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Abstract 

 

Surface shape measurement allows us to obtain three-dimensional information of 

an object. Thus, it finds extensive applications in various areas such as industrial 

manufacturing inspection, optical metrology, object recognition, non-destructive 

evaluation, etc. Within numerous surface shape measurement techniques, structured 

light measurement presents its great advantage in obtaining the surface shape as it 

provides a high measurement accuracy with an easy implemented system. Moreover, 

by projecting digital fringe patterns to the measured object, structured light 

guarantees a flexible surface measurement, which satisfies the measurement of 

different shapes, such as plane surfaces, curved surfaces and irregular surfaces. On the 

other hand, structured light measurement also allows us to measure both specular 

objects and diffuser objects. For specular object measurement, deflectometry is 

introduced. Here, the fringe patterns are generated by a commercial liquid crystal 

display (LCD). For diffuser object measurement, profilometry is used to determine 

the surface shape. In this technique, the fringe patterns are projected to the object by 

a video projector.  

In this thesis, we firstly propose a stereoscopic phase measuring deflectometry 

(SPMD) system, which contains two cameras and a commercial LCD, to fulfill the 

specular object measurement. In particular, by introducing the stereoscopic camera, 

the undesired height-normal ambiguity is eliminated without moving any 

deflectometry system component. Within this system, we propose a phase error 

minimization algorithm, which is fulfilled by searching the minimum phase difference 

between the corresponding pixels of the LCD and the camera, to simultaneously 

determine the surface normal and the surface height. What is more, to accomplish an 

efficient phase minimization, we use a polynomial fitting method. Finally, two-

dimensional Fourier integration is used to reconstruct the specular surface shape. 

Based on this stereoscopic phase measuring deflecectometry system, we measure 

different specular objects such as a plane mirror, a spherical mirror and even a 

discontinuous specular disk.  

Apart from the specular surface measurement with deflectometry, we also propose 

a stereoscopic fringe projection profilometry (SFPP) system to accomplish the diffuser 
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object surface shape measurement. In particular, an SFPP system uses the same 

stereoscopic camera as in the deflectometry set-up, but it adopts a video projector to 

replace the LCD to project the fringe patterns. By introducing the stereoscopic 

camera, we totally avoid the complex video projector calibration, which is represented 

as the gamma calibration and the video projector position calibration. Under this 

scenario, a great system flexibility is achieved. For surface reconstruction, geometric 

triangulation is implemented by performing a 2D sub-pixel interpolation, from which 

we improve the surface reconstruction accuracy. Based on this stereoscopic 

profilometry system, the surface shapes of different diffuser objects are measured.  

The aforementioned two systems (i.e., deflectometry system and profilometry 

system) enable us only to measure the surface shape of either a specular or a diffuser 

object, but they show inadequacies to measure a specular-diffuser hybrid object. Under 

this scenario, we aim at combining both systems to perform the specular-diffuser 

hybrid object measurement, as such objects are commonly used in industrial fields. 

Thanks to the introduction of the stereoscopic camera, we then combine stereoscopic 

deflectometry with stereoscopic profilometry to measure the surface shape of a 

specular-diffuser hybrid object. Here, a stereoscopic deflectometry-profilometry hybrid 

(SDPH) system contains the stereoscopic camera, an LCD and a video projector. In 

this case, this hybrid system greatly overcomes the inadequacy of single projection 

structured light systems, as this hybrid system not only ensures to measure specular 

or diffuser object, but it also allows the measurement of specular-diffuser hybrid 

objects. Hence, the application of structured light measurement is further broadened.  

In summary, we demonstrate in this thesis three stereoscopic camera based 

structured light systems to perform three-dimensional surface shape measurement. 

These stereoscopic structured light systems reveal great potential as they are able to 

measure the surface shapes of specular objects, diffuser objects and even specular-

diffuser hybrid objects with high resolution. The proposed stereoscopic structured light 

systems could be beneficial in various industrial applications, where an accurate 

surface shape measurement system with an easy implemented scheme is required. 
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Chapter 1   Introduction 

 Three-dimensional surface shape measurement finds many applications in various 

fields ranging from industrial inspection [1, 2], optical metrology [3], facial recognition 

[4], to medical diagnosis [5], among others. Different measurement techniques have 

been proposed to perform the surface shape measurement with respect to certain 

requirements. Among them, optical measurement techniques demonstrate great 

advantages as they provide a rapid measurement with high accuracy. What is more, 

they also guarantee non-contact measurement which is mandatory to measure some 

fragile, or easily scratched objects. The most commonly used optical based surface 

measurement techniques can be enlisted as photogrammetry, interferometry, laser 

scanning, etc. In this case, photogrammetry is mainly used to measure diffuser objects, 

interferometry is usually used to perform regular specular surface metrology, whereas 

laser scanning can be implemented to measure both specular and diffuser objects. Even 

though these above-mentioned systems are able to provide an accurate measurement 

within a relatively short time, they are either expensive or difficult to implement. 

Thus, a low cost, easy implemented, environmental variation insensitive optical 

measurement system is still highly demanded. Under this scenario, structured light 

measurement system is proposed as it demonstrates great flexibility to be implemented 

without a complicated optical scheme, and it also provides a high measurement 

accuracy. 

This chapter provides an overview of the structured light measurement techniques, 

which are based on fringe pattern projection, to achieve three-dimensional surface 

shape measurement. In Section 1.1, a brief motivation of structured light measurement 

is discussed. In particular, it focuses on applications in both optical metrology and 
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industrial manufacturing inspection. Afterwards, Section 1.2 presents deflectometry 

technique, which is favored in specular surface measurement. Then, Section 1.3 

discusses profilometry technique, which is used to measure the diffuser object surface 

shape. In Section 1.4, the objective of this thesis is presented. Finally, Section 1.5 

summarizes the structure of this thesis.   

 

1.1 Motivation 

Three-dimensional surface shape measurement is mandatory in many industrial 

applications. For instance, the surface shape of a mechanical element directly 

determines the whole mechanical system performance and thus, it has to be precisely 

inspected during manufacturing. For facial recognition, accuracy heavily depends on 

the three-dimensional facial profile reconstruction. Moreover, in numerous optical 

imaging systems, reflective mirrors are implemented to perform either light steering 

or focusing. Thus, the surface shapes of these optical mirrors are crucial as they 

directly determine the imaging quality. In this section, we demonstrate the motivation 

of structured light measurement techniques using two examples: optical metrology 

and manufacturing inspection.  

 

 Optical metrology 

Optical mirrors play an extremely important role throughout the whole optical 

development history. In the 17th century, Isaac Newton implemented the first 

reflective telescope with a spherical mirror, from which he had successfully 

accomplished the observation of Jupiter and Venus. Nowadays, the reflective scheme 

telescopes are still the most promising scientific instruments to perform astronomy 

observation, such as the 2.4 m aperture Hubble Space Telescope [6, 7], or the ~ 6.5 m 

aperture James Webb Space Telescope [8]. In these telescopes, the shapes of the 

reflective mirrors greatly influence the telescope performance. For Hubble Space 

Telescope, its primary mirror contains a 2.2 μm grinding error at the mirror perimeter, 

and thus, the imaging quality is greatly deteriorated and a Corrective Optical Space 

Telescope Axial Replacement (COSTAR) was needed to be installed to correct the 

spherical aberration. Apart from the telescopes, optical mirrors also work as key 

elements in numerous scientific detection instruments, such as the Laser 

Interferometer Gravitational-Wave Observatory (LIGO) for cosmic gravitational wave 
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detection. In LIGO, the optical interferometer is the most crucial section as it is used 

to detect the passing gravitational wave. Within LIGO optical interferometer, four 

250 mm diameter fused-silica mirrors with multilayer dielectric coatings are introduced 

to act as the two detecting arms of a Michelson interferometer [9, 10].  

The mirrors used in the above-mentioned telescopes or LIGO should be measured 

with high accuracy, and thus, interferometry is used to perform the surface 

measurement. Interferometers are accurate optical metrology instruments with 

accuracy that can reach nanometer scale. The principle of interferometry metrology is 

based on optical path difference detection between a reference wavefront and another 

wavefront modulated by the tested surface [3]. Specifically, the interference pattern 

generated by these two wavefronts reveals the surface shape deviation between the 

tested surface and the reference surface. However, the measurement dynamic range of 

a typical interferometer is not wide (i.e., several wavelengths), and this leads to the 

difficulties in measuring steep slope surfaces (i.e., large curvature mirrors or freeform 

mirrors). Hence, the most commonly used method to perform large curvature surface 

measurement with an interferometer is to implement specially designed reference 

mirrors. Nevertheless, such reference mirrors are expensive and difficult to be 

fabricated. Moreover, they still cannot provide a wide slope range measurement, and 

thus, optical stitching is usually unavoidable in large aperture surface measurement.  

Under this scenario, structured light systems are proposed to measure high dynamic 

range specular surfaces, and this technique is referred as deflectometry. In a 

deflectometry system, a structured light pattern is generated on a digital screen and 

then this pattern is reflected by the measured surface and finally being captured by a 

camera. At this moment, by analyzing the reflected pattern in the camera and by 

comparing it with the original structured light pattern on the digital screen, both 

surface normal and height information can be calculated. Compared to interferometry, 

deflectometry promises a low cost, easy implemented system and it could also provide 

high measurement accuracy. In particular, deflectometry is testified available to 

measure various reflective mirrors. For instance, the Software Configurable Optical 

Test System (SCOTS) [11, 12], which is based on structured light projection, is 

proposed by the University of Arizona to measure the 8.4 m aperture aspherical 

primary mirror aligned in the Giant Magellan Telescope. In this case, the measurement 

result is comparable to the interferometric data obtained by using a phase shifting 

interferometer. What is more, SCOTS demonstrates its advantage in retrieving 

accurate surface data at the mirror edge, while such section may not be precisely 

measured by an interferometer giving its steep slopes [11]. Apart from the steep slope 
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aspherical mirror, SCOTS is also used to measure an aspherical X-ray mirror with a 

large radius (i.e., mirror radius of 54.29 m, mirror size of 100×30×40 mm). In 

particular, Burge used SCOTS to measure its slope error with precision and accuracy 

better than 100 nrad (RMS) and ~200 nrad (RMS), respectively [12].  

Deflectometry systems are not only suitable to measure the surface shapes of 

reflective mirrors used for optical imaging, but they also find broad applications in 

industrial field such as solar concentrator inspection [13, 14]. Here, solar concentrators 

are reflective paraboloidal dishes. They are not applied to perform optical imaging, 

but they rather concentrate the sunlight to a small area. Later, the concentrated 

energy is converted to solar thermal energy, from which electricity is generated. Under 

this scenario, the surface shape of a solar concentrator directly determines the 

concentration efficiency, and thus, its surface shape has to be measured. Considering 

the specular characteristic of a solar concentrator, deflectometry is implemented to 

obtain the specular surface shape, such as deformable mirrors implemented in heliostat 

plants [15], or parabolic dish heliostats [16, 17].  

 

 Manufacturing inspection 

The 3D geometric information of a mechanical workpiece is critical as it determines 

the performance of the manufactured element. Thus, the surface shape of this 

workpiece has to be inspected during the mechanical manufacturing, or we have to 

perform the surface shape measurement after fabrication, so that we can determine if 

the manufactured workpiece meets the accuracy requirement. In automobile 

processing industry, the shapes of different automobile body sections have to be 

inspected during the workpiece fabrication or installation [18, 19]. In 3D printing, 

surface defects are introduced during fabrication, and thus, dynamic surface inspection 

has to be implemented to monitor the printed element, from which we can introduce 

a dynamic correction to avoid the fabrication defects [20]. In aerospace industry, the 

surface shape of an aluminum sheet used as the aerospace component also has to be 

inspected, as machining will inevitably introduce surface shape deviation [21]. To 

perform an accurate surface inspection, Coordinate Measuring Machine (CMM) [22, 

23] is broadly used. In a CMM system, a probe is positioned properly so it can contact 

the surface, and then the surface shape measurement is performed by scanning the 

whole measured workpiece with the probe. However, CMM is a contact measuring 

system, and thus, it is not feasible for numerous manufacturing inspections because it 

would damage the measured components during fabrication. Another technique 
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referred as laser tracking is also well studied to perform surface shape measurement 

[24, 25]. In this case, we put the retroreflectors, which are also known as fiducials, on 

the object to be measured. Later, we use a laser to point at these fiducials, so we 

obtain both the positions and the distances from the fiducials to the laser head. At 

this moment, the 3D surface map of the measured object can be reconstructed using 

the fiducial position and distance data. Laser tracking provides a non-contact surface 

shape measurement, but the fiducials still have to be positioned on the inspecting 

workpiece. Moreover, a laser tracker only guarantees point scanning, which makes 

large size workpiece measurement time-consuming [24, 25]. Finally, this method 

cannot provide a high measurement accuracy, because the laser tracking accuracy is 

about 10 μm at best. 

 Under this scenario, structured light measurement is proposed to perform the 

manufacturing inspection. For specular workpiece inspection, we simply introduce a 

deflectometry system. Nevertheless, numerous mechanical workpieces are roughly 

polished and are partially reflective, and this makes deflectometry not feasible to 

measure their surface shapes. Under this scenario, another structured light 

measurement technique, referred as profilometry, is proposed. In a profilometry system, 

the structured light pattern is projected to the surface under inspection by a digital 

video projector. On the other side, a camera is employed to capture the fringe pattern 

distorted by the inspected object. Finally, the surface shape of the object can be 

retrieved by performing surface height calculation between the video projector and 

the camera with the help of the fringe patterns. Compared to CMM or laser tracking, 

profilometry demonstrates two advantages as: (i) it guarantees a non-contact 

measurement, and (ii) it is feasible to perform multi-point measurement.  

In particular, profilometry is favored in automobile field to accomplish 3D 

automobile body inspection. Once a complete 3D automobile surface structure is 

obtained by using profilometry measurement, a scaled body replica can be easily 

obtained through rapid prototyping (RP) [26]. Moreover, the measured surface shape 

also ensures 3D CAD-assisted modeling, from which we can further optimize the 

automobile design through reverse engineering [26]. Apart from the complete 

automobile body inspection, profilometry also finds its place in single automobile body 

section inspection where high accuracy is required into these geometric complex 

workpieces such as windshield [27] or automobile door [28]. Finally, profilometry not 

only demonstrates its ability in automobile processing industry, it is also feasible to 

measure more mechanical workpieces such as railway truck adapters with a large 

surface reflectivity variation [29], or aluminum alloy workpieces [30].  
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1.2 Deflectometry 

In the previous section, both deflectometry and profilometry are presented as 

structured light systems to measure the surface shapes. Deflectometry is used for the 

surface shape measurement of specular objects, whereas profilometry is widely used to 

measure the surface shapes of diffuser objects. Here, Section 1.2.1 firstly describes the 

working principle of deflectometry, and Section 1.2.2 analyzes different deflectometry 

systems. Finally, Section 1.2.3 briefly discusses the stereoscopic deflectometry system 

and its advantages against the single camera based deflectometry system for surface 

shape measurement.   

 

 Principle of deflectometry 

Deflectometry is a structured light-based specular surface shape measurement 

technique. The principle of deflectometry relies on the most fundamental Reflection 

Law. The basic deflectometry experimental setup is presented in Figure 1-1. In a 

deflectometry scheme, the screen which provides the structured light pattern is 

commonly a liquid crystal display (LCD) controlled by a computer. Here, structured 

light is an active illumination with specifically designed 2D intensity pattern, which 

allows us to establish the correspondence between the illumination source and the 

imaging sensor [31]. In particular, sinusoidal fringe pattern is one of the most 

commonly used structured light pattern implemented in deflectometry systems. 

Afterwards, we place the specular object to be measured at a certain position where 

the sinusoidal fringe pattern on the LCD screen can be properly reflected. On the 

other side, a commercial camera is appropriately located so that it can capture the 

reflected fringe pattern. In this case, as the curvature of the specular surface will 

distort the fringe pattern, the fringe pattern in the camera is different from the fringe 

pattern in the LCD. At this moment, we assume that a light projected from one LCD 

pixel is reflected by the specular surface for only one time, then this light is registered 

in a certain camera pixel. Moreover, this reflected light also passes through the optical 

center of the camera. Then, we can uniquely distinguish these two corresponding pixels 

on both the LCD and the camera image plane thanks to the characteristic of 

structured light. Now, by performing the reverse ray tracing with these two 

corresponding pixels from the camera to the LCD, the coordinate of the surface point 

can be determined. More importantly, as reverse ray tracing obeys Reflection Law, we 

can also calculate the surface normal at this surface point. Finally, by introducing 
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different integration methods with the calculated surface normal data, we can obtain 

the continuous surface map of the measured object (this is discussed in Chapter 4). 

 

 Schematic set-up of a structured light based deflectometry system. 

Here, to perform reverse ray tracing, we have to scheme the deflectometry system 

(i.e., Figure 1-1). We regard the LCD as a flat plate presenting structured light 

patterns, whereas the camera is regarded as the combination of a flat image plane and 

a focusing lens. The flat image plane of the camera in fact is the charge-coupled device 

(CCD) plane. In a deflectometry system, the spatial position of the camera 

corresponding to the world coordinate is known through calibration, so the coordinates 

of any image plane pixel as well as the focusing lens center can be determined. 

Therefore, we select a pixel A on the image plane and then connect it to the camera 

optical center O to forge a primary reflection vector V (see red solid line in Figure 1-

2). Here, vector V encounters the specular surface at point P. On the other side, the 

LCD position corresponding to the world coordinate as well can be determined through 

LCD screen calibration, and thus, we can construct a secondary reflection vector R 

by connecting A’ with surface point P (see the red solid line in Figure 1-2). Here, we 

want to emphasize again that point A’ on the LCD is corresponding to point A on 

the image plane thank to the introduction of the structured light. At this moment, we 

can calculate both the coordinate and the surface normal of surface point P using the 

geometric information of the camera and the LCD. Finally, by implementing such 

reverse ray tracing within all pixels on the CCD, the whole surface normal distribution 

is obtained. 
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 Principle diagram of height-normal ambiguity in a structured light 

based deflectometry system. 

However, such reverse ray tracing method fails to give us a unique real surface 

point, but it rather gives infinite ambiguity points along vector V. For instance, in 

the deflectometry system scheme (see Figure 1-2), we can decide the surface point at 

P, where it provides a correct reflection relation between A and A’. Nevertheless, we 

can also extend vector V to point Q, where this point is located at another surface 

(i.e., see Surface 2 in Figure 1-2). Under this scenario, we then regard point Q as the 

surface point, we can construct a secondary reflection relation by connecting A’ and 

Q. At this moment, the coordinate and the normal of Q is calculable and point Q can 

also be referred as the real surface point. Note that both P and Q show the correct 

reflection relation between the LCD and the camera, but these two points definitely 

represent two different surface shapes. Thus, the surface point coordinate and its 

normal cannot be uniquely determined within a deflectometry system, and this 

ambiguity is referred as height-normal ambiguity. We will further discuss the height-

normal ambiguity elimination method for unique surface determination in Chapter 4. 

 

 Development of deflectometry 

As height-normal ambiguity is inevitable in any deflectometry system for specular 

surface shape measurement, different deflectometry systems had been developed to 

solve this problem. Specifically, Knauer firstly proposed a phase measuring 

deflectometry (PMD) system [32] to eliminate the height-normal ambiguity and then 

performed the surface shape measurement. In their scheme, the height of a single 
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surface point should be initially obtained. Afterwards, the normal of this chosen point 

is determined. Finally, considering that the surface is continuously differentiable, other 

surface points can be calculated through numerical integration [33] with the help of 

this first point. This method is able to solve the height-normal ambiguity, but it is in 

fact difficult to be accomplished in the real implementation, because the height 

information of even a single surface point is not easy to be obtained.  

Another feasible method to eliminate the height-normal ambiguity is to move the 

LCD along the normal of the LCD screen [34–36], so that a unambiguous reflection 

relation can be determined between the LCD and the camera. For instance, we first 

locate the LCD at position H in the deflectometry system in Figure 1-3. In this case, 

the corresponding point A and A’ cannot determine the surface point because of the 

height-normal ambiguity previously shown in Figure 1-2. However, we then introduce 

the LCD movement by shifting the LCD of a distance d to the second position H’, 

and the correspondent point can be found on the LCD at A’’ now. Finally, by 

intersecting A’ and A’’, a unique reflection vector R can be determined, and the real 

surface point is obtained from this reflection vector. Unfortunately, even though this 

LCD location shifting method is available to obtain the real surface point, such LCD 

shifting will inevitably introduce mechanical displacement error, which will deteriorate 

the measurement accuracy. 

 

 The deflectometry scheme to eliminate the height-normal ambiguity by 

introducing LCD displacement. 

To avoid LCD displacement, one can always introduce one more LCD screen into 

a deflectometry system. Here, by locating a second LCD parallel to the first LCD, we 

can get the unambiguous reflection (i.e., vector R in Figure 1-3). However, even 



10   

 

though we can align the two LCDs strictly parallel, it is still impossible to perform 

the surface measurement with a deflectometry system containing two LCDs, because 

the LCD located closer to the specular surface will block the light projected by the 

farther LCD. Under this scenario, a beam splitter (BS) can be introduced into a two 

LCDs deflectometry system [37, 38], and this scheme is presented in Figure 1-4. In 

particular, the BS is located in a proper location where it can image the fringe patterns 

on the second LCD (i.e., LCD2 in Figure 1-4) to a virtual plane (plane H) parallel to 

the primary LCD (i.e., LCD1 in Figure 1-4). In this case, both the primary LCD at H’ 

and the virtual second LCD at H ensures a virtual LCD displacement of d and thus, 

the unambiguous reflection vector is uniquely determined. Apart from using a beam 

splitter to provide the virtual LCD displacement, a more direct method to obtain a 

virtual LCD displacement is to put a transparent panel above the LCD screen, from 

which a biplanar fringe pattern projection is constructed [39]. This biplanar 

deflectometry system can easily solve the height-normal ambiguity by avoiding the 

physical movement of any system component. However, it is extremely difficult to 

find a flat beam splitter with the size of an LCD screen, and it is also unlikely to get 

a flat transparent panel with a great size. Thus, the measurement accuracy will be 

inevitably deteriorated by the surface inhomogeneity of the beam splitter or the 

transparent panel.    

 
 Measurement scheme of the deflectometry system with two LCDs and 

a beam splitter.  

Now, to guarantee an accurate measurement without implementing more elements 

or introducing any component displacement, the classic Software Configurable Optical 

Test System (SCOTS) was proposed by Burge [11, 12]. In this case, SCOTS is 

regarded as a reverse Hartmann test model [3], from which the surface normal can be 
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calculated. The Hartmann test scheme is given in Figure 1-5 (a). In the Hartmann 

test, a point source is placed close to the curvature center of the tested mirror. Later, 

the Hartmann screen is positioned before the measured mirror, and it only allows the 

light entering the Hartmann screen holes to be reflected. At last, the detector is aligned 

close to the mirror focusing point to record the reflected pattern. In SCOTS, which is 

regarded as a reverse Hartmann test, the LCD presenting the structured light is 

reversely regarded as the detector (see Figure 1-5 (b)). Moreover, the point source is 

provided by the camera lens center, which is placed near the curvature center of the 

tested mirror. Here, the combination of the camera lens center and the camera pixels 

works as the Hartmann screen. Finally, the surface normal can be uniquely determined 

if we know the LCD pixel position, the camera lens center position and the mirror 

reflection region [40]. Even though SCOTS provides a feasible way to measure the 

mirror surface shape, the system alignment is rigorous as the geometric position of 

any component has to be precisely calibrated [40]. Moreover, SCOTS is only verified 

feasible to measure the aspherical or nearly flat mirrors, but the measurement of either 

a freeform mirror or a discontinuous mirror with SCOTS is still not demonstrated yet.   

 

 Surface shape measurement scheme: (a) the Hartmann test scheme, and 

(b) the SCOTS scheme (the reverse Hartmann test). 

Apart from the above-discussed deflectometry system, modal phase measuring 

deflectometry (PMD) [41] was as well proposed for specular surface shape 

measurement. In this scheme, instead of using an initial height information of the 

studied surface, modal phase measuring deflectometry uses an already established 

mathematical model to express the entire measured surface shape [42]. Specifically, 

such mathematical model contains the known surface derivatives which can be 

modulated by derivative optimization coefficients. Here, the surface derivative can be 

represented by Chebyshev, B-splines or Zernike polynomials [43, 44]. Later, by 

modulating the optimization coefficients, the difference between the ray tracing 
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reprojection and the real captured reprojection on the LCD is minimized and the 

surface shape is then determined by such optimized coefficients. Even though modal 

deflectometry system fulfills the surface shape measurement, it finds limitation to 

accomplish freeform surface measurement because the discussed polynomials may not 

precisely describe the freeform surfaces.  

 

 Stereoscopic deflectometry 

In the previous section, different deflectometry systems are discussed to solve the 

height-normal ambiguity. However, all above-mentioned deflectometry systems use 

only one camera. Indeed, these single camera contained deflectometry systems are able 

to perform an accurate specular surface shape measurement, but they either have the 

limitation in measuring various different surface types (i.e., SCOTS [11, 12] or Modal 

PMD [41]), or the measurement accuracy is greatly influenced by the system 

component performance (i.e., biplanar deflectometry systems [37–39]). Under this 

scenario, stereoscopic deflectometry is proposed, as it is feasible to measure different 

surface shapes such as plane, curved, or even freeform surfaces. Moreover, compared 

to single camera deflectometry systems, stereoscopic deflectometry only requires two 

cameras, so we can totally avoid the component displacement.  

 

 Scheme of a stereoscopic phase measuring deflectometry system. 

The basic set-up of a stereoscopic deflectometry system contains an LCD screen, 

two cameras and the specular surface to be measured. The scheme of a stereoscopic 

deflectometry system is presented in Figure 1-6. Similar to single camera based 

deflectometry systems, the LCD introduced in the stereoscopic scheme provides 
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structured light patterns, and then they are reflected by the specular surface and 

imaged into both cameras at the same time. Moreover, as both cameras are located 

at different positions, they are inspecting the specular surface from different 

perspectives. Hence, the fringe patterns reflected into these two cameras are different, 

as each camera captures a distinct corresponding reflected section of the LCD screen. 

Once the stereoscopic deflectometry system scheme is given, the height-normal 

ambiguity elimination method has to be discussed. The fundamental principle to solve 

the height-normal ambiguity within a stereoscopic system was firstly suggested by 

Knauer [32], which is based on a surface normal iteration calculation. Specifically, one 

pixel (i.e., pixel A in Figure 1-7) in the first camera is primarily selected and its 

reverse ray tracing relation is established between the LCD and this first camera 

considering the structured light correspondence. This primary reverse relation is 

represented in Figure 1-7 by the red solid lines. Here, we want to note that such 

reflection relation shares exactly the same sketch in Figure 1-2 where the height-

normal ambiguity appears. Hence, we can tell that the real surface point is located at 

a certain point along vector V. Then, we select one surface point P along vector V 

and assume this point as the real surface point. Moreover, the normal to this assumed 

surface point P (i.e., n1 in Figure 1-7) is calculated with inverse ray tracing between 

the LCD and the first camera. Afterwards, by connecting point P with the second 

camera lens center O2, we can obtain a secondary reflection vector (i.e., blue line U 

in Figure 1-7) and an intersection point B on the second camera image plane. Finally, 

by considering the structured light correspondence between the second camera and 

the LCD, the correspondent point B’ on the LCD with respect to point B is 

determined, and thus, a secondary surface normal n2 can be obtained through B and 

B’. Now, if point P which we selected is the real surface point, then surface normal 

n1 and n2 should coincide, as point P indeed provides the true reflection between the 

stereoscopic cameras and the LCD. However, if the selected point P is not the real 

surface point, then these two normal as n1 and n2 cannot coincide, but they are rather 

staggered or separated.   

Now, in the stereoscopic deflectometry system discussed in Figure 1-7, the 

complicated height-normal ambiguity elimination can be easily transferred into finding 

a particular point along vector V, from which the two calculated normal coincide. In 

particular, to search for this point, we can introduce iteration methods [32]. Once this 

point is acquired, we directly regard this point as the surface point, and the surface 

normal is as well obtained. This stereoscopic scheme definitely demonstrates its great 

ability to solve the height-normal ambiguity, but it may not be suitable to measure 
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all types of surface [32]. Moreover, as the surface normal is a three-dimensional vector, 

surface normal coincidence is difficult to be determined analytically, and this will 

complex the surface point determination.  

 

 The principle scheme to solve the height-normal ambiguity within a 

stereoscopic deflectometry system.  

 

1.3 Profilometry 

In the previous section, deflectometry is systematically discussed to accomplish the 

specular surface shape measurement. In this section, we introduce profilometry 

technique, which is proposed to measure the three-dimensional surface shape of 

diffuser objects. Specifically, we primarily provide the working principle of a 

profilometry system. Afterwards, we further discuss the development of profilometry 

by introducing different profilometry techniques. Finally, stereoscopic profilometry is 

shown, and the advantages of a stereoscopic profilometry system compared to single 

camera profilometry systems are briefly discussed. 

 

 Principle of profilometry 

Profilometry system is a structured light system used to measure the 3D surface 

shape of diffuser objects. The basic principle of profilometry relies on surface diffuser 

reflection. Compared to specular reflection, diffuser object reflects the incident light 
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into many different directions rather than directly reflects the incident light into one 

single direction. The difference between diffuser surface reflection and specular surface 

reflection is given in Figure 1-8.  

 

 The reflection schemes: (a) the surface reflection at the specular surface, 

and (b) the surface reflection at the diffuser surface.  

Now, by considering the diffuser characteristic of the measured surface, we directly 

project the structured light pattern to the object and then we capture the intensity 

pattern on the object with an image receiver. In this case, the LCD screen is not 

appropriate to provide the structured light projection, because the structured light 

pattern on the LCD is only observable if the measured surface is specular. Hence, the 

structured light in a profilometry system is normally provided by a video projector 

and the basic profilometry scheme is shown in Figure 1-9 (a). In a profilometry system, 

the video projector contains an illumination source, a spatial light modulator (i.e., 

normally as an LCD chip or a digital micromirror device (DMD)), and a focusing lens. 

The spatial light modulator in the video projector is used to generate the structured 

light pattern. On the other hand, the camera shares the same scheme of that used in 

the deflectometry system, as it has a CCD working as the image plane and a focusing 

lens. Here, we want to note that one of the most commonly used structured light 

pattern in profilometry systems is sinusoidal fringe pattern. Once the system scheme 

is determined, we use the video projector to project sinusoidal fringe patterns and 

then we use the camera to capture the distorted fringe patterns on the object. Such 

fringe pattern distortion is introduced by the surface shape variation. Finally, the 

surface point of the diffuser object is determined by calculating the surface height (see 

Figure 1-9 (b)) using fringe pattern correspondence between the video projector and 

the camera.  
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 Schemes of the profilometry system: (a) the typical experimental set-

up of a profilometry system, and (b) the surface height determination using a 

projector and a camera. 

The most commonly used method to determine the surface point is to perform 

geometric triangulation between the video projector and the camera. In the video 

projector, the focusing lens is simplified to an optical pinhole (OP in Figure 1-9 (b)), 

and the spatial light modulator (i.e., DMD or LCD chip) is regarded as the reverse 

image plane. Hence, the fringe pattern is generated in this reverse image plane. On 

the other hand, the camera is regarded as the combination of an optical center (i.e., 

OC in Figure 1-9 (b)) and an image plane (i.e., CCD panel). In this case, the camera 

optical center is the geometric center of the camera focusing lens that allows all light 

to pass through. Later, we pick point A in the camera image plane and then we 

connect it with the camera optical center OC to forge a projection vector V. Then, we 

use the structured light patterns to find the correspondent point of A on the video 

projector image plane and we name it A’. Afterwards, we connect A’ to the video 

projector optical center OP to build another vector U. At this moment, once we know 

the spatial position relation between the video projector and the camera, we perform 

the geometric triangulation between vector V and vector U, and their intersection 

point P is the final measured surface point. At last, if we perform such geometric 

triangulation within all pixels in the camera image plane, we get all surface points and 

the surface shape is finally obtained. 

 

 Development of profilometry 

The development of profilometry can be dated back to 1980s when one classic 

structured light profilometry system was proposed by Srinivasan [45]. Such system is 
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referred as phase shifting profilometry (PSP). In this system, the structured light is 

presented as sinusoidal fringe patterns, which are generated through a laser 

interferometer. Afterwards, the sinusoidal fringe patterns are collimated by a 

collimating lens. As phase shifting technique is introduced into their system, the 

projection also contains a quarter-waveplate and a rotate polarizer to provide phase 

modulation. Once the fringe patterns are projected to the measured object, an image 

sensing array camera is implemented to capture the fringe patterns on the object. The 

scheme of Srinivasan profilometry system is given in Figure 1-10 (a). What is more, a 

geometric model of this profilometry system is sketched in Figure 1-10 (b), as it is 

used to perform the surface height calculation.  

 

  (a) Scheme of the Srinivasan profilometry system, and (b) the 

geometric model of this system for surface point calculation. 

In Figure 1-10 (b), Z axis of the PSP system is defined as perpendicular to the 

camera image plane. Moreover, a reference plane perpendicular to Z axis is introduced 

to assist the surface height measurement. Firstly, we consider a point C on the 

reference plane. By introducing the image plane (see Figure 1-10 (b)), we record the 

intensities of point C at D1. Later, by performing phase shifting and phase unwrapping 

(this will be discussed in Chapter 3) to point C, we can obtain the phase value of C 

as ΦC. Now, by assuming the phase value at the system origin O is 0, ΦC can be 

denoted as:  

 02C OC P , (1.1) 



18   

 

where OC denotes the geometric distance from point O to point C, and P0 is the 

period of the sinusoidal fringe pattern.  

Secondly, by connecting point D1 with point C and extend this vector (i.e., vector 

U) to the further space, we find that it intersects with the measured surface at point 

D. At this time, let us assume that the reference plane is removed, and the image 

receiver directly captures the intensities of point D. Thus, by introducing phase 

shifting and phase unwrapping to point D, its phase value can be calculated as ΦD.  

Finally, we examine the projection vector V which passes through both point A 

on the reference plane and point D on the object surface. By simply analogizing to 

Eq. (1.1), the phase value at point A can be obtained as: 

 02A OA P , (1.2) 

where OA denotes the geometric distance from point O to point A. 

However, in the real implementation, we are not projecting point A directly to the 

image plane and thus ΦA seems not obtainable. Nevertheless, because both point A 

and point D are located along the same projection vector V, and the reflection at D 

only changes the intensity but not the phase value, so the phase value at point D is 

equal to the phase value at point A (i.e., ΦD = ΦA). Now, note that we have relation 

ΦD = ΦA, and we also obtain the phase values at point A and point C, the geometric 

distance between A and C can be calculated by considering the phase values at these 

two points as: 

 0( 2 ) DCAC P ,  (1.3) 

where ΔΦDC is the phase difference between ΦD and ΦC. 

Then, the surface height of point D with respect to the reference plane is 

geometrically determined as: 

 0 0 1tan [1 tan ( tan )]BD AC AC , (1.4) 

where θ0 and θ1 are the angles of the intersection vectors.  

Finally, once the surface height is calculated by Eq. (1.4), we can further acquire 

both the x and y coordinates of the surface point D, and thus the complete geometric 

information of this surface point is known.  
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Apart from the Srinivasan system, other phase shifting profilometry methods are 

also proposed. For instance, Toyooka [46] suggested a phase shifting profilometry 

system using a slide projector to project the sinusoidal pattern, and thus the 

collimating lens is not necessary. Huang [47–49] simplified the phase shifting 

profilometry by introducing less system configuration constrains, at the expense of 

demanding a more accurate system calibration.  

Phase-shifting profilometry provides an accurate surface shape measurement with 

an easy implementation. However, a reference plane is always required to determine 

the final surface height and thus, the surface shape of the reference plane affects the 

final measurement result. Moreover, as a reference plane is not allowed in some surface 

measurements, the introduction of such plane also constrains the further profilometry 

application.  

Another structured light profilometry system is Moiré profilometry [50-52]. The 

basic process to perform Moiré profilometry measurement can be generalized as three 

steps. First of all, a fringe pattern is projected to the measured object and then we 

use a camera to capture this fringe pattern. This fringe pattern can be generated 

through a grating or a digital video projector. Afterwards, we superimpose another 

synthetic fringe pattern, which has the same frequency as the fringe pattern provided 

by the video projector, to construct a Moiré contour. The superimposition is performed 

by putting another grating in front of the image plane or directly adding digital fringe 

patterns to the captured image. Finally, by removing the high-frequency grid which 

contaminates the pure Moiré pattern, we can finally extract the surface shape of the 

measured object by further analysis. Here, as fringe patterns are more flexible to be 

generated through a video projector compared to a complex grating, we will only 

discuss digital Moiré profilometry.  

The scheme of a digital Moiré profilometry system is similar to that in Figure 1-9 

(b). The video projector is projecting the binary fringe pattern rather than the 

sinusoidal fringe pattern to the object. On the other side, once the image is captured 

by the camera, not only one single digital fringe pattern, but rather we introduce 

numerous digital fringe patterns, which have the same period as the fringe pattern 

from the video projector, to perform phase shifting. However, in these phase-shifted 

images, not only the Moiré contour map is obtained, but also the undesired high-

frequency fringe pattern is mixed. Thus, different methods are proposed to eliminate 

such high-frequency noise, such as Fourier transform [53], wavelet transform [54], or 

the combination of wavelet and Fourier transform [55]. Once we eliminate the high-
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frequency noise, phase unwrapping is performed (this will be discussed in Chapter 3) 

and the unwrapped phase map of the object is acquired. From the unwrapped phase 

map, we can easily determine the surface height as [56]: 

 ( , ) ( , )
2

h x y x y , (1.5) 

where  in Eq. (1.5) means the Moiré wavelength, which is referred as the distance 

between the two continuous bright or dark grid on a flat calibration board, Φ(x,y) is 

the unwrapped phase of any pixel, and h(x,y) is the surface height. At this moment, 

we can tell from Eq. (1.5) that the Moiré wavelength has to be known and this is 

normally obtained by system calibration using a flat plate [57]. Therefore, a flat 

reference is also used in Moiré profilometry.  

