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under the direction of
Carme Àlvarez
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Abstract

In an attempt to understand how Internet-like networks and social networks behave, different
models have been proposed and studied throughout history to capture their most essential
aspects and properties. Network Creation Games are a class of strategic games widely studied
in Algorithmic Game Theory that model these networks as the outcome of decentralised and
uncoordinated interactions. In these games the different players model selfish agents that buy
links towards the other agents trying to minimise an individual function. This cost is modelled
as a function that usually decomposes into the creation cost (cost of buying links) and the
usage cost (measuring the quality of the connection to the network). Due to the agents’ selfish
behaviour, stable configurations in which all players are happy with the current situation, the
so-called Nash equilibria, do not have to coincide with any socially optimal configuration that
could be established if a centralised authority could decide by all players. In this way, the
price of anarchy is the measure that quantifies precisely the ratio between the most costly Nash
equilibrium versus any optimal network from a social point of view.

In this work, we study the price of anarchy and Nash equilibria in different scenarios and
situations, in order to better understand how the selfish behaviour of agents in these networks
affects the quality of the resulting networks. We propose this study from two different perspec-
tives.

In the first one, we study one of the most emblematic models of Network Creation Games
called sum classical network creation game [20]. This is a model that is based on two different
parameters: n, the number of nodes, and α, a function of n that models the price per link.
Throughout history it has been shown that the price of anarchy is constant for α = O(n1−δ)
with δ ≥ 1/ log n and for α > 4n − 13. It has been conjectured that the price of anarchy is
constant regardless of the parameter α. In this first part we show, first of all, that the price of
anarchy is constant even when α ≥ n(1 + ε) with ε > 0 any positive constant, thus enlarging
the range of values α for which the price of anarchy is constant. Secondly, regarding the range
α < n/C with C > 4 any positive constant, we know that equilibria induce a class of graphs
called distance-uniform. Then, we study the diameter of the distance-uniform graphs in an
attempt to obtain information about the topology of equilibria for the range α < n/C with
C > 4 any positive constant.

In the second perspective we propose and study two new models that we call celebrity
games. These two models are based on the analysis of decentralized networks with heterogeneous
players, that is, players with different degrees of relevance within the corresponding network,
a feature that has not been studied in much detail in the literature. To capture this natural
property, we introduce a weight for each player in the network. Furthermore, these models take
into account a critical distance β, a threshold value. Each player aim to be not farther than
β from the other players and decides whether to buy links to other players depending on the
price per link and their corresponding weights. Moreover, the larger is the weight of a player
farther than β, larger is the corresponding penalty. Thus, in these new models players strive
to have the minimum possible number of links and at the same time they want to minimise
as much as possible the penalty for having players farther from β. They differ in how the
penalty corresponding to the players further than β is computed. For both models we obtain
upper and lower bounds of the price of anarchy as well as the main topological properties and
characteristics of their equilibria.
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Resum

En un intent per entendre com xarxes de naturalesa similar a les de l’Internet i les xarxes
socials es comporten, al llarg de la història s’han proposat i estudiat diferents models que
tracten de capturar-ne els aspectes i les propietats més essencials. Els jocs de formació de xarxes
són una classe de jocs estratègics molt estudiats en teoria de jocs algoŕısmica que modelitzen
aquestes xarxes com el resultat de la interacció descentralitzada dels agents que la integren.
En aquests jocs els diferents jugadors modelitzen agents egoistes que compren enllaços cap als
altres jugadors intentant minimitzar una funció individual. Aquest cost es modela com una
funció que es descomposa en dues components: el cost de creació (cost relatiu a la compra
dels enllaços del mateix jugador) i, en segon lloc, el cost d’utilització (mesura de la qualitat
de connexió a la xarxa resultant). Degut al comportament egoista dels agents, les situacions
estables que s’assoleixen, els anomenats equilibris de Nash, no tenen per què coincidir amb les
configuracions òptimes des del punt de vista social que es podrien establir si exist́ıs una entitat
centralitzadora que decid́ıs per tots els jugadors. Justament, el preu de l’anarquia és la mesura
que quantifica la diferència que hi ha entre l’equilibri de Nash més costós versus l’òptim des del
punt de vista social.

En aquesta tesis, estudiarem aquests dos conceptes claus, el preu de l’anarquia i els equilibris
de Nash, en escenaris i situacions diferents, per tal d’entendre millor com el comportament
egoista dels agents d’aquestes xarxes n’afecta la seva qualitat. Proposem duess perspectives
diferents a aquest estudi.

En primer lloc, estudiem un dels models més emblemàtics dels jocs de formació de xarxes
que anomenem sum classical network creation game [20]. Aquest és un model de xarxes que
es basa en dos paràmetres diferents: n, nombre de nodes, i α, una funció de n que modelitza
el preu per enllaç. Al llarg de la història s’ha demostrat que el preu de l’anarquia és constant
per a α = O(n1−δ) i δ ≥ 1/ log n, aix́ı com per a α > 4n − 13. A més s’ha conjecturat que el
preu de l’anarquia és constant independentment del paràmetre α. Pel que fa al rang α < n/C
amb C > 4 constant, sabem que els equilibris indueixen una classe de grafs que s’anomenen
distance-uniform. En aquesta primera part es demostra, en primer lloc, que el preu de l’anarquia
és constant inclús quan α > n(1 + ε) amb ε > 0 qualsevol constant positiva allargant, doncs, el
rang de valors del paràmetre α pels quals el preu d’anarquia és constant. En segon lloc, s’estudia
el diàmetre dels grafs distance-uniform en un intent d’obtenir informació sobre la topologia dels
equilibris per al rang α < n/C amb C > 4 constant.

El segon punt de vista que considerem consisteix en proposar i estudiar dos nous models
de creació de xarxes que anomenem els celebrity games. Aquests dos models parteixen de
l’anàlisi de les xarxes decentralitzades amb agents heterogenis, com és el cas d’agents que tenen
diferents graus de rellevància dins de la xarxa corresponent, un tret fins ara poc estudiat en
els models de la literatura. Per capturar aquesta caracteŕıstica natural s’introdueixen pesos, un
per a cada agent de la xarxa. D’altra banda, una altra caracteŕıstica que es considera en la
proposta d’aquests dos models nous és el concepte de distància cŕıtica que captura el llindar
β a partir del qual, nodes que estiguin més llunyans que el valor β del jugador en consideració
penalitzen a tal jugador. Aix́ı, el que es persegueix en aquests dos nous models és tenir el mı́nim
nombre d’enllaços possibles i al mateix temps, minimitzar el màxim possible la penalització
dels jugadors més llunyans de β d’acord amb els seus pesos. Els dos models que estudiem es
diferencien en com es calcula l’afectació o penalització dels jugadors més llunyans de β. Pels
dos models obtenim fites superiors i inferiors del preu de l’anarquia aix́ı com les propietats i
caracteŕıstiques topològiques principals dels equilibris.
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Resumen

En un intento para entender como redes de naturaleza similar a las del Internet y la redes
sociales se comportan, al largo de la historia se han propuesto y estudiado modelos que tratan
de capturar los aspectos y las propiedades más esenciales. Los juegos de formación de redes son
una clase de juegos estratégicos muy estudiados en la teoŕıa de juegos algoŕısmica que modelizan
estas redes como el resultado de la interacción descentralizada de los agentes que la integran.
En estos juegos los distintos jugadores modelizan agentes egóıstas que compran enlaces hacia
los otros jugadores intentando minimizar una función individual. Este coste se modeliza como
una función que se descompone en el coste de creación (coste relativo a la compra de los enlaces
del mismo jugador) y, en segundo lugar, el coste de utilitzación (mesura de la cualidad de
conexión a la red resultante). Debido al comportamiento egóısta de los agentes, las situaciones
estables que se consiguen, los llamados equilibrios de Nash, no coinciden necesariamente con las
configuraciones óptimas des del punto de vista social que se podŕıan establecer si existiera una
entidad centralizadora que tomara una decisión por todos los jugadores. Justamente, el precio
de la anarqúıa es la medida que cuantifica la diferencia que hay entre los equilibrios de Nash
más costosos versus el óptimo des del punto de vista social.

En esta tesis, estudiaremos estos dos conceptos claves, el precio de la anarqúıa y los equi-
librios de Nash en escenarios y situaciones diferentes, con la intención de entender mejor como
el comportamiento egóısta de los agentes de estas redes afecta su cualidad. Proponemos dos
perspectivas distintas para este estudio.

En primer lugar, estudiamos uno de los modelos más emblemáticos de los juegos de formación
de redes que llamamos sum classical network creation game [20]. Este es un modelo de redes
que se basa en dos parámetros distintos: n, el número de nodos de la red, y α, una función de
n que modeliza el precio por enlace. Al largo del tiempo se ha demostrado que el precio de la
anarqúıa es constante por α = O(n1−δ) con δ ≥ 1/ log n, aśı como para α > 4n−13. Además se
ha conjeturado que el precio de la anarqúıa es constante independientemente del parámetro α.
Respecto al rango α < n/C con C > 4 constante, sabemos que los equilibrios inducen una clase
de grafos que se llama distancia-uniforme. En esta primera parte se demuestra, primero, que el
precio de la anarqúıa es constante incluso cuando α > n(1 + ε) con ε > 0 cualquier constante
positiva engrandeciendo, pues, el rango de valores del parámetro α por los cuales el precio de la
anarqúıa es constante. En segundo lugar, se estudia el diámetro de los grafos distancia-uniforme
en un intento de obtener información sobre la topoloǵıa de los equilibrios para el rango α > n/C
con C > 4 constante.

El segundo punto de vista que consideremos consiste en proponer y estudiar dos modelos
de creación de redes nuevos que llamamos los celebrity games. Estos dos modelos parten del
análisis de la redes descentralizadas con agentes heterogéneos, como puede ser el caso de agentes
que tienen distintas grados de relevancia dentro de la red correspondiente, una caracteŕıstica
hasta ahora poco estudiada en los modelos de la literatura. Para capturar esta caracteŕıstica
natural se introducen pesos para cada agente de la red. Por otro lado, otra caracteŕıstica que
se considera en la propuesta de estos dos models nuevos es el concepto de distancia cŕıtica que
captura el nivel β a partir del cual, nodos que estén más lejanos que el valor β del jugador
en consideración penalizan a tal jugador. Aśı, el que se persigue en estos dos nuevos modelos
es tener el mı́nimo número de enlaces posibles y al mismo tiempo minimizar la máxima de la
penalizaciones de los jugadores más lejanos de β de acuerdo con sus pesos. Los dos modelos
que estudiamos se diferencian en como se calcula la afectación o penalización de los jugadores
más lejanos de β. Para los dos modelos obtenemos cotas superiores e inferiores del precio de la
anarqúıa aśı como la propiedades y caracteŕısticas topológicas principales de los equilibrios.
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Chapter 1

Introduction

1.1 Motivation and Context

This work studies some aspects and properties of communication networks having a nature
quite similar to the one of Internet-like networks or social networks. Mostly, these networks
are formed by agents following some selfish interests lacking coordination among them. The
study of communication networks is a classical subject inside Theoretical Computer Science
that can be analysed following distinct perspectives. In its beginnings, Network Design was a
line of research that assumed that a central authority creates the network trying to fulfill some
optimization criteria. Whilst this perspective has lead to interesting results which now have
become well-known classical aspects about networks (maximum edge disjoint paths, maximum
node disjoint paths, k-median, k-center, as well as many others), it turns to be that most of
the known Internet-like networks and social networks are not obtained following the orders of a
central authority, but rather, following the selfish interest of the multiple agents that integrate
such networks. Once these fundamental key ingredients defining the nature of such networks
are identified, Algorithmic Game Theory provides us a right point of view to better understand
this combination.

In Algorithmic Game Theory, Network Creation Games is a subfamily of strategic games
that models the collective attempt of creating a network. Each player or agent buys links to
other agents and selfishly tries to minimise some objective function that considers both the
creation cost (the cost of buying links) and some usage cost (the quality of the connection to
the network).

Now, let us describe the most relevant concepts to better understand the paradigm of the
Network Creation Games. First of all, any Network Creation Game is specified by a finite set
of players or agents. A strategy for any player consists of a subset of the other players to whom
the player at consideration wants to buy links. Then, a strategy profile is any configuration
consisting of the choices of all the players which naturally defines a network or an outcome
graph. Each player has associated an individual cost which value depends not only on its own
strategy but also on the strategy profile. The best response of a player to a strategy profile is
the strategy (or strategies) that minimises his cost. A Nash equilibrium (or abbreviated ne)
is any strategy profile in which each player cannot strictly decrease its cost function when the
strategies of the other players are fixed. In other words, a ne is a configuration such that the
strategy of every player is a best response for that player. We are interested in measuring
somehow the quality of a specific network. The social cost quantifies the overall cost of any
strategy profile and it is usually defined as the sum of the individual costs of the players from
the configuration. In this way, any best (or worst) strategy profile from a certain collection with
respect the social cost is any configuration from the collection minimising (or maximising) the
social cost. In particular, an optimal network is any best configuration and the social optimum
is the social cost of any such network. Now, notice that a ne network might not be an optimal
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network. The price of anarchy (or abbreviated PoA) is the key concept that quantifies the
distance (with respect the social cost) between the worst equilibrium and any optimal network
and is defined as the ratio between the maximum social cost of any equilibrium and the social
optimum. Similarly, the price of stability (or abbreviated PoS) quantifies the distance between
the best equilibrium and any optimal network and is defined as the ratio between the minimum
social cost of any equilibrium and the social optimum.

1.2 This Thesis

The main goal of this thesis is to get a better comprehension of how the selfish behaviour of
the agents participating in the creation of communication networks, affects the quality of such
networks from a social point of view. This is the main question of the thesis and we address
it by considering two different approaches. The first one is the study of the most emblematic
and classical network creation game and the second one is the proposal and study of two new
original models capturing some new features of communication and social networks not present
in any other previous model of the literature. For both approaches the analysis that we perform
consists in studying two fundamental and crucial concepts. First, the PoA, which gives a kind
of quantitative answer to the main question. Secondly, when the exact value of the PoA is
hard to calculate or even approximate via upper and lower bounds, we study the topology of
equilibria, which might give us a kind of qualitative answer to the main question.

Now, let us describe in a little more detail these two distinct approaches.
Our starting point is, as we have explained previously, the study of the very famous and

classical model of communication networks, the Sum Classical Network Creation Game intro-
duced by Fabrikant, Luthra, Maneva, Papadimitriou, and Shenker in [20], which we abbreviate
as sum ncg. The authors analyse a very simple yet tractable model in which there are mainly
two parameters: n the number of nodes that form the network and α, a function of n, repre-
senting the cost of buying exactly one link. Interestingly, it has been proved that the price of
anarchy for this model is constant (asymptotically speaking) for almost every function α of n
and, in fact, it has been conjectured that the PoA is constant independently of the value α [17].
This means that although, in some sense, anarchy is present when creating Internet-like net-
works, the resulting networks might not be far from any optimal network built by a centralised
authority. In the first part of this thesis we focus our attention on this open question: what is
the PoA in the sum ncg? We study this question providing two distinct results. First, we are
able to enlarge the range of the parameter α for which the PoA is known to be constant. And
second, for the remaining range of the parameter α in which it is not known whether the PoA is
constant, we shed light on the topology of equilibria studying a general related class of graphs
known as distance-uniform graphs. As you can see in the historical overview (Section 2.4),
there is a large number of related papers that have been published in the last years since the
appearance of the sum ncg in 2003 improving subsequently the upper bounds for the PoA for
distinct values of α [27, 1, 17, 29, 28, 11]. This constitutes a strong evidence that the problem
we study is relevant for the community.

In the second part of this thesis, we focus our attention on the proposal and study of two new
original models that help us to get a better understanding of some features and properties that
most Internet-like networks as well as social networks satisfy. To this end, after analysing the
current state-of-the-art to identify the diverse variety of Network Creation Games existing in
the literature, we propose two new models for which we discuss and analyse bounds on the PoA
and properties regarding the topology of equilibria. The introduction of these models, called
celebrity games, allows us to study how heterogeneous players (every player has some weight
or relevance that might differ from one node to the other) and a critical distance (defining
the radius for which the players at distance greater than this threshold penalise the player at
consideration), affect the quality of equilibria with respect any optimal network.
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1.3 The Articles Included in this Thesis

Recall that this work is an article-based thesis. The following list contains the four papers in
which this thesis is based on:

1. Àlvarez, C., Messegué, A. “On the Price of Anarchy for High-Price Links”. Web and
Internet Economics. 316–329, 2019. (Best paper award) [Chapter 3].

2. M. Lavrov, P.S. Loh, A. Messegué. “Distance-Uniform Graphs with Large Diameter”.
SIAM Journal on Discrete Mathematics 33(2) 994–1005, 2019 [Chapter 4].

3. C. Àlvarez, M. J. Blesa, A. Duch, A. Messegué and M. J. Serna. “Celebrity games.”
Theor. Comput. Sci. , 648 56–71, 2016 [Chapter 5].

4. Àlvarez, C., Messegué, A. “Max Celebrity Games”. Algorithms and Models for the Web
Graph - 13th International Workshop, WAW 2016, Montreal, QC, Canada, December
14-15, 2016, Proceedings, 10088 88–99, 2016 [Chapter 6].

1.4 The Structure and Outline of this Thesis

In Chapter 2 we provide the reader the preliminaries needed to understand the analysis of Part
I and Part II of the thesis as well as an extensive discussion of the state-of-the-art related to the
most relevant Network Creation Games. Then the thesis is divided in two parts. The Part I is
dedicated to the study of the classical model sum ncg. In Chapter 3, we show that the PoA for
the sum ncg is constant when α > n(1 + ε), where ε is any positive small constant. In Chapter
4, we investigate the topology and diameter of a certain class of graphs called distance-uniform,
which are related to equilibria for the sum ncg when α < n/C with C > 4. This result provides
us new information about the topology of the sum ncg equilib ria for the same range of α.

In Part II of this thesis, we propose and study the celebrity models. These models con-
sider the combination of two key features. The first is the assumption that the network is
heterogeneous, which is modelled assuming that players have associated different relevances or
weights. The second is the existence of a critical distance β, indicating that all the players that
are further than β from a player u penalise to the cost function of u. Depending on how the
penalties are defined with respect the weights of the players further than β, we obtain the Sum
Celebrity model and the Max Celebrity model. In Chapter 5 we motivate and introduce the
Sum Celebrity model and make a deep study of its main features. The most important results
that we obtain are non-trivial upper bounds on the PoA in terms of some of the parameters of
the game as well as some topological properties of equilibria, mainly, upper and lower bounds
on the diameter of equilibria. In Chapter 6 we continue the analysis of the celebrity models
introducing and studying the max celebrity model. The most important results that we obtain
are analogous to the ones in Chapter 5 with some exceptions.

In order to close the work, in Chapter 7 we summarise the main results and we discuss
some open questions that can be of further interest. Finally, the Bibliography contains the
information that correspond to the citations appearing in the text from each chapter excluding
the references made in the original articles included in Chapter 3, 4, 5 and 6.
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Chapter 2

Preliminaries

In this section, we basically provide the reader the main concepts and frameworks to get a
correct understanding of the forthcoming chapters. As we pointed out in the introduction, to
understand the main question of this thesis we model Internet-like networks and social networks
as decentralised network creation where selfish agents interact with each other pursuing their
egoistic interests in such a way that a resulting network is formed. Therefore, we need to clearly
understand the concept of graph, which is the main mathematical object that we use to work
with any network (Subsection 2.1); we also review strategic games and related concepts, which
are the abstract tool we use to model the interaction of selfish agents pursuing their egoistic
interests (Subsection 2.2); we give definition of the classical Network Creation Game introduced
by Fabrikant et al. in 2003 which is a particular strategic game (Subsection 2.3); and finally, we
also summarise the main results of the literature related to the classical model and we examine
other network creation models (Subsection 2.4).

2.1 Graphs

A graph is a pair G = (V,E) where V is the set of vertices or nodes of G, a finite set, and E is
the set of edges of G, a subset of pairs (u, v) with u, v ∈ V and u 6= v. When only G is specified
we will use the notation V (G), E(G) to refer to the corresponding sets V,E, respectively, of G.
We distinguish between directed graph or undirected graph. A graph is directed when the pairs
(u, v) and (v, u) represent distinct edges. For the contrary, in an undirected graph the pairs
(u, v) and (v, u) represent the same edge and we will also use the notation uv to refer to such
an edge.

Let G = (V,E) be a graph. If G is undirected, the degree of a node u ∈ V is the cardinality
of the set of edges uv ∈ E. Similarly, if G is directed, then we distinguish between the out-
degree, the cardinality of the set of edges (u, v) ∈ E, noted as deg+(u), and the in-degree, the
cardinality of the set of edges (v, u) ∈ E, noted as deg−(u).

A path between two nodes u, v ∈ V (G) is a sequence of nodes w1, w2, ..., wk with w1 = u,
wk = v and (wi, wi+1) ∈ E(G) for each i < k. We will use the notation w1 − ...−wk to refer to
such a path. Then, the length of the path is k − 1. A minimal length path between u ∈ V (G)
and v ∈ V (G) is a path between u, v having the minimum length. Two nodes u, v ∈ V (G) are
said to be connected in G iff there exist a path between u, v. We say that an undirected graph
G is connected iff there exists a path between any two nodes u, v ∈ V (G).

The undirected distance or just the distance to simplify, between two connected nodes u, v ∈
V (G) is the length of any minimal length path between u, v. If u, v are not connected then we
consider that the distance between u, v is ∞. For every r and u ∈ V (G) we consider Ar(u)
the set of nodes at distance r from u, that is, Ar(u) = {v | dG(u, v) = r}. Similarly, for every
r and u ∈ V (G), we consider Br(u) the set of nodes at distance at most r from u, that is,
Br(u) = {v | dG(u, v) ≤ r}.
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The local diameter of a node u from a graph G is the maximum distance from u to any
other node from G. Then, the diameter of G, noted as diam(G), is the maximum possible local
diameter of any node from G whereas the eccentricity of G refers to the minimum possible local
diameter of any node from G. Also, for every strictly positive integer k, the k−th power of an
undirected graph G, noted by Gk, is the graph with same vertices as G but with edges between
two nodes u, v iff dG(u, v) ≤ k.

A subgraph H from a graph G, noted as H ⊆ G is a pair (V (H), E(H)) such that V (H) ⊆
V (G), E(H) ⊆ E(G). Given a subgraph H ⊆ G, we extend in a natural way the notion of
degree restricted to H. If G is undirected then degH(u) for u ∈ V (H) is the number of edges
uv with v ∈ V (H). Similarly, if G is directed, then deg+

H(u) and deg−H(u) for u ∈ V (H) are
the number of edges (u, v) and (v, u) with v ∈ V (H), respectively. Also, we write deg(H) the
average degree of H, whenever G is undirected, that is, the sum of all the degrees degH(u) for
u ∈ V (H) divided over the number of nodes from H.

A tree is a connected graph with no cycles. In a connected graph G = (V,E) a vertex is
a cut vertex if its removal increases the number of connected components of G. A graph is
biconnected if it has no cut vertices. We say that H ⊆ G is a biconnected component of G if
H is a maximal biconnected subgraph of G. More specifically, H is such that there is no other
distinct biconnected subgraph of G containing H as a subgraph.

2.2 Strategic Games

A strategic game is defined by a tuple Γ = (N, (Si)i∈N , (ci)i∈N ) where:

• N = {1, 2, ..., n} is a finite set of n players.

• Each player i ∈ N selects one strategy si from a set of strategies Si.

• ci is a cost function for every agent i ∈ N .

The distinct combinations of all the possible strategies for every player define all the possible
outcomes. A strategy profile is any such possible configuration represented as s = (s1, ..., sn)
with si ∈ Si for each i ∈ N . The strategy space, noted with S, is the collection of all such
n−dimensional vector of strategies:

S = S1 × ...× Sn
Once defined the strategy space, the cost function ci for player i models the interest of such

player in terms of not only the current strategy of the player, but also in terms of the strategies
of the other players. This is achieved assigning a real value to each possible configuration:

ci : S → R

For a strategy profile s = (s1, ..., sn) let s−i be the strategies of all the players except for
player i, so that we use the convention s = (s−i, si) for every i ∈ N . This notation is useful to
introduce the following definitions.

Definition 1. Given an strategy profile s and a player i ∈ N , s′i ∈ Si is a best response relative
to player i associated to s if

∀s′′i ∈ Si : ci(s−i, s′i) ≤ ci(s−i, s′′i )
That is, the best response is any choice that player would pick when playing optimally.
Now, we are interested in studying Nash equilibria, which are configurations in which every

player or agent is happy with his current strategy and has no interest in deviating unilaterally.
Such configurations are defined as follows:
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Definition 2. A strategy profile s ∈ S is a Nash equilibrium (or abbreviated ne) iff:

∀i ∈ N, ∀s′i ∈ Si : ci(s−i, s′i) ≥ ci(s)

Therefore, in a ne, each player has a best response as a strategy.
Now, when evaluating the quality of the communication networks we need some measure of

how good a created network is for the whole society integrated by all the players or agents. The
social cost is the concept we can use to make this measure and is defined for a strategy profile
s = (s1, ..., sn).

Definition 3. Given a strategy profile s = (s1, ..., sn), the social cost of s, c(s), is defined as
the sum of the individual costs of all the players. That is

c(s) =
∑

i

ci(s)

Once we have this objective function measuring the quality of the created network, we refer
to the social optimum (or abbreviated opt) as the value of the minimum possible social cost.

Definition 4. The social optimum of Γ or abbreviated, opt(Γ), is:

opt(Γ) = min
s∈S

c(s)

We can think of a ne as a stable configuration obtained following the selfish interests of the
players. Obviously, the social optimum value is not necessarily attained by a ne. Therefore, it
is natural to consider what it is the loss, in terms of efficiency, of the worst ne in comparison
with the social optimum. The so called price of anarchy captures precisely this concept. That
is, if E is the set of ne strategy profiles for Γ then:

Definition 5. The price of anarchy (or abbreviated PoA) is

PoA(Γ) = max
s∈E

c(s)/min
s∈S

c(s)

Finally, a related concept to the price of anarchy is the price of stability (or abbreviated
PoS).

Definition 6. The price of stability (or abbreviated PoS) is

PoS(Γ) = min
s∈E

c(s)/min
s∈S

c(s)

2.3 The Sum NCG

In the first part of this thessis we study the classical model called Sum Network Creation Game
model, or sum ncg for short. A game in this model is a particular strategic game defined by
a tuple 〈N,α〉 where N = {1, ..., n} is the set of players and the parameter α models the cost
of buying any individual link [20]. In this model the players interact buying links to the other
players so that a network is created. Therefore, the available actions or choices for every player
i ∈ N is a subset si ∈ Si = P(N \ {i}) representing the subset of players to which i establishes
links.

The natural network of all the players is called the communication network or outcome
graph. Given a strategy profile s = (s1, ..., sn) the outcome graph G[s] is defined as follows:

G[s] = (N, {ij | i ∈ sj ∨ j ∈ si})
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Then, the cost function modelling the selfish interests of the players in the game for a
strategy profile s = (s1, ..., sn) has two components: the creation cost and the usage cost. The
creation cost for a player i ∈ N is α|si| and it quantifies the cost of buying |si| links. In contrast,
the usage cost for a player i is

∑
j 6=i dG[s](i, j) if G[s] is connected or ∞ otherwise. Therefore,

the total cost incurred for player i is

ci(s) =

{
∞ if G[s] is not connected

α|si|+
∑

j 6=i dG[s](i, j) otherwise

2.4 Historical Overview

Network Creation Games is an extensive area in constant growth since the appearance in 2003
of the model sum ncg from Fabrikant et al. [20]. In this paper the authors introduce the
well-known classical model to study the quality of the stable Internet-like networks obtained
following the selfish interests of its agents. After this work, several authors have been improving
previous results and studying variations and extensions of this classical model. Here we address,
first, the progress around the sum ncg classical model, which provides the context for the Part
I of this thesis, and after this, we dive into some related models to the sum ncg to motivate
the models that we introduce and study in the Part II of this thesis.

2.4.1 The Sum NCG model

In the seminal paper [20] the authors define the NCG model, show that the problem of calcu-
lating the Best Response is NP-hard for α = 2 and they characterise the social optima for the
distinct ranges of α. They also show that PoA = O(1) for α = O(1) and PoA ≤ 5 for tree
equilibria. Finally, they state the Tree conjecture, saying that there exists a constant A such
that for every α > A every ne graph G is a tree. In 2006, the conjecture was refuted by Albers
et al. in [1]. In 2010 the tree conjecture is reformulated as follows: for any α > n every ne is a
tree [29].

In the subsequent years, several authors continue to further study the model enlarging the
range of the parameter α for which the PoA is constant. In the case of high-price links the
property that the PoA for trees is constant has been very useful to prove that PoA is constant.
In Table 1 we can see how the interval of values α for which all ne are trees has been progressively
amplified and then, the PoA is constant in such intervals.

α > 4n− 13 17n 65n 273n 12n log n 10n3/2 ∞

All ne are trees [11] (2018) [7] (2017) [28] (2015) [29] (2013) [1] (2006) [27] (2003)

Table 1. Summary of the progress of showing constant PoA for high price per link (citation and year).

In the case of low-price links the relation between the PoA and the diameter is also crucial.
In Table 2 we can see the distinct improvements showing constant PoA for such ranges of α.

α = 0 O(1) O(
√
n) O(n1−δ)

Constant PoA [20] (2003) [1] (2006) [17] (2007)

Table 2. Summary of the progress of showing constant PoA for low price per link (citation and year).

For the remaining range of the parameter α the best upper bound known on the PoA is
2O(
√

logn) [17]. In fact, in the same paper, the authors conjecture that the PoA is constant for
any α, a conjecture that we call the Constant PoA conjecture. This is undoubtedly one of the
major open conjectures for the sum ncg, together with the reformulated Tree conjecture, into
which so many people have contributed. In Table 3 we have collected the best upper bounds
known for the PoA for distinct ranges of α.

10



α = 0 1 2 3
√
n/2

√
n/2 O(n1−δ) 4n− 13 12n log n ∞

PoA 1 ≤ 4
3 ([20]) ≤ 4 ([17]) ≤ 6 ([17]) Θ(1) ([17]) 2O(

√
logn) ([17]) < 5 ([11]) 1.5 ([1])

Table 3. Summary of the best known bounds for the PoA for the sum ncg.

This long list of incremental improvements in the history provide the evidence that the
problem of showing constant PoA for a wider range of α is really tough. Furthermore, notice
that the relationship between the Tree conjecture and the Constant PoA conjecture for α > n
shows that in some situations is very important to understand the topology of equilibria to get
a better understanding of the PoA.

