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Abstract 
 

The proliferation of connected devices has increased in the last few 

years in the form of wearable personal gadgets or sensors. Into the 

smart cities and Internet of Things (IoT) concepts the sensors are 

intended to acquire measurements from different sources to provide 

an improved management. These facts imply that many connected 

devices today can manipulate critical or sensitive data from 

infrastructures or persons.  

On the other hand, the proliferation of cyberattacks has grown, 

according to cybersecurity companies. In the scientific literature and 

also in the news, one can see examples of exploited vulnerabilities in 

devices that handle sensitive data. The weak or the lack of 

authentication is a common issue among many devices, allowing a 

potential attacker to log into the device and even launch a higher level 

attack. The lack of physical protection of cryptographic 

implementations make some devices even more vulnerable.  

This thesis aims to provide a hardware implementation of a suitable 

authentication scheme to fit in low-power devices. The work focuses on 

the optimization and hardening of the critical cryptographic operations 

involved in the authentication. The theoretical and experimental 

implementation provided show that an efficient authentication scheme 

can be embedded in low-power connected devices, where some of the 

more hazardous physical attacks are also prevented.  
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Resumen  
 

La proliferación de dispositivos conectados ha aumentado en los 

últimos años en forma de aparatos personales o sensores. En lo que se 

conoce hoy como Ciudades Inteligentes e Internet de las Cosas, los 

sensores están destinados a la adquisición de medidas de diferentes 

fuentes para proporcionar una mejor gestión y control de los recursos. 

Estos implican que muchos de estos dispositivos actualmente pueden 

manipular datos críticos o sensibles para infraestructuras o personas. 

El número de ciberataques ha crecido, según varias empresas de 

ciberseguridad. La literatura científica y las noticias reflejan ejemplos de 

vulnerabilidades en dispositivos que gestionan datos sensibles. La falta 

de esquemas de autenticación o las implementaciones débiles son un 

problema común entre muchos dispositivos, ya que permite a un 

atacante potencial iniciar sesión en el dispositivo e incluso lanzar un 

ataque a nivel de red. La falta de protección física de los algoritmos 

criptográficos hace que algunos dispositivos sean aún más vulnerables. 

El objetivo de esta tesis es proporcionar la implementación hardware 

de un esquema de autenticación adecuado para dispositivos limitados 

en potencia. El trabajo se centra en la optimización y la robustez de las 

operaciones criptográficas críticas implicadas en la autenticación. El 

análisis teórico y la evaluación experimental desarrollados demuestran 

que es posible implementar un esquema de autenticación eficiente en 

dispositivos conectados de baja potencia, donde también se evitan 

algunos de los ataques físicos.
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Resum 
 

La proliferació de dispositius connectats ha augmentat en els darrers 

anys en forma de dispositius o sensors personals. En els conceptes de 

Smart Cities i IoT, els sensors estan destinats a adquirir mesures de 

diferents fonts per proporcionar una gestió millorada. Aquests fets 

impliquen que molts dispositius connectats actualment poden 

manipular dades crítiques o sensibles per a infraestructures o persones. 

D’altra banda, la proliferació de ciberatacs ha crescut, segons les 

empreses de ciberseguretat. A la literatura científica i també a les 

notícies, es poden veure exemples de vulnerabilitats explotades en 

dispositius que gestionen dades sensibles. La dèbil o la manca 

d’autenticació és un problema comú entre molts dispositius, ja que 

permet a un atacant potencial iniciar sessió al dispositiu i fins i tot iniciar 

un atac de nivell superior. La manca de protecció física dels algorismes 

criptogràfics fa que alguns dispositius siguin encara més vulnerables. 

Aquesta tesi té com a objectiu proporcionar una implementació de 

maquinari d'un esquema d'autenticació adequat per adaptar-se a 

dispositius de baixa potència. El treball se centra en l'optimització i 

l'enduriment de les operacions criptogràfiques crítiques implicades en 

l'autenticació. La implementació teòrica i experimental proporcionada 

mostra que es pot encastar un esquema d’autenticació eficient en 

dispositius connectats de baixa potència, on també s’eviten alguns dels 

atacs físics més perillosos.
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Introduction 
 

1.1 Motivation 

Smart city concept makes reference to sustainability in terms of 

optimization of resources, to give response to the increasing population 

in urban cities. In that sense, the European Union works towards a 

strategy to incorporate more intelligence in their cities through a more 

efficient resources management, in parallel to the population growth 

[1]. Some of the big companies already provide solutions to approach 

the Smart City concept from the data connectivity, mobility or energy 

point of view [2] [3]. 

Among the main subsystems a smart city envisages are: Distributed 

electricity generation based on multiple microgeneration points, Smart 

grids of interconnected data networks, Smart metering for the 

consumption measurement of water and electricity, Smart buildings 

with automated systems for the optimum use of energy, and Smart 

sensors (recently incorporated in the IoT concept) to collect the 

multitude of data generated around this Smart ecosystem. In addition, 

portable personal devices contribute with mobility data, which may be 

used to optimize the public transportation system while reducing CO2 

concentrations.  

The use of connected sensors or portable devices gathering data from 

critical infrastructures or persons has a few of inherent risks [4]. The 

Open Web Application Security Project (OWASP) defined a Top 10 list 

of the most important cybersecurity threats in IoT for 2018 [5].  Some 
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of the threats are based on unauthorized access to sensitive data and 

system management, which are related to weak authentication 

mechanisms. Also, the lack of physical hardening measures is 

highlighted as it allows the attacker to take control of the device, thus 

having the possibility to launch a high-level network attack from inside.   

Some real life examples of vulnerabilities have been recently reported. 

Bluetooth, the well-known wireless technology for short range 

communications, was found vulnerable in [6], due to an exploitable 

issue with non-authenticated cryptographic keys. In [7] the authors 

discovered severe vulnerabilities in the communication of some kids-

oriented smartwatches. The researchers found that some devices did 

not use any authentication or encryption scheme and in some case, 

instead of a proper authentication, a device identification was 

implemented through the IMEI (International Mobile Equipment 

Identity), which can be easily retrieved. In [8] a tampering attack is 

described against a supposedly high secure device. Through a physical 

access to the HSM (Hardware Secure Module), the researchers had 

access to private objects and they even managed to disable some 

cryptographic mechanism.  

In view of the previous facts, one may reasonably suspect that a large 

number of devices lack of adequate security measures. An exploitable 

flaw on some of them may cause a high impact on infrastructures or in 

human beings. The cryptographic algorithms implemented to provide a 

certain protection level are not vulnerable by themselves, but a physical 

access to the device may lead to disable such protection. Thus, high-

level security mechanisms along with tamper-proof countermeasures 
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should be considered to guarantee the safety of the previously 

mentioned Smart city subsystems. Furthermore, some of those devices 

are typically battery-powered and constrained in computational 

resources, therefore, the cryptographic implementations should 

consider those limitations.  

Objective: The main objective of this thesis is to provide a hardware 

implementation for secure and efficient authentication of low-power 

devices. In order to achieve the goal, this work focuses on the 

optimization and hardening of the most critical cryptographic 

operations involved in the authentication.  

The research in this thesis involved the study of some authentication 

schemes with an adequate efficiency for being implemented in low-

power devices. The deep analysis of the algorithms and their 

mathematical operations lead to an algorithmic optimization that 

improves one stage of the authentication process. The selection of the 

authentication schemes for the implementation also included an 

analysis considering their compatibility with the hardware platform 

used. The said platform includes a FPGA-based RNS processor which 

was selected because its implementation allows both efficient 

computation and intrinsic protection against some physical attacks. The 

implementation of the critical cryptographic operations involved in the 

authentication schemes was conducted in the hardware platform, while 

its performance was evaluated and further compared with similar 

works. 
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Additionally, the modular inversion operation was independently 

analyzed because of its importance in the authentication process. From 

the analysis, two physical attacks and the respective countermeasures 

were proposed by the first time against two modular inversion 

operations. 

1.2 Background 

1.2.1 Authentication 

Authentication is the mechanism through which a message, a user or a 

device proves its legitimacy. Authentication schemes (a.k.a Signature 

schemes) might the most important among the cryptographic methods 

in a Smart sensors subsystem.  

An efficient method to authenticate in a point-to-point or point-to-

multipoint communication is the use of message authentication codes 

(MAC). If all the network elements share a predefined secret, a 

symmetric cryptographic primitive can be used to generate MACs at a 

very low cost [9-10]. Thus, a node sends a message along with a MAC, 

and a receiver employs the symmetric key to evaluate whether 

message-MAC combination holds, in which case, the message is 

accepted. However, in events like network scaling, eventual external 

devices log in to a network, or broadcast messages, the MAC based on 

shared secret is impractical. Moreover, to share a secret among all the 

devices increases the risk of one of them being compromised.  

RSA (Rivest, Shamir, Adleman – its creators) was devised in 1977 as a 

public-key scheme, and is arguably the most widespread method to sign 

data [11]. Its strength relies in that it is impractical to decompose large 
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integers. In modern systems, RSA secret parameters are typically in a 

range from 1024 bits to 4096 bits. However, the first claim of RSA was 

to be a method in which a (public) key could be exposed without losing 

the system security. To send a signed message, a sender first publishes 

its public key, and then uses its private key to sign the message. A 

receiver uses the sender’s public key to verify the signature for that 

specific message, and only if it holds the communication is accepted.  

What about the legitimacy of the public key?  

If any public key is accepted, then any device is theoretically allowed to 

send data through a network. To void it, a public key is required to have 

a certificate that proves its legitimacy to others, like the standard in 

[12]. Thus, in a secure communication, a receiver must have access to 

the sender’s public key and its correspondent certificate. In a network 

of constrained devices, such complexity is not desirable.  

To overcome that issue, a method was proposed to authenticate via a 

certificate-less public-key cryptosystem [13]. Actually, Shamir was the 

first to propose an identification-based authentication, which opened 

the door for more efficient implementations in low-power devices. This 

topic will be addressed more exhaustively in the next chapter.   

1.2.2 Elliptic Curve Cryptography  

The Elliptic Curves Cryptography (ECC) is based on the use of certain 

curves defined by a set of points (𝑥, 𝑦) over a 𝐺𝐹(𝑝), which are 

solutions to the equation 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏   (1.1) 
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along with a point called point at the infinity. The point operations like 

addition, subtraction and multiplication follow certain rules in this kind 

of curves and are geometrically defined [14-15].  

A point 𝑃 ∈ 𝐸(Ϝ𝑝), with order 𝑛, is a generator of an ECC curve, which 

can be defined through  

𝐸(Ϝ𝑝) = {∞, 𝑃, 2𝑃, 3𝑃, . . . , (𝑛 − 1)𝑃}   (1.2) 

In a public-key cryptosystem based on ECC, the large prime 𝑝, the curve 

equation (1.1), and the generator point 𝑃 are public parameters. A 

private key 𝑘 is randomly selected in the range [1, 𝑛 − 1] and the public 

key 𝑄 is obtained through the Point Multiplication (PM)  

𝑄 = 𝑘𝑃  (1.3) 

The Discrete Logarithm Problem (DLP) defined the intractability of 

determining 𝑥 from 𝑦 = 𝑔𝑥 𝑚𝑜𝑑 𝑝 under certain conditions [16]. DLP 

can be extended to ECC and is known as the Elliptic Curve Discrete 

Logarithm Problem (ECDLP).  Based on the ECDLP, the recovery of 𝑘 in 

(1.3) is intractable, even having all the public parameters including the 

public key 𝑄 [14-15]. 

The PM is performed following the old Booth’s algorithm employing 

doublings and additions [17]. The point doublings and additions in ECC 

imply divisions in both cases, if the point representation is given in 

affine coordinates (𝑥, 𝑦). Divisions are costly operations in digital 

systems, thus, should be avoided. A representation of the ECC points in 

projective coordinates is preferred, as divisions are no longer needed 

[14].  
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A projective point is represented as (𝑋: 𝑌: 𝑍). A projective point has 

representatives in the form (𝜆𝑐𝑋, 𝜆𝑑𝑌, 𝜆𝑍), where 𝑐 = 𝑑 = 1  (standard 

coordinates) or 𝑐 = 2 𝑎𝑛𝑑 𝑑 = 3 (Jacobian coordinates) and 𝜆 is an 

integer. It means every point (𝑋′, 𝑌′, 𝑍′) ≡ (𝑋′′, 𝑌′′, 𝑍′′) if both are 

representatives of a same point (𝑋: 𝑌: 𝑍). The affine coordinate (𝑥, 𝑦) 

is then computed as (𝑋/𝜆𝑐, 𝑌/𝜆𝑑, 1) being 𝑍 = 1/𝜆 [14]. 

Today is widely accepted that to achieve an adequate security level, an 

ECC cryptosystem needs, at least a 224-bits key while RSA needs a 2048-

bits key [18-19]. Such metrics make ECC more efficient than RSA for the 

implementation in constrained devices. 

1.3 Thesis outline 

This thesis is divided into six chapters. In the current chapter, an 

introduction is provided to define the context of this work and highlight 

one specific problem and the suggested solution. Also, a background is 

given on the main topics around the work: Authentication and Elliptic 

Curve Cryptography (ECC).  

