s = `s

∣∣∣∣∣
s−1∧

i=0
N〈i〉 = ji

}
×

`s∑

`K=0
Pr
{
N0K = `K

∣∣∣∣∣N0s = `s

}

×
∑

r0K =(r̂0,...,r̂s−1)

Pr
{
s−1∧

i=0
R〈i〉 = r̂i

∣∣∣∣∣N0K = `K ,

s−1∧

i=0
|F ′〈i〉| = ri

}
× P`K ,r0K . (6)

We can expand this last expression as:

Qj,r =
js−1∑

`s=0
· · ·

j1∑

`2=0

((
j0
`2

)(
n−1−j0
j1−`2

)
(
n−1
j1

) · · ·
(
`s−1
`s

)(
n−1−`s−1
js−1−`s

)
(
n−1
js−1

)
)

× 1
`s + 1

`s∑

`s+1=0
· · · 1

`K−1 + 1

`K−1∑

`K=0

`K∧r0∑

r̂0=0

(
`K
r̂0

)(
j0−`K
r0−r̂0

)
(
j0
r0

) · · ·
`K∧rs−1∑

r̂s−1=0

(
`K
r̂s−1

)(
j1−`K

rs−1−r̂s−1

)
(
js−1
rs−1

) P`K ,(r̂0,...,r̂s−1), (7)

where we have used x ∧ y = min(x, y) to stress the intersections that are involved in each
case, e.g. r̂i ranges from 0 to `K ∧ ri since the number of data points is given by |F0K ∩F ′〈i〉|;
with |F0K | = N0K = `K and F ′〈i〉 = ri.

To derive the integral equation corresponding to the recurrence above we can use arguments
similar to those in the case K = 2. We give all the details of this derivation, as well as other
necessary technical lemmas in Apprendix A.

I Lemma 2. If f(z0, . . . , zs−1) = limn→∞
Pn,r
nα exists, with α = α(s/K) the solution of

the indicial equation (1) and zi = limn→∞ ri/n, 0 < zi < 1, for all i, 0 ≤ i < s, then
f(z0, . . . , zs−1) is the unique solution of

f(z0, . . . , zs−1) =
(

2
α+ 1

)K−s
×

∑

w∈(0+1)s

{

∫

Iw0 (z0)
· · ·
∫

Iws−1 (zs−1)
f

(
ϕw0(z0, u0), . . . , ϕws−1(zs−1, us−1)

)

·
(
ψw0(u0) · · ·ψws−1(us−1)

)α
dus−1 · · · du0

}
, (8)

where I0(z) = [0, z], I1(z) = [z, 1], ψ0(u) = 1− u, ψ1(u) = u, ϕ0(z, u) = (1− z)/(1− u) and
ϕ1(z, u) = z/u, which satisfies the following boundary conditions:
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1. f(z0, . . . , zs−1) is symmetric on all variables, that is, for any i and j,

f(z0, . . . , zi, . . . , zj , . . . , zs−1) = f(z0, . . . , zj , . . . , zi, . . . , zs−1).

2. For any zi ∈ (0, 1), 0 ≤ i < s, f is symmetric with respect to the axis zi = 1/2, that is,

f(z0, . . . , zi, . . . , zs−1) = f(z0, . . . , 1− zi, . . . , zs−1).

3. For any i, 0 ≤ i < s,

lim
zi→0+

f(z0, . . . , zi, . . . , zs−1) = lim
zi→1−

f(z0, . . . , zi, . . . , zs−1) = 0.

4.

∫ 1

0

∫ 1

0
· · ·
∫ 1

0
f(z0, . . . , zs−1) dz0 · · · dzs−1 = βs,K .

Proof. We will follow a procedure similar to the one in the proof of Lemma 4, which covers
the case K = 2.

The steps that we will give to obtain the integral equation for general K are:

1. Apply Lemma 6 to (7) s times in the s hypergeometric sums (the last sums over the r̂i’s)

2. Convert the K − s uniform sums (the middle sums over the `i’s, s < i ≤ K) into the
corresponding integral by passing to the limit. That gives K − s factors 1/(α+ 1).

3. Apply Lemma 7 once to the first s− 1 hypergeometric sums (over the `i’s, 2 ≤ i ≤ s).

4. Convert all the sums in (5) into integrals by passing to the limit.
Here, we use `i to denote the values that the random variables N0i can take, like we did in
subsection 3.2, and in particular in (6) and successive.

Defining f
(
r0
n , . . . ,

rs−1
n

)
:= Pn,r/n

α, where α is the solution of the indicial equation for
quadtrees, we get:

Qj,r
nα

=
js−1∑

`s=0
· · ·

j1∑

`2=0

((
j0
`2

)(
n−1−j0
j1−`2

)
(
n−1
j1

) · · ·
(
`s−1
`s

)(
n−1−`s−1
js−1−`s

)
(
n−1
js−1

)
)

× 1
`s + 1

`s∑

`s+1=0
· · · 1

`K−1 + 1

`K−1∑

`K=0

`K∧r0∑

r̂0=0

(
`K
r̂0

)(
j0−`K
r0−r̂0

)
(
j0
r0

) · · ·
`K∧rs−1∑

r̂s−1=0

(
`K
r̂s−1

)(
j1−`K

rs−1−r̂s−1

)
(
js−1
rs−1

) × f
( r̂0
`K

, . . . ,
r̂s−1
`K

)(`K
n

)α
.

Hence, defining u0i = limn→∞(`i/n) for s ≤ i ≤ K, zi = limn→∞(ri/n) and ui =
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limn→∞(ji/n) for 0 ≤ i < K and applying Lemma 6 s times:

lim
n→∞

Qj,r
nα

= lim
n→∞

js−1∑

`s=0
· · ·

j1∑

`2=0

((
j0
`2

)(
n−1−j0
j1−`2

)
(
n−1
j1

) · · ·
(
`s−1
`s

)(
n−1−`s−1
js−1−`s

)
(
n−1
js−1

)
)

× 1
`s + 1

`s∑

`s+1=0
· · · 1

`K−1 + 1

`K−1∑

`K=0
f
(r0
j0
, . . . ,

rs−1
js−1

)(`K
n

)α

= lim
n→∞

js−1∑

`s=0
· · ·

j1∑

`2=0

((
j0
`2

)(
n−1−j0
j1−`2

)
(
n−1
j1

) · · ·
(
`s−1
`s

)(
n−1−`s−1
js−1−`s

)
(
n−1
js−1

)
)

× 1
u0s

∫ u0s

0
· · · 1

u0K−1

∫ u0K−1

0
f
( z0
u0
, . . . ,

zs−1
us−1

)
uα0Kdu0K . . . du0s+1

= lim
n→∞

js−1∑

`s=0
· · ·

j1∑

`2=0

((
j0
`2

)(
n−1−j0
j1−`2

)
(
n−1
j1

) · · ·
(
`s−1
`s

)(
n−1−`s−1
js−1−`s

)
(
n−1
js−1

)
)

× f
( z0
u0
, . . . ,

zs−1
us−1

) uα0s

(α+ 1)K−s .

Replacing u0s by `s/n and applying Lemma 7 once to the first s− 1 hypergeometric sums
we obtain:

lim
n→∞

Qj,r
nα

= 1
(α+ 1)K−s f

( z0
u0
, . . . ,

zs−1
us−1

) s−1∏

i=0
uαi . (9)

Finally, introduce the following notation: I0(z) = [0, z], I1(z) = [z, 1], ϕ0(z, u) = (1−z)/(1−u)
and ϕ1(z, u) = z/u. Plugging (9) into (5)) and passing to the limit (the fourth step in the
procedure that we have described) yields the stated integral equation. J

Conditions 1 and 2 in the lemma follow from the combinatorics of the problem. By
symmetry, Pn,r = Pn,r′ for any permutation r′ of the rank vector r. Likewise, if r =
(r0, . . . , ri, . . . , rs−1) and r′ = (r0, . . . , ri−1, n − ri, ri+1, . . . , rs−1) then Pn,r = Pn,r′ . Con-
dition 3 needs an inductive argument in the number of non-extreme (zi 6= 0 and zi 6= 1)
coordinates. When all specified coordinates are extreme,say, z0 = z1 = . . . = zs−1 = 0 we
must have f = 0; indeed, it is very easy to prove that Pn,(0,...,0) = o(nα). We do not give
here a complete and detailed analysis when s0 ≤ s specified coordinates are extreme; the
computations and the reasoning is analogous to that carried out in [6] for K-d trees. Last
but not least, Condition 4 follows by summing the expected cost Pn,r over all possible rank
vectors r and dividing by (n+ 1)s: it must yield the known expected cost of a random partial
match query βs,Knα + o(nα). In terms of f , we must integrate f in the domain [0, 1]s to
obtain βs,K . For a detailed justification the reader can refer to [6]: it is straightforward to
adapt the discussion there to the case of quadtrees.

