
Universitat Politècnica de Catalunya

Departament de Llenguatges i Sistemes Informàtics

Programa de Doctorat en Software

PhD Dissertation

Contribution to

Geometric Constraint Solving

in Cooperative Engineering

Sebastià Vila Marta

Advisor: Robert Joan Arinyo

September 23, 2003



ii



iii

Acknowledgements

I gratefully thank my advisor Prof. Robert Joan-Arinyo for his invaluable

guidance, help and advice. I appreciate that he introduced me to geometric

constraint solving and that he encouraged me to develop this work.

I would recognize the support of the colleagues from the computer graphics

group. To share the weekly discussions with the constraints group have

been both enjoyable and helpful. Dr. Vicky Luzón, Dr. Núria Mata, Dr.

Núria Pla, Dr. Toni Soto, Josep Suy and Dr. Josep Vilaplana made this

possible. Dr. Toni Soto deserves a special acknowledgment for his support

and fruitful ideas. To work with him has been a pleasure. I would also

thank Laura Fernàndez for her help.

Finally, my warmest gratitude to my family, too large to be enumerated and

too important to forget it. Roser and Alba unconditionally supported me

during all this time.



iv Acknowledgements



v

Contents

Acknowledgements iii

Contents v

List of Figures ix

1 Introduction 1

1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Solver Architecture 5

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Geometric Constraint Problems . . . . . . . . . . . . . . . . . 10

2.2.1 The Abstract Problem . . . . . . . . . . . . . . . . . . 10

2.2.2 The Instance Problem . . . . . . . . . . . . . . . . . . 11

2.3 Construction Plan . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 The Abstract Plan . . . . . . . . . . . . . . . . . . . . 13

2.3.2 The Instance Plan . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Indexed Plan . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Characteristic Formulae . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Geometric Problems . . . . . . . . . . . . . . . . . . . 19

2.4.2 Construction Plans . . . . . . . . . . . . . . . . . . . . 22

2.5 Constructive Solvers . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 The Analyzer . . . . . . . . . . . . . . . . . . . . . . . 24



vi Contents

2.5.2 The Index Selector . . . . . . . . . . . . . . . . . . . . 25

2.5.3 The Constructor . . . . . . . . . . . . . . . . . . . . . 26

2.6 Solvers Software Architecture . . . . . . . . . . . . . . . . . . 26

2.7 Geometric Models . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Analysis Methods 31

3.1 Abstract Problems and Graphs . . . . . . . . . . . . . . . . . 31

3.1.1 Graph Concepts . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 Geometric Constraint Graphs . . . . . . . . . . . . . . 34

3.1.3 Well Constrained Graphs . . . . . . . . . . . . . . . . 35

3.1.4 Set Decomposition of a Graph . . . . . . . . . . . . . 41

3.2 Fudos and Hoffmann’s Reduction Algorithm . . . . . . . . . . 43

3.3 Fudos and Hoffmann’s Decomposition Algorithm . . . . . . . 44

3.4 Owen’s Decomposition Algorithm . . . . . . . . . . . . . . . . 46

3.4.1 Owen’s Algorithm . . . . . . . . . . . . . . . . . . . . 46

3.4.2 The New Formalization . . . . . . . . . . . . . . . . . 47

3.4.3 Subdivision Pattern . . . . . . . . . . . . . . . . . . . 54

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Domain of Analysis Methods 57

4.1 Tree Decomposition of a Graph . . . . . . . . . . . . . . . . . 57

4.2 Domain of Fudos and Hoffmann’s Methods . . . . . . . . . . 64

4.3 Domain of Owen’s Method . . . . . . . . . . . . . . . . . . . 65

4.3.1 Transforming a general s-tree to a regular one . . . . . 70

4.4 Domain Equivalence of Constructive Methods . . . . . . . . . 77

4.5 Generation of Solvable Graphs . . . . . . . . . . . . . . . . . 80

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 The Completion Operation 87

5.1 The Graph Completion Problem . . . . . . . . . . . . . . . . 87



Contents vii

5.2 Completability of Under Constrained Graphs . . . . . . . . . 89

5.3 Free Completion . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Conditional Completion . . . . . . . . . . . . . . . . . . . . . 92

5.4.1 Maximal Conditional Completion as a Combinatorial

Optimization Problem . . . . . . . . . . . . . . . . . . 94

5.4.2 The Greedy Algorithm . . . . . . . . . . . . . . . . . . 95

5.5 Experimental Study of the Greedy Algorithm for the Condi-

tional Completion Problem . . . . . . . . . . . . . . . . . . . 97

5.5.1 First test . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5.2 Second Test . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5.3 Experimental Study Conclusions . . . . . . . . . . . . 100

5.6 Well Constrained Conditional Completion . . . . . . . . . . . 100

5.7 Applications of the Conditional Completion . . . . . . . . . . 102

5.7.1 Constraint Schema Reconciliation . . . . . . . . . . . 102

5.7.2 Constraints with priorities . . . . . . . . . . . . . . . . 102

5.7.3 Over constrained problems . . . . . . . . . . . . . . . 103

5.7.4 Case study . . . . . . . . . . . . . . . . . . . . . . . . 103

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Definition of a Multiple Views Model 107

6.1 Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2 The Multiple Views Model . . . . . . . . . . . . . . . . . . . . 110

6.2.1 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.2 Master Invariant . . . . . . . . . . . . . . . . . . . . . 112

6.3 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . 113

6.3.1 ValuesTransfer Implementation . . . . . . . . . . . . . 113

6.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 Conclusions and Future Work 121

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



viii Contents

Bibliography 125



ix

List of Figures

2.1 Geometric problem defined by constraints. . . . . . . . . . . . 8

2.2 Possible placements of a point. . . . . . . . . . . . . . . . . . 9

2.3 Instance problem . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Step by step interpretation of the abstract plan given in Ex-

ample 2.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 The four possible evaluations of the instance plan in Exam-

ple 2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Distinct constructions encoded into the same abstract plan. . 18

2.7 Architecture data-flow diagram. . . . . . . . . . . . . . . . . . 27

3.1 Geometric constraint graph corresponding to the abstract

problem A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Over constrained abstract problem . . . . . . . . . . . . . . . 36

3.3 Well constrained problem and a degenerate instance. . . . . . 37

3.4 Over constrained problem which has some degenerated real-

izations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Over constrained graph for which Theorem 3.2 holds. . . . . . 40

3.6 Left: A set C. Right. A set decomposition of C. . . . . . . . 41

3.7 Left: Graph. Right: Set decomposition of the graph. . . . . . 42

3.8 Left: Graph. Right: Set decomposition with a broken edge. . 43

3.9 Elemental clusters built from points and lines. . . . . . . . . . 44

3.10 Cluster merging . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.11 Application of the reduction rule in a decomposition algorithm. 46

3.12 Owen’s analysis algorithm. . . . . . . . . . . . . . . . . . . . . 47



x List of Figures

3.13 Owen’s algorithm computation applied to an example graph. 48

3.14 New algorithm for decomposition analysis. . . . . . . . . . . . 51

3.15 Decomposition analysis generated by the new algorithm on

the example graph in Figure 3.13. . . . . . . . . . . . . . . . . 52

3.16 Graph with a degree two vertex v. . . . . . . . . . . . . . . . 54

3.17 Subdividing a graph into three subgraphs by using three ver-

tices a, b and c. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Collection of set decompositions of the graph in Figure 3.7. . 58

4.2 Tree decomposition of the graph in Figure 4.1. . . . . . . . . 59

4.3 Computing a s-tree S from a tree decomposition T . . . . . . . 68

4.4 Analysis algorithm modified to compute regular s-trees. . . . 71

4.5 Graph and s-tree. Subtree S3 is not fully expanded. . . . . . 72

4.6 Virtual edge regularization. . . . . . . . . . . . . . . . . . . . 74

4.7 Left: Initial subtree. Virtual edge (a, b) in G0 is not regular.

Right: Modified subtree. Virtual edge (a, b) in G0 is regular. 75

4.8 Separation pair common to Sn and Si−1 subtrees. . . . . . . . 77

4.9 Regular s-tree derived form the s-tree in Figure 4.5. Subtree

S3 is not fully developed. . . . . . . . . . . . . . . . . . . . . 78

4.10 Classification of geometric constraint graphs according to

Definition 3.3 and the set of tree decomposable graphs. . . . . 79

4.11 Two vertex amalgamation (G ∪H)/{u1 = v1, u2 = v2}. . . . . 80

4.12 Substitution of (e, f) in H by G modulo {u, v}. . . . . . . . . 81

4.13 Some elements of T . . . . . . . . . . . . . . . . . . . . . . . 82

4.14 Construction of a tree decomposition for G′ from G and H. . 84

4.15 Construction of graph G as a member of T . . . . . . . . . . . 85

5.1 A graph and two different possible completions. . . . . . . . . 90

5.2 Free completion algorithm for graph G = (V,E). . . . . . . . 91

5.3 Tree decomposition of the graph in Figure 5.1 left. . . . . . . 92

5.4 Geometric constraint graphs G (left) and Ĝ (right). . . . . . . 93



List of Figures xi

5.5 Conditional completion (left) and maximal conditional com-

pletion (right) of G from Ĝ in Figure 5.4. . . . . . . . . . . . 94

5.6 The greedy algorithm for subset systems. . . . . . . . . . . . 96

5.7 Distribution of runs where more edges in Ĝ could be added

to G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8 Over constrained sketch . . . . . . . . . . . . . . . . . . . . . 104

5.9 Over constrained graph associated with the problem in Fig-

ure 5.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.10 Geometric constraint graph built by the greedy algorithm. . . 105

5.11 Solvable problem for the the graph in Figure 5.10. . . . . . . 106

6.1 A geometric constraint-based model. . . . . . . . . . . . . . . 109

6.2 Master view architecture with client views. . . . . . . . . . . 110

6.3 A work pattern using views. . . . . . . . . . . . . . . . . . . . 112

6.4 A master invariant example. . . . . . . . . . . . . . . . . . . . 113

6.5 The new client view opened from the master view. . . . . . . 115

6.6 The new client view with some adjoined constraints. . . . . . 116

6.7 The new well constrained client view. . . . . . . . . . . . . . 117

6.8 The new client view after changing the values of parameters

h1 and a2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.9 The master view after synchronization with the client view. . 119



xii List of Figures



1

1 Introduction

Geometric models are data structures designed to represent physical prop-

erties of objects. The main properties encoded include geometric character-

istics and topological properties of physical objects.

Computer Aided Design (CAD) systems are software applications built to

help industrial designers during the product design cycle. Because the main

activity of CAD systems is related to manage descriptions of objects, geo-

metric models are at the core of such systems.

Due to the central role, geometric models play, they have been extensively

studied and different data structures to represent them in the computer have

been proposed. Classical references in the field, for example, Requicha [55],

Mortenson [49] and Mäntylä [46] discuss geometric modeling schemes, asso-

ciated operations and their properties.

In the last years a new kind of models have emerged which allow to rep-

resent families of objects. These models are known as parametric models.

The properties exhibited by parametric models resulted in a growing use in

modern commercial CAD systems.

A key aspect of parametric models stems from the fact that a natural way

of defining parametric objects is based on describing the object by means of

a rough sketch. Then the intended object is precisely defined by annotating

the sketch with constraints. For this approach to be useful, the problem

known as the geometric constraint solving problem must be properly solved.

This dissertation focuses on the constructive geometric constraint solving

problem, an specific instance of the general geometric constraint solving

problem, were the solution can be expressed as a set of well-defined geometric



2 1. Introduction

operations.

In what follows, we assume that the reader is familiar with the geometric

constraint solving field. For generalities and an in-depth review of the litera-

ture, the reader is referred to the work of Fudos [19], Soto [58], Durand [15],

Solano [57], Jermann [29] and references therein.

1.1 Goals

The specific goals of this work are the following.

1. To define a general architecture for constructive solvers.

The first goal is to set up a general architecture for constructive solvers.

Works by Fudos [19], and Soto [58] elaborate on solvers’ architectures

that naturally arise from the specific constructive geometric constraint

solving techniques used. However, the architecture itself never has

been investigated.

In this work we investigate a general model for constructive solvers’

architecture that provides a solid foundation to structure software im-

plementations. Moreover, the general architecture defines a framework

for the rest of the dissertation.

2. To contribute to the characterization of the domain of solvers based

on constructive analysis algorithms.

Roughly speaking, the domain of a solver is the set of problems that

it can effectively solve. Establishing which is the domain of a solving

method and which are the properties of this domain are important

issues from both a theoretical and a practical point of view. On one

hand, since the solving process is computationally expensive, knowing

whether a given problem is or is not solvable by an specific solver would

be a valuable information. On the other hand, knowing the domain of

different solvers would allow to compare their performance.

We define the tree decomposition of a graph which characterizes a

class of geometric constraint graphs. Then we prove that the set of

geometric constraint problems solved by three well know analysis al-

gorithms consists precisely in those problems whose graphs are tree

decomposable.



1. Introduction 3

3. To develop a theory, based on geometric constraint solving, to solve the

problem of model consistency maintenance in CAD systems working

with multiple views in concurrent engineering.

Despite the efforts devoted, the works on this topic reported in the lit-

erature only offer incomplete solutions which show several drawbacks,

see for example [14], [25] and [26].

In this thesis we offer a solution based on a set of operations includ-

ing completion, value transfer and opening a view. Completion is the

most difficult operation, it adds new constraints to a solvable under

constrained geometric constraint graph to transform it into a well con-

strained graph, and defines the bridge that relates the second and the

third goals.

1.2 Contents

This manuscript is organized as follows. In Chapter 2 we begin by intro-

ducing a declarative characterization of a general solver architecture which

can be applied to a broad range of constructive geometric constraint solvers.

The concepts and architecture defined in this chapter will be used in the rest

of the work.

Next, in Chapter 3, we review three already known constructive analysis

algorithms: The decomposition and analysis algorithms of Fudos and Hoff-

man [21], and Owen’s decomposition algorithm [50]. We pay special atten-

tion to Owen’s algorithm and focus on the theoretical foundations of the

algorithm, leading to a new formulation. The correctness of Owen’s algo-

rithm is also proved under the new formalism.

We discuss the domain characterization problem in Chapter 4. Then we

prove that the analysis algorithms studied in Chapter3 have the same do-

main.

In Chapter 5 we explore the completion problem, that is, how to transform

an under constrained constraint graph into a well constrained graph and we

offer a solution.

Chapter 6 defines a geometric constraint model suitable to work with mul-

tiple views. This new model is built on top of the completion operations

defined in Chapter 5.



4 1. Introduction

Finally, Chapter 7 gives the conclusions and offers a list of open problems

for future work.



5

2
Characterization

of a Solver

Architecture

In two-dimensional constraint-based geometric design, the designer creates a

rough sketch of an object made out of simple geometric elements like points,

lines, circles and arcs of circle. Then the intended exact shape is specified

by annotating the sketch with constraints like distance between two points,

distance from a point to a line, angle between two lines, line-circle tangency

and so on. A geometric constraint solver then checks whether the set of

geometric constraints coherently defines the object and, if so, determines

the position of the geometric elements. The designer can now modify the

values of the constraints or ask the geometric constraint solver for alternative

solutions which satisfy the given constraints.

Many techniques have been reported in the literature that provide power-

ful and efficient methods for solving systems of geometric constraints. For

example, see Durand in [15] and references therein for an extensive analysis

of work on constraint solving. Among all the geometric constraint solv-

ing techniques, our interest focuses on the one known as constructive. The

solvers described by Aldefeld [2], Fudos and Hoffmann [4, 18, 19, 21], Soto

and Joan-Arinyo [32, 33, 58], Owen [50], Verroust [61, 62], and Brüderlin et

al. [6–9] are constructive solvers.

According to Fudos et at., constructive solvers have two major components,

[21]: the analyzer and the constructor. The analyzer symbolically deter-

mines whether a geometric problem defined by constraints is solvable. If the

problem is solvable, the output of the analyzer is a sequence of construction

steps, known as the construction plan, that places each geometric element in

such a way that all constraints are satisfied. After assigning specific values to



6 2. Solver Architecture

the parameters, the constructor interprets the construction plan and builds

an object instance, provided that no numerical incompatibilities arise.

The specific construction plan generated by an analyzer depends on the

underlying constructive technique and on how it is implemented. For exam-

ple, the ruler-and-compass constructive approach is a well-known technique

where each constructive step in the plan corresponds to a basic operation

solvable with ruler, compass and protractor. In practice, this simple ap-

proach solves most useful geometric problems, (see the book of Garling [22]).

Although the constructive geometric constraint solvers proposed in the lit-

erature seem to share a common architecture, few efforts have been devoted

to characterize it independently of the underlying constraint solving method

used.

In this chapter we present a general architecture for constructive geometric

constraint solvers. We deliberately avoid focusing on solving methods. First,

we identify a set of relevant entities in constructive geometric constraint

solving such as abstract geometric constraint problems, abstract construc-

tion plans, parameters assignment and index assignment. We present a high

level declarative characterization of these entities and their semantics. Next,

we identify the three functional units of a geometric constraint solver: the

analyzer, the index selector and the constructor. These functional units

are specified in terms of the entities that each one manipulates. Lastly,

we assemble this functional units in a general architecture for constructive

geometric constraint solvers. Most of the work in this chapter has been

previously published in [38].

2.1 Preliminaries

In this section we present concepts and notational conventions that will be

used throughout all the manuscript.

We assume that a constraint-based design is made of geometric elements

like point, lines, circles and arcs of circle. The intended shape is defined by

means of constraints like distance between two points, distance from a point

to a line, angle between two lines, line-circle tangency and so on.

In what follows, the symbols to represent geometric elements will be taken



2. Solver Architecture 7

from the set

LG = {p1, l1, c1, p2, l2, c2, . . . , pn, ln, cn, . . .}

pi denoting a point, li a straight line and ci a circle. We assume that the

number of different symbols available is unlimited.

Constraints will be represented by predicates relating geometric elements or

geometric elements plus a symbolic value called parameter. For example,

LR = {onPL(p, l),

distPP(pi, pj , d),

distPL(pi, lj , h),

angleLL(li, lj , a), . . .}

Predicate names are self explanatory. The predicate onPL(p, l) specifies that

point p must lie on line l, distPP (pi, pj , d) specifies a point-point distance,

distPL(pi, lj , h) defines the signed perpendicular distance from a point to a

straight line and, angleLL(li, lj , a) denotes the angle between two straight

lines. The number and syntax of available constraints are fixed. Symbols d,

h and a are parameters. The symbols to represent parameters will be taken

from the set

LP = {d1, h1, a1, d2, h2, a2, . . . , dn, hn, an, . . .}

di denoting a distance between two points, hi a distance between a point

and a line and ai an angle between two lines. Figure 2.1 shows an example

of a constraint-based design and the set of constraints defined between the

geometric elements.

This work is centered on constructive geometric constraint solving. Thus,

an important entity is the construction plan. To illustrate the concepts, in

what follows, we assume that a constructive ruler-and-compass based solver

like that reported by Joan-Arinyo and Soto in [32] is available. Therefore,



8 2. Solver Architecture

a2 a1

l4

l3

h1

l1

l2

d2

p2

d1

p3

p1

p4

onPL(p1, l1) onPL(p1, l2)

onPL(p2, l1) onPL(p2, l3)

onPL(p3, l3) onPL(p3, l4)

onPL(p4, l2) onPL(p4, l4)

distPP(p2, p3, d1) distPP(p3, p4, d2)

distPL(p1, l3, h1) angleLL(l3, l1, a2)

angleLL(l3, l4, a1)

Figure 2.1: Geometric problem defined by constraints.

according to Garling, [22], the basic geometric constructions are

LCB = {pointXY (x, y),

linePP(pi, pf ),

lineAP(l, a, p),

circleCR(p, r),

interLL(li, lj),

interLC (l, c, s),

interCC (ci, cj , s)}

The meaning of the basic construction names is the usual: point defined by

its coordinates, straight line given by an ordered pair of points, straight line

through a point at an angle with respect to another line, circle defined by

the center and radius, and intersections between straight lines and circles.

The repertoire and syntax of available geometric operations depends on the

specific constructive solving approach used and the implementation. How-

ever, it is considered fixed. In what follows, we assume that the set of

available geometric operations LC consists of those given in LCB plus some



2. Solver Architecture 9

d1

q1

p1

q2

p2

d2

Figure 2.2: Possible placements of a point.

additional simple operations that can be easily expressed as a sequence of

operations in LCB, for example lineLD(l, h, s), which defines a straight line

parallel to another one at a given signed distance, see Joan-Arinyo in [30].

Note that basic intersection operations involving circles may have more that

one intersection point. We characterize each intersection point by using an

additional sign parameter, s, with value in {+1,−1}. Therefore, this leads

to operations like interLC(l, c, s) and interCC(ci, cj , s). For a full definition

of the semantics of parameter s see the work of Mata, [47]. The symbols to

represent sign parameters will be taken from the set

LI = {s1, s2, . . . , sn, . . .}

Example 2.1 The intersection between circle c1 = circleCR(p1, d1) and circle

c2 = circleCR(p2, d2) in Figure 2.2 are the points {q1, q2}. According to the seman-

tics of sign parameters defined by Mata in [47], we have,

q1 = interCC (c1, c2,+1)

q2 = interCC (c1, c2,−1)

♦

Given a set of symbols S and a set of values V , a textual substitution α is a

total mapping from S to V . Let W be a set of predicates and α a textual

substitution, we note by α.W the set of predicates obtained by replacing

every occurrence of any symbol s ∈ S occurring in W by α(s) ∈ V .

Example 2.2 Let S = {a1, h1} be a set of symbols and V = R. Let α be a
textual substitution from S to V defined as

α(a1) = 0.57, α(h1) = 4.0



10 2. Solver Architecture

and let W be a set of predicates in LR with

W = {onPL(p1, l1), angleLL(l1, l3, a1), distPL(p1, l3, h1)}.

Then α.W is

α.W = {onPL(p1, l1), angleLL(l1, l3, 0.57), distPL(p1, l3, 4.0)}.

♦

In this Chapter we will also apply textual substitutions to first order logic

formulae and other syntactical descriptions.

2.2 Geometric Constraint Problems

We define and declaratively describe two concepts: the abstract geometric

constraint problem and the instance of a geometric constraint problem. Ab-

stract entities are exclusively defined in terms of symbols like those in the

sets LG, LP and LI . Instance entities are abstract entities where some of

the symbols occurring in them have been replaced by specific values.

2.2.1 The Abstract Problem

An abstract geometric constraint problem, or abstract problem in short, is a

tuple A = 〈G,C, P 〉 where G is a set of symbols in LG denoting geomet-

ric elements, C is a set of constraints taken from LR and defined between

elements of G, and P is the set of parameters taken from LP .

Example 2.3 Consider the sketch with annotated dimension lines shown in

Figure 2.1. It can be seen as an abstract problem A = 〈G,C, P 〉 where the set of

geometric elements is

G = {p1, p2, p3, p4, l1, l2, l3, l4},

C is the set of constraints listed in Figure 2.1 and, the set of parameters is

P = {d1, d2, a1, a2, h1}.

