
PhD Thesis

Mathematical programming-based
models for the distribution
networks’ decarbonization

Fernando Garćıa Muñoz
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Abstract

Climate change is pushing to decarbonize worldwide economies and forcing fossil

fuel-based power systems to evolve into power systems based mainly on renewable

energies sources (RES). Thus, increasing the energy generated from renewables in

the energy supply mix involves transversal challenges at operational, market, politi-

cal and social levels due to the stochasticity associated with these technologies and

their capacity to generate energy at a small scale close to the consumption point. In

this regard, the power generation uncertainty can be handled through battery storage

systems (BSS) that have become competitive over the last few years due to a signifi-

cant price reduction and are a potential alternative to mitigate the technical network

problems associated with the intermittency of the renewables, providing flexibility to

store/supply energy when is required. On the other hand, the capacity of low-cost

generation from small-scale power systems (distributed or decentralized generation

(DG)) represents an opportunity for both customers and the power system opera-

tors. i.e., customers can generate their energy, reduce their network dependency, and

participate actively in eventual local energy markets (LEM), while the power system

operator can reduce the system losses and increase the power system quality against

unexpected external failures. Nevertheless, incorporating these structures and opera-

tional frameworks into distribution networks (DN) requires developing sophisticated

tools to support decision-making related to the optimal integration of the distributed

energy resources (DER) and assessing the performance of new DNs with high DERs

penetration under different operational scenarios.

This thesis addresses the distribution networks’ decarbonization challenge by de-

veloping novel algorithms and applying different optimization techniques through

three subtopics. The first axis addresses the optimal sizing and allocation of DG

and BSS into a DN from deterministic and stochastic approaches, considering the

technical network limitation, the electric vehicle (EV) presence, the users capacity to

modify their load consumption, and the DG capability to generate reactive power for

voltage stability. Besides, a novel algorithm is developed to solve the deterministic
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and stochastic models for multiple scenarios providing an accurate DERs capacity

that should be installed to decrease the external network dependency. The second

subtopic assesses the DN capacity to face unlikely scenarios like primary grid failure

or natural disasters preventing the energy supply through a deterministic model that

modifies the unbalance DN topology into multiple virtual microgrids (VM) balanced,

considering the power supplied by DG and the flexibility provided by the storage

devices (SD) and demand response (DR). The third axis addresses the emerging

transactive energy (TE) schemes in DNs with high DERs penetration at a residen-

tial level through two stochastic approaches to model a Peer-to-peer (P2P) energy

trading. To this end, the capability of a P2P energy trading scheme to operate on dif-

ferent markets as day-ahead, intraday, flexibility, and ancillary services (AS) market

is assessed, while an algorithm is developed to manage the users’ information under

a decentralized design.
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Nomenclature

Global nomenclature

i ∈ B Set of buses.

k ∈ Ω Set of type of generation source.

l ∈ Ψ Set of type of batteries.

d ∈ D Set of type of demand response.

i ∈ A Set of agents/users that trade energy in the LEM, such that A ⊂ B

t ∈ T Set of time slots.

s ∈ S Set of scenarios.

(i, j) ∈ L Set of lines, such that L = {(i, j); i, j ∈ B}.

PGmax
i,t Maximum active power output of bus i at period t in [%].

PGmin
i,t Minimum active power output of bus i at period t in [%].

QGmin
i,t Minimum reactive power output of bus i at period t in [%].

QGmax
i,t Maximum reactive power output of bus i at period t in [%].

PLi,t,s Active load of bus i at period t in scenario s [kW].

QLi,t,s Reactive load of bus i at period t in scenario s [kVAr].

V min Minimum voltage allowed [p.u.].

V max Maximum voltage allowed [p.u.].

Bsi,j Non-zero upper diagonal bus admittance matrix elements [p.u.].

Smaxi,j Allowed maximum apparent power of the line between buses i and j [kVA].

Gi,j, Bi,j Conductance and susceptance of the line between buses i and j such that

i ̸= j [p.u.].

Gi, Bi Conductance and susceptance of the line between buses i and j such that

i = j [p.u.].
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DGi PV system capacity in bus i [%].

SOCmin Minimum state of charge of battery [%].

SOCmax Maximum state of charge of battery [%].

φch Charging battery efficiency [%].

φds Discharging battery efficiency [%].

PB Maximum charge/discharge power for battery i in a period [kW].

BT Battery capacity [kWh].

∆t Time slot (1 h in the models).

M Big M.

vi,t,s Voltage of bus i at period t in scenario s [p.u].

θi,t,s Angle of bus i at period t in scenario s, such that ∆θi,jt,s = (θi,t,s − θj,t,s) is
a summary expression of the angle difference between bus i and bus j.

pi,jt,s Active power in line between buses i and j at period t in scenario s [kW].

qi,jt,s Reactive power in line between buses i and j at period t in scenario s

[kVAr].

Nomenclature for location and sizing problems

Cbl Capacity cost of storage type l [€k/kWh].

Cpk Capacity active power cost of generator type k [€k/kW].

Cqk Capacity reactive power cost of generator type k [€k/kW].

Dsevt Discharging EV unplugged at the time t [kWh].

Eev
i Binary parameter for EV location at bus i.

Fldi Maximum number of load type d active in bus i.

Ht Binary parameter for EV connected at the time t.

Ibtl Installation cost of storage type l [€k].

Ignk Installation cost of generator type k [€k].

M l Maximum charge/discharge power for battery type l in a period [kW].

OMGk
i Operational and maintenance cost for generation type k of bus i [€k/kW/yr].

OMBl
i Degradation cost for battery type l of bus i [€k/kWh].

ψev EV storage capacity [kWh].
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Pfi,t Fixed active load in bus i at the time t.

Pvdi Variable load of type d in bus i.

SOC
ev

t Maximum state of charge of the EV at time t [%].

SOCev
t Minimum state of charge of the EV at time t [%].

U g
k Maximum generator capacity type k [kW].

U b
l Maximum battery capacity type l [kWh].

λt,s Energy price from the grid at the time t in scenario s [€/kWh].

γpk,i Active power capacity of generator k in bus i [kW].

γqk,i Reactive power capacity of generator k in bus i [kVAr].

γbl,i Storage power capacity of battery l in bus i [kWh].

xki Binary variable: 1 if the generator type k is installed in bus i, 0 otherwise.

yli Binary variable: 1 if the battery type l is installed in bus i, 0 otherwise.

pgki,t,s Active power of generator type k of bus i at period t in scenario s [kW].

qgki,t,s Reactive power of generator type k of bus i at period t in scenario s [kVAr].

gpi,t,s Active power from the Grid in bus i at period t in scenario s [kW].

gqi,t,s Reactive power from the Grid in bus i at period t in scenario s [kVAr].

pli,t,s Active load of bus i at period t in scenario s [kW].

chli,t,s Power absorbed for the storage type l of bus i at period t in scenario s

[kW].

dsli,t,s Power injected for the storage type l of bus i at period t in scenario s [kW].

chevi,t,s Power absorbed for the EV in bus i at period t in scenario s [kW].

dsevi,t,s Power injected for the EV in bus i at period t in scenario s [kW].

socli,t,s State of charge of battery type l of bus i at period t in scenario s [kWh].

socevi,t,s State of charge of EV in bus i at period t in scenario s [kWh].

wli,t,s Binary variable: 1 if the battery type l is charging in bus i at period t in

scenario s, 0 otherwise.

wevi,t,s Binary variable: 1 if the EV is charging in bus i at period t in scenario s,

0 otherwise.

τ di,t,s Binary variable: 1 if the load type d is active in bus i at time t in scenario

s, 0 otherwise.
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Nomenclature for microgrids clustering problem

U g
k Active power capacity installed of generator type k [MW].

U q
k Reactive power capacity installed of generator type k [MW].

U b
l Active power capacity installed of battery type l [MWh].

Y l
i Binary parameter representing if a battery type l is installed in node i.

λi,t Virtual active and reactive power of bus i at period t [MW].

γi,t Active and reactive power supplied on bus i at period t [MW].

δi,t Active and reactive power not-supplied on bus i at period t [MW].

Nomenclature for P2P energy trading problems

κmax Maximum substation power.

λbgt,s Price of the energy bought from the grid at time t in scenario s.

λsg Feed in Tariff or net metering price.

ρs Probability of the scenario s.

κbgt Energy bought from the grid through the substation at period t [kW]

κsgt Energy sold to the grid through the substation at period t [kW]

∆pi,t,s Difference between the energy self-generated and the consumption in bus

i at period t in scenario s [kW].

pgi,t,s Energy self-generated in bus i at period t in scenario s [kW].

pbgi,t,s Energy bought from the grid by the bus i at the period t in scenario s

[kW].

psgi,t,s Energy sold to the grid by the bus i at the period t in scenario s [kW].

pbmi,t,s Energy bought from the market by the bus i at the period t in scenario s

[kW].

psmi,t,s Energy sold to the market by the bus i at the period t in scenario s [kW].

qκbgi,t,s Reactive power bought from the grid through the substation of bus i at

period t in scenario s [kVAr].

chi,t,s Power absorbed for the storage of bus i at period t in scenario s [kW].

dsi,t,s Power injected for the storage of bus i at period t in scenario s [kW].

soci,t,s State of charge of battery of bus i at period t in scenario s [kWh].
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εi,t,s Losses of bus i at period t in scenario s [kWh].

qκast Total reactive power injected to the main grid at period t [kVAr].

∆chi,t,s Additional power absorbed by the battery in bus i at period t in scenario

s to face the community electricity consumption uncertainty. [kW].

∆dsi,t,s Additional power injected by the battery in bus i at period t in scenario s

to face the community electricity consumption uncertainty.

chcbi,t,s Power absorbed by the community battery in bus i at period t in scenario

s [kW].

dscbi,t,s Power injected from the community battery in bus i at period t in scenario

s [kW].

qdscbi,t,s Reactive power dispatched from the community battery in bus i at period

t in scenario s [kVAr].

qdsi,t,s Reactive power dispatched from the storage in bus i at period t in scenario

s [kVAr].

qgi,t,s Reactive power generated in bus i at period t in scenario s [kVAr].

wi,t,s Binary variable: 1 if the battery is charging in bus i at period t in scenario

s, 0 otherwise.

yi,t,s Binary variable: 1 if the agent in bus i at period t in scenario s has an

energy surplus, 0 otherwise.
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List of acronyms

ADMM Alternating direction method of multipliers

ADN Active distribution network

BD Benders algorithm

BSS Battery storage system

CB Community batteries

CDA Continuous double-auction

CM Community manager

DEP Distribution expansion planning

DER Distributed energy resource

DG Distributed generation

DN Distribution network

DR Demand response

DSO Distribution system operator

DSR Demand side response

EC Energy community

ENS Energy not-supplied

ESS Energy storage system

EV Electric vehicle

FF Fitness function

FIT Feed-in tariff

GA Genetic algorithm

LEM Local energy market
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LP Linear problem

LVF Losses-Voltage-Factor

MG Microgrid

MILP Mixed-integer linear problem

MINLP Mixed-integer non-linear problem

MISOCP Mixed-integer second-order conic programming

MP Master problem

OF Objective function

OPF Optimal power flow

P2P Peer-to-peer

PEV Plug-in electric vehicle

PSO Particle swarm optimization

PV Photovoltaic system

QC Quadratic convex

QP Quadratic programming

RES Renewable energy source

SDP Semi-definite programming

SOC State of charge

SOCP Second-order cone programming

SP Subproblem

TE Transactive energy

TSO Transmission system operator

TSS-MINLP Two-stage stochastic mixed-integer non-linear problem

VM Virtual microgrid

VMTS Virtual microgrids topology scheduling

WT Wind turbine system
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Chapter 1

Introduction

1.1 Context and motivation

Decarbonizing the worldwide economies to reduce greenhouse emissions is forcing the

electric power systems to rethink their current operational and structure schemes to

include more renewable technologies into the energy supply mix. In this regard, the

RES cost reduction and the constant BSS improvements become these technologies

in a powerful alternative to boost their penetration in the current energy matrix

and speed up the energy transition. Expressly, the IRENA report [1] declares a cost

reduction of utility-scale solar photovoltaics (PV) and onshore wind (WT) of 85%

and 56%, respectively, between 2010 and 2020, while according to [2], the lithium-

ion batteries showed a drastic drop in prices around 87% from above 1100 $/kWh

in 2010 to 156 $/kWh in 2019. In this way, following the objectives and guidelines

established in the Paris agreement, renewables are expected to represent two-thirds

of energy consumption and 86% of power generation in 2050 [3].

However, according to the above context, renewables expansion in transmission

and distribution systems requires proper planning to handle the new operational and

market management opportunities in highly decarbonized networks to allow a flex-

ible, secure, and sustainable integration. For example, in the DNs field, one of the

challenges from the planning perspective corresponds to the optimal location and

sizing of DERs to reduce the system losses and increase the DN autonomy and re-

silience [4]. The problems related to the optimal location and sizing are not new in

the optimization field; however, their application in the electricity networks planning

field brings some challenges related to the network technical limitation and stochas-

ticity associated with the electricity load and the power generated through the DG.

Specifically, the constraints to properly represent the physical and technical network

limitations are non-linear and non-convex, which may significantly increase the model
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execution time under a multiperiod context. On the other hand, the multiperiod sce-

narios required to include the stochasticity of renewable sources representatively must

be extensive and consider multiple different periods to obtain the optimal DERs ca-

pacity while the investment and the main grid dependency are minimized. Besides,

the formulation must consider the trade-off between the expected power provided by

the DERs and the power supplied by the main grid since higher installed capacity

implies high autonomy but a significant investment. Thus, the optimal location and

sizing of DERs have received increased research attention in the last few years, and

it is one of the problems addressed in this thesis.

From the operational perspective, one of the challenges of DNs with high DERs

penetration is the capacity to face unexpected main grid failures in electricity pro-

vision. However, it is worth noting that one of the consequences of the problem

mentioned in the previous paragraph corresponds to that meeting 100% of the elec-

tricity demand with DERs requires a high investment due to their stochasticity. Thus,

the main grid must supply part of the electricity demand not covered by the DERs,

and any failure in the main grid provision or natural disasters could prevent a regular

network operation causing balance problems and supply cuts to the DN. Under these

failure scenarios, microgrids (MG) appear as a potential alternative to increase reli-

ability and resiliency due to their capacity to operate in islanded or grid-connected

mode. MGs usually are applied into DNs through multiple-MG interconnected; how-

ever, over the last few years, some researchers have introduced the concept of virtual

or dynamic MGs (VMs), which consist of MGs with dynamic boundaries that can

expand or shrink their boundaries depending on available local DERs [5]. This new

dynamic operational mode may increase the DN and microgrids’ efficiency, autonomy,

and resiliency while minimizing the load not supplied by the network under inspected

scenarios. Thus, some researchers have considered this new concept of VM to face

unexpected scenarios in the last few years, turning it into the second topic managed

in this thesis.

Another operational challenge is the new market structures that have emerged

as an alternative to face an increasing penetration of DERs in low-voltage DN in

the hands of more empowered, aware, and active residential consumers. These new

prosumers have opted for self-consumption supported by BSS to reduce the electric-

ity bill, and their dependence on the grid [6] forcing the DNs to restructure their

traditional unidirectional electricity supply to a more flexible structure. P2P energy

trading belongs to this new structure that seeks to increase the efficiency of the en-

ergy self-generated by selling and buying the prosumers’ energy surplus within a local
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energy market (LEM). Thus, the residential areas or energy communities composed

of prosumers and consumers willing to exchange energy surplus are the baselines of

this trading scheme [7], which possesses some modeling challenges. For example, a

suitable model should include the DN limitations, the DGs stochasticity, the storage

devices operation, and some market rules, i.e., that the LEM does not allow simul-

taneous energy selling and buying by the users, among others. In this regard, the

models that allow representing P2P energy trading have become the focus of many

research works over the last few years, and it is the third problem addressed in this

thesis.

The three situations described above emerge as a consequence of the energy tran-

sition to decarbonize the current power systems and from DNs with high DERs

penetration. Likewise, the optimization techniques provide a suitable mathemati-

cal framework to address these three problems, allowing the decision-makers proper

assessment. Therefore, this thesis pretends to contribute to the DN transition pro-

cess, presenting deterministic and stochastic optimization approaches to address i)

the optimal placement and sizing of DERs into DNs, ii) the optimal scheduling of

VM to face unexpected main grid failures in the electricity provision, and iii) the

optimal scheduling for community energies operating under transactive energy (TE)

schemes.

1.2 Thesis objectives

The main objectives addressed in this thesis, considering the context and the moti-

vation described above, are pointed out below:

• O1: To formulate a deterministic and stochastic optimization model to address

the optimal location and sizing of DG and BSS into a DN considering the

investment, operation costs, and network limitations.

• O2: To develop an algorithm to solve the deterministic and stochastic opti-

mal DERs location and sizing problem defined in the O1 for multiples sce-

narios or scenarios greater than 24 hours, considering characteristics of highly

decarbonized networks, such as the heterogeneity of distributed consumption,

generation, and energy storage assets.

• O3: To assess the potentialities of demand flexibility and the electric vehicles

in mathematical optimization tools for the location and sizing of DG into a DN.
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• O4: To review the current partitioning methods applied to DNs that increase

network resilience under main grid failures and create an optimization-based

tool to manage the DN partitioning in multiple VMs while the load curtailment

is minimized and the use of DERs is maximized.

• O5: To model a P2P energy trading scheme under a distributed market design

that reduces the information shared by the DERs users’ by implementing a

decomposition algorithm.

• O6: To model a P2P energy trading scheme under a centralized market design

to quantify the users’ DERs’ capability to provide reactive power as an ancillary

service to the distribution system operator (DSO).

1.3 Thesis contributions

The central thesis contributions have been separated by topic as follows:

Contributions related to the optimal integration of DERs into
DNs

• A deterministic model to address the optimal integration of DG and BSS into

DNs in terms of location and capacity, considering the network technical limi-

tation and economic indicators as CapEx and OpEx.

• An algorithm capable of assessing the deterministic problem related to the opti-

mal capacity and location of DERs considering scenarios from 24 hours to 8760

hours, improving the existing models and algorithms.

• A methodology framework for DSO to measure the economic effort to integrate

renewable resources into the DN.

• A two-stage stochastic programming model for managing the optimal integra-

tion of DG and BSS into DN considering EV and DR while the network con-

straints are respected.

• A stochastic formulation that includes the DERs’ capability to generate reactive

power to self-satisfied the internal network requirement in a planning problem

for the optimal integration of DERs under uncertainty.

• An optimization model to measure the effect on the DG and BSS capacity

problem when the DN possesses a high EV penetration.
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Contributions related to the VMs application on DN to face
primary grid unexpected failures

• Addresses unexpected failures in the energy provision from the primary grid

to an active distribution network (ADN) through a deterministic model, which

provides a dynamic MGs topology minimizing the load curtailment.

• An optimization-based partitioning method using the DR, the flexibility pro-

vided by BSS, and the power generated by the distributed resources to pass

from an unbalanced ADN to multiple balanced VMs.

• An optimization model to identify the nodes with the highest probability of

not meeting the electricity demand and quantify the energy that may not be

supplied when unexpected failures in the energy provision from the primary

grid occur.

Contributions related to the DN operation under a P2P en-
ergy trading scheme

• A new two-stage stochastic model to address the P2P energy trading operation

considering i) prosumers and consumers, ii) the network technical limitations,

iii) BSS modeled through binary variables to avoid the simultaneous charging

and discharging, iv) agents that cannot sell or buy energy simultaneously, and

v) keep the users’ information.

• The implementation of new Benders cuts to decompose the P2P energy trading

model into a master problem that preserves the DN balanced and subprob-

lems that manage the energy trading between peers while the agents’ private

information is respected.

• A numerical analysis to identify the effect of the i) binary variables over the

total energy traded in the LEM, ii) the battery operation over the individual

profit when the global community cost is minimized in a two-stage P2P energy

trading context, and iii) the batteries capacity to support a two-stage approach

where the EC compromises the entire energy buying and selling from/to the

grid under unknown self-generation scenarios.

• A model scalability assessment in terms of the method convergence concerning

the time considering until 39 agents trading active power in DN of 69 nodes.

5



• A two-stage stochastic P2P energy trading model to address an energy commu-

nity’s day-ahead and intraday market schedule, considering the active/reactive

power provided by DERs, and minimizing the total community cost while the

technical constraints are respected.

1.4 Thesis outline

A summary thesis structure and scope is presented in Fig. 1.1 to guide the reader

about the main topics and frameworks addressed in this work. Thus, the thesis has

been divided into seven chapters as follows:

Chapter 2 presents an algorithm based on the AC optimal power flow (OPF)

constraints and the genetic algorithm (GA) to obtain an optimal local solution for

the network planning process related to the optimal integration of different RES and

different BSS into a DN.

Chapter 3 addresses the optimal DERs allocation and sizing into an DN consid-

ering DR and high penetration of plug-in electric vehicles (PEV) under a two-stage

stochastic programming framework.

Chapter 4 presents a mathematical optimization-based model for partitioning an

unbalance active distribution network (ADN) due to unexpected failures in the energy

provision from the primary grid into multiple balanced MGs with dynamic boundaries.

Chapter 5 presents a two-stage stochastic programming model to address a schedul-

ing day-ahead problem of an EC operating under a P2P energy trading scheme. Be-

sides, a new type of Bender cuts is used in the Benders decomposition algorithm to

solve the stochastic problem.

Chapter 6 a two-stage stochastic energy trading model is presented to measure the

DERs capability to provide reactive power as ASs to the DSO under a day-ahead and

intraday markets considering community batteries to study the effect on the global

cost under a collaborative scheme.

Chapter 7 presents the conclusions and future research lines arising from the topics

managed in the previous chapters.
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Figure 1.1: Summary thesis structure and scope
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Chapter 2

An algorithm to solve the optimal
sizing and location of DERs
problem

2.1 Introduction

A global transition to 100% renewable energy is feasible [8]. New energy efficien-

cies and technologies are allowing a decline in renewable energy costs, improving the

competitiveness regarding the traditional power plants. Besides, the transition pro-

cess from the traditional centralized system towards a clean and sustainable energy

system is being promoted by different countries worldwide through new policies on

renewables, opening new energy market opportunities [9]. Under this global context,

work in [4] supports the idea that to achieve a successful transition and to be aligned

with the Paris agreement, it is required optimal planning of different types of DG and

BSS into DN that involves the sizing and location simultaneously, and that takes into

consideration realistic constraints and the stochastic behaviour of RES for a period

greater than 24 hours.

This chapter proposes an algorithm to obtain an optimal local solution for the

network planning process related to the optimal integration of different RES and

different BSS into a DN. The algorithm provides strategic information related to in-

vestment and operation costs regarding the type of technology, location, and sizing.

The mathematical formulation is based on an AC OPF to ensure the network’s min-

imal stability conditions. Besides, through the use of linearization and a modified

version of a GA, the algorithm proposed breaks the 24 hours wall, used until now in

the literature, and extend it to 8760 hours, which represents a much more realistic

scenario to define the storage and power generation capacity of a DN in a planning
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context. The algorithm has been tested in a modified version of the IEEE 33-bus

considering two cases of study: an off-grid case and grid-connected case, to measure

the CapEx and OpEx variability, achieving to show that a grid-connected system

reduces the installed capacity of DG and BSS in 37.4% and the CapEx 22.8%.

The chapter is organized as follows. Section 2.2 provides a literature review. Then,

Section 2.3 describes the non-linear formulation for the optimal integration of DG and

BSS into a DN, which by itself does not allow a time horizon of more than 12 hours

due to its high computational burden. Section 2.4 presents a linearization to tackle

the non-linearity of the original problem, establishing the MILP that is used in the

algorithm. In section 2.5, the novel algorithm is explained, which uses a modified GA

for handling binary variables. In section 2.6, the algorithm is tested in two different

study cases. And finally, the results are discussed in section 2.7.

2.2 Literature review

The AC OPF model appears as a proper alternative to include realistic constraints

in the DN planning process. However, its formulation is a mixed-integer non-linear

and nonconvex problem, which means a high computational burden to solve, even

for a concise time horizon [10, 11]. Unfortunately, to address long-term planning, a

long-time-interval must be taken into account to include RES’s stochastic behaviour.

Therefore, two issues are considered in this chapter to achieve a model for the optimal

planning to transform a centralized network into an active network; i) to create a

mathematical formulation for the simultaneous integration of different DG and BSS

in terms of location and sizing, and ii) to reduce the computational times of AC OPF

to include stochasticity of the RESs behaviour properly.

The first problem has been widely addressed in different publications [12, 13, 14,

15, 16, 17, 18]. Work in [12] presents a mixed-integer linear problem (MILP) based

on DC OPF to obtain storage devices’ capacity and location. In [13], the impedance

matrix is used to observe the voltage variation and define the optimal placement and

sizing of a BSS. Work in [14] proposes a mixed-integer non-linear problem (MINLP),

which maximizes the battery lifespan to obtain its location and capacity. In [15],

an optimal allocation model is proposed to minimize the investment and operational

cost of integrating batteries in a DN, considering a stochastic model. The authors in

[16] proposes planning based on K-means clustering for the location and sizing of PV

generation in a DN. Likewise, [17] uses an ant-lion optimization algorithm to solve the

optimal allocation and sizing of PV panels and wind energy based on a loss sensitive
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factor. The non-dominated sorting genetic algorithm (NSGA) and the NSGA-II are

introduced by [19] and [20] respectively, to manage the optimal location and sizing of

DERs. In the same research line, the method presented in [18] obtains the optimal

placement and sizing of DG through Monte Carlo simulation to model the renewable

resources’ behaviour and use a NSGA-II to solve an OPF applied for DC.

The previous literature shows that few researches address the location and sizing

of different types of BSS and DG simultaneously. For example, [21] proposes a for-

mulation to obtain the optimal sizing of DG and BSS simultaneously, however, the

location is not part of the model, and the time period is 24h. A two-stage approach is

used by [22] to manage the sizing and location problem, where the sizing is addressed

in the first stage and the location through the power flow equation in the second stage.

Likewise, the particle swarm optimization algorithm and the GA are used in [23] to

manage the same problem, but the master problem solves the location and sizing

problem simultaneously, and the subproblem validates the operational constraints.

On the contrary, authors in [24] manage the two-stage approach through a coopera-

tive Game Theory-based model, while [25, 26] use an artificial bee colony algorithm.

Work in [27] presents a methodology to obtain the optimal placement and capacity

of DG and BSS, also for 24h, considering a Losses-Voltage-Factor (LVF) to ensure

the right voltage limits, but not based on the power flow equations; hence, some crit-

ical variables like the reactive power, and offset angle are not considered. The same

issue is tackled in [28] to apply it for a large-scale DN, the formulation is based on

an OPF, and the time interval is the same as the previous articles except that here

the model uses the worst 24h. However, this hypothetical case does not guarantee

a feasible solution for other time periods. A stochastic multi-objective framework to

face optimal planning is presented by [29] with a long-term vision. The formulation

in [29] generates multiple scenarios for the DERs and a time step of one year (not by

hours), making it possible to develop planning for ten years, using a particle swarm

optimization to reduce the computational burden. Thereby, the related literature

possesses a common factor; the formulation is applied for a short time interval due

to its high complexity.

Regarding the second problem, OPF difficulty comes from non-convexity and non-

linearity; therefore, deleting one of these issues through a convex relaxation or a

linearization, respectively, the time execution could decrease considerably. Recent

studies have suggested several techniques and methodologies to provide formulations

that guarantee convergence in large-scale DN. Works [30, 31] present different convex

relaxation methods to tackle this issue. An improving successive linear programming
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(SLP) is done by [11] to reduce the number of iterations. In [30], the approach

combines quadratic programming (QP) with second-order cone programming (SOCP)

to solve a multiperiod AC OPF. The authors in [31] provides a comparison between

the use of a quadratic convex (QC) relaxation with semi-definite programming (SDP)

and second-order cone relaxation. The works in [32, 33] present a summary of the

different techniques applied to power system planning, including the interior point

method, Newton method, quadratic programming, and a hybrid version of linear

programming and integer programming.

Therefore, in this chapter, through the use and modification of existing techniques,

a novel algorithm is constructed to find the optimal capacity and location for different

types of DG and different types of BSS considering 8760 h, which represents a time

horizon much bigger than the 24 h used until now in the related literature. The

information in terms of placement and sizing of DERs provided by the algorithm is

relevant when DN planning is developed. This is a strategic decision because the

capacity installed cannot be modified every year. In this way, both the CapEx and

OpEx, given by the algorithm, correspond exclusively to the installed capacity and

operational cost, which are significant input for a proper economic evaluation, and

therefore for a planning process. However, the economic analysis (through NPV, IRR,

and payback) is out of this thesis’s scope because it would require a proper explanation

about financing, amortization, taxes, revenue/savings, discount rate, load and pricing

forecast, among others, and must be addressed in detail in a separate study.

2.3 Location and sizing optimization model for a

DN

2.3.1 Islanded mode

The MINLP presented in [34] is explained as follows:

Minimize F = BI +BC +DGI +DGC . (2.1)
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Where:

BI =
∑
l∈Ψ

∑
i∈B

yliI
bt
l + γbl,iCbl, (2.2)

DGI =
∑
k∈Ω

∑
i∈B

xki I
gn
k + γpk,iCpk, (2.3)

BC =
∑
l∈Ψ

∑
i∈B

∑
t∈T

OMBl
i(ds

l
i,t∆tφ

l), (2.4)

DGC =
∑
k∈Ω

∑
i∈B

∑
t∈T

OMGk
i (pg

k
i,t). (2.5)

The objective function (OF) goal in (2.1) is to minimize the investment and op-

eration cost of DG and BSS into a low-voltage DN such that the system operates in

islanded mode, using storage devices to maximize the electricity generated through

the RES. Thus, the OF does not optimize the use of DG or BSS in electricity mar-

ket terms, i.e., it is not intended to maximize the benefits of the battery operator

to demonstrate the viability of its business model, based on market variables, for

example, the price of electricity or the provision of ASs.

The DERs investment has been addressed in Eqs. (2.2) and (2.3) for BSS and

DG, respectively, separating the location and sizing variables into two different terms

with their respective cost associated (to avoid the non-linearity of multiply these

variables). The cost related to the location is an installation cost that does not depend

on generation or storage capacity. Thus, for BSS, the location costs include the power

electronics and plant balance system and are related to the maximum power absorbed

or injected into the grid (M l). On the other hand, BSS’s and DG’s capacities variables

have associated their respective capital cost in €/MWh, and €/MW. Therefore, the

capital cost at a certain point is determined by the capacity installed γb/γp (obtained

through the model) multiplied by their respective capital cost, plus the installation

cost. The degradation cost for batteries is represented in Eq. (2.4), including only

the energy injected from the battery and not the energy absorbed to promote energy

storage into the BSS and avoid much charging/discharging cycles since the battery

discharge only when is strictly necessary and charge always when is possible, without

cost. Eq. (2.5) considers an equal structure as Eq. (2.4) but for DG operations.