 

 Geometric scheme of Fourier transform profilometry (FTP) system. 

Apart from phase measuring profilometry and Moiré profilometry, Fourier 

transform profilometry (FTP) [58] is also a popular structured light system to measure 

the diffuser object surface shape as it only requires one or two frames. In FTP, we as 

well project SFPs to the measured object, and such sinusoidal fringe patterns (SFPs) 

are distorted by the object. Now, the surface height information is encoded into these 

distorted fringe patterns. Afterwards, we extract the surface shape by sequentially 

performing Fourier transform, spatial domain filtering and inverse Fourier transform. 

The basic geometry FTP scheme is given in Figure 1-11. The optical axis of the video 

projector lens is defined by vector P12 passing through points P1 and P2, and the 
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optical axis of the camera is defined by vector C12 passing through C1 and C2. Vector 

P12 and vector C12 intersect at O located on the reference plane R. Here, plane R is 

introduced to assist us to decide the surface height. Now, D is referred as the surface 

point, so we forge a third vector passing through D and C2 and it interests with plane 

R at point B. Also, by forging a fourth vector passing through D and P2, we obtain 

its intersection point with plane R at point A. The distance between C2 and P2 is 

named as d and the distance between C2 and O is defined as L0.    

Now, considering we mount the measured object on the reference plane R, the 

deformed fringe pattern obtained by the image receiver is represented as: 

 0( , ) ( , ) exp( (2 ( , )))n
n

g x y r x y A i nf x n x y , (1.6) 

where r(x,y) is the nonuniform distribution of the measured surface reflectivity. An is 

the Fourier series weighting factor, f0 is the fundamental frequency of the obtained 

fringe pattern image. Φ(x,y) is the phase modulation introduced by the measured 

object.  

Later, let us imagine that the fringe pattern is directly distorted by the reference 

plane, then the deformed fringe pattern is written as: 

 0 0 0 0( , ) ( , ) exp( (2 ( , )))n
n

g x y r x y A i nf x n x y , (1.7) 

where r0(x,y) is the nonuniform distribution of the reference plane reflectivity. Φ0(x,y) 

is the phase modulation introduced by the reference plane.  

At this moment, we perform Fourier transform to Eq. (1.6) and then introduce the 

bandpass filter to only remain the fundamental component. Afterwards, we introduce 

inverse Fourier transform to the remained fundamental component and the complex 

signals are represented as: 

 1 0( , ) ( , )exp( 2 ( , ))g x y Ar x y i f x x y , (1.8) 

 1 0 0 00( , ) ( , )exp( 2 ( , ))g x y Ar x y i f x x y , (1.9) 

where Eq. (1.8) corresponds to Eq. (1.6), and Eq. (1.9) corresponds to Eq. (1.7). Thus, 

by combining Eq. (1.8) and Eq. (1.9), and later compute the logarithm, we can obtain 

a following equation as: 
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2

10log[ ( , ) ( , )] log[ ( , )] ( , )g x y g x y A r x y i x y . (1.10) 

Finally, by only extract the imaginary value within Eq. (1.10), a continuous phase 

difference is determined. Once we obtain this phase difference value, we can calculate 

the surface height as: 

 
0

0

( , )
( , )

( , ) 2

L x y
h x y

x y f d
. (1.11) 

Based on this basic FTP principle, several improved schemes have also been 

proposed. For instance, quasi-sine projection and  phase shifting techniques are 

applied into the FTP system to extend the low frequency of the fundamental 

component to zero, whereas the high frequency can be extended to 2f0 without overlaps 

[59, 60]. For coarse object measurement, 2D FTP is discussed as it is more feasible to 

tackle the surface discontinuity [61]. Moreover, to efficiently obtain the phase 

information, windowed Fourier transform (WFT) [62, 63] and wavelet transform 

(WT) [64–67] are also introduced.  

Recently, fringe projection profilometry (FPP) [68] has been proposed as another 

promising structured light system to measure the diffuser object surface. The basic 

principle of FPP also relies on sinusoidal fringe pattern projection and phase 

unwrapping. Nevertheless, it adopts a more intuitive geometric triangulation to 

directly obtain the surface point, and thus the complicated Fourier transform, or phase 

measuring process can be avoided. In FPP, we use the video projector to project a 

series of sinusoidal fringe patterns to the object, these fringe patterns are encoded by 

certain phase distributions. The FPP scheme is given in Figure 1-12, from which we 

show the phase distribution on the spatial light modulator plane of the video projector. 

Later, a camera is introduced to capture the fringe patterns on the object, and we can 

obtain the phase distribution on the object using phase shifting combined with phase 

unwrapping (see Chapter 3). Now, as diffuser surface reflection only changes the 

intensity but not the phase value, the phase range in the camera is the same as that 

provided by the spatial light modulator plane of the video projector, but the spatial 

phase distributions between the camera image plane and the video projector plane are 

geometrically distorted by the measured object. Finally, by picking the phase value of 

one point on the camera image plane and finding the same phase point on the spatial 

light modulator plane of the video projector, we can determine the surface point 

through triangulation once we calibrate the video projector, the camera and the 

geometric relation between these two devices [69]. Here, to perform geometric 
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triangulation, we select one point A and connect it with the video projector optical 

center to forge a projection vector V. On the other hand, we connect point A’, which 

contains the same phase value as it of A, to the camera optical center to forge the 

receiving vector U. Now, by extending these two vectors, we can determine their 

intersection point P as the surface point on the object.  

 

 Principle scheme of the fringe projection profilometry (FPP) system. 

However, as we are using sinusoidal fringe patterns, it is obvious that the phase 

value within either the horizontal or vertical direction is always the same. For 

instance, in Figure 1-12, the phase value on the video projector plane within a column 

is always equivalent. Under this scenario, geometric triangulation is not performable 

as even though one can select a unique point on the camera image plane, this point 

rather finds numerous points with the same phase value in the video projector plane. 

Thus, orthogonal fringe patterns are used to find the unique corresponding phase 

points between the image plane and the video projector plane. To avoid the orthogonal 

fringe pattern projection, another triangulation method is proposed by introducing a 

baseline, which is forged by the optical centers between the video projector and the 

camera [70–72].   

Fringe projection profilometry provides a very robust surface point measurement 

compared to Fourier transform profilometry or phase shifting profilometry as it can 

be used to even measure discontinuous objects. However, FPP calibration is complex, 

because apart from the geometric calibrations of the camera and the video projector 
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[69], we also have to calibrate the gamma nonlinearity of the video projector [73, 74]. 

Here, gamma nonlinearity is referred as the output intensity and the input gray level 

in a projection component does not follow a linear tendency. 

 

 Stereoscopic profilometry 

In Section 1.3.2, we have shown different profilometry systems with one camera, 

but these systems may find difficulties in measuring discontinuous objects (i.e. phase 

shifting profilometry or Fourier transform profilometry), or the system calibration is 

challenging (i.e., fringe projection profilometry). Thus, in this subsection, we discuss 

a stereoscopic fringe projection profilometry (SFPP) system [75–78]. We also briefly 

demonstrate its advantages against the single camera profilometry systems in 

performing surface shape measurement.  

The core component of a stereoscopic profilometry system are two cameras located 

at different positions to capture the same measured object from different perspectives 

[79]. In this case, one can reconstruct the object surface information through the 

correspondence between the scenes of these two cameras [80]. To establish the 

correspondence between both cameras, various algorithms are proposed such as area-

based algorithm [80], window adaptive algorithm [81] or multi-view algorithm [82] 

etc., and these algorithms are all based on the intensity registered into both cameras. 

The intensity-based technique seems promising, but it requires a complicated 

algorithm to establish the correspondence. Under this scenario, structured light 

projection based stereoscopic profilometry system is proposed, from which the 

correspondence is easily established through analytical phase values rather than the 

intensity information. Similar to a single camera profilometry system, the structured 

light used in a stereoscopic fringe projection profilometry are also presented as 

sinusoidal fringe patterns. Later, we sequentially project these patterns to the 

measured object, so the unwrapped phase map on the measured object in each camera 

can be obtained through phase shifting and phase unwrapping (see Chapter 3). Here, 

as both cameras capture a same object, the phase maps of both cameras have the 

same distribution. Finally, as the phase maps within the two cameras are obtained, 

we perform geometric triangulation by searching the correspondent points between 

both phase maps, and the surface point is determined. The basic system setup of a 

SFPP system is given in Figure 1-13.  

In Figure 1-13, the video projector projects the fringe patterns to the object, each 

camera captures the fringe patterns on the object, so the unwrapped phase maps are 
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calculated (i.e., Phase map 1 and Phase map 2). Now, we select one phase point at A 

in the first phase map and we obtain its phase value as ΦA. On the other hand, we 

look for the same phase value point in the second camera phase map, and this point 

is located at A’. As we obtain the optical centers of both cameras through camera 

calibration, we simply connect A with O1, and B with O2 to trace two vectors V and 

U. Finally, by extending V and U, they intersect at point P and we regard this point 

as the surface point on the object.  

 

 System setup of a stereoscopic fringe projection profilometry (SFPP) 

system. 

Compared to single camera fringe projection profilometry systems, stereoscopic 

fringe projection profilometry (SFPP) system shows great system flexibility. First of 

all, it is not necessary to calibrate the non-linear gray level-intensity response of the 

video projector (i.e., gamma effect) in SFPP. This is because the phase point 

correspondence in SFPP is directly established between the two cameras. Hence, even 

though a phase shifting error is introduced by the video projector gamma effect, such 

phase shifting error is equivalently introduced in both cameras. Therefore, as we are 

only searching for the same phase value in both cameras, such equivalent phase error 

does not affect the correct phase point correspondence. On the other hand, as 

geometric triangulation is only performed within the cameras in an SFPP system, the 

spatial position of the video projector to the cameras is not critical. Hence, the position 
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of the video projector does not have to be calibrated, and we can flexibly modify it to 

provide proper illuminations for different measured objects.  

 

1.4 Objective 

The major goals of this thesis are listed in the following: 

• Develop a stereoscopic phase measuring deflectometry system: In 

this thesis, we will develop a stereoscopic phase measuring deflectometry 

system to measure the surface shapes of different specular objects. In 

particular, we aim at developing a robust method to perform specular 

surface measurement. Here, specular surface measurement requires: (i) a 

method to eliminate the height-normal ambiguity in a stereoscopic 

deflectometry system; (ii) an accurate algorithm to calculate the surface 

derivatives; (iii) a fast and robust method to reconstruct the surface from 

the surface derivatives. Once we have proposed the measurement principle, 

we will calibrate a stereoscopic phase measuring deflectometry system and 

use it to measure various specular surfaces to verify the feasibility of our 

proposed system. The detail of this research will be introduced in Chapters 

4 and 5. 

• Develop a stereoscopic fringe projection profilometry system: As 

deflectometry only allows us to measure specular surface shapes, we will 

also develop a stereoscopic fringe projection profilometry system to measure 

the surface shapes of diffuser objects. In this stereoscopic profilometry 

system, we would like to: (i) use the same stereoscopic camera as in the 

previous deflectometry system to implement a stereoscopic profilometry 

system, so that we can obtain a flexible system calibration; (ii) develop a 

numerical method to perform an accurate geometric triangulation, so that 

we can enhance the surface reconstruction accuracy. Once the measurement 

principle of this stereoscopic profilometry system is determined, we will 

calibrate a stereoscopic fringe projection profilometry system, and then we 

will experimentally measure different diffuser objects to verify the 

performance of our proposed system. The detail of this research will be 

introduced in Chapter 6. 

• Develop a stereoscopic deflectometry-profilometry hybrid system: 

We use deflectometry to measure a specular surface, and we also use 
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profilometry to measure a diffuser surface. However, it is surprising that 

hardly any structured light system had been proposed to measure a 

specular-diffuser hybrid object, which is also vastly used in industrial 

applications. Therefore, we combine stereoscopic deflectometry with 

stereoscopic profilometry to develop a stereoscopic deflectometry-

profilometry hybrid system to measure the surface shape of a specular-

diffuser object. In this stereoscopic deflectometry-profilometry hybrid 

system, we will: (i) combine stereoscopic profilometry with stereoscopic 

deflectometry, so that we can obtain a flexible system calibration; (ii) 

develop a specular-diffuser surface reconstruction method to finally extract 

the complete surface shape of the specular-diffuser hybrid object. After we 

determine the measurement principle of this system, we will calibrate a 

stereoscopic deflectometry-profilometry system to measure a specular-

diffuser hybrid object to verify the performance of this system. The detail 

of this research will be explained in Chapter 7. 

 

1.5 Structure of the thesis 

The outline of this thesis is as follows: 

In Chapter 2, the mathematical foundations which are necessary to perform 

deflectometry or profilometry measurement are provided. In particular, we firstly show 

the mathematical descriptions of the basic geometric elements, such as point, vector, 

line and plane. Later, we mathematically discuss the representation of coordinate 

system transformation in three-dimensional space. What is more, we also introduce 

the pinhole camera model. Finally, the light reflection model, which is used in 

deflectometry measurement, is mathematically presented. 

 In Chapter 3, we discuss the parameter calibration in stereoscopic camera based 

structured light measurement systems. We firstly explain phase shifting and phase 

unwrapping techniques with using sinusoidal fringe patterns, from which we can 

obtain an unwrapped phase map. Later, we explain the system parameter calibration 

in stereoscopic structured light measuring systems, such as gamma calibration, camera 

intrinsic and extrinsic parameter calibration, and stereoscopic camera calibration. 

Finally, we present the whole system geometric scheme calibration.  

In Chapter 4, we explain the complete method to perform the specular surface 

measurement with a stereoscopic phase measuring deflectometry (SPMD) system. We 
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firstly present a phase minimization method combined with a polynomial fitting 

algorithm to accomplish the surface derivative calculation. Later, by introducing sub-

pixel interpolation, we further enhance the phase pair correspondence. Finally, we 

propose 2D Fourier integration for specular surface reconstruction. 

In Chapter 5, we experimentally measure the specular surfaces with a stereoscopic 

phase measuring deflectometry (SPMD) system. In particular, we present the 

complete SPMD system calibration. Later, three representative specular surfaces, such 

as a flat mirror, a spherical mirror and a discontinuous specular disk, are 

experimentally measured.  

In Chapter 6, we describe the diffuser surface measurement with a stereoscopic 

fringe projection profilometry (SFPP) system. First of all, we mathematically describe 

a geometric triangulation method to obtain the surface point. Then, we provide the 

experimental calibration of a SFPP system. Finally, the feasibility of this system is 

experimentally verified by measuring three diffuser objects with different surface 

structures.  

In Chapter 7, we combine stereoscopic deflectometry with stereoscopic profilometry 

to perform the specular-diffuser hybrid object measurement. We describe this hybrid 

measurement system and the diffuser-specular surface reconstruction method. Finally, 

we measure a specular-diffuser hybrid object using both separate projection method 

and combined projection method.   

Finally, the conclusions of this work are summarized and a proposal for the future 

research is presented in Chapter 8.  

 

 

 

 

 

 

 

 



 

 

 

Chapter 2 Mathematical foundations of 

stereoscopic camera based structured 

light measurement systems 

This chapter shows the basic mathematical foundations used in this thesis to 

perform the surface shape measurement. We firstly present the mathematical 

descriptions of the basic geometric elements, such as point, vector, line and plane. 

Secondly, we mathematically show the representation of geometric rotation and 

shifting in three-dimensional space, and then we discuss the coordinate system 

transformation because we need to work in different coordinate systems in both the 

stereoscopic phase measuring deflectometry (SPMD) system and the stereoscopic 

fringe projection profilometry (SFPP) system. Thirdly, we introduce the geometric 

representation of a pinhole camera and the light projection model in this pinhole 

camera. In the last section, the light reflection model is mathematically presented, as 

it is required in SPMD surface normal calculation.  

 

2.1 Geometric representations 

In both the stereoscopic phase measuring deflectometry system and the stereoscopic 

fringe projection profilometry system, the geometric representations are the 

foundations to perform surface measurement. 

The most basic geometric representation is point, that a point represents a location 

in the space. Specifically, in Euclidean geometry, a point does not have any length, 
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area, volume or other dimensional characteristics. Moreover, a three-dimensional point 

is defined with respect to a three-dimensional coordinate system and it can be 

represented by three tuples in a vector notation as P=(x,y,z). Note that the 

mathematically representation of a point is defined in a certain coordinate system, so 

once we use another coordinate system to describe this same point, the three tuples 

in the vector notation will be changed with respect to the new coordinate system. 

Now, let us imagine if we have point A=(xA,yA,zA) and point B=(xB,yB,zB) in the 

same Cartesian coordinate system (O-X,Y,Z), we can connect these two points to 

define a vector. This vector has its direction and magnitude, as the direction of the 

vector is defined by the connection order between these two points, and its magnitude 

is the length between these two points in the (O-X,Y,Z) coordinate system. For 

instance, by connecting from point A to point B in Figure 2-1, we obtain vector v 

and it can be mathematically written as: 

 , ,B A B A B Ax x y y z zv .  (2.1) 

The magnitude of v is then calculated as: 

 2 2 2( ) ( ) ( )B A B A B Ax x y y z zv .    (2.2) 

From Eqs. (2.1) and (2.2), we can further calculate the unit vector of v as:  

 
v

V
v

,     (2.3) 

where the magnitude of this unit vector V is 1. 

 

 Vector v forged by connecting from point A to point B in the 

coordinate system (O-X,Y,Z), and the unit vector V is calculated from v. 
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Now, if we inversely connect from point B to point A to define a new vector, it 

can be written as -v, and this inverse vector provides an opposite direction to that of 

vector v. 

As a vector is mathematically determined, we further discuss the mathematical 

representation of a straight line. A straight line is either represented by two points in 

the space through which they pass, or it is defined through a point and a vector in 

the three-dimensional space. Here we need to note that a line has no direction, as it 

only demonstrates infinite points along this line in the space. The mathematical 

definition of a line, which passed through point A=(xA,yA,zA) in (O-X,Y,Z) coordinate 

system, can be defined as bellow: 

 P tA V A ,    (2.4) 

where PA is the three-dimensional coordinate of any point along this line, V is the 

normalized vector of this line, and t is an arbitrary real number.   

As now we are equipped with the knowledge of point, vector and line, we finally 

discuss the plane. A plane is a flat, two-dimensional surface that infinitely extend in 

the three-dimensional space. The common way to describe a plane is to define it 

through a point and a surface normal. As the plane is flat, it must be perpendicular 

to a certain nonzero vector n, and we define n=[nx,ny,nz] as the normal of the plane. 

Moreover, this plane passes through a three-dimensional point at P0=(x0,y0,z0). Then, 

we connect any point P=(x,y,z) on this plane to P0 to forge a line, and this line must 

be perpendicular to normal n. In this case, we can obtain the following equation as: 

 0 0 0( ) ( ) ( ) 0x y zn x x n y y n z z ,    (2.5) 

where Eq. (2.5) is the mathematical representation of a flat plane. Moreover, by 

further expand Eq. (2.5), we can write this plane function as: 

 0x y zn x n y n z d ,    (2.6) 

where d is a constant. 

 

2.2 Coordinate system transformation 

Stereoscopic phase measuring deflectometry (SPMD) system contains two cameras 

and an LCD screen; whereas stereoscopic fringe projection profilometry (SFPP) 
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system contains two cameras and a video projector. Both systems have different 

components located at different positions, and these components have their own 

coordinate systems. To perform surface reconstruction with either the SPMD system 

or the SFPP system, it is necessary to perform all the operations in only one coordinate 

system. Under this scenario, coordinate system transformation is mandatory.  

Coordinate system transformation is used to represent the geometric relation 

between different coordinate systems through rotation and shifting. We firstly discuss 

the coordinate system rotation. For instance, we have two Cartesian coordinate 

systems shown in Figure 2-2, and the second coordinate system (O2-X2,Y2,Z2) (i.e., the 

blue label coordinate system) is obtained from the first coordinate system (O1-

X1,Y1,Z1) (i.e., the black label coordinate system) by rotating an angle of  around Z 

axis. Then, the relations between the two coordinate systems are given as: 

 
2 1

2 1

2 1

cos sin 0

sin cos 0

0 0 1

x x

y y

z z

,    (2.7) 

 
1 2

1 2

1 2

cos sin 0

sin cos 0

0 0 1

x x

y y

z z

.   (2.8) 

 

 The second coordinate system (O2-X2,Y2,Z2) is obtained from the first 

coordinate system (O1-X1,Y1,Z1) by rotating an angle of  around Z axis. 
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In Eq. (2.7), (x2,y2,z2) is the coordinate of a point in the second coordinate system, 

whereas (x1,y1,z1) is the coordinate of this same point but described in the first 

coordinate system. 

If the rotation between two Cartesian coordinate systems (i.e., from (O1-X1,Y1,Z1) 

to (O2-X2,Y2,Z2)) is introduced only through Y axis for  degree (counterclockwise 

direction), then the relation between the two Cartesian coordinate systems can be 

written as: 

 
2 1

2 1

2 1

cos 0 sin

0 1 0

sin 0 cos

x x

y y

z z

.  (2.9) 

Finally, when the geometric relation from the second coordinate system to the first 

coordinate system is the rotation around X axis for  degree (counterclockwise 

direction), then the relation between the two Cartesian coordinate systems can be 

written as: 

 
2 1

2 1

2 1

1 0 0

0 cos sin

0 sin cos

x x

y y

z z

. (2.10) 

Now, let us consider the coordinate system (O1-X1,Y1,Z1) is sequentially rotated to 

(O2-X2,Y2,Z2) by  degree around Z axis, then  degree around Y axis, and finally  

degree around X axis (these three rotations are all performed in a counterclockwise 

direction), we can establish the geometric relation between the two Cartesian 

coordinate systems as: 

 2 2 2 1 1 1( , , ) ( , , )T Tx y z x y zR , (2.11) 

where R is calculated as: 

cos cos cos sin sin

cos sin sin sin cos cos sin sin sin cos sin cos

sin sin cos sin cos sin cos cos sin sin cos cos

R . (2.12) 

The above relation reveals the coordinate system rotation between two different 

Cartesian coordinate systems. Nevertheless, apart from rotation, the coordinate 

system may also be shifted between different coordinate systems. The coordinate 

system shifting is shown by Figure 2-3, as we shift the first Cartesian coordinate 
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system (O1-X1,Y1,Z1) to the second Cartesian coordinate system (O2-X2,Y2,Z2) by 

vector T=[tx,ty,tz]. 

Then, the relation between the two Cartesian coordinate systems through vector 

T is given as: 

 2 2 2 1 1 1( , , ) ( , , )x y zx y z x t y t z t , (2.13) 

where (x2,y2,z2) is the coordinate of a point in the second coordinate system, and 

(x1,y1,z1) is the coordinate of this same point in the first coordinate system. 

At last, if both rotation and shifting appear in coordinate system transformation, 

the transformation relation can be described by using a 4×4 matrix as: 

 

2 1

2 1

2 1

1 0 0 0 1 1

x x

y y

z z

11 12 13 1

21 22 23 2

31 32 33 3

R R R T

R R R T

R R R T
, (2.14) 

where terms Rij (i=1,2,3; j=1,2,3) is equal to R in Eq. (2.12), and terms Tm is equal 

to vector T. We entitle the whole coordinate system transformation matrix in Eq. 

(2.14) as RT. 

 
 The second coordinate system (O2-X2,Y2,Z2) is obtained from the first 

coordinate system (O1-X1,Y1,Z1) by shifting with vector T. 

 Note that the above-discussed coordinate transformation is performed from the 

first coordinate system (O1-X1,Y1,Z1) to the second coordinate system (O2-X2,Y2,Z2). 

Nevertheless, we also have to tackle with the inverse coordinate system 

transformation, because we need to transform from the second coordinate system (O2-
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X2,Y2,Z2) to the first coordinate system (O1-X1,Y1,Z1). In this case, the inverse 

Cartesian coordinate system transformation can be performed by the following relation 

as: 

 

1
1 2

1 2

1 2

1 0 0 0 1 1

x x

y y

z z

11 12 13 1

21 22 23 2

31 32 33 3

R R R T

R R R T

R R R T
, (2.15) 

where we simply use the inverse transformation matrix of RT -1. Here, as RT is a 

square matrix obtained from the real experimental measurement, the determinant of 

this matrix will almost never be zero, so we can always get the inverse matrix RT -1. 

The above-discussed coordinate transformation is performed only between two 

coordinate systems. Nevertheless, in the real implementation, we may need to 

introduce several coordinate system transformations, and thus, we still need to 

investigate the coordinate system transformation among more coordinate systems. 

Such multi-coordinate system transformation is performed by sequentially 

transforming from the primary coordinate system to the final coordinate system using 

the coordinate system transformation matrix RT. This process can be expressed by 

the following equation as:  

 

1

1
1

1
...

1 1

n

n

n

x x

y y

z zn n-1 2RT RT RT RT , (2.16) 

where term n means we transform the coordinate systems from the first coordinate 

system to the last coordinate system with n steps, and term RTn is the transformation 

matrix corresponding to any transformation step.  

 

2.3 Pinhole camera model 

In structured light measurement systems, we use two cameras to capture the image 

and then perform inverse ray tracing or triangulation. Hence, we need to establish the 

mathematically model of the camera and describe the relation between the three-

dimensional scene and the two-dimensional captured image. To mathematically define 

a camera, we express the camera with a pinhole camera model, which describes the 
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image formation as perspective projection from the three-dimensional space to the 

two-dimensional image plane.  

For a digital camera, it contains an image receiver (i.e., charged-coupled device) 

and an objective lens. Here, the objective lens collects the light and then registers the 

intensity to the image receiving plane. However, the objective lens distortion will 

distort the received two-dimensional image and such distortion complicates the 

mathematical representation of the light projection. Therefore, we use a pinhole 

camera model, in which we regard the objective lens as a simple pinhole and no lenses 

are used to focus the light. In this case, the geometric lens distortion is totally avoided, 

and the light in the object space can only pass through this pinhole and finally reaches 

the image receiving plane. A simple diagram of a pinhole camera system is given below 

in Figure 2-4. 

 

 The diagram of a pinhole camera and the perspective projection. 

In a pinhole camera (see Figure 2-4), the focal length f of this pinhole camera is 

defined as the focal length of the objective lens, and it is the distance from the image 

plane to the pinhole. The object is projected through this pinhole and then reaches 

the image receiving plane to forge an inverse image. Moreover, we also define another 

virtual image plane, which is parallel to the image receiving plane, to get the upright 

virtual image. This virtual image plane is located in front of the pinhole with a 

distance as f. Under this scenario, the sizes of the images in the image receiving plane 

and the virtual image plane are equal.  

Once the pinhole camera scheme is fully described, we are also interested in 

mathematically defining the light projection model in a pinhole camera. To do so, let 
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us firstly define the camera pinhole as the coordinate system origin O, the vector 

passing through the pinhole and being perpendicular to the image receiving plane is 

defined as Z axis (this is also referred as the optical axis), and this coordinate system 

follows a right hand distribution. Afterwards, we project the pinhole vertically to the 

image plane and this intersection point R (see Figure 2-5) is defined as the principle 

point.  

Now, let us define one point P=(x,y,z) as the real object point in the pinhole camera 

coordinate in Figure 2-5. We project this point P from the object space through the 

pinhole to the image plane at Q=(x’,y’,z’). Then, the geometric relation between point 

P and point Q can be mathematically calculated through similar triangles as: 

 ’
x

x f
z

, (2.17) 

 ’
y

y f
z

. (2.18) 

From Eqs. (2.17) and (2.18), we can project one object point from the object space 

to the image receiving plane. Nevertheless, the inverse projection from the image 

receiving plane to the object space cannot give us the intersection point, because the 

distance in Z direction (i.e., term z in Eq. (2.17) or (2.18)) cannot be uniquely decided. 

 
 The geometry scheme of the pinhole camera and the perspective 

projection model. 

The pinhole camera model and the light projection model are above-discussed. 

Nevertheless, the pinhole camera model cannot accurately describe the light projection 

in the real implementation, because lens distortion has not been considered. Therefore, 
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we have to introduce camera calibration to determine the lens distortion, and then we 

should introduce such distortion into the pinhole camera for a more comprehensive 

camera model. The camera calibration will be systematically discussed in Section 3.4. 

 

2.4 Beam reflection model 

The fundamental measurement principle of a stereoscopic phase measuring 

deflectometry system is the light reflection at the specular surface. Specifically, the 

light being projected to the specular surface is reflected to another direction, that the 

incident angel and the exit angel follow Reflection Law. Here, to mathematically 

describe the surface reflection, we establish a beam reflection model. 

We initially establish a light-plane reflection model, that we assume the light is 

projected to a specular flat surface and later is reflected to another direction. The light 

in this case can be described by a line function as: 

 P tA V A , (2.19) 

where V is the normalized vector of this ray in a given coordinate system, A is a 

three-dimensional point along this ray in the same coordinate system, and t is an 

arbitrary real number.  

On the other side, the specular plane surface can be presented as a set of point P 

from which, 

 ( ) 00P P n , (2.20) 

where n is the normal of this plane surface, P0 is a point on this specular plane.  

If the light ray and the specular surface are not parallel, then the intersection point 

S of the light and the plane can be calculated as: 

 
( )0P A n

S V A
V n

. (2.21) 

By solving Eq. (2.21), we get the intersection point S between the incident light 

and the plane specular surface.  
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 Geometric diagram of light reflection at the specular surface. 

In the light reflection scheme, the vector of the reflected light is also necessary, so 

we calculate the vector of the reflection beam using the scheme described in Figure 2-

6. Note that in Figure 2-6, the surface normal to the specular plane is n, and the 

vector of the incident light is V. Then, the reflected vector R can be calculated as: 

 2( )R V V n n , (2.22) 

where n must be normalized. 

The above-discussed reflection case enables us to calculate the reflected light by 

knowing the normal of the specular surface and the vector of the incident light. 

However, in the real deflectometry measurement, the surface normal is not given, but 

we have to use the incident light and the exit light to calculate this surface normal. 

Here, the normalized vector of the incident light is V, and the normalized vector of 

the exit light is R. Then, we have the surface normal calculated as: 

 N R V . (2.23) 

Finally, by normalizing surface normal N in Eq. (2.23), we obtain the normalized 

surface normal as n. 

 

 

 

 





 

 

 

Chapter 3  Parameter calibration of 

stereoscopic camera based structured 

light measurement systems 

This chapter describes the methods to calibrate all parameters that appear in the 

stereoscopic camera based structured light measurement systems. The structured light 

measurement systems studied in this thesis contain a stereoscopic phase measuring 

deflectometry (SPMD) system, a stereoscopic fringe projection profilometry (SFPP) 

system, and a stereoscopic deflectometry-profilometry hybrid (SDPH) system. Note 

that as SDPH is the combination of SPMD and SFPP, and it shares the same system 

parameters as the other two systems, so we will not discuss the parameter calibration 

of an SDPH system here.  

In an SPMD system, it has an LCD screen to project the structured light patterns 

(i.e., sinusoidal fringe patterns), and two cameras to capture these sinusoidal fringe 

patterns (SFPs) reflected by the measured specular surface. The surface measurement 

is then performed by the inverse ray tracing between the stereoscopic camera and the 

LCD using phase map correspondence (this is to be discussed comprehensively in 

Chapter 4). Here, the phase maps in both cameras are obtained through phase shifting 

and phase unwrapping.  

On the other hand, an SFPP system has a video projector and two cameras. The 

video projector provides the structured light patterns (i.e., SFPs) and the cameras are 
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used to capture the SFPs projected on the measured diffuser object. The surface 

reconstruction then is accomplished through geometric triangulation using the phase 

maps into both cameras. Again, the phase maps in an SFPP system are also obtained 

through phase shifting and phase unwrapping. 

As sinusoidal fringe patterns (SFPs) are used in both stereoscopic phase measuring 

deflectometry and stereoscopic fringe projection profilometry, we firstly discuss in this 

chapter the sinusoidal fringe patterns, which are adopted into our system as structured 

light patterns. Next, a phase shifting method is discussed as it allows the acquisition 

of the phase map from the captured SFPs. However, the phase map obtained from 

phase shifting presents wrapped characteristic, and thus we introduce phase 

unwrapping techniques to further obtain the unwrapped phase map. In this case, both 

spatial phase unwrapping and temporal phase unwrapping are discussed, and temporal 

phase unwrapping is finally chosen to perform phase unwrapping.  

Once the continuous unwrapped phase map is obtained, we then focus on system 

component calibration. For system component calibration, we preliminary explain 

camera calibration and we obtain camera intrinsic parameters, camera extrinsic 

parameters and the geometric relation between the stereoscopic camera. Afterwards, 

we discuss the projection components calibration, such as LCD screen calibration in 

the SPMD system and video projector calibration in the SFPP system. Here, both 

elements show projection intensity nonlinearity which is referred as gamma effect. We 

then construct an inverse look up table (LUT) to compensate the gamma error.  

Finally, the geometric calibrations of both the SPMD system and the SFPP system 

are presented. Here, SFPP system calibration is more flexible, as we only have to 

obtain the geometric relation between the stereoscopic camera. Nevertheless, SPMD 

system calibration is more complicated. In particular, we discuss the system geometric 

positioning limitation, so that we can define the separation distance between the 

stereoscopic camera. What is more, we also calibrate the geometric position relation 

between the LCD screen and the stereoscopic camera. To do so, we combine an 

“inverse” camera calibration with a laser tracker-assisted hand-eye calibration. 
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3.1 Fundamentals of sinusoidal fringe pattern 

In order to perform surface shape measurement, the correspondence between the 

image receiver (i.e., the stereoscopic camera) and the projection component (i.e., the 

LCD or the video projector) has to be established. For instance, in a stereoscopic 

fringe projection profilometry system, the point correspondence between the 

stereoscopic camera (that we know one point in the first camera image plane and its 

correspondent point in the second camera image plane) has to be determined, so that 

we can perform geometric triangulation for surface point determination. In a 

stereoscopic phase measuring deflectometry system, we construct the point 

correspondence between the LCD and the cameras, so that we can accomplish the 

inverse ray tracing for surface normal calculation. To establish such correspondence 

in either an SFPP system or an SPMD system, structured light patterns are generated 

on the projection components and later being captured by the cameras. The most 

commonly used structured light patterns are binary pattern and sinusoidal fringe 

pattern.  

Binary pattern is a straightforward approach to establish the point correspondence. 

Particularly, binary values (i.e., intensities as 0 and 1) are encoded into each stripe in 

the projection patterns. These stripes are presented horizontally or vertically in each 

pattern. Afterwards, by implementing a binary coding strategy [83], the 

correspondence is established through a sequential projection. For instance, one can 

distinguish one unique pixel among a total of 1024 pixels with 10 binary projections 

(i.e., 1024 = 210). To reduce the total number of the binary projection, gray coding 

pattern [84] is suggested by using the same binary pattern principle. In this case, 

instead of implementing only a binary bit as either 0 or 1, we can introduce M distinct 

levels to expand the coding flexibility. For instance, if we select the distinct level M 

as 4, we can distinguish a unique point from a total of 1024 pixels with only 5 

projections (i.e., 1024 = 45). Compared to binary pattern, gray coded pattern 

demonstrates the advantage in reducing the projection pattern number, so it 

guarantees a greater robustness and a higher efficiency. Nevertheless, both binary 

pattern and gray pattern are not favored by structured light systems as they fail to 

give a high spatial resolution. Moreover, binary pattern cannot be used to perform 

sub-pixel matching (this is to be discussed in Section 4.3), which is critical in 

enhancing the surface measurement accuracy.  

Under this scenario, the more appropriate sinusoidal fringe pattern (SFP) is 

proposed to overcome the limitation of the binary pattern. The major difference 
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between the SFP and the binary coding pattern is that SFP is coded by the phase 

value rather than the binary intensity. Hence, the intensity at each pixel in an SFP 

pattern is represented by Eq. (3.1), 

 
max 2 ( 1)

( , ) 1 sin ( , )
2

n
nI

I x y x y
N

,  n =1, …, N,  (3.1) 

where In(x,y) is the intensity of a pixel in the sinusoidal fringe pattern, and Imax is the 

maximum intensity in the bitmaps. Φ(x,y) is the absolute unwrapped phase value at 

a projecting pixel, and N is the total phase shifting step number. Here, the phase map 

can be calculated by phase shifting the sinusoidal fringe patterns by N steps (this is 

to be discussed in Section 3.2).  

Now, we project this SFP on the measured object, the sinusoidal intensity 

distribution is distorted by the tested object and we can write this distorted sinusoidal 

fringe pattern captured by the camera as: 

   
2 ( 1)

( , ) ( , ) ( , )sin ( , )n
n

I i j A i j B i j i j
N

,  n =1, …, N,  (3.2) 

where (i,j) is the pixel coordinate into the camera image plane, and In(i,j) is the 

intensity of a pixel on the camera image plane. A(i,j) is the average intensity 

determined by the background illumination, B(i,j) is the intensity modulation related 

to the surface reflectivity and pattern contrast. Here, both A(i,j) and B(i,j) do not 

depend on the phase shifting term N.  

Moreover, in a stereoscopic phase measuring deflectometry system, the camera is 

focused at the measured specular surface rather than the LCD screen for a better 

spatial resolution. Thus, the SFP on the LCD screen is defocused and blurred in the 

camera, and such defocusing is equivalent to a low pass filter. Nevertheless, as the 

SFP only has one single frequency (i.e., Eq. (3.2)), it is free of any information 

transmission reduction even though it passes through a low pass filter. In other words, 

camera defocusing (i.e., the low pass filtering) only reduces the amplitude of the SFP, 

but it cannot change the phase value coded into the SFP. Hence, this characteristic 

is favored by structured light measurement systems, as it will provide an accurate 

phase pair correspondence regardless of defocusing. 
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3.2 Phase shifting method  

In the previous section, we demonstrate the benefit of using sinusoidal fringe 

patterns (SFPs) as they maintain the correct phase information even though the SFPs 

are defocused in the camera. In this section, we will discuss phase shifting to obtain 

the phase information on the measured object from the captured SFPs.  

