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Abstract

Human vision is restricted to the visual-optical spectrum. Machine vision is not.
Cameras sensitive to diverse infrared spectral bands can improve the capacities of
autonomous systems and provide a comprehensive view. Relevant scene content
can be made visible, particularly in situations when sensors of other modalities,
such as a visual-optical camera, require a source of illumination. As a result, in-
creasing the level of automation not only avoids human errors but also reduces
machine-induced errors. Furthermore, multi-spectral sensor systems with infrared
imagery as one modality are a rich source of information and can conceivably
increase the robustness of many autonomous systems. Robotics, automobiles,
biometrics, security, surveillance, and the military are some examples of fields
that can profit from the use of infrared imagery in their respective applications.
Although multimodal spectral sensors have come a long way, there are still several
bottlenecks that prevent us from combining their output information and using
them as comprehensive images. The primary issue with infrared imaging is the lack
of potential benefits due to their cost influence on sensor resolution, which grows
exponentially with greater resolution. Due to the more costly sensor technology
required for their development, their resolutions are substantially lower than those
of regular digital cameras.

This thesis aims to improve beyond-visible-spectrum machine vision by inte-
grating multi-modal spectral sensors. The emphasis is on transforming the pro-
duced images to enhance their resolution to match expected human perception,
bring the color representation close to human understanding of natural color, and
improve machine vision application performance. This research focuses mainly
on two tasks, image Colorization and Image Super resolution for both single- and
cross-domain problems. We first start with an extensive review of the state of the art
in both tasks, point out the shortcomings of existing approaches, and then present
our solutions to address their limitations. Our solutions demonstrate that low-cost
channel information (i.e., visible image) can be used to improve expensive channel
information (i.e., infrared image), resulting in images of higher quality and closer to
human perception at a lower cost than a high-cost infrared camera.

Key words: cross-domain image processing, deep learning, computer vision,
image restoration
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Resumen

La visión humana está restringida al espectro visual-óptico. La visión artificial no
lo es. Las cámaras sensibles a diversas bandas espectrales de infrarrojos pueden
mejorar las capacidades de los sistemas autónomos y proporcionar una visión inte-
gral. El contenido relevante de la escena se puede hacer visible, particularmente
en situaciones en las que los sensores de otras modalidades, como una cámara
visual-óptica, requieren una fuente de iluminación. Como resultado, aumentar
el nivel de automatización no solo evita los errores humanos, sino que también
reduce los errores inducidos por las máquinas. Además, los sistemas de sensores
multiespectrales con imágenes infrarrojas como una modalidad son una rica fuente
de información y posiblemente pueden aumentar la solidez de muchos sistemas
autónomos. La robótica, los automóviles, la biometría, la seguridad, la vigilancia
y el ejército son algunos ejemplos de campos que pueden beneficiarse del uso de
imágenes infrarrojas en sus respectivas aplicaciones. Aunque los sensores espec-
trales multimodales han recorrido un largo camino, todavía hay varios cuellos de
botella que nos impiden combinar su información de salida y utilizarlos como
imágenes completas. El problema principal con las imágenes infrarrojas es la falta
de beneficios potenciales debido a la influencia de su costo en la resolución del
sensor, que crece exponencialmente con una mayor resolución. Debido a la tec-
nología de sensor más costosa requerida para su desarrollo, sus resoluciones son
sustancialmente más bajas que las de las cámaras digitales normales.

Esta tesis tiene como objetivo mejorar la visión artificial más allá del espectro
visible mediante la integración de sensores espectrales multimodales. El énfasis
está en transformar las imágenes producidas para mejorar su resolución para que
coincida con la percepción humana esperada, acercar la representación del color a
la comprensión humana del color natural y mejorar el rendimiento de la aplicación
de visión artificial. Esta investigación se centra principalmente en dos tareas, la
colorización de imágenes y la superresolución de imágenes, tanto para problemas
de un solo dominio como de dominio cruzado. Primero comenzamos con una
revisión extensa del estado del arte en ambas tareas, señalamos las deficiencias de
los enfoques existentes y luego presentamos nuestras soluciones para abordar sus
limitaciones. Nuestras soluciones demuestran que la información de canal de bajo
costo (es decir, la imagen visible) se puede utilizar para mejorar la información de
canal costosa (es decir, la imagen infrarroja), lo que da como resultado imágenes de
mayor calidad y más cercanas a la percepción humana a un costo menor que una
imagen de alto costo cámara infrarroja.

v



Palabras clave: procesamiento de imágenes entre dominios, aprendizaje profun-
do, visión artificial, restauración de imágenes
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Resum

La visió humana està restringida a l’espectre visual-òptic. La visió artificial no ho és.
Les càmeres sensibles a diverses bandes espectrals d’infrarojos poden millorar les
capacitats dels sistemes autònoms i proporcionar una visió completa. El contingut
rellevant de l’escena es pot fer visible, especialment en situacions en què els sen-
sors d’altres modalitats, com ara una càmera visual-òptica, requereixen una font
d’il·luminació. Com a resultat, augmentar el nivell d’automatització no només evita
errors humans sinó que també redueix els errors induïts per la màquina. A més,
els sistemes de sensors multiespectrals amb imatges infrarojes com una modalitat
són una font rica d’informació i poden augmentar la robustesa de molts sistemes
autònoms. La robòtica, els automòbils, la biometria, la seguretat, la vigilància i
l’exèrcit són alguns exemples de camps que poden beneficiar-se de l’ús d’imatges
infrarojes en les seves respectives aplicacions. Tot i que els sensors espectrals multi-
modals han recorregut un llarg camí, encara hi ha diversos colls d’ampolla que ens
impedeixen combinar la seva informació de sortida i utilitzar-los com a imatges
completes. El problema principal amb la imatge infraroja és la manca de beneficis
potencials a causa de la seva influència en el cost en la resolució del sensor, que
creix exponencialment amb una resolució més gran. A causa de la tecnologia de
sensors més costosa necessària per al seu desenvolupament, les seves resolucions
són substancialment inferiors a les de les càmeres digitals normals.

Aquesta tesi té com a objectiu millorar la visió artificial de l’espectre més enllà
del visible mitjançant la integració de sensors espectrals multimodals. L’èmfasi
està en transformar les imatges produïdes per millorar-ne la resolució perquè
coincideixi amb la percepció humana esperada, apropar la representació del color
a la comprensió humana del color natural i millorar el rendiment de l’aplicació
de visió artificial. Aquesta investigació se centra principalment en dues tasques,
la coloració d’imatges i la superresolució d’imatges, tant per a problemes d’un sol
domini com per a problemes entre dominis. Primer comencem amb una revisió
extensa de l’estat de l’art en ambdues tasques, assenyalem les deficiències dels
enfocaments existents i després presentem les nostres solucions per abordar les
seves limitacions. Les nostres solucions demostren que la informació del canal de
baix cost (és a dir, la imatge visible) es pot utilitzar per millorar la informació del
canal cara (és a dir, la imatge infraroja), donant lloc a imatges de major qualitat i
més properes a la percepció humana a un cost més baix que un cost elevat càmera
infraroja.

Paraules clau: processament d’imatges entre dominis, aprenentatge profund,

vii



visió per computador, restauració d’imatges
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1 Introduction

When we describe light in common terms, most often we are talking about Visible
light, which our eyes can naturally see. This, however, represents a very narrow
portion of what we call the Electromagnetic Spectrum (see Fig. 1.1). The human eye
is one of nature’s most complicated systems. Our eyesight can distinguish between 8
million colors with around 126 million light-sensitive cells. We have a great imaging
device, however, this device has certain limitations. For instance, it cannot see in
certain conditions or in full darkness. What humans perceive as color is limited
to a tiny window of wavelengths inside the electromagnetic spectrum. Our visual
perception is dominated by reflected light with wavelengths ranging from 380 to
760 nm in the electromagnetic spectrum [165] This wavelength range is also called
the visual-optical (VIS) spectrum and it is also what a basic digital camera captures.
VIS sensitive cameras capture the visible light either separately in three channel
Red-Green-Blue (RGB) color images or entirely in gray-value image.

Figure 1.1: Overview of the different range in the electromagnetic spectrum.
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Chapter 1. Introduction

There are situations when the visible spectrum fails to show items in the scene
due to darkness or occlusion, whereas other wavelengths beyond the visible spec-
trum can detect and expose them. Non-visible light sensors, such as infrared, depth
imaging, and other sensors can provide images where the visible spectrum fails to
provide images. This is where vision beyond the visible spectrum plays a crucial
role with the help of non-visible light sensors such as infrared and depth imaging
sensors.

Astronomer William Herschel discovered the invisible rays that produce heat
(also known as dark heat or infrared radiation) in the year 1800. This invention was
initially used by British scientists in 1929, when they constructed the first infrared-
sensitive electronic camera for an anti-aircraft defense system. [149]. The infrared
(IR) spectral range is close to the visible range, with wavelengths from 760nm to
1mm. Other waves come after the IR range such as microwaves and RADAR/TV
waves. Small part of IR spectrum belongs to thermal IR imaging, which also called
thermography. Unlike visible images, thermal images don’t need visible light to
work, therefore they can work just fine in total darkness since objects produce
heat radiation based on their temperature. Also the amount of light around the
object does not matter since thermal imaging can show covered objects at different
temperatures [2].

However, imaging with electromagnetic waves (EM) is limited by the character-
istics of matter between the object and the imaging sensor, which can influence
the imaging sensor’s capacity to acquire an accurate image when the item is not
obscured, such as behind a glass or a bright object, thermal imaging works well.
Glass can completely obscure the thermal sensor or reflect the heat of nearby ob-
jects. The environment in which the thermal image is acquired has a significant
impact on its accuracy, because the values given in the thermal image represent
fluctuations in temperature in the context of the field of view. Warm items stand out
well in the recorded image versus colder objects in the surrounding area. Sunlight
during the warmer days can also produce substantial noise in the thermal image.

Infrared imaging is increasingly being used in development research and a range
of different fields in industry, which has lately led to the manufacturing of low-cost
vision sensors. Low-cost sensors are fast becoming available, and they are making
their way into applications other than heavy industrial usage, such as surveillance,
criminal investigation, military use, medical research, and building maintenance
(see Fig. 1.2). Exploiting these alternate perspectives has the potential to play
a significant role in computer vision by improving the accuracy of our existing
conventional digital vision. A machine vision built on all of these modalities can
see in the optical, infrared, audible spectrum, and can catch physical object details
that the human eye cannot see. A massive quantity of data is generated when all of
these sensor modalities are combined in a single camera. As a result, it is critical
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to discover ways to leverage the information from all of the sensors and combine
them together to maximize advantages.

Figure 1.2: Thermal IR imaging usage in security applications from [33, 150].

Despite all of the developments, there are several challenges that prevent the
fusing of their output features for use as integral images. The fundamental dis-
advantage of infrared imaging (SWIR, MWIR, and LWIR) is the high cost of high
resolution IR sensors. In this modality sensor, the cost effect by sensor resolution,
which grows exponentially with resolution. For instance, the common resolution
for thermal sensors varies from 40 x 60 to 640 x 480, however greater resolutions are
possible, limiting their use in particular applications where precise high-resolution
images are required.

In this thesis, we aim to improve beyond visible spectrum machine vision by
enhancing the quality of an expensive channel (IR image) by integrating the infor-
mation of its low-cost channel (visible image) counterpart. The emphasis is on
reconstructing the low-resolution IR images with better visual quality, enhancing
the resolutions to match the expected human perception, and improving the perfor-
mance of different computer vision tasks. Furthermore, human perception is better
at understanding true colors than shades of gray or pseudo-colors since infrared
images are well suited for night vision and darkness. Thus, the color enhancement
is applied to transfer the color representation to the infrared image and map it as
closely as possible to the human understanding of natural color.
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Chapter 1. Introduction

1.1 Image Restoration and Enhancement

Recent years have witnessed of increased interest in low-level vision task from
the vision and graphics communities. Image restoration and enhancement are
key components of computer vision tasks, which aim to restore a degraded image
content, filling in of missing information, or the needed transformation and/or
manipulation to achieve a desired target with respect to perceptual quality, contents,
or performance of apps working on such images. It is often used to assist individuals
in analyzing video and image content or to provide visually appealing images and
videos to human. It can also be used as a preprocessing approach to simplify
the work and enhance the performance of later automatic image content analysis
algorithms.

Image restoration has been a long-standing research topic in digital image
processing since last century [130], which aim is to recover clean latent images from
degraded observations. Generally, image restoration is an inverse problem, in which
infinite possible mappings between multi-dimensional degraded observations
and restored images, determine the ill-posed nature of such inverse problems.
In cases where mappings are known and invertible, corresponding solutions are
easy to obtain, but such mappings are unique and lack generality. In practice, the
inverse mappings are unknown, therefore the solution space is infinite and requires
regularization techniques to be applied in order to derive feasible and optimal
solutions. Therefore most researches in image restoration are devoted to resorting
effective analytical models and learning schemes, such that approximations of exact
mappings can be found to restore degraded images[143].

Conventional methods for image restoration rely on advanced mathematics
and probabilistic models to solve inverse problems, which are mostly based on the
maximum likelihood or Bayesian approaches in iterative algorithms [22, 23]. In
the past decade, the rapid rise of deep learning techniques has greatly impacted
various computer vision tasks, from recognition and classification to regression and
generation. Convolutional Neural Networks (CNNs) firstly boosted the performance
of classification and detection [81], with numerous network architectures proposed
to tackle benchmark research tasks. VGGNet [140] points out that deep network
architecture is beneficial, whereas previous studies mostly focused on shallow
networks. ResNet [55] provides the baseline structure of image restoration and
becomes the basic structure of several following methods, like EDSR [95] (for super-
resolution), DeepDeblur [121] (for image deblurring), DnCNN [184] (for image
denoising). See Fig. 1.3.

Deep learning approaches bring many benefits to image restoration, such as
learning-based methods that can boost the performance of different tasks. On most
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benchmark datasets, deep learning-based methods outperform traditional methods
significantly. By using parallel processing units such as graphic processing units
(GPUs), deep learning algorithms naturally fit with computer hardware, leading to
high efficiency compared to using CPUs. Nowadays, many applications in different
fields rely on image restoration and enhancement methods, such as digital display
technologies, medical imaging analysis, security and surveillance, remote sensing
satellite imagery, and many others.

In this work, we divide the image restoration methods into two groups based
on the type of domain information (visible spectrum and infrared spectrum) in
order to meet the goal of the research. Overall, a single-domain image restoration is
when the original and improved image are in the same domain. On the other hand,
when different domains are involved in the processing, it is called cross-domain
image restoration. All the image restoration approaches discussed concern only the
spatial transformation.

1.1.1 Single Domain Image Restoration Approaches

High image quality is essential for all tasks, whether performed by a human or
a computer [34]. This image quality is characterized by displaying the observed
scene’s content with clear, well-defined edges, textures, and structures. Additionally,
factors that degrade image quality, such as blur, noise or low contrast, should be
reduced as they impact the image content analysis.

Image Denoising
During the process of acquiring, compressing, and transmitting an image, the

images can unavoidably polluted by noise, which causes distortion and information
loss. This noise might be an influence of the environment, the transmission channel,
or other reasons. Thus, removing noise from a noisy image play an important role
since noise has negative effects in analysis applications or performance of various
low-level vision tasks from many aspects. Image denoising aim is to remove noise
from a noisy image, therefore a clean image without noise can be restore. Deep
learning based denoising can be seen mathematically as follow, where noised image
Y can be expressed as Y = X + N where X denotes clean image and N additive
noise corrupted with X . Noise can also be multiplicative in nature. Based on the
type of noise, image denoising can be divided into four categories: additive white
noise image (AWNI) denoising, real noisy image denoising, blind denoising, and
hybrid image denoising. Among these categories, AWNI attracts most attention
[143]. However, the popularity of AWNI does not reflect real noisy images. As
a result, although AWNI denosing includes Gaussian, Poisson, salt, pepper and
multiplicative noise, there are still gaps with actual application scenarios.

Image Debluring
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Chapter 1. Introduction

Figure 1.3: Example of image restoration tasks [143]: (a) deblurring, (b) dehazing,
and (c) denoising.

Blurry images are common in practice, and restoration of these degraded images
are intractable due to a wide range of factors, such as inevitable motions during
long exposure time, physical limitations of imaging devices, unknown degradation
process, and many others. Researchers have paid many efforts to develop efficient
and novel methods to solve these challenging problems. Dynamic scene blurs
are ubiquitous in real life image capturing. Blurs can be caused by a mixture of
camera motion, object motion, and scene depth variation. Camera motion has
six degrees of freedom in two categories, translational and rotational motions.
Translational motion relates to depth variation [51, 65], while rotational camera
motion and object motion are independent factors that also lead to non-uniform
blurs in the image. Since these motion blurs are spatially variant, it is not a trivial
task to model imaging and degradation process, especially when there is only a
single blurry image that is available. Numerous attempts contribute to building
models that approximate real blur kernels by using prior knowledge and additional
observations on images. The deblurring process has attracted widespread attention
in the field of image processing, since it is needed in many applications such as,
image segmentation [129], astronomy [39], and microscopy [53].

Image Dehazing
Single image dehazing aims to estimate a haze-free image from a hazy image. It

is a classical image processing problem, which has been an active research topic
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Figure 1.4: Example of a high-resolution image compared to a bicubic interpolation
and super-resolution sample of the same image [95].

in the vision and graphics communities within the last decade. As numerous
real-world tasks such as, traffic detection and environmental monitoring require
high-quality images, and the hazy environment usually leads to deprecated images.
Thus, it is of great interest to develop an effective algorithm to recover haze-free
images [103].

Haze is a complex atmospheric phenomenon. Images with haze may lose color
fidelity and visual contrast as a result of light scattering through the haze particles.
Mathematically, the hazing process can be simplified by I (x) = J (x)t (x)+A(1−t (x)),
where I is the hazy image, J is the haze-free image, and t is the medium transmission
map which describes the relative portion of the light that reaches the camera sensor
from scene surfaces without being scattered. While A is the atmospheric light and
x denotes pixel coordinate. This problem is highly ill-posed because many different
pairs of A, t and J give rise to the same I . Image dehazing is essential in many real-
world applications that demand a high-quality image, as well as in areas where fog
and haze are common, such as archaeology, traffic detection, and satellite imaging,.

Single Image Super Resolution
The image-based computer graphics models lack resolution independence [40]

as the images cannot be zoomed beyond the image sample resolution without
compromising the quality of images. Thus, simple image interpolation will lead
to blurring of features and edges within a sample image. Also, in some imaging
systems, a high-quality sensor is too expensive to utilize or not feasible such as,
remote sensing satellite imagery or thermal IR imaging.

The concept of super-resolution was first used by [42] to improve the resolution
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of an optical system beyond the diffraction limit. In the past two decades, the con-
cept of super-resolution (SR) is defined as the method of producing high-resolution
(HR) images from a corresponding low-resolution (LR) image. The applications of
super-resolution include computer graphics [78], medical imaging [13], security,
and surveillance [48], which shows the importance of this topic in recent years.
Other than improving image perceptual quality, it also helps to improve other com-
puter vision tasks such as detection, recognition, segmentation, and many other
vision tasks.

The image super-resolution, although being explored for decades, remains a
challenging task in computer vision, and this problem is fundamentally ill-posed
because, for any given LR image, there can be several HR images with slight varia-
tions in camera angle, color, brightness, and other variables. Furthermore, there are
fundamental uncertainties among the LR and HR data since the downsampling of
different HR images may lead to a similar LR image, which makes this conversion a
many-to-one process [172].

In the past, classical SR methods such as statistical methods, prediction-based
methods, patch-based methods, edge-based, and sparse representation methods
were used to achieve super-resolution. However, recently the advances in computa-
tional power and big data have made researchers use deep learning to address the
problem of SR. In the past decade, deep learning-based SR studies have reported
superior performance than the classical methods, and DL methods have been used
frequently to achieve SR image. A range of methods has been used by researchers to
explore SR, ranging from the first method of Convolutional Neural Network (CNN)
[35] to Generative Adversarial Nets (GAN) [86] and recently Vision Transformer
(ViT) [93] (see Fig. 1.4). This problem is one of the objective of this research and
will be discussed in details in Chapter 2.

1.1.2 Cross Domain Image Restoration Approaches

Humans are capable of adapting between different domains and integrating the
transfer of knowledge from one domain to another one easily due to the fact that,
they can relate previously acquired knowledge in different domains and infer the
unknown knowledge of the unknown domain based on the prior information of
the other learned domain. Humans are also excellent at cross-domain inference
because of their extensive previous knowledge of both domains, which they have
acquired via the information they have gathered throughout their everyday lives. In
addition, human self-learning and error correction, such as predicting an oncoming
sound are daily practices that expand our knowledge. However, with machines,
transitioning across domains becomes extremely challenging. For a machine to
learn cross-domain transformation, pairs images of both domains must be available.
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1.1 Image Restoration and Enhancement

Figure 1.5: Images from the CycleGAN based approach presented in [116] NIR input
image (a), result from [179] (b), and ground truth RGB image (c).

However, there are circumstances in which paired images cannot be obtained or it
is a costly and time-consuming operation.

In cross-domain image restoration, the model uses the images from two do-
mains as input to improve the image of one domain, such as in multispectral
satellite imaging, image super resolution, and multimodal image fusion. In this
problem, image restoration tasks require the existence of a roughly aligned pair
of images. However, multimodal sensors must have identical geometrical regis-
tration, and in the majority of situations, their fields of view are distinct and their
alignment is poor. It is possible to build a cross-domain model that learns the joint
distribution of data from the marginal distributions of each of its specific domains
without the need for paired images. However, this has its own limitation because
training image sets have limited variation and cannot generalize as in the human
scenario by self-learning and error correction. The inference process in humans
uses a multidimensional input of the environments, whereas it uses a reduction of
reality in machines. Therefore, samples in the two different domains may not fully
overlap because of the different nature of the information or because of outliers,
which makes it difficult to infer the target domain given only the source domain.

Image Colorization
The color distribution of the image has a significant impact on the appearance

of the image; therefore, color enhancement methods can play an important role
in improving the visual quality of images. Image colorization is an essential image
processing task that has been largely studied in recent years in the context of the
VIS spectrum to automatically colorize black and white photos or classic movies,
for instance [72]. It is a very challenging problem, as it is severely ill-posed since
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Chapter 1. Introduction

two out of the three image channels are lost. Furthermore, changes in illumination,
viewpoint variations, shadows in the scene, and occlusions all have an impact on
the colorization problem [149].

A night vision application is designed to give humans the ability to see in low-
light conditions or total darkness. IR images are shown in shades of gray or in
pseudo-colored images, but human vision is superior at identifying and under-
standing actual colors. Therefore, image colorization is essential for enhancing
nighttime or dark scene visibility and understanding. Coarsely speaking, coloriza-
tion techniques can be classified into parametric and non-parametric approaches.
Parametric methods learn prediction functions from large datasets of color im-
ages at training time, posing the problem as either regression onto continuous
color space or classification of quantified color values. On the other hand, non-
parametric methods utilize an input gray-scale image and firstly define one or more
color reference images (provided by a user or automatically retrieved) as source
data. Then, following the image analogy framework, color is transferred onto the
input image from analogous regions of the reference image(s). The aforementioned
classification is based on visible spectrum image colorization approaches.

IR image colorization somehow shares common properties and problems with
these monochromatic image colorization approaches. There are different moti-
vations to colorize IR images, like if an operator has to analyze and evaluate the
scene content of a NIR image, a visual representation he is familiar with may help
him to fulfill his task. Also, IR image colorization can improve the detection and
recognition tasks when these algorithms are failing to work with IR images. This
problem is part of this research and is discussed in Chapter 3.

Guidance Image Super Resolution
The use of infrared images has grown over the last two decades as the cost and

availability of infrared cameras has decreased. However, in spite of the continuous
increase in the usage of IR cameras, there is still a limitation on image resolution.
This limitation is imposed by the technology needed for these cameras. For ex-
ample, there are some high-resolution thermal cameras on the market, but they
are generally based on a more expensive technology called actively cooled thermal
cameras; hence, most of the applications are based on utilizing uncooled thermal
cameras, which are available on the market at a significantly lower price.

As previously stated, various image super resolution techniques have been
presented over the last few decades. Although most of them are intended for the
VIS spectrum, in recent years some adaptations or novel approaches have been
proposed for the IR image domain. In spite of these contributions, the difference
between the resolution of VIS spectrum and IR images, in particular thermal IR
images, is still considerable due to the nature and the market of the sensors. This
significant difference in resolution prompted researchers working on cross-spectral
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computer vision to devise strategies for using high resolution VIS spectrum images
to generate super resolution thermal IR images at a lower cost.

Thermal IR and visible images can both show the same scene, but the texture of
the images will be different because of the differences in how light reflection and
temperature are captured. When there is enough light, visible images have more
information than their thermal counterparts [2]. However, objects may be missed
in areas with less light. Therefore, cross-domain image integration can improve the
performance of the system by using the finer details captured in the visible image
domain to improve the resolution of the thermal IR image. This is especially true
when the nature of the problem calls for integration and when the environment is
not ideal for a one-sensor approach. These contributions can be considered as a
guidance approaches. This problem is discussed in detail in Chapter 7.

