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Summary 

The use and misuse of antibiotics against pathogenic bacteria is accelerating the appearance of multi-

drug resistant bacteria and it is becoming a serious concern in public health worldwide. In order to 

fight antibacterial resistance, it is crucial to get a better understanding of the mechanisms underlying 

infection, which occur to a great extent due to the interaction between host and pathogen proteins. In 

this sense, it is necessary to improve the functional annotation and characterization of these proteins 

and their interactions. With this aim, we have created two databases, BacFITBase and DualSeqDB, 

which gather information on the importance of bacterial genes and the gene expression changes that 

occur both in the pathogen and in the host during the infection process, respectively. Similarly, we 

have developed HPIPred, a host-pathogen protein-protein interaction prediction system, based on the 

numerical encoding of physicochemical properties of amino acids, capable of integrating phenotypic 

information to guide the prediction process. The combination of these tools could be useful as a 

guidance in the development of new drugs against antibacterial resistance. 

 

 

Resumen 

El uso descontrolado de antibióticos contra bacterias patógenas está acelerando la aparición de 

bacterias resistentes a múltiples fármacos y se está convirtiendo en un grave problema en materia de 

salud pública mundial. Para combatir esta resistencia bacteriana, es fundamental obtener un mayor 

conocimiento de los mecanismos de infección, que se producen en gran medida por la interacción 

entre proteínas del patógeno y proteínas del organismo huésped. En este sentido, es necesaria una 

mejora en la anotación funcional y caracterización de estas proteínas y de sus interacciones. Con este 

objetivo, hemos creado las bases de datos BacFITBase y DualSeqDB, que recopilan información 

sobre la importancia de genes bacterianos y sobre los cambios de expresión génica que se producen 

en el patógeno y en el huésped durante el proceso infeccioso, respectivamente. Del mismo modo, 

hemos desarrollado HPIPred, un sistema de predicción de interacciones proteína-proteína entre 

huésped y patógeno, basado en la codificación numérica de propiedades físico-química de los 

aminoácidos, capaz de integrar información fenotípica para guiar el proceso de predicción. La 

combinación de estas herramientas podría servir como guía en el desarrollo de nuevos fármacos 

contra la resistencia bacteriana. 
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1. INTRODUCTION 
 

 

1.1. Bacterial infections and antibiotic treatment failure 

 

 

1.1.1. Infection and bacterial pathogens  

 

Pathogens are microorganisms, such as bacteria and viruses, that can cause disease. Similarly, 

pathogenesis is the process by which a disease develops, normally involving exposure of the host to 

the pathogen, which adheres and colonizes the host, grows within it and ultimately triggers the 

infection process (1).  

Among all bacterial species, only a relatively low number of them are considered pathogenic and 

causative agents of disease. In this regard, virulence is associated to pathogenicity. The degree of 

virulence is related directly to the ability of the bacteria to colonize the host and evade the immune 

response (1,2). Therefore, pathogenic bacteria can be classified as primary or opportunistic 

pathogens, depending on the susceptibility of the host to infection and the virulence of the bacteria. 

Primary pathogens can naturally cause disease in any individual, regardless of the host’s immunologic 

and physiologic conditions, whereas opportunistic pathogens are those that can become pathogenic 

due to an impairment of the host’s immune system but are not pathogenic under normal 

circumstances.  

 

1.1.2. Mechanisms of bacterial infection 

 

Pathogenic bacteria produce a pletora of molecules, known as virulence factors, that subvert host 

cellular processes to promote infection (3). Bacterial secretion systems are responsible for the 

delivery of these virulence factors to the host cells, and can be classified as effectors or toxins (4,5). 

In this sense, toxins are delivered to the cell to damage and irreversible disrupt cellular homeostasis, 
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whereas effectors are generally translocated to the host cytoplasm through more specialized secretion 

systems, and their activity is often more subtle and geared towards the modulation of host cellular 

functions to the pathogen’s own benefit. The combined action of toxins and effectors allow the 

pathogen to control numerous mechanisms related to virulence and host immune system, such as 

adhesion, encapsulation, ubiquitination of host proteins, inhibition of host cell apoptosis, disruption 

of host cytoskeleton, membrane trafficking and cell signaling, among others (Figure 1) (6–11).  

 

 

 

 

 

 

 

 

 

 

1.1.3. Antibiotic treatments and derived problematics  

 

At the beginning of the 20th Century, life expectancy at birth was 47 years in the developed countries, 

and infectious diseases, such as cholera, smallpox, tuberculosis, pneumonia, etc., accounted for high 

morbidity and mortality worldwide (12). Since the discovery of penicillin in 1928 by Alexander 

Fleming, antibiotics have revolutionized the treatment of infectious diseases, leading to important 

medical advances, and saving countless lives: while the death rate from these diseases dropped from 

0.8% to 0.0036%, life expectancy rose to 78 years (13). Unfortunately, as Flemming predicted nearly 

a century ago, microorganisms can adapt to the use of antibiotics and develop resistance to them. 

Figure 1. Virulence factors involved in the pathogenesis during bacterial meningitis. Taken from: “Virulence 
Factors of Meningitis-Causing Bacteria: Enabling Brain Entry across the Blood-Brain Barrier “. Herold R et al. 

2019. Int J Mol Sci. 20(21):E5393. Licensed under CC by 4.0: https://creativecommons.org/licenses/by/4.0/ 
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1.1.4. Antibiotics: mechanisms of action 

 

Antibiotic treatments are still the most widely used therapeutic agents to fight bacterial pathogens, 

not only in acute and chronic infections, but also with prophylactic purposes. Antibiotics function in 

different ways. Some antibiotics have a bactericidal function, killing the bacteria by inhibiting the 

synthesis of their cell wall, interfering with essential bacterial enzymes. Others are bacteriostatic and 

hinder bacterial growth by inhibiting protein synthesis and DNA replication or by interfering with 

other mechanisms of bacterial cellular metabolism (Figure 2) (14,15). Based on their target 

specificity, antibiotics can be categorized as broad-spectrum antibiotics, capable of targeting a wide 

range of Gram-positive and Gram-negative bacteria, and narrow-spectrum antibiotics, which are able 

to inhibit or kill specific bacterial species. The choice of antibiotic depends, mainly, on the type of 

bacteria responsible for the infection. Hence, broad-spectrum antibiotics are the preferred choice 

when the bacterial agent is unknown or if the infection is suspected to be caused by multiple bacterial 

species. However, this strategy is not absent of risks, as an incorrect identification of the pathogens 

can cause toxicity in the host organism, damage the host microbiota or favor the appearance of 

bacterial resistance (16). 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 2. Targets of antimicrobials. Taken from “Introductory Chapter: The Action Mechanisms of Antibiotics and Antibiotic Resistance, 

Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods,” Sahra Kırmusaoğlu, Nesrin Gareayaghi and Bekir S. 
Kocazeybek. 2019. IntechOpen, DOI: 10.5772/intechopen.85211. Available from: https://www.intechopen.com/chapters/65914. Licensed 

under CC by 3.0: https://creativecommons.org/licenses/by/3.0/   
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1.1.5. Multi-drug resistance in bacteria 

 

 Even though bacterial resistance is a naturally occurring phenomena in which genetic mutations 

allow bacteria to acquire resistance mechanisms, the use and misuse of broad-spectrum antibiotics 

for the treatment of all kinds of bacterial infections in healthcare has increased the selective pressure 

against these pathogens. In turn, this pressure has favored the appearance of multi-drug resistance 

(MDR), a term that refers to the ability to resist simultaneously to different antibiotics. Multi-drug 

resistant bacteria accomplish this by means of different resistance mechanisms, such as producing 

enzymes that inactivate or destroy the antibiotic molecule, reducing their cell wall permeability, 

increasing active efflux to pump the antibiotic out or interfering with the target site of the antibiotic 

by decreasing its binding affinity (Figure 3) (17,18). 

 

 

 

 

 

  

 

 

Due to the limited amount of effective antibiotics, the World Health Organization (WHO) has 

catalogued the fight against multi-drug resistant bacteria as one of the most urgent challenges of 

public health worldwide. In order to promote the research of MDR and the need for the development 

Figure 3. Bacterial antibiotic resistance mechanisms. Taken from “Multidrug efflux pumps 

from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food 
pathogens”. Jody L Andersen et at. 2015. Int J Environ Res Public Health 12(2): 1487-547. 

Licensed under CC by 4.0: https://creativecommons.org/licenses/by/4.0/ 
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of new antibiotics, the WHO has published a list of antibiotic-resistant “priority pathogens”, among 

which Pseudomonas, Acinetobacter and Enterobacteriaceae stand as the most critical group to be 

dealt with, especially due to the threat that they pose in hospitals, nursing homes and among patients 

in intensive care units (19). It is estimated that MDR is responsible for 33,000 deaths and costs nearly 

€1 billion to the European health care systems yearly (20). Similarly, it has been reported that more 

than 2.8 million antibiotic-resistant infections and more than 35,000 associated deaths occur in the 

U.S. each year, with associated costs that go as high as $4.6 billion (21). The WHO has warned 

that common infections could become lethal in the near future. Estimates are that therapeutic 

coverage will be insufficient within 10 years, where antibiotics will no longer be effective against 

certain infectious diseases (22).  

 

 

1.1.6.  Limitations of classical drug screening 

 

The lack of scientific research and investment to deal with the proliferation of antibiotic resistant 

bacteria has fueled the innovation gap in antibiotic discovery, as the majority of antibiotics brought 

to the market in the past years have been derivatives of already existing drugs (13,23,24). Another 

major concern is that we may be reaching a point where the number of classical antibiotics is almost 

complete. This should not come as a surprise: the analysis of 20,000 experimental protein-ligand 

complex structures available in the Protein Data Bank (PDB) revealed that the number of 

representative pockets is approaching a plateau, which suggests that the structural space of ligand-

binding pockets is nearly completely described (25–27).  

During the 1990s, the rise of genome sequencing allowed the identification of ‘essential’ bacterial 

targets which are vital for bacterial infection, growth and proliferation, as possible new targets for 

drug screening. This strategy, however, has had limited to no success in delivering effective novel 

antibiotics (28). Pathogenic bacteria need the host environment to grow and develop, thus the concept 
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of ‘essentiality’ for pathogenic bacteria needs to be extended to take into account the biological 

context of infection, i.e., including those genes that are essential for the pathogen during the host 

infection. The emergence of bacterial resistance, together with the failure to discover new antibiotics 

by classical drug screening methods, highlights the need to rethink the antibiotic discovery paradigm, 

so that screening approaches can identify new targets based on the interactions between the pathogen 

and the host rather than the pathogen alone (29). 

 

1.2. Importance of protein-protein interactions in host-pathogen infections 
 

 

The majority of biological processes in the cell are carried out by proteins, which rarely act alone, as 

their functions tend to be highly regulated. In this sense, protein-protein interactions not only mediate 

most cellular functions occurring in an organism, but also the complex interplay between a pathogen 

and its natural host during infection (30). 

 

1.2.1. Protein-protein interactions 

 

Protein-protein interactions (PPIs) are mediated by physical contacts of high specificity between two 

or more proteins. PPIs are involved in a multitude of functions such as electron transfer, signal 

transduction, membrane transport or cell metabolism, among others (31,32). Furthermore, PPIs can 

be transient, when the interaction is reversible and produces short time effects like signal transduction, 

or permanent, when the interaction is stable and the complexes carry out functional roles. PPIs have 

been studied from diverse perspectives such as biochemistry, molecular dynamics, quantum 

chemistry, etc., which has allowed the reconstruction of large ensemble of PPIs occurring within an 

organism, usually referred to as protein interactome.  
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1.2.2. Methods for protein-protein interaction identification 

 

Diverse methods have been developed to identify PPIs and reconstruct protein interactomes to gain 

insight into the processes that occur within the cell and its environment. High-throughput 

experimental techniques are the most widely used for large-scale PPI detection (Table 1), including 

in vitro assays like affinity chromatography (33), Tandem affinity purification – mass spectrometry 

(TAP-MS) (34), coimmunoprecipitation (35), X-ray crystallography or nuclear magnetic resonance 

spectroscopy (NMR spectroscopy) (36), among others, and in vivo assays such as Yeast 2 hybrid 

(Y2H) screenings (Figure 4) (37–39). Nonetheless, experimental techniques have their downsides in 

terms of required time, cost and reliability, as these methods often fail at identifying weak 

interactions, their applicability depends on how well assay protocols are optimized for different 

organisms and they suffer from low-specificity, producing high rates of false positives and false 

negatives.   