Precisely, in Chapter 3, we keep studying topological properties of equilibria for α > n that
allow us to show constant PoA for the range α > n(1 + ε) with ε > 0 any constant. This
is achieved by showing that any biconnected component H of any equilibrium graph G has
constant size when α > n(1 + ε) and that diam(G) < diam(H) + 250 for α > n. Furthermore,
in Chapter 4, we provide new insights regarding the topology of equilibria for the range α < n/C
with C > 4 a constant, by studying some topological properties of distance-uniform graphs.

2.4.2 Variations of the Sum NCG

In this section we review a selected set of variations and extensions of the sum ncg that motivate
the definition of the games studied in part II. Other interesting good examples can be found in
[25, 2, 30, 9, 14, 16, 13]. Also, in order to get a broader overview of this subject, we address
the reader to [21] and [22].

In the classical model, the general assumption that the selfish agents want to be well-
connected in the resulting network buying as few links as possible, is captured by the individual
cost function. Recall that the individual cost of the players can be decomposed into the creation
cost, which is the cost of buying links, plus the usage cost, that corresponds to the quality of
the connection to the network. This main idea is present also in most of the other models that
we are going to mention, but as we shall see, distinct assumptions can lead to distinct features
and behaviours.

The sum ncg considers that link creation is unilateral, that is, that any player can buy any
link to any other player without asking for permission to that player. In the bilateral game [15]
a link is created iff both endpoints agree and then, the cost of buying that link is equally split
for the two players.

Also, in the classical model all the links have the same price α so that the creation cost for
a player is the number of bought links times α. A variant of having uniform priced links can be
found here [18], in which it is assumed that there exists a host graph that indicates which links
can be bought or not. This models the natural property that in the reality certain links cannot
exist due to physical limitations.

Regarding the usage cost of a node, in the classical model it is specified by the sum of the
distances to all the other nodes. This goes with the intuition that nodes that are far away from
the current player penalise the player accordingly to their distance. The larger the distance is,
the larger the penalisation gets for the player. Obviously, this is not the only way in which
we can compute a penalisation for the players that are far from us. A good example of this is
the Max Network Creation Game [17], the model that we obtain from the sum ncg when we
change the summation of the distances to all the nodes for the maximum of such distances.

Another variation is the disconnected equilibria model [12] that contemplates the existence
of disconnected equilibria by introducing an extra parameter β > 1. The authors keep the same
definition from the sum ncg except for the following little modification in the usage cost. Given
a player i, if player j 6= i is in the same connected component we add the distance between i
and j to the usage cost, like it is done in the sum ncg. Otherwise, we add a term β to the
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usage cost of i. Notice that this model could be thought as if there was a distance (which in
this case could be n), such that the penalisation that a player i gets for every player further
than this distance, contributes in β units.

This idea of a distance or threshold that defines which players affect in a negative way the
corresponding agent is considered in other models. In the MaxBD (and SumBD) games from
[10] the authors introduce the concept of bounded distance Ri for every player i and do not
consider any link cost α. They define the cost function for player i as the number of bought
links if the maximum of all the distances in the MaxBD (or the sum of all the distances in the
SumBD) to the other players is smaller than Ri, otherwise it is infinite. In this way, this model
forces that in every ne, every player i has the other players close in the sense of closeness given
by the parameter Ri and at the same time, player i cannot strictly reduce the number of bought
links still satisfying this bounded distance condition.

Inspired by all the previous models we introduce the Sum Celebrity Games and the Max
Celebrity Games. We preserve the setting in which the individual cost of a player is given by
the creation cost plus the usage cost. Regarding the creation cost, in both celebrity models we
consider the unilateral version with α a parameter that stands for the price per link without no
further restrictions. Regarding the usage cost, in the celebrity models there is a critical distance
β that defines the threshold for which the players further than this distance affect the player
at consideration in a negative way. However, in all the models we have considered above the
players or agents are thought to have the same relevance with respect the other players. In our
celebrity games, we assume that players may have distinct relevance. The different degrees of
relevance are expressed by associating different positive weights to the players. The idea is that
having a large weight means that the player is more relevant in the network so the majority of
the agents would like to be closer to this node. In the Sum Celebrity model we calculate the
affectation of having nodes at distance further than β as the sum of their weights whereas in
the max celebrity model as the maximum of their weights. Therefore, celebrity games are the
first example of a model considering heterogeneous players in which the requirement of being
close to a global critical distance has to be balanced against the node weight of the players. In
Chapters 5 and 6 we are going to introduce in more detail these two models and study their
PoA as well as non-trivial topological properties of equilibria.
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Part I

On the PoA for the Classical NCG
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Chapter 3

The Price of Anarchy for High-Price
Links

3.1 Summary

The seminal model of Fabrikant et al. introduced in [20] initiated the study of non-centralised
Internet-like networks and the efficiency of such networks with respect the social optimum via
the PoA. For this model it has been conjectured that the PoA is constant and up to now this
conjecture has been proved to be true for the range α = O(n1−δ) with δ any constant with
δ ≥ 1/ log n [17] and for α > 4n − 13 [11] (you can see Table 3 from Section 2.4.1 for a better
description of the best known upper bounds on the PoA for the distinct ranges of α). Regarding
the topology of equilibria, it has been conjectured that every ne graph is a tree for α > n (the
tree conjecture) and this conjecture has been proved to be true for the range α > 4n− 13 [11].

The main result of this chapter is that for any positive constant ε > 0, the PoA is constant
even for α > n(1 + ε).

We have been able to prove this strong result in a simple and elegant way after two incre-
mental attacks to the hard problem of bounding the PoA by a constant which can be found in
the following papers:

1. Network Creation Games: Structure vs Anarchy [7]. We prove that the tree conjecture
is true for α > 17n and that the PoA is constant for α > 9n.

2. On the Constant Price of Anarchy Conjecture [5]. We prove that for α > n(1 + ε) the
PoA is constant, but in a more complicated way.

This result is relevant in multiple perspectives. Firstly, our contribution reinforces the
conjecture that the PoA is constant for any α. Secondly, our results show new features and
properties about the topology of equilibria for the range α > n(1 + ε) that were previously un-
known. In particular, we show that for α > n(1+ε) the size of any biconnected component, if it
exists, is at most a constant. Hence, this could be understood as an intermediate result towards
settling the tree conjecture. Therefore, we do not only enlarge the range of the parameter α for
which the PoA is known to be constant, we also provide some insights indicating that maybe
we are close to validate the tree conjecture for the same range α > n(1 + ε).

3.2 Article: On the Price of Anarchy for High-Price Links

Àlvarez, C., Messegué, A. “On the Price of Anarchy for High-Price Links”. Web and Internet
Economics. 316–329, 2019. (Best paper award)
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On the Price of Anarchy for High-Price Links

C. Àlvarez and A. Messegué

ALBCOM Research Group, Computer Science Department, UPC, Barcelona
{alvarez,amessegue}@cs.upc.edu

Abstract. We study Nash equilibria and the price of anarchy in the classic model of Network
Creation Games introduced by Fabrikant, Luthra, Maneva, Papadimitriou and Shenker in 2003.
This is a selfish network creation model where players correspond to nodes in a network and each
of them can create links to the other n− 1 players at a prefixed price α > 0. The player’s goal is
to minimise the sum of her cost buying edges and her cost for using the resulting network. One
of the main conjectures for this model states that the price of anarchy, i.e. the relative cost of the
lack of coordination, is constant for all α. This conjecture has been confirmed for α = O(n1−δ)
with δ ≥ 1/ logn and for α > 4n− 13. The best known upper bound on the price of anarchy for

the remaining range is 2O(
√
logn).

We give new insights into the structure of the Nash equilibria for α > n and we enlarge the range
of the parameter α for which the price of anarchy is constant. Specifically, we prove that for any
small ε > 0, the price of anarchy is constant for α > n(1 + ε) by showing that any biconnected
component of any non-trivial Nash equilibrium, if it exists, has at most a constant number of
nodes.

1 Introduction

Many distinct network creation models trying to capture properties of Internet-like networks or social
networks have been extensively studied in Computer Science, Economics, and Social Sciences. In these
models, the players (also called nodes or agents) buy some links to other players creating in this way a
network formed by their choices. Each player has a cost function that captures the need of buying few
links and, at the same time, being well-connected to all the remaining nodes of the resulting network.
The aim of each player is to minimise her cost following her selfish interests. A stable configuration
in which every player or agent has no incentive in deviating unilaterally from her current strategy is
called a Nash equilibrium (ne). In order to evaluate the social impact of the resulting network, the
social cost is introduced. In this setting the social cost is defined as the sum of the individual costs of
all the players. Since there is no coordination among the different players, one can expect that stable
networks do not minimise the social cost. The price of anarchy (PoA) is a measure that quantifies
how far is the worst ne (in the sense of social cost) with respect to any optimal configuration that
minimises the social cost. Specifically, the PoA is defined as the ratio between the maximum social
cost of ne and the social cost of the optimal configuration. If we were able to prove formally that the
PoA is constant, then we could conclude that the equilibrium configurations in the selfish network
creation games are so good in terms of social cost.

Since the introduction of the classical network creation game by Fabrikant et al. in [12], many efforts
have been done in order to analyse the quality of the resulting equilibrium networks. The constant PoA
conjecture is a well-known conjecture that states that the PoA is constant independently of the price
of the links. In this work we provide a new understanding of the structure of the equilibrium networks
for the classical network creation game [12]. We focus on the equilibria for high-price links and show
that in the case that an equilibrium is not a tree, then the size of any of its biconnected components is
upper bounded by a constant. This is the key ingredient to prove later that, for any small ε > 0, the
PoA is constant for α > n(1 + ε) where α is the price per link and n is the number of nodes.

Let us first define formally the model and related concepts.
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1.1 Model and definitions

The sum classic network creation game Γ is defined by a pair Γ = (V, α) where V = {1, 2, ...., n}
denotes the set of players and α > 0 a positive parameter. Each player u ∈ V represents a node of an
undirected graph and α represents the cost of establishing a link.

A strategy of a player u of Γ is a subset su ⊆ V \ {u}, the set of nodes for which player u
pays for establishing a link. A strategy profile for Γ is a tuple s = (s1, . . . , sn) where su is the
strategy of player u, for each player u ∈ V . Let S be the set of all strategy profiles of Γ . Every
strategy profile s has associated a communication network that is defined as the undirected graph
G[s] = (V, {uv | v ∈ su ∨ u ∈ sv}). Notice that uv denotes the undirected edge between u and v.

Let dG(u, v) be the distance in G between u and v. The cost associated to a player u ∈ V in a
strategy profile s is defined by cu(s) = α|su|+DG[s](u) where DG(u) =

∑
v∈V,v 6=u dG(u, v) is the sum

of the distances from the player u to all the other players in G. As usual, the social cost of a strategy
profile s is defined by C(s) =

∑
u∈V cu(s).

A Nash Equilibrium (ne) is a strategy vector s such that for every player u and every strategy
vector s′ differing from s in only the u component, su 6= s′u, satisfies cu(s) ≤ cu(s′). In a ne s no player
has incentive to deviate individually her strategy since the cost difference cu(s′)− cu(s) ≥ 0. Finally,
let us denote by E the set of all ne strategy profiles. The price of anarchy (PoA) of Γ is defined as
PoA = maxs∈E C(s)/mins∈S C(s).

It is worth observing that in a ne s = (s1, ..., sn) it never happens that u ∈ sv and v ∈ su, for any
u, v ∈ V . Thus, if s is a ne, s can be seen as an orientation of the edges of G[s] where an arc from u to
v is placed whenever v ∈ su. It is clear that a ne s induces a graph G[s] that we call NE graph and we
mostly omit the reference to such strategy profile s when it is clear from context. However, notice that
a graph G can have different orientations. Hence, when we say that G is a ne graph we mean that G
is the outcome of a ne strategy profile s, that is, G = G[s].

Given a graph G we denote by X ⊆ G the subgraph of G induced by V (X). In this way, given a
graph G = G[s] = (V,E), a node v ∈ V , and X ⊆ G, the outdegree of v in X is defined as deg+X(v) =
| {u ∈ V (X) | u ∈ sv} |, the indegree of v in X as deg−X(v) = | {u ∈ V (X) | v ∈ su} |, and, finally, the
degree of v in X as degX(v) = deg+X(v) + deg−X(v). Notice that degX(v) = | {u ∈ V (X) | uv ∈ E} |.
Furthermore, the average degree of X is defined as deg(X) =

∑
v∈V (X) degX(v)/|V (X)|.

Furthermore, remind that in a connected graph G = (V,E) a vertex is a cut vertex if its removal
increases the number of connected components of G. A graph is biconnected if it has no cut vertices.
We say that H ⊆ G is a biconnected component of G if H is a maximal biconnected subgraph of G.
More specifically, H is such that there is no other distinct biconnected subgraph of G containing H
as a subgraph. Given a biconnected component H of G and a node u ∈ V (H), we define S(u) as
the connected component containing u in the subgraph induced by the vertices (V (G) \ V (H)) ∪ {u}.
The weight of a node u ∈ V (H), denoted by |S(u)| is then defined as the number of nodes of S(u).
Notice that S(u) denotes the set of all nodes v in the connected component containing u induced by
(V (G) \V (H))∪{u} and then, every shortest path in G from v to any node w ∈ V (H) goes through u.

In the following sections we consider G to be a ne for α > n and H ⊆ G, if it exists, a non-trivial
biconnected component of G, that is, a biconnected component of G of at least three distinct nodes.
Then we use the abbreviations dG, dH to refer to the diameter of G and the diameter of H, respectively,
(although dG(u, v) denotes the distance between u, v in G), and nH the size of H.

1.2 Historical overview

We now describe the progress around the central question of giving improved upper bounds on the
PoA of the network creation games introduced by Fabrikant et al. in [12].

First of all, let us explain briefly two key results that are used to obtain better upper bounds on
the PoA. The first is that the PoA for trees is at most 5 ([12]). The second one is that the PoA of
any ne graph is upper bounded by its diameter plus one unit ([9]). Using these two results it can be
shown that the PoA is constant for almost all values of the parameter α. Demaine et al. in [9] showed
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constant PoA for α = O(n1−δ) with δ ≥ 1
logn by proving that the diameter of equilibria is constant

for the same range of α. In the view that the PoA is constant for a such a wide range of values of α,
Demaine et al. in [9] conjectured that the PoA is constant for any α. This is what we call the constant
PoA conjecture. More recently, Bilò and Lenzner in [7] demonstrated constant PoA for α > 4n− 13 by
showing that every ne is a tree for the same range of α. For the remaining range Demaine et al. in [9]

determined that the PoA is upper bounded by 2O(
√
logn).

The other important conjecture, the tree conjecture, stated by Fabrikant et al. in [12], still remains
to be solved. The first version of the tree conjecture said that there exists a positive constant A such
that every ne is a tree for α > A. This was later refuted by Albers et al. in [3]. The reformulated tree
conjecture that is believed to be true is for the range α > n. In [20] the authors show an example of
a non-tree ne for the range α = n − 3 and then, we can deduce that the generalisation of the tree
conjecture for α > n cannot be extended to the range α > n(1 − δ) with δ > 0 any small enough
positive constant. Notice that the constant PoA conjecture and the tree conjecture are related in the
sense that if the tree conjecture was true, then we would obtain that the PoA is constant for the range
α > n as well.

Let us describe the progress around these two big conjectures considering first the case of large
values of α and after the case of small values of α.

For large values of α it has been shown constant PoA for the intervals α > n3/2 [17], α > 12n log n
[3], α > 273n [19], α > 65n [20], α > 17n [1] and α > 4n− 13 [7], by proving that every ne for each of
these ranges is a tree, that is, proving that the tree conjecture holds for the corresponding range of α.

The main approach to prove the result in [19, 20, 1] is to consider a biconnected (or 2-edge-connected
in [1]) component H from the ne network, and then to establish non-trivial upper and lower bounds
for the average degree of H, noted as deg(H). More specifically, it is shown that deg(H) ≤ f1(n, α) for
every α ≥ c1n and deg(H) ≥ f2(n, α) for every α ≥ c2n, with c1, c2 constants and f1(n, α), f2(n, α)
functions of n, α. From this it can be concluded that there cannot exist any biconnected component H
for any α in the set {α | f1(n, α) < f2(n, α) ∧ α ≥ max(c1, c2)n}, and thus every ne is a tree for this
range of α.

In [19, 20], to prove the upper bound on the term deg(H) the authors basically consider a BFS tree
T rooted at a node u minimising the sum of distances in H and define a shopping vertex as a vertex
from H that has bought at least one edge of H but not of T . The authors show that every shopping
vertex has bought at most one extra edge and that the distance between two distinct shopping vertices
is lower bounded by a non-trivial quantity that depends on α and n. By combining these two properties
the authors can give an improved upper bound on deg(H) which is close to 2 from above when α is
large enough in comparison to n. On the other hand, to prove a lower bound on deg(H) the authors
show that in H there cannot exist too many nodes of degree 2 close together.

In [1], the authors use the same upper bound as the one in [20] for the term deg(H) but give an
improved lower bound better than the one from [20]. To show this lower bound we introduce the
concept of coordinates and 2-paths. For α > 4n, the authors prove that every minimal cycle is directed
and then use this result to show that there cannot exist long 2−paths.

In contrast, Bilò and Lenzner in [7] consider a different approach. Instead of using the technique of
bounding the average degree, they introduce, for any non-trivial biconnected component H of a graph
G, the concepts of critical pair, strong critical pair, and then, show that every minimal cycle for the
corresponding range of α is directed. The authors play with these concepts in a clever way in order to
reach the conclusion.

In a very preliminary draft [2], we take another perspective and conclude that given ε > 0 any
positive constant, the PoA is constant for α > n(1+ ε). Specifically, in [2], we prove that if the diameter
of a ne graph is larger than a given positive constant, then the graph must be a tree. Such proposal
represents an interesting approach to the same problem but the calculations and the proofs are very
involved and hard to follow. In this work we present in a clear and elegant way the stronger result that,
for the same range of α, the size of any biconnected component of any non-tree ne is upper bounded
by a constant.
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For small values of α, among the most relevant results, it has been proven that the PoA is constant
for the intervals α = O(1) [12], α = O(

√
n) [3, 17] and α = O(n1−δ) with δ ≥ 1/ log n [9].

The most powerful technique used in these papers is the one from Demaine et al. in [9]. They show
that the PoA is constant for α = O(n1−δ) with δ > 1/ log n, by studying a specific setting where some
disjoint balls of fixed radius are included inside a ball of bigger radius. Considering the deviation that
consists in buying the links to the centers of the smaller balls, the player performing such deviation
gets closer to a majority of the nodes by using these extra bought edges (if these balls are chosen
adequately). With this approach it can be shown that the size of the balls grows in a very specific way,
from which then it can be derived the upper bounds for the diameter of equilibria and thus for the
PoA.

1.3 Our contribution

Let us consider a weaker version of the tree conjecture that considers the existence of biconnected
components in a ne having some specific properties regarding their size.

Conjecture 1 (The biconnected component conjecture). For α > n, any biconnected component of a
non-tree ne graph has size at most a prefixed constant.

Let ε > 0 be any positive constant. We show that the restricted version of this conjecture where
α > n(1 + ε) is true (Section 5, Theorem 3). This result jointly with dG ≤ dH + 250 (Theorem 1,
Section 4) for α > n, whenever H exists, imply that dG is upper bounded by a prefixed constant, too.
Recall that, the diameter of any graph plus one unit is an upper bound on the PoA and the price of
anarchy for trees is constant. Hence, we can conclude that the PoA is constant for α > n(1 + ε).

In order to show these results, we introduce a new kind of sets, the A sets, satisfying some interesting
properties and we adapt some well-known techniques and then, combine them together in a very
original way. Let us describe the main ideas of our approach:

– Inspired by the technique considered in [9] which is used to relate the diameter of G with the size
of G, we obtain an analogous relation between the diameter of H and the size of H (Section 3,

Proposition 4), that can be expressed as dH = 2O(
√
lognH).

– We improve the best upper bound known on deg(H) (Section 5, Theorem 2). We show this crucial
result by using a different approach than the one used in the literature. We consider a node
u ∈ V (H) minimising the sum of distances and, instead of lower bounding the distance between
two shopping vertices, we introduce and study a natural kind of subsets, the A sets (Section
2). Each A set corresponds to a node v ∈ V (H) and a pair of edges e1, e2 where v ∈ V (H) and
e1, e2 ∈ E(H) are two links bought by v. The A sets play an important role when upper bounding
the cost difference of player v associated to the deviation of the same player that consists in
selling e1, e2 and buying a link to u (Section 2, Proposition 1 and Proposition 2). By counting the
cardinality of these A sets we show that the term deg(H) can be upper bounded by an expression
in which the terms n, α, nH , and dH appear (Section 2, Proposition 3). By using the relation

dH = 2O(
√
lognH) we can refine the upper bound for the deg(H) even more. Subsequently, we

consider the technique used in [19, 20, 1], in which lower and upper bounds on the average degree
of H are combined to reach a contradiction whenever H exists, i.e. whenever G is a non-tree ne
graph.

2 An upper bound for deg(H) in terms of the size and the diameter of H

Remind that in all the sections we consider that G is a ne of a network creation game Γ = (V, α)
where α > n. If G is not a tree then we denote by H a maximal biconnected component of G.

In this section we give an intermediate upper bound for the term deg(H) that will be useful later
to derive the main conclusion of this paper.
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Let u ∈ V (H) be a prefixed node and suppose that we are given v ∈ V (H) and e1 = (v, v1), e2 =
(v, v2) two links bought by v. The A set of v, e1 = (v, v1), e2 = (v, v2), noted as Ae1,e2(v), is the subset
of nodes z ∈ V (G) such that every shortest path (in G) starting from z and reaching u goes through v
and the predecessor of v in any such path is either v1 or v2.

Therefore, notice that v 6∈ Ae1,e2(v) and the following remark always hold:

Remark 1. Let e1, e2, e
′
1, e
′
2 be four distinct edges such that e1, e2 are bought by v and e′1, e

′
2 are bought

by v′. If dG(u, v) = dG(u, v′) then the A set of v, e1, e2 and the A set of v′, e′1, e
′
2 are disjoint even if

v = v′.

Notice that the definition of the A sets depends on u ∈ V (H), a prefixed node. For the sake of
simplicity we do not include u in the notation of the A sets. Proposition 1 and Proposition 2 are stated
for any general u ∈ V (H) but in Corollary 1 we impose that u minimises the function DG(·) in H.

For any i = 1, 2, we define the Ai set of v, e1 = (v, v1), e2 = (v, v2), noted as Aie1,e2(v), the subset
of nodes z from Ae1,e2(v) for which there exists a shortest path (in G) starting from z and reaching u
such that goes through v and the predecessor of v in such path is vi.

With these definitions, Ae1,e2(v) = A1
e1,e2(v)∪A2

e1,e2(v) and Aie1,e2(v) = ∅ iff dG(u, vi) = dG(u, v)−1

or dG(u, vi) = dG(u, v). Furthermore, the subgraph induced by Aie1,e2(v) is connected whenever

Aie1,e2(v) 6= ∅.
Now, suppose that e1, e2 ∈ E(H) and think about the deviation of v that consists in deleting

ei for i = 1, 2 and buying a link to u. Let ∆C be the corresponding cost difference and define
crossings(X,Y ) for subsets of nodes X,Y ⊆ V (G) to be the set of edges xy with x ∈ X, y ∈ Y .
Then we derive formulae to upper bound ∆C in the two only possible complementary cases: (i)
crossings(A1

e1,e2(v), A2
e1,e2(v)) 6= ∅ and (ii) crossings(A1

e1,e2(v), A2
e1,e2(v)) = ∅.

In case (i), A1
e1,e2(v), A2

e1,e2(v) 6= ∅ so that the subgraphs induced by A1
e1,e2(v), A2

e1,e2(v) are both
connected. This trivially implies that the graph induced by Ae1,e2(v) = A1

e1,e2(v)∪A2
e1,e2(v) is connected

as well. Therefore, since H is biconnected and e1, e2 ∈ E(H) by hypothesis, there must exist at least
one connection distinct from e1, e2 joining Ae1,e2(v) with its complement. Taking this fact into the
account we obtain the following result:

Proposition 1. Let us assume that crossings(A1
e1,e2(v), A2

e1,e2(v)) 6= ∅ and xy is any connection
distinct from e1, e2 between Ae1,e2(v) and its complement, with x ∈ Ae1,e2(v). Furthermore, let l be the
distance between v1, v2 in the subgraph induced by Ae1,e2(v). Then ∆C, the cost difference for player v
associated to the deviation of the same player that consists in deleting e1, e2 and buying a link to u,
satisfies the following inequality:

∆C ≤ −α+ n+DG(u)−DG(v) + (2dG(v, x) + l)|Ae1,e2(v)|
Proof. The term −α is clear because we are deleting the two edges e1, e2 and buying a link to u. Now
let us analyse the difference of the sum of distances in the deviated graph G′ vs the original graph. For
this purpose, suppose wlog that x ∈ A1

e1,e2(v) and let z be any node from G. We distinguish two cases:
(A) If z 6∈ Ae1,e2(v) then:
(1) Starting at v, follow the connection vu.
(2) Follow a shortest path from u to z in the original graph.
In this case we have that:

dG′(v, z) ≤ 1 + dG(u, z)

(B) If z ∈ Ae1,e2(v) then there exists some i such that z ∈ Aie1,e2(v). Consider the following path
(see the figure below for clarifications):

(1) Starting at v, follow the connection vu, which corresponds to one unit distance.
(2) Follow a path from u to y contained in the complementary of Ae1,e2(v). Since y 6∈ Ae1,e2(v)

we have that dG(u, y) ≤ dG(u, v) + dG(v, x) + 1. Therefore, in this case we count at most dG(u, v) +
dG(v, x) + 1 unit distances.
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Fig. 1. The new path from z to v in the deviated graph G′

(3) Cross the connection yx, which corresponds to one unit distance.
(4) Go from x to v1 inside Ae1,e2(v) giving exactly dG(x, v)− 1 unit distances.
(5) Go from v1 to vi inside Ae1,e2(v) giving at most l unit distances.
(6) Go from vi to z inside Ae1,e2(v) giving exactly dG(v, z)− 1 unit distances.
In this case we have that:

dG′(v, z) ≤
(1)︷︸︸︷
1 +

(2)︷ ︸︸ ︷
dG(u, v) + dG(v, x) + 1 +

(3)︷︸︸︷
1 +

(4)︷ ︸︸ ︷
dG(x, v)− 1 +

(5)︷︸︸︷
l +

(6)︷ ︸︸ ︷
dG(v, z)− 1

=1 + dG(u, z) + (2dG(v, x) + l)

Combining the two inequalities we reach the conclusion:

∆C ≤ −α+
∑

z∈V (G)

(dG′(v, z)− dG(v, z)) ≤ −α+ n+DG(u)−DG(v) + (2dG(v, x) + l)|Ae1,e2(v)|

�
In case (ii), we assume that crossings(A1

e1,e2(v), A2
e1,e2(v)) = ∅. Since H is biconnected and

e1, e2 ∈ E(H) by hypothesis, for each i such that Aie1,e2(v) 6= ∅ there must exist at least one connection

distinct from ei joining Aie1,e2(v) with its complement. Taking this fact into the account we obtain the
following result:

Proposition 2. Let us assume that crossings(A1
e1,e2(v), A2

e1,e2(v)) = ∅ and let I ⊆ {1, 2} be the

subset of indices i for which Aie1,e2(v) 6= ∅. Furthermore, suppose that for each i ∈ I, xiyi is any

connection distinct from ei between Aie1,e2(v) and its complement, with xi ∈ Aie1,e2(v). Then ∆C, the
cost difference of player v associated to the deviation of the same player that consists in deleting e1, e2
and buying a link to u, satisfies the following inequality:

∆C ≤ −α+ n+DG(u)−DG(v) + max(0, 2 max
i∈I

dG(v, xi))|Ae1,e2(v)|

Proof. The term −α is clear because we are deleting e1, e2 and buying a link to u. Now let us analyse
the difference of the sum of distances in the deviated graph G′ vs the original graph. To this purpose,
let z be any node from G. We distinguish two cases:

(A) If z 6∈ Ae1,e2(v) then:
(1) Starting at v, follow the connection vu.
(2) Follow a shortest path from u to z in the original graph.
In this case we have that:

dG′(v, z) ≤ 1 + dG(u, z)

(B) If z ∈ Ae1,e2(v) then there exists some i such that z ∈ Aie1,e2(v). Consider the following path:
(1) Starting at v, follow the connection vu, which corresponds to one unit distance.
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(2) Follow a path from u to y contained in the complementary of Ae1,e2(v). Since y 6∈ Ae1,e2(v)
we have that dG(u, y) ≤ dG(u, v) + dG(v, xi) + 1. Therefore, in this case we count at most dG(u, v) +
dG(v, xi) + 1 unit distances.

(3) Cross the connection yixi, which corresponds to one unit distance.
(4) Go from xi to vi giving exactly dG(xi, v)− 1 unit distances.
(5) Go from vi to z giving exactly dG(v, z)− 1 unit distances.
In this case we have that:

dG′(v, z) ≤
(1)︷︸︸︷
1 +

(2)︷ ︸︸ ︷
dG(u, v) + dG(v, x) + 1 +

(3)︷︸︸︷
1 +

(4)︷ ︸︸ ︷
dG(xi, v)− 1 +

(5)︷ ︸︸ ︷
dG(v, z)− 1

=1 + dG(u, z) + 2dG(v, xi)

Combining the two inequalities we reach the conclusion:

∆C ≤ −α+
∑

z∈V (G)

(dG′(v, z)−dG(v, z)) ≤ −α+n+DG(u)−DG(v)+max(0, 2 max
i∈I

dG(v, xi))|Ae1,e2(v)|

�
Now, notice the following simple fact:

Remark 2. If z1, z2 ∈ V (H) then any shortest path from z1 to z2 is contained in H. This is because
otherwise, using the definition of cut vertex, any such path would visit two times the same cut vertex
thus contradicting the definition of shortest path. Therefore, if z1, z2 ∈ V (H) then dG(z1, z2) =
dH(z1, z2) ≤ dH .

