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Universitat Autònoma de Barcelona

Doctoral Thesis

Three Essays in Macroeconomics: Family, Health and
Policy Evaluation

Author: Christian Daniel Alemán Pericón

Advisor: Prof. Raül Santaeulàlia-Llopis
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Abstract

With this dissertation I aim to contribute to three different areas in Economics: (1) family economics,
(2) health and development economics and (3) quantitative methods for policy evaluation. In this
doctoral thesis I make use of quantitative structural modeling as a tool to highlight the mechanisms
behind the empirical facts observed in the data.

Chapter 1 is in the field of family economics. I use information on divorce filings, (that is, whether
the husband or the wife initiated the legal divorce proceedings) to identify (latent) gender specific match
quality within the dyad. Using data for the United States (U.S.), I quantitatively assess the role of divorce
filings in explaining divorce rates over a period of 46 years starting in 1970. To this purpose, I construct
a life cycle model of endogenous marriage and unilateral divorce with endogenous labor supply and
savings that jointly explains divorce filings and divorce rates over time. I use my model to measure the
contribution of changes in the gender-wage gap, property division laws and child custody arrangements
in explaining the observed changes in divorce rates. I find that the decrease in the gender-wage gap and
the increase in the probability of getting child custody for men are major drivers behind the changes in
divorce rates and in divorce filings, respectively. First, the reduction in the gender-wage gap generates
two opposing effects. On the one hand, the reduction of the gender-wage gap increases the value of
divorce for married women (a direct effect) and, on the other hand, unmarried women become more
selective in the marriage market thus raising the quality of newly formed matches (a selection effect).
Second, children increase the value of divorce for the custodial parent; so a higher probability of getting
child custody raises his/her chances of filing for divorce. Third, a higher share of assets assigned to
wives upon divorce can either increase or decrease divorce rates by altering the savings decision of the
household. These results go hand in hand with the proposed identification of the gender specific match
quality. In particular, I show that failure to match the composition of divorce filings can deliver opposite
results, thus giving wrong divorce rate predictions. My results pave the road for further work studying
the relationship between family dissolution and labor markets and its policy implications.

Chapter 2 is joint work with Prof.Daniela Iorio and Prof.Raül Santaeulàlia-Llopis. We provide an
innovative algorithm that normalizes country-specific paths of HIV epidemic to a stylized path that
tracks the course of the epidemic in terms of stages. This normalization uncovers heterogeneity in the
stage of the epidemic across countries at any given point in time. We combine this heterogeneity with
micro survey data to show that the relationship between education and the probability of HIV infection is
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U-shaped (positive-zero-positive) over the course of the epidemic. In contrast, the relationship between
education and knowledge about the process of HIV infection follows an inverted U-shaped pattern.
We develop a non-stationary quantitative macroeconomic theory with heterogeneous agents that is
consistent with these facts. Our theory endogeneizes the entire course of the HIV epidemic across
different (aggregate) stages: a pre-HIV epidemic stage; a myopic HIV stage in which agents are not
aware of the process of HIV infection; a learning stage in which agents heterogeneously—across education
groups—learn about the process of infection; and an anti-retroviral (ARV) stage that modifies the effects
of HIV infection on individuals. Results show that asymmetric learning is key to reproduce both the
micro patterns documented and the aggregate evolution of the HIV epidemic. In further counterfactual
experiments, we assess the effects of an early understanding of the virus and its mode of infection,
improvements in the composition of education, the earlier (and universal) adoption of ARVs and the
use of PrEP to prevent further spread.

Chapter 3 is joint with Prof.Christopher Busch, Prof.Alexander Ludwig and Prof.Raül Santaeulàlia-
Llopis. We develop a novel method that identifies the effects of policy implemented nationwide—i.e.
across all regions at the same time. Starting point is the insight that the dynamics of many outcome
variables can be tracked over stages. A stage is defined as the location of a regional outcome on a
reference outcome path. Our method proceeds in two steps. First, we conduct a normalization that
maps the time-path of regional outcomes onto a reference outcome path using only pre-policy data.
After normalization, the pre-policy outcome paths mapped onto the reference region are identical across
regions which implies that the normalization controls for pre-policy regional heterogeneity (the so-called
“parallel trends”) without taking a stand on its source, (un)observability or (non)constancy. Since
regions can differ by stage at any point in time, the normalization uncovers variation in the stage at the
time of policy implementation—even in instances where the implementation occurs at the same time
across regions. Second, we use this stage variation at the time of policy implementation for a clean
identification of the nationwide policy effect: a stage-leading region delivers the counterfactual path of
the outcome variable after policy. Since the non-leading regions react to policy, our identification of
policy effects is not subject to the Lucas critique. Our identification assumption is that the normalization
conducted using pre-policy data holds post policy. We validate our method with a set of Monte-Carlo
experiments that include unobserved heterogeneity. We show several applications including public health
stay-home policies (i.e. the national lockdown against Covid-19 in Spain), the effects of the pill (i.e.
the FDA nationwide approval of oral contraceptives in 1960 in the U.S.) on women’s career choice and
fertility; and growth policy (e.g. German Reunification).
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Chapter 1

Kramer vs. Kramer,
On the Importance of Children and Divorce Filings
for Understanding Divorce Rates in the U.S.

1.1 Introduction

Divorce rates and the composition of divorce filings1 in the United States (U.S.) have changed
substantially since the 1970s. While the family economics literature has studied divorce rates
and their relation with the major labor market changes happening in the U.S. since the 70s, it
has done so without using information on divorce filings. Using actual divorce filing data for the
U.S., I quantitatively assess the role of divorce filings in explaining divorce rates over a period of
46 years. In particular, I use the information of divorce filings to identify gender specific match
quality within a couple. Moreover, I find that matching divorce filing data moments is relevant
for accurately quantifying the effects of labor market changes on the structure of the family.

I document that around 70%2 of the divorces were initiated by wives in the early 70s, since
then this number experienced a large decline, reaching 56% in 2015. What’s more, divorce filing
data exhibits important heterogeneity across education groups and between couples who had or
not children. In 1970, 75% of all divorces were initiated by wives when the couple had children,
83% when a college educated woman was married to a non-college man and 56% when non-
college women were married to college men.3 At the same time, divorce rates sharply increased

1Alleging to whether it was the wife or the husband the one who initiated the legal divorce proceedings in
court. Evidence shows that there is a high correlation between the record of who files for divorce and the person
who actually ”wanted more” the divorce, Allen and Brinig (2000), Sayer et al. (2011), Rosenfeld (2018).

2This number is based on divorce filing records for a sample of 31 states, refer to Section 1.2 for a more
detailed discussion.

3I classify an individual as ”college” if he/she reported to have 16 years of education or more. Refer to the
data Section 1.2 for a more detailed description of the data used in this paper.
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since 1960 until they reached a peak in 1981 and thereafter continuously declined, thus exhibiting
a hump shape pattern, see Figure 1.1.4

The purpose of this paper is to understand the above described patterns of divorce rates and
divorce filings, in a world with higher assortative mating, lower fertility, rising female wages, more
custodial fathers and changing property division laws. The analysis aims to study the complete
evolution of divorce rates and divorce filings starting in 1970 until 2015, thus encompassing 46
years of divorce data.5 I emphasize the importance of explaining divorce rates together with
divorce filings, since abstracting from the latter may lead to different conclusions about the re-
sponse of divorce rates to changes in labor market outcomes. I construct and estimate a life cycle
model of endogenous marriage and unilateral divorce, where agents differ in age, gender, marital
status, and education attainment. Married agents make joint decisions on consumption, savings
and labor supply. If agents are single they randomly meet unmarried people of the opposite gender
and decide whether to marry or not. In order for the marriage to happen, both people need to
agree to marry, in this sense this will be an equilibrium match. Once married, spouses can choose
to divorce unilaterally. Utility is non transferable, this implies that if one spouse would rather
divorce but the other prefers marriage, then he or she cannot convince the divorcing spouse to
stay married. Fertility is exogenous and children bring additional utility to their parents, however
upon divorce only one of the parents gets full custody of the children with a given exogenous
probability, under this setting, the odds of child custody will alter the expected value of divorce
for the custodial parent (more often the mother)6 In my model men and women enjoy married
life differently (i.e marital quality/love is gender specific). This a specific feature that I use to
match divorce filing moments. This is not a new feature to the literature, a similar way to model
love/match quality can be seen in Rios-Rull et al. (2010), however they do not explicitly target
divorce filing moments in their estimation, which in contrast is the purpose of my study.

There are three main mechanism in my model occurring through: (1) the gender-wage gap in
the labor market, (2) child custody arrangements upon divorce and (3) property (assets) division
upon divorce: First, in terms of the labor market, rising female wages affect martial outcomes in
two opposite directions in the model, a direct and selection effect respectively. On the one hand,
a reduction of the gender-wage gap increases the value of divorce for married women, this makes
it easier for women to divorce and leave inconvenient marriage arrangements, thus increasing
divorce rates and the number of divorces filed by women (direct effect). On the other hand, a

4The hump shape patters is also present by state and by education of the couple members.
5To the best of my knowledge there is no study that quantitatively explains the hump shape pattern of divorce

rates using a unifying framework. This study also fills this gap.
6In recent years, joint custody became more common, in my model I do not allow for joint custody arrange-

ments, however joint custody would entail that both parents share the children, as opposed to only having one
custodial parent. See González-Val and Marcén (2012) for a discussion on the implications of joint custody for
divorce.
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reduction of the gender-wage gap increases the value of singlehood for unmarried single women
making them more selective in the marriage market (selection effect), this means that poten-
tial candidates that she would have married with the previous income arrangement might get
rejected under the current arrangement. In other words, women can now afford to wait longer in
the marriage market with the intention of securing a better match for themselves. This stronger
selection mechanism translates into a delay in marriage and a lower number of marriages being
formed. These new marriages exhibit higher average match quality for women, thus reducing
their willingness to divorce and lowering the share of divorces initiated by wives. It is the case,
the direct effect dominates between 1970 and 1980, however from 1980 on wards the selection
effect was stronger thus explaining the hump shape in divorce rates.

Second, in terms of children and their custodial arrangements upon divorce, I model children
as a public good that brings additional utility to the couple; thus making marriage more attractive
for both parties. Upon divorce, one of the couple members is randomly chosen to become the
custodial parent, moreover, only the custodial parent enjoys the additional utility coming from
the child. Under this set up, children increase the value of divorce for the custodial parent, thus
raising his/her chances of filing for divorce. In my model, I inform the odds of custody by gender
as I find in the data. In particular, in the latest decades the probability of fathers in getting full
custody of their children has increased, therefore increasing the number of divorces initiated by
husbands, which is in line with the observed reduction of the share of divorce filings done by
wives.

Third, in terms of property (asset) division upon divorce, in my model assets are divided
according to an exogenous splitting rule. The implications of changes in the splitting rule on
divorce rates are ambiguous. On the one hand, higher share of assets for wives increases the
value of divorce for women thus increasing the number of divorces by wives, on the other hand,
lower share of assets for men reduce the value of divorce for men, which decreases the number of
divorces by men. The way assets are split upon divorce also alters the savings decision of married
households, which in turn also affects the value of divorce for both partners. From 1970 to 1985
reforms were aimed to give a larger share of assets to wives, this created a more convenient situ-
ation for divorcing wives, which is in line with the increase in divorce rates between that period.

In order to assess the role of each of these mechanisms in explaining divorce filings and di-
vorce rates, the model is set to match a set of relevant data moments of 1970.7 I take the
1970’s economy as the status quo, I then use the model to get a counterfactual prediction for
1985. To do this I set (exogenously) the education composition of the population, fertility, the
gender-wage gap, child custody arrangements and property division rules to their 1985 values.
The model predicted values are then compared with their data counterparts, I repeat the same

7Importantly, I target divorce rates and divorce filings by education of the couple.
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exercise for the period 1985 to 2015. The estimation of the model for 1970 reveals that women
enjoy married life less than men and that children bring additional utility to the household they
live in. This explains why, conditional on the presence of children, women file more for divorce
than men. Furthermore, we can see that the model predictions for 1985 are in line with the
changes observed in the data. The model accounts for 41% of the rise in divorce rates and 53%
of the decline in divorce filings from 1970 to 1985, and 50% of the decline in divorce rates and
52% of the decline in divorce filings between 1985 and 2015.

Next, I decompose the above predictions by measuring the individual contribution of each of
the three drivers: the gender-wage gap, property division laws and child custody arrangements.
To this end, I keep the 1985 parametrization fixed but set the gender-wage gap to its 1970 value.
I do the same for the odds of child custody and the property division splitting rule. I repeat
the same set of exercises for the period 1985 to 2015. These counterfactual experiments show
that the reduction of the gender-wage gap can explain large percentages of the changes seen in
both time intervals. Rising relative wages account for 91% of the increase in divorce rates (direct
effect) and 29% of the decline in divorce filings between 1970 to 1985. And 62% of the decrease
in divorce rates (selection effect) and 17% of the overall decline in divorce filings by women
between 1985 to 2015. Results show that the change in child custody arrangements is the most
important driver behind the reduction in the share of divorce initiated by wives, it accounts for
77% of the decline between 1970 and 1985 and 83% variation between 1985 and 2015. Changes
in property division explain 50% of the rise in divorce rates from 1970 to 1985.

I then turn to analyse the relevance of using divorce filing information in getting the above
results and show that failing to match divorce filing moments leads to opposite counterfactual
results. To do this, I propose an alternative model that abstracts from the features that would
allow it to match divorce filing moments; namely gender specific match quality and higher prob-
ability for the wife to get custody of the children. In the alternative model both men and women
enjoy marriage equally and both have the same chance of becoming the custodial parent in case
of divorce. When estimating the alternative model for 1970 I target divorce rates, but no longer
target the share of divorces initiated by wives. First, the estimation of the alternative model for
1970 has no problem in replicating the divorce rate of 1970 however, the model fails to get the
share of divorces initiated by wives, predicting this to be 48% as opposed to 71%, as observed in
the data for 1970. Second, I then use the alternative model to obtain a counterfactual prediction
for 1985. In this case the model predicts a decline in divorce rates and an increase of the divorce
filings by wives; results that are contrary to what is observed in the data. This occurs because
in the alternative model most of the divorces come from husbands (as opposed to wives as it is
the data); therefore an increase in female wages will make women more economically attractive
to men, since men can now work less and their wives more, thus reducing the number of divorces

4



Figure 1.1: Divorce filings and divorce rates

Notes: Divorce filing data comes from the NBER collection of Marriage and Divorce, refer to NBER (1995).
Divorce rates are taken from the CDC/NCHS National Vital Statistics System reports, refer to Section 1.2 for
more details.

initiated by husbands.

Relation to the literature This paper speaks to the family economics literature that studies
the links between marital structures and people’s economic choices i.e labor market participa-
tion, wealth accumulation, investment in education and fertility among others (Greenwood et al.
(2017), Yamaguchi et al. (2014)). See a comprehensive summary of the state of the art con-
cerning the economics of the family in Doepke and Tertilt (2016). However, to the best of my
knowledge this paper is the first to quantitatively asses the role of divorce filings in explaining
divorce rates using actual divorce filing data. I build on the work done by Rios-Rull et al. (2010),
where the authors measure the contribution of changing wages on the share of single female
households and other demographic facts. My framework is similar to theirs in that I also allow
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the utility of married individuals to differ by gender; which has the potential to generate gender
asymmetries in divorce filings, however the authors do not explicitly target divorce filing moments,
as I do. In addition, their model presents a similar selection mechanism where rising female wages
induces single women to wait for a better match and makes men more willing to marry since the
earning power of their potential partners increased. My work can be seen as an extension to their
framework by adding wealth accumulation and child custody arrangements, and a simplification
by removing endogenous education attainment/sorting and fertility. The framework I present
here is also closely related to Santos and Weiss (2014), where they focus on the effect of the
rise in income volatility on the delay and decline of first-marriages. In their model, marriage
entails consumption commitments that affect the gains from marriage. Increased volatility leads
to agents waiting longer to get a high income draw before getting married, this in order to be able
to meet the consumption commitments that come with marriage. In their analysis they abstract
from modeling divorce decisions, therefore abstracting from modeling divorce filings. For further
work focusing on changes in the wage structure and marriage and intrahousehold decisions re-
fer too Goussé et al. (2017) and Ciscato (2018). Santos and Weiss (2015) links the decline of
divorce to the rise of income volatility. Higher volatility leads to less divorce because married
couples value spousal insurance more. This channel reduces divorce risk associated to negative
income shocks. Their model extends the framework in Santos and Weiss (2014) by including
unilateral divorce and bargaining over consumption, labor supply and savings decisions within
the household. Their model explains both the decline in divorce rates and the rise in elderly
divorce, however information on divorce filings is not reported. Greenwood et al. (2016) present
an economy with declining marriage, increasing divorce and rising assortative mating. Within that
context they explain how the changing wage structure and the reduction in the price of durables
affect marital composition, education attainment and female labor force participation and how
all of these factors jointly determine income inequality. The authors explain how, in the presence
of better technology at home, the economies of scale from marriage are lower, thus reducing the
incentives to marry and promoting divorce. In contrast to Greenwood et al. (2016), I focus on
explaining both the rise and fall of divorce rates overtime, together with the decline in the share
of divorces initiated by wives. I do not model home production, but at first glance a reduction in
the price of durables would reduce the value of marriage for married men more than for women,
therefore contributing to the decline in filings done by wives this would be a useful extension to
my model.

My paper is also related to Guvenen and Rendall (2015), who explore the role of education
as insurance against bad marriages. They build on the fact that future returns on human capital
are not divided upon divorce, this makes education a good insurance against divorce risk. In their
model women endogenously respond to the change from mutual consent divorce to unilateral
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divorce by increasing their college enrollment. In my model I take the education composition
of the population as given, but this does not hinder college educated wives from being more
prone to end bad marriages than their non-college counterparts. Knowles (2005) uses a model
of marital bargaining to explain the trends in U.S. labour supply since 1970. The author shows
that the standard model without bargaining predicts a large decline in married-male labor supply
in response to the reduction of the female to male gender-wage gap since 1970. The author
emphasizes that although bargaining has a small impact on aggregate labor supply it is critical in
explaining the trends in female labor supply observed in the data. In contrast to my framework,
the author explicitly models intra-household bargaining, divides time use within the household in
three categories, leisure, work in the office and work at home, finally he includes income taxes
into the analysis. However, the author abstracts from modeling wealth accumulation, fertility
and child custody arrangements plus does not explicitly target divorce filing moments. Regarding
bargaining, I too propose a version of my model where the intra-household allocation weights are
set through Nash Bargaining. After estimating my model for 1970, the obtained endogenous the
pareto weights were similar to the ones found by Knowles (2005), importantly I found that there
was little change in the endogenous pareto weights when generating model predictions for 1985.
Following this insight, I keep the pareto weights constant throughout my analysis.

My work is also related to the literature addressing changes in divorce laws and child custody
settlements. Fernández and Wong (2017) study the welfare effects of switching from mutual
consent divorce to unilateral divorce. They use a model with endogenous family formation, where
children stay with the mother upon divorce. They calibrate their model to match moments of
the 1940 cohort, and conclude that women were better off under the mutual consent regime
vs. unilateral divorce. They model love as a public good but explore the possibility of allowing
love draws to differ across partners, however they assume a common distribution of love across
partners. I relax this assumption by allowing the mean of the love distribution to differ by gender,
furthermore I discipline these means to match divorce filing data by education and conditional on
the presence of children. In Fernández and Wong (2017) the welfare losses from divorce are larger
for women than for men, this happens because women earn less than men and bear a larger share
of child rearing costs, thus more likely to benefit from a mutual consent regime. Voena (2015),
studies the effects of switching from mutual consent divorce to unilateral divorce in states with a
title based regime vs. states with community property or an equitable distribution regime.8 She
finds that the introduction of unilateral divorce in states with equal division of property, resulted
in higher savings and lower female labor force participation. She estimates a model featuring
limited commitment to marriage, imperfectly transferable utility between spouses, and remar-
riage. In my model, utility is non-transferable and I abstract from the possibility of remarriage.

8For the definition of title based regime, community property and equitable distribution refer to Footnote ??.
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Shephard (2019) presents a limited commitment overlapping generations framework with both
within and across cohort marital matching. The model is able to explain why men marry women
younger than themselves and why labor supply of married women is lower the older is her husband.
Furthermore the author quantifies the effect of decline in the gender-wage gap on the marriage
age gap; he finds that one third of the reduction of marital age gap is associated to the reduction
of relative wages. Marcassa (2013) measures the effects of changes in financial settlements,
namely changes in property division, alimony transfers and child custody arrangements and time
assignments on the rise of divorce rates in the U.S. since late 1960’s. To do so she calibrates a
model of wealth accumulation, labor supply and limited commitment to marriage. She finds that
financial settlement can account for 30% of the rise in divorce rates. Moreover, she finds that
after accounting for all financial settlements, the role of switching from mutual consent to uni-
lateral divorce is significantly smaller. In later counterfactual experiments she finds that changes
in the wage structure explain 15% of the increase in divorce rates. In her model agents solely
divorce due to marital quality shocks, save for retirement and to mitigate divorce risk. Arpad and
Sarolta (2015) study how divorce and asset division rules affect intra-household risk sharing. In
a model with lack of commitment and efficient separations calibrated for the UK, they compute
optimal property division upon divorce. They find that optimal property division rules balance
the trade-off between risk sharing within the couple, and consumption smoothing across marital
states (married vs. divorced). In a static setup Weiss and Willis (1985) study endogenous child
custody settlements. In their model expenditure on children is a public good enjoyed by both
the father and the mother; upon divorce the non-custodial parent looses control over the child
expenditure allocations. Under this set up optimal marriage contracts are constructed where
couples decide the allocations within marriage and child custody settlements upon divorce. If
one party is committed to provide the other with a high level of utility, then he may be better
off assigning custody as well, thus benefiting from the high level of child expenditures the other
party will choose. I would like to stress that none of the above mentioned research papers focus
on matching who files for divorce and its role in explaining divorce behaviour, aspect that is the
backbone of my analysis.

Regarding the literature studying divorce filings and its determinants, most work is empirical
and comes from sociology and law. Empirically, I contribute to this literature by documenting
the steady decline in the share of divorce filings initiated by wives since 1970. I show that this
decline is not purely a composition effect by showing that divorce filings by wives decline both
by education group of the couple and by the presence of children in the household, see Figure
1.2. Quantitatively, I estimate a structural model to measure and decompose the effects of the
main driving forces behind changes in divorce rates and divorce filings by women. Friedman and
Percival (1976) make a complete historical analysis on the evolution of divorce and divorce filings
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in the U.S. since 1870 until the late 1970’s. Allen and Brinig (2000) show empirically that filing
behaviour depends on the spouse’s relative power within the marriage, financial independence and
anticipation of child custody, the latter being the most important determinant. Allen and Brinig
(2000) were concerned by the fact that most (if not all) couples experience a separation time
until the final divorce decision takes place, therefore the divorce filing record might not necessarily
reflect the intention of the filing member to divorce when the separation period is long (larger
than two years). They find evidence that within a period of two years between separation and
divorce, the divorce filing does not appear to be simply a matter of convenience. Following this
insight I control for the time form separation to divorce and only use divorce records where the
time from separation to divorce did not exceed six years. Then the median time from separation
to divorce used to produce the statistics in this paper is two years. Dixon and Weitzman (1982)
show that husbands who filed for divorce also revealed a strong preference for becoming the cus-
todial parent. Kalmijn and Poortman (2006) emphasize that child custody affects the husband’s
decision to divorce more than for it does for wives. Fox and Kelly (1995) study the determinants
of child custody arrangements upon divorce. They find that the odds of father custody were
enhanced when the children where older but reduced by parental unemployment and prior child
support arrangements. Sayer et al. (2011) show that female employment made women more
likely to leave the marriage. Additionally they found that men’s unemployment affects equally
the probability of either partner to file for divorce. Gunter and Johnson (1978) finds evidence that
the passage of no-fault divorce was partially responsible for an increase in male divorce filings,
suggesting that cultural and societal changes had a secondary role. Finally, Rosenfeld (2018)
document that women tend to report lower marital quality than husbands, which is in line with
the estimation results coming from my model.

The remainder of the paper is organized as follows. Section 1.2 presents the data used in
this paper. Section 1.3 describes a simple model of divorce filings, and explains its mechanism.
Section 1.4 describes the fully fledged model to be estimated. Section 1.5 explains the calibra-
tion and estimation procedure. Section 1.6 and 1.7 describe the main results and counterfactual
experiments. Finally, Section 1.8 concludes.

1.2 Data

This paper collects information from various data sets, these data sets are: The Panel Study of
Income Dynamics (PSID), Current Population Survey (CPS), divorce filing data from the National
Vital Statistics System complemented with survey data coming from the HCMST project, see
Rosenfeld (2018). Otherwise stated the numbers reported/used in this paper come from data
extracts from the Current Population Survey that were accessed through IPUMS. Moreover, the
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relevant statistics were computed for couples where the husband was between 21 and 60 years old.
In addition, I classify an individual as ”college” if he/she reported to have 16 years of education
or more. I now describe in detail the relevant variables and their sources.

Divorce filing data This paper uses data on divorce filing records that were directly collected
from divorce certificates available for 31 states across the U.S. from 1968 to 1995, see the
complete list of sample states in Appendix A.2. This data set was compiled by the National Vital
Statistics System of the National Center for Health Statistics, the data set can be downloaded
from the NBER collection of Marriage and Divorce Data, refer to NBER (1995). The collection
of this data stopped in 1995 due to lack of funds. Unfortunately data for all states was not
available, however the information available for the 31 sample states can be very well used to
conduct inference at the national level. In Table 1.1, I show that the divorce rates at the national
level and those computed using the sample of 31 states are not so different from one another.

The data set consists of more than 3 million observations and includes the relevant variables
necessary for my analysis: level of education of the husband and wife, number or children under
18, marriage duration, time from separation to divorce, age, race, and state of residency. Detailed
information on the plaintiff (the person who filed for divorce) is only available from 1977 to 1988,
therefore the average share of divorces initiated by wives for 1970 was imputed by interpolating
between the value for 1960 (reported by Friedman and Percival (1976)), which was 72% and the
value for 1977. The respective numbers by education of the couple and filings in the presence of
children were imputed accordingly. In addition, following Allen and Brinig (2000) I control for the
time form separation to divorce and only use records where the time from separation to divorce
did not exceed six years, this makes the median time form separation to divorce to be two years
in the sample I use.

The value for the share of divorce initiated by wives in 2015 comes from survey data collected
for the project How Couples Meet and Stay Together, see Rosenfeld (2018). This data set consists
of 3,009 records of married individuals and their partners. Follow-up surveys were conducted one
and two years after the original wave. After classifying divorces by the education of the couple,
the surviving number of observations was to low to produce reliable statistics. Because of this
reason I do not analyze divorce filings by education of the couple for the period 1981 to 2015.

Divorce rates Divorce rates were computed using PSID data. First, married heads in the PSID
were paired with their respective spouses, thus creating a data set at the couple level. I then
follow these couples across years, recording if the couple changed its marital status from married
to divorced from one year to the next. I then compute the divorce rate as the relative number of
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couples who switched marital status from married to divorced between survey dates.9 Separated
couples are not included in the analysis. Between 1968 and 1997, PSID interviews were conducted
annually. Since then, interviews have been biennial, thus the calculation for the divorce rate for
2015 has been adapted accordingly.
For the quantitative exercise I use divorce rates at the national level, instead of divorce rates
computed for the sample of 31 states for which divorce filing data is available. Table 1.1 shows
that the divorce rates at the national level and those computed using the sample of 31 states are
not so different from one another, thus justifying the use of divorce rates at the national level.

Table 1.1: Divorce rates (in %) for all states vs. sample states

Year
1970 1975 1980 1985 1990 2015

All States 1.30 1.42 1.85 1.87 1.60 1.30
Sample States∗ 1.29 1.38 1.75 1.93 1.68 1.22
*For the complete list of sample states refer to List A.2. Source: PSID

Furthermore, Figure A.1 in Appendix A.2 shows the divorce rate trends computed from the
CDC National Vital Statistics Reports. The figure conveys the same message as Table 1.1; it
shows that the divorce rates trends from the sample states are close to the ones at the national
level. Additionally it shows the divorce rate trends for selected states. Oklahoma and Arizona
which are the two states with the two highest divorce rates 1970. Mississippi and Ohio with
divorce rates closest to the median for the U.S. Finally, New Jersey and New York with the lowest
divorce rates in 1970.

Fertility Data on fertility was collected from the OECD reports on fertility by mother’s age at
childbirth. The OECD collected data for the U.S. from 1960 until the present. Table 1.5 shows
the evolution of fertility rates by age group of the mother for 1970, 1985 and 2015 .

9Alternatively, the crude divorce rate can be computed as the number of divorces per 1000 population.
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Table 1.2: Fertility: Births per 1000 women, U.S.

Age Group
Year 15-19 20-24 25-29 30-34 35-39 40-44 45-49
1970 68.3 167.8 145.1 73.3 31.7 8.1 0.5
1985 51.0 108.3 111.0 69.1 24.0 4.0 0.2
2015 22.3 76.8 104.3 101.5 51.8 11.0 0.8
Notes: Source, OECD Stats, Fertility rates by mother’s age at childbirth,

five-year age groups, 1960-2019

Labor market variables The gender-wage gap, female labor force participation and the average
weekly number of hours worked by women were calculated from the Current Population Survey
using CPS-IPUMS extracts. I use the sample for all married couples where the husband is between
21 ant 60 years of age. As with the PSID, I first pair up husbands with their respective wives
thus creating a sample at the couple level, the CPS provides an easy way of linking spouse
records. The CPS provides information on labor earnings per year, thus hourly salaries were
computed by dividing the yearly labor earnings by the number of hours worked reported that
year. I then proceed to calculate life cycle trends; different trends were computed by education
(college, non-college) and gender, these trends were later smoothed using a quadratic fit on age:
℧g,e(age) = α0 + α1 age+ α2 age

2.
The CPS reports the employment status of the household members. It also reports the

average number of hours worked per week if the respondent was active in the labor force. Using
this information it is straight forward to calculate the female labor force participation and the
female to male hours worked ratio hf/hm.

Assortative mating The education composition of the population was calculated from the
Current Population Survey. This involves computing the relative weight of the respective educa-
tion groups: (1) College educated women married to college educated men, (2) college educated
women married to non-college men, (3) non-college women married to college men, finally (4)
non-college women married to non-college men. Table 1.3 shows the respective shares for 1970
and 1980. The degree of assortiative mating between those years increased, the Pearson’s cor-
relation coefficient between the education of the wife and the husband in 1970 was 0.47 and
0.52 in 1985. For a more detailed analysis on the rise of assortative mating see Greenwood et al.
(2016), Greenwood et al. (2017) and Liu (2020).

12



Trends in divorce and divorce filings Between 1970 and 1985 the percentage of divorces
initiated by wives in the U.S. declined from 70% to 63% (a 9.7% reduction) and from 63% to
56% (a 11.1% decline) from 1985 to 2015. The crude divorce rate increased, from 3.5% to 5.3%
(increase of 51%) between 1970 and 1980, reached a peak in 1981 and declined ever since. By
2015 they had reached levels close to the ones seen in the early 70’s. Figure 1.1 summarizes
these trends.

The declining trend in divorce filings by wives is also present when looking at cuts by educa-
tion of the couple members and in the presence of children, see Figure 1.2. We observe that the
decline is larger for non-college women married to college men (a 10.9% decline), whereas smaller
for college women married to non-college men (a 5.9% decline). Note that at every point in time
college educated women married to non-college educated men filed more, having a cross-year
average of 73% and non-college women married to college men filed the least, 56%. The other
two groups were in between, with 62% of women filing when both had a college education and
66% when none of the partners where college educated.

When looking at divorce filings in the presence of children we can see that kids are an impor-
tant factor behind women’s divorce filing behavior. In 1977, 74% of all divorces where initiated
by women when the couple had children and 64% in the absence of children. Moreover, the
declining trend is present for both groups, the reduction has been larger in magnitude for those
couples who didn’t have children a 9.7% reduction (from 64% to 58%) and a slightly smaller
decline for couples with children, a 8.6% reduction (from 74% to 67%).
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Figure 1.2: Percentage of divorces initiated by wives by education of the couple and presence of
children

(a) By education (b) By presence of Children

Source: NBER collection of Marriage and Divorce, refer to NBER (1995).

Table 1.3 summarizes information about divorce filings, divorce rates, gender-wage gap, assor-
tative mating and female labor supply by education groups for 1970 and 1985. We can see that
average relative wages w̄f/w̄m are positively correlated with the percentage of divorces initiated
by wives; the Pearson’s correlation coefficient is 0.7 between the two variables. This suggest a
strong connection between wives filing behaviour and their income. We see that for 1970, the
wage gap of college women married to non-college men is the lowest, with such women earning
69% their husbands wage; for non-college women married to college men the gap is the largest,
with 37%. The gender-wage gap of college women married to college men was 55% and for non-
college women married to non-college men was 47%. On the contrary the divorce rate for college
women married to college men is the lowest, and the divorce rate of college women married to
non-college men is the largest.
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Table 1.3: Divorce rates, divorce filings and labor market variables by education, U.S. 1970, 1985

Education of the couple
Both Wife College Husband College None

College Husband Not Wife Not College
1970 1985 1970 1985 1970 1985 1970 1985

Divorce rate (%) 0.85 0.92 1.87 2.06 1.37 1.60 1.27 1.99
% of divorces

66.56 61.29 77.87 72.51 60.70 54.74 70.56 64.18
initiated by wives

gender-wage gap w̄f/w̄m 0.55 0.60 0.69 0.74 0.37 0.44 0.47 .54
Working hours ratio hf/hm 0.72 0.8 0.85 0.83 0.69 0.74 0.78 .82
Married female labor

47.44 67.42 61.26 71.73 31.85 54.12 40.72 54.04
force participation (%)

Sample shares (%) 8.10 14.87 4.73 7.34 8.69 9.68 78.48 67.97
Sources: Divorce filing data is from the NBER collection of Marriage and Divorce, refer to NBER (1995).

Divorce rates from PSID. gender-wage gap was computed form CPS-IPUMS extract.

1.3 A Simple Model of Divorce Filings

The purpose of this section is to present a simple two period model of divorce filings to better
understand the main mechanisms of interest: (1) relative wages (gender wage gap) (2) probability
of child custody (3) property division rules. This simple model paves the road for the fully fledged
quantitative model developed in Section 1.4.
Consider a simple economy where agents live only for two periods and are indexed by their gender
g ∈ {m, f} and marital status ω ∈ {M,D}, married and divorced respectively. Individuals are
born married and with children. Agents can only be married to an individual of the opposite
sex, therefore a family is conformed by a husband, a wife and children. All families are born
with zero assets at=1 = 0. As a simplification, children are modeled as a public good that bring
additional utility η > 0 to each parent in the household; children do not make any decisions. Each
couple member is born with a given gender specific match quality qg that is randomly drawn from
the gender specific distribution N (αg, σϵα). At every point in time agents make decisions over
consumption c and the number of hours to work h at a given stochastic gender specific wage
rate wg. log wages follow a Markov process with persistence ρ. Compute the average female to
male gender-wage gap as w̄f/w̄m. Additionally, every period married agents decide unilaterally
whether or not to get divorced. This means that although all agents are born married they can
choose to divorce in the first period, furthermore a couple that decided to stay together in the
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first period can choose to split in the second period. In period two, individual match quality is
redrawn from the same distribution, but only for married couples; there is no remarriage. Match
quality takes the value of zero qg = 0 if divorced. Upon divorce one of the parents keeps the
children with probability νg, such that νm + νf = 1, this means that the non custodial parent
looses any utility gains η he/she used to get from the children, whilst the custodial parent keeps
them. Importantly, in period one, all agents (married or not) must also choose how much to
save for the second period a′. Upon divorce, assets are split according to the asset splitting rule
0 ≤ κg ≤ 1, such that κm + κf = 1, there are no additional costs to divorce. Following the
above description the period utility for an individual is u(cg, hg) + qg(ω) + 1k=1η, where 1k=1

is an indicator variable that takes the value of 1 in case the individual lives with the child, zero
otherwise. I assume that agents are risk averse and dislike working.

The problem of married couples Married couples maximize the weighted sum of each mem-
ber’s individual utility according to the pareto weights µg, 10, subject to the budget constraint,
cm + cf + a′ = wmhm +wghf in period one and cm + cf = wmhm +wghf + a′(1 + r) in period
two, where r is the risk free interest rate. We can see from the borrowing constraint that agents
pool income and make joint consumption and savings decisions. Denote the value of marriage
for an agent of gender g at period t as V M

g (t), where V M
g (t) is an equilibrium object coming

from the maximization problem of the married household.

The problem of the divorced A divorced individual maximizes his/her own utility, subject to
cg + a′ = wghg in period one, cg = wghg + a′(1 + r) in period two if divorced in period one and
cg = wghg + a′(1 + r)κg in period two if divorced in period two. Denote the value of divorce
for an agent with gender g at period t as V D

g (t, k), where k takes the value 1 if parent g is the
custodial parent. Denote E as the expectation operator over the probability of getting custody
of the child upon divorce.

The divorce decision Divorce occurs at any period t if either E(V D
m (t)) > V M

m (t) or E(V D
f (t)) >

V M
f (t), or both, thus divorce is unilateral when either the husband or wife is better off in the

divorce state and divorce is mutual when both partners are at the same time better off divorced.
Under this set up it is straight forward to compute the number of divorces that were initiated by
wives, husbands or both.