 

 

Figure 4. Identification of protein-protein interactions by Yeast two-hybrid technique. Two proteins of interest (X and Y) are each fused to a 
fixed protein domain, the binding domain and the activation domain, and forming the bait and the prey, respectively. A) in the absence of an 

interaction between the proteins, the domains remain distance, preventing the detection of any output. B) If the two proteins interact, the bait 
can recruit the prey to a specific location in the cell, stimulating a detectable output by recruiting RNA Polimerase II and triggering the 

transcription of a reporter gene. Adapted from “Diversity in Genetic In Vivo Methods for Protein-Protein Interaction Studies: from the Yeast 
Two-Hybrid System to the Mammalian Split-Luciferase System”. Stynen B., et al. 2012. Microbiol Mol Biol Rev.  1;76(2):331–82. Permission 
to reuse the image is granted under the License agreement available at: https://marketplace.copyright.com/rs-ui-web/mp/license/79dc90d3-

93e2-4b95-93ef-875a1c6636bb/b647baca-0694-4647-8c67-e35698cd86e6 
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Table 1. Experimental methods used for the detection of protein-protein interactions 

 

 

 

Experimental method 

 

Basic principle 

 

Advantages 

 

Limitations 

 

 

 

Yeast two-hybrid (Y2H) 

 

The binding domain (BD) and the 

activation domain (AD) of a 

transcription factor are fused, 

respectively, to the couple of proteins 

(A and B) from which the interaction 

will be studied. Bait (X-BD) and prey 

(Y-AD) chimeric proteins are co-

expressed in yeast cells where, if both 

proteins interact, the transcription 

factor is reconstituted, activating the 

expression of a reporter gene.  

 

 

- Low cost for protein 

purification and antibody 

development. 

- In vivo technique in 

eukaryotic cells. 

- No need for large amounts 

of highly purified proteins 

or antibodies.  

 

 

- Activation of reporter 

gene may be due to other 

mechanisms, leading to 

false positives. 

- Bait proteins may become 

toxic. 

- Risk of incorrect folding 

or absence of complex 

protein modifications in 

yeast. 

 

 

Affinity chromatography 

 

The protein of interest is immobilized 

to an insoluble matrix which is then 

incubated with a solution that contains 

putative binding partners. After 

washing away unbound material, the 

binding partners are eluted and 

detected by chromatography. 

 

 

- Can detect very weak 

interactions in proteins. 

- Highly responsive. 

- All the sample proteins 

are evenly tested for 

interaction. 

 

- High specificity among 

proteins causes false 

positives.  

- High amounts of sample 

are lost during elution 

steps. 

 

 

 

Tandem affinity 

purification-mass 

spectrometry (TAP-MS) 

 

The protein of interest is fused to a 

tandem-affinity purification tag (TAP-

tag), which is then expressed in cells 

and used as bait to purify protein 

complexes through a two-step 

purification process. These highly 

purified protein complexes can be then 

analyzed by mass spectrometry. 

 

 

- Yields high purity 

proteins. 

- Allows for the 

identification of even very 

low abundant protein 

complexes. 

 

 

 

- Low exposure of the tag to 

the affinity beads may alter 

the results. 

- The tag may affect levels 

of protein expression. 

- Specialized equipment 

required. 

 

 

Co-immunoprecipitation 

 

The protein of interest (antigen) is 

targeted and captured by an antibody, 

allowing to indirectly pull unknown 

proteins that form a complex with the 

protein of interest.    

 

 

- Isolation of protein 

complexes in their natural 

state. 

- The antigen and the 

protein complex have 

similar concentrations in 

the cell. 

 

 

- Need for polyclonal 

antibodies. 

- Does not guarantee that 

all the proteins in the 

complex interact. 

- Lower sensitivity than 

other methods like affinity 

chromatography. 

 

 

X-ray crystallography 

 

High resolution microscopy technique 

that can identify the exact three-

dimensional position of the molecular 

and atomic structures of protein-

protein complexes. 

 

 

- High-resolution approach.  

- Can resolve enzyme 

conformational 

changes. 

 

- Specialized equipment 

required. 

- Proteins need to be 

crystalized. 

- Weak PPIs may be lost 

 

NMR spectroscopy 

 

Ensemble of techniques based on the 

determination of the protein complex 

at the atomic level by making use of 

the nuclear magnetic properties of the 

atoms. 

 

 

- High-resolution approach. 

- Can detect weak PPIs. 

- Is compatible with 

crystallized proteins. 

- Can be combined with 

functional assays. 

 

- Not well suited for the 

study of large protein 

complexes. 

- Relatively insensitive to 

the amount of sample 

needed for good-quality 

data. 
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1.2.3. Protein-protein interaction databases 

 

Even though the coverage of the PPI space is still in its infancy, the reduced cost of high-throughput 

assays has allowed the detection of a considerable amount of PPIs so far. With the aim of gathering 

and unifying the available data, numerous PPI databases have been developed over the past few years. 

Text mining of scientific literature is the main resource to systematically categorize individual PPIs, 

although huge curation efforts are made to manually compile data on PPIs. These databases can be 

categorized into three main groups: pathway databases such as KEGG (40–42) and Reactome (43), 

databases that collect experimental data like BioGRID (44) and IntAct (45), and databases like 

STRING (46) or GeneMANIA (47), where no manual curation is involved but computational 

predictions of PPIs are included. Recently, large-scale experiments have been performed to determine 

molecular interactions between human and bacteria, which has increased the availability of PPI data 

for host-pathogen systems. This has permitted the creation of curated databases of bacterial PPIs such 

as PATRIC (48), curated databases of host-pathogen PPIs such as HPIDB (49) and PHISTO (50), or 

related resources like PHI-base (51), which catalogs experimentally validated virulence and 

pathogenicity not only from bacteria but from other types of pathogens that infect eukaryotes. Even 

though these advances in data compilation are promising, most relevant data related to host-pathogen 

interactions is still buried in the literature and hinders progress in infection disease research. 

 

1.2.4. PPIs as drug targets for bacterial infections 

 

During the last decades, most of the drug discovery approaches to fight antibacterial resistance have 

focused mainly on targeting unique proteins from the pathogen (28). Given the rapid proliferation of 

MDR bacteria and the failure of classical antibacterial treatments, the study of host-pathogen PPI 

networks can offer promising insights for the discovery of next-generation antibacterial drug targets 

(30). The analysis of these PPI networks allows the identification of essential and highly connected 

proteins within the context of infection. In this sense, genome-wide gene deletion studies indicate that 
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deleting highly connected proteins (also referred to as hubs) from its interactome is more likely to be 

lethal for the organism than just removing lowly connected proteins, a phenomenon known as 

centrality-lethality rule (52). This correlation between network connectivity and essentiality suggests 

that targeting highly connected proteins in the pathogen PPI network and their interacting partners in 

the host PPI network may be a promising strategy to find new targets for drug discovery. 

 

1.2.5. Druggability of host-pathogen PPIs 

 

There is a considerable number of small molecule PPI modulators in clinical trials targeting cancer, 

autoimmune disorders or viral infections as immune suppression agents. However, targeting PPIs as 

an antibiotic drug discovery strategy remains a relatively unexplored territory by comparison (53). 

Many pathological processes induced by bacteria are dependent on PPIs, which gives host-pathogen 

interactions a great potential to shed light on pathogen biology and virulence pathways (Figure 5). 

 

In general, using small molecules as PPI modulators is more challenging than the classical screening 

approaches that target protein-ligand binding pockets (54–57). In contrast with the estimated diversity 

of 1000 structural pockets (26), the PPI space is thought to be much larger, i.e., a new set of ~10,000 

types of PPIs would be available for screening purposes. However, PPIs have large surface contact 

areas (1,500-3,000 Å2) and small molecules only cover around a fraction of those contact areas (300-

1,000 Å2), so they are not well suited to screening such spaces. In addition, PPIs are generally flat 

and often lack grooves and pockets, which are the preferred targets for small molecules (58). Due to 

the aforementioned, researchers are starting to consider alternative PPI modulators such as peptides 

and recombinant proteins, which would allow the exploration of larger interaction surfaces (59).  
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1.3. Computational prediction of host-pathogen PPIs and limitations of these 

techniques 

 

The cost in time and resources of experimental assays makes it unfeasible to test and validate all 

possible host-pathogen PPIs by these procedures alone (60). For instance, the human proteome 

consists of more than 20,000 validated proteins, which paired with the thousands of proteins from the 

pathogen, accounts for millions of PPIs to test experimentally. In this sense, there exists several 

computational strategies that predict host-pathogen PPIs, and their combination with experimental 

techniques may be a fresh breeding ground for the identification of promising novel PPI drug targets. 

The most widely used in silico methods for the prediction of these PPIs rely on sequence homology, 

domain and motif interactions, structure or machine learning techniques (Figure 6). 

 

1.3.1. Sequence homology-based methods 

 

Homologous proteins usually share similar functions and three-dimensional structures, so the 

identification of homologous proteins to a newly determined protein is a method used to infer 

biological functions for a new protein. This method has been adapted to the identification of PPIs 

Figure 5. Host-pathogen protein interactome exploration for drug development. Adapted 

from “Exploring the SARS-CoV-2 virus-host-drug interactome for drug repurposing”. 
Sepideh Sadegh et al. 2020. Nature Communications volume 11, Article number: 3518. 

Licensed under CC by 4.0: https://creativecommons.org/licenses/by/4.0/  
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under the assumption that homologous proteins may share similar interaction partners and functions. 

Therefore, the homology-based method follows the idea that the interaction between two proteins 

within an organism may be conserved in a related one and these conserved interactions are called 

interologs (61). The process that allows the identification of inter-species PPIs involves the obtention 

of the template PPI pair, followed by the identification of homolog proteins for the host and the 

pathogen with respect to the template. This method is one of the most extensively used methods for 

the prediction of host-pathogen PPIs (62–64). However, it is not able to make inferences about 

interactions between specie-specific families of genes.  

 

1.3.2. Domain and motif interaction-based methods 

 

Domains are the building blocks that determine the structure and function of proteins, and perform 

specific functions allowing proteins to interact with different types of molecules (65). Most of the 

PPIs are facilitated by domain-motif interaction by binding domains in a protein to short linear motifs 

in interacting partners. These interactions are normally involved in key cellular processes, requiring 

a very tight regulation (66). Not all pathogen systems are appropriate for applying the mentioned 

domain-based approaches, since domains and the related information are not available for all 

pathogens.  

 

1.3.3. Structure-based methods 

 

In this method, it is considered that two proteins with similar structures to a known PPI are likely 

interacting in a structurally similar way. The method generally starts with a set of pathogen and host 

proteins, followed by sequence matching protocols which are used to determine the similarities 

between the host or pathogen proteins with known protein partners. Sequence similarity score may 

be used as a statistical potential assessment when structure information is not available. The last step 

consists of filtering the set of potential interactions, and it is generally performed using the biological 
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contexts of protein. The main drawback of this method is that finding high similarity between 

pathogen proteins and proteins with known structure is far from guaranteed for all pathogen 

proteins.  A number of studies are based on these structural similarities and use known PPIs to identify 

similar interacting pairs within pathogen and host protein (67,68).  

 

 

1.3.4. Machine learning techniques 

 

The application of machine learning approaches for the prediction host-pathogen PPIs is a well-

accepted idea. These techniques use available PPIs as features for the training and classification of 

interacting and non-interacting PPIs. Both supervised and semi-supervised methods have been 

extensively used. The most extensively technique is the Random Forest (RF) algorithm, a classifier 

algorithm made up of decision trees. Individual trees in the training phase are built by random feature 

vector sampled from a dataset independently. A subset of the variables is selected at random and 

individual classification trees are raised for every node in a tree. In order to group a new object, the 

input vector is set up for each of the trees in the forest. Based on the largest vote, a class is allocated 

to the object. RF can also classify features based on importance and can also be used to recover 

missing data. Random forest and Decision trees are widely used in computational biology for the 

classification of biological data (69), especially for the prediction of PPIs (70).  
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1.3.5. Limitations and future prospects of host-pathogen PPI predictions 

 

As seen, the discussed approaches perform relatively well at predicting PPIs and each of them have 

their strengths and weaknesses. However, all these methods suffer from the drawback of over-

predicting the amount of interaction partners (71). Due to the importance of correctly identifying 

host-pathogen PPIs for the development of PPI modulators, the challenge now would be to reduce 

the number of wrongly predicted interactions in a biologically meaningful way to get a more realistic 

picture of the protein interaction networks during the infection process.  

