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Abstract

Image generation is arguably one of themost attractive, compelling, and challenging
tasks in computer vision. Among the methods which perform image generation,
generative adversarial networks (GANs) play a key role. The most common image
generation models based on GANs can be divided into twomain approaches. The
first one, called simply image generation takes random noise as an input and
synthesizes an image which follows the same distribution as the images in the
training set. The second class, which is called image-to-image translation, aims to
map an image from a source domain to one that is indistinguishable from those in
the target domain. Image-to-image translation methods can further be divided into
paired and unpaired image-to-image translation based on whether they require
paired data or not. In this thesis, we aim to address some challenges of both image
generation and image-to-image generation.

GANs highly rely upon having access to vast quantities of data, and fail to
generate realistic images from random noise when applied to domains with few
images. To address this problem, we aim to transfer knowledge from a model
trained on a large dataset (source domain) to the one learned on limited data (target
domain). We find that both GANs and conditional GANs can benefit frommodels
trained on large datasets. Our experiments show that transferring the discriminator
is more important than the generator. Using both the generator and discriminator
results in the best performance. We found, however, that this method suffers from
overfitting, since we update all parameters to adapt to the target data. We propose
a novel architecture, which is tailored to address knowledge transfer to very small
target domains. Our approach effectively explores which part of the latent space
is more related to the target domain. Additionally, the proposed method is able to
transfer knowledge frommultiple pretrained GANs.

Although image-to-image translation has achieved outstanding performance, it
still faces several problems. First, for translation between complex domains (such
as translations between different modalities) image-to-image translation methods
require paired data. We show that when only some of the pairwise translations have
been seen (i.e. during training), we can infer the remaining unseen translations
(where training pairs are not available). We propose a new approach where we
align multiple encoders and decoders in such a way that the desired translation can
be obtained by simply cascading the source encoder and the target decoder, even
when they have not interacted during the training stage (i.e. unseen). Second, we
address the issue of bias in image-to-image translation. Biased datasets unavoid-
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ably contain undesired changes, which are due to the fact that the target dataset
has a particular underlying visual distribution. We use carefully designed semantic
constraints to reduce the effects of the bias. The semantic constraint aims to enforce
the preservation of desired image properties. Finally, current approaches fail to
generate diverse outputs or perform scalable image transfer in a single model. To al-
leviate this problem, we propose a scalable and diverse image-to-image translation.
We employ random noise to control the diversity. The scalabitlity is determined by
conditioning the domain label.

Key words: computer vision, deep learning, imitation learning, adversarial
generative networks, image generation, image-to-image translation.
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Resumen

La generación de imágenes es una de las tareas más atractivas, fascinantes y com-
plejas en la visión por computador. De los diferentes métodos para la generación de
imágenes, las redes generativas adversarias (o también llamadas "GANs") juegan un
papel crucial. Los modelos generativos más comunes basados en GANs se pueden
dividir en dos apartados. El primero, simplemente llamado generativo, utiliza como
entrada ruido aleatorio y sintetiza una imagen que sigue la misma distribución que
las imágenes de entrenamiento. En el segundo apartado encontramos la traducción
de imagen a imagen, cuyo objetivo consiste en transferir la imagen de un dominio
origen a uno que es indistinguible del dominio objetivo. Los métodos de esta ca-
tegoria de traducción de imagen a imagen se pueden subdividir en emparejados
o no emparejados, dependiendo de si se requiere que los datos sean emparejados
o no. En esta tesis, el objetivo consiste en resolver algunos de los retos tanto en la
generación de imágenes como en la traducción de imagen a imagen.

Las GANs dependen en gran parte del acceso a gran cantidad de datos, y fallan al
generar imágenes realistas a partir de ruido aleatorio cuando se aplican a dominios
con pocas imágenes. Para solucionar este problema, proponemos transferir el
conocimiento de unmodelo entrenado a partir de un conjunto de datos conmuchas
imágenes (dominio origen) a uno entrenado con datos limitados (dominio objetivo).
Encontramos que tanto las GANs como las GANs condicionales pueden beneficiarse
de los modelos entrenados con grandes conjuntos de datos. Nuestros experimentos
muestran que transferir el discriminador es más importante que hacerlo para el
generador. Usar tanto el generador como el discriminador resulta en un mayor
rendimiento. Sin embargo, este método sufre de overfitting, dado que actualizamos
todos los parámetros para adaptar el modelo a los datos del objetivo. Para ello
proponemos una arquitectura nueva, hecha a medida para resolver la transferencia
de conocimiento en el caso de dominios objetivo conmuy pocas imágenes. Nuestro
método explora eficientemente qué parte del espacio latente está más relacionado
con el dominio objetivo. Adicionalmente, elmétodo propuesto es capaz de transferir
el conocimiento a partir de múltiples GANs pre-entrenadas.

Aunque la traducción de imagen a imagen ha conseguido rendimientos extra-
ordinarios, tiene que enfrentarse a diferentes problemas. Primero, para el caso de
la traducción entre dominios complejos (cuyas traducciones son entre diferentes
modalidades) se ha observado que los métodos de traducción de imagen a ima-
gen requieren datos emparejados. Demostramos que únicamente cuando algunas
de las traducciones disponen de esta información (i.e. durante el entrenamien-
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to), podemos inferir las traducciones restantes (cuyos pares no están disponibles).
Proponemos un método nuevo en el cual alineamos diferentes codificadores y
decodificadores de imagen de una manera que nos permite obtener la traducción
simplemente encadenando el codificador de origen con el decodificador objetivo,
aún cuando estos no han interactuado durante la fase de entrenamiento (i.e. sin dis-
poner de dicha información). Segundo, existe el problema del sesgo en la traducción
de imagen a imagen. Los conjuntos de datos sesgados inevitablemente contienen
cambios no deseados, eso se debe a que el dataset objetivo tiene una distribución
visual subyacente. Proponemos el uso de restricciones semánticas cuidadosamente
diseñadas para reducir los efectos del sesgo. El uso de la restricción semántica
implica la preservación de las propiedades de imagen deseada. Finalmente, los
métodos actuales fallan en generar resultados diversos o en realizar transferencia
de conocimiento escalables a un único modelo. Para aliviar este problema, propo-
nemos una manera escalable y diversa para la traducción de imagen a imagen. Para
ello utilizamos ruido aleatorio para el control de la diversidad. La escalabilidad es
determinada a partir del condicionamiento de la etiqueta del dominio.

Palabras clave: visión por computador, aprendizaje profundo, aprendizaje por
imitación, redes generativas adversarias, generación de imágenes, traducción de
imagen a imagen
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Resum

La generació d’imatges és una de les tasques més atractives, fascinants i complexes
de la visió per computador. Dels diferents mètodes per la generació d’imatges, les
xarxes generatives adversaries (o també anomenades "GANs") juguen un paper
crucial. Els mètodes generatius més comuns basats en GANs es poden dividir en
dos apartats. El primer, simplement anomenat generatiu, utilitza soroll aleatori
i sintetitza una imatge per tal de seguir la mateixa distribució que les imatges
d’entrenament. En el segon apartat trobem la traducció d’imatge a imatge, on
el seu objectiu consiteix en transferir la imatge d’un domini origen a un que és
indistingible d’un domini objectiu. Els mètodes d’aquesta categoria de traducció
d’imatge a imatge es poden subdividir en emparellats o no emparellats, depenent
de si requereixen que les dades siguin emparellades o no. En aquesta tesi, l’objectiu
consisteix en resoldre alguns dels reptes tant en la generació d’imatges com en la
traducció d’imatge a imatge.

Les GANs depenen en gran part de l’accés a una gran quantitat de dades, i fallen
al generar imatges realistes a partir del soroll aleatori quan s’apliquen a dominis
amb poques imatges. Per solucionar aquest problema, la solució proposada con-
sisteix en transferir el coneixement d’unmodel entrenat a partir d’un conjunt de
dades amb moltes imatges (domini origen) a un entrenat amb dades limitades
(domini objectiu). Hem trobat que tant les GANs com les GANs condicionals po-
den beneficiar-se dels models entrenats amb grans conjunts de dades. Els nostres
experiments mostren que transferir el discriminador és més important que fer-ho
per el cas del generador. Utilitzar tant el generador com el discriminador resulta
en un millor rendiment. No obstant, aquest mètode sufreix d’overfitting, donat
que actualitzem tots els paràmetres per adaptar el mètode a les dades de l’objectiu.
Proposem una arquitectura nova, feta a mesura per tal de resoldre la transferència
de coneixement per el cas de dominis objectius ambmolt poques imatges. El nostre
mètode explora eficientment quina part de l’espai latent està més relacionat amb
el domini objectiu. Adicionalment, el mètode proposat és capaç de transferir el
coneixement a partir de múltiples GANs pre-entrenades.

Tot i que la traducció de imatge a imatge ha conseguit rendiments extraordina-
ris, ha d’enfrentarse a diferents problemes. Primer, per el cas de la traducció entre
dominis complexes (on les traduccions són entre diferents modalitats) s’ha vist
que els mètodes de traducció de imatge a imatge requereixen dades emparellades.
Demostrem que únicament quan algunes de les traduccions disposen de la infor-
mació (i.e. durant l’entrenament), podem inferir les traduccions restants (on les
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parelles no estan disponibles). Proposem unmètode nou en el cual alineem dife-
rents codificadors y decodificadors d’imatge d’una manera que ens permet obtenir
la traducció simplement encadenant el codificador d’origen amb el decodificador
objectiu, encara que aquests no hagin interactuat durant la fase d’entrenament (i.e.
sense disposar d’aquesta informació). Segon, existeix el esbiaixament en la traduc-
ció de imatge a imatge. Els datasets esbiaixats inevitablement contenen canvis no
desitjats, això es deu a que el dataset objectiu té una distribució visual subjacent.
Proposem l’ús de restriccions semàntiques curosament dissenyades per reduir els
efectes de l’esbiaixament. L’ús de la restricció semàntica implica la preservació de
les propietats de les imatges desitjades. Finalment, els mètodes actuals fallen en
generar resultats diversos o en realitzar transferència de coneixement escalable
a un únic model. Per aliviar aquest problema, proposem una manera escalable
i diversa per a la traducció de imatge a imatge. Utilitzem el soroll aleatori per el
control de la diversitat. La escalabilitat és determinada a partir del condicionament
de la etiqueta del domini.

Paraules clau: visió per computador, aprenentatge profund, aprenentatge per
imitació, xarxes generatives adversaries, generació d’imatges, traducció d’imatge a
imatge
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1 Introduction

Images play a crucial role in our life, as we take photos or videos, watch movies or
sport matches, conduct video chat and play video games. Besides, the companies
which provide social media services connecting people face huge amounts of image
data on a daily basis. For example, more than 95 million photos and videos are
uploaded to Instagram every day, and photo uploads total over 300 million per day,
according to Mary Meeker’s annual Internet Trends report [2]. That is 657 billion
photos per year.

The desire to automatically extract information from these large amounts of
image data results in the research field of Computer Vision, since the raw image
data contains limited information. Researchers proposed different methods to
understand images and videos. For example, image classification and semantic
segmentation assign labels to images and pixels of images respectively; an object
detection model can identify which of a known set of objects might be present and
provide information about their positions within the image; video tracking is the
process of locating a moving object (or multiple objects) over time in a video.

In recent years, researchers have made significant advances in the field of image
generation. These methods require the machine to synthesize visual objects which
are indistinguishable from real objects. The generation could be according to a text
description [192], a list of attributes [31, 117, 130] or based on an input image. In
case of an input image these algorithms are known as image-to-image translation
methods. The field of image generation is important for many applications, includ-
ing transformations between different modalities (e.g., from RGB to depth [99]),
between domains (e.g., gray to color images [196], horses to zebras [206]) or editing
operations (e.g., artistic style transfer [49]). In this dissertation, we focus on image
generation.

Several different approaches have been developed for image generation. Some
of these maximize the log likelihood, like the Boltzmann machines [148]. These
contain likelihood functions and employ numerous approximations to the likeli-
hood gradient. Generative stochastic networks [14] provide a model that is trained
with backpropagation [91]. Kingma et al. [83] proposed variational autoencoders
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Chapter 1. Introduction

Figure 1.1 – A GAN is composed of two players who play a minimax game [54].

(VAEs), allowing one to backpropagate through Gaussian distributions with finite
variance. Generative Adversarial Networks (GANs) [54] play a minimax game with
two players that aim to find a saddle point, which is a minimum with respect to
one player’s strategy and a maximumwith respect to the otherplayer’s strategy (see
figure 1.1). In this dissertation we focus on GANs to conduct image generation.

1.1 Basics of Image Generation and Image Translation

In this thesis, we propose several improvements for GANs and image-to-image
translation methods. We first shortly introduce the basics of both. The thesis
is divided in two parts, where the first part focuses on improvements to image
generation with GANs, and the second part focuses on image-to-image methods.

1.1.1 Image Generation with Generative Adversarial Networks

As shown in Figure 1.2, a GAN is a framework consisting of a deep generative model
and a discriminative model, both of which play a minimax game. The generator
takes random noise as an input, and synthesizes the fake sample using several
network layers (e.g. fully connected layers and convolutional layers). The aim
of the generator is to generate samples that are similar to the real samples. The
discriminator, which also contains several layers, takes both fake and real samples
as input, and aims to distinguish between the real and fake sample generated by
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1.1. Basics of Image Generation and Image Translation

Figure 1.2 – Framework of a GAN [54]. A GAN contains of a generator and a discriminator.
The generator takes random noise as input and outputs a fake image. The discriminator
takes both a fake and real image as input, and aims to distinguish between them.

the generator.
After its initial introduction many works have proposed improvements. Opti-

mizing GANs is hard, since they often face mode collapse and unstable training
problems. Several methods focus on fixing these issues [10, 56, 110, 116, 149].
Besides, current methods design new architectures to synthesize high resolution
images [19, 36, 76, 77, 132]. For example, DCGAN [132] proposed a new architecture
which resulted in more stable training. Their generator architecture was based on
blockswhich consist of a fully connected layer, convolutional layer, batch normaliza-
tion layer and Relu layer. Their discriminator architecture used blocks consisting of
a convolutional, a batch normalization, a relu and fully connected layer. The archi-
tecture was further improved by Progressive GAN [76] which generates high-quality
images by means of synthesizing images progressively from low to high-resolution.
Finally, BigGAN [19] successfully performs conditional high-realistic generation
from ImageNet [35] by introducing orthogonal regularization to the generator.
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Figure 1.3 – Paired (left) and unpaired (right) image-to-image translation framework. The
paired image-to-image translation maps the input image from source domain to target
domain, and requires the corresponding ground truth in target domain. The unpaired image-
to-image translation relaxes this limitation, and preforms image translation without the need
of paired data.

1.1.2 Image-to-Image Translation with Generative Adversarial Net-
works

The goal of image-to-image translation is to learn a mapping between images of
a source domain and images of a target domain. In the left of figure 1.3 we show
the basic steps of image-to-image translation. In this example the model aims to
map an edge image to a photo-realistic shoe image. Specifically, the generator is
composed of both an encoder and a decoder. The encoder takes the edge image as
input, andmaps it into a latent representation. Next, the decoder maps the latent
representation into the generated image (also called fake image). The discriminator
takes both fake and real images as input, and aims to distinguish them.

The initial work on image-to-image translation was based on the assumption
of paired image data [70]. Paired image data refers to the fact that we have access
to pairs of data, which represent the same instance in both domains. For many
applications, however, we do not have access to paired image data. For example,
when we would like to transfer horses to zebras, we do not have images where
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both animals are in the exact same pose and surroundings. In the left of figure 1.3,
we presented the standard framework of paired image-to-image translation. This
model relies on paired data, and is able to be optimized by both mean square error
(MSE) and adversarial loss. The right of figure 1.3 shows the framework of unpaired
image-to-image translation, which maps the input sample from source domain
into target domain without requirement of paired data. This model uses the cycle
consistency loss [206] as well as adversarial loss. The consistency loss ensures that
when the system maps the input image from the source domain into the target
domain and back, we obtain the input image again.

1.2 Challenges of transferring and learning represen-
tations for image generation and translation

1.2.1 Limitations of image generation methods

In this section, we highlight several shortcomings of the state-of-the-art for image
generation with GANs. This is the motivation for Part I of the thesis.

Part of the impressive results which have been recently obtained by GANs
is due to the fact that they are based on very large neural networks, trained on
large datasets. For instance, Spectral Normalization GAN (SNGAN) with projection
discriminator [117] for 128× 128 pixel images has 90M trainable parameters of
both the generator and the discriminator. BigGAN [19] trained on ImageNet [35]
for 128× 128 pixel images needs about 300M parameters. Progressive Growing
GANs [76] (PGAN) requires about 487M parameters when it synthesizes high reso-
lution images (1024×1024 pixels). These models benefit from the large model to
improve performance of image generation. Besides, in order to optimize such large
network and generate highly realistic images, a large dataset is required to train
generative models [19, 76, 77, 116, 117]. For example, PGAN generates human faces
and is trained on the Celeba-HQ dataset [105], which contains 30M celebrity faces.
BigGAN [19] obtains highly realistic results based on the Imagenet dataset, which
has a total of about 1M. Besides, they also train on JFT-300M dataset. However,
labeling large-scale datasets is costly and time consuming, and a conventional
generative model cannot be applied to a domain in which collecting sufficient
data is difficult. These problems make those methods less applicable in practice.
Therefore, exploiting pretrained generative models for training on small domains is
an urgent research problem.

Transfer learning plays a key role in computer vision. It allows us to learn a large
and deep model with limited data. For example, a common practice to improve
performance is to use a feature extractor model initialized with one trained on a
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large dataset (sourcemodel) [101, 102, 125, 186, 187, 195]. Then themodel is trained
with a smaller learning rate with the small target dataset. This operation is called
fine-tuning [125]. Even when the source dataset is from a completely different
domain, the final performance after fine tuning is normally still better than if the
model was trained from scratch with only the small target dataset. This is due to
the fact that the representations learned on the large dataset are generally usefull
for visual tasks, and therefore give a good initialization from which to start training
on a new dataset, even if only few samples are available for the target domain.

In this thesis, we focus on several specific challenges and limitations regarding
transfer learning for generative models.

Transfer learning by fine-tuning generative models While discriminative mod-
els for tasks with small datasets are customary initialized with a pre-train model
(e.g. ImageNet), GANs are almost always trained from scratch. To the best of our
knowledge, training GANs with limited data using a pre-trained model from some
large source datates (e.g. Imagenet, Places [203]) had never been studied. As we
discussed above, the current GANmodels require a large amount of parameters to
generate realistic images, which makes training very challenging. This is especially
severe when training data is limited, resulting in unrealistic generated images and
severe overfitting.

Efficient sampling and training. Finetuning of pretrained GANs might not be
optimal. Actually somemore recent works observe several problems [51, 122, 173].
They note that this method suffers from overfitting and mode collapse, since all
parameters of the models are updated with limited data. Some recent works aim to
address this problem by only updating a part of the network. Giacomello et al. [51]
observed that the two networks (generator and discriminator) in a GAN are trained
towards opposing objectives, requiring back-propagating information through
both networks, which is computationally expensive. They develop a method to
directly train the extreme layers in the generator and discriminator against each
other, by-passing all the intermediate layers. Noguchi and Harada [122] address the
limitations by only updating the batch normalization parameters (scale and shift)
of the generator. Although less susceptible to mode collapse, this method suffers
from another problem that largely limits the capacity of transferring knowledge,
since updating only the parameters of the batch normalization allows to change low
level texture and style changes but fails to learn more structural changes, such as
shape changes. Therefore, exploring strategies which only require few parameters
to be learned to transfer knowledge to a new domain are expected to improve over a
simple fine-tuning strategy (which allows all parameters in the network to change).

Multi-source transfer learning. Current methods only consider transferring
knowledge from one pre-trained generative model instead of multiple models.
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However, for many applications it might be beneficial to transfer knowledge from
multiple domains. Both Imagenet [35] and Places [203] contain different objects,
and the pre-trained models acquired from both datasets include different informa-
tion. When we train generativemodels on a dataset that has some overlap with both
datasets, transferring the information from both pre-trained models is expected to
be beneficial.

1.2.2 Limitations of image-to-image translation methods

In this section, we highlight several shortcomings of the state-of-the-art for image-
to-image translation methods. This is the motivation for Part II of the thesis.

Recently, GANs have shown remarkable performance on a wide variety of image-
to-image translation tasks [68, 70, 131, 181, 206], super-resolution [92], image com-
pression [138], and conditional image generation such as text to image [191, 192],
tracking [194], segmentation to image [76, 167]. However, there are still somemajor
challenges which hamper the use of these methods for some real-world applica-
tions.

Transferring translations and inferring unseen translations. Image-to-image
translation usually distinguishes between twomain directions: paired and unpaired
image-to-image translation. However, for many real-world cases we have access
to multiple domains some of which are paired and some of which are unpaired.
Consider the case where we would like to perform image-to-image translation
betweenmultiplemodalities but only have access to paired data for somemodalities.
This results in the research question: can we exploit the paired modalities to learn
the translationmodel between the unpaired modalities? As an example consider
the three domains (RGB, semantic segmentation, and depth) as a particular case.
Here, we might want to map depth to semantic segmentation, with the constraint
that we do not have explicit depth-segmentation pairs during training time. We
only have access to RGB-sementation and RGB-depth pairs, i.e. RGB images and
the corresponding semantic segmentation, and RGB images and the corresponding
depth images. In this case, we need to explore the principle that using knowledge
acquired between paired imagesmakes it possible tomap between unpaired images
(depth image and semantic segmentation). We call this unseen image-to-image
translation, and we name this setting zero-pair translation.

Biases in image-to-image translation. Data-driven models tend to replicate the
biases underlying the dataset, and image-to-image translation is no exception. Bias
in image-to-image translation often manifests as unwanted changes of some visual
properties. For example, if the image-to-image translation task is mapping faces
withoutmake-up (source domain) to faces withmake-up (target domain), we expect
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Scalability

Diversity

Figure 1.4 – Example of scalable and diverse image translations for various attributes [140].

the model to only focus onmappingmake-up instead of other unwanted properties
(e.g. gender). The training samples, however, contain males and females in the
domain without make-up, but there is a strong bias towards females in make-up
images. The translation not only adds make-up to the generated face (wanted
property), but it also changes the gender (the unwanted properties). The internal
biases in the input and output training sets determine what particular visual and
semantic properties of the input image are changed. With such biases, the translator
learns to generate female faces with make-up even when the input is a male face.
While the change in the make-up attribute is desired, the change in gender is not.
Therefore, addressing biases in image-to-image translation is a relevant research
topic.

Scalable and Diverse Cross-domain Image Translation. Recent research trends
address two limitations of earlier image-to-image translation approaches, namely
diversity and scalability. Diversity is the property that a single input image can be
mapped into multiple plausible outputs in a specific target domain. Scalability
is the property that a single model can project an input image into varying target
domains. In figure 1.4, we show an example of diverse and scalable image trans-
lations. Current methods [68, 131] improve over the single-sample limitation of
deterministic models by generating diverse translations given an input image. The
scalability problem has also been successfully alleviated [31, 130], enabling transla-
tions across several domains using a single model. However, current methods fail
to perform image-to-image translation with scalability and diversity using a simple
and compact network.

8



1.3. Objectives and approach

1.3 Objectives and approach

Above we have indicated several limitations of computer vision in image generation.
In this dissertation, we propose methods to address these limitations. In Part 1 we
aim to transfer knowledge to efficiently train generative models on small dataset.
Then we introduce the proposed methods to tackle several problems for image-to-
image translation in Part 2.

1.3.1 Objectives and approach for image generation

The above discussion motivates our approach to transferring knowledge for gen-
erative models. We firstly explore fine-tuning the generative model, from which
we learn that using pre-trained models for GANs is effective to generate more real-
istic images. Then, we propose a newmethod to overcome the issue that directly
performing fine-tuning leads to overfitting.

Pretrained generative models for domains with limited data Using the pre-trained
networks to initialize the target domain has been widely accepted for visual prob-
lems, such as image classification, image detection, semantic segmentation and
so on. However, knowledge transfer has not been studied within the context of
generative deep networks. Besides, current generative models, which generate
high-quality images, benefit from large-scale models and datasets. When given
small target dataset, GANs fail to synthesize realistic images. Therefore, we study
knowledge transfer for GANs.

In chapter 2, we propose the usage of pre-trained networks to transfer knowl-
edge in generative models. We present the following contributions: (1) we explicitly
explore several different conditions to conduct fine-tuning, and clearly show that
using pre-trainedmodels largely reduce the requirement of training time and obtain
improvements when the target domain lacks data. (2) We also evaluate knowledge
transfer from unconditional GANs to conditional GANs.

MineGAN: effective knowledge transfer from GANs to target domains with few
images. As we discussed above, the finetuning method for transferring knowledge
for generative model suffers from several drawbacks. This is mainly caused because
all parameters are allowed to change, which can lead to overfitting in case the
target domain is small. Besides, current methods are not able to use information
of multiple pre-trainedmodels. In this thesis, we not only explore how to transfer
effectively knowledge for generative model, but also propose a novel method to use
knowledge frommultiple pre-trained models.

In chapter 3, we introduce the process of mining of GANs, that is performed by a
mining network, that transfers amultivariate normal distribution into a distribution
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on the input space of the pretrained GAN in such a way that the generated images
resemble those of a target domain. We consider a variety of different relations
between the source data, for which we have pretrained models, and the target data.
Including the case where for the target domain only part of the knowledge of the
source domain is advantageous, and the case where the knowledge frommultiple
domains should be combined for optimal transfer. We will also consider the case of
transferring knowledge from conditional GANs to unconditional GANs.

1.3.2 Objectives and approach for image-to-image translation

Mix and match networks: encoder-decoder alignment for zero-pair image trans-
lation. As discussed in the previous section, we introduce zero-pair image transla-
tion, which is a new setting for testing image translations that involves evaluating
on unseen translations, i.e. translations for which no paired data is available dur-
ing training. In order to tackle this problem, in Chapter 4 we propose Mix and
Match Networks (M&MNets), an approach that addresses zero-pair image transla-
tion by seeking alignment between encoders and decoders via their latent spaces.
An unseen translation between two domains is performed by simply concatenat-
ing the input domain encoder and the output domain decoder. We study several
techniques that can improve this alignment, including the usage of autoencoders,
latent space consistency losses and pooling indices as side information to guide
the reconstruction of spatial structure. We evaluate this approach in a challenging
cross-modal task, where we perform zero-pair depth to semantic segmentation
translation, using only RGB to depth and RGB to semantic segmentation pairs
during training.

Finally, we show that aligned encoder-decoder networks also have advantages
in domains with unpaired data. In this case, we show that mix and match networks
scale better with the number of domains, since they are not required to learn all
pairwise image translation networks.

Controlling biases and diversity in diverse image-to-image translation. We de-
scribe the problem of unbiased image-to-image translation by introducing the
concept of wanted and unwanted changes. To address the problem of biases in
image-to-image translation we propose an approach that uses semantic constraints
to counter undesired biases. We apply these constraints using additional pretrained
neural networks to extract relevant semantic features. Modeling an adequate se-
mantic constraint is often not trivial, since naive implementations may result in
irrelevant information. This fails to fix undesired side effects, it is ineffective for
bias compensation, and reduces the ability of image translation (e.g limiting the
diversity in the output). In Chapter 5 we present an efficient approach to model
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an effective semantic constraint that obtains two benefits: alleviating bias while
preserving the desired properties. Meanwhile, our method still is able to preserve
diversity.

Scalable and Diverse cross-domain Image Translation Current methods are not
able to perform diverse and scalable image translations in a single model. They
either conduct diverse translation [68, 93, 131] or perform scalable translation [31,
130]. In Chapter 6, we address this issue. We propose a compact and general
architecture model that achieves the desired goal: diversity and scalability in a
single model. The Conditional Instance Normalization (CIN) [68] introduces two
conditional new factors (the shift and scale parameters) to the normalization layer.
We employ CIN layers to obtain diverse outputs. Besides, we explore the reasons
behind its success, and find that the shift parameter plays a more important role
than the scale parameter. Scalability is enabled by using the domain labels as inputs
to the encoder.
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How do we use transfer learning for image generation with limited data [76]





2 Transferring GANs: generating images from
limited data1

2.1 Introduction

Generative Adversarial Networks (GANs) can generate samples from complex image
distributions [54]. They consist of two networks: a discriminator which aims to
separate real images from fake (or generated) images, and a generator which is
simultaneously optimized to generate images which are classified as real by the dis-
criminator. The theory was later extended to the case of conditional GANswhere the
generative process is constrained using a conditioning prior [115] which is provided
as an additional input. GANs have further been widely applied in applications,
including super-resolution [92], 3D object generation and reconstruction [154],
human pose estimation [107], and age estimation [198].

Deep neural networks have obtained excellent results for discriminative clas-
sification problems for which large datasets exist; for example on the ImageNet
dataset which consists of over 1M images [84]. However, for many problems the
amount of labeled data is not sufficient to train the millions of parameters typically
present in these networks. Fortunately, it was found that the knowledge contained
in a network trained on a large dataset (such as ImageNet) can easily be transferred
to other computer vision tasks. Either by using these networks as off-the-shelf
feature extractors [11], or by adapting them to a new domain by a process called
fine tuning [125]. In the latter case, the pre-trained network is used to initialize
the weights for a new task (effectively transferring the knowledge learned from the
source domain), which are then fine tuned with the training images from the new
domain. It has been shown that much fewer images were required to train networks
which were initialized with a pre-trained network.

GANs are in general trained from scratch. The procedure of using a pre-trained
network for initialization – which is very popular for discriminative networks –
is to the best of our knowledge not used for GANs. However, like in the case of
discriminative networks, the number of parameters in a GAN is vast; for example the

1This chapter is based on a publication in the European Conference on Computer Vision (ECCV
2018) [173].
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popular DC-GAN architecture [132] requires 36M parameters to generate an image
of 64x64. Especially in the case of domains which lack many training images, the
usage of pre-trained GANs could significantly improve the quality of the generated
images.

Therefore, in this work, we set out to evaluate the usage of pre-trained networks
for GANs. The chapter has the following contributions:

1. We evaluate several transfer configurations, and show that pre-trained net-
works can effectively accelerate the learning process and provide useful prior
knowledge when data is limited.

2. We study how the relation between source and target domains impacts the
results, and discuss the problem of choosing a suitable pre-trained model,
which seems more difficult than in the case of discriminative tasks.

3. We evaluate the transfer from unconditional GANs to conditional GANs for
two commonly used methods to condition GANs.

2.2 Related Work

Transfer learning/domain transfer: Learning how to transfer knowledge from a
source domain to target domain is a well studied problem in computer vision [126].
In the deep learning era, complex knowledge is extracted during the training stage
on large datasets [146, 204]. Domain adaptation by means of fine tuning a pre-
trained network has become the default approach for many applications with
limited training data or slow convergence [37, 125].

Several works have investigated transferring knowledge to unsupervised or
sparsely labeled domains. Tzeng et al. [164] optimized for domain invariance, while
transferring task information that is present in the correlation between the classes
of the source domain. Ganin et al. [48] proposed to learn domain invariant features
by means of a gradient reversal layer. A network simultaneously trained on these
invariant features can be transfered to the target domain. Finally, domain transfer
has also been studied for networks that learn metrics [65]. In contrast to these
methods, we do not focus on transferring discriminative features, but transferring
knowledge for image generation.

