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Resum

En aquesta tesi s’investiguen vells i nous universals lingiiistics, és a dir,
propietats que obeeixen totes les llengiies de la Terra. També s’estudien prin-
cipis basics del llenguatge que prediuen universals lingiiistics. En concret, dos
principis referencials, minim esfor¢ de codificacié i minim esfor¢ de decodifi-
cacio, una reformulacié dels principi de minim esfor¢ de G. K. Zipf pel qui parla
i pel qui escolta. Els esmentats principis referencials prediuen la llei de Zipf,
un universal de la freqiiencia de les paraules en el punt de maxima tensié entre
necessitats de codificacié i decodificacié. Encara que s’han proposat processos
trivials per explicar la llei de Zipf en contextos no lingiiistics, aqui es recolza
la significancia d’aquesta llei per al llenguatge huma. Minimitzar la distancia
euclidea entre paraules sintacticament relacionades dins frases és un principi
que prediu projectivitat, un universal que afirma que els arcs entre paraules
sintacticament relacionades dins una frase no es creuen en general. D’una altra
banda, aquesta minimitzacié de la distancia fisica prediu (a) una distribucié
exponencial per a la distribucié de la distancia entre paraules sintacticament
relacionades (b) superioritat de Pordre SVO en 1'ts real de les llengiies del mén.
Aqui es presenten propietats totalment noves de les xarxes de dependeéncies
sintactiques, és a dir, distribucions de grau potencials, fenomen del mén petit,
assortative mixing i organitzacio jerarquica. Enlloc d’una gramatica universal,
es proposa una unica classe d’universalitat per a les llengiies del mén. Sintaxi i
referéncia simbolica sén unificades sota una tnica propietat topologica: connec-
tivitat en la xarxa d’associacions senyal-objecte d’un sistema de comunicacié.
Assumint la llei de Zipf, no sols se segueix connectivitat siné les propietats de
xarxes sintactiques reals esmentades més amunt. Per tant, (a) els principis ref-
erencials sén els principis de la sintaxi i la referéncia simbolica, (b) la sintaxi
és el subproducte de principis simples de la comunicacié i (c¢) les propietats es-
mentades de les xarxes de dependeéncies sintactiques han de ser universals si la
llei de Zipf és universal, que és el cas. Es mostra que la transicié a llenguatge
és del tipus de les transicions de fase continues en fisica. Per tant, la transicié a
llenguatge no va poder ser gradual. Es presenta el morfoespai reduit que resulta
d’una combinacié d’un principi de minimitzacié de la distancia i un principi de
minimitzacié de la densitat de connexions com una hipotesi alternativa i una
perspectiva prometedora per a xarxes lingliistiques que pateixin pressions per
comunicacié rapida. La present tesi és tnica entre les teories sobre els origens
del llenguatge, en el sentit que (a) explica com les paraules o els senyals es
combinen de forma natural per tal de formar missatges complexos, (b) valida
les seves prediccions amb dades reals, (¢) unifica sintaxi i referéncia simbolica
i usa ingredients que ja estan presents en els sistemes de comunicacié animal,
d’una forma que cap altra aproximacié fa. El marc presentat és un canvi radi-
cal en la recerca dels universals del llenguatge i els seus origens a través de la
fisica dels fenomens critics. Els principis presentats aqui no sén els principis del
llenguatge huma, siné els principis de la comunicacié complexa. Per tant, els
propdits principis suggereixen noves perspectives per a altres sistemes naturals
de transmissié d’informacié complexa.



Abstract

Here, old and new linguistic universals, i.e. properties obeyed by all lan-
guages on Earth are investigated. Basic principles of language predicting linguis-
tic universals are also investigated. More precisely, two principles of reference,
i.e. coding least effort and decoding least effort, a reformulation of G. K. Zipf’s
speaker and hearer least effort principles. Such referential principles predict
Zipf’s law, a universal of word frequencies, at the maximum tension between
coding and decoding needs. Although trivial processes have been proposed for
explaining Zipf’s law in non-linguistic contexts, Zipf’s law meaningfulness for
human language is supported here. Minimizing the Euclidean distance between
syntactically related words in sentences is a principle predicting projectivity,
a universal stating that arcs between syntactically linked words in sentences
generally do not cross. Besides, such a physical distance minimization success-
fully predicts (a) an exponential distribution for the distribution of the distance
between syntactically related words and (b) subject-verb-object (SVO) order
superiority in the actual use of world languages. Previously unreported non-
trivial features of real syntactic dependency networks are presented here, i.e.
scale-free degree distributions, small-world phenomenon, disassortative mixing
and hierarchical organization. Instead of a universal grammar, a single univer-
sality class is proposed for world languages. Syntax and symbolic reference are
unified under a single topological property, ie. connectedness in the network of
signal-object associations of a communication system. Assuming Zipf’s law, not
only connectedness follows, but the above properties of real syntactic networks.
Therefore, (a) referential principles are the principles of syntax and symbolic
reference, (b) syntax is a by product of simple communication principles and
(c) the above properties of syntactic dependency networks must be universal if
Zipf’s law is universal, which is the case. The transition to language is shown to
be of the kind of a continuous phase transition in physics. Thereafter, the tran-
sition to human language could not have been gradual. The reduced network
morphospace resulting from a combination of a network distance minimization
principle and link density minimization principle is presented as an alternative
hypothesis and a promising prospect for linguistic networks subject to fast com-
munication pressures. The present thesis is unique among theories about the
origins of language, in the sense that (a) it explains how words or signals nat-
urally glue in order to form complex messages, (b) it validates its predictions
with real data, (c) unifies syntax and symbolic reference and (d) uses ingredi-
ents already present in the animal communication systems, in a way no other
approximations do. The framework presented is radical shift in the research of
linguistic universals and its origins through the physics of critical phenomena.
The principles presented here are not principles of human language, but prin-
ciples of complex communication. Therefore, the such principles suggest new
prospects for other information transmission systems in nature.
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A man went to a circus in order to get a job.
The man who was in charge of evaluating the
candidates asked him:

- What do you do?

- I imitate birds - replied the candidate.

- Oh, this is not interesting for us - said the
evaluator.

And the candidate went away flying.

Eugenio, a Catalan stand-up comedian.
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Chapter 1

Introduction

Scientific work in general proceeds in three phases, the first observation, the sec-
ond description of the observed phenomena, the third is the attempt to explain
the results [...]. Most linguistic discussion is done in the domain of descriptions,
which are constantly referred as theories (e.g. Chomsky’s standard and extended
theories) probably in analogy to the purely formal axiomatic systems in logic and
mathematics. The danger of this mistake lies in the fact that, as a consequence,
description and explanation get confused. In fact, of the two, only explanation
is not possible without a theory (in the proper sense, i.e. a system of laws and

a number of additional prerequisites)
Reinhard Kohler (1987, page 242)

Such methodology underlies the work presented here. A deep investigation
about basic principles governing language has been carried out. Descriptions
(i.e. statistical patterns) inspiring such principles are studied along with the
predictions that such principles can make. The reduced set of principles studied
here constitutes a simple but powerful theory whose predictions go beyond the
statistical patterns they tentatively tried to explain. Moreover, such principles
will help us to regard certain established principles in linguistics (such as projec-
tivity) as consequences and not principles in the proper sense. More ambitious
attempts of considering larger set of principles and their interrelations have
been carried out (Kohler, 1986; Kohler, 1987), the so-called synergetic linguis-
tics. The origins of a synergetic understanding of language can be traced back
to G. K. Zipf studies (Priin, 1999). Here, special emphasis is made on the depth
of the predictive power of every principle, with special regard to the origins and
evolution of language. The principles studied here are not a consequence of a
purely inductive methodology that was clearly the case of Greenberg’s study
about linguistic universals (Greenberg, 1968). Such principles are prolegomena
to a theory of language.

The principles discussed here are the principles of whatever human language
and individual speaker (whenever the individual has not been damaged), that
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is universal. It will be shown throughout the following chapters that such prin-
ciples are capable of explaining linguistic universals, i.e. statistical patterns
common to (almost) all languages.

Such a kind of research implies many challenges and leads to the formulation
of a basic question. i.e. can we use the same principles for explaining commu-
nication systems ranging from the most simple communication systems such as
the predator-type vervet monkey calls (Seyfarth, Cheney, and Marler, 1980a)
to the most complex, e.g. the recursive syntactic systems in humans (Hauser,
Chomsky, and Fitch, 2002)? There are two lines of research for that question.
First, focusing on how different is human language from animal communica-
tion systems, which deceivingly leads to think human language is off the chart
(Chomsky, 2002) and is a system for mental representation and thought more
than a communication system (Chomsky, 1965a; Bickerton, 1990; Jackendoff,
1994). Second, investigating the conditions that could turn a simple communi-
cation system into a human-language-like system. Here we will take the second
approach, benefiting from the essential differences stressed by the first line of
research. We will show the basic ingredients for recursive syntactic systems
stem from communication constraints (Chapters 7).

1.1 Some universal patterns

Formulating the principles of language and understanding the origins and evolu-
tion of language requires conveniently identifying its universals features. Some
of them are examined in what follows according to the needs of the present
work.

1.1.1  Zipf’s law

The seek of the general principles governing communication systems implies the
seek of statistical patterns. Tentatively, not all patterns are suitable for that
aim. They must be universal (or almost universal), which is a wise mixture of
how often the pattern appears and the diversity of conditions under which it
appears. Let us illustrate it with a pattern that is the bulk of many chapters.
P(f), the proportion of words in a text whose frequency is f can be approxi-
mated by:

P(f)~f" (1.1)
The previous equation is the so-called Zipf’s law, that bears the name of George
Kingsley Zipf, the linguist who made it popular (Zipf, 1932; Zipf, 1935; Zipf,
1942; Zipf, 1972a). If words in a sample text are ordered decreasingly by their
frequency, the (normalized) frequency of a word is a power law of its rank (Zipf,
1972a), i, described in its simplest form as

P(i) oci™® (1.2)

The first form (Eq. 1.1 is called the lexical spectrum (Tuldava, 1996) or the
inverse Zipf’s distribution (Cohen, Mantegna, and Havlin, 1997). Eq. 1.2 and
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5 | | | } |
10 10 10 10 10° 10" 10
i (rank) f (frequency)

Figure 1.1: Frequency versus rank (A) and lexical spectrum (B) of Herman
Melville’s Moby Dick (9, 244 different words). The dashed line in A shows the
frequency versus rank for words having length 5, which is the average length of
words in Melville’s book (there are 1,248 different 5-letter words). The expo-
nents are (A) o~ 1 and (B) 8~ 2= 1 +1 as expected.

1.1 are equivalent and their exponents obey (see Appendix B and for instance
Naranan (1992; Naranan and Balasubrahmanyan (1992a))

1
ﬁ:a‘f'l (1.3)

and their typical values are a = 1 and § =~ 2. Although both the rank distri-
bution and the word frequency spectrum can be modeled in many ways (Chi-
tashvili and Baayen, 1993; Tuldava, 1996; Balasubrahmanyan and Naranan,
1996; Naranan and Balasubrahmanyan, 1998; Baayen, 2001), we adopt a plain
power function for simplicity reasons. Unified representations of candidate
Zipt’s representations have been carried out (Zoérnig and Altmann, 1995). Here,
the term law refers to the strength of the empirical observation, that has been
tested in different languages and authors (Balasubrahmanyan and Naranan,
1996). As far as we know, detailed and extensive study has only shown that
the values of the exponents can vary from one sample to another (Balasubrah-
manyan and Naranan, 1996) and more than one domain (Chapter 2 and Tuldava
(1996), and Naranan and Balasubrahmanyan (1998)) is necessary for explaining
the same sample. Fig. 1.1 shows the normalized frequency versus rank (« =~ 1)
and the lexical spectrum (8 = 2) for Herman Melville’s Moby Dick.

Such a regularity is known from the beginning of the XX century (Estoup,
1916; Dewey, 1923; Condon, 1928) and appears in oral and writing speech, in
infants and adults (Zipf, 1942; McCowan, Doyle, and Hanser, 2002) and all
languages where it has been tested (Balasubrahmanyan and Naranan, 1996).
There seems to be no known exception to Eq. 1.1. Typically, 8 = 2 is found
and rather exceptional values satisfy 1.5 < g < 3.4 (Chapter 3). Zipf’s law
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qualifies for a pattern inspiring general principles because of its ubiquity and
its robustness. Given the huge amount of different distributions (Wimmer and
Altmann, 1999) that could serve for arranging word frequencies, the question
that has puzzled quantitative linguists over decades is Why other distributions
are not found? Communication principles and the physics of critical phenomena
give an answer in Chapters 3 and 4. Another reason for investigating Zipf’s law
is that it is assumed but not explained in recent models for the evolution of
syntactic communication (Nowak, Plotkin, and Jansen, 2000; Nowak, 2000b).
Is Zipf’s law is meaningful (Chapter 5, it must be an ingredient for any theory
of language evolution.

It is important to notice that sometimes Zipf’s law refers to Eq. 1.1 with no
specific value of 5. Some other times, it precisely refers to 8 ~ 2. Sometimes,
Zipf’s law implicitly refers to words frequencies and sometimes to other linguis-
tic units and systems. G. K. Zipf collected many rank-frequency relations (Zipf,
1972a). refer to it as the Zipf’s law. In what follows, we will assume Zipf’s law
refers to the frequency distribution of units of reference (words in human lan-
guage) in a generic communication framework. Since there are many exceptions
to § = 2 even in a linguistic context, the exact value of the exponent will be
explicitly mentioned when it is crucial.

1.1.2 Projectivity

The syntactic structure of a sentence can be usually specified by a network
where arcs do not cross when drawn over words. This property is usually called
projectivity in linguistic theory (Meléuk, 1989; Hudson, 1984). Arcs go from
a modifier to its head, as in Fig. 1.2 A. The modifier is said to depend on
the head. If the vertices of the sentence in Fig. 1.2 A are scrambled then
multiple arc crossings (red circles) appear (Fig. 1.2 B). Fig. 1.2 B is far from
the typical appearance of sentence structures. The majority of sentences in
most languages are projective with the exception of particular cases (Melcuck,
To appear). Projectivity qualifies thus as a linguistic universal. The origins of
projectivity is a longstanding problem and an ultimate explanation has not yet
been provided.

1.2 The principles

The principles presented here are based on the general assumption that com-
munication has a cost. Communication implies different operations or processes
whose cost communicating agents need to minimize. In other words, agents
need to minimize the effort of such processes and operations. The principles
presented here consider words as the basic unit. They are therefore lexical prin-
ciples. Their validity for other linguistic units is beyond the scope of the present
work. The principles are:

e Decoding least effort. Decoding, that is, the semantic interpretation of a
word in a particular context has a cost. This principle states that such a
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A

Sheloved me for the dangers | had pas

Figure 1.2: A. A sentence and its syntactic structure. B. The structure of the
sentence in B is the same as that of A but the sequence of vertices is a random
permutation of that of A. Gray circle indicate edge crossings. Links can only
be drawn on the half plane formed by the straight line passing through the row
of words.

cost must be minimized.

e Coding least effort. Coding, that is, finding the appropriate word for a
certain meaning has a cost that is negatively correlated with the decoding
least effort. Decoding least effort and coding least effort are opposite
forces.

e Fuclidean distance minimization. Sentences are a strings and have thus
one dimension. The task of the speaker is to form such strings from mental
representations in his brain. The task of the hearer is to map such strings
with its mental representations. The Euclidean distance minimization
principle states that the distance between syntactically dependent words
in the same sentence must be minimized.

e Network distance minimization. Fast navigation in linguistic networks
requires the distance between vertices is minimized. Syntactic dependency
networks are an example of linguistic network where vertices are words and
arcs are syntactic dependencies.

e Link density minimization. Links in linguist networks have a cost that
must be minimized. The distance between vertices is generally negatively
correlated with the amount of links used. Networks density and link den-
sity minimization are opposite forces.

Resorting to some of the principles will allow explaining the universal patters
presented in Section 1.1 along with making further predictions. Decoding least
effort is a revisit of Shannon’s communication theory. Decoding and coding least
effort are considered in system theoretical linguistics (Kohler, 1986; Kohler,
1987) but the predictions made here are totally new. Coding and decoding
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here refers to the mapping between words and meanings. Referential coding
and referential decoding will not be used for brevity reasons. The remaining
principles are a novel contribution of the present work. The network distance
minimization principle and the links density minimization principles are the
most hypothetical among the five and require future exploration beyond the
scope of the present work.

Such principles can be classified into two classes, i.e. referential principles
communication and network principles.

1.2.1 Referential principles

Different prominent linguists have emphasized that human language is much
more than a mere communication system (Hauser, Chomsky, and Fitch, 2002;
Bickerton, 1990; Jackendoff, 1994). The existence of a universal grammar with
its own set of principles as been hypothesized (Uriagereka, 1998). If the universal
grammar is said to be uniquely human, what can their principles tell us about
simpler communication systems and how such systems can reach higher levels
of complexity? Probably nothing, because universal grammar is strictly tied to
syntax and non-human species seem not to have syntax. Nonetheless, the gap
between simple communication and syntax will be bridged here using a novel
approach.

Communication undergoes many constraints and pressures. Information the-
ory provides a basic scheme that helps to understand the goals and constraints of
communication. Under that view, communication takes place between a sender
(e.g. the speaker) and a receiver (e.g. the hearer) (Fig. 1.3). The task of the
sender is to code a message that the receiver has to decode. The goal of com-
munication is that the receiver interprets the message intended by the sender.
General representations of the basic scheme include a source of noise (dashed
box in Fig. 1.3) making that the receiver misunderstands the code delivered by
the sender.

Shannon was the first to mathematically formalized the goal of communica-
tion (Shannon, 1948). He defined a measure, the rate of information transmitted
(transinformation), a communication system has to maximize. Assuming, S, a
set of signals (i.e. codes) and R, a set of objects (i.e. messages) the transinfor-
mation measure for a biological communication is defined as

I(R,S) = H(R) — H(R|S)

where H(R) is the entropy associated to object frequencies and H(R|S) is the
average entropy associated to the interpretation of every signal (see (Ash, 1965)
for further details). Hereafter, an agreement between sender and receiver about
the possible interpretations of a code will be assumed (see Section 10.3 for a
discussion of this assumption). Thus, it can be intuitively seen that the higher
the amount of meanings of a word, the higher the possibility of misinterpreting
that word. The goal effective communication only consists of minimizing the
decoding communication function we define (assuming I(R,.S) is normalized)
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SENDER RECEIVER

Message —»@ » Code =@—» Message

Figure 1.3: Basic scheme of a communication system.

as
Ep=1-1I(R,S) (1.4)

which is equivalent to minimizing
Ep = H(R|S) (1.5)

if coding warrants H(R) is constant (Chapter 3 makes use of this assumption).
At a time where artificial communication devices where flourishing, Shannon’s
concerns about communication stop here.

We will say that F'p measures the decoding effort. It will be shown that the
decoding effort does not lead to Zipf’s law with 8 ~ 2 (Chapter 3). Instead, it
will lead to all signals having a similar frequency (provided that objects have a
similar frequency; see Chapter 5). One of the major findings presented here is
that Zipf’s law (with § ~ 2) results from taking into account, E¢, the encoding
effort. Encoding effort has been never been considered in the evolution of lan-
guage and artificial intelligence literature and consistently the natural emergence
of Zipf’s law has never been reported in those works. Psychological constraints
limit the availability of words in humans. The lower the frequency of a word, the
lower its availability, the so-called word frequency effect. Getting the appropri-
ate words has a cost. Accordingly, we define the dual communication function
as

Q=(1-MNEc+ \Ep (1.6)

where E¢c = H(S) measures the coding effort and 0 < A < 1. Notice that Q is
a generalization of Shannon’s information transfer provided H(R) is constant.
Shannon’s framework is recovered for A = 1. Another novel contribution of
the work presented here is to take into account the positive correlation between
frequency and number of meanings (Reder, Anderson, and Bjork, 1974; Kohler,
1986; Manning and Schiitze, 1999). so that the word frequency effect becomes
the word meaning effect: the more meanings a word has, the higher its avail-
ability. By doing so, Zipf’s law (with 8 = 2) emerges at the maximum tension
between encoding and decoding effort (Chapter 3), that is A ~ 1/2. When such
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a dual satisfaction of encoding and decoding needs is not present, exponents
other 8 = 2 or even non-power distributions should be expected. Interestingly,
Chapter 4 shows scaling is preserved even when only Ep is prescribed, consistent
with variations of § &~ 2 in human language.

The models presented here assume that there is no source of noise. Nonethe-
less, the coding least effort principle can be regarded as a source of noise
(i.e. misinterpretation) operating inside the sender at the coding stage Fig.
1.3. Mathematical approaches to the evolution of language assume similari-
ties between codes are the source of noise (Nowak and Krakauer, 1999; Nowak,
Krakauer, and Dress, 1999; Nowak, Plotkin, and Krakauer, 1999; Nowak, Plotkin,
and Jansen, 2000; Nowak, 2000b). The standard communication scheme (Shan-
non (1948),Ash (1965); Fig. 1.3) and mathematical approaches to the evolution
of language assume noise is external to both sender and receiver.

G. K. Zipf hypothesized that the law bearing his name was due to a ten-
sion between unification (one word with multiple meanings) and diversification
forces (distinctly different words for different meanings), a principle of least ef-
fort in his own words. The validity of G. K. Zipf hypothesis was never shown.
An information theory approach in Chapter 3 and 4 inspired in his hypothe-
sis will explain Zipf’s law. Nonetheless, it has to be noted that if the effort
for the hearer, the decoding effort, is defined as the vocabulary size the maxi-
mum tension between hearer and speaker needs disappears and Zipf’s law does
not emerge (see Chapter 3 for further details). Besides, just minimizing the
amount of meanings per word does not lead to Zipf’s law, although it is a way
of minimizing the decoding effort (Chapter 4). G. K. Zipf does not draw a clear
distinction between the the relationship between vocabulary size minimization
and vocabulary versatility maximization. Therefore, Zipf’s principle of least
effort must be seen as a rough intuition. It is important to keep in mind that
talking about vocabulary size minimization in the context Zipf’s law is, in the
best case, a side-effect of a more complex definition of the coding effort. Later
interpretations (Ball, 2003) can be deceiving when equating coding least ef-
fort with vocabulary size. Distinguishing between causes and consequences is
necessary.

A huge amount of different mechanisms reproducing Zipf’s law have been
proposed. During a first wave at the beginning of the first half of the XX cen-
tury, G. Miller, H. A. Simon and B. Mandelbrot proposed different explanations.
H. A. Simon proposed a multiplicative stochastic process of the type rich-gets-
richer (Simon, 1955) (a birth process without death). G. Miller (Miller, 1957)
and B. Mandelbrot (Mandelbrot, 1966) present intermittent silence, a process
concatenating characters chosen at random. The characters set includes spaces
behaving as word separators. Words are defined as maximal contiguous se-
quences of letters without spaces. N. Chomsky and G. Miller revisited inter-
mittent models in a book (Miller and Chomsky, 1963) that is considered as
a reference against Zipf’s law meaningfulness. B. Mandelbrot proposed word
length minimization (Mandelbrot, 1953). After such initial wave many models
and explanations have been proposed (Chapter 5), including a rediscovery of
the intermittent silence models by W. Li (Li, 1992). Therefore, Zipf’s law can
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be explained in multiple ways. A careful look reveals that many explanations or
null hypothesis make assumptions making no sense in a linguistic context. For
instance, W. Li, B. Mandelbrot and N. Chomsky assumptions for intermittent
silence model assume that words are not chosen from a finite size repository (the
so-called mental lexicon) and that words are used according to their meaning.
In fact, no model known takes into account that words have meaning, except
for the models presented here (Chapter 3 and 4). Models where word mean-
ing reproduce Zipf’s law but do not qualify as an explanation for Zipf’s law.
The models presented here are not the ultimate answer for Zipf’s law (which
would be groundless from a Popperian perspective (Popper, 1968)), but contain
an essential ingredient that is forgotten by all existent models, i.e. reference.
Chapter 5 contains a critical review of existent explanations or null hypothesis.

1.2.2 Network principles

If a communication system uses strings of words for coding messages as humans
do, the cost of a syntactic links is positively correlated with the distance between
linked words (Ueno and Polinsky, 2002; Gibson, 2000; Hawkins, 1994). Speakers
and hearers must minimize the distance between linked words which is consistent
with the fact that most of syntactic links take place at very short distances
(Chapter 8). Minimizing the Euclidean distance between linked words, inspired
in the minimum linear arrangement problem (Dfaz, Petit, and Serna, 2002), will
bear such responsibility and explain projectivity (Chapter 8).

Fast communication pressure is obvious in the usual agonistic context where
animal communication takes place (Hauser and Nelson, 1991) and it is hypothe-
sized as a driving force in the evolution of human language (Lieberman, 1991a).
Evidence of fast communication pressures are found at different levels of human
language. The sounds of human speech allow us to transmit phonetic segments
at an extremely rapid rate, up to 20 segments per second. In contrast, human
beings can not identify non-speech sounds at rates that exceed seven to nine
items per second (Lieberman, 1992). The coding least effort is a consequence
of fast communication pressures, since the time needed for getting a word is
positively correlated with the coding effort.

Fast communication is also a pressure for mental navigation in different
types of linguistic networks. Different experiments in psycholinguistics show
that words are interconnected in different ways. It is known that the network
topology is crucial for the speed at which navigation can be performed (Watts
and Strogatz, 1998). d the average vertex-vertex distance is an inverse measure
of the navigation speed. We will define the network distance least effort principle
as minimizing d. If links have a cost, there is a conflict between p network
density and minimizing d. We define the link density minimization principle as
minimizing p. The network with the minimum d is a complete graph, but it is
the most expensive topology. Such a conflict is described by an energy equation
combining the conflicting needs through a parameter A

Q) =Ad+ (1—A)p
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The previous energy function provides a network morphospace with only five
network types (Chapter 9).

1.3 The evolution of language

Scholars have made an effort to outline the differences between human language
and other forms of communication in other species, in a way that, language, a
complex form of communication, refers uniquely to humans and communication
to the remaining species. Scholars argue the hallmark of human language is
syntax or symbolic reference. The core of syntax is the ability of combining
elements from a finite set (e.g. words) and yielding a potentially infinite array of
discrete expressions, the so-called discrete infinity (Hauser, Chomsky, and Fitch,
2002). Symbolic reference is the highest form of reference, that is the mapping
between signifiers (e.g. sounds) to objects of reference (e.g. meanings). Three
increasing levels of reference are distinguished: iconic, indexical and symbolic.
Briefly, reference is iconic when the mapping between signifiers and objects
is made trough physical similarity. Reference is indexical when the mapping
between signifiers and objects is made trough temporal or spatial correlation.
Convention is the way signifiers and objects get linked in symbolic reference.
Besides, symbolic reference implies interrelations between signifiers that are not
present in lower forms of reference (Deacon, 1997).

Scholars are divided into proponents of syntax (Hauser, Chomsky, and Fitch,
2002) or symbolic reference (Deacon, 1997; Donald, 1991; Donald, 1998) as the
crux of human language. Besides the present work (Chapter 7) there is no
conciliating and integrative approach.

Over the last centuries, scholars have tried to provide an answer for the
following question concerning the evolution of human language:

e Is human language unique?

e If there a gap between human language and the communication systems
of other species?

e Did (human) language appeared gradually or suddenly on Earth?

e Is human language the result of the evolution (extension) of a simple
communication system or a by-product of another function?

The following sections explore the previous questions.

From the one hand, human language may have evolved by extension of pre-
existing communication systems or exapted away from other functions (e.g.
spatial or numerical reasoning, Machiavellian social scheming, tool-making)
(Hauser, Chomsky, and Fitch, 2002). From the other hand, assuming lan-
guage is an extension of simple communication systems, one has to propose
what the driving mechanism is. Darwinian evolution (Nowak and Krakauer,
1999; Nowak, Krakauer, and Dress, 1999; Nowak, Plotkin, and Krakauer, 1999;
Nowak, Plotkin, and Jansen, 2000; Nowak, 2000b) or learning constraints (Kirby,
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2000; Kirby, 2002a) are a possible explanations. If evolution has to choose
among syntactic and non-syntactic communication, just formalizing the con-
ditions under which syntactic communication is selected does not provide an
ultimate answer, since it does not explain why words should naturally combine.
Similarly, how can syntax be selected by evolution when there is no syntax at
all? If syntax is assumed and natural selection has to make a decision about
selecting it or not, it is not a totally fair game, since how syntax naturally ap-
pears is not explained. If learning constraints choose syntactic communication
without the help of Darwinian selection, providing the system with a phrase
structure grammar is not a fair game since such a formalism implies recur-
sion. Accordingly, we argue here that natural word combinations must be a
by-product. Darwinian selection can not operate directly on syntax but also on
another function. The contribution of this thesis consist of an explanation where
such function is non-syntactic communication itself, and not a totally different
function. More precisely, we will show natural word combination results from a
solving a conflict between coding and decoding least effort principles (Chapter
7).

1.3.1 Is human language actually unique?

The language-communication distinction is based on the following fact: there
is no positive evidence of other species having a communication system as ours.
The conclusion requires explanation. There are species for which studies of
their communication systems have been carried out. Studying the communica-
tion system of a species (if there is any) is generally a very complicated task.
We will simplify such a task by means of two basic necessary (but not suffi-
cient) conditions for language: reference and combinatorics. Combining simple
units seems a condition close to infinite discreteness. Many species produce
songs based on the combinations of units. Singing birds (Gardner, Cecchi, and
Magnasco, 2001) are clear examples that combinatorics does not imply refer-
ence. Nonetheless, when the higher species are studied, higher attention is paid.
When whales sing (Noad et al., 2000) or gibbons sing or produce long distance
calls (Geissmann, 2000; Hauser, 1996), their vocalizations must be more con-
spicuously analyzed. Unfortunately, no conclusive evidence of reference has
been reported. In some lucky cases, researchers conclude the vocalizations of
a species have clear mappings with external stimuli. In that cases, evidence of
combinatorics is not generally found although they are usually concentrated on
a limited range of utterances (Davison, 1997) (e.g utterances that are relatively
easy to observe and to interpret). Table 1.1 summarizes the communication sys-
tems of different systems according to our current knowledge. Some studies have
shown species combining units that may carry meaning. Nevertheless, whether
or not combinations of these units into sequences encode something more than
the concatenation of separate meanings of the units is a difficult question that
has not yet been answered (Ficken, Hailman, and Hailman, 1994).

No negative conclusions have reached for the utterances of certain species.
Many cetaceans fall into this category (dolphins, whales, belugas,...). When
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Reference
No Yes
No Vervet monkeys (Sey-
farth, Cheney, and
Marler, 1980b)

Combinatorics
Yes | Whales  (Noad et Humans

al., 2000), Gibbons

(Hauser, 1996; Geiss-

mann, 2000), singing

birds (Gardner, Cec-

chi, and Magnasco,

2001)

Table 1.1: Classification of communications systems according to the presence
or absence of combinatorics and reference.

scholars make equivalent language and humans, they are neglecting the latter
dark cases (Chomsky, 1972; Chomsky, 1988a; Hauser, 1996). Species produc-
ing complex signals that can hardly be broken into units or the reference is
impossible to assess. Recently, dolphin vocalizations have been systematically
segmented and categorized using automatic techniques (McCowan, Hanser, and
Doyle, 1999; McCowan, Doyle, and Hanser, 2002). Although Zipf’s law is found,
there is no ultimate answer about the suitability of the segmentation and cate-
gorization techniques used (Janik, 1999). Reference is suspected for that species
(Janik and Slater, 1998; Janik, 2000), although it not been proved. Here it is
shown that Zipf’s law plus reference allow making relevant predictions about
the possibility of combinatorics (Chapter 7).

Human language uniqueness is rooted in an anthropocentric understanding
of nature. Our anthropomorphic bias limits the way we look at non-human
species communication systems (Savage-Rumbaugh, 1999). We have failed in
decoding the complex utterances of different species, but we believe we are
unique. Our way of exploring other species complex signals relies on two an-
thropocentric implications

1. If we can not understand it then we assume there is no language.
2. If there is no reference then language can not exist.

The first implication reflects our inability to deal and integrate doubts into our
cosmovision (I do not know is a bad answer). Let us show the second implica-
tion is false with the following mental experiment. Imagine an extraterrestrial
intelligent organism wants to determine whether we humans have language.
Imagine the extraterrestrial researcher has a technique for breaking our com-
plex vocalizations into words. Such researcher wants to determine first if words
are mostly referential. Therefore, he decides (let us say ’he’ and not ’it’ assum-
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ing it has language) to choose the most frequent words for their study because
they capture most of humans’ behaviour. Imagine for that study, they choose
the seven most frequent words in English. The words are the, of, and, to, a, in,
that. After detailed study, the extraterrestrial researcher concludes, as a human
would agree, that the seven most frequent words have no referential power. The
second implication leads to the following conclusion humans have no language,
which is a contradiction. The lesson is the following: starting with the simplest
hypothesis with non-human species can fail. In some cases the most convenient
hypothesis is language and not simple communication.

Information coding and decoding systems pervade nature. Human speakers
code words from meanings that hearers must guess. Communication on the fly,
that is, communication requiring coder and decoder cooccur in time and space
is present in multiple forms. Human oral language is an example among many.
Sound is not, by far, the only means, not only in humans, but in other cases.
Vervet monkeys alarm calls containing information about the type of threatening
predator (Seyfarth, Cheney, and Marler, 1980b) are simple examples. Nature
stored information in genes millions of years before humans invented writing
systems. Genes code for proteins using intermediate RNA. Even very simple
organisms, such as bacteria, communicate exchanging genetic material by con-
tact (Losick and Kaiser, 1997; Miller, 1998). Bacteria develop drug resistance
by means of genetic communication. Honey bees dance for indicating with high
precision the position of distant sources of food (Frisch, 1967). We humans may
be unique using our definition of language, but we are not by far the first species
to use non-trivial information transmission systems.

1.3.2 No gap but abrupt emergence

There has been a long debate about the nature of human language. Some ap-
proaches claim that there must have been a continuous or gradual adaptation
from animal communication systems to human language (Lieberman and Koss-
lyn, 2002; Pinker and Bloom, 1990; Newmeyer, 1991; Brandon and Hornstein,
1986; Corballis, 1991; King, 1994; Bickerton, 1981). Some other approaches
argue there must have been a discontinuity between the two stages (Chomsky,
1988a; Chomsky, 1991; Bickerton, 1990; Bickerton, 1996). Is there a possibil-
ity to reconcile such views? Initially, the former are marvelled by the striking
similarities between human and some other species (the striking similarities be-
tween humans, great apes and cetaceans social behavior, learning and commu-
nicative skills) and the power of Darwinian selection. The latter make emphasis
in the difference between language and the remaining forms of communication
known. The hope for reconciliation comes from the fact that, generally and to
some extent, the opposite hypothesis come from different perspectives and not
from conflicting argumentations inside the same framework. Taking the eye of
physics, we will show that an integrative position between both views is a sound
candidate for explaining how human language actually emerged (Chapter 3,7).