Figure 6. Computational methods for the prediction of host-pathogen PPIs. Taken from 

“Evolution of In Silico Strategies for Protein-Protein Interaction Drug discovery”. Stephani Joy 
Y. Macalino, et al. 2018. Molecules. 23(8): 1963. Licensed under CC by 4.0: 

https://creativecommons.org/licenses/by/4.0/ 
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In this sense, the integration of the already existing prediction methods with phenotypic information 

relevant in the infection process, such as gene expression, gene essentiality, or gene ontology may 

help improve the performance of current prediction analyses. The advancements in high-throughput 

sequencing technology, coupled with downstream computational techniques, have allowed the 

generation of a vast amount of data relevant in the infection process. For instance, the analysis of 

Dual RNA-Seq experiments makes it possible to quantify gene expression levels of intracellular 

pathogens and their hosts simultaneously, which helps identify genes that change their expression 

during the progression of the infection. Similarly, transposon mutagenesis assays have driven the 

characterization of bacterial genes that play a relevant role in infection. Nevertheless, a lot of these 

data are disseminated through literature or published experiments with massive amount of 

heterogeneous data that are not easy to access or interpret, so there is an urgent need to collate and 

integrate these data in order to facilitate the study of the infection processes.  
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2. OBJECTIVES 
 

 

It is necessary to develop tools that help to cope with the shortage of existing validated protein-protein 

interaction partners in the context of infection in the hope that they will help accelerate the screening 

process of drug discovery against resistant bacteria. 

In this thesis, we address some of the limitations presented regarding the functional annotation of 

bacterial and host proteins in infection, as well as the problematic of host-pathogen protein-protein 

interaction predictions and suggest methods to tackle these limitations. Specifically, we propose the 

development of platforms and databases that compile, harmonize and allow easy access to data that 

depict bacterial proteins relevant for the infection (chapter 1) as well as gene transcriptional changes 

in both pathogenic bacteria and their natural host upon infection (chapter 2). Additionally, we propose 

the development of a computational tool for the prediction of host-pathogen PPIs that integrates 

phenotypic data to help in the decision making of host-pathogen PPI candidates for follow-up 

experiments from a systemic point of view (chapter 3). 
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3. CHAPTER 1. BacFITBase: a database to assess the relevance 

of bacterial genes during host infection 
 

 

 

 

 

 

 

3.1. Abstract 

 

Bacterial infections have been on the rise world-wide in recent years and have a considerable impact 

on human well-being in terms of attributable deaths and disability-adjusted life years. Yet many 

mechanisms underlying bacterial pathogenesis are still poorly understood. Here we introduce the 

BacFITBase database for the systematic characterization of bacterial proteins relevant for host 

infection aimed to enable the identification of new antibiotic targets. BacFITBase is manually curated 

and contains more than 90,000 entries with information on the contribution of individual genes to 

bacterial fitness under in vivo infection conditions in a range of host species. The data were collected 

from 15 different studies in which transposon mutagenesis was performed, including top-priority 

pathogens such as Acinetobacter baumannii and Campylobacter jejuni, for both of which increasing 

antibiotic resistance has been reported. Overall, BacFITBase includes information on 15 pathogenic 

bacteria and 5 host vertebrates across 10 different tissues. 
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3.2. Introduction 

 

The development of new antimicrobial therapies relies heavily on our understanding of the 

mechanisms of bacterial infection. Bacterial proteins are responsible for rewiring a myriad of 

biochemical processes essential for the efficient propagation of the pathogen (72,73). Recently, our 

group showed that bacterial fitness in vivo does not correlate with data from in vitro studies (52). This 

is a major drawback for antimicrobial target discovery as many in vitro false negatives are disregarded 

for further testing. Therefore, it is crucial to understand how bacterial infection develops in vivo and 

which bacterial genes are required to infect a host. 

 

BacFITBase is a manually curated database of bacterial genes that collates in vivo information on 

their relevance during host infection, as measured by transposon mutagenesis. Transposon 

mutagenesis experiments allow the measurement of fitness values for individual genes, allowing us 

to assess which genes are fundamental to infect a specific host organism (74). To address the 

contribution of a bacterial gene to infection, its fitness is measured through genome-wide transposon 

mutagenesis coupled with next-generation sequencing (Tn-seq) (75) . Briefly, mutations targeting 

virtually all genes in the bacterial genome are generated by random insertion of transposons. 

Afterwards, these mutants with randomly inactivated genes are grown in culture medium (input pool), 

inoculated in a host organism, and finally recovered after infection (output pool). Genomic DNA 

from the input and output pool is extracted, and transposon insertion site junctions are amplified and 

quantified by next-generation sequencing.  

 

BacFITBase provides a common framework and easy access to fitness data for individual bacterial 

genes during infection. At present, it covers the infection processes of 15 pathogenic bacteria in 5 

model vertebrates across 10 different tissues (Table 2). A tutorial section provides a detailed step-
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by-step description of how to search and browse our data. This resource is available at 

www.tartaglialab.com/bacfitbase to help the research community in the systematic characterization 

of bacterial proteins involved in host infection. 

 

3.3. Methods 

 

3.3.1. Fitness scores and z-scores 

 

Data were collected from publicly available transposon mutagenesis experiments containing either 

raw input/output read counts or fitness scores for all mutant genes available (Table 2) (76–90). The 

fitness score of a gene is calculated as the ratio of the normalized frequencies of input/output read 

counts. Reads for each transposon insertion site are normalized to the total number of reads obtained 

from a sample according to the following equation:  

 

𝐹𝑎 =
𝐶𝑖

𝑎/𝑁𝑖

𝐶0
𝑎/𝑁0

 

 

where 𝐹𝑎 is the fitness score for gene a, 𝐶0
𝑎 and 𝐶𝑖

𝑎 are the number of reads for a gene a before and 

after infection and 𝑁0 and 𝑁𝑖 are the number of total reads before and after infection, respectively. In 

order to normalize the fitness scores to allow comparison between different studies, the corresponding 

z-scores were calculated for each individual experiment (Figure 7). To assess the significance of a 

bacterial gene’s fitness impact, p-values were calculated using a two-tailed one-sample Student's t-

test on the distribution of fitness scores within each study provided that raw data was available. 

Otherwise, the p-values reported in the original study are shown. 

 

http://www.tartaglialab.com/bacfitbase
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Table 2. List of all studies included in the BacFITBase. 

Pathogen Host organism Tissue Reference 

 

Salmonella enterica Serovar Typhimurium 

ST4/74 

Bos taurus (cow) Ileal mucosa (76) 

Sus scrofa (pig) Colonic mucosa 

Gallus gallus (chicken) Cecum 

Haemophilus influenzae Rd KW20 Mus musculus (mouse) Lung (77) 

Streptococcus pyogenes M1 5448 Mus musculus (mouse)  Skin (86) 

Porphyromonas gingivalis ATCC 33277 Mus musculus (mouse) Skin (87) 

Escherichia coli CFT073 Mus musculus (mouse) Spleen (88) 

Mycobacterium avium subsp. 

Paratuberculosis K10 

Mus musculus (mouse) Spleen (89) 

Escherichia coli M12 Mus musculus (mouse) Spleen and mammary 

gland 

(90) 

Escherichia coli O157:H7 Bos taurus (cow) Feces (78) 

Vibrio cholerae O1 biovar El Tor str. N16961 Oryctolagus cuniculus (rabbit) Small intestine (79) 

Campylobacter jejuni subsp. jejuni 81-176 Mus musculus (mouse) Cecum (80) 

Klebsiella pneumoniae subsp. pneumoniae 

pneumoniae ATCC 43816 KPPR1 

Mus musculus (mouse) Lung (81) 

Acinetobacter baumannii ATCC 17978 Mus musculus (mouse) Lung (82) 

Salmonella enterica Serovar Typhimurium 

SL1344 

Mus musculus (mouse) Liver and spleen (83) 

Serratia marcescens Strain UMH9 Mus musculus (mouse) Spleen (84) 

Vibrio parahaemolyticus RIMD 2210633 Oryctolagus cuniculus (rabbit) Small intestine (85) 

 

 

3.3.2. Technical aspects 

 

BacFITBase was built using PHP on an Apache web server with a MySQL database backend. 

BacFITBase stores no user data, except for the anonymous caching of BLAST search results for a 

given sequence in order to greatly speed up repeated searches. The open-source Bootstrap library was 

used to allow display on devices of any screen size, including mobile devices. Several icons were 

included from Font Awesome and the Noun Project, and a number of JavaScript libraries are used for 

table export and sorting. 
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3.3.3. BLAST search 

 

The NCBI BLAST suite version 2.9.0+ (March 2019) (91) is used to search by sequence similarity. 

The BLASTP program is used for amino acid sequences, and BLASTX for nucleic acid (coding) 

sequences. BLAST search results are cached for each unique sequence, which means that re-running 

a search using the same sequence will yield results nearly instantaneously. As on all other pages, 

results from the BLAST search page can be linked to and shared with other researchers using the 

"Link to these results" link at the bottom of the page. For sequences above a URL length of 2,000 

characters this link uses a sequence hash identifying the cached sequence, rather than the sequence 

itself. 

 

Figure 7. Histogram representing the z-score distribution among all studies included in the BacFITBase database. A fitness z-

score < 0 indicates that a given mutation is more detrimental than the average mutation during infection, while a raw fitness 
score < 1 indicates that a given mutant is underrepresented in the output pool. As we can observe in the histogram, the extreme 
values in the fitness z-score distribution are shifted towards negative values. Underrepresented instances give strong evidence 

that this particular gene is relevant in the infection process, as transposon insertion is typically associated with a loss of function 

phenotype. 
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3.3.4. Protein visualisation (ProViz) 

 

For UniProt proteins, a protein visualization is automatically generated and displayed by ProViz (92). 

ProViz is an interactive exploration tool for investigating the structural, functional and evolutionary 

features of proteins and is likely to be particularly helpful for analyzing uncharacterized proteins. 

3.4. Using BacFITBase 
 

BacFITBase consists of a text search function to find specific pathogenic bacterial genes, a BLAST 

search function to find bacterial genes similar to a protein or nucleic acid sequence of interest, a 

Browse function to quickly identify genes of high fitness impact during infection, and a Tutorial 

section to get started quickly by following a step-by-step guide.  

 

3.4.1. Searching for a gene or protein 

 

To search for a gene or protein, users just need to type its name or identifier in the Search tab and 

press the “Search” button. Any of the following options are available: gene symbols, gene locus 

identifiers, NCBI protein identifiers, UniProt protein accessions, or a free-text search in the gene 

product's description. The Search function also supports smart partial matches, so free-text terms can 

be used (e.g., "ribonuclease"). 

 

 

3.4.2. Searching within specific hosts and pathogens 

 

Both pathogen and/or host species can be specified in the drop-down menus on the Search page. If 

no search term is given, this will result in a complete list of genes for these species, similar to the 

Browse view (described below). 
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3.4.3. Search results 

 

After searching, the search results page will display a list of any bacterial genes matching the search 

term and species selected (Figure 8). The column matched by the search term is highlighted in green 

(if a search term was provided). For each pathogen species and gene, the search results page already 

shows a preview of the lowest fitness z-score across all available hosts, tissues, and post-infection 

time points, and the corresponding p-value. 

 

 

 

 

 

 

 

 

 

 

 

3.4.4. Tables on BacFITBase: Sorting, downloading, and linking to results 

 

To sort any table on BacFITBase as desired, users can simply click on any of the column headers. All 

tables can be downloaded as a comma-separated CSV file for import into spreadsheet software such 

as Microsoft Excel or Apple Numbers using the "Download Table" button in the top right corner. An 

appropriate, readable file name is automatically generated. Any results pages can also be linked to 

and shared with other researchers by right-clicking and copying the "Link to these results" link at the 

bottom of a page or table. 

 

Figure 8. Search results in BacFITBase. This page displays a list of any bacterial genes matching the search term and the host 

and pathogen species that were selected. The search results page displays the gene locus and NCBI protein identifier, the UniProt 
accessions code and the gene symbol (Please see BacFITBase description section for further information).  This preview also 

shows the gene product description and its length, together with the fitness z-score and the corresponding p-value. In this 
example, we show the case of TolB, a periplasmic component of the Tol-Pal complex that plays a central role in the maintenance 
of cell wall integrity. Although this complex is not essential in vitro, mutants defective in the TolB-Pal complex have a reduced 

infectivity. The results in BacFITBase show that, upon deletion of TolB, the infection fitness of the mutant is strongly decreased. 
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3.4.5. Detailed view of infection fitness scores for a gene 

 

After selecting a gene of interest, a view will open with all the infection fitness information available 

for this gene (Figure 9). The heading of this page provides information on the selected protein: 

protein and pathogen identifiers, sequence length, gene name and UniProt identifier. 

