
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi doctoral i la seva utilització ha de respectar els drets de la
persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials dʼinvestigació i
docència en els termes establerts a lʼart. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres
utilitzacions es requereix lʼautorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels
seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No
sʼautoritza la seva reproducció o altres formes dʼexplotació efectuades amb finalitats de lucre ni la seva comunicació
pública des dʼun lloc aliè al servei TDX. Tampoc sʼautoritza la presentació del seu contingut en una finestra o marc aliè
a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la
persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de
investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad
Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En
cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona
autora y el título de la tesis doctoral. No se autoriza su reproducción u otras formas de explotación efectuadas con fines
lucrativos ni su comunicación pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de
su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de
la tesis como a sus resúmenes e índices.

WARNING. The access to the contents of this doctoral thesis and its use must respect the rights of the author. It can
be used for reference or private study, as well as research and learning activities or materials in the terms established
by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and previous authorization of the
author is required for any other uses. In any case, when using its content, full name of the author and title of the thesis
must be clearly indicated. Reproduction or other forms of for profit use or public communication from outside TDX
service is not allowed. Presentation of its content in a window or frame external to TDX (framing) is not authorized either.
These rights affect both the content of the thesis and its abstracts and indexes.

Departament de Microelectrònica i Sistemes Electrònics

ECC-based Authentication in

Constrained Devices:

A Secure and Efficient Hardware

Implementation

A Thesis Submitted for the Degree of

PhD in Electrical and Telecommunications

Engineering

Author:

Sadiel de la Fé Siverio

Director:

Carles Ferrer Ramis

Barcelona, 2021

DECLARATION

I hereby declare that I am the sole author of this thesis and
that the work contained is original, except where specific
reference is made to the work of others.

Barcelona, September 24, 2021

Sadiel de la Fé Siverio

ECC-based Authentication in Constrained Devices:
A Secure and Efficient Hardware Implementation

A Thesis Submitted for the Degree of
PhD in Electrical and Telecommunications Engineering

PhD candidate: Sadiel de la Fé Siverio
Signature

Supervisor: Carles Ferrer Ramis
Signature

Universitat Autònoma de Barcelona

Department of Microelectronics and Electronic Systems

Edifici Q, C/Sitges,

08193, Cerdanyola del Valles, Spain

September 24, 2021

A mi familia

Acknowledgment

This work would have never been done without the help of those

people to whom I would like to express herein my deepest gratitude.

Many thanks to those that are impossible to mention here and

somehow helped me to achieve this goal.

In the first place I would like to express my sincere gratitude to Ricardo

Chaves, Pedro Matutino and Juvenal Araujo, from the Instituto Superior

Técnico de Lisboa for their invaluable guidance and support during the

development of a core part of this thesis.

My special thanks to the supervisor of this thesis: Carles Ferrer, for his

guidance and for helping me out to conduct an autonomous research.

All my gratefulness to professors Lluis Ribes, Elena Valderrama, Jordi

Aguiló, Paco Serra and the secretarial staff from the Microelectronics

and Systems Dpt. of UAB, for their availability and help.

All my gratitude to Erica Tena and Prof. Antonio J. Acosta from the

University of Sevilla, and also to Prof. Bo-Yeon Sim and Dong-Guk Han

from the Kookmin University in Seoul, for their collaboration in valuable

experimentations for this work.

Thanks to my colleagues of the PhD: Adriana, Natalie, Biruk for their

support and especially to Lu Wang for her invaluable help.

My deepest gratitude to my family, specially to my parents and my wife

for their patience and encouragement throughout all these years.

A Manuscript on Deciphering Cryptographic Messages.

Al-Kindi, 9th Century

I |

Abstract

The proliferation of connected devices has increased in the last few

years in the form of wearable personal gadgets or sensors. Into the

smart cities and Internet of Things (IoT) concepts the sensors are

intended to acquire measurements from different sources to provide

an improved management. These facts imply that many connected

devices today can manipulate critical or sensitive data from

infrastructures or persons.

On the other hand, the proliferation of cyberattacks has grown,

according to cybersecurity companies. In the scientific literature and

also in the news, one can see examples of exploited vulnerabilities in

devices that handle sensitive data. The weak or the lack of

authentication is a common issue among many devices, allowing a

potential attacker to log into the device and even launch a higher level

attack. The lack of physical protection of cryptographic

implementations make some devices even more vulnerable.

This thesis aims to provide a hardware implementation of a suitable

authentication scheme to fit in low-power devices. The work focuses on

the optimization and hardening of the critical cryptographic operations

involved in the authentication. The theoretical and experimental

implementation provided show that an efficient authentication scheme

can be embedded in low-power connected devices, where some of the

more hazardous physical attacks are also prevented.

II |

Resumen

La proliferación de dispositivos conectados ha aumentado en los

últimos años en forma de aparatos personales o sensores. En lo que se

conoce hoy como Ciudades Inteligentes e Internet de las Cosas, los

sensores están destinados a la adquisición de medidas de diferentes

fuentes para proporcionar una mejor gestión y control de los recursos.

Estos implican que muchos de estos dispositivos actualmente pueden

manipular datos críticos o sensibles para infraestructuras o personas.

El número de ciberataques ha crecido, según varias empresas de

ciberseguridad. La literatura científica y las noticias reflejan ejemplos de

vulnerabilidades en dispositivos que gestionan datos sensibles. La falta

de esquemas de autenticación o las implementaciones débiles son un

problema común entre muchos dispositivos, ya que permite a un

atacante potencial iniciar sesión en el dispositivo e incluso lanzar un

ataque a nivel de red. La falta de protección física de los algoritmos

criptográficos hace que algunos dispositivos sean aún más vulnerables.

El objetivo de esta tesis es proporcionar la implementación hardware

de un esquema de autenticación adecuado para dispositivos limitados

en potencia. El trabajo se centra en la optimización y la robustez de las

operaciones criptográficas críticas implicadas en la autenticación. El

análisis teórico y la evaluación experimental desarrollados demuestran

que es posible implementar un esquema de autenticación eficiente en

dispositivos conectados de baja potencia, donde también se evitan

algunos de los ataques físicos.

III |

Resum

La proliferació de dispositius connectats ha augmentat en els darrers

anys en forma de dispositius o sensors personals. En els conceptes de

Smart Cities i IoT, els sensors estan destinats a adquirir mesures de

diferents fonts per proporcionar una gestió millorada. Aquests fets

impliquen que molts dispositius connectats actualment poden

manipular dades crítiques o sensibles per a infraestructures o persones.

D’altra banda, la proliferació de ciberatacs ha crescut, segons les

empreses de ciberseguretat. A la literatura científica i també a les

notícies, es poden veure exemples de vulnerabilitats explotades en

dispositius que gestionen dades sensibles. La dèbil o la manca

d’autenticació és un problema comú entre molts dispositius, ja que

permet a un atacant potencial iniciar sessió al dispositiu i fins i tot iniciar

un atac de nivell superior. La manca de protecció física dels algorismes

criptogràfics fa que alguns dispositius siguin encara més vulnerables.

Aquesta tesi té com a objectiu proporcionar una implementació de

maquinari d'un esquema d'autenticació adequat per adaptar-se a

dispositius de baixa potència. El treball se centra en l'optimització i

l'enduriment de les operacions criptogràfiques crítiques implicades en

l'autenticació. La implementació teòrica i experimental proporcionada

mostra que es pot encastar un esquema d’autenticació eficient en

dispositius connectats de baixa potència, on també s’eviten alguns dels

atacs físics més perillosos.

IV |

V |

Contents

ACRONYMS .. VIII

List of figures ... X

List of tables ... XI

Introduction ... 1

1.1 Motivation .. 1

1.2 Background... 4

1.2.1 Authentication ... 4

1.2.2 Elliptic Curve Cryptography ... 5

1.3 Thesis outline ... 7

2 Literature review ... 11

2.1 ECC-based authentication .. 11

2.1.1 ECDSA .. 11

2.1.2 Identity-based authentication ... 12

2.2 Side Channel Attacks .. 15

2.2.1 Side Channel Attacks ... 15

2.2.2 Differential Power Analysis ... 16

2.2.3 Correlation Power Analysis ... 16

2.2.4 Template Attack .. 17

2.2.5 Side Channel Attacks vs ECC .. 18

2.3 Residue Number System .. 19

2.3.1 Fundamentals .. 19

2.3.2 RNS resiliency against Side Channel Attacks 20

2.3.3 The RNS coprocessor ... 21

2.4 Summary .. 23

3 Modular inverse .. 28

3.1 Introduction to modular inverse .. 28

VI |

3.2 Fermat’s Little Theorem (mod 𝑝𝑟𝑖𝑚𝑒)... 29

3.3 Modular inverse (mod 𝑝𝑘). The ModInverse algorithm 30

3.3.1 Security analysis for 𝑝 = 2 .. 32

3.3.2 Asymmetric iterations ... 33

3.3.3 Operations latency .. 35

3.4 The Euclidean algorithm ... 37

3.4.1 Security aspects of BEEA implementation 39

3.4.2 Profiling in ECDSA to attack the RSA 41

3.4.3 RNS variant of BEEA .. 42

3.5 Conclusions .. 43

4 ECC operations in the RNS coprocessor 47

4.1 Secure Point Multiplication .. 47

4.1.1 Random coordinates ... 48

4.1.2 Montgomery ladder with (X, Y)-only variant 49

4.1.3 Co-Z Montgomery ladder in the RNS coprocessor 52

4.1.4 Masked registers against SCA in Point Multiplication 55

4.2 Multiple Point Multiplication ... 57

4.2.1 Interleaving with NAF .. 57

4.2.2 Composite operations for Interleaving 58

4.2.3 MPM implementation in the RNS coprocessor 60

4.3 Conclusions .. 61

5 HW evaluation platform .. 64

5.1 FPGA-based hardware platform for ECC evaluation 64

5.2 HW performance .. 66

5.3 Conclusions .. 68

Conclusions .. 71

Future work ... 73

Annex A ... 74

Annex B .. 75

Template Attack against RSA key generation based on BEEA 75

VII |

Attack points on the private key generation ... 76

Experimental environment .. 78

Experimental results .. 79

VIII |

ACRONYMS

AES Advanced Encryption Algorithm

BEEA Binary Extended Euclidean Algorithm

DSA Digital Signature Algorithm

DBLU Point Doubling (with update)

DPA Differential Power Analysis

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

FIFO First In First Out

FLT Fermat’s Little Theorem

GCD Greatest Common Divisor

GPIO General Purpose Input Output

HSM Hardware Secure Module

IBS Id-based Signature Scheme

IoT Internet of Things

LSB Least Significant Bit

MA-PADD Mixed-Affine Point Addition

MPM Multiple point multiplication

NAF Non Adjacent Form

PD Point Doublings

PM Point multiplication

RF Radio Frequency

RNS Residue Number System

RSA Rivest-Shamir-Adleman Algorithm

IX |

SCA Side Channel Attack

SPA Simple Power Attack

TA Template Attacks

UADD Unified Point Addition

ZADD Co-Z Point Addition

ZADDC Co-Z Conjugate Point Addition

ZADDU Co-Z Point Addition (with point update)

X |

List of figures

2.1 Power trace of a Binary Extended Euclidean Algorithm

implementation …………………………………………………………

……………….. 15

2.2 Power trace of a Correlation Power Attack against an

 unprotected AES implementation ………………………………

…………….…. 16

2.3 Power trace of a Correlation Power Attack against a

protected AES implementation .………………………………..

…………….…. 17

2.4 SPA against an unprotected Point Multiplication ….….. …………….…. 18

2.5 RNS architecture ………………………………………………………. …………….…. 19

4.1 Section of two microcode (k=1 and k=0) for a ZADDC’

implementation in the RNS coprocessor ……………………

…………….…. 56

5.1 Diagram of hardware platform for ECC operations

evaluation ………………………………………………………………...

…………….…. 65

XI |

List of tables

4.1 Comparison of SCA-protected point multiplication

algorithms ………………………………………………………………..……

……………. 55

5.1 Comparison of PM performance among state-of-the-art

ECC processors ………………………………………………………………

………….… 67

1 | Introduction

Introduction

1.1 Motivation

Smart city concept makes reference to sustainability in terms of

optimization of resources, to give response to the increasing population

in urban cities. In that sense, the European Union works towards a

strategy to incorporate more intelligence in their cities through a more

efficient resources management, in parallel to the population growth

[1]. Some of the big companies already provide solutions to approach

the Smart City concept from the data connectivity, mobility or energy

point of view [2] [3].

Among the main subsystems a smart city envisages are: Distributed

electricity generation based on multiple microgeneration points, Smart

grids of interconnected data networks, Smart metering for the

consumption measurement of water and electricity, Smart buildings

with automated systems for the optimum use of energy, and Smart

sensors (recently incorporated in the IoT concept) to collect the

multitude of data generated around this Smart ecosystem. In addition,

portable personal devices contribute with mobility data, which may be

used to optimize the public transportation system while reducing CO2

concentrations.

The use of connected sensors or portable devices gathering data from

critical infrastructures or persons has a few of inherent risks [4]. The

Open Web Application Security Project (OWASP) defined a Top 10 list

of the most important cybersecurity threats in IoT for 2018 [5]. Some

2 | Introduction

of the threats are based on unauthorized access to sensitive data and

system management, which are related to weak authentication

mechanisms. Also, the lack of physical hardening measures is

highlighted as it allows the attacker to take control of the device, thus

having the possibility to launch a high-level network attack from inside.

Some real life examples of vulnerabilities have been recently reported.

Bluetooth, the well-known wireless technology for short range

communications, was found vulnerable in [6], due to an exploitable

issue with non-authenticated cryptographic keys. In [7] the authors

discovered severe vulnerabilities in the communication of some kids-

oriented smartwatches. The researchers found that some devices did

not use any authentication or encryption scheme and in some case,

instead of a proper authentication, a device identification was

implemented through the IMEI (International Mobile Equipment

Identity), which can be easily retrieved. In [8] a tampering attack is

described against a supposedly high secure device. Through a physical

access to the HSM (Hardware Secure Module), the researchers had

access to private objects and they even managed to disable some

cryptographic mechanism.

In view of the previous facts, one may reasonably suspect that a large

number of devices lack of adequate security measures. An exploitable

flaw on some of them may cause a high impact on infrastructures or in

human beings. The cryptographic algorithms implemented to provide a

certain protection level are not vulnerable by themselves, but a physical

access to the device may lead to disable such protection. Thus, high-

level security mechanisms along with tamper-proof countermeasures

3 | Introduction

should be considered to guarantee the safety of the previously

mentioned Smart city subsystems. Furthermore, some of those devices

are typically battery-powered and constrained in computational

resources, therefore, the cryptographic implementations should

consider those limitations.

Objective: The main objective of this thesis is to provide a hardware

implementation for secure and efficient authentication of low-power

devices. In order to achieve the goal, this work focuses on the

optimization and hardening of the most critical cryptographic

operations involved in the authentication.

The research in this thesis involved the study of some authentication

schemes with an adequate efficiency for being implemented in low-

power devices. The deep analysis of the algorithms and their

mathematical operations lead to an algorithmic optimization that

improves one stage of the authentication process. The selection of the

authentication schemes for the implementation also included an

analysis considering their compatibility with the hardware platform

used. The said platform includes a FPGA-based RNS processor which

was selected because its implementation allows both efficient

computation and intrinsic protection against some physical attacks. The

implementation of the critical cryptographic operations involved in the

authentication schemes was conducted in the hardware platform, while

its performance was evaluated and further compared with similar

works.

4 | Introduction

Additionally, the modular inversion operation was independently

analyzed because of its importance in the authentication process. From

the analysis, two physical attacks and the respective countermeasures

were proposed by the first time against two modular inversion

operations.

1.2 Background

1.2.1 Authentication

Authentication is the mechanism through which a message, a user or a

device proves its legitimacy. Authentication schemes (a.k.a Signature

schemes) might the most important among the cryptographic methods

in a Smart sensors subsystem.