GAN: Goodfellow et al. [54] introduced the first GANmodel for image generation.
Their architecture uses a series of fully connected layers and thus is limited to sim-
ple datasets. When approaching the generation of real images of higher complexity,
convolutional architectures have shown to be a more suitable option. Shortly af-
terwards, Deep Convolutional GANs (DC-GAN) quickly became the standard GAN
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architecture for image generation problems [132]. In DC-GAN, the generator se-
quentially up-samples the input features by using fractionally-strided convolutions,
whereas the discriminator uses normal convolutions to classify the input images.
Recent multi-scale architectures [36, 67, 76] can effectively generate high resolution
images. It was also found that ensembles can be used to improve the quality of the
generated distribution [174].

Independently of the type of architecture used, GANs present multiple chal-
lenges regarding their training, such as convergence properties, stability issues, or
mode collapse. Arjovksy et al. [9] showed that the original GAN loss [54] are unable
to properly deal with ill-suited distributions such as those with disjoint supports,
often found during GAN training. Addressing these limitations the Wassertein GAN
[10] uses the Wasserstein distance as a robust loss, yet requiring the generator to
be 1-Lipschitz. This constrain is originally enforced by clipping the weights. Alter-
natively, an even more stable solution is adding a gradient penalty term to the loss
(known as WGAN-GP) [56].

cGAN: Conditional GANs (cGANs) [115] are a class of GANs that use a particular
attribute as a prior to build conditional generative models. Examples of conditions
are class labels [55, 124, 130], text [134, 191], another image (image translation [81,
206] and style transfer [39]).

Most cGANmodels [38, 115, 157, 191] apply their condition in both generator
and discriminator by concatenating it to the input of the layers, i.e. the noise
vector for the first layer or the learned features for the internal layers. Instead, in
[39], they include the conditioning in the batch normalization layer. The AC-GAN
framework [124] extends the discriminator with an auxiliary decoder to reconstruct
class-conditional information. Similarly, InfoGAN [25] reconstructs a subset of the
latent variables fromwhich the samples were generated. Miyato et al. [117] propose
another modification of the discriminator based on a ‘projection layer’ that uses the
inner product between the conditional information and the intermediate output to
compute its loss.

2.3 Generative Adversarial Networks

2.3.1 Loss functions

A GAN consists of a generator G and a discriminator D [54]. The aim is to train a
generatorG which generates samples that are indistinguishable from the real data
distribution. The discriminator is optimized to distinguish samples from the real
data distribution pd at a from those of the fake (generated) data distribution pg . The
generator takes noise z ∼ pz as input, and generates samplesG (z) with a distribu-
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Chapter 2. Transferring GANs: generating images from limited data

tion pg . The networks are trained with an adversarial objective. The generator is
optimized to generate samples which would be classified by the discriminator as
belonging to the real data distribution. The minimax game objective is given by:

G∗ = argmin
G

max
D

LG AN (G ,D) (2.1)

LG AN (G ,D)= Ex∼pd at a [logD(x)]+Ez∼pz [log(1−D(G(z)))] (2.2)

In the case of WGAN-GP [56] the two loss functions are:

LW G AN−GP (D)=−Ex∼pd at a [D(x)]+Ez∼pz [D(G(z))]

+λEx∼pd at a ,z∼pz ,α∼(0,1)
[
(‖∇D (αx + (1−α)G(z))‖2−1)2

] (2.3)

LW G AN−GP (G)=−Ez∼pz [D(G(z))] (2.4)

2.3.2 Evaluation Metrics

Evaluating GANs is notoriously difficult [160] and there is no clear agreed refer-
ence metric yet. In general, a good metric should measure the quality and the
diversity in the generated data. Likelihood has been shown to not correlate well
with these requirements [160]. Better correlation with human perception has been
found in the widely used Inception Score [149], but recent works have also shown
its limitations [205]. In our experiments we use two recent metrics that show bet-
ter correlation in recent studies [15, 69]. While not perfect, we believe they are
satisfactory enough to help us to compare the models in our experiments.

Fréchet Inception Distance [61] The similarity between two sets is measured as
their Fréchet distance (also known asWasserstein-2 distance) in an embedded space.
The embedding is computed using a fixed convolutional network (an Inception
model) up to a specific layer. The embedded data is assumed to follow amultivariate
normal distribution, which is estimated by computing their mean and covariance.
In particular, the FID is computed as

FID(X1,X2)=
∥∥μ1−μ2

∥∥2
2+Tr

(
Σ1+Σ2−2(Σ1Σ2)

1
2

)
(2.5)

Typically, X1 is the full dataset with real images, while X2 is a set of generated
samples. We use FID as our primary metric, since it is efficient to compute and
correlates well with human perception [61].

Independent Wasserstein (IW) critic [33] This metric uses an independent critic
D̂ only for evaluation. This independent critic will approximate the Wasserstein
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2.3. Generative Adversarial Networks

Table 2.1 – FID/IW (the lower the better / the higher the better) for different transfer
configurations. ImageNet was used as source dataset and LSUN Bedrooms as target
(100K images).

Generator Scratch Pre-trained
Discriminator Scratch Pre-trained Scratch Pre-trained

FID
(
X

t g t
d at a ,X

t g t
g en

)
32.87 30.57 56.16 24.35

IW
(
X

t g t
val ,X

t g t
g en

)
-4.27 -4.02 -6.35 -3.88

distance [9] between two datasetsX1 andX2 as

IW(X1,X2)= Ex∼X1

(
D̂ (x)

)−Ex∼X2

(
D̂ (x)

)
(2.6)

In this case, X1 is typically a validation set, used to train the independent critic.
We report IW only in some experiments, due to the larger computational cost that
requires training a network for each measurement.

2.3.3 GAN adaptation

To study the effect of domain transfer for GANs we will use the WGAN-GP [56]
architecture which uses ResNet in both generator and discriminator. This architec-
ture has been experimentally demonstrated to be stable and robust against mode
collapse [56]. The generator consists of one fully connected layer, four Residual
Blocks and one convolution layer, and the Discriminator has same setting. The
same architecture is used for conditional GAN.

Implementation details

We generate images of 64×64 pixels, using standard values for hyperparameters.
The source models2 are trained with a batch of 128 images during 50K iterations
(except 10K iterations for CelebA) using Adam [82] and a learning rate of 1e-4. For
fine tuning we use a batch size of 64 and a learning rate of 1e-4 (except 1e-5 for
1K target samples). Batch normalization and layer normalization are used in the
generator and discriminator respectively.

2The pre-trained models are available at https://github.com/yaxingwang/Transferring-GANs.
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Figure 2.1 – Evolution of evaluation metrics when trained from scratch or using a
pre-trainedmodel for unconditional GANmeasured with (a) FID and (b) IW (source:
ImageNet, target: LSUN Bedrooms, metrics: FID and IW). The curves are smoothed
for easier visualization by averaging in a window of a few iterations.

2.3.4 Generator/discriminator transfer configuration

The two networks of the GAN (generator and discriminator) can be initialized
with either random or pre-trained weights (from the source networks). In a first
experiment we consider the four possible combinations using a GAN pre-trained
with ImageNet and 100K samples of LSUN bedrooms as target dataset. The source
GAN was trained for 50K iterations. The target GAN was trained for (additional) 40K
iterations.

Table 2.1 shows the results. Interestingly, we found that transferring the discrim-
inator is more critical than transferring the generator. The former helps to improve
the results in both FID and IWmetrics, while the latter only helps if the discrimina-
tor was already transferred, otherwise harming the performance. Transferring both
obtains the best result. We also found that training is more stable in this setting.
Therefore, in the rest of the experiments we evaluated either training both networks
from scratch or pre-training both (henceforth simply referred to as pre-trained).

Figure 2.1 shows the evolution of FID and IW during the training process with
and without transfer. Networks adapted from a pre-trained model can generate
images of given scores in significantly fewer iterations. Training from scratch for
a long time manages to reduce this gap significantly, but pre-trained GANs can
generate images with good quality already with much fewer iterations. Figures 2.2
and 2.4 show specific examples illustrating visually these conclusions.

The number of training images is critical to obtain realistic images, in particular
as the resolution increases. Our experimental settings involve generating images
of 64×64 pixels, where GANs typically require hundreds of thousands of training
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2.3. Generative Adversarial Networks

Table 2.2 – FID/IW for different sizes of the target set (LSUN Bedrooms) using
ImageNet as source dataset.

Target samples 1K 5K 10K 50K 100K 500K 1M
From scratch 256.1/-33.3 86.0/-18.5 73.7/-15.3 45.5/-7.4 32.9/-4.3 24.9/-3.6 21.0/-2.9
Pre-trained 93.4/-22.5 74.3/-16.3 47.0/-7.0 29.6/-4.56 24.4/-4.0 21.6/-3.2 18.5/-2.8

images to obtain convincing results. We evaluate our approach in a challenging
setting where we use as few as 1000 images from the LSUN Bedrooms dataset, and
using ImageNet as source dataset. Note that, in general, GANs evaluated on LSUN
Bedrooms use the full set of 3Mmillion images.

2.3.5 Size of the target dataset

Table 2.2 shows FID and IWmeasured for different amounts of training samples of
the target domain. As the training data becomes scarce, the training set implicitly
becomes less representative of the full dataset (i.e. less diverse). In this experiment,
a GAN adapted from the pre-trained model requires roughly between two and
five times fewer images to obtain a similar score than a GAN trained from scratch.
FID and IW are sensitive to this factor, so in order to have a lower bound we also
measured the FID between the specific subset used as training data and the full
dataset. With 1K images this value is even higher than the value for generated
samples after training with 100K and 1M images.

Intializing with the pre-trained GAN helps to improve the results in all cases,
being more significant as the target data is more limited. The difference with the
lower bound is still large, which suggests that there is still field for improvement in
settings with limited data.

Figure 2.2 shows images generated at different iterations. As in the previous case,
pre-trained networks can generate high quality images already in earlier iterations,
in particular with sharper and more defined shapes andmore realistic fine details.
Visually, the difference is also more evident with limited data, where learning to
generate fine details is difficult, so adapting pre-trained networks can transfer
relevant prior information.

2.3.6 Source and target domains

The domain of the source model and its relation with the target domain are also a
critical factor. We evaluate different combinations of source domains and target do-
mains (see Table 2.3 for details). As source datasets we used ImageNet, Places, LSUN
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From scratch Pre-trained (ImageNet)
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Figure 2.2 – Images generated at different iterations (from 0 and 10000, step 2000)
for LSUN bedrooms training from scratch and from a pre-trained network. Better
viewed in electronic version.

Bedrooms and CelebA. Note that both ImageNet and Places cover wide domains,
with great diversity in objects and scenes, respectively, while LSUN Bedrooms and
CelebA cover more densely a narrow domain. As target we used smaller datasets,
including Oxford Flowers, LSUN Kitchens (a subset of 50K out of 2M images), Label
Faces in the Wild (LFW) and CityScapes.

We pre-trained GANs for the four source datasets and then trained five GANs
for each of the four target datasets (from scratch and initialized with each of the
source GANs). The FID and IW after fine tuning are shown in Table 2.4. Pre-trained
GANs achieve significantly better results. Both metrics generally agree but there
are some interesting exceptions. The best source model for Flowers as target is
ImageNet, which is not surprising since it contains also flowers, plants and objects
in general. It is more surprising that Bedrooms is also competitive according to FID
(but not so much according to IW). The most interesting case is perhaps Kitchens,
since Places has several thousands of kitchens in the dataset, yet also manymore
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2.3. Generative Adversarial Networks

Table 2.3 – Datasets used in the experiments.

Source datasets ImageNet [146] Places [204] Bedrooms [185] CelebA [105]

Number of images 1M 2.4M 3M 200K
Number of classes 1000 205 1 1
Target datasets Flower [121] Kitchens [185] LFW [66] Cityscapes [32]

Number of images 8K 50K 13K 3.5K
Number of classes 102 1 1 1

Table 2.4 – Distance between target real data and target generated data FID/IW.

Source→
Target ↓ Scratch ImageNet Places Bedrooms CelebA

Flowers 71.98/-13.62 54.04/-3.09 66.25/-5.97 56.12/-5.90 67.96/-12.64
Kitchens 42.43/-7.79 34.35/-4.45 34.59/-2.92 28.54/-3.06 38.41/-4.98
LFW 19.36/-8.62 9.65/-5.17 15.02/-6.61 7.45/-3.61 7.16/-3.45

Cityscapes 155.68/-9.32 122.46/-9.00 151.34/-8.94 123.21/-8.44 130.64/-6.40

classes that are less related. In contrast, bedrooms and kitchens are not the same
class yet still very related visually and structurally, so the much larger set of related
images in Bedroomsmay be a better choice. Here FID and IW do not agree, with FID
clearly favoring Bedrooms, and even the less related ImageNet, over Places, while IW
preferring Places by a small margin. As expected, CelebA is the best source for LFW,
since both contain faces (with different scales though), but Bedroom is surprisingly
very close to the performance in both metrics. For Cityscapes all methods have
similar results (within a similar range), with both high FID and IW, perhaps due to
the large distance to all source domains.

2.3.7 Selecting the pre-trained model

Selecting a pre-trainedmodel for a discriminative task (e.g. classification) is reduced
to simply selecting either ImageNet, for object-centric domains, or Places, for
scene-centric ones. The target classifier or fine tuning will simply learn to ignore
non-related features and filters of the source network.

However, this simple rule of thumb does not seem to apply so clearly in our
GAN transfer setting due to generation being a much more complex task than
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Figure 2.3 – Transferring GANs: training source GANs, estimation of the most
suitable pre-trained model and adaptation to the target domain.

Table 2.5 – Distance between source generated dataX sr c
g en and target real dataX

t g t
d at a ,

and distance between source realX sr c
d at a and generated dataX sr c

g en .

Source→
Target ↓ ImageNet Places Bedrooms CelebA

FID
(
X sr c

g en ,X
t g t

d at a

) Flowers 237.04 251.93 278.80 284.74
Kitchens 183.27 180.63 70.06 254.12
LFW 333.54 333.38 329.92 151.46

Cityscapes 233.45 181.72 227.53 292.66

FID
(
X sr c

g en ,X
sr c

d at a

)
Source 63.46 55.66 17.30 75.84

discrimination. Results in Table 2.4 show that sometimes unrelated datasets may
perform better than other apparently more related. The large number of unrelated
classes may be an important factor, since narrow yet dense domains also seem to
perform better even when they are not so related (e.g. Bedrooms). There are also
non-trivial biases in the datasets that may explain this behavior. Therefore, a way
to estimate the most suitable model for a given target dataset is desirable, given a
collection of pre-trained GANs.

Perhaps the most simple way is to measure the distance between the source
and target domains. We evaluated the FID between the (real) images in the target
and the source datasets (results included in Appendix A.1.1). While showing some
correlation with the FID of the target generated data, it has the limitation of not
consideringwhether the actual pre-trainedmodel is able or not to accurately sample
from the real distribution. A more helpful metric is the distance between the target
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2.3. Generative Adversarial Networks

data and the generated samples by the pre-trained model. In this way, the quality of
themodel is taken into account. We estimate this distance also using FID. In general,
there seem to roughly correlate with the final FID results with target generated data
(compare Tables 2.4 and 2.5). Nevertheless, it is surprising that Places is estimated
as a good source dataset but does not live up to the expectation. The opposite
occurs for Bedrooms, which seems to deliver better results than expected. This may
suggest that density is more important than diversity for a good transferable model,
even for apparently unrelated target domains.

In our opinion, the FID between source generated and target real data is a rough
indicator of suitability rather than accurate metric. It should taken into account
jointly with others factors (e.g. quality of the source model) to decide which model
is best for a given target dataset.

2.3.8 Visualizing the adaptation process

One advantage of the image generation setting is that the process of shifting from
the source domain towards the target domain can be visualized by sampling images
at different iterations, in particular during the initial ones. Figure 2.4 shows some
examples of the target domain Kitchens and different source domains (iterations
are sampled in a logarithmic scale).

Trained from scratch, the generated images simply start with noisy patterns
that evolve slowly, and after 4000 iterations the model manages to reproduce the
global layout and color, but still fails to generate convincing details. Both the
GANs pre-trained with Places and ImageNet fail to generate realistic enough source
images and often sample from unrelated source classes (see iteration 0). During
the initial adaptation steps, the GAN tries to generate kitchen-like patterns by
matching and slightly modifying the source pattern, therefore preserving global
features such as colors and global layout, at least during a significant number of
iterations, then slowly changing them to more realistic ones. Nevertheless, the
textures and edges are sharper and more realistic than from scratch. The GAN
pre-trained with Bedrooms can already generate very convincing bedrooms, which
share a lot of features with kitchens. The larger number of training images in
Bedrooms helps to learn transferable fine grained details that other datasets cannot.
The adaptation mostly preserves the layout, colors and perspective of the source
generated bedroom, and slowly transforms it into kitchens by changing fine grained
details, resulting in more convincing images than with the other source datasets.
Despite being a completely unrelated domain, CelebA also manages to help in
speeding up the learning process by providing useful priors. Different parts such as
face, hair and eyes are transformed into different parts of the kitchen. Rather than
the face itself, the most predominant feature remaining from the source generated
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image is the background color and shape, that influences in the layout and colors
that the generated kitchens will have.

2.4 Transferring to conditional GANs

Here we study the transferring the representation learned by a pre-trained uncon-
ditional GAN to a cGAN [115]. cGANs allow us to condition the generative model
on particular information such as classes, attributes, or even other images. Let
y be a conditioning variable. The discriminator D(x, y) aims to distinguish pairs
of real data x and y sampled from the joint distribution pd at a

(
x, y

)
from pairs of

generated outputsG(z, y ′) conditioned on samples y ′ from y ’s marginal pd at a(y).

2.4.1 Conditional GAN adaptation

For the current study, we adopt the Auxiliary Classifier GAN (AC-GAN) framework
of [124]. In this formulation, the discriminator has an ‘auxiliary classifier’ that
outputs a probability distribution over classes P (C = y |x) conditioned on the input
x. The objective function is then composed of the conditional version of the GAN
loss LG AN (eq. (2.2)) and the log-likelihood of the correct class. The final loss
functions for generator and discriminator are:

LAC−G AN (G)=LG AN (G)−αGE
[
log

(
P

(
C = y ′|G(z, y ′)

))]
, (2.7)

LAC−G AN (D)=LG AN (D)−αDE
[
log

(
P

(
C = y |x))]

, (2.8)

respectively. The parameters αG and αD weight the contribution of the auxiliary
classifier loss with respect to the GAN loss for the generator and discriminator. In
our implementation, we use Resnet-18 [58] for bothG and D, and the WGAN-GP
loss from the equations (2.3) and (2.4) as the GAN loss. Overall, the implementation
details (batch size, learning rate) are the same as introduced in section 2.3.3.

In AC-GAN, the conditioning is performed only on the generator by appending
the class label to the input noise vector. We call this variant ‘Cond Concat’. We
randomly initialize the weights which are connected to the conditioning prior.
We also used another variant following [39], in which the conditioning prior is
embedded in the batch normalization layers of the generator (referred to as ‘Cond
BNorm’). In this case, there are different batch normalization parameters for each
class. We initialize these parameters by copying the values from the unconditional
GAN to all classes.
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Table 2.6 – Per-class and overall FID for AC-GAN. Source: Places, target: LSUN

Init Iter Bedr Bridge Church Classr Confer Dining Kitchen Living Rest Tower Avg. All

Scratch
250 298.4 310.3 314.4 376.6 339.1 294.9 314.2 316.5 324.4 301.0 319.0 352.4
2500 195.9 135.0 133.0 218.6 185.3 173.9 167.9 189.3 159.5 125.6 168.4 137.3
25000 72.9 78.0 52.4 106.7 76.9 40.1 53.9 56.1 74.7 59.8 67.2 49.6

Pre-trained
250 168.3 122.1 148.1 145.0 151.6 144.2 156.9 150.1 113.3 129.7 142.9 107.2
2500 140.8 96.8 77.4 136.0 136.8 84.6 85.5 94.9 77.0 69.4 99.9 74.8
25000 59.9 68.6 48.2 79.0 68.7 35.2 48.2 47.9 44.4 49.9 55.0 42.7

2.4.2 Results

We use Places [204] as the source domain and consider all the ten classes of the
LSUN dataset [185] as target domain. We train the AC-GAN with 10K images per
class for 25K iterations. The weights of the conditional GAN can be transferred
from the pre-trained unconditional GAN (see section 2.3.1) or initialized at random.
The performance is assessed in terms of the FID score between target domain and
generated images. The FID is computed class-wise, averaging over all classes and
also considering the dataset as a whole (class-agnostic case). The classes in the
target domain have been generated uniformly. The results are presented in table
2.6, where we show the performance of the AC-GANwhose weights have been trans-
ferred from pre-trained network vs. an AC-GAN initialized randomly. We computed
the FID for 250, 2500 and 25000 iterations. At the beginning of the learning process,
there is a significant difference between the two cases. The gap is reduced towards
the end of the learning process but a significant performance gain still remains for
pre-trained networks. We also consider the case with fewer images per class. The
results after 25000 iterations for 100 and 1K images per class are provided in the last
column of table 2.7. We can observe how the difference between networks trained
from scratch or from pre-trained weights is more significant for smaller sample
sizes. This confirms the trend observed in section 2.3.5: transferring the pre-trained
weights is especially advantageous when only limited data is available.

The same behavior can be observed in figure 2.5 (left) where we compare the
performance of the AC-GAN with two unconditional GANs, one pre-trained on
the source domain and one trained from scratch, as in section 2.3.4. The curves
correspond to the class-agnostic case (column ‘All’ in the table 2.6). From this plot,
we can observe three aspects: (i) the two variants of AC-GAN perform similarly
(for this reason, for the remaining of the experiments we consider only ‘Cond
BNorm’); (ii) the network initialized with pre-trained weights converges faster than
the network trained from scratch, and the overall performance is better; and (iii)
AC-GAN performs slightly better than the unconditional GAN.
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Table 2.7 – Accuracy of AC-GAN for the classification task and overall FID for differ-
ent sizes of the target set (LSUN).

#images Method
Accuracy (%)

FID
Bedr Bridge Church Classr Confer Dining Kitchen Living Rest Tower Avg.

100/class
scratch 23.0 88.2 55.1 29.2 3.6 24.9 20.8 8.4 89.3 61.6 40.4 162.9

pre-trained 35.7 72.7 45.7 59.4 7.9 38.2 36.3 20.1 81.0 56.6 45.4 119.1

1K/class
scratch 49.9 78.1 75.1 51.8 14.6 51.2 31.2 23.2 90.7 61.5 52.7 117.3

pre-trained 76.4 82.5 69.1 80.6 34.2 52.6 62.4 52.9 80.5 67.5 65.9 77.5

10K/class
scratch 94.9 94.3 89.6 85.0 82.4 91.2 88.0 86.9 91.3 83.5 88.7 49.6

pre-trained 87.1 95.7 90.8 95.1 86.8 90.2 88.9 90.1 93.0 88.9 90.8 42.7

Next, we evaluate the AC-GAN performance on a classification experiment. We
train a reference classifier on the 10 classes of LSUN (10K real images per class).
Then, we evaluate the quality of eachmodel trained for 25K iterations by generating
10K images per class and measuring the accuracy of the reference classifier for
100, 1K and 10K images per class. The results show an improvement when using
pre-trained models, with higher accuracy and lower FID in all settings, suggesting
that it captures better the real data distribution of the dataset compared to training
from scratch.

Finally, we perform a psychophysical experiment with generated images by
AC-GAN with LSUN as target. Human subjects are presented with two images:
pre-trained vs. from scratch (generated from the same condition <class>), and
asked ‘Which of these two images of <class> is more realistic?’ Subjects were also
given the option to skip a particular pair should they find very hard to decide for
one of them. We require each subject to provide 100 valid assessments. We use
10 human subjects which evaluate image pairs for different settings (100, 1K, 10K
images per class). The results (Fig. 2.5 right) clearly show that the images based
on pre-trained GANs are considered to be more realistic in the case of 100 and 1K
images per class (e.g. pre-trained is preferred in 67% of cases with 1K images). As
expected the difference is smaller for the 10K case.

2.5 Conclusions

We showhow the principles of transfer learning can be applied to generative features
for image generation with GANs. GANs, and conditional GANs, benefit from trans-
ferring pre-trained models, resulting in lower FID scores and more recognizable
images with less training data. Somewhat contrary to intuition, our experiments
show that transferring the discriminator is muchmore critical than the generator
(yet transferring both networks is best). However, there are also other important
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0 (src) 2 5 15 39 99 251 632 1591 4000 0 (src)

Figure 2.4 – Evolution of generated images (in logarithmic scale) for LSUN kitchens
with different source datasets (from top to bottom: from scratch, ImageNet, Places,
LSUN bedrooms, CelebA). Better viewed in electronic version.
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Figure 2.5 – (Left) FID score for Conditional and Unconditional GAN (source: Places,
target: LSUN 10 classes). (Right) Human evaluation of image quality.

differences with the discriminative scenario. Notably, it seems that a much higher
density (images per class) is required to learn good transferable features for image
generation, than for image discrimination (where diversity seems more critical).
As a consequence, ImageNet and Places, while producing excellent transferable
features for discrimination, seem not dense enough for generation, and LSUN data
seems to be a better choice despite its limited diversity. Nevertheless, poor transfer-
ability may be also related to the limitations of current GAN techniques, and better
ones could also lead to better transferability.

Our experiments evaluate GANs in settings rarely explored in previous works
and show that there are many open problems. These settings include GANs and
evaluation metrics in the very limited data regime, better mechanisms to estimate
the most suitable pre-trained model for a given target dataset, and the design of
better pre-trained GANmodels.
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3 MineGAN: effective knowledge transfer from
GANs to target domains with few images1

3.1 Introduction

Generative adversarial networks (GANs) can learn the complex underlying distri-
bution of image collections [54]. They have been shown to generate high-quality
realistic images [19, 76, 77] and are used in many applications including image ma-
nipulation [70, 206], style transfer [49], compression [163], and colorization [196].

It is known that high-quality GANs require a significant amount of training data
and time. For example, Progressive GANs [76] are trained on 30K images and are
reported to require a month of training on one NVIDIA Tesla V100. Being able to
exploit these high-quality pre-trained models, not just to generate the distribution
on which they are trained, but also to combine them with other models and adjust
them to a target distribution is a desirable objective. For instance, it might be
desirable to only generate women using a GAN trained to generate men and women
alike. Alternatively, one may want to generate smiling people from two pre-trained
generative models, one for men and one for women. The focus of this chapter is on
performing these operations using only a small target set of images, and without
access to the large datasets used to pretrain the models.

Transferring knowledge to domains with limited data has been extensively
studied for discriminative models [37, 125, 126, 164], enabling the re-use of high-
quality networks. However, knowledge transfer for generative models has received
significantly less attention, possibly due to its great difficulty, especially when
transferring to target domains with few images. single pre-trained generative model
and showed that it is beneficial for domains with scarce data. However, Noguchi
and Harada [122] observed that this technique leads to mode collapse. Instead,
they proposed to reduce the number of trainable parameters, and only finetune the
learnable parameters for the batch normalization (scale and shift) of the generator.
Despite being less prone to overfitting, their approach severely limits the flexibility
of the knowledge transfer.

1This chapter is under review in the Conference on Computer Vision and Pattern Recognition (CVPR
2020).
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In this work, we address knowledge transfer by adapting a trained generative
model for targeted image generation given a small sample of the target distribu-
tion. We introduce the process of mining of GANs. This is performed by a miner
network that transforms a multivariate normal distribution into a distribution on
the input space of the pre-trained GAN in such a way that the generated images
resemble those of the target domain. The miner network has considerably fewer
parameters than the pre-trained GAN and is therefore less prone to overfitting. The
mining step predisposes the pre-trained GAN to sample from a narrower region
of the latent distribution that is closer to the target domain, which in turn eases
the subsequent finetuning step by providing a cleaner training signal with lower
variance (in contrast to sampling from the whole source latent space as in [173]).
Consequently, our method preserves the adaptation capabilities of finetuning while
preventing overfitting. Importantly, our mining approach enables transferring from
multiple pre-trained GANs, which allows us to aggregate information frommultiple
sources simultaneously to generate samples akin to the target domain. We show
that these networks can be trained by a selective backpropagation procedure. Our
main contributions are:

• We introduce a novel miner network to steer the sampling of the latent dis-
tribution of a pre-trained GAN to a target distribution determined by few
images. Theminer network has relatively few parameters and is therefore less
prone to overfitting.

• We propose the first method to transfer knowledge frommultiple GANs to a
single generative model.

• We evaluate the proposed approach on a variety of settings, including trans-
ferring knowledge from unconditional, conditional, and multiple GANs. Ex-
periments are performed on high-resolution datasets with high complexity
such as LSUN [183], CelebA [105] and ImageNet [84]. We outperform existing
competitors, including TransferGAN [173] and BSA [122].

3.2 Related work

Generative adversarial networks. GANs consists of two modules: a generator
and a discriminator [54]. The generator aims to generate images to fool the dis-
criminator, while the discriminator aims to distinguish generated from real images.
Training GANs was initially difficult, as they often suffer frommode collapse and
unstable training issues. Several previous methods focus on addressing these prob-
lems [10, 56, 110, 116, 149]. Another major line of research aims to improve the
model architectures to generate higher quality images [19, 36, 76, 77, 132]. Pro-
gressive GAN [76] generates high-quality images by means of synthesizing images
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progressively from low to high-resolution. Finally, BigGAN [19] successfully per-
forms conditional high-realistic generation from ImageNet [35].

Transfer learning for GANs. While knowledge transfer has been widely studied
for discriminative models in computer vision [37, 125, 126, 164], only a few works
have explored transferring knowledge for generative models [122, 173]. Chapter 2
investigated finetuning of pre-trained GANs, leading to improved performance for
target domains with limited samples. This method, however, suffers from mode
collapse and overfitting, as it updates all parameters of the generator to adapt to
the target domain. Recently, Noguchi and Harada [122] proposed to only update
the batch normalization parameters. Although less susceptible to mode collapse,
this approach significantly reduces the adaptation flexibility of the model since
changing only the parameters of the batch normalization permits for style changes
but is not expected to function when shape needs to be changed. They also replaced
the GAN loss with a mean square error loss. As a result, their model only learns the
relationship between latent vectors and sparse training samples, requiring the input
noise distribution to be truncated during inference to generate realistic samples.
The proposed MineGAN does not suffer from this drawback, as it learns how to
automatically adapt the input distribution. In addition, we are the first to consider
transferring knowledge frommultiple GANs to a single target domain.

Iterative image generation. Nguyen et al. [120] have investigated training net-
works to generate images that maximize the activation of neurons in a pre-trained
classification network. In a follow-up approach [119] that improves the diversity
of the generated images, they use this technique to generate images of a particular
class from a pre-trained classifier network. In principle, these works do not aim
at transferring knowledge to a new domain, and can instead only be applied to
generate a distribution that is exactly described by one of the class labels of the
pre-trained classifier network. Another major difference is that the generation at
inference time of each image is an iterative process of successive backpropagation
updates until convergence, whereas our method is feedforward during inference.

3.3 Mining operations on GANs

Assume we have access to one or more pre-trained GANs and wish to use their
knowledge to train a new GAN for a target domain with few images. For clarity’s
sake, we first introduce mining from a single GAN in Section 3.3.2, but our method
is general for an arbitrary number of pre-trained GANs, as explained in Section 3.3.3.
Then, we show how the miners can be used to train new GANs (Section 3.3.4).
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MineGANMineGAN(Single)

(a) (b) (c)

... ...