1.2 Thesis Outline and Contributions

This thesis is divided into three main parts. In first part, we present the problem
of image Colorization and our contributions to this task. In the second part, we
present the Single image super-resolution and our propose new solutions. In the
last part, we present the problem of Guidance Image Super-Resolution and our
propose approach. Each chapter corresponds to an article either published or
submitted in a journal or conference.

• Chapter 1: Introduction.

• Chapter 2: Background. In this chapter a general overview and problem
definitions are being provided, as well as a review of the mainstream datasets
and evaluation metrics which have been used for performance comparison by
the community. Following with a literature review including state-of-the-art
models in relation to the proposed methods of each main part.

• Chapter 3: Colorizing Near Infrared Images Through a Cyclic Adversarial
Approach of Unpaired Samples.

Objectives: The objective of this chapter is to do a thorough examination of
the image colorization problems by introducing a new solution which can
colorize near-inferred images when no paired dataset is available to increase
the applicability of near-inferred images.

Contributions: The focus lays on colorizing the near-infrared images when
no paired dataset is available by using a Generative Adversarial Network.
This will be done by proposing a new CycleGAN variant with a completely
redesigned the generator and discriminator of the original CycleGAN, which
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Chapter 1. Introduction

allows for producing of more realistic colors for infrared images, as well as
better visual quality compared to other network.

Publication: Mehri, Armin, and Angel D. Sappa. "Colorizing near infrared
images through a cyclic adversarial approach of unpaired samples." In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops, 2019.

• Chapter 4: MPRNet: Multi-Path Residual Network for Lightweight Image
Super Resolution.

Objectives: The main objective of this chapter is to propose a novel lightweight
single image super resolution model for visible images (RGB images), which
is suitable for real-world applications, and to determine if the already existing
models can be applied to super-resolution thermal image problems as a novel
experiment and test their applicability to this domain.

Contributions: An efficient and fast CNN-based network introduced, named
MPRNet, to solve the SISR problem. MPRNet designed by proposing an effec-
tive Adaptive Residual Block, which focuses on spatial information through
the use of multi-path residual learning connections in order to improve per-
formance with almost no increase in the amount of required computing.
The results of a comprehensive study demonstrate that MPRNet performs
exceptionally well.

Publication: Mehri, Armin, Parichehr B. Ardakani, and Angel D. Sappa. "MPR-
Net: Multi-path residual network for lightweight image super resolution."
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision. 2021.

• Chapter 5: Thermal Image Super Resolution Challenges.

Objectives: After demonstrating that the previous chapters’ contributions
have surpassed the SOTA methods of solving the Single Image Super Reso-
lution problem, we began conducting experiments to determine the most
effective model and training procedures to move forward with the Thermal
Image Super Resolution problem.

Contributions: We presented a couple of models in international challenges
for evaluation, and we got good ranks. We got the second position in PBVS
2020 and also attended the PBVS 2021 thermal SISR challenge.

Publications: Rivadeneira, Rafael E., Angel D. Sappa, Boris X. Vintimilla,
Sabari Nathan, Priya Kansal, Armin Mehri, Parichehr Behjati Ardakani et
al. "Thermal image super-resolution challenge-PBVS 2021." In Proceedings
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of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2021.

Rivadeneira, R. E., A. D. Sappa, B. X. Vintimilla, L. Guo, J. Hou, A. Mehri, P.
B. Ardakani et al. "Thermal image superresolution challenge-PBVS 2020. In
2020 IEEE." In CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pp. 432-439. 2020.

• Chapter 6: SRFormer: Efficient Yet Powerful Transformer Network For
Single Image Super Resolution.

Objectives: Transformer-based networks were introduced in many vision and
NLP tasks and have shown significant performance gains when compared
to CNN-based networks, but these models suffer from slower training and
inference time. The aim is to propose an efficient Transformer-based network
to overcome the aforementioned problems for SISR, which can also be used
later for solving the cross-domain Image Super Resolution.

Contributions: In this chapter SRFormer is being introduced, an efficient
yet powerful Transformer-based SISR network that is able to generate SR
images faster while requires less training time than other SOTA. To do so,
a lightweight self-attention layer introduced, named Dual Attention layer
(DAL). DAL generates a global attention map from two local attention weights
in parallel while remaining memory efficient. Extensive experiments show
that SRFormer obtains SOTA in various benchmark datasets.

Publication: Armin Mehri, Parichehr Behjati, and Angel D.Sappa. SRFormer:
Efficient super-resolution transformer-based network for single image super
resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2022. (under review)

• Chapter 7: TnTViT: Transformer in Transformer Network for Guidance
Super Resolution.

Objectives: The main idea is to investigate how rich texture details in visible
images contribute to improve and enhance the problem of the guidance super
resolution problem (cross-domain image super resolution).

Contributions: TnTViT a novel and lightweight Transformer network based
on our previously SISR model (i.e., SRFormer) proposed. The proposed model
accepts two images from different domains as inputs and aggregates the fea-
tures of the low-cost channel (visible image) with the corresponding features
of the expensive channel (infrared image) to enhance the resolution of the
infrared image to be as close as possible to human preference. Extensive
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Chapter 1. Introduction

experiments illustrate that the proposed method can boost the quality of
infrared images by a large margin.

Publication: Armin Mehri, Parichehr Behjati, and Angel D. Sappa. TnTViT:
Transformer in Transformer Network for Guidance Super Resolution. IEEE
Access, 2022. (under review)

• Chapter 8: Conclusion. The last chapter concludes the work developed in
this thesis and proposes further directions for research in cross-domain image
processing problems.
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2 Background

This thesis mainly focuses on addressing and solving image restoration tasks in
both single- and cross-domain by proposing novel deep learning approaches. In
this chapter, we first detail the problem definition of Image Colorization and Image
Super Resolution. Next, we introduce some related works, including benchmark
datasets, assessment methods, and optimization objectives that have been used to
accomplish this research. Finally, we provide a literature review, including state-of-
the-art methods related to the proposed methods.

2.1 Image Colorization

This section provides information related to Image Colorization problem.

2.1.1 Problem Definition

Image Colorization is the process of assigning an RGB color value to each pixel
of a grayscale image to obtain colorized images, which is a prospective image
processing technique in computer vision [67]. Image colorization is a multimodal
problem in which the same target object can have different colorization schemes.
For example, a pair of shoes can be white, red, yellow, or another color. In general,
image colorization is a challenging and interesting research problem.

In practice, it is difficult to obtain a large number of gray image datasets to train
a colorization model, so the gray image Ig is usually modeled as the output of the
following equation:

Ig =Φ (Ir ) , (2.1)

where Ir represents the color image. Given an input grayscale image Ig with a size
of W × H , the input gray image Ig is mapped into a color image Ic through the
image colorization model f . The equation is as follows:

Ic = f
(
Ig

)
. (2.2)

15



Chapter 2. Background

Figure 2.1: Example of grayscale Image Colorization.

For deep learning based methods, the model F is usually obtained by learn-
ing a collection of training samples. i.e., given a grayscale image collection G ={

Ig ∈RW ×H×1
}

and corresponding real color image collection C = {
Ic ∈RW ×H×3

}
,

find a model F which can minimize prediction errors L.

θ̂ = argmin
θ

L (Ic − Ir )+λΨ(θ). (2.3)

here is usually certain distance measurement (such as L1 distance, L2 distance)
or a combination of various distance measurement. F is the set of potential map-
ping functions;Ψ(θ) is the regularization term, and λ is the compromise parameter.

2.1.2 Grayscale Image Colorization

Traditional colorization methods were labor-intensive and restricted to small areas
since they relied heavily on human input. The digital revolution, however, shifted
the colorization process into a computer vision problem, speeding up its growth.
Even though colorization research includes a wide range of topics and methods, we
can typically categorize them according to the level of human intervention involved.
Thus, the first category is user-guided approaches, which require user interaction,
and the second category is automated data-driven methods, for which no human
interaction is needed.

The second category is based on the evolution of deep learning techniques
and their capacity to learn from a huge number of images. They are trained on a
large collection of reference images that include images of all sorts of things. By
learning the mapping function between the features of pixels in the monochromatic
image and the color values of the target image, the models automatically discover
the colors that naturally match real-world objects. This category eliminates the
requirement for user participation during the colorization process.

Color visible spectral images are composed of luminance and chrominance
components, while grayscale images are assumed to only have the luminance
component. Therefore, in grayscale image colorization, the goal is to restore the
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2.1 Image Colorization

Figure 2.2: Overall network architecture of Colorful Image Colorization [187].

chrominance component in the original color image. The RGB color space is a
standard linear model and is formulated by:

Igray = 0.2989∗ Ir +0.5870∗ Ig +0.1140∗ Ib . (2.4)

Therefore, solving above equation is an inverse and ill-posed problem since two of
the three image dimensions are lost. Resolving this inverse problem is a challenging
problem because of the many different image conditions that need to be dealt with
through a single solution.

The most simple attempt to solve the grayscale image colorization problem
is a straightforward convolutional neural network with stacked layers based on
a VGG network [140], such as the proposed method by Zhang et. al. in [187]
(illustrated in Fig. 2.2). The model consists of multiple convolutional blocks and
takes the lightness channel (L) in the CIELAB color space of the Lab transform
of the image and predicts color channels (A and B). The possible color for each
pixel is determined by the probabilities of belonging to one of 313 segments of the
discretized and quantized ab-plane.

PSNR and SSIM are the evaluation metrics most commonly used in the col-
orization problem, although they do not correlate with human subjective judgment
and interpretation of image quality. These evaluation metrics are described in
Subsection 2.4.

2.1.3 Infrared Image Colorization

Night vision in humans is excellent yet limited, especially in inappropriate environ-
ments. Humans vision have poor vision in low light environments or no vision in a
full darkness but it has the ability to see a wide range of colors perfectly when the
illumination is enough. This is a biological limitation, and because of this, it has
become more essential to improve night vision artificially to help the human vision
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Chapter 2. Background

Figure 2.3: Example images showing the same scene acquired by a VIS (a), NIR (b),
MWIR (c), and LWIR (d) camera [148].

system in a variety of fields, including military missions, drug studies, driving at
night, and security systems.

Transforming a grayscale near-infrared (NIR) image into a multichannel RGB
image is closely related to Image Colorization, where regular grayscale images
are colorized, and Color Transfer, where color distributions are transferred from
one RGB image to another. Both techniques, however, are not simply applicable
for colorizing NIR images. They often contain multiple cues, including various
optimization, feature extraction, and segmentation algorithms, and have certain
prerequisites. For instance, it leverages the fact that the luminance is given by the
grayscale input, and therefore the algorithms only estimate the chrominance in
grayscale colorization. However, NIR colorization requires estimating both the
luminance and the chrominance. On the other hand, color transfer methods are
often tailored to transform multi-channel input into multi-channel output. The
reduced dimensionality of single-channel NIR images renders many color transfer
methods ineffective because they often require inter-color distinction to produce
reasonable results.

However, it needs to be noted that NIR images and VIS images overlap in the red
band in the EM spectrum; therefore, they are similar and preserve almost similar
edges. For the same reasons, they tend not to work in complete darkness as they
are dependent on reflected light conditions. However, they benefit from the super
penetration of infrared radiation, which can overcome some visual obstacles such
as clouds and fog to obtain more information (such as pedestrians, animals, road,
and roadside information).

Researchers have studied how to colorize NIR images and found that they work
well because there is a high correlation between NIR and RGB images. For example,
Zhang et al. [190] look at the problem of recognizing faces in images taken with
NIR sensors in a dark environment. They showed that the progress made in face
recognition for images in the visible spectrum could not be used exactly for images
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2.2 Image Super Resolution

in the infrared spectrum because it could not get the same results. So, the authors
suggested that the NIR images be turned into color images while keeping the face
identity information so that the models could recognize faces.

Moreover, the use of thermal infrared cameras has grown significantly in many
areas. This is because their long wavelength lets them capture the invisible heat
radiation that objects emit or reflect, no matter how bright it is. They can work
around some obstacles and light changes, and they can even see things in total
darkness. Thermal images are shown in shades of gray or in images that look
like they have colors. But it is hard for people to understand thermal infrared
images with their eyes, and they are better at seeing and understanding true colors.
So, turning thermal infrared images into images in the visible spectrum is very
important for making the scene easier to see and understand, especially at night.

2.2 Image Super Resolution

This section discusses the problem of Image Super Resolution by giving the problem
definition and SISR frameworks in detail.

2.2.1 Problem Definition

The term "single image super resolution" refers to the process of reconstructing a
high-resolution image from its lower-resolution counterpart. Let consider a Low-
Resolution (LR) image is denoted by y and the corresponding high resolution (HR)
image is denoted by x, then the degradation process is given as:

y =Φ(
x;θη

)
(2.5)

whereΦ is the degradation function, and θη denotes the degradation parameters
(such as the scaling factor, noise, etc.). In a real-world scenario, only y is available
while no information about the degradation process or the degradation parame-
ters θη. Super-resolution seeks to nullify the degradation effect and recovers an
approximation x̂ of the ground-truth image x as,

x̂ =Φ−1 (
y,θς

)
, (2.6)

where θς are the parameters for the functionΦ−1. The degradation process is
unknown and can be quite complex. It can be affected by several factors, such as
noise (sensor and speckle), compression, blur (defocus and motion), and other
artifacts. Therefore, research works prefer the following degradation model over
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Chapter 2. Background

Figure 2.4: Image Super Resolution degradation and reconstruction model.

that of Equation 2.5.

y = (x⊗k) ↓s +n, (2.7)

where k is the blurring kernel and x⊗k is the convolution operation between the
HR image and the blur kernel, ↓ is a downsampling operation with a scaling factor s.
The variable n denotes the additive white Gaussian noise (AWGN) with a standard
deviation of σ (noise level) [5]. Figure 2.4 shows the reconstruction model of image
super resolution. To this end, the objective of SR is as follows:

θ̂ = argminθL (x̂y , xy )+λΦ(θ), (2.8)

where L (x̂y , xy ) represents the loss function between the generated HR image x̂y

and the ground truth image xy ,Φ(θ) is the regularization term and λ is the trade-off
parameter.

2.2.2 Super Resolution Frameworks

Due to the ill-posed nature of the SISR problem, the most important challenge is
figuring out how to actually upsample the LR images in a way that the generated
SR images be more sharp with fine details while minimize the artifacts. Although
current models’ architectures designs are widely vary, they can be classified into four
model frameworks (shown in Figure 2.5) depending on the upsampling techniques
and where it located in the network.
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(c) Progressive upsampling SR (d) Iterative up-and-down Sampling SR

Figure 2.5: Super-resolution model frameworks based on deep learning [163].

Pre-Upsampling Super Resolution

The first category is pre-upsmapling SR, which directly learns the mapping from
low-dimensional space to high-dimensional space, utilizing traditional upsampling
algorithms to obtain higher-resolution images and then refining them using deep
neural networks. This category is a straightforward solution, and the first work in
this direction was introduced by Dong et al. [36], called SRCNN. SRCNN adopts
the pre-upsampling SR framework (as Figure 2.5(a) shows) to learn an end-to-end
mapping from interpolated LR images to HR images. It has gradually become
one of the most popular frameworks and several approaches proposed such as
[79, 139, 146, 147]. But the predefined upsampling strategy is not efficient in terms
of computing because most operations are performed in a high-dimensional space.

Post-Upsampling Super Resolution

To overcome the pre-upsampling drawback, researchers suggested replacing the
predefined upsampling with end-to-end learnable layers incorporated at the end
of the algorithm in order to enhance computing efficiency and make full use of
deep learning technologies to boost resolution automatically. Post-upsampling (see
Figure 2.5(b)) is done by feeding low-resolution (LR) input into deep convolutional
neural networks (CNNs) and then adding end-to-end learnable upsampling layers at
the end of the network. Post-upsampling has the advantage of extracting features at
a lower computational cost compared to pre-upsampling frameworks since feature
extraction will happen in low-dimensional space. As a result, this framework has
also become one of the most widely used [86, 95, 154]. These models differ mainly
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in the learnable upsampling layers, CNN structures, learning strategies, etc.

Progressive Upsampling Super Resolution

The post-upsampling SR design has allowed for significant gains in computational
efficiency, although it still has several drawbacks. Training becomes significantly
more difficult for larger scaling factors since there is only one stage of upsampling.
Also, it needs a separate training for each scale factor. To overcome these limitations,
the Laplacian pyramid SR network has been introduced to adopt a progressive
upsampling structure [84](see Figure 2.5(c)).

Models built under this framework are able to deal with the multi-scale SR
without suffering unnecessary spatial or temporal cost by breaking down the task
into smaller pieces, which turns this strategy significantly reduces the learning
difficulty, especially for deep heavy models. However, there are still issues with the
models that operate within this framework. These include issues with the stability
of the training and the complexity of building models for numerous phases.

Up-and-Down Sampling Super-Resolution

More recently, SISR uses an effective iterative process called back-projection [69] to
better represent the interdependence of LR-HR image pairings. Iterative up-and-
down sampling SR is an SR framework (depicted in Figure 2.5(d)) that repeatedly
applies back-projection refinement (i.e., calculating the reconstruction error and
fusing it back, to fine-tune the HR image’s intensity). Several works have been
proposed by using this framework such as Haris et al. [54], Li et al. [92]. This
mechanism has been introduced recently into deep learning-based SR, and the
framework needs further exploration.

2.2.3 Upsampling Methods

The method used to perform upsampling is just as crucial as the upsampling places
in the model. While there are several traditional approaches to upsampling, CNNs
are quickly becoming the preferred method for learning end-to-end upsampling. In
this section, we will discuss about various classic interpolation methods and deep
learning-based upsampling layers.

Interpolation-based Upsampling

Image interpolation, also known as image scaling, is commonly used by applications
that work with digital images to change their size. Nearest-neighbor interpolation,
bilinear interpolation, and bicubic interpolation are examples of the standard
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2.2 Image Super Resolution

interpolation techniques. Some of these techniques are still often utilized in CNN-
based SR models due to their interpretability and ease of implementation.

• Nearest-neighbor interpolation: The nearest-neighbor interpolation is a
simple and intuitive algorithm. It selects the value of the nearest pixel for
each position to be interpolated regardless of any other pixels.

• Bilinear interpolation: Bilinear interpolation conducts linear interpolation
on one axis of the image before performing on the other one. It outperforms
nearest-neighbor interpolation while remaining reasonably quick since it
produces quadratic interpolation with a receptive field size of 2×2.

• Bicubic interpolation: Likewise, bicubic interpolation does cubic interpola-
tion on both axes. When compared to bilinear interpolation, bicubic interpo-
lation considers 4×4 pixels, resulting in smoother outputs with less artifacts
but significantly slower performance. In reality, bicubic interpolation with
anti-aliasing is the most often used approach for creating SR datasets.

In reality, interpolation-based upsampling methods increase image resolution
only by using their own image signals, with no additional data. Instead, they fre-
quently produce unwanted side effects, like noise amplification, blurred outcomes,
and computational complexity. The core concern is to replace interpolation-based
approaches with learnable upsampling layers to produce sharper and well-detailed
images.

Learning-based Upsampling

To address the drawbacks of interpolation-based approaches, Transposed convolu-
tion layer and sub-pixel layer are introduced to learn upsampling in an end-to-end
manner.

Transposed Convolutional Layer

Transposed convolution layer, a.k.a. deconvolution layer [181, 182], tries to perform
transformation opposite a normal convolution, i.e., predicting the possible input
based on feature maps sized like convolution output. Specifically, it increases
the image resolution by expanding the image by inserting zeros and performing
convolution. Taking ×2 SR with 3×3 kernel as an example as depicted in Figure 2.6,
the input is firstly expanded twice the original size, where the added pixel values
are set to 0 (Figure 2.6(b)). Then a convolution with kernel sized 3×3, stride 1,
and padding 1 is applied (Figure 2.6(c)). In this way, the input is upsampled by a
factor of 2, in which case the receptive field is at most 2×2. Since the transposed

23



Chapter 2. Background

(a) Starting (b) Expanding (c) Convolution

Figure 2.6: Transposed convolution layer. The blue boxes denote the input, and the
green boxes indicate the kernel and the convolution output [163].
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(a) Starting (b) Convolution (c) Reshaping

Figure 2.7: Sub-pixel layer. The blue boxes denote the input, and the boxes with
other colors indicate different convolution operations and different output feature
maps [163].
convolution enlarges the image size in an end-to-end manner while maintaining a
connectivity pattern compatible with vanilla convolution, it is widely used as an
upsampling layer in SR models [54, 112, 154]. However, this layer can easily cause
uneven overlapping on each axis [123], and the multiplied results on both axes
further create a checkerboard-like pattern of varying magnitudes and thus hurt the
SISR performance.

Sub-Pixel Layer

The sub-pixel layer [137], another end-to-end learnable upsampling layer, performs
upsampling by generating a plurality of channels by convolution and then reshap-
ing them, as depicted in Figure 2.7. Within this layer, a convolution is firstly applied
for producing outputs with s2 times channels, where s is the scaling factor (Fig-
ure 2.7(b)). Assuming the input size is h ×w ×c, the output size will be h ×w × s2c.
After that, the reshaping operation (a.k.a. shuffle [137]) is performed to produce
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outputs with size sh×sw×c (Figure 2.7(c)). In this case, the receptive field can be up
to 3×3. Due to the end-to-end upsampling manner, this layer is also widely used by
SR models [1, 14, 86]. Compared with transposed convolution layer, the sub-pixel
layer has a larger receptive field, which provides more contextual information to
help generate more realistic details. However, since the distribution of the receptive
fields is uneven and blocky regions actually share the same receptive field, it may
result in some artifacts near the boundaries of different blocks. On the other hand,
independently predicting adjacent pixels in a blocky region may cause unsmooth
outputs.

In summary, these learning-based layers have become the most widespread
upsampling techniques. In particular, in the post-upsampling framework, these
layers are typically employed in the final upsampling stage for reconstructing HR
images based on high-level representations extracted in low-dimensional space,
thereby achieving end-to-end SR while avoiding overpowering operations in high-
dimensional space.

2.3 Benchmark Datasets

Data is always necessary for data-driven models to achieve promising performance,
particularly, for deep learning-based models. Recently, industry and academics
have released a variety of datasets for various computer vision tasks. In this section,
we are going to list the widely used datasets, which have been used in this thesis.

2.3.1 Image Colorization

Figure 2.8: Representative test images from RGB-NIR Scene dataset [18].
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RGB-NIR Scene [18] dataset consists of 477 paired images in 9 categories captured in
RGB and Near-infrared (NIR). The images were captured using separate exposures
from modified SLR cameras, using visible and NIR filters. This dataset consists
of different scene categories such as: country, field, forest, indoor, mountain, old
building, street, urban, and water. We have used RGB-NIR Scene dataset to evaluate
our proposed colorization algorithms.

The RGB-NIR Scene dataset images were captured using Nikon D90 and Canon
T1i cameras, using B+W 486 (visible) and 093 (NIR) filters. The cutoff between the
two filters is approximately 750nm. After capture, the images were processed using
dcraw. The colour capture was white balanced (dcraw -a). The NIR capture was
processed using equal weights per band (dcraw -r 1 1 1 1), followed by averaging
of the channels. The images were registered by extracting SIFT features at approxi-
mately 1500×2000 resolution and using RANSAC to find a similarity transform. The
final transformation was recomputed via least squares from the inliers and used to
resample both images in a common coordinate frame .

2.3.2 Single Image Super Resolution

There are several datasets available for image SR that differ significantly in image
quantity, resolution, quality, and diversity. The widely used dataset by community
for model training is DIV2K [153], which includes 800, 100, 100 training, validation,
and test images respectively. Also, there are various benchmark datasets that can be
used to effectively evaluate the performance of the SR methods. The representative
image from all the datasets is shown in Figure 2.9.
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Figure 2.9: Representative test images from six most widely used super-resolution
datasets used for comparing and evaluating algorithms.

• Set5 [15] is a one of the first bechmark datasets that has been for performance
evaluation of SR models. Set5 contains only 5 images, a baby, butterfly, bird,
head, and a woman.

• Set14 [183] consists of more categories as compared to Set5. However, the
number of images are still low i.e., 14 test images.

• B100 [6] is another widely used benchmark datasets, which consists of 100
images of different scene, such as people, plants, food, objects and many
others.

• Urban100 [66] currently is the most challenging benchmark dataset, which
includes 100 images of human-made structures i.e., urban scenes.

• Manga109 [115] is another benchmark datasets to verifying the performance
of SR methods. This dataset contains of 109 drawn images by professional
Japanese artists.

27



Chapter 2. Background

2.3.3 Guidance Image Super Resolution

Figure 2.10: Representative some images from M3FD dataset [101].

Figure 2.11: Representative some images from RGB-NIR Scene dataset [18].

The M3FD is a newly fusion dataset, which released by [101]. The M3FD dataset
contains pair of visible and infrared images with resolution of 1024 × 768 and 640
× 512 respectively. The dataset built with a synchronized system of one binocular
optical camera and one binocular infrared sensor to capture corresponding two
modality images. We used M3FD Fusion dataset to train our GSR model which
consists of 300 aligned pair images from different scenarios in Daytime, Night,
and Overcast. The dataset consists of images from different scenes such as road,
campus, street, forest, and many others.