Combining the formulae from Proposition 1 and Proposition 2 together with this last remark, we
can obtain a lower bound for the cardinality of any A set of v, e1, e2 when u satisfies a very specific
constraint:

Corollary 1. If u ∈ V (H) is such that DG(u) = minz∈V (H) {DG(z)}, then |Ae1,e2(v)| ≥ α−n
4dH

Proof. Let us analyse the properties that are fulfilled for the distinct elements in this setting:
First, u minimises the sum of distances on V (H). Therefore, DG(u)−DG(v) ≤ 0 for any v ∈ V (H).
Now, let xy be any crossing between Ae1,e2(v) and its complement with x in Ae1,e2(v) and y in

the complementary of Ae1,e2(v). Consider also x′, y′ be the nodes from V (H) such that x ∈ S(x′) and
y ∈ S(y′). If z ∈ V (H), then either S(z) is a subset of Ae1,e2(v), if z ∈ Ae1,e2(v), or S(z) is a subset
of the complementary of Ae1,e2(v) otherwise, by the definition of the A sets and by the definition
of cut vertex. Therefore, S(x′) is a subset of Ae1,e2(v) and S(y′) is a subset of the complementary
of Ae1,e2(v). Furthermore, by the definition of biconnected component, any crossing or connection
between S(z1) and S(z2) with z1, z2 ∈ V (H) and z1 6= z2, if it exists, must definitely be z1z2. Therefore,
x = x′, y = y′ and as a result x, y ∈ V (H). Then by Remark 2, the distance from x to v is at most dH .
In a similar way, it can be deduced that if xiyi is any crossing between Aie1,e2(v) and its complement,
then xi, yi ∈ V (H) and therefore, the distance from xi to v is at most dH . As a conclusion, both
expressions dG(v, x) and dG(v, xi), appearing in the formulae from Proposition 1 and Proposition 2,
respectively, are at most dH .

Moreover, whenever e1, e2 ∈ E(H) and crossings(A1
e1,e2(v), A2

e1,e2(v)) 6= ∅, any shortest path
connecting v1 and v2 inside Ae1,e2(v) is contained in H and has length at most 2dH . This implies that
the expression l appearing in the formula from Proposition 1 is at most 2dH .

With all these results, we deduce that, the expressions multiplying |Ae1,e2(v)| in the rightmost term
of the two inequalities from Proposition 1 (2dG(v, x)+ l) and Proposition 2 (max(0, 2 maxi∈I dG(v, xi)))
can be upper bounded by 4dH .

Imposing that G is a ne then we obtain the conclusion.
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�
Now we use this last formula to give an upper bound for the average degree of H. Recall that we

are working in the range α > n:

Proposition 3.

deg(H) ≤ 2 +
16dH(dH + 1)n

nH(α− n)

Proof. For any node v ∈ V (H) let Z(v) be any maximal set of distinct and mutually disjoint pairs
of edges from H bought by v. Let X be defined as the set of tuples ({e1, e2} , v) with v ∈ V (H) and
{e1, e2} a pair of edges from Z(v). Now define S =

∑
({e1,e2},v)∈X |Ae1,e2(v)|. On the one hand, using

Corollary 1:

S ≥ α− n
4dH

|X|

On the other hand, for each distance index i, let Si be the sum of the cardinalities of the A sets for
all the tuples ({e1, e2} , v) ∈ X with dG(u, v) = i. By Remark 1, Si ≤ n. Therefore:

|X|α− n
4dH

≤ S = S0 + ...+ SdH ≤ n(dH + 1)

Next, notice that there are exactly bdeg
+
H(v)

2 c pairs in Z(v) for each v considered. Furthermore,

bdeg
+
H(v)

2 c = deg+H(v)/2 if deg+H(v) is even and bdeg
+
H(v)

2 c = (deg+H(v)− 1)/2 otherwise. Hence:

|X| ≥
∑

v∈V (H)

deg+H(v)− 1

2
=
|E(H)| − |V (H)|

2

Finally:

deg(H) =
2|E(H)|
|V (H)| ≤ 2 +

4|X|
|V (H)| ≤ 2 +

16(dH + 1)ndH
nH(α− n)

�

3 The diameter of H vs the number of nodes of H

In this section we establish a relationship between the diameter and the number of the vertices of H
which allows us to refine the upper bound for the term deg(H) using the main result of the previous
subsection.

We start extending the technique introduced by Demaine et al in [9]. Instead of reasoning in
a general G, we focus our attention to the nodes from H reaching an analogous result. Since for
α > 4n− 13 every ne is a tree it is enough if we study the case α < 4n.

For any integer value k and u ∈ V (H) we define Nk,H(u) = {v ∈ V (H) | dG(u, v) ≤ k}, the set
of nodes from V (H) at distance at most k from u. With this definition in mind then Sk(u) =
∪v∈Nk,H(u)S(v) is the set of all nodes inside S(v) for all v ∈ V (H) at distance at most k from u. In
other words, Sk(u) is the set of all nodes z such that the first cut vertex that one finds when following
any shortest path from z to u is at distance at most k from u.

Furthermore, for any integer k we define mk = minu∈V (H) |Nk,H(u)|. That is, mk is the minimum
cardinality that any k-neighbourhood in H can have.

Lemma 1. Let H be a biconnected component of G. For any integer k ≥ 0, either there exists a node
u ∈ V (H) such that |S4k+1(u)| > n/2 or, otherwise, m5k+1 ≥ mkk/4.
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Proof. If there is a vertex u ∈ V (H) with |S4k+1(u)| > n/2, then the claim is obvious. Otherwise, for
every vertex u ∈ V (H), |S4k+1(u)| ≤ n/2. Let u be any node from V (H) minimising the cardinality of
the balls of radius 5k+1 intersected with V (H). That is, u is any node from V (H) with |N5k+1,H(u)| =
m5k+1. Let Z = {v1, ..., vl} be any maximal set of nodes from V (H) at distance 4k + 1 from u (in H)
with the property that every two distinct nodes vi, vj ∈ Z, we have that dG(vi, vj) ≥ 2k + 1 (see the
left picture from Figure 2 for a visual clarification).

Now, consider the deviation of u that consists in buying the links to every node from Z and let G′

be the new graph resulting from such deviation. Let z ∈ S(w) with w ∈ V (H) and dG(w, u) ≥ 4k + 1
and consider any shortest path (in H) from w to u. Let wπ be the node from any such shortest path
at distance 4k + 1 from u. By the maximality of Z there exists at least one node vw ∈ Z for which
dG(vw, wπ) ≤ 2k. The original distance between z and u is dG(z, u) = dG(z, w) + dG(w, u). In contrast,
the distance between z and u in G′ satisfies the following inequality (see the right picture from Figure
2 for a visual clarification):

dG′(z, u) ≤ 1 + dG(vw, wπ) + dG(wπ, w) + dG(w, z)

≤ 1 + 2k + (dG(u,w)− (4k + 1)) + dG(w, z) = −2k + dG(u,w) + dG(w, z)

v1

v2

vl

u

k

4k + 1
5k + 1

vw

u

k

4k + 1
5k + 1

wπ

w

Fig. 2. The setting of nodes from the proof (left) and the alternative path from w to u in the deviated graph
(right)

Therefore, dG(z, u)− dG′(z, u) ≥ 2k. Since we are assuming that |S4k+1(u)| ≤ n/2 then this means
that

∑
{v∈V (H)|dG(v,u)>4k+1} |S(v)| ≥ n/2, that is, the sum of the weights of the nodes from H at

distance strictly greater than 4k + 1 from u is greater than or equal n/2. Then ∆C, the cost difference
for u associated to such deviation, satisfies:

∆C ≤ lα− 2k
(n

2

)
≤ 4nl − kn

Since G is a ne then from this we conclude that l ≥ k/4.
Finally, notice that the distance between two nodes in Z is at least 2k + 1 implying that the

set of all the balls of radius k with centers at the nodes from Z are mutually disjoint. Therefore,
m5k+1 = |N5k+1,H(u)| ≥ lmk ≥ mkk/4.

�

Lemma 2. If r < dH/4− 4 then |Sr(u)| ≤ n/2 for every node u ∈ V (H).

Proof. Suppose the contrary and we reach a contradiction, that is, suppose that there exists some
u ∈ V (H) with |Sr(u)| > n/2 and r < dH/4− 4. Let t ∈ V (H) be any node at distance dH/2 from u,
which always exists. We consider the deviation of t that consists in buying a link to u and we define G′

to be the new graph resulting from such deviation. Let z ∈ Sr(u) with w ∈ V (H) such that z ∈ S(w).
The distance between t and w in G is at least dH/2 − r so the distance between t and z in G is at
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least dH/2 − r + dG(w, z). In contrast, the distance between t and w in G′ is at most 1 + r, so the
distance between t and z in G′ is at most 1 + r + dG(w, z). Therefore:

dG(z, t)− dG′(z, t) ≥ dH/2− 2r − 1 > dH/2− 2(dH/4− 4)− 1 = 7

Then dG(z, t)−dG′(z, t) ≥ 8 and thus ∆C, the cost difference of t associated to such deviation, satisfies:

∆C ≤ α− 8|Sr(u)| ≤ 4n− 8|Sr(u)| < 4n− 8

2
n = 0

A contradiction with the fact that G is a ne.

�
Combining these results we are able to give an extension of the result from Demaine et al in [9]:

Proposition 4. dH < 5
√

2 log5 nH+5.

Proof. Consider the following sequence of numbers (ai)i≥0 defined in the following way:
(i) a0 = 21.
(ii) ai+1 = 5ai + 1 for i ≥ 0.

It is easy to check that ak = 21 · 5k + 5k−1
5−1 for any k ≥ 0 so that 22 · 5k > ak ≥ 21 · 5k. With this

definition and using the two previous results we reach the conclusion that whenever 4ai+ 1 < dH/4− 4,
then |S4ai+1(u)| ≤ n/2 for all u ∈ V (H), by Lemma 2, implying mai+1

≥ mai
ai
4 , by Lemma 1. Iterating

the recurrence relation we can see that whenever i ≥ 0 and 4ai + 1 < dH/4− 4, then:

mai+1
≥ aiai−1...a1a0

4i+1
ma0

Since a0 = 21 then ma0 ≥ 21. Therefore:

mai+1
≥ 21

(
21

4

)i+1

5i+(i−1)+...+1+0 > 5i
2/2

Now, consider the value k such that 4ak + 1 < dH/4 − 4 ≤ 4ak+1 + 1. On the one hand, nH ≥
mak+1

> 5k
2/2 so this implies that k ≤

√
2 log5 nH . On the other hand, dH/4 ≤ 4ak+1 +5 < 22 ·4 ·5k+1.

Therefore, dH < 5k+5 ≤ 5
√

2 log5 nH+5, as we wanted to see.

�

4 The diameter of G vs the diameter of H.

In this section we establish a relationship between the diameter of G and the diameter of H when
α > n. Since for α > 4n− 13 every ne is a tree it is enough if we study the case n < α < 4n.

We show that in this case, the distance between any pair w, z ∈ V (G) where z ∈ S(w), is upper
bounded by 125 from where we can conclude that dG < dH + 250. To obtain these results we basically
exploit the fact that G is a ne graph together with key topological properties of biconnected components:

Proposition 5. Let w ∈ V (H) and z ∈ S(w) maximising the distance to w. Then dG(z, w) < 125.

Proof. Let Z be the subgraph of G induced by S(w) and W the subgraph of G induced by w
together with the set of nodes V (G) \ S(w). Then, define r = dG(z, w) = maxt∈V (Z) dG(w, t), s =
maxt∈V (W ) dG(w, t) (see the figure below for clarifications). With these definitions it is enough to show
that r < 125. Notice that, for instance, if S(w) = {w} then the result trivially holds.
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w

W

sz r

Z

Fig. 3. The most important subsets, nodes and distances from the setting.

First, let us see that min(r, s) ≤ 8.
Let v any node maximising the distance to w in W and ∆C1 and ∆C2 the corresponding cost

differences of players z and v, respectively, associated to the deviations of the same players that consist
in buying a link to w. Then:

∆C1 ≤ α− |V (W )|(r − 1)

∆C2 ≤ α− |V (Z)|(s− 1)

Adding up the two inequalities and using that α < 4n:

∆C1 +∆C2 ≤ 2α− (min(r, s)− 1)(|V (Z)|+ |V (W )|) < 8n− (min(r, s)− 1)n

Since G is a ne graph then ∆C1 + ∆C2 ≥ 0 and from here we deduce that min(r, s) ≤ 8, as we
wanted to see.

If r ≤ 8 then we are done. Therefore we must address the case s ≤ 8.
Next, since H is a non-trivial biconnected component, there exist nodes t, t′ ∈ V (H) such that they

are adjacent in H, t has bought the link e = (t, t′) and one of the two following cases happen: either
(i) t is at distance 1 from w, t′ is at distance 1 or 2 from w or (ii) t′ is at distance 1 from w and t at
distance 2 from w (see the figure below for a clarification).

w

WZ

t

tt′
Case (ii)

Case (i)
t′

t′

Fig. 4. An image depicting the setting for case (i) and case (ii).

In case (i) we deduce that |S(w)| = |V (Z)| ≤ n 4s−2
4s−1 ≤ n 30

31 . This is because of the following
reasoning. Let ∆Cdelete be the corresponding cost difference of player t associated to the deviation
of the same player that consists in deleting the edge e. Since H is biconnected then there exists a
loop going through e and contained in H of length at most 4s+ 1. Notice that when deleting e, t only
increases the distances maybe to the nodes from V (W ) \ {w} but not to the nodes from V (Z) by at
most 4s− 1 distance units. Therefore:

∆Cdelete ≤ −α+ (4s− 1)(n− |V (Z)|) < −n+ (4s− 1)(n− |V (Z)|)
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Since G is a ne graph then ∆Cdelete ≥ 0 and from here, using the hypothesis s ≤ 8, we deduce the
conclusion:

|V (Z)| < −n+ n(4s− 1)

4s− 1
= n

4s− 2

4s− 1
≤ 30

31
n

In case (ii) we deduce that |S(w)| = |V (Z)| ≤ n/2. This is because of the following reasoning. Let
∆Cswap be the corresponding cost difference of player t associated to the deviation of the same player
that consists in swapping the edge e for the link (t, w). Notice that when performing such swap, t only
increases the distances maybe to the nodes from V (W ) \ {w} but strictly decreases for sure, one unit
distance to all the nodes from V (Z). Therefore:

∆Cswap ≤ −|V (Z)|+ (n− |V (Z)|) ≤ n− 2|V (Z)|
Since G is a ne graph then ∆Cswap ≥ 0 and from here we deduce the conclusion |V (Z)| ≤ n/2.
Hence, we have obtained that either |S(w)| ≤ 30

31n, in case (i), or |S(w)| ≤ n
2 , in case (ii).

Finally, consider the deviation of z that consists in buying the link to w. Then the corresponding
cost difference ∆Cbuy satisfies the following inequality:

∆Cbuy ≤ α− (r − 1)(n− |S(w)|) < 4n− (r − 1)(n− |S(w)|)
Since G is a ne graph, then ∆Cbuy ≥ 0 so that we conclude that r < 4n

n−|S(w)| + 1. Using this

property we conclude that r < 125 in case (i) and r ≤ 8 in case (ii), so we are done.

�
As a consequence:

Theorem 1. dG < dH + 250.

5 Combining the results

Finally, in this section we combine the distinct results obtained so far to prove the main conclusion.
On the one hand, combining Proposition 3 with Proposition 4 we reach the following result for the

average degree of H:

Theorem 2.

deg(H) < 2 +
16n

α− n
52
√

2 log5 nH+10

nH

On the other hand, recall that from Lemma 4 and Lemma 2 from [19] and [20], respectively, the
general lower bound deg(H) ≥ 2 + 1

16 that works for any α can be obtained.
With these results in mind we are now ready to prove the following strong result:

Theorem 3. Let ε > 0 be any positive constant and α > n(1 + ε). There exists a constant Kε such
that every biconnected component H from any non-tree Nash equilibrium G has size at most Kε.

Proof. Let G be any non-tree ne graph. Then there exists at least one biconnected component H. By

Theorem 2 when α > n(1+ ε) we have that deg(H) < 2+ 16
ε

52
√

2 log5 nH+10

nH
. On the other hand, we know

that for any α, deg(H) ≥ 2 + 1
16 . Then this implies that there exists a constant Kε upper bounding

the size of H, otherwise we would obtain a contradiction comparing the asymptotic behaviour of the
upper and lower bounds obtained for deg(H) in terms of nH .

�
In other words, the biconnected component conjecture holds for α > n(1 + ε).
Furthermore, recall that it is well-known that the diameter of any graph plus one unit is an upper

bound for the PoA and the PoA for trees is constant. Therefore, we conclude that:
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Theorem 4. Let ε > 0 be any positive constant. The price of anarchy is constant for α > n(1 + ε).

Proof. LetG be a ne. IfG is a tree we are done, because the PoA for trees is at most 5. Therefore to prove
the result consider that G is a non-tree configuration. Then, G has at least one non-trivial biconnected
component H. On the one hand, by Theorem 3, there exists a constant Kε that upper bounds the size
of H. This implies that dH ≤ nH ≤ Kε. On the other hand, by Theorem 1, dG ≤ dH + 250. In this
way, dG ≤ Kε + 250 and since Kε + 250 is a constant, then the conclusion follows because the PoA is
upper bounded by the diameter plus one unit.

�

6 The conclusions

The most relevant contribution we have made in this article is to show that the price of anarchy is
constant for α > n(1+ε). We have not been able to prove the tree conjecture for α > n by showing that
there cannot exist any non-trivial biconnected component H for the same range of α. Instead, we have
proved that for α > n(1 + ε), if H exists, then it has a constant number of nodes. This property implies
constant PoA for the same range of α. The technique we have used relies mostly on the improved upper
bound on the term deg(H) for α > n. However, as in [19, 20], our refined upper bound still depends
on the term n/(α− n), that tends to infinity when α approaches n from above. This makes us think
that either our technique can be improved even more to obtain the conclusion that the tree conjecture
claims or it might be that there exist some non-tree equilibria when α approaches n from above.
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Chapter 4

The Diameter of Distance Uniform
Graphs

4.1 Summary

In the previous chapter we have shown that in the sum ncg, for any positive constant ε > 0 the
PoA is constant for α > n(1+ε). In order to investigate what happens in the range of α in which
we do not still know whether the PoA is constant, we study the diameter of distance-uniform
graphs which are closely related to equilibria in the sum ncg for the range α < n/C with C > 4
a constant. In the following we explain briefly how this class of graphs were introduced and
why they are relevant to the network creation games.

In [2] Alon et al. introduce a new network creation game, the sum basic network creation
game, with no parameter α and in which every node wishes to minimise its average distance to
all the other nodes. An equilibrium for this model is called a sum basic equilibrium graph and
it is defined as an undirected graph G for which every edge uv and every node w, swapping the
edge uv with the edge uw does not strictly decrease the total sum of distances from u to all
other nodes.

In the same work, the authors study the diameter of such sum basic equilibria. To this end,
they introduce the so called distance-uniform graphs. Specifically, given any ε we say that a
graph G is ε-distance-uniform (and ε−distance-almost-uniform) iff there exists a distance index
d, which is called the critical distance, such that for every node u ∈ V (G) the size of any subset
of nodes at distance d (and d or d+ 1) is at least n(1− ε), where n is the size of G.

An interesting result from [2], Theorem 13, is that high-diameter sum basic equilibrium
graphs are related to distance-uniform graphs. More precisely, every sum basic equilibrium
graph G with n nodes, n ≥ 24 and diameter d > 2 log n induces an ε−distance-almost-uniform
graph G′ with n vertices and diameter Θ(εd/ log n) and an ε−distance-uniform graph G′′ with
n vertices and diameter Θ(εd/ log2 n). When the authors say that G induces a graph G′ they
mean that G′ is the xth power of G, G′ = Gx for some x ≥ 1.

Using the simple relationship that exists between the diameter of the kth power of G (k ≥ 1)
with respect the diameter of G, diam(Gk) = ddiam(G)/ke, then, upper bounding the diameter
of distance-uniform graphs allows us to upper bound the diameter of sum basic equilibrium
graphs. With this in mind, the authors propose the following conjecture for distance-uniform
graphs that would imply poly-logarithmic diameter for equilibria for the sum basic network
creation game:

Conjecture 14 [2]. Distance-almost-uniform graphs have diameter O(log n)

In [7], we show that for any constant C > 4 and α < n/C, the 4th power of any ne in the
sum ncg is an ε−distance-almost-uniform graph. If Conjecture 14 was true then, using the
relationship between the diameter and the PoA in the sum ncg, we would have that, for any
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constant C > 4 and α < n/C, PoA = O(log n), improving in this way the best upper bound
known of 2O(

√
logn).

Motivated by all these considerations we study the diameter of distance-uniform graphs. It
is not hard to see that the diameter and critical distance of distance-almost-uniform graphs are
closely related. Let G be an ε−distance-almost-uniform graph and let d be its critical distance.
Let us see that if d < diam(G)/2−1 then ε ≥ 1/2. If u, v ∈ V (G) such that dG(u, v) = diam(G)
then, (Ad(u) ∪Ad+1(u)) ∩ (Ad(v) ∪Ad+1(v)) = ∅ and therefore, n > |Ad(u)| + |Ad+1(u)| +
|Ad(v)|+ |Ad+1(v)|. Since G is ε−distance-almost-uniform we have that |Ad(u)|+ |Ad+1(u)|+
|Ad(v)|+ |Ad+1(v)| ≥ 2n(1−ε). Hence, we can conclude that if ε < 1/2 then the critical distance
d satisfies the relation d ≥ diam(G)/2− 1.

Therefore, since we are mostly interested in the asymptotics, we study the critical distance as
a function of n, ε, instead of studying directly the diameter. Specifically, my main contribution
in the paper presented in this chapter shows that in any ε-distance-almost-uniform graph with

n nodes, the critical distance d satisfies d = 2O(logn/ log(ε−1)). Furthermore, in the same article,
it is also proved that for every ε with 1

n ≤ ε ≤ 1
logn there exist ε-distance-uniform graphs with

n nodes, such that the critical distance d satisfies d = 2Ω(logn/ log(ε−1)).

Therefore, Conjecture 14 is false and thus, we cannot conclude that PoA = O(log n) for the
sum ncg when α < n/C with C > 4, at least, going through this direction. However, we have
discovered interesting topological properties satisfied by distance-uniform graphs that can help
us to better understand the topology of equilibria for our sum ncg when α < n/C with C > 4.

4.2 Article: Distance-Uniform Graphs with Large Diameter

M. Lavrov, P.S. Loh, A. Messegué. “Distance-Uniform Graphs with Large Diameter”. SIAM
Journal on Discrete Mathematics 33(2) 994–1005, 2019.
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Distance-Uniform Graphs with Large Diameter

Mikhail Lavrov∗ Po-Shen Loh† Arnau Messegué‡
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Abstract

An ε-distance-uniform graph is one with a critical distance d such that from every vertex, all
but at most an ε-fraction of the remaining vertices are at distance either d or d+ 1. Motivated
by the theory of network creation games, Alon, Demaine, Hajiaghayi, and Leighton made the
following conjecture of independent interest: that every ε-distance-uniform graph (and, in fact,
a broader class of ε-distance-almost-uniform graphs) has critical distance at most logarithmic in
the number of vertices n. We disprove this conjecture, and characterize the asymptotics of this
extremal problem. Specifically, for 1

n ≤ ε ≤ 1
log n , we construct ε-distance-uniform graphs with

critical distance 2
Ω( logn

log ε−1 )
. We also prove an upper bound on the critical distance of the form

2
O( logn

log ε−1 )
for all ε and n. Our lower bound construction introduces a novel method inspired by

the Tower of Hanoi puzzle, and may itself be of independent interest.

1 Introduction

Much research has focused on combinatorial objects featuring some form of regularity or unifor-
mity. These have produced vast bodies of literature ranging across error-correcting codes, strongly
regular graphs, graphs from algebraic constructions, and probabilistic constructions. The con-
structions themselves often challenge human creativity, as the search space of discrete systems is
exponential.

This paper studies a more generous notion of uniformity, which was introduced by Alon, Demaine,
Hajiaghayi, and Leighton in [2]. There, they were motivated by the analysis of network creation
games, but raised this as a deeper, purely graph-theoretic problem of independent interest. We say
that an n-vertex graph is ε-distance-uniform for some parameter ε > 0 if there is a value d, called
the critical distance, such that, for every vertex v, all but at most εn of the other vertices are at
distance exactly d from v. Distance-uniform graphs exist for some, but not all, possible triplets
(n, ε, d); a trivial example is the complete graph Kn, which is distance-uniform with ε = 1

n and
d = 1. So it is natural to try to characterize which triplets (n, ε, d) are realizable as distance-uniform
graphs.

∗University of Illinois at Urbana-Champaign, Department of Mathematics. E-mail: mlavrov@illinois.edu.
†Carnegie Mellon University, Department of Mathematical Sciences. E-mail: ploh@cmu.edu.
‡Polytechnic University of Catalonia, Computer Science Department. E-mail: amessegue@cs.upc.edu.
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More generally, we consider ε-distance-almost-uniform graphs. Here, the definition is relaxed to
only require that all but εn of the other vertices are at distance exactly d or exactly d+ 1 from v.
All distance-uniform graphs are distance-almost-uniform, but distance-almost-uniform graphs are
occasionally easier to construct. We prove results for distance-almost-uniform graphs in cases where
this is more general.

1.1 From network creation games to distance uniformity

The concept of ε-distance-uniformity is interesting from multiple perspectives, both theoretical and
applied. In the applied domain, it turns out that equilibria in a certain network creation game can
be used to construct distance-uniform graphs. As a result, understanding distance-uniform graphs
tells us which equilibria are possible.

The use of the Internet has been growing significantly in the last few decades. This has motivated
interest in network creation games: models that try to simulate the creation of Internet-like net-
works. These models can be thought as games in which players (located at different nodes in a
network) interact selfishly with each other trying to connect the network. These players have a
cost function that they wish to minimize: they want to be well-connected to other nodes, but pay a
price for adding edges to the network. Depending on the specific cost functions for the players and
the set of possible actions (usually every player can alter the network only by deleting some edges
and/or buying new edges incident to him/her), we obtain distinct models; see [4, 5, 8, 9, 10, 11]
for some examples.

The central elements of interest studied in network creation games are the concepts of Nash equi-
librium (ne) and the Price of anarchy (PoA). A ne is a configuration from which no player is
willing to deviate unilaterally, provided that the other players keep their own positions without any
change. As one can expect, equilibria may not necessarily coincide with optimal networks (configu-
rations having the minimal possible sum of individual costs), because equilibria are stable networks
obtained by following the selfish interests of the players. The PoA is a ratio that quantifies the
lack of coordination from equilibria built following the selfish interests of the players versus any
optimal network that could be built in a centralised way looking for maximal social welfare. A
high PoA implies that the worst ne in terms of the sum of the individual costs of the players is far
more costly than any optimal network, whereas a low PoA implies that all equilibria are not that
far from optimal networks.

One of these models, the sum classic network creation game, is the model introduced by Fabrikant
et al. in [11] in which every player pays a constant price α for every edge he/she buys in order to be
connected to the resulting network. The cost function for this game is α times the number of edges
bought by each player (creation cost) plus the sum of distances to the other players (usage cost).
Although it can be seen as a simple model, this is in fact the seminal model of the network creation
games and has been studied largely along time. One of the main still-unsettled conjectures in the
field of network creation games is that the price of anarchy for the sum classic network creation
game is bounded by a constant independent of α. As it can be seen in the literature [1, 9, 6, 13, 14],
this is a hard problem, and there still exists an interval where it is not known if the conjecture is
true or not. In [9] it was shown that the largest diameter of any ne plus one unit serves as an upper
bound for the PoA. This result transforms the problem of upper bounding the PoA to the problem
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of upper bounding the (largest) diameter of equilibria. This is why the study of the diameter of
equilibria for the sum classic network creation game is so important.

On the other hand, in [2], Alon et al. propose a simpler model, the sum basic network creation
game that avoids the use of the parameter α but still gets at the heart of the sum classic network
creation game. In the sum basic network creation game, players do not create edges, but can swap
one incident edge for another. The notion of swap equilibrium is the analogous concept in this
game to the ne defined above. Specifically, a swap equilibrium is a network for which no player can
strictly decrease the average distance to the other players when swapping any of its incident edges
for another incident edge. As a hope to better understand the PoA for the classic network creation
game, in view of the relationship previously explained between the diameter of equilibria and the
PoA, Alon et al. study the diameter of the sum basic network creation game and shows an upper
bound of 2O(

√
logn) (Theorem 9 from [2]). In the same article, they conjecture that ε-distance-

almost-uniform graphs have logarithmic diameter (Conjecture 14 from [2]). This last conjecture
together with an interesting relationship between swap equilibria and ε-distance-almost-uniform
graphs (Theorem 13 from [2]) would allow to improve the bound for the diameter of swap equilibria
to be at most polylogarithmic in n.

However, as we refute this conjecture, a direct improvement on the diameter of equilibria for the
sum basic network creation game cannot be obtained, at least going in this direction. Therefore,
we cannot improve the PoA for the sum classic network creation game, either. On the other hand,
a recent result from Alvarez et al. [3] shows that every fourth power of a equilibrium for the sum
classic network creation game for an appropriate range of the parameter α is an ε-distance-almost-
uniform graph. These relationships make us believe that ε-distance-almost-uniform graphs play a
very important role in network creation games. As it seems, they are at the core of the difficulty of
the classic problem of upper bounding the PoA, and this is why we think that this family of graphs
deserve a detailed study.

1.2 Preliminary notions

Before we go on to describe previously known results about distance-uniform graphs and the
progress we have made, we define several useful notions in graph theory.

For a vertex v of a graph G, let Γi(v) denote the set {w ∈ V (G) | d(v, w) = i}: the vertices at
distance exactly i from v. In particular, Γ0(v) = {v} and Γ1(v) is the set of all vertices adjacent to
v. Let

Nj(v) =

j⋃

i=0

Γi(v)

denote the set of vertices within distance at most j from v.

For a vertex v of a graph G, a breadth-first search tree rooted at v is a spanning tree T constructed
in order of increasing distance from v. We begin by setting T to the subgraph consisting only of v
itself. Once all the vertices of Γi(v) have been added to t for some i, we “explore” them in arbitrary
order. When we explore w ∈ Γi(v), we add all of w’s neighbors in Γi+1(v) to T if they were not
in T already, as well as the edges joining them to w. When this process is complete, the resulting
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tree T has the property that every vertex in Γi(v) is also at distance exactly i from v in T , not just
in G. We refer to the sets Γr(v) as layers of the breadth-first search tree T .

1.3 Previous results on distance uniformity

The application to network creation games motivates the already natural question: in an ε-distance-
uniform graph with n vertices and critical distance d, what is the relationship between the param-
eters ε, n, and d? Specifically, can we derive an upper bound on d in terms of ε and n? Up to a
constant factor, this is equivalent to finding an upper bound on the diameter of the graph, which
must be between d and 2d as long as ε < 1

2 .