The formulation of the constraints are as follows: Eq. (2.6) and (2.7) correspond

to reactive and active nodal power flow equations, therefore; ∀i ∈ B,∀t ∈ T ,

− v2i,tBi + vi,t
∑

(i,j)∈L

vj,t[Gi,jsin(∆θ
i,j
t )−Bi,jcos(∆θ

i,j
t )] =

∑
k∈Ω

qgki,t −QLi,t, (2.6)
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v2i,tGi + vi,t
∑

(i,j)∈L

vj,t[Gi,jcos(∆θ
i,j
t ) +Bi,jsin(∆θ

i,j
t )] =

∑
k∈Ω

pgki,t − PLi,t

+
∑
l∈Ψ

(dsli,t − chli,t). (2.7)

Constraints (2.8) and (2.9) correspond to the active and reactive power flow equa-

tions, therefore; ∀(i, j) ∈ L,∀t ∈ T ,

vi,tvj,t[Gi,jcos(∆θ
i,j
t ) +Bi,jsin(∆θ

i,j
t )]−Gi,jv

2
i,t = pi,jt , (2.8)

vi,tvj,t[Gi,jsin(∆θ
i,j
t )−Bi,jcos(∆θ

i,j
t )] + v2i,j(Bi,j −Bsi,j) = qi,jt . (2.9)

Active and reactive power limits are considered in constraints (2.10) - (2.12),

therefore; ∀i ∈ B,∀k ∈ Ω,

γpk,iPG
min
k,t ≤ pgki,t ≤ γpk,iPG

max
k,t , (2.10)

γqk,iQG
min
k,t ≤ qgki,t ≤ γqk,iQG

max
k,t , (2.11)

γpk,i ≤ xkiU
g
k . (2.12)

Eq. (2.10) establishes that the active power injected must be bounded by the gener-

ation capacity installed multiplied by the maximum power that can be generated in

a given period. This maximum power corresponds to the RES’s generation’s normal-

ized curve under certain weather conditions (see section 2.6.3 for an example). Eq.

(2.11) follows the same structure as Eq. (2.10). Eq. (2.12) indicates that the capac-

ity installed is less or equal to a maximum capacity allowed multiplied by the binary

variable associated with whether the RES is installed. These sets of equations allow

introducing DGs’ stochastic behaviour into a modified version of AC OPF model [34].

The voltage and apparent power limits are represented by the following con-

straints; ∀i ∈ B,∀t ∈ T ,∀l ∈ Ψ,

V min
i ≤ vi,t ≤ V max

i , (2.13)√
p2i,j,t + q2i,j,t ≤ Smaxi,j . (2.14)

To model the behaviour of the batteries, the following constraints are added. There-
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fore; ∀i ∈ B, ∀t ∈ T ,∀l ∈ Ψ,

socli,t+1 = socli,t + [φlchli,t −
1

φl
dsli,t]∆t, (2.15)

(γbl,i)SOC
min
l ≤ socli,t ≤ SOCmax

l (γbl,i), (2.16)

γbl,i ≤ yliU
b
l , (2.17)

chli,t ≤ wli,tM
l, (2.18)

dsli,t ≤M l(1− wli,t)−M l(1− yli), (2.19)

wli,t ≤ yli. (2.20)

Constraint (2.15) represents the socli,t+1 for the next period of the battery, which is in

MWh and not in percentage, as usual, to keep the linearity in Eqs. (2.16) and (2.17).

Eq. (2.16) represents the upper and lower bound for the socli,t in MWh, where the lim-

its depend on the one hand, of the installed capacity, and on the other hand, of the

maximum/minimum operational limits allowed in the battery (SOCmax
l /SOCmin

l )

in percentage. Thus, for a capacity of 10 MWh and 90%/10% as operational lim-

its, the socli,t+1 will not be less than 1 MWh or greater than 9 MWh. Eq. (2.17)

restricts the installed capacity to a maximum capacity allowed, multiplied by the

binary variable whether the battery is installed. Constraints (2.18)-(2.20) define the

charging/discharging process through a binary variable wli,t which is bounded by the

battery whether it is installed, and where M l represents the maximum energy in-

jected/absorbed for a battery in a certain period. In the case that the battery is not

installed (Eq. 2.20), constraints (2.15)-(2.19) are zero; otherwise, if the battery is

charging, the discharging process is modeled through Eq. (2.19).

2.3.2 Grid-connected mode

If the model proposed is used for a grid-connected mode, the main grid’s reactive (gq)

and active (gp) power must be included as variables in the right-side of Eq. (2.6) and

(2.7), respectively, as follows:

− v2i,tBi + vi,t
∑

(i,j)∈L

vj,t[Gi,jsin(∆θ
i,j
t )−Bi,jcos(∆θ

i,j
t )]

=
∑
k∈Ω

qgki,t −QLi,t + gqi,t, (2.21)
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v2i,tGi + vi,t
∑

(i,j)∈L

vj,t[Gi,jcos(∆θ
i,j
t ) +Bi,jsin(∆θ

i,j
t )]

=
∑
k∈Ω

pgki,t − PLi,t +
∑
l∈Ψ

(dsli,t − chli,t) + gpi,t. (2.22)

Furthermore, the power provided by the grid is included in Eq. (2.1) as follows:

F = BI +BC +DGI +DGC +
∑
i∈B

∑
t∈T

(Λλt)(gqi,t + gpi,t). (2.23)

λ represents the energy price and Λ, a penalization parameter to handle the trade-

off between RES assets and the energy bought to the grid. Thus, the bigger is Λ, the

bigger is the willingness to install DERs, and the less is the grid dependence.

2.4 Linear optimization model

The linearization method presented in [10] is used in this chapter because it does not

require new information about the network, considers the reactive power and voltage

as variables, and guarantees the convergence of the OPF, which is applied over the

non-linear constraints present in the power flow equations and the apparent power

limit. Therefore, the left sides of Eq. (2.6) and (2.7) are modified and expressed,

respectively ∀i ∈ B,∀t ∈ T , as follows:

− vsi,t[Bi +
∑

(i,j)∈L

(Bi,j −Bsi,j)] +
∑

(i,j)∈L

qi,jt =
∑
k∈Ω

qgki,t −QLi,t, (2.24)

vsi,t[Gi +
∑

(i,j)∈L

Gi,j] +
∑

(i,j)∈L

pi,jt =
∑
k∈Ω

pgki,t − PLi,t +
∑
l∈Ψ

(dsli,t − chli,t). (2.25)

Constraints (2.24) and (2.25) represent the linear version of the balance in nodes.

Specifically, the left side have been rewritten in terms of qi,j,t and pi,j,t, and the

voltage has been replaced by vsi,t, which is v2i,t = vsi,t∀(i, j) ∈ L,∀t ∈ T . Therefore,
Eq. (2.13), which limits the voltage, is expressed now as:

(V min
i )2 ≤ vsi,t ≤ (V max

i )2. (2.26)

Linearization of the power flow Eqs. (2.8) and (2.9) can be achieved using a Taylor

series expansion for sine and cosine, considering θi,jt is a small number and the voltage

is closer to 1.0 p.u. leading to the following set of Eqs. ∀(i, j) ∈ L, ∀t ∈ T ,

Gi,j

[
vsi,t − vsj,t

2

]
−Bi,j(∆θ

i,j
t ) + LPi,j = pi,jt , (2.27)

−Bi,j

[
vsi,t − vsj,t

2

]
−Gi,j(∆θ

i,j
t ) + LQi,j = qi,jt . (2.28)
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Eqs. (2.27) and (2.28) corresponds to the new active and reactive power flow equations

and they are in terms of a loss factor, which are approximated through the follow

expressions:

LPi,j = Gi,j[∆θ̂
i,j
t ]mi,j +Gi,j

[
V̂i,t − V̂j,t
V̂i,t + V̂j,t

]
− Gi,j

2
[(∆θ̂i,jt )2 + (∆V̂i,j,t)

2], (2.29)

LQi,j = −Bi,j[∆θ̂
i,j
t ]mi,j −Bi,j

[
V̂i,t − V̂j,t
V̂i,t + V̂j,t

]
+
Bi,j

2
[(∆θ̂i,jt )2 + (∆V̂i,j,t)

2]. (2.30)

Both constraints (2.29) and (2.30) are composed of a loss factor related to the angle,

voltage, and offset. Furthermore, mi,j represents an incident vector of branch (i, j).

i.e. the ith node is 1, the jth − 1 and the other values are zero. θ̂i,jt and V̂i,j,t are

parameters associated with an angle and voltage obtained in a base case using the

original model.

The apparent power limits expressed in (2.14) is the last constraint that needs to

be linearized. Thus, using the method presented in [10], Eq. (2.14) is approximated

by the following set of constraints ∀(i, j) ∈ L,∀t ∈ T ,∀r ∈ R:

Ari,jp
i,j
t +Br

i,jq
i,j
t + Cr

i,j ≥ 0, (2.31)

− Ari,jp
i,j
t +Br

i,jq
i,j
t + Cr

i,j ≥ 0, (2.32)

where:

Ari,j = −Smaxi,j cos(βri,j) ; B
r
i,j = −Smaxi,j sin(βri,j), (2.33)

Cr
i,j = (Smaxi,j )2 ; βri,j = α + (r − 1)

π − 2α

R− 1
. (2.34)

Eq. (2.31) and (2.32) emerge as a set of constraints which represent a polygon formed

by r ∈ R lines that define a feasible region approximation of the original constraint

(2.14), which is a circle. Thus, the bigger the set R, the closer will be the polygon to

the circle.

Finally, the MILP to tackle the optimal integration of DGs and BSS using a

multi-period AC OPF can be expressed by the following equations:

Minyli,xki ,γbl,i,γ
p
k,i,ds

l
i,t,pg

k
i,t
(F ).

Subject to:

• Power flow equations: (2.24) (2.25) (2.27) (2.28) (2.29) (2.30).

• Limits: (2.26) (2.33) (2.34) (2.10) (2.11) (2.12).

• Battery: (2.15) (2.16) (2.17) (2.18) (2.19) (2.20).
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2.5 Algorithm for sizing & location of DGs and

BSS

The algorithm proposed in this section uses the logic behind the GA as a backbone,

intending to reduce the complexity generated by the binary variables since the formu-

lation presented in the previous sections by itself cannot be applied in a time horizon

beyond 24 h.

2.5.1 Proposal

The GA algorithm was presented by [35] in 1975, and, until today, it has been used

to solve OPF problems [36, 37]. However, the GA has not been applied in its original

form because to do this; would require defining the mathematical formulation in a

Fitness Function (FF), which would not allow us to include the decision variables

related to the battery behaviour, capacity/location, and satisfy the network technical

constraints formultiple periods, at the same time. In this context, it is proposed to use

the GA logic and replace the FF with the formulation presented at the end of section

2.4 (the MILP problem). By doing this, the computational time is sacrificed, but all

the variables and constraints of the original formulation are considered. Therefore, for

each iteration, the algorithm proposed resolves the MILP model to obtain the DERs

capacities, with the difference that the binary variables are replaced by parameters

generated randomly, and therefore, the MILP problem becomes an LP. The solution

to each optimization problem will be called FF to follow the same language of the

GA.

2.5.2 Operation

The algorithm operation is explained in detail using as support the flowchart in Fig.

2.1

2.5.2.1 Chromosome structure

There are two sets of binary variables in our work; the first one is associated with

DG and BSS location, and the second one with the charge and discharge of batteries

for every hour. Both are generated randomly every iteration.

Fig. 2.2, illustrates an example of a chromosome for each case. The first one,

associated with the location, is composed of DG genes in blue and BSS in red; the

label is one when the element is installed and zero otherwise, thus, their dimensions
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depend on the number of buses and the type of DG and BSS. On the other hand, the

second chromosome’s dimension depends on the number of buses, the type of battery,

and the period. In this case, the red labels indicate that the value has been set to zero

because there is no battery type l installed in bus i. These binary variable models the

behaviour if the battery type l at period t is charging or discharging. However, if the

battery is not installed in the bus i, all the values associated with that bus are zero.

For example, following Fig. 2.2, the bus 1 has installed a battery type 2 (y21 = 1) and

not type 1 (y11 = 0), thus, the binary variable for charge/discharge for the battery

type 1, w1
1,t will be always zero, and the battery type 2 w2

1,t could be one or zero.

2.5.2.2 Set initial parameters

The main input parameters are described as following:

• Load : corresponds to two vectors; i) one for the normalized load curve, ii) a

second one with the maximum load allowed of every bus.

• Price: refers to the price curve, which is exclusively parameters for the grid-

connected case.

• WT/PV power generation: represents the RES’s behaviour through normalized

curves between [0,1].

• Network data: related to the technical information to run the classic OPF

model.

• Size population: refers to the number of possible solutions for every iteration.

2.5.2.3 Create an initial population

The initial population is created through the random generation of the binary vari-

ables, where every one of these variables sets, called chromosomes, represents a can-

didate for the optimal solution. The LP (ex MILP) is then executed for every chro-

mosome to obtain the optimal sizing and its respective FF value. If the LP solution is

infeasible, the FF for that set of locations is penalized. The infeasibilities can emerge

when the LP is solved for locations that do not satisfy the network constraints to

meet the electricity load. If this occurs, the function by parts explained in section

2.5.3 is applied not to maintain the infeasibility across the while loop.
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Figure 2.1: Algorithm for sizing & location of DGs and BSS
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Figure 2.2: Example of a chromosome structure

2.5.2.4 GA and LP model

The while loop starts applying the classic GA steps for every chromosome belong-

ing to the initial population; i) the chromosomes are sorted top-down depending on

their FF forming couples for mating; ii) the offspring of the matings are called New

Locations which suffer a random mutation to increase the variability; iii) for every

new chromosome the LP model is executed to obtain the new FF, wherein the case

of infeasibility the FF is penalized; iv) if one of these FF is better than the best

FF, then its location becomes the new best location with the best FF; v) finally,

an extra mutation process (see 2.5.3) is applied for all chromosomes to improve the

convergence of the algorithm.

2.5.3 Convergence

In order to improve the algorithm convergence, a new Superfluous installation muta-

tion is introduced to reduce some noise in the LP solutions (see Fig. 2.1). Due to

the objective function structure of the MILP (binary variables for the locations and

continuous variables for the capacities of the DERs), when the binary variables are

established randomly, some DERs may have zero capacity due to the LP solution.

Therefore, these superfluous locations are modified following a function by parts for

two cases: feasibility and infeasibility solutions, therefore; ∀p ∈ Φ :

Chi,ψp =


P (1)
I+1

if γψ,i = 0 and Chi,ψp = 1

1−P (1)
I+1

if γψ,i = 0 and Chi,ψp = 0
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Where Φ represents the chromosome population. Chi,ψp corresponds to the chro-

mosome p at bus i and the types of DGs (k) and BSS (l) which are grouped in ψ.

P (1) is the probability of obtaining a one and I is the number of iterations.

Therefore, the previous function defined by parts means; if the capacity γψ,i ob-

tained as the optimal solution is zero in a bus when the DG or BSS is installed

(Chi,ψp = 1), that device or generator is replaced by a zero or one by the function

defined by parts. For infeasible solutions, the buses without DG or BSS are changed

from 0 to 1, and the random selector is applied oppositely. Note that the probability

of replacing a 1 for a 0 for feasible solutions, increasing when the number of iterations

rises.

Applying this criterion, the convergence speed increases, and the infeasibilities

tend to disappear when the number of iterations increases.

2.6 Case study and computational results

2.6.1 Case study

Two cases are considered to observe the variability of the investment. The first case

is an autonomous system, where the electricity demand is supplied only by DG and

BSS, and a second case where the main grid supports the system. In the latter case, it

has been used the equations presented in section 2.3.2 and to ensure that the energy

obtained from the grid is only at critical hours; the Λ parameter has been set in 5

(obtained after executing the algorithm for different penalization values). Thus, the

model is willing to install a higher RES capacity and buy less energy from the main

grid.

WT and PV panels are considered the distributed generation resources, and Lead-

acid and Li-ion batteries storage systems. The parameters associated with the RES

uncertainty PGmin
i,t and PGmax

i,t , are generated through the formulation used in [10].

The chromosome’s length for the GA has 132 gens, explained by 33 buses, 2 types

of DG, and 2 types of batteries. The data corresponds to the Lugo, Galicia region’s

historical information in the north of Spain 2018 [38, 39].

The well-known IEEE 33 Bus radial distributed system, 32 lines and 32 load buses

[40] is used to test the mathematical formulation, and the algorithm set out in this

chapter. The network has been extended for 8760 h, i.e., one year.

In order to estimate the DERs operational cost, the electricity load corresponds

to a forecast for the next 20 years. Thus, the DERs capacity obtained through
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Table 2.1: Model validation for the 5-bus test system

Location
Power generated [MW]

[41] AC-OPF model AC-OPF linearized DC-OPF model

Bus 2 0 0 0 0
Bus 4 14.773 14.848 14.186 14.718
Bus 5 5.227 5.694 5.89 5.814

the algorithm satisfies the load requirement for a typical time horizon in a planning

process.

2.6.2 Model validation

The mathematical formulation proposed in this chapter has been programmed in

Python, using BONMIN and CPLEX as leading solvers for the MINLP and MILP,

respectively. The non-linear and linear formulation for the AC OPF model has been

validated using a 5-bus system [41] as reference taking into account the location and

the capacity as fixed parameters of the model, to make the results comparable with

the reference values as can be observed in Table 2.1.

2.6.3 Worst-case scenario and parameters

In order to provide a DERs capacity closer to a real case, the time horizon must be

extended beyond 24 hours because there are some factors to take into account to

enlarge the study period. i) if the worst-case scenario of 24 hours is considered, the

algorithm could overestimate the total capacity installed because it could not harness

the battery behaviour to fulfil some gap between generation and demand. Likewise,

ii) if the battery starts the period fully charged, the LP result could overestimate the

installed capacity for the storage devices, sizing a capacity needs to supply the 100%

of the load, without considering the DGs. iii) If the weather conditions in the worst

24 hours have a suitable wind resource but not the minimum to provide solar energy,

the mathematical model does not install PV panels. This situation could generate

infeasibilities in other seasons with high irradiation and low wind speed. Thus, a

critical scenario must be defined in which the solution (capacity) reported by this

scenario, is a feasible solution for a multi-period AC OPF for 8760 h.

In this way, a hypothetical critical scenario of 192 consecutive hours (8 days) is cre-

ated, uniting the worst eight days of the historical data (not necessarily consecutive),

understanding the worst as days with a high difference between load and available

generation. Fig. 2.3 shows these 192 hours, where the curves have been normalized

to represent the percentage of available power generated by a WT or a PV panel. For
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Figure 2.3: The hypothetical worst-case scenario of 192 consecutive hours.

example, in Fig. 2.3, if the capacity of PV is 1 MW, and the available power for solar

generation is 0.15 at hour 13 of the first day, it implies that the maximum power that

can be injected into the grid from the PV panel is 15% of the PV capacity, which

is 0.15 MW. Thus, the most critical days belong to December, January, and Febru-

ary, where there are many days with more than 6 consecutive hours with a deficient

generation.

The parameters used for the mathematical model include installation and capital

cost for WT/ PV/ Li-ion/ Lead-acid batteries, voltages, max capacities allowed,

among others. They have been set out in [34, 42] following the breakdown cost in

[43, 44], and the energy prices have been taken from [45]

2.6.4 Algorithm performance

In order to size the performance of the algorithm, four components are considered:

execution time, size population, number of iterations, and accuracy. The first com-

ponent is measured comparing the computational burden when the mathematical

formulation presented at the end of Section 2.4 is solved i) only with CPLEX, and

ii) solved with the algorithm. For both cases, different time horizons are considered

within the worst-case scenario. Table 2.2 shows these results, where for a short time

horizons, the CPLEX time is lower than the time offered by the algorithm. However,

for a time horizon of 24 hours or greater, the execution time of CPLEX increases

much faster than the algorithm’s execution time. Likewise, the FF value found by

the algorithm is far from the optimal value obtained by CPLEX, only 2.5%, which is

considered an acceptable value for this study.
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Figure 2.4: Algorithm convergence

Two considerations are established to study the effect of the size population and

the number of iteration over the algorithm accuracy; i) a single hour as the time

horizon, ii) an OF value like the reference (505.62 €k - solving the original MILP

using CPLEX). Table 2.3 shows the results for the different population sizes and the

number of iterations, where every combination of these parameters has been executed

5 times. Thus, (A) in Table 2.3 represents the best value obtained in the 5 executions.

(B) the percentage of execution that reaches the best value. (C) corresponds to the

error regarding the optimal reference value, in this case, 505.62, and (D) shows the

average of the number of iteration that each execution required to reach the best

value. Therefore, under these results, the number of iterations seems to be more

relevant than the population size because when 30 iterations are considered, for every

execution, no matter the population size, the algorithm reaches the optimal value.

However, when the number of iterations is 15, only 40% of the executions with a

population size of 16 reaches the optimal value; the remaining cases have 2.97% of

error regarding the optimal reference value.

To visualize the convergence of the algorithm is required a more vast number of

iterations and uses a reference value to stop the chromosome mating when it reaches

this value. Thus, Fig. 2.4 shows the convergence of the algorithm when it is executed

for one hour in the test system, considering a population of 50 chromosomes and 100

iterations. Each colour line represents one chromosome, which is a set of locations

of DG and BSS. Close to iteration 100, every chromosome has found the optimal

solution.
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Table 2.2: Algorithm performance versus MILP
Period [h] 1 6 12 24 48

MILP [s] 3.61 102.5 209.1 1660.5 8516.7
FF [k€] 553.4 807.1 1132.6 1139.4 1150.7
Status ok ok ok ok ok

Algorithm [s] 41.73 151 311.1 880 2716.6
FF [k€] 553.4 823.5 1151.8 1161 1178.1
Status ok ok ok ok ok

D Time [s] 38.1 48.5 102.1 -780.5 -5800
D FF [%] 0% 2.0% 1.7% 1.9% 2.4%

Table 2.3: Algorithm accuracy considering an optimal value as a reference
Population Iteration (A) (B) (C) (D)

4 15 520.63 20% 2.97% 12.8
8 15 520.63 60% 2.97% 10.8
12 15 520.63 80% 2.97% 8.6
16 15 505.62 40% 0% 10.8
4 30 505.62 100% 0% 15.6
8 30 505.62 100% 0% 19.2
12 30 505.62 100% 0% 12.8
16 30 505.62 100% 0% 18.8

2.6.5 Case: Off-grid operation

This section presents the results when the algorithm is applied in a context where

DG and BSS supply 100% of the electricity load.

The critical scenario (see 2.6.3) is considered to provide a feasible solution, in

terms of sizing and location of the DERs, for the 8760 hours. The GA’s size population

is 12, and the iterations 30, taking around 2h and 45 min (9,937 s). Fig. 2.5 shows

the location into the distribution system for every DERs.

Regarding Table 2.4, 56.11% of the total capacity installed is associated with

wind energy and 43.89% with solar energy. The output is within the expected values

because of the location. i.e., in the Lugo region, the annual average wind speed is

around 6.28 m/s [39] and the annual average irradiation 3.86 kWh/m2/year [38],

which indicate that the solar energy available in the zone is weak compared with

the wind energy. Likewise, 100% of the total storage capacity belongs to Lead-acid

batteries, which means that the efficiency factor does not compensate for the Li-ion

batteries’ high cost.

The location and size obtained using the algorithm under this scenario is a feasible

solution for the AC OPF model considering 8760 h, where the seasonality of the

battery, WT, and PV panels are shown in Fig. 2.6. The curves represent the energy

provided or demanded by these resources, which have been independently normalized
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Figure 2.5: DERs location into the distribution network for off-grid operation case

Figure 2.6: Energy seasonality for off-grid case. The curves have been normalized
considering, for each one of them, the highest values over the 12 months

to remark the behaviour of each element for every month. Thus, the battery has a

more significant participation in winter and summer than autumn and spring, which

could be attributed to the fact that when there are more abundant resources of wind

for WT (December) or irradiation for PV panels (July), there is more energy that

can be stored.

2.6.6 Case: grid-connected

The same methodology used in the previous section is applied now, with the difference

that in the present case, a new variable is included within the formulation, which is the

power provided by the main grid in the most critical hours. Therefore, the algorithm
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Table 2.4: Sizing & location for off-grid operation

Bus

Off-grid Grid connected

WT PV L-A WT PV L-A

4 0 0 5.56 0 0 0.36

8 0 0 5.61 0 0 0

11 0 0 0 8.66 0 2.44

12 0 0 4.89 0 0 2.55

14 52.18 0 28.78 55 0 3.29

15 0 7.75 0 0 0 5.22

17 0 0 0 0 0 4.45

18 0 0 0 0 0 4.85

22 0 0 0 0 0 0.12

24 0 0 3.06 0 0 0

27 0 0 2.78 0 0 0.55

31 0 33.06 0 0 0 0.41

32 0 0 0 0 0 0

Total 52.18 40.81 50.68 63.66 0 26.32

is executed considering the new variable for the worst 192 hours, and the feasibility

of its result is validated running the multi-period AC OPF for 8760 h.

Table 2.4 presents DG and BSS’s total capacity and location, considering that

the grid provides energy in the most critical hours. Thus, the total DERs capacity

installed decreases, i.e., 37.4%, when the system is connected to the grid regarding

the previous case. The total capacity of DG drop-down 31.5% is explained by the

absence of PV panels, which is replaced by a little increase of WT capacity. The

batteries’ hosting capacity also decreases 48.07%, from 50.68 MW to 26.32 MW.

Moreover, the grid’s energy is only 5.6% over the evaluated period (8760 h), and

the renewable system supplies the remaining 94.4%. In other words, if the renewable

system provides only 94.4% of the total energy and not the 100%, the CapEx decrease

by 22.81%.

Fig. 2.7 presents the energy provided by the DERs and the grid by months, where

the grid mostly participates in January, February, July, and August, with a 7.5 % on

average. Thus, out of a total of 9.22 GW/yr, 8.38 GW/yr (94.4%) are provided by

WT and Lead-acid battery. Furthermore, the battery’s role follows the same pattern

as the off-grid case, where its more significant operation is in January, February, and

July.

Finally, Table 2.5 shows a comparison between the autonomous system and the
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Figure 2.7: Energy seasonality for grid-connected case. Battery charge has been
discounted from the energy generated by the WT

Table 2.5: Economic indicator for the cases of studies
Indicator Off-grid Connected Decrease

CAPEX [k€] 123,962.91 95,689.66 22.81%

OPEX [k€] 52,484.57 27,364.13 47.86%

Energy supplied 100% 94.40% 5.60%

DG [MW] 92.99 63.66 31.54%

BSS [MWh] 50.68 26.32 48.07%

system connected to the grid, highlighting the most relevant indicators, where the

CapEx and OpEx are actualized for a time horizon of 20 years and considering a

discount rate of 6.5%.

2.7 Chapter conclusions

This chapter has proposed a model able to provide a feasible solution to the prob-

lem associated with the optimal location and sizing of different DG and BSS into

a DN, over 8760 h and considering technical constraints, through linearization and

the application of a modified GA to reduce the computational burden of the original

problem.

The model has been tested considering an off-grid system, fully supplied by re-

newables, and a grid-connected system. Under the specificities of the adopted case

studies, a network connected to the grid becomes much more efficient in terms of

CapEx than an off-grid one because the latter requires a more significant investment
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to achieve supply the 100% of the electricity load. In this way, the results support

that a small grid power share in the hours with low generation significantly affects the

CapEx reduction. The main factor contributing to this reduction can be attributed to

the battery capacity, which decreases from 50.68 MW to 26.32 MW and the absence

of PV panels. Under the formulation proposed, the most crucial factor in deciding

which type of storage devices are installed is the CapEx more than the efficiency. i.e.,

a greater percentage of efficiency does not justify a high investment in batteries.
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Chapter 3

On the optimal sizing and location
of DERs: A two-stage stochastic
approach including EVs and DR

3.1 Introduction

The optimal DERs location and sizing presented in the previous chapter from a

deterministic perspective is addressed in this chapter by a stochastic programming

approach, considering a low-voltage DN with high penetration of plug-in electric ve-

hicles (PEV) and users with demand response. The stochastic formulation presented

in this chapter includes i) economic variables related to the capital cost of the DERs

capacity installed with their respective operational costs and ii) operational technical

constraints based on the AC power flow equations. The formulation estimates the

DG capacity in terms of apparent power, i.e., the capacity found by the model re-

lates the active and reactive power injected from DG to the DN simultaneously. The

linearization and the algorithm presented in the previous chapter solve the MINLP,

and the backward algorithm is applied to reduce the number of scenarios. The model

is tested in the IEEE 69-bus system under 18 different scenarios of 24 hours to mea-

sure the DERs capacity installed variability. Finally, the results showed that i) the

set of scenarios selected are decisive for the optimal capacity installed affecting the

investment and the grid dependence, ii) the PEVs affect the total DERs capacity

installed and the operation costs, and iii) the reactive power provided by the DERs

might supply the total reactive power demand.

Therefore, the chapter is outlined as follows. A literature review is presented in

Section 3.2. Then, Section 3.3 describes the two-stage stochastic model for the DERs’

optimal sizing and allocation. The methodology used to linearize and solve de model
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is explained in Section 3.4, together with scenario creation and the assumption to

address the reactive power. Section 3.5 presents six cases studies where the model is

tested and compared. Section 3.6 explains the limitation of the formulation proposed

in this chapter. Finally, Section 3.7 presents the conclusions.

3.2 Literature review

Researchers have extensively addressed the optimal sizing and/or placement of DG

and/or BSS into DN. For example, The model proposed by the authors in [46] uses the

second-order cone programming to address the power flow equation non-convexity and

find the optimal placement and sizing of DGs. The exact optimal problem is driven by

[47]; however, the authors propose a robust model using the information gap decision

theory technique. Work in [16] uses K-means clustering for the location and sizing

of PV generation, and the authors in [17] uses an ant-lion optimization algorithm to

solve the optimal allocation and sizing of DGs based on a loss sensitive factor. In

[48], a comprehensive review and critical discussion of the state-of-the-art analytical

techniques for optimal DG integration in power DN is presented.

On the other hand, BSS’s optimal sizing and location are studied in [14] through

a multi-objective optimization problem minimizing the power losses and the capital

cost and using an elitist non-dominated sorting genetic algorithm-II to solve the

model. In [49], the BSS sizing and siting problem is settled through a combination of

a stochastic and robust optimization problem. The authors in [50], based on the PV

location and penetration, the optimal battery placement and sizing problem is solved

to manage voltage issues through the impedance matrix. In [15] the conservation

voltage reduction is used to find the optimal BSS sizing and placement in a DN with

high RES penetration. The work done by [19] proposes a multi-objective optimization

problem to find the optimal sizing and allocation for DG and BSS, which is solved

using the particle swarm algorithm and the modified non-sorting dominated genetic

algorithm. Likewise, the authors in [29] addresses the simultaneous integration of

DERs and include the optimum allocation of section switches for clustering the ADN

into several MGs.

The previous formulations and approaches have been applied to address the sizing

and siting of the DERs under a deterministic framework, mostly and without con-

sidered the DR or the EVs as variables. However, the transport sector electrification

and the DR by the end-users are two new components gaining momentum in the new

researches related to the DN planning for an efficient transition because their proper
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implementation might improve network reliability [51]. The DR is defined by [52] as

planned changes in electrical energy consumption patterns by end-use customers to

improve the timing or/and the amount of their energy consumption in response to

variable electrical energy prices overtime or incentive payments. Thus, the DR can

support the stochasticity associated with the DGs through peak shavings, hosting

capacity enhancement, and generation cost reduction [53]. On the other hand, EVs

present a viable opportunity to introduce much higher shares of renewables into the

overall power generation mix and create significant additional electricity demand [54].

In this regard, a comprehensive long-term distribution planning framework is de-

veloped by [55] to obtain the optimal sizing and siting of DG, substations, capacitors,

feeders considering smart PEV charging demand, and DR under a deterministic per-

spective. The work done by [56] proposes a bilevel multi-stage optimization model for

the distribution expansion planning (DEP) problem considering PEV. The authors

in [56] use Bender decomposition to solve a two-stage DEP considering PEV and

using the Monte Carlo simulation to model the uncertainty associated with the PEV.