Chapter 2 addresses the review of the most relevant ECC-based 

authentication schemes which are suitable for low-power devices. A 

modification is introduced to one of them to make it compatible with 

the hardware platform and ensure a lightweight computation. Also, a 

review of the Side Channel Attacks (SCA)  that affects the said schemes 

is provided. Finally, an introduction to the principles of Residue Number 

System (RNS) is given. The RNS coprocessor used in this work is 

introduced herein as well. 
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Chapter 3 reviews some sort of modular inversion operations. A 

discussion on the security aspects of two of them is provided, and their 

vulnerabilities are analyzed. This chapter concentrates two of the main 

contributions of this thesis, due to the novelty of the Side Channel 

Attacks proposed to the target algorithms. 

Chapter 4 addresses the ECC critical operations to be implemented as 

part of the authentication. Throughout this chapter a comprehensive 

explanation is given from the state-of-the-art algorithms to the final 

variations introduced. A contribution of the thesis is provided, through 

the reduction of an algorithm that allows a more efficient 

implementation of it and also makes it compatible with the HW 

platform. A countermeasure is applied to the final operation to ensure 

the mitigation of SCA.  

Chapter 5 describes the HW platform used for the ECC operations 

evaluation. Performance results on the implementation of the 

operations are given, and a comparison with similar works is provided. 

Finally, in the chapter 6 the Conclusions and Future work lines are given. 
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2 Literature review 
 

2.1 ECC-based authentication 

2.1.1 ECDSA 

ElGamal was the first authentication scheme proposed in 1984, which 

is based on the DLP [1]. The Digital Signature Algorithm (DSA), based on 

the DLP as well, was proposed in 1991 and later specified in the 

standard FIPS 186 [2]. These cryptosystems, along with Koblitz’s 

discovering on ECC in [3], were the antecessors of the Elliptic Curve 

Digital Signature Algorithm (ECDSA), which was devised by Vanstone in 

1992 [4].  

ECDSA is probably the most widespread authentication method used in 

computer communications. Its efficiency is higher than exponentiation-

based methods like RSA or ElGamal because it allows the use of shorter 

keys, as previously mentioned. 

However, ECDSA does not solve by itself the problem of the public key 

validation. It is, a sender using ECDSA needs to publish its public key 

along with an authenticity certificate. Such scenario is not desirable for 

low-power devices. Nevertheless, due to compatibility reasons with 

some computer networks, many devices might still use the said 

authentication method [5-6]. In view of this fact, the ECDSA critical 

operations are considered in the chapter 4 of this thesis. 

This method involves the modular inversion of a nonce, which is 

computed in the signature generation phase. The modular inversion is 
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critical; the strength of the method strongly relies on the secrecy of the 

random value to be inverted. In the chapter 3 of this work, some 

security aspects related to the modular inversion are discussed. 

2.1.2 Identity-based authentication 

Certificate-less authentication methods are preferred for low power 

devices, due to the light weight in the transmission of the message 

signature. Shamir was the first to propose an identity-based scheme 

(IBS)  for authentication [7]. In his method, instead of providing the 

public key along with its certificate, some identification data was used 

(name, email, etc.) to validate the key legitimacy. It is, the public key 

was built embedding that data already. The strength of Shamir’s 

method relies in the impossibility of a third party to generate a valid 

public key with a fake ID, because a system private key is also needed 

in the generation process. 

The IBS introduced in [8] also removes the need for a certificate, 

however, the method relies on Bloom filter [9] and Merkel tree [10] to 

preload each device with the public key information of the rest. This 

implies some constraints: the device needs extra memory and a secure 

mechanism to update the preloaded data every time the network scales 

with new nodes. Merkel hash tree needs a fixed number of nodes, while 

the Bloom filter length is computed considering the number of nodes; 

therefore, the method proposed in [8] is not suitable for dynamic 

wireless network in which the number of nodes may change.  

The IBS method proposed in [11] seems to be a suitable one as it 

reduces the communication payload in the signature phase. This 
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method is based on bilinear pairings, which is a costly operation and 

also vulnerable to some physical attacks as demonstrated in [12]. This 

IBS requires Boolean operations in the signature generation, and also 

requires to perform a point multiplication where the ECC point is a 

secret. The HW platform that is used in this work is efficient in some 

critical ECC operations, and provides an inherent protection against 

SCA; however, it cannot compute Boolean operations. On the other 

hand, the manipulation of a secret ECC point requires further 

countermeasures that reduce the performance of the system.  

The first ECC-based IBS was proposed by Bellare in 2004 [13]. In the 

method called BNN-IBS, a sender identified by 𝐼𝐷 generates a signature 

(𝑅, 𝑌, 𝑧) to authenticate a message 𝑚 as follows: 

Let 𝑃 be a generator point of the curve 𝐸(𝐹𝑝), 𝑟 a random 

in 𝑍𝑝, 𝑥 the system private key, 𝑃0 = 𝑥𝑃 the public system 

key, 𝑅 = 𝑟𝑃 the sender’s public key, 𝑐 = ℎ𝑎𝑠ℎ1(𝐼𝐷||𝑅), 

and 𝑠 = 𝑟 + 𝑐𝑥 the sender’s private key. Then 

● Pick a random 𝑦 ∈ 𝑍 and computes 𝑌 = 𝑦𝑃 

● Compute 𝑧 = 𝑦 + ℎ𝑠 

● where ℎ = ℎ𝑎𝑠ℎ2(𝐼𝐷, 𝑚, 𝑅, 𝑌).  

● The signature on message 𝑚 is (𝑅, 𝑌, 𝑧). 

In the verification phase, the receiver device does as follows: 

● Computes ℎ = ℎ𝑎𝑠ℎ2(𝐼𝐷, 𝑚, 𝑅, 𝑌)  

● Computes 𝑐 = ℎ𝑎𝑠ℎ1(𝐼𝐷||𝑅) 

● Computes and verify whether 𝑧𝑃 = 𝑌 + ℎ(𝑅 + 𝑐𝑃0) holds 
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If it holds, the message is accepted, otherwise, it is rejected. 

The proposal in [14] claims to be more efficient than BNN-IBS. The 

authors propose to build the signature like (𝑅, ℎ, 𝑧), reducing its size by 

trading the ECC point 𝑌 for the scalar ℎ. In the verification phase is then 

proposed to compute and verify the equality ℎ = ℎ𝑎𝑠ℎ2(𝐼𝐷, 𝑚, 𝑅, 𝑧𝑃 −

ℎ𝑅 − ℎ𝑐𝑃0).  

In this thesis it is considered Bellare’s method (BNN-IBS) rather than the 

one in [14]; however, a signature reduction is achieved as well. The 

variant proposed herein is to build the signature like (𝑅, 𝑥𝑌, 𝑧), where 

𝑥𝑌 is the affine coordinate of 𝑌. The procedure follows 

● Pick a random 𝑦 ∈ 𝑍 and computes 𝑌 = 𝑦𝑃 

● Compute 𝑧 = 𝑦 + ℎ𝑠 

● where ℎ = ℎ𝑎𝑠ℎ2(𝐼𝐷, 𝑚, 𝑅, 𝑥𝑌).  

The signature on message 𝑚 is (𝑅, 𝑥𝑌, 𝑧). 

In the verification phase, the receiver device does as follows 

● Computes ℎ = ℎ𝑎𝑠ℎ2(𝐼𝐷, 𝑚, 𝑅, 𝑥𝑌)  

● Computes 𝑐 = ℎ𝑎𝑠ℎ1(𝐼𝐷||𝑅) 

● Computes 𝑄 = 𝑧𝑃 − ℎ𝑅 − ℎ𝑐𝑃0 

● Verify whether 𝑥𝑌 = 𝑥𝑄 holds 

If it holds, the message is accepted, otherwise, it is rejected. 

The operation to compute 𝑄 could be performed entirely in projective 

coordinates having at the output the point (𝑋𝑄, 𝑌𝑄 , 𝑍𝑄). The use of 

projective coordinates is preferred as it avoids a division operation to 

compute the affine coordinates (see chapter 1). Thus, the equality 
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verification 𝑥𝑌 = 𝑥𝑄 could be performed like 𝑥𝑌 · 𝑍𝑄 = 𝑋𝑄. Notice that 

the 𝑌- coordinate is not needed, thus some computations can be saved 

in the multiplication. 

2.2 Side Channel Attacks 

Side Channel Attacks (SCA) are techniques oriented to retrieve sensitive 

information from cryptographic implementations in hardware devices. 

SCA take advantage of physical properties in hardware devices like 

power consumption, electromagnetic emanations or even the heat 

dissipation while a cryptographic operation is being performed [15-17]. 

The non-invasive measurements of these variables make this kind of 

attack a serious threat. 

2.2.1 Side Channel Attacks 

In a Simple Power Attack (SPA) the waveform of the power 

consumption (or electromagnetic radiation) is analyzed. The operations 

have a certain consumption pattern; it is, a multiplication of two 

integers takes longer time and higher power than the exclusive OR, for 

example. Also, if the target cryptographic primitive running is known, 

then its operations flow could be deduced and sensitive information 

could be extracted [18]. The Figure 2.1 shows an example of power 

trace corresponding to the Binary Extended Euclidean Algorithm 

(BEEA), where operations involving a secret are identified. 
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Fig. 2.1 Power trace of a Binary Extended Euclidean Algorithm 

implementation 

2.2.2 Differential Power Analysis 

The power consumption variates according to the data being 

manipulated even in the same operation. It is, when a register is loaded 

with 0xFF and its previous value was 0x00, the power related is not the 

same as if it was loaded with 0x11, for example. This different lead to a 

Differential Power Analysis, which is a statistical attack [15] [19]. 

2.2.3 Correlation Power Analysis 

The Correlation Power Analysis introduced in [27] has the same basis as 

DPA, however it employs (typically) the Pearson correlation between 

the power measurements and a hypothesis of such consumption. CPA 

is proven to be more effective considering noisy signals than DPA. 

Figures 2.2 and 2.3 show examples of a CPA against a non-protected 

cypher and a protected one. The peak on Fig. 2.2 reveals the correlation 

among the assumption and the real value being computed, indicating 

with high probability the disclosure of the secret. 
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Fig. 2.2 Power trace of CPA against an unprotected AES implementation 

 
Fig. 2.3 Power trace of CPA against a protected AES implementation 

 

2.2.4 Template Attack 

In electronic devices, under certain conditions, a power consumption 

profile of some operations could be built in form of a template. With 

this, an adversary might be able to extract sensitive data from a target 

device by matching its power consumption with the computed 

templates. Such procedure is known as a Template Attack (TA). This 
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kind of attack was introduced by Chari et al. in [20], and it is considered 

one of the strongest types of SCA so far. An ideal scenario to perform a 

TA is to acquire both profiling and attack power traces from the same 

device, in the same acquisition campaign. For this purpose, it is an 

advantage to have a profiling operation similar to the target one, which 

inputs and outputs could be controlled. Under such conditions the 

power consumption characterization would be close to optimal. 

2.2.5 Side Channel Attacks vs ECC 

A few of SCA have been published addressing the ECC [21]. Point 

multiplication is typically the target operation as it involves a secret, 

thus the attacks aim at recovering it. PM is especially vulnerable to a 

SPA if it is implemented using the straightforward doubling and adding 

algorithm, as it can be seen in Figure 2.4.   

 

Fig. 2.4 SPA on an unprotected Point Multiplication 

Some of the countermeasures to overcome SPA make indistinguishable 

the differences in Point Doublings (PD) and Point Additions (PADD) [22-

23].  
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Also, DPA may target an ECC implementation as demonstrated in [24-

25]. The DPA involved in these works can be counteracted through the 

randomization of the point coordinates, as determined by Coron in [26]. 

2.3 Residue Number System 

2.3.1 Fundamentals 

The Residue Number System is based on the Chinese Remainder 

Theorem and it allows the representation of non-negative integers 

through their remainders like 

𝑥1 = 𝑋 𝑚𝑜𝑑 𝑏1 

𝑥2 = 𝑋 𝑚𝑜𝑑 𝑏2 

... 

𝑥𝑛 = 𝑋 𝑚𝑜𝑑 𝑏𝑛 

where the base 𝐵 = {𝑏1, 𝑏2, … , 𝑏𝑛} is a set of co-prime integers. Thus,  

{𝑥1, 𝑥2, … , 𝑥𝑛} is the representation of 𝑋 in RNS. The dynamic range of 

𝐵 is defined as its Least Common Multiple 

𝐷𝑅𝐵 = {𝑏1 · 𝑏2 · 𝑏3 … · 𝑏𝑛}  (2.1) 

The basic operations (addition, subtraction and multiplication) between 

two integers 𝑋 e 𝑌 represented in 𝑛-channels of RNS can be performed 

like 

{𝑐1, 𝑐2, … , 𝑐𝑛} = {𝑥1 ∘ 𝑦1, 𝑥2 ∘ 𝑦2, … , 𝑥𝑛 ∘ 𝑦𝑛}  (2.2) 

This implies that the computation can be parallelized, which implies an 

advantage in the operation speed [28]. The Figure 2.5 shows a high level 

block diagram of an RNS architecture. 
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Fig. 2.5 RNS architecture 

Before the computation, the integers have to be converted to RNS 

domain. Some values can be precomputed offline in this process, thus 

resulting a lightweight operation. In [29] more comprehensive details 

can be consulted.  