Random graphs provide one example of distance-uniform graphs. In [7], Bollobás shows that
for sufficiently large p = p(n), the diameter of the random Erdős–Rényi random graph Gn,p is
asymptotically almost surely concentrated on one of two values. In fact, from every vertex v in
Gn,p, a breadth-first search tree expands by a factor of O(np) at every layer, reaching all or almost
all vertices after about lognp n steps. Such a graph is also expected to be distance-uniform: the
biggest layer of the breadth-first search tree will be much bigger than all previous layers.

More precisely, suppose that we choose p(n) so that the average degree r = (n − 1)p satisfies two
criteria: that r � (log n)3, and that for some d, rd/n− 2 log n approaches a constant C as n→∞.
Then it follows from Lemma 3 in [7] that (with probability 1− o(1)) for every vertex v in Gn,p, the
number of vertices at each distance k < d from v is O(rk). It follows from Theorem 6 in [7] that the
number of vertex pairs in Gn,p at distance d+ 1 from each other follows a Poisson distribution with
mean 1

2e
−C , so there are only O(1) such pairs with probability 1−o(1). As a result, such a random

graph is ε-distance-uniform with ε = O( logn
r ), and critical distance d = logr n+O(1).

This example provides a compelling image of what distance-uniform graphs look like: if the breadth-
first search tree from each vertex grows at the same constant rate, then most other vertices will be
reached in the same step. In any graph that is distance-uniform for a similar reason, the critical
distance d will be at most logarithmic in n. In fact, Alon et al. [2] conjecture that all distance-
almost-uniform graphs have diameter O(log n).

Alon et al. prove an upper bound of O( logn
log ε−1 ) in a special case: for ε-distance-uniform graphs with

ε < 1
4 that are Cayley graphs of Abelian groups. In this case, if G is the Cayley graph of an Abelian

group A with respect to a generating set S, one form of Plünnecke’s inequality (see, e.g., [15]) says
that the sequence

|S + S + · · ·+ S︸ ︷︷ ︸
k

|1/k

is decreasing in k. Since S, S + S, S + S + S, . . . are precisely the sets of vertices which can be
reached by 1, 2, 3, . . . steps from 0, this inequality quantifies the idea of constant-rate growth in the
breadth-first search tree; Theorem 15 in [2] makes this argument formal.

1.4 Our results

In this paper, we disprove Alon et al.’s conjecture by constructing distance-uniform graphs that do
not share this behavior, and whose diameter is exponentially larger than these examples. We also

4

36



prove an upper bound on the critical distance (and diameter) showing our construction to be best
possible in one asymptotic sense. Specifically, we show the following two results:

Theorem 1.1. In any ε-distance-almost-uniform graph with n vertices, the critical distance d
satisfies

d = 2
O
(

logn

log ε−1

)
.

Theorem 1.2. For any ε and n with 1
n ≤ ε ≤ 1

logn , there exists an ε-distance-uniform graph on n
vertices with critical distance

d = 2
Ω
(

logn

log ε−1

)
.

Note that, since a 1
logn -distance-uniform graph is also 1

2 -distance-uniform, Theorem 1.2 also provides

a lower bound of d = 2
Ω( logn

log logn
)

for any ε > 1
logn .

Combined, these results prove that the maximum critical distance is 2
Θ( logn

log ε−1 )
whenever they both

apply. A small gap remains for sufficiently large ε: for example when ε is constant as n → ∞. In
this case, Theorem 1.1 gives an upper bound on d which is polynomial in n, while the lower bound
of Theorem 1.2 grows slower than any polynomial.

The family of graphs used to prove Theorem 1.2 is interesting in its own right. We give two different
interpretations of the underlying structure of these graphs. First, we describe a combinatorial game,
generalizing the well-known Tower of Hanoi puzzle, whose transition graph is ε-distance-uniform
and has large diameter. Second, we give a geometric interpretation, under which each graph in
the family is the 1-skeleton of the convex hull of an arrangement of points on a high-dimensional
sphere.

2 Upper bound

Before proceeding to the proof of Theorem 1.1, we begin with a simple argument that is effective
for an ε which is very small:

Lemma 2.1. The minimum degree δ(G) of an ε-distance-uniform graph G satisfies δ(G) ≥ ε−1−1.

Proof. Suppose that G is ε-distance-uniform, n is the number of vertices of G, and d is the critical
distance: for any vertex v, at least (1− ε)n vertices of G are at distance exactly d from v.

Let v be an arbitrary vertex of G, and fix an arbitrary breadth-first search tree T , rooted at v.
We define the score of a vertex w (relative to T ) to be the number of vertices at distance d from v
which are descendants of w in the tree T .

There are at least (1− ε)n vertices at distance d from v, and all of them are descendants of some
vertex in the neighborhood Γ1(v). Therefore the total score of all vertices in Γ1(v) is at least
(1− ε)n.

On the other hand, if w ∈ Γ1(v), each vertex counted in the score of w is at distance d− 1 from w.
Since at least (1− ε)n vertices are at distance d from w, at most εn vertices are at distance d− 1,
and therefore the score of w is at most εn.
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In order for |Γ1(v)| scores of at most εn to sum to at least (1 − ε)n, |Γ1(v)| must be at least
(1−ε)n
εn = ε−1 − 1.

This lemma is enough to show that in a 1√
n

-distance-uniform graph, the critical distance is at most

2. Choose a vertex v: all but
√
n of the vertices of G are at the critical distance d from v, and√

n− 1 of the vertices are at distance 1 from v by Lemma 2.1. The remaining uncounted vertex is
v itself. It is impossible to have d ≥ 3, as that would leave no vertices at distance 2 from v.

We can prove a similar result for ε-distance-almost-uniform graphs. For the remainder of this
section, we will deal with ε-distance-almost-uniform graphs, in order to prove a more general re-
sult.

Lemma 2.2. In an ε-distance-almost-uniform graph G with critical distance d ≥ 2, for any vertex
v, |Γ2(v)| ≥ ε−1 − 1.

Proof. Suppose that G is ε-distance-almost-uniform, n is the number of vertices of G, and d is the
critical distance: for any vertex v, at least (1− ε)n vertices of G are at distance d or d+ 1 from v.

As before, let v be an arbitrary vertex of G, and fix an arbitrary breadth-first search tree T , rooted
at v. This time, we define the score of a vertex w (relative to T ) to be the number of vertices at
distance d or d+ 1 from v which are descendants of w in the tree T .

There are at least (1− ε)n vertices at distance d or d+ 1 from v, and all of them are descendants
of some vertex in the neighborhood Γ2(v). Therefore the total score of all vertices in Γ2(v) is at
least (1− ε)n.

On the other hand, if w ∈ Γ2(v), each vertex counted in the score of w is at distance d− 1 or d− 2
from w. Since at least (1− ε)n vertices are at distance d or d+ 1 from w, at most εn vertices are
at distance d− 1 or d− 2, and therefore the score of w is at most εn.

In order for |Γ2(v)| scores of at most εn to sum to at least (1 − ε)n, |Γ2(v)| must be at least
(1−ε)n
εn = ε−1 − 1.

For larger ε, the bound of Lemma 2.2 becomes ineffective, but we can improve it by a more general
argument of which Lemma 2.2 is just a special case.

Lemma 2.3. Let G be an ε-distance-almost-uniform graph with critical distance d. Suppose that
for some integers N and r with 2r+ 2 ≤ d, we have |Nr(v)| ≥ N for each v ∈ V (G). Then we have
|N3r+2(v)| ≥ Nε−1 for each v ∈ V (G).

Proof. Let v be any vertex of G, and let {w1, w2, . . . , wt} be a maximal collection of vertices in
Γ2r+2(v) such that d(wi, wj) ≥ 2r + 1 for each i 6= j with 1 ≤ i, j ≤ t.
We claim that for each vertex u ∈ Γd(v)∪Γd+1(v)—for each vertex u at distance d or d+1 from v—
there is some i with 1 ≤ i ≤ t such that u ∈ Nd−1(wi). To see this, consider any shortest path from
v to u, and let uπ ∈ Γ2r+2(v) be the (2r+ 2)th vertex along this path. (Here we use the assumption
that 2r + 2 ≤ d.) From the maximality of {w1, w2, . . . , wt}, it follows that d(wi, uπ) ≤ 2r for some
i with 1 ≤ i ≤ t. But then,

d(wi, u) ≤ d(wi, uπ) + d(uπ, u) ≤ 2r + (d+ 1− (2r + 2)) = d− 1.
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So u ∈ Nd−1(wi).

To state this claim differently, the sets Nd−1(w1), . . . , Nd−1(wt) together cover Γd(v) ∪ Γd+1(v).
These sets are all small while the set they cover is large, so there must be many of them:

(1− ε)n ≤ |Γd(v)|+ |Γd+1(v)| ≤
t∑

i=1

|Nd−1(wi)| ≤
t∑

i=1

εn = tεn,

which implies that t ≥ (1−ε)n
εn = ε−1 − 1.

The vertices v, w1, w2, . . . , wt are each at distance at least 2r + 1 from each other, so the sets
Nr(v), Nr(w1), . . . , Nr(wt) are disjoint.

By the hypothesis of this lemma, each of these sets has size at least N , and we have shown that
there are at least ε−1 sets. So their union has size at least Nε−1. Their union is contained in
N3r+2(v), so we have |N3r+2(v)| ≥ Nε−1, as desired.

We are now ready to prove Theorem 1.1. The strategy is to realize that the lower bounds on
|Nr(v)|, which we get from Lemma 2.3, are also lower bounds on n, the number of vertices in the
graph. By applying Lemma 2.3 iteratively for as long as we can, we can get a lower bound on n in
terms of ε and d, which translates into an upper bound on d in terms of ε and n.

More precisely, set r1 = 2 and rk = 3rk−1 + 2, a recurrence which has closed-form solution rk =
3k − 1. Lemma 2.2 tells us that in an ε-distance-almost-uniform graph G with critical distance d,
Nr1(v) ≥ ε−1. Lemma 2.3 is the inductive step: if, for all v, Nrk(v) ≥ ε−k, then Nrk+1

(v) ≥ ε−(k+1),
as long as 2rk + 2 ≤ d.

The largest k for which 2rk + 2 = 2 · 3k ≤ d is k =
⌊
log3

d
2

⌋
. So we can inductively prove that

n ≥ Nrk+1
(v) ≥ ε−(blog3

d
2c+1)

which can be rearranged to get
log n

log ε−1
− 1 ≥

⌊
log3

d

2

⌋
.

This implies that

d ≤ 2 · 3
logn

log ε−1 = 2
O
(

logn

log ε−1

)
,

proving Theorem 1.1.

3 Lower bound

To show that this bound on d is tight, we need to construct an ε-distance-uniform graph with a large
critical distance d. We do this by defining a puzzle game whose state graph has this property.
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3.1 The Hanoi game

We define a Hanoi state to be a finite sequence of nonnegative integers ~x = (x1, x2, . . . , xk) such
that, for all i > 1, xi 6= xi−1. Let

Hr,k =
{
~x ∈ {0, 1, . . . , r}k : ~x is a Hanoi state

}
.

For convenience, we also define a proper Hanoi state to be a Hanoi state ~x with x1 6= 0, and
H∗r,k ⊂ Hr,k to be the set of all proper Hanoi states. While everything we prove will be equally
true for Hanoi states and proper Hanoi states, it is more convenient to work with H∗r,k, because

|H∗r,k| = rk: there are r possibilities for x1, since x1 6= 0, and r possibilities for each xi with i > 1,
since xi 6= xi−1.

In the Hanoi game on Hr,k, an initial state ~a ∈ Hr,k and a final state ~b ∈ Hr,k are chosen. The

state ~a must be transformed into ~b via a sequence of moves of two types:

1. An adjustment of ~x ∈ Hr,k changes xk to any value in {0, 1, . . . , r} other than xk−1. For
example, (1, 2, 3, 4) can be changed to (1, 2, 3, 0) or (1, 2, 3, 5), but not (1, 2, 3, 3).

2. An involution of ~x ∈ Hr,k finds the longest tail segment of ~x on which the values xk and xk−1

alternate, and swaps xk with xk−1 in that segment. For example, (1, 2, 3, 4) can be changed
to (1, 2, 4, 3), or (1, 2, 1, 2) to (2, 1, 2, 1).

We define the Hanoi game on H∗r,k in the same way, but with the added requirement that all states
involved should be proper Hanoi states. This means that involutions (or, in the case of k = 1,
adjustments) that would change x1 to 0 are forbidden.

The name “Hanoi game” is justified because its structure is similar to the structure of the classical
Tower of Hanoi puzzle. In fact, though we have no need to prove this, the Hanoi game on H∗3,k is
isomorphic to a Tower of Hanoi puzzle with k disks.

It is well-known that the k-disk Tower of Hanoi puzzle can be solved in 2k − 1 moves, moving a
stack of k disks from one peg to another. In [12], a stronger statement is shown: only 2k− 1 moves
are required to go from any initial state to any final state. A similar result holds for the Hanoi
game on Hr,k:
Lemma 3.1. The Hanoi game on Hr,k (or H∗r,k) can be solved in at most 2k − 1 moves for any

initial state ~a and final state ~b.

Proof. We induct on k to show the following stronger statement: for any initial state ~a and final
state ~b, a solution of length at most 2k − 1 exists for which any intermediate state ~x has x1 = a1

or x1 = b1. This auxiliary condition also means that if ~a,~b ∈ H∗r,k, all intermediate states will also
stay in H∗r,k.

When k = 1, a single adjustment suffices to change ~a to ~b, which satisfies the auxiliary condition.

For k > 1, there are two possibilities when changing ~a to ~b:

• If a1 = b1, then consider the Hanoi game on Hr,k−1 with initial state (a2, a3, . . . , ak) and final
state (b2, b3, . . . , bk). By the inductive hypothesis, a solution using at most 2k−1 − 1 moves
exists.
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Apply the same sequence of adjustments and involutions in Hr,k to the initial state ~a. This
has the effect of changing the last k− 1 entries of ~a to (b2, b3, . . . , bk). To check that we have
obtained ~b, we need to verify that the first entry is left unchanged.

The auxiliary condition of the inductive hypothesis tells us that all intermediate states have
x2 = a2 or x2 = b2. Any move that leaves x2 unchanged also leaves x1 unchanged. A move
that changes x2 must be an involution swapping the values a2 and b2; however, x1 = a1 6= a2,
and x1 = b1 6= b2, so such an involution also leaves x1 unchanged.

Finally, the new auxiliary condition is satisfied, since we have x1 = a1 = b1 for all intermediate
states.

• If a1 6= b1, begin by taking 2k−1 − 1 moves to change ~a to (a1, b1, a1, b1, . . . ) while satisfying
the auxiliary condition, as in the first case.

An involution takes this state to (b1, a1, b1, a1, . . . ); this continues to satisfy the auxiliary
condition.

Finally, 2k−1 − 1 more moves change this state to ~b, as in the first case, for a total of 2k − 1
moves.

If we obtain the same results as in the standard Tower of Hanoi puzzle, why use the more com-
plicated game in the first place? The reason is that in the classical problem, we cannot guarantee
that any starting state would have a final state 2k − 1 moves away. With the rules we define, as
long as the parameters are chosen judiciously, each state ~a ∈ Hr,k is part of many pairs (~a,~b) for
which the Hanoi game requires 2k − 1 moves to solve.

The following lemma almost certainly does not characterize such pairs, but provides a simple
sufficient condition that is strong enough for our purposes.

Lemma 3.2. The Hanoi game on Hr,k (or H∗r,k) requires exactly 2k − 1 moves to solve if ~a and ~b
are chosen with disjoint support: that is, ai 6= bj for all i and j.

Proof. Since Lemma 3.1 proved an upper bound of 2k − 1 for all pairs (~a,~b), we only need to prove
a lower bound in this case.

Once again, we induct on k. When k = 1, a single move is necessary to change ~a to ~b if ~a 6= ~b,
verifying the base case.

Consider a pair ~a,~b ∈ Hr,k with disjoint support, for k > 1. Moreover, assume that ~a and ~b are

chosen so that, of all pairs with disjoint support, ~a and ~b require the least number of moves to
solve the Hanoi game. Since we are proving a lower bound on the number of moves necessary, this
assumption is made without loss of generality: if even ~a and ~b require at least 2k − 1 moves, so too
must any other pair of states in Hr,k with disjoint support.

In a shortest path from ~a to ~b, every other move is an adjustment: if there were two consecutive
adjustments, the first adjustment could be skipped, and if there were two consecutive involutions,
they would cancel out and both could be omitted. Moreover, the first move is an adjustment: if we
began with an involution, then the involution of ~a would be a state closer to ~b yet still with disjoint
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support to ~b, contrary to our initial assumption. By the same argument, the last move must be an
adjustment.

Given a state ~x ∈ Hr,k, let its abbreviation be ~x′ = (x1, x2, . . . , xk−1) ∈ Hr,k−1. An adjustment of ~x
has no effect on ~x′, since only xk is changed. If xk 6= xk−2, then an involution of ~x is an adjustment
of ~x′, changing its last entry xk−1 to xk. Finally, if xk = xk−2, then an involution of ~x is also an
involution of ~x′.

Therefore, if we take a shortest path from ~a to ~b, omit all adjustments, and then abbreviate all
states, we obtain a solution to the Hanoi game on Hr,k−1 that takes ~a′ to ~b′. By the inductive

hypothesis, this solution contains at least 2k−1 − 1 moves, since ~a′ and ~b′ have disjoint support.
Therefore the shortest path from ~a to ~b contains at least 2k−1 − 1 involutions. Since the first, last,
and every other move is an adjustment, there must be 2k−1 adjustments as well, for a total of 2k−1
moves.

Now let the Hanoi graph G∗r,k be the graph with vertex set H∗r,k and edges joining each state to all
the states that can be obtained from it by a single move. Since an adjustment can be reversed by
another adjustment, and an involution is its own inverse, G∗r,k is an undirected graph.

For any state ~a ∈ H∗r,k, there are at least (r − k)k other states with disjoint support to ~a, out of

|H∗r,k| = rk other states, forming a
(
1− k

r

)k
> 1 − k2

r fraction of all the states. By Lemma 3.2,

each such state ~b is at distance 2k − 1 from ~a in the graph G∗r,k, so G∗r,k is ε-distance uniform with

ε = k2

r , n = rk vertices, and critical distance d = 2k − 1.

Having established the graph-theoretic properties of G∗r,k, we now prove Theorem 1.2 by analyzing
the asymptotic relationship between these parameters.

Proof of Theorem 1.2. Begin by assuming that n = 22m for some m. In the monotonically decreas-
ing sequence

22m

220
,
22(m−1)

221
, . . . ,

22(m−i)

22i
, . . . ,

20

22m
,

the first (i = 0) term is 22m > 1 ≥ ε, while the last (i = m) term is exactly 1
n ≤ ε. So let a be the

least value of i for which 22(m−i)

22i
≤ ε, and let b = m− i; then we have a+ b = m and

22b

22a
≤ ε < 22(b+1)

22a−1 .

Setting r = 22a and k = 2b, the Hanoi graph G∗r,k has n vertices and is ε-distance uniform, since
k2

r ≤ ε. Moreover, our choice of a and b guarantees that ε < 4k2√
r

, or log ε−1 ≥ 1
2 log r − 2 log 2k.

Since n = rk, log n = k log r, so

log ε−1 ≥ 1

2k
log n− 2 log 2k.

We show that k ≥ logn
6 log ε−1 . Since ε ≤ 1

logn , this is automatically true if k ≥ logn
6 log logn , so assume

that k < logn
6 log logn . Then

1

3k
log n > 2 log log n > 2 log 2k,
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so

log ε−1 ≥ 1

2k
log n− 2 log 2k >

1

2k
log n− 1

3k
log n =

1

6k
log n,

which gives us the desired inequality k ≥ logn
6 log ε−1 . The Hanoi graph G∗r,k has critical distance

d = 2k − 1 = 2
Ω( logn

log ε−1 )
, so the proof is finished in the case that n has the form 22m for some m.

For a general n, we can choose m such that 22m ≤ n < 22m+1
=
(
22m
)2

, which means in particular

that 22m ≥ √n. If ε < 2√
n

, then the requirement of a critical distance of 2
Ω( logn

log ε−1 )
is only a constant

lower bound, and we may take the graph Kn. Otherwise, by the preceding argument, there is a
ε
2 -distance-uniform Hanoi graph with 22m vertices; its critical distance d satisfies

d ≥ 2
Ω
(

log
√
n

log(ε/2)−1

)

= 2
Ω
(

logn

log ε−1

)
.

To extend this to an n-vertex graph, take the blow-up of the 22m-vertex Hanoi graph, replacing
every vertex by either bn/22mc or dn/22me copies.

Whenever v and w were at distance d in the original graph, the copies of v and w will be at distance
d in the blow-up. The difference between floor and ceiling may slightly ruin distance uniformity, but
the graph started out ε

2 -distance-uniform, and dn/22me differs from bn/22mc at most by a factor of
2. Even in the worst case, where for some vertex v the ε

2 -fraction of vertices not at distance d from v
all receive the larger number of copies, the resulting n-vertex graph will be ε-distance-uniform.

3.2 Points on a sphere

In this section, we identify Gr,k, the graph of the Hanoi game on Hr,k, with a graph that arises
from a geometric construction.

Fix a dimension r. We begin by placing r + 1 points on the r-dimensional unit sphere arbitrarily
in general position (though, for the sake of symmetry, we may place them at the vertices of an
equilateral r-simplex). We identify these points with a graph by taking the 1-skeleton of their
convex hull. In this starting configuration, we simply get Kr+1.

Next, we define a truncation operation on a set of points on the r-sphere. Let δ > 0 be sufficiently
small that a sphere of radius 1 − δ, concentric with the unit sphere, intersects each edge of the
1-skeleton in two points. The set of these intersection points is the new arrangement of points
obtained by the truncation; they all lie on the smaller sphere, and for convenience, we may scale
them so that they are once again on the unit sphere. An example of this is shown in Figure 1.

Proposition 3.1. Starting with a set of r + 1 points on the r-dimensional sphere and applying k
truncations produces a set of points such that the 1-skeleton of their convex hull is isomorphic to
the graph Gr,k.

Proof. We induct on k. When k = 1, the graph we get is Kr+1, which is isomorphic to Gr,1.

From the geometric side, we add an auxiliary statement to the induction hypothesis: given points
p, q1, q2 such that, in the associated graph, p is adjacent to both q1 and q2, there is a 2-dimensional
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(b) A truncated tetrahedron

Figure 1: An example of truncation

face of the convex hull containing all three points. This is easily verified for k = 1: in the r-simplex,
any three vertices are contained in a two dimensional face.

Assuming that the induction hypotheses are true for k − 1, fix an isomorphism of Gr,k−1 with the
set of points after k−1 truncations, and label the points with the corresponding vertices of Gr,k−1.
We claim that the graph produced after one more truncation has the following structure:

1. A vertex that we may label (~x, ~y) for every ordered pair of adjacent vertices of Gr,k−1.

2. An edge between (~x, ~y) and (~y, ~x).

3. An edge between (~x, ~y) and (~x, ~z) whenever both are vertices of the new graph.

4. No other edges: the graph is r-regular.

The first claim is immediate from the definition of truncation: we obtain two vertices from the edge
between ~x and ~y. We choose to give the name (~x, ~y) to the vertex closer to ~x. The edge between ~x
and ~y remains an edge, and now joins the vertices (~x, ~y) and (~y, ~x), verifying the second claim.

By the auxiliary condition of the induction hypothesis, the vertices labeled ~x, ~y, and ~z lie on a
common 2-face whenever ~x is adjacent to both ~y and ~z. After truncation, (~x, ~y) and (~x, ~z) will also
be on this 2-face; since they are adjacent along the boundary of that face, and are both extreme
points of the convex hull, they are joined by an edge, verifying the third claim.

To verify the fourth claim, we check that no other edges can exist. There is no edge between
(~x, ~y) and (~z, ~x), where ~x, ~y, ~z are distinct, because these are non-adjacent vertices all on the 2-face
containing ~x, ~y, and ~z. The remaining case is an edge between (~x, ~y) and (~z, ~w), where ~x, ~y, ~z, ~w are
all distinct. In this case, the convex hull of ~x, ~y, ~z, ~w is an affine transformation of the tetrahedron
in Figure 1a. After truncation, points corresponding to the convex hull shown in Figure 1b will
remain (though they might not be vertices of the truncation, if not all four of the vertices ~x, ~y, ~z, ~w
were adjacent). The segment joining (~x, ~y) to (~z, ~w) is in the interior of that convex hull, so it
cannot be an edge of the truncation.

To finish the geometric part of the proof, we verify that the auxiliary condition remains true. There
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are two cases to check. For a vertex labeled (~x, ~y), if we choose the neighbors (~x, ~z) and (~x, ~w), then
any two of them are joined by an edge, and therefore they must lie on a common 2-dimensional
face (which contains only these three vertices). If we choose the neighbors (~x, ~z) and (~y, ~x), then
the points continue to lie on the 2-dimensional face inherited from the face through ~x, ~y, and ~z of
the previous convex hull.

Now it remains to construct an isomorphism between the 1-skeleton graph of the truncation, which
we will call T , and Gr,k. We identify the vertex (~x, ~y) of T with the vertex (x1, x2, . . . , xk−1, yk−1)
of Gr,k. Since xk−1 6= yk−1 after any move in the Hanoi game, this k-tuple really is a Hanoi state.
Conversely, any Hanoi state ~z ∈ Hr,k corresponds to a vertex of T : let ~x = (z1, z2, . . . , zk−1), and
let ~y be the state obtained from ~x by either an adjustment of zk−1 to zk, if zk 6= zk−2, or else an
involution, if zk = zk−2. Therefore the map we define is a bijection between the vertex sets.

Both T and Gr,k are r-regular graphs, therefore it suffices to show that each edge of T corresponds
to an edge in Gr,k. Consider an edge joining (~x, ~y) with (~x, ~z) in T . This corresponds to vertices
(x1, x2, . . . , xk−1, yk−1) and (x1, x2, . . . , xk−1, zk−1) in Gr,k; these are adjacent, since we can obtain
one from the other by an adjustment.

Next, consider an edge joining (~x, ~y) to (~y, ~x). If ~x and ~y are related by an adjustment in Gr,k−1,
then they have the form (x1, . . . , xk−2, xk−1) and (x1, . . . , xk−2, yk−1). The vertices corresponding
to (~x, ~y) and (~y, ~x) in Gr,k are (x1, . . . , xk−2, xk−1, yk−1) and (x1, . . . , xk−2, yk−1, xk−1), and one can
be obtained from the other by an involution.

Finally, if ~x and ~y are related by an involution in Gr,k−1, then that involution swaps xk−1 and yk−1.
Therefore such an involution in Gr,k will take (x1, . . . , xk−1, yk−1) to (y1, . . . , yk−1, xk−1), and the
vertices corresponding to (~x, ~y) and (~y, ~x) are adjacent in Gr,k.
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Chapter 5

Sum Celebrity Games

5.1 Summary

In the previous chapters we have studied the most emblematic model of the Network Creation
Games. The techniques used to improve constant bounds for the PoA in the subsequent papers
proposed by many authors are interesting and diverse, and this confirms that there is a very nice
and rich combinatorial structure behind the model. However, one criticism to the same model
is that it is far too simple and it does not capture the complexity of real Internet-like networks
as well as social networks. For this reason many models have appeared either trying to extend
the sum ncg or proposing variations that are in some sense inspired by the same model. In the
historical overview we have seen some of the examples that motivate the definition of two new
models.

In the following we introduce the Sum Celebrity model, or abbreviated sum cg, as an attempt
to capture some characteristics of such networks that are not present in this classical model.

Like in the sum ncg, we model the sum cg as a strategic game specified by a finite set of
players V = {1, ..., n} and a parameter α > 0 indicating the price that each player has to pay to
create an incident link. The players wish to buy links in order to be connected in the resulting
network. Hence, the strategy profile si of any player i ∈ V is any subset of V \ {i} indicating to
which other players i has bought a link. In this way, the resulting network formed by the strategy
profile s = (s1, ..., sn) is defined as the communication network G[s] = (V, {ij | i ∈ sj ∨ j ∈ si}),
exactly as it was defined in the sum ncg.

In the classical model, all the players have the same relevance. However, this does not
happen in real life scenarios where the players may be different in many senses. In the Internet,
and specially in the social networks, there are players that have more relevance than others.
Trying to capture this fact we introduce the weight wi > 0 for every player i ∈ V , representing
the amount of relevance of player i.

Therefore it seems natural to assume that every player wishes to have the more relevant
nodes not far from a certain distance. Hence we introduce the critical distance β ∈ {1, ..., n− 1}
indicating that the weight of nodes further than β of a player i ∈ V will be taken into account
in the cost function of i.

Finally, we define how these weights affect the player under consideration. In our sum
cg model we assume that the affectation is the summation of the weights. Given a tuple
〈V, α, (wi)i∈V , β〉, with V, α, (wi)i∈V , β satisfying the previous restrictions, the sum cg is the
strategic game in which Si = 2V \{i} for every i ∈ V and where the individual cost of any player
is

cG[s](i) = α|si|+
∑

{j|dG[s](i,j)>β}
wj

Once we have introduced the model, in the article presented in this chapter we investigate
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how the combination of the distinct elements that define the sum cg affect the quality of
equilibria as well as their topology. We address the cases β > 1 and β = 1 separately.

The first thing we study for β > 1, is the problem of computing the Best Response which
we show that it is NP-hard when α = 2.

Then, to study the PoA and the topology of equilibria, it is useful to distinguish between
two distinct classes of games that depend on whether there exist a certain kind of players with
large weight or relevance, nodes which we call celebrities. Specifically, a celebrity is a node i ∈ V
such that wi > α. Then, star celebrity games are games containing at least one celebrity and
non star celebrity games are games not containing any celebrity. A feature that star celebrity
games have is that every ne is connected, a property that we need, for instance, when studying
the diameter of equilibria.

For both star celebrity games and non star celebrity games we study upper and lower bounds
for the PoA. Regarding the upper bounds we compare the PoA vs the critical distance β and
the PoA vs the total amount of weight. On the positive side, although such upper bounds are
not tight, they imply low PoA when β is close to n and when W is close to α as one can expect.
On the negative side, although in very specific cases, we can show games that have a very large
PoA.

Regarding the topology, we see that the diameter of equilibria is related to the critical
distance β. This result goes with the intuition that in any connected equilibrium, players do
not wish to have many other players further than β, otherwise their penalisation might get
large. Moreover, recall the MaxBD model as a network creation game introduced in section
2.4.2. We also see that there exists a connection between equilibria for the MaxBD where the
bounded distance has the same value β for every player, with equilibria for our Sum Celebrity
games where every player is a celebrity.

Finally, we also study the particular case of β = 1. Equilibria for such games can be analysed
as configurations in which every player i pays wj for every non adjacent node j, α for every
adjacent node j for which i has bought the link (i, j), and 0 for every adjacent node j that
has bought the link (j, i). These particular restrictions allow us to show that the problem of
computing the Best Response can be done in polynomial time and, furthermore, that the PoA
is at most 2.