3.3 Solving the integral equation
From the integral equation (8) in Lemma 2 we can obtain an equivalent partial differential
equation (PDE) by application of the differential operators

Φj(f) = zj(1− zj)
∂2f

∂z2
j

+ α(2zj − 1) ∂f
∂zj
− α(α+ 1)f.
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Indeed, if we define the operator

Ii(f) = zα+1
i

∫ 1

zi

f(z0, . . . , zi−1, ui, zi+1, . . . , zs−1
dui

uα+2
i

+

(1 − zi)α+1
∫ zi

0
f(z0, . . . , zi−1, vi, zi+1, . . . , zs−1

dvi
(1− vi)α+2

then the integral equation (8) in Lemma 2 can be written as

f =
(

2
α+ 1

)K−s
I0(I1(· · · (Is−1(f) · · · ),

using the changes of variables ui := zi/ui and vi := (1− zi)/(1− ui).
Then, as

Φi(Ij(g)) = Ψi(g) = (2zi − 1) ∂g
∂zi
− 2αg

it follows that

Φ0(Φ1(· · · (Φs−1(f)) · · · ) =
(

2
α+ 1

)K−s
Φ0(Φ1(· · · (Φs−1(I0(I1(· · · (Is−1(f) · · · )) · · · ).

Now, since Φi’s and Ψi’s commute – Φi(Φj(g)) = Φj(Φi(g)), Ψi(Ψj(g)) = Ψj(Ψi(g)) – and
Φi(Ψj(g)) = Ψj(Φi(g)) for any i 6= j, we can manipulate the equation above to get

Φ0(Φ1(· · · (Φs−1(f)) · · · ) =
(

2
α+ 1

)K−s
Ψ0(Ψ1(· · · (Ψs−1(f) · · · )

or
(

Φ0 ◦ Φ1 ◦ · · · ◦ Φs−1 −
(

2
α+ 1

)K−s
Ψ0 ◦Ψ1 ◦ · · · ◦Ψs−1

)
(f) = 0, (10)

which is the sought PDE, succintely expressed in terms of the linear differential operators Φi
and Ψi, i = 0, . . . , s− 1.

The resulting PDE is homogeneous and linear, hence it is natural to try to solve it
by separation of variables. The shape of equation (10) also cries out to try a solution in
separated variables. Therefore, we will assume that the solution to the integral equation (8)
is a function: f(z0, z1, . . . , zs−1) = φ0(z0) · φ1(z1) · · ·φs−1(zs−1).

Given that the function f is symmetric with respect to any permutation of its arguments,
we can also safely assume that all the functions φ0, φ1, · · · , φs−1 are the same function φ.
Rather than working with the PDE itself, we may use our assumption to rewrite equation (8)
as:

φ(z0) · φ(z1) · · ·φ(zs−1) =
(

2
α+ 1

)K−s s−1∏

i=0

(∫ zi

0
φ
( 1− zi

1− ui

)
(1− ui)αdui

+
∫ 1

zi

φ
( zi
ui

)
uαi dui

)
. (11)

If φ is a solution of the following equation

φ(z) =
(

2
α+ 1

)K−s
s

(∫ z

0
φ
( 1− z

1− u
)

(1− u)αdu+
∫ 1

z

φ
( z
u

)
uαdu

)
, (12)
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then it would be a solution of equation (11). As shown in [4],

φ(z) = µ
(
z(1− z)

)δ−1
, δ =

(
2

α+ 1

)K−s
s

,

is such a solution, where µ is an arbitrary constant and we have discarded additional terms
in the general solution based on symmetry considerations.

Because the exponent α is a solution to the indicial equation (1) it follows that δ = α
2 + 1

and hence the solution to (8) is:

f(z0, . . . , zs−1) = νs,K ·
s−1∏

i=0

(
zi(1− zi)

)α/2
,

where νs,K is a constant that depends on s and K only. To finish our derivation and to
obtain the value of νs,K we replace f by the expression above in Condition 4 of Lemma 2
and we get:

νs,K

(∫ 1

0

(
z(1− z)

)α/2
dz

)s
= νs,K

(
Γ(α/2 + 1)2

Γ(α+ 2)

)s
= βs,K ,

so we can use the expression for βs,K in Equation (2) to find an explicit formula for νs,K .
To argue unicity of the solution, we should begin noticing that the linear homogeneous

PDE satisfied by the function f has all real-analytic coefficients in the domain (0, 1)s, because
the coefficients of the operators Ψi and Φi are analytic too in that domain and the PDE
results from the composition of such operators.

Moreover, the highest derivative in the PDE is ∂2sf/∂z2
0 · · · ∂z2

s−1 and its coefficient∏
0≤i<s zi(1− zi) is clearly always positive in (0, 1)s, hence, the PDE is elliptic. Then, by

Holmgren’s theorem, any solution is real-analytic; and from Cauchy-Kovalevskaya theorem
it follows that it must be unique, since this last theorem guarantees that there is a unique
real-analytic solution (see for instance [8, 11]). Altogether, these results tell us that the
solution that we have found, starting from the ansatz that it admitted a representation in
separable variables, is unique.

It remains to verify by direct substitution that Pn,r = f(r/n)nα is a solution of re-
currence (5) replacing the independent term by o(1), which is the error resulting from
approximating the summations by integrals. With this our main result follows.

I Theorem 3. If limn→∞
Pn,r
nα exists then the expected cost Pn,r of a PM query with given

rank vector r such that ri = zin + o(n) for some zi ∈ (0, 1), 0 ≤ i < s, in a random
K-dimensional quadtree of size n is

Pn,r = νs,K

(
s−1∏

i=0
zi(1− zi)

)α/2
nα + o(nα),

where α is the unique solution in (0, 1) of

(α+ 2)s(α+ 1)K−s = 2K ,

νs,K = 1
(2K−s − 1)Γ(α+ 1)K−sΓ(α/2 + 1)2s

∏

2≤j≤K

Γ(α− αj)
Γ(−αj)

,

and the αj’s, with α = α1 > <(α2) ≥ · · · ≥ <(αK), are the roots of the indicial equation
above.
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Figure 3 Variation of the exponent α(s/K) (top-left), β(s,K) for K ∈ {8, 16, 32} (top-right) and
ν(s,K) for K ∈ {30, 32, 36} (bottom-left), as well as ν(s,K) for all 6 ≤ K ≤ 18 (bottom-right).

Figure 3 depicts how the exponent α = α(s/K), and the constants β(s,K) and ν(s,K)
vary with respect to s and K. In all cases, the x-axis is s/K to ease the comparison – α is
a function of s/K alone, but β and ν depend on both s and K. In the graphs for β(s,K)
and ν(s,K) we have drawn three curves in each case, corresponding to K = 8 (red), K = 16
(black) and K = 32 (blue) in the graph for β(s,K), and K = 30 (red), K = 32 (black) and
K = 36 (blue) in the graph for ν(s,K). Moreover in the graph of α(s/K) we have also
plotted 1− s/K (dashed line) for reference. For fixed K, β(s,K) is a convex function with a
minimum close to s = K/2 but slowly shifted to the right. Likewise, for fixed K, ν(s,K) is
a bell-shaped function with a single global maximum near s = K/2 but also slightly shifted
to the right (ν(s,K) is not defined for s = K). If we denote ν∗(K) = max0<s<K ν(s,K) the
graph shows that ν∗(K) grows with K. On the other hand, the graph and further numerical
computations suggest that there is a limiting curve β∞(x) = limK→∞ β(bxKc,K) that is a
lower bound for any β(s,K) as K →∞.

When s = 0 (no coordinate is specified), we have α(0) = β(0,K) = ν(0,K) = 1, despite
all these constant are not well defined when s = 0. Notice that for s = 0 the partial match
degenerates to a full traversal of the quadtree and visits its n nodes.

In the opposite situation, when all coordinates are specified, s = K, β and ν are undefined,
and α(1) = 0. The expected cost of a partial match is not Θ(1) = Θ(n0) but Θ(logn) as it is
actually an exact search.