... ...

Figure 3.1 – (a) Intuition behind our approach for a simple case. Mining shifts
the prior input distribution towards the most promising regions with respect to
given target data DT . In practice, the input distribution is much more complex. (b)
Architecture implementing the proposed mining operation on a single GAN. Miner
M identifies the relevant regions of the prior distribution so that generated samples
are close to the target data DT . Note that when training the miner the generator
remains fixed. (c) Training setup for multiple generators. Miners M1,...,MN identify
subregions of the pre-trained generators while selector S learns the sampling
frequencies of the various generators.

3.3.1 GAN formulation

Let pd at a(x) be a probability distribution over real data x determined by a set of
real imagesD, and let pz (z) be a prior distribution over an input noise variable z.
The generatorG is trained to synthesize images given z ∼ pz (z) as input, inducing
a generative distribution pg (x) that should approximate the real data distribution
pd at a(x). This is achieved through an adversarial game [54], in which a discrimina-
tor D aims to distinguish between real images and images generated by G , while
the generator tries to generate images that fool D .

In this work, we follow the WGAN-GP [56] approach, which provides better
convergence properties by using the Wasserstein loss [10] and a gradient penalty
term (omitted from our formulation for simplicity).

The discriminator (or critic) and generator losses are defined as follows:

LD = Ez∼pz (z)[D(G(z))]−Ex∼pd at a (x)[D(x)], (3.1)

LG =−Ez∼pz (z)[D(G(z))]. (3.2)

We also consider families of pre-trained generators {Gi }. EachGi has the ability
to synthesize images given input noise z ∼ pi

z (z). For simplicity and without loss of
generality, we assume the prior distributions are Gaussian, i.e. pi

z (z)=N (z|μi ,Σi ).
Each generator Gi (z) induces a learned generative distribution pi

g (x), which ap-
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proximates the corresponding real data distribution pi
d at a(x) over real data x given

by the set of source domain imagesDi .

3.3.2 Mining from a single GAN

We would like to approximate a target real data distribution pT
d at a(x) induced by a

set of real imagesDT , given a critic D and a generatorG , which have been trained
to approximate a source data distribution pd at a(x) via the generative distribution
pg (x). The mining operation learns a new generative distribution pT

g (x) by finding

those regions in pg (x) that better approximate the target data distribution pT
d at a(x)

while keeping G fixed. In order to find such regions, mining actually finds a new
prior distribution pT

z (z) such that samples G(z) with z ∼ pT
z (z) are similar to

samples from pT
d at a(x) (see Fig. 3.1a). For this purpose, we propose a new GAN

component called miner which is a small network M , implemented by a multilayer
perceptron. Its goal is to transform the original input noise variable u ∼ pz (u) to
follow a new, more suitable prior that identifies the regions in pg (x) that most
closely align with the target distribution.

Fig. 3.1b presents the proposed mining architecture, called MineGAN. Miner
M acts as an interface between the input noise variable and the generator, which
remains fixed during training. To generate an image, we first sample u ∼ pz (u),
transform it with M and then input the transformed variable to the generator, i.e.
G(M(u)). We train the model adversarially: the critic D aims to distinguish between
fake images output by the generatorG(M(u)) and real images x from the target data
distribution pT

d at a(x). We implement this with the following modification on the
WGAN-GP loss

L M
D = Eu∼pz (u)[D(G(M(u)))]−Ex∼pT

d at a (x)
[D(x)], (3.3)

L M
G =−Eu∼pz (u)[D(G(M(u)))]. (3.4)

The parameters of G are kept unchanged but the gradients are backgropagated
all the way to M to learn its parameters. This training strategy will gear the miner
towards the most promising regions of the input space, i.e. those that generate
images close toDT . Therefore, M is effectively mining the relevant input regions
of prior pz (u) and giving rise to a targeted prior pT

z (z), which will focus on these
regions while ignoring other ones that lead to samples far off the target distribution
pT

d at a(x).
We distinguish two types of targeted generation: on-manifold and off-manifold.

In the on-manifold case, there is a significant overlap between the original distribu-
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tion pd at a(x) and the target distribution pT
d at a(x). For example, pd at a(x) could be

the distribution of human faces (both male and female) while pT
d at a(x) includes fe-

male faces only. On the other hand, in off-manifold generation, the overlap between
the two distributions is negligible, e.g. pT

d at a(x) contains cat faces. The off-manifold
task is evidently more challenging as the miner needs to find samples out of the
original distribution (see Fig. 3.4). Specifically, we can consider the images inD to
lie on a high-dimensional image manifold that contains the support of the real data
distribution pd at a(x) [9]. For a target distribution farther away from pd at a(x), its
support will be more disjoint from the original distribution’s support, and thus its
samples might be off the manifold that containsD.

3.3.3 Mining from multiple GANs

In the general case, the mining operation is applied on multiple pre-trained gen-
erators. Given target data DT , the task consists in mining relevant regions from
the induced generative distributions learned by a family of N generators {Gi }. In
this task, we do not have access to the original data used to train {Gi } and can
only use target data DT . Fig. 3.1c presents the architecture of our model, which
extends the mining architecture for a single pre-trained GAN by including multiple
miners and an additional component called selector. In the following, we present
this component and describe the training process in detail.

Supersample. In traditional GAN training, a fake minibatch is composed of fake
images G(z) generated with different samples z ∼ pz (z). To construct fake mini-
batches for training a set of miners, we introduce the concept of supersample. A
supersampleS is a set of samples composed of exactly one sample per generator
of the family, i.e. S = {Gi (z)|z ∼ pi

z (z); i = 1, ...,N }. Each minibatch contains K
supersamples, which amounts to a total of K ×N fake images per minibatch.

Selector. The selector’s task is choosing which pre-trained model to use for gener-
ating samples during inference. For instance, imagine thatD1 is a set of ‘kitchen’
images andD2 are ‘bedroom’ images, and letDT be ‘white kitchens’. The selector
should prioritize sampling from G1, as the learned generative distribution p1

g (x)

will contain kitchen images and thus will naturally be closer to pT
d at a(x), the target

distribution of white kitchens. ShouldDT comprise both white kitchens and dark
bedrooms, sampling should be proportional to the distribution in the data.

Wemodel the selector as a random variable s following a categorical distribution
parametrized by p1, ...,pN with pi > 0 and

∑
pi = 1. We estimate the parameters

of this distribution as follows. The quality of each sample Gi (z) is evaluated by a
single critic D based on its critic value D(Gi (z)). Higher critic values indicate that
the generated sample fromGi is closer to the real distribution.
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For each supersampleS in the minibatch, we record which generator obtains
the maximum critic value, i.e. argmaxi D(Gi (z)). By accumulating over all K super-
samples and normalizing, we obtain an empirical probability value p̂i that reflects
how often generatorGi obtained the maximum critic value among all generators
for the current minibatch. We estimate each parameter pi as the empirical average
p̂i estimated in the last 1000 minibatches. Note that pi are learned during training
and stay fixed during inference.

Critic and miner training. We now define the training behavior of the remaining
learnable components, namely the critic D and miners {Mi }, when minibatches are
composed of supersamples. The critic aims to distinguish real images from fake
images. This is done by looking for artifacts in the fake images which distinguish
them from the real ones. Another, less discussed but equally important task of the
critic, is to observe the frequency of occurrence of images: if some (potentially
high-quality) image occurs more often among fake images than real ones, the critic
will lower its score, and thereby motivate the generator to lower the frequency of
occurrence of this image. Training the critic by backpropagating from all images
in the supersample prevents it from assessing the frequency of occurrence of the
generated images (and we empirically observed this to yield unsatisfactory results).
Therefore, the training loss for multiple GANmining is:

L M
D = E{ui∼pi

z (u)}
[max

i
{D(Gi (Mi (u

i )))}]

−Ex∼pT
d at a (x)

[D(x)]
(3.5)

L M
G =−E{ui∼pi

z (u)}
[max

i
{D(Gi (Mi (u

i )))}]. (3.6)

As a result of the max operator we only backpropagate from the generated image
that obtained the highest critic score. Training with Eq. 3.6 allows the critic to assess
the frequency of occurrence correctly. Using this strategy, the critic can perform
both its tasks: boosting the quality of the images as well as driving the miner to
closely follow the distribution of the target set. Note that in this case we initialize
the single critic D with the pre-trained weights from one of the pre-trained critics2.

Conditional GANs. So far, we have only considered unconditional GAN models.
However, conditional GANs are used by the most successful approaches [19, 190].
cGANs introduce an additional input variable to condition the generation to the
class label. Here we extend our proposed MineGAN to cGANs that condition on

2We empirically found that starting from any pre-trained critic leads to similar results (see Ap-
pendix A.2.4)
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Conditional GAN Conditional MineGAN

Figure 3.2 – Application of mining in conditional setting (on BigGAN [19]). We apply
an additional miner network to estimate the class embedding. DT : target data, E :
class embedding, l : label.

the batch normalization layer [19, 39]3More concretely, we experiment with Big-
GAN [19], as shown in Fig. 3.2 (left). First, a label l is mapped to an embedding
vector by means of a class embedding E , and then this vector is mapped to layer-
specific batch normalization parameters. The discriminator is further conditioned
via label projection [117]. Fig. 3.2 (right) shows how tomine BigGANs. Alongside the
standard miner M z , we introduce a second miner network M c , which maps from u
to the embedding space, resulting in a generatorG(M c (u),M z (u)). The training is
equal to that of a single GAN and follows Eqs. 3.3 and 3.4.

3.3.4 Knowledge transfer with MineGAN

The underlying idea of mining is to predispose the pre-trained model to the target
distribution by reducing the divergence between source and target distributions.
The miner network contains relatively few parameters and is therefore less prone
to overfitting, which is known to occur when directly finetuning the generator
G [122]. We finalize the knowledge transfer to the new domain by finetuning both
theminer M and generatorG (by releasing its weights). The risk of overfitting is now
diminished as the generative distribution is closer to the target, thus requiring thus a
lower degree of parameter adaptation. Moreover, the training is substantially more
efficient than directly finetuning the pre-trained GAN [173], where synthesized
images are not necessarily similar to the target samples. A mined pre-trainedmodel
makes the sampling more effective, leading to less noisy gradients and a cleaner
training signal.

3See Appendix A.2.2.

38



3.4. Experiments

3.4 Experiments

In this section, we first introduce the used evaluation measures and architectures.
Then, we evaluate our method for knowledge transfer from unconditional GANs,
considering both a single and multiple pre-trained generators. Finally, we assess
transfer learning from conditional GANs. Our experiments focus on transferring
knowledge to target domains with few images.

Evaluation measures. We employ the widely used Fréchet Inception Distance
(FID) [61] for evaluation. FIDmeasures the similarity between two sets in the em-
bedding space given by the features of a convolutional neural network. More specif-
ically, it computes the differences between the estimated means and covariances
assuming amultivariate normal distribution on the features. FIDmeasures both the
quality and diversity of the generated images and has been shown to correlate well
with human perception [61]. However, it suffers from instability on small datasets.
For this reason, we also employ Kernel Maximum Mean Discrepancy (KMMD)
with a Gaussian kernel andMean Variance (MV) for some experiments [122]. Low
KMMD values indicate high quality images, while high values of MV indicate more
image diversity.

Baselines. We compare our method with the following baselines. Transfer-
GAN [173] directly updates both the generator and the discriminator for the target
domain. VAE [83] is a variational autoencoder trained following [122], i.e. fully
supervised by pairs of latent vectors and training images. BSA [122] updates only
the batch normalization parameters of the generator instead of all the parameters.
DGN-AM [120] generates images that maximize the activation of neurons in a pre-
trained classification network. PPGN [119] improves the diversity of DGN-AM by
of adding a prior to the latent code via denoising autoencoder. Note that both of
DGN-AM and PPGN require the target domain label, and thus we only include them
in the conditional setting.

Architectures. We introducemining to several architectures, including Progressive
GAN [76], SNGAN [116], and BigGAN [19]. The training details for all models are
included in Appendix A.2.1. For the miner, we use four fully connected layers for all
experiments except those onMNIST, where we use only two.

3.4.1 Knowledge transfer from unconditional GANs
MNIST dataset. To illustrate the functioning of the miner we show some results
MNIST [90] dataset4. We use 1000 images of size 28×28 as target data. We test
mining for off-manifold targeted image generation. In off-manifold targeted gen-

4We add quantitative results onMNIST in Appendix A.2.2
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Figure 3.3 – Results for off-manifold generation of MineGAN(w/o FT). We generate
20 samples of digits ‘5’, ‘8’ or ‘9’.

eration, G is pre-trained to synthesize all MNIST digits except for the target one,
e.g.G generates 0-8 but not 9. Here we illustrate the results after only training the
miner, without an additional finetuning step. The results are depicted in Fig. 3.3.
Interestingly, the miner manages to steer the generator to output samples that
resemble the target digits, mostly by using andmerging patterns from other digits
in the source set. For example, digit ‘9’ frequently resembles a modified 4 while
‘8’ heavily borrows from 0s and 3s. We can also observe that some digits can be
more challenging to generate. For example, ‘5’ is generally more distinct from other
digits and thus in more cases the resulting sample is confused with other digits
such as ‘3’. In conclusion, even though target classes are not in the training set of
the pre-trained GAN, still similar examples might be found on the manifold of the
generator.

Single pre-trained model. We start by transferring knowledge from a Progressive
GAN trained on CelebA [105]. We evaluate the performance on target datasets of
varying size with 1024×1024 images. We consider two target domains: on-manifold,
FFHQ women [77] and off-manifold, FFHQ children face [77]. We consider two
versions of our model: MineGAN refers to the mining method combined with
finetuning to the target domain, whereas MineGAN(w/o FT) only applies mining.
We compare our results to training from Scratch, and the TransferGAN method
of [173]. In the plots in Fig. 3.5, we show the performance in terms of FID and
KMMD as a function of the number of images in the target domain. The proposed
MineGAN framework outperforms all baselines. For the on-manifold experiment,
MineGAN already outperforms the other baselines, and results are further improved
with additional finetuning. Interestingly, for the off-manifold experiment, MineGAN
without finetuning obtains only slightly worse results than TransferGAN, showing
that the miner already manages to generate images close to the target domain.
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Figure 3.4 – Results: (Left) On-manifold (CelebA→FFHQ women), (Right) Off-
manifold (CelebA→FFHQ children). Based on pre-trained Progressive GAN. The
images with red box are suffering from overfitting. We show this in Appendix A.2.3.
More examples are shown in Appendix A.2.3.

On-manifold (target:women) O -manifold (target:children)
Scratch
TransferGAN
MineGAN(w/o FT)
MineGAN

Figure 3.5 – KMMD and FID on CelebA→FFHQwomen (left) and CelebA→FFHQ
children (right).

Fig. 3.4 shows images generated when the target data contains 100 training images.
Training the model from scratch results in overfitting. Also TransferGAN sometimes
suffers from overfitting. MineGAN, in contrast, generates high-quality images
without overfitting to the target domain. The generated images are sharper, more
diverse, and have more realistic fine details.

We also compare here with Batch Statistics Adaptation (BSA) [122] using the
same settings and architecture, namely SNGAN [116]. They performed knowledge
transfer from a pre-trained SNGAN on ImageNet [84] to FFHQ [77] and to Anime
Face [7]. Target domains have only 25 images of size 128×128. We added our results
to those reported in [122] in Fig. 3.6 (bottom). Compared to BSA,MineGAN (w/o FT)
obtains similar KMMD scores, showing that generated images obtain comparable
quality. MineGAN outperforms BSA both in KMMD score andMean Variance. The
qualitative results (shown in Fig. 3.6 (top)) clearly show that MineGAN outperforms
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Method FFHQ Anime Face
KMMD MV KMMD MV

From scratch 0.890 - 0.753 -
TransferGAN [173] 0.346 0.506 0.347 0.785
VAE [83] 0.744 - 0.790 -
BSA [122] 0.345 0.785 0.342 0.908

MineGAN (w/o FT) 0.349 0.774 0.347 0.891
MineGAN 0.337 0.812 0.334 0.934

Figure 3.6 – Results for various knowledge transfer methods. (Top) Generated
images. (Bottom) KMMD andMV.

the baselines. BSA presents blur artifacts, which are probably caused by the mean
square error used to optimize their model.

Multiple pre-trained models. We now evaluate the general case for MineGAN,
where there is more than one pre-trained model to mine from. We start with two
pre-trained Progressive GANs: one on Cars and one on Buses, both from the LSUN
dataset [183]. These pre-trained networks generate cars and buses of a variety of
different colors. We collect a target dataset of 200 images (of 256×256 resolution) of
red vehicles, which contains both red cars and red buses. We consider three target
sets with different car-bus ratios (0.3:0.7, 0.5:0.5, and 0.7:0.3) which allows us to
evaluate the estimated probabilities pi of the selector. To successfully generate
all types of red vehicle, knowledge needs to be transferred from both pre-trained
models.

Fig. 3.7 shows the synthesized images. As expected, the limited amount of data
makes training from scratch result in overfitting. TransferGAN [173] produces only
high-quality output samples for one of the two classes (the class that coincides with
the pre-trainedmodel) and it cannot extract knowledge fromboth pre-trainedGANs.
On the other hand, MineGAN generates high-quality images by successfully trans-
ferring the knowledge from both source domains simultaneously. Table 3.1 (top
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Method → Red vehicle → Tower → Bedroom

Scratch 190 / 185 / 196 176 181
TransferGAN (car) 76.9 / 72.4 / 75.6 - -
TransferGAN (bus) 72.8 / 71.3 / 73.5 - -
TransferGAN (livingroom) - 78.9 65.4
TransferGAN (church) - 73.8 71.5
MineGAN (w/o FT) 67.3 / 65.9 / 65.8 69.2 58.9
MineGAN 61.2 / 59.4 / 61.5 62.4 54.7

Estimated pi

Car 0.34 / 0.48 / 0.64 - -
Bus 0.66 / 0.52 / 0.36 - -
Living room - 0.07 0.45
Kitchen - 0.06 0.40
Bridge - 0.42 0.08
Church - 0.45 0.07

Table 3.1 – Results for {Car, Bus} → Red vehicles with three different target data
distributions (ratios cars:buses are 0.3:0.7, 0.5:0.5 and 0.7:0.3) and {Living room,
Bridge, Church, Kitchen}→ Tower/Bedroom. (Top) FID scores between real and
generated samples. (Bottom) Estimated probabilities pi for each model.

rows) quantitatively validates that our method outperfroms TransferGAN with a
significantly lower FID score. Furthermore, the probability distribution predicted
by the selector, reported in Table 3.1 (bottom rows), matches the class distribution
of the target data.

To demonstrate the scalability of MineGAN with multiple pre-trained models,
we conduct experiments using four different generators, each trained on a different
LSUN category including Livingroom, Kitchen, Church, and Bridge. We consider two
different off-manifold target datasets, one with Bedroom images and one with Tower
images, both containing 200 images. Table 3.1 (left-bottom rows) again shows that
our method obtains significantly better FID scores even when we choose the most
relevant pre-trained GAN to initialize training for TransferGAN. Table 3.1 (right-
bottom rows) shows that the miner identifies the relevant pre-trained models, e.g.
transferring knowledge from Bridge andChurch for the target domain Tower. Finally,
Fig. 3.7 (right) provides visual examples.
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Figure 3.7 – Results: {car, bus}→ red vehicles (left) and {Living room, Bridge, Church,
Kitchen} → Tower (right). Based on pre-trained Progressive GAN. For Transfer-
GAN we show the pre-trained model between parentheses. More examples in
Appendix A.2.4.

3.4.2 Knowledge transfer from conditional GANs
Here we transfer knowledge from a pre-trained conditional GAN (see Section 3.3.3).
We use BigGAN [19], which is trained using ImageNet [146], and evaluate on two
target datasets: on-manifold (ImageNet: cock, tape player, broccoli, fire engine,
harvester) and off-manifold (Places365 [202]: alley, arch, art gallery, auditorium,
ballroom). We use 500 images per category. We compare MineGANwith training
from scratch, TransferGAN [173], and two iterative methods: DGN-AM [120] and
PPGN [119] 5. It should be noted that both DGN-AM [120] and PPGN [119] are
based on a less complex GAN (equivalent to DCGAN [132]). Therefore, we expect
these methods to exhibit results of inferior quality, and so the comparison here
should be interpreted in the context of GAN quality progress. However, we would
like to stress that both DGN-AM and PPGN do not aim to transfer knowledge to
new domains. They can only generate samples of a particular class of a pre-trained
classifier network, and they have no explicit loss ensuring that the generated images
follow a target distribution.

Fig. 3.8 shows qualitative results for the different methods. As in the uncon-
ditional case, MineGAN produces very realistic results, even for the challenging
off-manifold case.

5We were unable to obtain satisfactory results with BSA [122] in this setting (images suffered from
blur artifacts) and have excluded it here.
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Figure 3.8 – Results for conditional GAN. (Left) Off-manifold (ImageNet→Places365).
(Right) On-manifold (ImageNet→ImageNet).

Table 3.2 presents quantitative results in terms of FID and KMMD. We also
indicate whether eachmethod uses the label of the target domain class. Ourmethod
obtains the best scores for both metrics, despite not using target label information.
PPGN performs significantly worse than our method. TransferGAN has a large
performance drop for the off-manifold case, for which it cannot use the target label
as it is not in the pre-trained GAN (see [173] for details).

Another important point regarding DGN-AM and PPGN is that each image
generation during inference is an iterative process of successive backpropagation
updates until convergence, whereas our method is feedforward. For this reason, we
include in Table 3.2 the inference running time of each method, using the default
200 iterations for DGN-AM and PPGN. All timings have been computed with a CPU
Intel Xeon E5-1620 v3 @ 3.50GHz and GPU NVIDIA RTX 2080 Ti. We can clearly
observe that the feedforward methods (TransferGAN and ours) are three orders of
magnitude faster despite being applied on a more complex GAN [19].

3.5 Conclusions

We presented a model for knowledge transfer for generative models. It is based on
a mining operation that identifies the regions on the learned GANmanifold that
are closer to a given target domain. Mining leads to more effective and efficient
fine tuning, even with few target domain images. Our method can be applied to
single and multiple pre-trained GANs. Experiments with various GAN architectures
(BigGAN, Progressive GAN, and SNGAN) on multiple datasets demonstrated its
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Method
Off-manifold On-manifold

Time (ms)
Label FID/KMMD Label FID/KMMD

Scratch No 190 / 0.96 No 187 / 0.93 5.1
TransferGAN No 89.2 / 0.53 Yes 58.4 / 0.39 5.1
DGN-AM Yes 214 / 0.98 Yes 180 / 0.95 3020
PPGN Yes 139 / 0.56 Yes 127 / 0.47 3830
MineGAN (w/o FT) No 82.3 / 0.47 No 61.8 / 0.32 5.2
MineGAN No 58.4 / 0.41 No 52.3 / 0.25 5.2

Table 3.2 – Distance between real data and generated samples as measured by
FID score and KMMD value. The off-manifold results correspond to ImageNet→
Places365, and the on-manifold results correspond to ImageNet→ ImageNet. We
also indicate whether the method requires the target label. Finally, we show the
inference time for the various methods in milliseconds.

effectiveness. Results showed that we outperform previous approaches, including
TranferGAN [173] and BSA [122]. Finally, we demonstrated that MineGAN can be
used to transfer knowledge frommultiple domains.
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Part IIImage-to-image translation

How do we address problems of image-to-image translation [1]





4 Mix and match networks: cross-modal align-
ment for zero-pair image-to-image transla-
tion 1

4.1 Introduction

For many computer vision applications, the task is to estimate a mapping between
an input image and an output image. This family of methods is often known as
image-to-image translations (image translations hereinafter). They include transfor-
mations between different modalities, such as from RGB to depth [99], or domains,
such as luminance to color images [196], or editing operations such as artistic style
changes [49]. These mappings can also include other 2D representations such
as semantic segmentations [106] or surface normals [41]. One drawback of the
initial research on image translations is that the methods required paired data to
train the mapping between the domains [41, 70, 106]. Another class of algorithms,
based on cycle consistency, address the problem of mapping between unpaired do-
mains [81, 181, 206]. These methods are based on the observation that translating
from one domain to another and translating back to the original domain should
result in recovering the original input image.

The discussed approaches consider translations between two domains which
are either paired or unpaired. However, for many real-world applications there exist
both paired and unpaired domains simultaneously. Consider the case of image
translation betweenmultiple modalities, where for some of themwe have access
to aligned data pairs but not for all modalities. The aim would then be to exploit
the knowledge from the paired modalities to obtain an improved mapping for the
unpaired modalities. An example of such a translation setting is the following: you
have access to a set of RGB images and their semantic segmentation, and a (differ-
ent) set of RGB images and their corresponding depth maps, but you are interested
in obtaining a mapping from depth to semantic segmentation (see Figure 4.1). We
call this the unseen translation because we do not have pairs for this translation,
and we refer to this setting as zero-pair translation. Zero-pair translation is typically

1This chapter is under review on the international journal of computer vision (minor revision) [171],
which is a extended version of the published paper at the Computer Vision and Pattern Recognition
Conference (CVPR 2018).
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Train

Dataset 1 (RGB, segm)

Dataset 2 (RGB, depth)

Test

Figure 4.1 – Overview of mix andmatch networks (M&MNets) and zero-pair trans-
lation. Two disjoint datasets are used to train seen translations between RGB and
segmentation and between RGB and depth (and vice versa). Wewant to infer the un-
seen depth-to-segmentation translation (i.e. Zero-pair translation). The M&MNets
approach builds the unseen translator by simply cascading the source encoder and
target decoder (i.e. depth and segmentation, respectively). Best viewed in color.

desired when we extend an experimental setup with an additional camera in an-
other modality. We now would like to immediately exploit this new sensor without
the cost of labelling new data. In this work, we provide a new approach to address
the zero-pair translation problem.

We propose a new method, which we call mix and match networks, which
addresses the problem of learning a mapping between unpaired modalities by
seeking alignment between encoders and decoders via their latent spaces2. The
translation between unseen modalities is performed by simply concatenating the
source modality encoder and the target modality decoder (see Figure 4.1). The
success of the method depends on the alignment of the encoder and decoder for
the unseen translation. We study several techniques that contribute to achieve
alignment, including the usage of autoencoders, latent space consistency losses
and the usage of robust side information to guide the reconstruction of spatial
structure.

We evaluate our approach in a challenging cross-modal task, where we perform
zero-pair depth to semantic segmentation translation (or semantic segmentation
to depth translation), using only RGB-depth and RGB-semantic segmentation pairs

2The code is available online at http://github.com/yaxingwang/Mix-and-match-networks.
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(a) Paired translation

Train Test Train Test Train Test

Synthetic

RealReal

Disjoint
sets

Train Test

(b) Unpaired translation (c) Unsupervised domain adapt (d) Zero-pair translation

Figure 4.2 – cross-modal translation train and test settings: (a) paired translation,
(b) unpaired translation, (c) unsupervised domain adaptation for segmentation
(two modalities and two domains in the RGBmodality), (d) zero-paired translation
(three modalities). Best viewed in color.

during training. Furthermore, we show that the results can be further improved
by using pseudo-pairs between the unseen modalities that allow the network to
exploit unseen shared information. We also show that our approach can be used
for cross-modal translation and with unpaired data. In particular, we show that mix
and match networks scale better with the number of modalities, since they are not
required to learn all pairwise image translation networks (i.e. scales linearly instead
of quadratically).

This chapter is an extended version of a previous conference publication [172].
We have includedmore analysis and insight about howmix andmatch networks
exploit the information shared betweenmodalities, and propose an improved mix
and match networks framework with pseudo-pairs which allows us to access previ-
ously unexploited shared information between unseen modalities (see Section 4.5).
This was found to significantly improve performance. In addition, [172] only report
results on a synthetic dataset. Here we also provide results on real images (SUN
RGB-D dataset [155]) and four modalities (Freiburg Forest dataset [165]). Further-
more, we have added more insights on how the alignments between encoders and
decoders evolve during training.

4.2 Related work

In this section we discuss the literature of related research areas.

4.2.1 Image-to-image translation

Paired translations Generic encoder-decoder architectures have achieved im-
pressive results in a wide range of transformations between images. [70] pro-
posed pix2pix, which is a conditional generative adversarial network (conditional
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GAN) [54, 115] trained with pairs of input and output images to learn a variety of
image translations. Those translations include cross-domain image translations
such as colorization and style transfer. [53] disentangle the information of the
domains in the latent space, which allows to do cross-domain retrieval as well as
perform one-to-many translations. The ability of GANs to generate realistic images
also enables pix2pix to address effectively challenging cross-modal translations,
such as semantic segmentation to RGB image. In this case, recent multi-scale
architectures [24, 167] achieve better results in higher resolution images.

Unpaired translations Variousworks extended image translation to the casewhere
no explicit input-output image pairs are available (unpaired image translation),
using the idea of cyclic consistency [81, 98, 181, 206] or consistency between cer-
tain extracted features [158]. To avoid accidental artifacts and improve learning,
[114] integrate an attention mechanism to help translations focus on semantically
meaningful regions. [100] show that unsupervised mappings can be learned by
imposing a joint latent space between the encoder and the decoder. Both Trans-
GaGa [176] and TraVeLGAN [6] address the issues of image translation across large
geometry variations. The former disentangles image space in a Cartesian product of
the appearance and the geometry latent spaces, and the latter considers a Siamese
network to replace the cycle-consistency constraint.

In this work, we consider the case where paired data is available between some
modalities and not available between others (i.e. zero-pair), and how the knowledge
can be transferred to those unseen translations. Whereas previous work has focused
on unpaired domains of the samemodality, we show results for unpaired domains
of different modalities.

Diversity in translations Given an input image (e.g. an edge image or a grayscale
image) there are often multiple possible solutions (e.g. different plausible coloriza-
tions). The paired translation framework was extended to one-to-many translations
in the work of [207]. DRIT [93], MUNIT [68] and Augmented CycleGAN [5] can learn
one-to-many translations in unpaired settings. In general, disentangled representa-
tions allow achieving diversity by keeping the content component and sampling
the style component of the latent representation [53, 93, 112]. [30] propose a novel
group-wise deep whitening-and-coloring method to improve computational ef-
ficiency. [4] scale the latent filter to avoid a complicated network framework to
perform one-to-many translations.

Multi-domain translations We also consider the case of multiple domains (and
modalities). In concurrent work, [31] also address scaling to multiple domains by
using a single encoder-decodermodel, which was previously explored by [130]. [27]
effectively disentangle the intermediate states between source and target domains.
[170] perform diverse and scalable image transfer by a single model. These works
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focus on faces and changing relatively superficial and localized attributes such as
make-up, hair color, gender, etc., always within the RGBmodality. In contrast, our
approach uses multiple cross-aligned modality-specific encoders and decoders,
which are necessary to address the deeper structural changes required by our cross-
modal setting. [8] also use multiple encoders-decoders but focus on the easier
cross-domain task of style transfer.

4.2.2 Semantic segmentation and depth estimation

Semantic image segmentation aims at assigning each pixel to an object class. [106]
propose fully convolutional networks (FCN), following an encoder-decoder struc-
ture. Since the FCN shows outstanding performance, this paradigm has been
adopted inmany current methods for semantic segmentation [12, 23, 141, 182, 199].
Of particular interest is Segnet [12], which we adapt in our method. Segnet in-
troduces the use of pooling indices instead of copying encoder features (i.e. skip
connections, as in U-Net [141]). We also consider pooling indices in our architec-
ture for zero-pair image translation because we found them to be more robust and
invariant under unseen translations.