♦

A convenient way to fully describe an abstract problem is the algorithm-

like notation. In this notation, the abstract problem in Example 2.3 can be

expressed as



2. Solver Architecture 11

gcp A

param

d1, d2, a1, a2, h1 : real

endparam

geom

p1, p2, p3, p4 : point

l1, l2, l3, l4 : line

endgeom

onPL(p1, l1)

onPL(p1, l2)

onPL(p2, l1)

onPL(p2, l3)

onPL(p3, l3)

onPL(p3, l4)

onPL(p4, l4)

onPL(p4, l2)

distPP (p2, p3, d1)

distPP (p3, p4, d2)

distPL(p1, l3, h1)

angleLL(l3, l1, a2)

angleLL(l3, l4, a1)

endgcp

Note that an abstract problem defines a family of geometric constraint solv-

ing problems parameterized by the set P .

2.2.2 The Instance Problem

A parameters assignment is a textual substitution α from a set of parameters

P to R.

Let A = 〈G,C, P 〉 be an abstract problem and α be a parameters assignment

from P . We say that α.A = 〈G,α.C, P 〉 is an instance problem of A. Given

an abstract problem, each different parameters assignment defines a different

instance problem.

Example 2.4 Consider the abstract problem A = 〈G,C, P 〉 described in the



12 2. Solver Architecture

Example 2.3. An example of parameters assignment α is

α(a1) = −1.222

α(a2) = 1.0472

α(h1) = 160.0

α(d1) = 290.0

α(d2) = 130.0

A description for the instance problem α.A is

gcp α.A

param

d1, d2, a1, a2, h1 : real

endparam

geom

p1, p2, p3, p4 : point

l1, l2, l3, l4 : line

endgeom

onPL(p1, l1)

onPL(p1, l2)

onPL(p2, l1)

onPL(p2, l3)

onPL(p3, l3)

onPL(p3, l4)

onPL(p4, l4)

onPL(p4, l2)

distPP (p2, p3, 290.0)

distPP (p3, p4, 130.0)

distPL(p2, l2, 160.0)

angleLL(l3, l1, 1.0472)

angleLL(l3, l4,−1.222)

endgcp

♦

Instance problems are no longer parameterized because the parameters have

been replaced by the corresponding actual values.

Figure 2.3 shows a graphical representation for the instance problem α.A

given in Example 2.4. Now parameters are no longer symbolic but actual

values defined by the assignment α. Since Figure 2.3 is a graphical represen-

tation of a declarative description of the geometric elements and constraints,



2. Solver Architecture 13

a2 = 1.0472

a1 = −1.222

l4
l1

l2

h1 = 160.0

l3

d2 = 130.0

p2

d1 = 290.0

p3

p1

p4

Figure 2.3: Instance problem

the actual geometry is irrelevant. For instance, the actual values of h1 and

d2 in the figure do not match the values defined by α(h1) and α(d2).

Abstract problems precisely describe a set of geometric elements and the

constraints that they must fulfill, but abstract problems do not define how

to place the geometric elements to satisfy the constraints. In the next section

we will present the construction plan which describes how to actually carry

out the construction.

2.3 Construction Plan

A construction plan is a procedure that describes how to place the geometric

elements with respect to each other. First we formalize the notion of abstract

construction plan then we derive the concepts of instance plan and indexed

plan.

2.3.1 The Abstract Plan

An abstract construction plan, or abstract plan in short, is a tuple S =

〈G,P,L, I〉 where G is a set of symbolic geometric elements taken from LG,

P is a set of parameters taken from LP , the index I is a set of sign parameters

taken from LI , and L is a sequence of basic construction operations taken

from LC and parameterized by P and I. L defines how to place with respect

to each other the elements in G.



14 2. Solver Architecture

Example 2.5

In what follows we refer to the abstract construction plan given below. This plan

specifies how to build the geometric object given in Figure 2.1. In the plan, the

construction operation arbitryReferenceSystem() returns an arbitrary reference sys-

tem in the plane and the operation pointXY returns a point given its coordinates

in a reference system.

cp S

param

d1, d2, a1, a2, h1 : real

endparam

index

s1, s2 : sign

endindex

geom

p1, p2, p3, p4 : point

l1, l2, l3, l4 : line

endgeom

R = arbitraryReferenceSystem()

with R do

p2= pointXY(R, 0, 0)

p3= pointXY(R, d1, 0)

c1= circleCR(p3, d2)

l3 = linePP(p2, p3)

l4 = lineAP(l3, a1, p3)

p4= interCL(l4, c1, s1)

l1 = lineAP(l3, a2, p2)

l8 = lineLD(l3, h1, s2)

p1= interLL(l1, l8)

l2 = linePP(p1, p4)

endwith

endcp

Notice that L contains auxiliary symbols, {c1, l8}, which do not belong to G. They

are introduced to increase readability. Nonetheless, these symbols can be replaced

by their definitions. For instance, symbol l8 is defined as l8 = lineLD(l3, h1, s2).

If we replace l8 in the definition of p1 we have p1 = interLL(l1, lineLD(l3, h1, s2)).

This procedure can be repeated for every auxiliary symbol occurring in L.

Figure 2.4(a) and Figure 2.4(b) illustrate step by step how the plan is interpreted.

First an arbitrary point O is chosen to start the construction. This point is labeled

p2, see Figure 2.4(a). Then, the point p3 whose y coordinate is coincident with Oy



2. Solver Architecture 15

p3

d1

p2

d2

c1

l3

l4

a1

p4, +1

p4,−1

l1

a2

l8, +1

h1

h1

p1

(a)

(b)

p3

d1

p2

d2

c1

l3

a1

p4,−1

p4, +1

l4

l8,−1

Figure 2.4: Step by step interpretation of the abstract

plan given in Example 2.5.

is created at a distance d2 from p2. Next the circle c1, with center on p3 and radius

d2, the straight line l3, through points p2 and p3, and the line l4, through point p3

and at angle a1 with, l3 are created. Finally point p4 is defined as the intersection

of c1 and l4. Note that there are two possible locations for point p4. Every possible

location is distinguished with the sign s1, which takes values from the set {+1,−1},

following the semantics of signs defined by Mata in [47]. Assuming that point p4

is located in p4 with s1 = −1 (in the Figure this is noted as p4,−1), and that the

line l8 chosen is l8 with s2 = −1, Figure 2.4(b) shows the interpretation of the rest

of the plan. ♦

An abstract construction plan is parameterized by two sets: P and I.



16 2. Solver Architecture

In the following sections we present the concepts of instance plan and in-

dexed plan. In an instance plan we fix the values of parameters in P and in

an indexed plan we fix the values of signs in I.

2.3.2 The Instance Plan

An abstract plan can be instantiated by applying a parameters assignment

in the same way it has been done for abstract problems. Let S = 〈G,P,L, I〉

be an abstract plan and α a parameters assignment for P . The instance plan

α.S is defined as α.S = 〈G,P, α.L, I〉.

Example 2.6 Applying the parameters assignment given in Example 2.4 to the

abstract plan in Example 2.5, yields the instance plan

cp α.S

param

d1, d2, a1, a2, h1 : real

endparam

index

s1, s2 : sign

endindex

geom

p1, p2, p3, p4 : point

l1, l2, l3, l4 : line

endgeom

R = arbitraryReferenceSystem()

with R do

p2= pointXY(R, 0, 0)

p3= pointXY(R, 290.0, 0)

c1= circleCR(p3, 130.0)

l3 = linePP(p2, p3)

l4 = lineAP(l3,−1.222, p3)

p4= interCL(l4, c1, s1)

l1 = lineAP(l3, 1.0472, p2)

l8 = lineLD(l3, 160.0, s2)

p1= interLL(l1, l8)

l2 = linePP(p1, p4)

endwith

endcp



2. Solver Architecture 17

Figure 2.5 shows the four possible evaluations of the instance plan in Example 2.6

obtained by changing the values of signs s1 and s2. ♦

l3

l4

l8,−1p1

p2

l1

p4,−1
c1

p3

d1 = 290.0

h1 = 160.0

p4, +1
l8, +1

h1 = 160.0

d2 = 130.0
a1 = −1.222

a2 = 1.0472

l3

l4

l8,−1p1

p2

l1

p4,−1
c1

p3

d1 = 290.0

h1 = 160.0

p4, +1
l8, +1

h1 = 160.0

d2 = 130.0

a2 = 1.0472

a1 = −1.222
l3

l4

l8,−1p1

p2

l1

p4,−1
c1

p3

d1 = 290.0

h1 = 160.0

p4, +1
l8, +1

h1 = 160.0

d2 = 130.0

a2 = 1.0472

a1 = −1.222

l3

l4

l8,−1p1

p2

l1

p4,−1
c1

p3

d1 = 290.0

h1 = 160.0

p4, +1
l8, +1

h1 = 160.0

d2 = 130.0

a2 = 1.0472

a1 = −1.222

Figure 2.5: The four possible evaluations of the instance

plan in Example 2.6

2.3.3 Indexed Plan

An index assignment, denoted ι, is a textual substitution from an index I

to the set {+1,−1}.

Let S = 〈G,P,L, I〉 be an abstract plan and ι an index assignment from I.

The indexed plan ι.S is defined as ι.S = 〈G,P, ι.L, I〉.

Example 2.7 Let the index assignment ι be

ι(s1) = −1, ι(s2) = +1.

Applying ι to the abstract plan in Example 2.5, yields the indexed plan

cp S



18 2. Solver Architecture

d2 = 30

s1 = −1, s2 = −1 s1 = +1, s2 = −1 s1 = −1, s2 = +1 s1 = +1, s2 = +1

d2 = 20

Figure 2.6: Distinct constructions encoded into the same

abstract plan.

param

d1, d2, a1, a2, h1 : real

endparam

index

s1, s2 : sign

endindex

geom

p1, p2, p3, p4 : point

l1, l2, l3, l4 : line

endgeom

R = arbitraryReferenceSystem()

with R do

p2= pointXY(R, 0, 0)

p3= pointXY(R, d1, 0)

c1= circleCR(p3, d2)

l3 = linePP(p2, p3)

l4 = lineAP(l3, a1, p3)

p4= interCL(l4, c1,−1)

l1 = lineAP(l3, a2, p2)

l8 = lineLD(l3, h1,+1)

p1= interLL(l1, l8)

l2 = linePP(p1, p4)

endwith

endcp

Figure 2.6 shows two different families of objects generated by changing the value

of parameter d2 in the plan. ♦

Note that the application of a parameters assignment α and an index as-

signment ι to an abstract plan S commute. That is α.ι.S = ι.α.S.



2. Solver Architecture 19

2.4 Characteristic Formulae

We will represent geometric constraint problems and construction plans by

means of first order logic formulae. This will allow us to precisely charac-

terize the set of placements of the geometric elements for which the set of

constraints hold and, the set of placements actually generated by a construc-

tion plan.

2.4.1 Geometric Problems

Let A = 〈G,C, P 〉 be an abstract geometric constraint problem with

C = {c1, c2, . . . , cm}

Then the characteristic formula of A is the first order logic formula,

Ψ(A) ≡
m∧

i=1

ci

where the geometric elements of G and the parameters of P occurring in Ψ

are interpreted as free variables.

Example 2.8 The characteristic formula of the abstract problem A given in the

Example 2.3 is

Ψ(A) ≡ (onPL(p1, l1) ∧ onPL(p1, l3) ∧

onPL(p2, l1) ∧ onPL(p2, l4) ∧

onPL(p3, l3) ∧ onPL(p3, l4) ∧

onPL(p4, l2) ∧ onPL(p4, l4) ∧

distPP(p2, p3, d1) ∧ distPP(p3, p4, d2) ∧

distPL(p1, l3, h1) ∧ angleLL(l1, l3, a2) ∧

angleLL(l4, l3, a1))

♦

Let α be a parameters assignment for P , and α.A the corresponding in-

stance problem. Then the first order formula Ψ(α.A) expresses the instance

problem. Note that a textual substitution α can be applied to both an

abstract problem or to a first order logic formula. Therefore the relation

Ψ(α.A) = α.Ψ(A) is well defined.



20 2. Solver Architecture

Example 2.9 The characteristic formula of the instance problem in Example 2.4

is

Ψ(α.A) ≡ (onPL(p1, l1) ∧ onPL(p1, l3) ∧

onPL(p2, l1) ∧ onPL(p2, l4) ∧

onPL(p3, l3) ∧ onPL(p3, l4) ∧

onPL(p4, l2) ∧ onPL(p4, l4) ∧

distPP(p2, p3, 290.0) ∧

distPP(p3, p4, 130.0) ∧

distPL(p1, l3, 160.0) ∧

angleLL(l3, l1, 1.0472) ∧

angleLL(l3, l4,−1.222))

♦

A geometry assignment or anchor κ is a textual substitution such that

assigns an actual geometry to each geometric element in a set of geometry

symbols G.

Let A = 〈G,C, P 〉 be an abstract problem and κ an anchor for G. We define

κ.A as 〈G, κ.C, P 〉.

Example 2.10 If we represent a point by the pair (x, y) ∈ R2 and a straight line

by (a, b, c), the coefficients of the normal form ax + by + c = 0 with a2 + b2 = 1,

then an example of anchor κ is

κ(p1) = (92.38, 160)

κ(p2) = (0, 0)

κ(p3) = (290, 0)

κ(p4) = (245.54, 122.16)

κ(l1) = (−0.87, 0.5, 0)

κ(l2) = (−0.24,−0.97, 177.48)

κ(l3) = (0,−1, 0)

κ(l4) = (0.94, 0.34,−272.51)

The characteristic formula Ψ after applying the anchor κ to the instance problem



2. Solver Architecture 21

α.A in Example 2.9 is

Ψ(κ.α.A)

≡

(onPL((92.38, 160), (−0.87, 0.5, 0)) ∧

onPL((92.38, 160), (0,−1, 0)) ∧

onPL((0, 0), (−0.87, 0.5, 0)) ∧

onPL((0, 0), (0.94, 0.34,−272.51)) ∧

onPL((290, 0), (0,−1, 0)) ∧

onPL((290, 0), (0.94, 0.34,−272.51)) ∧

onPL((245.54, 122.16),

(−0.24,−0.97, 177.48)) ∧

onPL((245.54, 122.16),

(0.94, 0.34,−272.51)) ∧

distPP((0, 0), (290, 0), 290.0) ∧

distPP((290, 0), (245.54, 122.16), 130.0) ∧

distPL((92.38, 160), (0,−1, 0), 160.0) ∧

angleLL((0,−1, 0),

(−0.87, 0.5, 0), 1.0472) ∧

angleLL((0,−1, 0),

(0.94, 0.34,−272.51),−1.222))

♦

Notice that α and κ commute, that is, κ.α.A = α.κ.A. Moreover, we say

that two distinct anchors κ1 and κ2 are equivalent (κ1 ≡r κ2) iff κ1 can be

obtained from κ2 by applying two rigid transformations: one rotation and

one translation.

Let κ be an anchor for G. The quotient set of anchors for which the formula

Ψ(κ.α.A) holds modulo the equivalence relation ≡r

V (α.A) = {κ | Ψ(κ.α.A)}/ ≡r

define the set of anchors which are solution to the instance geometric con-

straint problem α.A. We refer to the anchors in V (α.A) as realizations of

the instance problem α.A.

Figure 2.5 shows a graphical representation of the set of realizations V (α.A)

for the instance problem α.A in Example 2.4.



22 2. Solver Architecture

2.4.2 Construction Plans

Let S = 〈G,P,L, I〉 be an abstract construction plan with L =

{o1, o2, . . . , on}. The characteristic formula of S is the first order logic for-

mula,

Φ(S) ≡
n∧

i=1

oi

where the geometric elements of G, the parameters of P and signs of I

occurring in Φ are considered free variables.

Example 2.11 The characteristic formula of the abstract plan S given in Ex-

ample 2.5 is

Φ(S) ≡ (p2 = pointXY(R, 0, 0)

∧ p3 = pointXY(R, d1, 0)

∧ c1 = circleCR(p3, d2)

∧ l3 = linePP(p2, p3)

∧ l4 = lineAP(l3, a1, p3)

∧ p4 = interCL(l4, c1, s1)

∧ l1 = lineAP(l3, a2, p2)

∧ l8 = lineLD(l3, h1, s2)

∧ p1 = interLL(l1, l8)

∧ l2 = linePP(p1, p4))

♦

Let α be a parameters assignment for P , and α.S the corresponding instance

plan. Then the first order formula Φ(α.S) expresses the instance plan. Note

that Φ(α.S) = α.Φ(S) trivially holds.

Example 2.12 The characteristic formula of the instance plan in Example 2.6



2. Solver Architecture 23

is

Φ(α.S) ≡ (p2 = pointXY(R, 0, 0)

∧ p3 = pointXY(R, 290.0, 0)

∧ c1 = circleCR(p3, 130.0)

∧ l3 = linePP(p2, p3)

∧ l4 = lineAP(l3,−1.222, p3)

∧ p4 = interCL(l4, c1, s1)

∧ l1 = lineAP(l3, 1.0472, p2)

∧ l8 = lineLD(l3, 160.0, s2)

∧ p1 = interLL(l1, l8)

∧ l2 = linePP(p1, p4))

♦

Let S = 〈G,P,L, I〉 be an abstract plan and κ an anchor for G. We define

κ.S as 〈G,P, κ.L, I〉.

Example 2.13 Let κ be the anchor in Example 2.10 and α.S the instance plan

in Example 2.6. The characteristic formula Φ after applying the anchor κ to the

instance problem α.S is

Φ(κ.α.S)

≡

((0, 0) = pointXY(R, 0, 0) ∧

(290, 0) = pointXY(R, 290.0, 0) ∧

c1 = circleCR((290, 0), 130.0) ∧

(0,−1, 0) = linePP((0, 0), (290, 0)) ∧

(0.94, 0.34,−272.51) =

lineAP((0,−1, 0),−1.222, (290, 0)) ∧

(245.54, 122.16) =

interCL((0.94, 0.34,−272.51), c1, s1) ∧

(−0.87, 0.5, 0) =

lineAP((0,−1, 0), 1.0472, (0, 0)) ∧

l8 = lineLD((0,−1, 0), 160.0, s2) ∧

(92.38, 160) = interLL((−0.87, 0.5, 0), l8) ∧

(−0.24,−0.97, 177.48) =

linePP((92.38, 160), (245.54, 122.16)))

♦

Let κ be an anchor for G and α a parameters assignment for P . The quotient

set of anchors for which there is an index assignment ι such that the formula



24 2. Solver Architecture

Φ(ι.κ.α.S) holds modulo equivalence relation ≡r

V (α.S) = {κ | ∃ ι Φ(ι.κ.α.S)}/ ≡r

define the set of anchors which are computed by the instance plan α.S. We

refer to the anchors in V (α.S) as indexed anchors of the instance plan α.S.

Figure 2.5 shows a graphical representation of the set of indexed anchors

V (α.S) for the instance plan α.S in Example 2.6.

Given an index assignment ι and a parameters assignment α, there is at

most one anchor κ for which Φ(κ.ι.α.S) holds.

2.5 Constructive Solvers

In the preceding sections we have identified a set of entities relevant in

the constructive geometric constraint solving process: abstract problems,

parameters assignments, instance problems, abstract plans, instance prob-

lems, index assignments and anchors. In this section we present an architec-

ture for constructive geometric constraint solvers based on three functional

units: the analyzer, the index selector and the constructor. We will spec-

ify the functionality of each unit by stating the input, the output and the

relationships between them.

2.5.1 The Analyzer

The analyzer is the functional unit that computes an abstract plan S =

〈G,P,L, I〉 from an abstract problem A = 〈G,C, P 〉. The relationship be-

tween the abstract problem A and the abstract plan S established by the

definition of the analyzer is that the sets G and P are the same in A and S.

There are three important concepts related to analyzers that should be de-

fined.

Definition 2.1 The analyzer domain is the set of abstract problems A for

which an analyzer computes a construction plan S.

The domain of a given analyzer algorithm is important because it is a mea-

sure of the solver power. We will characterize the domain of some construc-

tive analyzers in Chapter 4.



2. Solver Architecture 25

Definition 2.2 We say that an analyzer is correct if and only if for every

abstract problem A in its domain, the analyzer computes an abstract plan S,

and for every parameters assignment α, the relationship V (α.S) ⊆ V (α.A)

holds. That is, each anchor for which the construction plan S is feasible

corresponds to one realization of the instance problem A.

Correctness of a solver is a must. Obviously we are not interested in ana-

lyzers which are not correct. We assume that analysis algorithms found in

the literature are correct.

Notice that this notion of correctness is different from that introduced by

Fudos in [19] and also applied by Soto in [58].

Definition 2.3 We say that an analyzer is ideal if and only if for every ab-

stract problem A in its domain, and for every parameters assignment α, the

set of anchors computed by the construction plan S and the set of realizations

of the instance problems A are coincident, that is V (α.S) = V (α.A).

An ideal analyzer is always correct. Although ideality is a desirable property,

an analyzer can still be useful even if it is not ideal. In Chapter 6 we rely on

this property to define important operations to synchronize multiple views.

The analyzer described in [32] is ideal.

Example 2.14 Since the abstract plan S in Example 2.5 has been generated

from the abstract problem A in Example 2.3 by an ideal analyzer, the set of indexed

anchors of the instance plan α.S in Example 2.6 and the set of realizations of the

instance problem α.S in Example 2.4 are the same set. Figure 2.5 shows this set.

♦

2.5.2 The Index Selector

An index selector is a functional unit characterized by its output which

is an index assignment ι. An index assigment is always associated to a

given abstract plan. Therefore the plan must also be considered an input

to the index selector. Moreover, additional input data must be considered

depending on the selection method that the functional unit implements.

Here we enumerate some methods.

1. A trivial index selector returns an index assignment ι fixed a priori.

For instance, ι(s) = +1 for all s in I.



26 2. Solver Architecture

2. An index assignment ι from I = {s1, . . . , sn} can be represented by

the binary value d1d2 . . . dn where di = 0 if ι(si) = −1 and di = 1 if

ι(si) = 1. The order relation in binary numbers induces an order in the

index assignments. Therefore, we can define a successor (predecessor)

index selector to compute the next (previous) index assignment ι′ from

a given index assignment ι.

3. An anchor-based index selector computes an index assignment ι from

an anchor κ and an abstract plan S = 〈G,P,L, I〉. The output is an

index such that defines a realization where the placement of geometric

elements preserves the relative orientations defined by the anchor κ.

This kind of selector has been studied by several authors in [4, 16, 44].

See the work of Luzón in [44] for an extensive analysis of methods for im-

plementing index selectors.

2.5.3 The Constructor

The constructor is the functional unit that computes an anchor κ from an

abstract plan S, a parameters assignment α and an index assignment ι. The

anchor κ is a realization in V (α.A) provided that the abstract plan S has

been computed from the abstract problem A by a correct analyzer.

2.6 Solvers Software Architecture

In this section we present a software architecture useful for building a geo-

metric constraint solving tool-box. The aim of such a tool-box is to provide

the software engineer with a set of tools to design and implement software

applications based on constraint solving.

The architecture has functional units and data entities. The data entities

are geometric constraint problems, constructions plans, parameters assign-

ments, geometry assignments and index assignments. The functional units

are analyzers, index selectors and constructors. All these components relate

each other following the data-flow diagram shown in Figure 2.7.