The second datasets that have been used for evaluating our Guidance Super
Resolution (GSR) model is RGB-NIR Scene dataset, which consists of 477 paired
images taken in RGB and Near-infrared (NIR). As it mentioned previously, This
dataset includes many scene types such as country, field, forest, inside, mountain,

28



2.4 Assessment Methods

oldbuilding, street, urban, and water.

2.4 Assessment Methods

Image quality assessment (IQA) commonly falls into two categories: objective and
subjective methods. Objective approaches have quickly become the standard for
evaluating restoration tasks due to their transparency and consistency. However,
they can only represent the recovery of image pixels from a numerical point of view,
and it is difficult to precisely quantify the actual visual effect of the image. On the
other hand, subjective approaches are always dependent on human subjective as-
sessments and are primarily concerned with evaluating the perceptual quality of the
image. Based on the pros and cons of the two types of methods mentioned above,
several assessment methods are briefly introduced in the following SubSections.

2.4.1 Image Reconstruction Accuracy

The assessment methods applied to evaluate image reconstruction accuracy are also
called Distortion measures, which are full-reference. Specifically, given a distorted
image x̂ and a ground-truth reference image x, full-reference distortion quantifies
the quality of x̂ by measuring its discrepancy to x using different algorithms.

Peak Signal-to-Noise Ratio

The Peak Signal-to-Noise Ratio (PSNR) [161] is the most frequently used image
quality assessment (IQA) approach in the restoration tasks, and it can be calculated
by the use of the mean squared error (MSE) between the ground truth image Iy ∈
RH×W and the reconstructed image Îy ∈RH×W :

MSE = 1

HW

H−1∑
i=0

W −1∑
j=0

(Iy (i , j )− Îy (i , j ))2, (2.9)

PSN R = 10 · log10

(
M AX 2

MSE

)
, (2.10)

where M AX is the maximum possible pixel of the image. Since PSNR is highly
related to MSE, a model trained with the MSE loss will be expected to have high
PSNR scores. The higher the PSNR value, the smaller the difference between the
reconstructed image and the original image, which means the better the image
quality [90]. However, since the PSNR is based on the global statistics of image pixel
values, the local visual factors of the human eye are not considered. As for human
eyes, the sensitivity to different regions is different, and the perception result of a
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specific area is also affected by the surrounding neighboring areas, so the evaluation
results of PSRN may have deviated from the perception of the human eye.

Structural Similarity Index Measure

The Structural Similarity Index Measure [161], also known as SSIM, is an another
well-known evaluation method. There is a strong correlation between their pixels,
which frequently contains crucial data about the object’s structure due to the com-
plex structure of natural images. While the human visual system primarily receives
structural information from the visible region, it is feasible to perceive the approxi-
mate knowledge information of the image distortion by detecting the deterioration
of the structural information. The measurement system of SSIM consists of three
measurement modules: brightness, contrast, and structure. Thus the SSIM can be
expressed as a weighted combination of three comparative measures:

SSI M(Îy , Iy ) = (l (Îy , Iy ))α · c(Îy , Iy ))β · s(Îy , Iy ))γ

=
(2µÎy

µIy + c1)(2σÎy Iy
+ c2)

(µ2
Îy
+µ2

Iy
+ c1)(σ2

Îy
+σ2

Iy
+ c1)

,
(2.11)

where l , c, and s represents luminance, contrast, and structure between Îy and
Iy , respectively, µÎy

, µIy , σ2
Îy

, σ2
Iy

, and σÎy Iy
are the average(µ) / variance (σ2) /

covariance (σ) of the corresponding items. A higher SSIM indicates higher similarity
between two images, which has been widely used due to its convenience and stable
performance on evaluating the perceptual quality.

2.4.2 Image Perceptual Quality

Because the human visual system is complicated and involves numerous variables
to determine the differences between two images, such as flow and textures within
the images, approaches that seek absolute similarity differences (PSNR/SSIM) will
not always work well. Despite the widespread use of distortion techniques, im-
provements in reconstruction accuracy are not always matched by improvements
in visual quality. Indeed, studies have demonstrated that distortion and perceptual
quality are at conflict in some cases [16]. The image perceptual quality of an image
x̂ is defined as the degree to which it looks like a natural image, which has nothing
to do with its similarity to any reference image.
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Natural Image Quality Evaluator

Natural Image Quality Evaluator (NIQE) [117] is a fully blind approach for evalu-
ating image quality. NIQE exclusively uses quantified deviations from statistical
regularities observed in natural images, without the need for prior information
about predicted distortions in the form of training samples and matching human
assessment scores. It generates a group of local (quality-aware) image features
based on a natural scene statistics (NSS) model and then fits the extracted feature
vectors to a multivariate Gaussian (MVG) model. The quality of a test image is
then estimated based on the distance between its MVG model and the MVG model
learned from a natural image. NIQE is formulated as follows:

D(v1, v2,
∑

1
,
∑

2
) =

√
((v1 − v2)T (

∑
1+

∑
2

2
)−1(v1 − v2)), (2.12)

where v1, v2 and
∑

1,
∑

2 are the mean vectors and covariance matrices of the HR
and SR image’s MVG model. Notice that, a higher NQIE index indicates lower image
perceptual quality.

Perceptual Index

In the 2018 PIRM Challenge on Perceptual Image Super-Resolution [17], perception
index (PI) is first proposed to evaluate the perceptual quality. It is a combination of
the no-reference image quality measures Ma and NIQE:

PI = 1

2
((10−M a)+N IQE). (2.13)

Among them, Ma Ma et al. [110] is a non-reference quality indicator applied in
the field of image super-resolution reconstruction, which does not refer to real im-
ages. It designs the types of low-level statistical features in the spatial and frequency
domains to quantify super resolution artifacts, and learning a two-stage regression
model to predict the quality score of SR images. A lower PI, better perceptual quality.

2.4.3 Learned Perceptual Image Patch Similarity Metric

LPIPS has been introduced by [189]; which stands for Learned Perceptual Image
Patch Similarity (LPIPS). LPIPS is a metric for determining how visually similar two
images are to the human eye. Using a pre-defined network like VGG, AlexNet, or
SqueezeNet, LPIPS calculates the similarity between the activations of two image
patches. This metric has been demonstrated to be an effective approximation of
human perception. Image patches with a low LPIPS score are perceptually similar,
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whereas those with a high score are more dissimilar.

Figure 2.12: Learned Perceptual Image Patch Similarity computing distance from a
network [189].

In this illustration d0 is compute distance between two patches, x, x0, given
a network F , first compute deep embeddings, normalize the activations in the
channel dimension, scale each channel by vector w , and take the ℓ2 distance. Then
average across spatial dimension and across all layers.

2.4.4 Frechet Inception Distance

Generative Adversarial Networks(GANs) are very difficult to evaluate as compared
to other networks. And, it is very important to evaluate the quality of GANs, because
it can help us in choosing the right model, or when to stop the training, or how to
improve the model. Out of several methods, Frechlet Inception Distance(FID) [60]
is one performance metric to evaluate the quality of GANs.

FID is a performance measure that represents the difference between the feature
vectors of real and fake images generated by the GAN’s generator. A lower FID
corresponds to images with higher quality; conversely, a higher score corresponds
to images with poorer quality. [60] demonstrate that there is a correlation between
lower FID scores and higher image quality when systematic distortions such as the
addition of random noise and blur are performed.

The FID score is then calculated using the following equation:

d 2 = ||mu1–mu2||2 +Tr (C1 +C2–2∗ sqr t (C1 ∗C2)) (2.14)

where the score is referred to as d 2, showing that it is a distance and has squared
units. The mu1 and mu2 refer to the feature-wise mean of the real and generated
images. The C1 and C2 are the covariance matrix for the real and generated feature
vectors, often referred to as sigma. The ||mu1–mu2||2 refers to the sum squared

32



2.4 Assessment Methods

difference between the two mean vectors. Tr refers to the trace linear algebra
operation. The sqrt is the square root of the square matrix, given as the product
between the two covariance matrices.

2.4.5 Cosine Similarity

It is possible to quantify the degree of two vectors, which are similar by computing
their cosine similarity. To be more precise, it evaluates the degree of correspondence
between the vectors’ directions or orientations while disregarding any variations in
their magnitude or scale. It is necessary that both vectors belong to the same inner
product space for inner product multiplication to yield a scalar.

Cosine similarity is described mathematically as the division between the dot
product of vectors and the product of the euclidean norms or magnitude of each
vector.

similarity = cos(θ) = A ·B

∥A∥∥B∥ =
∑n

i=1 Ai Bi√∑n
i=1 A2

i

√∑n
i=1 B 2

i

, (2.15)

where θ is the angle between the vectors. A ·B is dot product between A and B and
calculated as A ·B = AT B =∑n

i=1 Ai Bi = A1B1 + A2B2 + . . .+ AnBn . ∥A∥ represents

the L2 norm or magnitude of the vector which is calculated as ∥A∥ =
√

A2
1 + A2

1 . . . An
1

The similarity can take values between -1 and +1. Smaller angles between
vectors produce larger cosine values, indicating greater cosine similarity.

2.4.6 Reconstruction Efficiency

Although constructing deeper networks is the simplest technique to improve re-
construction performance, these models will also include additional parameters,
execution time, and computing expenses. Thus, it is necessary to examine the trade-
off between model performance and model complexity in expanding the practical
applications. Therefore, it is critical to analyze the reconstruction efficiency using
the fundamental metrics listed below.

• Model size: The model size is related to the storage that the devices need to
store the data. A model containing more parameters is harder for the device
with limited hardware to run it. Therefore, building lightweight models is
conducive to the promotion and application of the algorithm. Among all the
indicators, the parameter quantity of the model is the most intuitive indicator
to measure the model size.
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• Execution Time: A lightweight model typically requires a fast execution time,
but the development of complicated methods has disrupted this equilibrium
such as attention mechanism. i.e., when some sophisticated operations are
incorporated into the model, a lightweight network may require a significant
amount of time to execute. As a result, it is critical to evaluate the model’s
execution time.

• Multi-Adds: The main operations in the CNN approaches are multiplications
and additions. The number of multiply-accumulate operations, is always
employed to quantify model computation. The value of Multi-Adds is propor-
tional to the time required to execute the model. To summarize, the trade-off
between model performance and model complexity must still be considered.

2.5 Optimization Objective

In this section, we will introduce the necessary procedures during the model train-
ing.

2.5.1 Learning Strategy

Deep learning-based models can be mostly split into two categories, supervised
learning methods and unsupervised learning methods based the learning methods.

Supervised Learning

In supervised learning restoration tasks, researchers compute the reconstruction
error between the ground-truth image Iy and the reconstructed image Îy :

θ̂F = ar g mi nF L (Îy , Iy ). (2.16)

Alternatively, researchers may sometimes search for a mapping φ, such as a
pre-trained neural network, to transform the images or image feature maps to some
other space and then compute the error:

θ̂F = ar g mi nF L (Φ(Îy ,φ(Iy ))). (2.17)

Among them, L is the loss function which is used to minimize the gap between
the reconstructed image and ground-truth image.
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Unsupervised Learning

The term "unsupervised learning" refers to the process of using machine intelli-
gence (AI) algorithms in order to recognize patterns in datasets that do not contain
data points that have been categorized or labeled in any way. For example, in
CinCGAN[179], a model consists of two CycleGAN [195], where parameters are
upgraded through optimizing the generator-adversarial loss, the cycle consistency
loss, the identity loss, and the total variation loss together in each cycle.

2.5.2 Loss Functions

The effectiveness of the deep learning models depends heavily on the loss function.
Applying the appropriate loss function for a task ensures that the model learns the
most relevant information for a faster, more accurate convergence. Several loss
functions have been developed to penalize different aspects of the image restoration
tasks to improve the quality of the restored images. Loss functions are used in deep
learning models generally is a weighted sum of more than one loss function. By
doing so, network can focus on different problems. In this section, we will take a
closer look at the loss functions widely used in restoration tasks.

Pixel Loss

Pixel loss function is used as a metric for understanding differences between images
on a pixel level and measure of how far is the target image pixels are from the
generated image pixels. It mainly includes the L1 loss (i.e., mean absolute error)
and L2 loss (i.e., mean square error):

LL1(Îy , Iy ) = 1

hwc

∑
i , j ,k

∣∣∣Î i , j ,k
y − I i , j ,k

y

∣∣∣ , (2.18)

LL2(Îy , Iy ) = 1

hwc

∑
i , j ,k

(
Î i , j ,k

y − I i , j ,k
y

)2
, (2.19)

where h, w and c are the height, width, and the number of channels of the image.
While L2 loss favors a high PSNR, L1 loss is believed to be more robust against

outliers. Pixel Loss is one of the loss functions that has been widely used in the
literature.
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Content Loss

The content loss proposed by [75] to evaluate the perceptual quality of images.
Specifically, it measures the semantic differences between images using a pre-
trained image classification network. Denoting this network as φ and the extracted
high-level representations on l-th layer as φ(l )(I ) , the content loss is indicated as
the Euclidean distance between high-level representations of two images, as follows:

Lcontent = (Iy , Îy ;φ, l ) = 1

hl wl cl

√ ∑
i , j ,k

(φ(l )
i , j ,k (Îy )−φ(l )

i , j ,k (Iy ))2, (2.20)

where hl , wl and cl are the height, width and number of channels of the representa-
tions on layer l , respectively.

Essentially the content loss transfers the learned knowledge of hierarchical
image features from the classification network φ to the different image restoration
task such as SR network. In contrast to the pixel loss, the content loss encourages
the output image Îy to be perceptually similar to the target image Iy instead of
forcing them to match pixels exactly. Thus it produces visually more perceptible
results.

Adversarial Loss

In recent years, a GANs [45] receive more attention in various vision tasks due
to their powerful learning ability. To be more specific, GAN usually include of a
generator and discriminator to generate and validate the image, whether each
input comes from the target distribution or not. During training, through adequate
iterative adversarial training, the generator try to produce outputs consistent with
the distribution of real data, while the discriminator try to distinguish between the
generated data and real data.

In other word, the generator tries to minimize the following function while the
discriminator tries to maximize it:

Ex [log(D(x))]+Ez [log(1−D(G(z)))] (2.21)

where D(x) is the discriminator’s estimate of the probability that real data instance x
is real. Ex is the expected value over all real data instances. G(z) is the generator’s
output when given noise z. D(G(z)) is the discriminator’s estimate of the probability
that a fake instance is real. Ez is the expected value over all random inputs to the
generator (in effect, the expected value over all generated fake instances G(z) ).

Adversarial loss has been used in several restoration tasks such as Mao et al.
[113], Wang et al. [160], Yuan et al. [179].
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Cycle Consistency Loss

The problem with only using adversarial loss is that the network can map the same
set of input images to any random permutation of images in the target domain. Any
of the learned mappings can, therefore, learn an output distribution that is similar
to the target distribution. There can be many possible mapping functions between
two domains. Cycle Consistency Loss has been introduced by [195] to overcome
the aforementioned problem. Let say we are having two image domains Cycle
Consistency Loss captures the intuition that if we translate the image from one
domain to the other and back again we should arrive at where we started. Hence,
it calculates the L1 loss between the original image and the final generated image,
which should look same as original image. The cycle consistency loss is represented
as:

Lcyc (G ,F ) = Ex∼pdata (x) [∥F (G(x))−x∥1]

+Ey∼pdata (y)
[∥G(F (y))− y∥1

] (2.22)

where ||x|| denotes the mean absolute error, or MAE, of x. Taking the mean
absolute error of x and y , where x and y are both n dimensional vectors, is a method
of measuring the distance between those vectors. MAE takes the absolute distance
of each element, and then averages that into a single number.

Identity Loss

The identity loss also introduced by [195], which encourage the generator to pre-
serve the color composition between input and output. This is done by providing
the generator an image of its target domain as an input and calculating the L1 loss
between input and the generated images. The identity loss is simple, G(y) should
≈ y and F(x) should ≈ x. The identity loss can written as:

Lidentity (G ,F ) = Ey∼pdata (y)
[∥G(y)− y∥1

]
+Ex∼pdata (x) [∥F (x)−x∥1]

(2.23)

2.5.3 Other Improvements

In addition to the learning strategies, there are other techniques further improving
deep learning models such as:

• Data augmentation. One of the most extensively utilized approaches for
improving deep learning performance is data augmentation. Scaling, ro-
tating, cropping, and flipping are only a few examples data augmentation
techniques.
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• Network interpolation. PSNR-based models produce images closer to ground
truths but introduce blurring problems, while GAN-based models bring better
perceptual quality but introduce unpleasant artifacts (e.g., meaningless noise-
making images more realistic). In order to better balance the distortion
and perception, Wang et al. [158] propose a network interpolation strategy.
Specifically, they train a PSNR-based model and train a GAN-based model
by fine-tuning, then interpolate all the corresponding parameters of both
networks to derive intermediate models. By tuning the interpolation weights
without retraining networks, they produce meaningful results with much
fewer artifacts.

• Self-ensemble. Self-ensemble, also known as enhanced prediction [152], is
an inference technique commonly used. For example, in SR task, rotations
with different angles (0◦,90◦,180◦,270◦) and horizontal flipping are applied
on the LR images to get a set of 8 images. Then these images are fed into
the SR model and the corresponding inverse transformation is applied to the
reconstructed HR images to get the outputs. The final prediction result is
conducted by the mean or median of these output.

Self-ensemble is a frequent inference technique to improve the prediction.
For instance, in SISR rotations with different angles (0◦,90◦,180◦,270◦) and
horizontal flips are performed to the LR images to produce a collection of 8
images. The images are then used as input into the SR model, and later the
associated inverse transformation is applied to the reconstructed HR images
to produce the outputs. The overall forecast result is determined by the mean
or median of these outputs.

2.6 Most Related Network Frameworks

This section focuses on reviewing the most related SOTA deep learning-based
approaches to this thesis.

2.6.1 Image Colorization Frameworks

Colorization problem has been studied during last decades, several techniques
have been proposed to unravel this difficult task. Some of the methods proposed
in the literature follow a semi-automatic approach, which means they need user
interactions or to employ some user-defined search table. Other approaches, mainly
learning based approaches, are based on having aligned image pairs (NIR-RGB),
which in most of the cases are not available. The issues mentioned within the
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current work are expounded with infrared image colorization, as mentioned above,
it somehow shares some common issues with monochromatic approaches to image
colorization. Monochromatic image colorization algorithms vary in the ways they
obtain and process data for modeling between gray-scale and RGB images.

Colorization approaches can be usually classified into two groups: paramet-
ric and non-parametric. At the training time, parametric techniques try to learn
predictive functions from large color image datasets, posing the problem either
as a classification of quantified color values or as a regression to continuous color
space. On the other hand, in the non-parametric techniques a gray-scale image
is provided as an input and then one or more color provided as source images by
user or automatically; then color from reference images transferred statistics onto
homogeneous regions of the input image, such as Welsh et al. [165], Gupta et al. [52],
Irony et al. [70]. All the papers mentioned before are example-based approaches,
which works as semi-automatic methods to transfer color statistics from reference
images onto input gray-scale images. Although good results are obtained, there is
a big drawback with all these techniques that is related with the requirement that
input and reference images should share the same content, actually both of them
should be perfectly registered, which is not the case in most of the real scenarios.

GAN networks are a kind of Convolutional Neural Network (CNN) that are able
to generate samples from a given latent space, this network has been introduced by
Goodfellow et al. [45]. The mentioned GAN architecture build up by a series of linear
layers (fully-connected layers) and so insufficient to complex dataset. The model
consists of two networks a Discriminator (D) and a Generator (G), which going
to against each other. In other words, the discriminator try to distinguish the real
samples from fake samples that have been generated by the generator. On the other
hand, the generator job is to fool the discriminator with the generated samples (fake
images) to be classified as real images. Both networks, D and G , are simultaneously
optimized. As mentioned above, the main issue of the standard GAN was limited to
simple datasets so shortly afterwards researcher proposed the new architecture for
GAN to address this limitation, DCGAN (Deep Convolutional Generative Adversarial
Network) [128] has been introduced by Radford et al. and changed the standard for
most of GAN architectures. DCGAN architecture became one of the most popular
and successful network design for GAN. In DCGAN instead of using series of linear
layers that is only suitable for simple datasets, convolution layers without max
pooling or fully connected layers are considered and furthermore convolutional
stride for the down-sampling and transposed convolution for the up-sampling are
used that made DCGAN architecture appropriate for complex dataset. DCGAN
standard has been applied in various computer vision problems such as image
colorization [144], image enhancement [86], style transfer [26], data augmentation
[4] and many others.
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Previous approaches are useful when paired images are provided for the training
process. In the case of unpaired images, architectures such as CycleGAN [195] or
Dual-GAN [175] have been proposed by learning mapping between different visual
domains jointly, each as a separate generative adversarial network. Via a cycle-
consistency loss ensures that applying each mapping followed by its reverse yields
the identity map (i.e., "if we translate from one domain to another and back again
we must arrive where we started").

Regardless of the used architecture, Generative Adversarial Networks usually
suffer from multiple challenges during training that needs more attention than
Convolutional Neural Networks (CNNs). Such as mode collapse, convergence prop-
erties, diminished gradient and highly sensitive to the hyper-parameter selections.
Arjovksy et al. [7] illustrated that the discriminator in standard GAN cannot be
trained well or with a high learning rate; otherwise gradient vanish may show off
and generator not able to generate samples anymore and learning will stop. They
also proved that the standard GAN loss function cannot accurately deal with in-
appropriate distributions, for example those with disjoint supports, often found
during training stage of GAN. To solve the mentioned challenges many different
GANs have been proposed by using vary loss functions during training or using
different D during the learning process such as LSGAN [113], WGAN [8] and many
others. Even though the proposed approaches have been relatively successful solv-
ing these challenges (training stability, data quality, etc.), Lucic et al. [107]’s large
- scale research suggests that such approaches are not improving standard GAN
consistently. In addition, some of the best proposed approaches, like WGAN-GP
[47], requires far more computational comparing with standard GAN. Alexi [76]
illustrated that a relativistic discriminator based on integral probability metrics
(IPM), is essential to make GANs similar to divergence minimization and generate
reasonable forecasts on the basis of a previous knowledge. In such discriminator,
half of the images in the mini-batch consider as fake. The proposed approach prove
that GANs are able to generate higher quality samples, less computational and more
stable than the previous approaches.

2.6.2 Single Image Super Resolution Frameworks

In this section, recent state-of-the-art SR deep learning approaches are detailed. In
below subsections, SR lightweight models, which focus on compressing the number
of parameters and operations, attention mechanism, and vision transformers are
reviewed.
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Deep Learning Based Single Image Super-Resolution

Dong et al. [35] present one of the first work using CNN to tackle the SR task
(i.e., SRCNN). The SRCNN receives an upsampled image as an input that cost
extra computation. Later on, to address this drawback, FSRCNN [37] and ESPCN
[137] have been proposed to reduce the large computational and run time cost by
upsampling the features near to the output of the network. This tactic leads results
in efficient approaches with low memory compared to SRCNN. However, the entire
performance could be reduced if there are not enough layers after the upsampling
process. In addition, they cannot manage multi-scale training, as the size of the
input image differs for each upsampling scale.

Even though the strength of deep learning shows up from deep layers, the
above-mentioned methods are referred to as shallow network due to the training
difficulties. Therefore, Kim et al. [78] use residual learning to ease the training
challenges and increase the depth of their network by adding 20 convolutional
layers. Then, [147] has proposed memory block in MemNet for deeper networks
and solve the problem of long-term dependency with 84 layers. Thus, CNN-based
SR approaches demonstrate that deeper networks with various types of skip con-
nections show better performance. Thereby, Lim et al. [95] introduce EDSR by
expanding the network size and enhancing the residual block by omitting the batch
normalization from residual block. Zhang et al. [192] propose RDN with residual
and dense skip connections to fully use hierarchical features. Li et al. [89] propose
a network with more than 160 layers plus improved residual units. Despite of the
fact that they achieve higher PSNR values, the number of parameters and opera-
tions are increased, which leads to high risk of overfitting and limits for real-world
applications.

Deep Learning Lightweights Single Image Super Resolution

In recent years the interest of building lightweight and efficient models has been
increased in SISR to reduce the computational cost. Several lightweight networks
have been introduced, such as SRCNN [35], FSRCNN[37], ESPCN[137], which were
the first attempts, but they could not perform well. Later, Ahn et al. [1] design a
network that is suitable in the mobile scenario by implementing a cascade mecha-
nism beyond a residual network (CARN), in order to obtain lightweight and improve
reconstruction but it is at the cost of reduction of PSNR. Then, a neural architecture
search (NAS)-based strategy has been also proposed in SISR to construct efficient
networks—MoreMNA-S [29] and FALSR [28]. Howerver, due to limitation in strategy,
the performance of these models are limited. Later, [120] introduces MAFFSRN by
proposing multi-attention blocks to improve the performance. Recently, LatticeNet
[100] introduces an economical structure to adaptively combine Residual Blocks,
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which achieve good results. All these works suggest that the lightweight SR networks
can keep a good trade-off between PSNR and parameters.