Depth estimation aims at estimating the depth structure of a RGB image, usually
represented as a depthmap encoding the distance of each pixel to the camera. Most
depth estimation methods are formalized as regression problems, where the aim is
to minimize the mean squared error (MSE) with respect to a ground truth depth
map. In general, an encoder-decoder architecture is used, often incorporating
multiscale networks and skip connections [41, 80, 86, 88, 99, 143, 166].

Multi-modal encoder-decoders With the development of multi-sensor cameras
and datasets [87, 152, 155], encoder-decoder architectures have been adapted to
multi-modal inputs [118], where different modalities (e.g. RGB, depth, infrared,
surface normals) are encoded and combined prior to the decoding. The network is
trained to perform tasks such as multi-modal object recognition [29, 42, 155], scene
recognition [155, 156], object detection [57] (with simple classifiers or regressors
as decoders in these cases) and semantic segmentation [78, 152, 168]. Similarly,
multi-task learning can be applied to reconstruct multiple modalities [41, 78]. For
instance [41] estimate depth, surface normals and semantic segmentation from a
single RGB image, which can be seen as cross-modal translation.

Training a multi-task multimodal encoder-decoder network was recently stud-
ied in [85]. They use a joint latent representation space for the various modalities.
In our work we consider the alignment and transferability of pairwise image trans-
lations to unseen translations, rather than joint encoder-decoder architectures.
Another multimodal encoder-decoder network was studied in [21]. They show that

53



Chapter 4. Mix and match networks: cross-modal alignment for zero-pair
image-to-image translation

multi-modal autoencoders can address the depth estimation and semantic segmen-
tation tasks simultaneously, even in the absence of some of the input modalities.
All these works do not consider the zero-pair image translation problem addressed
in this work.

4.2.3 Zero-shot recognition

In conventional supervised image recognition, the objective is to predict the class
label that is provided during training. However, this poses limitations in scalability
to new classes, since new training data and annotations are required. In zero-shot
learning [3, 46, 89, 178, 179], the objective is to predict an unknown class for which
there is no image available, but a description of the class (i.e. class prototype) or any
other source of semantic similarity with seen classes. This description can be a set
of attributes(e.g. has wings, blue, four legs, indoor) [72, 89], concept ontologies [44,
139] or textual descriptions [133]. In general, an intermediate semantic space
is leveraged as a bridge between the visual features from seen classes and class
description from unseen ones. In contrast to zero-shot recognition, we focus on
unseen translations (unseen input-output pairs rather than simply unseen class
labels).

4.2.4 Zero-pair language translation

Evaluating models on unseen language pairs has been studied recently in machine
translation [28, 45, 75, 201]. Johnson et al. [75] proposed a neural language model
that can translate between multiple languages, even pairs of language where no
explicit paired sentences where provided3. In their method, the encoder, decoder
and attention are shared. In our method we focus on images, which are essentially
a radically different type of data, with two dimensional structure in contrast to the
sequential structure of language.

4.2.5 Domain adaptation

A related line of research is unsupervised domain adaptation. In that case the task is
to transfer knowledge from a supervised source domain to an unsupervised target
domain (see Figure 4.2c). This problem has been addressed by finding domain
invariant feature spaces [47, 52, 162], using image translation models to map be-
tween source and target domain [177], and exploiting pseudo-labels [147, 209].

3Note that [75] refers to this as zero-shot translation. In this work we refer to this setting as zero-
pair to emphasize that what is unseen is paired data and avoid ambiguities with traditional zero-shot
recognition which typically refers to unseen samples.
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(a) All seen (b) Seen and unseen

Train (seen) Test (unseen)

Figure 4.3 – Multi-domain image translation using pairwise translations: (a) all
translations are seen during training, and (b) our setting: some translations are
seen, then test on unseen. Best viewed in color.

Knowledge can also be transferred across modalities [22, 57, 62, 63]. For instance,
Gupta et al. [57] use cross-modal distillation to learn depthmodels for classification
by distilling RGB features (from pretrained model trained on a much larger RGB
dataset), through a large set of unlabeled RGB-D pairs. Modality adaptation can
also be achieved using cross-modal translation [180, 194].

When comparing this line of research with the setting we consider in this work
(i.e. zero-pair translation) there are some important differences. The unsuper-
vised domain adaptation setting (see Figure 4.2c) typically involves two modali-
ties (i.e. RGB and segmentation), and two domains within the RGBmodality (e.g.
synthetic and real). Paired data is available only for the synthetic-segmentation
while the synthetic-real translation is unpaired, and the unseen translation is real-
segmentation (with test paired data). In contrast, our setting (see Figure 4.2d) is
more challenging involving three modalities, with one disjoint paired training set
for each seen translation. In comparison, using paired data to tackle domain shift
allows us to reach much larger and challenging domain shifts and evenmodality
shifts, a setting which, to the best of our knowledge, is not considered in domain
adaptation literature.

4.3 Multi-modal image translations

We consider the problem of image translation between multiple modalities In
particular, a translation from a source modality X (i ) to a target modality X ( j ) is
a mapping Ti j : x(i ) 	→ x( j ). This mapping is implemented as an encoder-decoder
chain x( j ) = Ti j

(
x(i )

)= g j
(

fi
(
x(i )

))
with source encoder fi and target decoder g j .
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(a) Cascade (b) Mix&match (c) Ideal

Figure 4.4 – Inferring unseen translations: (a) cascading translators, (b) mix and
match networks (M&MNets), and (c) ideal case of encoders-decoders with aligned
representations. Best viewed in color.

Translations betweenmodalities connected during training are all learned jointly,
and in both directions. Note that the encoder and decoder of translation Ti j are
different from those of T j i . In order to perform any arbitrary translation between
modalities, all pairwise translations must be trained (i.e. seen) during the training
stage (see Figure 4.3).

In this article we address the case where only a subset of the translations are
seen during training, while the rest remain unseen (see Figure 4.3(b)). Our objective
is to be able to infer these unseen translations during test time.

4.3.1 Inferring unseen translations

In the case where some of the translations are unseen during training, we could still
try to infer them by reusing the available networks. Here we discuss two possible
ways: cascading translators, which we use as baseline, and the proposed mix and
match networks approach.

Cascaded translators Assuming there is a path of seen translations between
the source modality and the target modality via intermediate modalities (see Fig-
ure 4.3(b)), a possible solution is simply concatenating the seen translators across
this path. This will result in a mapping from the source to the target modality by
reconstructing images in the intermediate modalities (see Figure 4.4(a)). How-
ever, the success of this approach depends on the effectiveness of the intermediate
translators.

Unpaired translators An alternative is to frame the problem as unpaired transla-
tion between the source and target modalities and disregard the other modalities,
learning a translation using methods based on cycle consistency [81, 100, 181, 206].
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This approach requires training an unpaired translator per unseen translation. In
general, unpaired translation can be effective when the translation is within the
samemodality and involves a relatively small shift between source and target do-
mains (e.g. body texture in horse-to-zebra), but struggles in the more challenging
case of cross-modal translations.

Mix and match networks (M&MNets) We propose to obtain the unseen translator
by simply concatenating the encoder of the source modality and the decoder of the
target modality (see Figure 4.4(b)). The problem is that these two networks have not
directly interacted during training, and therefore, for this approach to be successful,
the two latent spaces must be aligned.

4.3.2 Aligning for unseen translations

The key challenge in M&MNets is to ensure that the latent representation from the
encoders can be decoded by all decoders, including those unseen (see Figure 4.4(c)).
In order to address this challenge, encoders and decoders must be aligned in their
latent representations. In addition, the encoder-decoder pair should be able to
preserve the spatial structure, even in unseen translations.

In the following we describe the different techniques we use to enforce feature
alignment between unseen encoder-decoder pairs.

Shared encoders and decoders Sharing encoders and decoders is a basic require-
ment to reuse latent representations and reduce the number of networks.

Autoencoders We jointly train modality-specific autoencoders with the image
translation networks. By sharing the weights between the auto-encoders and the
image translation encoder-decoder pairs the latent space is forced to align.

Robust side information In general, image translation tasks result in output im-
ages with similar spatial structure as the input ones, such as scene layouts, shapes
and contours that are preserved across the translation. In fact, this spatial struc-
ture available in the input image is critical to simplify the problem and achieve
good results, especially in cross-modal translations. Successful image translation
methods often use multi-scale intermediate representations from the encoder as
side information to guide the decoder in the upsampling process. Examples of side
information are skip connections [58, 141] and pooling indices [12, 97]. We exploit
side information in cross-modal translation (see discussion in Section 4.4.4).

Latent space consistency (only in paired settings) When paired data between
somemodalities is available, we can enforce consistency in the latent representa-
tions of each direction of the translations. [158] use L2 distance between a latent
representation and the reconstructed after another decoding and encoding cycle.
Here we enforce the representations fi

(
x(i )

)
and f j

(
x( j )

)
of two paired samples

57



Chapter 4. Mix and match networks: cross-modal alignment for zero-pair
image-to-image translation

(
x(i ),x( j )

)
, to be aligned, since both images represent the same content (just in two

different modalities). This is done by introducing a latent space consistency loss
which is defined as

∥∥ fi
(
x(i )

)− f j
(
x( j )

)∥∥
2. We exploit this constraint in zero-pair

image translation (see Section 4.4).

Adding noise to latent space The latent space consistency we apply is based
on reducing the difference between the fi

(
x(i )

)
and f j

(
x( j )

)
. The network can

minimize this loss by aligning the representations of fi
(
x(i )

)
and f j

(
x( j )

)
, but it

could also minimize it by just reducing the signal
∥∥ fi

(
x(i )

)∥∥ and ∥∥ f j
(
x( j )

)∥∥. This
would reduce the latent space consistency loss but not improve the alignment.
Adding noise to the output of each encoder prevents this problem, since reducing
the signal would then hurt the translation and auto-encoder losses. In practice, we
found that adding noise helps to train the networks and improves the results during
test.

4.3.3 Scalable image translation with M&MNets

As the number of modalities increases, the number of pairwise translations grows
quadratically. Training encoder-decoder pairs for all pairwise translations in N
modalities would require N × (N −1)/2 encoders and N × (N −1)/2 decoders (see
Figure 4.3). One of the advantages of M&MNets is their better scalability, since
many of those translations can be inferred without explicitly training them (see
Figure 4.3(b)). It requires that each encoder and decoder should be involved in
at least one translation pair during training in order to be aligned with the others,
thereby reducing complexity from quadratic to linear with the number ofmodalities
(i.e. N encoders and N decoders).

4.3.4 Translating domains instead of modalities

Although we described the proposed framework for cross-modal translation, the
same framework can be easily adapted to cross-domain image translation. In that
case, the modality is the same (typically RGB) and the translation is arguably less
complex since the network does not need to learn to change the modality, just the
domain. It can be learned sometimes with unpaired data (e.g. style transfer, face
attributes and expressions).

Here we use cross-domain image translation to illustrate the scalability of
M&MNets.The datasets (color and artworks) and the network architecture are pro-
vided in Appendix A.3.2. Figure 4.5 shows two examples involvingmulti-domain un-
paired image translation. Figure 4.5a-b shows an image recoloring application with
eleven domains (N = 11). Images are objects in the colored objects dataset [188],
where we use colors as domains. A naive solution is training all pairwise recoloring
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(d) Input+seen+unseen(c) Input+seen(b) Input+seen+unseen(a) Input+seen

Figure 4.5 – Two examples of scalable inference of multi-domain translations with
M&MNets. Color transfer (a-b): only transformations from blue or to blue (anchor
domain) are seen. Style transfer (c-d): trained on four styles + photo (anchor) with
data from [206]). From left to right: photo, Monet, van Gogh, Ukiyo-e and Cezanne.
Input images are highlighted in red and seen translations in blue. Best viewed in
color.

combinations with CycleGANs, which requires training a total of N (N −1)/2= 55
encoders (and decoders). In contrast, M&MNets only require to train eleven en-
coders and eleven decoders, while still successfully addressing the recoloring task.
In particular all translations from or to the blue domain are trained, while the re-
maining translations not involving blue are unseen. The input images (framed in
red) and the resulting seen translations (framed in blue) are shown in Figure 4.5a.
The additional images in Figure 4.5b correspond to the remaining unseen transla-
tions.

We also illustrate M&MNets in a style transfer setting with five domains. They
include photo (used as anchor domain) and four artistic styles with data from
[206]). M&MNets can reasonably infer unseen translations between styles (see
Figure 4.5d) using only five encoders and five decoders (for a total of twenty possible
translations). Note that the purpose of these examples is to illustrate the scalability
aspect of M&MNets in multiple domains, not to compete with state-of-the-art
recoloring or style transfer methods.

4.4 Zero-pair cross-modal translation

Well alignedM&MNets can be applied to a variety of problems. Here, we apply them
to a challenging setting we call zero-pair cross-modal translation, which involves
three modalities4. Note that cross-modal translations usually require modality-

4For simplicity, we will refer to the output semantic segmentationmaps and depth as modalities
rather than tasks, as done in some works.
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specific architectures and losses.

4.4.1 Problem definition

We consider the problem of jointly learning two seen cross-modal translations:
RGB-to-segmentation translation y = TRS (x) (and x = TSR

(
y
)
) and RGB-to-depth

translation z = TRD (x) (and x = TDR (z)) and x = TDR (z)) and evaluating on the
unseen depth-to-segmentation transformations y = TDS (z) and z = TSD

(
y
)
(see

Figures 4.1 and 4.2c). In contrast to the conventional unpaired translation setting,
here seen translations have paired data (cross-modal translation is difficult to learn
without paired samples). In particular, we consider the case where the former
translations are learned from a semantic segmentation dataset DRS with pairs(
x, y

) ∈DRS of RGB images and segmentation maps, and the second from a disjoint
RGB-D dataset DRD with pairs of RGB and depth images (x,z) ∈ DRD . Therefore
no pairs with matching depth images and segmentation maps are available to the
system. The system is evaluated on a third datasetDDS with paired depth images
and segmentation maps.

4.4.2 Mix and match networks architecture

The overview of the framework is shown in Figure 4.6. As basic building blocks we
use three modality-specific encoders fR (x), fD (z) and fS

(
y
)
(RGB, depth and se-

mantic segmentation, respectively), and the corresponding three modality-specific
decoders gR (h), gD (h) and gS (h), where h is the latent representation in the shared
space. The required translations are implemented as y = TRS (x) = gS

(
fR (x)

)
,

z = TRD (x)= gD
(

fR (x)
)
and y = TDS (z)= gS

(
fD (z)

)
.

Encoder and decoder weights are shared across the different translations involv-
ing samemodalities (same color in Figure 4.6). To enforce better alignment between
encoders and decoders of the samemodality, we also include self-translations using
the corresponding three autoencoders TRR (x) = gR

(
fR (x)

)
, TDD (y) = gD

(
fD

(
y
))

and TSS(z)= gS
(

fS (z)
)
.

We base our encoders and decoders on the SegNet architecture [12]. The en-
coder of SegNet itself is based on the 13 convolutional layers of the VGG-16 architec-
ture [153]. The decoder mirrors the encoder architecture with 13 deconvolutional
layers. Weights in encoders and decoders are randomly initialized following a
standard Gaussian distribution except for the RGB encoder which is pretrained on
ImageNet [35].

As in SegNet, pooling indices at each downsampling layer of the encoder are
provided to the corresponding upsampling layer of the (seen or unseen) decoder5.

5The RGB decoder does not use pooling indices, since in our experiments we observed undesired
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Train data

Generated

Test (zero-pair) Test multi-modal
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Figure 4.6 – Zero-pair cross-modal and multi-modalimage translation with
M&MNets. Two disjoint sets DRS and DRD are seen during training, containing
(RGB,depth) pairs and (RGB,segmentation) pairs, respectively. The system is tested
on the unseen translation depth-to-segmentation (zero-pair) and (RGB+depth)-to-
segmentation (multimodal), using a third unseen setDDS . Encoders and decoders
with the same color share weights. Note that we do not apply pooling indices for
RGB decoders. Best viewed in color.

These pooling indices seem to be relatively similar across the three modalities
and effective to transfer spatial structure information that help to obtain better
depth and segmentation boundaries in higher resolutions. Thus, they provide
relatively modality-independent side information. We also experimented with skip
connections and no side information at all.

4.4.3 Loss functions

As we mentioned before, for a correct cross-alignment between encoders and
decoders, training is critical for zero-pair translation. The final loss combines
a number of modality-specific losses for both cross-modal translation and self-
translation (i.e. autoencoders) and alignment constraints in the latent space

L =λR LRGB +λS LSEG +λD LDEPT H +λALL AT

grid-like artifacts in the RGB output when we use them.
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where λR , λS , λD and λA are weights which balance the losses.

RGB We use a combination of pixelwise L2 distance and adversarial loss LRGB =
λL2LL2+LG AN . L2 distance is used to compare the ground truth RGB image and the
output RGB image of the translation from a corresponding depth or segmentation
image. It is also used in the RGB autoencoder

LL2 = E(x,y)∼DRS

[∥∥TSR
(
y
)−x

∥∥
2

]
(4.1)

+ E(x,z)∼DRD [‖TDR (z)−x‖2] (4.2)

+ Ex∼DRS
⋃

DRD [‖TRR (x)−x‖2] (4.3)

In addition, we also include the least squares adversarial loss [70, 109] on the output
of the RGB decoder

LG AN = Ex∼DRS
⋃

DRD

[
(C (x)−1)2

]+Ex̂∼p̂(x)
[
(C (x̂))2

]
where p̂(x) is the resulting distribution of the combined images x̂ generated by
x̂ = TSR

(
y
)
, x̂ = TDR (z) and x̂ = TRR (x). Note that the RGB autoencoder and the

discriminatorC (x) are both trained with the combined RGB dataX .

Depth For depth we use the Berhu loss [88] in both RGB-to-depth translation and
in the depth autoencoder

LDEPT H = E(x,z)∼DRD [B (TRD (x)− z)] (4.4)

+ E(x,z)∼DRD [B (TDD (z)− z)] (4.5)

whereB (z) is the average Berhu loss, which is given by

B
(
z ′ − z

)=
{ ∣∣(z ′ − z

)∣∣ ∣∣z ′ − z
∣∣� c

(z ′−z)2+c2

2c

∣∣z ′ − z
∣∣> c

(4.6)

where z ′ = TRD (x), and c = 1
5maxi

(∣∣z ′
i − zi

∣∣), where i indexes the pixels of each
image.

Semantic segmentation For segmentation we use the average cross-entropy loss
C E

(
ŷ , y

)
in both RGB-to-segmentation translation and the segmentation autoen-

coder

LSE M = E(x,y)∼DRS

[
C E

(
TRS (x) , y

)]
(4.7)

+ E(x,y)∼DRS

[
C E

(
TSS

(
y
)
, y

)]
. (4.8)

Latent space consistency We enforce latent representations to remain close, in-
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dependently of the encoder that generated them. In our case we have two latent
space consistency losses

LL AT = LL AT1+LL AT2 (4.9)

LL AT1 = E(x,y)∼DRS

[∥∥ fR (x)− fS
(
y
)∥∥

2

]
(4.10)

LL AT2 = E(x,z)∼DRD

[∥∥ fR (x)− fD (z)
∥∥
2

]
(4.11)

4.4.4 The role of side information

Spatial side information plays an important role in image translation, especially
in cross-modal translation (e.g. semantic segmentation). Reconstructing images
requires reconstructing spatial details. Side information from a particular encoder
layer can provide helpful hints to the decoder about how to reconstruct the spatial
structure at a specific scale and level of abstraction.

Skip connections Perhaps the most common type of side information connecting
encoders and decoders comes in the form of skip connections, where the feature
from a particular layer is copied and concatenated with another feature further in
the processing chain. U-Net [141] introduced a widely used architecture in image
segmentation and image translation where convolutional layers in encoder and
decoder are mirrored and the feature of a particular encoding layer is concatenated
with the feature with the corresponding layer at the decoder. It is important to
observe that skip connections make the decoder heavily condition on the particu-
lar features of the encoder. This is not a problem in general because translations
are usually seen during training and therefore latent representations are aligned.
However, in our setting with unseen translations that conditioning is simply catas-
trophic, because the target decoder is only aware of the features in encoders from
modalities seen during training. Otherwise, as in the case of an unseen encoder, the
result is largely unpredictable.

Pooling indices The SegNet architecture [12] includes unpooling layers that lever-
age pooling indices from the mirror layers of the encoder. Pooling indices capture
the locations of the maximum values in the input feature map of a max pooling
layer. These locations are then used to guide the corresponding unpooling opera-
tion in the decoder, helping to preserve finer details. Note that pooling indices are
more compact descriptors than encoder features from skip connections, and since
the unpooling operation is not learned, pooling indices are less dependent on the
particular encoder and therefore more robust for unseen translations.
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4.5 Shared information between unseen modalities

4.5.1 Shared and modality-specific information

The information conveyed by the latent representation is key to perform image
translation. Encoders extract this information from the input image and decoders
use it to reconstruct the output image. In general, this latent representation can
contain information shared between the source and target modalities, and informa-
tion specific to each modality. In a setting where the same latent representation is
used acrossmultiple encoders and decoders, the latent representationmust capture
information about all input and output modalities.

We can represent modalities as circles, whose intersections represent shared
information between them. Figure 4.7a represents the particular case of zero-pair
cross-modal translation with three modalities (described in the previous section).
Note that translators and autoencoders force the latent representation to capture
both shared andmodality-specific information. However, the better the informa-
tion shared betweenmodalities is captured in the latent representation, the more
effective cross-modal translations are.

The framework described in Section 4.4.2 enables the inference of unseen trans-
lations via the anchor modality RGB, whose encoder and decoder are shared across
the two seen translations. That is the only component that indirectly enforces
alignment of depth and segmentation encoders and decoders. Therefore, the latent
information used in the unseen translation is the one shared by the threemodalities.

In contrast, the information shared between depth and segmentation that is not
shared with RGB (the dashed region in Figure 4.7a) is not exploited during training
by depth and segmentation encoders and decoders, because it is of no use to solve
any of the seen translations. This makes inferred translations less effective because
depth and segmentation encoders are ignoring potentially useful information that
could improve translation to segmentation and depth, respectively. In this section
we propose an extension of our basic framework that aims at explicitly enforcing
alignment between unseen modalities in order to exploit all shared information
between unseen modalities (see the highlighted region in Figure 4.7b). Since no
training pairs between those modalities are available, that alignment requires to be
between unpaired samples.

4.5.2 Exploiting shared information between unseen modalities

We adapt the idea of pseudo-labels, used previously in unsupervised domain adap-
tation [147, 209], to our zero-pair cross-modal setting. The main idea is that we
would also like to train directly the encoder-decoder between the unseenmodalities.
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(b) Seen+unseen shared information(a) Seen shared information

Not used

RGB

Segm.

Depth

R

S

D

RGB

Segm.

Depth

R

S

D

(c) Color opponents example

Figure 4.7 – Specific and shared information: (a) basic mix and match nets (see
Fig 4.6) ignore depth-segmentation shared information, (b) extended mix and
match net exploiting depth-segmentation shared information (unpaired informa-
tion in our case), and (c) illustration using color opponents (trained on (Θ1,Θ2) and
(Θ1,Θ3), and evaluated on unseen translation (Θ2,Θ3)). Best viewed in color.

No backpropagation

Figure 4.8 – Pseudo-pairs pipeline on the unseen translation. This pipeline is
combined with the basic cross-modal M&MNets of Fig 4.6.
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However, since we have no paired data between these modalities, we propose to
use pseudo-pairs.

In our specific zero-pair cross-modal setting, recall we use x, y , and z to respec-
tively indicate data from the the RGB, semantic segmentation and depth modality.
We use the encoder-decoder networks between the seen modalities to form the
pseudo-pairs (TRD (x), y) and (TRS(x),z). Now we can also train encoders and de-
coders between the unseen modalities depth and segmentation (see Figure 4.8)
using the following loss:

LPP = E(x,y)∼DRS

[
B

(
TRD (x)−TSD

(
y
))]

(4.12)

+ E(x,z)∼DRD [C E (TRS (x) ,TDS (z))] (4.13)

whereB is the average Berhu loss [88], andC E is the cross-entropy loss. The direct
training of the encoder-decoder between the unseen modality allows us to exploit
correlation between features in these modalities for which no evidence exists in the
RGBmodality (dashed region in Figure 4.7a). In practice we first train the network
without the pseudo-labels. After convergence we add LPP and train further with all
losses until final convergence.

Note that this additional term encourages the segmentation-to-depth and
depth-to-segmentation translators to exploit this shared information between the
unseenmodalities, including the previously ignored one, in order to improve the
translation to match the one obtained from RGB. The latter is more accurate since
it has been trained with paired samples. A problem with this approach is that this
new loss can harm the training of seen translations from RGB, since pseudo-labels
are less reliable than true labels. For this reason we do not update the weights of
the translators involving RGB with the pseudo-pairs (this is indicated with the red
line in Figure 4.8).

4.5.3 Pseudo-pair example

To illustrate the potential of pseudo-pairs we consider a cross-domain image trans-
lation example where the not-used part between the unpaired domains (striped
region in Figure 4.7) is expected to be substantial. We consider the task of estimating
an RGB image from a single channel. In particular, we consider the following three
domains6

Θ1 = R −G
Θ2 =G −B
Θ3 = (R,G ,B)

(4.14)

6We choose the opponent channels because they are less correlated than the R,G andB channels [50].

66
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Type Method Accuracy (%)

Seen
Paired

M&MNetsΘ1 →Θ3 75.0

Unseen
Zero-pair

M&MNetsΘ2 →Θ3 36.5
M&MNets+PPΘ2 →Θ3 57.5

Seen/unseen
Multi-modal

M&MNets (Θ1,Θ2)→Θ3 77.5
M&MNets + PP (Θ1,Θ2)→Θ3 80.5

Table 4.1 – Flower classification accuracy obtained on Θ3 computed for various
image translation models. The importance of pseudo-pairs can be clearly seen.

where Θ1 and Θ2 are scalar images and Θ3 is a three channel RGB image (see
Figure 4.7(c)). Both domains Θ1 and Θ2 contain relevant and complementary
information on estimating the RGB image.

For this experimentweuse the tenmost frequent classes of the Flower dataset [121]
which are passionflower, petunia, rose, wallflower, watercress, waterlily, cyclamen,
foxglove, frangipani, hibiscus. For training we have pairs (Θ1, Θ2) and (Θ1, Θ3) of
non-overlapping images. For testing we use a separate test set. To evaluate the
quality of the computed RGB images, we apply a flower classification algorithm on
them and report the classification accuracy (See Appendix A.3.3).

The results are presented in Table 4.1. In the first two rows the result ofM&MNets
with and without pseudo-pairs are compared. The usage of pseudo-pairs results
in a huge absolute performance gain of 21%. This shows that, for domains which
have considerable amounts of complementary information, pseudo-pairs can sig-
nificantly improve performance. In the next two rows, we have also included the
multi-modal results. In this case the pseudo-pairs double the performance gain
with respect to the paired domain (last row) from 77.5−75= 2.5% to 80.5−75= 5.5%.

The qualitative results are provided in Figure 4.9. The results show the effective-
ness of the pseudo-pairs. The method without the pseudo-pairs can only exploit
information which is shared between the three domains. The domainΘ1 contains
information about the red-green color axes, and the mix andmatch nets (without
pseudo-pairs) approach does partially manage to reconstruct that part (see first
row Figure 4.9). However,Θ1 has no access to the blue-yellow information which is
encoded in theΘ2. Adding the pseudo-pairs allows to exploit this information and
the reconstructed RGB images are closer to the ground truth image (see second and
third row Figure 4.9).
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Figure 4.9 – Visualization of RGB image estimation in Flowers dataset. (a) input
image from Θ2 (via seen translation), (b) zero pair translation without pseudo-
pairs [172], (c) zero pair with the pseudo-pairs (PP), (d) ground truth.

4.6 Experiments

In this section we demonstrate the effectiveness of M&MNets and their variants
to address unseen translations in the challenging cross-modal translation setting
involving the modalities RGB, depth and segmentation.

4.6.1 Datasets and experimental settings

We use two RGB-D datasets annotated with segmentation maps, one with synthetic
images and the other with real captured images. A third dataset also includes near
infrared (NIR) as a fourth modality.

SceneNet RGB-D The SceneNet RGB-D dataset [113] consists of 16865 synthesized
train videos and 1000 test videos. Each of them contains 300 frames representing
the same scene in a multi-modal triplet (i.e. RGB, depth and segmentation), with a
size of 320x240 pixels. We collected 150K triplets for our train set, 10K triplets for our
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validation set and 10K triplets for our test set. The triplets are sampled uniformly
from the first frame to the last frame every 30 frames. The triplets for the validation
set are collected from the remaining train videos and the test set is taken from the
test dataset.

In order to evaluate zero-pair translation, we divided the train set (and validation
set) into two equal non-overlapping splits from different videos (to avoid covering
the same scenes). We discard depth images in one set and segmentation maps in
the other, thus creating two disjoint training sets with paired instances, DRS and
DRD respectively, to train our model.

SUN RGB-D The SUN RGBD dataset [155] contains 10335 real RGB-D images
of room scenes. Each RGB image has a corresponding depth and segmentation
map. We collected two sets: 10K triplets for the train set and 335 triplets for test
set. For the train set, we split it into two disjoint subsets, one containing (RGB,
segmentation) pairs, and the other containing (RGB, depth) pairs, each of them
consisting of 5K pairs.

Freiburg Forest The Freiburg Forest dataset [165] consists of images of 1024×768.
We crop images (RGB, depth, NIR and semantic segmentation) to 256×256. We con-
sider five different semantic classes: Sky, Trail, Grass, Vegetation and Obstacle. Note
we combine the tree and vegatation into an single class(Vegetation) as suggested
in [165]. We use the train and test datasets splits provided by the authors.

Network training We use Adam [82] with a batch size of 6, using a learning rate
of 0.0002. We set λR = 1, λS = 100, λD = 10, λA = 1, λL2 = 1. We initially train the
mix and match framework without autoencoders, without latent consistency losses,
and without adding noise during the first 200K iterations. Then we freeze the RGB
encoder, add the autoencoders, latent consistency losses and noise to the latent
space, and for the following 200K iterations we use λR = 10, λA = 10, λL2 = 100.
We found that the network converges faster using a larger λA for the second stage.
The noise is sampled from a Gaussian distribution with zero mean and a standard
deviation of 0.5. For the variant with pseudo-pairs, in a third stage we include the
pseudo-pair pipeline and the corresponding loss and train for another additional
100K iterations, using λPP = 100 and learning rate 0.00002. We experimentally
found that the above setting also achieves outstanding performance on Freiburg
Forest dataset. The network information is displayed in Appendix A.3.1.

Evaluation metrics Following common practice, for the segmentation modality
we compute the intersection over union (IoU) and per-class average (mIoU), and
the global scores, which gives the percentage of correctly classified pixels. For the
depth modality we also include quantitative evaluation, following the standard
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error metrics for depth estimation [41]:

δ< ν= 1
|y |

∑
yi∈y

[
δ(yi , y ′

i )< ν
]

RMSE (linear)=
√

1
|y |

∑
yi∈y

∥∥yi − y ′
i

∥∥2
RMSE (log)=

√
1
|y |

∑
yi∈y

∥∥log yi − log y ′
i

∥∥2 (4.15)

where y and y ′ are the predicted and ground truth depth images, δ(u,v)=max(u
v ,

v
u )

and [P ] is the Iverson bracket which is 1 when P is true and 0 otherwise.