In the forthcoming paper we define and analyse in detail all these properties of Sum Celebrity
Games.

5.2 Article: Celebrity Games

C. Àlvarez, M. J. Blesa, A. Duch, A. Messegué and M. J. Serna. “Celebrity games.” Theor.
Comput. Sci. , 648 56–71, 2016.
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ALBCOM Research Group
Computer Science Department
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1. Introduction

The global growth of Internet and social networks usage has been accom-
panied by an increasing interest to model theoretically their creation as well
as their behavior. In particular, network creation games (NCG) aim to model
Social Networks and Internet by simulating the creation of a decentralized and
non-cooperative communication network among n players (the network nodes).

From the seminal paper (Fabrikant et al., 2003) several proposals have been
made in the area of NCG. In the original model, the goal of each player is to
have, in the resulting network, all the other nodes as close as possible while
buying as few links as possible (Fabrikant et al., 2003). Several assumptions are
made: all the players have the same interest (all-to-all communication pattern
with identical weights); the cost of being disconnected is infinite; and the edges
paid by one node can be used by others. Formally, a game � in this model is
defined as a tuple � = hV, ↵i, where V is the set of n nodes and ↵ the cost
of establishing a link. A strategy for player u 2 V is a subset Su ✓ V � {u},
the set of players for which player u pays for establishing a link. The n players
and their joint strategy choices S = (Su)u2V create an undirected graph G[S].
The cost function for each node u under strategy S is defined by cu(S) =
↵|Su| +

P
v2V dG[s](u, v) where dG[s](u, v) is the distance between nodes u and

v in graph G[S]. Because of the summation in the cost function this model is
informally known as the Sum game model. By changing the cost function to
cu(S) = ↵|su| + max{dG[S](u, v)|v 2 V } as proposed in Demaine et al. (2012)
one obtains the Max game model.

From here on several versions and variants have been considered. Instead of
buying links unilaterally, Corbo and Parkes (2005) proposed the possibility of
having links formed by bilateral contracting: both endpoints must agree before
creating a link between them and the two players share (half-half) the cost of
establishing the link. NCG models can be cooperative –a possibility introduced
by Albers et al. (2006)– and therefore any node can purchase any amount of any
link in the resulting graph, and a link can be created when its cost is covered
by a set of players. The model studied in Bilò et al. (2015b) (see also Bilò et al.
(2012)) considers the notion of bounded distance per player and propose two
variants: the MaxBD game and the SumBD game, corresponding to the original
Max and Sum cost models respectively. The cost in those games depends on
whether the player’s eccentricity is smaller or equal than the associated bounded
distance. In that case a player pays the number of established links, otherwise its
cost is infinite. For further variants we refer the interested reader to (Demaine
et al., 2012; Leonardi and Sankowski, 2007; Brandes et al., 2008; Demaine et al.,
2009; Lenzner, 2011; Alon et al., 2013, 2014; Bilò et al., 2015a; Nikoletseas et al.,
2015; Cord-Landwehr and Lenzner, 2015; Ehsani et al. , 2015) among others.

We introduce celebrity games a NCG where players have di↵erent weights
and share a common distance bound. As far as we understand, not all the nodes
in Internet based networks have the same importance. It is though natural to
consider players with di↵erent relevance weights. In such a setting, the cost of
being far (even if connected) from important nodes (the ones with high weight)
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should be higher than the cost of having them close. Intuitively, the goal of each
player in celebrity games is to buy as few links as possible in order to have the
high-weighted nodes (or groups of nodes) closer to the given critical distance.
Observe that if the cost of establishing links is higher than the benefit of having
close a node (or set of nodes), players might rather prefer to stay either far or
even disconnected from it.

Our aim is to study the combined e↵ect of having players with di↵erent
weights that share a common bounded distance. Although heterogeneous play-
ers have been considered recently in the context of NCG under bilateral con-
tracting (Meirom et al., 2014; Àlvarez et al., 2015), and Bilò et al. (2015b)
consider the notion of bounded distance, to the best of our knowledge this is
the first model that studies how a common critical distance, di↵erent weights,
and a link cost, altogether a↵ect the individual preferences of the players.

In our model the cost of a player has two components. The first one is the
cost of the links established by the node. The second one is the sum of the
weights of those nodes that are farther away than the critical distance. More
specifically, the parameters of a celebrity game are: a weight to each player; a
cost for establishing a link; and a critical distance. Formally, a celebrity game
is defined by � = hV, (wu)u2V , ↵, �i, where V is a set of nodes with weights
(wu)u2V , ↵ is the cost of establishing a link and, � establishes the desirable
distance bound. Celebrity games include the MaxBD games introduced in (Bilò
et al., 2015b) (see Section 5 for the details). They capture not only the cases in
which players are indistinguishable but those cases where the players may have
di↵erent weights a↵ecting di↵erently the costs of the other players.

We analyze the structural properties of the Nash equilibrium (ne) graphs of
celebrity games and their quality with respect to the optimal strategies under
the usual social cost. To do so we address the cases � = 1 and � > 1 separately.
Notice that, for � = 1, each player u has to decide for every non-edge (u, v) of
the graph to pay either ↵ for the link or wv (the weight of the non-adjacent node
v) while, for � > 1, every player u has to choose for each non-edge (u, v) between
buying the link (u, v) and paying ↵ minus the sum of the weights of those nodes
whose distance to u will become less or equal than the critical distance � or
paying the sum of the weights of the nodes with distance to u greater than �.

For the general case � > 1 our results can be summarized as follows:

• Computing a best response for a player is NP-hard

• The optimal social cost of a celebrity game � depends on the relation
between the total sum of the weights W and the cost ↵ of buying a link:
opt(�) = min{↵, W}(n � 1). Nevertheless, pure ne always exist and
ne graphs are either connected or a set of isolated nodes. Again, the
relationship between the cost of establishing a link and the weight of the
nodes leads to di↵erent types of ne.

• We use the term celebrity for a node whose weight is strictly greater than
the cost of establishing a link. Having at least one celebrity guarantees that
all ne graphs are connected, although there are celebrity games without
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celebrities that still have connected ne graphs. In those games having
a connected ne graph, a star tree is always a ne graph. We called this
subfamily of celebrity games star celebrity games.

• For star celebrity games, we obtain a general upper bound of 2� + 1 for
the diameter of ne graphs. In particular, if G is a ne tree we show
that diam(G)  � + 1, otherwise �/2 < diam(G)  2� + 1. The upper
bound can be improved by considering the relationship between ↵ and
the maximum and minimum weights, wmax and wmin, respectively. So, if
wmin  ↵ < wmax, then diam(G)  2�. On the contrary, if ↵ < wmin,
then diam(G)  �.

• For star celebrity games with ↵ < wmin, we show that the set of ne
strategy profiles coincides with the set of ne strategy profiles of a MaxBD
game with uniform bounded distance �.

• We find several bounds on the Price of Anarchy (PoA) and of stability
(PoS). For non-star celebrity games PoS = PoA = max {1, W/↵}. For
star celebrity games the PoS is 1 and we obtain a general upper bound
of O(min{n/�, W/↵}) for the PoA. We also show particular games on n
players having PoA = ⌦(n), for � = 2. To complement those results we
prove that the PoA on ne trees is constant (special cases like trees are
also considered in the literature, see for instance (Alon et al., 2013, 2014;
Ehsani et al. , 2015).

Finally, for the particular case � = 1, we show that computing a best response
for a player is polynomial time solvable and that the PoA is at most 2.

The paper is organized as follows. In Section 2 we introduce the basic
definitions and the celebrity games model. We also show that computing a best
response is NP-hard. In Section 3 we set the fundamental properties of ne
and optimal graphs. We characterize star celebrity games and we provide the
first bounds for the PoA and the PoS. Section 4 is devoted to the study of the
diameter of ne graphs. Section 5 studies the relation between the MaxBD game
model and the celebrity game model. In Section 6 we derive the bounds for the
PoA. In Section 7 we give the upper bound of the PoA over ne trees and in
Section 8 we study the case � = 1. Finally, we state some conclusions and open
problems in Section 9.

2. The Model

In this section we introduce celebrity games and we analyze the complexity
of computing a best response. Let us start with some definitions. We use
standard notation for graphs and strategic games. All the graphs in the paper
are undirected unless explicitly said otherwise. Given a graph G = (V, E) and
u, v 2 V , dG(u, v) denotes the distance between u and v in G, i.e., the length
of the shortest path from u to v. The diameter (or eccentricity) of a vertex
u 2 V is diam(u) = maxv2V dG(u, v) and the diameter of G is diam(G) =
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maxv2V diam(v). An orientation of an undirected graph is an assignment of a
direction to every edge of the graph, turning it into a directed graph. A bridge
is an edge whose deletion increases the number of connected components of
the graph. For a weighted set (V, (wu)u2V ) we extend the weight function to
subsets in the usual way. For U ✓ V , w(U) =

P
u2U wu. Furthermore, we set

W = w(V ), wmax = maxu2V wu and wmin = minu2V wu.

Definition 1. A celebrity game � is a tuple hV, (wu)u2V , ↵, �i where: V =
{1, . . . , n} is the set of players, for each player u 2 V , wu > 0 is the weight of
player u, ↵ > 0 is the cost of establishing a link, and �, 1  �  n � 1, is the
critical distance.

A strategy for player u in � is a subset Su ✓ V � {u}, the set of players
for which player u pays for establishing a direct link. A strategy profile for
� is a tuple S = (S1, . . . , Sn) that assigns a strategy to each player. Every
strategy profile S has associated an outcome graph, the undirected graph defined
by G[S] = (V, {{u, v}|u 2 Sv _ v 2 Su}).

We denote by cu(S) = ↵|Su| +
P

{v|dG[S](u,v)>�} wv the cost of player u in

the strategy profile S. And, as usual, the social cost of a strategy profile S in �
is defined as C(S) =

P
u2V cu(S).

Observe that, even though a link might be established by only one of the
two players, we assume that once a link is established it can be used in both
directions. Note also that players may have di↵erent weights. The player’s
cost function has two components: the cost of establishing links and the sum
of the weights of those players who are farther away than the critical distance
�. In our model links have uniform length therefore w.l.o.g � is an integer.
In what follows we assume that, for a celebrity game � = hV, (wu)u2V , ↵, �i,
the parameters verify the required conditions. Furthermore, unless specifically
stated, we assume � > 1, the case � = 1 will be analyzed in Section 8. We use
the following notation n = |V |, S(u) is the set of strategies for player u and S(�)
is the set of strategy profiles of �. For a strategy profile S 2 S(�) and a strategy
S0

u 2 S(u), for player u, (S�u, S0
u) represents the strategy profile in which Su

is replaced by S0
u while the strategies of the other players remain unchanged.

The cost di↵erence �(S�u, S0
u) is defined as �(S�u, S0

u) = cu(S�u, S0
u)� cu(S).

Observe that, if �(S�u, S0
u) < 0, then player u has an incentive to deviate

from Su and select S0
u. A best response to S 2 S(�) for player u is a strategy

S0
u 2 S(u) minimizing �(S�u, S0

u).
Let us recall the definition of Nash equilibrium.

Definition 2. Let � = hV, (wu)u2V , ↵, �i be a celebrity game. A strategy profile
S 2 S(�) is a Nash equilibrium of � if no player has an incentive to deviate
from his strategy. Formally, for each player u and each strategy S0

u 2 S(u),
�(S�u, S0

u) � 0.

We denote by NE(�) the set of Nash equilibria of a game � and we use the
term ne to refer to a strategy profile S 2 NE(�). We say that a graph G is a
ne graph of � if there is S 2 NE(�) so that G = G[S]. We will drop the explicit
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reference to � whenever � is clear from the context. It is worth observing that,
for S 2 NE(�), it never happens that v 2 Su and u 2 Sv, for any u, v 2 V .
Thus, if G is the outcome of a ne S, S corresponds to an orientation of the
edges in G. Furthermore, a ne graph G can be the outcome of several strategy
profiles but not all the orientations of a ne graph G are ne.

Let opt(�) = minS2S(�) C(S) be the minimum value of the social cost. We
use the term opt strategy profile to refer to one strategy profile with optimal
social cost.

Observe that, when in a strategy profile S, two players u and v are such
that u 2 Sv and v 2 Su, the social cost is higher than when only one of them is
paying for the connection {u, v} and therefore, as for ne, this does not happen
in an opt strategy profile. In the following, as we are interested in ne and opt
strategies, among all the possible strategy profiles having the same outcome
graph, we only consider those corresponding to orientations of the outcome
graph. In this sense the social cost depends only on the outcome graph, the
weights and the parameters. Thus, we can express the social cost of a strategy
profile as a function of the outcome graph G as follows

C(G) = ↵|E(G)|+
X

u2V

X

{v|dG(u,v)>�}
wv = ↵|E(G)|+

X

{(u,v)|u<v and dG(u,v)>�}
(wu+wv).

We make use of three particular outcome graphs on n vertexes: Kn, the
complete graph; In, the independent set; and STn the star graph, i.e., a tree in
which one of the vertexes, the central one, has a direct link to all the other n�1
vertexes. For those graphs, we have the following values of the social cost. For
� = hV, (wu)u2V , ↵, �i, with |V | = n, C(Kn) = ↵n(n�1)/2, C(In) = W (n�1),
for � � 1. Furthermore, C(STn) = ↵(n � 1), for 1 < �  n � 1, and C(STn) =
↵(n � 1) + (n � 2)(W � wc) where c is the central vertex, for � = 1.

We define the PoA and the PoS as usual.

Definition 3. Let � be a celebrity game. The Price of Anarchy of � is defined as
PoA(�) = maxS2NE(�) C(S)/opt(�) and the Price of Stability of � as PoS(�) =
minS2NE(�) C(S)/opt(�).

Our first result shows that computing a best response in celebrity games
is NP-hard by a reduction from the minimum dominating set problem. The
problem becomes tractable for � = 1 as we show in Section 8.

Proposition 1. Computing a best response for a player to a strategy profile in
a celebrity game is NP-hard, even when � = 2 and restricted to the cases in
which all players except possibly one have weights bigger than ↵.

Proof. We provide a reduction from the problem of computing a dominating set
of minimum size which is a classical NP-hard problem. Recall that a dominating
set of a graph G = (V, E) is a set U ⇢ V such that any vertex u 2 V is in U or
has a neighbor in U .

Let G = (V, E) be a graph, we associate to G and u a celebrity game
� = hV 0, (wv)v2V 0 , ↵, �i, and a strategy profile S as follows:
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• The set of players is V 0 = V [ {u}, where u is a new player (i.e. u 62 V ).

• � = 2, ↵ = 1.5,

• for every v 2 V , wv = 2.

• The strategy profile S is obtained from an orientation of the edges in G
setting Su = ;. Observe that by construction G[S] is the disjoint union of
G with the isolated vertex u.

Finally, set u to be the player for which we want to compute the best response
to S. Observe that the weight of u has not been defined yet.

Let D ✓ V be a strategy for player u. Notice that, if D is a dominating set of
G, then cu(S�u, D) = ↵|D| +P

x2V,d(u,x)>2 2 = ↵|D|. If D is not a dominating

set of G, cu(S�u, D) = ↵|D| +P
x2V,d(u,x)>2 2 > ↵(|D| + |{x 2 V |d(u, x) > 2}|.

Then, D[{x 2 V |d(u, x) > 2} is a better response than D and furthermore it is
a dominating set. Hence, the best response of player u is a dominating set D of G
of minimum size. To conclude the proof just notice that the described reduction
is polynomial time computable and that we did not make any assumption on
the weight of the node u.

3. Social Optimum and Nash equilibrium

We analyze here the main properties of opt and ne strategy profiles in
celebrity games. We start analyzing the cost of optimal graphs for the social
cost. Then we characterize the family of star celebrity games having a connected
ne graph. Finally, we provide exact bounds on the PoA and the PoS in some
particular cases.

Proposition 2. Let � = hV, (wu)u2V , ↵, �i be a celebrity game. We have that
opt(�) = min{↵, W}(n � 1).

Proof. Let S 2 opt(�), and let G = G[S] with connected components G1, ..., Gr,
Vi = V (Gi), ki = |Vi|, and Wi = w(Vi), for 1  i  r. Observe that the social
cost of a disconnected graph can be expressed as the sum of the social cost of its
connected components. Each connected component must be a tree of diameter
at most �, otherwise a strategy profile with smaller social cost could be obtained
by replacing the connections on Vi by such a tree. We can assume w.l.o.g. that,
for 1  i  r, the i-th connected component is a star graph STki of ki vertexes.
Since C(STk) = ↵(k � 1) we have that

C(G) =
rX

i=1

↵(ki � 1) +
rX

i=1

ki(W � Wi) = ↵(n � r) + nW �
rX

i=1

kiWi.

As 1  ki  n � (r � 1), we have W  Pr
i=1 kiWi  (n � r + 1)W . Therefore,

↵(n � r) + (r � 1)W  C(G). We consider two cases.

Case 1: ↵ � W . We have W (n � 1)  C(G). Since C(In) = W (n � 1)  C(G)
and G is an optimal graph, then C(G) = W (n � 1).
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Case 2: ↵ < W . Now ↵(n � 1)  C(G). As C(STn) = ↵(n � 1)  C(G),
the optimal graph G has a social cost C(G) = ↵(n � 1). We conclude that
opt = min{↵, W}(n � 1).

Now we turn our attention to the study of the ne graph topologies showing
that any ne graph is either an independent set or a connected graph.

Proposition 3. Let � = hV, (wu)u2V , ↵, �i be a celebrity game. Every ne graph
of � is either connected or the graph In, where n = |V |.

Proof. If n  2 the proposition follows immediately. When n > 2, let us
suppose that there is a ne S such that the graph G = G[S] is not connected
and di↵erent from In. In this case G is composed of at least two di↵erent
connected components G1 and G2. Furthermore, as G 6= In, we can assume
that |V (G1)| > 1 as at least one of the connected components contains two
vertexes connected by an edge. Let u 2 V (G1) be such that Su 6= ;. Let x 2 Su

and v 2 V (G2). Let us consider the strategies S0
u = Su \{x} and S0

v = Sv [{x}.
As S is a ne we know that �(S�u, S0

u) � 0. Let G0 = G[S�v, S0
v], observe

that dG0(v, u) = 2  �, therefore �(S�v, S0
v)  ��(S�u, S0

u) � wu < 0. This
contradicts the hypothesis that S is a ne.

Next we study the conditions under which particular topologies are ne
graphs. Those results prove that celebrity games always have a ne.

Proposition 4. Every celebrity game � = hV, (wu)u2V , ↵, �i has a ne. Fur-
thermore, when ↵ � wmax, In is a ne graph, otherwise STn is a ne graph but
In is not, where n = |V |.

Proof. When ↵ � wmax let us show that In is a ne graph. Observe that G = In

is the outcome of a unique strategy profile S in which Su = ;, for any u 2 V .
Let us consider a player u and a strategy S0

u 6= ;. The cost di↵erence of player
u is then �(S�u, S0

u) = ↵|S0
u| � P

v2S0
u

wv =
P

v2S0
u
(↵ � wv) � 0. Therefore

player u has no incentive to deviate from Su and In is a ne graph.
When ↵ < wmax, let u be a vertex with wu = wmax and let STn be a star

graph with n vertexes in which the center is u, let us show that STn is a ne
graph. Consider the strategy profile S in which Su = ; and Sv = {u}, for any
v 2 V di↵erent from u. Observe that the center u is a vertex with maximum
weight. As � > 1 no player will get a cost decrease by connecting to more
players. Furthermore, for u 6= v, wv + ↵ < wv + wmax < W . Thus ↵ < W �wv

and v will not get any benefit by deleting the actual connection. The only
remaining possibility is to reconnect to another vertex, but in such a case the
cost cannot decrease. Therefore, STn is a ne graph. Notice that in this case
In can not be a ne, as every player u has incentive to connect with any other
player v such that wv = wmax.

To conclude the study of ne we characterize the celebrity games where In is
the unique ne graph. The negated condition characterizes those games in which
STn is a ne.
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Proposition 5. Let � = hV, (wu)u2V , ↵, �i be a celebrity game on n players
with ↵ � wmax. If there is more than one vertex u 2 V with ↵ > W �wu, then
In is the unique ne graph of �, otherwise STn is a ne graph of �.

Proof. Assume that, for two vertexes u 6= v, ↵ > W � wu and ↵ > W � wv,
and that there exists a ne graph G = G[S] di↵erent from In. By Proposition 3,
G is connected. Therefore, it has at least n � 1 edges. Since, ↵ > W � wu

and ↵ > W � wv, we have that Su = Sv = ;, otherwise S would not be a ne.
Therefore, there must be a vertex, z 6= u, v such that |Sz| � 2. Let x, y 2 Sz

and consider the strategy S0
z = Sz \ {x, y}. Then, �(S�z, S

0
z)  �2↵+W �wz.

As G is a ne graph and we have that 2↵ > W �wu +W �wv, we conclude that
W �wz � 2↵ > W �wu +W �wv. Hence, W < wu +wv �wz < wu +wv, which
is impossible. In the case that there is at most one vertex u with ↵ > W � wu,
the strategy profile S, where Su = ;, and Sv = {u}, for all v 6= u, is a ne.
Furthermore G[S] = STn.

Corollary 1. Let � = hV, (wu)u2V , ↵, �i be a celebrity game on n players. In

is the unique ne graph of � if and only if ↵ � wmax and there is more than one
vertex u 2 V such that ↵ > W � wu.

Observe that in our model it is preferable to be an isolated node than to pay
a huge amount for establishing a link. In fact, in a ne graph either all nodes
are isolated, or the graph is connected. Hence, selecting an appropriate price
per link is a key fact to guarantee the connectivity of the equilibrium graphs.

Finally, using this characterization, we can formally define the subfamily of
celebrity games that have always a connected ne graph. Those games have STn

as a ne graph.

Definition 4. � = hV, (wu)u2V , ↵, �i is a star celebrity game if � has a ne
graph that is connected.

Corollary 2. For a celebrity game � = hV, (wu)u2V , ↵, �i, the following state-
ments are equivalent.

• � is a star celebrity game.

• Either ↵ < wmax or ↵ � wmax and there is at most one u 2 V for which
↵ > W � wu.

• STn is a ne graph of �.

Putting all together we can compute the PoS and, in some cases, the PoA.

Theorem 1. Let � be a celebrity game. Then we have.

• If � is a star celebrity game, PoS(�) = 1.

• If � is not a star celebrity game and ↵ � W , then PoS(�) = PoA(�) = 1.

• If � is not a star celebrity game and ↵ < W , then PoS(�) = PoA(�) =
W/↵ > 1.
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Proof. From Proposition 2, we have that opt(�) = W (n � 1) if ↵ � W and
opt(�) = ↵(n � 1), otherwise. When � is a star celebrity game, by Corollary
2 we know that STn is a ne graph. Let us see that in star celebrity games it
can only occur that ↵ < W . If ↵ < wmax, clearly ↵ < W . If ↵ � wmax, by
Corollary 2 there is at most one u 2 V for which ↵ > W � wu. Assuming that
wu1  . . .  wun�1  wun , we have that W > W � wu1 � . . . � W � wun�1 �
W � wun , and then W � wun�1 � ↵. Hence, PoS(�) = 1.

When � is not a star celebrity game, In is the unique ne graph. Thus,
when ↵ � W we have, PoS(�) = PoA(�) = 1 and, when ↵ < W we have,
PoS(�) = PoA(�) = W/↵ > 1.

4. Critical distance and diameter in Nash equilibrium graphs

In this section we analyze the diameter of ne graphs and its relationship
with the parameters defining the game. We are interested only in games in
which ne graphs with finite diameter exist, thus we only consider star celebrity
games. In stating the characterization, nodes with a high weight with respect
to the link cost play a fundamental role and it is worth to give them a name.

Definition 5. Let � = hV, (wu)u2V , ↵, �i be a celebrity game. We say that a
vertex u 2 V is a celebrity if ↵ < wu.

Given a celebrity u, any other node v with d(u, v) > � has an incentive
to pay for connecting to u. Thus, in any ne graph G, every celebrity node u
satisfies that diam(u)  �.

In some of the proofs of the following results we refer to a set of critical
nodes z 2 V of a graph G = (V, E) with respect to a node u and an edge {x, y}.
Critical is used in the sense that as all the shortest paths from u to z use {x, y},
removing the edge {x, y} results in an increase of the distance from u to z. We
use the notation

AG
{x,y}(u) = {z 2 V | all the shortest paths in G from u to z use the edge {x, y}}

We drop the explicit reference to G whenever G is clear from the context.

Proposition 6. Let � = hV, (wu)u2V , ↵, �i be a star celebrity game. If G is a
ne graph of �, then diam(G)  2� + 1.

Proof. Let S be a ne of � such that G = G[S]. Assume that diam(G) � 2�+2.
Then, there are two nodes u, v 2 V such that d(u, v) = 2� + 2. Consider a
shortest path from u to v, u = u0, u1, . . . , u2�+1, u2�+2 = v.

Let Au = {x 2 V |d(u, x)  �} and let Au1
= {x 2 V |d(u1, x)  �}.

Let us show that if a node x 2 Au [ Au1
, then d(x, v) > �. If x 2 Au then

d(x, v) > �, otherwise d(u, v)  d(u, x) + d(x, v)  2� contradicting the fact
that d(u, v) = 2� + 2. Moreover, if x 2 Au1 then d(x, v) > �, otherwise
d(u, v)  1 + d(u1, x) + d(x, v)  2� + 1 which also contradicts the fact that
d(u, v) = 2� + 2.
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Consider the edge {u, u1}. Then, either u1 2 Su or u 2 Su1 . In the case
that u1 2 Su, let S0

u = Su \ {u1} and S0
v = Sv [ {u1}. Observe that,

�(S�u, S0
u)  �↵ + w(A{u,u1}(u) \ Au)

By the previous remark about distances, we know that all the vertexes x 2
A{u,u1}(u) \ Au verify d(x, v) > �, but after adding {v, u1} all of them and u
become at distance  � from v, therefore

�(S�v, S0
v)  ↵� wu � w(A{u,u1}(u) \ Au).

Hence, �(S�u, S0
u) +�(S�v, S0

v)  �wu < 0. Therefore, either �(S�u, S0
u) < 0

or �(S�v, S0
v) < 0 and then S can not be a ne.

The case u 2 Su1
, follows in a similar way by interchanging the roles of u

and u1.

The previous result can be refined to get better bounds on the diameter when
all the nodes are celebrities or when at least one of the nodes is a celebrity.

Property 1. Let � = hV, (wu)u2V , ↵, �i be a star celebrity game and let G be
a ne graph of �, then

• if wmin  ↵ < wmax, diam(G)  2� and,

• if ↵ < wmin, diam(G)  �.

Proof. When wmin  ↵ < wmax, there is a celebrity u 2 V with wu > ↵. We
know that diam(u)  �. Let x and z be any two di↵erent nodes of G, then
d(x, u)  � and d(z, u)  �. Therefore, d(x, z)  d(x, u) + d(z, u)  2� and the
claim follows. When ↵ < wmin, each u 2 V is a celebrity, thus diam(u)  �.
Therefore diam(G)  �.

For ne trees we have a trivial lower bound of 2 on the diameter as a star is
a ne graph. For non-tree ne graphs we provide a lower bound on the diameter.
We first prove a technical result.

Lemma 1. Let � = hV, (wu)u2V , ↵, �i be a star celebrity game. In a ne graph
of � containing at least one cycle, if u is a node of a cycle and diam(u)  ��k,
for some k � 1, then the length of any cycle containing u is bigger than 2k + 2.

Proof. Let us suppose that S is a ne and that G = G[S] contains a cycle C
through a node u such that diam(u)  � � k, for some k � 1. Assume that C
is the shortest cycle containing u and that the length ` of C verifies `  2k + 2.
We split the proof in two cases, depending on the parity of `.

Case 1: C has odd length, ` = 2i + 1. Let v1, v2 be the two vertexes in C that
are at distance i of u in C, as C is of minimal length d(u, v1) = d(u, v2) = i. By
our hypothesis, 2i + 1  2k + 2 and thus i  k. Assume w.l.o.g. that v2 2 Sv1

and consider the strategy S0
v1

= Sv1
\ {v2}. Let G0 = G[S�v1

, S0
v1

]. Notice that
dG0(v2, u) = i. Therefore, diamG0(v1)  k + � � k = �, by selecting a path
going through u, so �(S�v1

, S0
v1

)  �↵ < 0 and G would not be a ne graph.
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Case 2: C has even length, ` = 2i. Let v be the antipodal vertex to u, at distance
i from u in C and let v1, v2 be the two vertexes in C that are at distance i�1 of
u in C. By our hypothesis, 2i  2k + 2 and thus i � 1  k. If v 2 Sv1

, consider
the strategy S0

v1
= Sv1

\ {v}. Using the same arguments as in Case 1 and the
fact that the distance from v1 to u in C is  k, we conclude that S is not a
ne. The same happens when v 2 Sv2 . It remains to consider the case in which
v1, v2 2 Sv. Consider the strategy S0

v = (Sv [ {u}) \ {v1, v2}. Now all shortest
paths in G from v passing through v1 or v2 can be rerouted trough u with and
increment in length of at most i�1  k. Therefore, diamG0(v)  1+��k  �.
Thus �(S�v, S0

v)  �↵ < 0 and G would not be a ne graph.

Proposition 7. Let � = hV, (wu)u2V , ↵, �i be a star celebrity game and let G
be a ne graph of �. If G is not a tree, then diam(G) > �/2.

Proof. Let G be a ne graph containing at least one cycle. If diam(G) � �, the
claim holds. Assume that diam(G)  � � 1. We know that the length of the
shortest cycle C is  2 diam(G) + 1. Let u be any node of C. Then, we have
diam(u)  diam(G) = � � (� � diam(G)). By Lemma 1, 2 diam(G) + 1 >
2(� � diam(G)) + 2. The last inequality implies diam(G) > �/2.

5. MaxBD network creation games versus celebrity games

In this section we show that MaxBD games are equivalent to celebrity games
where all players are celebrities. Let us formalize the definition of MaxBD game
taken from (Bilò et al., 2015b).

A MaxBD game � is defined by a tuple hV, Di where V = {1, . . . , n} is the
set of players and D, 1  D  n�1, is an integer representing the bound on the
diameter of each node v 2 V . Concepts like strategy of a player, strategy profile,
and outcome graph are defined as in the celebrity game model. The cost of player
u in the strategy profile S is cMaxBD

u (S) = |Su|, if diamG[S](u)  D; cMaxBD
u (S) =

+1, otherwise. The social cost of S is CMaxBD(S) =
P

u2V cMaxBD
u (S). Notice

that by the definition of MaxBD game, any strategy profile S that is either a ne
or a social opt satisfies diamG[S](u)  D and, therefore C(S) = ↵CMaxBD(S).