In the next subsection I parametrize, solve and simulate the above described two period model.
Subsequently, I provide an explanation of the relevant mechanisms of interest.

10Such that the value for a couple is: V C
t (w, w∗, a, qm, qf , k) = maxcm,cf ,hm,hf ,a′ µf u(cf , hf , qf ) +

µmu(cm, hm, qm) + η subject to the period specific budget constraint.
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1.3.1 Mechanisms

In this section I solve the two period model and conduct a comparative statics exercise to better
understand the response of divorce rates and the share of divorces initiated by women when
varying respectively, (1) the gender-wage gap w̄f/w̄m, (2) the asset sharing rule upon divorce
κg and (3) child custody arrangements νg. Figures 1.3 and 1.4 present the results from the
comparative statics exercise. 1.4 illustrates the response of divorce rates and divorce filings when
varying the unobservable gender specific match quality  Lm,  Lf .
I propose four alternative parametrizations of the model aimed to shed light on the importance
of the odds of child custody and the role of the gender specific match quality component:

1. Reference model: Represents a gender equality scenario in which there are no gender
differences in the model. This scenario sets w̄f/w̄m = 1, κm = 0.5, νm = 0.5, ψm =
ψf , µg = 0.5,  Lm =  Lf = 4. For the rest of the parameters see Appendix A.1.

2. Alternative model 1: Sets somewhat more realistic gender differences, as found in the
literature, w̄f/w̄m = 0.55, κm = 0.6, ψm < ψf , µm = 0.6 but keeps the mean of the
individual match quality  Lg and the probability of child custody νg, symmetric between
men and women  Lm =  Lf and νm = νf .

3. Alternative model 2: Keeps the parameter values of Alternative model 1, but sets  Lm >

 Lf , explicitly  Lm = 4 and  Lf = 3, that is men an women enjoy married life differently. With
women having lower match quality than men.

4. Alternative model 3: Keeps the parameter values of Alternative model 2, but sets νm =
0.1, that is women have a higher probability of getting custody of the children upon divorce.

The divorce rates in panels (a), (c) and (e) of Figure 1.3 and panels (a) and (c) of Figure 1.4
are normalized to the values of the reference/equality model that is κm = 0.5, νm = 0.5,  Lm = 4
respectively, except for panel (a) in Figure 1.3, that is normalized to a gender-wage gap of
w̄f/w̄m = 0.5 for illustration purposes.

Discussion on the effect of relative wages The most interesting result comes from Figure 1.3
panel (a) and (b). In these figures we see that on the reference/equality model, the relationship
between the gender-wage gap and divorce rates is negative, and its relationship with the share of
divorces initiated by wives is positive. However we can see, that the maximum share of divorces
by wives that can be reached under this set up is just 50%, by setting w̄f/w̄m = 1. This
changes when we move to Model 1. On one hand, by adding gender differences such as: the way
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consumption is split within the household, asset splitting rules and making women dislike work
more than men, we see that the slope of the pink) line in panel (b) becomes steeper. On the
other hand we observe that the relationship between the gender-wage gap and divorce rates takes
a U shape, reaching a minimum right around a gender-wage gap of w̄f/w̄m = 0.8, which happens
to be the value where the share of divorce initiated by wives surpasses 50%. For Model 2, the
slope of the blue line in panel (b) becomes even steeper and the relationship between divorce
rates and the gender-wage gap becomes positive. This becomes more evident when looking at
Model 3, that makes women more prone to get custody of the children. Moreover, panel (a)
and (b) illustrate that only the Models 2 and 3 are capable or reaching a share of divorce filings
by wives that we observe in the data (around 70%). Note that Models 2 and 3 imply different
responses of aggregate divorce rates to changes in the gender-wage gap, than Models 1 and 2,
which do not reach a higher level of divorce filings by women. This aspect is very important at
the moment of quantifying the individual effects of changes in the gender-wage gap, more so in
the presence of heterogeneity in divorce filings and wages across education groups. For example
for college women married to non-college men the share of divorces initiated by wives is higher
and the gender-wage gap lower, which would put this group above w̄f/w̄m = 0.5 in panels (a)
and (b), but for non-college women married to college men, the gender-wage gap will be around
0.5 and the share of divorces initiated by wives lower, position this group of people at the middle.
We can see that higher relative wages increases divorce rates, this happens because higher wages
increases the value of divorce for women relative to marriage, then already married women who
were stuck in inconvenient marriage arrangements can now afford to divorce (a direct effect).

In this model is also possible to look at the relationship between unobservable individual
match qualities, divorce rates and divorce filings by women. These shown in Figure 1.4 and are
straight forward: higher match quality either for men or women, lower divorce rates and lower
share of divorces initiated by husbands and wives respectively. However we are interested in the
interaction between the realized match quality and higher wages for women. This relationship is
more involved and results in a selection effect. Consider that the higher the value of single-hood
for women associated to higher wages, the longer they will wait for a higher match quality. In the
long run, this will result in the new matches having a higher average match quality than before (a
selection effect), thus exhibiting a lower aggregate level of divorce coming from women. In this
way, women become more selective in the marriage market which translates into an increasing
average age at first marriage and contributing in building a larger pool of never married individuals.
On the contrary, higher wages for women would make men eager to get married even if this means
settling for a lower match quality. It is in this two ways (direct effect and selection effect) that
higher relative wages contribute to the rise and later decline in divorce rates and the overall
decline in the share of divorces initiated by wives.
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Figure 1.3: Comparative Statics, Observables

Divorce Rate Share of divorces initiated by wives (%)
(a) Relative Wages w̄f/w̄m (b) Relative Wages w̄f/w̄m

(c) Asset Sharing Rule κm (d) Asset Sharing Rule κm

(e) Child Custody νm (f) Child Custody νm

Notes: The reference line solves the model with w̄f /w̄m = 1, κm = 0.5, νm = 0.5, ϕm = ϕf , µm = 0.5, and
 Lm =  Lf = 4 The Model 1 uses w̄f /w̄m = 0.55, κm = 0.6, νm = 0.5, ϕm < ϕf , µm = 0.67 and  Lm =  Lf = 4.
Model 2 sets  Lf = 3 and  Lm = 4 in addition to Model 1. Model 3 sets νm = 0.1 on top of Model 2. See
Appendix A.1 for the values of the rest of the parameters used in this example.



Figure 1.4: Comparative Statics, Unobservables

Divorce Rate Share of divorces initiated by wives (%)
(a) Wife’s Match Quality  Lf (b) Wife’s Match Quality  Lf

(c) Husbands’s Match Quality  Lm (d) Husbands’s Match Quality  Lm

Notes: The reference line solves the model with w̄f /w̄m = 1, κm = 0.5, νm = 0.5, ϕm = ϕf , µm = 0.5, and
 Lm =  Lf = 4. Model 1 uses w̄f /w̄m = 0.55, κm = 0.6, νm = 0.5, ϕm < ϕf , µm = 0.67 and  Lm =  Lf = 4.
Model 2 sets  Lf = 3 and  Lm = 4 in addition to Model 1. Alternative 3 sets num = 0.1 on top of Model 2. See
Appendix A.1 for the values of the rest of the parameters used in this example.



1.4 The Model

In this section I present a life cycle model featuring endogenous marriage, unilateral divorce,
wealth accumulation and female labor supply, both at the intensive and extensive margins. I
start by describing the demographics, namely living arrangements, fertility and the education
composition composition of the population. Next I describe child custody arrangements and
property division upon divorce. I then describe the income process together with its life cycle
component. I next turn to preferences, and the timing that governs decision making and shapes
the law of motion of the population. Finally, I provide a definition for the stationary equilibrium
and outline the steps of a solution algorithm.

1.4.1 Demographics

The economy is populated by generations of equal number of men and women, who at every
point in their life are indexed by their age/generation t, gender g ∈ {m, f}, education attainment
e ∈ {c, nc} college, non-college respectively, marital status ω ∈ {N M,M,D}, never married,
married and divorced respectively.11 Additionally, married couples are indexed by the presence of
children or not in the household k ∈ {1, 0}.
Men and women are born single and enter the model at age tm = 21 and tf = 19 respectively.
Agents age deterministically and live a total of 39 periods, that is, men live until age Tm = 60
and women up to Tf = 58. A difference of 2 years between men and women has been chosen
since men tend to marry women who are on average two years younger than them. In the model
a generation t consists of all men aged tm and women aged tm−2. For the rest of the document,
otherwise stated, t will refer to the age of the man and his associated generation. .

Living arrangements Every period, single and married agents decide over their marital status.
Single agents decide whether or not to get married to another single individual of the opposite
sex but from the same generation and education group. For simplicity I restrict marriage to
happen only between individuals from the same generation and education group, that is, there is
no intergenerational marriage. Married individuals decide whether to divorce their current partner
or remain married for the rest of the period, after divorce there is no possibility of remarriage,
therefore divorce is an absorbing state. Notice that since agents are born single, divorce cannot
happen at t = 21.

Education For simplicity, the education composition and the degree of assortative mating
across education groups will be exogenously fed into the model. The education composition of

11For the rest of the document the term ”never married” and ”single(s)” will be used interchangeably
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the married population is summarised in contingency Table 1.4, where the shares ϕe,e∗ will be
directly taken from the data.

Table 1.4: Education composition of the married population

Husbands’s Education
College Non College

Wife’s College ϕc,c ϕc,nc

Education Non College ϕnc,c ϕnc,nc

Such that: ϕc,c + ϕnc,c + ϕc,nc + ϕnc,nc = 1

The population in the model is then divided into four groups: G1(c, c): composed of college
men and college women, G2(nc, c): non-college men and college women, G3(c, nc): college men
and non-college women, G4(nc, nc): non-college men and women. Under this set up agents are
restricted to interact solely with agents of their respective group, for example, a college woman
of group G1(c, c) can only meet and marry a college man of the same group and generation, but
cannot marry a non-college man of group G2(nc, c), only college women of group G2(nc, c) can
marry with non-college men.

Fertility Fertility is exogenous; children can be born within a dyad with probability φt, con-
ditional on the couple not having children. There are no children born out of the wedlock and
upon divorce the child stays with one of the parents. Children stick around with the couple or
the custodial parent forever, see below.

1.4.2 Child Custody and Divorce Laws

Upon divorce one of the parents gets full custody of the child with exogenous probability νg, such
that νm + νf = 1, where νm is the probability that the father gets full custody. The custodial
parent inherits all the costs and benefits of raising the child.

Divorce causes the couple’s savings (at) to be split among couple members according to
parameter κg. Where κm is the share of the assets that the man keeps. Moreover, divorce has
no additional cost therefore κm + κf = 1.

1.4.3 Income

Agents provide labor supply h and receive wages wg,et that depend on gender and education.
Wages are stochastic around a deterministic trend ℧t and assumed to follow an AR(1) process
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with persistence ρ and transition matrix Π:

log(wg,et ) = ℧t,g,e + Ft where: Ft = ρFt−1 + ϵw with: ϵw ∼ N (0, σ2
ϵw)

Define δ = w̄f/w̄m as the average gender-wage gap and z = w̄c/w̄nc as the average college
wage premium. Note that the income process does not depend on the agents marital status and
so the income processes between spouses are independent of each other.
Markets are incomplete and households can save/borrow assets a, at a risk-free interest rate r.
There are no borrowing constraints, no intergenerational transmission of assets and agents must
pay all their debt before they die, that is aT+1 ≥ 0.

1.4.4 Preferences

Agents are risk averse, enjoy consumption and dislike working. When married they get additional
individual utility qg associated to the current match. Individual match quality qg has a permanent
component αg that is drawn from distribution N ( Lg, σ2

ϵα) at the time the couple met, and a
stochastic component ϵq, marital bliss, that follows an i.i.d process distributed N (0, σ2

ϵq). More-
over, if the couple has children k = 1, each couple member enjoys extra utility η. In addition,
there is a fixed utility cost f to the period utility of married individuals when female hours worked
are strictly positive hf > 0. This cost is not present for neither single nor divorced women.
Considering the above described features, individual period utility is given by:

ug(c, h, q) + 1k=1η + 1hf>0 f(ω) = c1−σ

1 − σ
− ψg

h1+ 1
ξ

1 + 1
ξ

+ qg(ω) + 1k=1η + 1hf>0 f(ω)

qg(ω) =

αg + ϵq ϵq ∼ N (0, σ2
ϵq) if ω = {M}

0 if ω = {N M,D}

f(ω) =

0 if ω = {N M,D}

< 0 if ω = {M}

• Where αg is drawn at the time of marriage from distribution N ( Lg, σ2
ϵα).

• ψg governs the disutility from labor supply.

• ξ is the Frish elasticity of labor supply.

• Denote Aq the transition matrix associated to q, and Bk the transition matrix governing
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fertility.12

• People discount their future at a rate β.

We are now ready to describe the timing and decision making process.

1.4.5 Timing

The sequence of events occurring on a given period is summarized in Figure 1.5. At the beginning
of the period income and marital shocks are revealed; single agents draw a random partner from
the pool of singles (N M), get a permanent match quality draw from N ( Lg, σ2

ϵα) and a temporary
marital bliss shock ϵq. Married couples get a temporary bliss shock and a fertility shock if they
didn’t have children already.
Next, married couples decide whether to get divorced from their current partner, and the never
married/single agents decide to marry or not their match. After the marriage decision has taken
place, fertility is revealed for the newly wedded couple. The marriage decision is taken before
fertility is revealed in order to avoid selection into marriage associated to the presence of children.
Divorce is an absorbing state, there is no possibility of remarriage. Finally, consumption, work
and savings decisions are executed.

Figure 1.5: Timing

Choose, c, h, a′Marriage Decision
Reveal wt, draw α, ϵq and

a potential match

Choose, cg, hg, a′Divorce DecisionReveal wg,t, qg and fertility

t + 1

t + 1

t + 1Choose, c, h, a′Reveal wt

Singles:

Married:

Divorced:

Fertility drawMarried-Yes

Divorced-Yes

12Aq is an NA × NA matrix where NA is the number of discretized states of q ∈ Q, the elements of each row
of Aq equal 1/NA, such that they sum to one. Bk is a 2 × 2 matrix with b1,1 = 1 − φ(t), b1,2 = φ(t), b2,1 = 0
and b2,2 = 1, where φt is the fertility of women of generation t.
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1.4.6 Decision Making

Singles Single agents must decide how much to consume c, save a and whether to marry of not
the person they randomly meet at the beginning of the period. Single agents solve the following
dynamic problem:

V gN M
t (w, a) = max

c,h,a′
u(c, h, 0) + β

∫
Ωg∗

N M

∑
w′

∑
q′

∑
k′
πw′|wAq′|qBk′|k (1.1)

×
{
Mt+1V g

M
t+1(w′, w∗′, a′, q′, q∗′, k′) + (1 − Mt+1)V gN M

t+1 (w′, a′)
}
dΩg∗

N M(t+ 1)

s.t.
c+ a′ = wg,et h+ (1 + r)a (1.2)

• Where M (t) is the marriage decision policy at period t, takes value of one if the ’potential’
couple decided to marry, zero otherwise, see expression 1.3.

• Ωg∗

N M(t) is the normalized distribution of singles of the opposite sex at period t.

• Define the policy functions of the singles problem as follows: consumption policy PgN M
c (w, a, t),

savings policy PgN M
a (w, a, t) and labor supply policy PgN M

h (w, a, t).

Marriage, occurs only if both parties agree, that is:

Mt =

1 only if Eφ(V mM
t ) > VmN M

t and Eφ(V fM
t ) > V fN M

t

0 otherwise
(1.3)

• Where Eφ(V mM
t ) is the expected value of marriage before the arrival of children, see 1.6.

Note that in order to solve the above problem single agents must be completely aware of the
distribution of singles in t+ 1.

Married Married couples jointly decide how much to consume cm, cf , how much the wife works
hf > 0 or if she doesn’t work at all hf = 0, labor supply of the husband hm and how much to
save a′. The couple maximizes the weighted sum of each members utility according to pareto
weights µm + µf = 1.13 Married individuals decide unilateraly whether they separate from their
current partners. Because the pareto weights are fixed there is no mechanism by which a partner

13Consistent with the unitary framework of the household as described in Chiappori and Donni (2009)
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convinces the other to stay in case of divorce. A married household solves the following dynamic
problem:

V C
t (wm, wf , a, qm, qf , k) = max

cm,cf ,hm,hf ,a′
η1k=1 + µfu(cf , hf , qf ) + µmu(cm, hm, qm) + f1hf>0

(1.4)

+ β
∑
w′

g

∑
q′

g

∑
k′
πw′

m|wmπw′
f

|wf
Aq′

m|qm Aq′
f

|qf
Bk′|k

×
{
Dt+1

[
µfEν

(
V fD

t+1(w′
f , a

′κf , k
′)
)

+ µmEν
(
V mD

t+1(w′
m, a

′κm, k
′)
)]

+ (1 − Dt+1)V C
t+1(w′

g, a
′, q′

g, k
′)
}

s.t.
cm + cf + a′ = wm,et hm + wf,e

∗

t hf + (1 + r)a (1.5)

• Where D(t) is the divorce policy at t, taking the value one if the couple divorced and zero
otherwise.

• The operator Eν is the expectation over custody of the child. The custodial parent gets
custody of the child with probability νg, such that νm + νf = 1.

• κm is the share of assets kept by the husband after divorce. The wife keeps κf = 1 − κm.

• Define the policy functions of the married individuals as follows: consumption policy
PgM

c (w,w∗, a, t), savings policy PgM
a (w,w∗, a, t), labor supply policy PgM

h (w,w∗, a, t),
and married female labor force participation PfM

f (w,w∗, a, t).

• After solving the optimization problem described in 1.4, we can define the value of a married
individual of gender g ∈ {f,m} as:

V gM
t (wm, wf , a′, qm, qf , k) = η1k=1 + u (c, h, q) + f1hf>0 (1.6)

+ β
∑
w′

g

∑
q′

g

∑
k′
πw′

m|wmπw′
f

|wf
Aq′

m|qm Aq′
f

|qf
Bk′|k

×
{
Dt+1Eν

(
V gD

t+1(w′
g, a

′κg, k
′)
)

+ (1 − Dt+1)V gM
t+1(w′

m, w
′
f , a

′, q′
m, q

′
f , k

′)
}

• Define Eφ(V gM
t ) = φt ∗ V gM

t (k = 1) + (1 − φt) ∗ V gM
t (k = 0), as the expected value of

marriage before the arrival of children.
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Divorced Divorced agents choose how much to consume c and save a′. They solve the following
dynamic problem:

V gD
t+1(w, a, k) = max

c,h,a′
η1k=1 + u(c, h, 0) + β

∑
w′
πw′|wV g

D
t+1(w′, a′, k′) (1.7)

s.t.
c+ a′ = wg,et h+ (1 + r)a (1.8)

• Define the policy functions of the divorced agents as follows: consumption policy PgD
c (w, a, t),

savings policy PgD
a (w, a, t) and labor supply policy PgD

h (w, a, t),

Divorce occurs unilaterally, that is:

Dt =

1 if Eν(V mD
t ) > VmM

t and/or Eν(V fD
t ) > V fM

t

0 otherwise
(1.9)

• Where Eν(V gD
t ) is the expected value of divorce over the probability of obtaining custody

of the child, that is Eν(V gD
t ) = νg ∗ V gD

t (w, a, k = 1) + (1 − νg) ∗ V gD
t (w, a, k = 0).

1.4.7 Endogenous Population Dynamics

Singles The law of motion for single agents of gender g and education group G(e, e∗) is:

Ωg
N M(w′, a′, t+ 1) =

∫
Ωg∗

N M(w∗,a∗)

∑
w

∑
q

∑
k

{
1a′(w,a)∈Aπw′|wAq′|qBk′|k

× (1 − Mt(w,w∗, a, q, q∗, k))Ωg
N M(w, a, t)

}
dΩg∗

N M(w∗, a∗, t) (1.10)

Normalize as needed for Problem 1.1:

Ωg
N M(y, a, t) = Ωg

N M(y, a, t)
/∫

dΩg
N M(y, a, t)
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Married The law of motion for married agents is:

Ωg
M(w′, w∗′, a′, q′, q∗′, k′, t+ 1) =

∑
w,w∗

∑
q,q∗

∑
k

{
1a′(w,w∗,a)∈Aπw′|wπw∗′|w∗ Aq′|q Aq′∗|q∗ Bk′|k

× (1 − Dt(w,w∗, a, q, q∗, k)) Ωg
M(w,w∗, a, q, q∗, k, t)

}
+
∫

Ωg∗
N M(w∗,a∗)

∑
w

∑
q

∑
k

{
1a′(w,w∗,a+a∗)∈Aπw′|wAq′|qBk′|k

× Mt(w,w∗, a, q, q∗, k) Ωg
N M(w, a, t)

}
dΩg∗

N M(w∗, a∗, t)

(1.11)

Normalized:

Ωg
M(w,w∗, a, q, q∗, t) = Ωg

M(w,w∗, a, q, q∗, t)
/∫

dΩg
M(w,w∗, a, q, q∗, t)

Divorced The law of motion for divorced agents is:

Ωg
D(w′, a′, k′, t+ 1) =

∑
w

{
1a′(w,a)∈Aπw′|w Ωg

D(w, a, k, t)
}

(1.12)

+
∑
w,w∗

∑
q,q∗

∑
k

{
1a′(w,a,κg)∈Aπw′|wπw∗′|w∗ Aq′|q Aq′∗|q∗ Bk′|k

× Dt(w,w∗, a, q, q∗, k) Ωg
M(w,w∗, a, q, q∗, k, t)

}

Normalized:

Ωg
D(w, a, t) = Ωg

D(w, a, t)
/∫

dΩg
D(y, a, t)

Define the period t divorce rate for education group G(e, e∗) as:

DIV (e, e∗) =
∫ (

D(t) × Ωg
M(t)

)
dΩg

M(wg,e, wg,e∗ , a, q, q∗, t) (1.13)

And the aggregate divorce rate

D̂IV =
∑
e

∑
e∗
ϕ(e, e∗)DIV (e, e∗) (1.14)
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1.4.8 Definition for the Stationary Equilibrium

A Stationary Equilibrium is a set of value functions by gender g and age t: for never mar-
ried individuals V gN M

t (w, a), divorced V gD
t (w, a) , married households V C(w,w∗, a, qm, qf , k),

consumption policy functions, PgN M,D
c (w, a) and PM

c (w,w∗, a), policy functions for savings
Pgg,N M,D

a (w, a) and PM
a (w,w∗, a), policy functions for labor supply PgN M,D

h (w, a) and PM
h (w,w∗, a),

labor force participation for married women PM
f (w,w∗, a), divorce and marriage policy functions

D ,M respectively, and stationary distributions of singles Ωg
N M, married individuals Ωg

M and
divorced Ωg

D, such that:

• The policy functions PgN M
c (w, a),PgN M

a (w, a),PgN M
h (w, a), together with the marriage

decision rule M and the distribution of potential partners Ωg
N M, solve the singles problem

described in 1.1.

• The policy functions PgM
c (w,w∗, a),PgM

a (w,w∗, a),PgM
h (w,w∗, a),PgM

f (w,w∗, a), to-
gether with the divorce decision rule D solve the married household problem 1.4.

• The policy functions PgD
c (w, a),PgD

a (w, a),PgD
h (w, a) solve the problem for the divorced,

problem 1.7.

• The Marriage policy M is computed according to Equation 1.3, given V gN M
t (w, a) and

V gM
t (w,w∗, a, qm, qf , k).

• The Divorce policy D is computed according to Equation 1.9, given V gD
t (w, a) and

V gM
t (w,w∗, a, qm, qf , k).

• The stationary distributions for singles Ωg
N M, married individuals Ωg

M and divorced Ωg
D are

induced by the equilibrium policy functions.

1.4.9 Solution Algorithm

We are interested in finding the Stationary Equilibrium described above for a given set of pa-
rameters Θ = {σ, ξ, µm, ρ, σ2

ϵw ,℧t, φt, β, r, κm, νm,  Lm,  Lf , σϵα , σϵq , ϕm, ϕf , η}. Since agents are
fully rational, this requires single agents to know the exact distribution of potential partners
{Ωg

N M(w, a, t)}T=60
t=21 at every point in their lives, this will involve making a guess of the under-

lying marital distribution of the population over the life cycle. The reasoning goes as follows
the decision to marry today depends on the value of waiting to marry tomorrow, which in turn
depends on the distribution of potential partners tomorrow, this extends until the last period
of life. The problem requires solving the optimal allocations backwards starting from the last
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period T = 60 until t = 21. Below I describe in detail the computational steps to solve for the
equilibrium:

Algorithm No.1 : Computation of the stationary equilibrium:

Step 0: Provide a guess for the distribution of potential partners {Ωg
N M(w, a, t)}T=60

t=21 for
every t.

Step 1: Compute the equilibrium policy functions and the value functions iterating back-
wards from the last period T = 60 until t = 21.

Step 2: With the help of the optimal policy functions, simulate forward the evolution of
the population distribution from t = 21 to T = 60. Store the simulated distribution of
never married individuals at every t, {Ω̂g

N M(w, a, t)}T=60
t=21 .

Step 3: Compare the simulated distribution of potential partners {Ω̂g
N M(w, a, t)}T=60

t=21 with
the initial guess of the same object. If they are not the same update the guess and go back
to Step 1.

1.5 Calibration Strategy

In this Section I describe the calibration strategy. The model is calibrated to the U.S. in 1970. Pa-
rameters which have direct observable data analogs were assigned its respective values, some other
parameters take values that are commonly used in the literature (σ, ξ, µm, ρ, σ2

ϵw ,℧t, φt, β, r, κm, νm).
The rest of the parameters ( Lm,  Lf , σϵα , σϵq , ϕm, ϕf , η) were picked to match several moments in
the data. I select the same number of data moments (7) than the number of free parameters in
the model (7), thus achieving exact identification.

This procedure involves finding a set of parameters Θ that minimizes the distance between
the model generated moments and the moments observed in the data. Specifically, let the tar-
geted moments be M(Θ) = [m − m̂(Θ)] where m is a vector of observed moments and m̂(Θ)
is the vector of model generated moments given parametrization Θ. Then, we can construct
the objective function minΘ M(Θ)TWM(Θ), where the weighting matrix W is the diagonal
matrix.

A summary of the parameter values resulting from the calibration exercise for 1970 is presented
in Table 2.7. Below I describe in detail the calibration choices for 1970.
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1.5.1 Calibration to 1970

Externally calibrated parameters

We have to choose values for σ, ξ, µm, ρ, σ2
ϵw ,℧t, φt, β, r, κm, νm.

Coefficient of relative risk aversion σ Agents are risk averse with coefficient of relative risk
aversion σ. Estimates for the coefficient of relative risk aversion range from 1 to 4. I select a
coefficient of risk aversion of σ = 2, which is standard in the literature, Ortigueira and Siassi
(2013), Ŕıos-Rull (1996), Santos and Weiss (2014).

Frish elasticity of labor supply ξ Estimates for the Frish elasticity for labor supply vary, see
Bredemeier et al. (2021) and Domeij and Floden (2006). Blundell et al. (2016) estimate the
Frish elasticity for men to be 0.52 and 0.85 for women. Ortigueira and Siassi (2013) target a
value of 0.5 for men and 0.85 for females. Following these references I choose ξ = 0.5.

Husbands pareto weight µm There is very little guidance on how to select this parameter and
choices in the literature are diverse. Cubeddu and Rios-Rull (1997) choose a value of 0.5, and in
later robustness select 0.4. They select a lower pareto weight because it is usually the case that
the wife keeps custody of the children after divorce, as they don’t model child custody explicitly.
Voena (2015) estimates a value of 0.75, following this insight Fernández and Wong (2017) use a
value of 0.7. Knowles (2005) estimates a value of 0.67 for 1970 and a value of 0.57 for 1990. I
set, µm = 0.67 and keep it constant thoughout, I later conduct robustness on this value. Other
papers determine the weights through Nash bargaining Knowles (2005), Greenwood et al. (2002),
I too propose a version of the model where the weights are set though Nash Bargaining, it turns
out the estimates for 1970 were around 0.6 and there was little change for 1985.

Income process I borrow the estimates for ρ and σ2
ϵ from Santos and Weiss (2014). They

estimate the income process using PSID data from 1964 and 2009, for individuals aged 18 to 64
years old. Their estimates yield a highly persistent process with ρ = 0.98 and variance σ2

ϵ = 0.011.
The life cycle trend component ℧age,g,e was computed using CPS data extracts for 1970, 1985
and 2015 for couples where the husband was between 21 and 60 years of age. Different trends
were computed by education (college, non-college) and gender. The trends were later smoothed
using a quadratic fit on age.14 The average gender-wage gap and college premium were calculated
from ℧age,g,e. For the purpose of the model I take non-college males aged 21 as the reference
group, that is w(t = 21, g = m, e = nc) = 1. Note that the life cycle trend component does not

14That is ℧age,g,e = α0 + α1 age + α2 age2
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depend on marital status, in the model more productive individuals are endogenously sorted into
marriage.

Fertility φt The OECD reports fertility rates by mother’s age at childbirth for the U.S. from
1960 until the present. Table 1.5 shows the values for 1970, 1985 and 2015 used in the calibration.

Table 1.5: Fertility: Births per 1000 women, U.S.

Age Group
Year 15-19 20-24 25-29 30-34 35-39 40-44 45-49
1970 68.3 167.8 145.1 73.3 31.7 8.1 0.5
1985 51.0 108.3 111.0 69.1 24.0 4.0 0.2
2015 22.3 76.8 104.3 101.5 51.8 11.0 0.8
Notes: Source, OECD Stats, Fertility rates by mother’s age at childbirth,

five-year age groups, 1960-2019

Property division rules κm Around the 1970’s, title based regimes were predominant across
the majority of stated in the U.S., Voena (2015) estimates that in title based states 15, around
60% of the assets went to the husband. I follow that estimate and set κm = 60% for the 1970
calibration. By 1985, most states transited to either equitable distribution or community property
regimes, therefore I set κm = 50% for the 1985 and 2015 model simulations.

Child custody arrangements νm The Census Bureau16, reports that the percentage of children
living only with their father was 10% in 1970, 15% in 1985 and 20% in 2015, I take this as a proxy
for the evolution of the probability of the husband in getting full custody of the child νm. For a
more exhaustive analysis on the characteristics of single-father headed families with children see
Meyer and Garasky (1993). In recent years, joint custody became more common, in my model I
do not allow for joint custody arrangements.

Other parameters I choose a discount factor of β = 0.98 and a yearly real risk-free interest
rate of r = 2% following Fernández and Wong (2017) and Blundell et al. (2016) respectively.

15The title based regime assigns assets to the respective title owner, community property makes a 50/50 split,
and equitable distribution involves the courts discretion so that assets are ”fairly” divided, but this is not necessarily
50/50. For a detailed timeline showing the years in which states switched from title based regimes to equitable
distribution or community property see Voena (2015).

16In a report authored by Hemez and Washington (2021)
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Estimated Parameters and Targeted Moments

The following parameters,  Lm,  Lf , σϵα , σϵq , ϕm, ϕf , η were picked to match several data moments.
The average marital quality by gender  Lm,  Lf were chosen to match divorce rates and the average
share of divorces initiated by wives. The value of the public good η, is aimed to match the share
of divorces initiated by wives with children. The standard deviation of the initial match quality
σϵα and the standard deviation of the marital quality shock σϵq govern the percentage of never
married agents in the economy and the median age at first marriage. Finally, the female and male
dis-utilities from work ϕm and ϕf are directly set to match the amount of work hours supplied by
each couple member, see values in Table 1.3. I normalize the amount of hours worked supplied
by men to unity. Divorce filing data is taken from the NBER collection of Marriage and Divorce
Data NBER (1995), divorce rates were computed from the PSID, the rest of the data moments
were computed from CPS-IPUMS data extracts. I compute these moments for couples where the
husband had between 21 and 60 years old, see Section 1.2 for a more detaield description of the
data treatment.

1.5.2 Estimation Results

Table 2.7 shows the estimation results for 1970. We can see that  Lm <  Lf , this means that on
average women enjoy marriage less than men, this result is not new in the literature, Rios-Rull
et al. (2010) find results in the same direction, moreover, this result is consistent with marital
satisfaction surveys where wives report on average lower marital quality than their husbands
Rosenfeld (2018). We can also see that η > 0 meaning that children bring additional utility to
the marriage, thus making marriage more attractive for both men and women, however, since
wives have a higher probability of keeping the children upon divorce, children raise the value of
divorce for wives more than for husbands which justifies why the percentage of wives filing for
divorce is larger in the presence of children. Finally, the estimation makes ϕm < ϕf , meaning
that men have a comparative advantage in the labor market, relative to women.
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Table 1.6: Calibration for 1970

Description Symbol Value

Preferences
Risk aversion σ 2
Frish elasticity ξ 0.5
Disutility from work Men ϕm 0.98
Disutility from work Women ϕf 2.7
Value of the public good/children η 1.35
Husbands utility share µm 0.67

Income Process
Persistence ρ 0.98
Variance wage shock σ2

ϵ 0.011
Gender wage gap wf/wm 0.55
Life cycle trend ℧t CPS

Marital Shocks
Average marital quality Man  Lm 2.9
Average marital quality Woman  Lf 2.2
St. deviation of

σϵα 1.01
initial marital quality draw

St. deviation of
σϵ 11.0

marital quality shock
Fertility

Fertility φt OECD Charts
Other

Discount factor β 0.98
Risk free rate r 0.02
Husbands share of assets κm 0.6
Wife share of assets κf 0.4
Probability the husbands

νm 0.1
gets child custody

Notes: Parameters in red are those which were estimated rather than set apriori.
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Model fit 1970 Table 1.7 shows the performance of the model in matching the targeted
moments. We see that the model performs fairly well in matching most of the targeted moments.

Table 1.7: Model Fit 1970

Moment
1970

Model Data
Divorce Rate 1.34 1.30
% of wives as plaintiffs 71.59 71.60
% of wives w/kids as plaintiffs 76.94 75.80
% of Never married 11.48 12.40
Male hours 1.05 1.00
Female hours 0.75 0.77
Male median age at first marriage 25.45 22.00

1.6 Counterfactual experiments

In this section I conduct a set of counterfactual experiments. First, I generate counterfactual
predictions for 1985 and 2015 where I measure the combined contribution of changes in the
population composition, fertility, gender-wage gap, child custody arrangements and property
division laws. Next I propose a decomposition exercise where I individually quantify the effects
of the main drivers of interest.

1.6.1 Counterfactual Prediction for 1985

The purpose of this exercise is to generate model predictions for 1985. To do so, I exogenously
change the value of fertility, the gender-wage gap, child custody arrangements, and asset splitting
rules and set them to their 1985 values. With these values, the model is simulated and the moment
predictions compared with their data counterparts for 1985.

From 1970 to 1985 the average relative wages increased from w̄f/w̄m(1970) = 0.55 to
w̄f/w̄m(1985) = 0.65, the probability of the husband in getting custody of the children increased
from 10% to 15%, the share of assets that went to the husband after divorce decreased from 60%
to 50%. Finally, fertility decreased, see Table 1.5. For 1985 I re-estimate the values of ϕm and ϕf
such that they match the new ratio between male hours and female hours hf/hf (1985) = 0.8,
otherwise the rise in relative wages causes male hours to reduce and female hours to increase.
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Model predictions for 1985 Table 1.8 shows that the model can account for 40% of the
total change in divorce rates between 1970 and 1985, 53% of the change in the share of divorces
initiated by wives, 33% in the rise of the share of never married individuals and 30% in the delay
in marriage, reflected by an increase in the median age at first marriage.

Table 1.8: Model Fit 1985

Moment
1970 1985 %∆

Model Data Model Data Model Data
Divorce Rate 1.34 1.30 1.58 1.87 17.79 43.85
% of wives as plaintiffs 71.59 71.60 66.13 61.30 -7.63 -14.39
% of wives w/kids as plaintiffs 76.94 75.80 62.28 64.70 -19.05 -14.64
% of Never married 11.48 12.40 13.98 20.50 21.82 65.32
Male hours 1.05 1.00 1.08 1.00 - -
Female hours 0.75 0.77 0.83 0.80 - -
Male median age at first Marriage 25.45 22.00 26.54 25.00 4.25 13.64

1.6.2 Counterfactual Prediction for 2015

The objective is to generate model predictions for 2015 and compare them with their respective
data counterparts. I follow the same logic that is described above. Between 1985 and 2015
relative wages increased from w̄f/w̄m(1985) = 0.65 to w̄f/w̄m(2015) = 0.80, the probability of
the husband in getting custody of the children increased from 15% to 20%, the share of assets
that went to the husband after divorce remained constant, fertility decreased, see Table 1.5. This
time the values of ϕm and ϕf were kept as in 1985 since the new ratio between male hours and
female hours remained roughly constant hf/hf (2015) = 0.83.