To perform phase shifting, a series of SFPs with the same frequency are sequentially 

projected to the measured surface and the captured SFPs on the surface can be 

represented by Eq. (3.2). Now, let us assume we project four different SFPs and the 

phase value shifted within each adjoining fringe pattern is /2 (i.e., N = 4 in Eq. 

(3.2)), then these four fringe patterns are given as: 

   1( , ) ( , ) ( , )sin( ( , ))I i j A i j B i j i j ,   (3.3) 

   2( , ) ( , ) ( , )cos( ( , ))I i j A i j B i j i j ,   (3.4) 

   3( , ) ( , ) ( , )sin( ( , ))I i j A i j B i j i j ,   (3.5) 

   4( , ) ( , ) ( , )cos( ( , ))I i j A i j B i j i j .   (3.6) 

By processing these four SFPs, we can calculate the wrapped phase as: 

   
1 3

2 4

( , ) ( , )
( , ) arctan

( , ) ( , )

I i j I i j
i j

I i j I i j
,   (3.7) 

where the arctangent function is defined below as: 

   

arctan ,                         if 0

arctan arctan ,     if 0 and 0

arctan ,     if 0 and 0

p
q

q
p p

q p
q q

p
q p

q

.   (3.8) 

At this moment, we need to emphasize that such calculated phase term (i,j) is 

different from the real phase value Φ(i,j) in the sinusoidal fringe patterns. In Eq. (3.2), 

the phase value Φ(i,j) is a continuous real phase that its range is not limited to [-,]. 

However, in Eq. (3.8), the phase value (i,j) is determined through an arctangent 

function, from which its range is limited to [-,]. Thus, the relation between the 

wrapped phase (i,j) and the unwrapped phase Φ(i,j) is defined by the following 

equation: 
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   ( , ) mod( ( , ),2 )i j i j ,   (3.9) 

where term “mod” means the phase modulation of 2. The phase unwrapping methods 

will be further reviewed in the next section. 

Apart from four-step phase shifting, other phase shifting methods are also discussed 

such as three-step phase shifting [85, 86] or five-step phase shifting [87]. Even though 

they adopt different steps, they use a same universal phase shifting principle, and 

thus, the wrapped phase map can be calculated through: 
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1
( , )cos(2 )

( , ) arctan
1

( , )sin(2 )

N
nn

N
nn

n
I i j

N
i j

n
I i j

N

.  (3.10) 

To perform phase shifting, we have to introduce at least three SFP steps (i.e., N 

= 3). However, three-step phase shifting is susceptible to noise, so phase shifting with 

more steps is desired. On the other hand, more phase shifting steps will extend the 

measurement time, and thus reduce the measurement efficiency. Under this scenario, 

the trade-off between phase shifting accuracy and efficiency has to be considered before 

the measurement. In this work, we use four steps to perform phase shifting.  

Phase shifting can be accomplished by projecting the sinusoidal fringe pattern series 

and then performing the calculation through Eq. (3.10). However, in the real 

implementation, gamma nonlinearity, pixel quantization, and temporal fluctuation of 

the projection components restrict us from obtaining ideal SFPs. Thus, phase shifting 

error could be introduced by such imperfect SFPs. Under this scenario, the 

imperfection of the SFPs has to be eliminated to minimize the phase shifting error. 

The SFP error elimination with respect to the above-mentioned three aspects are 

discussed below. 

To eliminate the SFP error originated from gamma nonlinearity, we have to firstly 

introduce the gamma effect. Gamma nonlinearity is described as the output intensity 

is not following a linear relation with the input gray level in a projection component. 

Such characteristic is broadly applied into the projection components such as 

televisions or video projectors to fit the human vision perception, but it introduces 

luminance error if we receive these images with a digital receiver such as a CCD. 

Thus, gamma nonlinearity has to be corrected if we want to get a correct phase shifted 

pattern. In this case, we can either adopt an analytical compensation during phase 

shifting [88], or we can directly introduce gamma calibration to the projection 
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components. In this work, we select direct gamma calibration rather than analytical 

compensation, because direct gamma calibration is more universal, and this method 

is later presented in Section 3.5. Once we have performed the gamma calibration, the 

projection component can be used to correctly present any sinusoidal fringe pattern.  

Pixel quantization is another problem that occurs during phase shifting. For 

instance, we can calculate a precise intensity distribution from Eq. (3.1), but in the 

real implementation, the video projector or the LCD rather gives us the quantified 

intensity as any intensity are quantified to a positive integer (i.e., intensity as 14.56 

is quantified to intensity as 15). To compensate this quantization error, a 

characteristic polynomial method [89, 90] can be used. Nevertheless, if the input signal 

covers the complete gray level range (i.e., 8 bits, 0 to 255), the quantization effect can 

be greatly reduced [89, 90]. Moreover, as we will perform sub-pixel interpolation (see 

Section 4.3) during the measurement, quantization error can be neglected. 

Temporal fluctuation effect in the projection components is always neglected during 

phase shifting. Indeed, by modeling the projecting frequency of the projection 

component equal to the receiving frequency of the image receiver, we can reduce the 

pattern fluctuations and obtain an accurate phase shifting. However, fluctuations still 

exist especially when we use the liquid crystal (LC) molecule based phase modulation 

projections (i.e., LCD screen or LCD chip-based video projector) [91]. To eliminate 

the fluctuations introduced by LC molecular flicker, we can average numerous frames. 

However, this is definitely extending the measurement time, and thus, the trade-off 

between the measurement accuracy and efficiency has to be considered. In this work, 

as we focus on the measurement accuracy, we adopt a fringe averaging method during 

the measurement.  

 

3.3 Phase unwrapping method 

In Section 3.2, we discuss the phase shifting method to obtain the phase map from 

sinusoidal fringe patterns. Unfortunately, as phase shifting only provides the phase 

value ranging from [-, ], the real phase value cannot be obtained but it is rather 

shown as a discontinuous wrapped phase map. In this case, such discontinuous phase 

map shows the “phase jump” at any discontinuous boundary such as the example 

provided in Figure 3-1. Figure 3-1 shows the phase maps on a flat mirror we later 

obtained through phase shifting from the experimental measurement. In Figure 3-1 

(a), we can easily find the phase jump, and the phase value is only ranging within [-
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, ]. In Figure 3-1 (b), we give the unwrapped phase map of Figure 3-1 (a), and it 

shows a continuous phase map after phase unwrapping. To perform phase unwrapping 

and obtain the continuous phase map, two different methods as spatial phase 

unwrapping and temporal phase unwrapping are discussed. 

 

 The phase maps on a flat mirror: (a) the wrapped phase map, and (b) 

the unwrapped continuous phase map. 

 

 Spatial phase unwrapping 

Spatial phase unwrapping is a direct phase unwrapping method based on spatial 

phase jump distribution [92]. To perform spatial phase unwrapping, we firstly get the 

wrapped phase map using phase shifting technique. Later, the phase discontinuity is 

examined through the whole wrapped phase map, so we acquire all phase jump points. 

From these phase jump points, we can further regulate the whole wrapped phase map 

to numerous phase sections where any adjacent section shares a phase modulation as 

2. Later, we add an integer multiple of 2 to these phase sections so that we can 

finally get a continuous phase map. Note that this compensated phase map in fact 

still cannot represent the real phase map, as there appears a constant phase difference 

between the real phase map and this unwrapped phase map. Therefore, to obtain the 

real phase map, a reference point with its phase value known is mandatory. To perform 

spatial phase unwrapping with higher precision, different algorithms are proposed such 

as quality-guided algorithm [93], minimum weight discontinuity algorithm [94], and 

minimum LP-norm algorithm [95].  

However, all spatial phase unwrapping methods face a great limitation as they find 

difficulty in unwrapping discontinuous objects. For instance, a discontinuous object 

can be assumed as several isolated sub-sections, and we can obtain the wrapped phase 
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maps corresponding to each sub-section by phase shifting. Later, by using spatial 

phase unwrapping, the absolute unwrapped phase map of any sub-section can be 

calculated. Unfortunately, as the internal phase relation between each isolated sub-

section is not obtainable, we cannot obtain the correct phase relation between each 

sub-section. Therefore, the accurate phase map for the whole discontinuous object 

cannot be obtained. In particular, as we will measure a specular-diffuser hybrid object 

in this work (see Chapter 7) and it introduces discontinuous sections, we will not use 

spatial phase unwrapping in this thesis.  

 

 Temporal phase unwrapping 

Temporal phase unwrapping is another phase unwrapping technique which is 

accomplished by sequentially projecting sinusoidal fringe patterns with different 

frequencies [96, 97]. In temporal phase unwrapping, the knowledge between each 

adjacent phase jump point is not mandatory, and thus, phase unwrapping for a 

discontinuous object can be performed. What is more, temporal phase unwrapping 

directly gives us the absolute phase value, so we no longer need a reference phase 

point to determine the constant phase difference between the real phase map and the 

unwrapped phase map.   

The main principle of temporal phase unwrapping is to project more than one series 

of sinusoidal fringe patterns to the measured object. Specifically, these different SFP 

series are distinguished by implementing distinct fringe frequencies. In these series, 

the lowest frequency SFP series should demonstrate no phase jump once we perform 

phase shifting. Later, we use this lowest frequency phase map to gradually unwrap 

the other phase maps with different frequencies. In this case, we sequentially unwrap 

from low frequency to high frequency. For instance, assume that we have three SFP 

series, and their frequencies are fL, fM, fH, respectively. Here, fL refers to the lowest 

frequency (i.e., the wrapped phase map of this series does not show phase jumps), fM 

represents the middle frequency and fH represents the highest frequency. Moreover, 

the fringe wavelengths of the sinusoidal fringe patterns corresponding to these three 

frequencies are given as L, M, H; and their absolute unwrapped phase maps are 

ΦL(i,j), ΦM(i,j), ΦH(i,j). Here, (i,j) denotes the pixel coordinate in the camera image 

plane. Giving the characteristic of the sinusoidal fringe pattern, we can easily deduce 

that the unwrapped phase maps between the lowest frequency fringe patterns and the 

middle frequency fringe patterns obey the following relationship: 
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   ( , ) ( ) ( , )M L M Li j i j ,   (3.11) 

where ΦL(i,j) ranges within [-,]. 

Now, let us focus only on the lowest frequency SFP series and the middle frequency 

SFP series. Considering that the phase jump is 2, we can establish the relation 

between the unwrapped phase and the wrapped phase within the lowest frequency 

fringe patterns and the middle frequency fringe patterns as below: 

   
 ( , ) ( , ) 2 ( , )

( , ) ( , ) 2 ( , )
M M M

L L L

i j i j K i j

i j i j K i j
,   (3.12) 

where M(i,j) and L(i,j) represent the wrapped phase maps corresponding to the 

lowest frequency and the middle frequency, KM(i,j) and KL(i,j) are integers. In 

particular, as we have mentioned that the lowest phase map is free of phase jump, so 

in fact KL(i,j) is 0. Now, we combine Eq. (3.11) and Eq. (3.12) together, we can 

calculate the integer KM as: 

 
( ) ( , ) ( , )

( , )
2

L M L M
M

i j i j
K i j Round ,  (3.13) 

where “Round” means we take the closest integer. Finally, as we obtain the integers 

KM(i,j) to all pixels in the middle frequency phase map, we can then calculate the 

unwrapped phase map with respect to the middle frequency sinusoidal fringe patterns 

with Eq. (3.12). 

Once we get the unwrapped phase map that corresponds to the middle frequency 

SFP series, we can then use this middle frequency phase map to unwrap the highest 

frequency phase map of ΦH(i,j). Similar to Eq. (3.11), we can write the unwrapped 

phase relationship between the middle frequency fringe patterns and the highest 

frequency fringe patterns as: 

   ( , ) ( ) ( , )H M H Mi j i j .   (3.14) 

We can also give the relation between the unwrapped phase map and the wrapped 

phase map that corresponds to the highest frequency fringe patterns as: 

   ( , ) ( , ) 2 ( , )H H Hi j i j K i j ,   (3.15) 

where H(i,j) denotes the wrapped phase maps of the highest frequency fringe 

patterns, and KH(i,j) is an integer. At this moment, note that the unwrapped phase 
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map ΦM(i,j) is already calculated by Eq. (3.12), we can then directly combine Eq. 

(3.14) and Eq. (3.15) together to get the integer KH(i,j) as: 

 
( ) ( , ) ( , )

( , )
2

M H M H
H

i j i j
K i j Round .  (3.16) 

Once KH(i,j) is calculated, the phase map of the sinusoidal fringe patterns with 

respect to the highest frequency is determined.  

The above-discussed temporal phase unwrapping method can be implemented by 

introducing more frequencies, and this is the Huntley method [96, 97]. By increasing 

the number of the frequency of SFPs, we can further enhance the phase unwrapping 

robustness. However, by projecting more SFPs, we need longer measurement time, 

and thus the measurement efficiency is decreased. On the other hand, we can also 

decrease the number of the frequency by only using two frequencies for phase 

unwrapping [98, 99]. This two frequencies method provides a high measurement 

efficiency as less patterns have to be projected. However, it may bring potential 

problems in the real implementation. For instance, if the frequencies between the 

lowest frequency SFPs and the high frequency SFPs vary greatly, the phase 

unwrapping accuracy is easily deteriorated by the intensity noise coming from the 

camera sensor or projection components (i.e., the LCD screen or the video projector).  

Apart from multi-frequency temporal phase unwrapping, multi-wavelength method 

[99, 100] or binary coding method [101, 102] are also suggested to perform temporal 

phase unwrapping. Nevertheless, multi-wavelength unwrapping presents a weaker 

phase unwrapping reliability compared to multi-frequency unwrapping [103]. Binary 

coding method is a well-studied phase unwrapping method, but it obviously cannot 

provide a better resolution than sinusoidal fringe patterns [104]. What is more, optical 

defocusing introduces blur to the binary patterns, and this will unavoidable introduce 

phase unwrapping error [105].  

At this time, a complete procedure to obtain the unwrapped phase map by 

temporal phase unwrapping is demonstrated. First of all, we project three series of 

sinusoidal fringe patterns with different frequencies to the measured surface. Next, we 

use both cameras to capture these SFPs on the measured object. Afterwards, we use 

four-step phase shifting method to calculate the wrapped phase maps with respect to 

these three different frequencies. Finally, as we get these three different wrapped phase 

maps with respect to all sinusoidal fringe pattern series, we implement temporal phase 
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unwrapping to unwrap the phase maps from the lowest frequency to the highest 

frequency until we acquire the unwrapped phase map. 

 

3.4 Camera calibration 

In the previous three sections, we discuss the methods to obtain the absolute 

unwrapped phase map. Therefore, we can establish the phase correspondence between 

the camera and the projection components. However, by only getting unwrapped 

phase maps is not sufficient to perform the surface point determination, because we 

also have to know the geometric scheme of the structured light measurement systems. 

Under this scenario, a system calibration has to be introduced. Specifically, to perform 

a complete system calibration, we need to calibrate the cameras, the projection 

components (i.e., the LCD or the video projector), and the geometric relation between 

the cameras and the projection components, respectively. In this section, we will focus 

on camera parameter calibration.  

  

 Camera parameter calibration 

The cameras implemented in the structured light measurement systems are used 

to capture the distorted sinusoidal fringe patterns. In this case, the light reflected by 

the surface enters the camera from its optical lens system. To simplify the light 

projection, we assumed a pinhole camera (see Chapter 2), from which the camera 

optical center is regarded as a small pinhole and the light projecting through this 

pinhole follows the collinearity principle. The pinhole camera gives us the specific 

camera parameters, such as the focal length of the pinhole camera, and the image 

center. However, a pinhole camera cannot precisely describe the camera used in the 

real implementation, as optical distortion introduced by the optical lens system is not 

known. Thus, to obtain the parameters of a real camera, these above-mentioned 

parameters (i.e., optical distortion, focal length, principle point) should be calibrated 

and they are entitled as intrinsic parameters. Apart from these camera intrinsic 

parameters which demonstrate the camera characteristics, we also have to determine 

the 3D spatial position and orientation of the camera to the calibration target 

coordinate system (i.e., in camera calibration, the calibration target is a 

checkerboard). The geometric relation between the camera coordinate system and the 

calibration target coordinate system is referred as extrinsic parameters. In this case, 



   53 

 

extrinsic parameters consist of two parameters as camera rotation and camera shifting 

between the camera coordinate system and the calibration target coordinate system. 

To acquire the intrinsic and the extrinsic parameters of a camera through camera 

calibration, we apply the already well-established camera model and its corresponding 

camera calibration procedure [106, 107]. The experimental calibration is accomplished 

by directly using Camera Calibration Toolbox developed by Jean-Yves Bouguet [108]. 

Here, we select the binary square checkerboard pattern as the calibration target to 

perform camera calibration. In particular, we firstly place the camera at a fixed 

position where it can capture the checkerboard. Secondly, we change the checkerboard 

to different positions by implementing both spatial shifting and rotation. Now, within 

each changed position, we use the camera to capture a corresponding checkerboard 

image. Here, we want to note that a great number of checkerboard movement is 

required to guarantee the calibration accuracy (i.e., normally greater than 20 images). 

Thirdly, once we register all checkerboard images with respect to each spatial position, 

we extract all grid corners on the checkerboard pattern within each frame and store 

these grid patterns for further analysis. Finally, nonlinear estimation is used to extract 

both the intrinsic and the extrinsic parameters [106] using the previously stored grid 

corner information.   

After we perform the camera calibration, three intrinsic parameters are obtained. 

The principle point (u0,v0) is defined with the unit of CCD pixel size, and it represents 

the intersection of the camera optical axis and the camera image plane (i.e., CCD 

panel). The focal lengths of the camera lens are given in both X and Y directions of 

the camera coordinate system, and they are represented with the unit of pixel size as 

fx and fy, respectively. The camera distortion is presented by a vector as [k1, k2, k3, k4, 

k5] [109], from which k1, k2, k3 are used to express radial distortion, and k4, k5 for 

tangential distortion. Hence, we can write the relation between a distorted projection 

point and its corresponding ideal projection point on the camera image plane as: 

 
2 2

4 52 4 6
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2 ( 2 )
(1 )
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d o o o o

d o o o o

x x k x y k r x
k r k r k r

y y k r y k x y
,  (3.17) 

where (xo,yo) is the undistorted position of a point in the image plane, whereas (xd,yd) 

is the distorted position of this point in the image plane. Here, we would like to note 

that point (xo,yo) is normalized by Eqs. (3.18) and (3.19), as (x,y,z) represents this 

same undistorted point but it is depicted in the camera coordinate system by:  
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.  (3.19) 

Finally, term r in Eq. (3.17) is calculated as: 

 2 2 2
o or x y .  (3.20) 

We also want to mention that another normally discussed intrinsic parameter as 

skew factor is ignored in our calibration. This is because the deviation between X and 

Y axes is almost 90 degree in our camera, which leads to the skewness extremely close 

to zero.  

 
 The coordinate transformation scheme between the checkerboard 

coordinate system and the camera coordinate system. 

At this moment, all intrinsic parameters are obtained through camera calibration. 

We then discuss the extrinsic parameter calibration. As it is previously discussed, 

extrinsic parameters are given as a rotation matrix and a shifting vector between the 

camera coordinate system and the checkerboard coordinate system. For the 

checkerboard used in the camera calibration, the checkerboard coordinate origin is 

defined at the upper left corner grid intersection of the checkerboard pattern, and its 

X-Y plane is parallel to the checkerboard plane. We present the coordinate system 

transformation between the checkerboard coordinate system and the camera 

coordinate system in Figure 3-2, from which the checkerboard coordinate system is 

denoted as (OCH-XCH,YCH,ZCH), the camera coordinate system is denoted as (OC-

XC,YC,ZC), and the image plane coordinate system is (O0
C-uC,vC).    
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By using the same Bouguet Calibration Toolbox [108], we obtain a 3×3 matrix 

RCHtC and a 1×3 vector TCHtC, from which RCHtC describes the rotation from the 

checkerboard coordinate system to the camera coordinate system, and TCHtC 

determines the shifting in the same direction. Note that as we use numerous frames 

to perform the camera calibration and we move the checkerboard to different 

positions, we obtain distinct RCHtC and TCHtC with respect to each checkerboard 

location. In a given checkerboard frame, we assume one point in the checkerboard 

coordinate system as (xCH,yCH,zCH) and this point in the camera coordinate system as 

(xC,yC,zC), then we can transform this point from the checkerboard coordinate system 

to the camera coordinate system by: 

 ( , , ) ( , , )C C C T CH CH CH Tx y z x y zCHtC CHtCR T ,  (3.21) 

where RCHtC and TCHtC are the rotation matrix and the shifting vector, respectively. 

 

 Stereoscopic camera calibration 

From camera calibration, we can obtain both intrinsic and extrinsic parameters of 

a single camera. However, into our structured light measurement systems, we 

introduce stereoscopic camera to perform the measurement, and thus, the geometric 

relation between these two cameras also has to be acquired. Here, such geometric 

relation denotes the three-dimensional shifting and rotation of any point from the 

second camera coordinate system to the first camera coordinate system. Such 

transformation can be mathematically represented below as:  

 21 C2tC1 C2tC1P R P T ,  (3.22) 

where RC2tC1 is the 3×3 rotation matrix from the second camera coordinate system to 

the first camera coordinate system, and TC2tC1 is the corresponding 1×3 shifting 

vector. P2 is the coordinate of point P defined in the second camera coordinate system. 

P1, on the other hand, is the coordinate of the same point P but is represented in the 

first camera coordinate system. Finally, to obtain both RC2tC1 and TC2tC1, we also use 

the already well-established Camera Calibration Toolbox [108].  

To perform stereoscopic camera calibration, we place both cameras properly so that 

they can inspect the checkerboard from their own perspectives. The stereoscopic 

camera calibration scheme is given in Figure 3-3, where P is a point in the object 

space. What is more, the checkerboard coordinate system is denoted as (OCH-
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XCH,YCH,ZCH), the first camera coordinate system is denoted as (O1
C-X1

C,Y1
C,Z1

C) and 

the second camera coordinate system is (O2
C-X2

C,Y2
C,Z2

C). 

 
 The stereoscopic camera calibration scheme using a checkerboard 

pattern. 

In this case, both cameras inspect the checkerboard but from different perspectives, 

so the checkerboard images captured by these two cameras are distinct. Later, we 

change the spatial position of the checkerboard, so we capture a series of checkerboard 

images within each camera. Afterwards, the checkerboard grid intersection pattern of 

each frame are extracted within both cameras. Finally, by adopting a generalized 

least-squares algorithm [110], we can determine the stereoscopic camera calibration 

parameters (i.e., RC2tC1 and TC2tC1) using all checkerboard grid patterns in these two 

cameras.   

 

 Pinhole camera with lens distortion 

To calibrate a camera, we assumed a pinhole camera model with lens distortion, 

and such pinhole camera model can accurately describe the cameras used in the real 

implementation. In this sub-section, we thoroughly discuss the light projection in such 

lens distortion contained pinhole camera. To be more specific, we mathematically 

establish a light projection model, from which it shows how a given point in the object 

space is finally imaged to the camera image plane (i.e., CCD panel). Moreover, as the 

real implementation rather requires the inverse light projection (that we know the 

pixel location on the CCD panel and we want to know its inverse projection vector to 

the object space), we also depict the inverse light projection in a pinhole camera.    
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To describe the light projection in a pinhole camera, we assume that the intrinsic 

and the extrinsic parameters of this pinhole camera are already obtained. Under this 

scenario, we generalize light projection into four sequential steps and the light 

projection scheme is depicted in Figure 3-4. Firstly, we transform the studied point 

M from the world coordinate system (i.e., object space) to the camera coordinate 

system. Here, to ease the computational complexity, we directly regard the 

checkerboard as the world coordinate system (i.e., see (OW-XW,YW,ZW) in Figure 3-4), 

and the world coordinate system origin coincides with the checkerboard coordinate 

system origin. Then, the transformation of point M from the world coordinate system 

to the camera coordinate system (see (OC-XC,YC,ZC) in Figure 3-4) can be expressed 

as: 

  ( , , ) ( , , )C C C T W W W T
M M M M M Mx y z x y zWtC WtCR T ,  (3.23) 

where (xM
W,yM

W,zM
W) and (xM

C,yM
C,zM

C) are the coordinates of point M in the world 

coordinate system and the camera coordinate system, respectively. RWtC and TWtC 

are the rotation matrix and the shifting vector that we can obtain from camera 

extrinsic calibration (by using the checkerboard shown in Figure 3-4). 

 

 Light projection scheme using a pinhole camera model. M is the studied 

point in the object space, (OW-XW,YW,ZW) is the world coordinate system, OC is 

the camera pinhole, (OC-XC,YC,ZC) is the camera coordinate system, and (O0
C-

uC,vC) is the CCD pixel coordinate system.  

The second step during light projection is to project point M to the image plane 

by using perspective projection. Here, the image plane is perpendicular to ZC axis of 

the camera coordinate system, and we assume that the image plane intersects with ZC 
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axis at ZC=-1. If MI is the projection point of M on the image plane, then its 

coordinate in the camera coordinate system (OC-XC,YC,ZC) can be given as: 

 ( , , 1) ( , , )
C C C
M M MI I

M M C C C
M M M

x y z
x y

z z z
.  (3.24) 

At this moment, we obtain the projection of point M on the image plane. However, 

the real projection point on the image plane cannot be directly decided by Eq. (3.24), 

because lens distortion will shift the ideal point MI=(xM
I,yM

I,-1) to the distorted point 

MD=(xM
D,yM

D,-1) on the image plane, and the coordinate of the distorted point can be 

obtained by using the distortion coefficients (see Eq. (3.17)) as: 
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, (3.25) 

where the coefficient series k is acquired by camera intrinsic calibration, and term r 

in Eq. (3.25) is given as: 

 2 2 2( ) ( )I I
M Mr x y .  (3.26) 

 As lens distortion has been considered (i.e., Step 3, see Eq. (3.25)), we obtain the 

distorted projection coordinate of M on the image plane as MD=(xM
D,yM

D,1). However, 

in a real digital camera, this point is rather presented in the unit of CCD pixel, so 

MD should be transferred to the CCD pixel coordinate system (O0
C-uC,vC) as MP. To 

do so, we introduce the camera intrinsic matrix, and the pixelized coordinate of MP 

is given as: 

 ( , ,1) ( , ,1)P P T D D T
M M M Mx y A x y ,  (3.27) 

where (xM
P,yM

P) is the pixelized coordinate of point MD in (O0
C-uC,vC) coordinate 

system, A is the intrinsic matrix of the camera represented as Eq. (3.28), 

 

0

0

0

0

0 0 1
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y

f u

A f v .  (3.28) 

Here, fx and fy are the camera focal lengths along μ and υ axes (with the unit of CCD 

pixel side length), and (u0,v0) is the principle point of the camera.  

The above-discussed four-steps method enables us to project one point from the 

world coordinate system (which is also the checkerboard coordinate system) to the 
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CCD pixel coordinate system in a distortion considered pinhole camera model. 

However, in the real implementation, we rather have the studied point in the CCD 

pixel coordinate system as MP and we prefer to inversely project it to the world 

coordinate system. Thus, we need to implement the inverse light projection.  

The first step to perform the inverse projection is to transfer point MP from the 

CCD pixel coordinate system (O0
C-uC,vC) to the camera image plane. Hence, we simply 

use the inverse camera intrinsic matrix and we get the following relation as: 

  
1( , ,1) ( , ,1)D D T P P T

M M M Mx y A x y ,  (3.29) 

where matrix A is given in Eq. (3.28), (xM
P,yM

P) is the coordinate of pixel MP in the 

CCD pixel coordinate system, and (xM
D,yM

D) is the x and y components of this point 

in the camera coordinate system (OC-XC,YC,ZC). Here, we need to note that the camera 

lens distortion is not compensated within this step.   

In the second step, we introduce the inverse camera distortion correction to extract 

the ideal projection point MI from the distortion contained point MD. Under this 

scenario, we need to inversely perform the calculation of Eq. (3.25), from which we 

will get the ideal point (xM
I,yM

I) from the distorted point (xM
D,yM

D) in the camera 

coordinate system. Nevertheless, we want to note that the inverse calculation of Eq. 

(3.25) is not analytically obtainable, so we use a least squared technique based 

iteration to obtain the undistorted point [106]. As such distortion correction is already 

provided in the well-developed Bouguet Camera Calibration Toolbox [108], we directly 

use Camera Calibration Toolbox rather than further discussing the iteration algorithm 

here. 

The third step is the inverse perspective projection. In particular, we are interested 

in knowing how one point in the CCD panel is inversely passing through the camera 

optical center (i.e., the pinhole) and goes into the object space (where the measured 

object is located). To do so, we intersect point MI=(xM
I,yM

I,zM
I) on the CCD plane 

with the camera optical center OC=(xOC,yOC,zOC) to establish an inverse projection 

vector VOM
C  in the camera coordinate system, this vector can be described as: 

 , ,I I I
OC M OC M OC Mx x y y z zC

OMV ,  (3.30) 

where (xOC,yOC,zOC) is the coordinate of the camera pinhole OC in (OC-XC,YC,ZC) 

coordinate system. Here, term zM
I is the focal length of the camera which can be 

obtained from camera intrinsic parameter calibration.  
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Vector VOM
C defines the projection ray in the camera coordinate system, so the 

studied point is located somewhere along this vector. Here, we want to emphasize that 

within our structured light measurement systems, by only knowing this inverse vector 

is already enough to perform the geometric triangulation (for SFPP measurement) or 

the inverse ray tracing (for SPMD measurement). The inverse ray tracing for SPMD 

measurement will be systematically described in Chapter 4, and the geometric 

triangulation for SFPP measurement will be comprehensively discussed in Chapter 6, 

respectively. 

Note that vector VOM
C at this moment is defined in the camera coordinate system. 

To perform any further calculation, we need to transform this vector from the camera 

coordinate system to the world coordinate system (i.e., the world coordinate system 

coincides with the checkerboard coordinate system), and this is the fourth step in 

inverse light projection. As the extrinsic parameters of the camera are already 

determined through camera calibration, we can easily transfer vector VOM
C from the 

camera coordinate system to the world coordinate system as: 

   
1W C

OM WtC OMV R V ,  (3.31) 

where RWtC is the rotation matrix from the world coordinate system to the camera 

coordinate system. 

 

3.5 Gamma calibration 

In the previous section, we systematically present the camera calibration. 

Nevertheless, in a structured light measurement system, the projection component 

(i.e., LCD screen or video projector) is another crucial element as it provides sinusoidal 

fringe patterns. For instance, in a stereoscopic fringe projection profilometry system, 

we use a video projector to provide the sinusoidal fringe patterns; whereas in a 

stereoscopic phase measuring deflectometry system, we use an LCD to generate the 

sinusoidal fringe patterns. Thus, the accuracy of the SFP generation through these 

projection components is critical, as it directly decides the accuracy of phase shifting 

and phase unwrapping. Unfortunately, the projection components all present gamma 

effect, and as a consequence, the generated projection intensity responds nonlinearly 

to the gray level sent to the projection components. Such nonlinearity is purposely 

introduced to fit the human vision perception, but it deteriorates the ideal SFPs, and 

thus, it degenerates the accuracy to obtain the unwrapped phase maps. 
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The most common gamma nonlinearity can be seen in Figure 3-5 (a), which is an 

experimentally measured gray level-intensity response of the LCD panel used in our 

deflectometry system (see the red dots). Here, we can easily tell from Figure 3-5 (a) 

that the gray level is not linearly corresponding to the intensity. Hence, it has to be 

compensated until it shows a linear response. To perform gamma nonlinearity 

correction, we select the most robust solution, which is based on the inverse look up 

table (LUT) establishment [68, 73]. To perform the inverse LUT compensation, we 

sequentially send increasing gray levels to the LCD screen and we directly use a 

camera to capture the images on the LCD screen. Afterwards, we select a small central 

section in each intensity pattern captured by the camera and get the average intensity 

in this small section. Now, by using the averaged intensities and their corresponding 

gray levels within all frames, we can fit a gray level-intensity curve and this curve can 

be fitted with a high order polynomial function. This polynomial function is modeled 

into the following form as: 

    0
1

( )
N

i
i

i

I g c c g ,  (3.32) 

where I(g) is the output intensity, g is the gray level sent to the LCD screen, c0 and 

ci are constants, and N is the coefficient order.   

In different projection components, the highest coefficient order ranges distinctly. 

For instance, Zhang used a seventh order polynomial to establish the gamma response 

[73], whereas the lowest polynomial order ever reported is two [111]. In our scheme, 

we find out that a third order polynomial is sufficient to precisely obtain a well fitted 

gray level-intensity curve, as it is shown in Figure 3-5 (a) (see the blue continuous 

curve).  

Once this polynomial function (i.e., gray level versus intensity) is obtained, we 

build its corresponding inverse function (i.e., normalized intensity versus gray level), 

and this inverse function is the inverse look up table (LUT) (see Figure 3-5 (b)). 

Finally, we use this inverse LUT to re-calibrate the gray level-intensity response, and 

the new calibrated response is shown in Figure 3-6 by the red dots. By comparing the 

calibrated gray level-intensity response (red dots in Figure 3-6) to an ideal linear 

response (i.e., the blue line in Figure 3-6), we find out that the gamma nonlinearity is 

corrected, as the red dots accurately coincide with the blue line. In Figure 3-6, one 

may notice that the gray level is not strictly following the range between 0 to 255. 

Nevertheless, the limited range will not influence the gamma correction, because we 

do not use the full intensity range in the real implementation [74].  
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 Gamma nonlinearity calibration of the LCD panel used in the 

stereoscopic phase measuring deflectometry system: (a) The experimentally 

measured gray level-intensity response (the red dots), and the fitted third order 

polynomial gray level-intensity curve (the blue continuous curve); and (b) the 

inverse look up table of the third order polynomial function (the green continuous 

curve). 

 
 The experimentally measured gray level-intensity response after gamma 

correction.    
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3.6 Geometric calibration of the stereoscopic phase 

measuring deflectometry system 

At this moment, we are equipped with both the camera calibration parameters and 

the gamma correction. Hence, we discuss the geometric calibration of the stereoscopic 

phase measuring deflectometry (SPMD) system, from which we can get the internal 

geometric relation between the system components. The SPMD system contains an 

LCD screen, two cameras (i.e., the stereoscopic camera) and the measured specular 

object. The principle scheme for SPMD system calibration is given in Figure 3-7. 

 
Figure 3-7. Basic calibration scheme of the stereoscopic phase measuring 

deflectometry (SPMD) system.  

For SPMD system calibration, the LCD screen is fixed at a given position to 

provide either sinusoidal fringe patterns (for surface measurement) or a digital 

checkerboard pattern (for LCD screen position calibration). On the other hand, two 

cameras are fixed on a movable iron platform. Once we want to change the camera 

positions, we only move the whole iron platform, but we never change the internal 

geometric relation between the two cameras. Here, we want to note that the 

stereoscopic camera movement is introduced to perform the LCD screen position 

calibration (we will discuss this in Section 3.6.2 with more details). Finally, the 

specular object to be measured is placed to the other end of the system, and we let its 

reflective side face the LCD screen. Thus, the measured surface can reflect the SFPs 

on the LCD screen to the stereoscopic camera. Moreover, we can find in Figure 3-7 
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that a laser tracker is introduced. Here, the laser tracker records the camera positions 

with the help of fiducial markers, so we can perform the laser tracker-assisted hand-

eye calibration (we will discuss this in Section 3.6.3). 

 

 Geometric limitations 

To perform the specular surface measurement with a stereoscopic phase measuring 

deflectometry system, we have to guarantee that both cameras can capture the 

sinusoidal fringe patterns reflected by the whole measured surface within their field of 

views. Only under this scenario, the phase correspondence between the LCD screen 

and the cameras can be established. Therefore, the separation limitation between the 

two cameras needs to be decided. Moreover, we also have to investigate the distance 

from the cameras to the measured surface as well as the distance from the cameras to 

the screen.   

To calculate the geometric limitation of a stereoscopic phase measuring 

deflectometry system, we assume a flat mirror as the measured surface placed parallel 

to the LCD screen surface (the LCD screen is regarded as flat) at a distance of d. 

What is more, the mirror central point Om and the screen central point Os are both 

located on the same line perpendicular to both devices. Under this scenario, the vector 

forged by intersecting Om and Os is regarded as the optical axis. To better visualize 

this scheme, we depict this system in Figure 3-8. 

 

Figure 3-8. Principle scheme of the SPMD system by placing both cameras and the 

LCD screen facing the measured flat mirror. 

Then, considering that the LCD screen is reflected by the flat mirror, the image of 

the LCD screen via the mirror is obtained at the back side of the mirror with a same 
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distance of d. The size of the mirror is W and the size of the screen is L. Therefore, 

the screen image obtained by the mirror reflection also has a size of L. On the other 

hand, both cameras are located in front of the screen facing the measured mirror, and 

the distance from both cameras to the screen is set as d1. In other words, this means 

that both cameras are placed at the same distance to the screen in Z direction, and 

the connection vector between the two camera optical centers is parallel to the LCD 

screen. In this case, the connection vector between the two cameras is also parallel to 

the mirror surface, and the separation distance from the cameras to the mirror is 

defined as d2. Moreover, the separation distance between the two cameras is assumed 

to be a. To simplify the system scheme, both cameras are placed at the same distance 

a/2 away from Z axis.  

Note that as the camera has a limited field of view (FOV), the mirror inspection 

size is restricted by both the camera FOV and the distance from the camera to the 

mirror (d2). Considering our SPMD system, the camera FOV is already fixed so that 

the only parameter determining the mirror inspection size is the distance from the 

camera to the mirror (d2). By considering a simple geometric relation, the minimum 

inspection size of a mirror is obtained when the camera is inspecting vertically to the 

mirror and their geometric centers are both located in Z direction as it is demonstrated 

in Figure 3-9 (i.e., the red line case).  

 

Figure 3-9. The camera inspection schemes: (a) The red line case: the camera is 

inspecting the mirror vertically. (b) The blue line case: the camera is inspecting 

the mirror with a tilted angel. (c) The green line case: the camera is inspecting the 

mirror with a greater tilted angel. 
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Then, the minimum distance from the camera to the mirror in Figure 3-9 (the red 

line case) can be represented as: 

    2min
2 tan( 2)

L
d ,  (3.33) 

where L is the size of the mirror and  is the FOV angle of the camera. 

