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lado, cómo olvidar a los cuñados, ejem, perdón, Q-nyats, Od́ı y Eĺıes, y
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seguro que si nos hubieran permitido el acceso, habŕıamos solucionado esta
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sé cómo has tenido, y por todo lo que me has enseñado sobre matemáticas.
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Abstract

In this work, we extend several known results on hyperbolic 3-manifolds
and surfaces to the non-orientable case and compare them to its orientable
counterpart. In particular, we focus on the deformation space of a non-
orientable hyperbolic 3-manifold of finite volume, the metric completion of
said deformations and the variety of representation of the Klein bottle and,
more generally, of any closed non-orientable surface.

We are interested in studying the local structure of the deformation
space. We approach the subject through two sides, from geometric ideal
triangulations and the variety of representations. Our main result on the
topic is that, for the one non-orientable cusped case, the deformation space
of an ideal triangulation is homeomorphic to a half-open interval whereas
deformations of representations are homeomorphic to an open interval of the
real line. If we consider an orientable cusp (in a non-orientable manifold),
the discrepancy is no longer observed and we obtain that its deformations
are homeomorphic to an open set of C.

The deformations of non-orientable cusps are related to different repre-
sentations of a Klein bottle which we call type I and II. The completion
of the end is either a solid Klein bottle or disc orbi-bundle for respective
representations of type I and II. Furthermore, deformations of a geometric
ideal triangulation can only yield representations of type I.

On the other hand, we study in depth the variety of representations of
the Klein bottle and, more generally, we compute the number of connected
components of the variety of representations of any closed non-orientable
surfaces. For the surface of genus k, there are 2k+1 connected components,
which are distinguished by the first and second Stiefel-Whitney class of the
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associated principal bundle.
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Resumen

En esta tesis extendemos varios resultados conocidos sobre 3-variedades
hiperbólicas y superficies al caso no orientable y los comparamos con su
equivalente orientable. En particular, nos centramos en el espacio de defor-
maciones de una 3-variedad hiperbólica no orientable de volumen finito, la
completación métrica de dichas deformaciones y la variedad de representa-
ciones de la botella de Klein y, más generalmente, de cualquier superficie
cerrada no orientable.

Estamos interesados en estudiar la estructura local del espacio de de-
formaciones. Afrontamos el tema desde dos puntos de vista, por un lado
mediante triangulaciones ideales geométricas y, por otro, por la variedad
de representaciones. Nuestro principal resultado en esta cuestión es que,
para el caso de una cúspide no orientable, el espacio de deformaciones de
una triangulación ideal es homeomorfo a un intervalo semiabierto, mientras
que las deformaciones de la representación son homeomorfas a un intervalo
abierto de la recta real. Si consideramos una cúspide orientable (de una
variedad no orientable), esta discrepancia ya no se observa, y obtenemos
que su espacio de deformaciones es homeomorfo a un abierto de C.

Las deformaciones de cúspides no orientables están relacionadas con
distintas representaciones de la botella de Klein, a las que llamamos tipo I
y tipo II. La completación del final es o bien una botella de Klein sólida o
bien un orbi-fibrado con fibra un disco para respectivas representaciones de
tipo I y II. Asimismo, deformaciones de una triangulación ideal geométrica
solo pueden dar lugar a representaciones de tipo I.

Por otro lado, estudiamos en profundidad la variedad de representa-
ciones de la botella de Klein y, más generalmente, calculamos el número
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de componentes conexas de la variedad de representaciones de cualquier
superficie cerrada no orientable. Para la superficie de género k, hay 2k+1

componentes conexas, que se distinguen por la primera y segunda clase de
Stiefel-Whitney del fibrado principal asociado.
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Introduction

Since the work of W. Thurston, hyperbolic geometry in low dimensional
topology has been a very active field of research. For the most part of
it, the focus has been on orientable manifolds with little to no reference
towards the non-orientable ones, despite the first example of a finite volume
and complete hyperbolic 3-manifold being the Gieseking manifold, which
is non-orientable (see [41], [18]). With this in mind, the aim of this PhD
Thesis is to extend some of the well-known results to the non-orientable
case and explore the differences between them. A good part of the results
presented here have been gathered in two preprints ([5], [4]).

The deformation space

Let us recall that a complete hyperbolic 3-manifold M3 can be described
as a quotient H3/Γ, where Γ is a discrete subgroup of isometries of hy-
perbolic 3-space, Γ < Isom(H3), and Isom(H3) ∼= PSL(2,C) ⋊ Z2. When
M3 has finite volume and is orientable, it is diffeomorphic to the interior
of a compact 3-manifold M3 whose boundary is a disjoint union of tori,
∂M3 = ⊔T 2

i , called peripheral tori. More generally, if M3 has finite vol-
ume and is non-orientable, the boundary of the corresponding compact
3-manifold is a disjoint union of tori and Klein bottles, ∂M3 = ⊔T 2

i ⊔ K2
j .

Our main interest lies within deformations of the complete metric in a
hyperbolic 3-manifold. By Mostow-Prasad Rigidity Theorem ([41, Thm.
11.8.5]), if a finite-volume, complete, hyperbolic 3-manifold M3 admits a
complete structure, then the complete hyperbolic structure is unique up to
isometry. Nonetheless, deformations into non-complete hyperbolic metrics
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Introduction

can be considered.
We can take into consideration manifolds locally isometric to H3 but

non-complete; in this case, the previous description as a quotient will no
longer be valid. In general, when we consider a connected hyperbolic 3-
manifold M3, there exist a local diffeomorphism, called the developing map,
from the universal cover of M3 to H3, that is, dev : M̃3 → H3 and a homo-
morphism hol : π1(M3) → Isom(H3) called the holonomy representation.
The developing map and the holonomy representation are often said to
‘globalize’ the coordinate charts and the coordinate changes, respectively.

We are interested in studying the local structure of the deformation
space, that is, deformations of the complete metric. The results on the ori-
entable case trace back to W. Thurston’s Notes in the seventies ([43]). To
give a short account of it, it was first studied by considering geometric ideal
triangulations, which topologically are tetrahedra without vertices and are
realized as tetrahedra in hyperbolic 3-space with vertices at the bound-
ary at infinity. The key fact about ideal tetrahedra is that they can be
parametrized by a single complex parameter. By deforming the tetrahedra
(i.e. changing continuously the parameter) and gluing them back together,
a new hyperbolic structure can be obtained, as long as some compatibility
equations are satisfied. By using this, W. Thurston showed that the de-
formation space of the figure eight knot exterior (the orientation covering
of the Gieseking manifold) is biholomorphic to an open subset of C. This
result was generalized by W. Neumann and D. Zagier ([37]):

Theorem (W. Thurston, W. Neumann - D. Zagier). Let ∆ be a geometric
ideal triangulation of M3 and let Def(M3, ∆) denote the deformation space
with respect to the triangulation. The deformation space Def(M3, ∆) is
biholomorphic to an open subset of Cl, where l is the number of ends of
M3.

The biholomorphism is achieved by fixing longitude and meridian pairs
(li, mi) in each peripheral tori. Then, the map from some deformation
to (log hol li) ∈ Cl is a biholomorphism (the same happens if we choose
the meridians instead). Moreover, we can solve for (pi, qi) ∈ R2 ∪ {∞} in
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Thurston’s equation

pi log hol li + qi log hol mi = 2πi.

The terms (pi, qi) are called the generalized Dehn filling coefficients and the
map from a deformation to its coefficients is a homeomorphism between
the deformation space and a neighbourhood of (∞, . . . , ∞), so we can use
them to parametrize deformations too. In terms of generalized Dehn filling
coefficients, the hyperbolic structures corresponding to (p, q) and (−p, −q)
are isometric.

The upside to the approach through ideal triangulations is that it allows
us to reduce the problem of computing metrics to a combinatorial one,
however it does not come without disadvantages. The main issue is its
generality; where the following question is still an open problem:

Question. Does every complete hyperbolic 3-manifold of finite volume ad-
mit a geometric ideal triangulation?

Epstein-Penner Theorem ([13]) states that these manifolds can be ob-
tained by gluing faces of an ideal polyhedron, so the first idea that comes to
mind is to try to obtain a subdivision of the polyhedron into ideal tetrahe-
dra, however so far the efforts of obtaining such subdividision have yielded
no result. On a positive note, in 2008, F. Luo, S. Schleimer and S. Tillmann
proved ([32]) that virtually any such manifold admits a geometric ideal tri-
angulation, that is, for any manifold there exist some finite-sheeted covering
having ideal triangulations. Moreover, recently D. Futer, E. Hamilton and
N. Hoffman proved ([16]) based upon the work of Luo, Schleimer and Till-
man that, in fact, any manifold under our hypothesis has a finite-sheeted
covering admitting infinitely many geometric ideal triangulations.

On the other hand, we have the algebraic approach. The deformation
space of a manifold can be identified with a neighbourhood of the repre-
sentation variety of the fundamental group (quotiented by the inner auto-
morphisms) ([10]). To be more precise, let Γ = π1(M3) be the fundamental
group of M3, let G = Isom(H3) be the group of isometries of hyperbolic
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space, the representation variety is the set of homomorphisms hom(Γ, G);
however, two representations in the same conjugacy class by the action of
G correspond to the same structure, so we have to consider the quotient

R(Γ, G) := hom(Γ, G)/G.

Now the question lies in how to parametrize this space. Based on work of
M. Kapovich [31], M. Boileau and J. Porti show ([8, Thm. B.1.2]) that it is
enough to fix in each peripheral tori a nontrivial loop and consider the trace
of the image of the loop by the representation. This map is a bi-analytic
isomorphism.

Both the combinatorial and algebraic approach are practically equiva-
lent, a neighbourhood of hyperbolic structures is in one to one correspon-
dence with a neighbourhood of R(Γ, G), whereas there is a two to one ram-
ified covering from a neighbourhood of generalized Dehn filling coefficients
to hyperbolic structures. As we stated before, deformations with general-
ized Dehn filling coefficients (p, q) and −(p, q) in some end correspond to the
same structure. As we will see in the following result, in the non-orientable
case, an interesting phenomenom happens regarding this equivalence.

Theorem A. Let M3 be a complete, non-orientable, hyperbolic 3-manifold
of finite volume with l orientable ends and k non-orientable ones.

(a) If M3 admits an ideal triangulation ∆, then, Def(M3, ∆) ∼= (−1, 1)k ×
B(1)l, where B(1) ⊂ C denotes the unit ball centered at 0, and where
the parameters (±t1, . . . , ±tk+l) ∈ (−1, 1)k × B(1)l correspond to the
same structure.

(b) A neighborhood of the holonomy in R(π1(M3), Isom(H3)) is homeo-
morphic to (−1, 1)k × B(1)l.

Furthermore, the holonomy map Def(M3, ∆) → R(π1(M3), Isom(H3)) is a
2k+l branched covering on the image and folds each interval (−1, 1) at 0.
Its image is the product of half-open intervals and open balls [0, 1)k ×B(1)l,
where (0, . . . , 0) corresponds to the complete structure.
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Remark 1. The previous branched covering is not exhaustive. In par-
ticular, there are deformations of the holonomy that cannot be achieved
through deformations of the geometric ideal triangulation.

When we tackle the problem for the non-orientable case, we have two
choices, either try to extend the ideas to some non-orientable manifold N3,
or consider the orientation covering N3

+, where the known results apply, and
also consider the group of deck transformations Z2. Then, hopefully we will
be able to identify deformations of N3 with deformations of N3

+ fixed by
the action of Z2. We opt for the latter one.

In the first place, when we take the approach through ideal triangula-
tions, it is mainly a matter of finding the action of the covering transfor-
mation generating the cyclic group on the deformation space. The gener-
alization of the compatibility equations is pretty straightforward and, from
here, the identification between both the deformation space of N3 and the
deformations of the orientation covering N3

+ fixed by the action of the cov-
ering transformation comes naturally. In order to find its local structure,
we translate the action to generalized Dehn filling coefficients. For the one-
cusped case with a peripheral Klein bottle, the fixed coefficients by the
action are the ones of type (0, q), which happens to be homeomorphic to a
real line.

If we take into account the equivalence between deformations with pa-
rameters (p, q) and −(p, q) what we have is that these deformations com-
ing from an ideal triangulation are homeomorphic to a half-open interval.
Nonetheless, it is known that the deformation space of an orientable hyper-
bolic 3-manifold is smooth at the complete structure, and it can be proved
that the same holds for a non-orientable one. Therefore, some structures
cannot be achieved through deformations of an ideal triangulation. This
leads us to also compute deformations by means of the representation vari-
ety.

The strategy we take in the representation variety is analogous to the
one of the combinatorial method; there is an induced action of the covering
transformation into the representation variety R(Γ+, G) where Γ+ < Γ is
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the fundamental group of N3
+ and this allows us to identify the represen-

tation variety of our interest R(Γ, G) with the fixed points of R(Γ+, G).
Actually, as a technical step we have to consider R(Γ+, G+), where G+ =
Isom+(H3), the subgroup of orientation preserving isometries. The action
can be translated through the trace map and we can identify a neighbour-
hood of R(Γ, G) with the representations with real trace (when restricted
to non-orientable ends). Thus, by means of deformations of the holonomy
we can attain any possible deformation and we can see that the deformation
space is indeed smooth.

The discussion of the previous paragraphs and the statement of Theo-
rem A is illustrated in the Gieseking manifold, discovered by H. Gieseking
in his doctoral Thesis ([18]) under the supervision of M. Dehn. The Giesek-
ing manifold admits an ideal triangulation by one ideal tetrahedron, hence
computing the deformation space with respect to the triangulation is quite
straighforward. On the other hand, it also admits a fiber bundle structure,
which in turn facilitates the computation of its variety of representations.

The metric completion

A natural question when obtaining deformations is to consider its comple-
tion. For the orientable case, this can be found again in Thurston’s Notes,
and the resulting manifolds are the core of the proof of Thurston’s hy-
perbolic Dehn surgery Theorem. In order to construct the completion on
the non-orientable case, we have to understand first how the corresponding
holonomy representation restrict to the peripheral Klein bottles related to
the non-orientable ends. This is achieved by taking into account the square
map

[A] ∈ Isom−(H3) 7→ A2 ∈ SL(2,C),

and the fact that the variety of representations of the torus is well-known.
A neighbourhood of orientation type preserving representations of the Klein
bottle, that is, representations mapping a loop to an element of Isom+(H3)
iff the loop is orientable, consists of three types of representations: parabolic,
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type I and type II. In order to describe them, it is better to fix generators
of the fundamental group of the Klein bottle, π1(K2). The fundamental
group π1(K2) admits a presentation

π1(K2) = ⟨a, b | aba−1 = b−1⟩.

In terms of the generators a and b and writing the isometries as linear
fractional transformations, we define ρ to be a non-degenerate parabolic
transformation if, up to conjugation, ρ(a)(z) = z + 1, ρ(b)(z) = z + τi, for
τ ∈ R\{0}. A neighbourhood of a non-degenerate parabolic transformation
consists of three types of representations:

Proposition B. Let ρ0 ∈ hom(π1(K2), G) preserve the orientation type
and be non-degenerate parabolic. Let ρ be in a small neighbourhood of ρ0.
Then, up to conjugation, one of the following holds:

a) ρ(a)(z) = z + 1, ρ(b)(z) = z + τi, with τ ∈ R>0.

b) ρ(a)(z) = elz, ρ(b)(z) = eiθz, with l ∈ R≥0, θ ∈ (0, π].

c) ρ(a)(z) = eiθ/z, ρ(b)(z) = elz, with l ∈ R>0, θ ∈ [0, π].

A representation in case a) is called parabolic, in case b), type I, and in case
c), type II.

The list is not exhaustive, however in a neighbourhood of a non-degenerate
parabolic representation it is so. From a geometric point of view, both type
I and II leave invariant a geodesic of H3, but in one of them, the reflection
coming from a non-orientable element is with respect to a plane containing
said invariant geodesic (type I), whereas in the other, the plane is orthogo-
nal to the geodesic (type II). This dicotomy is at the core of the discrepancy
between the algebraic and combinatorial approach when computing defor-
mations: the gluing of ideal tetrahedra can only yield representations of
type I. The proof that any representation in a neighbourhood falls in one
of the three previous types comes from restricting representations to the
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orientation covering and from here, compute the preimage through the re-
striction map (this is where the aforementioned square map plays a role).

Once we know how the deformations restrict to the peripheral Klein
bottles, we can inspect the completion. There are some nuances when
identifying holonomy representations and structures. For instance, we can
consider an open subset of a non-complete manifold such that both have
the same holonomy. This is circumvented by constructing a maximal struc-
ture which we call the radial thickening. The radial thickening happens
to identify with the canonical structure for deformations coming from an
ideal triangulation. According to the type of representations we have 3
possibilites.

Theorem C. For a deformation of the holonomy of M3, the corresponding
deformation of the metric can be chosen so that on a non-orientable end
one of the following holds:

• It is a cusp, a metrically complete end, if the peripheral holonomy is
parabolic.

• The metric completion is a solid Klein bottle with singular soul if the
peripheral holonomy is of type I.

• The metric completion is a disc orbi-bundle with singular soul if the
peripheral holonomy is of type II.

Regarding the third case, it is a pseudomanifold with two singular points:
the endpoints of the singular soul. More precisely, a neighbourhood of each
singular point is isometric to the metric cone on the projective plane P 2.

Representation varieties of surfaces

The main motivation to study the variety of representations of the Klein
bottle is to obtain the previous result on the completion of the deformed
structures. Nonetheless, it is also an interesting object by itself. For this
reason, several questions about the variety of representations are addressed.
We should note first that the study of the square map leads to a classification
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of the non-orientable isometries of H3 up to conjugation. We are interested
in the properties of the restriction map to the orientation covering. We
consider the variety of orientation type preserving representation, which we
denote by R+(π1(K2), G), and prove that the restriction map

res : R+(π1(K2), G) 7→ R(π1(T 2), G+),

although not an homeomorphism (it is not even injective), is locally an
homeomorphism around a parabolic representation. We also compute the
homology and cohomology groups of the Klein bottle twisted by sl(2,C),
which is related to the smoothness of the variety of representations and
its dimension. We prove that it is indeed smooth and it has real dimen-
sion 7. Finally, the connected components of the variety of representations
are computed in a very straightforward way (we compute every possible
representation).

Proposition D. The variety of representations hom(π1(K2), Isom(H3)) has
8 connected components.

The connected components are distinguished according to the orientabil-
ity behaviour of the image of the generators and wether the representation
can be lifted to the universal cover or not.

Finally, we generalize the previous proposition on connected components
for every closed non-orientable surface. This in turn is the non-orientable
version of a result of W. Goldman ([20]):

Theorem (W. Goldman). Let Σg be the orientable closed surface of genus
g. Then, the variety of representations hom(π1(Σg), Isom+(H3)) has exactly
two connected components.

In the same paper, W. Goldman consider the PSL(2,R) and PSL(2,C)-
cases for orientable surfaces. Similar results have been obtained for other
groups and orientable surfaces. However, the non-orientable case has not
been inspected that much. Ho and Liu ([26], [27]) proved very general
results for non-orientable surfaces but for connected groups. E. Xia ([46])

9
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considered the group PGL(2,R), although for orientable surfaces. More
closely related we find Palesi’s papers, [39] and [40], where the PSL(2,R)
and PGL(2,R)-cases are inspected for non-orientable surfaces. We obtain
the following theorem in the Isom(H3) ∼= PSL(2,C) ⋊ Z2-case:

Theorem E. Let Nk be the closed non-orientable surface of genus k. The
variety of representations hom(π1(Nk), Isom(H3)) has 2k+1 connected com-
ponents. In particular, the connected components are classified by the first
and second Stiefel-Whitney class of the associated bundle.

We take an approach which follows closely W. Goldman’s paper for
the PSL(2,C)-case. The main idea is that given a representation in a Lie
group G, there is an associated flat G-bundle over the surface. The Stiefel-
Whitney classes of said bundle are invariant over the connected components
and, in fact, it is all that is needed to distinguish them. Moreover, they
can be computed directly from the representation of the generators: the
first Stiefel-Whitney class corresponds to the image of the generators being
orientation preserving or not, whereas the second Stiefel-Whitney class cor-
responds to the lift of the relation between the generators to the universal
cover SL(2,C). Then, the case of non-orientable genus 3 is computed by
cutting along the Möbius strips in order to obtain a representation of a
3-punctured sphere and making use of Fricke-Klein Theorem. The general
case is obtained by induction: the surface of genus k is the connected sum of
the surface of genus k−2 and the one of genus 2. The proofs of these results
need several technical results on the possiblity of lifting paths through the
square map.

Organization of the thesis

The thesis is organized as follows. It is divided in 5 chapters, all of them
mostly self-contained, which, although leading to some repetition, we find
to be a strong point of the structure. The first chapter is devoted to ideal
triangulations and the Deformation Space with respect to an ideal triangu-
lation. The second chapter, on the other hand, covers the approach through

10
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the representation variety R(N3, G). At the end of each of those chapters,
the Gieseking manifold is used as an example of the results. On the third
chapter all the topics we have already discussed on the representation va-
riety of the Klein bottle are inspected, in particular, we obtain here the
distinction in parabolic, type I and type II representations. Later on, in
the fourth chapter, the results of the third chapter are applied in order to
obtain the completion of the deformed ends. Finally, the fifth chapter is
devoted to computing connected components of representations for closed
surfaces.

11





1 Deformation space from ideal
triangulations

Before discussing non-orientable manifolds, we recall first the orientable
case. The computation of the deformation space from an ideal triangulation
was first exemplified by Thurston in his notes [43] for the figure eight knot
exterior, and the general case was constructed by Neumann and Zagier in
[37].

From the point of view of a triangulation, the deformation of the hyper-
bolic structure on a manifold with a given geometric ideal triangulation is
the space of parameters of ideal tetrahedra, subject to compatibility equa-
tions.

A geometric ideal tetrahedron is a geodesic tetrahedron of H3 with of
all of its vertices in the ideal sphere, ∂∞H3. We say that a hyperbolic 3-
manifold admits a geometric ideal triangulation if it is the union of such
tetrahedra, glued along the geodesic faces. Though it has been established
in many cases and for some time it seemed it could be derived from Epstein-
Penner theorem ([13]), it is still an open problem to decide whether every
orientable hyperbolic three-manifold of finite volume admits a geometric
ideal triangulation. Some examples of manifolds admitting geometric ideal
triangulations are two-bridge link exteriors and once-punctured torus bun-
dles over the circle ([23], [42], [14]).

Given an ideal tetrahedron in H3, up to isometry we may assume that
its ideal vertices in ∂∞H3 ∼= C ∪ {∞} are 0, 1, ∞ and z ∈ C, where
Im(z) > 0. The idea of Thurston is to equip the (unoriented) edge between
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CHAPTER 1. DEF. SPACE FROM IDEAL TRIANGULATIONS

0 and ∞ with the complex number z, called edge invariant. The edge
invariant determines the isometry class of the tetrahedron, and for different
edges the corresponding invariants satisfy some relations, called tetrahedron
relations:

• Opposite edges have the same invariant.

• Given 3 edges with a common end-point and invariants z1, z2, z3, in-
dexed following the right hand rule towards the common ideal vertex,
they are related to z1 by z2 = 1

1−z1
and z3 = z1−1

z1
.

The edge invariant may also be introduced by means of the link of a
vertex. The link at a vertex v, denoted L(v) is defined as the intersection
of a horosphere centered at v with the tetrahedron. The link L(v) is an Eu-
clidean rectangle well-defined up to similarity. Its similarity class is charac-
terized by the vertex invariant of any of its three vertices w1, w2, w3 (written
using the right hand rule towards v). The vertex invariant is defined by em-
bedding the triangle in C as the ratio z(wi) = (wi+2−wi)/(wi+1−wi), where
the subindices are modulo 3. The correspondence between edge invariant
and vertex invariant is that the vertex invariant of wi is equal to the edge
invariant of the edge containing wi.

z1 z2

z3

z3

z1z2

Figure 1.1: Ideal tetrahedron with
edge invariants.

z1 z2 = 1
1−z1

z3 = z1−1
z1

Figure 1.2: Tetrahedron relations.

Let M be a possibly non-orientable complete hyperbolic 3-manifold of fi-
nite volume, which admits a geometric ideal triangulation, ∆ = {A1, · · · , An}.
The usual parameterization of the triangulation goes as follows: we fix an

14



edge ei in each tetrahedron Ai, and consider its edge invariant, zi. We will
denote the parameters of the complete triangulation {z0

1 , · · · , z0
n}. The de-

formation space of M with respect to ∆, Def(M, ∆), is defined as the set
of parameters {z1, · · · , zn} in a small enough neighborhood of the complete
structure for which the gluing bestows a hyperbolic structure on M . How-
ever, we find that the equations defining the deformation space are easier
to work with if we use 3n parameters (one for each edge after taking into
account the duplicity in opposite edges) and ask them to satisfy the second
tetrahedron relation too.

When M is orientable, in order for the gluing to be geometric it is
necessary and sufficient that around each edge cycle [e] = {ei1,j1 , · · · , eim,jm}
the following two compatibility conditions are satisfied:

m∏
l=1

z(eil,jl
) = 1, (1.1)

m∑
l=1

arg(z(eil,jl
)) = 2π. (1.2)

The parameters which correspond to the complete hyperbolic structure
are denoted by {z0(e1,1), · · · , z0(en,3)}. In a small enough neighborhood
of {z0(e1,1), · · · , z0(en,3)}, fulfillment of (1.1) implies (1.2).

Motivation for equations (1.1) and (1.2) can be found in figure 1.3,
which intuitively expresses that in order for a geometric structure to exist
around and edge, the triangulation must close out around it forming a 2π

angle without any shearing.
For reference, in terms of n parameters zi the compatibility conditions

are laid out as ([37]):

n∏
ν=1

z
r′

jν
ν (1 − zν)r′′

jν = ±1 (j = 1, · · · , n), (1.3)

where ν runs through all of the tetrahedra, j does so through every edge
cycle (whose number equals the one of tetrahedra due to an Euler charac-
teristic argument), and (r′

jν
, r′′

jν
) is a sum of (1, 0), (−1, 1), (0, −1) or (0, 0).

This sum depends on the edge cycle containing the edge with parameter zν ,
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1

z(e1)

z(e1)z(e2)
z(e1)z(e2)z(e3)

[e]

Figure 1.3: Triangulation around the edge cycle [e].

the one with parameter zν−1
zν

, the one with 1
1−zν

or not having any edge of
the tetrahedron Aν at all, respectively.

We end the overview of the orientable case with the theorem we want
to extend to the non-orientable case:

Theorem 1.0.1 (W. Thurston [43], W. Neumann - D. Zagier [37]). Let
M be connected, oriented, hyperbolic, of finite volume with l cusps. Then
Def(M, ∆) is bi-holomorphic to an open set of Cl.

The proof of the theorem comes from finding an intrinsic parametriza-
tion of the deformation space, as the one we have defined depends on the
particular ideal triangulation. To any hyperbolic 3-manifold M3, there is
an associated holonomy representation:

hol : π1(M3) → Isom(H3).

In particular, we can restrict the holonomy representation to the cusps (or
more generally, ends) of M3. Thus, assuming M3 orientable, we have for
each end, a representation

hol : π1(T 2) → Isom(H3).
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1.1. DEF. SPACE OF A NON-ORIENTABLE MANIFOLD

By conjugating so that the geodesic invariant by the holonomy is the one
going from 0 to ∞ in the upper half space model, there is a well-defined
derivative of the holonomy:

hol′ : π1(T 2) → C∗.

Let us fix a longitude-meridian pair in each end, li and mi. The map

Def(M3, ∆) −→ (C∗)l

(zi,j) 7−→ (hol′(li))

is the bi-holomorphism in Theorem 1.0.1. The same holds when we define
the map with the meridians. When the manifold admits an ideal triangula-
tion, the derivative of the holonomy can be computed by means of the edge
parameters and it is a fractional polynomial in terms of them.

Furthermore, Neumann and Zagier show that we can consider the gen-
eralized Dehn filling coefficients associated to a deformation, (pi, qi) ∈
(R2 ∪ {∞})l, and the map from a deformation to its Dehn coefficients is
a homeomorphism. The generalized Dehn filling coefficients are related to
Thurston’s hyperbolic Dehn filling Theorem ([43]).

We will explore in Section 1.2 the interplay between the covering trans-
formations group of the orientation covering and the derivative of the holon-
omy and the generalized Dehn filling coefficients, which leads to our main
result of the chapter in Theorem 1.2.16.

1.1 The Deformation Space of a
non-orientable manifold

When we deal with non-orientable manifolds, again the problem of the
gluing being geometric lives within a neighborhood of the edges.

Lemma 1.1.1. Let e be an edge of an ideal tetrahedron A ⊂ H3 with edge
invariant z(e), and let ι be a non orientable isometry of H3. The edge
invariant of the edge ι(e) in ι(A) is 1/z(e).
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Proof. Let us first notice that the edge invariant is preserved under orien-
tation preserving isometries. Thus, by writing ι as the composition ι = cg

with g ∈ Isom+(H3), c ∈ Isom−(H3), we can assume without loss of gen-
erality that ι = c, where c denotes the Poincaré extension of the complex
conjugation in the upper-space model, i.e., the reflection on a fixed hyper-
plane of H3. Moreover, by applying another orientation preserving isometry,
we may also assume that the tetrahedron A has vertices 0, 1, z(e) and ∞.

Under these assumptions, the tetrahedron ι(A) = c(A) has vertices
0, z(e), 1 and ∞, and the edge e is fixed by ι, ι(e) = c(e) = e. From
here, it is clear that the edge invariant of z(ι(e)) ⊂ ι(A) is

z(ι(e)) = 1/z(e).