The result of the RNS computation should be back converted to binary. 

This process is more complex than the previous one. Again, for more 

details, reader is forwarded to [29]. 

2.3.2 RNS resiliency against Side Channel Attacks 

The importance of RNS for efficient cryptographic implementations 

have motivated the study of its resiliency against SCA. Researchers have 

demonstrated that the parallel circuits performing same operation 

make difficult an SCA [32-33]. Notice that, independent and isolated 

power consumption measurements of a single RNS channel are 

unfeasible to acquire. The rest of the channels perform the same 

operation with different operands, at the same time, thus acting as a 

significant source of noise. The common binary implementation on 

secure devices, need to implement a source noise, typically in the form 

of a random number generator. 



 

21 | Chapter 2. Literature review 
 

Moreover, SPA and DPA attacks are proven to be defeated in RNS if the 

coordinates or the moduli set are randomized [34] [38-39] 

2.3.3 The RNS coprocessor 

RNS is a high-speed and efficient solution for large numbers 

multiplication, being more efficient than conventional two’s 

complement arithmetic. The ability to obtain moduli sets with several 

channels results in high performance circuits, since each channel uses a 

reduced number of bits. The parallelism of operations reduces the 

latency of the system [30] [31]. 

In this work, we consider the RNS coprocessor described in [29] to 

evaluate the ECC PM and MPM operations intended for authentication 

schemes. The said coprocessor is a generic architecture, not exclusively 

designed for ECC implementations, thus another cryptosystems (e.g. 

RSA, ElGamal) could be implemented. Furthermore, the coprocessor 

can be configured to work with several ECC curve sizes up to 1024 bits, 

which perfectly fits the required standards for modern systems security. 

The flexibility of this solution makes it unique in the available literature 

[29]. 

The RNS coprocessor operates decoding a microcode sent from an 

external MPU. The microcode set the operation code and the operands. 

The data to be computed is also sent from the external MPU to the RNS 

coprocessor through a different bus. 

Montgomery multiplication in RNS 

The modular multiplication in the core of the RNS coprocessor is 

implemented following [35]. This is a RNS variant of the well-known 
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Montgomery multiplication [36]. Montgomery introduced a more 

efficient modular multiplication by trading 𝑚𝑜𝑑𝑢𝑙𝑜 𝑁 computations by  

𝑚𝑜𝑑𝑢𝑙𝑜 𝐿, which allows more lightweight operations. In the RNS, 𝐿 is 

the 𝐷𝑅𝐵, thus the modular reductions for each element 𝑥𝑖  are 

computed following 

𝑦𝑖 = 𝑥𝑖 𝑚𝑜𝑑 𝑏𝑖  (2.3) 

Java emulator tool 

An emulator and code generator for the coprocessor is presented in 

[37]. The tool offers a suitable interface to evaluate several 

cryptographic algorithms by coding them in Java. The relevance of this 

tool is that generates the microcode and formatted data to configure 

the coprocessor with the desired algorithm. The tool was used in this 

work to program the Point Multiplication and Multiple Point 

Multiplication algorithms evaluated. Annex A shows a picture of the 

interface.  

Security considerations 

As previously said, this is a general purpose arithmetic coprocessor, 

which is not specifically dedicated to cryptographic implementations, 

thus it lacks security countermeasures against SCA. Because the 

manipulated data is not masked in any sense, this should be considered 

to prevent a CPA or a potential Template Attack. Also, the moduli set is 

fixed in this version of the coprocessor, thus an alternative, based on 

(2.3) is the randomization of the coordinates, which is mandatory to 

avoid DPA.  
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Additionally, the generation of the microcode for PM might lead to a 

DPA like the one described in [24], which would apply in the external 

processor side. Although this threat is identified herein, the protection 

against SCA beyond the boundaries of the RNS processor is out of the 

scope of this thesis. 

2.4 Summary 

In this chapter, some ECC-based certificate-less authentication schemes 

were discussed. Bellare’s BNN-IBS is a suitable one as it can be adapted 

to the RNS coprocessor without losing its efficiency. Moreover, this IBS 

can be implemented in the RNS applying the SCA countermeasures for 

a more complete protection. 

A background of the state-of-the-art non-invasive physical attacks is 

also given herein. The main SCAs that apply to ECC-based cryptographic 

implementations, as quoted in some of the bibliography, can be 

counteracted by using the RNS method. 

Finally, the fundamentals of the RNS is provided, and its advantages for 

the realization of cryptographic circuits are highlighted. A third-party 

RNS coprocessor is used to evaluate the critical operation involved in 

the authentication scheme. 

The RNS coprocessor cannot compute divisions. This is an inconvenient 

for the implementation of the authentication scheme, specifically to 

provide the affine coordinates in the MPM operation (see chapter 4). In 

the case of ECDSA, the method requires a modular inversion, and it 

needs to be protected because a secret is manipulated. This issue 

motivated the investigation on the next chapter.  
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3 Modular inverse 
 

The need to give a solution to the division problem in RNS, and to 

provide a secure mechanism for the nonce division in ECDSA, motivated 

the study of the modular inversion methods. A discussion about some 

representative examples of these algorithms is presented in this 

chapter, with focus on their efficiency and security. From the conducted 

study, and especially regarding the implementation security, two 

contributions were achieved.  

In the first place, regarding the method described in section 3.3, a 

security analysis is provided which demonstrates potential 

vulnerabilities of a straightforward implementation. In addition, a 

contribution was done and formalized in a complementary work, 

introducing a secure variant for the inversion modulo 2𝑘[19].  

On the other hand, the Euclidean algorithm is presented in subsection 

3.4, where a security discussion about an RNS variant is conducted. An 

analysis considering the ECDSA inversion step as a mean to attack a 

coexistent RSA is also provided herein. Moreover, in another 

complementary work, it is introduced by the first time a Template 

Attack against a protected Euclidean algorithm, which targets the RSA 

key generation (See Annex B). 

3.1 Introduction to modular inverse 

In electronic devices that perform modular arithmetic, the division 

operation 𝑐 = 𝑎/𝑏 𝑚𝑜𝑑 𝑝  is often solved through a modular inverse, 

like 𝑐 = 𝑎 · 𝑖𝑛𝑣_𝑏 𝑚𝑜𝑑 𝑝. It is, instead of dividing by 𝑏, a modular 
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multiplication is performed involving 𝑏’s multiplicative inverse (𝑖𝑛𝑣_𝑏), 

where 𝑏 · 𝑖𝑛𝑣_𝑏 𝑚𝑜𝑑 𝑝 = 1 must hold.  

Modular inverse is widely used in cryptography, and it is considered an 

expensive operation. The projective to affine coordinates conversion in 

ECC-based schemes require some modular inversions. Also, ECDSA 

makes the modular inversion of a nonce, which indeed is a sensitive 

value. Some multiplicative masking techniques also use this operation 

[1]. The Montgomery multiplication, which is extensively used for multi-

precision operands, requires inversion as well [2].  

In the remaining of this chapter some of the current state-of-the-art 

methods to compute the modular inverse are presented. The selected 

methods are considered among the most relevant ones for the sake of 

this work. 

3.2 Fermat’s Little Theorem (mod 𝑝𝑟𝑖𝑚𝑒) 

A well-known method to solve the modular inverse is the algorithm 

based on the Fermat’s Little Theorem (FLT), although it works only for 

prime moduli [3]. The FLT states that, for any integer 𝑎 and prime 

modulus 𝑝 

𝑎𝑝 = 𝑎  (𝑚𝑜𝑑 𝑝) (3.1) 

And from there, it turns out that  

𝑎𝑝−2 = 𝑎−1  (𝑚𝑜𝑑 𝑝) (3.2) 

In many hardware devices (even in resource constrained ones), the 

modular inverse is performed as in 3.2, despite the exponential 

complexity of that method. Maybe the developers choose FLT when the 
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modulus is a secret because the state of the art of SCA-protected 

exponentiations is well consolidated, as it is largely used in the RSA 

computation.  

Recent bibliography shows that FLT is not the best option to perform 

modular inverse in residue arithmetic. In [4], a study was conducted to 

evaluate the FLT performance in an RNS-based hardware 

implementation. The comparison yielded that an RNS variant of FLT was 

about six times slower than a similar variant of the Euclidean algorithm.  

3.3 Modular inverse (mod 𝑝𝑘). The ModInverse algorithm 

A few methods exist in the bibliography to obtain the inverse modulo 

𝑝𝑘 [5], [6] and [7]. The particular case of the inversion modulo 2𝑘 is 

quite useful to compute the Montgomery constant, which facilitates the 

modular multiplication through the Montgomery’s method. The 

Montgomery inversion is another known method which has a variant 

(Almost Montgomery Inversion) that produces the modular inverse 

multiplied by 2𝑘 [8]. The latter can be conveniently used to accelerate 

the computation. However, in terms of efficiency, the algorithm 6.11 

given in [9] seems to be a better option to compute the inverse modulo 

2𝑘. It seems that a minimal careful implementation should avoid SCA 

against this method. Its drawback is that it only works for modulo 2𝑘.  

The ModInverse algorithm 

The ModInverse algorithm in [7] was introduced by Koç in 2017. It is 

particularly interesting for its efficiency and because it works for 

modulo 𝑝𝑘, with any 𝑝 and any 𝑘, which makes it more flexible than the 

previous similar methods.  
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It seems there is not an RNS variant proposed for this algorithm so far. 

Anyway, that topic is not in the scope of this work. For a future research 

on that line, it should be considered that a straightforward 

implementation of the original algorithm might be vulnerable to a 

secret retrieval. A security analysis addressing this issue is provided in 

the next subsection.     

The assumptions to perform the computation by the ModInverse 

method are: 

● 𝑝 is a prime 

● 𝑘 is a positive integer 

● 𝑔𝑐𝑑(𝑎; 𝑝) = 1    (1 < 𝑎 < 𝑝𝑘) 

The algorithm for modular inversions follows 

Algorithm 3.1. ModInverse [mod 𝑝𝑘] 

Input: 𝑎, 𝑝 and 𝑘; such that 𝑔𝑐𝑑 𝑔𝑐𝑑 (𝑎; 𝑝)  = 1 and 𝑎 < 𝑝𝑘 

Output: 𝑥 = 𝑎−1 𝑚𝑜𝑑 𝑝𝑘 

1. 𝑐 = 𝑎−1 𝑚𝑜𝑑 𝑝 

2. 𝑏0 = 1 

3. 𝑓𝑜𝑟 𝑖 = 0  𝑡𝑜  𝑘 − 1 

4. 𝑋𝑖 = 𝑐 · 𝑏𝑖 (𝑚𝑜𝑑 𝑝) 

5. 𝑏𝑖+1 = (𝑏𝑖 − 𝑎 · 𝑋𝑖)/𝑝 

6. 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥 = (𝑋𝑘−1 … … … 𝑋1 𝑋0)𝑝 

The factor 𝑝 is usually a small number (commonly 2 or 3), thus the 

computation at step 1 is expected to be easily performed. In fact, for 

the case of 𝑝 = 2, the computation of 𝑐 is trivial.  
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Special case 𝑝 = 2 

The previous algorithm can be reduced for 𝑝 = 2. In that case, the 

inverse computation requires that 𝑔𝑐𝑑(𝑎; 2𝑘) = 1, thus 𝑎 must be an 

odd number and then 𝑐 = 1. The simplified algorithm for 𝑝 = 2 follows 

Algorithm 3.2. ModInverse [mod 2𝑘] 

Input: 𝑎 and 2𝑘; such that 𝑎 < 2𝑘  and 𝑎 is odd 

Output: 𝑥 = 𝑎−1 𝑚𝑜𝑑 2𝑘 

1. 𝑏0 = 1 

2. 𝑓𝑜𝑟 𝑖 = 0  𝑡𝑜  𝑘 − 1 

3. 𝑋𝑖 = 𝑏𝑖 𝑚𝑜𝑑 2 

4. 𝑏𝑖+1 = (𝑏𝑖 − 𝑎 · 𝑋𝑖)/2 

5. 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥 = (𝑋𝑘−1 … … … 𝑋1 𝑋0)2 

From the previous algorithm one appreciates that the operation at step 

3 is trivial, as it only requires checking the LSB of 𝑏𝑖. On the other hand, 

the returned value in 𝑥 is binary.  

3.3.1 Security analysis for 𝑝 = 2  

In the following subsections we describe the two vulnerabilities found 

in the algorithm under analysis, that impede a safe manipulation of the 

sensitive data.  

In a prospective RNS variant of ModInverse, those vulnerabilities could 

be exploited to disclose the random moduli set 𝑀 =

(𝑚0, 𝑚1, … … … 𝑚𝑛), thus making the implementation susceptible to 

SCA (see Chapter 3). Let us suppose the ModInverse is employed in the 

Montgomery multiplication, specifically to compute the Montgomery 

constants. Such constants are directly related to the RNS moduli set 𝑀, 
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and they are computed like 𝑚𝑖 ’ = −𝑚𝑖
−1 𝑚𝑜𝑑 2𝑙, where 𝑙 is the 

channel`s bit length. 

