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Introduction

In my dissertation, I explain different asset price anomalies in the financial market by

characterizing the information sets of those who interact within it. In particular, I study

the effects of facing a restriction on the volume of information that an actor can process.

For this purpose, I construct the analysis from a financial market microstructure perspec-

tive, where a group of investors has access to inside information about the traded assets.

I find that these anomalies can originate when a rational agent faces a constraint on the

information volume they can process. The dissertation contains results when investors

and price-setting agents face this restriction.

The dissertation is composed of three chapters. In the first chapter, I try to explain how

a shock to the fundamental value of a specific asset spreads to various asset prices through

an informational channel. To show how the asset price covariance arises, I use a model

for insider trading where a partially-informed monopolistic investor selects a portfolio.

Moreover, the analysis considers that the asset payoffs are statistically independent to

eliminate any other potential source of asset price covariance. Thus, the only possible

source of correlation appears when the investor chooses the information structure that

maximizes his expected profits given a limited information-processing capacity. As a

result, the imperfectly informed investor observes correlated information and exhibits

hedging behavior, which results in a negative covariance of asset prices. Finally, I find

that risk aversion scales down the market orders, and this translates into a reduction in

the magnitude of the covariance.

In the second chapter, I address the correlation of the Bid-Ask spread across financial

markets. Specifically, I study how investors’ information structures can impact different

asset prices simultaneously. To this end, I use an analytical framework in which two kinds
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of investors, insiders and noise traders, submit bid/ask orders to a market maker. I identify

that a first source of correlation in bid and ask prices across markets occurs in investors’

information structures when they have limited access to information. Since information

is costly to process, insiders may choose to observe a more precise correlated information

structure over other alternatives. This structure induces correlation in the investor’s

market orders, and makes the order flow correlated across markets. Thus, market makers’

information sets are structurally correlated as well, and the bid/ask prices inherit the

correlation given the connection between their information structures. Alternatively, I

find that when market makers can trade in all markets, they compensate for the adverse

selection problem that insider trading poses and adjust the asset prices to cross-subsidize

across markets for the potential losses. The market makers’ conduct induces a correlated

pricing behavior, even if the investors do not supply correlated information to the market.

Finally, in the third chapter of this dissertation, I address the stochastic behavior of

asset prices set by an imperfectly informed specialist who uses learning technology to re-

fine her knowledge of the order flow. The specialist’s endogenous choice of an information

structure is analyzed given a learning technology and thus fully characterizing her re-

sponses to large orders in the market. Specifically, large orders can either be of structural

origin, i.e., a disturbance in the asset’s payoff, or an exogenous one associated with noise

trading. A specialist with a large learning capacity optimally chooses a pricing function

where structural shocks display high persistence, whereas exogenous shocks disappear

rapidly. This market structure provides a natural setup to address market resilience, in

the sense of the recovery speed of prices, and its relation with the specialist’s information

structure. Thus, market resilience is illustrated through various impulse-response func-

tions for some known stationary stochastic processes, where the effect of the two possible

shocks on the order flow is decomposed.
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Chapter 1

Attention allocation and price

comovement under imperfect

competition

1.1 Introduction

Asset price behavior is one of the most extensively analyzed topics in financial economics,

from both the theoretical and empirical perspectives. Nevertheless, the explanation for the

covariance between some asset prices has always been a grey area. In this paper, I provide

a potential explanation for the appearance of negative asset price covariance through a

purely informational channel. Informed investors (insiders) are the only agents who supply

useful information to the market through their orders. The market prices are usually noisy

spreads of the assets’ fundamental values. If these values are statistically independent, the

appearance of asset price covariance is considered a market anomaly (from any rational

expectations perspective). However, when insiders have limited information-processing

capacity, they may face a trade-off between the reduction of aggregate external noise and

the allocation of all their resources to learn about each asset independently. This learning

constraint may lead investors to choose correlated information in order to select their

portfolios. Hence, the selected portfolio spreads correlated information across markets,

which results in correlated prices.
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Mondria (2010) is a related analysis, which introduces an informational channel to

explain the presence of market price covariance for assets whose fundamental values are

statistically independent. In his model, Mondria considers a perfectly competitive finan-

cial market. To center the analysis on the informational channel, I consider a financial

market where market orders are traded, and informed investors know the effect their

order will have on the asset price. A market order is a choice that the insider submits

to the market, which depends on the investor’s information rather than the price. So,

the framework proposed to analyze this phenomenon is an insider trading model with an

imperfectly competitive financial market for two securities, where the insider must deal

with a limited capacity to process information. In the model, the information is available

to the insider in the form of signals. The insider decides how to allocate his information-

processing capacity to a vector of informative signals that deliver noisy information about

the asset payoffs. Intuitively, the transmission channel means that whenever the insider

faces an information-processing capacity constraint, a volatility shock to either market

will affect both prices since it is unfeasible to trace the origin back to the fundamental

values from the information structure. Since such a shock impacts both market orders,

the information that the market maker observes in the order flow to set the asset prices

is correlated. This covariance between asset prices can arise in equilibrium due to a low

information-processing capacity, which disappears as this capacity increases.

A common framework used to explain market anomalies is to attribute them to be-

havioral agents rather than rational ones. Instead, this paper considers a purely rational

agent who gets to choose his information structure in the form of a signal and then

selects a portfolio. This agent determines the information structure based on an exoge-

nous information-processing capacity. The choice of an information structure is what

the economics literature calls ‘rational inattention’. A significant advantage of models

with rational inattention problems is their convergence to a rational expectations result

when the constraint is slacked. Thus, rational inattention offers an intermediate situation

between rational and (disciplined-) behavioral agents.

The paper is structured as follows: Section 2 introduces the related literature for both

insider trading and rational inattention models and shows how this paper relates to each.
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Section 3 describes the market and informational structure. Then, Section 4 shows how

covariance behaves if there is a risk-neutral insider, and Section 5 shows how it is affected

by the introduction of different levels of risk aversion. Finally, Section 6 provides some

concluding remarks.

1.2 Related Literature

The analytical framework considered here for insider trading was first proposed by Kyle

(1985). This initial approach considered a model for insider trading with one security

and provided analysis for both the competitive and non-competitive cases. Three types

of agent interact in this family of models - informed investors, noise traders, and a market

maker. Informed agents have access to privileged information, in the form of a signal,

about the fundamentals of the securities traded in the market. Uninformed (or noise)

traders place random liquidity demands in the market. Finally, there is a market maker

who sets the price after she observes the collection of anonymous orders placed in the

market.1 For his analysis, Kyle considered risk-averse insiders for the perfectly competitive

setup, and risk-neutral insiders under imperfect competition.2 Admati (1985) developed

a multi-security extension of the same model for the perfectly competitive case where the

signal either gives information about each of the asset payoffs separately or any number

of linear combinations of such payoffs. Caballé and Krishnan (1994) built a multi-security

extension where market orders have a direct impact on the asset price, where the market

power is concentrated among the insiders.3 The literature for imperfectly competitive

markets contains further extensions of Kyle (1985). Subrahmanyam (1991) solved the

model for a single security with risk-averse insiders, and more recently Vitale (2012)

developed the multi security case for risk-averse agents.

Rational Inattention is a concept originated in Sims (1998) as a possible source for

1It should be noted that in perfectly competitive markets, the introduction of a market maker is
equivalent to the market clearing condition. In a non-competitive scenario, this is no longer true.

2Unlike the perfectly competitive case, under imperfect competition when agents are risk-neutral,
their ability to influence prices causes preferences to move in the mean-variance space.

3Informed traders (insiders) can place their orders conditional on their inside information or both the
inside information and the price. When the order only depends on the private signal, it is known as a
“market order,” while the second one as “limit-order.”
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“stickiness” in markets. Sims (2003) formally defines a method to bound the information

set of an agent according to the volume of information he can process. To do so, he

quantifies the volume of information the agent is capable to process through the entropy

function, used in information theory. As a feature, rational inattentive agents face a

capacity constraint to process information, which allows them to resolve a certain amount

of uncertainty. As the information-processing capacity increases, the agents resolve more

uncertainty. A detailed explanation is provided in the following section.

The first approaches that related the Rational Inattention concept to financial eco-

nomics are Peng (2005) and Peng and Xiong (2006), who address it as a learning tech-

nology, entropy learning, where agents allocate their attention across multiple sources

of uncertainty about fundamental values. Later on, van Nieuwerburgh and Veldkamp

(2009) and van Nieuwerburgh and Veldkamp (2010) use Admati (1985) to analyze the

attention allocation problem considering different learning technologies and test their re-

sults against different preferences towards risk. As a result of the introduction of an

information-processing constraint van Nieuwerburgh and Veldkamp (2010) provides an

explanation for portfolio under-diversification. All these models consider the sources of

uncertainty to be ex-ante independent, inducing portfolio selection and prices to inherit

independence. Afterwards, Mondria (2010) proposes a more flexible linear information

structure proposed in Admati (1985). As a result, he finds that, even if payoffs are ex-

ante independent, once the investor chooses a structure given his capacity constraint, the

assets display ex-post price comovement.

1.3 Market structure

There are three types of agent who interact in this financial market - insiders, noise

traders and market makers. The investors, insiders and noise traders, place a vector of

orders in the market, whereas the market maker can only observe the aggregate orders,

also called order flow. After she observes the order flow, the market maker sets the

price vector. Investors can be either informed or noise traders. There is a monopolistic

informed investor who has access to a noisy signal on the vector of asset payoffs, while the
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uninformed investor places random orders. The model follows the imperfectly competitive

market structure in Caballé and Krishnan (1994), where the informed investor submits a

market order after he observes some inside information and takes into account the effect

that his order has on the asset price. The insider’s information structure is as proposed

in Admati (1985) and Mondria (2010), where the informed investor observes a series of

functions composed by noisy linear combinations of the asset payoffs. Initially, I solve the

model for a risk-neutral insider, then I extend the analysis to a risk-averse one.

There are two stages to this model. First, the insider chooses a linear information

structure given a capacity constraint. This choice is called attention allocation. In the

second stage, signals are available for the insiders, investors place their orders, and the

market maker sets the price. After he observes the signal, the informed investor places

market orders in order for them to maximize expected profits, while uninformed investors

place random liquidity demands. Together, these are called the order flow. The market

maker observes the vector of aggregate demands and sets the prices to follow a zero

expected profit rule.4 Finally, payoffs are received.

The characteristics of the insider model an implicit preference for early resolution of

uncertainty that is independent of whether or not the insider is risk-averse. The two-

stage structure endows the insider with two different levels of uncertainty. In the first

stage, the insider chooses the structure that enables him to reduce uncertainty in the

second stage. In the trading stage, the insider updates his beliefs after he partially

resolves the uncertainty as he observes the signal. Thus, for a Morgenstern-von Neumann

utility function u (w) and an information structure I, the expected utility function for the

insider is E0 [E [u (w) |I]]. For further discussion of this structure, see van Nieuwerburgh

and Veldkamp (2010).

1.3.1 Insider information

In the model, we quantify the information flow as proposed in Information Theory. Shan-

non (1948) defines a measure of unpredictability (uncertainty, in our context), called

4The market maker’s price rule decision is a zero profit condition due to risk neutrality and Bertrand
competition between market makers.
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entropy.5 For example, consider a source that generates a message that gets distorted

when it travels through any channel. There is also a receiver that tries to recover as much

information as possible from the distorted message. In economics, the message can be

any informative variable that agents use as a signal to make decisions. The information

structure would be the corresponding channel, and the capacity of this channel determines

the precision of the signal. In general, the source is a random variable, and a message is

another random variable. In statistics, the information that a random variable contains

about another random variable measures the amount of uncertainty that the observed

variable can resolve about the unobserved one.

The introduction of rational inattention, Sims (2003) and (2006) solves potential lim-

itation of rational expectations theory. An implicit assumption of rational expectations

models is that the channel does not distort information at all, i.e., information can be

processed without any noise at no cost. As an alternative approach, Sims defined ratio-

nal inattention, which used the concept of information-processing constraints proposed in

Shannon (1948) to define the “attention” that an agent would allocate to the reduction

of noisy content in the information she observes.

There is a close relationship between the entropy function H and information. Let P

be the probability function of a random variable, the entropy, H(ã) = −E (lnP (ã)) gives

the amount of information required to solve the uncertainty in variable ã. As a result, it

is frequently stated that information is inversely proportional to the probability. Suppose

that the distribution of variable ã was degenerate. Then, H(ã) = 0, since the behavior of

the variable ã is known without the need for any additional information. In certain sense,

it is a measure of how surprising or unexpected is the realization of the random variable

ã is. Similarly, conditional entropy H
(
ã|b̃
)

= −E
(

lnP (ã|b̃)
)

measures the unresolved

uncertainty in the random variable ã after variable b̃ is observed. Unsurprisingly, if ã and

b̃ are independent, both variables are useless for the resolution of any level of uncertainty

about the other. That is, H
(
ã|b̃
)

= H (ã) and H
(
b̃|ã
)

= H
(
b̃
)

. Then, the difference

between conditional and unconditional entropy is called mutual information and is used

5This type of entropy is called Shannon entropy, which was generalized later by Rényi (1961). Al-
though the intuition is somehow similar, Shannon entropy should not be confused with the concept of
thermodynamic entropy in statistical mechanics. In general, probability distributions have an associated
entropy function denoted by H(X).
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as a measure of the informational content of signals.

In the particular setup of this paper, the random vector of payoffs of all assets F̃

plays the role of the source, and the message corresponds to the signal Ỹ . A system’s

mutual indormation is defined as the difference between the conditional and unconditional

entropy function, that is

I
(
F̃ ; Ỹ

)
= H

(
F̃
)
−H

(
F̃ |Ỹ

)
,

where H(·) is the entropy function.6

This mutual information gives the amount of information about the vector of asset

payoffs F̃ contained in Ỹ . Equivalently, the amount of uncertainty resolved about F̃ after

Ỹ becomes available. The capacity constraint κ is gives the upper limit for the uncertainty

reduction that an agent can achieve, that is

H
(
F̃
)
−H

(
F̃ |Ỹ

)
≤ κ.

Let the payoff vector (F̃ ) and the signals (Ỹ ) follow a multivariate normal distribution

(hereinafter MN) , the information-processing constraint can be re-written as

(1.1)ln |ΣF | − ln
∣∣ΣF |Y

∣∣ ≤ 2κ,

which can intuitively be interpreted as a noise to signal ratio. A more detailed discussion

is provided in Appendix C. Finally, recall that due to the normality of the variables of in-

terest, zero mutual information implies both statistical independence and zero covariance,

which may not be true for other parametric distributions.

1.4 A model for risk-neutral insiders

Consider initially a risk-neutral investor who faces a portfolio selection problem over two

risky assets. This agent is called an insider. All other investors in the market place random

orders for the risky assets since they do not have access to information. These are called

noise traders. There is a third agent, a market maker, who observes the orders placed by

all investors and sets the prices for the assets. Bertrand price competition exists across

6The entropy function for a multivariate normal random vector X ∼MN (µX ,ΣX), where dimR (X) =
n, is given by H(X) = 1

2 ln ((2πe)
n |ΣX |).
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market makers, which results in a zero expected profit pricing rule. The market maker is

aware of the existence of the informed investor, but the trading protocol generates coverage

for the informed traders. The existence of noise traders provides camouflage for the insider

since the market maker cannot distinguish between the orders. As a result, the market

maker does not have enough information to practice price discrimination. This creates

an informational advantage for the insider, which inevitably results in an informational

disadvantage for the noise traders since the pricing rule makes a zero(expected)-sum across

investors.

Let F̃ be the two dimensional vector of asset payoffs, and let r = 1 be the return of a

riskless asset. Both payoffs are measured in units of a consumption good. The uninformed

investors generate a vector of random liquidity demands z̃, which follows a multivariate

normal distribution with mean z̄ and covariance matrix Σz, z̃ ∼MN(z̄,Σz). The insider

faces two types of choices in separate stages. In the first stage, an information structure

is chosen in the form of a signal, which provides the informational advantage for the

portfolio selection. Such a signal has the form

Ỹ = CF̃ + ε̃,

with ε̃ ∼ MN(0,Σε) and Ỹ ∼ MN
(
CF̄ ,ΣY

)
, where ΣY = CΣFC

> + Σε. The informa-

tional content of Ỹ is bounded by an exogenous information-processing capacity κ. In

the second stage, the vector of private signals is observed according to the information

structure (attention) that is allocated and the vector of market orders x̃ is placed.

The risk-neutral market maker observes the order flow vector

ω̃ ≡ x̃+ z̃,

and sets a price such that zero expected profits are made,

p (ω̃) = E
(
F̃ |ω̃

)
.

There is a market for market makers where there is Bertrand competition in asset prices,

which prevents the setting of any other price. Let ξ̃ = E
(
F̃ |Ỹ

)
− F̄ be the insider’s

informational advantage. Moreover, the informational advantage for this insider is

(1.2)ξ̃ = ΣFC
> [CΣFC

> + Σε

]−1
[
Ỹ − CF̄

]
,

which is distributed MN (0,Σξ) , where Σξ = ΣF − ΣFC
> [CΣFC

> + Σε

]−1
CΣF .
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The stages of the model are defined as follows: in the first stage, the investor has

to choose how to allocate attention (C and Σε) subject to the information-processing

constraint (1.1). Then, the information extracted from the signal is incorporated in the

previous stage. Finally, given the posterior beliefs, the insider selects a portfolio. The

model is solved by backward induction.

Definition 1. For a given capacity level κ, a noisy rationally-inattentive equilibrium is

an attention allocation (C,Σε), the signal Ỹ , a market order χ
(
Ỹ
)

and a price vector p̃(ω̃),

where the monopolistic insider maximizes his expected profits subject to the information-

processing constraint and the market maker has zero expected profits.

1.4.1 Portfolio selection

The insider selects the portfolio that maximizes the expected profits and conditions the

expectations with regard to the information delivered by the previously constructed signal.

The insider chooses the optimal asset holdings x to solve the problem

max
{x}

E
[
W0 + x>(F̃ − p(ω̃))|Ỹ

]
,

which take the form of market orders, i.e., demands that do not depend on the asset price.

The solution of this second stage follows Caballé and Krishnan (1994) for a monopo-

listic insider. The pricing reaction function of the market maker is a linear function of the

order flow ω̃, and the market orders are linear functions of the informational advantage ξ̃.

Note that market orders are, by definition, a function x̃ = χ
(
Ỹ
)

of the signal. However,

since the informational advantage is a linear transformation of the signal, it is equivalent

to define market orders as a function of the informational advantage x
(
ξ̃
)
≡ χ

(
Ỹ
)

.

More specifically, the pricing function is

(1.3)p (ω̃) = F̄ +Q0 +Q1ω̃,

where Q0 is a two-dimensional column vector, and Q1 is a 2 × 2 matrix of coefficients,

and ω̃ = x
(
ξ̃
)

+ z̃. Similarly, the vector of market orders is

(1.4)x
(
ξ̃
)

= D0 +D1ξ̃,

where D0 is a two-dimensional column vector and D1 is a 2×2 matrix of coefficients. The

equilibrium in the subgame found by solving the linear system above that satisfies the first
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order condition. As a result, two key identities are obtained, D0 = 0, and Q1 = 1
2
D−1

1 .

See Appendix D for further details.

1.4.2 Information structure and attention allocation

The first choice that the insider faces is to optimally construct an information structure

to observe before he selects a portfolio. The investor’s rationality is used to know be-

forehand that, in the trading stage, a portfolio is selected that is a linear function of the

informational advantage and the market maker sets a pricing rule that is linear to the

order flow. That is, the investor knows (1.3) and (1.4), as well as the identities mentioned

in the previous section. The insider’s objective function corresponds to his unconditional

expected profits

E
[
x
(
ξ̃
)> (

F̃ − p (ω̃)
)]

=E
[(
D0 +D1ξ̃

)> (
F̃ − F̄ −Q0 −Q1

(
D0 +D1ξ̃ + z̃

))]
,

where ξ̃ = ΣFC
> [CΣFC

> + Σε

]−1
[
Ỹ − CF̄

]
is the informational advantage with zero

mean and covariance matrix Σξ = ΣF−ΣFC
> [CΣFC

> + Σε

]−1
CΣF . Since the objective

function is real valued, the resulting expression

D>0 Q0 + E
[
ξ̃>D>1

(
F̃ − F̄

)
− ξ̃>D>1 Q1D1ξ̃ − ξ̃>D>1 (Q0 +Q1z̃)

]
,

satisfies the matrix operating properties for scalars. As a result, E
[
ξ̃>D>1 Q1D1ξ̃

]
=

Tr
[
D>1 Q1D1Σξ

]
, and E

[
ξ̃>D>1 (Q0 +Q1z̃)

]
= 0.

From the second stage the insider knows that D0 = 0, and Q1 = 1
2
D−1

1 . Recall

that the matrix of covariances between the signal and the vector of payoffs is ΣFY =
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E
[(
F̃ − F̄

)(
Ỹ − CF̄

)>]
= ΣFC

>, then

E
[
ξ̃>D>1

(
F̃ − F̄

)]
= E

[(
Ỹ − CF̄

)> [
CΣFC

> + Σε

]−1
CΣFD

>
1

(
F̃ − F̄

)]
= Tr

[
E
[(
CF̃ − CF̄ + ε̃

)> [
CΣFC

> + Σε

]−1
CΣFD

>
1

(
F̃ − F̄

)]]
= Tr

[
C>
[
CΣFC

> + Σε

]−1
CΣFD

>
1 E
[(
F̃ − F̄

)(
F̃ − F̄

)>]]
= Tr

[
C>
[
CΣFC

> + Σε

]−1
CΣFD

>
1 ΣF

]
.

Altogether, the investor’s problem for attention allocation becomes

max
C,Σε

1

2
Tr
[
C>
[
CΣFC

> + Σε

]−1
CΣFD

>
1 ΣF

]
subject to ln |ΣF | − ln

∣∣∣ΣF − ΣFC
> [CΣFC

> + Σε

]−1
CΣF

∣∣∣ ≤ 2κ. (1.5)

However, there is still one issue to be addressed in this problem, the multiplicity of

equilibria due to the dimension of the vector of signals.

Characterization of the signal

The specific form for the signal used here, is a weighted sum of the true asset payoffs plus

some exogenous noise, Ỹ = CF̃ + ε̃. The number of signals is given by the number of rows

in matrix C. The insider is allowed to acquire as many signals as he wants as long as he

does not exceed the capacity κ. Suppose that matrix C had more than two rows, then,

any nonzero vector added as a third row could be achieved by the linear combination

of the first two rows. That is, the rank of matrix C is bounded by the dimension of

the asset payoff vector. In other words, the addition of a signal allocates capacity κ

into the acquisition of some redundant information. In general, for any m dimensional

vector of asset payoffs, the vector of signals Ỹ is at most m dimensional. This model

considers the case of m = 2. Hence, there can only be either one or two signals that

supply non-redundant information through vector Ỹ .