In the table, all available experimental data are shown: Tissue name and ontology of the host 

organism, time after infection, transposon insertion site on the pathogen's main chromosome (if 

reported by the original study), fitness data during infection including the raw fitness score, 

normalized fitness z-score, and p-value, and the reference to the original paper where the data was 

published. A brief description on the meaning of the raw score, normalized z-score and p-value is 

also available as mouse-over explanation on the column headers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For any protein in UniProt, a protein visualization is automatically provided by ProViz, an interactive 

exploration tool for investigating the structural, functional and evolutionary features of proteins, 

Figure 9. Detailed view of infection fitness scores for a gene. This page displays all the infection fitness information available 

for a bacterial gene, along with a ProViz visualization of the protein’s sequence and structural features. The detailed view shows 

the fitness raw values and z-scores for each entry together with all the details of the experiment: hosts, tissues, transposon 

insertion sites, post-infection time points, and the corresponding p-value. The reference to the original paper where the data was 

published is also included in the last column of the table with the corresponding PubMed link. 
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including Pfam domains (93) and transmembrane regions. This is particularly useful for 

uncharacterized proteins, which account for a large fraction of bacterial proteins (94). Alternatively, 

the protein's FASTA sequence can be displayed by pressing the "Show protein sequence" button, 

along with a "Copy" link in the top right corner to copy and paste the protein's sequence into other 

research tools, or into the BacFITBase BLAST Search to search for similar proteins. Similar proteins 

can be searched via BLAST using the "Find similar proteins" button. This allows rapid assessment 

of the fitness impact of a group of similar proteins across all pathogens in BacFITBase. 

 

3.4.6. BLAST Search 

 

The BLAST Search tab provides a search by sequence similarity. When the protein of interest is not 

in our database, the user may search for similar proteins using BLAST sequence alignment. Finding 

a similar protein with low z-score (and low p-value) is a strong indication that the query sequence 

may be relevant for infection. 

 

To search for similar proteins in our database using BLAST, the user can paste in the protein or coding 

sequence of interest in FASTA format and then press the Search button. Both protein and coding 

sequences can be used, but the proper format (protein or coding sequence) must be specified in the 

drop-down menu next to the Search button (as illustrated by the examples provided on the BLAST 

search page). 

3.4.7. BLAST Results 

 

When the BLAST alignment is ready (usually within a second or less), a search results page will open 

displaying alignment performance together with a complete description of the identified hits. This 

includes output columns from BLAST, such as the percentage of sequence identity between query 

and target in the successfully aligned region (“Identity”), the total number of amino acids that were 
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successfully aligned between query and target (“Aligned”), and the required size of a sequence 

database in which the current match could be found just by chance (the “bit score”). The E-value is 

the expected number of false positive matches given the size of the search database used. Matches 

with 100% sequence identity in the aligned region are highlighted in green. The meaning of the 

Pathogen, Locus, Protein, Gene, Product, p-value, and Fitness z-Score columns can be found in the 

Browse Tab section below, or via the mouse-over information symbols in the top row of any table. 

 

3.4.8. Browsing the entire database (the Browse Tab) 

 

The Browse tab provides an overview of all entries in the BacFITBase database. A pathogenic species 

of interest can be chosen in the selection element at the top. This table is sorted by significance and 

fitness z-score, which means that bacterial genes with a high and significant fitness impact during 

infection are listed first. Arrows next to each field link out to useful external databases, including the 

NCBI Taxonomy database, a comprehensive taxonomic database (“Pathogen”), the Ensembl Bacteria 

database (“Locus”), which provides genome annotation for many bacterial species, and the NCBI 

Protein database (“Protein”), which provides protein sequences and information. Additionally, the 

“UniProt Accession” and “Gene Symbol” columns link out to the UniProt Knowledgebase (95), 

which provides comprehensive protein annotation. 

 

3.4.9. Downloading the entire database (the Download Tab) 

 

The entire BacFITBase database is available for download on the Download page. Currently, 

BacFITBase v1 is available, and will be upgraded with new data as they become available. 
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3.5. Discussion 

 

Infectious diseases are caused by microorganisms known as pathogens, which have the capacity to 

enter, colonize, and grow within a host, causing infection and damage. The use of antibiotics to treat 

bacterial infections has undoubtedly been one of the most important advances in healthcare, saving 

millions of lives since their discovery and widespread use (20,96). 

 

Antibiotic development has mainly focused on the identification of ‘essential’ genes and proteins in 

bacteria whose inhibition is lethal under in vitro conditions (i.e., bacterial growth in culture). 

However, pathogenic bacteria do not grow alone but in a complex host environment. Thus, we need 

to revise the definition of what ‘essential’ means so that it includes the biological context of infection, 

i.e., which genes are essential for the pathogen during host infection. 

 

For a given bacterium, the in vivo fitness cost of deleting a single gene is correlated with the number 

of interactions with host proteins (52). Therefore, proteins with high impact on pathogen fitness 

during infection may cause extensive rewiring of the host interactome. These observations indicate 

that infectious diseases are only properly understood in the context of the host-pathogen interactions. 

Towards this end, a promising approach is to systematically characterize proteins involved in host 

infection. The possibility of accessing fitness data from disparate sources quickly and easily should 

accelerate the identification of new proteins involved in life-threatening infectious diseases. 

 

In this context, BacFITBase constitutes a valuable resource to systematically classify bacterial 

proteins relevant for host cell invasion and infection. BacFITBase will facilitate the task of identifying 

target proteins and interspecies complexes that will help us to understand the mechanisms of 

infection, and the design of new antimicrobial molecules aimed to interfere with the formation of 
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such complexes. In the next several years, BacFITBase is expected to grow continuously, becoming 

an even more comprehensive repository of bacterial proteins which could be important targets in the 

fight against infectious diseases. 

 

 

3.6. Availability 
 

BacFITBase is freely available at www.tartaglialab.com/bacfitbase 
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4. CHAPTER 2. DualSeqDB: The host-pathogen dual RNA 

sequencing database for infection processes 
 

 

 

 

 

 

 

4.1. Abstract  
 

Despite antibiotic resistance is a matter of growing concern worldwide, the bacterial mechanisms of 

pathogenesis remain underexplored, restraining our ability to develop new antimicrobials. The rise 

of high-throughput sequencing technology has made available a massive amount of transcriptomic 

data that could help elucidate the mechanisms underlying bacterial infection. Here we introduce the 

DualSeqDB database, a resource that helps the identification of gene transcriptional changes in both 

pathogenic bacteria and their natural hosts upon infection. DualSeqDB comprises nearly 300,000 

entries from eight different studies, with information on bacterial and host differential gene 

expression under in vivo or in vitro conditions. Expression data were calculated entirely from raw 

data and analyzed through a standardized pipeline to ensure consistency between different 

experiments. It includes information on seven different strains of pathogenic bacteria and a variety of 

cell types and tissues in Homo sapiens, Mus musculus and Macaca fascicularis at different time-

points. We envisage that DualSeqDB can help the research community in the systematic 

characterization of genes involved in host infection and help the development and tailoring of new 

molecules against infectious diseases. DualSeqDB is freely available at 

http://www.tartaglialab.com/dualseq. 
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4.2. Introduction 
 

During infection, pathogens trigger the expression of unique genes that ensure their survival and allow 

replicating within the host. In turn, the host activates complex mechanisms to recognize and kill 

pathogens. Hence, the simultaneous detection of host and pathogen transcripts during the infection 

process can provide deeper insights into the host–pathogen interaction than those detected from the 

host or pathogen in isolation. The term “dual RNA-seq” refers to the process of simultaneously 

analysing RNA-seq data of a pathogenic bacteria and the infected host (97). Dual RNA-seq has 

become a leading approach to uncover the intricate relationship between pathogen and host 

interactions allowing researchers to identify ‘molecular phenotypes’ that would otherwise remain 

undetected (98–100). 

In a typical dual RNA-seq experiment, either animals are inoculated with a defined load of bacteria 

(in vivo) or relevant cell culture models are inoculated with bacteria at a defined multiplicity of 

infection (in vitro). After inoculation, samples are taken over time to determine the time response. At 

each time point, infected cells are lysed, RNA is isolated and the cDNA library is prepared and 

sequenced using high-throughput sequencing technologies, which generates large amounts of data. 

RNA-seq data of mock-infected host cells and initial bacterial cultures are used as control conditions 

for expression analysis. Dual RNA-seq experiments have several technical difficulties, including the 

different nature and content of RNA between bacteria and eukaryotic cells, the larger proportion of 

RNA from eukaryotic cells and the need to account for the prevalence of rRNA transcripts and 

variable infection rates (97,101). Usually, such limitations can solved using high-depth sequencing, 

pathogen and host rRNA depletion, and enrichment of samples for infected host cells by fluorescence-

activated cell sorting (102). 

Dual RNA‐seq is a mixture of host and pathogen transcripts where different RNA samples may 

contain variable proportions of pathogen to host reads (103,104). These transcripts can be sorted into 

the corresponding organisms by different computational strategies (97,98) and the accuracy of 
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differential expression values depends on the analytical method used. To circumvent these biases, we 

need a standard pipeline to compare data from different sources. 

Despite the increasing availability of raw sequencing data from dual RNA-seq experiments, the 

existence of multiple analysis pipelines may hinder the comparison between datasets. Dual RNA-seq 

pipelines are very sensitive to software selection and parameter definition. This lack of 

standardization motivated the creation of DualSeqDB, a user-friendly platform to search for changes 

in gene expression levels during infection at both pathogen and host levels. To build this database, 

we analyzed raw sequencing data from heterogeneous dual RNA-seq studies using a well-defined 

pipeline, to generate comparable gene expression data. This setup allows DualSeqDB to compare 

across multiple species and experimental conditions. 

 

4.3. Methods 

 

4.3.1. Processing sequencing data 

 

To build DualSeqDB, we reprocessed raw data from available studies (Table 3) and used a well-

defined pipeline to provide robust and homogeneous information in our database (Figure 10). To this 

end, we selected only dual RNA-seq studies containing at least two biological replicates and only 

when data were available for infected and control conditions for both pathogen and host (98–100,105–

109). For each study, genome and annotation files were downloaded from the NCBI Reference 

Sequence Database (RefSeq) (110).  Bacterial and eukaryotic genome indices were created with 

Bowtie2 (111) and HISAT2 (112), respectively. HISAT2 can take into account alternative splicing 

of genes and was used for eukaryotic genome indexing. For each biological replicate, raw sequencing 

reads in FastQ format were trimmed with Trimmomatic (113) to remove adapter content. During this 

process, reads that are <36 bases long are dropped from the analysis. Afterward, surviving reads were 

mapped to host genome index with HISAT2. Mapped reads were stored as BAM files, and unmapped 
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reads were kept in a separate FastQ file. FeatureCounts  (114), together with the host annotation file, 

was used for gene counting, and a matrix of read counts was generated where each row represents an 

annotated gene and each column represents a different condition or biological replicate. Unmapped 

reads from the previous mapping step were then mapped back to the bacterial genome index with 

Bowtie2, and a matrix of read counts was produced similarly by using the bacterial annotation file 

and FeatureCounts. HISAT2 and Bowtie2 are run with default parameters as a way to simplify and 

standardize criteria when analyzing data coming from heterogeneous sources. Finally, to calculate 

gene expression changes in treated against control conditions, differential expression analysis was 

performed separately for the bacterial and the host matrices by using the DESeq2 R Package (115).  

For this, the Wald test was used under the null hypothesis that there is no differential expression 

between the control and the treated samples. The estimated gene expression change value [measured 

in log2 fold change (FC)] and its associated P-value were generated for each annotated gene with 

detected reads in at least one condition (Figures 10 and 11). P-values were corrected for multiple 

testing using the Benjamini–Hochberg method. All additional information such as bacterial ID, host 

ID, time point, experimental condition (in vivo/in vitro) and cell type/tissue was added to each gene 

to create the final format as displayed in DualSeqDB. 

 

 

 

 

 

 

 

 



45 

 

 

Table 3. List of dual RNA-Seq studies included in DualSeqDB. 

Pathogen Host 

Organism 

Tissue/cell-type Condition GEO code Reference 

Streptococcus 

pyogenes 

Macaca 

fascicularis 

Skeletal muscle 

tissue 

In vivo GSE144100 (2) 

Salmonella enterica 

Serovar 

Typhimurium 

SL1344 

 

Homo sapiens 

 

Hella-S3 cells 

 

In vitro 

GSE60144 (3) 

Salmonella enterica 

Serovar 

Typhimurium 

SL1344 

 

Homo sapiens 

Endothelial cells 

Epithelial cells 

Monocytic cells 

NK cells 

 

In vitro 

GSE136717 (4) 

Yersinia 

pseudotuberculosis 

IP 32953 

 

Mus musculus 

 

Lymphoid tissue 

 

In vivo 

PRJEB14242 

(ENA) 

(5) 

Pseudomonas 

aeruginosa PA01 

Mus musculus Lung tissue In vivo SRP090213 (SRA) (6) 

Haemophilus 

ducreyi 35000HP 

Homo sapiens Skin tissue In vivo GSE130901 (7) 

Mycobacterium 

tuberculosis ATCC 

35733 

 

Homo sapiens 

 

 

THP-1 cells 

 

In vitro 

PRJEB6552  

(ENA) 

(8) 

Streptococcus 

pneumoniae D39 

Homo sapiens A549 cells In vitro GSE79595 (9) 
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Figure 10. Pipeline used to re-process raw sequencing data from dual RNA-Sequencing studies. Raw sequencing data was 

downloaded from the GEO repository in FastQ format and adapter sequences were removed with Trimmomatic. Pathogen and 

host genomes and annotations were downloaded to build genome indices. Trimmed FastQ files were then mapped to the host 

index genome with HISAT2 and the unmapped reads were subsequently mapped to the pathogen index genome using Bowtie2. 