Model predictions for 2015 We can see from Table 1.9 that the change in divorce rates
generated by the model between 1985 and 2015, represents 95% of the total change in the data,
52% of the change in the share of wives as plaintiffs, 4% in the share of never married and 26%
of the change in the median age at first marriage of males. Moreover simple calculations, show
that the model accounts for 54% of the overall decline in divorces initiated by wives between
1970 and 2015, 17% in the rise of the share of never married and 26% of the rise in the median
age at first marriage for men.
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Table 1.9: Model Fit 2015

Moment
1985 2015 %∆

Model Data Model Data Model Data
Divorce Rate 1.58 1.87 1.12 1.30 -28.96 -30.48
% of wives as plaintiffs 66.13 61.30 63.47 56.60 -4.02 -7.67
% of wives w/kids as plaintiffs 62.28 64.70 54.40 59.00 -12.65 -8.81
% of Never married 13.98 20.50 14.21 29.20 1.66 42.44
Male hours 1.08 1.00 1.08 1.00 - -
Female hours 0.83 0.80 0.90 0.84 - -
Male median age at first Marriage 26.54 25.00 27.62 29.00 4.10 16.00

1.6.3 Decomposition of Effects

I’m interested in measuring the contribution of each driver: the rise of mean relative wages
w̄f/w̄m, the change in the probabilities of becoming custodial parent νm and the change in
property division laws κm, in explaining the observed rise and later decline of divorce rates and
the reduction of the share of dorced initiated by wives. To this end I propose the following
counterfactual experiments:

1. Take the parametrization used for the 1985 simulation but set w̄f/w̄m to its value in 1970
(w̄f/w̄m(1970) = 0.55).

2. Take the parametrization used for the 1985 simulation but set κm to its value in 1970
(κm(1970) = 0.6).

3. Take the parametrization used for the 1985 simulation but set νm to its value in 1970
(ηm(1970) = 0.1).

I repeat the above experiments for the period 1985 to 2015, this involves fixing the parameters
used for the 2015 simulation and setting one by one the values of w̄f/w̄m, κm and νm to their
respective 1985 levels, that is: w̄f/w̄m(1985) = 0.65, κm(1985) = 0.5 and ηm(1985) = 0.15.
The Results for these experiments are shown in Tables 1.11 to 1.13.

Tables 1.11 to 1.13 show the percentage of the data variation than can be explained by each
of the drivers. I then proceed to measure the contribution of each driver on the total effect shown
in Tables 1.8 and 1.9. This is done by computing a residual by subtracting the individual effects
(taken from tables 1.11 to 1.13) from the total effect. I then divide the residual by the number
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of drivers (three in this case) and add this value to each of the individual effects. The sum of the
residual and the individual effect by driver gives a new set of individual effects such that the sum
of all individual effects adds up to the total effect. Results of this exercise are shown in 1.10.

From table 1.10 we see that the change in relative wages is the main driver of the rise in
divorce rates from the period 1970 to 1985 (direct effect). Changes in the splitting rule contribute
positively to the rise in divorce rates in the same time frame. On the contrary changes in child
custody arrangements act in the opposite direction reducing divorce rates. We see that Changes in
child custody arrangements are the main driver of the reduction in the share of wives as plaintiffs,
accounting for 77% of the decline, the rest is mostly explained by changes in the gender-wage
gap.

For the period 1985 to 2015 the selection effect arising from the rise in female wages accounts
for 62% of the decline in divorce rates, the rest is driven by changes in child custody arrangements.
During this period it is still the case that most of the reduction in the share of divorces initiated
by wives, around 82%, is explained by the increase in the probability of the husband becoming
the custodial parent.

Table 1.10: Decomposition of Effects

Shutting Down: Total Contribution of: (%)
∆wf/wm ∆κm ∆νm ∆Model

∆Data wf/wm κm νm

1970 to 1985
Divorce Rate 37.02 20.09 -16.53 40.57 91.24 49.51 -40.75
% of wives as plaintiffs 15.31 -3.28 40.99 53.02 28.88 -6.18 77.31
% of wives w/kids as plaintiffs 31.66 41.97 56.49 130.12 24.33 32.25 43.41

1985 to 2015
Divorce Rate 59.20 0.00 35.81 95.01 62.31 0.00 37.69
% of wives as plaintiffs 9.04 0.00 43.38 52.41 17.24 0.00 82.76
% of wives w/kids as plaintiffs 0.82 0.00 142.77 143.59 0.57 0.00 99.43

Shutting down relative wages (w̄f/w̄m)

When relative wages don’t increase we see that the share of divorces initiated by wives slightly
increases and the aggregate divorce rate slightly decreases. This suggests that relative wages are
a major driver of both divorce rates and divorce filings by wives. Raising relative wages to their
1985 levels would increase divorce rates by 20% and reduce divorce filings by women by 8.39%,
which account for 47% and 53% of the variation that we see in the data.
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Table 1.11: Shutting Down Relative Wages w̄f/w̄m

Moment
1970 1985 Experiment: 1985 with w̄f/w̄m of 1970

Model Model Data Result
% of data variation

explained by ∆w̄f/w̄m
Divorce Rate 1.34 1.58 1.87 1.31 47.54
% of wives as plaintiffs 71.59 66.13 61.30 71.68 53.87
% of wives w/kids as plaintiffs 76.94 62.28 64.70 62.80 4.68
% of Never married 11.48 13.98 20.50 12.30 20.74
Male hours 1.05 1.08 1.00 1.02 -
Female hours 0.75 0.83 0.80 0.77 -
Male median age at first Marriage 25.45 26.54 25.00 25.85 22.83

Moment
1985 2015 Experiment: 2015 with w̄f/w̄m of 1985

Model Model Data Result
% of data variation

explained by ∆w̄f/w̄m
Divorce Rate 1.58 1.12 1.30 1.21 14.65
% of wives as plaintiffs 66.13 63.47 56.60 67.02 75.49
% of wives w/kids as plaintiffs 62.28 54.40 59.00 51.75 -46.52
% of Never married 13.98 14.21 29.20 12.37 21.12
Male hours 1.08 1.08 1.00 1.02 -
Female hours 0.83 0.90 0.84 0.80 -
Male median age at first Marriage 26.54 27.62 29.00 25.92 42.60
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Shutting down changes in property division (κm)

If in 1985 women would be getting the same share of marital wealth as in the 1970’s, divorce
rates wouldn’t have risen as much as in the data, likewise the share of divorces initiated by wives
wouldn’t have reduced as much. In addition the share of never married increases as well as the
median age at first marriage.

Table 1.12: Shutting down changes in property division κm

Moment
1970 1985 Experiment: 1985 with κm of 1970

Model Model Data Result
% of variation

explained by ∆κm
Divorce Rate 1.34 1.58 1.87 1.41 30.61
% of wives as plaintiffs 71.59 66.13 61.30 69.76 35.28
% of wives w/kids as plaintiffs 76.94 62.28 64.70 63.95 14.99
% of Never married 11.48 13.98 20.50 14.84 -10.62
Male hours 1.05 1.08 1.00 1.12 -
Female hours 0.75 0.83 0.80 0.85 -
Male median age at first Marriage 25.45 26.54 25.00 26.77 -7.88

Moment
1985 2015 Experiment: 2015 with κm of 1985

Model Model Data Result
% of variation

explained by ∆κm
Divorce Rate 1.58 1.12 1.30 1.12 0.00
% of wives as plaintiffs 66.13 63.47 56.60 63.47 0.00
% of wives w/kids as plaintiffs 62.28 54.40 59.00 54.40 0.00
% of Never married 13.98 14.21 29.20 14.21 0.00
Male hours 1.08 1.08 1.00 1.08 -
Female hours 0.83 0.90 0.84 0.90 -
Male median age at first Marriage 26.54 27.62 29.00 27.62 0.00
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Shutting down changes in the probability of becoming the custodial parent (νm)

In the absence of changes in the probability of the husband in becoming the custodial parent, the
share of divorces initiated by women decrease very little, from 71.50% to 68%. This suggests that
the change in child custody arrangements is the main driver of the reduction in the share of divorce
filings by wives, as it accounts for almost all the variation observed in the data. Furthermore,
if wives would have the same chance of getting custody of the children the divorce rates would
reach higher (lower) levels for the period 1970 to 1985 (1985 to 2015) thus suggesting that
changes in child custody arrangements have an impact on the composition of divorces but seem
to keep the divorce rates at the same level.

Table 1.13: Shutting down changes in the probability of the father in getting full custody of the
child νm

Moment
1970 1985 Experiment: 1985 with νm of 1970

Model Model Data Result
% of variation

explained by ∆νm
Divorce Rate 1.34 1.58 1.87 1.61 -6.01
% of wives as plaintiffs 71.59 66.13 61.30 74.32 79.55
% of wives w/kids as plaintiffs 76.94 62.28 64.70 65.56 29.51
% of Never married 11.48 13.98 20.50 14.11 -1.56
Male hours 1.05 1.08 1.00 1.08 -
Female hours 0.75 0.83 0.80 0.82 -
Male median age at first Marriage 25.45 26.54 25.00 26.58 -1.54

Moment
1985 2015 Experiment: 2015 with νm of 1985

Model Model Data Result
% of variation

explained by ∆νm
Divorce Rate 1.58 1.12 1.30 1.07 -8.74
% of wives as plaintiffs 66.13 63.47 56.60 68.64 109.83
% of wives w/kids as plaintiffs 62.28 54.40 59.00 59.84 95.43
% of Never married 13.98 14.21 29.20 14.21 0.03
Male hours 1.08 1.08 1.00 1.08 -
Female hours 0.83 0.90 0.84 0.90 -
Male median age at first marriage 26.54 27.62 29.00 26.61 25.42
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1.7 Importance of Matching Divorce Filings

In this section I emphasize the importance of using the information on divorce filings to explain
the observed trends in divorce rates since 1970. I show that failure to match ”who” files for
divorce delivers different (potentially misleading) counterfactual results.

Divorce rates in the U.S. have been predominantly driven by wives, but would aggregate
divorce rates respond differently to the observed labor market changes if divorces were not mainly
triggered by wives? The answer to this question is not obvious, more so since the proposed model
exploits fundamental differences in the utility that men and women get from marriage and child
custody arrangements to match the share of divorces initiated by wives. To address this question,
one would need to abstract from these mechanisms and reassess the model’s performance in
reproducing the divorce rate trends observed in the data. To this end, I propose a restricted
version of the model where I abstract from the model features that allow it to match divorce
filings. I set the restriction that  Lm =  Lf , that is, now men and women on average enjoy married
life equally, and I set νm = 0.5, that is, both the husband and wife have the same probability of
getting the custody of the child after divorce. With this restrictions I re-estimate the model to
match the data moments of 1970 described in Section 1.5.1, except for divorce filing moments.
I repeat the exercise described in Section 1.6.1 to get the prediction for 1985, then I conduct the
corresponding decomposition exercise to disentangle the effects of relative wages, child custody
arrangements and property division laws. Results are shown in Tables 1.15 to 1.16.

Alternative model fit to 1970 The newly estimated parameter values are shown in Table
1.14. We can see that the average match quality for men and women in the alternative model
is lower than in the benchmark estimation. In addition, the variance of the initial marital quality
draw and the standard deviation of the marital quality shock are smaller, making marriages in
this world less susceptible to divorce risk coming from marital quality. Table 1.15 shows that the
alternative model matches the targeted moments very closely, however delivers a large share of
divorce filings coming from men 52% compared to 29% in the data.
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Table 1.14: Estimated Parameters, alternative model

Description Symbol Value
Average marital quality  Lm =  Lf 1.49
St. deviation of the

σϵα 0.7
initial marital quality draw

St. deviation of the
σϵq 8.5

marital quality shock
Disutility from work Men ϕm 0.93
Disutility from work Women ϕm 2.1

Alternative model predictions for 1985 The alternative model predicts a decline in divorce
rates and a slight increase of the divorce filings by wives, these results are opposite to what is
observed in the data. The intuition behind the results is the following: because in the alternative
model most of the divorces come from husbands (as opposed from wives like in the data),an
increase in female wages will make women more attractive to men, since if married, men can
work less and wives more, thus reducing the number of divorces initiated by husbands. Moreover,
the median age at first marriage and the percentage of never married individuals barely increased
compared to the benchmark scenario, this suggests that women’s incentives to wait to obtain
better matches are not as strong as in the benchmark scenario.

Table 1.15: Model Fit 1985

Moment
1970 1985 %∆

Model Data Model Data Model Data
Divorce Rate 1.34 1.30 1.02 1.87 -23.94 43.85
% of wives as plaintiffs 48.09 71.60 48.95 61.30 1.79 -14.39
% of wives w/kids as plaintiffs 50.54 75.80 41.79 64.70 -17.30 -14.64
% of Never married 13.38 12.40 13.47 20.50 0.64 65.32
Male hours 1.03 1.00 1.00 1.00 -3.05 -
Female hours 0.72 0.77 0 0.79 0.80 8.99 -
Male median age at first Marriage 25.65 22.00 26.20 25.00 2.15 13.64
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Table 1.16: Counterfactual experiments

Moment
1970 1985 Experiment: 1985 with w̄f/w̄m of 1970

Model Model Data Result
% of data variation

explained by ∆w̄f/w̄m
Divorce Rate 1.34 1.02 1.87 1.21 -34.14
% of wives as plaintiffs 48.09 48.95 61.30 59.03 97.80
% of wives w/kids as plaintiffs 50.54 41.79 64.70 66.36 221.30
% of Never married 13.38 13.47 20.50 12.62 10.47
Male hours 1.03 1.00 1.00 1.02 -
Female hours 0.72 0.79 0.80 0.82 -
Male median age at first Marriage 25.65 26.20 25.00 25.87 11.11

Moment
1970 1985 Experiment: 1985 with κm of 1970

Model Model Data Result
% of variation

explained by ∆κm
Divorce Rate 1.34 1.02 1.87 1.16 -24.64
% of wives as plaintiffs 48.09 48.95 61.30 41.38 -73.57
% of wives w/kids as plaintiffs 50.54 41.79 64.70 34.70 -63.89
% of Never married 13.38 13.47 20.50 12.97 6.15
Male hours 1.03 1.00 1.00 1.00 -
Female hours 0.72 0.79 0.80 0.76 -
Male median age at first Marriage 25.65 26.20 25.00 25.61 19.66

1.8 Conclusions

In this paper I quantitatively assess the role of divorce filings in explaining divorce rate trends
in the U.S. from 1970 until 2015. To do so I construct and estimate a model with endogenous
marriage and unilateral divorce that matches divorce filing data for the U.S. in 1970. The model
includes two features that allow it to match divorce filing data: first, gender specific marital
quality/love, meaning that men and women enjoy married life differently. Second, child custody
arrangements that favoring wives in getting the custody of the children after divorce. Both being
crucial for obtaining accurate counterfactual results. Equipped with this model I generate coun-
terfactual predictions for 1985 and 2015 and quantify the effects of changes in the gender-wage
gap, property division laws and child custody arrangements. I show that the proposed model
does a good job in describing the joint dynamics of divorce rates and divorce filings. The model
accounts for roughly 50% of the variation in divorce rates and divorce filings by wives between
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1970 and 2015.

In further counterfactual experiments I decompose the effects of the three drives (the gender-
wage gap, property division laws and child custody arrangements), in accounting for the observed
trends in divorce rates and divorce filings by wives. Results show that changes in relative wages
and changes in child custody arrangements are largely responsible for the rise and later decline in
divorce rates, plus the overall decline in divorce filings by women. Rising relative wages account
for approximately 91% of the increase of divorce rates between 1970 to 1985 (direct effect) and
62% of their decrease between 1985 and 2015 (selection effect). They also account for 23% of
the overall decline in divorce filings by women between 1970 to 2015. Child custody arrangements
are the most important driver behind the reduction in the share of divorce initiated by wives. The
change in the probability of the husband in getting custody of the children accounts for almost
77% of the decline in divorce filings by wives between 1970 and 1985, and 83% of the variation
between 1985 and 2015.

Importantly, I show that failing to match divorce filing data delivers opposite counterfactual
results, thus stressing the importance of matching who files for divorce when explaining divorce
rates. An alternative version of the model that does not match divorce filing moments predicts
a decline in divorce rates and an increase of the share of divorce filings done by wives for the
period 1970 to 1985, result that is opposite to what is observed in the data. Behind this result
lies the fact that it is relevant to distinguish whether divorce rates are driven by husbands or by
wives. If divorces are driven by husbands (opposite to what we see in the data) higher relative
wages for women will make women more financially attractive to men, thus reducing the number
of divorces triggered by men and as a consequence reducing aggregate divorce rates.

The model presented in this paper can be extended to study other related questions, like
the rise in married female labor force participation or welfare implications of changes in child
custody laws or property division rules upon divorce. Furthermore, I currently make steady state
comparisons between 1970 and 2015; ideally one would want to endogenize the full path for
divorce rates and divorce filings by computing transitional dynamics between these years.
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Chapter 2

A Quantitative Theory of the HIV Epidemic:
Education, Risky Sex and Asymmetric Learning

Written jointly with Daniela Iorio and Raül Santaeulàlia-Llopis.

2.1 Introduction

In Sub-Saharan Africa (SSA) most HIV infections are due to heterosexual intercourse, and risky
sexual behavior is one of the most relevant margins that policy intervention can affect (Behrman
and Kohler, 2012; DePaula et al., 2014; Greenwood et al., 2013; Nyqvist et al., 2015). If risky
sexual behavior, and in turn HIV exposure, differs across education groups as the HIV epidemic
evolves, then the timing of policy interventions targeted to specific educational groups is crucial
for the effectiveness of these policies. Nowadays, however, the major international donors in the
fight against HIV do not provide any guidance on specific targeting strategies across education
groups.1 This lack of policy advice could be explained by the fact that the current understanding
of the sign and size of the relationship between education and HIV status lacks consensus (Beegle
and de Walque, 2009). That is, the knowledge of which education groups are at major risk of
being infected with HIV remains unclear to scholarship, with a large body of mixed evidence that
we review below. We provide a potential explanation that could reconcile the mixed evidence,

1According to Kates et al. (2011), $6.9 billion was given by donor governments to international AIDS assistance
in 2010. The United States is the largest resource provider for the global fight against AIDS, and it channels its
aid through the President’s Emergency Plan for AIDS Relief (PEPFAR). Initiated by President George W. Bush for
2003-2008, PEPFAR has continued its activity under the mandate of President Barack Obama, who renewed the
efforts for 5 years with few changes in policy implementation. However, they increased the amount of money—to
about 50% in countries with a generalized epidemic— spent on preventing sexual transmission via abstinence,
delay of age of first sexual intercourse, monogamy, fidelity, and reduction in the number of sex partners. More
recently, new PEPFAR funds have been channeled to include ”men who have sex with men, people who inject
drugs, and sex workers”, see the remarks of the Secretary of State John Kerry for the PEPFAR 10th annivarsary
celebration at http://www.state.gov/secretary/remarks/2013/06/210770.htm. See also UNAIDS (2015).
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departing from the observation that the existing works have, almost invariably, used data from
different aggregate stages of the HIV epidemic, while the education gradient in HIV may vary
over the evolution of the epidemic.

That the HIV epidemic in SSA evolves differently across countries and that these countries are
at different stages of the HIV epidemic at any point in time is practically self-evident. In particular,
we observe that the peak of HIV prevalence, the year of the HIV peak, the time it takes each
country to reach its own peak, and the pace at which each country moves away from its peak
differs greatly across SSA countries and over time. Based on these considerations, we propose
an innovative unified macro framework that consists of a two-dimensional normalization of the
HIV epidemic. Our definition of the stages of the HIV epidemic are analogous to the definition
of stages of economic development (Herrendorf et al., 2014b; Lucas, 2004a) or the stages of the
demographic transition (Galor and Weil, 2000a; Greenwood et al., 2005a; Lee, 2003). In the
context of HIV, our normalization adjusts for both the country-specific size of the epidemic (HIV
prevalence rate) and the associated time paths of the epidemic (speed at which HIV epidemic
reaches its peak and it moves away from it) in a comparable manner across countries. This way,
our macro framework systematically defines aggregate stages of the HIV epidemic taking into
account the large degree of cross-country heterogeneity in both the HIV prevalence rates and the
speed at which the HIV epidemic evolves. We then use the heterogeneity in the stages of the
HIV epidemic in 39 Demographic and Health Surveys (DHS) to document the stylized dynamic
relationship between education and individual HIV status across the stages of the HIV epidemic.

Our main finding is that the education gradient in HIV follows a significant U-shaped (positive-
zero-positive) pattern as the epidemic evolves. In particular, when individuals live in an economy
that is at the early stages of the epidemic, the HIV-Education gradient is significantly positive
and remarkably high: one additional year of education is associated with 1.12 percentage point
increase in the probability of being HIV-positive. In other terms, completing five additional years
of schooling doubles on average the likelihood of being infected (the HIV prevalence is 5.18%
in our sample). Interestingly, the educational disparities in HIV gradually vanish as the epidemic
progresses past these early stages, to then revert to a positive education gradient in HIV in the
more advanced stages of the epidemic, where an additional five years of education result in a
2.40 percentage point increase in the probability of being HIV positive. This U-shaped pattern
is also significant when controlling for country and year effects, although the size of the effects
of education on HIV is smaller. We then explore whether there are heterogeneous effects by
gender. While women and men share the U-shaped pattern of the education gradient in HIV,
its magnitude is larger for women than for men. This gap is largest at the early stages of HIV
development, and tends to disappear later on. Regarding women, completing five additional years
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of schooling is associated with a 7.40% rise in the probability of being HIV positive at the early
stages of the epidemic, that is, an increase twice as large as that of men, 3.80% per five years
of education. Thereafter, the education gradient in HIV substantially declines until it vanishes
for women who live in the middle of the HIV epidemic. At this stage, the decline in the gradient
is even sharper for men, and changes its sign, reaching a -0.65% per five years of schooling.
Interestingly, the gradient reverts to positive in the more advanced stages of the epidemic for
both women and men, respectively, 2.70% and 1.75% per five years of education.

To gain a better understanding of the dynamic relationship between education and the proba-
bility of infection, we explore educational disparities in the actual risky sexual behavior. Remark-
ably, the pattern of the education gradient in HIV closely resembles the pattern of the educational
disparities in risky sexual behavior. While more education is associated with more extramarital
partners at early stages of the epidemic (0.19 per five more years of schooling for women and
0.15 for men), this relationship rapidly and significantly declines in mid stages of the epidemic
(0.06 and 0.05 extramarital partners per five more years of schooling for, respectively, women
and men). Interestingly, in the most advanced stages of the epidemic the relationship between
education and the number of extramarital partners significantly increases (0.11 per five more years
of schooling for women and 0.15 for men). The fact that the HIV-Education gradient closely
follows education disparities in risky sexual behavior across stages of the epidemic points out
the important role of educational disparities in determining the HIV incidence.2 We develop a
non-stationary quantitative macroeconomic theory with heterogeneous agents that is consistent
with these facts. Our theory endogeneizes the entire course of the HIV epidemic across differ-
ent (aggregate) stages: a pre-HIV epidemic stage; a myopic HIV stage in which agents are not
aware of the process of HIV infection; a learning stage in which agents heterogeneously—across
education groups—learn about the process of infection; and an anti-retroviral (ARV) stage that
modifies the effects of HIV infection on individuals. Results show that asymmetric learning is
key to reproduce both the micro patterns documented and the aggregate evolution of the HIV
epidemic. In further counterfactual experiments, we assess the effects of an early understanding
of the virus and its mode of infection, improvements in the composition of education, the earlier
(and universal) adoption of ARVs and the use of PrEP to prevent further spread.

The rest of our paper is organized as follows. In the next paragraph we discuss the related
literature. In Section ??, describes the empirical evidence. We document the heterogeneity of the

2The prevalence of HIV is determined by the newly infected individuals as well as by the survival probabilities of
the individual being infected in the past. Therefore, the educational disparities in the HIV prevalence could be the
result of educational disparities in the incidence of HIV and/or educational disparities in the survival probabilities.
The DHS data allow us only to focus on individual attitudes towards risky sexual behavior that might increase the
probability of being HIV infected. Later on, we discuss the potential role that educational disparities in survival
rates might play in shaping the HIV-Education patterns as the HIV epidemic evolves.
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epidemic across SSA countries and propose a unified macro framework to define the aggregate
stages of the HIV epidemic in a comparable manner across time and space in Section 2.2.2. The
estimates of the stylized evolution of the HIV-Education gradient across the aggregate stages of
the epidemic are in Section 2.2.3. Section 2.3 presents the quantitative model that endogeneizes
the entire course of the HIV epidemic across aggregate stages. Section 2.4 presents the model
estimation. Section 2.5 and Section 2.6 describe the main results and counterfactual experiments.
Section 2.7 concludes.

Related literature We are not the first to investigate the HIV-Education gradient. A large
number of epidemiological studies and small-scale studies examined socioeconomic disparities
in HIV without reaching neither conclusive nor generalizable answers.While the current mixed
evidence is likely to reflect differences in methodology, sampling strategy, and measures of so-
cioeconomic indicators and HIV status, this may not entirely explain the differing conclusions
reached by previous studies, which for instance overlooked the large differences in the evolution
of the HIV epidemic across SSA countries. In a review of epidemiological studies Gregson et al.
(2001) conclude that there could be temporal dynamics of the influence of socio-economic devel-
opment on rates of HIV transmission, and in particular that the greater vulnerability of individual
with a high socioeconomic status may be a transient feature of the early stages of epidemics.
The findings of de Walque (2007) point in the same direction in his analysis of the HIV-education
gradient in rural Uganda between 1989 and 2001. Importantly, these studies did not expect a
rebound in the education gradient in HIV that we document. Recently, using nationally repre-
sentative data from the Demographic and Health Surveys (DHS) for five SSA countries, Fortson
(2008) finds education has a positive association with HIV status: adults with primary school are
one half more likely to be infected than adults with no schooling conditioning on age, sex and
area of residence (urban/rural). Using the DHS wealth index, de Walque (2009) also finds that
wealth displays a positive association with HIV status. Mishra et al. (2007) find similar results
for eight DHS countries in SSA.

We contribute to this literature in two major respects. First, we uncover the evolution of the
HIV epidemic using a unified macro framework that systematically defines the aggregate stages
of the HIV epidemic in a comparable manner across countries. Our approach addresses similar
data challenges as those faced when defining the stages of economic development (Herrendorf
et al., 2014b; Lucas, 2004a) or the stages of the demographic transition (Galor and Weil, 2000a;
Greenwood et al., 2005a; Lee, 2003). Second, in the context of this unified macro framework,
and using repeated cross-sections of DHS surveys, our analysis exploits a rich variation in the
aggregate stages of the HIV epidemic to document the stylized dynamic behavior of the HIV-
Education gradient along the course of the epidemic, as well as the evolution of educational
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disparities in sexual responses. Our findings emphasize that while at early stages of the epidemic
the HIV-Education gradient is large and positive (roughly three times larger than its stationary
counterpart, à la Fortson (2008)), the gradient decreases to levels that are not significantly
different from zero as the epidemic evolves; a macro cross-country decline that resembles the
results by de Walque (2007) for several sites in rural Uganda. The time span of our data allows
us to pick a rebound in the education gradient in HIV in mature epidemics, which we link to
a positive change in risky sexual behavior among highly educated individuals. Interestingly, this
U-shaped pattern is much more prominent for women than for men.

Due to the fact that heterosexual intercourse is the major mode of HIV infection (Behrman
and Kohler, 2012), the relationship between HIV, risky sexual behavior, and HIV knowledge has
been extensively studied. For example, information campaigns that improve the knowledge about
HIV risk infection may induce people to adopt safer lifestyles. In this direction, de Walque (2007)
documents substantial behavioral change in rural Uganda associated with the ABC campaign
(Abstinence, Be faithful, and use Condoms).

Finally, our study is broadly related to the literature examining educational disparities in
health outcomes. See Cutler and Lleras-Muney (2011) for a review of the studies examining
this relationship in both developed and developing countries. Within this group of studies our
work relates more closely to those that allow the relationship between education and health to be
nonstationary. This is the case of the “fundamental cause“ literature described in Cutler et al.
(2006)in which the diffusion of information on technological improvements is an argument used
to explain the changes in the education gradient in health.

2.2 Empirical Evidence

2.2.1 Data

The core of our exercise consists of examining the relationship between education and HIV ed-
ucation over the stages of the HIV epidemic. To address this question it would be ideal to use
nationally representative long panel data for several SSA countries starting in the pre-HIV era.
Unfortunately, available nationally representative data are neither long nor panel. However, from a
macroeconomic perspective, we show it is possible to construct a normalized path of the patterns
of HIV infection by education groups over the stages of the epidemic for several SSA countries
to recover stylized patterns between education and HIV. To do so, we combine two sources of
data: (i) cross-sectional data from the DHS, and (ii) aggregate data from the most recent World
Population Prospects (WPP) provided by the United Nations.
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Table 2.1: The DHS Sample Characteristics (across Countries)

(A) Women Mean Median Min. Max. Gini

HIV Prevalence (%) 6.1 4.1 0.5 31.2 0.54

Years of Schooling 3.2 2.8 0.6 4.8 0.26

Age 28.2 28.2 27.7 29.4 0.01
Urban (%) 32.7 33.6 10.6 88.3 0.25

Extramarital Partners, n 0.15 0.17 0.01 0.56 0.37
n = 0 (%) 87.4 84.9 57.9 99.2 0.07
n = 1 (%) 11.5 14.3 0.8 35.9 0.36
n = 2 (%) 1.0 1.2 0.0 6.3 0.47
n ≥ 3 (%) 0.1 0.1 0.0 0.0 0.66

Frequency of Condom Use (%) 9.5 8.7 0.5 37.7 0.42

Not Sexually Active (%) 15.6 12.8 4.3 30.7 0.28

(B) Men Mean Median Min. Max. Gini

HIV Prevalence (%) 4.1 2.2 0.4 19.7 0.56

Years of Schooling 3.8 3.2 1.3 5.3 0.18

Age 28.2 28.5 25.9 30.3 0.02
Urban (%) 33.7 35.6 15.4 87.6 0.24

Extramarital Partners, n 0.41 0.48 0.08 1.17 0.30
n = 0 (%) 73.7 65.7 36.8 93.5 0.14
n = 1 (%) 19.7 28.0 5.1 43.8 0.22
n = 2 (%) 4.5 5.2 0.8 14.4 0.36
n ≥ 3 (%) 0.7 0.7 0.1 2.8 0.42

Frequency of Condom Use (%) 20.5 21.4 4.2 49.3 0.31

Not Sexually Active (%) 21.7 17.9 7.0 35.9 0.24

Notes: The computation of these statistics is performed by using individual HIV weights provided by the DHS to
compute the mean. Then, country-specific population weights (i.e., the population size of each country provided
by World Population Prospects) are used to compute the statistics across countries. The number of extramarital
partners refers to the last 12 months. The frequency of condom use refers to the last sexual intercourse. Our
sample is based on 39 DHS with 25 countries and a total of 227,935 women and 174,852 men.
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The Demographic and Health Surveys. The DHS are based on nationally representative
samples and are available for a large set of SSA countries. We consider the full sample of SSA
DHS surveys for which individual HIV testing has been conducted (and available as of July 2014):
Burkina Faso (2003, 2010), Burundi (2010), Cameroon (2004, 2011), Congo (2007), Côte d’Ivoire
(2005, 2011), Democratic Republic of Congo (2007), Ethiopia (2005, 2011), Gabon (2012),
Ghana (2003), Guinea (2005, 2012), Kenya (2003, 2008), Lesotho (2004, 2009), Liberia (2007),
Malawi (2004, 2010), Mali (2006), Mozambique (2009), Niger (2006), Rwanda (2005, 2010),
Senegal (2005, 2010), Sierra Leone (2008), Swaziland (2006), Tanzania (2003, 2007, 2011),
Uganda (2011), Zambia (2007) and Zimbabwe (2005, 2010), for a total of 25 DHS countries.
For a number of countries the survey was conducted in two consecutive years, so we can exploit
variation across 51 country-year pairs, which provide sufficient observational heterogeneity on the
stages of the HIV epidemic to obtain reliable estimates of the evolution of the education gradient
over these stages.

While the DHS are primarily health interviews, they also contain cross-sectional information
on individual socioeconomic characteristics, knowledge on HIV, several measures of risky sexual
behavior (e.g., number of extramarital relationships and condom use) and most importantly, a
large proportion of adult respondents have been tested for HIV.3 We use this cross-referenced
individual information harmonically collected across SSA countries. Our whole sample consists of
a total of 402,670 individuals, of which 56.5% are women. We choose to explore HIV infection
risk by education groups separately for women and men. The average HIV prevalence is 6.1% for
women and 4.1% for men (respectively, panel A and B, Table 2.1). There is a substantial degree
of heterogeneity in HIV prevalence across countries. The Gini index for the HIV prevalence across
these 39 DHS (25 countries) is 0.54 for women and 0.56 for men, with a range from 0.5 to 31.2
for women and from 0.4 to 19.7 for men. Note that there is a substantial HIV gender gap of
2% that is roughly half of the total HIV prevalence for men. Interestingly, as we show below,
this gender gap in HIV prevalence evolves across the stages of the HIV epidemic. We restrict
our attention to HIV-tested adults men and women 15-49 years old who reported their schooling
achievement, which is on average 3.2 for women and 3.8 for men. The urban population is
roughly one third for both women and men.

Several aspects make DHS datasets appealing for our exercise. An important advantage
of these data is that they provide unambiguous individual measures of individual HIV status,

3The proportion of respondents who did not take the HIV test is .318 in the original whole sample (.098 and
.432 among men and women, respectively). However, we find that the association between the likelihood of
taking the HIV test and the educational attainment is virtually zero in the DHS sample. Further, our evidence
suggests the DHS non-response bias for HIV testing is minimal. We find that statistics for age, schooling, and
residence computed for the sample of HIV-tested adults resemble the analogous ones in the overall male sample.
These results are available upon request. See also the discussions in Fortson (2008).
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education, knowledge on HIV, and risky sexual behavior in a comparable manner across SSA
countries. First, regarding individual HIV status, the DHS provides a direct measure as individuals
have blood testing for HIV, so we do not rely on indirect proxy for HIV obtained from other
health outcomes or biomarkers. Second, regarding education variables, DHS collect data on
education (i.e., number of years of schooling and maximum degree attained) and also provide an
asset-based wealth index.4 Our preferred choice for measuring education is years of schooling—
perhaps the most commonly used measure for education in the previous literature. The reasoning
for our choice of years of schooling—rather than the DHS wealth index— is that while wealth
is influenced by subsequent negative health conditions (such as HIV), or other shocks that will
potentially determine one’s health status in adulthood, educational attainment is not because,
typically, education is completed before individuals in our sample—adults between 15 and 49
years of age—enter adulthood. However, we cannot entirely rule out the fact that investments
in education might respond to changes in life expectancy. Indeed, Fortson (2011) suggests a
significant negative effect of HIV on investment in children in a model where agents explicitly
consider mortality risk when making human capital decisions.

Finally, regarding risky sexual behavior, we focus on (i) the number of sex partners (i.e., the
extensive margin) in the past 12 months other than spouses and (ii) condom use in last intercourse
(i.e., the intensive margin, quality). The number of extramarital partners is on average 0.15 for
women and 0.41 for men (panel A and B, Table 2.1). This is consistent with the population of
women not having extramarital partners being larger than men’s, respectively 87.4% and 73.7%.
The frequency on condom use is 9.5% for women and 20.5% for men. That is, women not only
report less extramarital partners than men, but also less condom use in the last sexual intercourse
than men. These statements are consistent, as men’s last sexual intercourse for casual sex is
more common than women’s. These figures are conditional on individuals being sexually active.
Interestingly, the proportion of women not sexually active is smaller, 15.6%, than the one of men,
21.7%.5

The World Population Prospects. To uncover the evolution of the HIV epidemic we use
the data from the 2015 revision of the World Population Prospects (WPP) constructed by the
United Nations (Department of Economic and Social Affairs, Population Division). The WPP
2015 provides estimates of the HIV prevalence rates from 1980 until 2014 (at the country level),

4Unfortunately, the DHS do not collect data on income, with very few exceptions that document wage earnings.
This task is not easy as many SSA populations are mostly rural and a large proportion of these households’ resources
come from unsold agricultural production; see a discussion in De Magalhães and Santaeulàlia-Llopis (2015).

5The Gini index for the number of extramarital partners across these 39 DHS (25 countries) is 0.37 for women
and 0.30 for men, with a range from 0.01 to 0.56 for women and from 0.08 to 1.17 for men. The Gini index for
the frequency of condom use in last sexual intercourse is 0.42 for women and 0.31 for men, with a range from
0.5% to 37.7% for women and from 4.2% to 49.3% for men (Table 2.1).
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and their projections from 2014 onward for a large set of SSA countries. 6 The additional data
on country-specific ART coverage used in our robustness exercise are also from the WPP.7

Finally, for all our SSA countries we use data on real output per capita from the Penn World
Tables and data on agricultural share of output from the World Bank Development Indicators.
We use these data in our empirical analysis to control for country-specific stages of aggregate
economic development.

2.2.2 The Stages of the HIV Epidemic

This section describes the stages of the HIV epidemic. First, we discuss a set of challenges that
we argue a useful definition of the stages of the HIV epidemic must address (Section 2.2.2). From
our macroeconomic perspective these challenges arise from country differences in HIV prevalence
across time (i.e., the evolution of the HIV epidemic within a country) and across space (i.e.,
heterogeneity of HIV prevalence across countries within a given period). Second, we provide an
algorithm that circumvents those challenges by normalizing the HIV epidemic in both dimensions,
time and space (Section 2.2.2). Our definition is provided in Section 2.2.2.

6The WPP data represent the official 2014 estimates of UNAIDS. Until 2006 the UNAIDS estimates relied
mostly on data aggregations collected from antenatal clinics that overestimated prevalence levels. Since 2008,
the UNAIDS data belong to a downward revision largely originated by the appearance of nationally representative
surveys such as the DHS, and do not suffer from overestimation problems. Indeed, the HIV prevalence levels
computed from our DHS samples and the HIV prevalence levels from WPP are very similar. See also a detailed
discussion of these data in Bongaarts et al. (2008).