Proposition 1.1.2. Let N be a non-orientable manifold triangulated by a
finite number of ideal tetrahedra Ai. The triangulation bestows a hyperbolic
structure around the edge cycle [e] = {ei1,j1 , · · · , ein,jn} if and only if the
following compatibility equations are satisfied :

n∏
l=1

z(eil,jl
)ϵl

z(eil,jl
)1−ϵl

= 1, (1.4)

n∑
l=1

arg(z(eil,jl
)) = 2π, (1.5)

where z(eil,jl
) is the edge invariant of eil,jl

, and ϵl = 0, 1 in such a way
that, in the gluing around the edge cycle [e], a coherent orientation of the
tetrahedra is obtained by gluing a copy of Ail

with its orientation reversed
if ϵl = 0, (or kept the original one if ϵl = 1), and with the initial condition
that the orientation of the tetrahedron Ai1 is kept as given.

Proof. When we follow a cycle of side identifications around an edge, can
always reorient the tetrahedra (maybe more than once) so that the gluing is
done by orientation preserving isometries. The compatibility equations for
the orientable case can be then applied and, hence, for the neighborhood of
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the edge cycle to inherit a hyperbolic structure, Equations (1.1) and (1.2)
must be satisfied, with the corresponding edge invariants.

Now, let us consider an edge ei,j ∈ Ai with parameter z(ei,j). We can
apply Lemma 1.1.1 to conclude that the edge invariant of ι(ei,j) ⊂ ι(Ai) is
1/z(ei,j). Notice that arg(z−1) = arg(z) and, thus, the proposition follows
with ease after changing the orientation of some tetrahedra.

Definition 1.1.3. Let N be a connected, complete, non-orientable, hyper-
bolic 3-manifold of finite volume. Let ∆ be an ideal triangulation of N . The
deformation space of N related to the triangulation ∆ is

Def(N, ∆) = {(z1,1, · · · , zn,3) ∈ U ∩ C3n satisfying the compatibility
Equations (1.4) and (1.5) and the tetrahedron relations},

where U is a small enough neighborhood of the parameters (z0
i,j) of the

complete structure.

Remark 1.1.4. As in the orientable case, in a small enough neighbourhood
U , fullfilment of Equation (1.4) implies (1.5).

Let N̂ be the orientation covering of N . The ideal triangulation on N ,
∆, can be lifted to an ideal triangulation ∆̂ on N̂ . There is an orienta-
tion reversing homeomorphism, ι, acting on N̂ such that N = N̂/ι and
ι2 = Id, that is, ι is a covering transformation. The triangulation on N̂

is constructed in the usual way: for every tetrahedron Ai we take another
tetrahedron with the opposite orientation, Ai, and re-glue all the tetrahe-
dra so that the orientation is coherent. Then, the action of the covering
transformation on the triangulation permutes them, that is, ι(Ai) = Ai.
For every edge, ei,j ∈ Ai, let z(ei,j) or zi,j denote its edge invariant. Analo-
gously, w(ι(ei,j)) or wi,j will denote the edge invariant of ι(ei,j) ∈ ι(Ai).

Remark 1.1.5. The compatibility equations (1.4) and (1.5) around [e] ∈ N

are precisely the (orientable) compatibility equations in any lift of [e] to the
orientation covering. To see this, we only have to realize that the choice
of ϵl in proposition 1.1.2 actually describes how to orient the tetrahedra
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coherently around an edge cycle, which is how they are oriented in one of
the two lifts of the aforementioned edge cycle to the orientation covering.
There is still a nuance about the chosen lift of the edge, but Equations (1.4)
and (1.5) are equivalent in both lifts.

The orientation reversing homeomorphism acts on Def(N̂ , ∆̂) by pulling-
back (equivalently, pushing-forward) the associated hyperbolic metric on
each tetrahedron. Combinatorially, the action is described in the following
lemma:

Lemma 1.1.6. Let N = N̂/ι, where ι is an orientation reversing homeo-
morphism. Let N admit an ideal triangulation ∆. Then, ι acts on Def(N̂ , ∆̂)
as

ι∗((zi,j, wi,j)) = ( 1
wi,j

,
1

zi,j

). (1.6)

Proof. The proof follows easily from the fact that ι permutes the edges and,
for ei,j ∈ Ai with invariant z(ei,j), the edge invariant of ι(ei,j) ∈ ι(Ai) is
1/z(ei,j), by Lemma 1.1.1. This describes the push-forward of the metric.
The action is well-defined, for (zi,j, wi,j) ∈ Def(N̂ , ∆̂), Equation (1.4) at
edge cycles [e] and [ι(e)] is, respectively,

∏
k∈I1

zik,jk

∏
l∈I2

wil,jl
= 1,

∏
k∈I1

wik,jk

∏
l∈I2

zil,jl
= 1.

Hence, for ι∗((zi,j, wi,j)), equation (1.4) at [e] is

∏
k∈I1

wik,jk

−1 ∏
l∈I2

zil,jl

−1 = 1,

which is equivalent to the compatibility equation at [ι(e)]. Therefore,
ι∗((zi,j, wi,j)) satisfies equations (1.4) and (1.5). There is a small nuance
to be noted: the order in the gluing is different around [e] and [ι(e)] due
to the change of orientation, however this is feature does not appear in the
equations due to the commutativity of the multiplication.

As an action of C3n, ι∗ is a homeomorphism, and a neighbourhood U can
be chosen so that the image ι∗((zi,j, wi,j)) = ( 1

wi,j
, 1

zi,j
) belongs to Def(N̂ , ∆̂).

20



1.2. DIMENSION OF THE DEFORMATION SPACE DEF(N, ∆)

Take for instance any neighbourhood U0 of the complete structure and
define U := U0 ∩ ι∗(U0).

Remark 1.1.7. Metrics on tetrahedra are considered up to isotopy.

We will denote the subset of fixed points of Def(N̂ , ∆̂) under the action
of ι∗ as Def(N̂ , ∆̂)ι.

Corollary 1.1.8. The map (zi,j) ∈ Def(N, ∆) 7−→ (zi,j, 1/zi,j) ∈ Def(N̂ , ∆̂)ι

is a real analytic isomorphism.

Proof. Remark 1.1.5 shows that the map goes to Def(N̂ , ∆̂) and Lemma 1.1.6,
that it is a fixed point under ι∗. The inverse of the map exists again due to
Remark 1.1.5. The fact that it is a real analytic isomorphism is clear from
the definition.

Remark 1.1.9. Before ending the section there is a last small observa-
tion to be made. Let A be some tetrahedron of the triangulation ∆̂ and
three edges e1, e2, e3 with a common ideal vertex v indexed following the
right hand rule as in the second tetrahedron relation. The corresponding
edges at ι(A), ι(e1), ι(e2), ι(e3), no longer follow the right hand rule and
we have to take into account that what satisfies the tetrahedron relation is
w(ι(e3)), w(ι(e2)), w(ι(e1)).

1.2 The dimension of the Deformation
Space Def(N, ∆)

Our goal is to use Corollary 1.1.8 and Theorem 1.0.1 in order to identify
the deformation space of N with the fixed points under an action on Ck.
Let us suppose for the time being that N has only one cusp which is non-
orientable. The section of this cusp must be a Klein bottle. In order
to define the bi-holomorphism via the holonomy representation we must
first fix a longitude-meridian pair in the peripheral torus in the orientation
covering N̂ . As we will see, there is a canonical choice. Afterwards, we will
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compute the derivative of the holonomy, hol′, and translate the action of ι

over there and finally, to the generalized Dehn filling coefficients.

Fixing a longitude-meridian pair. Let K2 be Klein bottle, its funda-
mental group admits a presentation

π1(K2) = ⟨a, b|aba−1 = b−1⟩.

The elements a2, b in the orientation covering T 2 are generators of π1(T 2)
and are represented by the unique homotopy classes of loops in the orienta-
tion covering that are invariant by the deck transformation (as unoriented
curves). From now on, we will choose as longitude-meridian pair the ele-
ments:

l := a2,

m := b.

Definition 1.2.1. The previous generators of π1(T 2) are called distin-
guished elements.

Let ι denote the involution on T 2 obtained as a restriction of the involu-
tion on N . The deck group of the covering T 2 → K2 is Z2, thus the action
of ι on T 2 is determined. It can be identified with the conjugation by the
loop a, which is

ι∗(l) = l, (1.7)
ι∗(m) = m−1. (1.8)

Lemma 1.2.2. Let [α] ∈ π1(T ), let ι be the involution in the orientation
covering N̂ , that is, N = N̂/ι. We also denote by ι the restriction of ι to
the peripheral torus T . If

hol′(α) =
∏
r∈I

z(eir,jr)ϵr
∏
s∈J

w(ι(eis,js))ϵs ,
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where ϵr, ϵs ∈ {±1}, then

hol′(ι(α)) =
∏
r∈I

w(ι(eir,jr))−ϵr
∏
s∈J

z(eis,js)−ϵs .

Proof. We use Thurston’s method for computing the holonomy through the
developing of triangles in C (see [43]). A representant of [α] can be taken
so that it crosses the boundary of tetrahedra at faces. Moreover, we can
assume that when it enters inside a tetrahedron it exists through a different
face. Otherwise, we can push out the loop from the tetrahedron and take
another representant that does not go into it. This way, the loop goes
through tetrahedra a finite number of times and each time it does so, it
crosses two faces with a common edge. The product of the edge invariants
of the previous edges computes the derivative of the holonomy hol′(α).

In order to see the behaviour of the holonomy under the action of ι, we
only need to observe what happens to a piece of the loop α when it passes
through a tetrahedron. If a piece of loop contributes to the holonomy in
a factor of zi,j = z(ei,j), we can assume as usual that the tetrahedron has
vertices 0, 1, zi,j and ∞, with the isolated edge is the geodesic with ideal
endpoints 0 and ∞, and that ι = c. Then, as shown in Figure 1.4, the
corresponding piece of ι(α) contributes in a factor w−1

i,j = w(ι(ei,j))−1. The
same occurs if the piece of α adds a factor of wi,j.

0 1 10

z

z

w−1

·w−1ι

Figure 1.4: Change under the action of ι.
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Remark 1.2.3. Lemma 1.2.2 displays the fact that if we write a loop α as a
concatenation of paths α = α1 ∗α2 ∗· · ·∗αn (∗ denoting the concatenation),
then the derivative of the holonomy of α, can be computed as a product of
partial holonomies

hol′(α) = hol′(α1) · · · hol′(αn).

In order to make sense of this partial holonomy we have to ask each path
αi to start and end at faces of the triangulation. It is clear that if this
happen the partial-holonomy is well-defined up to homotopy. Moreover,
Lemma 1.2.2 can be applied to the partial holonomy too.

Lemma 1.2.4. The derivative of the holonomy of the chosen longitude-
meridian pair has the following features:

hol′(m) =
∏

r∈Im

z(eir,jr)ϵr
∏

s∈Jm

w(ι(eis,js))ϵs =
∏

r∈Im

w(ι(eir,jr))ϵr
∏

s∈Jm

z(eis,js)ϵs ,

(1.9)

hol′(l) =
∏
r∈Il

(z(eir,jr)w(ι(eir,jr))−1)ϵr . (1.10)

Proof. This is a consequence of previous Lemma 1.2.2. First, let us recall
that the action of ι on the longitude-meridian pair is (1.7)

ι∗(l) = l, ι∗(m) = m−1.

In general, the holonomy of any loop α can be written down as

hol′(α) =
∏
r∈I

z(eir,jr)ϵr
∏
s∈J

w(ι(eis,js))ϵs .

Thus, from ι∗(m) = m−1, we obtain

hol′(ι(m)) = hol′(m)−1.

The first assertion follows after applying Lemma 1.2.2 to the expression of
hol′(m).
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Regarding the holonomy of the longitude, we have to notice that l = a2

is short-hand for â ∗ ι(â), where â is any lift of the loop a to T 2. As noted
in Remark 1.2.3, we can compute the holonomy of l as the product of two
partial holonomies

hol′(l) = hol′(a)hol′(ι(a)),

and applying Lemma 1.2.2 to the second factor we obtain the second asser-
tion.

Proposition 1.2.5. For the chosen longitude-meridian pair, the action of
ι on Im(hol′) ⊂ C2 is

ι∗(L, M) = (L, M
−1), (1.11)

where L = hol′(l), M = hol′(m).

Proof. Let (zi,j, wi,j) ∈ Def(N̂ , ∆̂) and let us write the derivate of holonomy
of this structure as

hol′(zi,j ,wi,j)

in order to highlight the dependance on the parameter (zi,j, wi,j). For any
loop α in N̂ , the action of ι∗ on Def(N̂ , ∆̂) is translated to hol′(α) as

ι∗(hol′(zi,j ,wi,j)(α)) = hol′ι∗(zi,j ,wi,j)(α) = hol′( 1
wi,j

, 1
zi,j

)(α).

In the meridian case,

ι∗(hol′(zi,j ,wi,j)(m)) = hol′(1/wi,j ,1/zi,j)(m) =
∏

r∈Im

wir,jr

−ϵr
∏

s∈Jm

zis,js

−ϵs ,

with ϵr, ϵs ∈ {±1}, which by Lemma 1.2.4 is equal to hol′(m)
−1

. Similarly,
by Lemma 1.2.4, we can assume

hol′(zi,j ,wi,j)(l) =
∏
r∈Il

(zir,jrw−1
ir,jr

)ϵr ,
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and by Lemma 1.2.2 we obtain

ι∗(hol′(zi,j ,wi,j)(l)) = hol′(1/wi,j ,1/zi,j)(l)) =
∏
r∈Il

(zir,jrwir,jr

−1)ϵr = hol′(zi,j ,wi,j)(l).

Remark 1.2.6. Following the notation of Proposition 1.2.5, (L, M) ∈ (C2)ι

if and only if L ∈ R, |M | = 1.

Let us denote by u := log hol′(l), v := log hol′(m).

Proposition 1.2.7. Let N be a one cusped, non-orientable, complete, con-
nected hyperbolic 3-manifold with horospherical Klein bottle. Let N admit
a geometric ideal triangulation ∆. Then, its deformation space is real bi-
analytic to an open subset of R.

Proof. Thurston and Neumann-Zagier Theorem 1.0.1 prove that the map

Def(N̂ , ∆̂) −→ U ⊂ C
(zi,j, wi,j) 7−→ u = log hol′(l)

is a biholomorphism onto an open subset U of C. Therefore, by Corol-
lary 1.1.8, the map

Def(N, ∆) −→ U ι ⊂ C

is real bi-analytic to U ι. Finally, Remark 1.2.6 shows that U ι is an open
subset of R × {0} ⊂ C.

The same can be proved considering the meridian instead.

The generalized Dehn coefficients are the solutions in R2 ∪ {∞} to
Thurston’s equation

pu + qv = 2πi. (1.12)

Indeed, Thurston and Neumann-Zagier Theorem 1.0.1 states that, for M3

orientable, the map (zi,j) ∈ Def(M3, ∆) 7→ (pk, qk) is a homeomorphism
onto its image, which is an open neighborhood of (∞, · · · , ∞) ∈ Cl, where
l is the number of cusps of M3.
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Remark 1.2.8. As noted in [37], for an orientable manifold with n cusps,
for deformations (ui, vi) ∈ C2n small enough, the solution (pi, qi) ∈ (R2 ∪
{∞})n to Thurston’s equation (1.12) is unique.

Proposition 1.2.9. The action of ι on (p, q) ∈ U ∩R2 ∪ {∞}, where (p, q)
are the generalized Dehn coefficients, is

ι∗(p, q) = (−p, q). (1.13)

Proof. The action of ι can be translated through the logarithm to (u, v)
from the action on the holonomy (1.11) as

ι∗(u, v) = (log ι∗(L), log ι∗(M)) = (log L, log M
−1) = (u, −v),

where L = hol′(l), M = hol′(m). Then, to find the action on generalized
Dehn coefficients, we have to solve Thurston’s equation (1.12) with u and
−v, that is,

p′u − q′v = 2πi, (1.14)

where (p′, q′) ∈ R2 ∪ {∞}. The solution (p′, q′) will be the result of the
action of ι on (p, q), that is,

ι∗(p, q) = (p′, q′).

From here, it is straightforward to check that (p′, q′) = (−p, q) is a solu-
tion. By continuity of the action of ι∗ on deformations, ι∗(u, v) is a small
deformation, so Remark 1.2.8 applies and, hence, the solution is unique.

Remark 1.2.10. In [43], Thurston draws a fixed-point free orientation
reversing involution on the figure eight knot exterior (see Figure 1.5) whose
action on the Dehn coefficients is (p, q) 7→ (−p, q). This action is the deck
transformation on the figure eight knot exterior as the orientation covering
of the Gieseking manifold.

Corollary 1.2.11. The fixed points under ι, which are in correspondence
with Def(N, ∆), are those whose generalized Dehn filling coefficients are of
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Figure 1.5: Involution on the figure eight knot exterior. Image from
Thurston’s Notes [43].

type (0, q).

Before proving the main theorem of this chapter, we have to show how
the involution ι behaves on orientable ends. Although it may seem unin-
tuitive, examples of nonorientable hyperbolic 3-manifolds of finite volume
with one cusp which is orientable can be easily be constructed. A way
to construct an example is the following one: start from a closed nonori-
entable manifold (for instance, take one from [29]) and choose a orientation
reversing loop in it. By Cartan’s Theorem on closed geodesics (see [12]),
there exists a geodesic free homotopic to the chosen loop. By removing said
geodesic, we obtain a manifold with one peripheral torus.

Due to the fact that the cusp T 2 × [0, ∞) is orientable in N , when
we consider the orientation covering N̂ , it will correspond with two cusps
T 2

1 × [0, ∞) and T 2
2 × [0, ∞). The involution ι permutes the peripheral tori

ι : T 2
1 → T 2

2 .

Fixing longitude-meridian pairs in the peripheral tori. Let us fix
any longitude-meridian pair in one of the peripheral tori, l1, m1 ∈ π1(T1).
We then choose the following longitude-meridian pair in T2:

l2 := ι∗(l1), m2 := ι∗(m1) ∈ π1(T2).

Proposition 1.2.12. For the chosen longitude-meridian pairs for two pe-
ripheral tori, the action of ι on Im(hol′) ⊂ C4 is

ι∗(L1, M1, L2, M2) = (L2, M2, L1, M1), (1.15)
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1.2. DIMENSION OF THE DEFORMATION SPACE DEF(N, ∆)

where Li = hol′(li), Mi = hol′(mi), i = 1, 2.

Proof. We only need to apply Lemma 1.2.2 to our choice of longitude-
meridian pairs. For instance, if

hol′(l1) =
∏
r∈I

zϵr
ir,jr

∏
s∈J

wϵs
is,js

,

with ϵr, ϵs ∈ {±1}, then

hol′(l2) = hol′(ι(l1)) =
∏
r∈I

w−ϵr
ir,jr

∏
s∈J

z−ϵs
is,js

.

Thus,
ι∗(hol′(l1)) =

∏
r∈I

wir,jr

−ϵr
∏
s∈J

zis,js

−ϵs = hol′(l2).

Proposition 1.2.13. Let N be a one cusped, non-orientable, complete,
connected hyperbolic 3-manifold with horospherical torus. Let N admit a
geometric ideal triangulation ∆. Then, its deformation space is real bi-
analytic to an open subset of C.

Proof. The proof is analogous to the one of Proposition 1.2.7 by taking into
account that now the action of ι is given by Proposition 1.2.12.

Proposition 1.2.14. The action of ι on (p1, q1, p2, q2) ∈ U ∩ (R2 ∪ {∞})2,
where (p1, q1, p2, q2) are the generalized Dehn coefficients, is

ι∗(p1, q1, p2, q2) = −(p2, q2, p1, q1) (1.16)

Proof. Let ui := log hol′(li), vi := log hol′(mi), by proposition 1.2.14, ι acts
on (u1, v1, u2, v2) as

ι∗(u1, v1, u2, v2) = (u2, v2, u1, v2).

Hence, it is a matter of straightforward verification that the unique so-
lution to the new Thurston’s equation is −(p2, q2, p1, q1), so we conclude
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ι∗(p1, q1, p2, q2) = −(p2, q2, p1, q1).

Corollary 1.2.15. The fixed points under ι, which are in correspondence
with Def(N, ∆), are those whose generalized Dehn filling coefficients are of
type (p, q, −p, −q), with (p, q) ∈ R2 ∪ {∞}.

We can now prove the general statement:

Theorem 1.2.16. Let N be a connected, complete, non-orientable, hyper-
bolic 3-manifold of finite volume. Let N have k non-orientable cusps and l

orientable ones and let it admit an ideal triangulation ∆. Then Def(N, ∆)
is real bi-analytic to an open set of Rk+2l.

Proof. We have already proved the theorem for (k, l) = (1, 0) and (k, l) =
(0, 1) in Propositions 1.2.7 and 1.2.13.

In general, the action of ι on Im(hol′) ⊂ Ck+2l can be understood as
a product of k + l actions, ι1 × · · · × ιl, the first k, ιi, i = 1, · · · , k acting
on C as in the case for a Klein bottle cusp, and the subsequent l, ιj, j =
k + 1, · · · , k + l, acting on C2 as in the case for a peripheral torus.

1.3 Example: The Gieseking manifold

The Gieseking manifold M is a non-orientable hyperbolic 3-manifold with
finite volume and one cusp, with horospherical section a Klein bottle. It
has an ideal triangulation with a single tetrahedron. The orientation cover
of the Giseking manifold is the figure eight knot exterior, and the ideal
triangulation with one simplex lifts to Thurston’s ideal triangulation with
two ideal simplices in [43].

The Gieseking manifold M was constructed by Gieseking in 1912 in his
doctoral thesis as a student of Dehn. Here we follow the description of
[33], using the notation of [1]. Start with the regular ideal vertex ∆ in H3,
with vertices {0, 1, ∞, 1−i

√
3

2 }, Figure 1.6. The side identifications are the
non-orientable isometries defined by the Möbius transformations

U(z) = 1
1 + 1+i

√
3

2 z
and V (z) = −1+i

√
3

2 z + 1.

30



1.3. EXAMPLE: THE GIESEKING MANIFOLD

The identifications of the faces are defined by their action on vertices:

U : (1−i
√

3
2 , 0, ∞) 7→ (1−i

√
3

2 , 1, 0) and V : (1, 0, ∞) 7→ (1−i
√

3
2 , 1, ∞).

0

1

−ω

∞

a
b

c

d

e
f

Figure 1.6: Gieseking Manifold with labelled edges.

By applying Poincaré’s fundamental theorem

π1(M) ∼= ⟨U, V | V U = U2V 2⟩ (1.17)

The relation V U = U2V 2 corresponds to a cycle of length 6 around the
edge.

We compute the deformation space of the triangulation with a single
tetrahedron Def(M, ∆). We will do it first by checking when the pairing
is proper and, afterwards, we will compare the result with our definition of
Def(M, ∆).

For any ideal tetrahedron in H3, we set its ideal vertices in 0, 1, ∞ and
−ω, where ω is in C+, the upper half-space of C. The role played by −ω will
be the one of 1−i

√
3

2 in the complete structure. For any such ω it is possible
to glue the faces of the tetrahedron in the same pattern as in the Gieseking
manifold via two orientation-reversing hyperbolic isometries, which we will
call likewise U and V .

For the gluing to follow the same pattern, it must map U : (−ω, 0, ∞) 7→
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(−ω, 1, 0) and V : (1, 0, ∞) 7→ (−ω, 1, ∞). The orientation-reversing
isometries U and V satisfying this are:

U(z) = 1
1+ω
|ω|2 z + 1 and V (z) = −(1 + ω)z + 1.

Although it is always possible to glue the faces in the same pattern as in
the Gieseking manifold, not for all them the gluing will have a hyperbolic
structure.

We include the details of the computation here, for a completeness sake:

Let U = U ′
c, V = V ′

c with U ′, V ′ ∈ PSL(2,C), c the
Poincaré extension of the complex conjugation. Then,
U ′ = ( a b

c d ) and it must satisfy:

1. U ′(0) = 1 ⇔

a b

c d

0
1

 =
1

1

, which implies that

b = d.

2. U ′(∞) = 0 ⇔

a b

c b

1
0

 =
0

1

, hence a = 0.

3. U ′(−ω) = −ω ⇔

0 b

c b

−ω

1

 =
−ω

1

 ⇔ b
−cω+b

=

−ω. Thus,
c = b

1 + ω

|ω|2
.

We do not bother about normalization, so we substitute
b = 1 in order to get the expression of U as the fractional
linear transformation we wrote before.

Similarly, for V ′ we must ask V ′(0) = 1, V ′(∞) = ∞,
V ′(1) = −ω. These imply that

V ′ =
a′ b′

0 d′

 , where b′ = d′ and a′ = −b′(1 + ω).

Again, if we substitute b′ = 1 we obtain the fractional
linear transformation form of V .
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Let us label the edges as in Figure 1.6. For the topological manifold to
be geometric, we only have to check that the pairing is proper (see [41]). In
this case, the only condition which we need to satisfy is that the isometry
that goes through the only edge cycle is the identity. This is given by:

a
V−→ c

V−→ b
U−→ d

U−→ e
V −1
−→ f

U−1
−→ a,

and, therefore, we will have a hyperbolic structure if and only if U−1V −1U2V 2 =
Id. Doing this computation, we obtain the equation

|ω(1 + ω)| = 1. (1.18)

Let us show that this equation matches the one obtained from Defini-
tion 1.1.3. If we denote by z(a) the edge invariant of a and analogously for
the rest of the edges, we have that the equation describing the deformation
space of the manifold Def(M, ∆) in terms of this triangulation is

z(a)z(b)z(e)
z(c)z(d)z(f)

= 1. (1.19)

We can now write down all of the edge invariants in terms of z(a) by
means of the tetrahedron relations, that is,

z(b) = 1
1 − z(a) , z(c) = z(a) − 1

z(a) ,

and

z(d) = z(c) = z(a) − 1
z(a) , z(e) = z(a), z(f) = z(b) = 1

1 − z(a) .

Thus, Equation (1.19) is laid out as

z(a)2z(a)2

(1 − z(a))(1 − z(a))
= |z(a)|4

|1 − z(a)|2 = 1. (1.20)
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If we substitute z(a) = −1/ω, we obtain

1
ωω(ω + 1)(ω + 1) = 1,

which is equivalent to Equation (1.18).

Remark 1.3.1. The set {w ∈ C | |w(1 + w)| = 1} is homeomorphic to
S1, and the deformation space {w ∈ C | |w(1 + w)| = 1 and Im(w) > 0} is
homeomorphic to an open interval, see Figure 1.7.

We justify the remark and Figure 1.7. Firstly, to prove that set of alge-
braic solutions is homeomorphic to a circle, we write the defining equation
|w(1 + w)| = 1 as ∣∣∣∣(w + 1

2

)2
− 1

4

∣∣∣∣ = 1.

Thus
(
w + 1

2

)2
lies in the circle of center 1

4 and radius 1. As this circle
separates 0 from ∞, the equation defines a connected covering of degree
two of the circle. Secondly, the set of algebraic solutions is invariant by
the involutions w 7→ w and w 7→ −1 − w (hence symmetric with respect to
the real line and the line defined by real part equal to −1

2). Furthermore
it intersects the real line at w = −1±

√
5

2 and the line with real part −1
2 at

−1±i
√

3
2 .
Let us construct the link of the cusp. We denote the link of each cusp

point as in Figure 1.8 and glue them to obtain the link as in Figure 1.9,
which is a Klein bottle.

Now we take two tetrahedra and construct the orientation covering of M

(the figure eight knot exterior). This can be done explicitely by considering
the tetrahedra ∆ and U(∆), which is a lift of the triangulation to M̂ .
Thus, the orientation reversing isometry which we have usualy denoted by
ι will be realized by U . The ideal tetrahedron U(∆) has vertices 0, 1, −ω

and ω′ := U(−ω). The resulting side-pairing of tetrahedron is shown in
Figures 1.10- 1.13.

For the first tetrahedron, we will denote by z1 := z(a), and z2, z3 so
that they follow the cyclic order described in the tetrahedron relations.

34



1.3. EXAMPLE: THE GIESEKING MANIFOLD

−1+
√

5
2

−1−
√

5
2

−1+i
√

3
2

−1−i
√

3
2

{w ∈ C | |w(w + 1)| = 1}

Figure 1.7: The set of solutions of the compatibility equations and
Def(M, ∆) (the top half).

0

1

−ω

∞

α
β
γ

γ
ζ

ζ

α
δ β

ϵ
ϵ
δ

Figure 1.8: Gieseking manifold with
link.

ζ

α α

γ

β

δ
ϵ

ζ

ϵ

Figure 1.9: Link of the cusp point.

Afterwards, in the second tetrahedron, we denote by wi the edge invariant
of the corresponding edge after applying an orientation reversing isometry
to the tetrahedron, that is, wi = 1

zi
.

We consider the link of the orientation covering. The derivative of the
holonomy of the two loops in the link of the orientation covering, l1, l2,
depicted in Figure 1.14 (which are free homotopic) is w1

z1
= 1

|z1|2 and w3
z3

=
1

|z3|2 . For the manifold to be complete, hol′(li) = 1 for i = 1, 2, which
happens if and only if z1 = 1

2 +
√

3
2 i. This corresponds to the regular

ideal tetrahedron, which, as expected, is the manifold originally given by
Gieseking. Notice that the upper loop (the one going through the side ϵ)
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Id

0
−ω

∞

1
0

−ω

1

ω′

Figure 1.10: Faces glued by the Iden-
tity.

U2

0
−ω

∞

1
0

−ω

1

ω′

Figure 1.11: Faces glued by U2.

UV

0
−ω

∞

1
0

−ω

1

ω′

Figure 1.12: Faces glued by UV .

UV −1

0
−ω

∞

1
0

−ω

1

ω′

Figure 1.13: Faces glued by UV −1.

can be taken as a distinguished longitude. A suitable meridian is drawn in
Figure 1.15.