However, the formulation is not based on the OPF and does not include the angle and

the reactive power. In our previous work [57], DG and BSS’s optimal placement and

sizing are addressed under a deterministic model based on the OPF equations but

without considering DR and EVs. Besides in [57], the reactive power DG capacity is

obtained separately from the active power overestimating the apparent power.

The previous literature highlights the significant impact and role of the DGs and

BSS (DERs), EVs and DR in DN planning. The proper integration of these elements

means efficient network operation, resiliency increasing, network stability, and reduc-

ing capital and operational cost. Thus their optimal integration is a field that is still

in development due to the high complexity that involves the inclusion of these tech-

nologies and their stochastic behaviour into an optimization model, which include

the network technical constraints. However, a lack of stochastic programming mod-

els is observed since most are deterministic models, which consider the stochasticity

through different scenarios but not under a stochastic programming framework. Be-

sides, the models available in the literature have not included the DERs apparent

power capacity, their location, the DR effects, the EVs implication, and the reactive

power compensation in the voltage stability simultaneously into a single two-stage

stochastic model.
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3.3 Mathematical Formulation

This section presents a two-stage stochastic mixed-integer non-linear problem (TSS-

MINLP) for the sizing and location of DERs into low-voltage DN, considering network

technical constraints, DG, storage devices, PEV, and DR. Thus, the objective function

is formulated as follows:

Minimize F = BI +BC +DGI +DGC − EV +Gr. (3.1)

Where:

BI =
∑
l∈Ψ

∑
i∈B

yliI
bt
l + γbl,iCbl, (3.2)

BC =
∑
l∈Ψ

∑
i∈B

∑
t∈T

∑
s∈S

OMBl
i(ds

l
i,t,s)∆t, (3.3)

DGI =
∑
k∈Ω

∑
i∈B

xki I
gn
k + γak,iCpk, (3.4)

DGC =
∑
k∈Ω

∑
i∈B

∑
t∈T

∑
s∈S

OMGk
i (pg

k
i,t,s + qgki,t,s), (3.5)

Gr =
∑
i∈B

∑
t∈T

∑
s∈S

λt,s(gpi,t,s + gqi,t,s), (3.6)

EV =
∑
i∈B

∑
t∈T

∑
s∈S

(dsevi,t,s∆tφ
evHtE

ev
i ). (3.7)

Similarly to the formulation presented in the previous chapter, Eq. (3.2) repre-

sents the battery’s capital cost (BI) through i) a binary variable (yli) for the storage

location and ii) a continuous variable (γbl,i) for the battery capacity. This capital cost

structure has been considered to avoid the non-linearity of multiply the location and

the capacity variables. The cost associated with the battery installation includes the

power electronics and is independent of the installed storage capacity. The battery’s

operational cost (BC) is considered in Eq. (3.3) through the energy discharged to

measure the battery use and degradation. The DG follows a similar cost structure.

The capital cost (DGI) in Eq. (3.4) is composed of a binary variable (xki ) when the

resource is installed and a continuous variable (γak,i) for the apparent power capacity.

Likewise, the operational costs of DG and the grid’s power (Gr) are considered in Eq.

(3.5) and (3.6), respectively, through the active and reactive power.

Eq. (3.7) represents the energy provided by EVs, where the power discharged is

multiplied by the discharge efficiency, and two binary parameters which indicate i) if

the EV is connected to the grid and ii) if the bus possesses an EV. Thus, the Eq. (3.1)

minimizes the DERs capital and operational cost, the active and reactive power from
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the external grid, and promote the energy provided by the EVs when they are plugged

into the network. The first stage variables correspond to the DERs location and

capacity, and the second stage variables are associated with the remaining variables

that depend on the power provided by the DERs.

The formulation uses the power flow equations, for both lines and nodes, as a base

to consider the technical constraints. Therefore; ∀i ∈ B, ∀t ∈ T ,∀s ∈ S

v2i,t,sGi + vi,t,s
∑

(i,j)∈L

vj,t,s[Gi,jcos(∆θ
i,j
t,s) +Bi,jsin(∆θ

i,j
t,s)]

=
∑
k∈Ω

pgki,t,s +
∑
l∈Ψ

(dsli,t,s − chli,t,s)− pli,t,s + gpi,t,s + (dsevi,t,s − chevi,t,s). (3.8)

− v2i,t,sBi + vi,t,s
∑

(i,j)∈L

vj,t,s[Gi,jsin(∆θ
i,j
t,s)−Bi,jcos(∆θ

i,j
t,s)]

=
∑
k∈Ω

qgki,t,s −QLi,t + gqi,t,s, (3.9)

Therefore; ∀(i, j) ∈ L,∀t ∈ T ,∀s ∈ S,

vi,t,svj,t[Gi,jcos(∆θ
i,j
t,s) +Bi,jsin(∆θ

i,j
t,s)]−Gi,jv

2
i,t,s = pi,jt,s, (3.10)

vi,t,svj,t,s[Gi,jsin(∆θ
i,j
t,s)−Bi,jcos(∆θ

i,j
t,s)] + v2i,t,s(Bi,j −Bsi,j) = qi,jt,s. (3.11)

The right-hand side of Eq. (3.8) considers form left to right, the active power from

de DG units, the discharge or charge from/to the batteries, the electricity demand,

the power supplied by the external grid, and the EV discharge or charge. The left-

hand side remains without variation. Unlike active power, the right-hand side of Eq.

(3.9) considers the reactive power demand as a parameter known (QLi,t) where the

reactive power is supplied by the DGs units (qgki,t,s) or the external grid (gqi,t,s). Eqs.

(3.10) and (3.11) related to the lines power flow are not explained because they do

not present any change from the original AC OPF formulation.

The active and reactive power injected from the DG units is bounded by the

following constraints. Therefore; ∀i ∈ B,∀k ∈ Ω, ∀s ∈ S,

0 ≤ pgki,t,s ≤ γpk,iPG
max
k,t,s, (3.12)

γpk,i ≤ xkiU
g
k , (3.13)

− Γk,t,sγ
s
k,i ≤ qgki,t,s ≤ γsk,iΓk,t,s. (3.14)

Eq. (3.12) bound the power injected by the DG units by multiplicating the active

power capacity and the maximum power available to generate at a certain period.
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This maximum power corresponds to the DERs power generation normalized curve,

regarding its maximum value (see section 3.4.1 for an example). Likewise, Eq. (3.13)

limits the active power capacity under a maximum capacity allowed multiplied by

whether the DG unit is installed. Eq. (3.14) is deduced through the relation between

the active and reactive power injected into the grid and the apparent power capacity

installed (properly addressed in 3.4.5). Thus, Γ is the percentage of available reactive

power that can be absorbed or injected into the grid, multiplied by the apparent

power capacity installed.

Eqs. (3.15) and (3.16) correspond to the voltage and line capacities, respectively.

Therefore; ∀i ∈ B,∀t ∈ T ,∀s ∈ S,

V min ≤ vi,t,s ≤ V max, (3.15)√
p2i,j,t,s + q2i,j,t,s ≤ Smaxi,j . (3.16)

The set of Eqs. (3.17)-(3.22) that represent the battery behaviour have been

taken from the previous chapter, where every variable and equation are explained.

Therefore; ∀i ∈ B,∀t ∈ T ,∀l ∈ Ψ,∀s ∈ S,

socli,t+1,s = socli,t,s + [φlchli,t,s −
1

φl
dsli,t,s]∆t, (3.17)

(γbl,i)SOC
min
l ≤ socli,t,s ≤ SOCmax

l (γbl,i), (3.18)

γbl,i ≤ yliU
b
l , (3.19)

chli,t,s ≤ wli,t,sM
l, (3.20)

dsli,t,s ≤M l(1− wli,t,s)−M l(1− yli), (3.21)

wli,t,s ≤ yli. (3.22)

Based on the battery formulation, the Eqs. (3.23)-(3.27) model the EV behaviour.

Thus; ∀i ∈ B,∀t ∈ T ,∀s ∈ S,

socevi,t+1,s = socevi,t,s + [φevchevi,t,s −
1

φev
dsevi,t,s]∆tHtE

ev
i −

Dcevt
φev

∆t(1−Ht)E
ev
i , (3.23)

ψevSOCev
t ≤ socevi,t,s ≤ SOC

ev

t ψ
ev, (3.24)

chevi,t,s ≤ wevi,t,sM
ev, (3.25)

dsevi,t,s ≤M ev(1− wevi,t,s)−M ev(1− Eev
i ), (3.26)

wevi,t,s ≤ Eev
i . (3.27)

Eq. (3.23) includes additional two known binary vectors, which indicate whether

the bus possesses an EV connection (Eev
i ) and the EV plug-in profile (Ht), respec-

tively. Thus, when the EV is not connected to the grid (Ht = 0), its state of charge
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decreases constantly in Dcevt kWh. Otherwise, it works as a standard battery. Eq.

(3.24) indicates the EV operational limits, where the EV storage capacity is mul-

tiplied by the minimum and maximum operational range allowed. However, unlike

Eq. (3.18), the SOC parameters in Eq. (3.24) possess a sub-index t, which indicate

that the minimum and maximum are vectors with length T , allowing to manage the

minimums state of charge for the proper EV operation. For example, by default, for

the 24 hours, we set the minimum SOC at 10% for every t, except at 8 am, where

the minimum is set at 70% to ensure that the EV is at least 70% charged. In other

words, the EV could charge or discharge when it is connected, but at 8 am, it must

be 70% charged as a minimum. The logical constraints (3.25)-(3.27) are similar to

the battery behaviour.

The flexible demand is modeled through the constraints (3.28) and (3.29). There-

fore; ∀i ∈ B, ∀t ∈ T ,∀s ∈ S,

pli,t,s = Pfi,t,s +
∑
d∈D

τ di,t,sPv
d
i . (3.28)

Therefore; ∀i ∈ B,∀d ∈ D,∀s ∈ S,∑
t∈T

τ di,t,s = Fldi . (3.29)

The total electricity load in Eq. (3.28) is composed of unmanageable demand

(PLi,t) and flexible demand (Pfdd), which could be activated at any time t depend

on the generation and consumption level, in order to minimize the energy purchased

to the grid. Thus, the binary variable τ di,t is 1 when the flexible load is activated

and zero otherwise, allowing different types of flexible loads activated in the same

period t, such as air conditioner, wash, and dish machine. Eq (3.29) indicates the

total numbers of hours that a type of demand must be activated at a certain time

horizon.

Finally, Eq. (3.30) and Eq. (3.31) limit the total capacity installed on the DN.∑
i∈B

∑
k∈Ω

γpk,i ≤ UG
k , (3.30)∑

i∈B

∑
l∈Ψ

γbl,i ≤ UB
k . (3.31)

3.4 Methodology

This section explains i) how the weather resources are managed to create the scenar-

ios, ii) the network, the EV, and the flexible demand parameters, iii) the backward
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Figure 3.1: Methodology scheme

algorithm to reduce the number of scenarios, iv) the linearization applied to the TSS-

MINLP, v) the algorithm to solve the TSS-MILP, and vi) how the reactive power is

addressed in the formulation proposed.

3.4.1 DER units and loads modelling

The model considers PV and WT systems like DGs units. The solar irradiation,

the environment temperature, and the wind speed are the primary input parameters

to generate the power available. The PV power output is generated using [58] and

the WT power output following the model [59]. Due to the model find the optimal

DER capacity, the power output curves obtained through the models [58, 59] are

normalized regarding their respective maximum values. Therefore, for a specific PV

and WT technology, the output power is normalized to obtain two vectors, with values

between zero and one, representing the PGmax
t parameter described in the model. For

example, if the final capacity PV installed is 10 kW, and PGmax
11 is 0.3 at 11 am, then

the maximum power injected into the DN could be 3 kW.

The unmanageable load profiles follow the same normalizing process. Thus, every

profile is normalized concerning its maximum value, and an additional normalized
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curve is generated with the aggregated load profiles.

Therefore, the available power for PV and WT systems is represented through

two normalized curves named P pv and Pwt, which contains their respective PGmax

for every time slot. Likewise, the load profiles, corresponding to the unmanageable

electricity demand, are normalized, naming every normalized load profile Pfm, where

m belongs to the load profiles set M . Lastly, an aggregated normalized curve that

includes the total system load Pfa is generated. Thus, the curves with length N

(historical data length) are expressed as follows:

P pv = {PGmax
1,1 , PGmax

2,1 , ..., PGmax
N,1 } for k = 1

Pwt = {PGmax
1,2 , PGmax

2,2 , ..., PGmax
N,2 } for k = 2

Pfm = {Pf1, Pf2, ..., PfM} m ∈M

Pfa = {Pfa1 , Pfa2 , ..., PfaN}

Where,

Pf1 = {Pf1,1, Pf1,2, ..., Pf1,N}

Pf2 = {Pf2,1, Pf2,2, ..., Pf2,N}
...

PfM = {PfM,1, PfM,2, ..., PfM,N}

3.4.2 Scenarios creation

To create multiple scenarios from the historical data, we define a scenario time hori-

zon, and then, the historical data is divided by the time horizon. Thus, every scenario

s ∈ S possesses a time horizon T such that T = {t, t + ∆t,. . . , T }, where t is the

time slot of the previous curves. For example, if the original curves possess one hour

of time slot over one year of data, and if the time horizon is set up in 24 hours, ev-

ery curve would contain 365 scenarios of 24 hours. Therefore, the scenarios for solar

power (k = 1) are express as following:

P pv = {P pv
1 , P pv

2 , ..., P pv
S }

where,

P pv
1 = {PGmax

1,1 , PGmax
2,1 , ..., PGmax

T,1 } for k = 1

P pv
2 = {PGmax

T+1,1, PG
max
T+2,1, ..., PG

max
2T,1} for k = 1

...

P pv
S = {PGmax

ST+1,1, PG
max
ST+2,1, ..., PG

max
N,1 } for k = 1
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Nevertheless, considering a high number of scenarios in the model proposed implies

high computational efforts [60]. Therefore, to address this issue, a reduction scenario

method is used to remove similar scenarios and maintain a small number representing

the essential features of the uncertainty. The well known backward algorithm [61] is

used in this chapter to reduce the number of scenarios since its accuracy has been

proven in many two-stage mixed-integer stochastic programming problems [62].

However, to appropriately applied this algorithm, the three curves (P pv, Pwt, Pfa)

must be merged into a single one to maintain the temporal relationship between them.

The reason to not consider the curves independently is that the algorithm could choose

different scenarios for every curve so that the scenario s ∈ P pv
t would not be related

to the scenario choose for Pwt or Pfa. The criteria to join the curves have been the

difference between the Pfat and the sum of P pv
t and Pwt

t . In order to avoid negative

values, the difference is set up in zero in cases when the DERs produce more than the

load; thus, when a time slot is close to zero means that there are sufficient weather

conditions to meet the load, otherwise, a value close to one indicates that the load

is much greater than the resources available, and therefore, the capacity that should

be installed would be higher. Note that the united curve is used only to select the

scenarios through the algorithm; once that the algorithm finds the scenarios, the

mathematical model uses the selected scenarios corresponding to P pv, Pwt, and Pfn.

3.4.3 Linearization method

The non-linear and non-convex formulation in section 3.3 requires a linearization

method or a convex relaxation method due to the high computation burden of the

model in a multiperiod and stochastic context. In the literature, the linearization

and relaxation techniques have been applied widely to address the optimal power

flow constraints without losing the reactive and angle variables on the process.

Thus, summarizing the literature review done in the previous chapter, the au-

thors in [30] use the QP approach with SOCP to solve a multiperiod AC OPF. A

comparison between the QC relaxation with SDP and SOCP is made by [31]. A dif-

ferent techniques overview applied to power system planning, including the interior

point method, Newton method, QP, and a hybrid version of linear programming, and

integer programming, is presented in [32, 33]. An improving successive linear pro-

gramming is done by [11] to reduce the number of iterations. This chapter applied

the linearization method proposed by [10], transforming the Eqs. (3.8), (3.9), (3.10),

(3.11), and (3.16) in linear constraints. Its full explanation is described and tested in

the previous chapter.
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3.4.4 Algorithm description

The linear model version (TSS-MILP) still has the binary variables problem related

to the DERs location. The algorithm developed in the previous chapter ([57]) has

been used to address the location variables, transforming the TSS-MILP obtained

from the previous step into an TSS-LP. The algorithm uses the logic behind the GA

to randomly generate the binary variables and solve the TSS-LP iteratively.

In general terms, the algorithm possesses the same stages as a GA. The ini-

tial population creation consists of generating the DERs location and the battery

charge/discharge decision randomly. Then, for every set of random location, the

TSS-MILP, now an TSS-LP, is solved, and the objective function result is saved as

a reference or fitness function (FF) value. Once the initial population is created,

start the loop stage where every individual (set of random location) is top-bottom

sorted, according to its objective function result, forming couples to proceed with the

crossover process, which implies crossing the locations to obtain two new locations,

which in turn may undergo some mutation during the process. Then, for every new

location, the TSS-LP is solved, and the loop starts again.

An extra stage is proposed in [57], which consists in accelerate the convergence

process through a new mutation that changes the location slot with zero capacity

instaled. This situation is a possible solution because the location is random, and the

capacity is obtained by solving a capacity optimization problem (the TSS-LP).

The complete algorithm description, its convergence and its accuracy have been

carefully presented in [57]. Besides, a process summary is represented schematically

in Fig. 3.1

3.4.5 Reactive power capacity

The mathematical formulation presented in section 3.3 obtains the optimal apparent

power capacity installed to face the load considering the weather conditions and the

capital costs associated. The DERs capability to provide reactive power through the

power electronic has been a research area over the last years [63]. Many works have

studied reactive power compensation from PV and WT systems [64, 65] to manage

the voltage stability, the line losses, and the option to provide reactive power AS

in a day-ahead market [66]. However, when the apparent capacity is considered, it

implies associating the active and the reactive power injected into the node follows

the equation presented below. Therefore, ∀i ∈ B, ∀k ∈ Ω,∀s ∈ S,∀t ∈ T ,(
pgki,t,s

)2
+
(
qgki,t,s

)2 ≤ (γsk,i)2 . (3.32)
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Nevertheless, unlike Eq. (3.16), the DERs apparent power capacity is a variable

and not a parameter as the line apparent power, which belongs to network parameters.

Therefore, the linearization proposed by [10] cannot be applied over Eq. (3.30). To

handle this non-linearity, we assume a particular power factor (PF); thus, the active

power capacity is expressed in terms of the apparent power (Eq. (3.33)), and Eq.

(3.32) is rewritten as follow:

γpk,i = PFγsk,i, (3.33)(
qgki,t,s

)2 ≤ ( γpk,i
PF

)2

−
(
pgki,t,s

)2
(3.34)

To express the right-hand side of Eq. (3.34) in linear terms, we assume that

the power injected into the node is equal to the maximum power available. i.e.,

pgki,t,s = γpk,iPG
max
k,t,s in Eq. (3.12). Thus, the reactive power injected into the node is

bounded under the following expression:

qgki,t,s ≤

√(
γpk,i
PF

)2

−
(
γpk,iPG

max
k,t,s

)2
qgki,t,s ≤

√(
γpk,i
)2(1− (PGmax

k,t,sPF )
2

PF 2

)
qgki,t,s ≤

γpk,i
PF

√
1− (PGmax

k,t,sPF )
2

qgki,t,s ≤ γsk,iΓk,t,s

Gamma represents the maximum reactive power available to be supplied; thus,

Eq. (3.14) is deduced from Eq. (3.34) considering a PF and assuming that the DERs

power injected is equal to the maximum available power in a particular time slot.

This assumption allows linearizing the reactive power provided by the DERs, consid-

ering the active power injected. However, if the OPF finds a pgk < γpPGmax, then

the reactive power margin would be undervalued. This event could happen under

peak generation curtailment, but with the storage devices presence and maximizing

the DG use, these particular events decrease [67], so that the reactive power under-

valuation occurs under very particular circumstances, and therefore, is an acceptable

cost to linearize the Eq. (3.34). Note that the assumption is exclusively to find the

Γ parameter; the active power pg continues to be a decision variable.

3.4.6 Cost modelling

The objective function considers the trade-off between the capital and operational

cost with the energy bought from the grid, which means that these values must be on
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the same temporal scale to make them comparable. Therefore, the linear depreciation

for the capital cost is considered in the proper scale (e.g., if the temporal scale is 24

hours, the annual linear depreciation is divided by 365). Likewise, the operational

cost, usually measured in kWh/yr., is also modified to the kWh/T, where T is the

scenario temporal scale.

3.5 Case study and computational results

In this section, the stochastic model is tested for different case studies, always con-

sidering the same test system, where each case study possesses three scenarios of 24

h. Then, the classic OPF for a whole year, considering a time slot of one hour, is

used to test the capacity/location results from every case, to analyze the trade-off

between the power energy share from the renewable system and the power provided

by the main grid.

3.5.1 Network and data parameters

The mathematical formulation is tested in the IEEE 69 bus system [68], which con-

tains 68 lines and 47 loads. The peak loads for active and reactive power have been

modified to be consistent with the load profiles used, which correspond to residen-

tial and commercial USA demands in a low-voltage DN [69]. However, the loads’

modifications have been done respecting the original active and reactive power load

proportion. Thus, the profiles include 35 and 12 residential and commercial loads, as

shown in Table 3.1. Historical temperature, irradiation, and wind speed data from

Barcelona [70] have been used to obtain the output power for PV panels and WT.

The maximum generation capacity to install in every node is 20% greater than

its peak load, and for nodes without a load, the maximum capacity has been set at

100 kW. Likewise, the total capacity installed for DG and BSS on the DN has been

established at 3 MW and 1.5 MW, respectively. For a whole year, the hourly energy

price was taken from [45], and the capital and operational cost for the DG types and

BSS types from [34, 42, 43, 44].

The DN considers 30 EVs, and every one of them follows the same connection

pattern: connected between 7 pm to 8 am and disconnected between 9 am to 6 pm.

The EV works like a battery in plugged hours such that at the disconnect hour, its

state of charge must be greater than 70%. Every EV possesses a capacity of 24 kWh,

a charge/discharge rated power of 3 kW, and a constants discharge rate of 1.3 kW

when it is disconnected. It has been considered 12 buses with DR, which takes values
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Table 3.1: Peak load of active [kW] and reactive [kVAr] power by bus and profile
Bus PL QL Profile Bus PL QL Profile
6 2.6 2.2 Residential 48 6.6 4.7 Residential
7 4 3 Residential 51 5.1 3.5 Residential
8 5 3.6 Residential 52 3.6 2.7 Residential
9 4.3 3.1 Residential 53 4.4 3.5 Residential
10 5.6 3.8 Residential 54 6.6 4.8 Residential
13 5.3 3.3 Residential 55 6 4.3 Residential
14 5.3 3.7 Residential 62 6.4 4.6 Residential
16 5.7 3.8 Residential 65 5.9 4.2 Residential
17 6 3.5 Residential 66 6 4.3 Residential
18 6 3.5 Residential 67 6 4.3 Residential
20 1 0.6 Residential 68 6.2 4.4 Residential
22 5 3.5 Residential 69 6.2 4.4 Residential
24 5.6 4 Residential 21 22.8 16.2 FastFood
26 6.1 4.3 Residential 45 26.1 17.5 FastFood
27 6.1 4.3 Residential 61 829.3 592 Hospital
33 5.6 4 Residential 50 320.6 228.8 Hotel
34 4.8 7 Residential 12 29 20.8 Restaurant
35 6 4 Residential 59 33.3 24 Restaurant
36 5.2 3.7 Residential 64 113.5 81 School
37 5.2 3.7 Residential 28 8.7 6.2 Small Office
39 4.8 3.4 Residential 29 8.7 6.2 Small Office
40 5.3 3.8 Residential 11 32.2 23.1 StripMall
41 1.2 1 Residential 49 256.5 183 SuperMarket
43 6 4.3 Residential 46 32.7 21.9 WareHouse

between 2.5 and 7.5 kW, and it can be activated once per day, excepted in bus 12

and 59, which can be activated twice (see Eq. 3.29). Fig. 3.2 shows the DN layout

indicating the type of load (residential or commercial) for every bus, the buses with

an EV, and which buses have access to DR.

The algorithm and the optimization model have been programmed in Pyomo

Python using CPLEX as the main solver, taking around 7 hours to run the algorithm

and 12 hours to run the classic OPF for the annual data. In addition, the determin-

istic model has been validated in the previous chapter, comparing the results using

the algorithm and the optimization model with the work in [41]; therefore, as the

power flow constraints do not include a drastic change, the authors have extended

the deterministic validation to the stochastic version presented in this chapter.
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Figure 3.2: Modified IEEE 69-bus distribution network

3.5.2 Case studies

To provide a sensibility perspective about the capacity and location obtained through

the model proposed, six different cases have been considered, such that everyone

possesses a set of three different non-consecutive scenarios of 24 h. Note that the

network and the parameters defined previously are fixed for every case study. Two

methods have been used to set the scenarios for the six case studies. The first method

is used only to create the first case, which for the first scenario selects the day with the

best wind speed and solar irradiation simultaneously, the second scenario with the best

solar conditions, and the third scenarios with the best wind speed condition. Then,

the backward algorithm obtained the other 15 scenarios belonging to the remaining

five cases.

Fig 3.4 shows the scenarios for every case study. Thus, Case 1 presents the best

weather conditions of the remaining cases of studies. In fact, in scenario 1 and 3, the

wind resource is higher than the electricity demand at almost every hour, and the

scenario 2 possess the best solar irradiation. Case 2 and Case 4 possess scenarios

with low wind conditions compared with the other cases where at least one scenario

possesses suitable wind resources. Case 6 is the only one with the maximum wind

resource for many consecutive hours and the minimum in the next two scenarios. In

addition, it possesses the lowest average energy price compared with the remaining

cases. Case 5 is the second case with a lower energy price average, unlike Case 3,

which possess the highest energy price.
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Figure 3.3: Total capacity installed of WT, PV, lead-acid battery (BT 1), and Li-ion
battery (BT 2) for every case study.

3.5.3 Computational results

The DERs’ location and their respective capacities are presented in detail in Table

3.3 and 3.4. Note that the model installs DERs in many buses because the peak load

bounds the maximum installed capacity; therefore, the following analysis is focused

on the global DERs capacities for every case study rather than the capacity of each

bus. Fig 3.3 presents the total DG and BSS capacity installed for every case study.

As is expected, the optimal sizing found by the algorithm depends on the scenario

set selected. Therefore, for scenarios with high solar irradiation or wind speed, the

capacity associated with PV or WT is higher, as appropriate. In the four first cases,

the model installs a different proportion of DG, but the total installed corresponds

to the maximum defined, 3MW. However, in Case 5 and 6, the total DG capacity

is below this maximum, reaching 1.3 MW and 2.2 MW, respectively. This result

occurs because the energy price belonging to these scenarios is lower than the others,

impacting the generation capacity assigned. On the other hand, the storage devices

sizing always reach their maximum allowed, set at 1.5 MW for all network, changing

only the proportion of the type of BSS, prevailing the lead-acid battery in five of the

six cases of studies.

According to the methodology presented in the previous section, the location and

capacity obtained are used to run the classic OPF to study the energy share provided

by the DERs and the main grid. The goal here is to analyze which case or set of

scenarios presents a less main grid share when the whole year is considered. Table

3.2 shows these results as follows:
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Table 3.2: Power provided by DERs, Load composition, Reactive power, Days from
the year, DERs numbers installed, CapEx and OpEx.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

a)

WT 53.2% 0.0% 23.9% 0.0% 8.0% 27.4%
PV 15.5% 46.7% 46.7% 47.7% 45.8% 45.3%
Grid 28.3% 51.1% 26.7% 50.0% 44.0% 24.4%
BT 2.8% 2.0% 2.5% 2.2% 2.0% 2.6%

b)

EV 1.2% 1.2% 1.2% 1.2% 1.2% 1.2%
Flex Load 0.2% 0.2% 0.2% 0.2% 0.2% 0.2%
PL 98.7% 98.6% 98.6% 98.6% 98.6% 98.6%
Total Load 100% 100% 100% 100% 100% 100%

c)
QG DERs 100% 100% 100% 100% 100% 100%
QG Grid 0% 0% 0% 0% 0% 0%

d)

Days/Sc 1 352 241 96 191 229 318
Days/Sc 2 2 249 108 243 253 349
Days/Sc 3 319 314 152 245 312 364

e)

WT units 40 0 10 0 1 7
PV units 3 44 36 39 18 24
BT units 54 58 56 50 63 58

f)
Op. Cost [k€] 0.206 0.404 0.193 0.397 0.339 0.175
CapEx [k€] 3,850 3,008 3,186 2,989 1,521 2,734

Figure 3.4: Normalized curves of Wind Turbine (WT), Photovoltaic system (PV),
Aggregate Load (Load), and Energy Price for every scenario belonging to every case
study
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a Power provided by DERs : the cases study 1, 3, and 6 have the lower primary

grid participation and possess a significant WT power installed regarding the

other cases where the PV systems are predominant. However, when the PV and

WT capacity assigned are similar, the grid’s energy is the lowest, which occurs

in the sixth case study. In contrast, when the installed capacity is dominated

by PV systems, the power provided by the grid is higher. The battery percent-

age indicates the net energy (the difference between the injected and absorbed

energy for the whole year) provided by both types of BSS, which remain stable

at around 2.2%.

b Load composition: the total system electricity demand comprises a fixed load, a

lower percentage of flexible demand, and the energy required to charge the EV.

The behaviour of the flexible demand and the EV operation is appropriately

addressed in the following subsection.

c Reactive power : 100% of the reactive power is provided by the DG units for

the whole year, suggesting the great DG potential to offer AS based on reactive

power.

d Days from the year : indicates the day selected from the annual historical data

for every case study. Thus, the first case study comprises three different sce-

narios, which correspond to day 352, 2, and 9 of the year.

e DERs numbers installed : shows the numbers of buses with a DG and or BSS

system installed, where almost 80% of the nodes have storage devices installed.

The high BSS assignment is explained because i) the power consumption at

every node bounds the capacity allowed to install (spreading the total capacity

available across the network in several buses), and ii) the storage devices allows

increase the DGs efficiency and reduce their capacity installed [67].

f CapEx and OpEx : The OpEx indicated in Table 3.2 considered the energy

provided by the system and the grid for the whole year. Specifically, the active

and reactive power purchased to the grid, the power discharged from the battery,

and the power supplied by the DGs. The CapEx includes the batteries’ power

electronic and its capacity cost, plus the DG placement with their apparent

power capacity. The operational costs are strictly related to the percentage

informed top of the table since the higher the power provided by the main

grid, the bigger the global system cost. On the other hand, the investment
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Figure 3.5: Annual aggregate energy in a 24-hour view

is explained mainly by the DGs capacity installed. Thus, the higher the WT

capacity, the higher is the total investment.

Fig 3.5 and 3.6 show the energy provided by the DERs and the main grid from an

hourly and monthly perspective. The 24 hours view makes it easy to observe when

the main grid provides the energy or when the storage devices present a relevant role.

Specifically, with high PV power output, the mid hours are when the energy provided

by the grid is lower. Likewise, the batteries usually charge in the first 2/3 of the day,

and at night, they start discharging, which coincide with a higher energy price. Fig

3.5 suggests that when there is no WT installed, which is the second, fourth, and

five case study, the main grid covers the hours without renewable generation, which

is totally expected. However, in cases with WT presence, the grid energy decrease

and increase the DERs autonomy. On the other hand, Fig 3.6 shows the monthly

perspective, which provides the renewable resources seasonality view. Likewise, the

battery role, unlike to be lower, the months with higher participation is when there

is high power output from the DG.