7Source: United Nations, Department of Economic and Social Affairs, Population Division: World Population
Prospects. Unpublished Data - Special Tabulations. We thank Patrick Gerland for sharing these data.
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Table 2.2: The Evolution of the HIV Epidemic across Sub-Saharan Countries: The DHS Sample

DHS Obs. Peak DHS/Peak
Country ti HIVi ti,∗ HIVi,∗ ti − ti,∗

HIVi

HIVi,∗

Burkina Faso 2003 1.76 1993 3.96 -10 0.44
Burkina Faso 2010 1.10 1993 3.96 -17 0.27
Burundi 2010 1.39 1996 4.47 -14 0.31
Cameroon 2004 4.98 2002 5.06 -2 0.98
Cameroon 2011 4.47 2002 5.06 -9 0.88
Congo Brazaville 2009 2.74 1995 4.80 -14 0.57
Cote d’Ivoire 2005 4.79 1999 6.18 -6 0.77
Cote d’Ivoire 2011-12 3.41 1999 6.18 -12 0.55
D.R. Congo 2007 1.30 2001 1.43 -6 0.91
Ethiopia 2005 2.28 1999 3.23 -6 0.70
Ethiopia 2011 1.32 1999 3.23 -12 0.41
Gabon 2012 4.16 2003 5.53 -9 0.75
Ghana 2003 2.00 2000 2.15 -3 0.93
Guinea 2005 1.43 2010 1.54 5 0.93
Guinea 2012 1.52 2010 1.54 -2 0.98
Kenya 2003 7.08 1996 9.16 -7 0.77
Kenya 2008-09 5.84 1996 9.16 -12 0.64
Lesotho 2004-05 23.33 2010 23.91 6 0.98
Lesotho 2009-10 23.52 2010 23.91 1 0.98
Liberia 2006-07 1.34 2002 1.84 -5 0.73
Malawi 2004 13.41 1998 14.99 -6 0.89
Malawi 2010 11.21 1998 14.99 -12 0.75
Mali 2006 1.34 1999 1.71 -7 0.78
Mozambique 2009 9.98 2008 10.01 -1 1.00
Niger 2006 1.00 2002 1.20 -4 0.83
Niger 2012 0.60 2002 1.20 -10 0.50
Rwanda 2005 3.09 1994 5.93 -11 0.52
Rwanda 2010 2.90 1994 5.93 -16 0.49
Senegal 2005 0.90 2004 0.90 -1 1.00
Senegal 2010-11 0.70 2004 0.90 -6 0.78
Sierra Leone 2008 1.66 2008 1.66 0 1.00
Swaziland 2006-07 23.36 2010 24.46 4 0.95
Tanzania 2003-04 6.04 1996 7.36 -7 0.82
Tanzania 2007-08 5.30 1996 7.36 -11 0.72
Tanzania 2011-12 4.81 1996 7.36 -15 0.65
Uganda 2011 6.55 1991 12.62 -20 0.52
Zambia 2007 12.87 1998 14.77 -9 0.87
Zimbabwe 2005-06 17.46 1997 25.90 -8 0.67
Zimbabwe 2010-11 14.35 1997 25.90 -13 0.55

Notes: ti is the calendar year of DHS data collection for country i; HIVi is the prevalence rate for country i

the year of DHS data collection; ti,∗ is the year country i reaches its HIV prevalence peak; HIVi,∗ is the peak
prevalence rate for country i. Sources: United Nations, Department of Economic and Social Affairs, Population
Division: World Population Prospects: The 2015 Revision, Medium-Variant Estimation and Projection.
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Figure 2.1: Challenges for the Definition of Stages of the HIV: Epidemic. The Evolution of the HIV Epidemic for a DHS Subsample.

Source: United Nations, Department of Economic and Social Affairs, Population Division: World Population Prospects: The 2015 Revision, Medium-Variant
Estimation. Notes: The solid square on each HIV time path displays the HIV prevalence at the peak year, and the open black circle on each HIV time path
displays the HIV prevalence at the year that the DHS data were collected.

56



Challenges for a Definition of the Stages of the HIV Epidemic

The evolution of the HIV epidemic is largely heterogeneous. To illustrate this, we show in
Figure 2.1 the country-specific time path of the epidemic for a selected subsample of countries.8

In addition, we provide country-specific statistics of the HIV epidemic for our entire sample of 39
DHS country-year surveys (Table 2.2). The following patterns arise across time and space.

HIV Prevalence Differences Across Space While the HIV prevalence levels largely differs
across countries (columns 1 and 2, Table 2.2),9 two countries with the same HIV prevalence are
not necessarily at the same epidemiological stage.

Remark 1. The HIV prevalence alone is not sufficient to define the aggregate stage of the HIV
epidemic.

We show this argument with two straightforward counterexamples. Although Malawi in 1998 and
Zimbabwe in 2010 both share the same HIV prevalence of 14.4, Malawi reaches this infection rate
at its HIV peak while Zimbabwe reaches it only 13 years after its HIV peak (Figure 2.1). Indeed,
in 2010 Zimbabwe’s HIV prevalence is 55% of its HIV peak prevalence (column 6, Table 2.2).
Another interesting counterexample arises from the comparison of the DHS observations of Zim-
babwe and Lesotho. The DHS observation of Zimbabwe in 2005 delivers an HIV prevalence of
19.2%, lower than that of Lesotho in 2004, 23.4%. Looking at this statistic only, we would infer
that Lesotho is at later stages of the epidemic than Zimbabwe. However, we actually know that
Zimbabwe’s HIV peak occurred at a higher level and earlier, 29.1% at 2009, than that of Lesotho,
23.8% at 2007, which suggests an opposite ordering over stages. That is, the ordering of DHS
countries by HIV prevalence is a mere artifact of the years in which DHS were collected.

One step to address the problematic use of the absolute size of the HIV prevalence as a
measure of the stages of the epidemic is to compute relative size of HIV prevalence dividing
country-specific observations of HIV prevalence by their corresponding HIV peaks. However, this
poses a new set of drawbacks because countries not only differ in the HIV peak level but also in
the year of their HIV peak (columns 3 and 4, Table 2.2).

8This subsample of DHS countries consists of Burkina Faso, Cameroon, Guinea, Lesotho, Malawi, Rwanda
and Zimbabwe. This subsample serves expositional purposes only as it is useful to highlight the heterogeneity of
the evolution of the HIV epidemic across countries as we describe next. Many other subsample choices would be
equally useful.

9For example, in year 2010, the HIV prevalence (in percentages) is 1.1 in Burkina Faso, 5.1 in Cameroon, 1.9
in Guinea, 11.7 in Malawi, 3.1 in Rwanda and 18.0 in Zimbabwe. Across all SSA countries, the inequality in HIV
prevalence remains high across time with a Gini coefficient of 0.63 in 1990, 0.56 in 2000 and 0.57 in 2010. The
SSA set consists of 44 countries. Similar figures are attained with our sample of 25 DHS countries with Gini’s
coefficients of 0.55 in 1990, 0.51 in 2000 and 0.55 in 2010.
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Remark 2. The relative HIV prevalence alone is not sufficient to define the aggregate stage of
the HIV epidemic.

To see this, note, for example, that while the DHS observations of Guinea in 2005 and Ghana in
2003 share the same relative HIV prevalence of .93 (column 6, Table 2.2), Guinea attains that
relative size 5 years before reaching its peak, and Ghana does so 3 years after reaching its peak
(column 6, Table 2.2). This observation suggests that two countries can be at different stages
of the epidemic despite having the same relative HIV prevalence. Another interesting example
is the one posed by the DHS observations of Rwanda 2005 and Uganda 2011. Both surpassed
their respective peaks, and have the same relative prevalence level of .52 (column 6, Table 2.2).
However, it took Rwanda 11 years to move from its peak to this relative prevalence, while it took
Uganda almost twice as much time, 20 years, to reach the same relative prevalence (column 5,
Table 2.2). The fact that the transition away from the peak is slower in Uganda than in Rwanda
is, in itself, a phenomenon to which we would like our definition of the stages of the epidemic to
be invariant. Constructively, the arguments posed here against the sole use of the absolute (or
the relative) HIV prevalence to define stages of the epidemic also suggest what we need to add
to our definition of the stages to resolve the exposed problems: some properties of the time path
of the HIV epidemic.

HIV Prevalence Differences Across Time The time-path of HIV epidemic largely differs
across countries. In particular, a large degree of heterogeneity exists for the HIV peak year across
SSA countries (column 3, Table 2.2). In our DHS sample, the peak of the HIV year ranges from
1991 in Uganda to 2010 in Guinea, Lesotho and Swaziland. This leads to the following remark.

Remark 3. Time (calendar year) alone is not sufficient to define the aggregate stage of the HIV
epidemic.

This remark states that two countries that suffer the HIV epidemic are not necessarily at the same
epidemiological stage at the same calendar year. This is straightforward. Lesotho and Guinea
reach the peak of their respective HIV epidemic in 2010, while Zimbabwe is at more advanced
stage of its epidemic in 2010, precisely 13 years ahead of its HIV peak in 1997 (Figure 2.1).

One step to correct for the country-specific year of the HIV peak is to compute the relative
time, i.e., calendar year minus year of HIV peak (column 5, Table 2.2). However, a large degree
of heterogeneity exists for the speed by which SSA countries move to the respective HIV peaks
and the speed by which SSA countries move away from their respective HIV peaks. This leads
to the following remark.

Remark 4. Relative time (calendar year minus year of HIV peak) alone is not sufficient to define
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the aggregate stage of the HIV epidemic.

To see this, note that the DHS observations of Ethiopia in 2011 and Malawi in 2010 both share the
same time distance with respect to their own HIV; in both cases 12 years have passed between the
peak and the DHS data collection. However, in those 12 years Ethiopia has managed to decrease
its relative HIV prevalence to 0.41 (column 6, Table 2.2), while Malawi has only managed to
decrease its relative HIV prevalence to 0.75. Again, as we noted for remark 2, the fact that the
transition away from the peak of Malawi is slower than that of Ethiopia is, in itself, a phenomenon
to which we would like our definition of the stages of the epidemic to be invariant. The relative
time does not suffice to define stages of the HIV epidemic.

To address these four remarks at once, we propose a two-dimensional (2D) algorithm that
normalizes both the HIV prevalence level and time.

A Two-Dimensional Normalization of the Evolution of the Epidemic Across Time and
Across Space

This section builds a 2D algorithm that, for all countries, normalizes the country-specific level
and time path of the epidemic, thereby making the evolution of the HIV epidemic comparable
across countries. Once the evolution of the epidemic is normalized for all countries, the position
of each DHS dataset on its associated epidemiological stage readily follows.

Algorithm 1. [A Two-Dimensional Normalization of the Evolution of the HIV Epidemic]
Given the time series of the level of HIV prevalence of each i, we follow three steps to conduct
a 2D normalization of the level and time path of the HIV epidemic:

1. Interpolate the country-specific time path of prevalence for each country i, {λi,t}tpt0 , for
p + 1 interpolation points (years), where p is a positive integer. Then, interpolate the
aggregate (across countries) prevalence path as λt =

∑n

i
λi,tµi,t∑n

i
µi,t

, where n is the total of
number of countries and µi,t is the population level of country i at period t. Denote the
country-specific interpoland function as si : t → [0,maxt λi,t], where maxt λi,t ∈ [0, 1] and
si ∈ S, where S is the collection of functions that can be written as a linear combination
of a set of n-known linearly independent basis functions ψj, j = 1, ..., n,

si(t) =
n∑
j=1

θj ψj(t)

with n unknown θj coefficients. Denote the aggregate interpoland as s(t) where s(t)
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shares the same properties as the country-specific interpolands si(t). Importantly, note
that maxt si(t) is not necessarily identical across countries or to the aggregate maxt s(t).

2. Level normalization

(a) Compute the country-specific peak prevalence,

si(ti∗) = max
t
si(t), (2.1)

where ti∗ = arg maxt si(t) is the period country i reaches its peak, si(ti∗). Redo
equation (2.1) to obtain the aggregate peak s(t∗) and aggregate peak period, t∗ =
arg maxt s(t).

(b) Normalize the country-specific and aggregate interpolands by their respective peak
prevalence,

s̃i(t) = 1
si(ti∗)

si(t) and s̃(t) = 1
s(t∗)

s(t),

where s̃i, s̃ : t → Λ = [0, 1] and arg maxt si(t) = ti∗ = arg maxt s̃i(t). Note now that
s̃i(ti∗) = s̃(t∗) = 1 ∀i.

3. Time normalization

(a) For ti0 < ti ≤ ti∗, normalize the time interval between the initial period for which data
are available, ti0 = 1980, and the country-specific peak period, ti∗, by the time interval
between the aggregate initial period, t0 = 1980, and the aggregate peak period, t∗.
To do so, we compute the constant of time proportionality for the pre-peak era,

αLi = t∗ − t0
ti∗ − ti0

.

For ti > ti∗, normalize the time between the peak period, ti∗, and the period tiγ in
which country i reaches a given threshold γ ∈ [0, 1], that is, tiγ = s̃−1

i (γ), over the
analogous aggregate interval with t∗ and tγ = s̃−1(γ),

αRi (γ) = tγ − t∗
tiγ − ti∗

.

Here, note that tiγ and tγ may not occur at an interpolation node but elsewhere along
their respective interpoland.
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(b) Normalize the time input of the country-specific interpolands by αLi and αRi ,

τ = αLi (t− ti∗) for t ≤ ti∗ (2.2)
τ = αRi (t− ti∗) for t > ti∗ (2.3)

where τ ∈ T are the normalized units of time. Operations (2.2) and (2.3) com-
press/stretch the interpoland10 to ensure that for τ ≤ τ∗ (before the peak) the num-
ber of normalized periods τ that it takes each country to move from τ0 to the peak
are the same across countries,

s̃−1
i (1) − s̃−1

i (0) = s̃−1
j (1) − s̃−1

j (0) = s̃−1(1) − s̃−1(0) ∀ i, j ,

and for τ > τ∗ (after the peak) the normalized periods τ that it takes each country to
move from the peak to a threshold of prevalence γ is the the same across countries,

s̃−1
i (γ) − s̃−1

i (1) = s̃−1
j (γ) − s̃−1

j (1) = s̃−1(γ) − s̃−1(1) ∀ i, j.

This allows us to define the evolution of the epidemic for each country and the aggregate,

s̃i : τ → Λ and s̃ : τ → Λ, (2.4)

in the same—hence comparable—2D normalized space (T,Λ).

To implement the algorithm we need to make two choices: the shape of the basis functions,
ψ(τ), and the prevalence threshold γ for the time normalization after the peak. First, we specify
s̃(τ) as a B-spline with cubic pieces and solve for the θj coefficients accordingly. Our choice of
splines as interpolands obeys our desired manageability of the interpoland given the size of the
Lagrangian interpolation problem poised by 71 (1980-2050) interpolation data points. Second,
our choice of γ responds to balance between minimizing the use of projection of U.N. data for our
set of DHS countries and maximizing the number of countries that have already surpassed the
threshold γ at the time of DHS data collection. Our search for this balance suggests a value of
γ =.8. This choice of γ implies that more than half of the countries in our dataset have already
passed the threshold. Our results are robust to alternative choices of γ. To see this, note that
the value of γ does not alter the ranking of countries across stages of the epidemic.

We next apply our algorithm to the SSA countries for which U.N. estimates and projections
10The interpoland si horizontally compresses when αk

i > 1 with k = {L, R} and expands otherwise.
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of the HIV prevalence time path are available.11 The results are depicted in Figure 2.2. Panel (a)
shows the HIV prevalence level across time for each and all countries. We highlight (in orange)
the country-year observations for which DHS data with HIV testing results are available. This
panel portrays all challenges discussed in Section 2.2.2. Panel (b) shows the result of the first
normalization of our algorithm, the HIV prevalence level normalization, which tackles the issues
associated with the absolute HIV prevalence, but does not correct for having HIV peaks at different
calendar years for different countries. Panel (c) shows the result of the second normalization of
our algorithm, the time normalization, which forces all countries to peak at the same calendar
year but does not resolve the issues associated with the absolute HIV prevalence level. Finally,
panel (d) closes our algorithm by jointly applying the level and the time normalizations. These
2D normalization resolves the full set of challenges posed in Section 2.2.2 as the relative HIV
prevalence peaks in all countries at the same period. As it is obvious from panel (d), after the 2D
normalization the level and time path of the epidemic are entirely comparable across countries.

11The interpolation Lagrangian points, that is, the country-specific prevalence time series, λi,t, are retrieved
from the U.N. population division estimates and projections until 2050 (medium-variant).
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Figure 2.2: Defintion of Stages of the HIV Epidemic

Source: Outcome of our 2D-normalization algorithm (Subsection 2.2.2) implemented using WPP, 2015, data for SSA. The vertical axis in the
top panels is HIV prevalence. The vertical axis in the bottom panels is normalized HIV prevalence. The horizontal axis in the left panels is time.
The horizontal axis in the right panels is normalized time. This way, the 2D-normalization is operative in panel (d). In each panel, the orange
markers in the scatterplots represent a DHS dataset. The plotted trends are locally weighted polynomials with 95% confidence intervals.
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A Definition of the Stages of the HIV Epidemic

Note that the position of each country i on its normalized HIV time path at the period tDHS at
which its respective DHS data were collected can be easily computed by solving for τi in

s̃−1
i

(
λi,tDHS

si(ti∗)

)
= τi.

Then, the stage of the HIV epidemic is the continuous real variable,

ω(τ, ζ) = ζ

τ − τ∗
→ R1, (2.5)

with the pair (τ, ζ) belonging to the 2D normalized space, T×Λ. Geometrically, ω(τ, ζ) represents
the slope of the arrays from the origin in the (T,Λ) space with the following limiting properties:

lim
τ→τ−

∗

ω(τ, ζ) = −∞, lim
τ→τ+

∗

ω(τ, ζ) = ∞, and lim
τ→−∞

ω(τ, ζ) = lim
τ→+∞

ω(τ, ζ) = 0.

To conduct our empirical exercise, we discretize the continuous variable that defines the
epidemiological stages in (2.5).12

Definition 1. [Stages of the HIV Epidemic] Given a set of stage thresholds {ζ0, ..., ζj, ..., ζn}
with ζj > ζj+1 for all j, the stage j of the HIV epidemic consists of all pairs (τ, ζ) ∈ T × Λ such
that ω(s̃−1(ζj+1), ζj+1) ≤ ω(τ, ζ) ≤ ω(s̃−1(ζj), ζj), where s̃(τ) is the normalized (population-
weighted) aggregate of the HIV epidemic defined in (2.4).

Our choice for the stage thresholds {ζ0, ..., ζj, ..., ζn} pursues the maximization of both
countries per stage of the epidemic and number of stages. To do so, we set ζ0 = 1 and
ζj = ζ1−.05j ∀j. The results of this exercise are shown in Figure 2.3 where each data point (τi, s̃i)
represents a DHS dataset. This implies the following allocation of DHS datasets, ω(τi, s̃i(τi)),
over stages of the epidemic as follows:

• Stage ≤0: Cameroon 2004, Guinea 2005, Guinea 2012, Lesotho 2004/05, Lesotho 2009/10,
Mozambique 2009, Senegal 2005, Sierra Leone 2008, Swaziland 2006/07.

• Stage 1: Cameroon 2011, Cote d’Ivoire 2005, Democratic Republic Congo 2007, Ethiopia
12To capture the evolution of the HIV-Education gradient over the HIV epidemic we need to interact education

with either some specific function (e.g., a quadratic or cubic polynomial) of ω(τ, ζ) or with a discretized version
of ω(τ, ζ). We prefer to follow the latter approach and partition the continuous variable ω(τ, ζ) into the discrete
pieces which delivers a cleaner interpretation of the estimates of the HIV-Education gradient across stages.
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2005, Ghana 2003, Kenya 2003, Liberia 2006/07, Malawi 2004/05, Mali 2006, Niger 2006,
Senegal 2010/11, Tanzania 2003/04, and Zambia 2007.

• Stage 2: Gabon 2012, Malawi 2010, Tanzania 2007/08, Zimbabwe 2005.

• Stage 3: Congo Brazaville 2009, Cote d’Ivoire 2011, Kenya 2008/09, Rwanda 2005, Tan-
zania 2011/12, Zimbabwe 2006.

• Stage ≥4: Burkina Faso 2003, Burkina Faso 2010, Burundi 2010, Cote d’Ivoire 2012,
Ethiopia 2011, Niger 2012, Rwanda 2010/11, Uganda 2011 and Zimbabwe 2010/11.
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Figure 2.3: Stages of the HIV Epidemic: DHS Sample

Source: The plot shows the location of SSA Countries (DHS Sample) on the 2D-normalized space at the time of DHS data collection. The
vertical axis is the normalized HIV prevalence, and the horizontal axis is the normalized time (Subsection 2.2.2). The orange markers in the
scatterplots represent a DHS dataset. The plotted trends are locally weighted polynomials with 95% confidence intervals.
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Figure 2.3 depicts these allocations in two dimensions in the normalized space T × Λ. It
is identical to panel (d) in Figure 2.2 with the addition of the arrays initiating from the origin
that define the breakdown of discrete stages of the HIV epidemic defined above. It is relevant to
note that the DHS observations covers the entire evolution of the HIV epidemic except its initial
rise, which is not surprising given that the first DHS surveys with HIV testing were conducted in
2003. In any case, the DHS observations provide a large degree of heterogeneity across country
positions over the normalized HIV epidemic. The large heterogeneity across stages of the HIV
epidemic is sufficient to provide reliable nonstationary estimates of the HIV-Education gradient.13

Discussion

The normalization procedure that we have proposed to define stages of the HIV epidemic is drawn
upon ideas developed by macroeconomists to define the stages of the demographic transition and
the stages of economic development.

As it is the case with the HIV epidemic, the demographic changes behind the demographic
transition occur at different calendar years and at different speeds for different countries. To
take this into account, the demographic model controls for calendar year and speed of stage
completion with a time-normalization analogous to the one we propose, and in turn defines the
demographic stages in a similar way to ours. Precisely, many countries have gone (or as still
going) through a first demographic stage of high mortality and fertility, followed by a second
demographic stage in which mortality drops and, with some period lag, fertility declines, and
finally a third demographic stage of low mortality and low fertility (Lee, 2003). This description
of the stylized joint behavior of mortality and fertility exemplifies how the calendar year, the speed
at which each country completes each demographic stage, and the country-specific levels of the
variables of interest (mortality and fertility) needs to be controlled for to recover stylized facts
across stages of the demographic transition.

With regard to the aggregate stages of economic development (or structural transformation
out from agriculture), the heterogeneity across time and across space depends on the fact that
countries take off at different calendar years and move across stages of economic development at
different speeds (Gollin et al., 2002b, 2007; Hansen and Prescott, 2002). For example, China’s
income per capita raised by a factor of 6 between 1989 and 2009, while it took the U.K. from
1820 to 1970 to generate such growth. That is, China has grown at roughly 7.5 times the speed
of the first industrial revolution (Bolt and van Zanden, 2013). With a definition of the stages of

13For the country of Niger and Senegal, we lack of projected paths, and therefore we cannot implement the
time-normalization. We allocate the DHS surveys of these countries across stages by visual inspection. We find
reassuring that the exclusion of Niger and Senegal from our analysis does not alter our results.
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development that nets out calendar years and speed, we can study stylized economic relationships
along the process of economic development such as the skill wage premium (Buera et al., 2015).

In sum, the spirit of our exercise is similar to what has been done to describe the stages of
demographic transitions and the stages of economic development. First, we provide an algorithm
that defines aggregate stages of the HIV epidemic netting out the calendar year effects, the
country-specific speeds of the HIV epidemic, and the HIV prevalence levels. Second, we study
the stylized dynamic relationship between HIV status and education across stages of the HIV
epidemic.

2.2.3 The HIV-Education Gradient

Our empirical analysis consists of posing a simple econometric specification suitable for docu-
menting the potentially nonstationary behavior of the HIV-Education gradient.

Econometric Specification

We consider a linear probability model (LPM) where the HIV-Education gradient is allowed to
change over the stages of the HIV epidemic (j) defined in Section 2.2.2. Since for a large set of
countries there are at least two cross-sections in our sample, and individuals in different periods
are not the same people for each country (g), we index the variables by a double subscript.
Namely, i(t) ∈ { 1, ..., Nt} denotes the individuals in cross-section t. Let si(t),t,j denote the
educational attainment of an individual i(t) that lives in stage j of the HIV epidemic at time t.
Also, let yi(t),t,j be the individual’s HIV status, a dummy variable equal to one if the individual
HIV testing result is positive and zero otherwise. We estimate a linear projection of the type,

yi(t),t,j = α0 +
∑
j>0

αj1j+
γ0 +

∑
j>0

γj1j

 si(t),t,j+β xi(t),t+ψ mg,t+θt1t+θg1g+εi(t),t, (2.6)

where 1j is an indicator function that is equal to one when the stage of the HIV epidemic is j and
zero otherwise. That is, if the stage of the epidemic is j = 0 then the intercept is α0 and the slope
is γ0. However, for each the stage of the epidemic is j > 0, the associated intercept is (α0 + αj)
and the slope is (γ0 + γj). Namely, γj is the difference in the HIV-Education gradient between
individuals that are in stage j and stage 0 of the epidemic. This implies that the HIV-Education
gradient is γ0 +γj for each epidemiological stage j. We cluster the individual observations at the
country level to account for any unobserved shock that correlates observations within a country.
Given that the number of countries is 25, we use the wild cluster bootstrap from Cameron et al.
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(2008) to get better approximations to asymptotically valid standard errors.14

The vector xi(t),t corresponds to a set of individual characteristics that are likely to be cor-
related with both education and HIV status. Hence, controlling for these characteristics reduces
the impact of omitted variables bias. Precisely, we find it is important to control for the type of
area in which agents live because the HIV prevalence is, on average, higher in urban than in rural
areas (respectively, 6.73% and 4.41% in our whole sample), and it is in urban areas where adult
education levels are also higher (the average number of years of schooling in rural area is 3.23,
while in urban areas reaches 3.83). Thus, a positive association between education and HIV may
be driven by the fact that people living in urban areas are both more likely to be HIV-positive
and more educated. Similarly, we also control for age because HIV prevalence is increasing with
age (the DHS age sample is 15-49), and education is negatively correlated with age as younger
cohorts are more educated than older cohorts.

We also control for time varying country-specific economic variables, mg,t, which correct for
the stage of economic development in which each country is. To do so, we use measures of output
per capita and share of agricultural output following the literature on structural transformation.
We also include year dummies (θt) and country dummies (θg) to pick up any spurious correlation
between the regressors and the dependent variable. To the extent that such contextual effects
affect all individuals in a country in a similar manner, the country dummies will sweep them up.
All our specifications are weighted least squares regressions, where the weights are proportional to
the relative population size of each country. By doing so, when we pool a number of countries in
the same stage of the HIV epidemic, the relative DHS sample size of a given country corresponds
to the relative population size of the country. We then combine these weights with the individual
weights provided by the DHS surveys.

Results

We first consider a linear probability model where the dependent variable is the individual HIV
status. The estimates of the HIV-Education gradient using the whole sample are reported in
Table 2.3. We then re-conduct our analysis separately for women and men.

14The results are robust to clustering at the country-year level. While we believe it would be interesting to
explore also the within-country variation (e.g., across regions), it is not feasible to recover the epidemiological
stages using our algorithm proposed in section 2.2.2 due to data limitations about the evolution of the HIV
epidemic at the regional level; recall that the algorithm would require complete time-series of HIV prevalence for
each region within a country and these estimates are generally provided at the national level (UNAIDS, 2015).
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Stationary Specification To study the stationary gradient we restrict the econometric model
(2.6) with αj = γj = 0 for all j > 0. We find that the stationary HIV-Education gradient is highly
significant and positive (column 1, Table 2.3). The probability of being HIV infected increases
by 0.43% per year of schooling. This suggests that completing five additional years of schooling
increases the probability of being HIV positive by 2.15%, which is not small if we consider that
the HIV prevalence is 5.18% in our sample.15 Further, the probability of being HIV positive is
higher for women (by 2.24%), for urban areas (by 2.12%), and it increases significantly with age
(0.25% per year of age).16 Aggregate variables denoting the stage of development such as the
agricultural share of output and output per capita are negatively related with the probability of
being infected. Next we explore how much this gradient changes as the HIV epidemic evolves.

Non-Stationary Specification Our non-stationary specification follows the econometric model
in (2.6). Our key finding is that the HIV-Education gradient is significantly nonstationary and
displays a positive-zero-positive U-shaped pattern over the stages of the HIV epidemic.

Focusing on our benchmark specification (column 2, Table 2.3), we find that at Stage 0 an
additional schooling year raises the probability of being infected by γ0 = 1.12%. That is, for
individuals in an economy that is at early stages of the epidemic the HIV-Education gradient is
significantly positive and remarkably high (roughly three times larger than that of the stationary
specification). Interestingly, as the HIV epidemic evolves, the HIV-Education gradient rapidly
declines. At Stage 1 the rise in the probability of being infected associated with one additional
year of schooling is γ0 + γ1 = 0.51%, i.e., less than one-half of its value at Stage 0, and it is
significantly different from zero at 1% level (column 2, panel A of Table 2.4). The educational
disparities in HIV then vanish as the epidemic reaches Stage 2, where we cannot reject the null
that γ0 + γ2 = -.04% is different from 0 (column 2, panel A in Table 2.4). As we move away
from Stage 2, the HIV-Education gradient becomes increasingly positive as the epidemic evolves
with γ0 + γ3 = 0.19% and γ0 + γ4 = 0.48% in Stages 3 and 4, respectively. This way, the
HIV-Education gradient bounces back reaching a significant gradient in Stage 4 that is almost
half the size of the gradient in Stage 0. Note that both the initial decline of the HIV-Education
gradient from Stage 0 to Stage 2 and its posterior rebound from Stage 2 to Stage 4 are both
significant. The size of the rebound from Stage 2 to Stage 4 is a significant 0.52% (column 2,
panel B in Table 2.4). We conclude that the HIV-Education gradient exhibits a positive-zero-
positive U-shape pattern over stages of the HIV epidemic. To illustrate this pattern, Figure 2.4
shows the isomorphic representation of the estimated HIV-Educ gradient across stages of the

15These findings are consistent with those obtained by Fortson (2008), who specifies a similar stationary
econometric model for five DHS countries.

16While we introduce age linearly, we do find that the estimated coefficients for the HIV-Education gradient
are robust when age enters non-linearly.
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Table 2.3: The HIV-Education Gradient

(A) HIV Status (1) (2) (3) (4) (5)

Education 0.0043*** 0.0112*** 0.0098*** 0.0040*** 0.0037***
(0.0006) (0.0007) (0.0010) (0.0003) (0.0003)

Education * Stage1 -0.0059*** -0.0046*** -0.0010*** -0.0008**
(0.0008) (0.0010) (0.0003) (0.0003)

Education * Stage2 -0.0116*** -0.0103*** -0.0027*** -0.0024***
(0.0007) (0.0011) (0.0002) (0.0003)

Education * Stage3 -0.0093*** -0.0076*** -0.0020* -0.0018
(0.0015) (0.0011) (0.0011) (0.0011)

Education * Stage4 -0.0064*** -0.0051*** -0.0015*** -0.0012***
(0.0008) (0.0012) (0.0003) (0.0003)

Male -0.0224*** -0.0229*** -0.0228*** -0.0223*** -0.0224***
(0.0027) (0.0027) (0.0021) (0.0020) (0.0019)

Age 0.0025*** 0.0025*** 0.0025*** 0.0025*** 0.0025***
(0.0004) (0.0004) (0.0003) (0.0003) (0.0002)

Urban Area 0.0212*** 0.0197*** 0.0227*** 0.0280*** 0.0285***
(0.0044) (0.0045) (0.0040) (0.0027) (0.0027)

Stage 1 -0.0023 0.0124*** 0.0111*** -0.0055*** 0.0088***
(0.0048) (0.0036) (0.0041) (0.0008) (0.0019)

Stage 2 0.0103 0.0498*** 0.0598*** -0.0012 0.0200***
(0.0078) (0.0089) (0.0100) (0.0025) (0.0032)

Stage 3 -0.0094 0.0197 0.0314*** -0.0102** 0.0110**
(0.0128) (0.0122) (0.0096) (0.0052) (0.0043)

Stage 4 -0.0032 0.0131*** 0.0394*** -0.0147*** 0.0032
(0.0042) (0.0030) (0.0072) (0.0019) (0.0029)

Agricultural Share -0.0029*** -0.0029*** -0.0031*** 0.0021*** -0.0008***
(0.0002) (0.0002) (0.0003) (0.0004) (0.0003)

Output per Capita -0.0000*** -0.0000*** -0.0000*** 0.0000** 0.0001***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Constant 0.0806*** 0.0615*** 0.0307*** -0.1363*** -0.1832***
(0.0089) (0.0072) (0.0089) (0.0344) (0.0175)

Year-Country Dum. No-No No-No Yes-No No-Yes Yes-Yes
Sample Size 402,766 402,766 402,766 402,766 402,766

(B) HIV Status Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Education 0.0038*** 0.0022*** 0.0014*** 0.0020* 0.0025***
(0.000) (0.000) (0.000) (0.0011) (0.000)

Year-Country Dum. Yes-Yes Yes-Yes Yes-Yes Yes-Yes Yes-Yes
Sample Size 66,322 119,700 48,615 50,535 118,425

Notes: All specifications use the ”Full Sample” described in Section 1.2 and the same set of controls. In Panel
(A), Column (1) reports the results for the stationary specification, and columns (2) to (5) report the results
for the non-stationary specification. We add year dummies in column (3), country dummies in column (4) and
year-country dummies in column (5). Panel (B) reports the estimates of the HIV-Education gradient for each
stage separately. Standard errors are clustered at the country level using the wild cluster bootstrap from Cameron
et al. (2008), and reported in parenthesis. * significant at 10%; ** significant at 5%; *** significant at 1%.
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epidemic, γ0 + ∑
j>0 γj1j for each j (panel A, Table 2.4).17 Similar results are attained if we

consider only the sexually active subsample (Appendix B.2 Table B.1), with an HIV-Education
gradient of 1.23% at Stage 0, 0.59% at Stage 1, -0.06% at Stage 3, 0.22% at Stage 3 and 0.56%
at Stage 4.

17Our results also hold under a Probit specification. The partial effects (and p-values) are as follows: γ0 =
0.691% (0.000), γ0 + γ1 =0.465% (0.000), γ0 + γ2 =0.018% (0.674), γ0 + γ3 =0.135% (0.133), and γ0 +
γ4 =0.339% (0.004). Regarding the rebound, we also reject the null that γ4 − γ2 =0 (0.018).

72



Figure 2.4: The HIV-Education Gradient Across Stages of the Epidemic

Notes: This graph plots the benchmark estimates of the HIV-Education gradient using the full sample (with year controls). For each stage j we plot(
γ0 +

∑
j>0 γj1j

)
. We construct this estimates from column 3 of Table 2.3 (also reported in column 3, panel A, Table 2.4). Significance at 10%, 5%, and

1% is represented by, respectively, markers with open circles, markers with medium transparency fill, and markers with solid fill. We use a cubic spline for
interpolation across stages.
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The U-shape pattern of the HIV-Education gradient across stages of the HIV epidemic is robust
to the addition of year dummies, country dummies, and year and country dummies (columns 3 to
5 in Table 2.3). When we control for year dummies, the HIV-Education gradient is significantly
different from zero for all stages except Stage 2 showing the same positive-zero-positive behavior
as our benchmark (column 3 in Table 2.4). When we control for country dummies the magnitude
of the HIV-Education gradient is smaller (columns 4 and 5, panel A, Table 2.4) but the U-shape
pattern is preserved and remains significant, that is, γ2 and γ4 are significantly different from
each other (column 4 and 5, panel B, Table 2.4). While this specification is quite demanding, as
it exploits only variation witin each country, the direction of the results discussed above remains
unchanged. Finally, the same U-shape pattern is displayed in panel B of Table 2.3 where we
re-estimate the model for each stage separately.

To summarize, the HIV-education gradient shows a U-shape positive-zero-positive pattern
across stages of the epidemic. This stylized fact is twice more sizable for women than for men
at early stages of the epidemic, the gradients across genders tend to equalize in later stages.

2.2.4 Further Evidence: Risky Sex and ARVs

Our previous theoretical interpretation suggests a parallel evolution between the HIV-Education
gradient and education disparities in risky sexual behavior. We provide an empirical investigation
of this phenomenon in this section.

The Risky Sex-Education Gradient The margins of risky sexual behavior that we study are:
(i) the number of sex partners other than spouses (i.e., extramarital partners) during past 12
months, i.e., the extensive margin of sexual behavior,18 and (ii) a dummy variable equal to 1 if
the respondent used a condom during the last intercourse.We label the first Risky Sex-Education
gradient as the Partners-Education gradient and the second as the Condom-Education gradient.

The results for the Partners-Education gradient are in panel A of Table 2.5. We report the
results separately for women and for men, and we follow the same econometric specifications
described for the HIV-Education gradient, results are shown in Figure 2.5. The more educated
have significantly more sexual partners that the less educated. An additional year of schooling
increases the chances of having an extramarital partners by 1.77% for women and by 2.85% for
men.19 The non-stationary specification uncovers an interesting inverted U-shaped pattern of

18For the extensive margin of risky sexual behavior we use the number of sex partners other than spouses (i.e.,
extramarital partners) in the past 12 months and note that for individuals who are single or do not cohabit, all
sex partners are extramarital.