4 Conclusions and Future Work

Our main result, Theorem 3, gives the main order term of the expected cost Pn,r of a PM
search with a fixed query of rank vector q, for quadtrees of any dimension K and any number
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of specified coordinates. It can be easily translated to an equivalent result in terms of the
coordinates qi of the query, namely,

Pn,q = νs,K ·


 ∏

i:qi 6=∗
qi(1− qi)



α/2

· nα + l.o.t.

under the assumption of uniformity of the coordinates of the data points (see, for instance,
[6]).

We show that quadtrees behave qualitatively as standard and relaxed K-d trees [6]. There
we conjectured that the form of the expected cost of a PM search with fixed query would
have the same “shape” for a wide variety of multidimensional data structures, excluding
those producing very balanced partitions of the space (e.g., quadtries, squarish K-d trees).
Duch and Lau [5] have disproved the conjecture, in its broadest terms, as it does not apply to
locally balanced K-d trees. However, it seems that the conjecture might hold for hierarchical
multidimensional data structures where: 1) no balancing of subtrees occurs; 2) the partition
at each node follows a fixed rule independent of the current data point.

From the methodological viewpoint, we systematically exploit the many symmetries that
appear in the problem to simplify its formulation and to make its mathematical manipulation
feasible.

Several open problems remain. To begin with, the existence of limn→∞
Pn,r
nα , which has

been rigorously proved for K = 2 in [3] (also in [1]); our result in that case coincides with
the previous ones. We are currently working in the proof of the existence of the required
limit for general K; meanwhile, our results follow from the – yet unproven – assumption
that such limit exists. We shall mention that there is compelling evidence that this is the
case. On the other hand, the existence of a limiting distribution for Pn,r/nα has been shown
only for the case of standard 2-d trees and 2-dimensional quadtrees, but not for other data
structures or larger dimensions, and this is a question worth of further study.

Another goal for future research, more technical in nature but also more ambitious, is
to develop tools that would allow a straightforward, (semi-)automatic derivation of the
recurrences or distributional equations, the proof of the existence of the limiting distribution,
the corresponding integral equations for the expectation and other higher order moments, etc.
This kind of techniques would ease the obtainment of results, such as the ones in previous
literature and the ones in this paper, for many other multidimensional data structures and it
might also open the door for “universality” results such as the ones conjectured in [6].
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A Technical Lemmas

I Lemma 4. If f(z) = limn→∞
Pn,r
nα exists, with α = α(1/2) the solution of the indicial

equation (1) when s = 1 and K = 2, and z = limn→∞ r/n, 0 < z < 1, then

f(z) = 2
α+ 1

(∫ z

0
f
( 1− z

1− u
)

(1− u)αdu+
∫ 1

z

f
( z
u

)
uαdu

)
. (13)

The symmetry Pn,r0 = Pn,n−r0 implies that in general f(z) = f(1 − z) and in particular
f
(

1−z
1−u

)
= f

(
1− 1−z

1−u

)
from where it follows that equation (13) is the same as the one for

standard 2d-trees (see [4]).
Proof. Let f(r0/n) := Pn,r0/n

α. Then we have that
Pa,(b,∗)
nα

= f
( b
a

)(a
n

)α

and therefore, substituting into (4)

Qj0,r0

nα
= 1
j0 + 1

j0∑

n00=0

r0∑

r̂0=0

((
n00
r̂0

)(
j0−n00
r0−r̂0

)
(
j0
r0

) f
( r̂0
n00

)(n00
n

)α
)

= 1
j0 + 1

j0∑

n00=0

r0∑

r̂0=0

((
n00
r̂0

)(
j0−n00
r0−r̂0

)
(
j0
r0

) f
( r̂0
j0

j0
n

n

n00

)(n00
n

)α
)

The last sum is the expected value of a function of a hypergeometric random variable.
Passing to the limit when n → ∞, Lemma 6 allows us to exchange the expected value
and the function. Therefore passing to the limit when n → ∞, with z = limn→∞(r/n),
u0∗ = limn→∞(j0/n), u00 = limn→∞(n00/n), and assuming that f is real analytic in Lemma 6
we can apply it to get:

lim
n→∞

Qj0,r0

nα
= 1
u0∗

∫ u0∗

0
f
(u00
u0∗

z

u0∗

u0∗
u00

)
uα00du00 = 1

u0∗

∫ u0∗

0
f
( z

u0∗

)
uα00du00

= 1
α+ 1f

( z

u0∗

)
uα0∗.

and similarly

lim
n→∞

Qn−1−j0,n−r0

nα
= 1

1− u0∗

∫ 1−u0∗

0
f
( 1− z

1− u0∗

)
uα00du00

= 1
α+ 1f

( 1− z
1− u0∗

)
(1− u0∗)α
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Since j0 = 0 =⇒ u0∗ = 0, j0 = r0 =⇒ u0∗ = z0 and in the limit j0 = r0− 1 =⇒ u0∗ =
z0, j0 = n − 1 =⇒ u0∗ = 1 and ∆j0

n → du0∗ replacing in (3) and passing to the limit we
obtain this integral equation:

f(z0) = 2
∫ z0

0

1
1− u0∗

f
( 1− z0

1− u0∗

)∫ 1−u0∗

0
uα00du00du0∗

+ 2
∫ 1

z0

1
u0∗

f
( z0
u0∗

)∫ u0∗

0
uα00du00du0∗

= 2
∫ z0

0

1
1− u0∗

f
( 1− z0

1− u0∗

) (1− u0∗)α+1

α+ 1 du0∗ + 2
∫ 1

z0

1
u0∗

f
( z0
u0∗

) uα+1
0∗

α+ 1du0∗.

Replacing now in (3)), passing to the limit n→∞ and, to simplify, replacing u0∗ by u we
get the integral equation (13) in the statement of the Lemma. J

I Lemma 5. Given a random K dimensional quadtree with n data points the conditional
probability that N0K = `K given that N〈i〉 = n〈i〉 for 0 ≤ i ≤ K − 1 is:

Pr
{
N0K = `K

∣∣∣∣∣
K−1∧

i=0
N〈i〉 = n〈i〉

}
=

n〈i〉K−2∑

`K−1=0
· · ·

n〈2〉∑

`3=0

n〈1〉∑

`2=0

((`1
`2

)(
n−1−`1
n〈1〉−`2

)
(
n−1
n〈1〉

)

(
`2
`3

)(
n−1−`2
n〈2〉−`3

)
(
n−1
n〈2〉

) · · ·
(
`K−2
`K−1

)(
n−1−`K−2

n〈K−2〉−`K−1

)
(
n−1

n〈K−2〉

)
(
`K−1
`K

)(
n−1−`K−1
n〈K−1〉−`K

)
(
n−1

n〈K−1〉

)
)
. (14)

Proof. In the base case K = 2 given n, N〈0〉 ≡ N0∗ = n0∗ and N〈1〉 ≡ N∗0 = n∗0, the
probability that the intersection of the rectangles B〈0〉 = B0∗ and B〈1〉 = B∗0 contains
`2 = n00 nodes is the probability of having `2 = n00 successes in n∗0 draws without
replacement from a population of size n− 1 that contains n0∗ successes. It is n− 1 instead of
n because the root cannot be in the intersections. Therefore the distribution is hypergeometric:

Pr {N00 = n00 | N0∗ = n0∗,N∗0 = n∗0} =
(
n0∗
n00

)(
n−1−n0∗
n∗0−n00

)
(
n−1
n∗0

) .

Assume that the lemma is true for K dimensions. We can do the inductive step based on
writing the intersection of K + 1 sets as an intersection of K sets followed by the intersection
of two sets:

K⋂

i=0
F∗i0∗K−i =

(K−1⋂

i=0
F∗i0∗K−i

)
∩ F∗K0 = F0K∗ ∩ F∗K0 = F0K+1 .