First, consider the case of a two-dimensional signal. There are infinite values of the

coefficient matrix C that generate equally informative signals. Thus, there are just as

13



many indistinguishable equilibria satisfying the maximization conditions in problem (1.5).

It is possible to characterize the conditions within all the indistinguishable equilibria,

where the noise across signals is uncorrelated, and there is only one matrix for each

information level. Such conditions are summarized in a diagonal covariance matrix for

the noise term

Σε =

 σ2
ε1

0

0 σ2
ε2

 ,
and a weighting matrix

C =

 1 c1

1 c2

 ,
where the elements of matrix C were normalized by the elements of the first column. Such

a result follows directly from Mondria (2010). See further details in Appendix B.

Let

ΣF =

 σ2
F1

0

0 σ2
F2

 ,
be the covariance matrix of asset payoffs, and

D1 =

 d11 d12

d21 d22

 ,
is the matrix that contains the marginal effects of the informational advantages over the

market orders. Both matrices are exogenous at this stage.

One signal equilibrium

An attention allocation corresponds to the values of weights c1, c2 and individual variances

σ2
ε1

, σ2
ε2

. The optimal allocation selects σ2
εi

first, and then solves for coefficients ci, i = 1, 2.

Although equivalent, it is more natural to allow the agent to choose the precision of

each signal, σ−2
ε1
, σ−2

ε2
, rather than their variances σ2

ε1
, σ2

ε2
. Then, the attention allocation

problem for the insider becomes

14



max
σ−2
ε1
,σ−2
ε2

d22

(
σ2
F2

)2 (
c2

1(σ2
ε2

+ σ2
F1

)− 2c1c2σ
2
F1

+ c2
2(σ2

ε1
+ σ2

F1
)
)

+ σ2
F1
σ2
F2

(d12 + d21)(c1σ
2
ε2

+ c2σ
2
ε1

)

2
(
σ2
ε2

(
c2

1σ
2
F2

+ σ2
F1

)
+ σ2

F1
σ2
F2

(c1 − c2)2 + σ2
ε1

(
c2

2σ
2
F2

+ σ2
ε2

+ σ2
F1

))
+

d11

(
σ2
F1

)2 (
σ2
F2

(c1 − c2)2 + σ2
ε1

+ σ2
ε2

)
2
(
σ2
ε2

(
c2

1σ
2
F2

+ σ2
F1

)
+ σ2

F1
σ2
F2

(c1 − c2)2 + σ2
ε1

(
c2

2σ
2
F2

+ σ2
ε2

+ σ2
F1

)) (1.6)

subject to
((
c2

1σ
2
F2

+ σ2
F1

)
σ−2
ε1

+ σ2
F1
σ2
F2

(c1 − c2)2σ−2
ε1
σ−2
ε2

+
(
c2

2σ
2
F2

+ σ2
F1

)
σ−2
ε2

)
= e2κ − 1.

The problem can be transformed into the unconstrained maximization problem,

max
σ−2
ε1
,σ−2
ε2

1

2e2κσ2
ε1
σ2
ε2

[
d22

(
σ2
F2

)2 (
c2

1(σ2
ε2

+ σ2
F1

)− 2c1c2σ
2
F1

+ c2
2(σ2

ε1
+ σ2

F1
)
)

+σ2
F1
σ2
F2

(d12 + d21)(c1σ
2
ε2

+ c2σ
2
ε1

) + d11

(
σ2
F1

)2 (
σ2
F2

(c1 − c2)2 + σ2
ε1

+ σ2
ε2

)]
.

Or equivalently,

max
σ−2
ε1
,σ−2
ε2

1

2e2κ

[
d22

(
σ2
F2

)2 (
c2

1

(
σ−2
ε1

+ σ2
F1
σ−2
ε1
σ−2
ε2

)
− 2c1c2σ

2
F1
σ−2
ε1
σ−2
ε2

+ c2
2

(
σ−2
ε2

+ σ2
F1
σ−2
ε1
σ−2
ε2

))
+σ2

F1
σ2
F2

(d12 + d21)
(
c1σ
−2
ε1

+ c2σ
−2
ε2

)
+ d11

(
σ2
F1

)2 (
σ2
F2

(c1 − c2)2σ−2
ε1
σ−2
ε2

+ σ−2
ε2

+ σ−2
ε1

)]
.

Such an expression can be rearranged to obtain

max
σ−2
ε1
,σ−2
ε2

{
γ1σ

−2
ε1

+ γ2σ
−2
ε2

+ γ12σ
−2
ε1
σ−2
ε2

}
,

where γ1 = c2
1d22

(
σ2
F2

)2
+c1σ

2
F1
σ2
F2

(d12+d21)+d11

(
σ2
F1

)2
, γ2 = c2

2d22

(
σ2
F2

)2
+c2σ

2
F1
σ2
F2

(d12+

d21) + d11

(
σ2
F1

)2
, and γ12 =

[
d11

(
σ2
F1

)2
σ2
F2

+ d22

(
σ2
F2

)2
σ2
F1

]
(c1 − c2)2. The capacity

constraint can be used to obtain an iso-information function that relates all the precision

levels of σ−2
ε2

with σ−2
ε1

, for constant values of the mutual information and all other

parameters. The iso-information function takes the form

(1.7)σ−2
ε2

=
e2κ − 1−

(
c2

1σ
2
F2

+ σ2
F1

)
σ−2
ε1(

c2
2σ

2
F2

+ σ2
F1

)
+ σ2

F1
σ2
F2

(c1 − c2)2σ−2
ε1

,

for

σ−2
ε1
∈
[

0,
e2κ − 1(

c2
1σ

2
F2

+ σ2
F1

)] .
The attention allocation problem is then reduced to the identification of the profit-

maximizing allocation over the iso-information curve. This takes one dimension away from
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the chosen attention allocation. As a result, the insider’s attention allocation problem

solves

max
σ−2
ε1

γ1σ
−2
ε1

+
(
γ2 + γ12σ

−2
ε1

) e2κ − 1−
(
c2

1σ
2
F2

+ σ2
F1

)
σ−2
ε1(

c2
2σ

2
F2

+ σ2
F1

)
+ σ2

F1
σ2
F2

(c1 − c2)2σ−2
ε1

,

which is univariate.

Lemma 2. For all κ > 0, the agent allocates all attention to one signal, if c2(d12 +d21) ≥

c2
2d11 + d22.

Proof. The second order condition for the problem is

∂2(
∂σ−2

ε1

)2 =
2
(
σ2
F1
σ2
F2

(c1 − c2)2 e2κ
) ((

c2
2σ

2
F2

+ σ2
F1

)
γ12 − σ2

F1
σ2
F2

(c1 − c2)2 γ2

)((
c2

2σ
2
F2

+ σ2
F1

)
+ σ2

F1
σ2
F2

(c1 − c2)2σ−2
ε1

)3 ,

which is non-negative if and only if(
c2

2σ
2
F2

+ σ2
F1

)
γ12 ≥ σ2

F1
σ2
F2

(c1 − c2)2 γ2,

or equivalently,
c2

2d11 + d22 ≥ c2(d12 + d21).

Hence, under this condition the function is convex and there is a corner solution. Given

the identity in (1.7), a corner solution means that only one signal can receive all attention,

σ−2
ε1

= e2κ−1

(c21σ2
F2

+σ2
F1

)
, σ−2

ε2
= 0 or σ−2

ε1
= 0 and σ−2

ε2
= e2κ−1

(c22σ2
F2

+σ2
F1

)
. Such a condition does not

depend on κ, therefore it holds for all κ > 0.

The previous result implies that through the allocation of all attention to a single

signal, say signal Ỹ1. Then, signal Ỹ2 is not used, irrespectively of the off-diagonal value

c2 that is set. As a result, the signal where the insider allocates all the attention is such

that

(1.8)σ−2
ε =

e2κ − 1(
c2σ2

F2
+ σ2

F1

) .
Alternatively, an equivalent solution eliminates the uninformative dimension from the

signal vector. Now the investor faces the following problem to determine the optimal

weight c,

max
c

{
d11

(
σ2
F1

)2
+ cσ2

F1
σ2
F2

(d21 + d12) + c2d22

(
σ2
F2

)2

σ2
F1

+ c2σ2
F2

+ σ−2
ε

}
,

where σ2
ε is given by 1.8 and the values of dij are such that they solve the first order

condition for the insider in the first stage.
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To compute the specific values, I find dij and solve D1 = 1
2
Q−1

1 . 7 First, let

Q1 =

 1

σ2
F1

+ c2σ2
F2

+ σ2
ε

 σ2
F1

(
c2σ2

F2
+ σ2

ε

)
−cσ2

F1
σ2
F2

−cσ2
F1
σ2
F2

σ2
F2

(
σ2
F1

+ σ2
ε

)



1
2

,

or, equivalently

Q1 =

(
σ2
F1

(
c2σ2

F2
+ σ2

ε

)
+ σ2

F2

(
σ2
F1

+ σ2
ε

)
− 2s

)− 1
2(

σ2
F1

+ c2σ2
F2

+ σ2
ε

) 1
2 σ2

F1

(
c2σ2

F2
+ σ2

ε

)
+ s −cσ2

F1
σ2
F2

−cσ2
F1
σ2
F2

σ2
F2

(
σ2
F1

+ σ2
ε

)
+ s

 ,

where s =
(
σ2
F1

(
c2σ2

F2
+ σ2

ε

)
σ2
F2

(
σ2
F1

+ σ2
ε

)
−
(
cσ2

F1
σ2
F2

)2
) 1

2
. Then,

D1 =
1

2

(
σ2
F1

+ c2σ2
F2

+ σ2
ε

) 1
2
(
σ2
F1

(
c2σ2

F2
+ σ2

ε

)
+ σ2

F2

(
σ2
F1

+ σ2
ε

)
− 2s

) 1
2(

σ2
F1

(
c2σ2

F2
+ σ2

ε

)
+ s
) (
σ2
F2

(
σ2
F1

+ σ2
ε

)
+ s
)
−
(
cσ2

F1
σ2
F2

)2 σ2
F2

(
σ2
F1

+ σ2
ε

)
+ s cσ2

F1
σ2
F2

cσ2
F1
σ2
F2

σ2
F1

(
c2σ2

F2
+ σ2

ε

)
+ s

 .
The coefficients in matrix D1 are determined by the subgame in the second stage. The

insider is not aware of the indirect impact that the attention allocation has on the market

equilibrium but rather the direct informativeness impact on expected profits. Note that

these coefficients are not to be included in the insider’s problem since the values are set

in equilibrium and not as an agent’s optimization directly.

The values for the coefficients in D1 determine the conditions under which a single

signal is unequivocally chosen. The condition c2
2d11 + d22 ≥ c2(d12 + d21) is satisfied if

σ2
ε

(
σ2
F1

+ c2σ2
F2

)
+ s

(
1 + c2

)
≥ 0,

which is always the case.

It is also possible to follow the approach in Mondria (2010), where the main discussion

is on the investor’s choice of a symmetric signal c1 = c2 = c∗. Note that a symmetric

7See Appendix D for the obtention of coefficient matrix D1 =

1
2

[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]- 1
2

.
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signal does not result in redundant information. Therefore, the situation is identical to a

one-dimensional signal with weight C = [1, c∗]. The following corollary summarizes this

result.

Corollary. A symmetric equilibrium with c1 = c2, is equivalent to a one-signal equilib-

rium.

Proof. The second order condition,

2
(
σ2
F1
σ2
F2

(c1 − c2)2 e2κ
) ((

c2
2σ

2
F2

+ σ2
F1

)
γ12 − σ2

F1
σ2
F2

(c1 − c2)2 γ2

)((
c2

2σ
2
F2

+ σ2
F1

)
+ σ2

F1
σ2
F2

(c1 − c2)2σ−2
ε1

)3 ≥ 0,

is satisfied with equality whenever c1 = c2 = c∗ where there is a continuum of equilibria

that can be represented by a single signal Ỹ = F̃1 + c∗F̃2 + ε̃, with the same informational

content.

1.4.3 One-dimensional signal and asset prices

We have seen how a rationally inattentive insider can optimally choose an unidimensional

signal to select a portfolio. In a noisy rationally inattentive equilibrium, the covariance

matrix for prices, Σp = E
[
(p− E(p)) (p− E(p))>

]
, is given by

Σp =
1

2

(
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

)
. (1.9)

The prices are set by a risk-neutral market maker whose zero expected-profit rule

uses the order flow as the signal to filter information from the insiders. Note that the

information available to the market maker is that which is embedded in the market orders,

but distorted through noise trading. Nonetheless, the only source of comovement in the

order flow is generated by the insider’s information through the market orders. If the

insider had chosen an information structure that transmitted the independence of the

fundamental values, i.e., a diagonal weighting matrix C, the price covariance matrix Σp

would be diagonal as well.

Figure 1.1 shows the asset price covariance as a function of different capacity levels, κ,

given some values for the diagonal covariance matrix of asset payoffs, ΣF . It shows that

for capacity levels close to zero, i.e., the insider’s capacity is not large enough to enable
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Figure 1.1: Covariance of prices as a function of capacity level κ. The plotted results
correspond to parameter values of σ2

F1
= 0.7 and σ2

F2
= 0.6 .

any information to be processed, the price covariance is zero due to the impossibility

of learning about asset payoffs. As the capacity level increases, the covariance rapidly

becomes negative as the higher capacity allows the agent to learn simultaneously about

both assets, it reaches the largest effect around κ = 0.8 for this particular case. After

this threshold, the capacity allows the investor to identify the information about payoffs

more precisely. Therefore, higher capacity leads to lower magnitude comovement. For

high capacity levels, the higher precision dominates the effect over the price covariance

and, as a result, the covariance disappears.

Proposition 3. The covariance of prices is negative for all c > 0 .

Proof. Let σp12 be the covariance of the prices, that is, the off-diagonal term in matrix

Σp. Since the asset payoffs F̃ are independent, i.e., ΣF is diagonal, σp12 is proportional

to the negative of the off-diagonal term in the matrix ΣFC
> [CΣFC

> + Σε

]−1
CΣF . In

fact, σp12 = −cσ2
F1
σ2
F2
× a where a > 0.

The covariance of asset prices shown in Figure 1.1 depicts how minimal levels of

capacity, κ, generate zero covariance since no information can be processed under this

capacity level. As the insider starts learning on a single signal, the covariance of the
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informational advantage becomes negative, and this leads to the negative correlation of

market orders and, therefore, negative price covariance. This result is consistent with the

negative covariance in asset prices described in Mondria (2010) for certain degrees of risk

aversion.

1.4.4 Trading and independent information

As mentioned earlier, there are multiple equilibria in the model. We have already discussed

an equilibrium with correlated prices. The next step is to show that the only possible

source of price comovement is the information structure. Consider the risk-neutral market

structure described above. Now, assume that the insider is allowed to learn from each asset

separately. That is, the C matrix can only be diagonal. Moreover, given the properties

of mutual information, it can be normalized as an identity matrix. Therefore, the signal

becomes Ỹ = F̃ + ε̃. Similarly, the informational advantage is

ξ̃ = ΣF (ΣF + Σε)
−1
[
Ỹ − F̄

]
,

where ΣF (ΣF + Σε)
−1 is a diagonal matrix. More precisely, the informational advantages

are orthogonal to each other

ξ̃i =
σ2
Fi

σ2
Fi

+ σ2
εi

(
F̃i − F̄i + ε̃i

)
,

for i = 1, 2. Unsurprisingly, the effects over the market orders are that each market

order depends on its own informational advantage only. That is, the matrix D1 =[
ΣF − ΣF [ΣF + Σε]

−1 ΣF

]− 1
2 is diagonal. The portfolio selection for this investor after he

observes the signal is

xi

(
ξ̃i

)
=
(
σ−2
Fi

+ σ−2
εi

) 1
2 ξ̃i,

for i = 1, . . . , n. Note that the market orders response to the informational advantage is

increasing in the corresponding signal precision σ−2
εi

. The pricing function for each market

is

pi (ω̃i) = F̄i +
1

2

(
σ2
Fi
σ2
εi

σ2
Fi

+ σ2
εi

) 1
2

ω̃i,

for i = 1, . . . , n where all prices are independent. The information-processing constraint

in (1.1) becomes

(1.10)ln
n∏
i =1

(
σ2
Fi

σ2
εi

+ 1

)
≤ 2κ,
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which is the product of the mutual information for each of the asset payoffs with their

corresponding signal.

Before the introduction of the aggregate information-processing constraint, this market

structure resembles n separate Kyle (1985) type monopolistic insiders under imperfect

information, each trading a different asset. Nonetheless, after the information choice is

made endogenous according to an entropy-learning approach, the insider’s problem is no

longer equivalent to a set of n separate choices. A similar analysis was performed by

van Nieuwerburgh and Veldkamp (2010) for perfectly competitive markets where they

consider different information acquisition technologies and preferences toward risk are

considered. The results under risk aversion are similar since the solution to the nonlinear

system conformed by the coefficient matrices is diagonal as well. Thus, in this model the

only possible source of price comovement is the informational channel.

In short, this section has shown that even without risk aversion, once imperfectly

competitive markets are assumed, a negative covariance arises for a risk-neutral agent.

So, this covariance is the result of a hedging strategy when there is very limited information

available. In the following section, the insider is assumed to be risk-averse.

1.5 Insider trading under risk aversion

The previous section characterized the effects of introducing an information-processing

constraint to a risk-neutral monopolistic insider. The non-competitive setup defined here

allows full characterization of the equilibria for a risk-neutral insider, and in particular, the

effects on the covariance of asset prices in the equilibrium with a unidimensional signal.

However, this analytical framework does not permit modeling of the insider’s preferences

towards risk.

Facing an information-processing constraint such as the one introduced in Section 3

acts as an additional source of uncertainty. This is the case because the signal’s lack of

precision increases the uncertainty experienced by the insider. In order to analyze how a

direct preference towards risk affects the market outcome, the insider must be allowed to

be risk-averse. This section considers the case of a monopolistic insider whose preferences
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exhibit constant absolute risk aversion (CARA). The risk-neutral case is a particular one

of a risk-averse insider where the coefficient of risk aversion is zero.

1.5.1 Portfolio selection and risk aversion

The model considered here follows a risk-averse version of Caballé and Krishnan (1994)

as in Vitale (2012). The agents interacting in the market for two securities are the same

as in section 4, an informed monopolistic investor, random liquidity (noise) traders and

a risk-neutral market maker setting the prices. The informed and uninformed investors

simultaneously place their orders for the two assets, and the market maker sets the price

after observing the order flow.

The monopolistic insider has access to a signal Ỹ about the asset payoffs and se-

lects a his portfolio by maximizing his expected utility conditional to this information,

and. His preferences towards risk are described by the CARA utility functionu (W ) =

− exp (−ρW ).8 Given a signal Ỹ , the insider’s expected utility of selecting a portfolio x

is

E
(
u
(
W̃ (x)

)
|Ỹ
)

= −E
[
exp

(
−ρ
(
W0 + x>(F̃ − p(ω̃))

))
|Ỹ
]

= − exp

(
−ρE

[
W0 + x>(F̃ − p(ω̃))|Ỹ

]
+
ρ2

2
V
[
W0 + x>(F̃ − p(ω̃))|Ỹ

])
.

(1.11)

Then, the insider selects the portfolio that solves

(1.12)max
{x}

E
[
W0 + x>(F̃ − p(ω̃))|Ỹ

]
− ρ

2
V
[
W0 + x>(F̃ − p(ω̃))|Ỹ

]
.

Note that in this static context maximizing (1.11)and (1.12) is equivalent since g(a) =

− exp(−a) is increasing in a.9 Vitale (2012) shows in a more general model that after

introducing constant absolute risk aversion, the pricing function remains linear in the

order flow and the portfolio selected is linear in terms of informational advantages. Hence,

the functional forms x
(
ξ̃
)

= B0 + B1ξ̃ and p (ω̃) = F̄ + A0 + A1ω̃ can be assumed to

8The preferences towards risk are also referred to as preferences for an early resolution of uncertainty.
9An implicit assumption that is being made here is that I am transforming the function through

f(a) = − ln(−a). This has no major implication for static environments but says that should I face a
dynamic environment the agent has preferences for early resolution of uncertainty.
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characterize the solution. In fact, by setting ρ = 0 in (1.12) the risk-neutral solution can

be achieved. The coefficient matrices A0, A1, B0 and B1 are given by the solution of the

following nonlinear system:

A0 = −A1z̄,

B0 = 0,

A1 =

[
I − Σz

[
ΣFC

> [CΣFC
> + Σε

]−1
CΣFB>1

]−1
]−1

,

B−1
1 = 2

[
I − Σz

(
B>1
)−1
[
ΣzC

> [CΣFC
> + Σε

]−1
CΣz

]−1
]−1

+ ρ

[
ΣF −

[
ΣzC

> [CΣFC
> + Σε

]−1
CΣz

]−1

CΣF

+

[
I −

[
ΣzC

> [CΣFC
> + Σε

]−1
CΣz

]−1

B1
−1Σz

]−1

Σz[
I − Σz

(
B>1
)−1
[
ΣzC

> [CΣFC
> + Σε

]−1
CΣz

]−1
]−1
]
,

which does not have an analytical solution. However, this system provides the conditions

that any equilibrium must satisfy. The insider, as in section 4, is aware of the linearity of

pricing functions and market orders, when the attention allocation problem is solved.

1.5.2 Attention allocation

In the first stage, the insider needs to design the optimal information structure for a

given capacity constraint κ. Once again, the signal takes the form Ỹ = CF̃ + ε̃. The

attention allocation problem that the insider faces corresponds to the allocation of weights

on matrix C and precision parameters on the covariance matrix Σε such that the insider’s

expected profits are maximized.

At first, the monopolist can anticipate the market maker’s reaction function. Thus, in

the first stage the insider chooses the information structure that maximizes the following
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expected utility

max
{C,Σε}

E
[
E
[
x>
(
ξ̃
)(

F̃ −
(
F̄ −A1z̄ +A1

(
x
(
ξ̃
)

+ z̃
)))
|Ỹ
]

−ρ
2
V
[
x>
(
ξ̃
)(

F̃ −
(
F̄ −A1z̄ +A1

(
x
(
ξ̃
)

+ z̃
)))
|Ỹ
]]

subject to ln |ΣF | − ln
∣∣∣ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

∣∣∣ ≤ 2κ.