19Note that the females’ Partners-Education gradient is smaller (about two thirds) than that of males but it
shows a similar pattern over the stages of the epidemic. One potential caveat of this analysis is that women
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Table 2.4: Additional Inference

(A) HIV-Education Gradient (1) (2) (3) (4) (5)

γ0 0.0043*** 0.0112*** 0.0098*** 0.0040*** 0.0037***
(0.0006) (0.0007) (0.000) (0.0003) (0.0003)

γ0 + γ1 0.0053*** 0.0052*** 0.0029*** 0.0029***
(0.0005) (0.000) (0.0003) (0.0003)

γ0 + γ2 -0.0004 -0.0005 0.0013*** 0.0013***
(0.0003) (0.228) (0.0001) (0.0001)

γ0 + γ3 0.0019 0.0022*** 0.0020* 0.0019*
(0.0014) (0.005) (0.0011) (0.0011)

γ0 + γ4 0.0048*** 0.0047*** 0.0025*** 0.0025***
(0.0005) (0.000) (0.0002) (0.0001)

Year-Country Dum. No-No No-No Yes-No No-Yes Yes-Yes

(B) Rebound (1) (2) (3) (4) (5)

γ4 − γ2 0.0052*** 0.0051*** 0.0011*** 0.0012***
(0.0006) (0.0005) (0.0001) (0.0001)

Year-Country Dum. No-No No-No Yes-No No-Yes Yes-Yes

Notes: The underlying econometric models are as specified in the columns of Table 2.3. Column (1) reports the
tests results for the stationary specification. Columns (2) to (5) report the tests results for the non-stationary
specification. Standard errors are clustered at the country level using the wild cluster bootstrap from Cameron
et al. (2008), and reported in parenthesis. * significant at 10%; ** significant at 5%; *** significant at 1%.
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the Partners-Education gradient that represents our main finding in this section. The Partners-
Education gradient first decreases (between aggregate stages 0 and 2) and then increases (between
aggregate stages 2 and 4) for both women and men, and this dynamics are significant. The
dynamics across stages of the epidemic show that the evolution of the Partners-Education gradient
is remarkably consistent with the pattern of the HIV-Education gradient, as it is predicted by our
theory in the previous section. To see this, Figure 2.5 shows separately for women (panel A) and
for men (panel B) the isomorphic representation of the HIV-Education gradient and the Partners-
education gradient (as in Figure 2.4, the significance of the gradients is denoted by the color
of the marker). The sizes of the gradients are different, being larger for the Partners-Education
gradient, which implies a positive elasticity of less than one from risky sex to HIV. In contrast, the
Condom-Education gradient is reported in panel B of Table 2.5. In the stationary specification
(columns 1 and 4) we find that the more educated women and men use, on average, more
condoms than the less educated ones. Interestingly, we do not find a significant pattern across
stages of development in the Condom-Education gradient. After Stage 0, the Condom-Education
gradient remains positive but relatively constant across stages of the epidemic for both women and
men. Finally, knowledge about the transmission mechanisms of HIV might affect sexual behavior
(Dinkelman et al., 2006; Duflo et al., 2015a; Dupas, 2011a). We document that more-educated
individuals acquire more information about HIV transmission than less-educated individuals at
earlier stages of the epidemic, but these educational differences in knowledge remain constant
as the epidemic evolves. This way, while knowledge might affect the HIV-Education gradient at
early stages of the epidemic, this effect should rapidly vanish after the first stages.20

To sum up, the evolution of the Partners-Education gradient is consistent with the evolution of
the HIV-Education gradient, as predicted by the theory. The evolution of educational disparities
in the number of extramarital partners help explain both the decline and rebound of the HIV-
Education gradient across stages of the epidemic.

might under-report risky sexual behavior more than men, as it was pointed out by Smith (1992) and Gersovitz
et al. (1998). However, more recently, Helleringer et al. (2009) find that men and women are equally likely to
under-report risky sexual behavior when using sexual network data from Likoma Island, Malawi. In our analysis, as
long as misreporting occurs systematically across all stages of the epidemic, the shape of the Partners-Education
gradient for women over stages will not be biased.

20To this end, we consider two DHS questions regarding ways to avoid HIV infection that are directly related to
the risky sex margins studied in the previous subsection. Specifically, respondents answer two questions: (i) “Can
you (the respondent) reduce the chances of getting HIV by having one sex partner who has no other partners?”
and (ii) “Can you (the respondent) reduce the chances of getting HIV by always wearing a condom?”. We estimate
the education gradients in these knowledge variables. Our results are in Appendix B.2 Table B.2.
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Figure 2.5: The Risky Sex-Education Gradient: Evolution Across Stages of the HIV Epidemic

(a) Women

(b) Men

Notes: The HIV-Education gradient is plotted on the left vertical axis. The Partners-Education gradient and the
Condoms-Eduction gradient are plotted on the right vertical axis. For each stage j we plot

(
γ0 +

∑
j>0 γj1j

)
.

The specification we plot is with year controls. For the Partners-Education and Condoms-Education gradient we
use column 3 (8) in Table 2.5 for respectively women (top panel) and men (bottom panel). Significance at 10%,
5%, and 1% is represented by, respectively, markers with open circles, markers with medium transparency fill, and
markers with solid fill. We use a cubic spline for interpolation across stages.
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Table 2.5: The Risky Sex-Education Gradient: Women and Men Separately

(A) Number of Extramarital Partners
Women Men

Risky Sex (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Education 0.0177** 0.0372*** 0.0348*** 0.0294*** 0.0296*** 0.0285*** 0.0304*** 0.0269*** 0.0290*** 0.0295***
(0.029) (0.000) (0.000) (0.001) (0.001) (0.000) (0.001) (0.002) (0.000) (0.000)

Education * Stage1 -0.0163** -0.0222*** -0.0204*** -0.0199*** 0.0046 -0.0071 -0.0167** -0.0167**
(0.025) (0.000) (0.006) (0.008) (0.742) (0.515) (0.050) (0.029)

Education * Stage2 -0.0254*** -0.0267*** -0.0243*** -0.0249*** -0.0200 -0.0238*** -0.0290*** -0.0294***
(0.006) (0.000) (0.003) (0.003) (0.125) (0.007) (0.000) (0.000)

Education * Stage3 -0.0308*** -0.0288*** -0.0201** -0.0213** -0.0069 -0.0047 0.0010 0.0003
(0.002) (0.000) (0.019) (0.018) (0.550) (0.588) (0.932) (0.980)

Education * Stage4 -0.0152 -0.0134 -0.0134* -0.0138* -0.0010 0.0019 0.0021 0.0018
(0.107) (0.185) (0.081) (0.087) (0.928) (0.845) (0.840) (0.866)

Year-Country Dum. No-No No-No Yes-No No-Yes Yes-Yes No-No No-No Yes-No No-Yes Yes-Yes
Sample Size 227,935 227,935 227,9358 227,935 227,935 174,831 174,831 174,831 174,831 174,831

(B) Condom Use in Last Intercourse
Women Men

Risky Sex (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Education 0.0079*** 0.0192*** 0.0193*** 0.0125*** 0.0126*** 0.0066*** 0.0129*** 0.0141*** 0.0162*** 0.0166***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Education * Stage1 -0.0102*** -0.0114*** -0.0054** -0.0055*** -0.0038 -0.0054 -0.0064* -0.0066*
(0.001) (0.142) (0.011) (0.002) (0.0406) (0.122) (0.084) (0.065)

Education * Stage2 -0.0135*** -0.0132*** -0.0075*** -0.0075*** -0.0109*** -0.0111** -0.0149*** -0.0156***
(0.000) (0.000) (0.000) (0.000) (0.010) (0.028) (0.000) (0.000)

Education * Stage3 -0.0138 -0.0133 -0.0068 -0.0068 -0.0101 -0.0108 -0.0131 -0.0136
(0.164) (0.000) (0.482) (0.501) (0.611) (0.640) (0.592) (0.585)

Education * Stage4 -0.0134** -0.0133*** -0.0073** -0.0080** -0.0078** -0.0088* -0.0066*** -0.0074***
(0.000) (0.000) (0.024) (0.007) (0.017) (0.062) (0.004) (0.001)

Year-Country Dum. No-No No-No Yes-No No-Yes Yes-Yes No-No No-No Yes-No No-Yes Yes-Yes
Sample Size 163,883 163,883 163,883 163,883 163,883 120,840 120,840 120,840 120,840 120,840

Notes: In panel (A) we report the marginal effects of the associated Tobit model where the endogenous variable is the number of extramarital partners in
the past 12 months. In panel (B) we report the coefficients of a linear model where the endogenous variable is binary and refers to use of condom in last
sexual intercourse. In both panels we include the same set of controls and fixed effects as in our benchmark specifications in Table ??. Standard errors are
clustered at the country level using the wild cluster bootstrap from Cameron et al. (2008), and reported in parenthesis.* significant at 10%; ** significant
at 5%; *** significant at 1%.
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Antiretroviral Therapy (ART) The effects of ART on the HIV-Education gradient are po-
tentially ambiguous. On the one hand, ART increases survival probabilities (Greenwood et al.,
2013) and decreases the degree of infectiousness of the HIV+ population that takes ART (Apondi
et al., 2011). These effects, respectively, an increase in survival probabilities and a reduction in
infectiousness, unambiguously increase sexual behavior by reducing the future marginal cost of
today’s risky sex. On the other hand, if agents have to pay for this treatment they will reduce
today’s risky sex because of the higher future marginal cost. As long as the monetary cost of
ART does not offset the reductions in the marginal cost of sex through reduced mortality and
infectiousness, ART will increase risky sex.

Treatment is indeed costly. While prices of the most common first-line ART regiments have
declined over time, they remain relatively high for a vast majority of the population, with median
prices in low and medium income countries of USD115 per patient per year (ppy) in 2013. The
prices of USD330 (ppy) in 2013 for the second-line treatment, and more than USD1,500 for the
third-line treatment, (WHO, 2014). This is prohibitive for a vast majority of SSA households.21

In this context, if the more educated have more access to ART , then ART might help explain
the rebound in the most advanced stages. The findings in Table 2.6 point in this direction. We
estimate the HIV-Education gradient by epidemiological stage with and without ART controls in
panel A and B, respectively. Note that when we include ART, the estimate of HIV-Education
gradient in the most advanced stages of the epidemic decreases with respect to the counterpart
in panel A. This suggests that the provision of ART partially accounts for the rebound in the
gradient. This result should be taken with a grain of salt though, since we cannot directly test
the impact of the education gradient on HIV because the DHS does not provide information of
ART at the individual level.

21For example, income per capita in Malawi is on average USD250 in 2014, and the average income per capita
in SSA is USD1638. We also expect more-educated individuals to have greater access to ART treatments for
several obvious reasons—they (i) are more likely to live in the city (e.g., in Malawi, anyone who has a university
degree is likely to live in the two largest cities, Lilongwe or Blantyre, where the ART drugs are available), (ii) have
better transportation (do not have to walk several miles to refill prescriptions), or (iii) have access to someone in
a hospital who can help them gain priority status when necessary to obtain ART .
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Table 2.6: The HIV-Education Gradient: Specification by Stage

(A) HIV Status Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Education 0.0044*** 0.0022*** 0.0014*** 0.0020* 0.0025***
(0.000) (0.000) (0.000) (0.081) (0.000)

Year-Country Dum. Yes-Yes Yes-Yes Yes-Yes Yes-Yes Yes-Yes
Sample Size 58,560 112,024 48,615 50,535 118,425

(B) HIV Status with ART Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Education 0.0043*** 0.0029*** 0.0016*** 0.0011 0.0015***
(0.000) (0.0003) (0.0002) (0.0021) (0.0002)

ART Coverage 0.0003* -0.0025*** 0.0015*** -0.0012*** -0.0003***
(0.0002) (0.0005) (0.0000) (0.0001) (0.0000)

Education * ART Coverage -0.0000 -0.0000 -0.0000*** 0.0000*** 0.0000***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Year-Country Dum. Yes-Yes Yes-Yes Yes-Yes Yes-Yes Yes-Yes
Sample Size 58,560 112,024 48,615 50,535 118,425

Notes: We apply our stationary specification of the HIV-Education gradient separately for each stage of the
epidemic. We include year and country fixed effects in all columns. In both panels we include the same set of
controls as in our benchmark specifications in Table 2.3. We exclude Senegal (in Stage 0) and Niger (in Stage 1)
since WPP does not provide information about ART coverage for these countries. Standard errors are clustered
at the country level using the wild cluster bootstrap from Cameron et al. (2008), and reported in parentheses. *
significant at 10%; ** significant at 5%; *** significant at 1%.

2.3 The Model

This is a perpetual youth economy with heterogeneous agents where the mortality rate is a
function of the endogenously determined individual HIV status. There is an exogenous fertility
rate that feeds newborns into the economy at a constant rate f . Agents differ in education
level e ∈ E , income shock s ∈ S, sex type i ∈ I, HIV status h ∈ H and whether the agent
takes antiretroviral drugs(ARVs) against HIV d ∈ D. The education level is permanent and
exogenously given at the beginning of life. The sex type states whether agents are sex consumers
or sex producers and is permanent and exogenously determined.22

22That is, we focus on endogenezing the intensive margin of sex and leave out from the model the endogenous
decision on who becomes a sex consumer or a sex producer. This is clearly a caveat of this exercise. However, the
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The economy transits across aggregate HIV stages, g ∈ G ={-1, 0, 1-2, 3-4}, through a
sequence of unexpected shocks that reflect the evolution of the HIV epidemic. At stage -1, the
economy lives in a stationary Pre-HIV epidemic era; at stage 0, the HIV epidemics starts, but
agents are unaware of its workings; at stage 1-2, agents start to learn the sexual nature of the
process of HIV infection and the speed of learning differs by education group; finally, at stage
3-4, ARVs are introduced.

Let us cast the household problem recursively within and across aggregate HIV stages and
then explain it.

[Stage -1] The Pre-HIV Era

At this stage there are no individuals infected with HIV. At any given period t, agents with
education level, e ∈ E and income shock s ∈ S, solve the following problem depending on their
sex type, i ∈ I:

Risky sex-consumer household problem. Sex consumers choose consumption c, and non-
marital risky sex x to solve the following dynamic problem:

V (e, i, s,Φ) = max
c≥0,x≥0

χu(c, x) + βγ
∑
s′|s

π(s′|s)V (e, i, s′,Φ′) (2.7)

s.t
c+ p(Φ)x = zy(e)s (2.8)

s = (sn) with sn ∈ S and stochastic matrix π (2.9)

That is, sex consumers derive utility from c and x with preference parameter χ that depends on
the individual’ HIV status, and discount future at factor β times a survival probability γ. The
preference parameter χ controls the level of utility derived from c and x. Moreover, u(c, x) is
concave, continuous and twice diferenciable.23.We use consumption as numeraire and the relative
price of sex is denoted by p. Labor income is the product of a permanent component y(e) that
depends on the level of education, a transitory component s that follows a Markov process with
fact that we introduce a substantial degree of endogenous heterogeneity within each of the two groups implies
that part of our sex consumers will consume a positive but negligible amount of sex, and part of our sex producers
will produce a negligible amount of sex. The size of this population, for which sex transactions are small, which is
endogenous, determines the size of the population that consumes/sells risky sex. Moreover, the joint distribution
of education groups e ∈ E and sex types i ∈ I (with respective proportions ϑe=1,i, ϑe=1,−i, ϑe=0,i, ϑe=0,−i) is
endogenous throughout the model. However, we are still required to provide an exogenous measure for t = 0, see
Section 2.4 for more detail.

23We choose an additive separable CRRA functional form with common parameter ξ, at this stage the preference
parameter χ is set to one for all agents.
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given transition matrix π, and a permanent component z that depends on the individual’s health
status. Since there is no HIV, z is set equal to one for everyone. We assume that y(e)s > y(e)s̃
for s > s̃ and ∀ e ∈ E 24

Risky sex-producer household problem. Sex-producer households choose consumption c and
the fraction of time devoted to sex production l to solve the following dynamic problem:

V (e,−i, s,Φ) = max
c≥0,1≥l≥0

χu(c) + βγ
∑
s′|s

π(s′|s)V (e,−i, s′,Φ′) (2.10)

s.t
c = z[p(Φ)lα + y(e)s(1 − l)], (2.11)

Where s follows the income shock process (2.9). Sex-producer households derive utility from the
consumption good, but not from risky sex. The production of sex follows a technology x = lα

using time l with decreasing returns to scale, α ∈ (0, 1). This technology puts an upper bound
to the amount of sex produced. Notice that labor is inelastically supplied, this way, l denotes
the fraction of labor allocated to the production of risky sex and the remaining labor (1 − l) is
allocated to sex production. The permanent component z affects both the ability to generate
labor market income and sex production. This idea pursues the notion that HIV+ individuals do
not necessarily increase the production of sex as a response to their lower labor income.

At any point in time in the pre-HIV stage -1, the economy is summarized by the joint distri-
bution Φ of individual states (e, i, s). The aggregate state variable evolves according to:

Φ′ = H(Φ) (2.12)

Where the function H : M → M is the aggregate law of motion, mapping distributions to
distributions. H summarizes the distribution of type and education evolves from one period to
the next, however this is exactly what a transition function tell us. Define the transition function
Q : Z × B(Z) → [0, 1] by:

Q((e, i, s)(E , I,S)) = γ ∀ (e, i, s) ∈ Z and (E , I,S) ∈ B(Z)

Where Z consists of all n-tuples of E × I × S. 25

We now describe the recursive competitive equilibrium (RCE) for this Stage -1 economy. We
24This means that anyone at s > s̃, will have a higher labour income regardless of his/her education
25Define B(Z) as the set of Borel sets on Z, in particular E , G, S ∈ B(Z) where E , G, S are projections of Z

over the spaces E, G and S respectively. Let P be a probability measure on B(Z), then P : B(Z) → [0, 1].
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focus on stationary solutions and its associated equilibrium.

Definition of the Stage -1 (Stationary) Recursive Competitive Equilibrium

A Stage-1 stationary RCE is a value function V : Z → R, policy functions c : Z → R,
x : Z → R, and l : Z → R, price p, and a measure Φ ∈ M such that:

1. Given p the policy functions c(e, i, s), x(e, i, s) and l(e, i, s) solve the sex-consumer
household problem (2.7)-(2.8) and sex-producer households problem (2.10)-(2.11).

2. All markets clear.

∑
e,i,s

x(e, i, s) =
∑
e,−i,s

x(e,−i, s),

The sex markets clear and the consumption market clears by Walras law.

3. The stationary probability distribution,

Φ = H(Φ)

is induced by the equilibrium policy functions.

Notice that value function, policy functions, and price are not any longer indexed by
measures Φ because all conditions must be satisfied for the equilibrium stationary measure
Φ. The last requirement states that the measure Φ reproduces itself: starting with a
measure of education, sex type, and income shocks today generates the same measure
tomorrow.

[Stage 0] The Myopic Onset of the HIV Epidemic

The HIV epidemics starts in this stage, but agents are neither aware of its presence nor its
workings. Agents can be healthy or HIV infected h ∈ H = {−,+}. Specifically, agents live
with HIV myopia in two dimensions. First, agents are unaware of the fact that HIV infection
Then the evolution of the population distribution is,

Φ′(E , I, S) = F (Φ)(E , I, S) =
∑
e,i,s

Q((e, i, s)(E , I, S)) + fΦ((e, i, s′)(E , I, S)), (2.13)

which is the fraction of people with education E , type G and states in S as measured by Φ, that transit to (E , G, S)
as measured by Q. The last term accounts for the new born. Population of each group increases according to
respective fertility rate f .
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is occurring and that its spread depends on the amount of risky sex transactioned x, (either
consumed or produced) and the current prevalence rate, ϕ+ ∈ [0, 1]. Specifically, HIV infection
occurs at an endogenous rate:

ϕ+λ(x; ρ) = ϕ+ ex

ex + ρe−x , (2.14)

where ρ ∈ [0,∞) is a parameter that governs the mapping from the amount of sex transactioned
to the probability of HIV infection. The lower is ρ the higher is the probability of HIV infection
per amount of sex transactioned.26 Second, although agents are unaware of the nature of HIV
infection (2.14), at every period, agents observe higher average mortality rates (γ), lower average
labor market and sex production productivity (z) and a lower overall satisfaction (χ). Since agents
do no know that these changes in γ, z and χ are due to HIV, at every period, the economy makes
the mistake of taking these observations as unexpected one-time aggregate permanent shocks
in mortality rates, productivity and preferences . We model this as a sequence of permanent
unexpected aggregate shocks in γ, z and χ. That is, at every period, agents notice a change
between γt and γt−1, between zt and zt−1, between χt and χt−1 and agents assume that γ̃τ = γt,
z̃τ = zt, and χ̃τ = χt for all τ ≥ t.

In reality, however, this is not the case because the average survival rates, labor productivity
and felicity depend on the distribution of HIV status across the population which is endogenous
to risky sex. In particular, the true HIV distribution of the population evolves according toϕ−

t+1

ϕ+
t+1

 =
γ− 0

0 γ+

1 − ϕ+
t λρ(xt) 0

ϕ+
t λρ(xt) 1

1 + f f

0 1

ϕ−
t

ϕ+
t

 (2.15)

where ϕ+
t and ϕ−

t are the measures of HIV infected and HIV non-infected populations, γ+ and
γ− are survival rates for HIV infected and HIV non-infected populations, respectively, the odds of
HIV infection ϕ+

t λρ(x) are defined by (2.14), and f is the fertility rate for the aggregate economy,
26Notice that in order for the virus to start spreading we need to provide an initial HIV prevalence rate ϕ+

t=0 > 0.
The value for ϕ+

t=0 is exogenous, meaning that it is not directly linked to the risky sex practices between humans,
which is the main mechanism of HIV spread in this model. The calibration of the initial prevalence is described
in Section 2.4. We conduct some robustness on this assumption by setting the probability of infection equal
to λρ(x), that is, the aggregate rate of HIV infection in the economy does not explicitly affect the infection
probability. Our main results remained unchanged.
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which is independent of HIV status.27 Then, the evolution of the aggregate population is:

ϕt+1 = ϕ−
t+1 + ϕ+

t+1 (2.16)
with:
ϕ−
t+1 = γ−(1 − ϕ+

t λρ(xt))[(1 + f)ϕ−
t + fϕ+

t ]

ϕ+
t+1 = γ+

(
ϕ+
t λρ(xt)[(1 + f)ϕ−

t + fϕ+
t ] + ϕ+

t

)

Since our agents are myopic in HIV they only see the current population ϕt+1, the fertility
rate, and the previous population ϕt so as to infer an aggregate survival rate, γ̃t,

ϕt+1 = γ̃t(1 + f)ϕt. (2.17)

Notice that we can equate (2.16) and (2.17) to find the survival rate γ̃ observed by myopic
agents. We can proceed analogously to find the average labor productivity observed by agents,

z̃t = z−ϕ
−
t + z+ϕ

+
t

ϕ−
t + ϕ+

t

. (2.18)

And analogously for the preference parameter χ̃t. We calibrate the preference parameter χ+ such
that, conditional on infection and the state, the following inequality holds :

u(·)χ+ < u(·)χ− (2.19)

Given the myopic updating formulas for γ and z in (2.17), (2.18) and the preference parameter
calibration (2.19), we are now ready to formulate the risky-sex consumer and producer problems.
Importantly, notice that γ̃t and z̃t get updated every period and, hence, the formulation of the
households problem and the definition of equilibrium for the Stage 0 of the HIV epidemic needs
to reflect this phenomenon.

27Note that we can develop (2.15) as:[
ϕ−

t

ϕ+
t

]
=
[
γ− 0
0 γ+

] [
1 − ϕ+

t λρ(xt) 0
ϕ+

t λρ(xt) 1

] [
(1 + f)ϕ−

t + fϕ+
t

ϕ+
t

]
=
[
γ− 0
0 γ+

] [
(1 − ϕ+

t λρ(xt))[(1 + f)ϕ−
t + fϕ+

t ]
ϕ+

t λρ(xt)[(1 + f)ϕ−
t + fϕ+

t ] + ϕ+
t

]
and hence,

ϕ−
t+1 = γ−(1 − ϕ+

t λρ(xt))[(1 + f)ϕ−
t + fϕ+

t ] and ϕ+
t+1 = γ+

(
ϕ+

t λρ(xt)[(1 + f)ϕ−
t + fϕ+

t ] + ϕ+
t

)
.
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Risky-sex consumer household problem. Risky-sex consumers choose c, and x to solve:

Vt(e, i, s,Φ) = max
ct≥0,xt≥0

χ̃u(ct, xt) + βγ̃
∑
s′|s

π(s′|s)Vt+1(e, i, s′,Φ′) (2.20)

s.t
ct + pt(Φ)xt = z̃y(e)s (2.21)

γ̃ = γ̃t−1 = ϕt
(1 + f)ϕt−1

(2.22)

an income shock process that follows (2.9)

Risky sex-producer household problem. Sex producers choose c and l, to solve:

Vt(e,−i, s,Φ) = max
ct≥0,1≥lt≥0

χ̃u(ct) + βγ̃
∑
s′|s

π(s′|s)Vt+1(e,−i, s′,Φ′) (2.23)

s.t
ct = z̃ [(pt(Φ)lαt + y(e)s(1 − lt))] (2.24)

(2.25)

with income shock process (2.9), survival rates γ̃, productivity z̃, and preference parameter χ̃.

At any point in time in the HIV Stage 0, the economy is summarized by the joint distribution
Φ of individual states (e, i, s). Importantly, notice that HIV status is not part of the individual
states, as agents in our economy are unaware of HIV. The aggregate state variable of the economy
evolves following:

Φt+1 = Ht(Φt) (2.26)

Notice that our objective functions and prices are indexed by time which captures the non-
stationarity nature of the Stage 0 problem. This sequential formulation of the recursive problem
is required to address the unexpected changes in γ, z and χ. On the top of that, notice that
the myopia makes agents assume that last period’s mortality, productivity and preferences will
be permanent, that is, γ̃τ = γ̃ ∀τ ≥ t, z̃τ = z̃ ∀τ ≥ t and χ̃τ = χ̃ ∀τ ≥ t. Because of this
myopia, the changes in average mortality, productivity and felicity are not only unexpected, but
also occur at every period.
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Definition of the Stage 0 (Nonstationary) RCE

Given a Stage-1 stationary joint distribution of (e, i, s), Φt=0(g = −1), and a sequence of
myopically unexpected and permanent changes in mortality rates {γ̃t}∞

t=0, labor productiv-
ity {z̃t}∞

t=0 and preference shocks {χ̃t}∞
t=0, constructed from (2.17), (2.18) and (2.19),

respectively, a competitive equilibrium is a sequence of individual household functions
{Vt, ct, xt, lt : Z × M → M}∞

t=0, sequence of prices {pt}∞
t=0, and a sequence of mea-

sures {Φt}∞
t=0 such that, ∀t:

1. The policy functions ct(e, i, s), xt(e, i, s) and lt(e, i, s) solve the sex-consumer house-
hold problem (2.20) and sex-producer households problem (2.23).

2. All markets clear.

∑
e,i,s

xt(e, i, s) =
∑
e,−i,s

xt(e,−i, s),

The sex markets clear and the consumption market clears by Walras law.

3. The aggregate law of motion is,

Φt+1 = Ht(Φt)

where Φ is the joint distribution of (e, i, s) is induced by the equilibrium policy
functions.

4. The true distribution of the HIV population, which is used to construct the sequences
{γ̃t}∞

t=0, {z̃t}∞
t=0 and {χ̃t}∞

t=0, endogenously evolves according to (2.15).

The main characteristic of this Stage 0 is that agents do not know that the HIV epidemic
is unravelling. That is, agents in this Stage 0 do not internalize the evolution of the HIV
(2.15) because they are unaware that their sexual behavior affects their chances of survival, labor
productivity and felicity. We model this through a myopic updating of γ, z and χ. Where agents
perceive the updates in γ, z and χ as permanent changes. This implies that after one of these
permanent changes, agents rationalize their current behavior by looking forward and solving the
entire transition from today to a new steady state associated with the new triple (γ̃, z̃, χ̃). That
is, we need to solve for a transition every time there is a perceived permanent change. Because
this permanent changes occur every period, then at every period we need to compute the entire
transition. The equilibrium value functions and policy functions are the sequence of first-period
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solutions to the sequence of transitional problems. The sequence of myopic permanent changes
do not go ad infinitum because Stage 1-2 (Maturity) arrives after the economy has been a finite
amount of periods T0in Stage 0.

[Stage 1-2] Learning the HIV Epidemic

At this stage, agents are aware of the HIV epidemic and its consequences: higher mortality rates,
lower productivity and lower felicity for HIV infected individuals. Agents are aware of their own
HIV status and that of the rest of the population.28 However, at the beginning of Stage 1-2,
agents are not fully aware of the sexual nature of HIV infection in so far they do not accurately
know ρ in (2.14). Although agents do not know the odds of infection as function of risky sexual
activity, agents learn about it through Bayesian updates on ρ with some noise.

The speed in which agents learn about the actual odds of infection differs across education
groups, this being faster for the more-educated agents. The learning speed is the only source of
heterogeneity across education groups introduced in this stage. The initial degree of accuracy in
which individuals know the odds of infection is the same across education groups, this follows
from the fact that both groups were completely unaware of ρ in the previous Stage.
More precisely, each educational group e ∈ E has a prior belief about the distribution of λ(x; ρ),
denoted by the p.d.f Pe(λ(x; ρ)). Furthermore, at the beginning Pe(λ(x; ρ̃o)) ∼ N(λ(x; ρ̃o), σ2

ε)
and Pe=1(λ(x; ρ̃o)) = Pe=0(λ(x; ρ̃o)). Afterwards, agents receive a signal λ̃ρ(x) per period. This
signal contains information about the actual probability of infection plus some noise εt that is
normally distributed with zero mean and variance σ2

ε(e). Explicitly:

λ̃ρ(x) = λρ(x) + εt, (2.27)

where the signal follows the following covariance stationary process:

εt = vt + 1e=0ut (2.28)

with v ∼ N(0, σ2
v) and u ∼ N(0, σ2

u). The dummy 1e=0 equals one if an agent belongs to the less
educated group, and zero otherwise. That is, the signal is noisier for the less educated individuals
than for the more educated individuals. In particular, every period t agents update their beliefs
Pe(λρ(x)) given the information up to t− 1 according to Bayes rule:

Pe(λρ(x)) = Pe(λρ(x)|λ̃ρ(x)) = Pe(λ̃ρ(x)|λρ(x))Pe(λρ(x))
Pe(λ̃ρ(x))

(2.29)

28See Carli and Santaeulalia-Llopis (2019) for an economy in which individuals can hide their HIV status.
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where the Bayesian updates will transit faster to the actual odds of HIV infection for the more
educated individuals due to (2.28).29

Let us now write the nonstationary recursive problem and then explain it

Risky-sex consumer household problem. Risky-sex consumers choose c, and x to solve:

Vt(e, i, s, h,Φ) = max
ct≥0,xt≥0

χ(h)u(ct, xt) (2.30)

+ β
∑

h′|h,s′|s
[γ(h′)λ̃ρ(e)(h′|xt, h)π(s′|s)Vt+1(e, i, s′, h′,Φ′) ]

subject to,

ct + pt(Φ)xt = z(h)y(e)s (2.31)

an income shock process that follows (2.9).

Risky sex-producer household problem. Sex producers choose c and l, to solve:

Vt(e,−i, s, h,Φ) = max
ct≥0,1≥lt≥0

χ(h)u(ct) (2.32)

+ β
∑

h′|h,s′|s
[γ(h′)λ̃ρ(e)(h′|xt, h)π(s′|s)Vt+1(e,−i, s′, h′,Φ′) ]

subject to,

ct = z(h)[pt(Φ)lαt + y(e)s(1 − lt)], (2.33)

with income shock process (2.9).

At any point in time in the HIV Stage 1-2, the economy is summarized by the joint distribution
Φ of individual states (e, i, s, h), which incorporates individual HIV status. In this Stage 1-2 of
the epidemic, agents are aware of their HIV status, and that of the rest of the economy. The
aggregate state variable of the economy evolves following Φt+1 = Ht(Φt). Notice that even
though agents are aware of the average probability of infection of the rest of the economy they
cannot infer the true value of ρ, moreover, even if agents are aware of the exact infection process
(namely 2.14), having knowledge of the average probability of infection is not enough to retrieve
the value of ρ.

29We assume normality of the prior belief to simplify the calculations, however this can be adapted to mimic
more complex formulations.
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An additional implication of the learning mechanism is that agents will also update their
own mortality expectations and use them to make allocation decisions. This means agents keep
subjective expectations in mortality since these expectations differ from their true individual
probability of survival30.

As it was the case of Stage 0, in Stage 1-2, the objective functions and prices are indexed by
time which captures the nonstationarity nature the Stage. In the long-run, when both education
groups have finalized their learning process of the odds of HIV infection a stationary RCE can be
defined for Stage 1-2.

In this stage all agents in the economy learn about the risk of infection, a natural extension
to this set up would be to make the proportion of people that learn increase gradually. This
extension represents the introduction a new state variable since it will be necessary to keep track
of the proportion of the population that is still miopic and the ones who are learning. This can
be done in order to smooth out the transition from HIV Stage 0 to HIV Stage 1-2 and see a
hump at the peak, as in the data.

30This is a consequence of the fact that agents learn about their risk of infection which is directly linked with
their probability of survival. The lower people think their odds of infection are, (this happens at the beginning of
the learning stage) the higher are their believed chances of survival.
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Definition of the Stage 1-2 (Nonstationary) RCE

Given a Stage 0 joint distribution Φt=0(g = 0), and a simulated sequence of infection
probabilities {λ̃ρ(e)}∞

t=0 by education group, a competitive equilibrium is a sequence of
individual household functions {Vt, ct, xt, lt : Z × M → M}∞

t=0, sequence of factor prices
{pt}∞

t=0, and a sequence of measures {Φt}∞
t=0 such that, ∀t:

1. Given {pt}∞
t=0 the policy functions ct(e, i, s, h), xt(e, i, s, h), and lt(e, i, s, h) solve

the sex-consumer household problem (2.30) and sex-producer households problem
(2.32).

2. All markets clear.

∑
e,i,s,h

xt(e, i, s, h) =
∑

e,−i,s,h
xt(e,−i, s, h),

The sex markets clear and the consumption market clears by Walras law.

3. The aggregate law of motion is,

Φt+1 = Ht(Φt)

where Φ is the joint distribution of (e, i, s, h) is induced by the equilibrium policy
functions.

4. The true distribution of the HIV population endogenously evolves according to (2.15).

5. The beliefs of on the odds of infection by education group evolve according to Bayes
rule (2.29) and signal (2.28).

Remark. The Stage 1-2 stationary RCE is the limiting case of the nonstationary RCE in
which beliefs of both education groups have converged to the actual odds of infection and
the cross-sectional distribution Φ does not change over time. In that case, we can drop all
time subscripts.
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[Stage 3-4] The Era of ARVs

We assume that ARV drugs entirely revert the negative effects of HIV on mortality and productiv-
ity, but not on felicity. This pursuits the argument that receiving treatment is not necessarily the
same as being completely healthy, hence this is an implicit cost of ARV treatment that will have
a positive effect on the equilibrium price of risky sex. For simplicity only those who are infected
can receive treatment31. Let us now write and explain the nonstationary recursive problem.
Treatment is provided stochastically to the infected population, with the educated individuals
having a higher probability to receive treatment ηt,e=1 > ηt,e=0 at all t32 . This means that ARV
drugs now represent a new state variable d ∈ D = {d+, d−} as we now need to keep track of the
portion of the infected population receiving treatment (d+) and that which doesn’t (d−).
The aggregate proportion of the population that receives drugs at each t is deterministic and repre-
sented by the monotonically increasing sequence {η}∞

t=0, where 0 ≤ ηt ≤ η̃ ∀t with limt→∞ ηt = η̃

and η̃ ∈ (0, 1]. In addition, ARV’s affect the average probability of infection by decreasing the
viral load and, hence, the infectiousness of those infected. In our formulation this would be
translated into a proportional increase of ρ with respect to the coverage rate.
In this stage agents keep learning about the value of λρ(x) according to (2.29).
Then the distribution of HIV positive population evolves according to:


ϕ−
d−t+1

ϕ+
d+t+1

ϕ+
d−t+1

 =


γ− 0 0
0 γ− 0
0 0 γ+




1 − λt,ρ 0 0
ηtλt,ρ ηt ηt

(1 − ηt)λt,ρ 1 − ηt 1 − ηt



1 + f f f

0 1 0
0 0 1



ϕ−
d−t

ϕ+
d+t

ϕ+
d−t

 (2.34)

Let us now write the nonstationary recursive problem:

Risky-sex consumer household problem. Risky-sex consumers choose c, and x to solve:

Vt(e, i, s, h, d,Φ) = max
ct≥0,xt≥0

χd(h)u(ct, xt) (2.35)

+ β
∑

d′|d,h′|h
s′|s

[ηt(d′|e, d)γd(h′)λρ(e)(h′|xt, h)π(s′|s)Vt+1(e, i, s′, h′, d,Φ′) ]

31The Joint United Nations Programme on HIV/AIDS (UNAIDS) supplies ARVs coverage data only for that
portion of the population that was infected and received treatment.