To guarantee that the mirror with the size of L can be totally examined, we have 

to place the mirror in a particular position where the distance from the camera to the 

mirror is greater than d2min, therefore the mirror can be totally observed regardless of 

the spatial position of the camera to the mirror. For instance, if the size of the 

measured mirror is 160 mm, and the camera FOV angle is 11°, then the distance from 

any camera in the SPMD system to the mirror should be greater than 830.8 mm.  

  Once the mirror is deployed, the geometric alignment of the cameras as well as 

the LCD screen should be implemented. In Figure 3-8, apart from the FOV angel , 

two more angles have to be defined. First, we connect the center of the mirror Om to 

the first camera center to forge an input vector V1, then the angle between V1 and Z 

axis is defined as . Afterwards, a second vector V2 is generated by connecting the 

edge of the mirror to the first camera center. At this moment, this third angle, 

represented as the intersection angle between V2 and Z direction, is entitled as . 

Therefore, two geometric relations can be obtained as:   

    
2

,  (3.34) 

    
2

tan
2

a W

d
.  (3.35) 

Subsequently, to ensure that each camera can capture the sinusoidal fringe patterns 

reflected by the whole mirror (so that we can measure the whole mirror), the LCD 

screen should provide a larger illumination area than the whole field of view of any 

camera, so that the mirror can be fully projected. By taking this condition into 

consideration, we can obtain a third geometric relation associating the objective space 

with the image space, and this relation is shown as: 

     tan
2 2

W L
d .  (3.36) 
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Finally, as d2 (distance from the camera to the mirror) is generally much greater 

than W (i.e., W is the size of the mirror), a geometric approximation can be obtained 

by focusing on the triangle forged by the two sides of angle  and the mirror. Such 

approximation is presented below as: 

     
2

tan
W

d
.  (3.37) 

By merging Eqs. (3.35), (3.36) and (3.37) with the condition d=d1+d2, the distance 

between the two cameras can be finally determined as follow: 

     
1

1
tan

1 2 tan
d

a L W d
W

.  (3.38) 

Here, we want to note that in the real implementation, the FOV angle of the 

camera (i.e., ) is normally small, and the camera is generally placed near the screen 

to provide a compact system. Therefore, Eq. (3.38) can be simplified by ignoring the 

d1 and  containing terms and finally the distance between the two cameras is 

represented as Eq. (3.39), as the camera separation distance a is determined by the 

sizes of the screen and the mirror,  

     2a L W .  (3.39) 

At this moment, the complete system geometric scheme is depicted. In order to 

perform the stereoscopic phase measuring deflectometry measurement, the measured 

specular surface has to be placed away from the cameras with a distance greater than 

d2min calculated by Eq. (3.33). On the other hand, these two cameras are arranged in 

a manner that their separation should satisfy the condition as Eq. (3.39). In fact, this 

demonstrates that a bigger screen is favored, and mirror with its size greater than half 

of the screen cannot be directly measured within just one measurement. Moreover, 

the cameras and the screen should be closely aligned (d1 is a small value), so that we 

can obtain a compact system. At last, we should arrange a large camera separation a, 

because a great camera separation favors both the geometric triangulation (for SFPP 

measurement) and the inverse ray tracing (for SPMD measurement). 

 

 LCD screen position calibration 

From Section 3.6.1, we can determine the stereoscopic phase measuring 

deflectometry system scheme, such as where to locate the LCD screen and the 
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stereoscopic camera. Now, to perform the inverse ray tracing for specular surface 

normal calculation, we should determine the position of the LCD screen with respect 

to the stereoscopic camera. In other words, we need to perform the coordinate system 

transformation from the LCD screen coordinate system to the camera coordinate 

system. To describe such coordinate system transformation, we present all the 

coordinate systems in an SPMD system in Figure 3-10.  

 

Figure 3-10. The LCD screen position calibration scheme: (a) Step 1, hand-eye 

calibration from which we can transform between the first camera coordinate 

system and the iron platform coordinate system. The coordinate system of the first 

camera at position A (O1-X1,Y1,Z1) is regarded as the world coordinate system. (b) 

Step 2, the platform transformation between position A and position B. This 

transformation is implemented to guarantee that the cameras can inspect the LCD 

screen. (c) Step 3, the inverse hand-eye calibration that we transform between the 

platform coordinate system and the first camera coordinate system at position B. 

(d) Step 4, the “inverse” camera calibration to determine the transformation 

between the LCD screen and the first camera at position B.   

In Figure 3-10, the stereoscopic camera is fixed on an iron movable platform and 

this platform is initially located at position A. The LCD screen is placed on the other 

side and its projection direction is the same as the camera inspecting direction. The 

coordinate system of the first camera at position A is entitled as (O1-X1,Y1,Z1), the 
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coordinate system of the second camera at position A is defined as (O2-X2,Y2,Z2), the 

geometric relation between (O2-X2,Y2,Z2) and (O1-X1,Y1,Z1) can be obtained through 

stereoscopic camera calibration. Afterwards, we also define the coordinate system of 

the iron movable platform at position A as (OP-XP,YP,ZP), and the coordinate system 

of the LCD screen as (OLCD-XLCD,YLCD,ZLCD). In this section, we focus on the coordinate 

system transformation from the LCD screen to the first camera, and such 

transformation is described as from (OLCD-XLCD,YLCD,ZLCD) to (O1-X1,Y1,Z1). 

To perform the coordinate system transformation from (OLCD-XLCD,YLCD,ZLCD) to 

(O1-X1,Y1,Z1), we need to define the world coordinate system of the whole SPMD 

system at the very beginning. In this case, we define the coordinate system of the first 

camera at position A (O1-X1,Y1,Z1) as the world coordinate system. The optical center 

of this camera is the world coordinate origin, the optical axis of the first camera is Z 

axis of the world coordinate system, and it is a right hand coordinate system.  

Once the world coordinate system is defined, we present the LCD screen position 

calibration process. This calibration can be sequentially performed in four steps as: (i) 

the hand-eye calibration, (ii) the platform transformation calibration, (iii) the inverse 

hand-eye calibration, and (iv) the “inverse” camera calibration. These four steps can 

be seen in Figure 3-10.  

The first step in LCD screen position calibration is the hand-eye calibration. Now, 

as both cameras are fixed on the movable platform, we regard the movable iron 

platform as the “robot hand” which provides the camera location transformation, and 

we also regard the cameras as the “eye” to inspect the measured surface. The 

coordinate system transformation from “hand” to “eye” is presented as the 

transformation from (OP-XP,YP,ZP) to (O1-X1,Y1,Z1), and such coordinate system 

transformation is entitled as the hand-eye calibration. This hand-eye calibration is 

mathematically presented by matrix HtE. As hand-eye calibration is complex, it is 

later comprehensively discussed with a whole sub-section (Section 3.6.3). 

The second step is the platform transformation calibration. Now, as both cameras 

are still positioned at A to inspect the measured surface, they cannot inspect the LCD 

screen. Thus, to calibrate the transformation from the LCD screen coordinate system 

to the world coordinate system, we move the whole iron platform from position A to 

position B, so that the cameras can inspect the LCD screen now. The coordinate 

system of the movable platform as position B is entitled as (OP’-XP’,YP’,ZP’), and the 

coordinate system of the first camera at position B is (O1’-X1’,Y1’,Z1’). The platform 

coordinate system transformation from position B to position A is mathematically 
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described as matrix RTBtA (i.e., from (OP’-XP’,YP’,ZP’) to (OP-XP,YP,ZP)). Here, to 

obtain matrix RTBtA, we introduce the laser tracker. In particular, we put six fiducial 

markers above both cameras at position A, and we use a laser tracker to record the 

positions of these six fiducials at position A with respect to the laser tracker head (see 

the sub-figure at the left side in Figure 3-10). Afterwards, we move the movable 

platform to position B, and we perform laser tracking again to get the six fiducial 

locations at position B. Now, with the six fiducial positions in both position A and 

position B, we can calculate the platform transformation matrix RTBtA from (OP’-

XP’,YP’,ZP’) to (OP-XP,YP,ZP). Specifically, the calculation can be described by the 

following equation: 

      

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

’ ’ ’ ’ ’ ’

’ ’ ’ ’ ’ ’
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1 1 1 1 1 1 1 1 1 1 1 1

x x x x x x x x x x x x

y y y y y y y y y y y y

z z z z z z z z z z z zBtART ,  (3.40) 

where term (xi,yi,zi) on the left side of the equation means the six fiducial marker 

positions measured by the laser tracker at position A, term (xi’,yi’,zi’) on the right side 

of the equation means the six fiducial marker positions measured by the laser tracker 

at position B, and term RTBtA is a 4×4 matrix representing the platform 

transformation from position B to position A. Here, as we use six fiducials, the number 

of i is six. 

The third step is the inverse hand-eye calibration. Nevertheless, as the inverse 

hand-eye calibration is simply the inverse calculation of the first step, it is not 

discussed here. 

The fourth step is the “inverse” camera calibration. For this step, we use the first 

camera at position B to perform the “inverse” camera calibration to decide the 

coordinate system transformation from (OLCD-XLCD,YLCD,ZLCD) to (O1’-X1’,Y1’,Z1’). In 

particular, we generate a digital checkerboard on the LCD screen, and we let the 

digital checkerboard coordinate system origin coincide with the LCD screen center. 

Therefore, the LCD coordinate system coincides with this digital checkerboard 

coordinate system. Now, by using the first camera at position B to inspect the digital 

checkerboard on the LCD screen, we can perform the “inverse” camera calibration 

with Camera Calibration Toolbox to get the coordinate system transformation matrix 

from (OLCD-XLCD,YLCD,ZLCD) to (O1’-X1’,Y1’,Z1’). This transformation matrix is in fact 

the extrinsic camera calibration parameter. Nevertheless, with only one frame, we 

cannot perform the “inverse” camera calibration, but more frames are required to 



   71 

 

guarantee the “inverse” camera calibration accuracy. Therefore, we shift the movable 

platform from position B to more positions (i.e., such as position C in Figure 3-10), 

where the first camera can still inspect the digital checkerboard to accomplish the 

“inverse” camera calibration. Based on this principle, we shift the iron platform to 40 

different positions. Once we accomplish the “inverse” camera calibration with placing 

the camera at 40 different positions, we then select the particular coordinate system 

transformation relation from (OLCD-XLCD,YLCD,ZLCD) to (O1’-X1’,Y1’,Z1’), and it is 

presented as matrix RTLCDtC1’ as the fourth step in Figure 3-10. 

Once we get all the coordinate system transformation matrices of all four steps in 

Figure 3-10 (i.e., matrix RTLCDtC1’ for Step 4, matrix HtE -1 for Step 3, matrix RTBtA 

for Step 2, and matrix HtE for Step 1), we move the movable platform back to the 

initial position A, so that the stereoscopic camera can inspect the measured specular 

surface again. 

At this moment, we can establish the coordinate system transformation from (OLCD-

XLCD,YLCD,ZLCD) to (O1-X1,Y1,Z1) sequentially by four steps as: (i) the “inverse” camera 

calibration from (OLCD-XLCD,YLCD,ZLCD) to (O1’-X1’,Y1’,Z1’) (i.e., Step 4 in Figure 3-10, 

RTLCDtC1’); (ii) the inverse hand-eye calibration from (O1’-X1’,Y1’,Z1’) to (OP’-

XP’,YP’,ZP’) (i.e., Step 3 in Figure 3-10, HtE-1); (iii) the iron platform transformation 

from (OP’-XP’,YP’,ZP’) to (OP-XP,YP,ZP) (i.e., Step 2 in Figure 3-10, RTBtA); and (iv) 

the hand-eye calibration from (OP-XP,YP,ZP) to (O1-X1,Y1,Z1) (i.e., Step 1 in Figure 3-

10, HtE). 

From the above discussion, we know the complete process to perform the LCD 

screen position calibration. Now, we mathematically describe the geometric 

transformation between the LCD screen and the first camera at position A. To do so, 

we select one point S=(xLCD,yLCD,zLCD) in the LCD coordinate system (OLCD-

XLCD,YLCD,ZLCD) to perform the analysis.  

Firstly, we transform point S from (OLCD-XLCD,YLCD,ZLCD) coordinate system to 

(O1’-X1’,Y1’,Z1’) coordinate system, and point S can be obtained in (O1’-X1’,Y1’,Z1’) 

(i.e., the coordinate system of the first camera at position B) as: 

     ( , , ,1) ,’ , ,1’ ’ ( )C C C LCD LCD LCD
T Tx y z x y zLCDtC1’RT .  (3.41) 

where (xC’,yC’,zC’) is the coordinate of point S in (O1’-X1’,Y1’,Z1’) coordinate system. 
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Secondly, we sequentially transform point S from (O1’-X1’,Y1’,Z1’) coordinate 

system to (OP’-XP’,YP’,ZP’) coordinate system through inverse hand-eye calibration 

as: 

      ( , , ,1 ’) ( , , ,1)’ ’ ’ ’ ’P P C CP C
T Tx y z x y z-1HtE ,  (3.42) 

where HtE-1 is the inverse hand-eye calibration matrix, and (xP’,yP’,zP’) is the 

coordinate of point S in (OP’-XP’,YP’,ZP’) coordinate system.  

Thirdly, point S is transformed from (OP’-XP’,YP’,ZP’) coordinate system to (OP-

XP,YP,ZP) coordinate system (see the platform at position A in Figure 3-10). Under 

this scenario, point S in (OP-XP,YP,ZP) coordinate system is written as: 

      ( , , ,1) ’( , , ,1)’ ’PPP P P P
T Tx y z x y zBtART ,  (3.43) 

where RTBtA is the platform transformation matrix from position B to position A. 

Finally, we introduce the hand-eye calibration to transform point S from (OP-

XP,YP,ZP) to (O1-X1,Y1,Z1). Then, point S is finally transformed into the world 

coordinate system (i.e., the coordinate system of the first camera at position A) as: 

      ( , , ,1) ( , , ,1)C C C P P P
T Tx y z x y zHtE ,  (3.44) 

where HtE is the hand-eye calibration matrix. 

From the above-discussed four steps, we can transform any point in the LCD screen 

coordinate system (OLCD-XLCD,YLCD,ZLCD) to the world coordinate system (O1-X1,Y1,Z1) 

through the platform B path by the following relation: 

     ( , , ,1) ( , , ,1)C C C LCD LCD LCD
T Tx y z x y zB LCDtC

-
tA ’

1
1HtE RT Rt TH E .  (3.45) 

Here, we write the matrix production of the whole inner terms as RTLCDtW to 

define the transformation from the LCD coordinate system to the world coordinate 

system. RTLCDtW then is presented as: 

     
-1

LCDtW BtA ’LCDtC1R RT HtE RT H E Tt .  (3.46) 

Here, we want to note that in the real experimental implementation, we not only 

transform the iron platform to just one position (i.e., position B), but we rather 

introduce 40 times the iron platform transformations (i.e., such as position C) to 

discriminate the “inverse” camera calibration error. Thus, we may encounter one issue 

as to define which transformation path among these 40 transformations should be 

used to perform the LCD screen coordinate system determination. Theoretically, any 
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path should yield a same result, because the absolute geometric position between the 

LCD screen and the initial iron platform (first camera at position A) is never changed. 

However, due to the laser tracking error and the LCD screen calibration error, the 

transformation relation between the LCD screen coordinate system (OLCD-

XLCD,YLCD,ZLCD) to the world coordinate system (the world coordinate system is also 

the coordinate system of the first camera at position A, (O1-X1,Y1,Z1)) may vary 

slightly within each transformation path. Thus, we obtain all RTLCDtW terms 

corresponding to all 40 platform transformations and then we calculate an average 

transformation matrix from these 40 results. This averaged matrix is regarded as the 

real transformation matrix from the LCD screen coordinate system to the world 

coordinate system. 

 

 Laser tracker-assisted hand-eye calibration 

As it is previously described, to perform the complete coordinate system 

transformation from (OLCD-XLCD,YLCD,ZLCD) to (O1-X1,Y1,Z1), we need to obtain the 

coordinate system transformation from (OP-XP,YP,ZP) to (O1-X1,Y1,Z1), and this is 

called the hand-eye calibration (i.e., matrix HtE in Section 3.6.2). To perform the 

hand-eye calibration, not only we need to move the iron platform to different places 

(such as position B or position C in Figure 3-10) to inspect the digital checkerboard 

on the LCD screen from different perspectives, but we also need to use a laser tracker 

to record the iron platform location corresponding to any movement position. Here, 

we again use the same SPMD scheme presented in Figure 3-10 to comprehensively 

describe the hand-eye calibration. 

For hand-eye calibration, we preliminarily focus on the movable platform at 

position A. Here, the coordinate system of the first camera at position A (O1-X1,Y1,Z1) 

is the world coordinate system. Now, we put six fiducial markers above both cameras 

(see the example in the sub-figure at the left bottom corner in Figure 3-10, each 

camera supports three fiducial markers), and we regard these six fiducial markers be 

in the iron platform coordinate system (OP-XP,YP,ZP). In particular, we need to note 

that once the fiducial markers are fixed, we never change their positions. Afterwards, 

we introduce a laser tracker to track the spatial positions of these fiducial markers 

(see the red dash lines in Figure 3-10), so we know the spatial positions of all six 

fiducial markers at position A with respect to the laser tracker head system (OL-

XL,YL,ZL).  
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Later, we move the movable platform to position B, where the six fiducial markers 

are located in the new iron platform coordinate system (OP’-XP’,YP’,ZP’). Once it is 

moved to position B, we firstly use the laser tracker to again track the spatial positions 

of all fiducial markers. Here, as the movable platform transformation is a rigid body 

transformation, we use the positions of these six tracked fiducial in both (OP-XP,YP,ZP) 

and (OP’-XP’,YP’,ZP’) to calculate the rigid body transformation matrix RTBtA (see 

the orange curve RTBtA in Figure 3-10). Here, RTBtA implies the coordinate system 

transformation from (OP’-XP’,YP’,ZP’) to (OP-XP,YP,ZP). On the other hand, we use 

the first camera at position B to inspect the LCD screen, where the LCD screen 

presents a checkerboard pattern. The first camera at position B then record the digital 

checkerboard pattern on the LCD screen, and this frame is later used for the “inverse” 

camera calibration. From such “inverse” camera calibration, we can determine the 

transformation matrix RTLCDtC1’ from (OLCD-XLCD,YLCD,ZLCD) to (O1’-X1’,Y1’,Z1’) (see 

the purple curve RTLCDtC1’ in Figure 3-10).  

However, if we only capture one digital checkerboard pattern at position B, we 

cannot perform the “inverse” camera calibration because there is only one frame. Thus, 

we move the iron platform to another position C to repeat another calibration. 

Specifically, we track the six fiducial trackers when the platform is moved to position 

C, so we get the rigid body transformation matrix RTCtA from (OP’’-XP’’,YP’’,ZP’’) to 

(OP-XP,YP,ZP) (see the orange curve RTCtA in Figure 3-10). On the other side, we use 

the first camera at position C to capture the checkerboard pattern on the LCD screen, 

so we can also accomplish another “inverse” camera calibration to determine the 

transformation matrix RTLCDtC1’’ from the LCD screen coordinate system (OLCD-

XLCD,YLCD,ZLCD) to the first camera coordinate system (O1’’-X1’’,Y1’’,Z1’’) (see the 

purple curve RTLCDtC1’’ in Figure 3-10). 

Finally, we repeat this above-demonstrated steps for in total 40 times in the real 

implementation (these 40 times include position A and position B). We move the 

platform to 40 different positions and use the first camera to capture the checkerboard 

pattern on the LCD screen from 40 different perspectives, so that the “inverse” camera 

calibration is performed with all these 40 different positions, and we obtain 40 different 

extrinsic camera calibration parameters. On the other hand, we also use the laser 

tracker to record the positions of the fiducial markers on the iron platform with respect 

to these 40 movements, and we get 40 rigid body transformation matrices. Then, the 

laser tracker-assisted hand-eye calibration can be obtained through these 40 

movements. The procedure to mathematically obtain the hand-eye calibration matrix 

HtE is discussed below.  
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Here, we use the iron platform at both position B and position C as an example to 

demonstrate the matrix HtE calculation. We firstly move the iron platform from 

position A to position B, and we can use the laser tracker to experimentally measure 

RTBtA (i.e., the platform transformation matrix from position B to position A). 

Afterwards, we move the iron platform from position B to position C, we can use the 

laser tracker to get RTCtA (i.e., the platform transformation matrix from position C 

to position A). Now, RTBtA and RTCtA can be mathematically described as: 

     
0 1
BtA BtA

BtA
R T

RT ,  (3.47) 

     
0 1
CtA CtA

CtA
R T

RT .  (3.48) 

At this moment, we can determine the platform transformation from position B to 

position C as: 

     
-1

BtC CtA BtART RT RT .  (3.49) 

On the other hand, we experimentally measure RTLCDtC1’ by “inverse” camera 

calibration. Here, RTLCDtC1’ is the coordinate transformation matrix from the LCD 

coordinate system (OLCD-XLCD,YLCD,ZLCD) to the first camera coordinate system at 

position B (O1’-X1’,Y1’,Z1’). Moreover, we also get RTLCDtC1’’ from the secondary 

“inverse” camera calibration. Here, RTLCDtC1’’ is the transformation matrix from the 

LCD coordinate system (OLCD-XLCD,YLCD,ZLCD) to the first camera coordinate system 

at position C (O1’’-X1’’,Y1’’,Z1’’). RTLCDtC1’ and RTLCDtC1’’ are mathematically 

described as: 

     
0 1

LCDtC1’ LCDtC1’
LCDtC1’

R T
RT ,  (3.50) 

     
0 1

LCDtC1’’ LCDtC1’’
LCDtC1’’

R T
RT .  (3.51) 

Thus, we describe the first camera coordinate system transformation from position 

B (O1’-X1’,Y1’,Z1’) to position C (O1’’-X1’’,Y1’’,Z1’’) as: 

     C1’tC1’’ LCDt
1

C1’’ LCDtC1’
-RT RT RT .  (3.52) 
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Once we obtain the relations in Eqs. (3.49) and (3.52), we can establish the unitary 

coordinate system transformation between position B and position C (see the closed 

inner loop constructed by the purple RTC1’tC1’’ curve, the two red HtE curves, and 

the orange RTBtC curve in Figure 3-10), and the internal transformation relation in 

this loop can be demonstrated as: 

     
1

C1’tCC ’’
-

Bt 1RT HtE HtERT . (3.53) 

where HtE is the hand-eye calibration matrix which we want to obtain. Furthermore, 

Eq. (3.53) can be transformed into: 

     C1’tC1BtC ’’RT HtE HtE RT . (3.54) 

Now, we want to calculate term HtE in Eq. (3.54). Therefore, we analogues Eq. 

(3.54) as the following equation: 

      A X X B , (3.55) 

where A and B are experimentally measured, and we only have to calculate matrix 

X. 

To calculate matrix X, we can introduce various algorithms that are well developed 

in the robotics community. The most classic methods are listed as: (i) the linear 

algebra method proposed by Tsai and Lenz [112], (ii) the simultaneously nonlinear 

minimization method (based on the rotation quaternation and the shifting vector) 

proposed by Horaud and Dornaika [113], (iii) the exact and least-squares solutions 

proposed by Park and Martin [114], and (iv) the unit dual quaternion method 

proposed by Daniilidis [115].  

In our system, we select Tsai method to perform the hand-eye calibration as it 

yields a robust calibration. In particular, we use Matlab Toolbox developed by 

Christian Wengert [116], which is based on Tsai method, to accomplish the 

experimental hand-eye calibration. Moreover, Tsai has proved that by introducing 

more platform transformation, the hand-eye calibration error can be dramatically 

reduced [112]. Thus, in our experimental calibration, we transform the platform to 40 

different positions to accomplish the hand-eye calibration. 
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3.7 Stereoscopic fringe projection profilometry system 

calibration 

In a stereoscopic fringe projection profilometry (SFPP) system, we use the same 

stereoscopic camera to inspect the measured diffuser object, but we replace the LCD 

screen by a video projector, so that the projection intensity on the diffuser object is 

strong enough to be detected. Moreover, as surface point determination in an SFPP 

system is performed by the geometric triangulation between the stereoscopic camera 

(see Section 1.3.3), we no longer need the inverse ray tracing, and thus, the video 

projector position calibration is not mandatory. In fact, we only need to put the video 

projector at a proper position where it can illuminate the measured object 

homogeneously. Under this scenario, the SFPP system calibration is more 

straightforward, as we only need to determine the geometric relation between the two 

cameras. 

Here, we directly use the same stereoscopic camera calibration discussed in Section 

3.4.2 to determine the geometric relation between the two cameras. Note that as the 

stereoscopic camera system is used in both an SFPP and an SPMD system, we only 

calibrate the stereoscopic camera for one time and this stereoscopic camera system is 

universally used in both stereoscopic fringe projection profilometry and stereoscopic 

phase measuring deflectometry.  

Apart from the stereoscopic camera calibration, we also need to adjust the image 

projecting frequency of the video projector and the image receiving frequency of the 

camera to be equal. The video projector in our SFPP system is an LCD chip-based 

video projector, and it has the ability to process limited patterns in a given time. For 

instance, if the video projector can process 60 images within 1 second, then its 

frequency is 60 Hz. On the other hand, the camera is able to capture limited images 

in a given time. For instance, if we use the camera to capture 60 images within 1 

second, then the camera frequency is 60 Hz. Here, if we want to use the camera to 

capture the correctly corresponding frame provided by the video projector, we have 

to set the frequency of the camera equal to the frequency of the video projector. 

Otherwise, if the frequencies between the video projector and the camera are not 

equal, we will observe a “flicker effect” in the camera which will deteriorate the 

received image intensity distribution, and therefore, the accuracy of the unwrapped 

phase map will be degenerated. 
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Chapter 4  Stereoscopic phase 

measuring deflectometry technique 

In this chapter, we present the stereoscopic phase measuring deflectometry (SPMD) 

technique to measure the shape of a specular surface. In Section 4.1, we propose a 

height-normal ambiguity elimination method, from which we can obtain both the 

surface normal and the absolute surface height of the measured object, simultaneously. 

In particular, the height-normal ambiguity elimination is accomplished by minimizing 

the difference between the phase distributions on the LCD and the stereoscopic 

camera. To accomplish this, we develop a polynomial fitting method in Section 4.2, 

and the surface normal is therefore determined. Moreover, to enhance the surface 

normal measurement accuracy, we also introduce sub-pixel interpolation to establish 

the correspondence between the phase maps on the LCD plane and the camera image 

plane. Specifically, two different methods described as bi-linear sub-pixel interpolation 

and bi-cubic sub-pixel interpolation are discussed in Section 4.3, respectively. Here, 

we select bi-cubic interpolation method to obtain a better performance. Finally, once 

we obtain the surface normal distribution of the complete measured surface, we use a 

2D Fourier transform integration method to reconstruct the specular surface shape.  

 

4.1 Height-normal ambiguity elimination 

Stereoscopic phase measuring deflectometry (SPMD) is a specular surface shape 

measurement technique based on surface normal calculation. In this section, we 
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introduce the principle of SPMD measurement, and we use a phase difference 

minimization method to solve the height-normal ambiguity issue in the SPMD system.  

Stereoscopic phase measuring deflectometry system consists of a flat LCD screen 

displaying sinusoidal fringe patterns (SFPs), two cameras capturing the reflected 

fringes, and the tested specular surface. In this case, the phase distribution on the 

LCD is recorded, and we use this phase distribution to generate the SFPs. Later, the 

fringe patterns are reflected by the specular surface and then being captured by both 

cameras. Now, we use the camera distortion coefficients, which are obtained from the 

camera intrinsic parameter calibration (see Section 3.4.1), to undistort the captured 

sinusoidal fringe pattern images. Once we have the undistorted sinusoidal fringe 

patterns captured by the cameras, we use phase shifting and phase unwrapping to 

calculate the unwrapped phase distributions into both cameras. At this moment, as 

we have the phase distribution on the LCD and the phase maps in both cameras, we 

use these phase maps to perform the inverse ray tracing to determine the surface 

normal.  

 
 Scheme of the inverse ray tracing from the pinhole camera to the LCD 

screen. 

Here, the inverse ray tracing is described in four sequential steps by using a pinhole 

camera model in Figure 4-1: (i) we select one point A on the camera image plane, 

then we record both the phase value and the spatial position of this point, (ii) we 

connect the camera pinhole O to this point to forge the primary vector, then we choose 

one point S along this vector as the reflection point, (iii) we find on the LCD screen 

another point B that it has the same phase value as it of the selected point A, (iv) 

we record the position of point B, and then we connect S with B to forge the second 

vector. From these two vectors, we can calculate the normal to the surface. The inverse 

ray tracing thus is described as the projection from the pinhole camera to the LCD 

screen.  
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Now, as the inverse ray tracing has been presented, we discuss the surface normal 

determination in a stereoscopic phase measuring deflectometry (SPMD) system with 

Figure 4-2. 

 

 Scheme of the SPMD system for surface normal determination. 

To perform the SPMD surface point determination, we firstly calculate the phase 

maps in both cameras using the captured fringe pattern images with phase shifting 

and phase unwrapping. Here, we need to emphasize that as we have already used 

camera distortion coefficients to correct the distortion of the fringe pattern images, 

these images are in fact presented without any optical distortion. Next, we select any 

given point A1 on the first camera image plane, and we build the basic vector V1 by 

connecting A1 with the camera pinhole OC1. Here, V1=A1 -OC1. V1 is presented in 

Figure 4-2 as the red solid line, and the phase value of A1 is ΦA. Then, we find on the 

LCD screen a certain point LA which contains the same phase value as it of A1 by 

sub-pixel interpolation (this is to be discussed in Section 4.3). Here, the phase value 

of point LA is as well ΦA. Now, because the phase value is not changed through surface 

reflection, we can tell that the ray exits from LA is reflected by the specular surface 

and then being projected to the pinhole of the first camera through A1. Thus, the 

actual surface point corresponding to A1 must be located at one point along vector 

V1, but the height-normal ambiguity restricts us from finding this real surface point. 
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Nevertheless, we can select any point P along V1, and we obtain the reflected ray as 

PLA (PLA=LA - P). Then, by using Reflection Law, the surface normal n at point P 

can be obtained (n=PLA -V1). Here, we give three potential surface points (i.e., P1, 

P2 and P3 in Figure 4-2) along vector V1, and their corresponding normal are drawn 

in Figure 4-2. Within these three points, we assume that P1 is the real surface point, 

whereas P2 and P3 represent the fake surface points.  

For the next step, we introduce the second camera to find the real surface point 

along V1. Here, with the help of the second pinhole camera, another inverse ray tracing 

relation is established. Let point P along V1 be the hypothetical surface point, then 

vectorV2 joining point P with the second camera pinhole OC2 is computed (V2=P -

OC2). The intersection of V2 to the second camera image plane gives us point B (see 

the gray line case in Figure 4-2), and its phase value ΦB is calculated through sub-

pixel interpolation (this is to be discussed in Section 4.3). As it was previously 

described, the normal to the hypothesis surface point P (i.e., n) was calculated from 

the first pinhole camera, so we use such normal n to determine the inverse reflection 

point LB on the LCD plane corresponding to point B. We also want to note that the 

phase value at point LB is also calculated through sub-pixel interpolation as ΦLB (this 

sub-pixel interpolation is also to be discussed in Section 4.3). Now, if the hypothetical 

point P we selected coincides with the real surface point P1, the phase values at B1 

and LB1 (i.e., ΦB1 and ΦLB1) should be equal, this is shown in Figure 4-2 as the green 

lines. However, if the hypothetical point P we picked is a fake surface point P2, then 

the corresponding points on both the LCD screen and the second camera image plane 

as B2 and LB2 have different phase values (yellow solid lines obtained from n2 in 

Figure 4-2). Thus, the phase difference between these two points is not zero. The 

reason to such phase difference is that in the real implementation, LB2 is reflected by 

another surface point rather than P2 and this leads to the real reflected point located 

somewhere else but not B2. Finally, we also pick a third fake point P3 as the 

hypothetical surface point. By comparing it to P2, point P3 is located farther to the 

real surface point P1 along vector V1 (see the blue solid line case in Figure 4-2). Thus, 

the phase difference between P3 and LB3 is greater than it of the P2 case.  

From the above discussion, the surface point determination can be performed by 

minimizing the absolute phase difference with respect to point P along vector V1. We 

should highlight that the absolute phase difference along the inspecting vector (i.e. 

V1) is a smooth function presenting only one minimum, and this minimum point 

coincides with the real surface point. Under this scenario, the square of the phase 

difference corresponding to this real surface point should also be a minimum. Thus, 
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the surface point determination can be transferred into finding one point along vector 

V1 which allows the phase difference square value between the second camera and the 

LCD being the minimum. Then, the surface point determination is mathematically 

obtained by minimizing the phase difference square function. Finally, to numerically 

present the whole surface normal measurement process, we describe the complete 

mathematical phase minimization process in Appendix. 

 

4.2 Iterative algorithm for surface point determination 

By now, the surface point determination is analogous as finding one point along 

the inspecting vector V1 that makes its corresponding phase difference square value 

between the second camera and the LCD to be the minimum. Thus, to execute the 

surface point determination, we have the following mathematical expression as: 

     
2( )B LB ,  (4.1) 

where  is the square of the phase difference, ΦB and ΦLB are the correspondent phase 

values on the second camera image plane and the LCD panel with respect to the 

potential surface point along V1, respectively. In Eq. (4.1), we want to obtain the 

square of the phase difference equal as zero. However, the phase acquisition error (i.e., 

error from the camera pixel quantization) or the system calibration error in the real 

implementation leads the minimum phase difference square greater than zero. So, we 

set another tiny value , and it denotes an arbitrary small quantity with respect to 

the square of the phase difference. If phase difference square  of a surface point along 

the inspecting vector V1 is smaller than this tiny value , we take this point and 

regard it as the real surface point. To perform the surface point determination process 

with Eq. (4.1), we have discussed a polynomial fitting phase minimization method.  

 In polynomial fitting phase minimization method, we preliminarily select a pixel 

on the first camera image plane and forge its inspecting vector V1. Afterwards, we 

pick several hypothesis surface points along V1. Once these hypothesis points are 

selected, we perform the inverse ray tracing between the second pinhole camera and 

the LCD to all these selected hypothesis surface points, from which the phase 

difference square values of these hypothesis points are all calculated. For instance, we 

select 6 hypothesis points as P1 to P6, and their corresponding phase difference square 

values are calculated as ΔΦP1 to ΔΦP6. Here, these six hypothesis points are depicted 

as the red dots in Figure 4-3. Moreover, O represents the real surface point, the 
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horizontal axis means the position of the hypothesis point to the real surface point. 

Now, we fit these phase difference square values to a second order polynomial function 

as the purple curve. Finally, as we get the mathematical description of this second 

order polynomial function, we look for its minimum. Then, we decide this minimum 

point in the polynomial function as the real surface point (i.e., purple dot P).  

 

 Schematic diagram to determine the real surface point by using a 

polynomial fitting method. The red dots are the hypothesis surface points along 

vector V1, and the purple curve is the polynomial function curve fitted by using 

the red dots. 

To accomplish a robust phase minimization, it is better to locate the hypothesis 

surface points close to the real surface. However, the hypothesis points may not always 

be directly estimated close to the actual surface in the real implementation, and 

therefore, the surface point determination may not be directly accomplished by 

performing just one time the polynomial fitting minimization. Nevertheless, as 

polynomial fitting guarantees the phase difference square value being gradually 

modulated close to the minimum, we can then determine the final surface point 

accurately by simply introducing more iterations until the phase difference square 

value  is smaller than  (see Figure 4-3 and Eq. (4.1)). Hence, we give the flow chart 

in Figure 4-4 to present the phase minimization iteration.  

In Figure 4-4, we firstly determine several hypothesis points along the inspecting 

vector V1 and calculate their corresponding phase difference square values between 

the second camera and the LCD. This is entitled as Step 1. In Step 2, we use these 
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obtained phase difference square values to fit a second order polynomial function. 

Thus, the particular surface point P corresponding to the minimum value of this 

polynomial function is obtained. In Step 3, once we obtain this surface point P through 

polynomial fitting, we again calculate its phase difference square value between the 

LCD and the second camera, and this value at point P is calculated as . In Step 4, 

we compare this phase difference square value  at point P with . If this  at point 

P is smaller than , we terminate the process and then we output this point P as the 

actual surface point. Otherwise, if this  at point P is larger than , we trigger the 

subsequent polynomial fitting iteration until  becomes smaller than  (see Eq. (4.1)). 

Finally, we want to emphasize that the hypothesis surface points vary within each 

iteration loop, and they are gradually approaching the real surface point thanks to the 

smooth behavior of the phase difference square function. 

 
 Flow chart of the surface point determination process using the second 

order polynomial fitting iteration method. 
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Finally, we want to note that in the real experimental implementation, polynomial 

fitting method is efficient as most surface points on the tested surface can be directly 

decided without any iteration calculation. 

 

4.3 Sub-pixel interpolation 

To obtain the surface normal from inverse ray tracing, we need to establish the 

phase pair correspondence between the camera image plane and the LCD plane. 

However, as it is discussed in Section 3.2, the LCD pixel or the CCD pixel introduces 

a quantization error to the phase function because of the finite size of the pixel [89], 

and thus, the phase pair correspondence is affected by such quantization error. To 

solve this error, sub-pixel interpolation [117–119] is proposed to achieve an accurate 

phase pair correspondence. 

 
 Scheme of sub-pixel interpolation between the LCD panel and the 

camera image planes. The LCD panel contains a 3×3 pixel region, the first camera 

image plane has a 3×3 pixel region, and the second camera image plane as well has 

a 3×3 pixel region.  