ζ

α α
γ
β

δ

ϵ

ζ

ϵϵ′
δ′

α′α′
β′
γ′

ζ′

ζ′

w3

w3

w3

w3

w1

w2

w1w2

w1

w2

w1

w2

z2

z3

z1

z2z3

z1

z2

z3

z1

z2z3

z1

Figure 1.14: Two free homotopic
loops.

ζ

α α
γ
β

δ

ϵ

ζ

ϵϵ′
δ′

α′α′
β′
γ′

ζ′

ζ′

w3

w3

w3

w3

w1

w2

w1w2

w1

w2

w1

w2

z2

z3

z1

z2z3

z1

z2

z3

z1

z2z3

z1

Figure 1.15: Meridian in the link of
the cover.

Let us check that both the longitude and the meridian satisfy the con-
ditions we stated for their holonomy in Remark 1.2.6, that is hol′(l) ∈
R, |hol′(m)| = 1. We have already shown it for the longitude. Regarding
the meridian,

hol′(m) = z2z3w2w3

w2z1z2w1
= z1

z3

w1

w3
= z1

z1

z3

z3
,

therefore |hol′(m)| = 1. This leads to the result that the generalized Dehn
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filling coefficients of a lifted structure have the form (0, q), after an appro-
priate choice of longitude-meridian pair.

Remark 1.3.2. The result involving the generalized Dehn filling coefficient
can also be obtained from Thurston’s triangulation. By rotating the tetra-
hedra, our triangulation can be related with his as shown in Figure 1.16,
and the parameters identified. We can then check that in his choice of lon-
gitude and meridian, the holonomy has the same features if the structure
is a lift from Gieseking manifold. We will follow the notation in [41], and
denote the paramaters used as zRat, wRat, which are the edge invariants of
[0, −ω] and [1, 0] = U([0, ∞]), respectively.

0

∞1

−ω

−ω

1

ω′

0

Figure 1.16: Triangulation ∆ and U(∆) rotated to match Thurston’s.

From their choice of longitude-meridian pair, the generalized Dehn surgery
invariant is the solution to the equation ([41], (10.5.16-17))

p log(zRat(1 − wRat)) + 2q log(zRat(1 − zRat)) = 2πi, (1.21)

where zRat, wRat denote the choice of edge invariants made in [41].

We can relate zRat, wRat to w. In our choice of edge parameter, zRat =
z3 = z1−1

z1
, wRat = w1 = 1/z1, hence, using the fact that z1 = −1/ω,

zRat = ω + 1, wRat = −ω.
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Substituting in Equation (1.21),

2πi = p log((ω + 1)(1 + ω)) + 2q log((ω + 1)(−ω))
= p log |ω + 1| + 2q log(−ω(ω + 1)).

We see that log |ω + 1| ∈ R and, by Equation (1.18), we have that
log(−ω(ω + 1)) ∈ iR. Thus, p = 0, q = πi/ log(−ω(ω + 1)). Moreover,

log(−ω(ω + 1)) = arg(−ω(ω + 1)) = arg(ω) + arg(ω + 1) − π.

and by Figure 1.7 we see that arg(ω) + arg(ω + 1) is a strictly decreasing
function on the real part of ω, so arg(ω) + arg(w + 1) has values in the
interval (0, 2π). Therefore, q ranges in the interval (1, ∞)∪{∞}∪ (∞, −1),
where ∞ corresponds to the complete structure.
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2 Varieties of representations

The group of isometries of hyperbolic space is denoted by G, and we have
the following well known isomorphisms:

G = Isom(H3) ∼= PO(3, 1) ∼= PSL(2,C) ⋊ Z2.

The group G has two connected components, according to whether the
isometries preserve or reverse the orientation.

For a finitely generated group Γ, the variety of representations of Γ in
G is denoted by

hom(Γ, G).

As G is algebraic, it has a natural structure of algebraic set [30], but we
consider only its topological structure. We are interested in the set of
conjugacy classes of representations:

R(Γ, G) = hom(Γ, G)/G.

When M3 is hyperbolic, we write Γ = π1(M3). The holonomy of M3

hol : Γ → G

is well defined up to conjugacy, hence [hol] ∈ R(Γ, G). To understand
deformations, we analyze a neighborhood of the holonomy in R(Γ, G). The
main result of this chapter is:
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Theorem 2.0.1. Let M3 be a hyperbolic manifold of finite volume. Assume
that it has k non-orientable cusps and l orientable cusps. Then there exists
a neighborhood of [hol] in R(Γ, G) homeomorphic to Rk+2l.

When M3 is orientable, this result is well known [8, 31], hence we as-
sume that M3 is non-orientable. We will prove a more precise result in
Theorem 2.3.2, as for our purposes it is relevant to describe local coordi-
nates in terms of the geometry of holonomy structures at the ends.

Before starting the proof, we need a lemma on varieties of representa-
tions. The projection to the quotient π : hom(Γ, G) → R(Γ, G) can have
quite bad properties, for instance even if hom(Γ, G) is Hausdorff, in general
R(Γ, G) is not.

Johnson and Millson define in [30] the properties of stable representation
and good representation:

Definition 2.0.2. A representation ρ ∈ hom(Γ, G) is stable if the orbit
Ad(G)ρ ⊂ hom(Γ, G) is closed in hom(Γ, G) and the isotropy subgroup of
ρ, Z(ρ), is finite in G.

A stable representation is good if Z(ρ) = Z(G), the center of G.

By a theorem in [30], the property of being stable is equivalent to the
property that the image of ρ is not contained in any proper parabolic sub-
group of G. Moreover, notice that in our case, Z(G) = {Id}, so a stable
representation will be good if it has trivial isotropy group. Let us denote
the subsets of stable and good representations by

homst(Γ, G) and homgood(Γ, G),

respectively. They satisfy a couple of important lemmas ([30]):

Lemma 2.0.3. The subset of good representations homgood(Γ, G) is open
in hom(Γ, G).

Lemma 2.0.4. The action of G by conjugation on homst(Γ, G) is proper.
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2.1. ORIENTATION COVERING AND INVOLUTION

We will only consider manifolds whose holonomy satisfies the property
of being irreducible, which under these definitions is equivalent to being a
good representation. We have the following key lemma:

Lemma 2.0.5. There exists a neighborhood V ⊂ R(Γ, G) of [hol] such that:

(a) If [ρ] = [ρ′] ∈ V , then the matrix A ∈ G satisfying Aρ(γ)A−1 = ρ′(γ),
∀γ ∈ Γ, is unique.

(b) V is Hausdorff and the projection π : π−1(V ) → V is open.

(c) If [ρ] ∈ V , then ∀γ ∈ Γ, ρ(γ) preserves the orientation of H3 if and
only if γ is represented by a loop that preserves the orientation of M3

Proof. Assertions (a) and (b) are proved in [30]. The holonomy is a good
representation, thus we can apply Lemma 2.0.3 to ensure that we can as-
sume that in a neighbourhood of [hol] every representation is good. Asser-
tion (a) is a direct consequence of the definition of good representation and
the fact that Z(G) = {Id}, whereas assertion (b) results from Lemma 2.0.4
and locally compactness of G. Opennes in (b) is due to the action of G

being by homeomorphisms.
Finally, the holonomy representation, hol, satisfies the property stated

in (c). It is clear by continuity and the decomposition of G in two connected
componentes according to the orientation, that every representation ρ in a
small enough neighbourhood of hol satisfies (c) too.

To describe the neighborhood of the holonomy in R(Γ, G) we use the
orientation covering.

2.1 Orientation covering and the involution
on representations

As mentioned, we assume M3 non-orientable. Let

M3
+ → M3
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denote the orientation covering, with fundamental group Γ+ = π1(M3
+). In

particular we have a short exact sequence:

1 → Γ+ → Γ → Z2 → 1.

Lemma 2.1.1. Let Γ admit a presentation

Γ = ⟨a1, . . . , an, ζ | R1 = · · · = Rm = 1⟩,

where the generators ai, i = 1, · · · , n are represented by orientation-preserving
loops whereas ζ is represented by an orientation-reversing one. Then Γ+ is
generated by the elements

a1, . . . , an, ζa1ζ
−1, . . . , ζanζ−1, ζ2.

Proof. Let α ∈ Γ+ < Γ, it can be expressed as

α = ζk1w1(a1, . . . , an, ζ2) · · · ζksws(a1, . . . , an, ζ2),

where ki ∈ {0, ±1} and wi(·) denote a word in terms of the arguments (or
the emptyset). Notice that

ζw(a1, . . . , an, ζ2)ζ−1 = w(ζa1ζ
−1, . . . , ζanζ−1, ζ2),

ζw(a1, . . . , an, ζ2)ζ = ζw(a1, . . . , an, ζ2)ζ−1(ζ2).

Therefore, we can assume without loss of generality that either

α = ζ±1w′(a1, . . . , an, ζa1ζ
−1, . . . , ζanζ−1, ζ2),

or
α = w′(a1, . . . , an, ζa1ζ

−1, . . . , ζanζ−1, ζ2).

The first case is not possible because the elements α and ai are represented
by orientation-preserving loops in M , so there cannot be a relation in Γ
where ζ is a word in the rest of the generators.
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Definition 2.1.2. For ζ ∈ Γ \ Γ+, define the group automorphism

σ∗ : Γ+ → Γ+

γ 7→ ζγζ−1

The automorphism σ∗ depends on the choice of ζ ∈ Γ \ Γ+, the auto-
morphisms corresponding to different choices of ζ differ by composition (or
pre-composition) with an inner automorphism of Γ+; furthermore σ2

∗ is an
inner automorphism because ζ2 ∈ Γ+. This automorphism σ∗ is the map
induced by the deck transformation of the orientation covering M3

+ → M3.
The map induced by σ∗ in the variety of representations is denoted by

σ∗ : R(Γ, G) → R(Γ, G)
[ρ] 7→ [ρ ◦ σ∗]

and σ∗ does not depend on the choice of ζ, because σ∗ is well defined up
to inner automorphism. That is, for two different choices ζ1, ζ2 ∈ Γ \ Γ+,
they are related by an element ξ ∈ Γ+ as ζ2 = ξζ1, hence, if we denote the
respective automorphisms by σ1,∗ and σ2,∗, and for any γ ∈ Γ+,

(ρ ◦ σ2,∗)(γ) = ρ(ζ2γζ−1
2 ) = ρ(ξ)ρ(ζ1γζ−1

1 )ρ(ξ)−1 = ρ(ξ)(ρ ◦ σ2,∗)(γ)ρ(ξ)−1.

Furthermore σ∗ is an involution, (σ∗)2 = Id.
Consider the restriction map:

res : R(Γ, G) 7→ R(Γ+, G)

that maps the conjugacy class of a representation of Γ to the conjugacy
class of its restriction to Γ+.

Lemma 2.1.3. There exist U ⊂ R(Γ, G) neighborhood of [hol] and V ⊂
R(Γ+, G) neighborhood of res([hol]) such that

res : U
∼=−→ {[ρ] ∈ V | σ∗([ρ]) = [ρ]}

is a homeomorphism.
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Proof. We show first that res(R(Γ, G)) ⊂ {[ρ] ∈ R(Γ+, G) | σ∗([ρ]) = [ρ]}:
if ρ+ = res(ρ), then ∀γ ∈ Γ+,

σ∗(ρ+)(γ) = ρ+(σ∗(γ)) = ρ+(ζγζ−1) = ρ(ζ)ρ+(γ)ρ(ζ)−1.

Hence σ∗([res(ρ)]) = [res(ρ)].
Next, given [ρ+] ∈ R(Γ+, G) satisfying σ∗([ρ+]) = [ρ+], by construction

there exists some A ∈ G, not necessarily unique, that conjugates ρ+ and
ρ+ ◦ σ∗. If ζ ∈ Γ \ Γ+ is the element such that σ∗ is conjugation by ζ then,
by choosing ρ(ζ) = A, the representation ρ+ extend to ρ : Γ → G (we shall
prove this at the end). Hence:

res(R(Γ, G)) = {[ρ] ∈ R(Γ+, G) | σ∗([ρ]) = [ρ]}.

We chose the neighborhood V so that Lemma 2.0.5 applies (hence A ∈ G

as above conjugating ρ+ and ρ+ ◦ σ∗ is unique). Let U = res−1(V ). With
this choice of U and V ,

res : U → {[ρ] ∈ V | σ∗([ρ]) = [ρ]}

is a continuous bijection.
Now, let us show that the map

π−1(V ) −→ π−1(U)

extending a representation to Γ is continuous, hence the map res−1 in the
quotient will be continuous too. This map is defined by the choice ρ(ζ) = A,
where A ∈ G is the unique element satisfying σ∗ ◦ρ+ = Ad(A)(ρ+). Proving
that this choice can be made in a continuous manner is enough to prove
continuity of the map.

The action of G on homst(Γ+, G) admits analytic slices at any point
(see [30], and [9] for a definition), therefore, a neighbourhood of a represen-
tation ρ ∈ π−1(V ) is diffeomorphic to G × S/Z(rho), where S is the slice,
and Z(ρ) the isotropy group of ρ, hence Z(ρ) = Id. Thus, a neighbourhood
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which we can assume to contain π−1(V ) is diffeomorphic to the product
G × S, where the diffeomorphism is given by the map (A, s) 7→ Ad(A)(s).
Let us consider now a convergent sequence of representations ρn 7→ ρ∞. The
sequence yields via the diffeomorphism a convergent sequence of elements
An 7→ A∞ in G. As a consequence, the choice ρn(ζ) is made continuously
and the inverse map is continuous. This could had also been proved as a
consequence of Lemma 2.0.4.

Finally, we show that ρ is indeed a representation of Γ. A presentation
of Γ can be chosen

Γ = ⟨a1, . . . , an, ζ | R1 = · · · = Rm = 1⟩,

so that Γ+ is generated by a1, . . . , an, ζa1ζ
−1, . . . , ζanζ−1,ζ2, by Lemma 2.1.1.

In order to ensure that ρ+ extends to ρ by choosing ρ(ζ) = A, we have to
show that the relations are satisfied and ρ is well-defined.

The relation Ri(a1, . . . , an) represents an orientation-preserving loop (as
it is homotopy equivalent to the constant loop) for i = 1, . . . , m, hence it is
satisfied in Γ+. Therefore, the image of the generators by ρ+ satisfies the
relations too.

On the other hand, ρ is well-defined as long as its coherent with ρ+(ζaiζ
−1),

i = 1, . . . , n and ρ+(ζ2). The first case is inmediate due to the choice of
ρ(ζ) = A. The second case can be verified by conjugating ρ+ by ρ+(ζ2): for
any γ ∈ Γ+,

ρ(ζ2)ρ(γ)ρ(ζ−2) = ρ((σ∗)2γ) = A2ρ(γ)A−2,

so by Lemma 2.0.5 (a), ρ(ζ2) = A2.

As Γ+ preserves the orientation, next we use the complex structure of
the identity component G0 = Isom+(H3) ∼= PSL(2,C).
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2.2 Representations in PSL(2,C)

The holonomy of the orientation covering M3
+ is contained in PSL(2,C), and

it is well defined up to the action of G = PSL(2,C)⋊Z2 by conjugation. If
we furthermore choose an orientation on M3

+, then the holonomy is unique
up to the action by conjugation by G0 = Isom+(H3) ∼= PSL(2,C), and
complex conjugation corresponds to changing the orientation. We call the
conjugacy class in PSL(2,C) of the holonomy of M3

+ the oriented holonomy.
We consider

R(Γ+, PSL(2,C)) = hom(Γ+, PSL(2,C))/PSL(2,C).

Its local structure is well known:

Theorem 2.2.1. A neighborhood of the oriented holonomy of M3
+ in the

variety of representations R(Γ+, PSL(2,C)) has a natural structure of C-
analytic variety defined over R.

The fact that it is C-analytic follows for instance from [30] or [31]. In
Theorem 2.3.1 we precise C-analytic coordinates, for the moment this is
sufficient for our purposes.

Lemma 2.2.2. Let hol+ be the oriented holonomy of M3
+. Then

[hol+] ̸= [hol+] ∈ R(Γ+, PSL(2,C)).

Namely, the oriented holonomy and its complex conjugate are not conjugate
by a matrix in PSL(2,C).

Proof. By contradiction, assume that hol+ and hol+ are conjugate by a
matrix in PSL(2,C): there exists an orientation-preserving isometry A ∈
PSL(2,C) such that

A hol+(γ) A−1 = hol+(γ), ∀γ ∈ Γ+.
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Consider the orientation reversing isometry B = c ◦ A, where c is the isom-
etry with Möbius transformation the complex conjugation. The previous
equation is equivalent to

B hol+(γ) B−1 = hol+(γ), ∀γ ∈ Γ+. (2.1)

Brower’s fixed point theorem yields that the fixed point set of B in the ball
compactification H3 ∪ ∂∞H3 is non-empty:

Fix(B) = {x ∈ H3 ∪ ∂∞H3 | B(x) = x} ≠ ∅.

By (2.1) hol+(Γ+) preserves Fix(B). Thus, by minimality of the limit set
of a Kleinian group, since Fix(B) ̸= ∅ is closed and hol+(Γ+)-invariant,
it contains the whole ideal boundary: ∂∞H3 ⊂ Fix(B). Hence B is the
identity, contradicting that B reverses the orientation.

From Lemma 2.2.2 and Theorem 2.2.1:

Corollary 2.2.3. There exists a neighborhood W ⊂ R(Γ+, PSL(2,C)) of
the conjugacy class of the oriented holonomy of M+ that is disjoint from its
complex conjugate:

W ∩ W = ∅.

By choosing the neighborhood W ⊂ R(Γ+, PSL(2,C)) sufficiently small,
we may assume that its projection to R(Γ+, G) is contained in V as in
Lemma 2.1.3. The neighborhood V can also be chosen smaller, to be equal
to the projection of W , as this map is open. Namely the neighborhoods
can be chosen so that R(Γ+, PSL(2,C)) → R(Γ+, G) restricts to a home-
omorphism between W (or W ) and V . In particular we can lift to W the
restriction map from U to V :

W

∼=
��

U
res //

r̃es
88

V
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Lemma 2.2.4. For U ⊂ R(Γ, G) and W ⊂ R(Γ+, PSL(2,C)) as above,
the lift of the restriction map yields an homeomorphism:

r̃es : U
∼=−→ {[ρ] ∈ W | [ρ ◦ σ∗] = [ρ]}.

This lemma has same proof as Lemma 2.1.3, just taking into account
that ρ(ζ) ∈ G reverses the orientation, for [ρ] ∈ U and ζ ∈ Γ \ Γ+.

2.3 Local coordinates

Here we give the local coordinates of Theorem 2.2.1 and we prove a stronger
version of Theorem 2.0.1.

For γ ∈ Γ+ and [ρ] ∈ R(Γ+, PSL(2,C)), as in [11] define

Iγ([ρ]) = (trace(ρ(γ)))2 − 4. (2.2)

Thus Iγ is a function from R(Γ+, PSL(2,C)) to C. This function plays a
role in the generalization of Theorem 2.0.1.

Theorem 2.3.1. Let M3
+ be as above and assume that it has N cusps.

Choose γ1, . . . , γN ∈ Γ+ a non-trivial element for each peripheral subgroup.
Then, for a neighborhood W ⊂ R(Γ+, PSL(2,C)) of the oriented holonomy,

(Iγ1 , . . . , IγN
) : W → CN

defines a bi-analytic map between W and a neighborhood of the origin.

This theorem holds for any orientable hyperbolic manifold of finite vol-
ume, though we only use it for the orientation covering. Again, see [8, 31]
for a proof. As explained in these references, this is the algebraic part of
the proof of Thurston’s hyperbolic Dehn filling theorem using varieties of
representations.

For a Klein bottle K2, in Definition 1.2.1 we considered the presentation
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of its fundamental group:

π1(K2) = ⟨a, b | aba−1 = b−1⟩.

The elements a2 and b are called distinguished elements. Recall that, in
terms of paths, those are represented by the unique homotopy classes of
loops in the orientation covering that are invariant by the deck transforma-
tion (as unoriented curves).

Here we prove the following generalization of Theorem 2.0.1:

Theorem 2.3.2. Let M3 be a non-orientable manifold of finite volume
with k non-orientable cusps and l orientable cusps. For each horospherical
Klein bottle, K2

i , choose γi ∈ π1(K2
i ) distinguished, i = 1, . . . , k. For each

horospherical torus, T 2
j , choose a nontrivial µj ∈ π1(T 2

j ), j = 1, . . . , l.
There exists a neighborhood U ⊂ R(Γ, G) of the holonomy of M3 such

that the map

(Iγ1 , . . . , Iγk
, Iµ1 , . . . , Iµl

) ◦ r̃es : U → Rk × Cl

defines a homeomorphism between U and a neighborhood of the origin in
Rk × Cl.

Proof. Let M3
+ → M3 be the orientation covering. By construction, by the

choice of distinguished elements in the peripheral Klein bottles, γi ∈ Γ+.
Furthermore, as the peripheral tori are orientable, µj ∈ Γ+. Hence

{γ1, . . . , γk, µ1, . . . , µl, σ∗(µ1), . . . , σ∗(µl)}

gives a nontrivial element for each peripheral subgroup of Γ+. We apply
Theorem 2.3.1:

I = (Iγ1 , . . . , Iγk
, Iµ1 , . . . , Iµl

, Iσ∗(µ1), . . . , Iσ∗(µl)) : W → Ck+2l

is a bi-analytic map with a neighborhood of the origin.

49



CHAPTER 2. VARIETIES OF REPRESENTATIONS

Let [ρ] = I−1(x1, . . . , xk, y1, . . . , yl, z1, . . . , zl), then as σ∗(γj) = γ±1
j and

trace(ρ) = trace(ρ−1),

Iγj
◦ σ∗(ρ) = (trace(ρ(γ±1)))2 − 4 = xj,

and, furthermore, since (σ∗)2 = Id,

Iµj
◦ σ∗(ρ) = (trace(ρ(σ∗(µj))))2 − 4 = zj,

Iσ∗(µj) ◦ σ∗(ρ) = (trace(ρ((σ∗)2(µj))))2 − 4 = yj.

Thus,

I◦σ∗◦I−1(x1, . . . , xk, y1, . . . , yl, z1, . . . , zl) = (x1, . . . , xk, z1, . . . , zl, y1, . . . , yl).

By Lemma 2.2.4, the image r̃es(U) is the subset satisfying σ∗[ρ] = [ρ],
therefore, the image (I ◦ r̃es)(U) is characterized by σ∗I−1(x1, . . . , zl) =
[ρ]. By construction I commutes with complex conjugation, hence by the
previous computation of I ◦ σ∗ ◦ I−1, the image (I ◦ r̃es)(U) is the subset of
a neighbourhood of the origin in Ck+2l defined by

xi = xi, ∀i = 1, . . . , k, and

zj = yj, ∀j = 1, . . . , l.

Finally, by combining Theorem 2.3.1 and Lemma 2.2.4, the map I ◦ r̃es is
a homeomorphism between U and its image.

2.3.1 The relation between Def(M 3, ∆) and R(Γ, G)

The underlying object of our interest in Chapters 1 and the current one is
the deformation space of a hyperbolic 3-manifold M3. Let us denote the
manifold with the original hyperbolic structure by M3

0 , then, the deforma-
tion space can be understood as a neighbourhood of hyperbolic structures
near M3

0 . We will consider deformations up to isotopy to the identity. The
relation between the deformation space and the variety of representation is
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described next.

Proposition 2.3.3 ([43], [10]). The deformation space around M3
0 is iden-

tified with a neighbourhood of R(Γ, G) around the holonomy representation
corresponding to M3

0 .

Thus, the results of this chapter compute the deformation space of a
non-orientable hyperbolic manifold of finite volume around the complete
structure.

The precise relation of the deformation space with the space of deforma-
tions of the triangulation Def(M3, ∆) is a little more subtle. In Thurston’s
hyperbolic Dehn filling theorem ([43]), Thurston introduced the generalized
Dehn filling coefficients, which serve as a parametrization of Def(M3, ∆) as
shown in Chapter 1. If M3 is orientable and has l ends, then there is a 2l to
1 branched covering map between Def(M3, ∆) and R(Γ, G) with branching
point the complete structure. In terms of the generalized Dehn coefficients
for one fixed end, (p, q) and −(p, q) induce the same hyperbolic structure.
This is due to the fact that the representations of π1(T 2)

eu/2 1
0 e−u/2

 ,

ev/2 τ

0 e−v/2


and e−u/2 1

0 eu/2

 ,

e−v/2 τ

0 ev/2


are conjugate. The choice of sign indicates the spinning direction in the
developing map around the axis of the holonomy representation.

Applying the branched covering map to Theorems 2.3.2 and 1.2.16, they
can be summarized as follows:

Theorem 2.3.4. Let M3 be a complete, non-orientable, hyperbolic 3-manifold
of finite volume with l orientable ends and k non-orientable ones.

(a) If M3 admits an ideal triangulation ∆, then, Def(M3, ∆) ∼= (−1, 1)k ×
B(1)l, where B(1) ⊂ C denotes the unit ball centered at 0, and where
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the parameters (±t1, . . . , ±tk+l) ∈ (−1, 1)k × B(1)l correspond to the
same structure.

(b) A neighborhood of the holonomy in R(π1(M3), Isom(H3)) is homeomor-
phic to (−1, 1)k × B(1)l.

Furthermore, the holonomy map Def(M3, ∆) → R(π1(M3), Isom(H3)) is a
2k+l branched covering on the image and folds each interval (−1, 1) at 0.
Its image is the product of half-open intervals and open balls [0, 1)k ×B(1)l,
where (0, . . . , 0) corresponds to the complete structure.

If we assume M3 to have only one non-orientable end, then we have
R(π1(M3), Isom(H3)) ∼= (−1, 1). Structures in the subinterval [0, 1) ⊂
(−1, 1) in the variety of representations are realized by Def(M3, ∆) if M3

admits an ideal triangulation, whereas structures in (−1, 0) are not. This
is related to two different kinds of representations on the peripheral Klein
bottles, which we will study in Chapter 3.

2.4 The Gieseking manifold revisited

We make use of the Gieseking manifold once again to illustrate the results
of the chapter. In this occasion we choose to use the description of the
Gieseking manifold as a punctured torus bundle, which we will introduce
next. Furthermore, we compare the results with the ones obtained in Sec-
tion 1.3.

2.4.1 The Giseking manifold as a punctured torus
bundle

The Gieseking manifold M is fibered over the circle with fibre a punctured
torus T 2 \{∗} (see [1] or [38]). We use this structure to compute the variety
of representations. The monodromy of the fibration is an automorphism

ϕ : T 2 \ {∗} → T 2 \ {∗}.
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It is the restriction of a map of the compact torus T 2 ∼= R2/Z2 that lifts to
the linear map of R2 with matrix0 1

1 1

 .

This matrix also describes the action on the first homology group H1(T 2 \
{∗},Z) ∼= Z2. The map ϕ is orientation reversing (the matrix has determi-
nant −1) and ϕ2 is the monodromy of the orientation covering of M , the
figure eight knot exterior.

The fibration induces a presentation of the fundamental group of M :

π1(M) ∼= ⟨r, s, t | trt−1 = ϕ(r), tst−1 = ϕ(s)⟩

where ⟨r, s |⟩ = π1(T 2 \ {∗}) ∼= F2, and

ϕ∗ : F2 → F2

r 7→ s

s 7→ rs

is the algebraic monodromy, the map induced by ϕ on the fundamental
group.

The relationship with the presentation (1.17) of π1(M) from the trian-
gulation is given by

r = UV, s = V U, t = U−1.

Furthermore, a peripheral group is given by ⟨rsr−1s−1, t⟩, which is the group
of the Klein bottle.

We use this fibered structure to compute the variety of conjugacy classes
of representations. Set

G = Isom(H3) ∼= PO(3, 1) ∼= PSL(2,C) ⋊ Z2,
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let
homirr(π1(M), G)

denote the space of irreducible representations (i.e. that have no invariant
line in C2). As we are interested in deformations, we restrict to representa-
tions ρ that preserve the orientation type: ρ(γ) is an orientation preserving
isometry iff γ ∈ π1(M) is represented by a loop that preserves the orienta-
tion of M , ∀γ ∈ π1(M). We denote the subspace of representations that
preserve the orientation type by

homirr
+ (π1(M), G).

Let
homirr

+ (π1(M), G)/G

be their the space of their conjugacy classes.

Proposition 2.4.1. We have an homeomorphism, via the trace of ρ(s):

homirr
+ (π1(M), G)/G →

(
{x ∈ C | |x − 1| = 1 and x ̸= 2}

)
/∼

[ρ] 7→ trace(ρ(s))

where ∼ is the relation by complex conjugation.
In particular, homirr

+ (π1(M), G)/G is homeomorphic to a half-open in-
terval.

Proof. Let ρ : π1(M) → G be an irreducible representation. The fibre T 2 \
{∗} is orientable, so the restriction of ρ to the free group ⟨r, s |⟩ ∼= F2 is
contained in PSL(2,C). The subgroup ⟨r, s |⟩ is precisely the commutator
subgroup [π1(M), π1(M)]: let π1(M)ab denote the abelinatization of π1(M),
so that the conmutator [π1(M), π1(M)] satisfies the short exact sequence

1 → [π1(M), π1(M)] → π1(M) → π1(M)ab → 1.

Let us denote the image of the generators of π1(M) by r, s, t ∈ π1(M)ab.
From the presentation of π1(M), and the commutativity of elements in
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π1(M)ab, we obtain a presentation

π1(M)ab ∼= ⟨r, s, t | r = s, s = rs⟩.

Hence, r = 1, s = 1, and

[π1(M), π1(M)] = Ker(π1(M) → π1(M)ab) = ⟨r, s |⟩.