Attention Mechanism

Attention can be described as a guide to bias the allocation of available computer
resources to the most important informative elements of an input. Recently, some
works have focused on attention mechanism for deep neural networks. Hu et al.
[63] introduce squeeze-and-excitation (SE) block, a compact module to leverage
the relationship between channels. Also, Woo et al. [167] propose a Convolutional
Block Attention Module (CBAM) to exploit the inner-spatial and inner-channel rela-
tionship of features to achieve a performance improvement in image classification.

Recently, RCAN [191] designs a very deep network with a channel attention
mechanism to enhance the reconstruction results by only considering inner-channel
information, which call first-order statistics. In contrast, Dai et al. [31] introduce
the second-order attention network in order to explore more powerful feature ex-
pression. More recently, Li et al., [100] propose enhanced spatial attention (ESA) to
make the residual features to be more focused on critical spatial contents.

Vision Transformer

Transformer networks shows breakthrough performance in the Natural Language
Process (NLP). In contrast to ConvNets, Transformer networks have advantage of
capturing long-range dependency in the input with the global self-attention. The
core idea of Transformer is "self-attention" module, which is capable of capturing
long-term information between sequence elements.

The impressive performance of Transformer-based networks in the NLP domain,
inspires the computer vision community to adapt the Transformer for vision tasks.
The first work in this direction has been done by Alex et al. who proposes ViT
[38] as a Vision Transformer, which replace the standard CNN with Transformer
and directly train on the medium size flattened patches with large-scale data pre-
training.

Since introducing the first work, many Transformer-based architectures have
been proposed for the vision tasks in image recognition [178], object detection
[21, 104], segmentation [157, 169], and action recognition [126, 136]. In addition,
Transformer based models have been studied for the low-level vision problems such
as super resolution [93, 106], image colorization [82], denoising [164], and image
restoration [180]. For instance, DETR [21] is a transformer network designed for
object detection, which can predict a set of objects and model their relationships.
SwinIR introduced by Jingyun et. al. [93] for low-level vision tasks by using Swin
Transformer [104], which applying self-attention within local image regions to solve
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the low-level vision problems.
Although the Transformer based networks achieve excellent performance in

low-level Vision tasks, these methods are still depends on providing heavy GPU
resources to train the model, which is not feasible or available to most of the re-
searchers. Also, the computational complexity of self-attention in Transformers
can increase quadratically with the number of token to mix (i.e., image patches),
thereby prohibiting its application to high-resolution images.

2.6.3 Guidance Super Resolution Frameworks

Guidance Super Resolution (GSR) techniques have been used to upsample images
from a different domains to generate more accurate SR images by using the informa-
tion of other domain images (i.e, visible images) while having such a high resolution
infrared images are expensive. Traditional GSR approaches, such as joint bilateral
upsampling [80] and rapid bilateral filtering [11] are already studied for this task,
however these methods frequently over-smooth the reconstructed image. Recently,
by advancing deep learning methods several approaches have been introduced
to boost performance of GSR task. GSR techniques have been studied in different
super resolution domains such as depth-map SR, infrared SR, thermal SR, hyper-
spectral SR and some others. MSG-Net [68], employ CNNs to accomplish guidance
super resolution, which was the first CNN model that attempts to upsample depth
images under multi-scale guidance from the corresponding HR visible images.

Most of GSR methods are based on the Siamese algorithm, which let the net-
work to accept two inputs and perform simultaneous feature extraction from other
spectral images and visible images. These images are then fused in different level
of the network and upsampled to provide a high-resolution images. Furthermore,
GSR approaches with similar structure used in guidance hyperspectral SR methods
include [83, 138]. Also, some models proposed for guidance infrared SR such as
[24, 141]. Feras et al. [3] propose a multimodal sensor fusion model to enhance
the thermal images with help of RGB images. Also, some approaches for cross-
modal guidance super resolution extract edges from the visible images in order
to obtain high-frequency features. The use of edge-based guiding facilitates the
reconstruction of higher-frequency features such as [170, 193]. Despite that the
aforementioned approaches achieve reasonable performance, these method are
limited to a fix scale factor and not ideal for real world application due to number
of network parameters and their performance.
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2.7 Summary

This chapter begins with a discussion of the problem definitions. Then, we discuss
benchmark datasets, evaluation methodologies, frameworks, and optimization
targets. Finally, a summary of relevant works is given.
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3 Colorizing Near Infrared Images through
a Cyclic Adversarial Approach of Unpaired
Samples

This chapter presents the article published at:

Armin Mehri, and Angel D. Sappa. "Colorizing near infrared images through a
cyclic adversarial approach of unpaired samples." In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, 2019.

This paper presents a novel approach for colorizing near infrared (NIR) images.
The approach is based on image-to-image translation using a Cycle-Consistent
adversarial network for learning the color channels on unpaired dataset. This
architecture is able to handle unpaired datasets. The approach uses as generators
tailored networks that require less computation times, converge faster and gener-
ate high quality samples. The obtained results have been quantitatively—using
standard evaluation metrics—and qualitatively evaluated showing considerable
improvements with respect to the state of the art.

3.1 Motivation

In recent years, image acquisition devices have expanded significantly due to the
increase in computational power and the reduction in electronics prices. Improving
the sensor technology has lead to a large family of cameras capable of capturing
information from various spectral bands or additional information (3D, 4D); hence
nowadays we can have: panoramic 3D images; multispectral images; HD 2D images;
video sequences at a high frame rate; and many others. Regardless of the large
number of possibilities, the fact that the human visual system is sensitive to (400-
700 nm) the classical RGB representation is preferred if the information needs to be
provided to the final user. Therefore, for better user understanding, representing
the information in the range of 400-700nm is preferred [144]. Out of this spectral
range the NIR band is one of the most widely used band.
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The NIR spectral band is the nearest band to the human eye perception system,
so NIR images share various attributes with visible spectrum images. The use of
NIR images is concerned with their ability to segment images according to the
material of the object. For example, most coloring matter utilized for colorization
of materials are slightly transparent to NIR. In other word, the distinction within the
NIR intensities is not solely due to specific color of the material, however conjointly
to the absorption and coefficient of reflection of the materials of a given object.
The aforementioned attributes (absorption and reflectance) are interesting for
applications such as video surveillance, detection and remote sensing for crop
stress. In these two contexts (i.e., video surveillance and remote sensing), it is quite
troublesome to orient once near infrared images are provided to the final users, as
color discrimination is lacking or incorrect color deployment. Hence, obtaining
realistic RGB image representations from NIR images is a needed in most of these
applications.

NIR image colorization shares some similarities with those approaches pro-
posed in the literature for gray scale image colorization or color transfer functions
(e.g., [124], [25], [187]). In spite of the similarity with these approaches, due to the
nature of NIR images, their colorization is more challenging. In recent years several
approaches for NIR image colorization have been proposed (e.g., [144], [96], [145]).
Most of them are learning based approaches where couple of registered NIR and
RGB images are provided during the training stage. The limitation with all these
approaches is related with the need of these couple of paired images (NIR-RGB).
In general, although there are Single Sensor Cameras (e.g., [142]) where RGB and
NIR information is acquired at the same time, NIR images are taken by one camera
while the corresponding RGB image by another camera. This means that there are
shifts between the acquired images, or in some cases even worse since just the NIR
images are provided.

In the last few years, Generative Adversarial Networks (GANs) have drawn atten-
tion in many field of computer vision to help researchers to build powerful models,
where there were difficulty by using only simple Convolutional Neural Networks
(CNNs). Nevertheless, most of the GAN techniques [71] have focused on supervised
context. The unpaired (NIR-RGB) problem mentioned above, can be tackled by a
GAN architecture in the unsupervised context under a cyclic structure (CycleGAN)
[195]. CycleGAN learns to map images from one domain (source domain) onto
another domain (target domain) when paired images are unavailable. This func-
tionality makes models appropriate for image to image translation/colorization
in the context of unsupervised learning. In the current paper a novel CycleGAN
architecture is proposed for colorizing unpaired NIR-RGB images; the main con-
tributions of our proposed model, compared with baseline [195], are as follows: i )
it utilizes tailored generators, which can work better in colorization context and
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Colorized imageInput NIR image Recovered NIR image

GC GN

DC

RGB image

Real or 
Fake?

Cycle-Consistency Loss

Figure 3.1: Illustration of the CycleGAN architecture used for NIR image colorization
with unpaired NIR-RGB datasets.

have less computation time and less parameters size; i i ) it converges faster than
the baseline approach [195]; finally, i i i ) it produces higher quality images.

3.2 Proposed Approach

This section explains in details the approach proposed for colorizing NIR images.
As mentioned previously most of recent work on colorization have proposed the
usage of a deep convolutional generative adversarial network on aligned paires of
images, which in most of the cases do not represent a real scenario. In the current
work the usage of a CycleGAN to colorize NIR images to a RGB representation is
proposed (see Figure 3.1), when an aligned paired dataset does not exist.

In order to handle inputs and outputs in both generators, a model that is feed
with three channels is proposed. This model will receive as an input three channels,
which could correspond to: i ) a given NIR image three times (this is in the GC

case); or i i ) a RGB image (this is the GN case). A loss function different to the one
proposed in [195] is used to minimize the overall classification error in the training
process, which improves the generalization capability of the model.

The proposed architecture built up by a series of convolutional and transposed
convolutional layers; relu and leaky relu as non-linear activation functions; for
generators and discriminators respectively. Moreover, every layer of D uses the
spectral normalization and instance normalization in G . Also, it is worth to mention
pooling layer have not been used in the networks, instead strided convolutions
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Figure 3.2: Illustration of the Encoder and Decoder structures of the proposed
approach.
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Figure 3.3: Illustration of the structure of generators for NIR image colorization.

used in order to keep as much features as possible, since a pooling layer is down-
sampling the feature depends on stride number, which leads to data in features
map to loss. Dropout layers are used in the terms of noise to few layers of generators
in order to prevent overfitting and modal collapse. Added noise in few layers of G
leads network to generate the necessary variability of the training set, to be able to
generalize the learning of the colorization process.

Both networks (G , D) are based on feed-forward deep neural networks, which
play a min-max game against each other. The near infrared image given to G as an
input data with the image size 256×256 pixels, and networks try to transforms the
given sample (NIR image) onto the interested form of the data we concerned, a RGB
representation. On the other hand, D takes a set of data, either a real sample or a
produced sample, and produces a probability of that data being real. The network
D is optimized in order to increase the likelihood of giving a high probability to the
real data and a low probability to the generated data (i.e., if the probability is near
to 1 it means the NIR image is correctly colored, while if probability is near to 0 it
means that NIR image is wrongly colored).
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3.2.1 U-net as Generators

ResNet architecture [55] has been used as a part of the generators in the CycleGAN
[195], showing that it is quite powerful in transfiguring one image to another image
and has been achieved the reasonable results in style transfer, photo enhancement,
season transfer and other several applications. Unfortunately, it could not achieve
acceptable results in learning the color between domains and transferring the
learned color without affecting the samples’ shapes, since the network after some
number of epochs starts to transfigure between domains; hence the net will stop
to learn the color and also networks need plenty of data in RGB domain. The first
contribution of current work with respect to baseline model [195] is to select the
generators, which are able to generate better samples and learn accurately the
colors of the different objects in images and works better when not enough data
are available in both domains. The architecture proposed in this paper (U-net
[133]) also leads to have less computational time in training process. U-net based
architecture [133], proposed as generators of the models, has showed efficiency on
a wide range of approaches, especially in the colorization problems (e.g., [71],[188]).

The Unet architecture build up based on three components: 1) encoder where
the input passes through a series of down-sampling layers (i.e., convolutional layers
to extract the feature samples); 2) bottleneck layer, which helps the model to share
all information pass through all the layers so low-level information will be available
directly among the net. To give the generator a means to circumvent the bottleneck
for information like this, in the pix2pix model [71] the skip connections, following
the general shape of a “U-Net”, which simply concatenates all channels at layer i
with those at layer n − i ; 3) decoder, the last component of U-net, which do the
reverse process of the encoder (i.e., back to the normal image from the extracted
feature by pass through the series of transposed convolutional layers (up-sampling)).
Also, U-net shows that is quite powerful in the case of understanding the color from
one domain and transferring onto another domain (NIR images). U-net architecture
with skip connections is illustrated in Figure 3.3.

3.2.2 Loss Functions

In the proposed model a multi-term loss function (L f i nal ) has been used by com-
bination of RaLSGAN loss, Cycle Consistency loss, Structural Similarity loss (SSIM)
and Identity loss. The combination of these loss functions leads to achieve better
image quality for human perceptual criteria as presented in the experimental result
section.

The RaLSGAN loss function [76] is applied to both generators GC , GN and their
discriminators DC , DN of the model respectively:
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L
Gi
RaLSG AN = Ex f ∼P[(C (x f )−Exr ∼PC (xr )−1)2]+Exr ∼P[(C (xr )−Ex f ∼QC (x f )+1)2]

(3.1)

L
Di
RaLSG AN = Exr ∼P[(C (xr )−Ex f ∼QC (x f )−1)2]+Ex f ∼Q[(C (x f )−Exr ∼PC (xr )+1)2]

(3.2)

where P and Q are the distributions of real and generated data respectively; C (xr )
and C (x f ) are the probability of D for real and fake data.

The Cycle Consistency loss function is defined as follow:

Lc yc (GC ,GN ) = En∼pd at a (n)[||GN (GC (n))−n||]+Ec∼pd at a (c)[||GC (GN (c))− c||] (3.3)

where n and c correspond to domain images (n for NIR images and c for color
images).

The Structural Similarity Index (SSIM) [161] has been used during training
process, where the aim of using such loss function is to help the learning model to
generate a visually improved image. The structural loss function defined as below:

LSSI M = 1

N M

P∑
p=1

1−SSI M(p). (3.4)

The Identity loss function employed to regularize the generator. The aim of
using such loss function is if something already looks like from the target domain,
should not map it into a different image.

Li denti t y (GC ,GN ) = Ec∼Pd at a (c)[||GC (c)− c||]+En∼Pd at a (n)[||GN (n)−n||]. (3.5)

The final objective L f i nal is obtained as below:

L f i nal =LRaLSG AN +λLC ycle +LSSI M +γLI denti t y (3.6)

where λ,γ are the weights to Cycle Consistency and Identity loss function, which
play as regularization terms impacting on the optimization of the model. Assigning
a bigger weights lead the model to have better reconstruction loss and model will
make smaller changes. On the other hand, a smaller weights increase the risk of
artifacts and lead the model to bring more dramatic changes with respect to input
images.

3.2.3 Spectral Normalization

The performance control of the discriminator is an ongoing challenge in training
Generative Adversarial Networks. The density ratio estimates by the discriminator

50



3.2 Proposed Approach

Figure 3.4: Unpaired set of images (256×256 pixels each) used for training the
proposed approach and CycleGAN [195]; (top − r ow) NIR images from [19];
(bot tom − r ow) RGB images collected from internet.

in high-dimensional spaces is often imprecise and unstable during learning phase,
so generators do not learn the multimodel structure of the target. To solve the
mentioned issue [118] proposed the normalization method. It helps to stabilize the
training of discriminators by applying spectral normalization. Hence, discriminator
becomes more stable and the network converge faster in less number of epochs. In
the current work spectral normalization has been used so that the network learns
the structure of images much better and generates better image quality comparing
to baseline model [195].

3.2.4 Better Cycle Consistency

Cycle Consistency loss function is one of the main features of CycleGAN, which
simply motivates generators to prevent needless changes and generates images that
share structural similarity with inputs. Also, the Cycle Consistency helps a lot to
make training phase stable in the early stages, but becomes a problem in later stages
to generate realistic images. Since Cycle Consistency is a form of regularization we
propose to progressively decrease the weight of cycle loss after half way of training
process. Nevertheless, λ (in eq. (3.6)) needs to be checked to not become 0 in order
to prevent the generators become unstable and unconstrained.
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3.2.5 Two Time-Scale Update Rule

Training GANs, unlike of CNNs, needs more attention since mode collapse may
occur in the learning process, when the generator generates a restricted variety of
samples, or even the same sample, regardless of the input and prevent GAN to learn
the target distribution. In [60] the authors propose the two time-scale update rule
(TTUR), which improves the general performance, convergence speed and helps
to prevent the mode collapse of GANs. TTUR has been applied to the proposed
approach with ADAM stochastic optimizer to risk reduction of mode collaps and
also to make sure that the discriminators converge in the training process.

3.3 Experimental Results

The proposed approach has been evaluated by using NIR images and their corre-
sponding RGB, which were used as ground truth. The data set has been obtained
from [19]; it contains pairs of NIR-RGB images of 1024×680 pixels each from differ-
ent categories. It should be mentioned that dataset images are correctly registered
and a pixel-to-pixel correspondence is guaranteed for quantitative and qualitative
evaluation. Only categories with similar scenarios have been chosen for training
the proposed model. The selected categories are as follow: country (50 pairs of
images), field (51 pairs of images), forest (52 pairs of images) and mountain (50
pairs of images). The objective is to train the network in scenarios that contain
similar objects.

The NIR images from the mentioned categories have been used during training
while the corresponding RGB images (ground truth) have not been used neither
during the training nor testing phases; they are only used for quantitative and
qualitative evaluations. The RGB images used during the training process have
been collected from internet (700 images); all the collected images correspond to
scenarios similar to those from the aforementioned categories. Each pair of the
original NIR and RGB images (from [19]) has been split up into two smaller images
of 680×680 pixels each, resulting in a total of 406 pairs. From this set 68 pairs of
images have been randomly selected and keep aside for evaluating the performance
of the proposed approach. The rest of NIR images have been resized to 256×256
pixels, which was the size used to feed the network. All the RGB images collected
from internet have been also resized up to 256×256 pixels each. In order to increase
the number of images for training a data augmentation process has been applied
(horizontal flipping and random crop). Figure 3.4 shows just four pairs of these
unpaired (NIR-RGB) images used for training.

Results obtained with the proposed approach have been compared with results
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obtained using the baseline model presented in [195]. Quantitative and qualitative
results from this NIR image colorization are presented in next sub sections. The
proposed network has been trained using a 3.2 eight core processor with 62GB
of memory with a NVIDIA GeForce GTX TITAN X GPU; on average the training
process took near to 13 hours to complete 200 epochs. The model has been trained
by using ADAM stochastic optimizer due to several advantages, slight memory
requirements, it is computationally effective, also leads network to converge faster
compared with the other stochastic optimizer and it prevents from overfitting.
Dataset has been normalized from range of (0, 255) to (-1, 1); normal weights
initialized with mean 0 and standard derivation 0.2 used in the proposed approach.
The hyper-parameters were tuned during training stage as follows: learning rate
0.0003 and 0.0009 for generators and discriminators respectively; weight decay
1e-8 for generators, exponential decay rate 0.50, 0.999 for the first and second
momentum (beta1, beta2); leak relu 0.2; cycle consistency weight 100; dropout with
0.5 probability.

3.3.1 Evaluation Metrics

In order to assess the performance of the proposed approach average Angular
Error (AE) is considered. It is a widely used evaluation measure in color constancy
research. AE is defined as the average angular distance between every obtained
RGB pixel (RGBoi , j ) with the corresponding ground truth (RGB gi , j ). AE is used as
an evaluation metrics since this measure is quite similar to the human spectator.
AE is defined as:

AE = cos−1
(

dot (RGBo ,RGBg )

nor m(RGBo)×nor m(RGBg )

)
(3.7)

Additionally, Fréchet Inception Distance (FID) [60] has been used for comparing
the similarity between obtained images and ground truth images in an embedded
space. The FID is computed by using the Inception model up to a specific layer.
Hence, in the case of two sets of multivariate Gaussians the FID between two
distributions is obtained by calculating their means and covariances:

F I D(Xg , Xo) = ||µg −µo ||22 +Tr (Σg +Σo −2(ΣgΣo)
1
2 ) (3.8)

where the Xg is the set of real images (ground truth) and Xo is the set of obtained
images. Lower FID results show the obtained images are more similar to ground
truth images.
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3.3.2 Quantitative Results

v Table 3.1 presents the quantitative results based on average AE and FID with the
scenarios mentioned above (set of 68 pairs used as ground truth) for both models
(proposed approach and baseline model [195]). According to the obtained average
AE, the proposed approach improves CycleGAN in about 40%. In the case of FID
metrics, the proposed approach gets an improvement of almost 39% with respect
to CycleGAN. It can been seen that the proposed approach has smaller errors than
the baseline model [195]. These results show that Relativistic loss and SSIM loss
functions help to enhance the performance of the original CycleGAN [195]. Figure
3.5 depicts the box plot for the average AE of both approaches.
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Figure 3.5: Avarage AE distribution for both approaches.

3.3.3 Qualitative Results

Figure 3.6 depicts some illustrative results for comparisons, both with respect to
CycleGAN [195] and the corresponding ground truth. These images correspond to
the set of 68 pairs of images mentioned above that have not been used neither dur-
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Average AE: 8.1609 Average AE: 6.3468

Average AE: 13.1746 Average AE: 12.0972

Average AE: 11.2064 Average AE: 10.4440

Average AE: 14.1248 Average AE: 6.0005

Average AE: 10.5516 Average AE: 8.1944

NIR CycleGAN [195] Proposed Approach Ground truth

Figure 3.6: Colorized NIR images obtained with CycleGAN and with the proposed
approach. RGB images (ground truth) are provided for qualitative evaluation. The
numbers below the images show the average AE between the obtained colorized
image and the ground truth.
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AE FID
CycleGAN [195] 13.87 146.77

Prop. App. 10.04 105.21

Table 3.1: Comparative results between proposed approach and CycleGAN using
evaluation metrics from Sec. 3.3.1.

ing the training nor during the validation stages. Each column shows the given NIR
images, colorized with baseline model [195], colorized with the proposed approach
and the ground truth respectively. It should be mentioned that all categories are
trained simultaneously and also our colorized NIR images look quite better than
the baseline model when compared with the ground truth.1

3.4 Summary

This paper proposes a novel architecture by using a Cycle-Consistent Adversarial
Network in the context of colorization. The proposed approach address the chal-
lenging problem of colorizing NIR images when the ground truth is not available
during the learning phase (i.e., in the unsupervised learning context) by using the
appropriate generators and loss functions. Experimental results have shown that
the NIR images colorized with proposed approach are visually better than those
obtained with the CycleGAN baseline model as well as lower quantitative values are
obtained.

1Additional results are provided at http://bit.ly/2VQG4B0
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3.5 Supplementary Material

3.5 Supplementary Material

3.5.1 Additional Qualitative Results

Figure 3.7: Additional visual results.
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4 MPRNet: Multi-Path Residual Network for
Lightweight Image Super Resolution

This chapter presents the article published at:

Armin Mehri, Parichehr B. Ardakani, and Angel D. Sappa. "MPRNet: Multi-path
residual network for lightweight image super resolution." In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2704-2713.
2021.

Lightweight super resolution networks have extremely importance for real-world
applications. In recent years several SR deep learning approaches with outstand-
ing achievement have been introduced by sacrificing memory and computational
cost. To overcome this problem, a novel lightweight super resolution network is
proposed, which improves the SOTA performance in lightweight SR and performs
roughly similar to computationally expensive networks. Multi-Path Residual Net-
work designs with a set of Residual concatenation Blocks stacked with Adaptive
Residual Blocks: (i ) to adaptively extract informative features and learn more
expressive spatial context information; (i i ) to better leverage multi-level repre-
sentations before up-sampling stage; and (i i i ) to allow an efficient information
and gradient flow within the network. The proposed architecture also contains
a new attention mechanism, Two-Fold Attention Module, to maximize the repre-
sentation ability of the model. Extensive experiments show the superiority of our
model against other SOTA SR approaches.

4.1 Motivation

Single Image Super Resolution (SISR) targets to recover a high-resolution (HR)
image from its degraded low-resolution (LR) one with a high visual quality and
enhanced details. SISR is still an active yet challenging topic to research due to its
complex nature and high practical values in improving image details and textures.
SR is also critical for many devices such as HD TVs, computer displays and portable
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Figure 4.1: PSNR v s. Parameters trade-off on Set5 (×4). MPRNet achieves superior perfor-
mance among all lightweight models.

devices like cameras, smartphones, tablets, just to mention a few. Moreover, it
leads to improvements in various computer vision tasks, such as object detection
[43], medical imaging [46], security and surveillance imaging [196], face recognition
[119], astronomical images [105] and many other domains [98, 162, 176]. Image
super-resolution is challenging due to the following reasons: i ) SR is an ill-posed
inverse problem, since instead of a single unique solution, there exist multiple
solutions for the same low-resolution image; and i i ) as the up-scaling factor in-
creases, the complexity of the problem increases [35]. The retrieval of missing scene
details becomes even more complicated with greater factors, which often leads to
the reproduction of incorrect information.

Due to the rapid development of deep learning methods, recent years have
witnessed an explosive spread of CNN models to perform SISR. The obtained per-
formance has been consistently improved by designing new architectures or intro-
ducing new loss functions. Though significant advances have been made, most of
the works in SR were dedicated to achieve higher PSNR with the design of a very
deep network, which causes the increase in the numbers of computational oper-
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ations. Besides that, most of the existing SISR methods are trained and evaluated
on simulated datasets that assume simple and bicubic degradation. Unfortunately,
SISR models trained on such simple datasets are hard to generalize for practical
applications since degradations in the real-world are unknown.