Or, equivalently

max
{C,Σε}

E
[(
B1ξ̃
)> [

ξ̃ −A0 −A1z̄
]
−
(
B1ξ̃
)>
A1

(
B1ξ̃
)

−ρ
2

[(
B1ξ̃
)>

V
[
F̃ |Ỹ

] (
B1ξ̃
)

+
(
B1ξ̃
)>
A>1 ΣzA1

(
B1ξ̃
)]]

subject to ln |ΣF | − ln
∣∣∣ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

∣∣∣ ≤ 2κ,

where the values for the conditional mean, E
[
F̃ |Ỹ

]
, and variance, V

[
F̃ |Ỹ

]
, and the

informational advantage ξ̃ = E
[
F̃ |Ỹ

]
− F̄ , are known (see Appendix A). In the end, the

objective function follows the quadratic form,

max
{C,Σε}

E
[
ξ̃>B>1 (I −A1B1

−ρ
2

[[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]
B1 +A>1 ΣzA1B1

])
ξ̃
]
,

which is of the type E
[
ξ̃>Aξ̃

]
, where ξ̃>Aξ̃ is a scalar. Therefore, the expected utility

can be computed as the trace of a product matrix, and the attention allocation problem

is reduced to

max
{C,Σε}

Tr [AΣξ]

subject to
((
c2

1σ
2
F2

+ σ2
F1

)
σ−2
ε1

+ σ2
F1
σ2
F2

(c1 − c2)2σ−2
ε1
σ−2
ε2

+
(
c2

2σ
2
F2

+ σ2
F1

)
σ−2
ε2

)
= e2κ − 1,

where Σξ = ΣF − ΣFC
> [CΣFC

> + Σε

]−1
CΣF . This is equivalent to (1.5). Moreover,

the constraint remains unchanged for risk-averse insiders (1.7), since the informativeness

of the signal does not depend on the insider’s preferences.
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Following the same procedure as in Section 4, the condition to allocate attention to

a single signal is determined by the second order condition. Then, we proceed to check

when is the objective function convex in the precision parameters σ−2
ε1

and σ−2
ε2

, and how

the condition changes as the the risk-aversion parameter varies.

The second-order condition of the previous problem is

∂2

∂σ−2
ε1

=

(
σ2
F1
σ2
F2

(c1 − c2)2 e2κ
) (
σ2
F1
σ2
F2

(c1 − c2)2 ϕ1 −
(
c2

2σ
2
F2

+ σ2
F1

)
ϕ2

)
− 1

2
ρϕ3((

c2
2σ

2
F2

+ σ2
F1

)
+ σ2

F1
σ2
F2

(c1 − c2)2σ−2
ε1

)3 ,

where ϕ1, ϕ2, ϕ3 > 0. Such a condition is decreasing in terms of the coefficient of risk

aversion, ρ, and hence there is a value ρ∗ large enough for the second-order derivative to

be negative. As a result, risk-averse agents may not choose to allocate attention to only

one signal under a scenario where the risk-neutral investor chooses to allocate all attention

to one signal. Section 4 discusses how the choice of a one dimensional signal leads to a

hedging strategy that induces a negative correlation in the market orders. Now, we find

that as risk aversion grows, an insider is less likely to choose one signal. In the following

subsection we characterize the effect of risk aversion on price comovement.

1.5.3 Implications for price comovement

Once the insider has allocated the attention, the signal is observed and he places the

market orders and the market maker sets the prices. In equilibrium, the covariance

matrix for prices is

(1.13)Σp = A1A>1 +A1B1

[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]
B>1 A>1 .

The price covariance matrix in (1.9) is a particular case of (1.13).Thus, the asset price

covariance is always negative for the risk-averse insider as well, since the only source of

covariance comes from the negative correlation of the informational advantage. However,

introducing risk aversion scales down the effect. In particular, the price covariance is

proportional to the off-diagonal term in the covariance matrix of the informational ad-

vantages
−cσ2

F1
σ2
F2

σ2
F1

+c2σ2
F2

+σ2
ε
, that is, σp12 ∝ −cσ2

F1
σ2
F2

. Moreover, this term determines the sign

of the price covariance.

Figure 2.2 shows how the covariance changes as the risk aversion increases, compared to

the risk-neutral case discussed in the previous section. The results for a perfectly informed
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Figure 1.2: Covariance of prices as a function of capacity level κ for different levels of risk
aversion . The plotted results correspond to parameter values of σ2

F1
= 0.7, σ2

F2
= 0.6 and

ρ = 0.5, 1, 5, 10, 20 and 50.

insider, κ → ∞, and a completely uninformed insider, κ = 0 , remain unchanged when

risk aversion is introduced. A perfectly informed agent converges to zero price covariance,

since the asset payoffs are observable in the signal. A completely uninformed insider does

not induce price covariance because he is not able to produce an informative signal.

The response of the price covariance to the risk aversion goes in a different direction.

Figure 2.2 shows how the risk-aversion coefficient scales down the magnitude of the co-

variance. Thus, the covariance in market orders is negative as a hedging response to the

(lack of) information. Furthermore, as the risk aversion grows, the marginal effect of the

informational advantages over the market orders is scaled down, reducing the magnitude

of the effect over the price covariance. Finally, consider an infinitely risk-averse insider,

ρ → ∞, the marginal effect is zero of any informational advantage in the market orders

is annulled by risk aversion, i.e., an infinitely risk-averse insider never trades unless there

is perfect information. In this case, prices are determined only by noise trading, which is

uncorrelated across markets, which makes the prices uncorrelated as well.
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1.6 Concluding remarks

This paper provides a characterization of asset price covariance induced by a rational

investor’s optimal information choice. Asset price covariance arises in equilibrium in

the context of a portfolio selection of assets whose fundamental values are statistically

independent. In addition, this result is partially due to the market power that inside

information gives to an investor. Then, I show that, under normality assumption, a

different explanation for the asset price covariance cannot be found in a market where noise

trading is uncorrelated across assets and asset payoffs are statistically independent. In the

end, a limited information-processing capacity induces the insider to favor an information

structure where aggregate precision dominates other alternatives. Thus, the insider prefers

to have one signal with the highest possible precision, and that is informative about all

assets, over asset-specific signals. As a result, the information set fails to identify the

origin of an unexpected shock to a specific asset, which causes an impact in the whole

vector of market orders. Later this shock is reflected on both asset prices.

In general, when there is an information-processing constraint, the pricing decision is

made after the correlated order flow is observed. Therefore, the market maker observes a

noisy spread of the insider’s information set, and the prices reflect this information. Since

the price covariance can be traced back to the information set, I characterize asset price

covariance as the information processing constraint slacks. In the analysis, I observe that

the magnitude of the price covariance converges to zero for minimal capacity levels. It

then grows rapidly as the investor starts to become informed. Finally, I show that after the

processing capacity crosses a threshold, an increase in the capacity reduces the covariance’s

magnitude until it disappears to zero for larger levels of information-processing capacity.

Additionally, the paper provides some insight into the effect of risk aversion over the

price covariance. Risk aversion scales down the magnitude of market orders, i.e., the

insider displays hedging behavior in portfolio selection, but the quantities are lower as

risk aversion increases. As a result, the magnitude of the covariance diminishes as the risk

aversion increases. Further analysis may include the effect of short-lived and long-lived

information in a dynamic extension of this model.
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Appendix

A. Moments of F̃ |Ỹ

Given that the random vectors F̃ and Ỹ are MN , then

 F̃

Ỹ

 ∼

MN


 F̄

CF̄

 ,

 ΣF Σ>FY

ΣFY CΣFC
> + Σε


. The expected value of vector F̃ given Ỹ

is

E
(
F̃ |Ỹ

)
= F̄ + ΣFY

[
CΣFC

> + Σε

]−1
[
Ỹ − CF̄

]
.

And the conditional covariance matrix of F̃ given Ỹ is

V
(
F̃ |Ỹ

)
≡ ΣF |Y = ΣF − ΣFY Σ−1

Y Σ>FY

= ΣF − ΣFY [CΣFC
′ + Σε]

−1
Σ>FY .

Also recall that ΣFY = E
[(
F̃ − F̄

)(
Ỹ − CF̄

)>]
and since Ỹ = CF̃ + ε,

ΣFY = E
[(
F̃ − F̄

)(
CF̃ + ε− CF̄

)>]
= E

[(
F̃ − F̄

)(
F̃>C> − F̄>C> + ε>

)]
= E

[(
F̃ − F̄

)
F̃>C> −

(
F̃ − F̄

)
F̄>C> +

(
F̃ − F̄

)
ε>
]

= E
[(
F̃ − F̄

)
F̃>C> −

(
F̃ − F̄

)
F̄>C>

]
= E

[(
F̃ − F̄

)(
F̃> − F̄>

)
C>
]

= E
[(
F̃ − F̄

)(
F̃ − F̄

)>]
C>

= ΣFC
>,

so the conditional moments can be re-written as

E
(
F̃ |Ỹ

)
= F̄ + ΣFC

> [CΣFC
> + Σε

]−1
[
Ỹ − CF̄

]
V
(
F̃ |Ỹ

)
≡ ΣF |Y = ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF .
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The same analysis can be used to derive other conditional moments throughout the text.

B. Normalization of the signal

There are multiple signals with the same informational content. Normalization is required

to avoid multiplicity of equilibria. This section follows Admati (1985); Mondria (2010) to

normalize the covariance matrix Σε into a diagonal covariance matrix. Let Σε = PΛP>

where Λ is diagonal, and P>P = I, I can re-write the signal so that

Ỹ ∗ = P−1Ỹ

= P−1CF̃ + P−1ε̃

= C∗F̃ + ε̃∗,

where Σε∗ = Λ. Note that information is invariant to any linear invertible transformation,

therefore I
(
F̃ ; Ỹ

)
= I

(
F̃ ; Ỹ ∗

)
so the capacity constraint (1.1) remains unchanged. Also

note that the term C>Σ−1
ε C = C∗>Λ−1C∗. Hence any equilibrium that satisfies this

transformation is indistinguishable.

Similarly, Mondria (2010) also normalizes the weight matrix C and shows that pro-

vided a diagonal non-singular matrix Γ and provided a diagonal covariance matrix Σε

(which can be obtained by the normalization described above)

Ỹ ∗ = ΓỸ

= ΓCF̃ + Γε̃

= C∗F̃ + ε̃∗,

where Σε∗ is diagonal since Γ is diagonal. And just as before, one can see that any equilib-

rium that follows this transformation is indistinguishable since C>Σ−1
ε C = C∗> [ΓΣεΓ]−1C∗ =

C∗>Σ−1
ε∗ C

∗. So the same argument as before can be used. This permits normalization

using either column. Generically, it is normalized by the first column.
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C. Capacity constraint for the 2× 2 case and uncorrelated funda-

mentals and liquidity demands

This section considers an illustrative case to understand how a capacity constraint operates

in the construction of a signal for a two dimensional vector. 10 The capacity constraint

under the normality assumption is

ln |ΣF | − ln
∣∣∣ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

∣∣∣ ≤ 2κ.

Let ΣF = σ2
F I and Σε diagonal. Then, the capacity constraint becomes

ln
∣∣σ2
F I
∣∣− ln

∣∣∣∣∣σ2
F I − σ2

FC
>
[
CC> +

1

σ2
F

Σε

]−1

C

∣∣∣∣∣ ≤ 2κ

ln
(
σ2
F

)2 − ln

[(
σ2
F

)2

∣∣∣∣∣I − C>
[
CC> +

1

σ2
F

Σε

]−1

C

∣∣∣∣∣
]
≤ 2κ

− ln

∣∣∣∣∣I − C>
[
CC> +

1

σ2
F

Σε

]−1

C

∣∣∣∣∣ ≤ 2κ.

The previous expression can be re-written as

− ln

(∣∣∣∣CC> +
1

σ2
F

Σε

∣∣∣∣−1 ∣∣∣∣CC> +
1

σ2
F

Σε − CC>
∣∣∣∣
)
≤ 2κ

ln

∣∣σ2
FCC

> + Σε

∣∣
|Σε|

≤ 2κ,

which follows from the properties of determinants.11 Note that for this expression it

follows automatically that for any finite value of κ it is not possible to eliminate the noise

of the signal. 12

10The unidimensional case is exposed in detail in Wiederholt (2010)
11In particular that det (X +AB) = det (X) det

(
In +BX−1A

)
.

12If n = 1, then it follows immediately and the constraint becomes the most widely used as described in

Wiederholt (2010):
cσ2

F

σ2
ε
≤ e2κ− 1. This expression also provides the intuition for the indistinguishability

of equilibria.
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D. Finding the coefficient matrices for price and orders in the

second stage

Risk-neutral insider

Note that the problem in the second stage is

max
{x}

E
[
x>(F̃ − (Q0 +Q1 (x+ z̃)))|Ỹ

]
,

where the first order conditions are

x :E
[
F̃ |Ỹ

]
−D0 −D1z̄ = 2D1x (1.14)

x =
1

2
[D1]−1

[
E
[
F̃ |Ỹ

]
−D0 −D1z̄

]
.

Substitute E
[
F̃ |Ỹ

]
= F̄ + ΣFC

> [CΣFC
> + Σε

]−1
[
Ỹ − CF̄

]
. See Appendix A. The

market order solves the previous equation and assuming a linear equilibrium it becomes

x =
1

2
D−1

1

F̄ + ΣFC
> [CΣFC

> + Σε

]−1
[
Ỹ − CF̄

]
︸ ︷︷ ︸

ξ̃

−D0 −D1z̄

 (1.15)

x(ξ̃) =
1

2
D−1

1 ξ̃ +
1

2
D−1

1

[
F̄ −D0

]
− 1

2
z̄. (1.16)

Then, since the equilibrium functional form of x
(
ξ̃
)

is known, it can be combined with

the first order condition to obtain

Q0 +Q1ξ̃ =
1

2
D−1

1 ξ̃ +
1

2
D−1

1

[
F̄ −D0

]
− 1

2
z̄,

which allows us to define the following relations between coefficients:

Q0 =
1

2
D−1

1

[
F̄ −D0

]
− 1

2
z̄

Q1 =
1

2
D−1

1 .

The market maker now takes this order to set the price according to

p̃ = p(ω̃)

= E
(
F̃ |ω̃

)
,
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given that market makers are risk-neutral and face Bertrand competition. Note that since

ω̃ = x
(
ξ̃
)

+z̃, then ω̃ ∼MN
(
Q0 + z̄, Q1

[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]
B>1 + Σz

)
therefore ω̃ and F̃ are follow a multivariate normal distribution where

ΣFω =
[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]
Q>1 . Then,

p (ω̃) = E
(
F̃ |ω̃

)
= F̄ +

[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]
Q>1[

Q1

[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]
Q>1 + Σz

]−1

(ω̃ −Q0 − z̄) .

As a result, the following equality holds:

D1 =
[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]
Q>1

[
Q1

[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]
Q>1 + Σz

]−1

=

[
Q1

[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

] [[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]
Q>1

]−1

+Σz

[[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]
Q>1

]−1
]−1

=

[
I + Σz

[
Q>1
]−1
[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]−1
]−1

.

So,

D1 =

[
I + Σz [Q′1]

−1
[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]−1
]−1

D0 = F̄ −D1Q0 −D1z̄.

The equality Q0 = 1
2
D−1

1

[
F̄ −D0

]
− 1

2
z̄ is substituted in the previous equation, D0 =

F̄ −D1z̄ to obtain Q0 = 0. Recall that D1 = 1
2
Q−1

1

[2Q1]−1 =

[
Q1 + Σz

[
Q>1
]−1
[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]−1
]−1

Q1 = Σz(Q
′
1)−1

[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]−1

,
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and substituting into the previous expression for D1 to get

D1 =

[
2Σz

[
Q>1
]−1
[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]−1
]−1

D−1
1 = 4ΣzD1

[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]−1

1

4
D−1

1

[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]
= ΣzD1,

given that Σz is a covariance matrix

1

4

[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]
= D1ΣzD1

1

4
Σ

1
2
z

[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]
Σ

1
2
z = Σ

1
2
zD1Σ

1
2
z Σ

1
2
zD1Σ

1
2
z .

Hence,

D1 =
1

2
Σ
− 1

2
z

[
Σ

1
2
z

[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]
Σ

1
2
z

] 1
2

Σ
− 1

2
z .

The matrix Σ
1
2
z corresponds to the unique symmetric positive definite square root of

Σz, and D1 is the unique symmetric matrix that solves the equation. In this case D1

can be obtained through the principal square root matrix on the l.h.s. of the equation.

Additionally, the expression for the coefficients of the market orders becomes much simpler

if the noise traders’ covariance matrix is Σz = σ2
zI, as was pointed out in Caballé and

Krishnan (1994).

So, the price and order that result in this stage are

ps (ω̃) = F̄ − 1

2
Σ
− 1

2
z

[
Σ

1
2
z

[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]
Σ

1
2
z

] 1
2

Σ
− 1

2
z z̄+

1

2
Σ
− 1

2
z

[
Σ

1
2
z

[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]
Σ

1
2
z

] 1
2

Σ
− 1

2
z ω̃

xs(ξ̃) = Σ
1
2
z

[
Σ

1
2
z

[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]
Σ

1
2
z

]- 1
2

Σ
1
2
z ξ̃,
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and the equilibrium price is

p∗
(
ξ̃, z̃
)

= F̄ − 1

2
Σ
− 1

2
z

[
Σ

1
2
z

[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]
Σ

1
2
z

] 1
2

Σ
− 1

2
z z̄+

1

2
Σ
− 1

2
z

[
Σ

1
2
z

[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]
Σ

1
2
z

] 1
2

Σ
− 1

2
z(

Σ
1
2
z

[
Σ

1
2
z

[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]
Σ

1
2
z

]- 1
2

Σ
1
2
z ξ̃ + z̃

)
= F̄ +

1

2
ξ̃ +

1

2
Σ
− 1

2
z

[
Σ

1
2
z

[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]
Σ

1
2
z

] 1
2

Σ
− 1

2
z (z̃ − z̄) ,

which is used to compute the expected profit of the first stage.

Risk-averse insider

The second stage problem for the risk-averse insider is

max
{x}

E
[
W0 + x>(F̃ − p(ω̃))|Ỹ

]
− ρ

2
V
[
W0 + x>(F̃ − p(ω̃))|Ỹ

]
.

Due to linearity of the equilibrium it is known that p (ω̃) = A0 +A1ω̃, and the conditional

expectation and variance can be substituted in and computed. The problem becomes

max
{x}

x>
[
E
[
F̃ |Ỹ

]
−A0 −A1z̄

]
− x>A1x−

ρ

2

[
x>V

[
F̃ |Ỹ

]
x+ x>A>1 ΣzA1x

]
.

And the first order conditions are

x : E
[
F̃ |Ỹ

]
−A0 −A1z̄ − 2A1x− ρ

[
V
[
F̃ |Ỹ

]
+A>1 ΣzA1

]
x

= 0,

given the values for E
[
F̃ |Ỹ

]
and V

[
F̃ |Ỹ

]
from A1, and ξ̃ = E

[
F̃ |Ỹ

]
− F̄

x =
[
2A1 + ρ

[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF +A>1 ΣzA1

]]−1

ξ̃

+
[
2A1 + ρ

[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF +A>1 ΣzA1

]]−1 [
F̄ −A0 −A1z̄

]
.

The coefficient matrices solve the following system:

B0 = B1

[
F̄ −A0 −A1z̄

]
,

B1 =
[
2A1 + ρ

[
ΣF − ΣFC

> [CΣFC
> + Σε

]−1
CΣF +A′1ΣzA1

]]−1

,

A0 = F̄ −A1 [B0 + z̄] ,

A1 =

[
I − ΣzB−1

1

[
ΣFC

> [CΣFC
> + Σε

]−1
CΣF

]−1
]−1

.
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From the expressions for A0 and B0 together, B0 = 0 and A0 = F̄ −A1z̄.
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Chapter 2

Bid-Ask spread in a rationally

inattentive multi-security market

2.1 Introduction

The presence of insiders in a financial market offers a potential explanation for the spread

between bid and ask prices. In this paper, I analyze the cross-market effect of the exis-

tence of an upper limit on insiders’ capacity for information processing. I consider a model

that features the endogenous choice of a noisy information structure for the investor. The

choice of signal determines the investor’s actions when placing a bid or ask order for each

asset. When the signal chosen by the insider is correlated, investment decisions exhibit

a structural link across markets. Insiders are the only investors with access to relevant

information about asset payoffs, and are hence the ones who can supply true information

to the market about them. Alternatively, there are also noise traders who place random

liquidity orders in each market. Finally, market makers compete à la Bertrand by setting

asset prices as they process the orders placed by investors. Market makers face an adverse

selection problem with regard to insiders since they cannot identify the profiles of the in-

vestors that place each order. As in Glosten and Milgrom’s (1985) model, in this paper I

address the bid-ask spread as a purely informational phenomenon in all markets. More-

over, the correlated information that insiders observe induces correlated actions across

markets, which generates a structural correlation in the formation of prices.
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Markets operate as market makers set asset bid and ask prices to equilibrate the supply

and the demand for assets. The spread arises in response to the potential losses to the

market maker due to insiders. However, the specifics on how market makers trade can

change from market to market, depending on pre-defined trading protocols. I construct

a model that can be used to study two possible trading protocols. The first requires

agents to submit the order for each asset to a different market maker. Therefore, market

makers behave as specialists for each asset, as in the New York Stock Exchange (NYSE),

and cannot see the orders that each investor places for other assets. The second protocol

allows investors to place their orders for all assets with one market maker, whereby the

market maker has additional information that can be used for screening purposes. From

now on, I refer to market makers who trade only one type of asset as specialists and use

market makers only for price-setting agents who trade portfolios.

In finance, any investor who is at an informational advantage beforehand is called an

insider. However, the quality of the information available to the insider has a significant

impact on the market outcome, but information can be costly to acquire and process

and brokerage and financial firms spend a substantial amount of money on doing this.

This model provides a tool to analyze the effects of having limited resources to process

information.

For the analysis, I focus on the effect that limited access to affordable information

has on insider choice, and how this choice affects price formation across markets. I set

the asset payoffs to be ex-ante statistically independent to isolate the effect of the infor-

mational channel on bid and ask prices. Specifically, I show how the endogenous choice

of an information structure can prevent the price vector from inheriting the statistical

independence on the vector of asset payoffs—the model departs from a static bivariate

version of the Glosten and Milgrom (1985) model. A risk-neutral specialist, or a market

maker, sets the prices, and there is a group of insiders who observe an informative signal

on the vector of asset payoffs.

The structure of the paper is the following. Section 2 introduces related literature re-

lated to market microstructure, information acquisition, and rational inattention. Section

3 describes how the market operates in this model. Later on, Section 4 presents the model
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where one specialist processes the orders for each asset. Since the market outcome, does

not necessarily hold when the insiders face a capacity constraint for processing informa-

tion, in Section 5, I present a model with a different trading protocol where one market

maker processes the orders for both assets. This alternative trading protocol provides a

sufficient condition to lose statistical independence in asset price formation, even when

insiders are perfectly informed. Finally, Section 6 summarizes some concluding remarks.

2.2 Related literature

There has been some recent research regarding the endogenous choice of an information

structure and its impact on financial markets. For instance, Mondria (2010) introduces

the endogenous construction of a signal in a portfolio selection problem to explain price

comovement. Specifically, he applies an information-processing constraint to Admati’s

(1985) portfolio selection problem, to characterize price correlation analytically. In his

model, insiders are allowed to choose a noisy multidimensional signal as a linear combi-

nation of the true asset payoffs. This flexible structure allows for particular cases, such

as producing independent signals for each of the assets, having one informative signal as

a linear combination of all asset payoffs, or any linear combination between asset prices.

He solves the model for two assets and shows how insiders prefer one informative signal

over all other alternatives.