As a consequence, for any element u ∈ ⟨r, s |⟩, the element ρ(u) is well-
defined in SL(2,C), therefore we may assume that the image ρ(⟨r, s |⟩) ⊂
SL(2,C) [24].

We consider the variety of characters X(F2, SL(2,C)) and the action of
the algebraic monodromy ϕ∗ on the variety of characters:

ϕ∗ : X(F2, SL(2,C)) → X(F2, SL(2,C))
χ 7→ χ ◦ ϕ∗

Lemma 2.4.2. The restriction of homirr
+ (π1(M), G)/G to X(F2, SL(2,C))

is contained in
{χ ∈ X(F2, SL(2,C)) | ϕ∗(χ) = χ}

Proof of Lemma 2.4.2. Let ρ ∈ homirr(π1(M), G). If we write ρ(t) = A ◦ c

for A ∈ PSL(2,C) and c complex conjugation, from the relation

tγt−1 = ϕ∗(γ) ∀γ ∈ F2,

we get
Aρ(γ)A−1 = ρ(ϕ∗(γ)) ∀γ ∈ F2.

Hence if ρ0 denotes the restriction of ρ to F2, it satisfies that ρ0 and ρ0◦ϕ∗ are
conjugate, hence they have the same character and the lemma follows.

Lemma 2.4.2 motivates the following computation:

Lemma 2.4.3. We have a homeomorphism:

{χρ ∈ X(F2, SL(2,C)) | ϕ∗(χρ) = χρ} ∼= {x ∈ C | |x − 1| = 1}
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by setting x = trace(ρ(s)) = χρ(s).

Proof of Lemma 2.4.3. First at all we describe coordinates for X(F2, SL(2,C)).
Let τr, τs and τrs denote the trace functions, ie. τr(χρ) = χρ(r) = trace(ρ(r)),
and similarly for s and rs. Fricke-Klein’s theorem yields an isomorphism

(τr, τs, τrs) : X(F 2, SL(2,C)) ∼= C3

(see for [19] for a proof). From the relations

ϕ∗(r) = s, ϕ∗(s) = rs, ϕ∗(rs) = srs,

the equality ϕ∗(χρ) = χρ is equivalent to:

τr = τs, τs = τrs, τrs = τsrs.

In order to derive the expression for τsrs we need the relations

trace(A) = trace(A−1)

and
tr(AB) = tr(A)tr(B) − tr(AB−1) for A, B ∈ SL(2,C),

where the latter is obtained from the Cayley-Hamilton theorem A2−trace(A)A+
Id = 0 by multiplying by A−1B and taking traces. Applying it to A = ρ(r)
and B = ρ(rs), we arrive to

τsrs = τsτrs − τss−1r−1 = τsτrs − τr.

We take x = τr, then τrs = x and τs = x. Thus, the defining equation
is x + x = xx. Namely, the circle |x − 1| = 1.

To prove Proposition 2.4.1, we need to know which conjugacy classes of
representations of F2 are irreducible. By [11], a character χρ in X(F2, SL(2,C))
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is reducible iff χρ([r, s]) = tr(ρ([r, s])) = 2. The trace of ρ([r, s]) is ([19])

tr(ρ([r, s])) = τ 2
r + τ 2

s + τ 2
rs − τrτsτrs − 2,

and from the identification τr = x and xx = x + x, we can rewrite it as

2x2 + x2 − x2x − 2 = 2x2 + x2 − x(x + x) − 2 = x2 + x2 − xx − 2 =
(x + x)2 − 3(x + x) − 2 = (x + x)((x + x) − 3) − 2 = 4 Re(x)2 − 6 Re(x) − 2.

This is a parabola in terms of Re(x), where Re(x) ∈ [0, 2]. The maximum
in this interval is in Re(x) = 2, where τ[r,s] = 2. This shows that, in the
circle |x − 1| = 1, the only reducible representation is precisely the point
x = 2.

Now, let ρ be a representation of F2 in SL(2,C) whose character χρ

satisfies ϕ∗(χρ) = χρ. Assume ρ is irreducible, then ρ◦ϕ∗ and ρ are conjugate
by a unique matrix A ∈ PSL(2,C):

Acρ(γ)cA−1 = Aρ(γ)A−1 = ρ(ϕ∗(γ)), ∀γ ∈ F2,

where c means complex conjugation. Thus, by defining ρ(t) = A ◦ c this
gives a unique way to extend ρ to π1(M).

When χρ is reducible, then x = 2 and the character χρ is trivial. Then
either ρ is trivial or parabolic. We will exhibit that all possible extensions to
π1(M) yield reducible representations. In order to extend a representation
⟨r, s |⟩ to a representation of π1(M), we only need to choose ρ(t) such that
it verifies the relations

ρ(t)ρ(r)ρ(t)−1 = ρ(s), ρ(t)ρ(s)ρ(t)−1 = ρ(rs).

Let ρ(r) = ( 1 xr
0 1 ) , ρ(s) = ( 1 xs

0 1 ) ∈ PSL(2,C), ρ(t) = ( a b
c d )◦c ∈ PSL(2,C)⋊

Z2. From ρ(t)ρ(r) = ρ(s)ρ(t),
a axr + b

c cxr + d

 =
a + cxs b + dxs

c d

 ,
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and therefore, either xr = xs = 0 (ρ in the fiber was trivial) or c = 0. In
any of the two cases, ρ fixes some point in CP1, so the extension to π1(M)
is reducible.

2.4.2 Comparing both ways of computing
deformation spaces

We relate both ways of computing deformation spaces, via the ideal simplex
and via the fibration:

Lemma 2.4.4. Given a triangulated structure with parameter w as in
(1.18), the parameter x of its holonomy as in Proposition 2.4.1 is

x = 1 + w + |w|2

(or x = 1 + w + |w|2, because x is only defined up to complex conjugation).

Proof. As r = UV , a straightforward computation yields

ρ(r) =
 0 |w|2

− 1
|w|2 1 + w + |w|2

 ∈ SL(2,C).

Then the lemma follows from x = trace(ρ(r))

The fact that not all deformations are obtained from triangulations is
reflected in the following remark.

Remark 2.4.5. The image of map

{w ∈ C | |w(1 + w)| = 1} → {x ∈ C | |x − 1| = 1}
w 7→ x = 1 + w + |w|2

is {|x − 1| = 1} ∩ {Re(x) ≥ 3
2}, ie. the arc of circle bounded by the image

of the holonomy structure (and its conjugate). See Figure 2.1.

Proof of Remark 2.4.5. The imaginary part of the image 1 + w + |w|2 is
equal to Imw. From Figure 1.7, we see that it attains the maximum and
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minimum values at points w = −1±i
√

3
2 . Hence, we see that the image is in

the set
{|x − 1| = 1} ∩ {z ∈ C | −

√
3/2 ≤ Im z ≤

√
3/2}.

This set has two connected components, which are two symmetric arcs
with respect to the line {Re z = 1}. As the domain is connected and
Im (1 + w + |w|2) = [−

√
3/2,

√
3/2], the image is precisely one of the two

arcs . For w = −1+
√

5
2 , 1 + w + |w|2 = 2, hence the image is the arc whose

real part is greater or equal than 3
2 , as depicted in Figure 2.1.

21

|x − 1| = 1

3+i
√

3
2

3−i
√

3
2

x = 1 + w + |w|2

Figure 2.1: The image of x = 1 + w + |w|2 in the circle |x − 1| = 1.

To be precise on the type of structures at the peripheral Klein bottle,
we compute the trace of the peripheral element [r, s] for each method. This
peripheral element is distinguished (recall Definition 1.2.1) and corresponds
to our choice of meridian in the orientation cover (the longitude would be
t2).

• We compute it from the variety of representations, i.e. from x. Using
the notation of the proof of Proposition 2.4.1:

τ[r,s] = x2
1 + x2

2 + x2
3 − x1x2x3 − 2 = (x + x)2 − 3(x + x) − 2 =

= (x + x)((x + x) − 3) − 2.
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The complete hyperbolic structure corresponds to τ[r,s] = ±2, which
occurs when (x + x) = 3, hence, by deforming x we may have either
τ[r,s] > −2 or τ[r,s] < −2.

• Next we compute it from the ideal triangulation, i.e. from w. As
x = 1 + w + |w|2, we get

τ[r,s] = (2 + w + w + 2|w|2)((2 + w + w + 2|w|2) − 3) − 2
= −4 + w2 + w2 + 4|w|4 + w + w + 4|w|2 + 4w|w|2 + 4w|w|2

= 2 Re(w + w2) + 4|w|2(1 + w + w + |w|2) − 4
= 2 Re(w + w2) + 4|w + w2|2 − 4.

Because |w + w2| = 1, we conclude

τ[r,s] = 2 Re(w + w2) ≥ −2.
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3 The variety of representations of
the Klein bottle

Deformations of hyperbolic structures in non compact 3-manifolds of finite
volume give rise to (possibly non-discrete) representations of the ends into
Isom(H3). There are two kind of ends when the manifold is non-orientable,
the ones related to peripheral tori and the ones related to Klein bottles.
Representations of π1(T 2) are well understood, so we will inspect here the
variety of representations for π1(K2). This is an interesting object by itself,
but it will also serve us to construct the metric completion of the deforma-
tions of the whole M3 in Chapter 4.

Let π1(K2) = ⟨a, b|aba−1 = b−1⟩ be a presentation of the fundamental
group of the Klein bottle, and G = Isom(H3) ∼= PSL(2,C)⋊Z2. The variety
of representations hom(π1(K2), G) is identified with

hom(π1(K2), G) = {A, B ∈ G|ABA−1 = B−1}.

Topologically, according to the orientable behaviour of A and B, we
should be able to distinguish 4 connected components of hom(π1(K2), G).
In fact, we will see that there are actually 8 connected components. We can
consider lifts of A and B to SL(2,C) ⋊Z2, and obtain a well-defined lift of
the relation ABA−1B−1 = [Id] to SL(2,C). Thus, we can furter distinguish
among the aforementioned 4 connected components according to the Klein
bottle relation lifting to +Id or −Id in SL(2,C).

Our main interest lies in the following connected component:
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Definition 3.0.1. A representation ρ ∈ hom(π1(K2), G) is said to pre-
serve the orientation type if, for every γ ∈ π1(K2), ρ(γ) is an orientation-
preserving isometry if and only if γ is represented by and orientation-
preserving loop of K2. We denote this subspace of representations by

hom+(π1(K2), G).

According to our discussion on lifts of the relation, we shall see that
hom+(π1(K2), G) consists of two connected components.

Let T 2 → K2 be the orientation covering. The restriction map on the
varieties of representations (without quotenting by conjugation) is:

res : hom(π1(K2), G) → hom(π1(T 2), PSL(2,C)). (3.1)

Given the previous presentation of π1(K2), we can choose a2, b, the
distinguished generators of π1(T 2), so that π1(T 2) ∼= ⟨a2, b | a2b = ba2⟩. We
denote l = a2, m = b and call them distinguished longitude and meridian,
respectively (as in Definition 1.2.1). In terms of the distinguished longitude
and meridian the restriction map on the variety of representations can be
written as

res(A, B) = (A2, B). (3.2)

The chapter is organized as follows. The first step in order to compute
representations will be to study the behaviour of the square map A 7→ A2,
which appears as the first coordinate of the restriction map (cf. (3.2)). In
particular, we will study the fibers, which on the one hand will serve as
very useful tool to compute representations in Section 3.2 and, on the other
hand, it will also serve to classificate the orientation reversing isometries of
H3.

In Section 3.2 we give a list of non-degenerate orientation type preserving
representations. Afterwards, in Section 3.3 we show that the restriction map
(cf. (3.1)) is a local homeomorphism around a non-degenerate parabolic
representation.

Section 3.4 is devoted to compute the homology of the Klein bottle with
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twisted coefficients by a parabolic representation and the group cohomology
of π1(K2) (which is dual to the twisted homology). As a consequence, we
show that the representation variety is smooth around said representation
and it has real dimension 7.

We end the chapter with a comprehensive list of representations, which
serves to prove our claim on the existence of precisely 8 connected compo-
nents.

3.1 The square map

Let G denote the group of isometries of hyperbolic 3-space, H3. We will
denote by G+ the connected component of the identity, that is, the subgroup
of orientation preserving isometries,

G+ = Isom+(H3) ∼= PSL(2,C),

and by G−, the subset of orientation reversing ones,

G− = Isom−(H3) ⊂ PSL(2,C) ⋊ Z2,

hence G = G− ⊔ G+.
Given an orientation preserving isometry A ∈ G+, Ac = A ◦ c ∈ G− will

be the composition of A and the complex conjugation c. Any orientation
reversing isometry can be written down as the composition of a orientation
preserving isometry and c.

The universal cover of G+ is the group SL(2,C) and will be denoted by
G̃+. There is a natural map we are interested in:

Q : G → G̃+

[A] 7→ A2,
(3.3)

which is well defined as (±A)2 = A2.
The behaviour of Q changes drastically in each connected component G−

and G+. We will be interested first in its restriction to G−. The following
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proposition describes the fiber of the square map Q.

Proposition 3.1.1. Let B be a matrix in Jordan form in G̃+ and let us
consider the restriction Q : G− → G̃+. Then:

• If B =
(

λ 0
0 λ−1

)
, with λ ∈ R+ \ {1}, the fiber of B is

Q−1(B) = {
(

a 0
0 a−1

)
c

| a ∈ C∗, |a|2 = λ}.

• If B =
(

eiθ 0
0 e−iθ

)
, θ ∈ R \ {nπ|n ∈ Z}, the fiber of B is

Q−1(B) = {
(

0 ρei(θ+π)/2

−ρ−1e−i(θ+π)/2 0

)
c

| ρ ∈ R∗}.

• If B = ( 1 1
0 1 ), the fiber of B is

Q−1(B) = {( 1 τ
0 1 )c | τ ∈ C, Re(τ) = 1/2}.

• If B = Id, the fiber of B is

Q−1(Id) = {( a b
c a )c | a ∈ C, b, c ∈ iR, |a|2 − bc = 1} = Ad(G+) ( 0 i

i 0 )c .

• If B = −Id, the fiber of B is

Q−1(−Id) = {
(

a b
c −a

)
c

| a ∈ C, b, c ∈ R, |a|2 + bc = −1} =

= Ad(G+) ( 0 −1
1 0 )c .

• Otherwise, the fiber of B is empty.

Furthermore, in every case the fiber is connected.

Proof. The conjugacy class of any element in G̃+ is either diagonal
(

λ 0
0 λ−1

)
or parabolic ± ( 1 1

0 1 ), so we only have to compute the fibers for these two
kinds of matrices. This is straightforward but tedious.
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Let A ∈ Q−1(B), A = ( a b
c d )c. Then,

A2 =
|a|2 + bc ab + bd

ca + cd |d|2 + bc

 . (3.4)

We will solve for A in the equation A2 = B.
Case 1: If B is diagonal, we have from the off-diagonals entries, ab+bd =

0 and ca+cd = 0. By multipying the first expression by c, the second one by
b and substracting them we get 0 = a(2iIm(cb)). Similarly, if we multiply
the first expression by c and the second one by b, we obtain 0 = d(2iIm(cb)).
Hence, either Im(cb) = 0 or Im(cb) ̸= 0 (then, a = d = 0).

If Im(cb) ̸= 0 : a = d = 0, then the only possibility is A =
(

0 b
−b−1 0

)
c
,

B =
(

−b/b 0
0 −b/b

)
=
(

eiθ 0
0 e−iθ

)
, for some θ ∈ R.

If Im(cb) = 0 : Then λ ∈ R. We can assume either a or d different from
zero as this was already covered. Indeed, it is easy to see that if one of them
equal to zero, the other one is zero too. We can write d = 1+bc

a
and substitute

in one of the off-diagonal entries of (3.4) to get −b = b(|a|2 + cb) = b(λ).
We get a similar equation for c. We conclude that either λ = ±1 (B = Id)
or b = c = 0.

• If b = c = 0, we have d = a−1 and |a|2 = λ.

• If we consider λ = +1, B = Id, b, c ∈ iR, from the off-diagonal
equations we get d = a and, from the diagonal entries, it must also
be satisfied |a|2 + bc = 1 (which is equivalent to det(A) = 1).

• If we consider λ = −1, B = −Id, b, c ∈ R, and, analogously, d = −a

and |a|2 + bc = −1 (equivalent again to det(A) = 1).

Last two cases correspond to the fiber of ±Id. By conjugating first by
some parabolic transformation ( 1 ν

0 1 ) and then by a matrix
(

µ 0
0 µ−1

)
we can

see that Q−1(Id) = Ad(G+) ( 0 i
i 0 )c and Q−1(−Id) = Ad(G+) ( 0 −1

1 0 )c.
Case 2: If B is parabolic, from the diagonal equations we get bc ∈ R

and therefore, multiplying the off-diagonal equation ab + bd = ±1 by c we
obtain c = 0. Hence, d = a−1 and |a| = 1. Finally, by writing a and b in
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polar form and focusing on the off-diagonal equation, we obtain a = ±1
and Re b = ±1/2.

Remark 3.1.2. If B is not in Jordan form and conjugating it by g ∈ G̃+

takes it to the Jordan form, then the fiber Q−1(B) is computed from the
cases of Proposition 3.1.1 by conjugating the corresponding fiber by g−1.

Remark 3.1.3. Let A ∈ G− such that Q(A) ̸= Id. We will say A is hyper-
bolic, elliptic or parabolic according to the usual clasification of isometries
with respect to the fixed points in H3 ∪ ∂∞H3. Moreover, A is hyperbolic,
elliptic or parabolic iff Q(A) is hyperbolic, elliptic or parabolic, respectively.

Corollary 3.1.4. The image of Q is

J := {A ∈ G̃+ | tr(A) ∈ (−2, ∞)} ∪ {−Id},

where tr(A) denotes the trace of A.

Remark 3.1.5. Proprosition 3.1.1 can be extended to the quotient map
Q : G− 7→ G+. Then, Q

−1([Id]) and Q
−1([

(
eiθ 0
0 e−iθ

)
]) have two connected

components whereas Q
−1([

(
λ 0
0 λ−1

)
]) and Q

−1([( 1 τ
0 1 )]) just one.

Corollary 3.1.6 (Classification of non-orientable isometries of H3). Let us
consider an orientation reversing isometry of hyperbolic 3-space. Then, up
to conjugation, it is one of the following:

• Composition of a reflection on a hyperplane with hyperbolic translation
in an axis contained in said hyperplane.

• Composition of a reflection on a hyperplane with an elliptic transfor-
mation with axis perpendicular the aforementioned hyperplane.

• Composition of a reflection on a hyperplane with a parabolic transfor-
mation with fixed point an ideal point of the hyperplane.

• Reflection on a hyperplane.
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• Inversion through a point.

Proof. Interprete each case of Proposition 3.1.1.

Remark 3.1.7. Let B ∈ G̃+ and consider its fiber by Q as in Proposi-
tion 3.1.1. According to Corollary 3.1.6, elements in the same fiber Q−1(B)
differ by the choice of hyperplane in which to reflect (or point with respect
to do the inversion in the last case). Thus, the elements in a fiber are con-
jugated. In particular, let Gd, Gr < G+ be the subgroups of G+ of dilations
and rotations, respectively, leaving invariant the geodesic from 0 to ∞, that
is

Gd = {

µ 0
0 µ−1

 | µ ∈ R}, Gr = {

eiθ 0
0 e−iθ

 | θ ∈ R}.

Then, it is a straightforward computation that the fiber of a dilation (in
Jordan form) satisfies

Q−1(B) = {
(

a 0
0 a−1

)
c

| |a|2 = λ} = Ad(Gr)(
|a| 0

0 |a|−1


c

).

Similarly, for a rotation, the fiber Q−1(B) is equal to

{
(

0 ρei(θ+π)/2

−ρ−1e−i(θ+π)/2 0

)
c

| ρ ∈ R∗} = Ad(Gd)(
 0 ei(θ+π)/2

−e−i(θ+π)/2 0


c

).

Finally, in the case of a parabolic transformation (in Jordan form), let
Gpar < G+ denote the subgroup of parabolic transformations leaving the
∞ point fixed. Then, the fiber of a parabolic transformation is

Q−1(B) = {( 1 τ
0 1 )c | Re(τ) = 1/2} = Ad(Gpar)(

1 1/2
0 1


c

).

If we consider the restriction Q : G+ → G̃+, which we denote Q+, we
have the following proposition, of which a version for PSL(2,R) can be
found in [39].
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Proposition 3.1.8. 1. For any B ∈ G̃+ \ tr−1(−2), there is a unique
A ∈ G+ such that Q+(A) = B, given by

A =
[

B + Id√
trB + 2

]
.

2. The fiber Q−1
+ (−Id) is the set Ad(G+) ( 0 −1

1 0 ).

3. For B =
(

−1 τ
0 −1

)
, τ ̸= 0, the fiber is empty in G+.

Proof. The proof is analogous to the one of the PSL(2,R)-case. First, given
any matrix A ∈ M2×2(R), trA2 = (trA)2 −2det(A). First assertion is due to
the Cayley-Hamilton theorem, that is, for A ∈ SL(2,C), A2−A trA+Id = 0.
Thus, if trA2 ̸= −2,

A = A2 + Id

trA = ± A2 + Id√
trA2 + 2

.

On the other hand, the second assertion comes from the fact that
tr(A2) = −2 if and only if tr(A) = 0. Then, it is a straightforward com-
putation that for any A ∈ G+ such that tr(A) = 0, A2 = −Id. This also
proves the last assertion.

3.2 Orientation type preserving
representations

Our main interest lies in a neighbourhood of non-degenerate representations
of the Klein bottle in the quotient hom+(π1(K2), G)/G. Recall that π1(K2)
admits a presentation ⟨a, b | aba−1 = b−1⟩; the following theorem describes
what kind of ‘non-degenerate’ representations we can expect in terms of the
generators a and b:

Theorem 3.2.1. Let ρ ∈ hom+(π1(K2), G) preserve the orientation type
and let ρ(b) ̸= Id. By writing A = ρ(a), B = ρ(b) as Möbius transforma-
tions, up to conjugation one of the following holds:
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a) A(z) = z + 1, B(z) = z + τi, with τ ∈ R>0.

a’) A(z) = z, B(z) = z + τi, with τ ∈ R>0.

b) A(z) = elz, B(z) = eiθz, with l ∈ R≥0, θ ∈ (0, π].

c) A(z) = eiθ/z, B(z) = elz, with l ∈ R>0, θ ∈ [0, π].

d) A(z) = eiθ/z, B(z) = −elz, with l ∈ R>0, θ ∈ [0, π].

Proof. The idea of the proof is applying the restriction map (3.1) to a
representation on the Klein bottle and look for its image in the variety of
representations hom(π1(T 2), G+).

The variety of representations hom(π1(T 2), G+)/G+ is well known. A
representation [ρ0] in this variety is the class of either a parabolic represen-
tation, ρ0(l)(z) = z + 1, ρ0(m)(z) = z + τ , τ ∈ C, a parabolic degenerated
one, ρ0(l)(z) = z, ρ0(m)(z) = z + τ , τ ∈ C, or a hyperbolic or elliptic one
ρ0(l)(z) = λz, ρ0(m)(z) = µz, λ, µ ∈ C, where π1(T 2) = ⟨l, m|lm = ml⟩.

For ρ0 = res(ρ), let A = ρ(a), B = ρ(b) where a, b are generators of
π1(K2), and L = ρ0(l), M = ρ0(m). The following is satisfied:

(A2, B) =(L, M), (Restriction of a representation to the torus)
ABA−1 =B−1. (Klein bottle relation)

In fact, in order for ρ0 to be a restriction, there must be A and B satisfying
the previous conditions. We prove the theorem using these equations.

If [ρ0] is in the parabolic case, by hypothesis τ ̸= 0. Then, we can write
B = M = ( 1 τ

0 1 ). The restriction A2 = L yields from Proposition 3.1.1,

A =
1 ν

0 1


c

, where Re ν = 1/2.

The elements A, B must satisfy AB = B−1A, that is1 ν + τ

0 1

 = ±

1 ν − τ

0 1

 ,
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where the ± sign is due to the matrices actually being in PSL(2,C). The
relation implies that τ ∈ iR. Furthermore, let ω = − i

2Im ν and g = ( 1 ω
0 1 ) ∈

G+, then Ad(g)A = ( 1 1
0 1 )c, Ad(g)B = B. Thus, in the quotient the solution

is unique and, A(z) = z+1/2, B(z) = z+τ , τ ∈ iR\{0}, hence L(z) = z+1,
M(z) = z + τ .

Similarly, for the degenerated parabolic case, let A = ( x y
w z )c, B = ( 1 τ

0 1 ).
The Klein bottle relation implies w = 0, and, from A2 = Id, we have z = x,
|x| = |z| = 1 and Re y = 0. That is, A =

(
eiθ y

0 e−iθ

)
c
, for some θ ∈ R, so

let now g =
(

eiθ/2 0
0 e−iθ/2

)
so that Ad(g)(A) =

(
1 y
0 1

)
c
, Ad(g)(B) = ( 1 τ ′

0 1 ).
Therefore, conjugating again by a translation as before and taking into
account the Klein bottle relation once more, we see that the representation
is conjugated to A(z) = z, B(z) = z + τ ′′i, for some τ ′′ ∈ R.

Otherwise, for [ρ] hyperbolic or elliptic, according to Proposition 3.1.1,
either L corresponds to a real dilation or to a rotation. If L is a dilation, let
us write (see Remark 3.1.7) A =

(
λ 0
0 λ−1

)
c
, B = M =

(
µ 0
0 µ−1

)
, for λ ∈ R,

µ ∈ C. The Klein bottle relation can be then written asλ 0
0 λ−1

µ 0
0 µ−1

 = ±

µ−1 0
0 µ

λ 0
0 λ−1

 ,

which yields |µ| = +1, that is µ = eiθ/2, for θ ∈ (0, 2π), hence B is a
rotation. In terms of Möbius transformations, let λ = el/2, l ∈ R\{0}, then
A(z) = elz, B(z) = eiθz.

If L is a rotation, the situation is similar to the previous one, we can
write A =

(
0 eiθ/2

−e−iθ/2 0

)
c
, B =

(
µ 0
0 µ−1

)
, for θ ∈ [0, 2π], µ ∈ C and from the

Klein bottle relation deduce that µ = ±µ. Then, either µ ∈ R or µ ∈ iR.
Thus, on the one hand we can denote µ = el/2, l ∈ R \ {0} and we have
representations where A(z) = eiθ/z, B(z) = elz. On the other hand, if
we denote µ = iel/2, l ∈ R \ {0}, we obtain representations A(z) = eiθ/z,
B(z) = −elz.

Thus, we obtain a classification of representations in hom(π1(K2), G)/G+.
To get the classification quotenting by the whole group, hom(π1(K2), G)/G,
we only have to see how the complex conjugation c acts by conjugation on
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each representation: In a), a′), c maps z + τi 7→ z − τi; in b), eiθz 7→ e−iθz;
and in c), d), eiθ/z 7→ e−iθ/z. The choice α > 0, l > 0 in b), c), d) is obtained
by taking into account that [ρ] = [ρ−1].

Definition 3.2.2. According to the different cases of Theorem 3.2.1, a
representation ρ ∈ hom+(π1(K2), G) is called:

• parabolic non-degenerate in case a) and parabolic degenerate in case
a’),

• type I in case b),

• type II in case c), and

• type III in case d).

Furthermore, type I and type II or III are called non-degenerate if l ̸= 0 or
θ ̸= 0 respectively, and degenerate otherwise.

Remark 3.2.3. Type III representations belong to a different connected
component that the other representations from Theorem 3.2.1 (see Sec-
tion 3.5 and Chapter 5 for more details).

Remark 3.2.4. Let M3 be a complete, non-orientable hyperbolic 3-manifold
of finite volume. The holonomy of a non-orientable cusp restricts to a rep-
resentation of the Klein bottle that preserves the orientation type and is
parabolic non-degenerate.

Furthermore, deformations of this representation still preserve the ori-
entation type and are non-degenerate (possibly of type I or II by Re-
mark 3.2.3), by continuity.

For γ ∈ π1(T 2) ◁ π1(K2), recall from (2.2) that

Iγ : hom(π1(K2), G) → C
ρ 7→ (tracePSL(2,C)(ρ(γ)))2 − 4,

where tracePSL(2,C) means trace as matrix in PSL(2,C).
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Lemma 3.2.5. Let ρ ∈ hom(π1(K2), G) preserve the orientation type and
ρ(b) ̸= Id. Then:

• If ρ is parabolic, then Iγ(ρ) = 0, ∀γ ∈ π1(T 2).

• If ρ is of type I, then Ia2(ρ) ≥ 0 and Ib(ρ) < 0.

• If ρ is of type II, then Ia2(ρ) ≤ 0 and Ib(ρ) > 0.

• If ρ is of type III, then Ia2(ρ) ≤ 0 and Ib(ρ) ∈ iR.

Proof. It is a straightforward computation from Theorem 3.2.1.

Remark 3.2.6. In the case of the Gieseking manifold, at the end of Subsec-
tion 2.4.2, we computed traceSL(2,C)(b) (which in that case was well defined)
for the representations obtained in the cusp. The result was that for defor-
mation of the triangulation traceSL(2,C)(b) > −2, whereas from the variety
of representations, either traceSL(2,C)(b) > −2 or traceSL(2,C)(b) < −2. Thus,
Ib(ρ) < 0 for representations associated to deformations of the triangula-
tion, that is, by Lemma 3.2.5, representations of type I and, in general,
either representations of type I or type II could happen.

In fact, we notice that path of deformations of the Gieseking manifold
lifts to a path of deformations of the figure-eight knot exterior that is the
same considered by Hilden, Lozano and Montesinos in [25] from deforma-
tion of a polyhedron. What the authors of [25] call spontaneous surgery
corresponds to the transition from type I to type II of the Gieseking mani-
fold.