From this point onwards, pathogen and host reads were analyzed in parallel: mapped reads were quantified with FeatureCounts 

and their respective annotation files, creating a matrix of readcounts; this matrix of readcounts containing control and treated 

samples is then used as input for the DESeq2 R package to perform a differential expression analysis. The differential gene 

expression change (measured as log2 fold change) and corresponding p-value (Benjamini-Hochberg correction for multiple 

testing) was calculated using DESEq2. 
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4.3.2. Technical aspects 

 

DualSeqDB was built using PHP on an Apache web server with a MySQL database backend. 

Sequence identifiers and cross-references were obtained from UniProt and the NCBI RefSeq, Gene 

and Genome resources (116). DualSeqDB stores no user data, except for the anonymous caching of 

BLAST search results for a given sequence in order to greatly speed up repeated searches. The open-

source Bootstrap library was used to allow display on devices of any screen size, including mobile 

devices. Several icons were included from Font Awesome and the Noun Project, and a number of 

JavaScript libraries are used for table export and sorting.  

 

 

 

 

 

Figure 11. Visualization of overall statistical significance (p-value) and magnitude of change (log2FC) of all entries in 

DualSeqDB. Gene expression changes were considered significant when log2FC > 2 (upregulated) or log2FC < -2 

(downregulated) and p-values < 0.05 (dashed blue lines). Pathogen genes are labelled in yellow and host genes in green. 
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4.3.3. BLAST search 

 

The NCBI BLAST suite version 2.9.0+ (March 2019) (91) is used to search by sequence similarity. 

The BLASTP program is used for amino acid sequences, and BLASTX for nucleic acid (coding) 

sequences. BLAST search results are cached for each unique sequence, which means that re-running 

a search using the same sequence will yield results nearly instantaneously. As on all other pages, 

results from the BLAST search page can be linked to and shared with other researchers using the 

‘Link to these results’ link at the bottom of the page. For sequences above a URL length of 2000 

characters this link uses a sequence hash identifying the cached sequence, rather than the sequence 

itself. 

 

4.4. Using DualSeqDB 
 

DualSeqDB consists of several elements: (i) a text search function to find specific eukaryotic and 

bacterial genes, (ii) a BLAST search function to find genes similar to a protein or nucleic acid 

sequence of interest, (iii) a Browse function to quickly identify genes up and down-regulated during 

infection, and (iv) a Tutorial section to get started quickly by following a step-by-step guide. 

DualSeqDB relies on JavaScript, users will need to enable this in their web browser for full 

functionality. 

 

4.4.1. Search function 

 

To search for a gene or protein, users simply need to type its name or identifier. Any of the following 

options are available: gene symbols, gene locus identifiers, NCBI protein identifiers, UniProt protein 

accessions or a free-text search in the gene product’s description (Figure 12). To search within a 

particular host and/or pathogen, users can select the pathogen and/or host name in the drop-down 
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menu. If no gene or protein name is given, the output will display a complete list of genes, similar to 

the Browse view (described below). 

 

 

 

 

 

 

 

 

 

 

4.4.2. Tables on DualSeqDB: sorting, downloading and linking to results 

 

After selecting a gene of interest, a view will open with all the infection information available for the 

corresponding gene (Figure 13). The heading of this page provides information on the selected 

protein: protein and host/pathogen name, length, gene name and UniProt ID. In the table, all 

available experimental data are listed: tissue of the host organism, tissue condition (whether the 

experiment was carried out in vivo or in vitro), time after infection, differential expression gene data, 

including the log2 fold-change and the associated p-value, a note giving information on the growth 

conditions of control bacteria (including temperature and growth phase, whenever specified in its 

study, otherwise it is shown as “none”) and the reference to the original paper where the data was 

published. 

Figure 12. Search results in DualSeqDB. The search results page displays a list of any host or bacterial genes matching the 

search term. It also displays information on the infected host species and its associated pathogenic bacteria, the NCBI protein 

identifier, the UniProt protein accession code and the gene symbol of the gene for which the expression change was measured. 

This preview section also shows a description of the gene product and its length, together with the expression change value 

(measured as log2 fold change) and the corresponding p-value. In this example, we show the case of CXCL2, a chemoattractant 

chemokine with pro-inflammatory function, involved in many immune responses, such as cancer metastasis, wound healing or 

angiogenesis. The results collected in DualSeqDB show that, upon infection of skin tissue human cells by the pathogen 

Haemophilus ducreyi, the human gene CXCL2 increases its expression levels, as indicated by a log2 fold change above 4. 

 

http://www.tartaglialab.com/dualseqdb/search?query=C-X-C%20motif%20chemokine%202%20precursor&host=9606&pathogen=233412
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A brief description on the meaning of log2 fold-change and p-value is also available as mouse-over 

explanation on the column headers. For any proteins in UniProt, a protein visualisation is 

automatically provided by ProViz from the Davey lab. Proteins larger than 5,000 amino acids are not 

displayed due to display speed limitations. ProViz is an interactive exploration tool that allows 

inspection of the structural, functional and evolutionary features of proteins, including Pfam domains 

and transmembrane regions. This tool is particularly useful for unknown and uncharacterised 

proteins. 

Alternatively, the protein's FASTA sequence can be displayed by pressing the "Show protein 

sequence" button, along with a "Copy" link in the top right corner to copy and paste the protein's 

sequence into other research tools, or into the DualSeqDB BLAST Search to search for similar 

proteins. You can also immediately search for similar proteins via BLAST (see below for more 

details) by pressing the "Find similar proteins" button. 

To sort the table as desired, users can select any of the column headers. The current table can 

be downloaded as a comma-separated CSV file for export into spreadsheet software such as 

Microsoft Excel using the "Download Table" button in the top right. An appropriate readable file 

name is automatically generated. The results can also be linked to and shared with other researchers 

by right-clicking and copying the "Link to these results" link at the bottom of the page. 
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4.4.3. BLAST search  

 

The BLAST Search tab provides a search by sequence similarity. When the protein of interest is not 

in our database, the user may search for similar proteins using BLAST sequence alignment. Finding 

a similar protein with a high variation in log2 fold-change and low p-value is a strong indication that 

the query sequence may be relevant during infection. 

To search for similar proteins in our database using BLAST, protein or coding sequences in FASTA 

format can be used and has to be properly identified in the drop-down menu. When the BLAST 

alignment is ready, a search results page will open with the following information: 

 

Figure 13. Detailed view of gene expression changes. The detailed view page displays all the information available for a host or 

bacterial gene, along with a ProViz visualization of the protein's sequence and structural features, showing sequence 

conservation with similar proteins. It also shows the log2 fold change and the associated p-value for each entry, together with 

all the details of the experiment: host name, pathogen name, organism (indicating whether the measured gene belongs to the 

host or the pathogen), cell type/tissues, post-infection time points, as well as the PMID reference with a PubMed link to the 

original study, and a note column, specifying the bacterial growth conditions if listed in the original study. 

 

http://www.tartaglialab.com/dualseqdb/display?query=dualseq0003914
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1. Identity: The percentage of sequence identity between query and target in the successfully 

aligned region. 

2. Aligned: The total number of amino acids that were successfully aligned between query and 

target. 

3. Bit score: The required size of a sequence database in which the current match could be found 

just by chance. The bit score is a log2-scaled and normalized raw score, meaning that each 

increase by one double the required database size. 

4. E-value: The number of expected hits of similar quality (score) that could be found in the 

BLAST sequence database just by chance. 

 

The meaning of the Host, Pathogen, Locus, Protein, Gene, Product, p-value, and log2 fold-change 

columns can be found in the Browse Tab section below, or via the mouse-over information symbols 

in the top row of any table. By default, BLAST matches with the highest Bit scores are shown first 

and matches with 100% sequence identity will be highlighted in green. Tables can also be sorted as 

desired using the column headers. As for all tables, the results can be downloaded as a comma-

separated CSV file for export into spreadsheet software such as Microsoft Excel using the "Download 

Table" button in the top right corner. An appropriate readable file name is automatically generated. 

The results can also be linked to and shared with other researchers by right-clicking and copying the 

"Link to these results" link at the bottom of the results table. 

 

4.4.4. Browsing the entire database  

 

The Browse tab provides an overview of all entries in the DualSeqDB database. A pathogenic species 

or a host of interest can be chosen in the selection element at the top. This table is sorted by 

significance and log2 fold-change. It displays pathogen/host genes with a high and significant change 

in expression during infection at the top, followed by insignificant genes by decreasing log2 fold-
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change in absolute value. Genes with very little expression changes and high p-value are listed at the 

very end of the table. Arrows next to each field provide links to useful external databases: 

1. Pathogen/Host: Links out to the NCBI Taxonomy database, a comprehensive taxonomic 

database. 

2. Locus: Links out to the Ensembl database, which provides genome annotation for all species 

included in the database. 

3. Protein: Links out to the NCBI Protein database, which provides protein sequences and 

information. 

4. UniProt Accession and Gene Symbol: Links out to the UniProt Knowledgebase, which 

provides comprehensive protein annotation. 

Users can select the Locus, Protein, UniProt Accession or Gene Symbol entries to view details for 

the given protein in the external databases. This information is also available as a mouse-over 

explanation in the Browse tab. 

 

4.4.5. Downloading the Entire Database 

To download the entire DualSeqDB database for local analysis, please click the link available under 

the Download tab. Currently, DualSeqDB v1 is available, and will be upgraded with new data as they 

become available. 

4.5. Discussion 

The development of new antimicrobial therapies heavily relies on our knowledge of the mechanisms 

of bacterial infection (52,117,118). Therefore, it is crucial to understand how bacterial infection 

develops and which bacterial genes are required to infect a host. The use of high-throughput 

sequencing technologies has unveiled new levels of complexity in the transcriptomic response of 

pathogens and hosts during infection. In the last few years, dual RNA-seq has become the leading 

approach to uncover the intricate relationship between pathogen and host interactions. Hence, dual 
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RNA-seq could be used to define host–pathogen interactions or identify potential biomarkers of 

infection (119). At present, dual RNA-seq data are disseminated in multiple locations and 

incompatible formats and are therefore not accessible to the scientific community without specialized 

tools and knowledge. 

DualSeqDB intends to be a valuable central resource for the systematic identification of proteins that 

are crucial for successful infection, aimed to understand how the bacterial and host transcriptomes 

change and interact during infection. In this context, we envisage that DualSeqDB will facilitate the 

finding of interspecies relationships between pathogen and host and will help us to uncover new 

mechanisms of infection. The analysis of the results included in DualSeqDB may inspire the design 

of new therapeutic interventions aimed to prevent the spread of infection. Given the 

current momentum of sequencing technologies in research and clinics, we expect that our database 

will grow continuously and become a comprehensive repository that will help us in the fight against 

infectious diseases. 

 

4.6. Availability 
 

To download the entire DualSeqDB database for local analysis, please click the link available under 

the Download tab at http://www.tartaglialab.com/dualseq. Currently, DualSeqDB v1 is available, and 

will be upgraded with new data as they become available. 

 

 

 

 

  



55 

 

  



56 

 

5. CHAPTER 3. HPIPred: The Host-Pathogen Interactome 

Prediction tool  

 

 

 

 

 

 

 

 

 

5.1. Abstract 

 

 

 
Protein-protein interactions are involved in most of the cellular processes. Their correct identification 

is especially important in the context of pathogenic infections, as they can help get a better 

understanding of the infection process. The experimental methods commonly used for the detection 

of host-pathogen protein-protein interactions have their limitations due to cost and large-scale 

constraints. To circumvent these limitations, computational methods are nowadays used for the 

prediction of these protein interactions to support experimental data, although they generally suffer 

from high rates of false positive predictions. With the purpose to tackle this problematic, we have 

created HPIPred, a host-pathogen protein-protein interaction prediction tool based on the numerical 

encoding of different physicochemical properties of the amino acids, which also integrates phenotypic 

data related to the infection process to filter the results in a biologically meaningful way. By using 

the Homo sapiens and the Pseudomonas aeruginosa PAO1 proteomes as input to our prediction tool, 

we generated a predicted host-pathogen of 763 interactions showing a highly connected network 

topology. We hope that our predictive model can be used by researchers to prioritize candidate 

protein-protein interactions as possible targets for the development of new antibacterial drugs. 
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5.2. Introduction 

 

 

During the course of infection, pathogen proteins play a crucial role in the re-wiring of multiple 

biochemical processes occurring in the host, which ultimately allow for the progression of the 

infection (120). As a counterpart, hosts make use of their protein machinery to trigger defense 

mechanisms against the pathogen (121). Therefore, it is vital to characterize host-pathogen protein-

protein interactions (PPIs) in order to gain better insight into the biological processes that rule 

pathogen infection and replication (53). Several detection methods, such as yeast two-hybrid (37–

39), pull-down assays (122) or coimmunoprecipitation (35) are commonly used for the identification 

of novel PPIs, but it is estimated that only a small fraction of the PPI database has been characterized 

so far. With the purpose to tackle the scarcity of validated PPIs, it is becoming increasingly common 

to develop in silico methods that aid in the prediction of PPIs. 