Proponents of discontinuity argue that human language is thousands of miles
away from (poorly known) animal communication systems. Having infinite dis-
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creteness and not having it makes a radical difference. One of the greatest
successes of Noam Chomsky’s philosophical inquiry is that such a change can
not be gradual. It is important to notice that not gradual and discontinuous
are not equivalent, at least in the physics of critical phenomena. The physics of
critical phenomena calls phase transitions to radical changes between qualita-
tively different phases (Binney et al., 1992). The transition from boiling water
to vapour is a phase transition where liquid water and vapour are different
phases. Interestingly, two types of phase transitions are basically distinguished,
e.g. continuous (second order) and discontinuous (first order). Most of popular
phase transitions such as evaporation (in regular conditions) and melting are dis-
continuous. The crucial difference is that continuous phase transitions exhibit
intermediate configurations between phases. The appearance of spontaneous
magnetization in a ferromagnet (like iron), if it is cooled below a certain critical
temperature, is continuous. Discontinuity is the word used in the evolution of
language for emphasizing the distance between language and communication
(let me avoid the equivalence pairs language-humans and communication ani-
mals) and there it is sometimes used without clear convention about whether it
implies intermediate stages (that should be rare) or no intermediate stages at
all.

We will show (Section 1.3.3 and Chapter 7) that the transition to syntax
should have been a continuous phase transition, which implies the possibility (at
least theoretically) of existent species with intermediate stages between language
and simple communication. The transition between one phase and another
is governed by a control parameter. A threshold value of such a parameter
determines the end of one phase and the beginning of the other. Intermediate
configurations exist in a narrow domain of a continuous phase transition around
the threshold value. Therefore, although we argue intermediate situations may
exist, they should be rare.

1.3.3 The transition to syntax must be continuous but
sharp

Human syntax can be modeled in a simple way with a network in which words
are vertices and links are syntactic relationships between pairs of words. Ten-
tatively, linking words according to such a graph will lead to syntactically well
formed sentences if word relative order is not taken into account. This is the
basic approach of dependency syntax formalism (Melc¢uk, 1989; Hays, 1964;
Sleator and Temperley, 1993) where the structure of a sentence itself is de-
scribed in terms of a network. Our model must be regarded as a the skeleton
for syntax and not as syntax in the strict sense because a real well-formed sen-
tence often requires word order to be satisfied (Sleator and Temperley, 1991)
and other details such as link direction (Mel¢uk, 1989) and form agreement be-
tween a head word and its modifier (Akmajian, 1995). The crucial difference
is that such sort of grammar does not imply (but allows) recursion (Hauser,
Chomsky, and Fitch, 2002). Nonetheless, such a network clearly contains our
major concern, that is, that some words are glued together. We assume we have
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n vertices and that every pair of vertices is linked with probability p. We will re-
fer to such a random network as G, , (Bollobds, 2001). A minimal well-formed
phrase linking v and v will be made up of uw,v and the vertices in whatever
path between uw and v. We will say that a set of vertices V is a protosyntac-
tic system when it will be possible to build a syntactically well formed phrase
for whatever pair of vertices (u,v) in V. The number of different phrases that
can be generated by a combinatorially powerful set of word with n vertices is
greater than n(n — 1)/2 € O(n?). If such phrases are integrated into sentences,
the number of messages that can be constructed is theoretically unlimited. We
also define the syntactic power of G, as the maximal set of vertices that is
a protosyntactic system. We define ¥ as the number of vertices in the largest
connected component (Bollobés, 1998).We will say G, ,, is a full protosyntactic
system when it is connected (i.e. ¥ =n). When p = 0, our model G,, , is clearly
in the single word phase we find in non-human animals and children at the early
stages (Johnson, Davis, and Macken, 1999). We call p* the smallest value of p
warranting G, , is connected. The transition from a non-syntactic phase to a
protosyntactic phase can be mapped into a transition from unconnectedness to
connectedness in Gy, p. It is known that the transition will be sharp (Bollobés,
2001).

This supports the intuition among certain linguists that the evolutionary
transition to syntactic communication would have been a sort of big bang (Newmeyer,
2000; Chomsky, 1988a; Chomsky, 1991; Bickerton, 1990; Bickerton, 1996). Such
a simple model explains the gap between animal and human communications,
since close values of p may radically differ in their protosyntactic power. The
model also explains why the transitions to syntactic communication in chil-
dren should be fast after a period of rather short period of one or two words
utterances (Johnson, Davis, and Macken, 1999). Nevertheless our answer is
incomplete. A transition to connectedness or near connectedness is not an ex-
planation for why syntax emerged but a partial explanation for how it emerges.
From the one hand, we need to explain why words ’glue’. Words ’glue’ through
their meaning(s) is the assumption defended here (Chapter 7).

Here we will (Chapter 3) show that Zipf’s law (with 8 ~ 2) and the cor-
responding optimal satisfaction of hearer and speaker needs is in fact an in-
termediate configuration between a no communication phase (one word for all
meanings) and a perfect communication phase (a one-to-one map between words
and meanings). We will show the corresponding network of signal-signal associa-
tions (e.g. word-word associations), a rudimentary form of syntax and symbolic
reference, has a degree distribution with a power tail whose exponent is v ~ 2
(Chapter 7). v =& 2 is the threshold for a continuous phase transition from a
disconnected to a connected phase in networks with a pure power degree distri-
bution (Newman, Strogatz, and Watts, 2001), suggesting syntactic interactions
operate at the point where the possibility of linking whatever pair of words holds
trivially.
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Principle Prediction
Coding and decoding least pj ~ k2
effort (Chapter 3,7)

py~ 72
Maximum entropy (MaxEnt) in py
Syntax
Symbolic reference
Decoding least effort + p, ~k=?
MaxEnt (Chapter 4)

py~ [
Euclidean distance mini- pg ~ e~ ?
mization (Chapter 8)

Projectivity

SVO order superiority

SVO order in creoles

SVO order for the first language spoken on
Earth

Network distance mini- ¢ ~ e~ °F
mization + link density
minimization (Chapter 9)
qr ~ k™7
star graph

Network distance mini- Complete graph
mization (Chapter 9)

Link density minimization Poissonian graph
(Chapter 9)

Table 1.2: Principles and their predictions. pys is the proportion of signals (e.g.
words) whose frequency is f, py is the proportion of signals with k connections
with objects (of reference), pg is the proportion of syntactically linked words at
distance d in a sentence, ¢ is the proportion of words with k connections.

1.4 Summary

Table 1.2 summarizes the principles presented above along with their predic-
tions. Predictions mostly take the form of statistical patterns. Some statistical
patterns are already known and some of them are novelly presented here. Such
statistical patterns qualify as linguistic universals, i.e. features common to (al-
most) all languages.

The more often it appears, Different trends are followed in linguistics. Ty-
pology is devoted to compare languages and find common and diverging traits.
The common traits and the rules explaining differences and classes of languages
are the so-called linguistic universals. Quantitative linguists is devoted to find
statistical patterns that are often not language dependent and are extremely
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universal.

The remaining chapters are organized as follows. Chapter 2 shows the exis-
tence of a core lexicon where Zipf’s law (with 8 &~ 2) is found. The core lexicon
will be the implicit domain of the following chapters. Chapter 3 shows that
Zipt’s law with 8 ~ 2 emerges from the maximum tension between coding and
decoding least effort principles and presents a novel scenario for the origins of
language. Chapter 4 maps 3 with the decoding effort and makes a divides com-
munication systems into simple and complex depending on the strategy used for
minimizing the decoding effort. Chapter 5 is critical review of existent hypoth-
esis for Zipf’s law and provides novel arguments for Zipf’s law meaningfulness.
Chapter 6 presents a totally new approach to syntactic universals. Chapter 7
explains how a rudimentary form of syntax and symbolic reference follows from
Zipt’s law. Real syntactic patterns found in Chapter 7 are just a consequence of
Zipf’s law. Chapter 8 shows that the locality of syntactic dependencies within
sentence as well as projectivity are a consequence of an Euclidean distance min-
imization principle. Such a principle predicts the circumstance under which
SVO order should appear. Chapter 9 presents a network distance minimization
principle as an unsuccessful alternative for the Euclidean distance minimization
principle and as suggestive prospect for linguistic networks subject to fast com-
munication pressures. Chapter 10 is a comparative analysis of the present work
and other views in linguistics and the evolution of language. Chapter 11 sum-
marizes the major contributions presented in the previous chapters emphasizing
the original aspects of the present work. See Appendix G for the publications
upon which the different chapter are based.
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INTRODUCTION



Chapter 2

A core and a peripheral
lexicon

2.1 Introduction

It can be observed in the plots of (Zipf, 1972a; Casti, 1995; Tsonis, Schultz,
and Tsonis, 1997) that Zipf’s law provides a good fit for low ranks of word
frequency distributions (acknowledging some deviations at the very beginning
of the ordering discussed in Tsonis, Schultz, and Tsonis (1997),Li (1998)) but
little attention has been paid to the deviations in the tail. We will show that
such deviations are much more important than expected.

2.2 Disagreements

One of the desirable properties of a law (as it happens with common physical
laws) is to allow for accurate predictions.

The predicted number n of different words of a text formed by T words, can
be obtained by applying Zipf’s law and solving the following equation

1

T = pin~“ (2.1)
where 1/T is the lowest probability that can be achieved by a word in a text of
size T' (Nowak, 2000a) and p; is the frequency of the most frequent word. From
Eq. 2.1 we obtain

n=[Tp]"" ~ Tpy (2.2)

We processed ! T~ 9 - 107 words of the British National Corpus (BNC) a
corpus of modern English, both spoken (10%) and written (90%) (Appendix A).

1Words different than proper noun were lowercased. Marks were excluded. Inflected forms
of the same (root) word were treated as different words.

19
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Figure 2.1: Probability that a word occurs f times. The first and the sec-
ond power law decays have exponent 1 = 1.6 + 0.04 and ([, = 1.97 £ 0.06,
respectively. Statistics on the BNC (T ~ 9 - 107 words, n ~ 588,030)

We obtained P(1) = 0.0601046, oo = 1 (power law regression). Unfortunately,
n = 588,030 was very far from 7 = 5.6 - 10°. The big deviation observed could
be attributed to a poor statistics or a bad fitting of the parameters intervening
in the prediction, p; and a. We will show that there is a deeper reason.

We computed the probability density function of the frequency (in number of
occurrences) of the BNC. More precisely, P(f), the probability a word occurs f
times in the corpus. The left half of the plot, shown in Figure 2.2, revealed a well-
defined power law relationship between P(k) and k whose exponent was 3 = 1.5.
The value obtained was 1.6, but removing the two first points, corresponding to
the most uncommon words, and thus corresponding to the frequencies being the
most difficult to estimate, 1.5 was obtained (8 = 1.52+0.008). In contrast, Eq.
B.5 predicted 8 = 2. In addition, the plot of the probability density function in
Figure 2.2 was specially clear. A question of bad statistics or fitting again?

2.3 Rethinking the law

A more careful sight of the rank ordering plot on our data revealed the existence
of two different exponents in the same rank ordering plot (Figure 2.1). «; =
a ~ 1 and ap ~ 2 seem appropriate for ranks i < i* € (103,10%) and i > i*,
respectively. Thus, the frequency of words becomes a double law, the initial
Zipf’s law and a steeper decay,

P(i)—{ pri~if i <ix (2.3)

;¥ otherwise

~ 1
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Figure 2.2: Probability of a word as a function of its rank i, P(i). The first
and the second power law decays have exponent a; = 1.01 £ 0.02 and ay =
1.92+40.07, respectively. Statistics on the BNC (T ~ 9-107 words, n = 588,030)

Let z = [Tpl(l)]l/o‘l. According to 2.3 and being 1/7T the smallest proba-
bility, the number of different words predicted is

1/a . N
oo [ o
i* [Tpi]"™*  otherwise

where p; is the frequency of the i-th most frequent word, p1 goo = 1.06292-1074,
P5.000 = 1.71864 - 107> and pg goo = 1.34702 - 1075.

The value of 7 calculated through Eq. 2.4 is 213, 570, much closer to the real
value. Figure 2.3 shows the value of n, 7, obtained through Eq. 2.2) and 2.4;
1* &~ 6,000) and Ebeling/Pd&schel approximation (Ebeling and Pdschel, 1994) as
a function of T.

2.4 Discussion

A single slope a@ = 1 can only be attributed to a superficial look on small-sized
texts in which deviations in the tail of the distribution (of the rank-ordering
plot) were attributed to finite size effects instead of a different exponent. Many
previous work on English was performed on relatively small texts, i.e. 260,430
words (Zipf, 1972a), 59,498 words (Casti, 1995), 20,000 words (Tsonis, Schultz,
and Tsonis, 1997), far from the ~ 9 - 107 words of the BNC we processed.

For long texts, the number of different words is mainly due to the second
expression in Eq. 2.4. A relation n oc T~/*2 was previously shown in (Ebeling
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---- real
e——o simple
o——e double
~——-a E/P

10° 10" 10* 10° 10* 10> 10° 10"  10°

Figure 2.3: Number of different words, n, as a function of the total number
of words in the sample, T. The real number is accompanied by estimations
performed with the Zipf’s law (Eq. 2.2), the two regime frequency observation
(Eq. 2.4; i* =~ 6,000) and the Ebeling/Poschel approximation (Ebeling and
Péschel, 1994).
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and Poschel, 1994). More precisely, n = 22.87946,

The two observed exponents divide words in two different sets: a core lexicon
formed by ~ i* versatile words and an unlimited lexicon for specific communi-
cation, the peripheral lexicon. We suggest that the size of the core lexicon is
related with the average amount of words that human brain is able to efficiently
store and use (Chapter 3 defines such efficient word storage and use) and also
probably with minimum frequency allowing a word to spread in a communitity
of speakers, as (Nowak, 2000a) shows. Words with the highest rank are very
specyfic and obviously not shared by all speakers. According to the intersection
of the lines aproximating the two regimes of P(i) in Figure 2.1, the core lexicon
of the BNC would be formed by 5,000-6,000 words. We do not mean that such
size should be the same for whatever corpus or language. One must bear on
mind that the estimation of the core lexicon size is made visually. Further work
should be carried out in order to perform more accuarate estimations.

The existence of a core lexicon raises the question of how small can be a
lexicon without drastically empoverishing communication. Pidgin languages
provide examples of very small lexica. Estimates of the number of items of a
pidgin vary from about 300 — 1500 words, depending on the language (Romaine,
1992; Romaine, 1988). The number of lexical items of a speaker of an ordinary
language is about 25, 000—30, 000 (clearly not enough for the more than 500, 000
different words of the BNC) 2 while this amount is 1,500 for a Tok Pisin speaker.
It has been argued that these 1,500 words can be combined into phrases so as
to say anything that can be said in English (Hall, 1953). As expected, words of
such small lexica are very multifunctional and a circumlocution is often recurred
for covering the lexicon gaps. The transition from the exponent a; to as takes
place in the interval of rank 10% < i < 10*. We suggest that common languages
also have a lexicon of the kind of pidgin languages, hidden by an unlimitited
peripheral lexicon. Notice that although the size of the lexicon of a speaker can
be very big, what counts for a successful communication are the words shared
(stored and used) with the maximum number of speakers, that is, the words in
the core lexicon.

The morphological simplicity and semantic generality that characterize pid-
gin and other known simplified lexica (Romaine, 1992) with regard to complex
lexica can also be identified for the core lexicon. Table 2.1 summarizes them
with examples from the BNC.

Some authors have pointed out the existence of two domains in the frequency
of words (Naranan and Balasubrahmanyan, 1998), whose slopes agree with ours,
or even three (Tuldava, 1996). Tuldava (1996) determined three slopes for the

2 Although lexicon size estimates very often rely on roughly approximated counts, the
Waring-Herdan’s recursive model for frequency spectrum allows to perform more accurate
counts. This model straighforwardly allows for the calculation of the number of words which
are known by an author that do not appear in the sample, mg. If L is the number of different
word in the sample, it has been shown that A.H. Tammsaare’s lexicon contained (by the time
the sample was written) about L+mg = 8,228 425,147 = 33,000 words. See (Tuldava, 1996)
for more details.
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rank distribution in the following ranges:

i=1-30 — a;=0.7
i=30—-1,500 — ag=1.1
i=1,500 — az=14

Statistics were performed on A. H. Tammsaare’s novel Truth and Justice and
only lexemes were considered. The transition between the 2"? and the 37¢
regime takes place in a rank closer to pidgin lexica size. Inflected forms of the
same word were counted as different words in our statistics, suggesting that the
rank at which the change in exponents takes place could be reduced. The slope
of the less frequent words regime (1.4) is remarkably different than BNC’s (2).
Further study is needed for determining the origin of this disagreement.

We calculated the proportion of words of a text belonging to the core lexicon
as a function of ¢*, S(i*) = 21:1 P(i), being P(i) the real probability of the
i-th word) in order to illustrate the importance of the core. S(1,000) = 0.69,
S(4,000) = 0.84, S(5,000) = 0.86 and S(6,000) = 0.87 show how recurring
are such words. To sum up, the two frequency domains separate two clearly
distinguishable word sets.
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core lexicon

peripheral lexicon |

generality of || generic terms | larger vocabulary
terms rather than specific | in a  given domain
terms (e.g. isg, | (e.g. biplanesg 903,
seegs,  groupass, | codassase,  SCATPSes 727,
liveess, knowi azs | myceliumiii gso,
and birds 9s1) anticoagulantsiis,oge
and microscopiumysa 6or)
complexity monomorphemic compounds (e.g.
of words words (e.g. it7, | airbrakesss is2,
madeios, yeariso, | fingerpritingss gss,
handsag and | peachtreeisr,0so0,
mad37312) breakzdancel@g,gg‘;,
fingerlocksysg 217
and spillwayass 615)
and morphologi-
cally  complex  words
(e.g. Childi8h1y4ﬁ7541,
literarinessss 3ss,
thoughtlessnesses 489,
overindebtednessgr ggs,
proletarianizedios,7o7
and
multiculturatedsss ss0)

Table 2.1: Comparison between the core lexicon and the peripheral lexicon.
The intervening features were originally devised for comparing simple lexica
(pidgin,creole,...) and complex lexica (Romaine, 1992). Example words are
subindexed by its rank.
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Chapter 3

Dual least effort

3.1 Introduction

When thinking how human language appeared on Earth, it seems reasonable
to assume that our human ancestors started off with a communication system
capable of rudimentary referential signaling, which subsequently evolved into
a system with a massive lexicon, supported by a recursive system that could
combine entries in the lexicon into an infinite variety of meaningful utterances
(Hauser, 1996). In contrast, non-human repertoires of signals are generally small
(Miller, 1981; Ujhelyi, 1996). We aim to provide new theoretical insights to the
absence of intermediate stages between animal communication and language
(Ujhelyi, 1996).

Here, we adopt the view that the design features of a communication system
are the result of interaction between the constraints of the system and demands
of the job required (Hauser, 1996). More precisely, we will understand the
demands of such a task as providing easy-to-decode messages for the receiver.
Our system will be constrained by the limitations of a sender trying to code
such easy-to-decode message.

Many authors have pointed out that tradeoffs of utility concerning hearer
and speaker needs appear at many levels. As for the phonological level, speakers
want to minimize articulatory effort and hence encourage brevity and phonolog-
ical reduction. Hearers want to minimize the effort of understanding and hence
desire explicitness and clarity (Kohler, 1987; Pinker and Bloom, 1990). Regard-
ing the lexical level (Zipf, 1972b; Kohler, 1987), the effort for the hearer has to
do with determining what the word actually means. The higher the ambiguity
(i.e. the number of meanings) of a word, the higher the effort for the hearer. Be-
sides, the speaker will tend to choose the most frequent words. The availability
of a word is positively correlated with its frequency. The phenomenon known as
the word frequency effect (Gernsbacher, 1994) supports it. The most frequent
words tend to be the most ambiguous ones. In fact, word ambiguity and word
frequency are positively correlated (Reder, Anderson, and Bjork, 1974; K&hler,

27
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1986).

Thereafter, the speaker tends to choose the most ambiguous words, which
is opposed to the least effort for the hearer. G. K. Zipf referred to the lexical
tradeoff as the principle of least effort. He pointed out it could explain the
pattern of word frequencies but he did not give a rigorous proof of its validity
(Zipf, 1972b). We saw in Chapter 1 that word frequencies obey the law called
Zipt’s law. Here we show that such a lexical compromise can be made explicit
in a simple form of language game where minimization of speaker and hearer
needs is introduced in an explicit fashion. As a consequence of this process,
once a given threshold is reached, Zipf’s law emerges spontaneously.

3.2 The model

In order to explicitly define the compromise between speaker and hearer needs, a
cost function must be introduced. Given the nature of our systems, information
theory provides the adequate mathematical framework (Ash, 1965). We consider
a system involving a set of n signals S = {s1, ..., 8, ..., 8, } and a set of m objects
of reference R = {ry, ..., 74, ...,"m }. The interactions between signals and objects
of reference (hereafter objects) can be modeled with a binary matrix A = {a;; },
where 1 <i <nand1l<j<m. Ifa; =1 then the i-th signal refers to the
Jj-th object and a;; = 0 otherwise. We define p(s;) and p(r;) as the probability
of s; and rj, respectively. If synonymy was forbidden we would have

p(si) = Zaijp(rj) (3.1)

since signals are used for referring to objects. We assume p(r;) = 1/m and
w; <1 where w; =Y ; @i is the number of synonyms of r; in what follows. If
synonymy is allowed, the frequency of an object has to be distributed among
all its signals. The frequency of a signal, p(s;) is defined as

p(si) = Zp(é’i,rj) (3.2)

According to the Bayes theorem we have

p(rj, si) = p(r;)p(silr;) (3.3)
p(s;|r;) is defined as
1
p(silrs) = aij — (34)

j
Substituting Eq. 3.4 into Eq. 3.3 we get
p(r;) (3.5)

p(rjvsi) = Qij W
J
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Figure 3.1: Basic scheme of the evolutionary algorithm used here. Starting
from a given signal-object matrix A (here n = m = 3) the algorithm performs
a change in a small number of bits (specifically, with probability v, each a;; can
flip). The cost function 2 is then evaluated and the new matrix is accepted
provided that a lower cost is achieved. Otherwise, we start again with the
original matrix. At the beginning, A is set up with a fixed density p of ones.

The effort for the speaker will be defined in terms of the diversity of signals,
here measured by means of the signal entropy, i. e.

H,(S) =— _Zp(so log,, p(s;) (3.6)

If a single word is used for whatever object, the effort is minimal and H,(S) =

0. When all signals have the smallest (non-zero) possible frequency, then the

frequency effect is in the worst case for all signals. Consistently, H, (S) = 1.
The effort for the hearer when s; is heard, is defined as

m

Hp(Rlsi) = =Y p(rylsi) log,, p(rj|s:) (3.7)

j=1
where p(r;|s;) = p(rj,si)/p(s;) (by the Bayes theorem). The effort for the
hearer is defined as the average noise for the hearer, that is
Hy(RIS) = ) p(si) Him(R, 51) (3.8)
i=1
An energy function combining the effort for the hearer and the effort for the
speaker is defined as

Q) = AHp (RIS) + (1 — N Hp(S) (3.9)
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Figure 3.2: A. < I,(S,R) >, the average information transfer as a function
of A, A* = 041 divides < I,(§,R) > into a no communication and perfect
communication phase. B. Average (effective) lexicon size, < L >, as a function
of A. An abrupt change is seen for A\ & 0.41 in both of them. Averages over 30
replicas, n = m = 150, T = 2nm and v = 2/(7;) .

where 0 < X\, H,(S), Hn(R,S) < 1. The cost function depends on a single
parameter A which weights the contribution of each term.

3.3 Methods

Q(A) is minimized with the following algorithm, (summarized in Fig. 3.1). At
each step, the graph is modified by randomly changing the state of some pairs
of vertices and the new A - matrix is accepted if the cost is lowered (if an object
has no signals, 2(\) = c0). The algorithm stops when the modifications on A
are not accepted T' = 2nm times in a row. Configurations where an object has
no signals assigned are forbidden.

3.4 Results

Two key quantities have been analyzed for different values of A: the information
transfer,
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Figure 3.3: (H,(S)) (solid line) and (H,(R|S)) (dotted line) versus A (30 repli-
cas). An abrupt change is found for A = \* = 0.41.

which measures the accuracy of the communication, and the (effective) lexicon
size, L, defined as
s 0
I — {i|pi >0} (3.11)
n

where p; = Ej a;; is the number of objects of s;.

Three domains can be distinguished in the behavior of I,,(S,R) versus A,
as shown in Fig. 3.2 A. First, I,(S,R) grows smoothly for A < A\* ~ 0.41.
I,(S,R) explodes abruptly for A = \* ~ 0.41. An abrupt change in L (Fig.
3.2 A) versus A (Fig. 3.2 B) is also found for A = A\*. Single-signal systems
(L =~ 1/n) dominate for A < A*. Since every object has at least one signal, one
signal stands for all the objects. I,(S,R) indicates that the system is unable
to convey information in this domain. Rich vocabularies (L ~ 1) are found
for A > A*. Full vocabularies are attained beyond A =~ 0.72. The maximal
value of I,(S,R) indicates that the associations between signals and objects
are one-to-one maps.

As for the energy function and directly related quantities, H,,(S) is minimal
for A < A* and becomes suddenly maximal for A > A*. H,(R|S) behaves
inversely (Fig. 3.3). Thereafter, we have have Q(A) = A for A < A* and
Q(A) = =X+ 1 for A > A*, provided that X is far enough from A\* in both cases
(Fig. 3.4).

As for the signal frequency distribution in every domain, very few signals
have non-zero frequency for A < A\* (Fig. 3.5 A), scaling consistent with Zipf’s
law appears for A = A* (Fig. 3.5 B) and an almost uniform distribution is
obtained for A > A* (Fig. 3.5 C). As it occurs with other complex systems (Solé
et al., 1996) the presence of a phase transition is associated with the emergence
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0.8

0.6 B

Figure 3.4: (2())), the mean energy function versus A (30 replicas). < Q(A) >
is a linear function of A except for A = A\* = 0.41 and nearby values.

of power laws (Binney et al., 1992).
Knowing that I,,(S,R) = I,(R,S) and using Eq. 3.10, minimizing Eq. 3.9
is equivalent to minimizing

QN) = —AL(S,R) + (1 — N H, (S) (3.12)

Other functions could be proposed. Interestingly, the symmetric version of Eq.
3.9 with conditional entropies in both terms of the right side

Q) = AH, (RIS) + (1 — N H,(S|R) (3.13)

will help us to understand the origins of the sharp transition. While the global
minimum of H,(S) (one signal for all objects) is a maximum of H,,(R|S), the
global minimum of H,,(R|S) (signal-object one-to-one maps with n = m) is a
maximum of H,(S) in Eq. 3.9. Both terms of Eq. 3.9 are thus in conflict. In
contrast, the global minimum of H,(S|R) is a subset of the global minimum of
H,,(R|S) in Eq. 3.13. Consistently, numerical optimization of Eq. 3.13 shows
no evidence of scaling for Eq. 3.13. Not surprisingly, the minimization of Eq.
3.13 is equivalent to

Q\) = —L,(S,R) + (1 — N H,(S) (3.14)

Notice that A is present in only one of the terms of the right side of the previous
equation. Zipf’s hypothesis was based on a tension between unification and
diversification forces (Zipf, 1972b) that Eq. 3.13 does not accomplish. Eq. 3.9
does.



3.5. DISCUSSION 33

3.5 Discussion

Theoretical models support the emergence of complex language as the result
of overcoming error limits (Nowak and Krakauer, 1999) or thresholds in the
amount of objects of reference that can be handled (Nowak, Plotkin, and Jansen,
2000). In spite of their power, these models make little use of some well known,
quantitative regularities displayed by most human languages, such as Zipf’s law
(Zipf, 1972b; Miller and Chomsky, 1963). Most authors, however, make use of
Zipf’s law as a null hypothesis with no particular significance (Nowak, Plotkin,
and Jansen, 2000). As far as we know, there is no compelling explanation
for Zipf’s law, although many have been proposed (Mandelbrot, 1966; Simon,
1955; Pietronero et al., 2001; Nicolis, 1991; Naranan and Balasubrahmanyan,
1998). See Chapter 5. Intermittent silence (random combinations of letters and
blanks) reproduces Zipf’s law (Miller, 1957; Li, 1992; Mandelbrot, 1966; Cohen,
Mantegna, and Havlin, 1997) and are generally regarded as null hypothesis
(Miller and Chomsky, 1963). Although intermittent silence and real texts differ
in many aspects (Chapter 5), the possibility that Zipf’s law results from a simple
process (not necessarily intermittent silence (Miller and Chomsky, 1963)) has
not been soundly denied. Our results show that Zipf’s law is the outcome of
the non-trivial arrangement of word-concept associations adopted for complying
hearer and speaker needs. Sudden changes in Fig. 3.2 and the presence of scaling
(Fig. 3.5 B) strongly suggest a phase transition is taking place at A = A* (Binney
et al., 1992).

Maximal information transfer (that is, a one-to-one signal-object maps) be-
yond the transition is the general outcome of artificial life language models
(Steels, 1996; Nowak, Plotkin, and Krakauer, 1999) and the case of animal com-
munication (Deacon, 1997) where small repertoires of signals are found (Miller,
1981; Ujhelyi, 1996). The rather uniform shape of signal the frequency distri-
bution for A > A* (Fig. 3.5 C) is consistent with the fact that the non-human
species studied in 5 use their repertoires more uniformly than expected for Zipf’s
law. From the one hand, speaker constraints (A < \*) are likely to cause species
with a powerful articulatory system (providing them with a big potential vo-
cabulary) to have a referentially useless communication system (Miller, 1981).
From the other hand (A > A*), least effort for the hearer forces a species to
have a different signal for each object at the maximum effort for the speaker
expense, which allows us to make the following predictions. First, non-human
repertoires must be small in order to cope with maximum speaker costs. Consis-
tently, their size is of the order of 20-30 signals for the larger repertoires (Miller,
1981). Second, the large lexicons used by humans can not be one-to-one maps
because of the word frequency effect (Gernsbacher, 1994) that makes evident
how lexical access-retrieval cost is at play in humans. Third, large lexicons with
one-to-one maps can only be obtained under idealized conditions when effort
for the speaker is neglected. This is the case of artificial language communica-
tion models, that reach maximal values of I,,(S, R) making use of fast memory
access and the (theoretically) unlimited memory storage of computers (Steels,
1996; Nowak, Plotkin, and Krakauer, 1999).
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A > X\* implies not taking into account the speaker’s effort. Getting the right
word for a specific object may become unaffordable beyond a certain vocabulary
size. Furthermore, a one-to-one map implies the number of signals has to grow
accordingly as the number of objects to describe increases (when m — oo) and
lead to a referential catastrophe. A referential catastrophe is supported by the
statistics of human-computer interactions where the largest vocabularies follow
Zipf’s law (Ellis and Hitchcock, 1986) and are associated with a higher degree
of expertise of the computer user. As the repertoire of potential signals is ex-
hausted, strategies based on the combination of simple units are encouraged.
Such a catastrophe could have motivated word formation from elementary syl-
lables or phonemes but also syntax through word combinatorics. In a different
context, some authors have shown that natural selection favors word forma-
tion or syntax when the number of required signals exceeds a threshold value
(Nowak, Plotkin, and Jansen, 2000). We show that arranging signals accord-
ing to Zipf’s law is the optimal solution for maximizing the referential power
under effort for the speaker constraints. Moreover, almost the best I,(S, R) is
achieved before being forced to use one-to-one signal-object maps (Fig. 3.2).
While other researchers have shown how overcoming phase transitions could
have been the origin of the emergence of syntax (Nowak and Krakauer, 1999),
our results suggest that early human communication could have benefited from
remaining in a referential phase transition. There, communication is optimal
with regard to the trade-off between speaker and hearer needs. An evolutionary
prospect is that the number of objects to describe can grow keeping the size of
the lexicon relatively small at the transition.

Having determined the only three optimal configurations resulting from tun-
ing speaker and hearer requirements, the path towards human language can
be hypothetically traced. First, a transition from a no communication phase
(A < \*) to a perfect communication phase providing some kind of rudimentary
referential signaling (A > A*). Second, a transition from a communication phase
to the edge of the transition (A = A*) where vocabularies can grow affordably
(in terms of the speaker’s effort) when m — oo. The latter step is motivated
by (a) the positive correlation between brain size and cognitive skills in pri-
mates (where m can be seen a simple measure of them) (Reader and Laland,
2002). Humans may have had a pressure for economical signaling systems (given
by large values of m) that other species did not have. The above mentioned
emergence of Zipf’s law in the usage of computer commands (the only evidence
known of evolution towards Zipf’s law, although the context are not human-
human interactions) is associated with larger repertoires (Ellis and Hitchcock,
1986), suggesting that there is a minimum vocabulary size and also, because of
the one-to-one mapping imposed by the speaker, a minimum number of objects
encouraging Zipf’s law arrangements.

Our results predict that no natural intermediate communication system can
be found between small-sized lexica and rich lexica unless Zipf’s law is used
(3.2 B). This might explain why human language is unique with regard to other
species, but not only so. One-to-one maps between signals and objects are
the distinguishing feature of index reference (Deacon, 1997). Symbolic com-
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Figure 3.5: Signal normalized frequency, P(k) versus rank, k, for (A) A = 0.3,
(B) A=X*=0.41 (B) and (C) A = 0.5 (averages over 30 replicas, n = m = 150
and T' = 2nm). Dotted lines show the distribution that would be obtained if
signals and objects connected following a Poissonian distribution of degrees with
the same number of connections of the minimum energy configurations. The
distribution in (B) is consistent with human language (o = 1).

munication is a higher-level reference in which reference results basically from
interactions between signals (Deacon, 1997). Zipf’s law appears on the edge
of the indexical communication phase and implies polysemy. The latter is the
necessary (but not sufficient) condition for symbolic reference (Deacon, 1997).
Our results strongly suggest that Zipf’s law is required by symbolic systems.
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Chapter 4

Decoding least effort plus
MaxEnt

4.1 Introduction

We assume a general communication framework where signals are mapped to
the objects they refer to (Nowak and Krakauer, 1999; Nowak, Plotkin, and
Krakauer, 1999) in this chapter. For vervet monkeys, we have alarms calls as
signals and predators as objects (Seyfarth, Cheney, and Marler, 1980b). For
human language, we have words as signals and meanings as objects, acknowl-
edging that meaning is a complex matter to define (Ravin and Leacock, 2000b)
and we humans make use of symbolic reference and not indexical reference as
many animals seem to do (Hauser, 1996). For Unix computer commands, we
have commands and their options as signals and the computer operations they
imply as objects (Ellis and Hitchcock, 1986). For the immune system, we have
reactivity patterns as signals and antigens as objects (Burgos, 1996; Burgos and
Moreno-Tovar, 1996). We assume communication takes place between an ideal
sender (speaker) and an ideal receiver (hearer). The task of the sender is to
code an object using a signal that the receiver has to decode (Ash, 1965).