This architecture exhibits a number of advantages:

1. The architecture is precisely and concisely defined.



2. Solver Architecture 27

Abstract
problem

SELECTORANALYZER

Abstract
plan

Index
Assignment

Parameter
assigment

CONSTRUCT

Geometry
assignment

Figure 2.7: Architecture data-flow diagram.

2. It is independent of any particular implementation of the functional

units. All what is needed is to define the specific grammar and seman-

tics of LR and LC given in Section 2.1.

3. It is well suited for interactive applications. For instance, when the

user changes the parameters assignment, the analysis and index selec-

tion can be skipped and only the construction step have to be carried

out. In general, for a given change in any data entity, the data-flow

diagram in Figure 2.7 defines which entities must be recomputed.

4. The functional units are reusable to solve problems which are not

geometric constraint solving problems but are related. For example,

in [31] the tool-box is applied to deal with requirements of concurrent



28 2. Solver Architecture

engineering applications.

Solvers reported in [2, 4, 9, 32, 50] can be implemented following the proposed

architecture.

We have identified a set of basic geometric operations, LC , which allows

to express in a unified way the construction plans generated by the solvers

given in [4, 32, 50]. The corresponding analyzers have been federated in the

architecture, sharing index selectors and constructors.

2.7 Geometric Models

On the one hand geometric models as usually defined, see for instance Re-

quicha in [55], are intended to represent a unique solid. On the other hand,

constraint based models represent a family of models. To make constraint

based models a useful tool in conventional solid modeling they should be

restricted to represent a unique object. In what follows, we define the con-

cept of geometric model from this point of view. In the definition we use

the architectural elements of geometric constraint solvers defined in this

Chapter.

Definition 2.4 Given a particular analyzer, a geometric model M is a

tuple M = 〈A,α, ι〉 where A is an abstract system, α is a parameters as-

signment for A, and ι is an index assignment relative to the abstract plan

generated by the analyzer.

To define the geometric model it is necessary to fix the analyzer because the

index meaning depends on the particular abstract plan generated. Given the

four elements of a geometric model as defined before a unique object can be

computed. Consider M = 〈A,α, ι〉 a geometric model. Then by applying

an analyzer to A, compute the abstract plan S. Now compute the anchor

α.ι.S. This anchor is the object represented by the model.

Since a model includes an index assignment which is analyzer-dependant,

transferring a model between differents analyzers is difficult. A way to deal

with this problem would include in the model some information encoding

the actual index assignment in an analyzer-independant way.



2. Solver Architecture 29

2.8 Summary

We have presented a general architecture for constructive geometric con-

straint solvers. The architecture is based on three functional units: the an-

alyzer, the index selector and the constructor. Functional units have been

precisely defined in terms of their input and output. Every functional unit

have a particular type of input and output data. All these data entities have

been characterized: the abstract problem, the abstract construction plan,

the parameters assignment and the index assignment.

Software implementations can be developed by applying the proposed archi-

tecture straightforward. We have enumerated a number of benefits obtained

by using this architecture when developing constructive geometric constraint

solvers.

Based on this architecture we have defined the concept of solid model. This

concept adapts the classical definition of a solid model to the particular

characteristics of constructive geometric constraint models.

To illustrate the concepts, we have used functional capabilities which are

specific to the ruler-and-compass constructive geometric constraint solving

technique. However, the concepts apply to any constructive approach. All

what is needed is to replace the set of geometric elements, the set of con-

straints available and the set of basic constructions with those in the con-

structive approach of interest.



30 2. Solver Architecture



31

3 Analysis Methods

As defined in Chapter 2, an analysis method is an algorithm that com-

putes an abstract plan from an abstract geometric constraint problem. In

this chapter we study three main constructive analysis methods. The three

analysis methods reviewed here are reduction and decomposition of Fudos

and Hoffmann, [19–21], and also the decomposition method due to Owen,

[50].

To describe Fudos and Hoffmann reduction and decomposition methods, we

introduce the concept of set decomposition of a graph. This concept allows

us to study both methods from an unified point of view.

Owen’s decomposition method is completely reformulated. We define the

deficit function and prove some properties. Using these results we prove

the correctness of the reformulated Owen’s method. This new version of

Owen’s algorithm plays an important role in Chapter 4 where the domains

of analysis methods are studied.

Most of the work of this chapter has been previously published in refer-

ences [35, 37, 39].

3.1 Abstract Problems and Graphs

Abstract problems are naturally represented as graphs. Many algorithms

require this kind of representation as input data. In this section we first

introduce some concepts related to graphs and later we describe how an ab-

stract problem is represented as a graph. Then we explore when a geometric



32 3. Analysis Methods

constraint graph is well constrained and, finally, we introduce the concept

of set decomposition.

3.1.1 Graph Concepts

First we recall some basic terminology of graph theory that will be used

in the rest of the chapter. For an extensive treatment see the books by

Chartrand and Lesniak [10], Gross and Yellen [24], Even [17], Leeuwen [60],

and the report of Hopcroft and Tarjan [28].

A graph is a structure which consists of a set of vertices (or nodes) V =

{v1, v2, . . . } and a set of edges (or bonds) E = {e1, e2, . . . }; each edge in

E is incident to the elements of an unordered pair of vertices (u, v) which

are necessarily distinct. Both V and E are assumed to be finite. As usual,

we write E(G) (and V (G)) to denote the set of edges (and vertices) of the

graph G. If e ∈ E(G) is an edge of G, then V (e) is the set of vertices to

which e is incident.

We say that a graph G′ = (V ′, E′) is a subgraph of G = (V,E) iff V ′ ⊆ V

and E′ ⊆ E. Let G = (V,E) a graph and let Vi ⊆ V a subset of vertices.

Then the subgraph of G induced by Vi is the graph Gi = (Vi, Ei) where

Ei = {e|V (e) ⊆ Vi}.

Given two graphs G = (V,E) and G′ = (V ′, E′) we define the union of both

as the graph G ∪G′ = (V ∪ V ′, E ∪ E′).

A path is a sequence of edges e1, e2, . . . , en such that:

1. ei and ei+1 have a common endpoint.

2. if ei is not the first or last edge then it shares one of its endpoints with

ei−1 and another with ei+1.

A graph G = (V,E) is said to be connected if every vertex is connected to

every other vertex by at least one path of edges. We say that a vertex a

of a connected graph G is an separation vertex or node (articulation vertex

or node) if by removing a, the graph splits into two or more disconnected

subgraphs. If a is an articulation node in G, then there are two vertices u

and v different from a such that a is on every path connecting u and v. Let

a be a separation vertex of a connected graph G = (V,E), then E can be

divided into the separation classes induced by a, say E1, E2, . . . , En, defined



3. Analysis Methods 33

as follows. Two edges are in the same separation class Ei iff there is a path

using both edges and not containing a except, possibly, as an endpoint.

A graph with no articulation vertices is called biconnected. If u and v are

arbitrary non adjacent vertices of a biconnected graph G, then there are at

least two vertex disjoint paths in G connecting them. A connected graph

can be uniquely decomposed into biconnected components by splitting it at

separation vertices. Aho et al., [1], reported a depth first algorithm that

efficiently computes such a decomposition.

Let a and b be two vertices in a biconnected graph G. The edges of G can

be divided into the separation classes induced by {a, b}, say E1, E2, . . . , En,

defined as follows, [28]. Two edges are in the same separation class Ei if

there is a path using both edges and not containing a or b except, possibly,

as endpoints. If the two vertices a and b divide the edges into more than

two separation classes, then the pair {a, b} is a separation pair (articulation

pair) of G. Moreover, if {a, b} divides the edges into two separation classes,

each containing more than one edge, then {a, b} is also a separation pair.

A triconnected graph is a graph with more that two vertices with no sepa-

ration pairs. In a triconnected graph there are at least three vertex disjoint

paths between every pair of non adjacent vertices.

Let {a, b} be a separation pair in the graph G that induces the separation

classes E1, E2, . . . , En. Assume 1 ≤ m < n and let E ′ =
⋃m

i=1 Ei and

E′′ =
⋃n

i=m+1 Ei such that |E′| ≥ 2 and |E′′| ≥ 2. Then we will refer to the

graphs G′ = (V (E′), E′) and G′′ = (V (E′′), E′′) as the separating graphs of

G. The graphs

G1 = (V (E′), E′ ∪ {(a, b)})

and

G2 = (V (E′′), E′′ ∪ {(a, b)})

are called split graphs of G. The added edge (a, b) is labeled to denote

the split and is called a virtual edge. Assume that the graph G and its

split graphs are recursively split until obtaining graphs that cannot be split

further. The set of these graphs defines the set of split components of G.

Note that the split components are triconnected graphs and that by merging

the split components we recover the original graph.

Hopcroft and Tarjan, [28], and Miller and Ramachandran, [48], reported on

algorithms to efficiently compute separating graphs and split components



34 3. Analysis Methods

of a graph. Most concepts in these algorithms were first reported in the

planarity testing algorithm of Hopcroft and Tarjan, see Even’s book [17].

3.1.2 Geometric Constraint Graphs

Abstract problems can be represented by using a graph in a straightforward

manner. Those graphs are named geometric constraint graphs. Geometric

constraint graphs are simple and undirected.

Let A = 〈G,C, P 〉 be an abstract problem. The associated geometric con-

straint graph G = (V,E) is a simple, undirected graph such that:

• Every vertex corresponds to a geometric element in the abstract prob-

lem.

• Every edge corresponds to a constraint in the abstract problem. As-

sume that e is an edge and r(g1, g2, p1, . . . , pn) its corresponding con-

straint where gi are geometric elements and pi are parameters. Then

e is incident to vertices g1 and g2 in the graph.

Example 3.1 Let us consider the following geometric problem corresponding to

the sketch in Figure 2.1 (page 8):

gcp A

param

d1, d2, a1, a2, h1 : real

endparam

geom

p1, p2, p3, p4 : point

l1, l2, l3, l4 : line

endgeom

onPL(p1, l1)

onPL(p1, l2)

onPL(p2, l1)

onPL(p2, l3)

onPL(p3, l3)

onPL(p3, l4)

onPL(p4, l4)

onPL(p4, l2)

distPP (p2, p3, d1)

distPP (p3, p4, d2)



3. Analysis Methods 35

p1

l1

p2

l3

p3

l4

p4

l2

onPL

distPP

distPP

onPL onPL

onPL

onPL

onPLonPLonPL

onPL

distPL

angleLL

angleLL

Figure 3.1: Geometric constraint graph corresponding to

the abstract problem A.

distPL(p1, l3, h1)

angleLL(l3, l1, a2)

angleLL(l3, l4, a1)

endgcp

The associated geometric constraint graph is defined by a set of vertices V =

{p1, p2.p3, p4, l1, l2, l3, l4} and a set of 13 edges corresponding to every constraint in

the abstract problem. For instance, there is an edge between p1 and l1 correspond-

ing to the constraint onPL(p1, l1). Figure 3.1 shows the graph.

♦

Representing an abstract problem as a graph imposes some limitations on

the constraint language LR. Because edges in a graph are incident to two

vertices, all predicates in LR must be defined on two geometric elements and

any number of parameters.

3.1.3 Well Constrained Graphs

In Chapter 2 we have defined the abstract problem concept. However, not

all the abstract problems that are syntactically correct make sense. For

instance, Figure 3.2 shows an abstract problem that does not define any



36 3. Analysis Methods

d3p2

d2

p1

d1

h1

l3

a1

l4

l2
p3

p4

d4l1

a2

Figure 3.2: Over constrained abstract problem

realization for most of the parameters assignments. The reason is that the

number of constraints involved is larger than required. We are interested

in abstract problems that make sense. Roughly speaking, we say that an

abstract problem that makes sense is well constrained. The aim of this

Section is to further understand the concept of well constrained.

Let us focus first on instance geometric constraint problems. An instance

problem results from applying a parameters substitution to an abstract prob-

lem. Assume that A is an abstract problem and α a parameters assignment

for A. Then, the set of realizations of α.A, V (α.A), is either:

1. An empty set. In this case we say that the instance problem is over

constrained.

2. An infinite set. In this case we say that the instance problem is under

constrained.

3. A non empty finite set. In this case we say that the instance problem

is well constrained.

Notice that an instance problem can also be represented by a system of equa-

tions. These are the equations corresponding to the characteristic formula of

the instance problem. Then, the set of solutions to these equations naturally

defines when an instance problem is well, under or over constrained.

Our interest is centered on abstract problems. Now the question is: when are

abstract problems well defined? A first attempt to answer the question may

lead to say that an abstract problem is well (over, under) constrained when

all the instance problems derived from it are well (over, under) constrained.



3. Analysis Methods 37

d2

a1 a3

a2
p

d1

d2 = 10

d1 = 10

a1 = 90

p

a2 = 45

a3 = 45

Figure 3.3: Well constrained problem and a degenerate

instance.

Nonetheless, things are more difficult. Some particular examples illustrate

these difficulties.

1. There are well constrained abstract problems that, with some parame-

ter assignments, become under constrained. Figure 3.3, due to Bouma,

[4], illustrates a well constrained abstract problem that becomes under

constrained for a specific parameter assignment. In the sketch on the

left there is a well constrained problem. If the parameter assignment of

the sketch on the right is applied, then the position of point p becomes

undefined and the problem has an infinite number of realizations.

2. Over constrained abstract problems do not define any realization.

However, there are particular parameter assignments for which an

over constrained problem defines a finite set of realizations. In the

example of Figure 3.4, all parameter assignments such that d2
3 =

d2
1 + d2

2 − (2d1d2 cos a1) define realizations.

The definition of well constrained abstract problems has been studied in the

context of rigidity theory. Whiteley in [63, 64] describes some of the main

results. The book of Graver et al., [23], includes a comprehensive work on

this topic. Finally, Owen in [51] collects some of the main results.

Rigidity theory uses the concept of generically well constrained to denote

an abstract system which is well defined. Roughly speaking, we say that an

abstract problem is generically well constrained if it is well constrained for

most of the parameter assignments except for the degenerate ones. We refer



38 3. Analysis Methods

d3d1

a1

d2

Figure 3.4: Over constrained problem which has some

degenerated realizations.

to the introduction of Graver’s book, [23], for an excellent tutorial on this

topic.

To make the concept of generically well constrained useful we need properties

that characterize which abstract problems are generically well constrained

or, equivalently, which geometric constraint graphs are generically well con-

strained. Intuitively, this depends on the graph properties. Several results,

according to the geometric elements and the kind of constraints found in

the graph, have been reported. The first result characterizes geometric con-

straint graphs associated with geometric constraint problems including only

points and distances. It is due to Laman, [43].

Theorem 3.1 (Laman) Let G = (V,E) be a geometric constraint graph

with |V | ≥ 2 such that the geometric elements are points and the constraints

are distances between points. Then G is a generically well constrained graph

iff

1. for every set of geometric elements V ′ ⊆ V , the induced subgraph

G′ = (V ′, E′) has the following property:

|E′| ≤ 2|V ′| − 3

2. |E| = 2|V | − 3

In this Theorem, the first condition is usually known as the Laman condition.

There are other results which apply to distinct sets of geometric elements

and constraints. Servatius and Whiteley, [56], give a characterization of



3. Analysis Methods 39

generically well constrained graphs with points and directed segments in

which constraints are point to point distances and segment orientations.

Owen and Whiteley, [52], present the characterization of generically well

constrained graphs with points and lines in which constraints are distances

between geometrical elements of any type.

Because our interest focus on the constructive geometric constraint solv-

ing, we are interested in a particular kind of graphs. These graphs include

geometric elements as points and lines related by constraints like distance

between any pair of elements and angle between lines. Unfortunately, we

do not know of any results for this kind of graphs. The best approximation

is due to Owen, [51], who gives a necessary condition for the case where

angle constraints between lines are also allowed. Nevertheless, no sufficient

condition is known in this case. The result is the following:

Theorem 3.2 Let G = (V,E) be a geometric constraint graph with |V | ≥ 2

such that the geometric elements are points or lines and the constraints are

angle between two lines, distances between two points and distance between

a point and a line. If G is a generically well constrained problem then,

1. for every set of geometric elements V ′ ⊆ V , the induced subgraph

G′ = (V ′, E′) has the following property:

|E′| ≤ 2|V ′| − 3

2. for every set of lines in the graph L′ ⊆ {v ∈ V |v is a line}, the induced

graph G′ = (L′, E′) has the following property:

|E′| ≤ |L′| − 1

An example showing that this theorem grants only a necessary condition is

given in Owen, [51], and it is reproduced in Figure 3.5. In this figure vertices

labeled p are points, and vertices labeled l are lines. Although this graph

fulfills the conditions of Theorem 3.2 it is over constrained.

The lack of a complete characterization of generically well constrained

graphs leads Fudos, [19], and Soto, [58], to define the concepts of structurally

well, under and over constrained. These concepts classify the geometric con-

straint graphs only paying attention to their structural characteristics and

ignoring the type of the geometric elements and constraints represented by

nodes and edges, respectively.



40 3. Analysis Methods

l l

pp

pp

p

p

p p

p

pp

p

l

Figure 3.5: Over constrained graph for which Theo-

rem 3.2 holds.

Definition 3.3 Let A be an abstract problem. Let G = (V,E) be the graph

form of A with |V | ≥ 2.

A is structurally over constrained if there is an induced subgraph of G with

m < |V | vertices such that the number of edges is greater than 2m− 3.

A is structurally under constrained if it is not structurally over constrained

and the number of constraints is less than 2|V | − 3.

A is structurally well constrained if it is not structurally over constrained

and the number of constraints is equal to 2|V | − 3.

This definition is used extensively throughout this manuscript as a way to

refer to generically well constrained problems. It should be understood that

this definition classifies graphs only by their structural properties. Moreover,

it does not distinguish between graphs with the same structure and differ-

ent geometric elements or constraints. Therefore, there are graphs which

are structurally well constrained and not generically well constrained. The

Figure 3.5 shows one of them.

In the rest of the manuscript we will use the term well (under, over) con-

strained to refer to structurally well (under, over) constrained property.

When needed, we will conveniently qualify the term as structurally or gener-

ically well (under, over) constrained.



3. Analysis Methods 41

a b

c

e
d

f

C

C ′
a b

c

e
d

f

C2 C3

C1

C ′1

C ′3

C ′2

Figure 3.6: Left: A set C. Right. A set decomposition

of C.

3.1.4 Set Decomposition of a Graph

In this section first we define the concept of set decomposition that refers to

a way of partitioning a given abstract set. Then we define the concept of

set decomposition of a graph. This tool will be used in the following sections

to describe Fudos and Hoffmann’s decomposition and reduction analysis

algorithms.

Definition 3.4 Let C be a set with, at least, three different members, say

a, b, c. Let {C1, C2, C3} be three subsets of C. We say that {C1, C2, C3} is a

set decomposition of C if

1. C1 ∪ C2 ∪ C3 = C,

2. C1 ∩ C2 = {a},

3. C1 ∩ C3 = {b} and

4. C2 ∩ C3 = {c}.

We say that {a, b, c} are the active elements of the set decomposition.

Figure 3.6 shows a set and a possible set decomposition. Next we define the

concept of set decomposition of a graph, illustrated in Figure 3.7.



42 3. Analysis Methods

a b

c

e
d

f

a b

c

e
d

f

V2

V1

V3

Figure 3.7: Left: Graph. Right: Set decomposition of

the graph.

Definition 3.5 Let G = (V,E) be a graph. Let {V1, V2, V3} be three subsets

of V . Then {V1, V2, V3} is a set decomposition of G if it is a set decompo-

sition of V and for every edge e in E, V (e) ⊆ Vi for some i, 1 ≤ i ≤ 3.

Roughly speaking, a set decomposition of a graph G = (V,E), is a set

decomposition of the set of vertices V such that does not break any edge in

E. Figure 3.8 left shows a graph G = (V,E) and Figure 3.8 right shows a set

decomposition of V which is not a set decomposition of G because vertices

incident to edge (e, b) do not belong to the same set in the partition.

The set decomposition and the separation pairs of a graph are related by

the following lemma.

Lemma 3.6 Let {V1, V2, V3} be a set decomposition of a graph G and let

V1∩V2 = {a} and V1∩V3 = {b}. If |V1| > 2, then {a, b} is a separation pair

of G.

Proof

The subgraphs of G induced by Vi, for 1 ≤ i ≤ 3, have disjoint sets of edges.

By Definition 3.4 V1 ∩ (V2 ∪ V3) = {a, b}. Thus, removing {a, b} disconnects

G. Therefore {a, b} is a separation pair. ¤



3. Analysis Methods 43

a b

c

e
d

f

a b

c

e
d

f

V1 V2

V3

Figure 3.8: Left: Graph. Right: Set decomposition with

a broken edge.

3.2 Fudos and Hoffmann’s Reduction Algorithm

We recall the formalization of the reduction analysis method proposed by

Fudos and Hoffman in [20, 21]. This method solves a geometric constraint

problem by analyzing the constraint graph bottom-up. Clusters play a cen-

tral role in this method. A cluster is a set of two dimensional geometric

elements with known positions with respect to a local coordinate system,

i.e. their relative positions are known. An elemental cluster is a cluster with

exactly two geometric elements and one geometric constraint between them.

Figure 3.9 shows the different elemental clusters that can be defined with

lines and points.

In an elemental cluster, the relative position of one geometric element with

respect to the other is fixed. Moreover, three clusters that pairwise share

an element define a rigid body and can be merged into one new cluster

whose elements are the union of the elements in the merged cluster. See

Figure 3.10.

The Fudos and Hoffman reduction algorithm can be described in terms of

abstract reduction systems as follows. See [42] for the terminology and

notation on this topic.

Given a geometric constraint graph G = (V,E), we define the initial set

of clusters SG by SG = {{u, v} | (u, v) ∈ E}. Let S be a set of clusters

in which there are three clusters C1, C2, C3 such that {C1, C2, C3} is a set



44 3. Analysis Methods

P1
P2

P
L

L1

L2

α
d h

Figure 3.9: Elemental clusters built from points and lines.

decomposition of C. Then, S −→r S
′ is a reduction rule where

S′ = (S− {C1, C2, C3}) ∪ C.

The geometric constraint problem represented by the geometric constraint

graph G is solvable by reduction analysis if SG reduces to the singleton {V }.

Let −→∗
r be the transitive and reflexive closure of the reduction relation −→r

and let S(G) = {S | SG −→
∗
r S}. Fudos and Hoffmann proved in [20] that if

G is not over constrained, the abstract reduction system R = 〈S(G),−→r〉

is terminating and confluent which implies the unique normal form prop-

erty and canonicity. In particular, it means that no matter the reduction

sequence we choose, we finally get the same set of clusters.

Fudos and Hoffmann presented in [21] an algorithm that efficiently imple-

ments the reduction analysis. This algorithm has a quadratic worst case

running time on the number of geometric elements of the problem.

3.3 Fudos and Hoffmann’s Decomposition Algo-

rithm

Fudos in [19] and Fudos and Hoffmann in [20, 21] propose an algorithm based

on the decomposition of a set of clusters. In this section we recall this algo-

rithm. The algorithm was developed to be run once the reduction algorithm

explained in the previous section has computed a partial solution of a ge-

ometric constraint graph. However, it can also be applied to a completely

unsolved graph and thus the algorithm constitutes an analysis method on

its own. Here we are interested in this second application of the algorithm.