An efficient method to authenticate in a point-to-point or point-to-

multipoint communication is the use of message authentication codes

(MAC). If all the network elements share a predefined secret, a

symmetric cryptographic primitive can be used to generate MACs at a

very low cost [9-10]. Thus, a node sends a message along with a MAC,

and a receiver employs the symmetric key to evaluate whether

message-MAC combination holds, in which case, the message is

accepted. However, in events like network scaling, eventual external

devices log in to a network, or broadcast messages, the MAC based on

shared secret is impractical. Moreover, to share a secret among all the

devices increases the risk of one of them being compromised.

RSA (Rivest, Shamir, Adleman – its creators) was devised in 1977 as a

public-key scheme, and is arguably the most widespread method to sign

data [11]. Its strength relies in that it is impractical to decompose large

5 | Introduction

integers. In modern systems, RSA secret parameters are typically in a

range from 1024 bits to 4096 bits. However, the first claim of RSA was

to be a method in which a (public) key could be exposed without losing

the system security. To send a signed message, a sender first publishes

its public key, and then uses its private key to sign the message. A

receiver uses the sender’s public key to verify the signature for that

specific message, and only if it holds the communication is accepted.

What about the legitimacy of the public key?

If any public key is accepted, then any device is theoretically allowed to

send data through a network. To void it, a public key is required to have

a certificate that proves its legitimacy to others, like the standard in

[12]. Thus, in a secure communication, a receiver must have access to

the sender’s public key and its correspondent certificate. In a network

of constrained devices, such complexity is not desirable.

To overcome that issue, a method was proposed to authenticate via a

certificate-less public-key cryptosystem [13]. Actually, Shamir was the

first to propose an identification-based authentication, which opened

the door for more efficient implementations in low-power devices. This

topic will be addressed more exhaustively in the next chapter.

1.2.2 Elliptic Curve Cryptography

The Elliptic Curves Cryptography (ECC) is based on the use of certain

curves defined by a set of points (𝑥, 𝑦) over a 𝐺𝐹(𝑝), which are

solutions to the equation

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 (1.1)

6 | Introduction

along with a point called point at the infinity. The point operations like

addition, subtraction and multiplication follow certain rules in this kind

of curves and are geometrically defined [14-15].

A point 𝑃 ∈ 𝐸(Ϝ𝑝), with order 𝑛, is a generator of an ECC curve, which

can be defined through

𝐸(Ϝ𝑝) = {∞, 𝑃, 2𝑃, 3𝑃, . . . , (𝑛 − 1)𝑃} (1.2)

In a public-key cryptosystem based on ECC, the large prime 𝑝, the curve

equation (1.1), and the generator point 𝑃 are public parameters. A

private key 𝑘 is randomly selected in the range [1, 𝑛 − 1] and the public

key 𝑄 is obtained through the Point Multiplication (PM)

𝑄 = 𝑘𝑃 (1.3)

The Discrete Logarithm Problem (DLP) defined the intractability of

determining 𝑥 from 𝑦 = 𝑔𝑥 𝑚𝑜𝑑 𝑝 under certain conditions [16]. DLP

can be extended to ECC and is known as the Elliptic Curve Discrete

Logarithm Problem (ECDLP). Based on the ECDLP, the recovery of 𝑘 in

(1.3) is intractable, even having all the public parameters including the

public key 𝑄 [14-15].

The PM is performed following the old Booth’s algorithm employing

doublings and additions [17]. The point doublings and additions in ECC

imply divisions in both cases, if the point representation is given in

affine coordinates (𝑥, 𝑦). Divisions are costly operations in digital

systems, thus, should be avoided. A representation of the ECC points in

projective coordinates is preferred, as divisions are no longer needed

[14].

7 | Introduction

A projective point is represented as (𝑋: 𝑌: 𝑍). A projective point has

representatives in the form (𝜆𝑐𝑋, 𝜆𝑑𝑌, 𝜆𝑍), where 𝑐 = 𝑑 = 1 (standard

coordinates) or 𝑐 = 2 𝑎𝑛𝑑 𝑑 = 3 (Jacobian coordinates) and 𝜆 is an

integer. It means every point (𝑋′, 𝑌′, 𝑍′) ≡ (𝑋′′, 𝑌′′, 𝑍′′) if both are

representatives of a same point (𝑋: 𝑌: 𝑍). The affine coordinate (𝑥, 𝑦)

is then computed as (𝑋/𝜆𝑐, 𝑌/𝜆𝑑, 1) being 𝑍 = 1/𝜆 [14].

Today is widely accepted that to achieve an adequate security level, an

ECC cryptosystem needs, at least a 224-bits key while RSA needs a 2048-

bits key [18-19]. Such metrics make ECC more efficient than RSA for the

implementation in constrained devices.

1.3 Thesis outline

This thesis is divided into six chapters. In the current chapter, an

introduction is provided to define the context of this work and highlight

one specific problem and the suggested solution. Also, a background is

given on the main topics around the work: Authentication and Elliptic

Curve Cryptography (ECC).

Chapter 2 addresses the review of the most relevant ECC-based

authentication schemes which are suitable for low-power devices. A

modification is introduced to one of them to make it compatible with

the hardware platform and ensure a lightweight computation. Also, a

review of the Side Channel Attacks (SCA) that affects the said schemes

is provided. Finally, an introduction to the principles of Residue Number

System (RNS) is given. The RNS coprocessor used in this work is

introduced herein as well.

8 | Introduction

Chapter 3 reviews some sort of modular inversion operations. A

discussion on the security aspects of two of them is provided, and their

vulnerabilities are analyzed. This chapter concentrates two of the main

contributions of this thesis, due to the novelty of the Side Channel

Attacks proposed to the target algorithms.

Chapter 4 addresses the ECC critical operations to be implemented as

part of the authentication. Throughout this chapter a comprehensive

explanation is given from the state-of-the-art algorithms to the final

variations introduced. A contribution of the thesis is provided, through

the reduction of an algorithm that allows a more efficient

implementation of it and also makes it compatible with the HW

platform. A countermeasure is applied to the final operation to ensure

the mitigation of SCA.

Chapter 5 describes the HW platform used for the ECC operations

evaluation. Performance results on the implementation of the

operations are given, and a comparison with similar works is provided.

Finally, in the chapter 6 the Conclusions and Future work lines are given.

9 | Introduction

References

1. N. Komninos. Intelligent cities: Towards interactive and global
innovation environments. International Journal of Innovation
and Regional Development, 2009.

2. IoT for smart cities.
https://www.nokia.com/networks/services/iot-for-smart-
cities. Accessed in November 2020.

3. Smart cities. Sostenibilidad e innovación. https://www.i-
de.es/redes-inteligentes/nuevos-modelos-energeticos/smart-
cities. Accessed in November 2020.

4. B. Hamid, N. Jhanjhi, M. Humayun, A. Khan, A. Alsayat. Cyber
Security Issues and Challenges for Smart Cities: A survey. 13th
International Conference on Mathematics, Actuarial Science,
Computer Science and Statistics (MACS), 2019.

5. The Open Web Application Security Project (OWASP). OWASP
Top 10 Internet of Things - 2018. https://owasp.org/www-pdf-
archive/OWASP-IoT-Top-10-2018-final.pdf. Accessed in
November 2020.

6. https://www.bluetooth.com/learn-about-bluetooth/bluetooth-
technology/bluetooth-security/blurtooth/. Accessed in
November 2020.

7. C. Saatjohann, F. Ising, L. Krings, S. Schinzel. STALK: Security
Analysis of Smartwatches for Kids. 15th International
Conference on Availability, Reliability and Security (ARES 2020),
Virtual Event, Ireland. ACM, New York, 2020.

8. J.-B. Bédrune, G. Campana. Everybody be Cool, this is a
Robbery! https://www.sstic.org/media/SSTIC2019/SSTIC-
actes/hsm/SSTIC2019-Article-hsm-
campana_bedrune_neNSDyL.pdf. Accessed in November 2020.

9. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997.

10. A. Perrig, R. Szewczyk, V. Wen, D. Culler, J. D. Tygar. SPINS:
Security protocols for sensor networks. Proceedings of ACM

https://owasp.org/www-pdf-archive/OWASP-IoT-Top-10-2018-final.pdf
https://owasp.org/www-pdf-archive/OWASP-IoT-Top-10-2018-final.pdf
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/bluetooth-security/blurtooth/
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/bluetooth-security/blurtooth/

10 | Introduction

Conference on Mobile Computing and Networks (MobiCom),
pages 189–199, 2001.

11. R.L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems, 1977.

12. Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile.
https://tools.ietf.org/rfc/rfc5280.txt, 2008.

13. A. Shamir. Identity-based cryptosystems and signature
schemes. Proceedings of CRYPTO’84, Springer-Verlag, 1984.

14. D. Hankerson, A. J. Menezes, S. Vanstone. Guide to Elliptic
Curve Cryptography, 1, Springer-Verlag New York, Inc. 2004.

15. N. Koblitz. Elliptic curve cryptosystems. Mathematics of
Computation, 48, 203-209, 1987.

16. W. Diffie, M. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22, 644–654, 1976.

17. A. D. Booth. A Signed Binary Multiplication Technique. The
Quarterly Journal of Mechanics and Applied Mathematics, IV 2,
236–240, 1951.

18. L. Chen, D. Moody, A. Regenscheid, K. Randall. NIST Special
Publication 800-186: Recommendation for Discrete Logarithm-
based Cryptography: Elliptic Curve Domain Parameters.
National Institute of Standards and Technology, Gaithersburg,
Maryland), Draft, 2019.

19. E. Barker, D. Quynh. NIST Special Publication 800-57 (Part 3
Revision 1): Recommendation for Key Management:
Application-Specific Key Management Guidance. National
Institute of Standards and Technology, 2015.

https://tools.ietf.org/rfc/rfc5280.txt

11 | Chapter 2. Literature review

2 Literature review

2.1 ECC-based authentication

2.1.1 ECDSA

ElGamal was the first authentication scheme proposed in 1984, which

is based on the DLP [1]. The Digital Signature Algorithm (DSA), based on

the DLP as well, was proposed in 1991 and later specified in the

standard FIPS 186 [2]. These cryptosystems, along with Koblitz’s

discovering on ECC in [3], were the antecessors of the Elliptic Curve

Digital Signature Algorithm (ECDSA), which was devised by Vanstone in

1992 [4].

ECDSA is probably the most widespread authentication method used in

computer communications. Its efficiency is higher than exponentiation-

based methods like RSA or ElGamal because it allows the use of shorter

keys, as previously mentioned.

However, ECDSA does not solve by itself the problem of the public key

validation. It is, a sender using ECDSA needs to publish its public key

along with an authenticity certificate. Such scenario is not desirable for

low-power devices. Nevertheless, due to compatibility reasons with

some computer networks, many devices might still use the said

authentication method [5-6]. In view of this fact, the ECDSA critical

operations are considered in the chapter 4 of this thesis.

This method involves the modular inversion of a nonce, which is

computed in the signature generation phase. The modular inversion is

12 | Chapter 2. Literature review

critical; the strength of the method strongly relies on the secrecy of the

random value to be inverted. In the chapter 3 of this work, some

security aspects related to the modular inversion are discussed.

2.1.2 Identity-based authentication

Certificate-less authentication methods are preferred for low power

devices, due to the light weight in the transmission of the message

signature. Shamir was the first to propose an identity-based scheme

(IBS) for authentication [7]. In his method, instead of providing the

public key along with its certificate, some identification data was used

(name, email, etc.) to validate the key legitimacy. It is, the public key

was built embedding that data already. The strength of Shamir’s

method relies in the impossibility of a third party to generate a valid

public key with a fake ID, because a system private key is also needed

in the generation process.

The IBS introduced in [8] also removes the need for a certificate,

however, the method relies on Bloom filter [9] and Merkel tree [10] to

preload each device with the public key information of the rest. This

implies some constraints: the device needs extra memory and a secure

mechanism to update the preloaded data every time the network scales

with new nodes. Merkel hash tree needs a fixed number of nodes, while

the Bloom filter length is computed considering the number of nodes;

therefore, the method proposed in [8] is not suitable for dynamic

wireless network in which the number of nodes may change.

The IBS method proposed in [11] seems to be a suitable one as it

reduces the communication payload in the signature phase. This

13 | Chapter 2. Literature review

method is based on bilinear pairings, which is a costly operation and

also vulnerable to some physical attacks as demonstrated in [12]. This

IBS requires Boolean operations in the signature generation, and also

requires to perform a point multiplication where the ECC point is a

secret. The HW platform that is used in this work is efficient in some

critical ECC operations, and provides an inherent protection against

SCA; however, it cannot compute Boolean operations. On the other

hand, the manipulation of a secret ECC point requires further

countermeasures that reduce the performance of the system.

The first ECC-based IBS was proposed by Bellare in 2004 [13]. In the

method called BNN-IBS, a sender identified by 𝐼𝐷 generates a signature

(𝑅, 𝑌, 𝑧) to authenticate a message 𝑚 as follows:

Let 𝑃 be a generator point of the curve 𝐸(𝐹𝑝), 𝑟 a random

in 𝑍𝑝, 𝑥 the system private key, 𝑃0 = 𝑥𝑃 the public system

key, 𝑅 = 𝑟𝑃 the sender’s public key, 𝑐 = ℎ𝑎𝑠ℎ1(𝐼𝐷||𝑅),

and 𝑠 = 𝑟 + 𝑐𝑥 the sender’s private key. Then

● Pick a random 𝑦 ∈ 𝑍 and computes 𝑌 = 𝑦𝑃

● Compute 𝑧 = 𝑦 + ℎ𝑠

● where ℎ = ℎ𝑎𝑠ℎ2(𝐼𝐷, 𝑚, 𝑅, 𝑌).

● The signature on message 𝑚 is (𝑅, 𝑌, 𝑧).

In the verification phase, the receiver device does as follows:

● Computes ℎ = ℎ𝑎𝑠ℎ2(𝐼𝐷, 𝑚, 𝑅, 𝑌)

● Computes 𝑐 = ℎ𝑎𝑠ℎ1(𝐼𝐷||𝑅)

● Computes and verify whether 𝑧𝑃 = 𝑌 + ℎ(𝑅 + 𝑐𝑃0) holds

14 | Chapter 2. Literature review

If it holds, the message is accepted, otherwise, it is rejected.

The proposal in [14] claims to be more efficient than BNN-IBS. The

authors propose to build the signature like (𝑅, ℎ, 𝑧), reducing its size by

trading the ECC point 𝑌 for the scalar ℎ. In the verification phase is then

proposed to compute and verify the equality ℎ = ℎ𝑎𝑠ℎ2(𝐼𝐷, 𝑚, 𝑅, 𝑧𝑃 −

ℎ𝑅 − ℎ𝑐𝑃0).

In this thesis it is considered Bellare’s method (BNN-IBS) rather than the

one in [14]; however, a signature reduction is achieved as well. The

variant proposed herein is to build the signature like (𝑅, 𝑥𝑌, 𝑧), where

𝑥𝑌 is the affine coordinate of 𝑌. The procedure follows

● Pick a random 𝑦 ∈ 𝑍 and computes 𝑌 = 𝑦𝑃

● Compute 𝑧 = 𝑦 + ℎ𝑠

● where ℎ = ℎ𝑎𝑠ℎ2(𝐼𝐷, 𝑚, 𝑅, 𝑥𝑌).

The signature on message 𝑚 is (𝑅, 𝑥𝑌, 𝑧).

In the verification phase, the receiver device does as follows

● Computes ℎ = ℎ𝑎𝑠ℎ2(𝐼𝐷, 𝑚, 𝑅, 𝑥𝑌)

● Computes 𝑐 = ℎ𝑎𝑠ℎ1(𝐼𝐷||𝑅)

● Computes 𝑄 = 𝑧𝑃 − ℎ𝑅 − ℎ𝑐𝑃0

● Verify whether 𝑥𝑌 = 𝑥𝑄 holds

If it holds, the message is accepted, otherwise, it is rejected.

The operation to compute 𝑄 could be performed entirely in projective

coordinates having at the output the point (𝑋𝑄, 𝑌𝑄 , 𝑍𝑄). The use of

projective coordinates is preferred as it avoids a division operation to

compute the affine coordinates (see chapter 1). Thus, the equality

15 | Chapter 2. Literature review

verification 𝑥𝑌 = 𝑥𝑄 could be performed like 𝑥𝑌 · 𝑍𝑄 = 𝑋𝑄. Notice that

the 𝑌- coordinate is not needed, thus some computations can be saved

in the multiplication.