4.6.2 Experiments on SceneNet RGB-D

Ablation study

We first performed an ablation study on the impact of several design elements on
the overall performance of the system. We use a smaller subset of SceneNet RGB-D
based on 51K triplets from the first 1000 videos (selecting 50 frames from the first
1000 videos for train, and the first frame from another 1000 videos for test).

Side information We first evaluate the usage of side information from the encoder
to guide the upsampling process in the decoder. We consider three variants: no side
information, skip connections [141] andpooling indices [12]. The results in Table 4.2
show that skip connections obtainworse results than no side information at all. This
is caused by the fact that side information makes the decoder(s) conditioned on the
seen encoder(s). This is problematic for unseen translations because the features
passed through skip connections are different from those seen by the decoder
during training, resulting in a drop in performance. In contrast, pooling indices
provide a significant boost over no side information. Although the decoder is still
conditioned to the particular seen encoders, pooling indices seem to provide helpful
spatial hints to recover finer details, while being more invariant to the particular
input-output combination, and even generalizing to unseen ones.

Figure 4.10 illustrates the differences between these three variants in depth-to-
segmentation translation. Without side information the network is able to recon-
struct a coarse segmentation, but without further guidance it is not able to refine it
properly. Skip connections completely confuse the decoder by providing unseen
encoding features. Pooling indices are able to provide helpful hints about spatial
structure that allows the unseen decoder to recover finer segmentation maps.

RGB pretraining We also compare training the RGB encoder from scratch and
initializing with pretrained weights from ImageNet. Table 4.2 shows an additional
gain of around 4% in mIoU when using the pretrained weights.

Given these results we perform all the remaining experiments initializing the
RGB encoder with pretrained weights and use pooling indices as side information.
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Side information Pretrained mIoU Global
- N 29.8% 61.6%

Skip connections N 12.7% 50.1%
Pooling indices N 43.2% 73.5%
Pooling indices Y 46.7% 78.4%

Table 4.2 – Influence of side information and RGB encoder pretraining on the final
results. The task is zero-shot depth-to-semantic segmentation in SceneNet RGB-D
(51K).

AutoEnc Latent Noise PP mIoU Global
N N N N 6.48% 15.7%
Y N N N 20.3% 49.4%
Y Y N N 45.8% 76.9%
Y Y Y N 46.7% 78.4%
Y Y Y Y 49.2% 80.5%

Table 4.3 – Impact of several components (autoencoder, latent space consistency
loss, noise and pseudo-pairs) in the performance. The task is zero-pair depth-to-
segmentation in SceneNet RGB-D (51K). PP: pseudo-pairs.

Latent space consistency, noise and autoencoders We evaluate these three fac-
tors in Table 4.3. The results show that latent space consistency and the usage of
autoencoders lead to significant performance gains; for both, the performance (in
mIoU) is more than doubled. Adding noise to the output of the encoder results in
a small performance gain. The results in Table 4.3 do not apply pooling indices
for the RGB decoder (as also shown in Fig. 4.6). When we add pooling indices to
our approach without pseudo-pairs, results drop from 46.7% to 42.4% in mIoU.
This could be because we focus on unseen translations to depth or segmentation
modalities, which do not include reconstructing the RGBmodality. We believe that
forcing the RGB decoder to use pooling indices to reconstruct RGB images lowers
the efficiency of the latent representation to reconstruct depth or segmentation.
Hence, we sacrifice some of the performance translating to the RGB modality to
improve the results for depth and semantic segmentation.

Pseudo-pairs We also evaluate the impact of using pseudo-pairs to exploit shared
information between unseenmodalities. Table 4.3 shows a significant gain of almost
3% in mIoU and a more moderate gain in global accuracy.

In the following sections we use the SceneNet RGB-D dataset with 170K triplets.
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DepthRGB Ground truth

skip connections Pooling indicesNo side information

Figure 4.10 – Role of side information in unseen depth-to-segmentation translation
in SceneNet RGB-D.

Monitoring alignment

The main challenge for M&MNets is to align the different modality-specific bot-
tleneck features, in particular for unseen translations. Wemeasure the alignment
between the features extracted from the triplets in the test setDDS . For each triplet(
x, y,z

)
(i.e. RGB, segmentation and depth images) we extract the corresponding

triplet of latent features
(

fR (x) , fS
(
y
)
, fD (z)

)
andmeasure their average pairwise

cross-modal alignment. The alignment between RGB and segmentation features is
measured using the following alignment factor

AFRS = E(x,y)∼DRS

[
fR (x)ᵀ fS

(
y
)

∥∥ fR (x)
∥∥∥∥ fS

(
y
)∥∥

]
(4.16)

The other alignment factors AFRD and AFDS between RGB and depth features and
between depth and segmentation features are defined analogously. Figure 4.11
shows the evolution of this alignment during training and across the different
stages. The three curves follow a similar trend, with the alignment increasing in
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Figure 4.11 – Monitoring alignment between latent features on SceneNet RGB-D.

the first iterations of each stage and then stabilizing. The beginning of stage two
shows a dramatic increase in the alignment, with a more moderate increase at
stage three. These results are consistent with those of the ablation study of the
previous section, showing that better alignment typically leads to better results in
unseen translations. Overall, they show that latent space consistency, autoencoders,
pseudo-pairs and pooling indices contribute to the effectiveness of M&MNets to
address unseen image translation in the zero-pair setting.

Comparison with other models

In this sectionwe compareM&MNets, and its variant with pseudo-pairs with several
baselines:

• CycleGAN. We adapt CycleGAN [206] to learn a mapping from depth to se-
mantic segmentation (and vice versa) in a purely unpaired setting. In contrast
to M&MNets, this method only leverages depth and semantic segmentation,
ignoring the available RGB data and the corresponding pairs (as shown in
Figure 4.2a).

• 2×pix2pix. We adapt pix2pix [70] to learn two cross-modal translations from
paired data (i.e. D → R and R → S). The architecture uses skip connections
(which are effective in this case since both translations are seen) and the
corresponding modality-specific losses. We adapt the code from [70]. In
contrast to ours, it requires explicit decoding to RGB, which may degrade the
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Baselines
CycleGAN SC CE 2.79 0.00 16.9 6.81 4.48 0.92 7.43 0.57 9.48 0.92 0.31 17.4 15.1 6.34 14.2
2×pix2pix SC CE 34.6 1.88 70.9 20.9 63.6 17.6 14.1 0.03 38.4 10.0 4.33 67.7 20.5 25.4 57.6

StarGAN(unpaired) PI CE 6.71 1.42 17.6 6.21 13.2 1.25 8.51 0.52 12.8 3.24 4.28 9.52 8.57 7.21 10.7
StarGAN(paired) PI CE 9.70 2.56 18.4 5.70 15.7 0.41 9.20 1.56 14.2 5.02 3.56 14.7 11.4 8.62 14.1

M&MNets D → R → S PI CE 0.02 0.00 8.76 0.10 2.91 2.06 1.65 0.19 0.02 0.28 0.02 58.2 3.30 5.96 32.3
M&MNets D → R → S SC CE 25.4 0.26 82.7 0.44 56.6 6.30 23.6 5.42 0.54 21.9 10.0 68.6 19.6 24.7 59.7

Zero-pair
M&MNets D → S PI CE 50.8 18.9 89.8 31.6 88.7 48.3 44.9 62.1 17.8 49.9 51.9 86.2 79.2 55.4 80.4

M&MNets+PP D → S PI CE 52.1 29.0 88.6 32.7 86.9 66.9 48.4 76.6 25.1 45.5 58.8 88.5 82.0 60.1 82.2
Multi-modal

M&MNets (R,D)→ S PI CE 49.9 25.5 88.2 31.8 86.8 56.0 45.4 70.5 17.4 46.2 57.3 87.9 79.8 57.1 81.2
M&MNets+PP (R,D)→ S PI CE 53.3 35.7 89.9 37.0 88.6 59.3 55.8 76.9 25.7 46.6 69.6 89.5 80.0 62.2 83.5

Oracle
D → S PI CE 53.7 31.0 89.1 31.4 88.2 66.8 52.7 78.4 25.7 47.4 59.3 89.7 82.2 61.2 83.4

(R,D)→ S PI CE 58.4 40.8 91.3 41.6 90.7 61.5 57.6 80.9 36.8 51.6 72.6 88.4 83.1 65.7 84.0

Table 4.4 – Zero-pair depth-to-segmentation translation on SceneNet RGB-D. SC:
skip connections, PI: pooling indexes, CE: cross-entropy, PP: pseudo-pairs. x

quality of the prediction.
• StarGAN. We consider two adaptations of the StarGAN [31]. Both versions
share the layers of the network for all modalities except for the first layer of
the encoder and the last layer of of decoder which aremodality-specific layers.
This is required since modalities vary in the number of channels. The first
version, called StarGAN(unpaired), uses the losses originally proposed in [31].
We also implement a version which exploits the paired data, which we call
StarGAN(paired). For this version, we removed the cycle consistency (which is
not required for paired modalities). We found this to slightly improve results.

• D → R → S is similar to 2×pix2pix but with the architecture used inM&MNets.
We train a translation model from depth to RGB and from RGB to segmenta-
tion, and obtain the transformation depth-to-segmentation by concatenating
them. Note that it also requires translating to intermediate RGB images.

• S → R → D is analogous to the previous baseline.
• M&MNets is the original mix andmatch networks [172].
• M&MNets+PP is the variant of M&MNets using pseudo-pairs.
• Oracle is the upper bound obtained by training a translation fully supervised
with paired data.

Table 4.4 shows results for the different methods for depth-to-segmentation
translation. CycleGAN is not able to learn a goodmapping, showing the difficulty of
unpaired translation to solve this complex cross-modal task. 2×pix2pix manages
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(a) Input: depth (b) 2  Pix2pix (c) CycleGAN

(d) M&MNet (e) M&MNet(pseudo label) (f) Ground truth

Figure 4.12 – Zero-pair depth-to-segmentation translation on SceneNet RGB-D.

to improve the results by resorting to the anchor modality RGB, although still not
satisfactory since this sequence of translations does not enforce explicit alignment
between depth and segmentation, and the first translation networkmay also discard
information not relevant for the RGB task, but necessary for reconstructing the
segmentation image (like in the ”Chinese whispers”/telephone game). Also, both
results for St arG AN show that this approach is unable to learn a good mapping
between the unseen modalities.

M&MNets evaluated on (D → R → S) achieve a similar result as CycleGAN,
but significantly worse than 2×pix2pix. However, when we run our architecture
with skip connections we obtain results similar to 2×pix2pix. Note that in this
setting translations only involve seen encoders and decoders, so skip connections
function well. The direct combination (D → S) with M&MNets outperforms all
baselines significantly. The performance more than doubles in terms of mIoU.
Results improve another 5% inmIoUwhen adding the pseudo-pairs during training.
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Method
δ< RMSE RMSE

1.25 1.252 1.253 (lin) (log)
Baselines
CycleGAN 0.05 0.12 0.20 4.63 1.98
2×pix2pix 0.14 0.31 0.46 3.14 1.28

StarGAN(unpaired) 0.05 0.14 0.23 4.60 1.96
StarGAN(paired) 0.07 0.15 0.26 4.58 1.94

M&MNets S → R → D 0.15 0.30 0.44 3.24 1.24
Zero-pair

M&MNets S → D 0.33 0.42 0.59 2.80 0.67
M&MNets+PP S → D 0.42 0.61 0.79 2.24 0.60

Multi-modal
M&MNets (R,S)→ D 0.36 0.48 0.65 2.48 0.64

M&MNets+PP (R,S)→ D 0.47 0.69 0.81 1.98 0.49
Oracle
S → D 0.49 0.72 0.85 1.94 0.43

(R,S)→ D 0.51 0.76 0.90 1.79 0.29

Table 4.5 – Zero-pair segmentation-to-depth on SceneNet RGB-D.

Figure 4.12 shows a representative example of the differences between the
evaluated methods. CycleGAN fails to recover any meaningful segmentation of
the scene, revealing the difficulty to learn cross-modal translations without paired
data. 2×pix2pix manages to recover the layout and coarse segmentation, but fails
to segment medium and small size objects. M&MNets are able to obtain finer and
more accurate segmentations.

Table 4.5 shows results when we test in the opposite direction from semantic
segmentation to depth. The conclusions are similar as in previous experiment:
M&MNets outperform both baseline methods on all five evaluation metrics. Fig-
ure 4.13 illustrates this case, showing how pooling indices are also key to obtain
good depth images, compared with no side information at all. The variant with
pseudo-pairs obtains the best results.

Multi-modal translation

Since features from different modalities are aligned, we can also use M&MNets for
multi-modal translation. For instance, in the previous multi-modal setting, given
the RGB and depth images of the same scene we can translate to segmentation. We
simply combine both modality-specific latent features x and z using a weighted
average y = (1−α)x +αz, where α controls the weight of each modality. We set α=
0.2 and use the pooling indices from the RGB encoder (instead of those from depth
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SegmentationRGB Ground  truth

No side
information

Muti-model
(RGB+segm) 

Muti-model(PP)
(RGB+segm)

Figure 4.13 – Zero-pair and multimodal segmentation-to-depth on SceneNet RGB-
D.

encoder). The resulting feature y is then decoded using the segmentation decoder.
We proceed analogously to translation from RGB and segmentation to depth. The
results in Table 4.4 and Table 4.5 show that this multi-modal combination further
improves the performance of zero-pair translation, as the example in Figure 4.13
illustrates.

4.6.3 Experiments on SUN RGB-D

The previous results were obtained on the SceneNet RGB-D dataset which consists
of synthetic images. Here we also show that M&MNets can be effective for the more
challenging dataset SUN RGB-D, which involves real images and more limited data.
The results in Table 4.6 and Table 4.7 show that M&MNets consistently outperform
the other baselines in both unseen translation directions, with the new variant with
pseudo-pairs obtaining the best performance. Similarly, multi-modal translation
further improves the performance. Figures 4.15 and 4.16 illustrate how the proposed
methods can reconstruct more reliably the target modality, especially the finer
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Figure 4.14 – Failure cases of the proposed framework on SUN RGB-D. See text for
discussion.

details.
The results also show that the depth cue is insufficient to detect some of the

classes such as Book and TV. The oracle results show that this is also the case when
you have access to depth-semantic segmentation pairs. The results also show that
our multi-modal results are biased towards RGB: this is reflected in the bad results
which are obtained for the class bed which is well detected in the depth modality
but not in the RGBmodality, and also not by our multi-modal system. Examples of
these cases are provided in Fig. 4.14.

4.6.4 Experiments on four modalities Freiburg Forest

As an example of zero-pair translation for an application with more than three
modalities we perform experiments on the Freiburg Forest dataset which contains
the RGB, depth, NIR and semantic segmentationmodalities. For the training we use
the settings used in the previous experiments, and add a Ber hu loss (see Eq. 4.5)
for NIR in this experiment.

In the provided dataset all modalities are recorded for all scenes, however we
consider that we have pairs for RGB and semantic segmentation, and we have a
non-overlapping dataset of triplets for RGB, Depth, and NIR (see Figure 4.17). This
scenario could be considered realistic. It reflects a situation where initially the robot
only has a RGB camera, and labellers have provided semantic segmentation maps
for these images. Then two additional sensors are added later to the robot, but no
segmentation maps are available for this newly obtained multi-modal data.
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Baselines
CycleGAN SC CE 0.00 0.00 0.00 17.9 46.9 1.67 4.59 0.00 0.00 18.9 0.00 29.6 25.4 11.1 26.3
2×pix2pix SC CE 3.88 0.00 12.4 29.6 57.1 17.2 13.0 35.4 8.07 35.1 0.00 47.0 7.73 20.5 38.6

StarGAN(unpaired) PI CE 0.00 0.00 2.45 15.8 33.6 5.73 6.28 0.57 0.00 6.25 0.00 28.4 26.9 9.69 20.6
StarGAN(paired) PI CE 0.00 0.00 2.01 20.2 38.9 4.12 5.78 0.31 0.00 7.30 0.00 31.5 30.7 10.8 23.8

M&MNets D → R → S PI CE 0.00 0.00 0.00 17.0 39.4 0.52 0.01 0.00 0.01 12.2 0.00 31.0 5.19 8.12 22.8
M&MNets D → R → S SC CE 39.9 0.25 15.2 37.6 58.0 19.0 11.7 2.45 4.82 36.9 0.00 46.8 12.3 21.9 40.6

Zero-pair
M&MNets D → S PI CE 28.4 2.90 22.6 41.9 71.6 14.1 25.1 17.8 11.8 49.7 0.08 64.2 15.5 28.1 51.8

M&MNets+PP D → S PI CE 29.8 4.52 28.5 44.1 73.3 17.2 27.5 20.1 9.81 53.4 0.14 67.5 17.9 30.2 54.2
Multi-modal

M&MNets (R,D)→ S PI CE 0.00 16.6 21.4 56.0 72.1 24.2 28.3 38.1 21.7 57.0 64.6 68.0 43.7 39.4 58.8
M&MNets+PP (R,D)→ S PI CE 0.10 19.3 25.5 54.6 74.6 25.6 30.1 42.4 21.0 58.1 65.2 69.0 49.7 41.1 59.8

Oracle
D → S PI CE 32.6 8.01 36.5 56.8 84.7 20.4 31.4 19.7 8.75 61.7 1.60 72.1 21.2 35.1 62.3

(R,D)→ S PI CE 0.13 21.2 26.4 56.2 78.9 26.9 35.2 44.4 23.2 60.2 67.3 71.2 52.3 43.3 62.5

Table 4.6 – Zero-pair depth-to-semantic segmentation on SUN RGB-D. SC: skip
connections, PI: pooling indexes, CE: cross-entropy, PP: pseudo-pairs.

As we can see in Table 4.8, our method achieves the best scores. In the case
of zero-pair setting (M&MNets D → S, M&MNets N → S, M&MNets+PP D → S
and M&MNets+PP N → S) the results obtain a large gap when compared to the
baselines, clearly demonstrating the superiority of our method. For example, for
N → S we obtain an increase of 22% over 2×pix2pix. The multi-modal results show
that adding more modalities further increases results. Mainly, the performance
on the category obstacle increases. Figure 4.18 shows representative examples of
the different methods. The conclusions are similar to previous experiments: we
effectively conduct cross-modal translationwith zero-pair data and pseudo-labeling
further improves the results.

4.7 Conclusions

We have introduced mix and match networks as a framework to perform image
translations between unseen modalities by leveraging the knowledge learned from
seen translations with explicit training data. The key challenge lies in aligning the
latent representations in the bottlenecks in such a way that any encoder-decoder
combination is able to perform effectively its corresponding translation. M&MNets
have advantages in terms of scalability since only seen translations need to be
trained. We also introduced zero-pair cross-modal translation, a challenging sce-
nario involving three modalities and paired seen and unseen translations. In order
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Method
δ< RMSE RMSE

1.25 1.252 1.253 (lin) (log)
Baselines
CycleGAN 0.06 0.13 0.24 4.80 1.57
2×pix2pix 0.13 0.34 0.59 3.80 1.30

StarGAN(unpaired) 0.06 0.12 0.22 5.04 1.59
StarGAN(paired) 0.07 0.15 0.27 4.60 1.55

M&MNets S → R → D 0.12 0.35 0.62 3.90 1.36
Zero-pair

M&MNets S → D 0.45 0.66 0.78 1.75 0.53
M&MNets+PP S → D 0.49 0.77 0.90 1.42 0.37

Multi-modal
M&MNets (R,S)→ D 0.53 0.80 0.92 1.63 0.35

M&MNets+PP (R,S)→ D 0.56 0.83 0.93 1.33 0.34
Oracle
S → D 0.61 0.88 0.97 1.20 0.30

(R,S)→ D 0.64 0.92 0.98 0.98 0.27

Table 4.7 – Zero-pair semantic segmentation-to-depth on SUN RGB-D.

to effectively address this problem, we described several tools to enforce the align-
ment of latent representations, including autoencoders, latent consistency losses,
and robust side information. In particular, our results show that side information
is critical to perform satisfactory cross-modal translations, but conventional side
information such as skip connections may not work properly with unseen transla-
tions. We found that pooling indices are more robust and invariant, and provide
helpful hints to guide the reconstruction of spatial structure.

We also analyzed a specific limitation of the original M&MNets [172] in the
zero-pair setting, which is that a significant part of the shared features between
unseenmodalities is not exploited. We proposed a variant that generates pseudo-
pairs to enforce the networks to use more information between unseen modalities,
even when that information is not shared by seen translations. The effectiveness of
M&MNets with pseudo-pairs has been evaluated in several multi-modal datasets.

A potential limitation of our system is that we work with separate encoder and
decoders for each modality. Some recent cross-domain image translators such
as StarGAN [31] and SDIT [170] use a single shared encoder and a single shared
decoder. In that spirit, it could be possible to have partially shared encoders and
decoders between different modalities. However, modality-specific layers would be
still required in more challenging cross-modal translation.

80



4.7. Conclusions

(a) Input: depth (b) 2 Pix2pix (c) CycleGAN

(d) M&MNet (e) M&MNet(PP) (f) Ground truth

Figure 4.15 – Example of zero-pair depth-to-segmentation on SUN RGB-D.
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(a) Input: segmentation (b) 2  Pix2pix (c) CycleGAN

(d) M&MNet (e) M&MNet(PP) (f) Ground truth

Figure 4.16 – Example of zero-pair segmentation-to-depth on SUN RGB-D.
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Figure 4.17 – Cross-modal translations in the Freiburg Forest dataset experiment:
(a) train, (b) test (zero-shot) and (c) test (multimodal). We show only translations to
semantic segmentation for simplicity.
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Baselines
CycleGAN D → S SC 36.3 31.7 19.2 24.5 5.40 23.4 26.2
CycleGAN N → S SC 37.2 34.1 18.4 29.5 0.41 23.9 28.5
2×pix2pixD → S SC 72.9 32.2 45.7 67.9 30.9 49.9 59.9
2×pix2pixN → S SC 78.6 43.2 53.4 74.4 18.6 53.6 66.8
StarGAND → S PI 45.2 28.1 24.4 21.5 1.36 24.1 28.1
StarGAN N → S PI 31.2 15.1 29.4 23.2 10.7 21.9 25.8

M&MNets D → R → S PI 45.3 19.6 25.4 35.5 25.3 30.0 33.5
M&MNets N → R → S PI 58.1 34.1 32.4 42.4 12.3 35.8 42.4

Zero-pair
M&MNets D → S PI 89.0 71.8 71.3 82.7 43.7 71.6 80.0
M&MNets N → S PI 88.1 78.1 73.4 83.1 41.0 72.7 81.0

M&MNets+PP D → S PI 89.7 75.4 72.4 83.6 45.7 73.4 81.1
M&MNets+PP N → S PI 89.9 80.1 76.9 85.5 44.2 75.3 83.5

Multi-modal
M&MNets (R,D)→ S PI 91.2 84.5 85.4 89.1 50.3 80.1 88.0
M&MNets (R,N )→ S PI 91.0 83.5 85.3 90.0 52.9 80.5 88.3

M&MNets (R,D,N )→ S PI 91.2 84.2 85.8 90.1 58.2 81.8 88.5
M&MNets+PP (R,D)→ S PI 90.9 83.9 85.0 88.7 59.5 81.6 88.1
M&MNets+PP (R,N )→ S PI 91.7 85.4 86.1 89.9 58.2 82.2 88.6

M&MNets+PP (R,D,N )→ S PI 91.5 85.8 86.6 90.6 60.3 83.0 89.3
Oracle
D → S PI 89.5 75.4 80.4 81.2 54.7 76.2 82.2
N → S PI 90.2 81.5 83.6 85.2 50.4 78.2 85.4

(R,D,N )→ S PI 91.9 85.7 87.9 90.1 64.9 84.1 89.4

Table 4.8 – Zero-pair (NIR, depth)-to-semantic segmentation on Freiburg Forest.
SC: skip connections, PI: pooling indexes, PP: pseudo-pairs.

Figure 4.18 – Example of zero-pair translations. R: RGB, D: depth, N: NIR, S: seman-
tic segmentation, and PP: pseudo-pairs.
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5 Controlling biases and diversity in diverse
image-to-image translation 1

5.1 Introduction

Image-to-image translation (simply image translation hereinafter) is a powerful
framework to apply complex data-driven transformations to images [53, 70, 81,
93, 172, 181]. The transformation is determined by the data collected from the
input and output domains, which can be arranged as explicit input-output instance
pairs [70] or just the looser pairing at set level [81, 100, 181, 206], known as paired
and unpaired image translation, respectively.

Early image translationmethodswere deterministic in the sense that same input
image is always translated to the same output image. However, a single input image
often can have multiple plausible output images, allowing for variations in color,
texture, illumination, etc. Recent approaches allow for diversity2 in the output [68,
93, 207] by formulating image translation as a mapping from an input image to
a (conditional) output distribution (see Fig. 5.1a), where a particular output is
sampled from that distribution. In practice, the sampling is performed in the latent
representation that is the input of the generator, which is explicitly disentangled
into content representation and style representation [93, 207]. Concretely, the
style code is sampled to achieve diversity in the output while preserving the image
content. A concern with image translation models, and machine learning models
in general, is that they capture the inherent biases in the training datasets. The
problem of undesired bias in data is paramount in deep learning, raising concerns
inmultiple communities as automation and artificial intelligence become pervasive
in their interactionwith humans, such as systems involving analyzing face or person
images, or communication in natural language. For example, it is known that most
face recognition systems suffer from gender and racial bias [20]. Similar gender
bias is observed in image captioning [59]. Here we focus on the kind of biases that
may affect image translation systems. Although bias is inherent to data collection,

1This chapter is submitted for journal review.
2In some papers this is referred to as multimodal, in the sense that the output distribution can have

multiple modes.
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Male Female
No makeup

Makeup

(a)

(b)
Male Female

No makeup

Makeup

DIT

UDIT

Figure 5.1 – Diverse image-to-image translation in a very biased setting (domain
A: mostly white males without makeup, domain B: white females with makeup):
(a) biased translations, (b) with semantic constraint to alleviate bias while keeping
relevant diversity.

it is certainly possible to design better and more balanced datasets, or at least
understand the related biases, their nature and try to incorporate tools to alleviate
them [64, 73, 200, 208].

What particular visual and semantic properties of the input image are changed
during the translation is determined by the internal and relative biases between the
input and output training sets. These biases have significant impact on the diversity
and potential unwanted changes, such as changing the gender, race or identity of a
particular input face image. As an example we can consider the input domain faces
without makeup and the output domain faces with makeup, so we expect that the
image translator learns to add makeup to a face. However, the input training set
may be heavily biased towards males without makeup, and the output training set
towards females with makeup3. With such biases, the translator learns to generate
female faces with makeup even when the input is a male face (see Fig. 5.1a). While
the change in the makeup attribute is desired, the change in identity and gender
are not.

In this work we propose to make the image translator counter undesired bi-
ases, by incorporating semantic constraints that enforce minimizing the undesired

3In addition to biases towards white and young people, we do not consider other specific biases in
this example for the sake of simplicity.

86



5.2. Related Work

changes (e.g. see Fig. 5.1b when constraining the identity, which implicitly con-
strains gender). These constraints are implemented as neural networks that extract
relevant semantic features. Designing an adequate semantic constraint is often not
trivial, and naive implementations may carry irrelevant information.

This often leads to undesired side effects such as ineffective bias compensation
and limiting the desired diversity in the output. Here we address these issues and
propose an approach to design an effective semantic constraint that both alleviates
bias and preserves desired diversity.

5.2 Related Work

Image-to-image translation has recently received exceptional attention due to its
excellent results and its great versatility to solve multiple computer vision prob-
lems [18, 68, 70, 94, 103, 194, 206, 207]. Most image translation approaches employ
conditional Generative Adversarial Networks (GANs) [54], which consist of two
networks, the generator and the discriminator, that compete against each other.
The generator attempts to generate samples that resemble the original input distri-
bution, while the discriminator tries to detect whether samples are real or originate
from the generator. In the case of image translation, this generative process is
conditioned on an input image. The seminal work of [70] was the first GAN-based
image translation approach that was not specialized to a particular task. In spite
of the exceptional results on multiple translation tasks such as grayscale to color
images or edges to real images, this approach is limited by the requirement of pairs
of corresponding images in both domains, which are expensive to obtain andmight
not even exist for particular tasks. Several methods [81, 100, 158, 181, 206] have
extended pix2pix to the unpaired setting by introducing a cycle consistency loss,
which assumes that mapping an image to the target domain and then translating it
back to the source should leave it unaltered.

Diversity in image-to-image translation. A limitation of the above image transla-
tionmodels is that they do notmodel the inherent diversity of the target distribution
(e.g. same shoe can come in different colors). For example, pix2pix [70] tries to
generate diverse outputs by including noise alongside the input image, but this
noise is largely ignored by the model and the output is effectively deterministic. Bi-
cycleGAN [207] proposed to overcome this limitation by adding the reconstruction
of the latent input code as a side task, thus forcing the generator to take noise into
account and create diverse outputs. BicycleGAN still requires paired data. In the
unpaired setting, several recent works [5, 68, 93] address unpaired diverse image
translation. Our approach falls into this category as it does not need paired data and
it outputs diverse translations. Our work is closest to MUNIT [68], which divides the
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Figure 5.2 – Examples of training sets for image translation: (a) paired edge-
photo, (b) unpaired young-old (well-aligned biases), and (c) unpaired without-with
makeup (misaligned in gender).

latent space into a shared part across domains and a part specific to each domain.
However, these methods output too much diversity in some cases, which results in
the undesired change of image content that should be preserved by the model (e.g.
identity, race). Moreover, such changes are often determined by the underlying bias
in the dataset, which MUNIT captures and amplifies during translation.

Disentangled representations. While DIT methods explicitly disentangle content
and style to enable diversity, other methods attempt to obtain disentangled repre-
sentations to isolate different factors of variation in images [13], which is beneficial
for tasks such as cross-domain classification [16, 17, 47, 104] or retrieval [53]. In the
context of generativemodels, [112] combined a GANwith a Variational Autoencoder
(VAE) to obtain an internal representation that is disentangled across specified (e.g.
labels) and unspecified factors. InfoGAN [25] achieves some control over the vari-
ation factors in images by optimizing a lower bound on the mutual information
between images and their representations. Some approaches impose a particu-
lar structure in the learned image manifold, either by representing each factor of
variation as a different sub-manifold [135] or by solving analogical relationships
through representation arithmetic [136]. The work of [53] achieves cross-domain
disentanglement by separating the internal representation into a shared part across
domains and domain-exclusive parts, which contain the factors of variation of each
domain. In our case we assume we do not have access to disentangled represen-
tations beyond content and style, and especially between wanted and unwanted
changes.

Bias in machine learning datasets. Sincemachine learning ismostly fitting predic-
tivemodels to data, the problemof biased training data is of great relevance. Dataset
bias in general refers to the observation that models trained in one dataset may
lead to poor generalization when evaluated on other datasets, due to the specific
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bias in each of them [161]. Bias is multifaceted, and datasets can be biased in many
ways (e.g. illumination conditions, capture devices, class imbalance, scale [60]).
Dataset bias can be addressed and improve cross-dataset generalization [43, 79]. A
related problem is domain adaptation [34, 129] where models trained on a source
domain are adapted to a target domain, trying to overcome the difference in biases.
Biased datasets lead to biased models, which have severe implications as data-
driven artificial intelligence becomes pervasive. For instance, most commercial
face recognition and image captioning systems exhibit gender and ethnicity bi-
ases [20, 59]. Therefore, tackling bias is an increasingly important topic in machine
learning [64, 73, 200, 208]. Here we focus on the specific problem of understanding
bias in image translation.