For instance, we select pixel PCCD1 in the first CCD panel and we get its phase 

value as ΦA (see the middle sub-figure in Figure 4-5). Here, point A is the geometric 

center of this CCD pixel. On the other side, we find its corresponding phase pair pixel 

PLCD1 on the LCD panel, that the phase value at PLCD1 is the closest to the phase value 

at pixel PCCD1. In this case, we use the LCD pixel center (i.e., point A’) to describe 

the geometric position of pixel PLCD1. Nevertheless, even though we can determine the 

phase pair correspondence at the pixel level, the phase value at point A’ in the LCD 

plane is not exactly equal to ΦA due to the LCD pixel quantization error. In fact, the 

real phase value of point A’ is ΦA’, from which ΦA’ = ΦA+ Φ, where Φ is a tiny phase 



   87 

 

offset introduced by the pixel quantization error. Under this scenario, to accurately 

perform the inverse ray tracing, we need to find a point that its phase value is exactly 

ΦA rather than ΦA’ in this LCD pixel. To do so, we search point A’’ (i.e., phase value 

of A’’ is ΦA) in the same LCD pixel PLCD1, but this point is located in another 

geometric position rather than the center of pixel PLCD1. Therefore, we have to 

introduce a sub-pixel interpolation method to decide the position of A’’, so that we 

can establish a refined correspondence between the LCD screen and the first camera 

image plane. To be more specific, we use a sub-pixel interpolation method to calculate 

the geometric position of point A’’ in the LCD pixel PLCD1. Here, we introduce both 

bi-linear interpolation and bi-cubic interpolation, and they are later discussed. 

After we have established the phase point correspondence between the first camera 

and the LCD by using sub-pixel interpolation, we also need to perform a secondary 

sub-pixel interpolation between the second CCD plane and the LCD plane. In 

particular, we perform the inverse ray tracing between the LCD and the second 

camera, so we obtain two corresponding points as B on the second CCD plane (see 

the right sub-figure in Figure 4-5) and B’’ on the LCD panel. Here, point B’’ is 

located in pixel PLCD2, and point B is located in pixel PCCD2. Nevertheless, both B’’ 

and B are not located at their pixel centers. Thus, the phase values at point B’’ and 

B cannot be directly given, but we also need to calculate their phase values again by 

using sub-pixel interpolation. 

 

4.3.1 Bi-linear interpolation 

To obtain an accurate phase pair correspondence between the CCD plane and the 

LCD plane, we firstly present bi-linear sub-pixel interpolation between the first CCD 

panel and the LCD panel. In this bi-linear interpolation scheme, we have the phase 

information (i.e., the vertical phase value and the horizontal phase value) of any LCD 

pixel center and they are entitled as (ΦhLCD,ΦvLCD). Moreover, we also know the 

geometric positions of the centers of all LCD pixels, and they are written as (xLCD,yLCD). 

A 3×3 LCD pixel region is given in Figure 4-6 as an example with the studied pixel 

PLCD and its 8 neighboring LCD pixels. In this case, the phase values of pixel PLCD at 

its center (xLCD
0,yLCD

0) are (ΦhLCD
0,ΦvLCD

0). However, as its corresponding phase pair in 

the first CCD panel has the phase values as (ΦhCCD1,ΦvCCD1), and (ΦhCCD1,ΦvCCD1) are 

different from (ΦhLCD
0,ΦvLCD

0) according to the quantization error, we need to find in 

this LCD pixel PLCD another point position (x,y) with its phase values as 

(ΦhCCD1,ΦvCCD1). In other words, we let the phase values at position (x,y) in the LCD 
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panel (i.e., the purple point in Figure 4-6) be the same as phase values (ΦhCCD1,ΦvCCD1) 

in the first CCD plane.  

 

 Scheme of sub-pixel phase pair correspondence using bi-linear 

interpolation.  

To calculate the geometric position of (x,y) in LCD pixel PLCD, we assume its 

position follows a linear tendency with respect to the phase values of the LCD pixel 

as: 

     ( , )hLCD vLCD x x hLCD x vLCD x hLCD vLCDx a b c d ,  (4.2) 

     ( , )hLCD vLCD y y hLCD y vLCD y hLCD vLCDy a b c d ,  (4.3) 

where (ax,bx,cx,dx) and (ay,by,cy,dy) are the linear coefficients of both X and Y directions; 

ΦhLCD and ΦvLCD are the horizontal and the vertical phase values of the LCD pixel; 

x(ΦhLCD,ΦvLCD) and y(ΦhLCD,ΦvLCD) are the sub-pixel geometric position in the LCD 

plane. Here, we write x(ΦhLCD,ΦvLCD) as x and y(ΦhLCD,ΦvLCD) as y to simplify the 

mathematical expression. Moreover, we will only discuss the bi-linear interpolation in 

X direction, as bi-linear interpolation in Y direction follows the same calculation 

process as it of X direction.  

Now, let be the tiny error occurs during the bi-linear interpolation, we have: 

     x x hLCD x vLCD x hLCD vLCDa b c d x .  (4.4) 
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To obtain the coefficients in Eq. (4.4), we should minimize the addition of its square 

errors. Thus, we square Eq. (4.4) and then sum all 9 pixels shown in Figure 4-6 

together, we have Eq. (4.5) as: 

     
9

2

1

( )x x hLCD x vLCD x hLCD vLCD
n

E a b c d x .  (4.5) 

Then, we calculate the derivatives of Eq. (4.5) with respect to all coefficients, and 

we let these derivatives be zero. In this case, the derivatives are given as:   

      
9

1

2 ( )x x hLCD x vLCD x hLCD vLCD
x n

E
a b c d x

a
,  (4.6) 
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1
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1

2 ( )vLCD x x hLCD x vLCD x hLCD vLCD
x n

E
a b c d x

c
, (4.8) 

9

1

2 ( )hLCD vLCD x x hLCD x vLCD x hLCD vLCD
x n

E
a b c d x

d
. (4.9) 

The solution to the above four equations is obtained by solving the following linear 

equation system as: 

     ( , , , )Tx x x xA a b c d B ,  (4.10) 

where matrix A is obtained with Eq. (4.6) to Eq. (4.9), and it is equal to: 

9 9 9

1 1 1

9 9 9 9

1 1 1 1

9 9 9 9

1 1 1 1

9 9

1 1

2 2

2 2

2 2

( ) ( )

( ) ( )

( ) ( )

hLCD vLCD hLCD vLCD

n n n

hLCD hLCD hLCD vLCD hLCD vLCD

n n n n

vLCD hLCD vLCD vLCD vLCD hLCD

n n n n

hLCD vLCD hLCD vLCD vLCD hLCD

n n

n

A

9 9

1 1

2 2( ) ( )hLCD vLCD

n n

. (4.11) 

On the other side, B of Eq. (4.10) is also calculated by Eq. (4.5) to Eq. (4.9), and 

it is equal to: 
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9 9 9 9

1 1 1 1

, , ,

T

hLCD vLCD hLCD vLCD
n n n n

B x x x x .  (4.12) 

At this moment, as we know the center point of each LCD pixel (i.e., term x in Eq. 

(4.12) is the central position for each LCD pixel) and their corresponding phase values 

(i.e., ΦhLCD and ΦvLCD), we can calculate any element in both Eqs. (4.11) and (4.12). 

Therefore, we can easily solve Eq. (4.10) and obtain the bi-linear coefficients 

(ax,bx,cx,dx) to determine the bi-linear interpolation function in Eq. (4.2). 

Finally, as we want to find the accurate geometric point position x in the LCD 

pixel whose phase value is equal to its corresponding point in the first CCD, we can 

simply load the phase value of its corresponding point on the first CCD as 

(ΦhCCD1,ΦvCCD1) to Eq. (4.2) to calculate the sub-pixel LCD point position. Then, this 

LCD point position x is later used to perform the accurate sub-pixel LCD-CCD1 

correspondence. By repeating the above-discussed process but to Y direction, we also 

get the sub-pixel LCD point position y.  

Above we discuss the bi-linear sub-pixel interpolation for LCD-CCD1 phase pair 

correspondence, from which we can obtain the geometric position of a point (x,y) in 

the LCD panel with respect to its phase pair point on the first CCD plane. On the 

other hand, for LCD-CCD2 phase pair correspondence, we know the geometric 

position of a pixel in the second CCD plane and the geometric position of its 

corresponding pixel in the LCD plane, and we want to calculate the accurate phase 

values at these two points. In this case, we still use bi-linear interpolation principle, 

but now we assume the phase values on the LCD follow a linear tendency with respect 

to the LCD point positions, and the relations are written as: 

     ( , )hLCD h h LCD h LCD h LCD LCDx y a b x c y d x y ,  (4.13) 

     ( , )vLCD v v LCD v LCD v LCD LCDx y a b x c y d x y ,  (4.14) 

where (ah,bh,ch,dh) and (av,bv,cv,dv) are the linear coefficients; xLCD and yLCD are the 

geometric positions of the intersection point on the LCD panel; ΦhLCD(x,y) and 

ΦvLCD(x,y) are the sub-pixel phase values of the LCD intersection point. Now, by 

repeating the same bi-linear interpolation process, we can solve these two above 

equations and get the sub-pixel phase values in the LCD panel. 

Finally, we repeat the bi-linear interpolation to the second CCD panel, that we 

assume the phase values on the second CCD panel follow a linear tendency with 
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respect to the intersection point positions on the second CCD panel, and such relations 

are written as: 

     2 2 2 2 2’ ’ ’( , ) ’hCCD h h CCD h CCD h CCD CCDx y a b x c y d x y ,  (4.15) 

     2 2 2 2 2’ ’ ’( , ) ’vCCD v v CCD v CCD v CCD CCDx y a b x c y d x y ,  (4.16) 

where (ah’,bh’,ch’,dh’) and (av’,bv’,cv’,dv’) are the linear coefficients; xCCD2 and yCCD2 are 

the geometric positions of the intersection point on the second CCD panel; ΦhCCD2(x,y) 

and ΦhCCD2(x,y) are the sub-pixel phase values of the second CCD panel intersection 

points. Again, by performing bi-linear interpolation, we get the sub-pixel phase values 

in the second CCD panel. 

The above-discussed bi-linear interpolation method allows us to establish the 

accurate phase pair correspondence between the LCD and the camera image planes 

with sub-pixel accuracy. Therefore, the inverse ray tracing can be performed with a 

better performance, and we can obtain an accurate surface normal calculation. 

 

 Bi-cubic interpolation 

In this section, we will introduce a bi-cubic interpolation method for LCD-CCD 

sub-pixel correspondence. In particular, we initially consider the sub-pixel 

correspondence between the LCD and the first CCD panel. Here, the LCD sub-pixel 

positions as a function of the phase values are described by the following equations 

as: 

      
3 3

0 0

( , ) ( ) ( )i j
hLCD vLCD xij hLCD vLCD

i j

x a ,  (4.17) 

      
3 3

0 0

( , ) ( ) ( )i j
hLCD vLCD yij hLCD vLCD

i j

y a .  (4.18) 

Here, x(ΦhLCD,ΦvLCD) and y(ΦhLCD,ΦvLCD) are sub-pixel point positions in the LCD 

panel obtained from bi-cubic interpolation, and they are later written as (x,y) for a 

simple mathematical expression. Moreover, axij and ayij are bi-cubic interpolation 

coefficients; ΦhLCD and ΦvLCD are phase values of any LCD pixel. Again, we only discuss 

bi-cubic interpolation in X direction, since bi-cubic interpolation in Y direction shares 

a same calculation process as it of X direction. 
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 Scheme of sub-pixel phase pair correspondence using bi-cubic 

interpolation.  

To calculate the sub-pixel point position in the LCD panel using bi-cubic 

interpolation, we need to obtain all 16 coefficients in Eq. (4.17). Thus, to obtain all 

these coefficients, we introduce a grid coordinate to represent a 3×3 LCD pixel region 

in Figure 4-7. Here, the studied LCD point (x,y) is in the middle pixel PLCD, the phase 

values and the geometric positions of the surrounding pixel centers are known. Here, 

note that the pixels are unit squares, we then write the upper left corner pixel as (0,0), 

the upper right corner pixel as (1,0), the lower left corner pixel as (0,1), and the lower 

right corner pixel as (1,1). Then, by matching x with the function values, we obtain 

four equations at these four corners as: 

      00(0,0) xx a ,  (4.19) 

      00 10 20 30(1,0) x x x xx a a a a ,  (4.20) 

      00 01 02 03(0,1) x x x xx a a a a ,  (4.21) 

      
3 3

0 0

(1,1) xij
i j

x a .  (4.22) 

We can also get eight equations for the derivatives in ΦhLCD and ΦvLCD directions 

as: 

      10(0,0) (0,0)h
x

hLCD

x
x a ,  (4.23) 
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      10 20 30(1,0) (1,0) 2 3h
x x x

hLCD

x
x a a a ,  (4.24) 

      10 11 12 13(0,1) (0,1)h
x x x x

hLCD

x
x a a a a ,  (4.25) 

      
3 3

1 0

(1,1) (1,1)h
xij

hLCD i j

x
x a i .  (4.26) 

and,  

      01(0,0) (0,0)v
x

vLCD

x
x a ,  (4.27) 

      01 11 21 31(1,0) (1,0)v
x x x x

vLCD

x
x a a a a ,  (4.28) 

      01 02 03(0,1) (0,1) 2 3v
x x x

vLCD

x
x a a a ,  (4.29) 

      
3 3

0 1

(1,1) (1,1)v
xij

vLCD i j

x
x a j .  (4.30) 

We also have another four equations for the mixed partial derivatives as: 

      
2

11(0,0) (0,0)hv
x

hLCD vLCD

x
x a ,  (4.31) 

      
2

11 21 31(1,0) (1,0) 2 3hv
x x x

hLCD vLCD

x
x a a a ,  (4.32) 

      
2

11 12 13(0,1) (0,1) 2 3hv
x x x

hLCD vLCD

x
x a a a ,  (4.33) 

      
3 32

1 1

(1,1) (1,1)hv
xij

hLCD hLCD i j

x
x a ij .  (4.34) 

By grouping the coefficients to be calculated together, we obtain a vector as: 

      
00 10 20 30 01 11 21 31

02 12 22 23 03 13 23 33 .

[ , , , , , , , ,...

        , , , , , , , ]
x x x x x x x x x

T
x x x x x x x x

a a a a a a a a

a a a a a a a a
  (4.35) 
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We can also forge another vector by using the previous calculated 16 equations as: 

       
(0, 0) (1, 0) (0,1) (1,1) (0, 0) (1, 0) (0,1) (1,1)

(0, 0) (1, 0) (0,1) (1,1) (0, 0) (1, 0) (0,1) (1,1)

[ , , , , , , , ,...

        , , , , , , , ] .

h h h h

v v v v hv hv hv hv

x

T

x x x x x x x x

x x x x x x x x
  (4.36) 

By combining Eqs. (4.35) and (4.36) together, we obtain a following equation as: 

       x xA .  (4.37) 

Later, by inverting this equation, we can calculate all coefficients for Eq. (4.37) as: 

       1
x xA ,  (4.38) 

where matrix A-1 is given as [120, 121]: 

       

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

3 3 0 0 2 1 0 0 0 0 0 0 0 0 0 0

2 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 3 3 0 0 2 1 0 0

0 0 0 0 0 0 0 0 2 2 0 0 1 1 0 01
3 0 3 0 0 0 0 0 2 0 1 0 0 0 0 0

0 0 0 0 3 0 3 0 0 0 0 0 2 0 1 0

9 9 9 9 6 3 6 3 6 6 3 3 4 2 2 1

A

6 6 6 6 3 3 3 3 4 4 2 2 2 2 1 1

2 0 2 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 2 0 2 0 0 0 0 0 1 0 1 0

6 6 6 6 4 2 4 2 3 3 3 3 2 1 2 1

4 4 4 4 2 2 2 2 2 2 2 2 1 1 1 1

.  (4.39) 

Once the coefficients are obtained, we can perform bi-cubic sub-pixel interpolation. 

However, we still do not know those derivatives in Eq. (4.36). But this is easy to be 

solved, as they are typically approximated from the values at the neighboring points. 

For instance, we can use LCD pixels at (-1,0) and (1,0) to calculate the derivatives of 

LCD pixel (0,0) as: 

      
(1,0) ( 1,0)

(0,0)
(1,0) ( 1,0)hLCD hLCD hLCD

x xx
,  (4.40) 

where the pixel center positions and the phase values at LCD pixel (-1,0) and (1,0) 

are obtainable. 
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Then, for the mixed derivative, we use 4 neighboring points and we give one 

example as the following equation: 

       
2 [ (1,1) ( 1, 1)] [ (1, 1) ( 1,1)]

(0, 0)
[ (1,1) ( 1, 1)] [ (1, 1) ( 1,1)]hLCD vLCD hLCD hLCD vLCD vLCD

x x x x x
.  (4.41) 

Once we determine the bi-cubic coefficients in Eq. (4.17), we can use such bi-cubic 

interpolation function to calculate the accurate geometric point position x in the LCD 

panel, whose phase values are equal to phase values (ΦhCCD1,ΦvCCD1) of its corresponding 

point on the first CCD plane. Later, by performing the same process to Y direction, 

we also get the sub-pixel interpolation point position y. Finally, for sub-pixel 

interpolation between the LCD panel and the second CCD panel, we also use this bi-

cubic interpolation principle to establish the sub-pixel correspondence.  

Bi-cubic interpolation guarantees a higher accuracy as such interpolation is 

smoother compared to bi-linear interpolation. However, bi-linear method gives a faster 

calculation speed, as bi-linear interpolation only needs to calculate 4 coefficients, but 

bi-cubic interpolation requires 16 coefficients. Under this scenario, a trade-off between 

the calculation speed and the sub-pixel correspondence accuracy has to be considered. 

For surface measurement discussed in this thesis, we focus on high accuracy 

measurement, and thus, we use bi-cubic interpolation to conduct the sub-pixel 

interpolation. 

 

4.4 2D Fourier integration based surface reconstruction 

In this section, we introduce a 2D Fourier integration method to reconstruct the 

specular surface. In particular, surface reconstruction is performed by using the surface 

derivative information [122]. The derivative distribution of the whole surface is 

calculated from the surface normal distribution. Under this scenario, different methods 

such as finite-difference-based least-squares integration [123–125], radial basis 

functions based integration [126], and Fourier transform based integration [127, 128] 

have been proposed. In this thesis, we use 2D Fourier transform integration method 

as it provides a high surface reconstruction accuracy with a relatively fast surface 

reconstruction speed.     

To perform the surface reconstruction with 2D Fourier transform integration, we 

need to use the surface derivatives and its corresponding surface point positions. 
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Nevertheless, the experimental measurement only gives us the surface normal, and 

thus, we need to calculate the surface derivatives from the surface normal. To do so, 

we entitle the specular surface shape as f(x,y), we also give the surface normal as 

n=[nx,ny,nz] (n is a unit vector), and the surface derivatives are f x(x,y) and f y(x,y) in 

X and Y directions, respectively. Thus, the surface derivatives are calculated as: 

      ( , ) xx

z

n
f x y

n
,  (4.42) 

      ( , ) yy

z

n
f x y

n
.  (4.43) 

From Eqs. (4.42) and (4.43), we obtain the surface derivative distributions in two 

directions. However, as the distance between any two adjacent surface points from the 

experimental measurement may not share an equal distance, the surface derivative 

distribution matrix is not homogeneous. Here, a homogeneous matrix means that the 

distance between any two adjacent surface point should be equal, and the derivatives 

are periodically distributed. Note that as 2D Fourier integration requires the 

derivative matrices to be homogeneous, we perform an interpolation at the very 

beginning to make the surface derivative distributions homogeneous matrices. 

To do so, we can introduce different methods such as linear interpolation, cubic 

spline interpolation, or reflection interpolation. Once the derivatives in the matrices 

are modified to be periodically distributed, the edge effect during the digital Fourier 

transform is greatly reduced. In this thesis, we use cubic spline interpolation as it 

provides a high accuracy. 

Once we get the homogeneous derivative distributions of the surface through 

interpolation, we transform these surface derivatives to the Fourier domain, and we 

obtain: 

      { ( , )} ( , ) ( 2 ) ( , )x uf x y F u v i u F u v ,  (4.44) 

      { ( , )} ( , ) ( 2 ) ( , )y vf x y F u v i v F u v .  (4.45) 

We can also perform the Fourier transform to the second order derivatives, and we 

obtain: 

      
2{ ( , )} ( , ) (2 ) ( , )xx uuf x y F u v u F u v ,  (4.46) 
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2{ ( , )} ( , ) (2 ) ( , )yy vvf x y F u v v F u v .  (4.47) 

To simplify the expression, we name f x(x,y) as f x, f y(x,y) as f y, f(x,y) as f; we also 

entitle F u(u,v) as F u, F v(u,v) as F v, F(u,v) as F; and we finally note F uu(u,v) as F uu, 

F vv(u,v) as F vv. Then, we have the following relations as: 

      
2( 2 ) (2 )uu uF i u F u F ,  (4.48) 

      
2( 2 ) (2 )vv vF i v F v F .  (4.49) 

Now, we introduce the Laplacian operator to emerge the two parameters in Eqs. 

(4.48) and (4.49) into one equation, and by using Fourier transform we can obtain: 

       
2{ } uu vvf F F .  (4.50) 

Eq. (4.50) can be further expanded into another form as: 

       
2

2 2 2 2

{ } ( 2 ) ( 2 )

(2 ) (2 ) [(2 ) (2 ) ] .

uu vv u vf F F i u F i v F

u F v F u v F
  (4.51) 

From Eq. (4.51), we extract the final surface shape as: 

        
2 2

(2 ) (2 )

(2 ) (2 )

u vi u F v F
F

u v
,  (4.52) 

where u and v are the surface point coordinates in the Fourier domain, which can be 

obtained by using Fourier transform; F u and F v are the derivatives of the surface in 

the Fourier domain, which are calculated by Fourier transforming the homogeneous 

surface derivative matrices. Under this scenario, F is obtainable, and later by using 

inverse Fourier transform to F, the final surface shape f(x,y) is reconstructed.  

The above-discussed Fourier transform algorithm allows us to get the specular 

surface shape. To better visualize 2D Fourier integration-based surface reconstruction, 

we scheme the 2D Fourier integration process in Figure 4-8. 

 

 Diagram of the 2D integration method based on Fourier transform.  
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In Step 1, we calculate the surface derivative distributions from the experimental 

measured normal. Then, we interpolate the surface derivative distributions into two 

homogeneous matrices. In Step 2, we transform these two homogeneous derivative 

distributions into the Fourier domain. In Step 3, we introduce Eq. (4.52) to combine 

the derivative distributions and we obtain F in the Fourier domain. In Step 4, by 

simply introducing inverse Fourier transform, we get the integrated surface shape in 

the spatial domain.  

The above-discussed method instructs us to theoretically calculate the surface 

shape through 2D Fourier integration. Nevertheless, in the real implementation, the 

derivatives are not consistent because of the noise, in addition, edge effects are 

generated when we apply Fourier transform to the real discrete data that do not 

maintain periodicity. Therefore, such non-periodic data may affect the 2D Fourier 

integration result. Under this scenario, we use an iteration method proposed in [129] 

to obtain a more accurate surface shape. Here, the iteration number is entitled as the 

convergent criteria. We describe the iteration method in Figure 4-9.  

 
 Iterative method of the 2D Fourier transform based integration for 

surface reconstruction.  
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The experimentally obtained derivatives are firstly stored in two matrices of larger 

dimensions (double size for each direction) surrounded by zeroes. In this manner, we 

can reduce the edge effects produced by the discrete Fourier transform, and this is 

entitled as Step 1. In Step 2, these two matrices are Fourier transformed to get F u 

and F v. Then, in Step 3, we use Eq. (4.52) to get the original surface function in the 

Fourier domain. If the iteration number exceeds the convergent criteria, we directly 

calculate the inverse Fourier transform of F and regard this result as the final surface 

function (see Step 5 in Figure 4-9). If the iteration number does not exceed the 

convergent criteria, we use this F to calculate the new derivatives in the form of Eqs. 

(4.44) and (4.45), and we have the new derivatives as F u’ and F v’ (see Step 6 in 

Figure 4-9). Now, we continue Step 7 to recalculate the inverse Fourier transform of 

the new derivatives back to the spatial domain as f x’ and f y’. The new derivatives are 

modified closer to the experimentally measured derivatives. Finally, in Step 8, we 

maintain the values obtained in the extension section of the matrices (i.e., the shaded 

part in two matrices with respect to Step 7 in Figure 4-9), and then we reintroduce 

the original derivatives obtained from the experimental measurements (i.e., f x and f y) 

to replace f x’ and f y’, then we go back to Step 2, so that we regain the newly refined 

derivative matrices. By repeating this process until the iteration number satisfies the 

convergent criteria (see Step 5), we output the final surface shape. 

Here, we have to pay attention to Step 1, as in fact we introduce a larger dimension 

matrix to express the derivative distributions. In Figure 4-9, we simply fill the empty 

space with zeroes. However, it is necessary to extrapolate the surrounding areas of 

these larger matrices with periodical derivative values as it provides a better 

integration result than simply filling the matrix with zeroes. Specifically, we introduce 

spline extrapolation in this case. 

To better visualize the extrapolation process, we present the extrapolation with 

Figure 4-10, that Figure 4-10 (a) is the extrapolation by rows and Figure 4-10 (b) is 

the extrapolation by columns. The shaded gray zone is used to represent the original 

experimentally measured derivative data surrounded by zeroes (i.e., zeroes are 

represented as white).  

We firstly discuss the extrapolation in the horizontal direction (see Figure 4-10 (a)). 

To accomplish the extrapolation in this direction, we assume that the interpolated 

derivative values in both matrices are periodical, and we construct two copies of such 

matrices as A’B’C’D’ and A’’B’’C’’D’’. Later, we impose the periodical condition and 

fill the matrix row by row shown as the red sections in Figure 4-10 (a). For instance, 
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we record both the derivatives from A to B, and the derivatives from A’ to B’ in 

Figure 4-10 (a). Then, we use these derivatives to extrapolate the empty section from 

B to A’. On the other side, we record the derivatives from A to B, and the derivatives 

from A’’ to B’’, and we use these derivatives to extrapolate the empty section from A 

to B’’. Finally, we only remain the derivative information in the central expanded 

matrix (see the two red sections and the gray section in Figure 4-10 (a)). 

 
 2D derivative matrix extrapolation: (a) extrapolation within rows and 

(b) extrapolation within columns. 

Once we accomplish the extrapolation within the rows, we extrapolate the matrix 

by column using the experimentally measured derivative values (i.e., gray sections in 

Figure 4-10 (b)) combined with the horizontal extrapolated values (i.e., red sections 

in Figure 4-10 (b)). By using the same manner, we fill the matrix column by column 

as shown in the blue sections in Figure 4-10 (b). For instance, we record both the 

derivatives from A to D, and the derivatives from A’ to D’ in Figure 4-10 (b). Then, 

we use these derivatives to extrapolate the empty section from D to A’. On the other 

side, we record the derivatives from A to D, and the derivatives from A’’ to D’’, and 

we use these derivatives to extrapolate the empty section from A to D’’. Finally, we 

remain the derivative information in the central expanded matrix (see the two blue 

sections, two red sections and the gray section in Figure 4-10 (b)). At this moment, 

the whole enlarged matrix is filled by using 2D extrapolation. 

 

 

 



 

 

 

 

Chapter 5  Experimental measurement 

using the stereoscopic phase measuring 

deflectometry system 

In this chapter, we present the experimental measurement of specular surfaces 

using the stereoscopic phase measuring deflectometry (SPMD) system. We 

preliminarily show the SPMD system calibration, from which we can obtain the whole 

geometric scheme of an SPMD system. Specifically, three characteristics are calibrated 

as: (i) the gamma calibration of the LCD screen, (ii) the calibration of the stereoscopic 

camera, and (iii) the geometric calibration of the complete SPMD system (i.e., hand-

eye calibration and LCD screen position calibration). Once the SPMD system is well 

calibrated, we send different sinusoidal fringe patterns (SFPs) to the LCD screen to 

illuminate the specular surface and then we capture the reflected SFPs with the 

stereoscopic camera. Now, we use phase shifting (see Section 3.2) combined with phase 

unwrapping (see Section 3.3) to calculate the phase map on the measured specular 

surface. Finally, to verify the feasibility of the proposed SPMD system, we measured 

different specular surfaces as a flat mirror, a spherical mirror and a discontinuous 

specular disk. The experimental measurement process and the results are discussed in 

Section 5.4.   
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5.1 LCD gamma calibration 

In a stereoscopic phase measuring deflectometry system, the sinusoidal fringe 

patterns are generated on the LCD screen and later being captured by the stereoscopic 

camera through the specular surface reflection. Thus, the gray level-intensity response 

should follow a linear tendency for an accurate phase extraction. Here, the gray level 

is controlled by the LCD screen, and the intensity is characterized by the photons 

entering the camera. Nevertheless, the LCD screen used in our SPMD system (HP 

Elite Display E231, resolution of 1920×1080, pixel size of 0.265×0.265 mm2) presents 

gamma nonlinearity, from which it deteriorates the gray level-intensity linear response 

and therefore the phase retrieval accuracy is deteriorated. Thus, the LCD illumination 

nonlinearity has to be corrected to present a linear gray level-intensity response. In 

this case, we accomplished the gamma correction by building an inverse look up table 

(LUT), which is previously discussed in Section 3.5. To be more specific, we sent 

constantly increasing gray levels from 0 to 255 with a step of 5 to all LCD pixels. 

Later, we placed the stereoscopic camera directly facing the LCD screen, and we 

captured the intensity images on the LCD with both cameras. Here, the first camera 

was inspecting the LCD screen with an angle , and  is the angle between the first 

camera optical axis and the LCD screen axis. On the other hand, the second camera 

was inspecting the LCD screen with an angle -, and - is the angle between the 

second camera optical axis and the LCD screen axis. In this case, we let both cameras 

inspect the LCD screen with a same angle, so both cameras will give us a similar gray 

level-intensity response. On the contrary, if the two cameras are not inspecting the 

LCD with a same angle, then the gray level-intensity responses will be different within 

these two cameras, and this will bring phase retrieval error during phase shifting and 

phase unwrapping. Once the intensity image was captured in both cameras, we 

selected a central section of 10×10 pixels in each camera frame, then the average 

intensity of this 10×10 pixel central area was calculated and regarded as the 

experimentally measured intensity. Once we obtained the intensities corresponding to 

the whole gray level range (i.e., 0 to 255), they were fitted to a third order polynomial 

function. Two polynomial functions are given in Figure 5-1 with the blue curve 

represents the first camera and the red curve represents the second camera, 

respectively. The numerical functions are also given in Figure 5-1 with respect to their 

gray level-intensity responses.  

Afterwards, as the two gray level-intensity curves in Figure 5-1 follow a same 

tendency and they are nearly identical, we calculated an average curve using these 

two fitted curves, and we built an inverse look up table (LUT) based on this averaged 
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curve. This inverse LUT represents the intensity-gray level response, and it means the 

gray level is a function with respect to the intensity in the LCD. Once we obtained 

this inverse LUT, we used it to perform the gamma correction. To do so, we artificially 

let the LCD intensities range from 0 to 255 with the intensity step as 5, and then we 

used the inverse LUT to calculate the gray levels gi corresponding to these intensities, 

and we recorded these gray levels. Afterwards, we sent these gray levels gi to the LCD 

screen, and we experimentally recorded the intensities on the LCD screen with both 

cameras now. The captured intensities corresponding to gray levels gi are presented in 

Figure 5-2 with the first camera being shown in blue and the second camera being 

shown in red, respectively. The linear tendency in Figure 5-2 obviously demonstrates 

the feasibility of the inverse LUT-based nonlinearity gamma calibration.  

 
 The gray level-intensity responses of both cameras before the 

nonlinearity calibration. 

 
 The gray level-intensity responses of both cameras after the 

nonlinearity calibration using the inverse look up table. 
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5.2 Stereoscopic camera calibration 

Once the gamma calibration is completed, the stereoscopic camera calibration is 

subsequently performed. In stereoscopic camera calibration, we focus on two different 

calibrations as: (i) the intrinsic parameters of both cameras, and (ii) the extrinsic 

parameters between the stereoscopic camera. The camera intrinsic parameters contain 

the focal length of the camera objective lens, the principle point of the camera system, 

and the lens distortion of the camera objective lens. The extrinsic parameter of the 

stereoscopic camera is referred as the geometric transformation between the two 

cameras. To be more specific, the stereoscopic camera extrinsic calibration gives us 

the rotation matrix and the shifting vector from the first camera coordinate system 

to the second camera coordinate system.  

 
 Stereoscopic camera calibration scheme using a checkerboard pattern. 

Before we perform the camera calibration, let us firstly introduce the cameras used 

in our SPMD system. Here, as we use two cameras of the same type to construct the 

stereoscopic camera, we only present the characteristics of one camera. The camera 

consists a CCD and an objective lens. The charged-coupled devices (CCDs) is provided 

by Basler (Basler Scout scA1000-30gc), it has a resolution of 1034×779 and a pixel 

size of 4.65×4.65 μm2. The objective lens is provided by Thorlabs (MVL12M23) with 

a focal length of 12 mm. The calibration scheme is given in Figure 5-3.  
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For camera intrinsic parameter calibration, we used Camera Calibration Toolbox 

developed by Jean-Yves Bouguet [108]. Here, we printed a checkerboard pattern on a 

piece of paper with its dimension as 11×10 (let us say the horizontal direction has 11 

squares and the vertical direction has 10 squares, these squares are sequentially printed 

as black or white). The size of each square in the checkerboard is 13×13 mm2. Later, 

this checkerboard was carefully stuck to a plane board to guarantee the checkerboard 

pattern is flat (see the left lower sub-figure in Figure 5-3). On the other side, both 

cameras were fixed on a flat iron board, and this iron board was located nearly 930 

mm to the checkerboard to guarantee the cameras were placed in focus to capture the 

checkerboard pattern. Now, we let the cameras fixed on the iron board never move, 

but we only moved the checkerboard pattern to different locations with respect to the 

cameras. Then, we used both cameras to capture the checkerboard pattern at different 

positions so that we can perform the camera calibration with Camera Calibration 

Toolbox. In the real implementation, we moved the checkerboard to 104 different 

places, and we recorded all these 104 checkerboard frames with both cameras. Finally, 

we introduced Camera Calibration Toolbox [108] to calibrate the cameras using these 

104 captured images, and we obtained the intrinsic parameters of each camera. The 

camera intrinsic parameters are given in Table 5-1 and Table 5-2: 

 

Intrinsic parameters of the first camera 

Focal length (unit: pixel) 2754.86, 2750.99 

Principle point (unit: pixel) 516.72, 362.05 

Distortion coefficients -0.0869, 0.6799, -0.0012 

Table 5-1. The first camera intrinsic parameters obtained through camera calibration. 

Intrinsic parameters of the second camera 

Focal length (unit: pixel) 2763.55, 2760.66 

Principle point (unit: pixel) 526.61, 368.78 

Distortion coefficients -0.1169, 0.7132, -0.0020 

Table 5-2. The second camera intrinsic parameters obtained through camera calibration. 
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Here, we need to note that the focal length and the principle point are represented 

with the unit of CCD pixel, and the side length of a CCD pixel is 4.65 μm. 

Apart from the intrinsic parameter calibration, the geometric relation calibration 

between the stereoscopic camera is also required. From this calibration, we will know 

the rotation and the shifting from one camera to another camera. Here, we use the 

already captured checkerboard frames (i.e., the 104 checkerboard patterns) to perform 

the stereoscopic camera extrinsic calibration with Camera Calibration Toolbox [108]. 

The calibrated result is given by the following matrix as: 

 

0.9580 0.0052 0.2866 241.0125

0.0052 0.9999 0.0009 1.5536

0.2866 0.0007 0.9581 35.5967

0 0 0 1

C1tC2RT , (5.1) 

where RTC1tC2 is the transformation matrix from the first camera coordinate system 

to the second camera coordinate system. The first 3×3 elements represent the rotation, 

whereas the first three elements in the last column represent the shifting (unit in mm). 

Thus, we can tell from RTC1tC2 that the geometric distance between the two cameras 

is greater than 241 mm. What is more, by using RTC1tC2
-1, which is the inverse matrix 

of RTC1tC2, we can also transform any point from the second camera coordinate system 

to the first camera coordinate system.  

 

5.3 Stereoscopic phase measuring deflectometry system 

calibration 

Now, we have the intrinsic parameters of both cameras as well as the extrinsic 

parameter between the stereoscopic camera. To perform SPMD measurement, we also 

need to know the geometric relation between the LCD screen and the first camera of 

the stereoscopic camera system. In other words, the coordinate system transformation 

between the LCD coordinate system and the first camera coordinate system has to be 

known. Only in this way we can implement the inverse ray tracing for surface normal 

determination. Hence, to accomplish the SPMD system setup calibration, we 

sequentially perform 4 calibration steps.  

In Step 1, we fixed both cameras on an iron board, and we placed this iron board 

close to the LCD screen (see the sub-figure in the lower right corner in Figure 5-4 (a)). 
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The cameras and the LCD screen were facing the same direction to fulfill the specular 

surface inspection. The location where the iron board sits now is registered as the 

initial position A in the world coordinate system (the world coordinate system of the 

SPMD system is defined as the first camera coordinate system which is mentioned in 

Section 3.6). Later, we put 6 fiducials on the cameras and traced these 6 fiducials 

positions using a laser tracker (3 fiducials on the first camera and 3 fiducials on the 

second camera, see the sub-figure in the lower left corner in Figure 5-4 (a)). Once all 

fiducial positions were recorded, we calculated the geometric center OP of these 6 

fiducials (see Figure 5-4 (d)) and this geometric center was used to describe the iron 

board located at the initial position A. Here, we need to emphasize again that the 

coordinate system of the iron board is not the coordinate system of the first camera, 

as these two coordinate systems are connected through the hand-eye calibration. 

In Step 2, we moved the whole iron board, which is carrying the stereoscopic 

camera, to position B where both cameras can inspect the LCD screen (see Figure 5-

4 (b)). In particular, the iron board was located nearly 930 mm away from the LCD 

screen. Again, the laser tracker was introduced to track the spatial positions of 6 

fiducials at position B, and the geometric center of these 6 fiducials at position B was 

calculated as OP’. Now, as the fiducial positions in both position A and position B 

were already experimentally obtained, we can calculate the geometric transformation 

matrix of the iron board from position B to position A as RTBtA (see Figure 5-4 (d)).  