In this paper, to design a practical network for real-world applications and tackle
with mentioned downsides, a novel lightweight architecture is introduced, referred
to as Multi-Path Residual Network (MPRNet), to adaptively learn most valuable fea-
tures and construct the network to focus on learning high-frequency information.
Additionally, to seek a better trade-off between performance and applicability, we
introduce a novel module, referred to as Residual Module (RM), which contains
Residual Concatenation Blocks that are connected to each other with a Global
Residual connection; build with a set of Adaptive Residual Blocks (ARB) with a Local
Residual Connection (LRC). Each ARB is defined as a divers residual pathways learn-
ing to make use of all kind of information form LR image space, which the main
parts of the network can access to more rich information. So, our MPRNet design
has the benefits of multi-level learning connections and also takes advantage of
propagating information throughout the network. As a result, each block has access
to information of the precedent block via local and global residual connections and
passes on information that needs to be preserved. By concatenating different blocks
followed by 1×1 convolutional layer the network can reach to both intermediate
and high-frequency information, resulting in a better image reconstruction. Finally,
in order to enhance the representation of the model and even make it robust against
challenging datasets and noise, we propose a lightweight and efficient attention
mechanism, Two-Fold Attention Mechanism (TFAM). TFAM is working by consid-
ering both the inner channel and spatial information to highlight the important
information. This TFAM helps to adaptively preserve essential information and
overpower the useless ones. The proposed model is illustrated in Figure 6.2. In brief,
the main contributions are in three-fold:

• An efficient Adaptive Residual Block (ARB) is proposed by well-focusing on
spatial information via a multi-path residual learning to enhance the perfor-
mance at a negligible computational cost. Comprehensive study shows the
excellent performance of ARB.

• A new attention mechanism (TFAM) is proposed to adaptively re-scale feature
maps in order to maximize the representation power of the network. Since
its low-cost, it can be easily applied to other networks, and has the better
performance than other Attention Mechanisms.

• A lightweight network (MPRNet) is proposed to effectively enhance the perfor-
mance via multi-level representation and multiple learning connections. The
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Figure 4.2: The overall network architecture of the proposed Multi-Path Residual
Network (MPRNet).

MPRNet is built by fusing the proposed ARB with the robust TFAM to generate
more accurate SR image. MPRNet achieves the excellent performance among
all the lightweight state-of-the-art approaches with lower model size and
computational cost (Figure 6.1).

4.2 Multi-Path Residual Network

4.2.1 Network Structure

The proposed model (MPRNet – Figure 6.2) consists of four different modules,
namely, Shallow Feature Extraction (SFE); Residual Module that contains Residual
Concatenation Blocks (RCBs); Feature Module that includes a Two-Fold Attention
Mechanism (TFAM) and a Global Feature Extractor with a Long-Range Skip Con-
nection; and the multi-scale UP-Net module at the end of network. Let’s consider
{ILR , ISR } as the input and output of the network respectively. The SFE is a Conv
layer with a kernel size of 3×3, which can be formulated as follow:

HSF E = fSF E (ILR ;Wc ), (4.1)

where fSF E (·) and Wc indicates Conv operation and parameters applied on ILR .
HSF E denotes the output of SFE, which later is used as the input to Residual Module.

Lets H i , j
RM be the output from the i -th Residual Concatenation Block (RCB) that has

j -th inner Adaptive Residual Blocks (ARBs). The Residual Module can be defined
as:
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Figure 4.3: Illustrations of different structure of residual blocks: a) Residual block
in EDSR [95]; b) Bottleneck with inverted residual from [62]; c) Proposed Adaptive
Residual Block and Two-Fold Attention Module.

HRM =
f ([HSF E , ..., H i−1

RC B (H j−1,R
ARB ;W j

c ), H i
RC B ];W i

c ),
(4.2)

where HRM is the output of the Residual Module. Note that our RM contains multi-
level learning connections followed by a 1×1 Conv layer to control the output after
each block, which helps our model to quickly propagate information all over the
network (lower to higher layers and vice-versa in term of back propagation) and also
let the network to learn multi-level representations. So, i -th RCB can be defined as:

H i
RC B = f ([H j ,R

ARB , ..., H j−1,R
ARB (H i−1;W i

c )];W j
c ). (4.3)

Then, the output of RM feed to the Feature Module by firstly refining the feature
maps (i.e., re-calibrate) throughout the TFAM and then extracting more abstract
features. Later, accumulate with LRSC to efficiently alleviate the gradient vanish-
ing/exploding problems and make sure that network has access to unmodified
information before UP-Net:

HF M = fGF E (HT F AM (HRM ;Wc );Wc )+HLRC , (4.4)

where HT F AM denotes our TFAM and HLRC is Long-Range Residual Connection.
The last stage is the Multi-Scale Up-Net Module to reconstruct the image from
obtained feature-maps. The upsampling module is inspired by [1] and followed by
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a Conv layer:

HU P = f ↑
pi x (HF M ), (4.5)

where f ↑
pi x (·) indicates the Up-net module function and HF M is the output of FM.

The upsampled features are reconstructed with a Conv layer:

ISR = fREC (Hup ) = HMPRNet (ILR ), (4.6)

where fREC (·) and HMPRNet (·) denote the reconstruction layer and function of our
MPRNet. In the next subsections, more details about the Adaptive Residual Block
and Two Fold Attention Mechanism are given.

4.2.2 Adaptive Residual Block

This research focuses on designing a efficient and effective Residual Block based
on Depthwise (Dw) and Pointwise (Pw) Convolutions for SISR. [134] introduced
linear bottleneck with an inverted residual structure. However, this structure deliver
chances of losing information and weaken the propagation capability of gradients
across layers, due to gradient confusion arising from the narrowed feature space
[32, 88]. Thus, we propose a novel Residual Block that mitigates the aforementioned
issues; it is well-optimized especially for the SR tasks, called Adaptive Residual Block
(ARB). Unlike [134], ARB introduces new features and operations by proposing a
multi learning pathways with a completely new structure. Each learning path is
responsible to extract different kind of information before aggregation. So, the main
part of network can have access to more rich information and performs notably
well in noisy LR and generates more accurate SR image. The ARB consists of three
different learning pathways that are detailed below. Figure 4.3 shows each of the
ARB components.

Bottleneck Path: We design our Bottleneck path (BN) based on the following
insights: i ) Extract richer spatial information since spatial information is key impor-
tance in SR tasks; i i ) prevent very wide feature maps in the middle of the building
block, which unavoidably growing the computational load of relevant layers; i i i )
preserve the BN path low-cost and efficient. Thus, Dw Convolutions with small
kernel size (3×3) are chosen since they are lightweight and they can learn expressive
features when conducted to the high dimensional space. So, we initiate the BN
path by using a Dw convolution with kernel size 3×3 towards the high dimensional
features space to richer spatial information to be encoded and generate meaningful
representations. Also, a Pw convolution is used after each Dw convolution in our
design to produce new features by encoding the inter-channel information and
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reduce the computational cost. We shared the same number of channels and res-
olution along the BN path to prevent of sudden rise of computational burden in
middle of the path. Furthermore, we conjunct our TFAM into the BN path after the
second Dw convolution to spotlight the informative features along the channel and
spatial axes. By doing so, the BN path is working with high dimensional features
space, which makes the pathway efficient, low-cost, and well-focused on spatial
context information compared to [134].

Adaptive Path: It is proposed by taking the advantages of global average pooling
accompanied by a 1×1 Pw convolution. Average Pooling layers have been employed
to take the average value of the features from the feature space to smooth and
eliminate the noise from the LR image and reduce the dimensionality of each
feature map but retains the important information to help the network to generate
robust feature maps in challenging situations—noisy LR image. So, the network can
generate a sharper and well-detailed SR image.

Residual Path: Unlike [134] that puts the residual path between narrowed
feature space that cause gradient confusion, in our ARB, we place the residual path
on the high dimensional representations to transfer more information from the
bottom- to top-layers. Such structure facilitate the gradient propagation between
multiple layers and help the network to optimize better during training.

Thus, the information from BN- and Res-paths aggregate together, followed by
another Dw convolution. We found out adding the Dw convolution before final
aggregation with Adp path is essential for performance improvement since Dw
encourage the network to learn more meaningful spatial information. Extensive
experiments show that, our ARB is more beneficial than the existed ones for SISR
tasks and improved the results with a large margin.

4.2.3 Two-Fold Attention Module

A novel Attention Mechanism (TFAM) has been proposed to boost the performance
of our Adaptive Residual Block and refine the high-level information in the Feature
Module (FM) by focusing on both channel and spatial information. The best way to
amplify efficiency of ARB is through the union of the channel and spatial attention
mechanism, since the residual features need to be well-focused on both information.
In detail, TFAM is designed to focus on the important features on the channel
information via CA unit and spotlight on the region of interest via Pos unit. Thus,
each unit can learn ‘what’ and ‘where’ to attend in the channel and spatial axes
respectively to recover edges and textures more accurately. As a result, TFAM
works better than other attention mechanism [63, 64, 100, 167] by emphasising
informative features and reducing worthless ones.

Channel Unit. CA unit starts with an average pooling to exploit first-order
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Table 4.1: Comparison with lightweight SOTA methods on the Bicubic (BI) degradation
for scale factors [×2,×3,×4]. Red is the Best and Blue is the second best performance. We
assume that the generated SR image is 720P to calculate Multi-Adds (MAC).

Params-MAC
Dataset

Methods
×4

Scale

VDSR [78]
655K −612.6G

PSNR/SSIM

LapSRN[84]
813K −149.6G

PSNR/SSIM

MemNet[147]
677K −2662.4G

PSNR/SSIM

NLRN[99]
350K −32.5
PSNR/SSIM

SRFBN_S[92]
483K −119G
PSNR/SSIM

CARN[1]
1592K −90.9G

PSNR/SSIM

CBPN [194]
1197K −97.9G

PSNR/SSIM

OISR_RK2_s[57]
1540K −114.2G

PSNR/SSIM

MAFFSRN-L[120]
830K −38.6G
PSNR/SSIM

LatticeNet[108]
777K-43.6G
PSNR/SSIM

MPRNet [Ours]
538K-31.3G
PSNR/SSIM

Set5
×2
×3
×4

37.53/0.9587
33.66/0.9213
31.35/0.8838

37.52/0.9590
——–

31.54/0.8850

37.87/0.9597
34.09/0.9248
31.74/0.8893

38.00/0.9603
34.27/0.9266
31.92/0.8916

37.78/0.9597
34.20/0.9255
31.98/0.9594

37.76/0.9590
34.29/0.9255
32.13/0.8937

37.90/0.9590
——–

32.21/0.8944

37.90/0.9600
34.39/0.9273
32.21/0.8903

38.07/0.9607
34.45/0.9277
32.20/0.8953

38.15/0.9610
34.53/0.9281
32.30/0.8962

38.08/0.9608
34.57/0.9285
32.38/0.8969

Set14
×2
×3
×4

33.03/09124
29.77/0.8314
28.01/0.7674

33.08/0.9130
——–

28.19/0.7720

33.28/0.9142
30.00/0.8350
28.26/0.7723

33.46/0.9159
30.16/0.8374
28.36/0.7745

33.35/0.9156
30.10/0.8350
28.45/0.7779

33.52/0.9166
30.29/0.8407
28.60/0.7806

33.60/0.9171
——–

28.63/0.7813

33.58/0.9172
30.33/0.8420
28.63/0.7822

33.59/0.9177
30.40/0.8432
28.62/0.7822

33.78/0.9193
30.39/0.8424
28.68/0.7830

33.79/0.9196
30.42/0.8441
28.69/0.7841

B100
×2
×3
×4

31.90/0.8960
28.82/0.7976
27.29/0.7251

31.80/0.8950
——–

27.32/0.7280

32.08/0.8978
38.96/0.8001
27.40/0.7281

32.19/0.8992
29.06/0.8026
27.48/0.7306

32.00/0.8970
28.96/0.8010
27.44/0.7313

32.09/0.8978
29.06/0.8434
27.58/0.7349

32.17/0.8989
——–

27.58/0.7356

32.18/0.8996
29.10/0.8083
27.58/0.7364

32.23/0.9005
29.13/0.8061
27.59/0.7370

32.25/0.9005
29.15/0.8059
27.62/0.7367

32.25/0.9004
29.17/0.8073
27.63/0.7385

Urban100
×2
×3
×4

30.76/0.9140
27.14/0.8279
25.18/0.7524

30.41/0.9100
——–

25.21/0.7560

31.31/0.9195
27.56/0.8376
25.50/0.7630

31.81/0.9249
27.93/0.8453
25.79/0.7729

31.41/0.9207
27.66/0.8415
25.71/0.7719

31.92/0.9256
28.06/0.8493
26.07/0.7837

32.14/0.9279
——–

26.14/0.7869

32.21/0.8950
28.03/0.8544
26.14/0.7874

32.38/0.9308
28.26/0.8552
26.16/0.7887

32.43/0.9302
28.33/0.8538
26.25/0.7873

32.52/0.9317
28.42/0.8578
26.31/0.7921

Table 4.2: Comparison with SOTA methods on challenging datasets ("BD" and "DN") for
scale factor ×3. Red is the Best and Blue is the second best performance.

Dataset
Methods

Degradation
Bicubic

PSNR/SSIM
SPMSR[125]
PSNR/SSIM

SRCNN[35]
PSNR/SSIM

FSRCNN[37]
PSNR/SSIM

VDSR[78]
PSNR/SSIM

IRCNN_G[185]
PSNR/SSIM

IRCNN_C[185]
PSNR/SSIM

SRMD(NF)[154]
PSNR/SSIM

RDN[192]
PSNR/SSIM

MPRNet [Ours]
PSNR/SSIM

SPSet5
BD
DN

28.34/0.8161
24.14/0.5445

32.21/0.9001
—-

31.75/0.8899
27.04/0.7638

26.58/0.8224
24.28/0.7124

33.29/0.9139
27.42/0.7372

33.38/0.9182
24.85/0.7205

29.55/0.8246
26.18/0.7430

34.09/0.9242
27.74/0.8026

34.57/0.9280
28.46/0.8151

34.57/0.9278
28.54/0.8175

Set14
BD
DN

26.12/0.7106
23.14/0.4828

28.89/0.8105
—-

28.64/0.7997
25.56/0.6592

24.86/0.7246
23.25/0.5956

29.58/0.8259
25.60/0.6706

29.73/0.8292
23.84/0.6091

27.33/0.7135
24.68/0.6300

30.11/0.8364
26.13/0.6974

30.53/0.8447
26.60/0.7101

30.47/0.8427
26.25/0.6954

B100
BD
DN

26.02/0.6733
22.94/0.4461

28.13/0.7740
—-

27.33/0.7500
25.45/0.6198

24.15/0.6728
23.95/0.5695

28.61/0.7900
25.22/0.6271

28.65/0.7922
23.89/0.5688

26.46/0.6572
24.52/0.5850

28.98/0.8009
25.64/0.6495

29.23/0.8079
25.93/0.6573

29.19/0.8062
25.95/0.6616

Urban100
BD
DN

23.20/0.6661
21.63/0.4701

25.84/0.7856
—-

25.19/0.7591
23.59/0.6580

22.95/0.6836
21.74/0.5724

26.68/0.8019
23.33/0.6579

26.77/0.8154
21.96/0.6018

24.89/0.7172
22.63/0.6205

27.50/0.8370
24.28/0.7092

28.46/0.8581
24.92/0.7362

28.31/0.8538
25.00/0.7406

statistics of features followed by two Conv layer, which they work side by side,
each seeing half of the input channels, and producing half the output channels,
and both subsequently concatenated to even have more low-cost unit. Thus, CA
unit modulates features globally, where the summary statistics per channel are
computed. Then, used to emphasize meaningful feature maps while redundant
useless features are diminished. Especially, CA unit focuses on ‘what’ is meaningful
given an input image.

Positional Unit. Pos unit designed as a complementary unit to our CA unit.
The feature map information is varied over spatial positions therefore, Pos unit
concerns about the position of the informative part of the image and focuses on
that region. Pos unit requires a large receptive field to work perfectly in SR tasks
unlike the classification task. Thus, Average- and Max pooling operations with a
large kernel size have been employed and then concatenated them to generate an
efficient feature descriptor. afterward, an UpSampling layer is used to retrieve the
spatial dimensions, which is followed by a Conv layer to generate a spatial attention
map.

Finally, highlighted information from both units aggregated together followed a
1×1 Conv layer and a sigmoid operation to firstly, recover the channel dimensions
and then generate the final attention mask. Also, a residual connection used to
transfer HR features to the end of module.
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4.3 Experimental Results

4.3.1 Setting

Datasets & Evaluation Protocol. Following previous works [31, 100], we use D IV 2K
[153] dataset to train (800 images) and validate (100 images) our model. The pro-
posed model is evaluated with the standard benchmark datasets, namely, Set5 [15],
Set14 [183], B100 [114], and Ur ban100 [66]. Two widely used quantitative metrics
have been considered to measure its performance: PSNR and SSIM [161], computed
between the obtained images and the corresponding ground truths. Both metrics
are computed on the Y channel in the Y C bCr space.

Degradation Models. Following the work of [192], three different degradation
models created to simulate LR images and make fair comparisons with available
methods. Firstly, a bicubic (BI) down-sampling dataset with scaling factors [×2,
×3, ×4] has been created. Blur-Down-sampled (BD) is the second one to blur and
down-sample HR images with a Gaussian kernel 7×7, and σ= 1.6. Then, images are
down-sampled with scaling factor ×3. Aside from the BD, a more challenging model
has been created, referred to as (DN). DN degradation model is down-sampling HR
images with bicubic followed by adding 30% Gaussian noise.

Training Details. In the training stage, RGB input patches are used with size of
64×64 from each of the randomly selected 64 LR training images. Patches are aug-
mented by random horizontally flips and 90 degree rotation. AdamP [59] optimizer
has been employed. The initial learning rate set to 10−3 and its halved every 4×105

steps. L1 is used as loss function to optimize the model. The PyTorch framework is
used.

4.3.2 Comparison with state-of-the-art Methods

Results with BI Degradation

Table 6.3 presents comparisons between the proposed MPRNet and 10 most recent
lightweight SOTA models on BI degradation model for scale factor [×2, ×3, and ×4]
to verify the effectiveness of our MPRNet (we exclude some lightweight methods
[35, 37, 79, 137, 146, 162] from table 6.3 since their results are worse than MemNet).
Table 6.3 also contains the number of parameters and operations to show the model
complexity. In almost all the cases, our MPRNet achieves superior results among all
the aforementioned approaches. MPRNet performs especially well on Urban100.
This is particularly because the Urban100 includes rich structured contents and
our model can consistently accumulate these hierarchical features to form of more
representative features and well-focused on spatial context information. This char-
acteristic can be confirmed by our MPRNet SSIM scores, which focuses on the
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visible structures in the image. In Figure 4.4 a couple of qualitative results on scale

HR Bicubic VDSR MemNet

img012 from Urban100 LapSRN CARN SRFBN-S MPRNet(Ours)

HR Bicubic VDSR MemNet

img092 from Urban100 LapSRN CARN SRFBN-S MPRNet(Ours)

Figure 4.4: Qualitative results on BI degradation dataset with scale factor ×4.

HR Bicubic SRCNN FSRCNN

img063 from B100 VDSR IRCNN_C SRMD MPRNet(Ours)

HR Bicubic SRCNN FSRCNN

img021 from B100 VDSR IRCNN_G SRMDNF MPRNet(Ours)

Figure 4.5: Qualitative results on DN and BD degradation datasets with a scale factor
×3.
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Table 4.3: Effect of Attention Mechanisms and proposed Adaptive Residual Block
on SOTA models. The best PSNR (dB) are highlighted.

Name
EDSR RCAN MSRN

Baseline Attention Modules ResBlock Baseline Attention Modules ResBlock Baseline Attention Modules ResBlock
Channel and spatial attention residual[64] ✓ ✓ ✓
Enhanced Spatial Attention[100] ✓ ✓ ✓
Two-Fold Attention Module[Ours] ✓ ✓ ✓ ✓ ✓ ✓
Adaptive Residual Block[Ours] ✓ ✓ ✓
PSNR on Set5 (×4)
PSNR on Urban100 (×4)

32.46
26.64

32.48
26.66

32.51
26.69

32.54
26.71

32.65
26.79

32.63
26.82

32.64
39.84

32.67
26.86

32.70
26.89

32.78
26.96

32.25
26.22

32.27
26.25

32.30
26.29

32.34
26.32

32.39
26.41

factor ×4 are depicted. The proposed MPRNet can generally yield to more precise
details. In both images in Figure 4.4, the texture direction of the reconstructed
images from all compared methods is completely wrong. However, results from
the proposed MPRNet makes full use of the abstract features and recover images
accurately similar to ground truth texture.

Results with BD and DN Degradation Models

In Table 4.2, the performance of MPRNet on BD and DN benchmark datasets, to-
gether with SOTA methods, are presented. Due to degradation mismatch, SRCNN,
FSRCNN, and VDSR for both BD and DN have been re-trained. As can be appreci-
ated, MPRNet achieves remarkable results over all the lightweight SOTA models on
challenging benchmark datasets. RDN [192] also listed as a high-capability model
to show the superior performance of MPRNet compared to very costly model in
the BD and DN datasets. RDN performs sightly better in some BD datasets but not
in DN datasets. Obviously, this result was expected since RDN is very expensive
compared to low-cost MPRNet (it is almost ×44 more costly). Figure 4.5 depicts
some visual results on both challenging BD and DN benchmark datasets. As can be
appreciated the MPRNet with the help of the proposed TFAM performs better in
comparison with SOTA methods in terms of producing more convincing results by
cleaning off noise and blurred regions from SR images, which results in a sharper
SR image with fine details.1

4.3.3 Ablation Study

To further investigate the performance of the proposed model, a deep analysis on
the Two-Fold Attention Module, the Adaptive Residual Block, and Residual Learning
Connections is performed via an extensive ablation study.

1Additional analyses (such as Inference time, Memory consumption, and etc.) and more visual
results can be found in supplementary material.
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Table 4.4: Impact of different Attention Mechanisms on MPRNet.

Dataset Baseline SE CBAM CSAR ESA TFAM
Set14 (×4) 28.57 28.59 28.54 28.61 28.64 28.67
Urban100 (×4) 26.19 26.21 26.18 26.23 26.25 26.29

Table 4.5: Effect of different configs of Residual Block and each learning pathway of
the Adaptive Residual Block

Configs
MobileNet

BnBlock
EDSR

ResBlock
RCAN

ResBlock
ARBB ARBB A ARBR ARB

BNp ✓ ✓ ✓ ✓
Adpp ✓ ✓
Resp ✓ ✓

B100 (×4) 27.24 27.44 27.52 27.46 27.58 27.55 27.63
Urban100 (×4) 25.79 25.96 26.08 26.05 26.15 26.11 26.31

Two-Fold Attention Module. In this section, Deep investigation of the impacts
of our proposed TFAM on SOTA SR models are provided. The performance of
image SR has improved greatly with the application of Attention Mechanism (AM).
Table 4.3 shows the performance of applying recent AMs including Channel and
spatial attention residual (CSAR) [64], Enhanced Spatial Attention (ESA)[100], and
our Two-Fold Attention Module (TFAM) on EDSR, RCAN, and MSRN. For a fair
comparison, all the models were re-trained with their default setting and AMs are
added to the end of their Block, and replaced in the same place as RCAN’s Channel

Table 4.6: Study on combining different Residual Connections.

Options Baseline 1st 2nd 3r d 4t h 5t h

Residual Learning Connections
LRC ✗ ✓ ✓ ✓
GRC ✗ ✓ ✓ ✓

LRSC ✗ ✓ ✓

PSNR on Set5 (×3)
PSNR on Urban100 (×3)

34.42
28.30

34.40
28.29

34.47
28.35

34.45
28.33

34.52
28.38

34.57
28.42
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4.3 Experimental Results

Attention placed. As can be seen, by using the aforementioned attention module,
the performance of the baseline models are increased that shows the importance
of AM in SR tasks. By applying the CSAR to the mentioned approaches, PSNR
improves in EDSR and MSRN but does not show enough improvement in RCAN.
In contrast, ESA is enhanced version of CASR, which combine both the channel
and spatial information, improves all the baseline models. However ESA cannot
completely boost the power of the networks due to lack of highlighting informative
feature in spatial information. For this propose, we introduce Two-Fold Attention
Module, which consider both channel and spatial information and maximize the
performance of the networks. TFAM extracts the channel and spatial statistic
among channels and spatial axis to further enhance the discriminative ability of the
network. As a results, TFAM shows better performance than all the aforementioned
ones and boosted the baseline SOTA.

Furthermore, Table 4.4 contains the study on impact of recent AMs on our
MPRNet. Namely, SE[63], CBAM [167], CSAR [64], ESA [100], and TFAM. We apply
all the aforementioned AM to our ARB blocks and Feature Module, and provide
the performance. The proposed MPRNet with CBAM, could not achieve better
results than baseline or SE due to losing channel information and applying the Max-
pooling in CA unit which shows harm the performance. Unlike, MPRNet with CASR
achieves better results than CBAM and SE because of considering both channel
and spatial information but not better than ESA. However, our TFAM performs
better among all the AMs by calculating the first order statistics on CA unit and
applying Avg- and Max-pooling operations along the channel axis, which is effective
in highlighting informative regions and extracts the most important features like
edges.