In the RSA-CRT scheme, those constants are directly related to the 

secret moduli 𝑝 and 𝑞, and they are computed like 𝑥’ = −𝑥−1 𝑚𝑜𝑑 2𝑘, 

where 𝑘 is the bit length of the respective moduli and 𝑥 is either 𝑝 or 𝑞. 

In [19] the author, describes this attack in an RSA-CRT scenario and gives 

a secure variant of the ModInverse algorithm to counteract SPA and 

Timing Attacks. 

3.3.2 Asymmetric iterations 

It is well known that an SPA allows to recover the secret 𝑘 from the 

Square-and-Multiply method (𝑦 = 𝑔𝑘) due to a difference in the 

operations performed whether 𝑘 = 0 or 𝑘 = 1. The Montgomery 

ladder exponentiation solves that issue by always performing the same 

operations disregarding the value of 𝑘 [10]. 

A similar issue has been detected in the inversion method under 

analysis in this work. It allows a straightforward SPA, which leads to an 

easy recovery of the operation result, and in consequence, the input 

data is disclosed. As from the previous section, the modular inverse of 

the input 𝑎, obtained through the algorithm 3.2 is formed by ______ 

𝑥 = (𝑋𝑘−1 … … … 𝑋1 𝑋0)2; where 𝑋𝑖 Є [0; 1]. Furthermore, the 

intermediate result 𝑏𝑖 − 𝑎 · 𝑋𝑖 at step 4 is always divisible by 2. At step 

4, besides the multiplication 𝑎 · 𝑋𝑖, two other operations can be 

distinguished: a subtraction and a division by 2. The division can be 

performed as right shift because the result of the subtraction is always 

divisible by 2. 
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Regarding the subtraction, this may or may not be computed. One can 

see that if 𝑋𝑖 = 0, then 𝑎 · 𝑋𝑖 = 0, and then the subtraction 𝑏𝑖 − 𝑎 · 𝑋𝑖 

becomes 𝑏𝑖 − 0. In a straightforward implementation of the original 

algorithm, the developer may choose to obviate the subtraction if 𝑋𝑖 =

0. It is recalled that the original work does not refer to any SCA 

protection to keep the input data safe, thus it is believed the author did 

not consider a scenario with a secret input. If the subtraction is not 

performed, a significant difference in the execution flow exists 

depending on the 𝑋𝑖 value. In summary 

𝑋𝑖 = 0 →  𝑏𝑖+1 = (𝑏𝑖 − 𝑎 · 0)/2 = 𝑏𝑖/2    and 

𝑋𝑖 = 1 →  𝑏𝑖+1 = (𝑏𝑖 − 𝑎 · 1)/2 = 𝑏𝑖 − 𝑎/2   

Such a data-dependent characteristic could be distinguished in a power 

consumption trace of the algorithm execution. It would then lead to a 

straightforward SPA where the modular inverse of the secret could be 

directly recovered. Once the modular inverse is recovered, it is then 

trivial to obtain the input by computing 𝑎 = 𝑥−1 𝑚𝑜𝑑 2𝑘. If 𝑎 was a 

secret, as it is the case in the Montgomery constants computation (e.g. 

for RNS-based ECC or even the RSA-CRT), this would imply a critical 

security issue. 

Nevertheless, the developer may choose a more regular 

implementation by always computing the subtraction. In this case, 

there are two possibilities: if 𝑋𝑖 = 0, the subtraction 𝑏𝑖 − 0 is 

computed, meanwhile, if 𝑋𝑖 = 1, the operation computed is  𝑏𝑖 − 𝑎. In 

the context of the Montgomery constants computation, from the 

second iteration, the operands 𝑏𝑖 and 𝑎 are large integers. This makes 
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the subtraction 𝑏𝑖 − 𝑎 highly susceptible of having lots of carry bits 

propagation. This effect has a negative impact on the latency of the 

additions/subtractions. While in 𝑏𝑖 − 0 the carry propagation is null, in 

𝑏𝑖 − 𝑎 the carry propagation varies making that operation longer in 

time. This should be enough to apply a successful Timing Attack to 

distinguish one operation from the other, which directly lead to infer 

the values of the related 𝑋𝑖. 

3.3.3 Operations latency 

The latency of the arithmetic operations is closely related to the data 

length of the operands, especially in software implementations. In the 

case of additions/subtractions, they both commonly require managing 

a carry bit which is sequentially generated at each bit-bit operation. 

Therefore, the carry chain is as long as the operands, and it determines 

the whole operation latency. 

Let us say, for example, that the evenness of an operand determines 

the next operation where it will be involved, and the said operation 

impacts on the operand’s bit length. If that quantity is further added or 

subtracted from a constant value and this sequence is performed in a 

loop, the addition/subtraction latency might experiment variations at 

each iteration, as a consequence of the carry chain modification. If an 

adversary is able to identify the additions/subtractions through an SPA 

and measure those variations, then the operand’s evenness (its Least 

Significant Bit - LSB -) might be traced back. 

From the algorithm 3.2, one can see that the subtraction performed at 

the step 4 depends on 𝑏𝑖 and 𝑎. The value of 𝑎 is invariant throughout 
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the whole operation, while 𝑏𝑖 does varies. In fact, the value of 𝑏𝑖 is 

strongly dependent on 𝑋𝑖. If 𝑋𝑖 = 0, then 𝑏𝑖+1, computed at iteration 𝑖, 

yields 𝑏𝑖 = 2. For consecutive values of 𝑋𝑖 = 0, the respective 𝑏𝑖+1 are 

always smaller by a factor of 2. On the other hand, considering 𝑎 < 0 

(as required in the Montgomery constant computation), it can be 

demonstrated that 𝑏𝑖+1,  tends to 𝑎 for consecutive 𝑋𝑖 = 1. 

Let’s have 𝑋𝑖 = 𝑋𝑖+1 = 1. The correspondent calculations of 𝑏𝑖 and 𝑏𝑖+1 

follow 

𝑏𝑖 =
𝑏𝑖−1

2
+

𝑎

2
   (3.3) 

𝑏𝑖 =
𝑏𝑖−1

4
+

3𝑎

4
  (3.4) 

According to the right side of the equation 3.4 and comparing it with 

the right side of the equation 3.3, the subtrahend (which depends on 𝑎) 

in 3.4 is greater and it approaches more to 𝑎. The minuend is halved 

and tends to zero. Thus, it makes 𝑏𝑖+1 closer to the value of 𝑎 rather 

than to 𝑏𝑖. Something similar occurs when 𝑋𝑖 = 0 and 𝑋𝑖+1 = 1. 

In summary, it might be expected to observe in a power trace, a 

continuous decreasing latency in the addition/subtraction for 

consecutive iterations where 𝑋𝑖 = 0; while the latency would tend to 

increase for continuous 𝑋𝑖 = 1 or even for transitions from 𝑋𝑖 = 0 to 

𝑋𝑖+1 = 1.  

The differences in the execution flow for 𝑋𝑖 = 0 and 𝑋𝑖+1 = 1 are 

enough to perform an SPA on algorithm 2. Thus, a timing analysis for 

this purpose is not necessary; however, in order to design a 



 

37 | Chapter 3. Modular inverse 
 

countermeasure to overcome such data-dependent vulnerability, the 

issue on the operations timing has to be taken into account. 

3.4 The Euclidean algorithm 

A binary variant of the Euclidean algorithm, introduced in [11], 

computes the greatest common divisor (GCD) of two integers. The 

extended variant (BEEA, Binary Extended Euclidean Algorithm) gives in 

addition, the inverse of one of the inputs modulo the other [12]. 

The Euclidean algorithm computes modular inversions by solving the 

Bézout’s identity. This is:  

(𝑢, 𝑣) = 𝐵𝐸𝐸𝐴(𝑎, 𝑚) where,  

if  𝑢 · 𝑎 − 𝑣 · 𝑚 = 1, then 

𝑢 =
1

𝑎
 𝑚𝑜𝑑 𝑚  

The fact of working with prime and composite modulus, makes it quite 

versatile. The BEEA can be used on the ECDSA (to compute the inverse 

of the nonce 𝑘), which is maybe the most used ECC-based cryptosystem 

so far. Furthermore, the binary variant of the Euclidean algorithm is a 

suitable choice for hardware devices, as it substitutes the costly 

divisions by shifts allowing more efficient circuits. Moreover, it was 

recently demonstrated that a BEEA variant implementation performs 

six times faster than FLT in processors based on the residue number 

system [14].  

In the remainder of this section, we will refer to a generic BEEA coded 

as in the Alg. 3.3, which is its classical definition, giving two outputs: the 

great common divisor of the inputs and the inverse of one of them [12].  
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Algorithm 3.3 Binary Extended Euclidean Algorithm 

Inputs: 𝑘 and 𝑝; where 𝑝 is a prime 

Outputs: 𝐺𝐶𝐷(𝑘, 𝑝) and 𝑘𝑖𝑛𝑣 = 𝑘−1 𝑚𝑜𝑑 𝑝 

1. 𝑢 = 𝑘 

2. 𝑣 = 𝑝 

3. 𝐴 = 𝐷 = 1 

4. 𝐵 = 𝐶 = 0 

5. 𝑤ℎ𝑖𝑙𝑒 𝑢 ≠ 0 𝑑𝑜 

6. 𝑤ℎ𝑖𝑙𝑒 (𝑢 𝑖𝑠 𝑒𝑣𝑒𝑛)𝑑𝑜 − − − − − − − − − − − −  u-loop 

7. 𝑢 = 𝑢/2 

8. 𝑖𝑓 (𝐴 𝑖𝑠 𝑒𝑣𝑒𝑛) 𝑎𝑛𝑑 (𝐵 𝑖𝑠 𝑒𝑣𝑒𝑛) 

9. 𝐴 = 𝐴/2 

10. 𝐵 = 𝐵/2 

11. 𝑒𝑙𝑠𝑒 

12. 𝐴 = (𝐴 + 𝑝)/2 

13. 𝐵 = (𝐵 − 𝑘)/2 − − − − − − − − − − −  end 

14. 𝑤ℎ𝑖𝑙𝑒 (𝑣 𝑖𝑠 𝑒𝑣𝑒𝑛) 𝑑𝑜 − − − − − − − − − − − −  v-loop 

15. 𝑣 = 𝑣/2 

16. 𝑖𝑓 (𝐶 𝑖𝑠 𝑒𝑣𝑒𝑛) 𝑎𝑛𝑑 (𝐷 𝑖𝑠 𝑒𝑣𝑒𝑛) 

17. 𝐶 = 𝐶/2 

18. 𝐷 = 𝐷/2 

19. 𝑒𝑙𝑠𝑒 

20. 𝐶 = (𝐶 + 𝑝)/2 

21. 𝐷 = (𝐷 − 𝑘)/2 − − − − − − − − − − −  end 

22. 𝑖𝑓 𝑢 ≥  𝑣 

23. 𝑢 = 𝑢 − 𝑣 

24. 𝐴 = 𝐴 − 𝐶 

25. 𝐵 = 𝐵 − 𝐷  

26. 𝑒𝑙𝑠𝑒 

27. 𝑣 = 𝑣 − 𝑢 

28. 𝐶 = 𝐶 − 𝐴 

29. 𝐷 = 𝐷 − 𝐵   

30. 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑣 = 𝐺𝐶𝐷(𝑘, 𝑝),  𝑘𝑖𝑛𝑣 = 𝐶 𝑚𝑜𝑑 𝑝) 
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Notice that the oddness verification of the inputs is avoided for 

simplicity. The algorithm is written following a notation correspondent 

to the step of ECDSA where the nonce 𝑘 is inverted modulo 𝑝. 

When computing the inverse of 𝑘 in ECDSA, like in the Alg. 3.3, the initial 

flow of the instructions code could be inferred. Let us consider 

𝐵𝐸𝐸𝐴(𝑘, 𝑝), where the ECC modulus is  𝑝 = {𝑝𝑛−1  … 𝑝1 𝑝0} and 𝑝0 is 

the least significant byte. Because 𝑝 is a prime, the v-loop will never be 

executed in the first iteration. However, in the first iteration, if 𝑘 is even, 

the u-loop (steps 6 – 13) will be executed. Notice that 𝐴 = 1 at the 

beginning, and that is enough condition to get into the ELSE branch of 

the u-loop, right after the shift. In that case, the operations at steps 12 

and 13 are executed. The u-loop will execute until 𝑢 gets odd. Once this 

condition is true, the flow will continue through step 22.  

3.4.1 Security aspects of BEEA implementation 

A large bit length difference in BEEA inputs has been exploited in [16, 

18] to predict the execution flow of the algorithm and extract sensitive 

information. The countermeasures proposed so far, only focus on 

making both operands the same size, or they directly mask the sensitive 

input, to counteract such vulnerability. 