3.3 The restriction map

This section is dedicated to seeing some properties of the restriction map.
The goal is proving that, in the quotient, it is a local homeomorphism. Let
us start by showing some inmediate properties:

Lemma 3.3.1. The maps res : hom+(π1(K2), G) → hom(π1(T 2), G+) and
res : hom+(π1(K2), G)/G+ → hom(π1(T 2), G+)/G+ are continuous.
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Proof. The first statement is trivial from (3.2). The second one is a conse-
quence of the universal property of the quotient.

Let hom0
+(π1(K2), G), hom0(π1(T 2), G) denote the subsets of non-degenerate

representations in their respective varieties. Notice that, for us, a represen-
tation of the Klein bottle is degenerate iff its restriction to the torus (its
orientation covering) is degenerate, that is, ρ(a2) or ρ(b) equal the identity.

Proposition 3.3.2. The restriction map in the quotient

res : hom0
+(π1(K2), G)/G+ → hom0(π1(T 2), G+)/G+

is not injective.

Proof. Let us consider two representations of type II: A(z) = eiθ/z, B(z) =
elz and A′(z) = −eiθ/z, B′(z) = B(z). Clearly, their image under the
restriction map is the same. On the other hand, they are not conjugate;
for instance, under the square map Q (cf. (3.3)), A and A′ go to elements
with different trace:

Q(A) =
−eiθ 0

0 −e−iθ

 , Q(A′) =
eiθ 0

0 e−iθ

 .

The same happens when considering type III representations.

We can define an action of Z2 on the variety of representations induced
by the covering transformation of T 2 → K2. Let a, b be our usual generators
of π1(K2), that is, they satisfy aba−1 = b−1, and notice that the covering
tranformation ι : T 2 → T 2 (cf. (1.7)) corresponds to conjugation by a. Let
ρ ∈ hom+(π1(K2), G), then the action by conjugation of ρ(a) = c ◦ A, for
A ∈ G+, on ρ(a2) and ρ(b) is

ρ(a)ρ(a2)ρ(a)−1 = ρ(a2), ρ(a)ρ(b)ρ(a)−1 = ρ(b)−1.

This shows how the action of ρ(a) by conjugation is on Im(res) ⊂
hom0(π1(T 2), G+). We are interested in extending the action to the quo-
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tient hom(π1(T 2), G+)/G+, where given any class of representation [ρ], con-
jugating by c ◦ A equals to the representation [ρ]. Thus, for γ ∈ π1(T 2),
ρ ∈ hom(π1(T 2), G+), we define the action of ι on ρ, ι · ρ, as follows:

(ι · ρ)(γ) := ρ(ι∗γ). (3.5)

The action passes down to the quotient, where it will aslo be denoted
by ι.

Lemma 3.3.3. Let ρ be a non-degenerate parabolic representation of the
Klein bottle, ρ ∈ hom+(π1(K2), G) and let ρ0 = res(ρ) be its restriction
to the torus. There exist neighbourhoods U ⊂ hom0

+(π1(K2), G)/G+, V ⊂
(hom0(π1(T 2), G+)/G+) of [ρ] and [ρ0], respectively, such that the image U

under the restriction map is identified with V ι .

Proof. From Theorem 3.2.1, it is clear that

res(hom0
+(π1(K2), G)/G+) ⊂ (hom0(π1(T 2), G+)/G+)ι.

On the other direction, let [L, M ] = [L, M
−1], where L, M is the image

by ρ of a longitude-meridian pair. If the representation is parabolic, we can
assume L(z) = z + 1, M(z) = z + τ , and we have

1 1
0 1

 = ±Ad(g)
1 1

0 1

 ,

1 τ

0 1

 = ±Ad(g)
1 −τ

0 1

 , (3.6)

where g ∈ G+. The adjoint representation appears because the equa-
tion is in the quotient, whereas the signs are due to the equation being in
PSL(2,C). It is clear that g must fix ∞, g = ( x y

0 z ), and that x = z = ±1, so
g acts trivially. Thus, the only possible outcome is τ = −τ , that is, τ ∈ iR.
The obtained representation is the image of a parabolic representation of
the Klein bottle.

In the non-parabolic case, we can assume L(z) = λz, M(z) = µz,
λ ̸= 1, µ ̸= 1. Thus, the expression [L, M ] = [L, M

−1] can be written down
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as
λ1/2 0

0 λ−1/2

 = ±Ad(g)
λ

1/2 0
0 λ

−1/2

 ,

µ1/2 0
0 µ−1/2

 = ±Ad(g)
µ−1/2 0

0 µ1/2

 , (3.7)

for g ∈ G+. Now g has to either fix 0 and ∞ or permute them, that
is, either g is hyperbolic or elliptic fixing both points (then the adjoint
action is trivial) or

(
0 −ω

ω−1 0

)
(we can assume ω = 1). Therefore, either

λ = ±λ, |µ| = ±1 or |λ| = ±1, µ = ±µ. In the case λ = λ, |µ| = 1, we
have a restriction of a representation of type I. The case λ = −λ, |µ| = 1,
implies λ ∈ iR, therefore, trA ∈ iR, which can be avoided by choosing
V small enough. On the other hand, |λ| = 1, µ = µ if and only if we
have the restriction of a type II representation. The case |λ| = 1, µ = −µ

corresponds to the restriction of a type III representation. Finally, the cases
|λ| = −1 or |µ| = −1 cannot happen.

As we have seen, as long as V avoids any (non-zero) pure imaginary
number as trace of L, the lemma is true for U = res−1(V ι) by Lemma 3.3.1.

Lemma 3.3.3 can be further refined to a local homeomorphism if the
neighbourhoods are chosen with care.

Lemma 3.3.4. Let [ρ] ∈ hom0
+(π1(K2), G)/G+ be a non-degenerate parabolic

representation, then there exists a neighbourhood U ⊂ hom0
+(π1(K2), G)/G+

of it such that the restriction map res|U is injective.

Proof. As shown in Proposition 3.3.2, the problem lies within the type
II and III representations. In addition, the proof of Proposition 3.3.2
shows a way to choose a neighbourhood. Let V be a ‘small neighbour-
hood’ (for instance, let us only consider elliptic transformations of ‘angle of
rotation’< π/2) in hom0

+(π1(T 2), G)/G+, and let U = res−1(V ), which is a
neighbourhood of [ρ] by Lemma 3.3.1. If V is small enough, then we can
assume that U does not contain type III representations (see Remark 3.2.3
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and Lemma 3.2.5). Notice that it is not evident that a neighbourhood of a
parabolic representation contains representations of type II. We will show
that, by our choice of neighbourhood, res−1(V ) has 2 connected compo-
nents U1 and U2, the first one containing parabolic representations as well
as representations of type I and II, whereas the second one only contains
representations of type II.

An elliptic element Aθ =
[

0 eiθ

−e−iθ 0

]
c

∈ G whose square [Q(A)] is close to
the identity satisfies either θ close to π/2 or to 0. We will use ∼ to indicate
closeness. Thus, for [Aθ, B], where B =

(
ev/2 0

0 e−v/2

)
, v ∈ R, to be close to a

parabolic representation, θ must be θ ∼ π/2 (equivalently, 3π/2) or θ ∼ 0
(equivalently, π).

Let g =
(

α β
γ δ

)
∈ G. Hence,

gAg−1 =
 −eiθαγ − e−iθβδ eiθ|α|2 + e−iθ|β|2

−eiθ|γ|2 − e−iθ|δ|2 eiθαγ + e−iθδβ


c

.

We want to check when this can be close to the parabolic element
(

1 1/2
0 1

)
c
.

Let us check some conditions to be met:

• First, eiθ|α|2 + e−iθ|β|2 ∼ 1/2. Looking into real and imaginary parts,
we observe that this occurs if and only if |α|2 ∼ |β|2 ∼ 1

4 cos θ
.

• Second, eiθ|γ|2 + e−iθ|δ|2 ∼ 0. Then, if θ is close enough to π/2, this
adds the condition |γ| ∼ |δ| but they can be anything in a bounded
region. The closer π/2, the bigger the region can be. On the other
hand, if θ ∼ 0, |γ| ∼ |δ| ∼ 0.

Putting together the previous conditions, and taking into account that

1 = αδ − βγ = |αδ − βγ| ≤ |α||δ| + |β||γ|,

we see that for θ close to 0, gAg−1 cannot be near a parabolic element.
In order to show that for θ ∼ π/2 there is a representation in the
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conjugacy class which is near some parabolic representation, we take

g =
(

1
2
√

| cos θ|
± i

2
√

| cos θ|

0 2
√

| cos θ|

)
,

where the sign of the off-diagonal element is opposite to the sign of cos θ.
Then, after possibly changing the representant matrix in PSL2(C),

gAg−1 =
 −e−iθi 1

2

−e−iθ4 cos θ −e−iθi


c

, gBg−1 =
ev/2 i

4 cos θ
(ev/2 − e−v/2)

0 e−v/2

 ,

which can be as close as wanted to some fixed parabolic representation.

Therefore, there is a connected component U2 of res−1(V ) made up
of representations of type II of the form [Aθ, B] with θ ∼ 0; and another
connected component which is U1. As V is small enough, U1 ∩U2 = ∅. Now,
taking into account Remark 3.1.5, it is clear that for each representation
ρ ∈ V , there are at most two possible preimages in U . If res−1(ρ) has two
preimages, then ρ(a) is an elliptic transformation and it has one preimage
in U1 and the other one in U2. Therefore, the restriction map restricted to
U1 is injective.

Theorem 3.3.5. Let U ⊂ hom0
+(π1(K2), G)/G+ be a neighbourhood of a

non-degenerate parabolic representation as in Lemma 3.3.4, then the re-
striction map restricted to U is a local homeomorphism onto its image.

Proof. By Lemmas 3.3.1 and 3.3.4 the restriction map is continuous and
injective. Therefore, we can consider the map res−1 restricted to the image.
Let V = res(U) and let p1, p2 be the projections of hom+(π1(K2), G) and
hom(π1(T 2), G+) to the respective quotients. The respective preimages of
U and V by the projection will be denoted Ũ = p−1

1 (U) and Ṽ = p−1
2 (V ).

We aim to construct a commutative diagram as follows:
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Ũ Ṽ

U V

p1

f

p2

res−1

g

The map g will be defined so that the diagram commute, hence f = g◦p2.
Therefore, if g is continuous, then res−1 is also continuous. Due to the
quotient universal property, g being continuous is equivalent to f being
continuous.

We will construct g by parts on the different types of representations in
U , that is, parabolic, type I and type II. Let us consider first a continuous
section of p2 (see [34]); given

[L, M ] = (
eu/2 0

0 e−u/2

 ,

ev/2 0
0 e−v/2

) ∈ hom(π1(T 2), G+)/G+,

its image by the section is

(
eu/2 1

0 e−u/2

 ,

ev/2 τ(u, v)
0 e−v/2

),

where the relation sinh v
2 = τ(u, v) sinh u

2 holds so that the matrices com-
mute. The function τ is continuous on both arguments (undefined if u = 0
or v = 0). This ensures that if (u(t), v(t)) → (0, 0), the image of the section
is a non-degenerate parabolic representation. The section of a parabolic
representation

[L, M ] = [
1 1

0 1

 ,

1 τ

0 1

],

is

(
1 1

0 1

 ,

1 τ

0 1

).

We will construct g in a way that is reminiscent to the previous section.
For [L, M ] ∈ V parabolic, L(z) = z + 1, B(z) = z + iν, ν ∈ R, g([L, M ]) =
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(A, B) is defined as

A =
1 1/2

0 1


c

, B =
1 iν

0 1

 .

For non-parabolic representations, let us consider first the type I case.
Let L(z) = euz, M(z) = eiθz, where u, θ ∈ R. Then, g([L, M ]) = (A, B)
with

A =
eu/4 1/2

0 e−u/4


c

, B =
eiθ/2 τ(u, iθ) cosh u

4

0 e−iθ/2

 ,

where τ is defined as in the section of p2, that is sinh v
2 = τ(u, v) sinh u

2 . In
order to check that this satisfies the Klein bottle relation, notice first that
eu/2 = |tr(L)|±

√
(tr(L))2−4
2 and analgously for ev/2. Thus, for a type I represen-

tation, sinh u
2 =

√
(tr(L))2 − 4 ∈ R, whereas sinh v

2 =
√

(tr(M))2 − 4 ∈ iR,
hence, τ(u, iθ) ∈ iR. Therefore, the Klein bottle relation is equivalent to
eu/4−iθ/2 −τ cosh u

4 + 1/2eiθ/2

0 e−u/4+iθ/2

 =
eu/4−iθ/2 −τ cosh u

4 e−u/4 + 1/2e−iθ/2

0 e−u/4+iθ/2

 .

Then, −τ cosh u
4 + 1/2eiθ/2 = −τ cosh u

4 e−u/4 + 1/2e−iθ/2 if and only if

τ2 cosh u

4 sinh u

4 = sinh iθ

2 ,

which is true by the relation sinh u
2 = 2 cosh u

4 sinh u
4 and the definition of

τ(u, iθ).

Regarding the type II case, let [L, M ] ∈ V , L(z) = eiθz, M(z) = evz,
where θ, v ∈ R. Let (A, B) = g([L, M ]) be defined as

A =
 −e−iθ/4 1

2

−e−iθ/44i sin θ/4 −e−iθ/4


c

, B =
ev/2 −i

4 sin θ/4(ev/2 − e−v/2)
0 e−v/2

 ,

where these formulae come from the end of the proof of Lemma 3.3.4, for
θ/4 + π/2 and where the relation cos(ϕ + π/2) = − sin ϕ has been taken
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into account. Moreover, the off-diagonal entry of B can be expressed as

−i

4 sin θ/4(ev/2 − e−v/2) = sinh v/2
2i sin θ/4 = sinh v/2

−2 sinh −u/4 = sinh v/2 cosh u/4
sinh u/2
= τ cosh u

4 ,

which matches the type I case.
This definition of g satisfies p1 ◦ g = res−1, so the diagram is commu-

tative. In addition, g is defined essentialy in terms of the traces of L and
M , so f is continuous restricted to non-parabolic representations. On the
other hand, it is straightforward that f is sequentially continuous when the
limit is a parabolic representation (that is, f is continuous at every point).
Hence, g is continuous, so is res−1.

Corollary 3.3.6. There exists a (continuous) local section of the projection

p1 : hom0
+(π1(K2), G) → hom0

+(π1(K2), G)/G+

around a non-degenerate parabolic representation.

Proof. Consider the map g ◦ res defined in the proof of Theorem 3.3.5.

Remark 3.3.7. The results in this section can be extended to the quotient
by the whole group G by adding the identification [A, B] = [A, B]. Thus,
for instance, the action ι (cf. (3.5)) in the quotient hom(π1(T 2), G+)/G is
ι · [L, M ] = [L, M−1]. The analogous of Theorem 3.3.5 can also be obtain
from Theorem 3.3.5 by considering a section of the projection

hom(π1(T 2), G+)/G+ → hom(π1(T 2), G+)/G,

and constructing from it a commutative diagram

U V

U/G V/G

p′
1

res−1

p′
2

res−1
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REPRESENTATION

3.4 Homology and cohomology of a
parabolic representation

Let us consider the Lie algebra of G, sl(2,C). Let ρ ∈ hom+(π1(K2), G)
denote the parabolic representation defined as

ρ(a) =
1 1/2

0 1


c

, ρ(b) =
1 iν

0 1

 ,

where a, b generate π1(K2) and satisfy aba−1 = b−1. The fundamental group
π1(K2) acts on the universal cover K̃2 ∼= R2 by covering transformations.
On the other hand, π1(K2) acts on sl(2,C) by the adjoint action through
the representation ρ, that is,

γ · η = Ad(ρ(γ))(η), where γ ∈ π1(K2), η ∈ sl(2,C).

Finally, let us denote Γ := π1(K2).
We will compute both the homology and cohomology of K2 with coef-

ficients in sl(2,C) twisted by ρ. As K2 is a K(Γ, 1)-space, we can identify
the cohomology of the group Γ with the cohomology dual to the homology
of K2 with twisted coefficients. Moreover, we have the Kronecker pairing

H i
ρ(K2) × Hρ

i (K2) −→ R
([ϕ], [g ⊗ α]) 7−→ B(g, ϕ(α)),

(3.8)

where B is the Killing form, which is non-degenerate as G is semisimple.
Therefore, the Kronecker pairing is non-degenerate too and the homology
and cohomology are dual.

3.4.1 Homology with twisted coefficients

We will consider here the homology of K2 with the coefficients twisted by
the representation of Γ into sl(2,C) (see [44], [35] for more details). The
construction of the chain complex with twisted coefficients goes as follows:
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the universal cover K̃2 has a structure of CW-complex. We can consider the
action of Γ in this structure by covering transformations, which extends to
an action of Γ on the cellular chain groups C∗(K̃2). Thus, we can consider
Ck(K̃2) as a RΓ-module, whose boundary homomorphism ∂ is linear over
RΓ. The chain complex we have just defined is free over RΓ.

Now we can twist the coefficients of the previous chain complex. Let us
denote by

Cρ
i (K2) = sl(2,C) ⊗ρ Ci(K̃2)

the RΓ-module generated by pairs

{g ⊗ ci | g ∈ sl(2,C), ci ∈ Ci(K̃2)},

and subject to the relations

g ⊗ (γ · ci) = (ρ(γ−1) · g) ⊗ ci, ∀γ ∈ Γ,

where the action on chains is by covering transformations and on sl(2,C),
the adjoint action.

The boundary operator ∂ on Cρ
∗ (K̃2) is then defined by linearity and

the formula
∂(g ⊗ ci) := g ⊗ (∂ci),

where ∂(ci) is the boundary operator of C(K̃2).
We are interested in computing the homology of the chain complex we

have just defined. We will utilize the usual notation of cycles and bound-
aries: a i-chain ci is a cycle if ci ∈ Zρ

i (K2) := Ker(∂i) and it is a boundary
if ci ∈ Bρ

i (K2) := Im(∂i+1). Thus, the i-th homology group with twisted
coefficients is defined as Hρ

i (K2) := Zρ
i (K2)/Bρ

i (K2).
The chain complex of K̃2 is generated by one 2-cell, c2, two 1-cells,

c1
v and c1

h, and one 0-cell, c0. The boundary operator is given by ∂2(c2) =
(1−b)c1

h −(ba+1)c1
v, ∂1(c1

h) = (a−1)c0, ∂1(c1
v) = (b−1)c0 (see Figure 3.4.1).

In order to compute the boundary operator with twisted coefficients,
let first write down some auxilary expressions which are recurrent. Let
A = ( x y

w −x ) ∈ sl(2,C):
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C2

b−1 · C2

b · C2

ba · C2

a · C2

c1
v

c1
h

b · c1
h

ba · c1
v

c0 a · c0

ba · c0
b · c0

Figure 3.1: Cell decomposition of K̃2.

• First of all, ρ(ba) =
1 1/2 + iν

0 1


c

,

•

b−1·A =
1 −iν

0 1

x y

w −x

1 iν

0 1

 =
x − iνw 2iνx + y + ν2w

w iνw − x

 ,

•

(ba)−1 · A =
c

1 −1/2 − iν

0 1

x y

w −z

1 1/2 + iν

0 1


c

=
x − 1/2w + iνw (1 − 2iν)x + y − (1/2 − iν)2w

w 1/2w − iνw − x


•

a−1 · A =
c

1 −1/2
0 1

x y

w −x

1 1/2
0 1


c

=
x − 1/2w x + y − 1/4w

w 1/2w − x


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Let us now compute the boundary operator on 2-chains:

∂2 : Cρ
2 (K2) −→ Cρ

1 (K2)
A ⊗ c2 7−→ A ⊗ ((1 − b)c1

h) − (1 + ba)c1
v)

= (A − b−1 · A) ⊗ c1
h − (A + (ba)−1 · A) ⊗ c1

v.

Then,

A − b−1 · A =
iνw −2iνx − ν2w

0 −iνw

 ,

A+(ba)−1·A =
2Re(x) − 1/2w + iνw (1 − 2iν)x + 2Re(y) − (1/2 − iν)2w

2Re(w) 1/2w − iνw − 2Re(x)

 .

The second homology group is Hρ
2 (K2) = Ker(∂2). Notice that in order

for A ⊗ c2 to belong in the kernel, the entries of A must satisfy x = w = 0.
In addition, this implies Re(y) = 0. Thus, ker(∂2) is generated by ( 0 i

0 0 )⊗ c2

and Hρ
2 (K2) ∼= R.

The boundary operator on 1-chains is defined as

∂1 : Cρ
1 (K2) −→ Cρ

0 (K2)
Ah ⊗ c1

h 7−→ Ah ⊗ (a − 1)c0 = (a−1 · Ah − Ah) ⊗ c0,

Av ⊗ c1
v 7−→ Av ⊗ (b − 1)c0 = (b−1 · Av − Av) ⊗ c0.

Therefore, in general ∂1(Ah ⊗ c1
h + Av ⊗ c1

v) = (a−1 · Ah − Ah + b−1 · Av −
Av) ⊗ c0. Let Ah = ( xh yh

wh −xh
), Av = ( xv yv

wv −xv
); from the previous auxiliary

computations, we have that

a−1 · Ah − Ah =
−2iIm(xh) − 1/2wh xh − 2iIm(yh) − 1/4wh

−2iIm(wh) 2iIm(xh) + 1/2wh

 ,

and

b−1 · Av − Av =
−iνwv 2iνxv + ν2wv

0 iνwv

 .

It is straightforward that the image of ∂1 can have at most dimension
5, since Cρ

0 (K2) ∼= R6 and the element ( 0 0
1 0 ) ⊗ c0 /∈ Im(∂1). Let us write

down 5 linearly independent vectors in the image:
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• The boundary operator ∂1 maps the 1-chain with coefficients Av =(
1

2iν
0

0 − 1
2iν

)
, Ah = 0 to ( 0 1

0 0 ) ⊗ c0.

• Similarly, Av =
(

1
2ν

0
0 − 1

2ν

)
, Ah = 0 is mapped to ( 0 i

0 0 ) ⊗ c0.

• On the other hand, the 1-chain with Av =
(

− 1
2 0

1
−iν

1
2

)
, Ah = 0 is mapped

to ( 1 0
0 0 ) ⊗ c0.

• Analogously, ∂1 maps Av =
(

− i
2 0

− 1
ν

i
2

)
, Ah = 0 to ( i 0

0 0 ) ⊗ c0.

• Finally, we remark that as long as Im(wh) ̸= 0, the image of the cor-
responding 1-chain will have as coefficient with a below-the-diagonal
entry a pure imaginary number. Hence, taking into account the 4 lin-
early independent elements we have already written down, ( 0 0

i 0 )⊗c0 ∈
Im(∂1).

Thus, Hρ
0 (K2) ∼= R. Moreover, due to the fact that dim(Ker(∂i)) +

dim(Im(∂i)) = dim(Ci), we obtain that Zρ
1 (K2) ∼= R7 and, by the same

formula, Bρ
1(K2) = R5. Therefore, H1(Eρ) ∼= R2.

To conclude, let us find representants of each homology class. Regarding
Hρ

2 (K2) and Hρ
0 (K2) it is inmediate; we have already seen that

⟨

0 i

0 0

⊗ c2

⟩ = H2(Eρ), ⟨

0 0
1 0

⊗ c0

⟩ = H0(Eρ).

Regarding Hρ
1 (K2), we can easily check that the following two cycles do

not belong to the same equivalent class, hence they generate Hρ
1 (K2):

0 1
0 0

⊗ c1
h,

 0 0
8ν 0

⊗ c1
h +

−(2ν + i) 0
4i 2ν + i

⊗ c1
v.

They are not related by a boundary as for any element in Im(∂2), the
under-the-diagonal entry of the coefficient of c1

h is always equal to 0.

85



CHAPTER 3. THE VARIETY OF REPRESENTATIONS OF K2

3.4.2 Cohomology of Γ

Due to the adjoint action of Γ on the Lie Algebra via the representation,
sl(2,C) can be considered a RΓ-module. We define the cochain complex
(C∗(Γ, sl(2,C)), δ) as follows (see [31], §4.5):

Ci(Γ, sl(2,C)) := RΓ − module generated by maps Γi → sl(2,C),

where Γi is the i-fold product of Γ, and Γ0 := {∗}. Thus, C0(Γ, sl(2,C)) can
be identified with sl(2,C). The coboundary operator, δ, is the dual to the
boundary operator of the corresponding chain complex C∗(Γ). We will write
down the coboundary explicitely for the 0-cochains and the 1-cochains:

δ0 : C0(Γ, sl(2,C)) ∼= sl(2,C) −→ C1(Γ, sl(2,C))
ξ 7−→ δ0(ξ)(γ) = ξ − γ · ξ, γ ∈ Γ,

δ1 : C1(Γ, sl(2,C)) −→ C2(Γ, sl(2,C))
c 7−→ δ1(c)(α, γ) = c(α) + αc(γ) − c(αγ), α, γ ∈ Γ.

Therefore, H0(Γ, sl2) = ker(δ0) = sl(2,C)Γ, that is, the elements of
sl(2,C) fixed by the action of Γ. Let A = ( x y

w −x ) ∈ sl(2,C)Γ. The action of
b, b · A = A implies w = 0 and x = 0. Then, a · A = A if and only if y ∈ R.
Hence, R ∼= sl(2,C)Γ = H0(Γ, sl(2,C)).

Let c ∈ ker(δ1), i.e., c satisfies c(α · γ) = c(α) + α · c(γ), ∀α, γ ∈ Γ.
Notice that c(e) = c(e · e) = 2c(e), then c(e) = 0, where e is the identity
element, and 0 = c(γ−1γ) = c(γ−1) + γ−1 · c(γ), so c(γ−1) = −γ−1 · c(γ),
∀γ ∈ Γ. This implies that the 1-cocycle c is determined by its value in a

and b: c(a) and c(b). Thus, we will be able to identify the kernel ker(δ1)
with a subspace of sl(2,C) × sl(2,C). The relation aba−1 = b−1 can be
rewritten as b = a−1b−1a, then

c(b) = c(a−1b−1a) = c(a−1) + a−1 · c(b−1a) =
= c(a−1) + a−1 · c(b−1) + a−1b−1 · c(a) =
= −a−1b−1 · c(b) + a−1(b−1 − 1)c(a).
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Hence,
0 = a−1(b−1 − 1) · c(a) − (a−1b−1 + 1) · c(b).

Let us consider the linear maps

S1 : sl(2,C) −→ sl(2,C)
g 7−→ S1(g) := a−1(b−1 − 1) · g,

and
S2 : sl(2,C) −→ sl(2,C)

g 7−→ S2(g) := (a−1b−1 + 1) · g,

and then define

S : sl(2,C) × sl(2,C) −→ sl(2,C)
(g, h) 7−→ S(g, h) := S1(g) − S2(h) =

= a−1(b−1 − 1) · g − (a−1b−1 + 1) · h.

Therefore, we have that (c(a), c(b)) ∈ Ker(S). In order to compute
this kernel, let us compute first the image of the maps S1 and S2 for some
elements g, h ∈ sl(2,C). Let g =

(
xg yg

wg −xg

)
, h = ( xh yh

wh −xh
), by using the

auxilary computations of the previous subsection we obtain,

S1(g) =
iνwg −2iνxg + (iν + ν2)wg

0 −iνwg

 ,

S2(h) =
2 Re(xh) − 1/2wh + iνwh (1 − 2iν)xh + 2 Re(yh) − (1/2 − iν)2wh

2 Re(wh) 1/2wh − iνwh − 2 Re(xh)

 .

The image of S1 consists of Im(S1) = {( x y
0 −x ) |x, y ∈ C}, so it has real

dimension 4. Consequently, from a straightforward inspection of the image
of S2 we can conclude that ( 0 0

1 0 ) ∈ Im(S), but ( 0 0
i 0 ) /∈ Im(S), which implies

dimR(Im(S)) = 5 and dimR(ker(S)) = dimR(Z1(Γ, sl(2,C))) = 7.
In order to compute dim(Im(δ0)), recall that δ0(ξ)(γ) = ξ − γ · ξ, where

ξ ∈ sl(2,C) and δ0(ξ) is completely determined by its evaluation in a and b

(equivalently, in a−1 and b−1). Thus, Ker(δ1) can be identified with a subset
of sl(2,C) × sl(2,C), which corresponds to the image of a and the image of
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b. In consequence, the image of δ0 can be identified with the image of the
map

sl(2,C) −→ sl(2,C) × sl(2,C)
ξ 7−→ (ξ − a−1 · ξ, ξ − b−1 · ξ).

Let ξ = ( x y
w −x ) belong to the kernel of the previous map, then, from

ξ − b−1 · ξ = 0 we conclude x = w = 0 and hence, from ξ − a−1 · ξ = 0,
Im(y) = 0. Thus, the kernel is generated by ( 0 1

0 0 ) and has dimension 1.
Therefore, the image has dimension 5 and H1(Γ, sl(2,C)) ∼= R2. Finally, by
an Euler-Poincaré characteristic argument, H2(Γ, sl(2,C)) ∼= R.

Remark 3.4.1. These cohomology groups could have been obtained from
the computations in homology and taking into account the Kronecker pair-
ing (cf. (3.8)) as stated at the beginning of the section. Another possible
approach could have been to take into account the cohomology of π1(T 2)
via the representation ρ0 = res(ρ). It is well-known that

H0(π1(T 2), sl(2,C)) ∼= H2(π1(T 2), sl(2,C)) ∼= C,

H1(π1(T 2), sl(2,C)) ∼= C2.

For instance, H0(π1(T 2), sl(2,C)) ∼= sl(2,C)π1(T 2) ∼= C can be easily seen
and the rest follows by Poincaré Duality and Euler-Poincaré characteristic.