2.2 Side Channel Attacks

Side Channel Attacks (SCA) are techniques oriented to retrieve sensitive

information from cryptographic implementations in hardware devices.

SCA take advantage of physical properties in hardware devices like

power consumption, electromagnetic emanations or even the heat

dissipation while a cryptographic operation is being performed [15-17].

The non-invasive measurements of these variables make this kind of

attack a serious threat.

2.2.1 Side Channel Attacks

In a Simple Power Attack (SPA) the waveform of the power

consumption (or electromagnetic radiation) is analyzed. The operations

have a certain consumption pattern; it is, a multiplication of two

integers takes longer time and higher power than the exclusive OR, for

example. Also, if the target cryptographic primitive running is known,

then its operations flow could be deduced and sensitive information

could be extracted [18]. The Figure 2.1 shows an example of power

trace corresponding to the Binary Extended Euclidean Algorithm

(BEEA), where operations involving a secret are identified.

16 | Chapter 2. Literature review

Fig. 2.1 Power trace of a Binary Extended Euclidean Algorithm

implementation

2.2.2 Differential Power Analysis

The power consumption variates according to the data being

manipulated even in the same operation. It is, when a register is loaded

with 0xFF and its previous value was 0x00, the power related is not the

same as if it was loaded with 0x11, for example. This different lead to a

Differential Power Analysis, which is a statistical attack [15] [19].

2.2.3 Correlation Power Analysis

The Correlation Power Analysis introduced in [27] has the same basis as

DPA, however it employs (typically) the Pearson correlation between

the power measurements and a hypothesis of such consumption. CPA

is proven to be more effective considering noisy signals than DPA.

Figures 2.2 and 2.3 show examples of a CPA against a non-protected

cypher and a protected one. The peak on Fig. 2.2 reveals the correlation

among the assumption and the real value being computed, indicating

with high probability the disclosure of the secret.

17 | Chapter 2. Literature review

Fig. 2.2 Power trace of CPA against an unprotected AES implementation

Fig. 2.3 Power trace of CPA against a protected AES implementation

2.2.4 Template Attack

In electronic devices, under certain conditions, a power consumption

profile of some operations could be built in form of a template. With

this, an adversary might be able to extract sensitive data from a target

device by matching its power consumption with the computed

templates. Such procedure is known as a Template Attack (TA). This

18 | Chapter 2. Literature review

kind of attack was introduced by Chari et al. in [20], and it is considered

one of the strongest types of SCA so far. An ideal scenario to perform a

TA is to acquire both profiling and attack power traces from the same

device, in the same acquisition campaign. For this purpose, it is an

advantage to have a profiling operation similar to the target one, which

inputs and outputs could be controlled. Under such conditions the

power consumption characterization would be close to optimal.

2.2.5 Side Channel Attacks vs ECC

A few of SCA have been published addressing the ECC [21]. Point

multiplication is typically the target operation as it involves a secret,

thus the attacks aim at recovering it. PM is especially vulnerable to a

SPA if it is implemented using the straightforward doubling and adding

algorithm, as it can be seen in Figure 2.4.

Fig. 2.4 SPA on an unprotected Point Multiplication

Some of the countermeasures to overcome SPA make indistinguishable

the differences in Point Doublings (PD) and Point Additions (PADD) [22-

23].

19 | Chapter 2. Literature review

Also, DPA may target an ECC implementation as demonstrated in [24-

25]. The DPA involved in these works can be counteracted through the

randomization of the point coordinates, as determined by Coron in [26].

2.3 Residue Number System

2.3.1 Fundamentals

The Residue Number System is based on the Chinese Remainder

Theorem and it allows the representation of non-negative integers

through their remainders like

𝑥1 = 𝑋 𝑚𝑜𝑑 𝑏1

𝑥2 = 𝑋 𝑚𝑜𝑑 𝑏2

...

𝑥𝑛 = 𝑋 𝑚𝑜𝑑 𝑏𝑛

where the base 𝐵 = {𝑏1, 𝑏2, … , 𝑏𝑛} is a set of co-prime integers. Thus,

{𝑥1, 𝑥2, … , 𝑥𝑛} is the representation of 𝑋 in RNS. The dynamic range of

𝐵 is defined as its Least Common Multiple

𝐷𝑅𝐵 = {𝑏1 · 𝑏2 · 𝑏3 … · 𝑏𝑛} (2.1)

The basic operations (addition, subtraction and multiplication) between

two integers 𝑋 e 𝑌 represented in 𝑛-channels of RNS can be performed

like

{𝑐1, 𝑐2, … , 𝑐𝑛} = {𝑥1 ∘ 𝑦1, 𝑥2 ∘ 𝑦2, … , 𝑥𝑛 ∘ 𝑦𝑛} (2.2)

This implies that the computation can be parallelized, which implies an

advantage in the operation speed [28]. The Figure 2.5 shows a high level

block diagram of an RNS architecture.

20 | Chapter 2. Literature review

Fig. 2.5 RNS architecture

Before the computation, the integers have to be converted to RNS

domain. Some values can be precomputed offline in this process, thus

resulting a lightweight operation. In [29] more comprehensive details

can be consulted.

The result of the RNS computation should be back converted to binary.

This process is more complex than the previous one. Again, for more

details, reader is forwarded to [29].

2.3.2 RNS resiliency against Side Channel Attacks

The importance of RNS for efficient cryptographic implementations

have motivated the study of its resiliency against SCA. Researchers have

demonstrated that the parallel circuits performing same operation

make difficult an SCA [32-33]. Notice that, independent and isolated

power consumption measurements of a single RNS channel are

unfeasible to acquire. The rest of the channels perform the same

operation with different operands, at the same time, thus acting as a

significant source of noise. The common binary implementation on

secure devices, need to implement a source noise, typically in the form

of a random number generator.

21 | Chapter 2. Literature review

Moreover, SPA and DPA attacks are proven to be defeated in RNS if the

coordinates or the moduli set are randomized [34] [38-39]

2.3.3 The RNS coprocessor

RNS is a high-speed and efficient solution for large numbers

multiplication, being more efficient than conventional two’s

complement arithmetic. The ability to obtain moduli sets with several

channels results in high performance circuits, since each channel uses a

reduced number of bits. The parallelism of operations reduces the

latency of the system [30] [31].

In this work, we consider the RNS coprocessor described in [29] to

evaluate the ECC PM and MPM operations intended for authentication

schemes. The said coprocessor is a generic architecture, not exclusively

designed for ECC implementations, thus another cryptosystems (e.g.

RSA, ElGamal) could be implemented. Furthermore, the coprocessor

can be configured to work with several ECC curve sizes up to 1024 bits,

which perfectly fits the required standards for modern systems security.

The flexibility of this solution makes it unique in the available literature

[29].

The RNS coprocessor operates decoding a microcode sent from an

external MPU. The microcode set the operation code and the operands.

The data to be computed is also sent from the external MPU to the RNS

coprocessor through a different bus.

Montgomery multiplication in RNS

The modular multiplication in the core of the RNS coprocessor is

implemented following [35]. This is a RNS variant of the well-known

22 | Chapter 2. Literature review

Montgomery multiplication [36]. Montgomery introduced a more

efficient modular multiplication by trading 𝑚𝑜𝑑𝑢𝑙𝑜 𝑁 computations by

𝑚𝑜𝑑𝑢𝑙𝑜 𝐿, which allows more lightweight operations. In the RNS, 𝐿 is

the 𝐷𝑅𝐵, thus the modular reductions for each element 𝑥𝑖 are

computed following

𝑦𝑖 = 𝑥𝑖 𝑚𝑜𝑑 𝑏𝑖 (2.3)

Java emulator tool

An emulator and code generator for the coprocessor is presented in

[37]. The tool offers a suitable interface to evaluate several

cryptographic algorithms by coding them in Java. The relevance of this

tool is that generates the microcode and formatted data to configure

the coprocessor with the desired algorithm. The tool was used in this

work to program the Point Multiplication and Multiple Point

Multiplication algorithms evaluated. Annex A shows a picture of the

interface.

Security considerations

As previously said, this is a general purpose arithmetic coprocessor,

which is not specifically dedicated to cryptographic implementations,

thus it lacks security countermeasures against SCA. Because the

manipulated data is not masked in any sense, this should be considered

to prevent a CPA or a potential Template Attack. Also, the moduli set is

fixed in this version of the coprocessor, thus an alternative, based on

(2.3) is the randomization of the coordinates, which is mandatory to

avoid DPA.

23 | Chapter 2. Literature review

Additionally, the generation of the microcode for PM might lead to a

DPA like the one described in [24], which would apply in the external

processor side. Although this threat is identified herein, the protection

against SCA beyond the boundaries of the RNS processor is out of the

scope of this thesis.

2.4 Summary

In this chapter, some ECC-based certificate-less authentication schemes

were discussed. Bellare’s BNN-IBS is a suitable one as it can be adapted

to the RNS coprocessor without losing its efficiency. Moreover, this IBS

can be implemented in the RNS applying the SCA countermeasures for

a more complete protection.

A background of the state-of-the-art non-invasive physical attacks is

also given herein. The main SCAs that apply to ECC-based cryptographic

implementations, as quoted in some of the bibliography, can be

counteracted by using the RNS method.

Finally, the fundamentals of the RNS is provided, and its advantages for

the realization of cryptographic circuits are highlighted. A third-party

RNS coprocessor is used to evaluate the critical operation involved in

the authentication scheme.

The RNS coprocessor cannot compute divisions. This is an inconvenient

for the implementation of the authentication scheme, specifically to

provide the affine coordinates in the MPM operation (see chapter 4). In

the case of ECDSA, the method requires a modular inversion, and it

needs to be protected because a secret is manipulated. This issue

motivated the investigation on the next chapter.

24 | Chapter 2. Literature review

References

1. T. ElGamal. A Public Key Cryptosystem and a Signature Scheme

Based on Discrete Logarithms. Advances in Cryptology. CRYPTO

1984. Lecture Notes in Computer Science, 196, Springer, Berlin,

Heidelberg, 1984

2. Digital Signature Standard (DSS). Federal Information Processing

Standards Publication 186 (FIPS 186), National Institute of

Standards and Technology, 1994.

3. N. Koblitz. Elliptic curve cryptosystems. Mathematics of

Computation, 48, 203-209, 1987.

4. S. Vanstone. Responses to NIST’s Proposal. Communications of the

ACM, 35, July 1992.

5. P. T. Sharavanan, D. Sridharan, R. Kumar. A Privacy Preservation

Secure Cross Layer Protocol Design for IoT Based Wireless Body Area

Networks Using ECDSA Framework. J Med Syst, 42, 196, 2018.

6. E. Frimpong, A. Michalas. SeCon-NG: implementing a lightweight

cryptographic library based on ECDH and ECDSA for the

development of secure and privacy-preserving protocols in contiki-

NG. Proceedings of the 35th Annual ACM Symposium on Applied

Computing, New York, NY, USA, 2020.

7. A. Shamir. Identity-based cryptosystems and signature schemes.

Proceedings of Advances in Cryptology (CRYPTO ’84), Springer-

Verlag, 1984.

8. K. Ren, W. Lou, Y. Zhang. Multi-user broadcast authentication in

wireless sensor networks. Proceedings of SECON’07, IEEE, 2007.

9. B. Bloom. Space/time tradeoffs in hash coding with allowable

errors. Communications of ACM, 13, 422-426, 1970.

10. R.C. Merkle. A Certified Digital Signature. Proceedings of Advances

in Cryptology (CRYPTO ’89), Lecture Notes in Computer Science,

435, 218-238, 1990.

25 | Chapter 2. Literature review

11. S. Kyung-Ah, L. Young-Ran, P. Cheol-Min. EIBAS: An efficient

identity-based broadcast authentication scheme in wireless sensor

networks, Ad Hoc Networks, 11, 2013.

12. D. Jauvart, N. El Mrabet, J. J. A. Fournier, et al. Improving side-

channel attacks against pairing-based cryptography. J Cryptogr Eng

10, 1–16, 2020.

13. M. Bellare, C. Namprempre, G. Neven. Security proofs for identity

based identification and signature schemes. Proc. EUROCRYPT

2004, Springer-Verlag, 2004.

14. C. Xuefei, K. Weidong, D. Lanjun, Z. Bin. IMBAS: Identity-based

multi-user broadcast authentication in wireless sensor networks,

Computer Communications, Volume 31, Issue 4, 2008.

15. P. Kocher, J. Jaffe, B. Jun. Differential Power Analysis. Proceedings

of Crypto 1999, 1666, 398–412, Santa-Barbara, CA, USA, 1999.

16. D. Agrawal, B. Archambeault, J. Rao, P. Rohatgi. The EM Side-

Channel(s). Proceedings of CHES 2002, 2523, 29–45, Redwood City,

CA, USA, 2002.

17. J. Knechtel, O. Sinanoglu. On mitigation of side-channel attacks in

3D ICs: Decorrelating thermal patterns from power and activity.

54th ACM/EDAC/IEEE Design Automation Conference (DAC), Austin,

TX, 2017.

18. A. Cabrera Aldaya, R. Cuiman Márquez, A. Cabrera Sarmiento, S.

Sánchez Solano. Side-channel analysis of the modular inversion step

in the RSA key generation algorithm. I. J. Circuit Theory and

Applications, 45, 2017.

19. T. Messerges, E. Dabbish, R. Sloan. Investigation of power analysis

attacks on smartcards. Usenix Workshop on Smartcard Technology,

1999.

20. S. Chari, J. Rao, P. Rohatgi, Template Attacks. Cryptographic

Hardware and Embedded Systems - CHES 2002, Lecture Notes in

Computer Science 2523, Springer, Heidelberg, 2003.

26 | Chapter 2. Literature review

21. L. Tawalbeh, H. Houssain, T. Al-Somani. Review of Side Channel

Attacks and Countermeasures on ECC, RSA, and AES Cryptosystems.

Journal of Internet Technology and Secured Transaction, 6, 2017.

22. C. Clavier, M. Joye. Universal exponentiation algorithm – A first step

towards provable SPA-resistance. CHES 2001, 2162, 300–308, 2001.

23. D. Hankerson, A. J. Menezes, S. Vanstone. Guide to Elliptic Curve

Cryptography, 1, Springer-Verlag New York, Inc. 2004.

24. K. Itoh, T. Izu, M. Takenaka. Address-Bit Differential Power Analysis

of Cryptographic Schemes OK-ECDH and OK-ECDSA. CHES 2002,

LNCS 2523. Springer, Berlin, Heidelberg, 2002.

25. J. Fan, B. Gierlichs, F. Vercauteren. To Infinity and Beyond:

Combined Attack on ECC Using Points of Low Order. CHES 2011,

LNCS 6917, Springer, Berlin, Heidelberg, 2011.

26. J. Coron. Resistance against differential power analysis for elliptic

curve cryptosystems. CHES’99, LNCS 1717, 292–302, Springer,

Berlin, Heidelberg, 1999.

27. E. Brier, C. Clavier, and F. Olivier. Correlation power analysis with a

leakage model. CHES 2004, LNCS 3156, 16–29, Springer, Berlin,

Heidelberg, 2004.

28. N. Szabo, R. Tanaka. Residue Arithmetic and Its Applications to

computer Technology. McGraw-Hill. 1967.

29. P. Matutino, R. Chaves, L. Sousa. An Efficient Scalable RNS

Architecture for Large Dynamic Ranges. Journal of Signal Processing

Systems, 1–15, 2014.

30. A. A. Hiasat. VLSI implementation of new arithmetic residue to

binary decoders. IEEE Transactions on Very Large Scale Integration

Systems 13, 153–158, 2005.

31. A. Omondi, B. Premkumar. Residue Number Systems: Theory and

Implementation. Imperial College Press, London, UK, 2007.

32. H. Pettenghi, J. A. Ambrose, R. Chaves, L. Sousa. Method for

designing multi-channel RNS architectures to prevent power

27 | Chapter 2. Literature review

analysis SCA. IEEE International Symposium on Circuits and Systems

(ISCAS), Melbourne VIC, 2014.

33. J.C. Bajard, L. Imbert, P.Y. Liardet, and Y. Teglia. Leak resistant

arithmetic. CHES 2004, LNCS 3156, 16–29, Springer, Berlin,

Heidelberg, 2004.