32The current data does not provide treatment composition by educational groups therefore we approximate
these probabilities by ηt,e=1 = (1 + ι)ηt and ηt,e=0 = (1 − ι)ηt, where ηt is the aggregate coverage rate observed
in the data at t, with ι controlling the odds of treatment with respect to the aggregate by education group.
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subject to,

ct + pt(Φ)xt = zd(h)y(e)s (2.36)

an income shock process that follows (2.9).
Risky sex-producer household problem. Sex producers choose c and l to solve:

Vt(e,−i, s, h, d,Φ) = max
ct≥0,1≥lt≥0

χd(h)u(ct) (2.37)

+ β
∑

d′|d,h′|h
s′|s

[ηt(d′|e, d)γd(h′)λρ(e)(h′|xt, h)π(s′|s)Vt+1(e,−i, s′, h′, d,Φ′) ]

subject to,

ct = zd(h)[pt(Φ)lαt + y(e)s(1 − lt)], (2.38)

with income shock process (2.9).

Notice that if ARVs fully revert the effects of HIV on mortality rates, productivity but not
preferences then:

γd+(+) = γ− = γ

zd+(+) = z− = z

χd+(+) = χ− = χ+

However for those who are infected but not treated, survival rates, productivity and preferences
go back to that of the maturity stage:

γd−(+) = γ+

zd−(+) = z+

χd−(+) = χ+

At any point in time in the HIV Stage 3-4, the economy is summarized by the joint distribution
Φ of individual states (e, i, s, h, d), which incorporates individual HIV status and treatment. In
this Stage 3-4 of the epidemic, agents are know if they received drugs as well as their HIV
status, and that of the rest of the economy. The aggregate state variable of the economy evolves
following Φt+1 = Ht(Φt). Notice that, as it was the case of Stage 1-2, in Stage 3-4, the objective
functions and prices are indexed by time which captures the nonstationarity nature of this stage.
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In the long-run, we find a stationary RCE for Stage 3-4 that differs from Stage -1 in that some
proportion of the population will be infected with HIV and a deterministic proportion of the
population will receive treatment.

Definition of the Stage 3-4 (Nonstationary) RCE

Given a Stage 1-2 distribution Φ0(g = 1 − 2) and a deterministic sequence for the treated
proportion of the population {ηt}∞

t=0 , a competitive equilibrium is a sequence of individual
household functions {Vt, ct, xt, lt : Z × M → M}∞

t=0, sequence of factor prices {pt}∞
t=0,

and a sequence of measures {Φt}∞
t=0 such that, ∀t:

1. Given {pt}∞
t=0 the policy functions ct(e, i, s, h, d), xt(e, i, s, h, d) and lt(e, i, s, h, d)

solve the sex-consumer household problem (2.35) and sex-producer households prob-
lem (2.37).

2. All markets clear.

∑
e,i,s,h,d

xt(e, i, s, h, d) =
∑

e,−i,s,h,d
xt(e,−i, s, h, d),

The sex markets clear and the consumption market clears by Walras law.

3. The aggregate law of motion is,

Φt+1 = Ht(Φt)

where Φ is the joint distribution of (e, i, s, h, d) is induced by the equilibrium policy
functions.

4. The true distribution of the HIV population endogenously evolves according to (2.34).

Remark. The Stage 3-4 stationary RCE is the limiting case of the nonstationary RCE in
which the cross-sectional distribution Φ does not change over time. In that case, we can
drop all time subscripts.
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2.3.1 Pseudo-Algorithm Solution

We take the following steps to find a solution to our quantitative model for a given parametrization
θ:

1. Find the stationary RCE for Stage -1 (Pre- HIV Era).

2. The HIV epidemic starts in Stage 0 (HIV Myopia); remember that at every period of this
stage arrives an unexpected permanent shock to mortality γ̃, productivity z̃ and felicity χ̃.
Then, for every period, we need to compute both the new stationary RCE associated with
the new γ̃, z̃, χ̃ and the corresponding nonstationary RCE that captures the equilibrium
transition from the current period (when the permanent shock occurs) to the period when
the economy reaches the stationary RCE (we compute this transition backwards). Note
that we are only interested in the first value function of each of those transitions, because
every next period a new set unexpected permanent shocks (γ̃, z̃, χ̃) occur, which requires
us to recompute again the associated stationary and nonstationary RCE.

3. Stage 1-2 (HIV Maturity) arrives as an unexpected shock that hits Stage 0 at T0. Starting
with a set of common prior beliefs ρ̃0, simulate a series of sequentially updated beliefs by
education group until both convergence to the actual ρ. Solve the stationary RCE using ρ,
and then solve the transition backwards using the simulated series for beliefs {ρt(e)}T

t=T0 .
Where T is an arbitrary large number representing the time needed to converge to the
stationary RCE.

4. Stage 3-4 (ARV Era) arrives as an unexpected shock that hits the transition in Stage 1-2
after T1 periods. We compute the stationary RCE with full ARV coverage. Then solve
the transition backwards for a given monotonically increasing sequence of coverage levels
{ηt(e)}T

t=T1 by education.
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2.4 Calibration

In this Section, we discuss our calibration strategy. Some parameters which have direct ob-
servable data analogs were assigned its respective values, or values that are commonly used
in the literature (β, α, ξ, γ−, γ+, f, ye=0/ye=1, s, z+, π, ϑe=1,i, ϑe=1,−i, ϑe=0,i, ρ̃o, ϕ

+
t=0, T1 ). Most

of these parameters are calibrated to match the pre-HIV Era. The rest of the parameters
(T0, ρ, ϑe=0,−i, σ

2
ϵ (e), χ+, ι) were picked to match several targeted moments in the data. We

choose the same number of moments as of free parameters (i.e. exactly identified moment es-
timation). This procedure involves solving the model many times as to minimize the distance
between the model generated moments and the moments observed in the data 33.
We explicitly target the cross country educational gradient coefficients documented in Santaeulalia-
Llopis and Iorio (2016), and the evolution of the Malawi HIV prevalence from year 1990 to 2010.
34 The parameter governing the risk infection probability ρ, the time to reach maturity T0 and
the proportion of sex producers in the economy ϑe=0,−i are calibrated to match features of the
HIV prevalence across education groups at the peak of the epidemic. The speed of learning across
education groups σ2

ϵ,e=1, σ
2
ϵ,e=0, as well as the preference shock χ+, are calibrated to match the

behavior of a mature HIV epidemic. Finally, treatment coverage by education ι and a new value
of ρ, are calibrated to reflect the effects of the introduction of ARVs at the last stage of the
epidemic. We now discuss our calibration strategy in detail by stage of the epidemic.

Stage -1: Pre-HIV Era

We calibrate β to 0.98 for all stages, this reflects a subjective discount rate of 2% of the
economy. The relative coefficient of risk aversion ξ is set to 3 as to reflect a high risk averse
country like Malawi. Survival rates γ = 97.7% for the pre-epidemic stage are calibrated in such
a a way that the individuals have an average life expectancy of 64 years. Remember that agents
enter the model when they are 18 years old. The fertility rates f = 4% reflect the average fertility
rate in Malawi in 2016 according to the World Bank Sustainable Development Indicators.

Labor income is normalized to one for educated individuals, i.e., ye=1 = 1. The National
Statistical Office of Malawi (2013) shows that the educational premium for someone who has
completed secondary education is at least of 55% compared to someone who has not completed
primary school, so we set ye=0 = .6452. Households are subject to income shocks, s, that take

33Our objective function is based on the SMM method (Simulated Method of Moments). Specifically, let the
targeted moments be M(θ) = [m−m̂(θ)] where m is a vector of observed moments and m̂(θ) is the vector of model
generated moments given parametrization θ. Then, we construct the objective function minθ M(θ)T WM(θ),
where the weighting matrix W is the diagonal matrix.

34Although the model is not explicitly calibrated to a particular country, we use data from Malawi to discipline
most of the parameters of the model.
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two possible values: s equals to one in good times and s equals to .4 in bad times which mimics
a 60% loss of household income during a period of unemployment Magalhaes and Santaeulalia-
Llopis (2018). The income shock follows a Markov process with a transition matrix π from high
(i.e employment) to low (i.e unemployment) that is calibrated so that at all times 5.4% of the
population is under low income35. Since there is no HIV in at this point, labor and sex productivity
z and preference parameter χ are equal to one. We choose α such that the proportion of sex
income in the aggregate economy is 7% Sulaimon et al. (2018)36; this in turn, implies a proportion
of sex income in the total income of sex producers, ω of 12%.

We also need to choose the proportion of educated and non educated individuals. We set
the proportion of educated to be 13%37 as observed in the DHS surveys for Malawi; we classify
as educated those with completed primary education, this anchors the estimation of the model-
generated HIV-education gradient. To see this, notice that the individuals who didn’t complete
primary education average 3.35 schooling years, and those with at least primary education average
8.32 schooling years. We use use this difference in schooling years across education for the
estimation of the HIV-education gradient with the model-generated data.

We assume that all sex producers are non educated (ϑe=1,−i = 0 i.e ϑe=1,i = 0.13 from (37)).
This is reasonable either because prostitutes are less educated or because teenagers that engage in
sexual activity (STDs, pregnancy, etc.) are less likely to finish school Duflo et al. (2015b), Dupas
(2011b). This implies that all educated individuals are sex consumers. Consequently, we need
to choose the proportion of sex producers in the economy (ϑe=0,−i), which in turn delivers the
proportion of sex consumers among the uneducated people (ϑe=0,i). We choose this proportion
to match the HIV prevalence rate at the peak of the epidemic in the next stage as we discuss
next. Finally, we set the initial prevalence ϕ+

t=0 to 0.5%, this is number is directly linked with the
calibration of the duration of the next stage (Stage 0 HIV Myopia) T0 because the larger is ϕ+

t=0,
the less periods necessary to reach the peak.

Stage 0: Myopic Onset of the HIV Epidemic

At this stage the ability of infected individuals to produce both sex and the consumption good
at a given scale z is reduced by 65%. We choose the value of z+ such that the proportion of
sex income among sex producers at the peak is the same ω as in the pre-HIV stage. Additionally
the survival probability of someone who is infected with HIV reduces to γ+ = 90%, which is

35This is calibrated to the average unemployment rate in Malawi in 2019, Source: ILOSTAT database
36Sulaimon et al. (2018) mention that in Indonesia, Malaysia, the Philippines and Thailand, the sex sector

(prostitution) accounts for between 2% and 14% of the Gross Domestic Product.
37 In the model this is the sum of the proportion of educated consumers plus educated producers ϑe=1,i +

ϑe=1,−i = 0.13

97



translated to a life expectancy of 11 years after the moment of infection.

There are three additional parameters to calibrate. The first parameter carries from the
previous stage, which is the proportion of sex producers in the economy ϑe=0,−i. The second is
a parameter, ρ, that governs the true rate of infection as a function of risky sex, λ(x; ρ). The
third is the time until the epidemic reaches maturity T0. We choose these three parameters such
that we match the HIV prevalence by education group at the peak of the epidemic as well as the
number of years needed to reach the peak38.

Once we have the proportion of individuals that are producers in the economy ϑe=0,−i, we
use the joint distribution of education groups and sex types (producers vs. consumers) at the
pre-HIV stage (ϑe=1,i, ϑe=1,−i, ϑe=0,i, ϑe=0,−i) to feed the economy at each and every period (and
stage) with a fertility that maintains these proportions at birth.

We finally need to choose the magnitude of the preference shock χ+. This parameter is
chosen in the next stage to match the HIV education gradient just before the introduction of
ARVs.

Stage 1-2: HIV Maturity, learning the HIV Epidemic

Recall that in this stage agents are aware of the existence of HIV, but their knowledge of
the degree of infection risk through sex λ(x; ρ) is imperfect. They learn about λ(x; ρ) (i.e., ρ)
through Bayesian updates. The speed at which agents learn about the true risk of infection de-
pends on two factors. First, the noise of the updating signal σ2

ε(e) which differs across education
groups. Second, how far their initial prior of the infection probability λ̃o (i.e., ρ̃o), is from the
true value λ (i.e., ρ). This initial prior belief is common across education groups. 39

The initial common prior belief ρ̃o is set to an arbitrary high number following from the fact that
agents were myopic in the previous stage and their initial belief of the risk of infection through
sex λ̃o = λ(x, ρ̃o) is approximately zero.
We choose the σ2

ε(e) by education group and the magnitude of the preference shock χ+ that
carries from the previous stage; such that we match the HIV-education gradient (i.e., HIV preva-
lence by education group) and the average time that it takes to transit from the peak of the HIV
epidemic to the end of Stage 1-2 (HIV Maturity). Finally we select the duration of this stage
(T1) such that year(T0)+T1 = 2005 which is the year in when ARVs were introduced in Malawi.

38The first HIV positive patient in Malawi was detected in 1985. In 1986 the government of Malawi started
implementing preventive measures against the spread of the virus Mwale (2002). After calibration, the agents in
our model become aware of the existence of the virus in year 1986. In section 2.6 we explore alternative scenarios
in which the population starts learning about the virus in earlier stages of the epidemic.

39We tried a version having a common noise for the signal updates σ2
ε and different initial prior beliefs ρ̃o(e),

however this set up did not guarantee different convergence times across education groups.
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Stage 3-4: The Era of ARVs

In this stage, the HIV/AIDS effects disappear from the budget constraint of those who are
treated, therefore they now have the same survival rate as if healthy. To inform the model about
the evolution across time of the proportion of the infected population receiving ARV treatment,
we use aggregate treatment data from Malawi starting in 2005 until 2018.40 We calibrate the
parameter governing the share of educated and non educated individuals receiving ARV’s ι as to
match the HIV gradient of this stage.
In addition, the introduction of ARV treatment reduces the overall degree of infectiousness in the
economy, this translates into a reduction of the true infection rate conditional on sex consumption
λ(x; ρ)(i.e an increase in ρ). We calibrate the new value of ρ as to match Malawi’s average
prevalence rate in 2018. Table 2.7 summarizes the calibration of the parameters of the model.

Table 2.7: List of parameters

Description Symbol
Perceived True Stage

Miopic Onset ART Value Dependent
Discount factor β 0.98 0.98 No
Labor share of sex income α 0.01 0.01 No
Risk aversion ξ 3.00 3.00 No
Survival rate healthy (%) γ(−) γ̃ 97.7 97.7 97.7 Yes
Survival rate infected (%) γ(+) γ̃ 90.0 90.0 90.0 Yes
Survival rate infected but treated (%) γd+(+) - - 97.0 97.0 Yes
Preference parameter healthy χ(−) χ̃ 1.0 1.0 1.0 Yes
Preference parameter infected χ(+) χ̃ 230 230 230 Yes
Preference parameter infected but treated χd+(+) - - 230 230 Yes
Fertility rate (%) f 4.0 4.0 No
Understanding of epidemic e = 1 ρe=1 - ρ̃e=1 ρ̃e=1 ρ41 Yes
Understanding of epidemic e = 0 ρe=0 - ρ̃e=0 ρ̃e=0 ρ Yes
Education premium (%) ye=0/ye=1 45.0 45.0 No
Productivity if infected (%) z(+) z̃ 65.0 65.0 65.0 Yes
Productivity if treated (%) zd+(+) - - 100.0 100.0 Yes
Income shock (%) s 60.0 60 No

40Recent DHS data does not provide micro level information to distinguish if ARV treatment is higher among
educated individuals, therefore we are unable to compute any gradient related to ARV treatment.

41ρ = 19 for the Miopic and Onset stages, however once ARVs are introduced the overall infectiousness reduces;
this is translated into an increase of to ρ = 44 for the ARV stage.
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Table 2.7 – Continued

Description Symbol
Perceived True Stage

Miopic Onset ART Value Dependent
Transit probability from sg to sg pgg 0.95 0.95 No
Transit probability from sg to sb pgb 0.05 0.05 No
Transit probability from sb to sg pbg 0.90 0.90 No
Transit probability from sb to sb pbb 0.10 0.10 No
Initial proportion of type e = 1, i ϑe=1,i 13.0 13.0 No
Initial proportion of type e = 1,−i ϑe=1,−i 0.0 0.0 No
Initial proportion of type e = 0, i ϑe=0,i 57.6 57.6 No
Initial proportion of type e = 0,−i ϑe=0,−i 29.4 29.4 No
Variance of the signal’s noise ϵ for e = 1 σ2

ϵ,e=1 - 7.9 7.9 - No
Variance of the signal’s noise ϵ for e = 0 σ2

ϵ,e=0 - 84 84 - No
Initial mean of prior Pe=1(λ(x; ρ̃o(e = 1))) ρ̃o - 15700 - - No
Initial mean of prior Pe=0(λ(x; ρ̃o(e = 0))) ρ̃o - 15700 - - No
Odds of treatment parameter ι - - 0.074 - No
Initial Prevalence (%) ϕ+

t=0 0.5 - - 0.5 No
Duration of HIV Myopia (g=0) (Years) T0 ∞ - - 17 No
Duration of HIV Maturity (g=1-2) (Years) T1 - ∞ - 16 No

2.4.1 Model Fit

Table 2.8, presents the data moments and shows how well the benchmark model matches them.
The benchmark calibration matches the HIV-Education Gradient very well. Figure 2.4 shows
the isomorphic representation of the estimated HIV-Educ gradient. The model also gets pretty
close to the actual values of the prevalence all along the evolution of HIV epidemic; Figure 2.7
compares the prevalence generated by the model with data for Malawi. Note that the Model’s
prevalence’s is always within the 95% confidence interval. Keep in mind however, that the model
was calibrated using cross country data for the gradient, and not exclusively prevalence data for
Malawi, therefore we consider this a very good approximation for the prevalence.
We have explicitly modelled the direct link between risky sexual behaviour and the probability of
infection across education groups through λρ(x), as to capture the parallel evolution between the
HIV-Education Gradient and disparities in risky sexual behaviour by education that is found the
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data, therefore the model is able to generate a Risky sex Education gradient that is consistent
with the U-shaped pattern of the HIV education gradient and the U-shape of Risky sex Education
gradient in the data. Figure 2.6 Panel (a) illustrates this pattern.
Additionally, the model performs remarkably well mimicking other moments relevant for the HIV
epidemic. In the model the average HIV incidence at the peak is 1.66%, close to 1.6% that
is reported in the data42 for the population between 14-49 years in Malawi. The model also
captures the slow down of population growth before the peak of the HIV epidemic and the
increased population growth afterwards.
The Model also performs well in other non-targeted dimentions. Panels (a) and (b) of Figure 2.9
illustrate the behaviour of the flow of (HIV) infections and the flow of (HIV) deaths compared
to the data.

Table 2.8: Targeted Moments

Observation Data Model
HIV Education gradient at the peak (1999) 0.0099 0.0112
HIV Education gradient at the end of Maturity (2005) -0.0005 -0.0015
HIV Education gradient ARV Stage (2018) 0.0046 0.0047
Prevalence at the peak (1999) 14.6% 14.1%
Prevalence at the end of Maturity (2005) 12.2% 13.1%
Prevalence ARV Stage (2018) (Stage 3-4 ARV Era) 9.2% 9.4%
Time to reach from bottom to peak (in years) 29 28
Time to reach from peak to end of Maturity (in years) 6 6

42Source: UNAIDS Estimates 2019.
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Figure 2.6: HIV Education Gradient, comparison between model and data

Figure 2.7: Evolution of the HIV Prevalence rates

Notes: The figure compares prevalence generated by the model and data for Malawi. Data source: UNAIDS
estimates 2019.
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2.4.2 Comparative Statics

This section performs comparative statics concerning the parameters estimated in Section 2.4.
Figure 2.8 shows contour-maps for some of the moments of interest. These moments were com-
puted using model generated data for given combination of parameter values. The red contour
line represents the value observed in the data that is to be matched. The intersection between
the red lines was used as the initial guess for the SMM estimation, this considerable speeds up
the estimation. Looking at the contour plots and the red lines, we can easily see the parameters
that identify each the moment. We now explore identification in some detail.
Panel (a) and (b) show that the HIV education gradient at the peak is more sensitive to variations
of the initial proportion of less educated Risky-sex consumers ϑ−i,e=0, whereas the parameter gov-
erning the infection rates ρ has a larger impact on the prevalence’s at the peak.
In Panels (c) and (d) we see that both the standard deviation of the signal’s noise for less-educated
σ2
ϵ,e=0 and the preference parameter χ, play a role in determining the HIV education gradient.

However, Panel (d) shows that the time to reach the prevalence at the bottom is mostly sensitive
to the preference parameter χ.
Finally, Panels (e) and (f) show that the HIV education gradient responds strongly to changes in
the coverage differences by education ι(e) and that the level of the prevalence moves along with
the new value of the infection rate parameter ρ.
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Figure 2.8: Comparative Statics

(a) Education Gradient at the peak (b) Prevalence at the peak

(c) Education Gradient at the end of Maturity (d) Years to reach from peak to end of Maturity

(e) Education Gradient ARV stage (f) Prevalence ARV stage

Notes: Panels (a) and (b) show sensitivity of the HIV Education Gradient at the peak and the prevalence at the
peak with respect to the infection parameter ρ and the initial proportion of sex producers ϑ−i,e=0. Panels (c) and
(d) display the sensitivity of the HIV Education Gradient at the end of Maturity with respect to the preference
parameter χ and the variance of the signal for less educated individuals σ2

ϵ,e=0. Finally panels (e) and (f) show
the sensitivity of the the gradient and prevalence after the introduction of ARV’s, this time with respect to the
coverage difference parameter ι and the new value of ρ.



Figure 2.9: Non Targeted Moments

(a) New infections (b) New Deaths

Notes: Panels (a) and (b) show the evolution of the new infections and new deaths respectively. Panel (a) shows
that the model does are very good job matching infections although the series was not directly targeted.

2.5 What drives the epidemic?

Education affects the risky sex behaviour of individuals through three different channels along
the evolution of the HIV epidemic: First, higher current income increases the amount of risky sex
consumed because risky sex is a normal good. This channel is present throughout the complete
duration of the HIV epidemic. Second, during Stage 1-2 more-educated individuals acquire
information about the negative effects of HIV faster than their less-educated counterparts, which
in turn reduces their risky sex consumption. Third, at stage 3-4, educated individuals have better
access to (costly) ARV’s that mitigate the effects of the disease, therefore increasing incentives
for risky sex consumption. In this section we explore counterfactual experiments neutralizing the
second and third channels, while keeping the first present. Note that neutralizing the first channel
would be analogous to having a starting HIV Education-gradient equal to zero.
Depending on their magnitude, changes of the education composition of the population can also
affect the dynamics of the HIV epidemic 43. To account for this, we experiment by exogenously
varying the education composition of the population across stages to resemble that of Malawi.

2.5.1 Removing Learning Asymmetry

Experiments 1-2: Removing learning differences between education groups
We explore two different ways of removing learning differences between the educated and the

43Note that throughout the different stages of the benchmark calibration we indirectly maintained the joint
distribution of education groups and sex types constant across time.
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less-educated:

1. Making the less-educated individuals learn at the same (fast) speed as their more-educated
counterparts. This means setting σ2

ϵ,e=0 = σ2
ϵ,e=1 = 7.9

2. Making the more-educated individuals learn at the same (slow) speed as their less-educated
counterparts. This means setting σ2

ϵ,e=1 = σ2
ϵ,e=0 = 84

Columns 3-4 on Table 2.9 show the results for these two experiments. If the less-educated learn
as fast as the educated (Column 3), we find that 52% of the HIV Education gradient and 53%
of the Partners Education gradient is explained by the information differences, as before this
effect is carried out to the next stage, where 36% of the HIV Education gradient is explained by
information differences coming from the previous stage.
Similarly, if the more-educated learn at the same slow rate as the less educated (Column 4 ), we
see that the gradient keeps increasing, to reach a peak at 0.08. In this experiment gents learn to
slow therefore delaying the maturity of the epidemic.
Figures 2.10 illustrate these counterfactual experiments against the benchmark.

2.5.2 Removing Differences in Access to ARVs

Experiment 3: Removing coverage access differences between education groups
This experiment involves setting ι = 0. This means that educated individuals will get the same
chance of treatment as everyone else in the population. Column 5 on Table 2.9 show the results
for this experiment. We can see that the gradient continues to be negative, consistently the HIV
prevalence at after ARV introduction is higher.

2.5.3 Accounting for the evolution of the education composition

Experiment 4: Accounting for the evolution of the education composition in Malawi
In this experiment we exogenously modify the education composition of the population to mimic
that of Malawi. We achieve this by modifying the proportion of new born educated such that
along the equilibrium path the resulting (endogenous) proportion of educated vs less educated
resembles the evolution path observed in the data. In 1977 only 7.3% of the population above 25
years old had completed primary education. By 2000 this number increased to 19.8% (WorldBank,
2020).

106



Table 2.9: Counterfactual Experiments

Observation Benchmark
Experiments

1 2 3 4
Fast Slow

ι = 0
Increasing

Learning Learning Education

HIV Education gradient at end of HIV Myopia (1989) 0.0595 0.0595 0.0595 0.0595 0.0533
HIV Education gradient at the peak (1999) 0.0112 0.0527 0.0796 0.0112 -0.0177
HIV Education gradient at the end of Maturity (2005) -0.0015 0.0310 0.0720 -0.0015 -0.0294
HIV Education gradient ARV stage (2018) 0.0047 0.0246 0.0531 -0.0027 -0.0183
Prevalence at the peak (1999) 14.1% 10.9% 16.8% 14.1% 14.1%
Prevalence at the end of Maturity (2005) 13.1% 7.1% 16.4% 13.1% 13.6%
Prevalence ARV stage (2018) 9.4% 5.4% 12.2% 9.8% 10.4%
Time to reach from bottom to peak (in years) 28 21 30 28 26
Time to reach from peak to end of Maturity (in years) 6 13 4 6 6

2.6 Policy Experiments

In this section we explore a set counterfactual experiments concerning the evolution of the HIV
epidemic and policy interventions. We ask ourselves how would heave the HIV epidemic evolved
in the following cases:

1. Early acknowledgement of the presence of the virus and its workings.

2. Improving the education level of the population.

3. Early and universal adoption of ARVs.

4. HIV prevention through Pre-exposure prophylaxis (PrEP).

Early acknowledgement of the presence of the virus and its workings
In Figure 2.14 panels (a) to (c) we show how the epidemic would have evolved had the learning
stage started 5 years earlier and 10 years earlier than in the benchmark calibration. Panel (a)
shows that the peak reaches a lower level the earlier the learning starts. Along the same line, the
HIV education gradient and the sexual partners gradient start dropping at earlier stages.
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Improving the education level of the population
In 2000 the UN set out a series of time-bound targets, with a deadline of 2015, that were aimed
to reduce extreme poverty around the globe. These targets have later become known as the Mil-
lennium Development Goals (MDGs) and were succeeded by what we currently know as the UN
Sustainable Development Goals (SDGs) to be achieved by 2030. One of the goals in the agenda
(Goal 4) aims to ensure that all girls and boys complete free, equitable and quality primary and
secondary education.
In our experiment we explore the possibility of achieving this goal by 2030. We do this by grad-
ually increasing the proportion of educated new born individuals over time {ϑe=1,i,t}∞

t=2000 such
that limt→∞ ϑe=1,i,t = 85% (the current level attained by South Africa) 44. We start in 2000 but
we also explore an alternative scenario where the starting point is 2018 instead, in this case the
goal is achieved by 2048.
Figure 2.13 panels (d) to (f) show the results of these experiments. We see that there is no sig-
nificant change in the prevalence levels however, once a larger share of the population educated,
the HIV education gradient and Risky sex education gradient turn negative for the rest of the path.

Early and universal adoption of ARVs
In Figure 2.15 panels (d) to (f) we show how the epidemic would have evolved if ARV’s were
introduced at an earlier stage. If ARV’s would have been introduced 6 years earlier (that is at the
peak of the epidemic in 1999 ) universal coverage would have been attained by 2019 however the
prevalence rate does not show a significant reduction. Moreover, if ARV’s were introduced 16
years earlier (that is 1989 which is also the year when agents start learning about HIV) universal
coverage would have been attained by 2009 and the prevalence rate would have been significantly
reduced.

HIV prevention through Pre-exposure prophylaxis (PrEP)
Pre-exposure prophylaxis (PrEP) is taken on a daily basis by HIV-negative people as protection
from HIV infection. Evidence shows that PrEP reduces the chances of HIV infection to near-zero
(99% effectiveness) when taken consistently and correctly (Avert, 2020). PrEP is not widely
available in Malawi, although a clinical trial among HIV-positive pregnant adolescents and young
women (ages 16-24) and an implementation study for at-risk adults and adolescents are underway
(Avert, 2020).
We construct an experiment where we analyze the evolution of the epidemic as if PrEP was

44The education composition for South Africa was chosen as a more realistic alternative to fully achieving
primary education attainment as per the SDG’s, that is limt→∞ ϑe=1,i,t > 85%. However, we explored by setting
the limit to 90% and the main conclusions remained unaltered.
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implemented nationwide starting in 2018, 45 with coverage gradually increasing and reaching full
coverage by 2040; we further assume PrEP is administered at no costs and that there is no dif-
ferences on PrEP take-up by education. In the model, PrEP implies a higher value of ρ for those
taking the drug, we calibrate this value such that the current average probability of infection is
reduced by 99%. Moreover, we ask ourselves: What if PrEP would only reduce the infection
probability by 30%, 50% and 70%? would it still be worth scaling up its use?
Panels (a) to (c) of Figure 2.16 show that in all four cases the prevalence levels reduce consider-
ably as well as the HIV incidence and the numbers of HIV deaths. From the model perspective
we can conclude that PrEP implementation is highly recommended at any degree of effectiveness.

45This involves the introduction of a new state variable: those who are healthy can now be taking PrEP. We
introduce transitions to PrEP in the same spirit as previously done with ARV’s.
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Figure 2.10: Experiment 1-2, Removing Learning differences

(a) Prevalence

(b) New Infections (c) New Deaths

(d) HIV Education Gradient (e) Sexual Partners Education Gradient

Notes: The figure shows the results of different counterfactual experiments; each row shows the effects on the
time series of the prevalence rate, HIV education gradient panel and Sexual partners education gradient. Panels
(a) to (c) show experiments 1-3 and panels (d) to (f) illustrate a gradual increase of the proportion educated
agents. The figures also show the effects for different starting dates.
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Figure 2.11: Experiment 3, Removing ARV accessibility differences

(a) Prevalence

(b) New Infections (c) New Deaths

(d) HIV Education Gradient (e) Sexual Partners Education Gradient

Notes: The figure shows the results of different counterfactual experiments; each row shows the effects on the
time series of the prevalence rate, HIV education gradient panel and Sexual partners education gradient. Panels
(a) to (c) show experiments 1-3 and panels (d) to (f) illustrate a gradual increase of the proportion educated
agents. The figures also show the effects for different starting dates.
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Figure 2.12: Experiment 4, Accounting for the evolution of the education composition

(a) Prevalence

(b) New Infections (c) New Deaths

(d) HIV Education Gradient (e) Sexual Partners Education Gradient

Notes: The figure shows the results of different counterfactual experiments; each row shows the effects on the
time series of the prevalence rate, HIV education gradient panel and Sexual partners education gradient. Panels
(a) to (c) show experiments 1-3 and panels (d) to (f) illustrate a gradual increase of the proportion educated
agents. The figures also show the effects for different starting dates.
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Figure 2.13: Policy Experiment 1, Increasing the education level of the population

(a) Prevalence

(b) New Infections (c) New Deaths

(d) HIV Education Gradient (e) Sexual Partners Education Gradient

Notes: The figure shows the results of different counterfactual experiments; each row shows the effects on the
time series of the prevalence rate, HIV education gradient panel and Sexual partners education gradient. Panels
(a) to (c) show experiments 1-3 and panels (d) to (f) illustrate a gradual increase of the proportion educated
agents. The figures also show the effects for different starting dates.
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Figure 2.14: Policy Experiment 2, Early Learning

(a) Prevalence

(b) New Infections (c) New Deaths

(d) HIV Education Gradient (e) Sexual Partners Education Gradient

Notes: The figure shows the results of different counterfactual experiments, panels (a) to (c) show the effects of
different (earlier) starting dates of the learning stage. Panels (d) to (f) simulate different dates for the introduction
of ARVs.
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Figure 2.15: Policy Experiment 3, Early Adoption of ARVs

(a) Prevalence

(b) New Infections (c) New Deaths

(d) HIV Education Gradient (e) Sexual Partners Education Gradient

Notes: The figure shows the results of different counterfactual experiments, panels (a) to (c) show the effects of
different (earlier) starting dates of the learning stage. Panels (d) to (f) simulate different dates for the introduction
of ARVs.
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Figure 2.16: Policy Experiment 4, Preventing HIV infection with PrEP

(a) Prevalence

(b) New Infections (c) New Deaths

Notes: The figure shows the results of different counterfactual experiments, panels (a) to (c) show the effects of
different (earlier) starting dates of the learning stage. Panels (d) to (f) simulate different dates for the introduction
of ARVs.
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2.6.1 Can this theory explain epidemic heterogeneity across countries?

We argue that with the adequate information, the model is certainly capable of characterizing
the evolution of the HIV epidemic for individual countries. To illustrate this, we show in Figure
2.17 the model results characterizing the evolution of the HIV epidemic in South Africa (SA).
To obtain these results the benchmark parametrization was modified to account for the South
African education composition 46, the year of introduction of ARV’s (2004) and the respective
evolution of ARV coverage. According to AIDSinfo (2020), the ARV coverage in South Africa
reached 59% in 2018, this compares to a 70% coverage in Malawi the same year.

Figure 2.17: Characterizing the South African (SA) HIV Epidemic

(a) Prevalence: from Malawi to South Africa (b) Prevalence: data comparison

(c) New Infections (d) New Deaths

*The starting year of the epidemic in Malawi was normalized to that of South Africa(SA), that is 1986.

46In 1985 only 33% of the South African population had finished primary school, by 2018 it increased to 85%
of the population (WorldBank, 2020).
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2.7 Conclusion

The mixed evidence in the literature investigating the relationship between education and the
probability of being HIV-positive in SSA suggests that finding which type of individuals are at
greater risk of HIV infection is not an easy task. We proposed a fresh look to this question that
consists of explicitly introducing the stages of the HIV epidemic into the analysis. Using nationally
representative data from 39 DHS surveys to exploit variation across stages of the HIV epidemic,
we showed that the relationship between completed educational attainment and individual HIV
status (i.e., the HIV-Education gradient) is dynamic, and significantly evolves with the epidemic.
At early stages of the epidemic more-educated individuals are more likely to be infected; however,
this relationship strongly decreases as the epidemic evolves, and eventually reaches a stage where
education and the probability of being HIV-positive are no longer significantly correlated. Inter-
estingly, in the most advanced stages of the epidemic, the education gradient of HIV returns to
being high and positive. We showed theoretically and empirically that the educational disparities
in risky sexual behavior (in terms of extramarital partners) closely resemble the U-shaped pattern
of the education gradient in HIV. In light of our findings, we proposed a quantitative frameworks
of policy evaluation that incorporate the stylized dynamic relationship between education, HIV
and risky sexual behavior that we document along the course of the HIV epidemic. We have
found that asymmetric learning about the process of infections across education groups goes a
long way in explaining the patterns in the data.
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Chapter 3

A Stage-Based Identification of Policy Effects

Written jointly with Christopher Busch, Alexander Ludwig Raül Santaeulàlia-Llopis.

3.1 Introduction

Consider the path of an aggregate outcome variable in some region before and after some policy
is introduced (or changed). The biggest challenge for the evaluation of the policy effect on the
aggregate dynamics is the construction of a credible counterfactual that is informative about the
evolution of the outcome variable had it not been for the policy. One possibility is to construct
such a counterfactual based on the empirically observed path of the outcome variable in another
region not subject to the policy intervention. For this to be reasonable, the regions should display
similar, ideally identical, pre-policy dynamics of the outcome variable.

We develop a new empirical method to construct the counterfactual, which builds on the
notion that the dynamics of an outcome variable are best tracked over stages and not over
time: at a given point in time there is potential heterogeneity across regions in terms of how
far they moved along the path of the outcome variable. Two reasons lie behind this: regions
differ both in the start date of the dynamics and in the speed at which the outcome variable
evolves. Furthermore, there is heterogeneity in the overall level or magnitude of the outcome
variable. For example, consider the stages of economic development (Lucas, 2004b), stages of
the demographic transition (Cervellati and Sunde, 2015; Delventhal et al., 2019; Galor and Weil,
2000b; Greenwood et al., 2005b), and stages of an epidemic (Iorio and Santaeulàlia-Llopis, 2016).
For merely expositional reasons we speak of regions as the unit of observation throughout, since
our illustrative applications consider region-level outcomes. More generally, our method is further
suited for outcomes of any unit of observation with panel data.

Given a set of regions for which the outcome variable is observed, our method can be applied in
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three different empirically relevant settings: (i.) policy is introduced in one region only, (ii.) policy
is introduced in all regions at different calendar dates (staggered policy implementation), (iii.)
policy is introduced in all regions at the same date. For simplicity think of two regions. An ideal
scenario is one where both regions are exactly identical before the policy change is implemented
in one of them: the observed path in the region not subject to policy provides the counterfactual.
The first step of our two-step-method can unveil such an ideal scenario as sketched in each of the
three settings above—given that dynamics over stages are relevant, heterogeneity in the stage
at a given point in time yields an empirical counterfactual for the post-policy path even when
policy is implemented at the same calendar time in all regions, e.g., through a nation-wide policy
affecting all (sub-national) regions simultaneously. This counterfactual comes from the region
that is more advanced, and thus at a later stage at the policy date: this region went through
earlier stages without being subject to the policy (change). The second step of the method then
simply uses the counterfactual to identify the policy effect by comparing it to the path in the
region which experiences the policy (first).