3.5.4 Flexible demand and electric vehicles

Fig. 3.7 presents the aggregated charge or discharge of the EV by hours. The results

show that the EVs discharge during the first and last hours of the day and the hours

previous disconnecting. Specifically, contrasting the pricing curve in Fig 3.4 with Fig

3.7 for the first third and in the last hours of the day, the EV discharge occurs when
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Figure 3.6: Annual aggregate energy in a monthly view

the previous hours to the charging process hours are more expensive. i.e., considering

that the EV charge between 2-5 am if the energy price between 0-1 am is expensive

than the 2-5 am, then the EV discharge, otherwise, save the EV SOC, as shows the

Case 1 and Case 2 in Fig 3.7. In addition, Fig 3.7 shows the EV SOC in the right

axis to justified the discharging at the disconnecting previous hours. Thus, when the

SOC is greater than 70%, the EV discharge. In case study 3, the EV SOC reaches

only 70%, in contrast with other scenarios, due to the energy price is the highest of

the cases study, which implies a low charge and discharge cycle.

Nevertheless, what happens if the EV is not able to inject power into the grid?

Might this consideration impact the optimal DERs capacity installed? An extra case,

taking the modelling of the EV like a load, was tested to answer these questions.

Under this case, the EV does not provide power to the grid, the DERs capacity

installed decrease because the objective function in (3.1) promote the power from the

EV; thus, when the EVs deliver power into the DN, the SOC reach their maximum

in some hours to deliver energy in hours when is required. However, when the EV

cannot provide energy, the SOC reaches only the minimum SOC required to operate

correctly. On the other hand, unlike the CapEx increase when the EVs discharge

energy into the DN, the operation cost decreased 4.57% due to the energy provided

by the vehicle generate incomes in hours when the energy price is high. Therefore, a

trade-off occurs between the DERs capacity installed and the OpEx when the EVs

can discharge energy, increasing the investment but decreasing the operational cost.
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Figure 3.7: Aggregate charge (Ch) and discharge (Ds) by hour of the electric vehicles
compared with their aggregated state of charge (SOC).

Finally, Fig 3.8 shows the aggregated flexible demand and when occurs its acti-

vation (through the binary variable τ di,t,s). Thus, comparing Fig 3.4 with Fig 3.8, the

criteria followed by the buses to activate their demand response are when the fixed

electricity demand is low, when the energy price is low, or when the power generation

from the DGs is high.

3.6 Discussion and model limitations

The previous section tested the two-stage stochastic model under 18 different scenarios

of 24 hours, grouped into six case studies. The results show that the set of scenarios

chosen is critical in the optimal sizing obtained from the model. The backward

algorithm used to reduce the numbers of scenarios seems not to be proper to find the

optimal set that provides the most representative scenarios of the historical data. In

this regards, Case 2 represents the most three statistically different scenarios from

the 365; however, when the capacity obtained for this case study is applied for the

whole data set, the energy generated by the DERs system is lower than the Case 6.

Therefore, to find the optimal global capacity for the whole dataset, a new algorithm is

required that find the most representative scenarios in terms of the weather condition,

the energy price, and the electricity load.

Despite requiring a previous algorithm to find the proper set of scenarios, the

stochastic model proposed includes all the main components to consider for decision-
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Figure 3.8: Flexible demand uses by hour for every scenario and case study

maker regarding the DERs penetration needed for a proper DN operation. The

elements included are different DG types, more than one battery type, PEVs, and

DR. In addition, the model finds the optimal sizing for the apparent power, which

means that it relates the active and the reactive power together, and it does not

overestimate their capacity by calculating them separately. Nevertheless, the model

possesses some limitations, which are comment as follows:

The mathematical formulation requires a high computational burden, due to takes

around seven hours to solve a case study with three scenarios of 24 hours. However,

the model might consider five scenarios of 24 hours or two scenarios of 48 hours,

extending its execution time to around 20 hours.

The EVs have been modelled considering only one connecting profile, representing

the most probable case [71], which simplifies the model complexity. New profiles could

be added to the formulation; however, this profile variety could significantly affect

the algorithm execution time. In addition, the EV battery degradation has not been

considered in the objective function as a penalization due to what the model seeks is

to study the effects of the PEV behaviour on the final DERs capacity installed.

The power supplied by the main grid is modelled in the consumption point and

not from the slack bus, underestimating the energy flow between DN lines. This

assumption does not mean a problem when the system is oversized, i.e., the DN

is not congested even in the peak generation and load hours. However, if the line

congestion is a quality parameter to measure by the DSO, then the main grid power

must be modelled from the slack bus.
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Table 3.3: Optimal location and sizing of PV and WT for every case study
PV Bus Location PV Capacity [kW] WT Bus Location WT Capacity [kW]

Case
1

49; 52 16.23; 20.55

4; 5; 6; 7; 8; 9; 10; 11;
12; 13; 15; 16; 17; 18;
21; 22; 23; 26; 32; 33;
42; 44; 45; 47; 49; 50;
51; 52; 54; 55; 56; 57;
58; 59; 61; 62; 64; 65;

66; 69

34.65; 100; 3; 5; 6; 5;
7; 39; 35; 6; 100; 7; 7;
7; 27; 6; 51.76; 7;

33.03; 7; 33.37; 100;
31; 83.41; 308; 385; 6;
4; 8; 7; 100; 100; 100;
40; 995; 8; 136; 7; 7; 7

Case
2

3; 4; 5; 6; 8; 9; 10; 12;
13; 14; 18; 19; 25; 31;
32; 34; 35; 36; 37; 38;
40; 41; 42; 43; 44; 45;
46; 49; 50; 51; 52; 53;
54; 55; 56; 57; 60; 61;
63; 64; 65; 67; 68; 69

100; 100; 100; 3; 6; 5;
7; 35; 6; 3.82; 5.01;
82.65; 41.08; 48.4;
37.07; 6; 7; 6; 6;

13.59; 6; 1; 18.75; 5.4;
9.32; 26.47; 32.44;

308; 385; 6; 4; 5; 8; 7;
100

- -

Case
3

5; 7; 8; 11; 12; 15; 18;
19; 23; 24; 27; 29; 31;
32; 33; 34; 36; 39; 40;
41; 42; 44; 45; 49; 50;
52; 56; 57; 58; 59; 61;
62; 63; 64; 67; 68

100; 5; 6; 34.47;
31.69; 22.29; 2.17;
17.45; 63.98; 7; 7;
3.59; 29.46; 25.53;

4.69; 4.84; 6; 6; 6; 1;
40.7; 25.1; 30.52;

208.05; 223.1; 4; 34.6;
12.27; 100; 40; 995; 8;

100; 136; 5.81; 7

3; 6; 24; 57; 60; 61;
62; 63; 64; 65

69.38; 3; 0.68; 26.01;
55.32; 299.26; 6.75;
44.57; 136; 4.71

Case
4

4; 5; 6; 7; 8; 9; 10; 11;
12; 13; 14; 15; 23; 26;
27; 31; 35; 45; 46; 47;
49; 50; 51; 53; 54; 55;
56; 57; 58; 60; 61; 62;
63; 64; 65; 66; 67; 68;

69

94.38; 100; 3; 5; 6; 5;
7; 39; 35; 6; 6; 58.41;
85.84; 7; 7; 68.49; 7;
26.63; 34.48; 74.11;
278.09; 346.57; 6; 5;
8; 7; 100; 100; 100;
100; 995; 8; 100; 136;

7; 7; 7; 7; 7

- -

Case
5

2; 4; 9; 11; 12; 15; 18;
21; 25; 45; 50; 60; 61;
64; 65; 66; 68; 69

13.74; 21.21; 0.78;
25.3; 17.04; 9.35; 5.8;

18.15; 17.37; 31;
277.03; 60.23; 630.08;
98.92; 7; 5.14; 7; 7

49 308

Case
6

2; 11; 13; 14; 15; 17;
20; 22; 24; 26; 27; 34;
35; 36; 38; 44; 45; 56;
59; 61; 63; 64; 65; 67

100; 28.46; 6; 6;
32.04; 7; 1; 6; 7; 7; 7;
6; 7; 6; 11.39; 23.28;
31; 4.27; 23.13; 445.4;
2.31; 81.11; 4.78; 7

12; 49; 50; 60; 61; 62;
68

8.41; 308; 385; 8.94;
661.51; 8; 7

The DR has been represented through a binary variable to model different elec-

tronic devices with flexible hour operation, like wash machine, air-conditioning, and

dishwasher. Notwithstanding, the flexibility can be modelled through a continuous

variable that represents the energy that could be reduced by the user when he/she

estimate convenience, where the energy-reduced must be penalized through an op-
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Table 3.4: Optimal location and sizing of BT for every case study
BT Bus Location BT Capacity [kWh]

Case
1

2; 3; 4; 5; 6; 7; 8; 10; 12; 13; 14; 15; 16;
17; 19; 20; 23; 24; 25; 26; 29; 31; 33; 34;
35; 36; 37; 38; 39; 40; 41; 42; 43; 44; 45;
46; 47; 48; 49; 51; 53; 54; 55; 57; 58; 59;

60; 61; 62; 63; 64; 65; 66; 68

100; 91.91; 50; 9.41; 2; 3; 3; 4; 18; 6; 3;
50; 4; 4; 46.31; 2; 50; 4; 29.41; 4; 5; 50;
4; 3; 4; 3; 6; 50; 6; 6; 1; 68.6; 4; 50; 32;
20; 50; 4; 98.64; 3; 6; 4; 4; 50; 50; 40;

100; 35.71; 4; 100; 68; 4; 8; 4

Case
2

2; 3; 4; 5; 6; 7; 8; 9; 11; 12; 13; 14; 16;
18; 19; 21; 22; 23; 24; 25; 26; 27; 28; 29;
30; 31; 32; 33; 34; 35; 36; 37; 38; 39; 40;
41; 42; 43; 44; 45; 46; 47; 48; 49; 50; 52;
54; 55; 56; 58; 60; 62; 63; 64; 66; 67; 68;

69

50; 50; 50; 79.41; 4; 6; 3; 3; 20; 18; 6; 3;
4; 8; 79.41; 12.5; 6; 90.46; 4; 79.41; 4; 8;
10; 10; 50; 50; 92.5; 8; 3; 8; 3; 6; 44.12;
6; 3; 1; 100; 4; 14.71; 32; 20; 42.28; 4;
35.71; 123.64; 2; 8; 4; 44.12; 27.21;

69.12; 4; 29.41; 25; 8; 4; 8; 8

Case
3

3; 4; 5; 6; 8; 12; 13; 14; 15; 16; 17; 18;
19; 20; 22; 23; 24; 25; 26; 27; 30; 31; 32;
33; 34; 35; 36; 37; 38; 39; 40; 41; 42; 44;
45; 46; 47; 48; 49; 50; 51; 55; 56; 57; 58;
59; 60; 61; 62; 63; 64; 65; 66; 67; 68; 69

25; 35.71; 71.25; 2; 3; 36; 3; 6; 77.62; 4;
4; 8; 35.71; 1; 6; 54.41; 4; 50; 4; 4; 50;
79.41; 79.41; 8; 3; 8; 3; 6; 65.12; 6; 3; 1;
50; 85.71; 14.71; 40; 25; 4; 58.82; 35.71;

6; 4; 21.25; 29.41; 67.54; 40; 65.12;
62.92; 4; 50; 65.12; 8; 4; 4; 4; 4

Case
4

3; 5; 6; 7; 8; 9; 13; 14; 15; 16; 17; 18;
19; 20; 23; 24; 25; 26; 27; 28; 29; 30; 31;
32; 33; 34; 35; 37; 39; 40; 41; 42; 44; 45;
48; 49; 50; 51; 53; 55; 57; 58; 59; 61; 62;

63; 64; 65; 67; 68

50; 100; 2; 3; 3; 3; 3; 3; 50; 4; 4; 4; 50;
1; 94.12; 4; 79.41; 8; 8; 5; 5; 100; 95.74;
100; 8; 6; 8; 6; 3; 6; 1; 94.12; 29.41; 32;
8; 132.14; 66.99; 6; 6; 8; 100; 50; 14.71;

29.41; 4; 50; 31.96; 4; 8; 8

Case
5

3; 5; 7; 8; 9; 10; 12; 13; 14; 15; 16; 17;
19; 23; 25; 26; 28; 29; 30; 31; 32; 33; 34;
35; 36; 37; 39; 42; 44; 45; 46; 47; 48; 50;
52; 53; 54; 55; 56; 58; 59; 60; 63; 65; 66;

67; 68; 69

71.25; 50; 6; 6; 6; 8; 18; 6; 6; 39.71; 4;
8; 39.71; 50.42; 75.13; 4; 5; 10; 50.42;
35.71; 72.25; 4; 6; 4; 6; 6; 6; 62.92;

79.41; 16; 40; 65.12; 8; 96.43; 4; 6; 4; 8;
50; 35.71; 40; 64.71; 64.71; 8; 8; 8; 8; 8

Case
6

2; 3; 5; 6; 9; 10; 11; 12; 13; 15; 16; 18;
19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29;
30; 31; 33; 34; 35; 36; 37; 38; 39; 40; 41;
42; 43; 44; 45; 46; 47; 48; 50; 52; 53; 54;
56; 57; 58; 59; 60; 61; 62; 64; 65; 66; 67;

68; 69

44.12; 98.21; 70.17; 2; 3; 8; 17.86; 36; 3;
92.33; 8; 4; 30.36; 1; 14; 3; 92.33; 4;

44.12; 4; 8; 10; 5; 48.21; 91.91; 4; 3; 4;
3; 3; 26.25; 6; 6; 1; 46.93; 4; 44.12; 16;
20; 85; 8; 52.5; 2; 6; 8; 44.12; 17.5; 67.5;
40; 79.41; 61.98; 8; 66.07; 4; 8; 4; 4; 4

portunity cost in the objective function.

The model finds the CapEx associated with the DGs and BSSs regarding their

capacity and installation costs. Besides, the operational costs related to the power

injected and the battery degradation (minimized in the objective function) is exclu-

sively for the time horizon that belongs to every scenario. To obtain a reference value

for the annual operational cost, the classic OPF is executed for the annual histori-

cal data using the location and the capacity obtained by the algorithm (see section

3.5). However, economic indicator like the net present value (NPV), the payback,

and the internal return rate (IRR) are not considered. Still, they might be obtained

separately using the investment and the operational cost delivered from the model.

ASs related to reactive power might be considered in future papers because the
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reactive power provided by the DERs is enough to supply the reactive power demand.

3.7 Chapter conclusions

This chapter addresses the optimal placement and sizing of different DG and BSS

into a low-voltage DN, considering PEVs and DR under a two-stage programming

problem framework. The first stage variables are related DERs capital cost in terms

of location and capacity installed, and the second stage variables are associated with

the power provided by the DERs, PEVs, and de energy managed through the DR.

A linearization and an algorithm based on the GA have been used to address the

non-linear constraints and the binary variables. The model has been tested in a mod-

ified IEEE 69 bus system under 18 scenarios to observe the DERs capacity installed

variability. Finally, the results have been used to run a classic OPF to study the

power provided by DERs concerning the utility grid.

The results have shown that the set of scenarios chosen to test the model are

decisive in the DERs capacity proportion installed, presenting a CapEx variation be-

tween 3,850 k€ and 1,520 k€, and a year main grid dependence range between 51.1%

and 24.4%. On the other hand, the EVs presence suggests a reducing operational

cost (4.57%) related to the energy provided by the main grid due to their capacity

to inject energy in hours with a high price; however, a high EVs penetration might

increase DERs capacity installation. Besides, the DG capability to provide reactive

power indicates that it might be possible to supply a high percentage of the reactive

power load from renewable resources and provide ASs to the utility grid. Therefore,

the model proposed provides the DSOs with a powerful and versatile tool to analyze

different planning scenarios for a DN considering economic and technical constraints.
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Chapter 4

A virtual microgrids scheduling
model

4.1 Introduction

Resilience concept has become increasingly used in the literature related to the DN

with high penetration levels of DERs, in order to provide greater autonomy and

flexibility to face unexpected power generation situations [72]. In this context, MGs

play a relevant role in the transition process to smart grids because they offer an

electrical structure that allows improving the monitoring and management control of

the renewable resources on a small scale [73, 74]. However, following the definition of

MGs given by the U.S Department of Energy [75] an electrical boundary fixed might

not be exploiting all the flexibility providing by a MG.

This chapter presents a method based on an optimization mathematical model

for the scheduling operation of a DN. The contribution of the proposed method lies

in the fact that it permits to configure and operate the DN as a set of VMs with

high penetration level of DG and BSS. The topology of such VMs are modulated in

time in response of grid failures, thus minimizing load curtailment, maximizing local

renewable resource and storage utilization as well. The formulation provides the load

reduced by bus to balance the system at every hour, the global probability to present

energy not supplied (ENS), and for every bus, a flexibility load response range is

considered to avoid its total load curtailment for small load reductions. The model

has been constructed considering a linear version of the AC OPF constraints extended

for multiperiod, and it has been tested in a modified version of the IEEE 33-bus radial

distribution system considering four different scenarios of 72 hours, where the global

energy curtailment has been 27.9% without demand-side response (DSR) and 10.4%
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considering a 30% of flexibility load response. Every scenario execution takes less

than a minute which makes it proper for distribution system operational planning.

Thus, this chapter is organized as follows. Section 4.2 presents the literature

review. Then, Section 4.3 describes the problematic where the mathematical model is

situated, and the methodology follows to validate the model under different scenarios.

Section 4.4 presents the mathematical model with the nonlinear constraints already

linearized. Section 4.5, the model proposed, is tested in a case of study. And finally,

the results are discussed in section 4.6.

4.2 Literature review

The concept of virtual VM with dynamic boundaries has begun to sound as an alter-

native way to increase the resilience of conventional DN [76, 77] based on the IEEE

Standard 1547.4 [78], which establish that the reliability and operation of DNs can be

improved by dividing the DN into multiple ”isolated systems”. Still exist discussion

about a common definition of VMs with dynamic limits, however, there are some

common characteristics; the work in [79] proposes that a VM are developed from a

centralized DN, possess the same features of an MG but with a flexible structure

based on virtual boundaries. The work done by [80] considers a dynamic MG as

an MG with flexible boundaries that expand or shrink to keep the balance between

power generation and power consumption all the time. The work in [81] considers

the paradigm of dynamic MG as a mechanism to partition continuously a DN based

on the balance between generation and electricity demand.

The key factor of the previous definitions is the capability of the DN to find

the best partition such that minimizes the load curtailment and balances the power

system under failure or unbalanced scenarios produced by the stochastic behavior of

the DG. Likewise, this responsiveness is based on the autonomy level of the ADN, i.e.,

the installed capacity of DG and batteries, thus, as higher is the installed capacity,

higher would be the autonomy. However, meet 100% of the electricity load only with

DERs requires a high investment, which could make unprofitable the implementation

of these technologies in a DN and/or bring voltage issues [82]. Therefore, in most

cases, a trade-off between the energy provided by DERs and the utility grid occurs,

where the grid helps the DERs fill the energy gap in the critical hours, decreasing

the installed capacity needed of the renewable resources [34]. Thus, the necessity

of partition the ADN into VMs under failures of the utility grid gains momentum,

because, under failure scenarios, the gap cover by the grid, when the DERs do not
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meet the load, will produce an unbalanced system, unless the ADN faces this issue

dividing itself into virtual ”island systems”.

Some clustering techniques [83, 84] and methodologies have been applied to find

an optimal partition that allows to the network adopt this dynamic structure. GA

has been used in [85] to partition a DN in order to minimize the energy exchange

between MGs. The work developed in [79] proposes a hierarchical bottom-to-top

algorithm based on community detection [86] using an Electrical Coupling Strength

as modularity index, which is defined as a composite weighted factor for the anal-

ysis of the electrical connection, to size the partition quality. In [87] a greedy and

particle swarm optimization algorithm based on community detection is used to find

sub-communities through an index based on the voltage sensitivity matrix and the

active/reactive power. The electrical distance is used in [88, 89] to partition a DN into

sub-systems. The greedy algorithm is used to find the best partition and the particle

swarm optimization to manage the voltage control for each MGs. A control system

based on Kruskal’s algorithm from graph theory is presented in [5] to synchronize

and separate DN into multiple island systems to keep the system balanced. In [90]

a bi-level optimization problem is presented to transform an active DN in multiple

MGs using spectral graph theory to define the maximum numbers of sub-networks

through a MINLP, and a second lower-level problem to measure the reliability of the

MGs formed by the upper-level. An optimal scheduling model is presented in [91] to

tackle dynamic MG reconfiguration, where a linear version of the AC OPF is proposed

and uses the bender decomposition method to decompose and coordinate the grid-

connected system and isolated operation through a master problem and subproblem,

respectively.

The previous literature set out that the techniques used until now for partition and

dynamic MG reconfiguration are based on spectral graph theory and hierarchical and

community detection algorithms mostly. Nevertheless, to our best knowledge, there

is not a single mathematical optimization model which provides the DN dynamic

reconfiguration scheduling, based on DSR and load curtailment, such that it prevents

widespread blackouts as a result of low power generation or network failures, for DN

with high penetration of DG and BSS. In order to extend the literature, the proposed

model tackle this issue.
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4.3 Problem definition and methodology

Currently, the distribution and transmission systems are supported by different con-

trol mechanisms to face the deviation between electricity production and the load

[92, 93]. This work, typically managed by the transmission system operator (TSO),

keeps the energy balancing through three types control reserves which differ by the

temporal space in which they are applied. Therefore, why to partition a DN to face

unexpected events if there are mechanisms of control to tackle these kinds of issues?

Because what is looking for in the resilience concept associated to the DN with high

penetration levels of DERs is dispense with these control mechanisms and be able to

self-adapted to a failure of high impact on the grid [94]. Therefore, the ADN must be

able to size the energy amount that is not possible to meet due to the absence of the

utility grid and identify the load points which could be applied a load curtailment in

order to minimize the energy losses.

The DSR concept is related to the amount of energy which the ADN could shave

to avoid an unbalanced system under the absence of the utility grid [95]. i.e. if

the ADN possess the flexibility to reduce a percentage of its energy load, the global

curtailment will be lower than the case of an ADN where there is no chance to reduce

the load more than to zero to avoid an unbalanced system. However, the flexibility

degree of the DSR must be known by the ADN previously such that the model can

decide when and how much load reduce.

Under this context, the model proposed in this chapter seek to create VMs based

on load curtailment and/or DSR to balance the system under the absence of the grid

and low power generation.

The methodology follows in this chapter consists of two stages: A first step focuses

on the strategic decisions related to the capacity and location that should have the

DG and BSS into the DN. And a second step which tackles the capability of the DN

to face unexpected failures through the self-partition into VMs.

The placement and sizing have been addressed separately in the previous chapters,

where a novel algorithm is presented which allows finding an optimal solution of the

capacity and location for different types of DGs and BSSs considering a time horizon

longer than 24 hours and basing its formulation in an AC OPF to include the technical

constraints of the network, which is represented in the upper level of Figure 4.1. The

lower level corresponds to seek the optimal topology of the DN in case that the power

energy is insufficient to meet the electricity load. Therefore, follows Figure 4.1, the

optimal model for the VMs topology scheduling (VMTS) is executed for scenarios of
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72 hours, and every hour going to have two possible results regarding the system:

The first one, where the capacity installed, weather conditions and the electricity

load are balanced, which means that the DN does not needs to be partitioned into

VMs. However, if in the second case, the electricity load is not satisfied by the power

generation of the DGs, the model going to find the amount of energy load that must

be reduced at each bus to balance the system, where every load point possesses a

range of load that can be reduced. If the load curtailment exceeds this range, the

load in that point is reduced to zero and the bus is isolated becoming in a bound

of VM. Thus, for each hour where these conditions appear, the model provides the

scheduling of the topology that must follow the DN to balance the system all the

time, sacrificing, of course, a load curtailment that is minimizing on the Objective

function but avoiding an outage.

In order to make sure that the topologies found by the mathematical model be

feasible for the classic AC OPF problem, the loads associated with the isolated nodes

are replaced by zeros and the buses with a reduced load within its range of flexibility

are modified. The DN with the new set of loads is executed in a multi-period AC

OPF. Thus, the feasible solutions of the VMTS model are also feasible for the classic

AC OPF problem.

4.4 Optimal model for scheduling virtual micro-

grids topology

The formulation explained in this chapter is a modified version of the model presented

in the previous chapter, which use as the main structure an AC OPF extended to

multi-period and a linearization done by [10]. However, unlike of [34] which finds

the optimal place and location of DERs into a DN, the following model is focused on

finding the scheduling of a dynamic topology of an ADN to face lower generation sce-

narios or failure on the utility grid, through the minimization of the load curtailment

in order to find the weakest nodes, and identify eventual flexibilities. The model is

explained in two subsections; the first one corresponds to the base structure to find

the proper topology of the ADN to face unbalances issues without taking into account

a flexible demand response, and a second section, where the power consumption is

not a parameter anymore but a variable, in order to include flexibility on demand.
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Figure 4.1: Methodology structure for self-adaptive distribution networks

4.4.1 Model without flexible demand

The virtual microgrids topology scheduling (VMTS) model is described as follows:

Min F = Υ
∑
i∈B

∑
t∈T

δpi,t + δqi,t +
∑

(i,j)∈L

∑
t∈T

| pi,jt | + | q
i,j
t | . (4.1)

The objective function in Eq. (4.1). minimize the active (δpi,t) and reactive (δqi,t)

power not-supplied by the DERs, represented by the left side of the equation, and the

active (pi,jt ) and reactive (qi,jt ) power flow between the nodes, corresponding to the

right side. This structure allows us to promote the fulfillment of the electricity load

(left side) since the positive variables δpi,t and δ
q
i,t are penalized (Υ) when their values

are greater than zero, if and only if, the power generation and the energy storage

is not enough to meet the load. In addition, when it is not a chance to meet the

power consumption, the objective function prioritizes the loads with or closer to a

DG or BSS, through the minimization of the flow variables (pi,jt ) and (qi,jt ). In order

to penalize the flow between nodes, the absolute value for the active and reactive

power flow between nodes is considered, which can take negative and positive values
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depending on the flow direction, and because an absolute value require a simple

change of variable to become linear.

The formulation constraints are as follows: Eq. (4.2) and (4.3) correspond to

active and reactive nodal power flow equations, therefore; ∀i ∈ B,∀t ∈ T ,

vsi,t[Gi +
∑

(i,j)∈L

Gi,j] +
∑

(i,j)∈L

pi,jt =
∑
k∈Ω

pgki,t + λpi,t − PLi,t +
∑
l∈Ψ

(dsli,t − chli,t), (4.2)

− vsi,t[Bi +
∑

(i,j)∈L

(Bi,j −Bsi,j)] +
∑

(i,j)∈L

qi,jt =
∑
k∈Ω

qgki,t + λqi,t −QLi,t. (4.3)

Both equations, and the remaining constraints, have already been linearized using

the methodology presented in [10], holding the left side of these equations like the

classic AC OPF. However, on the right side, we consider; the active power injected

by the distributed resource (pgki,t); a virtual active power (λpi,t), which represents the

power remained to meet the load in case of low generation; the active power demanded

by the node (PLi,t), wherein this formulation is a parameter; and the power absorbed

(chli,t) or injected (dsli,t) from the battery to the grid. The same structure follows Eq.

(4.3).

The set of constraints from (4.4) to (4.7) correspond to the linear version of the

active and reactive power flow equation which have been widely explained in section

2.4 , therefore; ∀(i, j) ∈ L,∀t ∈ T ,

Gi,j

[
vsi,t − vsj,t

2

]
−Bi,j(∆θ

i,j
t ) + LPi,j = pi,jt , (4.4)

−Bi,j

[
vsi,t − vsj,t

2

]
−Gi,j(∆θ

i,j
t ) + LQi,j = qi,jt , (4.5)

LPi,j = Gi,j[∆θ̂
i,j
t ]mi,j +Gi,j

[
V̂i,t − V̂j,t
V̂i,t + V̂j,t

]
− Gi,j

2
[(∆θ̂i,jt )2 + (∆V̂i,j,t)

2], (4.6)

LQi,j = −Bi,j[∆θ̂
i,j
t ]mi,j −Bi,j

[
V̂i,t − V̂j,t
V̂i,t + V̂j,t

]
+
Bi,j

2
[(∆θ̂i,jt )2 + (∆V̂i,j,t)

2]. (4.7)

Power load and virtual power are explained in constraints (4.8)-(4.11), therefore;

∀i ∈ B,∀t ∈ T ,
PLi,t = γpi,t + δpi,t, (4.8)

λpi,t ≤ δpi,t, (4.9)

QLi,t = γqi,t + δqi,t, (4.10)

λqi,t ≤ δqi,t. (4.11)
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Eq. (4.8) represents the total power load which depends on the power supplied

(γpi,t) and not-supplied (δpi,t) in every node i, thus, the total load is composed by

this two type of variable, where the power not-supplied is penalized in the objective

function, to ensure that δpi,t is as small as possible. Eq. (4.9) the power not-delivered

(δpi,t), bound the virtual power λpi,t which represents the remaining power that it is

needed to meet the total power load (see Eq. (4.2). Therefore, if the power generation

is insufficient to provide the power required, the virtual power (λpi,t) is going to fulfill

this gap, being penalized in the objective function, if and only if, this gap is equal or

lower than the power not-supplied (δpi,t) in the node i. Constraints (4.10) and (4.11)

describe the same logic but for reactive power load.

Active and reactive power limits together with the voltage security constraints are

considered in Eqs. (4.12) - (4.14), therefore; ∀i ∈ B, ∀k ∈ Ω,

(V min
i )2 ≤ vsi,t ≤ (V max

i )2, (4.12)

U g
l PG

min
k,t ≤ pgki,t ≤ U g

l PG
max
k,t , (4.13)

U q
l QG

min
k,t ≤ qgki,t ≤ U q

l QG
max
k,t . (4.14)

Eq. (4.12) makes sure that the voltage in each node and at every period is within

the limits allowed. The parameters are squared due to the change of variable needed

to linearize the original power flow equation. Constraints (4.13) establish the limits

for the power injected by the DG in the node through two different parameters; U g
l

corresponds to the total power capacity installed and PGmax
k,t is the power generated by

the DG in a certain period, which is a normalized power generation curve. Therefore,

Eq. (4.13) establishes the maximum power that can be injected in Eq. (4.2) at every

hour, where PGmax
k,t follow the behavior of a PV/WT power generation, and it allows

to include the stochastic behavior of the DG into the OPF constraints.

The sets of constraints (4.15) - (4.18) represent linear version of the apparent

power limit, therefore; ∀(i, j) ∈ L,∀t ∈ T ,∀r ∈ R,

Ari,jp
i,j
t +Br

i,jq
i,j
t + Cr

i,j ≥ 0, (4.15)

− Ari,jp
i,j
t +Br

i,jq
i,j
t + Cr

i,j ≥ 0, (4.16)

Where:

Ari,j = −Smaxi,j cos(βri,j) ; B
r
i,j = −Smaxi,j sin(βri,j), (4.17)

Cr
i,j = (Smaxi,j )2 ; βri,j = α + (r − 1)

π − 2α

R− 1
. (4.18)
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Eq. (4.15) and (4.16) emerge as a set of constraints which represent a polygon

formed by r ∈ R lines that define a feasible region approximation of the original

apparent power limit, which is a circle. Thus, the bigger the set R, the closer will be
the polygon to the circle.