34. J. Courtois, L. A. Abbas-Turki, J. C. Bajard: Evaluation of Resilience of

randomized RNS implementation. IACR Cryptology ePrint Archive,

9, 2018.

35. K. Posch, R. Posch. Modulo reduction in residue number systems.

IEEE Transactions on Parallel and Distributed Systems, 5, 449–454,

1995.

36. P. L. Montgomery. Modular Multiplication Without Trial Division.

Mathematics of Computation, 170, 519–521, 1985.

37. J. Araujo, P. M. Matutino, R. Chaves. Residue Number System

Hardware Emulator and Instructions Generator. 6th Conference on

Trustworthy Manufacturing and Utilization of Secure Devices

(TRUDEVICE 2016), 14-16, 2016.

38. G. Perin, L. Imbert, L. Torres and P. Maurine. Electromagnetic

Analysis on RSA Algorithm Based on RNS. Euromicro Conference on

Digital System Design, Los Alamitos, CA, 2013.

39. G. Perin, L. Imbert, P. Maurine, L. Torres. Vertical and horizontal

correlation attacks on RNS-based exponentiations. Journal of

Cryptographic Engineering, Springer, 5 (3), 171-185, 2015.

28 | Chapter 3. Modular inverse

3 Modular inverse

The need to give a solution to the division problem in RNS, and to

provide a secure mechanism for the nonce division in ECDSA, motivated

the study of the modular inversion methods. A discussion about some

representative examples of these algorithms is presented in this

chapter, with focus on their efficiency and security. From the conducted

study, and especially regarding the implementation security, two

contributions were achieved.

In the first place, regarding the method described in section 3.3, a

security analysis is provided which demonstrates potential

vulnerabilities of a straightforward implementation. In addition, a

contribution was done and formalized in a complementary work,

introducing a secure variant for the inversion modulo 2𝑘[19].

On the other hand, the Euclidean algorithm is presented in subsection

3.4, where a security discussion about an RNS variant is conducted. An

analysis considering the ECDSA inversion step as a mean to attack a

coexistent RSA is also provided herein. Moreover, in another

complementary work, it is introduced by the first time a Template

Attack against a protected Euclidean algorithm, which targets the RSA

key generation (See Annex B).

3.1 Introduction to modular inverse

In electronic devices that perform modular arithmetic, the division

operation 𝑐 = 𝑎/𝑏 𝑚𝑜𝑑 𝑝 is often solved through a modular inverse,

like 𝑐 = 𝑎 · 𝑖𝑛𝑣_𝑏 𝑚𝑜𝑑 𝑝. It is, instead of dividing by 𝑏, a modular

29 | Chapter 3. Modular inverse

multiplication is performed involving 𝑏’s multiplicative inverse (𝑖𝑛𝑣_𝑏),

where 𝑏 · 𝑖𝑛𝑣_𝑏 𝑚𝑜𝑑 𝑝 = 1 must hold.

Modular inverse is widely used in cryptography, and it is considered an

expensive operation. The projective to affine coordinates conversion in

ECC-based schemes require some modular inversions. Also, ECDSA

makes the modular inversion of a nonce, which indeed is a sensitive

value. Some multiplicative masking techniques also use this operation

[1]. The Montgomery multiplication, which is extensively used for multi-

precision operands, requires inversion as well [2].

In the remaining of this chapter some of the current state-of-the-art

methods to compute the modular inverse are presented. The selected

methods are considered among the most relevant ones for the sake of

this work.

3.2 Fermat’s Little Theorem (mod 𝑝𝑟𝑖𝑚𝑒)

A well-known method to solve the modular inverse is the algorithm

based on the Fermat’s Little Theorem (FLT), although it works only for

prime moduli [3]. The FLT states that, for any integer 𝑎 and prime

modulus 𝑝

𝑎𝑝 = 𝑎 (𝑚𝑜𝑑 𝑝) (3.1)

And from there, it turns out that

𝑎𝑝−2 = 𝑎−1 (𝑚𝑜𝑑 𝑝) (3.2)

In many hardware devices (even in resource constrained ones), the

modular inverse is performed as in 3.2, despite the exponential

complexity of that method. Maybe the developers choose FLT when the

30 | Chapter 3. Modular inverse

modulus is a secret because the state of the art of SCA-protected

exponentiations is well consolidated, as it is largely used in the RSA

computation.

Recent bibliography shows that FLT is not the best option to perform

modular inverse in residue arithmetic. In [4], a study was conducted to

evaluate the FLT performance in an RNS-based hardware

implementation. The comparison yielded that an RNS variant of FLT was

about six times slower than a similar variant of the Euclidean algorithm.

3.3 Modular inverse (mod 𝑝𝑘). The ModInverse algorithm

A few methods exist in the bibliography to obtain the inverse modulo

𝑝𝑘 [5], [6] and [7]. The particular case of the inversion modulo 2𝑘 is

quite useful to compute the Montgomery constant, which facilitates the

modular multiplication through the Montgomery’s method. The

Montgomery inversion is another known method which has a variant

(Almost Montgomery Inversion) that produces the modular inverse

multiplied by 2𝑘 [8]. The latter can be conveniently used to accelerate

the computation. However, in terms of efficiency, the algorithm 6.11

given in [9] seems to be a better option to compute the inverse modulo

2𝑘. It seems that a minimal careful implementation should avoid SCA

against this method. Its drawback is that it only works for modulo 2𝑘.

The ModInverse algorithm

The ModInverse algorithm in [7] was introduced by Koç in 2017. It is

particularly interesting for its efficiency and because it works for

modulo 𝑝𝑘, with any 𝑝 and any 𝑘, which makes it more flexible than the

previous similar methods.

31 | Chapter 3. Modular inverse

It seems there is not an RNS variant proposed for this algorithm so far.

Anyway, that topic is not in the scope of this work. For a future research

on that line, it should be considered that a straightforward

implementation of the original algorithm might be vulnerable to a

secret retrieval. A security analysis addressing this issue is provided in

the next subsection.

The assumptions to perform the computation by the ModInverse

method are:

● 𝑝 is a prime

● 𝑘 is a positive integer

● 𝑔𝑐𝑑(𝑎; 𝑝) = 1 (1 < 𝑎 < 𝑝𝑘)

The algorithm for modular inversions follows

Algorithm 3.1. ModInverse [mod 𝑝𝑘]

Input: 𝑎, 𝑝 and 𝑘; such that 𝑔𝑐𝑑 𝑔𝑐𝑑 (𝑎; 𝑝) = 1 and 𝑎 < 𝑝𝑘

Output: 𝑥 = 𝑎−1 𝑚𝑜𝑑 𝑝𝑘

1. 𝑐 = 𝑎−1 𝑚𝑜𝑑 𝑝

2. 𝑏0 = 1

3. 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑘 − 1

4. 𝑋𝑖 = 𝑐 · 𝑏𝑖 (𝑚𝑜𝑑 𝑝)

5. 𝑏𝑖+1 = (𝑏𝑖 − 𝑎 · 𝑋𝑖)/𝑝

6. 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥 = (𝑋𝑘−1 … … … 𝑋1 𝑋0)𝑝

The factor 𝑝 is usually a small number (commonly 2 or 3), thus the

computation at step 1 is expected to be easily performed. In fact, for

the case of 𝑝 = 2, the computation of 𝑐 is trivial.

32 | Chapter 3. Modular inverse

Special case 𝑝 = 2

The previous algorithm can be reduced for 𝑝 = 2. In that case, the

inverse computation requires that 𝑔𝑐𝑑(𝑎; 2𝑘) = 1, thus 𝑎 must be an

odd number and then 𝑐 = 1. The simplified algorithm for 𝑝 = 2 follows

Algorithm 3.2. ModInverse [mod 2𝑘]

Input: 𝑎 and 2𝑘; such that 𝑎 < 2𝑘 and 𝑎 is odd

Output: 𝑥 = 𝑎−1 𝑚𝑜𝑑 2𝑘

1. 𝑏0 = 1

2. 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑘 − 1

3. 𝑋𝑖 = 𝑏𝑖 𝑚𝑜𝑑 2

4. 𝑏𝑖+1 = (𝑏𝑖 − 𝑎 · 𝑋𝑖)/2

5. 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥 = (𝑋𝑘−1 … … … 𝑋1 𝑋0)2

From the previous algorithm one appreciates that the operation at step

3 is trivial, as it only requires checking the LSB of 𝑏𝑖. On the other hand,

the returned value in 𝑥 is binary.

3.3.1 Security analysis for 𝑝 = 2

In the following subsections we describe the two vulnerabilities found

in the algorithm under analysis, that impede a safe manipulation of the

sensitive data.

In a prospective RNS variant of ModInverse, those vulnerabilities could

be exploited to disclose the random moduli set 𝑀 =

(𝑚0, 𝑚1, … … … 𝑚𝑛), thus making the implementation susceptible to

SCA (see Chapter 3). Let us suppose the ModInverse is employed in the

Montgomery multiplication, specifically to compute the Montgomery

constants. Such constants are directly related to the RNS moduli set 𝑀,

33 | Chapter 3. Modular inverse

and they are computed like 𝑚𝑖 ’ = −𝑚𝑖
−1 𝑚𝑜𝑑 2𝑙, where 𝑙 is the

channel`s bit length.

In the RSA-CRT scheme, those constants are directly related to the

secret moduli 𝑝 and 𝑞, and they are computed like 𝑥’ = −𝑥−1 𝑚𝑜𝑑 2𝑘,

where 𝑘 is the bit length of the respective moduli and 𝑥 is either 𝑝 or 𝑞.

In [19] the author, describes this attack in an RSA-CRT scenario and gives

a secure variant of the ModInverse algorithm to counteract SPA and

Timing Attacks.

3.3.2 Asymmetric iterations

It is well known that an SPA allows to recover the secret 𝑘 from the

Square-and-Multiply method (𝑦 = 𝑔𝑘) due to a difference in the

operations performed whether 𝑘 = 0 or 𝑘 = 1. The Montgomery

ladder exponentiation solves that issue by always performing the same

operations disregarding the value of 𝑘 [10].

A similar issue has been detected in the inversion method under

analysis in this work. It allows a straightforward SPA, which leads to an

easy recovery of the operation result, and in consequence, the input

data is disclosed. As from the previous section, the modular inverse of

the input 𝑎, obtained through the algorithm 3.2 is formed by ______

𝑥 = (𝑋𝑘−1 … … … 𝑋1 𝑋0)2; where 𝑋𝑖 Є [0; 1]. Furthermore, the

intermediate result 𝑏𝑖 − 𝑎 · 𝑋𝑖 at step 4 is always divisible by 2. At step

4, besides the multiplication 𝑎 · 𝑋𝑖, two other operations can be

distinguished: a subtraction and a division by 2. The division can be

performed as right shift because the result of the subtraction is always

divisible by 2.

34 | Chapter 3. Modular inverse

Regarding the subtraction, this may or may not be computed. One can

see that if 𝑋𝑖 = 0, then 𝑎 · 𝑋𝑖 = 0, and then the subtraction 𝑏𝑖 − 𝑎 · 𝑋𝑖

becomes 𝑏𝑖 − 0. In a straightforward implementation of the original

algorithm, the developer may choose to obviate the subtraction if 𝑋𝑖 =

0. It is recalled that the original work does not refer to any SCA

protection to keep the input data safe, thus it is believed the author did

not consider a scenario with a secret input. If the subtraction is not

performed, a significant difference in the execution flow exists

depending on the 𝑋𝑖 value. In summary

𝑋𝑖 = 0 → 𝑏𝑖+1 = (𝑏𝑖 − 𝑎 · 0)/2 = 𝑏𝑖/2 and

𝑋𝑖 = 1 → 𝑏𝑖+1 = (𝑏𝑖 − 𝑎 · 1)/2 = 𝑏𝑖 − 𝑎/2

Such a data-dependent characteristic could be distinguished in a power

consumption trace of the algorithm execution. It would then lead to a

straightforward SPA where the modular inverse of the secret could be

directly recovered. Once the modular inverse is recovered, it is then

trivial to obtain the input by computing 𝑎 = 𝑥−1 𝑚𝑜𝑑 2𝑘. If 𝑎 was a

secret, as it is the case in the Montgomery constants computation (e.g.

for RNS-based ECC or even the RSA-CRT), this would imply a critical

security issue.

Nevertheless, the developer may choose a more regular

implementation by always computing the subtraction. In this case,

there are two possibilities: if 𝑋𝑖 = 0, the subtraction 𝑏𝑖 − 0 is

computed, meanwhile, if 𝑋𝑖 = 1, the operation computed is 𝑏𝑖 − 𝑎. In

the context of the Montgomery constants computation, from the

second iteration, the operands 𝑏𝑖 and 𝑎 are large integers. This makes

35 | Chapter 3. Modular inverse

the subtraction 𝑏𝑖 − 𝑎 highly susceptible of having lots of carry bits

propagation. This effect has a negative impact on the latency of the

additions/subtractions. While in 𝑏𝑖 − 0 the carry propagation is null, in

𝑏𝑖 − 𝑎 the carry propagation varies making that operation longer in

time. This should be enough to apply a successful Timing Attack to

distinguish one operation from the other, which directly lead to infer

the values of the related 𝑋𝑖.

3.3.3 Operations latency

The latency of the arithmetic operations is closely related to the data

length of the operands, especially in software implementations. In the

case of additions/subtractions, they both commonly require managing

a carry bit which is sequentially generated at each bit-bit operation.

Therefore, the carry chain is as long as the operands, and it determines

the whole operation latency.

Let us say, for example, that the evenness of an operand determines

the next operation where it will be involved, and the said operation

impacts on the operand’s bit length. If that quantity is further added or

subtracted from a constant value and this sequence is performed in a

loop, the addition/subtraction latency might experiment variations at

each iteration, as a consequence of the carry chain modification. If an

adversary is able to identify the additions/subtractions through an SPA

and measure those variations, then the operand’s evenness (its Least

Significant Bit - LSB -) might be traced back.

From the algorithm 3.2, one can see that the subtraction performed at

the step 4 depends on 𝑏𝑖 and 𝑎. The value of 𝑎 is invariant throughout

36 | Chapter 3. Modular inverse

the whole operation, while 𝑏𝑖 does varies. In fact, the value of 𝑏𝑖 is

strongly dependent on 𝑋𝑖. If 𝑋𝑖 = 0, then 𝑏𝑖+1, computed at iteration 𝑖,

yields 𝑏𝑖 = 2. For consecutive values of 𝑋𝑖 = 0, the respective 𝑏𝑖+1 are

always smaller by a factor of 2. On the other hand, considering 𝑎 < 0

(as required in the Montgomery constant computation), it can be

demonstrated that 𝑏𝑖+1, tends to 𝑎 for consecutive 𝑋𝑖 = 1.

Let’s have 𝑋𝑖 = 𝑋𝑖+1 = 1. The correspondent calculations of 𝑏𝑖 and 𝑏𝑖+1

follow

𝑏𝑖 =
𝑏𝑖−1

2
+

𝑎

2
 (3.3)

𝑏𝑖 =
𝑏𝑖−1

4
+

3𝑎

4
 (3.4)

According to the right side of the equation 3.4 and comparing it with

the right side of the equation 3.3, the subtrahend (which depends on 𝑎)

in 3.4 is greater and it approaches more to 𝑎. The minuend is halved

and tends to zero. Thus, it makes 𝑏𝑖+1 closer to the value of 𝑎 rather

than to 𝑏𝑖. Something similar occurs when 𝑋𝑖 = 0 and 𝑋𝑖+1 = 1.

In summary, it might be expected to observe in a power trace, a

continuous decreasing latency in the addition/subtraction for

consecutive iterations where 𝑋𝑖 = 0; while the latency would tend to

increase for continuous 𝑋𝑖 = 1 or even for transitions from 𝑋𝑖 = 0 to

𝑋𝑖+1 = 1.

The differences in the execution flow for 𝑋𝑖 = 0 and 𝑋𝑖+1 = 1 are

enough to perform an SPA on algorithm 2. Thus, a timing analysis for

this purpose is not necessary; however, in order to design a

37 | Chapter 3. Modular inverse

countermeasure to overcome such data-dependent vulnerability, the

issue on the operations timing has to be taken into account.