As T 2 → K2 is a regular finite-sheeted covering space, the pullback in
cohomology is injective. This can be shown by an averaging construction.
If we consider the covering transformation ι acting on H i(π1(T 2), sl(2,C))
we can identify H i(π1(T 2), sl(2,C))ι ∼= H i(K2, sl(2,C)). It can be checked
that the action of ι is related to the complex conjugation and halves the
(real) dimension of H i(π1(T 2), sl(2,C)). Thus, we could conclude

H0(π1(K2), sl(2,C)) ∼= H2(π1(K2), sl(2,C)) ∼= R,

H1(π1(K2), sl(2,C)) ∼= R2.

Finally, by taking into account these cohomology groups and the di-
mension of the space of cochains, we can deduce the dimensions of the
coboundaries and cocycles.
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3.4.3 Smoothness of the representation variety

The variety of representations is tightly related to the cohomology group
we computed in the last subsection. Let ρ′ ∈ hom(Γ′, G′), where Γ′ is a
group and G′ a Lie group with g′ as Lie algebra, and let Tρ′hom(Γ′, G′)
be the Zariski tangent space. Then, the tangent space Tρ′hom(Γ′, G′) is
isomorphic to the space of 1-cocycles Z1(Γ′, g′) (see [31], §4.5).

Similarly, we can identify the space of coboundaries B1(Γ′, g′) with the
tangent space of deformations of ρ′ by conjugation. If the action of G′ on
hom(Γ′, G′) by conjugation is free near ρ′, then the (Zariski) tangent space
of hom(Γ′, G′)/G′ at [ρ′] is isomorphic to H1(Γ′, G′). Thus, by a result of A.
Weil ([45]), if H1(Γ′, g′) = 0 (i.e., the representation is infintesimally rigid),
then locally every representation ρ′′ close enough to ρ′ is conjugated to ρ′

and we say that ρ′ is locally rigid.
Our computations of the previous subsection show that the Zariski tan-

gent space Tρ hom(Γ, G) has dimension 7. Another consideration we want
to make about the representation variety is whether it is smooth or not.
There are a series of infinite osbstructions to this fact given by Goldman
and Millson ([21], [22]). These obstructions consist of higher-order Massey
products and they live in the second cohomology group H2(Γ′, g′). There-
fore, if H2(Γ′, g′) = 0, then we can say that the variety of representations is
smooth. Nonetheless, in our case of interest this does not happen and we
will have to see that the obstructions are null.

Proposition 3.4.2. The representation variety hom(π(K2), G) around the
parabolic representation ρ ∈ hom0

+(π1(K2), G) is smooth and has (real) di-
mension 7.

Proof. Let us consider the orientation covering π : T 2 → K2 and the in-
duced map

π∗ : π1(T 2) → π1(K2).

The pullback in cohomology

π∗ : H i(π1(K2), g) → H i(π1(T 2), g)
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is injective as it comes from a regular finite-sheeted covering.
Given a cocycle c ∈ H1(π1(K2), g), the obstructions to the existence of a

analytic path of representations passing through ρ with tangent vector c are
denoted oi(c) ∈ H2(π1(K2), g). These obstructions are defined inductively
and are higher-order Massey products, therefore they satisfy a naturality
condition, that is

π∗(oi(c)) = oi(π∗(c)).

The element oi(π∗(c)) is the i-th obstruction to the existence of a an-
alytic path passing through res(ρ) with tangent vector π∗(c). The rep-
resentation variety hom(π1(T 2), PSL(2,C)) is smooth ([31]) and therefore
oi(π∗(c)) = 0. By injectivity of π∗, this implies oi(c) = 0. Thus, it is possible
to construct the sought-after analytic path in hom(π1(K2), Isom(H3)).

Finally, smoothness implies that the Zariski tangent space is the usual
tangent space, and we already computed dimR(Z1(π1(K2), sl(2,C))) = 7 in
Subsection 3.4.2.

3.5 Degenerate representations and other
connected components

We end the section with an exhaustive list of representations that were not
considered in the previous subsections, namely, orientation type preserving
degenerate representations and representations which are not orientation
type preserving. This list is included for completeness sake and it is obtained
by straightforward computations. We will make use of Proposition 3.1.1 and
Remark 3.1.7 in order to simplify a little bit the computations.

The list can be used to identify the different connected components. As
we will see throughout this section, after choosing the orientation behaviour
of ρ(a) = A and ρ(b) = B, where ρ ∈ hom(π1(K2), Isom(H3)), and a, b ∈
π1(K2) are our usual choice of generators, we can consider the lifted Klein
bottle relation

˜ABA−1B ∈ {±Id} ⊂ SL(2,C).
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The lift happens to be well-defined as it can be computed by considering
individual lifts of A and B to SL(2,C) ⋊ Z2. Two distinct lifts of A or B

differ by multiplication by −Id, hence the lifted Klein bottle relation yields
the same result independently of the chosen lift. For each possibility, +Id

or −Id, we have one connected component. Thus, we obtain:

Proposition 3.5.1. The representation variety hom(π1(K2), G) has 8 con-
nected components.

This idea of lifting the relator has been extensively used to distinguish
connected components and we will consider it once more in Chapter 5 in
order to generalize Proposition 3.5.1 to higher genus non-orientable surfaces.

3.5.1 Degenerate type preserving representations

There are two main cases we have to account for, either A2 = [Id] or
B = [Id]. However these can subdivided again by means of the square map
Q.

• If B = ±Id, then A can be any element in G.

• Else if Q(A) = Id, then A = Ad(g) ( 0 i
i 0 )c. Let B = Ad(g) ( x y

w z ) , so
that AB = B−1A is equivalent in G to0 i

i 0

x y

w z

 = ±

 z −y

−w x

0 i

i 0

 .

This implies either x, z ∈ R, w = −y or x, z ∈ iR, w = y. Thus, we
have two possibilities:

B ∈ {Ad(g)
(

x y
−y z

)
| x, z ∈ R, xz + |y|2 = 1}, (3.9)

or
B ∈ {Ad(g)

(
x y
y z

)
| x, z ∈ iR, xz − |y|2 = 1}. (3.10)

We remark that in the first case tr(B) can be any real, whereas in the
second one, tr(B) can be any pure imaginary number.
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• Else if Q(A) = −Id, then A = Ad(g) ( 0 1
−1 0 )c. Let B = Ad(g) ( x y

w z ) ,

so that AB = B−1A is equivalent to 0 1
−1 0

x y

w z

 = ±

 z −y

−w x

 0 1
−1 0

 .

This implies either x, z ∈ R, w = y or x, z ∈ iR, w = −y. Thus,
either

B ∈ {Ad(g)
(

x y
y z

)
| x, z ∈ R, xz − |y|2 = 1}, (3.11)

or
B ∈ {Ad(g)

(
x y

−y z

)
| x, z ∈ iR, xz + |y|2 = 1}. (3.12)

We remark that again either tr(B) can be any real or any pure imag-
inary.

Taking into account the non-degenerate representations, we see that
parabolic, type I, type II representations form a connected component to-
gether with the cases where B = ±Id, as well as (3.9) and (3.11). On the
other hand, as noticed in Remark (3.2.3), type III representations belong
to another connected component, together with cases (3.10) and (3.12).

3.5.2 Representations with both A, B orientation
preserving

We will consider two non-exclusive cases.

• Let us assume first that A and B commute. This is the case, for
instance, if Q(A) ̸= −Id (this is straightforward if we write A2 and B

in their Jordan form). Hence from the Klein bottle relation, Q(B) =
±Id. If Q(B) = Id, B = Id and A can be any element in G+, that
is, we have representations of the type

(A, Id) ∈ hom(π1(K2), G). (3.13)
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Otherwise, Q(B) = −Id, and B = Ad(g) ( 0 −1
1 0 ), A = Ad(g) ( x y

w z ), for
some g ∈ G+. Then, the Klein bottle relation can be read as

x y

w z

0 −1
1 0

 = ±

 0 1
−1 0

x y

w z

 ,

which yields either z = −x, w = y or z = x, w = −y. Therefore, we
obtain representations

Ad(G+)(
x y

y −x

 ,

0 −1
1 0

), (3.14)

and

Ad(G+)(
 x y

−y x

 ,

0 −1
1 0

). (3.15)

• If Q(A) = −Id, we can write A = Ad(g) ( 0 −1
1 0 ), B = Ad(g) ( x y

w z ), for
some g ∈ G+. Then, the Klein bottle relation states

0 −1
1 0

x y

w z

 = ±

 z −y

−w x

0 −1
1 0

 ,

which implies either w = y, or x = z = 0 and w = −y = ±1 (the
latter due to the determinant being equal to 1). Thus, we obtain the
following kind of representations:

Ad(G+)(
0 −1

1 0

 ,

x y

y z

), (3.16)

and

Ad(G+)(
0 −1

1 0

 ,

0 −1
1 0

). (3.17)

Notice that representations (3.13), (3.14) and (3.16) belong to the same
connected component. There is a particular case in (3.16) where B = Id,
which indicates that the intersection between cases (3.13) and (3.16) is
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non-empty. Moreover, the representations

(
i 0

0 −i

 ,

0 −1
1 0

), and (
0 −1

1 0

 ,

i 0
0 −i

),

which can be inmediatly seen to be respectively in cases (3.14) and (3.16),
are conjugated by

√
2

2 ( 1 i
i 1 ), which shows that the intersection between these

two cases is non-empty too.
On the other hand, representations in (3.17) can be seen to be a partic-

ular case of (3.15) and they belong to another connected component.

3.5.3 Representations with A be orientation
preserving, B orientation reversing

Let us consider the fundamental group of the torus π1(T 2) = ⟨l, m | lm =
ml⟩. The elements l, m2 generate a normal subgroup ⟨l, m2 | lm2 = ml2⟩
of index two. Therefore, we have a double cover T 2 → T 2. The restriction
of the representation of the Klein bottle to the torus and then this double
cover is

(A, B) 7→ (A2, B) 7→ (A2, B2).

We will consider first the cases where (as we will see, a priori) neither
A2, nor B2 are degenerate.

• If A2, B2 are parabolic, up to conjugation, A2 = ( 1 τ
0 1 ), B2 = ( 1 1

0 1 ),
where τ ∈ C. Then, up to conjugation, B =

(
1 1/2
0 1

)
c
, and from

A2B = BA2 we obtain τ ∈ R. The Klein bottle relation yields1 τ/2
0 1

1 1/2
0 1

 = ±

1 −1/2
0 1

1 τ/2
0 1

 ,

which leads to a contradiction.

• If A2, B2 have a common invariant axis and B2 is elliptic, up to
conjugation, A2 =

(
λ2 0
0 λ−2

)
, B =

(
0 eiφ

−e−iφ 0

)
c
. Then, A2 and B
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commute if and only if |λ| = 1, hence, λ = eiθ. From the Klein bottle
relation,eiθ 0

0 e−iθ

 0 eiφ

−e−iφ 0

 = ±

 0 −e−iφ

eiφ 0

e−iθ 0
0 eiθ

 ,

we obtain eiφ = ∓e−iφ, that is, either φ = ±π/2 or φ = 0, π. In G,
both φ = π/2 and φ = −π/2 give rise to the same representation.
Analogously, φ = 0 and φ = π have the same associated representa-
tion in G. Therefore, we get representations

Ad(G+)(
eiθ 0

0 e−iθ

 ,

0 i

i 0


c

), (3.18)

and

Ad(G+)(
eiθ 0

0 e−iθ

 ,

0 −1
1 0


c

). (3.19)

• If A2, B2 have a common invariant axis and B2 is a hyperbolic trans-
lation, up to conjugation, A2 =

(
λ2 0
0 λ−2

)
, B =

(
µ 0
0 µ

)
c
, where µ ∈ R.

Then, A2 and B commute if and only if either λ2 ∈ R or λ2 ∈ iR. In
the first case, if λ ∈ R, the Klein bottle relationλ 0

0 λ−1

µ 0
0 µ−1

 = ±

µ−1 0
0 µ

λ 0
0 λ−1

 ,

implies µ2 = ±1 and therefore, as µ ∈ R, µ = 1. If we consider now
the case, λ ∈ iR, the Klein bottle relation yields µ2 = ∓1, so again
µ = 1. Thus, we obtain representations

Ad(G+)(
λ 0

0 λ−1

 ,

1 0
0 1


c

), where λ ∈ R, (3.20)
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and

Ad(G+)(
λ 0

0 λ−1

 ,

1 0
0 1


c

), where λ ∈ iR. (3.21)

On the other hand, if λ2 ∈ iR, then λ = re±iπ/4, where r ∈ R. We
can easily check that this yields no possible solution.

Now we will take into account the cases where either A2 or B2 is equal
to the identity.

• Let us suppose Q(B) = Id. Then, we can write B = Ad(g) ( 0 i
i 0 )c,

A = Ad(g) ( x y
w z ) for some g ∈ G+. From the Klein bottle relation,
x y

w z

0 i

i 0

 = ±

0 i

i 0

x y

w z

 ,

we obtain either z = x, w = y or z = −x, w = −y. Thus, there are
two kind of representations in this case:

Ad(G+)(
x y

y x

 ,

0 i

i 0


c

), (3.22)

and

Ad(G+)(
 x y

−y −x

 ,

0 i

i 0


c

). (3.23)

• If Q(B) = −Id, then we can write B = Ad(g) ( 0 −1
1 0 )c, A = Ad(g) ( x y

w z )
for some g ∈ G+. The Klein bottle relation is equivalent to

x y

w z

0 −1
1 0

 = ±

 0 1
−1 0

x y

w z

 ,

which implies either w = y, z = −x or w = −y, z = x. The case
w = y, z = −x doesn’t belong to G as det(A) = −(|x|2 + |y|2) < 0.
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That is, we obtain the family of representations:

Ad(G+)(
 x y

−y x

 ,

0 −1
1 0


c

). (3.24)

• The case Q(A) = Id, implies A = Id and, from the Klein bottle
relation, Q(B) = ±Id. Thus, it has already been covered.

• If Q(A) = −Id, then A = Ad(g) ( 0 −1
1 0 ), B = Ad(g) ( x y

w z )c for some
g ∈ G+. From the Klein bottle relation,

0 −1
1 0

x y

w z

 = ±

 z −y

−w x

0 −1
1 0

 ,

we obtain either w = y, x, z ∈ R; or w = −y, x, z ∈ iR. Hence, there
are two kind of representations in this case, namely,

Ad(G+)(
0 −1

1 0

 ,

x y

y z


c

) where x, z ∈ R, y ∈ C, (3.25)

and

Ad(G+)(
0 −1

1 0

 ,

 x y

−y z


c

) where x, z ∈ iR, y ∈ C. (3.26)

Representations in cases (3.22) and (3.25) belong to the same connected
component. For instance, the representations

(
i 0

0 −i

 ,

0 i

i 0


c

), and (
0 −1

1 0

 ,

1 0
0 1


c

)

are conjugated by the element
√

2
2

(
1 −i

−i 1

)
. Therefore there is overlap-

ping between both cases. Similarly, the representation (Id, c) belong to
both (3.20) and (3.22). Finally, (3.18) is a particular case of (3.22).

On the other hand, representations in (3.23) and (3.24) overlap with (3.26),
and, moreover, there is also overlapping between (3.19) and (3.24). More-
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over, representations in (3.21) and (3.23) intersect in

(
i 0

0 −i

 ,

1 0
0 1


c

), and (
0 −1

1 0

 ,

0 i

i 0


c

),

as they are conjugated by
√

2
2

(
1 −i

−i 1

)
. Therefore, we obtain another con-

nected component.

3.5.4 Representations with both A, B orientation
reversing

We will consider again the restriction of the representation to the covers
T 2 → T 2 → K2, which in terms of elements in G × G is

(A, B) 7→ (A2, B) 7→ (A2, B2).

We will start by consdering the cases where a priori neither A2 nor B2

is the identity:

• If A2, B2 are parabolic, after conjugating we can assume A2 = ( 1 1
0 1 ) ,

B2 = ( 1 τ
0 1 ), where τ = reiθ, then B =

(
eiθ rν
0 e−iθ

)
c
, with Re ν = 1/2.

Moreover, A = ( 1 α
0 1 )c, with Re α = 1/2, and the Klein bottle relation

AB = B−1A reads1 α

0 1

eiθ rν

0 e−iθ

 = ±

e−iθ −rν

0 eiθ

1 α

0 1

 .

The expression implies that eiθ = ±e−iθ, rν ± rν = e−iθ(α ∓ α).
When the plus sign is considered, then eiθ = 0, π and rν = ±iIm α.
As r ∈ R, Re ν = 1/2, the only possibility is r = 0, Im(α) = 0. Thus,
we have representations

Ad(G+)(
1 α

0 1


c

,

1 0
0 1


c

), where α ∈ R. (3.27)
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Otherwise, if we take the minus sign, eiθ = ±i, and Re α = 0. This
yields representations

Ad(G+)(
1 α

0 1


c

,

±i rν

0 ∓i


c

), where α ∈ iR, r ∈ R, Re ν = 1
2

(3.28)

• If B2 is an elliptic transformation, then A2 must be too so that A2

and B commute. Thus, up to conjugation, A =
(

0 reiθ

−r−1e−iθ 0

)
c
, B =(

0 eiφ

−e−iφ 0

)
c
, where r ∈ R, and, from the Klein bottle relation,

 0 re−iθ

−r−1eiθ 0

 0 eiφ

−e−iφ 0

 = ±

 0 −eiφ

e−iφ 0

 0 reiθ

−r−1e−iθ 0

 ,

we obtain r2 = 1 and e2iφ = ∓1. Hence, r = ±1, and in G, the
associated representations are the same. Regarding φ, if e2iφ = −1,
φ = ±π/2, (both yield the same representation in G). Otherwise, if
e2iφ = 1, we get φ = 0, π, and again both yield the same representa-
tion. Therefore, we obtain representations

Ad(G+)(
 0 eiθ

−e−iθ 0


c

,

0 i

i 0


c

), (3.29)

and

Ad(G+)(
 0 eiθ

−e−iθ 0


c

,

0 −1
1 0


c

). (3.30)

• If B2 is a hyperbolic transformation, A2 must also be one so that
A2 and B commute. Up to conjugation, we can write A =

(
a 0
0 a−1

)
c
,

B =
(

b 0
0 b−1

)
c
, where a ∈ R, b ∈ C. The Klein bottle relation

a 0
0 a−1

b 0
0 b−1

 = ±

b−1 0
0 b

a 0
0 a−1


implies b2 = ±1. If b2 = 1, b = ±1, which in G gives rise to the
same representation. Otherwise, if b2 = −1, b = ±i. Thus, we obtain
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representations

Ad(G+)(
a 0

0 a−1


c

,

1 0
0 1


c

), where a ∈ R, (3.31)

and

Ad(G+)(
a 0

0 a−1


c

,

i 0
0 −i


c

), where a ∈ R. (3.32)

Let us compute now the cases where either A2 or B2 is equal to the
identity.

• If Q(A) = Id, then, up to conjugation we can write A = ( 0 i
i 0 )c,

B = ( x y
w z )c. The Klein bottle relation

 0 −i

−i 0

x y

w z

 = ±

 z −y

−w x

0 i

i 0


implies that either x = z = 0 and w = y = ±i (due to det(B) = 1);
or w = −y. We obtain representations

Ad(G+)(
0 i

i 0


c

,

0 i

i 0


c

), (3.33)

and

Ad(G+)(
0 i

i 0


c

,

 x y

−y z


c

). (3.34)

• If Q(A) = −Id, then, up to conjugation, A = ( 0 −1
1 0 )c, B = ( x y

w z )c.
From the Klein bottle relation,0 −1

1 0

x y

w z

 = ±

 z −y

−w x

0 −1
1 0

 ,

we obtain either w = y or w = −y and x = z = 0 (hence, y = ±1).
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Thus, the representations in this case are

Ad(G+)(
0 −1

1 0


c

,

x y

y z


c

), (3.35)

and

Ad(G+)(
0 −1

1 0


c

,

0 −1
1 0


c

). (3.36)

• If Q(B) = Id, let us write, up to conjugation, A = ( x y
w z )c, B = ( 0 i

i 0 )c.
From the Klein bottle relation,x y

w z

0 i

i 0

 = ±

 0 −i

−i 0

x y

w z

 ,

we obtain either z = −x, w = −y or z = x, w = y. Hence, the
respective representations are

Ad(G+)(
 x y

−y −x


c

,

0 i

i 0


c

), (3.37)

and

Ad(G+)(
x y

y x


c

,

0 i

i 0


c

). (3.38)

• If Q(B) = −Id, up to conjugation, A = ( x y
w z )c, B = ( 0 −1

1 0 )c. The
Klein bottle relationx y

w z

0 −1
1 0

 = ±

 0 1
−1 0

x y

w z


implies either z = −x, w = y or z = x, w = −y. The first case
does not lie in G, as det(A) = −(|x|2 + |y|2) < 0. Thus, the obtained
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representations are

Ad(G+)(
x y

y x


c

,

0 −1
1 0


c

). (3.39)

Finally, it is not difficult to see that cases (3.27), (3.29), (3.31), (3.33),
(3.35) and (3.37) form one connected component whereas the rest of the
cases form another one.
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4 Metric Completion

As we deform non-compact 3-manifolds as in Chapters 1 and 2, the defor-
mations into non-complete manifolds are not unique (eg. one can consider
an open subset of a non-complete manifold). The goal of this chapter is not
to discuss the different issues related to this non-uniqueness, just the exis-
tence of a deformation into a metric that can be completed as a conifold.
This will be done by considering a maximal structure which corresponds to
the canonical structure when the deformation comes from an ideal triangu-
lation.

The main result of this chapter is Theorem 4.2.14. In the orientable case,
the metric completion after deforming an orientable cusp is a singular space
with a singularity called of Dehn type (that include non-singular manifolds),
see [28] and [8, Appendix B]. In the non-orientable case, the singularity is
more specific, a so called conifold.

4.1 Conifolds and cylindrical coordinates

A conifold is a metric length space locally isometric to the metric cone of
constant curvature on a spherical conifold of dimension one less, see for
instance [7]. When, as topological space, a conifold is homeomorphic to a
manifold, it is called a cone manifold, but in general it is only a pseudo-
manifold. In dimension 2 conifolds are also cone manifolds, but in dimension
three there may be points with a neighborhood homeomorphic to the cone
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on a projective plane P 2.
We are interested in three local models of singular spaces, that as coni-

folds are:

• The hyperbolic cone over a round sphere S2. This corresponds to a
point with a non-singular hyperbolic metric.

• The hyperbolic cone over S2(α, α), the sphere with two cone points
of angle α, that is the spherical suspension of a circle of perimeter α.
It corresponds to a singular axis of angle α.

• The hyperbolic cone over P 2(α), the projective plane with a cone
point of angle α. This is the quotient of the previous one by a metric
involution, which is the antipodal map on each concentric sphere.

Next we describe metrically those local models, by using cylindrical
coordinates in the hyperbolic space. These coordinates are defined from a
geodesic line g in H3, and we fix a point in the unit normal bundle to g,
i.e. a vector u⃗ of norm 1 and perpendicular to g. Cylindrical coordinates
give a diffeomorphism:

H3 \ g
∼=−→ (0, +∞) × R/2πZ × R

p 7−→ (r, θ, h)

where r is the distance between g and p, θ is the angle parameter (the angle
between the parallel transport of u⃗ and the tangent vector to the orthogonal
geodesic from g to p) and h is the arc parameter of g, the signed distance
between the base point of u⃗ and the orthogonal projection from p to g,
Figure 4.1.

In the upper-half space model of H3, if g is the geodesic from 0 and
∞, then there exists a choice of coordinates (a choice of u⃗) so that the
projection from g to the ideal boundary ∂∞H3 maps a point with cylindrical
coordinates (r, θ, h) to eh+iθ ∈ C, Figure 4.2. A different choice of u⃗ would
yield instead λeh+iθ ∈ C, for some λ ∈ C \ {0}.

104



4.1. CONIFOLDS AND CYLINDRICAL COORDINATES

g

p
r

θ

u⃗

{
h

Figure 4.1: Cylindrical coordinates.

0

∞

z = eh+iθ

(r, θ, h)

C ⊂ ∂∞H3

Figure 4.2: Orthogonal projection to ∂∞H3 with g the geodesic with ideal
end-points 0 and ∞.

The hyperbolic metric on H3 with these coordinates is

dr2 + sinh2(r)dθ2 + cosh2(r)dh2.

More precisely, H3 is the metric completion of (0, +∞) × R/2πZ × R
with this metric.

Definition 4.1.1. For α ∈ (0, 2π), H3(α) is the metric completion of
(0, +∞) × R/2πZ × R for the metric

ds2 = dr2 +
(

α

2π

)2
sinh2(r)dθ2 + cosh2(r)dh2

The metric space H3(α) may be visualized by taking a sector in H3

of angle α and identifying its sides by a rotation. Alternatively, with the
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change of coordinates θ̃ = α
2π

θ, H3(α) is the metric completion of (0, +∞)×
R/αZ × R for the metric dr2 + sinh2(r)dθ̃2 + cosh2(r)dh2.

Remark 4.1.2. The metric models are:

• For the non-singular case (the cone on the round sphere) it is H3.

• For the singular axis (the cone on S2(α, α)) it is H3(α).

• For the cone on P 2(α), it is the quotient

H3(α)/(r, θ, h) ∼ (r, −θ, −h).

4.2 Conifolds bounded by a Klein bottle

We keep the notation of Section 4.1, with cylindrical coordinates. Before
discussing conifolds bounded by a Klein bottle, we describe a cone manifold
bounded by a torus.

Definition 4.2.1. A solid torus with singular soul is H3(α)/∼, where ∼ is
the relation induced by the isometric action of Z generated by

(r, θ, h) 7→ (r, θ + τ, h + L)

for τ ∈ R/2πZ and L > 0.

The space H3(α)/∼ is a solid torus of infinite radius with singular soul
of cone angle α, length of the singularity L > 0 and torsion parameter
τ ∈ R/2πZ (the rotation angle induced by parallel transport along the
singular geodesic is α

2π
τ ∈ R/αZ).

By considering the metric neighborhood of radius r0 > 0 on the singular
soul, we get a compact solid torus, bounded by a 2-torus.

We describe two conifolds bounded by a Klein bottle, that are a quotient
of this solid torus by an involution.
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Definition 4.2.2. A solid Klein bottle with singular soul is H3(α)/ ∼,
where ∼ is the relation induced by the isometric action of Z generated by

(r, θ, h) 7→ (r, −θ, h + L)

for L > 0.

The space H3(α)/∼ is a solid Klein bottle of infinite radius with singular
soul of cone angle α, and length of the singularity L > 0. We may consider
a metric tubular neighborhood of radius r0, bounded by a Klein bottle. Its
orientation covering is a solid torus with singular soul, cone angle α, length
of the singularity 2L and torsion parameter τ = 0.

Definition 4.2.3. The disc orbi-bundle with singular soul is H3(α)/ ∼,
where ∼ is the relation induced by two isometric involutions:

(r, θ, h) 7→ (r, θ + π, −h)
(r, θ, h) 7→ (r, θ + π, 2L − h)

for L > 0.

To describe this space, it is useful first to look at the action on the
geodesic (corresponding to r = 0). These involutions map h ∈ R to −h and
to 2L − h respectively. Thus it is the action of the infinite dihedral group
Z2 ∗ Z2 on a line generated by two reflections. Its orientation preserving
subgroup is Z acting by translations on R. Thus R/Z is a circle, and
R/(Z2 ∗ Z2) is an orbifold. The solid torus is a disc bundle over the circle,
and our space is an orbifold-bundle over R/(Z2 ∗ Z2) with fibre a disc.

This space is the quotient of an involution on the solid torus. View the
solid torus as two 3-balls joined by two 1-handles, Figure 4.3. On each 3-ball
apply the antipodal involution (on each concentric sphere of given radius),
and extend this involution by permuting the 1-handles. The quotient of
each ball is the (topological) cone on P 2, hence our space is the result of
joining two cones on P 2 by a 1-handle. Its boundary is the connected sum
P 2#P 2 ∼= K2.
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Figure 4.3: A solid torus as two 3-balls joined by two 1-handles.

The singular locus of the disc orbi-bundle H3(α)/∼ is an interval (the
underlying space of the orbi-bundle) of length L. The interior points of the
singular locus have cone angle α, and the boundary points of the interval
are precisely the points where it is not a topological manifold.

Again H3(α)/∼ has ∞ radius, and the metric tubular neighborhood of
radius r of the singularity is bounded by a Klein bottle. It is the quotient
of a solid torus of length 2L and torsion parameter τ = 0 by an isometric
involution with two fixed points (thus, as an orbifold, its orientation orbi-
covering is a solid torus).

Remark 4.2.4. The boundary of both, the solid Klein bottle and the disc
orbi-bundle, is a Klein bottle. In both cases the holonomy preserves the
orientation type, but the type of the presentation is different:

a) The holonomy of the boundary of a solid Klein bottle with singular soul
is a representation of type I.

b) The holonomy of the boundary of a disc orbi-bundle over a singular
interval is of type II.

For a non-orientable end, the holonomy of the peripheral torus is ei-
ther parabolic non-degenerate, of type I or of type II, also nondegenerate
(Remark 3.2.4). The aim of next section is to prove that the deformations
can be defined so that the metric completion is either solid Klein bottle
with singular soul or a disc orbi-bundle with singular soul, according to the
type. This is the content of Theorem 4.2.14, that we prove at the end of
the section.
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4.2.1 The radial structure

Let M3 be a non-compact hyperbolic 3-manifold of finite volume. We de-
form its holonomy representation and accordingly we deform its hyperbolic
metric. Nonetheless, incomplete metrics are not unique, so here we give a
statement about the existence of a maximal structure, which corresponds
to the one completed in Theorem 4.2.14.