3. Analysis Methods 45

a

b c

a

b c

C3

C1 C2

C−→

Figure 3.10: Cluster merging

The input of the algorithm is a geometric constraint graph and the output

is the sequence of rules (decompositions) which have been applied by the

algorithm. The algorithm has an efficient version whose worst case running

time is O(|V |2). We describe this algorithm using an abstract reduction

system.

Given a geometric constraint graph G = (V,E), define the initial set of

clusters OG = {V }. Let O be a set of clusters including a cluster C such

that {C1, C2, C3} is a set decomposition of the subgraph of G induced by C.

Then, O −→d O
′ is a reduction rule where

O′ = (O− C) ∪ {C1, C2, C3}.

Example 3.2 Assume that we apply the decomposition algorithm to the graph of

the Figure 3.1. The initial set of clusters is OG = {{p1, p2.p3, p4, l1, l2, l3, l4}}. The

reduction rule must compute a set decomposition {C1, C2, C2}. Let C1 = {l2, p1},

C2 = {l2, p4} and C3 = {p2, p3, l1, l3, l4} be this set decomposition. Then this is a

decomposition of OG that can be written:

OG −→d O
1
G = {{l2, p1}, {l2, p4}, {p2, p3, l1, l3, l4}}

Figure 3.11 illustrates the application of this reduction rule.

♦

The geometric constraint problem represented by the geometric constraint

graph G is solvable by decomposition analysis if OG reduces to SG =

{{u, v} | (u, v) ∈ E(G)}. The output of the algorithm is the sequence of

reductions applied.



46 3. Analysis Methods

p1

l1

p2

l3

p3

l4

p4

l2

p1

l1

p2

l3

p3

l4

p4

l2

Figure 3.11: Application of the reduction rule in a de-

composition algorithm.

Let −→∗
d be the transitive and reflexive closure of the reduction relation

−→d and let O(G) = {O |OG −→
∗
d O}. Then the decomposition analysis

can be seen as the abstract reduction system D = 〈O(G),−→d〉, [42].

3.4 Owen’s Decomposition Algorithm

First we briefly recall the Owen’s algorithm. Then we give a new formaliza-

tion for the Owen’s algorithm. The new formalization is simpler and will be

used in the rest of the manuscript.

3.4.1 Owen’s Algorithm

Owen in [50] introduced a geometric constraint solving technique based on

a top-down analysis of the geometric constraint graph associated with a

geometric problem.

The algorithm has two steps. In a first step, the algorithm computes the set

of split components S of the given graph G, [28]. These split components

are either triangles or complex triconnected graphs, that is, graphs with

more than three edges. As computed, the complex split components are

no further decomposable. To overcome this problem, in a second step the

complex split components are transformed, if possible, by removing from



3. Analysis Methods 47

func Owen(G)

SC := SplitComponents(G)

S := ∅

foreach g in SC do

if Reducible(g) then

S := S ∪Owen(Reduce(g))

else

S := S ∪ {g}

fi

done

return S

end

Figure 3.12: Owen’s analysis algorithm.

the graph one of the virtual edges introduced in the first step. Note that

virtual edges are always incident to separation pairs.

Then the first step is recursively applied to the transformed split compo-

nents. The algorithm terminates when the graphs cannot be split further.

At the end of the analysis, the original graph has been decomposed into a

set of triangles whose edges are either original edges or virtual edges.

If function SplitComponents(G) computes the split components of G, func-

tion Reducible(g) checks whether a split component should be further sub-

divided, and function Reduce(g) removes from graph g unneeded virtual

edges, Owen’s algorithm can be written as shown in Figure 3.12.

How Owen’s analysis algorithm works is illustrated in Figure 3.13. Virtual

edges are shown in dashed lines.

3.4.2 The New Formalization

To decompose a graph, Owen’s method uses the algorithm for finding tri-

connected components reported by Hopcroft and Tarjan in [28], which is

based on preserving graph connectivity. As a result, the split components

generated by the decomposition include extra virtual edges. To recursively

apply the decomposition process, Owen’s algorithm must remove these extra



48 3. Analysis Methods

SPLIT

REDUCE REDUCE

SPLIT
SPLIT

f

d

h

G a

g

h
fe

b

c

d

a
S1

b v2

c
c e

d

v1

S2

a

v2

a
S3

g

h
v1

f

d

a

S2R

ec

d

v1

a

f

d

S2RS1

c e

d

S2RS2

a

e
v3

d
f

g

a

f h

S3R

S2RS3

g
S3RS2S3R1

v1
v4

g

h

v3 v5

v5

v4

Figure 3.13: Owen’s algorithm computation applied to

an example graph.



3. Analysis Methods 49

virtual edges.

In what follows we will present an algorithm to decompose a constraint

graph in triconnected graphs with exactly three vertices, that is, triangles.

The algorithm is based on a divide and conquer strategy which preserves the

constraint graph property of being well constrained. The resulting algorithm

is conceptually simple and easy to implement.

Similarly to the techniques reported in [21, 50], our algorithm will be based

on subdividing the constraint graph into two separating graphs induced by

a separation pair. With the aim of clearly stating a subdivision criterion,

we start by giving some definitions and deriving properties which relate well

constrained graphs with their separating graphs.

Definition 3.7 Let G = (V,E) be a geometric constraint graph. We define

the Deficit function associated with G by

Deficit(G) = (2|V | − 3)− |E|

The function Deficit computes the difference between the number of edges

needed for a constraint graph to be well constrained and its actual number

of edges. Note that if G is not over constrained, Deficit(G) ≥ 0.

Lemma 3.8 Let G be a constraint graph and G′ and G′′ separating graphs.

Then

Deficit(G) = Deficit(G′) +Deficit(G′′)− 1

Proof

By definition, Deficit(G) = (2|V |−3)−|E|). Since G′ and G′′ are separating

graphs of G, then |V | = |V ′|+ |V ′′| − 2 and |E| = |E ′|+ |E′′|. Therefore,

Deficit(G) = 2(|V ′|+ |V ′′| − 2)− 3− (|E ′|+ |E′′|)

= (2|V ′| − 3− |E′|) + (2|V ′′| − 3− |E′′|)− 1

= Deficit(G′) + Deficit(G′′)− 1

¤

Lemma 3.9 Let G be a well constrained graph and G′ and G′′ separating

graphs. Then if Deficit(G′) > Deficit(G′′), G′ is under constrained and G′′

is well constrained.



50 3. Analysis Methods

Proof

Since G is well constrained, Deficit(G) = 0 and separating graphs, G′ and

G′′, are not over constrained, that is, Deficit(G′) ≥ 0 and Deficit(G′′) ≥

0. From Lemma 3.8, Deficit(G) = Deficit(G′) + Deficit(G′′) − 1. Thus

Deficit(G′) + Deficit(G′′) = 1. Then, Deficit(G′) = 1 and Deficit(G′′) = 0,

which means that G′ is under constrained and G′′ well constrained. ¤

Definition 3.10 Let G be a constraint graph. Let G′ and G′′ separating

graphs of G. The modified split graphs, G1 and G2, of G are defined as

follows. If Deficit(G′) > Deficit(G′′) then

G1 = (V (E′), E′ ∪ {(a, b)}) and G2 = G′′

Lemma 3.11 Let G = (V,E) be a constraint graph and, G1 = (V1, E1) and

G2 = (V2, E2) be modified split graphs. Then Deficit(G) = Deficit(G1) +

Deficit(G2).

Proof

Now |E| = |E1|+ |E2| − 1. Apply proof of Lemma 3.8. ¤

Definition 3.12 Let G be a geometric constraint graph. An s-tree S of G

is a binary tree of graphs such that:

1. the root is the graph G,

2. for each node G′ in S its subtrees are rooted in the modified split graphs

G′
1 and G′

2 of G′, and

3. the leaves are either triangles or triconnected graphs.

As we will see in Section 4.3 we are interested in graphs for which there

are s-trees whose leaf nodes are triangles because we know how to solve the

associated geometric constraint problem,[50].

Definition 3.13 We say that a constraint graph G is s-tree decomposable

if there is an s-tree such that its root is G and all its leaves are triangles.

Let Triconnected(G) be a function that tests whether a graph has a sepa-

ration pair, SeparatingGraphs(G) a function that computes the separating

graphs of G, (Recall that separating graphs do not include virtual edges),



3. Analysis Methods 51

func Analysis(G)

if Triconnected(G) then

S := BinaryTree(G, nullTree, nullTree)

else

G1,G2 := SeparatingGraphs(G)

if Deficit(G1) > Deficit(G2) then

G1 := AddVirtualEdge(G1)

else

G2 := AddVirtualEdge(G2)

fi

S := BinaryTree(G, Analysis(G1),

Analysis(G2))

fi

return S

end

Figure 3.14: New algorithm for decomposition analysis.

and AddVirtualEdge(G) a function that adds a virtual edge incident to the

separation pair used to compute the split graph G. Then the decomposition

analysis algorithm based on preserving deficits of graphs can be written as

shown in Figure 3.14.

The input to the algorithm is a graph G associated to a geometric constraint

problem. The output is an s-tree S whose root is G. Note that if G is s-

tree decomposable the resulting s-tree decomposes G into triangles and the

problem is solved.

Figure 3.15 illustrates the behavior of the new decomposition analysis al-

gorithm applied to the example graph in Figure 3.13. Note that now only

those virtual edges that are strictly necessary to keep the deficit property

are included in the modified split graphs, therefore avoiding the need for

graph transformation.

When one of the separation classes is a single edge, it is incident to the

vertices in the separation pair. In this case we prove the following result.

Lemma 3.14 Let G = (V,E) be a well constrained geometric constraint



52 3. Analysis Methods

G a

g

h
fe

b

c

d

a

b

c

a

ec

d

c e

d

d

df

aa

e

d

c e

d

a

f

d

g

h

a

hf

g

g f h

g

f h

v1

v2

v3

v3 v4

v5
f h

g

Figure 3.15: Decomposition analysis generated by the

new algorithm on the example graph in Figure 3.13.



3. Analysis Methods 53

graph and {a, b} a separation pair such that (a, b) ∈ E. Then the separation

graph which contains edge (a, b) is well constrained.

Proof

Let {a, b} be the separation pair in the graph G = (V,E) and

E1, . . . , En−1, En be the separation classes, where En contains just the edge

(a, b). Let E ′ =
⋃m

i=1 Ei and E ′′ =
⋃n−1

i=m+1 Ei such that |E ′| ≥ 2 and |E ′′| ≥ 2.

We have

|E| = |E ′|+ |E ′′|+ |En| = |E
′|+ |E ′′|+ 1

|V | = |V (E ′)|+ |V (E ′′)| − 2

G well constrained means that 2|V | − 3− |E| = 0. Substituting |E| and |V |

by the expressions above and rearranging terms

(2|V (E ′)| − 3− |E ′|) + (2|V (E ′′)| − 3− |E ′′|)− 2 = 0

There are two different cases. First let

(2|V (E ′)| − 3− |E ′|) = (2|V (E ′′)| − 3− |E ′′|) = 1

Since classes Ei are grouped arbitrarily, assume that E ′ = E ′ ∪ En. Then

V (E′) = V (E ′) and |E′| = |E ′| + 1. Then the separation graphs are G′ =

(V (E′), E′) and G′′ = (V (E ′′), E ′′). Thus the deficit of the separation graph

G′ = (V (E′), E′) is

(2|V (E′)| − 3− |E′|) = 2|V (E ′)| − 3− (|E ′|+ 1)

= 2|V (E ′)| − 3− |E ′| − 1

= 0

Therefore the separation graph G′ contains edge (a, b), is well constrained

and, since Deficit(G′) < Deficit(G′′), no virtual edge is added to it.

The second case leads to a contradiction. Without loss of generality, let

(2|V (E ′)| − 3 − |E ′|) = 0, that is, G′ is well constrained. Let (2|V (E ′′)| −

3 − |E ′′|) = 2 and assume again E ′ = E ′ ∪ En. This would result in the

separation graph G′ ⊂ G being over constrained, that is G would be over

constrained which is a contradiction. ¤

Lemmas 3.8, 3.9 and 3.11 along with Lemma 3.14 prove that the algorithm

preserves the deficit of the input graph.



54 3. Analysis Methods

v
a

b

Figure 3.16: Graph with a degree two vertex v.

3.4.3 Subdivision Pattern

The algorithm given in the previous section analyzes a constraint graph by

decomposing it into two split graphs induced by a separation pair. However,

there is nothing essential in this subdivision method.

Todd, [59], reported on a method where graphs are subdivided by isolating

vertices of degree two from their neighbors. In fact, this is a particular case of

decomposing through separation pairs. Figure 3.16 illustrates a graph with

a degree two vertex v. Note that its neighbors, a and b, are a separation

pair. This subdivision method is rather limited but can be satisfactorily

combined with other methods, like those explained by Hopcroft et al., [28],

or Miller et al., [48], to compute more general graph subdivisions.

Another method subdivides a graph into three subgraphs by selecting three

vertices such that by removing them the graph splits into three connected

components. See Figure 3.17. We do not know of any efficient algorithm to

select the three vertices but they can always be computed by using a brute

force approach.

3.5 Summary

In this chapter we have introduced the geometric constraint graphs as a tool

to represent geometric constraint abstract problems. Geometric constraint

graphs are the representation used for the analysis algorithms studied in this

Chapter.

We have also discussed the characterization of well constrained geometric

constraint graphs. We have illustrated the difficulty of defining this concept.

Finally we show the relationship between this concept and the generically



3. Analysis Methods 55

c

a

b

Figure 3.17: Subdividing a graph into three subgraphs

by using three vertices a, b and c.

well constrained concept from the rigidity theory. We have introduced the

definition of structurally well constrained graphs which is extensively used

throughout all the manuscript.

After that, we have reviewed three analysis methods: decomposition, reduc-

tion, and Owen’s method. The three methods are conveniently reformulated

to easily reach the objectives of the next chapter. Decomposition and re-

duction have been reformulated as abstract reduction systems with the help

of the set decomposition of a graph. Owen’s method have been reformu-

lated applying the concept of deficit and a new algorithm has been devised

from this reformulation. We proved the correctness of the new algorithm.

Moreover, the new formalization reveals that Owen’s algorithm is a plain

divide-and-conquer algorithm that preserves the deficit value while splitting

the problem.



56 3. Analysis Methods



57

4 Domain of Analysis

Methods

In this Chapter we prove that the three analysis methods studied in Chap-

ter 3 have the same domain. We first define the tree decomposition of a

graph and prove some properties. Then, the class of full tree decompos-

able geometric constraint graphs is defined. We show that the domain of

each studied method is equivalent to the class of full tree decomposable

graphs. Finally we show how this class of graphs can be defined as a re-

cursive sequence similar to Henneberg sequences of well constrained graphs,

see Graver [23].

Most of the work in this chapter has been previously published in [34, 35,

37, 39].

4.1 Tree Decomposition of a Graph

In this section, we define the concept of tree decomposition of a graph. This

concept mimics the data structure obtained by recursively applying a set

decomposition to a geometric constraint graph.

Definition 4.1 Let G = (V,E) be a graph. A 3-ary tree T is a tree decom-

position of G if

1. V is the root of T ,

2. Each node V ′ ⊆ V of T is the father of exactly three nodes, say

{V ′
1 , V

′
2 , V

′
3}, which are a set decomposition of the subgraph of G in-

duced by V ′, and



58 4. Domain of Analysis Methods

a b

c

e

d

f

Figure 4.1: Collection of set decompositions of the graph

in Figure 3.7.

3. Each leaf node contains exactly two vertices of V .

A graph for which there is a tree decomposition is a tree decomposable graph.

Figure 4.1 shows a collection of set decompositions recursively generated

for the tree decomposable graph of Figure 3.7. The corresponding tree

decomposition is shown in Figure 4.2.

By Definition 4.1, all leaves of a tree decomposition T of a graph G have car-

dinality two. Moreover, in a tree decomposable graph every edge is mapped

to a tree decomposition leaf. We prove this in the following result:

Theorem 4.2 Let G = (V,E) be a geometric constraint graph and T be a

tree decomposition of G. For each edge (a, b) ∈ E, there is a leaf {a, b} in

T .

Proof

Let us proceed by induction on the structure of T , see the book by Manna,

[45].

Base case: T is a tree with only the root V = {a, b}. T corresponds to a

graph G = (V,E) and E is either the empty set or a singleton containing

the edge (a, b). In both cases the proposition holds.



4. Domain of Analysis Methods 59

{a, b, c, d, e, f}

{a, c, d, e} {a, b, f}

{b, f} {a, f}{a, b}{d, c}{e, c}{a, d, e}

{d, e}{a, d} {a, e}

{c, b}

Figure 4.2: Tree decomposition of the graph in Figure 4.1.

Induction hypothesis: For all T ′, a subtree of T with root V ′, let G′ =

(V ′, E′) be the subgraph of G induced by V ′. For each edge (a, b) ∈ E ′,

there is a leaf {a, b} in T ′.

Induction step: Let T be a tree decomposition of G. V is the root of T and

let Vi be the root of tree decomposition Ti, the i-th child of V , for 1 ≤ i ≤ 3.

Let Gi = (Vi, Ei) be the subgraph of G induced by Vi, for 1 ≤ i ≤ 3.

{V1, V2, V3} is a set decomposition of G. Since a set decomposition of a

graph induces a partition on the set of edges of the graph, Gi for 1 ≤ i ≤ 3

are edge-disjoint graphs. By induction hypothesis, for each edge (a, b) ∈ Ei,

there is a leaf {a, b} in Ti, for 1 ≤ i ≤ 3. Moreover, the leaves of T are the

leaves of all Ti and E = E1 ∪E2 ∪E3. Thus, for each edge (a, b) ∈ E, there

is a leaf {a, b} in T . ¤

There are graphs for which a tree decomposition exists such that there is a

one to one correspondence between the leaves of the tree and the edges of

the graph. This suggests the following definition:

Definition 4.3 Let G = (V,E) be a geometric constraint graph. T , a tree

decomposition of G, is a full tree decomposition of G if there is a one-to-one

correspondence between the leaves of T and the edges of G.



60 4. Domain of Analysis Methods

Notice that although in a tree decomposable graph every edge is mapped to

a tree decomposition leaf, the converse is only true for full tree decomposable

graphs.

A tree decomposable graph can not be over constrained. The following result

proves this property.

Theorem 4.4 Let G = (V,E) be a geometric constraint graph. If G is tree

decomposable, then G is not over constrained.

Proof

We proceed by induction on the number of vertices of G.

Base case: |V | = 2. Assume that G is tree decomposable. A tree T with

a single node V as root is the only tree decomposition of G. Since G is

a simple graph, the number of edges in G can be one at most. The only

vertex-induced subgraph of G with 2 ≤ m ≤ |V | vertices is itself and, thus,

|E| ≤ 2m− 3 = 2|V | − 3 = 1 holds and G is not over-constrained.

Induction hypothesis: For all G′ = (V ′, E′), a subgraph of G with |V ′| < |V |,

if G′ is tree decomposable, then G′ is not over-constrained.

Induction step: Assume that G is tree decomposable. Then, there is a

tree decomposition T of G. V is the root of T and {V1, V2, V3} is a set

decomposition of G where Vi is the root of Ti, the i-th child of the root

V of T , for 1 ≤ i ≤ 3. Let Gi be the subgraph of G induced by Vi, for

1 ≤ i ≤ 3. By induction hypothesis, Gi is not over constrained. Since a

set decomposition of a graph induces a partition on the set of edges of the

graph, Gi for 1 ≤ i ≤ 3 are edge-disjoint graphs. This, along with induction

hypothesis implies that any vertex-induced subgraph of G with m vertices,

2 ≤ m ≤ |V |, must have |E| ≤ 2m − 3 edges and, thus, G is not over

constrained. ¤

If a graph is tree decomposable, then any subgraph obtained by removing

some of its edges is also tree decomposable. This is a useful property of tree

decompositions which we will make use of later on.

Theorem 4.5 Let G = (V,E) be a tree decomposable graph. For all

E′ ⊆ E, G′ = (V,E′), the subgraph of G with the set of edges E ′, is tree

decomposable.



4. Domain of Analysis Methods 61

Proof

Let T be a tree decomposition of G. By Theorem 4.2, for each edge (a, b) ∈

E, there is a leaf {a, b} ∈ T . For any E ′ ⊆ E, T is also a tree decomposition

of G′ = (V,E′) and, thus, G′ is tree decomposable. ¤

Next, we prove an interesting result relating well constrained graphs and

tree decomposable graphs. First we must prove some lemmas that show

some additional properties of set decompositions of graphs.

The first lemma relates connectivity and the well constrained property of a

geometric constraint graph.

Lemma 4.6 Let G = (V,E) be a connected geometric constraint graph not

over constrained, if G has an articulation vertex, then G is an under con-

strained graph.

Proof

Assume that a is an articulation vertex of G. Let G1, . . . , Gn be the sep-

aration classes induced by a in G. Then define the subgraphs G′ = G1

and G′′ = G2 ∪ · · · ∪ Gn. Note that G′ ∩ G′′ = {a}. Let G′ = (V ′, E′)

and G′′ = (V ′′, E′′). Because G is not over constrained, we know that

Deficit(G′) ≥ 0 and Deficit(G′′) ≥ 0, therefore

2|V ′| ≥ 3 + |E′| and 2|V ′′| ≥ 3 + |E′′|

considering that |V | = |V ′|+ |V ′′| − 1 , we can write

Deficit(G) = 2|V ′|+ 2|V ′′| − 5− |E|

applying the two inequalities shown below,

Deficit(G) = 2|V ′|+ 2|V ′′| − 5− |E| ≥ 3 + |E ′|+ 3 + |E′′| − 5− |E|

finally, |E| = |E′|+ |E′′| because separation classes are edge-disjoint, hence

Deficit(G) = 2|V ′|+ 2|V ′′| − 5− |E| ≥ 1

Then, because deficit(G) ≥ 1 and G is not overconstrained, we conclude

that G is under constrained. ¤

Note that although the previous lemma requires a graph to be connected,

when a graph is both not connected and not over constrained it is trivially

under constrained.



62 4. Domain of Analysis Methods

The following lemma states that set decomposition of a graph preserves the

property of being well constrained.

Lemma 4.7 Let G be a well constrained geometric constraint graph and

{V1, V2, V3} a set decomposition of it. Then the subgraphs induced by the set

decomposition {G1, G2, G3} are well constrained graphs.

Proof

Without lose of generality, let us choose one of the induced subgraphs, say

G1, and let us prove that G1 is well constrained.

G1 can be an edge or a more complex graph. If it is an edge the Lemma

holds because it is a well constrained graph. If it is a graph with more

than one edge, the Lemma 3.6 assures that {a, b}, the active elements of

G1, is a separation pair of G. The separating graphs induced by {a, b} are

necessarily G1 and G2 ∪G3.

Consider G2∪G3, it is a not over constrained and connected graph because G

is well constrained. Moreover, G2 ∩G3 = {c} and c is an articulation vertex

of G2 ∩G3, therefore Lemma 4.6 applies and G2 ∪G3 is under constrained.