 

In spite of the fact that there are many protein-protein interaction predictors available, such as 

homology-based (61), domain and motif interaction-based (65), structure-based (67) and machine 

learning methods (69,70), the lack of validated datasets and the problem of class imbalance causes 

that the predicting potential of these algorithms is still far from optimal. With the purpose to address 

the aforementioned, we have developed a predictive algorithm of host-pathogen protein-protein 

interactions that determines protein similarity based on cross-correlation between numerical 

representations of the proteins by using physicochemical properties of their amino acids. In order to 

improve robustness, the predictions from single models are then combined into a consensus 

interactome, which is finally integrated with phenotypic data collected in biological databases related 

with infection processes, allowing us to give a ranked score to each interaction.  
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5.3. Methods 

 

 

 

5.3.1. Data collection and dataset construction 

 

 

5.3.1.1. Positive dataset 

Host-pathogen protein-protein interactions (PPIs) were obtained from PHISTO (50), a bioinformatics 

Web resource which enables access to the most updated and experimentally validated host-pathogen 

protein-protein data. A total of 9,237 intra-species PPIs between bacteria and Homo sapiens were 

used as the initial dataset of positives. This dataset contains interaction data described between Homo 

sapiens and 95 different bacterial strains, with more than 90% of these entries belonging to Homo 

sapiens – Yersinia pestis interactions (4,069), Homo sapiens – Bacillus anthracis interactions (3,053) 

and Homo sapiens – Francisella tularensis interactions (1,348). We applied a length filtering criterion 

to remove PPIs containing any protein shorter than 100 amino acids or longer than 2,000 amino acids, 

obtaining a final dataset of 7,423 PPIs. This dataset represents the interactome of 3,327 human 

proteins against 2,496 bacterial proteins. 

 

5.3.1.2. Synthetic negative dataset 

 

Random-sequence protein libraries were created with the 20-amino acid alphabet using a gamma 

distribution to fit the observed protein-length distribution in eukaryotic and bacterial organisms. Fixed 

average protein lengths of 472 and 319 amino acids were used for the creation of the eukaryotic and 

bacterial proteomes, respectively (123). The chosen sizes for the proteomes were 20,000 and 3,000 

proteins, similar to the sizes of the human proteome and bacterial proteome, respectively. Afterwards, 

a length filtering criterion was used to remove proteins shorter than 100 or longer than 2,000 amino 

acids, giving a total of 2,598 and 18,669 surviving proteins for the bacteria and the host, respectively. 
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5.3.1.3. Negative dataset for model validation 

 

The Homo sapiens proteome was downloaded from UniProt (proteome ref: UP000005640) (95) and 

used as the host fraction of proteins. The combined proteomes of Yersinia pestis (proteome ref: 

UP000000815), Francisella tularensis (proteome ref: UP000001174) and Bacillus anthracis 

(proteome ref: UP000000594) were also downloaded from UniProt and used as the pathogen fraction 

of proteins. Non-interacting pairs of proteins were created by randomly pairing proteins from the host 

and the pathogen fractions, discarding those pairs that were also part of the positive PPI network, and 

applying the length filtering criteria previously described, to finally obtain a dataset of 7,421 entries, 

which were divided into the host (2,734) and bacterial (2,102) fraction of unique proteins. 

 

5.3.1.4. Query proteome datasets 

 

Homo sapiens and Pseudomonas aeruginosa PAO1 (proteome ref: UP000002438) proteomes were 

used as host and pathogen query, respectively. After applying our length filtering criteria previously 

described, host and bacteria proteome were composed by 19,192 and 1,314 proteins, respectively. 

 

 

5.3.2. Prediction of protein-protein interactions (single model) 

 

The main steps involved in our prediction algorithm are the transformation of amino acid sequences 

to numerical sequences, the calculation of similarity scores between the numerical sequences from 

the query datasets and the positive datasets, and the prediction of putative PPIs based on their 

similarity scores to known PPIs (Figure 15).  

 

5.3.2.1. Numerical encoding of protein sequences 

 

Each protein sequence from the positive, negative and query datasets was transformed into a 

numerical sequence by using a physicochemical property of the amino acids, which allowed to treat 
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the amino acid sequence as a numerical signal (Figure 15 A). These physicochemical properties are 

experimentally measured and represented as numerical indices for each amino acid as included in 

Aaindex (124–127). In order to represent the forces that contribute to the binding interaction between 

proteins, the numerical encoding of the protein sequences was performed individually for five 

different physicochemical properties. Specifically, we used alpha-helix indices (GEIM800101) and 

beta-strand indices (GEIM800105) to represent structure and ultimately hydrogen bonding, 

hydrophobicity index (ZIMJ680101) to represent hydrophobic effect and isoelectric point 

(ZIMJ680104) and electron-ion interaction potential values (COSI940101) indices to account for 

electrostatic forces. A 0-1 normalization step was applied to each descriptor to scale the values to the 

same range, allow direct comparison between and avoid biases. After numerical encoding, a moving 

average with a sliding window of 9 positions was used to smooth the data and represent each amino 

acid’s numerical value as a measure of itself and its near environment. 

 

5.3.2.2. Assessing protein similarity by cross-correlation 

 

To determine similarity in the physicochemical profiles of proteins, we calculated the cross-

correlation coefficients (CCCs) between the query dataset and the positive dataset by performing one-

vs-all pairwise comparisons, that is, each query protein was individually tested against all proteins in 

the positive dataset, separately for the host and the pathogen proteins (Figure 15 B). The maximum 

lag at which the CCCs were calculated was set to a fixed value of 200 (Figure 14). The highest CCC 

obtained for each pairwise comparison was assigned as a measure of similarity between the two 

proteins being compared, creating a database of similar proteins. Each entry in the database 

represented a pairwise comparison and included the highest CCC and the length of the query protein. 
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5.3.2.3. Filtering low-scored proteins (Filtering step I) 

 

To remove low-scored proteins, the database of similar proteins obtained in the previous step was 

filtered by removing all the pairwise comparisons with an associated CCC lower than 0.4 (Figure 15 

C.1).  

 

5.3.2.4. Using a synthetic negative dataset for filtering (Filtering step II) 

 

We introduced a second filtering criterion by making use of the synthetic dataset of proteins. We 

evaluated the synthetic dataset against the positive dataset and obtained the CCCs for all proteins in 

the set, respectively for the host and pathogen proteins. As the synthetic set contains only random-

sequence proteins, none of them should be considered as part of putative interacting pairs, irrespective 

of whether they passed the 0.4 threshold. The cross-correlation values of the synthetic dataset were 

plotted against their corresponding protein lengths. As the length of the synthetic proteins increased, 

Figure 14. Determination of the optimal maximum lag value for the calculation of CCCs. In order to determine the optimal maximum lag 
value, the hydrophobicity index was used to calculate the CCCs between the Homo sapiens query proteins and the positive dataset for different 

maximum lag values, namely 5, 10, 20, 50, 100, 200 and 400. After plotting the number of protein pairs with a CCC > 0.4 for each maximum 
lag value tested, the values adjusted to a logarithmic function and the number of surviving protein pairs did not increase substantially after a 

maximum lag max of 200. 
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their associated CCCs decreased linearly, a correlation that was also observed with the query datasets. 

Hence, we manually determined the slope and intercept points of parallel linear equations of the type: 

 𝑌 = 𝑎𝑋 + 𝑏 

that represented such negative linear correlation between protein length and CCC for the synthetic 

dataset, so that only 0.1%, 0.01%, 0.001% and 0.0001% of the data points fell above the equations. 

The determination of these linear equations was carried out and averaged over the five different 

physicochemical properties used, namely hydrophobicity, isoelectric point, alpha-helix and beta-

sheet indices and electron-ion interaction potential (Figure 15 C.2). We calculated a threshold value 

for each pairwise comparison in the database of similar proteins by substituting the X variable in the 

linear equation with the length of the query protein. Afterwards, we discarded those pairwise 

comparisons whose threshold value was higher than its associated CCC (Figure 15 C.3), to obtain a 

filtered database of similar proteins, repeating this process for each parallel linear equation. 

 

5.3.2.5. Prediction of protein-protein interactions 

 

To predict putative PPIs, each PPI from the positive dataset was collated with the filtered databases 

of similar proteins in the following way: the host protein in the positive PPI was searched against all 

the pairwise comparisons in the database of similar proteins of the host and whenever a match was 

found, the query protein was kept; the same procedure was repeated for the pathogen protein in the 

positive PPI, and any pair of host-pathogen query proteins obtained through this search process was 

considered a putative PPI due to its similarity with the positive PPI (Figure 15 D.1). We performed 

this search sequentially with all the PPIs in the positive dataset to obtain a predicted interactome of 

PPIs (Figure 15 D.2).  
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Figure 15. Pipeline of the prediction algorithm of PPIs for a single model. A) Numerical encoding of proteins. B) Assessing protein similarity by 

cross-correlation. C) Filtering steps. D) Prediction of protein-protein interactions. 
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5.3.3. Prediction of a consensus interactome 

 

5.3.3.1. Model combination 

 

Individual host-pathogen interactomes were predicted for the five different physicochemical 

properties previously described. These five interactomes were combined to create a consensus 

interactome, such that it included any PPI that had been predicted by at least three individual models 

(Figure 16 A). 

 

 

5.3.3.2. Phenotypic scoring of predicted PPIs 

 

In order to add additional layers of information to the predicted interactions, we used the proteins in 

these interactions as queries to run protein BLAST (91) against several databases that contain 

information about the infection phenotype, namely BacFITbase, DualSeqDB and PHI-base 

(51,118,128) (Figure 16 B). 

 

5.3.3.2.1. Sequence alignment against BacFITbase 

 

We downloaded the file including all the entries from BacFITBase v1.0, a database that contains data 

on bacterial fitness, which represents the importance of each bacterial gene in the infection process, 

measured through transposon mutagenesis. Afterwards, we performed protein sequence alignment 

between each query protein from the pathogen proteins in our predicted PPIs and this database, 

discarding all reported hits with a percent of identity ≤ 40% and an Expect value (e-value) ≥ 10-50. 

We then filtered out those whose fitness score in BacFITBase had an associated p-value ≥ 0.05. In 

order to assign an average fitness score to a query protein, we calculated the mean fitness score for 

all the surviving hits of that query, as well as a mean standard deviation score. Those queries with no 

surviving hits were assigned “NA”. Finally, under the assumption that the lowest fitness scores are 
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the most relevant in infection, we performed 0-1 normalization, assigning a value of 1 to the lowest 

fitness score reported, and a value of 0 to the highest. 

 

 

5.3.3.2.2. Sequence alignment against DualSeqDB 

 

We downloaded the file containing all the entries from DualSeqDB, a database that contains data of 

bacterial and host genes and their expression changes in different bacterial infection models, 

represented as log2 fold change as measured by dual RNA-Seq experiments. Following the same 

criteria and parameters used with the BacFITBase database, we performed protein sequence 

alignment between each query protein and the filtered DualSeqDB, respectively for the bacterial and 

the host fractions, discarding those hits with a percent of identity ≤ 40% and an e-value ≥ 10-50. We 

then filtered out those hits with an associated p-value ≥ 0.05 and for each query protein we averaged 

over the log2 fold changes of all surviving hits to assign a representative log2 fold change and standard 

deviation scores, or “NA” if not hit passed the threshold. Standard 0-1 normalization was performed 

at the end. 