The greatest common divisor is one of the outputs of the BEEA, thus, it 

is equivalent to write 𝐺𝐶𝐷(𝑎, 𝑏) instead 𝐵𝐸𝐸𝐴(𝑎, 𝑏) to refer to such 

output from the Alg. 3.3. In [16] two methods were patented to protect 

the GCD from an SPA. The first one follows the property 

𝐺𝐶𝐷(𝑋 − 1, 𝑒) = 𝐺𝐶𝐷(𝑋 − 1 + 𝑟 · 𝑒, 𝑒) (3.5) 
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It consists on applying an additive masking to 𝑋 − 1, where 𝑋 is a secret 

prime (𝑝 or 𝑞) in an RSA scheme, 𝑒 is the public key, and 𝑟 is random. If 

𝑟 is a large nonce (e.g. 𝑠𝑖𝑧𝑒𝑜𝑓(𝑋) − 𝑠𝑖𝑧𝑒𝑜𝑓(𝑒)) then all the bits of the 

secret get masked. In such a case, even if an adversary is able to follow 

the complete algorithm flow, no relevant information will be disclosed. 

Notice that, even assuming the case where an adversary obtains the 

masked 𝑋′ = 𝑋 − 1 + 𝑟 · 𝑒 through an SPA, and 𝑋’ is reduced modulo 

𝑒, still the brute force complexity to get 𝑋 would make the attack 

unfeasible. This is true if considering the length of 𝑋 has been properly 

chosen (e.g. ≥ 512 bits), and that 𝑠𝑖𝑧𝑒𝑜𝑓(𝑋) is much larger than the 

𝑠𝑖𝑧𝑒𝑜𝑓(𝑒), which is the common scenario. The second method 

introduced by Chartier in [16] relies on the property 

𝐺𝐶𝐷(𝑋 − 1, 𝑒) = 𝐺𝐶𝐷(𝐺𝐶𝐷(𝑋 − 1, 𝑟 · 𝑒), 𝑒)  (3.6) 

In [1] and [17] the proposed countermeasure to protect the BEEA from 

an SPA is based on the previous property as well. This countermeasure 

ensures that both operands have the same bit length to avoid the 

prediction of the execution flow. In this case, if the random number is a 

large nonce, then the specific conditional branch the algorithm takes at 

each iteration could not be guessed by an SPA on the power trace. This 

removes the vulnerability exploited in [17].  

The methods in equations 3.5 and 3.6 are originally intended to protect 

the coprimality tests involving 𝑒 and 𝑝 and 𝑞 candidates in RSA, also to 

protect the private key generation in the said cryptosystem. These 

countermeasures can also be used to protect the modular inversion of 
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the nonce in ECDSA, given the case that it is performed through the 

Euclidean algorithm (𝐵𝐸𝐸𝐴(𝑘, 𝑝)).  

However, although the masking technique in eq. 3.6 prevents a SPA, it 

is highlighted that the secret is still manipulated in plaintext. This 

implies a high risk if profiling attacks are considered.  

3.4.2  Profiling in ECDSA to attack the RSA 

The manipulation of the public modulus 𝑝 in plaintext in ECDSA, implies 

a risk for the RSA, given the case that both cryptosystems are 

implemented in the same device. As seen in Chapter 2, an operation 

which inputs and outputs can be controlled, is a good target to mount 

a Template Attack against a similar operation that manipulates a secret.  

In ECDSA’s modular inversion performed following Alg. 3.3 

(𝐵𝐸𝐸𝐴(𝑘, 𝑝)), when the nonce 𝑘 is even, the operation at step 12 (𝐴 =

(1 + 𝑝)/2) is executed second, during the first iteration. Meanwhile, 

from the RSA key generation (𝐵𝐸𝐸𝐴(𝑒, 𝜑(𝑁))), a suitable attack point 

for a TA could be the operation 𝐶 = (𝐶 + 𝜑(𝑁))/2, where 𝐶 = 0 in the 

first iteration. The high similarities among both operations allow using 

ECDSA to build a profile of its power consumption by choosing several 

values of 𝑝. The obtained profile can be later used to conduct a TA 

against an RSA key generation with the aim to disclose the secret 𝜑(𝑁) 

while 𝐶 is being computed.   

The previous observation along with the non-protected secret issue in 

the masking method in 3.6 lead to formulate by the first time, a 

Template Attack against a BEEA implementation, which is described in 

Annex B. 
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Finally, it can be ensured that, to implement a secure inversion step in 

ECDSA and to avoid its use as a mean to attack a coexistent RSA, the 

two countermeasures proposed by Chartier in [16] must be used. 

Additionally, the multiplicative masking technique presented in [17] 

would also avoid the TA described in Annex B. 

3.4.3 RNS variant of BEEA 

The plus-minus algorithm introduced in [15] is a variant of the Euclidean 

method that avoids the large integer comparison (step 22 of Alg. 3.3). 

This is very useful for RNS-based systems, because the non-positional 

property of RNS makes difficult the comparisons. An extension of the 

original plus-minus algorithm, presented in [13], employs a modulo 4 

verification to substitute the comparison between 𝑢 and 𝑣. The plus-

minus relies on the fact that two numbers 𝑥 and 𝑦 are odd whether 𝑦 +

𝑥 or 𝑦 − 𝑥 is divisible by 4. 

Recently, the plus-minus idea let the authors of [14] to introduce an RNS 

variant of the Euclidean algorithm. The divisions by 2 and 4 were 

substituted by multiplications using their respective modular inverses 

(2−1 and 4−1). On the other hand, the large number comparison was 

solved through a modulo 4 test. However, a modular reduction is also 

expensive in RNS, thus the authors reduced the computation by 

selecting all the elements 𝑚𝑖 in the moduli set as odd and such that 

|𝑚𝑖|4 = 1.   

The fact of imposing the |𝑚𝑖|4 = 1 restriction to all the elements 𝑚𝑖 

reduces the amount of candidates for the moduli set to one quarter. 
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This is contrary to the recommendation of having a random moduli set 

for security, as seen in chapter 3.  

Regarding the efficiency, in [14] the authors verified that their BEEA-

RNS variant runs 6 to 10 times faster than a FLT-RNS. However, in some 

cases, the FLT can be safely implemented using precomputed data to 

speed up the computation. One case could be the inverse of the nonce 

𝑘 in the ECDSA signature generation, or the inverse of the projective 

coordinate 𝑍 to calculate the affine 𝑥-coordinate in an ECC point 

multiplication. 

3.5 Conclusions 

The ModInverse method  

The novel Modinverse algorithm presented in [7] could be a suitable 

choice for some systems, as it works for modulo 𝑝𝑘, with any 𝑝 and any 

𝑘, which is a flexible property. Its particular case (mod 2𝑘) makes it quite 

useful for the Montgomery multiplication. A prospective RNS variant of 

this method should not be discarded, as it would make this algorithm 

even more attractive. However, as discussed in this chapter, the 

method has some vulnerabilities that should be taken into 

consideration, as they impede a safe implementation to manipulate 

secrets. The work in [19] solves this threat and constitutes a side 

contribution of this thesis. 

Euclid’s and Fermat’s methods 

In this chapter, the fundamentals of the Euclidean algorithm have been 

introduced. The RNS variant of the BEEA presented in [14], 
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demonstrated to be faster than an RNS-based FLT; however, the 

restrictions imposed to guarantee an efficient computation imply a 

potential risk, because the moduli set cannot be fully randomized. 

Therefore, a tradeoff solution should be found. An RNS-based FLT using 

precomputed data to speed up the calculations could be such an 

intermediate solution if the base, the exponent and the moduli set are 

randomized. 

On the other hand, from the conducted analysis considering potential 

risks to other cryptosystems, it is suggested to apply further 

countermeasures in the BEEA implementation, to protect both the 

ECDSA and a coexistent RSA. The feasibility of a Template Attack to a 

partially protected BEEA implementation is demonstrated in Annex B. 

This contribution confirms the theoretical analysis regarding a BEEA 

implementation vulnerability.  
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4 ECC operations in the RNS 

coprocessor 
 

In this chapter, the most critical elliptic curve operations involved in the 

ECC-based signature schemes are treated. The point multiplication (PM) 

and the multiple point multiplication (MPM) are considered critical 

operations as they both demand either a highly secure implementation 

or large computational resources. 

An emphasis is made in the mechanisms adopted to guarantee the 

security against SCA, considering that these operations are computed 

by a general-purpose arithmetic coprocessor. There is also a focus on 

the algorithmic optimization of the ECC operations that lead to improve 

the signature generation/verification performance. The scope of this 

work is limited to the RNS coprocessor, therefore it is not considered 

herein the security of the external processor that feeds data and micro-

codes to the RNS coprocessor. 

4.1  Secure Point Multiplication 

The last steps of the signature verification in ECDSA and BNN-IBS 

methods involve an ECC point comparison, which can be done by 

comparing only the 𝑥-coordinates (see chapter 2). Also, the signature 

generation in the said schemes, only needs for the 𝑥-coordinate of the 

curve generator point. This allows to implement the respective PM and 

MPM without computing the final 𝑦-coordinate. Therefore, in ECDSA 

and BNN-IBS, some modular multiplications can be saved.  The 
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expensive RNS-to-binary conversion of the non-needed 𝑦-coordinate 

can also be saved in both PM and MPM. 

In the sequel, some references are made to M, S and I to denote the 

computational cost of field multiplications, squaring and inversions, 

respectively. Similarly, MM is used to denote the modular 

multiplications performed by the RNS coprocessor described in the 

chapter 3. 

A more efficient PM performance can be obtained by using pre-

computed data and techniques based on signed integer representation 

[8]. Those approaches need for more non-volatile memory space and 

further SCA countermeasures, to store, randomize and update the 

precomputed data. For some low power and memory constrained 

devices this might not be a suitable choice. Throughout this subsection 

we obviate such methods. 

4.1.1 Random coordinates 

One of the potential vulnerabilities identified in the RNS coprocessor 

(see chapter 3) is that it does not randomize the moduli set. This allows 

an adversary to perform a correlation attack against the PM to extract 

the bits of the secret scalar. The moduli set randomization acts as an 

input blinding technique; therefore, we directly randomize the 

generator point coordinates to achieve the same effect and counteract 

such correlation attacks. 

Based on the ECC points property of having 𝑛 representatives in 𝑛 𝑍-

planes, the generator point is randomized before manipulating the 

scalar bits. Nevertheless, depending on the security level required, the 
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intermediate results might also be randomized multiple times during 

the PM with a negligible cost. The new Jacobian projective coordinates 

are computed as follows 

● Generate a random number  𝑟𝑛𝑑 

● 𝑋’ = 𝑟𝑛𝑑2 · 𝑋(𝑚𝑜𝑑 𝑁) 

● 𝑌’ = 𝑟𝑛𝑑3 · 𝑌(𝑚𝑜𝑑 𝑁) 

● 𝑍’ = 𝑟𝑛𝑑 · 𝑍(𝑚𝑜𝑑 𝑁) 

4.1.2 Montgomery ladder with (X, Y)-only variant 

The co-Z addition 

Meloni introduced in [1] a reduced addition technique for different 

points sharing the same 𝑍-coordinate, which can be described as 

follows:  

Let 𝑃 = (𝑋1, 𝑌1, 𝑍) and 𝑄 = (𝑋2, 𝑌2, 𝑍) be two points 

on the same curve in the same 𝑍-plane. The addition 

𝑃 + 𝑄 = (𝑋3, 𝑌3, 𝑍3) can be computed through 

𝑋3 = (𝑌2 − 𝑌1)2 − (𝑋2 − 𝑋1)3 − 2𝑋1(𝑋2 − 𝑋1)2 

𝑌3 = (𝑌2 − 𝑌1)(𝑋1(𝑋2 − 𝑋1)2 − 𝑋3) − 𝑌1(𝑋2 − 𝑋1)3 

𝑍3 = 𝑍(𝑋2 − 𝑋1) (4.1) 

Notice that, as part of the point addition, a quantity 𝑍(𝑋2 − 𝑋1) is 

obtained, and also the intermediate values 𝑋1(𝑋2 − 𝑋1)2 and 𝑌1(𝑋2 −

𝑋1)3. This clearly reveals a representative (𝑃’) of the point 𝑃 with the 

same 𝑍-coordinate of (𝑃 + 𝑄), where the new 𝑃′ = (𝜆2𝑋1, 𝜆3𝑌1, 𝜆𝑍), 

with 𝜆 = (𝑋2 − 𝑋1). This, in fact, was the key observation of Meloni, as 

it allows to perform chained ZADD (co-𝑍 addition) to solve a point 

multiplication more efficiently.  
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ZADD’s cost is 5M + 2S and it requires only 6 field registers. Because the 

RNS coprocessor performs only modular multiplications, 7MM are 

counted to complete the ZADD.    

Hereinafter, reference is made to ZADD instead of ZADDU to be aligned 

with the notation in [2], because a few references are made to that 

work. The same happens with the rest of the algorithms from [2] 

mentioned below. 

The conjugate addition 

Goundar et al. introduced the co-Z conjugate addition (ZADDC) in [2]. 

The operation yields the points 𝑅 = 𝑄 + 𝑃 and 𝑆 = 𝑄 − 𝑃, from two 

points 𝑃 = (𝑋1, 𝑌1, 𝑍) and 𝑄 = (𝑋2, 𝑌2, 𝑍) which share the same 𝑍-

coordinate. The cost of ZADDC is 6M + 3S (9MM) and it requires 7 field 

registers.  