Now, because of Lemma 3.8,

Deficit(G) = Deficit(G1) + Deficit(G2 ∪G3)− 1

but G is well constrained and thus

Deficit(G) = Deficit(G1) + Deficit(G2 ∪G3)− 1 = 0

Deficit(G1) = 1−Deficit(G2 ∪G3)

considering that G2∪G3 is under constrained, Deficit(G2∪G3) ≥ 1, therefore

Deficit(G1) = 1−Deficit(G2 ∪G3)

Deficit(G1) = 1−Deficit(G2 ∪G3) ≤ 1− 1

Deficit(G1) ≤ 0

because G1 is not over constrained Deficit(G1) ≥ 0, hence Deficit(G1) = 0

and G1 is well constrained. ¤

Now the following theorem can be proved. This result shows that if a well

constrained graph has a tree decomposition, then this tree decomposition is

a full tree decomposition.



4. Domain of Analysis Methods 63

Theorem 4.8 Let G be a tree decomposable geometric constraint graph and

T a tree decomposition of G. G is well constrained iff T is a full tree de-

composition.

Proof

First we must prove that if G is a well constrained tree decomposable graph

then it is full tree decomposable.

Assume that T is a tree decomposition of G. Because G is tree decomposable

and well constrained, Lemma 4.7 applies. Then, every set decomposition of

G yields well constrained graphs. Therefore, the induced graph correspond-

ing to every node of T must be well constrained because cames from a set

decomposition of a well constrained graph. Particularly, all the leaves of T

induce well constrained subgraphs of G and thus must correspond to the

edges of G. Consequently T is a full tree decomposition.

In the second part we must prove that a graph G for which there is a tree

decomposition T with all the leaves containing an edge is a well constrained

graph. This can be proved by structural induction on T . See Manna in [45]

for an introduction to structural induction.

Induction base: Let T be a elementary tree decomposition with only one

node {a, b}. Assume that the corresponding graph G contains one edge.

Then G is trivially well constrained.

Induction hypothesis: Let T a full tree decomposition of G and Ti any child

of T . Then, by induction hypothesis, the subgraph of G induced by Ti is a

well constrained graph.

Induction step: Let T a full tree decomposition of G = (E, V ) and T1, T2,

and T3 their children. Let the corresponding induced subgraphs of G be

G1 = (E1, V1), G2 = (E2, V2) and G3 = (E3, V3). Now, we should prove that

G is well constrained.

Since G is full tree decomposable, Theorem 4.4 assures that G is not over

constrained. Moreover, the deficit of G can be computed from the deficits

of Gi,

Deficit(G) = 2|V | − 3− |E|

= 2(|V1|+ |V2|+ |V3| − 3)− 3− |E1| − |E2| − |E3|

= (2|V1| − 3− |E1|) + (2|V2| − 3− |E2|) + (2|V3| − 3− |E3|)

= Deficit(G1) + Deficit(G2) + Deficit(G2)



64 4. Domain of Analysis Methods

But by inductive hypothesis Gi are well constrained graphs and thus their

deficits are 0, therefore Deficit(G) = 0. A graph with deficit zero can not

be under constrained, hence G is well constrained. ¤

A tree decomposition of the graph in Figure 4.1 is shown in Figure 4.2.

Since the graph is well constrained, every leaf of the tree decomposition

corresponds to an edge in the graph.

4.2 Domain of Fudos and Hoffmann’s Methods

The main goal of this section is to prove that reduction analysis and decom-

position analysis are two different algorithms to compute tree decomposi-

tions of a graph. While reduction analysis and decomposition analysis allow

to decide whether or not a graph is solvable, tree decompositions describe

the properties of solvable graphs abstractly and thus, tree decompositions

are a good characterization of the domain of the constructive geometric

constraint solvers.

Here we prove that the domain of reduction analysis and the domain of

decomposition analysis are the same. Moreover, they can be characterized

by the existence of a tree decomposition of the graph associated with the

geometric constraint problem.

Lemma 4.9 Let G = (V,E) be a well constrained geometric constraint

graph. Then, the following assertions are equivalent:

1. There is a full tree decomposition T of G.

2. G is solvable by reduction analysis.

3. G is solvable by decomposition analysis.

Proof

In this proof we refer to the reduction systems defined in Sections 3.2 and 3.3.

Therefore, the same notation is used here.

First, we prove that 1 implies 3. Assume that there is a full tree decom-

position T of G. Let V1, . . . , Vt be the list of internal nodes generated by

a breath-first traversal of T . We write Decomp(T, Vi) to denote the set de-

composition of Vi in the tree T . Since every node appears in the list after its



4. Domain of Analysis Methods 65

father, the sets of nodes O0 = {V1} and Oi = (Oi−1 − Vi) ∪ Decomp(T, Vi)

are well defined. Moreover, Oi−1 −→d Oi is the reduction rule in decom-

position analysis by the second condition in Definition 4.1. Since the set of

leaves of T is SG, the set of clusters Ot coincides with SG which implies that

G is solvable by reduction analysis.

Now, we prove that 3 implies 2. Assume that O0 = {V } −→d · · · −→d Ot =

SG is a reduction sequence computed by decomposition analysis. At each

reduction step Oi−1 −→d Oi, for i ∈ {1, . . . , t}, there are {C1, C2, C3} ⊆

Oi and C ∈ Oi−1 such that {C1, C2, C3} is a set decomposition of the

subgraph of G induced by C with respect to G. Since {C1, C2, C3} is a set

decomposition of C, Sj = Ot−j , j ∈ {0, . . . , t} is well defined and Si−1 −→r

Si is the reduction relation in reduction analysis. Moreover, G is solvable

by reduction analysis because SG reduces to {V }.

Finally, we prove that 2 implies 1. Assume that there is a reduction sequence

SG = S0 −→r · · · −→r St = {V }. For i ∈ {1, . . . , t}, there are three clusters

C1, C2, C3 in Si−1 such that {C1, C2, C3} is a set decomposition of C and

Si = (Si−1 − {C1, C2, C3}) ∪ C. Moreover, every set decomposition of C is

also a set decomposition of the subgraph of G induced by C because every

edge of G is in a cluster of SG. We can assign a tree decomposition to each

cluster in the sets Si as follows. We assign to each cluster in SG a tree with

this cluster as its only node. For each reduction Si−1 −→r Si we assign

to the new cluster C the tree decomposition with root C and sons the tree

decompositions assigned to C1, C2, C3. After t steps, it remains only the tree

decomposition assigned to V and thus, there is a full tree decomposition of

G. ¤

4.3 Domain of Owen’s Method

In the previous section we have shown that the class of full tree decomposable

graphs characterizes the domain of reduction and decomposition analysis.

Here, we show that the decomposition analysis studied in Section 3.4 can

also be characterized by the existence of a full tree decomposition and that

it has the same domain as the reduction and decomposition analysis above

mentioned.

In what follows we will consider only constraint graphs G associated with



66 4. Domain of Analysis Methods

well constrained problems. In these conditions, s-trees are binary trees

whose root is G, interior nodes are modified split graphs with respect to

some separation pair of the parent node and, the leaves are either triangles

or triconnected graphs with no articulation pairs.

According to the number of virtual edges in the triangles in the leaf nodes

of an s-tree, we classify them in four different types. See the second column

in Table 4.1.

To characterize the decomposition analysis studied in Section 3.4 we prove

two lemmas.

Lemma 4.10 If a geometric constraint graph G is full tree decomposable,

then G is s-tree decomposable.

Proof

Assume that T is a full tree decomposition of G. We shall proceed by

induction on the structure of T . Refer to Table 4.1.

Induction base: Let G = (V,E) be a graph such that V = {a, b, c} and

E = {(a, b), (a, c), (b, c)}. The tree T in the third column of Table 4.1 is a

full tree decomposition of G. Then the tree in the fourth column is a s-tree

whose root is a graph G = G0 with just one node representing the triangle

{a, b, c}.

Induction hypothesis: Let G′ be a subgraph of G. If G′ is full tree decom-

posable then G′ is s-tree decomposable.

Induction step: If {C1, C2, C3} is a set decomposition of C and {a, b, c}

the active elements, we have that C ′ = C − {a, b, c}, C ′
1 = C1 − {a, b},

C ′
2 = C2 − {a, c} and C ′

3 = C3 − {b, c}.

Let G be a graph and T a full tree decomposition of G such that its root

is {a, b, c} ∪ C ′ and the roots of its subtrees are {a, b} ∪ C ′
1, {a, c} ∪ C

′
2 and

{b, c} ∪ C ′
3.

Assume that C ′
1 6= ∅ and C ′

2 = C ′
3 = ∅. This corresponds to case number 1

in Table 4.1. Let G′
1 be the subgraph induced by {a, b} ∪ C ′

1 in G. Let T1

be the full tree decomposition of G′
1.

By Lemma 3.6, {a, b} is a separation pair of G thus G′
1 is a separation graph

of G. Build the other separation graph G2 as the graph G2 = (V2, E2)

with V2 = {a, b, c} and E2 = {(a, c), (b, c)}. By Definition 3.3, G2 is under

constrained, thus by Lemma 3.9, G′
1 is well constrained.



4. Domain of Analysis Methods 67

n G0 Tree-decomposition T S-tree S

0
a c

b

{a, b} {a, c} {b, c}

{a, b, c}

G0

1
ca

b

{a, c} {b, c}

{a, b, c} ∪ C ′

{a, b} ∪ C ′1

S′1

G1

G0

2
ca

b

{b, c}{a, b} ∪ C ′1 {a, c} ∪ C ′2

{a, b, c} ∪ C ′

S′1

G1S′2

G2

G0

3
a

b

c

{a, b} ∪ C ′1 {a, c} ∪ C ′2 {b, c} ∪ C ′3

{a, b, c} ∪ C ′

S′1

S′2

S′3

G3

G2

G1

G0

Table 4.1: Types of interior nodes in a tree decomposition

and the equivalent s-tree decomposition.



68 4. Domain of Analysis Methods

func FromTreeToS-Tree(T )

G0 := ComputeTriangle(T )

S := BinaryTree(G0,NullTree,NullTree)

n := NumberOfVirtualEdges(G0)

for j in 1 to n do

Tj := Subtree(T, j)

S′
j := FromTreeToS-Tree(Tj)

G′
j := Root(S ′

j)

Gj := MergeGraphs(G′
j , Gj−1)

S := BinaryTree(Gj , S
′
j , S)

end

return S

end

Figure 4.3: Computing a s-tree S from a tree decompo-

sition T .

Now build the modified split graphs of G as G0 = (V2, E2∪{(a, b)}) and G
′
1.

Since G′
1 is full tree decomposable, by the induction hypothesis it is s-tree

decomposable. Therefore there is a s-tree, say S ′
1, whose root is G′

1. Hence

the binary tree whose root is G and whose subtrees are G0 and S′
1 is a s-tree.

Therefore G is s-tree decomposable.

Applying the same procedure for cases C ′
2 6= ∅ and C

′
3 6= ∅, which correspond

to cases 2 and 3 in Table 4.1, completes the proof. ¤

If function ComputeTriangle(T) computes the triangle associated with a

node of a tree decomposition, and function MergeGraphs(G1, G2) rebuilds

a graph from its modified split graphs, Figure 4.3 shows an algorithm that,

based on Lemma 4.10, computes a s-tree S from a tree decomposition T of

a graph G.

Notice that, as built in Table 4.1 for well constrained problems, s-trees

exhibit the following nice property. The splits in the s-tree S that generate

n virtual edges, 1 ≤ n ≤ 3, in any triangle leaf node G0 take place in the

immediate n predecessors of G0. We say that these s-trees are regular. If

there is a regular s-tree corresponding to a geometric constraint graph G,



4. Domain of Analysis Methods 69

we say that G is regular s-tree decomposable.

Lemma 4.11 Let G be a geometric constraint graph. If G is regular s-tree

decomposable, then G is full tree decomposable.

Proof

Assume that S is a regular s-tree whose root is G. Again we shall proceed

by induction on the structure of S. Refer to Table 4.1.

Induction base: Let G = (V,E) be a graph such that V = {a, b, c} and

E = {(a, b), (a, c), (b, c)}. The regular s-tree S of G is that given in the

fourth column of Table 4.1. Then the tree given in the third column is a full

tree decomposition of G.

Induction hypothesis: Let G′ be a subgraph of G. If G′ is regular s-tree

decomposable then G′ is full tree decomposable.

Induction step: Let S be a regular s-tree whose root is G and whose subtrees

are G0 and S′
1.

Assume that G0 = (V0, E0) with V0 = {a, b, c} and E0 = {(a, c), (b, c)} ∪

{(a, b)} and let G′
1 = (V ′

1 , E
′
1) be the root of the regular s-tree S ′

1. By

Definition 3.12, G0 and G′
1 are the modified split graphs of G with respect

to the separation pair {a, b}. Since G′
1 is regular s-tree decomposable, by

induction hypothesis it is full tree decomposable. Therefore there is a full

tree decomposition T ′
1 of G′

1.

Build a full tree decomposition T such that its subtrees are T ′
1, {a, c} and

{b, c}. See Table 4.1. Subtrees {a, c} and {b, c} share the node c. Since

{a, b} is a separation pair of G, V0 ∩ V ′
1 = {a, b}. But c ∈ V0, thus c /∈

V ′
1 , {a, c} ∩ V ′

1 = {a}, and {b, c} ∩ V ′
1 = {b}. Therefore T is a full tree

decomposition of G.

Applying the same procedure for cases in rows three and four in Table 4.1

completes the proof. ¤

But s-trees are not necessarily regular. We will show that considering regular

s-trees does not entail any loss of generality.

Lemma 4.12 Let G be a geometric constraint graph. If G is s-tree decom-

posable, then G is regular s-tree decomposable.

Proof



70 4. Domain of Analysis Methods

To prove this Lemma we supply the algorithm in Figure 4.4 that outputs a

regular s-tree. This is a variation of the algorithm in Figure 3.14.

Algorithm in Figure 3.14 contains the following sentence:

G1, G2 := SeparatingGraphs(G)

Note that a graph can have more than two separating graphs, therefore

this sentence has an undeterministic meaning. By properly choosing the

separating graphs in each step of the s-tree construction we can assure that

a regular s-tree is built. This leads to an actual instance of the original

algorithm in which undeterminism has been used to favor the construction

of regular s-trees.

The new version of the algorithm is written according to the cases shown

in the Table 4.1. We classify the graph to be decomposed into one of the

four cases depicted in the second column of the Table. Finally we build the

resulting s-tree for every kind of graph following the pattern shown in the

fourth column of the Table. The result is a regular s-tree.

The problem is now to classify the graph into one of the four kinds. This

is done using the set of sepating pairs of the graph. Figure 4.4 shows the

modified algorithm.

¤

4.3.1 Transforming a general s-tree to a regular one

In this section we give a procedure to transform a non regular s-tree into a

regular one. Notice that this procedure is a different proof of Lemma 4.12.

Figure 4.5 shows an s-tree which is not regular because of virtual edges (b, e)

and (e, f) in the leaf nodes labeled G0 and S1 respectively. From now on

we will say that edges (b, e) and (e, f) in Figure 4.5 are not regular. The

subtree denoted S3 is irrelevant and is not fully expanded. Let us first define

the concept of equivalent s-tree decompositions as follows

Definition 4.13 Let S and S ′ be two different s-tree decompositions of a

well-constrained graph G. We say that S and S ′ define equivalent decom-

postions of G if they have the same set of leaf nodes. We will also say that

S and S′ are equivalent.



4. Domain of Analysis Methods 71

func RegularAnalysis(G)

L := SeparatingPairs(G)

if ∃a, b, c : {a, b} ∈ L ∧ {b, c} ∈ L ∧ {a, c} ∈ L then /* case 3 */

G1,G2 := SeparatingGraphsByPair(G,a,b)

AddVirtualEdge(G1,G2)

Assume G2 3 {a, c}

G21,G22 := SeparatingGraphsByPair(G2,a,c)

AddVirtualEdge(G21,G22)

Assume G22 3 {b, c}

G221,G222 := SeparatingGraphsByPair(G22,b,c)

AddVirtualEdge(G221,G222)

S := BinaryTree(G, Analysis(G1),

BinaryTree(G2, Analysis(G21),

BinaryTree(G22, Analysis(G222), Analysis(G222)))

elseif ∃a, b, c : {a, b} ∈ L ∧ {a, c} ∈ L then /* case 2 */

G1,G2 := SeparatingGraphsByPair(G,a,b)

AddVirtualEdge(G1,G2)

Assume G2 3 {a, c}

G21,G22 := SeparatingGraphsByPair(G2,a,c)

AddVirtualEdge(G21,G22)

S := BinaryTree(G, Analysis(G1),

BinaryTree(G2, Analysis(G21),Analysis(G22))

elseif ∃a, b : {a, b} ∈ L then /* case 1 */

G1,G2 := SeparatingGraphsByPair(G,a,b)

AddVirtualEdge(G1,G2)

S := BinaryTree(G, Analysis(G1), Analysis(G2))

elseif L = ∅ then /* case 0 */

S := BinaryTree(G, nullTree, nullTree)

fi

return S

end

Figure 4.4: Analysis algorithm modified to compute reg-

ular s-trees.



72 4. Domain of Analysis Methods

a

S3

(a, e)

b

ef

f e

a G0

(a, e)

S2

(f, e)

a

f e

b

(b, e)(b, e)

(f, e)

ef

a

b

e

a

g

g

b

c d

e

g

f

e

d

b

c

S1

Figure 4.5: Graph and s-tree. Subtree S3 is not fully

expanded.



4. Domain of Analysis Methods 73

The goal now is to prove the following lemma.

Lemma 4.14 Let S be an s-tree computed from a well-constrained graph G.

Let (a, b) be a virtual edge which is not regular in S. Then S always can be

transformed into an s-tree, S ′, such that S and S ′ are equivalent and that

the virtual edge (a, b) is regular in S ′.

We prove this claim by proving the correctness of the algorithm given in

Figure 4.6, from now on EdgeRegularization() algorithm. Figure 4.7 il-

lustrates how the algorithm works. On the left, Figure 4.7 depicts a subtree

of an abstract s-tree S whose root is the graph Gn and whose leaf node G0

includes the virtual edge (a, b), introduced by the split of Gn. We denote

this subtree by S.

Figure 4.7 right shows the subtree in the transformed s-tree S ′ yielded by the

algorithm EdgeRegularization(). We denote this subtree by S ′. If S is an

s-tree and G is a graph, then the graph given by MergeGraphs(Root(S),G)

will be denoted S ]G.

We begin proving the following lemma.

Lemma 4.15 Trees S and S ′ have the same set of leaf nodes. Moreover,

their root nodes represent the same graph.

Proof

The set of leaf nodes in both the s-tree S and the tree S ′ is given by the

union of the leaf nodes of the subtrees Si, 1 ≤ i ≤ n, plus the leaf node G0.

The root G′
n of S ′ is

G′
n = Sn−1 ]G

′
n−1

= Sn−1 ] (Sn−2 ]G
′
n−1)

. . .

= Sn−1 ] (Sn−2 ] . . . ] (S1 ] (Sn ]G0)) . . .)

= Gn

¤

Now we prove that the tree S ′ is an s-tree where the virtual edge (a, b) is

regular. The proof is in two steps. First we prove that the smallest subtree

in S ′ where (a, b) is included, is an s-tree and (a, b) is regular in it.



74 4. Domain of Analysis Methods

func EdgeRegularization ()

INPUT

S : s-tree decompostion of a graph G.

G0 : non regular leaf node in S corresponding to a triangle.

{a, b} : separation pair that defines a non regular virtual

edge, (a, b), in G0.

OUTPUT

S′ : s-tree that defines equivalent decompositions of G as S and

where the virtual edge (a, b) is regular.

1. Compute the node Gn in S where the separation pair {a, b}

introduced the virtual edge (a, b) which is not regular in G0.

2. In the tree whose root is Gn, identify the subtree Sn whose split

graph includes the actual edge (a, b).

3. Build the s-tree S ′
1 whose root is the graph

G′
1 = MergeGraphs(Root(Sn), G0) and whose

subtrees are Sn and the s-tree of the graph G0.

4. for i in 2 to n do

Build the s-tree S ′
i whose root is the graph

G′
i = MergeGraphs(Root(Si−1), G

′
i) and whose

subtrees are Si−1 and S′
i−1.

end

5. Replace in S the subtree whose root is Gn with the tree built in step 4.

6. return S

end

Figure 4.6: Virtual edge regularization.



4. Domain of Analysis Methods 75

G′
2

S1

G0

G′
1

(a1, b1)

(a, b)

G′
n

Sn−1

G′
n−2Sn−2

(an−2, bn−2)

(an−1, bn−1)

(a, b)

(a1, b1)

(an−1, bn−1)

(an−2, bn−2)

G′
n−1

Sn

S ′

(an−1, bn−1)

G2

S2 G1

(a2, b2)

(a1, b1)

Gn

Sn
Gn−1

(a, b)

Gn−2Sn−1

(an−1, bn−1)

(a1, b1)

(a2, b2)

(a, b)

G0S1

S

Figure 4.7: Left: Initial subtree. Virtual edge (a, b) in

G0 is not regular. Right: Modified subtree. Virtual edge

(a, b) in G0 is regular.



76 4. Domain of Analysis Methods

Lemma 4.16 The subtree S ′
1 in S ′ whose root is the graph G′

1 = Sn ]G0,

and whose subtrees are Sn and G0, is an s-tree. The virtual edge (a, b) is

regular in S ′
1.

Proof

Sn is a subtree of the s-tree S. Therefore Sn is an s-tree. By definition

(see Table 4.1) G0 is an s-tree. Sn and G0 are subtrees of S that only have

in common the pair {a, b} which separates Sn ] G0 into Root(Sn) and G0.

Therefore S ′
1 is an s-tree.

The virtual edge (a, b) generated by the separation pair {a, b} is included in

Sn and, by construction, the virtual edge (a, b) is not included in Sn ] G0.

Therefore the virtual edge (a, b) in G0 is regular. ¤

Next we prove that the tree generated by the algorithm is actually an s-tree.

Lemma 4.17 The tree S ′ is an s-tree.

Proof

We need to prove that the split of each subtree root in S is defined by a

separation pair.

By construction, the separation pair (a, b) that splits G′
1 in S ′ is the sepa-

ration pair that splits Gn in S.

For the remaining separation pairs, let i denote an arbitrari separation pair

in S with 1 ≤ i ≤ n.

By construction G′
i = Si−1]G

′
i−1. But G

′
i−1 = Sn]Gi−2. Thus G

′
i = Si−1]

(Sn ] Gi−2). In the s-tree S, Si−1 and Gi−2 are separated by {ai−1, bi−1}.

Moreover, Si−1 and Sn share at most the separation pair {a, b} when a =

ai−1 and b = bi−1. See Figure 4.8. Therefore, {ai−1, bi−1} separates Si−1) ]

(Sn ]Gi−2) into Si−1 and Sn ]Gi−2 = G′
i−1. ¤

Figure 4.9 shows the s-tree output by the algorithm EdgeRegularization()

when the input is the s-tree given in Figure 4.5 and the virtual edge to

be regularized is (b, e), in the leaf node G0. The subtree S3 is not fully

expanded. Notice that the virtual edge (e, f) in subtree S1 still is not regular.

Repeatedly applying the algorithm to the s-tree output by the previous

iteration, yields an s-tree where all the virtual edges are regular. Therefore

we have the following result



4. Domain of Analysis Methods 77

b bi−1

Sn

G′i

bi−1

a

ai−1

Gi−2

G′i−1

Si−1

Gi−1

a ai−1

b

Figure 4.8: Separation pair common to Sn and Si−1 sub-

trees.