We typically have 8 ~ 2 for Zipf’s law (Balasubrahmanyan and Naranan
(1996); Chapter 2) but slight variations around 3 have been recorded (Balasub-
rahmanyan and Naranan, 1996). There are some interesting clear deviations:

1. Schizophrenia with 1 < 8 < 2 (Zipf, 1972a).

2. Variations in the exponent when focusing on certain types of words (Fig.
4.1). We find 3 = 3.35 for English nouns (Fig. 4.1 B) ! whereas we find
0 = 1.94 for English verbs (Fig. 4.1 A)

I Frequencies obtained from A. Kilgarriff’s word-frequency list of the British National cor-
pus (http://www.itri.brighton.ac.uk/~Adam.Kilgarriff/bnc-readme.html).

37



38 CHAPTER 4. DECODING LEAST EFFORT PLUS MAXENT

cumulative P(f)

cumulative P(f)

Figure 4.1: P(f) the probability a signal has normalized frequency f in cumu-
lative form. Power approximations are shown for every series (dotted lines).
Arrows indicate the point considered as the end of the straight line for calculat-
ing the exponents 3. A. py for English verbs with 3 = 1.94 £ 0.003(circles) and
English nouns with 8 = 3.35 & 0.02(squares). The core lexicon starts slightly
before f ~ 1072 B. Unix computer commands issued by an experienced user
0 =2.2440.028

3. The peripheral lexicon (Chapter 2). Studies on multiauthor collections
of texts show two domains in py. One domain with with 8 ~ 2 for the
most frequent words and another domain with 3 = 3/2 for the less frequent
words. The two regimes are said to divide words into a core and peripheral
lexicon, respectively. We assume we focus on the core lexicon in the present
chapter.

4. Shakespearean ouvres with § = 1.6 (Balasubrahmanyan and Naranan,
1996). This a rather controversial situation because Shakespearean works
are likely to be a case of multiauthorship (Michell, 1999) and thus show the
shape of a peripheral lexicon. What follows must be cautiously interpreted
for this case.

Besides human language, scaling consistent with Zipf’s law is found in the
frequency of immune reactivity patterns (Burgos, 1996; Burgos and Moreno-
Tovar, 1996) and the computer commands issued by experienced Unix users
with 3 = 2.24 (Ellis and Hitchcock (1986); Fig. 4.1 B?).

2Statistics performed on the bash history file of an anonymous experienced user at the
Complex Systems Lab.
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We are aimed at answering the following questions:

1. Is there any general principle allowing to explain whatever form scaling in
signal frequency distributions?

2. Is such a principle totally different from any explanation for the typical
0~ 27

3. How does information transfer depends on 37

Many explanations have been proposed for scaling in word frequencies (Chap-
ter 5). All the explanations for Zipf’s law (except that in Chapter 3) forget a
fundamental reason for which words are used: words are used according to their
meaning. Real sentences are not a collection of words entirely chosen at ran-
dom as many models intend (Simon, 1955; Mandelbrot, 1953; Miller, 1957; Li,
1992). Following the approach in Chapter 3, we assume that words are chosen
according to their meaning and that the frequency of a word is a function of the
objects eliciting it.

It has been shown that G. K. Zipf’s proposal of a principle of least effort
for the hearer and the speaker can explain 8 ~ 2 (Chapter 2). In a few words,
G. K. Zipf proposed that Zipf’s law results from a trade-off between hearer and
speaker needs. In G. K. Zipf’s rough intuition, the sender prefers a few words for
all meanings (unification) and the hearer needs every meaning has a different
word (diversification). The higher the degree of satisfaction of the needs of
one of them, the less its effort. The model in Chapter 3 uses a parameter
A for minimizing Q@ = AEp + (1 — A\)E¢, a linear combination of Ep, the
coding effort (the effort for the hearer/receiver) and E¢, the coding effort (the
effort for the speaker/sender), with 0 < A < 1. Sender and receiver needs
are totally satisfied when A = 0 and A = 1, respectively. A phase transition
separates a no communication phase (sender’s full satisfaction) and a perfect
communication phase (receiver’s full satisfaction). Scaling consistent with Zipf’s
law with 8 =~ 2 is found at some intermediate A = \*. We will refer to this
model as the dual least effort satisfaction model. Here we show that scaling in
word frequencies can be explained only complying with receiver needs under a
convenient maximization principle. We will refer to this model as the decoding
least effort model.

4.2 The model

We assume we have a set of signals S = {sq, ..., s, ..., $p } and a set of objects of
reference R = {r1,..,7j,...,7m }. We define a matrix of signal-object associations
A={a;;} (1 <i<n,1<j<m)where a;; = 1 if the i-th signal and the
Jj-th object are connected and a;; = 0 otherwise. Here, we define the joint
probability of the i-th signal and the j-th object as

S >/
k=1
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where p;, the number of objects linked to the i-th signal, is defined as

m
pi = Z“U' (4.1)
j=1

Knowing the frequency of the i-th signal is

m

p(si) =Y p(si,r)) (4.2)

J=1

we obtain
i

p(sl) = ZZ:1 Nk

The probability of understanding r; when s; is received is

p(si,’f’])
p(rjl|si) =
Tl =
so we have o
p(rjlsi) = —*. (4.3)

i
The probability definitions used here are simpler than in Chapter 3.
We define ‘H, the entropy of the number of objects per signal, as

H=—> prlogps
k=1

where

~ Hilps =k and 1 <i < nj|
" .

Pk

The maximization principle we will use for Ep comes from the observation
that H is maximal at the point where scaling is found in Chapter 3 (Fig. 4.2).
Thus, we can obtain {px} = (p1,..., Pk,...;Pm) using the maximum entropy
principle (Kapur, 1989a; Montroll and Shlesinger, 1983). We define ®(k) as the
decoding effort (effort for the receiver) implied once a signal linked to k objects
has been issued. We seek {pi} maximizing the a priori uncertainty H under
the decoding effort we define here as

Ep =3 a(u) (14
i=1

and the normalization constraint

ipk =1 (4.5)
k=1



4.2. THE MODEL 41

0.4

Figure 4.2: < H > the mean normalized entropy of the number of objects
per signal (solid line) versus A, where H =< H > /logm. For A\ ~ 0.41 as
sharp transition takes place and scaling is found in the dual least effort model
(n=m=150).

Rewriting Eq. 4.4 as
Ep=> pp®(k) (4.6)
k=1

we end up with the functional

Q=H+a) petBY pud(k).

k=1 k=1

The distribution {py } maximizing H will be deduced from the condition 9Q/9py, =
0 which leads to different distributions depending on ®. Once s; has been is-
sued, the receiver must avoid interpreting an object that was not intended by
the sender. The simplest way of satisfying the receiver needs is just minimiz-
ing p;, which leads to ®(k) = k when p; = k. A more sophisticated strategy
consists of minimizing H(R|s;), the entropy of objects when s; is given, defined
as

H(R|s;) = = _p(rj|si) log p(rj|s:) (4.7)
j=1
H(R|s;) measures the uncertainty associated to the interpretation of s;.

Replacing Eq. 4.3 into Eq. 4.7 we get

m

H(R|s;) =~ u_lg .
(3 (3

aﬁ

Jj=1
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which gives H(R|s;) = log ;. According to H(R|s;), if the i-th word has u; = k
objects, then it implies an effort ®(k) = log k.

For ®(k) = k/m and large m, % = 0 leads to (Haken, 1979)

Dy ~ e kI<k> (4.8)
where ¢ is a normalization term. For ®(k) = log k, we obtain (Kapur, 1989a)
i~ K. (4.9)

B < 0 is satisfied provided that (Kapur, 1989a)

Sk gk 1 Zm
Yo, kP m &

Zipf’s law (Zipf, 1972a) can be straightforwardly obtained from Eq. 4.9 with
B = —2. If f is the frequency of a signal and py is the probability of f, Eq. 4.2
can be written as

kK
nyilypkk n (k)

If P(k = K) is the probability the random variable k (the number of objects
per signal) is K then using py = P(k = fn (k)) with Eq. 4.9 we get

f

pr~ 7.
Using the same argument on Eq. 4.8 we obtain

D~ e .

4.3 Discussion

We have seen that explaining a wide range of exponents for the scaling in word
frequencies is a relaxation of a more restrictive principle, minimizing both the
coding and decoding effort. The dual least effort satisfaction model predicts
that all signals will tend to have the same frequency if only receiver needs
are satisfied. The decoding least effort presented here, with scaling in word
frequencies, does not contradict the dual least effort model. The decoding least
effort model assumes what is a side-effect close to the phase transition in the
dual least effort model, i.e. maximizing H.

We have seen that the decoding least effort model with ®(k) = log k predicts
without specifying the value of 3. The dual least effort model shows scaling con-
sistent with Zipf’s law for A &~ \* (Chapter 3). When A < \*; word frequencies
obey
1 ifi=1
0 otherwise

P(i) ~ { (4.10)
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where P(7) is the frequency of the i-th most frequent word. Eq. 4.10 can be
rewritten as P(i) ~ i~® with « — oco. When A > \*, word frequencies obey
p(i) ~ 1/n which can be rewritten as P(i) ~ i~* with a = 0. Knowing (see for
instance Naranan (1992),Naranan and Balasubrahmanyan (1992a); Chapter 2)

1
B=—+1, (4.11)

we can argue that Eq. 1.1 is always present in the dual least effort model,
not only for the transition but also at the two phases. The typical Zipf’s law
in human language is a particular case of scaling with non-extreme exponents,
since P(i) ~ ¢~% is only monotonically decreasing (and thus P(i) can be defined
as the frequency of the i-th most frequent word) only when « € [0, 00).

Now, we will find a simple relationship between Ep and (. ¢, the normal-
ization term in Eq. 4.9, can be approximated solving

c/ k=Pdk =1 (4.12)
1

which leads to

L 10
T i1
provided 8 # 1. [ can be approximately determined substituting Eq. 4.9 into
the definition of Ep of Eq. 4.6 as follows

(4.13)

m
Ep = / ck=Plog kdk (4.14)
1

Solving the integral in the right side of the previous equation with 3 # 1 we get

B 1 1-5 1 1
ED*Cl—ﬁ {m (logm 1—ﬁ>+1—ﬁ} (4.15)
which we rewrite as
B 1 1-5 1 1
B~y [ (loem - 5 ) 4155 0

using Fq. 4.13. Notice that the previous equation is undetermined for § =1 or
m=1. If m — oo and § > 1 we have

1
f=g-+1 (4.17)

It follows from Eq. 4.11 and Eq. 4.17 that Ep = «. Since Ep > 0 (when

G > 1), then solving
dEp 2

s~ (B-12

gives a global minimum of Ep for 8 — oc.

0
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Knowing that a = 0 and therefore § — oo minimize not only Ep but also
maximize the potential information transfer (Cover and Thomas, 1991; Suzuki,
Tyack, and Buck, 2003), we may ask why human language has chosen « ~ 1 and
therefore 3 = 2 as its typical exponents. Is the answer that human language
is more a system of thought and mental representation than a communication
system as some researchers have proposed (Chomsky, 1965a; Bickerton, 1990;
Jackendoff, 1994)?7 Probably the answer is that the pressure for maximizing
information transfer, minimizing the decoding effort in human language has
to satisfy conflicting goals. The dual least effort model tells us that adding
coding least effort is a suitable answer for 8 ~ 2. Other exponents require
putting into consideration other constraints. Nouns, with 8 =~ 3.35 are closer
to the theoretical maximum information limit (8 — o0), suggesting they have
violated the balance or maximum tension between coding and decoding needs
in other to achieve higher information transfer, that is, lower decoding effort.
Eq. 4.17 suggests that nouns have lower decoding effort than the typical Ep
given by Zipf’s law with 8 & 2. Similarly, schizophrenic speech with 1 < 5 <2
suggest they are not taking into account the effort for the hearer their exponents
imply high values of Fp. This is consistent with the suspect that schizophrenic
speakers tend to lump together too many meanings in one form of expression.
Schizophrenics overload word meanings (Zipf, 1972a). Therefore, exponents are
indicators of Ep and have to do with information transfer. To make it more
explicit, Eq. 1.1 and Eq. 4.17 give

i —
pr~ fFo .

It should be understood from the present work that 8 < oo does not imply
that scaling in word frequency has nothing to do with effective communication
although different mechanisms can lead to Zipf’ law (Suzuki, Tyack, and Buck,
2003). Eq. 4.17 bridges the gap between power word frequency distributions
and communicative efficiency. There are many possible ways of minimizing the
decoding effort, but probably only one where hearer and speaker needs are at
the maximum tension, i.e. § = 2.

Our work puts a step forward to understand complex and simpler communi-
cations systems. The former making use of ®(k) = log k and the latter ®(k) = k.
Scaling in different contexts (Zipf, 1972a; Burgos, 1996; Burgos and Moreno-
Tovar, 1996; Ellis and Hitchcock, 1986) suggests that many systems in nature
make use of non-trivial mechanisms for reducing the uncertainty associated to
the codes they generate. Minimizing ®(k) = k helps to decrease the uncertainty
associated to the interpretation of a signal but does not lead scaling.



Chapter 5

Zipt’s law meaningfulness

5.1 Introduction

Many explanations have been proposed for Eq. 1.1 with 8 ~ 2. Given the
amount of explanations and the simplicity of some explanations, answering to

the following questions is necessary:

e Is Zipf’s law meaningful in human language? The question requires some
reflections. We could have said ’Is Zipf’s law meaningful?” The answer
to the latter question is obviously 'No’ because too many different mech-
anisms can lead to Zipf’s law. Therefore, the tail in human language is
fundamental for the relevance of the question. Besides, we have not clari-
fied what meaningfulness is. We will understand meaningfulness here as a
deep relationship between Zipf’s law and human language, as a communi-
cation system (weak meaningfulness, since other non-human species seem
to have simple communication systems (Hauser, 1996), but probably not
as complex as that of humans) or as language in the strict sense, that is,
syntax (with recursion) (Hauser, Chomsky, and Fitch, 2002) or symbolic
reference (Deacon, 1997). Alternative ways of defining meaningfulness
are some powerful and universal psychological force that shapes all human
communication in a single mold or a intelligent or purposeful source (Miller
and Chomsky, 1963). We will discard intelligent source since intelligence
is dissociated from language in the so-called idiot savants (Deacon, 1997).
We will also discard purpose because it is too vague in the context of hu-
man language. Nonetheless, such a powerful and universal psychological
force is in the spirit of the model Chapter 3. The soundness of the latter
definition of meaningfulness will be supported by the present chapter.

What are the requirements of an explanation for Zipf’s law in humans?
We hereafter say an explanation is valid if it satisfies such a set of require-
ments.

e How can the suitability of valid explanations be evaluated?

45
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5.2 Hypothesis testing

Answering to the question ’Is Zipf’s law meaningful in human language?’ re-
quires introducing some basic ideas of hypothesis testing (what follows is bor-
rowed from (Easton and McColl, web page)). Answering to a certain question
of interest is simplified into two competing claims or hypotheses between which
we have a choice, i.e. the null hypothesis, denoted Hj, against the alternative
hypothesis, denoted H;. These two competing claims or hypotheses are not
however treated on an equal basis: special consideration is given to the null
hypothesis. We have two common situations:

e The experiment has been carried out in an attempt to disprove or reject a
particular hypothesis, the null hypothesis, thus we give that one priority
so it cannot be rejected unless the evidence against it is sufficiently strong.
For example, Ho: "Zipf’s law is not meaningful in human language’ against
Hi: Zipf’s law is meaningful in human language’.

e If one of the two hypotheses is simpler we give it priority so that a more
complicated theory is not adopted unless there is sufficient evidence against
the simpler one. For example, it is ’simpler’ to claim that Zipf’s law is
meaningful in human language than it is to say that it is meaningful.

Hypotheses are often statements about population parameters like expected
value and variance (Sokal and Rohlf, 1995). A hypothesis might also be a
statement about the distributional form of a characteristic of interest. The
outcome of a hypothesis test is 'Reject Hg in favour of H1  or Do not reject Hyg.
It has been said that Zipf’s law is a sort of null hypothesis (Miller and Chomsky,
1963; Nowak, 2000a). If Hy is Zipf’s law, what is the hypothesis H1? Human
language typically follows Zipf’s law, as well as all the models reproducing Zipf’s
law. Where are the alternative metrics or distributions? Saying Zipf’s law is a
sort of null hypothesis in the context of mechanisms reproducing Zipf’s law is
inaccurate and therefore misleading. The only way of distinguishing alternative
hypothesis in models reproducing Zipf’s law is adding extra information.

We will use information about the mechanism leading to Zipf’s law for dis-
criminating between Zipf’s law meaningfulness and Zipf’s law absence of sig-
nificance. We thus define a test T formed by two alternative hypothesis: H;,
"Zipf’s law is meaningful in human language’ and a null hypothesis Hy, "Zipf’s
law 1s mot meaningful in humans’. A different test T’ is erroneously defined
in the literature (Wolfram, 2002; Li, 1992; Miller and Chomsky, 1963). T is
formed by H} = H; and Hj, defined as "Zipf’s law is not meaningful’. Notice
the tail Hj the tail in human language is omitted on purpose. Such asymmetric
definition of the test is widespread in the literature.

The null hypothesis, Hg, represents a hypothesis that has been put forward,
either because it is believed to be true or because it is to be used as a basis
for argument, but has not been proved. Special consideration is given to the
null hypothesis. This is due to the fact that the null hypothesis relates to
the statement being tested, whereas the alternative hypothesis relates to the
statement to be accepted if the null is rejected.
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The final conclusion once the test has been carried out is always given in
terms of the null hypothesis. We either Reject Hy in favour of Hi or Do not
reject Ho. We never conclude Reject Hy, or even Accept Hy. If we conclude Do
not reject Hop, this does not necessarily mean that the null hypothesis is true, it
only suggests that there is not sufficient evidence against H in favour of H;.
Rejecting the null hypothesis then, suggests that the alternative hypothesis may
be true. The test is not only incorrectly formulated as T” instead of T', but also
the interpretation of the outcome of 77. When Hj, is proven, then H; is strongly
suggested to be false:

o [ suspect that in fact the law (Zipf’s law in human language) has a rather
simple probabilistic origin. Consider generating a long piece of text by
picking at random from k letters and a space.” (from (Wolfram, 2002)).

e "It is clear now that the existence of the Zipf’s-law-like word frequency dis-
tribution in random texts (intermittent silence models here) is purely due
to the choice of the rank as the independent variable (instead of rank)...”

. ”This strongly suggests that the power law as expressed in natural lan-
guages is also purely due to the choice of the rank as the independent
variable” (from (Li, 1992)).

The previous erroneous suspects are both based on intermittent silence, a model
that will be analyzed in depth in Section 5.3. In practice, when evolution of
language models assume Zipf’s law without a linguistic interpretation (Nowak,
Plotkin, and Jansen, 2000; Nowak, 2000a; Nowak, 2000b), they assume H; is
false.

Sometimes, H; is assumed to be implicitly true whereas Hy has not been
proven or disproven. This is the case of (McCowan, Doyle, and Hanser, 2002)
when comparing human words with dolphin whistles and squirrel monkey calls.
Additionally, the work in (McCowan, Doyle, and Hanser, 2002) raises other
methodological questions, such as the convenient technique that must be used
for categorizing dolphin whistles (Janik, 1999).

Section 5.3 is a critical review of three selected classical models for Zipf’s law
and shows the difference between Hy and H{. Section 5.4 summarizes existent
Zipf’s law models. Section 5.5 shows how H should be formulated and proposes
a context suitable for human language where Hy is rejected. A discussion of
the suitability of all models is given in Section 5.6. Using T' and not 7" we will
conclude Zipf’s law is meaningful.

5.3 Selected classic models

This section contains an in depth analysis of three classic models. The suitability
of every model as a strict model of Zipf’s law for human language or as a support
for Hp is studied. It is important to bear on mind the aim of the present
section is not enumerating all the differences between such models and real
human language, since whatever model, even the best one, is a simplification of
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reality. Instead, emphasis is made on the essential differences between actual
word use and the way words are used in such models. For instance, as pointed
in (Balasubrahmanyan and Naranan, 1996), intermittent silence models imply
an exponential distribution of word lengths against the more accepted Poisson-
like (with a typical length greater than one) for real word lengths (Wimmer et
al., 1994; Wimmer and Altmann, 1996). Even if intermittent silence models
where adapted to solve such inconsistency, essential differences with regard to
the underlying mechanisms behind real word use would still remain. The next
subsections are devoted to understand such fundamental differences.

5.3.1 Intermittent silence

One of the most simple models reproducing Zipf’s law is the following. Take a
finite set of symbols ¥ = L U{ _} where _ stands for the blank space and L is
the set of letters L = {a,b, ..., z}. Form a sequence by choosing elements L with
probability p/|L| and a blank with probability 1 — p. Every time _ is chosen, it
marks the beginning of a new word and the end of the previous word (if it is
the case).

Such a random process is called a intermittent silence (Miller, 1957), monkey
language (Miller, 1957; Casti, 1995) or or simply a random text (Cohen, Man-
tegna, and Havlin, 1997; Li, 1992) model. The term monkey language latter
name follows from the fact the random sequence would be the expected out-
come of a monkey hitting a keyboard having ¥ as keys). Hereafter we will use
the term intermittent silence, since monkey language deceivingly invokes the
communication of primates in the wild and random text is too general since
other ways of generating a random text reproducing Zipf’s law do exist (e.g. Si-
mon’s model (Simon, 1955)). The term random is often misused (Suzuki, Tyack,
and Buck, 2003), or in our opinion, misinterpreted. Despite of the surprising
suitability of intermittent silence, they are generally regarded as null hypothesis
that whatever explanation has to face (Miller and Chomsky, 1963).

The process is not appropriate for proving Hy for two reasons:

e The source of words. We humans chose words from a finite mental lexicon
(Carroll, 1994), in other words, we choose words from a finite set of words.

e The way words are chosen. We humans choose words according to their
meaning.

If single-author texts, the vocabulary size of a sample text is bounded by a cer-
tain finite value. Such a value is the author’s vocabulary size. A single speaker
has a finite vocabulary. The most optimistic estimates give about 10* words for
adult speakers (Miller and Gildea, 1987). Even in the largest counts, one has
to keep on mind that a power behavior is not found for the less frequent words
of a single author (Montemurro, 2001). What does it happen in multiauthor
texts? The domain in which Zipf’s law (that is, § &~ 2) holds in multiauthor
texts is formed by about the 6000 most frequent words, the so-called core lexicon
(Chapter 2).
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Individual speaker have memory limitations and communities of speakers
seem to have greater difficulties in obeying Zipf’s law with § =~ 2.
Different mechanisms make the size of the lexicon theoretically infinite

e If we by a possible word mean a sequence of letters (or phonemes) without
blanks, the number of words that can be formed is obviously infinite, even
when taking into account that some combinations of letters (or phonemes)
are not allowed as word because of orthographic (or phonetic) constraints.

e Languages have word derivation and compounding (Akmajian, 1995) for
creating new words from existing ones.

It is important to understand that the lexicon is theoretically infinite but finite
in practice, since

e Words have a characteristic length and fast decay in the length probability
distribution for long lengths (Wimmer et al., 1994; Wimmer and Altmann,
1996; Riedemann, 1996).

e One thing is speaking using reusing derived or compound words from
a mental lexicon and another thing is speaking creating new derived or
compound words. Reusing is generally by far much more frequent than
creation. If creation was larger, one should try to find if Zipf’s law holds
for creations before rejecting the previous statement.

Therefore, we will assume the mental lexicon is finite.
Speaking from a mental lexicon requires:

e The basic units must be words (and not letters). Intermittent silence
models assume every word is created from scratch by combining letters.
We humans choose from pre-existing words in the mental lexicon. We
do not build them on the fly (besides inflectional variations and rather
uncommon word derivations and compoundings). A model consistent with
human language must work at the lexical level and not at lower levels ones.
Therefore, only words are valid units. We will label this requirement as
Word.

e Words must be chosen according to their meaning. Words have no meaning
in intermittent silence. We will label this requirement as Ref.

e The lexicon must be finite. We will label this requirement as Fin. The lex-
icon size, that is, the number of different words, increases as the sequence
grows in intermittent silence models.

Because of the neglecting the mental lexicon, intermittent silence and real
texts manifest other differences such as,

e Vocabulary growth with regard to texts length is faster in intermittent
silence than in real texts (Cohen, Mantegna, and Havlin, 1997).
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e Intermittent silence fills the frequency spectrum using brute force and the
way real texts fill it effortlessly (even when the probability of every letter
is not the same but estimated from real texts) (Appendix C). Real texts
fill the spectrum easily because the their process is confined to a bounded
size lexicon.

e Zipf’s law (with 8 =~ 2) in real word frequencies is independent of word
length. Words of the same length follow Zipf’s law (with 8 =~ 2) in hu-
man language. In contrast, intermittent silence (even using biased letter
probabilities) fail (Appendix C).

5.3.2 Birth process

H. A. Simon proposed the following process for explaining Zipf’s law (Simon,
1955). In each iteration step, the text grows by one word. The (¢ + 1) word
will be either a new one (with probability ¢) or an old word (with probability
1—1) that has already appeared in the text. The old word is obtained choosing
one member of the sequence at random, that is, all occurrences of words in the
sequence have the same probability of being chosen. The distribution of the
process follows Eq. 1.1 with (Simon, 1955; Zanette and Manrubia, 2001)

1

p=1+1"5

(5.1)
See Appendix D for a simple proof.

Simon’s model reproduces Zipf’s law with 8 = 2 for small values of 9. Fin.
implies that that Simon’s should be able of reproducing Zipf’s law when ¢ = 0,
as predicted by Eq. 5.1 but this is not the case. For ¢y = 0 the Simon process
becomes a Polya process. For understanding what a Polya process is, ’think of
an urn of infinite capacity to which are added balls of two possible colors-read
and white, say. Starting with one red and one white ball in the urn, add a ball
each time, indifenitely, according to the rule: choose a ball in the urn at random
and replace it; if it is red, add a red; if it is white, add a white. Obviously, this
process has increments that are path-dependent-at any time the probability that
the next ball added is red exactly, equals the proportion of red.’... Polya proved in
1931 (Polya, 1931) that in a scheme like this the proportion of red balls does tend
to a limit X, and with probability one. But X is a random variable uniformly
distributed between 0 and 1. (Arthur, 1994, p. 36). The result can be generalized
to balls with more than two different colors. Then, equating different colors with
different words, it can be shown that whatever P(i) satisfying >, P(i) =1 is a
solution of the such a generalized Polya process (Arthur, 1994), where n is the
number of words. Therefore, & = 0, predicts a uniform frequency versus rank
distributions, which are a subset of the Polya process quasistationary solutions.
Eq. 1.1 is not warranted for & = 0. Therefore, Simon’s model fails for Ref.
and Fin. whereas it satisfies Word. Simon’s model is based on introducing
new words and the most of the words that are created or introduced are nouns.
Unfortunately, such a process can not realistically explain the exponent of nouns,
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which is § = 3.35 (Ferrer i Cancho, 2003), since Eq. 5.1 leads to v = 0.57. It
is hard to believe that we humans use a word from the pool only about 40% of
the times. The Simon model, at least in its basic version, is not linguistically
sound. Finite vocabularies are favoured.

5.3.3 Word length minimization

Mandelbrot (Mandelbrot, 1953) argued that communication using a repertoire
of n words must maximize

H=- Zpi log p; (5.2)
i=1
subject to a certain constraint
n
C= Z Cipi (5.3)
i=0

where p; is the frequency of the i-th most frequent word and C; is the cost
associated to the i-th most frequent word. We define L; as the the length of the
word whose rank is 4. All the possible words that can be formed concatenating
letters are ranked according the number of letters they contain, ¢ < j if L; < L;,
and an arbitrary rank is assigned when L; = L;. Such arbitrary rank must
preserve ranks are a partial order with respect to L;. It follows that C; =~ logn1,
where NN is the size of the alphabet. Using the Lagrange multipliers method,
Eq. 1.2 is obtained. Mandelbrot’s model fails for Ref. whereas satisfies Word
and Fin.

Although H is the average information per signal, it has very little to do
with effective communication. Rapoport (Rapoport, 1982) tried to mislead-
ingly justify the link between Mandelbrot’s model and information transfer.
The average information transfer and the average information per signal are
different measures. It is true, as Rapoport points out, that minimizing H leads
to no communication, since H = 0 is reached when a word has probability 1.
Nonetheless, the converse is not true, maximizing H does not lead to effective
communication.

Shannon (1948) defined a measure of effective communication, i.e. informa-
tion transfer. Assuming we have a set of signals (e.g. words) S = {s1,..., Si, ..., Sn }
and a set of objects of reference R = {r1,...,7}, ..., " }, the information transfer
can be defined as

I(S,R) = H(S) — H(S|R) (5.4)

where H(S) is the entropy associated to signals, H(R|S) is the entropy associ-
ated to objects when signals are known. H(S) in Eq. 5.4 is the H that Rapoport
(Rapoport, 1982) argues it is maximized in Mandelbrot’s derivation. It follows
from Eq. 5.4 that H(S) < I(S,R). In other words, maximizing H(S) only
maximizes I(R,S) when H(S|R) is constant, a very particular case that it is
not at all assumed in Mandelbrot’s derivation.
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Let us show an example where H(S) is maximal but (S, R) is minimum.
Imagine we have a set of signals S (e.g. words) and a set of objects of reference R.
Imagine every signal in S is linked to every object of reference in R. Assume that
the frequency of a signal is proportional to the number of objects of reference
such signal is linked to. Then, it can be easily seen that H(S) is maximal, but
I(S,R) = 0 because H(S|R) is also maximal (H(S|R) = H(S)). The latter is
true because coding an object implies making a decision about which among the
n = |S| possible signals is the suitable (see Section 5.5 (Ferrer i Cancho, 2003)
for the precise probability definitions required for calculating I(R,.S)). To sum
up, it is true that H maximizes the potential information transfer (Suzuki,
Tyack, and Buck, 2003; Cover and Thomas, 1991), but just that. It has nothing
to say about the actual information transfer.

Another problem of maximizing H is that if the language follows a Zipf’s law
and the lexicon is infinite then the entropy is not possible to determine from em-
pirical data because the entropy function has its points of discontinuity exactly
on the Zipf’s laws with 8 = 2 (Harremoés and Topsge, 2001; Harremoés and
Topsge, 2002). If beta < 2 one can make estimates of the entropy, but the closer
B is to 2 the more difficult the estimation becomes (Antos and Kontoyiannis,
2001)1.

5.4 A general summary

It would be difficult to describe briefly the remaining models that have been
proposed for Zipf’s law. Instead, existent models will be classified in order to
capture the essential features needed by the present chapter. All existing models
can be classified into tree major groups (Table 5.1):

A. Models based on some sort of optimization principle.

B. Models based on stability criteria. Here stability has not the meaning in
the analysis of dynamical systems but a different one. (Harremoés and
Topsge, 2001; Harremoés and Topsge, 2002) define a condition of stability
where the H may be small or big for approximately equal probability
distributions. Only Zipf’s law (with 8 & 2) satisfies such condition. The
similarity between distributions is calculated using the Kullback-Leibler
divergence or relative entropy 2.

1Peter Harremoés, personal communication

2T measure how much an observed distribution P differ from a theoretical distribution Q
I use the information divergence from P to Q denoted D(P,Q). This quantity is also called
Kullback-Leibler divergence or relative entropy. Information divergence is not symmetric
in its arguments so that D(P,Q) and D(Q,P) are different quantities. It is important that
the observed distribution appears as first argument and that the theory appears as second
argument. Only this allows us to have a finite lexicon for the observed distribution and an
infinite lexicon for the theoretical distribution. The asymmetry reflects that one can only
observe something which has positive probability, but one can have something which is not
observed but has positive probability (Peter Harremoés, personal communication).
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C. Models not based on any of the previous. Type C models are challenging
since they they require the weakest assumptions. Type C models are of
two kinds:

C.1. Plain stochastic processes (e.g. intermittent silence (Miller, 1957;
Mandelbrot, 1953; Mandelbrot, 1966; Li, 1992) and Simon’s model
(Simon, 1955)). Unfortunately, we have seen in Section 5.3 that none
of them qualify for an explanation.

C.2. Differential equations for dP(3)/di or dP(f)/df (Tuldava, 1996; Mon-
temurro, 2001; Tsonis, Schultz, and Tsonis, 1997)

As for the type C.2 models, they are not explanations in the strict sense but
tautologies, since they hypothesize how f or P(f) vary but they do not clearly
explain why the variation is the one chosen in a sound way. Once the variation
is specified, the hypothetical distribution follows in a straightforward way. That
is why we call them tautologies.

Type A models generally make use of the maximum entropy principle (Ka-
pur, 1989b; Cover and Thomas, 1991) for obtaining the word frequency distribu-
tion. Different kinds of entropy measures are used: Shannon entropy (Chapter
3-4,Nicolis (1991), Naranan and Balasubrahmanyan (1992a) and Naranan and
Balasubrahmanyan (1992b)), degenerate entropy (Naranan and Balasubrah-
manyan, 1993), algorithmic entropy (Balasubrahmanyan and Naranan, 1996),
Tsallis entropy (Denisov, 1997), and Rényi entropy (Bashkirov and Vityazev,
2000; Bashkirov, 2003). Some of the models examined here come from a very
general framework (Denisov, 1997; Bashkirov and Vityazev, 2000; Bashkirov,
2003). Although we have pointed out in Section 5.5 that the linguistics context
is very important for Zipf’s law meaningfulness, such models are reviewed here
since they suggest that Zipf’s law in linguistics could be a consequence of very
general principles.

Some models determine the exponent and some other do not. Models not
determining the exponent are interesting because real values of 3 exhibit some
degree of variation around 2 (Balasubrahmanyan and Naranan, 1996) with some
rather exceptional interesting values in a linguistic context, such as 1 < § <
2 for schizophrenia (Zipf, 1972a) and 8 = 3.35 for English nouns (Chapter
4). When the exponent is not determined, it can be determined using real
data. An undetermined exponent can be regarded as a source of imprecision
against the typical 8 ~ 2. The requirement that models determine the exponent
will be labeled as Deter. It is important to notice that some models do not
determine 8 ~ but provide a narrow interval including 8 ~ 2. This is the case
of (Bashkirov and Vityazev, 2000; Bashkirov, 2003). Some explanations may
not allow determining the exponent using real data or further constraints. Good
explanations must be testable (Popper, 1968; Medawar, 1969).

Since there are many explanations for Zipf’s law, explanations allowing de-
termining the exponent adding linguistically reasonable constraints are pre-
ferred. Furthermore, the ones determining the exponent in an elegant way
are additionally preferable. The model presented in Chapter 4 does it. Only
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assuming the effort for the hearer (i.e. decoding effort) has to be minimized
(plus entropy maximization), it is capable of explaining Zipf’s law. If effort for
the hearer and effort for the speaker are combined, 8 = 2 can be explained
(Chapter 3). Inversely, when the exponent is determined, one may ask whether
explaining 3 # 2 (for instance in schizophrenia or nouns) should follow from a
generalization or weakening of the explanation for 3 ~ 2 or it requires a totally
different explanation. For the former case we have that least effort for both
hearer and a least effort for the speaker explains 6 &~ 2 and that the model in
(Chapter 4) is a weakened version where scaling is explained by means of the ef-
fort for the hearer only (but retaining entropy maximization). We will thus say
a model is scalable if the change from g = 2 to § # 2 or inversely is performed
by weakening (removing constraints) or strengthening (adding constraints) it.
The requirement of scalability will be labeled as Scal.