Taking into account all the possible values of N0K∗, we have:

Pr
{
N0K+1 = n0K+1

∣∣∣∣∣
K∧

i=0
N∗i0∗K−i = n∗i0∗K−i

}

=
n∗K−10∗∑

n0K∗=0

(
Pr
{
N0K∗ = n0K∗

∣∣
K−1∧

i=0
N∗i0∗K−i = n∗i0∗K−i

}

× Pr
{
N0K+1 = n0K+1

∣∣∣∣∣N0K∗ = n0K∗,N∗K0 = n∗K0

})

=
n−1∑

n0K∗=0

(
Pr
{
N0K∗ = n0K∗

∣∣
K−1∧

i=0
N∗i0∗K−i = n∗i0∗K−i

}
×
(
n0K∗
n0K+1

)(
n−1−n0K∗
n∗K0−n0K+1

)
(
n−1
n∗K0

)
)
,
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applying the inductive hypothesis (14) (adding a ∗ to the end of each string) completes the
proof. Notice that we have used `i instead of n0i∗K−i and n〈i〉 = n∗i0∗K−1−i in the statement
of the theorem. J

I Lemma 6. Given a random two dimensional quadtree let N0∗, N∗0 and N00 be respectively
the random variables of the number of nodes west, south and south-west of the root. If f is
a real analytic function [9] in (0, 1), limn→∞ n0∗/n = u0∗ and limn→∞ n∗0/n = u∗0, where
u0∗, u∗0 ∈ (0, 1), then

lim
n→∞

E
{
f

(N00
n

) ∣∣∣N0∗ = n0∗,N∗0 = n∗0

}
= lim
n→∞

n∗0∑

n00=0

((
n0∗
n00

)(
n−n0∗
n∗0−n00

)
(
n
n∗0

) f
(n00
n

))

= lim
n→∞

n∗0∑

n00=0

((
n0∗
n00

)(
n−n0∗
n∗0−n00

)
(
n
n∗0

) f
(n00
n

))

= f(u0∗u∗0). (15)

Proof. For simplicity, in the hypergeometric probability formulas we have replaced n− 1 by
n as in the limit they are the same.

Since f is real analytic all derivatives of f exist in (0, 1) and we can write, for some
x0 ∈ (0, 1),

f(x) =
∞∑

i=0
ai(x− x0)i =

∞∑

i=0
ai

i∑

k=0

(
i

k

)
(−x0)i−kxk.

Since the series on the right side converges we can use the linearity of expectations:

E {f(x)} =
∞∑

i=0
ai

i∑

k=0

(
i

k

)
(−x0)i−kE

{
xk
}
.

Therefore we only need to prove the lemma for f(x) = xk. If Xn,m,N is a hypergeometric
random variable with parameters n, m, and N then [10]:

E
{
Xk
n,m,N

}
= nm

N
E
{

(Xn−1,m−1,N−1 + 1)k−1} .

Based on that it is easy to prove by induction that for every k ∈ N there are integers ck,i,
with ck,k = 1, such that:

E
{
Xk
n,m,N

}
=

k∑

i=0
ck,i

nimi

N i
.

Therefore if f(x) = xk:

E
{
f

(N00
n

) ∣∣∣N0∗ = n0∗,N∗0 = n∗0

}
= E

{N k
00
nk

∣∣∣N0∗ = n0∗,N∗0 = n∗0

}

=
∑k
i=0 ck,i

n
i

0∗n
i

∗0
ni

nk
=

k∑

i=0
ck,i

n
i
0∗n

i
∗0

nink
.

In the last sum the only term that does not go to zero as n→∞ is the last one, where i = k.
Given that ck,k = 1, we have:

lim
n→∞

E
{N k

00
nk
∣∣N0∗ = n0∗,N∗0 = n∗0

}
= lim
n→∞

n
k

0∗n
k

∗0
nk

nk
= lim
n→∞

(n0∗
n

)k(n∗0
n

)k
= uk0∗u

k
∗0.

That proves the lemma for f(x) = xk. J
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The lemma can be generalised to any dimension K using mathematical induction on
the number of dimensions, again assuming that the function f is real analytic (in several
variables).

I Lemma 7. Given a random quadtree let N〈i〉 be the random variable of the number of data
points that have their i-th coordinate less than the i-th coordinate of the root and the rest of
the coordinates undetermined and let N0K be the random variable of the size of the cuboid
where all the coordinates have values lower than the respective coordinates of the root. If f is
real analytic in (0, 1)K , limn→∞ n〈i〉/n = ui for 0 ≤ i < K, where ui ∈ (0, 1), then

lim
n→∞

E

{
f

(N0K

n

)∣∣∣∣∣
K−1∧

i=0
N〈i〉 = n〈i〉

}
= f

(
K−1∏

i=0
ui

)
.

Proof. The base case K = 2 has been proved. Assume that the lemma is true for K
dimensions. Then:

lim
n→∞

E

{
f

(N0K+1

n

)∣∣∣∣∣
K∧

i=0
N∗i0∗K−i = n∗i0∗K−i

}

= lim
n→∞

n−1∑

n0K+1 =0
Pr
{
N0K+1 = n0K+1

∣∣∣∣∣
K∧

i=0
N∗i0∗K−i = n∗i0∗K−i

}
f

(
n0K+1

n

)

= lim
n→∞

n−1∑

n0K+1 =0

n−1∑

n0K∗=0

(
Pr
{
N0K∗ = n0K∗

∣∣
K−1∧

i=0
N∗i0∗K−i = n∗i0∗K−i

}

× Pr
{
N0K+1 = n0K+1

∣∣∣∣∣N0K∗ = n0K∗,N∗K0 = n∗K0

}
f
(n0K+1

n

)

= lim
n→∞

n−1∑

n0K∗=0
Pr
{
N0K∗ = n0K∗

∣∣
K−1∧

i=0
N∗i0∗K−i = n∗i0∗K−i

}

× E
{
f
(N0K+1

n

)
|N0K∗ = n0K∗,N∗K0 = n∗K0

}

= lim
n→∞

n−1∑

n0K∗=0
Pr
{
N0K∗ = n0K∗

∣∣
K−1∧

i=0
N∗i0∗K−i = n∗i0∗K−i

}
× f

(
lim
n→∞

n0K∗n∗K0
(n− 1)n

)

= lim
n→∞

E

{
f

(
lim
n→∞

N0K∗n∗K0
(n− 1)n

)∣∣∣∣∣
K−1∧

i=0
N∗i0∗K−i−10 = n∗i0∗K−i−10

}
.

Replacing n − 1 by n, because in the limit they are equivalent, and using the induction
hypothesis (adding 0 at the end of each string) we have:

lim
n→∞

E

{
f

(N0K+1

n

)∣∣∣∣∣
K∧

i=0
N∗i0∗K−i = n∗i0∗K−i

}
= f

(
lim
n→∞

(K−1∏

i=0

n∗i0∗K−i−10
n∗K0

)
n∗K0
n

)

= f
(

lim
n→∞

K∏

i=0

n∗i0∗K−i
n

)
= f

( K∏

i=0
u∗i0∗K−i

)
.

J

I Lemma 8. The real function f(x) = xa(1 − x)a is real analytic, i. e. it is infinitely
differentiable and agrees with its Taylor series, in the interval (0, 1) for any real number a.
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20:18 Fixed Partial Match Queries in Quadtrees

Proof. By the binomial series, or Newton’s generalized binomial theorem, f1(x) = (1− x)a
is real analytic in (−1, 1) and f2(x) = xa = (1 + (x− 1))a is real analytic in (0, 2). Therefore
their product, f(x), is real analytic in (0, 1). J
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Chapter 8 
 

Quad-K-d trees 
 

The main result of the article in this chapter [DLM16b] is an asymptotic formula 
for the expected cost of random PM queries in several families of random quad- 
K-d trees, see Theorem 1 (page 162). This result unifies into a single theorem 
the fact that random PM queries in both relaxed K-d trees and quad trees 
satisfy  P̂n,s,K  = Θ (nαρ ).  Furthermore,  we  have  promising  on-going  work  that 
could generalize both Theorem 4.4 and Theorem 4.6. A node is of type m if it 
discriminates by m coordinates. In that case it has 2m children. We call τm the 
probability that a node is of type m. We obtain the case of relaxed K-d trees 
when τ1 = 1 and τi = 0 if  i = 1,  while  when  τK  = 1  and  τi = 0  if  i = K we  
have the case of quad trees. 

Note that in this article we use P , with subscripts, for the expected cost of 
random PM queries instead of P̂ . 

 
8.1 Article: Random PM in Quad-K-d Trees 

This article is [DLM16b]: 
Amalia Duch, Gustavo Lau, and Conrado Mart´ınez. “Random Partial Match 

in Quad-K-d Trees”. In: LATIN 2016: Theoretical Informatics - 12th Latin 
American Symposium, Ensenada, Mexico, April 11-15, 2016, Proceedings. 2016, 
pp. 376–389. doi: 10.1007/978-3-662-49529-2 28 
 
 

 
 

Attention¡¡ 
Pages 154 to 168 of the thesis are available at the editor’s web 

https://link.springer.com/chapter/10.1007/978-3-662-49529-2_28 
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The main contribution of this thesis is to deepen and generalize previous
work done in the average-case analysis of partial match queries in several types
of multidimensional search trees. In Table 7 we show references to the papers
that include contributions to the analysis of the expected cost for several trees
and query types. The ones included in this thesis are highlighted in gray. As
you can see, for K-d trees only the case of s = 1 was previously known for
fixed PM queries and we generalize it to s > 1. We introduce a new type
of multidimensional tree, the relaxed K-dt tree in [DL17], and analyze both
random and fixed PM queries in them. For quad trees we analyze the case
K > 2 while previously only the case K = 2 was studied. Finally, we analyze
random PM queries in the family of relaxed quad-K-d trees obtaining a result
that has previous results for both quad trees and relaxed K-d trees as particular
cases.