Corollary 4.18 If G is s-tree decomposable then we can compute a regular

s-tree decomposition of G.

4.4 Domain Equivalence of Constructive Methods

Now, we see that the class of s-tree decomposable geometric constraint

graphs and the class of tree decomposable graphs are the same. In other

words, a geometric constraint problem expressed by means of a geometric

constraint graph is solvable by Owen’s technique if and only if the graph

is full tree decomposable. We proved in Lemma 4.9 that a geometric con-

straint graph is solvable by reduction or decomposition analysis of Fudos

and Hoffmann, [20, 21], if and only if the graph is full tree decomposable.

Therefore Owen’s technique, decomposition and reduction analysis have the

same domain and this domain can be characterized by the class of full tree

decomposable graphs.

Theorem 4.19 Let G = (V,E) be a geometric constraint graph. The fol-

lowing assertions are equivalent:

1. G is full tree decomposable.

2. G is s-tree decomposable.



78 4. Domain of Analysis Methods

S2

ef

g

f e

a
S1

e
e

c d

bS3
baG0

c d

a b

f e

g

a

f

b

c d

e

a b

c d

e

(f, e)

(a, e) (a, e)

(b, c) (b, c)

(f, e)

Figure 4.9: Regular s-tree derived form the s-tree in Fig-

ure 4.5. Subtree S3 is not fully developed.



4. Domain of Analysis Methods 79

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

Over−constrained Well−constrained Under−constrained

Solvable

Tree decomposable

Completable

G

Figure 4.10: Classification of geometric constraint graphs

according to Definition 3.3 and the set of tree decompos-

able graphs.

3. G is solvable by reduction analysis.

4. G is solvable by decomposition analysis.

Proof

Lemma 4.9 proves the equivalence of assertions 1, 3 and 4. Lemma 4.10

proves that 1 implies 2. Finally, Lemmas 4.11 and 4.12 prove that 2 implies 1.

¤

Theorem 4.19 shows that the constructive methods considered here have

the same domain, that is, they solve the same class of problems. However,

each method exhibits different properties like efficiency and behavior with

respect to under constrained problems, see [21, 50].

We define this distinguished class of graphs as follows.

Definition 4.20 Let G be a geometric constraint graph. We say that G is

solvable iff G is full tree decomposable.

Assume that G denotes the set of geometric constraint graphs. The defini-

tions of over, well and under constrained graphs induce a partition on G,

see Figure 4.10. By Theorem 4.4, tree decomposable graphs are a subset

of the graphs which are not over constrained. The class of tree decom-

posable graphs overlaps the set of well constrained graphs and the set of

under constrained graphs. By Theorem 4.8, the solvable graphs (or full

tree decomposable graphs) are those well constrained graphs which are tree

decomposable.



80 4. Domain of Analysis Methods

G

u1

u2

v1

v2

H (G ∪H)/{u1 = v1, u2 = v2}

u2

u1

Figure 4.11: Two vertex amalgamation (G ∪ H)/{u1 =

v1, u2 = v2}.

In Chapter 5, we will consider the class of under constrained graphs which

are tree decomposable. We call the graphs in this class completable graphs.

The proof of Theorem 4.19 is constructive in the sense that algorithms to

compute tree decompositions can be derived from it. These algorithms com-

pute a tree decomposition in polynomial worst case time on the number of

vertices of the graph. This time bound is justified because tree decomposi-

tions are computed in polynomial time from the output of the algorithms

described in [20, 21, 50], which are polynomial.

4.5 Generation of Solvable Graphs

In this Section we present a method to generate the class of solvable graphs.

To describe the method we begin by recalling the vertex amalgamation of

graphs, see Gross and Yellen [24].

Definition 4.21 Let G and H be disjoint graphs with u1, u2 ∈ V (G) and

v1, v2 ∈ V (H). The two vertex amalgamation (G ∪H)/{u1 = v1, u2 = v2}

is the graph obtained from the union G ∪H by merging the vertex u1 of G

and v1 of H in a single vertex named u1 and merging the vertex u2 of G and

v2 of H in a single vertex named u2.

Figure 4.11 shows an example of graph amalgamation.

Definition 4.22 Let G and H two disjoint graphs with u, v ∈ V (G) and

(e, f) ∈ E(H). We define the substitution of (e, f) in H by G modulo

{u, v} as the new graph obtained by deleting the edge (e, f) from H and



4. Domain of Analysis Methods 81

u

v

result of substitution

u

v

e

f

G H

Figure 4.12: Substitution of (e, f) in H by G modulo

{u, v}.

amalgamating this with G. That is

(
G ∪ (H − (e, f))

)
/{u = e, v = f}

The meaning of this definition is illustrated in Figure 4.12. In this figure, the

edge substituted in graph H is drawn in thick line and the relevant vertices

of graph G are drawn as hollow circles.

Now, using the substitution operation, we define a method to compute the

class of solvable graphs. We first define a class of graphs T and then we

prove that this class is equivalent to the class of solvable geometric constraint

graphs. The class T is defined as follows.

Definition 4.23 We define the set of graphs T by the following rules:

1. The triangle graph belongs to T .

2. Let G,H ∈ T be arbitrary graphs of the class not necessarily distinct.

Choose an arbitrary edge (e, f) from H and an arbitrary pair of vertices

{u, v} from G. Then the graph obtained by substituting (e, f) in H by

G modulo {u, v} is also a graph of T .

3. No other element belongs to T .

The previous definition has a constructive nature. Therefore, it is easy to

build elements belonging to the class T applying it. Figure 4.13 depicts an

example of some elements of T and their constructive definition.

The next step is to prove that the class T is the class of solvable graphs.

We first prove the two following lemmas.



82 4. Domain of Analysis Methods

Figure 4.13: Some elements of T

Lemma 4.24 If G is a graph that belongs to T , then G is solvable.

Proof

We prove that every element of T is full tree decomposable by structural

induction on the set T .

Induction base: Let T ∈ T be a triangle. Then T is trivially full tree

decomposable.

Induction hypothesis: Let G′ ∈ T be a graph obtained from the substitution

of edge (e, f) in H ∈ T by G ∈ T modulo {u, v}. Assume that G and H are

full tree decomposable graphs.

Induction step: Let us prove that G′ is a full tree decomposable graph. Refer

to Figure 4.14.

Assume that TG and TH are tree decompositions of G and H respectively.

Then, since (e, f) is an edge of H, TH must have a leaf node with exactly

two vertices {e, f}. Let P = 〈p1, . . . , pn = {e, f}〉 be the path from the

root to the leaf {e, f} in TH . Now we build a new tree TG′ from TH by the

following procedure:



4. Domain of Analysis Methods 83

1. Replace every ocurrence of e in the tree TH by u.

2. Replace every ocurrence of f in the tree TH by v.

3. To every node in the path P , add the vertices of V (G) \ {u, v}.

4. Replace the leaf pn in P by the tree TG.

The new tree TG′ is a full tree decomposition of G′ and hence G′ is full tree

decomposable. ¤

Lemma 4.25 Let G = (V,E) be a geometric constraint graph with |V | ≥ 3.

If G is solvable, then G belongs to T .

Proof

We prove that every full tree decomposable graph G with more than 2

vertices belongs to T . Given that G is full tree decomposable, there exists a

full tree decomposition T of G. We shall prove the result by using induction

on the structure of T .

Induction base: Let G be a graph with V (G) = 3 which is full tree de-

composable. Then, the graph is a triangle and thus it belongs to T by

definition.

Induction hypothesis: Let G be a graph and T its full tree decomposition.

Let the children of T be {T1, T2, T3} and {G1, G2.G3} the corresponding

subgraphs induced on G. We assume that, ∀i ∈ {1, . . . , 3}, if V (Gi) ≥ 3

then Gi belongs to T .

Induction step: Let us prove that, under induction hypothesis, G belongs to

T . Consider the set decomposition of T , {T1, T2, T3}. Notice that at least

one element in {T1, T2, T3} must contain more than two elements, otherwise

T is a triangle. According to whether {T1, T2, T3} has one, two or three

members with more than two geometric elements, we distinguish three cases.

Case 1: Let T1 = {a, b}, T2 = {b, c} and T3 = {a, c, d, . . . }, refer to Fig-

ure 4.15. Thus, the induced subgraphs G1 and G2 contain one edge. More-

over, by induction hypothesis, G3 the induced subgraph of T3 belongs to T .

Therefore G can be defined by substitution from elements of T by the follow-

ing procedure. First consider the triangle graph H with vertices {a′, b, c′}

and the corresponding edges. H belongs to T by definition. After that,



84 4. Domain of Analysis Methods

a

e b

f

u

wv

{u, v, w}

{u, v} {u.w} {v, w}

{a, b, e, f}

{e, f} {f, b} {a, b, e}

{a, b} {b, e} {a, e}

TG′

{a, b, u, v, w}

{v, b} {a, b, u}

{a, b} {b, u} {a, u}

{u, v, w}

{u, v} {u.w} {v, w}

H G

TH TG

Figure 4.14: Construction of a tree decomposition for G′

from G and H.



4. Domain of Analysis Methods 85

G

d

a c

b

G

d

a c

b

T

{a, b, c, d}

T2 = {b, c}T1 = {a, b} T3 = {a, c, d}

d

ca

b

c′a′

G3H

Figure 4.15: Construction of graph G as a member of T .

substitute edge (a′, c′) of H by G3 modulo {a, c}. The new graph is exactly

G and, by construction, it belongs to T .

Cases two and three are proved by applying the same technique. ¤

Theorem 4.26 The class T and the class of solvable constraint graphs are

the same.

Proof

Apply Lemma 4.24 and Lemma 4.25. ¤



86 4. Domain of Analysis Methods

4.6 Summary

In this chapter we have defined the class of tree decomposable geometric

constraint graphs by extending the concept of set decomposition of a graph.

Some interesting properties of this class have been proved. We have also

defined the class of full tree decomposable graphs.

Then, we have shown that the domain of the Fudos and Hoffmann’s and

Owen’s analysis methods is the class of full tree decomposable graphs. This

class has been named the class of solvable graphs.

Finally, we have given a method to generate the class of solvable graphs.

This method recursively defines the class as sequence similar to Henneberg

sequences. We have proved that the class of graphs generated by this method

is the class of full tree decomposable graphs. The generation schema triv-

ially shows that the class of solvable graphs is a well founded set and thus

structural induction can be used to prove properties in it.



87

5 The Completion

Operation

In this chapter we investigate the problem of transforming an under con-

strained geometric constraint graph into a well constrained one by adding

additional constraints. We refer to this transformation as completion. We

distinguish two kinds of completions: free completion and conditional com-

pletion.

Both free and conditional completions should be considered as new oper-

ations added to the architecture given in Chapter 2. In Chapter 6, these

operations will allow us to solve the problem of synchronizing different views

in a concurrent engineering environment.

Most of the work in this chapter has been previously published in [36, 40, 41].

5.1 The Graph Completion Problem

Existing geometric constraint solving techniques have been developed under

the assumption that problems are well constrained, that is, that the num-

ber of constraints and their placement on the geometric elements define a

problem with a finite number of solutions for non-degenerate configurations.

There are a number of scenarios where the assumption of well constrained

does not apply. An example is the early stages of the design process when

only a few parameters are established. The problem then is under con-

strained, that is, it has an infinite number of solutions for non degenerate

configurations.

Another situation arises in cooperative design systems. Here, different ac-

tivities in product design and manufacture examine different subsets of the



88 5. The Completion Operation

information in the object’s model. The presentation of such an information

subset has been called a view, [13]. Maintaining consistent views is a cen-

tral issue. To solve this problem, Hoffmann and Joan-Arinyo introduced in

[26] the constraint schema reconciliation concept. It is assumed that with

each view there is associated a geometric constraint graph. If the graphs are

different, they are reconciled by drawing constraints from one of the graphs

and adjoining them to the other graph. However, how to actually select the

adjoined constraints is not defined.

To automate product design and manufacture, techniques to solve under

constrained problems and the schema reconciliation problem should be de-

vised. If the geometric constraint problem is represented by a geometric

constraint graph, solving under constrained problems and the schema recon-

ciliation problem can be seen as specific instances of the geometric constraint

graph completion problem or just the completion problem. This problem is

defined as follows:

Problem 5.1 (Well constrained completion) Given the geometric

constraint graph associated to an under constrained geometric constraint

problem, add automatically new edges (constraints) to the graph in such way

that the corresponding geometric constraint problem is well constrained.

Although not much attention has been paid to the well constrained comple-

tion problem, its solution is not obvious at all. Results from distinct fields,

such as combinatorial rigidity theory and matroid theory, must be taken into

account to achieve an optimal solution for this problem. In Section 5.6 we

briefly review these results and we discuss how to apply them to the solution

of the well constrained completion problem.

Only complete geometric constraint techniques solve any well constrained

geometric constraint graph, see [27]. However, the generality of complete

solvers prevents them from always finding a symbolic construction plan.

Then, numerical techniques must be applied to compute the solution. Con-

structive geometric constraint solvers, like those in [20, 21, 50], are incom-

plete. However, they always compute a symbolic construction plan if the

analyzed geometric constraint graph is in the domain of the solver. In this

chapter we study techniques to complete geometric constraint graphs. The

result must be a graph that can be solved by constructive techniques. This

problem, which is the object of this chapter, is defined as follows:



5. The Completion Operation 89

Problem 5.2 (Completion) Given the geometric constraint graph asso-

ciated to an under constrained geometric constraint problem, add automati-

cally new edges (constraints) to the graph in such way that the corresponding

geometric constraint problem is solvable.

We report here on a technique that solves Problem 5.2 in two different

scenarios. In one, the extra constraints are automatically defined without

any further condition. In the other one, the extra constraints are drawn

from an independently given set of constraints defined on the geometries of

the problem at hand. In the first scenario, the technique always generates a

solvable problem if the initial problem is completable, i.e., all subproblems

can be solved by a constructive technique.

In the second scenario, it is not always possible to generate a solvable graph,

at least in a first step. This situation arises, for instance, when there are

not enough extra constraints. However, the algorithm always computes a

completable graph, a graph that can be completed by applying the first

technique.

5.2 Completability of Under Constrained Graphs

Consider an under constrained tree decomposable geometric constraint

graph. To effectively solve it, first we should transform the graph into a

solvable one. This amounts to adding new constraints to the graph, that is,

adding new edges to the constraint graph.

If G = (V,E) is the geometric constraint graph, Definition 3.3 gives the

number of constraints that must be added to G to transform it into a well

constrained graph. However, deciding which constraints should actually be

added to the graph is not an straightforward matter, because it could result

in either an over constrained graph or a well constrained graph that is not

solvable.

We will use the term completion to refer to the process of adding new con-

straints (edges) to an under constrained graph. The resulting graph will be

named the completed graph or just a completion.

Figure 5.1 left shows an under constrained graph. Notice that there is just

one edge incident to node e and that node g has no incident edges. The



90 5. The Completion Operation

a c

b

g

d

fe

a c

b

g

d

e f

a c

b

g

d

e f

Figure 5.1: A graph and two different possible comple-

tions.

completion shown in Figure 5.1 middle is a solvable and thus well constrained

graph. Moreover, the completion shown in Figure 5.1 right is an unsolvable

graph although it is well constrained.

We are interested in completed graphs that are solvable.

Definition 5.1 Let G = (V,E) be an under constrained geometric con-

straint graph. We say that G is completable if there is a solvable graph

G′ = (V,E ∪ E′) which is a completion of G.

In the following sections we present two techniques to complete completable

graphs: free completion and conditional completion.

5.3 Free Completion

Among the different ways to complete an under constrained graph G one can

think of, we are interested first in one where the only additional requirement

is that edges added to G must be taken from the set

EF = {(a, b)|a, b ∈ V and (a, b) 6∈ E}

We will call this a free completion of graph G.



5. The Completion Operation 91

Algorithm FreeCompletion

1. Compute a tree decomposition T of G.

2. Compute the set of edges

E′ = {(a, b) | {a, b} is a leaf of T and (a, b) 6∈ E}

3. Complete the graph G as G′ = (V,E ∪ E′).

Figure 5.2: Free completion algorithm for graph G =

(V,E).

The free completion problem has been previously addressed by Fudos and

Hoffmann in [21]. There, a new method was developed to deal specifically

with under constrained problems. Our approach is based on tree decom-

positions and, since tree decompositions do not depend on any geometric

constraint solving technique, is a general method.

The free completion algorithm is based on the following result.

Proposition 5.2 Let G = (V,E) be an under constrained geometric con-

straint graph. G is completable if and only if there is a tree decomposition

of G.

Proof

Assume that G = (V,E) is a completable graph. Then, there is a solvable

graph G′ = (V,E ∪E′). A solvable graph has a full tree decomposition. Let

T be a full tree decomposition of G′. Since E ⊆ E ∪E′, by Theorem 4.5, G

is tree decomposable.

Now assume that G is tree decomposable. Let T be a tree decomposition of

G. Let E′ be the set of leaves of T that do not correspond to an edge in E,

E′ = {(a, b) | {a, b} is a leaf of T and (a, b) 6∈ E}.

The graph G′ = (V,E ∪E′) is a completion of G and T is a full tree decom-

position of G′. Thus, G is completable. ¤

The algorithm to carry out the free completion is given in Figure 5.2.

Consider the constraint graph given in Figure 5.1 left and assume that step 1

in algorithm FreeCompletion computes the tree decomposition T shown in



92 5. The Completion Operation

{c, f}

{a, b, c, d, e, f, g}

{a, g}

{a, b, c, d, g} {d, e, f}

{d, f} {e, f}{a, b, c}

{b, c}{a, b} {a, c}

{d, b, g}

{d, b} {b, g}

{d, e}

{d, g}

Figure 5.3: Tree decomposition of the graph in Figure 5.1

left.

Figure 5.3. The leaves of T whose nodes do not define an edge in the graph

depicted in Figure 5.1 left are (a, g), (d, e), (b, g) and (d, g). Therefore, the

set of extra edges computed in step 2 is

E′ = {(a, g), (d, e), (b, g), (d, g)}.

Figure 5.1 in the middle shows the constraint graph yielded by the algorithm

FreeCompletion.

Notice that, in general, a tree decomposition T of a constraint graph G =

(V,E) is not unique. Therefore, a free completion of a graph G is not

necessarily unique.

5.4 Conditional Completion

Conditional completion is the second technique to complete geometric con-

straint graphs presented in this chapter. The study of conditional completion

was originally motivated by the constraint schema reconciliation problem,

[26]. Chapter 6 discusses this problem and how conditional completion al-

lows to solve it.

LetG = (V,E) be a completable geometric constraint graph. Let Ĝ = (V, Ê)

be a geometric constraint graph whose edges Ê define a set of additional

constraints between geometric elements in V with Ê ∩ E = ∅. Notice that

if Ê ∩ E 6= ∅, we always can consider as additional edges those in the set

Ê′ = Ê \ E.



5. The Completion Operation 93

b

g

d

fe

ca a c

b

g

d

e f

Figure 5.4: Geometric constraint graphs G (left) and Ĝ

(right).

Our interest is to build a solvable completion of G by adding edges drawn

from Ê. We will refer to this completion as conditional completion of graph

G from Ĝ. Formally, we define a conditional completion as follows.

Definition 5.3 Let G = (V,E) be a completable geometric constraint graph

and let Ĝ = (V, Ê) be a geometric constraint graph. G′ = (V,E′) is a

conditional completion of G from Ĝ if G′ is a completable completion of G

and E′ = E ∪ Ê′ with Ê′ 6= ∅ and Ê′ ⊆ Ê.

We call the graph Ĝ the additional graph. Figure 5.4 shows an under con-

strained graph G (left) and an additional graph Ĝ (right). Figure 5.5 shows

two conditional completions of G from Ĝ. The graph on the left is com-

pletable and the graph on the right is solvable.

Among all the possible conditional completions of an under constrained

graph with respect to a given additional graph, we are interested in those

that are maximal in the following sense.

Definition 5.4 Let G′ = (V,E′) be a conditional completion of G from

Ĝ. We say that G′ is a maximal conditional completion if for any other



94 5. The Completion Operation

a c

b

g

d

e f

a c

b

g

d

e f

Figure 5.5: Conditional completion (left) and maximal

conditional completion (right) of G from Ĝ in Figure 5.4.

conditional completion G′′ = (V,E′′) from Ĝ, the relation |E ′′| ≤ |E′| holds.

A maximal conditional completion does not need to result in a solvable

graph. Notice that it is not possible to build a solvable completion if the

number of edges in Ê is smaller than the number of edges required by Defi-

nition 3.3 to transform G into a well constrained graph. In these conditions,

however, a solvable graph still can be built applying free completion to the

graph yielded by the maximal conditional completion.

5.4.1 Maximal Conditional Completion as a Combinatorial

Optimization Problem

Following Papadimitriou et al. [54], a subset system S = (E ,S) is a finite

set E together with a collection S of subsets of E closed under inclusion

(that is, if A ∈ S and A′ ⊆ A, then A′ ∈ S). The elements of S are

called independent. The combinatorial optimization problem associated with

a subset system (E ,S) is the following: Given a weight w(e) ≥ 0 for each

e ∈ E , find an independent subset that has the largest possible total weight.

Let G = (V,E) be an under constrained graph and let Ĝ = (V, Ê) be the



5. The Completion Operation 95

additional graph. Assume that E and Ê are disjoint, E∩Ê = ∅. If we define

E = E ∪ Ê and S as the subsets of E such that are tree decomposable, then

S is a subset system. We say that a set of edges E ′ ⊆ E is tree decomposable

if the graph G′ = (V,E′) is tree decomposable. Notice that by Theorem 4.5,

S is closed under inclusion.

We define the weight function w(e) over the set of edges E = E ∪ Ê as

w(e) =

{
1 if e ∈ Ê

2 if e ∈ E

In these conditions, the problem of computing a maximal conditional com-

pletion of G from Ĝ is a combinatorial optimization problem associated with

the subset system S and the weight function w.

5.4.2 The Greedy Algorithm

The greedy algorithm is the simplest algorithm to solve a combinatorial

optimization problem associated with a subset system. In this section we

first describe the greedy algorithm for subset systems. Then we apply it to

the maximal conditional completion problem.

Figure 5.6 shows the greedy algorithm on the subset system S = (E ,S).

The algorithm computes I, an independent set in S which we want to have

the largest total weight. We recall from Papadimitriou, [54], that it is not

necessary to explicitly compute S to answer the question I ∪{e} ∈ S in line

2.3 of the algorithm. It suffices to have an algorithm to decide whether the

set I ∪ {e} is in S.

Since we have formalized the maximal conditional completion of a graph

G from an additional graph Ĝ as a combinatorial optimization problem,

we can use the greedy algorithm in Figure 5.6 as is, without any change.

Notice that, for the maximal conditional completion problem, the elements

of S are the subsets of E such that they are tree decomposable. Therefore,

deciding whether I ∪ {e} is in S is equivalent to decide whether there is a

tree decomposition of the set of edges I ∪ {e}.

Unfortunately, the greedy algorithm does not solve the maximal conditional

completion problem. Let us show a counterexample.