In the following we show how a MaxBD game can be translated, preserving
ne, to di↵erent instances of celebrity games. A MaxBD game can be seen as a
celebrity game in which the weights of each one of the players are large enough
so that buying a link is more suitable than having an eccentricity greater than
the given distance bound. On the other hand, we show that every celebrity
game with ↵ < wmin corresponds to a MaxBD game, again preserving ne.

Proposition 8. Let V be a set of players and � > 1. Let � = hV, �i be a
MaxBD game and �0 = hV, (wv)v2V , ↵, �i be a celebrity game where ↵ < wmin.
Then, ne(�) = ne(�0).

Proof. Let us prove first that ne(�) ◆ ne(�0). Assume that S 2 ne(�0). By
Property 1, diamG[S](u)  � and this implies that cu(S) = ↵|Su|. Let us
suppose that S is not a ne for �. Then there exists a player u 2 V and a
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strategy S0
u such that cMaxBD

u (S0) < cMaxBD
u (S) = |Su|, where S0 = (S�u, S0

u).
Hence, the only possibility is that diamG[S0](u)  � and |S0

u| < |Su|. Therefore
cu(S0) < cu(S) contradicting the fact that S 2 ne(�0).

It remains to show that ne(�) ✓ ne(�0). Let S 2 ne(�). We know that
diam(G[S])  � and cMaxBD

u (S) = |Su|, for u 2 V . For �0, we have that
cu(S) = ↵|Su|. Now let us assume that S is not a ne of �0. Then, there exists
u 2 V and a strategy S0

u such that cu(S) > cu(S0), where S0 = (S�u, S0
u).

Since wv > ↵, then we have that cu(S0) = ↵|S0
u| +

P
{v|dG[(S0)](u,v)>�} wv �

↵(|S0
u| + |{v | dG[S0](u, v) > �}|). Consider the strategy profile S00 = (S�u, S00

u),
where S00

u = S0
u [ {v | dG[S0](u, v) > �}. We have diamG[(S00](u)  �. Thus,

cu(S00) = ↵|S00
u |. Combining the inequalities cu(S) = ↵|Su| > cu(S00) = ↵|S00

u |.
Then, |Su| > |S00

u | contradicting the fact that S 2 ne(�).

The previous correspondences allow us to get a relationship on the PoA and
the PoS,

Corollary 3. Let V be a set of players and � > 1. Let � = hV, �i be a MaxBD
game and let �0 = hV, (wv)v2V , ↵, �i be a celebrity game where ↵ < wmin. Then,

• PoS(�) = PoS(�0) = 1,

• PoA(�) = PoA(�0).

Proof. We know by Proposition 4 that the star tree is a social optimum as well as
a ne for celebrity games when ↵ < wmin. The same occurs for MaxBD games as
it was shown in Theorem 3.3 of (Bilò et al., 2012). Hence, PoS(�) = PoS(�0) = 1.

For the celebrity game �0, we have that

PoA(�) =
↵maxS2NE(�){|E(G[S])|}

↵(n � 1)
=

maxS2NE(�){|E(G[S])|}
(n � 1)

.

By Proposition 8, ne(�) = ne(�0). Thus ne of �0 have diameter  � and then
we can conclude that PoA(�) = PoA(�0).

Hence, the upper bound on the PoA of MaxBD games shown in (Bilò et al.,
2015b) is also an upper bound for celebrity games. In the subsequent sections
we consider the general case where the assumption ↵ < wmin is not required.

We have considered here only the uniform version of the MaxBD games in
which the eccentricity bound is equal for all the nodes. Bilò et al. (2015b) con-
siders also a non uniform version in which each node has a di↵erent eccentricity
requirement. It is easy to extend Proposition 8 to show that the set of ne is
preserved provided that the eccentricity bounds are the same in both games and
↵ < wmin. Therefore, non-uniform celebrity games have unbounded PoA, as it
was shown for the non-uniform MaxBD games in (Bilò et al., 2015b).
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6. Bounding the price of anarchy

We provide here bounds on the contribution of the edges and the weights to
the social cost of ne graphs. Those bounds allow us to provide a bound on the
PoA. Our next result establishes an upper bound on the PoA in terms of W
and ↵.

Lemma 2. For a star celebrity game � = hV, (wu)u2V , ↵, �i, PoA(�)  W/↵.

Proof. Let S be a ne of � and let G = G[S] = (V, E). As S is a ne, no player
has an incentive to deviate from S. Thus, for any u 2 V ,

0  �(S�u, ;)  �↵|Su| + w({v | d(u, v)  �}) � wu.

Summing up, for all u 2 V , we have

0 
X

u2V

(�↵|Su| +
X

{v|d(u,v)�}
wv � wu) = �↵|E| +

X

u2V

X

{v|d(u,v)�}
wv � W.

Therefore,

C(G) = ↵|E| +
X

u2V

X

{v|d(u,v)>�}
wv


X

u2V

0
@ X

{v|d(u,v)�}
wv +

X

{v|d(u,v)>�}
wv

1
A� W = (n � 1)W.

Hence, PoA(�)  (n�1)W
↵(n�1) = W

↵ .

Using the previous lemma we can get an O(n) upper bound on the PoA
of star celebrity games. Let us see that this upper bound can be improved
by bounding the weight component and the link component of the social cost,
separately.

Define the weight component of the social cost, for a critical distance �,
W (G, �), as

W (G, �) =
X

u2V (G)

X

{v|d(u,v)>�}
wv =

X

{{u,v}|d(u,v)>�}
(wu + wv).

Lemma 3. Let � = hV, (wu)u2V , ↵, �i be a star celebrity game. In a ne graph
G, W (G, �) = O(↵n2/�).

Proof. Let S be a ne and G = G[S] be a ne graph. Let u 2 V and let
b = diam(u). Recall that, by Proposition 6, b  2� + 1. We have three cases.

Case 1: b < �. For any node v 2 V \ {u} consider the strategy S0
v = Sv [ {u},

and let G0 = G[S�v, S0
v]. By connecting to u we have diamG0(v)  � and, as S

is a ne, we have

�(S�v, S0
v) = ↵�

X

{x|dG(x,v)>�}
wx � 0.
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Therefore we have X

{x|dG(x,v)>�}
wx  ↵.

As b < � we conclude that
W (G, �)  n↵.

Since 1 < �  n � 1, we get n/�  ↵n2/�.

Case 2: b � � and b � 6. For 1  i  b, consider the set Ai(u) = {v | d(u, v) =
i} and the sets

C1 = {v 2 V | 1  d(u, v)  b/3} = [1ib/3Ai(u),

C2 = {v 2 V | b/3 < d(u, v)  2b/3} = [b/3<j2b/3Aj(u),

C3 = {v 2 V | 2b/3 < d(u, v)  b} = [2b/3<kbAk(u).

As b = diam(u), A`(u) 6= ;, 1  `  b, and all those sets constitute a partition
of V \ {u}. As b � 6, for each `, 1  `  3, C` contains vertexes at a b/3 � 2
di↵erent distances. Therefore, for 1  `  3, it must exist i` such that Ai`(u) ✓
C` and |Ai`(u)|  3n/b, otherwise the total number of elements in C` would be
bigger than n.

For any v 2 V , let S0
v = (Sv [ Ai1(u) [ Ai2(u) [ Ai3(u)) \ {v} and let G0 =

G[S�v, S0
v]. Since b  2� + 1, we have that b/3 < �. Hence, by construction,

diamG0(v)  �. Therefore, as S is a ne, we have

0  �(S�v, S0
v)  9n↵

�
�

X

{x|dG(x,v)>�}
wx.

Thus,
X

{x|dG(x,v)>�}
wx  9n↵

�
and W (G, �)  9n2↵

�
.

Case 3: b � � and b  6. Consider the sets Ai(u) = {v | d(u, v) = i}, 0  i  b,
and the sets C0 = {v 2 V | d(u, v) is even} and C1 = V \ C0. Both sets are
non-empty and one of them must have  n/2 vertexes. By connecting to all
the vertexes in the smaller of those sets the diameter of the resulting graph is
2. Therefore, using a similar argument as in case 2, we get

W (G, �)  n2↵

2
,

which is O(n2/�) as � < 6. Which concludes the proof.

Our next result provides a bound for the number of edges in a ne graph.

Lemma 4. Let � = hV, (wu)u2V , ↵, �i be a star celebrity game. In a ne graph

G, |E(G)|  n � 1 + 3n2

� .
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Proof. Let S be a ne of � and let G = G[S] = (V, E). Let u be a node in V .
For any v 2 Su, recall that A{u,v}(u) denotes the set of nodes z such that all
shortest paths from u to z use the edge {u, v}. Observe that v 2 A{u,v}(u) and
that, for v, v0 2 Su with v 6= v0, A{u,v}(u) \ A{u,v0}(u) = ;.

Let B(G) be the set of bridges of G, recall that |B(G)|  n�1. For u 2 V , let
B(u) = {x 2 Su | {u, x} /2 B(G)}. Observe that |E| = |B(G)| +

P
u2V |B(u)|.

Let us show that for any v 2 Su such that {u, v} is not a bridge, there exists
z 2 A{u,v}(u) such that d(u, z) > �/3.

Let us suppose that {u, v} is not a bridge and that, for every z 2 A{u,v}(u)
d(u, z)  �/3. In such a case there must be some edge {x, y} with x /2 A{u,v}(u)
and y 2 A{u,v}(u). Furthermore, we can select x so that x 6= u and such that
there is a shortest path P from u to x using only vertexes in V \ A{u,v}(u).
Observe that d(u, x)  d(u, y) + 1. Furthermore, for z 2 A{u,v}(u), there exists
a path from u to z that follows P from u to x, the edge {x, y}, a shortest path
from y to v (part of a shortest path to u through A{u,v}(u)), and a shortest
path from v to z (through A{u,v}(u)). Notice that d(u, x)  �/3 + 1, d(y, v) 
�/3 � 1, and d(v, z)  �/3 � 1. Hence, there is a path from u to z of distance
 (�/3+1)+1+(�/3�1)+(�/3�1) = � which does not use {u, v}. Thus, u has
incentive to remove {u, v} since �(S�u, Su \ {v}) = �↵ < 0, which contradicts
the fact that S is a ne.

Therefore, for v 2 B(u), there exists z 2 A{u,v}(u) such that d(u, z) > �/3
and as all the predecessors of z in a shortest path from u belong to A{u,v}(u),
we have |A{u,v}(u)| > �/3. Observe that n � P

{v2Su|v2B(u)} |Au,v(u)| �
|B(u)|(�/3), thus |B(u)|  3n

� . Finally, combining the two bounds, we have

|E| = |B(G)| +
P

u2V |B(u)|  (n � 1) + 3n2

� .

Observe that, the previous results jointly with opt(�) = ↵(n � 1), leads us
to the following upper bound of the PoA.

Theorem 2. For a star celebrity game �, PoA(�) = O(min{n/�, W/↵}).

We finalize this section showing a family of star celebrity games having
PoA = ⌦(n), for � = 2.

Lemma 5. Let k > 2, ↵ > 0 and let w = (w1, . . . wk) be a positive weight
assignment. There is a star celebrity game � = �(k, ↵, w) with n = 2k players
and � = 2 having PoA(�) > 3n

8 .

Proof. Consider the game �k = hV, (wu)u2V , ↵, �i, where

• V = {u1, . . . , uk} [ {v1 . . . , vk},

• w(ui) = ↵ and w(vi) = wi, for 1  i  n,

• � = 2.

Consider any strategy profile S where, for 1  i  k, {u1, . . . , uk} \ Svi =
{ui} and Sui

= ;, and such that in G[S] the subgraph induced by {v1 . . . , vk}
is a clique. An example of such a strategy, for k = 4, is given in Figure 1.
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↵

w1 w2

↵

↵

w3 w4

↵

Figure 1: A ne for the game �(4, ↵, w).

Observe that there is no vertex in G[S] that is at distance 1 of more than one
vertex in {u1, . . . , uk}. Furthermore, any edge (u, v) lies in the unique shortest
path from u to a vertex in {u1, . . . , uk}. Therefore S is a ne.

We have C(G[S]) = ↵
⇣

k(k�1)
2 + k

⌘
+ ↵k(k � 1) = ↵(3k(k � 1) + 2k)/2. As

a star tree is an opt graph and n = 2k, we conclude that

PoA(�) =
↵

3n
2 ( n

2 �1)+2 n
2

2

↵(n � 1)
=

3n

8

(n � 1) + 1
3

(n � 1)
=

3n

8

✓
1 +

1

3(n � 1)

◆
.

7. Price of anarchy on Nash equilibrium trees

Now we complement the results of the previous sections by providing a con-
stant upper bound on the PoA when we restrict the ne graphs to be trees. We
can find in the literature di↵erent models for which the diameter or the PoA
can not be proved to be constant on general ne graphs, but they are shown to
be constant in the case of ne trees (see for example Alon et al. (2013, 2014);
Ehsani et al. (2015)).

In order to get a tighter upper bound for the PoA on ne trees, we first
improve the bound on the diameter of ne trees to � + 1.

Proposition 9. Let � = hV, (wu)u2V , ↵, �i be a star celebrity game. If T is a
ne tree of �, diam(T )  � + 1.

Proof. Let T be a tree such that T = G[S] where S is a ne of �. Let d = diam(T )
and let P : u = u0, u1, . . . , ud be a diametral path of T . Assume that d > � +1.
For 1  i < d, let Ti be the connected subtree containing ui after removing
edges {ui�1, ui} and {ui, ui+1}. As P is a diametral path, both u and ud are
leaves in T . Furthermore, T1 and Td�1 are star trees. In general, the distance
from the leaves of any Ti to both u and ud is at most d.
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We consider two cases depending on who is paying for the connections to
the end points of P .
Case 1: u 2 Su1

or ud 2 Sud�1
. W.l.o.g. assume that ud 2 Sud�1

. As S
is a ne we have wud

� ↵. Consider the strategy S0
u1

= Su1
[ {ud�1}, then

�(S�u1
, S0

u1
)  ↵� wud

� wud�1
< 0 and T can not be a ne graph.

Case 2: u1 2 Su and ud�1 2 Sud
. When � � 3. Set S0

u = Su � {u1} [ {u2}
and T 0 = G[(S�u, S0

u)]. Observe that, for x 2 T1, dT 0(u, x)  3  � and, for
x /2 T1 [ {u}, dT 0(u, x) = dT (u, x) � 1. Therefore, �(S�u, S0

u)  �wu�+1
< 0.

Therefore, T is not a ne graph.
The previous argument fails when � = 2 as there might be x 2 T1 with

dT 0(u, x) = 3. From Proposition 6, we know that d  2� + 1  5. Let us see
that it can not be the case that d = 4 or d = 5. Let S0

u = Su�{u1}[{ud�1} and
S0

ud
= Sud

� {ud�1} [ {u1}. Let T 1 = G[(S�u, S0
u)] and T 2 = G[(S�ud

, S0
ud

)].
When d = 4, for any x 2 T2, dT 1(u, x) = dT (u, x) and dT 2(u4, x) = dT (u4, x).

Therefore, we have

�(S�u, S0
u) = w(T1) � w(T3) � wu4

and �(S�u4
, S0

u4
) = w(T3) � w(T1) � wu.

Thus �(S�u, S0
u) + �(S�u4

, S0
u4

) = �wu � wu4
< 0 and one of the two players

has an incentive to deviate.
When d = 5, we have �(S�u, S0

u) = w(T1) + wu2
� wu3

� w(T4) � wu5

and �(S�u5 , S
0
u5

) = w(T4) + wu3 � wu � w(T1) � wu2 . Therefore we have that
�(S�u, S0

u)+�(S�u5 , S
0
u5

) = �wu �wu5 < 0 and one of the two players has an
incentive to deviate.

We need to prove first an auxiliary result.

Lemma 6. Let � = hV, (wu)u2V , ↵, �i be a star celebrity game and let G be a ne
graph of �. If there is v 2 V with diamG(v)  �� 1, then W (G, �)  ↵(n� 1).

Proof. Let S 2 ne(�) and let G = G[S]. Let u 2 V , u 6= v. If v /2 Su,
�(S�u, Su [ {v}) � ↵�P

{x|dG(u,x)>�} wx � 0. But, if v 2 Su, diam(u)  �.

Hence, ↵ � P
{x|dG(u,x)>�} wx and summing over all u 6= v we have that

↵(n � 1) � W (G, �).

The proof of the upper bound for the PoA on ne trees uses the previous
statements and examines the particular cases � = 2, 3.

Theorem 3. The PoA on ne trees of a star celebrity game is at most 2.

Proof. Let T be a ne tree of �. From Proposition 9 we have a bound on the
diameter, so we know that diam(T )  � + 1. Since T is a tree, we have that
there exists u 2 V such that diam(u)  (diam(T ) + 1)/2  �/2 + 1. If � � 4,
then diam(u)  � � 1. By Lemma 6, C(T )  2↵(n� 1). Hence, the PoA of ne
trees of � is at most 2 for � � 4.

In the case of � = 3, either diam(T )  3 or diam(T ) = 4. In the first case
C(T ) = ↵(n � 1) and in the second there is u with diamT (u) = 2 = � � 1 and
we can use Lemma 6.
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Finally, we consider the case � = 2. Notice that the unique tree T with
diameter 3 is a double star, a graph that is formed by connecting the centers of
two stars. Assume that a ne tree T is formed by Tu, a star with center u, and
Tv, a star graph with center v, joined by the edge (u, v). Let Lu (Lv) be the
set of leaves in Tu (Tv). As T is a ne graph we have that w(Lu), w(Lv)  ↵.
Furthermore

C(T ) =↵(n � 1) +
X

w2Lu

w(Lv) +
X

w2Lv

w(Lu)  ↵(n � 1) +
X

w2Lu

↵ +
X

w2Lv

↵

 ↵(n � 1) + ↵(n � 2)  2↵(n � 1).

Note that in a ne tree T , if ↵ > wmax, for an edge {u, v} connecting a leaf
u, it must be the case that v 2 Su. Then, in the proof of Proposition 9, we only
have the case u1 2 Su. In such case diam(T )  �. Hence, if ↵ > wmax, the
PoA on ne trees is 1.

Corollary 4. Let � = hV, (wu)u2V , ↵, �i be a star celebrity game such that
↵ > wmax. For any ne tree of �, diam(T )  � and therefore the PoA on ne
trees is 1.

To tighten the upper bound let us analyze the properties of the ne trees
with diameter � + 1

Lemma 7. Let T be a ne tree of � = hV, (wu)u2V , ↵, �i having diam(T ) = �+1,
for some � � 3. Let P = u, u1, . . . , u� , v be a diametral path in T and let S be
a ne such that T = G[S]. We have that

1. u and v are leaves of T .

2. Su = Sv = ;.
3. w(u) = w(v) = ↵.

4. P is the unique diametral path in T .

Proof. Statement 1 follows from the fact that T is a tree with diameter � + 1.
To prove the second statement, assume that Su 6= ;. As u is a leaf it must be

the case that Su = {u1}. Consider the strategy S0
u = {u2}. Taking into account

that dT (u2, v) = � � 1 and that the tree rooted at u2 after deleting (u, u1)
and (u2, u3) has depth at most 2, we have that �(S�u, S0

u)  �w(v) < 0.
Contradicting the fact that T is a ne tree. A symmetric argument shows that
Sv = ;.

To prove the third statement we consider two cases.

Case 1: w(u) > ↵. Let S0
v = {u1}, then �(S�v, S0

v)  ↵ � w(u) < 0. Thus T
could not be a ne.

Case 2: w(u) < ↵. By 2 we know that Su = Sv = ;, therefore u 2 Su1 . Taking
S0

u1
= Su1

\ {u1} we have �(S�u1
, S0

u1
)  w(u) � ↵ < 0. Again S could not be

a ne.
We conclude that w(u) = ↵. A symmetric argument shows that w(v) = ↵.
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To prove the last statement assume that T has two diametral paths with
length �+1. Let u, v, u0, v0 be four vertexes such that d(u, v) = d(u0, v0) = �+1.
We consider two cases.

Case 1: the four vertexes are di↵erent. Let P be the shortest path from u to v
and P 0 the shortest path from u0 to v0. Let us first show that P and P 0 must
share at least one point. Otherwise let y be the vertex in P that is closest to P 0

and let x be the vertex in P 0 that is closest to y. By construction P 0 lies in the
subtree rooted at y after removing the edges in P , thus d(y, x) > 0. Therefore,
max{d(u, y), d(y, v)} + d(x, y) + max{d(u0, x), d(x, v0)} > � + 1. Contradicting
the fact that T has diameter � + 1.

Thus P and P 0 share at least one point. Let x(y) be the vertex common to P
and P 0 that is closer to u(v). If there is only one common point x = y. Observe
that when x = y it must happen that x is the central point of both paths, that is
� + 1 must be even and d(u, x) = d(v, x) = d(u0x) = d(v0x) = (� + 1)/2. When
x 6= y assume without loss of generality that u0 is the vertex in the subtree
rooted at x after removing P . In such a case, d(u0, x) = d(u, x)  (� + 1)/2
and d(v, y) = d(v0, y)  (� + 1)/2 as otherwise the tree will not have diameter
� + 1. Thus d(u, v0) = � + 1. By 2 we know that Su = ; and by 3 that
w(v) = w(v0) = ↵. Consider the strategy profile, S0

u = {y}. We have that
�(S�u, S0

u)  ↵� w(v) � w(v0) < 0. Therefore T cannot be a ne.

Case 2: two vertexes are the same. Without loss of generality assume that
u0 = u. Let y be the branching point of the paths from u to v and u to v0. As
in the previous case, we have that d(y, v) = d(y, v0)  (� + 1)/2. Considering
S0

u = {y} we have again that �(S�u, S0
u)  ↵ � w(v) � w(v0) < 0. Therefore T

cannot be a ne.

We conclude that there are only two vertexes at distance � + 1 in T .

Putting all together we get an upper bound on the PoA on ne trees when
� 6= 2.

Theorem 4. The PoA on ne trees of a star celebrity game with � � 3 and n
players is at most 1 + 2

n�1 .

Proof. For ne trees with diameter  � the social cost is ↵(n � 1) but for ne
with diameter � + 1, by Lemma 7, the social cost is ↵(n� 1) + 2↵. As a star is
an optimal graph with social cost ↵(n � 1) the claim follows.

For the case � = 2 it remains to analyze whether a double star can be a ne
for a star celebrity game.

Lemma 8. Let T be a ne tree of a star celebrity game � = hV, (wu)u2V , ↵, �i
let � = 2. There is no ne tree for � with diameter 3 except when |V | = 4 and
at least two players have weight ↵.

Proof. Assume that a double star T is formed by two starts Tu and Tv with
centers u and v respectively and the edge {u, v}. Let Lu (Lv) be the set of
leaves in Tu (Tv). Let S be a ne so that T = G[S]. As T is a ne we know that
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↵ w1 w2 ↵

↵ w1 w2 ↵

Figure 2: The ne trees with diameter 3

w(Lu), w(Lv)  ↵, otherwise by connecting a leaf to the other center their cost
will decrease.

Assume that |Lu|, |Lv| � 2. We have that, for a leaf x, w(x) < ↵. So,
u 2 Sx, for x 2 Lu, and v 2 Sy, for y 2 Lv. Otherwise, u (or v) would benefit
by disconnecting to their leaves. For any leaf x 2 Lu (y 2 Lv), consider the
strategy S0

x = {v} (S0
y = {u}). For x 2 Lu, we have �(S�x, S0

x) = w(Lu) �
w(x) � w(Lv) � 0, that is w(x)  w(Lu) � w(Lv). For y 2 Lv, we have
�(S�y, S0

y) = w(Lv) � w(y) � w(Lu) � 0, thus w(y)  w(Lv) � w(Lu). Which
is impossible as the node weights are positive. Therefore |Lu| = 1 or |Lv| = 1.

Let us assume w.l.o.g that Lu = {x}. If w(x) < ↵ and x 2 Su, �(Su, ;) =
w(x) � ↵ < 0, which is not possible. Therefore, u 2 Sx. But in such a case
�(S�x, {v}) = �w(Lv) < 0. So, w(x) = ↵.

If |Lv| > 1, let y 2 Lv. As w(Lv)  ↵ and w(y) > 0, we have w(y) < ↵.
Therefore, v 2 Sy, but then

�(S�y, {u}) = �w(x) + w(Lv) � w(y) = �↵ + w(Lv) � w(y) < 0.

Contradicting that S is a ne. Thus, Lv = {y} and, as for the case Lu = {x},
we can conclude that w(y) = ↵.

The unique graph satisfying all conditions is a path on 4 vertexes. Further-
more the leaf nodes must have weight ↵ and there are no restrictions for the
weights of the internal vertexes. It is easy to see that the unique orientations
producing a ne in this particular case are the ones depicted in Figure 2.

Theorem 5. The PoA on ne trees of star celebrity games is  5/3 and there
are games for which a ne tree has cost 5 opt/3.

Proof. For � � 3 and n � 4, the PoA on ne trees is at most 1 + 2
n�1  5/3,

by Theorem 4. For � � 3 and n < 4, all trees have diameter at most �, so
the PoA on ne trees is 1. For � = 2 according to Lemma 8 all ne trees have
diameter at most � except for P3 in some cases. When P3 is a ne we have that
C(P3) = 3↵ + 2↵ = 5↵, giving the upper bound. As there are games for which
P3 is a ne (see Figure 2), the claim follows.
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8. Celebrity games for � = 1

Let us now analyze the case � = 1. Observe that every player u for each
non-adjacent node v pays wv, and for each adjacent node pays either ↵ if he
has bought the link, or 0, otherwise. Notice that if u establishes the link (u, v),
only the node v will take profit of this decision. Contrasting with this, when
� > 1, if player u pays a new link, then all the nodes that get closer to u but
not farther than �, will take advantage of this new link.

This particular behavior allows us to show that computing a best response
becomes a tractable problem. Furthermore, the structure of ne and opt graphs
is quite di↵erent from the case of � > 1 and we can obtain a tight bound for
the PoA.

Proposition 10. The problem of computing a best response of a player to a
strategy profile in celebrity games is polynomial time solvable when � = 1.

Proof. Let S be a strategy profile of � = hV, (wu)u2V , ↵, 1i and let u 2 V .
Consider another strategy profile S0 = (S�u, S0

u), for some S0
u ✓ V \ {u}. As

� = 1 we have

cu(S0) = ↵|S0
u| +

X

v/2S0
u

wv.

Note that, when |S0
u| = k, the first component of the cost is the same and thus

a best response on strategies with k players can be obtained by taking from S0
u

the players with the k-th highest weights. Let S0
u(k) be the set of those players

and let Wk = W � w(S0
u(k)). Thus cu(S�u, S0

u(k)) = ↵k + Wk. To obtain a
best response it is enough to compute the value k for which cu((S�u, S0

u(k)))
is minimum and output S0

u(k). Observe that the overall computation can be
performed in polynomial time.

In order to show a bound for the PoA we prove first some auxiliary results.
When � = 1 pairs of vertexes at distance bigger than one correspond to pairs of
vertexes that are not connected by an edge and such a property does not hold
for higher values of �.

Proposition 11. Let � = hV, (wu)u2V , ↵, 1i be a celebrity game. If G = (V, E)
is a ne graph of �, for each u, v 2 V ,

• if either wu > ↵ or wv > ↵ then {u, v} 2 E,

• if both wu < ↵ and wv < ↵ then {u, v} /2 E,

• otherwise the edge {u, v} might or might not belong to E.

Proof. Let S be a ne and let G = G[S] = (V, E). Observe that due to the fact
that � = 1, for any player u,

cu(S) = ↵|Su| +
X

{v|v 6=u,{u,v}62E}
wv.
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The cost is thus expressed in terms of the existence or non existence of a connec-
tion between pairs of nodes and thus the strategy can be analyzed considering
only deviations in which a single edge is added or removed. We analyze the
di↵erent cases for players u and v.

Case 1: wu > ↵. For any player v 6= u, if the edge {u, v} is not present in
G the graph cannot be a ne graph as v improves its cost by connecting to u.
For the same reason, if the edge is present either u 2 Sv or v 2 Sv. The latter
casev 2 Sv, can happen only when wv > ↵. Therefore, the player that is paying
for the connection will not obtain any benefit by deviating.

Case 2: wu, wv < ↵. If the edge {u, v} is present in G the graph cannot be a ne
graph as the player establishing the connection improves its cost by removing
the connection to the other player. For the same reason, if the edge is not
present none of the players will obtain any benefit by deviating and paying for
the connection.

Case 3: wu, wv = ↵. The cost, for any of the players, of establishing the
connection or not is the same. In consequence the edge can or cannot be in a
ne graph.

Case 4: wu = ↵ and wv < ↵. Player v is indi↵erent to be or not to be connected
to u, but player u in a ne will never include v in its strategy. Observe that again
the edge can or cannot exists in a ne graph but, if it exists, it can only be the
case that u 2 Sv.

Let us analyze now the structure of the opt graphs.

Proposition 12. Let G = (V, E) be a opt graph of a celebrity game � =
hV, (wu)u2V , ↵, 1i. For any u, v 2 V , we have

• if wu + wv < ↵ then {u, v} /2 E,

• if wu + wv > ↵ then {u, v} 2 E,

• if wu + wv = ↵ then {u, v} might or not be an edge in G.

Proof. Let S be a strategy profile and let G = G[S] = (V, E) be an opt graph.
As we have seen before as � = 1, for any player u,

cu(S) = ↵|Su| +
X

{v|v 6=u,{u,v}62E}
wv,

and we get et the following expression for the social cost

C(G) = ↵|E| +
X

{u,v|u<v,{u,v}62E}
(wu + wv).

The above expression shows that to minimize the contribution to the cost, an
edge {u, v} can be present in the graph only if wu + wv � ↵ and will appear for
sure only when wu + wv > ↵. Thus the claim follows.
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From the previous characterizations we can derive a constant upper bound
for the price of anarchy when � = 1.

Theorem 6. Let � = hV, (wu)u2V , ↵, 1i be a celebrity game. PoA(�)  2.
Furthermore the, ratio among the social cost of the best and the worst ne graphs
of � is bounded by 2.