3.4 The Euclidean algorithm

A binary variant of the Euclidean algorithm, introduced in [11],

computes the greatest common divisor (GCD) of two integers. The

extended variant (BEEA, Binary Extended Euclidean Algorithm) gives in

addition, the inverse of one of the inputs modulo the other [12].

The Euclidean algorithm computes modular inversions by solving the

Bézout’s identity. This is:

(𝑢, 𝑣) = 𝐵𝐸𝐸𝐴(𝑎, 𝑚) where,

if 𝑢 · 𝑎 − 𝑣 · 𝑚 = 1, then

𝑢 =
1

𝑎
 𝑚𝑜𝑑 𝑚

The fact of working with prime and composite modulus, makes it quite

versatile. The BEEA can be used on the ECDSA (to compute the inverse

of the nonce 𝑘), which is maybe the most used ECC-based cryptosystem

so far. Furthermore, the binary variant of the Euclidean algorithm is a

suitable choice for hardware devices, as it substitutes the costly

divisions by shifts allowing more efficient circuits. Moreover, it was

recently demonstrated that a BEEA variant implementation performs

six times faster than FLT in processors based on the residue number

system [14].

In the remainder of this section, we will refer to a generic BEEA coded

as in the Alg. 3.3, which is its classical definition, giving two outputs: the

great common divisor of the inputs and the inverse of one of them [12].

38 | Chapter 3. Modular inverse

Algorithm 3.3 Binary Extended Euclidean Algorithm

Inputs: 𝑘 and 𝑝; where 𝑝 is a prime

Outputs: 𝐺𝐶𝐷(𝑘, 𝑝) and 𝑘𝑖𝑛𝑣 = 𝑘−1 𝑚𝑜𝑑 𝑝

1. 𝑢 = 𝑘

2. 𝑣 = 𝑝

3. 𝐴 = 𝐷 = 1

4. 𝐵 = 𝐶 = 0

5. 𝑤ℎ𝑖𝑙𝑒 𝑢 ≠ 0 𝑑𝑜

6. 𝑤ℎ𝑖𝑙𝑒 (𝑢 𝑖𝑠 𝑒𝑣𝑒𝑛)𝑑𝑜 − − − − − − − − − − − − u-loop

7. 𝑢 = 𝑢/2

8. 𝑖𝑓 (𝐴 𝑖𝑠 𝑒𝑣𝑒𝑛) 𝑎𝑛𝑑 (𝐵 𝑖𝑠 𝑒𝑣𝑒𝑛)

9. 𝐴 = 𝐴/2

10. 𝐵 = 𝐵/2

11. 𝑒𝑙𝑠𝑒

12. 𝐴 = (𝐴 + 𝑝)/2

13. 𝐵 = (𝐵 − 𝑘)/2 − − − − − − − − − − − end

14. 𝑤ℎ𝑖𝑙𝑒 (𝑣 𝑖𝑠 𝑒𝑣𝑒𝑛) 𝑑𝑜 − − − − − − − − − − − − v-loop

15. 𝑣 = 𝑣/2

16. 𝑖𝑓 (𝐶 𝑖𝑠 𝑒𝑣𝑒𝑛) 𝑎𝑛𝑑 (𝐷 𝑖𝑠 𝑒𝑣𝑒𝑛)

17. 𝐶 = 𝐶/2

18. 𝐷 = 𝐷/2

19. 𝑒𝑙𝑠𝑒

20. 𝐶 = (𝐶 + 𝑝)/2

21. 𝐷 = (𝐷 − 𝑘)/2 − − − − − − − − − − − end

22. 𝑖𝑓 𝑢 ≥ 𝑣

23. 𝑢 = 𝑢 − 𝑣

24. 𝐴 = 𝐴 − 𝐶

25. 𝐵 = 𝐵 − 𝐷

26. 𝑒𝑙𝑠𝑒

27. 𝑣 = 𝑣 − 𝑢

28. 𝐶 = 𝐶 − 𝐴

29. 𝐷 = 𝐷 − 𝐵

30. 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑣 = 𝐺𝐶𝐷(𝑘, 𝑝), 𝑘𝑖𝑛𝑣 = 𝐶 𝑚𝑜𝑑 𝑝)

39 | Chapter 3. Modular inverse

Notice that the oddness verification of the inputs is avoided for

simplicity. The algorithm is written following a notation correspondent

to the step of ECDSA where the nonce 𝑘 is inverted modulo 𝑝.

When computing the inverse of 𝑘 in ECDSA, like in the Alg. 3.3, the initial

flow of the instructions code could be inferred. Let us consider

𝐵𝐸𝐸𝐴(𝑘, 𝑝), where the ECC modulus is 𝑝 = {𝑝𝑛−1 … 𝑝1 𝑝0} and 𝑝0 is

the least significant byte. Because 𝑝 is a prime, the v-loop will never be

executed in the first iteration. However, in the first iteration, if 𝑘 is even,

the u-loop (steps 6 – 13) will be executed. Notice that 𝐴 = 1 at the

beginning, and that is enough condition to get into the ELSE branch of

the u-loop, right after the shift. In that case, the operations at steps 12

and 13 are executed. The u-loop will execute until 𝑢 gets odd. Once this

condition is true, the flow will continue through step 22.

3.4.1 Security aspects of BEEA implementation

A large bit length difference in BEEA inputs has been exploited in [16,

18] to predict the execution flow of the algorithm and extract sensitive

information. The countermeasures proposed so far, only focus on

making both operands the same size, or they directly mask the sensitive

input, to counteract such vulnerability.

The greatest common divisor is one of the outputs of the BEEA, thus, it

is equivalent to write 𝐺𝐶𝐷(𝑎, 𝑏) instead 𝐵𝐸𝐸𝐴(𝑎, 𝑏) to refer to such

output from the Alg. 3.3. In [16] two methods were patented to protect

the GCD from an SPA. The first one follows the property

𝐺𝐶𝐷(𝑋 − 1, 𝑒) = 𝐺𝐶𝐷(𝑋 − 1 + 𝑟 · 𝑒, 𝑒) (3.5)

40 | Chapter 3. Modular inverse

It consists on applying an additive masking to 𝑋 − 1, where 𝑋 is a secret

prime (𝑝 or 𝑞) in an RSA scheme, 𝑒 is the public key, and 𝑟 is random. If

𝑟 is a large nonce (e.g. 𝑠𝑖𝑧𝑒𝑜𝑓(𝑋) − 𝑠𝑖𝑧𝑒𝑜𝑓(𝑒)) then all the bits of the

secret get masked. In such a case, even if an adversary is able to follow

the complete algorithm flow, no relevant information will be disclosed.

Notice that, even assuming the case where an adversary obtains the

masked 𝑋′ = 𝑋 − 1 + 𝑟 · 𝑒 through an SPA, and 𝑋’ is reduced modulo

𝑒, still the brute force complexity to get 𝑋 would make the attack

unfeasible. This is true if considering the length of 𝑋 has been properly

chosen (e.g. ≥ 512 bits), and that 𝑠𝑖𝑧𝑒𝑜𝑓(𝑋) is much larger than the

𝑠𝑖𝑧𝑒𝑜𝑓(𝑒), which is the common scenario. The second method

introduced by Chartier in [16] relies on the property

𝐺𝐶𝐷(𝑋 − 1, 𝑒) = 𝐺𝐶𝐷(𝐺𝐶𝐷(𝑋 − 1, 𝑟 · 𝑒), 𝑒) (3.6)

In [1] and [17] the proposed countermeasure to protect the BEEA from

an SPA is based on the previous property as well. This countermeasure

ensures that both operands have the same bit length to avoid the

prediction of the execution flow. In this case, if the random number is a

large nonce, then the specific conditional branch the algorithm takes at

each iteration could not be guessed by an SPA on the power trace. This

removes the vulnerability exploited in [17].

The methods in equations 3.5 and 3.6 are originally intended to protect

the coprimality tests involving 𝑒 and 𝑝 and 𝑞 candidates in RSA, also to

protect the private key generation in the said cryptosystem. These

countermeasures can also be used to protect the modular inversion of

41 | Chapter 3. Modular inverse

the nonce in ECDSA, given the case that it is performed through the

Euclidean algorithm (𝐵𝐸𝐸𝐴(𝑘, 𝑝)).

However, although the masking technique in eq. 3.6 prevents a SPA, it

is highlighted that the secret is still manipulated in plaintext. This

implies a high risk if profiling attacks are considered.

3.4.2 Profiling in ECDSA to attack the RSA

The manipulation of the public modulus 𝑝 in plaintext in ECDSA, implies

a risk for the RSA, given the case that both cryptosystems are

implemented in the same device. As seen in Chapter 2, an operation

which inputs and outputs can be controlled, is a good target to mount

a Template Attack against a similar operation that manipulates a secret.

In ECDSA’s modular inversion performed following Alg. 3.3

(𝐵𝐸𝐸𝐴(𝑘, 𝑝)), when the nonce 𝑘 is even, the operation at step 12 (𝐴 =

(1 + 𝑝)/2) is executed second, during the first iteration. Meanwhile,

from the RSA key generation (𝐵𝐸𝐸𝐴(𝑒, 𝜑(𝑁))), a suitable attack point

for a TA could be the operation 𝐶 = (𝐶 + 𝜑(𝑁))/2, where 𝐶 = 0 in the

first iteration. The high similarities among both operations allow using

ECDSA to build a profile of its power consumption by choosing several

values of 𝑝. The obtained profile can be later used to conduct a TA

against an RSA key generation with the aim to disclose the secret 𝜑(𝑁)

while 𝐶 is being computed.

The previous observation along with the non-protected secret issue in

the masking method in 3.6 lead to formulate by the first time, a

Template Attack against a BEEA implementation, which is described in

Annex B.

42 | Chapter 3. Modular inverse

Finally, it can be ensured that, to implement a secure inversion step in

ECDSA and to avoid its use as a mean to attack a coexistent RSA, the

two countermeasures proposed by Chartier in [16] must be used.

Additionally, the multiplicative masking technique presented in [17]

would also avoid the TA described in Annex B.

3.4.3 RNS variant of BEEA

The plus-minus algorithm introduced in [15] is a variant of the Euclidean

method that avoids the large integer comparison (step 22 of Alg. 3.3).

This is very useful for RNS-based systems, because the non-positional

property of RNS makes difficult the comparisons. An extension of the

original plus-minus algorithm, presented in [13], employs a modulo 4

verification to substitute the comparison between 𝑢 and 𝑣. The plus-

minus relies on the fact that two numbers 𝑥 and 𝑦 are odd whether 𝑦 +

𝑥 or 𝑦 − 𝑥 is divisible by 4.

Recently, the plus-minus idea let the authors of [14] to introduce an RNS

variant of the Euclidean algorithm. The divisions by 2 and 4 were

substituted by multiplications using their respective modular inverses

(2−1 and 4−1). On the other hand, the large number comparison was

solved through a modulo 4 test. However, a modular reduction is also

expensive in RNS, thus the authors reduced the computation by

selecting all the elements 𝑚𝑖 in the moduli set as odd and such that

|𝑚𝑖|4 = 1.

The fact of imposing the |𝑚𝑖|4 = 1 restriction to all the elements 𝑚𝑖

reduces the amount of candidates for the moduli set to one quarter.

43 | Chapter 3. Modular inverse

This is contrary to the recommendation of having a random moduli set

for security, as seen in chapter 3.

Regarding the efficiency, in [14] the authors verified that their BEEA-

RNS variant runs 6 to 10 times faster than a FLT-RNS. However, in some

cases, the FLT can be safely implemented using precomputed data to

speed up the computation. One case could be the inverse of the nonce

𝑘 in the ECDSA signature generation, or the inverse of the projective

coordinate 𝑍 to calculate the affine 𝑥-coordinate in an ECC point

multiplication.

3.5 Conclusions

The ModInverse method

The novel Modinverse algorithm presented in [7] could be a suitable

choice for some systems, as it works for modulo 𝑝𝑘, with any 𝑝 and any

𝑘, which is a flexible property. Its particular case (mod 2𝑘) makes it quite

useful for the Montgomery multiplication. A prospective RNS variant of

this method should not be discarded, as it would make this algorithm

even more attractive. However, as discussed in this chapter, the

method has some vulnerabilities that should be taken into

consideration, as they impede a safe implementation to manipulate

secrets. The work in [19] solves this threat and constitutes a side

contribution of this thesis.

Euclid’s and Fermat’s methods

In this chapter, the fundamentals of the Euclidean algorithm have been

introduced. The RNS variant of the BEEA presented in [14],

44 | Chapter 3. Modular inverse

demonstrated to be faster than an RNS-based FLT; however, the

restrictions imposed to guarantee an efficient computation imply a

potential risk, because the moduli set cannot be fully randomized.

Therefore, a tradeoff solution should be found. An RNS-based FLT using

precomputed data to speed up the calculations could be such an

intermediate solution if the base, the exponent and the moduli set are

randomized.

On the other hand, from the conducted analysis considering potential

risks to other cryptosystems, it is suggested to apply further

countermeasures in the BEEA implementation, to protect both the

ECDSA and a coexistent RSA. The feasibility of a Template Attack to a

partially protected BEEA implementation is demonstrated in Annex B.

This contribution confirms the theoretical analysis regarding a BEEA

implementation vulnerability.

45 | Chapter 3. Modular inverse

References

1. D. Galindo, J. Großschädl, Z. Liu, P.K. Vadnala, S. Vivek.

Implementation of a leakage resilient ElGamal key encapsulation

mechanism. Journal of Cryptographic Engineering, 6(3), 229-238,

2016.

2. P. L. Montgomery. Modular multiplication without trial division.

Math. Comput., 44, 519–521. 1985.

3. M. Liskov. Fermat’s little theorem. Encyclopedia of Cryptography

and Security. Springer, Boston, MA, 2005.

4. K. Bigou, A. Tisserand. Improving modular inversion in RNS using the

plus-minus method. CHES 2013, LNCS 8086, Springer, Heidelberg,

2013.

5. S. R. Dussé, B. S. Kaliski Jr. A cryptographic library for the Motorola

DSP56000. Advances in Cryptology – EUROCRYPT 90, Springer, 230-

244, 1990.

6. O. Arazi, H. Qi. On calculating multiplicative inverses modulo 2m.

IEEE Transactions on Computers 57(10), 1435–1438, 2008.

7. Çetin Kaya Koç, A New Algorithm for Inversion mod pk. IACR

Cryptology ePrint Archive, 2017

8. B.S.Kaliski Jr., The Montgomery inverse and its applications. IEEE

Transactions on Computers 44(8), 1064–1065; 1995.

9. T. St. Denis, G. Rose. Modular Reduction. BigNum Math:

implementing cryptographic multiple precision arithmetic, Syngress

Publishing, Rockland, USA, 2006.

10. P. L. Montgomery. Speeding the Pollard and elliptic curve methods

of factorization. Math. Comput. 48, 243–264, 1987.

11. J. Stein. Computational problems associated with Racah algebra. J.

Comput. Phys. 1(3), 397–405, 1967.

12. D. E. Knuth. The Art of Computer Programming, Seminumerical

Algorithms, 2(3), Addison-Wesley Longman Publishing Co., Boston,

MA, USA, 1997.

46 | Chapter 3. Modular inverse

13. J. -P. Deschamps, G. Sutter. Hardware implementation of finite-field

division. Acta Applicandae Mathematicae 93(1-3), 119–147, 2006.

14. B K. Bigou, A. Tisserand. Improving modular inversion in RNS using

the plus-minus method. CHES 2013, LNCS 8086, Springer,

Heidelberg, 2013.

15. R. P. Brent, H. T. Kung. Systolic VLSI arrays for polynomial GCD

computation. IEEE Transactions on Computers, 33(8), 731-736,

1984.

16. M. Chartier. Method to protect a binary GCD computation against

SPA attacks. Patent WO/2013/092265, Gemalto S.A. 2013.

17. A. Cabrera Aldaya, A. Cabrera Sarmiento, S. Sánchez-Solano. SPA

vulnerabilities of the binary extended Euclidean algorithm. Journal

of Cryptographic Engineering 7(4), 273–285, 2016.