5.3 Diverse image translation

5.3.1 Definition and Setup

Our goal is to translate samples from a source domain A to a target domain B in an
unpaired setting, i.e. without corresponding images across domains. Let xA ∈ X A

be a sample from the marginal distribution of images in the source domain, p A(x).
We want to obtain a translation xA→B to B , sampled from a conditional distribution
p A→B (x|xA) that approximates the true conditional pB (x|xA). The difficulty of this
task resides in the impossibility to observe the joint distribution p A,B (xA ,xB ) in
the unpaired setting, and the complexity of the conditional distribution pB (x|xA),
which is generally multi-modal. Simultaneously, we want to obtain the inverse
translation xB→A .

Current unpaired diverse image translation methods [68, 93] use an encoder-
decoder architecture, where the input image is first encoded into a latent code and
then later decoded to generate the translated target image. These methods resort to
the assumption that part of the latent space, the content, is shared by both domains,
whereas the style contains only the domain-specific characteristics. Concretely, let
us consider content encoders E c

i and style encoders E s
i , where i ∈ {A,B} indexes over

domains. Then, the latent representation of an input image xi can be decomposed
into content ci = E c

i (xi ) and style si = E s
i (xi ). Given that style is purely domain-

specific, we only need the particular content code ci for translation, combined with
a randomly sampled style code s′ ∼N (0,I), to generate the output image through
the decoderG j as xi→ j =G j (ci , s′).

Note that the decoders are deterministic functions that act as inverses of the
encoders (xi = Gi (E c

i (xi ),E s
i (xi )), the stochasticity of the output translations is

introduced through the sampling of the style code, which is the source of diversity
on the generated translations (Fig. 5.4a).
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Male Female
No makeup

Makeup

(Biased) image translation
Semantic constraint
Unbiased image translation

Figure 5.3 – Geometric interpretation of the semantic constraint unbiasing the
translation.

5.3.2 Biases in diverse image translation

Wanted and unwanted properties. Images are complex and diverse in nature,
reflected at many levels, such as visual appearance, structure and semantics. There-
fore, the dataset bias is also complex and multifaceted, and it may be convenient to
analyze separately specific biases depending on specific semantic properties. Let
a (w,u) represent the relevant semantic properties associated with an image x that
are subject to change during translation, with w being those we want to change
(i.e. wanted), and u being those we do not want to be changed (i.e. unwanted). We
assume that they can be obtained via the mappings w = g (x) and u = h (x). For
instance, in the example of Fig. 5.1, w is makeup and u is gender (for simplicity,
but more generally u could also include identity, race, etc.). The distributions of
images of the source domain i and the target domain j induce the corresponding
distributions of properties pi (w,u|xi ) and p j

(
w,u|x j

)
, respectively.

Translations in the space of properties. During training, the image translator
learns the mapping between both domains, and consequently what properties to
modify. An input image xi has the properties wi = g (xi ) and ui = g (xi ), and the
corresponding translation xi→ j will have wi→ j = g

(
xi→ j

)
and ui→ j = h

(
xi→ j

)
. The

image translation is successful if and wi→ j �= wi is effectively the wanted property of
the target domain. Similarly, a translation is unbiased when ui→ j = ui . In general,
DIT results in biased translations when ui→ j �= ui (see Fig. 5.3), which stems from
the original bias in the training dataset.

5.4 Unbiased diverse image translation

5.4.1 Unbiasing the generated images

For simplicity, let us consider the paired image translation case where a ground
truth translation x j is available for each xi , with the corresponding properties
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Content
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Content
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Figure 5.4 – Diverse image-to-image translation (DIT): (a) biased, (b) unbiased (i.e.
UDIT) via a semantic constraint implemented with a semantic extractor.

(
w j ,u j

)= g
(
x j

)
. In order to learn a successful and unbiased translation we would

like to enforce the constraints wi→ j = w j and ui→ j = ui , respectively.
However, we focus on the the more complex case of diverse image translation,

where the output is stochastic, i.e. a distribution rather than a single image. In this
case the constraints may not be enforced at the sample level but at the distribution
level. In the case of u we aim at enforcing

ui→ j = h
(
xi→ j

)= h (xi )= ui (5.1)

∀xi→ j ∼ pi→ j (x|xi ) ,∀xi ∼ pi (x)

which ensures that the unwanted properties remain unchanged throughout the
translation. Similarly,

wi→ j = g
(
xi→ j

)= g
(
x j

)= w j (5.2)

∀xi→ j ∼ pi→ j (x|xi ) ,∀x j ∼ p j (x|xi ) ,∀xi ∼ pi (x)

which ensures that the wanted properties change properly, according to the de-
sired translation. Note that for convenience we assume that the true conditional
distribution of the translation p j (x|xi ) is known.

In this way, the biases in the distribution of generated images would be aligned
properly, achieving our goal of removing unwanted biases in the translation (see
Fig. 5.3). In the previous example we would like the translated images to preserve
the statistics of gender distribution of A while adapting to the statistics of makeup
distribution of B . Similarly in the direction from B to A.

Note that the different settings in image translation implicitly or explicitly en-
force this sort of alignments via pairing or the design of the dataset. For instance,
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Fig. 5.2a shows an example of a dataset for paired translation, where the instance-
level pairing already prevents unwanted gender bias (50%males and females). Gen-
der bias can also be prevented in unpaired translation by designing well-balanced
and statistically aligned training sets for domains A and B (see Fig. 5.2b). However,
Fig. 5.2c shows a dataset clearly biased andmisaligned on gender. In this case, it is
desirable that the model can be forced to correct this unwanted misalignment, to
prevent biased translations.

In practice, directly enforcing constraints (5.1) and (5.2) is not possible since
w and u are not disentangled in our setting. Besides, we do not have access to
p j (x|xi ).

For this reason we propose to implement (5.1) via the addition of a semantic
regularization constraint that enforces the preservation of u properties during
translation, while constraint (5.2) is indirectly enforced via the image translation
loss. A bad implementation of the semantic constraint can hamper the effectiveness
of image translation in practice (e.g. limiting diversity), so the appropriate design of
the semantic constraint and its implementation is related to both constraints.

5.4.2 Semantic regularization constraint

Here we propose an Unbiased DITmodel (UDIT) that enforces constraint (5.1) via a
semantic extractor h that estimates the representative semantic properties we want
to preserve in the image as ui = h (xi ).

Constraint (5.2) on the wanted changes is implicitly enforced by the DIT model,
including the unpaired setting. Fig. 5.4b illustrates howaproper semantic constraint
regularizes the initial DIT model to alleviate the unwanted bias.

In particular, we include a semantic constraint loss

L
ui
U

= Exi∼pi (x)
[||ui→ j −ui ||

]
, (5.3)

whereU represents the semantic properties we want to keep unchanged through-
out the translation. By includingL

ui
U

in our training objective (sec. 5.5.2), we are
effectively conditioning the output conditional distribution toU , i.e. pi→ j |U (x|xi ),
and hence alleviating the unwanted bias in the output samples xi→ j ∼ pi→ j |U (x|xi ),
whenU is properly designed. Fig. 5.4b shows the architecture of this UDIT. Note
how this constraint is only enforced during training, we do not use ui during trans-
lation at inference time.
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5.5. UDIT implementation

5.5 UDIT implementation

5.5.1 Semantic extractor

Crucial for the success of our method is the proper design of the semantic extractor
h (x), which in general will be implemented as a neural network. Wemust guarantee
that the extracted feature contains enough relevant information regarding the
specific semantic property that we want to preserve (i.e. captures u properly). On
the other hand, we want to prevent it from containing additional information that
could potentially introduce undesired side effect such as limiting the translation
ability of the model or the diversity on the output. We now develop a procedure to
design effective semantic extractors that satisfy both requirements.

Capturing the semantic property. As feature extractors, we consider convolu-
tional neural networks (CNNs) implementing classification tasks related with u (e.g.
gender classification and facial behavior analysis [145]), whichwe train on a suitable
external dataset. The CNNmay also be initialized with models pretrained in large
datasets (e.g. ImageNet [146], DeepFace [159]). In principle we are interested in a
suitable intermediate feature that captures u well. In particular, the convolutional
features that are input into the first fully connected layer are often good candidates,
as they contain semantically meaningful information while still being spatially
localized.

Reducing undesired information. Deep features from generic feature extractors
such asmodels trained in ImageNet capture rich and varied properties in a relatively
high dimensional feature. This can be harmful in our case, since they can also
capture properties unrelated with u. The classifier can learn to ignore them and
still solve the task, but they remain as noise in the semantic feature, being enforced
through the constraint and therefore limiting the flexibility of the image translator
to generate the wanted change and diversity. In order to address this problem,
we propose to add an additional convolutional layer with a kernel 1×1×D with
the purpose of reducing the dimensionality of the feature. We experimentally find
the minimum value of D that keeps a satisfactory accuracy. The output of this
additional layer is used as semantic feature.

In summary, the designed features will ideally contain the right amount of
information relevant for the task, and no irrelevant information that could interfere
with the wanted translation.

5.5.2 Full model

The proposed unbiasing methodology is generic enough to be applicable in most
image-to-image translation methods. The UDIT models in our experiments are
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based onMUNIT [68] extended with particular semantic constraints. The model
is composed of within-domain autoencoders and cross-domains translators with
reconstruction of translated features. We also consider a variant that uses pooling
indices as side information [12].

In the following, we detail the remaining losses and present the full model.

Adversarial loss. The translator attempts to generate realistic images that fool the
discriminator D j , whose task is to distinguish fake images from real images. The
discriminator is trained adversarially with

L
x j

G AN = 1

2
Exi∼pi (x),s′∼N (0,I)

[
(D j (G j (ci , s

′))2
]

+Ex j ∼p j (x)
[
(D j (x j )−1)2

]
.

(5.4)

Reconstruction loss. The autoencoders ensure that the model is able to recon-
struct the input image through the image reconstruction loss

L
xi
r econ = Exi∼pi (x)

[||Gi (ci , si )−xi ||1
]
. (5.5)

Moreover, the translated image is further encoded in both content and style, and
the following feature reconstruction losses are applied

L
ci
r econ = Exi∼pi (c),s′∼N (0,I)

[||E c
j (G j (ci , s

′))− ci ||
]
, (5.6)

L
si
r econ = Exi∼pi (c),s′∼N (0,I)

[||E s
j (G j (ci , s

′))− s′||]. (5.7)

The loss on ci enforces the preservation of the content code across domains,
whereas the loss on the style encourages diversity on the outputs.

The loss used to trainedUDIT followsMUNIT’s loss combinedwith the semantic
constraint loss (5.3) as follows

L =L
xA

G AN +L
xB

G AN +λx (L
xA
r econ +L

xB
r econ)

λc (L
cA
r econ +L

cB
r econ)+λs(L

sA
r econ +L

sB
r econ)

λU (L uA
U

+L
uB
U

),

(5.8)

where the λx ,λc ,λs ,λU weights control the influence of each individual loss in the
final objective. When λU = 0 we recover the baseline MUNITmodel.

5.6 Experimental results

5.6.1 Datasets

We conduct experiments on four datasets that suffer from different types of biases.
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5.6. Experimental results

Biased makeup is our heavily biased dataset, where the female gender predomi-
nates in the target domain. We collected images of people with andwithoutmakeup
from the web. We retrieved 1,400 images of women with makeup by searching for
“womanmakeup face" andmanually verifying them. For the no-makeup domain,
we selected another 1400 images with 95% males faces and 5% female faces, so
we purposely biased this domain towards males. All images were preprocessed by
cropping the face, localized by a face detector.

MORPH [137] is also a face dataset for age translation (young↔ old) with both
ethnicity and gender biases. It contains 55,134 images of 13,000 subjects, and each
image is annotated with gender, ethnicity, and age. There are five ethnic groups
represented in the dataset: Black (African ancestry), White (European ancestry),
Hispanic, Asian, and ‘Other’, which we discarded.

MORPH is a face image dataset for adult age progression, where the images
depict people of different ages at different points in time, spanning up to 30 years
for some subjects. MORPH is heavily biased towards men (>85%), and towards
individuals with African ancestry (>78%), followed by European (≈17%), Hispanic
(≈3.5%) and Asian (<0.3%) ancestries. We perform experiments using the identity
constraint (sec. 5.6.4) with the purpose of preserving both gender and ethnicity.

Cityscapes [32]→Synthia [142] contains real and synthesized urban scenes that
are biased towards a particular time of the day (day/night). Cityscapes [32] contains
real street scenes captured from amoving vehicle during day-time (3000 images).
Synthia [142], instead, is synthetically generated by a simulated car driving in a
virtual world, both during day-time and night-time. We artificially bias the day-
time/night-time distribution of Sytnhia by selecting 3000 images captured during
night and only 300 images during day.

Biased handbags [206] contains images of handbags with two defining attributes:
color (red/black) and texture (flat/textured). We select red and black as possible
colors. Texture is also a binary attribute indicating the absence or presence of a
non-flat texture on the handbags, i.e. flat or textured.

We create two datasets by selecting samples from the photo images of the
handbags dataset used by [68, 70]. The input domain only contains one mode (e.g.
flat black handbags for Handbags-color), while the target domain contains two
modes but is heavily biased towards one, e.g. 1000 textured red and 100 flat red.

We note that we require the textured handbags to only have the right color (e.g.
no stripes of another color), which limits the attribute to subtle variations mostly
given by differences in the material.

Tables 5.1 and 5.2 specify the exact number of images used in our biased datasets
for training and testing, respectively. Table 5.3 reports the setting to train the metric
network.
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Experiment Domain A Domain B

Biased makeup 1400 f-makeup 1330 m-nomakeup, 70 f-nomakeup
MORPH 10000 m-y, 1000 f-y 10000 m-o, 1000 f-o
Cityscapes-Synthia 3000 citys-day 3000 syn-night, 300 syn-day
Handbags-color 755 flat-black 1000 txt-red, 100 flat-red
Handbags-texture 1256 flat-red 1100 txt-black, 100 txt-red

Table 5.1 – Details of datasets used for training the image translation models.
Note f=female, m=male, y=young, MORPHo=old, citys=cityscapes, syn=synthia,
txt=textured.

Experiment Domain A Domain B

Biased makeup 100 f-makeup 100 m-nomakeup
MORPH 200 m-y, 200 f-y 200 m-o, 200 f-o
Cityscapes-Synthia 475 citys-day -
Handbags-color 100 flat-black -
Handbags-texture 100 flat-red -

Table 5.2 – Details of datasets used for testing the image translation models. Note
f=female, m=male, y=young, o=old, citys=cityscapes, syn=synthia, txt=textured.

Note for the biased makeup dataset, the used gender classifier is externally
trained on Adience dataset [95].

Experiment Domain A Domain B

MORPH-gender 2000 m-y, 2000 m-o 2000 f-y, 2000 f-o
MORPH-ethnicity 1200 afri-y, 1200 afri-o 1200 euro-y, 1200 euro-o
Cityscapes-Synthia 3000 BDD-day, 3000 syn-day 3000 BDD-night, 3000 syn-night
Handbags-MORPHcolor 500 flat-red, 500 flat-black 500 txt-red, 500 txt-black
Handbags-texture 500 flat-red, 500 txt-red 500 flat-black, 500 txt-black

Table 5.3 – Details of datasets used training the classifier to evaluate quantitatively
the results. Abbreviations used: f=female, m=male, y=young, o=old, afri=african,
euro=european, BDD=BDD100K, syn=synthia, txt=textured. Note the used subsets
are disjoint with the ones used to perform image translation.

5.6.2 Baselines and variants

We compare our method with the following approaches:

MUNIT [68] disentangles the latent distribution into the content space which is
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Figure 5.5 – Robustness to bias on Biased makeup: (left) misclassification rate,
(middle) drop in confidence, (right) ID distance.

shared between two domains, and the style space which is domain-specific and
aligned with a Gaussian distribution. At test time, MUNIT takes as an input the
source image and different style codes to achieve diverse outputs.

DRIT [93] similarly explores the distribution of latent representation. Different
from MUNIT by means of adaptive instance normalization to control diversity,
DRIT directly insert noise into latent feature to achieve diverse output.

We compare the previous baselineswith different configurations of the proposed
UNIT approach. In particular we study variants with and without Pooling Index(PI).

5.6.3 Robustness to specific biases.

Evaluating the generated images is challenge [15], here we introduce a newmethod
to measure whether translating an image across domains with misaligned biases
changes particular properties of the image. For simplicity, we explain here these
evaluation measures for the Biased makeup dataset (other datasets are similar). In
particular, we want to evaluate whether applying or removing makeup on subjects
changes their perceived gender. In order to do this, we train a gender classifier f (x)
and evaluate the gender prediction over the translated image, i.e. f

(
xi→ j

)
. Since

we have the ground-truth label for the original image, we can determine whether
gender has been changed with respect to the original image. We call this measure
misclassification rate. The problem with this measure is that the classifier might
output erroneous estimates in the first place for some challenging cases.

For this reason, we also compute the drop in confidence of the classifier during
translation as δ (xi )= f (xi )− f

(
xi→ j

)
.

This score will indicate the effect of the translation on the classifier estimation
of the correct label, somewhat accounting for the classifier’s failure cases.

We can use the above measures with general properties such as gender or race.
However, our face experiments also include a setting in which we want to preserve
the identity of the input. Evaluating changes in identity is more complex since the
set of categories is specific to the dataset.

In this case, we measure the change in identity by directly computing the
distance between identity features given an off-the-shelf face recognition net-
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Figure 5.6 – Example translations for Biased makeup when applying makeup to a
male. UDIT uses identity as semantic constraint.

Input Direction MUNIT +PI DRIT UDIT UDIT+PI

M Makeup 0.268 0.267 0.263 0.192 0.151
F Makeup 0.212 0.199 0.193 0.154 0.133
F Demakeup 0.297 0.293 0.253 0.208 0.203

Table 5.4 – LPIPS distance on Biased makeup.

work [127]. We call this measure ID distance and only compute it for the face
datasets.

Diversity. Several image translation approaches [68, 93, 207] measure the diversity
of the outputs by using the perceptual similarity metric LPIPS [197], which is based
on differences between deep features

We follow the protocol introduced in [207] and average the LPIPS distance
between 19 random pairs of outputs for 100 different input images.

5.6.4 Biased makeup dataset

Semantic constraint. In this dataset, we focus on the misalignment between
biases at two levels: gender and identity. Preserving identity is a more restrictive
constrain than preserving gender, and implicitly also preserves it. For this reason,
we use a semantic constraint based on identity (ID). We consider an off-the shelf
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Figure 5.7 – Example translations on MORPH by biased DIT methods (MUNIT/-
DRIT) and our UDIT with semantic constraint on identity.

network for face recognition [127] and select its highest level convolutional features
as semantic feature. The model has been trained with VGG-Face [127], which
contains over 2000 different identities.

Qualitative evaluation. Fig. 5.6 compares image translations obtained with MU-
NIT [68], MUNITwith pooling indices (PI), DRIT [93], and two variants of ourmodel.
The basic UDIT variant only uses a semantic constraint on ID, whereas UDIT+PI
uses also pooling indices. We can observe that both MUNIT and DRIT change the
gender (i.e. undesired change) when applying the desired translation (i.e. adding
makeup).

This demonstrates the heavy influence of bias misalignment on DITmethods,
which leads to the inevitable change of unwanted properties. Moreover, the gen-
erated images lack realism and quality, resembling cartoonish versions of human
faces. Adding PI to MUNIT does not seem to bring any noticeable benefit.

Instead, ourUDITmodel trainedwith the ID semantic constraint is very effective
to prevent both unwanted gender and identity changes, as show in the figure.
Furthermore, the incorporation of pooling indices results in an evenmore successful
change on wanted properties (e.g. adding makeup to males), while generating
images of high quality and realism.
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(a) Young to old

(b) Old to young

Figure 5.8 – Robustness to bias on MORPH: (a)young to old and (b)old to young:
(left) misclassification rate, (middle) drop in confidence, and (right) ID distance.

Figure 5.9 – Robustness to bias in terms of misclassification rate and drop in confi-
dence.

Robustness to unwanted changes. Fig. 5.5 shows quantitative results of the three
metrics evaluated on the different methods and both directions. We only evalu-
ate over the gender that is underrepresented in the target domain. These results
confirm the trends observed qualitatively in Fig. 5.6. DIT baselines perform poorly
at maintaining gender and identity, including MUNIT with PI. Interestingly, the
identity constraint clearly enhances the preservation of both wanted properties,
as reflected by the substantial drop on all three robustness measures. Moreover,
UDIT+PI further increases robustness to bias. This could be due to the improved
quality of the output images with respect to the input, which leads to more reliable
classifier predictions and pushes together the identity features. In the remainder
of this chapter we only employ the UDIT+PI variant and refer to it simply as UDIT,
unless stated otherwise.

Diversity. Table 5.4 shows the LPIPS distance of the different evaluated methods.
UDIT models seem to be notably decreasing the LPIPS distance in comparison
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D 2 8 16 32 64 128 256

Scenes-daytime 85 87 91 92 92 95 95

Handbags-color 96.3 99.1 99.0 99.3 98.3 98.9 98.4
Handbags-texture 64.2 65.2 66.4 87.0 91.3 92.8 95.4

Table 5.5 – Classifier accuracy for different D values. Boldface indicates the selected
value for the semantic constraint.

to MUNIT and DRIT. This makes sense since the identity constraint not only pre-
vents unwanted bias, but it also constrains the diversity in those directions that
compromise the preservation of identity.

In this case, LPIPS distancemay not be able to capture themore subtle variations
that conform the diversity that should be expected in that setting. For example,
the values for both UDIT variants are significantly lower than those of MUNIT or
MUNIT+PI, but the examples in Fig. 5.6 show that it is able to generate very diverse
images, within the narrow space that allows preserving gender and identity (e.g. lip
color, skin tone and shading, beard thickness).

5.6.5 MORPH

Qualitative evaluation. Fig. 5.7a and b show examples of young female and old
female, respectively, and their corresponding translations to the other domain (old
and young). As we can observe, the translations are realistic in general. DRIT tends
to output uni-modal samples / generate only one distribution mode, while the
other two methods also generate rich variations, including skin tones, hair color,
beard/moustache variations, etc. However, MUNIT tends to generate diversity that
includes changes in ethnicity and gender.

In the case of the young female, gender is almost always changed due to the ex-
treme bias towards males. UDIT, on the other hand, preserves the wanted semantic
properties and outputs diversity without unwanted changes.
Robustness to unwanted changes. Here we evaluate how the identity constraint
impacts gender and ethnicity changes compared to MUNIT and DRIT. Fig. 5.8
shows the misclassification rate and drop in confidence of two classifiers, gender
and ethnicity, trained on a disjoint subset of MORPH not used for translation. We
restrict our analysis to African and European, due to the very limited data in the
other two ethnicities. The results show a drop in misclassification rate and a lower
confidence drop when using UDIT, which are effective to alleviate gender bias
(especially in females) and ethnicity bias (especially in Europeans). We also show
ID distance, which achieves lower values for UDIT, indicating that identity is also
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Figure 5.10 – Results on Cityscapes → Synthia-night. Example translations by
MUNIT and UDIT with two variants of the semantic constraint.

better preserved. These results are in line with the observations in Fig. 5.7.

5.6.6 Cityscapes → Synthia-night

Semantic constraint. We train a binary classifier for daytime classification based
on VGG16 [153] using both real and synthetic images. We use 6000 realistic images
from BDD-100K [184] with a 50/50 daytime distribution. As synthetic images we
use 6000 images from a disjoint subset of Synthia [142], also with a balanced class
distribution. We consider two semantic constraints. The naive variant employs
features of the last convolutional layer, which have dimension 8×8×512. Given
the high dimensionality of these semantic features, the undesired information
contained in them could potentially limit the model’s translation ability or the
output diversity. For this reason, we also employ the reduced semantic constraint
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Figure 5.11 – Robustness to bias on Biased handbags.

variant presented in sec. 5.5.1, whose channel dimensions are reduced to D by an
additional 1×1×D layer. In order to select a suitable dimensionality we train several
classifiers with different D values (Table 5.5). We select D = 16 as it offers a good
trade-off between small size and accuracy.

Results. Figs. 5.10 and 5.9 present qualitative results and robustness measures
respectively. MUNIT translationsmostly depict night scenes, as can be confirmed by
the high misclassification rate and drop in confidence. UDIT with naive constraint
improves on this by preserving in the translations the input day-time. However, the
outputs have clearly limited diversity and lower quality. UDIT with the reduced
constraint achieves the overall best translations, both in terms of quality andwanted
diversity. This leads to remarkably low values on both robustness measures.

5.6.7 Biased handbags

Semantic constraint. We consider two different semantic constraints depending
on the experiment. For Handbags-texture we train a color classifier selecting 500
images per color from [186]. For Handbags-color, we gather images from the web
searching for e.g. “textured red handbag” and verifying the downloaded images. We
use 1000 flat and 1000 textured handbags to train the classifier. We only consider
here the reduced variant of the semantic constraint. Table 5.5 shows the accuracy
results for the different D values. We select D = 8 for color and D = 32 for texture.
The overall lower accuracy of the texture classifier indicates that this is indeed a
more subtle attribute, which in turn makes its recognition more challenging and
increases the required dimensionality on the semantic features.

Results. Fig. 5.12 shows example results for these two experiments, evidencing
howMUNIT succumbs to both types of biases. UDIT, on the other hand,manages to
perform the desired translation without introducing unwanted changes. In general,
the effects are more obvious for the color attribute as texture changes are harder to
perceive. We confirm the benefits of UDIT quantitatively in Fig. 5.11. MUNIT and
DRIT present a notably high misclassification rate and drop in confidence for both
experiments. UDIT, instead, significantly increases the robustness to biases using a
properly designed semantic constraint.
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Figure 5.12 – Example translations for Handbags-texture (left) and Handbags-color
(right). Better viewed electronically, zoom might be necessary to appreciate the
changes in texture.

5.7 Conclusion
In this work we tackle the problem of learning image translation models from
biased datasets, which leads to unwanted changes in the output images. In order
to address tdirection of MORPH.his problem, we propose the use of semantic
constraints, which can effectively alleviate the effects of biases. A properly designed
semantic constraint allows for wanted diversity in the translations while preserving
the desired semantic properties of the input image. We evaluated the effectiveness
of our UDIT model on faces, objects, and scenes.
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6 SDIT: Scalable and Diverse Cross-domain
Image Translation 1

6.1 Introduction

Image-to-image translation aims to build a model to map images from one domain
to another. Many computer vision tasks can be interpreted as image-to-image
translation, e.g. style transfer [49], image dehazing [193], colorization [196], sur-
face normal estimation [41], and semantic segmentation [106]. Face translation
has always been of great interest in the context of image translation, and several
methods [31, 130, 131] have shown outstanding performance. Image-to-image
translation can be formulated in a supervised manner when corresponding image
pairs from both domains are provided, and unsupervised otherwise. In this chapter,
we focus on unsupervised image-to-image translation with the two-fold goal of
learning a model that has both scalability and diversity (see Figure 6.1(a)).

Recently, Isola et al. [70] consider a conditional generative adversarial network
to perform image mapping from input to output with paired training samples. One
of the drawbacks, however, is that this method produces a deterministic output
for a given input image. BicycleGAN [207] extended image-to-image translation
to one-to-many mappings between images by training the model to reconstruct
the noise used in the latent space, effectively forcing it to use it in the translations.
To address the same concern, Gonzalez-Garcia et al. [53] explicitly exploit the
feature representation, disentangling the latent feature into shared and exclusive
representations, the latter being aligned with the input noise.

The above methods, however, need paired images during the training process.
For many image-to-image translation cases, obtaining abundant annotated data
remains very expensive or, in some cases, even impossible. To relax the requirement
of paired training images, recent approaches have made efforts to address this
issue. The cyclic consistency constraint [81, 181, 206] was initially proposed for
unpaired image-to-image translation. Liu et al. [100] assumes a shared joint latent
distribution between the encoder and the decoder, then learns the unsupervised
translation.

1This chapter is based on Conference of ACMMultimedia (ACM-MM 2019).
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Figure 6.1 – (a) Example of diverse image translations for various attributes of
our method generated by a single model. (b-e) Comparison to current unpaired
image-to-image translation methods. Given four color subsets (orange, yellow,
green, blue), the task is to translate images between the domains. (b) CycleGAN
requires three independent generators (indicated by pink lines) which produce
deterministic results. (c) StarGAN only requires a single generator but produces
deterministic results. (d) MUNIT requires separate generators but is able to produce
diverse results. (e) SDIT produces diverse results from a single generator.

Nonetheless, previous methods perform a deterministic one-to-one translation
and lack diversity on its outputs, as shown in Figure 6.1(b). For example, given the
task from orange (domain A) to yellow (domain B) the generator taking the orange
shoes as input only synthesizes shows with a single shade of yellow. Recently, the
idea of non-deterministic outputs was extended to unpaired methods [68, 93] by
disentangling the latent feature space into content and style and aligning the style
code with a known distribution (typically Gaussian or uniform). During inference,
the model is able to generate diverse outputs by sampling different style codes from
the distribution. The main drawback of these methods is that they lack scalability.
As shown in Figure 6.1(d) the orange shoes can be translated into many possible
green shoes with varying green shades. As the number of colors increases, however,
the number of required domain-specific encoder-decoder pairs rises quadratically.

IcGAN [130] initially performs face editing by combining cGAN [115] with an
attribute-independent encoder, and at the inference stage conducts face mapping
for given face attributes. Recently, Yunjey et al. [31] proposed StarGAN, a domain-
independent encoder-decoder architecture for face translation that concatenates
the domain label to the input image. Unlike the aforementioned non-scalable
approaches [68, 93], StarGAN is able to perform scalable image-to-image transla-
tion betweenmulti-domains (Figure 6.1(b)). StarGAN, however, fails to synthesize
diverse translation outputs.
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6.2. Related work

In this chapter, we propose a compact and general architecture that allows for
diversity and scalability in a single model, as shown in Figure 6.1(e). Our motivation
is that scalability and diversity are orthogonal properties that can be independently
controlled. Scalability is obtained by using the domain label to train a single multi-
domain image translator, preventing the need to train a encoder-decoder for each
domain. Inspired by [40], we employ Conditional Instance Normalization (CIN)
layers in the generator to introduce the latent code and generate diverse outputs.
We explore the reasons behind CIN’s success (Fig. 6.6) and discover the following
limitation: CIN affects the entirety of the latent features and could possibly modify
areas that do not correspond to the specific target domain. To prevent this from
happening, we include an attention mechanism that helps the model focus on
domain-specific areas of the input image.

Our contributions are as follows:

• We propose a compact and effective framework that combines both scalability
and diversity in a single model. Note that current models only possess one of
these desirable properties, whereas our model achieves both simultaneously.

• We empirically demonstrate the effectiveness of the attention technique for
multi-domain image-to-image translation.

• We conduct extensive qualitative and quantitative experiments. The results
show that our method is able to synthesize diverse outputs while being scal-
able to multiple domains.

6.2 Related work

Generative adversarial networks. Typical GANs [54] are composed of two mod-
ules: a generator and a discriminator. The aim of the generator is to synthesize
images to fool the discriminator, while the discriminator distinguishes between
fake images and real images. There have been many variants of GANs [54] and
they show remarkable performance on a wide variety of image-to-image translation
tasks [68, 70, 93, 131, 181, 206], super-resolution [92], image compression [138], and
conditional image generation such as text to image[108, 191, 192], segmentation to
image[76, 167] and domain adaptation [47, 52, 147, 162, 177, 194, 209].