On the other hand, while the cameras were placed at position B, we generated a 

digital checkerboard pattern on the LCD so that the first camera can inspect this 

checkerboard pattern. This digital checkerboard pattern on the LCD contains a 

dimension as 11×10 with a square size as 12.985×12.985 mm2. What is more, we 

intentionally made the digital checkerboard origin (the upper left corner grid 

intersection in the checkerboard pattern in Figure 5-4 (b)) coincide with the LCD 

screen geometric center. By now, we used the first camera at position B to capture 

this digital checkerboard pattern. Afterwards, we repeated this process as we moved 

the cameras to 39 more different positions to inspect this digital checkerboard pattern. 

Now, we record all these 40 images, and then we use these 40 checkerboard pattern 

images to perform the “inverse” camera calibration with Camera Calibration Toolbox. 

Therefore, we get 40 geometric transformation matrices (i.e., camera extrinsic 

parameters) from the LCD coordinate system to the first camera coordinate system.  

Finally, as we have all these 40 transformation matrices, we select the camera at 

position B, and we obtained the geometric relation between the first camera coordinate 
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system at position B and the LCD screen coordinate system as RTLCDtC1’ (see the 

purple curve Figure 5-4 (d)). 

 

 SPMD system setup calibration scheme: (a) The iron board which is 

carrying the stereoscopic camera is located at the initial position A close to the 

LCD screen. Six fiducials are mounted on both cameras for laser tracking. (b) The 

stereoscopic camera is moved to position B to inspect the digital checkerboard 

pattern generated on the LCD screen. (c) The stereoscopic camera is moved back 

to position A. (d) The simplified calibration process diagram for the SPMD system.  

At this moment, we have two experimentally obtained transformation matrices as 

RTBtA and RTLCDtC1’. Nevertheless, these two matrices still cannot let us establish 
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the geometric relation between the camera at position A and the LCD screen, because 

the hand-eye calibration is not performed. Therefore, we launched a third calibration 

to extract the hand-eye calibration matrix HtE. 

In Step 3, we moved the iron board to another position C, where the first camera 

can still inspect the digital checkerboard pattern on the LCD but from another 

position. Then, we again traced 6 fiducials at position C with laser tracker, and we 

calculated the fiducial geometric center at position C as OP’’. Therefore, we 

experimentally obtained the transformation matrix of the iron board from position C 

to position A as RTCtA. At this moment, as we have the experimentally measured 

RTBtA and RTCtA, we can calculate the transformation matrix RTBtC, which is the 

inner coordinate system transformation matrix of the iron board from position B to 

position C. Specifically, RTBtC =RTCtA
-1·RTBtA. 

On the other side, as we had already moved the camera to 40 different positions in 

Step 2, and position C is one of these 40 movements, we can also get RTLCDtC1’’ from 

the “inverse” camera calibration. Here, RTLCDtC1’’ is the transformation matrix from 

the LCD screen to the first camera at position C. Once we obtained RTLCDtC1’’ and 

we previously have RTLCDtC1’, we used these two matrices to calculate the first camera 

transformation matrix from position B to position C as RTC1’tC1’’. Here, RTC1’tC1’’ = 

RTLCDtC1’’ ·RTLCDtC1’
-1. 

Now, we have both RTC1’tC1’’ and RTBtC, we can establish a coordinate system 

transformation as RTC1’tC1’’·HtE = HtE·RTBtC, where matrix HtE is the hand-

eye calibration matrix. This equation can be analogous as Eq. (3.55) in Section 3.6.3 

(which has the form of AX=XB), from which we can calculate the hand-eye 

calibration matrix HtE. Moreover, to enhance the hand-eye calibration precision, we 

fully used all 40 different camera locations (such as position B or position C) to 

calculate the final hand-eye calibration matrix HtE. This calculation was performed 

with the Matlab Toolbox developed by Christian Wengert [116]. 

In Step 4, as the hand-eye calibration matrix HtE was experimentally obtained, 

we moved the iron board, which is carrying the stereoscopic camera, back to the initial 

position A. Once the cameras were recovered to the initial position A, we can calculate 

the complete transformation matrix from the LCD screen coordinate system to the 

first camera coordinate system at the initial position A. To do so, we used the 

calibration route from the LCD to position B and then to position A as an example 

(i.e., RTLCDtC1’ to HtE-1 to RTBtA to HtE, see Figure 5-4 (d)). Here, RTLCDtC1’ is 

the LCD-first camera calibration matrix, and it was experimentally obtained from the 
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“inverse” camera calibration with locating the first camera at position B. Secondly, 

HtE -1 is the inverse hand-eye calibration at position B, because we need to transform 

from the iron board coordinate system back to the first camera coordinate system. 

Thirdly, RTBtA is the geometric transformation matrix of the iron board from position 

B to position A, which we can experimentally calculate through laser tracking 

measurement. Finally, HtE is the hand-eye calibration matrix, which was acquired 

by moving the first camera to 40 different positions.  

From the above four steps, we can decide the geometric relation between the LCD 

screen and the first camera at position A (i.e., the world coordinate system) with the 

transformation matrix defined as RTLCDtCCD1 = HtE·RTBtA·HtE -1·RTLCDtC1’. 

Nevertheless, it is easily noticed that RTLCDtCCD1 can be acquired by different routes 

such as from the LCD to position B then to position A, or from the LCD to position 

C then to position A. In fact, we have 40 different routes for SPMD system calibration 

as we moved the iron board to 40 different positions. Theoretically, these 40 routes 

should give us the same transformation matrix RTLCDtCCD1 because the initial position 

(i.e., position A) and the LCD position is fixed. However, the calibration error (i.e., 

laser tracking error or “inverse” camera calibration error) introduced within these 40 

measurements will deteriorate the consistency of the calibration results slightly, and 

it is difficult to decide which calibration route we should use. Thus, to obtain a 

universal transformation matrix between the LCD screen and the first camera at 

position A, we calculate all these 40 matrices with respect to 40 iron board movements, 

and their averaged matrix is regarded as the final universal system calibration matrix. 

The final system geometric calibration matrix (from the LCD to the first camera at 

position A) is obtained as: 

 

0.0058 0.9859 0.1672 156.7718

0.9930 0.0142 0.1177 253.1874

0.1184 0.1667 0.9789 93.9295

0 0 0 1

LCDtCCD1RT . (5.2) 

In matrix RTLCDtCCD1, the first 3×3 elements represent the rotation from the LCD 

coordinate system to the first camera coordinate system at position A, whereas the 

first three elements in the last column represent the shifting (unit as mm). To better 

visualize the calibration result, we present the already calibrated SPMD system by 

labeling the coordinate systems of the LCD and the first camera in Figure 5-5.   
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 The calibrated stereoscopic phase measuring deflectometry system. The 

first camera coordinate system (i.e., world coordinate system) is demonstrated as 

(OCCD1-XCCD1,YCCD1,ZCCD1), the LCD coordinate systems is demonstrated as (OLCD-

XLCD,YLCD,ZLCD), and the system calibration matrix is shown as RTLCDtCCD1. 

 

5.4 Experimental measurements 

Section 5.1 to Section 5.3 enable us to acquire all system calibration parameters in 

a stereoscopic phase measuring deflectometry system. In this section, we used the 

already calibrated SPMD system to measure different specular surfaces. In particular, 

we measured a flat mirror, a spherical mirror and a discontinuous specular disk. By 

measuring these three different objects, we would like to justify that our SPMD system 

is not only accurate to measure continuous specular objects with different shapes, but 

this system is also valid to measure discontinuous surfaces.  

 

 Flat mirror measurement 

In flat specular mirror measurement, we selected a broadband dielectric mirror 

with its diameter as 50.8 mm (Thorlabs-BB1-E02). The mirror flatness is /10 at 633 

nm. The mirror was firstly located nearly 930 mm to the LCD screen, and we placed 

its reflective surface facing the cameras. Afterwards, we adjusted the mirror position 

so that the sinusoidal fringe patterns on the LCD screen can be reflected by this mirror 

and later being captured by both cameras. In particular, the fringe patterns were 
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reflected to the nearly central section in both camera image planes. The experimental 

implementation is represented in Figure 5-6. 

 

 Experimental setup of the SPMD system for flat mirror measurement. 

In the LCD screen, both horizontal and vertical sinusoidal fringe patterns (SFPs) 

were sequentially imaged by the measured mirror. Within the horizontal SFPs, three 

different frequencies were shown by the LCD (i.e., the resolution of the LCD is 

1920×1080) with their frequencies being gradually increasing. In particular, the period 

of the horizontal SFPs were 540 pixels, 120 pixels and 30 pixels, respectively. 

Moreover, within each frequency, we introduced four different patterns with the phase-

shift of /2 for phase shifting (see Eq. (3.1)). Therefore, for horizontal SFPs, we 

projected in total 12 different SFPs from the LCD screen, as they are shown in Figure 

5-7. On the other side, for vertical SFPs, we also sent 3 different frequencies set as 

480 pixels, 120 pixels and 30 pixels to the LCD screen. Similar to the horizontal SFPs, 

each frequency contains four different patterns with the phase-shift of /2.  

 

 A set of 12 horizontal sinusoidal fringe patterns with 3 different 

frequencies used for the flat mirror measurement. 
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 The phase unwrapping process by using the SFPs: (a) Horizontal SFPs 

with three frequencies are captured by the first camera. The three frequencies are 

540, 120, 30 pixels, respectively. (b) By introducing phase shifting, we get three 

wrapped phase maps corresponding to each frequency. (c) By using all wrapped 

maps in (b), we get the unwrapped horizontal phase map in the first camera. Later, 

by performing the same phase unwrapping process to the vertical SFPs, we get the 

vertical unwrapped phase map. 

Later, we captured these 24 fringe patterns reflected by the mirror with both 

cameras. Here, the LCD has a projection frequency of 60 Hz. Thus, we adjusted the 

exposure time and the frame rate of the stereoscopic camera, so that both cameras 

can capture the SFPs with the same frequency of 60 Hz. Here, the same frequency in 

both the LCD and the cameras guarantees us to avoid the LC flicker effect [130]. 

Moreover, to eliminate the random LCD illumination noise, we moved a step further 
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by capturing 300 images of any single frame and calculated their average intensity. 

This averaged intensity image is regarded as the real reflected pattern. Afterwards, 

the camera distortion coefficients were introduced to correct the distortion of all these 

averaged intensity images. At last, these averaged intensity images with their 

distortion corrected were regarded as the final reflected fringe patterns for phase 

shifting and phase unwrapping.  

To present the phase unwrapping process, we use the horizontal SFPs reflected by 

the mirror and being captured by the first camera as an example (see Figure 5-8 (a)). 

Note that we have already corrected the distortion of these averaged intensity SFPs. 

At the beginning, by introducing phase shifting, we obtain three wrapped phase maps 

corresponding to each frequency shown in Figure 5-8 (b). It is obvious that the lowest 

frequency (i.e., SFP period as 540 pixels) shows a phase map without phase jump (i.e., 

the uppermost sub-figure in Figure 5-8 (b)), whereas the other phase maps present 

phase jumps. Moreover, the phase map related to the highest frequency (i.e., SFP 

period as 30 pixels, the bottom sub-figure in Figure 5-8 (b)) shows the greatest phase 

jump effect. Now, by unwrapping the phase maps in Figure 5-8 (b) from the lowest 

frequency to the highest frequency, we obtained the horizontal unwrapped phase map 

as the upper sub-figure shown in Figure 5-8 (c). Later, by performing the same phase 

unwrapping process but implemented to the vertical SFPs, we can also obtain the 

vertical unwrapped phase map (see the lower sub-figure in Figure 5-8 (c)). Here, 

Figure 5-8 (c) represents the orthogonal phase maps in the first camera.  

With the above-discussed process, we get the vertical and the horizontal unwrapped 

phase maps within the first camera. Then, by executing the same process to the images 

captured by the second camera, we can also acquire the vertical and the horizontal 

unwrapped phase maps in the second camera. At this moment, as the orthogonal 

phase patterns in both cameras were experimentally obtained, we then used the second 

order polynomial fitting method discussed in Section 4.2 to perform the surface normal 

determination. The phase minimization criteria  was set as 0.01 to establish the 

preliminarily phase pair correspondence. Then, bi-cubic sub-pixel interpolation was 

performed to further enhance the phase pair correspondence accuracy (see Section 

4.3.2). Finally, by scanning all pixels on the first camera phase map, we collected the 

complete surface normal distributions. Then, we calculated the derivative distributions 

in both X and Y directions from the obtained normal information. At this time, we 

interpolated the obtained derivative distributions to homogeneous matrices with cubic 

spline interpolation. Then, we extrapolated the derivative distribution matrices into 

larger matrices which are twice the size of the original derivative matrices. Finally, we 
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performed 2D Fourier transform integration with the extrapolated derivative matrices 

(see Section 4.4), and the iteration loop was set as 50. The final reconstructed surface 

shape of the measured flat mirror is shown in Figure 5-9 (a).  

 
 Surface shapes of the measured flat mirror (i.e., Thorlabs-BB1-E02). 

(a) The shape of the mirror obtained through SPMD measurement, the surface is 

reconstructed through 2D Fourier transform integration. (b) The surface shape of 

the flat mirror measured by an interferometer (Zygo Corp., MiniFiz 100). 

The flat mirror measured by the SPMD system shows a smooth flatness as the root 

mean square (RMS) of the surface is only 3.8966 μm, whereas its peak-to-valley (PV) 

value is 11.5431 μm. If we further examine the reconstructed surface, it can be easily 

deduced that the central section of the reconstructed surface presents greater flatness 

whereas only the mirror edges show a slight bending.  

To determine the measurement accuracy, we used an interferometer (Zygo Corp., 

MiniFiz 100) to measure this same flat mirror and the measured surface shape is 

provided in Figure 5-9 (b). The flat mirror measured by the interferometer presents 

the PV as 113.2 nm and the RMS as 18.58 nm. Thus, the measurement accuracy of 

the SPMD system, by considering the RMS value as criteria, could reach 3.878 μm by 

comparing the SPMD result with the interferometer result.  

Even though the surface shape measured by the SPMD system presents smooth 

flatness, we can tell that the SPMD measured surface (Figure 5-9 (a)) shows surface 

bending at the mirror edge compared to the interferometer measured result (Figure 5-

9 (b)). We want to note that such surface bending is in fact introduced by the system 

calibration error and the LCD screen inhomogeneity. Here, the system calibration 

error contains the laser tracker-based hand-eye calibration error and the checkerboard-
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based camera calibration error. On the other hand, the LCD screen inhomogeneity 

can be described as the LCD panel is not flat but it is bended owing to the mechanical 

stress introduced during the fabrication [40,131]. In fact, by applying a more 

homogeneous LCD screen and by performing a more precise calibration, the surface 

measurement accuracy could be further enhanced. 

 
 Repeatability measurement of the flat mirror: (a) The average surface 

shape of the four measured surfaces. (b) The surface shape differences between each 

individually measurement and the averaged surface. 

Apart from the measurement accuracy, the measurement robustness is also critical. 

Hence, to examine the SPMD measurement robustness, we performed the repeatability 

measurement with this same flat mirror. In particular, the mirror was located at the 

same position and we performed the measurement for four times using the same 

sinusoidal fringe patterns under the same experimental condition. Once we obtain 

these four measured surface shapes, their averaged surface shape is calculated, and 

this averaged surface shape is given in Figure 5-10 (a). Moreover, the differences 

between the four measured surfaces and this averaged surface are also compared. The 

surface differences of each measured surface to this averaged surface are presented in 

Figure 5-10 (b). 

The averaged surface in Figure 5-10 (a) gives us an RMS as 4.0981 μm, which is 

identical to the result demonstrated in Figure 5-9 (a) as 3.8966 μm. Moreover, note 

that the four figures in Figure 5-10 (b) are the surface shape differences between the 

four distinct measured mirror shapes and their average surface shape. So, we calculate 
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the RMS of each sub-figure in Figure 5-10 (b) to represent the system repeatability. 

The maximum RMS within all these four sub-figures is presented as only 35.1 nm. 

Thus, it is obvious that the SPMD system has great measurement repeatability and 

robustness. 

 
 Surface shapes of the flat mirror measured by the SPMD system at 

different locations. The flat mirror is shifted from the original position for: (a) +2 

mm, (b) +1 mm, (c) -1 mm, and (d) -2 mm. 

Finally, we shifted the flat mirror position and measured the surface shapes at 

different locations. Here, we shifted the mirror along X axis with respect to the SPMD 

coordinate system origin (see Figure 5-5) for +2 mm, +1 mm, -1 mm and -2 mm, 

respectively. In this case, by locating the mirror away from the system origin, the 

mirror was not being illuminated by the central section of the LCD screen, but it was 

gradually being illuminated by the LCD screen edges. Moreover, the fringe patterns 

reflected by the mirror were not imaged to the central section in the camera image 

plane, but the reflected images were shifted away from the image plane center, where 

the lens distortion will affect the captured images a bit more seriously. We performed 

the surface reconstruction to these four cases, and the measured surface profiles are 

given in Figure 5-11.  
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From Figure 5-11, we can clearly tell that the measurement accuracy is slightly 

deteriorated when we shift the flat mirror farther from the coordinate system origin. 

When the flat mirror is shifted for +2 mm from the original position, the surface RMS 

is increased from 3.8966 μm to 7.5945 μm, whereas the surface RMS is only 

deteriorated to 6.5070 μm when the shifted distance is +1 mm. On the other side, the 

surface RMS is deteriorated to 7.1535 μm when the mirror is shifted for -2 mm. Here, 

we can see that the shifting distances of ±2 mm give us nearly the same surface RMS 

values (i.e., 7.5945 μm and 7.1535 μm), and the surface RMS values with shifting 

distances of ±2 mm are greater than the RMS values of shifting distances of ±1 mm.  

 

 Spherical mirror measurement 

In Section 5.4.1, the flat mirror measurement results demonstrate the feasibility 

and robustness of the stereoscopic phase measuring deflectometry system. In this 

section, we further measure a spherical mirror, to justify that the proposed SPMD 

system is not only able to measure the flat surface, but also it is feasible to measure 

the curved specular surface.  

Here, the spherical mirror we measured is a dielectric-coated spherical concave 

mirror (Thorlabs, CM750-500-E02). The mirror provides a focal length of 500 mm 

(curvature radius of 1000 mm) with a diameter of 75 mm. The surface irregularity is 

/4 at 633 nm and the thickness tolerance is ±0.2 mm. This spherical mirror was as 

well located nearly 930 mm to the LCD screen and the orthogonal sinusoidal fringe 

patterns with three frequencies were sent to the LCD screen. In this case, the 

horizontal SFP periods were 120 pixels, 30 pixels and 24 pixels, whereas the vertical 

SFP periods were set as 120 pixels, 30 pixels and 24 pixels as well. By capturing the 

sinusoidal fringe patterns reflected by the spherical mirror with both cameras, we can 

perform phase shifting and then phase unwrapping to obtain the unwrapped phase 

maps in both cameras. Here, note that we again captured 300 images of any frame 

and later calculated their average intensity to eliminate the random LCD illumination 

noise. Then, the distortion of these averaged images was corrected using the lens 

distortion coefficients. After these two steps, we performed phase unwrapping. For 

this spherical mirror measurement, the orthogonal unwrapped phase maps 

corresponding to each camera are presented in Figure 5-12. The first phase map group 

in Figure 5-12 (a) corresponds to the first camera, and the second phase map group 

in Figure 5-12 (b) corresponds to the second camera.  
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 The phase maps on the spherical mirror in both cameras: (a) the 

orthogonal unwrapped phase patterns in the first camera, and (b) the orthogonal 

unwrapped phase patterns in the second camera. 

Once we obtained all unwrapped phase maps on the spherical mirror, we again 

used the second order polynomial fitting method to calculate the surface derivative 

distributions. Here, the phase minimization criteria  in Eq. (4.1) was set as 0.0225 

for the preliminary phase pair correspondence, and bi-cubic sub-pixel interpolation 

was later introduced to enhance the phase pair correspondence accuracy. Then, we 

used the phase pair correspondence information to calculate the surface normal, and 

these normal distributions are later calculated into surface derivatives. With the 

surface derivative distributions, we firstly interpolated these derivative distributions 

into homogeneous matrices, and then we extrapolated these homogeneous derivative 

matrices. Afterwards, we used these extrapolated homogeneous surface derivatives in 

both X and Y directions to perform 2D Fourier transform integration, and the 
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iteration loop was set as 50 times. The final reconstructed surface shape of the 

measured spherical mirror is shown in Figure 5-13 (a).  

 
 Surface shape of the measured spherical mirror (i.e., Thorlabs, CM750-

500-E02): (a) The shape of the spherical mirror obtained through the SPMD 

measurement, the surface is reconstructed through 2D Fourier transform 

integration. (b) The surface shape represented by a central horizontal line. (c) The 

surface shape difference between the experimentally measured spherical mirror and 

an ideal spherical surface (i.e., radius as 1000 mm). 

The reconstructed spherical surface in Figure 5-13 (a) shows great smoothness. The 

curvature radius of this mirror given by Thorlabs is 1000 mm, whereas the curvature 

radius of this measured spherical mirror is calculated as 1001.40 mm by selecting a 

central surface line in Figure 5-13 (a) (from the middle of the mirror left edge to the 

middle of the mirror right edge, see the red dashed line in Figure 5-13 (a)).  

Moreover, we also compare this experimentally measured horizontal cross line to 

an ideal spherical curve, and these two curves are given in Figure 5-13 (b). It is obvious 

that the experimentally measured surface line (i.e., the red curve in Figure 5-13 (b), 

which is the same red dashed line in Figure 5-13 (a)) precisely coincides with an ideal 
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spherical line (i.e., blue curve in Figure 5-13 (b)), whereas only a slight difference is 

presented.  

Finally, we construct an ideal spherical surface with a radius as 1000 mm, and we 

compare this ideal spherical surface with the experimentally obtained spherical 

surface, the surface difference is given in Figure 5-13 (c). From Figure 5-13 (c), we see 

that the measured spherical surface is bended compared to the ideal spherical surface 

only at the very edge, and the central section shows nearly no surface difference. Here, 

we need to note that the surface difference at the edges is introduced by the system 

calibration error as well as the LCD screen inhomogeneity.  

 
 Repeatability measurement of the spherical mirror with the highest 

SFP frequencies as 24 pixels: (a) The average surface shape of the four 

measurements. (b) The surface shape difference maps between each individually 

measured surface and the averaged surface. 

  Apart from the surface shape measurement, we as well conducted the 

repeatability measurement of this spherical mirror. Similar to the flat mirror 

measurement case, we measured the spherical mirror located at the same position 

using the same sinusoidal fringe patterns for four times. Once these four surface shapes 

are obtained, we firstly calculate their average shape and this averaged spherical 

surface is given in Figure 5-14 (a). We can see that this averaged surface is identical 

to the spherical surface in Figure 5-13 (a). Furthermore, the surface differences 

between each measured spherical surface to this averaged surface are calculated, and 

the four surface difference maps are given in Figure 5-14 (b). 
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To verify the measurement repeatability, we calculate the RMS values of these four 

sub-figures shown in Figure 5-14 (b). The maximum RMS within all surface difference 

maps in Figure 5-14 (b) is presented as 1.4250 μm, whereas the minimum RMS value 

is 1.2601 μm. Here, as the four measured spherical surfaces have nearly the same 

surface shape, we can tell that the SPMD system has great measurement repeatability 

and robustness to measure the curved specular surface. 

 
 Repeatability measurement of the spherical mirror with the highest 

SFP frequencies as 20 pixels: (a) The average surface shape of the four 

measurements. (b) The surface shape difference maps between each individually 

measured surface and the averaged surface. 

The above-discussed spherical surface measurement was performed by using the 

highest sinusoidal fringe pattern (SFP) frequency as 24 pixels to both horizontal and 

vertical directions. However, by only using one series of SFPs, we still cannot 

comprehensively study the SPMD system measurement robustness, as how the 

variation of the SFP frequencies will influence the measurement result is still not 

studied yet. Therefore, to more comprehensively verify the SPMD measurement 

robustness, we used another series of SFPs with different frequencies to perform the 

spherical mirror measurement. Here, we want to emphasize that it is the highest SFP 

frequency who determines the final unwrapped phase map distribution, so we only 

modified the highest frequencies in the new SFP series, as we increased the highest 

SFP frequency to 20 pixels in both horizontal and vertical directions to perform a 

secondary spherical surface measurement (the previous measurement used the SFP 
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series frequency of 24 pixels). Under this scenario, we measured this same spherical 

mirror for four times at the same position but by using the new SFPs with its highest 

frequency as 20 pixels. The averaged surface shape of these four measurements with 

respect to the new SFP frequency is given in Figure 5-15 (a), and the surface 

differences between each measured spherical surface to this averaged surface are 

compared and given in Figure 5-15 (b). 

The averaged spherical surface shown in Figure 5-15 (a), which is obtained using 

the second series of SFP (i.e., highest frequency as 20 pixels), demonstrates an 

identical surface shape to that in Figure 5-14 (a). Moreover, the maximum RMS of 

the surface difference maps in Figure 5-15 (b) is 2.4901 μm, and the minimum RMS 

is 1.1209 μm. Such results are also identical to the results in Figure 5-14 (b) with only 

a small variation. Thus, it is obvious that the SPMD system demonstrates great 

robustness to measure the spherical surface even with different SFP frequencies. More 

importantly, by considering the accurate measurement results of both the flat mirror 

and the spherical mirror, we can make a conclusion that our proposed SPMD system 

is able to measure various specular surfaces of different shapes with great robustness.  

 

 Discontinuous specular surface measurement 

The previous two sub-sections discuss the measurements of regular specular 

surfaces (i.e., a flat mirror or a spherical mirror) with the stereoscopic phase measuring 

deflectometry system. What is more, the experimental results prove both a reasonable 

measurement accuracy and a great measurement robustness. Nevertheless, in the real 

industrial applications, irregular specular objects are also widely used, and the surface 

measurement of such objects is also mandatory. Therefore, we discuss the 

measurement of a discontinuous specular disk in this section, from which we can justify 

the feasibility of using the SPMD system to measure irregular specular surfaces. 

The specular disk is an almost flat round disk with its diameter of 95 mm. In this 

disk, it contains a hollow circle that this circle has a diameter of 26.23 mm. The whole 

specular disk and the hollow circle share the same geometric center, and the 

photograph of the nearly flat disk is given in Figure 5-16 (a). This disk also 

demonstrates great reflective ability, as it can reflect the sinusoidal fringe patterns to 

the camera as shown in Figure 5-16 (b) and Figure 5-16 (c). 



124   

 

  
 (a) The photograph of the specular disk. (b) The horizontal SFP 

reflected by the specular disk and captured by the camera. (c) The vertical SFP 

reflected by the specular disk and captured by the camera. 

 
 The unwrapped phase maps of the specular discontinuous disk 

obtained using SFPs (with its highest frequency as 120 pixels): (a) the orthogonal 

phase patterns obtained through phase unwrapping in the first camera, and (b) the 

orthogonal phase patterns in the second camera. 
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This disk was also located nearly 930 mm to the LCD screen and the orthogonal 

SFPs with three frequencies were sent to the LCD screen. For the SFPs, the horizontal 

SFP periods were 1080 pixels, 360 pixels and 120 pixels, whereas the vertical SFP 

periods were set as 960 pixels, 320 pixels and 120 pixels. Similar to the flat mirror or 

the spherical mirror measurement, we again captured 300 images of any frame and 

later calculated their average intensity to eliminate the random LCD illumination 

noise. Here, we need to emphasize that even though the specular disk shows 

discontinuity, the phase maps can still be unwrapped because we used temporal phase 

unwrapping, and therefore, polynomial fitting method is still available for surface 

derivative determination. In particular, the unwrapped phase maps calculated through 

the averaged SFPs are given in Figure 5-17. Here, we want to note that the image 

distortion has been corrected in these figures. 

Once we obtain all unwrapped phase maps on the discontinuous disk, we again 

performed the second order polynomial fitting phase minimization to calculate the 

surface derivative distributions. The phase minimization criteria  in Eq. (4.1) was set 

as 0.0225 for the preliminary phase pair correspondence, and bi-cubic sub-pixel 

interpolation was later introduced to enhance the correspondence accuracy. Once we 

got the derivative matrices, we performed interpolation and then extrapolation to the 

derivative matrices, and we used these matrices to perform 2D Fourier transform 

integration. Here, the iteration loop was set as 50. The final reconstructed surface 

shape of the measured discontinuous specular disk is shown in Figure 5-18.  

 

 Surface shape of the discontinuous specular disk through the SPMD 

measurement, the surface is reconstructed through 2D Fourier transform 

integration. 
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The reconstructed discontinuous disk in Figure 5-18 shows a nearly flat surface 

shape with an RMS as 92.37 μm, and a PV as 175.61 μm. Here, we need to emphasize 

that the most severe surface shape variation is introduced at the central section. In 

particular, the central section presents a greater surface curvature than the rest of the 

specular surface. Nevertheless, such surface deformation is reasonable, because the 

central section cutting during the specular disk fabrication will definitely introduce 

surface deformation, and such deformation will deteriorate the cutting section flatness 

(i.e., the central section in Figure 5-18). Apart from the central curvature, we can also 

tell that the reconstructed specular disk is not symmetrically curved in the horizontal 

and the vertical directions. Specifically, we can find out from Figure 5-18 that the 

horizontal direction is slightly more curved than the vertical direction. Such surface 

asymmetry is introduced by the LCD screen inhomogeneity and camera calibration 

error, as they are also shown in the flat mirror and the spherical mirror measurement 

cases.  

 

 Repeatability measurement of the discontinuous specular disk with 

the highest SFP frequencies as 120 pixels: (a) The average surface shape of the four 

measurements. (b) The surface shape differences between each individually 

measured surface and the averaged surface. 

  Later, we as well conducted the repeatability measurement of this discontinuous 

specular disk to examine the robustness of the SPMD system for discontinuous surface 

measurement. Similar to the flat mirror or the spherical mirror case, we measured this 

disk located at the same position using the same SFPs for four times. Once the four 

surface shapes are obtained, we preliminarily calculate their average surface shape and 
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the averaged specular disk shape is given in Figure 5-19 (a). Here, the RMS of this 

averaged discontinuous disk surface is 92.0173 μm. Furthermore, the surface 

differences between each measured disk surface to this averaged surface are compared 

and the four surface differences are given in Figure 5-19 (b). 

In Figure 5-19 (b), the maximum RMS within all these four sub-figures is presented 

as 988.6 nm, and the minimum RMS is 302.6 nm. For the discontinuous disk 

repeatability measurement, the RMS errors of all surface difference maps are ranging 

within micrometer scale, from which we can tell that the SPMD system presents great 

measurement repeatability to measure even the discontinuous specular surface. 

 

 The unwrapped phase maps of the specular discontinuous disk 

obtained by using the new SFPs (with its highest frequency as 40 pixels) in the 

stereoscopic camera: (a) the orthogonal phase patterns obtained through phase 

unwrapping in the first camera, and (b) the orthogonal phase patterns in the second 

camera. 
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The above-discussed discontinuous disk measurement is performed by using the 

highest SFP frequency as 120 pixels to both the horizontal and the vertical directions. 

However, such frequency (i.e., 120 pixels) is relatively low, so the phase difference 

between any two adjacent pixels in the phase map is also relatively small. Note that 

such small phase difference may introduce difficulties in both the phase pair 

correspondence and the further sub-pixel interpolation. Thus, to study the influence 

of the phase difference between two adjacent pixels to the final surface measurement, 

we performed another measurement with different SFP frequencies. Here, instead of 

using the previous three frequencies, we introduced SFPs with four frequencies. For 

the new SFP series, the horizontal SFP periods were set as 1080 pixels, 360 pixels, 

120 pixels and 40 pixels, whereas the vertical SFP periods were set as 960 pixels, 320 

pixels, 120 pixels and 40 pixels. To obtain the unwrapped phase maps corresponding 

to the new SFP series, we used the same phase unwrapping principle, but to implement 

with four frequencies. To be more specific, we firstly obtained the continuous 

unwrapped phase maps of the SFP period of 120 pixels, then we used this unwrapped 

phase map to further unwrap the SFP with the period of 40 pixels. The new phase 

maps corresponding to the SFP period of 40 pixels are given in Figure 5-20.  

At this moment, the phase values in the horizontal phase map in the first camera 

range from -70.4 radians to 64.4 radians, whereas the phase values in the vertical 

direction range from -94.2 to 94.2 radians. By comparing the four frequencies-based 

phase maps to the previous three frequencies-based phase maps, we obviously detect 

that the phase range is increased, and thus, the phase difference between each two 

adjacent pixels is greater. In this case, the phase pair correspondence is easier to be 

established. At this moment, we still measured the same disk at the same location 

under the same experimental condition for four times, but this time we used the phase 

minimization criteria  as 0.36 to perform the primary phase pair correspondence. 

Here, we need to note that we only used a different  for the primary phase pair 

correspondence, but we still used the same bi-cubic method for sub-pixel interpolation. 

Then, we obtained the surface derivative matrices through this new SFP frequency 

scheme, and the derivative matrices are interpolated and then extrapolated, so that 

we can use them to accomplish 2D Fourier transform integration. Once we reconstruct 

the surface shapes of the four measurements, their averaged surface shape is 

calculated, and it is presented in Figure 5-21 (a). Note that this averaged disk surface 

is obtained through the four frequencies-based SFPs measurement. Afterwards, the 

surface differences between each newly measured specular disk surface to this averaged 

surface are compared and the four surface differences are presented in Figure 5-21 (b). 
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 Repeatability measurement of the discontinuous specular disk with 

the highest SFP frequencies as 40 pixels: (a) The average surface shape of the four 

measurements. (b) The surface shape difference maps between each individually 

measured surface and the averaged surface. 

In Figure 5-21 (a), the RMS of the averaged disk surface, which is obtained through 

the four-frequencies SFPs, is calculated as 89.7842 μm. On the other hand, the 

previous averaged surface obtained through the three-frequencies SFPs presents an 

RMS as 92.0173 μm. The two averaged surfaces demonstrate nearly a same surface 

shape with a tiny RMS difference as 2.2331 μm. Thus, we can verify the robustness 

of the SPMD system, as it provides nearly the same surface measurement results with 

different SFP frequencies even for the discontinuous specular surface. What is more, 

the maximum RMS within all surface difference maps for the four-frequencies based 

measurement is 390.6 nm, and the minimum RMS value is 188.1 nm (see Figure 5-21 

(b)). On the other hand, the surface shape differences obtained from the three-

frequencies SFPs based measurement give a maximum RMS as 988.6 nm, and a 

minimum RMS as 302.6 nm (see Figure 5-19 (b)). Here, as both the four-frequencies 

based measurement and the three-frequencies based measurement give a nearly 

identical surface shape difference, we can further prove the SPMD measurement 

robustness. Moreover, by comparing the surface shape differences obtained through 

the four-frequencies SFPs and the previous discussed three-frequencies SFPs (i.e., 

maximum RMS as 988.6 nm for the three-frequencies SFPs based measurement and 

maximum RMS as 390.6 nm for the four-frequencies SFPs based measurement), we 

can also tell that a greater phase difference between the two adjacent pixels guarantees 

a better measurement robustness. 





 

 

 

 

Chapter 6 Stereoscopic fringe projection 

profilometry 

In Chapter 5, we described the experimental measurements of different specular 

surfaces using a stereoscopic phase measuring deflectometry system. In this chapter, 

we present the stereoscopic fringe projection profilometry (SFPP) system, which is 

able to measure the surface shapes of diffuser objects.  

At the beginning, we mathematically describe the SFPP measurement principle in 

Section 6.1, which is based on geometric triangulation. Afterwards, we introduce the 

SFPP system calibration in Section 6.2, from which the system parameters are 

obtained. Once the SFPP system is calibrated, we present the experimental 

measurement process and give the measurement results in Section 6.3. In particular, 

we use the calibrated SFPP system to measure the surface shapes of three different 

diffuser objects as a “stair” structure object, a spherical structure object and a more 

complicated irregular structure object. In the experimental measurements, we still use 

sinusoidal fringe patterns (SFPs) to illuminate the objects and then we capture the 

distorted SFPs on the measured objects with the stereoscopic camera. Here, to 

illuminate the diffuser objects, a video projector is used instead of an LCD screen to 

provide the illumination. Once the distorted SFPs on the diffuser objects are captured 

by the stereoscopic camera, we again introduce phase shifting (see Section 3.2) 

combined with phase unwrapping (see Section 3.3) to obtain the unwrapped phase 

maps in both cameras, from which the triangulation can be performed, and the surface 
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shapes then can be obtained. Finally, we want to emphasize that as SFPP is a direct 

measurement system, it is feasible to measure diffuser objects with complex shapes. 

 

6.1 Mathematical principle of the stereoscopic fringe 

projection profilometry measurement 

Stereoscopic fringe projection profilometry (SFPP) is a diffuser surface shape 

measurement system based on structured light illumination. The principle of SFPP 

measurement is briefly explained in Section 1.3.3. Here, we again review the SFPP 

measurement process. In an SFPP system, a video projector is used to project 

sinusoidal fringe patterns (SFPs). The projected SFPs are distorted by the diffuser 

object, and then we use the stereoscopic camera to capture these distorted SFPs on 

the diffuser objects. Now, by modulating the captured SFPs with phase shifting and 

phase unwrapping, we obtain the unwrapped phase maps on the measured object in 

both cameras. Finally, by establishing the phase correspondence between the 

unwrapped phase maps in both cameras, we obtain the surface depth information 

through geometric triangulation. This surface depth information directly gives us the 

surface shape of the measured diffuser object.  

In this section, as we intend to mathematically describe the geometric triangulation 

for SFPP measurement, we initially establish the basic geometric SFPP scheme. In 

particular, as we use the same stereoscopic camera used in the SPMD system (see 

Chapter 5) for this SFPP measurement, we directly use the calibration results in Table 

5-1 and Table 5-2 as the camera intrinsic parameters, and we use the calibrated matrix 

RTC1tC2 presented in Section 5.2 as the extrinsic parameter between the stereoscopic 

camera.  