The battery modeling is expressed following the below equations. However, their

full explanation has been addressed in section 2.3. Therefore; ∀i ∈ B, ∀t ∈ T ,∀l ∈ Ψ,

socli,t+1 = socli,t + [φlchli,t −
1

φl
dsli,t]∆t, (4.19)

U b
l SOC

min
l ≤ socli,t ≤ SOCmax

l U b
l , (4.20)

chli,t∆t ≤ wli,tM
l, (4.21)

dsli,t∆t ≤M l(1− wli,t)−M l(1− Y l
i ), (4.22)

wli,t ≤ Y l
i . (4.23)

4.4.2 Model with flexible demand

In this section the equations (4.1), (4.2), (4.8) are rewritten in order to include the

DSR into the model explained previously, and a new constrain is added to bound the

flexibility degree of the energy demand.

Min G = Υ
∑
i∈B

∑
t∈T

δpi,t + δqi,t +
∑

(i,j)∈L

∑
t∈T

| pti,j | + | qti,j | +
∑
i∈B

∑
t∈T

µi,t. (4.24)

Eq. (4.24) is the new objective function which, unlike (4.1), the amount of power

consumption reduced (µi,t) is minimized together with the energy flow and the ac-

tive/reactive power not supplied, in order to balance the system. However, this new

variable µi,t must be lower or equal than the demand response of every load. There-

fore; ∀i ∈ B, ∀t ∈ T
µi,t ≤ Ωi,tPLi,t. (4.25)

Ωi,t in Eq. (4.25) represents the percentage of demand response of every load at

every time. In addition, µi,t must be integrated in Eqs. (4.2) and (4.8) to keep the

balance in the power flow equations, where the parameter PLi,t passes to be an initial

power consumption where the flexibility response is subtracted. Thus; ∀i ∈ B,∀t ∈ T

vsi,t[Gi+
∑

(i,j)∈L

Gi,j]+
∑

(i,j)∈L

pi,jt =
∑
k∈Ω

pgki,t+λ
p
i,t−PLi,t+µi,t+

∑
l∈Ψ

(dsli,t−chli,t) (4.26)

PLi,t − µi,t = γpi,t + δpi,t. (4.27)
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Figure 4.2: Capacity and location for DERs in the PG&E 33-bus radial distribution
network.

4.5 Case study

In this section the two versions of the mathematical model are applied under different

scenarios, considering the PG&E 33-bus radial DN [40]. The sizing and location of

the DERs have been obtained using the algorithm presented in 2.5, considering a

connected-grid system because an autonomous network, i.e. the energy, is provided

100% by DERs, it is not a proper case of study to observe the capability of the ADN

to form sub-systems when the grid failures. Therefore, using [34], the location and

sizing have been set as shown in Figure 4.2

In order to test the mathematical optimization model, four different 72-hour sce-

narios corresponding for each season of the year are taken into account to study the

different topologies formed by the ADN when the system is disconnected from the

utility grid and the weather conditions are not capable to supply the 100% of the

power consumption. The weather resources are taken from historical data; [39] for

the wind speed and [38] for the temperature and irradiation. The mathematical model

has been programmed in Python using CPLEX as the main solver.

The available resources compared with the energy demand, for the periods of

study are presented in Figure 4.3. Every curve has been normalized to respect the

magnitude and visualize under what hour or period, there are more power capability

than others. For example, the fourth period possesses a high-level wind resource,

which means that the wind turbine will be able to produce energy at its maximum

capacity. On the other hand, there are many consecutive hours that show a very low

power capability for PV panels and wind turbines, which will force load curtailment

and the partitioning of the ADN into sub-systems. The DSR parameter is sets in
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Figure 4.3: The four consecutive scenarios of 72 hours. The vertical axis is the
percentage of the total capacity that can be used by the WT/PV or the percentage
of the energy demand for every hour.

30% for every load at every time.

Remark that the goal of the case of study is; (1) to size the DSR effect on the

DN topology scheduling, and (2) to show the type of data provided by the model

and how this information can be useful in terms of operational planning for DSO.

It is important to mention this factor because the results depend exclusively on the

DERs capacity, electricity demand, season, geographic location, weather conditions,

and the DSR considered.

4.5.1 Model performance

The mathematical formulation, explained in section 4.4, has been compared with its

MINLP version to observe the huge time differences between non-linear and linear

version. Thus, Table 4.1 shows the times execution for both model, and their respec-

tive OF. When the model is not multi-period, both formulations reach to the same

OF, however, when the model is extended to multi-period, the computation burden

for the MINLP increase faster than the MILP to the point that at hour 12 the time

for the MINLP is around 5.5 hours, which is much longer than the alternative version

that take only 3.79 seconds, keeping an error close to the 7%. Due to the exponential

time execution increase for the MINLP version, the Table 4.1 has been completed

until hour 12 and not beyond. Nevertheless, the MILP running time for 72h is close

to a minute, that puts it within the operational range of DSO.
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Table 4.1: Performance of the MINLP and MILP
1h 6h 12h 24h 72h

MINLP [s] 1.79 25.86 20038.7 – –
OF [kWh/pr.] 0.1 0.65 1.32 – –
Status ok ok ok – –
MILP [s] 0.15 0.26 0.892 4.12 58.38
OF [kWh/pr.] 0.1 0.69 1.41 3.79 534496.43
Status ok ok ok ok ok
OF error 0% 6.2% 6.8% – –

In order to improve the understanding of the data obtained from the model, the

results are grouped as follows:

• Model operation explains how the model meets the energy load through the

available resources and show the role of the storage devices.

• Weakest points identify the nodes with a high probability of ENS. This prob-

ability considers any percentage of non-compliance from the total load for a

certain bus at every hour.

• Flexibility Market presents the amount of ENS for every node at every hour and

compares the total ENS when DSR is considered and when it is not.

• Dynamic topologies shows the topology scheduling that must follow the ADN

to pass from an unbalanced system to a balanced system, with lower load com-

pliance than the original.

4.5.2 Mathematical model operation

Figure 4.4 and Figure 4.5 are presented to show how the model proposed to operate

to meet the energy demand with the available resources (Figure 4.4) and observe the

impact of the storage devices (Figure 4.5) for a certain scenario without considering

DSR. Thus, the fourth period has been considered where at the first hours it is

possible to meet the energy load with the DERs, due to existing high wind resources

and irradiation. Furthermore, the SOC of the batteries increases during the first half

of the scenario, achieving its maximum, to face the second half where the weather

conditions are not the best. From the 40th hour on, the batteries are discharged

(see Figure 4.5) and start to appear the first nodes with low energy not supplied

by the system because the discharge rate of the battery does not allow to fulfill the

gap between load and generation. Finally, at the end of the period, there is not
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Figure 4.4: Scenario 4: electricity demand fulfillment behavior

Figure 4.5: Scenario 4: SOC of batteries vs. load, and wind/irradiation resources
available

enough energy stored in the batteries to meet the energy demand. To improve the

visualization of Figure 4.4. the energy provided by the DERs has been overlapped

to observe the share of the energy demand that is satisfied by each resource, and for

Figure 4.5, the curves have been normalized, taking as reference the maximum value

of each curve.

In global terms, for the 288 hours considered, composed of 4 scenarios of 72 h, the

total energy demanded by the system is 434.17 MWh/pr. of which 56.3% is provided

by WT, 8.2% by PV panels, 13.4% the storage systems, and 4.6% of energy losses.

The ENS when the DSR is not taken into account is 27.9%, however, when a 30% of

DSR is considered, i.e. every load point can reduce its energy load at a maximum of

30%, otherwise, the load is reduced to zero, the ENS drop-down 62.7%, from 27.9%

to 10.4%. Therefore, for the installed capacity and for the considered scenarios, the

system could provide 73.3% of the energy as maximum, and the remaining energy

load would be reduced or traded through an eventual energy flexibility market.
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4.5.3 Weakest nodes

The weak nodes of the ADN have been represented in Table 4.2 through the proba-

bility of every bus to not meet the total electricity load in a period of 72h. i.e. for

a scenario of 72h, if in every hour of this scenario, a certain bus does not supply the

entire energy demand, its probability of default is 100%. The first column indicates

the buses, where bus 1, has not been considered because does not has a load at any

time. The following 4 columns indicate the different scenarios of 72 hours considered,

and the column Total shows the probability of every bus for ENS considering a 288

h period. The remaining columns possesses the same meaning, but considering the

DSR version model, and the last column (A) indicates if the bus possesses or is next

to a DERs. Thus, in Table 4.2 the buses with a DG or BSS installed have a lower

probability of default when the weather conditions are not proper to generate enough

power to meet demand with the capacity installed, and the support of the utility grid

is not guaranteed. Specifically, the buses with WT installed are the ones which have

the lowest probability of default followed by the nodes with PV panels and the nodes

with a storage system. Moreover, as the objective function (4.1) and (4.24) minimize

the energy flow through the lines when there is non-compliance, the nodes which are

furthermost of the buses with a DERs system, are the points with the highest prob-

ability to present load curtailment, as is the case of the upper section of the DN test

system {23, 24, 25} and the lower section {19, 20, 21, 22}.

4.5.4 Energy for flexibility market

Unlike Table 4.2 which shows the probability of default, Table 4.3 presents the amount

of energy that is not possible to fully supply the system, for every bus, and for every

scenario. For example, in the fourth scenario, the second bus, in Table 4.3; it would be

required to generate an extra 0.11 MWh to meet the electricity load on the weather

conditions considered, and not produce a load curtailment for the second bus, in

order to avoid an unbalanced system. Therefore, this extra energy for each node

and for every hour could be used by the DSO to be traded in an eventual energy

flexibility market. On the other hand, for the same previous example, when the DSR

is considered into the formulation, occurs that the extra 0.11 MWh can be reduced

(because it is within the flexibility range response) and therefore a total load shaved

is not needed. In addition, the right part of Table 4.3 shows a clear decrement of

ENS due to the DSR effect, where is visualized easily in the fourth scenario, which

does not present load reduced. The proportion of ENS for every node, follow the
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Table 4.2: Probability that a bus has energy not-supplied

Bus
Without DSR (%) With DSR (%)

(A)Sc 1 Sc 2 Sc 3 Sc 4 Total Sc 1 Sc 2 Sc 3 Sc 4 Total
1 0 0 0 0 0 0 0 0 0 0 No
2 65.3 52.8 37.5 4.2 39.9 11.1 5.6 1.4 0 4.5 No
3 65.3 6.9 5.6 4.2 20.5 11.1 5.6 1.4 0 4.5 No
4 45.8 5.6 2.8 4.2 14.6 9.7 5.6 1.4 0 4.2 No
5 25 4.2 0 4.2 8.3 5.6 4.2 1.4 0 2.8 Yes
6 8.3 2.8 0 4.2 3.8 0 2.8 0 0 0.7 Yes
7 8.3 5.6 1.4 4.2 4.9 9.7 5.6 1.4 0 4.2 Yes
8 65.3 6.9 2.8 4.2 19.8 11.1 5.6 0 0 4.2 Yes
9 48.6 6.9 1.4 2.8 14.9 11.1 5.6 0 0 4.2 Yes
10 11.1 6.9 1.4 2.8 5.6 11.1 4.2 0 0 3.8 Yes
11 20.8 11.1 2.8 2.8 9.4 8.3 5.6 0 0 3.5 Yes
12 12.5 13.9 5.6 2.8 8.7 12.5 5.6 0 0 4.5 Yes
13 13.9 13.9 2.8 2.8 8.3 12.5 2.8 0 0 3.8 Yes
14 43.1 9.7 5.6 2.8 15.3 9.7 2.8 2.8 0 3.8 Yes
15 15.3 13.9 5.6 1.4 9 13.9 5.6 2.8 0 5.6 Yes
16 48.6 13.9 6.9 2.8 18.1 13.9 9.7 2.8 0 6.6 Yes
17 70.8 13.9 5.6 2.8 23.3 12.5 5.6 2.8 0 5.2 Yes
18 70.8 30.6 9.7 2.8 28.5 61.1 11.1 2.8 0 18.8 Yes
19 66.7 66.7 50 4.2 46.9 51.4 5.6 1.4 0 14.6 No
20 68.1 90.3 72.2 4.2 58.7 63.9 6.9 1.4 0 18.1 No
21 69.4 100 79.2 15.3 66 65.3 54.2 2.8 0 30.6 No
22 69.4 100 79.2 47.2 74 65.3 62.5 2.8 0 32.6 No
23 65.3 58.3 43.1 4.2 42.7 26.4 5.6 1.4 0 8.3 No
24 68.1 76.4 59.7 4.2 52.1 58.3 6.9 1.4 0 16.7 No
25 68.1 100 79.2 4.2 62.8 65.3 6.9 2.8 0 18.8 No
26 4.2 2.8 0 4.2 2.8 0 1.4 0 0 0.3 Yes
27 0 0 0 4.2 1 0 0 0 0 0 Yes
28 5.6 4.2 0 2.8 3.1 4.2 2.8 1.4 0 2.1 Yes
29 6.9 4.2 0 2.8 3.5 8.3 4.2 1.4 0 3.5 Yes
30 5.6 4.2 0 2.8 3.1 6.9 2.8 0 0 2.4 Yes
31 0 1.4 0 2.8 1 0 0 0 0 0 Yes
32 6.9 4.2 1.4 2.8 3.8 8.3 1.4 0 0 2.4 Yes
33 8.3 4.2 1.4 1.4 3.8 9.7 4.2 1.4 0 3.8 Yes
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same pattern of Table 4.2, because, for the nodes with power generation or storage

devices, the amount of extra energy needed to fulfill the electricity load is lower than

the buses without DERs.

4.5.5 Dynamic topology

The dynamic topology offered by the model is by all means the variable associated

with the ENS (δpi,t), which takes values greater than zero when the DERs cannot

provide sufficient energy to meet the demand. These values are recorded for every

period at each bus. Table 4.4 shows simplified results of these values, where the values

greater than the maximum DSR flexibility have been replaced by one, and when these

values are within the range allowed by the DSR or the load is satisfied, the values are

zero for the sake of clarity. Specifically, Table 4.4 represents the results for the time

comprised between period 40h to 48h corresponding to the second scenario. This

scenario has been selected because presents many buses with load curtailment which

is the case at hour 46. Taking as reference the results in Table 4.4, the hour 46 has

been depicted in Figure 4.6 to observe how the VMs, represented by binary numbers

in the previous table, take form in the ADN. The red points indicate the nodes where

the load has been decreased to zero, and the dashed red lines to visualize the isolated

system which is bounded by the red points. For those nodes where the load has been

suppressed but there are power generation, the energy injected in these red points

is used to meet the demand in the closest points of the ADN which the load is not

zero. On the other hand, when the DSR is included in the formulation, the load

curtailment is reduced, as shown on the right side of Table 4.4, leaving only the buses

21 and 22 without energy supplied and formed the VM represented in Figure 4.7.

4.6 Chapter conclusions

This chapter has presented an optimization model to find the topology that must

follow an ADN to self-balancing under unexpected grid failures, identifying the load

reduction required to balance again the system, and isolate the loads, with a curtail-

ment greater than its capacity response, which become the limits of the VMs formed.

Every new topology has been validated using the classic AC OPF model, to make

sure that the feasible solution of the model proposed is also a feasible solution for the

model used by the DSO.

The model has been tested under four scenarios of 72 hours to consider the sea-

sonality of renewable resources, and the location and sizing of the DERs have been
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Table 4.3: Energy not-supplied and its percentage of non-compliance

B

Without DSR With DSR
(A)ENS ENS in % ENS ENS in %

S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 No
2 2.3 1.4 1.1 0.1 66 54 36 4 0.3 0.1 0 0 8 4 1 0 No
3 2.1 0.2 0.1 0.1 66 8 5 4 0.3 0.1 0 0 8 4 1 0 No
4 1.8 0.2 0.1 0.1 43 6 3 4 0.3 0.1 0 0 7 4 1 0 No
5 0.3 0.1 0 0.1 16 4 0 4 0.1 0 0 0 3 2 1 0 Yes
6 0.1 0 0 0.1 5 2 0 4 0 0 0 0 0 1 0 0 Yes
7 0.5 0.2 0 0.2 8 5 0 4 0.3 0.2 0 0 5 3 0 0 Yes
8 4.6 0.3 0.1 0.2 66 6 2 3 0.6 0.2 0 0 8 4 0 0 Yes
9 1 0.1 0 0.1 49 8 2 3 0.2 0.1 0 0 8 4 0 0 Yes
10 0.2 0.1 0 0.1 10 8 2 3 0.2 0.1 0 0 7 3 0 0 Yes
11 0.3 0.1 0 0 17 9 2 3 0.1 0 0 0 6 2 0 0 Yes
12 0.3 0.2 0.1 0.1 12 15 5 3 0.2 0.1 0 0 8 4 0 0 Yes
13 0.3 0.2 0 0.1 13 13 2 3 0.2 0 0 0 9 1 0 0 Yes
14 1.5 0.2 0.2 0 35 7 4 1 0.2 0 0 0 6 0 1 0 Yes
15 0.3 0.2 0.1 0 14 14 5 1 0.2 0.1 0 0 8 4 1 0 Yes
16 1 0.2 0.1 0.1 46 15 6 3 0.2 0.1 0 0 10 7 2 0 Yes
17 1.2 0.1 0.1 0.1 58 9 5 3 0.2 0.1 0 0 7 4 2 0 Yes
18 2.2 0.7 0.2 0.1 71 29 8 3 1.4 0.2 0.1 0 43 8 2 0 Yes
19 2.1 1.5 1.2 0.1 67 67 46 4 1.2 0.1 0 0 38 4 1 0 No
20 2.2 2.1 1.9 0.1 68 92 69 4 1.4 0.1 0 0 45 5 1 0 No
21 2.2 2.3 2.1 0.4 69 100 77 15 1.5 0.9 0.1 0 46 38 2 0 No
22 2.2 2.3 2.1 1.1 69 100 77 47 1.5 1 0.1 0 46 45 2 0 No
23 2.1 1.3 1.1 0.1 66 59 40 4 0.5 0.1 0 0 17 4 1 0 No
24 9.9 7.9 6.6 0.5 67 75 53 4 6.1 0.5 0.1 0 42 5 1 0 No
25 10 10.5 9.4 0.5 68 99 75 4 6.7 0.6 0.2 0 46 5 2 0 No
26 0 0 0 0.1 1 2 0 4 0 0 0 0 0 1 0 0 Yes
27 0 0 0 0.1 0 0 0 4 0 0 0 0 0 0 0 0 Yes
28 0.1 0.1 0 0.1 4 3 0 3 0 0 0 0 2 2 1 0 Yes
29 0.3 0.1 0 0.1 7 4 0 3 0.2 0.1 0 0 4 3 1 0 Yes
30 0.4 0.1 0 0.2 5 3 0 3 0.3 0 0 0 4 1 0 0 Yes
31 0 0 0 0.1 0 0 0 3 0 0 0 0 0 0 0 0 Yes
32 0.4 0.1 0 0.1 5 2 0 2 0.2 0.1 0 0 2 1 0 0 Yes
33 0.2 0.1 0 0 8 4 2 1 0.1 0.1 0 0 6 3 0 0 Yes
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Figure 4.6: PG&E 33-bus radial DN partitioning for the second scenario at 46h. Red
balls indicate the loads reduced to zero, without considering DSR into the model

Figure 4.7: PG&E 33-bus radial DN partitioning for the second scenario at 46h.
Considering DSR into the model
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taken into account as parameters known. Thus, the nodes which have presented a

high probability of ENS and a high load curtailment, have been further away from

the DG and BSS. This result is explained because the objective function minimizes

the flow between the nodes so that the model prioritizes the loads closer to a DG

or BSS. In addition, when DSR is included in the load parameters, the global load

curtailment is reduced by 62.7%, i.e. from 27.9% when the DSR is not included in

the mathematical model, to a 10.4% when the loads are capable of self-modified in

order to avoid an unbalanced system.
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Table 4.4: DN topology under the third scenario
Scenario 2 without DSR Scenario 2 with DSR

Bus 40 41 42 43 44 45 46 47 48 40 41 42 43 44 45 46 47 48
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0
20 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
21 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1
22 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1
23 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0
24 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
25 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Chapter 5

A Benders decomposition approach
for solving a P2P energy trading
problem under uncertainty

5.1 Introduction

The constant decrease in the prices of DG is allowing residential users to opt for small-

scale self-generation and BSS, providing them greater autonomy and control over

electricity consumption. This new paradigm of more active, aware, and empowered

users has prompted a rethinking of the residential DN to face future ECs with high

penetration of DERs and eventual ECs operating under a TE scheme [6]. P2P energy

trading is one of the potential emerging alternative schemes to model this paradigm

and increase the efficiency in an EC with high DERs penetration and users willing

to sell their energy surplus to other community users in an eventual LEM [7]. Thus,

many research papers have addressed the challenge of modeling these new consumer-

centric TE schemes over the last years to study their benefits and proper operation.

In consequence, this chapter presents a new two-stage stochastic programming

model to address a scheduling day-ahead problem of an energy community operat-

ing under a P2P energy trading scheme. The formulation proposed i) considers the

network technical constraints, ii) prevents the energy buying and selling by a user

simultaneously, and iii) allows the prosumers to act as buyers or sellers depending on

their load consumption and self-generation. In order to reduce the shared informa-

tion by consumers/prosumers that trade energy in the LEM, the proposed model is

decomposed into a master problem (MP) that manages the network technical limita-

tion and subproblems (SPs) that handled the LEM. With this purpose, the Benders

decomposition approach is implemented using the recently introduced Strengthened
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Benders cuts to address the binary variables related to the market and battery op-

eration present in the SPs. The model and the algorithm are tested in the 69-bus

radial distribution system, considering from 3 to 39 agents trading energy to mea-

sure the model scalability and the algorithm convergence showing that the proposed

methodology reduces the LEM’s shared information without increasing the energy

community cost.

Thus, the chapter structure is summarized as follows. Section 5.2 presents the lit-

erature review. Section 5.3 defines the market design and presents the two-stage pro-

gramming formulation considering a centralized market to explain the market opera-

tion through the variables and equations. Section 5.4 explains the privacy-preserving

decision-making mechanism for end-users through the Bender decomposition appli-

cation. The case study and the computational results are presented in Section 5.5.

The conclusions and further researches are discussed in Section 5.6.

5.2 Literature review

Different techniques have been applied in the P2P energy trading field to promote

user energy sharing, establish the local market pricing, and manage users’ private

information. We refer the reader to [96] and [97] for a recent and comprehensive review

of related academic papers, classification and techniques, and industrial applications

in P2P energy trading.

In what follows, we review more recent works on P2P trading and group them

into deterministic and two-stage stochastic approaches to highlight the differences

between the methods.

5.2.0.1 Deterministic approaches

Centralized markets have been addressed, for example, in [98], where the coordinator

has complete control over the community batteries and seeks to minimize grid oper-

ation costs. However, network technical constraints, such as the balance equations in

nodes and lines, including the reactive power effect and the voltage limit operation,

are not considered in that work, which might lead to infeasible or impractical solutions

for real cases. Additionally, centralized markets usually entail that the coordinator

has access to users’ private information, which restricts users’ autonomy and privacy.

Decentralized markets are an alternative to keep users’ autonomy and privacy.

Those markets have been addressed, for example, in [99, 100, 101, 102, 103]. The
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work in [99] proposes a deterministic TE framework for trading energy between pro-

sumers with BSS and DG and seeks to maximize the community surplus. In the

same research direction, a decentralized P2P energy trading model is presented in

[100], which uses the primal-dual gradient method to manage the trading scheme.

This deterministic model includes technical constraints through the Power Transfer

Distribution Factor (PTDF); however, the BSS and DG are not modeled explicitly,

rather only the energy shortage or surplus is considered an input parameter. On its

part, a dual decomposition method is proposed in [101] to coordinate the interaction

between multi-regional prosumers under a P2P energy trading scheme maximizing

the social welfare and including the voltage levels and the reactive power; however,

batteries are not considered in the formulation, and the model is tested in a small

network. Those issues are addressed in [102] and [103]. In [102] a decentralized model

for a collaborative operation of MGs with the utility grid is investigated, considering

technical constraints and restricting batteries to either charge or discharge at each

slot time, and propose a Benders decomposition method to manage users’ private

information.

On the other hand, in [103], an optimization algorithm based on the Alternating

Direction Method of Multipliers (ADMM) is proposed to address day-ahead oper-

ational planning of a grid-connected local energy community preserving the users’

private information. The model in [103] is decomposed into two stages such that the

first stage minimizes the cost of buying energy to the utility grid, and the second stage

minimizes the internal losses considering the line resistance and the voltage level.

Community-based energy markets have also been addressed from other disciplines.

A game-theoretic approach under a cooperative structure is investigated in [104, 105,

106, 107] and the non-cooperative structures in [108, 109, 110] to model the P2P

energy market. They generally focus on studying users’ incentives to trade energy

between them. The main results show that the TE framework provides efficiency

in the DERs use and increases community welfare. Likewise, a Continuous Double-

Auction (CDA) mechanism is widely used in the literature to establish the LEM

price for the bids and asks (see, e.g., [97, 111, 112, 113]). However, to the best of our

knowledge, under a P2P energy trading scheme, no work considers the voltage levels

and the reactive power in the formulation, which are critical factors to maintain the

network balanced (see, e.g., [114, 115, 116, 96, 117]).

The previous literature focuses on modeling trading energy markets between pro-

sumers and consumers under a wide range of different assumptions and constraints
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and developing efficient algorithms to find reasonable quality solutions for the result-

ing models, providing valuable knowledge about these new markets. However, they do

not consider the inherent uncertainties related to energy generation and consumption,

which might impact the network efficiency and the community’s social welfare.

5.2.0.2 Stochastic approaches

Contrary to deterministic approaches, stochastic models are recently gaining atten-

tion from scholars. Centralized markets under uncertainty have been investigated in

[118, 119, 120, 121, 122, 123, 124]. Thus, an initial work is presented by [118] to ad-

dress the uncertainty in energy trading markets through a hybrid stochastic/robust

optimization model. The same approach is presented by [119] and [120] but using the

General Nash Bargaining framework to decompose the original model into operational

and bargaining problem. Authors in [121] use a stochastic approach to deal with the

price uncertainty in the P2P energy market and avoid arbitrage by the users with the

real-time market through a bi-level model based on a non-cooperative leader-follower

game. Then, a two-stage robust optimization (RO) model is formulated by [122] to

deal with uncertainties in a day-ahead and real-time spot market, maximizing the

microgrids’ profit and using the Benders decomposition approach for solving the re-

sulting two-stage stochastic problem. Similarly, the RO approach is used by authors

in [123] to manage the uncertainty marginal price in a P2P energy trading using the

column-and-constraint generation (CCG) to decompose the robust model into sub-

problems. Likewise, the Markov decision process is used in [124] to solve a stochastic

leader-fellow P2P energy trading model under a game theory approach that considers

social attributes.

On the other hand, decentralized markets with stochastic parameters have been

studied in [125, 126, 127, 128, 129, 130, 131]. Specifically, authors of [125] propose

a model to address the P2P energy traded, preserving the users’ information and

covering the day-ahead and intraday market. A two-stage stochastic programming

model is presented to manage the day-ahead market, such that the first stage variable

includes the energy that the user is willing to trade in the real-time market, and in the

second stage, the batteries operation is decided. The two-stage stochastic problem

is decomposed into a set of stochastic subproblems, one for each user, and then

solved through an ADMM algorithm. In [126] and [127] a distributionally robust

co-optimization (DRO) model for the P2P energy trading and network operation

of interconnected microgrids is presented. The energy requirement of each MG is

managed in the first stage, and the strategy price is determined using an ADMM
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algorithm in the second stage. A similar strategy is proposed by [128] for users in a

small-scale system using the RO approach and the ADMM to manage the privacy.

In the same research line, [129] proposes a nested market clearing algorithm and a

DRO approach to clear the market and manage the prosumers’ behavior, respectively,

where the ADMM is implemented to solve the DRO and preserve user privacy.

However, few articles have explored alternative methods of the well-known ADMM

to decompose the stochastic models and manage user privacy under a non-centralized

energy trading scheme. Authors in [130] propose a stochastic cartel nonlinear model

which is decomposed using a surrogate Lagrangian relaxation method, and the work

presented by [131] provides an enhanced Benders decomposition to manage the energy

transaction in smart buildings. These two recently introduced methods extend the

research line related to decomposition algorithms applied to manage decentralized

energy trading schemes under uncertainty.

The previous literature summarized deterministic and stochastic approaches to

address P2P energy trading under different market schemes, where decomposition

methods play a relevant role in modeling the users’ interaction and managing their

private information. However, most articles do not restrict BESS to simultaneously

avoid the charging and discharging process because most do not include the net-

work limitations. This unrealistic assumption generally simplifies the decomposition

method application sacrificing the model accuracy. On the other hand, a common

assumption in the above works is that all users possess a storage system to allow a

flexible response to the load and generation forecast when a day-ahead and intraday

market are considered. However, this assumption reflects another unrealistic situ-

ation because a community market is expected to be composed of consumers and

prosumers, where prosumers have self-generation and/or a storage system and not

necessarily both. Likewise, some reviewed articles define a fixed set of sellers (pro-

sumers) and buyers (consumers) to implement game theory approaches. However, it

is expected that in an energy trading framework, users with DERs can sell or buy

energy in the LEM depending on their consumption and not always belongs to the

sellers’ group.

In addition, the formulations available in the literature rarely are tested under a

significant number of agents, and only in few models consider the voltage stability

and the reactive power, which prevents proving the models’ scalability and their real

application. Even the models that include these variables ([103],[125] and [126]) solve

the resulting optimization model through the ADMM. However, the use of binary
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variables might complicate the convergence of this algorithm even by solving aug-

mented dual Lagrangian problems. Likewise, the enhanced Benders decomposition

algorithm proposed by [131], which is the closest to what is presented in this chapter,

defines a fixed group of sellers and buyers to compete under the game theory approach

and assumes that all the sellers have a storage system.

5.3 Problem definition

5.3.1 Market design

The authors in [96] and [97] establish three groups to categorize P2P energy trading

models based on the interaction between the market players. Thus, in a centralized

design, a coordinator decides the energy exchanged among users in the most cost-

effective way, maximizing the community’s social welfare. However, the customers

play a passive role under this design, while the coordinator has full access to the

users’ assets and information (e.g., [132, 133, 134]). On the contrary, in a decentralized

market design, the users have complete control over their devices, and they decide

when to sell or buy; however, the total community efficiency is affected because the

individual profit is prioritized over the community welfare (e.g., [135, 136, 137]).

The distributed market design is the third group, and it is between the two above,

where a coordinator provides accurate information about pricing and the community

requirement, and the user decides when to sell/buy, generating better coordination

between peers than decentralized design, improving the efficiency of the market (e.g.,

[138, 139]).

Based on the definitions presented in [96] and [97], this chapter covers the P2P

energy trading scheme under a centralized and distributed market design. Thus, the

community manager (CM) is defined as a coordinator between the agents, the DSO,

and the retailer in order to set the hourly energy imported (resp. exported) from

(resp. to) the grid by the energy community in the day-ahead market. Specifically,

the CM coordinates the energy traded in the LEM, considering the technical network

constraints and identifying the energy surplus feed-in to the external grid or the energy

bought to the retailer to maintain the system balanced at every time interval, as shown

Fig. 5.1. Besides, the commodities traded in the local market include only the active

power and not the reactive power; therefore, the CM also coordinates the reactive

power required from the external grid to supply the reactive demand considering the

voltage levels and the line capacities to avoid eventual network congestions produced

by the energy exchanged between agents.
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Figure 5.1: P2P energy trading schematic diagram modeled

The substation connected to the slack bus is the energy exchange point between

the external grid and the users. When the energy self-generated by the community

is not enough to supply the total load, the retailer provides the remaining power at

the same price for every agent. The users or agents considered in this chapter might

have a rooftop PV system or a storage device. Likewise, an agent with at least one

of these technologies is a prosumer, which can trade energy between their neighbor

and/or sell the energy surplus to the grid. On the contrary, a consumer is considered a

user who only demands electricity. Finally, the prices used in this chapter correspond

to i) the energy brought from the grid, which is a known parameter, ii) the feed-in

tariff, which usually represents a fraction of the energy bought from the grid, and iii)

the price of the energy traded in the local market, which is variable and in this case

is estimated through the Lagrange multipliers (used in [140, 141]) associated to the

active and reactive power nodal constraints to identify the marginal cost to maintain

the network balance.