Proof. � = hV, (wu)u2V , ↵, 1i. Observe that due to the conditions given in
Propositions 11 and 12 the social cost of an opt graph is

X

{{u,v}|wu+wv�↵}
↵ +

X

{{u,v}|wu+wv<↵}
(wu + wv),

and the social cost of a ne graph with minimum number of edges, i.e., one in
which all the optional are not present, is at most

X

{{u,v}|wu>↵ or wv>↵}
↵ +

X

{{u,v}|wu,wv↵}
(wu + wv) =

=
X

{{u,v}|wu>↵ or wv>↵}
↵

+
X

{{u,v}|wu,wv↵ and wu+wv=↵}
↵

+
X

{{u,v}|wu,wv↵ and wu+wv<↵}
(wu + wv)

+
X

{{u,v}|wu,wv↵ and wu+wv>↵}
(wu + wv)

Observe that the di↵erence with the cost of an opt graph is in the last term

D = {{u, v} | wu, wv  ↵ and wu + wv > ↵}.

Notice that {u, v} 2 D contributes to the cost of an opt graph with ↵ and to the
cost of a ne graph with wu+wv. By taking � with wu = ↵, for any u 2 V , we can
maximize the size of D and this leads to the worst possible ne graph. For such a
�, In is a ne graph and we have that C(In) =

P
u,v2V,u<v(wu+wv) = ↵n(n�1).

Furthermore, in any opt graph of �, all the edges will be present, thus we have
opt = ↵n(n � 1)/2. Thus

PoA(�)  n(n � 1)↵

↵n(n � 1)/2
= 2

Observe that when wu = ↵, for any u, the complete graph is also a ne graph
and thus we have that the ratio between the social cost of the worst and the
best ne graph is bounded by 2.

Observe that when ↵ < wmin the unique ne is a complete graph which is
also an opt graph. Taking into account that the relationship among celebrity
games and MaxBD games provided in Proposition 8 also holds for � = 1 we can
conclude.

24

76



Corollary 5. For � = 1, the PoA and the PoS of MaxBD games and celebrity
games with ↵ < wmin is 1.

9. Conclusions and Open Problems

We have introduced the celebrity games model aiming to address the creation
of networks in a scenario where the nodes or players may have di↵erent weights
and where the requirement of being close to a global critical distance has to be
balanced against the node weights. Our results provide further understanding
of the structural properties of stable networks. We have shown that the critical
distance a↵ects directly the diameter of the stable networks. For star celebrity
games the diameter is  2� +1 and, in the case that the ne graph is not a tree,
the diameter is > �/2. Furthermore, this critical distance, jointly with player
weights and link establishment cost, have implications on the quality of the
ne. We have shown that the PoA of star celebrity games is O(min{n/�, W/↵})
and, for � = 2, we have found games whose PoA is ⌦(n). In contra-position
restricting the ne to be trees the PoA is constant.

We can observe that, as one can expect, enlarging the value of the critical
distance improves the quality of equilibria. Furthermore, if the total game
weight W = O(↵), the PoA is O(1). Corresponding to the intuition that when
player’s weights are negligible players prefer to be isolated. In contrast, when
all the players are celebrities, even though their weights could be very di↵erent,
players prefer to be closer, and the ne graphs have diameter  �. In this latter
case, the upper bound on the PoA obtained in Bilò et al. (2015b) for MaxBD
games ameliorates the upper bound of celebrity games.

It still remains open to shorten the gap between the lower and upper bounds
on the PoA. Our results are only tight for � = 1 and � = 2. The cases where
� is constant are of particular interest. In the family of graphs providing the
lower bound on the PoA not all the nodes are celebrities, so our result has no
implication for MaxBD games.

Further questions of interest are to study natural variations of our frame-
work. Among the many possibilities, we propose to analyze celebrity games
under (i) the Max cost model (work in progress), (ii) other definitions of the
social cost.

Finally, we have not considered the non uniform version where each player u
can have its own critical distance �u. Bilò et al. (2015b) showed that the PoA of
MaxBD game is ⌦(n) even for the non uniform model with only two distance-
bound values. As we have mentioned before such a negative result for MaxBD
games translates to the celebrity games when all the players are celebrities.
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25

77



A. Duch and M. Serna were partially supported by the Spanish Ministry for
Economy and Competitiveness (MINECO) and the European Union (FEDER
funds), under grants ref. TIN2013-46181-C2-1-R (COMMAS). M. Blesa was
partially supported by the Spanish Ministry for Economy and Competitiveness
(MINECO) and the European Union (FEDER funds), under grant TIN2012-
37930-C02-02.

References

Albers, S., Eilts, S., Even-Dar, E., Mansour, Y., Roditty, L., 2006. On Nash
equilibria for a network creation game. In: Proceedings of the 7th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2006. pp. 89–98.

Alon, N., Demaine, E. D., Hajiaghayi, M., Kanellopoulos, P., Leighton, T.,
2013. Basic network creation games. SIAM Journal on Discrete Mathematics
27(2), 656–668.

Alon, N., Demaine, E. D., Hajiaghayi, M., Kanellopoulos, P., Leighton, T.,
2014. Correction: Basic network creation games. SIAM Journal on Discrete
Mathematics 28(3), 1638–1640.
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Chapter 6

Max celebrity games

6.1 Summary

In the previous chapter we have introduced and studied a new original model, the Sum Celebrity
model or abbreviated, sum cg. Changing the way in which the weights of the players that are
at a distance greater than β affect such player we can obtain very natural variations of the
sum cg. We propose to consider the max celebrities model, or abbreviated max cg, the model
that we obtain keeping all the definitions the same except for the individual cost function of
the players, where we change the summation by the maximum. In this way, as in the sum cg,
every max cg game is specified by a tuple 〈V, (wi)i∈V , α, β〉 where, V is the set of players, α is
the cost per link, β the critical distance and (wi)i∈V the weights or relevance degrees of each
player, satisfying all of them the same restrictions as in the sum cg.

Now we move on analysing the max cg model paying attention to the analogous elements
of interest that we studied in the sum cg. We address the cases β > 1 and β = 1 separately.

The first thing we study for β > 1, is the problem of computing the Best Response which is
NP-hard, too.

Then, we study upper and lower bounds for the PoA. Regarding the upper bounds we
compare the PoA vs the critical distance β and the PoA vs the maximum weight of the players
wmax = maxi∈V {wi}. On the positive side, such upper bounds imply low PoA when β is close
to n and when wmax is close to α, results that are clearly analogous to the sum cg. On the
negative side, contrasting with the sum cg results, in the max cg we find several situations in
which games have a very large PoA.

Regarding the topology, we see that the diameter of equilibria is related to the critical
distance β, too. Moreover, we also study the connectivity properties of equilibria. Due to
the fact that there exist various situations in which equilibria are disconnected, we consider a
little variation in the definition of the cost function for the players of any max cg game by
introducing infinite individual cost exactly for every configuration that has associated a non-
connected communication network. When doing so, we assure that every equilibrium graph is
connected but then there appear equilibrium graphs that have diameter n− 1.

Finally, for the case β = 1 we investigate the problem of computing the best response as well
as the PoA. Although the problem of computing the best response is polynomial time solvable,
as in the sum cg, we are not able to prove an upper bound on the PoA having low value in
general. This could be explained because the maximum is a slightly more involved function
than the summation so that for β = 1, although both sum cg and max cg become simple
models, the max cg is not as tractable as the sum cg.
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6.2 Article: Max Celebrity Games

Àlvarez, C., Messegué, A. “Max Celebrity Games”. Algorithms and Models for the Web Graph
- 13th International Workshop, WAW 2016, Montreal, QC, Canada, December 14-15, 2016,
Proceedings, 10088 88–99, 2016.
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Abstract. We introduce Max celebrity games a new variant of Celebrity
games defined in [4]. In both models players have weights and there is a
critical distance � as well as a link cost ↵. In the max celebrity model the
cost of a player depends on the cost of establishing links to other players
and on the maximum of the weights of those nodes that are farther away
than � (instead of the sum of weights as in celebrity games). The main
results for � > 1 are that: computing a best response for a player is NP-
hard; the optimal social cost of a celebrity game depends on the relation
between ↵ and wmax; ne always exist and ne graphs are either connected
or a set of r � 1 connected components where at most one of them is
not an isolated node; for the class of connected ne graphs we obtain a
general upper bound of 2�+2 for the diameter. We also analyze the price
of anarchy (PoA) of connected ne graphs and we show that there exist
games � such that PoA(� ) = ⇥(n/�); modifying the cost of a player we
guarantee that all ne graphs are connected, but the diameter might be
n � 1. Finally, when � = 1, computing a best response for a player is
polynomial time solvable and the PoA = O(wmax/wmin).

1 Introduction

The increasing use of Internet and social networks, has motivated a great in-
terest to model theoretically their behavior. Fabrikant et al. [15] proposed a
game-theoretic model of network creation (NCG) as a simple tool to analyze
the creation of Internet as a decentralized and non-cooperative communication
network among players (the network nodes).

In this model the goal of each player is to have, in the resulting network,
all the other nodes as close as possible paying a minimum cost. It is assumed
that: all the players have the same interest (all-to-all communication pattern
with identical weights); the cost of being disconnected is infinite; and the links
to other nodes paid by one node can be used by others. Formally, a game �
in this seminal model is defined as a tuple � = hV,↵i, where V is the set of
n nodes and ↵ the cost of establishing a link. A strategy for player u 2 V is a
subset Su ✓ V � {u}, the set of players for which player u pays for establishing
a link. The n players and their joint strategy choices S = (Su)u2V create an
undirected graph G[S]. The cost function for each node u under strategy S is
defined by cu(S) = ↵|Su| +

P
v2V dG[S](u, v) where dG[S](u, v) is the distance

between nodes u and v in graph G[S]. By changing the cost function to cu(S) =
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2 C. Àlvarez and A. Messegué

↵|su| + max{dG[S](u, v)|v 2 V } as proposed in [13] one obtains the max game
model.

From here on several versions have been considered to make the model a
little more realistic. For di↵erent variants we refer the interested reader to [1–3,
6, 9–14,16,17,19] among others.

In Internet as well as in social networks not all the nodes have the same
importance. It seems natural to consider nodes with di↵erent relevance weights.
In such a setting, the cost of being far (even if connected) from high-weight nodes
should be greater than the cost of being far from low-weight nodes. In [4] we
introduce celebrity games with the aim to study the combined e↵ect of having
players with di↵erent weights that share a common distance bound.

In celebrity games the cost of a player has two components. The first one
is the cost of the links established by the node. The second one is the sum
of the weights of those nodes that are farther away than the critical distance.
Formally, a celebrity game is defined by � = hV, (wu)u2V ,↵,�i, where V is
a set of nodes with weights (wu)u2V , ↵ is the cost of establishing a link and
� establishes the desirable distance bound. The cost function for each node is
defined by cu(S) = ↵|Su| +

P
{v|dG[S](u,v)>�} wv.

In this paper we extend the study initiated in [4]: we define a max version
of the celebrity games that we name max celebrity games and we analyze the
structure and quality of their Nash equilibria. From now on, let us refer to
celebrity games as sum celebrity games. In the max celebrity model the cost of
a player takes into account the maximum of the weights (worst-case) of those
nodes that are farther away than the critical distance, instead of the sum of
weights (average-case). The cost function is formally defined by cu(S) = ↵|Su|+
max{v|dG[S](u,v)>�} wv. Intuitively, the goal of each player in max celebrity games
is to buy as few links as possible in order to have the high-weighted nodes closer
to the given critical distance. Observe that if the cost of establishing links is
higher than the benefit of having close a node (or set of nodes), players might
rather prefer to stay either far or even disconnected from it.

Observe that the main feature of both, sum and max celebrity games, is the
combination of bounded distance with players having di↵erent weights. Even
though heterogeneous players have been considered in NCG under bilateral con-
tracting [5, 18], and the notion of bounded distance has been studied in [8], to
the best of our knowledge sum celebrity games is the first model that studies how
a common critical distance, di↵erent weights, and a link cost, altogether a↵ect
the individual preferences of the players. Furthermore, max celebrity games is
the first model that focuses on how the maximum weight of those nodes that are
farther than � a↵ects the creation of graphs.

In this paper we analyze the structure of Nash equilibrium (ne) graphs of
max celebrity games and their quality with respect to the optimal strategies. To
do so we address the cases � > 1 and � = 1, separately. For � > 1, every player
u has to choose for each non-edge (u, v) between paying the maximum of the
weights of the nodes with distance to u greater than �, or buying the link (u, v)
and paying ↵ for the link minus the maximum of the weights of those nodes
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whose distance to u will become less or equal than the critical distance �. While
for � = 1, each player u has to decide for every non-edge (u, v) of the graph to
pay either ↵ for the link or at least wv (the weight of the non-adjacent node v).

For the general case � > 1 our results can be summarized as follows: comput-
ing a best response for a player is NP-hard; the optimal social cost of a celebrity
game � depends on the relation between ↵ and the maximum weight wmax; ne
always exist and ne graphs are either connected or a set of r � 1 connected
components where at most one of them is not an isolated node; for the class of
connected ne graphs we obtain a general upper bound of 2�+2 for the diameter;
we also analyze the quality of connected ne graphs and we show that there exist
max celebrity games such that PoA(� ) = ⇥(n/�); we consider a variation of the
cost of the player in order to avoid non-connected ne graphs.

Finally, for the particular case � = 1, we show that computing a best response
for a player is polynomial time solvable and that the PoA = O(wmax/wmin).

The paper is organized as follows. In Section 2 we introduce the basic def-
initions and the max celebrity model. In Section 3 we study the fundamental
properties of optimal graphs and ne graphs. Section 4 studies for � > 1 the
quality of connected ne graphs and considers a modification of the cost of a
player in order to guarantee connected ne graphs. In Section 5 we study the
complexity of the best response problem and the PoA for the case � = 1. Fi-
nally, in Section 6 we give an outline of the main di↵erences between max and
sum celebrity models.

2 The Model

We use standard notation for graphs and strategic games. All the graphs in the
paper are undirected unless explicitly said otherwise. For a graph G = (V, E)
and u, v 2 E, dG(u, v) denotes the distance, i.e. the length of a shortest path,
from u to v in G. The diameter of a vertex u 2 V , diamG(u), is defined as
diamG(u) = maxv2V {dG(u, v)} and the diameter of G, diam(G), is defined
as usual as diam(G) = maxv2V {diamG(v)}. An orientation of an undirected
graph is an assignment of a direction to each edge, turning the initial graph into
a directed graph.

For a weighted set (V, (wu)u2V ) we extend the weight function to subsets
in the following way. For U ✓ V , w(U) = maxu2U{wu}. Furthermore, we set
wmax = maxu2V {wu} and wmin = minu2V {wu}.

Definition 1. A max celebrity game � is defined by a tuple hV, (wu)u2V ,↵,�i
where: V = {1, . . . , n} is the set of players, for each player u 2 V ; wu > 0 is the
weight of player u; ↵ > 0 is the cost of establishing a link and �, 1  �  n� 1,
is the critical distance.

A strategy for player u is a subset Su ✓ V � {u} denoting the set of players
for which player u pays for establishing a direct link. A strategy profile for � is
a tuple S = (S1, S2, . . . , Sn) defining a strategy for each player. For a strategy
profile S, the associated outcome graph is the undirected graph G[S] which is
defined by G[S] = (V, {{u, v}|u 2 Sv _ v 2 Su}).
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For a strategy profile S = (S1, S2, . . . , Sn), the cost function of player u, de-
noted by cu, is defined as cu(S) = ↵|Su|+Wu where Wu = max{v|dG[S](u,v)>�}{wv}.
And as usual, the social cost of a strategy profile S in � is defined as C(S) =P

u2V cu(S). The social cost of a graph G in � is defined analogously as C(G) =
↵|E(G)| +

P
u2V (G) Wu.

Observe that, even though a link might be established by only one player,
we consider the outcome graph as an undirected graph, assuming that once a
link is bought the link can be used in both directions. In our definition we have
considered a general case in which players may have di↵erent weights and defined
the cost function through properties of the undirected graph created by the
strategy profile. The player’s cost function takes into account two components:
the cost of establishing links and the maximum of the weights of the players that
are at a distance greater than the critical distance �.

In the remaining of the paper, we assume that, for � = hV, (wu)u2V ,↵,�i,
the parameters verify the required conditions. Furthermore, unless specifically
stated, we consider � > 1, the case � = 1 will be studied in Section 5. We use
the following notation, for a game � = hV, (wu)u2V ,↵,�i, n = |V |. We denote
by S(u) the set of strategies for player u and by S(� ) the set of strategy profiles
of � .

As usual, for a strategy profile S and a strategy S0
u for player u, (S�u, S0

u)
represents the strategy profile in which Su is replaced by S0

u while the strategies
of the other players remain unchanged. The cost di↵erence �(S�u, S0

u) is defined
as �(S�u, S0

u) = cu(S�u, S0
u)� cu(S). Observe that, if �(S�u, S0

u) < 0, player u
has an incentive to deviate from Su. A best response to S 2 S(� ) for player u
is a strategy S0

u 2 S(u) minimizing �(S�u, S0
u). Let us remind the definition of

Nash equilibrium.

Definition 2. Let � = hV, (wu)u2V ,↵,�i be a max celebrity game. A strategy
profile S = (S1, S2, . . . , Sn) is a Nash equilibria of � if no player has an incentive
to deviate from his strategy. Formally, for a player u and each strategy S0

u 2 S(u),
�(S�u, S0

u) � 0.

We denote by NE(� ) the set of Nash equilibria of a game � . We use the
term ne to refer to a strategy profile S 2 NE(� ). We say that a graph G is a
ne graph if there is S 2 NE(� ) so that G = G[S].

We denote by opt(� ) the minimum value of the social cost, i.e. opt(� ) =
minS2S(� ) C(S). We denote by OPT(� ) the set of optimum strategy profiles of
� w.r.t. the social cost, that is, for S 2 OPT(� ), C(S) = opt(� ). We use the
term opt strategy profile to refer to a S 2 OPT(� ).

It is worth observing that: for S 2 NE(� ), it never happens that v 2 Su and
u 2 Sv, for any u, v 2 V ; a ne graph G can be the outcome of several strategy
profiles and not all the orientations of a ne graph G are ne.

In the following we make use of some particular outcome graphs on n vertices:
In, the independent set; and STn a star graph, i.e. a tree in which one of the
vertices, the central vertex, is connected to all the other n � 1 vertices.

We define the Price of Anarchy and the Price of Stability as usual.
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Definition 3. Let � be a max celebrity game. The Price of Anarchy of � is
defined as PoA(� ) = maxS2NE(� ) C(S)/opt(� ) and the Price of Stability of �
is defined as PoS(� ) = minS2NE(� ) C(S)/opt(� )

The explicit reference to � will be dropped whenever � is clear from the
context. We will refer to ne(� ), opt(� ), PoA(� ), and PoS(� ) by ne, opt, PoA
and PoS respectively.

Our first result shows that the computation of a best response in max
celebrity games is a NP-hard problem for � � 2. The proof consists in a re-
duction from the Dominating Set problem. The problem becomes polynomial
time computable for � = 1 as we show in Section 5.

Proposition 1. Computing a best response for a player to a strategy profile in
a max celebrity game is NP-hard even when � = 2.

3 Social Optimum and Nash Equilibrium

In this section we analyze some properties of the opt and ne strategy profiles
in max celebrity games. We start by giving bounds for opt that depend on the
existence of one or more than one connected components.

Proposition 2. Let � = hV, (wu)u2V ,↵,�i be a max celebrity game. We have
that 2↵(n � 1) � opt(� ) � min{↵(n � 1), wmax(n � 1) + wmin}.
Proof. Let S 2 OPT(� ) and let G = G[S]. Let G1, ..., Gr be the connected
components of G and let Vi = V (Gi), ki = |Vi|, and Wi = w(Vi), for 1  i  r.
Assume w.l.o.g that W1 � W2 � ... � Wr. Observe that the social cost of
a disconnected graph can be expressed as the sum of the social cost of the
connected components plus the additional contribution of the pairs of vertices
that lie in di↵erent components. Each connected component must be a tree of
diameter at most �, otherwise a strategy profile with smaller social cost could
be obtained by replacing the connections on Vi by such a tree. W.l.o.g we can
assume that, for 1  i  r, the i�th connected component is a star graph STki

on ki vertices. Recall that C(STki) = ↵(ki � 1), thus C(G) =
Pr

i=1 ↵(ki � 1) +Pr
i=1 ki (maxj 6=i{Wj}) = ↵(n � r) + nW1 � k1(W1 � W2).
Notice that if for some i > 1, the i-th connected component is not an isolated

node, then the node with maximum weight in this connected component can be
moved to G1. By preserving the connectivity and structure (a star) of G1, the
social cost of the resulting graph is strictly smaller than the cost of the original
G. This implies that for every i > 1, ki = 1. Hence, C(G) = ↵(n � r) + (r �
1)W1 + (n � r + 1)W2.

If r = 1 then C(G) = ↵(n � 1) and we are done. Otherwise, if r > 1, then
we have the inequality C(STn) � C(G). This implies that ↵ � 1

r�1 (W1(r� 1) +
W2(n � r + 1)) � W1.

Then we get the following results. First: C(G) � W1(n � r) + (r � 1)W1 +
(n � r + 1)W2 � (n � 1)W1 + W2 � (n � 1)wmax + wmin.

Secondly, using that r > 1: C(G) = ↵(n� r) + (r � 1)W1 + (n� r + 1)W2 
↵(n � r) + (r � 1)↵ + (n � r + 1)↵  2↵(n � 1).
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The relationship between ↵ and wmax determines partially the topology of
the ne graphs. As one can expect, if ↵ > wmax, no player has incentive to
establish a link then the independent set is the unique ne graph. Otherwise, any
ne graph can be connected or disconnected.

Proposition 3. Every max celebrity game � = hV, (wu)u2V ,↵,�i has a ne.
Furthermore, when ↵  wmax, STn is a ne graph, and when ↵ � wmax, In is a
ne graph. If ↵ > wmax, then In is the unique ne graph.

Proof. When ↵  wmax let us show that STn is a ne graph. Let umax a node
with maximum weight and we suppose that it is the central node of the star. If
Sumax

= ; and for every node v 6= umax, Sv = {umax}, then umax cannot improve
its actual cost since it is exactly 0. Moreover, the other nodes can only delete
the edge to umax. Since such deviation has a cost increment of �↵ + wmax � 0,
then we are done.

When ↵ � wmax, let us show that In is a ne graph. Let S be the empty
strategy profile, In = G[S]. Notice that for any player u, if S0

u 6= ;, then
�(S�u, S0

u) � |S0
u|↵ � wmax � (|S0

u| � 1)wmax � 0. Finally, if ↵ > wmax it
is easy to see that the unique ne graph is In. Let us suppose that there exist
u, v 2 V such that v 2 Su. If S0

u = Su�{v}, then �(S�u, S0
u)  �↵+wmax < 0.

Hence, if G 6= In, then G is not a ne graph.

Corollary 1. Let � = hV, (wu)u2V ,↵,�i be a max celebrity game. Then, PoS(� ) =
1 for ↵  wmax and PoS(� ) < 2 for ↵ > wmax.

In particular, even in the case that ↵ < wmax, it can be shown that there
exist max celebrity games where In is a ne graph. Indeed consider a game with
n � 2 and weights defined as wi = (i � 1)↵ for i > 1 and w1 = ↵. Then, clearly
↵ < wmax and In is a ne graph.

Furthermore, for every integer 1 < r  n, there exists non-connected max
celebrity games with exactly r di↵erent connected components. Moreover, the
only connected component that can have more than one node is the one that
contains a node with weight wmax.

Proposition 4. Any ne graph distinct from In has at most one non-trivial
connected component. Moreover, for every integer r � 2 there exists a max
celebrity game having a ne graph with exactly r connected components.

Proof. (Sketch) For the first part, let G1, ..., Gr be the connected components of
a ne graph. Assume that a node with the maximum weight is in G1. If for some
i > 1, |Gi| > 1, then there exist u, v 2 V (Gi) such that u 2 Sv. In this case, v
can strictly decrease its cost deleting this edge because the node with maximum
weight is still at distance greater than �, contradicting the fact that G is a ne
graph.

For the second part we distinguish two cases: r � 3 and r = 2. For the first
case, let n = r + 1, V = {v0, v1, ..., vr}, E = {{v0, v1}} with Sv1 = {v0}, Svi = ;
for i 6= 1, as depicted in the figure below. For the weights consider wv0 = w1 and
wvi

= w2 for all i � 1, with w1 > w2, w1�w2 = ↵ and ↵ � w1/(n�1), w2/(n�2).
We have that this configuration is a ne.
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v0 v1 v2 · · · vr

For the case r = 2 see the figure below. It is not hard to see that this
configuration is also a ne.

u1 u2 u3 u4 v

4 The price of anarchy

Observe that there exist max celebrity games � with ↵  wmax having discon-
nected ne graphs with high social cost in comparison with the optimum. Indeed,

consider the example given in Proposition 4 with w2 = w1(n�2)
(n�1) . The cost of this

ne graph is w1(n � 1) + w1(n�2)
n�1 and combining it with opt  2↵(n � 1), we

get the bound PoA(� ) � (n � 1)/2. Hence, we focus on the study of the PoA
for connected ne graphs. Since the restriction ↵  wmax by itself does not ex-
clude the possibility of having non-connected ne graphs, we study the PoA of
connected equilibria from two di↵erent perspectives: first, we analyze the worst
case among all connected ne graphs; second, we introduce a slight modification
of the player’s cost function in order to guarantee connectivity in the class of
ne graphs. Whenever we consider the class of connected ne graphs we compare
the social cost of such equilibria with the optimum value among the connected
graphs, opt(� ) = ↵(n � 1).

4.1 PoA and diameter of connected NE graphs

In this subsection we analyze the quality and structure of equilibria in terms of
the parameters that define the max celebrity games. Our next result indicates
that the price to pay for the anarchy is low when ↵ is close to wmax.

Proposition 5. For every max celebrity game � = hV, (wu)u2V ,↵,�, i, PoA(� ) 
2(wmax/↵).

Proof. Let S be a ne of � and let G = G[S] = (V, E). Then, no player has
an incentive to deviate from S. In particular, for each u 2 V we have that
0  �(S�u, ;) = �↵|Su| + W 0

u � Wu where Wu = max{x|dG(u,x)>�} wx and
W 0

u = max{x|dG[(S�u,;)](u,x)>�} wx. By adding for each u 2 V the corresponding

inequalities, we have that 0  P
u2V (�↵|Su|+W 0

u�Wu) = �↵|E|+P
u2V W 0

u�P
u2V Wu.
Therefore, C(G) = ↵|E| +

P
u2V Wu  P

u2V W 0
u  nwmax and we can

conclude that PoA(� )  nwmax

↵(n�1)  2wmax

↵ .

The diameter of ne graphs depends directly on the critical distance �.

Proposition 6. Let � = hV, (wu)u2V ,↵,�i be a max celebrity game. In a ne
graph G for � , diam(G)  2� + 2.
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Proof. Let S 2 ne(� ) such that G = G[S] is connected. Assume that the node
u satisfies that dG(u, umax) > � and |Su| > 0. Then u has incentive to break
any of its bought links because after doing so, umax will still remain inside
the complementary of the ball of radius � centered at u. Next, assume that
diam(umax) � � + 2. Let umax, u1, u2, ...., u�+2 be a path. Then, either u�+1 2
Su�+2

or u�+2 2 Su�+1
. Therefore, since both u�+1, u�+2 are at distances greater

than � from umax, G cannot be a ne. This proves that diam(umax)  � + 1 in
any connected ne and, as a consequence, that diam(G)  2� + 2.

Let us provide for a ne graph G, a bound on the contribution of the weight
component of the social cost of G, W (G,�) =

P
{u2V (G)} Wu. The following

lemma is a reformulation of a similar result that can be found in [4] using a
cleaner and simpler argument.

Lemma 1. Let � = hV, (wu)u2V ,↵,�i be a max celebrity game. In a ne graph
G for � , W (G,�) = O(↵n2/�).

Proof. Let S be a ne and G = G[S] be a connected ne graph. Let u 2 V be any
node in V . Consider the sets Ai(u) = {v | dG(u, v) = i}. Define for i = 1, ..., k,
Ci = {v 2 V | (i � 1)(� � 1)  dG(u, v) < i(� � 1)} = [(i�1)(��1)j<i(��1)Aj(u)

with k such that [k
i=1Ci = V (G). By the pigeonhole principle, for each i = 1, ..., k

there exists at least one subindex, call it j(i), for which (i � 1)(� � 1)  j(i) <
i(� � 1) and |Aj(i)(u)|  |Ci|/(� � 1). In this way, for any node v 2 V (G),

let S0
v = (Sv [k

i=1 Aj(i)(u)) � {v} and let G0 = G[S�v, S0
v]. By construction,

diamG0(v)  �. Therefore, as S is a ne, we have 0  �(S�v, S0
v)  ↵

Pk
i=1

|Ci|
��1�

Wv = ↵
⇣

n�1
��1

⌘
� Wv.

Thus, W (G,�)  n(n�1)↵
��1 = O

⇣
↵n2

�

⌘
.

Using the same technique to provide a bound for the number of edges in
ne graphs for a sum celebrity games (Proof of Lemma 4 of [4]), we obtain the
following result.

Lemma 2. Let � = hV, (wu)u2V ,↵,�i be a max celebrity game. In a ne graph

G for � , |E(G)|  n � 1 + 3n2

� .

Corollary 2. For every max celebrity game � = hV, (wu)u2V ,↵,�, i, PoA(� ) =
O(n/�)

Proposition 7. For every n > � > 1, there exists a max celebrity game � =
hV, (wu)u2V ,↵,�, i such that PoA(� ) = ⌦(n/�).

Proof. Given n, let k and r be such that n�1 = kb�c+r, k � 3 and 0  r < b�c.
Let V = {u} [

�
[k

i=1 {ui,j | 1  j  b�c}
�
[ {uk+1,1, uk+1,2, ..., uk+1,r}. We then

define wu = W and wui,j
= w with W, w such that w = (k � 2)↵ and W > n↵.

In this way we consider the configuration S defined by the relations Su = ;,
Sui,j = {ui,j�1} for j � 2 and Sui,1 = {u} for i = 1, ..., k + 1, as depicted in the
figure below. To prove that S 2 ne(� ) we see that the cost di↵erence associated
to any deviation is not negative.
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u2,1

...

u2,b�c

u1,1

...

u1,b�c

· · ·

· · ·

· · ·

...

uk+1,1

uk+1,r

u

Clearly, u has no incentive of deviating his strategy because his cost is zero.
Let us prove that any other node ui,j has no incentive in deviating from its
current strategy. We say that a node v is covered with respect a node v0 if v is
at a distance at most � from v0. We have three cases:

1. The deviation is such that all nodes are covered with respect ui,j . In this
situation the cost di↵erence is l↵�w. Notice that every node uh,b�c with h 6= i can
be reached only when a link from ui,j to the path formed by uh,1, uh,2, ..., uh,b�c
is bought. Since initially ui,j has bought one link this leads to the inequality
l � k � 2. Therefore l↵� w � (k � 2)↵� (k � 2)↵ = 0.