In a nutshell, our method proceeds as follows. First, we select one region as the benchmark
region and normalize stage as time. The goal is to uncover the other region’s stage relative to this
benchmark region, thus is has no relevance for the results which region is chosen as benchmark.
For the other region, we estimate the stage as a parametric function of time (together with a
region-specific level shifter that controls for differences in the magnitude of the outcome variable
across regions). This estimation is done on pre-policy data only and the objective is to minimize
the difference between the regional paths. Second, we apply the estimated stage-time mapping to
post-policy data. This delivers paths that are comparable across regions, because they are stated
over stages, not over time. The identifying assumption behind using those paths to estimate the
policy effect is that the stage-time mapping estimated on pre-policy data continues to be correct
and any difference between the paths is therefore due to policy. This is the equivalent within our
method to the parallel trends in classical Difference in Differences approaches.

We establish that our method works successfully in different Monte Carlo studies that are
designed to resemble empirical applications. First, we consider a public health policy that aims at
containing the spread of a virus in the population. We do this in a micro-founded general equi-
librium model featuring an epidemic component with viral spread through economic interactions,
in which utility maximizing individuals do not internalize the impact of their own interactions on
the population infection rate. In multiple experiments, we let two (not connected) regions differ
in various aspects and then introduce a policy change. The data generating process of infec-
tions is known and thus is the true effect of policy. Our method successfully identifies this true
effect in various scenarios. Importantly, the method works well even under regional differences
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in the behavioral reaction to the epidemic. Second, we consider the effect of introducing the
oral contraception (the pill) on female education. Parents derive utility from children, however,
children represent a cost to human capital accumulation, therefore any a technology that reduces
fertility can enhance human capital. In plausibly calibrated versions of the model, the method
is able to recover true policy effect. Third, we consider two regions, which are each described
by a two-sector growth model of structural transformation. The policy experiment removes an
institutional barrier to the transformation process. The outcome variable of interest is GDP per
capita. Again, our method successfully uncovers the policy effect.

We then illustrate the method in practical applications. First, we show how it can be applied to
estimate the effectiveness of a strict stay-at-home lockdown policy that was enacted nationwide
in Spain in response to the first wave of the Covid-19 pandemic in the Spring of 2020. This
application showcases how our method uses the fact that across Spanish regions the epidemic
dynamics were at different stages at the time of policy implementation, and establishes a scenario
in which one region (Madrid) is subject to the policy intervention later than the rest of Spain.
Thus, the path in Madrid is used to construct a counterfactual for the rest of Spain.

Second, we study the effects of the 1960 nationwide introduction of oral contraceptives for
adult women in the United States. We focus on its effects on women’s careers choice and fertility.
For the latter, the algorithm identifies that 4 states (Washington D.C., Massachusetts, Colorado
and Connecticut) lead the rest of the United States, thus we use the path of an artificial region
Top 4 to construct the counterfactual for the rest of the United States. The opposite occurs for
the case of fertility, thus we use region Bottom 4 (composed of Idaho, West Virginia, Nevada
and Arkansas) as counterfactual.

Third, we study the effect of the German reunification in 1990 on GDP per capita in West
Germany. We use our method to normalize the path of GDP per capita in Hessen, which turns
out to be the regional leader, onto the path in the rest of West Germany. Application of the
obtained normalization parameters to the rest of the time series then delivers a scenario in which
Hessen is subject to reunification later than the rest of West Germany. The path in Hessen is
used to construct a counterfactual for the rest of West Germany.

Related literature Our method belongs to the group of empirical control-treatment analyses
that are widely used to assess the impact of some event or policy in settings resembling natural
experiments, like canonical Difference-in-Differences (DiD) (e.g., Card, 1990; Card and Krueger,
2000), Event Studies or DiD with staggered policy adoption (e.g., Athey and Imbens, 2021;
Borusyak et al., 2021), or the Synthetic Control Group approach (SC) (Abadie et al., 2010; Abadie
and Gardeazabal, 2003). For a useful common framework for DiD and SC see Doudchenko and
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Imbens (2017). Our approach is particularly suited for the analysis of policies implemented in the
context of potentially non-linear dynamics of the outcome variable. In the following we briefly
emphasize how key aspects of our method relate to benchmark alternatives.

The fact that observed paths are weighted in the process of constructing the counterfactual
makes our method a close sibling to SC. However, instead of assuming that treatment and control
are on the same stage, we acknowledge that regions differ in their stage at the time of policy
implementation and explicitly exploit this variation to provide identification.

In the context of a more traditional DiD setting one can partly address the latter point by
considering time since start of the dynamics of interest instead of time itself. This requires a
choice by the researcher to fix the region-specific start dates. For the analysis of a Covid-19
containment policy this has been suggested in an event study design by Glogowsky et al. (2021).
Importantly, counting time since some region-specific start date does not address the problem of
regional differences in the speed of the dynamics. In contrast, our method endogenously finds
the appropriate time shifter together with a speed adjustment.

The rest of the paper is structured as follows. Section 3.2 outlines the method and discusses
how identification is achieved. Section 3.3 illustrates in various Monte Carlo experiments that
the method identifies the policy effect correctly. Section 3.4 presents empirical applications.
Section 3.5 concludes.

3.2 Identification of Policy Effects: A Stage-Based Method

Policy Effect in an Ideal Scenario To fix ideas, consider a scenario in which two regions r ∈
{C, T } are identical in every aspect relevant for the dynamics of some outcome variable yt,r over
time t such that absent any policy intervention yt,C and yt,T evolve identically.1 Reflecting that
data would typically be observed at discrete dates, time t evolves discretely. Now assume that
region T implements a policy at some date tp that affects the path in T from tp + 1 onwards
without altering the path in C. Assume further that region C introduces the same policy at some
later date tp + ∆.

This scenario is ideal for two reasons. First, absent any policy intervention yt,r evolves iden-
tically in the two regions. Second, at any given point in time before policy implementation at
tp, the two regions are at the same stage, which is identical to the calendar time itself, i.e.,
sC(t) = sT (t) = t. This implies that yt,C in the interval [sT (tp+ 1), sC(tp+ ∆)] = [tp+ 1, tp+ ∆]

1We use regions in the description of the method due to the applications presented below. Region can be used
interchangeably with group or unit throughout.
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gives a counterfactual for region T .

We capture the difference by a function ω(s; γp) that minimizes the distance between the
post-policy path in region T and the corresponding path (still pre-policy) in region C adjusted by
some ω(·):

min
γp

∥∥∥ ln(ysT ) − ln(ysC) − ln(1 + ω(s; γp))
∥∥∥sC(tp+∆)

s=sT (tp+1)
, (3.1)

where ysr is the outcome at stage s in region r, and ∥ · ∥ is a distance norm. The distance
function ω(s; γp) satisfies ω(s ≤ sT (tp), γp) = 0, and ∂ω(s;γp)

∂γp > 0 for s > sT (tp) so that when
the policy is effective, a larger value of parameter γp means a stronger positive effect of the policy
on ys,T . A negative γp captures a negative effect of the policy on the outcome variable.

Normalization of Regional Dynamics The previous description immediately puts at the
center the challenges that are to overcome before being able to identify the policy effect based
on the dynamics of yt,r over stages. First, if the regional dynamics in C and T start at different
dates, then the regions are at different stages at a given date t. Second, yt,r evolves at different
speed if the regions are not identical in every aspect relevant to the dynamics. Third, and directly
related, the dynamics will be of different magnitude, i.e., exhibit a different regional level of the
flow. The first step of our method is thus to find normalization parameters based on pre-policy
data: the goal is to obtain a mapping of the paths in T and C that controls for all three pre-policy
differences.

In the following discussion we treat region C as the benchmark region and define stages as

sr(t;ψ) =

 sT (t;ψ) = ∑n
k=1 ψkt

k−1 if r = T
sC = t if r = C

(3.2)

where ψ = {ψ1, ψ2, . . . } is a vector collecting the n polynomial coefficients. There is no “natural
choice” for which region is the benchmark, and choosing T as benchmark region gives identical
results for the policy effect. ψ1 moves the whole path forward or backwards in time, adjusting for
different start dates, and the higher degree coefficients adjust the speed at which regions move
through the path. While in principle the mapping can be of a higher degree, we consider linear or
quadratic mapping to be two plausible options. In a linear stage-time mapping, the parameter ψ2

adjusts the speed in a constant way: if ψ2 > 1, the treatmet region is permanently faster than
the control region, i.e., in one time-period region T advances by more than one stage, and vice
versa for ψ2 < 1. Allowing for the stage-time mapping to be quadratic captures the notion that
the relative speed across the regions can change over time: for example, region T ’s dynamics
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might initially be slower than region C’s, then catch up, and eventually move faster.

We pin down the stage-time mapping parameters together with a scaling parameter ψ0 such
that the log-difference between the path in C and the normalized path in T is minimized. The
scaling parameter adjusts for differences in magnitude between yt,T and yt,C, and as such captures
region-specific fixed effects that permanently affect the flow of the outcome variable. Importantly,
the normalization step only uses the paths up to sT (tp;ψ), the stage of policy implementation
in the treatment region:

min
{ψ0,ψ}

∥∥∥ϕ(s)
(
ln(ŷt=s,C) − ln(ψ0ŷt=s−1

T (s;ψ),T )
)∥∥∥

s≤sT (tp;ψ)
, (3.3)

where ϕ(s) is a weight function, which is chosen exogenously. The time index for region T in
equation (3.3) is the inverse of the stage-time mapping, t = s−1

T (s;ψ), and thus assigns the
date t to a stage s, given the parameters ψ.

We consider two possibilities for the way the outcome variable yt,r is used in the normalization
step, denoted here by ŷt,r. The first is to work directly with the data. In this case, to obtain
ŷt=s−1

T (s;·)),T , we interpolate between yt=fl(s−1
T (s;·)),T and yt=cl(s−1

T (s;·)),T , where fl(·) and cl(·)
denote the integer floor or integer ceiling, respectively. The reason for the interpolation is that
s−1

T (s;ψ1, ψ2, ψ3) delivers non-discrete dates, while the outcome variable is only observed on
discrete dates.

If classical measurement error is a concern, the second option is to use smoothed data. In
this case, denote by g(t;βr) some continuous function with parameters βr fitted to the flow in
region r, and by εt,r a multiplicative error term, giving yt,r = g(t;βr)εt,r. Importantly, the normal-
ization procedure does not hinge on the exact form of g(t;βr): we simply need some continuous
function estimated to capture the dynamics. When chosing this option, ŷt,r in equation (3.3) is
replaced by g(t; β̂r).

No Policy in Control Region In the above description of the normalization, data up to the
policy date is used for both regions T and C to find the mapping parameters {ψ0,ψ}. If there is
no policy in region C, we need to determine up to which date the underlying time series should
be used in the normalization. While the normalization procedure endogenously determines the
stage at policy implementation, this mapping can in principle be sensitive to the length of the
time series used for region C. In such cases, we use data up to t = tp for region T , and use
a simple iterative procedure to determine the end of the mapping time series for region C. We
start with some TC > tp, where TC denotes the last period of the (raw) time series. We then
normalize sT (t) = t and estimate sC(t), which implies that some period tC of the region C time
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series will be mapped to period tp of the region T time series. If tC < TC, we let TC = TC −1 and
repeat the estimation. The procedure is repeated until tC ≥ TC, in which case we set TC = TC +1
(the previous iteration) and end the procedure.

Estimation of Policy Effect Equipped with the mapping parameters {ψ̂0, ψ̂} we are now in
the position to establish the post-policy counterfactual for region T and identify the policy effect.
To this end, we apply the mapping parameters (obtained for pre-policy data) to the rest of the
time series, which gives a path of region T that is adjusted for differences in start date, speed,
and magnitude. We ascribe the remaining difference between this normalized post-policy T -path
and the path in C to the policy.

If the regional dynamics in C lead the dynamics in T , then there is an interval D in terms of
stages during which the policy is already implemented in T , but not yet in C, even if the policy
is implemented at the same t. We refer to D as the overlap interval:

D = [sT (tp + 1; ψ̂), . . . , sC(tp)].

As the data is observed on discrete calendar dates, we need to translate the overlap interval
into discrete steps. Thus, consider

D̄ = {cl(sC(min{D})), . . . , f l(sC(max{D}))} (3.4)
= {cl(sT (tp + 1; ψ̂)), . . . , tp}

Note that the time t assigned to any stage s ∈ D̄ for region T according to tT (s; ψ̂) = s−1
T (s; ψ̂)

is not discrete. Thus, we interpolate between ψ̂0yt=fl(tT (s;ψ̂)),T and ψ̂0yt=cl(tT (s;ψ̂)),T to obtain
ψ̂0ŷt=tT (s)),T .

The distance function (3.1) to be minimized becomes
∥∥∥ln (ψ̂0ŷt=tT (s;ψ̂)=s−1

T (s;ψ̂),T

)
− ln(yt=s,C) − ln

(
1 + ω(s; γp)

)∥∥∥
s∈D̄

. (3.5)

In order to treat the data observations for both regions symmetrically, we also consider the
following alternative representation of the interval D, which gives discrete dates for the normalized
region T :

D̃ = {cl(s−1
T (min{D}; ψ̂)), . . . , f l(s−1

T (max{D}; ψ̂))}

= {tp + 1, . . . , f l(s−1
T (tp; ψ̂))}. (3.6)
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For any t ∈ D̃, for region T , the raw data scaled to the magnitude of region C are observed on date
t as ψ̂0yt,T . In the same fashion as above, we now obtain s(t) = sT (t; ψ̂). We then interpolate
between yt=s=fl(s(t)),C and yt=s=cl(s(t)),C to obtain ŷt=s=sT (t;ψ̂),C. The distance function (3.1) to
be minimized becomes

∥∥∥ln(ψ̂0yt=t,T ) − ln(ŷt=s=sT (t;ψ̂),C) − ln(1 + ω(s = sT (t; ψ̂); γp))
∥∥∥
t∈D̃

(3.7)

We then stack (3.5) and (3.7) and minimize over γp, which gives our estimate of the policy effect
in region T .

Restrictions Stated as above, the normalization procedure delivers mapping parameters ψ
even if the two regions are arguably too different to render the resulting counterfactual dynamics
reasonable. Whether this is a potential concern or not is application-specific, as is the judgement
about what is too different. In the application to the reunification effect on West German GDP
per capita we truncate the time series of West Germany (the treatment region) on the left before
applying the normalization procedure. The motivation behind is that the West German time
series should reach the minimally observed GDP per capita of the rest of the OECD (the control
region). More generally, the regional time series should cover the same domain before we apply
the normalization procedure. In the application to the policy effect of the Covid-19 pandemic in
Spain this is not a concern, as all regions are observed from the onset of the regional pandemics.

3.3 Monte Carlo Analyses

Here, we implement our newly proposed SBI strategy on model-generated policy effects in order to
assess whether the SBI correctly recovers the true policy effects generated by a simulated model.
In particular, we are interested in testing our methodology in instances where regional variation
is affected by unobserved heterogeneity (or traits) that gives rise to differences in endogenous
behavior across regions. We use three policy contexts that include: (1) public health policy
against a pandemic using an econ-epi model where economic activity shapes and is shaped by
the pandemic; (2) the effects of the pill in a model of women career and fertility choices. and
(3) economic growth policy using a model of structural transformation.

3.3.1 Public Health Policy Against a Pandemic

A theoretical framework Consider an economy with many individuals that is unexpectedly
hit by an epidemic at time t = 1 with an initial number of infections I1 > 0. We normalize the
pre-pandemic population, N0, to one. Given a set of beliefs on how economic activity affects the
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probability of infection in a manner that we define below, a planner solves:

max
{ct≥0,ht∈[0,1]}∞

t=0

∞∑
t=0
δtΠt

τ=0ϕP(hτ−1)u(ct, ht;ω) (3.8)

where the felicity function is strictly concave in both arguments consumption ct and labor lt ∈
[0, 1]. The parameter ω measures the individual value of life.2 Our planner is subject to an
aggregate resource constraint Ntct = wthtNt where wt is the implicit price (marginal product) of
labor using technology Yt = zhtNt, i.e. wt = z. The timing of the model is such that individuals
work and consume and, when working, there is infection risk. After working and consuming, the
infected face death or recovery. In this manner, individuals are either susceptible St, infected It,
recovered Rt or dead Dt. The total population alive is Nt = St+It+Rt. Using XG,t = Gt+1 −Gt

for G = {S, I, R,D}, the planner’s belief is that law of motion of the population structure is:

XS,t = −λP(ht)β
It
Nt

St (3.9)

XI,t = (1 − γ)λP(ht)β
It
Nt

St − γIt (3.10)

XR,t = (1 − ζ)γĨt (3.11)
XD,t = ζγĨt (3.12)

where Ĩt = λP(ht)β It

Nt
St + It.3. The parameter β captures features like density, occupation-

industry composition, age-health structure of the population or pollution (among others) which
can differ across locations. Then, conditional on randomly meeting an infected individual at
rate It

Nt
, the planner’s belief is that individuals get infected with probability λP(ht) = ξPh

α
t which

depends on the choice of ht. Hence, the parameter ξP captures the planner’s beliefs on how much
economic activity affects the probability of infection. However, the actual infections arise from
the true probability function λ(ht) = ξhαt where the true effects ξ can differ from the planner’s
beliefs. If ξP < ξ, then the planner underestimates the actual effects of ht on infections and
deaths. In contrast, if ξP > ξ the planner overestimates these effects.

Then, given Nt, St and It and the population law of motion (3.9)-(3.12), the planner’s belief
is that the survival rate between t and t + 1 is ϕP(ht) = 1 − XD,t

Nt
, which can differ from the

actual survival rate, ϕ(ht). Note that since the planner chooses ht based on her beliefs on the

2We assume the period utility takes the form u(c, h; ω) = log(c) − κ h1+ 1
ν

1+ 1
ν

+ ω
3Note that we allow for new infections to transit to death in the same period t—in this manner, ht has an

immediate effect on the survival rate between t and t + 1. This assumption is innocuous and we use it to ease the
exposition of the trade-off between economic activity and public health in the model. We can easily accommodate
a lagged effect of ht on survival rates.
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infection process, she is not able to forecast the true population dynamics.4 In this context,
we introduce an unexpected population shock that fully corrects for the forecast error ex-post.
Precisely, whereas at period t the planner’s belief is that population between t and t+ 1 changes
following the survival probability function ϕP(ht)—and chooses ht accordingly, at period t + 1
we allow the planner to learn the actual survival rate without being aware that ϕ(ht) determines
it. That is, we define the unexpected shock at t + 1—or equivalently the one-period ahead
forecast error at t—as the difference ϕ(ht) − ϕP(ht), which occurs at every period t. Note
that this setting implies that looking backwards the planner observes the actual evolution of the
population Nt = Πt

τ=0ϕ(hτ−1),5 whereas looking forward the planner always commits a forecast
error. Analogously to Nt, It and St are also updated by the actual infections with an unexpected
shock equal to λ(ht) − λP(ht).

The amount of economic activity ht is determined by the following Euler condition

∂u(ct, ht;ω)
∂ct

w︸ ︷︷ ︸
Marginal Benefit of Working:

Consumption Gain

− ∂u(ct, ht;ω)
∂ht︸ ︷︷ ︸

Marginal Cost of Working:
Loss of Leisure

= δ
∂ϕP(ht)
∂ht

u(ct+1, ht+1;ω)︸ ︷︷ ︸
Marginal Cost of Working:

Loss of Lives

∀t, (3.13)

which states that the marginal benefit of working (more consumption) needs to equate its marginal
costs consisting of an intratemporal component (disutility from working) and an intertemporal
component (loss of lives). Note the Euler equation is a first order difference equation in ht. We
need a terminal condition to solve for the path of ht. Note that we can separately solve for the
pre-pandemic t = 0 equilibrium before the unexpected arrival of the pandemic at t = 1. In this
pre-pandemic era there are no infections and, hence, ϕ(h0) = 1. That is, the equilibrium h0

sets the right hand side of the Euler equation (3.13) to zero in which case h0 simply solves an
intratemporal trade-off. The same equilibrium emerges after the pandemic at some large t = T

which delivers a terminal condition hT = h0 that we use to solve for {ht}. Given hT (or h0), we
can easily solve for the optimal labor path {ht}T−1

t=1 during the epidemic using standard techniques.
Last, since there is an unexpected population shock every period t, the planner reoptimizes the
entire sequence {ht}T−1

t=1 every period after the realization of the shock; see our Appendix for our
complete solution algorithm.

In what follows, we focus on a Montecarlo analysis with two modeled regions that follow
different epidemic paths but are subject to the same nationwide policy against a pandemic. In
particular, we create two regional epidemic paths using our econ-epi the model. The epidemic

4Precisely, given Nt, St and It, the actual survival rate between t and t + 1 is the result of plugging the ht

that the planner’s chooses—under her beliefs on the infection process λP(ht)—into the population law of motion
(3.9)-(3.12) after replacing the planner’s belief by the true probability of infection λ(ht).

5There is no fertility in this economy. That is, the evolution of the population is solely determined by survival.
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paths across these two regions are heterogeneous in that we assume that a region (C) is charac-
terized by a different β, γ,; see panel (a1) of Figure 3.1.

True model-generated policy effects There are different public health policies that can be
used against a pandemic. We focus on the stay-home policies widely implemented across the
globe against the Covid-19 pandemic. In the context of our model, this implies imposing a
constraint h < h for a given interval of time in which the policy is in place from period (day) tp
to tf .

We now discuss the results of imposing a constraint of h = 0.4 for a (long) interval of time
from period tp = 36 to tf = 250 (dashed line). There are effects of such policy on hours because
the policy is binding6 in the sense that without the stay-home policy the equilibrium path of hours
(solid line) shows higher economic activity than what the policy dictates for the entire interval of
time in which the policy is in place; see panel (a) of Figure 3.1. The lower economic activity has
consequences for the flow of deaths that now peaks by a lower magnitude (and earlier) relative
to a model economy without policy; see panel (b) of Figure 3.1. The difference between the flow
of deaths without policy (solid line) and the flow of deaths with policy (dashed line) are the true
policy effects, as generated from the model. 7

Stage-based identification of policy effects Panel (c) and (d) of Figure 3.1 shows the
results from using the stage-based identification taking the model simulated data with policy as
the only observable data to the policy evaluator interested in assessing the effects of policy. A
policy evaluator that faces a scenario in which she/he has information on a outcome (statistic) of
interest, e.g., XD(t). Say this outcome is available for the two regions C and T . The evaluator
also knows the dates of policy implementation in each region. The policy evaluator knows nothing
else. In particular, she/he does not know the model that generates the data and, hence, cannot
use the model to identify the true policy effects following the steps that we described above. This
implies that the policy evaluator has the following information: Available time-series data on a
statistic of interest XC

D = Cp (dashed blue line) and XT
D = Cp dashed red line). In both cases the

policy is implemented at tp = 38 (until tp = 250) depicted as the vertical (dashed gray) lineThe
evaluator is not provided with the true model that generates the data.

The mapping from C to T normalizes the pre-policy epidemic path of the control region to that
of the treatment region (dashed blue with crosses).8 The normalization implies an overlap interval

6At the period the policy is implemented the equilibrium htp
is 0.8, whereas the policy sets h to a lower value

of 0.5.
7In Appendix C.3 we explicitly discuss the case of latent time varying unobserved heterogeneity.
8The mapping C to T delivers identical results to mapping T to C, see reduced for simulation in Appendix C.
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of one week between tp = 38 and t = 44 in which the treatment region is subject to the policy
whereas the normalized control regions is not. Comparing the actual model-based percentage
of lives saved in that overlap interval and the one estimated from the stage-based empirical
identification we find, respectively, 9.53% and 10.33%. That is, the stage-based identification
provides a good estimate of the actual effects of policy.

Figure 3.1: Stage-Based Identification of Policy Effects: Nationwide Public Health Policy

(a) Response of Hours (b) True Policy Effects on XD

(c) Identified Policy Effects (d) Identified vs.True Policy Effects

Notes: Where h̄ = 0.4, tp = 38, tf = 250 ΘC = {δ = 0.95, ω = 560400, z = 64, β = 0.509, ζ = 0.001, κ =

1.05, ξ = 0.2, α = 0.65} and ΘT = {δ = 0.95, ω = 560400z = 64, β = 0.501, ζ = 0.0008, κ = 1.07, ξ =

0.19, α = 0.65}. The exogenously chosen policy parameters are h̄ = 0.4, tp = 38, tf = 250.

130



3.3.2 The Pill and Women’s Choice

A theoretical framework Motivated by the important work in Goldin and Katz (2002), we
now turn to assess the effects of the pill—oral contraceptives—on women’s lifetime choices. We
pose a model that captures—in a purposefully oversimplified manner—how the pill potentially
affects women’s trade-off between career choice and fertility. Our goal is to provide a framework
in which access to the pill can impact career choice, which can occur using the notion that the
pill reduces unwanted pregnancies at the time (ages) where education decisions are taken.9 In
particular, we assume that each cohort-t of women maximizes utility derived from consumption
and children by choosing the amount of human capital, h, and pill use, o, that solves:

max
{h,o}

c+ κn (3.14)

where c is consumption and children n ∈ [0, 1] generate joy by a relative factor κ. Women are
subject to a resource constraint,

c+ q(1 + τ(n))h = w(1 + zte(h)) (3.15)

where q is the relative price of human capital (e.g. tuition fees or job training), τ(n) captures
an additional cost of accumulating human capital associated with the presence of children with
τn(n) > 0 and τnn(n) < 0. In terms of earnings, w is a constant base wage and zte(h) is
an endogenous human capital wage premium with two components. First, there is skill-biased
technical change (SBTC), zt = z0Πτ=t

τ=1(1 + γτ ), where z0 > 0 and γt > 0 captures cohort-t
growth in SBTC. Second, there is a mapping from human capital h to a rate e(h) ∈ [0, 1] with
eh(h) > 0 and ehh(h) < 0. We interpret e(h) as the fraction of educated (e.g. college completed)
women in the economy that benefit from the SBTC.10 Finally, children production is given by,

n = ϕ[1 − 1tpg(o)], (3.16)

where access to the pill is captured by the policy dummy 1tp that is equal to zero if a cohort t does
not have access to the pill, and equal to one otherwise. Hence, if women do not have access to
the pill, then the amount of children is solely determined by the probability of pregnancy ϕ ∈ [0, 1]
where we assume that all pregnancies end in a child, that is n = ϕ. If women have access to the

9The analysis in Goldin and Katz (2002) encompasses career choice and marriage delays. In their case, they
model the increase in a counterpart of our h as the utility lost from abstinence and/or forgone home production.

10The mapping of the outcome variable from h to e(h) is innocuous for our analysis and we use it merely for
exposition convenience. In particular, if the outcome e(h) is a rate we can interpret it as the fraction of educated
women (e.g. college degree completion) in the population.
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pill, then the probability of pregnancy is adjusted downward by the pill effectiveness in preventing
pregnancy, g(o) ∈ [0, 1]. We assume that larger use of the pill—e.g. higher adherence to follow
protocol, increases the effectiveness of the pill. That is, go(o) < 0 with goo(o) > 0 and, hence,
no(o) < 0 and noo(o) > 0.11

Note that we can plug the resource constraint (3.15) and child production (3.16) into women’s
objective function (3.14). The first order condition of h implies,

FOC(h) : q(1 + τ(n))︸ ︷︷ ︸
Marginal Cost of Human Capital

= wzteh(h)︸ ︷︷ ︸
Marginal Benefit of Human Capital

, (3.17)

where the marginal cost of human capital is the price of education qualified by the cost of
children, and the marginal benefit of human capital are the premium returns from increases in
human capital. Note that the marginal benefit of human capital is convex in h whereas the
marginal cost of human capital is concave in n, hence, an increase in the number of children
results in a decrease in human capital. Therefore, a technology that reduces n can enhance
human capital. The first order condition for pill use is:

FOC(o) : qτn(n)h︸ ︷︷ ︸
Marginal Benefit of Pill

= κ︸︷︷︸
Marginal Cost of Pill

(3.18)

where the marginal cost of the pill is a reduction utility derived from children and the marginal
benefit of the pill is a reduction in the price of human capital.

Clearly, without access to the pill equation (3.18) is not present and the marginal cost of
human capital (left-hand-side of (3.17)) is constant. In panel (b) of Figure 3.2 we show the
associated fraction of educated women within each region where we allow for q, w and the path
for zt to be different across these regions. 12

Model-generated policy effects Introducing access to the pill for these same two regions
allows the pill trade-off in (3.18) to work affecting h and therefore e(h) as we show in panel (b)
of Figure 3.2.

Stage-based identification of policy effects Panels (c) and (d) of Figure 3.2 show the results
from applying the stage-based identification. The normalization implies an overlap interval of 5.3
years . In that overlap interval, the policy generates an average 3.25% increase in the share of

11We note that lawful access to the pill does not necessarily fully determine use which is also likely to be affected
by social norms—i.e. the shame before the game. Interestingly, access to the pill can—at the same time—shape
social norms (Fernández-Villaverde et al., 2014).

12We assume a path that shares the same qualitative behavior of the (college) wage premium in the data.
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Figure 3.2: Model-Generated Policy Effects: Introduction of the Pill

(a) Pill Use (b) True Policy Effects on e(h)

(c) Identified Policy Effects (e(h)) (d) Identified Vs. True Policy Effects (e(h))

Notes: ΘC = {w = 1, q = 0.035, κ = 0.07, α = 0.1, , θh = 0.43, θo = −0.07} and ΘT = {w = 0.98, q =
0.045, κ = 0.09, α = 0.1, , θh = 0.5, θo = −0.07}. Policy Parameters are tp = 30

college women whereas the stage-based identification measure a policy effect of 3.27%.

3.3.3 Growth policy and structural transformation

A theoretical framework We consider an economy with structural transformation from an
agricultural to a manufacturing sector, respectively, i = {a,m}. An infinitely-lived representative
agent chooses sectoral allocations of consumption {cat, cmt}∞

t=0, labor {nat, nmt}∞
t=0 and next

period capital {kt+1}∞
t=0:

max
{cat,cmt,nat,nmt,kt+1}∞

t=0

∞∑
t=0

βt (ln(cat − c̄a) + κ ln cmt)
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subject to a budget constraint,

pacat + cmt + kt+1 =
∑

i∈{a,m}
witnit + rtkt + (1 − δ)kt + πt(ℓ)

where β ∈ (0, 1) is the discount factor, κ is the utility weight of manufacturing consumption
relative to agriculture and c̄a a subsistence level. The non-homothetic preferences are a force
behind the structural transformation of the economy. The hosuehold is endowed with one unit
of time, i.e. nat + nmt = 1 ∀t that is allocated to either agriculture or manufacturing and
receive, respectively, wage rates {wat, wmt}. The capital’s return is rt and capital depreciates
at rate δ. The manufacturing good is the numeraire and pa is the price of agriculture relative
to manufacturing, exogenously given. Land ℓ is fixed and inelastically supplied by the household
that receives pure rents from renting it to agricultural firms.

There is one representative firm per sector and we assume competitive markets. The agricul-
tural firm produces output ya with labor na and land. Agricultural firms solve:

max
nat

πt(l) = payat − watnat s.t yat = zatn
ϕ
atℓ

1−ϕ,

where ϕ is the labor share in agriculture. Since land is fixed, the agricultural technology exhibits
decreasing returns to scale which is an additional force shifting resources out of agriculture as
the economy grows.13 Manufacturing firms produce output ymt with labor nmt and capital kt
solving:

max
nmt,kt+1

ymt − wmtnmt − rtkt s.t ymt = zmtn
α
mtk

1−α
t ,

where α is the labor share in manufacturing. We assume that total factor productivity (TFP)
differs by sector following zit = zi,0(1 + γi)t for i = {a,m} with γa < γm. That is, productivity
in the manufacturing sector grows at a faster rate than that of the agricultural sector.

We solve the economy by guessing the sequences of factor prices {wa, wm, r}∞
t=0. Given these

prices, we find the allocations cat, kt+1 and nat that solve the following set of first order conditions.
13The ability of non-homothetic preferences to generate structural change is studied in, for example, Gollin

et al. (2002a). The role of technological choice in generating structural change—from a decreasing returns to
scale technology to a constant returns to scale, is studied in Hansen and Prescott (2002); in the context of a
one-good economy. Our identification of policy effects is innocuous as to which force drives structural change.

134



First, an intratemporal condition governing the substitution across consumption goods:

FOC(cat) : ucat(cat)
1
pa

(−1)︸ ︷︷ ︸
∂cat
∂cmt

+κucmt(cmt) = 0 (3.19)

Second, an intertemporal Euler condition for kt+1 governing the trade off between one additional
unit of consumption today versus tomorrow’s consumption,

FOC(k′) : uca(cat)
1
pa

(−1)︸ ︷︷ ︸
∂cat

∂kt+1

+βuca(cat+1)
1
pa

(1 + rt+1 − δ)︸ ︷︷ ︸
∂cat+1
∂kt+1

= 0 (3.20)

Third, an intratemporal condition for na equating wages across sectors,

FOC(nat) : uca(cat)(wat − wmt︸ ︷︷ ︸
∂cat
∂nat

) = 0 (3.21)

These allocations need to satisfy the marginal product conditions arising from the firms’ problems
in competitive markets, that is, wat = ϕ yat

nat
, wmt = α ymt

nmt
and rt = (1 − α)ymt

kt
. There is

market clearing in labor and capital, and aggregate consistency. Note that the interemporal Euler
condition (3.20) is a second order different equation in {kt, kt+1, kt+2} at every period t. We
use as initial and terminal conditions the corresponding steady states of the economy at t = 0—
without TFP growth—and at a large T with negligible agricultural share of labor. We consider
the case of two regions which are at different development paths. In Figure 3.3 panel (a) and (b)
and we show the equilibrium path for their agricultural share and income per capita respectively.
The model is able to generate an agricultural share that declines over time whereas, at the same
time, income per capita increases asymptotically reaching a balanced growth path with a trifling
agricultural share; a phenomenon well documented by the macro-development literature.14

Model-generated policy effects Consider an exogenous positive TFP shock to the manufac-
turing sector of magnitude τ > 1+γm, at period t = 39 this could be interpreted as removing an
institutional constraint which in turn accelerates the structural transformation of the economy.The
effects of the policy can be seen in Figure 3.4 panels (a) and (b).

Stage-based identification of policy effects Panels (c) and (d) of Figure 3.4 show the
results from applying the stage-based identification. Again the evaluator is not provided with the

14See a comprehensive description in Herrendorf et al. (2014a).
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Figure 3.3: Model-Generated Structural Transformation

(a) Labor and Investment (b) Income p.c.

Notes: The decreasing solid lines dotted dashed lines (left axis) represent the agricultural labor share of output.
The increasing dash-doted lines (right axis) are capital investment. For region T , we choose, na,0 = 0.45, za,0 =
0.15, zm,0 = 0.17, γa = 0.007, γm = 0.0073. For region C, we choose, na,0 = 0.65, za,0 = 0.145, zm,0 =
0.145, γa = 0.007, γm = 0.0072. Common parameters between both regions are β = 0.98, α = 0.6, ϕ = 0.8, κ =
2, δ = 0.02.

true model generating the data. The normalization implies an overlap interval of 7 years . In that
overlap interval, the policy generates an average 8.6% increase in log income percapita whereas
the stage-based identification measure a policy effect of 8.5%.
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Figure 3.4: A Stage-Based Identification of Model-Generated Policy Effects: Structural Transfor-
mation

(a) Response of Labor and Investment (b) True Policy Effects on Income p.c.

(c) Identified Policy Effects (d) Identified Vs. True Policy Effects

137



3.4 Applications

3.4.1 Spanish Confinamiento Against Covid-19

Like many countries, Spain pursued non-pharmaceutical public health policies in response to
the Covid-19 pandemic. On March 14, 2020, the Spanish government announced a nationwide
stay-at-home policy—enacted the following day—which locked down all non-essential workers
in all regions of Spain. Indicative of its strictness, the public debate referred to the policy as
confinement. The strictest measures were lifted on May 2 when the first wave of the epidemic
flattened out. We apply our stage-based method to identify the effect of this policy intervention on
the course of the pandemic. The outcome variable of interest is the daily flow of deaths attributed
to Covid-19 (reflecting that daily case data is not a good measure of infections, especially during
the onset of the pandemic, when testing was only gradually introduced). The epidemic in Madrid
leads the other Spanish regions and thus provides the basis for the counterfactual dynamics in
an artificial region Rest of Spain, which is comprised of all Spanish regions without Madrid. In
the next paragraphs we illustrate how to construct the counterfactual and document the average
daily policy effect during the first week (the length of the overlap interval) of the confinamiento.

Step 1: Normalization to Stage-Dynamics Given notorious measurement error in the daily
number of deaths, we smooth data and represent the daily stock of deaths as a generalized
logistic function G(t;β) = β0

(
1 + β3e

(−β1(t−β2))
)− 1

β3 , with β = {β0, β1, β2, β3}. The flow of
deaths g(·) follows as the first analytical derivative of G(t;β) with respect to time. We fit g(·)
to data starting on February 20, 2020, which in our notation is equal to t = 1. Period t0(r) is
the region-specific start period in the estimation, which we determine as the day on which we
observe the first death in the respective region. We add a lag parameter τ to the policy date,
reflecting that a policy that aims at reduction of infections will show an effect on the flow of
deaths with a delay. Here, we document results for a benchmark choice of τ = 12.15 Similarly,
to determine the end date of the sample, we take the date of the end of the policy intervention
(May 2, 2020), period te, and add the policy lag parameter, thus T (τ) = te + τ . It is crucial for
our normalization that g(·) matches well the flow of death time series before date tp + τ . Panel
(a) of Figure 3.5 shows that this is the case. We then use a linear stage-time mapping, thus ψ
in Equation (3.2) is a (2 × 1) -vector. We specify the weight function ϕ(s) as a quadratic in
s, such that increasingly more weight is assigned to the observations closer to the policy date.