5.3.2 Two-stage stochastic approach

The literature review showed that most P2P energy trading formulations are modeled

from a deterministic approach, i.e., load consumption and PV generation are assumed

to be known beforehand. However, these parameters are unknown under a day-ahead

market context, and their wrong forecast could bring extra costs to the agents and

the retailer. Therefore, in this chapter it is assumed that the exact value of these

parameters is unknown. However, some information on their possible value is available

through the probability distribution function, representing the uncertainty of a finite

set of discrete scenarios S, obtained by sampling from the continuous distributions of
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the random parameters. Thus, a scenario s ∈ S corresponds to a possible realization

of the energy prices, PV generation, and load consumption.

Under the previous uncertainty context, the two-stage stochastic programming

approach appears as a suitable alternative for addressing the load/generation un-

certainty and improving decisions regarding the hourly energy planning that the

community will demand (resp. deliver) in the day-ahead market. Specifically, the

two-stage stochastic approach defines two sets of decisions, which must be made in

two different stages of the decision process. The first-stage decisions correspond to

the “here-and-now” decisions that have to be made prior to realizing the stochastic

parameters. In our P2P energy trading market, these decisions correspond to the

lack/surplus energy from/to the grid to keep the system balanced. On the other

hand, the second stage decisions correspond to the “wait-and-see” decisions that can

be postponed after realizing the stochastic parameters. These decisions can be seen

as recourse actions undertaken to adjust the initial planning to the actual realization

of energy consumption and PV generation. In this regard, the proposed two-stage

stochastic approach aims to find day-ahead scheduling for the energy bought/sold

to the grid that minimizes the global community cost. This approach leads to an

equivalent deterministic mixed-integer linear program described in the next section.

5.3.3 Centralized model

The approach provided by this chapter allows the CM to coordinate the LEM opera-

tion under a distributed market design, i.e., without knowing the users’ information

related to their consumption or DERs use. Nonetheless, we first introduce a cen-

tralized market design as a Mixed-Integer Linear Programming formulation (MILP),

which will allow us to better explain the market operation before describing the

methodology to provide a more active role for the users and reduce the information

shared in the LEM.

Let κbgt (resp. κsgt ) be the energy bought (resp. sold) from the grid at time period

t. This variables’ definition leads us to the following objective function:

minimize z =
∑
t∈T

∑
s∈S

ρs(λ
bg
t,sκ

bg
t − λ

sg
t,sκ

sg
t ). (5.1)

The objective function (5.1) minimizes the cost of the external network depen-

dency through the first-stage variables, i.e., the total cost of the power injected and

absorbed by the substation. The power provided by the grid (κbg) corresponds to
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the gap that the LEM cannot meet through the energy traded between peers, and

the power absorbed (κsg) corresponds to the power surpluses generated by the DERs

that is not stored in the batteries and is not traded in the LEM. Besides, ρs ∈ [0, 1]

is of the likelihood of occurrence the scenario s ∈ S with
∑

s∈S ρs = 1.

The following constraints bound the feasible solutions space through the network

technical limitations, batteries behavior, and the LEM rules.

5.3.3.1 Network technical constraints

The formulation proposed in this article uses the OPF equations to include the net-

work limitations. However, due to the high computational burden associated with the

original AC-OPF problem applied to a two-stage stochastic programming problem,

the following constraints have been already linearized using the approach developed

in [142]. This linearization method has been selected because its convergence has

been validated and tested in [143, 144, 145, 146], showing an error lower than 1.3%

and requiring no additional network information. For other linearization methods,

we suggest to the readers review the works in [147, 148, 149, 150]. In this regard,

Eqs. (5.2) and (5.3) correspond to the balancing equations in every node for the

active and reactive power, respectively. Specifically, the right-hand side of Eq. (5.2),

which corresponds to the active power, depends on the type of bus. Thus, if the bus

possesses an agent that trades energy in the community market, Eq. (5.2) considers

from left to right: the power generated by the rooftop solar PV system (pg); the

power injected (ds) and absorbed (ch) by the battery, and the electricity load (PL).

On the contrary, if the bus is the substation, Eq. (5.2) considers the power provided

(κbg) and absorbed (κsg) by the substation. Thus, ∀t ∈ T ,∀s ∈ S:

vi,t,s(Gi +
∑

(i,j)∈L

Gi,j) +
∑

(i,j)∈L

pi,jt,s

=


pgi,t,s + dsi,t,s − chi,t,s − PLi,t,s ∀i ∈ A,

κbgt − κ
sg
t substation,

0 otherwise.

(5.2)

Likewise, Eq. (5.3) considers the reactive power provided by the substation in

every node, assuming that the distributed sources only generate active power. Thus,

the reactive power (QL) is considered within the power flow equations affecting the

line flow capacity, the voltage levels, and the angles, assuming that the external grid
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supplies the entire reactive power demand because the LEM only trades active power.

Therefore, ∀t ∈ T ,∀s ∈ S, ∀i ∈ B:

−vi,t,s(Bi +
∑

(i,j)∈L

(Bi,j −Bsi,j)) +
∑

(i,j)∈L

qi,jt,s = qκbgi,t,s −QLi,t,s. (5.3)

Eqs. (5.4) correspond to the linearized line power flow equations, which do not

present variation regarding [142]. Therefore; ∀(i, j) ∈ L,∀t ∈ T ,∀s ∈ S:

Gi,j

(
∆vi,jt,s
2

)
−Bi,j(∆θ

i,j
t,s) + LPi,j = pi,jt,s, (5.4a)

−Bi,j

(
∆vi,jt,s
2

)
−Gi,j(∆θ

i,j
t,s) + LQi,j = qi,jt,s. (5.4b)

The parameters LP and LQ represent a loss factor that depends on the angle and

the voltage. We refer the reader to [142] for a detailed explanation of the linearization

methodology and the parameters introduced to handle the non-linearities and the loss

factor.

The power injected by the rooftop PV system into the grid in Eq. (5.5a) must be

lower or equal to the installed capacity multiplied by the parameter PGmax, repre-

senting the PV power normalized curve for every time t. Eq. (5.5b) limits the power

provided and absorbed by the substation. Likewise, Eq. (5.5c) fixes the operational

voltage ranges, and Eq. (5.5d) establishes the line’s capacity. Therefore, ∀s ∈ S:

0 ≤ pgi,t,s ≤ PGmax
t,s DGi ∀i ∈ A,∀t ∈ T , (5.5a)

0 ≤ κsgt , κ
bg
t ≤ κmax ∀t ∈ T , (5.5b)

V min ≤ vi,t,s ≤ V max ∀i ∈ B,∀t ∈ T , (5.5c)√
(pi,jt,s)

2 + (qi,jt,s)
2 ≤ Smaxi,j ∀(i, j) ∈ L, ∀t ∈ T . (5.5d)

The quadratic expression in (5.5d) is linearized, converting the circumference into

a regular polygon of R sided (see, e.g.,[151]) as follows:

Ari,jp
i,j
t,s +Br

i,jq
i,j
t,s + Cr

i,jS
max
i,j ≤ 0 R = {1, 2, ..r}. (5.6)
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5.3.3.2 Battery modelling

The following set of constraints models the battery behavior which had been explained

in detail in 2.3. Eq. (5.7a) represents the battery SOC for the next period, which

depends on the current SOC plus (resp. minus) the energy-charged (resp. discharged)

as appropriate. Eq. (5.7b) establishes the operational range of the battery multiplied

by its installed capacity. Note that if an agent does not have a battery, its energy

storage capacity is zero, forcing the other battery variables to zero. The formulation

uses a binary variable to model the charge and discharge battery process because both

actions cannot be executed simultaneously. Thus, Eq. (5.7c) represents the charging

process, and Eq. (5.7d) the battery discharge. Therefore; ∀i ∈ A,∀t ∈ T ,∀s ∈ S

soci,t+1,s = soci,t,s + [φchchi,t,s −
1

φds
dsi,t,s]∆t, (5.7a)

SOCminBTi ≤ soci,t,s ≤ SOCmaxBTi, (5.7b)

chi,t,s ≤ PB(wi,t,s), (5.7c)

dsi,t,s ≤ PB(1− wi,t,s). (5.7d)

5.3.3.3 Local energy market rules

Market constraints seek to identify the energy amount traded in the community mar-

ket and the energy bought/sold to the grid for every agent. Thus, Eq. (5.8a) rep-

resents the relationship between the energy amount demanded and self-generated

(left-hand side) and the energy traded in the LEM or bought/sold to the grid (right-

hand side). However, to avoid an agent’s purchase and sale of energy simultaneously,

a binary variable (y) is introduced in Eqs. (5.8b) and (5.8c) to ensure that the energy

selling occurs in the LEM only when the agent has an energy surplus (5.8b), or the

energy purchasing occurs only when the agents require external energy to meet its

electricity demand. (5.8c). i.e., if there is a power surplus, y takes value one and zero

otherwise. Therefore; ∀i ∈ A,∀t ∈ T , ∀s ∈ S

pgi,t,s + dsi,t,s − chi,t,s − PLi,t,s − εi,t,s = psmi,t,s + psgi,t,s + pbmi,t,s + pbgi,t,s, (5.8a)

psmi,t,s + psgi,t,s ≤Myi,t,s, (5.8b)

pbmi,t,s + pbgi,t,s ≥M(yi,t,s − 1), (5.8c)

pbgi,t,s, p
bm
i,t,s ≤ 0; psgi,t,s, p

sm
i,t,s ≥ 0 (5.8d)

In addition, to visualize the difference between the energy amount sold/bought

to the market/grid, the Eqs. (5.9a) and (5.9b) are defined. Specifically, Eq. (5.9a)
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indicates that the total power sold to the grid must be equal to the energy absorbed

by the substation, which combined with Eq. (5.8a) provides the energy sold in the

LEM and to the grid for every user. In a homologous way, Eq. (5.9b) establish the

total power bought within the grid. Therefore; ∀t ∈ T ,∀s ∈ S∑
i∈A

psgi,t,s = κsgt (5.9a)

−
∑
i∈A

pbgi,t,s = κbgt (5.9b)

Note that Eqs. (5.9) match the energy amount provided by the DERs with the

energy exported to the grid. This equality is possible because the line losses are

represented by ε in Eq. (5.8a). If ε is not defined, in Eq. (5.9a), the power sold

by DERs would be greater than the exported to the gird, and in Eq. (5.9b), the

power bought by the users would be lower than the total imported due to line losses.

However, the ε variable introduction allows separating the line losses and matching

the energy traded in the LEM with the energy bought/sold from/to the gird.

Finally, the market balance equation is defined in Eq. (5.10) such that all the

energy sold in the LEM is bought.∑
i∈A

psmi,t,s +
∑
i∈A

pbmi,t,s = 0. (5.10)

5.4 Decentralized approach

In this section, the previous centralized model is reformulated into a distributed model

to decrease the information shared by the users with the CM and increase the role of

the prosumer in the LEM through an iterative scheme of supply and demand between

users and the CM, considering at every moment the network limitations.

5.4.1 Preliminaries

The following equations must be rewritten to hide the agents’ information from the

CM when the previous formulation is addressed under a distributed perspective. To

this end, we define in Eq. (5.11) the variable ∆p (left-hand-side of Eq. 5.8a) to

represent the difference between the load consumption and energy self-generated by

the agents, modifying Eq.(5.2) as follows:

∆pi,t,s = pgi,t,s + dsi,t,s − chi,t,s − PLi,t,s − εi,t,s, (5.11)
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vi,t,s(Gi +
∑

(i,j)∈L

Gi,j) +
∑

(i,j)∈L

pi,jt,s

=


∆pi,t,s + εi,t,s ∀i ∈ A,

κbgt − κ
sg
t substation,

0 otherwise.

(5.12)

Note that Eq. (5.12) hides the user load consumption, the energy self-generated by

the PV systems, and the battery operation, providing to the CM only the information

related to whether the users will operate as a generator or a consumer. Besides, as

∆p includes the line losses, and Eq. (5.2) does not, the new Eq. (5.12) must add

the ε variable to neutralize the ∆p and maintain the equality defined in Eq. (5.2).

Likewise, the ∆p definition modify the equations (5.8) related to the LEM operation,

such that ∆p in Eq. (5.11) can take a positive value when the agent generates more

energy than its electricity load (operate as a small generator) or take negative values

in the opposite case, operating as a traditional consumer. Eq. (5.13a) reflects this

situation opening up ∆p into ∆p+ and ∆p−. Thus, in Eqs. (5.13b) and (5.13c), the

power surplus (∆p+) comprises the power sold to the market plus the power sold to

the grid, and the power lack (∆p−) includes the power bought from the market and

the grid, respectively. Besides, to avoid simultaneous selling and to buy action by the

agents, the logical constraints (5.13d) and (5.13e) ensure through a binary variable

that the agents only sell energy when they have surplus; otherwise, they must buy

energy from the market or the grid.

∆pi,t,s = ∆p+i,t,s +∆p−i,t,s, (5.13a)

∆p+i,t,s = psmi,t,s + psgi,t,s, (5.13b)

∆p−i,t,s = pbmi,t,s + pbgi,t,s, (5.13c)

∆p+i,t,s ≤M(yi,t,s), (5.13d)

∆p−i,t,s ≥M(yi,t,s − 1). (5.13e)

In addition, the constraint (5.10) related to the total energy traded in the LEM

must be rewritten in terms of variables known by the CM. Therefore, using Eqs. (5.9)

and (5.13), Eq. (5.10) is rewritten as follows; ∀t ∈ T ,∀s ∈ S:

κsgt − κ
bg
t −

∑
i∈A

∆pi,t,s = 0. (5.14)
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5.4.2 The Benders decomposition approach (BD)

Once the users’ information has been hidden through the ∆p variable, the bender

decomposition approach is applied to separate the centralized model into a Master

Problem (MP) related to the information known by the CM and the network con-

straints and SubProblems (SP), which address the users’ information. The iterative

methodology used in the BD algorithm allows for increasing the agents’ participa-

tion in the LEM because they interact individually and continuously with the CM to

respect the network constraints and minimize the global community cost as follows:

Users receive a suggestion from the CM regarding the partial information related

to pbg, psg, and ∆p, which initially respect the network technical limitation (MP

solution). Then, the users individually take the CM suggestion and minimize the

power bought from the grid depending on its power generation, battery operation,

and load consumption, and return new values for pbg, psg and ∆p (SP solutions),

which are taken by the CM and verified if the currents values respect the network

technical constraints. If these new values do not respect the network limitations,

then the CM suggests a new consumption plan, taking into account the previous

information provided by the users. This iterative process occurs until it converges in

the optimal solution, which minimizes the cost of energy required from the grid and

respects all network technical constraints.

It is worth remarking that the CM partially knows the users’ information through

the pbg, psg and ∆p. This information is crucial for the CM to manage and keep

the network balanced. Nonetheless, this information is only partial because it does

not provide the power generated by its DERs, their consumption, or the battery

operation, guaranteeing users autonomy and privacy. Thus, the MP and the SPs are

defined as follows:

5.4.2.1 Master Problem

Let Qi(·) be a recourse function that represent the cost of the agents i given the MP

decisions ∆p, ε, pbg, psg. Thus, the MP is defined as follows:

min
∑
i∈A

Qi(∆p, ε, pbg, psg). (5.15)

subject to

• The network technical constraints (5.3), (5.4) and (5.12).

• The voltage and lines capacity (5.5b)-(5.5d), and (5.6).

88



• The global LEM necessities (5.9).

• The LEM balancing (5.14).

5.4.2.2 Subproblems

Given the MP solution ∆p, ε, pbg, psg, we now define a set of SPs, one for each agent.

Thus, for each i ∈ A, we have the following SP:

Qi(∆p, ε, pbg, psg) = min
∑
t∈T

∑
s∈S

λbgt,sp
bg
i,t,s − λ

sg
t,sp

sg
i,t,s. (5.16)

subject to

• The users’ consumption and battery operation (5.11), (5.5a), (5.7), and (5.13).

Each SP thus focuses on defining a plan for its own power generation, battery

operation, and load consumption based on the power levels from the external grid

imposed by the MP.

Note that usually, in a Benders decomposition, integer constraints are included in

the MP. However, integer constraints related to batteries operation and LEM rules

are the SPs in our case. This poses the following issue, classical Benders cuts rely

on the linear relaxation of SPs and, hence, it does not consider the integrality of

the decision variables; this might lead to non-implementable solutions. Therefore, we

propose to use a recently introduced type of cut, called Strengthened Benders’ cuts

(see [152] and [153]). These cuts rely on a Lagrangian relaxation of SPs, allowing us

to guarantee the feasibility of integer constraints.

5.4.2.3 Strengthened Benders’ cuts

This family of cuts is based on the observation that a valid cut can be generated by

solving a Lagrangian relaxation, where the corresponding Lagrangian multiplier are

fixed to the dual solution of the linear relaxation. Therefore, Benders’ cuts can be

strengthened by solving a mixed-integer program rather than only a linear program.

Thus, in order to generate a Strengthened Benders’ cut, we must first reformulate

each SP by introducing the following variables: ∆p̄i,t,s, ε̄i,t,s, p̄
bg
i,t,s, p̄

sg
i,t,s for each i ∈

A, t ∈ T , s ∈ S. Thus, for each i ∈ A, we reformulate the SPs as follows:

Qi(∆p, ε, pbg, psg) = min
∑
t∈T

∑
s∈S

(λbgt,sp̄
bg
i,t,s − λ

sg
t,sp̄

sg
i,t,s) (5.17a)
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∀t ∈ T , s ∈ S subject to

∆p̄i,t,s = ∆pi,t,s (5.17b)

ε̄i,t,s = εi,t,s (5.17c)

p̄bgi,t,s = pbgi,t,s (5.17d)

p̄sgi,t,s = psgi,t,s (5.17e)

∆p̄i,t,s = pgi,t,s + dsi,t,s − chi,t,s − PLi,t,s − ε̄i,t,s (5.17f)

∆p̄i,t,s = ∆p+i,t,s +∆p−i,t,s (5.17g)

Constraints (5.5a), (5.7), (5.13)

Note that the constraints (5.11) and (5.13b) are rewritten with respect to the

redundant variables ∆p̄i,t,s and ε̄i,t,s as (5.17f) and (5.17g), respectively. Although

variables ∆p̄i,t,s, ε̄i,t,s, p̄
bg
i,t,s, p̄

sg
i,t,s and constraints (5.17b)-(5.17e) are redundant for the

SPi, they play a key role in the generation of Strengthened Benders’ cuts used to

approximate the recourse functions.

We refer the reader to [152] and [153] for more detail about these cuts family.

Constraints (5.17b)-(5.17e) are then dualized leading to the following relaxed SPs:

Q
i
(∆p, ε, pbg, psg) = min

∑
t∈T

∑
s∈S

λbgt,sp̄
bg
i,t,s − λ

sg
t,sp̄

sg
i,t,s

+ π∆
i,t,s(∆p̄i,t,s −∆pi,t,s) + πεi,t,s(ε̄i,t,s − εi,t,s)

+ πbgi,t,s(p̄
bg
i,t,s − p

bg
i,t,s) + πsgi,t,s(p̄

sg
i,t,s − p

sg
i,t,s). (5.18a)

∀t ∈ T , s ∈ S subject to:

Constraints (5.5a), (5.7), (5.13), (5.17f), (5.17g). (5.18b)

Where π∆ , πε, πbg and πsg are the Lagrange multipliers of the constraints (5.17b),

(5.17c), (5.17d) and (5.17e), respectively.

Note that, by relaxing Constraints (5.17b)-(5.17e), the resulting SPs (5.18a)-

(5.18b) are always feasible because variables ∆p̄i,t,s, ε̄i,t,s, p̄
bg
i,t,s, p̄

sg
i,t,s are now free to

balance Constraints (5.5a),(5.7), (5.13), (5.17f),(5.17g).

Let ψi(·) be the approximation of the recourse function Qi(·) available at iteration
j of the BD algorithm, which is defined by the set of supporting hyperplanes generated

until iteration j. Thus for each i ∈ A:
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ψi(∆p, ε, p
bg, psg) = min{ηi : ηi ≥ νki −

∑
t∈T

∑
s∈S

π∆,k
i,t,s∆pi,t,s

− πε,ki,t,sεi,t,s − π
bg,k
i,t,sp

bg
i,t,s − π

sg,k
i,t,sp

sg
i,t,s ∀k ∈ {1, . . . , j − 1}}. (5.19a)

Where

νki =
∑
t∈T

∑
s∈S

λbgt,sp̄
bg,k
i,t,s − λ

sg
t,sp̄

sg,k
i,t,s + π∆,k

i,t,s(∆p̄
k
i,t,s)

+ πε,ki,t,s(ε̄i,t,s) + πbg,ki,t,s p̄
bg,k
i,t,s + πsg,ki,t,s p̄

sg,k
i,t,s , (5.19b)

and π∆,k
i , πε,ki , πsg,ki , πbg,ki are the coefficients of the cut generated at iteration k < j

by solving the Lagrangian relaxation (5.18a)-(5.18b). This leads to the following

approximate the MP reformulation:

min
∑
i∈A

ηi. (5.20a)

Subject to

Constraints (5.5b)− (5.5d), (5.9), (5.3)− (5.6), (5.12), (5.14). (5.20b)

ηi ≥ νki −
∑
t∈T

∑
s∈S

π∆,k
i,t,s(∆pi,t,s)− π

ε,k
i,t,s(εi,t,s)

− πbg,ki,t,sp
bg
i,t,s − π

sg,k
i,t,sp

sg
i,t,s ∀k ∈ {1, . . . , j − 1}}. (5.20c)

Thus, at each iteration of the BD algorithm, the MP is solved with a current

approximation of the recourse functions. Its output is a feasible plan for the net-

work, which consists of each agent’s power levels from the external grid. Then, the

approximation of the recourse functions is further improved by solving the SPs and

generating a new linear cut.

5.4.3 Cut strategy

Note that in order to generate a Strengthened Benders’ cut, we must solve the

SPs (5.18a)-(5.18b) with a fixed dual solution, i.e., π∆, πε, πsg, πbg are fixed. These

values can be arbitrarily chosen and then improved through a sub-gradient algorithm.

However, it entails solving a series of mixed-integer linear programs for each SP, which

might be computationally demanding. An alternative is to solve the linear relaxation
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of SPs (5.5a),(5.7), (5.13),(5.17a)-(5.17g) and fixing the variables π∆, πε, πsg, πbg to

the dual values of corresponding Constraints (5.17b)-(5.17e), which entails only solv-

ing a linear and mixed-integer linear program for each SP. Nonetheless, these SPs

might be infeasible because the solution of the MP does not give them enough flexi-

bility to satisfy their energy demand. We, therefore, introduce an auxiliary variable

ζ that allows us to balance equation (5.17f) when necessary. For this purpose the

variable ζ is penalized in the objective function with a large enough coefficient, i.e.,

M̄ >> λbg and, hence, variables ζ only take a positive value when the demand in

constraints (5.17f) cannot be satisfied by the energy production, the stock energy on

the battery or the assigned energy from the retailers.

This reformulation and cut strategy have two main advantages. First, it is always

feasible and, hence, we can compute an upper bound of the centralized problem by

solving it at any iteration of the BD algorithm. Second, we can use a Strengthened

Benders’ cuts strategy to under-approximate the recourse functions. This approach

is computationally advantaged as its only requests to solve the linear relaxation of

each SP and the corresponding Lagrangian relaxation at each iteration of the Benders

algorithm. Note that this approach differs from one of the Dual Lagrangian SPs are

solved through a subgradient algorithm, which entails solving a series of mixed-integer

linear programs. As a result, a reduced computational effort is requested to generate

Strengthened Benders’ cuts.

Note that the convergence of the algorithm is no longer theoretically guaranteed

due to the use of Strengthened Benders Cuts rather than the Dual Lagrangian cuts

but, as this approximation leads to a significant reduction of the computational effort

required at each iteration of the algorithm, it may positively impact the solution

quality in practice (see, e.g., [154] and [155]). Nonetheless, the algorithm provide

both a valid feasible solution (upper bound) for the problem and a lower bound given

by the approximation of the recourse functions in the master problem. Thus, the

quality of the solution, with respect to the the optimal solution, can be measure

trough the gap between these solutions.

5.4.4 Summary

As a synthesis, the main steps of the proposed BD algorithm applied to the stochastic

LEM problem are summarized in Algorithm 1.
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Algorithm 1: Benders algorithm

1 Initialize LB ← −∞, UB ← +∞, k ← 0
2 while no stopping criterion is satisfied do
3 Solve the master problem (5.20a)-(5.20c)

4 Collect master solutions ∆pi,t,s, εi,t,s, p
bg
i,t,s, p

sg
i,t,s

5 Update the lower bound LB =
∑

i∈A η̃i
6 for i ∈ A do
7 Solve the linear relaxation of subproblem (5.5a),(5.7),

(5.13),(5.17a)-(5.17g) for agent i, fixing the corresponding master
solution.

8 Collect the dual values π∆,k
i , πε,ki , πbg,ki,t,s , π

sg,k
i,t,s of

Constraints (5.17b)-(5.17e).
9 Solve the Lagrangian relaxation (5.18a)-(5.18b) with current

approximation ψi(·) and fixing the corresponding dual values.
10 Collect the redundant variables p̄bg and p̄sg and the cut coefficient νki .

11 end

12 Update the upper bound UB =
∑

i∈A
∑

t∈T
∑

s∈S λ
bg
t,sp̄

bg
i,t,s − λ

sg
t,sp̄

sg
i,t,s

13 Add the Strengthened Benders’ cuts to the master problem.
14 k ← k + 1.

15 end

5.5 Computational results

This section assesses the centralized and distributed approaches in an Low-voltage

DN, considering different scenarios and load profiles. The algorithm convergence and

its time operation are analyzed and contrasted with the single centralized formula-

tion. Likewise, different agents’ numbers participating in the LEM are considered to

measure the algorithm scalability. Besides, it is analyzed how the flexibility provided

by the batteries allows the community to compromise the total energy bought or sold

to the grid in a day-ahead market scheme.

5.5.1 Case study parameters

The 69-bus distribution system containing 68 branches and 40 loads is used to test

the mathematical approaches. The peak active and reactive power has been modified

to consider only residential profiles to address a small residential community market

appropriately. Specifically, the peak loads oscillate between 2-5 [kW], and the reactive

power maintains the original proportion concerning the active power. Fig 5.2 shows

the test system with the loads distribution identifying the users with PV and storage

systems, in which the PV systems capacity is 20% greater than the peak active
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Figure 5.2: Modified IEEE 69-bus distribution network.

load, and for BSS, an 80% greater than the maximum electricity demand. The case

study includes 39 agents, of which seven agents are traditional consumers without

self-generation, five possess PV systems, and the remaining agents have hybrid PV-

battery systems.

The total electricity load reaches up to 139 [kW], the reactive power to 99.2 [kVAr],

the total PV power installed to 177 [kW], and the total battery capacity to 309 [kWh]

with an efficiency of 85% - 87% in the charging and discharging process (see Table 5.1).

Note that the high BSS penetration allows facing the two-stage stochastic problem

nature.

The curves shown in Fig 5.3 and Fig 5.4 correspond to three scenarios of 24 hours

obtained from annual data with a timeslot of one hour. Specifically, Fig. 5.3 shows

the twenty-three different residential load profiles [69] used to highlight the benefits

of operating under a P2P energy trading scheme. The first scenario possesses the

higher total load with 991.98 [kWh] and peak power of 59.98 [kW], followed by the

second scenario with 842.23 [kWh] and peak power of 53.5 [kW], and the third case

with 807.51 [kWh], and 505.59 [kW] of peak power.

On the other hand, Fig. 5.4 provides the aggregated load curves considering the

thirty-nine agents together with the normalized curve of PV power generation [70]

and the energy prices [45]. Likewise, the first scenario considers a total PV generation

of 872.08 [kWh], which is the higher generation with a peak power of 177 [kW] at 13

hours, followed by the second scenario with a total generation of 770.48 [kWh] with a

peak power of 123 [kW], and the third scenario in 24 hours generates 734 [kWh] with
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Table 5.1: Load and DERs parameters
Bus PL QL PV BT Bus PL QL PV BT
6 5 4.23 7.5 15 33 3 2.14 4.5 0
7 4 2.97 6 12 34 3 4.42 4.5 9
8 4 2.88 6 12 35 3 2 4.5 9
9 4 2.93 0 0 36 2 1.43 0 0
10 3 2.04 4.5 0 37 4 2.85 6 12
11 5 3.59 7.5 15 39 4 2.83 6 12
12 3 2.15 4.5 9 40 5 3.54 7.5 15
13 5 3.13 7.5 15 41 2 1.67 3 6
14 5 3.44 7.5 15 43 2 1.43 3 0
16 4 2.64 6 12 45 4 2.68 6 12
17 3 1.75 0 0 46 2 1.34 3 6
18 2 1.17 3 6 48 3 2.14 0 0
20 2 1.2 3 6 49 2 1.43 3 6
21 5 3.55 7.5 15 52 2 1.2 3 6
22 3 2.1 4.5 0 54 5 2.9 0 0
24 3 2.14 4.5 9 59 3 2.5 4.5 9
26 5 3.57 7.5 15 61 4 2.7 6 12
27 3 2.14 4.5 9 64 4 3.1 6 12
28 4 2.86 6 12 66 4 2.8 6 0
29 4 2.86 0 0 68 2 0.8 3 6

a peak power of 99.12 [kW] at 14 hours. Therefore, considering the load consumption

and the PV generation described above, the PV systems provide 87.91 % of the total

load in the first scenario, followed by the second scenario with 91.48 % and 90.9 %

for the third scenario. Thus, the first scenario is the most demanding, followed by

the second and the third.

5.5.2 Algorithm convergence and scalability assessment

This section presents the algorithm convergence results and addresses the model scal-

ability. It is worth remarking that the algorithm based on Bender decomposition

pretends to reduce the information provided by the agents to the CM rather than

reduce the computational time from the centralized model. However, the following

assessment measures the cost of reducing the shared information in terms of execution

time.

Fig 5.5 shows the algorithm convergence for different amounts of agents partic-

ipating in the LEM, considering the optimal value from the centralized model as a

reference. Besides, every case indicates the algorithm running time, considering 2
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Figure 5.3: Residential load profiles for three different scenarios.

Figure 5.4: Scenarios for the energy prices, the PV power generation, and the aggre-
gated residential loads.
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Table 5.2: Average algorithm running times by iteration
Agents
number

3 4 8 16 25 39

MP [s] 1.091 1.338 5.265 15.01 38.58 75.29
SP [s] 0.042 0.049 0.098 0.20 0.37 0.67

hours as stop criteria. The execution time for the centralized model is not reported

in Fig 5.5, but its time is lower than the algorithm, such that for three agents, the

centralized formulation takes 22.8 [s] and 11 [min] for 39 agents. Likewise, considering

a maximum running time of two hours, the algorithm converges to the optimal value

until 16 agents participate in the LEM. Thus, the algorithm overcomes the maximum

running time when the number of agents beats this value.