All previous studies that introduced the information-processing constraint to a portfo-

lio selection problem impose ex-ante to have separate signals for each of the assets. In such

problems, the constraint gives thresholds for allocating attention over some assets. Hence,

the investor only chooses to observe signals on a limited number of assets. The first stud-

ies to apply this concept were Peng (2005) and Peng and Xiong (2006), calling it entropy

learning. Later on, van Nieuwerburgh and Veldkamp (2009) and van Nieuwerburgh and

Veldkamp (2010) use Admati’s (1985) model and introduce the information-processing

constraint by assigning one signal to each asset payoff. As a result, van Nieuwerburgh

and Veldkamp (2010) find that this constraint leads to portfolio under-diversification. In

a similar analysis, van Nieuwerburgh and Veldkamp (2009) explain the home bias puz-
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zle. These studies impose ex-ante independence on the information; therefore, all prices

remain statistically independent.

The optimal choice of information structure is a topic that has been revisited lately

in the rational inattention literature. Rational inattention was initially introduced in

Sims (1998) as a possible source of "stickiness" in markets, later to be formally defined

in Sims (2003), featuring analytical tools developed for information theory.In models

with rationally inattentive agents, the amount of information that an agent can process is

finite and is called information-processing capacity. The agent faces a trade-off, allocating

capacity to the precision of different signals to find the most profitable allocation; this is

called attention allocation. The intuition of the attention allocation process is to set an

upper limit on the uncertainty that an agent can resolve through signals. Other literature

on rational inattention has adopted the perspective of choice theory, to which de Oliveira

(2013) provides an axiomatic approach to it, while Matějka and McKay (2015) build

an alternative explanation to the multinomial model following the results in Jung et al.

(2015).1

In finance, investors profit from learning about the fundamental values of assets before

trading—one who can do this before trading is called an insider. In this paper, I depart

from the canonical models for insider trading, Kyle (1985) and Glosten and Milgrom

(1985), where there are two types of investors, namely insiders and others who have no

prior knowledge and submit random orders to the market, what are called noise traders. A

third agent, a market maker, processes the orders and sets the prices after updating their

beliefs. The market orders, placed by the insider, contain information about the asset

payoffs. Noise trading prevents the market maker from perfectly filtering the information

out of the order flow. The fundamental difference between the two models is the set of

actions performed by the insider. Kyle’s model allows a continuous domain for the market

order, which makes the model suitable for analysis of the competition structure in the

market. Analogously, in Glosten and Milgrom (1985), traders’ are allowed to either buy or

sell a single unit of the asset: the specialist randomly calls traders to submit their orders

1There is a different, more traditional, approach to understanding the concept of informativeness that
was initially introduced as information chosen under uncertain conditions by Blackwell (1951, 1953),
with sufficient conditions for ordering structures according to their informativeness without providing a
quantitative measure for information. See de Oliveira (2018) for further references to Blackwell’s theorem.
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and sets the bid and ask prices. Both models would explain the difference between bid

and ask prices, which the literature addresses as bid-ask spreads, considering this a purely

informational phenomenon. Krishnan (1992) shows that there is equivalence between the

results of Kyle (1985) and Glosten and Milgrom (1985). Admati (1985) proposes a multi-

security version of Kyle’s model for risk-averse insiders who select portfolios under perfect

competition. Caballé and Krishnan (1994) develop a portfolio selection model for a risk-

neutral insider under imperfect competition. A common factor to all insider trading

models is that insiders are the only source of relevant information supplied to the market.

Hence, the informational content of prices relies on insider information and the market

maker’s ability to filter it.

2.3 Information and market structure

2.3.1 Information

The measure of information flows is a topic that is mostly studied in information theory.

Any analysis derived from information theory requires the identification of four elements:

a source, a message, a channel, and a receiver. At one extreme, there is a source that

generates a message (or signal). Then, as the message travels through a channel, it

gets distorted by external facts. At the other extreme, there is a receiver who tries to

recover as much information as possible after observing the distorted message. The flow

of information depends on the channel’s capacity. The standard measure to determine

how distorted a message is on arrival at the receiver is Shannon entropy.

Shannon (1948) uses entropy as a measure of unpredictability (uncertainty, in our con-

text).2 Sims (2003) adapts Shannon entropy to quantify information flows in economics.

Here, a message can be any relevant information, that is, an informative signal used to

make decisions. The information structure would be the corresponding channel, and this

channel’s capacity determines the precision of the signal. The receiver then updates her

2This type of entropy is called Shannon entropy, which was generalized later by Rényi (1961). Not to
be confused with the concept of thermodynamic entropy in statistical mechanics, although the intuition
is somewhat similar. In general, probability distributions have an associated entropy function denoted
by H(X).
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beliefs about the source about the source based on observation of the message. The in-

formation flow is the amount of uncertainty about the source that the message resolves

for the receiver. This is called mutual information.

Sims (2003) and (2006) defines rational inattention as an agent’s decision to optimally

allocate zero precision to a particular signal. The theory implements the information-

processing constraints proposed in Shannon (1948) to determine the allocation of “atten-

tion” to the signals that the agent wants to observe more precisely. The information-

processing constraint is an upper bound to the mutual information between source and

message.

Let x̃1, x̃2 be two random variables. The mutual information of a system is defined as

the difference between the conditional and unconditional entropy function, that is

I (x̃1; x̃2) = H (x̃1)−H (x̃1|x̃2) ,

where I denotes the mutual information function, H (x̃i) = −E [ln (Pr(x̃i))] is the entropy

function and H (x̃1|x̃2) = −E [ln (Pr(x̃1)) |x̃2] is the conditional entropy function. The

mutual information measures the information about x̃1 contained in x̃2. An equivalent

interpretation states that the mutual information gives the amount of uncertainty about

x̃1 that can be resolved as x̃2 is observed. Suppose that two variables x̃1 and x̃2 share in-

formation but only x̃2 is observable. The observable variable can deliver some information

about the outcome of variable x̃1. Moreover, variable x̃2 is a signal for x̃1 and the mutual

information measures the informational content of this signal. A capacity constraint κ

sets an upper bound for the uncertainty resolution generated by the signal. In most the

cases, the capacity constraint binds.

2.3.2 Market structure

In this market, investors trade two assets whose payoffs, denoted by vector F̃ =
[
F̃1, F̃2

]′
,

are independently distributed. The asset payoffs represent the liquidation value of each

asset after it is purchased. The random vector F̃ has support {0, 1} × {0, 1}, which

indicates that the possible outcomes for each of the payoffs are either 1, a high payoff,

or 0, a low one. The probability of each asset having a high payoff is independent across

assets. Let F̄i be the probability of a high payoff on the i-th asset, then the distribution
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of each asset payoff is a Bernoulli, F̃i ∼ B
(
F̄i
)
. Thus, the expected payoff for the i-th

asset is F̄i.

The set of investors is divided into two profiles: informed and noise traders. On the

one hand, there are informed agents who can observe a multivariate signal Ỹ on the

true payoff F̃ before they place their orders in the market, x̃
(
Ỹ
)

and which represent a

fraction a of all traders. On the other hand, uninformed traders place random orders in

the market z̃ and they are a (1 − a) share of the mass of investors. For simplicity and

without loss of generality, I set noise traders to buy or sell a unit of an asset with equal

probability. Traders are only allowed to buy/sell one unit of each asset once they are

called to trade, i.e., the support of orders x̃ and z̃ is {−1.1} × {−1, 1}.

The goal of the upcoming sections is to build the information structure of an informed

investor endogenously. There is a critical difference between insiders, as partially informed

investors, and noise traders. An insider, as part of his optimal information structure, is

able to choose not to be informed about a specific asset. In contrast, noise traders can

never become informed traders. Thus, an insider who optimally decides to be uninformed

about one asset is still an insider, since it is his choice to be uninformed. Therefore, the

two profiles form disjoint groups.

The trading protocol should be defined to characterize the market structure. In this

paper, a trading protocol refers to the particular way traders are supposed to submit

their orders. The protocol defines the price-setting agent’s profile. I consider two possible

trading protocols: the first supposes that a specialist processes the orders for each asset. A

specialist randomly calls an investor to place an order for one asset, and another specialist

does likewise for the second asset. The second trading protocol supposes a market maker

is processing the orders for both assets. The difference between the two depends on the

information that the price-setting trader observes, and is discussed in detail below. Both

specialists and market makers set asset prices through Bertrand competition, which results

in a zero expected profit rule. In this model, the specialists/market makers are ex-ante

uninformed. They then update their beliefs from the information they extract from the

submitted orders. A specialist/market maker randomly calls an investor to place an order,

which means that all investors have the same probability of being called to trade. The
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selected trader belongs to the informed group with probability a or to the uninformed

with probability (1− a).Even if the specialist/market maker is aware of the existence

of informed traders, the anonymity of order submission means investor profiles are not

revealed. As a result, the specialist/market maker cannot practice price discrimination

and sets the price according to what she observes, a bid or ask order; one price for all bid

orders and another for all ask ones. The orders that a specialist on market i receives are

represented by variable ω̃i, the order flow, for i = 1, 2. Such a variable is a market order

for asset i, x̃i

(
Ỹ
)

with probability a, and a liquidity trade z̃i with probability (1− a), for

i = 1, 2. Similarly, the orders that the market maker receives are represented by variable

ω̃, the order flow. Such a variable is a market order x̃
(
Ỹ
)

with probability a and a

liquidity trade z̃ with probability (1− a). I summarize the behavior of the order flow by

means of the following mixture notation: ω̃ = a ◦ x̃
(
Ỹ
)
⊕ (1− a) ◦ z̃.3 The order flow is

the only source of information that the specialist or the market maker can use to update

her beliefs. Hence, the zero expected profit pricing condition becomes pi (ω̃i) = E
[
F̃i|ω̃i

]
,

i = 1, 2, for specialists, and p (ω̃) = E
[
F̃ |ω̃

]
for market makers. Since the pricing rule

set by the specialist/market maker is a conditional expectation of the payoffs, the price

vector indirectly contains the insiders’ information structure. If there are no insiders to

trade in the market, the order flow is orthogonal to the asset payoffs. Therefore, both

specialists and market makers are unable to update their beliefs and the prices coincide

with the unconditional expected payoff.

One may wrongly assume that trading to a specialist is equivalent to trading to a

market maker, but specialists and market makers have different information sets. Recall

that insiders are either informed or noise traders for both assets. Therefore, a specialist

trading one asset does not know whether the same investor is called to place an order

for the other asset. This protects the identity of investors across markets, as discussed

in section 4. In contrast, when market makers are trading, their information sets contain

information about the vector of orders. They know that an insider is an insider in both

markets; similarly, if they call a noise trader, the investor is noise trading in both markets.

The order flow comes from the same investor profile in both markets. Section 5 solves the

3Given three random variables w̃1, w̃2 and ỹ, the notation ỹ = c ◦ w̃1 ⊕ (1− c) ◦ w̃2 indicates that the
variable ỹ takes the value of variable w̃1 with probability c and w̃2 with probability (1− c).
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model when a market maker trades.

2.4 A specialist for each market

This section analyzes the effects of insider behavior on prices when there is a specialist in

each market who processes the orders. The first part introduces a benchmark model to

describe insider behavior when they have access to the true asset payoffs before submit-

ting their market orders. The second part explains how a limited information-processing

capacity can generate correlation in the formation of bid and ask prices, as well as the

effect on the informational content of prices.

2.4.1 Perfect information

Consider the case where there is a a specialist for each market and informed traders that

have perfect information about the payoff of each asset. This market is equivalent to

two separate Glosten and Milgrom (1985) models for each asset. The specialist on each

market cannot infer anything about the order placed for the other asset. Since payoffs

are independent, insiders have perfect information, and the specialist only observes the

order flow for one asset, so trading actions are independent in both markets.

The informed trader submits an order to buy a unit of asset i, xi = 1, whenever he

knows that the payoff is high and to sell a unit, xi = −1, when the payoff is low, for

i = 1, 2. Given a generic asset i, the ask and bid prices for this asset would be given by

p̃i (1) = E
[
F̃i|ωi = 1

]
= Pr (Fi = 1|ωi = 1)

=
Pr (Fi = 1)

Pr (ωi = 1)
Pr (ωi = 1|Fi = 1) =

F̄i
(
a+ 1−a

2

)
aF̄i + (1−a)

2

=
F̄i (a+ 1)

2aF̄i + (1− a)
,
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and

p̃i (−1) = E
[
F̃i|ωi = −1

]
= Pr (Fi = 1|ωi = −1)

=
Pr (Fi = 1)

Pr (ωi = −1)
Pr (ωi = −1|Fi = 1) =

1−a
2
F̄i

a
(
1− F̄i

)
+ (1−a)

2

=
(1− a) F̄i

2a
(
1− F̄i

)
+ (1− a)

.

The pricing functions show how different is the price from the true value of the asset

payoff. If the asset gives a high payoff, an insider buys a unit of the asset, yet, the price

is lower than 1. Otherwise, if it gives a low payoff, the price is greater than 0. The

difference between the price and the payoff is the profit made by the insider. Note that

the pricing function follows the conditional expectation of the specialist, who faces higher

uncertainty than the insiders, due to never knowing if the observed order corresponds to

an insider or a noise trader. Thus, the existence of noise traders prevents specialists from

perfectly filtering the true asset payoffs from the order flow. If there are only insiders,

specialists can perfectly discriminate prices, p (1) = 1 and p (−1) = 0, and insiders cannot

profit from their informational advantage. Alternatively, if there are only noise traders,

no useful information can be filtered from the order flow, and the market maker sets a

single price p (1) = p (−1) = F̄i. The resulting asset price is the probability of the asset

delivering a high payoff.

2.4.2 Imperfectly informed insiders

Consider now the case where insiders do not know the exact outcome of the payoff.

Instead, they can observe a signal that contains information about it. Hence, insiders are

constrained to placing their orders based on noisy signals Ỹs, s = 1, 2, at most one per

asset.4 Note that I do not constrain the signals to be ex-ante independent, or assume

that each signal can only contain information about one asset. As a result, the signal

I construct can be used to endogenously address ex-ante asset payoff regardless of the

insider’s perspective. The noisy signal takes the form of a Bernoulli random variable that

4Recall that for any random vector F̃ of dimension n there can be at most n linearly independent
informative signals.
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delivers external noise with probability δs, that with probability (1 − δs)λs delivers the

payoff of asset 1, and with probability (1− δs)(1−λs) the payoff of asset 2. The behavior

of the signal is summarized by Ỹs = (1− δs) ◦
(
λs ◦ F̃1 ⊕ (1− λs) ◦ F̃2

)
⊕ δs ◦ ε̃s, where

ε̃s = 1
2
◦ 0 ⊕ 1

2
◦ 1 represents the external noise as an exogenous Bernoulli variable, with

probability 1
2
, for s = 1, 2.5 The parameters λs can be viewed as the intensity of F̃1

on the signal Ỹs, while the parameter δs can be viewed as the intensity of the noise, or

equivalently, the general garbling parameter. Its complement (1− δs) is proportional to

the precision of the signal.6 Since the asset payoffs are statistically independent, when

the variable Ỹs, s = 1, 2 serves as a signal for F̃1, the signal delivers the desired outcome

with probability (1−δs)λs. So is the case when the variable Ỹs serves as signal for F̃2. Let

Ỹ =
[
Ỹ1, Ỹ2

]′
be the vector of signals. Finally, the probability of external noise is assumed

to be symmetric for all signals in Ỹ , δ1 = δ2 = δ. Figure 2.1 graphically represents of the

signal on a tree diagram.

Ỹs

"̃s

01
2

1
1
2�

F̃2

01 � F̄2

1F̄2
1 � �s

F̃1

01 � F̄1

1F̄1

�s

1 � �

!̃

z̃1 � a

x(Ỹ )a
Figure 2.1: Tree diagram for the signal Ỹs = (1− δ) ◦

(
λs ◦ F̃1 ⊕ (1− λs) ◦ F̃2

)
⊕ δ ◦ ε̃s.

The signal Ỹs, as depicted in Figure 2.1, has terminal nodes, or final outcomes, with

5By repeatedly applying lottery decomposition property, any binary random variable l̃ with support
{l1, l2} can be represented as l̃ = q1 ◦ l1 ⊕ (1− q1) ◦ l2, where q1 = Pr [l = l1].

6I use garbling as proposed by Marschak and Miyasawa (1968) to interpret Blackwell informativeness,
i.e., a mean preserving spread of an informative signal. Therefore, the garbling parameter makes the
signal less informative.
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two possible values, 0 and 1. Nature defines the paths to the terminal nodes given the

probabilities δ, λs, F̄1, and F̄2. For illustrative purposes, suppose that Nature moves

sequentially to define the paths to nodes F̃1, F̃2 , and ε̃s. Initially, Nature chooses the

node ε̃s with probability δ, otherwise she plays again. If the node ε̃s is not chosen,

Nature delivers node F̃1 with probability λs, and node F̃2 otherwise. After she chooses

a node F̃1, F̃2 or ε̃s, the probabilities of an outcome of “1” are F̄1, F̄2 or 1
2

respectively.

Hence, the unconditional probability of a high outcome of the signal is Pr (Ys = 1) =

(1− δ)
(
λsF̄1 + (1− λs) F̄2

)
+ 1

2
δ. Therefore, given F1 = 1, the probability that the signal

delivers a high outcome is Pr (Ys = 1|F1 = 1) = (1− δ)
(
λs + (1− λs) F̄2

)
+ 1

2
δ, which is

higher than the unconditional probability. The intuition behind the difference is that,

should Nature choose node F̃1, the outcome is “1” with probability 1, as opposed to the

unconditional case where the probability is F̄1. The same argument applies to all other

conditional probabilities. Table 2.1 summarizes the conditional distribution of signal Ỹs.

Ỹs
1 0

F̃
F̃1

1 (1− δ)
(
λs + (1− λs) F̄2

)
+ 1

2
δ (1− δ) (1− λs)

(
1− F̄2

)
+ 1

2
δ

0 (1− δ) (1− λs) F̄2 + 1
2
δ (1− δ)

(
λs + (1− λs)

(
1− F̄2

))
+ 1

2
δ

F̃2

1 (1− δ)
(
λsF̄1 + (1− λs)

)
+ 1

2
δ (1− δ)λs

(
1− F̄1

)
+ 1

2
δ

0 (1− δ)λsF̄1 + 1
2
δ (1− δ)

(
λs
(
1− F̄1

)
+ (1− λs)

)
+ 1

2
δ

Table 2.1: Conditional distribution of Ỹs given F̃ .

Market orders

Let X = {−1, 1} × {−1, 1} be the support of the market orders, x ∈ X. Given the

signal vector Ỹ , an insider must choose the market orders x
(
Ỹ
)
∈ X to maximize the

(conditional) expected profits, i.e.,

(2.1)x
(
Ỹ
)

= arg max
x∈X

E

[
2∑
i=1

xi

(
F̃i − pi (ωi)

) ∣∣∣Ỹ ] .
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Note that in (2.1), the term pi (xi) corresponds to the bid/ask price for asset i depending

on the agent’s choice. Each price is a conditional expectation that corresponds to a

garbled transformation of the signal. Hence, it is always closer to the unconditional mean

F̄i than the insider’s conditional expectation E
[
F̃i|Ỹ

]
. From now on, let signal Ỹs, where

λs ≥ λs′ , s, s
′ = 1, 2 and s 6= s′, be Ỹ1, since it is the signal that contains the most

information about F̃1. Analogously, Ỹ2 is the one that contains most information about

F̃2. Thus, the market orders are such that the most informative signal determines the

action, i.e., the signal that delivers the most information about each state determines the

insider’s bid/ask choice. The resulting market orders are

x1

(
Ỹ
)

=


1 if Y1 = 1

−1 if Y1 = 0,

and

x2

(
Ỹ
)

=


1 if Y2 = 1

−1 if Y2 = 0.

Proof that these values are the optimal choices for the insider follows by contradiction.

Suppose that the insider observes signal Ỹ2 before he selects the market order for the

first asset. The insider’s corresponding informational advantage is smaller because the

probability of node F̃1 is higher in signal Ỹ1 than in signal Ỹ2.7 Then, suppose that the

insider had chosen xi = −1 when Yi = 1, his expected profits increase automatically if

he deviated to xi = 1, since E
[
F̃i − pi(1)|Yi = 1

]
> E

[
pi(−1)− F̃i|Yi = 1

]
, where the

second term is negative.

The insider’s market order behavior is a response to increasing expected profits in

the informational advantage. The following definition characterizes the meaning of the

informativeness of signals in this particular model.

Definition. A signal Ỹs, for s = 1, 2, is said to be informative if, conditionally on observ-

ing it, the probability of observing the implied outcome increases.

The previous definition for informative signals implies the following conditions:

Pr (F1 = 1|Y1 = 1) ≥ Pr (F1 = 1|Y2 = 1)
(
> F̄1

)
,

7The informational advantage is the gap between insider’s expectation over the specialist’s expectation.
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Pr (F2 = 1|Y2 = 1) ≥ Pr (F2 = 1|Y1 = 1)
(
> F̄2

)
,

and, analogously

Pr (F1 = 0|Y1 = 0) ≥ Pr (F1 = 0|Y2 = 0)
(
> 1− F̄1

)
,

Pr (F2 = 0|Y2 = 0) ≥ Pr (F2 = 0|Y1 = 0)
(
> 1− F̄2

)
.

In general, let F̄i|s,1 := Pr (Fi = 1|Ys = 1),
(
1− F̄i|s,0

)
:= (1− Pr (Fi = 1|Y = 0)) ≡

Pr (Fi = 0|Ys = 0) for i, s = 1, 2.

Given that the garbling parameter that weights the external noise is symmetric for the

two signals, the only difference lies in the distribution of weights inside the informative

part of each signal. Moreover, the behavior induced by each signal in the market order

has an additional implication. Each signal has two sources of noise; the first one is

represented by garbling and is common to both signals; the second one is the irrelevant

information for each choice. For example, in signal Ỹ1, the informational content about F̃2

is as good as noise in the choice of x1. Similarly, any information that Ỹ2 contains about

F̃1 can be considered noise. The weights (1 − λ1) and λ2 are the redundant information

parameters. Therefore, the optimal weight distribution plays an important role in the

precision analysis. Proposition 1 determines the corresponding values for the weights,

such that the signals are informative and they are consistent with the assigned name.

Proposition 4. Let Ỹ1 and Ỹ2 be two informative signals for the asset payoffs F̃1 and F̃2.

Signal Ỹ1 is at least as informative as the signal Ỹ2 for F̃1, and the signal Ỹ2 is at least as

informative as the signal Ỹ1 for F̃2 if and only if λ2 ≤ λ1.