Now, we choose one certain point A on the first camera image plane, its coordinate 

position in the world coordinate system (i.e., the first camera coordinate system) is 

presented by three tuples in a vector notation as A=(xA,yA,zA). Here, (xA,yA,zA) is the 

geometric position of point A with respect to the world coordinate system origin, and 

its phase values are (Φh,Φv). On the other side, we find on the second camera image 

plane a correspondent point B which has the same phase values as (Φh,Φv). The 

coordinate position of point B in the world coordinate system is also presented by 

three tuples in a vector notation as B=(xB,yB,zB). Here, (xB,yB,zB) is the geometric 

position of point B with respect to the world coordinate system origin. Moreover, by 

regarding both cameras as pinhole cameras, their pinholes are entitled as 
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O1=(Ox1,Oy1,Oz1) and O2=(Ox2,Oy2,Oz2) in the world coordinate system. The SFPP 

diagram is presented in Figure 6-1.  

 
 The diagram of the stereoscopic fringe projection profilometry system 

for surface point determination through geometric triangulation. 

At this moment, by using the first camera pinhole O1 and point A, we can obtain 

a primary normalized vector as VA =[VAx,VAy,VAz] in the world coordinate system, and 

VA is calculated as: 

     
1 1 1

2 2 2
1 1 1

( , , ) ( , , )
[ , , ]

( ) ( ) ( )

A A A x y z
Ax Ay Az

A x A y A z

x y z O O O
V V V

x O y O z O
.  (6.1) 

We can also get a secondary unit vector as VB =[VBx,VBy,VBz] in the world 

coordinate system by connecting O2 to point B, and VB is calculated as: 
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B B B x y z
Bx By Bz

B x B y B z

x y z O O O
V V V

x O y O z O
.  (6.2) 

Then, two lines corresponding to these two unit vectors are described in the world 

coordinate system as below: 

     P tA AV A,  (6.3) 

     P uB BV B ,  (6.4) 

where t and u are real numbers. 

Now, by setting PA equal to PB, we can calculate the value of t and u, and therefore, 

we can easily obtain the intersection point S of these two lines in the world coordinate 

system. Finally, by implementing such triangulation to all pixels on the first camera 

image plane, we can obtain the full surface depth information of the measured object. 
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Nevertheless, the camera calibration in the real experimental implementation 

introduces calibration uncertainty to both the intrinsic parameters and the extrinsic 

parameter. Therefore, the camera pinhole positions and the focal lengths of both 

cameras may not be accurately determined, as the tiny calibration uncertainty will 

inevitably deteriorate the calibration accuracy. Thus, it is almost certain that the two 

lines (i.e., PA and PB) will not intersect with each other in the space, but they are 

separated for a tiny distance even at the real surface point position, which is shown 

in Figure 6-2 (see the black dashed square, where S is the real surface point, but the 

two lines are not intersecting at S). These two lines are also mentioned as skew lines. 

Under this scenario, the surface point is taken as a particular point in the space (i.e., 

S’ in Figure 6-2) which can provide a minimum distance between the skew lines. 

 
 The diagram of the SFPP system for surface point determination using 

the skew lines-based triangulation.  

To obtain the point that gives the minimum separation distance between the skew 

lines, we proceed the following steps: first of all, we calculate the cross product of VA 

and VB, as their cross product n is perpendicular to both vectors,  

      A Bn V V .  (6.5) 

Next, we forge a plane which contains line PB and vector n, and this plane is 

perpendicular to a second cross product n2, where n2 is: 

      2 Bn =V ×n .  (6.6) 

Therefore, the intersecting point of line PA with this above-mentioned plane, which 

is also the point on line PA that is nearest to line PB, is given as: 

      ( ) 2
1 A

A 2

B A n
S = A V

V n
.  (6.7) 
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Similarly, the triangulated surface point on line PB nearest to line PA is given as: 

      ( ) 1
2 B

B 1

A B n
S = B V

V n
,  (6.8) 

where n1 is calculated as: 

       1 An =V ×n .  (6.9) 

At this moment, point S1 and point S2 form the shortest line segment linking line 

PA and line PB. Then, we calculate the middle point between point S1 and point S2, 

and we regard this middle point as the real surface point. Finally, we perform such 

triangulation to all pixels of the experimentally obtained unwrapped phase map on 

the first camera image plane, and the complete surface shape is determined. Note that 

in this thesis, we use the skew lines intersection method to perform the geometric 

triangulation. 

 

6.2 Experimental calibration of a stereoscopic phase 

measuring profilometry system 

To perform surface reconstruction with a stereoscopic phase measuring 

profilometry system, we need to know the geometric relation of the stereoscopic 

camera, and we also have to properly calibrate the video projector to provide the 

optimal sinusoidal fringe patterns. Thus, in this section, we comprehensively show the 

SFPP system calibration. In particular, we firstly discuss the video projector 

calibration, and then we briefly discuss the stereoscopic camera calibration. In fact, 

we use exactly the same stereoscopic camera scheme previously used in the SPMD 

system to perform the SFPP measurement. Thirdly, we also discuss the geometric 

position between the video projector and the stereoscopic camera, as it affects the 

illumination homogeneity, and therefore influences the final phase extraction (i.e., 

through phase shifting and phase unwrapping). 

 For video projector calibration in an SFPP system, we let the camera capturing 

frequency and the video projector projecting frequency be equal, so we can avoid the 

LC flicker in the video projector (this video projector has a LCoS phase modulator).  

Even though we adjust the video projector and the camera to have the same 

frequency, the video projector still demonstrates a nonlinear gray level-intensity 

response, which is also referred as the gamma effect. Specifically, it presents the 
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gamma nonlinearity characteristic similar to that of an LCD screen, which shares a 

similar tendency as Figure 5-1. However, we need to emphasize that in an SFPP 

system, the gamma effect does not influence the surface reconstruction result, so it is 

not necessary to correct the gamma nonlinearity of the video projector. This is because 

the gamma nonlinearity is simultaneously introduced into both cameras when we use 

them to capture the same SFPs, and therefore, the same nonlinearity error is 

introduced to both cameras during phase unwrapping. Thus, the phase maps into both 

cameras are affected by the same gamma error. Note that such consistent phase error 

in both cameras is in fact not affecting the phase pair correspondence if we select a 

proper sub-pixel interpolation method (i.e., bi-cubic sub-pixel interpolation), so we 

can still obtain the correct phase correspondence for geometric triangulation.   

Now, as video projector calibration has been accomplished, we focus on stereoscopic 

camera calibration. Again, in our proposed SFPP system, the triangulation is 

performed between the stereoscopic camera, so the geometric relation between these 

two cameras is critical. Nevertheless, as the stereoscopic camera system has already 

been implemented in the previous SPMD system, we directly use that already 

calibrated stereoscopic scheme to perform SFPP measurement. More importantly, the 

separation distance between the stereoscopic camera (i.e., see RTC1tC2 in Eq. (5.1)) is 

large enough to achieve an accurate geometric triangulation. Thus, we directly use the 

already calibrated stereoscopic camera in Section 5.2 for SFPP measurement.    

Finally, we also have to pay attention to the geometric relation between the video 

projector and the stereoscopic camera. Nevertheless, the video projector position 

calibration is flexible, and it is not mandatory to obtain the geometric relation between 

the video projector and the stereoscopic camera. This is because the triangulation is 

only performed within the cameras, whereas the video projector is only used to provide 

the sinusoidal fringe patterns. Under this scenario, we can flexibly locate the video 

projector only if it can guarantee: (i) a homogeneous illumination on the measured 

object, and (ii) the SFPs projected on the measured object can be seen by both 

cameras. In fact, the flexibility of the video projector position calibration is one of the 

main advantages of a stereoscopic fringe projection profilometry system compared to 

a single-camera based fringe projection profilometry system.  

By considering the above-discussed conditions, we calibrated an SFPP system, and 

the calibrated system is given below in Figure 6-3. In this SFPP system, the video 

projector was located behind the stereoscopic camera, where the distance from the 

video projector to any camera was set nearly equal (see Figure 6-3 (b)). Later, we 
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located the measured diffuser object in front of the cameras, so both cameras can 

capture the image of the measured object (see Figure 6-3 (a)). In the SFPP system, 

we also implemented a linear polarizer in front of the video projector. This linear 

polarizer was introduced to only decrease the illumination intensity, so that the 

intensity captured by both cameras will not be saturated.  

 
 Experimental setup of the stereoscopic fringe projection profilometry 

system for diffuser object measurement. 

 

6.3 Experimental measurements using a stereoscopic 

fringe projection profilometry system 

In this section, we used this calibrated stereoscopic fringe projection profilometry 

(SFPP) system to measure the surface shapes of different diffuser objects. In 

particular, we measured a “stair” structure object, a spherical structure object and a 

complex surface structure object. By measuring these three different objects, we would 

like to justify that our SFPP system is available to accurately measure the surface 

shapes of different diffuser objects even with complex surface profiles.  

 

 “Stair” structure object measurement 

To verify the feasibility of the SFPP system, we firstly select a “stair” structure 

diffuser object to measure. This “stair” contains three steps, the stair height between 

each step is nearly 15 mm, the distance between each stair face is nearly 10 mm, and 

the size of each stair is 25 ×25 mm2. The surface of each stair is nearly flat, and the 

“stair” photograph is given in Figure 6-4 (a). This “stair” structure object is placed 

nearly 650 mm to the stereoscopic camera. 
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 The “stair” structure object measured by the SFPP system: (a) the 

photograph of the “stair” structure object, (b) the “stair” structure object with 

projecting different SFPs to its surface, and (c) the phase maps of the measured 

object in both cameras.  

By using a video projector, we sequentially projected both horizontal and vertical 

sinusoidal fringe patterns (SFPs) to the measured object. Within these SFPs, three 

different frequencies were used, and their frequencies were gradually increasing. In 

particular, the periods of both the horizontal and the vertical SFPs were set as 350 

pixels, 50 pixels and 30 pixels. Moreover, within each frequency, we introduced four 

different patterns with the phase-shift as /2 for phase shifting (see Eq. (3.1)). 

Therefore, we projected in total 24 different SFPs from the video projector and 

captured these images within both cameras. To better visualize the measured “stair” 

structure object, we give an intensity image series captured by the first camera in 
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Figure 6-4 (b) as an example. The images in Figure 6-4 (b) contain the vertical and 

the horizontal SFPs on the “stair”, and the phase-shift value is /2. Later, to eliminate 

the random video projector illumination noise, we further captured 300 images of any 

frame and calculated their average intensity. Afterwards, the camera distortion 

coefficients were introduced to correct the image distortion in all averaged images. 

Finally, these average intensity images with their distortion corrected were regarded 

as the final intensity patterns for phase shifting and phase unwrapping. For an SFPP 

system, it shares the same phase shifting and phase unwrapping principle as an SPMD 

system, so we directly used the same phase modulation principle to get the unwrapped 

phase maps on the “stair”, and the phase maps are given in Figure 6-4 (c).  

 

 The surface shape of the “stair” measured by the SFPP system using 

direct triangulation. 

The above-discussed process provides us the vertical and the horizontal unwrapped 

phase maps within the stereoscopic camera. Then, by executing the geometric 

triangulation using the unwrapped phase maps from the first camera to the second 

camera, we can get the surface shape of the “stair”. Here, to perform geometric 

triangulation, we have to find the phase pair correspondence between the two cameras. 

More specifically, we selected one phase pixel in the first camera image plane and 

recorded its orthogonal phase values. Then, we searched along the whole phase maps 

in the second camera image plane and find a particular phase pixel whose orthogonal 

phase values are the closest to that phase pixel in the first camera, and then we used 

such two phase pixels to construct the phase pair correspondence. Nevertheless, the 

phase values in these two pixels may not be equal. In fact, it is most certainly that 

the two pixels share slightly different phase values due to pixel quantization error and 

SFP illumination error. By using this direct phase pair correspondence method to 

perform the geometric triangulation, we obtain a “stair” surface profile in Figure 6-5. 
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The reconstructed surface of the “stair” structure shown in Figure 6-5 correctly 

reveals the shape of the measured object, from which we can distinguish the three 

steps of the “stair”. Nevertheless, the quality of the reconstructed surface is poor, and 

the reconstructed surface is not smooth. We want to note that such surface error is 

introduced by the phase pair correspondence error. Specifically, direct phase pair 

correspondence leaves the phase values between the correspondent phase pixels being 

slightly different, and such phase difference deteriorates the triangulation accuracy.  

Therefore, to enhance the reconstruction accuracy, sub-pixel interpolation has to 

be performed. For SFPP measurement, we firstly implemented bi-linear sub-pixel 

interpolation for surface shape enhancement. In the bi-linear sub-pixel interpolation, 

we used the method comprehensively discussed in Section 4.3.1, and the interpolation 

was performed by using a 3×3 pixel region in the phase maps. The reconstructed 

surface shape obtained through bi-linear sub-pixel interpolation is given below in 

Figure 6-6. 

 
 The surface shape of the “stair” measured by the SFPP system by using 

bi-linear sub-pixel interpolation. 

By implementing bi-linear sub-pixel interpolation, the quality of the reconstructed 

“stair” surface (i.e., Figure 6-6) is enhanced. Specifically, the surface smoothness is 

greatly improved, from which we can tell that the stair face in Figure 6-6 is nearly 

flat. Nevertheless, the “stair” surface still presents a tiny surface bump (see the 

rightmost reconstructed “stair” surface section in Figure 6-6) and it degenerates the 

surface reconstruction accuracy. The reason to such surface bump is that bi-linear 

interpolation still cannot precisely compensate the phase pair correspondence error. 

Under this scenario, to further enhance the measurement accuracy, we introduced 

bi-cubic sub-pixel interpolation for surface reconstruction. In the bi-cubic sub-pixel 

interpolation scheme, we used the method comprehensively discussed in Section 4.3.2, 
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and the interpolation was performed by using a 3×3 pixel region in the phase maps. 

The reconstructed surface shape obtained by using bi-cubic sub-pixel interpolation is 

given below in Figure 6-7. 

 
 The surface shape of the “stair” measured by the SFPP system by using 

bi-cubic sub-pixel interpolation. 

By implementing bi-cubic sub-pixel interpolation, the reconstructed surface of the 

“stair” (i.e., Figure 6-7) is further enhanced. Specifically, the surface is smooth at this 

moment, and the stair face in Figure 6-7 is extremely flat. Moreover, we calculated 

the stair height from this reconstructed surface as 14.98 mm (by measuring 10 times 

the stair heights at different positions and calculate their average stair height), and 

such distance coincides with the real stair height (i.e., as nearly 15 mm). We also 

calculated the distance between each stair face as 9.97 mm (by measuring 10 times 

the distance at different positions and calculate their average distance), which is also 

identical to the real stair face distance. Thus, it is obvious that bi-cubic sub-pixel 

interpolation guarantees a high surface reconstruction accuracy.  

Apart from the surface shape, we also obtained the distance from the measured 

object to the first camera. In particular, we select a central surface point on the 

reconstructed surface, and we get the distance from this point to the camera optical 

center as 656.822 mm. Therefore, our proposed SFPP system is not only feasible to 

measure the surface shape, but it also gives an accurate distance measurement from 

the first camera to the diffuser object. 

From the above-mentioned three reconstructed surfaces, we can deduce that direct 

phase correspondence gives the poorest surface reconstruction result, whereas bi-linear 

sub-pixel interpolation method improves the surface reconstruction accuracy, and bi-

cubic sub-pixel interpolation guarantees a best surface reconstruction result. Thus, it 

is recommended to perform sub-pixel interpolation in SFPP measurements. Here, bi-
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cubic sub-pixel interpolation requires a more complicated calculation, and therefore, 

it cannot compete with bi-linear method when the measurement speed is required (i.e., 

real-time 3D surface measurement [132–134]). Therefore, a trade-off between the 

measurement accuracy and efficiency has to be considered. In this thesis, as we focus 

on the measurement accuracy, we use bi-cubic sub-pixel interpolation to perform all 

SFPP surface reconstructions.  

 

 Spherical object measurement 

In the previous sub-section, we measured a “stair” structure object with the SFPP 

system. The “stair” measurement results justify the feasibility of using such system to 

measure the flat surface with sharp surface variation (i.e., the corners at the “stair” 

edges). In this sub-section, we measured a spherical diffuser object, to further 

demonstrate that the SFPP system is also able to measure curved surfaces. The 

spherical object we measured is shown below in Figure 6-8 (a).  

 

 The spherical object measured through the SFPP system: (a) 

photograph of the ball, (b) the phase maps on the sphere ball in both cameras.  

The diameter of this spherical ball is nearly 68 mm, and the surface of this sphere 

presents the diffuser characteristic. We again placed this spherical ball nearly 650 mm 
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to the stereoscopic camera, and we sent different SFPs through the video projector to 

illuminate this sphere. In particular, the frequencies of the SFPs were set the same as 

those used to measure the “stair”, as the SFP periods in both horizontal and vertical 

directions were set as 350 pixels, 50 pixels and 30 pixels. Moreover, within each 

frequency, four different patterns with phase-shift as /2 were introduced for phase 

shifting. Afterwards, we captured 300 images of any frame and calculated their average 

intensity to eliminate the video projector illumination noise. Then, camera distortion 

coefficients were introduced to correct the image distortion of all averaged images. At 

last, these average intensity images with their distortion corrected, were regarded as 

the final object intensity patterns to perform phase shifting and phase unwrapping. 

The unwrapped phase maps on the spherical object are shown in Figure 6-8 (b). 

As we had obtained the vertical and the horizontal unwrapped phase maps in the 

stereoscopic camera, we executed the geometric triangulation from the first camera to 

the second camera to calculate the surface shape of this sphere. In particular, 

geometric triangulation was performed using direct triangulation, bi-linear 

interpolation based triangulation and bi-cubic interpolation based triangulation, 

respectively. The reconstructed surface shapes corresponding to each triangulation 

method are given in Figure 6-9, as Figure 6-9 (a) is the reconstructed surface obtained 

from direct triangulation, Figure 6-9 (b) is the reconstructed surface obtained from 

bi-linear interpolation, and Figure 6-9 (c) is the reconstructed surface obtained by 

using bi-cubic interpolation. To better visualize the reconstructed surfaces, we give 

the surface shapes from two different perspectives. 

The spherical object reconstructed through direct triangulation demonstrates very 

weak surface smoothness (see Figure 6-9 (a)), as the discontinuous bumps can be seen 

throughout the whole surface. The reason to such surface bump is that the phase pair 

correspondence obtained by direct triangulation is not accurate. Then, the sphere 

surface reconstructed through bi-linear sub-pixel interpolation was obtained and we 

can easily find that the surface smoothness is enhanced (see Figure 6-9 (b)), as we can 

tell the smooth spherical shape of the measured object. Nevertheless, the reconstructed 

surface still contains the tiny bump and it degenerates the surface reconstruction 

accuracy. The reason to such surface bump is that bi-linear interpolation still cannot 

provide a precise sub-pixel correspondence. Finally, the reconstructed spherical surface 

through bi-cubic sub-pixel interpolation shows great surface smoothness (see Figure 

6-9 (c)). Thus, it is obvious that bi-cubic sub-pixel interpolation provides the highest 

surface reconstruction accuracy. The distance from the central point of this spherical 
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object to the optical center of the first camera is measured as 646.724 mm through bi-

cubic interpolation. 

 

 The spherical surface reconstructed by different geometric triangulation 

methods: (a) direct geometric triangulation, (b) bi-linear sub-pixel interpolation 

method, and (c) bi-cubic sub-pixel interpolation method. 

Finally, we need to note that even though a tiny hole (see the tiny white section 

in Figure 6-9) is presented in the reconstructed surfaces, it is in fact introduced by 

the surface defect on the spherical object, but it is not introduced during the 

triangulation. 

 

 Irregular surface object measurement 

In Section 6.3.1 and Section 6.3.2, we used the proposed SFPP system to measure 

the surface shape of both a “stair” structure object and a spherical structure object. 
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Both results demonstrate great measurement accuracy using bi-cubic sub-pixel 

interpolation. Nevertheless, the “stair” contains a nearly flat surface and the spherical 

object is mildly curved, and therefore, they only represent regular surfaces. However, 

in the real industrial applications, the objects with irregular surface shapes are more 

commonly seen, and their surfaces show more complex surface shapes rather than a 

simple flat or curve characteristic. Under this scenario, to further verify the wide 

application of the SFPP system, we finally measured an irregular diffuser object. In 

particular, the object we measured is a plastic toy duck, and this object is presented 

in Figure 6-10 (a). 

 

 The irregular object (i.e., toy duck) measured through the SFPP 

system: (a) the photograph of the irregular object, (b) the phase maps on the 

irregular object in both cameras.  

The measured object has a length of nearly 80 mm and a height of nearly 65 mm. 

Now, this irregular toy duck was located about 650 mm to the stereoscopic camera, 

and different SFPs were sent to illuminate this object. The frequencies of both the 

horizontal and vertical SFPs were set as 350 pixels, 50 pixels and 30 pixels, and the 

phase-shift was set as /2 for phase shifting. What is more, the video projector 

illumination noise and the distortion correction were eliminated by using the same 

method presented in the previous measurements, the unwrapped phase maps in both 
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cameras were obtained and presented in Figure 6-10 (b). Note that in Figure 6-10 (b), 

the phase values at the “duck hat” section is not calculable in any of the phase maps. 

This is because the “duck hat” section presents great reflective characteristic rather 

than diffuser characteristic, and therefore, the saturated intensity captured at this 

section cannot be used to perform phase unwrapping. 

Once we obtained the vertical and the horizontal unwrapped phase maps of this 

toy duck within both cameras, we performed the geometric triangulation from the first 

camera to the second camera to reconstruct its surface shape. Similar to the previous 

two cases (i.e., the “stair” structure object and the spherical object), the geometric 

triangulation was performed using direct triangulation, bi-linear interpolation based 

triangulation and bi-cubic interpolation based triangulation, respectively. The 

reconstructed surface shapes corresponding to each triangulation method are given 

below in Figure 6-11. Figure 6-11 (a), (b) and (c) are the reconstructed surface 

obtained through direct triangulation, bi-linear interpolation and bi-cubic 

interpolation, respectively. These reconstructed toy duck surfaces are shown from two 

aspects for a better visualization. 

The toy duck surface reconstructed through direct triangulation demonstrates weak 

surface smoothness and low resolution. In fact, it is unlikely to tell the specific 

structured such as the “wing” section or the “ribbon” section from Figure 6-11 (a). 

Later, we introduced bi-linear sub-pixel interpolation to surface reconstruction and 

the surface smoothness is enhanced. At this moment, we can distinguish the duck 

structure with detail, but still we see the “string” error throughout the surface. Such 

surface bump is introduced by the inadequacy of bi-linear interpolation. Finally, the 

reconstructed toy duck surface obtained through bi-cubic sub-pixel interpolation 

shows great surface smoothness without the undesired surface bump. Specifically, we 

can easily distinguish the two inward strings in the “wing” section and the nods in 

the “ribbon” section. These two particular sections are given in Figure 6-11 (d) for a 

better visualization. Here, the measured depths of these two strings in the “wing” 

section is smaller than 1 mm, and the nod height is around 200 μm. 

By now, we experimentally demonstrated that our proposed SFPP system can 

reach a high measurement accuracy even with a complex irregular surface object. We 

also would like to mention that in the duck surface reconstruction case, bi-cubic sub-

pixel interpolation was performed with a 3×3 phase pixel section. Nevertheless, if 

higher measurement accuracy is required, we can expand the interpolation section so 

that we can use more phase data to perform bi-cubic interpolation, and then the sub-

pixel interpolation accuracy could be further enhanced. Note that if we expand the 
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intersection section, the calculation time will be longer as more data are used for 

interpolation. 

 

 The toy duck surface reconstructed through different geometric 

triangulation methods as: (a) direct geometric triangulation, (b) bi-linear sub-pixel 

interpolation based triangulation, (c) bi-cubic sub-pixel interpolation based 

triangulation, and (d) the zoomed “wing” section and “ribbon” section of the 

measured toy duck. 



 

 

 

 

Chapter 7 Stereoscopic deflectometry-

profilometry hybrid structured light 

measurement system 

In Chapter 5, we described the experimental measurement of different specular 

surfaces with a stereoscopic phase measuring deflectometry system. In Chapter 6, we 

presented the experimental measurement of diffuser surfaces with a stereoscopic fringe 

projection profilometry system. In this chapter, we combine stereoscopic deflectometry 

with stereoscopic profilometry to measure the surface shape of a specular-diffuser 

hybrid object. 

In Section 7.1, we describe the measurement principle of a stereoscopic 

deflectometry-profilometry hybrid (SDPH) structured light system. In particular, by 

combining stereoscopic deflectometry with stereoscopic profilometry, this hybrid 

system can measure both the specular section and the diffuser section of an object at 

the same time. Then, in Section 7.2, we present the specular-diffuser hybrid surface 

reconstruction. Specifically, we obtain the specular surface shape with deflectometry, 

and we obtain the diffuser surface shape with profilometry. Hence, by considering the 

geometric relation between these two sections and their corresponding spatial 

positions, we merge these two surfaces together to get a complete hybrid surface. In 

Section 7.3, we experimentally test the feasibility of our proposed stereoscopic 

deflectometry-profilometry hybrid structured light system by measuring a specular-

diffuser hybrid object. Here, we want to note that we use both a separate projection 

method and a combined projection method to measure this object. Separate projection 

method is defined as we firstly project the sinusoidal fringe patterns from the LCD 
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screen to measure the specular section, and then we project the sinusoidal fringe 

patterns from the video projector to measure the diffuser section. In this case, we have 

to project the fringe patterns sequentially by an LCD and a video projector. On the 

other hand, combined projection method is defined as we project the sinusoidal fringe 

patterns with the LCD and the video projector at the same time, and we 

simultaneously measure both the specular section and the diffuser section, from which 

we can enhance the measurement efficiency. Finally, the reconstructed surfaces with 

respect to these two projection measurements are obtained and compared. 

 

7.1 Principle of stereoscopic deflectometry-profilometry 

hybrid structured light measurement 

As specular-diffuser hybrid objects are widely used in industrial applications, we 

propose a structured light system to measure the surface shapes of such objects. Here, 

note that the stereoscopic deflectometry system discussed in Chapter 4 and Chapter 

5 enables us to measure the specular surfaces, whereas the stereoscopic profilometry 

system discussed in Chapter 6 allows us to measure the diffuser surfaces. So, we fully 

take advantage of the stereoscopic camera scheme by combining such two systems 

together, and we use this combined system to measure the specular-diffuser hybrid 

objects. We entitle this combined structured light system as stereoscopic 

deflectometry-profilometry hybrid (SDPH) system.  

In an SDPH system, it has the stereoscopic camera, an LCD screen and a video 

projector. The stereoscopic camera is the key component, as these two cameras capture 

the sinusoidal fringe patterns reflected by both the specular section and the diffuser 

section of the measured object. On the other hand, the LCD and the video projector 

are implemented to provide sinusoidal fringe patterns (SFPs), and these SFPs are 

used to illuminate the measured specular-diffuser hybrid object. 

We firstly discuss the measurement of the specular section of a specular-diffuser 

hybrid object. To do so, we project the SFPs with an LCD and capture the reflected 

fringe pattern with the stereoscopic camera. Then, once we capture the reflected SFPs, 

we use exactly the same method discussed in Chapter 4 to accomplish the specular 

section measurement. To be more specific, by projecting the SFPs to the measured 

object with an LCD, only the specular section reflects the SFPs from the LCD to the 

stereoscopic camera (see the green lines in Figure 7-1), but the diffuser section cannot 

reflect the SFPs from the LCD to the cameras. Thus, we can separate the specular 
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section from the diffuser section of the measured object, and it is shown in Figure 7-

1, as the red part is the specular section, and the blue part is the diffuser section. 

Here, we need to emphasize that the specular-diffuser section separation is the most 

critical issue in SDPH measurement. Afterwards, we use phase shifting and phase 

unwrapping to calculate the phase maps corresponding to the specular section in both 

cameras. Once we obtain the unwrapped phase maps of the specular surface in both 

cameras, we use these phase maps combined with the phase pattern on the LCD screen 

to perform phase minimization (see Section 4.2). Finally, the surface shape of the 

specular section can be obtained by following the same surface reconstruction process 

presented in Section 4.3 and Section 4.4. 

 
 Projection diagram of a stereoscopic deflectometry-profilometry hybrid 

structured light system. 

Above we present the measurement of the specular section with the stereoscopic 

deflectometry-profilometry hybrid system, now we discuss the measurement of the 

diffuser section. To do so, we project the SFPs with a video projector, and then we 

capture the reflected fringe patterns with the stereoscopic camera. Here, we need to 

emphasize that the SFPs projected by the video projector can be reflected by both 

the specular section (see the yellow lines in Figure 7-1) and the diffuser section (see 

the purple lines in Figure 7-1). Thus, to only measure the surface shape of the diffuser 

section, we should separate the diffuser section illumination from the specular section 

illumination, as we should only allow the video projector light reflected by the diffuser 

section to enter the cameras. In other words, the video projector light reflected by the 

specular section should not enter any camera (see how the yellow light is reflected to 

another direction and does not enter the cameras in Figure 7-1). To accomplish such 

purpose, we need to properly calibrate the geometric position among the stereoscopic 
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camera, the measured object and the video projector. With a proper positioning, we 

let the video projector light reflected by the specular section goes into a certain 

direction, and the light within this direction cannot be detected by both cameras.   

Once we accomplish the above-mentioned positioning, we use the video projector 

to illuminate the measured object with sinusoidal fringe patterns. Now, as the cameras 

only capture the reflected SFPs with respect to the diffuser section, we then perform 

phase shifting and phase unwrapping to obtain the unwrapped phase maps of this 

diffuser section. Finally, as we have the phase maps in each camera with respect to 

the diffuser section, we perform the geometric triangulation discussed in Chapter 6 to 

accomplish the diffuser section surface reconstruction. 

Now, we have both the specular section surface and the diffuser section surface, we 

need to combine these two parts together to reconstruct a complete surface. This is 

easy to be accomplished, because we not only measure the surface shapes, but we also 

obtain the geometric position of any point on both measured surfaces with respect to 

the first camera optical center. Therefore, by extracting the spatial position 

information of both the diffuser section and the specular section, and then combining 

these two sections together, we have the complete specular-diffuser object surface. 

Such surface reconstruction is later more comprehensively discussed in Section 7.2. 

At last, we want to emphasize the advantage of using our proposed stereoscopic 

deflectometry-profilometry hybrid system to accomplish the specular-diffuser object 

surface measurement. The core element in our proposed system is the stereoscopic 

camera, and the introduction of these two cameras is the main advantage of our 

system. Here, by introducing two cameras, we can eliminate the height-normal 

ambiguity in deflectometry measurement and obtain the surface shape of a specular 

surface. On the other hand, by introducing two cameras to perform the profilometry 

measurement, we can avoid both the video projector gamma calibration and the video 

projector position calibration (i.e., the video projector position calibration means the 

spatial position between the video projector and the cameras), and this will ease the 

calibration complexity. Most importantly, the stereoscopic camera guarantees a great 

system flexibility, because we can change the video projector location (see Section 

6.2). By changing the video projector position, we can always let the video projector 

light being reflected by the specular section not enter the cameras. Therefore, we can 

always separate the illumination on the specular section and the diffuser section by 

simply modifying the video projector illumination position. On the contrary, let us 

assume that we only used one camera in a deflectometry-profilometry hybrid system. 
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If we only use one camera, the video projector location cannot be changed once it is 

calibrated, and this will enormously restrict the measurement flexibility. Hence, we 

may fail to separate the illumination between the specular section and the diffuser 

section. 

 

7.2 Specular-diffuser hybrid surface reconstruction 

To perform the specular-diffuser hybrid object surface reconstruction, the most 

critical issue is the specular-diffuser section separation (this is to be presented in 

Section 7.3 with the experimental measurement results). Now, let us assume we have 

separated the illumination on these two sections with a proper system calibration. 

Then, we have the specular region and the diffuser region, respectively. So, we can 

separately perform the surface shape measurement with respect to these two surface 

regions.  

For specular section measurement, we use an LCD to project the sinusoidal fringe 

patterns (SFPs), and such SFPs will be reflected only by the specular section and 

enter the cameras. Then, we use the same process in Chapter 4 to obtain the specular 

surface shape. Here, we want to emphasize that the surface reconstruction process 

discussed in Chapter 4 not only allows us to get the surface normal, but it also enables 

us to obtain the surface point position.  

Afterwards, we use this same system to perform the diffuser section measurement. 

For diffuser section measurement, we use a video projector to project sinusoidal fringe 

patterns (SFPs), and such SFPs will be reflected by the diffuser section and enter the 

cameras, whereas these SFPs reflected by the specular section cannot enter the 

cameras. Then, we collect the sinusoidal fringe patterns on the measured diffuser 

region, and we use the same triangulation process in Chapter 6 to get the surface 

shape with respect to this diffuser region. 

Finally, we have the surface shapes of both the diffuser section and the specular 

section, and the coordinate of any surface point in these two surfaces are presented in 

a same coordinate system (i.e., the first camera coordinate system). So, we get the 

complete surface shape of the specular-diffuser hybrid object by simply stitching these 

two regions together. 



   153 

 

7.3 Experimental measurements with a stereoscopic 

deflectometry-profilometry hybrid structured light 

system 

In this section, we present the experimental measurement of a specular-diffuser 

hybrid object with our proposed stereoscopic deflectometry-profilometry hybrid 

system. To do so, we firstly calibrate the whole system, as we determine the geometric 

relation among the video projector, the LCD screen, and the stereoscopic camera. 

Then, we use both separate projection method and combined projection method to 

measure the specular-diffuser hybrid object. Here, the specular section in the hybrid 

object is the same specular disk we measured in Section 5.4.3, and the diffuser section 

is a “stair” structure object similar to that we measured in Section 6.3.1.  

 

 Experimental set-up calibration 

The calibration of a stereoscopic defleceometry-profilometry hybrid system 

contains three terms as: (i) the calibration of the stereoscopic camera, (ii) the 

geometric calibration of the LCD screen to the stereoscopic camera, and (iii) the 

geometric calibration of the video projector. 

We firstly discuss the stereoscopic camera calibration. Here, as we have already 

presented the stereoscopic camera calibration process in Section 3.4.1, and we have 

also experimentally implemented the camera calibration in Section 5.2, we directly use 

that same stereoscopic camera system shown in Figure 5-5 to perform this experiment.  

Afterwards, we present the LCD screen position calibration. Here, we use the same 

stereoscopic phase measuring deflectometry (SPMD) scheme presented in Figure 5-5 

to achieve the specular section measurement in a stereoscopic deflectometry-

profilometry hybrid (SDPH) system. So, the coordinate system transformation matrix 

between the LCD coordinate system and the first camera coordinate system is the 

same matrix RTLCDtCCD1 given in Section 5.3. 

Finally, we discuss the video projector calibration. In an SDPH system, it is not 

mandatory to calibrate the gamma nonlinearity of a video projector. However, the 

video projector cannot be flexibly located at any location, because we need to 

guarantee the light from the video projector, which is later reflected by the specular 

section, will not enter any camera. Under this scenario, we locate the video projector 

away from the stereoscopic camera, and we let the video projector illuminate the whole 
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specular-diffuser hybrid object with a tilt angel. In this case, the light from the video 

projector will be reflected by the specular section and goes to another direction, where 

the stereoscopic camera is not located in this direction. The geometric position 

between the video projector and the stereoscopic camera is presented in Figure 7-2. 

Moreover, we give one reflection example presented by the red dash lines, from which 

we can see that the video projector light is reflected by the specular section and then 

goes outside of the cameras.  

 

 Experimental set-up of the stereoscopic deflectometry-profilometry 

hybrid structured light measurement system, and the measured specular-diffuser 

hybrid object. 

 

 Separate projection measurement 

To verify the feasibility of the stereoscopic deflectometry-profilometry hybrid 

system, we measured a specular-diffuser hybrid object. The specular section of this 

object is the nearly flat disk that we previously measured in Section 5.4.3. The diffuser 

section is a “stair”, that the bottom is a cylinder and the top is a cuboid. This hybrid 

object is shown in the left part of Figure 7-2. The diameter of the specular disk is 95 

mm, the dimeter of the diffuser cylinder is 39.92 mm, and the side lengths of the 

cuboid are 30.55 mm and 20.06 mm. The height from the disk surface to the cylinder 

surface is 8.53 mm, and the height from the cylinder surface to the cuboid surface is 

5.99 mm. We located this specular-diffuser hybrid object nearly 930 mm to the LCD 

screen, and we adjusted its position so that the cameras can see this object. Then, we 

used separate projection to measure the surface shape.  
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First of all, we projected the sinusoidal fringe patterns from the LCD screen to the 

measured object, so the cameras only captured the fringe patterns reflected by the 

specular section. To prove that only the specular section reflected the LCD light, but 

the diffuser section cannot reflect the LCD light, we give an example of the 

experimentally captured images in both cameras in Figure 7-3 (a). In Figure 7-3 (a), 

we can find that the fringe patterns projected from the LCD was only reflected by the 

specular section, whereas the diffuser section does not present any fringe pattern. 

Now, let us discuss the sinusoidal fringe patterns (SFPs) projected from the LCD 

screen. Here, we use the same process presented in Section 5.4 to measure this specular 

section, and the SFP series used here have the same frequencies as those presented in 

Section 5.4. Finally, we again calculate the unwrapped phase maps through phase 

shifting and phase unwrapping, and the final unwrapped phase maps in each camera 

are given in Figure 7-3 (b) and Figure 7-3 (c). 

 
 Images obtained through the specular section of the object when the 

LCD is switched on: (a) The photographs of the fringe images. The upper sub-

figure is the image captured by the first camera, and the lower sub-figure is the 

image captured by the second camera. Here, the sinusoidal fringe patterns projected 

from the LCD have a horizontal period of 360 pixels and a vertical period of 320 

pixels. (b) The orthogonal unwrapped phase maps in the first camera. (c) The 

orthogonal unwrapped phase maps in the second camera. 
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Once we obtained all unwrapped phase maps of the specular section, we performed 

the specular surface reconstruction (see Chapter 4), and we got the reconstructed 

surface shape of the specular section in Figure 7-4. Moreover, the distance from the 

specular section to the first camera optical center was also obtained. 