15In Aleman et al. (2021) we extend the stay-home application of this paper and conduct robustness with
respect to the τ . There, we also pursue a region-specific application of our method. We document heteroge-
neous policy effectiveness across Spanish regions, which systematically varies with the stage of a region at policy
implementation.
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Figure 3.5(b) shows the epidemic paths after the normalization. The normalization unveils an
overlap interval in terms of stages, in which the region of Madrid is not yet under the effect of
policy whereas the rest of Spain is.

The parameter estimates for the relative stage-time mapping are ψ̂ = {−1.15, 0.85}. These
estimates imply that the artificial region Rest-of-Spain goes through the epidemic stages some-
what slower than Madrid: it takes Rest-of-Spain 35.3 (= 30/0.85) days to go through Madrid’s
epidemic path of one month. Thus, only adjusting for different start dates (as in Glogowsky
et al., 2021) would imply wrong estimates. Even stronger differences in the epidemic speed could
imply that regional epidemics peaked at different times since first case, and therefore, one can
easily end up in a situation where one region is already in the decreasing part of the daily flows,
while another is still in the increasing part—creating an even stronger bias in the estimates.

Step 2: Policy Effect We compute the average effect of policy as the average difference
between the deaths in Madrid and the normalized rest of Spain within the overlap interval.
Panel (c) of Figure 3.5 shows the normalized data on the overlap interval, which turns out to be
seven days long. During this interval, the normalized rest of Spain faces the stay-at-home policy
while the region of Madrid does not. The distance between the time paths of the flow of deaths
in Madrid and in the normalized rest of Spain gives the effect of policy in terms of the amount
of lives saved.

As distance function ω(t; γ) we choose a simple dummy variable that captures the average
effect during the overlap interval

ω(t; γp) =

0 for t ≤ tp + τ

γp for t ≥ tp + τ + 1,
(3.22)

and thus (minus) the estimate, −γ̂p, captures the average reduction of deaths in the overlap
interval. We find that over the course of the first week of the policy 20.1% of lives were saved
in the rest of Spain—relative to the counterfactual number of deaths that would have happened
without the policy. We conduct a bootstrapping procedure for statistical inference. The estimate
is significantly different from zero (the 90% bootstrap confidence band ranges from 16.6% to
36.2%). The corresponding number of lives saved is about 1,176.
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Figure 3.5: Normalization of the Epidemics: Madrid (C) vs. Rest of Spain (T )

(a) Before Normalization (b) After Normalization

(c) Overlap Interval (d) Policy Effect

Notes: Panel (a) shows the epidemics in Madrid (C) and the rest of Spain (T )), panel (b) shows the normalized
epidemics. The fitted lines for t < tp +τ show the smooth epidemics pre-policy that are used in the normalization
procedure. Panel (c) zooms in on the overlap interval.

3.4.2 The Effects of the Pill

In 1960 the first oral contraceptive is approved in the U.S. by the Food and Drug Administra-
tion(FDA). The use of pill was approved for use by women above the age of majority.16 Access to
the pill has presumable benefits to women’s education attainment and fertility decision. For this
application we select two outcome variables: first, the share of women of age 2517 with college

16Nevertheless, its full availability for sale at the national level was not until 1965, when the U.S. Supreme
Court’s 1965 Griswold v. Connecticut struck down Connecticut’s ban on the use of contraceptives for married
women. Until then many states still had anti-obscenity statutes in place, which banned contraception sales Bailey
et al. (2011).

17Robustness on this number is done in the appendix.
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attainment, second the share of women below age 26 that have ever given birth. We then apply
our stage-based method to identify the effect of the pill on these two outcomes.
To back out the share of women of a certain age with college attainment we use decennial CEN-
SUS data from IPUMS starting in 1940 up to 1980. In the absence of information on the year of
graduation, we construct the historical series by using cohort information by CENSUS year. For
example when using CENSUS data for 1960, the share of college women of age 25 in 1959 will
be the share of a woman age 26 who reported (already) having attained college by 1960.18 After
computing the historical series per CENSUS year we compute the average across CENSUS series,
the result is depicted in Figure 3.6. In a similar way, we compute the share of women below
age 26 who have given birth. After computing the series of education attainment, our algorithm
identifies that 4 states (Washington D.C., Massachussets, Colorado and Connecticut) lead the
rest of the United states. We create an artificial region Top 4, constructed as the population
weighted average of these four states, in the same spirit we compute region Rest of U.S.(RoUSA)
as the population weighted average of the remaining stares.19

Step 1: Normalization to Stage-Dynamics Panel (b) in Figure 3.6 shows the result of
normalizing the Control region on to the treatment region. For case of education attainment,
the estimates of the mapping are ψ̂ = {0.8, 2.14, 0.75}, they show that the Top 4 started earlier
and evolved faster than the rest of the U.S.

Step 2: Policy Effects For the college attainment the length of the overlap interval is 7.5
years, with an average policy effect of 11.65% increase in college attainment of women age 25
had the pill not been implemented.

18Later completion and death could hinder the precision of our measure, however after comparing the historical
series from various census years, the measure doesn’t seem to be suffering from these problems

19See Appendix C, Section C.2 for results on fertility outcomes.
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Figure 3.6: Normalization of time paths: Top 4 (C) vs. RoUSA (T )

Share of women age 25 with college attainment

(a) Before Normalization (b) After Normalization

(c) Overlap Interval (d) Policy Effect

Notes: Panel (a) shows the outcome variable for the aggregate of the 4 leading states in the U.S. (C) and the
rest of the U.S. (T )), panel (b) shows the normalized epidemics. The fitted lines for t < τ show the smooth

epidemics pre-policy that are used in the normalization procedure. Panel (c) zooms in on the overlap interval.
Panel (d) Shows the policy effect, computed as the percentage difference had the policy not been implemented

3.4.3 German Reunification

In 1990, after the fall of the Berlin wall in 1989, the German Democratic Republic was abolished
and integrated fully into the Federal Republic of Germany. Given large differences between the
West German states and the East German states, the political and economic integration came at
some cost—the size of which is subject to debate. Abadie et al. (2014) study the consequences
for West German GDP per capita, and form a counterfactual path using their Synthetic Control
Group approach. Inspired by their analysis, we apply our method to the same context, and
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construct a counterfactual for the evolution of GDP per capita in West Germany had it not been
for the reunification. Different to Abadie et al. (2014) we can base the analysis on GDP data
from Germany only—the key is the heterogeneity of regional GDP across West German states.

Step 1: Normalization to Stage-Dynamics Panel (a) of Figure 3.7 shows the time series of
real GDP per capita in Hessen, which is the most advanced (in terms of GDP per capita) state
of West Germany at the time of reunification, and ROGER, which is the population weighted
average of GDP per capita in the remaining West German states. Panel (b) shows the normalized
path of Hessen—the logic of the underlying mapping procedure is the same as what we apply in
the previous application. The normalization unveils that Hessen delivers a counterfactual path
for ROGER from 1991–94, in other words, Hessen receives the “reunification treatment” at the
stage corresponding to ROGER’s 1994.

Step 2: Policy Effect Figure 3.7 shows the percentage difference of ROGER’ GDP per capita
from the normalized Hessen GDP per capita. The identified reduction of GDP per capita ascribed
to reunification is about 13% after ten years.
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Figure 3.7: Normalization of GDP Time-Series: Hessen (C) vs. Rest of Germany (T )

(a) Before Normalization (b) After Normalization

(c) Overlap Interval (d) Policy Effect

Notes: Panel (a) shows the time-series of GDP per capita in Hessen (C) and the rest of Germany (T )), panel
(b) shows the normalized paths. Panel (c) shows percentage difference of GDP per capita in rest of Germany
relative to normalized Hessen. The solid vertical line indicates reunification, the dashed vertical line indicates the
year after which the normalized Hessen time series is also subject to reunification.

3.5 Conclusion

We develop a novel empirical approach to estimate the effectiveness of public policies. Given a
set of regions for which the outcome variable of interest is observed, our method can be applied
in three different empirically relevant settings: (i.) policy is introduced in one region only, (ii.)
policy is introduced in all regions at different calendar dates, (iii.) policy is introduced in all
regions at the same date. The key of our method is the distinction between calendar time, at
which outcomes are observed, and stages, over which dynamics evolve. With one region serving
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as benchmark, we estimate the regional stage-time mapping using pre-policy data. We then apply
this mapping to post-policy data, and the resulting normalized time series are the basis for a clean
identification of the effects of policy. We show that our method works successfully in various
Monte Carlo studies, and we illustrate its use in different applications. In the applications we
look at aggregate outcomes at the regional level, and therefore focus the exposition on differences
across regions. However, the method is more generally applicable to any group-level outcomes.
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Appendix A

Appendix Chapter 1

A.1 Parametrization of the two period model

We need to assign values to for σ, ξ, ρ, σ2
ϵw , φ, η, r and β. Since this is a qualitative example

most of the parameters set apriori. I choose a coefficient of relative risk aversion σ = 2 following
Ortigueira and Siassi (2013). The Frish Elasticity of labor supply ξ is set to 0.5 following Blundell
et al. (2016). The parameters for the income process are borrowed from Greenwood et al. (2016),
with ρ = 0.98 and σ2

ϵw = 0.011. I select a risk free interest rate of r = 2% and a discount factor
of β = 0.98 that are standard in the literature. The value of the public good η is adhoc set to
one. Finally fertility is set to φ = 0.57 which is the share of married households with children in
1970.
The rest of the parameters µg, κg, νg, ϕg,  Lg, σϵq are calibrated depending on the following sce-
narios:

1. Reference Model: This is a gender equality scenario, that is, there are no differences
between men and women. I set w̄f/w̄m = 1, κm = 0.5, νg = 0.5, µg = 0.5 and ϕm =
ϕf ,  Lm =  Lf . I calibrate the values for ϕg such that the average number of hours worked is
equal to 1. I set σϵq such that everyone gets married in period 1, finally,  Lg is set to have
a divorce rate larger than 1% in the second period.

2. Alternative Model 1: Sets some more realistic gender differences, as found in the lit-
erature and in the data, I set w̄f/w̄m = 0.55, κm = 0.6, µm = 0.6. I calibrate ϕm < ϕf

such that the ratio of hours worked by women with respect to men is equal to 0.7. This
scenario keeps the mean of individual the match quality  Lg symmetric between men and
women  Lm =  Lf = 4 and keeps the same probability of getting custody of the children
across gender νg = 0.5.
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3. Alternative Model 2: Keeps the parameter values of Alternative Model 1, but sets
 Lm >  Lf , explicitly Lm = 4and Lf = 3, that is men an women enjoy married life differently.
With women having lower match quality than men.

4. Alternative Model 3: Keeps the parameter values of Alternative Model 2, but sets
νm = 0.1, that is women have a higher probability of getting custody of the children upon
divorce.

A.2 List of States with reported divorce filing records

The list of sample countries is the following: Alabama, Alaska, Arkansas, Connecticut, Delaware,
Georgia, Hawaii, Idaho, Illinois, Iowa, Kansas, Kentucky, Maryland, Massachusetts, Michigan,
Missouri, Montana, Nebraska, New Hampshire, New York, Ohio, Oregon, Pennsylvania, Rhode
Island, South Carolina, South Dakota, Tennessee, Utah, Vermont, Virginia, Wisconsin, Wyoming.
A total of 31 states.
Figure A.1 compares the divorce rates for the sample states vs. aggregate divorce rates. Ad-
ditionally, It shows divorce rates for selected states: Oklahoma and Arizona which are the two
states with the two highest divorce rates 1970. Mississippi and Ohio, with divorce rates at the
median. Finally, New Jersey and New York with the lowest divorce rates in 1970. We see that
the divorce rates for the sample states and the aggregate divorce rates move closely following the
same trends and reaching the peat at the same year. In addition we see that all states exhibit a
declining trend since the mid 80’s.
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Figure A.1: Divorces per 1000 population

Notes: Divorce rates are taken from the CDC/NCHS National Vital Statistics System reports.
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Appendix B

Appendix Chapter 2

B.1 Solution Algorithm

Solution Algorithm

Computing the recursive stationary equilibrium for Stage -1 (Pre-HIV Era)

Algorithm No.1 : Computation of the recursive stationary equilibrium of an Aggregate
Epidemic Stage:

Step 1: Make initial guesses of price p (and prevalence ϕ+ if not in Pre-HIV Stage).

Step 2: Compute the agents decision rules.

Step 3: Compute the stationary distribution of the population across states (follow Algo-
rithm No.2).

Step 4: Compute aggregate sex demand and aggregate sex supply. Check the aggregate
consistency conditions.

Step 5: If conditions are not met, update p and ϕ+ and return to Step 2.

In the absence of continuous state variables, the decision rules are reduced to single values
conditional on the different states
This algorithm is generic enough that can be used to compute the recursive stationary equilibrium
of any aggregate stage of the epidemic.

Algorithm No.2 : Computation of the invariant distribution of the population:
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Step 1: Make an initial guess for the (discrete) mass function ϕ0 over the respective stage
state space1.

Step 2: For all individual states in Φ compute the following expression:

if Stage: -1 (Pre-epidemic)

ϕt+1(Φ′) =
∑
Φ

∑
s′|s

γπ(s′|s)ϕt(Φ) + fϕt(Φ′) (B.1)

if Stage: 0 (HIV Myopia) or in Stage:1-2 (HIV Maturity)

ϕt+1(Φ′) =
∑
Φ

∑
s′|s,h′|h

γ(h)π(s′|s)ϕ+
t λt,ρ(h′|h)ϕt(Φ) + fϕt(Φ′) (B.2)

if Stage:3-4 (ARV Era)

ϕt+1(Φ′) =
∑
Φ

∑
d′|d,h′|h
s′|s

γ(h, d)π(s′|s)ϕ+
t λt,ρ(h′|h)ν(d′|d)ϕt(Φ) + fϕt(Φ′) (B.3)

Step 3: If |ϕt+1 − ϕt| is close to zero stop, otherwise set ϕt = ϕt+1 and return to Step 2.

Computing the recursive stationary equilibrium for Stage 0 (HIV Myopia)

Algorithm No.3 : Computation of the recursive stationary equilibrium of the Myopic
stage:

Same as Algorithm No.1

Computing the Non-stationary equilibrium for Stage 0 (HIV Myopia)

Algorithm No.4 : Computation of the solution of the Myopic stage:
We are after a sequence of {Φτ}T0

τ=T−1(g = 0) where at each period τ ∈ {T−1 + 1, ..., T0}, agents
get a permanent unexpected shock to γ̃, z̃ and χ̃ following (2.17) and (2.18). T0 being the
period in which Stage 1-2 quick’s in. To get each of the elements of the sequence we need to
solve for an entire transition.

1We choose the uniform distribution as the initial values of the distribution. The algorithm should converge
regardless of the choice of the initial distribution.
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Step 0: Set τ = T−1 + 1,

Step 1: Following (2.17) and (2.18) compute new values for γ̃τ , z̃τ and χ̃τ (Remember
agents believe these values will be permanent).

Step 2: Compute the recursive stationary equilibrium of the Myopic stage associated with
the new γ̃τ , z̃τ and χ̃τ , (follow Algorithm No.2).

Step 3: Choose a very large number of transition periods (T − τ).

Step 4: Guess a time path for the prices {pt}T
t=τ and prevalences {ϕ+

t }T
t=τ .

Step 5: Compute the equilibrium policy (and value) functions iterating backwards in time,
t = T − 1, ..., τ .

Step 6: Simulate the evolution of the population distribution from t = τ to t = T with
the help of the optimal policy functions and the initial distribution Φτ (g = 0).

Step 7: Compare the simulated distribution at T with the stationary distribution function
from Step 2. If they are not the same try increasing the horizon T and go back to Step 4.

Step 8: Compute the time path of excess demand for sex, and the path of prevalence’s
{ϕ̂+

t }T
t=τ . If markets don’t clear along the path, or {ϕ̂+

t }T
t=τ ̸= {ϕ+

t }T
t=τ , then update

{pt}T
t=τ and {ϕ+

t }T
t=τ return to Step 5.

Step 9: Record the first elements of the transition decision rules (cτ+1, xτ+1), prices (pτ+1),
prevalence (ϕ+

τ+1) and joint distribution (Φτ+1).

Step 10: Stop if τ = T0

Step 11: Replace τ = τ + 1 and go back to Step 1.

Computing the recursive stationary equilibrium for Stage 1-2 (HIV Maturity)

Algorithm No.5 : Computation of the recursive stationary equilibrium of the Pre-
Epidemic stage:

Same as Algorithm No.1
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Computing the Non-stationary equilibrium for Stage 1-2 (HIV Maturity)

Algorithm No.6 : Computation of the solution of the Maturity Stage:
We are after a sequence of {Φt}T

t=T0(g = 1 − 2) that goes from the last period in Stage 0
(HIV Myopia t = T0) to the recursive stationary equilibrium of Stage 1-2 of the epidemic (HIV
Maturity).

Step 1: Choose a large number of transition periods (T − T0)

Step 2: Simulate a sequence of {ρe,t}T
t=T0 by education group, following (2.29).

Step 3: Compute the recursive stationary equilibrium of Stage 1-2 of the epidemic. This
stationary equilibrium is associated with limt→T ρe,t = ρ. That is, in the stationary equilib-
rium both education groups have completed learning of the true probability HIV infection
risk as a function of sex.

Step 4: Guess a time path for the prices {pt}T
t=T0 and prevalences {ϕ+

t }T
t=T0 .

Step 5: Compute the equilibrium policy (and value) functions iterating backwards in time,
t = T − 1, ..., T0.

Step 6: Simulate the evolution of the population distribution from t = T0 to t = T with
the help of the optimal policy functions and the initial distribution ΦT0(g = 1).

Step 7: Compare the simulated distribution at T with the stationary distribution function
from Step 3. If they are not the same try increasing the horizon T and go back to Step 2.

Step 8: Compute the time path of excess demand for sex, and the path of prevalence’s
{ϕ̂+

t }T
T0 . If markets don’t clear along the path, or {ϕ̂+

t }T
T0 ̸= {ϕ+

t }T
T0 , then update {pt}T

T0

and {ϕ+
t }T

T0 return to Step 5.

Computing the recursive stationary equilibrium for Stage 3-4 (ARV Era)

Algorithm No.7 : Computation of the recursive stationary equilibrium of the ARV stage:

Same as Algorithm No.1

Computing the Non-stationary equilibrium for Stage 3-4 (ARV Era)

Algorithm No.8 : Computation of the solution of the ARV Stage:
After T1 periods in Stage 1-2 (HIV Maturity), ARV’s are introduced unexpectedly. We are after
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a sequence of {Φt}T
t=T1(g = 3 − 4) that go from T1 to the recursive stationary equilibrium of

Stage 3-4 of the epidemic (ARV Era).

Step 1: Choose a large number of transition periods (T − T1)

Step 2: Compute the recursive stationary equilibrium of Stage 3-4 of the epidemic. This
stationary equilibrium is associated with limt→∞ ηt = η̃ = 1. That is, there is full coverage
for all HIV infected individuals.

Step 3: Guess a time path for the prices {pt}T
t=T1 and prevalences {ϕ+}T

t=T1 .

Step 4: Given the sequences for ARV coverage by education group {ηt(e)}T
t=T1 , compute

the equilibrium policy (and value) functions iterating backwards in time, t = T − 1, ..., T1.

Step 5: Simulate the evolution of the population distribution from t = T1 to t = T with
the help of the optimal policy functions and the initial distribution Φt=T1(g = 2).

Step 6: Compare the simulated distribution at T with the stationary distribution function
from Step 2. If they are not the same try increasing the horizon T and go back to Step 3.

Step 7: Compute the time path of excess demand for sex. and the path of prevalence’s
{ϕ̂+

t }T
t=T1 . If markets don’t clear along the path, or {ϕ̂+

t }T
t=T1 ̸= {ϕ+

t }T
t=T1 , then update

{pt}T
t=T1 and {ϕ+

t }T
t=T1 return to Step 4.

B.2 Further Results
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Table B.1: The HIV-Education Gradient, Sexually Active Sample

HIV Status (1) (2) (3) (4) (5)

Education 0.0048*** 0.0123*** 0.0107*** 0.0042*** 0.0039***
(0.0009) (0.0008) (0.0013) (0.0003) (0.0004)

Education * Stage1 -0.0064*** -0.0047*** -0.0007 -0.0004
(0.0010) (0.0013) (0.0004) (0.0005)

Education * Stage2 -0.0129*** -0.0115*** -0.0029*** -0.0027***
(0.0009) (0.0014) (0.0003) (0.0004)

Education * Stage3 -0.0101*** -0.0081*** -0.0018 -0.0016
(0.0020) (0.0015) (0.0015) (0.0014)

Education * Stage4 -0.0067*** -0.0054*** -0.0019*** -0.0014***
(0.0013) (0.0016) (0.0004) (0.0004)

Male -0.0267*** -0.0273*** -0.0272*** -0.0268*** -0.0269***
(0.0039) (0.0038) (0.0025) (0.0022) (0.0021)

Age 0.0021*** 0.0021*** 0.0021*** 0.0022*** 0.0022***
(0.0004) (0.0004) (0.0003) (0.0002) (0.0002)

Urban Area 0.0260*** 0.0243*** 0.0276*** 0.0337*** 0.0344***
(0.0059) (0.0059) (0.0053) (0.0038) (0.0038)

Stage 1 -0.0018 0.0137*** 0.0097 -0.0082*** 0.0099***
(0.0062) (0.0047) (0.0060) (0.0012) (0.0023)

Stage 2 0.0132 0.0573*** 0.0676*** 0.0010 0.0289***
(0.0105) (0.0122) (0.0136) (0.0029) (0.0045)

Stage 3 -0.0114 0.0198 0.0330** -0.0129** 0.0138**
(0.0164) (0.0149) (0.0128) (0.0061) (0.0060)

Stage 4 -0.0027 0.0143*** 0.0436*** -0.0183*** 0.0056
(0.0052) (0.0040) (0.0097) (0.0025) (0.0036)

Agricultural Share -0.0034*** -0.0034*** -0.0035*** 0.0027*** -0.0006
(0.0003) (0.0003) (0.0004) (0.0005) (0.0004)

Output per Capita -0.0000*** -0.0000*** -0.0000*** 0.0001** 0.0001***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Constant 0.1128*** 0.0918*** 0.0554*** -0.1603*** -0.1992***
(0.0101) (0.0075) (0.0098) (0.0493) (0.0282)

Year-Country Dum. No-No No-No Yes-No No-Yes Yes-Yes
Sample Size 329,205 329,205 329,205 329,205 329,205

Notes: All specifications use the ”Sexually Active” subsample. The underlying econometric models are as specified
in the columns of Table 2.3. Column (1) reports the tests results for the stationary specification. Columns (2)
to (5) report the tests results for the non-stationary specification. We include the same set of controls and fixed
effects as in our benchmark specifications in Table 2.3. Standard errors are clustered at the country level using
the wild cluster bootstrap from Cameron et al. (2008), and reported in parenthesis. * significant at 10%; **
significant at 5%; *** significant at 1%.
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Table B.2: The Knowledge-Education Gradient: Women and Men Separately

(A) One Sexual Partner without Other Partners
Women Men

HIV Knowledge (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Education 0.0135 0.0033 0.0005 0.0074*** 0.0076*** 0.0076** 0.0010 0.0013 0.0078*** 0.0087***
(0.111) (0.110) (0.866) (0.000) (0.000) (0.001) (0.326) (0.580) (0.000) (0.000)

Education * Stage1 0.0126 0.0120** 0.0047 0.0046 0.0078*** 0.0059** 0.0005 -0.0001
(0.156) (0.043) (0.309) (0.292) (0.000) (0.039) (0.840) (0.952)

Education * Stage2 0.0072** 0.0093** 0.0038** 0.0033 0.0091*** 0.0086*** 0.0028* 0.0017
(0.046) (0.049) (0.045) (0.210) (0.000) (0.001) (0.088) (0.285)

Education * Stage3 0.0094 0.0120 0.0018 0.0020 0.0057 0.0053 -0.0034 -0.0042
(0.612) (0.412) (0.912) (0.911) (0.386) (0.337) (0.444) (0.304)

Education * Stage4 0.0104 0.0134 0.0071 0.0062 0.0069** 0.0075* 0.0019 0.0007
(0.732) (0.648) (0.812) (0.830) (0.044) (0.066) (0.424) (0.759)

Year-Country Dum. No-No No-No Yes-No No-Yes Yes-Yes No-No No-No Yes-No No-Yes Yes-Yes
Sample Size 213,907 213,907 213,907 213,907 213,907 167,894 167,894 167,894 167,894 167,894

(B) Always Use Condom During Sex
Women Men

HIV Knowledge (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Education 0.0221 0.0194*** 0.0169*** 0.0196*** 0.0196*** 0.0126*** 0.0132*** 0.0141*** 0.0187*** 0.0181***
(0.133) (0.000) (0.000) (0.000) (0.000) (0.002) (0.000) (0.000) (0.000) (0.000)

Education * Stage1 0.0044 0.0073 0.0034 0.0039 -0.0006 -0.0007 -0.0036 -0.0029
(0.801) (0.593) (0.809) (0.754) (0.935) (0.929) (0.638) (0.668)

Education * Stage2 -0.0026 0.0003 -0.0017 -0.0025 0.0015 0.0017 -0.0036 -0.0035
(0.616) (0.953) (0.648) (0.572) (0.639) (0.637) (0.236) (0.246)

Education * Stage3 0.0009 0.0039 0.0008 0.0014 -0.0028 -0.0024 -0.0073 -0.0064
(0.956) (0.804) (0.952) (0.920) (0.770) (0.789) (0.415) (0.496)

Education * Stage4 0.0067 0.0089 0.0047 0.0033 0.0006 -0.0004 -0.0046* -0.0047**
(0.946) (0.929) (0.963) (0.974) (0.828) (0.910) (0.065) (0.029)

Year-Country Dum. No-No No-No Yes-No No-Yes Yes-Yes No-No No-No Yes-No No-Yes Yes-Yes
Sample Size 213,763 213,763 213,763 213,763 213,763 167,800 167,800 167,800 167,800 167,800

Notes: In panel (A) we report the coefficients of a linear model where the endogenous variable is binary for “Can you (the respondent) reduce the chances of
getting HIV by having one sex partner who has no other partners?”. In panel (B) we report the coefficients of a linear model where the endogenous variable
is binary for “Can you (the respondent) reduce the chances of getting HIV by always wearing a condom?”. In both panels we include the same set of controls
and fixed effects as in our benchmark specifications in Table ??. Standard errors are clustered at the country level using the wild cluster bootstrap from
Cameron et al. (2008), and reported in parenthesis.* significant at 10%; ** significant at 5%; *** significant at 1%.
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Figure B.1: The Knowledge-Education Gradient: Evolution Across Stages of the HIV Epidemic

(a) Women

(b) Men

Notes: The HIV-Education gradient is plotted on the left vertical axis. The HIV knowledge in terms of the
Partners-Education gradient and the Condoms-Eduction gradient are plotted on the right vertical axis. For each
stage j we plot

(
γ0 +

∑
j>0 γj1j

)
. The specification we plot is with year controls. For the HIV knowledge in

terms of Partners-Education and Condoms-Education gradient we use column 3 (8) in Table B.2 for respectively
women (top panel) and men (bottom panel). Significance at 10%, 5%, and 1% is represented by, respectively,
markers with open circles, markers with medium transparency fill, and markers with solid fill. We use a cubic
spline for interpolation across stages.
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Figure B.2: Comparing beliefs (ρ) between education groups.

(a) Beliefs ratio ρt(e = 0)/ρt(e = 1)

(b) Relative belief convergence by education group

(c) Knowledge of ρ Education Gradient
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Appendix C

Appendix Chapter 3

C.1 Reduced-Form Montecarlo

The SIRD Model

Consider a SIRD model M(Θ,P) summarized by the following laws of motion:

XS,t+1 = −αpβ It
Nt

St (C.1)

XI,t+1 = αpβ
It
Nt

St − γIt (C.2)

XR,t+1 = (1 − ζ)γIt (C.3)
XD,t+1 = ζγIt (C.4)

The triplet P = (αp, tp, tf ) defines a policy with effects against new infections determined by
p ∈ [0, 1] implemented in a subinterval [tp, tf ]. All model parameters Θ = (t0, β, ζ, γ) and the
policy effects p could be time variant.
Different values of p imply alternative counterfactual scenarios that pin down the effect of policy
on an outcome variable (i.e. XD,t).

Simulating artificial data

1. Simulate a SIRD economy C without policy: M(ΘC) = M(ΘC; p = 1, tp, tf ) (solid blue).

2. Add a policy to C: Simulate M(ΘC; p < 1, tp, tf ) (dashed blue)

3. Simulate a SIRD economy T without policy: M(ΘT ) with ΘT ̸= ΘC (solid red).
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4. Add the same policy as in (2) to T : Simulate M(ΘT ; p < 1, tp, tf ) (dashed red)

Policy effects

We are interested in uncovering the true policy effects on model statistics that can have an
observable counterpart in the data, e.g., XD(M).
We can calculate the true policy effect for any economy j ∈ {C, T } that adopts a given policy
p < 1. The total number of lives saved is given by:1

LS = D
tf
tp (p = 1) −D

tf
tp (p < 1) (C.5)

where where Dtf
tp (p) = ∑tf

t=tp X
j
D,t(p) is the accumulated number of deaths from time tp until tf

given policy p.The percentage of lives saved is defined as

LS(%) = LS

D
tf
tp (p = 1)

(C.6)

Policy effects for the overlap interval between XT
D(p < 1) and XC

D(p < 1)

1. Map XT
D(p = 1) to XC

D(p = 1)2; that is, solve for ψ = {ψ0, ψ1, ψ2} that minimizes the
log difference of the regions flow of deaths.

2. Translate tp into time of T by applying: ttp = floor((tp− ψ2)/ψ3).

3. Compute the number of lives saved over the interval [tp, ttp] as: LS = ∑ttp

t=tpX
T
D,t(p =

1) −∑ttp

t=tpX
T
D,t(p < 1)

4. Compute the estimated % of lives saved as: %LS = LS∑ttp
t=tp X

T
D,t(p<1)

.

Estimating the Policy effects

Consider a policy evaluator that faces a scenario in which she/he has information on a outcome
(statistic) of interest, e.g., XD(t). Say this outcome is available for the two regions C and T .
The evaluator also knows the dates of policy implementation in each region.
The policy evaluator knows nothing else. In particular, she/he does not know the model that

1Note that we can also calculate the number of lives saved for any time interval.
2This could also be XT

D(p < 1) to XC
D(p < 1) using the series up to the policy
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generates the data and, hence, cannot use the model to identify the true policy effects following
the steps that we described above. This implies that the policy evaluator has the following
information set:

1. Available time-series data on a statistic of interest XC
D and XT

D . In particular, what is
available to the evaluator is the left hand side of:

XC
D(t) = XD (M(ΘC; p < 1, tp, tf )) (blue dashed)

XT
D(t) = XD (M(ΘT ; p < 1, tp, tf )) (red dashed)

The evaluator is not provided with the true model that generates the data (i.e., RHS),
which implies that the evaluator does not know p ex-ante.

2. This includes the period of policy implementation that could differ across regions (tC,p, tC,f )
and (tT ,p, tT ,f ).

In our benchmark scenario we assume tC,p = tT ,p = tp and tC,f = tC,f = tf → ∞

Cases:

Now we consider the performance of the method in estimating the policy effects when region T
differs from C in the following dimensions:

1. tC,0 < tT ,0, Region T starts with 5 periods later than C.

2. Previous case +βC > βT . We choose βT to be 95% of βC

3. Previous case +ζC > ζT . We choose ζT to be 85% of ζC

4. Previous case +γC > γT . We choose γT to be 85% of γC

5. Exogenous (observed or unobserved) Pre-Policy Behavioural change:
Starting at tbc < tp region T experiences an exogenous time varying change in the infection
rate. That is βT

t≥bc = αbet β
T
t=0 with αbet ∈ [0, 1]. This is change could be observed or

unobserved by the evaluator. At tp a policy is applied in T , that sets the βT
t>=tp = αpβT

t=0,
such that 0 ≤ αp ≤ min(αbet ). We choose tbc to be 13 periods before policy, min(αbet ) =
0.95 and αp = 0.7.

We also consider a more extreme set of cases in which the lenght of the overlap period is around
11 periods. This is achieved by setting tT ,0 = 9.
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Results

Table C.1 shows the experiment results. The first three columns correspond to the true percentage
of lives saved (PLS), number of lives saved (LS) and length of the overlap interval (OLP). The
last three, are the corresponding estimates. The last five columns also show that the results are
valid regardless of whether it has been chosen to map T to C or C to T.

Table C.1: MC Results

OLP∼ 7
True Mapping T to C

PLS LS OLP(days) PLS LS OLP(days)
1.Late 8,5754 221,34 5 8,5758 221,35 5
2.Late+Slow 14,33 453,86 7,1787 14,242 451,17 7,2546
3.Late+Slow+Small 14,342 420,65 7,1747 14,236 417,59 7,2385
4.Late+Slow+Small+Fast recovery 9,1513 238,71 6,1153 9,6619 218,52 5,8801
5+Time Varying Behaviour Change 14,122 401,72 7,2823 14,202 404,51 7,3869

True Mapping C to T
1.Late 8,5754 221,34 5 8,5743 221,31 5
2.Late+Slow 14,321 453,58 7,4886 14,236 450,99 7,7745
3.Late+Slow+Small 14,334 420,41 7,5002 14,232 417,44 7,7582
4.Late+Slow+Small+Fast recovery 9,1026 237,37 6,6159 9,67 218,71 5,9819
5+Time Varying Behaviour Change 14,115 401,5 7,6134 14,183 403,91 7,9507

OLP∼ 11
True Mapping T to C

1.Late 16,349 654,25 9 16,349 654,25 9
2.Late+Slow 22,524 979,24 11,055 22,525 980,42 11,063
3.Late+Slow+Small 22,52 906,65 11,045 22,487 906,1 11,045
4.Late+Slow+Small+Fast recovery 17,232 632,82 9,8887 17,132 596,38 9,8023
5+Time Varying Behaviour Change 21,806 848,82 11,152 22,888 945,98 11,275

True Mapping C to T
1.Late 16,349 654,25 9 16,349 654,24 9
2.Late+Slow 22,518 978,93 11,532 22,516 979,98 11,86
3.Late+Slow+Small 22,514 906,38 11,546 22,479 905,72 11,841
4.Late+Slow+Small+Fast recovery 17,193 631,26 10,698 17,139 596,65 9,9586
5+Time Varying Behaviour Change 21,801 848,59 11,659 22,577 931,02 12,108

Notes: For region C we choose parameters
N = 6M, I0 = 1000, R0 = 0, D0 = 0, S0 = N − I0, β = 0.32, γ = 1/12, ζ = 0.0011, t0 = 1, p = 0.7
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C.2 The effect of the pill on crude birth rates

When analyzing fertility outcomes, Idaho, West Virginia, Nevada, Arkansas lead the rest of the
U.S. therefore we use artificial region Bottom 4 to construct the counterfactual. Normalization
results are shown in Figure C.1. The average policy effect is very small suggesting that crude
birth rates were not affected by the pill.

Figure C.1: Normalization of time paths: Bot 4 (C) vs. RoUSA (T )

Crude Birth Rate

(a) Before Normalization (b) After Normalization

(c) Overlap Interval (d) Policy Effect

Notes: Panel (a) shows the outcome variable for the aggregate of the 4 leading states (Idaho, West Virginia,
Nevada, Arkansas)in the U.S. (C) and the rest of the U.S. (T )), panel (b) shows the normalized epidemics. The
fitted lines for t < τ show the smooth epidemics pre-policy that are used in the normalization procedure. Panel
(c) zooms in on the overlap interval. Panel (d) Shows the policy effect, computed as the percentage difference

had the policy not been implemented
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C.3 Addressing Latent Time Varying Heterogeneity

In panel (a) of Figure 3.1 we re-conduct the same exercise but imposing latent time varying
heterogeneity in the treatment region T . This time varying heterogeneity It is induced by changes
in ξP across time, gradually moving closer to the actual ξ. 3(See Figure C.2) This implies a pre-
policy reduction in the equilibrium hours. From the perspective of an empirical strategy aimed to
assess policy effects, the change in the model ξP generates time-varying unobserved heterogeneity
in the treatment region. Note that we purposefully left the actual effects of policy on region C
unchanged. We find that our stage-based identification is robust to this type of heterogeneity;
results are shown bellow.

3For example, in the context of the economy that we postulated, a government that knows ξ could nudge
the economy’s households to learn about the actual effects of economic activity. This would imply that after the
nudging households privately decide to change their prevention behavior providing less labor in equilibrium.
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Figure C.2: Stage-Based Identification of Policy Effects: Case with Latent Time Varying Hetero-
geneity

(a) Response of Hours (b) True Policy Effects on XD

(c) Identified Policy Effects (d) Identified vs.True Policy Effects

Notes: Where h̄ = 0.4, tp = 38, tf = 250.
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