18. A. Cabrera Aldaya, R. Cuiman Márquez, A. Cabrera Sarmiento, S.

Sánchez Solano. Side-channel analysis of the modular inversion step

in the RSA key generation algorithm. I. J. Circuit Theory and

Applications, 45, 2017

19. S. de la Fé, C. Ferrer. A Secure algorithm for inversion modulo 2k.

Cryptography 2(3), 23, 2018.

47 | Chapter 4. ECC operations in the RNS coprocessor

4 ECC operations in the RNS

coprocessor

In this chapter, the most critical elliptic curve operations involved in the

ECC-based signature schemes are treated. The point multiplication (PM)

and the multiple point multiplication (MPM) are considered critical

operations as they both demand either a highly secure implementation

or large computational resources.

An emphasis is made in the mechanisms adopted to guarantee the

security against SCA, considering that these operations are computed

by a general-purpose arithmetic coprocessor. There is also a focus on

the algorithmic optimization of the ECC operations that lead to improve

the signature generation/verification performance. The scope of this

work is limited to the RNS coprocessor, therefore it is not considered

herein the security of the external processor that feeds data and micro-

codes to the RNS coprocessor.

4.1 Secure Point Multiplication

The last steps of the signature verification in ECDSA and BNN-IBS

methods involve an ECC point comparison, which can be done by

comparing only the 𝑥-coordinates (see chapter 2). Also, the signature

generation in the said schemes, only needs for the 𝑥-coordinate of the

curve generator point. This allows to implement the respective PM and

MPM without computing the final 𝑦-coordinate. Therefore, in ECDSA

and BNN-IBS, some modular multiplications can be saved. The

48 | Chapter 4. ECC operations in the RNS coprocessor

expensive RNS-to-binary conversion of the non-needed 𝑦-coordinate

can also be saved in both PM and MPM.

In the sequel, some references are made to M, S and I to denote the

computational cost of field multiplications, squaring and inversions,

respectively. Similarly, MM is used to denote the modular

multiplications performed by the RNS coprocessor described in the

chapter 3.

A more efficient PM performance can be obtained by using pre-

computed data and techniques based on signed integer representation

[8]. Those approaches need for more non-volatile memory space and

further SCA countermeasures, to store, randomize and update the

precomputed data. For some low power and memory constrained

devices this might not be a suitable choice. Throughout this subsection

we obviate such methods.

4.1.1 Random coordinates

One of the potential vulnerabilities identified in the RNS coprocessor

(see chapter 3) is that it does not randomize the moduli set. This allows

an adversary to perform a correlation attack against the PM to extract

the bits of the secret scalar. The moduli set randomization acts as an

input blinding technique; therefore, we directly randomize the

generator point coordinates to achieve the same effect and counteract

such correlation attacks.

Based on the ECC points property of having 𝑛 representatives in 𝑛 𝑍-

planes, the generator point is randomized before manipulating the

scalar bits. Nevertheless, depending on the security level required, the

49 | Chapter 4. ECC operations in the RNS coprocessor

intermediate results might also be randomized multiple times during

the PM with a negligible cost. The new Jacobian projective coordinates

are computed as follows

● Generate a random number 𝑟𝑛𝑑

● 𝑋’ = 𝑟𝑛𝑑2 · 𝑋(𝑚𝑜𝑑 𝑁)

● 𝑌’ = 𝑟𝑛𝑑3 · 𝑌(𝑚𝑜𝑑 𝑁)

● 𝑍’ = 𝑟𝑛𝑑 · 𝑍(𝑚𝑜𝑑 𝑁)

4.1.2 Montgomery ladder with (X, Y)-only variant

The co-Z addition

Meloni introduced in [1] a reduced addition technique for different

points sharing the same 𝑍-coordinate, which can be described as

follows:

Let 𝑃 = (𝑋1, 𝑌1, 𝑍) and 𝑄 = (𝑋2, 𝑌2, 𝑍) be two points

on the same curve in the same 𝑍-plane. The addition

𝑃 + 𝑄 = (𝑋3, 𝑌3, 𝑍3) can be computed through

𝑋3 = (𝑌2 − 𝑌1)2 − (𝑋2 − 𝑋1)3 − 2𝑋1(𝑋2 − 𝑋1)2

𝑌3 = (𝑌2 − 𝑌1)(𝑋1(𝑋2 − 𝑋1)2 − 𝑋3) − 𝑌1(𝑋2 − 𝑋1)3

𝑍3 = 𝑍(𝑋2 − 𝑋1) (4.1)

Notice that, as part of the point addition, a quantity 𝑍(𝑋2 − 𝑋1) is

obtained, and also the intermediate values 𝑋1(𝑋2 − 𝑋1)2 and 𝑌1(𝑋2 −

𝑋1)3. This clearly reveals a representative (𝑃’) of the point 𝑃 with the

same 𝑍-coordinate of (𝑃 + 𝑄), where the new 𝑃′ = (𝜆2𝑋1, 𝜆3𝑌1, 𝜆𝑍),

with 𝜆 = (𝑋2 − 𝑋1). This, in fact, was the key observation of Meloni, as

it allows to perform chained ZADD (co-𝑍 addition) to solve a point

multiplication more efficiently.

50 | Chapter 4. ECC operations in the RNS coprocessor

ZADD’s cost is 5M + 2S and it requires only 6 field registers. Because the

RNS coprocessor performs only modular multiplications, 7MM are

counted to complete the ZADD.

Hereinafter, reference is made to ZADD instead of ZADDU to be aligned

with the notation in [2], because a few references are made to that

work. The same happens with the rest of the algorithms from [2]

mentioned below.

The conjugate addition

Goundar et al. introduced the co-Z conjugate addition (ZADDC) in [2].

The operation yields the points 𝑅 = 𝑄 + 𝑃 and 𝑆 = 𝑄 − 𝑃, from two

points 𝑃 = (𝑋1, 𝑌1, 𝑍) and 𝑄 = (𝑋2, 𝑌2, 𝑍) which share the same 𝑍-

coordinate. The cost of ZADDC is 6M + 3S (9MM) and it requires 7 field

registers.

Moreover, the resultant points 𝑅 and 𝑆 do share the same 𝑍-coordinate

as well. From these results, it is easy to see that a further addition 𝑅 +

𝑆 = 2𝑄, along with the intermediate result 𝑄 + 𝑃, correspond both to

the per bit operations to perform a point multiplication (𝑄 = 𝑘 · 𝑃)

through a well-known method: Montgomery ladder.

Co-Z Montgomery ladder

The mentioned authors realized that the Montgomery ladder main loop

could be written in terms of the ZADDC and the ZADDU operations.

Considering the points 𝑃 and 𝑄 are manipulated from the point

registers 𝑅𝑏 and 𝑅1−𝑏 , where the sub-index 𝑏 denotes the current bit

value of the scalar, and 𝑇 is a temporary register, the main loop

evaluates

51 | Chapter 4. ECC operations in the RNS coprocessor

 (𝑅1−𝑏; 𝑇) ← 𝑍𝐴𝐷𝐷𝐶(𝑅𝑏; 𝑅1−𝑏), followed by

 (𝑅𝑏; 𝑅1−𝑏) ← 𝑍𝐴𝐷𝐷𝑈(𝑅1−𝑏; 𝑇)

The total cost of the operations into the Montgomery ladder loop is

𝑛(11M + 5S), which are 𝑛(16MM) in the RNS coprocessor, where 𝑛 =

𝑠𝑖𝑧𝑒𝑜𝑓(𝑘) − 1 expressed in bits.

In [3] the authors had noticed that the 𝑍-coordinate was not used in

ZADDU and ZADDC. That observation motivated a more efficient variant

of the co-Z Montgomery ladder. The new variant is based on the

combination of ZADDU and ZADDC algorithms but removing the

computation of the 𝑍-coordinate. Such coordinate is only recovered at

the end, out of the main loop. This enhances the PM performance by

reducing two modular multiplications at every loop iteration in the

Montgomery ladder. The respective operations without handling the

third coordinate are denoted by ZADDU’ and ZADDC’. This contribution

is remarkable, even despite the further calculations needed to recover

the 𝑍-coordinate.

In a step beyond in [2], the new ZADDU’ and ZADDC’ were combined

following

(𝑅𝑘0
; 𝑅1−𝑘0

) ← 𝑍𝐴𝐷𝐷𝐶′(𝑍𝐴𝐷𝐷𝑈′(𝑅𝑘0
; 𝑅1−𝑘0

)) (4.2)

to obtain a single operation: ZACAU’, which trades 1M by 1S and saves

one field register as its main advantages. ZACAU’ performs 14MM in the

main loop.

52 | Chapter 4. ECC operations in the RNS coprocessor

In this new variant of Montgomery ladder using ZACCAU’, the scalar’s

LSB is separately (out of the loop) processed to recover the 𝑍-

coordinate.

The same work also proposes a slightly more efficient algorithm (ZDAU’)

which saves 10MM from the overall computation in respect to ZACAU’.

ZDAU’ follows the same principle of doubling-adding by mean of

ZADDU’ and ZADDC’. The key difference is that ZDAU’ makes use of

signed scalar. This method requires a sign inversion (𝑅1 ← (−𝑅1)) for

certain combinations of the scalar bits. Such irregularity should be

carefully managed, as it can be distinguished and exploited in a SCA.

4.1.3 Co-Z Montgomery ladder in the RNS coprocessor

To trade a field multiplication by a field square as it is done in ZACAU’

variant, does not represent any advantage in the RNS coprocessor,

because it performs both operations with the same computational cost,

as mentioned in the chapter 3. Besides, ZACAU’ occupies more memory

to store the operation microcode for the coprocessor. It is, the

Montgomery ladder main loop, considering a variant like

ZADDC’/ZADDU’, requires 24+13 microcode operations, while for the

ZACAU’ variant, another 46 should be added. But what it is more

important, the ZACAU’ algorithm, once the register allocation is done

(see line 44 of Alg. 26 in [2]), has an operation that exceeds the bounds

of the dynamic range in the RNS coprocessor. This fact impedes the use

of the algorithm in the RNS coprocessor.

On the other hand, the ZDAU’ algorithm might not represent a

significant improvement to justify the potential vulnerability of the

53 | Chapter 4. ECC operations in the RNS coprocessor

irregular sign inversion it requires. ZDAU’ outperforms ZACAU’ by only

10MM. A PM involving a 256-bits scalar, which is a common scalar size,

needs an amount of 3584MM in the main loop of both algorithms. This

figure makes a 10MM difference almost negligible. Besides, the RNS

coprocessor cannot perform conditional instructions, therefore the

point inversion should be explicitly coded. This fact would be easily

recognized in the microcode and it could leak information about the

scalar bits being computed.

To avoid the previous issues, this work adopts the approach based on

the Montgomery ladder (Alg. 15 in [2]). However, the pair

ZADDC’/ZADDU’ with the 𝑋, 𝑌-only variant is used, instead of ZACCAU’.

The 𝑍-coordinate is recovered once the main loop is completed. By this

way, we can access to the outputs of the ZADDC’ algorithm when 𝑘0 is

being processed (out of the loop), to effectively recover the third

coordinate. Moreover, the ECC generator point is randomized,

following section 4.1.1, previous to the manipulation of the scalar bits.

The reduced PM follows the Algorithm 4.1.

Because in the signature schemes in the scope of this work, the affine

𝑦-coordinate is not used, the Alg. 4.1 can save some operations. In

ZADDU’ the last five field operations are dedicated to compute the

projective 𝑌-coordinates of the output points (see Alg. 19 in [2]). These

operations are not necessary when the point addition procedure is

invoked in the step 11 of the Alg. 4.1. The reduced algorithm for the

last point addition is denoted by rZADDU’. A total of 5 operations,

including 2MM are reduced. Furthermore, there is no need to convert

from RNS to binary the resultant 𝑦-coordinate, as it is not computed.

54 | Chapter 4. ECC operations in the RNS coprocessor

Algorithm 4.1 Reduced Co-Z Montgomery ladder

Input: 𝑃 = (𝑥𝑃; 𝑦𝑃) ∈ 𝐸(𝐹𝑞); 𝑟𝑛𝑑 ∈ 𝑁; and (𝑘𝑛−1; … 𝑘1;𝑘0) such that

𝑘𝑛−1 = 1

Output: 𝑄 = 𝑘 · 𝑃

1. (𝑅1, 𝑅0) ← 𝐷𝐵𝐿𝑈′(𝑃)

2. (𝑅1, 𝑅0) ← 𝑅𝑎𝑛𝑑(𝑅1, 𝑅0, 𝑟𝑛𝑑)

3. 𝑓𝑜𝑟 𝑖 = 𝑛 − 2 𝑑𝑜𝑤𝑛𝑡𝑜 1 do

4. 𝑏 ← 𝑘𝑖

5. (𝑅1−𝑏 , 𝑅𝑏) ← 𝑍𝐴𝐷𝐷𝐶′(𝑅𝑏 , 𝑅1−𝑏)

6. (𝑅𝑏 , 𝑅1−𝑏) ← 𝑍𝐴𝐷𝐷𝑈′(𝑅1−𝑏, 𝑅𝑏)

7. 𝑒𝑛𝑑 𝑓𝑜𝑟

8. 𝑏 ← 𝑘0

9. (𝑅1−𝑏 , 𝑅𝑏) ← 𝑍𝐴𝐷𝐷𝐶′(𝑅𝑏 , 𝑅1−𝑏)

10. 𝑍 = 𝑥𝑃𝑌(𝑅𝑏)(𝑋(𝑅0) − 𝑋(𝑅1))

11. 𝜆 = 𝑦𝑃𝑋(𝑅𝑏)

12. (𝑅𝑏, 𝑅1−𝑏) ← 𝑟𝑍𝐴𝐷𝐷𝑈′(𝑅1−𝑏 , 𝑅𝑏)

13. 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥𝑄 = (
𝑍

𝜆
)

2

𝑋(𝑅0)

This approach outperforms the results in [4] and [5], which propose

both a main loop with 20MM per bit of the scalar. Although in these

works the PM is performed by mean of the 𝑥-only Montgomery ladder

variant, and our proposal adds the 𝑦-coordinate too, the overhead of

the binary-to-RNS conversion assumed by our approach, is negligible

when the main loops in both variants are compared [6]. See the Table

4.1 for a detailed comparison.

55 | Chapter 4. ECC operations in the RNS coprocessor

Table 4.1. Comparison of SCA-protected point multiplication algorithms

Regular PM methods # regs. Total cost in RNS

[2] (𝑋, 𝑌)-only co-Z
Montgomery ladder
(ZACAU’)

6 𝑛(14MM) + 8MM + 1I

[4] 𝑥-only Montgomery
ladder in RNS1

13 𝑛(20MM) + 1I

[5] 𝑥-only Montgomery
ladder in RNS1

n/a 𝑛(20MM) + 1I

This work (𝑋, 𝑌)-only
reduced co-Z
Montgomery ladder
(ZADDU’/ZADDC’)

6 𝑛(14MM) + 4MM + 1I

1 Considering the cost of computing only the affine 𝑥-coordinate
2 n: number of scalar bits

The following steps summarize the procedure to perform a point

multiplication, following our reduced co-Z Montgomery ladder, in the

RNS coprocessor

● Convert ECC parameters (𝑎, 𝑏) and 𝑥- and 𝑦-coordinates from

binary to RNS

● Represent 𝑎, 𝑏 and 𝑥- and 𝑦-coordinates in the Montgomery

domain

● Perform the PM following the Alg. 4.1

● Convert 𝑥𝑄 from Montgomery domain to the original domain

● Convert 𝑥𝑄 from RNS to binary

4.1.4 Masked registers against SCA in Point Multiplication

In the Alg. 4.1, into the loop, the manipulation of the registers 𝑅0 and

𝑅1 by ZADDC’ and ZADDU’ depend directly on the current bit of the

56 | Chapter 4. ECC operations in the RNS coprocessor

secret scalar that is being evaluated. Such dependency could be easily

exploited by a SCA.

The straightforward variant to perform a PM in the RNS coprocessor is

to use two separate microcode sets: one for 𝑘 = 0 and the other for

𝑘 = 1, as it can be seen in the Figure 4.1. From the figure, the

correspondence among the scalar bits and the registers denoted by

0x15 and 0x17 can be easily noted.