 

 Surface shape of the specular section in the specular-diffuser hybrid 

object measured by the stereoscopic deflectometry-profilometry hybrid system.  

The reconstructed discontinuous disk in Figure 7-4 demonstrates a nearly flat 

surface shape. Moreover, it has an identical surface shape to the disk measured by the 

stereoscopic phase measuring deflectometry system (see Figure 5-18 in Section 5.4). 

The nearly same surface shapes provided by both the stereoscopic defleceometry-

profilometry hybrid (SDPH) system and the stereoscopic phase measuring 

deflectometry (SPMD) system prove that the diffuser section will not influence the 

specular section measurement result in a specular-diffuser hybrid object. 

Above we provided the specular section measurement of the specular-diffuser 

hybrid object. Now, we project the sinusoidal fringe patterns from the video projector 

to the measured object, so that we can measure the diffuser section. Here, we need to 

note that as we provided the video projector illumination after we finished all the 

specular surface measurements with the LCD screen, this is a separate projection 

measurement. 

Note that by using a video projector to illuminate the specular-diffuser hybrid 

object, both the specular section and the diffuser section will reflect the light. 

Nevertheless, as we had already performed a proper system positioning, the light will 

be separated by the specular section (that the light reflected by the specular region 

will not enter the camera), and we only have the light reflected by the diffuser section 
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entering the camera. To prove this, we present an example of the experimentally 

captured images in both cameras in Figure 7-5 (a). In Figure 7-5 (a), we can obviously 

find that the fringe patterns reflected by the specular section go out of the camera, 

whereas only the central diffuser section shows the fringe patterns sent from the video 

projector. 

 

 Video projector illumination on the specular-diffuser hybrid object: (a) 

The photographs of the hybrid object being illuminated by the video projector. 

The upper sub-figure is the image captured by the first camera, and the lower sub-

figure is the image captured by the second camera. Here, the sinusoidal fringe 

pattern projected from the video projector has the horizontal and vertical periods 

of 50 pixels. (b) The orthogonal unwrapped phase maps in the first camera. (c) 

The orthogonal unwrapped phase maps in the second camera. 

Now, let us discuss the sinusoidal fringe patterns (SFPs) projected from the video 

projector. Here, we sequentially sent both horizontal and vertical SFPs with their 

periods as 350, 50 and 30 pixels. Then, we use exactly the same phase unwrapping 

process in Chapter 3 to acquire the unwrapped phase maps of the diffuser section, and 

they are given in Figure 7-5 (b) and Figure 7-5 (c). In these unwrapped phase maps, 

we can find hollow sections without phase information. Nevertheless, it is reasonable 

that such sections do not provide phase information, because the video projector light 
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was blocked by the geometric structure of the object and the light was not illuminating 

these sections.  

Once we obtained all unwrapped phase maps of the diffuser section, we performed 

geometric triangulation between the stereoscopic camera, which is previously 

described in Section 6.1, to obtain the reconstructed diffuser surface shape. During 

the geometric triangulation, we only used bi-cubic interpolation to establish the phase 

pair correspondence as it gives the best reconstruction accuracy. The reconstructed 

surface shape of the diffuser section is given in Figure 7-6. Moreover, to better visualize 

the reconstructed diffuser section, we give the reconstructed surface from two different 

perspectives. 

 
 Surface shape of the diffuser section in the specular-diffuser hybrid 

object measured by the stereoscopic deflectometry-profilometry hybrid system: (a) 

the reconstructed surface shape from the side view, and (b) the reconstructed 

surface shape from the top view.  

At this moment, we have reconstructed the surface shapes of both the specular 

section and the diffuser section. Apart from the surface shapes, the spatial coordinate 

of any point in these two surfaces can also be obtained. More importantly, all surface 

points of both the specular surface and the diffuser surface are represented with respect 

to the first camera optical center. In other words, all surface points are located in the 

same coordinate system. Thus, we directly combine the specular surface with the 

diffuser surface, and we get the complete surface of the specular-diffuser hybrid object 

as Figure 7-7. In Figure 7-7, we present the reconstructed specular-diffuser hybrid 

object surface from two perspectives. Here, the purple section is the specular disk, the 

green section is the diffuser cylinder, and the yellow section is the diffuser cuboid. 

Moreover, these different colors represent surface heights with respect to the color bar 

in Figure 7-7. 
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 Surface shape of the specular-diffuser hybrid object measured by the 

stereoscopic deflectometry-profilometry hybrid system: (a) the reconstructed 

surface shape from the side view, and (b) the reconstructed surface shape from the 

top view.  

Finally, we extract the surface heights between any two surfaces. In particular, the 

surface height from the cuboid surface to the cylinder surface was measured as 6.05 

mm (i.e., we measured this height at 10 different locations and calculated their average 

height), whereas the real height measured by a caliper is 5.99 mm. Moreover, we also 

get the height from the specular disk to the cylinder surface as 8.43 mm (i.e., we 

measured this height at 10 different locations and calculated their average height), 

and the real height between these two surfaces is 8.53 mm. Thus, we prove that our 

proposed stereoscopic deflectometry-profilometry hybrid system can measure the 

complete surface shape of a specular-diffuser hybrid object with a separate projection. 

 

 Combined projection measurement 

In Section 7.3.2, we demonstrated the feasibility of using a stereoscopic 

deflectometry-profilometry hybrid system to measure the surface shape of a specular-

diffuser hybrid object. Nevertheless, the measurement was performed by separately 

illuminating the specular section and the diffuser section. Specifically, we used an LCD 

to preliminarily illuminate the specular section, and then we used a video projector to 

illuminate the diffuser section. In this way, the measurement is not efficient because 

we need to separately illuminate a same object. Hence, we look forward to developing 

a combined measurement method, from which we can illuminate the hybrid object 

with both an LCD screen and a video projector at the same time. In this way, by 
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projecting with an LCD and a video projector simultaneously, we can save the 

measurement time and therefore enhance the efficiency. 

The key to accomplish the combined measurement is how to separate the 

illumination on the specular section and the diffuser section. From the previous 

discussion, we know that with a proper system positioning, we can let only the video 

projector light reflected by the diffuser section enter the camera, whereas we also let 

the LCD light reflected by the specular section enter the camera. What is more, the 

light reflected by both sections will not be mixed together, as the video projector light 

reflected by the specular section will never enter the camera. Under this scenario, we 

simultaneously illuminate the whole hybrid object, and the image captured by the 

cameras contains the sinusoidal fringe patterns from both the video projector and the 

LCD. We give a principle scheme in Figure 7-8, from which we use both cameras to 

catch the whole sinusoidal fringe pattern distribution on a specular-diffuser hybrid 

object.  

 

 The combined measurement diagram of a stereoscopic deflectometry-

profilometry hybrid structured light system. Here, the LCD and the video projector 

illuminate the specular-diffuser object at the same time, and we use Camera 1 to 

capture a sinusoidal fringe pattern distribution on the object as “Image captured 

by the camera”. Afterwards, we generate a white pattern on the LCD to illuminate 

the hybrid object, and the intensity distribution captured by Camera 1 at this 

moment is shown as “Hybrid object projected by the LCD with a white pattern”. 

Finally, we multiplex these two figures together to separate the specular section 

from the diffuser section. The separated figures are given in the right part. 
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Now, as both the LCD generated SFPs and the video projector generated SFPs are 

simultaneously captured by the camera (see “Image captured by the camera” in Figure 

7-8), we need to separate these two sections. To do so, we use the LCD to generate a 

white pattern (i.e., all LCD pixels have the gray level as 255), and we project this 

white pattern to the specular-diffuser hybrid object. Then, the cameras are used to 

capture the intensity distribution on this hybrid object. Here, as the specular section 

will reflect this white board, we can see the profile of the specular section, and we 

regard the captured image pixels with non-zero intensity as “1”. On the other hand, 

as the diffuser section cannot reflect the light from the LCD to the cameras, we find 

the diffuser section as totally black, and we regard the camera image pixels with zero 

intensity as “0”. In this way, we construct a binary pattern that reveals the specular 

and diffuser sections in each camera, and we entitle this pattern as the “principle 

pattern”. One example of a “principle pattern” is given in Figure 7-8 as “Hybrid object 

projected by the LCD with a white pattern”. Here, we need to emphasize that we only 

consider an ideal condition at this moment, that the diffuser section will not reflect 

any light at all. Nevertheless, the diffuser section may still reflect a tiny amount of 

light in the real implementation, and thus, the intensities at these pixels are not zero. 

However, this is not a problem, as the intensity contrast between the specular section 

and the diffuser section is high, we can always set a threshold intensity to determine 

the “principle pattern”. 

Now, as we have obtained the “principle pattern”, and it was modulated to a binary 

distribution pattern, we simply multiplex this “principle pattern” with the captured 

images, so we can separate the specular section from the diffuser section. Specifically, 

by multiplexing the “principle pattern” with a captured image, we obtain the SFP 

distribution only on the specular section (i.e., see the right lower corner sub-figure in 

Figure 7-8). Here, the specular section only contains the sinusoidal fringe patterns 

from the LCD screen. Then, we use the original captured image (i.e., an image with 

SFPs on both the specular and diffuser sections) to subtract this already separated 

specular section, and we get the SFP distribution on the diffuser section (i.e., see the 

right upper corner sub-figure in Figure 7-8). Here, the diffuser section only contains 

the sinusoidal fringe patterns from the video projector. At this moment, as we have 

already separated these two sections, we can use the same methods discussed in 

Section 7.2 to reconstruct the surface.  

To verify the feasibility of our proposed method, we again measured the same 

specular-diffuser hybrid object (see Figure 7-2) with combined projection. Here, we 

projected the sinusoidal fringe patterns (SFPs) to the object with an LCD and a video 
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projector at the same time. In the LCD screen, the horizontal SFP periods were 1080 

pixels, 360 pixels and 120 pixels, whereas the vertical SFP periods were set as 960 

pixels, 320 pixels and 120 pixels. On the other hand, in the video projector, the SFP 

periods in both the horizontal and vertical directions were set as 350 pixels, 50 pixels 

and 30 pixels. The captured images are given in Figure 7-9 (a). 

 

 Combined illumination on the specular-diffuser hybrid object: (a) The 

photographs of the hybrid object being illuminated by both the LCD screen and 

the video projector at the same time. The upper sub-figure is the image captured 

by the first camera, and the lower sub-figure is the image captured by the second 

camera. (b) The “principle patterns” with respect to both cameras. (c) The images 

separated by using the “principle patterns”. The SFP patterns on the diffuser 

section are given in the left part, and the SFP patterns on the specular section are 

given in the right part.  

Later, we used the LCD to project a white pattern, and thus we obtained the 

“principle patterns” with respect to both cameras shown as Figure 7-9 (b). In Figure 

7-9 (b), we can easily distinguish the specular section, as the diffuser section cannot 

reflect the light from the LCD screen. Finally, by modulating the “principle patterns” 

into binary patterns, and by multiplexing the original images with these binary 

“principle patterns”, we got the SFPs only on the specular section, and they are shown 

as the right part figures in Figure 7-9 (c). Hence, we successfully separated the specular 

sections in both cameras. Then, we subtracted the specular section patterns with the 
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original images, we obtained the SFPs on the diffuser sections, as they are shown as 

the left part figures in Figure 7-9 (c). 

 

 Phase maps obtained by combined projection. (a) The phase maps of 

the specular section in both cameras. The phase maps are calculated by separating 

the specular section and the diffuser section with “principle patterns”. (b) The 

phase maps of the diffuser section in both cameras. (c) The phase difference maps 

of the specular section between combined projection and separate projection. 

At this moment, as we have the specular section images and the diffuser section 

images, we again performed phase shifting and phase unwrapping, and the unwrapped 

phase maps corresponding to both cameras are given in Figure 7-10, where Figure 7-

10 (a) are the unwrapped phase maps of the specular section, and Figure 7-10 (b) are 

the unwrapped phase maps of the diffuser section. To further examine the illumination 

separation performance, we compare the phase maps on the specular section, which 
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were obtained through combined projection, with the corresponding phase maps 

obtained from separate projection (see Figure 7-3 in Section 7.3.2). The unwrapped 

phase map differences are given in Figure 7-10 (c). From the unwrapped phase 

difference maps, we find that the maximum phase difference is ranging within only 

nearly 0.05. Finally, as we used the phase minimization criteria  as 0.0225 (i.e., 

0.152=0.0225), such small phase difference (i.e., nearly 0.05) is unlikely to influence 

the phase pair correspondence.  

 
 Surface shape of the specular-diffuser hybrid object measured by the 

stereoscopic deflectometry-profilometry hybrid system with combined projection. 

(a) The reconstructed surface shape from the side view. (b) The reconstructed 

surface shape from the top view. (c) The surface difference map between separate 

projection and combined projection. 

Finally, we again use the same surface reconstruction method, which is used in the 

previous discussed separate projection measurement, to reconstruct the surface shape 

of this specular-diffuser hybrid object. The surface reconstructed by combined 
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projection method is given in Figure 7-11 (a) and Figure 7-11 (b), from which we can 

find that it is identical to the reconstructed surface with separate projection (see 

Figure 7-7). Afterwards, we moved a step further by comparing the separation 

projection reconstructed surface with the combined projection reconstructed surface. 

The surface shape difference is given in Figure 7-11 (c). From Figure 7-11 (c), we 

distinguish a maximum surface difference as 67.3 μm, and it appears on the diffuser 

section. On the other hand, the specular section presents a smaller surface difference 

compared to the diffuser section, as the maximum surface difference in the specular 

section is 34.3 μm. Moreover, the majority of the surface difference map only 

demonstrates a tiny variation, from which we justify the feasibility of combined 

projection measurement. So, by properly separating the illumination on both the 

specular and diffuser sections, combined projection provides a nearly identical 

measurement result as separate projection, but it will enhance the measurement 

efficiency.  

 

 





 

 

 

 

Chapter 8  Conclusions 

8.1 Summary of contributions 

In this thesis, we have developed three structured light systems to perform 3D 

surface shape measurement with high accuracy and robustness. In this case, our 

proposed systems can measure specular, diffuser and specular-diffuser hybrid objects. 

This thesis has made the following contributions: 

• We have proposed a phase minimization algorithm to obtain the 

specular surface shape with a stereoscopic phase measuring 

deflectometry system. In this thesis, we presented a stereoscopic phase 

measuring deflectometry (SPMD) system to measure the surface shapes of 

specular objects. We initially demonstrated the advantages of using 

stereoscopic camera based deflectometry to perform the specular surface 

measurement. In particular, the advantages of an SPMD system can be 

summarized as: (i) it can solve the height-normal ambiguity without shifting 

the LCD screen position, (ii) it does not require any initial surface estimation, 

and this makes an SPMD system robust to measure different surface shapes. 

Once we have demonstrated the advantages of SPMD measurement, we 

propose a phase minimization method to perform the specular surface normal 

calculation. To be more specific, such phase minimization is accomplished by 

minimizing the phase difference square value between the phase maps on the 

LCD screen and the CCD planes. Afterwards, we proposed a polynomial 

fitting algorithm to perform the phase minimization, and we also presented 

an iterative method to guarantee that the minimization can be efficiently 
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fulfilled. From phase minimization, we can calculate the partial derivative 

distribution of the measured specular surface. Later, we proposed a sub-pixel 

interpolation method to improve the phase pair correspondence, from which 

we can further improve the surface derivative calculation accuracy. Here, we 

showed both a bi-linear interpolation method and a bi-cubic interpolation 

method. Finally, we discussed a 2D Fourier transform integration process to 

reconstruct the surface from the measured derivatives. The advantages of the 

stereoscopic phase measuring deflectometry is discussed in Chapter 1, and the 

specular surface measurement with an SPMD system is shown in Chapter 4.  

• We have developed and calibrated a stereoscopic phase measuring 

deflectometry system to perform the specular surface measurement. 

Once we have presented the complete surface measurement process, then we 

experimentally demonstrated the feasibility of using our proposed stereoscopic 

phase measuring deflectometry (SPMD) system to measure the surface shapes 

of different specular objects. The SPMD system was firstly calibrated, from 

which we sequentially performed the LCD gamma correction, the camera 

calibration, and the LCD position calibration. Once the system was well 

calibrated, we introduced the proposed polynomial fitting method combined 

with 2D Fourier transform integration to experimentally obtain the surface 

shapes of a flat mirror, a spherical mirror and a discontinuous specular disk. 

The measurement results of the flat mirror demonstrate a surface error RMS 

as 3.90 μm and a repeatability RMS as 35.1 nm. Later, by comparing the 

SPMD measurement result with the interferometer result for this flat mirror, 

we determined the SPMD measurement accuracy (i.e., by using the surface 

error RMS value as criteria) as 3.88 μm. Apart from the flat mirror, we also 

measured a spherical mirror. The measurement results of the spherical mirror 

also demonstrate great accuracy and robustness, as the measured radius is 

1001.4 mm compared to the radius of 1000 mm given by Thorlabs. What is 

more, we also obtained the identical spherical surface shapes by using 

sinusoidal fringe pattern series with different frequencies, and thus we further 

justified the robustness of the SPMD system. Finally, we measured a 

discontinuous specular disk, and the results also show great repeatability by 

using two different SFP series. Therefore, we have proved that the proposed 

SPMD system is feasible to perform the accurate and robust measurement of 

both regular and irregular specular surfaces. 
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• We have developed and calibrated a stereoscopic fringe projection 

profilometry system to perform the diffuser surface measurement. 

In this thesis, we systematically demonstrated the feasibility of using our 

proposed stereoscopic fringe projection profilometry (SFPP) system to 

measure the surface shapes of different diffuser objects. In particular, we 

firstly justified that the surface shape reconstruction can be accomplished by 

using the skew lines to perform the geometric triangulation between the 

stereoscopic camera. Later, the SFPP system was calibrated, as the exact 

same stereoscopic camera system, which was also used in the SPMD system, 

was implemented in the SFPP system. Moreover, as we proved that the 

gamma nonlinearity will not influence the triangulation accuracy, the video 

projector was implemented without correcting the gamma effect. Once the 

SFPP system was well calibrated, we experimentally measured three different 

diffuser objects as a “stair” structure object, a spherical structure object and 

a more complex irregular surface structure object. The measurement result of 

the “stair” object proves that the SFPP system we proposed is feasible to 

measure the flat surface even with a sharp surface variation; the sphere 

measurement result demonstrates the practicability of SFPP for curved 

surface measurement; and the irregular object (i.e., toy duck) measurement 

result finally verifies that the SFPP system is also available to perform the 

complex surface measurement. More importantly, in surface reconstruction, 

we applied direct triangulation, bi-linear sub-pixel interpolation triangulation 

and bi-cubic sub-pixel interpolation triangulation to reconstruct the surface 

shape, respectively. Direct triangulation is the fastest, but it provides the 

poorest surface reconstruction accuracy. Later, bi-linear sub-pixel 

interpolation provides an improved surface reconstruction accuracy, but it 

still contains a surface reconstruction error. Finally, bi-cubic sub-pixel 

interpolation guarantees the most accurate surface reconstruction, with the 

price of increasing the calculation time. Thus, for SFPP measurement, sub-

pixel interpolation technique is recommended for surface reconstruction, and 

we have to consider the trade-off between the calculation speed and the sub-

pixel interpolation accuracy. At last, if a higher measurement accuracy is 

required, sub-pixel interpolation can be implemented with using more pixel 

data, with the price of further decrease the calculation efficiency.  

• We have developed and calibrated a stereoscopic deflectometry-

profilometry hybrid system to perform the specular-diffuser object 
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surface measurement. Finally, we combined the stereoscopic deflectometry 

system with the stereoscopic profilometry system to obtain a stereoscopic 

deflectometry-profilometry hybrid (SDPH) system to measure the surface 

shape of the specular-diffuser hybrid object. In this case, we use the same 

principle of stereoscopic phase measuring deflectometry (SPMD) to measure 

the specular section of the hybrid object, and we use the same principle of 

stereoscopic fringe projection profilometry (SFPP) to measure the diffuser 

section of the hybrid object. Finally, as we obtain both the specular surface 

and the diffuser surface, we simply combine these two sections together to 

obtain the complete specular-diffuser hybrid object surface shape. Here, we 

want to note that the most critical issue in SDPH measurement is the 

specular-diffuser section separation. Thus, we proposed both (i) a separate 

projection and (ii) a combined projection to measure the hybrid object. 

Separate projection method is described as we project the sinusoidal fringe 

patterns from the LCD and the video projector separately, so we can 

automatically separate the specular section and the diffuser section. 

Combined projection method is described as we project the sinusoidal fringe 

patterns from the LCD and the video projector at the same time. Then, we 

generate a white pattern on the LCD to illuminate the measured specular-

diffuser hybrid object, so we obtain a “principle pattern”. Finally, we used 

the obtained “principle pattern” to separate the specular section from the 

diffuser section for further measurement. As we have proposed two 

measurement methods, we calibrated the SDPH system and performed the 

experimental measurement of a specular-diffuser hybrid object. In particular, 

we used both separate projection and combined projection to measure the 

studied object. The proposed SDPH demonstrated its feasibility to measure 

the specular-diffuser hybrid object, and we further examined that both 

separate projection and combined projection provide an identical 

measurement result. Thus, we experimentally verified the feasibility of our 

proposed stereoscopic deflectomety-profilometry hybrid system. 

 

8.2 Future prospects 

Structured light measurement is a promising technique to achieve high accuracy 

3D surface shape measurement. Specific improvements that can be made in the future 

are listed below: 
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• GPU assisted calculation. In this thesis, we used Matlab to perform: (i) 

the surface normal calculation for specular surface measurement and (ii) 

the surface point triangulation for diffuser surface measurement. In this 

way, we perform the calculation point by point, and this is time consuming. 

Nevertheless, the recently proposed GPU-assisted calculation can avoid the 

point by point calculation, as it can directly calculate all studied points at 

the same time, so it guarantees a parallel calculation. As a result, the 

calculation time will be dramatically decreased, and thus, the measurement 

efficiency can be improved. 

• Flexible system calibration. In our stereoscopic phase measuring 

deflectometry system, the calibration between the LCD coordinate system 

and the camera coordinate system is complex. In particular, we have to 

move the cameras to numerous locations to accomplish the calibration, and 

this will inevitably complex the system calibration and decrease the 

calibration accuracy. Nevertheless, there is still room to simplify the system 

calibration between the LCD and the camera. For instance, by 

implementing a high precision robotic arm, we can easily determine the 

spatial position relation between the LCD screen and the camera without 

moving the camera to numerous different locations.  

• Adaptive fringe pattern projection. In our stereoscopic deflectometry 

or stereoscopic profilometry system, fixed-pitch sinusoidal fringe patterns 

(SFPs) are projected to the measured object to perform the surface 

measurement. However, note that in the case of measuring an extremely 

complex irregular surface (i.e., large curvature with a steep surface 

variation), a fixed-pitch sinusoidal fringe pattern may overlap at the 

irregular section, and thus influence the phase retrieving accuracy. Thus, 

an adaptive sinusoidal fringe projection can be generated to compensate 

the fringe overlap in the irregular surface section. At this moment, the 

structured light measurement system could be used to measure more 

complex objects. 

• Multi-perspective 3D surface reconstruction. In this thesis, the 

structured light systems allow us to obtain the 3D surface shape of the 

measured object. Here, we measured the object with our proposed systems 

from only one perspective. Now, let us assume we rotate the measured 

object, so we can measure the 3D surface shape of other sections of the 
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measured object. Then, by performing a multi-perspective 3D surface 

reconstruction, we can reconstruct the complete 3D surface shape of the 

measured object (i.e., the toy duck we measured in Chapter 6). 

 

 



 

 

 

 

Appendix  

Mathematical description of surface 

normal calculation in an SPMD system 

In Section 4.1, we present a phase minimization principle to obtain the specular 

surface normal in the stereoscopic phase measuring deflectometry system. However, 

the mathematical description for surface normal calculation is not presented in that 

section. Thus, in this Appendix, we will comprehensively present a complete 

mathematical description of surface normal calculation in the stereoscopic phase 

measuring deflectometry system. 

To describe the mathematics for surface normal calculation, we need to initially 

give the unwrapped phase maps on the image plane of both cameras. Here, we assume 

that the phase map distortion, which is introduced by camera distortion, has already 

been corrected. Therefore, we have the ideal phase maps, and the phase value at any 

camera image plane pixel is known. 

On the other hand, we give the SPMD system component parameters and all 

coordinate systems. For system component parameters, we have the following three 

parameters as: (i) the intrinsic parameters of the first camera, (ii) the intrinsic 

parameters of the second camera, and (iii) the parameters of the LCD screen. For 

coordinate systems, we have: (i) the world coordinate system, (ii) the coordinate 
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system transformation from the second camera coordinate system to the first camera 

coordinate system, and (iii) the coordinate system transformation from the LCD 

screen coordinate system to the first camera coordinate system.  

We present the three above-mentioned SPMD system component parameters here: 

(1) As the lens distortion has already been corrected, the intrinsic parameters of 

the first camera contain the camera focal length and the principle point. The focal 

length of the first camera is entitled as f1. The principle point of this camera is entitled 

as (uO1,vO1). Here, the CCD pixel is a square pixel with its side length as s.  

(2) Similar to the first camera, we have the parameters of the second camera as: 

the focal length of f2, the principle point of (uO2,vO2), the CCD pixel side length of s. 

(3) For the LCD screen, we have the dimension of the LCD screen, and we also 

have the size of an LCD pixel. Here, the LCD dimension is M×N, its geometric center 

is (M0,N0), and the LCD pixel is a square pixel with its side length as l. 

Next, we present three coordinate systems used in the SPMD system, they are 

presented as follow: 

(1) The coordinate system of the first camera is entitled as (O1-X1,Y1,Z1), where 

O1 is the camera optical center (i.e., the pinhole), and Z1 axis is the optical axis of the 

first camera. The first camera coordinate follows a right hand distribution. Here, we 

want to emphasize that the first camera coordinate system is also the world coordinate 

system in our SPMD system. This means that we transform all points and vectors 

into this coordinate system to perform the further calculation. 

(2) The coordinate system of the second camera is entitled as (O2-X2,Y2,Z2), where 

O2 is the camera optical center (i.e., the pinhole), and Z2 axis is the optical axis of the 

second camera. The second camera coordinate follows a right hand distribution. Here, 

the coordinate transformation from the second camera coordinate to the first camera 

coordinate is accomplished by introducing RTC2tC1. Specifically, RTC2tC1 is a 4×4 

matrix and it is written as: 

 
0 1
C2tC1 C2tC1

C2tC1
R T

RT ,  (A.1) 

where RC2tC1 is a 3×3 matrix representing the rotation from the second camera to the 

first camera, and TC2tC1 is a 1×3 column representing the shifting in the same 

direction.  
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(3) The coordinate system of the LCD screen is entitled as (OLCD-XLCD,YLCD,ZLCD), 

where OLCD is the geometric center of the LCD screen, and ZLCD axis is a vector 

perpendicular to the LCD plane. The LCD screen coordinate system follows a right 

hand distribution, and the origin of this coordinate system is at the geometric center 

of the LCD plane. Here, the coordinate transformation from the LCD screen 

coordinate system to the first camera coordinate system is accomplished by 

introducing RTLCDtC1. Specifically, RTLCDtC1 is a 4×4 matrix, and it is written as: 

 
0 1

LCDtC1 LCDtC1
LCDtC1

R T
RT ,  (A.2) 

where RLCDtC1 is a 3×3 matrix representing the rotation from the LCD screen to the 

first camera, and TLCDtC1 is a 1×3 column representing the shifting in the same 

direction.  

 
Figure A: Principle scheme of the stereoscopic phase measuring deflectomery 

system for surface normal determination. 

Now, as we are equipped with the system parameters and the coordinate system 

information, we perform the surface normal calculation. To better visualize the 

calculation process, we give Figure A to depict the surface normal calculation, and the 

studied pixel is A on the first camera image plane. The surface normal calculation can 

be listed as nine sequential steps, and they are discussed as follow: 

(1) Determine the basic vector V1 

We select pixel A on the first camera image plane, this pixel is located at (u1,v1) 

in the first camera image plane, and its phase value is ΦA. Note that in the real 
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implementation, a pixel has two phase values (i.e., orthogonal phase). However, here 

we only use one phase value so we can simplify the discussion. Then, the coordinate 

of this pixel A in the first camera coordinate system is calculated as three tuples as 

follow: 

 1 1 1( )Ox s u u ,  (A.3) 

 1 1 1( )Oy s v v ,  (A.4) 

 1 1z f ,  (A.5) 

where s is the CCD pixel side length, (uO1,vO1) is the first camera principle point, and 

f1 is the camera focal length. 

Once we get the three-dimensional coordinate of this pixel in the first camera 

coordinate system, we connect it to the first camera optical center to forge a vector 

v1 in the first camera coordinate system. This vector is then mathematically described 

as: 

 1 1 1, ,x y z1v .  (A.6) 

Finally, we calculate its normalized vector V1, and this normalized vector is 

calculated as: 

 
1 1 1

2 2 2
1 1 1

, ,x y z

x y z
1V .  (A.7) 

 (2) Find the correspondent phase pair L1 on the LCD  

Now, as we have determined the basic vector V1 in the first camera coordinate 

system, we search on the LCD screen a particular pixel LA that has the same phase 

value as ΦA. Here, ΦA is the phase value of point A on the first camera image plane. 

After we search the phase map on the LCD panel, we find pixel LA and it is located 

at pixel (m1,n1) in the LCD plane, so its position in the LCD coordinate system can 

be calculated as three tuples as follow: 

 1 0( )LAX l m M ,  (A.8) 

 1 0( )LAY l n N ,   (A.9) 

 0LAZ .  (A.10) 

where l is the LCD pixel side length, (M0,N0) is the LCD geometric center. 
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Now, we use RTLCDtC1 to transform this point from the LCD coordinate system to 

the first camera coordinate system, and this point LA is presented as: 

 ( , , ,1) ( , , ,1)T T
LA LA LA LA LA LAx y z X Y ZLCDtC1RT ,  (A.11) 

where (xLA, yLA, zLA) is the coordinate of point LA in the first camera coordinate system. 

(3) Determine a potential surface point 

Now, as we have the corresponding phase pair on both the first camera and the 

LCD, we need to select a potential point on the basic vector V1. To do so, we use V1 

to forge a line P1 which passes through the first camera optical center O1. This line is 

determined as: 

     P t1 1V ,  (A.12) 

where t is a real number, and this line is described in the first camera coordinate 

system. 

In this case, we select any t, and the three tuples representing the potential surface 

point P is calculated as: 

 
1

2 2 2
1 1 1

x t
x

x y z
,  (A.13) 

 
1

2 2 2
1 1 1

y t
y

x y z
,   (A.14) 

 
1

2 2 2
1 1 1

z t
z

x y z
.  (A.15) 

Here, this potential surface point P is represented as P=(x,y,z), and it is 

represented in the first camera coordinate system. 

(4) Calculate the surface normal to the potential surface point 

At this moment, we have used the first camera and the LCD screen to estimate a 

potential surface point P. Then, we need to calculate the surface normal to this 

potential point. To do so, we firstly connect P with LA to forge an inverse vector u1, 

and this vector can be calculated as: 

 , ,LA LA LAx x y y z z1u .  (A.16) 
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where (xLA, yLA, zLA) is the coordinate of the LCD point LA in the first camera 

coordinate system, and (x,y,z) is the coordinate of the potential surface point P in the 

same coordinate system.  

Then, we calculate its unit vector U1, and this unit vector is calculated as: 

 
2 2 2

, ,

( ) ( ) ( )

LA LA LA

LA LA LA

x x y y z z

x x y y z z
1U .  (A.17) 

Finally, as we have both V1 and U1, we can calculate the surface normal to this 

potential point P as: 

 1 1N U V .  (A.18) 

Then, we normalize normal N, and we have the normalized normal n to the 

potential surface point P. 

(5) Calculate the second inverse ray to the second camera  

 Until this step, we have performed all the calculation with respect to the first 

camera, Later, we introduce the second camera to execute phase minimization. To do 

so, we need to find the correspondent points on the LCD panel and the second camera 

image plane with respect to this potential surface point P. 

So, we connect point P with the second camera optical center O2, and we can forge 

another vector v2. Here, the second camera optical center O2 is transformed into the 

first camera coordinate system as: 

 2 2 2( , , ,1) (0,0,0,1)T T
O O Ox y z C2tC1RT ,  (A.19) 

Then, v2 is calculated as: 

 2 2 2, ,O O Ox x y y z z2v .  (A.20) 

By calculating its normalized vector, we have V2 as: 

 
2 2 2

2 2 2
2 2 2

, ,

( ) ( ) ( )

O O O

O O O

x x y y z z

x x y y z z
2V .  (A.21) 

(6) Calculate the intersection pixel on the second camera image plane 

Now, we use V2 to calculate its intersection point with the second camera image 

plane. To do so, we need to firstly transform the second camera coordinate system to 
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the first camera coordinate system. Specifically, the normal of the second camera 

image plane in the first camera coordinate system is: 

 (0,0,1)T T
2 C2tC1N R ,  (A.22) 

where RC2tC1 is the rotation matrix from the second camera to the first camera. 

Then, we normalize vector N2, and we get the normalized vector n2. 

Afterwards, we also transform the second camera image center to the first camera 

coordinate system as: 

 T
2 C2tC1C T ,  (A.23) 

where C2 is the coordinate of the second camera image center in the first camera 

coordinate system. 

Now, we can calculate the intersection point from V2 to the second camera image 

plane, and we obtain this intersection point B=(xB,yB,zB) as: 

 ( )2 2
2

2 2

C P n
B V P

V n
,  (A.24) 

where (xB,yB,zB) is the coordinate of the intersection point B in the first camera 

coordinate system. 

Finally, we transfer this point back to the second camera coordinate system, and 

we have the following equation as: 

 ( , , ,1) ( , , ,1)T T
B B B B B BX Y Z x y z-1

C2tC1RT ,  (A.25) 

where the three tuples (XB,YB,ZB) mean the coordinate of point B in the second camera 

coordinate system.  

From this information, we can finally transform this point to the image plane of 

the second camera, and we have the pixel position of this point presented as: 

 2 2B Ou X s u ,  (A.26) 

 2 2B Ov Y s v ,  (A.27) 

where s is the CCD pixel side length of the second camera, and (uO2,vO2) is the principle 

point of the second camera. 
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Once we know this intersection pixel (u2,v2) on the second camera image plane, we 

can easily find the phase value ΦB of this pixel on the phase map in the second camera 

image plane.  

(7) Calculate the second inverse ray to the LCD 

Now, we have the intersection pixel on the second camera, and we also know the 

phase value of this pixel. Thus, we need to find on the LCD its correspondent pixel 

and determine its phase value, so that we can perform the phase minimization. To do 

so, we establish a second inverse ray tracing, which connects the potential surface 

point P to the LCD panel. 

Here, as we have previously calculated the normal to the potential surface point 

P, we then use its normal n to perform the second inverse ray tracing. By knowing 

the potential surface point normal n and the incident vector V2, we can calculate the 

reflection vector u2, and it is calculated as: 

 2( )2 2 2 2 2u V V n n .  (A.28) 

Finally, we normalize vector u2, and we have the normalized vector U2 in the first 

camera coordinate system (see Figure A). 

 (8) Calculate the second intersection pixel on the LCD  

For this step, we need to use U2 to calculate its intersection pixel on the LCD 

panel. To do so, we need to firstly transform the LCD coordinate system to the first 

camera coordinate system. Specifically, the normal of the LCD panel in the first 

camera coordinate system is: 

 (0,0,1)T T
LCD LCDtC1N R ,  (A.29) 

where RLCDtC1 is the rotation matrix from the LCD coordinate system to the first 

camera coordinate system. Then we normalize NLCD and we get the normalized LCD 

panel normal as nLCD. 

Afterwards, we transform the geometric center of the LCD to the first camera 

coordinate system as: 

 T T
LCD LCDtC1C T ,  (A.30) 

where CLCD is the coordinate of the LCD geometric center in the first camera 

coordinate system. 
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Now, we can calculate the intersection point from U2 to the LCD plane, and we 

obtain this intersection point LB=(xLB,yLB,zLB) as: 

 ( )LCD LCD
B 2

2 LCD

C P n
L U P

U n
,  (A.31) 

where (xLB,yLB,zLB) is in the first camera coordinate system. 

Finally, we transfer this point back to the LCD coordinate system, and we have 

the following equation as: 

 1( , , ,1) ( , , ,1)T T
LB LB LB LB LB LBX Y Z x y zLCDtC1RT ,  (A.32) 

where the three tuples mean the coordinate of point LB in the LCD coordinate system.  

From this information, we can finally represent this point in the unit of LCD pixel, 

and we have the pixel position of this point presented as: 

 0LCD LBu X l M ,  (A.33) 

 0LCD LBv Y l N ,  (A.34) 

where l is the LCD pixel side length, and (M0,N0) is the center pixel in the LCD panel. 

Once we know this intersection pixel on the LCD panel, we can easily find the 

phase value ΦLB of this pixel on the phase map in the LCD panel.  

(9) Calculate the square of the phase difference  

Finally, we get the correspondent phase pixels on the LCD and the second camera 

image plane, respectively. The second camera image plane pixel is (u2,v2), and its phase 

value is ΦB; whereas the corresponding pixel on the LCD plane is (uLCD,vLCD), and its 

phase value is ΦLB. Thus, we can calculate the phase difference square between these 

two pixels as: 

 
2( )B LB ,  (A.35) 

where  is the square of the phase difference. 

Moreover, by introducing sub-pixel interpolation with respect to these two pixels, 

we can get a more accurate phase pair correspondence. The sub-pixel interpolation is 

comprehensively discussed in Section 4.3. 





 

 

 

 

List of acronyms 

 

Acronym Meaning 

SFP Sinusoidal Fringe Pattern 

PMD Phase Measuring Deflectometry 

FPP Fringe Projection Profilometry 

SFPP Stereoscopic Fringe Projection Profilometry 

SPMD Stereoscopic Phase Measuring Deflectometry 

SDPH Stereoscopic Deflectometry-Profilometry Hybrid 

LCD Liquid Crystal Display 

LCoS Liquid Crystal on Silicon 
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