Table 7: Analysis of the expected cost of partial match queries

Data structure Query type Standard Relaxed Squarish

K-d trees Random [FP86; CH06] [DEM98; MPP01] [DJZ00]
(t = 0) Fixed s = 1:[DJM14] s = 1:[DJM14]

s > 1:[DLM16a] s > 1:[DLM14]

K-dt trees Random [CLF89; CH06] [DL17]

(t > 0) Fixed [DL17]

Quad trees Random [Fla+93; CH03]
Fixed K = 2:[CJ11; BNS13]

K > 2:[DLM18]

Quad-K-d Random [DLM16b]

trees Fixed

We summarize current knowledge regarding the expected cost of partial
match queries in multidimensional point search trees in Table 8.

Regarding random PM queries, our results can be summarized in two very
general unpublished theorems: Theorem 6.1 for relaxed K-dt trees and Theorem
6.2 for standard K-dt trees. The expected cost of random PM queries in them
is:

P̂n,t,u = βt,un
αt,ρ,ρ0 + o(nαt,ρ,ρ0 ).
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Table 8: Asymptotic expected cost of partial match queries

Relaxed K-d trees Relaxed K-dt trees Squarish
Standard K-d trees Standard K-dt trees K-d trees
Quad trees t > 0
Quad-K-d trees

α > 1− s/K α > 1− s/K α = 1− s/K
Random βun

α βun
α θ(n1−s/K)

Also true
for Standard
K-dt trees
as t→∞

Fixed νun
α
(∏

qi 6=∗ qi(1− qi)
)α/2

6= νun
α
(∏

qi 6=∗ qi(1− qi)
)α/2

νρn
1−s/K?

[DL17] Conjecture
Conjecture for (Conjecture for supported by
Quad-K-d trees Standard) experimental

evidence

For relaxed and standardK-dt trees αt,ρ,ρ0 is respectively the unique solution
in the interval (0, 1) of the equations:

ρ0
(t+ 2)t+1

2(α+ t+ 1)t+1
+ (ρ− ρ0)

(t+ 2)t+1

(α+ t+ 2)t+1
+ (1− ρ)

(t+ 2)t+1

(α+ t+ 1)t+1
= 1,

(
(t+ 2)t+1

2(α+ t+ 1)t+1

)ρ0(
(t+ 2)t+1

(α+ t+ 2)t+1

)ρ−ρ0(
(t+ 2)t+1

(α+ t+ 1)t+1

)1−ρ

= 1.

Note that the two equations are very similar. As we mentioned on Chapter 6, in
the case of relaxed K-dt trees the left-hand side is a weighted arithmetic mean
and in the case of standard ones is a geometric one of the same three terms.

Regarding fixed PM queries, in [DLM14; DLM16a] we analyzed them for
relaxed and standard K-d trees in the case s > 1, generalizing the results
of [DJM14]. There we conjectured that

Pn,q = νu(q) ·


 ∏

i:qi is specified

qi(1− qi)



α/2

· nα + o(nα) (8.1)

for quad trees and variants of K-d trees but not for squarish K-d trees. For the
latter we conjectured that:

Pn,q = νρn
1−ρ + o(n1−ρ) (8.2)

In [DL17] we analyzed fixed PM queries in relaxed K-dt trees and, even
though we could not find an explicit formula for them, we disproved the conjec-
ture (8.1) for t = 1.
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In [DLM18] we performed the analysis of the expected cost of fixed PM
queries for quad trees in the case K > 2, generalizing the result of [CJ11].

However, our analysis needs the assumption of the existence of limn→∞
Pn,r
nα .

With this result we proved that the conjecture (8.1) is correct for quad trees of
any dimension.

Open problems

Regarding the expected cost of random PM queries, in the case of random
relaxed and standard K-d trees with s0 extreme specified coordinates we have
the exponent α’s of expected cost of random PM queries—Theorem 6.1 and
Theorem 6.2—but we still have to find formulas for their β’s. This implies
a laborious and cumbersome computation but the analysis seems to be quite
feasible.

For relaxed quad-K-d trees we have promising on-going work on a more
precise version of Theorem 1 of [DLM16b]. In that theorem we only stated that
P̂n,s,K,τ = Θ (nαs,K,τ ), but we are close to having a proof that the conjecture
on page 10 of [DLM16b] is true for random relaxed quad-K-d trees, that is

P̂n,s,K,τ = βs,K,τn
αs,K,τ + o(nαs,K,τ ).

Actually, we have an exact formula for P̂n,s,K,τ and only the final asymptotic
analysis is missing. This new result would generalize both Theorem 4.4 for quad
trees and Theorem 4.6 for relaxed K-d trees.

For quad-K-d trees as well, we would like to define a class of them that
includes standard K-d trees and perform the analysis of random PM queries in
them. More generally, it remains to prove or disprove the conjecture on page
10 of [DLM16b]: that the average cost of random PM queries in all random
quad-K-d trees is of the form Pn = β nα + o(nα).

Beyond multidimensional trees, another task is to analyze random PM queries
in quad tries and quad-K-d tries. This was done for standard K-d tries in [FP86]
and for relaxed K-d tries in [MPP01].

Regarding the expected cost of fixed PM queries, as mentioned in [DLM18],

for quad trees we need to prove that limn→∞
Pn,r
nα exists to fully generalize the

result about the expected cost that was proved for K = 2 in [CJ11]. Maybe the
“bounding errors” approach that we applied to K-d trees could be applied to
quad trees.

We would like to find a way to solve the differential equations that can be
obtained using Proposition 5.2 of [DL17] to find an explicit formula for the
expected cost of fixed PM queries in relaxed K-dt trees with t > 0. Once that
is done, we would try to compute the expected cost of fixed PM queries for
standard K-dt trees with t > 0.

For the case of quad-K-d trees we do not have any results about the ex-
pected cost of fixed PM queries. A natural place to start analyzing them would
be the subclass of quad-K-d trees for which we analyzed random PM queries
in [DLM16b], that is the relaxed ones. We also would like to define a class of
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quad-K-d trees that includes standard K-d trees; once the analysis of random
PM queries is done for them we would try to perform the analysis of fixed PM
queries. The final goal would be to prove the conjecture (8.1) for quad-K-d
trees or characterize for which families of them it is true.

In the case of squarish K-d trees we would like to prove or disprove the
conjecture (8.2) about the the expected cost of fixed PM queries in them. Based
on the experiments done for [DLM16a], we think that the higher order term is
independent of the coordinates of the query and its pattern u but depends on
s and K. We also think that such conjecture is valid for K-d tries, quad tries
and quad-K-d tries but it remains to analyze PM queries in all of them.

Regarding the variance of fixed PM queries, we would like to prove or dis-
prove the related conjecture made about it in [DLM16a]:

V[Pn,q] = ν
(2)
u(q) ·

(
sR−1∏

i=0

qi(1− qi)
)α/2

· n2α + o(n2α).

A good place to start would be to compute the variance of fixed PM queries for
relaxed K-dt trees and then proceed to standard K-dt trees. In both cases the
variance is unknown even for t = 0.

Regarding the probability distribution of fixed PM queries in K-d trees, quad
trees and quad-K-d trees the existence of a limiting distribution for Pn,r/nα
remains to be proved. That has been done, using the contraction method,
only for the case of standard 2-d trees and 2-dimensional quad trees [BNS13].
More ambitious yet is to prove the following conjectures mentioned on page

30 of [DLM16a]. We denote by Xn
(d)−−→ X the convergence in distribution, as

n→∞, of the sequence of random variables Xn to the random variable X. The
first conjecture is that for multidimensional search trees, other than squarish
K-d trees, where no balancing of subtrees occurs:

(Pn,q
nα

)
(d)−−→ Γs(α+ 2)

Γ2s(α/2 + 1)


 ∏

i:qi 6=∗,qi 6∈{0,1}
(qi(1− qi))α/2


 · Φu(q), (8.3)

where Φu(q) is the random variable such that

P̂n,u
nα

(d)−−→ Φu(q).