Table 4.3 also shows the efficiency of our ARB with conjunction of TFAM when
it is applied to other SOTA models. As indicated, ARB with TFAM together can
improve the PSNR of SOTA models with a large margin.

Adaptive Residual Block. Table 4.5 presents the impact of different Residual
Blocks and the proposed Adaptive Residual Block (ARB) on our MPRNet. In this
work, three different structures of residual blocks from SOTA models are considered
to compare with our proposed ARB, namely, MobileNet-BottleneckBlock, EDSR-
ResBlock, RCAN-ResidualChannelBlock. All the models were trained with the same
settings. As can be seen, MobileNet-BottleneckBlock could not perform well in
SR tasks due to difficulty of extracting high-frequency information and gradient
confusion. EDSR-ResBlock is the ResNet without batch normalization layer, but still
could not achieve good results due to the lack of extracting rich feature maps and
eliminating noises from LR feature space. RCAN-ResidualChannelBlock performs
better than aforementioned ResBlock due to channel attention in their structure.
However RCAN-ResidualChannelBlock did not show better results than our pro-
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posed ARB since our ARB can learn more expressive spatial information, have access
to high-dimensional information and also with the help of TFAM can maximize the
whole performance of block.

Additionally, effect of each learning pathways of ARB on the performance is
provided. ARBB , ARBB A and ARBR are Adaptive Residual Block with bottleneck
path; ARB with bottleneck and adaptive paths; ARB with bottleneck and residual
path respectively. As shown in Table 4.5, MPRNet with all learning pathways (ARB)
achieves the best performance among all the mentioned ResBlock and combina-
tions of different ARB learning pathways. This is caused by allowing the main parts
of network to focus on more informative components of the LR features and force
the network to focus more on abstract features, which are important in SR tasks.
Furthermore, the proposed pathways helps the model to converge better and per-
forms better than all the baseline models. In a nutshell, information propagates
locally via residual path, adaptively extract the informative features via adaptive
path, and learn more meaningful spatial information by Bottleneck path. By doing
so, information is transmitted by multiple pathways inside of ARB and main parts
of network access to more expressive and richer feature maps, resulting in superior
PSNR.

Effect of Residual Learning Connections. Table 4.6 shows the extensive study
of the impact of Residual Learning Connections on our design of MPRNet, i.e. Local
Residual Connection (LRC), Global Residual Connection (GRC), and Long Range
Skip Connection (LRSC). In this work, residual connections except LRSC comprise
concatenation followed by a 1×1 Conv layer. As we can see, MPRNet without any
residual connection performs relatively low (i.e. baseline). However, MPRNet with
only GRC in Residual Module shows better performance than baseline since GRC
transports the information from mid- to high-layers and helps the model to better
leverage multi-level representations by collecting all information before the next
module.

On the contrary, MPRNet with only LRC inside Residual Concatenation Block
could not perform better than the MPRNet with GRC. This behavior was expected
as mentioned in [56] that 1×1 Conv layer on the residual connection can confuse
optimization and prevent information propagation due to multiplicative manipula-
tions. However, MPRNet can show better performance by using both connections
(4th col.). This is due to GRC eases the information propagation issue that LRC
suffers from.

To end this, LRSC also added to the MPRNet to carry the shallow information to
high-level layers. Thus, information is transferred by multiple connections, which
mitigates the vanishing gradient problem and network has access to multi-level
representation. As a results, MPRNet with all connections (5th col.) can performs
greatly better.
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Model Complexity Analysis. Figure 6.1 indicates the comparison regard to
the model size and PSNR with 15 recent state-of-the-art SR models. Our MPRNet
achieves the best performance among all the lightweight SR approaches with much
fewer parameters and achieves better or comparable results when compared with
computationally expansive models. This shows that our MPRNet is well-balanced
in terms of model size and reconstruction results.

4.4 Summary

This paper proposes a novel lightweight network (MPRNet) that achieves the best
performance against all existing lightweight SOTA approaches. The main idea
behind of this work is to design an advanced lightweight network to deliver al-
most similar results to heavy computational networks. A novel Residual Module
is proposed to let abundant low-level information to be avoided through multiple
connections. In addition, an efficient Adaptive Residual Block is proposed to allows
MPRNet achieves more rich feature-maps through the multi-path learning. Fur-
thermore, to maximize the power of the network a Two-Fold Attention Module is
proposed, which refine the extracted information along channel and spatial axes
to further enhance the discriminative ability of the network. Extensive evaluations
and comparisons are provided.

4.5 Supplementary Material

The following items are contained in the supplementary material:
1) Memory Complexity Analysis
2) Inference Time and Memory Consumption
3) Width Multiplier
4) Additional Qualitative Results

4.5.1 Memory Complexity Analysis

In this section, we compare the proposed MPRNet with the most recent lightweight
and expensive networks: LapSRN, VDSR, DRCN, SelNet, DRRN, MemNet, SRFBN,
CARN, MSRN, OISR, CBPN, MAFFSRN, and LatticeNet in term of number of MAC
operations (Multi-Adds) and reconstruction results (PSNR) to show the efficiency
of the purposed MPRNet. In Figure 4.6, reconstruction results (PSNR) and MAC
(G), which shows the number of multiply-accumulate operations, are illustrated. As
we can see, our MPRNet can achieve better results with a large gap among all the
recent networks with less needed MAC operations; and even perform better than
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MSRN, which has more than 160 layers by only 13% of the total number of MSRN
multiply-accumulate operations (1365.4G).
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Figure 4.6: PSNR v s. MAC on Urban100 for scale factor ×2.

4.5.2 Inference Time and Memory Consumption

Table 4.7 illustrates the superiority of the proposed MPRNet in terms of Inference
Time (s) and Memory Consumption (MB) when it compares with the recent light-
and heavy-weight state of the art approaches on Urban100 for scale factor ×4,
namely MemNet, SRFBN, CARN, RCAN, RDN, EDSR. We consider the pyTorch
version of MemNet instead of Caffe version due to large memory consumption in
Caffe. The inference time and memory consumption of each approach is evaluated
using their official code on the same environment. The MPRNet has the fastest
inference time while using less memory compared to other approaches, which
reflect the efficiency of the proposed method.

4.5.3 Depth Multiplier

In Table 4.8, the effect of depth multiplier on model size and reconstruction results
are illustrated. Similar to MobileNetV2, we employed depth multiplier (al pha) to
make our MPRNet even more light cost with small reduction in performance. Depth
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HR Bicubic VDSR MemNet

Urban100 – img061 LapSRN CARN SRFBN-S MPRNet (Ours)

HR Bicubic VDSR MemNet

Urban100 – img085 LapSRN CARN SRFBN-S MPRNet (Ours)

Figure 4.7: Qualitative results on BI degradation model with a scale factor ×4 on
Ur ban100 dataset.
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Table 4.7: Average Inference Time (s) and Memory Consumption (MB) comparisons
with other SOTA models on Urban100 for scale factor ×4.

Model Params. Time MemoryPSNR

MemNet 667K 0.543 3,170 25.54
SRFBN-S 483K 0.0069 2,960 25.71

CARN 1592K 0.0047 3,015 26.07
RCAN 16000K 0.5927 2,731 26.82
RDN 22000K 0.0294 3,835 26.61
EDSR 43000K 0.0841 8,263 26.64

MPRNet [Ours] 538K 0.0095 2, 154 26.31

multiplier is a float number between 0 and 1 that controls the depth of input layer.
α= 1 is the baseline model. By decreasingα, model size and computational cost are
reduced. As can be seen, the proposed MPRNet with 372.7K (α= 0.25), can achieve
a good performance among the lightweight SOTA methods.

Table 4.8: Impact of Depth Multiplier on MPRNet

Depth Multiplier 1.0 0.75 0.5 0.25
# Parameters 538.2K 470.4K 416.2K 372.7K

Set114 (×4) 32.38 32.23 32.01 31.84
Urban100 (×4) 26.31 26.16 25.99 25.83

As we can see, by analyzing the number of parameters and MAC operations
vs PSNR, inference time, memory consumption, and reconstruction result, the
proposed MPRNet can prove that it is well-balanced in terms of speed, accuracy
and computation cost.

4.5.4 Additional Qualitative Results

In this section, additional results are provided showing the superiority of the SR
images obtained with the proposed model. Qualitative results with all degradation
models (i.e., BI, BD, and DN) are presented below.
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HR Bicubic SRCNN FSRCNN

Urban100 – img028 VDSR IRCNN_G SRMDNF MPRNet (Ours)

HR Bicubic SRCNN FSRCNN

Urban100 – img096 VDSR IRCNN_G SRMDNF MPRNet (Ours)

Figure 4.8: Qualitative results on BN degradation model with a scale factor ×3.

HR Bicubic SRCNN VDSR

Set14 – img006 IRCNN_C SRMD RDN MPRNet (Ours)

HR Bicubic SRCNN VDSR

Set5 – img003 IRCNN_C SRMD RDN MPRNet (Ours)

Figure 4.9: Qualitative results on DN degradation model with a scale factor ×3.
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5 Thermal Image Super-Resolution
Challenge

This chapter presents the article published at:

Rivadeneira, Rafael E., Angel D. Sappa, Armin Mehri, Parichehr Behjati Ardakani
et al. "Thermal image super-resolution challenge-pbvs 2021." In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

Abstract: This paper summarizes the top contributions to the first challenge on
thermal image super-resolution (TISR), which was organized as part of the Percep-
tion Beyond the Visible Spectrum (PBVS) 2020 workshop. In this challenge, a novel
thermal image dataset is considered together with state-of-the-art approaches
evaluated under a common framework. The dataset used in the challenge con-
sists of 1021 thermal images, obtained from three distinct thermal cameras at
different resolutions (low-resolution, mid-resolution, and high-resolution), re-
sulting in a total of 3063 thermal images. From each resolution, 951 images are
used for training and 50 for testing while the 20 remaining images are used for
two proposed evaluations. The first evaluation consists of downsampling the low-
resolution, mid-resolution, and high-resolution thermal images by ×2, ×3 and ×4
respectively, and comparing their super-resolution results with the corresponding
ground truth images. The second evaluation is comprised of obtaining the ×2
super-resolution from a given mid-resolution thermal image and comparing it
with the corresponding semi-registered high-resolution thermal image. Out of 51
registered participants, 6 teams reached the final validation phase.

5.1 Motivation

Single image super-resolution (SR) is a challenging, ill-posed problem, that is still
solved using conventional methods. In recent years, deep learning techniques have
shown better results. Most of these methods have been largely used in the visible
spectral domain. In contrast to visible spectrum images, thermal images tend to
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have poor resolution, which could be improved by using learning-based traditional
SR methods. These methods work by down-sampling and adding noise and blur
to the given image. The poor quality noisy and blurred images, together with the
given ground truth images, are used in the learning process.

The approach mentioned above has been frequently used to tackle the SR
problem, however there are few contributions where the learning process is based
on the usage of a pair of images (low and high-resolution images) obtained from
different cameras. A novel thermal image dataset has been created containing
images with three different resolutions (low-resolution (LR), mid-resolution (MR),
high-resolution (HR)) obtained with three distinct thermal cameras.

The TISR Challenge1 consists of creating a solution capable of generating a SR
thermal image in ×2, ×3, and ×4 scales from cameras with different resolutions, in
the conventional way by downsampling, and adding noise to the given ground truth
image. Additionally, a ×2 SR image must be generated from the image obtained
with a MR camera. This ×2 SR image is evaluated with respect to the corresponding
image obtained from a HR camera.

Figure 5.1: A mosaic with three different resolution thermal images from each
camera for visual comparison: (le f t ) crop from a LR image; (mi ddl e) crop from a
MR image; (r i g ht ) crop from a HR image [131].

The remainder of this paper is organized as follows. Section 5.2 introduces the
objectives of the challenge, and presents the dataset and evaluation methodology.
Section 5.3 summarizes the results obtained by the different teams. In Section
5.4, a short description of each teams’ approach is provided. Finally, the paper is
concluded in Section 5.5.

1http://vcipl-okstate.org/pbvs/20/challenge.html
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5.2 TISR Challenge

Figure 5.2: An example of thermal images acquired by each camera. (le f t) LR
image with 160×120 native resolution from an Axis Domo P1290. (mi ddl e) MR
image with 320×240 native resolution from an Axis Q2901-E. (r i g ht) HR image
with 640×480 resolution from an FC-6320 FLIR (native resolution is 640×512) [131].

5.2 TISR Challenge

The objectives of the TISR challenge are the following: (i ) promote state-of-the-art
approaches for the SR problem in the thermal image domain; (i i ) evaluate and
compare the different solutions; and (i i i ) promote a novel thermal image dataset
to be used as a benchmark by the community working on the thermal image SR
problem.

Table 5.1: Thermal Camera Specifications (Note: HR images have been cropped to
640×480) [131].

Image Description Camera Brand FOV Focal Length Native Resolution Total # of Images
Low (LR) Axis Domo P1290 35.4 4mm 160×120 1021
Mid (MR) Axis Q2901-E 35 9mm 320×240 1021
High (HR) FC-632O FLIR 32 19mm 640×512* 1021

5.2.1 Thermal Image Dataset

The dataset used in this challenge was recently presented in [131]. It consists of a
set of 1021 thermal images acquired by using three thermal cameras with different
resolutions. The dataset contains images from indoor and outdoor scenarios under
various lighting conditions (e.g., morning, afternoon, and night) and objects (e.g.,
buildings, cars, people, vegetation). The cameras were mounted in a rig that mini-
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mizes the baseline distance between the optical axis such that the acquired images
are almost registered. Figure 5.1 presents a mosaic obtained with images from each
camera (i.e., LR, MR, and HR). The camera parameters are given in Table 5.1 and
illustrations from each camera depicted in Figure 5.2.

5.2.2 Evaluation Methodology

Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) measures are
computed over a small region of the images in order to evaluate the performance of
the proposed solution. In this challenge two kinds of evaluations are performed.
For the first evaluation, a set of 10 down-sampled and noisy images from each
resolution (LR, MR, and HR) are considered. Downsampling scale factors of ×2, ×3,
and ×4 are performed and Gaussian noise of 10% is added. Figure 5.3 presents an
illustration of this first evaluation process.

The second evaluation consists of computing the PSNR and SSIM of the ob-
tained SR images with respect to the corresponding ground truth images. The
ground truth images are of the same resolution as the computed SR, but are ac-
quired with a different higher resolution camera. For the second evaluation, a set
of 10 MR images is considered. The obtained SR images, from the MR set, are
compared with the corresponding HR images, which have been acquired with an-
other camera. SIFT, SURF, and ORB descriptors are used to acquire characteristic
keypoints between the SR images, from the MR set, and the corresponding HR
thermal images. With these feature points the mapping parameters needed to
overlap the two images are computed (see [131] for more details). The evaluation
measures (PSNR and SSIM) are performed over a central cropped region of the
image. Figure 5.4 illustrates the second evaluation process.

5.3 Challenge Results

From 51 participants registered in the challenge, 6 teams made it to the final phase
and submitted results together with their corresponding extended abstracts. Table
5.2 shows the average results (PSNR and SSIM) for each team in the two evalua-
tions. A brief description of the thermal SR approach proposed by each team is
presented in Section 5.4. Information about the team members and their affilia-
tions is provided in Appendix A. According to the figures presented in Table 5.2, the
winner of the TISR Challenge - PBVS 2020 is the MLCV-Lab_SVNIT_NTNU team,
who achieved the top results in most of the evaluation tasks. The COUGER AI team
achieved the best results for the second evaluation. Teams that did not reach the
baseline results (i.e., bicubic interpolation) were not considered in this report.
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Team
Evaluation 1 Evaluation 2

×2 ×3 ×4 ×2 (MR to HR)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

HPZ-OSU 26,06 0,8686 26,11 0,8373 27,32 0,8589 19,98 0,7416

CVC-UAB 26,04 0,8651 25,97 0,8326 27,12 0,8555 19,93 0,7419

MLCV-Lab_SVNIT_NTNU 25,81 0,8858 26,35 0,8531 27,72 0,8758 20,02 0,7452

LISA-ULB 25,57 0,8401 25,17 0,7583 26,31 0,7824 20,09 0,7385

COUGER AI 25,45 0,8529 25,96 0,8271 27,31 0,8498 20,36 0,7595

RVL-UTA 24,72 0,8325 25,37 0,8211 26,11 0,8415 19,90 0,7391

Bicubic 24,47 0,8511 25,37 0,8172 26,74 0,8421 20,24 0,7515

Table 5.2: TISR Challenge: the average results from the evaluations detailed in
Section 5.2.2. The bold and underline values correspond to the first and second
best results, respectively.

5.4 Proposed Approaches and Teams

This section briefly presents the approaches proposed by the different teams.

5.4.1 HPZ-OSU

HPZ-OSU team follows the s-LWSR super-resolution framework [87? ? ], where the
images are processed in small patches through residual networks. To deal with the
added noise and the noise from thermal images’ nature, a noise reduction process,
referred to as PZ, is proposed. This approach has been originally designed for color
noise, but it also works well with other kind of noise, such as white noise or Gaussian
noise. The proposed network has been trained for the three super-resolution tasks
of Evaluation 1.

The proposed architecture is presented in Figure 5.5; it first converts the image
into the Y UV space, then applies two-time-filtering along the horizontal and verti-
cal direction. For each target pixel, the filter kernel is defined by the Y UV values of
the local pixels together with the relative distances to the target pixel.

All experiments were performed on a workstation with an 8GB NVIDIA 1070
GPU, using the Python programming language with PyTorch as a platform. The
given dataset has been split up into 800 images for training and 151 images for test-
ing. For the first evaluation, per each epoch, different noise values have been added,
the model with best PSNR score has been selected. For the second evaluation, the
same network is trained using HR (640x480) images downsampled by 2.
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5.4.2 CVC-UAB

CVC-UAB team proposes a Lightweight Multi-Path Residual Network (LMPRNet)
intended for thermal image super-resolution. This architecture makes the network
pay attention to learning more abstract features by letting abundant low-frequency
features to be avoided via multiple connections. Additionally, to seek a better trade-
off between performance and applicability, a novel module is introduced, referred
to as Residual Module (RM), which contains Residual Concatenation Blocks that
connected to each other with global skip-connection; build with a set of Adaptive
Residual Blocks (ARB) with local skip-connection, see Figure 5.6. Each ARB is de-
fined as a divers residual path-ways learning to make use of all kinds of information
form LR space. The LMPRNet design has the benefits of a multi-level learning
connection and also takes advantage of propagating information throughout the
network. As a result, each block has access to information of the preceding block
via local and global skip-connections and passes on information that needs to be
preserved. By concatenating different blocks followed by 1×1 convolutional layer
the network can reach both intermediate and high-frequency information, result-
ing in better image reconstruction. Finally, a new practical attention mechanism
(TFAM) is proposed by focusing on both channel and spatial information. The
main objective of TFAM is to enhance the representation power of the model by
emphasizing informative features and reduce worthless ones. In contrast to [167]
that applies sequentially two modules by two joint sigmoid operations, which is
not practical for lightweight models and edge devices. The proposed TFAM applies
channel and positional units simultaneously with a different set of operations and a
single hard sigmoid function.

In the training stage, input patches with a size of 60×60 from each of the ran-
domly selected 64 training images were used. The number of patches is augmented
by random horizontally flips and 90-degree rotation. The Adam optimizer with
default setting has been employed. The initial learning rate set to 10−3 and its
halved every 4× 105 steps. L1 is used as a loss function to optimize the model.
The proposed LMPRNet model is implemented in the PyTorch framework. The
proposed network has been trained using a 3.2 eight-core processor with 32GB of
memory with a NVIDIA GeForce GTX TITAN X GPU.

5.4.3 MLCV-Lab_SVNIT_NTNU

Figure 5.7 depicts the framework proposed by MLCV-Lab_SVNIT_NTNU team for
thermal image super-resolution. A new ResBlock module, inspired from Inception
network [27], is designed (see Figure 5.8). A channel attention (CA) module [? ] is
also adopted to adaptive re-scale the channel-wise features by considering inter-
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dependencies between channels. Furthermore, the local skip connection is utilized
in each ResBlock in which the higher layer gradients are bypassed to the lower layer.
In addition, long skip connections after six number of ResBlocks, which bypasses
the higher layer gradients directly to the first convolution layer, are used. These
skip connections help to solve the problem of exploding or vanishing gradient. In
the proposed method, the parametric exponential linear unit (i.e., PeLU) activation
function [155] is utilized. The feature maps are up-scaled to the desired resolution
level by using the sub-pixel convolution layer.

All experiments have been performed on a workstation with the following speci-
fications: Intel Core i 7−7700K processor, 32 GB RAM with NVIDIA GeForce GTX
1070 8GB GPU. The code is implemented using Tensorflow library. The proposed
network is trained using l1 loss function with a learning rate of 10−4 and the same is
optimized using Adam optimizer with β= 0.5. The proposed model was trained up
to 50,000 iterations with a batch size of 4. The given training images are augmented
using flipping and rotating operations. In the up-sample block, the value of f is set
to 63 for ×3 and 64 for ×2 and ×4.

5.4.4 LISA-ULB

The LISA-ULB team introduces a model referred to as VCycles BackProjection
(VCBP); it is designed to be scalable to meet the requirements of upscaling the
image by (×2, ×3, ×4) factors while maintaining the performance with a small num-
ber of parameters. The main contributions are: (i ) an iterative module of shared
parameters and Backprojection procedures between cycles; (i i ) a new training
strategy by constructing the model backwardly.

The model shown in Figure 5.9 consists of four modules: Encoder (E), Decoder
(D), Upsampler and Downsampler. D and E are one convolutional layer map of
the image to and from its multidimensional features. The downsampler is a one
convolutional layer with stride=2 to downscale the features from the high dimension
to the low dimension space. The upsampler is one dense network with 4 layers and
one deconvolution layer at the end when the module is last in the sequence. All
upsampler modules at the same level (L1, L2, L3, L4) share the same parameters.

The model first upsamples the input image to the target size using bicubic
interpolation and uses this image with the low-resolution (LR) image as inputs
for the model. The model is responsible to generate the residual high-frequency
(HF) information and add them to the encoded features before decoding them
back into the image space. In each VCycle the model downscales the accumulated
features from the previous and the current cycle to be the input for the next cycle.
This procedure enforces the model to generate features in the high-resolution (HR)
space while maintaining the similarity in its LR space. All downsampler modules
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share the same parameters to ensure that all earlier down-sampled features are
similar to the encoded features of the LR input image. Only the last down-sampled
features are used for the backprojection loss.

L L1(x, y) = E[|x − y |] is used for the content loss and the Backprojection loss.
The total loss function is:

L L1(SR, HR)+0.01∗L L1(BP, a),

(BP ) and (a) are the encoded features in the LR space of the down-sampled super-
resolved features and the input image features respectively.

The VCBP network has been implemented in Pytorch and performed on a
NVIDIA TITAN XP. The proposed model was trained using the AdamW optimizer
followed by SGDM. Instead of building the model forwardly, a new building and
training procedure is proposed, which add models backwardly for each new upscal-
ing factor as shown in Figure 5.10. The last model in the sequence responsible for
generating all the natural super-resolved images, while added earlier stages respon-
sible for producing intermediate super-resolved images. This allows to train the
model on larger image sizes. The model has 883K parameters and each upscaling
factor module was trained on the three training sets.

5.4.5 COUGER AI

The COUGER AI team proposes an architecture for the task of generating ×2, ×3
and ×4 resolution images, which are acquired at three different resolutions. The
proposed approach is based on a neural network that utilizes the coordinate convo-
lutional layer [102] and residual units [? ], along with the multi-level supervision and
attention unit to map the information between LR images to MR and HR images.

As shown in Figure 5.11, firstly, the bicubic interpolated input image is mapped
in Cartesian space using the coordinate convolutional layer [102]. In each base
block, two residual units along with the one convolutional layer are used. The output
of each base block is up-sampled according to the output resolution requirement.
All the up-sampled outputs are then fused to the Convolutional Block Attention
Module (CBAM) [167]. Also, to improve the pixel-wise resolution, a multi-level
supervision is applied on each up-sampled layer, inspired on [77] [122].

To supervise the model output, a combination of three losses are used: mean
squared error (MSE), SSIM, and Sobel, i.e.,

Tot alLoss = MSE +SSI MLoss +SOBELLoss .

In total, three (×2,×3,×4) networks are trained for generating the high-resolution
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images from the low-resolution input images in Keras 2.2.4. Input images are
normalized between 0 to 1 and introduced with Gaussian noise (mean = 0 and
sigma = 10). The dataset was trained using a NVIDIA 1080 GTX GPU.