Model Fin. Word | Ref. | Presynt. Deter. Scal. | Type
G. K. Zipf’s tau-
tology (Zipf, 1972a; Vv v vV vV Vv X C.2

Rapoport, 1982)

Birth process (Si-
mon, 1955) WX v v x| Gl

Word length min-
imization (Mandel-

brot, 1953; Mandel- X X X vV X X A
brot, 1966; Nicolis,
1991)

Intermittent silence
(Miller, 1957; Man-

delbrot, 1953; Man- X X X Vv X X C.1
delbrot, 1966; Li,
1992)

Differential equa-
tions for Zipf’s law

curve (Tuldava,

1996; Montemurro, X n.a. X vV X X C.2
2001; Tsonis,

Schultz, and Tso-

nis, 1997)

Random  Markov

process 1 (Kanter || +/ Vv X vV Vv X C.1

and Kessler, 1995)
Random  Markov

process 2 (Nicolis, X X X X vV X C.1

1991)
Maximum  Rényi

entropy (Bashkirov
and Vityazev, 2000;
Bashkirov, 2003)
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Maximum  Tsallis
entropy (symbolic
dynamics under
Tsallis thermody-
namics  (Denisov,

1997)
Entropy  disconti-

nuity  (Harremoés
and Topsge, 2001;
Harremoés and

Topsge, 2002)
Maximum Shannon

entropy (Naranan
and  Balasubrah-
manyan, 1992a;
Naranan and Bal-
asubrahmanyan,
1992b)

Maximum de-
generate  entropy
(Naranan and Bal-
asubrahmanyan,

1993)
Minimum algorith-

mic entropy (Bala-
subrahmanyan and
Naranan, 1996)

Maximum com-
plexity  (Balasub-
rahmanyan and

Naranan, 1996)
Least effort for

the hearer model

(Chapter 4)
Least effort for

the hearer and
the speaker model
(Chapter 3)
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Table 5.1: A summary of the traits of every model: finite lexicon
(Fin.), word as basic unit ( Word) word reference (Ref.), syntax not
assumed (Presynt.), determined exponent (Deter.), scalable (Scal.)
and type of model (Type). A, B, C.1, C.2 stand for optimization,
stability, purely stochastic and differential equation models in col-
umn Type. Fin., Word and Ref. are the features that a strict
model need to satisfy in the context of human language. Type A
models only satisfying Fin. and Word are models of Zipf’ law con-
sequences, but not models in the strict sense. Presynt., Deter. and
Scal. are the desired properties. n.a. indicates the requirement is
not applicable.

The amount of assumptions made by models vary considerably. Some mod-
els assume that words arrange in strings of words thus implying the existence
of syntax in various forms. For instance, some models maximize the complexity
of a word sequence (Balasubrahmanyan and Naranan, 1996; Naranan and Bal-
asubrahmanyan, 1998). Some other models imply syntax when considering the
word frequency distribution in fractal binary sequences (Denisov, 1997). As-
suming syntax raises the following questions: is syntax a consequence of Zipf’s
law or is Zipf’s law a consequence of syntax? As explained in Section 5.2, mod-
eling is not only concerned with providing explanations but also with providing
the simplest explanations. If a decision has to be made between a complicated
and a simple explanation has to be made, the simplest is favoured.

The model in Chapters Chapter 3-4 supports that syntax is not necessary
for explaining Zipf’s law in a simple way. Circular reasonings must be avoided.
When dealing with type A-B models, it is easy to make the mistake of assuming
the existence of an feature of language when it still does not exist. Assuming that
syntax and or symbolic reference are pressures for Zipf’s law can be a mistaken
approach. The possibility that the crux of human language is a side-effect of a
process that has nothing to do with syntax and symbolic reference can not be
denied (Lieberman and Kosslyn, 2002; Gould, 1987; Pinker and Bloom, 1990).
The requirement that Zipf’s law is presyntactic, that is, that the explanation for
Zipt’s law does not assume the existence of syntax will be labeled as Presynt.
In other words, if a model satisfies such requirement then Zipf’s law is not a
consequence of syntax (but can be a cause). Table 5.1 summarizes and classifies
the existent Zipf’s law models and summarizes the satisfaction of the previous
requirements.

5.5 A null hypothesis for human language

We have seen in Section 5.2 that it is necessary to formulate appropriate null
hypotheses in order to test the significance of a candidate model. Intermittent
silence has been proposed for proving Hy, but we have seen intermittent silence
has nothing to do with actual word use. The requirements Fin. and Word in a
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biologically general context, lead to the following levels of null hypothesis. We
have a set of signals S = {s1, s2, ..., Sn}. Assuming P(i) = 1/n for the sake of

simplicity we get
1 iff=1/n
P(f) = { 0 otherwise (5.5)

We will call it the weak null hypothesis because whatever biased rank-frequency
distribution (e.g. a power distribution) can overcome it. Zipf’s law (with 8 = 2)
is obviously meaningful with respect to this hypothesis.

By assuming p(s;) = 1/n for every ¢ we are not being very precise so the weak
null hypothesis can be improved. Signals refer to the objects inducing them,
so there is a dependence between the frequency of a signal and the object(s)
it points to. Thus, we will formulate a stronger null hypothesis assuming the
definition of p(s;,r;) given in Chapter 4. Assuming the probability that s; and
r; are linked is P(a;; = q), where ¢ is a constant, we get

Ppi = k) ~ (7;:) ¢“(1—qm "

where mu; is the number of connections of the i-th signal, ¢ = T'/(nm) and T
is the total amount of connections. Using p(s;) = u;/T (Chapter 4) we get

Plote) = /)~ (1) )= am

, Therefore, P(f) is a binomial distribution, which is clearly different than a
power function as Zipf’s law, so the probability definitions in Chapter 4 support
Zipf’s law meaningfulness.

Many researchers have pointed out that human language is radically different
from the communication systems found in other animals (Hauser, Chomsky, and
Fitch, 2002; Deacon, 1997; Lieberman, 1991a). Syntax and symbolic reference
are believed to be the distinguishing features. Nonetheless, animal communi-
cation has not been used for testing Zipf’s law meaningfulness. A simple test
consists of comparing the frequency distribution of the repertoire of a target
non-human species with that of humans. The test has four possible configura-
tions,

1. Zipf’s law is not found for the target species.

(a) There is no evidence of syntax and symbolic reference in the target
species.

(b) There is such evidence.
2. Zipt’s law is found for the target species.

(a) There is no evidence of syntax and symbolic reference in the target
species.

(b) If there is such evidence.
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(1.a) implies the possibility that Zipf’s law has to do with syntax or symbolic
reference can not be denied. Zipf’s law meaningfulness is supported. (1.b)
implies the possibility that Zipf’s law has nothing to do with syntax or symbolic
reference is supported. Zipf’s law meaningfulness is not supported. (2.a) favours
that Zipf’s law has nothing to do with syntax and symbolic reference. Zipf’s
law meaningfulness is not supported. (2.b) then the possibility that Zipf’s law
has something to do with syntax and symbolic reference is not rejected. Zipf’s
law meaningfulness is supported in that case.

(a) Is the general situation for non-human species with our currently avail-
able knowledge and used as a working hypothesis (Hauser, Chomsky, and Fitch,
2002). Fig. 5.1 and Fig. 5.2 show the repertoires of and captive bonobos (Pan
Paniscus) and common ravens (Corvus Coraz) fall into (1). Frequency distri-
butions for the vocalizations of ravens were extracted from (Conner, 1985). As
for bonobos, the analysis here is focused on the two largest repertoires: vocal-
izations and gestures (de Waal, 1988). As already found for the black-capped
chickadee (Parus atricapillus) (Ficken and Ficken, 185), non-human species seem
to use their units more equally frequency than expected from Zipf’s law (with
a ~ 1). Syntax and symbolic reference has not been proven for those species.
Therefore, such species fall into (1.a), and support Zipf’s law meaningfulness.
As mentioned above, restricting our analysis to the frequency distribution is
a weak hypothesis test. Further work with stronger tests taking into account
referents (or meanings) is necessary, along with extending the tests to other
species.

5.6 Discussion

Fin. and Word. are necessary traits. Models not fulfilling any of the nec-
essary traits are erroneous. A crucial requirement is Ref., since reference is
the major factor involved in word use. Interestingly, the only model for Zipf’s
law considering reference are the least effort for hearer and speaker model in
Chapter 3 and the least effort for the hearer model in Chapter 4. Notice that
the random Markov process in (Kanter and Kessler, 1995) takes into account
that words connect through semantic constraints but it does not assume word
reference. Models reproducing Zipf’s law, even in a linguistically sound con-
text, can not be tested against the null hypothesis in Section 5.5 if they do
not satisfy reference. A good model not only must explain the observations
under consideration but it must be testable (Popper, 1968; Medawar, 1969).
Tests against additional predictions or significance tests against null hypothesis
should be feasible. Therefore, Ref. is a linguistic requirement but also a re-
quirement for testability. The least effort models in Chapters 3-4 are the only
whose meaningfulness can be tested at this moment.

Models satisfying Fin. and Word. but not satisfying Ref. must be considered
as models of Zipf’s law consequences. Only Type A and B models can fall into
such category. For type A models the consequence is some sort of optimization
and for type B models some sort of stability. Models satisfying Fin., Word. and
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Figure 5.1: Repertoires of bonobos. A. P(i), the frequency of the i-th most
frequent gesture-contact pattern. B. Cumulative P(f). P(f) is the proportion
of gesture-contact patterns whose frequency is f. C. P(i), the frequency of the
i-th most frequent vocal patterns. D. Cumulative P(f). P(f) is the proportion
of vocal patterns whose frequency is f. The ideal curves for Zipf’s law, that
is, P(i) = ci~! or P(f) = cf~2 are also shown in A-C and B-D (dashed lines),
respectively.
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Figure 5.2: Common raven vocalizations A. P(i), the frequency of the i-th most
frequent vocalization. The ideal curve for Zipf’s law, that is, P(i) = c¢i™!,
is also shown (dashed line). B. Cumulative P(f). P(f) is the proportion of
vocalizations whose frequency is f. The ideal curve for Zipf’s law, that is,
P(f) = cf2, is also shown (dashed lines).

Ref. are strict models (except for Zipf’s tautology, Table 5.1). See Table 5.2
for a classification of models according to the previous criteria. Presynt., Deter.
and Scal. are regarded here as desirable properties. The only model satisfying
the necessary requirements, reference and the desirable properties is the dual
least effort model in Chapter 3. Thereafter, the dual least effort model is not just
‘an explanation among many’, but the best at this moment. Nonetheless, the
model has not the ultimate answer for Zipf’s law. We have made a distinction
between strict models of Zipf’s law and models of Zipf’s law consequences. The
possibility that a model not based on optimization satisfying Fin., Word and
Ref. reproduces Zipf’s law can not be denied. In a similar way, the scale-free
degree distribution in complex networks can be modeled using both a purely
stochastic process (Barabdsi and Albert, 1999) or an optimization mechanism
(Chapter 9). That could turn the dual least effort model into a model of Zipf’s
law consequences if the alternative model is proven to be soundly defined.

Another way of classifying models for 5 =~ 2 is according to their amount of
linguistic requirements. A good model should meet a compromise (Table 5.3).
For instance, syntax (under the form of long distance correlations (Denisov,
1997) or word sequences whose complexity must be maximized (Balasubrah-
manyan and Naranan, 1996) is sometimes assumed (see Table 5.1). Modeling is
not only concerned about reproducing a certain pattern but also with the seek of
minimal assumptions and explanations. A model with moderate requirements
can help to distinguish between the origins of the regularity and its by prod-
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Models

Erroneous Birth process (Simon, 1955).

Intermittent silence (Miller, 1957; Mandel-
brot, 1953; Mandelbrot, 1966; Li, 1992).
Possible models of | Distribution differential equations (Tuldava,
Zipf’s law conse- | 1996; Montemurro, 2001; Tsonis, Schultz, and
quences Tsonis, 1997).

Maximum complexity (Balasubrahmanyan
and Naranan, 1996).

Entropy  discontinuity = (Harremoés and
Topswe, 2001; Harremoés and Topsee, 2002).
Maximum Rényi entropy (Bashkirov and
Vityazev, 2000; Bashkirov, 2003).

Strict Least effort for the hearer model (Chapter 4).
Least effort for the hearer and the speaker
model (Chapter 3).

Type of model

Table 5.2: A classification of some models for Zipf’s law in word frequencies
according to the way they satisfy Fin., Word and Ref.

ucts. That is why models with heavy requirements must not be rejected. Once
a simple mechanism or principle has lead to Zipf’s law, communication could
get extra benefits. For instance, obtaining a set of word frequencies minimiz-
ing the complexity of the mechanism needed generating a sequence of words
(Balasubrahmanyan and Naranan, 1996) could underly our ability to ’speak
without thinking’ that is evident in infants (Werker and Vouloumanos, 2001).
Some models with heavy requirements are not well-defined. Such models as-
sume that syntax results from concatenating letters that ultimately translate
into sequences of words (Nicolis, 1991; Denisov, 1997). Such models neglect the
existence of a mental lexicon.

Moreover, intermittent silence can not consistently explain the values of
1 < B < 2 in schizophrenics where (3 is clearly far from 2 (Zipf, 1972a). The
exponent of an intermittent silence model as in (Li, 1992) is

log|L
5 = g|L|

= logllLI+1) +1 (5.6)

It follows from Eq. 5.6 that 1 < 3; < 2 (|]L| > 1 is assumed) and §; < 1.9 implies
|L| < 5. Therefore, such disease implies a repertoire of letters (or phonemes)
radically smaller from that of regular speakers, which is absolutely false.
Models in Chapters 3-4 and the null hypothesis presented here suggest Zipf’s
law in humans has to do with communication. Nonetheless, it can not say that
Zif’s law implies communication (Suzuki, Tyack, and Buck, 2003). Different
models arrange units according to Zipf’s law without the need of reference. We
have have used a priori information i.e. ’the context is communication’ so that
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Amount of require- | Type of model
ments

No requirements Tautologies (e.g. (Zipf, 1972a; Tuldava, 1996;
Montemurro, 2001; Tsonis, Schultz, and Tso-
nis, 1997)).

Little requirements | Models not determining the exponent (e.g.
(Mandelbrot, 1953; Rapoport, 1982)).
Moderate require- | Dual least effort (Chapter 3).

ments
Heavy require- | Models assuming syntax. (e.g. (Balasubrah-
ments manyan and Naranan, 1996))

Table 5.3: Different amounts of requirements and some example models for
Zipf’s law with g =~ 2.

to reject some models. What can be done when such a priori information is
missing and the only information available is a source emitting units whose
frequency can computed? If such a source obeys Zipf’s law with § ~ 2, we can
try determine if the source codes messages in the same way humans do. First,
human word frequencies are not the result of word length optimization, although
word length is positively correlated with word frequency (Miller and Chomsky,
1963). The basic test for word length independence consists of restricting to
words of the same length (assuming words are strings). Human language shows
clearly Zipf’s law (with § & 2) again in that case (Chapter 2), but intermittent
silence (Miller and Chomsky, 1963) and the word length optimization model
in (Mandelbrot, 1966) will fail. Second, the lexicon of an individual speaker is
finite (and it seem to be true for the species whose communication systems have
been successfully studied).

The vocabulary growth of the target source can be compared to that of a
human speaker as function of text length. The vocabulary growth of a human
speaker would converge to its vocabulary size (a finite amount) if text length
goes to infinity. The vocabulary of the intermittent silence and Simon’s birth
process would go to infinity. If the probability of adding a new word in the
Simon model is zero (which would make the vocabulary finite), the process fails
to reproduce Zipf’s law. The problem the of comparing a null hypothesis source
(e.g. intermittent silence) and a target source is similar to the Turing machine
halting problem in computer science (Sipser, 1999). If the target source has no
bounded vocabulary size, one will have to wait till infinity to give an answer (i.e.
no answer). If the target source has a finite vocabulary, we will be able to give
an answer in finite time. Probably, non-human species have smaller vocabularies
than humans so the time needed for finding a positive answer could be smaller
than for humans. Nonetheless, applying such a kind of test to species in the
wild raises many practical problems.

Here we have supported that Zipf’s law has to do with communication. As-
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suming Zipf’s law has to with communication, a further test of Zipf’s law mean-
ingfulness (in human language) concerns the complexity of the communication
that Zipf’s law implies. The hearer least effort model in Chapter 4 shows that
if the effort for the hearer is defined as p; no scaling will emerge. In contrast,
if it is defined as the entropy associated to the interpretation of s;, H(R|s;),
then scaling is expected (H(R|s;) = log u; (Chapter 4). As for the dual least
effort model, it has been shown that defining the effort for the speaker as the
lexicon size will not lead to Zipf’s law, while H(S), the entropy associated to
signals, will (Chapter 3). To sum up, a large amount of explanations proposed
for Zipf’s law in linguistics and the simplicity of some of them has lead some
researchers to think that Zipf’s law is meaningless. But we have seen the un-
derlying hypothesis test is often not well defined. Here we provide arguments
for

e Rejecting certain existing models.

e Distinguishing between causes and consequences of Zipf’s law.
e Favouring models obeying certain desirable properties

e Evaluating and classifying future models.

Researchers should have never isolated word frequencies from word meanings.
By doing so, they entered the sphere where models, despite its mathematical
complexity, reproduce reality just by chance. The linguistic context is relevant
and thus null hypothesis must be well defined. Correctly defined null hypothesis
support Zipf’s law meaningfulness. This chapter puts a step forward for Zipf’s
law meaningfulness in a linguistic context.

Models not cited here have not been forgotten on purpose. Authors of origi-
nal models not appearing in Table 5.1 are encouraged to write the present author
with a reference of where the model was published, as well as a classification of
the model according to Table 5.1.
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Chapter 6

Syntactic dependency
universals

6.1 Introduction

There is no agreement about the number of languages spoken on Earth, but
estimates are in the range from 3,000 to 10,000 (Crystal, 1997). World lan-
guages exhibit a vast array of structural similarities and differences. Two major
strategies are followed by empirically working scholars for deepening their un-
derstanding of human language faculty and language diversity. One concerned
about finding linguistic universals, i.e. properties common to all languages.
The other concerned about the differences among languages their classification,
which was the former aim of typology.

The seek of linguistic universals has to face a basic problem. On the one
hand, if a property is very general then it is likely to be satisfied by all languages
but it is also likely to carry little information (e.g. all languages have vowels).
From the other hand, if a property is more specific there is a high risk the
property is only satisfied by a limited set of languages. Another general problem
of most linguistic universals found (Greenberg, 1966; Greenberg, 1968; Croft,
1990) is that they are not generally portable to other disciplines or a more
general framework where they can be compared and further understood. If a
linguistic universal is defined in terms of the position of a certain type of word
in a sentence (Greenberg, 1968), tentatively no comparison can be made with
non-linguistics systems. In contrast, when studying the universal distribution
of word frequencies, the so called Zipf’s law for word frequencies (Zipf, 1972a),
it has been hypothesized that the underlying process might be essentially the
same behind solid ice melting to liquid water (Binney et al., 1992).

In this context, a recent study has shown that the presence of scaling in word
frequency distributions might be a natural result of an optimization process
involving a sudden phase transition (Chapter 3). In other words, scaling laws in
human language would be the result of universal phenomena as those familiar to
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statistical physicists. Interestingly, Zipf’s-law-like distributions appear in many
non-linguistic domains (Ramsden and Vohradsky, 1998; Furusawa and Kaneko,
2003; Burgos, 1996; Burgos and Moreno-Tovar, 1996; Balasubrahmanyan and
Naranan, 2000). Specially relevant are the domains were information transfer
and other linguistic metaphors are obvious, e.g. DNA sequences (Naranan and
Balasubrahmanyan, 2000; Balasubrahmanyan and Naranan, 2000). Zipf’s law
is portable.

Common language universals are just empirical generalizations resulting
from inductive studies. Linguists in that field are well aware of this fact, and
the fact that universals have to be explained themselves (which means they are
not laws but general observations together with inductively formulated hypothe-
ses). In contrast, physics has its own understanding of universal laws, where
the macroscopic regularities of different systems are explained with the same
basic mechanism. Critical systems, for example, are grouped into universality
classes that only depend on dimensionality, symmetry of the order parameter
and symmetry and range of interactions (Chaikin and Lubensky, 1995; Stanley
et al., 1996; Stanley et al., 2000). Statistical physics thus provides a well de-
fined understanding of universality that is largely system independent. This is
certainly not the common view in linguistics (Croft, 1990). Empirical evidence
supports the possibility that a large number of systems arising in disparate
disciplines such as physics, biology and economics might share some key prop-
erties involving their large-scale organization (Stanley et al., 2000). One of
the most remarkable of these universal laws is related to scale invariance, i. e.
the presence of a hierarchical organization that repeats itself at very different
scales. Using tools from statistical physics we present evidence for previously
unreported syntactic universals that are both portable and tentatively enough
specific.

Most of linguistic research is done in the domain of descriptive approaches
(e.g Chomsky’s standard and extended ’theories’ (Uriagereka, 1998)). But de-
scriptions are not explanations. Linguistic explanation is not possible with-
out the construction of a linguistic theory containing universal language laws
(Kohler, 1987). The search for language and text laws in the sense of the philos-
ophy of science - and not in the improper sense commonly used in mainstream
linguistics - is strongly connected with the work of Gabriel Altmann and his
school (Altmann, 1978; Altmann, 1993). Since 1983, 'Synergetic linguistics’ has
been systematically developed by Kohler (Kohler, 1987) as a first linguistic the-
ory on the basis of the central axiom of language as a self-organizing system and
on functional explanation. This theory was first presented in the field of the
lexicon (Kohler, 1986) and later extended to morphology and syntax (Kohler,
1999; Kohler and Altmann, 2000).

The aim of the present chapter is investigating potential syntactic univer-
sals, which in turn may provide clues for understanding the origins of language.
Since syntax is a crucial feature in human language uniqueness (Hauser, Chom-
sky, and Fitch, 2002; Lieberman, 1991a), we will focus on syntactic universals.
Different non-excluding positions are taken for explaining linguistic universals.
To cite some examples, an underlying universal grammar (Uriagereka, 1998),
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genetic encoding (Pinker and Bloom, 1990; Pinker, 1996) or functional con-
straints (Hawkins, 1994; Hawkins, 1992; Lieberman, 1991b). Syntax involves
a set of rules for combining words into phrases and sentences. Such rules ul-
timately define explicit syntactic relations among words that can be directly
mapped into a graph capturing most of the global features of the underlying
rules. Such a network-based approach has provided new insights into seman-
tic webs (Steyvers and Tenenbaum, 2001; Sigman and Cecchi, 2002; Motter et
al., 2002; Kinouchi et al., 2002). Capturing global syntactic information us-
ing a network has been attempted. The global structure of word interactions in
short contexts in sentences has been studied (Ferrer i Cancho and V. Solé, 2001;
Dorogovtsev and Mendes, 2001). Although about 87% of syntactic relationships
take place at distance lower or equal than 2 (Chapter 8), such early work lacks
both a linguistically precise definition of link and fails in capturing the charac-
teristic long-distance correlations of words in sentences (Chomsky, 1957). The
proportion of incorrect syntactic dependency links captured with a window of
length 2 as in (Ferrer i Cancho and V. Solé, 2001) is

(n=1D)(A—=p1)+ (1 —2)(1 —ps)

2= 2n—3

where n is the length of the sentence and p; and p- are, respectively, the proba-
bility that two words at distance 1 and 2 are syntactically linked. When n — oo
we have

Knowing p; = 0.70 and py = 0.17 (Chapter 8) we get
€y — 056

That is, one half of links are syntactically meaningless. Using a window of
length 1 we have

(n-1( -p1)

€1 = n—1 .

When n — oo we get € = 1 — p1, which gives e; = 0.30, which is still high. A
precise definition of syntactic link is thus required. Here, we study the architec-
ture of syntactic graphs and show that they display small world patterns, scale
free structure, a well-defined hierarchical organization and assortative mixing
(Barabdsi and Albert, 2002; Dorogovtsev and Mendes, 2002; Newman, 2003b).
Three different European languages will be used. The chapter is organized as
follows. The three datasets are presented together with a brief definition of the
procedure used for building the networks in Section 6.2. The key measures used
in this study are presented 6.3, with the basic results reported in section 6.4. A
comparison between sentence-level patterns and global patterns is presented in
6.5. A general discussion and summary is given in Section 6.6.
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subject  object

Figure 6.1: A. The syntactic structure of a simple sentence. Here words define
the nodes in a graph and the binary relations (arcs) represent syntactic depen-
dencies. Here we assume arcs go from a modifier to its head. The proper noun
"John’ and the verb ’has’ are syntactically dependent in the sentence. ’John’ is
a modifier of the verb ’'has’, which is its head. Similarly, the action of 'has’ is
modified by its object ’apples’. B. Mapping the syntactic dependency structure
of the sentence in A into a global syntactic dependency network.

6.2 The syntactic dependency network

The networks that are analyzed here have been defined according to the de-
pendency grammar formalism. Dependency grammar is a family of grammat-
ical formalisms (Melcuk, 1988; Hudson, 1984; Sleator and Temperley, 1991),
which share the assumption that syntactic structure consists of lexical nodes
(representing words) and binary relations (dependencies) linking them. This
formalism thus naturally defines a network structure. In this approximation, a
dependency relation connects a pair of words. Most of links are directed and
the arc usually goes from the head word to its modifier. Head and modifier are
primitive concepts in the dependency grammar formalism (Fig. 6.1 A). In some
cases, such as coordination, there is no clear direction (Mel¢uk, 2002). Since
that cases are rather uncommon, we will assume that links in the datasets used
here have a direction and assign an arbitrary direction to the undirected cases.
Syntactic relations are thus binary, usually directed and sometimes typed in
order to distinguish different kinds of dependency.

We define a syntactic dependency network as a set of n words V' = {s;}, (i =
1,...,n) and an adjacency matrix A = {a;;}. s; can be a modifier word of the
head s; in a sentence if a;; = 1 (a;; = 0 otherwise). Here, we assume arcs go
from a modifier to its head. The syntactic dependency structure of a sentence
can be seen as a subset of all possible syntactic links contained on a global
network (Fig. 6.1 B). More precisely, the structure of a sentence is a subgraph
(a tree) of the global network that is induced by the words in the sentence
(Bollobés, 1998).

Different measures can be defined on A allowing to test the presence of
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certain interesting features such as the small-world effect (Watts and Strogatz,
1998) and scale invariance (Barabdasi and Albert, 1999). Such measures can also
be used for finding similarities and differences among different networks (see
Section III).

The common formal property of dependency representations (compared to
other syntactic representations) is the lack of explicit encoding for phrases as
in the phrase structure formalism (Chomsky, 1957) and later developments
(Uriagereka, 1998). Dependency grammar regards phrases as emergent patterns
of syntactic dependency interactions. Statistical studies about phrase-structure-
based grammars have been performed and reveal that the properties of syntactic
constructs map to only a few distributions (Kohler, 1999; Kohler and Altmann,
2000), suggesting a reduced set of principles behind syntactic structures.

We studied three global syntactic dependencies networks from three Eu-
ropean languages: Czech, German and Romanian. Because of the reduced
availability of data, the language set is unintentionally restricted to the Slavic,
Germanic and Italic families. These languages are not intended to be represen-
tative of every family. We are not taking the common inductive position in the
study of linguistic universals. Chapter 7 gives further support for our position.
We mention the families these languages belong to in order to show how dis-
tant these languages are. Probably not enough distant for standard methods
in linguistics for defining universals but enough distant for our concerns here.
Syntactic dependency networks were build collecting all words and syntactic de-
pendency links appearing in three corpora (a corpus is a collection of sentences).
Here, a;; = 1 if an arc from the i-th word to the j-th word has appeared in
a sentence at least once and a;; = 0 otherwise. Punctuation marks and loops
(arcs from a word to itself) were rejected in all three corpora. The study was
performed on the largest connected component of the networks. Sentences with
less than two words were rejected.

The corpora analyzed here are a Cezch corpus by Ludmila Uhlifova and
Jan Kralik, the Dependency Grammar Annotator Corpus for Romanian and
the Negra Corpus for German (Appendix A). The German corpus is the most
sparse of them. It is important to notice that while the missing links in the
German corpus obey no clear regularity, links in the Czech corpus are mostly
function words, specially prepositions, the annotators did not link because they
treated them as grammatical markers. The links that are missing are those
corresponding to the most connected words types in the remaining corpora.

6.3 Network properties

In order to properly look for syntactic dependency patterns, we need to con-
sider several statistical measures mainly based on the undirected version of the
network for simplicity reasons. These measures allow to categorize networks in
terms of:

1. Small world structure. Two key quantities allow to characterize the global
organization of a complex network. The first is the so called average path
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lenght D, defined as D = (Dynin(%,)), where (...) is the average operator
over all pairs (s;, s;) in the network, where D,y (¢, j) indicates the length
of the shortest path between nodes i and j. D was calculated on the largest
connected component of the networks. The second measure is C, the so
called clustering coefficient, defined as the probability that two vertices
(e.g. words) that are neighbors of a given vertex are neighbors of each
other. C is defined as (C;) where (...) is the average over all vertices and
C;, the clustering coefficient of the i-th vertex, is easily defined from the
adjacency matrix as

2 n
Ci = m jzz:laij Z a“a]—l (61)

I=j+1

where k; is the degree of the i-th vertex. FErdds-Rényi graphs have a
binomial degree distribution that can be approximated by a Poissonian
distribution (Barabdsi and Albert, 2002; Dorogovtsev and Mendes, 2002;
Newman, 2003b). An Erdos-Rényi graph is such that the probability
that two vertices are linked is the same for all different pairs of vertices.
Erdos-Rényi graphs with an average degree (k) are such that Cyandom =
(k) /(n — 1) and the path length follows (Newman, 2000)

logn
Dran om X T 6.2
¢ log (k) . (62)

It is said that a network exhibits the small-world phenomenon when
D = D, andom (Watts and Strogatz, 1998). The key difference between

an Erdos-Rényi graph and a real network is often C' > Crandom (Barabési
and Albert, 2002; Dorogovtsev and Mendes, 2002; Newman, 2003b).

. Heterogeneity. A different type of characterization of the statistical prop-

erties of a complex network is given by the degree distribution P(k). Al-
though the degree distribution of Erdds-Rényi graphs is Poisson, most
complex networks are actually characterized by highly heterogeneous dis-
tributions, i.e. they can be described by a degree distribution P(k) ~
k=7¢(k/k.), where ¢(k/k.) introduces a cut-off at some characteristic
scale k.. The simplest test of scale invariance is thus performed by look-
ing at P(k), the probability that a vertex has degree k, often obeying
(Barabdsi and Albert, 2002; Dorogovtsev and Mendes, 2002; Newman,
2003b)
P(k) ~ k™.

The degree distribution is the only statistical measure where link direc-
tion will be considered. Therefore, input and output degree will be also
analyzed.

. Hierarchical organization. Some scaling properties indicate the presence

of hierarchical organization and modularity in complex networks. When
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Figure 6.2: Shortest path length distributions for the three syntactic networks
analyzed here. The symbols correspond to: Romanian (circles), Czech (trian-
gles) and German (squares) respectively. The three distributions are peaked
around an average distance of D ~ 3.5 degrees of separation. The expected dis-
tribution for a Poissonian graph is also shown (filled triangles), using the same
average distance.

studying C'(k), i. e. the clustering coefficient as a function of the degree
k, certain networks have been shown to behave as (Ravasz et al., 2002;
Ravasz and Barabési, 2002)

Ck) ~k? (6.3)

with § =~ 1 (Ravasz et al., 2002). Hierarchical patterns are specially impor-
tant here, since tree-like structures derived from the analysis of sentence
structure strongly claim for a hierarchy.

4. Betweenness centrality. While many real networks exhibit scaling in their
degree distributions, the value of the exponent ~ is not universal, the
betweenness centrality distribution is less varying (Goh et al., 2002) al-
though it fails to work as a network classification method (Barthélemy,
2003). The betweenness centrality of a vertex v, g(v), is a measure of the
number of minimum distance paths running through v, that is defined as
(Goh et al., 2002)

where G, (4, j) is the number of shortest pathways between i and j running
through v and G(7,7) = >, G4(4,j). Many real networks obey

P(g) ~g"
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where P(g) is the proportion of vertices whose betweenness centrality is
g. The betweenness centrality was calculated using Brandes’ algorithm
(Brandes, 2001).

5. Assortativeness.

A network is said to show assortative mizing if the nodes in the network
that have many connections tend to be connected to other nodes with
many connections A network is said to show disassortative mixing if the
highly connected nodes tend to be connected to nodes with few connec-
tions. The Pearson correlation coefficient T' defined in (Newman, 2002)
measures the type of mixing with I' > 0 for assortative mixing and I" < 0
for disassortative mixing. Such correlation function can be defined as

r— e diki = [e 30, 50i + ki))]?
X5 GE R = e 500 + k)2

where j; and k; are the degrees of the vertices at the ends of the i-th edge,
with ¢ = 1...m, ¢ = 1/m and m being the number of edges. Disassortative
mixing (I' < 0) is shared by Internet, World-Wide Web, protein interac-
tions, neural networks and food webs. In contrast, different kinds of social
relationships are assortative (I' > 0) (Newman, 2002; Newman, 2003a).

(6.4)

6.4 Results

The first relevant result of our study is the presence of small world structure
in the syntax graph. As shown by our analysis (see Table 6.1 for a summary),
syntactic networks show D = 3.5 degrees of separation. The values of D and
C are very similar for Czech and Romanian. A certain degree of variation for
German can be attributed to the fact it is the most sparse dataset. Thus, D is
overestimated and C' is underestimated. Nonetheless, all networks have D close
t0 Drandom which is the the hallmark of the small-world phenomenon (Watts
and Strogatz, 1998). The fact that C' > Crandom indicates (Table 6.1) that the
organization of syntactic networks strongly differs from the Erdos-Rényi graphs.
Additionally, we have also studied the frequency of short path lengths for the
three networks. As shown in Figure 6.2, the three distributions are actually very
similar, thus suggesting a common pattern of organization. When we compare
the observed distributions to the expectation from a random Poissonian graph
(indicated by filled triangles), they strongly differ. Although the average value
is the same, syntactic networks are much more narrowly distributed. This was
early observed in the analysis of World Wide Web (Adamic, 1999).