Proof. Following the informativeness conditions

(1− δ)
(
λ1 + (1− λ1) F̄2

)
+ 1

2
δ

(1− δ)
(
λ1F̄1 + (1− λ1) F̄2

)
+ 1

2
δ
≥ (1− δ)

(
λ2 + (1− λ2) F̄2

)
+ 1

2
δ

(1− δ)
(
λ2F̄1 + (1− λ2) F̄2

)
+ 1

2
δ
, (2.2)

(1− δ)
(
λ2F̄1 + (1− λ2)

)
+ 1

2
δ

(1− δ)
(
λ2F̄1 + (1− λ2) F̄2

)
+ 1

2
δ
≥ (1− δ)

(
λ1F̄1 + (1− λ1)

)
+ 1

2
δ

(1− δ)
(
λ1F̄1 + (1− λ1) F̄2

)
+ 1

2
δ
, (2.3)

(2.4)

(1− δ)
(
λ1 + (1− λ1)

(
1− F̄2

))
+ 1

2
δ

(1− δ)
(
λ1

(
1− F̄1

)
+ (1− λ1)

(
1− F̄2

))
+ 1

2
δ

≥ (1− δ)
(
λ2 + (1− λ2)

(
1− F̄2

))
+ 1

2
δ

(1− δ)
(
λ2

(
1− F̄1

)
+ (1− λ2)

(
1− F̄2

))
+ 1

2
δ
, and
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(2.5)

(1− δ)
(
λ2

(
1− F̄1

)
+ (1− λ2)

)
+ 1

2
δ

(1− δ)
(
λ2

(
1− F̄1

)
+ (1− λ2)

(
1− F̄2

))
+ 1

2
δ

≥ (1− δ)
(
λ1

(
1− F̄1

)
+ (1− λ1)

)
+ 1

2
δ

(1− δ)
(
λ1

(
1− F̄1

)
+ (1− λ1)

(
1− F̄2

))
+ 1

2
δ
.

Inequalities (2.2) and (2.4) hold for 0 ≤ δ ≤ 1, 0 ≤ λ1 ≤ 1, 0 ≤ λ2 ≤ λ1. Analogously,

inequalities (2.3) and (2.5) imply that for any value 0 ≤ δ ≤ 1, then 0 ≤ λ1 ≤ 1 and

λ2 ≤ λ1 ≤ 1.

Proposition 1 states that the most informative signals are those that increase the

insider’s predicting power regarding the true asset payoffs and that there is no signal that

can be strictly more informative for both asset payoffs. This informativeness condition

is also sufficient to prevent moral hazard problems arising when the insider chooses the

signal.

Pricing

A specialist prices separately in each market, according to her zero expected profit rule

pi (ω̃i) = E
[
F̃i|ω̃i

]
. Thus, when she observes the order flow, the specialist does not know

whether she observes the market order or noise trading. Due to Bertrand competition,

the pricing rule becomes a learning rule; it is the updated belief given the order flow.

Besides, the probability distribution of market orders is given by the distribution of the

signals. There is one-to-one mapping between signals and market orders, which means

that the market orders inherit the stochastic properties of the signal. Therefore, the

specialist anticipates this relationship in the order flow and performs Bayesian updating

to obtain the new distribution. Note that pi (1) = E
[
F̃i|ωi = 1

]
= Pr [Fi = 1|ωi = 1] and

pi (−1) = E
[
F̃i|ωi = −1

]
= Pr [Fi = 1|ωi = −1] because all variables follow a Bernoulli
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distribution. Then, the corresponding bid and ask prices are

p1 (1) = Pr [F1 = 1|ω1 = 1]

=
Pr [ω1 = 1|F1 = 1] Pr [F1 = 1]

Pr [ω1 = 1]

=
aPr [Y1 = 1|F1 = 1] + 1−a

2

aPr [Y1 = 1] + 1−a
2

F̄1

=
a (1− δ)

(
λ1 + (1− λ1) F̄2

)
+ 1

2
(aδ + 1− a)

a (1− δ)
(
λ1F̄1 + (1− λ1) F̄2

)
+ 1

2
(aδ + 1− a)

F̄1,

p1 (−1) =
Pr [ω1 = −1|F1 = 1] Pr [F1 = 1]

Pr [ω1 = −1]

=
aPr [Y1 = 0|F1 = 1] + 1−a

2

aPr [Y1 = 0] + 1−a
2

F̄1

=
a (1− δ) (1− λ1)

(
1− F̄2

)
+ 1

2
(aδ + 1− a)

a (1− δ)
(
λ1

(
1− F̄1

)
+ (1− λ1)

(
1− F̄2

))
+ 1

2
(aδ + 1− a)

F̄1,

p2 (1) =
a (1− δ)

(
λ2F̄1 + (1− λ2)

)
+ 1

2
(aδ + 1− a)

a (1− δ)
(
λ2F̄1 + (1− λ2) F̄2

)
+ 1

2
(aδ + 1− a)

F̄2, and

p2 (−1) =
a (1− δ)λ2

(
1− F̄1

)
+ 1

2
(aδ + 1− a)

a (1− δ)
(
λ2

(
1− F̄1

)
+ (1− λ2)

(
1− F̄2

))
+ 1

2
(aδ + 1− a)

F̄2.

These prices reflect the new source of noise introduced to the market by noise traders.

Thus, if the insiders are able to perfectly filter the signals, i.e., δ = 0, λ1 = 1 and λ2 = 0,

the resulting prices converge to those obtained under perfect information in the previous

subsection. Moreover, if the specialist can identify the insiders, the prices would reflect

the insider information, and the informational advantage disappears. Nevertheless, the

prices cannot reveal the true asset payoffs if the insiders are unable to eliminate all the

external noise from the signal.

Signal construction

An insider was defined as an investor who is allowed to choose the information before

the trading decision. Since the information should be available to the investor at the

time of the trade, information is chosen during a stage before trading takes place. In this
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stage, only informed investors are involved in optimally designing the signal, provided

that information acquisition is costly. Consider the informational content of the signal

Ỹ about F̃ , i.e., I
(
F̃ ; Ỹ

)
= H

(
F̃
)
− H

(
F̃ |Ỹ

)
, where H

(
F̃
)

= −E
[
ln
(

Pr(F̃ )
)]

,

and H
(
F̃ |Ỹ

)
= −E

[
ln
(

Pr(F̃ )
)
|Ỹ
]
. The two signals take the form Ỹs = (1− δ) ◦(

λs ◦ F̃1 ⊕ (1− λs) ◦ F̃2

)
⊕ δ ◦ ε̃s , for s = 1, 2, where a key feature is that ε̃1 and ε̃2 are

independent so there cannot be an exogenous source of comovement introduced ex-ante.

I determine the conditions, if any, where the signals deliver redundant information.

Given the signal, the insider’s conditional expectations of the asset payoffs are

F̄1|1,1 =
(1− δ)

(
λ1 + (1− λ1) F̄2

)
+ 1

2
δ

(1− δ)
(
λ1F̄1 + (1− λ1) F̄2

)
+ 1

2
δ
F̄1,

F̄2|2,1 =
(1− δ)

(
λ2F̄1 + (1− λ2)

)
+ 1

2
δ

(1− δ)
(
λ2F̄1 + (1− λ2) F̄2

)
+ 1

2
δ
F̄2,

(
1− F̄1|1,0

)
=

(1− δ)
(
λ1 + (1− λ1)

(
1− F̄2

))
+ 1

2
δ

(1− δ)
(
λ1

(
1− F̄1

)
+ (1− λ1)

(
1− F̄2

))
+ 1

2
δ

(
1− F̄1

)
,

(
1− F̄2|2,0

)
=

(1− δ)
(
λ2

(
1− F̄1

)
+ (1− λ2)

)
+ 1

2
δ

(1− δ)
(
λ2

(
1− F̄1

)
+ (1− λ2)

(
1− F̄2

))
+ 1

2
δ

(
1− F̄2

)
.

The reduction of garbling comes at a high cost, so the second set of conditions to be

imposed on the signal must guarantee affordability for the investor. The main goal is to

reduce the noise as much as possible, to make the conditional probabilities shown above

as large as possible, provided the investor’s capacity (budget) to reduce uncertainty. The

insider aims to acquire a perfectly informative signal, that is δ = 0, λ1 = 1 and λ2 = 0.

However, the cost of such a signal is too high to compensate for each investor’s expected

profits. In fact, information theory predicts that the resolution of uncertainty comes at

an infinite cost when variables are continuous.8

To do so, let the cost of each signal be a strictly increasing linear function g : R+ → R+

g′ (·) > 0, g′′ (·) = 0 of the information it provides, i.e., c1 (δ, λ1) = g
(
I
(
F̃ ; Ỹ1

))
, and

8The cost of the acquisition of perfect information about continuously distributed asset payoffs can
be infinite. Take the case when payoffs follow a Gaussian distribution; perfect information is equivalent
to the reduction of the signal’s variance to zero. The information measure is inversely proportional to
the probability of an event. This relation holds by construction, see Wiederholt (2010) for the definition
under normality. Therefore, the resolution of uncertainty in a normal random variable, i.e., the reduction
of the variance to zero, requires an infinitely large amount of information. Moreover, any nondecreasing
cost function for information generates an infinite cost for the uncertainty resolution of the asset payoffs.
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c2 (δ, λ2) = g
(
I
(
F̃ ; Ỹ2

))
. Proposition 4 implies I

(
F̃i; Ỹi

)
≥ I

(
F̃i; Ỹj

)
, i, j = 1, 2 and

i 6= j. Moreover, the mutual information function I
(
F̃1; Ỹ1

)
is increasing in probability

λ1 and I
(
F̃2; Ỹ2

)
is decreasing in λ2 and both are decreasing in δ. This result follows

from the informativeness condition stated above.9 The mutual information between each

signal and the corresponding asset payoff given by

I
(
F̃1; Ỹ1

)
=H

(
F̃1

)
−H

(
F̃1|Ỹ1

)
=− E

[
log
(

Pr
(
F̃1

))]
−

1∑
i=0

Pr (Y1 = i)H
(
F̃1|Y1 = i

)

=

(
(1− δ)

(
λ1 + (1− λ1) F̄2

)
+

1

2
δ

)
log

(
(1− δ)

(
λ1 + (1− λ1) F̄2

)
+ 1

2
δ

(1− δ)
(
λ1F̄1 + (1− λ1) F̄2

)
+ 1

2
δ

)

+

(
(1− δ) (1− λ1)

(
1− F̄2

)
+

1

2
δ

)
log

(
(1− δ) (1− λ1)

(
1− F̄2

)
+ 1

2
δ

(1− δ)
(
λ1

(
1− F̄1

)
+ (1− λ1)

(
1− F̄2

))
+ 1

2
δ

)

−F̄1 log
(
F̄1

)
and

I
(
F̃2; Ỹ2

)
=

(
(1− δ)

(
λ2F̄1 + (1− λ2)

)
+

1

2
δ

)
log

(
(1− δ)

(
λ2F̄1 + (1− λ2)

)
+ 1

2
δ

(1− δ)
(
λ2F̄1 + (1− λ2) F̄2

)
+ 1

2
δ

)

+

(
(1− δ)λ2

(
1− F̄1

)
+

1

2
δ

)
log

(
(1− δ)λ2

(
1− F̄1

)
+ 1

2
δ

(1− δ)
(
λ2

(
1− F̄1

)
+ (1− λ2)

(
1− F̄2

))
+ 1

2
δ

)

− F̄2 log
(
F̄2

)
.

See appendix A.

Both mutual information functions are increasing in the conditional probabilities of

an accurate prediction of the outcome. Figure 2.2 shows the behavior of the mutual

information in the case of signal Ỹ1. The plot depicts how the capacity requirement

increases dramatically when either δ → 0 or λ1 → 1. The black lines over the surface are

level curves that illustrate the rapid increase in the capacity as less garbling is introduced.

9Simply take the derivatives of the conditional probabilities to obtain
∂F̄1|1,1
∂δ < 0,

∂F̄2|2,1
∂δ < 0,

∂(1−F̄1|1,0)
∂δ < 0 and

∂(1−F̄2|2,0)
∂δ < 0, and

∂F̄1|1,1
∂λs

,
∂F̄2|2,1
∂λs

> 0 ,
∂(1−F̄1|1,0)

∂λ−s
and

∂(1−F̄2|2,0)
∂λ−s

< 0.
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Figure 2.2: I
(
F̃1; Ỹ1

)
for different parameter values of δ and λ1. Note: The surface was

plotted for F̄1 = 0.7, F̄2 = 0.5, the shape of the surface does not exhibit significant changes
as the value of the parameters is changed.

Since the marginal cost of information is assumed to be constant, the total cost is

c (δ, λ1, λ2) = g
(
I
(
F̃ ; Ỹ1

)
+ I

(
F̃ ; Ỹ2

))
. However, each signal delivers information about

both asset payoffs, and the insider purchases some amount of duplicated information.

Recall that I
(
F̃ ; Ỹi

)
= I

(
F̃i; Ỹi

)
+ I

(
F̃j; Ỹi

)
for i, j = 1, 2 and i 6= j, where I

(
F̃j; Ỹi

)
i, j = 1, 2 and i 6= j is information that has been purchased and will not be used.

Furthermore, Proposition 7 rules out any possibility of moral hazard while the investor

purchases the signal.

Definition. The iso-cost function is the function δc (λ1, λ2, κ̄) that solves the relation

g (κ̄) = c (δc, λ1, λ2) for δc, where c̄ = g (κ̄).10

The behavior of the mutual information functions above characterizes the following

properties of the iso-cost function :

1. ∂δ(λ1,λ2,κ̄)
∂κ̄

< 0, because both mutual information functions are decreasing in δ,

2. ∂δ(λ1,λ2,κ̄)
∂λ1

> 0, because
∂I(F̃ ;Ỹ1)

∂λ1
> 0, and

3. ∂δ(λ1,λ2,κ̄)
∂λ2

< 0, because
∂I(F̃ ;Ỹ2)

∂λ2
< 0.

10An alternative approach is to find the iso-cost as a function of the monetary value of the capacity κ̄.
Both are equivalent since there is a one-to-one relationship between the two.
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Figure 2.3: This figure contains iso-cost surfaces.

Figure 2.3 depicts these properties over the iso-cost surfaces. The plot contains the full

combination of weights and garbling that generate the same cost.

Proposition 5. Let κ̊ ∈ R̄+ be such that δ (1, 0, κ̊) = 0. Then, there is no other level of

capacity κ̄ < κ̊ that can produce perfectly informative signals, i.e., δ (1, 0, κ̄) = 0.

Proof. This follows directly from the fact that the iso-cost function is strictly decreasing

in κ (Property 1).

This result is sufficient to see that for agents that face a high information-processing

constraint, i.e., a low κ, there is an interior solution, which means that the optimal signals

that the insider chooses contains garbling and redundant noise. This choice of information

with redundant noise is informationally equivalent to having had ex-ante correlated noise.

Either way, the information structure cannot generate independent information for both

assets. As a result, this choice of information generates price comovement.

As mentioned before, the second stage problem for the insider is equivalent to solving

a separate problem for each asset. However, the mutual information function has some
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useful properties to characterize the cost function, and affect both markets. For example,

take the chain rule of mutual information,

I
(
F̃ ; Ỹ1, Ỹ2

)
= I

(
F̃ ; Ỹ1

)
+ I

(
F̃ ; Ỹ2|Ỹ1

)
(2.6)

≤ I
(
F̃ ; Ỹ1

)
+ I

(
F̃ ; Ỹ2

)
, (2.7)

which additionally holds with equality when Ỹ1 and Ỹ2 are independent. In fact, this

condition shows that the insiders waste some capacity as they purchase redundant in-

formation. The mutual information I
(
F̃ ; Ỹ2|Ỹ1

)
determines the informational gain of

observing Ỹ2 given Ỹ1. Since the signals are not independent it is smaller than I
(
F̃ ; Ỹ2

)
(see the Venn diagram example). Now consider the other extreme case, Ỹ1 and Ỹ2 are

fully correlated, Ỹ1 = Ỹ2 = Ỹ ∗, then (2.6) becomes

I
(
F̃ ; Ỹ ∗

)
≤ 2I

(
F̃ ; Ỹ ∗

)
,

or, equivalently, if the agent buys two signals the second would be completely redundant.

This means that the cost function has a kink at the point λ1 = λ2,

c(δ, λ1, λ2) =


g
(
I
(
F̃ ; Ỹ1

)
+ I

(
F̃ ; Ỹ2

))
λ1 > λ2

g
(
I
(
F̃ ; Ỹ1

))
λ1 = λ2.

If a fixed capacity level κ̄ is set, then, δ (λ, λ, κ̄) < δ (λ1, λ2, κ̄) for all λ1 > λ2 since I (·)

is decreasing in δ.

Example: Venn diagram

To summarize the signal construction process, consider this illustrative example. Figure

2.4 uses Venn diagrams to show the information required to explain each variable H (·)

as well as the mutual information between the variables. The blue shaded area represents

the amount of information required to explain asset payoff F̃1, the red shaded area for F̃2,

light green Ỹ1, and darker green Ỹ2. Given that Ỹ1 and Ỹ2 are signals, this area represents

the information that the insider has. The intersections represent the mutual information,

for example the intersection between the blue and light green areas represents the mutual

information between F̃1 and Ỹ1, I
(
F̃1; Ỹ1

)
, or equivalently, the amount of information
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revealed about F̃1 once the signal Ỹ1 is revealed. Note that the blue and red areas do not

intersect since the asset payoffs are independent. Also note that both green areas intersect

the red and blue areas indicating that both signals are informative for both asset payoffs.

However, it shows that I
(
F̃i; Ỹi

)
≥ I

(
F̃i; Ỹj

)
. Finally, note that the intersection between

the two green areas shows that there is some capacity allocated to the introduction of

redundant information so it is best for all the capacity to be devoted to the construction

of a single signal that is informative for both asset payoffs, i.e., only one green area for

both.

𝐻(𝐹$%) 𝐻(𝐹$')

𝐻(𝑌$%) 𝐻(𝑌$')

Figure 2.4: Venn diagram for mutual information between the asset payoffs (F̃ ) and the
signals (Ỹ )

First stage: Attention allocation

After the signal structure has been determined, the insider chooses the distribution of

weights within the signal in order to maximize his expected revenue. Then, the insider’s

optimal attention allocation solves the following expected profit maximization

max
δ,λ1,λ2

π (δ, λ1, λ2)

such that

c (δ, λ1, λ2) ≤ g (κ̄) ,
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where

π (δ, λ1, λ2) = Pr (Y1 = 1)
(
F̄1|1,1 − p1 (1)

)
+ (1− Pr (Y1 = 1))

(
p1(−1)− F̄1|1,0

)
(2.8)

+ Pr (Y2 = 1)
(
F̄2|2,1 − p2 (1)

)
+ (1− Pr (Y2 = 1))

(
p2(−1)− F̄2|2,0

)
.

There is an interior solution to this problem, at least for values 0 < κ < κ̄ and that gives

the weights that an optimal signal should assign. The response of the expected profit

function to the information structure parameters characterizes the solution. Proposition

9 describes the response of the expected profit function to garbling and redundant noise.

Proposition 6. The expected profit function π (δ, λ1, λ2) is decreasing both in garbling

and redundant noise
∂π (δ, λ1, λ2)

∂δ
< 0,

∂π (δ, λ1, λ2)

∂ (1− λ1)
< 0, and

∂π (δ, λ1, λ2)

∂λ2

< 0.

Proof. Due to the informativeness constraints and from the second stage optimization, as

long as the signal is informative, the informational advantages
(
F̄1|1,1 − p1 (1)

)
,
(
p1(−1)− F̄1|1,0

)
,(

F̄2|2,1 − p2 (1)
)

and
(
p2(−1)− F̄2|2,0

)
are strictly positive. Furthermore, they are decreas-

ing in terms of garbling, i.e.,

∂
(
F̄1|1,1 − p1 (1)

)
∂δ

,
∂
(
p1(−1)− F̄1|1,0

)
∂δ

,
∂
(
F̄2|2,1 − p2 (1)

)
∂δ

,
∂
(
p2(−1)− F̄2|2,0

)
∂δ

< 0,

∂
(
F̄1|1,1 − p1 (1)

)
∂1− λ1

,
∂
(
p1(−1)− F̄1|1,0

)
∂1− λ1

< 0,

and
∂
(
F̄2|2,1 − p2 (1)

)
∂λ2

,
∂
(
p2(−1)− F̄2|2,0

)
∂λ2

< 0.

The results follow from the lower response of prices to an increase in garbling, with respect

to the insider’s expectations, due to the additional noise that liquidity traders generate

for specialists.
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Furthermore, the response of the profit function to garbling is higher in magnitude

than the response to either of the redundant noise parameters (1−λ1) and λ2.. Since δ is

the probability of the extraction of exogenous noise in the signal, and λi is a conditional

probability, given that the outcome is not noise, then the overall effect of changes in δ

are higher than the effect of either of the λi i = 1, 2. In fact, all marginal effects of the

weight λi are scaled down by (1− δ).

Definition. For all 0 < ι < κ̊, the ι-th iso-information surface is formed by all points

(δι, λι1, λ
ι
2) ∈ (0, 1)× (0, 1)× (0, 1) such that I

(
F̃ ; Ỹ1, Ỹ2

)
|(δι,λι1,λι2)= ι.

The iso-information surface contains all the combinations of garbling δ and weights

λi, i = 1, 2 that deliver informationally equivalent signals about the vector F̃ . Therefore,

the iso-information surface provides a measure of informational efficiency. The following

definition characterizes informationally efficient allocations.

Definition. An attention allocation (δ, λ1, λ2) is said to be informationally efficient if and

only if its cost is a linear transformation g (ι) of the informational content ι.

In general, all informationally efficient allocations are allocations such that their image

over the iso-cost function is a linear transformation g(.) of their images over the iso-

information surface. Proposition 7 gives the relation between efficiency and independence

of signals.

Proposition 7. All informationally efficient allocations (δι, λι1, λ
ι
2) ∈ (0, 1)×(0, 1)×(0, 1)

generate independent signals.

Proof. It follows from the definition of informationally efficient allocations and the chain

rule in formula (2.6).

Informational efficiency is incompatible with any allocation where δ = 1, since it

generates uninformative signals. Furthermore, informational efficiency reduces the feasible

values of parameters to, λ1 = 1, λ2 = 0 or λ1 = λ2 = λ, with λ ∈ (0, 1). The above

informativeness constraints, allow for the expected profit function to be redefined as an

implicit function of iso-profit surfaces.

60



Definition. The iso-profit function is given by δπ (λ1, λ2, π̄), where

π (δπ (λ1, λ2, π̄) , λ1, λ2) = π̄.

From equation (2.8), the iso-profit is a continuous function. Also, note that mono-

tonicity alongside with the previous assumption of informativeness in Definition 1 imply

∂π
∂δπ

< 0.11 Lemma 8 shows the existence of a solution to the insider’s problem with a

unidimensional signal. The proof is divided in three parts, first it shows that such values

exist, then that this allocation is informationally efficient, and finally that higher expected

profits cannot be achieved in a neighborhood around the optimal values. Informational

efficiency can be understood intuitively on the Venn diagram example.

Lemma 8. For a finite processing capacity 0 < κ̄ < κ̊, there is some δ∗, λ∗ > 0 such that

(δ∗, λ∗, λ∗) is informationally efficient and expected profits are maximized at (δ∗, λ∗, λ∗).