5.4.6 RVL-UTA

The RVL-UTA team presents a novel network for thermal image super-resolution
(SR) called the Multiscale Residual Channel Attention Network (MSRCAN). The
architecture is inspired by state-of-the-art methods to recover details from low-
resolution (LR) RGB images such as: very deep residual channel attention networks
(RCAN) [? ], learning a mixture of deep networks for single image SR (MSCN) [97],
and multiscale convolutional neural networks (CNNs) (MSSR) [73]. RCAN allows
deeper CNN models, which result in more feature representation. MSCN uses
multiple parallel inference modules with sequentially increased dilation factors
and an adaptive weight (AW) module allowing for multiscale SR outputs and pixel-
wise AW summation. MSSR provides a model for parallel CNN paths with different
depths corresponding to multiscale SR image outputs. The proposed MSRCAN
implements a combination of all these networks to produce higher PSNR and SSIM
scores, as well as sharper SR output images.

The inputs to MSRCAN are bicubicly up-sampled LR images. These LR images
pass through parallel RCAN SR inference modules, which produce high-resolution
(HR) estimates that are aggregated using AW modules at the pixel level. The re-
ceptive field of the convolutions within each of the SR modules linearly increases
against the number of modules. This is done by increasing the dilation factor by
two for each of the parallel modules. Different receptive fields of each SR inference
module allow the network to produce an HR estimate for varying scales as was done
with MSSR. Each SR inference module is pixel-wise multiplied with its correspond-
ing AW module according to the architecture of MSCN. The sum of these pixel-wise
products produces the HR estimate. An overview of the network architecture is
shown in Figure 5.12.

MSRCAN was trained on a workstation with a NVIDIA Quadro P4000 GPU,
Intel Core i7-8700 CPU, and 32GB of RAM. It was written with the Python 3.7.6
programming language and the Tensorflow v1 library. In addition, the following
modules were used: PIL, Pyelastix, OpenCV, ImageIO, TQDM.

5.5 Summary

This paper summarizes the best contributions to the Thermal Image Super-Resolution
Challenge - PBVS 2020, where 51 teams from 17 different countries have partici-
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pated and 6 teams reached the final validation phase. This was the first time this
challenge has been proposed and a wide interest from the research community
has been observed. Undoubtedly, the results from this year will be used as the
benchmark for next year’s challenge. This challenge has also been an opportunity
to promote the evaluation dataset used by the participating teams.
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Figure 5.3: An illustration of the first evaluation process (×2 for low, ×3 for mid, ×4
for high).
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Figure 5.4: A illustration of the second evaluation process. Note that this evaluation
is applied over a set of 10 MR images.

90



5.5 Summary

S-LWSR 
Module

Final OutputPZ Denoise
ModuleInput images

-> Convert image to YUV space
-> Horizontally Filtering
-> Vertically Filtering  
-> Output results

Figure 5.5: HPZ-OSU proposed architecture with color noise reduction process,
where the s −LW SR module uses the framework in [87].

Figure 5.6: CVC-UAB architecture of the proposed Lightweight Multi-Path Residual
Network (LMPRNet).

Figure 5.7: MLCV-Lab_SVNIT_NTNU proposed architecture.

91



Chapter 5. Thermal Image Super-Resolution
Challenge

Figure 5.8: ResBlock design for the MLCV-Lab_SVNIT_NTNU architecture.

Figure 5.9: LISA-ULB proposed architecture.
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Figure 5.10: LISA-ULB proposed building model.

Figure 5.11: COUGER AI proposed architecture: A Multi-Level Supervision Model
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Figure 5.12: The RVL-UTA proposed MSRCAN architecture.
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6 SRFormer: Efficient Yet Powerful Trans-
former Network For Single Image Super
Resolution

This chapter presents the article submitted at:

Armin Mehri, Parichehr Behjati, and Angel D. Sappa. SRFormer: Efficient Yet Pow-
erful Transformer Network For Single Image Super Resolution.IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2022. (under review)

Recent breakthroughs in single image super resolution have investigated the po-
tential of deep Convolutional Neural Networks (CNNs) to improve the performance.
However CNNs based models suffers from limited respective field and in adapt-
ability to the input content. Recently, Transformer based models were presented,
which demonstrated major performance gains in Natural Language Processing
and Vision tasks while mitigating the drawbacks of CNNs. Nevertheless, Trans-
former computational complexity can increase quadratically for high-resolution
images and the fact that it ignores the original structures of the image by convert-
ing them to 1D structure can be problematic to capture the local context infor-
mation and adapting them for real-time applications. In this paper, we present
SRFormer, an efficient yet powerful Transformer based architecture by making
several key designs in the building Transformer blocks and Transformer layer such
that allows to consider the original structure of the image (i.e., 2D structure) while
capturing both local and global dependencies without raise of computational
demands and memory consumption. We also present Gated MLP Feature Fusion
module to aggregate the features of different stages of Transformer blocks by fo-
cusing on inter-spatial relationship, while adding minor computational cost to the
network. Extensive experiments are carried out on a number of super resolution
benchmark datasets to evaluate the proposed SRFormer approach. SRFormer
delivers superior performance when compared to the state-of-the-art algorithms
both Transformer and Convolutional based networks.
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6.1 Motivation

Super Resolution has been studied since 1974, when Gerchberg [12] introduced
the notion of Super Resolution (SR) to improve optical system resolution over and
above diffraction, since then the idea of super resolution has been defined as a way
for obtaining high resolution (HR) images from its degraded low resolution (LR)
image with a high visual quality, more realistic textures and enhanced in details of
the given low-resolution input image.

Although super resolution being explored for decades, single image super reso-
lution is still an active yet challenging topic in Computer Vision due to its complex
nature and high practical values in improving image details and textures. The recent
success of image super resolution has the potential to significantly improve the qual-
ity of media content, resulting in better user experiences. For example, the digital
zoom algorithm used in mobile cameras and the image enhancement technology
used in digital devices. Furthermore, this core technology can be applied to a wide
range of Computer Vision tasks, which leads to improvements in various Vision
tasks, such as object detection [43], medical imaging [46], security and surveillance
imaging [196], face recognition [119], astronomical images [105] and many other
domains [98, 176].

There are several reasons that makes image super resolution remains challeng-
ing: i ) Super Resolution is fundamentally an ill-posed inverse problem. There are
multiple solutions for the same low quality image instead of an unique single solu-
tion. i i ) The complexity of problem increases, as the up-scale factor increases. The
retrieval of missing scene details becomes even more complicated with greater fac-
tors, which often leads to the reproduction of incorrect information; and i i i ) there
are fundamental uncertainties among the LR and HR data since the down-sampling
of different HR images may lead to a similar LR image [35].

Formerly, different methods were utilized to tackle the super resolution prob-
lems, such as statistical methods, prediction-based methods, patching methods,
edge-based methods and sparse representation method. However, researchers have
lately been using Deep Learning (DL) approaches to solve the problems of image
super resolution due to advance progress in computers computational power.

Deep learning ConvNet based approaches have consistently demonstrated
significant improvement to the classical methods over the last decade. Numerous
deep convolutional neural networks introduced [1, 28, 92, 100] as well as many
lightweight networks and techniques to reduce the computational complexity of
the networks, such as using filter pruning [50, 61], knowledge distillation [41, 171] to
minimize computing time by narrowing the network and, quantization techniques
[111] to lowering the computational complexity while keeping the original network’s
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Figure 6.1: PSNR v s. Model size trade-off on Urban100 (×4). SRformer achieves superior
performance among all the CNN and Transformer based network.

architecture. However, these techniques often leads to poor performance due to
several reasons such as lower network capacity, long inference time and a large
number of operations due to several iterate through the forward process.

In addiction, ConvNet based approaches suffers from two main issues that
come from the fundamental of the convolution layer. First, there is no content
dependency in the interactions between images and convolution kernels. The same
convolution kernel uses to restore various images regions, which it is not the ideal
solution. Second, convolution is effective to capture local context information but
ineffective for capturing long-range dependency [93].

Transformer [156] introduced to tackle the aforementioned problems of convo-
lution layer, by designing a self-attention mechanism to capture global interactions
between contexts, has shown promising performance in several Vision and NLP
tasks [21, 38, 104]. However, self-attention mechanism computational cost in-
creases quadratic when dealing with spatial resolution and also ignore the local
2D structure information of the image by processing images as a 1D structure [49].
Furthermore, these methods usually needs to occupy heavy GPU memory, which
greatly limits their flexibility and application scenarios for low-capacity devices.

In this paper, we propose a novel lightweight approach for single image super
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resolution task, namely SRFormer by bringing the strengths of both convolution
layer and Transformer layer together to address the aforementioned problems. By
advancing both Convolution and Transformer together, SRFormer is able to capture
both local context information and global interactions between contexts, while
computationally stay efficient. The combination of both CNN and Transformer
together with the precise design of our SRFormer architecture, allow our model to
perform exceptionally well on benchmark datasets with faster training and infer-
ence time compare to other Transformer based network. It is worth to mention
that, SRFormer trained with only a single GPU for 3 days while SwinIR trained on
8 GPUs for almost 2 days to achieve their results. Also, SRFormer has a advantage
of multi-scale training, which can generate SR images with different scale factors
[×2,×3,×4] in one training phase while other methods needs to train separately for
each scale factors. As illustrated in Fig. 6.1, The proposed SRFormer yields to 26%
improvement on average of all benchmark datasets for scale factor 4 when com-
pared to SwinIR [93]– SOTA Transformer based model which shows the efficiency of
the propose model.

The main contributions of our work can be summarized as follow:

• We present SRFormer, an efficient yet powerful Transformer based network
for single image super resolution task, which is faster in training and inference
while generate more accurate SR images.

• We present a lightweight Dual Attention layer, which significantly improves
the reconstruction quality by generating global attention map from two local
attention weights, which obtain individually by two branches in parallel while
its not memory hunger.

• We present a low cost Gated MLP Feature Fusion module that yields to a
powerful representation by aggregating multi-stage feature representation
from Transformer blocks with minor computation complexity.

• Extensive experiments show that SRFormer achieves state-of-the-arts on
various benchmark datasets for SISR task compared to CNN/Transformer
based networks.

The rest of the paper is organized as follows: Section 6.2 describes the proposed
SRFormer and its core components in detail. Experimental comparisons against
several state of-the-art methods are presented in Section 6.3. Model investigation
presents in section 6.4. Section 6.5 concludes the paper.
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Figure 6.2: The overall network architecture of the proposed SRFormer.

6.2 Proposed Method

In this section, the overall network architecture of proposed SRFormer is described.
Later, the detailed information of Dual Attention layer is provided.

6.2.1 Overall Pipeline

The primary goal is to design an efficient Transformer based architecture, which
is able to generate a well detailed high quality images while remaining computa-
tionally efficient. Thus, we utilize the basic Transformer structure but specially
designed for efficient network structure with significant performance gains com-
pared to existed CNN and Transformer networks. The overall architecture of the
SRFormer is illustrated in Fig.2. In particular, the proposed SRFormer consists of
four modules: Shallow Feature Extraction (SFE), Dense Feature Extraction (DFE),
Gated MLP Feature Fusion (GMFF), and Multi-Scale Up-Sampling (MS-UP) mod-
ules. We defined ILR and ISR as the low-quality input and high-quality output of
our network, respectively.

6.2.2 Shallow Feature Extraction

The convolution layer prove that can performs well at early visual processing, which
leading to improve the performance of the network [168]. Therefore, a single 3×3
convolutional layer is applied on the given low-quality input image ILR to extract
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the initial features and map the input image space to a higher dimensional feature
space to generate better SR image. Therefore, we extract the shallow features F0 as:

F0 =Conv3×3(ILR ), (6.1)

6.2.3 Dense Feature Extraction

Next, the extracted shallow feature pass through the Dense Feature Extraction
FDF E as an input. DFE built up with the set of Transformer blocks. The input first
processed by input embedding such as patch embedding for Vision Transformers
(ViTs):

IE MB = InputEmb(F0), (6.2)

where IE MB denotes the embedding tokens with length of N sequence and C em-
bedding dimension. Our Dense Feature Extraction module takes embedding tokens
as a input to our Transformer blocks. Specifically, Dense Feature Extraction contains
of several Transformer blocks, which include i th Transformer layers and a 1×1 Conv
layer at the end of each block with benefit of waterfall residual connection to trans-
fer the information from previous stage to current stage. The shallow features from
SFE process through different Transformer stages to extract more abstract features
and spotlights the high-level information (further details provided in section 7.2.7).
Thus, we extract the feature as follow:

FDF E = HDF E (IE MB ), (6.3)

where HDF E (.) is Dense Feature Extraction module with several Transformer blocks,
which can be seen as

Fi =Conv1×1(C [HD AT B (Fi−1), Xi−1], i = 1,2, ...,K , (6.4)

where HD AT B (.) denotes the ith Transformer blocks. C denotes the concatenation
operation between the input feature of each D AT B block and the output. By
concatenating a convolutional layer within each stage of the Transformer block,
help to transfer inductive bias from the convolution operation into the Transformer-
based network and provide a more solid foundation for the later aggregation of
shallow and deep features together.

6.2.4 Gated MLP Feature Fusion

The aim of Gated MLP Feature Fusion (GMFF) design is to highlight the location
information in the stacked feature map of different stages of Transformer blocks.
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GMFF consists of N stacked residual D AT B as shown in Fig 6.2. GMFF first, ac-
cumulates the multi-stage features form different Transformer stages to create a
multi-stage representations of the input image. Then, passes the features through
the lightweight MLP network. However, in contrast to standard MLP network, we
propose a novel MLP module by using a 3× 3 Depthwise Conv layer inside the
module to leak the spatial information in order to boost the network performance
since highlighting such features are important in super resolution task to achieve
high performance. Also, gating mechanism used by formulating the element wise
product of two parallel routes of linear transformation layer that one is activated
with the GELU [58]. Thus, Gated MLP Feature Fusion can be formulated as follow:

FGMF F = MLP (GELU (Conv3×3(MLP (Fi ))))+F0, (6.5)

where FGMF F denotes the output of our feature aggregation of multi-stage Trans-
former block with the initial features, which later used by Multi Scale Up-Sampling
module. In ablation study, we will show the effectiveness of our proposed Gated
MLP Feature Fusion compared to the standard MLP network.

6.2.5 Multi Scale Up-Sampling

Given the feature from previous modules, which contains an aggregation of low- and
high-level information, our model generate a high-quality image ISR . Multi Scale
Up-Sampling (MSUP) module takes the features directly from GMFF module to be
able to reconstruct the high quality output. MSUP consists of several convolutional
and pixel-shuffle layers to upsample the features to the corresponding sizes in
one training phase instead of training for each interested scale factor separately.
Furthermore, we incorporate a global connection path HU P with only a bicubic
interpolation to grant access to the original LR information and facilitate the back-
propagation of the gradients. The Multi Scale Up-Sample module can be formulated
as:

ISR = H↑
Rec (F0 +FGMF F +HU P (ILR )), (6.6)

where HRec (·) and ISR denotes the up-sampling module and high quality recon-
structed image respectively:

6.2.6 Loss Function

To keep the consistency with previous works, we use L1 loss as a cost function
during training to optimize the parameters of proposed SRFormer.
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L1(θ) = 1

N

N∑
i=1

∥ISR − IHR∥1 , (6.7)

where ISR obtained by taking low-quality image as the input of our model and IHR

is the corresponding ground-truth.
In the next subsections, more details about our Transformer layer are given.

6.2.7 Dual Attention Layer

This section presents the proposed Dual Attention layer with completely revising
the token mixer (i.e., self-attention). As well known, self-attention is playing im-
portant role to achieve high performance in Natural Language Processing (NLP)
and Computer Vision Transformer based networks. However, self-attention can be
problematic due to several reasons, especially when it comes to work with spatial
resolution, which involves high-resolution images. The computational complexity
of self-attention increases quadratically to the number of tokens to mix. Besides
that, self-attention treats images as flatten sequence, which neglects the original
structure of images therefore it ignores the adaptability in channel dimensions,
which proven important for visual task. Also, self-attention does not take into ac-
count the local contextual information due to nature of self-attention. Thus, we
introduce Dual Attention layer to overcome the aforementioned shortages by gen-
erating a global attention map with less computational cost compared to existing
token mixer. Dual Attention generates a global attention map by aggregating two
local attention maps, which are separately obtained by using two different branches,
CNN based Attention Module and Transformer self-attention in parallel. By doing
so, unlike to the previous token mixer, the Dual Attention can also consider both
long range dependency and local contextual information with less computationally
complexity.

As shown in Fig 6.2, we design our Dual Attention in a way that it splits the
channel features equally for both attention module branches (SpAM and SeAM).
From Norm layer tensor X , both of our branches receive half of the input tensor to
create the local attention maps individually. SeAM is a self-attention Transformer,
which first generates the query (Q), key (K), and value (V) projections enriched with
local context. We apply SeAM only across the channels rather than spatial dimen-
sions. Our SeAM uses only depth-wise convolutions to emphasize the channel-wise
spatial context before computing feature covariance to produce the attention map.
Thus, Q, K , V computed as:

Q =W Q
d Y ,K =W K

d Y ,V =W V
d Y (6.8)
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where W (·)
d is the 3×3 bias-free depth-wise convolution. Next, query and key pro-

jections reshape in a way that their dot-product interaction generates a transposed-
attention map. Thus, attention map generate as follow:

At tenti on(Q,K ,V ) =Wd (V.So f tmax(K .Q/α))+X (6.9)

where X is the input feature map and α is a learnable scaling parameter that is used
to regulate the magnitude of the dot product of K and Q before applying the Softmax
function. Similar to previous works [93, 156, 177] we perform the attention function
for h times to learn separate attention maps in parallel in our SeAM module.

Second branch of Dual Attention layer is Spatial Attention Module (SpAM),
which is an almost parameter free attention mechanism. SpAM receive the other
half of the input tensor to generate the local attention map. The goal of SpAM
module is to encode the spatial information, which represents the importance
of each pixel in the input feature with negotiable cost. Given half of the input
tensor information, the channels of the input tensor are reduced by mean and max
operations, of which the shape is 1×H ×W . The obtained features concatenated,
then passed through a convolution layer with kernel size of 7×7. After, a sigmoid
activation layer apply to the output feature to generate the attention weights of
shape 1×H ×W which are later multiply with the input tensor to refined tensors of
shape C ×H ×W . Thus, the SpAM can be formulated as follow:

X = Si g moi d(Conv7×7[FMean(X ),FM ax (X )])∗X (6.10)

where FMean(·) and FM ax (·) denotes for mean and max operations. Later, generated
local attention maps from SpAM and SeAM are concatenated together to obtain
a unify global attention map with less computational cost. Thus, the generated
attention map contains both long range dependency and local context information
with enrich of spatial features.

Following that, a multi-layer perceptron (MLP) with two fully connected layers
and a GELU non-linearity activation function between them is employed for further
feature modifications. The norm layer is also added before MLP, and both modules
contains the residual connection between them. Thus, the entire procedure inside
of our Dual Attention is as follow:

X = (Nor m(Sp AM(X /2)+Se AM(X /2)))+X

Y = MLP (Nor m(X ))+X
(6.11)

where Nor m(·) stands for normalization layer and Y for the output feature map.
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Table 6.1: Average PSNR/SSIM comparison with state-of-the-art CNN- and
Transformer-based methods with the same range of network parameters on the
Bicubic (BI) degradation for scale factors [×2,×3,×4] (Transformer based methods
separated with horizontal line). Red is the Best and Blue is the second best perfor-
mance. We assume that the generated SR image is 720P to calculate Multi-Adds
(MAC). SRFormer with self-ensemble results are Highlighted.

Scale Method Params FLOPs
Set5 Set14 B100 Urban100 Manga109

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
VDSR [78] 665K 613G 37.53 0.9587 33.03 0.9124 31.90 0.8960 30.76 0.9140 37.22 0.9750
DRCN [79] 1,774K 17,974G 37.53 0.9587 33.03 0.9124 31.90 0.8960 30.76 0.9140 37.22 0.9750
CARN [1] 1,592K 223G 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9765
CBPN [194] 1,036K 240.7G 37.90 0.9590 33.60 0.9171 32.17 0.8989 32.14 0.9279 – –
FALSR-A[30] 1,021K 234.7G 37.82 0.9595 33.55 0.9168 32.12 0.8987 31.93 0.9256 – –
SRMDNF[186] 1,513K 348G 37.79 0.9600 33.32 0.9150 32.05 0.8980 31.33 0.9200 – –
LAPAR-A[91] 548K 171G 38.01 0.9605 33.62 0.9183 32.19 0.8999 32.10 0.9283 38.67 0.9772
OISR-LF-s[57] 1,370K 316.2G 38.02 0.9605 33.69 0.9178 32.20 0.9000 32.21 0.9290 – –

×2 LatticeNet [109] 756K 169.5G 38.15 0.9610 33.78 0.9193 32.25 0.9005 32.24 0.9302 – –
MADNet [85] 878K 187.1G 37.94 0.9604 33.46 0.9167 32.10 0.8988 31.74 0.9246 – –
HDRN [74] 878K 316.2G 37.75 0.9590 33.49 0.9150 32.03 0.8980 31.87 0.9250 38.07 0.9770
DPN [94] 832K 140G 37.52 0.9586 33.08 0.9129 31.89 0.8958 30.82 0.9144 – –
A2F-L [159] 1,363K 306.1G 38.09 0.9607 33.78 0.9192 32.23 0.9002 32.46 0.9313 38.95 0.9772
ESRT [106] 677K – 38.03 0.9600 33.75 0.9184 32.25 0.9001 32.58 0.9318 39.12 0.9774
SwinIR [93] 878K 195.6G 38.14 0.9611 33.86 0.9206 32.31 0.9012 32.76 0.9340 39.12 0.9783
SRFormer (Ours) 958K 183.8G 38.11 0.9611 33.92 0.9221 32.35 0.9023 32.82 0.9398 39.23 0.9801
SRFormer+ (Ours) 958K – 38.18 0.9621 33.98 0.9232 32.41 0.9036 32.88 0.9409 39.29 0.9821

VDSR [78] 665K 613G 33.66 0.9213 29.77 0.8314 28.82 0.7976 27.14 0.8279 37.22 0.9750
DRCN [79] 1,774K 17,974G 33.82 0.9226 29.76 0.8311 28.80 0.7963 27.15 0.8276 32.24 0.9343
CARN [1] 1,592K 119G 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.50 0.9440
SRMDNF [186] 1,530K 156G 34.12 0.9250 30.04 0.8370 28.97 0.8030 27.57 0.8400 – –
LAPAR-A [91] 544K 114G 34.36 0.9267 30.34 0.8421 29.11 0.8054 28.15 0.8523 33.51 0.9441
OISR-LF-s[57] 1,550K 160.1G 34.39 0.9272 30.35 0.8426 29.11 0.8053 28.24 0.8544 – –
LatticeNet [109] 765K 76.3G 34.53 0.9281 30.39 0.8424 29.15 0.8059 28.33 0.8538 – –

×3 MADNet [85] 930K 88.4G 34.26 0.9262 30.29 0.8410 29.04 0.8033 27.91 0.8464 – –
HDRN [74] 878K 187.1G 34.24 0.9240 30.23 0.8400 28.96 0.8040 27.93 0.8490 33.17 0.9420
DPN [94] 832K 114.2G 33.71 0.9222 29.80 0.8320 28.84 0.7981 27.17 0.8282 – –
A2F-L [159] 1,367K 136.1G 34.54 0.9283 30.41 0.8436 29.14 0.8062 28.40 0.8574 33.83 0.9463
ESRT [106] 770K – 34.42 0.9268 30.43 0.8433 29.15 0.8063 28.46 0.8574 33.95 0.9455
SwinIR [93] 886K 87.2G 34.62 0.9289 30.54 0.8463 29.20 0.8082 28.66 0.8624 33.98 0.9478
SRFormer (Ours) 958K 81.6G 34.67 0.9301 30.59 0.8470 29.26 0.8095 28.72 0.8652 34.06 0.9488
SRFormer+ (Ours) 958K – 34.72 0.9313 30.66 0.8484 29.32 0.8105 28.79 0.8686 34.11 0.9502

VDSR [78] 665K 613G 31.35 0.8838 28.01 0.7674 27.29 0.7251 25.18 0.7524 28.83 0.8809
DRCN [79] 1,774K 17,974G 31.54 0.8850 29.19 0.7720 27.32 0.7280 25.12 0.7560 29.09 0.8845
SRDenseNet [154] 2,015K 390G 32.00 0.8931 28.50 0.7782 27.53 0.7337 26.05 0.7819 30.41 0.9071
CARN [1] 1,592K 91G 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.47 0.9084
CBPN [194] 1,197K 97.9G 32.21 0.8944 28.63 0.7813 27.58 0.7356 26.14 0.7869 – –
SRMDNF [186] 1,555K 89G 31.96 0.8930 28.35 0.7770 27.49 0.7340 25.68 0.7730 – –
LAPAR-A [91] 659K 94G 32.15 0.8944 28.61 0.7818 27.61 0.7366 26.14 0.7871 30.42 0.9074
OISR-LF-s[57] 1,520K 114.2G 32.14 0.8947 28.63 0.7819 27.60 0.7369 26.17 0.7888 – –

×4 LatticeNet [109] 777K 43.6G 32.30 0.8962 28.68 0.7830 27.62 0.7367 26.25 0.7873 – –
MADNet [85] 1,002K 54.1G 32.11 0.8939 28.52 0.7799 27.52 0.7340 25.89 0.7782 – –
HDRN [74] 867K 316.2G 32.23 0.8960 28.58 0.7810 27.53 0.7370 26.09 0.7870 30.43 0.9080
DPN [94] 832K 140G 31.42 0.8849 28.07 0.7688 27.30 0.7256 25.25 0.7546 – –
A2F-L [159] 1,374K 77.2G 32.32 0.8964 28.67 0.7839 27.62 0.7379 26.32 0.7931 30.72 0.9115
ESRT [106] 751K – 32.19 0.8947 28.69 0.7833 27.69 0.7379 26.39 0.7962 30.75 0.9100
SwinIR [93] 897K 49.6G 32.44 0.8976 28.77 0.7858 27.69 0.7406 26.47 0.7980 30.92 0.9151
SRFormer (Ours) 958K 41.3G 32.56 0.9018 28.86 0.7884 27.73 0.7429 26.61 0.8013 31.01 0.9168
SRFormer+ (Ours) 958K – 32.62 0.9037 28.91 0.7904 27.82 0.7441 26.68 0.8025 31.10 0.9184
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Figure 6.3: Visual results of BI degradation model for ×4 scale factor.
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Figure 6.4: Visual results of BD degradation model for ×4 scale factor.
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Table 6.2: Quantitative results with BD degradation model. Performance is shown
for scale factor ×3. The best and second best results are highlighted in red and blue
respectively. SRFormer with self-ensemble results are Highlighted.