The second result concerns the presence of scaling in their degree distribu-
tions. The scaling exponents are summarized in Table 6.1. For the undirected
graph, we have found that the networks are scale free with v ~ 2.2. Addition-
ally, Fig. 6.3 shows P(k) for input and output degrees (see Table 6.1 for the
specific values observed). With the exception of the Czech corpus, they display
well-defined scale-free distributions. The Czech data set departs from the power
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Figure 6.3: Left. Cumulative degree distributions for the three corpora. Here
the proportion of vertices whose input and output degree is k are shown. The
plots are computed using the cumulative distributions P> (k) = >~ P(j). The
arrows in the plots on top indicate the deviation from the scaling behavior in
the Czech corpus.
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Figure 6.4: Left: C(k), the clustering coefficient versus degree k for the for the
three corpora. In all three pictures the scaling relation C(k) ~ k~! is shown
for comparison. Right: the corresponding (cumulative) P(g), the proportion of
vertices whose betweenness centrality is g.

law for k > 102. Thus highly connected words appear underestimated in this
case, consistently with the limitations of this corpus discussed in section 6.2.
These power laws fully confirm the presence of scaling at all levels of language
organization (Hfebicek, 1995).

Complex networks display hierarchical structure (Ravasz et al., 2002). Fig.
6.4 (left column) shows the distribution of clustering coefficients C'(k) against
degree for the different corpora. We observe skewed distributions of C'(k) (which
are not power laws), as in other systems displaying hierarchical organization,
such as the World Wide Web (see Fig. 3(c) in (Ravasz and Barabdsi, 2002)).

In order to measure to what extent word syntactic dependency degree k is
related to word frequency, f, we calculated the average value of f versus k (6.5)
and found a power distribution of the form

f~kS (6.5)

where ¢ =~ 1 (Table 6.1) indicates a linear relationship (Fig. 6.5). The higher
values of { for German can be attributed to the sparseness of the German corpus.

Highly connected words tend to be not interconnected among them. Since
degree and frequency are positively correlated (Eq. 6.5 and Fig. 6.5) one easily
concludes, as a visual examination will reveal, that the most connected words
are function words (i.e. prepositions, articles, determiners,...). Disassortative
mixing (I' < 0) tells us that function words tend to avoid linking each other.
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Figure 6.5: Average word frequency f of words having degree k. Dashed lines
indicate the slope of f ~ k, in agreement with real series.

This consistently explains why the Czech corpus has a value of T" clearly greater
than that of the remaining languages. We already mentioned in section II that
most of the missing links in the Czech corpus are those involving function words
such as prepositions, which are in turn the words responsible for a tendency to
avoid links among highly connected words. I is thus overestimated in the Czech
network.

The scaling exponent v is somewhat variable, but the scaling exponents
obtained for the betweenness centrality measure are more narrowly constrained
(table 6.1). Although again the Czech corpus deviates from the other two (in
an expected way) the two other corpora display a remarkable similarity. P(g)
distribution, with 7 = 2.1. Is is worth mentioning that the fits are very accurate
and give an exponent that seems to be different from those reported in most
complex networks analyzed so far, typically n € [2.0,2.2] (Goh et al., 2002).
The behavior of P(g) in Fig. 6.4 with a domain with scaling with n ~ 2.1 for
German and Romanian suggests a common pattern is shared. The deviation of
Cezch from the remaining networks may be explained by its lack of hub words.

The behavior of C(k) (Fig. 6.4, left) differs from the independence of the
vertex degree found in Poisson networks and certain scale-free network models
(Ravasz and Barabdsi, 2002). Such behavior C(k) is also different from Eq.
6.3 with 8 = 1 that is clearly found in synonymy networks and suggested in
actor networks (Ravasz et al., 2002) and metabolic networks (Ravasz et al.,
2002). In contrast, such behavior is similar to that of the World Wide Web and
Internet at the Autonomous System level (Ravasz and Barabdsi, 2002). The
similar shape of C(k) in the three syntactic dependency networks suggests all
languages belong to the same universality class.

Besides word co-occurrence networks and the syntactic dependency networks
presented here, other types of linguistic networks have been studied. Networks
were nodes are words or concepts and links and semantic relations are known
to show C > Crandom With d = d;qngom and power distribution of degrees with
and exponent v € [3,3.5]. For the Roget’s Thesaurus, assortative mixing (T' =

0
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Czech German Romanian | Software graph | Proteome !
n 33336 6789 5563 1993 1846
<k> 13.4 4.6 5.1 5.0 2.0
C 0.1 0.02 0.09 0.17 2.2 x 1072
Crandom 4-1077 6-107° 9.2-10~% 2x 1073 1.5 x 1073
D 3.5 3.8 34 4.85 7.14
Drandom 4 5.7 5.2 4.72 9.0
r —0.06 —0.18 —0.2 —0.08 —0.16
y 2.29+£0.09 | 2.23+0.02 | 2.19+0.02 2.85£0.11 2.5 (k. ~20)
Yin 1.994+0.01 | 2.37£0.02 | 2.240.01 - -
Yout 1.984+£0.01 | 2.09£0.01 | 2.240.01 - -
n 1.91 £0.007 | 2.1 £0.005 | 2.1 £0.005 2.0 2.2
0 Skewed Skewed Skewed Skewed 1.0
¢ 1.03+0.02 | 1.18 £0.01 | 1.06 £ 0.02 - -

Table 6.1: A summary of the basic features that characterize the potential uni-
versal features exhibited by the three syntactic dependency networks analyzed
here. n is the number of vertices of the networks, < k > is the average degree,
C is the clustering coefficient, C\.qndom is the value of C of an Erdos-Rényi net-
work. D is the average minimum vertex-vertex distance, D,.qndom is the value of
D for an Erdos-Rényi graph. T is the Pearson correlation coefficient. ~, 75, and
Yout are respectively, the exponents of the undirected degree distribution, input
degree distribution, output degree distribution. 7, 6 and ( are, respectively,
the exponents of the betweenness centrality distribution, the clustering versus
degree and the frequency versus degree. Two further examples of complex net-
works are shown. One is a technological graph (a software network analyzed in
(Valverde, Ferrer i Cancho, and Solé, 2002)) and the second is a biological web:
the protein interaction map of yeast (Jeong et al., 2001). Here skewed indicates
that the distribution C(k) decays with k but not necessarily following a power
law.

0.157) is found (Newman, 2003b). (Steyvers and Tenenbaum, 2001; Sigman and
Cecchi, 2002; Motter et al., 2002; Kinouchi et al., 2002). In contrast, syntactic
dependency networks have v € [2.11,2.29] and disassortative mixing (Table
6.1), suggesting networks of semantic relations have exponents belonging to a
different universality class. Further work, including more precise measures, such
as the exponent of P(g), should be carried out for semantic networks.

6.5 Global versus sentence-level patterns

We have mentioned that there is a high risk that very general linguistic uni-
versals carry no information. Similarly, one may argue that the regularities
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Czech Romanian | German
ytobal 93-10 %] 1.3-10° | 1.2-10 3
< dsentence > 0.88 0.75 0.83
CVglobaxl 0.1 0.09 0.02
< Csentence > 0 0 0
L giobal —0.06 —0.2 —0.18
< Fsentence > —-0.4 —0.51 —0.64

Table 6.2: Summary of global versus sentence network traits. dgiobai, Cgiobat
and I'giopa1 are, respectively, the normalized average vertex-vertex distance, the
clustering coefficient and the Pearson correlation coefficient of a given global
syntactic dependency network. dsentence, Csentence and Usentence are, respec-
tively, the normalized average vertex-vertex distance, the clustering coefficient
and the Pearson correlation coefficient of a given sentence syntactic dependency
network. (z) stands for the average value of the variable x over all sentence
syntactic dependency networks where z is defined.

encountered here are not significant unless it is shown they are not a trivial con-
sequence of some pattern already present in the syntactic structure of isolated
sentences. In order to dismiss such possibility, we define dgiopq; and dgentence as
the normalized vertex-vertex distance of the global dependency networks and a
sentence dependency network. The normalized average vertex-vertex distance
is defined here as

D-1
d = -
Dmaz 1
where Dy = ”TH, the maximum distance of a connected network with n

nodes (Chapter 9). Similarly, we define Cyiopar and Cientence for the clustering
coefficient and I'giopa; and I'septence for the Pearson correlation coefficient. The
clustering coefficient of whatever syntactic dependency structure is Csepntence =
0, since the syntactic dependency structure is defined with no cycles (Melcuk,
1988) We find Cglobal > Csentence and dglobal < dsentence (Table 62) Fsentence
is clearly different than I'gopq:, although disassortative mixing is found in both
cases.

Besides, one may think that the global degree distribution is scale-free be-
cause the degree distribution of the syntactic dependency structure of a sentence
is already scale free. Psentence(k), the probability that the degree of a word of
a word in a sentence is k is not a power function of k& (Fig. 6.6). Actually, the
data point suggests an exponential fit. To sum up, we conclude that scaling in
P(k), small-world with significantly high C' and the proper value of « are fea-
tures emerging at the macroscopic scale. The global patterns discussed above
are emergent features that show up at the global level.
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6.6 Discussion

We have presented a study of the statistical patterns of organization displayed
by three different corpus in this chapter. The study reveals that, as it occurs
at other levels of language organization (Steyvers and Tenenbaum, 2001; Sig-
man and Cecchi, 2002; Motter et al., 2002; Kinouchi et al., 2002), scaling is
widespread. The analysis shows that syntax is a small world and displays a
well defined and potentially universal global structure. These features can be
properly quantified and have been shown to be rather homogeneous. No one
can speak of a linguistic universal in standard linguistics before hundreds of lan-
guages have been investigated according to a sophisticated system of criteria for
the selection of the languages to study in order to cover any known type of lan-
guage family, etc. in a balanced proportion. Here, the context is different. Here,
we have the backup of universality in physics. Different patterns of statistical
patterns of complex networks are the result of very general mechanisms. To cite
some examples, the preferential attachment principle generates scale-free net-
works (Barabdsi and Albert, 1999; Dorogovtsev and Mendes, 2003) as well as a
conflict between vertex-vertex distance and link density minimization (Chapter
9). Randomness in the way vertices are linked is a source of small-worldness
(Watts and Strogatz, 1998). "How universal small-world is in syntactic depen-
dency networks?’ is a question more related to how randomly are words linked
than to how much sufficient is the language sample examined here. This allows
us to conclude that a new class of potential language universals can be defined
on quantitative grounds. We have taken the position of formulating the most
specific hypotheses according to out currently available data. Our findings do
not exclude investigating more languages in order to validate our hypotheses.

Understanding the origins of syntax implies understanding what is essen-
tial in human language. Recent studies have explored this question by using
mathematical models inspired in evolutionary dynamics (Nowak and Krakauer,
1999; Nowak, Plotkin, and Jansen, 2000; Nowak, 2000b). However, the study of
the origins of language is usually dissociated from the quantitative analysis of
real syntactic structures. General statistical regularities that human language
obeys at different scales are known (Hiebicek, 1995; Kohler, 1999; Kohler and
Altmann, 2000). The statistical pattern reported here could serve as validation
of existent formal approaches to the origins of syntax. What is reported here is
specially suitable for recent evolutionary approaches to the origins of language
(Nowak and Krakauer, 1999; Nowak, Plotkin, and Jansen, 2000; Nowak, 2000b),
since they reduce syntax to word pairwise relationships.

Linguists can decide not to consider certain word types as vertices in the
syntactic dependency structure. For instance, annotators in the Czech corpus
decided that prepositions are not vertices. That way, we have seen that dif-
ferent statistical regularities are distorted, e.g. disassortative mixing almost
disappears and degree distributions are truncated with regard to the remaining
corpora. If the degree distribution is truncated, describing degree distributions
requires more complex functions. If simplicity is a desirable property, syntactic
descriptions should consider prepositions and similar word types as words in the
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strict sense. Annotators should be aware of the consequences of their decision
about the local structure of sentences wit regard to global statistical patterns.

Syntactic dependency networks do not imply recursion, that is regarded as
a crucial trait of the language faculty (Hauser, Chomsky, and Fitch, 2002).
Nonetheless, different non-trivial traits that recursion needs have been quanti-
fied quantified:

e Disassortative mixing tells us that labour is divided in human language.
Linking words tend to avoid connections among them.

e Hierarchical organization tells us that syntactic dependency networks not
only define the syntactically correct links (if certain context freedom is
assumed) but also a top-down hierarchical organization that is the basis
of phrase structure formalisms such as X-bar (Bickerton, 1990).

e Small-worldness is a necessary condition for recursion. If mental naviga-
tion (Kinouchi et al., 2002) in the syntactic dependency structure can not
be performed reasonably fast, recursion can not take place. Pressures for
fast vocal communication are known to exist (Lieberman, 1991b; Hawkins,
1992).

An interesting prospect of our work is that explaining certain linguistic uni-
versals may also explain other network patterns outside the linguistic context
without loss of generality. We have seen for the non-trivial properties analyzed
here that human languages are likely to belong to the same universality class.
Such a class is a novel way of understanding world languages internal coher-
ence and essential similarity. In contrast, when regarding other systems, human
languages exhibit both unique and matching features.
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Figure 6.6: Cumulative Pseptence(k) for Czech (circles), German (squares) and
Romanian (diamonds). Here linear-log (a) and log-log (b) plots have been used,
indicating an exponential-like decay. Psentence(k) is the probability that a word
has degree k in the syntactic dependency structure of a sentence. Notice that
P> (1) is less than 1 for Czech and German since the sentence dependency trees
are not complete. If Pyentence Was a power function, a straight line should appear
in log-log scale. The German corpus is so sparse than its appearance is dubious.
Statistics are shown for L* the typical sentence length. We have L* = 12 for
Czech and German and L* = 6 for Romanian.



Chapter 7

From referential principles
to language

7.1 Introduction

Although many species possess rudimentary communication systems (Hauser,
1996; Ujhelyi, 1996), humans seem to be unique with regard to making use of
syntax (Hauser, Chomsky, and Fitch, 2002) and symbolic reference (Deacon,
1997; Donald, 1991; Donald, 1998). Recent approaches to the evolution of lan-
guage formalize why syntax is selectively advantageous compared to isolated
signal communication systems (Nowak and Krakauer, 1999; Nowak, Plotkin,
and Jansen, 2000), but they do not explain how signals naturally combine. We
have seen in Chapter 3 that if a communication system minimizes both the ef-
fort of the speaker and that of the hearer, signal frequencies will be distributed
according to Zipf’s law (with 8 = 2). Here we will show that such a communi-
cation principle gives rise not only to signals that have many traits in common
with the linking words in real human languages, but also to a rudimentary sort
of syntax and symbolic reference. Furthermore, we will identify different statisti-
cal patterns found in real syntactic dependency networks (Chapter 6). Finding
Zipf’s law in an animal communication system will be shown to be sufficient
condition for such a rudimentary form of language.

We have seen Zipf’s law meaningfulness is supported in the context of human
language (Chapter 5). Zipf’s law (with § ~ 2) is obtained when simultaneously
minimizing the communicative effort of the speaker and the hearer, the former
needing to minimize the uncertainty associated to the selection of a word and the
latter needing to minimize the uncertainty in the interpretation of the meaning
of a word (Chapter 3). Here we take Zipf’s law for granted and examine its
predictions.

81
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7.2 From Zipf’s law to language

We assume a general communication framework, and thus define a set of signals
S ={s1,...,8i, ..., s } and a set of objects of reference R = {r1,..,rj,...,7m }. We
define a matrix of signal-object associations A = {aij} 1<i<n,1<j<m)
where a;; = 1 if the i-th signal and the j-th object are associated and a;; = 0
otherwise. The matrix A defines a bipartite graph G,, ,,, (Bollobds, 1998) with
edges corresponding to the 1s in A. Let us write py for the proportion of signals
with k links. Assuming that all objects have a similar frequency, the relative
frequency of a signal is naturally defined as proportional to the number of objects
it is connected to, so Eq. 1.1 becomes

pe~ kP (7.1)

Here we shall only assume Zipf’s law, or rather Eq. 7.1. Our model for
Gy,m will be as follows: given the numbers n and m of signals and objects,
and for each k the proportion py of signals connected to k objects, the graph
Gn,m is chosen uniformly at random from among all bipartite graphs with these
properties. Equivalently, having decided the degree d(s;), i.e., the number of
associated objects, of each signal appropriately, we join s; to a random set of
d(s;) objects, independently of the other signals. We investigate properties that
the resulting graph has with high probability, noting that any such property is
a very natural consequence of Zipf’s law. Note that there is a transition in the
model at § = 2, due to the rapid change in the number of edges as 3 is varied
about this value. More precisely, the average degree of a signal is Z?zl kpr.
The infinite form of this sum converges if and only if 5 > 2; in this range the
average degree is asymptotically constant as m increases. In contrast, for § = 2
the average degree grows logarithmically with m and, for 8 < 2, as a power of
m. In asymptotic analysis we shall thus consider 8 = 2 + ¢ for some small e.

Different theoretical approaches to syntax assume that a connection between
a pair of syntactically linked words implies that the words are semantically
compatible (Chomsky, 1965a; Helbig, 1992). Here we assume that a pair of
signals are connected to each other through a common object, which, acting as
a rudimentary meaning, defines the semantic compatibility of such a pair. Thus,
given the signal-object graph G, ,,, we define a signal-signal graph G,, whose
vertices are the signals s;, in which two signals are joined if in G,, ,,, they are
joined to one or more common objects. For various reasons, our grammar is not a
grammar in the strict sense, but rather a protogrammar, from which full human
language can easily evolve. First, notice that such a grammar lacks word order
(Sleator and Temperley, 1991) and link direction (Mel¢uk, 1989). Second, such
a grammar does not imply (but allows) recursion (Hauser, Chomsky, and Fitch,
2002). Syntax likewise involves overcoming the limits of memory for keeping
track of the complex relationships between words within the same sentence
(Lieberman, 1991a). A phrase can be formed by choosing a pair of words (u, v)
in G, and all the words in a path from u to v. Total freedom for forming phrases
only exists when there is a path between every pair of vertices, that is, when
the network is connected.
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Figure 7.1: Examples of G,, », (A) and G,, (B) for § = 2 and n = m = 100.
White and black circles are signals and objects, respectively. First and second
neighbors of the most connected signal (red circle) in A (C). This and other
highly connected signals are the forerunners of linking words (e.g. prepositions
and conjunctions) in human language. First and second neighbors of other sig-
nals (red circles) in A (D). Linkers in human language have have (a) poor (or
absent) referential power (Givén, 2002), (b) high frequency (Baayen, 2001) and
(c) many connections with referentially powerful words (more precisely, disas-
sortative mixing; Chapter 6). Highly connected signals satisfy (a) since the
uncertainty associated to the interpretation of a signal grows with its number of
links (Fig. 7.1 C). Satisfying (b) follows trivially from the proportionality rela-
tionship between frequency and number of objects. (c) follows from the skewed
and long-tailed distributions for px and gi. Disassortative mixing supports (b-c)
(Fig. 7.4).
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When 8 = 2 + ¢, with high probability G,, is almost connected in the sense
that almost all signals lie in a single component (the limiting proportion does not
tend to zero as € — 0). See Fig. 7.1 A-B and Fig. 7.2 A. Almost connectedness
is easy to derive mathematically, although there is no space here for the details.
There are two key requirements. Firstly, the ‘expected neighbourhood expansion
factor’ f must be greater than one. Roughly speaking, f is the average number
of nodes (here signals) within distance ¢ + 1 of a given node s, divided by the
number within distance ¢, for £ in a suitable range. If ¢ is neither too small
nor too large and ¢ is a node at distance ¢ from s, then the expected number of
neighbours of ¢t at distance £ + 1 from s is essentially independent of ¢. Here,
noting that one ‘step’ in G, corresponds to two in G, ,,, one can check that

n

f==> (k= Dkp.

m
k

For m = n this is greater than 1 for 8 < 3.54.., and in particular for 5 ~ 2.
Given that f > 1, standard methods show that there will be a single giant
component, and that all other signals are in ‘small’ components with only a few
vertices. In fact, that is true for m < nlogn. For 8 = 2 + ¢, one can easily
check that asymptotically order c(e)n signals are in small components, and the
rest of G, is connected. Here ¢(€) is a constant depending on € and approaching
zero as € — 0. More precisely, this is true for m < n/e.

7.3 From Zipf’s law to syntactic dependency uni-
versals

We will show that different statistical patterns in real syntactic dependency
networks (Chapter 6) can also be found in G,,. We start with the degree distri-
bution, defining g, as the proportion of signals having degree k in G,,, recalling
that two signals are joined in G, if they are associated with at least one common
object. Let Z be the degree in G,, of a random signal s;, so qr = Pr(Z = k).
With 8 = 2 + € it is very unlikely that two given signals are joined to two or
more common objects, so Z is essentially

Z d(?‘j) — 1,

T‘jwsi,

where d(r;) is the degree in G, ,,, (number of associated signals) of an object
rj, and the sum is over all objects associated to s;. Now, as whether a signal
other than s; is associated to r; is independent of s; ~ r;, the terms d(r;) — 1
in the sum behave like essentially independent Poisson distributions, each with
mean A = (n/m) ), kpk, which tends to a constant as n,m — oo with n/m
constant. The distribution of Z does not have a very simple form, but its tail
does: the sum of Poisson distributions is again Poisson, and is very unlikely to
exceed its mean, here Ad(s;), by any given factor when the mean is large. Thus,
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Figure 7.2: Proportion of vertices in the largest connected component of G,
versus n and m. A gray scale from 0 (black) to 1 (white) is used. A. Signal
degrees in Gy, ,,, following a power distribution with 8 = 2. B. Signal degrees
in G, following a binomial distribution with the same expected degree as in
B. All values were calculated using numerical estimations for 10 < n,m < 103.
Loops in G, are forbidden.
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Figure 7.3: C, the clustering coefficient in G,, versus n and m. A gray scale
from 0 (back) to 1 (white) is used. A. Signal degrees in G, ,, following a
power distribution with 3 = 2. B. Signal degrees in G, ,, following a binomial
distribution with the same expected degree as in B. All values were calculated
using numerical estimations for 10 < n,m < 10%. Loops in G,, are forbidden.

one can check that as k — oo (keeping n/m fixed) we have
qr ~ ck™P, (7.2)

with ¢ a positive constant. Thus, while the exact distribution of Z is not a power
law, Z does have a power-law tail, with the same exponent (3 as the signal degrees
and the signal frequency distribution (Eq. 1.1). Eq. 7.2 is consistent with the
analysis of real syntactic dependency networks, where the proportion of words
having k syntactic links with other words is ~ k=7 with v &~ 2.2 (Chapter 6).
Note that v is in turn close to the the typical Zipf’s law exponent.

Syntactic theory regards certain function words such as prepositions and
conjunctions as linkers (Melcéuk, 1989), that is words serving for combining
words for forming complex sentences. The most connected signals in G, p,
share many features with real linking words (Fig. 7.1).

Assuming Zipf’s law with 8 ~ 2, other patterns of real syntactic dependency
networks (Chapter 6) are recovered
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Figure 7.4: |Dgegree| and 1 — |AT gegree|/2 in G, versus n and m. Tgegree is
the normalized correlation of the degrees at either ends of an edge. Al'gegree =
FZ‘;‘;LEE — Dgegree- ng‘;iee ~ —0.2 for human language (Chapter 6). Undefined,
positive and negative values of I'gegree and Al'gegree appear in red, blue and
gray scale, respectively. A gray scale from 0 (black) to 1 (white) is used. A.
I'gegree when signal degrees in Gy, ., follow a power distribution with 8 = 2. B.
The same as in A. for Al'gegree. C. I'gegree when signal degrees in G, ,,, follow
a binomial distribution with the same expected degree as in A. D. The same as
in C. for Al'gegree. All values were calculated using numerical estimations for

10 < n,m < 103. Loops in G,, are forbidden.
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Figure 7.5: |Tciustering| in Gy, versus n and m. Dgystering is the correlation
between C'(k), the clustering of a vertex whose degree is k, and k. Undefined,
positive and negative values of I'cjystering appear in red, blue and gray scale,
respectively. A gray scale from 0 (black) to 1 (white) is used. A. Signal degrees
in G, following a power distribution with § = 2. B. Signal degrees in Gy,
following a binomial distribution with the same expected degree as in B. All
values were calculated using numerical estimations for 10 < n,m < 103. Loops
in G,, are forbidden.
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Predictions of p, ~ k=7 with 3~ 2
Pattern | Origin
Connectedness (k) p
Significantly high clustering (k) p
Hierarchical organization (k) p
Disassortative mixing P
Signal degree distribution in G, (g ~ p
k=7 with v = )

Linking words as in humans (referen- p
tially useless highly connected words)

Table 7.1: Predictions of Zipf’s law with § ~ 2 and the origin of the predictions.
We distinguish two types of origin: (k) if the prediction basically depends on
the expected signal degree in G, 5, or P if the prediction can not be explained
by the previous one.

e High clustering (Watts and Strogatz, 1998) in Fig. 7.3.

e Disassortative mixing (Newman, 2002) in Fig 7.4.

e Hierarchical organization (Ravasz and Barabési, 2002) in Fig 7.5.

Such patterns are clear for n ~ m, where connectedness is warranted and
disappear when m > n. In order to understand the nature of the predic-
tions made by Zipf’s law, we define a null hypothesis. We have a distribution
for signal degrees P = {p1,...,Dk,...,Pm and distribution for object degrees
I = {my,...,; Tk, .., T }. We assume II is fixed and defined for simplicity as
7 ~ binomial(n, (k) p /m) where (k) is the expectation operator over the dis-
tribution P. We replace P by P’ for building the null hypothesis. We define
P’ = {p},} where pj ~ binomial(m,(k)p /n). Using P’, it can be seen that
qualitatively similar results are obtained for clustering (Fig. 7.3), hierarchical
organization (Fig. 7.5) but not for disassortative mixing (Fig. 7.4). The order
of the largest connected component behaves qualitatively in the same way for
P and P’ (Fig. 7.2). Thus, some patterns are qualitatively caused by a certain
average degree and not a specific distribution. The only patterns that depend
on the degree distribution are the type of mixing and obviously g, the degree
distribution in G,, and the presence of linking words as in human language (ref-
erentially useless highly connected words). We conclude that what was found
for only three languages in Chapter 6 is qualitatively universal, since Zipf’s law
is universal. Table 7.1 summarizes the universal predictions that Zipfs’s law
makes and the origins of the prediction, that is, P or (k) p.
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7.4 From Zipf’s law to symbolic reference

We assume Deacon’s understanding of symbolic reference (Deacon, 1997), which
is in turn mostly based on Peirce’s (Peirce, 1932). According to Peirce classifica-
tion, reference is iconic when the mapping between signals and objects is made
trough physical similarity. Reference is indexical when the mapping between
signals and objects is made trough temporal or spatial correlation. Convention
is the way signals and objects get linked in symbolic reference. The present
thesis operates at high level of abstraction. A binary matrix A = {a,;} tells
which objects every signal refers two. There is no constraint on the type of
references A defines. Nonetheless, for the purpose of the present discussion, it
is important to consider associations in A as non-symbolic, because we want to
explain how a symbolic system emerges from A. The definition of a symbol is
a yet open and highly debatable issue (Cangelosi, Greco, and Harnad, 2002)..
General overview of theories of reference are found in (Sinha, 1999; Cangelosi,
Greco, and Harnad, 2002).

The section is organized as follows. Section 7.4.1 defines a higher form
of reference on G, ,,. Section 7.4.2 shows how such higher form of reference
captures Deacon’s understanding of symbolic reference. Section 7.4.3 explains
how such a higher form of symbolic reference overcomes all the criticisms to
Deacon’s view.

7.4.1 A higher form of indexical reference

The configuration of G, ,,, can lead to higher order forms reference. If s; and r;
are linked and r; and s, are also linked (i # k), then a signal-signal referential
association between s; and sj, is formed via r; in only two steps. If the network
is connected, that is, there is a path between every pair of vertices, then refer-
ence between every signal and another signal in the network is allowed via less
than 2(n—1) links. The word ’allowed’ is important here. Such a higher form of
reference needs connectedness, but connectedness does not imply such a higher
form of reference is fully developed. Singnal-object connections define allowed
reference links among signals and objects. An objective measure of the effective
referential power of the communication system is not given by the amount of
links, but by I(R, S), the information transfer (Shannon, 1948). Certain signal-
object configurations that are connected destroyed reference. The situation is
well illustrated by an example. Chapter 4 showed that a complete bipartite
graph (every signal connected to very object) has no referential power at all,
that is I(R,S) = 0. Such a higher order form of reference is only effective when
connectedness is achieved by maintaining a reasonably high values of I(R,S).
We do not want a too restrictive definition for our higher form of indexical ref-
erence, so we will focus on almost connectedness instead of full connectedness.
We will say a network is almost connected when the largest connected compo-
nent contains more than about 1/2 of the nodes. To sum up, our higher form of
indexical reference is defined as (at least) almost connectedness with reasonably
high values of I(R,S). For the sake of simplicity, using ’connectedness’ alone
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Figure 7.6: I(R,S), the normalized information transfer in G,, ., versus n and
m. A gray scale from 0 (black) to 1 (white) is used. A. Signal degrees in G,
following a power distribution with 3 = 2. B. Signal degrees in G,, ,,, following
a binomial distribution with the same expected degree as in B. All values were
calculated using numerical estimations for 10 < n,m < 10%. Loops in G,, are
forbidden.

will always imply almost connectedness in what follows.

Assuming IT is fixed, the value of I(R,S) depends on the distribution P.
Now we show that Zipf’s law complies with the previous definition of a higher
order form of reference. The present chapter relies on the assuming that the
proportion of signals with k£ obeys Eq. 7.1 with 8 = 2 for Zipf’s law. We define
the normalized information transfer as

I(R,S) =I(R,S)/logm

where logm is the maximum value of H(R). Fig. 7.2 shows that G, and
therefore G, ,, is almost connected. Reasonably high values of I(R,S) are
obtained assuming Zipf’s law (Fig. 7.6 A). Using P’ instead of P for signal
degrees, similar results are obtained in G,, (Fig. 7.6 B). In both cases, m > n
must be avoided. Therefore, the mean signal degree Zipf’s law provides with
such a higher form of reference.
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7.4.2 Deacon’s view

Our higher order form of reference shares several traits with Deacon’s under-
standing of symbolic reference (Deacon, 1997):

Binary relationships between signals. Deacon’s view is lucid in identifying
the role of combinatorics as the essence of symbolic reference: Symbolic
reference derives from combinatorial possibilities and impossibilities, and
we therefore depend on combinations both to discover it (during learning)
and to make use of it (during communication). (Deacon, 1997)

Signal-signal referential associations (Deacon, 1997, p. 83).

Symbolic reference needs word ambiguity. A communication system max-
imizing the information transfer (i.e. minimizing the effort for the hearer)
by mapping every object with a distinctive signal (Chapter 3), is not ex-
pected to be connected at all.

It integrates syntax and symbolic reference. In Deacon’s words ’Thus,
syntax structure is an integral feature of symbolic reference, not something
added and separate’ (Deacon, 1997, p. 100). We have seen in Chapter 7
that connectedness in G,, gives rise to a system with different common
traits with human syntax. Connectedness in G,, follows trivially from
connectedness in Gy, .

The symbolic threshold that Deacon hypothesizes for the origins of sym-
bolic system (Deacon, 1997, p.79) can be explained better knowing that
transitions to connectedness are a sudden phenomenon. More precisely,
Zipt’s law, a particular instance of such higher order type of reference,
could have been a sudden event once a certain threshold in the balance
between hearer and speaker needs is crossed (Chapter 3).

7.4.3 Criticisms to Deacon’s view

Criticism to Deacon’s view of language can be followed in a series of papers
(Poeppel, 1997; Hurford, 1998; Hudson, 1999b). Now, we list and discuss the
different criticisms concerning Deacon’s interpretation of symbolic reference:

The clarity of the definition of symbolic reference.

Jim Hurford states in his review that Deacon’s explanations are not un-
equivocally clear to linguists and philosophers (Hurford, 1998). Let us cite
Peirce’s definition of symbolic reference (borrowed from (Oliphant, 2002)):
a symbol is ‘a sign (a signal here), which refers to the object it denotes
by virtue of law, usually an association of general ideas, which operates to
cause the symbol to be interpreted as referring to that object (Peirce, 1952,
page 276)". We will argue that standard approaches to symbolic reference
are not an example of clarity either. Here, the proper interpretation of
law’ is that the association between signal and object is not governed by
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any of the mechanisms of icons and indices. That does not exclude that
a symbol can behave as an index or an icon under certain circumstances.
It is important to notice that Peirce’s definition is the same as saying: a
symbol is something that is not either an index or an icon’. Peirce’s defi-
nition is via negation. It is not constructive. Therefore, Peirce sweeps all
the problem of defining a symbol under the magic word law or convention.
The original definition is not clear and Deacon tries to go beyond Peirce’s
definition in a constructive way. Even more constructive, because of its
precision, is the definition of a higher form of reference given in Section
7.4.1.

o What makes a difference between index and symbol.

Hudson finds strange that Deacon points out that the difference between
a symbol and an index is that a symbol is embedded in a system that
connects it to other symbols (Hudson, 1999b, p.3). Without connected-
ness, our higher order reference consistent with Deacon’s view disappears.
Therefore, if connections with other symbols disappear (which is more
general than connectedness), then symbolic reference disappears. Con-
nections are crucial in Deacon’s view. Our definition, constitent with
Deacon’s view,

o Confusion between syntagmatic or paradigmatic relations.
Hudson (Hudson, 1999b, p.3) points out that Deacon is not clear when
specifying the kinds of inter-symbol relations he has in mind, syntagmatic
or paradigmantic. It seems Hudson is not catching that Deacons is inten-
tionally using both. The type of reference presented in Section 7.4.1 and
the definition of syntax given in Section 7.3 are indissociable phenomena.
Syntactic links relationships emerge from referential connections.

o The misuse of the term reference.

In our view, Deacon provides lucid new insights into the understanding of
symbol. He makes a serious effort trying to unveil the relationship between
symbolic reference and indexical reference. Both forms are different but
not dissociated. Symbolic reference in humans is embedded on an indexical
reference system. As Deacon’s puts it, "Words point to objects (reference)
and words point to other words (sense), but we use the sense to pick out
the reference, not vice versa (Deacon, 1997, p. 83). He argues there is
a referential relationship between words which is regarded by Hurford as
a misunderstanding since reference for a philosopher, or for a linguist,
s a relation between an element in a language, like the word John and
something in the world (its referent), such the flesh-and-blood person John
(Hurford, 1998). We believe Hurford’s criticism needs to be reconsidered
for the following reasons:

— The path to symbolic reference used here reconciles last Hurford’s
criticisms and Deacon’s signal-signal associations because we assume
signals connect through common objects. There is no need to violate
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the orthodox definition of reference. A link between signals s; and s;
with ¢ # j (a link in G,,) implies two proper definitions of reference
(two links in G, ,): one from s; to some 7, and another from such
ri to s;, provided that ry is linked to both s; and s;.

— It is a tight understanding of indexical reference: the basis of indexi-
cal reference are spatial or temporal correlations between signals and
objects of reference. Association is a basic task that our brain per-
forms. Why should not be possible signal-signal associations? Why
can not we call them references? Hurford seems to be trapped by a
dualistic division between elements in a language and elements in the
world. Once a word is uttered, it becomes an element in the world.
An uttered word and the noise of a fridge are elements in the world.
Eventually, words are both linguistic and world elements.