The average execution time involved at every iteration for the MP and SPs is

reported in Table 5.2 to improve the understanding of the significant running time

increases when many agents are willing to trade energy in the LEM. Thus, the SPs do

not show a significant increase in terms of running time since considering 39 agents,

the time required to solve the SPs is, on average lower than one second. However,

every MP increases its execution time significantly from 1 [s] to 75 [s] on average when

the users’ numbers increase. This extra computational burden is explained because

the MP includes the technical network constraints and extra constraints added in

each iteration of the algorithm due to the Benders cuts.

Therefore, the results show an algorithm based on the Benders cuts that allow

reducing the user information shared in LEM, converging to the optimal value given

by the centralized model, where the user information is public. In other words, The

proposed algorithm reduces information shared between the agents without reducing

the community welfare. These results are relevant because the findings reported in

[128] for a similar market trading model indicate that the ADMM algorithm is far

from the centralized model by 3%. In addition, other alternative mechanisms recently

published in the literature like the surrogate Lagrangian relaxation in [130] and an

enhanced Benders decomposition in [131] show that these alternative decomposition

methods could provide a competitive performance as compared to the one reported

by the ADMM under a P2P energy trading framework. In this sense, the convergence

results of the algorithm reported in this article are aligned with the recent research.
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Figure 5.5: Algorithm convergence

5.5.3 Numerical results

This section presents the results considering the scenarios described in the previous

section for the thirty-nine agents. Thus, Table 5.3 shows the aggregated results in

kWh such that the energy bought and sold to the grid is the same for the three cases

due to are the first-stage variables, which are minimized in the objective function. The

second-stage variables corresponding to the battery behavior and the energy traded

in the LEM show a lower battery and energy traded share in the first scenario than

the others because the first one is the most demanding. The remaining two scenarios

have higher battery participation and more energy traded in the LEM because the

batteries must absorb or inject the surpluses energy committed to buying/selling to

the grid in the first stage, which is also traded in the market.
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Table 5.3: Global energy share for the three different scenarios
Variable Scn 1 Scn 2 Scn 3

Electricity Load PL 991.981 842.233 807.511
PV generation pg 872.11 770.22 733.28
BT discharge ds 338.35 539.56 518.54
BT charge ch 274.68 523.88 499.51
Energy bought to the
grid

κbg 431.73 431.73 431.73

Energy sold to the
grid

κsg 375.52 375.52 375.52

Energy traded in the
LEM

pbm 331.2 427.2 341.2

5.5.4 Model assessment under different assumptions

Four cases have been considered to visualize the P2P energy trading operation effects

on the traditional scheme without trading. Specifically, case (A) corresponds to the

DN operating under a P2P energy trading scheme. Case (B) is the same DN, but

without energy trading, i.e., the prosumers sell their energy surplus to the primary

grid, and the traditional consumer must buy all their demand to the external grid.

Case (C) is similar to Case (A), but the battery can charge or discharge simultaneously

through linear variables. Case (D) is based on (A), but there are no binary variables in

this case, which means that the agents can sell/buy energy in the LEM or to the grid

without first meeting their own consumption, and the battery can charge/discharge

simultaneously. Thus, cases (C) and (D) aim to observe the distortion produced

over the energy traded in the LEM when the binary variables are not included in

the formulation, while the main goal between cases (A) and (B) is to quantify the

improvements produces of operating under a P2P energy trading scheme.

Fig. 5.6 summarizes the results for the four cases for the three scenarios. Case (D)

provides the most prominent results with energy traded in the LEM around 87% and

13% of the energy provided by the grid and a small energy share corresponding to

self-consumption for the first and second scenarios. The absence of binary variables

explains this irregular share compared with the other cases because there is no control

to distinguish the energy to satisfy the load consumption and the energy traded in

the LEM. After all, the agents are not restricted to meeting their electricity demand

first to sell the energy surplus. Case (C), on the contrary of case (D), the energy

traded in the LEM is on average 29% lower than case (A). This reduction is because

the batteries take values between [0,1], decreasing the power injected/absorbed by
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Figure 5.6: Energy share for a case (A) under a P2P energy trading scheme, (B)
without Energy trading, (C) considering energy trading but linear batteries, and (D)
Energy trading such as batteries and the market trading are linear variables.

the storage devices in this quantity and reducing their energy sharing from the total.

Therefore, the improper use of the binary variables can significantly affect the energy

amount traded in the local market, undervaluing or overestimating its real operation.

The results for case (B) do not directly impact the main grid dependence due

to the high DERs penetration on the case study, but it does affect the community

welfare. The community benefits of operating under a P2P energy trading scheme

are discussed in detail later; however, it is worth stressing that the energy required

from the grid decreased 21.2% regarding case (A), explained mainly with more energy

bought in the cheapest hours and more energy trading in the highest hours compared

with case (B).

5.5.5 Local energy market and batteries behavior

Fig. 5.7 provides a more detailed battery and market behavior by hours and scenarios.

Specifically, the left-hand side shows every scenario’s hourly aggregated charging and

discharging battery process. As mentioned previously, the first scenario is the most

demanding; therefore, the battery uses only in hours with high PV generation and

high electricity prices. However, in the second and third scenarios, the batteries

must provide the required flexibility to face the remaining energy bought to the grid

because, in these scenarios, the load is lower than in the first case.

The right-hand side of Fig. 5.7 shows the hourly energy share from the grid,

local market, and self-consumption. The positive grid values correspond to the power

provided by the external grid, and the negative values, to the power sold to the

grid. Likewise, the self-consumption concept includes the power generated by the PV

systems and the power provided by the BSS. Thus, when the self-consumption takes
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Figure 5.7: Hourly market and battery behaviour

negative values, it indicates more power charging the batteries than the generated by

the PV systems.

For the three scenarios, the highest self-consumption corresponds to the hours with

high PV generation, coinciding with the highest power sold to the grid. Besides, the

LEM tends to occur during PV generation and the last day hours when the batteries

start discharging because the electricity price is higher than the first hours.

5.5.6 Local energy market pricing

Fig. 5.8 shows the LEM pricing for the third scenario obtained from the dual variables

corresponding to the nodal balance equations (5.2). Thus, when agents do not have

enough self-generation, the LEM price is almost equal to the energy from the grid.

On the contrary, when the users have a high energy surplus, the LEM price equals

the Feed-in tariff (FIT) option. However, when few agents have the energy capacity

to trade in the LEM, the internal price is intermediate between the FIT and the grid

price. Similar behavior occurs in the first and the second scenario.

5.5.7 Agents profits

The results of cases A (with energy trading) and B (without energy trading, only

energy selling to the grid) have been contrasted to compare the agents’ profits. The

upper row of Fig. 5.9 shows the profit/cost value for every agent considering the three

scenarios, where the orange line corresponds to case A, and the blue line represents
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Figure 5.8: Local energy market pricing compared with the FIT and the grid price,
corresponding to the third scenario

Case B. On the other hand, the lower row shows the net profit for every agent, which

is the difference between the orange with the blue line.

The community welfare shows a slight increase when the agents are capable of

trading energy. Specifically, in the first scenario, the benefits increase 17.7%, in the

second scenario 18.2%, and 18.6% if the third scenario happens. However, some agents

have a higher cost (negative values in Fig.5.9) when they trade energy than when they

sell their surplus to the grid. This situation is explained because the model minimizes

the total energy bought from the grid and does not maximize the individual profit.

Specifically, since the market is modeled under a two-stage stochastic framework,

some users with high battery capacity must use their storage to buy (absorb) the

extra energy committed in the first stage variables, generating a minimal extra cost

(see second row Fig. 5.9).

It is worth noting that the individual profit analysis described above corresponds

to a daily operational comparison between operating under a P2P energy trading

scheme and not. i.e., the study is not an economic assessment of the long-term

profitability of the P2P energy trading scheme. That economic assessment requires

a separate researcher, and hence it is out of the scope of the bender decomposition

algorithm proposed in this thesis.

5.5.8 Future research and discussion

The previous section leaves implicitly introduced the question related to how to reduce

the execution time related to the MPs and accelerate the algorithm convergence

times. This issue has not been included within this thesis scope because its study
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Figure 5.9: Agents profit comparison between using P2P energy trading or not for
different scenarios

requires a deep analysis separately. However, the baseline to compare future algorithm

improvements has been established in the previous section.

The two-stage stochastic programming model formulation also could be extended

or modified. For example, the formulation could include the reactive power provided

by the DERs or measure the reactive power that the energy community could provide

to the DSO as an ancillary service. The DSO entirely supply the reactive power in the

current formulation; hence, this consideration could significantly improve the model

proposed. Likewise, the formulation could be extended to include the intraday market

within the second stage variables and use the electric vehicles or demand response from

the users to face the mismatches between the day-ahead and intraday market. Besides,

the second-order cone programming approach could be implemented to address the

non-linearities and non-convexity related to the network technical constraints and

contrast the running times with the model proposed in this section.

In addition, the objective function presented in the formulation considers only

first-stage variables related to the total energy bought/sold from/to the grid. How-

ever, the results show that the individual profit is sometimes affected when the model

is under a two-stage approach because the agents with higher flexibility must absorb

the energy surplus bought to the grid when the uncertainty disappears. Therefore,

future works could include part of the individual cost to mitigate these events and

avoid disincentives to trade energy in the LEM by users with high flexibility levels.
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5.6 Chapter conclusions

This chapter proposes a two-stage stochastic programming model to represent an en-

ergy community operating in a day-ahead market under a P2P energy trading scheme.

The benders decomposition method has been used to reduce the information provided

by the users to operate in the LEM. A new family cut has been introduced in the

decomposition method to manage the binary variables related to users’ simultaneous

energy buying/selling and battery operations presented in the SPs, which prevent the

classic Bender implementation.

The 69-bus system has been used to contrast the model with the Benders algo-

rithm considering from 3 to 39 agents trading energy under three scenarios of 24

hours, showing that the proposed decomposition method using the new Strengthened

Benders cuts converge to the same optimal value provided by the model which follows

a centralized market design. i.e., the proposed methodology reduces the LEM’s shared

information without increasing the energy community cost. Besides, the non-use of

binary variables to model the battery behavior or prevent the selling/buying energy

simultaneously in the LEM underestimates or overestimates the energy traded in the

community market, respectively.
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Chapter 6

A stochastic model to measure the
reactive power supplied by DERs
under a P2P energy trading
scheme

6.1 Introduction

The electricity market deregulation to promote the deployment of DERs at the distri-

bution level has opened new consumer-centric market opportunities where prosumers

can be part of the daily market operation through transactive energy (TE) schemes.

The benefits provided by a high DERs penetration in DN have been widely stud-

ied over the last few years [156], focusing mainly on the active power provided by

these resources. However, The DERs’ capability to provide reactive power through

smart inverters opens a new benefit dimension associated with the AS that an energy

community could provide to the distribution system operator DSO.

Traditionally, the network stability and the power quality are managed at the

transmission level through large synchronous generators [157]. However, with the

small-scale DERs emergence at a local level, some control mechanisms, as local AS

offered by local energy communities, could be translated to the DN to increase the

efficiency of the transmission system and reduce the cost of the DSO. Thus, the ASs

provided by a local energy community with high DERs penetration could support the

balancing market through demand/generation management and could even provide

frequency regulation and local reactive power control for voltage stability [158]. Be-

sides, they could reduce line losses, increase available line capacity and allow higher

peak electrical load [159].
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P2P energy trading arises as a solution for a LEM where prosumers and consumers

are willing to trade energy to minimize the individual or the community cost (resp.

maximize welfare). The community market operation to allow energy trading and

how the users’ information is managed have been the focus of research in the last few

years, leading to three different schemes. The first design corresponds to a centralized

market fully controlled by a CM or coordinator who decides the energy exchanges to

maximize the community’s social welfare. On the other hand, in the decentralized

scheme, the users have complete control of their information, and they decide when

and how much to sell/buy. The distributed design mix the two above, and the CM

suggests the system’s pricing and control and the users control their information [160].

This chapter follows the P2P energy trading research line mentioned above through

a centralized market-based stochastic model to simultaneously study the energy trad-

ing and the reactive power potential supplied by the DERs as ASs to the DSO,

considering the day-ahead and intraday markets. Besides, the two-stage stochastic

formulation proposed contributes to filling the current research gap of P2P energy

trading under uncertainty since most articles manage energy trading using determin-

istic approaches.

The chapter structure is summarized as follows. Section 6.2 presents the literature

review, the research gap, and the main chapter contributions. Section 6.3 describes

the community framework, the markets addressed in the chapter, and the proposed

model assumptions, to then presents the stochastic model in Section 6.4. The case

study and the computational results are presented in Section 6.5, and the conclusions

are discussed in Section 6.6.

6.2 Literature review

This section contains a literature review of the P2P energy trading models based on

optimization techniques and articles that consider the reactive power provision, not

necessarily under a transaction energy scheme. In this regard, the literature review

is summarized in Table 6.1 to identify the relevant works with the model proposed in

this chapter and the gaps in the literature.

A broad interest in addressing P2P energy trading from different approaches has

been reported in the literature in the last few years; however, few articles have ad-

dressed the topic from a stochastic programming-based perspective. For instance,

the authors in [122] present a two-stage robust optimization model to address uncer-

tainties in a day-ahead and real-time spot market using the Benders decomposition
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Table 6.1: Mathematical formulations for the reactive power provided by DERs

Ref Nature
Objective
Function

Type Opti-
mization
problem

Tech-
nique

Market
structure

Market
Type

Privacy
Market
clearing
methods

Tech.
limit

Q BSS
Test

system

[161] Deterministic
Max

prosumers
welfare

MINLP Algorithm
Decentral-

ized.
Day-
ahead

✓ ADMM ✓ ✓ Linear IEEE-33

[162] Deterministic
Max utility
function

Game-
theoretic

Algorithm
Decentral-

ized
Day-
ahead

✓
Price-

updating
strategy

× ✓ ×
Individ-

ual
agents

[163] Deterministic
Min cost and
line losses

MINLP SOCP - - × Optimiza-
tion

✓ ✓ × IEEE-
123

[164] Deterministic
Max

prosumers
welfare

Linear Solver Centralized

Balanc-
ing and

AS
Market

× Given × ✓ × Simulink

[107] Deterministic
Max

prosumers
welfare

MINLP SOCP
Decentral-

ized
Real-time
market

✓ ADMM ✓ ✓ × 144 Bus
System

[165] Deterministic Min losses LP
Metha-
heuristic
algorithm

Centralized
Day-
ahead

× Given ✓ ✓ ×
MV Dis-
tribution
System

[166] Deterministic
Max reactive

power
MINLP

Benders
Decompo-

sition
Centralized

Day-
ahead

× Algorithm ✓ ✓ × IEEE-33

[167] Deterministic Min MG cost MINLP GA Centralized × × × × ✓ Binary MG

[168] Deterministic Min MG cost MINLP Simulation Centralized × × × ✓ ✓ Binary
Simula-
tion MG

[169] Deterministic Min cost MINLP Solver Centralized
Day-
ahead

× Given ✓ ✓ Binary
IEEE 33

69

[98] Deterministic Min MG cost NLP
Interior
point

algorithm
Centralized - × Algorithm × × Linear

LV
Network

[103] Deterministic Min MG cost MILP
Decompo-

sition
method

Decentral-
ized

Day-
ahead

✓ ADMM × × Binary
Individ-

ual
agents

[170] Deterministic
Max the
welfare

LP
Decompo-

sition
method

Decentral-
ized

- × Algorithm × × Linear
Individ-

ual
agents

[122] Stochastic Max profit
Robust

optimization

Benders
Decompo-

sition
Centralized

Day-
ahead
and

Intraday
market

× Given × × Linear MG

[171] Stochastic Max profit MINLP

Lineariza-
tion of
binary

variables

Centralized

Balanc-
ing and

AS
market

× Optimiza-
tion

× × Linear
Simula-
tion

[125] Stochastic Min cost MILP
Benders

Decompo-
sition

Decentral-
ized

Day-
ahead
and

Intraday
market

✓ ADMM × × Linear
Individ-

ual
agents

[126] Stochastic

Min social
and

operation
cost

Robust
optimization

Decompo-
sition

method

Decentral-
ized

Day-
ahead
and

Intraday
market

× ADMM ✓ ✓ Linear
IEEE
123

approach to protect the users’ information. In the same line, a distributionally robust

co-optimization model for the P2P energy trading and network operation of intercon-

nected MGs is presented in [126]. The model considers voltage and reactive power as

well as the battery constraints through continuous variables. Likewise, the authors in

[125] propose a two-stage stochastic programming problem to manage the day-ahead

and intraday market under a P2P energy trading scheme, which preserves the private

user information. However, none of the above articles include the capability of DERs

to provide reactive power in the formulation.

On the other hand, the work done by [170] proposes a deterministic two-stage

bidding strategy for P2P trading of nanogrid. The model does not consider the

technical constraints and is tested on individual houses only. Likewise, the authors in
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[98] propose a deterministic two-stage aggregated control for P2P energy sharing in

community MGs, where an energy sharing coordinator controls the batteries allowing

simultaneous energy charging/discharging without including network constraints or

reactive power. Similarly, a two-stage formulation based on the ADMM is presented

by [103] to address an eventual day-ahead market in a P2P energy trading community.

Few articles have started to include the reactive power from DERs to provide AS to

DSO. The work developed by [162] proposes a framework where agents/users can trade

active and reactive power using the game-theoretical framework (Stackelberg game)

to model the tradings under a decentralized scheme and operating in a day-ahead

market. However, despite considering the reactive power trading, the formulation

does not include batteries, and it is not based on the power flow equations. In

[161], a non-convex nonlinear model is proposed to address a P2P energy trading

framework in a DN considering the network technical limitation and maintaining the

users’ information private. The model operates for a day-ahead market, decomposing

the problem into two nodal agent and prosumer problems and using the ADMM to

clear the market, which considers the batteries as a linear formulation allowing its

simultaneous charging and discharging process. In [163], a reactive power market at

the distribution level is proposed through a MINLP based on the optimal power flow

equations. The model is tested in a New England case study to minimize the line

losses and total costs, where the DGs participating in the market can increase their

revenues. However, the article in [163] focuses on modeling a reactive power market

at the distribution level rather than modeling a P2P energy trading providing reactive

power as ASs.

Additionally, the work done by [164] presents multi-market nanogrids based on

the P2P energy trading scheme, which provides ASs such as balancing and frequency

regulation. The deterministic and linear formulation considers the reactive power

but does not use the power flow equations as a base. On the contrary, the article

developed by [171] proposes a MILP to model the aggregator operation in an ASs

market using a stochastic approach. The formulation includes only the balancing

services through a load and generation modification, excluding the reactive power and

the technical constraints, and considering the BESS as a linear formulation under a

centralized market. In [107], a collaborative market design is proposed to address the

ASs provided by prosumers under a P2P energy trading architecture. The formulation

operates in a real-time market considering a fully distributed peer-centric market-

clearing and the network technical limitations. The ADMM method is used to clear
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the market and maximize the prosumer welfare. In addition, the formulation does

not consider storage devices that simplify the problem complexity.

Other researchers have addressed the active/reactive power dispatched from DERs,

but not under a P2P energy trading scheme or from a reactive power market per-

spective. For instance, [169] presents a deterministic approach based on the power

flow equations to model the active and reactive power dispatched by batteries con-

sidering voltage source converters for a day-ahead market. In [166], a deterministic

MINLP is presented to model the DERs based on synchronous generation in a re-

active power market. The formulation uses the Benders decomposition method to

divide the model into a master problem, which determinates the total payments, and

subproblems, that indicate the solution feasibility provided by the master problem.

However, the formulation proposed in [166] does not consider storage devices, nor

P2P energy trading schemes.

In addition, the work developed by [167] presents a model for the active-reactive

power dispatch of PV-battery hybrid systems based on an economic model predictive

controller (EMPC) considering the battery life in the formulation, which concludes

that providing reactive power locally is more cost-effective than importing it from the

main grid, and the PV-inverter can generate reactive power at a meager cost than the

battery inverter. However, the formulation does not operate under a P2P scheme,

and the technical constraints are not included. Likewise, the article [168] proposed

an MINLP for the optimal control scheme based on MPC considering PV-battery

hybrid systems, including network technical limitations, but do not operate under

a transactive energy scheme. Work in [165] proposes an optimal-centralized control

formulation for a microgrid’s day-ahead operation with power-electronic converters

that can offer reactive power services to DSO, minimizing the energy losses and

managing the voltage level within the operational limits.

The literature review shows increasing attention regarding P2P energy trading de-

signs to improve the DN efficiency, reduce the operational cost and increase the users’

participation in the electricity markets. Nevertheless, few articles have studied the

potential economic and operational benefits derived from the DERs’ capability to pro-

vide reactive power through smart-inverters. In this regard, different approaches have

been implemented, considering either aggregators or TE schemes under an eventual

reactive market at the distribution level. However, most formulations are based on

a deterministic approach and do not consider the two-stage stochastic programming

framework to address the day-ahead and intraday market.

109



Figure 6.1: P2P energy trading scheme considering community battery bank and
reactive power

In fact, from the deterministic perspective, the works presented by [166], [162],

and [161] are close to what is proposed in this chapter. However, they do not consider

batteries or, if it is included, are modeled through non-binary variables allowing the

simultaneous charging and discharging, which may imply unrealistic solutions. On

the contrary, the few articles that address the problem described from a stochastic

perspective [122, 171, 125, 126] also consider battery through linear formulation and

[122, 171, 125] do not include the reactive power and the technical network constraints

(detail in Table 6.1).

6.3 System description

This section explains the market composition modeled through the two-stage stochas-

tic programming approach. Specifically, the components required by the energy com-

munity are established to identify the first and second-stage variables in order to

visualize the reactive power capability provided by the DERs under different active

power generation scenarios.

6.3.1 Two-stage stochastic programming approach

The two-stage stochastic programming is defined by [172] as a versatile modeling tool

for decision-making under uncertainty. In the first stage, decisions ”here-and-now”

must be made when some parameters are random. When the uncertain parameters
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are revealed, the second-stage variables are decided to minimize the expected total

cost or maximize the profit. Thus, for uncertainty parameters like the users’ load

consumption or the power generated by the PV systems, some decisions regarding

the total reactive power provided by the DERs and the energy bought/sold from/to

the grid must be taken without knowing the final consumption/generation. These

decisions represent the first stage variables and, in this chapter, are related to the day-

ahead market. On the other hand, the second-stage variables represent the decisions

once the uncertainty is realised, in this case, corresponding to the real-time market

operation, and they are represented by the energy traded in the LEM and the battery

behavior.

6.3.2 Market framework

The community modeled in this chapter belongs to a centralized P2P energy trading

scheme, which comprises prosumers and consumers. Specifically, in this chapter, a

prosumer is an agent who possesses a PV and or an energy storage system, which

allows them to act as a small generator when the load consumption is lower than

the energy self-generated or as a consumer when it has an energy deficit. Likewise,

a prosumer can sell (resp. buy) its energy surplus (resp. deficit) to the LEM or the

grid, establishing a difference with models that set fixed sellers and buyers groups.

This chapter uses two centralized collaborative frameworks to study the P2P en-

ergy trading and the reactive power provided by the system while the total community

cost is minimized. The first one corresponds to the traditional energy community in-

tegrated by prosumers, consumers, and a CM who coordinates the energy and the

information between the agents and the DSO. Besides, the CM determines the energy

sold/bought to/from the grid in the day-ahead market and for the intraday market,

defines the energy traded in the LEM, the batteries behaviors, and the reactive power

provided by the DERs to offer as ASs and keep the local system balanced. The second

framework considers the same previous structure but includes community batteries.

Adding community storage devices aims to study their effect on the individual profit

when the community cost is minimized and explore their potential to provide reactive

power as ASs. Fig. 6.1 shows a schematic diagram of an energy community com-

posed of consumers, prosumers, and community batteries trading active power and

providing reactive power to the DSO.

It is worth noting that when community welfare is studied, the individual benefit

may be affected for the sake of the global benefit. Specifically, under a two-stage

stochastic framework and considering the total energy sold/bought to/from the grid
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as first-stage variables, the users with high storage capacity (high flexibility) must face

the uncertainty of the second-stage variables (intraday market) absorbing or injecting

the required energy to meet the energy compromised in the day-ahead market. This

extra energy absorbed or injected could affect its benefit because it would be absorbing

(resp. injected) more energy than the individual requirement. Therefore, a framework

with community batteries could reduce the adverse effects over the agents with high

ESS capacity. Nevertheless, the extra energy absorbed (resp. injected) by agents with

high BESS capacity to face the intraday market is differentiated into two additional

frameworks. Thus, the community services offered by these agents can be quantified

for eventual economic compensation.

Fig. 6.2 summarizes schematically the four frameworks addressed in this paper.

The A and B structures correspond to the main two frameworks regarding an energy

community trading energy without and with community battery. Under this scheme,

the flexibility provided by the agents’ batteries is not detected. Therefore, some users

see their cost function reduced because they must absorb (resp. inject) additional

energy to face the uncertainty of the community electricity consumption. Thus, with

the end to identify the extra energy managed by these users, the frameworks A’ and

B’ are presented.

6.3.3 Pricing

The authors in [173] present a review regarding the reactive power pricing in a power

market for transmission and distribution level addressing the methods based on the

lost opportunity cost (LOC) and the OPF mostly. The price used in the LOC-based

method depends on the power factor (PF) operational range, which usually is defined

as 0.95. Thus, a penalty cost associated with the active power not being provided is

included in the objective function outside of this range. However, in a power system

with high DERs penetration and a constantly changing PF, this mechanism does

not seem to be suitable [163]. The second alternative simultaneously determines the

reactive and active marginal price through the power flow equations. This method

considers the Lagrange multipliers corresponding to the active and reactive power

nodal constraints to identify the marginal cost to maintain the network balance re-

specting the voltage levels [140, 141], which is the mechanism used in this chapter.

112



Figure 6.2: P2P energy trading frameworks. A: P2P energy trading with CB, B:
P2P energy trading without CB, A’: P2P energy trading with CB and detecting the
flexibility provided by the agents’ batteries, and B’: P2P energy trading detecting the
flexibility provided by the agents’ batteries.

6.3.4 Assumptions

A P2P energy trading architecture includes between six [174], or four [175] layers for

proper implementation. These layers comprise the grid infrastructure, participants in

the LEM, and the communication and control systems. The model proposed in this

article assumes that the money transaction is safe, and the DN contains the moni-

tors required to read the generation and the electricity demand in real-time. Thus,

the formulation focuses on allowing the energy traded between agents belonging to

a LEM, quantifying the eventual reactive power provided by the DERs to the DSO

for different scenarios, and maintaining the technical constraints in the operational

limits. Likewise, the ASs covered by the model includes reactive power service pro-

vided from DERs based on smart-inverters to the DSO and the increase/decrease

demand/generation from the prosumers and DERs.
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6.4 Mathematical formulation

The two-stage stochastic mixed-integer second-order conic programming (MISOCP)

P2P energy trading model presented in this section minimizes the total energy com-

munity cost considering i) the day-ahead and intraday markets, ii) the self-generation

and load consumption as uncertainty parameters, iii) the active power traded between

agents, iv) the reactive power provided by DERs as ASs and for internal network

stability, v) different battery constraints for community batteries and to detect the

flexibility provided by the agents’ batteries to face the intraday market, and vi) the

network technical limitation. Therefore, the objective function is defined as follows:

minimize z =
∑
t∈T

∑
s∈S

ρs(λ
bg
t,spκ

bg
t − λ

sg
t,spκ

sg
t − λast,sqκast ). (6.1)

Eq. (6.1) minimizes the total energy community cost, including the active power

bought (pκbg) and sold (pκsg) to the grid and the reactive power (qκas) that the

energy community can offer to the main grid as an AS. It is worth remarking that the

variables involved in the objective function correspond to first-stage variable decisions,

which implies that the uncertainty is represented through the occurrence probability

(ρs) of every scenario s, such that ρs ∈ [0, 1] is the likelihood of occurrence of the

scenario s ∈ S with
∑

s∈S ρs = 1. Likewise, the pricing related to the electricity

provided by the grid, the feed-in tariff price, and the economic compensation of

providing reactive power to the DSO is represented respectively by λbgt,s, λ
sg
t,s, and λ

as
t,s.

6.4.1 Local energy market constraints

The objective function presented previously is subject to the following market limi-

tations. Therefore; ∀i ∈ A,∀t ∈ T ,∀s ∈ S

∆pi,t,s = pgi,t,s + dsi,t,s − chi,t,s − PLi,t,s, (6.2a)

∆qi,t,s = qgi,t,s + qdsi,t,s −QLi,t,s, (6.2b)

∆pi,t,s = ∆p+i,t,s +∆p−i,t,s, (6.2c)

∆p+i,t,s = psmi,t,s + psgi,t,s + chcb
′

i,t,s, (6.2d)

∆p−i,t,s = pbmi,t,s + pbgi,t,s − dscb
′

i,t,s, (6.2e)

∆p+i,t,s ≤M(yi,t,s), (6.2f)

∆p−i,t,s ≥M(yi,t,s − 1), (6.2g)

∆p−i,t,s, p
bm
i,t,s ≤ 0; ∆p+i,t,s, p

sg
i,t,s, p

sm
i,t,s, p

bg
i,t,s ≥ 0, (6.2h)
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The previous equations (6.2) establish the market rules for the agents who trade

energy in the LEM. Thus, Eqs. (6.2a) and (6.2b) defines ∆p and ∆q respectively,

which represent the difference between the load consumption and the active or reactive

power self-generated, including the power provided by the PV panels and the BSS.

On the other hand, ∆p is also defined in Eq. (6.2c) as a positive or negative value,

indicating that an agent can have a surplus or deficit of energy, respectively. If there

is an energy surplus, the agents must sell their surplus to the LEM, to the grid, or

store it in the battery as indicated Eq. (6.2d). In the opposite case, if the agents

have a deficit, the energy must come from the LEM, the grid, or the battery (6.2e).

Besides, to prevent simultaneous selling/buying by the agents in the LEM and/or the

gird, the binary variables are defined in Eqs. (6.2f) and (6.2g). Thus, when y takes

positive values, the agent has an energy surplus; otherwise, it takes value zero.

Once defined, the individual agent’s behavior corresponds to defining the global

market constraints and identifying the energy traded in the LEM, the energy bought/sold

to the grid, and the reactive power capability provided by the agents to the DSO

through the following constraints. Therefore; ∀t ∈ T , ∀s ∈ S∑
i∈A

psmi,t,s +
∑
i∈A

pbmi,t,s = 0, (6.3a)∑
i∈A

psgi,t,s ≥ pκsgt , (6.3b)∑
i∈A

−pbgi,t,s ≤ pκbgt , (6.3c)

qκast ≤
∑
i∈A

∆qi,t,s +
∑
i∈C

qdscbi,t,s. (6.3d)

Eq. (6.3a) represents the local market balance constraints such that all the energy

sold in the LEM is bought. Eq. (6.3b) indicates that the sum of the energy sold

to the grid by agents must be greater or equal to the total energy exported through

the substation (pκsg). Likewise, Eq. (6.3c) represents the same situation but for the

energy bought from the grid. It is worth noting that these terms are not necessarily

equal due to the line losses. Eq. (6.3d) identifies the reactive power provided through

the substation (qκas) by the agents and the community battery.
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6.4.2 Agents battery modeling

The following set of constraints models the battery behavior. Therefore; ∀i ∈ A,∀t ∈
T ,∀s ∈ S:

soci,t+1,s = soci,t,s + [φchφbsschi,t,s −
1

φdsφbss
dsi,t,s]∆t, (6.4a)

SOCminBTi ≤ soci,t,s ≤ SOCmaxBTi, (6.4b)

chi,t,s ≤ PB(wi,t,s), (6.4c)

dsi,t,s ≤ PB(1− wi,t,s), (6.4d)

(dsi,t,s)
2 + (qdsi,t,s)

2 ≤ (γbssi )2, (6.4e)

(chi,t,s)
2 + (qdsi,t,s)

2 ≤ (γbssi )2. (6.4f)

Eq. (6.4a) represents the battery SOC for the next period, which depends on the

current SOC plus (resp. minus) the energy-charged (resp. discharged) as appropriate.