One effective technique to counteract this threat is to apply a random

mask to the sensitive data. A masking countermeasure is strongly

recommended to protect the microcode. Notice that the parallelism of

the RNS channels operation, which give resilience against the SCA, does

not protect the microcode load onto the RNS processor.

Figure 4.1. Section of two microcode sets (𝑘 = 1 and 𝑘 = 0) for a ZADDC’

implementation in the RNS coprocessor

57 | Chapter 4. ECC operations in the RNS coprocessor

4.2 Multiple Point Multiplication

Multiple Point Multiplication is the main operation in the verification

phase of ECC-based signature schemes. As there is no secret disclosure

risk when performing MPM, some techniques apply for a faster

computation, like Shamir’s trick and Interleaving [7-8]. Such techniques

are mainly based in the use of precomputed values instead of doing

straightforward calculation.

Precomputation-based techniques for MPM are more efficient than a

double PM but still require a heavy computation. In this section the

implementation of MPM in the RNS coprocessor is discussed.

4.2.1 Interleaving with NAF

Interleaving is a technique to speed up both PM and MPM, through the

use of precomputed values. The combination of Interleaving with Non

Adjacent Form (NAF) improves the performance of the computation.

NAF allows the representation of scalars in a way that maximizes the

number of zeroes, while using negative elements. In [8] a

comprehensive explanation of Interleaving and NAF is provided.

In the Table 3.6 in [8], Interleaving using NAF arises as one of the more

efficient methods in terms of computational speed and storage to

perform a MPM.

From the Alg. 4.2, in line 9, it is easy to see that the whole loop is

omitted when the evaluated bits of the scalars are all zeroes. The

advantage of the NAF relies just there, in placing as much zeroes as

possible, to reduce the computational effort.

58 | Chapter 4. ECC operations in the RNS coprocessor

Algorithm 4.2 Interleaving with NAF

Input: v, 𝑘𝑗 , 𝑤𝑗 and ECC points 𝑃𝑗; such that 1 ≤ 𝑗 ≤ 𝑣

Output: ∑ 𝑘𝑗𝑃𝑗
𝑣
𝑗=1

1. Compute 𝑖𝑃𝑗 𝑓𝑜𝑟 𝑖 ∈ {1, 3, … , 2𝑤𝑗−1 − 1}

2. Compute 𝑁𝐴𝐹𝑤𝑗
(𝑘𝑗) = ∑ 𝑘𝑗

𝑗
2𝑖𝑙𝑗−1

𝑖=0

3. 𝐿𝑒𝑡 𝑙 = 𝑚𝑎𝑥 {𝑙𝑗: 1 ≤ 𝑗 ≤ 𝑣}

4. 𝐷𝑒𝑓𝑖𝑛𝑒 𝑘𝑖
𝑗

= 0 𝑓𝑜𝑟 𝑙𝑗 ≤ 𝑖 < 𝑙, 1 ≤ 𝑗 ≤ 𝑣

5. 𝑄 ← ∞

6. 𝑓𝑜𝑟 𝑖 = 𝑙 − 1 𝑑𝑜𝑤𝑛𝑡𝑜 0 𝑑𝑜

7. 𝑄 ← 2𝑄

8. 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑣 𝑑𝑜

9. 𝑖𝑓 𝑘𝑖
𝑗

≠ 0 𝑡ℎ𝑒𝑛

10. 𝑖𝑓 𝑘𝑖
𝑗

> 0 𝑡ℎ𝑒𝑛 𝑄 ← 𝑄 + 𝑘𝑖
𝑗
𝑃𝑗

11. 𝑒𝑙𝑠𝑒 𝑄 ← 𝑄 − 𝑘𝑖
𝑗
𝑃𝑗

12. 𝑟𝑒𝑡𝑢𝑟𝑛 𝑄

4.2.2 Composite operations for Interleaving

Longa and Miri improved the performance of some ECC operations in

[9], including the reduction of the successive Point Doublings (PD) to

3M plus 5S (8MM in the RNS coprocessor). On the other hand, the

authors demonstrated in [10] the feasibility of fixing 𝑎 = −3 in some

ECC curves, with which the PD can be reduced as in [9]. The cost of the

standard PD in Jacobian coordinates is 10MM.

Longa and Miri also developed a method to improve the computation

of 𝑑𝑃 + 𝑄 which is a recurrent and critical operation for PM and MPM

[11]. The researchers were based on Meloni’s finding about the co-Z

Point Addition (ZADD), which is more efficient than the general addition

[1]. Their key observation was to recognize an equivalent

representation of 𝑃 from the computation of 𝑃 + 𝑄 at no extra cost.

59 | Chapter 4. ECC operations in the RNS coprocessor

Let 𝑃 = (𝑋1, 𝑌1, 𝑍1) and 𝑄 = (𝑋2, 𝑌2) be two points on

the same ECC curve. The operation 𝑃 + 𝑄 = (𝑋3, 𝑌3, 𝑍3)

is performed as a mixed Jacobian – affine following

𝑋3 = 4(𝑍1
3𝑌2 − 𝑌1)2 − 4(𝑍1

2𝑋2 − 𝑋1)3 − 8𝑋1(𝑍1
2𝑋2 − 𝑋1)2

𝑌3 = 2(𝑍1
3𝑌2 − 𝑌1)(4𝑋1(𝑍1

2𝑋2 − 𝑋1)2 − 𝑋3) − 8𝑌1(𝑍1
2𝑋2 − 𝑋1)3

𝑍3 = 2𝑍1(𝑍1
2𝑋2 − 𝑋1) (4.3)

𝑃′ = (𝑋′, 𝑌′, 𝑍′) = 4𝑋1(𝑍1
2𝑋2 − 𝑋1)2, 8𝑌1(𝑍1

2𝑋2 − 𝑋1)3, 2𝑍1(𝑍1
2𝑋2 −

𝑋1) is obtained from the intermediate calculations in (4.3) and it is a

representative of the point 𝑃. Recall that an ECC point 𝑃′ = (𝑋′, 𝑌′, 𝑍′)

is a representative of 𝑃 = (𝑋, 𝑌, 𝑍) if (𝑋′, 𝑌′, 𝑍′) = (𝜆2𝑋, 𝜆3𝑌, 𝜆𝑍).

Notice that 𝜆 = 2(𝑍1
2𝑋2 − 𝑋1) in 𝑃′.

Based on this, Longa and Miri proposed the computation 𝑑𝑃 + 𝑄 =

𝑃 + 𝑃 … + (𝑃 + 𝑄), where 𝑑 is a small integer. (𝑃 + 𝑄) is computed

first as a Mixed-Affine Point Addition (MA-PADD), and the result is

computed backwards using ZADDs with every (updated) 𝑃.

In a step beyond, the researchers defined a joint operation for the case

2𝑃 + 𝑄 [11]. The cost of the standard operation would be 1PD + 1MA-

PADD = 10MM + 11MM. The improved operation is computed with only

18MM through an Unified Addition (UADD) of 𝑃 + 𝑃 + 𝑄.

Note that an implementation of the Alg. 4.2 may include 2𝑃 + 𝑄 in the

lines 10 and 11, therefore, UADD leads to a significant reduction of the

computation in the MPM.

60 | Chapter 4. ECC operations in the RNS coprocessor

4.2.3 MPM implementation in the RNS coprocessor

The MPM was evaluated in the RNS coprocessor for the signature

verification stage of ECDSA and BNN-IBS. In both implementations, the

improvements on 2𝑃 + 𝑄 proposed in [11] were used. The scalars were

transformed through NAF according to the coprocessor’s resources

available.

ECDSA

The MPM in ECDSA is like 𝑢𝑃 + 𝑣𝑄, thus it requires precomputed values

derived from two ECC points in affine coordinates. A 4-NAF

transformation was applied to the scalars, therefore the points

𝑃, 3𝑃, 5𝑃, 7𝑃, 𝑄, 3𝑄, 5𝑄, 7𝑄 and their respective negatives in affine

coordinates were used, occupying all the 64 registers of the

coprocessor. On the other hand, the strategy to compute the combined

multiplication was implemented following

𝑖𝑓 (𝑢𝑖 ≠ 0 𝑎𝑛𝑑 𝑣𝑖 = 0) 𝑡ℎ𝑒𝑛 𝑅 ← 𝑈𝐴𝐷𝐷(𝑅, 𝑢𝑖𝑃)

𝑖𝑓 (𝑢𝑖 = 0 𝑎𝑛𝑑 𝑣𝑖 ≠ 0) 𝑡ℎ𝑒𝑛 𝑅 ← 𝑈𝐴𝐷𝐷(𝑅, 𝑣𝑖𝑄)

𝑖𝑓 (𝑢𝑖 ≠ 0 𝑎𝑛𝑑 𝑣𝑖 ≠ 0) 𝑡ℎ𝑒𝑛 𝑅 ← 𝑀𝐴_𝑃𝐴𝐷𝐷(𝑈𝐴𝐷𝐷(𝑅, 𝑢𝑖𝑃), 𝑣𝑖𝑄)

Note that when 𝑢𝑖 ≠ 0 and 𝑣𝑖 ≠ 0, the standard computation of _ 2𝑅 +

𝑢𝑖𝑃 + 𝑣𝑖𝑄 would cost 1PD + 2MA-PADD (10MM + 22MM), while the

use of UADD (1UADD + 1MA-PADD -> 28MM) saves 4MM.

BNN-IBS

The largest MPM computation in BNN-IBS is like 𝑧𝑖𝑃 − ℎ𝑖𝑅 − 𝑙𝑖𝑃0,

therefore, an Interleaving with NAF required more registers for

precomputed values than ECDSA. A 3-NAF transformation was the

maximum that could be applied to the scalars, thus allowing to use the

61 | Chapter 4. ECC operations in the RNS coprocessor

precomputed 𝑃, 3𝑃, 𝑅, 3𝑅, 𝑃0, 3𝑃0 and their respective negatives, at the

cost of 60 out of the 64 processor registers. The computation of the

combined multiplication followed the same strategy than for ECDSA

when one or two scalars were different from zero. For the triple

multiplication, the strategy followed

𝑖𝑓 (𝑧𝑖 ≠ 0 𝑎𝑛𝑑 ℎ𝑖 ≠ 0 𝑎𝑛𝑑 𝑙𝑖 ≠ 0) 𝑡ℎ𝑒𝑛

𝑌 ← 𝑀𝐴_𝑃𝐴𝐷𝐷(𝑀𝐴_𝑃𝐴𝐷𝐷(𝑈𝐴𝐷𝐷(𝑌, 𝑧𝑖𝑃), ℎ𝑖𝑅), 𝑙𝑖𝑃0)

In this case, the standard computation of 2𝑌 + 𝑧𝑖𝑃 − ℎ𝑖𝑅 − 𝑙𝑖𝑃0 would

cost 1MA-PADD (11MM) more than in ECDSA. The use of UADD (1UADD

+ 2MA-PADD -> 39MM) again saves 4MM to this operation.

4.3 Conclusions

In this chapter, an implementation of the PM in the RNS coprocessor

was analyzed from a security and performance point of view. The need

for random coordinates was discussed to avoid correlation attacks.

Moreover, following a set of efficient state-of-the-art methods for

intermediate computations, a reduced and secure co-Z Montgomery

ladder algorithm was proposed. This algorithm saves 4MM in the point

multiplication and avoids the computation of the y-coordinate, which

also implies the avoidance of the expensive transformations from the

Montgomery domain. In addition, a potential vulnerability was

identified in the load of microcode into the processor, which might lead

to a correlation attack to infer the secret scalar’s bits. A masking

solution was proposed to mitigate such threat.

The MPM was also analyzed herein, and some improvement was

achieved in terms of its performance. The efficient method discussed to

62 | Chapter 4. ECC operations in the RNS coprocessor

compute 2𝑃 + 𝑄 was extended to fit the implementation of

Interleaving with NAF for ECDSA and BNN-IBS. Also, the NAF

transformation and precomputed values were calculated to use as

much of the processor’s resources as possible. The significant result is

that MPM can be performed faster during the verification stage of the

said signature schemes.

63 | Chapter 4. ECC operations in the RNS coprocessor

References

1. N. Meloni. Fast and Secure Elliptic Curve Scalar Multiplication over
Prime Fields using Special Addition Chains. Cryptology ePrint
Archive, Report 2006/216, 2006.

2. R. R. Goundar, M. Joye, A. Miyaji, M. Rivain, A. Venelli. A scalar
multiplication on Weierstraß elliptic curves from co-Z arithmetic. J.
Cryptogr. Eng. 1(2), 161–176, 2011.

3. A. Venelli, F. Dassance. Faster side-channel resistant elliptic curve
scalar multiplication. Contemporary Mathematics 521, 29-40,
2010.

4. S. F. Antão. High-performance and Embedded Systems for
Cryptography. Ph.D. dissertation, Lisbon Tech (2013)

5. J. C. Bajard, S. Duquesne, M. Ercegovac. Combining leak-resistant
arithmetic for elliptic curves defined over Fp and RNS
representation. Publications Mathématiques de Besançon: Algébre
et Théorie des Nombres, 67-87, 2013.

6. P. Matutino. Residue Number Systems. Efficient Architectures and
Circuits. Ph.D. dissertation, Lisbon Technical Institute, 2015.

7. A. Shamir. Shamir’s Trick. Encyclopedia of Cryptography and
Security. Springer, Boston, MA, 2011

8. D. Hankerson, A. J. Menezes, S. Vanstone. Guide to Elliptic Curve
Cryptography, 1, Springer-Verlag New York, Inc. 2004.

9. P. Longa, A. Miri. Fast and Flexible Elliptic Curve Point Arithmetic
over Prime Fields. IEEE Transactions on Computers, 57(3), 289-302,
2007.

10. O. Billet, M. Joye. Fast Point Multiplication on Elliptic Curves
through Isogenies. AAECC 2003, LNCS 2643, 43–50, Springer,
Heidelberg, 2003.

11. P. Longa, A. Miri. New Composite Operations and Precomputation
Scheme for Elliptic Curve Cryptosystems over Prime Fields.
Proceedings of The 11th International Workshop on Practice and
Theory in Public-Key Cryptography, PKC 2008.

64 | Chapter 5. Hardware evaluation platform

5 HW evaluation platform

In this chapter the hardware setup for the ECC operations evaluations

is presented. Also, the performance on the PM for the standard NIST

curve P-256 is given. A discussion about the impact of the technology in

the operations result is also provided. The reader should be familiarized

with the FPGA technology used in this chapter. FPGA devices are widely

employed since many years ago, due to the feasibility to conduct the

evaluation of a hardware system without the need to build an expensive

ASIC.

5.1 FPGA-based hardware platform for ECC evaluation

The board Xynergy-M4, from Silica used for the ECC operations

evaluation is built around a Xilinx Spartan-6 FPGA (xc6slx75) and a

microprocessor unit (MPU) ARM Cortex-M4 [7]. Among the available

resources when the experimental was started, the Xynergy-M4 offered

a good solution for the implementation of the RNS coprocessor. Recalls

that it needs an external processor to send the microcode and data to

operate.

The system frequency was configured at 88,3 MHz being the maximum

accepted. Xilinx ISE tools were used to build and simulate the project

and configure the device.

The RNS coprocessor was embedded in a Xilinx ISE project through its

VHDL code definition. An interface IP module was developed in VHDL

for the manipulation of the data and microcode, and to provide control

signals to the external MPU. The interface module receives the

65 | Chapter 5. Hardware evaluation platform

microcode and data from the MPU through SPI. The interface module

also implements two blocks that handle FIFO signals to interact with the

RNS coprocessor.

In the case of a PM, the MPU generates a random number for the scalar.

For the MPM, the MPU acting as a node, is expected to receive the

elements of a digital signature including the scalars and the ECC points.

The MPU configures a DMA module to send the data and microcode to

the coprocessor depending on the operation to be performed. The

microcode sets for each operation are previously loaded into a RAM.

When the RNS output is ready, the interface sends an interrupt to the

MPU, which receives the ECC points coordinates. The Figure 5.1 shows

a block diagram of the hardware setup.

Figure 5.1 Diagram of hardware platform for ECC operations evaluation

66 | Chapter 5. Hardware evaluation platform

5.2 HW performance

Point Multiplication evaluation

The PM defined in Alg. 4.1 (see section 4) was evaluated for the NIST

prime curve P-256 defined in [1]. The test vector used for the curve P-

256 is defined in [2]. The PM was coded through a Java tool emulator

(see chapter 2). Annex A illustrates the interface of the emulator and

the generated files including the microcode and data for the RNS

operation.