Let [ρ] ∈ R(π1(M3), G) be a deformation of its complete structure.
There is some nuance in associating to [ρ] a hyperbolic structure which is
made explicit in [10]. Here, the authors conclude that every deformation
with a given holonomy representation are related by an isotopy of the in-
clusion of M3 in some fixed thickening (M3)∗, where a thickening is just
another hyperbolic 3-manifold containing ours.

We will start by making clear what we mean by a maximal structure.

Definition 4.2.5. Let M be a manifold with an analytic (G, X)-structure.
We say that M∗ is an isotopic thickening of M if it is a thickening and
there is a isotopy, i′, of the inclusion, i : M ↪→ M∗, such that i′(M) = M∗.

Given two isotopic thickenings of M we say that M∗
1 ≤ M∗

2 if there is a
(G, X) isomorphism from M∗

1 to some subset of M∗
2 extending the identity

on M . Hence, we say that an isotopic thickening is maximal if it is with
respect the partial order relation we have just defined.

Although Canary, Epstein and Green state in [10] that thickenings are
unique, we have to remark that this unicity is in a local sense. Without
the isotopy condition in the definition, there are plenty of examples of two
different thickenings. For instance, take a closed ball in a closed hyperbolic
surface, then two possible thickenings are the whole surface and the whole
hyperbolic plane, and both of them are in a sense maximal. In general, it
is not clear whether maximal isotopic thickenings exist, nor under which
circumstances they do exist. However, we will construct in our situation an
explicit maximal thickening.
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Lemma 4.2.6. Let injM3(x) denote the injectivity radius at a point x ∈ M3.
Then, a necessary condition for a non-trivial thickening of M3 to exist is
that there must exist a Cauchy sequence {xn} ⊂ M3 with injM3(xn) → 0.

Proof. Let us suppose a non-trivial thickening (M3)∗ exists. Then, take a
point x ∈ ∂((M3)∗ \ M3). Any sequence {xn} ⊂ M3 such that xn → x

satisfies injM3(xn) → 0 because x /∈ M3.

The purpose of Lemma 4.2.6 is two-fold: first, it gives a condition for
a thickening to be maximal (in the sense of the partial order relation we
just defined), and second, it shows where a manifold could possibly be
thickened. Taking into account a thick-thin decomposition of the manifold,
the thickening can only be done in the deformed cusps.

Each cusp of M3 is diffeomorphic to either T 2 × [0, ∞) or K2 × [0, ∞).
Let us consider a proper product compact subset K2 × [0, λ] or T 2 × [0, λ]
of an end, for some λ > 0, and let us denote by Dρ the developing map of
a structure with holonomy ρ in the equivalence class [ρ] ∈ R(Γ, G).

Before getting into the description of the deformed cusps, we need a
technical lemma on Busemann functions ([3], [2]). Let x0 ∈ H3 and let σ

be a geodesic at unit speed from x0 to x∞ ∈ ∂H3. The Busemann function
at x∞ based at x0 is defined as the limit

Bx∞,x0(x) := lim
t→∞

dist(x, σ(t)) − dist(x0, σ(t)).

The Busemann function can be defined too as a limit of normalized
distances when considering some sequence {xn} ⊂ H3 → x∞ not necessarily
in a geodesic. Let us define a normalized distance

bxn,x0(x) := dist(x, xn) − dist(x0, xn).

The function bxn,x0 converges with respect to the compact-open topology to
the Busemann function Bx∞,x0 as n → ∞ (see [2], Proposition 2.5).

Let us consider now a sequence of geodesics γt converging to x∞ as
t → ∞ (equivalently, both endpoints of γt converge to x∞) and consider
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the function
Bγt,x0(x) := dist(x, γt) − dist(x0, γt).

Lemma 4.2.7. The function Bγt,x0 converges to the Busemann function
Bx∞,x0 with respect to the compact-open topology.

Proof. Let K ⊂ H3 be compact and connected. The projection of K into
γt is a geodesic segment [at, bt]. Let us consider some arbitrary point xt ∈
[at, bt]. The projection into γt is a contraction assuming K ∩ γt = ∅; in
particular, the length of the geodesic segment [at, bt] decreases with the
distance to K (this can be seen, from instance, from the cosh2(r)dh2 part
of the metric in cylindrical coordinates). Thus, the difference

Bγt,x0(x) − bxt,x0(x) = dist(πt(x), xt) −−−→
t→∞

0,

where πt(x) is the projection of the point x to γt. This shows that restricted
to the compact K, the function Bγt,x0 converges uniformly to the limit of
bxt,x0 , which is the Busemann function Bx∞,x0 ([2], Proposition 2.5). This
can be done for any compact K, hence, the limit of Bγt,x0 is the Busemann
function Bx∞,x0 with respect to the compact-open topology.

Lemma 4.2.8. The image of the proper product subset by the developing
map, Dρ(K̃2 × [0, λ]), Dρ(T̃ 2 × [0, λ]) lies within two tubular neighborhoods
of a geodesic γ ∈ M3, that is, in Nϵ2(γ) \ Nϵ1(γ), where Nϵ(γ) = {x ∈ H3 |
d(x, γ) < ϵ}. Moreover, for every geodesic ray exiting orthogonally from γ,
the intersection of the ray with Dρ(K̃2 × [0, λ]) is non-empty and transverse
to any section Dρ(K̃2 × {µ}), µ ∈ [0, λ] and, analogously for an orientable
end.

Proof. We will use a modified argument of Thurston (see [43]) to prove
the lemma for a non-orientable end (the same idea goes for an orientable
one). The original argument of Thurston shows that in an ideal trian-
gulated manifold, the image of the universal cover of the end under the
developing map is the whole tubular neighborhood but the geodesic. Let
[ρ0] be the parabolic representation corresponding to the complete struc-
ture, then Dρ0(K̃2 × [0, λ]) is the region between two horospheres centered
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at p0 ∈ ∂∞(H3). Let K ⊂ K̃2 × [0, λ] denote a fundamental domain of
K2 × [0, λ]. The domain K can be taken so that Dρ0(K) is a rectangular
prism between two horospheres.

In order to understand how Dρ0(K) deforms as we deform the repre-
sentation, we have to introduce a Busemann function. Let ρt be a path
of representations converging to ρ0, and let γt be invariant geodesic by the
holonomy of ρt. Let us consider the following function on H3 for a fixed
x0 ∈ H3:

Bγt,x0(x) := dist(x, γt) − dist(x0, γt).

We consider the limit
Bp0,x0 := lim

t→0
Bγt,x0 ,

with respect to the compact-open topology, which by Lemma 4.2.7, is the
Busemann function at p0 ∈ ∂H3 based at x0.

The level sets of the Busemann function Bp0,x0 are horospheres centered
at p0. On the other hand, the level sets of Bγt,x0 are the boundaries of
tubular neighbourhoods of γt. Therefore, tubular neighbourhoods deform
into horoballs as ρt → ρ0.

If we consider now Dρ(K), it remains close to the previous rectangular
prism. Let ρt be a path from ρ to ρ0. As the limit is in the compact-
open topology, there exist tubular neighbourhoods of γ such that Dρ(K)
is between them. By equivariance, the whole Dρ(K̃2 × [0, λ]) is between
the aforementioned tubular neighbourhoods. By equivariance again, any
geodesic ray orthogonal to γ can be translated to a ray intersecting Dρ(K).
Finally, the last part of the proposition follows due to transversality being
a stable property.

Definition 4.2.9. The geodesic of Lemma 4.2.8 is called the soul of the
end.

Remark 4.2.10. The face of the section of proper product subset the cusp
K2 × [0, λ] or T 2 × [0, λ] that is glued to the thick part of the manifold is
the section of the cusp which is further away from the geodesic. Hence, we
will only consider thickenings “towards” the soul.
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Let x be a point in a cusp of the manifold and consider its image under
the developing y = Dρ(x̃) of any lift x̃. There is only one geodesic segment
in H3 such that γ(0) = y and goes towards the soul orthogonally. In
cylindrical coordinates around the soul, if y = (r, θ, h), the image of the
geodesic consists of a connected subset of {(t, θ, h) | t ∈ [0, r]}. Let us
denote by γx the corresponding geodesic in M3, which exists due to the
developing map being a local isometry.

Theorem 4.2.11. There exists a maximal thickening M∗ of a half-open
product K2 × [0, λ) or T 2 × [0, µ). It is characterized by the following prop-
erty: for every point x ∈ M , the geodesic γx can be extended in M∗ so
that Dρ(γ̃x) is the geodesic orthogonal to the soul of the end and whose
cylindrical coordinates with respect to the soul are {(t, θ, h) | t ∈ (0, r]}.

Proof. Let us consider the following:

• A cusp section S := K2 or T 2.

• A product subset of the end K := S × [0, λ].

• A fixed fundamental domain K0 ⊂ K̃ of K.

• A small neighborhood of K0, N(K0).

The set T := {t ∈ Deck(K̃/K) | tN(K0)∩N(K0)} is finite, where Deck(K̃/K)
denotes the group of covering transformations of the universal cover. Hence,
we can suppose that Dρ|(T K0) is an embedding.

Let U be an open cover of K by simply connected charts. For each U ,
take a lift U0 ∈ Ũ such that U0 ∩K0 ̸= ∅ and consider Dρ(U0). Given such a
lift U0, the other possible lifts that could have non-empty intersection with
K0 are tU0, for t ∈ T . Furthermore, we can always assume that the chart U

is isometric with the image of U0 under the developing map, Dρ(U0). Thus,
we can identify

K ∼= (
⋃

U∈U
Dρ(U0))/ ∼,

where the equivalence relation is by the action of hol(t), for t ∈ T .
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Each U ∈ U can be thickened by first identifying U with Dρ(U0) and
then considering, in cylindrical coordinates, the set of rays

R(U) = {(t, θ, h) ∈ H3 \ {soul} | ∃(t0, θ, h) ∈ U, 0 < t < t0}.

Given two lifts of two thickened charts R̃(U1) and R̃(U2) with non-empty
intersection with K0, we glue them together in the points corresponding to
t(R̃(U1)) ∩ R̃(U2), where t ∈ T . We then have the following thickening of
the cusp:

K∗ :=
⋃

U∈U
R(U)/ ∼,

where the equivalence relation is given by the action of hol(t), for t ∈ T .
By considering the previous identification of K with the glued charts, we
see that K ↪→ K∗ is an embedding.

We have yet to show that it is isotopic to the original (half-open) product
subset. Let us consider the section S ×{0} of the cusp, the radial geodesics
γx for x ∈ S ×{0} define a foliation of K∗ of finite length. Moreover, due to
Lemma 4.2.8, the foliation is transversal to S × {0}. By re-parameterizing
the foliation and considering its flow, we obtain a trivialization of the cusp,
K∗ ∼= S × [0, µ). Similarly, K∗ \ K is also a product. This let us construct
an isotopy from K∗ to K.

This thickening clearly satisfies the property that γx ⊂ K∗ can be ex-
tended so that Dρ(γ̃x) = {(t, θ, h) | t ∈ (0, r]}. By taking geodesics γx

to geodesics through the developing map, it is clear our thickening can be
mapped into every other thickening satisfying this property. Furthermore,
if we consider the thickenings to be isotopic, we obtain an embedding.

Regarding the maximality, we will differentiate between an orientable
end and a non-orientable one. The general idea will be the same one,
for another isotopic thickening (K)∗∗ to include ours, the developing map
should map some open set V into a ball W around a point y0 in the soul
(by Lemma 4.2.6), what will led to a contradiction.

If K is non-orientable, let us denote a, b the generators of π1(K2) sat-
isfying the relation aba−1 = b−1. If [ρ] is type I, y0 is fixed by ρ(b). Let
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Figure 4.4: The radial thickening.

y ∈ W \ {soul} and x ∈ V be its preimage. W is invariant by ρ(b) and, in
addition, both x and b ·x belong to V . Now take the geodesic γ : I → (̃K)∗∗

from x to x0 which corresponds to the geodesic from y to y0. By equiv-
ariance and continuity, x0 = lim γ(t) = lim bγ(t) = bx0. This contradicts
b being a covering transformation. If [ρ] is type II, the previous argument
with a2 holds.

If K is orientable, we will follow the same arguments leading to the
completion of the cusp (for more details see, for instance, [6]). The defor-
mation [ρ] is characterized in terms of its generalized Dehn filling coefficients
±(p, q). The case p = 0 or q = 0 are solved as in the non-orientable cusp,
so we have the 2 usual cases, p/q ∈ Q or p/q ∈ I. For p/q ∈ Q, there
exists k > 0 such that k(p, q) ∈ Q2 and (kp)a + (kq)b is a trivial loop in
the new thickening. If p/q ∈ I, then y0 is dense in {soul} ∩ W , which is a
contradiction.

Definition 4.2.12. We call the previous thickening the radial thickening
of the cusp.

Remark 4.2.13. If the manifold M admits an ideal triangulation, the
canonical structure coming from the triangulation is precisely the radial
thickening of the cusp.
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Theorem 4.2.14. For a deformation of the holonomy M3, the correspond-
ing deformation of the metric can be chosen so that on a non-orientable end
one of the following holds:

• It is a cusp, a metrically complete end, if the peripheral holonomy is
parabolic.

• The metric completion is a solid Klein bottle with singular soul if the
peripheral holonomy is of type I.

• The metric completion is a disc orbi-bundle with singular soul if it is
of type II.

Furthermore, the cone angle α and the length L of the singular locus is
described by the peripheral boundary, so that those parameters start from
α = L = 0 for the complete structure and grow continuously when deforming
in either direction.

Proof of Theorem 4.2.14. The proof considers the radial thickening and
uses the orientation covering and equivariance. More precisely, the de-
formation is constructed in the complete case for the orientation covering
and it can be made equivariant. The holonomy of a torus restricted from
a Klein bottle is either parabolic or the holonomy of a solid torus without
the singular soul and torsion parameter τ = 0. In particular the holonomy
of a Klein bottle is parabolic iff its restriction to the orientable covering is
parabolic. This corresponds to the complete case.

For a non trivial deformation, we will use the description in cylindrical
coordinates (Figure 4.2) around the invariant geodesic by the holonomy of
the end. The holonomy is the same as the holonomy of the solid torus of
Definition 4.2.1 without the singular soul. In terms of generalized Dehn
filling coefficients, the deformation has parameters (p, 0) or (0, q), there-
fore, the conic angle of the torus is α = 2π/p or α = 2π/q. The torsion
parameter τ is zero due to the fact that either hol(a2) or hol(b) is a hy-
perbolic transformation with real trace. The solid torus with parameters
α and τ = 0 without the singular geodesic is the radial thickening of the
orientation covering of the end.
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The radial thickening of the non-orientable end is obtained by quotenting
the solid torus without the soul by the action of π1(K2)/π1(T 2) ∼= Z2.
This action is given by hol(a). We will obtain the models bounded by a
Klein bottle described in Section 4.2, and the two cases are distinguished
according to the holonomy of the Klein bottle (see Definition 3.2.2):

• Holonomy of type I: The model space H3(α) is H3/hol(b) and the
corresponding solid torus is

H3(α)/hol(a2).

Thus, the action of hol(a) in the quotient and in cylindrical coordi-
nates is

(r, θ, h) 7→ (r, −θ, h + L),

which corresponds to a solid Klein bottle described in Definition 4.2.2.
Therefore, the radial thickening of the end is the solid Klein bottle
without the singular soul, and the completion consists of adding the
soul.

• Holonomy of type II: Now H3(α) = H3/hol(a2) and the solid torus is

H3(α)/hol(b).

In cylindrical coordinates, the action of hol(a) is

(r, θ, h) 7→ (r, −θ, −h),

and the other relation of the orbi-bundle in Definition 4.2.3 comes
from hol(ab). As before, the radial thickening corresponds to the
orbi-bundle without the singular soul and the completion is the whole
orbi-bundle.

The description of H3(α) = H3/hol(a2), or H3/hol(b) is only valid as
long as the conic angle α ≤ 2π. For larger angles, let H3 \ g be H3 without
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the geodesic g with conic angle α and consider its universal cover exp :
H̃3 \ g → H3 \ g and the quotient of H̃3 \ g under the lifted holonomy. The
quotient is non-complete and its completion is H3(α).
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5 Connected Components of
Representations of Surfaces

Let S be a closed surface. We consider the variety of representations
hom(π1(S), G), for G = Isom(H3). As we have seen in previous chapters,
this variety can arise naturally when considering embedded or inmersed sur-
faces in a hyperbolic 3-manifold. Representations in this variety can also
be related to complex projective structures under the identifaction

Isom(H3) ∼= PSL(2,C) ⋊ Z2.

Namely, if S is orientable, it is known ([17]) that complex projective struc-
tures give rise to non-elementary representations in hom(π1(S), PSL(2,C))
that can be lifted to SL(2,C) (as we will see later, this can be associated
with a Stiefel-Whitney class). In the non-orientable case, these represen-
tations must be orientation type preserving and, evidently, in general this
must not be satisfied for every representation in hom(π1(S), Isom(H3)).

In this chapter we will compute the number of connected components
of the variety of representations hom(π1(S), G), for S closed and non-
orientable. By the classification of surfaces, S is the connected sum of k

projective planes, S =
k

#P 2, where k is the (non-orientable) genus of S. To
any representation ϕ ∈ hom(π1(M), G), there is an associated flat G-bundle
over M (see [36]). The Stiefel-Whitney classes are a classical invariant of
the bundle and can be thought of as invariants of the representation ϕ. In
this sense, these cohomological classes are constant on connected compo-
nents. In fact, it is enough to use them to distinguish different components
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and, thus, they are indexed by the first and second Stiefel-Whitney classes.
More precisely, we obtain the following result, which is a generalization of
Proposition 3.5.1:

Theorem 5.0.1. Let Nk denote the closed non-orientable surface of genus
k. The representation variety hom(π1(Nk), G) has 2k+1 connected compo-
nents. In particular, the connected components are classified by the first
and second Stiefel-Whitney class of the associated bundle.

A key piece for the proof of the theorem is the square map (cf. (3.3)),
of which we show that the square map itself and other related maps satisfy
a path-lifting property, that is, paths can be lifted through them. Our main
focus throughout the chapter happens in the orientation type preserving
representations, as it is a little bit more involved to work with. The end
of the chapter is devoted to the components of the image of the restriction
map to the variety of representations of the orientation covering.

5.1 The cases of genus 1 and 2

Let Nk be the closed non-orientable surface of (non-orientable) genus k and
π1(Nk) its fundamental group. Then, π1(Nk) admits a presentation

π1(Nk) = ⟨a1, . . . , ak|a2
1 · · · a2

k = 1⟩.

Let hom(π1(Nk), G) be the representation variety; it can be identified
with the algebraic set

{A1, . . . , Ak ∈ G | A2
1 · · · A2

k = [Id]}.

We will use the notation of Section 3.1. The group of isometries G

is composed of the subgroup of orientation preserving isometries, G+ ∼=
PSL(2,C) and the subset of orientation reversing ones, G−, that is, G =
G− ⊔ G+. We can express any element of G− as Ac, where A ∈ G+ and c

is the Möbius extension of the complex conjugation. The universal cover of

120



5.1. THE CASES OF GENUS 1 AND 2

G+ is
G̃+ ∼= SL(2,C).

Therefore, the tangent space at any point of G can be identified with the
Lie algebra sl(2,C).

Recall that we say that ϕ ∈ hom(π1(Nk), G) preserves the orientation
type if it satisfies ϕ(γ) ∈ G− if and only γ is represented by a loop reversing
the orientation.

There is a well-defined square map

Q : G → G̃+

[A] 7→ A2,

whose fibers where studied in Section 3.1. Notice that for Ac ∈ G−, Q(Ac) =
AA, where A is the element with entries the complex conjugate of each entry
of A. We can state two inmediate corollaries of Proposition 3.1.1 regarding
representation varieties of genus 1 and 2 and using the previous presentation
of π1(Nk):

Corollary 5.1.1. Let N1 be a projective plane. The variety of orientation
type preserving representations has two connected components.

Corollary 5.1.2. Let N2 be a Klein bottle. The variety of orientation type
preserving representations has two connected components.

Proof. Let A, B ∈ G− satisfy A2 = B2. Then, in G̃+, Q(A) = ±Q(B).
If the sign is plus, then A and B are in the same fiber of Q, which is
connected by Proposition 3.1.1. Thus, there is a path connecting A and
B inside the fiber. Moreover, as G− is connected, any two representations
(A1, B1), (A2, B2) with Ai = Bi and in different fibers can be joined by a
path.

Otherwise, if Q(A) = −Q(B), then, as noticed in Remark 3.1.5, Q(A)
is either elliptic or ±Id. By connectedness of both the fibers of Q and the
subset of elements of G− which are neither hyperbolic nor parabolic, we
can prove in a similar fashion that the subset of representations such that
Q(A) = −Q(B) is connected too.
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5.2 Path-lifting of the square map

Dealing with connected components of representation varieties is easier if we
switch the approach from connectedness to path-connectedness, as shown in
the proof of Corollary 5.1.2. As noted in [20] in the frame of representation
varieties they are equivalent. A very useful tool in this regard is the path-
lifting property:

Definition 5.2.1. A map f : X → Y satisfies the path-lifting property if
for every point x ∈ X and every path γ : [0, 1] → Im f ⊂ Y with γ(0) =
f(x), there exists, up to reparametrization of γ (precomposition with a non-
decreasing surjective map τ : [0, 1] → [0, 1]), a lift of γ to a path σ : [0, 1] 7→
[0, 1] with σ(0) = x.

Notice that, in general, the path lifting property does not imply unique-
ness of the lift.

From the submersion normal form, we can prove:

Lemma 5.2.2. Let f : X → Y be a smooth map between smooth manifolds.
If f is a submersion, then it satisfies the path lifting property.

An inmediate consequence of satisfying the path-lifting property is the
following one: let f satisfy the path-lifting property and let Im f be con-
nected. If there exists a point y ∈ Im f whose fiber is path-connected, then
the domain of f is connected.

Recall J = Im(Q) = {A ∈ G̃+ | tr(A) ∈ (−2, ∞)} ∪ {−Id}. We will
denote

J0 := J \ {±Id}.

The map Q restricted to Q−1(J0) has good properties:

Lemma 5.2.3. The set J0 is a codimension-1 submanifold of G̃+. More-
over, the map Q restricted to Q−1(J0) is a submersion in the image J0. In
particular, the square map satisfies the path lifting property.

Proof. Let A ∈ J0, and let U be an open neighbourhood around A in
G̃+. Then, an open neighbourhood around A in J0 can be obtained as
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U ∩ (Im ◦ tr)−1(0). It is easy to check that 0 is a regular value of the map
Im ◦ tr restricted to J0, hence J0 is a codimension-1 submanifold.

The differential of Q at Ac ∈ G−, applied to a tangent vector ξ is

dQ(ξ) = ξAA + AξA = (AξA−1 + ξ)AA,

where we are taking multiplication at right. Thus, from the Lie algebra
point of view, it is

sl(2,C) −→ sl(2,C)
ξ 7−→ AξA−1 + ξ .

As we are only interested on the rank of the map, we can swap ξ by its
conjugate ξ, which leaves the image as Ad(A)ξ + ξ. Similarly, we can take
A to be any element in its conjugacy class.

The proof will come from computing the adjoint representation for each
conjugacy class of elements in G−\Q−1(±Id). Proposition 3.1.1 states that,
up to conjugation, the element Ac can be assumed to be either hyperbolic,
elliptic or parabolic (see Remark 3.1.3), that is, either

λ 0
0 λ−1


c

,

 0 ei(θ+π)/2

−e−i(θ+π)/2 0


c

, or
1 1

0 1


c

,

where λ ∈ R, θ ∈ (0, π). We denote the matrix A ∈ G+ of each respective
case by Ahyp, Aell or Apar. If ξ = ( x3 x1

x2 −x3 ) belongs to the Lie algebra sl(2,C),
then, the adjoint for each case is:

Ad(Ahyp)ξ =
(

x3 λ2x1
λ−2x2 −x3

)
, Ad(Aell)ξ =

(
−x3 x2eiθ

x1e−iθ x3

)
,

Ad(Apar)ξ =
(

x2+x3 x1−x2−2x3
x2 −x2−x3

)
.

Thus, as an action of SO(2, 1), the adjoint representation is, respectively

Ad(Ahyp) =


λ2 0 0
0 λ−2 0
0 0 1

 , Ad(Aell) =


0 eiθ 0

e−iθ 0 0
0 0 −1

 ,
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Ad(Apar) =


1 −1 −2
0 1 0
0 1 1

 .

We are interested in expressing the Lie algebra as sl(2,C) = sl(2,R) ⊕
isl(2,R), hence, the matrix of the linear map ξ 7→ Ad(A)ξ + ξ is:

Ad(Ahyp)ξ + ξ =



λ2 + 1 0 0 0 0 0
0 λ−2 + 1 0 0 0 0
0 0 2 0 0 0
0 0 0 λ2 − 1 0 0
0 0 0 0 λ−2 − 1 0
0 0 0 0 0 0


,

Ad(Aell)ξ + ξ =



1 cos θ 0 0 − sin θ 0
cos θ 1 0 sin θ 0 0

0 0 0 0 0 0
0 sin θ 0 −1 cos θ 0

− sin θ 0 0 cos θ −1 0
0 0 0 0 0 −2


,

Ad(Apar)ξ + ξ =



2 −1 −2 0 0 0
0 2 0 0 0 0
0 1 2 0 0 0
0 0 0 0 −1 −2
0 0 0 0 0 0
0 0 0 0 1 0


.

We notice that the rank is always five (in the elliptic case, due to θ ̸=
0, π) , which equals the dimension of the image.

Finally, it satisfies the path-lifting property due to Lemma 5.2.2.

If we try to extend Lemma 5.2.3 to the whole image J we are bound
to fail. A geometric interpretation of why these points are troublesome
comes from noticing that a rotation in S2 is given by its unique axis and its
angle of rotation. Moreover, the square of an elliptic transformation can be
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thought of as a rotation in the boundary at infinity (a sphere). Hence, the
‘square root’ will have the same axis and half the angle. We can consider a
sequence of rotations such that the angle goes towards 0 or π (where there is
no longer a unique axis) but the sequence of axes does not converge. Thus,
the sequence has a limit but the square root will not. This is illustrated in
the following example ([39]):

Example 5.2.4. Let

gt =
√

2 + sin(1/t) cos(1/t)
cos(1/t)

√
2 − sin(1/t)

 , Rθ =
eiθ 0

0 e−iθ

 .

In general, Ad(g)Rθt tends towards to ±Id if we make θt tend to 0 or
π, respectively. Thus, in the particular case gtRθtg

−1
t with θt = π − t, we

obtain

gtRθtg
−1
t

t→0−−→ − Id.

On the other hand, the path gtRθtg
−1
t cannot be lifted along Q, due to

the appearance of the terms sin(1/t) and cos(1/t) in any possible lift of the
path outside of 0.

Same example works with θt = t, where the limit now is the identity.

Let X(F2, G̃+) denote the variety of characters of F2, the free group on
two elements, and let

χ : G̃+ × G̃+ −→ X(F2, G̃+) ∼= C3

(A, B) 7−→ χ(A, B) := (tr A, tr B, tr AB)
(5.1)

be the character map, where tr A denotes the trace of A. The character
map was motivated by Fricke-Klein ([15]). The polinomial map κ : C3 → C,
κ(x, y, z) := x2 + y2 + z2 − xyz − 2 satisfies κ(χ(a, b)) = tr [a, b], where [·, ·]
is the commutator.

Let
Qn : Gn −→ G̃+

n

(A1, . . . , An) 7−→ (Q(A1), . . . , Q(An)).
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Thus, Q1 coincides with Q. The map Qn can be restricted to the varieties
of representations. For instance, let a, b, c be generators of π1(N3), then the
map Q3 in the variety of representations hom(π1(N3), G) is

Q3 : hom(π1(N3), G) −→ {(X, Y, Z) ∈ (G̃+)3|XY Z = ±Id},

ϕ 7−→ (Q(ϕ(a)), Q(ϕ(b)), Q(ϕ(c)))

We will often use the following notation: let ϕ(a) = Ac where A ∈ G+

and c is the complex conjugation and, analogously, ϕ(b) = Bc, ϕ(c) = Cc.
Then, Q(ϕ(a)) = AA, where A denotes the complex conjugated matrix.
Therefore, the map Q3 can be written down as

(Ac, Bc, Cc) 7→ (AA, BB, CC).

Moreover, the image of Q3 in {(X, Y, Z) ∈ (G̃+)3|XY Z = ±Id} is
identified with

Im Q3 ∼= {(X, Y ) ∈ J × J |XY ∈ ±J }.

The following lemma can be found in [20]:

Lemma 5.2.5. Let (A, B) ∈ G̃+×G̃+. Then, the differential of χ (cf. (5.1))
at (A, B), d(A,B)χ, is surjective if and only A and B do not commute.

This can be adapted to the following:

Lemma 5.2.6. Let (A, B) ∈ J0 × J0. Then, the differential of χ restricted
to J0 × J0 (cf. (5.1)) at (A, B), d(A,B)χ is surjective in R2 × C if and only
A and B do not commute.

Proof. First, we prove that if A and B do not commute, then the differential
is surjective. Let ξ, η be tangent vectors at A and B, respectively. Then,

dχ(ξ, η) = (tr ξA, tr ηB, tr ξAB + tr AηB).

Let us focus on the traces depending on ξ. By conjugating by some
element in G̃+, we can assume A =

(
λ 0
0 λ−1

)
or ( 1 1

0 1 ), ξ = ( x3 x1
x2 −x3 ) and
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B = ( a b
c d ). Moreover, Im(tr Aξ) = 0 as ξ is tangent to A in J0. Therefore,

for A = diag(λ, λ−1),

tr Aξ = (λ − λ−1)x3, tr ξAB = λ−1cx1 + λbx2 + (λa − λ−1d)x3.