 

 

5.3.3.2.3. Sequence alignment against PHI-base 

 

We downloaded the file including all entries in the PHI-base, a dataset that contains information on 

pathogen genes and assigns each of them a “mutant phenotype” depending on how their mutation 

affects the organism’s pathogenicity. In some cases, the same gene can have more than one entry as 

it may have been measured in a different infection setting. We filtered out those entries referring to 

pathogens which do not belong to the bacterial kingdom. Afterwards, we only kept entries with mutant 

phenotype tags that matched “unaffected pathogenicity”, “loss of pathogenicity”, “reduced 

virulence”, “lethal” or “increased virulence (hypervirulence)”, and transformed them into numeric 
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values, 0, 0.5 or 1 in the following way: “lethal” = 1, “loss of pathogenicity” = 1, “reduced virulence” 

= 0.5, “increased virulence (hypervirulence)” = 0.5, “unaffected pathogenicity” = 0. In order to assign 

a unique numerical value to the genes which had several discrepant phenotypes associated, only the 

most abundant case was chosen as the representative value, filtering out the rest of the genes for 

which this requirement was not fulfilled. We then performed sequence alignment between the query 

entries from the pathogen in our predicted PPIs and the surviving genes in PHI-base in the same way 

described for the previous cases, obtaining an average PHI-base score and a mean standard deviation 

score for each query protein, and “NAs” for those queries with no hits found. 

 

 

5.3.3.3. Betweenness centrality of host proteins 

 

As indicated by the centrality-lethality rule (52,129), those proteins that are important for network 

connectivity and centrality are usually essential proteins for the organism. In this sense, betweenness 

centrality is a relevant centrality measure, as nodes with high betweenness centrality lie on 

communication paths and determine network integrity (130,131). As a way to measure the essentiality 

of the Homo sapiens protein interactome within its biological context, we calculated the betweenness 

centrality. To accomplish it, the host interactome was downloaded from the STRING database (46). 

We filtered out all PPIs with a confidence score lower than 0.9. We then used igraph R package (132) 

to build an undirected graph with the surviving PPIs, calculated the node betweenness centrality for 

all nodes in the graph, each representing a protein from the host proteome, and performed standard 

0-1 normalization (Figure 16 B). 
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5.3.3.4. Determination of a ranked score 

 

For each predicted PPI in the combined interactome we compiled all the normalized scores obtained 

in the previous steps (BacFITBase, DualSeqDB, PHI-base scores for the pathogen proteins and 

betweeness centrality and DualSeqDB scores for the host proteins) and calculated an average 

weighted score with a ranging value from 0 to 1 with the following formula: 

  

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 + 𝑙𝑜𝑔2𝐹𝐶 (𝑝𝑎𝑡ℎ𝑜𝑔𝑒𝑛) + 𝑃𝐻𝐼𝑏𝑎𝑠𝑒 + 𝑙𝑜𝑔2𝐹𝐶(ℎ𝑜𝑠𝑡) + 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 − 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠
  

 

Also, a phenotypic confidence score was calculated with values ranging from 0 to 5. For each PPI to 

indicate the number of missing values (NAs) in the previous formula, namely a score of 5 showing 

no missing value and 0 indicating that no value had been reported for that specific PPI. In order to 

account for both the weighted score and the confidence score, we performed 0-1 normalization to 

adjust for the number of missing values and obtained a normalized ranked score (Figure 16 B): 

 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑟𝑎𝑛𝑘𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 =
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 ∙ 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑠𝑐𝑜𝑟𝑒

max( 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 ∙   𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑠𝑐𝑜𝑟𝑒)
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Figure 16. Model combination and calculation of ranked scores. A) Model combination. B) Determination of ranked scores for the PPIs in the 

consensus interactome. 
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5.3.4. Validation 

 

In order to validate the performance of our algorithm, each individual PPI from the positive dataset 

was taken out of the predictive models and used as query input (leave-one-out cross validation). All 

the PPIs recovered in the combined interactome generated were considered as True Positives (TP), 

while the rest were considered as False Negatives (FN). Subsequently, we passed each of the non-

interacting pairs of proteins as input to our predictive algorithm. In this case, any non-interacting pair 

recovered in the combined interactome was treated as a False Positive (FP), whereas the remaining 

ones were treated as True Positives (TP). 

 

5.3.5. Software implementation 

 

Our predictive algorithm has been wrapped up in a command-line tool that displays dialog boxes and 

allows the user to choose the host and pathogen organisms to be used as queries or introduce custom 

files, select among more than 400 different physicochemical descriptors and set up the desired false 

positive rate and percentage of agreeing models to reconstruct a consensus interactome. We also pre-

calculated protein similarity between the positive dataset and five model organisms that can be used 

as hosts, namely Homo sapiens, Mus musculus, Dario rerio, Caenorhabditis elegans and Drosophila 

melanogaster, for five different physicochemical descriptors, specifically hydrophobicity, isoelectric 

point, alpha-helix indices, beta-helix indices and electron-interaction potential. Finally, the user can 

download and integrate these data into the software in order to speed up calculations related to any 

of the mentioned model organisms. 
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5.4. Results 

 

5.4.1. Validation 

 

The results of the model validation, summarized in Table 4, showed that there was a relatively low 

recovery rate of positive PPIs, ranging from ~2% (150/7423) with the most permissive filter to ~1% 

(85/7423) when applying the most restrictive one, whereas the wrongly predicted positives were 

nearly zero in most conditions. There was a mild improvement in the recovery rate of positive PPIs 

when using a more permissive filter at the expense of increasing the computational cost and the run 

time, due to the higher number of calculations that needed to be performed. Nonetheless, the low 

efficiency of the method goes in accordance with the predictive power reported by other protein-

protein prediction algorithms which suffer mainly from using incomplete datasets of PPIs: due to the 

fact that only a small fraction of the search space of PPIs has been validated experimentally models 

don’t perform well at generalizing, because the penalty of removing a known PPI from the positive 

dataset is very costly. 

 

Table 4. Model evaluation results. CI = number combined interactomes. TP = True Positives. FP = False Positives. TN = True negatives. 

FN = False Negatives. 

 

 

 

 

 

FPR 0.1 0.01 0.001 0.0001 0.00001 

# CI 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 

TP 150 136 120 136 121 107 129 118 97 111 105 91 108 100 85 

FP 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

TN 7,419 7,421 7,421 7,420 7,421 7,421 7,421 7,421 7,421 7,421 7,421 7,421 7,421 7,421 7,421 

FN 7,273 7,287 7,303 7,287 7,302 7,316 7,294 7,305 7,326 7,312 7,318 7,332 7,315 7,323 7,338 
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5.4.2. Prediction of the host-pathogen interactome 

 

Due to the size of the positive datasets and the input query datasets, the algorithm tested ~64,000,000 

and ~3,300,000 pairwise comparisons to determine the maximum cross-correlation coefficient for the 

host and pathogen fractions, respectively, repeating this process for each physicochemical property. 

After discarding those protein pairs with a cross-correlation score lower that 0.4 (Filter I), we obtained 

~5,500,000 and ~470,000 protein pairs, on average for each 5 physicochemical properties tested. The 

filtering step involving the negative dataset (Filter II) allowed to further reduce the amount of 

surviving protein pairs in the host fraction to ~105,000 (FPR = 0.1%), ~21,000 (FPR = 0.01%), 

~8,000 (FPR = 0.001%), ~4,900 (FPR = 0.0001%) and ~4,400 (FPR = 0.00001%) for the host. As for 

the pathogen fraction, the surviving protein pairs were also greatly reduced to ~3,500 combinations 

(FPR = 0.1%), ~620 (FPR = 0.01%), ~250 (FPR = 0.001%), ~175 (FPR = 0.0001%) and ~130 (FPR 

= 0.00001). 

 

The surviving host-host and pathogen-pathogen protein pairs from the previous filtering step were 

used to predict host-pathogen interactomes for Homo sapiens and Pseudomonas PAO1 at 5 different 

FPR (0.1%, 0.01 %, 0.001 %, 0.0001% and 0.00001%) by using each of the five physicochemical 

descriptors mentioned (GEIM800101, GEIM800105, ZIMJ680101, ZIMJ680104, COSI940101), as 

well as their combined model. The whole search space of putative PPIs that can be predicted, 

calculated by multiplying the filtered proteome sizes of Homo sapiens and Pseudomonas aeruginosa 

PAO1, add up to ~25,000,000 possible PPIs. However, the results of the different models run by our 

predictive algorithm, summarized in terms of interactome sizes (Table 5), showed how the filtering 

step where different FPRs are used had an impact on narrowing down the search space of PPIs by 

several orders of magnitude. For instance, in the case of the single models we went from generating 

interactomes of a few hundred thousand PPIs when applying the most permissive filter (0.1%) to 

predict interactomes of just several hundred PPIs when the most restrictive filter (0.00001%) was 

used. Furthermore, it can be observed the effect of the combination of models to further decrease the 
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number of predicted PPIs, as indicated by the reduction by two orders of magnitude of the interactome 

predicted by the most permissive filter. In the same way, we can notice how, as the filter criteria 

becomes more restrictive, the sizes of the interactomes predicted by individual models are more 

similar to the combined model, indicating the filtering power of the combination of models and 

suggesting that upon using our most restrictive filtering criteria, the single models become almost as 

robust as the combined models. Moreover, the prediction of interactomes of relatively small sizes can 

be seen as an advantage for the downstream analysis, in terms of network visualization or gene 

ontology enrichment analysis. 

 

Table 5. PPI sizes of the predicted interactomes by individual and combined models, at different FPRs. 

 

 

5.4.2. Analysis of the Homo sapiens - Pseudomonas aeruginosa PAO1 predicted 

interactome 

 

We chose to further analyze the predicted interactome generated after using the most restrictive 

filtering criteria (FPR = 0.00001%) because of its adequate proteome size (763 PPIs) and also due to 

the fact that the interactomes predicted by the most restrictive FPRs are subsets of the most permissive 

models. After calculating the node betweenness centrality of the proteins in the Homo sapiens 

proteome and performing sequence alignment against DualSeqDB, BacFITBase and PHI-base, we 

generated a ranked score for each PPI. This, in turn, allowed us to prioritize the PPIs not only 

 PREDICTED PPIs 

     Model 

FPR 

ZIM101 ZIM104 GEIM101 GEIM105 COSI940101 COMB PPI 

0.1% 142,089 386,529 551,043 143,493 225,456 2,594 

0.01% 8,469 15,155 22,907 7,082 15,119 1,661 

0.001% 1,853 2,322 3,491 1,485 3,717 1,104 

0.0001% 1,035 1,085 1,439 968 1,779 894 

0.00001% 814 915 915 763 1,146 763 
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according to protein similarity based on physicochemical properties, but also on network topology 

and biological properties related to the infection process. Afterwards, we visualized the predicted 

interactome in Cytoscape (Figure 17) (133) by representing it as a bipartite graph (depicted in figure 

3), where host proteins (host nodes) are only connected to pathogen proteins (pathogen nodes) and 

vice versa. The ranked score of each predicted PPI was represented by the thickness and the color 

intensity of the edges connecting the PPIs in a proportional way, that is, the closer the ranked score 

of a PPI was to 1, the thicker its edge and the more intense its color, meaning that this PPI scored 

good on average on the biological databases it was compared to. Furthermore, we colored the nodes 

to represent changes in expression, derived from the BLAST search against DualSeqDB, in a range 

from blue (downregulated) to red (upregulated). Some of the top scoring PPIs (Table 6) have been 

highlighted in the Cytoscape network as a way to show how highly ranked PPIs, which represent 

protein pairs with inferred biological relevance in infection, seem to also be important for network 

integrity and connectivity in our predicted interactome. 

 

At the same time, we filtered out all PPIs with a ranked normalized score lower or equal than 0.6, 

separated the proteins that integrated these PPIs into a pathogen fraction (16 proteins) and a host 

fraction (128 proteins) of unique proteins, respectively, which were then used to perform gene 

ontology enrichment analysis with DAVID functional annotation tool (Figure 18) (134,135).  The 

results showed that the host fraction of proteins was enriched in biological processes related to 

immune and inflammatory response, such as regulation of NF-KappaB activity, cellular iron 

homeostasis and actin filament bundle assembly. As for the pathogen fraction, we observed an 

enrichment in biological terms related to amino acid and nucleotide biosynthesis, as well as folate 

biosynthesis, which are required for bacterial proliferation; these biosynthetic routes have been used 

as molecular targets for the development of antibacterials and bacterial resistance against these has 

also been described. 
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Table 6. PPIs with high ranked score which greatly interconnect the Homo sapiens – Pseudomonas aeruginosa PAO1 predicted interactome. 