Proof. The existence is provided by the iso-cost curve, which is defined on λ1 = λ2 for all

0 < κ̄ < κ̊.

Informational efficiency comes directly from Proposition 6.

Suppose that expected profits were not maximized.Due to construction of the cost

function, δ∗ (λ∗, λ∗, κ̄) < δ (λ∗, λ2, κ̄), λ2 < λ∗ . Now, let

C = Nε (δ∗, λ∗, λ∗) ∩ {(δ, λ1, λ2)
∈ (0, 1)× (0, 1)× (0, 1) st c (δ, λ1, λ2)
= g (κ̄)} ,

be the set of all affordable allocations within an ε > 0 range of (δ∗, λ∗, λ∗). Now, consider

the objective function evaluated in the solution, π (δ∗, λ∗, λ∗) and the following deviations

from the equilibrium

π
(
δ∗, λ∗, λ

′

2

)
> π (δ∗, λ∗, λ∗) iff λ

′

2 < λ∗,

π
(
δ∗, λ

′

1, λ
∗
)
> π (δ∗, λ∗, λ∗) iff λ

′

1 > λ∗,

π
(
δ
′
, λ∗, λ∗

)
> π (δ∗, λ∗, λ∗) iff δ

′
< δ∗.

Which follows from Proposition 6. These conditions imply that if an allocation in C

delivers higher expected profits, it should either satisfy δ′ < δ∗, λ′1 > λ∗, or λ′2 < λ∗.

11Alternatively, compute the derivative to confirm the sign.
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Consider the case where λ′2 < λ∗, if it is a solution to the problem, it should be over the

same iso-cost surface, since
(
δ∗, λ∗, λ

′
2

)
/∈ C then, either λ′1 < λ∗ or δ′ > δ∗, or both.

Moreover, I consider the allocation (δ′, λ′1, λ
′
2) where expected profits are higher. If the

insider faces additional garbling through the reduction of λ1 to match λ′2, the resulting

gain in expected profits from the reduction of δ dominates the effect from the reduction

of λ1. Over the iso-cost surface

lim
ε→0+

δ (λ1, λ1 − ε, κ̄) = δ
(
λ1, λ1,

κ̄

2

)
> δ (λ1, λ1, κ̄) ,

and

lim
ε→0+

δ (λ2 + ε, λ2, κ̄) = δ
(
λ2, λ2,

κ̄

2

)
> δ (λ2, λ2, κ̄) .

Which is contradicts Proposition 5. Therefore, expected profits are maximized at (δ∗, λ∗, λ∗).

The last part of the proof relies on the fact that the effect of parameter δ dominates

the effect of the changes in λ1 and λ2. Hence, as long as there is a possibility to reduce δ

while λ changes, this choice dominates any other effect. Lemma 8 states that for a given

capacity, there is a point along the iso-cost where δ and κ̄ are such that λ1 = λ2 = λ.

2.4.3 Price comovement and market orders.

The takeaway of the previous subsection, specifically Lemma 8, is the willingness of an

insider to sacrifice one dimension of the information structure in exchange for overall

accuracy. Such behavior is exhibited by insiders who face a very tight capacity constraint.
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In consequence, the prices set in the market would be

p1 (1) =
a (1− δ)

(
λ+ (1− λ) F̄2

)
+ 1

2
(aδ + 1− a)

a (1− δ)
(
λF̄1 + (1− λ) F̄2

)
+ 1

2
(aδ + 1− a)

F̄1,

p1 (−1) =
a (1− δ) (1− λ)

(
1− F̄2

)
+ 1

2
(aδ + 1− a)

a (1− δ)
(
λ
(
1− F̄1

)
+ (1− λ)

(
1− F̄2

))
+ 1

2
(aδ + 1− a)

F̄1,

p2 (1) =
a (1− δ)

(
λF̄1 + (1− λ)

)
+ 1

2
(aδ + 1− a)

a (1− δ)
(
λF̄1 + (1− λ) F̄2

)
+ 1

2
(aδ + 1− a)

F̄2, and

p2 (−1) =
a (1− δ)λ

(
1− F̄1

)
+ 1

2
(aδ + 1− a)

a (1− δ)
(
λ
(
1− F̄1

)
+ (1− λ)

(
1− F̄2

))
+ 1

2
(aδ + 1− a)

F̄2,

and the market orders are

x
(
Ỹ
)

=


(1, 1)′ if Y = 1

(−1,−1)′ if Y = 0

.

This section has shown the difference in price formation when the insiders are perfectly

informed and when they face information constraints. An information-processing con-

straint can explain the existence of market anomalies because, in pursuit of precision, the

insider optimally decides to constrain his action space. In that sense, there is not external

force that could generate direct price comovement.

2.5 A market maker

As mentioned in Section 2.3, the trading protocol can influence the behavior of agents

in different ways. In particular, a trading protocol where a market maker processes the

orders faces a broader information set than two separate specialists do. Conversely, a

specialist does not have enough information about the investor’s profile when observing

the order flow for only one asset. In this section, the trading protocol requires a market

maker to trade both assets, i.e., to review market orders for both assets together. This

trading protocol is less common than specialists trading in stock markets. The model

considered for this analysis considers the same investor profiles as in the previous section,

insiders and noise traders, who both submit their orders to a market maker. The protocol

63



allows the market maker to update her beliefs about the investor profiles through the order

flow. As a result, in the pricing rule, the market maker cross-subsidizes for potential losses

across markets. This section concludes with a comparative statics exercise to examine

the differences in an insider’s choices of information when trading before specialists and

market makers.

2.5.1 Perfect information

Insiders observe the asset payoff vector before it is public information to the other investors

and place the market order after they update their beliefs. Noise traders place orders for

the two assets simultaneously, and contrary to specialists, the market maker observes

an order flow ω̃ ∈ {(1, 1) , (1,−1) , (−1, 1) , (−1,−1)}. Since the insiders have perfect

information, the market orders are

x
(
F̃
)

=



(1, 1)′ if F = (1, 1)′

(1,−1)′ if F = (1, 0)′

(−1, 1)′ if F = (0, 1)′

(−1,−1)′ if F = (0, 0)′ .

Simultaneously, noise traders place random liquidity orders, in which all outcomes are

equally likely, that is z̃ = 1
4
◦(1, 1)′⊕ 1

4
◦(1,−1)′⊕ 1

4
◦(−1, 1)′⊕ 1

4
◦(−1,−1)′ . Once the agents

are called to trade, the market maker observes the order flow, ω̃ = a◦x
(
F̃
)
⊕ (1− a)◦ z̃,
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and announces the corresponding price vector. The prices she sets for ω = (1, 1) are

p (1, 1) = E
[
F̃ |ω = (1, 1)

]
=

 1

1

Pr
(
F = (1, 1)′ |ω = (1, 1)′

)
+

 1

0

Pr
(
F = (1, 0)′ |ω = (1, 1)′

)

+

 0

1

Pr
(
F = (0, 1)′ |ω = (1, 1)′

)

=

 1

1

 Pr
(
ω = (1, 1)′ |F = (1, 1)′

)
Pr
(
F = (1, 1)′

)
Pr
(
ω = (1, 1)′

)
+

 1

0

 Pr
(
ω = (1, 1)′ |F = (1, 0)′

)
Pr
(
F = (1, 0)′

)
Pr
(
ω = (1, 1)′

)
+

 0

1

 Pr
(
ω = (1, 1)′ |F = (0, 1)′

)
Pr
(
F = (0, 1)′

)
Pr
(
ω = (1, 1)′

)

=

 (a+ 1−a
4 )F̄1F̄2

aF̄1F̄2+ 1−a
4

+
1−a
4
F̄1(1−F̄2)

aF̄1F̄2+ 1−a
4

(a+ 1−a
4 )F̄1F̄2

aF̄1F̄2+ 1−a
4

+
1−a
4 (1−F̄1)F̄2

aF̄1F̄2+ 1−a
4

 =

 (a+ 1−a
4 )F̄1F̄2+ 1−a

4
F̄1(1−F̄2)

aF̄1F̄2+ 1−a
4

(a+ 1−a
4 )F̄1F̄2+ 1−a

4 (1−F̄1)F̄2

aF̄1F̄2+ 1−a
4


=

 F̄1(aF̄2+ 1−a
4 )

aF̄1F̄2+ 1−a
4

(aF̄1+ 1−a
4 )F̄2

aF̄1F̄2+ 1−a
4

 =

 1− (1−F̄1)(1−a)

4aF̄1F̄2+1−a

1− (1−a)(1−F̄2)
4aF̄1F̄2+1−a

 .
Similarly,

p (1,−1) =

 1− (1−F̄1)(1−a)

4aF̄1(1−F̄2)+1−a

(1−a)F̄2

4aF̄1(1−F̄2)+1−a

 ,

p (−1, 1) =

 F̄1(1−a)

4a(1−F̄1)F̄2+1−a

1− (1−a)(1−F̄2)
4a(1−F̄1)F̄2+1−a

 , and

p (−1,−1) =

 F̄1(1−a)

4a(1−F̄1)(1−F̄2)+1−a

(1−a)F̄2

4a(1−F̄1)(1−F̄2)+1−a

 .
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These prices differ from the prices that the specialists set. Contrary to specialists, a market

maker sets the asset prices conditional on the order flow in all markets. he market maker

cross subsidizes for the adverse selection problem as she sets state-contingent price vectors.

Compared to specialists, the informational advantage that market makers have is the

ability to observe an investor’s order for both assets. Recall that an insider is an investor

who has access to information for both assets. Therefore, the market maker updates her

beliefs beliefs in awareness that an order submitted by an insider contains an informational

advantage about both assets. In response, the prices set by the market makers have greater

informational content than those of specialists. There are two exceptions where specialists

and market makers converge to the same prices, when there are no insiders, a = 0, and

when all traders are informed a = 1. Both situations fully reveal the investors’ profiles to

the specialist as well as to the market maker.

In this section, I have presented two fundamental differences in the structure of as-

set prices, derived from the trading protocol. First, I pointed out that prices are not

independent across markets, that is, the ask (bid) price for asset 1 changes according to

the order submitted for asset 2. As a result, the bid-ask spread is contingent on what

is traded in other markets. This feature implies that asset payoffs are not conditionally

independent on the order flow, but does not contradict the ex-ante independence of asset

payoffs and instead describes a different informational channel that generates asset price

comovement. Here, the comovement arises from the market maker’s ability to extract

additional information on the identity of the trader based on the order vector. As a

result, the market maker cross subsidizes for her expected losses across markets, which

makes the prices of each asset contingent on the action taken in the other market, i.e.,

pi (xi|xj = 1) 6= pi (xi|xj = −1), i, j = 1, 2 and i 6= j. The price comovement is generated

by the market maker’s information structure. When specialists trade, instead of market

makers, the only possible source of information-based asset price comovement is through

correlated trading. Secondly, I find that prices have a higher informational content when

they are set by a market maker, i.e., the asset prices are closer to 1 when the asset has a

high payoff and closer to zero when the payoff is low.
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2.5.2 Imperfectly informed insiders

Having analyzed the market outcome when the price-setting agents are market makers,

I will now discuss the implications of insiders that trade with a limited information set.

In this section, insiders trade but cannot observe the true payoff vector F̃ . Instead, they

use a given information-processing capacity κ̄ to build informative signals about it. The

insiders’ portfolio selection problem does not depend on the trading protocol. Thus, this

process is identical to the one described in Section 4.2. Furthermore, the insiders’ optimal

learning process is unaffected by the order submission protocol, and there are at most

two informative signals Ỹs = (1− δ) ◦
(
λs ◦ F̃1 ⊕ (1− λs) ◦ F̃2

)
⊕ δ ◦ ε̃s, none of which

is strictly more informative for both assets. When there are equally informative signals,

the insiders are indifferent between the two signals for both assets, i.e., they uses a single

signal for both assets. As a result, the market orders are the vector x
(
Ỹ
)

such that,

(2.9)x
(
Ỹ
)

= arg max
x∈X

E

[
2∑
i=1

xi

(
F̃i − pi (ω)

)
|Ỹ
]
.

The problem described in (2.9) is equivalent to (2.1) from the insiders perspective, where

the only difference is the reaction of asset prices to the order flow. The resulting market

orders are

x
(
Ỹ
)

=



(1, 1)′ if Y = (1, 1)′

(1,−1)′ if Y = (1, 0)′

(−1, 1)′ if Y = (0, 1)′

(−1,−1)′ if Y = (0, 0)′ .

Sine the informativeness of the signal remains unchanged for the insiders with respect to

the previous section, the informativeness conditions stated in Proposition 7 do not depend

on the trading protocol.

Bid and ask prices

In order to post the prices, the market maker knows that the order flow is ω̃ = a◦x
(
F̃
)
⊕

(1− a) ◦ z̃, and prices according to the zero expected profit rule p(ω̃) = E
[
F̃ |ω̃

]
. Recall
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that the market orders x̃
(
Ỹ
)

inherit the statistical properties of Ỹ , So

p (1, 1) = E
[
F̃ |ω = (1, 1)

]
=

 a(Pr(Y=(1,1)′|F=(1,1)′)F̄2+Pr(Y=(1,1)′|F=(1,0)′)(1−F̄2))+ 1
4

(1−a)

aPr(Y=(1,1)′)+ 1
4

(1−a)
F̄1

a(Pr(Y=(1,1)′|F=(1,1)′)F̄1+Pr(Y=(1,1)′|F=(0,1)′)(1−F̄1))+ 1
4

(1−a)

aPr(Y=(1,1)′)+ 1
4

(1−a)
F̄2

 ,

p (1,−1) =

 a(Pr(Y=(1,0)′|F=(1,1)′)F̄2+Pr(Y=(1,0)′|F=(1,0)′)(1−F̄2))+ 1
4

(1−a)

aPr(Y=(1,0)′)+ 1
4

(1−a)
F̄1

a(Pr(Y=(1,0)′|F=(1,1)′)F̄1+Pr(Y=(1,0)′|F=(0,1)′)(1−F̄1))+ 1
4

(1−a)

aPr(Y=(1,0)′)+ 1
4

(1−a)
F̄2

 ,

p (−1, 1) =

 a(Pr(Y=(0,1)′|F=(1,1)′)F̄2+Pr(Y=(0,1)′|F=(1,0)′)(1−F̄2))+ 1
4

(1−a)

aPr(Y=(0,1)′)+ 1
4

(1−a)
F̄1

a(Pr(Y=(0,1)′|F=(1,1)′)F̄1+Pr(Y=(0,1)′|F=(0,1)′)(1−F̄1))+ 1
4

(1−a)

aPr(Y=(0,1)′)+ 1
4

(1−a)
F̄2

 , and

p (−1,−1) =

 a(Pr(Y=(0,0)′|F=(1,1)′)F̄2+Pr(Y=(0,0)′|F=(1,0)′)(1−F̄2))+ 1
4

(1−a)

aPr(Y=(0,0)′)+ 1
4

(1−a)
F̄1

a(Pr(Y=(0,0)′|F=(1,1)′)F̄1+Pr(Y=(0,0)′|F=(0,1)′)(1−F̄1))+ 1
4

(1−a)

aPr(Y=(0,0)′)+ 1
4

(1−a)
F̄2

 .
See appendix B for the detailed conditional probabilities.

Attention allocation

The insider allocates attention to maximize his expected profit function, given the pricing

reaction functions in the trading stage. The first-stage expected profit function is

πPort (δ, λ1, λ2) = Pr (Y = (1, 1))
((
F̄1|(1,1) − p1 (1, 1)

)
+
(
F̄2|(1,1) − p2 (1, 1)

))
+ Pr (Y = (1, 0))

((
F̄1|(1,0) − p1 (1, 0)

)
+
(
p2 (1, 0)− F̄2|(1,0)

))
+ Pr (Y = (0, 1))

((
p1 (0, 1)− F̄1|(0,1)

)
+
(
F̄2|(0,1) − p2 (0, 1)

))
+ Pr (Y = (0, 0))

((
p1 (1, 0)− F̄1|(0,0)

)
+
(
p2 (1, 0)− F̄2|(0,0)

))
,

where F̄i|(j,l) = Pr (Fi = 1|Y = (j, l)), i = 1, 2 and j, l = 0, 1. This expected profits can

be re-expressed in terms of the probabilities of the signals Ỹ1 and Ỹ2 separately, given the
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way that the insider chooses to act in the second stage, i.e.,

πPort (δ, λ1, λ2) = Pr (Y1 = 1)
(
F̄1|1,1 − Ȳ2|1p1 (1, 1)−

(
1− Ȳ2|1

)
p1 (1, 0)

)
+ Pr (Y2 = 1)

(
F̄2|2,1 − Ȳ1|1p2 (1, 1)−

(
1− Ȳ1|1

)
p2 (0, 1)

)
+ Pr (Y1 = 0)

(
Ȳ2|0p1 (0, 1) +

(
1− Ȳ2|0

)
p1 (0, 0)− F̄1|1,0

)
+ Pr (Y2 = 0)

(
Ȳ1|0p2 (1, 0) +

(
1− Ȳ1|0

)
p2 (0, 0)− F̄2|2,0

)
, (2.10)

where Ȳs|j = Pr (Ys = 1|Yr = j) = (1− δ)
(
λsF̄1|r,j + (1− λs) F̄2|r,j

)
+ 1

2
δ, s, r = 1, 2,

s 6= r and j = 0, 1. The expected profit function in (2.10) resembles (2.8), where the

informational advantages are proportional to the weighted average between the bid and

ask prices for each asset. Note that the informativeness of the signals guarantees pos-

itive expected profits since, F̄1|1,1 > p1 (1, 1) , p1 (1, 0), F̄2|2,1 > p2 (1, 1) , p2 (0, 1), and

F̄1|1,0 < p1 (0, 1) , p1 (0, 0), F̄2|2,0 < p2 (1, 0) , p2 (0, 0). This is rather similar to the behav-

ior observed in the previous section. The following proposition summarizes the effect of

the weights of the uninformative elements of the signal on the insider’s expected profits.

Proposition 9. The expected profit function under the portfolio trading protocol πPort (δ, λ1, λ2)

is decreasing in both garbling, and redundant noise

∂πPort (δ, λ1, λ2)

∂δ
< 0,

∂πPort (δ, λ1, λ2)

∂(1− λ1)
< 0,

and
∂πPort (δ, λ1, λ2)

∂λ2

< 0.

Proof. See Proposition 6.

The expected profit function under the portfolio trading protocol is decreasing in

garbling as in the previous section. The next step is to examine the effect on the expected

profits of both protocols. Proposition 7 shows that the finer information set available

to market makers reduces the insider’s expected profits in comparison to the expected

profits achieved from trading with specialists. More specifically, the insiders’ informational
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advantages are less valuable when they trade portfolios since this trading protocol discloses

additional information about the insiders. Therefore, the expected profits are lower for

the insiders.

Proposition 10. For any given information structure (δ, λ1, λ2), where δ ∈ [0, 1] and

0 < λ2 ≤ λ1, specialist trading generates higher expected profits for the insider compared

to marker maker trading, π (δ, λ1, λ2) ≥ πPort (δ, λ1, λ2) .

Proof. Consider the cases of perfect information introduced at the beginning of sections

2.4 and 2.5. It is straightforward to see that the constraint does not bind since the

informational advantage in every state is higher when specialists trade the assets. Now

consider an information structure (δ, λ1, λ2), and compare the informational advantages

in every possible state for both (2.8) and (2.10). The analysis is is performed through the

comparison of the bid and ask prices because the expected payoffs only depend on the

information structure and not on the trading protocol. Generically, for asset 1 the bid

and ask prices set by a specialists satisfy

p1 (1) ≤ Ȳ2|1p1 (1, 1) +
(
1− Ȳ2|1

)
p1 (1, 0)

and
p1 (−1) ≥ Ȳ2|0p1 (0, 1) +

(
1− Ȳ2|0

)
p1 (0, 0) .

Following a similar procedure for the two assets and signal outcomes, the inequalities hold

to the benefit of the insider when specialists trade. Hence, π (δ, λ1, λ2) ≥ πPort (δ, λ1, λ2).

The previous proposition states that the informational gains from inside information

are slightly diminished by the additional information that the market maker obtains due

to observing the whole order flow. However, there is still one unexplored case in the

previous proposition, the acquisition of a single signal, λ1 = λ2 = λ.

If λ1 = λ2 = λ, then (2.10) can be re-written as

πPort (δ, λ, λ) = Pr (Y = 1)
(
F̄1|1 − p1 (1, 1) + F̄2|1 − p2 (1, 1)

)
+ (1− Pr (Y = 1))

(
p1 (0, 0)− F̄1|0 + p2 (0, 0)− F̄2|0

)
,
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and (2.8)

π (δ, λ, λ) = Pr (Y = 1)
(
F̄1|1 − p1 (1) + F̄2|1 − p2 (1)

)
+ (1− Pr (Y = 1))

(
p1(−1)− F̄1|0 + p2(−1)− F̄2|0

)
,

where F̄i|j = Pr (Fi = 1|Y = j). The previous result follows from the acquisition of a

single signal, which implies that the market orders are perfectly correlated across markets.

Moreover, the corresponding prices for asset 1 set by the specialists and market makers

respectively are

p1 (1) =
a (1− δ)

(
λ+ (1− λ) F̄2

)
+ 1

2
(aδ + 1− a)

a (1− δ)
(
λF̄1 + (1− λ) F̄2

)
+ 1

2
(aδ + 1− a)

F̄1,

p1 (1, 1) =
a (1− δ)

(
λ+ (1− λ) F̄2

)
+ 1

2
δa+ 1

4
(1− a)

a (1− δ)
(
λF̄1 + (1− λ) F̄2

)
+ 1

2
δa+ 1

4
(1− a)

F̄1,

where p1 (1, 1) > p1 (1). In general, pi (1, 1) > pi (1) and pi (−1,−1) < pi (−1) for i =

1, 2 . The market maker knows that when insiders choose to buy only one signal their

market orders are perfectly correlated. Therefore, whenever a market maker observes

an order flow that contains opposite orders for the two assets, she knows that there

is no inside information behind this order. As a result, she sets p1 (1,−1) = F̄1, and

p2 (−1, 1) = F̄2. The following lemma shows that under portfolio trading protocol, there

is an informationally efficient equilibrium with only one signal.

Lemma 11. For a finite processing capacity 0 < κ̄ < κ̊, there exist some δ∗∗, λ∗∗ > 0

such that (δ∗∗, λ∗∗, λ∗∗) is informationally efficient and expected profits are maximized at

(δ∗∗, λ∗∗, λ∗∗).

Proof. Since Proposition 9 indicates that the expected profit function is decreasing in the

garbling and redundant noise parameters just as it was under the asset trading protocol,

and the iso-cost function is not conditional on the trading protocol. Then, the same

conditions as in Lemma 8 are satisfied.