The second conjecture is that for squarish K-d trees:

Pn,q
n1−ρ

(d)−−→ νρ (8.4)

for some constant νρ that depends on the ratio ρ = s/K.
Analogous to the analysis of fixed PM queries we could try to perform the

analysis of other associative queries with fixed parameters, for nearest neighbor
queries with a given fixed query point q and for orthogonal range queries with
a fixed hyperrectangle query Q = [`0, u0]× · · · × [`K−1, uK−1].
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We would like to be able to define combinatorial structures so that by ap-
plying the symbolic method of analytic combinatorics we could directly get the
generating function equations, at least for random PM queries. Some progress
was made in this direction by [MPP01] while analyzing the randomized PM in
relaxed K-d trees. One avenue would be to try to use multivariate generating
functions. For example, for the case s = 1:

P (z, y, u) =
∑

T

∑

0≤r≤|T |
P[T ]

z|T |

|T |! y
ruPr,T ,

where the first sum is over all the trees T under consideration, P[T ] is the
probability of generating the tree T ,|T | denotes the size of T , r is the rank of
the PM query (only one given that s = 1), and Pr,T is the cost of searching
rank r in T .

Finally, as we mentioned in [DLM18], a more general and ambitious goal is
to develop (semi-)automatic tools for the derivation of the recurrences or dis-
tributional equations, the corresponding integral equations for the expectation
and other higher order moments and even for the proof of the existence of the
limiting distribution.
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Appendix A

Theorems used in proofs

A.1 Roura’s Continuous Master Theorem

Roura’s Continuous Master Theorem (CMT) [Rou01] applies to a wide class of
full-history recurrences whose coefficients can be well-approximated asymptoti-
cally by a so-called shape function ω : [0, 1]→ R. The shape function describes
the coefficients only depending on the ratio j/n of the subproblem size j and
the current size n (not depending on n or j itself) and it smoothly continues
their behavior to any real number z ∈ [0, 1]. This continuous point of view also
allows computation of precise asymptotics for complex discrete recurrences via
fairly simple integrals.

Definition 16 (Roura [Rou01]). Let ω(z) ≥ 0 be a function over [0, 1] such

that
∫ 1

0
ω(z)dz exists and is at least 1. Furthermore, assume that there is some

µ < 0 such that
∫ 1

0
ω(z)zµdz also converges. Then we say that ω(z) is a shape

function.

Definition 17 (Roura [Rou01]). We say that

Fn =

{
bn for 0 ≤ n < N ,

tn +
∑

0≤k<n ωn,kFk for n ≥ N (A.1)

is a continuous recursive definition of Fn iff there exist some shape function
ω(z), some constant 0 < q ≤ 1 and some function Mn = Θ(nq) with integer
values such that, if we define zn,j = j/Mn for every 0 ≤ j ≤ Mn, In,j =
[zn,j · n, zn,j+1 · n) for every 0 ≤ j < Mn, and

εn,j =

∣∣∣∣∣
∑

k∈In,j
ωn,k −

∫ zn,j+1

zn,j

ω(z)dz

∣∣∣∣∣

for every 0 ≤ j < Mn, then
∑

0≤j<Mn
εn,j = O(n−ρ) for some ρ > 0.
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Lemma A.1 (Roura, Lemma 7.2 of [Rou01]). Let

ωn,k = A
(a1n+ b1k + c1) . . . (amn+ bmk + cm)

(n+ d1) . . . (n+ dm+1)

be the weights of a given recurrence as in (A.1), where A > 0 is a constant,
m ≥ 0 and ai, bi, ci are constants such that aibi 6= 0 for all 1 ≤ i ≤ m. Define

ω(z) := A(a1 + b1z) . . . (am + bmz).

If ∫ 1

0

ω(z)dz ≥ 1

then the given recurrence is continuous and ω(z) is its shape function.

Theorem A.2 (Continuous Master Theorem (CMT), Roura [Rou01]). Let Fn
be a function defined by a continuous recursive definition, where the toll function
tn satisfies tn ∼ Kna lnb(n) as n→∞ for constants K 6= 0, a ≥ 0 and b > −1.

With H = 1−
∫ 1

0
zaω(z) dz, we have the following cases:

1. If H > 0, then Fn ∼
tn
H

.

2. If H = 0, then Fn ∼ tn ln(n)

H̃
with H̃ = −(b+ 1)

∫ 1

0
za ln(z)ω(z) dz.

3. If H < 0 (including the case H = −∞), then Fn = O (nα) (Fn = Θ(nα),
if Fn ≥ 0 for every n ≥ 0), where α is the unique non-negative real solution

of
∫ 1

0
zαω(z) dz = 1.
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A.2 Flajolet and Odlyzko’s Transfer Lemma

The work of Flajolet and Odlyzko [FO90] includes several Transfer Theorems
where, as stated in [FS09], the “general objective is to translate an approxima-
tion of a function near a singularity into an asymptotic approximation of its
coefficients.” We refer the reader to Chapter VI of the magnum opus of Flajolet
and Sedgewick [FO90] for a full description of singularity analysis of generating
functions. The particular Transfer Lemma that we have used in our work is the
one below. It is written in terms of asymptotic equivalence [Bru58]:

f(x) ∼ g(x) ⇐⇒ lim
x→∞

f(x)

g(x)
= 1.

The asymptotic equivalence can be written in terms of Little-O notation:

f(x) ∼ g(x) ⇐⇒ f(x) = g(x)(1 + o(1)) = g(x) + o(g(x)).

Lemma A.3 (Flajolet and Odlyzko, Corollary 2 of [FO90], Corollary VI.1
of [FS09] ). Assume that f(z) is analytic in ∆\{1}, and that as z → 1 in ∆,

f(z) ∼ K(1− z)α,

with α /∈ {0, 1, 2, . . .}. Then, the Taylor coefficients of f satisfy

fn ∼
K

Γ(−α)
n−α−1.





Appendix B

Proofs

B.1 Random PM queries with extreme coordi-
nates in K-dt trees

In this section we are going to prove Theorem 6.1 and Theorem 6.2, so we restate
them here.

Theorem B.1. (Theorem 6.1). The expected cost P̂n,t,ρ,ρ0 of a random PM
query—where exactly s, 0 < s < K, coordinates are specified and exactly s0,
0 ≤ s0 ≤ s, of the specified coordinates are extreme—in a random relaxed K-dt
tree of size n satisfies

P̂n,t,ρ,ρ0 = βt,ρ,ρ0n
αt,ρ,ρ0 + o(nαt,ρ,ρ0 ),

where both βt,ρ,ρ0 and αt,ρ,ρ0 depend on t and the ratios ρ = s/K and ρ0 = s0/K.
The exponent αt,ρ,ρ0 is the unique solution in the interval (0, 1) of the equation:

ρ0
(t+ 2)t+1

2(α+ t+ 1)t+1
+ (ρ− ρ0)

(t+ 2)t+1

(α+ t+ 2)t+1
+ (1− ρ)

(t+ 2)t+1

(α+ t+ 1)t+1
= 1. (B.1)

Theorem B.2. (Theorem 6.2). The expected cost P̂n,t,u of a random PM query
with pattern u—where exactly s, 0 < s < K, coordinates are specified and exactly
s0, 0 ≤ s0 ≤ s, of the specified coordinates are extreme—in a random standard
K-dt tree of size n satisfies

P̂n,t,u = βt,un
αt,ρ,ρ0 + o(nαt,ρ,ρ0 ),

where βt,u depends on t and the query pattern u and αt,ρ,ρ0 depends on t and
the ratios ρ = s/K and ρ0 = s0/K due to it being the unique solution in the
interval (0, 1) of the equation:

(
(t+ 2)t+1

2(α+ t+ 1)t+1

)ρ0(
(t+ 2)t+1

(α+ t+ 2)t+1

)ρ−ρ0(
(t+ 2)t+1

(α+ t+ 1)t+1

)1−ρ

= 1. (B.2)
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We prove both theorems using the method developed in [Lau88; CLF89]
which follows classic asymptotic analysis methods [Bru58]. On a side note, the
first step used there was to establish recurrences for the probability generating
functions of the cost of the randomized partial match algorithm. To obtain
recurrences for the first two moments those recurrences are differentiated and
evaluated at z = 1.

Here we follow the second step used in [Lau88; CLF89], that is solve asymp-
totically the recurrence for the expected value. To achieve that the binomial
coefficients that appear as coefficients are approximated by polynomials and
lower order terms are discarded to obtain a system of asymptotic equations.
Then the sequences—discrete funnctions—are extended to infinitely differen-
tiable functions on R and such system is translated to a system of Euler-Cauchy
differential equations. The characteristic equation of this system gives the equa-
tion for α. Some solutions of the system are discarded because they would imply
cost functions that are non-increasing. Finally, it is verified that the candidate
solution is indeed a solution of the system of asymptotic equations. Here we
omit all those details explained in [Lau88] and just give a sketch of the proof.