Query 

Pathogen 

Query 

Host 

Template 

Pathogen 

Template 

Host 

Supporting 

predictions 

Weighted 

score 

Confidence Ranked 

Score 

Q9HXN2 Q99459 Q5NEC0 Q99459 5 0.704 5 1.00 

Q9HXN2 P46379 Q8ZCQ2 P46379 5 0.737 4 0.819 

P50587 P46379 P46379 P46379 4 0.664 4 0.726 

Q9HXN2 Q9Y6X8 Q5NEC0 Q9Y6X8 5 0.631 4 0.685 

Q9I6M5 Q9Y6X8 Q81ZE2 Q9Y6X8 3 0.621 4 0.672 

P48247 Q9NQB0 Q81LD0 Q9NQB0 3 0.472 5 0.633 

Q9HXN2 Q9GZM7 Q8ZCQ2 Q9GZM7 5 0.583 4 0.624 

Q9I6E0 Q9Y6X8 Q8ZAB3 Q9Y6X8 4 0.538 4 0.566 

P50587 Q9NQB0 Q8ZJP7 Q9NQB0 4 0.424 5 0.556 
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Figure 17. Network representation of the Homo sapiens - Pseudomonas aeruginosa PAO1 interactome predicted by the combined models. Nodes represent proteins and edges represent predicted interactions 
between proteins. Host and pathogen proteins are represented by circles and squares, respectively. Nodes are colored according to the normalized expression changes (computationally derived from DualSeqDB) 

or black in case of missing information. Node sizes are proportionally to normalized betweenness centrality and fitness for the host and pathogen proteins, respectively. Edge size and width corresponds to the 
PPI ranked score (0-1 scale). Some of the PPIs with the highest final scores have been highlighted with colors according to the color code in Table 2, in order to show how the highest ranked PPIs from our 

predictive algorithm allow to reconstruct a highly connected subnetwork. 
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Figure 18. Gene Ontology enrichment analysis of  the proteins from the highest scoring PPIs predicted. Biological processes (BP) depicted. 
Log Fold changes assigned from sequence similarity to log2 fold changes from DualSeqDB. A) Host proteins. B) Pathogen proteins. 
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5.4.3. Benchmarking 

 

We compared HPIPred with one publicly available predictive software called BIPS 

(Biana Interolog Prediction Server) (136), which predicts putative PPIs based on interolog 

information found in different protein-protein interaction databases. We used Homo 

sapiens (proteome ref: UP000005640) and Pseudomonas PAO1 (proteome ref: 

UP000002438) proteomes as query inputs to make the results directly comparable to the 

consensus interactome that we previously showed. We ran the software with default 

parameters and obtained very few predictions, so we relaxed the filtering criteria 

involving identity similarity to 40%. BIPS predictive tool generated an interactome 

consisting of 963 PPIs, compared to the 763 PPIs predicted by our algorithm. The results 

from BIPS and our own algorithm were then compared by creating an intersection of the 

predicted interactomes, which revealed that both methods shared a total of 262 common 

PPIs (Figure 19). Afterwards, we represented these common PPIs as a network in 

Cytoscape (Figure 20), where we observed that, in general, the shared PPIs maintained a 

certain degree of network connectivity and the proteins involved presented a high score 

in terms of betweenness centrality and fitness for the host and the pathogen, respectively.  

 

 

 

 

 

 

 

Figure 19. Venn diagram showing the number of predicted PPIs shared by 

BIPS and HPIPred. 
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5.5. Discussion 

 

Infectious diseases are a growing health concern worldwide due to the rise of multi-drug 

resistant bacteria. These pathogenic bacteria cause prolonged hospitalization, higher 

medical treatment expenses and an increase in the mortality rate. In this sense, protein 

interactions between pathogenic bacteria and their natural hosts play a key role in the 

infection mechanism and a thorough understanding of their complex interplay is required 

for the development of new antibiotics. Numerous experimental techniques, such as yeast 

two-hybrid, pulldown assays or co-immunoprecipitation, are currently used for the 

detection of these interactions, which are collected in existing databases through literature 

mining or manual curation. However, experimental techniques are time-consuming, 

costly and suffer from low-specificity, making it unfeasible to evaluate all possible 

protein-protein interactions.  

 

Figure 20. Network representation of the common PPIs by BIPS and HPIPred. 
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Recently, computational approaches such as machine learning, homology-based methods 

or structure-based methods, have allowed the prediction of putative PPIs, complementing 

experimental techniques. The main caveat of these prediction methods is the high false 

positive rates that they generate, mainly due to the lack of robust databases of 

experimentally validated PPIs. This data shortage causes the prediction methods to 

perform poorly in terms of generalization. 

 

HPIPred has been developed as a tool that could help reduce the false positive rate 

compared to other methods. To this end, HPIPred predicts putative PPIs through 

numerical encoding of the proteins based on physicochemical properties of the amino 

acids and integrates these predictions with biologically meaningful data in infection. 

These data include information on the in vivo relevance of bacterial genes for the infection 

process, the in vitro and in vivo gene expression changes occurring in the host and the 

pathogen, as well as topology information that allows to highlight the importance of 

central hubs on the host side. By using the Homo sapiens and the Pseudomonas 

aeruginosa PAO1 proteomes as input to our prediction tool, we generated 763 host-

pathogen interactions showing a highly connected network topology. We expect that our 

prediction tool will allow to get a more realistic picture of host-pathogen interactomes 

and will help pave the way in the prioritization of PPIs that can be explored as potential 

targets for the development of new antibacterial drugs. 

 

5.6. Availability 
 

HPIPred tool is available under https://github.com/SysBioUAB/hpi_predictor. Datasets 

are available under https://zenodo.org/record/4668840#.YPWY3u0zaV4. 

 

https://github.com/SysBioUAB/hpi_predictor
https://zenodo.org/record/4668840#.YPWY3u0zaV4
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6. DISCUSSION 
 

 

Antibiotic development has been one of the most important advances for the healthcare 

system in the treatment of infectious diseases caused by pathogens during the last century, 

having saved millions of lives since their discovery and widespread use. However, the 

natural ability of these pathogens to acquire resistance and the high selective pressure 

imposed by the use and misuse of antibiotics, is accelerating the proliferation of multi-

drug resistant bacteria. This, in turn, is causing a dangerous increase in diseases produced 

by these bacteria, which are harder to treat, and are increasing the medical expenses and 

the hospitalization time derived from their treatments, as well as the number of deaths, as 

we face the antibiotic shortage in the fight against multi-drug resistance.  

 

This situation reflects the urge to deviate from traditional drug development approaches, 

which are normally based on small molecules directed to bacterial targets that are 

considered essential for the development of the bacteria. In order to counter the rise of 

multi-drug resistance, it is necessary to develop new and innovative antibiotics that 

address new targets and use new modes of action.  

 

In this respect, we need to redefine the concept of essentiality in the context of infection, 

and identify those genes that are essential for the pathogen during host infection. For a 

given bacterium, the in vivo fitness cost of deleting a single gene is correlated with the 

number of interactions with host proteins. Therefore, proteins with high impact on 

pathogen fitness during infection may cause extensive rewiring of the host interactome. 
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With the intention to offer an easy access to high-throughput bacterial fitness data from 

heterogeneous sources, we created BacFITBase, which we believe constitutes a valuable 

resource for the systematic classification and annotation of bacterial proteins relevant for 

host cell invasion and infection.   

 

Similarly, we need to characterize the proteins involved in the host defense mechanisms 

activated upon bacterial infections. In this regard, the advancements in the field of high-

throughput sequencing technologies have allowed the development of techniques such as 

dual RNA-Sequencing, which allows to measure the time course evolution of gene 

expression changes occurring during in vitro and in vivo infections in the pathogen and 

the host simultaneously. To facilitate accessibility to highly disseminated heterogeneous 

dual RNA-Seq data, we created DualSeqDB as a resource for the systematic identification 

of bacterial and host transcriptomic changes that can be crucial for the development of 

the infection process. We hope that BacFITBase and DualSeqDB will serve as powerful 

tools for the functional annotation of relevant proteins in the context of infection and will 

help unveil interspecies relationships between pathogen and host. 

 

These observations show that infectious diseases can only be properly understood in the 

context of the complex interplay that occurs between the host and the pathogen proteins. 

Thus, it is of vital importance to identify and characterize PPIs between host and 

pathogens that can be used as targets for the development of novel antibacterial drugs.  

 

In this regard, the use of PPI modulators is a proposed model for the development of new 

antibacterial drugs, as it may help reduce side effects associated with classical 



83 

 

antibacterial treatments, such as toxicity and damage of host microbiota. Such inhibitors 

would produce a bacteriostatic effect rather than a bactericidal one. It has been proposed 

that they could be used as prophylactics to prevent the spread and progression of MDR 

bacteria, in combination with classical antibiotics that show a synergistic effect, or as a 

last resource against organisms that are resistant to all available antibiotics. Nevertheless, 

due to the limitation of experimental techniques to correctly identify host-pathogen PPIs, 

it is essential to find alternatives that complement detection methods and allow to 

understand the functions of PPIs, so that they can later be investigated as possible drug 

targets. 

 

Diverse computational strategies are nowadays used to predict host-pathogen PPIs, such 

as machine learning, homology-based methods or structure-based methods. However, 

these prediction methods generally suffer from high rates of false positive predictions as 

well as limited overlap with experimental validated interactions. In an attempt to reduce 

false positive predictions, we have developed HPIPred, a host-pathogen protein-protein 

interaction prediction tool that uses numerical encoding of amino acids based on their 

physicochemical properties and is able to integrate these predictions with phenotypic data 

from biological sources such as BacFITBase or DualSeqDB, among others. The 

integration of these phenotype data is used as a filtering criterion to reduce the number of 

putative predictions in a biologically meaningful way. By using the Homo sapiens and 

the Pseudomonas aeruginosa PAO1 proteomes as input to our prediction tool, we 

generated a predicted host-pathogen of 763 interactions showing a highly connected 

network topology and a high degree of overlap in the predictions compared BIPS, an 

interolog prediction tool. We expect that HPIPred will help reduce the PPI candidates to 
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be tested in follow-up experiments and facilitate the identification of key PPIs that can be 

further explored as potential targets for PPI modulators.   

 

Finally, even though it is beyond of the scope of this thesis, it is important to highlight 

how the combination of detection and prediction methods capable of prioritizing key host-

pathogen PPIs, coupled with the recent development of protein structure prediction 

systems as accurate as AlphaFold (137) could entail a paradigm shift in the field of drug 

development, by speeding up the identification of PPI modulators that can be used as 

antibacterial drugs against multi-drug resistant bacteria. 
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7. CONCLUSIONS  
 

In an era of antibiotic resistance, it is crucial to get a better understanding of the molecular 

mechanisms that control the infection process. To such end, we need to develop tools that 

allow us to deal with the limitations of the existing methods to detect PPIs in order to 

accelerate the screening process of drug discovery against resistant bacteria. 

For a given bacterium, the in vivo fitness cost of deleting a single gene is correlated with 

the number of interactions with host proteins. Therefore, proteins with high impact on 

pathogen fitness during infection may cause extensive rewiring of the host interactome. 

These observations indicate that infectious diseases are only properly understood in the 

context of the host–pathogen interactions. We believe that the creation of BacFITBase 

will constitute a valuable resource to systematically classify bacterial proteins relevant 

for host cell invasion and infection. In the same line, we created DualSeqDB to 

systematically identify proteins that are crucial for successful infection, with the aim to 

understand how the bacterial and host transcriptomes change and interact during 

infection.  

As discussed, infectious diseases can only be properly understood in the context of the 

complex interplay that occurs between the host and the pathogen proteins. Thus, it is of 

vital importance to identify and characterize PPIs between host and pathogens. Numerous 

experimental techniques, such as yeast two-hybrid, pulldown assays or co-

immunoprecipitation, are currently used for the detection of these interactions, which are 

collected in existing databases through literature mining or manual curation. However, 

experimental techniques are time-consuming, costly and suffer from low-specificity, 

making it unfeasible to evaluate all possible protein-protein interactions. In this context, 

computational approaches such as machine learning, homology-based methods or 
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structure-based methods, are allowing the prediction of putative PPIs, in turn helping to 

complement experimental techniques. However, they are limited by the high rate of false 

positive that they generate, mainly due to the lack of robust databases of experimentally 

validated PPIs. 

With the intention of addressing this challenge, we developed HPIPred, a tool that 

combines host-pathogen protein-protein interaction prediction with phenotype data from 

biological sources such as BacFITBase or DualSeqDB. The integration of these 

phenotype data is used as a filtering criterion to reduce the number of putative predictions 

in a biologically meaningful way. We hope that HPIPred predictions tool will allow to 

get a more realistic picture of host-pathogen interactomes and will help pave the way in 

the prioritization of PPIs that can be explored as potential targets for the development of 

new antibacterial drugs.   
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8. PUBLICATIONS FROM THIS THESIS 
 

The results presented in “Chapter 1. BacFITBase: a database to assess the relevance of 

bacterial genes during host infection” have been published in Nucleic Acids Research 

(118). 

The results presented in “Chapter 2. DualSeqDB: The host-pathogen dual RNA 

sequencing database for infection processes” have been published in Nucleic Acids 

Research (128). 
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