The elements A and B do not commute if and only if b or c are different
from 0, hence, by the previous computations it is evident that the image of
(ξ, 0) is R × {0} × C. If, instead, A is parabolic, then

tr Aξ = x2, tr ξAB = cx1 + cx2 + (a − d)x3.

As before, A and B do not commute if and only if either B is not parabolic
or parabolic with a fixed point at infinity different from the one of A. It is
easy to see that this is equivalent to a ̸= d or c ̸= 0 and, thus, if A and B

do not commute the image of (ξ, 0) is R × {0} × C as well. By a similar
argument on η for either case, we obtain the whole R2 × C.

On the other hand, the same computations also prove the converse state-
ment.

Corollary 5.2.7. Let (A, B) ∈ G− × G−. The differential of χ ◦ Q2 at
(A, B), d(A,B)χ◦Q2, is surjective over R2 ×C if and only if Q(A) and Q(B)
do not commute. In particular, the map χ ◦ Q2 satisfies the path-lifting
property.

Proof. From Lemma 5.2.6 we see that a necessary condition for the differ-
ential to be exhaustive is that Q(A) and Q(B) do not commute.

In the other direction, if Q(A) and Q(B) do not commute, in par-
ticular they are different from ±Id, then, from Lemma 5.2.3, (A, B) 7→
(Q(A), Q(B)) is a submersion at (A, B). By Lemma 5.2.6, χ ◦ Q2 is a
submersion too. The last assertion is a consequence of Lemma 5.2.2.

Lemma 5.2.8. The set of regular points of the map

Q−1(J0) × Q−1(J0) −→ G̃+

(A, B) 7−→ Q(A)Q(B)
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is

{A, B|[Q(A), Q(B)] ̸= Id} ∪ {A, B | (tr(Q(A)) − 2)(tr(Q(B)) − 2) < 0}.

More generally, A1, · · · , An is a regular point of the map prod ◦ Qn, where
prod : G̃+

n
→ G̃+ denotes the product, and Qn is restricted to Q−1(J0)n,

if and only if there exists i, j ∈ {1, . . . , n} such that either Q(Ai), Q(Aj) do
not commute or (tr(Q(Ai)) − 2)(tr(Q(Aj)) − 2) < 0.

Proof. Let us asssume right multiplication in the Lie group. A straightfor-
ward computation shows that the differential applied to a tangent vector
(ξ, η) is

ξAABB + AξABB + AAηBB + AABηB.

This corresponds to the vector of the Lie algebra sl(2,C)

ξ + Ad(A)ξ + Ad(AA)η + Ad(AAB)η.

We can multiply the expression by Ad(AA)−1 and swap ξ by Ad(A)−1ξ,
and η, by η. We obtain

Ad(A)−1(ξ) + ξ + Ad(B)(η) + η.

We can assume A to be in its Jordan normal form so that its adjoint
representation is easy to compute. On the other hand, with the previous
assumption, we will have no control on the adjoint representation of B, so
we need to compute the adjoint representation of any matrix X = ( a b

c d )
applied to an element ξ = ( x3 x1

x2 −x3 ):

Ad(X)(ξ) =
(ad + bc)x3 + bdx2 − acx1 −2acx3 − b2x2 + a2x1

2cdx3 + d2x2 − c2x1 −((ad + bc)x3 + bdx2 − acx1)

 .
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Thus,

Ad(X)(ξ) + ξ =(ad + bc)x3 + x3 + bdx2 − acx1 −2acx3 − b2x2 + a2x1 + x1

2cdx3 + d2x2 + x2 − c2x1 −((ad + bc)x3 + x3 + bdx2 − acx1)

 .

Taking A in its Jordan form and resting upon the computations in the proof
of Lemma 5.2.3, we prove the first assertion.

The general statement follows in a similar way. The differential applied
to a tangent vector (ξ1, · · · , ξn) is

n∑
i=1

Ad(
i−1∏
j=1

AjAj)(ξi + Ad(Ai)ξi)
 .

The image of each summand has rank five as seen in the proof of Lemma 5.2.3,
therefore, (A1, . . . , An) is a regular point iff there exists i < j such that the
respective summands generate the whole space. Let us apply induction on
the distance between both matrices k := j − i.

For k = 1, the case n = 2 can be applied to conclude that either Q(Ai)
and Q(Ai+1) do not commute or (tr(Q(Ai)) − 2)(tr(Q(Ai+1)) − 2) < 0. If
k > 1, either the image of the tangent vectors (0, . . . , 0, ξi, ξi+1, 0, . . . , 0)
generate the whole tangent space or not. If they generate it, then we can
take Ai and Ai+1 instead. Otherwise, the tangent vectors associated to
Ai+1 and Aj generate the whole image, and we can apply the induction
hypothesis.

5.3 Representation varieties

In this section we apply the results of the previous section to compute the
connected components of the variety of representations hom(π1(Nk), G).
They will be indexed by two Stiefel-Whitney classes. The first of them is
due to the two connected components of G, whereas the second one is the
second Stiefel-Whitney class of the associated flat principal bundle. We

129



CHAPTER 5. COMPONENTS OF REPNS. OF SURFACES

first focus on computing the second Stiefel-Whitney class in the case of
orientation type preserving representations, whose study is slightly more
complex. In order to compute the number of connected components, we
will initially compute them for non-orientable genera k = 2, 3 and then, the
general case follows by induction by (in some sense) cutting the surface in
a subsurface of genus k − 2 and another one of genus 2.

5.3.1 The orientation type preserving components

We will compute here the connected components of the space of orientation
type preserving representations of the fundamental group of the closed non-
orientable surface Nk into G. We will denote the set of orientation type
preserving representations by

homtp(π1(Nk), G).

These connected components can be identified as fibers of the Stiefel-
Whitney map w2 : homtp(π1(Nk), G) → Z2. The algebraic variety can be
identified with the set

homtp(π1(Nk), G) = {A1, . . . , Ak ∈ G− | [Id] = R(A1, . . . , Ak) = π(
k∏

i=1
Q(Ai))},

where π : G̃+ → G+ is the covering projection. The relator map R can
be lifted to R̃ : Gk

− → G̃+ as R̃ = ∏
Q(Ai) and its image lies on the set

{±Id}. This lifted relator map R̃ is constant on connected components
and its image can be identified with the second Stiefel-Whitney class of the
associated flat G − bundle (see [36]).

As in [20], let C ∈ G̃+, n ≥ 2 and let us define

Xn(C) := {(A1, . . . An) ∈ (G−)n |
n∏

i=1
Q(Ai) = C}.

The set Xn(Id) is precisely the variety of representations homtp(π1(Nn), G̃+).
The whole representation variety homtp(π1(Nn), G) can be identified with
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the set Xn(Id) ⊔ Xn(−Id). Each set Xn((−Id)u) corresponds to the preim-
age of the second Stiefel-Whitney class, w−1

2 (u), u ∈ Z2, of the princi-
pal bundle. If we prove that Xn((−Id)u) is non-empty and connected for
u = ±1, then homtp(π1(Nn), G) has two connected components.

Lemma 5.2.8 shows that instead of working with the whole space Xn(C)
it is actually more practical to work with

X ′
n(C) := {(A1, . . . , An) ∈ Xn(C) | ∃i, j such that [Q(Ai), Q(Aj)] ̸= Id}.

In fact, for us it will be more useful to restrict to the following subset, for
n ≥ 4,

X ′′
n(C) := {(A1, . . . , An) ∈ Xn(C) | ∃i, j ≤ n−2 such that [Q(Ai), Q(Aj)] ̸= Id}.

Notice that X ′
2(±Id) = ∅, X ′

2(C) = X2(C) if C ̸= ±Id. For n = 1, let
us define X1(C) := Q−1(C). Last, for n = 3, we define

X ′′
3 (C) := {(A1, A2, A3) ∈ X3(C) | Q(A1) ̸= ±Id, [Q(A2), Q(A3)] ̸= Id}.

As the following lemma shows, from a connectivity point of view it is
indifferent considering either Xn(C), X ′

n(C) or X ′′
n(C).

Remark 5.3.1. For n ≥ 3, X ′′
n(C) ⊂ X ′

n(C) ⊂ Xn(C). Thus, if X ′′
n(C) is

dense in Xn(C) and connected, then X ′
n(C) is dense and connected too.

Lemma 5.3.2. Both sets X ′
n(C) and X ′′

n(C) are dense in Xn(C), when
defined, for any C ∈ G̃+, n ≥ 2.

Proof. Let (A1, . . . , An) ∈ Xn(C), we will show that we can find elements
(B1, . . . , Bn) ∈ J n as close as wanted to (Q(A1), . . . , Q(An)) and such that
there exist i, j such that [Bi, Bj] ̸= Id. If (Q(A1), . . . , Q(An)) ∈ J0, by
Lemma 5.2.3, the square map is open, so there will be suitable preimages of
(A′

1, . . . , A′
n) in X ′

n(C) ⊂ (G−)n as close as desired to (A1, . . . , An) ∈ Xn(C);
otherwise, we will have to perturb the elements (A1, . . . , An) ad hoc. The
main idea consists of swapping two consecutive elements Ai, Ai+1 for two
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close enough elements A′
i, A′

i+1 with non-commuting squares so that the
product remains the same, Q(Ai)Q(Ai+1) = Q(A′

i)Q(A′
i+1). By choosing

the indices i, j with care and some small modification, the proof will apply
to X ′′

n(C) too.

Case 1: All of the Q(Ai) are different from ±Id.
Let all of the Q(Ai) commute, then either all of them can be conjugated

to a diagonal matrix or a parabolic one. Let us suppose that all of them
are diagonal and let, Q(A1) =

(
λ 0
0 λ−1

)
, Q(A2) =

(
µ 0
0 µ−1

)
, then if one of

the matrix is not the inverse of the other (µ ̸= ±λ−1), we can take ϵ, δ

as small as wanted so that B1 =
(

λ ϵ
0 λ−1

)
, B2 =

(
µ δ
0 µ−1

)
do not commute

and B1B2 = Q(A1)Q(A2). If there are no two consecutive elements Ai, Ai+1

such that Q(Ai)Q(Ai+1) ̸= Id, then if we take B1, B2 as before, the elements
B2 and Q(A3) will not commute.

In the parabolic case, given two matrices Q(Ai) = ( 1 xi
0 1 ), i = 1, 2 (we

can assume tr Q(Ai) = 2) matrices Bi =
(

λ yi

0 λ−1

)
can be chosen as close as

wanted to Q(Ai) such that they do not commute and B1B2 = Q(A1)Q(A2),
as long as Q(A1)Q(A2) ̸= Id. If they are inverse matrices, after deforming
them as before, B2 and Q(A3) will no longer commute.

Case 2: Some Q(Ai) = ±Id, Q(Ai+1) or Q(Ai−1) different from ±Id.
In general, this case may not be problematic if we have enough elements

different from ±Id as we can ignore the ±Id and apply Case 1. On the
other hand, in X3(Id) it could happen that two of the matrices are inverse
of each other and the third one, the identity. We will assume that the
problem lies within Q(A1) and Q(A2).

We will need to consider Corollary 3.1.6 and the relative position of the
fixed points, invariant axes and/or reflection planes:

Case 2.1: Let Q(A1) be elliptic, Q(A2) = −Id (hence, Q(A1)Q(A2) =
−Q(A1)).

The isometry A2 corresponds to an inversion through a point according
to Corollary 3.1.6. The fixed point of A2 together with the invariant axis
of Q(A1) define a hyperplane H ⊂ H3. By conjugating by an appropiate
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element, we can assume H to be the hyperplane R × {0} × R>0 in the
upper-half space. Moreover, the axis of Q(A1) is orthogonal to the plane,
so Q(A1) acts as a transformation of PSL(2,R). We can further assume
that it is the transformation

Q(A1) =
 cos θ sin θ

− sin θ cos θ

 .

On the other hand, the element A2 is the isometry (see Proposition 3.1.1)

A2 =
 0 −ρ

ρ−1 0


c

, where ρ ∈ R∗.

Then, we can deform A2 to

A′
2 =

 0 ρeiφ

−ρ−1e−iφ 0


c

, where ρ ∈ R∗, φ ∈ (π − ϵ, π + ϵ).

Then, Q(A1) is deformed to

B1 := −Q(A1)Q(A′
2)−1 =

− cos θe−2iφ − sin θe−2iφ

sin θe2iφ − cos θe2iφ

 ,

whose trace is 2 cos θ cos φ ∼= 2 cos θ, therefore B1 ∈ J0 and clearly is close
to Q(A1). By openness of the square map in J0, there is a preimage A′

1

close to A1.
Another possible way to deform A1 and A2 is to take the orthogonal

plane to the axis of A1 containing the fixed point of A2. Then, we can
deform A2 towards an elliptic transformation with axis orthogonal to the
previous hyperplane, so that both the axes of as A1 and A′

2 are orthogonal
to said hyperplane. Therefore, Q(A1) and Q(A′

2) both act as elements
of PSL(2,R) on the hyperplane, so Q(A′

1) will also act as an element of
PSL(2,R), hence, Q(A′

1) ∈ J .

Case 2.2: Let Q(A1) be hyperbolic, Q(A2) = −Id.
Let us consider now the hyperplane containing both the axis of Q(A1)
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and the fixed point of A2. Over this plane, Q(A1) acts as a transformation of
PSL(2,R). As in the alternate solution of the previous case, we can deform
A2 towards an elliptic transformation A′

2 orthogonal to the hyperplane, so it
also acts as an element of PSL(2,R). As before, Q(A1) can be deformed to
B1 := −Q(A1)Q(A′

2) and by openness of the square map, the deformation
can be carried over to the preimage.

Case 2.3: Let Q(A1) be parabolic, Q(A2) = −Id.
Consider the geodesic from the fixed point of A2 towards the fixed point

of A1 at ∂∞(H3). Up to conjugation, we can assume that said geodesic has
endpoints 0 and ∞ in the upper half-space model and A1 acts as a parabolic
transformation with fixed point ∞. Therefore, we can deform A2 towards
an elliptic transformation with axis the geodesic with endpoints 0 and ∞.
By the same arguments as in the previous cases, A1 is then deformed too
so that Q(A′

1)Q(A′
2) = Q(A1)Q(A2).

Case 2.4: Let Q(A1) be hyperbolic, Q(A2) = Id.
Recall that when Q(A2) = Id, by Corollary 3.1.6, A2 is the reflection on

a hyperplane of H3. Consider any hyperplane H1 containing the axis of A1

and intersecting with the fixed hyperplane H0 of A2. The isometry Q(A1)
acts as an element of PSL(2,R) under the identification H1 ∼= H2. We can
deform A2 towards a hyperbolic transformation A′

2 with axis H0 ∩ H1, then
Q(A′

2) acts also as an element of PSL(2,R). Therefore, we can also deform
Q(A1) in J .

Case 2.5: Let Q(A1) be elliptic, Q(A2) = Id.
Consider any hyperplane perpendicular to the axis of A1 and intersecting

the fixed hyperplane H0 of A2. Then, as in case 2.4, we can deform A2

towards a hyperbolic transformation so that both Q(A1) and Q(A′
2) behave

as elements of PSL(2,R) acting on H0 ∼= H2.

Case 2.6: Let Q(A1) be parabolic, Q(A2) = Id.
Up to changing slightly A1, we can assume the fixed point of Q(A1)

not to be an ideal point of the hyperplane H fixed by A2. Then, we can
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consider the unique geodesic orthogonal to H with endpoint the fixed point
of A1. We can deform A2 towards an elliptic transformation with axis said
geodesic and, afterwards, deform A1.

Case 3: All of the Ai are ±Id.
We only need to deform two of the matrices and then apply Case 2. As

before, we will have to consider the relative position of fixed points and
hyperplanes.

Case 3.1: Let Q(A1) = Q(A2) = −Id.
We consider the geodesic joining the fixed point of A1 and the fixed

point of A2. Then, it is easy to deform both towards elliptic transformations
having said geodesic as axis and such that the squares cancel.

Case 3.2: Let Q(A1) = Q(A2) = Id.
Now we have to consider the relative position of the planes H1 and H2

fixed by A1 and A2, respectively.
If H1 and H2 do not intersect in H3 ∪ ∂∞(H3), then, there is a geodesic

orthogonal to both. We can deform then both A1 and A2 toward elliptic
transformations with axis said geodesic.

If H1 and H2 intersect in H3, then we deform A1 and A2 towards hyper-
bolic transformation with axis H1 ∩ H2.

Finally, if H1 and H2 only intersect in ∂∞(H3), we can deform both of
them towards parabolic transformations with fixed point the previous ideal
point.

Case 3.3: Let Q(A1) = −Id, Q(A2) = Id:
Let H0 be the fixed hyperplane by A2 and consider the geodesic per-

pendicular to H0 and passing through the fixed point of A1. Then, we
can deform both A1 and A2 towards elliptic transformations with axis the
aforementioned geodesic and such that Q(A′

1)Q(A′
2) = −Id.

Neither in Case 2 or 3 we have taken into account the possibility that
the fixed point, axis or hyperplane (depending on the case) are contained
in one another. However, these are very easy to work through.
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In order to prove the proposition in the X ′′
n(C) case, we notice first that

as long as n is big enough, we can apply the previous ideas to the first n−2
elements. In fact, for n ≥ 5, this suffices.

In the case X ′′
4 (C) we have to deal with the possibility where Q(A1), Q(A2)

are inverses of one another and Q(A3) does not commute with them (so we
cannot apply case 1 to solve this). Consider a small element S of the sta-
bilizer of Q(A2)Q(A3), then, we deform A2, A3 to Ad(S)(A2), Ad(S)(A3).
Therefore, Q(A1) and Q(SA2S

−1) no longer commute.
Regarding the case X ′′

3 (C), we first deform A1, A2 so that Q(A′
1) ̸= ±Id

if needed. Afterwards, we can apply the same idea as in the X ′′
4 (C) case.

Proposition 5.3.3. The sets X ′
3(Id) and X ′

3(−Id) are non-empty and con-
nected.

Proof. Let us consider first the case X ′
3(Id). Let (A, B, C) ∈ X ′

3(Id), we
can assume without loss of generality that A and B satisfy [Q(A), Q(B)] ̸=
Id. Let us fix (x1, y1, z1) ∈ (−2, ∞)3 such that κ(x1, y1, z1) ̸= 2, then
κ−1(x1, y1, z1) is composed of a single G̃+-orbit ([20]). Let (A1, B1) ∈
Q−1

2 (S), where

S = {(X, Y ) ∈ J0 × J0 | [X, Y ] ̸= Id, XY ∈ J0}

and such that (Q(A1), Q(B1)) is in the previous G̃+-orbit.
We will construct a path from (A, B) to (A1, B1) inside of X ′

3(Id). Let
(x0, y0, z0) := χ(Q(A), Q(B)), then a path can be constructed in (−2, ∞)3

joining (x0, y0, z0) and (x1, y1, z1). By Corollary 5.2.7 the path can be lifted
to S starting at (A0, B0) and ending at the fiber of (x1, y1, z1) and, as the
fiber is connected, it can be continued to (A1, B1).

The case X ′
3(−Id) can be proved in the same way choosing (x1, y1, z1) ∈

(−2, ∞)2 × (−∞, 2) instead.

Corollary 5.3.4. The sets X3(Id) and X3(−Id) are non-empty and con-
nected.
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Proof. Apply Lemma 5.3.2 to Proposition 5.3.3.

Proposition 5.3.5. The set X2(C) is non-empty and connected for any
C ∈ G̃+.

Proof. The case C = ±Id is Corollary 5.1.2.
Let z = tr C and let us consider (x1, y1, z) ∈ (−2, ∞)2 × C such

that κ(x1, y1, z) ̸= 2. The fiber κ−1(x1, y1, z) is one G̃+-conjugacy class
(see [20]). Let us fix some element (A1, B1) ∈ G− × G− in the afore-
mentioned conjugacy class such that Q(A1)Q(B1) = C. Now, for any
(A0, B0) ∈ X ′

2(C), with χ(Q(A0), Q(B0)) = (x0, y0, z) a path (xt, yt, z) can
be constructed in (−2, ∞)2 ×C. The path can be reparametrized and lifted
to {(X, Y ) ∈ J × J | [X, Y ] ̸= Id} starting at (Q(A0), Q(B0)) and, as Q is
a submersion in {(X, Y ) ∈ J × J | [X, Y ] ̸= Id} (see Lemma 5.2.3), it can
be lifted to G− × G−; notice, however, the resulting path (Xt, Yt, Ct) does
not necessarily satisfy Ct = C.

We can obtain continuously a path gt ∈ G̃+ such that Ct = gtCg−1
t , so

conjugating by g−1
t we obtain a path in X ′

2(C). This can be done by writing
the matrix C in its Jordan canonical form and understanding gt as a change
of basis matrix to its Jordan form. Due to the fact that the Jordan form of
Ct remains constant during the whole path (otherwise, it wouldn’t be true),
this basis can be chosen to depend continously on Ct: for instance, we can
ask for the basis to have constant norm and first coordinate real.

The path we have thus constructed in J ×J ends in the fiber κ−1(x1, y1, z),
which is connected (it is a G̃+-conjugacy class). The elements of the fiber
having C as third coordinate is a Stab(C)-conjugacy class, where Stab(C)
denotes the stabilizer of C. The stabilizer is connected unless C is parabolic,
then it has two connected components Stab0(C) (the connected compo-
nent of the identity) and −Stab0(C). Therefore, in any case, the Stab(C)-
conjugacy class is connected. Thus, the lifted path to G− × G− can be
joined with (A1, B1).
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In the same vein as in [20], let us denote by fn−2 the following map:

fn−2 : Xn(C) −→ G̃+

(A1, . . . , An) 7−→ Q(A1) · · · Q(An−2).

Proposition 5.3.6. The set X ′′
n(C) is non-empty and connected for any

C ∈ G̃+ and n ≥ 3. Moreover, the path fn−2 satisfies the path lifting
property.

Proof. Let us work by induction on n. We need then two initial cases, one
for n even and another for n odd.

The fiber of f1 : X ′′
3 (C) → J0 at ν ∈ J0 is Q−1(ν) × X ′

2(ν−1C). By
Propositions 3.1.1 and 5.3.5 both factors are connected, therefore f−1

1 (ν)
is connected too.

The fiber of f2 : X ′′
4 (C) → G̃+ at ν ∈ G̃+ is X ′

2(ν) × X2(ν−1C), which,
by the same arguments as before, is connected.

By Lemma 5.2.8 fn−2|X′′
n(C) is a submersion, thus it satisfies the path

lifting property. Moreover, both images J0 and G̃+ are connected, thus
X ′′

n(C) is connected for n = 3, 4.
For n > 4, we apply the same argument to fn−2 : X ′′

n(C) → G̃+. The
fiber at ν ∈ G̃+ is X ′

n−2(ν) × X2(ν−1C), which by Remark 5.3.1 and the
induction hypothesis is connected.

Remark 5.3.7. The technique to compute connected components of X ′
3(±Id)

was used in [20] to compute the connected components of W (Σ0,3) ⊂
hom(π1(Σ0,3, PSL(2,R))), where Σ0,3 is the three-holed sphere and W (Σ0,3)
is the subset of non-commuting hyperbolic representations. The three com-
ponents of W (Σ0,3) are distinguished as the fibers of a relative Euler class,
e−1(n), n = −1, 0, 1. Given ϕ ∈ W (Σ0,3), if χϕ ∈ (2, ∞)3, then ϕ ∈ e−1(0).
Otherwise, if χϕ ∈ (2, ∞)2×(−∞, −2), then ϕ ∈ e−1(±1), where the compo-
nents e−1(−1) and e−1(1) are interchanged if ϕ is conjugated by an element
of PGL(2,R) not in PSL(2,R).

In the non-orientable case N3, by Proposition 5.3.3 we can assume that
any representation is hyperbolic and we can cut out the Möbius strips in
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order to obtain a representation Q3(ϕ) ∈ hom(π1(Σ0,3), PSL(2,R)). As the
traces are real, by conjugation, we can also assume the representation is
actually in PSL(2,R) and compute in which component of W (Σ0,3) it is
(this component is not well defined). When χQ3(ϕ) ∈ (2, ∞)2 × (−∞, −2)
it can be either in e−1(1) or e−1(−1) and we can pass from one component
to the other by conjugating by the element [diag(i, −i)] ∈ PSL(2,C).

This hints that a possible approach could have been closer to the PSL(2,R)
case worked out in [39], where paths of representations joining e−1(n) and
e−1(n + 2) are constructed.

5.3.2 The rest of the connected components

When studying connected components which are not orientation type pre-
serving we have to take into account that π0(G) = Z2. We define the
first Stiefel-Whitney class of a representation ϕ ∈ hom(π1(Nk), G) as the
element w1(ϕ) ∈ hom(π1(Nk), π0(G)) obtained by postcomposing the rep-
resentation with the map G → π0(G). Thus, w1(ϕ) can be seen as an
element of H1(Nk,Z2) ∼= Zk

2. For instance, the first Stiefel-Whitney class
of an orientation type preserving representation is w1(ϕ) = (1, . . . , 1).

In Section 3.1 we defined the square map Q : G → G̃+ and up to this
point we have been interested in its restriction to G−. Here, we need to
consider the restriction to G+ too, which we denote by Q+ : G+ → G̃+.

Recall the statement of Proposition 3.1.8 (1.), which proves that the map
Q−1

+ : G̃+ \tr−1(−2) → G+ is well-defined and it is smooth. Thus, paths can
always (and uniquely) be lifted as long as they avoid −Id. This shows that
the arguments made in Subsection 5.3.1 for the orientation type preserving
components can be done in this context for the rest of components with
small modifications. Hence, we can prove that each fiber w−1

1 (ϵ), ϵ ∈ Zk
2

has two connected components. We obtain the following result:

Theorem 5.3.8. The representation variety hom(π1(Nk), G) has 2k+1 con-
nected components.
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5.4 The restriction map

Let k > 2, the orientation covering of Nk is the closed surface of genus
g = k − 1, Σg. There is a restriction map to the variety of representations
hom(π1(Σg), G),

res : hom(π1(Nk), G) −→ hom(π1(Σg), G).

We consider the Stiefel-Whitney classes of the restricted representations,
wi(res(ϕ)) ∈ hom(π1(Σg),Z2). Let us denote Gϕ and Gres(ϕ) the associated
flat principal G-bundles over Nk and Σg, respectively. The bundle Gres(ϕ) is
the pullback of the bundle Gϕ by the covering projection π. By the natu-
rality of the Stiefel-Whitney class, they coincide with the pullback through
the projection π : Σg → Nk, that is,

wi(res(ϕ)) = π∗(wi(ϕ)).

5.4.1 The second Stiefel-Whitney class

A quick computation of the pullback π∗ on the second cohomology group
gives us the second Stiefel-Whitney class of a restricted representation:

Proposition 5.4.1. The second Stiefel-Whitney class of a representation
ϕ ∈ hom(π1(Nk), G) restricted to the orientation covering is w2(res(ϕ)) = 0.

Proof. The pullback of π : Σg → Nk is the map

π∗ : H2(Nk,Z2) → H2(Σg,Z2),

such that (π∗(c))(α) = c(π∗(α)). Now, π∗ : H2(Σg,Z2) → H2(Nk,Z2) is 0,
hence π∗ = 0.

5.4.2 The first Stiefel-Whitney class

In order to see how the pullback behaves in the first cohomology group, we
need to relate generators of both π1(Nk) and π1(Σg) ◁ π1(Nk).
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Lemma 5.4.2. Let us consider the presentation

π1(Nk) = ⟨a1, . . . , ak|a2
1 · · · a2

k = 1⟩,

then π1(Σg) is generated by a2
1, . . . , a2

k−1, a1a2, . . . , a1ak.

Proof. Let H be the subgroup generated by a2
1, . . . , a2

k−1, a1a2, . . . , a1ak,
that is,

H = ⟨a2
1, . . . , a2

k−1, a1a2, . . . , a1ak⟩.

It is clear that H ⊂ π1(Σg). In the other direction, any element γ ∈
π1(Σg) can be expressed as an even product of generators a±1

i , thus, we only
need to show that a±1

i a±1
j ∈ H for any i, j.

• The element a2
k is obtained by consider the relation a−2

k−1 · · · a−2
1 = a2

k.

• For i ̸= j, aiaj = a2
i (a1ai)−1(a1aj) ∈ H.

• Finally, by multiplying the previous case by a−2
i , a−2

j if needed, we
obtain a±1

i a±1
j ∈ H.

Let us consider the presentation of π1(Σg) generated by a2
1, . . . , a2

k−1,

a1a2, . . . , a1ak.

Proposition 5.4.3. Let res(ϕ) ∈ hom(π1(Nk), G) be a representation re-
stricted to the orientation covering. Its first Stiefel-Whitney class admits
an expression w1(res(ϕ)) = (0, . . . , 0, ϵ1, . . . , ϵk−1), where ϵi ∈ Z2. In partic-
ular, the representations ϕ such that the restricted representation res(ϕ) has
first Stiefel-Whitney class w1(res(ϕ)) = (0, . . . , 0) are the orientation type
preserving representations and the representations in hom(π1(Nk), G+).

Proof. By choosing generators of π1(Nk) and π1(Σg) as in Lemma 5.4.2, the
pullback is laid out as

π∗ : H1(π1(Nk),Z2) ∼= Zk
2 −→ H1(π1(Σg,Z2)) ∼= Zg

2

([a1], . . . , [ak]) 7−→ ([a2
1], . . . , [a2

k−1], [a1a2], . . . , [a1ak])
= (0, . . . , 0, [a1a2], . . . , [a1ak]).
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This shows that the kernel consists of representations where either every
element is mapped to an orientation preserving isometry or orientation type
preserving representations.
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d’hyperbolisation pour les variétés fibrées de dimension 3. Société
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