Eq. (6.4b) establishes the operational range of the battery multiplied by its installed

capacity. Note that if an agent does not have a battery, its energy storage capacity

is zero, forcing the other battery variables to zero. The formulation uses a binary

variable to model the charge and discharge battery process because both actions

cannot be executed simultaneously. Thus, Eq. (6.4c) represents the charging process,

and Eq. (6.4d) the battery discharge. Eqs. (6.4e) and (6.4f) indicate the reactive

power capability provided by the batteries in the discharging and charging processess.

6.4.3 Community battery modeling

The constraints related to the community battery operation are similar to the agent

batteries with two additional restrictions. Therefore; ∀i ∈ A,∀t ∈ T ,∀s ∈ S,

soccbi,t+1,s = soccbi,t,s + [φchφbsschcbi,t,s −
1

φdsφbss
dscbi,t,s]∆t, (6.5a)

SOCminBT cbi ≤ soci,t,s ≤ SOCmaxBT cbi , (6.5b)

chcbi,t,s ≤ PBcb(wcbi,t,s), (6.5c)

dscbi,t,s ≤ PBcb(1− wcbi,t,s), (6.5d)

(dscbi,t,s)
2 + (qdscbi,t,s)

2 ≤ (γcbssi )2, (6.5e)

(chcbi,t,s)
2 + (qdscbi,t,s)

2 ≤ (γcbssi )2, (6.5f)∑
i∈A

dscb
′

i,t,s ≥
∑
i∈A

dscbi,t,s, (6.5g)∑
i∈A

chcb
′

i,t,s ≤
∑
i∈A

chcbi,t,s. (6.5h)
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Eq. (6.5g) represents that the total energy discharged from the community battery

must be greater or equal to the energy delivered to the agents, and Eq. (6.5h) indicates

the total energy absorbed by the community battery must be less or equal to the

energy provided by the agents.

6.4.4 Battery flexibility detection

Two continuous variables must be included in the battery formulation to separate

the energy used by agents for self-consumption and the energy to face the community

electricity load uncertainty. Therefore; ∀i ∈ A,∀t ∈ T ,∀s ∈ S:

soci,t+1,s = soci,t,s + [φchφbss(chi,t,s +∆chi,t,s)−
1

φdsφbss
(dsi,t,s +∆dsi,t,s)]∆t,

(6.6a)

SOCminBTi ≤ soci,t,s ≤ SOCmaxBTi, (6.6b)

chi,t,s +∆chi,t,s ≤ PB(wi,t,s), (6.6c)

dsi,t,s +∆dsi,t,s ≤ PB(1− wi,t,s), (6.6d)

(dsi,t,s +∆dsi,t,s)
2 + (qdsi,t,s)

2 ≤ (γbssi )2, (6.6e)

(chi,t,s +∆chi,t,s)
2 + (qdsi,t,s)

2 ≤ (γbssi )2. (6.6f)

The set of equations (6.6) represents the same operations as (6.4), with the only

difference that the charging and discharging battery process identify the flexibility

provided for the energy community through (∆ch) and (∆ds), respectively. However,

when the flexibility variables are considered in the model, Eqs. (5.9a) and (5.9b)

must be rewritten as follows:∑
i∈A

psgi,t,s +
∑
i∈A

∆dsi,t,s ≥ pκsgt , (6.7a)∑
i∈A

−pbgi,t,s +
∑
i∈A

∆chi,t,s ≤ pκbgt , (6.7b)

6.4.5 Network technical limitation

The second-order cone relaxation for the AC OPF problem is used to model the

network constraints. Therefore; ∀t ∈ T ,∀s ∈ S

∑
(i,j)∈L

pi,jt,s −
∑

(j,i)∈L

(pj,it,s −Rj,ilj,i) =


∆pi,t,s ∀i ∈ A,

dscbi,t,s − chcbi,t,s ∀i ∈ C,

pκbgt − pκast Sub,

(6.8)
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∑
(i,j)∈L

qi,jt,s −
∑

(j,i)∈L

(qj,it,s −Xj,ilj,i) =


∆qi,t,s ∀i ∈ A,

qdscbi,t,s ∀i ∈ C,

− qκsgt Sub,

(6.9)

vj,t,s = vi,t,s − 2(Ri,jp
i,j
t,s +Xi,jq

i,j
t,s) + (R2

i,j +X2
i,j)li,j, (6.10)

(pi,jt,s)
2 + (qi,jt,s)

2 ≤ li,jvi,t,s. (6.11)

The active and reactive power balance equations are represented in (6.8) and

(6.9), respectively. The right-hand side of both constraints will depend on if the

bus possesses a user trading energy in the LEM, a community battery, or is the

substation (Sub). Thus, for buses with agents, Eq. (6.8) considers the difference

between the power self-generation and the agent load consumption. On the contrary,

if the bus has a community battery, Eq. (6.8) only includes the power injected or

absorbed by the battery. Likewise, the substation bus controls the total active power

entering (pκbg) and leaving (pκsg) the system. However, in the substation bus, the

reactive power in Eq. (6.9) is considered a variable load (qκas) to measure the energy

community’s reactive power capability to provide to the DSO through the DERs.

Eq. (6.10) and (6.11) correspond to the classical line power flow equations, which do

not present variation. Note that if the model detects the flexibility provided by the

agents’ batteries, the right-hand side of Eq. (6.8) for buses with agents must include

∆ch and ∆ds, because these values are available to the community to be used as

appropriate.

The following equations (6.12) bound the voltage, the active and reactive power

provided from the PV systems, and the line flow capacity. Thus; ∀s ∈ S, ∀t ∈ T

(V min)2 ≤ vi,t,s ≤ (V max)2 ∀i ∈ B, (6.12a)

0 ≤ pgi,t,s ≤ φpvPGmax
t,s γpvi ∀i ∈ A, (6.12b)

(pgi,t,s)
2 + (qgi,t,s)

2 ≤ (γpvi )2 ∀i ∈ A, (6.12c)

(pi,jt,s)
2 + (qi,jt,s)

2 ≤ (Smaxi,j )2 ∀(i, j) ∈ L. (6.12d)

6.5 Computational results

In this section, the model presented in Section 6.4 is tested in a modified version of the

well-known IEEE 33- bus system, considering the different frameworks explained in

Section 6.3.2 under different scenarios. The optimization model has been programmed

in Python-Pyomo using Gurobi as the solver in an Intel Core i7 2.3 GHz CPU and

16 GB RAM.
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Figure 6.3: Test system

6.5.1 System data

The model proposed in this chapter has been tested in the IEEE 33-bus radial distri-

bution system [176], modifying the maximum active power load and respecting the

proportion reactive power load from the original system. Thus, the total active load

is 105 kW and 75.6 kVAr, and the lower and upper voltage bound are 0.95 p.u. and

1.05 p.u., respectively. We have considered 22 different load profiles for the 32 elec-

tricity demands of the test system, considering three scenarios of 24 hours. In this

regard, the load consumption profiles have been obtained from [69] and the weather

condition from [70]. Likewise, Table 6.2 shows the DERs location and capacity for

every bus, such that 15 prosumers have PV-Battery systems, 11 PV systems, and

the remaining buses possess traditional consumers. The total PV capacity installed

arises to 136.5 kW, 186 kWh for the agents’ batteries, and 200 kWh for the commu-

nity batteries when they are considered. Because there is currently no reactive power

wholesale market, the prices for the reactive power have been assumed as one-sixth

of the electricity price provided by the DSO and the FIT price as one-third of the

day-ahead market price.

6.5.2 Numerical results

The model has been tested following the frameworks presented in Section 6.3.2 and

schematically described in Fig. 6.2. Besides, we have decomposed the models for every

framework into three different formulations to measure the energy traded and the ASs

effect over the community cost and compare the improvement of the proposed model

with the current literature. Thus, Table 6.3 summarizes the formulation testing in
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Table 6.2: Load consumption and DERs capacity parameters for the case study
Bus PL QL PV BT BT cb Bus PL QL PV BT BT cb

2 4 2.97 6 12 0 18 3 2.14 4.5 0 0
3 4 2.88 6 12 0 19 4 2.86 6 12 0
4 4 2.93 0 0 0 20 4 2.86 0 0 0
5 0 0 0 0 100 21 3 2.14 4.5 0 0
6 5 3.59 7.5 15 0 22 3 4.42 4.5 9 0
7 3 2.15 4.5 0 0 23 3 2 4.5 10 0
8 5 3.13 7.5 15 0 24 0 0 0 0 100
9 5 3.44 7.5 15 0 25 4 2.85 6 12 0
10 4 2.64 6 12 0 26 4 2.83 6 0 0
11 3 1.75 0 0 0 27 5 3.54 7.5 15 0
12 2 1.17 3 12 0 28 2 1.67 3 8 0
13 2 1.2 3 0 0 29 2 1.43 3 0 0
14 5 3.55 7.5 0 0 30 4 2.68 6 0 0
15 3 2.1 4.5 0 0 31 2 1.34 3 12 0
16 3 2.14 4.5 0 0 32 3 2.14 0 0 0
17 5 3.57 7.5 0 0 33 2 1.43 3 15 0

Table 6.3: Models addressed in the computational results
Without energy
trading (α)

With energy
trading (β)

Energy trading
and ASs (γ)

Framework A αA βA γA
Framework B αB βB γB
Framework A’ αA’ βA’ γA’
Framework B’ αB’ βB’ γB’

this section, and Table 6.4 presents the results for every framework with its respective

model.

6.5.2.1 Case A and B analysis

The results show significant improvements at every framework when the energy com-

munity trades energy and provides ASs. However, before analyzing the objective

function result, an improvement point is established as a reference to compare the re-

sults obtained by the model proposed with the literature. Thus, the total community

cost reduction when the system operates under a P2P energy trading scheme (without

ASs consideration) is on average 15.5%. This percentage is obtained by comparing

the objective function when the agents do not trade energy (αA) with the models

considering energy trading (βA). Likewise, the rate at which the objective function

decreases is consistent with the results obtained by [98] and [107]. Specifically, the
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Table 6.4: First and second stage variables performance by model
Objective Function

Components
Energy from/to the grid LEM

Agents’
Batteries

Community
Batteries

Flexibility
service

Model
OF
Cost
[€]

pκbg

[kWh]
pκbg

[kWh]

qκas

[kVAr] p
bg [€]

psg

[€]
pbg

[kWh]

psg

[kWh]
psm/pbm

[kWh]

ch
[kWh]

ds
[kWh]

dscb

[kWh]
chcb

[kWh]

∆ch
[kWh]

∆ds
[kWh]

αA 16.41 548.01 502.81 0 26.34 9.94 547.99 502.91 0 434.1 553.32 695.53 584.54 - -
βA 14.07 499.69 486.89 0 23.7 9.63 499.67 487 317.24 512.53 615.77 629.54 505.7 - -
γA -51.61 499.69 479.06 2393 23.7 9.41 499.69 479.17 459.03 441.97 556.99 592.86 459.03 - -
αB 48.85 1343.4 1218.2 0 72.44 23.59 1343.4 1218.2 0 445.75 572.11 0 0 - -
βB 40.7 1147.8 1020.2 0 60.46 19.77 1147.8 1020.3 472.63 560.83 663.88 0 0 - -
γB 18.61 1147.8 1014.9 804.6 60.38 19.66 1147.7 1014.9 411.55 534.63 641.74 0 0 - -
αA’ 16.41 548.01 502.82 0 23.37 8.39 483.7 412.52 0 359.83 456.44 720.44 615.63 64.34 90.47
βA’ 14.07 499.69 486.89 0 20.39 8.67 427.5 432.63 330.76 416.34 544.56 606.94 480.44 72.19 54.44
γA’ -51.61 499.69 479.06 2393 20.63 8.48 434.05 424.88 336.24 398.14 584.02 584.02 448.23 65.64 54.36
αB’ 48.83 1343.5 1219.3 0 67.69 20.82 1237.5 1069.7 0 323.84 408.98 0 0 105.9 149.7
βB’ 40.7 1147.8 1020.2 0 55.1 18.4 1027.9 944.18 446.97 421.32 571.64 0 0 119.8 76.11
γB’ 18.61 1147.8 1014.9 804.6 54.21 18.37 1009.9 943.3 450.33 415.93 585.62 0 0 137.8 71.63

work done by [98] reports a reduction in community cost by 30% and [107] an 18%.

However, both works present deterministic approaches. They do not consider the

network technical limitation, and the batteries are modeled through continuous vari-

ables; therefore, their cost reduction could be overestimated, and the 15.5% obtained

by the model proposed in this chapter is considered an acceptable reference point.

On the contrary, when the energy community trades energy and receives eco-

nomic compensation by providing reactive power to the DSO, the objective function

decreases 54.3% without including community batteries (βB Vs. γB) and presents

profit when they are considered (βA Vs. γA). In other words, the DERs’ capability

to provide AS through reactive power to the DSO could significantly affect the total

community cost, even generating positive surpluses. However, it is worth remem-

bering that the reactive power price is defined in this case study as one-sixth of the

electricity price and half of the FIT.

Note that the reactive power inclusion as ASs does not change the first-stage

variables corresponding to the active power bough/sold to the grid. In fact, the

objective function reduction is explained uniquely by the reactive power provided

to the DSO; however, the energy traded in the LEM and the community/agents

batteries change when the ASs are included showing a LEM activity increase of 44.7%,

and a reduction of the batteries use of around 9.5%. On the other hand, when the

community batteries are not included, the LEM activity decreases 12.9% and the

agents’ battery operation around 4%.

6.5.2.2 Case A’ and B’ analysis

In the previous cases A and B, it is impossible to distinguish the extra energy that

some agents must absorb or inject to ensure the energy engaged in first stage decisions.

This additional battery use is a flexible service supplied by users with storage devices

to the community when they operate in a two-stage framework in the day-ahead
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and intraday market. Therefore, although cases A and B show a reduction in the

community cost function, the individual cost could be affected by this additional use

of batteries, discouraging users’ participation in the LEM. Therefore, cases A’ and B’

represent cases A and B, respectively, but A’ and B’ distinguish the flexible services

supplied by the users with BSS.

The total energy bought and sold to the grid and the reactive power provided

to the DSO is equal to cases A and B; however, the agents’ energy bought and sold

to the grid change. In fact, in this case, to obtain the total energy bought to the

grid (pκbg) we must sum the energy bought to the grid by the users (pbg) plus the

users’ batteries charging (∆ch). i.e., a percentage of the total energy that enters the

system goes to the users, and the remaining is stored in the users’ batteries. For

example, In the case γB’, the total energy bought to the grid is 499.69 kWh, of which

434.05 kWh are consumed by the agents, and 65.64 kWh corresponding to 13.1%

are absorbed by the batteries. Similar behavior occurs for the total energy leaving

the system (pκsg), where the users’ batteries discharge 11.3% of the total energy

sold to the grid. These percentages, related to the flexible services provided by the

agents’ batteries, decrease when the community batteries are considered in the model

(γA’); however, their participation continues to be 12% and 7.1% respectively, which

suggests a non-negligible value to take into account.

6.5.2.3 Local energy market share

Fig. 6.4 shows how the agents meet their electricity load through the different mech-

anisms available in the local market, for the first scenario and considering community

batteries. The bars in Fig. 6.4 have been sorted from agents whom more energy buy

to the LEM (left) and agents that more energy provides to the LEM (right). Thus,

when the bar takes positive values indicates that the agents consume the energy sup-

plied by the LEM, the grid, or the battery; otherwise, in case of negative values, the

agents provide energy to the LEM, to the gird, or charge the community batteries.

In this regard, at least ten agents generate enough energy to self-satisfied their con-

sumption and supply energy to the community or the DSO, being the power generated

through the PV systems responsible for more than 90% of the energy self-consumed

and injected into the grid. On the other hand, agents without DERs installed (4, 20,

32, 11) meet their demand by buying the energy in the LEM and from the community

batteries. Note that the batteries share show is small because it corresponds to the

aggregated energy discharge and charging in 24 h. i.e., when the battery indicates a

positive value, the battery in 24 h discharged more energy than charged.
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Figure 6.4: Energy share by agents

Figure 6.5: Reactive power supplied with and without ASs

6.5.2.4 Reactive power capability

The DERs capability to supply reactive power is shown in Fig. 6.5, contrasting

scenario 1 when the system provides ASs (below) and when do not (up). Thus, when

the DERs do not provide ASs, the community battery usage for reactive power is

marginal, and the reactive power corresponds to the reactive demand, except when the

PV systems operate. On the contrary, under the same load and weather conditions,

when the DERs provide ASs, the reactive power provided by the inverters associated

with the PV systems supply almost the total reactive power, and the remaining is

provided by the individual and community batteries.
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6.5.2.5 Community battery role

The results in Table 6.4 show that when the community batteries operate in a P2P

energy trading scheme, the agents’ batteries use decreases, and the total community

cost is reduced mainly through the reactive power provided by these community

devices. Besides, following the hourly community battery operation in Fig. 6.6, when

they are considered (second charts row) operates at the end of the day, discharging

energy and charging when the PV systems are generating electricity. Note that the

negative value corresponds to when the energy goes out of the system (charging

batteries and selling to the grid), and when it is positive represents the discharging

battery process and the agents’ load consumption.

On the contrary, when the community batteries are not included (first charts

row), the agents’ batteries in the second and third scenarios must absorb all the

energy provided by the grid over the load consumption. This extra energy absorbed is

adequately commented in the following subsection, but is the flexible service provided

by users with storage devices to the community to face the energy compromised in the

day-ahead market (first-stage variables). For example, following the second chart of

the first row, the energy over the demand line is the energy absorbed by the battery;

this surplus corresponds to the energy compromised in the first stage, where the first

scenario fixes the maximum due to its most demanded. Under the same logic, this

situation does not occur in the first stage, where the agents’ batteries charge only

when the PV systems are generating electricity.

6.5.3 Individual profit

The dual variables related to Eq. 5.2 have been used as the LEM price in order to

compare the agents’ profit when they trade energy and when they do not. Thus,

Fig. 6.7 shows the agents’ profit comparison when the energy community operates

without energy trading, with energy trading, and when they provide ASs through

reactive power. Besides, the results contrast the community battery impact on the

users’ profit, while the opening in scenarios show the second-stage variables change.

Therefore, if the first scenario occurs, the individual profit with energy trading slightly

improves due to the first being the most demanded scenario. However, when the

system provides reactive power, users 3, 19, 22, and 23 improve their profit in the

first scenario significantly regarding others, and many users with DERs also improve

their cost function for the second and third scenarios. On the contrary, traditional

consumers without DERs installed, like 4, 11, 20, and 32, show a very slight profit
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Figure 6.6: Community batteries effect on the second stage variables

increase compared with users with DERs when the ASs are provided through reactive

power. For users without DERs, this minor improvement is explained because when

they buy energy in the LEM, they are doing it at a lower price than the electricity

price provided by the grid, and they do not have access to provide reactive power,

which is the main factor to increase the profit of agents with DERs.

On the other hand, some users like 17, 10, 28, and 29 with a PV-BSS system

reduce their profit when they trade energy in the LEM compared to when they do

not. This negative increase is explained because some agents must absorb or inject

from their batteries more energy than they require to meet the total community energy

compromised in the day-ahead market. Therefore, they provide a flexible service that

is not compensated in this model, but the energy amount involved is quantified to

justify that a minimal compensation increase this negative value to make it positive

and promote their participation in the LEM. In other words, a minimal price for

the extra use of batteries under an energy trading scheme can further encourage the

participation of agents with DERs through the individual profit increase regarding

when they do not trade energy.

In addition, when the profit is studied at an average level separating between con-

sumers and prosumers with PV, PV-battery systems, and considering the community

batteries, we found that users with PV system increase their profit at average in a

34 %, agents with PV-Battery system a 7% and traditional consumer in 9%. These
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Figure 6.7: Agents profit comparison when they operate under P2P energy trading
providing ASs and when they not

results show that users with flexibility perceive lower improvement than a traditional

consumer, and the explanation is related to the flexibility service provided by the

battery for the energy community in a two-stage context. However, when the DERs

provide ASs to DSO through reactive power, users with DERs increase their profit

more than five times on average.

6.6 Chapter conclusions

This chapter has presented a two-stage stochastic MISOCP model to address the day-

ahead and intraday market of a local energy community trading active power under

a centralized marker design, considering the DERs’ capability to provide reactive

power. Different frameworks have been considered to include community batteries and

measure the service provided by users with storage devices to the energy community

in the intraday market to face the energy committed in the day-ahead market.

The formulation proposed has been tested in the IEEE-33 bus distribution system

considering three simultaneous scenarios of 24 hours showing the significant effect of

the reactive power supplied by the DERs on the community welfare when the users

perceive an economic remuneration by the reactive power provided. Likewise, the

community batteries have shown a relevant role to support a two-stage framework

related to the day-ahead and intraday markets, helping the users without battery
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systems to commit energy in the day-ahead market. Besides, the energy quantification

stored in the users’ batteries to support the two-stage framework has been presented

as alternative mechanisms to promote the collaborative local market scheme.
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Chapter 7

Conclusions

This thesis has addressed significant challenges related to the expected share increase

of DERs in DN due to renewables cost decreasing and the power systems decarboniza-

tion. In this regard, three topics have been reviewed, and different optimization tech-

niques have been applied to support planning and operation decisions regarding the

DN’ restructuring process. The first topic managed the optimal location and sizing of

DERs into DN from a deterministic and stochastic perspective. Then, the unexpected

main grid failure in the electricity provision for DN with high DERs penetration was

addressed under a deterministic formulation providing the topology to face these un-

likely events minimizing the load curtailment. In the third topic, the potential TE

has been modeled and simulated through a P2P energy trading scheme considering

different frameworks and markets.

Regarding the first two objectives (O1 and O2) related to the optimal DERs lo-

cation and sizing problem, a novel algorithm has been developed using the GA logic

to manage the binary variables related to the location problem, so extending the

sizing and location problem for multiperiod scenarios greater than 24 hours. In this

regard, it has been proved that the formulation proposed allows the planning of 100%

autonomous systems since finding a feasible solution to the DG and BESS capac-

ity problem for a time horizon of 8760 h through a reduced scenario of 168 hours.

Besides, the deterministic approach has been used to compare the optimal DG and

BSS capacity considering a system under grid-connected and off-grid modes, prov-

ing that the capacity required to supply the entire electricity demand in an islanded

network increases the investment cost significantly. However, it has been shown that

when the external grid provides electricity only in the most critical hours (hours with

poor weather conditions), the investment and the operational cost decrease signifi-

cantly. Thus, the formulation presented provides the needed flexibility to measure
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the trade-off between the investment required in DERs and the expected energy sup-

plied by these resources under one year of operation in a single model. Likewise, the

results have shown that considering one year of operation and under the cost batter-

ies assumptions, the model always installs lead-acid batteries instead of lithium-ion,

putting investment before battery efficiency.

In addition, the location and sizing problem of DERs have been addressed under

a two-stage stochastic approach considering the effect of the DR and the EVs on the

optimal sizing. In this regard, different sets of scenarios have been determined using

the backward algorithm to show that the DERs capacity installed is highly sensible

to the case selected. i.e., when the cases had more wind resources, the model installed

more wind turbines than solar panels and vice versa; however, when these capacities

were tested in a complete scenario of 8760, the energy provided by the system was

low compared with cases where the irradiation and the wind speed were considered

in the same proportion. Thus, the better results in terms of investment, operational

cost, and energy provided by the DERs were under scenarios with high irradiation

and wind speed levels.

Besides, and corresponding to objective 3 (O3), the EVs’ presence suggests a

reducing operational cost related to the energy provided by the main grid due to their

capacity to inject energy in hours with a high price; however, a high EVs penetration

might increase DERs capacity installation. On the other hand, the DG’s capability to

provide reactive power indicates that it might be possible to supply a high percentage

of the reactive power load from renewable resources and provide ASs to the utility

grid. The proposed algorithm and formulation have been tested in different IEEE

networks proving their efficiency and convergence.

From the operational perspective and related to objective 4 (O4), a VMs topology

scheduling model has been presented to minimize the active and reactive power not

supplied in DN with high DERs penetration with temporal failures in the electricity

provision from the external grid. In this regard, the consumption points where the

electricity demand is not satisfied or nodes that do not have enough demand flexibility

to decrease their consumption to face a lower energy provision scenario have been

considered the VMs boundaries. The results have shown that under the scheme

proposed, the DR may decrease the load curtailment considerably, and the boundaries

point usually corresponds to nodes far away from a DG or storage devices. Likewise,

the VMs’ topologies have been validated using the classic AC OPF formulation to

ensure that the solution provided by the model is an optimal solution of the AC OPF.
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The P2P energy trading scheme has been addressed in this thesis under two dif-

ferent stochastic programming formulations. The first approach (O5) focused on

modeling a scheduling energy trading day-ahead market, preserving the users’ infor-

mation private considering the network technical limitation and the active power as

a tradable commodity without considering reactive power provided by the DERs. In

this regard, the Benders algorithm was implemented, separating the original formu-

lation into a MP that manages the network necessities and multiple SPs that address

the energy traded by the users in the LEM. The strengthened Bender cuts have been

used to manage the binary variables related to the SPs ensuring the optimality of

the solution found by the algorithm. Thus, it has been proved that the algorithm

proposed to converge to the same objective function of the centralized model, being

the computational time, the only cost paid by the users to keep their information

private. Besides, it has been quantified that a P2P energy trading scheme, under the

assumptions considered in the case study, could decrease the global community cost

by 18.2% on average. However, the results have shown that maximizing global wel-

fare could reduce the individual profit of users with batteries, which could discourage

collaborative energy trading among community users.

Finally, the second approach (O6) addressed the P2P energy trading scheme under

a centralized market design modeling a day-ahead and intraday market quantifying

the reactive power provided by the DERs to the DSO as ASs. The formulation

has measured the community batteries’ effects on the energy trading in the LEM

and the reactive power provided by these devices. The results have shown that

ASs provided by the energy community users through reactive power may increase

the community welfare significantly and provide positive incentives to promote the

users’ participation in the local market. Besides, the flexibility provided by the users’

batteries has been quantified to measure the services provided by users with storage

devices to the community to face the energy compromised by the community in the

day-ahead market.

7.1 Further work

The following research works are suggested to extend, compare or improve the topics

addressed in this thesis.

Related to the optimal sizing and allocation of DERs

• The algorithm proposed in this thesis to address the binary variables related to

the DERs location decreases the execution time considerably, allowing extensive
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multiperiod scenarios. However, the algorithm could be improved or contrasted

using decomposition methods techniques.

• Although the thesis uses the Backward algorithm to reduce the number of sce-

narios, a new algorithm could be designed to improve the scenario selection

based on the capacity of the scenarios to generate energy rather than on the

statistical difference between them.

• The two-stage stochastic approach could be contrasted with a bi-level and/or a

robust optimization and study the best alternative to handle the DERs’ uncer-

tainty in the decision related to their location and capacity.

Related to the models to simulate a P2P energy trading market

• Investigate an alternative method or improve the computational times of the

Bender decomposition algorithm presented to solve the P2P energy trading

model from a decentralized market design perspective.

• Extend the two-stage stochastic model presented in Chapter 5 to manage the

day-ahead market, and include the intraday market, but under a multistage

approach including EVs, DR, and ASs.

• Based on the P2P energy trading models presented in this thesis, develop a

multimarket pricing algorithm. Thus, the different potential markets applied for

an EC like day-ahead, intraday, ASs, and flexibility market could be formulated

considering the proper economic incentives for the users to trade energy.
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[22] Juan Camilo López, Kaio Vieira dos Santos, Luiza Higino Silva, Nataly Banol

Arias, Marcos J. Rider, and Luiz C. P. da Silva. Optimal Sizing and Allocation

of Distributed Energy Resources in Microgrids Considering Internal Network

Reinforcements. SSRN Electronic Journal, 2021.

[23] Mohammad Sadegh Javadi, Matthew Gough, Seyed Amir Mansouri, Amir Ah-

marinejad, Emad Nematbakhsh, Sergio F. Santos, and João P.S. Catalão. A

two-stage joint operation and planning model for sizing and siting of electrical

energy storage devices considering demand response programs. International

Journal of Electrical Power and Energy Systems, 138(June 2021), 2022.

[24] Mukesh Gautam, Narayan Bhusal, and Mohammed Benidris. A cooperative

game theory-based approach to sizing and siting of distributed energy resources.

In 2021 North American Power Symposium (NAPS), pages 01–06, 2021.

[25] Abdulbari Ali Mohamed Frei and Muhammet Tahir Guneser. Optimal Accom-

modation of DERs in Practical Radial Distribution Feeder for Techno-Economic

with Artificial Bee Colony Algorithm. 3rd International Conference on Electri-

cal, Communication and Computer Engineering, ICECCE 2021, (June):12–13,

2021.

134



[26] Amin Foroughi Nematollahi, Hossein Shahinzadeh, Hamed Nafisi, Behrooz

Vahidi, Yassine Amirat, and Mohamed Benbouzid. Sizing and sitting of ders in

active distribution networks incorporating load prevailing uncertainties using

probabilistic approaches. Applied Sciences, 11(9), 2021.

[27] Muhammad Khalid, Umer Akram, and Saifullah Shafiq. Optimal planning of

multiple distributed generating units and storage in active distribution net-

works. IEEE Access, 6(c):55234–55244, 2018.

[28] Di Hu, Ming Ding, Rui Bi, Xianfang Liu, and Xiuting Rong. Sizing and place-

ment of distributed generation and energy storage for a large-scale distribution

network employing cluster partitioning. Journal of Renewable and Sustainable

Energy, 10(2), 2018.

[29] Farhad Samadi Gazijahani and Javad Salehi. Stochastic multi-objective frame-

work for optimal dynamic planning of interconnected microgrids. IET Renew-

able Power Generation, 11(14):1749–1759, 2017.

[30] Jennifer F. Marley, Daniel K. Molzahn, and Ian A. Hiskens. Solving Multi-

period OPF Problems Using an AC-QP Algorithm Initialized with an SOCP

Relaxation. IEEE Transactions on Power Systems, 32(5):3538–3548, 2017.

[31] Carleton Coffrin, Hassan L. Hijazi, and Pascal Van Hentenryck. The QC Re-

laxation: Theoretical and Computational Results on Optimal Power Flow. Ieee

Transactions on Power Systems, 31(4):3008–3018, 2016.

[32] James A. Momoh, M. E. El-Hawary, and Ramababu Adapa. A review of se-

lected optimal power flow literature to 1993 part i: nonlinear and quadratic

Programming Approaches. IEEE Transactions on Power Systems, 14(1):96–

103, 1999.

[33] James A. Monoh, M. E. Ei-Hawary, and Ramababu Adapa. A review of selected

optimal power flow literature to 1993 part ii: newton, linear programming and

Interior Point Methods. IEEE Transactions on Power Systems, 14(1):105–111,

1999.
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