— It raises a methodological problem: it leaves no room for abstraction
which is one the basic tools of science.

o What makes a symbolic system complez.

Hudson (Hudson, 1999b, p.3) says that ’A symbol system must, by defini-
tion, involve some minimum degree of complexity’ contradicting Deacon’s
argument that human uniqueness lies the use of symbols, not in com-
plexity. Probably, Hudson is taking a reductionist position. The higher
order reference based on connectedness plus constraints is an emergent
phenomenon. What make a reference system symbolic is not a new type
of signal-association but the emergence of connectedness.

e How a single symbol could had got off the ground.

Hudson (Hudson, 1999b, p.3) argues there can never be a first symbol be-
cause symbols (in Deacons’s view), by matter of definition, are embedded
in a system. Hudson invokes gradual evolution while an entire symbolic
system could have stemmed from simple disconnected referential system.
Chapter 3 points out that a perfect communication system (that is a dis-
connected communication system) is hard to maintain when the number
of objects to describe goes to infinity. Probably, as suggested in Chapter
3 two steps are needed. One for setting a perfect communication system
and another for moving the system to the transition where Zipf’s law is
found. We may not be able to start symbolic reference from scratch. In
that sense, Hudson comment is sharp.

o The dominance of symbolic reference over syntax.
The review by Poeppel does not poise any serious question about the Dea-
con’s interpretation of symbolic reference, but is skeptical about the dom-
inance of symbolic reference over syntax that Deacon defends. Poeppel’s
criticism has no consequence in the present thesis, because we give the
same weight to syntax and symbolic reference. It is important that Dea-
cons’ view is not reductionist but integrative although he makes emphasis
on symbolics reference: 'Thus syntactic structure is an integral feature
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of symbolic reference, not something added and separate (Deacon, 1997,
p. 100). While researchers are divided when considering syntax (Hauser,
Chomsky, and Fitch, 2002) or symbolic reference as the essence of human
language (Deacon, 1997; Donald, 1991; Donald, 1998) we hypothesize that
syntax and symbolic reference are two sides of the same coin, i.e., connect-
edness in signal-signal associations. The transition to syntax and symbolic
reference would have been as abrupt as the transition to Zipf’s law (Chap-
ter 3). The reader should not believe that syntax and symbolic reference
are therefore the same. One thing is syntax, combining semantically com-
patible signals, and another is a higher order form of reference with regard
to indexical reference, where a new form of reference appears when a ref-
erential link between a signal and an object propagates to another signal
linked to the same object. Symbolic reference implies such higher order
reference.

Hudson (Hudson, 1999b, p.5) proposes a mechanism by which children learn
a symbols and their meanings in way that he believes to solve the dark points
of Deacon’s view. The procedure follows three stages,

1. Learn the word as an index for a co-present object X.

2. Learn the word as an index for a co-present object X to which the speaker
is paying attention.

3. Learn the word as an index for an object X that it is not co-present but
which the speaker is paying attention to.

The previous procedure works well for specific words but not for very ambiguous
words such as ’get’. Hudson illustrates his procedure with the word ’cat’. This
is a very favourable case, since quantitative measures show that nouns are on
average less ambiguous than average words (Chapter 4). The previous procedure
can not be used for function words. If a symbol is whatever that can be learned
using Hudson procedure, then function words are not symbols. For instance, the
word ’of” can not be learned as an index. Furthermore, the word ’have’ is both
a function word (auxiliary verb) and a content word (e.g. meaning possession)
Only the content word can be learned by Hudson’s procedure. So, it follows
that 'have’ is both a symbol and not a symbol at the same time, which is a
contradiction.

7.4.4 Discussion

The definition of syntax given in Chapter 7.3 equates connectedness and syntax.
The previous definition is only valid in a reductionist context where syntax is
dissociated from other linguistic dimensions. If language is basically defined
as reference plus syntax, connectedness provides syntax but not reference. We
mentioned there is a debate about what is more essential for human language,
syntax or symbolic reference. Here, we understand both are indissociable traits.
Nonetheless, its reasonable to think that symbolic reference preceded syntax
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in the very origins of language (at least for a short period of time). This is
supported by the definition of syntactic signal-signal connections that stem from
signal-signal referential connections.

Although the definition of a symbol is a highly debatable issue (Cangelosi,
Greco, and Harnad, 2002), there is relative consensus about certain questions:

e At least in Peirce’s view, symbols are linked to its referent by conven-
tion (Deacon, 1997; Sinha, 1999; Cangelosi, Greco, and Harnad, 2002;
Oliphant, 2002).

e Symbols rest on non-symbolic types of reference (indexical relations of co-
occurrence (Hudson, 1999b; Sinha, 1999) or categorial representations in
(Harnad, 1990)).

The last point of consensus is specially important, because our higher order
reference can be constructed from any type of reference but keeping the original
type of reference. Our definition just needs the trivial requirement that the
source reference systems is non-symbolic, so it is consistent with the with the
consensus about symbolic reference.

We can replace the negative definition of symbolic reference by a positive
definition and shed light on the magic word 'convention’ or ’law’ used in Peirce’s
definition. With connectedness on mind, it is easy to see that the referents of
a signal propagate to other signals, the second neighbors of the signal in Gy,
in such a way that the interpretation of a signal s; is allowed to be not only a
function of the objects s; is linked to but also a function but also a function
of the signals sharing objects with s;. In the end, that should be true for 4th,
6th, 6th, ..., 2z-th neighbours, but it is reasonable to think that the weight of
the contribution of such neighbours should decay with . The fact that words
are disambiguated using different types of context (e.g. other words in the
same sentence) that have not necessarily nothing to do with ’element in the
word’ (as Hurford would say) supports the idea that ambiguities are solved via
neighbouring signals and objects. Such disambiguation via internal elements
can only take place under connectedness in Gy, ., and is the reason by which
symbols can be learned and also the reason by which index-based word learning
procedure fails..

Given the similarities between human words and the higher form of reference
presented here, its easy to suggest that symbolic reference needs such form
of reference. The type of reference formally presented here makes interesting
predictions:

e The transition to symbolic reference in preceded by a period of stasis in
the ontogeny and probably in the phylogeny of human language (Vihman
and Depaolis, 2000) because transitions to connectedness are usually sharp
phenomena (Bollobds, 2001).

e If a communication system is not symbolic (or equivalently it has no syn-
tax) then it is not organized according to Zipf’s law. The previous predic-
tion is supported by non-human species frequency distributions in Chapter
5.
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The previous strong predictions suggest that the type of reference presented
here is actually a sufficient for symbolic reference. Future research should make
emphasis on determining if such form of reference is actually a sufficient condi-
tion.

The present work clearly puts a step forward by providing the first formal
definition of a type of reference that could be basically equivalent to symbolic
reference. We have seen that Zipf’s law with 3 &~ 2 is a sufficient condition for
connectedness and the existence of linking words. Connectedness is in turn a
necessary condition for syntax with recursion and symbolic reference in signal-
object associations. Therefore, we can determine if a species has some sort of
language without having deciphered its utterances. Evidence of Zipf’s law (with
0 =~ 2) and reference are enough. A Rosetta Stone is not needed. Zipf’s law is
not the hallmark of human language (Chapter 5) but the hallmark of conflicting
communication constraints solving (Chapter 3). While the presence of Zipf’s
law in cetaceans and primates is still an open problem (McCowan, Hanser, and
Doyle, 1999; McCowan, Doyle, and Hanser, 2002; Janik, 1999), the possibility
that other species have converged to Zipf’s law, and thus to rudimentary form
of language, can not be denied.
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Chapter 8

Euclidean distance
minimization

8.1 Introduction

A key trait of the faculty of language-narrow sense is a mechanism combining
a finite set of words for yielding a potentially infinite amount of sentences (von
Humboldt, 1972; Hauser, Chomsky, and Fitch, 2002). This capacity yields the
so-called discrete infinity. World languages exhibit many common traits, the
so-called linguistic universals (Greenberg, 1968; Dryer, 1989). Here some of
them are examined. There are many constraints limiting the usage of discrete
infinity. Lung capacity imposes limits on the length of actual spoken sentences,
whereas working memory imposes limits on the complexity of sentences if they
are to be understandable (Hauser, Chomsky, and Fitch, 2002). The fact that
about 70% of the links in sentences are formed between words at distance 1 and
17% are formed at distance 2 in the Dependency Grammar Annotator Corpus
(Appendix A). suggests some sort of Euclidean distance minimization principle.
It is generally assumed that the universal properties of languages are ulti-
mately explained by both biological (i.e. innate) and functional factors (Hawkins,
1992). The distance between syntactically related items in sentences is a basic
ingredient of the cost of a sentence (Gibson, 2000; Hawkins, 1994) and has been
used for explaining word order universals (Hawkins, 1994). Cost minimization,
or equivalently, least effort principles are a successful explanation for other uni-
versals in quantitative linguistics. For instance, Zipf’s law (Zipf, 1972a) for word
frequencies can be explained by minimizing hearer and speaker communicative
needs (Chapter 3). Here it is shown that non-crossing dependency networks
follow from such principles, which leads to other successful predictions.
Minimizing the sum of the distances between linked vertices on a network
where vertices follow a sequence is known as the minimum linear arrangement
(m.la.) problem (Diaz, Petit, and Serna, 2002). The fact that human utterances
are linear (i.e. a row of basic units) was early emphasized by the French linguist
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Ferdinand de Saussure (de Saussure, 1916). In present-day words, utterances
have only one dimension. Sentences are thus good candidates for optimization
principles operating in the way words are arranged.

Suppose we have a network whose set of vertices is V' and its set of arcs is A
(a directed graph). Suppose 7(v) is the position of vertex v . Then, d(u,v) =
|m(u) — w(v)] is the distance between vertices u and v (where u,v € V). The
m.la. problem consists of finding the 7 such that Q(m, A) =3 d(u,v) is
minimum.

u,v)EA

Taking the words in a sentence as vertices and arcs as syntactic dependen-
cies, the remaining of the chapter is devoted to understand that {2 is actually
minimized in sentences and to explain its consequences linguistic universals and
the first language spoken on Earth.

8.2 Methods

Two different sources of data were used for the present study. Both are col-
lections of sentences with its syntactic dependency structure. The first is the
Dependency Grammar Annotator corpus and the second is a Czech corpus by
Ludmila Uhlifovd and Jan Krélik (Appendix A). When having complete struc-
tures was critical, only the Romanian corpus was used. Punctuation marks were
absent so distances between words are true distances in both cases. Czech and
Romanian are both SVO languages.

Random (undirected) trees were generated from scratch for different pur-
poses. The procedure was the following:

1. Start with a network with n vertices and no edges.

2. Choose a pair of vertices (i.e. words) chosen at random (all words have
the same probability to be chosen).

3. Link them if the pair of words is not linked and the graph is kept without
cycles.

4. If the the network has less than n — 1 links go to 2.
5. End.

A fast heuristic algorithm for solving the m.l.a. problem (Koren and Harel,
2002) is used for simplicity. Finding the m.l.a on a generic graph is a very
hard computational problem (Diaz, Petit, and Serna, 2002; Garey and Johnson,
1979). If the network is a tree exact computationally affordable algorithms exist
(Shiloach, 1979; Chung, 1984). Results will show that the exact approaches are
not needed in this context. Numerical calculations up to n = 11 showed that
the algorithm in (Koren and Harel, 2002) always finds the optimum on trees.



8.2. METHODS 101

20

Figure 8.1: The average value of < d >, the mean edge length, versus the length
of the sentence, n, for real (solid line) and optimized (dotted line) syntactic
dependency structures. A control < d > was calculated by scrambling the
words in every sentence 1000 times and averaging < d > (long dashed). The
latter case is < d >= "T'H as expected.
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8.3 Results

We define the average value of d, the distance between linked vertices, defined
as

1
<d>= p— 1Q(7r,A)
where n is the length of the sentence (notice |A| = n—1). Fig. 8.1 shows < d >
as a function of the n for real Czech and Romanian sentences. A control series is
calculated scrambling position of vertices (while the network structure remains
the same) and calculating €2 again (2 is used instead of Q(m, A) for brevity). It
follows for the latter case that

Pd)=""%Y (8.1)

d=1
(where E is the expectation operator) we get

mﬂzngl (8.2)

after some algebra. It becomes evident that real sentences minimize 2 far
from the upper bound provided by Eq. 8.2. The fact that < d > for real
sentences is greater than that of the heuristic approximation shows that using
the exact algorithm for trees (Shiloach, 1979; Chung, 1984) is not necessary in
this context.

Fig. 8.2 shows the amount of edge crossings, C, as a function of the tree size,
n, for random trees and their m.l.a. approximations. It can be seen that the
amount of links is very small for the m.l.a. counterparts. The fact is supported
by theorems stating, under rather general conditions, that for whatever crossing
arrangement m on a tree there exists an arrangement 7’ satisfying Q(7/, A) <
Q(m, A) with the same or less amount crossings (Shiloach, 1979).

We define the ratio

I'= Qreal/lea

where Q,.cq; and Q,,;, are, respectively, the average value of ) for the Romanian
collection of sentences and that of the corresponding m..a.’s. T' is a growing
function of n, the sentence length (Fig. 8.3). Therefore, the shorter the sentence,
the higher the validity of the Euclidean distance minimization principle.

A lot of research has been devoted to find the universal patterns of lan-
guages spoken on Earth. Probably, the most popular of them concerns word
order. Greenberg (Greenberg, 1968) classified languages according to the way
they ordered the subject (S), the verb (V) and the object (O). There are six
possible combinations of these elements: OSV, OVS, VOS, VSO, SOV and SVO.
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Figure 8.2: The average value of C, the number of arc crossings as a function
of the network size, n, for random trees and their corresponding m.l.a. C grows
faster than for random trees (black circles) whereas it remains very small for
minimum linear arrangements (white circles) where C < 0.022 for (n < 65).
Error bars length for m.l.a.’s are smaller than the mean values and thus not
shown. Averages over 500 replicas are shown.

Figure 8.3: The optimization ratio I' versus sentence length (solid line). Running
averages show a tendency of T to grow with n (dashed line).
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Surprisingly, only the last three are not rare in languages known (Greenberg,
1968; Dryer, 1989). SVO is a special configuration. Although SOV is twice
more abundant than SVO (Dryer, 1989), different parsing models predict that
SOV languages are harder to process (Pritchet, 1992; Babyonyshev and Gibson,
1999). Additionally, SVO is among the alternative word orders when VOS, VSO
and SOV are the dominant orders (Steele, 1978). Furthermore, Bickerton put
a step forward and stated there is a strong universal preference for SVO, which
was evident in pidgin and creole languages studies (Bickerton, 1981). Why are
some configurations preferred? We will see the m.l.a. can make predictions
concerning S-V-O possible orderings under certain conditions. Notice that the
basic word order chosen for a language by the generative tradition is the one
providing the most economical description of sentences in that language (Der-
byshire, 1977). Such basic order is not necessarily the most frequently used in
real sentences, where the Euclidean distance minimization principle operates.
We will hereafter implicitly assume we are referring to the most frequent word
order.

Knowing that the network structure of the triple is A = (S, V), (0,V) we
may write {1,, for Q(m, A) with m(z) = 1, 7(y) = 2, m(x) = 3 where z,y,z €
{S,V,0} and = # y # z. An m.lLa. can very easily explain why SVO is preferred
when S, V and O are formed by just one word each. We have that

[ 2 ifxe{SVO,0VS}

2, = { 3  otherwise. (8:3)
We may consider the general case where the structure of S,V and O are the
trees Ts, Ty and Tp, respectively. The whole sentence is formed by linking the
head word of Ts with the head word of Ty, and the head word of Tp with the
head word of Ty,. We define Qg, Qy and Q¢ as the sum of the distance between
linked vertices in Tg, Ty and Tp, respectively. Assuming Qg, Qy and Qo do
not depend on the type of S-V-O arrangement, we may write

6r =0 — Qs — Qy — Qo (8.4)

where x is whatever S-V-O arrangement. The condition Qgyvo < 2, becomes
dsvo < 0, for x # SVO. Assuming edges do not cross, we define L, and R,
as the number of vertices on the left and on the right of the head of T}, where
x € {S,V,0}. The number of vertices of T, is L, + R, + 1. We have

dsvo=Rs+ Ly +Ry+Lo+2
dsov =2Ly +2Ro+ Lo+ Rs+ 3
ovso = 2Ry +2Ls+ Lo + Rs + 3
bosv =2Rs +2Ly + Ro + Lg + 3
ovos = 2Ry +2Lo + Rog+ Lg+3
bovs =Ro+ Ly + Ry +Lgs+2.

(8.5)

We define A, = R, — L, with x € {S,V,0}. The condition dsyo < dsov leads
to
Ay < 2Ro + 1. (8.6)



8.3. RESULTS 105

The condition dsy o < dyso leads to
—Ay <2Lg+1. (8.7)

The condition dsyvo < dosy leads to
Ay < Ao+ Lg+1. (8.8)

The condition dsyvo < dyos leads to
Ag < Ay + Rp + 1. (8.9)

The condition dsyvo < dovs leads to
Ag < Ay. (8.10)

The previous inequalities have interesting properties. Eq. 8.6 is trivially
satisfied when Ay < 0 since Rp > 0. Eq. 8.7 is trivially satisfied when Ay > 0
since Lg > 0. Thereafter, if Eq. 8.6 is satisfied with Ay > 0, then Eq. 8.7 is
trivially satisfied. Inversely, if Eq. 8.7 is satisfied with Ay < 0, then Eq. 8.6 is
trivially satisfied. In other words, there are conditions where Bickerton’s SVO
universal preference follows trivially.

In order to investigate how much better is SVO versus the remaining orders,
all distinct possible configurations of (Ls, Rs, Ly, Ry, Lo, Ro) obeying

Ls+Rs+Ly+Ry+Lo+Ro+3=n (8.11)
LSaRSaLVaRV7LO;RO Z 0 (812)

(where n is the length of the sentence) were generated for different values of n.
p, the proportion of configurations where SVO was better than the remaining
arrangements according to Eq. 8.6,8.7,8.8,8.9,8.10 was calculated (Fig. 8.4). If
all different configuration of (Lg, Rg, Ly, Ry, Lo, Ro) have the same frequency
there are only three types of equations with respect to p, i.e. class I with Eq.
8.6,8.7, class II with Eq. 8.8,8.9 and class III with Eq. 8.10. In other words, we
have class I for SOV and VSO, class II for OSV and VOS and class III for OVS.
Thus, the complexity of the SVO preference problem has been reduced from
five opponents to just three. As expected, we have p = 1 for n = 3 (as shown
above) and p > 0.66 for n > 3 (Fig. 8.4) except for class III. Notice that we
are assuming that all configurations of (Ls, Rs, Lv, Ry, Lo, Ro) satisfying Eq.
8.12 have the same probability. Thereafter, this does not contradict that SOV is
twice more abundant than SVO in real languages. Real languages clearly have
biased the probabilities of (Lg, Rs, Ly, Ry, Lo, Ro) configurations and differ
in the amount of symmetry breaking (Jenkins, 2000). The only case where our
prediction could be fully observed is in pidgin-creole languages. Pidgin speakers
have their own mother tongue (different than the pidgin), which may introduce
some bias in the word orders selected. The repertoire of word orders used by
pidgin languages is heterogeneous (Arends, Muysken, and Smith, 1995). In
contrast, SVO ubiquity is overwhelming in creole languages (Arends, Muysken,
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and Smith, 1995), suggesting that the initial stage for creoles are configurations
having (almost) the same probability. This is consistent with the fact that
creoles have native speakers and pidgins do not (pidgin speakers are biased by
their mother tongue).

The Euclidean distance minimization principle should be more clear at the
very beginning of new languages and our findings strongly suggest that SVO
should have been the word order chosen when human language appeared on
Earth. SOV has been proposed as earliest basic word order (Newmeyer, 2000).
Assuming that OVS is not a regular candidate word order we hypothesize and
will informally show ad absurdum that a proto-word-order other than SVO is
less likely. OVS is not a regular candidate for a proto-word-order. Besides
the fact there are a very few OSV languages, mostly in Amazonia (Derbyshire,
1977), OVS is a worst case situation for discourse organization since topics tend
to appear early in the sentence and subjects are highly topical (Li, 1976; Givén,
1979). If a proto-word-order other than SVO (and OVS) is assumed then there
are two possibilities

1. Euclidean distance minimization is not the principle governing the dis-
tance between syntactically dependent words. This would have two con-
sequences:

(a) Dependency trees would usually have crossings (if n > 3), which is
a strictly universal regularity in present-day languages. As far as we
know, there is no S-V-O arrangement where crossings are usual, but
this is not an ultimate answer. There are two better reasons. Pro-
jectivity facilitates the analysis and synthesis of sentences (Melcuck,
To appear). Thereafter, violating it is not encouraged. Nonethe-
less, there is a way of not minimizing the length of sentences and
keep sentence structure without crossings: using sentences of length
1 < n < 3, since all their dependency trees are trivially non-crossing.
In that case, language does not qualify for the earliest language on
Earth, since it can not make use discrete infinity. This kind of short
sentence speech is found in children and trained primates (Johnson,
Davis, and Macken, 1999; Gardner and Gardner, 1994).

(b) Why the early hominids were endowed with a brain that allowed
them to overcome the cost of not minimizing the distance between
syntactically linked words must be explained (Gibson, 2000; Hawkins,
1994). Have nowadays brains decreased this capacity to link distant
words with respect to hominids? It seems unlikely.

2. (Ls,Rs, Ly, Ry, Lo, Ro) configurations are not equally likely. There are
only two possible explanations for the bias:

(a) The existence of an established language providing with the biases.
This contradicts we are modeling the earliest language with subject,
verb and object on Earth.
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Figure 8.4: p, the proportion of configurations were SVO is more economical
than the remaining configurations versus n. There are only three types of be-
havior: class I for SOV and VSO (left), class II for OSV and VOS (center) and
class IIT for OVS. p > 0.66 for class I and II. Solid and dotted lines indicate, re-
spectively, strict and non-strict satisfaction of the SVO superiority inequalities.

(b) Other forces favoring configurations other than SVO. This possibility
should explain why such forces would be overcome in pidgin-creole
languages, where SVO is universally preferred. It follows from the
negative correlation between both degree of optimization and sen-
tence length (Fig. 8.3) and the negative correlation between SVO
superiority and sentence length (Fig. 8.4) that preference for SVO
would have been maximal for the shortest sentences. If the first lan-
guage spoken on Earth increased mean sentence length over time as
children do over age (Reich, 1986), SVO preference would have been
maximal at the very beginning.

The possibility that projectivity is violated because Euclidean distance min-
imization was not a principle at the emergence of language can not be denied.
Nonetheless, if such a principle is assumed, the positive correlation between
I' and n suggests that factors preventing 2 from achieving a minimal value in-
crease its effect as n grows. Grammatical rules could be one of them. Languages
fixate precedence orders that the m.l.a can not supersede. For instance, Roma-
nian rules that adjectives usually follow the noun (whereas English rules that
adjectives must preceded its noun). Our results suggest the higher the length of
the sentence, the higher the amount of precedence rules that must be obeyed.

Precedence rules may have an m.l.a motivation, but it is interesting to un-
derstand how precedence rules may result from no kind of optimization, as the
following in silico experiments shows. A consensus compositional (Kirby, 2000)
or recursive grammar (Kirby, 2002a) may emerge through computer simulations
in a population of interacting agents without the need of Darwinian selection.
The S-V-O order that emerges differs from run to run. The emerging of a S-V-O
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order is the result of a symmetry breaking process among all possible configu-
rations (Jenkins, 2000). The experiment is a particular case of path dependent
process (Arthur, 1994) where an arrangement is chosen not according to how
optimal it is but according to how often it has previously been used. The m.l.a.
must compete against not only precedence rules, but also against the agreement
reached by a population. If forces other than m.l.a are very high and impose
a suboptimal arrangement, the m.l.a. may still survive under the form of com-
pensations for minimizing the cost of the arrangement. This is the hypothesis
defended and successfully verified by M. Ueno on a SOV language. She hypoth-
esizes, all languages are designed to be equally easy to process, regardless of
the basic word order. She shows that Japanese (SOV), a suboptimal language
with regard to SOV (assuming all configurations are equally likely), has a sig-
nificantly greater abundance of one place predicates than English (SVO). Con-
sistently, if predicate arguments are assigned to the verbal phrase V, a greater
abundance of one place predicates implies a smaller Ly , leading to a decrease
in [Qsvo — Qsvo| and higher chance that Eq. 8.6 is not satisfied.

Children have more limited resources than adult speakers for language (New-
port, 1990). The optimization principle discussed here should be specially ev-
ident in children utterances. Consistently, children sentences are the sentence
set giving the greatest support for M. Ueno’s hypothesis of compensations when
a suboptimal S-V-O arrangement is chosen (Ueno and Polinsky, 2002). More-
over, the positive correlation between I' and n predicts that children sentences
should be the ones where optimization and compensations hypothesis should be
observed, since mean sentence length is a growing function of age (Reich, 1986).

To sum up, the Euclidean distance minimization principle has to compete
against multiple factors (not aiming to be exhaustive):

e The precedence rules a language has determined.
e The influence of the speaker’s mother tongue in creole languages.

e Consensus. A certain word order might be optimal than other but not
accepted by the majority of the population (Kirby, 2000; Kirby, 2002a).

e Psychological preferences for certain word orders. Topical information
tend to generally occur early in a sentence (Li, 1976; Givén, 1979).

A m.l.a. has to compete against other forces so there are some conditions
where it should be clearly observed:

e Short sentences (Fig. 8.3).
e Children’s speech (Ueno and Polinsky, 2002).

e Creole languages. Pidgins do not have native speakers but creoles does
(Arends, Muysken, and Smith, 1995). The overhelming use of SVO by
creoles suggest that first infant creole speakers start from an unbiased
initial state.
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e The first language spoken on Earth, since it should be less influenced by
biases such as word precedence order (recall the ad absurdum informal
proof above).

The distance between linked words an ideal language subject to the Eu-
clidean distance minimization principle can be calculated. Assuming the the
m.l.a. is not distorted by other factors, we can predict P(d), the probability
that two linked words are at distance d. Using the maximum entropy prin-
ciple (Kapur, 1989a) for obtaining P(d) when the arc mean length < d > is
minimized, as Fig. 8.1 suggests, we get (Appendix F)

pa = a(n —d)e P (8.13)

where 3 is a parameter and

(B is a parameter satisfying
n—1
<d>= Z d(n — d)e=P4,
d=1

For large n (see Appendix F) we have

n—<d>=+(<d>?—-10n < d > —n?)'/?

~ .14
B 2<d>n (8.14)

and n and < d > are the only parameters.

If real sentences obeyed a full m.l.a. in full, a straight line in linear-log scale
with the predicted exponent would be expected. While Eq. 8.13 is close to
the real values for short distances, it can not directly explain the exponential
trend with different slope for long distances (Fig. 8.5). The slower decrease in
P(d) of real sentences suggests the presence of factors such as precedence rules
preventing P(d) to decrease as fast as a pure m.l.a would dictate. We may use
Eq. 8.1 as a null hypothesis for the expected distribution when distances for links
are chosen regardless of the distance. The null hypothesis clearly differs from
the real value of P(d). Since creoles are mostly SVO, our results suggest that
the agreement of creoles (at the earliest stages) languages with the functional
P(d) above should be higher than in regular languages.

8.4 Discussion
In short, inspired by Ueno’s proposal (Ueno and Polinsky, 2002) we hypothesize

that all human languages are strongly subject to an Euclidean distance mini-
mization principle. Such a principle makes the following successful predictions:
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Figure 8.5: The cumulative P(d), where P(d) is the probability an arc links
words at distance d. Real values (solid lines) can be compared to that of the
null hypothesis (dotted lines) and the maxent exponential model (dashed lines).
A. Romanian sentences having the typical length L* = 6. B. Czech sentences
having the typical length L* = 12. C. Romanian sentences having the mean
length < L >= 9 D. Czech sentences having the mean length < L >= 18. Real
P(d) clearly differs from the null hypothesis and approaches a straight line in
linear-log scale, agreeing with the exponential prediction derived in this chapter
for short distances and changing the slope but keeping the exponential trend
for long distances.
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e The projectivity constraint.
e An exponential distribution in the distance between linked pairs

e SVO has a wider efficiency (i.e. p > 0.66) than the remaining word orders.
The need of SVO for using alternative word orders is smaller than the
remaining word orders. The remaining word orders should make use of
alternative word orders to overcome its limitations. Consistently, SVO
has, in general, no common alternative orders whereas VOS, VSO and
SOV do (Steele, 1978). Not surprisingly, VOS, VSO and SOV have always
SVO as their alternative word order.

e The presence of compensations when the Euclidean distance minimization
principle is overcome by other forces. Compensations should be stronger
for class I order where p > 0.8 than for class II orders where p > 0.66.

e The way sentences must be arranged for achieving low values of 2 when-
ever SVO is not chosen (see Egs. 8.6,8.7,8.8,8.9,8.10).

e SVO is a privileged candidate for the order used by the first (syntactic)
language spoken on Earth.

Our work puts a step forward for understanding how optimization shapes
the structure of sentences from different points of view. Distance minimization
does not simply make current models more real. It explains many universal
features. Our work limits the scope of innateness for explaining language uni-
versals (Hawkins, 1992). Languages spoken on Earth exhibit them because
having limited resources is universal among human speakers.
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Chapter 9

Network distance
minimization

9.1 Introduction

Many essential features displayed by complex systems, such as memory, stabil-
ity and homeostasis emerge from their underlying network structure (Strogatz,
2001; Kauffman, 1993). Different networks exhibit different features at different
levels but most complex networks are extremely sparse and exhibit the so-called
small-world phenomenon (Watts and Strogatz, 1998). An inverse measure of
sparseness, the so-called network density, is defined as

()
p=— (9.1)
where n is the number of vertices of the network and (k) is its average degree.
For real networks we have p € [107°,1071] 1.,

It has been shown that a wide range of real networks can be described
by a degree distribution P(k) ~ k~7¢(k/£) where ¢(k/€) introduces a cut-
off at some characteristic scale {. Three main classes can be defined (Amaral
et al., 2000). (a) When ¢ is very small, P(k) ~ ¢(k/€) and thus the link
distribution is single-scaled. Typically, this would correspond to exponential
or Gaussian distributions; (b) as £ grows, a power law with a sharp cut-off is
obtained; (c) for large £, scale-free nets are observed. The last two cases have
been shown to be widespread and their topological properties have immediate
consequences for network robustness and fragility (Barabdsi and Albert, 2002).
The three previous scenarios are observed in: (a) power grid systems and neural
networks (Amaral et al., 2000), (b) protein interaction maps (Jeong et al., 2001),
metabolic pathways (Jeong et al., 2000) and electronic circuits (Ferrer i Cancho,
Janssen, and Solé, 2001) and (c) Internet topology (Jeong et al., 2000; Caldarelli,

IStatistics performed on Table I in Ref. (Barabdsi and Albert, 2002)

113
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Figure 9.1: Optimal transport networks in biology (A) and geomorphology (B).
A. An optimal tree structure that has been obtained for a vascular system on
a two dimensional perfusion area (Brown and West, 2000). B. An optimal
river basin network (also displaying tree structure) that has been generated by
minimizing energy expenditure (Rodriguez-Iturbe and Rinaldo, 1997).

Marchetti, and Pietronero, 2000), scientific collaborations (Newman, 2001) and
linguistic networks (Chapter 6).

9.2 Network optimization

Scale-free nets are particularly relevant due to their extremely high homeostasis
against random perturbations and fragility against removal of highly connected
nodes(Albert, Jeong, and Barabdsi, 2000). These observations have important
consequences, from evolution to therapy (Jeong et al., 2001). One possible
explanation for the origin of the observed distributions would be the presence
of some (decentralized) optimization process.

Network optimization is actually known to play a leading role in explaining
allometric scaling in biology (West, Brown, and Enquist, 1997; Brown and West,
2000; Banavar, Maritan, and Rinaldo, 1999) and has been shown to be a driving
force in shaping neural wiring at different scales (Cherniak, 1995; Mitchinson,
1991) (see also (Bornholdt and Sneppen, 2000)). In a related context, local
and/or global optimization has been also shown to provide remarkable results
within the context of channel networks (Rodriguez-Iturbe and Rinaldo, 1997).
By using optimality criteria linking energy dissipation and runoff production,
the fractal properties in the model channel nets were essentially indistinguish-
able from those observed in nature. Fig. 9.1 displays different optimal trans-
portation networks.

Several mechanisms of network evolution lead to scale-free structures within



9.2. NETWORK OPTIMIZATION 115

0.2

0.15

PN

0.1

0.05

l 1 l 1 l 1
7 08 09 1
T N T

0 PR T TR NI N P A
50.5 0.6 0.7 0.8 0.9 1 04 05 06 O

02

0.1 l e
J

c
P
|

Figure 9.2: Density (A), energy (B), clustering coefficient (C) and distance
(D) as a function of A. Averages over 50 optimized networks with n = 100,
T = (3), v=2/(3) and p(0) = 0.2 are shown. A: the optimal network becomes
a complete graph for A close to 1. The density of an ideal star network, pgstq, =
2/n = 0.02 is shown as reference (dashed line). The clustering coefficient of a
Poissonian network Chrandom = (k)/(n — 1) is shown as reference in C. Notice
that Crandom = p. The normalized distance of a star network is (see Appendix
E), dstar = 6(n —1)/(n(n + 1)) = 0.058 (dashed line) and that of a Poissonian

network, dyandom = logn/log (k) (dotted line) are shown for reference in D.



116 CHAPTER 9. NETWORK DISTANCE MINIMIZATION

HQ)

Figure 9.3: Average (over 50 replicas) degree entropy as a function of A with
n =100, T = (3), v = 2/(3) and p(0) = 0.2. Optimal networks for selected
values of A are plotted. The entropy of a star network, Hgsor = logn — [(n —
1)/n]log(n—1) = 0.056 is provided as reference (dashed line). A: an exponential-
like network with A = 0.01. B: A scale-free network with A = 0.08. Hubs
involving multiple connections and a dominance of nodes with one connection
can be seen. C: a star network with A = 0.5. B’: a intermediate graph between

B and C in which many hubs can be identified.

the context of complex networks in which the only relevant elements are vertices
and connections (Barabasi and Albert, 1999). Optimization has not been found
to be one of them (Barabdsi and Albert, 2002). In this context, it was shown that
(Metropolis-based) minimization of both vertex-vertex distance and link length
(i.e. Euclidean distance between vertices)(Mathias and Gopal, 2001) can lead
to the small-world phenomenon and hub formation. This view takes into ac-
count Euclidean distance between vertices. Here we show how minimizing both
vertex-vertex distance and the number of links leads (under certain conditions)
to the different types of network topologies depending on the weight given to
each constraint. These two constraints include two relevant aspects of network
performance: the cost of physical links between units and communication speed
among them.
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9.3 The optimization algorithm

For the sake of simplicity, we take an undirected graph having a fixed number of
nodes n and links defined by a binary adjacency matrix A = {a;;}, 1 <i,j < n.
Given a pair of vertices ¢ and j, a;; = 1 if they are linked (a;; = 0 otherwise) and
D;; is the minimum distance between them. At time ¢ = 0, we have a randomly
wired graph (i.e. a Poisson degree distribution) in which two given nodes are
connected with some probability p. The energy function of our optimization
algorithm is defined as
QA)=Ad+ (1= XNp

where 0 < \,d,p < 1. X is a parameter controlling the linear combination of
d and p. The normalized number of links (i.e. the link density), p is defined in

terms of a;; as
1
BRI
2/ i<y
and it is equivalent to Eq. 9.1. The normalized vertex-vertex distance, d, is
defined as d = D/D""¢%" being

1
D:@ZDij

i<j

the average minimum vertex-vertex distance and D!"¢?" = (n 4 1)/3 the max-
imum value of D that can be achieved by a connected network, that is, that of
a linear graph (see Appendix E).

We define a linear graph as a graph having 2 vertices with degree 1 and n—2
vertices with degree 2 2. A graph whose adjacency matrix satisfies

(1 ifli-gl=1
dij { 0 otherwise (9-2)

is a linear graph. Such a graph has the maximum average vertex-vertex distance
that can be achieved by a connected graph of order n (see Appendix E).

The minimization of Q(A) involves the simultaneous minimization of dis-
tance and number of links (which is associated to cost). In other words, Q is a
combination of two principles, a network distance principle and a density min-
imization principle. Notice that minimizing () implies connectedness (i.e.
finite vertex-vertex distance) except for A = 0, where it will be explicitly en-
forced.

The minimization algorithm proceeds as follows. At time ¢ = 0, the net-
work is set up with a density p(0) following a Poissonian distribution of degrees
(connectedness is enforced). At time ¢ > 0, the graph is modified by randomly
changing the state of some pairs of vertices. Specifically, with probability v,
each a;; can switch from 0 to 1 or from 1 to 0. The new adjacency matrix is

21t can be easily shown through induction on n that such a graph is connected and has no
cycles.
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accepted if Q(A, t+1) < Q(A,t). Otherwise, we try again with a different set of
changes. The algorithm stops when the modifications on A(t) are not accepted
T times in a row. The minimization algorithm is a simulated annealing at zero
temperature.

The basic scheme of the minimization algorithm is the same as in Chapter
3. Here, A is set up with a fixed density p(0) of ones at the beginning of the
procedure.

Hereafter, n = 100 *, T = (}), v = 2/(}) and p(0) = 0.2.

We define the degree entropy on a certain value of \ as

n—1

H({pr}) = = _ pxlogpy
k=1

where py is the frequency of vertices having degree k and 22;11 pr = 1. This
type of informational entropy will be used in our characterization of the different
phases .

Some of the basic average properties displayed by the optimized nets are
shown against A in Fig. 9.2. These plots, together with the degree entropy
in Fig. 9.3 suggest that four phases are present, separated by three sharp
transitions at A} &~ 0.25, A\ ~ 0.80 and A} ~ 0.95 (see arrows in Fig. 9.2).
The second one separates sparse nets from dense nets and fluctuations in H(\})
are specially high. p(A),C(A) = 1 for A > A =~ 0.95. For A=0and A=1a
Poissonian and a complete (p(A) = 1) network are predicted, respectively.

9.4 Optimal degree distributions

When taking a more careful look at the sparse domain (0, A}), three non-trivial
types of networks are obtained as A grows:

a. Exponential networks, i. e. Py ~ e /¢,

b. Truncated scale-free networks, i. e. P, ~ k™ Ve ¥/¢ with v = 3.0 and
& ~ 20 (for n = 100).

c. Star network phase (A} < A < A}) i.e. a central vertex to which the rest
of the vertices are connected to (no other connections are possible). Here,

n—1

1
Pk = 5k,1 + E(Sk,n—l (93)

3Higher values of n were very time consuming. The critical part of the algorithm is the
calculation of d which has cost ©(np(})), that is, 2(n?) and O(n3). Faster calculation im-
plies performing an estimation of d on a random subset of vertices or 1st and 2nd neighbors
(Newman, Strogatz, and Watts, 2001) that happened to be misleading.

4Entropy measures of this type have been used in characterizing optimal channel networks
and other models of complex systems (see (Solé and Miramontes, 1995)) although they are
typically averaged over time.
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Figure 9.4: Selected cumulative degree distributions of networks obtained min-
imizing Q(\). Every distribution is an average over 50 optimized networks with
n=100,T = (3), v =2/(3) and p(0) = 0.2. A: an exponential-like distribution
for A = 0.01. B: a power distribution with exponent v = 2.0 for A = 0.08 (with
a sharp cutoff at £ = 20). C: A =0.20. D: A = 0.50 (almost an star graph).
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A star graph has the shortest vertex-vertex distance between vertices
among all the graphs having a minimal amount of links (see Appendix
E). Consistently, star graphs are obtained when A is sufficiently large here
or using genetic algorithms in a similar context (Nishikawa et al., 2002).
Non-minimal densities can be compensated with a decrease in distance,
so pure star networks are not generally obtained here.

The distributions of (a-c) types and that of a dense network are shown in
Fig. 9.4. A detailed examination of the transition between degree distributions
reveals that hub formation explains the emergence of (b) from (a), hub compe-
tition (b’) precedes the emergence of a central vertex in (c). The emergence of
dense graphs from (c) consists of a progressive increase in the average degree
of non-central vertices and a sudden loss of the central vertex. The transition
to the star net phase is sharp. Figure 9.3 shows (H())) along with plots of the
major types of networks. It can be seen that scale-free networks (b) are found
close to A\]. The cumulative exponent of such scale-free networks is two and thus
v = 3.0, the same that it would be expected for a random network generated
with the Barabési-Albert model (Barabasi and Albert, 1999).

Our scenario suggests that preferential attachment networks might emerge
at the boundary between random attachment networks (a) and forced attach-
ment (i.e. every vertex connected to a central vertex) networks (c) and points
that optimization can explain the selection of preferential attachment strategies
in real complex networks. In our study, exponential-like distributions appear
when distance is minimized under high density pressure, in agreement with the
study by Amaral and co-workers on classes of small-world networks (Amaral et
al., 2000). This might be the case of the power grid and of neural networks
(Amaral et al., 2000). If linking cost decreases sufficiently, cliquishness becomes
an affordable strategy for reducing vertex-vertex distance. Consistently, graphs
tend to a complete graph for high values of A. The Watts model (Watts and
Strogatz, 1998) is a non-trivial example of what cliquishness (i.e. high cluster-
ing) can do for smallwordness. High clustering favours small-worldness (as seen
for A > A\%) but it is not the only mechanism (Dorogovtsev and Mendes, 2002).

We have seen the different optimal topologies depending on the value of .
We are aimed at defining an absolute measure of optimality depending on A\ we
can use for ranking the different topologies. We define

_1-d
p(A)
as such measure (Fig. 9.5 A). A sharp transition from sparse to dense networks

is clearly observed for A ~ 0.8. According to Fig. 9.5 A, the topology ranking
becomes,

T'()) (9.4)

1. Star networks.
2. Scale-free networks.

3. Exponential networks.
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4. Dense networks.

See the Appendix E for a summary of the basic features of the trivial topologies
appearing in our study.

A simpler version of the previous scenario appears in the context of Pois-
sonian graphs, where we define the optimality measure as S/p, where S is the
number of vertices of the largest connected component and p is both the ex-
pected network density and the probability that a random pair of vertices are
linked. Again, the maximum divides networks into disconnected networks and
connected networks at high link expense (Fig. 9.5 B). p ~ 0.8 divides low cost
strategies from high cost strategies as A = 0.8 does in Fig. 9.5 A. Notice that
the transition is smooth for the former and sharp for the latter. The Poissonian
scenario shows the optimization principles that may guide networks in early
stages to remain close to the connectedness transition. Once enough connect-
edness is achieved, networks may be guided by Eq. 9.4 or particular values of A
depending on the system.

9.5 Discussion

The network previous results and our conjecture concerning optimization in
complex nets requires explaining why star graphs are not found in nature. Dif-
ferent constraints can be restricting the access of star graphs to real systems.
Let us list some of them:

e Randomness. The evolution of the topology as A grows suggests a transi-
tion from disorder (exponential degree distribution) to order (star degree
distribution).

e Diversity. The number of different star graphs that can be formed with n
vertices is n whereas it explodes for exponential and power distributions.

e Robustness. Removing the central hub leaves n—1 connected components,
which is the worst case situation.

Whether or not optimization plays a key role in shaping the evolution of
complex networks, both natural and artificial, is an important question. Differ-
ent mechanisms have been suggested to explain the emergence of the striking
features displayed by complex networks. Most mechanisms rely on preferential
attachment-related rules, but other scenarios have also been suggested (Solé et
al., 2002; Vazquez et al., 2003) in which external parameters have to be tuned.
When dealing with biological networks, the interplay between emergent prop-
erties derived from network growth and selection pressures has to be taken into
account. As an example, metabolic networks seem to result from an evolution-
ary history in which both preferential attachment and optimization are present.
The topology displayed by metabolic networks is scale-free, and the underlying
evolutionary history of these nets suggests that preferential attachment might
have been involved (Fell and Wagner, 2000). Early in the evolution of life,
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Figure 9.5: A. The function I'(A) = (1 — d(X\))/p(N) for the minimum energy
configurations. B. The cost function S/p versus p for the Poissonian model.

metabolic nets grew by adding new metabolites, and the most connected are
actually known to be the oldest ones. On the other hand, several studies have
revealed that metabolic pathways have been optimized through evolution in a
number of ways. This suggests that the resulting networks are the outcome of
both contributions, plus some additional constraints imposed by the available
components to the evolving network (Morowitz et al., 2000; Schuster, 2001). In
this sense, selective pressures might work by tuning underlying rules of net con-
struction. This view corresponds to Kauffman’s suggestion that evolution would
operate by taking advantage of some robust, generic mechanisms of structure
formation (Kauffman, 1993).

The network morphospace resulting from the network distance minimiza-
tion and the link density principle have implications for the global and sentence
syntactic dependency networks. We have seen the statistical analysis of lin-
guistic networks reveals the existence of at least two classes of networks. From
the one hand, global syntactic dependency networks, resulting from collecting
dependency links from a collection of sentence. Such networks obey a degree
distribution

pe~ k™7 (9.5)

where v & 2.2. Such networks exhibit disassortative mixing, that is, a tendency
to avoid links between between vertices of a similar degree. From the other hand,
an heterogeneous set of semantic networks obey Eq. 9.5 with v =~ 3 but and
exhibit assortative mixing, that is, a tendency to form links between vertices of
a similar degree. We do not need to resort to the network distance and link den-
sity minimization principles for explaining the degree distributions of syntactic
dependency networks. We have seen such distributions easily follow from (a)
Zipf’s law and a linear relationship between word frequency and word syntactic
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degree (Chapter 6) and (b) the distribution of the number of objects per signal,
for sufficiently large k (Chapter 7). Since v ~ 2 implies a more dense network
with regard to v &~ 3 (see Chapter 7), navigation must be faster in the former
case, but as a side-effect of referential principles. As for semantic networks, the
exponents found are close to the one obtained from network distance least effort
and link density minimization principle in numerical calculations. Since network
sizes in the numerical calculations are far from that of real semantic networks
(the numerical exponent could depend on networks size) and optimization prin-
ciples compete against preferential attachment principles (Barabdsi and Albert,
1999), the optimization principles presented in the current chapter can only be
as possible explanations. Since fast communication pressures are at work in
human language, the principles presented are interesting prospects for linguistic
networks that have not been yet studied.

Network distance minimization can be regarded as an alternative hypothe-
sis against Euclidean distance minimization for the degree distribution in the
syntactic dependency structure of sentences, Psentence(k). We have seen that
Psentence(k) in Chapter 6 is close to an exponential function. An exponential
distribution has been obtained in the present chapter for small values of A, that
is when link density minimization is the most important force. Therefore, the
present chapter suggests network distance minimization has little (if any) con-
tribution to Psentence(k). Sentence structures minimize the Euclidean distance
and not the network distance because sentence structure is mostly determined
by discourse needs and the semantic relationships among the intervening words.
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Chapter 10

Other views

The present chapter is devoted to show how the present thesis fits in three major
fields, i.e. standard linguistics, the Chomskian tradition and general approaches
to the origins of language. Devoting a special section to the Chomskian tradition
is motivated by its influence on standard linguistics and even more important
here, its influence on approaches to the origins of language. When researchers
assume linguistic knowledge is innate (e.g. (Nowak and Krakauer, 1999)), a
division between I-language and E-language (e.g. (Kirby, 2002a)), phrase struc-
ture as model of syntax (Kirby, 2002a), the existence of universal grammar (e.g.
(Nowak, Komarova, and Niyogi, 2001)), that Zipf’s law is meaningless (e.g.
(Nowak, Plotkin, and Jansen, 2000)) or more widely, that there is no need to
check models with real data because statistical patterns are deceiving, these are
traces or of the Chomskian tradition.

10.1 Standard linguistics

Here we discuss two aspects of the present thesis that need to be clarified to the
light of standard linguistics:

o The nature of referentially useless words.
Standard linguistics distinguishes two major classes of words, i.e. content
words and function words. A content words is usually defined as a word to
which an independent meaning can be assigned whereas a function word is
a word that serves a grammatical function but has no identifiable meaning
L. Sometimes, it is just said the functions words have no meaning. One
has to bear on mind that referential power and semantic content are not
the same thing. The approach of the present thesis is that both kinds of
words have semantic content. If semantic content is measured in terms
of connections with objects of reference, then we may say that function

IDefinitions borrowed from www.hyperdictionary.com. The English dictionary is based
on WordNet 1.7.1 (by Princeton University)
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words have the highest semantic content. Omne can clearly argue that
function words are devoid of referential power, but one can not argue that
function words are devoid of semantic content, because semantic emptiness
and absence of referential power can not be distinguished, at least using
H(R|s), the entropy associated to the interpretation of a word s. We have
seen in Chapter 4 that if a word s has p meanings then H(R|s) = log u.
log 1t is therefore a measure of the decoding effort. Assuming that the
frequency of use of a word, f, is correlated with p, more precisely f ~ p,
and that words are used according to their meaning, a referentially useless
word can only come from

1. A word with no semantic content (u = 0), which contradicts the
definition of a word since it will never be used (f = 0). Another
contradiction comes from the fact that H(R|s) = —oo when pu = 0,
which contradicts that the effort for the hearer is maximal when a
word has no associated objects of reference.

2. A word with g > 0. Therefore, the only way of obtaining referentially
useless words is by means of too large values of . We know H (R, s) <
m, where m is the amount of objects of reference.

To put it our words, here function words are still content words (have too
meanings), but have too high H(R)|s;).

Meaning versus objects of reference The work presented has assumed in
many places a specific understanding of the meaning of a word. Meaning is
more than simple signal-object associations (Ravin and Leacock, 2000a).
Our understanding of what words refers to is closer to Pulvermuller’s
where word forms are associated to different brain areas, which in turn are
associated to different kinds of stimuli (motor, visual,...) (Pulvermuller,
1999; Pulvermuller, 2001). There are further reasons for realizing that
our approach differs from the classical understanding of meanings that
standard dictionaries mirror. If f is the frequency of a word and p its
number of meanings, we have assumed f ~ p but studies where number
of meanings is equated to number of entries in a dictionary lead to f ~ u”
with v = 1.76 (K&hler, 1986) of v ~ 2 in early G. K. Zipf’s studies
(Manning and Schiitze, 1999). Here we have chosen v = 1 for simplicity.
Are we being inconsistent with real language? No. Dictionary entries are
complex definitions involving the combination of more than one object of
reference. Accordingly, frequency grows faster with the number of entries
(v > 1.7 than with the number of objects (v = 1). Some of the findings
here are independent of the definition of meaning assumed. For instance,
the reader is proposed to change our abstract understanding of object
of reference by its own definition of meaning and the main results here
(Zipf’s law in a sharp phase transition) will still be valid. To sum up, we
can easily replace signals by words, but not objects by meanings. If two
signals are linked to the same object they are not necessarily synonyms.
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10.2 The Chomskian view

The Chomskian view makes some assumptions needing to be reconsidered:

o (Centralized versus emergent syntactic structures.

The Chomskian tradition is based on phrase structure formalisms for
describing the structure of sentences (Chomsky, 1957; Chomsky, 1995;
Uriagereka, 1998; Jackendoff, 2002). Phrase structure formalisms con-
sider that phrases are word groups that must be explicitly defined. The
dependency grammar formalisms assume that phrases are epiphenomena
of syntactic relationships between words ((Mel¢uk, 1988; Hudson, 1990)).
Through the eyes of complexity, many patterns we observe in nature such
as leopard stains (Murray, 1980) or shell patterns (Meinhardt, 1995) (Fig.
10.1) emerge from the interaction of individual components. There is no
painter with a paintbrush. There is no central control of the boundaries
of every component of the pattern. In contrast, phrase structure based
formalisms control the boundaries of phrases explicitly and syntactic de-
pendency based formalisms need to make a centralized decision about
forbidding or allowing projectivity (Hudson, 1984; Meléuk, 1988).

o The distance between formal descriptions and brain structure.

Phrase structure grammar are models that are far from the structure of the
brain. The brain itself is a network. Why the Chomskian tradition works
on a model that is difficult to map on the brain? Syntactic networks are
more suitable models since their mapping into brain structures is easier.
Moreover, syntactic dependency networks share common patterns with
the organization of the brain. The so-called small-world phenomenon is
present in global syntactic dependency networks (Section 6) whereas neu-
rons in the neocortex exhibit three degrees of separation (Braitenberg
and Schuz, 1992).Networks match the brain structure and statistical pat-
terns. What can be said about the similarities between rewriting rules and
brain structure? Our view is close to the so-called 'cognitive linguistics’
movement, which includes several specific theories: cognitive grammar
(Langacker, 1987; Langacker, 1990), construction grammar (Goldberg,
1995; Kay and Fillmore, 1990) and word grammar (Hudson, 1990; Hud-
son, 1999a). These theories share the view that there is no boundary
between the lexicon and the rules of grammar (Hudson, 1999b).

o The importance of syntaz.

The Chomskian tradition defends the autonomy of syntax (Chomsky,
1957), which postulates that the crux of human language can be fully
understood dissociated from other linguistic dimensions. Furthermore,
the Chomskian tradition considers syntax is the most important aspect of
human language faculty, but other views consider that symbolic reference
is the most important aspect. Here we show that the two opposite views
are correct because syntax and symbolic reference are two sides of the
same coin (Chapter 7).
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Figure 10.1: A photograph of Oliva porphyria and a model without central
control. Reproduced from (Meinhardt, 1995).
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e Dualism versus integration.
The present thesis is a challenging investigation against the dualistic un-
derstanding of human language in the Chomskyan tradition:

— The radical division between syntax and other levels (e.g. semantics),
i.e. the autonomy of syntax. Such a division precludes integrative
views where syntax and symbolic reference are two sides of the same
coin, i.e. connectedness (Chapter 7). The chomskian takes a reduc-
tionist position with regard to syntax.

— A radical distinction between competence and performance.

o The risk of idealized models of language.
As for the latter, N. Chomsky hypothetically formulated the distinction
between competence (the speaker’s knowledge of language) and perfor-
mance (the actual use of the language in concrete situations). Competence
is an idealization considering memory limitations, distractions, shifts of
attention and interest and errors, as irrelevant (Chomsky, 1965b). It has
been shown here that different linguistic universals can be explained in
terms of performance constraints. Human language performance is con-
strained by several factors, e.g. lung capacity imposes limits on the length
of actual spoken sentences, whereas working memory imposes limits on
the complexity of sentences is they are to be understandable (Hauser,
Chomsky, and Fitch, 2002). All these limitations are considered to be
outside of the language faculty (Hauser, Chomsky, and Fitch, 2002). It
is clear competence provides abstraction which is in turn necessary for
understanding the crux of human language. Since linguistic universals
suggest, in Miller-Chomsky’s words, powerful and universal forces (Miller
and Chomsky, 1963), and competence is devoted to capture the essence of
human language, one may wonder if competence is sufficient for explain-
ing linguistic universals. That is not the case, at least for the universals
studied here. We have seen human syntax and symbolic reference need
a conflict between coding and decoding least effort (Chapter 7). Coding
least effort is a word retrieval constraint inside our brain. Coding least
effort is a performance constraint. In contrast, decoding least effort can
be seen as a competence factor according to Chomsky’s ontology. Projec-
tivity is a consequence of an Euclidean distance minimization principle,
which is in turn a consequence of our brain processing-memory limitations
(Chapter 8). Euclidean distance minimization is a performance principle.
Therefore, competence provides too level of abstraction for explaining lin-
guistic universals. Most of XX century work on linguistics has consisted
of providing researchers with ontologies upon which construct theories
(Altmann, 1978). The competence-performance division belongs to such
ontologies and needs to be reconsidered. There are two prospects, looking
for intermediate levels of abstraction or probably better, integrative paths
where it is admitted that different linguistic universals emerge from the
the efficiency limitations of an ideal language faculty (Altmann, 1978).
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We have seen projectivity is a side-effect of an Euclidean distance min-
imization principle. In other words, projectivity is an emergent feature
of keeping distances between syntactically related words small. Consid-
ering projectivity a principle in the dependency grammar formalism is a
mistake. That is why syntactic formalisms need to be careful when mak-
ing the competence-performance division. The competence-performance
division is necessary, but performance limitations shape the structure of
sentences in non-trivial ways.

Zipf’s law meaningfulness.

Theoretical approaches to language in the Chomskyan tradition are based
on descriptions of linguistic phenomena, e.g. the structure of sentence and
metadescriptions and principles concerning such descriptions. Simplicity
and economy are examples of principles of descriptions and metadescrip-
tions. In the 60s, G. Miller and N. Chomsky took previously reported evi-
dence that intermittent silence models reproduced Zipf’s law (with § = 2)
(Miller, 1957; Mandelbrot, 1953) for arguing Zipf’s law is a meaningless
statistical regularity. N. Chomsky discouraged from then on research on
statistical linguistic patterns 2. If theoretical approaches to language avoid
contact with real statistical patterns and psychological evidence (among
others), the only possible way of filtering hypothesis are a prioristic prin-
ciples such as simplicity. That is why the simplicity of intermittent silence
made him the best model at that time. But the simplest explanation is not
the best explanation. Simplicity is a desirable requirement but it is not
qualifying from the point of view of the philosophy of science (Altmann,
1978). The sufficient condition for an explanation (obviously, besides be-
ing an explanation) is that its assumptions are valid. Models and even
null hypothesis must be well grounded. As discussed earlier, this is not
the case of intermittent silence models: words are chosen from a mental
lexicon (not created from scratch every time), words are used according
to their meaning, lexicon size is bounded by brain capacity. The work
presented here must be understood as the end of a repeating reference
to a badly-grounded explanation (Miller and Chomsky, 1963; Rapoport,
1982; Nowak, Plotkin, and Jansen, 2000; Nowak, 2000a; Nowak, 2000b;
Wolfram, 2002; Suzuki, Tyack, and Buck, 2003).

The definition of complex communication.

The Chomskian tradition has its own definition of complex communica-
tion. If human language is a complex communication system, their ap-
proach is a differential method. What makes human language unique (and
therefore complex) is the result of subtracting non-human species simple
communication systems to human language. Therefore, recursion is what
makes human language complex. Here, we have seen that Zipf’s law (with
B =~ 2) is the hallmark of complex communication, not only concerning
the way signals and objects associate, but also the syntactic patterns that

2George Miller, personal communication
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follow (Chapter 7). We therefore say that a communication system is com-
plex when it is capable to handle the maximum tension between hearer
and speaker needs. Our method is not differential and does not exclude
the possibility that other species have complex communication systems if
they exhibit Zipf’s law. We have also seen that species have different ways
of minimizing the decoding effort. Minimizing the total amount of mean-
ings per word is a simple strategy. Minimizing the entropy associated to
the interpretation of a words is a complex strategy (Chapter 4).

It is interesting to point that recursion is a weak indicator of complex-
ity. Recursion has more to do with performance than with competence.
The level of recursion has to do with brain capacity. Children have lim-
ited recursion skills, but their short sentences are still considered language.
Therefore, the crucial trait is combinatorics (based on units with reference,
see Section 1.3.1), that is, having the possibility of combining whatever
pair of words. The length of the message is left to brain capacity and the
necessary evolutionary gradual steps for increasing such capacity. Once
combinatorics is achieved (i.e. connectedness) then the level of recursion
is a quantitative metric. We have seen that connectedness is a side-effect
of satisfying simple communicative needs. Therefore, our definition of
complexity can not be ultimately defined in terms of connectedness but
in terms of how the effort for the hearer and speaker is minimized. Com-
binatorics is a qualitative trait but recursion (assuming combinatorics is
present) is a quantitative trait. Recursion is too specific. It is not focused
on quality but on a quantity. Basing human language uniqueness on a
high level of recursion seems an anthropocentric requirement for language
designed to keep humans on top of the animal kingdom for the following
reasons:

— Children have limited recursion.

— The communication systems of different species have not been deci-
phered or further understood (Section 1.3.1).

— Some species trained by humans exhibit limited recursion (Herman,
Richards, and Wolz, 1984; Greenfield and Savage-Rumbaugh, 1991).

e The nature of universality in language.
The Chomskian tradition hypothesizes the existence of a universal gram-
mar. The universal grammar is devoted to be the backbone from which
all existent languages on Earth stem. The universal grammar follows from
another hypothesis, the existence of a language acquisition device, whose
initial state would be the universal grammar (Uriagereka, 1998). Here
we have hypothesized the existence of a single universality class for all
languages on Earth. The arguments for the existence of the universal
grammar are qualitative in nature, and mostly based on the poverty of
stimulus paradox (Uriagereka, 1998). Our hypothesis of a single univer-
sality class is based on quantitative measures borrowed from statistical
physics. We have shown that many potential syntactic universals arise
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from from Zipf’s law. Thereafter, our universality class relies on the two
referential principles: coding and decoding least effort. Our approach
finds essential similarities and explains them as a side effect of reference.
Our approach to the essential similarities among languages on Earth is
closed. In contrast, the universal grammar formulates hypothesis that are
open. The validity of the universal grammar hypothesis and the language
acquisition device is left to other disciplines ranging from learnability the-
ory, typology and psycholinguistics. The Chomskian tradition is focused
on the consequences of this hypothesis and not on the validity of their
assumptions. But the nature of the universal grammar and the single
universality class proposed here is innate. While there is an open debate
about the origins of innateness in the context of universal grammar, our
universality class is innate because of a matter of mathematical truth.
Given a meaningful axiom, i.e. Zipf’s law, syntactic dependency univer-
sals follow (Chapter 7). A language organ (Pinker, 1996) and constraint
on what can be learned (Gold, 1967) are not necessary.

e Actual word order versus a priori word order.

The Chomskian tradition regards word order in languages far from actual
word order use. Such tradition is not interested in the frequency of every
word order but in what the basic word order is. The basic word order is
determined using parsimony criteria. In contrast, (Chapter 8) is focused
on the word order minimizing a certain cost function. If real sentences
minimize such a function, such word order should be the most frequent.
That should be the case of SVO, which is a privileged word order in the de-
scriptive approaches of the Chomskian tradition (Kayne, 1994; Chomsky,
1995).

o Why human language is off the chart.
Chomsky’s statement that ’human language is off the chart’ (Chomsky,
2002) is a natural consequence of a cascade of isolating assumptions:

— Rejecting the meaningfulness of statistical patters (e.g. rejecting
Zipt’s law meaningfulness).

— A radical division between syntax and other linguistic dimensions
(e.g. Zipf’s law needs semantics).

— A radical division between performance and competence (e.g. Zipf’s
law needs the word frequency effect).

The basic ingredients for human language are present in non-human com-
munication systems. Here we have provided the clues for understanding
what makes language complex.
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10.3 General approaches to the origins of lan-
guage

There has been a long debate about whether human language can be explained
from Darwinian evolution (Pinker and Bloom, 1990; Nowak, 2000b) (assuming
natural selection operates at the level of syntax) or it is a side effect of another
process or function (Chomsky, 1972; Chomsky, 1982b; Chomsky, 1982a; Chom-
sky, 1988a; Chomsky, 1988b; Gould, 1987; Chomsky, 1991). The first argument
has to face a fundamental question: how can syntax be selected if there is no
syntax at all? If syntax is assumed and natural selection has to make a deci-
sion about selecting or not, it is not a totally fair game, since how syntactic
communication naturally appears is not explained.

We have seen that Zipf’s law (with § = 2), a natural consequence of commu-
nication constraints, provides connectedness (a necessary condition) and link-
ing words (Chapter 7), supporting syntax is a by-product and not the object
of Darwinian selection. We are an not denying selection operates at the com-
munication level (coding/seconding) but at the syntactic level. Syntax is not
only a side-effect of referential constraints but also a consequence of cognitive
pressures. If a communication system operates at the perfect communication
phase (Chapter 3), increasing the number of objects forces the set of signals
to grow, increasing the coding effort and other costs (Chapter 3). There is a
threshold in the number of objects to describe. The effect of crossing such a
threshold is what we call a referential catastrophe. If the number of objects goes
to infinity, the number of signals also must go to infinity when the communica-
tion system is operating in the perfect communication phase (Chapter 3). This
idea of a cognitive threshold was hypothesized by Noam Chomsky by means of
philosophical enquiry (Chomsky, 1991) and recently formalized as a minimum
amount of objects to describe for Darwinian selection to favour syntax (Nowak
and Krakauer, 1999; Nowak, Plotkin, and Jansen, 2000).

Word binding is the by-product of complying with coder and decoder inter-
ests. It can be clearly seen what exaptations in human language are. Linking
words are exaptations of referentially useless words (Chapter 7). Referentially
useless words take over structural functions. This view agrees with the idea that
nature is a tinkerer and not an engineer with an empty piece of paper (Jacob,
1977).

Our work also sheds light on the abruptist (or punctuated sensu (Gould
and Eldredge, 1993)) versus gradualistic origins of language. Although fast
changes in the transition to language in children and in the transition from
pidgin to creole (the so-called creolization process (Bickerton, 1981; Bickerton,
1984; Romaine, 1992)), there is no empirical evidence that this was the case
for the very origins of human language. Theoretical approaches have shown
that transitions to syntactic communication should be abrupt in the context of
cultural evolution (Kirby, 2000) or once certain thresholds are crossed in the
context of Darwinian selection (Nowak and Krakauer, 1999; Nowak, Plotkin,
and Jansen, 2000). Our approach here is the first formal approach to syntax
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abruptly emerging from strictly referential principles.

Punctuated approaches (e.g. Section 1.3.3 and Chapter 3) easily explain the
gap between human language and (most of) non-human species (Ujhelyi, 1996).
Syntax and symbolic reference are given only if connectedness is reached in the
network of signal-object associations. Small changes in the average connectiv-
ity of the networks have no effect if they take place sufficiently far from the
transition.

Formal approaches to the origins of language can be followed through a se-
ries of books (Hurford, Studdert-Kennedy, and Knight, 1998; Briscoe, 1999; et
al., 2000; Cangelosi and Parisi, 2002) and recent reviews (Kirby, 2002b; Chris-
tiansen and Kirby, 2003; Nowak, 2000b; Nowak and Komarova, 2001; Nowak,
Komarova, and Niyogi, 2002). Such approaches can be classified into two ma-
jor lines, i.e. cultural and biologial evolution. The former assume language is
learned and the process leading to language is cultural evolution. The latter as-
sume language is innate and the process leading leading to language is biological
evolution, that is, Darwinian evolutionary framework based on iterated repro-
duction and selection of the best communicating individuals. The biological
approaches have recently benefited from the use of rigorous mathematical tools
borrowed from evolutionary dynamics, game and information theory (Nowak
and Krakauer, 1999; Nowak, Krakauer, and Dress, 1999; Nowak, Plotkin, and
Krakauer, 1999; Grassly, von Haeseler, and Krakauer, 2000; Nowak, Plotkin,
and Jansen, 2000; Nowak, 2000a; Nowak, 2000b; Krakauer, 2001; Komarova
and Nowak, 2001).

Different topics shed light on the similarities and differences of the present
thesis with previous work,

e The definition of language. Here we assume language is a combination of
both communication (successful information transfer among agents) and
syntax or symbolic reference. Other approaches assume syntax and sym-
bolic reference are dissociated, an never address the question of symbolic
reference, at least least following the complex understanding of symbolic
reference, and not simplistic approaches as in (Oliphant, 2002). Biolog-
ical approaches and certain cultural approaches use the communication-
syntax pair as the definition of language. In contrast, certain reductionist
approaches neglect communication (Kirby, 2000; Kirby, 2001; Kirby and
Hurford, 2001; Kirby, 2002a; Smith, Kirby, and Brighton, To appear).
Their results must be cautiously interpreted. They are interesting models
of language acquisition or syntax, but not of language in the strict sense.
Language implies syntax, but syntax does not imply language.

o The definition of symbolic reference. As far as we know, no previous formal
approach defines symbolic reference mathematically. A precise definition
of symbolic reference is given in the present thesis for the first time (see
Section 10.1).

e The definition of syntax. The evolutionary biology approaches defines syn-
tax as the possibility of forming combinations of a few signals, Such simple
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kind of approach seem to be absent in cultural approaches, that make em-
phasis on various aspects of syntax such as compositionality (Batali, 1998;
Kirby, 2000) and recursion (Kirby, 2002¢; Kirby, 2000; Kirby, 2002a). For
computational reasons, syntax is often simplified assuming a maximum
sentence length (e.g. (Batali, 1998), a finite meaning space (e.g. (Batali,
1998; Kirby and Hurford, 2001)) or limited recursion or compositionality
(e.g. (Batali, 1998)). Some of them make two heavy a priori assumptions
such as assuming the existence of a device capable of parsing context-free
grammars (Kirby, 2000; Kirby, 2002a). As it is said above, such models are
therefore models acquisition by an agent pre-adapted to language. Defin-
ing syntax as combinations of a few signals, has nothing to say about the
possibility of chaining such combinations for forming complex sentences.
Here we have taken a stronger and more realistic requirement for syntax
than in biological approaches, i.e. connectedness in the network of signal-
object associations, but minimizing the amount of a priori assumptions.

e The nature of signal object associations. Here we assume (without speci-
fying) the existence of a mechanism for forming signal-object associations
but makes no emphasis on whether it is innate or acquired. Different cul-
tural and biological evolution address that question (Kirby, 2002b). The
results presented here are thus independent of the mechanism chosen,
which provides us with a higher degree of abstraction.

e The nature of meanings. Here we assume a set of objects of reference,
but does not deal with the nature of such objects. Different cultural and
biological approaches address the question of how meaning is grounded
(Kirby, 2002b).

e How signals glue for signal. When signals combine in syntactic communi-
cation, the evolutionary biology approaches explain why signals glue but
do not explain how signals glue, e.g. the existence of links is assumed.
Cultural approaches do not explain ’how’ either. Using a recurrent neural
network for forming strings of signals (Batali, 1998) or using a context-free
grammar for modeling language (Kirby, 2000; Kirby, 2002a) links signals
a priori. But these approaches raise methodological questions. As Bick-
erton points out (Bickerton, 2000), natural selection works on variation:
it selectively increases the distribution of variations that are adaptative.
But how could there be a variation in syntactic ability before there was
syntax? If syntax is defined as ’'gluing’ words, how can word ’gluing’ be
selected before there is ’glue’? The same arguments applies to cultural
evolution. How can learning constraint 'gluing’ word systems before there
is no a priori 'glue’? Here semantic compatibility is the natural ’glue’.
Two signals are linked by a common object. The hypothesis supported
here is that word ’gluing’ is a side effect of Zipf’s law.

e The communication channel. The approach here assumes errors during
communication are irrelevant. While this is also the case of many cul-
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turally evolving systems (Hurdord, 2002), the evolutionary biology ap-
proaches consider errors as the essential factor for the emergence of syn-
tactic communication.