Moreover, the resultant points 𝑅 and 𝑆 do share the same 𝑍-coordinate 

as well. From these results, it is easy to see that a further addition 𝑅 +

𝑆 = 2𝑄, along with the intermediate result 𝑄 + 𝑃, correspond both to 

the per bit operations to perform a point multiplication (𝑄 = 𝑘 · 𝑃) 

through a well-known method: Montgomery ladder. 

Co-Z Montgomery ladder 

The mentioned authors realized that the Montgomery ladder main loop 

could be written in terms of the ZADDC and the ZADDU operations. 

Considering the points 𝑃 and 𝑄 are manipulated from the point 

registers 𝑅𝑏 and 𝑅1−𝑏 , where the sub-index 𝑏 denotes the current bit 

value of the scalar, and 𝑇 is a temporary register, the main loop 

evaluates 
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 (𝑅1−𝑏; 𝑇) ← 𝑍𝐴𝐷𝐷𝐶(𝑅𝑏; 𝑅1−𝑏), followed by 

 (𝑅𝑏; 𝑅1−𝑏) ← 𝑍𝐴𝐷𝐷𝑈(𝑅1−𝑏; 𝑇) 

The total cost of the operations into the Montgomery ladder loop is 

𝑛(11M + 5S), which are 𝑛(16MM) in the RNS coprocessor, where 𝑛 =

𝑠𝑖𝑧𝑒𝑜𝑓(𝑘) − 1 expressed in bits.  

In [3] the authors had noticed that the 𝑍-coordinate was not used in 

ZADDU and ZADDC. That observation motivated a more efficient variant 

of the co-Z Montgomery ladder. The new variant is based on the 

combination of ZADDU and ZADDC algorithms but removing the 

computation of the 𝑍-coordinate. Such coordinate is only recovered at 

the end, out of the main loop. This enhances the PM performance by 

reducing two modular multiplications at every loop iteration in the 

Montgomery ladder. The respective operations without handling the 

third coordinate are denoted by ZADDU’ and ZADDC’. This contribution 

is remarkable, even despite the further calculations needed to recover 

the 𝑍-coordinate.  

In a step beyond in [2], the new ZADDU’ and ZADDC’ were combined 

following  

(𝑅𝑘0
; 𝑅1−𝑘0

) ← 𝑍𝐴𝐷𝐷𝐶′(𝑍𝐴𝐷𝐷𝑈′(𝑅𝑘0
; 𝑅1−𝑘0

))   (4.2)      

to obtain a single operation: ZACAU’, which trades 1M by 1S and saves 

one field register as its main advantages. ZACAU’ performs 14MM in the 

main loop.  
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In this new variant of Montgomery ladder using ZACCAU’, the scalar’s 

LSB is separately (out of the loop) processed to recover the 𝑍-

coordinate.  

The same work also proposes a slightly more efficient algorithm (ZDAU’) 

which saves 10MM from the overall computation in respect to ZACAU’. 

ZDAU’ follows the same principle of doubling-adding by mean of 

ZADDU’ and ZADDC’. The key difference is that ZDAU’ makes use of 

signed scalar. This method requires a sign inversion (𝑅1 ← (−𝑅1)) for 

certain combinations of the scalar bits. Such irregularity should be 

carefully managed, as it can be distinguished and exploited in a SCA. 

4.1.3 Co-Z Montgomery ladder in the RNS coprocessor 

To trade a field multiplication by a field square as it is done in ZACAU’ 

variant, does not represent any advantage in the RNS coprocessor, 

because it performs both operations with the same computational cost, 

as mentioned in the chapter 3. Besides, ZACAU’ occupies more memory 

to store the operation microcode for the coprocessor. It is, the 

Montgomery ladder main loop, considering a variant like 

ZADDC’/ZADDU’, requires 24+13 microcode operations, while for the 

ZACAU’ variant, another 46 should be added. But what it is more 

important, the ZACAU’ algorithm, once the register allocation is done 

(see line 44 of Alg. 26 in [2]), has an operation that exceeds the bounds 

of the dynamic range in the RNS coprocessor. This fact impedes the use 

of the algorithm in the RNS coprocessor.   

On the other hand, the ZDAU’ algorithm might not represent a 

significant improvement to justify the potential vulnerability of the 
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irregular sign inversion it requires. ZDAU’ outperforms ZACAU’ by only 

10MM. A PM involving a 256-bits scalar, which is a common scalar size, 

needs an amount of 3584MM in the main loop of both algorithms. This 

figure makes a 10MM difference almost negligible. Besides, the RNS 

coprocessor cannot perform conditional instructions, therefore the 

point inversion should be explicitly coded. This fact would be easily 

recognized in the microcode and it could leak information about the 

scalar bits being computed. 

To avoid the previous issues, this work adopts the approach based on 

the Montgomery ladder (Alg. 15 in [2]). However, the pair 

ZADDC’/ZADDU’ with the 𝑋, 𝑌-only variant is used, instead of ZACCAU’. 

The 𝑍-coordinate is recovered once the main loop is completed. By this 

way, we can access to the outputs of the ZADDC’ algorithm when 𝑘0 is 

being processed (out of the loop), to effectively recover the third 

coordinate. Moreover, the ECC generator point is randomized, 

following section 4.1.1, previous to the manipulation of the scalar bits. 

The reduced PM follows the Algorithm 4.1. 

Because in the signature schemes in the scope of this work, the affine 

𝑦-coordinate is not used, the Alg. 4.1 can save some operations. In 

ZADDU’ the last five field operations are dedicated to compute the 

projective 𝑌-coordinates of the output points (see Alg. 19 in [2]). These 

operations are not necessary when the point addition procedure is 

invoked in the step 11 of the Alg. 4.1.  The reduced algorithm for the 

last point addition is denoted by rZADDU’. A total of 5 operations, 

including 2MM are reduced. Furthermore, there is no need to convert 

from RNS to binary the resultant 𝑦-coordinate, as it is not computed.  
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Algorithm 4.1 Reduced Co-Z Montgomery ladder 

Input: 𝑃 = (𝑥𝑃; 𝑦𝑃) ∈ 𝐸(𝐹𝑞); 𝑟𝑛𝑑 ∈ 𝑁; and (𝑘𝑛−1; … 𝑘1;𝑘0) such that 

𝑘𝑛−1 = 1 

Output: 𝑄 = 𝑘 · 𝑃 

1. (𝑅1, 𝑅0) ← 𝐷𝐵𝐿𝑈′(𝑃) 

2. (𝑅1, 𝑅0) ← 𝑅𝑎𝑛𝑑(𝑅1, 𝑅0, 𝑟𝑛𝑑) 

3. 𝑓𝑜𝑟 𝑖 = 𝑛 − 2 𝑑𝑜𝑤𝑛𝑡𝑜 1 do 

4. 𝑏 ← 𝑘𝑖 

5. (𝑅1−𝑏 , 𝑅𝑏) ← 𝑍𝐴𝐷𝐷𝐶′(𝑅𝑏 , 𝑅1−𝑏) 

6. (𝑅𝑏 , 𝑅1−𝑏) ← 𝑍𝐴𝐷𝐷𝑈′(𝑅1−𝑏, 𝑅𝑏) 

7. 𝑒𝑛𝑑 𝑓𝑜𝑟 

8. 𝑏 ← 𝑘0 

9. (𝑅1−𝑏 , 𝑅𝑏) ← 𝑍𝐴𝐷𝐷𝐶′(𝑅𝑏 , 𝑅1−𝑏) 

10. 𝑍 = 𝑥𝑃𝑌(𝑅𝑏)(𝑋(𝑅0) − 𝑋(𝑅1)) 

11. 𝜆 = 𝑦𝑃𝑋(𝑅𝑏) 

12. (𝑅𝑏, 𝑅1−𝑏) ← 𝑟𝑍𝐴𝐷𝐷𝑈′(𝑅1−𝑏 , 𝑅𝑏) 

13. 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥𝑄 = (
𝑍

𝜆
)

2

𝑋(𝑅0) 

This approach outperforms the results in [4] and [5], which propose 

both a main loop with 20MM per bit of the scalar. Although in these 

works the PM is performed by mean of the 𝑥-only Montgomery ladder 

variant, and our proposal adds the 𝑦-coordinate too, the overhead of 

the binary-to-RNS conversion assumed by our approach, is negligible 

when the main loops in both variants are compared [6]. See the Table 

4.1 for a detailed comparison. 
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Table 4.1. Comparison of SCA-protected point multiplication algorithms 

Regular PM methods # regs. Total cost in RNS 

[2] (𝑋, 𝑌)-only co-Z 
Montgomery ladder 
(ZACAU’) 

6 𝑛(14MM) + 8MM + 1I 

[4] 𝑥-only Montgomery 
ladder in RNS1 

13 𝑛(20MM) + 1I 

[5] 𝑥-only Montgomery 
ladder in RNS1 

n/a 𝑛(20MM) + 1I 

This work (𝑋, 𝑌)-only 
reduced co-Z 
Montgomery ladder 
(ZADDU’/ZADDC’) 

6 𝑛(14MM) + 4MM + 1I 

1 Considering the cost of computing only the affine 𝑥-coordinate 
2 n: number of scalar bits  

 

The following steps summarize the procedure to perform a point 

multiplication, following our reduced co-Z Montgomery ladder, in the 

RNS coprocessor 

● Convert ECC parameters (𝑎, 𝑏) and 𝑥- and 𝑦-coordinates from 

binary to RNS 

● Represent 𝑎, 𝑏 and 𝑥- and 𝑦-coordinates in the Montgomery 

domain 

● Perform the PM following the Alg. 4.1 

● Convert 𝑥𝑄 from Montgomery domain to the original domain 

● Convert 𝑥𝑄 from RNS to binary 

4.1.4 Masked registers against SCA in Point Multiplication 

In the Alg. 4.1, into the loop, the manipulation of the registers 𝑅0 and 

𝑅1 by ZADDC’ and ZADDU’ depend directly on the current bit of the 
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secret scalar that is being evaluated. Such dependency could be easily 

exploited by a SCA.   

The straightforward variant to perform a PM in the RNS coprocessor is 

to use two separate microcode sets: one for 𝑘 = 0 and the other for 

𝑘 = 1, as it can be seen in the Figure 4.1. From the figure, the 

correspondence among the scalar bits and the registers denoted by 

0x15 and 0x17 can be easily noted.  

One effective technique to counteract this threat is to apply a random 

mask to the sensitive data. A masking countermeasure is strongly 

recommended to protect the microcode. Notice that the parallelism of 

the RNS channels operation, which give resilience against the SCA, does 

not protect the microcode load onto the RNS processor.  

 

Figure 4.1. Section of two microcode sets (𝑘 = 1 and 𝑘 = 0) for a ZADDC’ 

implementation in the RNS coprocessor 
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4.2  Multiple Point Multiplication 

Multiple Point Multiplication is the main operation in the verification 

phase of ECC-based signature schemes. As there is no secret disclosure 

risk when performing MPM, some techniques apply for a faster 

computation, like Shamir’s trick and Interleaving [7-8]. Such techniques 

are mainly based in the use of precomputed values instead of doing 

straightforward calculation.  

Precomputation-based techniques for MPM are more efficient than a 

double PM but still require a heavy computation. In this section the 

implementation of MPM in the RNS coprocessor is discussed.  

4.2.1 Interleaving with NAF 

Interleaving is a technique to speed up both PM and MPM, through the 

use of precomputed values. The combination of Interleaving with Non 

Adjacent Form (NAF) improves the performance of the computation. 

NAF allows the representation of scalars in a way that maximizes the 

number of zeroes, while using negative elements. In [8] a 

comprehensive explanation of Interleaving and NAF is provided.  

In the Table 3.6 in [8], Interleaving using NAF arises as one of the more 

efficient methods in terms of computational speed and storage to 

perform a MPM.   