Lemma 11 implies that an informationally constrained insider optimally chooses only

one signal. Hence, the market orders are perfectly correlated through two different sources
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of information-induced price comovement. This paper concludes with a proposed exten-

sion to the model where there is a previous stage in which insiders purchase an expected

profit-maximizing quantity of information. In this extension, I analyze the effect on prices

of a regulatory change in the trading protocol.

Extension: a change of protocol.

This section has shown that under identical market conditions and different trading pro-

tocols, the insider’s expected profits are always lower when the market maker trades

portfolios. These models allow for the capacity level κ to be endogenously determined

through a profit maximization problem. However, I do not address this specific problem

above since it is not relevant to the discussion.

For this extension, I assume that there is a competitive market for information where

the insiders can purchase the signals. Once the signal(s) is(are) purchased, the optimal

values for the parameters in the signals solve the aforementioned implicit functions of κ.

This endogenous choice of the κ occurs in a previous stage, stage 0, and the other two

stages were discussed previously. In stage 1 the agent chooses the information structure

given κ, and in stage 2 trading takes place. For the optimal level of information-processing

capacity, in stage 0, the insider chooses a capacity level such that its expected marginal

revenue is equal to the marginal cost. In stage 0, the expected revenue for the insider

corresponds to his value function in stage 1.

Let Π (κ), be the stage 1 value function under a protocol where specialists trade, and

let Ψ (κ) be the stage 1 value function when market makers trade portfolios. Also, define

the value κ̊ that Π′ (κ) ,Ψ´ (κ) = 0 for all κ > κ̊. Additionally, consider the cost function

g(κ) with a constant marginal cost of information, where g′ (·) > 0 and g′′ (·) = 0.

Initially, the insider chooses the information-processing capacity before trading under

an asset trading protocol, κ∗ = arg maxκ Π (κ) − g (κ). Let this particular insider face

market conditions such that κ∗ = κ̊, and Π(κ∗) − g (κ∗) = ν, i.e., his optimal capacity

level is just high enough to purchase a perfectly informative signal. After the insider

has chosen his optimal capacity κ∗, there is a regulatory change in this market and the

specialists become market makers and start trading portfolios.
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If there is a change in the trading protocol, the expected losses for the insider are

Π (κ∗) − Ψ (κ∗). Consider Π (κ∗) − Ψ (κ∗) < ν, and Ψ (κ∗) − g′ (κ∗) < 0. Then, there

must be a new optimal capacity κ∗∗ = arg maxκ Ψ (κ) − g (κ) < κ∗ = κ̊, which means

that the same insider does not find κ∗ optimal anymore. As a result, an insider whose

level of expected profits permitted the acquisition of perfect information when specialists

were trading cannot reach the profit threshold for the acquisition of perfect information

anymore. In other words, this is an insider whose expected profits are just enough to

optimally acquire perfect information when a specialist is trading assets. The lower in-

formational advantages implied by market makers trading portfolios reduce the expected

profits. Therefore, the acquisition of perfect information is no longer optimal for the

insider described here.

2.6 Concluding remarks

I use a bivariate model for insider trading to provide a rational explanation for the

information-based comovement of prices across financial assets. This model allows the

insider to characterize the optimal information structure he accesses during the trad-

ing decisions. As a result, it provides a potential explanation as to why, in the pursuit

of higher precision, insiders are willing to lose the statistical independence of the infor-

mation acquired. Moreover, market orders inherit the acquired information’s statistical

properties, and with it, the loss of statistical independence induces perfectly correlated

market orders. The results are obtained through the characterization of the expected

profit function and its response to changes in the garbling and redundant noise param-

eters. Through the model, I find a relevant mechanism that links the expected profit

function to the mutual information function.

The bivariate feature of the model extends the explanation of the bid-ask spread as an

informational phenomenon beyond the quality of the insider’s information. The bivariate

choice allows different characterizations of the information set that the price-setting agent

faces. Thus, I can explain correlation in the formation of the bid-ask spread as a result

of the insider’s access to correlated information or a trading protocol that discloses some
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additional information about the insiders.

Throughout the paper, I analyze two sources of price comovement. First, I consider

traders with low processing capacity who supply optimally correlated information through

their market orders. Second, I find that market makers cross-subsidize across markets to

compensate for the adverse selection problem that insiders pose. Both explanations reveal

the existence of an informational channel as a source of artificial price comovement.

This model is suitable to analyze markets for assets whose payoffs are not high enough

to compensate for the cost of buying precise information about it. Consequently, traders

group some assets into a joint index, based on which they place their orders. The market

orders are not affected directly by the protocol, but it does affect the expected profits

and the choice of information. Possible extensions to this model include the extension of

the time horizon to analyze the evolution and persistence of information-based market

anomalies in financial markets and their effect on the bid-ask spread.

Appendix

B Mutual information of signals

This appendix contains the corresponding expression for the mutual information func-

tion when the signal is a mixture of Bernoulli variables. From the definition of mutual

information function I
(
F̃i|Ỹi

)
stated in Section 4.2, we have

I
(
F̃1; Ỹ1

)
= H

(
F̃1

)
−H

(
F̃1|Ỹ1

)
= −E

[
log
(

Pr
(
F̃1

))]
−

1∑
i=0

Pr (Y1 = i)H
(
F̃1|Y1 = i

)
= −F̄1 log

(
F̄1

)
−
(

(1− δ)
(
λ1F̄1 + (1− λ1) F̄2

)
+
δ

2

)
H
[
F̃1|Y = 1

]
−
(

(1− δ)
(
λ1(1− F̄1) + (1− λ1)

(
1− F̄2

))
+
δ

2

)
H
[
F̃1|Y1 = 0

]
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=

(
(1− δ)

(
λ1 + (1− λ1) F̄2

)
+

1

2
δ

)
F̄1 log

(
(1− δ)

(
λ1 + (1− λ1) F̄2

)
+ 1

2
δ

(1− δ)
(
λ1F̄1 + (1− λ1) F̄2

)
+ 1

2
δ
F̄1

)

+

(
(1− δ) (1− λ1)

(
1− F̄2

)
+

1

2
δ

)
F̄1

· log

(
(1− δ) (1− λ1)

(
1− F̄2

)
+ 1

2
δ

(1− δ)
(
λ1

(
1− F̄1

)
+ (1− λ1)

(
1− F̄2

))
+ 1

2
δ
F̄1

)
− F̄1 log

(
F̄1

)
.

Similarly, the mutual information function for the other asset payoff and its corre-

sponding signal,

I
(
F̃2; Ỹ2

)
=

(
(1− δ)

(
λ2F̄1 + (1− λ2)

)
+

1

2
δ

)
F̄2 log

(
(1− δ)

(
λ2F̄1 + (1− λ2)

)
+ 1

2
δ

(1− δ)
(
λ2F̄1 + (1− λ2) F̄2

)
+ 1

2
δ
F̄2

)

+

(
(1− δ)λ2

(
1− F̄1

)
+

1

2
δ

)
F̄2

· log

(
(1− δ)λ2

(
1− F̄1

)
+ 1

2
δ

(1− δ)
(
λ2

(
1− F̄1

)
+ (1− λ2)

(
1− F̄2

))
+ 1

2
δ
F̄2

)
− F̄2 log

(
F̄2

)
.

B. Distribution and conditional distribution of the signal

In this appendix, I present some probabilities that have been used throughout the analysis.

I characterize the distribution of the signal Ỹ =
[
Ỹ1, Ỹ2

]′
by using Bayes’ rule repeatedly

to compute the conditional probabilities. For example, the conditional probability that

signal Y1 = 1 given Y2 = 1 is

Pr (Y1 = 1|Y2 = 1) = (1− δ)
(
λ1F̄1|2,1 + (1− λ1) F̄2|2,1

)
+

1

2
δ

= (1− δ)
((

(1− δ)
(
λ2 + (1− λ2) F̄2

)
+ 1

2
δ
)
λ1F̄1

(1− δ)
(
λ2F̄1 + (1− λ2) F̄2

)
+ 1

2
δ

+

(
(1− δ)

(
λ2F̄1 + (1− λ2)

)
+ 1

2
δ
)

(1− λ1) F̄2

(1− δ)
(
λ2F̄1 + (1− λ2) F̄2

)
+ 1

2
δ

)
+

1

2
δ

=
(1− δ)2 (λ2λ1F̄1 + ((1− λ2)λ1 + λ2 (1− λ1)) F̄1F̄2 + (1− λ2) (1− λ1) F̄2

)
Pr (Y2 = 1)

+
1
2
δ
(
Pr (Y1 = 1) + Pr (Y2 = 1)− 1

2
δ
)

Pr (Y2 = 1)
.

Table 2.2 summarizes all the possible cases. Panel A displays the conditional prob-

ability of signal Ỹ1 given Ỹ2, and Panel B the conditional probability of signal Ỹ2 given

Ỹ1.
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Table 2.3 contains the values of the probabilities for all four possible outcomes. I, use

Bayes’ rule once again to characterize the conditional distribution of the signal vector

given the asset payoffs. Table 2.4 contains the corresponding conditional probabilities.
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Y Cond. on F Probability

(1, 1)

(1, 1)
(
1− 1

2
δ
)2

(1, 0) (1− δ)2 λ2λ1 + 1
2
δ (1− δ) (λ1 + λ2) +

(
1
2
δ
)2

(0, 1) (1− δ)2 (1− λ2) (1− λ1) + 1
2
δ (1− δ) (2− λ1 − λ2) +

(
1
2
δ
)2

(0, 0)
(

1
2
δ
)2

(1, 0)

(1, 1) 1
2
δ (1− δ) +

(
1
2
δ
)2

(1, 0) (1− δ)2 (1− λ2)λ1 + 1
2
δ (1− δ) (λ1 + (1− λ2)) +

(
1
2
δ
)2

(0, 1) (1− δ)2 (1− λ1)λ2 + 1
2
δ (1− δ) ((1− λ1) + λ2) +

(
1
2
δ
)2

(0, 0) 1
2
δ (1− δ) +

(
1
2
δ
)2

(0, 1)

(1, 1) 1
2
δ (1− δ) +

(
1
2
δ
)2

(1, 0) (1− δ)2 λ2 (1− λ1) + 1
2
δ (1− δ) (λ2 + (1− λ1)) +

(
1
2
δ
)2

(0, 1) (1− δ)2 λ1 (1− λ2) + 1
2
δ (1− δ) (λ1 + (1− λ2)) +

(
1
2
δ
)2

(0, 0) 1
2
δ (1− δ) +

(
1
2
δ
)2

Table 2.4: Conditional distribution of Ỹ given F̃ . The results for Y = (0, 0) can be

computed using the theorem of total probability.
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Chapter 3

Learning specialists and market

resilience

3.1 Introduction

The stochastic properties of asset prices are affected when the specialist has a limited

capacity to learn from the market and, in a financial market where investors submit

orders to specialists, they face an adverse selection problem, since they cannot observe

each order’s originator. In response, specialists make the market less liquid, and the asset

prices differ from their fundamental value. One way to measure liquidity in a market is

to determine how quickly asset prices can recover after a large order. This recovery speed

is called market resilience, and there are different theories as to why a market is more or

less resilient. One of these theories states that market resilience is affected by the ability

of the price-setting agent, the specialist, to infer useful information from the orders she

observes. These orders are called order flow, and they contain relevant information about

the asset payoffs when informed agents, insiders, trade.

For example, in a market where specialists can distinguish between insiders and noise

traders, a specialist uses the insiders’ trades to set each period’s asset price equal to the

corresponding asset payoff. In such a market, there is no adverse selection problem. On

the contrary, in a market with asymmetric information between traders and a specialist,

the specialist cannot identify whether a large order comes from an insider’s knowledge of
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good or bad news about the asset payoff or about a noise trader that submitted random

demands.

From here on, I refer to shocks to asset payoffs as structural shocks, and other shocks

to the order flow as noise trading shocks. In this paper, the specialist is allowed to

allocate an exogenous learning capacity to filter out noise trading to study the effect on

the corresponding pricing process.

To serve that purpose, I consider a model where specialists hold inventories of shares

in the stock market and there is one specialist trading each asset. Their role is to set

the asset prices as they process investors’ orders. In each period, the informed investors

anonymously feed new information into the market through the market orders. The

existence of noise traders provides camouflage for the insider. The specialist cannot

perfectly identify the insider’s actions since she observes the order flow, preventing her

from practicing any form of price discrimination. Here, specialists are endowed with a fixed

information-processing capacity (or learning technology). They allocate this capacity to

filter out noise trading and identify structural shocks affecting the market. As her learning

capacity increases, the specialist reacts faster to structural shocks. In contrast, a smaller

learning capacity delays the impact of structural shocks on prices.

Market resilience has two interpretations in financial markets. In this paper, I study

resilience in the sense of Kyle (1985), where it is defined as the recovery speed of asset

prices from an uninformative shock.1 A specialist trades in each period, setting the asset

prices to meet the expected value of the asset payoffs. For Kyle (1985), any liquidity

fluctuation results from an informational asymmetry across investors in the market, as

in Glosten and Milgrom (1985). As a result of this asymmetry, the specialist makes

the market less liquid, and the prices are highly persistent to uninformative trades. If

the specialist resolves the informational asymmetry, this persistence disappears, i.e., the

market becomes more resilient.

I use a model for insider trading where specialists face a dynamic pricing problem.

1Alternatively, in Garbade (1982) a market is resilient if there is order replenishment, i.e., new orders
arise quickly as temporary order imbalances occur. Similar definitions of resilience include the fast
convergence of the price to a new steady-state after a marker order in Obizhaeva and Wang (2013), or
the inability of informed traders to substantially change the market prices. Hence, resilience does not
have a unique definition, and it can refer to as the capacity of either prices or trading volume to recover
from external shocks.
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In each period, all investors submit their orders to a specialist. After the specialist

observes the order flow, which determines her information structure, sets the asset’s price

to minimize her expected losses. At the end of each period, the asset payoff is observable,

so the history of asset payoffs to the previous period and their stochastic processes are

common knowledge. The only agent with information about new shocks is the informed

investor (or insider). Once the order flow is available, specialists update their beliefs

about the new asset payoffs. Therefore, I assume that there is a one risk-averse specialist

who sets the asset price in each market.

The model I propose allows the specialist to learn about the market orders, solving

the rational inattention problem proposed by Sims (2003). In a model where there are

rationally-inattentive agents, these can partially resolve the uncertainty of a variable given

an information-processing constraint. Such a constraint is entropy-based and follows the

information function in Shannon (1948). The learning process in rational inattention

problems allows each agent to characterize an optimal information set according to their

objective function. Among other applications, Peng (2005) and Peng and Xiong (2006)

first introduced the rational inattention problem to financial economics in a portfolio

selection problem. Later on, van Nieuwerburgh and Veldkamp (2009, 2010) explain port-

folio under-diversification and the home bias puzzle as a result of rationally-inattentive

investors choosing a portfolio. Therefore, in this paper specialists are allowed to allocate

their information-processing capacity to reduce the noise in the order flow. By doing so,

it is shown that specialists react faster when they have higher capacities, and the effect

on prices of a spurious shock in the order flow dissolves quickly, i.e., the market becomes

more resilient. Consequently, it is possible to characterize the stochastic behavior of asset

prices as the specialist’s learning capacity changes.

Maćkowiak et al. (2018) provide an alternative solution to the dynamic rational inat-

tention problem in Sims (2003), where analytical solutions can be achieved for several

linear quadratic problems. They show that the dynamic rational inattention problem is

equivalent to solving for the Kalman gain in the equivalent state-space representation

of the problem. This paper shows that when the specialist’s utility function is CARA,

the pricing problem is represented in linear quadratic form. I then follow Maćkowiak
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et al. (2018) to show that the specialist’s pricing process follows the same structure as the

stochastic process of asset payoffs. The resulting problem for the specialist is equivalent

to solving the Kalman gain in a state-space representation. I represent market resilience

in the impulse response functions of asset prices to structural shocks and noise trading.

The paper is structured as follows: Section 2 introduces a static model where pricing

occurs through simple Bayesian updating, Section 3 presents some analytical results for

ARMA(p, q) processes for the optimal pricing rule and analyzes the price dynamics using

impulse response functions. Finally, Section 4 provides some concluding remarks.

3.2 Static choice

This section presents a static model for insider trading where a specialist allocates her

learning capacity to identify the insider’s market orders. To do so, she allocates her learn-

ing capacity to reduce the perceived noise from liquidity trades to increase the observed

order flow’s precision. Once the signal has been observed, the specialist sets the asset

prices to maximize her expected profits.

3.2.1 Market orders

There are three types of investors in this market: a perfectly informed insider, random

liquidity traders and a specialist. The insiders and liquidity traders submit their orders

to a specialist. The specialist then sets the price and processes the orders. The traded

asset has normally distributed payoffs, F̃ ∼ N
(
F̄ , σ2

F

)
. Let f̃ ≡ F̃ − F̄ be the devia-

tion of the asset payoff from its mean value, such that f̃ ∼ N (0, σ2
F ) contains only the

structural shocks to the true payoffs. The noise traders place random liquidity demands

z̃ ∼ N (0, σ2
z). The insider places his market order x̃ = x

(
f̃
)

for the asset in order to

maximize the expected profit

E
[
x
(
f̃ − p

)
|f̃
]
,

where p ≡ P − F̄ is the asset price P rescaled by the mean of the asset payoff, which is set

by the specialist after observing the order flow. The market order is a sufficient statistic
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for the asset payoff whenever the insider is perfectly informed. Moreover, in equilibrium

the market order will be a linear function of the centered payoff f̃ .

3.2.2 Asset price

There is a single risk-averse specialist who sets the price by maximizing the expected

utility function. The constant absolute risk aversion, CARA, preferences are given by

u (ν̃) = −e−%ν̃ ,

where % is the risk aversion parameter. Since she is the only specialist, she absorbs the

whole order flow, and her profits are determined by the profits of “making the market”,

i.e., ν̃ = ω̃
(
P − F̃

)
.2 Therefore, the specialist’s preferences are given by

(3.1)E [u (ν̃)] = E
[
E [ν̃|I]− %

2
V [ν̃|I]

]
,

where the information set I = ω̃ is the order flow. In this static case, the information

set available to the specialist is given by the aggregate orders in the market, the insider’s

market orders plus noise trading, the order flow ω̃ = x̃ + z̃. Equation (3.1) follows an

implicit preference for early resolution of uncertainty as in Kreps and Porteus (1978) and

Epstein and Zin (1989).3 The specialist’s profits equivalently represented using centered

variables, ν̃ = ω̃
(
p− f̃

)
. Then, given that E [ω̃] = 0, the objective function in (3.1)

becomes −%ω̃2

2
E
[(
f̃ − p

)2

|ω̃
]
. Hence, the specialist sets the prices to maximize her

expected utility,

p (ω̃) = arg min
p

E
[(
f̃ − p

)2

|ω̃
]
.

Then, the pricing rule p = E
[
f̃ |ω̃
]

solves the previous problem.

3.2.3 Learning

This subsection depicts how the specialist’s prices respond to the order flow as they can

filter out noise trading. The specialist allocates her capacity to learn about the true

payoffs from the order flow, in this case to filter out the variance introduced by the noise

2See Subrahmanyam (1991).
3See van Nieuwerburgh and Veldkamp (2010) section 1.2 for further details of this specification of

CARA expected utility.
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traders. Intuitively, this can be seen as feedback provided by the specialist to the market

in order to reduce the posterior variance of noise trading. This is equivalent to assuming

that the specialist is endogenizing the noise-trading variance. Since there is a one-to-one

correspondence between the asset payoff and the market order, the order flow can be

transformed into the signal

s̃ = f̃ + ζ̃ ,

where ζ̃ is a normal random variable that represents the normalization of the noise intro-

duced by the random liquidity traders.4

I assume that the specialist can acquire κ units of information at a marginal cost λ.

The information is measured in units of entropy-based uncertainty reduction as proposed

by Shannon (1948). The mutual information determines the amount of information that

a random variable contains about another variable. In our case, it gives the amount of

information that the signal contains about the asset’s fundamental value. This function

indicates the uncertainty that can be resolved regarding the asset payoffs when the spe-

cialist observes the order flow. Let the entropy function H
(
f̃
)

= −E
[
ln p

(
f̃
)]

quantify

the information required to fully resolve the uncertainty on the variable f̃ . After observing

a signal s̃, the remaining unresolved uncertainty left is given by the conditional entropy

function H
(
f̃ |s̃
)

= −E
[
ln p

(
f̃
)
|s̃
]
. Moreover, the difference between the unconditional

and conditional entropy gives the total resolved uncertainty achieved when the signal is

observed,

I
(
f̃ ; s̃
)

= H
(
f̃
)
−H

(
f̃ |s̃
)
.

The acquired units of information pose an upper bound for the mutual information

I
(
f̃ ; s̃
)
≤ κ. This upper limit is referred to as the capacity constraint and, in this

problem, it binds. Furthermore, when f̃ and s̃ are normally distributed, the capacity

constraint becomes

κ =
1

2
ln

(
σ2
F

σ2
F |s

)
,

where σ2
F |s =

σ2
F σ

2
ε

σ2
F+σ2

ε
is the conditional variance of f̃ after signal s̃ is observed.

4Due to the linearity of the market order, the transformed signal s̃ is such that f̃ = x−1 (ω̃ − z̃) is also
linear. Therefore, the signal is obtained from f̃ = s̃− ζ̃.

86



Recall that Bayesian updating under normality causes a linear dependence of the

conditional expectation E
[
f̃ |s̃
]

on f̃ . Hence, the price is given by

E
[
f̃ |s̃
]

= (1− δ) f̄︸︷︷︸
=0

+δs̃,

where the weight δ ≡
(

1− σ2
F |s
σ2
F

)
∈ [0, 1] represents the attention level assigned to the

signal. Note that the conditional expectation represents a weighted average between the

unconditional expected value of the payoff and the signal. Therefore, the price chosen by

the specialist is
(3.2)p̃ = δf̃ + ũ,

where δ is the attention value and ũ is a zero-mean Gaussian noise generated by liquidity

traders that cannot be filtered out. A perfectly informed specialist sets the price p̃ = f̃ .

On the contrary, a fully uninformed specialist sets a price that does not reflect the true

behavior of the asset payoff.

The specialist acquires κ units of information at a unit cost λ in order to reduce

the uncertainty resulting from noise trading. The objective function for the attention

allocation problem is

min
σ2
F |s

{
E
[(
f̃ − E

[
f̃ |s̃
])2
∣∣∣∣ s̃]+ λκ

}
= min

σ2
F |s

σ2
F |s +

λ

2
ln

σ2
F

σ2
F |s
.

Alternatively, the previous maximization problem can be written as

max
δ ∈[0,1]

{
(1− δ)σ2

F −
λ

2
ln

1

1− δ

}
.

Therefore, the optimal attention level is given by

δ = max

{
0, 1− λ

2σ2
F

}
.

Note that if the cost of information is high enough, the specialist pays no attention

to the uncertainty reduction and the price depends only on the unfiltered order flow.5

5An uninformed specialist chooses her information structure that minimizes the loss function,

E
[(
F̃ − E

[
F̃ |ω̃

])2
]
.