Given that the proofs of the theorems above have many parts in common
we are going to show them together.

Proof. Sketch. Following [DL17] we define wt,n,j as the probability that in a
random K-dt tree of size n the left subtree has size j, 0 ≤ j ≤ n − 1. As
in [CLF89], we have:

wt,n,j =





1
n if n < 2t+ 1

(jt)(
n−1−j

t )
( n

2t+1)
if n ≥ 2t+ 1

(B.3)

with the symmetry wt,n,j = wt,n,n−1−j .
Given the fixed rule to assign discriminants to nodes in standard K-dt trees

we need to introduce some notation. We will abbreviate (i+ 1) mod K as i⊕ 1.
Let u(i) be u shifted to the left i times, in particular we have u(K) = u(0) = u.

Let gi(n) := P̂
(i)

n,t,u(i) be the expected cost of a PM query with pattern u(i) in a

random K-dt tree of size n where the root discriminates by the i coordinate and
where s0 specified coordinates of the query are extreme, 0 ≤ s0 ≤ s, and the
remaining s−s0 specified coordinates are randomly drawn from (0, 1). Without
loss of generality we assume that the extreme specified coordinates have value
0.

The first step is to set up a system of recurrences for gi(n). If ui = ∗ the
search has to continue in both subtrees. If ui = E the search has to continue
only in one subtree, given our assumption that the extreme specified coordinates
are 0 it is on the left subtree. If ui = S the search continues on the left
subtree with probability (j+1)/(n+1) and on the right subtree with probability
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(n− j)/(n+ 1). Therefore:

gi(n) = 1 +

n−1∑

j=0

wt,n,j

(
gi⊕1(j) + gi⊕1(n− j − 1)

)
if ui = ∗

gi(n) = 1 +

n−1∑

j=0

wt,n,jgi⊕1(j) if ui = E

gi(n) = 1 +

n−1∑

j=0

wt,n,j

(
j + 1

n+ 1
gi⊕1(j) +

n− j
n+ 1

gi⊕1(n− j − 1)

)
if ui = S

Taking into account the symmetry wt,n,j = wt,n,n−1−j :

gi(n) = 1 + 2

n−1∑

j=0

wt,n,jgi⊕1(j) if ui = ∗

gi(n) = 1 +

n−1∑

j=0

wt,n,jgi⊕1(j) if ui = E

gi(n) = 1 + 2

n−1∑

j=0

wt,n,j
j + 1

n+ 1
gi⊕1(j) if ui = S

In the case of relaxed K-dt trees instead of this system of recurrences we have a
single one because the discriminant coordinate is chosen randomly in each node,
so the probability of ui = ∗ is (K − s)/K, the probability of ui = E is s0/K
and the probability of ui = S is (s− s0)/K, so the recurrence is:

gi(n) = 1 + 2
K − s
K

n−1∑

j=0

wt,n,jgi⊕1(j)

+
s0

K

n−1∑

j=0

wt,n,jgi⊕1(j)

+ 2
s− s0

K

n−1∑

j=0

wt,n,j
j + 1

n+ 1
gi⊕1(j).

This is recurrence (4.3) of [DL17].
Following the steps done in [Lau88; CLF89], we obtain that gi(x) = βix

α

where, for standard K-dt trees:

βi =
(t+ 2)t+1

(α+ t+ 1)t+1
βi+1 if ui = ∗

βi =
(t+ 2)t+1

2(α+ t+ 1)t+1
βi+1 if ui = E

βi =
(t+ 2)t+1

(α+ t+ 2)t+1
βi+1 if ui = S,
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and for relaxed K-dt trees:

βi =

(
K − s
K

(t+ 2)t+1

(α+ t+ 1)t+1

+
s0

K

(t+ 2)t+1

2(α+ t+ 1)t+1

+
s− s0

K

(t+ 2)t+1

(α+ t+ 2)t+1

)
βi+1.

For standard K-dt trees, using ρ = s/K and ρ0 = s0/K:

β0 =

(
(t+ 2)t+1

2(α+ t+ 1)t+1

)ρ0(
(t+ 2)t+1

(α+ t+ 2)t+1

)ρ−ρ0(
(t+ 2)t+1

(α+ t+ 1)t+1

)1−ρ

βK .

(B.4)
Due to the cyclical way of choosing the discriminant coordinate in standard
K-dt trees we have that βK = β0. That constant cannot be zero, so we divide
by it and obtain equation (B.2).

For relaxed K-dt trees, using ρ = s/K and ρ0 = s0/K:

β0 =

(
ρ0

(t+ 2)t+1

2(α+ t+ 1)t+1
+ (ρ− ρ0)

(t+ 2)t+1

(α+ t+ 2)t+1
+ (1− ρ)

(t+ 2)t+1

(α+ t+ 1)t+1

)
β1.

(B.5)
Given that all the nodes choose the discriminant coordinate in the same way in
relaxed K-dt trees we have β1 = β0. Since it cannot be zero we divide by it and
obtain equation (B.1).
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B.2 Lemma for alternative proofs

As mentioned at the end of Section 3.1.3, during the work done to analyze fixed
PM queries in [DLM16a] we discovered a lemma that significantly simplifies that
analysis because it leads to a proof that does not require knowing the expected
cost of random PM queries with extreme specified coordinates, (Theorem 5 of
that article).

In [DLM16a] the expected cost of random PM queries with extreme specified
coordinates is only used to prove—by mathematical induction—constraint (c)
of Proposition 1 (see page 36 of [DLM16a]). Then that constraint is used only
to obtain the initial condition φ(0) = 0 (see page 38 of [DLM16a]). Finally,
we make use of such initial condition just to apply the same procedure used
in [DJM14] to solve the hypergeometric differential equation that is obtained.

Lemma B.1 below allows us to solve the differential equation that appears
on page 38 of [DLM16a]—and similar ones in [DJM14; DLM18]—without using
the initial condition φ(0) = 0 by taking advantage of the symmetry of constraint
(b) of Proposition 1 of [DLM16a] and analogous ones in the other papers. We
summarize that constraint below by the condition φ(z) = φ(1− z), which ulti-
mately comes from the symmetry that to search for rank r has the same cost
as to search for rank n− r.
Lemma B.1. Given a function φ : R→ R such that φ(z) = φ(1−z), α ∈ (0, 1)
and δ = α+2

2 , the differential equation

z(1− z)φ′′(z) + (α− δ)(2z − 1)φ′(z)− α(α+ 1− 2δ)φ(z) = 0 (B.6)

has a general solution of the form

φ(z) = µ (z(1− z))α/2

where µ ∈ R is a constant.

Proof. Equation (B.6) is an homogeneous hypergeometric differential equation
[AS64] [DLMF, Sec. 15.10]:

z(1− z)d
2w

dz2
+ [c− (a+ b+ 1)z]

dw

dz
− abw = 0

with a = −α, b = 2δ − α − 1 and c = δ − α. Since 0 < α < 1 and δ = α+2
2

we have that c is not an integer, therefore in the neighbourhood of the singular
point 0 we have the general solution:

φ(z) = C1 · 2F1

( −α, 2δ − α− 1

δ − α

∣∣∣∣ z
)

+ C2 · z1−δ+α · 2F1

(
1− δ, δ
α+ 2− δ

∣∣∣∣ z
)

where C1 and C2 are arbitrary constants and 2F1(a,bc |z) denotes the standard
hypergeometric function [AS64; GKP94] [DLMF, Chap. 15]. Using δ = α+2

2 the
second term simplifies to:

C2 · zα/2 · 2F1

(
−α/2, α+2

2
α+2

2

∣∣∣∣∣ z
)

= C2 (z(1− z))α/2

https://dlmf.nist.gov/15.10
https://dlmf.nist.gov/15
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where, in the last step, we have used the identity [AS64] [DLMF, Eq. 15.4.6]:

2F1

(
a, b

b

∣∣∣∣ z
)

= 2F1

(
b, a

b

∣∣∣∣ z
)

= (1− z)−a (B.7)

Therefore the general solution is:

φ(z) = C1 · 2F1

( −α, 1
2−α

2

∣∣∣∣ z
)

+ C2 (z(1− z))α/2

Given that φ(z) = φ(1 − z) and that the second term also has that symmetry
it must be the case that the first term has it as well:

2F1

( −α, 1
2−α

2

∣∣∣∣ z
)

= 2F1

( −α, 1
2−α

2

∣∣∣∣ 1− z
)