The origins of consensus. Referential decoding least effort. The evolution-
ary biology approaches introduce consensus in the fitness function explic-
itly while certain cultural approaches, such as the iterated learning model,
focus on various aspects of syntax neglecting consensus (Kirby and Hur-
ford, 2001; Smith, Kirby, and Brighton, To appear). Some approaches
consider stability, that is, how similar are the language of a child agent
with regard to its parent agent (Kirby and Hurford, 2001). That can be
seen as an intermediate situations between requiring consensus and not
requiring it. Here, consensus is assumed. The approaches here neglect
the fact that communication is a social phenomenon. We could assume a
population of agents with its own linguistic knowledge (e.g. signal-object
associations) in order to allow for discrepancies. Our models are a sort
of mean field, that is, we assume the the linguistic knowledge of every
agent is (almost) the same. Luckily, different sources indicate that con-
sensus in the signal-object associations a population is expected in innate
or culturally evolved signaling systems (Kirby, 2002b). Most researchers
would probably agree that evolution by natural selection can tune a simple
communication system under reasonably ecological assumptions. Innate
signaling systems are a mature area (Kirby, 2002b). As for culturally
evolved systems, a rich array of simulation experiments reaching consen-
sus is supported by strong results from the study of matrix of interactions
between agents. Convergence to a common language is warranted for ir-
reducible stochastic matrices of interaction (Cucker and Smale, 2002).

Referential coding effort. The present thesis is the first formal study of
the coding effort an its consequences.

The origins of syntar. Here syntax is shown to be a side effect of com-
munication principles in a noiseless channel (i.e. coding/decoding least
effort) whereas the evolutionary biology approaches assume a Darwinian
competition between syntactic an non syntactic strategies. Syntax is not
a side-effect in the strict sense for the latter since how words glue is not
explained.

Zipf’s law. The evolutionary biology approaches generally assume (but
not explain) Zipf’s law when signal frequencies are needed. They suggest
intermittent silence models as a possible explanation. As far as we know,
Zipt’s law is not a studied and not even assumed in the cultural approaches
to language. Here Zipf’s law is the bulk of our argumentation and not
assumed when studying communication systems.

What favours small vocabularies. When explaining why vocabularies in
non-human species are mostly small (assuming articulatory constraints
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are irrelevant), the evolutionary biology models hypothesize that commu-
nication with errors forces to choose a distinguishable subset of signals.
Cultural approaches to the origins of language, mostly based on computer
simulations, pay no attention to vocabulary size constraints, probably due
to the fact that in some cases the possible vocabulary can be arbitrarily
large or its limited in order to run computer simulations fast. Here, the
coding effort precludes vocabulary growth.

o The basic mechanism for language. We assume optimization leads to syn-
tax. For the evolutionary biology approaches Darwinian evolution is the
optimization mechanism. Cultural evolution leads to syntax even when
there is no population turnover (Batali, 1998; Kirby, 2002c). Different
approaches where consensus is neglected lead to syntactic communication
through leaning constraints (Kirby and Hurford, 2001). Here, the exact
mechanism is left for future research.

e Language is a phase or a transition between phases. The evolutionary bi-
ology approach hypothesizes that overcoming phase transitions could have
been the origin of the emergence of syntax (Nowak and Krakauer, 1999).
We do not make any consideration about the consequences of increasing
linking connectivity in a way that the meaning of signals degenerates. We
discussed in Chapter 7 that words link through their meanings. Therefore
increasing signal combinations too much can lead to referentially useless
words. Therefore, a certain trade-off must be present. When different
phases are identified in models of cultural evolution (Kirby, 2000), lan-
guage is the final phase. Here, we show that early human communication
could have benefited from remaining in a referential phase transition. We
do not need an extra argument for keeping the amount of signal-object
associations at the minimum value needed for connectedness Zipf’s law
does it by placing the system not only in the edge of a referential phase
transitions but also in the edge of a connectedness phase transition.

o Gradual versus abrupt evolution. Here we provide support the transition
to syntax must be abrupt, as well as in biological and certain cultural
approaches where sharp transitions between phases are found.

o (Cognitive thresholds. Biological approaches and the approach here show
thresholds in the number of objects to describe lead to syntax but through
totally different paths, i.e. a referential catastrophe here and an error
threshold in the evolutionary biology approach. As far as we know, cul-
tural approaches have not addressed the question of cognitive thresholds
directly.
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Chapter 11

Conclusions

11.1 A new framework for the study of human
language

The evidence presented here claims for a new view of language and its origins
through the eyes of physics. A phase transition to connectedness is a precise
definition of the misleading formulation of a ’sudden macromutation’ for the ori-
gins of syntax (Bickerton, 1990; Bates, Thal, and Marchman, 1989) (in the best
case misleading because it calls for a genetic driven origins). A brain achieving
a certain level of complexity as the cause of human language” (Chomsky, 1991)
can be more accurately formalized in terms of cognitive thresholds, that is,
thresholds in the number of objects to describe (Chapter 3 and Nowak, Plotkin,
and Jansen (2000)). Connectedness is a necessary condition for syntax but is
equivalent to a rudimentary form of syntax where recursion is not implied but
allowed. Connectedness is a concept borrowed from graph theory. Connect-
edness assumes that the Euclidean distance between vertices does not matter.
Percolation is similar to connectedness but Euclidean distance between units
matters. Percolation arises from a number of problems in condensed matter
physics. An example is a fluid passing through a porous media. The porous
media (e.g. a rock) have many small random channels. We wonder if the fluid
can flow through the material. The answer depends on the amount channels
and the way they are arranged. If there are too few channels the fluid cannot
pass through. It is said the system does not percolate. When there are more
channels, the fluid can pass through the solid. In that case, it is said the system
is percolating (Stauffer and Aharony, 1994). A rudimentary form of syntax and
percolation in water passing trough a porous media are essentially the same
phenomenon.

Gaps between human language and (most of) non-human species commu-
nication systems can be replaced by phase transitions. If the transition to
language is a continuous phase transition (Section 1.3.3 and Chapter 3), inter-
mediate stages should be very rare but may exist. The origins of the limited
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abundance of intermediate stages is due to the fact that the transition takes
place in a very narrow domain of the parameter governing the transition be-
tween phase, e.g. p in Section 1.3.3. It must be understood that the situation
in the dual least effort model is slightly different (Chapter 3). There, human
language (Zipf’s law) is not one of the phases but the edge between two phases.
Zipt’s law is not a phase but the transition itself. Thus, communicating (without
Zipt’s law) and non-communicating species are different phases.

Phase transitions can explain abrupt changes, but abrupt changes to not
imply phase transitions. For instance, path dependent processes (Arthur, 1994,
Jenkins, 2000) (not necessarily phase transitions) may underly the fast word
order rearrangement and fixation from pidgin to creole languages (Bickerton,
1990).

The sudden emergence of language is not only a consequence of a phase tran-
sition, but also a consequence of an explosion concerning language features. We
have seen that Zipf’s law has non-trivial consequences, i.e. connectedness (and
therefore combinatorics), linking words (e.g. prepositions) as those of human
language and hierarchy (Chapter 7). The present thesis limits the scope where
natural selection operates. Non-trivial features of language are given for free
in agreement with S. Kauffman’s understanding of evolution (Kauffman, 1993).
The objects upon natural selection could operate in human language need to
be reconsidered. Proponents of natural selection (Pinker and Bloom, 1990;
Bates, Thal, and Marchman, 1989) in human language must first exploit deduc-
tions upon language laws such as Zipf’s before wondering how a certain feature
evolved from natural selection. The present work is the beginning of axiomatico-
deductive approach to the origins of language. Axiomatico-deductive system
statistical patterns have been previously developed in quantitative linguistics
(Kohler, 1986).

Zipt’s law (with § & 2) is called a law because of its robustness. It appears in
a wide range of different linguistic contexts (Balasubrahmanyan and Naranan,
1996). But Zipt’s is an empirical law and not a law in the strict sense (Li, 1998).
We have shown that Zipf’s law is a power function linked to a continuous phase
transition. Therefore, the gate towards an analytical approximation for such a
statistical regularity is open and so is the possibility of considering Zipf’s law a
law of reference.

There are further reasons for considering Zipf’s law as a fundamental law of
language. First, we have mentioned above that different syntactic features of
language stem from that law. Zipf’s law has a great deductive power. Second,
the construction of a theory of language correlated with the evolution of lan-
guage needs to establish a set of basic laws where one or more deduction steps
can be mapped into evolutionary stages. For instance, Zipf’s law with § ~ 2
leads to connectedness and connectedness with minimal Ep leads to Zipf’s law
with 5 &~ 2 (assuming word frequencies must be a power function). We have
seen that connectedness must be regarded as a by-product and not as a cause of
Zipt’s law (Chapter 1). Therefore, Zipf’s law should be among the set of basic
laws. The present thesis puts a step forward for a theory of language.

The deep similarities among languages on Earth call for a universal grammar.
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Statistical physics provides powerful techniques for quantifying such similarities.
The features studied here (Chapter 6) suggest that all existent human languages
belong to the same universality class but adding more languages or considering
other statistical measures could lead to a deeper classification of languages than
typology currently provides.

11.2 Contributions

The main theoretical contribution of the present work are:

The existence of a core and a peripheral lexicon in a community of speakers
of the same language. Zipf’s law with 8 ~ 2 is only found in the former
(Chapter 2).

Intermittent silence models are not either models for Zipf’s law or null
hypothesis. Intermittent silence models neglect words are used according
to their meaning (Chapter 5) and the existence of a mental lexicon.

Word frequency distributions must be explained assuming the frequency
of a word is determined by the frequency of its meanings. The simplest
approach is to assume all objects have the same frequency and define
signal frequency proportional to the number of objects (Chapter 4).

Zipf’s law is a characteristic power distribution of a continuous phase
transition (Chapter 3).

Zipf’s law is not a mere empirical regularity but a law of reference (Section
11.1).

Maximizing Shannon’s definition of information transfer is not sufficient
for modeling complex natural communication systems. Minimizing the
entropy of codes (coding least effort) is a conflicting constraint needing to
be considered (Chapter 3).

The scale-free degree distributions of syntactic dependency networks are
a consequence of Zipf’s law for word frequencies (Chapter 7).

The transition to syntax must be sharp and continuous at least in children
(Section 1.3.3). If syntax appeared after Zipf’s law in early hominids, the
transition to syntax would have been as abrupt as the transition to Zipf’s
law.

A formal definition of symbolic reference (Chapters 7,10).

Connectedness is a necessary condition for syntax (Section 1.3.3 and 7)
and symbolic reference (Chapter 7).
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Zipf’s law with 3 = 2 is a core pattern of human language. From it follows
connectedness (but not recursion), the existence of linking words and non-
trivial regularities at the level of word-word syntactic interactions such as
hierarchical organization and disassortative mixing (Chapter 7).

The exponent of Zipf’s law contains information about the communicative
efficiency of the system (Chapter 4).

Simple strategies for coding and decoding (Chapters 3,4) do not lead to
Zipf’s law, suggesting Zipf’s law is the hallmark of complex communication
systems.

The role of natural selection for shaping human language need to be recon-
sidered because of an explosion of non-trivial language features following
directly from Zipf’s law.

Human language is a by-product of referential principles.

Syntactic dependency networks belong essentially the same universality
class regardless of the language into consideration. Instead of a universal
grammar hypothesis to account for world languages essential similarities,
a single universality class is proposed. We have seen that disassortative
mixing, hierarchical organization and a negative correlation between clus-
tering and degree (Chapter 6) follow from Zipf’s law (Chapter 7). There-
fore, assuming Zipf’s law is universal in world languages, there is only one
possibility: the properties of syntactic dependency networks are univer-
sal. If not, there are languages where Zipf’s law not obeying Zipf’s law
with 0 =~ 2 and therefore, very unlikely, there are languages where the
maximum tension between hearer and speaker is avoided.

Syntactic dependency networks and semantic networks (e.g. thesaurus
networks) belong to different universality classes.

Euclidean distance minimization explains projectivity, the distribution of
the distance between syntactically linked words and SVO order privileged
position in real language use.

Projectivity is not a principle but a side effect of a Euclidean distance
minimization principle (a minimum linear arrangement) (Chapter 8).

The outcome of network distance and link density minimization is a small
network morphospace.

The empirical contributions of this work are:

e Two domains in the frequency of words in multi-author collections of texts

(Chapter 2).

e Words of the same length also obey Zipf’s law with § = 2 (Chapter 5 and

Appendix C). In contrast, intermittent silence fails, even using biased real
letter probabilities (Appendix C).
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e Nouns in multiauthor corpora follow Zipf’s law with 8 = 3.35 (Chapter
4).

e Maximum entropy in py (the proportion of signals with k objects) is found
in the vicinities of a referential phase transition (Chapter 4).

e Most of syntactically related words in sentences are at distance less or
equal than two (more precisely, 87%; Chapter 8).

e The distance between syntactically related words takes an exponential
form (Chapter 8).

e Global syntactic dependency networks exhibit power functions in their
degree distributions and betweenness centrality distributions (Chapter 6).

e Sentence syntactic dependency networks exhibit a rather exponential like
degree distribution (Chapter 6).

e Global syntactic dependency networks are small-worlds and show disas-
sortative mixing and hierarchical organization (Chapter 6).

e Syntactic dependency degree is a linear function of word frequency (Chap-
ter 6).
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Appendix A

Data sources

The British National Corpus

An English corpus formed by a collection of text samples (generally not longer
than 45,000 words). It is synchronic (it includes imaginative texts from 1960,
informative texts from 1975), general (not specifically restricted to any partic-
ular subject field, register or genre), monolingual (it comprises text samples
which are substantially the product of speakers of British English) and mixed
(it contains both examples of both spoken and written English). Additional
information is available at http://info.ox.ac.uk/bnc.

The Czech Academy Corpus

A Czech dependency corpus annotated by Ludmila Uhlitova, Jan Kralik among
others (Uhlirova, Nebeskd, and Kralik, 1982; Tesitelova, 1985). The corpus was
compiled at the Czech Language Institute, Prague, within 1970-1985.

The corpus contains 562820 words and 31701 sentences. Many sentence
structures are incomplete in this (i.e. they have less than n — 1 links, where n
is the length of the sentence). The proportion of links provided with regard to
the theoretical maximum is about 0.65.

The Dependency Grammar Annotator samples

The Romanian corpus formed by all sample sentences in the Dependency Gram-
mar Annotator website '. It contains 21275 words and 2340 sentences. The
syntactic annotation was performed by hand.

The Negra Corpus

A German corpus (The Negra Corpus 1.0) containing 153007 words and 10027
sentences. The formalism used is based on the phrase structure grammar.

Thttp://phobos.cs.unibuc.ro/roric/DGA /dga.html

145



146 APPENDIX A. DATA SOURCES

Nonetheless, for certain constituents, the head word is indicated. Only the head
modifier links between words at the same level of the derivation tree were col-
lected. The syntactic annotation was performed automatically. The proportion
of links provided with regard to the theoretical maximum is about 0.16.



Appendix B

Conversion between power
distributions

Frequency distributions can be presented in terms of frequency versus rank of
as a probability (density) function. If the distribution is follows a plain power
function, as in Zipf’s law, the frequency versus rank representation is

P(i) = pyi® (B.1)

where P(7) is the normalized frequency of the i-th most frequent word in the
sample, i > 0, o ~ 1 (Zipf, 1972a; Casti, 1995; Tsonis, Schultz, and Tsonis,
1997) and p; is the probability of the most frequent word (Tuldava, 1996).

The same power distribution can also be presented as probability (density)
function:

P(f)oc f7° (B.2)

where P(f) is the probability that a word is present f times in a text.

We can relate the rank with the probability density function. Let us denote
by m,, = T'Q(n) the number of words having population n, where 7' is the total
number of word in the sample. Then, the rank is given by

R(n) = /:O My dn’ (B.3)

and the most frequent word has R = 1, the second most frequent word has
R = 2, and so on, for decreasing values of n in the integral. Eq. B.3 establishes
a general relation between the rank of an event in the sample and the probability
distribution according to the event frequency. Substituting R oc n~'/* (obtained
from Eq. B.1) and Eq. B.2 in Eq. B.3 we immediately get n'=? ~ n=/_ from
where

(B.4)

+1 (B.5)
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If @« =1 then 3 should be 2.



Appendix C

Intermittent silence in
depth

One obvious question raised by the ubiquity of Zipf’s law with § ~ 2 is: is it
the result of some non trivial causal process? Any observed regularity in nature
needs first to be studied by means of null models. One possible explanation
of the Zipf’s law comes from a purely random process. An early argument
against any special causal explanation beyond randommness was the discovery
that random sequences of letters (in which the blank space was among them)
reproduced the a = 1 exponent of words (Miller, 1957). Assume that the keys
of a typewriter are typed at random. If the blank space is hit with probability ¢
and one of the N possible letters are hit with probability (1 — ¢)/N, having all
letters the same probability, the distribution of words limited by blank spaces
can be shown to obey Eq. 1.2 (Miller, 1957; Mandelbrot, 1966; Li, 1992).

To some extent, it has been concluded that Zipf’s law does not tell anything
(relevant) about language (Wolfram, 2002; Nowak, 2000a; Li, 1992; Miller and
Chomsky, 1963).

Such a conclusion comes, in our view, from the misleading comparison be-
tween rank distributions. When the lexical spectrum is plotted for the monkey
language, the differences between random and non random sequences become
dramatic. Fig. C.1 shows the normalized frequency versus rank and the lexical
spectrum for a monkey language with ¢ = 0.18 and N = 26. The former shows
a ~ 1. The later should show an exponent 3 =~ 2 as predicted by Eq. 1.3 but
no power domain consistent with Zipf’s law (with 8 =~ 2) can be identified and
it differs greatly from its counterpart in Fig. 1.1. It is tempting to think the
statistical structure of both distributions is completely different.

Vocabulary growth in intermittent silence models is faster than in real texts
(Cohen, Mantegna, and Havlin, 1997). N = 26 leads to 11,881,376 different
5-letter words, far from the about 1,7 million words of intermittent silence text
in Fig C.1. If sampling effects are responsible for the surprising plot in Fig. C.1
B, the lexical spectrum with N = 2 should improve (there are only 32 different
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Figure C.1: Frequency versus rank (A) and lexical spectrum (B) of intermittent
silence text formed by 1,731,411 different words (4 - 10° total words). The al-
phabet has N = 26 letters (all having the same probability) and the probability
of blank space is ¢ = 0.18. The exponent in (A) is @ = 1 while no power law
with « & 1 seems to fit in (B).

5-letter words). Fig. C.2 shows that not only the frequency versus rank plot
improves but also the lexical spectrum. Nonetheless, the quality of the latter is
still clearly lower than that of a real text. The analytically predicted exponents
are obviously valid in Fig. C.1-C.2 B but intermittent silence models like these
reveal high sampling sensitiveness when compared to real texts.

It might be thought the monkey language we have employed is simplistic.
All letters have the same probability, which is not realistic. If an intermittent
silence text is generated with letter probabilities obtained from Moby Dick, the
frequency versus rank plot loses the step-like appearance (solid line in Fig. C.3
A) while the lexical spectrum improves (Fig. C.3 B). Notice that the improve-
ment can not be attributed to a smaller vocabulary (about 1.7 million word in
the unbiased case) but a less restrictive way of filling the spectrum.

An additional source of disagreement comes from the analysis of word dis-
tributions of a certain length. Monkey languages imply word length follows an
exponential distribution given by

P(L)  (1—q)" (C.1)

where P(L) is the probability of words formed by L letters. In contrast, word
length is modeled with log-normal (Balasubrahmanyan and Naranan, 1996;
Naranan and Balasubrahmanyan, 1992b) or Poissonian distributions (Wimmer
et al., 1994). Empirical studies show that there is a typical length L > 1 and
long tails may appear. If all letters have the same probability, monkey languages
predict that words having the same length have the same frequency. The dashed
line in Fig. 1.1 A shows the distribution of words in Melville’s Moby Dick having
the same length, which is clearly Zipf’s with o =~ 1. In contrast, the equivalent
in a monkey language in which all letters have the same probability is a uniform
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Figure C.2: Frequency versus rank (A) and lexical spectrum (B) of intermittent
silence text formed by 212, 197 different words (4-10° total words). The alphabet
has N = 2 letters (all having the same probability) and the probability of blank
space is ¢ = 0.18. The exponent in (A) is & = 1 and the quality of the lexical
spectrum it higher than with N = 26.

distribution and the distribution of letters of a monkey language with realistic
letter frequencies is the dashed line in Fig. C.3 A. Both are clearly far from a
power function with o =~ 1.

In a previous study (Lepold, 1998), it has been shown that English words
of length 5 follow Zipf’s law with 0.8 < 8 < 0.9, apparently contradicting the
exponent close to § = 2 found for the British National Corpus in Fig. 1.1
(a = ﬁ = 1.03 £ 0.005). Furthermore, such a previous study shows that
[ takes values in [0.8,1.4] for length 5 in English, Dutch, Finnish, German
and Polish. Such deviations may be explained by the more reduced corpora
from which word frequencies were extracted with regard to the British National
Corpus and the possibility that words outside the core lexicon with § ~ 3/2
(Chapter 2) are lowering the exponent. The calculations in Fig. 1.1 come from
a single author text, whereas the corpora in (Lepold, 1998) are multiauthor. To
sum up, Zipf’s law with § ~ 2 is recovered for the typical length in single author
corpora. The possibility that Zipf’s law with § ~ 2 appears independently of
the length class under consideration can not be denied. Since word length is
correlated with word frequency (Best and Zhu, 1994; Wimmer et al., 1994), the
longer the word, the higher the probability it is not a core word. Therefore,
such independence should be more clearly observed for the shortest words.
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10°
f (frequency)

Figure C.3: Frequency versus rank (A) and lexical spectrum (B) of a monkey
language formed by 1,795,617 different words (4 - 105 total words). Character
probabilities were obtained from Melville’s Moby Dick. The dashed line in A
shows the frequency versus rank for words having length 5, which is the average
length of words in Melville’s book. The intermittent silence text has 238,891
different 5-letter words. The exponent in (A) is @ = 1 while the slope in (B) is
a = 2.0.



Appendix D

Simon’s model

Appendix

Here we consider we calculate the exponent of the Simon’s model that is simpler
than the provided by Simon in (Simon, 1955).

Lets consider a generalized Simon process in which the urn contains mg
words at the 0-th step and m identical words are added to the urn at every time
step t (t > 0). The words added are new with probability ¢ or they are a copy
of an existing word (which is chosen at random from the urn) with probability
1—1). The exponent of the frequency distribution can be easily derived with the
mean field schema used for Barabdsi-Albert scale-free network model (Barabasi,
Albert, and Jeong, 1999). If k;, the number of occurrences of the i-th word, and
also t are considered to be continuous, then the expected variation of k; is

dk;
dt

=(1—¢)mm; (D.1)

Substituting m; = ﬁ and > k; = mo + mt into Eq. D.1 we obtain
dk; _ (1 —)mbk;
dt ~— mo+mt

(D.2)
Integrating Eq. D.2 for a word that appeared for the first time at ¢ = ¢; with

m copies leads to
(I—2)m
t
ke —m (M) (D.3)
mg + mt;
From Eq. D.3 it follows that

1 (17—1;,),"
Al (L _m0> D.4)
m

where
1
kT=v)ym
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Thereafter

Pki<k)=1-Pt;<A)=1- /OA P(t;)dt; (D.5)
Substituting P(t;) = m into Eq. D.5 and being P(t;) independent of ¢; if
follows that 1
Pki<k)=1- mA (D.6)
Substituting D.6 into P(k) = W we obtain
mﬂf—%m_zmo + mt 1
P(k) = = o (D.7)
and hence
P(k) oc k=171 /0=
Form=1

P(k) oc k171079

as it is expected for the basic Simon process.



Appendix E

Basic network topologies

Throughout Chapter 9, different trivial topologies appear. Table E.1 summa-
rizes their features indicating the value of A at which they appear. Although
Chapter 9 is concerned with what happens for A > 0, notice that the linear
graph is the expected outcome for A < 0, since it implies distance maximization
and density minimization. The remaining of this section is devoted to proof
that a linear graph and a star graph have the maximum finite distance and
the minimum distance (with the constraints of connectedness and having the
smallest amount of edges).

A linear graph is a graph having the maximum finite distance or in other
words, it is the connected graph having the maximum distance. We will proof it
through induction on n. For n = 2, there is only one possible connected graph,
which trivially has the maximum distance. All linear graphs having the same
amount of vertices have the same average vertex-vertex distance. If the graph in
Eq. 9.2 has the maximum distance for n vertices, will it still be the longest for
n+ 1 vertices? Assuming that the graph in Eq. 9.2 is the longest for n vertices,
the longest graph of n 4+ 1 vertices has to be formed by the longest graph of
order n and a new a vertex linked to one of the n existing vertices. Here we

Topology p D C o A\
Poisson p ~ mg(l:(+1)) P) — 0
Star 2/n @ 0 lOg?’l— (n;l)log(n_ 1) B
Complete 1 1 1 0 1

Lin - _
Linear 2/n "TH 0 ~((n —2)log(n —2) + 2712)099271 Y <0

Table E.1: Different trivial topologies with density (i.e. normalized amount
of links) p, average vertex-vertex distance D, clustering coefficient C, degree
distribution entropy H and the values of A\ where they are optimal. — indicates
absence of known analytical result.
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define the total vertex-vertex distance as

= Du(i,j) (E.1)

i<j

where D,, (7, j) is the minimum distance from the i-th vertex to the j-th vertex.
We define the average vertex vertex distance as

< D, >= Dn/<721>

If D%, is the contribution to D, when the new vertex is linked to the k-th
existing vertex, 1 < k < n, such an n + 1-vertex graph obeys

Dny1 =D, +Df (E.2)

where
n—k+1

n+1 ZZ+ Z i

Previous equation leads to
n+1
pha=("7") (£3)

for k =1 and k£ = n. In general,

n? +3n

DE, =k —(n+1k+

DF_ | has one single non-assymptotical minimum (at k* = (n—1)/2) and no non-
assymptotical maximum so Dfl iIsmaximal for k=1land k=nand 1 <k <n.
k =1 or k = n correspond to a graph order n + 1 satisfying Eq. 9.2, as we
wanted to proof.

Substituting Eq. E.3 into E.2, we get the longest graph of order n satisfies

n
Dn = Dn—l + (2>

Expanding the previous recursion we get

" /n 1
p.-3(3) -5 (3 2)
i=2 i=1
After some algebra we have D,, = n(n? —1)/6 and thus < D,, >= (n+1)/3

It can also be shown through induction on n that a star graph with a degree

distribution
n—1

1
Pk = Ok1 + Eak,n—l (E.4)
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has the minimum distance possible among all possible graphs having n—1 links.
For n = 2, the only connected graph (and thus the only with finite distance)
trivially is the best one having n—1 links. If we assume that the graph described
in Eq. E.4 is the optimal for n vertices, the optimal graph of n + 1 vertices
has d,11 = d, + AF | where A*_| is the contribution to D, of the new
vertex when linked to the k-th existing vertex. Thereafter, AL 11 =2n—1and
AF  =3(n—1)for 1 <k<n. AL, < A%>1 holds for n > 2, so the graph of

n+1
order n + 1 obeying Eq. E.4 is also the best one with n — 1 links.
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Appendix F

The distance between
linked words

P4, the probability that two linked words are at distance d, can be derived
using the minimum entropy principle (Kapur, 1989a). Knowing that the prior
distribution is P(d) = nQ(Z—:‘f) and assuming there is no distance minimization,
we may define the following functional

n—1

E=Hp—a)_ pa
d=1

where Hp is the Bayesian entropy defined as

n—1
Dd
Hp = — log—.
B Zpd gPd
d=1
g—}i =0 leads to
pa = Pge 7

The constraint 23;11 pag = 1 gives pg = Py as expected.
Assuming < d >= 23;11 dpg, the average distance between linked words is
minimized, we may define the functional

n—1 n—

1
E=Hp—a) pi—B)Y  dpa.
d=1 d=1

Thus, g_zi =0 leads to

pa = Pae” ' 707

which we may write as
pa = a(n — d)e” P4
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with
26717(1
=
n(n —1)
The constraint )
> pa=1
d=1
leads to
n—1 -1
a= ( (n— d)e_5d>
d=1
The constraint )
Z dpg =< d >
d=1
leads to
<d>

i1 d(n—d)e=p4

Minimizing the function
F = (ab— < d >)?

with .
b= dn—de "
d=1

we may obtain the value(s) of 5. Knowing

0

an+1

we may write Eq. F.1 as

Y (nF(l) r(z))l

N
and Eq. F.2 as
. <d>
~ ar@) 1)
e cE)

for large n. Right sides of Eq. F.3 and F.4 together give
<d>np*—(<d>+n)f+2=0.

Thereafter, we have

0~

n—<d>=+(<d>?—6n<d>+n?)/?

2<d>n

(F.3)

(F.4)
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Related publications

Chapter 2 is based on (Ferrer i Cancho and Solé, 2001). Chapter 3 is based on
(Ferrer i Cancho and V. Solé, 2003). Chapter 4 is based on (Ferrer i Cancho,
2003). Chapter 6 is based on (Ferrer i Cancho, Solé, and Kohler, 2003). Chapter
7 is based on (Ferrer i Cancho, Bollobés, and Riordan, 2003). Chapter 9 is base
on (Ferrer i Cancho and Solé, 2003). An updated list of the publications in the
present thesis can be found in

http://complex.upf.es/index.php ?page=4 Esubpage=26 author=Ramon+Ferrer.
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(dashed lines). . . . . . .. ... ...

A. The syntactic structure of a simple sentence. Here words de-
fine the nodes in a graph and the binary relations (arcs) represent
syntactic dependencies. Here we assume arcs go from a modifier
to its head. The proper noun 'John’ and the verb ’has’ are syn-
tactically dependent in the sentence. ’John’ is a modifier of the
verb ’has’, which is its head. Similarly, the action of 'has’ is mod-
ified by its object ’apples’. B. Mapping the syntactic dependency
structure of the sentence in A into a global syntactic dependency
network. . . . ...

Shortest path length distributions for the three syntactic net-
works analyzed here. The symbols correspond to: Romanian
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The three distributions are peaked around an average distance of
D = 3.5 degrees of separation. The expected distribution for a
Poissonian graph is also shown (filled triangles), using the same
average distance. . . . . ... ..o L L

Left. Cumulative degree distributions for the three corpora. Here
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shown. The plots are computed using the cumulative distribu-
tions P> (k) = 3,5 P(j). The arrows in the plots on top indi-
cate the deviation from the scaling behavior in the Czech corpus.

Left: C(k), the clustering coefficient versus degree k for the
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C(k) ~ k=! is shown for comparison. Right: the corresponding
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Average word frequency f of words having degree k. Dashed lines
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6.6 Cumulative Psentence(k) for Czech (circles), German (squares)
and Romanian (diamonds). Here linear-log (a) and log-log (b)
plots have been used, indicating an exponential-like decay. Psentence (k)
is the probability that a word has degree k in the syntactic de-
pendency structure of a sentence. Notice that P> (1) is less than
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should appear in log-log scale. The German corpus is so sparse
than its appearance is dubious. Statistics are shown for L* the
typical sentence length. We have L* = 12 for Czech and German
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7.1 Examples of G, ,,, (A) and G,, (B) for 8 = 2 and n = m = 100.
White and black circles are signals and objects, respectively. First
and second neighbors of the most connected signal (red circle)
in A (C). This and other highly connected signals are the fore-
runners of linking words (e.g. prepositions and conjunctions) in
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tionality relationship between frequency and number of objects.
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and g. Disassortative mixing supports (b-c) (Fig. 7.4). . . . .. 83

7.2 Proportion of vertices in the largest connected component of G,,
versus n and m. A gray scale from 0 (black) to 1 (white) is
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with 8 = 2. B. Signal degrees in G, following a binomial
distribution with the same expected degree as in B. All values
were calculated using numerical estimations for 10 < n,m < 103.
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7.3 C, the clustering coefficient in G,, versus n and m. A gray scale
from 0 (back) to 1 (white) is used. A. Signal degrees in Gy, m,
following a power distribution with g = 2. B. Signal degrees in
Gn,m following a binomial distribution with the same expected
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mations for 10 < n,m < 103. Loops in G, are forbidden. . ... 86
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6.1 A summary of the basic features that characterize the potential
universal features exhibited by the three syntactic dependency
networks analyzed here. n is the number of vertices of the net-
works, < k > is the average degree, C'is the clustering coeflicient,
Crandom 1is the value of C of an Erdos-Rényi network. D is the
average minimum vertex-vertex distance, Digndom 1S the value
of D for an Erdos-Rényi graph. T' is the Pearson correlation co-
efficient. 7, v, and v,y are respectively, the exponents of the
undirected degree distribution, input degree distribution, output
degree distribution. 7, @ and ( are, respectively, the exponents
of the betweenness centrality distribution, the clustering versus
degree and the frequency versus degree. T'wo further examples of
complex networks are shown. One is a technological graph (a soft-
ware network analyzed in (Valverde, Ferrer i Cancho, and Solé,
2002)) and the second is a biological web: the protein interaction
map of yeast (Jeong et al., 2001). Here skewed indicates that the
distribution C(k) decays with k but not necessarily following a
power law. . . . . ... 76

6.2 Summary of global versus sentence network traits. dgiopai; Cgiobal
and I'giopa; are, respectively, the normalized average vertex-vertex
distance, the clustering coefficient and the Pearson correlation co-
efficient of a given global syntactic dependency network. dsentence,
Coentence and Usentence are, respectively, the normalized average
vertex-vertex distance, the clustering coefficient and the Pearson
correlation coefficient of a given sentence syntactic dependency
network. (z) stands for the average value of the variable x over
all sentence syntactic dependency networks where x is defined. . 77

7.1 Predictions of Zipf’s law with 8 ~ 2 and the origin of the predic-
tions. We distinguish two types of origin: (k) if the prediction
basically depends on the expected signal degree in G, ,, or P if
the prediction can not be explained by the previous one. . ... 89

E.1 Different trivial topologies with density (i.e. normalized amount
of links) p, average vertex-vertex distance D, clustering coefficient
C, degree distribution entropy H and the values of A where they
are optimal. — indicates absence of known analytical result. . . 155
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