Let G be the completable graph in Figure 5.4 left and let Ĝ be the geometric



96 5. The Completion Operation

Algorithm GreedyOptimize

1. I := ∅

2. while E 6= ∅ do

2.1 e := a maximum weight member of E

2.2 E := E \ {e}

2.3 if I ∪ {e} ∈ S then I := I ∪ {e}

Figure 5.6: The greedy algorithm for subset systems.

constraint graph in Figure 5.4 right. We define the subset system S and the

weight function w as in Section 5.4.1.

The greedy algorithm in Figure 5.6 first selects the edges in G because their

weights are larger than the weights of edges in Ĝ. Hence

I = {(a, b), (a, c), (b, c), (b, d), (c, f), (d, f), (e, f)}

After that, the edges in Ĝ are considered. Because all the edges in Ĝ have

the same weight, they can be chosen at random. Assume that the sequence

of edges chosen is (a, e), (b, g) and (d, g). Then, no more edges can be added

to I and the independent set returned by the greedy algorithm is

I = {(a, b), (a, c), (b, c), (b, d), (c, f), (d, f), (e, f), (a, e), (b, g), (d, g)}

See Figure 5.5 left.

Now assume that the sequence of chosen edges is (e, d), (e, g), (d, g) and

(g, b). At this point, no more edges can be added to I and the independent

set returned by the greedy algorithm is

I = {(a, b), (a, c), (b, c), (b, d), (c, f), (d, f), (e, f), (e, d), (e, g), (d, g), (g, b)}

See Figure 5.5 right. Clearly, this independent set includes more edges than

the one computed before, that is, it has larger total weight. Therefore, the

greedy algorithm does not necessarily yields a maximal conditional comple-

tion.



5. The Completion Operation 97

5.5 Experimental Study of the Greedy Algorithm

for the Conditional Completion Problem

The greedy algorithm does not always solve the maximal conditional com-

pletion problem. Therefore, it makes sense to investigate how far the com-

pletions yielded by the greedy algorithm are from being maximal.

Let G = (V,E) be an under constrained graph and let Ĝ = (V, Ê) be the

additional graph from where G must be completed. Let G(G, Ĝ) denote the

number of extra edges actually added to G from Ĝ by the greedy algorithm

in an specific run. Recall that since extra edges with the same weight are

selected at random, the greedy algorithm is not deterministic. Let O(G, Ĝ)

denote the number of extra edges taken from Ĝ that results in a maximal

completion of G.

The goal of the experimental study is to measure how different G(G, Ĝ) and

O(G, Ĝ) are for a large enough set of pairs (G, Ĝ). But computing O(G, Ĝ)

entails having an algorithm that solves the maximal completion problem.

Therefore, we compute an estimation for O(G, Ĝ).

Two different tests were conducted depending on the strategy used to define

the additional set of edges.

5.5.1 First test

Test Definition

The pairs of graphs G(V,E) and Ĝ = (V, Ê), with |V | = n, have been

defined as follows:

1. A constructively solvable graph F = (V,EF ) with |V | = n, is randomly

generated. This is done by building a random tree decomposition T

of G(V,E) with E = ∅. Then EF is defined as

EF = {(a, b)|a, b ∈ V and (a, b) is a leaf of T}

2. The set EF is randomly split into three pairwise disjoint subsets E,

D, and O such that EF = E ∪D ∪O.

3. Let Kn be the complete graph with n vertices. Let A be a set of edges

randomly drawn from E(Kn) \ E. Then Ê is defined as Ê = O ∪A.



98 5. The Completion Operation

Notice that by construction of G and Ĝ, all the edges in O ⊆ Ê can be

added to G. Therefore the following inequality holds:

0 ≤ |O| ≤ O(G, Ĝ) ≤ 2|V | − 3− |E|

Thus, if G(G, Ĝ) < |O| then G(G, Ĝ) < O(G, Ĝ). This means that the

completion yielded by the greedy algorithm is not maximal.

Data Description

A series of sets of graphs each containing twenty pairs (G = (V,E), Ĝ =

(V, Ê)) where generated. Values of |V | = n were {5, 6, . . . , 100}. The greedy

algorithm was serially fed with each pair. For each run, the values of |E|, |Ê|,

|O|, and the number of edges actually added to G, G(G, Ĝ), were recorded.

Results Analysis

The ratio of runs for which the completion was not maximal, that is, the

number of edges actually added to G, G(G, Ĝ), was smaller than |O|, with

respect to the total number of runs was 3.4%.

The difference between G(G, Ĝ), and the number of edges that could be

added, |O|, was measured by the ratio of missing edges

|O| − G(G, Ĝ)

|O|

Figure 5.7 shows the number of runs versus the ratio of missing edges. For

example, there were 13 runs where the ratio was 2%, 10 runs with a ratio

of 3% and so on.

Finally the ratio of cases where the resulting completion is well constrained,

|E ∪ Ê| = 2|V | − 3, with respect to the total number of runs was 7.8%.

5.5.2 Second Test

Test Definition

The pairs of graphs (G(V,E), Ĝ(V, Ê)) are defined as follows:

1. A constructively solvable graph F = (V,EF ) is built as described for

the first test.



5. The Completion Operation 99

6

8

10

12

14

2

4

<1 2 3 4 5 6 7 8 9 10 11 12 13 >15

Percentage of failure

N
um

be
r 

of
 c

as
es

Figure 5.7: Distribution of runs where more edges in Ĝ

could be added to G.

2. The set of edges EF is split into two subsets E and D with E ∩D = ∅

and EF = E ∪D.

3. If Kn is the complete graph with n vertices, the additional set of edges

is now Ê = E(Kn) \ E.

Notice that since all the edges needed to transform the under constrained

graph G into a well constrained one are in Ê, the number of edges that can

be added is given by O(G, Ĝ) = 2|V | − 3− |E|. Therefore, for this test the

following inequality holds:

0 ≤ G(G, Ĝ) ≤ O(G, Ĝ) = 2|V | − 3− |E|

Data Description

A series of sets of graphs each containing ten pairs (G = (V,E), Ĝ = (V, Ê))

where generated. Values of |V | = n were {5, 10, 15, . . . , 100}. The data

recorded for each run was the same as in the first test, |E|, |Ê|, |O|, and

G(G, Ĝ).

Results Analysis

In this test we counted the number of runs (G, Ĝ) for which G(G, Ĝ) <

O(G, Ĝ). That is the number of runs where the greedy algorithm did not



100 5. The Completion Operation

yield a well constrained completion. There were exactly 3 cases, that is 1.5%

of the runs.

5.5.3 Experimental Study Conclusions

From the experimental study we can drawn the following results:

1. The greedy algorithm does not compute the maximal conditional com-

pletion in a small fraction of cases. This fraction can be estimated in

about 3.5%.

2. When the greedy algorithm does not find a maximal conditional com-

pletion, the ratio of missing edges needed to generate a maximal com-

pletion with respect to the total number of edges in the well con-

strained graph, was in most of the runs less than 8%.

3. If the additional set of edges includes as many edges as needed to

generate a well constrained completion, only in 1.5% of the runs the

completion yielded was under constrained.

Therefore, the greedy algorithm is of practical application to compute con-

ditional completions.

5.6 Well Constrained Conditional Completion

So far, we have focused our interest in completing a geometric constraint

graph in such a way that the completed graph was solvable by a constructive

technique. Here we relax this requirement and we only expect the completion

to be well constrained; that is, we address Problem 5.1.

We proceed as in Section 5.4. First, we define the well constrained condi-

tional completion. The main difference with respect to Definition 5.3 is that

here the geometric constraint graph is required to be just under constrained

instead of completable.

Definition 5.5 Let G = (V,E) be an under constrained geometric con-

straint graph and let Ĝ = (V, Ê) be a geometric constraint graph. G′ =

(V,E′) is a well constrained conditional completion of G from Ĝ if G′ is a

well constrained completion of G and E ′ = E ∪ Ê′ with Ê′ 6= ∅ and Ê′ ⊆ Ê.



5. The Completion Operation 101

Next, we define the maximal well constrained conditional completion. Notice

the analogy with Definition 5.4.

Definition 5.6 Let G′ = (V,E′) be a well constrained conditional comple-

tion of G from Ĝ. We say that G′ is a maximal well constrained condi-

tional completion if for any other well constrained conditional completion

G′′ = (V,E′′) from Ĝ, the relation |E ′′| ≤ |E′| holds.

Now, we reformulate the maximal well constrained conditional completion

problem as a combinatorial optimization problem associated with a subset

system. Let G = (V,E) be an under constrained graph and let Ĝ = (V, Ê)

be the additional graph. Assume that E and Ê are disjoint, E ∩ Ê = ∅.

If we define E = E ∪ Ê and S as the subsets E ′ of E for which the graph

G′ = (V (E′), E′) is not over constrained, then S is a subset system. We

define the weight function w(e) over the set of edges E as in Section 5.4.1.

Two well established results are needed to show that the greedy algorithm

always solves the maximal well constrained conditional completion problem.

These results come from matroid theory and combinatorial rigidity theory,

respectively.

Matroids are subset systems which fulfill some additional properties. See [53]

for an in depth study of matroid theory. A well known result in combina-

torial optimization is that the greedy algorithm solves any combinatorial

optimization problem associated with a subset system which is a matroid,

[54].

Geometric constraint graphs whose vertices are points in the plane and

whose edges are distance constraints has been extensively studied in the

context of combinatorial rigidity theory. The result we are interested in is

the following, [23].

Theorem 5.7 Let G = (V,E) be a geometric constraint graph whose ver-

tices are points in the plane and whose edges are distance constraints. Let

E = E and let S denote the collection of subsets of E such that they are not

over constrained. Then the subset system S = (E ,S) is a matroid.

From this, we can conclude that the greedy algorithm solves the maximal

well constrained conditional completion for graphs whose vertices are points



102 5. The Completion Operation

in the plane and whose edges are distance constraints. This result has in-

teresting practical implications. For example, any complete geometric con-

straint solving technique can benefit from the use of the greedy algorithm to

solve the maximal well constrained conditional completion problem. More-

over, it can also solve over constrained problems by applying the technique

described in Section 5.7.3.

5.7 Applications of the Conditional Completion

We present three applications of the maximal conditional completion prob-

lem: constraint schema reconciliation, constraints with priorities and solving

over constrained problems. We also include a case study consisting in an

over constrained problem in which we require the topological constraints to

be kept in the final solution.

5.7.1 Constraint Schema Reconciliation

In cooperative design systems, different activities in product design and

manufacture aim at different subsets of the information in the model under

design. Each of those subsets of information has been called a view, [13].

In this context, maintaining views consistently is a central issue. Chapter 6

is devoted to this problem and offers a solution founded on the conditional

completion.

5.7.2 Constraints with priorities

In constraint-based design there are situations where it would be useful to

associate a different level of priority to different constraints. For example

when there is a set of mandatory constraints but the designer still has the

freedom to fix the remaining constraints. We can generalize the maximal

conditional completion problem and include constraints with levels of prior-

ity.

Let M be the maximum level of priority. Let Ei, 1 ≤ i ≤M , be a partition

of the set of edges E . Then, we can define a collection of graphs Gi = (V,Ei),

1 ≤ i ≤M , on the same set of vertices V where V contains the endpoints of

the edges in E . Let S be the set of subsets of E which are tree decomposable.



5. The Completion Operation 103

Then S = (E ,S) is a subset system. If for each e ∈ E , we define the weight

function w(e) = i if e ∈ Ei, we get a combinatorial optimization problem on

the subset system S.

Then, the greedy algorithm in Figure 5.6 applies. If GM = (V,EM ) is

completable, the constraints in EM are guaranteed to be in the resulting

graph. The edges on the remaining sets Ei, for 1 ≤ i < M , are successively

included in the resulting graph according to the levels of priority.

5.7.3 Over constrained problems

We first state what we understand by solving an over constrained problem.

Problem 5.3 Let G∗ = (V,E∗) be an over constrained geometric constraint

graph associated to an over constrained problem. The geometric constraint

graph G = (V,E) is a solution of the over constrained problem if E is a

subset of E∗ with the largest possible cardinality such that G is completable.

Let G∗ = (V,E∗) be an over constrained graph. We define the graphs G

and Ĝ as follows.

G = (V, ∅)

Ĝ = (V,E∗)

Now, we apply the greedy algorithm to compute a maximal conditional com-

pletion of G from Ĝ. If the resulting graph is completable, a free completion

can be applied to get a solvable graph. Recall that an over constrained

graph has a subgraph with more edges than needed, but it can have sub-

graphs with less edges than needed. Therefore, we can not get, in general,

a solvable graph just by selecting a subset of edges in E∗.

Notice that due to the non-deterministic nature of the greedy algorithm each

run could result in a different completable (or solvable) graph.

5.7.4 Case study

To illustrate how the ideas presented here work, consider the over con-

strained problem given by an end user and shown in Figure 5.8. The geomet-

ric elements in the problem include four points and four straight segments.



104 5. The Completion Operation

d3p2

d2

p1

d1

h1

l3

a1

l4

l2
p3

p4

d4l1

a2

Figure 5.8: Over constrained sketch

The constraints are four point-point distances, two angles and one point-

segment distance.

Assume that the over constrained graph G∗ = (V,E∗) associated with the

sketch is the one given in Figure 5.9. And assume that, with the aim of

keeping the sketch topology, the following priorities are defined on the con-

straints

w(e) =

{
1 if e ∈ E∗ is a dimensional constraint

2 if e ∈ E∗ is a topological constraint

If graphs G and Ĝ are defined as in Section 5.7.3, Figure 5.10 shows a

constraint graph output by the greedy algorithm. Recall that the greedy

algorithm is not deterministic and that the actual output depends on the

specific run.

Now, a different annotation on the input sketch, shown in Figure 5.11, which

is constructively solvable, can be suggested to the end user.

5.8 Summary

In this chapter we have addressed two techniques to solve the completion

problem: free completion and maximal conditional completion. The com-

pletion of a geometric constraint graph consists in adding extra edges to an

under constrained graph. In free completion, the extra constraints are au-

tomatically defined without any further condition. In maximal conditional

completion, the extra edges are drawn from the set of edges of a second

graph which we call the additional graph. The resulting graph in both cases



5. The Completion Operation 105

l2

p1

l1

p2

p3

l3

p4

l4

d1 d2

d1

a1

h1

d3

on

on

on

onon

on

on

on

a2

Figure 5.9: Over constrained graph associated with the

problem in Figure 5.8.

l2

p1

l1

p2

p3

l3

p4

l4

d1 d2

d1

a1

d3

on

on

on

onon

on

on

on

Figure 5.10: Geometric constraint graph built by the

greedy algorithm.



106 5. The Completion Operation

l1

d3p2

d2

p1

d1

l3

a1

l4

l2
p3

p4

d4

Figure 5.11: Solvable problem for the the graph in Fig-

ure 5.10.

must also fulfill an additional property: it must be solvable by a constructive

geometric constraint solving technique.

We have reformulated the maximal conditional completion problem as a

combinatorial optimization problem associated with a subset system. In

this context, we have investigated the applicability of the greedy algorithm.

Although we have shown that the greedy algorithm not always yields a

solution to the maximal conditional completion problem, the experimental

results reveal that the greedy algorithm can be successfully used to compute

conditional completions.

We have also considered the maximal well constrained completion problem.

Here, we only require the resulting graphs to be well constrained. Recalling

standard results in matroid theory and combinatorial rigidity theory, we

have shown that the greedy algorithm solves this problem.

Finally, we have presented three applications of the maximal conditional

completion problem. First, we have shown how the maximal conditional

completion problem can be used in the solution of the schema reconciliation

problem in cooperative design. This problem originally inspired the study of

the maximal conditional completion and it is studied in Chapter 6. Second,

we have presented a generalization of the maximal conditional completion

problem in which the set of additional constraints is structured in prior-

ity levels. And third, we have discussed the applicability of the maximal

conditional completion to deal with over constrained geometric constraint

problems.



107

6
Definition of a

Multiple Views

Model

A key component in computer aided design systems is the model that cap-

tures the shape design. The need for integration in concurrent cooperative

design environments has lead to the integration of different product infor-

mation domains resulting in what is known as the product master model, a

single repository where all relevant product data resides. The application of

the master model concept is growing rapidly, but there are still significant

technical problems that need further study and research.

To support concurrent engineering, modifications required by an application

should be introduced in the application’s view where the need arises, and

modifications in any view should be propagated automatically to all other

views, see Bronsvoort et al. [5, 13, 14]. Therefore, maintaining consistent

views is a central problem in research on product design and manufacture.

Current approaches handle the consistency problem by organizing the sys-

tem as a one-way architecture. The object in an application view is derived

from the object in a privileged view, usually the design view. The designer

defines this view and conversion modules generate application-dependent

views. If a modification is required, the privileged view must be edited and

the updated views can be derived again, see Cunningham [11].

In this chapter, we develop a framework to support geometric constraint-

based design systems with multiple views for concurrent engineering. The

framework is based on a conceptual architecture with a master view and

several client views with a two-way flow information between the master and

client views. The framework addresses especially the problem of maintaining



108 6. Definition of a Multiple Views Model

consistency between different views.

6.1 Views

We define a view as a geometric model in the sense of Definition 2.4. Al-

though views are ordinary geometric models, it is usual to talk about views

when we have a collection of models all of them referred to the same object.

We say that all those models are different views of the same object.

In this chapter we use the concepts of Chapter 2 when referring to views.

We assume that we are using a particular ideal solver, according to Defini-

tion 2.3. We note a view as W = 〈A,α, ι〉 following the same notation used

for geometric models. Here, A denotes an abstract problem, α a parameter

assignment and ι an index assignment. When the solver is applied to A we

obtain a constructive sequence SA. Consequently, ι is an index of V (α.SA).

Because the solver is ideal, V (α.SA) = V (α.A) and thus realizations of α.A

and indexed anchors of V (α.S) are the same elements. Therefore, we can

say that W defines a realization or, equivalently, an indexed anchor. We

note as rW the realization (or the equivalent indexed anchor) defined by W .

Let W = 〈A,α, ι〉 a view. Then, it is useful to classify the constraints of the

abstract problem A, in two subsets. The first defines the topology, and the

second defines the set of geometric (or metric) constraints.

Definition 6.1 We will say that two views of the same object are compat-

ible if their corresponding abstract problems are built on the same set of

geometric elements and have the same topology.

Figures 6.5 and 6.6 show two compatible views. We are only interested in

compatible views. Notice that two compatible views differ at most in the

metric constraints, the index assignment and the parameter assignment.

In general we represent views in a textual way. For example, see Figure 6.1.

Each view has an identifier plus six different sections. The first section lists

the set of parameters, the second the set of geometric elements, the third

defines the topology, and the fourth section defines the set of geometric

constraints. The last two sections list de parameters and index assignment

respectively.



6. Definition of a Multiple Views Model 109

h1

l2

a1 h2

d1

p3

p1

l1 d2

l3
p2

p4

l4

view M

param

d1, d2, a1, h1, h2 : real

endparam

index

s1, s2, s3 : sign

endindex

geom

p1, p2, p3, p4 : point

l1, l2, l3, l4 : line

endgeom

topology

onPL(p2, l1)

onPL(p4, l2)

onPL(p2, l3)

onPL(p4, l4)

onPL(p1, l1)

onPL(p1, l2)

onPL(p3, l3)

onPL(p3, l4)

endtopology

constraints

distPP (p1, p3, d1)

distPP (p2, p4, d2)

distPL(p4, r1, h1)

distPL(p4, r3, h2)

angleLL(r1, r2, a1)

endconstraints

param-assign

d1 = 440.0

d2 = 440.0

h1 = 150.0

h2 = 250.0

a1 = 2.20

endparam-assign

index-assign

s1 = 1

s2 = 1

s3 = −1

endindex-assign

endview

Figure 6.1: A geometric constraint-based model.



110 6. Definition of a Multiple Views Model

. . . .

Master

View2 ViewNView1

Figure 6.2: Master view architecture with client views.

6.2 The Multiple Views Model

We assume the master model scenario described by Hoffmann and Joan-

Arinyo in [25, 26]. There is an object-oriented master view server that

records all the information to be shared among the different views. The

clients that connect the master view server are assumed to be autonomous

but collaborating and they pledge to follow the protocols of the master view

server.

The master view receives notifications from a client view that wishes to edit

the object under design, according to its own application. The client then

transmits the proposed changes to the master view server. The master view

processes the changes and if it can successfully update, the master view

commits to the change and the edit proposed by the client is successful.

Figure 6.2 illustrates the model of the overall architecture. This model allows

synchronizing a client with the master view and vice versa. Synchronization

between different client views must be performed through the master view.

We assume that every item in the master view is placed by a client in charge

of doing the primary editing of the view.

6.2.1 Protocols

Information that has been created and is owned by an specific client view

can affect many other client views. This cross-dependency of information

between views requires explicit protocols which ensure that information is

added and updated maintaining consistency between views. We have de-

signed a set of operations to meet the needs of the master view architec-

ture with a two-way information flow. The operations are inspired on the



6. Definition of a Multiple Views Model 111

Berliner’s CVS model [3]. Using these operations several protocols can be

implemented. The set of operations is:

1. OpenView : This operation allows the user to open a new view. Let

M be the master view. Then the operation defines a new view M ′ by

replicating the geometry and the topology of M . Notice that the new

view M ′ and the original one M are compatibles.

2. Complete: Let V be a completable view. To complete V means to

transform it into a solvable view by adjoining extra constraints. We

consider two different ways of completing a view: conditional comple-

tion and free completion. These operations have been introduced in

Chapter 5. Note that in conditional completion we need an additional

set of constraints over the same geometric elements. This means that

to apply a conditional completion to V we need a compatible view V ′

that plays the role of additional set of constraints.

3. ValuesTransfer : Let V and V ′ be two compatible views of a given

object. The ValuesTransfer operation assigns to the parameters of the

constraints in a view V ′ values that are either explicitly represented

in another view V or that can be computed from the actual geometry

of V .

When values are transferred from a client view V to the master model

M , the operation is denoted as Commit. When values are transferred

from M to the view V , the operation is denoted as Update.

Using this set of operations, a number of protocols can be developed. In

what follows we illustrate one of them. See Figure 6.3. Assuming that a

master model M is available, a new client view V is opened by issuing an

OpenView operation. The new view V does not include metric constraints

but has the same geometry and topology as M . Then, the user can add new

constraints to V according to the specific application’s view. Note that the

resulting view V ′ does not need to be well constrained. Next, a Complete

operation completes the view by adjoining constraints, in this example taken

from the master view. The shape under design can be changed by changing

the values assigned to the constraint parameters. When the editing is over,

the master model M is updated by a Commit operation.



112 6. Definition of a Multiple Views Model

V’ V’’ V’’V

M M’

Figure 6.3: A work pattern using views.

Clearly, this is not the only possible pattern, but illustrates how the proposed

operations can be used.

6.2.2 Master Invariant

To guarantee the master view coherence, we associate a first order predicate

P to the master view M . The predicate should be defined on the geometric

elements and parameters’ values of M . Every time a commit operation is

triggered to update the master view M , the predicate P is checked and

the commit operation is actually carried out only if the master invariant

holds for the updated master view. Similar mechanisms can be found in

database technology, see Date’s book, [12]. We call this mechanism the

Master invariant.