(B.8)

Given that 0 < α < 0 we have 2−α
2 − (−α) − 1 = α/2 > 0 and 2−α

2 < 1,
therefore we can use the connection between the hypergeometric functions of z
and 1 − z [Bai64] (where the formula below is given subject to the conditions
<(c− a− b) > 0 and <(c) < 1) [DLMF, Eq. 15.10.21]:

2F1

(
a, b

c

∣∣∣∣ z
)

=
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) · 2F1

(
a, b

a+ b+ 1− c

∣∣∣∣ 1− z
)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
· 2F1

(
c− a, c− b

1 + c− a− b

∣∣∣∣ 1− z
)

(1− z)c−a−b

to obtain that

2F1

( −α, 1
2−α

2

∣∣∣∣ z
)

=
Γ( 2−α

2 )Γ(α2 )

Γ(α+2
2 )Γ(−α2 )

· 2F1

( −α, 1
2−α

2

∣∣∣∣ 1− z
)

+
Γ( 2−α

2 )Γ(−α2 )

Γ(−α)Γ(1)
· 2F1

(
α+2

2 ,−α2
α+2

2

∣∣∣∣∣ 1− z
)

(1− z)α/2

Using (B.7) again and also (B.8):

2F1

( −α, 1
2−α

2

∣∣∣∣ z
)

=
Γ( 2−α

2 )Γ(α2 )

Γ(α+2
2 )Γ(−α2 )

· 2F1

( −α, 1
2−α

2

∣∣∣∣ z
)

+
Γ( 2−α

2 )Γ(−α2 )

Γ(−α)Γ(1)
· (z(1− z))α/2

Therefore:

2F1

( −α, 1
2−α

2

∣∣∣∣ z
)

= C3 · (z(1− z))α/2

where

C3 =
Γ(α+2

2 )Γ( 2−α
2 )Γ2(−α2 )(

Γ(α+2
2 )Γ(−α2 )− Γ( 2−α

2 )Γ(α2 )

)
Γ(−α)Γ(1)

https://dlmf.nist.gov/15.4#E6
https://dlmf.nist.gov/15.10#E21
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Making µ = C1C3 + C2 we obtain

φ(z) = µ (z(1− z))α/2 .
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[Rou01] Salvador Roura. “Improved master theorems for divide-and-conquer
recurrences”. In: J. ACM 48.2 (2001), pp. 170–205. doi: 10.1145/
375827.375837.

[Sam90] Hanan Samet. The Design and Analysis of Spatial Data Structures.
Addison-Wesley, 1990.

[Sam06] Hanan Samet. Foundations of Multidimensional and Metric Data
Structures. Morgan & Kauffman Publ., 2006.

[Sea49] H. L. Seal. “The historical development of the use of generating
functions in probability theory”. In: Bulletin de l’Association des
Actuaires Suisses 49 (1949), pp. 209–228.

[Sin69] Richard C. Singleton. “Algorithm 347: an efficient algorithm for
sorting with minimal storage [M1]”. In: Commun. ACM 12.3 (1969),
pp. 185–187. doi: 10.1145/362875.362901.

http://www.freidok.uni-freiburg.de/volltexte/13/pdf/13%5C_1.pdf
http://www.freidok.uni-freiburg.de/volltexte/13/pdf/13%5C_1.pdf
https://doi.org/10.1002/1098-2418(200010/12)17:3/4<403::AID-RSA11>3.0.CO;2-K
https://doi.org/10.1002/1098-2418(200010/12)17:3/4<403::AID-RSA11>3.0.CO;2-K
http://dlmf.nist.gov/
https://doi.org/10.1016/0020-0190(82)90027-8
https://doi.org/10.1016/0196-6774(85)90003-3
https://doi.org/10.1051/ita/1991250100851
https://doi.org/10.1145/3232535
https://doi.org/10.1145/375827.375837
https://doi.org/10.1145/375827.375837
https://doi.org/10.1145/362875.362901


196 BIBLIOGRAPHY

[Sul12] Henning Sulzbach. “On a Functional Contraction Method”. PhD
thesis. Goethe Universität Frankfurt am Main, 2012.

[Tre04] Christopher Tremblay. Mathematics for Game Developers. Gale vir-
tual reference library. Thomson Course Technology/Premier Press,
2004. isbn: 9781592000388.

[WW76] A. Walker and Derick Wood. “Locally Balanced Binary Trees”. In:
Comput. J. 19.4 (1976), pp. 322–325. doi: 10.1093/comjnl/19.4.322.

[Wil90] Herbert S. Wilf. generatingfunctionology. Academic Press, 1990.

[Zam00] Carlos Zamora-Cura. “Analysis of Random Trees”. PhD thesis.
McGill University, 2000.

[Zwi97] Daniel Zwillinger. Handbook of Differential Equations. 3rd ed. Aca-
demic Press, 1997.

https://doi.org/10.1093/comjnl/19.4.322

	Abstract
	Resumen
	Resum
	Acknowledgements
	I Introduction
	II Preliminaries
	1 Associative Queries and Search Trees
	1.1 Associative Queries
	1.1.1 Nearest neighbor query
	1.1.2 Orthogonal Range Query
	1.1.3 Partial Match Query

	1.2 Trees and Point Search Trees
	1.3 Multidimensional Search Trees
	1.3.1 A Taxonomy
	1.3.2 Quad trees
	1.3.3 K-d trees
	1.3.4 K-dt trees
	1.3.5 Quad-K-d trees

	1.4 Search Algorithms

	2 Probabilistic Model
	2.1 Random Search Tree Model
	2.2 Queries and Ranks
	2.3 Random Variables for Partial Match Queries
	2.3.1 Random Partial Match Queries
	2.3.2 Randomized Partial Match Algorithm
	2.3.3 Fixed Partial Match Queries
	2.3.4 Random PM Queries vs Randomized PM Algorithm
	2.3.5 Random PM Queries vs Fixed PM Queries
	2.3.6 Fixed PM Queries vs Fixed PM Ranks


	3 Methods
	3.1 Mathematical Tools
	3.1.1 Generating functions
	3.1.2 Random Partial Match Queries
	3.1.3 Fixed Partial Match Queries

	3.2 Experiments

	4 State of the Art
	4.1 Random Partial Match Queries
	4.1.1 Standard K-d trees
	4.1.2 Standard K-dt trees
	4.1.3 Quad trees
	4.1.4 Relaxed K-d trees
	4.1.5 Squarish K-d trees

	4.2 Fixed Partial Match Queries
	4.2.1 Quad trees
	4.2.2 Relaxed K-d trees
	4.2.3 Standard K-d trees



	III Results
	5 K-d trees
	5.1 Article: Fixed PM Queries in Relaxed K-d Trees
	5.2 Article: Fixed PM Queries in K-d Trees

	6 K-dt trees
	6.1 Article: PM Queries in Relaxed K-dt trees

	7 Quad trees
	7.1 Article: Fixed PM Queries in Quadtrees

	8 Quad-K-d trees
	8.1 Article: Random PM in Quad-K-d Trees


	IV Conclusions and Open Problems
	V Appendices
	A Theorems used in proofs
	A.1 Roura's Continuous Master Theorem
	A.2 Flajolet and Odlyzko's Transfer Lemma

	B Proofs
	B.1 Random PM queries with extreme coordinates in K-dt trees
	B.2 Lemma for alternative proofs


	Bibliography
	p. 123.pdf
	Regarding random PM queries, we report here some further, unpublished, advances that we have achieved after [DL17] for both relaxed and standard K-dt trees.  We denote by xk the rising factorial power x(x+1)     (x+k −1) [GKP94].
	Theorem 6.1 is a more precise version of Theorem 4.1 of [DL17] because in
	= Θ (nα). Theorem 5 of [DLM16a] is
	Theorem 4.2 is the particular case ρ0 = 0 of Theorem 6.2 and Theorem 6 of [DLM16a] is the particular case t = 0 of Theorem 6.2.
	This article is [DL17]:

	p. 123.pdf
	Regarding random PM queries, we report here some further, unpublished, advances that we have achieved after [DL17] for both relaxed and standard K-dt trees.  We denote by xk the rising factorial power x(x+1)     (x+k −1) [GKP94].
	Theorem 6.1 is a more precise version of Theorem 4.1 of [DL17] because in
	= Θ (nα). Theorem 5 of [DLM16a] is
	Theorem 4.2 is the particular case ρ0 = 0 of Theorem 6.2 and Theorem 6 of [DLM16a] is the particular case t = 0 of Theorem 6.2.
	This article is [DL17]:




