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Abstract 
Since the pioneering work of Fujishima and Honda on titanium 

dioxide, TiO2, for the electrochemical photolysis of water under 

ultraviolet (UV) irradiation, semiconductor-based photocatalysis and 

photovoltaics have become a rapidly growing field of investigation. 

However, UV light accounts for only 4% of the solar spectrum, whereas 

the visible light represents 42% of the total solar radiation. Therefore, the 

scientific community focused their efforts on the optimization and 

extension of the absorption spectrum of semiconductor-based materials 

to the visible region of the solar spectrum. Well-established techniques 

include doping of the semiconductor or the deposition of a different 

element or substance on the surface of the material. 

Since 2004, the deposition of plasmonic nanoparticles (NPs) on 

semiconductors emerged as a possible solution to generate energetic 

electrons capable of driving reactions under visible irradiation. Since then, 

numerous contributions have been published in the field of plasmon-

enhanced photocatalysis with relevant applications in water splitting, 

organic synthesis, and photovoltaics. 

In the field of heterogeneous photocatalysis, plasmon-generated 

energetic electrons were widely accepted as responsible for the observed 

catalytic effect of plasmonic NPs. Recently, several scientific 

contributions have questioned the actual mechanism triggering plasmon-

enhanced reactions, hypothesising that thermal effects are instead the 

predominant factor that influences the activity of a plasmonic catalyst. 

In this work, we aimed at differentiating between the thermal and 

electronic effects of plasmonic NPs in a test reaction—the reductive 
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coupling of nitrobenzene to azobenzene—under irradiation with 532 nm 

and/or 875 nm lasers. Moreover, we also aimed at developing a 

methodology that could be easily replicated in other laboratories and used 

as a benchmark test for plasmon-enhanced reactions run in solution. 

We optimized the size and shape of AuNPs plasmonic catalysts to 

obtain materials with different absorption in the visible and near-infrared 

(NIR) region to tune the electronic and thermal effects of the catalyst. 

The activity of the synthesised catalysts for the test reaction was 

compared with the activity of the Gold World Council reference catalyst 

type A. 

Characterization of the synthesised Au/TiO2 catalyst with diffuse 

reflectance measurements evidenced that the presence of small amounts 

of AuNPs did not modify the band gap position of the support, hence 

suggesting that, under visible light irradiation, the catalysis occurred on 

the surface of the AuNPs. The determination of the enthalpy of activation 

for each step of the reaction showed that the second step of the reaction 

was strongly influenced by the 532 nm laser irradiation. Indeed, our 

calculations demonstrated an energy difference between the illuminated 

and the dark reactions in the first step of reaction of 1.1	𝐾𝑐𝑎𝑙	𝑚𝑜𝑙!" 

whereas the one for the second step was 5.9	𝐾𝑐𝑎𝑙	𝑚𝑜𝑙!". 

We further analysed the results of designed experiments running the 

test reaction in the presence of two catalysts differing by the shapes of 

the AuNPs and under different laser sources and irradiances. The results 

were processed to obtain predictive phenomenological models for the 

intermediate and the product of the reaction, azoxybenzene and 

azobenzene, respectively.  
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The obtained models allowed to confirm that the investigated reaction 

was triggered by electronic effects and that the contribution of thermal 

effects, generated by the electron-phonon decay of elongated AuNPs, was 

not significantly influencing the reaction outcome. 
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Resumen 

A partir del trabajo pionerito de Fujishima y Honda sobre el dióxido 

de titanio, TiO2, para la fotólisis electroquímica de agua bajo irradiación 

ultravioleta (UV), la fotocatálisis basada en semiconductores y la energía 

fotovoltaica se han convertido en un campo de investigación en rápido 

crecimiento. Sin embargo, la luz ultravioleta representa solo el 4% del 

espectro solar, mientras que la luz visible representa el 42% de la radiación 

solar total. Por lo tanto, la comunidad científica centró sus esfuerzos en 

la optimización y extensión del espectro de absorción de materiales, 

basados en semiconductores, a la región visible del espectro solar. Las 

técnicas establecidas incluyen el dopaje del semiconductor o la deposición 

de un elemento o sustancia diferente sobre la superficie del material. 

Desde 2004, la deposición de nanopartículas plasmónicas (NP) en 

semiconductores surgió como una posible solución para generar 

electrones energéticos capaces de impulsar reacciones bajo irradiación 

visible. Desde entonces, se han publicado numerosas contribuciones en 

el campo de la fotocatálisis por medio de la excitación de plasmones con 

aplicaciones relevantes en la disociación de agua, síntesis orgánica y 

energía fotovoltaica. 

En el campo de la fotocatálisis heterogénea, los electrones energéticos 

generados por plasmón fueron ampliamente aceptados como 

responsables del efecto catalítico observado de las NP plasmónicas. 

Recientemente, varias contribuciones científicas han cuestionado el 

mecanismo real que desencadena las reacciones catalizadas por plasmón, 

con la hipótesis de que los efectos térmicos son, en cambio, el factor 

predominante que influye en la actividad de un catalizador plasmónico. 
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Nuestro objetivo fue diferenciar entre los efectos térmicos y 

electrónicos de los NP plasmónicos en una reacción de prueba, el 

acoplamiento reductor de nitrobenceno a azobenceno, bajo irradiación 

con láseres de 532 nm y/o 875 nm. Además, también nos propusimos 

desarrollar una metodología que pudiera replicarse fácilmente en otros 

laboratorios y usarse como prueba de referencia para reacciones en 

solución donde se explota la excitación de plasmones. 

En este trabajo se ha optimizado el tamaño y la forma de las partículas 

de oro, AuNPs, para obtener catalizadores caracterizados de diferente 

absorción en la región visible e infrarroja cercana (NIR) para controlar y 

seleccionar los efectos electrónicos y térmicos del catalizador. La 

actividad de los catalizadores sintetizados para la reacción de prueba se 

comparó con la actividad del catalizador de referencia tipo A del Gold 

World Council. 

La caracterización del catalizador de Au/TiO2 sintetizado con 

mediciones de reflectancia difusa evidenció que la presencia de pequeñas 

cantidades de AuNP no modificó la posición de la banda prohibida del 

soporte, lo que sugiere que, bajo irradiación de luz visible, la catálisis se 

produjo en la superficie de los AuNP. La determinación de la entalpía de 

activación para cada paso de la reacción mostró que el segundo paso de 

la reacción estaba fuertemente influenciado por la irradiación láser de 532 

nm. De hecho, nuestros cálculos demostraron una diferencia de energía 

entre las reacciones iluminadas y oscuras en el primer paso de reacción de 

1.1	𝐾𝑐𝑎𝑙	𝑚𝑜𝑙!"  mientras que la del segundo paso fue de 

5.9	𝐾𝑐𝑎𝑙	𝑚𝑜𝑙!". 
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Además, se analizaron los resultados de experimentos diseñados 

explotando principios de estadística y ejecutando la reacción de prueba 

en presencia de dos catalizadores que se diferencian por las formas de las 

AuNP y bajo diferentes fuentes de láser. Los resultados se procesaron 

para obtener modelos fenomenológicos predictivos para el intermedio y 

el producto de la reacción, azoxibenceno y azobenceno, respectivamente. 

Los modelos obtenidos permitieron confirmar que en la reacción 

investigada los efectos electrónicos son predominantes con respecto a la 

contribución de los efectos térmicos, generados por interacción electrón-

fonón de los AuNP cilíndricos, no influyó significativamente en el 

resultado de la reacción. 
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1 Introduction 
 

Modern society strives to achieve the efficient utilization of renewable 

solar energy for chemical transformations. Since 1969, the pioneering 

work of Fujishima and Honda1,2 on titanium dioxide, TiO2, photocatalysis 

has boosted the interest on semiconductor-based catalysts. Photocatalytic 

materials based on semiconductors (e.g., TiO2, ZnO, Fe2O3, CeO2, Bi2O3) 

have been comprehensively investigated for applications in different 

fields of heterogeneous photochemistry such as water splitting3, organic 

transformations4, and environmental decontamination5. 

Heterogeneous photocatalysis involves the enhancement of the speed, 

yield, and/or selectivity of a reaction by irradiating the system, composed 

by the catalyst and the reagents, with UV or visible light. A catalyst is 

defined as heterogeneous when its state of aggregation is different from 

the state of aggregation of the reagents (Figure 1.1 ). 
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Figure 1.1 Sketch depicting the difference between homogeneous catalysis and 
heterogeneous catalysis.6 

 

A photocatalyst7 is a substance that can absorb the energy of the 

incident electromagnetic radiation, ultraviolet, visible, or infrared (IR) and 

create an excited state that repeatedly interacts with the reactants forming 

reaction intermediates and products. The photocatalyst must also be able 

to regenerate itself after each cycle. 

Photocatalysis based on semiconductors suffers from limitations due 

to the band gap energy of the material, usually above 3 eV. This band gap 

restricts the absorption of the material to the UV region, which accounts 

for only 4% of the incoming solar radiation, whereas the visible and IR 

parts8 account for 42% and 51%, respectively (Figure 1.2). 
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Figure 1.2 Reference solar spectrum irradiance AM 1.5. UV-B and UV-A regions 
from 290 to 400 nm, visible region from 400 to 760 nm, part of the near-infrared 
region from 760 nm to 1200 nm. AM: air mass coefficient. 

 

The most widely investigated photocatalyst is TiO2, owing to its high 

stability and activity under UV light irradiation. TiO2 based photocatalysis 

already found commercial applications, such as wastewater treatment and 

self-cleaning glasses9. Other areas of investigation where TiO2 is used 

alone or in association with other substances (e.g., metal nanoparticles) 

include, the decomposition of volatile organic compounds and NOx 

species in air, organic redox reactions, and photovoltaic cells. Globally, 

TiO2 has proven to be very promising for the development of sustainable 

technologies for the future. 

On the other hand, running a photocatalytic reaction under visible 

light irradiation allows applying milder reaction conditions, decreasing 
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energy consumption, and creating the possibility to exploit a renewable 

energy source, i.e. sunlight. Besides, engineering a photocatalyst to shift 

its absorption from UV to visible light permits to fine-tune the selectivity 

of the catalyst and to obtain partially oxidized10–12 or reduced13,14 products 

not achievable with conventional catalysis15 (e.g. under high pressure and 

temperature). 

For efficient exploitation of solar light, the extension of the absorption 

spectrum of a semiconductor (usually limited to the UV region) is 

desirable. This feature is obtained through the reduction of the band gap 

of the semiconductor. Most approaches include self-doping by 

introducing oxygen vacancies16 into the lattice of the material or doping 

with other elements17. Finally, surface deposition of quantum dots18,19 and 

plasmonic nanoparticles (NPs)14,20–24 emerged recently as alternative 

methods to extend the visible absorption and the selectivity of the hybrid 

catalyst. Metal NPs such as copper, silver, and gold25 show strong 

tuneable absorption in the UV-Visible range because of localized surface 

plasmon resonance (LSPR) effects and have demonstrated great potential 

for applications in photocatalysis under visible light irradiation26–28. 

To the best of our knowledge, the first evidence of plasmon catalysed 

photoelectrochemical reaction was reported in 2004 and described the 

visible-light-induced generation of electrons using gold nanoparticles 

(AuNPs) deposited on TiO2 electrodes29. 

Since then, there have been numerous contributions to the field of 

plasmon-enhanced photocatalysis with applications in water splitting30,31, 

organic synthesis28,32–34, and photovoltaics35. The widely accepted 

mechanism of reaction involved the non-thermalized electron transfer 

from the plasmonic NP to the adsorbed molecule or the semiconductor’s 
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conduction band, leaving little room for a possible role of 

thermoplasmonic effects. 

At the same time, theoretical contributions determined the lifetime 

and the number36 of energetic electrons generated in the plasmonic NP 

under visible light irradiation and provided evidence in favour of the 

participation of those electrons in photocatalytic processes. Other 

contributions pointed out that, despite the low efficiency37 of the electron 

transfer from plasmonic NPs to TiO2, it was still possible to exploit the 

plasmon effect of the NP for solar energy harvesting purposes. 

Nevertheless, even considering that thermal effects were relevant because 

of the visible irradiation of plasmonic NPs, those effects alone could not 

completely account for the enhanced reactivity under visible 

illumination38–40. Finally, Govorov et al. considered quantum surface41 and 

classically derived dissipative effects in the generation of energetic 

electrons, thus proving that both thermal and electronic effects 

contributed to the enhancement of H2 evolution in their reaction26. 

Recently, a critical review42–44 of a few contributions in the field of 

heterogeneous photocatalysis, as well as an analysis of the plasmon decay 

mechanisms into energetic electrons45, emphasized the need for more 

cautious design and analysis of experimental results when aiming at 

determining the mechanism of activation of plasmonic photocatalysts. 

Considering the recent debate on the determination of the mechanism 

through which plasmonic NPs trigger reactions under visible light 

irradiation, we envisaged a rational approach to quantify and separate the 

thermal and electronic contributions of plasmonic NPs in a test reaction. 
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1.1 Objectives and hypotheses 
 

This thesis proposes a methodology to analyse and understand the 

mechanism by which plasmonic catalysts influence organic reactions in 

solution. Given the still open debate on this argument, we felt the need 

to run a series of experiments able to differentiate between the thermal 

and electronic effects in plasmonic catalysis. Furthermore, the techniques 

and instrumentations used in this work were constituted by standard 

equipment commonly present in any chemistry laboratory or easily 

implementable (such as laser sources), so that the proposed methodology 

could be replicated conveniently. 

I focused on the study of a catalytic system composed by AuNPs and 

gold nanorods (AuNR) supported on inorganic oxides, either 

semiconductors (TiO2, Fe2O3, CeO2) or SiO2. The activity of the Au-

based catalysts was investigated in the reductive coupling of nitrobenzene 

to azobenzene46–51 (Figure 1.3) under laser irradiation. 

 

 

Figure 1.3 Scheme of the test reaction used in this study. Nitrobenzene 1, azoxybenzene 
2, azobenzene 3. 

 

As a preliminary objective of this thesis, I focused on optimizing a 

method to synthesise a AuNP photocatalyst able to enhance the speed 
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and yield of a specific reaction (i.e. nitrobenzene reduction) under visible 

laser irradiation. The activity of AuNPs-based catalysts was examined 

screening particle size, the kind of support and synthetic method. The 

outcome of the reactions ran with the synthesised catalysts was compared 

with the results obtained for a commercial catalyst constituted by AuNPs 

supported on TiO2 (Gold World Council reference catalyst type A24,52 

purchased from Haruta Gold Inc.). Two different shapes of AuNPs were 

used in this study, spherical and cylindrical. The former being 

characterized by small size and a higher number of energetic electrons 

compared to the latter, commonly used as a source of heat in many fields 

of investigation. Activation enthalpy for the reaction steps was also 

determined under irradiation and in the dark for the best performing 

catalyst. 

The hypotheses motivating this work were the following: 

a. The reaction is activated by plasmon generated energetic 

electron-holes. 

b. The irradiation with a 532 nm laser on spherical NPs enhances 

the reaction through electron transfer events. 

c. The irradiation with a 785 nm laser on cylindrical NPs 

contributes to the reaction only through collective 

thermoplasmonic effects. 

d. The contemporary use of the two shapes of NPs and laser 

sources generates a mixture of effects that trigger the test 

reaction. 

Exploiting principles of design of experiment53 (DoE), a set of 

experiments were prepared to rationally explore the influence of different 

laser sources and catalyst types had on the test reaction. The collected 
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data constituted a model that allowed to determine the kind of dominant 

plasmonic effect taking part in the catalytic cycle of the investigated 

reaction. 
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1.2  Overview of LSPR for metal nanoparticles 
 

LSPR is a phenomenon that involves the resonant interaction of the 

electric field of the electromagnetic radiation with the free conduction 

electrons of a metallic NP. The intensity of the plasmon is maximum at a 

characteristic frequency (plasmon frequency) that depends on the nature 

of the metal and the size and shape of the NP and the dielectric constant 

of the surrounding medium. 

The electrons of a metal are considered delocalized in a lattice 

constituted by positive ions. As a consequence of the irradiation of a 

metal NP at the plasmon frequency (typically in the UV-Vis region), the 

conduction electrons collectively oscillate around the fixed ionic lattice. 

A metal sphere much smaller than the illumination wavelength can be 

treated as an electromagnetic dipole for which the sphere polarizability54 

is defined by equation (1.1). 

 

 𝛼 = 4𝜋𝑟!
𝜀 − 𝜀"
𝜀 + 2𝜀"

 Eq. (1.1) 

 

Where, 𝑟 is the radius of the NP,	𝜔 is the angular frequency of the 

electric field, 𝜀 and 𝜀# are respectively, the complex relative permittivity 

of the metal NP and of the surrounding medium. Assuming the dielectric 

constant of the surrounding is constant and real, the resonance occurs at 

a frequency at which 𝑅𝑒[𝜀(𝜔)] ≈ −2𝜀#. 
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In the more general case of elongated NPs, the polarizability can be 

rewritten considering the geometry of an ellipsoid characterized by three 

semiaxes: 𝑎", 	𝑎$, 𝑎% . For AuNR, a prolate ellipsoid (𝑎" > 𝑎$ = 𝑎% ) 

sufficiently approximates the geometry of the particle. The polarizability 

along the principal axes is given by equation (1.2). 

 

 𝛼# = 4	𝜋	𝑎$	𝑎%% 	
𝜀 − 𝜀"

3	𝜀" + 	3	𝐿#	(𝜀 − 𝜀")
 Eq. (1.2) 

 

Where, 𝐿& is a geometrical factor. The consequence of equation (1.2) 

for the specific case of a AuNR is that the particle would show two 

resonances due to oscillations along the major and minor axes. The 

resonance of the major axis can show a significant shift of the plasmon 

to lower frequencies (near-infrared region). 

The absorption and the scattering of the particle can be expressed as 

a function of the polarizability. Therefore, the absorption and cross-

section scattering for a spherical NP are determined by equations (1.3) 

and (1.4). 

 

 𝜎&'" = 𝑘𝐼𝑚(𝛼) Eq. (1.3) 

   

 𝜎"(& =
𝑘)

6𝜋
|𝛼|% Eq. (1.4) 
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Where, 𝑘	 = 	2𝜋/𝜆	is the angular wavenumber. The plasmon peak(s) 

of metal NPs of Cu, Ag, Au and Al, can be measured conveniently 

through UV-Visible extinction spectroscopy. For spherical AuNPs 

smaller than 90 nm the absorption is dominant over the scattering cross 

section55. The results obtained applying the dipolar approximation are 

strictly valid for small nanoparticles but, in practice, the equations 

reported above constitute a good approximation for spherical or 

ellipsoidal NPs with dimension below 100 nm. 

Mie theory and numerical methods take into account retardation 

effects and the radiation damping that contribute to the redshift and 

broadening of the plasmon for larger and anisotropic NPs36. These 

approaches have been applied to model the optical response of plasmonic 

NPs in relevant works55–58. A complete treatment of such methods goes 

beyond the scope of this thesis. 

Concerning catalysis and energy applications, the physical phenomena 

that determine the activity of plasmonic catalysts are related to the decay 

of the plasmon27. After the absorption of a photon of appropriate energy, 

the plasmon initially dephases very fast within 10 fs59, contributing to the 

broadening of the plasmon peak (Figure 1.4 a). 
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Figure 1.4 Plasmon excitation and damping processes in small metal NPs. a. The 
resonant interaction of the electric field with the free electrons of the metal nanoparticles 
generates a collective oscillation of the electron cloud. b. Radiative decay contributes to 
the damping of the plasmon oscillation through the near field reemission of light 
(relevant for relatively big NPs > 50 nm). c. Non-radiative decay transfers the absorbed 
energy of the plasmon to single-electron interband and intraband excitations generating 
a non-Fermi-Dirac distribution of states. The system then redistributes the energies 
through electron-electron scattering 𝜏!"! = 100𝑓𝑠. Eventually, the electrons interact 
with the phonons generating heat (not shown). 

 

Subsequently, the dephased plasmon can decay by following mainly 

two paths; radiative and non-radiative decay. In radiative decays, elastic 

reemission generates a local effect called near field enhancement (relevant 

for big NPs with a size > 50	𝑛𝑚) that consists in an increase of the 

optical intensity in the surrounding of the NP up to several orders of 

magnitude higher than the incident light (Figure 1.4 b). Non-radiative 

decay occurs within 100 fs determining a non-thermal Fermi-Dirac 

distribution of pairs of electrons and holes (electrons are excited up to 

𝐸' 	+ 	ℎ𝜈(  where, 𝐸'  is the Fermi level of the particle and 𝜈(  is the 

frequency of the plasmon). Those electron-hole pairs then thermalize 

through electron-electron scattering to states closer to the Fermi level 
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(Figure 1.4 c). The final event is the transfer of the energy gained by the 

electrons to the phonons of the NP and then to the medium, generating 

a temperature increase of the particle and its surrounding. This occurs in 

a longer timescale, between 100 fs and 10 ps. 

This last interaction is always present in plasmonic metal NPs as a 

direct consequence of the electron excitation55. The magnitude of the 

heating varies depending on the size and shape of the particles60–62 and is 

proportional to the intensity of the irradiating light. It can also be 

optimized according to its intended application. For example, AuNRs 

have been extensively applied for photothermal cancer therapy in vitro and 

in vivo, as well as for photothermal chemistry44,55. On the other hand, 

spherical AuNPs can produce the highest number of energetic electrons 

when their size is below the mean free path of the electrons (around 40 – 

50 nm). Typically, theoretical studies have determined that AuNPs of 

sizes between 10 and 20 nm ensure the highest number of excited 

electrons60. For practical uses in chemistry, the efficiency of a plasmon 

photocatalyst must be evaluated considering also the active surface of the 

particle, the wavelength and intensity of light, and the energy of the 

molecular orbitals involved in the transformation. For instance, AuNPs 

of sizes above 20 nm have nearly no catalytic activity63 although those 

particles show an absorption cross-section much bigger than smaller NPs 

(e.g. 5 nm AuNPs). 

Thermal effects can be quantified easily using equation (1.5) when the 

absorption cross-section of the particle is known. 
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 𝑄 = 𝜎&'"𝐼 Eq. (1.5) 

 

Where, 𝑄 is the power delivered by the NP to the environment in the 

form of heat.  

The absorption cross-section can be calculated for spherical NPs by 

using equations (1.1) and (1.3). The temperature increase of a single 

spherical NP irradiated at the plasmon frequency is given by equation 

(1.6). 

 

 ∆𝑇=𝑄4𝜋𝜅𝑅 Eq. (1.6) 

 

Where, 𝜅 is the thermal conductivity of the medium and R is the radius 

of the particle. 

For other more complex morphologies, the computation of the inner 

electric field amplitude is necessary to estimate the heat delivered from 

the particle and it must be performed with numerical methods55. 

Moreover, dealing with arrays or ensembles of NPs in suspension adds 

an extra layer of complexity. The inter-particle distance plays a 

determinant role in heating the whole system64 (NP and the surrounding 

medium) giving rise to collective effects. For a two-dimensional array of 

NPs, collective effects can be estimated and predicted by applying 

equation (1.7). 
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𝜁% =

𝑝%

3𝐿𝑅
 Eq. (1.7) 

 

Where, 𝜁$  is a dimensionless parameter that estimates the ratio 

ΔT)# ΔT)*+,⁄  (the temperature variation of the particle positioned at the 

centre of the system divided by the temperature variation in its 

surroundings), 𝑝 is the distance between particles, L is the beam size, and 

R is the radii of the particles. 

For 𝜁$ ≪ 1, collective effects predominate. This effect is even more 

dramatic in three-dimensional systems (e.g. NPs colloids). 

 

1.3 Determining the mechanism of plasmonic 

photocatalyst, an open debate 
 

As mentioned in the previous section, the electronic and thermal 

effects cannot be completely separated for plasmonic NPs, they are just 

unavoidable consequences of the decay of the plasmon resonance. Yet, 

the morphology and the size of the NP can be optimized for maximising 

either the electron excitation or the heat generation. Indeed, small 

spherical NPs are preferred for photocatalysis since they can generate 

electron-hole pairs, thus minimizing the heating effects, and they show 

bigger active surfaces. On the other hand, relatively big AuNRs are 

instead exploited for their thermal effects, mainly in photothermal 

therapy55. The photothermal effect of AuNR of lengths ranging from 20 
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to 65 nm (decorated with small Pd-NPs) has been exploited in Suzuki 

reactions65. 

In the last few years, the scientific publications focusing on the 

discrimination between photothermal and electronic effects have 

increased considerably66–70, evidencing a growing interest in assessing the 

nature of the plasmonic photocatalysis. 

The time-average number of excited electrons generated during 

continuous wave irradiation can be determined using equation71 (1.8). 

 

 < 𝑁e- >=
𝜎abs	𝐼	𝜏e-e

ℎ𝜈
 Eq. (1.8) 

 

Where, σ-./  is the absorption cross-section of the NP, I  is the 

irradiance of the incident light, 𝜏e-e  is the electron-electron scattering 

timescale, and ℎ𝜈 is the photon energy.  

For a spherical particle of 10 nm72 (𝜎abs = 6.1 × 10"  nm2) under 

continuous wavelength irradiation with 𝐼 = 2 × 10%	W/𝑚$ , typical 

irradiance used in the experiments reported in this work, and assuming a 

𝜏e-e~50 fs, the time-average number of excited electrons is 1.7 × 10!3. 

Notably, under the conditions mentioned above, one particle absorbs 

approximately 300,000 photons per second, generating an equivalent 

number of excited electron-hole pairs. Therefore, despite that the short 

lifetime of electron-hole pairs (Figure 1.4 c) does not favour the driving 

of reactions on the surface of the particle, we cannot exclude the 

possibility of catalysis via electron transfer to adsorbate molecules. 
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Therefore, the main disadvantages of plasmon-enhanced 

photocatalysis via electron-hole pairs are their short lifetime and their 

time-average number. In the specific case of photocatalysis for organic 

molecules, to have an efficient electron/hole transfer, the acceptor 

(donor) must be in contact and interact with the catalyst surface (hence, 

it must be adsorbed). The energetic levels of the LUMO (lowest 

unoccupied molecular orbital) and HOMO (highest occupied molecular 

orbital) must be of appropriate energy to have an electron-hole transfer. 

 

 
Figure 1.5 Two possible scenarios for single electron transfer in a reaction catalysed by 
a plasmonic metal catalyst. a. The energetic electron is transferred on the LUMO of an 
adsorbate state of appropriate energy. b. An electron occupying the HOMO of the 
adsorbate is transferred to the plasmon generated hole of the catalyst.  
e–: electron; h+: hole 
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The sketch of Figure 1.5 represents two possible situations in 

plasmon-driven catalysis. Depending on the energetic levels of the 

molecular orbitals and on the density of states generated in the catalyst 

after plasmon excitation, the catalyst may contribute to the reduction 

(path a) or the oxidation (path b) of the reactant molecule. Density 

functional theory calculations can provide additional evidence to sustain 

a direct or indirect electron transfer to adsorbate molecules14. Moreover, 

an alternative mechanism has also been proposed that consists of the 

transient electron transfer to adsorbate O2 molecules in the case of 

ethylene epoxidation73. The electron is first transferred to the oxygen 

molecule and then is back-transferred to the metal catalyst after 

depositing vibrational energy, thus weakening the molecular bond and 

enhancing the dissociation rate. 

In the majority of previous reports in the field of plasmonic 

photocatalysis, the screening of the irradiation power is the most 

common evidence supporting the photocatalytic mechanism of the 

catalyst under investigation. The experimenters would demonstrate a 

proportionality between the rate of the reaction and the rate of the 

incident photons absorbed by the sample to support the hypothesis of a 

plasmon driven catalysis. This kind of experiments, if not supported by 

more evidence, fails to provide information on the mechanism of 

activation. Indeed, there are limitations to the application of this 

approach, such as the power range that can be screened. The increase of 

temperature of a system under irradiation is approximately proportional 

to the intensity of the light reaching it. Taking into account that the rate 

of a reaction is usually influenced by temperature following the Eyring 

law, in order to exclude a thermoplasmonic effect, the range of intensities 
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should span over several orders of magnitude74 and not just by a factor of 

2 or 3. Again, the extended range of intensities may bring further 

complications since, under high optical irradiance, collateral reactions and 

changes in the mechanism might occur. On the other hand, at low 

irradiances, very sensitive measurements of the reaction rate might be 

necessary. Consequently, the variation of the illumination power should 

be accompanied by other experiments, such as the variation of the light 

beam diameter (applicable for collimated light). This approach can help 

to understand the mechanism of the catalysis by studying the relationship 

between the reaction rate and the beam diameter and by comparing two 

scenarios: varying the diameter through the use of a diaphragm (constant 

irradiance) or defocusing the incident beam (constant power). Under 

these experimental conditions, a purely photochemical reaction subjected 

to constant power would give a constant rate of reaction as a function of 

the beam diameter, whereas under constant irradiance a quadratic 

dependency on the beam diameter should be observed. Instead, in a 

process where thermoplasmonic effects were influencing the catalysis, a 

linear dependency of the reaction rate under constant power would be 

expected. Under this condition, the temperature increase is inversely 

proportional to the beam size (equation 1.6). On the contrary, under 

constant irradiation, the temperature increase of the catalyst is 

proportional to the beam size and the rate of the reaction should show a 

cubic proportionality with the beam diameter. The variation of the beam 

diameter is applicable only for two-dimensional systems, such as surfaces 

and optically thick substrates (for which only a superficial interaction of 

the light with the material can be assumed). In the case of a catalyst 

suspended in a liquid, the heat diffusion mechanism is more complex75. 

This approach cannot be applied easily since the assumption of heat 
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diffusion through an infinite medium is not satisfied in the case of a 

catalyst in a liquid. The system is thermally insulated (air, glass vessel) and 

accumulation of heat is likely to occur. 

Another issue, often underestimated, is the measurement of the 

temperature variation of the reaction environment due to illumination. In 

the majority of experiments, the size of the beam is much bigger than the 

distance between the NP, implying that collective thermal effects 

predominate, as illustrated in equation (1.7). Thermal camera 

measurements are suitable whenever the reaction is performed in the gas 

phase, provided that the instrument is properly calibrated on the substrate 

and that the reaction chamber is equipped with IR windows. The 

calibration of the IR camera should be performed experimentally so that 

an average emissivity of the catalyst can be determined by heating the 

substrate at specific temperatures. 

However, when the reaction is performed in liquids, as in this study, 

the use of an IR camera is not suitable because the thermal image would 

measure only the temperature on the surface of the reaction mixture. In 

this case, the use of a thermocouple (immersed in the reaction mixture) 

would be more appropriate to accurately measure the temperature of the 

system. Nonetheless, caution should be applied to ensure that the light 

does not illuminate directly the thermocouple to avoid direct heating of 

the probe. Yet, the probe should be placed, if possible, in direct contact 

with the catalyst to avoid underestimating the temperature. Overall, 

ignoring collective thermal effects along with an incorrect measurement 

of the temperature could drive the experimenter to wrong conclusions, 

as pointed out recently43,68,76. 
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In addition, to discriminate between thermal and electronic effects, it 

is also advisable to study the influence that two different wavelengths 

could have on the plasmonic catalyst. In this scenario, different rates of 

reaction enhancement under different wavelengths could be expected for 

the same plasmonic structure. For example, considering a spherical AuNP 

supported catalyst whose plasmon absorption is centred around 530 nm 

and is irradiated by two lasers, one emitting at 532 nm and the other at 

785 nm. Energetic electrons would be generated after resonant 

interaction at the appropriate wavelength, while thermal effects would 

result from the absorption of light off resonance in the NIR region. 

 

 
Figure 1.6 Visible spectrum of AuNPs on SiO2 catalyst. Green dashed lines are placed 
at a laser irradiation wavelength of 532 nm and red dashed lines at 785 nm. 
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As illustrated in Figure 1.6 the catalyst does not have the same 

absorption at the two wavelengths. Moreover, the accurate measurement 

of the absorption of the sample can be difficult, especially for scattering 

media such as a solid suspension in liquids, often requiring diffuse 

reflectance spectroscopy techniques77. However, it is still possible to 

compare the effect of the two wavelengths of irradiation by varying the 

optical power of the two sources. Therefore, a plot of the speed of the 

reaction as a function of the laser power, for a hypothetical first-order 

reaction that can be influenced also by temperature, could give, as pointed 

out by Baffou et al.71, one of the two scenarios represented in Figure 1.7. 

 

 
Figure 1.7 Expected rate of reaction as a function of optical power for different 
wavelengths and depending on the kind of dominant plasmonic effect on the 
mechanism of the catalysis. a. The reaction is affected by both the thermal effect and 
the electronic effects of the plasmonic catalyst. b. The reaction is only affected by 
thermal effects. 
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In the first case (Figure 1.7 a), the variation of the 532 nm laser is 

accompanied by a superlinear variation of the reaction rate, particularly 

evident at high irradiation power, while the influence of the 785 nm laser 

is exponential and evident at very high intensity. In this case, the 

mechanism of the reaction corresponds to a mixture of electronic and 

thermal contributions. The other possibility (Figure 1.7 b) is that the 

reaction is driven purely by thermal effects, thus the rate enhancement 

would depend only on the temperature increase caused by the irradiation 

of the catalyst. The different shape of the curves would depend on the 

different magnitudes of absorption of the catalyst. 

In conclusion, when the determination of the mechanism of 

plasmonic catalysis is required, the control of the temperature of the 

reaction mixture is of paramount importance. Indeed, in the cases 

exposed in Figure 1.7, being able to keep the system at a constant 

temperature would affect the shape of the plots. Ideally, the thermal 

effects of both lasers would be minimized, the curves characterized only 

by thermal effects (red dashes in Figure 1.7) would be instead constant 

as a function of the optical power, since the rate of reaction would be 

nearly the same as the one of the dark reaction. However, the reaction 

rate under 532 nm laser irradiation would be well approximated by a linear 

fit. 
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2 Techniques and methods 
 

Here are reported all the techniques and methods applied in this work 

to optimize the catalyst and understand the mechanism of activation of 

plasmonic catalysis. 

 

2.1 Test reaction 
 

Nitrobenzene reductive coupling reaction, represented in Figure 2.1, 

was selected to optimize the catalyst synthesis and investigate its 

interaction with visible light sources. In the first stage, the performances 

of the synthesised catalysts were investigated using this reaction under 

laser irradiation with a 532 nm laser. In a second stage, the irradiation 

conditions were systematically screened to understand the activation 

mechanism of AuNPs under laser irradiation. 

 

 
Figure 2.1 Nitrobenzene reductive coupling reaction. 1 nitrobenzene, 2 azoxybenzene, 
3 azobenzene. 

 

The main steps involved in the formation of the product are described 

in Figure 2.2. Briefly, isopropanol (IPA) oxidation to acetone allows the 
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formation of the Au-H species, which are then involved in the initiation 

of the catalytic cycle. Then, Au-H surface species are formed and react 

with the N-O bonds of nitrobenzene causing the cleavage of the bond. 

Finally, the HO-Au species decomposes, forming O2 and regenerating the 

Au-H species. 

 

 
Figure 2.2 Proposed reaction mechanism in the presence of plasmonic gold catalyst 
reproduced with permission from78. 

 

The overall redox process is believed to occur only on the surface of 

the AuNP78 and this makes the reaction a good candidate to investigate 

the activation mechanism of plasmonic NPs while minimizing the 

influence of the support. Therefore, any improvement to the reaction 
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outcome can be directly related to effects generated by the noble metal 

nanoparticles. 

Azobenzene and its derivatives are widely used as dyes for textile and 

food, pesticides, molecular switches, drug delivery and drugs, biological 

makers49. Moreover, the industrial synthesis of the abovementioned 

molecules is based on the formation of diazonium salts, or the use of 

stoichiometric amounts of reductants such as sodium or magnesium 

amalgam or H2. All the above intermediate and reactant are dangerous 

and explosive. Therefore, it is important to investigate alternative safer 

and greener procedures to convert nitrobenzene to azobenzene. 

 

2.1.1 Nitrobenzene reduction procedure 

 

The nitrobenzene reductive coupling here described consisted in the 

reduction and further coupling of two molecules of nitrobenzene to yield 

azobenzene. Moreover, a stable intermediate, azoxybenzene 2, was 

formed (Figure 2.1). 

The optimized reaction procedure consisted in weighing the required 

amount of catalyst and placing it in the reaction flask. Subsequently, 1 mL 

of 0.08 M naphthalene in IPA was added and the suspension was 

sonicated for at least 30 seconds in an ultrasound bath. Naphthalene was 

introduced as an internal standard. Then, 1 mL of a freshly prepared 0.1 

M KOH solution in IPA was added, followed by 0.1 mmol of reagent 1. 

The flask was sealed and connected to a Schlenk line. The atmosphere in 

the reaction flask was carefully replaced, degassing the solution and 

introducing nitrogen. A nitrogen stream of 0.5 L/min was established, 
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flowing nitrogen through a cannula placed in a rubber septum. The 

reactor was then positioned in the thermostatic bath set at 25 ºC in dark 

conditions under magnetic stirring at 600 rpm. The temperature was 

monitored with a thermocouple in direct contact with the reaction 

mixture. Finally, the light sources were switched on and the reaction was 

run typically for two hours. The recovered catalyst was centrifuged and 

washed several times with methanol until no reagents or products were 

detectable by GC. Eventually, the catalyst was dried in an oven at 110 ºC 

and was stored in a dark cool place. 

 

2.1.2  Reaction mixture analytical method 

 

The reaction was then monitored, sampling the reaction mixture with 

a syringe provided of a cannula inserted in the septum, for at least 2 hours. 

Every sample consisted of 50 µL of reaction mixture and was centrifuged 

at 18,000 rpm for 20 seconds to remove the catalyst. Then, 40 µL of the 

supernatant was diluted to 500 µL with toluene, and the mixture was 

analysed with gas chromatography. 

The instrument was an Agilent 6890 gas chromatograph equipped 

with a BPX5 column (30 m, 0.25 mm, 95% methyl 

polysilphenylene/siloxane phase, from Trajan®) and a flame ionization 

detector. 

All the injections were performed with an inlet temperature of 300 ºC, 

a split ratio of 50:1, and constant pressure of 19.98 psi. The temperature 

ramp was the following: constant temperature for 5 minutes at 120 ºC, 
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then a temperature gradient of 5 ºC/min up to 300 ºC, which was held 

for 5 minutes. The detector temperature was 350 ºC. 

An internal standard was used to determine the concentration of the 

three main substances involved in the reaction. The analytical method 

consists in adding to the reaction mixture a known quantity of an inert 

substance (naphthalene), and then correct the area of the peaks of 

analytes with respect to the area of the standard.  

In order to ensure the linearity of the detector response for the range 

of concentrations of the reaction, calibration curves were built for each 

of the molecules showed in Figure 2.1. The calibration curves were 

determined by mixing different ratios of analytes and internal standard. 

The concentration of the internal standard was kept constant 

(0.4 mg/mL) in each sample, while the concentration of the analytes was 

varied from 0.02 to 0.6 mg/mL to generate the calibration curves showed 

in Figure 2.3. 
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Figure 2.3 Calibration curves and factors for nitrobenzene 1, azoxybenzene 2, and 
azobenzene 3. 

 

A linear fit of the data gave a factor characteristic of each substance 

that allowed to correct the area of their GC peaks as represented in 

Figure 2.4. 
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Figure 2.4 Typical GC chromatogram showing the three main components of the test 
reaction in the presence of naphthalene as the internal standard. Traces of aniline were 
detected. 

 

With this simple method, I was able to follow the evolution of 

nitrobenzene, azoxybenzene, and azobenzene by applying equation (2.1). 

 

 [𝑛] = !!∗#!
$%!

∗ ['(]!"#
 Eq. (2.1) 

 

Where n denotes the analyte, 𝐴4 is the peak area of the analyte, 𝑓4 is 

the conversion factor, 𝐴56 is the area of the internal standard, and 𝑀𝑊4 

is the molecular weight of the analyte. 

 

Nitrobenzene

Naphthalene

Azoxybenzene

Azobenzene

Aniline
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2.2 Reaction setup 
 

The reactor consisted of a Schlenk tube provided of a screw cap with 

a gastight glass window, a lateral neck and a valve as shown in Figure 2.5. 

 

 
Figure 2.5 Schlenk reactor used to run the reaction. 

 

A variable area flowmeter allowed to control the nitrogen flow (0.5 

L/min) during the reaction. The reactor was connected to a Schlenk line 
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and a needle was introduced in the septum. The nitrogen flow is necessary 

to keep the reaction under inert atmosphere while stripping the oxygen 

produced during the reduction of nitrobenzene. 

The temperature of the reaction controlled by immersing the reactor 

in a magnetically stirred ethylene glycol thermostatic bath, as shown in 

Figure 2.5, controlled by a thermal bath circulator (Isotemp R20 from 

Thermo Fisher Scientific). This equipment allowed to accurately control 

the reaction temperature from a minimum of -10 °C up to the boiling 

point of the solvent of reaction, with very low oscillations (± 1 °C) of the 

reaction temperature. The system was calibrated by irradiating the 

reaction mixture with both lasers and by varying the chiller temperature 

setpoint. The calibration curve is represented in Figure 2.6. 
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Figure 2.6 Reaction temperature calibration. Reaction conditions: 0.1 mmol of 1, 0.1 
mmol of KOH, and 2mL of IPA. Two lasers were used: laser 1 (532nm and 130 mW) 
and laser 2 (785 nm 300 mW). 

 

The reaction temperature was measured with a thermocouple 

immersed in the reaction mixture. Each measurement of the temperature 

was registered at thermal equilibrium between the thermostatic bath and 

the reactor. Typically, the equilibrium was reached within 5 minutes after 

the introduction of the reactor in the thermostatic bath. The difference 

between the chiller setpoint and the temperature recorded inside the 

reactor was ascribed to heat losses from the chiller to the tubings and the 

thermal bath. 
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2.2.1 Irradiation setup 

 

For the whole study, two laser beams were used as sources of light to 

trigger the reaction under investigation, Figure 2.7. 

 
Figure 2.7 Top: irradiation setup sketch. Bottom: top view of the illumination setup 
used for plasmonic catalysis experiments. 

 

The laser beams (diameter of 9 mm) were aligned coaxially into the 

reactor. The laser intensities were varied using a neutral density filter, in 

the case of the green laser, and analogically for the NIR laser. This setup 
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allowed to vary the irradiance of the two lasers from 0 to 2 ∗ 10%𝑊 𝑚$⁄  

for the green laser and 4.4 ∗ 10%𝑊 𝑚$⁄  for the NIR laser. 

 

2.3 Catalyst characterization 
 

This section describes all the techniques used to identify the main 

characteristics of the synthesised catalysts. 

 

2.3.1 Inductively coupled plasma – optical emission 

spectrometry 

 

Inductively coupled plasma optical emission spectroscopy (ICP-OES) 

was used for preliminary characterization of the candidate catalytic 

materials, which were synthesised in this work. Samples were analysed 

through an external service provided by the University of Barcelona. The 

analysis allowed to determine the % of gold in a sample. Catalysts and 

colloidal solutions of AuNPs were analysed before and after their use. 

Moreover, the presence of Cl was also determined in samples taken 

during the synthesis of the catalyst. Cl ions poison the catalyst, interfering 

during the synthesis and the use of the AuNP by increasing the average 

size of the particles79,80. 
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2.3.2 X-ray photoelectron spectroscopy 

 

XPS data were obtained from CCITUB service of the University of 

Barcelona. This technique was used to confirm the oxidation state of gold 

and to screen the material for traces of contaminants derived from the 

synthetic procedure. 

The data were processed with CasaXPS software as follows. Binding 

energies (BEs) were corrected by adjusting the position of the C1s peak 

to 285.0 eV81. 

 

2.3.3  Powder X-ray diffraction spectroscopy (pXRD) 

 

This technique was used to determine the average bulk composition 

of the catalyst. It was used to assess the crystalline phase of the support 

as well as the presence of metallic gold in the catalyst. The measurement 

was performed by the ERTFLOW group in ICIQ. The powder 

diffraction system was equipped with a VÅNTEC-1 single-photon 

counting PSD, a Germanium monochromator and a CuKa-radiation 

source in transmission geometry. The raw data were processed with 

MATCH! Software. 
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2.3.4 Transmission electron microscopy 

 

TEM images were collected through the service provided by the 

University of Barcelona. The images allowed to determine the size and 

morphology of the AuNP and the support. This instrument allowed to 

estimate also the distribution of the nanoparticles on the support surface, 

as well as the presence of undesired material on the surface. The most 

common contaminants were salts and surfactant found in the final 

products due to because of the incomplete removal during the workup of 

the catalyst. 

 

2.3.5 UV-vis spectra determination 

 

The spectra of the catalysts and colloids were determined using a 

Synergy H1 Multi-Mode Reader working with a microplate reader of 96 

well plates (polystyrene, clear, flat bottom, Nunc MicroWell, Thermo 

Fisher Scientific). Spectra were measured in transmission registering the 

optical density (OD) spectrum of visible absorption of aqueous diluted 

suspensions in Milli-Q water. The typical range of acquisition was from 

400 nm to 999 nm in steps of 2 nm. For the studied volume, a cuvette 

with a 250 μL volume and a 0.69 cm path length was used. Solvent 

spectrum subtraction was performed for every measurement. Through 

this technique, the plasmon peak positions of the AuNP and AuNR were 

monitored and optimized during the synthesis of the catalysts. 
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Spectra on solids were collected with a Varian CARY 5000 from 

Agilent equipped with an integrating sphere. The spectra were registered 

diffuse reflectance and the signal processed using the Kubelka-Munk82 

equation (2.2). These measurements were performed for those samples 

showing high scattering in solution. 

 

 𝐹(𝑅5) =
𝐾
𝑆
=
(1 − 𝑅5)%

2𝑅5
 Eq. (2.2) 

 

Where 𝐹(𝑅7) is the Kubelka-Munk function, K is the absorption 

coefficient and S is the scattering coefficient, 𝑅7  is the absolute 

reflectance assuming an infinitely thick layer. Being the scattering 

coefficient wavelength independent then the Kubelka-Munk function is 

proportional to K and it gives a good approximation of the absorption 

spectra83,84. 

 

2.4 Thermodynamic measurements 
 

This section describes the procedure through which a group of 

experiments were designed to quantify the effect of the temperature on 

the reaction in the dark and under irradiation. For this first set of 

experiments, the kinetic analysis gave the values of the constant of 

reaction. The Eyring equation allowed to obtain the values of the 

activation energies of the dark and irradiated reactions. 
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2.4.1 Screening of the temperature 

 

Reactions were run in a thermostatic bath set at different temperatures 

following the calibration line shown in Figure 2.6 so that the temperature 

inside the reactor assumed values ranging from 0 to 48 °C. The reactions 

were run in the dark and under 130 mW laser irradiation at 532 nm for a 

maximum of 2 hours. The temperature inside the reactor was monitored 

with a thermocouple. The temperature was constant throughout the 

duration of the experiment showing variations below 1 °C. 

A total of 10 reactions were run for the two conditions of illumination. 

The dark reactions were screened between 0 and 48 °C and the laser-

irradiated ones between 0 and 36 °C, as reported in Table 2.1. 
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Table 2.1 temperature set points for the screening 
of reaction temperature for the reductive coupling 
of nitrobenzene. 

Light 

conditions 

Reaction T 

[°C] 

Dark 

0 

12 

25 

36 

48 

130 mW 532 

nm 

0 

12 

18 

25 

36 

 

The variations in concentration of the intermediate and product of the 

reaction were followed for up to 2 hours. A quantitative analysis was 

performed with GC following the procedure reported in Section 2.1.2. 

 

2.4.2 Determination of kinetic constants of the first and 

second step of the reaction 

 

The collected chromatograms were then processed with the software 

Matlab® and the concentrations of the components present in the 

reaction mixture were obtained applying Equation (2.1). Then, fitting the 

concentration of molecules 1, 2, and 3, as a function of time, using the 
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equations (2.3-2.4-2.5) describing the kinetics of a consecutive 

reaction85,86. 

Applying a nonlinear least-square fit method, the kinetic constants for 

the first and second step of reaction showed in Figure 2.8 were 

extrapolated. 

 

 
Figure 2.8 Nitrobenzene reductive coupling reaction steps and assignation of kinetic 
constants. 

 

[1]$ = [1]%	𝑒'(!$ Eq. (2.3) 

[2]$ =
[1]%	𝑘)
𝑘* − 𝑘)

		(𝑒'(!$ − 𝑒'("$) Eq. (2.4) 

[3]$ = [1]%	 -1 +
1

𝑘) − 𝑘*
[𝑘*𝑒'(!$ − 𝑘)𝑒'("$]/ Eq. (2.5) 

 

Where k1 and k2 are respectively the kinetic constant of the first and 

second step of the reaction. 
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2.4.3 Determination of enthalpy of activation using the 

Eyring equation 

 

As defined by the IUPAC gold book87 “the standard enthalpy of activation 

Δ‡H° is the enthalpy change that appears in the thermodynamic form of the rate 

equation obtained from conventional transition state theory”. Therefore, the 

enthalpy of activation of an elementary reaction step is the energy 

difference between the transition state and the ground state of reagents. 

The enthalpy of activation was determined by fitting the kinetic 

constants of the reaction in function of the inverse temperature. Indeed, 

the Eyring equation (2.6) describes the dependence of the kinetic constant 

of a reaction and the temperature. 

 

 𝑘 = 	
𝑘6𝑇
ℎ

𝑒
7	9∆

‡;°
<= 		7		∆

‡>°
< ?

 Eq. (2.6) 

 

Where k is the kinetic constant of the elementary reaction, kB is the 

Boltzmann, h is the Plank constant, and ∆G‡ is the Gibbs energy of 

activation. 

This equation, written in the linear form showed in equation (2.7), 

allows determining the enthalpy and entropy of activation for each step 

of the reaction under investigation simply by plotting the logarithm of the 

kinetic constant divided by the T as a function of 1/T. 
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 ln
𝑘
𝑇
= −

∆‡𝐻°

𝑅𝑇
+
∆‡𝑆°

𝑅
+ ln K

𝑘6
ℎ
L Eq. (2.7) 

 

The comparison of the enthalpy of activation of the dark and 

irradiated experiment series allowed to draw preliminary conclusions on 

the effect of the laser on the kinetics and the yield of the reaction. 

 

2.5 Arrangement of the experiments and data analysis 

methodology 
 

To extend the understanding of how light affects the reaction through 

the interaction with plasmonic nanoparticles, a group of experiments was 

run systematically by applying the design of experiment principles (DoE). 

Collected data were processed and analysed to generate a model of the 

yield of reaction, as explained in section 2.5.2. This model aimed to shed 

light on the mechanism of activation of plasmonic catalysis. Briefly, a 

DoE was defined from a hypothesis, selecting the dependent variables to 

be modelled and the independent variables. The independent variables 

defined the experimental domain constituted by the upper and lower 

limits of all the variables under investigation. 
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2.5.1 Design of experiments 

 

The yield of the reaction, expressed as a percentage, for azobenzene 3 

and azoxybenzene 2 defined by equation (2.8) were chosen as dependent 

variables. 

 

 𝑛% =
[𝑛]A

[𝑛]ABCDE
∗ 100 Eq. (2.8) 

 

Where [𝑛],  is the concentration of 2 or 3 at a certain time of the 

reaction and [𝑛],8*9:  is the theoretical yield if all the reagent was 

converted to the intermediate or the product. 

The central hypothesis of this study was that the yields of 2 and 3 were 

strongly dependent on the kind of catalyst and the intensity of the lasers 

used. Another important hypothesis of this study was that the laser 

emitting light at 532 nm was affecting more the reaction outcome than 

the 785 nm laser regardless of the catalyst used. 

Importantly, taking into account that the yield of any reaction is 

affected by time, the latter was also introduced in the group of 

independent variables of the experimental domain. The main 

characteristics of the DoE used in this work are summarised in Table 

2.2. 

 

Table 2.2 Hypothesis and variables limiting the definition for the design of experiment. 
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Hypothesis 
Depend. 

var. 

Independ. 

var. 
Exp domain 

The yield of 3 

and 2 depends 

mainly from 532 

nm laser and time. 

Yield 2% 

and 

Yield 3% 

Green 

Laser 
16 – 130 mW 

NIR 

Laser 
20 – 280 mW 

Time 0 – 120 min 

Catalyst 

type 

AuNP or 

AuNP and 

AuNR 

 

The other independent variables, such as concentration of the 

reactants, temperature and stirring rate, were kept constant for all the 

experiments, following the optimized reaction procedure described in 

detail in section 2.1.1. 

The laser intensities were standardized applying equation (2.9) 

 

 𝑧 =
𝑋 − 𝜇
𝛿𝜇

 Eq. (2.9) 

 

Where, 𝑋 is the variable to be converted, 𝜇 is its mean value and 𝛿𝜇 is 

the difference between the maximum value of the variable and the mean 

value. The standardization of the variables allows comparing the effect of 

the variables on the system just looking at the magnitude of the values of 
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the estimated coefficients of the model. Valid only when variables are set 

as numerical. 

The experiments were arranged applying a three-level full factorial 

design for two variables, generating 3$ different experiments as shown in 

Figure 2.9. For designed experiments, the proper arrangement of the 

factor (the independent variable) settings allows determining the 

influence of the variation of each factor on the response when there is a 

simultaneous variation of all the other factors53. 

The central experiment was repeated at least 3 times to check for the 

curvature of the model and to have an estimation of the error. 

 



 

 48 

 
Figure 2.9 Graphical representation of the experimental domain where variables were 
standardized. 

 

The experiments were performed following a random order as shown 

in Table 2.3 to ensure minimization of systematic errors and time-

dependent errors88. 

  

NIR

Green
(+1,+1)

(0,0) (+1,0)

(+1,-1)(0,-1)(-1,-1)

(-1,0)

(1,1) (1,1)
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Table 2.3 Random run order and laser intensities for three-level full factorial design. The 
laser intensities were converted to standardized variables varying from -1 to +1. 

Reaction ID Order 
Green 

[mW] 

NIR 

[mW] 

Green 

STD 

NIR 

STD 

1 5 16 28 -1 -1 

2 11 16 154 -1 0 

3 2 16 280 -1 1 

4 1 73 28 0 -1 

5 7 73 154 0 0 

6 6 73 280 0 1 

7 8 130 28 1 -1 

8 12 130 154 1 0 

9 9 130 280 1 1 

10 10 73 154 0 0 

11 3 73 154 0 0 

12 4 73 154 0 0 

 

Each reaction was monitored during two hours by analysing samples 

with GC. Typically, samples were collected at 0, 5, 10 ,15, 30, 60, 90, and 

120 minutes for each reaction. The workup and analysis of the sample 

were performed as described in section 2.1.2. 

Data were processed using the software Matlab to calculate 

concentrations and yield of the reaction. 
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2.5.2  Generalized linear mixed effect models for 

azoxybenzene and azobenzene yields 

 

Linear models (LM) can be represented in the matrix form by equation 

(2.10) This approach is widely used for producing response surface 

models in chemistry. 

 

 𝒚 = 𝑿𝛃 + 𝝐 Eq. (2.10) 

 

where 𝑦 is the modelled variable vector and 𝑋 is the model predictors 

matrix and β  is the matrix of the unknown model coefficients, 

respectively. 

The fundamental assumptions of linear models are: 

• The linearity of the residuals of the model. The mean value and 

the standard deviation must be zero, meaning the residuals have 

a random distribution around zero. 

• Absence of collinearity of the independent variables of the model. 

The variables are not correlated. 

• Homoskedasticity; the variance of the data should be 

approximately equal across the range of the predicted values. This 

feature is reflected in the absence of pattern in the residual plot. 

• Independence is ensured as long as each datum point comes from 

one and only one experiment. 
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In the case reported in this work, a simple linear model including also 

time-series measurements would have violated the independence 

assumption. 

For this reason, a generalized linear mixed effect model89,90 (GLME) 

was selected to analyse the data obtained from the designed experiments 

to assess the effect of laser intensity, time, and type of catalyst exerted on 

the yield of compounds 2 and 3. The general equation of such kind of 

models is represented by equation (2.11) 

 

 𝜼 = 𝑿𝜷 + 𝒁𝒃 Eq. (2.11) 

 

The above equation is analogous to equation (2.10) where 𝜼 is a linear 

predictor of the dependent variable, 𝒁 is the design matrix for the random 

effects and 𝒃 is a vector of random effects. 

The difference between an LME (linear mixed effect) and a GLME 

lies in that the distribution of the observations	𝒚, the dependent variable, 

does not need to be Gaussian. Indeed, one of the assumptions of this 

approach is that the dependent variable follows a distribution of a known 

family (binomial, Poisson, gamma, exponential, gaussian, etc.). Moreover, 

with GLME a link function is defined such that 𝜼 is given by equation 

(2.12) 

 

 𝛈 = 𝑔(𝛍|𝐛) Eq. (2.12) 
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Where, 𝑔 is the link function, 𝛍|𝐛 is the conditional expectation of the 

observations given b, the random effect. 

 

 𝐸(𝒀|𝒃) = 𝜇 = 𝑔7$(𝑿𝜷 + 𝒁𝒃) Eq. (2.13) 

 

The expected mean values 𝜇  of the estimator of the dependent 

variable 𝑦, whose distribution is defined by the random effect variable, is given by 

the inverse of the link function of the linear model, equation (2.13). 

Therefore, when working with GLME we fit the linear model to the link 

function 𝑔, not directly to the data. 

For the sake of comprehension, it is necessary to outline the main 

difference of approach between a LM (Gaussian distribution and no 

random effects) and a GLME (any probability distribution and random 

effects). Two datasets are represented in Figure 2.10, where each symbol 

corresponds to a measurement and each colour represents an experiment. 

If we want to build a model using a linear model, then we are forced to 

consider only one measurement for each experiment, for instance, the 

yield at 1 hour of reaction to not break the fundamental assumptions of 

LM. In this case, we would have 9 points to estimate the coefficients of 

the model. 
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Figure 2.10 Sketch representing the difference between a linear model and a linear 
mixed effect model. Symbols represent a measurement; colours the single experiment 
and red lines define the random effect between experiments. 

 

To ensure the independence of data, the GLME can process multiple 

responses from the same experiment, such as kinetic data, just by 

introducing random effects within each experiment. The random effect 

of the GLME is defined by the red borders that include data coming from 

a single experiment or repetitions. This feature allows manipulating much 

more data points than a LM allowing to explore the interaction of time 

with the other variables of the design. 

Once the experiments designed in section 0 were run, the 

concentrations of the components of the reaction and the experimental 

conditions were processed with the software R-studio. The time and laser 

intensity variables were converted, when necessary, to standardized 

variables, as shown in equation (2.9). Models containing factors up to the 

second degree and mixed terms were considered in this work. To ensure 

the linearity of the yield for azobenzene, a logarithmic transformation was 

performed on the dependent variable. Randomization within each 
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experiment was introduced in the model, as well as within repeated 

experiments. 

 

2.5.3 Model validation 

 

The selection of the model describing the dependency of the 

production of 3 and 2 was done following the scheme of Figure 2.11. 

The models were built by adding one factor at a time and by comparing 

the new model with the previous through the analysis of variance. The 

ANOVA test produced the Akaike91 number and p-value for the model. 

The Akaike number expresses the goodness of the fit. 

 

 
Figure 2.11 Flow diagram showing the strategy applied to select a model. 
Example of a linear model where no random effects are introduced. 

Model 2 !% = $! + $" ∗ '()*+ $# ∗ +,**-
Model 1 !% = $! + $" ∗ '()*

Hp: model 2 is a better estimator of the yield

ANOVA test  Model 2 Vs Model 1

If p<0.05 

./0# <		./0"

model is improved 

If p>0.05 

./0# >		./0"

model is not improved

Model 2 !% = $! + $" ∗ '()*+ $# ∗ 4,**-

Model 3 !% = $! + $" ∗ '()*+ $# ∗ 4,**- + $$ ∗ /5
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The significance of each factor for a model was evaluated observing 

the p-values with a significance level of 0.05. The p-value tests the null 

hypothesis: the coefficient of the factor of the model equals zero. The 

smaller the p-value the more the factor is statistically significant for 

describing the dependent variable 

Once appropriate models were selected for azobenzene and 

azoxybenzene, additional validation tests were run. A contrast matrix was 

built to test the null hypothesis, i.e. two factors have the same effect on 

the estimated values of the model. In other words, the contrast matrix 

allows to focus on the effect within the levels of a factor as well as 

between factors of the model and drive conclusion about which laser 

intensity or laser type makes a difference for the estimation of the 

dependent variable respectively. 

Additional reactions were run to check the predictivity of the model. 
Reactions were run at intermediate levels of both lasers. Experimental 
values of the yields of azobenzene and azoxybenzene were compared 
with the predicted values.
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3 Synthesis and optimization of the 

plasmonic catalyst 
 

At the beginning of this work, the performance of a standard catalyst 

for the test reaction was measured. The catalyst composed by AuNP 

supported on TiO2 nanoparticles, was purchased from Haruta Gold Inc 

and used as received (Lot. No. YS0D916A). This catalyst was defined by 

the World Gold Council as a benchmark catalyst to be used to compare 

the activity of other catalysts for oxidation and reduction reactions52. 

 

 
Figure 3.1 Normalized Visible spectra of the Haruta catalyst. 
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The AuNP size of Haruta catalyst was 4.11 ± 2.2 nm, Au load 0.96%W 

and the plasmon peak was centred at 520 nm as shown in Figure 3.1. 

The catalyst showed very poor activity in the reaction conditions, only 

traces of the desired reaction product, azobenzene, was detected even 

after a prolonged time at 40 °C, Table 3.1. The catalyst allowed to convert 

nitrobenzene to azoxybenzene in moderate yield but did not show 

significant activity under light irradiation. 

 

Table 3.1 Test reaction performed with the Haruta catalyst under dark and under laser 
irradiation conditions. 

 

Entry* 
I532nm 

[mW] 

Y2% 

[mol%] 

Y3% 

[mol%] 

𝑻𝑶𝑭𝒂 

[𝒉!𝟏] 

𝜱𝒃 

[𝒎𝒐𝒍 𝒑𝒉⁄ ] 

1 0 44.7 2.7 339 0 

2 130 47.6 2.6 319 0 
* Reaction conditions: temperature 40 °C, catalyst 50 mg, 0.1 mmol nitrobenzene, 0.1 mmol KOH, 
nitrogen flow. Yield measured at 24 hours. 
a TOF calculated as the ratio of moles of 3 over the moles of AuNPs over time.  
b quantum yield, ratio between product molecules and emitted photons. 
AuNP: gold nanoparticles. TOF: turnover frequency. 

 

The Haruta catalyst showed very low reactivity and poor yield in our 

reaction. The effect of light, (entry 2, Table 3.1) was negligible if 

compared with the control reaction, (entry 1, Table 3.1). 

The turnover frequency was defined by equation (3.1) and (3.2). 
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 𝑇𝑂𝐹 =
𝑚𝑜𝑙𝑥

𝑚𝑜𝑙𝑃 ∗ 𝑡
 Eq. (3.1) 

 

 𝑚𝑜𝑙H =
𝑁H
𝑁I

 Eq. (3.2) 

 

Where 𝑚𝑜𝑙+ are the moles of azobenzene 3 or azoxybenzene 2, 𝑡 is 

the time of reaction, and 𝑚𝑜𝑙(  are the moles of catalyst, defined by 

equation (3.2) as the ratio of the total number of particles in the reaction 

𝑁( over the Avogadro number 𝑁>. 

The apparent quantum yield in equation (3.3) was chosen to evaluate 

the efficiency of the different catalysts synthesised in this work. 

Considered that the percentage of photons absorbable by an inorganic 

oxide powder, such as SiO2 or TiO2, ranges from 50 to 65%92, the 

determination of the actual absorbed light by the catalyst particles in the 

reaction mixture goes beyond the scope of this work being particularly 

difficult when dealing with solids dispersed in a liquid because of the high 

scattering of the media. 

 

 
𝛷 =

∆𝑛J
𝑛K

 
Eq. (3.3) 
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Where the number of molecules ∆𝑛J is the difference between the 

number of product or intermediate molecules generated under 

illumination and in the dark, and 𝑛? is the number of photons emitted by 

the laser source during the irradiation time. To be conservative, we 

assumed that, in our reaction conditions, the light was totally absorbed by 

the gold nanoparticles. 

This preliminary results on the Haruta catalyst stimulated us to 

improve the performance of supported plasmonic AuNPs by 

investigating the influence that different synthetic procedures and kind of 

support could have on the activity of the catalyst80,93. 

Particular focus was directed towards tuning the size of the particles 

to maximize the absorption of visible light and the amount of plasmon-

generated energetic electrons. Moreover, the selection of a support 

material that could ensure a stable and narrow particle size distribution of 

AuNPs was also investigated. The results of this investigation are 

discussed in the following sections. 

 

3.1 Colloidal spherical gold nanoparticles 
 

Gold Chloride trihydrate (HAuCl4·3 H2O) and sodium citrate were 

purchased from Merck and used without further purification. 

The synthesis of spherical gold nanoparticles was performed by 

modifying the Frens method94. Briefly, 50 mL of a solution of Au(III) 

chloride hydrate 1.0 mM was refluxed under vigorous stirring. 

Subsequently, 5 mL of sodium citrate tribasic dihydrate solution 6.8 mM 



 

 61 

was rapidly added with a pipette. AuNPs formed within 90 seconds as a 

result of the redox reaction between Au(III) and sodium citrate. The 

excess of sodium citrate contributed to the stabilization of the particles 

through adsorption on the surface. The citrate anions ensured the 

repulsion between the nanoparticles95,96. 

The obtained colloid was then left under stirring, cooled to room 

temperature, and stored in a glass flask. Typically, a UV-vis spectrum was 

acquired at the end of the synthesis to check the position of the plasmon 

peak. SEM images were acquired to determine the particle size as reported 

in Figure 3.2. 

 

 
Figure 3.2 a. particle size distribution, and b. normalized UV-Vis spectra of citrate 
stabilized gold nanoparticles (AuNP). 

 

Particle size was measured over more than 100 particles from SEM 

images. The sample showed a wide distribution with a mean particle size 

of 11.8 ± 2.3 nm. The synthetic protocol was optimized to obtain a size 

ranging from 10 to 20 nm. As suggested by Govorov et al.97, particles in 

that particular range should be characterized by the generation of hot 

electrons with large energies. 
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Considering the reduction of 𝐻𝐴𝑢𝐶𝑙@!  as quantitative, the AuNPs 

concentration in the crude reaction mixture was 1.9 ∗ 10!3	𝑀 and their 

molar extinction coefficient was 1.6 ∗ 103	𝑀!"𝑐𝑚!". AuNPs showed a 

very high absorption at 525 nm. 

The first series of experiments focussed on the synthesis of a catalyst 

constituted by colloidal AuNPs supported on silica particles. The surface 

of the silica particles was modified with (3-Aminopropyl)trimethoxysilane 

(APTES). Amine groups are well known for showing an affinity for gold 

surfaces and are widely used for the formation of self-assembled 

monolayers, an adhesion of substrates through electrostatic 

interaction98,99. 

The aminated silicon dioxide particles were synthesised from 

tetraethoxysilane (TEOS) and functionalized with (3-

Aminopropyl)trimethoxysilane (APTES) following an optimized 

protocol100,101. Briefly, in a round bottom flask 55.5 g of ethanol, 13.80 g 

of Milli-Q water, and 5.93 g of ammonium hydroxide solution 29% were 

stirred at 40 ºC. Then, 6.15 g of TEOS was diluted in 5 mL of ethanol, 

preheated to 40 ºC, and added in one-pot to the stirring mixture. After 

2.5 h, an additional 4 g of TEOS was added likewise and the reaction 

mixture was stirred overnight. The solid was then centrifuged and 

dispersed in ethanol at least 5 times to remove unreacted TEOS and 

ammonium hydroxide and then processed to functionalize the surface 

with APTES. The solid was dispersed in 63.12 g ethanol, sonicated for 1 

hour, and then heated under stirring at 75 ºC in a two-necked round 

bottom flask provided with an addition funnel containing a solution of 1 

g Milli-Q water, 0.09 g 𝑁𝐻@𝑂𝐻, and 0.354 g APTES. The mixture was 

stirred for 3 hours and was then cooled down to room temperature and 
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left stirring to provide nanoparticles with a narrow particle size 

distribution and mean value of 240 ± 8 nm, (Figure 3.3 b). Finally, the 

suspension was centrifuged and washed in ethanol several times and then 

stored in 50 mL water. 

To obtain a high number of gold particles per silica particles, the 

AuNP nominal load on the support was 7 %w. The procedure consisted 

in slowly adding the AuNPs to a 0.5 mg/mL suspension of the support 

under stirring. The resulting material was filtered and washed with water. 

The recovered solid was dried in an oven at 110 ºC. 

The dilution of AuNPs and the presence of amine functional groups 

on the surface of the silica particles displaced the citrate molecules and 

allowed the deposition of AuNPs on the surface. 

The supported AuNP catalyst (AuNP/SiO2) was characterized with 

SEM microscopy and UV-visible spectroscopy. AuNPs showed a 

plasmon peak centred at 530 nm. The small red shift in the spectrum of 

the final product was due to the high refractive index of silica. 
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Figure 3.3 a. SEM image and b. particle size distribution of synthesised SiO2. c. 

Normalized UV-Vis spectrum of AuNP/SiO2 catalyst. 

 

The actual gold load was measured with ICP-OES and provided a 

value of 5.60 %w. 

The AuNP/SiO2 catalyst was tested for the reduction of nitrobenzene 

under dark and under irradiation with 532 nm laser at 130 mW. The 

results are reported in Table 3.2. 
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Table 3.2 Catalytic test for AuNP/SiO2. 

 

Entry* 
I532 

[mW] 

Y2% 

[mol%] 

TOFa 

𝟏𝟎𝟒[	𝒉!𝟏] 

𝜱𝒃 

𝟏𝟎!𝟒[𝒎𝒐𝒍 𝒑𝒉⁄ ] 
3* 0 28.6 2.6 0 

4* 130 32.3 2.9 4.5 
*Conditions: 0.3 mmol of 1, 0.3 mmol of KOH, 30 mg AuNP/SiO2 corresponding to 8 µmol Au, 
2 ml isopropanol, 0.05 mmol naphthalene, N2 flow, laser intensity 130 mW, T = 40 °C, yield 
registered at 2 hours with GC and internal standard.  
a TOF calculated as the ratio in moles of 2 over AuNPs over time. 
b Quantum yield, ratio between product molecules and emitted photons. 
AuNP: gold nanoparticles. TOF: turnover frequency. 

 

The laser-irradiated reaction showed an 3.7% increase in the 

production of azoxybenzene 2 after two hours. However, the desired 

product of reaction, 3, could not be detected, not even after prolonging 

the reaction time to 24 hours. Control reactions containing only the 

support and only the reactants yielded no conversion. 

The catalyst was recovered and analysed after 2 hours of reaction with 

SEM and UV-Vis spectroscopy, Figure 3.4. 
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Figure 3.4 a. SEM image of the catalyst recovered after 2 hours of reaction. b. UV-
Vis spectra of the recovered catalyst. The peak at 638 nm indicates aggregation of the 
AuNP. 

 

The catalyst showed poor resistance to the reaction conditions because 

of the presence of KOH. The strong base partially dissolved the acidic 

SiO2 particles causing the detachment of AuNPs, which eventually 

aggregated and lost their catalytic activity. As a consequence, a red shift 

of the plasmon peak was observed, which contributed to lower the 

intensity of absorption at the irradiation wavelength of 532 nm. 

Considering those preliminary results, the synthesis of spherical 

AuNPs was oriented towards the in situ generation of nanoparticles that 

could form a final material with a higher stability80,102. The stability 

problem related to the AuNP/SiO2 catalyst could not be solved either by 

changing the synthetic method. Although the in-situ approach afforded 

smaller AuNPs, the stability of the catalyst was still poor in the reaction 

conditions. 

To improve the performance of plasmonic catalysts under laser light 

irradiation, two methods were investigated to generate AuNPs on the 

surface of selected metal oxide supports (TiO2, Fe2O3, and CeO2). The 

first relied on the reduction with sodium borohydride (NaBH4) of a 
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chloroauric acid solution in the presence of the metal oxide support. The 

second method applied was a modification of the Haruta method93,103,104. 

 

3.2 Deposition-precipitation method, in-situ gold 

reduction 
 

NaBH4, HAuCl4·3 H2O, titanium dioxide, and iron(III) oxide were 

purchased from Merck, cerium(IV) dioxide was purchased from STREM 

CHEMICALS, and titanium dioxide aeroxide P25 was purchased from 

EVONIK. All the chemicals were used without further purification. 

The deposition-precipitation method was used to deposit gold on 

different supports and to obtain a set of particle sizes spanning from 20 

nm to 3.1 nm. The reduction of the Au(III) precursor was performed 

either by adding NaBH4 to the reaction mixture or through thermal 

decomposition of the Au(III) species adsorbed on the support. 

 

3.2.1 Reduction in solution with NaBH4 

 

The typical procedure consisted in dissolving 40.8 mg of HAuCl4·3 

H2O in 26 mL Milli-Q water in a three-necked round bottom flask. The 

pH was then slowly raised to pH = 8 with NaOH 0.1 M and the solution 

was left stirring for 1.5 hours at a temperature of 70 °C. The pH was 

monitored and kept at the desired value during all the process. 

Subsequently, 1 g of metal oxide powder was mortar-crushed and slowly 
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added to the solution under vigorous stirring. Finally, 2 mg of NaBH4 

dissolved in 50 mL Milli-Q water was prepared and added with a 

dropping funnel connected to one of the necks of the round bottom flask 

over 30 minutes. The reaction mixture was left stirring 1 hour at 70 °C 

and was then cooled down naturally to room temperature and stirred 

overnight. The resulting solid was vacuum filtered with a Buchner funnel 

provided with a 0.2 µm membrane filter and was washed with water until 

the filtrate reached a neutral pH and was negative on a test for Cl- ions 

(performed with a AgNO3 solution). 

The material was then collected in a crystallization dish and was dried 

under open-air at 80 °C overnight. Then, it was calcined in a furnace 

under open-air at 350 °C for 3 to 4 hours with a ramp of 10 °C/min, 

except for catalyst 322 (entry11-12) that was just dried at 110 °C. All 

materials were stored in a dark cool place in a vial. 

With this procedure, four catalysts, characterized by different AuNP 

sizes and kind of support were synthesised (Table 3.3). 

The catalytic tests were performed reproducing the same conditions 

used for the Haruta catalyst experiments. A comparison between their 

performance and the one from the Haruta catalysts is reported in Table 

3.3. The TOF was calculated applying equation (3.1); through this value, 

the activities of the different catalysts were compared considering the 

moles of AuNPs instead of the moles of Au. The size of the metal 

nanoparticles and, consequently, their molecular weight, varied 

significantly between each catalyst. The quantum yield was calculated with 

equation (3.3) to estimate the effect that light, compared to dark 

conditions, had on the reaction. 
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Table 3.3 Catalytic test for the study of the effect of the support and 
AuNP 

 

Entry* AuNPa 
[nm] Supp. I532 

[mW] 
Y2 

[mol%] 
Y3 

[mol%] 
𝑻𝑶𝑭𝒃 
[h-1] 

𝝓𝒄 
𝟏𝟎"𝟒 

[𝒎𝒐𝒍 𝒑𝒉⁄ ] 

1d 4.11 TiO2 0 44,7 2,7 339 0 

2d 4.11 TiO2 130 47,6 2,6 319 0 

5e 5.4 Fe2O3 0 18,5 0 0 0 

6e 5.4 Fe2O3 130 26,7 0,4 15 0.04 

7 3.86 CeO2 0 23,8 2,5 14 0 

8 3.86 CeO2 130 50 5,8 66 0.33 

9 6.5 1-TiO2g 0 50,5 0,9 23 0 

10f 6.5 1-TiO2g 130 56,7 5,6 412 0.63 

11 6.7 2-TiO2g 0 75.7 17.3 583 0 

12 6.7 2-TiO2g 130 63.7 30 1204 1.33 
*Conditions: 0.1 mmol of 1, 0.1 mmol KOH, 3  µmol Au, 2mL isopropanol, 0.05 mmol 
naphthalene, N2 flow, laser intensity 130 mW, T = 40 °C. The yields of azoxybenzene 2 and 
azobenzene 3 were registered at 24 hours with GC by using an internal standard. 
a Size of the particles obtained by measuring over 100 AuNP in TEM or SEM images. 
b TOF calculated as the ratio in moles of product 3 over AuNP over time. 
c Quantum yield, ratio between the number of product molecules and emitted photons. 
d Haruta catalyst 2 hours of reaction. 
e 8 µmol Au. 
f 18 hours of reaction. 
g. TiO2 Anatase phase from Merck, the number refers to the batch of catalyst. 
AuNP: gold nanoparticles. GC: gas chromatography. SEM: scanning electron microscopy. TEM: 
transmission electron microscopy. 

 

All the reactions were run by introducing the same amount of gold, 

except for entries 5 and 6, where the amount needed to observe any 

reactivity of the AuNP/Fe2O3 catalyst was 160% more than the quantity 
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used in the rest of the experiments. In this case, only traces of the product 

of reaction, 3, were detected. Entries 7 and 8 show that, for the 

AuNP/CeO2 catalyst, the TOF was still very low if compared with the 

results of the Haruta catalyst (entries 1 and 2). Because of the yield 

difference between the dark and irradiated reactions, the quantum yield 

was 0.33 ∗ 10!@ . The use of TiO2 anatase phase in entries 9 to 12 

displayed the best performance. Even if the active surface of the catalyst 

used in entry 9 was smaller than the surface of the Haruta catalyst (greater 

mean particle size), the former performed better under irradiation. 

Indeed, the dark reaction in entry 9 yielded only 0.9% of azobenzene 3 

while under irradiation was registered a 5.6 % yield (entry 10). Entries 11 

and 12 are the results obtained with 2-Au/TiO2 for which the highest 

TOF and f were obtained. 

Considering the results obtained with these different supports, a 

further investigation on the kind of TiO2 support and the AuNP particle 

size was undertaken. The objective of this investigation was to determine 

which oxide between TiO2 anatase or TiO2 P25 could constitute the best 

catalyst and which particle size could give the highest quantum efficiency. 

 

3.2.2 Thermal decomposition of gold(III) precursor to 

gold(0) 

 

Two batches of AuNP/TiO2 were synthesised using the deposition-

precipitation method choosing titanium dioxide P25 from EVONIK as 

support. This material is constituted by a mixture of 80% anatase and 

20% rutile. This method allowed to obtain two catalysts named 4-
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AuNP/TiO2 and 5-AuNP/TiO2 with the smallest particle size amongst 

all the synthesised catalysts. 

The Haruta method was optimized to obtain the catalyst that showed 

the highest activity under 532 nm laser irradiation. Therefore, this section 

describes the optimization of the synthesis of catalysts composed by 

AuNPs on TiO2. The supports used were TiO2 nanopowders purchased 

from Merck or EVONIK. 

The typical synthetic procedure for the production of 1 g of catalyst 

consisted in dissolving 32.5 mg of HAuCl4·3 H2O in 250 mL Milli-Q 

water under stirring at 70 °C. Then, 1 g of the TiO2 supported 

nanoparticles were slowly added and the pH was raised and maintained 

with NaOH 0.1 M at a fixed value ranging from 7 to 8. The suspension 

was then stirred for 2 hours at 1100 rpm. The suspension was then left to 

cool down to room temperature and then immediately vacuum filtered 

on a Buchner funnel provided with a 0.2 µm membrane filter. The cake 

was washed with water until the filtrate reached a neutral pH and was 

negative on a test for Cl- ions (performed with AgNO3 solution). The 

material obtained was collected in a crystallization beaker and dried in an 

oven at 80 °C overnight. Finally, the partially dry material was placed in a 

furnace and calcined in air at 350 °C for 3 to 4 hours with a ramp of 10 

°C/min to reduce the Au(III) precursor species to Au(0)105. The catalyst 

obtained was left to cool down to room temperature and was mortar 

crushed and stored in a dark cool place in a glass vial. 

The obtained catalysts were tested in the reductive coupling reaction 

of nitrobenzene. The results are reported in Table 3.4. 
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Table 3.4 Effect of the kind of TiO2 support and AuNP size. 

 

Entry* Sizea 
[nm] Supp. I532nm 

[nm] 
Y2% 

[mol%] 
Y3% 

[mol%] 
𝑻𝑶𝑭𝒃 
[h-1] 

𝝓𝒄 
𝟏𝟎&𝟑 

[𝒎𝒐𝒍 𝒑𝒉⁄ ] 

13 3.1 4-TiO2e 0 54,1 11,5 17031 0 

14 3.1 4-TiO2e 130 52.0 27,7 37301 3.9 

15 3.5 5-TiO2e 0 58.5 4 17353 0 

16 3.5 5-TiO2e 130 57.9 13.0 27445 2.2 

17d 20 3-TiO2f 0 42,2 59,6 15775 0 

18d 20 3-TiO2f 130 57,4 50,7 13425 0 
*Conditions: 0.1 mmol of 1, 0.1 mmol KOH, 3 µmol Au, 2 mL isopropanol, 0.05 mmol naphthalene, 
N2 flow, laser intensity 130 mW, T = 25 °C. The yields of azoxybenzene 2 and azobenzene 3 were 
registered at 1 hour with GC by using an internal standard. 
a Size of the particles obtained by measuring over 100 AuNP in TEM or SEM images. 
b TOF calculated as the ratio in moles of product 3 over AuNP over time. 
c Quantum yield, ratio between the number of product molecules and emitted photons. 
d 7 µmol Au, 72 h of reaction, T=40 °C. 
e TiO2 P25 from EVONIK. 
f TiO2 anatase from MERK. 
AuNP: gold nanoparticles. GC: gas chromatography. SEM: scanning electron microscopy. TEM: 
transmission electron microscopy. 

 

From the data reported in Table 3.4, the TOF as well as the 𝜙 are one 

order of magnitude higher than the values reported in Table 3.3. Both 

catalyst 4 and 5-AuNP/TiO2 showed a high activity under illumination 

and were able to fully convert the reactant to the product within 2 hours. 

On the other hand, the dark reactions (entries 13 and 15) reached a 

maximum yield of 75% and 55% respectively after 24 hours. Catalyst 4-

AuNP/TiO2 was the most efficient catalyst under 532 nm laser 

irradiation, (entry 14). It can be noticed that a 13% increase of the particle 

size decreased by 43% the value of 𝜙  (compare entries 14 and 16). 
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Catalyst 3-AuNP/TiO2 was synthesised with the method described in 

Section 3.2.1 and calcined at a higher temperature (500 °C for 4 hours) to 

cause the sintering106 of the AuNP into bigger ones with an average size 

of 20 nm. Entries 17 and 18 show the results of the experiments with 3-

AuNP/TiO2; the catalyst was still able to convert 1 to the product of 

reaction 3 at the cost of longer reaction time (72 h). Importantly, the 

positive effect of the laser irradiation was not observed for this catalyst. 

The characterization of the best performing catalyst, 4-AuNP/TiO2 

included the acquisition of its DR spectrum, TEM images, ICP-OES 

measurement of Au content, BET (Brunauer–Emmett–Teller) surface 

area, XPS, pXRD. The results are reported hereafter. 

 

3.3 Characterization of catalyst 4-AuNP/TiO2 
 

Catalyst 4-AuNP/TiO2 showed a gold load of 1.16 %W, TEM 

inspection revealed well dispersed and narrowly distributed AuNPs of 

average particle size 3.1 ± 0.8 nm. This was the smallest particle size 

achieved in this study (Figure 3.5). 
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Figure 3.5 a. TEM image of catalyst 4-AuNP/TiO2 b. Size distribution of AuNP on 
the TiO2 surface over more than 100 nanoparticles. 

 

The DR spectrum was acquired by registering the diffuse reflectance 

of the catalyst after being transformed into a tablet through the use of a 

hydraulic press. The tablet was placed in a spectrometer provided with an 

integration sphere and a reflectance spectrum was acquired. A matt 

Teflon reference was used to provide a nominal 100% reflectance 

measurement. 

For crystalline solids with an indirect band gap, such as TiO2, the 

dependence of the absorption coefficient K on the frequency  µn can be 

approximated as shown in equation (3.4)83,107,108. 

 

 khν	 = 	A(ℎ𝜈 −	𝐸Z)% Eq. (3.4) 

 

Where, 𝑘 is the absorption coefficient, ℎn is the energy of the photon 

𝐴 is a constant and 𝐸B is the band gap energy of the semiconductor.  
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The band gap of the material 𝐸B can be obtained by extrapolating to 

zero a linear fit to a plot of	(𝑘ℎn	)" $C  against ℎn. 

 

 
Figure 3.6 Optical properties of catalyst 4-Au/TiO2. a. Absorption spectrum obtained 
from diffuse reflectance measurements applying the Kubelka-Munk equation. b. 
Kubelka function plot giving a band gap of 3.2 eV. 

 

Applying the Kubelka-Munk equation (3.2) a signal proportional to 

the absorption spectra of the material was obtained (Figure 3.6-a). 

Absorption of small AuNP at 515 nm was evident in the sample along 

with the strong absorption of the support above 380 nm in the UV region. 

The band gap of the catalyst was extrapolated from the Kubelka function 

plot combining Eq. (2.2) and Eq. (3.4) into Eq. (3.5) to give the spectra 

shown in Figure 3.6-b. 

 

 (F(R5) ∗ hν)
$
% = 	ℎ𝜈 −	𝐸Z Eq. (3.5) 

 

A band gap of 3.2 eV, the exact same value as the TiO2 EVONIK 

P25109 used for the synthesis of catalyst 4-AuNP/TiO2 indicated that the 
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presence of the AuNPs did not influence significantly the position of the 

conduction and valence bands of the material. 

BET surface area determination was performed by the CCiTUB 

service of the University of Barcelona. The measurement reported in 

Table 3.5 showed that the specific surface of the final material had a 

reduction of 5.2 %. 

 

Table 3.5 BET results for catalyst 4-AuNP/TiO2 and 
TiO2 support. 

Sample BET [𝒎𝟐𝒈&𝟏] 

TiO2 P25 51.8153 m2/g 

4-AuNP/TiO2 49.1203 m2/g 
 

The little variation between the surface area of catalyst 4-Au/TiO2 and 

the support confirmed that the synthetic method was robust and that the 

material did not aggregate or changed its phase composition during the 

thermal treatment. 

The XPS measurement of the catalyst confirmed the presence of gold 

in metallic state characterized by the peaks of Au 4f at 84 and 87.8 eV 

(Figure 3.7). 
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Figure 3.7 High-resolution XPS spectrum showing the Au 4f peaks. 

 

The survey spectrum of the catalyst did not evidence contaminants, 

such as chlorine ions or organic molecules, in the catalyst. 

The pXRD spectrum was processed with MATCH! software as shown 

in Figure 3.8. 

  



 

 78 

 

 
Figure 3.8 pXRD spectra of catalyst 4-Au/TiO2 showing the presence of Au in the 
metallic state, as well as the crystalline phase of anatase and rutile TiO2.  

 

The pXRD data demonstrated that the thermal treatment of the 

catalyst did not modify the crystalline phase of the supporting material, 

as expected when thermal processes are run at temperatures below 

600 °C110,111. 

 

3.4 Gold nanorods containing catalysts 
 

Gold nanorods (AuNR) are anisotropic nanoparticles and are known 

for their heat generation when irradiated at the plasmon frequency in the 

visible and infrared region44,65,112 
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AuNRs were prepared in our group according to the procedure by Al-

Sayed et al.113 in-house. AuNRs were further processed to exchange the 

cetyltrimethylammonium bromide (CTAB) capping agent for the much 

softer and stabilizing sodium citrate, as described by Wei et al.114. The 

water colloid was obtained with an extinction coefficient of 2.6 ∗

10D	𝑀!"𝑐𝑚!" and plasmon absorption centred at 716 nm. 

To the best of our knowledge, there is no method to efficiently 

synthesise AuNRs directly on the surface of a support. This is due to the 

extreme sensitivity of the final shape of the particles to the presence of 

contaminants in solution and suspension115,116. 

Therefore, a simple method to deposit AuNR colloids on supports 

was developed. The method consisted in centrifuging several times 300 

mL of the citrate-stabilized colloid (0.4 mg/mL of metallic gold) to 

decrease the sodium citrate concentration below 0.7 mM. Subsequently, 

the destabilized AuNRs were sonicated, 300 mL Milli-Q water was added 

to the colloid, and the mixture was then slowly added to a vigorously 

stirred suspension of the support TiO2 or previously synthesised 

AuNP/TiO2 catalyst (600 mL 1 mg/mL). This mixture was left stirring 

overnight and the suspension was vacuum filtered with a Buchner funnel 

provided with a 0.2 µm membrane filter connected to an Erlenmeyer 

flask and washed with 1.5 L Milli-Q water to remove the capping agent. 

The solid was then dried in an oven at 110 ºC overnight and was then 

cooled down to room temperature and mortar crushed. 

This type of catalyst was designed with the aim of understanding if the 

thermoplasmonic effect generated by AuNRs could influence the 
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outcome of the reaction. The data collected in Table 3.3 proves that the 

reaction is influenced by temperature. 

We wanted to verify whether AuNRs resonating with a NIR laser 

emitting at 785 nm could trigger the reaction as efficiently as the 4-

AuNP/TiO2 catalyst or eventually act synergistically with the spherical 

AuNP catalyst. 

 

 
Figure 3.9 TEM images and visible spectra of AuNRs containing catalysts. a. TEM 
image of sample AuNP-NR/TiO2 where two different kinds of nanoparticles were 
deposited on the support surface. b. Spectra of the starting material AuNR colloid and 
AuNP-NR/TiO2 catalyst showing a red shift of the longitudinal plasmon. c. TEM image 
of sample AuNR/TiO2 showing the presence of only cylindrical nanoparticles. d. 
Spectra of the starting material AuNR colloid and AuNR/TiO2 catalyst showing a red 
shift of the longitudinal plasmon. 
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The average particle size was measured with 100 particles, resulting in 

cylindrical particles of 15 nm diameter and 45 nm length. The deposition 

process, along with the change in the refractive index in the surrounding 

of the AuNR117, caused a red shift of the plasmon absorption peak from 

716 nm (starting material) to 804 nm (ΔE = 88	𝑛𝑚)  for AuNP-

NR/TiO2 catalyst and (ΔE = 62	𝑛𝑚) for AuNR/TiO2. 

The ICP-OES analysis gave a gold load of 10.7 %W for the 

AuNR/TiO2 catalyst containing only gold nanorods and 11.9%W for 

AuNP-NR/TiO2 characterized by the presence of spherical and 

cylindrical AuNPs on the surface of the support. 

The capability of AuNRs to convert the 785 nm laser beam energy 

into thermal energy was tested by monitoring the temperature rise in the 

reactor during 5 hours of a suspension containing 10 mg AuNR/TiO2 in 

2mL IPA under irradiation at 320 mW. 
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Figure 3.10 Temperature as a function of time for 10 mg AuNR/TiO2 
catalyst in 2 mL IPA under 785 nm laser irradiation at 320 mW. The 
temperature was monitored with a thermocouple placed inside the reactor. 
The reactor was positioned on the stirrer at room temperature, without a 
thermal bath. 

 

Figure 3.10 shows that, in this conditions (without external cooling), 

the temperature rapidly increased within the first 30 minutes of irradiation 

to reach a stable value of 37 °C from the first hour on. 

Few reactions were run screening different intensities for the 785 nm 

laser (from 30 to 280 mW) and increasing the amount of AuNR/TiO2 

catalyst to 50 mg. On average, a 5 % yield was registered, after 24 h of 

reaction, showing no correlation to the IR laser intensity. 

When catalyst 4-AuNP-NR/TiO2, synthesised from catalyst 4-

AuNP/TiO2, was used the yield of the reaction dropped compared to the 
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reactions run with the latter catalyst. However, a temperature increase of 

15 °C was registered. 

When inspecting catalyst 4-AuNP-NR/TiO2 with TEM, an increase 

of the mean particle size from 3.1 to 3.6 nm was noticed. The activity of 

AuNPs strongly depends on the particle size118,119. In this case, the 

deposition procedure of AuNRs had a negative impact on the particle size 

distribution of the hemispherical NPs and, consequently, on the reactivity 

of the composite catalyst. 

A group of reactions were run in the same conditions as for 

experiment 14 of Table 3.4, except for the introduction of a second laser 

source emitting light at 785 nm and the use of AuNR/TiO2 as an additive 

to 4-AuNP/TiO2 catalyst. The two different kinds of particles were 

characterized by different particle sizes and positions of the plasmon 

absorption. Thus, AuNPs absorb the 532 nm laser light while the AuNRs 

absorb mainly the 785 nm laser. Results are reported in Table 3.6. 
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Table 3.6 Study of the effect of AuNR/TiO2 on the catalysis of 4-AuNR/TiO2 

Entry* 
I532 

[mW] 

I785 

[mW] 

Y3%a 

[mol%] 

𝑻𝑶𝑭b 

[𝟏𝟎𝟒𝒉!𝟏] 

𝝓c 

[𝟏𝟎!𝟑] 

18 0 0 17.8 2.22 0 

19 130 0 19.0 2.38 1.8 

20 0 130 17 2.14 0 

21 65 28 21 2.63 2.8 

22 130 147 23.9 2.99 1.2 

23 16 280 19 2.38 0.54 
*Conditions: 0.1 mmol of 1, 0.1 mmol KOH, 50 mg 4-Au/TiO2, 10 mg AuNR/TiO2, 2mL 
isopropanol, 0.05 mmol naphthalene, N2 flow, variable laser intensity, T = 25 °C 
a Yield of azobenzene registered at 1 hour with GC using an internal standard. 
b TOF calculated as the ratio in moles of azobenzene 3 over AuNP over time. 
c Quantum yield, ratio between the number of product molecules and total emitted photons 
considering both lasers. 
AuNP: gold nanoparticles. GC: gas chromatography. TOF: turnover frequency. 

 

An obvious effect of the 532 nm laser was observed in entry 19, 

resulting in a higher yield than entry 18 and 20. Irradiating the reaction 

with only the IR laser (entry 20) did not produce any yield enhancement 

compared to the dark reaction (entry 18). Combinations of different 

intensities for the green and infrared lasers suggested that the reaction 

was influenced by different magnitudes of the two lasers. Indeed, for the 

reaction described in entry 23, irradiating with the NIR laser at a high 

intensity of 280 mW resulted in the same yield as in entry 19. 

Furthermore, the quantum yield was just 30% of the value obtained for 

entry 19 indicating that the effect of the IR laser on the reaction was much 

smaller than the one of the green laser. The use of intermediate intensity 

values for both lasers in entries 21 and 22 allowed to reach higher yields. 

Concerning the quantum yield, the highest value was reached for laser 

intensities of 65 and 28 mW for green and IR lasers respectively (entry 
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21). Irradiating the reaction with higher intensities on both lasers did not 

increase the quantum yield (entry 22). 

 

3.5 Enthalpy of activation quantifies the effect of light 

irradiation 
 

Further investigation was warranted to quantify the influence of the 

irradiation with the 532 nm laser on AuNPs. Two groups of experiments 

were designed by using a fixed amount of 4-Au/TiO2 catalyst. In a first 

set of reactions, the temperature was varied, within the limits imposed by 

the solvent used, in the dark. Then, the same experiments were run under 

irradiation with the 532 nm laser at a fixed intensity of 130 mW. The 

temperature was set at the desired setpoint (0 – 48 °C) throughout the 

duration of each experiment by submerging the reactor in a thermostatic 

bath. A thermocouple immersed in the reactor was used to monitor the 

temperature. 

The reaction was characterized by the transformation of nitrobenzene 

1 into an intermediate, azoxybenzene 2, that was subsequently reduced to 

azobenzene 3. Reactions of this kind are defined as a consecutive 

reaction. Typically, the variation of the concentrations of 1, 2, and 3 are 

shown in Figure 3.11. 
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Figure 3.11 Typical evolution of the reaction mixture concentrations of 
nitrobenzene 1, azoxybenzene 2, and azobenzene 3 as a function of time. Reaction 
conditions: 0.1 mmol 1, 0.1 mmol KOH, 2 mL IPA, 600 rpm, T=25 °C. 

 

The concentration of all the components of the reaction can be 

analytically defined as a function of time by the kinetic equations of 

consecutive reactions85 (Eq. 3.6-3.8). 

 

 [1]A = [1][	𝑒7\!A Eq. (3.6) 
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 [2]A =
[1][	𝑘$
𝑘% − 𝑘$

		(𝑒7\!A − 𝑒7\"A) Eq. (3.7) 

 

 [3]A = [1][	 o1 +
1

𝑘$ − 𝑘%
[𝑘%𝑒7\!A − 𝑘$𝑒7\"A]p Eq. (3.8) 

 

Where, k1 and k2 are the kinetic constants of the first and second step 

of the reaction respectively.  

The above kinetic equations were used to fit, in Matlab environment, 

the concentrations as a function of time, hence determining the kinetic 

constants of each step of the reaction. The results of the experiments are 

reported in Table 3.7. 
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Table 3.7 Kinetic analysis experiments. 

 EXP T 
[ºC] 

k1 
[𝒎𝒊𝒏!𝟏] 

k2 
[𝒎𝒊𝒏!𝟏] 

Y3  
[mol %] 

Dark* 

24 0 0.0006 0.0007 0.5 

25 12 0.0038 0.0028 9 

26 25 0.0074 0.0043 27.2 

27 36 0.0444 0.0466 92.7a 

28 48 0.1840 0.0946 95.8b 

532nm  
 

130mW* 

29 0 0.0008 0.0026 1.5 

30 12 0.0025 0.0035 4.5 

31 18 0.0049 0.0050 19.4 

32 25 0.0138 0.0097 96.2 

33 36 0.0416 0.0387 95.2c 
*Reaction conditions: 0.3 mmol of 1, 0.3 mmol KOH, 50 mg 4-AuNP/TiO2, 2 mL 
isopropanol, 0.05 mmol naphthalene, N2 flow. Yield determined with GC and internal 
standard after 2 hours unless otherwise indicated.  
a Measured after 60 minutes.  
b Measured after 15 minutes. 
c Measured after 45 minutes. 

 

The production of azobenzene 3, as well as the values of the kinetic 

constants of reaction, increased proportionally with temperature. 

Moreover, the effect of the laser irradiation increased sensibly the speed 

and the yield of the reaction. Entry 29 displayed a 3-fold increase in the 

yield compared with entry 24. Likewise, in entry 32 the yield was increased 

3.5 times with respect to entry 26. Finally, entry 33 provided the same 

yield of azobenzene 3 as entry 27 but in a shorter time. 

The increase of the kinetic constants as a function of temperature and 

laser irradiation is represented in Figure 3.12. 
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Figure 3.12 Bar plots of the kinetic constants of the reactions of Table 3.7 as a function 
of temperature and irradiation conditions. a. First step kinetic constants for dark and 
irradiated reactions. b. Second step kinetic constants for dark and irradiated reactions. 

 

The conversion of nitrobenzene 1 to azoxybenzene 2 was not 

significantly affected by the laser irradiation; the values of the kinetic 

constants for the irradiated reaction were roughly the same or even lower 

than the values of the dark reaction (Figure 3.12 a). On the other hand, 

the second step of the reaction was strongly influenced by the irradiation. 

For example, at 0 °C there was a 3.7-fold increase in the kinetic constant 

of the irradiated reaction with respect to the one for the dark reaction. All 

reactions ran under light illumination were characterized by higher values 

of the kinetic constants compared with the dark experiments at the same 

temperature, except for the experiment ran at 36 °C (Figure 3.12 b). 

By applying the transition state theory for each step of the reaction120, 

the variation of the kinetic constant of the reaction can be described as a 

function of temperature, as postulated in the Eyring equation121 (Eq. 3.9). 
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 𝑘] =
𝑘6𝑇
ℎ

𝑒 q−
∆𝐻]

°‡

𝑅𝑇
r 𝑒 q

∆𝑆]
°‡

𝑅
r Eq. (3.9) 

 

Where 𝑘4 is the kinetic constant of an elementary step of the reaction, 

T is the absolute temperature, ℎ and 𝑘G are the Plank and the Boltzmann 

constants, respectively, R is the universal constant of gases, ∆𝐻4
°‡  and 

∆𝑆4
°‡  are the enthalpy and entropy of activation for the nth step of 

reaction. 

Plotting the Eyring equation in the linear form given by Eq. (3.10), 

allowed to obtain the well-known Eyring plots and determine the 

enthalpy and entropy of activation of the reaction for each step. 

 

 𝑙𝑛 K
𝑘]
𝑇
L = 𝑙𝑛 K

𝑘6
ℎ
L −

∆𝐻]
°‡

𝑅𝑇
+
∆𝑆]

°‡

𝑅
 Eq. (3.10) 
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Figure 3.13 Eyring plots for the two steps of reaction and enthalpy of activation. a. 
First kinetic constant for the dark reaction. b. Second kinetic constant for the dark 
reaction. c. First kinetic constant for the reactions irradiated with 532 nm laser at 130 
mW d. Second kinetic constant for the reactions irradiated with 532 nm laser at 130 
mW. 

 

The enthalpy of activation of the first step of the reaction diminished 

of only 1.1	𝐾𝑐𝑎𝑙	𝑚𝑜𝑙!" applying the laser irradiation (Figure 3.13 a and 

c). Interestingly, the second step of the reaction resulted to be much more 

influenced by the light irradiation, since there was an enthalpy difference 

of 5.9	𝐾𝑐𝑎𝑙	𝑚𝑜𝑙!". 
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Moreover, the entropies of activation were extrapolated from the 

linear fits giving values close to zero for both steps of the reaction and 

regardless of the illumination conditions. 

 

3.6 Conclusions 
 

The results reported in this section evidenced the catalyst AuNP/SiO2 

under laser-illuminated could convert up to 32.8 % of nitrobenzene to 

the intermediate azoxybenzene providing the first evidence of the role of 

laser light on the reaction. Besides, SiO2 is a dielectric material where 

AuNPs are electrically insulated, thus confirming that the oxidation of 

IPA and the reduction of the nitrobenzene are steps that occur on the 

surface of the AuNPs28. 

The poor stability of SiO2 as support stimulated us to screen different 

supports for the synthesis of the catalyst. The best choice for improving 

the performance of the material for the reduction reaction was TiO2 P25 

from EVONIK. Alternative supports to TiO2, such as iron and cerium 

oxides, were investigated as well but did not show higher reactivities than 

TiO2. Moreover, when considering the quantum yield, only TiO2-based 

catalysts showed a substantial difference between dark and irradiated 

conditions. 

The best performing catalyst was catalyst 4-Au/TiO2. The material 

characterized by the smallest particle size amongst all the synthesized 

catalysts in this work allowed to run the reaction at significantly lower 

temperatures and a lower ratio of catalyst over reagent than reported in 
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the literature50,78,122. Moreover, it was possible to reach full conversion to 

azobenzene within 2 hours of irradiation at 130 mW with 532 nm laser. 

The band gap value of 3.2 eV obtained from diffuse reflectance 

measurements of catalyst 4-Au/TiO2 did not show any shift from the 

value of the TiO2 P25 support. This means that the superior performance 

of the catalyst obtained with TiO2 depended mainly on the possibility to 

access a smaller size of AuNPs63,123. 

The activation enthalpy and entropy for the two steps of the reaction 

were determined by combining the kinetic laws of consecutive reactions 

and the Eyring equation. The data analysis showed that the green laser 

irradiation of the AuNP/TiO2 catalyst affected the two steps of the 

reaction differently. In the second step of the reaction, the enthalpy of 

activation dropped 5.9	𝐾𝑐𝑎𝑙	𝑚𝑜𝑙!" when irradiated at 130 mW with a 

532 nm laser light compared with the reaction ran in the dark. In our 

experiment, the difference of enthalpy of activation registered for the 

second step of the nitrobenzene reduction coupling reaction was 

3.9	𝐾𝑐𝑎𝑙	𝑚𝑜𝑙!"  higher than the reported activation energy difference 

for the overall reaction50. 

The entropic factor of the reaction was close to zero, regardless of the 

illumination and for both steps of the reaction, indicating that the reaction 

occurred on the surface of the catalyst124. 

This study allowed to quantify the contribution of the laser irradiation 

of the investigated system but could not assess the mechanism through 

which the plasmonic NP activate the reagents. In the next chapter, we 

describe a detailed experimental procedure and data analysis performed 
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to build a model able to determine the contribution of the plasmon-

generated energetic electrons to the reaction product. 

The synthesis of AuNR/TiO2 and AuNP-NR/TiO2 catalysts allowed 

to assess some preliminary aspects of the way gold NPs catalyses the 

reaction. The reaction was greatly slowed down (5% yield in 24 hours) in 

the presence of AuNR/TiO2 alone, although the thermal effect of this 

material was evident. The decreased reactivity was related to the much 

smaller active surface for this material compared with the AuNP/TiO2 

catalysts. 

AuNR structures were mainly absorbing the 785 nm laser and emitting 

heat to the surrounding and, when added as additives to the catalyst 4-

AuNP/TiO2, demonstrated to be able to generate a positive contribution 

to the outcome of the reaction. 

These initial results encouraged us to investigate more in-depth the 

effect that temperature had on the reaction and to run more experiments 

to understand to which extent the interaction of each one of the lasers 

used in this work would influence the Au-based catalysts. 
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4. Modelling the yield of azobenzene and 

azoxybenzene 
 

This section analyses the results of experiments designed to evaluate 

the nitrobenzene reductive coupling and proposes models to rationalize 

the effect that visible light had on the reaction outcome. The reactions 

were run screening the intensities of two laser sources (emitting 

monochromatic light at 532 nm and 785 nm, respectively) and varying the 

kind of Au-based catalyst. 

The methodology followed in this section can be summarized in the 

step by step procedure described below: 

1. Determine the family of distribution to which the response variables 

(in our case, the yield of azobenzene and azoxybenzene) belong. 

2. Define the link function of the model and the linear predictors. 

3. Build the model adding one factor at a time, starting from intercept 

and random factors. 

4. Run an analysis of variance (ANOVA) test to select the model that 

best estimates the variables. 

5. Run inference tools, such as contrast matrix and model predictions. 

The first step is crucial to define which model would better describe 

the dependent variable. For example, a normally distributed response 

variable falls into the linear model (LM) and linear mixed effects (LME) 

models. All the other distributions are better described by the generalized 

linear model (GLM) and generalized linear mixed effects (GLME) 



 

 96 

models. As explained in Section 3.5.2, the choice of the link function is 

conditioned by the dependent variable’s family of distribution. 

The data were processed in R-Studio environment to test the following 

null hypotheses: 

Hp. 1.  

a. The intensity of the 532 nm laser has no effect on the yield of 

azobenzene. 

b. There is no statistically significant difference on the yield of 

azobenzene between the two catalyst types (only AuNPs or a 

mixture of AuNPs and AuNRs) when varying the intensity of the 

532 nm laser. 

Hp. 2.  
a. The 785 nm laser has no effect on the yield of azobenzene. 

b. There is no statistically significant difference on the yield of 

azobenzene between the two catalyst types (only AuNPs or a 

mixture of AuNPs and AuNRs) when varying the intensity of the 

785 nm laser. 

Hp. 3.  
a. The intensity of the 532 nm laser has no effect on the yield of 

azoxybenzene. 

b. There is no statistically significant difference on the yield of 

azoxybenzene between the two catalyst types (only AuNPs or a 

mixture of AuNPs and AuNRs) when varying the intensity of the 

532 nm laser. 

Hp. 4.  
a. The 785 nm laser has no effect on the yield of azoxybenzene. 
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b. There is no statistically significant difference on the yield of 

azoxybenzene between the two catalyst types (only AuNPs or a 

mixture of AuNPs and AuNRs) when varying the intensity of the 

785 nm laser. 

 

4.1  Analysis of the dependent variables 
 

The yields of azobenzene and azoxybenzene were measured in 49 

experiments (including repeated experiments) performed with variable 

intensities for the two lasers emitting at 532 and 785 nm, respectively. As 

reported in Table 3.3 of Section 3.5.1, two sets of experiments were run. 

The two groups differed by the use of 50 mg 4-AuNP/TiO2 catalyst in 

one case and the use of 50 mg 4-AuNP/TiO2 and 10 mg AuNR/TiO2 in 

the other. The dataset was enlarged with the addition of data from dark 

experiments and from experiments where the irradiation was limited to 

only one of the two lasers at a 130 mW intensity. These conditions were 

applied to both catalytic systems. Considering the kinetic data of each 

experiment, the total number of observations was 322. 

The dependent variables under investigation were characterized by 

continuous positive numbers. This suggested that, in the case of the non-

normal distribution of the variable, the probability density distribution of 

the random effects could be approximated by a gamma distribution90. To 

check for this possibility, the probability density function of the yield of 

azobenzene and yield of azoxybenzene were analysed. The results are 

represented in Figure 4.1. 
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Figure 4.1 Probability density distribution plots of the dependent variables. The 

inset shows the Q-Q plot of the real data distribution as a function of commonly known 
distributions. a. yield of azobenzene distribution. b. yield of azoxybenzene distribution. 
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The histograms of Figure 4.1 describe the distribution of the 

dependent variables from all the experimental observations (azobenzene 

and azoxybenzene). In both cases, the data are left limited, skewed, and 

non-normally distributed. The density distribution of the dependent 

variable determines which kind of linear model is more appropriate to fit 

the data. The quantile–quantile plots in the insets indicate that the gamma 

distribution family is the most appropriate to model both variables. 

 

4.2 Linear predictors and link function 
 

The most commonly used link function for gamma distributed 

random effects is the logarithm function reported in equation (4.1). 

 

 𝜼 = log	(𝝁) Eq. (4.1) 

 

Where, 𝜇 is the mean value of the estimated dependent variable and 𝜂 

is the linear predictor of the variable. 

The linear predictors were expressed according to the hypotheses 

highlighted in section 4 as a linear combination of unknown parameters. 

For example, assuming that all the hypotheses of Section 4 were true, then 

the linear predictor equation of the model would be equal to equation 

(4.2). 
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+ 𝒁 }𝑏cdH𝑏bI=
� Eq. (4.2) 

 

Where 𝑿 is a matrix 322	x	9 of the experiments multiplying the 9	x	1 

column vector 𝜷 containing all the estimators needed to satisfy the initial 

hypotheses. Every element of the vector estimates an effect of the 

independent variables: 𝛽)  gives the intercept, 𝛽,  the effect of time, 𝛽J  

and 𝛽5K  the green and infrared laser intensities, respectively, 𝛽J∗,  and 

𝛽5K∗,, are the interaction terms for the laser intensity of each laser with 

time, and 𝛽M>N , 𝛽MO,∗J , 𝛽MO,∗5K are the effects of the catalyst type and the 

interaction terms between the catalyst and the green and IR lasers, 

respectively. Finally, 𝒁  is a 322	x	2  matrix for the estimation of the 

random intercepts 𝑏𝐸𝑋𝑃  and 𝑏𝐶𝐴𝑇  within experiments and between 

catalyst types, respectively. 

 

4.3  Model optimization 
 

Each model was fitted with a maximum likelihood estimation based 

on adaptive Gauss-Hermite quadrature over 6 points125. Following a 
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bottom-up strategy, starting with a model constituted by the intercept and 

random effects, the models were built by increasing the number of 

factors. Each model was then evaluated by observing the P-values for a 

z-test for each factor at a level of significance of 0.05 (𝛼 = 0.05). A P-

value < 0.05  meant that the null hypothesis–i.e. the factor was not 

influencing the estimation of the dependent variable–was false. The 

model selection was performed through additional ANOVA statistical 

tests. 

 

4.3.1 Models for azobenzene  

 

Fitting of the data started by adding the standardized variable time, 

obtained by applying equation (3.9) of Section 3.5.1, to the intercept and 

the random effects of the catalyst type and experiment number, as 

described by model equation (4.3). 

 

 𝜂𝐴𝑍𝑂 ∼ 1+ 𝑇𝑖𝑚𝑒+ (1|𝐶𝐴𝑇)+ (1|𝐸𝑋𝑃) Eq. (4.3) 

 

Where, 𝜂𝐴𝑍𝑂 is the linear predictor for the azobenzene yield%. 

The 𝑇𝑖𝑚𝑒 variable gave a very low P-value, indicating that the variable 

was necessary to define the model. Regarding the random variables, only 

the experiment grouping, defined in the equation by the (1|𝐸𝑋𝑃) term, 

resulted in a non-zero variance of the estimated random effect. Therefore, 
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the random variable for the catalyst type was omitted from the following 

model equations. 

Models in which the laser intensities were set as categorical variables 

(on four levels each: No IR, IR 1, IR 2, IR 3, and No Green, Green 1, 

Green 2, Green 3) fitted better the dependent variables than models in 

which the laser intensities were set as numerical variables; the former 

provided better predictions for the dependent variables. The levels for 

the dark reactions constituted the reference level for the estimation of the 

intercept of the model. 

The effect of the 532 nm laser was investigated, resulting in the model 

equation (4.4). This model corresponded to testing Hp. 1 a. 

 

 𝜂𝐴𝑍𝑂 ∼ 1+ 𝑇𝑖𝑚𝑒+𝐺𝑟𝑒𝑒𝑛+ (1|𝐸𝑋𝑃) Eq. (4.4) 

 

Where, 𝐺𝑟𝑒𝑒𝑛 is the categorical variable with 4 levels for the 532 nm 

laser intensity. 

The P-values for the new variable confirmed that the green laser was 

playing a role in determining the yield of the reaction, as shown in Table 

4.1. 
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Table 4.1 Summary for the model (4.4). 

Estimator Estimate Std. Error z value 𝑷	(> |𝒛|) 

(Intercept) 2.2329 0.1644 13.586 <2E-16 

Time 1.9567 0.0928 21.094 <2E-16 

Green 1 0.2918 0.2161 1.350 0.177 

Green 2 0.5247 0.1870 2.806 0.0050 

Green 3 0.4902 0.1830 2.678 0.0074 

 

The output generated by the regression software reported in Table 4.1 

contained the estimates of the coefficients of the model equation (4.4), 

the standard error in estimating the coefficients, and the z value, i.e. the 

estimate of the coefficient divided by its standard error. The software 

returned the probability for a z-test at a level of significance of 0.05. 

The effect of the green laser was statistically significant only when the 

reactions were run at the highest levels, i.e. 2 and 3. When level Green 1 

was used, there was no difference in the yield of azobenzene from the 

reactions ran in dark conditions or irradiated only with the 785 nm laser. 

The ANOVA tests further confirmed that the introduction of the new 

factor produced a model characterized by a higher accuracy in describing 

the dependent variable than model (4.3). A very low P-value and Akaike 

information criterion (AIC) numbers were registered for models (4.3) 

( 𝑃 < 2𝑒 − 16  and 𝐴𝐼𝐶X.% = 1761 ) and (4.4) ( 𝑃 < 2𝑒 − 16  and 

𝐴𝐼𝐶X.% = 154). 

To test Hp. 2 a, a factor for the IR laser intensity levels was added to 

the model as well, as shown in equation (4.5). 
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 𝜂Ihi ∼ 1 + 𝑇𝑖𝑚𝑒 + 𝐺𝑟𝑒𝑒𝑛 + 𝐼𝑅 + (1|𝐸𝑋𝑃) Eq. (4.5) 

 

Where the factor 𝐼𝑅 was set as a categorical variable constituted by 4 

levels (0, 28, 154, 280 mW).  

The model summary evidenced that only the intermediate level was 

suspected of being significant (IR level 2, corresponding to 150 mW, P-

value = 0.0981). Moreover, the introduction of the new factor decreased 

the significance of all of the levels of the other lasers. As a consequence, 

the ANOVA between models (4.4) and (4.5) resulted in a worsening of 

the explanatory power of the model. The AIC number of the new model 

was higher than the one of the previous model, and the P-value for the 

model was equal to 0.161. These two values confirmed the null hypothesis 

(the two models were equally explaining the dependent variable). 

Therefore, model (4.4) was more appropriate to describe the variation in 

the azobenzene yield. 

To check Hp. 1 b and 2 b, interaction terms were added to the model 

affording model equations (4.6) and (4.7), respectively. 

 

𝜂>Z[ ∼ 1 + 𝑇𝑖𝑚𝑒 + 𝐺𝑟𝑒𝑒𝑛 + 𝐺𝑟𝑒𝑒𝑛 ∗ 𝐶𝐴𝑇 + (1|𝐸𝑋𝑃) Eq. (4.6) 

 

𝜂>Z[ ∼ 1 + 𝑇𝑖𝑚𝑒 + 𝐺𝑟𝑒𝑒𝑛 + 𝐼𝑅 ∗ 𝐶𝐴𝑇 + (1|𝐸𝑋𝑃) Eq. (4.7) 

 

In both cases, the addition of interaction terms did not produce better 

models. The irradiation of different types of catalyst did not influence 

significantly the reaction outcome, as was confirmed by higher AIC 



 

 105 

numbers than the ones provided by model (4.4), particularly in the case 

of model (4.7), and very high P-values for the interaction terms. 

Finally, the addition of a quadratic term for the time factor produced 

model equation (4.8). 

 

 
𝜂Ihi ∼ 1 + 𝑇𝑖𝑚𝑒 + 𝑇𝑖𝑚𝑒% + 𝐺𝑟𝑒𝑒𝑛

+ (1|𝐸𝑋𝑃) 

Eq. 

(4.8) 

 

The model reported above was chosen as the best model capable of 

describing the dependent variable. The statistics of the fixed effects are 

reported in Table 4.2. 

 

Table 4.2 Summary for the model defined in model (4.8) and ANOVA of models (4.8) 
and (4.4) 

Estimator Estimate Std. Error z value 𝐏	(> |𝒛|) 

(Intercept) 2.7743 0.1859 14.926 <2E-16 

Time 1.9561 0.0792 24.204 <2E-16 

Time2 -1.0587 0.1596 -6.633 3.3E-11 

Green 1 0.2921 0.2112 1.383 0.1667 

Green 2 0.5551 0.1864 2.979 0.0029 

Green 3 0.4915 0.1815 2.708 0.0069 

ANOVA AIC 𝐏	(> |𝒛|)   

Eq. (4.4) 153.55    

Eq. (4.8)  110.33 1.76E-11   
AIC: Akaike number. ANOVA: analysis of variance. 
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The results in Table 4.2 showed that the addition of the squared factor 

for the time of reaction provided a model for which the significance of 

the new factor was very high. The significance of the other factors did 

not change greatly from the values reported in Table 4.1 for model (4.4). 

Indeed, the ANOVA between models (4.8) and (4.4) gave a great 

difference of AIC numbers and, therefore, a very small P-value for the 

extended model (4.8). 

Finally, the candidate model (4.8) was again tested for the hypothesis 

of Section 4, modifying its equation by adding terms for the kind of 

catalyst, the IR laser intensity, and the interactions between catalyst type 

and lasers. Each one of the new factors was added one at a time. The 

models were evaluated considering P-values and ANOVA testing as 

described above. The obtained models did not show any improvement in 

the quality of the model, i.e. higher AIC numbers and P-values>0.05 for 

the new term. Hence, model (4.8) was selected as the best model for 

representing the yield of azobenzene. 

 

4.3.2 Models for azoxybenzene 

 

The same strategy described in Section 4.3.1 was applied for the 

selection of the model for the yield of azoxybenzene. The fitting of the 

model started from the same reasonable assumption made before, that is, 

the dependent variable has a strong dependence on time and its random 

effects are distributed only within the experiment run. The initial model 

was then described by equation (4.9). 

 



 

 107 

 𝜂Ihd ∼ 1 + 𝑇𝑖𝑚𝑒 + (1|𝐸𝑋𝑃) Eq. (4.9) 

 

Where, 𝜂𝐴𝑍𝑋 is the linear predictor for the azoxybenzene yield%. 

This model was then compared with two more complex models 

containing the 532 nm [model (4.10)] and the 785 nm laser intensity levels 

[model (4.11)]. 

 

 𝜂Ihd ∼ 1 + 𝑇𝑖𝑚𝑒 + 𝐺𝑟𝑒𝑒𝑛 + (1|𝐸𝑋𝑃) Eq. (4.10) 

 

 𝜂Ihd ∼ 1 + 𝑇𝑖𝑚𝑒 + 𝐼𝑅 + (1|𝐸𝑋𝑃) Eq. (4.11) 

 

In both cases, the new estimators for both lasers showed very high P-

values. The ANOVA between models (4.10) and (4.9) and models (4.11) 

and (4.9) evidenced that both lasers did not influence significantly the 

conversion of nitrobenzene to azoxybenzene. 

As for azobenzene, the interaction effects of the catalyst type with the 

laser light were also investigated for the two lasers with models (4.12) and 

(4.13). 

 

 𝜂!"# ∼ 1 + 𝑇𝑖𝑚𝑒 + 𝐺𝑟𝑒𝑒𝑛 ∗ 𝐶𝐴𝑇 + (1|𝐸𝑋𝑃) Eq. (4.12) 

 

 𝜂!"# ∼ 1 + 𝑇𝑖𝑚𝑒 + 𝐼𝑅 ∗ 𝐶𝐴𝑇 + (1|𝐸𝑋𝑃) Eq. (4.13) 
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The resulting high P-values and AIC numbers clearly showed that the 

introduction of the interaction terms was not statistically significant. 

Finally, the addition of a quadratic term for the 𝑇𝑖𝑚𝑒 variable afforded 

model (4.14). 

 

 𝜂Ihd ∼ 1 + 𝑇𝑖𝑚𝑒 + 𝑇𝑖𝑚𝑒% + (1|𝐸𝑋𝑃) Eq. (4.14) 

 

Results of the P-values for the model above and the ANOVA test are 

reported in Table 4.3. 

 

Table 4.3 Summary for the model defined in equation (4.14) and ANOVA of models 
(4.14) and (4.9). 

Estimator Estimate Std. Error z value 𝑷	(> |𝒛|) 

(Intercept) 4.1324 0.1120 36.885 < 2E-16 

Time 0.4664 0.0792 5.892 3.81E-09 

Time2 -1.2158 0.1577 -7.711 1.25E-14 

ANOVA AIC 𝐏	(> |𝒛|)   

Eq. (4.9) 201.40    

Eq. (4.14)  142.71 6.684E-15   
AIC: Akaike number. 

 

The introduction of squared terms greatly enhanced the quality of the 

model for the azoxybenzene yield when compared with the reduced 

model of Eq. (4.9). The equation that best described the dependent 

variable was Eq. (4.14). Surprisingly, there were no statistically significant 
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effects for both lasers nor their interaction terms with the catalyst type. 

 

4.4 Conclusions 
 

Equations (4.8) and (4.14) were the most accurate estimators for the 

yield of azobenzene and azoxybenzene, respectively. Predictions of the 

dependent variable were calculated by transforming the model estimator 

equations to their respective inverse link function. Figure 4.2 shows the 

fitted data along with the model predictions for the azobenzene yield. 

 

 
Figure 4.2 Azobenzene model plot as a function of time (s.u.=standardized units 

between 5 and 120 min) and laser level intensity (No Green=0 mW, Low=16 mW, 
Medium=73 mW, High=130 mW). Dots represent the experimental data coloured 
according to the 532 nm laser intensity. Shaded areas correspond to the 95% confidence 
intervals of the predicted yield. 
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The model for the yield of azobenzene showed a substantial difference 

in the reaction outcome only as a function of the green laser intensity. 

Increasing the 532 nm laser intensity from 0 to medium (73 mW) and 

high levels (130 mW) had the same effect on the reaction outcome, 

evidencing that a saturation effect was reached at higher intensities than 

73 mW. A contrast matrix for the green laser variable was used to check 

for differences between the levels of the variable; its results are reported 

in Table 4.4. 

 

Table 4.4 Contrast matrix for the 4 levels of green laser intensity applied to model 
equation (4.8). 

Entry Hypothesis Estimate Std. Error z value 𝐏	(> |𝒛|) 

1 Gr 1 = No Gr 0.2921 0.2112 1.383 0.5038 

2 Gr 2 = No Gr 0.5551 0.1864 2.979 0.0146 

3 Gr 3 = No Gr 0.4915 0.1815 2.708 0.0333 

4 Gr 2 = Gr 1 0.2630 0.1713 1.536 0.4097 

5 Gr 3 = Gr 1 0.1994 0.1660 1.201 0.6202 

6 Gr 3 = Gr 2 0.0637 0.1330 0.479 0.9629 
AIC: Akaike number. Gr: Green. 

 

The contrast matrix was intended to check the null hypothesis stating 

that each couple of levels of the 532 nm laser exert the same effect on the 

yield of the reaction. As shown by the P-values reported in Table 4.4, the 

hypothesis was rejected only for entry 2 and 3. In other words, the 

contrast matrix confirmed that there was a substantial difference between 

the results of the reactions run at level 2 or 3 compared to the results 

collected from reactions run at level 0 of the green laser light. Moreover, 
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there was no difference between levels 2 and 3, suggesting that the 

maximum efficiency of the catalyst was reached when approaching to 

intensity values close to level 2. 

Interestingly, the effect of the IR laser levels could not be included in 

the models, returning no statistically significant P-values. No effect was 

evidenced by the 785 nm laser neither for reactions run with only the 4-

AuNP/TiO2 nor for ones containing an addition of AuNR/TiO2 catalyst. 

This result confirmed that only the 532 nm laser was able to trigger the 

studied reaction. The thermal effects of AuNRs due to the absorption of 

the 785 nm laser light could not produce any statistically significant effect. 

If any, the thermal effects of the AuNRs were negligible with respect to 

the effect of the 532 nm laser on the 4-AuNP/TiO2 catalyst. 

From the analysis of the collected data, we could infer that the 

mechanism through which the plasmonic nanoparticles were activating 

the reagents was due to electronic effects. The resonant absorption of the 

532 nm laser light (medium and high levels) generated enough energetic 

carriers, electrons and holes, that were transferred to the adsorbed 

molecules of IPA and nitrobenzene, respectively, which, in turn, activated 

the production of azobenzene. 

Only the laser emitting light at 532 nm was able to trigger the reaction. 

Despite the 785 nm laser intensity was varied over a broader range (16 to 

130 mW for the green laser and 28 to 280 mW for the IR), the effect of 

the IR laser could not be observed in the analysed data set. This led us to 

conclude that the thermal effects generated by the excitation of the 

AuNRs plasmon irradiated with the 785 nm laser were not influencing 

the reaction outcome significantly. 
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Figure 4.3 shows the plotted data set and the fitted model (4.14) 

curves for azoxybenzene yield. 

 
Figure 4.3 Azoxybenzene model plot as a function of time (s.u.=standardized units 
between 5 and 120 min). Dots represent the experimental data coloured according to 
the 532 nm laser intensity. Shaded areas correspond to the 95% confidence intervals of 
the predicted yield. No Green=0 mW, Low=16 mW, Medium=73 mW, High=130 mW. 

 

The selected model did not contain any factor accounting for the laser 

intensity. The variation of the azoxybenzene was dependent only on the 

time of reaction. The yield for experiments in the absence of green laser 

irradiation (red dots in Figure 4.3) showed a range at 120 minutes of 

reaction (value equal to 1 in the abscissa) oscillating between 45% and 

75%, while for all the other experiments yields were distributed mainly 

from around 50% to 0%. The evaluation of an alternative model 

containing an interaction term of green laser with time, defined by 𝛽J∗,, 

generated an alternative model. In this model, differences were evident 
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only between the 0 level green experimental points; the rest of the 

experiments were characterized by very similar estimated coefficients. 

This model was rejected because it did not pass the ANOVA test. 

Three experiments were run varying the intensity of the two lasers to 

assess the predictive value and robustness of the models. The results for 

the azobenzene yield are reported in Figure 4.4. 

 

 
Figure 4.4 Plot of predictions for the yield of azobenzene as a function of time 
(s.u.=standardized units between 5 and 120 min) and 532 nm laser intensity. Shaded 
areas correspond to the 95% confidence intervals. 

 

The experiment, ran at intensities of 20 mW (green laser) and 228 mW 

(IR laser), showed a final yield within the 95% confidence interval (95% 

CI) of the model predictions for no green and low intensity (blue dots). 

The other two experiments, ran at 98 mW (green laser) and 89-228 mW 
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(IR laser), gave similar results, both lying within the 95% CI defined by 

the medium and high intensities. 

Results for the model validation experiments concerning the 

azoxybenzene yield are reported in Figure 4.5. 

 
Figure 4.5 Plot of predictions for the yield of azoxybenzene as a function of time 
(s.u.=standardized units between 5 and 120 min) and 532 nm laser intensity. Shaded 
areas correspond to 95% confidence intervals. 

 

Nearly all experimental points fell within the 95% CI of the model 

predictions, except for the highest time values (120 minutes) for which 

the variability of the data was higher. 

The experiments confirmed that the laser irradiation affected only the 

second step of the reaction while the first step was not affected by the 

irradiation of the laser. 

In conclusion, the modelling of the collected experimental data 

allowed to build two models describing the dependence of the yield of 
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azobenzene and azoxybenzene as a function of time and laser intensities. 

The design of the experimental conditions allowed to achieve some 

important considerations on the mechanism of the reaction. The lack of 

statistical difference between the 4-AuNP/TiO2 catalyst and the mixture 

of 4-AuNP/TiO2 with AuNR/TiO2, as well as the absence of any effect 

of the IR laser, gave a strong indication that the mechanism of activation 

of the reaction involved the transfer of electrons generated from the 

hemispherical metal NP (upon excitation of the plasmon by the 532 nm 

laser) to the absorbed molecules of the reactants. 
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5 Conclusions and future work 
 

This thesis was motivated by the debate in the scientific community 

about the actual mechanism behind plasmonic catalysis. We centred our 

efforts on the discrimination between the collective thermal effects and 

electronic effects of plasmon catalysis. Thermal effects have been 

demonstrated to contribute to the enhancement of this catalysis. 

Nevertheless, it is fundamental to understand which one of those two 

effects predominates in the catalytic process. A heterogeneous 

photocatalytic reaction, occurring through a photoinduced charge 

transfer step, allows accessing novel reactivity and selectivity compared 

to conventional heating126. The use of visible and solar light sources 

represents economic and environmental advantages, encouraging the 

investigation in the field of heterogeneous photocatalysis for industrial 

applications127. However, this field is still at the research stage with very 

few commercial applications. 

Herein, we have investigated the catalysis of plasmonic AuNPs 

supported on different substrates. AuNPs were chosen because of their 

high stability and the availability of protocols to afford different shapes 

and sizes of NPs. The possibility to synthesise particles characterized by 

dominant thermal effects, such as AuNRs, was a fundamental point of 

this work. The nitrobenzene reductive coupling reaction was selected as 

a model reaction to test the initial hypotheses. Previous works have 

evidenced that the reaction occurs only on the surface of AuNPs through 

direct photocatalysis28 and that the reaction is partially enhanced by 
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conventional heating. Therefore, we considered the selected reaction a 

good candidate to test the mechanism of activation of plasmonic catalysts. 

We initially demonstrated, by using plasmonic AuNPs under laser light 

irradiation, that the rate of the test reaction was inversely proportional to 

the size of the metal NPs. Catalyst 4-Au/TiO2 was the best performing 

catalyst with a mean particle size of 3.1 ± 0.8 nm. The most effective 

method to synthesise the active and stable plasmonic catalyst was the 

modified Haruta method reported in Section 3. 

The DR spectra of the catalyst 4-Au/TiO2, as well as the fact that the 

Au/SiO2 was active for the reaction under investigation, confirmed that 

the reaction occurred only on the surface of the AuNPs. If an interaction 

between the substrate and the AuNPs was necessary for the catalysis, we 

would have registered no reactivity for the silica-based catalyst. The 

absence of any shift in the band-gap energy of the support was proven 

through the extrapolation from the Kubelka-Munk function plot of 

Figure 3.6. 

By applying the Eyring equation, we obtained the enthalpy of 

activation for each step of the reaction. The second step was strongly 

influenced by the irradiation wi 

th the 532 nm laser source, whereas the first step was only weakly 

influenced by this laser irradiation. To the best of our knowledge, the 

difference of enthalpy of activation between the illuminated and dark 

reaction was the highest ever reported. Indeed, the difference of 

activation energy128 reported by Ke et al.50 for the global reaction was 

about 1.6	𝐾𝑐𝑎𝑙	𝑚𝑜𝑙!". With our work we found that the difference of 

activation energy for the second step was 5.9	𝐾𝑐𝑎𝑙	𝑚𝑜𝑙!", confirming 
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that the synthetized catalyst was highly active under monochromatic light 

irradiation. 

The present work was intended to furnish a rational approach for the 

investigation of the reaction mechanisms of plasmon-enhanced reactions 

in liquid phase. The concept was that, provided that the temperature of 

reaction could be precisely controlled and measured42,71, plasmonic 

effects, such as energetic electron generation and thermal effects, could 

be separated and quantified. 

The use of a systematic approach for arranging the experiments based 

on statistics tools, described in section 2, allowed to minimize the number 

of experiments while maintaining high reliability of the estimated 

coefficients of the model. 

The two models for the yield of azobenzene and azoxybenzene 

evidenced how the effect of the NIR laser on the AuNRs was negligible 

compared to the effect of the green laser on the AuNPs. Interestingly, the 

effect of laser irradiation was relevant only for the second step of the 

reaction, as expected considering the preliminary results reported in 

section 3. 

 

5.2 Future work 
 

Extending the knowledge of the influence of laser irradiance on the 

rate of the reaction is considered to be an issue of primary importance. 

As was pointed out in section 4, the plateau reached by the yield of 

azobenzene (Figure 4.2) at medium and high intensities for the 532 nm 
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laser suggests that a second set of experiments could be designed 

screening the laser power at lower intensities. A reasonable range for the 

optimization of the laser intensity could go from 0 to 70 mW. 

Moreover, this prospective study could delve into how the green and 

NIR laser intensities affect the activity of a catalyst containing both 

AuNPs and AuNRs supported on a surface of TiO2. This study would 

aim to understand whether the proximity or even the contact of AuNRs 

with AuNPs could be beneficial for the catalytic process. We envision 

that electronic effects, such as electron transfer from AuNRs to smaller 

NPs31,129, could be relevant for the catalysis of the reaction when the 

geometry of the catalyst is properly designed. If this hypothesis was 

confirmed, we would expect a significant influence of the 785 nm laser 

irradiation on the new catalyst. 

The data collection can also be improved through the implementation 

of a transmission dip probe130 in the reactor setup, which would measure 

the spectra of the crude reaction mixture in the NIR region. Constant 

monitoring of the spectra of the components of the reaction mixture 

would allow obtaining more kinetics data points and a better precision on 

the concentration measurements. 

The exploration of the scope of the reaction, by using substituted 

nitrobenzene derivatives, could give further insight into the electronic 

nature of the catalytic cycle. Electronic effects of substituents on the 

reactant molecule can vary sensibly the energetic levels of the HOMO 

and LUMO of the molecule, thus influencing the electron transfer 

efficiency131 from the plasmonic AuNPs.  
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The design of a flow chemistry device is another important possible 

development for a plasmonic photocatalysis system. Continuous flow 

chemistry is a promising new technology that has created room for 

investigation as well as applications in industry and it is particularly 

advantageous for heterogeneous catalysis132,133. A continuous flow reactor 

allows to improve heat and mass transfer, increases the activity of the 

catalyst, and the possibility to access preparative scale and enhanced 

safety because of the reduced dimensions of the reactive section of the 

system compared with batch processes134. Moreover, the use of an 

immobilized heterogeneous catalyst in a continuous flow reactor allows 

collecting the product of reaction without the need for the separation of 

solid material easing also the recyclability of the catalyst. 

Concerning heterogeneous photocatalysis, this technology results 

beneficial for the exploitation of the illumination source. Indeed, the 

illuminated area can be increased dramatically if compared with a reaction 

run in batch conditions, where the light usually reaches the sample only 

from one surface of the reactor. 

To the best of our knowledge, the application of flow chemistry in the 

field of plasmonics is limited to a few examples related only to the 

synthesis of colloidal solution of plasmonic NPs135,136. Yet, the 

development of a flow heterogeneous photochemistry device presents 

multidisciplinary issues to address. A tentative roadmap should 

necessitate the understanding of the minimum irradiance required to 

observe photocatalysis for the test reaction in batch conditions. 

Subsequently, a 532 nm led array would be built to provide the correct 

irradiance for the flow reactor. 
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In the case of a packed bed reactor the size of the tubings strongly 

influences the transmittance of light through the reaction mixture. 

Therefore, the screening of the tubings sizes would be studied carefully 

for optimizing the performances of the continuous flow reactor. 

Importantly, the design of the catalyst should take into account the 

particle size of the support material (e.g. TiO2 P25 from EVONIK) that 

should be of micrometric size to avoid clogging of the system and the 

increase of the pressure inside the packed bed reactor. A valid alternative 

is constituted by VP AEROPERL® P 25/20, which primary particle size 

is 20 𝜇𝑚. The synthesis of the catalyst with the new support material 

would guarantee the same surface interaction between the TiO2 and the 

AuNPs but would improve the flow behavior of the catalyst. 

Alternatively, the reactor can be designed in a 2D fashion exploiting a 

glass reactor. The catalyst can be covalently grafted on the glass surface 

in two consecutive steps. First, the TiO2 would be covalently bound to 

the internal surface of the reactor trough sol-gel technology135. Finally, the 

AuNPs can be synthesised in situ on the TiO2 surface modifying the 

deposition-precipitation method reported in Section 3.2. 

The development of a continuous flow plasmonic photoreactor would 

allow the superior exploitation of the catalyst activity and the optimal 

utilisation of the light source as opposed to batch processes. Importantly, 

it could offer the opportunity to apply plasmonic catalysis for lab-scale 

preparations and, eventually, industrial applications. 
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