For example, to guarantee that the slot in the object of Figure 6.4 is always

part of the object’s shape, we can define the master invariant labeled inv1

as P ≡ dist(p1, p2) > 1.

This mechanism can be easily extended to enforce the master invariant not

only during commit time but also during the edition time of the view. This

extension would be preferred when using long edition transactions.



6. Definition of a Multiple Views Model 113

p1p2

inv1

Figure 6.4: A master invariant example.

6.3 Implementation Issues

Implementing the OpenView operation is simple. All what is needed is to

replicate the geometry and topology of some other already defined view,

usually the master view.

Implementing Completion means to transform an under constrained view

into a well constrained one by adjoining geometric constraints. Completion

can be performed applying the techniques reported in Chapter 5.

Conceptually, Commit and Update are distict operations. However, both

can be implemented with a ValueTransfer operation. The implementation

of this operation is the objective of what follows.

6.3.1 ValuesTransfer Implementation

First we precisely define the ValuesTransfer operation:

Definition 6.2 Let V = 〈AV , αV , ιV 〉 and W = 〈AW , αW , ιW 〉 be two dif-

ferent views. To transfer the values of W to V means to compute a new

view V ′ = 〈AV , αV ′ , ιV ′〉 such that rV ′ = rW . This operation is written as

Tr(W,V ) = V ′.

Note that V and V ′ have the same abstract system and hence the same

constraints and parameters.



114 6. Definition of a Multiple Views Model

The implementation of ValueTransfer is performed in two steps. If the

views are V = 〈AV , αV , ιV 〉 and W = 〈AW , αW , ιW 〉, the valueTranfer V ′ =

Tr(W,V ) can be performed as follows:

1. Using the solver compute the realization rW from the view W . Since

we assume a correct solver, rW ∈ V (αW .AW ). ιW , the index assign-

ment for W , indexes the set V (αW .AW ).

Now assign proper values to the parameters of V ′. That is, compute

a parameter assignment for V ′. Notice that the parameters and con-

straints of V ′ are the same parameters of V .

If a constraint in V is explicitly defined in W , the value of the pa-

rameter in W is assigned to the corresponding parameter in V ′. If the

constraint in V is not in W , the parameter value is measured in rW

and transferred to the parameter in V ′.

For example assume that in the view V there is a distance constraint

like dist(pi, pj) = d which is not in W . The value assigned to the

parameter d is the value resulting from computing the distance from

pi to pj in the realization rW .

The result of this computation is the parameter assignment of V ′,

namely αV ′ .

2. Now the index assignment of V ′, namely ιV ′ , must be computed.

Notice that we know αV ′ and thus V (αV ′ .AV ) is also known. Since rW

is constructible and the solver is ideal rW ∈ V (αV ′ .AV ). The index

assignment of this indexed anchor is computed by using an anchor

based index selector, see Section 2.5.2. Luzón in [44] shows some

techniques to efficiently implement index selectors.

This procedure yields a parameter assignment αV ′ and an index assignment

ιV ′ . Now, the new view resulting from transfering values is

V ′ = Tr(W,V ) = 〈AV , αV ′ , ιV ′〉

.



6. Definition of a Multiple Views Model 115

p1 l2

p4

l4

l3
p2 p3

l1

view V

geom

p1, p2, p3, p4 : point

l1, l2, l3, l4 : line

endgeom

topology

onPL(p1, l1)

onPL(p1, l2)

onPL(p3, l3)

onPL(p3, l4)

onPL(p2, l1)

onPL(p4, l2)

onPL(p2, l3)

onPL(p4, l4)

endtopology

endview

Figure 6.5: The new client view opened from the master

view.

6.4 Case Study

To illustrate how a multiple view model works we develop a simple case

study with two different views: A master and a client view. Assume that

the master view, M , is that depicted in Figure 6.1.

A new client view, compatible with M , can be opened with an OpenView

operation. See Figure 6.5. Since the new client view is by definition under

constrained, the geometric elements in the client view are placed using the

coordinates of the master view.

Now the user adjoins to the client view the constraints of interest, for exam-

ple, those depicted in Figure 6.6. In this example, the resulting client view,

denoted V ′, still is under constrained.

The next step is to transform the under constrained client view V ′ into a

well constrained one by issuing a complete operation. Figure 6.7 shows the

result of a conditional completion where the extra constraints are taken from

the master view, M .

Now, the user changes the parameters value of view V ′′. If the set of values

coherently define the object, the geometric constraint solver in the system



116 6. Definition of a Multiple Views Model

p4

l2
p1

h1
l1

l4
d2

a1

p3l3p2

view V’

param

d2, a1, h1 : real

endparam

geom

p1, p2, p3, p4 : point

l1, l2, l3, l4 : line

endgeom

topology

onPL(p1, l1)

onPL(p1, l2)

onPL(p3, l3)

onPL(p3, l4)

onPL(p2, l1)

onPL(p4, l2)

onPL(p2, l3)

onPL(p4, l4)

endtopology

constraints

distPL(p1, l3, h1)

distPP (p3, p4, d2)

angleLL(l3, l4, a1)

endconstraints

endview

Figure 6.6: The new client view with some adjoined con-

straints.



6. Definition of a Multiple Views Model 117

p4

d2l4

p1

a1

p3

l2

a2

d1

l3
p2

h1 l1

view V”

param

d2, a1, h1, a2, d1 : real

endparam

geom

p1, p2, p3, p4 : point

l1, l2, l3, l4 : line

figeom

topology

onPL(p1, l1)

onPL(p1, l2)

onPL(p3, l3)

onPL(p3, l4)

onPL(p2, l1)

onPL(p4, l2)

onPL(p2, l3)

onPL(p4, l4)

endtopology

constraints

distPP (p2, p3, d1)

distPP (p3, p4, d2)

distPL(p1, l3, h1)

angleLL(l1, l2, a2)

angleLL(l3, l4, a1)

endconstraints

endview

Figure 6.7: The new well constrained client view.



118 6. Definition of a Multiple Views Model

p1

p4

a1

p3

h1

p2

l3

d1

a2

l2

l1 l4
d2

Figure 6.8: The new client view after changing the values

of parameters h1 and a2.

generates the corresponding shape instance. Figure 6.8 shows the same

object as Figure 6.7 after changing the value of parameters h1 and a2. If the

set of parameters’ values do not define a feasible object, the solver discards

the construction and displays a warning.

Next, to update the master view, a commit operation is triggered. Since

constraints with parameters a1, h1, d1 and d2 are common to the master

view M and to the client view V , their values in M are directly updated.

Constraint dist(p4, l3) = h2 inM is not defined in V ′′. Therefore, the value is

computed in V ′′ as the perpendicular distance from point p4 to the straight

line l3. Changes introduced in the client view V ′′ have been propagated

to the master model M , as a result they are synchronized. The resulting

updated master view M is shown in Figure 6.9.

6.5 Summary

We have presented a set of tools and procedures that allow to implement

multiple view geometric models in constraint-based geometric modeling sys-

tems. The tools are built on top of three basic operations OpenView, Com-

pletion and ValuesTransfer plus the Master invariant. These tools are of

symbolic nature and yield robust mechanisms that allow to maintain con-

sistency between different views of an object under design. In a case study

we have illustrated how the tools we propose here solve the information flow

needed to maintain consistency between views.



6. Definition of a Multiple Views Model 119

h1

h2

a2

d2

p3

p1

p4

l2

l1

l3

d1

p2

l4

Figure 6.9: The master view after synchronization with

the client view.



120 6. Definition of a Multiple Views Model



121

7 Conclusions and

Future Work

In this chapter, we summarize the main achievements of this PhD thesis and

point out directions for future work.

7.1 Conclusions

In this dissertation we have studied three main aspects concerning construc-

tive geometric constraint solvers:

1. We have defined an architecture that is suitable to constructive geo-

metric constraint solvers. This definition introduces three functional

units which are defined in terms of their input and output. Every

functional unit have a particular type of input and output data. All

these data types have been identified and characterized. The proposed

architecture has interest from a theoretical point of view. Moreover,

the architecture can be translated to a software implementation and

thus it have also an important practical interest.

2. We have studied the domain of the three constructive analyzers re-

ported in [21, 50]. We have proved that the three analyzers have the

same domain. This domain have been characterized by using the tree

decomposition of graphs.

The characterization of the domain of analysis algorithms has lead to

the following additional results:

• Owen’s algorithm has been studied in depth and a new version

of the algorithm described in [50] is given. This new version is



122 7. Conclusions and Future Work

easier to understand and clearly shows the divide-and-conquer

structure of Owen’s algorithm otherwise obscured.

• Tree decompositions are an interesting tool to understand

analysys algorithms. The three analysis algorithms studied are in

fact distinct algorithms to compute tree decompositions. Thus,

tree decompositions are a tool useful to describe the domain of

analysis methods and also an interesting tool to understand the

methods themselves.

• The class of solvable graphs is defined as a recursive sequence

similar to Henneberg sequences. Therefore, the domain of the

studied analysis methods can be easily generated.

3. We have defined an operation to complete under constrained geometric

constraint problems. We have studied which under constrained prob-

lems can be satisfactorily transformed into a solvable problem and

then, the completion operation has been reformulated as a combinato-

rial optimization problem. We have studied the greedy algorithm on

this problem. We have shown through extensive testing that, although

it is suboptimal, it performs satisfactorily for real test cases.

Based on this operation, along with the value transfer operation also

defined in this work, we have stated a multiple views geometric con-

straint based model. This models allows to coherently maintain a set

of views of the same object. The model defines a set of operations sim-

ilar to those found on optimistic long transaction systems like CVS [3].

Using these operations a number of useful working protocols can be es-

tablished. The resulting model is well suited to concurrent engineering

environments.

7.2 Future Work

Several new problems have emerged during the development of this work.

To our understanding, the most important are:

• Efficient versions of the three analysis methods studied here, [21, 50],

are difficult to implement. Considering an analysis algorithm as a



7. Conclusions and Future Work 123

way to build a tree decomposition we think that simpler analysis algo-

rithms can be devised while maintaining time efficiency. In particular,

we think that the triconnectivity algorithm of Miller and Ramachan-

dran [48] can be simplified to obtain a practical algorithm to compute

the tree decomposition of a graph.

• A challenging problem is to devise an incremental method to compute

a tree decomposition. That is, assume that we have a graph and its

corresponding tree decomposition. When the graph is modified by

edge addition or deletion, how can we incrementally compute the new

tree decomposition (if it exists)?. Efficiently solving this problem will

naturally lead to a new analysis algorithm. This algorithm would

be very useful in real applications due to the interactive nature of

geometric modelers.

• The greedy algorithm presented to solve the completion problem per-

forms satisfactorily for real problems but is suboptimal. It would be

desirable to prove or disprove whether the associated combinatorial

optimization problem on the set of solvable geometric constraint prob-

lems is NP-hard.



124 7. Conclusions and Future Work



125

Bibliography

[1] Aho, A. V., Hopcroft, J. E., and Ullman, J. D. The Design and

Analysis of Computer Algorithms. Computer Science and Information

Processing. Addison Wesley Publishing Company, Reading, MA, USA,

1974.

[2] Aldefeld, B. Geometric constraint solver. Computer Aided Design

20, 3 (Apr. 1988), 117–126.

[3] Berliner, B. CVS II: Parallelizing software development.

http://www.loria.fr/~molli/cvs-index.html.

[4] Bouma, W., Fudos, I., Hoffmann, C., Cai, J., and Paige, R.

Geometric constraint solver. Computer Aided Design 27, 6 (June 1995),

487–501.

[5] Bronsvoort, W., and Jansen, F. Multi-view feature modelling for

design and assembly. In Advances in Feature Based Manufacturing,

J. Shah, M. Mäntylä, and D. Nau, Eds., Manufacturing Research and

Technology, 20. Elsevier Science B.V., 1994, ch. 14, pp. 315–330.

[6] Brüderlin, B. Constructing three-dimensional geometric objects de-

fined by constraints. In Proceedings of the Workshop on Interactive 3D

Graphics (Oct. 1986), ACM, pp. 111–129.

[7] Brüderlin, B. Rule-Based Geometric Modelling. PhD thesis, Institut

für Informatik der ETH Zürich, 1988.

[8] Brüderlin, B. Symbolic computer geometry for computer aided ge-

ometric design. In Advances in Design and Manufacturing Systems,

Proceedings of NSF Conference (Tempe, AZ, Jan. 1990), NSF.



126 Bibliography

[9] Brüderlin, B. Using geometric rewrite rules for solving geometric

problems symbolically. In Theoretical Computer Science 116 (1993),

Elsevier Science Publishers B.V., pp. 291–303.

[10] Chartrand, G., and Lesniak, L. Graphs & Digraphs, 3rd ed. Chap-

man & Hall, 1996.

[11] Cunningham, J., and Dixon, J. Designing with features. The origin

of features. In Computers in Engineering Conference and Exhibition

(San Francisco, 1988), V. Tipnis and E. Patton, Eds., vol. 1, ASME,

pp. 237–243.

[12] Date, C. An Introduction to Database Systems, 7th ed. Addison-

Wesley, 2000.

[13] de Kraker, K., Dohmen, M., and Bronsvoort, W. Multiple-

way feature conversion to support concurrent engineering. In Product

Modeling for Computer Integrated Design and Manufacture (London,

UK, 1997), M. Pratt, R. Siriram, and M. Wozny, Eds., Chapman and

Hall, pp. 203–212.

[14] Dohmen, M., de Kraker, K., and Bronsvoort, W. Feature val-

idation in a multiple-view modeling system. In 16th ASME Interna-

tional Computers in Engineering Conference (Irvin, NY, USA, Aug.

1996), ASME.

[15] Durand, C. Symbolic and Numerical Techniques for Constraint Solv-

ing. PhD thesis, Purdue University, Department of Computer Sciences,

Dec. 1998.

[16] Essert-Villard, C., Schreck, P., and Dufourd, J. Skecth-based

pruning of a solution space within a formal geometric constraint solver.

Artificial Intelligence 124 (2000), 139–159.

[17] Even, S. Graph Algorithms. Computer Software Engineering Series.

Computer Science Press Inc., Rockville, Maryland, USA, 1979.

[18] Fudos, I. Editable representations for 2D geometric design. Master’s

thesis, Department of Computer Sciences, Purdue University, 1993.

[19] Fudos, I. Constraint Solving for Computer Aided Design. PhD thesis,

Purdue University, Department of Computer Sciences, 1995.



Bibliography 127

[20] Fudos, I., and Hoffmann, C. Correctness proof of a geometric

constraint solver. International Journal of Computational Geometry &

Applications 6, 4 (1996), 405–420.

[21] Fudos, I., and Hoffmann, C. A graph-constructive approach to

solving systems of geometric constraints. ACM Transactions on Graph-

ics 16, 2 (Apr. 1997), 179–216.

[22] Garling, D. A Course in Galois Theory. Cambridge University Press,

1986.

[23] Graver, J., Servatius, B., and Servatius, H. Combinatorial Rigid-

ity, vol. 2 of Graduate Studies in Mathematics. American Mathematical

Society, 1993.

[24] Gross, J., and Yellen, J. Graph Theory and Its Applications. Dis-

crete Mathematics and its Applications. CRC Press, Boca Raton, FL,

USA, 1999.

[25] Hoffmann, C., and Joan-Arinyo, R. CAD and the product master

model. Computer Aided Design 30, 11 (1998), 905–918.

[26] Hoffmann, C., and Joan-Arinyo, R. Distributed maintenance of

multiple product views. Computer Aided Design 32, 7 (June 2000),

421–431.

[27] Hoffmann, C., Lomonosov, A., and Sitharam, M. Decompostion

Plans for Geometric Constraint Systems, Part I: Performance Measure-

ments for CAD. Journal of Symbolic Computation 31 (2001), 367–408.

[28] Hopcroft, J. E., and Tarjan, R. E. Dividing a graph into tricon-

nected components. Tech. rep., Computer Science Department. Cornell

University, Ithaca, NY. USA, Feb. 1974. New revision of TR 72-140.

[29] Jermann, C. Résolution de Containtes Géométriques par Rigidifica-

tion Récursive et Propagation d’Intervalles. PhD thesis, Université de

Nice - Sophia Antipolis, Dec. 2002. Written in French.

[30] Joan-Arinyo, R. Triangles, ruler and compass. Tech. Rep. LSI-95-6-

R, Universitat Politècnica de Catalunya, Department LSI, 1995.



128 Bibliography

[31] Joan-Arinyo, R., Soto, A., Vila, S., and Vilaplana, J. A frame-

work to support multiple views in geometric constrain-based models.

In Proceedings of the 8th. IEEE International Conference on Emerging

Technologies and Factory Automation ETFA’2001 (Antibes-Juan les

Pins, France, Oct. 2001), E. Dekneuvel, Ed., 8th. IEEE.

[32] Joan-Arinyo, R., and Soto-Riera, A. A correct rule-based geo-

metric constraint solver. Computers & Graphics 21, 5 (1997), 599–609.

[33] Joan-Arinyo, R., and Soto-Riera, A. Combining constructive and

equational geometric constraint solving techniques. ACM Transactions

on Graphics 18, 1 (Jan. 1999), 35–55.

[34] Joan-Arinyo, R., Soto-Riera, A., and Vila-Marta, S. Tools

to deal with under-constrained geometric constraint graphs. In 6th.

Asian Symposium on Computer Mathematics. Session on Geometric

Constraint Solving (Beijing (China), Apr. 2003).

[35] Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., and Vila-

plana, J. On the domain of constructive geometric constraint solving

techniques. In Proc. of the Spring Conference on Computer Graphics

(2001), R. Ďurikovič and S. Czanner, Eds., IEEE Computer Society,

pp. 49–54.

[36] Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., and Vila-

plana, J. On the completion of underconstrained geometric constraint

problems. In Proceedings of Third International NAISO Symposium on

Engineering of Intelligent Systems (Málaga (Spain), Sept. 2002), ICSC-

NAISO, ICSC-NAISO Academic Press. ISBN: 3-906454-32-0.

[37] Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., and Vila-

plana, J. Revisiting decomposition analysis of geometric constraint

graphs. Computer Aided Design (2003). In press.

[38] Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., and

Vilaplana-Pastó, J. Declarative characterization of a general ar-

chitecture for constructive geometric constraint solvers. In Proc. of the

3IA International Conference (Limoges, France, May 2002), D. Ple-

menos, Ed., MSI, University of Limoges, pp. 55–69.



Bibliography 129

[39] Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., and

Vilaplana-Pastó, J. Revisiting decomposition analysis of geomet-

ric constraint graphs. In Proc. of the Solid Modeling and Applications

SM’02 (Saarbrüken, Germany, June 2002), K. Lee and N. Patrikalakis,

Eds., ACM Press, pp. 105–115.

[40] Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., and

Vilaplana-Pastó, J. Transforming an under-constrained geometric

constraint problem into a well-constrained one. Research LSI-02-69-R,

Dept. Llenguatges i Sistemes Informàtics, UPC, Barcelona, Nov. 2002.

[41] Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., and

Vilaplana-Pastó, J. Transforming an under-constrained geometric

constraint problem into a well-constrained one. In Proc. of the Solid

Modeling and Applications SM’03 (Seattle, WA (USA), June 2003).

[42] Klop, J. Term rewriting systems. In Background: Computational

Structures, S. Abramsky, D. Gabbay, and T. Maibaum, Eds., vol. 2 of

Handbook of Logic in Computer Science. Clarendon Press, 1992, pp. 1–

117.

[43] Laman, G. On graphs and rigidity of plane skeletal structures. Journal

of Engineering Mathematics 4, 4 (Oct. 1970), 331–340.

[44] Luzón, M. The Root Identification Problem in Constructive Geometric

Constraint Solving. PhD thesis, Universidade da Vigo, 2001. Writen in

spanish.

[45] Manna, Z., and Waldinger, R. The Deductive Foundations of Com-

puter Programming. Addison-Wesley Pu. Co., Reading, MA, 1993.

[46] Mäntylä, M. Introduction to Solid Modeling. Computer Science

Press, Rockville, MD, 1988.

[47] Mata, N. Constructible Geometric Problems with Interval Parame-

ters. PhD thesis, Universitat Politècnica de Catalunya, LSI Depart-

ment, Barcelona, Spain, 2000.

[48] Miller, G. L., and Ramachandran, V. A new graph triconnectiv-

ity algorithm and its parallelization. Combinatorica 12 (1992), 53–76.



130 Bibliography

[49] Mortenson, M. Geometric Modeling. Wiley, New York, 1985.

[50] Owen, J. Algebraic solution for geometry from dimensional con-

straints. In Proc. of ACM Symposium on Foundations of Solid Modeling

(Austin TX, USA, June 1991), R. Rossignac and J. Turner, Eds., ACM,

ACM Press, pp. 397–407.

[51] Owen, J. Constraints on simple geometry in two and three dimensions.

International Journal of Computational Geometry & Applications 6, 4

(1996), 421–434.

[52] Owen, J., and Whiteley, W. Constraining plane geometric config-

urations in cad: Directions and distances. Manuscript, July 1996.

[53] Oxley, J. Matroid Theory. Oxford University Press, Oxford, UK,

1992.

[54] Papadimitriou, C. H., and Steiglitz, K. Combinatorial Optimiza-

tion: Algorithms And Complexity. Dover Publications, May 1998.

[55] Requicha, A. Representations for rigid solids: Theory, methods, and

systems. ACM Computing Surveys 12, 4 (Dec. 1980), 437–464.

[56] Servatius, B., and Whiteley, W. Constraining plane geomet-

ric configurations in cad: Combinatorics of directions and lengths.

Manuscript, 1994.

[57] Solano, L. Constructiva Solid Modeling Based on Constraints. PhD

thesis, Dept. Llenguatges i Sistemes Informàtics. Universitat Politècnica

de Catalunya, Barcelona, Spain, May 1999.

[58] Soto, A. Satisfacció de Restriccions Geomètriques en 2D. PhD thesis,

Dept. Llenguatges i Sistemes Informàtics, Universitat Politècnica de

Catalunya, Barcelona, Spain, 1998. Written in Catalan.

[59] Todd, P. A k-tree generalization that characterizes consistency of

dimensioned engineering drawings. SIAM J. Discrete Mathematics 2,

2 (1989), 255–261.

[60] van Leeuwen, J. Graph algorithms. In Handbook of Theoretical Com-

puter Science, J. van Leeuwen, Ed. Elsevier Science Publishers B.V.,

1990, ch. 10, pp. 527–631.



Bibliography 131

[61] Verroust, A. Etude de Problèmes Liés à la Dèfinition, la Visuali-

sation et l’Animation d’Objects Complexes en Informatique Graphique.

PhD thesis, Universite de Paris-Sud, Centre d’Orsay, 1990.

[62] Verroust, A., Schonek, F., and Roller, D. Rule-oriented method

for parameterized computer-aided design. Computer Aided Design 24,

10 (Oct. 1992), 531–540.

[63] Whiteley, W. Matroids and rigid structures. In Matroid Applica-

tions, N. White, Ed., vol. 40 of Encyclopedia of Mathematics and its

Applications. Cambridge University Press, Cambridge, Great Britain,

1992, ch. 1, pp. 1–53.

[64] Whiteley, W. Rigidity and scene analisys. In Handbook of Discrete

and Computational Geometry. CRC Press, 1997, pp. 893–916.