From the Alg. 4.2, in line 9, it is easy to see that the whole loop is 

omitted when the evaluated bits of the scalars are all zeroes. The 

advantage of the NAF relies just there, in placing as much zeroes as 

possible, to reduce the computational effort. 
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Algorithm 4.2 Interleaving with NAF 

Input: v, 𝑘𝑗 , 𝑤𝑗 and ECC points 𝑃𝑗; such that 1 ≤ 𝑗 ≤ 𝑣 

Output: ∑ 𝑘𝑗𝑃𝑗
𝑣
𝑗=1  

1. Compute 𝑖𝑃𝑗  𝑓𝑜𝑟 𝑖 ∈ {1, 3, … , 2𝑤𝑗−1 − 1} 

2. Compute 𝑁𝐴𝐹𝑤𝑗
(𝑘𝑗) = ∑ 𝑘𝑗

𝑗
2𝑖𝑙𝑗−1

𝑖=0
 

3. 𝐿𝑒𝑡 𝑙 = 𝑚𝑎𝑥 {𝑙𝑗: 1 ≤ 𝑗 ≤ 𝑣} 

4. 𝐷𝑒𝑓𝑖𝑛𝑒 𝑘𝑖
𝑗

= 0 𝑓𝑜𝑟 𝑙𝑗 ≤ 𝑖 < 𝑙, 1 ≤ 𝑗 ≤ 𝑣 

5. 𝑄 ← ∞ 

6. 𝑓𝑜𝑟 𝑖 = 𝑙 − 1  𝑑𝑜𝑤𝑛𝑡𝑜 0 𝑑𝑜 

7. 𝑄 ← 2𝑄 

8.          𝑓𝑜𝑟 𝑗 = 1  𝑡𝑜 𝑣 𝑑𝑜 

9.      𝑖𝑓 𝑘𝑖
𝑗

≠ 0 𝑡ℎ𝑒𝑛 

10.           𝑖𝑓 𝑘𝑖
𝑗

> 0 𝑡ℎ𝑒𝑛 𝑄 ← 𝑄 + 𝑘𝑖
𝑗
𝑃𝑗  

11.           𝑒𝑙𝑠𝑒 𝑄 ← 𝑄 − 𝑘𝑖
𝑗
𝑃𝑗  

12.  𝑟𝑒𝑡𝑢𝑟𝑛 𝑄 

4.2.2 Composite operations for Interleaving  

Longa and Miri improved the performance of some ECC operations in 

[9], including the reduction of the successive Point Doublings (PD) to 

3M plus 5S (8MM in the RNS coprocessor). On the other hand, the 

authors demonstrated in [10] the feasibility of fixing 𝑎 = −3 in some 

ECC curves, with which the PD can be reduced as in [9]. The cost of the 

standard PD in Jacobian coordinates is 10MM. 

Longa and Miri also developed a method to improve the computation 

of  𝑑𝑃 + 𝑄 which is a recurrent and critical operation for PM and MPM 

[11]. The researchers were based on Meloni’s finding about the co-Z 

Point Addition (ZADD), which is more efficient than the general addition 

[1]. Their key observation was to recognize an equivalent 

representation of 𝑃 from the computation of 𝑃 + 𝑄 at no extra cost.  
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Let 𝑃 = (𝑋1, 𝑌1, 𝑍1) and 𝑄 = (𝑋2, 𝑌2) be two points on 

the same ECC curve. The operation 𝑃 + 𝑄 = (𝑋3, 𝑌3, 𝑍3) 

is performed as a mixed Jacobian – affine  following 

𝑋3 = 4(𝑍1
3𝑌2 − 𝑌1)2 − 4(𝑍1

2𝑋2 − 𝑋1)3 − 8𝑋1(𝑍1
2𝑋2 − 𝑋1)2 

𝑌3 = 2(𝑍1
3𝑌2 − 𝑌1)(4𝑋1(𝑍1

2𝑋2 − 𝑋1)2 − 𝑋3) − 8𝑌1(𝑍1
2𝑋2 − 𝑋1)3 

𝑍3 = 2𝑍1(𝑍1
2𝑋2 − 𝑋1)  (4.3) 

 

𝑃′ = (𝑋′, 𝑌′, 𝑍′) = 4𝑋1(𝑍1
2𝑋2 − 𝑋1)2, 8𝑌1(𝑍1

2𝑋2 − 𝑋1)3, 2𝑍1(𝑍1
2𝑋2 −

𝑋1) is obtained from the intermediate calculations in (4.3) and it is a 

representative of the point 𝑃. Recall that an ECC point 𝑃′ = (𝑋′, 𝑌′, 𝑍′) 

is a representative of 𝑃 = (𝑋, 𝑌, 𝑍) if (𝑋′, 𝑌′, 𝑍′) = (𝜆2𝑋, 𝜆3𝑌, 𝜆𝑍). 

Notice that 𝜆 = 2(𝑍1
2𝑋2 − 𝑋1) in 𝑃′. 

Based on this, Longa and Miri proposed the computation 𝑑𝑃 + 𝑄 =

𝑃 + 𝑃 … + (𝑃 + 𝑄), where 𝑑 is a small integer. (𝑃 + 𝑄) is computed 

first as a Mixed-Affine Point Addition (MA-PADD), and the result is 

computed backwards using ZADDs with every (updated) 𝑃.  

In a step beyond, the researchers defined a joint operation for the case 

2𝑃 + 𝑄 [11]. The cost of the standard operation would be 1PD + 1MA-

PADD = 10MM + 11MM. The improved operation is computed with only 

18MM through an Unified Addition (UADD) of 𝑃 + 𝑃 + 𝑄.  

Note that an implementation of the Alg. 4.2 may include 2𝑃 + 𝑄 in the 

lines 10 and 11, therefore, UADD leads to a significant reduction of the 

computation in the MPM. 
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4.2.3 MPM implementation in the RNS coprocessor 

The MPM was evaluated in the RNS coprocessor for the signature 

verification stage of ECDSA and BNN-IBS. In both implementations, the 

improvements on 2𝑃 + 𝑄 proposed in [11] were used. The scalars were 

transformed through NAF according to the coprocessor’s resources 

available.  

ECDSA 

The MPM in ECDSA is like 𝑢𝑃 + 𝑣𝑄, thus it requires precomputed values 

derived from two ECC points in affine coordinates. A 4-NAF 

transformation was applied to the scalars, therefore the points 

𝑃, 3𝑃, 5𝑃, 7𝑃, 𝑄, 3𝑄, 5𝑄, 7𝑄 and their respective negatives in affine 

coordinates were used, occupying all the 64 registers of the 

coprocessor. On the other hand, the strategy to compute the combined 

multiplication was implemented following 

𝑖𝑓  (𝑢𝑖 ≠ 0  𝑎𝑛𝑑  𝑣𝑖 = 0)  𝑡ℎ𝑒𝑛 𝑅 ← 𝑈𝐴𝐷𝐷(𝑅, 𝑢𝑖𝑃) 

𝑖𝑓  (𝑢𝑖 = 0  𝑎𝑛𝑑  𝑣𝑖 ≠ 0)  𝑡ℎ𝑒𝑛  𝑅 ← 𝑈𝐴𝐷𝐷(𝑅, 𝑣𝑖𝑄) 

𝑖𝑓  (𝑢𝑖 ≠ 0  𝑎𝑛𝑑  𝑣𝑖 ≠ 0)  𝑡ℎ𝑒𝑛  𝑅 ← 𝑀𝐴_𝑃𝐴𝐷𝐷(𝑈𝐴𝐷𝐷(𝑅, 𝑢𝑖𝑃), 𝑣𝑖𝑄) 

Note that when 𝑢𝑖 ≠ 0 and 𝑣𝑖 ≠ 0, the standard computation of _ 2𝑅 +

𝑢𝑖𝑃 + 𝑣𝑖𝑄 would cost 1PD + 2MA-PADD (10MM + 22MM), while the 

use of UADD (1UADD + 1MA-PADD -> 28MM) saves 4MM. 

BNN-IBS 

The largest MPM computation in BNN-IBS is like 𝑧𝑖𝑃 − ℎ𝑖𝑅 − 𝑙𝑖𝑃0, 

therefore, an Interleaving with NAF required more registers for 

precomputed values than ECDSA. A 3-NAF transformation was the 

maximum that could be applied to the scalars, thus allowing to use the 
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precomputed 𝑃, 3𝑃, 𝑅, 3𝑅, 𝑃0, 3𝑃0 and their respective negatives, at the 

cost of 60 out of the 64 processor registers. The computation of the 

combined multiplication followed the same strategy than for ECDSA 

when one or two scalars were different from zero. For the triple 

multiplication, the strategy followed 

𝑖𝑓 (𝑧𝑖 ≠ 0 𝑎𝑛𝑑 ℎ𝑖 ≠ 0 𝑎𝑛𝑑 𝑙𝑖 ≠ 0)  𝑡ℎ𝑒𝑛   

𝑌 ← 𝑀𝐴_𝑃𝐴𝐷𝐷(𝑀𝐴_𝑃𝐴𝐷𝐷(𝑈𝐴𝐷𝐷(𝑌, 𝑧𝑖𝑃), ℎ𝑖𝑅), 𝑙𝑖𝑃0) 

In this case, the standard computation of 2𝑌 + 𝑧𝑖𝑃 − ℎ𝑖𝑅 − 𝑙𝑖𝑃0 would 

cost 1MA-PADD (11MM) more than in ECDSA. The use of UADD (1UADD 

+ 2MA-PADD -> 39MM) again saves 4MM to this operation. 

4.3  Conclusions 

In this chapter, an implementation of the PM in the RNS coprocessor 

was analyzed from a security and performance point of view. The need 

for random coordinates was discussed to avoid correlation attacks. 

Moreover, following a set of efficient state-of-the-art methods for 

intermediate computations, a reduced and secure co-Z Montgomery 

ladder algorithm was proposed. This algorithm saves 4MM in the point 

multiplication and avoids the computation of the y-coordinate, which 

also implies the avoidance of the expensive transformations from the 

Montgomery domain. In addition, a potential vulnerability was 

identified in the load of microcode into the processor, which might lead 

to a correlation attack to infer the secret scalar’s bits. A masking 

solution was proposed to mitigate such threat. 

The MPM was also analyzed herein, and some improvement was 

achieved in terms of its performance. The efficient method discussed to 
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compute 2𝑃 + 𝑄 was extended to fit the implementation of 

Interleaving with NAF for ECDSA and BNN-IBS. Also, the NAF 

transformation and precomputed values were calculated to use as 

much of the processor’s resources as possible. The significant result is 

that MPM can be performed faster during the verification stage of the 

said signature schemes.  
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5 HW evaluation platform 
 

In this chapter the hardware setup for the ECC operations evaluations 

is presented. Also, the performance on the PM for the standard NIST 

curve P-256 is given. A discussion about the impact of the technology in 

the operations result is also provided. The reader should be familiarized 

with the FPGA technology used in this chapter. FPGA devices are widely 

employed since many years ago, due to the feasibility to conduct the 

evaluation of a hardware system without the need to build an expensive 

ASIC. 

5.1  FPGA-based hardware platform for ECC evaluation 

The board Xynergy-M4, from Silica used for the ECC operations 

evaluation is built around a Xilinx Spartan-6 FPGA (xc6slx75) and a 

microprocessor unit (MPU) ARM Cortex-M4 [7]. Among the available 

resources when the experimental was started, the Xynergy-M4 offered 

a good solution for the implementation of the RNS coprocessor. Recalls 

that it needs an external processor to send the microcode and data to 

operate. 

The system frequency was configured at 88,3 MHz being the maximum 

accepted. Xilinx ISE tools were used to build and simulate the project 

and configure the device. 

The RNS coprocessor was embedded in a Xilinx ISE project through its 

VHDL code definition. An interface IP module was developed in VHDL 

for the manipulation of the data and microcode, and to provide control 

signals to the external MPU. The interface module receives the 
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microcode and data from the MPU through SPI. The interface module 

also implements two blocks that handle FIFO signals to interact with the 

RNS coprocessor. 

In the case of a PM, the MPU generates a random number for the scalar. 

For the MPM, the MPU acting as a node, is expected to receive the 

elements of a digital signature including the scalars and the ECC points.  

The MPU configures a DMA module to send the data and microcode to 

the coprocessor depending on the operation to be performed. The 

microcode sets for each operation are previously loaded into a RAM. 

When the RNS output is ready, the interface sends an interrupt to the 

MPU, which receives the ECC points coordinates. The Figure 5.1 shows 

a block diagram of the hardware setup.  

 

 

Figure 5.1 Diagram of hardware platform for ECC operations evaluation 
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5.2 HW performance 

Point Multiplication evaluation 

The PM defined in Alg. 4.1 (see section 4) was evaluated for the NIST 

prime curve P-256 defined in [1]. The test vector used for the curve P-

256 is defined in [2]. The PM was coded through a Java tool emulator 

(see chapter 2). Annex A illustrates the interface of the emulator and 

the generated files including the microcode and data for the RNS 

operation. 

An embedded software was coded to provide the microcode and data 

to the RNS coprocessor through the SPI ports. The control signals from 

the RNS interface module were handled through interruptions.  

The Table 5.1 provides a PM performance comparison among some 

state-of-the-art ECC processors and the RNS coprocessor evaluated in 

this thesis. The RNS coprocessor and the one in [3] use both 16-bit data 

paths, while MicroECC processor [4] uses 32 bits. These variants were 

selected among the others considering their comparable device 

occupancy and the type of FPGA used, although they are not exactly the 

same. In all the cases, the cycles count is referred to the PM with a 256-

bit scalar. 

Apart from the performance, from the security point of view, the RNS 

coprocessor is the only one in the Table 5.1 that incorporates an 

intrinsic protection against correlation attacks, due to the parallelism of 

the channels operation. Moreover, the randomization of the inputs in 

the Alg. 4.1 gives additional resilience to such attacks. The SPA 

protection in the RNS processor is given by the use of the Montgomery 
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ladder method. The processor in [3] incorporates a SPA 

countermeasure through the use of Montgomery ladder as well, but 

there is not mention to protection against CPA. The MicroECC has the 

same sort of protections, not including CPA. Recall that a horizontal 

correlation attack against ECC has proven to be successful as shown by 

Bauer et al. in [8]. 