Which is equivalent to the problem stated above.
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However, for lower values of the unit cost λ, the specialist acquires information about

noise trading, which makes δ higher. This implies that the market becomes more liquid

as the uncertainty about market orders is reduced.

3.3 Dynamic model

Consider now a model where the specialist repeatedly trades in the market. This setup

extends the static model presented in the previous section to a market where asset payoffs

follow different stochastic processes. There are two main differences between the model

proposed in this section and the static model above. First, as the specialists repeatedly

trade in the market, their information set is composed of the observed order flow and the

history of asset payoffs, which are common knowledge. Second, endogenous information

acquisition in a dynamic environment is not modeled hereby. Instead, the results for

different exogenous capacity levels are compared.

In the dynamic version of this model, the same types of investors interact. In each

period, a perfectly informed insider places his market order x̃t = x
(
f̃t

)
to the specialist.

There is a different insider trading each period, so the market order is a time invariant

function of the asset payoff. Note that the market order does not depend on the history of

f̃t, because the insider does not have any uncertainty to resolve in period t. Noise traders

place independent random liquidity demands z̃t ∼ N (0, σ2
z) in each period. The specialist

observes the order flow as well as all past realizations of the asset payoff and chooses to

learn about noise trading to increase the precision of the order flow.

I follow Maćkowiak et al. (2018) to characterize a pricing process when asset payoffs

follow any ARMA(p, q) process. Then, I compare the results with Sims’ (2006) approach

for AR(1) processes. In section 3.2, I use the optimal pricing processes to simulate the ef-

fects on price dynamics of structural and noisy shocks through impulse response functions.

For the simulation and IRF’s, I use the DRIPs toolbox by Afrouzi and Yang (2021).
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3.3.1 Asset prices with ARMA(p, q) payoffs

This section provides a broad analytical framework for the specialist’s optimal pricing

function given a processing capacity. As a result, I find the order of the optimal stochastic

process for the prices.

The specialist chooses the stochastic properties of the signals in period t = 0. Note

that the information available to the specialist in each period is not only the current

order flow, but all the history up to this period. Therefore, she should construct the

signals for each period, since she chooses from the information set in period zero. Even

if the specialist now faces a dynamic problem, she still exhibits the same instantaneous

preferences as in the static model. Thus, the loss function for the specialist becomes,

E

[
∞∑
t=1

βt
(
f̃t − p̃t

)2

∣∣∣∣∣ It
]

=
β

1− βE
[(
f̃t − p̃t

)2
∣∣∣∣ It] , β ∈ (0, 1) ,

which is a monotone transformation of the problem in the previous section. Hence, the

pricing function p̃t is time invariant, and equivalent to the original dynamic rational

inattention model proposed by Sims (2003). The pricing that minimizes the loss function

is p̃t = E
[
f̃t|It

]
.

Consider now that f̃t follows an ARMA(p, q) process

f̃t =

p∑
s=1

φsf̃t−s +

q∑
j=0

θj ε̃t−j,

where ε̃t ∼ N (0, σ2
ε) and has zero autocorrelation. The optimal signal is one dimensional

and composed of linear combinations of the p lags of the asset payoffs f̃t and the q lags

of the exogenous shocks ε̃t.
6 The intuition behind the optimality of this structure for the

signal is that the inclusion of additional variables cannot increase the objective function

but it can reduce the information flow. Similarly, if there is more than one signal that

contains different linear combinations of the history of f̃t and its shocks ε̃t, there is always

a one dimensional signal that contains the same information with higher precision.

6See Maćkowiak et al. (2018) for the proof.
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Also recall that any ARMA(p, q) process has a VAR(1) representation,

X̃t+1 = ΦX̃t + ν̃t+1,

where X̃t is the following vector

X̃t =



f̃t if p = 0, q = 0(
f̃t, . . . , f̃t−p+1

)′
if p ≥ 1, q = 0(

f̃t, ε̃t, . . . , ε̃t−q+1

)′
if p = 0, q ≥ 1(

f̃t, . . . , f̃t−p+1, ε̃t, . . . , ε̃t−q+1

)′
if p ≥ 1, q ≥ 1

,

with covariance matrix ΣX,t, and ν̃t is a vector containing white noise elements with

covariance matrix Σν , and Φ is a squared matrix of coefficients. Moreover, the optimal

signal should have a state space representation of the form

X̃t+1 = ΦX̃t + ν̃t+1,

S̃t = η′X̃t + ψ̃t,

where η is the p + q vector of optimal weights on the signal and ψ̃t corresponds to the

noise introduced each period by noise trading, and which is uncorrelated across periods

and takes the form of Gaussian white noise with variance σ2
ψ. The specialist chooses the

weights η such that the information flow constraint is satisfied.

The specialist’s objective can be interpreted as the choice of an information structure

that reduces her uncertainty. This problem is equivalent to the selection of the weights η

in the Kalman filter equations

ΣX,t+1|t = ΦΣX,t|tΦ
′ + Σν ,

ΣX,t|t = ΣX,t|t−1 − ΣX,t|t−1η
(
η′ΣX,t|t−1η + σ2

ψ

)−1
ηΣX,t|t−1.

By stationarity of F̃t, ΣX,1 ≡ limt→∞ΣX,t|t−1 and ΣX,0 ≡ limt→∞ΣX,t|t are given by

ΣX,1 = ΦΣX,0Φ′ + Σν ,

ΣX,0 = ΣX,1 − ΣX,1η
(
η′ΣX,1η + σ2

ψ

)−1
η′ΣX,1.

90



Note that the specialist’s objective function corresponds to the first element in the matrix

ΣX,0 because it coincides with the mean squared error for each period.

The capacity constraint is the upper limit of the information flow,

lim
T →∞

1

T
I
(
F0, F̃1, . . . , F̃T ; S̃1, . . . , S̃T

)
≤ κ,

and is reduced to
1

2
ln

(
η′Σ1η

σ2
ψ

+ 1

)
≤ κ,

given the previous Kalman filter equations. That is, the information flow depends only

on the signal to noise ratio. The ratio is constant in time due to the stationarity of f̃t.

The objective function for the specialist can be rewritten as

min
η ∈Rp+q ,σ2

ψ

{(1, 0, . . . , 0) ΣX,0 (1, 0, . . . , 0) ′}

such that
1

2
ln

(
η′Σ1η

σ2
ψ

+ 1

)
≤ κ.

Since the information flow constraint is always binding,

η′Σ1η

σ2
ψ

= e2κ − 1.

For a given vector of weights, the variance of ψ is

σ2
ψ =

η′Σ1η

e2κ − 1
.

As a result, the matrix

ΣX,0 = ΣX,1 −
1− e−2κ

η′ΣX,1η
ΣX,1ηη

′ΣX,1.

Additionally, one extra identification assumption is required to solve the problem. The

vector of weights η can be normalized by one element to find a unique solution. For

example, to set the first element to be one.

Therefore, the specialist solves the following problem

min
η ∈Rp+q

{(1, 0, . . . , 0) ΣX,0 (1, 0, . . . , 0) ′} ,

where

ΣX,1 = ΦΣX,0Φ′ + Σν ,

ΣX,0 = ΣX,1 −
1− e−2κ

η′ΣX,1η
ΣX,1ηη

′ΣX,1.

91



Then, the optimal pricing rule given a capacity κ is

p̃t = E
[
f̃t|S̃t

]
.

Note that the optimal signal chosen by the specialist considers only the current period

order flow and replicates the order of the generating process for the asset payoffs. In

general, if f̃t follows an ARMA(p, q) process, the optimal signal is

S̃t =

p∑
s=1

ηsf̃t−s+1 +

q∑
j=1

ηp+j ε̃t−j+1 + ψ̃t.

As the capacity increases, the vector of optimal weights η converges to (1, 0, . . . , 0).7

This result implies that a specialist with infinite information flow processing capacity can

filter out all the liquidity traders’ noise. Then, as she filters out the noise trading, the

specialist does not need to learn from the asset payoffs process, since she learns perfectly

about the asset payoffs from the insider’s market orders. Alternatively, if she observes

the asset payoffs perfectly, the problem becomes static. The asset price is set to match

the asset payoff perfectly, p̃t = f̃t. The particular cases of different generating processes

are considered below.

3.3.1.1 AR(1)

Consider the example in the previous subsection where the asset payoffs follow an AR(1)

process, f̃t = φ1f̃t−1 + θ0ε̃t. Then, the optimal signal that the specialist can extract is

S̃t = f̃t + ψ̃t. The corresponding values for the state space representation are, X̃t = f̃t,

Φ = φ1, Σν = θ2
0, ΣX,1 = φ2

1ΣX,0 + θ2
0 and ΣX,0 = e−2κΣX,1, all scalars. The resulting

value for the objective function is

ΣX,0 =
θ2

0

e2κ − φ2
1

.

The precision of the optimal signal is given by

σ−2
ψ =

(
e2κ − 1

e2κ

)(
e2κ − φ2

1

θ2
0

)
.

The behavior of the pricing function with respect to the original process is shown in Fig-

ure 3.1. The figure displays the simulated values of an AR(1) process for asset payoffs

7See Maćkowiak et al. (2018) Proposition 6 for proof.
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Figure 3.1: Asset payoffs and prices for different levels of information flow

and plots the optimal pricing rule as the information processing capacity increases. The

following section presents the price dynamics from an impulse-response function perspec-

tive. Note that if the asset payoffs follow an AR(1) process, the complexity of the problem

does not increase with respect to a static case in the previous section. The specialist only

uses what she learns from the order flow in each period plus the history of asset payoffs

to construct the pricing process.

Alternative approach

In this alternative approach, I replicate the example in Sims (2003), who characterizes a

solution for an AR(1) problem. Now, we will determine the pricing process when the asset

payoffs follow an AR(1) process. This method considers the invertibility property between

stationary AR(1) processes and MA(∞) processes. Sims’ method gives equivalent results
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for the specialist’s pricing choice. Sims’ method is useful for any MA process, but fails to

produce analytical results for other asset payoffs processes.

First, consider a dynamic setup where the asset payoffs follow a moving average process

(3.3)f̃t =
t∑

s=0

asε̃s,

where ε̃s ∼ N (0, 1) The process has a first order autoregressive representation,

f̃t = ρf̃t−1 + a0ε̃t,

where as = ρsa0. There is a perfectly informed investor who places a profit maximizing

market order each period

x̃t = x
(
f̃t

)
.

Since the investor is perfectly informed, the agent faces a static problem each period. The

market order is a time invariant function of the asset payoffs and, as above, the market

order is a sufficient statistic about the asset payoff in period t. Additionally, there are

noise traders who place iid random liquidity orders each period, z̃t ∼ N (0, σ2
z). The order

flow for each period is ω̃t = x̃t + z̃t.

The specialist wants to set a price that mimics the true process of the asset payoffs,

the objective function being

E

[
−
∞∑
t=1

βt
(
f̃t − p̃t

)2
]
.

She has access to the order flow for each period, plus the history of realizations of the

asset payoffs up to period t − 1. Since the insider’s response is time invariant, the order

flow can be transformed into a signal of the form

S̃t = f̃t + γυ̃t.

The signal delivers the asset payoff plus the noise introduced by noise trading represented

by υ̃t.

Now, consider the information that the price process contains about the asset payoff

process. As in the static case, this mutual information is computed through the uncer-

tainty reduction. Let f̃T =
(
f̃1, . . . , f̃T

)
and p̃T = (p̃1, . . . , p̃T ) the vectors of the first
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T elements of the process for the asset payoffs and asset prices respectively. Then, the

mutual information is defined as

I
(
f̃T ; p̃T

)
= H

(
f̃T
)
−H

(
f̃T |p̃T

)
.

The information flow between two stochastic processes is the average mutual information

per period of the two processes
{
f̃t

}∞
t=0

and {p̃t}∞t=0. It is defined as

I
({
f̃t

}
∞
t=0; {p̃t}∞t=0

)
= lim

T→∞

1

T
I
(
f̃T ; p̃T

)
,

the definition holds for both univariate and vector processes.8 An imperfectly informed

specialist faces a constraint that sets an upper bound κ to the information flow between

the two variables.

Following the same process as in the static model, the pricing process that an imper-

fectly informed specialist sets is

p̃t = E
[
f̃t|It

]
,

where the information set in each period is composed of any initial information plus all

signals up to this period t,
It = I0 ∪ {S1, . . . , St} .

Since all variables are Gaussian the pricing process takes the form

p̃t =
t∑

s=0

αsε̃t−s +
t∑

s=0

csυ̃t−s.

The informationally-constrained specialist’s problem, consists of the selection of weights

αs and cs, to minimize the objective function.9 If there is no informational constraint, the

specialist cannot perfectly filter the asset payoffs from the signals, and therefore she sets

αs = as and cs = 0 for all s. However, the existence of the constraint on the information

8If the two processes were Gaussian with zero autocorrelation, the information flow becomes

I
({
F̃t

}
; {p̃t}

)
=

1

2
ln

 σ2
Fσ

2
p

σ2
Fσ

2
p − Cov

(
F̃t, p̃t

)2

 .

9Sims (2003) provides a numerical approach to this problem by changing the information flow from
the time to the frequency domain. Thus, the information processing constraint becomes

I = −1

2

∫ π

−π
ln

(
1− 1

1 + |ĉ| /|α̂|

)
,

where ĉ and α̂ correspond to the Fourier transforms of the corresponding parameters.
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flow, sets an upper bound on the specialist’s objective function. The coefficients that

solve this problem are

αs =

[
ρs − 1

e2κ

( ρ

e2κ

)s]
a0

cs =

(
e2κ − 1

e2κ (e2κ − ρ2)

) 1
2

a0.

The pricing process set by a perfectly informed specialist results from taking the limit

κ → ∞ in the equations for the coefficients. As a result, the pricing process tracks

perfectly the asset payoffs, αs = as = ρsa0. This result provides some insight into how

the processing capacity affects the response of prices to fundamental shocks. There is an

alternative approach to solve this problem, which is equivalent. The specialist chooses an

optimal weight γ on the signals, such that the information constraint binds. Then, she

updates her beliefs according to such a signal and sets a price.

3.3.1.2 AR(p)

In general, when the asset payoffs follow an AR(p) process f̃t =
∑p

s=1 φsf̃t−p + θ0ε̃t .

ΣX,1 = Φ

[
ΣX,1 −

1− e−2κ

η′ΣX,1η
ΣX,1ηη

′ΣX,1

]
Φ′ + Σν ,

where

Σν =



θ2
0 0 · · · 0

0 0 0

...
. . .

0 0 · · · 0


.

See Figure 3.2 for matrix ΦΣX,1ηη
′ΣX,1Φ.

The optimal signal is given by S ′t = ϑf̃t + (1− ϑ)
(
φ(L)f̃t

)
+ %ψt, where ϑ is the

Kalman gain. It is a function of the capacity κand parameters φ1, . . . , φp and θ0. Such a

gain is an increasing function of κ. A larger learning capacity gives greater weight to the

contemporary information making the pricing process more precise.

Suppose for example that the asset payoffs follow an AR(2) process, f̃t = φ1f̃t−1 +

φ2f̃t−2 + θ0ε̃t. The optimal signal is given by S̃t = f̃t + η2f̃t−1 + ψ̃t. Note that, in
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this case, the specialist choses to learn from the order flow plus additional information

that the history of the asset payoffs provide. The structure of the optimal signal allows

the specialist to use the information about the process that f̃t follows by only including

a number of lags in the signal, equal to the order of the autoregressive process. This

structure for the payoffs has the state space representation mentioned above where X̃t =(
f̃t, f̃t−1

)′
, the matrix

ΣX,1 = Φ

[
ΣX,1 −

1− e−2κ

η′ΣX,1η
ΣX,1ηη

′ΣX,1

]
Φ′ + Σν

and the matrix

Σν =

 θ2
0 0

0 0

 ,
the coefficient matrix

Φ =

 φ1 φ2

1 0

 .
and the variance of the noise term

σ2
ψ =

η′ΣX,1η

e2κ − 1
,

where η = (1, η2)′. Furthermore, note that due to the Bayesian updating process embed-

ded here, the first element of the matrix ΣX,0 is the element in position (2,2) in matrix

ΣX,1.

3.3.2 Price behavior and market resilience

As we have said, the ability of asset prices to return to their steady-state value after a

large order is commonly referred to as resilience. A large order in this model may come

from either an insider or a noise trader. Insiders place their orders according to their

information about each period’s innovation, while noise trading can be large with some

nonzero probability. Naturally, asset prices should only react to the insider’s orders if the

specialist is perfectly informed. An imperfectly informed specialist should generate prices

that recover faster from noise trading shocks than from insider shocks. This section

presents the dynamic behavior of asset prices in response to new information through

impulse response functions (IRFs).
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In period t, the insider places an order according to the observed information, i.e.,

the realization of ε̃t. For any asset payoff series f̃t that follows a stationary ARMA(p, q)

process, the IRF illustrates the effect of a structural shock ε̃t on f̃t. However, such

a response is not directly reflected in price dynamics. The specialist’s information set

contains two ex-ante indistinguishable sources of disturbances, structural shocks ε̃t, and

noise trading, ψ̃t. A specialist without information processing capacity, κ = 0, is not able

to distinguish the source of the shock, so both shocks generate the same price dynamics.

Thus, the response of prices to shocks either on ε̃t or ψ̃t is the same.

As the specialist starts to increase her capacity to process the information in the order

flow, the price dynamics responds differently to structural and noise trading shocks. Two

different IRFs describe the price response to a structural shock ε̃t and a noise trading shock

on ψ̃t. In this model, market resilience is measured by the persistence of noise trading

shocks on the asset prices. Consequently, the response of asset prices to structural shocks

mimics the asset payoffs’ dynamics in a highly resilient market. Later in this section, the

price dynamics under different stochastic processes for asset payoffs are analyzed. Figure

3.3 illustrates the price response when the asset payoffs follow an AR(1) process. The

solid black dotted line depicts the IRF of the true asset payoff process, the black circled

line is the response of prices to structural shocks ε̃t, and the gray starred line is the

IRF of the pricing process with respect to a noise trading shock ψ̃t. Market resilience is

represented by the quick recovery of the prices to noise trading, i.e., the third IRF drops

quickly. Figure 3.3 shows the IRFs for different capacity levels, market resilience increases

as the learning capacity expands. Moreover, the response of prices to structural shocks ε̃t

approaches the asset payoff’s response as the capacity grows.

Figure 3.4 presents the price response functions to shocks when the asset payoff follows

an AR(2) process with high persistence. The first plot in the figure shows how, for

low capacity levels, the order flow’s informativeness is scarce. However, as time passes,

the specialist can still learn from the history of the process, and the IRF of prices to

structural shocks approaches the asset payoffs IRF. In contrast, the response to noise

trading disappears as the second IRF approaches the true payoffs, i.e., the specialist learns

the truth from history after some periods. Just as before, as the information processing
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Figure 3.3: Impulse response function when the payoffs follow an AR(1) process.

capacity increases, prices respond faster to shocks and converge to the true asset payoffs

process.

In Figures 3.5 and 3.6, it is assumed that asset payoffs follow an AR(3) process. Figure

3.5 displays the transition to a new steady-state after the shock. The contemporary

response of prices to the shock is almost null for low processing capacity levels, and

the prices slowly and smoothly converge to the new steady state. As the processing

capacity increases, the contemporary response is now observable, and the market resilience

increases.

When the asset payoffs follow a stationary process with imaginary roots, the prices

overshoot before they return to the steady-state value. Figure 3.6 depicts an example of

a process with imaginary roots. Such an overshooting effect disappears as the learning

capacity increases whenever there is a noise trading shock.
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Figure 3.4: Impulse response function when payoffs follow an AR(2) process.
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Figure 3.6: Impulse response when asset payoffs follow an AR(3) process with imaginary
roots.

Finally, Figure 3.7 illustrates two additional possible examples of processes for asset

payoffs. The first plot contains the IRFs for MA(1) asset payoffs. Due to the behavior of

MA(q) processes, the IRF collapses to zero after qperiods ahead in time. This case is not

typical asset payoff behavior. In the second plot, the asset payoffs follow an ARMA(2,1)

process. Compared to the previous examples, for a given learning capacity of κ = 0.5,

the market resilience is lower, i.e., it takes more periods to dissolve noise trading shocks,

as the specialist who learns about processes of greater complexity levels has to allocate
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Figure 3.5: Impulse response function when asset payoffs follow an AR(3) process.

more capacity to identify noise trading.
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Figure 3.7: Impulse response function when payoffs follow an MA(1) and ARMA(2,1)
process.

3.4 Concluding remarks

I have characterized the stochastic properties of the asset prices in a market where an

insider trades along with noise traders and a specialist sets the asset prices. I have also

illustrated the specialist’s reaction to shocks that impact the order flow as her capacity to

learn about the market changes. When a specialist observes a non-anticipated behavior

of the order flow, she allocates her learning capacity to distinguish whether it comes from

a structural shock -actual change in asset payoffs- or a noise trading shock. However,

her learning capacity limits this process, and she allocates her attention to learning from

the history of asset payoffs rather than the noisy information in the order flow. As her

learning capacity increases, the specialist allocates her capacity to reduce the order flow

noise. By doing so, she can distinguish between structural shocks and noise trading.

The specialist’s optimal pricing process allows us to decompose the reaction of prices

to the different types of shocks. As the learning capacity increases, noise trading shocks

are quickly identified. Furthermore, with a higher learning capacity, asset prices only
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show persistence to structural shocks, following the same stochastic behavior as the asset

payoffs. In contrast, the specialist has a delayed reaction to low processing capacities

since she can only learn from the history of asset payoffs. As a result, noise trading

shocks exhibit a high degree of persistence in terms of asset price.

This price behavior enables a direct interpretation of the ability of prices to recover

after a shock or market resilience. To explain the recovery speed of asset prices after a

shock to the order flow, I decompose the price reaction using an impulse response function

for each possible shock. Therefore, a market is more resilient as the second IRF to a noise

trading shock drops quickly. Equivalently, a market becomes more resilient as the IRF of

the asset price to a structural shock approaches the IRF of the asset payoff to a structural

shock.

I illustrate for different stationary ARMA processes how market resilience increases

rapidly as the specialist’s learning capacity increases. Note that market resilience is

nothing but the result of the specialist’s ability to resolve the adverse selection problem

that insiders pose to her. Further extensions of this analysis can include insiders that trade

repeatedly in the market and introducing several insiders, which allows for cross-sectional

competition between investors.

103



104



Bibliography

Admati, A. R. (1985). A noisy rational expectations equilibrium for multi-asset securities

markets. Econometrica, 53 (3), 629–657.

Afrouzi, H. and Yang, C. (2021). Dynamic Rational Inattention and the Phillips

Curve. 8840, CESifo.

Blackwell, D. (1951). Comparison of experiments. In Proceedings of the Second Berke-

ley Symposium on Mathematical Statistics and Probability, Berkeley, Calif.: University

of California Press, pp. 93–102.

— (1953). Equivalent comparisons of experiments. The Annals of Mathematical Statistics,

24 (2), 265–272.
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