An embedded software was coded to provide the microcode and data

to the RNS coprocessor through the SPI ports. The control signals from

the RNS interface module were handled through interruptions.

The Table 5.1 provides a PM performance comparison among some

state-of-the-art ECC processors and the RNS coprocessor evaluated in

this thesis. The RNS coprocessor and the one in [3] use both 16-bit data

paths, while MicroECC processor [4] uses 32 bits. These variants were

selected among the others considering their comparable device

occupancy and the type of FPGA used, although they are not exactly the

same. In all the cases, the cycles count is referred to the PM with a 256-

bit scalar.

Apart from the performance, from the security point of view, the RNS

coprocessor is the only one in the Table 5.1 that incorporates an

intrinsic protection against correlation attacks, due to the parallelism of

the channels operation. Moreover, the randomization of the inputs in

the Alg. 4.1 gives additional resilience to such attacks. The SPA

protection in the RNS processor is given by the use of the Montgomery

67 | Chapter 5. Hardware evaluation platform

ladder method. The processor in [3] incorporates a SPA

countermeasure through the use of Montgomery ladder as well, but

there is not mention to protection against CPA. The MicroECC has the

same sort of protections, not including CPA. Recall that a horizontal

correlation attack against ECC has proven to be successful as shown by

Bauer et al. in [8].

Table 5.1. Comparison of PM performance among state-of-the-art ECC processors

 PM
cycles
count

Area
(slices)

BRAM
Freq.
(MHz)

Device

RNS
coprocessor
(this work)

2 601 547 944 15 88,3
FPGA Spartan-

6 (xc6slx75)

ECC
coprocessor

[3]
3 227 993 1832 9 108,2

FPGA VirtexII-
Pro (xc2vp30)

MicroECC [4] 949 951 1158 3 210
FPGA VirtexII-
Pro (xc2vp7)

ECC
coprocessor

[5]
-- 1704 -- 225 Virtex-7

On the other hand, in [5], the FPGA device used has a superior

technology than the one used in this work. That impedes to make a fair

comparison to our work. Still, the area occupancy of the RNS is almost

the half. Recall that the RNS is a generic arithmetic processor which can

be used for other purposes, while the architecture in [5] is optimized to

perform ECC operations. It is expected that the implementation of the

RNS coprocessor in one of the most advanced FPGA, improves the PM

performance.

68 | Chapter 5. Hardware evaluation platform

The work in [6] presents a RNS-based ECC processor for PM. The

hardware architecture is based on the straightforward binary method

for Point Multiplications, which is vulnerable to SPA and Timing Attacks.

Therefore, the performance of this processor is not considered for

comparison in this thesis.

Multiple Point Multiplication evaluation

The MPM operation was evaluated in the RNS coprocessor using the

same hardware platform configuration.

Contrary to the PM (if using Montgomery ladder), the MPM execution

time strongly depends on its joint scalars; it is, depending on the i-th

bits of all the scalars, the computation is more or less complex (see

Section 4.2). Besides, the NAF method used depends on the hardware

resources, specifically the number of precomputed values, and that

impacts on the performance of the operation.

The previous facts make difficult to do a performance comparison of

this operation. For this reason, the performance of MPM in this work is

given in terms of the number of Montgomery multiplications, as it can

be seen in Section 4.2

5.3 Conclusions

In this chapter the HW platform to conduct the evaluation of the ECC

Point Multiplication and Multiple Point Multiplications is provided. Due

to the characteristics of the latter, its performance is already provided

in the section 4.

69 | Chapter 5. Hardware evaluation platform

Regarding the PM, a comparison is done to other similar works. The

comparison is relatively fair, although the devices are not from the

same family, but their technologies are close. A proper comparison with

the work in [5] is difficult to do because it presents a recent ECC

processor implemented in a more advanced technology. However, the

RNS implementation is more compact, which is desirable for area

constrained devices.

The security features of the RNS coprocessor exceed the others, as they

are not protected against CPA. The operation of each of the 16 channels

is a source of noise to each other. This acts as a natural countermeasure

against a CPA. Additionally, it avoids embedding a source of noise, like

a random number generator, as it is commonly done in secure

embedded devices.

70 | Chapter 5. Hardware evaluation platform

References

1. Digital Signature Standard (DSS). Federal Information
Standards Processing Publication 186-2, National Institute of
Standards and Technology, 2000.

2. Cryptographic Algorithm Validation Program. Test vectors.
https://csrc.nist.gov/projects/cryptographic-algorithm-
validation-program/digital-signatures

3. J. Vliegen et al. A compact FPGA-based architecture for elliptic
curve cryptography over prime fields. ASAP-2010, 21st IEEE
International Conference on Application-specific Systems,
Architectures and Processors, Rennes, 2010.

4. M. Varchola, T. Güneysu, O. Mischke. MicroECC: A Lightweight
Reconfigurable Elliptic Curve Crypto-processor. International
Conference on Reconfigurable Computing and FPGAs, 2011.

5. D. Amiet, A. Curiger, P. Zbinden. Flexible FPGA-Based
Architectures for Curve Point Multiplication over GF(p).
Euromicro Conference on Digital System Design (DSD-2016),
107-114, 2016.

6. D. M. Schinianakis, A. P. Kakarountas, T. Stouraitis. A new
approach to elliptic curve cryptography: an RNS architecture.
IEEE Mediterranean Electrotechnical Conference (MELECON),
2006.

7. Silica Xynergy-M4 Board flyer.
https://dsp-
sys.de/files/pdf/xyzbayxynergy_board_flyer_2012.pdf

8. A. Bauer, E. Jaulmes, E. Prouff, and J. Wild. Horizontal collision
correlation attack on elliptic curves. Selected Areas in
Cryptography, LNCS 8282, 553–570, Springer, 2013

https://dsp-sys.de/files/pdf/xyzbayxynergy_board_flyer_2012.pdf
https://dsp-sys.de/files/pdf/xyzbayxynergy_board_flyer_2012.pdf

71 | Conclusions

Conclusions

This thesis has been oriented to the implementation of an

authentication scheme that guarantees being efficient enough for low-

power devices, and also secure to resist some of the most harmful

physical attacks. In this sense, a suitable authentication scheme was

identified. The fundamentals of the underlying cryptography involved

was studied and its potential vulnerabilities. The Side Channel Attacks

that poses a threat to the related cryptographic algorithms were

identified as well as the countermeasures to overcome such attacks. A

modification was introduced to a Point Multiplication algorithm which

allows a more efficient implementation. Also, an efficient hardware

technology was chosen for the implementation which also has an

intrinsic resilience to the said attacks. Finally, the implementation of the

critical cryptographic operations was evaluated.

Bellare’s BNN-IBS was found as a suitable authentication scheme as it

avoids the use of expensive certificates. A modest modification was

introduced to better adapt the scheme to the RNS coprocessor without

losing its efficiency. Moreover, this IBS could be implemented in the

coprocessor still applying the SCA countermeasures for a more

complete protection.

Regarding the ECC operations in which the authentication is based, an

improvement that reduces the co-Z Montgomery ladder algorithm was

introduced in chapter 4. This algorithm saves 4MM in the point

multiplication and avoids the computation of the 𝑦-coordinate, which

also implies the avoidance of the expensive transformations from the

72 | Conclusions

Montgomery domain, a further transformation from RNS to binary. The

𝑦-coordinate could be avoided specially in the verification phase of the

BNN-IBS due to the introduced modification. Additionally, the load of

microcode to the processor was devised as potentially vulnerable to a

SCA that aims at recovering the secret scalar’s bits. A well-known

masking solution was suggested to mitigate such threat.

The evaluation of the Point Multiplication was conducted in the HW

platform built around a FPGA-based RNS coprocessor, given the fact

that its architecture allows efficient and secure implementation of

cryptographic ECC-based algorithms. A comparison with other similar

works was conducted, taking into consideration the technology used.

The small footprint of the implementation is highlighted compared to

the others, while the PM performance is comparable too,

acknowledging that this coprocessor is a generic one, not specifically

tuned for cryptographic operations.

The RNS coprocessor does not compute divisions, however, that

operation is involved in the authentication schemes implemented. The

need to solve the division problem motivated the study of modular

inversions. From the security analysis of some algorithms, two of them

were found potentially vulnerable, and the SCA to exploit a naïve

implementation of them are described herein.

73 | Future work

Future work

Another PM approach

In [1] a Point Multiplication technique is introduced which seems more

efficient than the one used in this work. A research in that sense could

be conducted to evaluate the feasibility of its implementation in the

RNS coprocessor, given the mentioned benefits of the RNS architecture.

Bilinear pairings

Bilinear pairings technique is a rather new research line which would

improve the implementation of certificate-less authentication

algorithms. Its performance in a FPGA-based platform is recently

demonstrated [2]. However, these algorithms are vulnerable to SCA as

well [3]. An interesting topic of future research would be the evaluation

in terms of performance and security of bilinear pairings in the RNS

coprocessor.

Security evaluation

The inherent noise due to the parallel channels operation in the RNS

coprocessor, along with the applied countermeasures in the PM should

avoid SPA, DPA and CPA attacks, but this fact has not been confirmed in

this work. An interesting complementary work would be to conduct a

security evaluation of the RNS coprocessor during the PM computation.

[1] M. Morales-Sandoval and A. Diaz Perez. Novel algorithms and hardware architectures for Montgomery
Multiplication over GF (p). Laboratorio de Tecnologías de la Información., Tech. Rep., 2015.

[2] Z. Hao, W. Guo, J. Wei and D. Sun. Dual Processing Engine Architecture to Speed Up Optimal Ate Pairing
on FPGA Platform. 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin, 2016.

[3] Jauvart, D., El Mrabet, N., Fournier, J.J.A. et al. Improving side-channel attacks against pairing-based
cryptography. J Cryptogr Eng 10, 1–16, 2020.

74 | Annex A

Annex A

Java tool for the emulation and configuration of the RNS coprocessor

75 | Annex B

Annex B

Template Attack against RSA key generation based on BEEA

In this section, a Template Attack against a protected BEEA

implementation is introduced by the first time. This TA targets the RSA

key generation, however, it could also be conducted against an ECDSA

implementation where the target would be the modular inversion.

For the feasibility of this attack, the followings assumptions are made:

● The hardware device employed for the TA has a source of

leakage

● The target RSA key generation uses BEEA to compute the secret

key 𝑑 and/or 𝐺𝐶𝐷(𝑒, 𝑥 − 1) for coprimality tests.

● The BEEA implementation is either unprotected or uses the

Chartier’s masking method in eq. 3.6.

● An adversary is able to acquire enough power (or

electromagnetic) traces from the target device (preferred) or

similar devices running BEEA

● An adversary is able to acquire a power (or electromagnetic)

trace during the target RSA key generation phase

Usually, once an RSA key pair is generated, it is stored to be used several

times. In the case of the coprimality tests, they are performed only once

involving 𝑝 and 𝑞 (the two final successful prime candidates).

Something similar occurs in ECDSA with the nonce 𝑘. These facts impose

a restriction, as the target secrets are used only once. Therefore, the

proposed attack is specifically a Single Trace Template Attack.

Nevertheless, due to the nature of the Euclidean algorithm and 𝜙(𝑁)

in RSA, at least eight attack points can be targeted in a single trace to

obtain eight leakage vectors. Thus, the procedure herein is still formally

76 | Annex B

an STA but equivalent to an 8-trace TA, where the success probabilities

are higher.

If it is denoted by 𝑝𝐴𝑃 the probability of a successful attack on a single

attack point, then

𝑝𝑆𝑇𝐴 = 1 − (1 − 𝑝𝐴𝑃)8

would be the probability of a successful attack on the key generation

process. Furthermore, if an adversary is able to acquire n traces of the

key renewal procedure, the probability of a successful attack increases,

and could be defined by

𝑝𝑛𝑆𝑇𝐴 = 1 − (1 − 𝑝𝐴𝑃)8𝑛

The profiling phase of the TA is currently unfeasible on 32-bit devices

(employing modest resources) because of the amount of generated

data and large computations, although for 16-bit devices it could still be

possible. In this work we consider the proposed attack on 8-bit devices;

however, it could be extended to 16-bit devices.

Attack points on the private key generation

In the case of the private key generation, the v-loop is executed first,

and at least twice, because 𝜙(𝑁) is divisible by four. The operation flow

for the first and second iterations could be easily predicted. The table 1

shows the ordered execution of the relevant operations involved.

77 | Annex B

Table 1. Target operations into the v-loop of BEEA (e, φ(N))

Operation

1
Operation

2
Result

1
Result

2

1st
Iteration

v = v / 2 C = (C + φ(N)) / 2 v = φ(N) / 2 C = φ(N) / 2

2nd
Iteration

v = v / 2 C = C / 2 v = φ(N) / 4 C = φ(N) / 4

 * C = 0 at the beginning of the computation (see Alg. 2.2)

All these operations (assuming a common implementation) perform a

right shift followed by a copy-to-register. Furthermore, the only data

being manipulated is the secret 𝜙(𝑁), which is shifted one and two bits

in the first and second iteration respectively. This is an advantage for

TA, because the leakage of both: the shift and the copy-to-register

operations, is uniquely related to the value of φ(N).

The fact of manipulating 𝜙(𝑁) and 𝜙(𝑁)/2 , should not be an issue to

consider all the operations as equivalent attack points. The guessed

bytes in the second iteration shifted one bit left, should correspond to

those guessed in the first iteration; or what it is the same: the guessed

bytes in the first iteration shifted one bit right should correspond to

those guessed in the second iteration. Therefore, operations 1 and 2 for

the first two iterations of 𝐵𝐸𝐸𝐴(𝑒, 𝜙(𝑁)) could be considered as four

equivalent attack points into the same power trace, from where four

leakage vectors can be obtained.

Notice that, if 𝜙(𝑁) has more than two trailing zeroes, it would be easily

detected in the power trace, because the power profile of the following

iterations (into the v-loop) would be quite similar to the previous ones.

If further leakage vectors are extracted, the guesses should be done as

78 | Annex B

in the table 2. Thus, it can be said that, the more trailing zeroes in 𝜙(𝑁),

the higher would be the probability of a successful attack.

Table 2. Target operations into the v-loop of BEEA (e, φ(N)) beyond the 2nd

iteration

Operation

1
Operation

2
Result

1
Result

2

3rd
Iteration

v = v / 2

C = (C + φ(N)) / 2

v = φ(N) / 8

C = 5 · φ(N) / 8

C = C / 2 C = φ(N) / 8

4th
Iteration

v = v / 2

C = (C + φ(N)) / 2

v = φ(N) / 16

C = 13 · φ(N) / 16

C = C / 2 C = φ(N) / 16

* C = φ(N) / 4 at the beginning of the 3rd iteration (see table 1)

** Because 𝑒 might be randomized (as in eq. 2.2), D`s evenness cannot be
predicted, and the conditional branches into the v-loop cannot be predicted
either (although they might be distinguished in the power trace). That is why
we give the two possible results from the operation 2.

Experimental environment

To apply the attack against a BEEA implementation, a number of

measurements of the power consumption is acquired, which includes

the operation of Table 1. The target is an 8-bit BEEA algorithm. The

power consumption traces are collected during 50,000 runs on the

ChipWhisperer-Lite power collection board at a sampling rate of

29.54Ms/s. To construct various templates for the secret value 𝜙(𝑁) is

selected as a random 128-bit value which is divisible by 4. The technique

employed to perform the attack is based on [1].

79 | Annex B

Experimental results

The attack was performed using one power trace, and the average

success rate was calculated by repeating it 1,000 times for each case.

The task of choosing one out of 5,000 traces and performing the attack

was repeated 1,000. As a result, each 8-bit value of the secret 𝜙(𝑁) is

recovered with a probability of more than 98.90% in a single-trace

attack.

[1] E. Özgen, L. Papachristodoulou and L. Batina. Template attacks using classification algorithms. 2016 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA, 2016.

	Títol de la tesi: ECC-based Authentication in Constrained Devices:
A Secure and Efficient Hardware Implementation
	Nom autor/a: Sadiel de la Fé Siverio