Table 5.1. Comparison of PM performance among state-of-the-art ECC processors  

 PM 
cycles 
count 

Area 
(slices) 

BRAM 
Freq. 
(MHz) 

Device  

RNS 
coprocessor 
(this work) 

2 601 547 944 15 88,3 
FPGA Spartan-

6 (xc6slx75) 

ECC 
coprocessor 

[3] 
3 227 993 1832 9 108,2 

FPGA VirtexII-
Pro (xc2vp30) 

MicroECC [4] 949 951 1158 3 210 
FPGA VirtexII-
Pro (xc2vp7) 

ECC 
coprocessor 

[5] 
-- 1704 -- 225 Virtex-7 

On the other hand, in [5], the FPGA device used has a superior 

technology than the one used in this work. That impedes to make a fair 

comparison to our work. Still, the area occupancy of the RNS is almost 

the half. Recall that the RNS is a generic arithmetic processor which can 

be used for other purposes, while the architecture in [5] is optimized to 

perform ECC operations. It is expected that the implementation of the 

RNS coprocessor in one of the most advanced FPGA, improves the PM 

performance.  
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The work in [6] presents a RNS-based ECC processor for PM. The 

hardware architecture is based on the straightforward binary method 

for Point Multiplications, which is vulnerable to SPA and Timing Attacks. 

Therefore, the performance of this processor is not considered for 

comparison in this thesis. 

Multiple Point Multiplication evaluation 

The MPM operation was evaluated in the RNS coprocessor using the 

same hardware platform configuration.  

Contrary to the PM (if using Montgomery ladder), the MPM execution 

time strongly depends on its joint scalars; it is, depending on the i-th 

bits of all the scalars, the computation is more or less complex (see 

Section 4.2). Besides, the NAF method used depends on the hardware 

resources, specifically the number of precomputed values, and that 

impacts on the performance of the operation.  

The previous facts make difficult to do a performance comparison of 

this operation. For this reason, the performance of MPM in this work is 

given in terms of the number of Montgomery multiplications, as it can 

be seen in Section 4.2 

5.3  Conclusions 

In this chapter the HW platform to conduct the evaluation of the ECC 

Point Multiplication and Multiple Point Multiplications is provided. Due 

to the characteristics of the latter, its performance is already provided 

in the section 4.  
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Regarding the PM, a comparison is done to other similar works. The 

comparison is relatively fair, although the devices are not from the 

same family, but their technologies are close. A proper comparison with 

the work in [5] is difficult to do because it presents a recent ECC 

processor implemented in a more advanced technology. However, the 

RNS implementation is more compact, which is desirable for area 

constrained devices.  

The security features of the RNS coprocessor exceed the others, as they 

are not protected against CPA. The operation of each of the 16 channels 

is a source of noise to each other. This acts as a natural countermeasure 

against a CPA. Additionally, it avoids embedding a source of noise, like 

a random number generator, as it is commonly done in secure 

embedded devices.  
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Conclusions 

This thesis has been oriented to the implementation of an 

authentication scheme that guarantees being efficient enough for low-

power devices, and also secure to resist some of the most harmful 

physical attacks. In this sense, a suitable authentication scheme was 

identified. The fundamentals of the underlying cryptography involved 

was studied and its potential vulnerabilities. The Side Channel Attacks 

that poses a threat to the related cryptographic algorithms were 

identified as well as the countermeasures to overcome such attacks. A 

modification was introduced to a Point Multiplication algorithm which 

allows a more efficient implementation. Also, an efficient hardware 

technology was chosen for the implementation which also has an 

intrinsic resilience to the said attacks. Finally, the implementation of the 

critical cryptographic operations was evaluated. 

Bellare’s BNN-IBS was found as a suitable authentication scheme as it 

avoids the use of expensive certificates. A modest modification was 

introduced to better adapt the scheme to the RNS coprocessor without 

losing its efficiency. Moreover, this IBS could be implemented in the 

coprocessor still applying the SCA countermeasures for a more 

complete protection. 

Regarding the ECC operations in which the authentication is based, an 

improvement that reduces the co-Z Montgomery ladder algorithm was 

introduced in chapter 4. This algorithm saves 4MM in the point 

multiplication and avoids the computation of the 𝑦-coordinate, which 

also implies the avoidance of the expensive transformations from the 
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Montgomery domain, a further transformation from RNS to binary. The 

𝑦-coordinate could be avoided specially in the verification phase of the 

BNN-IBS due to the introduced modification. Additionally, the load of 

microcode to the processor was devised as potentially vulnerable to a 

SCA that aims at recovering the secret scalar’s bits. A well-known 

masking solution was suggested to mitigate such threat. 

The evaluation of the Point Multiplication was conducted in the HW 

platform built around a FPGA-based RNS coprocessor, given the fact 

that its architecture allows efficient and secure implementation of 

cryptographic ECC-based algorithms. A comparison with other similar 

works was conducted, taking into consideration the technology used. 

The small footprint of the implementation is highlighted compared to 

the others, while the PM performance is comparable too, 

acknowledging that this coprocessor is a generic one, not specifically 

tuned for cryptographic operations. 

The RNS coprocessor does not compute divisions, however, that 

operation is involved in the authentication schemes implemented. The 

need to solve the division problem motivated the study of modular 

inversions. From the security analysis of some algorithms, two of them 

were found potentially vulnerable, and the SCA to exploit a naïve 

implementation of them are described herein. 
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Future work 

Another PM approach 

In [1] a Point Multiplication technique is introduced which seems more 

efficient than the one used in this work. A research in that sense could 

be conducted to evaluate the feasibility of its implementation in the 

RNS coprocessor, given the mentioned benefits of the RNS architecture.  

Bilinear pairings 

Bilinear pairings technique is a rather new research line which would 

improve the implementation of certificate-less authentication 

algorithms. Its performance in a FPGA-based platform is recently 

demonstrated [2]. However, these algorithms are vulnerable to SCA as 

well [3]. An interesting topic of future research would be the evaluation 

in terms of performance and security of bilinear pairings in the RNS 

coprocessor.  

Security evaluation 

The inherent noise due to the parallel channels operation in the RNS 

coprocessor, along with the applied countermeasures in the PM should 

avoid SPA, DPA and CPA attacks, but this fact has not been confirmed in 

this work. An interesting complementary work would be to conduct a 

security evaluation of the RNS coprocessor during the PM computation. 

 

[1] M. Morales-Sandoval and A. Diaz Perez. Novel algorithms and hardware architectures for Montgomery 
Multiplication over GF (p). Laboratorio de Tecnologías de la Información., Tech. Rep., 2015. 

[2] Z. Hao, W. Guo, J. Wei and D. Sun. Dual Processing Engine Architecture to Speed Up Optimal Ate Pairing 
on FPGA Platform. 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin, 2016. 

[3] Jauvart, D., El Mrabet, N., Fournier, J.J.A. et al. Improving side-channel attacks against pairing-based 
cryptography. J Cryptogr Eng 10, 1–16, 2020. 



 

74 | Annex A 
 

Annex A 

Java tool for the emulation and configuration of the RNS coprocessor 
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Annex B 

Template Attack against RSA key generation based on BEEA 

In this section, a Template Attack against a protected BEEA 

implementation is introduced by the first time. This TA targets the RSA 

key generation, however, it could also be conducted against an ECDSA 

implementation where the target would be the modular inversion.  

For the feasibility of this attack, the followings assumptions are made: 

● The hardware device employed for the TA has a source of 

leakage 

● The target RSA key generation uses BEEA to compute the secret 

key 𝑑 and/or 𝐺𝐶𝐷(𝑒, 𝑥 − 1) for coprimality tests. 

● The BEEA implementation is either unprotected or uses the 

Chartier’s masking method in eq. 3.6. 

● An adversary is able to acquire enough power (or 

electromagnetic) traces from the target device (preferred) or 

similar devices running BEEA 

● An adversary is able to acquire a power (or electromagnetic) 

trace during the target RSA key generation phase 

Usually, once an RSA key pair is generated, it is stored to be used several 

times. In the case of the coprimality tests, they are performed only once 

involving 𝑝 and 𝑞 (the two final successful prime candidates). 

Something similar occurs in ECDSA with the nonce 𝑘. These facts impose 

a restriction, as the target secrets are used only once. Therefore, the 

proposed attack is specifically a Single Trace Template Attack. 

Nevertheless, due to the nature of the Euclidean algorithm and 𝜙(𝑁) 

in RSA, at least eight attack points can be targeted in a single trace to 

obtain eight leakage vectors. Thus, the procedure herein is still formally 



 

76 | Annex B 
 

an STA but equivalent to an 8-trace TA, where the success probabilities 

are higher. 

If it is denoted by 𝑝𝐴𝑃 the probability of a successful attack on a single 

attack point, then  

𝑝𝑆𝑇𝐴 = 1 − (1 − 𝑝𝐴𝑃)8 

would be the probability of a successful attack on the key generation 

process. Furthermore, if an adversary is able to acquire n traces of the 

key renewal procedure, the probability of a successful attack increases, 

and could be defined by 

𝑝𝑛𝑆𝑇𝐴 = 1 − (1 − 𝑝𝐴𝑃)8𝑛 

The profiling phase of the TA is currently unfeasible on 32-bit devices 

(employing modest resources) because of the amount of generated 

data and large computations, although for 16-bit devices it could still be 

possible. In this work we consider the proposed attack on 8-bit devices; 

however, it could be extended to 16-bit devices. 

Attack points on the private key generation 

In the case of the private key generation, the v-loop is executed first, 

and at least twice, because 𝜙(𝑁) is divisible by four. The operation flow 

for the first and second iterations could be easily predicted. The table 1 

shows the ordered execution of the relevant operations involved. 
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Table 1. Target operations into the v-loop of BEEA (e, φ(N))  

 
Operation 

1 
Operation  

2 
Result  

1 
Result  

2 

1st 
Iteration 

v = v / 2 C = (C + φ(N)) / 2 v = φ(N) / 2 C = φ(N) / 2 

     

2nd 
Iteration 

v = v / 2 C = C / 2 v = φ(N) / 4 C = φ(N) / 4 

   * C = 0 at the beginning of the computation (see Alg. 2.2) 

All these operations (assuming a common implementation) perform a 

right shift followed by a copy-to-register. Furthermore, the only data 

being manipulated is the secret 𝜙(𝑁), which is shifted one and two bits 

in the first and second iteration respectively. This is an advantage for 

TA, because the leakage of both: the shift and the copy-to-register 

operations, is uniquely related to the value of φ(N).  

The fact of manipulating 𝜙(𝑁) and 𝜙(𝑁)/2 , should not be an issue to 

consider all the operations as equivalent attack points. The guessed 

bytes in the second iteration shifted one bit left, should correspond to 

those guessed in the first iteration; or what it is the same: the guessed 

bytes in the first iteration shifted one bit right should correspond to 

those guessed in the second iteration. Therefore, operations 1 and 2 for 

the first two iterations of 𝐵𝐸𝐸𝐴(𝑒, 𝜙(𝑁)) could be considered as four 

equivalent attack points into the same power trace, from where four 

leakage vectors can be obtained.  

Notice that, if 𝜙(𝑁) has more than two trailing zeroes, it would be easily 

detected in the power trace, because the power profile of the following 

iterations (into the v-loop) would be quite similar to the previous ones. 

If further leakage vectors are extracted, the guesses should be done as 
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in the table 2. Thus, it can be said that, the more trailing zeroes in 𝜙(𝑁), 

the higher would be the probability of a successful attack. 

Table 2. Target operations into the v-loop of BEEA (e, φ(N)) beyond the 2nd 

iteration 

 
Operation 

1 
Operation  

2 
Result  

1 
Result  

2 

3rd 
Iteration 

v = v / 2 

C = (C + φ(N)) / 2 

v = φ(N) / 8 

C = 5 · φ(N) / 8 

C = C / 2 C = φ(N) / 8 

     

4th 
Iteration 

v = v / 2 

C = (C + φ(N)) / 2 

v = φ(N) / 16 

C = 13 · φ(N) / 16 

C = C / 2 C = φ(N) / 16 

* C = φ(N) / 4 at the beginning of the 3rd iteration (see table 1) 

** Because 𝑒 might be randomized (as in eq. 2.2), D`s evenness cannot be 
predicted, and the conditional branches into the v-loop cannot be predicted 
either (although they might be distinguished in the power trace). That is why 
we give the two possible results from the operation 2.  

Experimental environment 

To apply the attack against a BEEA implementation, a number of 

measurements of the power consumption is acquired, which includes 

the operation of Table 1. The target is an 8-bit BEEA algorithm. The 

power consumption traces are collected during 50,000 runs on the 

ChipWhisperer-Lite power collection board at a sampling rate of 

29.54Ms/s. To construct various templates for the secret value 𝜙(𝑁) is 

selected as a random 128-bit value which is divisible by 4. The technique 

employed to perform the attack is based on [1].  
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Experimental results 

The attack was performed using one power trace, and the average 

success rate was calculated by repeating it 1,000 times for each case. 

The task of choosing one out of 5,000 traces and performing the attack 

was repeated 1,000. As a result, each 8-bit value of the secret 𝜙(𝑁) is 

recovered with a probability of more than 98.90% in a single-trace 

attack. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[1] E. Özgen, L. Papachristodoulou and L. Batina. Template attacks using classification algorithms. 2016 IEEE 
International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA, 2016. 
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