Conditional GANs. Exploiting conditional image generation is an active topic in
GAN research. Early methods considered incorporating into the model category
information [31, 115, 123, 124] or text description [74, 134, 191] for image synthesis.
More recently, a wide variety of ideas have been proposed and used in several tasks
such as image super-resolution [92], video prediction [111], and photo editing [151].
Similarly, we consider image-to-image translation conditioned on an input image
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and the label of the target domain.

Image-to image-translation. The goal of image-to-image translation is to learn a
mapping between images of the source domain and images of the target domain.
Given pairs of data samples, pix2pix [70] initially performed this mapping by using
conditional GANs and relying on the real images. This model, however, fails to
conduct one-to-many mappings, namely, it cannot generate diverse outputs from
a single input. BicycleGAN [207] explicitly modeled the mapping between output
and latent space, and aligned the latent distribution with a known distribution.
Finally, the diverse outputs are performed by sampling from the latent distribution.
Gonzalez-Garcia et al. [53] disentangle the latent space into disjoint elements,
which allows them to successfully perform cross-domain retrieval as well as one-
to-many translation. The related work also be shown in [144]. Although these
methods allow to synthesize diverse results, the requirement of paired data limits
their application. Recently, the cycle consistency loss [81, 181, 206] is enforced
into models to explicitly reconstruct the source sample, which is translated into
the target domain and back, thus enabling translation using unpaired data. In
addition, UNIT [100] aligns the latent space in two domains by assuming the similar
domains share the same content. Although this approach shows remarkable results
without paired data, they fail to perform diverse outputs. More recently, several
image-to-image translation methods [5, 31, 131, 172] enable diverse results with
the usage of noise or labels.

Diversity of image-to-image translation. Most recently, several approaches [25,
53, 68, 71, 93, 96, 189] consider to disentangle factors in feature space by enforcing a
latent structure or regulating the structure distribution. Exploiting this disentangled
representation enables the generator to synthesize diverse outputs by controlling
style distribution. The key difference with the proposed method is that our method
additionally performs scalable image-to-image translation while still having diver-
sity.

Scalability of image-to-image translation. The scalability aim is to conduct
image-to-image translation across multiple domains by a single generator. MM-
Net [172] uses a shared encoder and a domain-independent decoder, not only allow-
ing to perform style learning but zero-pair image-to-image translation. Anoosheh
et al. [8] additionally consider encoder-decoder pairs for each domain as well as the
used techniques in CycleGAN [206]. IcGAN [130] and StarGAN [31] condition the
domain label on the latent space and input, respectively. Our approach also works
by imposing domain labels in a single generator, but simultaneously enabling the
model to synthesize diverse outputs.

Attention learning. Attention mechanisms have been successfully employed for
image-to-image translation. Current approaches [26, 114] learn an attention mask
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Figure 6.2 – Model architecture. (Left) The proposed approach is composed of two
main parts: a discriminator D to distinguish the generated images and the real
images; and the set of the encoder E , multilayer perceptron M and the generatorG ,
containing the attention block, residual blocks with CIN, and the transposed convo-
lutional layers. (Right) At test time, we can generate multiple plausible translations
in the desired domain using a single model.

to enforce the translation to focus only on the objects of interest and preserve the
background area. GANimation [131] uses action units to choose regions from the
input images that are relevant for facial animation. Thesemethods exploit attention
mechanisms at the image level. Our method, on the other hand, learns feature-
wise attention maps, which enables us to control which features are modified
during translation. Therefore, our attention maps are highly effective at restricting
the translation to change only domain-specific areas (e.g. forehead region when
modifying the ‘bangs’ attribute).

6.3 Scalable and Diverse Image Translation

Our method must be able to performmulti-domain image-to-image translation.
We aim to learn a model with both scalability and diversity. By scalability we refer
to the property that a single model can be used to perform translations between
multiple domains. By diversity we refer to the property that given a single input
image, we can obtain multiple plausible output translations by sampling from a
random variable.
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6.3.1 Method Overview

Here we consider two domains: source domain X ⊂ RH×W ×3 and target domain
Y ⊂ RH×W ×3 (it can trivially be extended to multiple domains). As illustrated
in Figure 6.2, our framework is composed of four neural networks: encoder E ,
generatorG , multilayer perceptron M , and discriminator D . Let x ∈X be the input
source image and y ∈Y the target output, with corresponding labels lsc ∈ {1, . . . ,C }
for the source and lt g ∈ {1, . . . ,C } for the target. In addition, let z ∈RZ be the latent
code, which is sampled from a Gaussian distribution.

An overview of our method is provided in Figure 6.2. To address the problem of
scalability we introduce the target domain as a conditioning label to the encoder,
E(x, lt g ). The diversity is introduced by the latent variable z, which is mapped to
the input parameters of a Conditional Instance Normalization (CIN) layer [40] by
means of the multilayer perceptron M(z). The CIN learns an additive (β) and a
multiplicative term (γ) for each feature layer. Both the output of the encoder E and
the multilayer perceptron M are used as input to the generatorG(E(x, lt g ),M(z)).
The generator G outputs a sample y of the target domain. Sampling different z
results into different output results y . The unpaired domain translation is enforced
by a cycle consistency [81, 181, 206]: taking as input the output y and the source
category lsc , we reconstruct the input image x asG(E (G(E (x, lt g ),M(z)), lsc ),M(z)).
The encoder E , the multilayer perceptron M , and the generatorG are all shared.

The function of the discriminator D is threefold. It produces three outputs:
x → {Dsr c (x) ,Dcl s (x) ,Fr ec (x)}. Both Dsr c (x) and Dcl s (x) represent probability
distributions, while Fr ec (x) is a regressed code. The goal of Dsr c (x) is to distinguish
between real samples and generated images in the target domain. The auxiliary
classifier Dcl s (x) predicts the target label and allows the generator to perform
domain-specific output conditioned on it. This was found to improve the quality of
the conditional GAN [124]. Similarly to previousmethods [25, 68] we reconstruct the
latent input code in the output Fr ec (x). This was found to lead to improved diversity.
Note that Fr ec is just used for generated samples, as Fr ec aims to reconstruct the
latent code, which is not defined for real images.

We shortly summarize here the differences of our method with respect to the
most similar approaches. StarGAN [31] can also generate outputs on multiple
domains, but: (1) it learns a scalable but deterministic model, while our method
additionally obtains diversity via the latent code; (2) we explicitly exploit an at-
tention mechanism to focus the generator on the object of interest. Comparing
against both MUNIT [68] and DRIT [93], which perform diverse image-to-image
translation but without being scalable, ourmethod: (1) employs the domain label to
control the target domain, allowing to conduct image-to-image translation among
multiple domains with a single generator; (2) avoids the need for domain-specific
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style encoders, effectively saving computational resources; (3) considers attention
to avoid undesirable changes in the translation; and (4) experimentally proves that
the bias of CIN is the key factor to make the generator achieve the diversity, whereas
the multiplicative term was only found to play a minor role.

6.3.2 Training Losses

The full loss function consists of several losses: the adversarial loss that discrimi-
nates the distribution of synthesized data and the real distribution in target domain,
domain classification loss which contributes to themodel {E ,G} to learn the specific
attribute for a given target label, the latent code reconstruction loss regularizes the
latent code to improve diversity and avoids the problem of partial mode collapse,
and the image reconstruction loss that guarantees that the translated image keeps
the structure of the input images.

Adversarial loss. We employ GANs [54] to distinguish the generated images from
the real images

LG AN = Ex∼X

[
logDsr c (x)

]
+Ex∼X ,z∼p(z)

[
log(1−Dsr c (G(E(x, lt g ),M(z))))

]
,

(6.1)

where the discriminator tries to differentiate between generated images from the
generator and real images, whileG tries to fool the discriminator taking the output
of M and the output of E as input. The final loss function is optimized by the
minimax game

{
E∗,G∗,D∗}= argmin

E ,G
max

D
LG AN . (6.2)

Domain classification loss. In this chapter, we consider Auxiliary Classifier GANs
(AC-GAN) [124] to control domains. The discriminator aims to output a probability
distribution over given input images y and domain label, in consequence E andG
synthesize the domain-specific images. We share the discriminator model exc7pt
for the last layer and optimize the triplet {E ,G ,D} by the cross-entropy loss. The
final domain classification loss for generated samples, real samples, and total are

LF AK E (E ,G)=−Ex∼X ,z∼p(z)
[
log

(
Dcl s

(
lt g |G(E(x, lt g ),M(z))

))]
, (6.3)

LRE AL (D)=−Ex∼X

[
log(Dcl s (lsc |x))

]
, (6.4)
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LC LS =LRE AL +LF AK E , (6.5)

respectively. Given domain labels lsc and lt g these objectives are able to mini-
mize the classification loss so that the model explicitly generates domain-specific
outputs.

Latent code reconstruction loss. The lack of constraints on the latent code results
in the generated images suffering from partial mode collapse as the latent code
is ignored. We use the discriminator to predict the latent code, which forces the
network to use it for generation:

LL AT (E ,G ,D)= Ex∼X ,z∼p(z)
[‖Fr ec (x)− z‖1

]
(6.6)

Image reconstruction loss. Both adversarial loss and classification loss fail to

keep the structure of the input. To avoid this, we formulate the image reconstruction
loss as

y =G
(
E

(
x, lt g

)
,M(z)

)
,

x ′ =G
(
E

(
y, lsc

)
,M(z)

)
,

LREC = Ex∼X ,x′∼X
′
[∥∥x −x ′∥∥

1

]
.

(6.7)

Full Objective. The full objective function of our model is:

min
E ,G

max
D

λG AN LG AN +λF AK E LF AK E

+λRE ALLRE AL +λL AT LL AT +λREC LREC

(6.8)

where λG AN , λF AK E , λRE AL , λL AT , λREC are hyper-parameters that balance the
importance of each iterm.

6.3.3 Attention-guided generator

The attention mechanism encourages the generator to locate the domain-specific
area relevant to the target domain label. Let e = E

(
x, lt g

)
be the output of the

encoder. We propose to localize the CIN operation by introducing an attention
mechanism. Only part of the encoder output e should be changed to obtain the
desired diversity. We separate the signal e into two parallel residual blocks T c and
T a . The CIN is applied to the residual block according to f = T c (e,M (z)). We
estimate the attention with a separate residual block according to a = T a (e). We
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then combine the original encoder output and the CIN output using attention:

h = (1−a) ·e +a · f . (6.9)

In [131], an attention loss regularizes the attentionmaps, since they quickly saturate
to 1. In contrast, we employ the attention in the bottleneck features, and experi-
mentally prove that the attention masks can be easily learned. This makes the task
easier due to lower resolution in the bottleneck, and avoids the need to tune the
attention hyperparameter. Finally, our attention mechanism does not add any new
terms to the overall optimization loss in (6.8).

6.4 Experimental setup

Training setting. Our model is composed of four sub-networks: encoder E , mul-
tilayer perceptron M , generatorG , and discriminator D. The encoder contains 3
convolutional layers and 6 blocks. Each convolutional layer uses 4×4 filters with
stride 2, except for the first one which uses 7×7 with stride 1, and each block con-
tains two convolutional layers with 3×3 filters and stride of 1. M consists of two fully
connected layers with 256 and 4096 units. The generatorG comprises ResBlock lay-
ers, attention layers and two fractionally strided convolutional layers. The ResBlock
consists of 6 residual blocks, as in the encoder E , but including CIN layers. The CIN
layers take the output of E and the ouput of the M as input. Except for six blocks
like the CIN layers, the attention layers also use additional convolutional layers
with sigmoid activations on top. For the discriminator D , we use six convolutional
layers with 4×4 and stride 2, followed by three parallel sub-networks, each of them
containing one convolutional layer with 3×3 filters and stride 1, except for the
branch to output Fr ec which uses an additional fully connected layer from 32 units
to 8. Note how M adds around 1M parameters to the architecture.

All models are implemented in PyTorch [128] and released2. We randomly ini-
tialize the weights following a Gaussian distribution, and optimize the model using
Adam [82] with batch size 16 and 4 for face and non-face datasets, respectively. The
learning rate is 0.0001, followed the exponential decay rates

(
β1,β2

)= (0.5,0.999).
In all experiments, we use the following hyper-parameters: λG AN = 10, λF AK E = 1,
λRE AL = 1, λL AT = 10 and λREC = 800. We use Gaussian noise to the latent code
with zero mean and a standard deviation of 1.

2The codes are available at https://github.com/yaxingwang/SDIT
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6.4.1 Datasets

We consider several datasets to evaluate our models. In order to verify the generality
of our method, the datasets were chosen to cover a variety of cases, including faces
(CelebA), object (Color), and scenes (Artworks).

CelebA [105]. The Celeb Faces Attributes is a face dataset of celebrities with
202,599 images and 40 attribute labels per face. To explicitly preserve the face ratio,
we crop the face size of 178×218 and resize it to 128×128. We leave out 2000 random
images for test and train with the rest.

Color dataset [186]. We use the dataset collected by Yu et.al [186], which con-
sists of 11 color labels, each category containing 1000 images. In order to easily
compare to the non-scalable baselines which need train one independent model
for each domain pair, we use only four colors (green, yellow, blue, orange). We resize
all images to 128×128. We collected 3200 images for the train set and 800 images
for the test set.

Artworks [206]. Wealso illustrate SDIT in an artwork setting [206]. This includes
real images (photo) and three artistic styles (Monet, Ukiyo-e, and Cezanne). The
training set contains 3000 (photo), 700 (Ukiyo-e), 500 (Cezanne) and 1000 (Monet)
images, while the test set are: 300 (photo), 100 (Ukiyo-e), 100 (Cezanne) and 200
(Monet) images. All image are resized to 256×256.

6.4.2 Evaluation Metrics

To validate our approach, we consider the three following metrics.
LPIPS. In this chapter, LPIPS [197] is used to compute the similarity of pairs of

images from the same attribute. LPIPS takes larger values if the generator has more
diversity. In our setting, we generate 10 samples given an input image via different
random codes.

ID distance. The key point of face mapping is to preserve the identity of the in-
put, since an identity change is unacceptable for this task. To measure whether two
images depict the same identity, we consider ID distance [169], which represents the
difference in identity between pairs of input and translated faces. More concretely,
given a pair of input and output faces, we extract the identity features represented
by the VGGFace [127] network, and compute the distance between these features.
VGGFace is trained on a large face dataset and is robust to appearance changes
(e.g. illumination, age, expression, etc.). Therefore, two images of the same person
should have a very small value. We only use this evaluation metric for CelebA. We
use all 2000 test images as input and generate 10 output images, which in total
amounts to 20,000 pairs.

Reverse classification. One of the methods to evaluate conditional image-to-
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Figure 6.3 – Ablation study of different variants of our method. We show results for
the face task of adding ‘bangs’. We display three random outputs for each variant of
the method.

image translation is to train a reference classifier on real images and test it on
generated images [173, 175]. The reference classifier, however, fails to evaluate di-
versity, since it may still report a high accuracy even when the generator encounters
mode-collapse for a specific domain, as shown on the third column of Figure 6.3.
Following [150, 175], we use the reverse classifier which is trained using translated
images for each target domain and evaluated on real images for which we know
the label. Lower classification errors indicate more realistic and diverse translated
images.

6.5 Experimental Results

In Section 6.5.1 we introduce several baselines against which we compare our
model, as well as multiple variants of our model. Next, we evaluate the model on
faces in Section 6.5.2. Finally, in Section 6.5.3 and Section 6.5.4, we analyze the
generality of the model to color translation and scene translation.
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Method Atten CIN LL AT ID Distance LPIPS
SDIT w/o CIN (Atten) Y N N 0.061 0.408

SDIT w/o Atten (LL AT = 0) N Y N 0.063 0.409
SDIT w/o Atten (LL AT > 0) N Y Y 0.070 0.432

SDIT (LL AT = 0) Y Y N 0.063 0.412
SDIT Y Y Y 0.060 0.424

Table 6.1 – ID distance (lower, better) / LPIPS (higher, better) for different variants
of our method. Atten: attention, Y: yes, N: no.

Method Bangs Age Gender Smiling Wearing hat Pale skin Brown hair Blond hair Eyeglasses Mouth open Mean
StarGAN [31] 0.067/0.427 0.065/0.428 0.068/0.428 0.061/0.427 0.075/0.427 0.064/0.421 0.060/0.418 0.067/0.426 0.066/0.435 0.059/0.429 0.065/0.427
IcGAN [130] 0.118/0.430 0.097/0.431 0.094/0.430 0.121/0.430 0.102/0.429 0.10/0.430 0.127/0.424 0.113/0.421 0.097/0.425 0.116/0.438 0.108/0.432

SDIT 0.068/0.456 0.065/0.447 0.069/0.444 0.061/0.449 0.076/0.458 0.065/0.439 0.058/0.443 0.067/0.442 0.066/0.458 0.058/0.457 0.065/0.451
Real data -/0.486 -/0.483 -/0.484 -/0.480 -/0.489 -/0.479 -/0.492 -/0.490 -/0.492 -/0.489 -/0.486

Table 6.2 – ID distance (lower, better) / LPIPS (higher, better) on CelebA dataset.

6.5.1 Baselines and variants

We compare our method with the following baselines. For all baselines, we use the
authors’ original implementations and recommended hyperparameters. We also
consider different configurations of our proposed SDIT approach. In particular, we
study variants with and without CIN, attention, and latent code reconstruction.

CycleGAN [206]. CycleGAN is composed of two pairs of domain-specific en-
coders and decoders. The full objective is optimized with an adversarial loss and a
cycle consistency loss.

MUNIT [68]. MUNIT disentangles the latent distribution into the content space
which is shared between two domains, and the style space which is domain-specific
and aligned with a Gaussian distribution. At test time, MUNIT takes as input the
source image and different style codes to achieve diverse outputs.

IcGAN [130]. IcGAN explicitly maps the input face into a latent feature, followed
by a decoder which is conditioned on the latent feature and a target face attribute.
In addition, the face attribute can be explicitly reconstructed by an inverse encoder.

StarGAN [31]. StarGAN shares the encoders and decoders for all domains. The
full model is trained by optimizing the adversarial loss, the reconstruction loss and
the cross-entropy loss, which controls that the input image is translated into a target
image.

6.5.2 Face translation

We firstly conduct an experiment on the CelebA [105] dataset to compare against
ablations of our full model. Next, we compare SDIT to the baselines. For this case,
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Figure 6.4 – Qualitative comparison to the baselines. The input face image is at the
left bottom and the remaining columns show the attribute-specific mapped images.
The first two lines show the translated results of the IcGAN [130] and StarGAN [31],
respectively, while the remaining rows are from the proposed method.

we consider IcGAN and StarGAN, both of which show outstanding results for face
synthesis.

Ablation study. We performed an ablation study comparing several variants of
SDIT in terms of model diversity. We consider five attributes, namely bangs, blond
hair, brown hair, young, and male. Figure 6.3 shows the translated images obtained
with different variants of ourmethod. As expected, SDITwith only attention (second
column of Figure 6.3) fails to synthesize diverse outputs, since the model lacks the
additional factors (e.g. noise) to control this. Both the third and fourth columns
show that adding CIN to our method without attention generates diverse images.
Their quality, however, is unsatisfactory and the model suffers from partial mode
collapse, since CIN operates on the entire image, rather than being localized by
the attention mechanism to the desired area (e.g. the bangs). Combining both CIN
and attention but without the latent code reconstruction (LL AT = 0) leads to little
diversity, as shown in the fifth column. Finally, our full model (last column) achieves
the best results in terms of quality and diversity.
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Figure 6.5 – Generated images and learned attention maps for three input images.
For each of themwe present multi-domain outputs and attribute-specific attention.

For quantitative evaluation, we report the results in terms of the ID distance
and LPIPS. As shown in Table 6.1, the SDIT models without CIN orLL AT generate
less diverse outputs according to LPIPS scores. Using LL AT without attention
contributes to improve the diversity. It has a higher LPIPS, but this could be because
it is adding unwanted diversity (e.g. the red lips in the fourth column of Figure 6.3).
This may explain its higher ID distance. Combining both attention andLL AT > 0
(i.e. the full SDIT model) encourages the results to have better targeted diversity, as
reported in the last row of Table 6.1. The preservation of identity is crucial for the
facial attribute transfer task, and thuswe keep both attention and the reconstruction
loss in the following sections.

Attention. Figure 6.5 shows the attention maps for several translations from
the face dataset. We note that our method explicitly learns the attribute-specific
attention for a given face image (e.g. eyeglasses), and generates the corresponding
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Figure 6.6 – Ablation study on CIN. We compare three cases: (γ,β = 0), where γ

is learnable; (γ = 1,β), where β is learnable; and (γ,β), where both γ and β are
learnable.

outputs. In this way, attention enables to modify only attribute-specific areas of the
input image. This is a key factor to restrict the effect of the CIN, which otherwise
would globally process the entire feature representation.

CIN learning. We explain here how CIN contributes to the diversity of the gener-
ator. In this experiment, we only consider CIN without attention nor latent code
reconstruction. The operation performed by CIN on a feature e is given by:

CIN(e;z)= γ(z)
(

e−μ(e)
δ(e)

)
+β(z) (6.10)

where e and z are the output of encoder E and latent code z, respectively; γ,β
are affine parameters learned from M and μ(e), δ(e) are the mean and standard
deviation. As shown in the second column of Figure 6.6, only learning γ fails to
output diverse images, while only learning β already generates diverse results (third
columnof Figure 6.6), clearly indicating thatβ is the key factor to diversity. Updating
the two parameters obtains a similar performance in this task. However, β could be
ignored by the network. Therefore we introduced the latent code reconstruction
loss, Eq. 6.6, which helps to avoid this.

Comparison against baselines. Figure 6.4 shows the comparison to the baselines
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Figure 6.7 – Examples of scalable and diverse inference ofmulti-domain translations
on (a) color dataset and (b) artworks dataset. In both cases, the first column is the in-
put, the next three show results for CycleGAN [206], IcGAN [130], and StarGAN [31],
respectively, followed by three samples fromMUNIT [68] in next three columns and
three samples from SDIT in the last three. Each row indicates a different domain.

on test data. We consider ten attributes: bangs, blond hair, brown hair, young,
male, mouth slightly open, smiling, pale skin, wearing hat, and eyeglasses. Although
both IcGAN and StarGAN are able to perform image-to-image translation to each
domain, they fail to synthesize diverse outputs. Moreover, the performance of
IcGAN is unsatisfactory and it fails to keep the personal identity. Our method
not only enables the generation of realistic and diverse outputs, but also allows
scalable image-to-image translation. Note that both StarGAN and our method
use a single model. The visualization shows that scalability and diversity can be
successfully integrated in a singlemodel without conflict. Taking adding bangs as an
example translation; the generated bangswith different directions do not impact the
classification performance or the adversarial learning, in fact possibly contribute
to the adversarial loss, since the CIN layer slightly reduces the compactness of the
network, which increases the freedom of the generator.

As we can see in Table 6.2, our method obtains the best scores in both LPIPS
and ID distance. In the case of LPIPS, the mean value of our method is 0.451, while
IcGAN and StarGAN achieve 0.432 and 0.427 respectively. This clearly indicates that
SDIT can successfully generate multimodal outputs using a single model. Moreover,
the low ID distance indicates that SDIT effectively preserves the identity, achieving
a competitive performance with StarGAN. Note that here we do not compare to
CycleGAN and MUNIT because these methods require a single generator to be
trained for each pair of domains. This is unfeasible for this task, because each
attribute combination would require a different generator.

6.5.3 Object translation

The experiments in the previous section were conducted on a face dataset, in which
all images have a relatively similar content and structure (a face on a background).
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Method Yellow Blue Green Orange Mean Num E/G
CycleGAN 93.4/0.599 95.1/0.601 93.4/0.584 92.3/0.587 93.5/0.592 6/6
IcGAN 92.2/0.581 93.5/0.592 92.8/0.579 92.1/0.589 92.6/0.585 1/1
StarGAN 95.9/0.591 95.3/0.602 96.0/0.590 94.2/0.584 95.3/0.591 1/1
MUNIT 97.3/0.607 97.1/0.603 97.2/0.599 96.8/0.621 97.2/0.608 6/6
SDIT 97.6/0.610 96.6/0.607 97.3/0.604 97.1/0.627 97.1/0.612 1/1

Real image 98.5/0.652 98.6/0.652 97.8/0.653 98.8/0.652 98.4/0.652 -/-

Table 6.3 – Reverse classification accuracy (%) and LPIPS on the color dataset. For
both metrics, the higher the better.

Here we consider the color object dataset to show that SDIT can be applied to
datasets that lack a common structure. This dataset contains a wide range of
different objects which greatly vary in shape, scale, and complexity. This makes the
translation task more challenging.

Qualitative results. Figure 6.7(a) compares image-to-image translations obtained
with CycleGAN [206], IcGAN [130], StarGAN [31], MUNIT [68] and the proposed
method. We can see how SDIT clearly generates highly realistic and attribute-
specific bags with different color shades, which is comparable to the results of
MUNIT. Other baselines, however, only generate one color shade. The main advan-
tage of SDIT is the scalability, as SDIT explicitly synthesizes the target color image
(yellow, green, or blue) using a single generator.

Quantitative results. The qualitative observations above are validated here by
quantitative evaluations. Table 6.3 compares the results of SDIT to the baseline
methods. Our method outperforms both baseline methods on LPIPS despite only
using a singlemodel. For the classification accuracy, CycleGAN, IcGAN and StarGAN
produce a lower score, since it is not able to generate diverse outputs for a given
test samples. BothMUNIT and SDIT have a similar performance. However, for both
CycleGAN andMUNIT training all pairwise translation would in case of N domains
require N × (N −1)/2 generators. Since we consider N = 3 here, we have trained a
total of 6 generators for CycleGAN andMUNIT. The advantage of SDIT with respect
to this non-scalable models would be evenmore evident for an increased number
of domains.

6.5.4 Scene translation

Finally, we train our model on the photo and artworks dataset [206]. Differently
from the model used for faces and color objects, here we consider the variant of our
model without attention. This difference is due to the fact that previous datasets had
a foreground that needed to be changed (object) and a fixed background, whereas
in the scene case we need the generator to learn a global image translation instead
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Method Photo Cezanne Ukiyoe Monet Mean Num E/G
CycleGAN 52.8/0.684 57.4/0.654 56.1/0.674 60.9/0.648 56.8/0.665 6/6
IcGAN 50.9/0.697 56.8/0.663 55.1/0.677 59.7/0.651 55.6/0.671 1/1
StarGAN 60.1/0.694 61.5/0.667 61.3/0.689 62.7/0.663 61.3/0.678 1/1
MUNIT 66.2/0.763 67.9/0.784 67.2/0.791 63.9/0.778 66.3/0.779 6/6
SDIT 65.6/0.816 63.4/0.806 65.3/0.829 66.4/0.802 65.1/0.828 1/1

Real image 70.2/0.856 72.4/0.874 69.9/0.884 71.7/0.864 71.1/0.869 -/-

Table 6.4 – Reverse classification accuracy (%) and LPIPS on the artworks dataset.
For both metrics, the higher the better.

of a local one, and thus backgroundmust also be changed.
Figure 6.7(b) shows several representative examples of the different methods.

The conclusions are similar to previous experiments: SDIT maps the input (photo)
to other domains with diversity while using a single model. Table 6.4 also confirms
this, showing how the proposed method achieves excellent scores with only one
scalable model.

6.6 Conclusion

We have introduced SDIT to perform image-to-image translation with scalability
and diversity using a simple and compact network. The key challenge lies in con-
trolling the two functions separately without conflict. We achieve scalability by
conditioning the encoder with the target domain label, and diversity by applying
conditional instance normalization in the bottleneck. In addition, the use of atten-
tion on the latent represent further improves the performance of image translation,
allowing the model to mainly focus on domain-specific areas instead of the unre-
lated ones. The model has limited applicability for domains with large variations
(for example, faces and paintings in a single model) and works better when the
domains have characteristics in common.
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7 Conclusion

In this thesis, we proposed several improvements for image generation and image-
to-image translation. In this chapter, we summarize the main conclusions of the
methods proposed in this thesis. The chapter ends with some future research
directions.

7.1 Conclusions

We have investigated visual synthesis from two directions: image generation and
image-to-image translation. In the first part, we studied image generation in Chap-
ter 2 and 3. Many visual tasks have benefited from transfer learning (e.g fine-tuning)
when the amount of labelled data is not sufficient to optimize themillions of param-
eters required to perform these visual tasks. In Chapter 6, we explore the principles
of transfer learning of both GANs and conditional GANs. However, directly con-
ducting the fine-tuning for generative model easily results in overfitting when given
limited target data, as we are updating all parameters to adapt to the small dataset.
In Chapter 3, we propose an alternative approach, based on a miner network and a
selector, to overcome this limitation. The miner network firstly explores the specific
distribution that is helpful to generate the given target data. The selector is able to
determinate the mixing coefficients of the various pre-trained generators in case
we use multiple pre-trained models.

In the second part of the thesis, we focused on the problems of image-to-image
translation in Chapter 4, 5, and 6. In Chapter 4, we study zero-pair image-to-image
translation. The biases of image-to-image translation are investigated in Chapter
5. In Chapter 6, we proposed a novel method to conduct scalable and diverse
image generation in a single model. The main conclusions for each chapter are
summarized in the paragraphs below.

Chapter 2: Pretrained Generative Models for Domains with Limited Data. We
explore the principles of transfer learning of GANs. We experimentally find that
both GANs and conditional GANs profit from fine-tuning, resulting in a large im-
provement when given limited data. Interestingly, transferring the discriminator
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is muchmore important than the generator. Using both pretrained generator and
discriminator is to get the best performance. Notably, we find that a much higher
density (images per class) may be more critical to lean good transferable features
for fine-tuning of GANs, than the diversity (images per class).

Chapter 3: Effective Knowledge Transfer from GANs to Target Domains with
Few Images. Directly performing fine-tuning for image generation is prone to result
in overfitting, in this chapter we set out to avoid this problem and conduct effective
knowledge transfer with few images. For this purpose, we proposed a mining
operation that contributes to localize specific areas on the learned GANmanifold
that are closer to a given target domain. Employing a mining network is helpful
to conduct more effective and efficient fine-tuning, even with few target domain
images. We also studied knowledge transfer frommultiple pre-trained GANs as well
as single GANs. We perform experiments on several complex datasets with various
GAN architectures (BigGAN, Progressive GAN, and SNGAN), and demonstrated the
generality of our method.

Chapter 4: Mix and Match Networks: Encoder-decoder Alignment for Zero-
pair Image Translation. We proposed a new approach, called mix and match
network (M &MNets), to conduct image-to-image translation between unseen
domains (training stage) by employing the information learned from domains with
paired data. We used several techniques to align the latent representation in the
bottlenecks between unseen domains with the one between seen domains. We
introduced autoencoders, latent consistency losses, and robust side information.
In particular, we experimentally found that side information plays a key role to
gain good cross-modal image translation, but standard side information (e.g skip
connections) fails to work properly with unseen translations. Besides, the proposed
method can also be applied to perform scalable image translation. Furthermore, we
also investigated the specific limitation of the original M&MNets. We use a pseudo
labeling technique to effectively use the shared features between unseen domains.