2. The deviation is such that u is uncovered with respect ui,j . In this situation,
since W > n↵, the cost di↵erence is l↵� w + W � 0, for �1  l  n � 1.

3. The deviation is such that u is covered with respect ui,j but there is at least
one node node of weight w uncovered with respect ui,j . Then the cost di↵erence
is l↵ for some integer l. The only negative value that l can take is �1, but in
such case the configuration leaves u uncovered with respect ui,j , a contradiction.
Therefore, l↵ � 0.

Hence, S 2 ne(� ) and C(S) > (n� 1)w = (n� 1)(k � 2)↵. Using the bound
for the social optimum opt(� )  2↵(n � 1) we have that PoA(� ) � (k � 2)/2.

Theorem 1. For every n > � > 1, there exists a max celebrity game � =
hV, (wu)u2V ,↵,�, i such that PoA(� ) = ⇥(n/�).

4.2 The PoA when the connectivity of the NE graphs is guaranteed

Let us consider a new cost function that excludes non-connected ne graphs. We
define a connected max celebrity game � con as a max celebrity game � con =
hV, (wu)u2V ,↵,�, i, but now, the cost for each player u 2 V in strategy pro-
file S is denoted by ccon

u (S) and it is defined as follows: ccon
u (S) = cu(S), if

diamG[S](u)  n � 1; otherwise, ccon
u (S) = 1. As usual, the social cost of

a strategy profile S in � con is defined as Ccon(S) = ⌃u2V ccon
u (S). Since for

any connected graph G, Ccon(G) = C(G) � ↵(n � 1), then we have that
opt(� con) = ↵(n� 1). Notice that the same tuple hV, (wu)u2V ,↵,�, i can define
a max celebrity game as well as a connected max celebrity game. In order to
distinguish one from the other, we denote by � = � (hV, (wu)u2V ,↵,�, i) the
corresponding max celebrity game and by � con = � con(hV, (wu)u2V ,↵,�, i), the
corresponding connected max celebrity game.
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Proposition 8. Let hV, (wu)u2V ,↵,�i be a tuple defining � = � (hV, (wu)u2V ,↵,�i)
and � con = � con(hV, (wu)u2V ,↵,�i). Then, ne(� ) ( ne(� con) when we con-
sider ne(� ) restricted to connected graphs.

Proof. Let S 2 ne(� ) be such that G = G[S] is connected. Let u be a player, let
S0

u be a deviation, and let G0 = G[(S�u, S0
u)]. Let �(S�u, S0

u) and �con(S�u, S0
u)

be the corresponding increments in the games � and � con, respectively. We have
that �con(S�u, S0

u) = �(S�u, S0
u), if G0 is connected. Otherwise, �con(S�u, S0

u) =
1, �(S�u, S0

u) < 1. Therefore, �con(S�u, S0
u) � �(S�u, S0

u) and then, ne(� ) ✓
ne(� con).

To see that the inclusion might be strict, let us consider that V = {u, v},
v 2 Su, and Sv = ;. If wv > ↵, S is not a ne for � . On the other hand,
independently of the weights of u, v, S is a ne for � con.

Proposition 9. There are connected max celebrity games that have ne graphs
with diameter equal to n � 1.

Proof. Let n = 2k+1 be a positive integer and let V = {v, v1, v�1, v2, v�2, . . . , vk, v�k}.
Let S be the strategy profile defined by v1, v�1 2 Sv and vi+1 2 Svi

, v�(i+1) 2
Sv�i for i  k � 1 (see the figure below). Setting the weights wx  ↵ for all
x 2 V and for any � < (n � 1)/4 it is easy to see that the corresponding graph
is indeed a ne.

v0v�1· · ·v�k v1 · · · vk

The bounds on the PoA obtained for the class of connected ne graphs for
max celebrity games also hold for connected max celebrity games. The proofs
also work for this case.

Theorem 2. The PoA for the connected max celebrity games satisfies:
1. For every connected max celebrity game � con = � con(hV, (wu)u2V ,↵,�i),
PoA(� con) = O(n/�)
2. For every n > � > 1, there exists a connected max celebrity game � con =
� con(hV, (wu)u2V ,↵,�i) such that PoA(� con) = ⇥(n/�).

5 Max celebrity games for � = 1

When � = 1, each player u has to decide for every non-edge (u, v) of the graph
to pay either ↵ for the link, or at least wv. It is not di�cult to show that the best
response of a player can be computed by sorting the weights of the non-adjacent
nodes and then, selecting the number of links to be added to the most weighted
non-adjacent nodes.

Proposition 10. The problem of computing a best response of a player to a
strategy profile in max celebrity games is polynomial time solvable when � = 1.

In the next result we show that the price to pay for the anarchy is low when
wmin is close to wmax.
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Theorem 3. Let � = hV, (wu)u2V ,↵, 1i be a max celebrity game. Then, PoA(� ) =
O(wmax/wmin).

Proof. Let S 2 opt(� ) and G = G[S] = (V, A). Let X = {v 2 V | deg(v) = n � 1}
where deg(v) means the degree of v in the undirected graph G. We have that

C(G) � 1
2↵(n�1)|X|+(n�|X|)wmin. Hence, C(G) � nwmin, if wmin  (n�1)

2 ↵
and C(G) �

�
n
2

�
↵, otherwise. To prove the result we distinguish three cases:

First we see that if wmin  ↵(n� 1)/2, then PoA(� )  wmax/wmin. Indeed,
let S be a ne of � and let G = G[S] = (V, E). Using the same reasoning as
in proposition 5 we have that C(G) =

P
u2V (|Su|↵ + max{x|d(u,x)>1}{wx}) 

nwmax. Therefore, if wmin  ↵(n � 1)/2, then PoA(� )  wmax/wmin, as we
wanted to see.

Now, let us see that PoA(� ) = 1 for wmin > (n � 1)↵. This is because if
G 6= Kn then there exists some v 2 V with diamG(v) > 1. Then considering the
deviation for player v that consists in adding links to all the remaining nodes
from the graph we get a cost increment of k↵�w for some k > 0 and w � wmin.
Since k  (n � 1) then k↵ � w  (n � 1)↵ � wmin < 0, a contradiction for G
being a ne. Thus G = Kn and hence the result.

Finally, we see that for n�1
2 ↵ < wmin  (n � 1)↵ then PoA(� )  3. Indeed,

let S be a ne and G = G[S] = (V, A). For a given u 2 V such that diamG(u) > 1,
let v be such that wv = Wu. If wv > (n � 1)↵ then buying from u all the links
to the remaining nodes from V � {x | dG(u, x)  1} yields a cost increment of
at most (n � 1)↵ � wv < 0, a contradiction with G being a ne. Therefore
PoA(� )  (

�
n
2

�
↵ + n(n � 1)↵)/

�
n
2

�
↵ = 3.

6 Max celebrity games vs Sum celebrity games

The main di↵erences between max and sum celebrity games are that: for � > 1,
in max model there exist other disconnected ne graphs than In; in connected ne
graphs, PoA = O(n/�) in both models, but this is tight for some max games;
for � = 1, PoA =O(wmax/wmin) in max, while in sum PoA  2. Finally, max
celebrity games are equivalent to the MaxBD games (see [8] [7]) when ↵ <
wmin/(n � 1) as they are sum celebrity games when ↵ < wmin. (See the proof
of Proposition 8 in [4] and replace ↵ < wmin by ↵ < wmin/(n � 1)).
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Chapter 7

Conclusions and Open Problems

In this thesis, we have tackled the problem of understanding how the selfish behaviour of the
agents creating a communication network affects the quality of the outcome with respect the
social cost in two distinct attacks. In the first one, we have dealt with the most emblematic
model of the network creation games, the sum ncg [20]. The sum ncg models in a very
simple but elegant way the creation of Internet-like networks by selfish nodes without central
coordination by considering that the n players buy links of price α to the other players in order
to be well-connected. Up until now, several contributions have proved that the relative cost of
the lack of coordination is modest for mostly any function α. If this result was true for every α
then it would suggest that the selfish behaviour of the agents from Internet-like networks do not
affect severely the quality of such networks with respect the social cost. In the second attack,
after analysing natural properties that neither the sum ncg nor any network creation game
capture, at least combined in the way we do, we have proposed and studied two new original
models, the sum cg and max cg. These models are inspired by these properties and thus they
provide a distinct point of view on the same problem. The main idea for these two models
is to consider that the players or nodes from the network might have distinct popularities or
relevances. In this way, we then assume that each player wants to have popular nodes closer
than a critical distance β by buying the fewest amount of links of price α.

In both attacks we have analysed the price of anarchy, which helps us understand the loss of
efficiency of the system due to the selfish behaviour of the agents, and the structure of equilibria,
which helps us understand the properties of such networks. Our conclusions are described in
the next subsection.

7.1 Conclusions

Firstly, in the Part I we have studied the sum ncg model and we have shown that the price of
anarchy is constant even when α > n(1 + ε), where ε > 0 any small positive constant, which
means that equilibrium networks are not far from the optimal ones. Therefore, our contribution
reinforces the conjecture stating that the price of anarchy is constant [17] (table 7.1 shows our
contribution in red color).

α = 0 1 2 3
√
n/2

√
n/2 O(n1−δ) n(1 + ε) 4n− 13 12n log n ∞

PoA 1 ≤ 4
3 ([20]) ≤ 4 ([17]) ≤ 6 ([17]) Θ(1) ([17]) 2O(

√
logn) ([17]) O(1) < 5 ([11]) 1.5 ([1])

Table 7.1: Summary (updated) of the best known bounds for the PoA for the sum ncg.

Regarding the structure of equilibria, we have obtained distinct results depending on the
range of the parameter α that we consider.
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On the one hand, for the same range α > n(1+ ε), we have also seen in Chapter 3, that if an
equilibrium graph is not a tree, then the size of any biconnected component of the network is at
most a constant. Therefore, this tells us that non-tree equilibria for this range, if it is the case
that they exist, are very close to a tree. This is a result that connects with the reformulated
tree conjecture, stating that equilibria for the range α > n can only be trees [29]. As we could
expect, this property follows the general intuition that when α is more expensive the number of
bought links in equilibrium networks should decrease in some way and therefore, since equilibria
are connected, their topology is close to the one given by a tree. To prove this result we have
been inspired by the average degree technique which was first introduced by Mihalák et al. in
[29]. This technique bounds the average degree of any biconnected component H, noted as
deg(H), in two different ways and deduces that H cannot exist if the two bounds contradict
each other when α belongs to a certain range and, thus, G must be a tree for this range of α.
Our main contribution consists in giving an improved upper bound for the term deg(H), that
in this case leads to a contradiction if the size of H is larger than some constant. To reach this
improved upper bound for deg(H), we use a combination of non-trivial relationships between
the size and the diameter of G and H. Some of these relationships are obtained introducing
new concepts in an original way, like the A sets in Chapter 3, as well as extending well-known
techniques, like the growing ball technique from Demaine et al. [17], that allows us to get an
improved upper bound for the diameter of H in terms of the size of H (see Proposition 4 from
Chapter 3).

Furthermore, in Chapter 4, we have investigated the topology of distance-uniform graphs
by studying their diameter. Distance-uniform graphs are introduced by Alon et al. in [2] and
they are connected with equilibria for the range α < n/C with C > 4 as shown in [7]. Using
this connection together with the relationship between the PoA and the diameter of equilibria
[17] we deduce that, for the same range of α, the diameter of distance-uniform graphs can
upper bound the PoA. The results from Chapter 4 refute the conjecture of Alon et al. in [2],
which states that the diameter of distance-uniform graphs is logarithmic. As a consequence,
we cannot use, at least alone, this previous connection between the PoA and the diameter of
distance-uniform graphs in order to improve directly the upper bound for the PoA for the same
range of α.

In Part II, we have proposed two new original models, the sum cg and max cg, which try to
capture distinct aspects of communication networks based on some assumptions. One of these
assumptions is the possibility of having players with different degree of popularity. Another
important assumption is the existence of a critical distance that induces a penalisation for each
player according to the relevances or popularities of the nodes that are further than this critical
distance. For each of them we have studied both the PoA and the topology of equilibria. Tables
7.2 and 7.3 illustrate our most relevant contributions regarding these models for the distinct
scenarios β = 1 and β > 1 distinguishing also when we look at certain classes of topologies for
the equilibria at consideration. Apart from α, β, n, recall that W corresponds to the sum of all
the weights of the players and wmax, wmin are the maximum and minimum weights, respectively.

Sum Celebrities Max Celebrities
β = 1 β > 1 β = 1 β > 1

BR P NP-Hard P NP-Hard

PoA ≤ 2 O(min(n/β,W/α)) O(wmax/wmin) Θ(n/β), O(wmax/α)

Table 7.2: Summary of the results for computing the best response and bounds for the PoA

As we can see, the results we obtain can differ depending on whether the critical distance β
satisfies β = 1 or β > 1.
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Sum Celebrities Max Celebrities

opt min(α,W )(n− 1) ∈ (min(α(n− 1), wmin + (n− 1)wmax), 2α(n− 1))

Diameter Connected ≤ 2β + 1 ≤ 2β + 2
Trees ≤ β + 1

wmin ≤ α ≤ β
Connectivity r connected components with

at most one of which is not an isolated node

Table 7.3: Summary of the bounds on the opt and the topology of equilibria for the case β > 1

On the computational side, we have seen that computing the best response is NP-hard when
β > 1 for both sum cg and max cg models whereas when β = 1 the best response is polynomial
time solvable.

Then, to obtain the results regarding the PoA we investigated the social optimum in the first
place. Whereas in the sum cg we have the very specific equality opt = min(α,W )(n−1), in the
max cg we have the two bounds opt ≤ 2α(n−1) and opt ≥ min(α(n−1), wmin+(n−1)wmax),
which are not as precise as the direct equality for the sum cg but, in some sense, they provide
an interval narrow enough.

The most important results correspond to the bounds obtained to study the PoA. For the
case β > 1, we have two kinds of parallel bounds O(n/β) and Θ(n/β) for the sum cg and max
cg, respectively, which seem to illustrate the dependency of the PoA with respect n and β.
In particular, the greater is β in relation with n, the lower is the bound on the PoA. On the
other hand, we also have the bounds O(W/α) and O(wmax/α) for the sum cg and max cg,
respectively, which seem to illustrate a similar dependency with respect the price per link α and
the weights or the relevances of the players. In contrast, for β = 1 we obtain the upper bounds
PoA ≤ 2 and PoA = O(wmax/wmin) for the sum cg and max cg, respectively. If instead of
looking at a general topology we restrict to the specific tree topology, the PoA for the sum cg
is reduced to be asymptotically constant, a result that resembles that the PoA for trees is at
most 5 for the sum ncg.

Another further aspect of equilibria that we have studied in both models is the diameter
of connected equilibria obtaining upper bounds of 2β + 1 and 2β + 2 for the sum cg and
max cg models, respectively. Whereas in the max cg we have not obtained refinements of
this upper bound for specific topologies, in the sum cg we have improved the upper bound
on the diameter when we restrict to more specific configurations. Specifically, we have proved
that diam(G) ≤ β + 1 for tree equilibria G and diam(G) ≤ β for equilibria G in games with
wmin ≤ α.

Finally, another curious aspect which becomes of interest in the max cg model is what
happens with disconnected equilibria. In the same model we see that such equilibria consists of
r ≥ 2 connected components with exactly r− 1 connected components that are isolated nodes.

7.2 Open problems and future work

As we can see from the main results of the previous summary there are questions still unresolved
that deserve further study. In the following we analyse different possibilities that can be explored
in order to dive deeper into the main questions of the thesis.

The Sum NCG model

Two of the most interesting open problems for the sum ncg are to prove or refute the constant
PoA conjecture and the tree conjecture.
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The tree conjecture has been proved to be true for α > 4n−13, which is a range really close
to the range α > n. Furthermore, in Chapter 3, we show that for any ε > 0 positive constant
and α > n(1 + ε), the size of any biconnected component from any ne graph G is at most a
constant. This last result is weaker than the corresponding validation of the tree conjecture for
the same range, but indeed very close to it. This could be one possible line of attack.

On the other hand, one of the most challenging but exciting open problems in the field is to
investigate what happens in the remaining range of α between n1−δ (δ ≥ 1/ log n) and n(1 + ε).
Any new finding regarding the PoA would constitute a very nice contribution: either the PoA
is constant in this range, and then the constant PoA would be settled in an affirmative way, or
the PoA is non-constant and then it would be somehow surprising.

Let us discuss the two possibilities regarding the PoA for the range of α between n1−δ and
n(1 + ε).

Could the conjecture be false?
We know that the diameter plus one unit is an upper bound for the PoA of a graph [17]. We

now make the observation that an analogous relationship is satisfied in the reverse direction.
Let G be any ne of diameter d and let Br(v) be the subset of nodes from G at distance at
most r from v. For any node u ∈ V (G) let z be any node at maximum distance with respect
u. If z buys a link to u, then z gets closer at least d/4 units to any node from Bd/8−1(u).

Therefore, 0 ≤ α − d
4 |Bd/8−1(u)| implying that |Bd/8−1(u)| ≤ 4α

d . From here we deduce that

DG(u) ≥ (n− 4α
d )d8 so that

∑
u∈V (G)DG(u) ≥ n

(
n− 4α

d

)
d
8 . Furthermore, for α < n(1 + ε), the

social optimum is Θ(n2) and then:

PoA >

∑
u∈V (G)DG(u)

opt
= Ω

(
d/8− α

2n

)
= Ω

(
d/8− 1 + ε

2

)

Then this simple result shows that if we find a ne of non-constant diameter, then the PoA
would be non-constant, too, thus the constant PoA conjecture would be false. In this line of
research, we have made some progress.

Let a buying deviation be any deviation that consists in buying links and, specifically, let a
buying deviation of cardinality k be a deviation that consists in buying k links. A buying ne is
any configuration in equilibrium when restricting only to buying deviations. With this termi-
nology, it can be shown that for any buying deviation of cardinality k > 1 strictly decreasing
the cost of the corresponding player, there also exists a buying deviation of cardinality 1 strictly
decreasing the cost of the same player [19]. This property allows us to dramatically reduce the
number of buying deviations that one must consider in order to verify that the network is a
buying ne. This together with the previous result regarding the relationship with the PoA and
the diameter of equilibria, lead us to see that there exist buying equilibria having non-constant
diameter (this was one of our talks at WINE 2018, you can find the poster that was accepted
in the Appendix A). Of course, the examples that we have found having non-constant diameter
are not equilibria in the general sense. However, we believe that looking for other non-trivial
examples could be a nice line of research.

Could the conjecture be true?
If the conjecture was true, then it would be wonderful closing an open problem from so many

years. However, the raw result seems really tough and, therefore, an incremental approach seems
more reasonable. Hence, it is natural to start studying topological properties of equilibria so
that if several results are gathered, then maybe we would be able to validate the conjecture. In
this direction we are working in the following results (ongoing research):

1. Regarding the metric properties of equilibrium networks, we have been able to prove that
for the range α < 4n and for any constant ε > 0, there exists a constant K such that every Kth
power of any ne G is an ε−distance-almost-uniform graph, thus generalising the result from [7],
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which states that for α < n/C with C > 4 every fourth power of any equilibrium graph is an
4α/n−distance-almost-uniform graph.

2. Another important topological parameter from any graph is the degree (both undirected
and directed) of its nodes. We have been able to prove that for any biconnected component
H of any equilibrium G it holds that deg+

H(u) ≤ 2n/α + 6, thus giving a non-trivial upper
bound on the number of links from H bought by any specific node u ∈ V (H) and generalising
the result in [5], where we show that the directed degree in any biconnected component when
α > n is at most a constant. This confirms the intuition that for high-price links the number
of non-essential bought links should be small.

Other future lines of research
Another interesting line of research would be to explore the max network creation game, the

analogous model to the sum ncg in which we change the summation from the cost component
for the maximum over all the corresponding distances. As we mentioned in the historical
overview, some interesting results have been obtained for this model. One of the main interests
in this model is the study of the PoA, as it happens in the sum ncg game. It has been proved
that the PoA for the max ncg is constant for α > 129 and for α = O(n−1/2). These results
appear in [29], where the authors improve the upper bounds on the PoA for the sum ncg as
well using a quite similar technique.

To prove our results in the sum ncg we used new techniques such as the formulae bounding
the size of the A sets and extending the growing ball technique to the subgraph given by any
biconnected component. We think that it is quite natural to try to use these techniques for the
max ncg model as well. The aim of this study would be to enlarge the range of the values α
for which the PoA is constant for the max ncg model.

The SUM CG and MAX CG models

The major topic of interest in the field, the study of the PoA, seems almost resolved for the
max cg model since the estimation we obtain is asymptotically tight. However, in the sum cg
model we have shown that the PoA is O(n/β). It is then an open problem to see if the bound
is tight or can be improved. One possibility is to see whether we can apply the growing ball
technique considered in [17, 2] to obtain an improved upper bound on the diameter, since this
technique can be adapted to distinct scenarios, as it is shown in the literature and as we have
seen in our work.

Dynamics
In the models we have studied in this thesis, we have studied properties for a given instance

of the game but another point of view could be to consider the so-called dynamics. A dynamics
for a strategic game studies the behaviour of sequences consisting of instances of the game
starting from a given configuration and in which every new instance in the sequence is obtained
from the previous one by selecting a player and performing a specific deviation on that player.
The central point of study of a dynamics is which starting configurations, which players and
which deviations, can be selected in each step in order to guarantee that the whole process
converges to an equilibrium or, at least, to a configuration close to an equilibrium. If it is
the case that convergence is guaranteed, then it is also natural to study how fast or slow is
such process, but it can also be the case that in some situations cycles appear, a matter of
interest, too. For instance, a Best Response dynamics corresponds to the dynamics process
that updates the current instance to the one obtained when the selected node or player chooses
any of its best responses strategies. Similarly, a Better Response dynamics corresponds to the
dynamics process that updates the current instance to the one obtained when the selected node
or player chooses any strategy strictly reducing the value of its current cost function. Finally,
a Greedy Best Response dynamics corresponds to the dynamics process in which the selected
player chooses among the deviations that consist in either buying, swapping or deleting exactly
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one link, any one having the minimum possible cost value among all such deviations.
The following results are ongoing work related to the sum cg and max cg models for

distinct dynamics processes, see the draft in [4] for more details:
On the one hand, for β = 1 in the sum cg, independently of the initial configuration we

choose, every Best Response dynamics has no cycle and, more specifically, we easily obtain a
ne in at most 2n rounds if we consider the Best Response dynamics given when we select the
players 1, 2, ..., n, 1, 2, ..., n in this order. In contrast, for β = 1 in the max cg, there exists an
initial configuration for which the Best Response dynamics can cycle. However, on the positive
side, there are configurations from where certain Best Response dynamics converge to a ne in
a reasonable number of steps.

On the other hand, if we focus our attention to the case β > 1, in some situations we have
obtained cycles in the Better Response dynamics when β = 3 for the sum cg and when β = 5
for the max cg. However, when considering the Greedy Best Response dynamics, we have seen
that the majority of our experiments converge to a ne.

As a conclusion, it seems that exploring this topic could lead to an another interesting line
of research.

Extensions of the model
It can be really tough to propose a tractable model of a phenomenon that has such a variety

of aspects and that depends on so many variables. This is one of the reasons why there are so
many distinct models in the Network Creation Games. Some of them try to capture previously
unconsidered properties and others are extensions of already well-known models.

Recently, Yen-Yu et al. in [31] have proposed a new strategic game that precisely, generalises
in a very simple way our sum cg and max cg models. More specifically, their model is specified
by a finite set of players V and α the cost per link, as in the celebrity models. However, instead
of having the same critical distance for each player in the game, in the extension of Yen-Yu
et al. each player i ∈ V has its own critical distance βi with 2 ≤ βi ≤ n − 1 and a function
f : V × 2V → R defines the penalty that each player receives. This function f is defined in
such a way that f(i, Vi) is the penalty that player i receives for having exactly the set of players
Vi further away from its critical distance βi and with f(i, ∅) = 0. Therefore, each player can
have different penalty functions and they do not require f to be monotone. These are two
very natural assumptions because in the reality and specially in social networks, every agent
can have different preferences and having more friends does not imply that the corresponding
player will be happier. The strategic game is then defined in terms of the strategies as in the
sum cg and max cg where each player i selects its strategy as a subset from V \ {i}. In this
way, given a strategy profile S and G the corresponding communication network, the cost of
player u is defined as cu(S) = α|Su| + f(u, Vu) if G is connected and where Vu is the set of
nodes at distance strictly greater than βu in G. Otherwise, if G is not connected the cost is set
to be ∞. In this model the star is a social optimum and the main results the authors show is

that the PoA is upper bounded by O
(∑n

i=1
1
βi

)
matching our upper bound O(n/β) if βi are

the same for each player.
In conclusion, this is an interesting extension of our celebrity models in which the parameters

of the game seem to satisfy very general conditions. Therefore, rather than trying to extend
this model, a possible future line of research would be to think about natural constraints that
the function f must satisfy in the context of Internet-like networks as well as social networks.
Maybe, when restricting to these special cases, we can improve the bounds on the PoA and
deduce properties regarding the structure of equilibria as well.
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Abstract
We present new connections between distance uniform graphs and the classic model of the Network Creation

Games that provide insight into the question of whether the Price of Anarchy (PoA) is constant.

Definitions
Distance Set For a given graph G and any node u from G we denote by Ar(u) the set of nodes at
distance r from u.

u

u

A1(u)

A2(u)

A3(u)

A4(u)

Distance Uniform Graphs ([2]) A given graph G is ε−distance-uniform (or ε−distance-almost-
uniform) iff there exists a distance index r (the critical distance) such that |Ar(u)| ≥ n(1 − ε) (or
max(|Ar(u)|, |Ar+1(u)|) ≥ n(1− ε)) for every u ∈ V (G).

Sum Classic Network Creation Game It is defined as a tuple 〈V, α〉 where:
(i) V is the set of players with n = |V |.
(ii) α is the cost of buying a single link.
Every player u chooses a subset su ⊆ V \ {u} which corresponds to the set of players to which
u buys a link. An strategy profile is a tuple s = (su)u∈V . For any strategy profile s we define the
communication network as the undirected graph:

G[s] = (V,
{

(i, j) | i ∈ sj ∨ j ∈ si
}

)

When the context is clear we will omit the reference to s and we will write G instead of G[s].
The players try to minimise their cost function which is, for player u and a strategy profile s,
cu(s) = |su|α +

∑
v 6=u dG[s](u, v).

A Nash equilibrium (NE) for this model is a strategy profile s such that, for every player u ∈ V ,
cu(s′) ≥ cu(s) for any other strategy profile s′ differing from s in exactly the component for u. A
buying NE is a strategy profile s such that, for any player u ∈ V , cu(s′) ≥ cu(s) for any other strategy
profile s′ differing from s in exactly the component for u which we impose that contains su.

We say that G is a (buying) NE graph iff there exists a (buying) NE s such that G = G[s].

Deliting deviation General deviationBuying deviation

The social cost is c(s) =
∑
u∈V cu(s). With this notation then OPT = mins c(s)

The price of anarchy PoA is a ratio that quantifies the distance in terms of efficiency between the
worst NE and any optimal configuration. More precisely, if E is the set of equilibria:

max
s∈E

c(s)/OPT

We set dmax to be the maximum diameter of the communication network corresponding to any NE

for the corresponding range of the parameter α.

Open Question
Is the PoA constant? Up until now:

α = 0 1 2 3
√
n/2

√
n/2 O(n1−δ) n(1 + ε) 4n− 13 12n log n ∞

PoA 1 ≤ 4
3 ([5]) ≤ 4 ([4]) ≤ 6 ([4]) Θ(1) ([4]) 2O(

√
log n) ([4]) Θ(1) < 5 ([3]) 1.5 ([1])

The lower range The middle range The upper range

Distance Uniformity and the Diameter of NE Graphs
Theorem 1 Let G be a NE graph for α = n/C with C > 4. Then, there exists an r such that, for every
u ∈ V :

|Ar(u)| + |Ar+1(u)| + |Ar+2(u)| + |Ar+3(u)| + |Ar+4(u)| > n− 4α.

Corollary 1 Let G be a NE graph for α = n/C with C > 4. Then, G4 is a 4α/n−distance-almost-
uniform graph.

Corollary 2 For the interval α ≤ n/C with C > 8, PoA = Ω(dmax).

Lemma 1 ([4]) PoA = O(dmax).

Theorem 2 For the interval α ≤ n/C with C > 8,

PoA = Θ(dmax).

Buying NE Graphs of Non-Constant Diameter

Lemma 2 Let u, u1, ..., uk be nodes in G. Let ∆Ci the deviation in u that consists in buying the link
uui for i with 1 ≤ i ≤ k. Also, let ∆C be the deviation that consists in buying in u all the links
uu1, ..., uuk. Then, ∆C1 + ... + ∆Ck ≤ ∆C.

+∆C1 ∆C2 ∆C≤

Remark 1 In order to evaluate if G is a buying NE we only need to check n(n − 1) deviations, the
ones of cardinality one.

Proposition 1 Any ε−distance-uniform graph G with diam(G) ≤ (2εC)−1 + 1 is a buying NE for
α = n/C.

Ar(u) Ar(v)

Ar(u) ∩ Ar(v)

r the critical distance

u buys a link to v

|Ar(u) ∩ Ar(v)| ≥ |Ar(u)| + |Ar(v)| − n ≥

≥ n(1 − 2ǫ)

∆Cbuy ≥ α − (diam(G) − 1)(n − |Ar(u) ∩ Ar(v)|) ≥

≥ n/C − ((2ǫC)−1)(n − n(1 − 2ǫ)) ≥ 0

Proposition 2 There exist buying NE graphs of non-constant diameter for α = n/C and C = O(1).

V (G) = {x1...xr | xi ∈ {1, ..., k}}

E(G) = {(x1....x...xr , x1...y...xr) | x 6= y}

diam(G) = r

|Ai(u)| =
(
r
i

)
(k − 1)i

|Ar(u)| = (k − 1)r = kr(1 − 1
k )

r ≥

≥ kr(1 − r
k ) ≥ n(1 − r

k )
11

12

21

22

13

23

31

32

33

G is r
k−distance-uniform

if r ≤ 1 + k
2rC

G is a buying NE for α = n/C

In particular, for k = r3 and C = O(1)
diam(G) = r = Ω(

√
logn)

Conclusions

Constant or non-constant PoA? For the interval α ≤ n/C with C > 8:

If dmax = O(1)

If dmax = w(1) PoA = w(1)

The proof of dmax = O(1)

non-buying

must consider at least one

deviation

?

Theorem 1

Proposition 2
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