Chapter 5: Controlling Biases and Diversity in Diverse Image-to-image Trans-
lation. We studied the bias problem of learning image-to-image translationmodels,
which occurs when the collected dataset is biased. The biases result in unwanted
changes in generated images. In order to overcome this drawback, we introduced
the use of semantic constraints, which are able to reduce the effects of biases. We
experimentally find that the architecture of semantic constraint is important to
preserve wanted properties of the input image. We validated the effectiveness of the
proposed method on several complex datasets, including faces, objects and scenes.

Chapter 6: Scalable and Diverse Cross-domain Image Translation. None of
the existing works on image-to-image translation is both scalable in the number of
domains and able to generate diverse images. Using a single network, we presented
a simple and compact framework which has both properties in a single model.
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Specially, we obtain diversity by applying conditional instance normalization in
the bottleneck. The scalability is achieved by using target domain labels in the
encoder and decoder. Besides, we also investigated the attention in the bottleneck
to improve the performance of image translation. The introduced attention helps
our model to focus on domain-specific regions instead of the unrelated ones.

7.2 Future directions

We have identified several future work directions in the research lines on image
generation and image-to-image translation. In Chapter 2 and 3, we proposed
methods to steer information from pretrained models, which allows us to train
models for domains with little labeled data. These methods, however, require to
update all parameters to adapt to the target data. This operation often results in
overfitting, even though the proposed method in Chapter 3 is able to reduce the
problem. We are interested to identify specific parameters which are highly relevant
for the target data domain, and only allow these to be changed during fine-tuning.
This would reduce the problem of overfitting. Although some existing work studies
this direction and only update the parameters of batch normalization [122], such
an approach has limited ability to learn the distribution of target domain.

Recently, diverse and scalable image-to-image translation is attractingmore and
more attention. In Chapter 6, we improved this direction and achieved significant
improvements in several datasets. The proposed method, however, has limited
applicability for domains with large variations (for example, a single model which
generates both faces and paintings). In the future, we aim to propose specific
and effective image-to-image translation method to address this problem. For the
implementation, we expect image-to-image translation network to focus on key-
points of the input image, in order to allow for a wider range of structural changes
between domains.

In addition, we addressed several issues of image-to-image translation in Chap-
ter 4, 5 and 6. However, currentmethods still suffer from the problem that themodel
trained on a specific resolution fails to achieve interesting performance when we
use a different image resolution at test time. We found that especially instance nor-
malization is sensitive to the input resolution. We therefore are interested in new
normalization methods that are invariant to the input resolution. These could then
be used to translate between domains with different resolutions. Future research
will focus on investigating this direction.
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A Appendix

A.1 Transferring GANs: generating images from lim-
ited data

A.1.1 Distances between source and target data

Table A.1 shows the FID between the real images in the source and target datasets,
which could be used as an estimation of which pre-trained GAN (on a source
dataset) may be a good choice to adapt to a particular target dataset. In most of the
cases, the lowest value in Table A.1 also corresponds to the lowest value in Table 1.

A.1.2 Model capacity

In order to check how important the capacity of the network is for transferring GAN
features, we performed an additional experiment where we reduced the capacity of
the network to half. We trained a source GAN with ImageNet, but in this case we
reduced the number of filters in each layer to half its original value (with respect
to the architecture used throughout our work, from WGAN-GP [25]). The model
is then fine tuned with 10K images from LSUN Bedrooms. The results shown in
Fig. A.1 suggest that also a lower capacity GAN adapting pre-trained features obtains

Table A.1 – Distance between source real data and target real data.

Distance
Source→
Target ↓ ImageNet Places Bedrooms CelebA

FID
(
X sr c

d at a ,X
t g t

d at a

) Flowers 187.52 292.36 270.09 317.21
Kitchens 139.81 99.88 66.54 311.06
LFW 266.50 326.76 318.98 44.12

Cityscapes 205.04 143.55 221.65 349.28

129



Appendix A. Appendix

significantly better results.

A.2 Effective knowledge transfer from GANs to target
domains with few images

A.2.1 Architecture and training details

MNIST dataset. Ourmodel contains a miner, generator and discriminator. For both
unconditional and conditional GANs, we use the same framework [56] to design
the generator and discriminator. The miner is composed of two fully connected
layers with the same dimensionality as the latent space |z|. The visual results are
computed with |z| = 16; we found that the quantitative results improved for larger
|z| and choose |z| = 128.

In MNIST, we consider the case where label c is a one-hot vector. We use the
selector to predict the conditioning label. We randomly initialize the weights of the
miner following a Gaussian distribution, and optimize the model using Adam [82]
with batch size of 64. The learning rate of our model is 0.0004, with an exponential
decay rates of

(
β1,β2

) = (0.5,0.999). Note the same configuration is also used for
the unconditional case.

CelebA Women, FFHQ Children and LSUN (Tower and Bedroom) Datasets.
We design the generator and discriminator based on Progressive GANs [76]. Both
networks use a multi-scale technique to generate high-resolution images. The
miner comprises out of four fully connected layers (8-64-128-256-512), each of
which is followed with a relu and pixel normalization except for last layer. We
use a Gaussian distribution to initialize the miner, and optimize the model using
Adam [82] with batch size of 4. The learning rate of our model is 0.0015, with an
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Iteration

0

100

200

300

400

FI
D

Scratch (half)
Pretrained (half)
Scratch
Pretrained

Figure A.1 – Model capacity.
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exponential decay rates of
(
β1,β2

)= (0,0.99).
FFHQ Face and Anime Face. We use the same network as [116], namely the

SNGAN. The miner consists of three fully connected layers (8-32-64-128). We
randomly initialize theweights following aGaussian distribution. For this additional
set of experiments, we use Adam [82] with a batch size of 8, following a hyper
parameter learning rate of 0.0002 and exponential decay rate of

(
β1,β2

)= (0,0.9).
Conditional GANs. For conditional GANs, we use the pretrained BigGAN [19].

We ignore the projection loss in the discriminator, since we do not have access to
the label of the target data. The miner consists of two sub-networks: miner M z

and miner M c . Both M z and M c are composed of four fully connected layers of
sizes 128-128-128-128-120 and 128, respectively. We use Adam [82] with a batch
size of 256, and learning rates of 0.0001 for miner and generator and 0.0004 for
discriminator. The exponential decay rate is

(
β1,β2

) = (0,0.999). We randomly
initialize the weights following a Gaussian distribution.

A.2.2 MNIST experiment

We expand theMNIST experiments presented in Section 5.1 by providing a quantita-
tive evaluation and including results on conditional GANs. As evaluation measures,
we use FID (Section 5) and classifier error [150]. To compute classifier error, we first
train a CNN classifier on real training data to distinguish betweenmultiple classes
(e.g. digit classifier). Then, we classify the generated images that should belong to a
particular class and measure the error as the percentage of misclassified images.
This gives us an estimation of how realistic and accurate the generated images are
in the context of targeted generation.

The conditional architecture in this experiment (Section A.2.1) conditions by
concatenating to the input noise z a one-hot vector c indicating the target class
of the image. We extend MineGAN to this type of pretrained conditional models
by considering each possible conditioning as an independently trained generator.
Given a conditional generatorG(c,z), we considerG(i ,z) asGi and apply the pre-
sentedMineGAN approach on the family {G(i ,z)| i = 1, ...,N }. The resulting selector
now chooses among the N classes of the model rather than among N pretrained
models, but the rest of the MineGAN training remains the same, including the
training of N independent miners.

Table A.2 presents the results for both unconditional and conditional models,
using a noise length of |z| = 128. The relatively low error values indicate that the
miner manages to identify the correct regions for generating the target digits. The
conditional model offers better results than the unconditional one by selecting the
target class more often. We can also observe that the off-manifold task is more
difficult than the on-manifold task, as indicated by the higher evaluation scores.
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Table A.2 – Quantitative results of mining onMNIST, expressed as FID / classifier
error.

d
On-manifold Off-manifold

Unconditional Conditional Unconditional Conditional

0 13.4 / 2.5 12.6 / 0.7 21.3 / 2.8 15.6 / 1.1
1 13.1 / 1.7 12.6 / 1.9 15.9 / 2.5 14.8 / 2.1
2 14.6 / 6.3 12.8 / 2.7 23.1 / 5.2 18.2 / 3.6
3 14.1 / 10.1 13.3 / 1.6 22.8 / 7.3 14.2 / 1.5
4 14.7 / 6.4 13.4 / 1.2 23.4 / 6.3 15.3 / 4.2
5 13.1 / 9.3 11.7 / 2.1 21.9 / 10.9 17.2 / 5.7
6 13.4 / 2.8 14.3 / 1.8 24 / 3.1 15.8 / 1.6
7 12.9 / 3.2 14.2 / 1.8 24.8 / 4.9 16.3 / 2.6
8 14.2 / 7.5 14.7 / 5.5 25.7 / 9.8 18.7 / 5.6
9 11.3 / 6.8 11.2 / 2.9 12.5 / 7.4 16.3 / 3.5

Average 13.5 / 5.7 13.1 / 2.2 21.5 / 6.0 16.2 / 3.2

However, the off-manifold scores are still reasonably low, indicating that the miner
manages to find suitable regions from other digits by mining local patterns shared
with the target. Overall, these results indicate the effectiveness of mining on MNIST
for both types of targeted image generation. In addition, in Fig. A.2 we have added
a visualization for the off-manifold MNIST classes which were not already shown in
Fig. 2.

Figure A.2 – Results for unconditional off-manifold generation of digits ‘6’, ‘4’, ‘3’, ‘2’,
‘1’, ‘0’.

A.2.3 Further results on CelebA

We provide additional results for the on-manifold experiment CelebA→FFHQ
women in Fig. A.3, and the off-manifold CelebA→FFHQ children in Fig. A.4. In
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addition, we have also performed an on-manifold experiment with CelebA→CelebA
women, whose results are provided in Fig. ??.

A.2.4 Further results for LSUN

We provide additional results for the experiment ({bus, car}) → Red vehicles in
Fig. A.7.

We also provide additional results for the experiment {Bedroom, Bridge, Church,
Kitchen}→ Tower/Bedroom in Fig. A.8.

When applying MineGAN to multiple pretrained GANs, we use one of the do-
mains to initialize the weights of the critic. In Fig. A.8 we used Church to initialize
the critic in case of the target set Tower, and Kitchen to initialize the critic for the
target set Bedroom. We found this choice to be of little influence on the final results.
When using Kitchen to initialize the critic for target set Tower results change from
62.4 to 61.7. When using Church to initialize the critic for target set Bedroom results
change from 54.7 to 54.3.

A.3 Cross-modal alignment for zero-pair image-to-image
translation

A.3.1 Appendix: Network architecture on RGB-D or RGB-D-NIR
dataset

Table A.3 shows the architecture (convolutional and pooling layers) of the encoders
used in the cross-modal experiment. Tables A.4 and A.5 show the corresponding
decoders. Table A.6 shows the discriminator used for RGB. Every convolutional
layer of the encoders, decoders and the discriminator is followed by a batch nor-
malization layer and a ReLU layer (LeakyReLU for the discriminator). The only
exception is the RGB encoder, which is initialized with weights from the VGG16
model pretrained on imageNet [153] and does not use batch normalization. The
used abbreviations are shown in Table A.10.

A.3.2 Appendix: Network architectures

We use several datasets to verify the generality of our method, including object
(Color) and scenes (Artworks).

Color dataset [188]. We consider the object dataset for color which is collected
by [188], which includes 11 color labels, each category containing 1000 images. We
resize all images to 128×128.
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Layer Input→Output Kernel, stride
conv1 (RGB) [6,256,256,3]→ [6,256,256,64] [3,3], 1
conv1 (Depth) [6,256,256,1]→ [6,256,256,64] [3,3], 1
conv1 (NIR) [6,256,256,1]→ [6,256,256,64] [3,3], 1
conv1 (Segm.) [6,256,256,14]→ [6,256,256,64] [3,3], 1

conv2 [6,256,256,64]→ [6,256,256,64] [3,3], 1
pool2 (max) [6,256,256,64]→ [6,128,128,64]+indices2 [2,2], 2

conv3 [6,128,128,64]→ [6,128,128,128] [3,3], 1
conv4 [6,128,128,128]→ [6,128,128,128] [3,3], 1

pool4 (max) [6,128,128,128]→ [6,64,64,128]+indices4 [2,2], 2
conv5 [6,64,64,128]→ [6,64,64,256] [3,3], 1
conv6 [6,64,64,256]→ [6,64,64,256] [3,3], 1
conv7 [6,64,64,256]→ [6,64,64,256] [3,3], 1

pool7 (max) [6,64,64,256]→ [6,32,32,256]+indices7 [2,2], 2
conv8 [6,32,32,256]→ [6,32,32,512] [3,3], 1
conv9 [6,32,32,512]→ [6,32,32,512] [3,3], 1
con10 [6,32,32,512]→ [6,32,32,512] [3,3], 1

pool10 (max) [6,32,32,512]→ [6,16,16,512]+indices10 [2,2], 2
conv11 [6,16,16,512]→ [6,16,16,512] [3,3], 1
conv12 [6,16,16,512]→ [6,16,16,512] [3,3], 1
conv13 [6,16,16,512]→ [6,16,16,512] [3,3], 1
relu13 [6,16,16,512]→ [6,16,16,512] -, -

pool13 (max) [6,16,16,512]→ [6,8,8,512]+indices13 [2,2], 2

Table A.3 – The architecture of the encoder of RGB, depth, NIR and semantic seg-
mentation.

Artworks [206]. We also illustrate M&MNet in an artwork setting. This includes
real images (photo) and four artistic styles (Monet, van Gogh, Ukiyo-e and Cezanne).
The the set contains 3000 (photo), 800 (Ukiyo-e), 500 (van Gogh), 600 (Cezanne)
and 1200 (Monet) images. All images are resized to 256×256.

We consider Adam [82] with a batch size of 4, using a learning rate of 0.0002. The
network is initialized using a Gaussian distribution with zero mean and a standard
deviation of 0.5. We only use adversarial loss to train our model.

Tables A.7-A.9 show the architectures of the encoder, image decoder and dis-
criminator used in the cross-modal experiment. The following tables only show the
image size of 128×128, while for artworks dataset it is same architecture except for
image resolution. The used abbreviations are shown in Table A.10.

A.3.3 Appendix: Network architecture for the Flower dataset

Flower dataset [121]. The Flower dataset consists of 102 categories. We consider 10
categories(passionflower, petunia, rose, wallflower, watercress, waterlily, cyclamen,
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foxglove, frangipani, hibiscus). Each category includes between 100 and 258 images.
we resize the image to 128×128.

Similarly, we optimize our model by means of using Adam [82], the batch size
of 4 and a learning rate of 0.0002. We initialize hyperparameters using a Gaussian
distribution with zero mean and a standard deviation of 0.5. We use adversarial loss
and L2 to trainΘ3, and only L2 forΘ1 andΘ2.

Tables A.11 and A.12 detail the architecture of the encoder and decoder, respec-
tively, of the two single channel modalities Θ1 and Θ2. The encoder and decoder
for the third modality Θ3 are analogous, just adapted to three input and output
channels, respectively. ForΘ3 we also use the discriminator detailed in Table A.9.

A.4 Controlling biases and diversity in diverse image-
to-image translation

Tables A.13-A.18 show the architectures of the content encoder, style encoder,
image decoder and discriminator used in the cross-modal experiment. The used
abbreviations are shown in Table A.19.
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Figure A.3 – (CelebA→FFHQ women). Based on pretrained Progressive GAN.
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Figure A.4 – (CelebA→ FFHQ children). Based on pretrained Progressive GAN.
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Figure A.5 – (Top) 100 women faces from HHFQ dataset. (Bottom) training of
model from scratch: the images start with low quality and iteratively overfit to a
particular training image. Red boxes identify images which are remembered by the
model trained from scratch or from TransferGAN (see Fig. 4). Based on pretrained
Progressive GAN.
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Figure A.6 – 100 children faces fromHHFQdataset. Red boxes identify images which
are remembered by themodel trained from scratch (see Fig. 4). Based on pretrained
Progressive GAN.
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Figure A.7 – ({bus, car})→red vehicles. Based on pretrained Progressive GAN.
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Figure A.8 – Results for unconditional GAN. (Top) (Livingroom, kitchen, bridge,
church )→Tower. (Bottom) (Livingroom, kitchen, bridge, church )→Bedroom.
Based on pretrained Progressive GAN.
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layer Input→Output Kernel, stride
unpool1 indices13 + [6,8,8,512]→ [6,16,16,512] [2, 2], 2
conv1 [6,16,16,512]→ [6,16,16,512] [3,3], 1
BN1 [6,16,16,512]→ [6,16,16,512] -, -
relu1 [6,16,16,512]→ [6,16,16,512] -, -
conv2 [6,16,16,512]→ [6,16,16,512] [3,3], 1
BN2 [6,16,16,512]→ [6,16,16,512] -, -
relu2 [6,16,16,512]→ [6,16,16,512] -, -
conv3 [6,16,16,512]→ [6,16,16,512] [3,3], 1
BN3 [6,16,16,512]→ [6,16,16,512] -, -
relu3 [6,16,16,512]→ [6,16,16,512] -, -

unpool4 indices10 + [6,16,16,512]→ [6,32,32,512] [2, 2], 2
conv4 [6,32,32,512]→ [6,32,32,512] [3,3], 1
BN4 [6,32,32,512]→ [6,32,32,512] -, -
relu4 [6,32,32,512]→ [6,32,32,512] -, -
conv5 [6,32,32,512]→ [6,32,32,512] [3,3], 1
BN5 [6,32,32,512]→ [6,32,32,512] -, -
relu5 [6,32,32,512]→ [6,32,32,512] -, -
conv6 [6,32,32,512]→ [6,32,32,256] [3,3], 1
BN6 [6,32,32,512]→ [6,32,32,512] -, -
relu6 [6,32,32,512]→ [6,32,32,512] -, -

unpool7 indices7 + [6,32,32,256]→ [6,64,64,256] [2, 2], 2
conv7 [6,64,64,256]→ [6,64,64,256] [3,3], 1
BN7 [6,64,64,256]→ [6,64,64,256] -, -
relu7 [6,64,64,256]→ [6,64,64,256] -, -
conv8 [6,64,64,256]→ [6,64,64,256] [3,3], 1
BN8 [6,64,64,256]→ [6,64,64,256] -, -
relu8 [6,64,64,256]→ [6,64,64,256] -, -
conv9 [6,64,64,256]→ [6,64,64,128] [3,3], 1
BN9 [6,64,64,256]→ [6,64,64,256] -, -
relu9 [6,64,64,256]→ [6,64,64,256] -, -

unpool10 indices4 + [6,64,64,128]→ [6,128,128,128] [2, 2], 2
conv10 [6,128,128,128]→ [6,128,128,128] [3,3], 1
BN10 [6,128,128,128]→ [6,128,128,128] -, -
relu10 [6,128,128,128]→ [6,128,128,128] -, -
conv11 [6,128,128,128]→ [6,128,128,64] [3,3], 1
BN11 [6,128,128,128]→ [6,128,128,128] -, -
relu11 [6,128,128,128]→ [6,128,128,128] -, -

unpool12 indices2 + [6,128,128,64]→ [6,256,256,64] [2, 2], 2
conv12 [6,256,256,64]→ [6,256,256,64] [3,3], 1

conv13 (Depth) [6,256,256,64]→ [6,256,256,1] [3,3], 1
conv13 (NIR) [6,256,256,64]→ [6,256,256,5] [3,3], 1
conv13 (Segm.) [6,256,256,64]→ [6,256,256,14] [3,3], 1

Table A.4 – The architecture of the decoder of depth, NIR and semantic segmenta-
tion.
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layer Input→Output Kernel, stride
conv1 [6,8,8,512]→ [6,16,16,512] [3, 3], 1
BN1 [6,16,16,512]→ [6,16,16,512] -, -
relu1 [6,16,16,512]→ [6,16,16,512] -, -
conv2 [6,16,16,512]→ [6,32,32,256] [3, 3], 1
BN2 [6,32,32,256]→ [6,32,32,256] -, -
relu2 [6,32,32,256]→ [6,32,32,256] -, -
conv3 [6,32,32,256]→ [6,64,64,128] [3, 3], 1
BN3 [6,64,64,128]→ [6,64,64,128] -, -
relu3 [6,64,64,128]→ [6,64,64,128] -, -
conv4 [6,64,64,128]→ [6,128,128,64] [3, 3], 1
BN4 [6,128,128,64]→ [6,128,128,64] -, -
relu4 [6,128,128,64]→ [6,128,128,64] -, -
conv5 [6,128,128,64]→ [6,256,256,3] [3, 3], 1

Table A.5 – The architecture of the decoder of RGB

layer Input→Output Kernel, stride
deconv1 [6,256,256,3]→ [6,128,128,64] [5, 5], 2
lrelu1 [6,128,128,64]→ [6,128,128,64] -, -

deconv2 [6,128,128,64]→ [6,64,64,128] [5, 5], 2
lrelu2 [6,64,64,128]→ [6,64,64,128] -, -

deconv3 [6,64,64,128]→ [6,32,32,256] [5,5], 2
lrelu3 [6,32,32,256]→ [6,32,32,256] -, -

deconv4 [6,32,32,256]→ [6,16,16,512] [5,5], 2

Table A.6 – RGB discriminator.

Layer Input→Output Kernel, stride, pad
conv1 [4,128, 128,3]→ [4,128, 128, 64] [7,7], 1, 3
IN1 [4,128, 128, 64]→ [4,128, 128, 64] -, -, -

pool1 (max) [4,128, 128, 64]→[4,64, 64, 64]+indices1 [2,2], 2, -
conv2 [4,64, 64,64]→ [4,64, 64,128] [7,7], 1, 3
IN2 [4,64, 64,128]→ [4,64, 64,128] -, -, -

pool2 (max) [4,64, 64,128]→[4,32, 32,128]+indices2 [2,2], 2, -
conv3 [4,32, 32,128]→ [4,32, 32,256] [7,7], 1, 3
IN3 [4,32, 32,256]→ [4,32, 32,256] -, -, -

pool3 (max) [4,32, 32,256]→ [4,16, 16,256]+indices3 [2,2], 2, -
RB(IN)4-9 [4,16, 16,256]→ [4,16, 16,256] [7,7], 1, 3

Table A.7 – The architecture of the encoder for 128×128 input.
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Layer Input→Output Kernel, stride, pad
RB(IN)1-6 [4,16, 16,256]→ [4,16, 16,256] [7,7], 1, 3
unpool1 indices3 + [4,16, 16,256]→ [4,32, 32,256] [2, 2], 2, -
conv1 [4,32, 32,256]→ [4,32, 32,128] [7,7], 1, 3
IN1 [4,32, 32,128]→ [4,32, 32,128] -, -, -

unpool2 indices2 + [4,32, 32,128]→ [4, 64, 64,128] [2, 2], 2, -
conv2 [4, 64, 64,128]→ [4, 64, 64,64] [7,7], 1, 3
IN2 [4, 64, 64,64]→ [4, 64, 64,64] -, -, -

unpool3 indices1 + [4, 64, 64,64]→ [4, 128, 128,64] [2, 2], 2, -
conv3 [4, 128, 128,64]→ [4, 128, 128,3] [7,7], 1, 3

Table A.8 – The architecture of the decoder for 128×128 output.

Layer Input→Output Kernel, stride, pad
conv1 [4,128, 128,3]→ [4,64, 64,64] [4,4], 2, 1
lrelu1 [4,64, 64,64]→ [4,64, 64,64] -, -, -
conv2 [4,64, 64,64]→ [4,32, 32,128] [4,4], 2, 1
lrelu2 [4,32, 32,128]→ [4,32, 32,128] -, -, -
conv3 [4,32, 32,128]→ [4,16, 16,256] [4,4], 2, 1
lrelu3 [4,16, 16,256]→ [4,16, 16,256] -, -, -
conv4 [4,16, 16,256]→ [4,8, 8,512] [4,4], 2, 1
lrelu4 [4,8, 8,512]→[4,8, 8,512] -, -, -
conv5 [4,8, 8,512]→[4,8, 8,1] [1,1], 1, 0

Table A.9 – Architecture for the discriminator Loss specification for 128×128 input.

Abbreviation Name
pool pooling layer

unpool unpooling layer
lrelu leaky relu layer
conv convolutional layer
linear fully connection layer
BN batch normalization layer
IN instance normalization layer

RB(IN) residual block layer using instance normalization

Table A.10 – Abbreviations used in other tables.
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Layer Input→Output Kernel, stride, pad
conv1 [4,128, 128,1]→ [4,128, 128, 64] [7,7], 1, 3
IN1 [4,128, 128, 64]→ [4,128, 128, 64] -, -, -

pool1 (max) [4,128, 128, 64]→[4,64, 64, 64]+indices1 [2,2], 2, -
conv2 [4,64, 64,64]→ [4,64, 64,128] [7,7], 1, 3
IN2 [4,64, 64,128]→ [4,64, 64,128] -, -, -

pool2 (max) [4,64, 64,128]→[4,32, 32,128]+indices2 [2,2], 2, -
conv3 [4,32, 32,128]→ [4,32, 32,256] [7,7], 1, 3
IN3 [4,32, 32,256]→ [4,32, 32,256] -, -, -

pool3 (max) [4,32, 32,256]→ [4,16, 16,256]+indices3 [2,2], 2, -
RB(IN)4-9 [4,16, 16,256]→ [4,16, 16,256] [7,7], 1, 3

Table A.11 – The architecture of the encoder ofΘ1 andΘ2.

Layer Input→Output Kernel, stride, pad
RB(IN)1-6 [4,16, 16,256]→ [4,16, 16,256] [7,7], 1, 3
unpool1 indices3 + [4,16, 16,256]→ [4,32, 32,256] [2, 2], 2, -
conv1 [4,32, 32,256]→ [4,32, 32,128] [7,7], 1, 3
IN1 [4,32, 32,128]→ [4,32, 32,128] -, -, -

unpool2 indices2 + [4,32, 32,128]→ [4, 64, 64,128] [2, 2], 2, -
conv2 [4, 64, 64,128]→ [4, 64, 64,64] [7,7], 1, 3
IN2 [4, 64, 64,64]→ [4, 64, 64,64] -, -, -

unpool3 indices1 + [4, 64, 64,64]→ [4, 128, 128,64] [2, 2], 2, -
conv3 [4, 128, 128,64]→ [4, 128, 128,1] [7,7], 1, 3

Table A.12 – The architecture of the decoder forΘ1 andΘ2.

Layer Input→Output Kernel, stride, pad
conv1 [4,128, 128,3]→ [4,128, 128, 64] [7,7], 1, 3
IN1 [4,128, 128, 64]→ [4,128, 128, 64] -, -, -

pool1 (max) [4,128, 128, 64]→[4,64, 64, 64]+indices1 [2,2], 2, -
conv2 [4,64, 64,64]→ [4,64, 64,128] [7,7], 1, 3
IN2 [4,64, 64,128]→ [4,64, 64,128] -, -, -

pool2 (max) [4,64, 64,128]→[4,32, 32,128]+indices2 [2,2], 2, -
conv3 [4,32, 32,128]→ [4,32, 32,256] [7,7], 1, 3
IN3 [4,32, 32,256]→ [4,32, 32,256] -, -, -

pool3 (max) [4,32, 32,256]→ [4,16, 16,256]+indices3 [2,2], 2, -
RB(IN)4-9 [4,16, 16,256]→ [4,16, 16,256] [7,7], 1, 3

Table A.13 – Content encoder.
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Layer Input→Output Kernel, stride, pad
conv1 [4,128, 128,3]→ [4,128, 128, 64] [7,7], 1, 3
relu1 [4,128, 128, 64]→[4,64, 64, 64] -, -, -
conv2 [4,64, 64,64]→ [4,32, 32,128] [4, 4], 2, 1
relu2 [4,32, 32,128]→[4,32, 32,128] -, -, -
conv3 [4,32, 32,128]→ [4,16, 16,256] [4,4], 2, 1
relu3 [4,16, 16,256]→ [4,16, 16,256] -, -, -
GAP [4,16, 16,256]→ [4,1, 1,256] -, -,-
conv4 [4,1, 1,256]→ [4,1, 1,8] [1, 1],1,0

Table A.14 – Style encoder.

Layer Input→Output
linear1 [4, 8]→ [4, 256]
relu1 [4, 256]→[4, 256]
linear2 [4, 256]→ [4, 256]
relu2 [4, 256]→[4, 256]
linear3 [4, 256]→ [4, 256]
reshape [4, 256]→[4,1,1, 256]

Table A.15 – Networks for the estimation of the affine parameters (μ) that are used
in the AdaIN layer. The parameters μ and σ scale and shift the normalized content,
respectively. Note that μ and σ share the first two layers.

Layer Input→Output
linear1 [4, 8]→ [4, 256]
relu1 [4, 256]→[4, 256]
linear2 [4, 256]→ [4, 256]
relu2 [4, 256]→[4, 256]
linear3 [4, 256]→ [4, 256]
reshape [4, 256]→[4,1,1, 256]

Table A.16 – Networks for the estimation of the affine parameters ( σ) that are used
in the AdaIN layer. The parameters μ and σ scale and shift the normalized content,
respectively. Note that μ and σ share the first two layers.
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Layer Input→Output Kernel, stride, pad
RB(AdaIN)1-6 (μ,σ) +[4,16, 16,256]→ [4,16, 16,256] [7,7], 1, 3

unpool1 indices3 + [4,16, 16,256]→ [4,32, 32,256] [2, 2], 2, -
conv1 [4,32, 32,256]→ [4,32, 32,128] [7,7], 1, 3
IN1 [4,32, 32,128]→ [4,32, 32,128] -, -, -

unpool2 indices2 + [4,32, 32,128]→ [4, 64, 64,128] [2, 2], 2, -
conv2 [4, 64, 64,128]→ [4, 64, 64,64] [7,7], 1, 3
IN2 [4, 64, 64,64]→ [4, 64, 64,64] -, -, -

unpool3 indices1 + [4, 64, 64,64]→ [4, 128, 128,64] [2, 2], 2, -
conv3 [4, 128, 128,64]→ [4, 128, 128,3] [7,7], 1, 3

Table A.17 – Decoder (Image generator).

Layer Input→Output Kernel, stride, pad
conv1 [4,128, 128,3]→ [4,64, 64,64] [4,4], 2, 1
lrelu1 [4,64, 64,64]→ [4,64, 64,64] -, -, -
conv2 [4,64, 64,64]→ [4,32, 32,128] [4,4], 2, 1
lrelu2 [4,32, 32,128]→ [4,32, 32,128] -, -, -
conv3 [4,32, 32,128]→ [4,16, 16,256] [4,4], 2, 1
lrelu3 [4,16, 16,256]→ [4,16, 16,256] -, -, -
conv4 [4,16, 16,256]→ [4,8, 8,512] [4,4], 2, 1
lrelu4 [4,8, 8,512]→[4,8, 8,512] -, -, -
conv5 [4,8, 8,512]→[4,8, 8,1] [1,1], 1, 0

Table A.18 – Architecture for the discrim Loss specificationinator for 128×128 input.
The discriminators for 64×64, and 32×32 use the same convolutional architecture.

Abbreviation Name
pool pooling layer

unpool unpooling layer
lrelu leaky relu layer
concat concatenate layer
conv convolutional layer
linear fully connection layer
IN instance normalization layer
GAP global average pooling layer
RB(IN) residual block layer using instance normalization

RB(AdaIN) residual block layer using adaptive instance normalization

Table A.19 – Abbreviations used in other tables.
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