Methods Degrad.
Set5 Set14 B100 Urban100 Manga109

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
SRCNN [36] BD 32.05 0.8944 28.80 0.8074 28.13 0.7736 25.70 0.7770 29.47 0.8924
VDSR [78] BD 33.25 0.9150 29.46 0.8244 28.57 0.7893 26.61 0.8136 31.06 0.9234
IRCNN_G [185] BD 33.38 0.9182 29.63 0.8281 28.65 0.7922 26.77 0.8154 31.15 0.9245
IRCNN_C [185] BD 29.55 0.8246 27.33 0.7135 26.46 0.6572 24.89 0.7172 28.68 0.7701
SRMDNF [186] BD 34.09 0.9242 30.11 0.8364 28.98 0.8009 27.50 0.8370 32.97 0.9391
RDN [192] BD 34.57 0.9280 30.53 0.8447 29.23 0.8079 28.46 0.8581 33.97 0.9465
OverNet[14] BD 34.59 0.9287 30.46 0.8310 29.13 0.8060 28.24 0.8485 – –
CASGCN [174] BD 34.62 0.9283 30.60 0.8458 29.30 0.8196 28.68 0.8611 34.27 0.9476
SRFormer (Ours) BD 34.78 0.9306 30.76 0.8487 29.45 0.8215 28.79 0.8635 34.41 0.9505
SRFormer+ (Ours) BD 34.82 0.9316 31.83 0.8498 29.52 0.8238 28.84 0.8683 34.46 0.9517

Table 6.3: Quantitative results with DN degradation models. Performance is shown
for scale factor ×3. The best and second best results are highlighted in red and blue
respectively.SRFormer with self-ensemble results are Highlighted.

Methods Degrad.
Set5 Set14 B100 Urban100 Manga109

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
SRCNN [36] DN 25.01 0.6950 23.78 0.5898 23.76 0.5538 21.19 0.5737 23.75 0.7148
VDSR [78] DN 25.20 0.7183 24.00 0.6112 24.00 0.5749 22.22 0.6096 24.20 0.7525
IRCNN_G [185] DN 25.70 0.7379 24.45 0.6305 24.28 0.5900 22.90 0.6429 24.88 0.7765
IRCNN_C [185] DN 26.18 0.7430 24.68 0.6300 24.52 0.5850 22.63 0.6205 24.74 0.7701
SRMDNF [186] DN 27.74 0.8026 26.13 0.6924 25.64 0.6495 24.28 0.7092 26.72 0.8590
RDN [192] DN 28.46 0.8151 26.60 0.7101 25.96 0.6573 24.92 0.7362 28.00 0.8590
OverNet[14] DN 28.49 0.8200 26.62 0.7116 25.95 0.6602 24.93 0.7365 – –
SRFormer (Ours) DN 28.62 0.8225 26.78 0.7129 26.12 0.6621 25.11 0.7384 28.17 0.8616
SRFormer+ (Ours) DN 28.66 0.8233 26.84 0.7137 26.20 0.6632 25.18 0.7391 28.23 0.8621

6.3 Experimental Results

6.3.1 Setting

Datasets

following prior works [31, 100], D IV 2K dataset has been used for training and
validating the network. D IV 2K splits to 800 high-quality images for training phase,
100 validation images and 100 test images. SRFormer train with all training images
and use validation images in the training phase. To evaluate the proposed method,
five standard benchmark datasets have been used, namely, Set5 [15], Set14 [183],
B100 [114], Ur ban100 [66], M ang a109 [115].
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Figure 6.5: Visual results of DN degradation model for ×4 scale factor.

Evaluation Protocol

Two widely used quantitative metrics have been considered to measure the per-
formance of our SRFormer in order to maintain consistency with previous works.
Peak Signal-to-Noise Ratio (PSNR) measured in deciBels (dB) and the Structural
Similarity index (SSIM), which is computed between generated SR images and the
corresponding ground truths. Keeping up with the SR community, the RGB recon-
struction results first transformed to Y C bCr space, and then just the luminance
channel is considered to compute the PSNR and SSIM in our experiments.

Degradation Models

In order to demonstrate the efficiency of the proposed model, following the work of
[192], three different degradation models created to simulate LR images and make
fair comparisons with available methods. Degradation data was obtained as follow:
Firstly, a bicubic (BI) down-sampling dataset with scaling factors [×2, ×3, ×4] has
been created. Secondly, Blur-Downsampled (BD) has been created by applying
Gaussian kernel 7×7, and σ= 1.6 to HR images and then downsampled images with
scaling factor ×3. Aside from the BD, a more challenging degradation model has
been created, referred to as Downsample-Noisy (DN). DN degradation model is
down-sampling HR images with bicubic followed by adding 30% Gaussian noise.
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Implementation Details.

In the training phase, RGB patches are provided as inputs with size of 64×64 from
each of the randomly selected 32 low quality training images. Data augmentation
applied on patches by means of horizontal random flips and 90 degree rotation.
AdamP [59] optimizer has been employed with the initial learning rate 10−3 and its
halved every 4×105 steps. L1 is used as loss function to optimize the model. Also,
the configurations of our transformer encoder is as follow, we used 4 Transformer
blocks within 6 Transformer layers for each block, Embedding dimension set to 64
and MLP ratio to 2 for all Transformer blocks. Also, a Conv1×1 is used inside each
Transformer blocks. SRFormer developed by using PyTorch framework and trained
on a single NVIDIA RTX 3090 GPU to achieve its performance.

6.3.2 Comparison with State-Of-The-Art Methods

In this section, SRFormer and SRFormer+ are compared to other lightweight state-
of-the-art SR methods. Self-ensemble method [152] is also used to further boost
the performance of the proposed SRFormer (denoted as SRFormer+).

Results on Bicubic Degradation

We present comparisons between the proposed method (SRFormer and SRFormer+)
and several of the most recent lightweight SOTA CNN and Transformer based
models: VDSR [78], DRCN [79], CARN [1], CBPN [194], FALSR [30], LAPAR-A [91],
LatticeNet[109], MADNet [85], HDRN [74], DPN [94], A2F[159], ESRT [106], and
SwinIR[93] on the Bicubic (BI) degradation model for scale factors [×2, ×3, ×4].
Also, the number of network parameters and Multi-Adds operations are presented
in Table 6.1 to demonstrate the complexity of the model and have a fair comparison
with the existing methods. As can be seen, SRFormer produces superior outcomes
in practically all circumstances when compared to the other methods mentioned
above. This shows that SRFormer is capable of continuously accumulating these
hierarchical characteristics to build more robust representative features that are
well-focused on spatial context information. This trait can be confirmed by the
obtained SSIM scores, which are based on the visible structures in the image and are
therefore more accurate. Furthermore, it can be observed that using self-ensembles
[152], the proposed SRFormer+ gains even more performance benefits. Several
visual outcomes are presented in Fig. 6.3. As can be seen, the texture direction of
the reconstructed images from all of the compared approaches is utterly incorrect
while the text is blur in all the cases at different levels. However, the results obtained
by SRFormer are similar to ground truth texture.
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6.3.3 Results on BD and DN Degradation Models

We also provide the performance of SRFormer and SRFormer+ on the BD (Blurry)
and DN (Noisy) benchmark datasets in Table 6.2 and Table 6.3 to illustrate the
strengths of proposed model when it comes to challenging situation with SOTA
models. Due to degradation mismatch the following methods SRCNN and VDSR
are re-trained for both BD and DN. As can be seen, SRFormer outperforms all other
lightweight SOTA models on challenging benchmark datasets, and it is particularly
impressive when compared to other lightweight SOTA models. A high-capability
model, RDN [192] is also listed, which is used to demonstrate the superior per-
formance of our SRFormer in comparison to a deep and costly model in these
challenging datasets. SRFormer performs better in both datasets notwithstanding,
RDN is a significantly expensive network compared to the low-cost SRFormer. RDN
is nearly ×20 more expensive in terms of computational complexity. Furthermore, a
visual representation of both challenging BD and DN benchmark datasets is shown
in Fig. 6.4 and Fig. 6.5 respectively. As can be seen our proposed method performs
better in comparison with other SOTA methods in removing the noises and fuzzy
regions from input image, which results generating a sharper with fine details SR
images.

Figure 6.6: Performance investigation on different settings of SRFormer on Ur-
ban100 for scale factor ×4 .

6.4 Ablation Study

The performance of the propose model is further investigated through an extensive
ablation study that includes in-depth examinations of impact of each module. The
ablation study is designed to provide additional insight into the performance of the
proposed model.
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6.4.1 Relation Between Number of Transformer Blocks and Layers
vs. Performance and Network Parameters

We investigate deeply the relation of number of Transformer blocks (DATB) and
Transformer layer (DAL) on the performance and model size of our proposed model
architecture in Fig 6.6. We discovered that the performance (PSNR) of the network
has a positive relationship with aforementioned hyperparameters however per-
formance gains by increasing the number of blocks and layers will not come for
free. By increasing the number of blocks or layers while performance continuously
improve, the overall number of network parameters and FLOPs increases, which
makes the network computationally inefficient. Also, we can see that by increasing
these hyperparameters, the performance benefit gets more and more limited until
it is start to saturate progressively. Thus, we design our network by choosing four
Transformer blocks and six Transformer layers inside of each block to still have a
lightweight yet powerful feature extraction module.

6.4.2 Visualization on Influence of Conv Layer in Transformer
Block

Figure 6.7 shows the average feature maps of each stage of our Dense Feature
Extraction module to investigate the impact of conv layer when it stack up with
Transformer layers. Each average feature map is the mean of Fout in channel
dimension, which represents the output of Transformer block at each stage. The
average feature maps without a conv layer are shown on the top row, and with a conv
layer within Transformer blocks are illustrated on the bottom row. By visualizing
the feature maps, we can first see that, using a conv layer within a Transformer,
helps the Transformer to learn sharper representations compared to without conv
layer. Second, as the network focuses more on high level information, feature maps
tend to include more negative values at each stage, indicating a stronger impact
of suppressing the smooth area of the input image, which further leads to a more
accurate residual image.

6.4.3 Impact of Dual Attention

We further study the impact of both proposed SpAM and SeAM to illustrate the
effectiveness of the proposed Dual Attention. We investigate the performance of
SRFormer with the standard self-attention layer [156] and each sub branch of our
Dual Attention layer. As can be seen in Table 6.4, the SRFormer with Dual Atten-
tion boosts the performance of the network while using less computational cost
compared to when standard self-attention layer replace in the network. In contrast
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S1 S2 S3 S4

Figure 6.7: Average feature maps of Transformer blocks (DATB). Top: DATB without
Conv layer. Bottom: DATB with Conv layer

to other self-attention layer, Dual Attention built up with two parallel branches,
which able to encode the spatial information more efficient and enables the Dual
Attention to preserve a rich representation while shrinking its depth to make further
computation lightweight. Also, it helps the network train faster compare to other
transformer based network.

Table 6.4: Influence of different setting of the Dual Attention layer on Urban100
scale factor ×4.

SeAM SpAM Parameters(K) PSNR(dB)↑
Meta-Former – – 953K 26.47

– ✓ 955K 26.38
Dual Attention ✓ – 942K 26.54

✓ ✓ 958K 26.61

6.4.4 Influence of Gated MLP Feature Fusion

Table 6.5 shows the impact of our proposed lightweight Gated MLP Feature Fusion
compared to without and with baseline MLP on the performance of proposed
network. In addition, we investigate the impact of the usage of depthwise, pointwise
conv layer, and gated mechanism in our Gated MLP Feature Fusion. As can be seen,
SRFormer obtains performance gain compared to when the network does not
contain any MLP module or even when it is compared to the baseline MLP with a
less computation cost. The intuition behind that is, GMFF uses gated mechanism
to allow gradients to backpropagate more easily through depth, and a Dw-Conv
layer between the MLP layers to leak the location information, which lead the
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Table 6.5: Gated MLP Feature Fusion performance investigation on Urban100 for
×4.

Parameters(K) Memory(M) PSNR(dB)↑
w/o MLP 955K 2,631 26.52
Baseline MLP 962K 2,875 26.58
GMFF(Ours) 958K 2,739 26.61

Table 6.6: Impact of different Gated MLP Feature Fusion setting on Urban100 for
×4.

PwConv DwConv Gated Mech. Parameters (K) PSNR (dB) ↑
✓ – – 959K 26.56

GMFF – ✓ – 960K 26.59
– ✓ ✓ 958K 26.61

Table 6.7: Perceptual index comparison between proposed method and recent lightweight
state-of-the-art methods on benchmark datasets for scale factor ×4. The lower is better.

Methods Parameters Set5 Set14 B100 Urban100 Manga109

CARN[1] 1.5M 6.297 5.775 5.700 5.540 5.132
SRFBN-S[78] 0.6M 6.451 5.775 5.702 5.549 5.010
SRDenseNet[154] 2M 6.128 5.615 5.653 5.526 4.762
RFDN_L[100] 0.6M 6.124 5.644 5.659 5.531 4.810
A2F_L[159] 1.3M 6.084 5.499 5.532 5.179 4.771
SRFormer(Ours) 0.9M 4.931 4.821 4.474 4.649 3.880

network to pay attention on positional information unlike the baseline MLP that
uses positional encoding [38] to introduce the location information, which is not
suitable when the test resolution is different from training resolution. Furthermore,
we illustrate the performance gain of our Gated MLP Feature Fusion with pointwise,
depthwise convolution layers, Gated Mechanism, and without GMFF. As shown in
Table 6.6, the performance of our SRFormer boosts when depthwise convolution
layer with gated mechanism used compare to other setting.
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Table 6.8: Average running time (s) and memory consumption (MB) comparison on
Urban100 for ×4.

Methods Parameters Memory Running Time(s)↓ PSNR(dB)↑
CARN[1] 1.5M 1,116 0.032 26.07
SRFBN-S[92] 0.5M 2,154 0.031 25.71
SRDenseNet[154] 2M 5,531 0.221 26.05
RFDN-L[100] 0.6M 3,215 0.033 26.22
A2F-L[159] 1.3M 3,015 0.032 26.32
RCAN[191] 16M 1,531 0.297 26.82
EDSR[95] 43M 2,731 0.085 26.64
SAN[92] 16M 3,015 0.224 26.79
RDN[192] 23M 5,015 0.172 26.82
SwinIR[93] 0.9M 3,340 0.216 26.47
SRFormer(Ours) 0.9M 2,739 0.102 26.61

6.4.5 Perceptual Index Metric

In order to assess the quality of the generated super resolution images, Perceptual
Index (PI) is used, which is more accurate in reflecting human perceptions of image
quality compared to other metrics (PSNR and SSIM). Table 6.7 illustrates the PI
metric between SRFormer and SOTA methods with same order of magnitude in
terms of network model size. It can be seen that the proposed model achieves lower
results (lower is better) compared to other models. This demonstrates the ability of
the proposed SRFormer for generating more realistic images.

6.4.6 Model Complexity and Inference Time Analysis

Table 6.8 illustrates the advantages of the propose SRFormer architecture in terms
of Network Parameters (M) Inference Time (s) and Memory Consumption (MB)
compared to existed light- and heavy-weight SOTA CNN and Transformer base
architecture methods on Urban100. In order to make a fair comparison, all the
models are measured with same configuration with their published source code
and default hyper-parameters on a single NVIDIA RTX 3090 GPU. As shown, our
model has the shortest inference time and less memory hunger per image com-
pared to Transformer models. This comparison illustrates that our proposed model
successfully strike a balance between performance and running time requirements.

6.5 Summary

In this paper we present a novel and efficient Transformer architecture based net-
work called SRFormer. The proposed model is designed by using strength of both
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Convolutional and Transformer layers to extract and preserve the fine details of
the features while while remains memory efficient. To do so, we introduce Dual
Attention layer, a Transformer layer, which generate the global attention map from
two different branches (SpAM and SeAM) in order to capture both local context
information and global dependency between sequences. Also, we introduce a
lightweight Gated MLP Feature Fusion to aggregate the multi stage feature repre-
sentation by focusing on inner spatial information before upsampling module. We
demonstrate the efficiency of the proposed method through a series of ablation
investigations. We have empirically demonstrated that our approach outperforms
previous lightweight state-of-the-art methods on all benchmarks datasets, despite
having a similar or fewer number of network parameters.
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7 TnTViT: Transformer in Transformer Net-
work for Guidance Super Resolution

This chapter presents the article submitted at:

Armin Mehri, Parichehr Behjati, and Angel D.Sappa. TnTViT: Transformer in
Transformer Network for Guidance Super Resolution. IEEE Access, 2022. (under
review)

Image Super Resolution is a potential approach that can improve the image quality
of low-resolution optical sensors, which can lead to improved performance in a
wide variety of industrial applications. It is important to emphasize that the most
SOTA super resolution algorithms are often using a single channel of input data
for training and inference. However, this practice ignores the fact that the cost of
acquiring high-resolution images in various spectral domains can differ a lot from
one another. In this paper, we seek to exploit complementary information from
a low-cost channel (visible image) to increase the image quality of an expensive
channel (infrared image), which nowadays infrared images become increasingly
necessary in different sectors such as in visual surveillance, military, and security
sectors. We propose a dual stream Transformer based SR approach to use the visi-
ble image as a guidance to super resolution of other spectral band images. To this
end, we introduce Transformer in Transformer (TnTViT) an efficient and effective
method that extracts the feature of each input images via different streams and
fuse them together at various stages. Furthermore, it is worth to mention that,
unlike other guidance SR approaches, TnTViT is able to generate SR images in ar-
bitrary sizes. Extensive experiments on different datasets illustrate the advantage
of proposed model compared to other state-of-the-art SR approaches.

7.1 Motivation

In recent years, image super resolution, has achieved a significant interest from
both academic and industrial communities. The process of reconstructing a high
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HR LR

CARN TNTViT-G

Figure 7.1: The visual comparison of super resolution results on M3FD dataset for
scale factor ×4.

resolution (HR) image from its low resolution (LR) counterpart is referred to as
the super resolution (SR) problem in the field of image processing. Due to the
fact that a single LR image might have numerous mappings from LR to SR, SR is
an ill-pose problem, which also known as a one-to-many. Thus, numerous SR
methods have been introduced to reconstruct a high resolution image from its low
resolution ones, such as traditional approaches like self-exemplars approach [66],
anchoring neighborhood regression [151], sparse representation [173] and random
forest [135].

More recently, by advancing the deep learning approaches, several Convolu-
tional Neural Networks (CNNs) and Transformers networks are being used as a
solution for the ill-pose SR problem. This is largely attributable to the recent suc-
cesses of deep learning approaches in a variety of vision tasks, such as object
detection, image recognition, semantic segmentation, image classification, and
many others. The first work in this direction has been presented by Dong et al.
[35], which developed a three-layer CNN model to train a nonlinear LR-to-HR map-
ping function, called SRCNN, which greatly outperforms the traditional machine
learning-based methods. The majority of later expansions of SRCNN enhance SR
accuracy by employing more complicated network designs (such as RDN [192],
EDSR [192], RCAN [191], among others) or by utilizing a training dataset with better
quality.

However, in real-world applications, the environment around us is dynamic and
changing all the time due to many known and unknown reasons, which requires
to deal with the various challenging conditions such as rain, fog, occlusions, poor
lighting, low resolution, and many others. All these factors make difficult for an
algorithm that uses only visible-band sensor (RGB) to achieve high performance
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under these conditions [127]. Therefore visible image is found to be insufficient
for such a cases and cross-spectral images have become increasingly necessary in
many applications as they are robust against obstacles in visual environments and
provide support to the RGB images. Cross-spectral images (e.g., visible-thermal
infrared; visible-near infrared) have been used in many range of specialized fields
such as surveillance [166], military affairs [44], pedestrian tracking [10], firefighting
[9] and many others. However, their associated costs of having such images (infrared
images) grow significantly with the increase of their resolution.

Various approaches and algorithms have been proposed to improve the res-
olution of different infrared images using hardware or software. Employing low
resolution cameras that are less expensive than high-end cross spectral domains
cameras and using SR methods to increase the resolution of such images, is one
strategy to boost the consumer applicability of such cameras to deal with chal-
lenging situation at a lower cost. However, as previously stated, single image SR
(SISR) is a tricky operation that becomes even more difficult when the input image
has a very poor resolution (such as the ones produced by inexpensive cross/multi-
spectral sensors), which SISR techniques may hallucinate missing details from low
resolution inputs and therefore yielding to artifacts [3].

To address the aforementioned problems, a fundamental solution is to take
advantage of any additional information that can be found with the low resolution
infrared images since most cross-spectral cameras are accompanied with an inbuilt
visible RGB camera with higher resolution. As a result, it is permissible to use low-
cost visible images as additional information to considerably improve the accuracy
of SR results of the costly infrared images. For example, long-wave infrared (LWIR)
detectors, required to capture thermal images, are sealed inside of their own sepa-
rate vacuum packages in order to carry out high-precision thermal measurement,
which is a procedure that is both time consuming and costly [132]. As the result,
the cost of LWIR sensors is much higher than that of RGB ones with comparable
spatial resolutions. The majority of commercially available LWIR cameras capture
LR images (for example, 160x120 or even 80x60 pixels) [20], in which significant
information are severely lost.

In this paper, we attempt to boost the performance of image restoration in the
expensive channel by taking into account the complementary information captured
by additional low cost visible sensor. The primary focus of this work is to build
a deep learning model that applies multimodal sensor fusion using visible cross-
spectral images—the proposed approach is evaluated with two different schemes
(i.e., visible-thermal infrared (LWIR), and visible-near infrared (NIR)) but is is also
valid for any other input data. The proposed model accept two images as inputs to
integrate them in such a way that enhance the generated infrared image resolution
with fine detailed by help of corresponding visible image. Thus, a guidance super
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Figure 7.2: The overall network architecture of the proposed TnTViT-G.

resolution network (T nT V i T −G) is proposed, to enhance the LR infrared image
by integrating the rich information in the HR visual image. We show that HR visual
images can help the model fill the missed values and generate higher frequency
details in the reconstructed SR infrared image.

The main contributions of our work can be summarized as follow:

• We present TnTViT-G, an efficient dual stream Transformer based network
for guidance super resolution (GSR) task. TnTViT-G Transformer blocks built
on the top of the idea of vision Transformer with completely revising the
self-attention layer.

• We present a lightweight Dual Attention layer, which significantly improves
the reconstruction quality by generating global attention map from two local
attention weights, which obtain individually by two branches in parallel while
its not memory hunger.

• We present a high quality arbitrary upsampling module, which able to gener-
ate SR images in any scale factors.

• Extensive experiments show that TnTViT-G achieves state-of-the-arts on
various datasets for GSR task compared to CNN/Transformer based networks.

The rest of the paper is organized as follows: Section 7.2 describes the proposed
TnTViT-G and its core components in detail. Experimental comparisons against
several state of-the-art methods are presented in Section 7.3. Model investigation
presents in section 7.4. Section 7.5 concludes the paper.
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7.2 Proposed Method

In this section, the overall network architecture of the proposed TnTViT-G is de-
scribed. Later, the detailed information of Dual Attention layer is provided. TnTViT
is designed for Single Image Super Resolution and TnTViT-G is siamese based
network of TnTViT, which designs for guidance super resolution.

7.2.1 Overall Pipeline

The main objective of the proposed model is to design an efficient Transformer-
based network for Guidance Super Resolution (GSR) that is capable of producing
fine details high-quality images with the help of the guided images (e.g, visible
images) to boost the performance of the network while staying computationally low.
Thus, we employ the original Transformer structure but modify it in a way that the
model achieves to a considerable performance over existing CNN and Transformer
networks. The overall architecture of the TnTViT-G is illustrated in Fig. 7.2, which
consists of two streams to extract the features of LR infrared input images and HR
visible images. In particular, the proposed TnTViT-G consists of three modules:
Shallow Feature Extraction (SFE), Dense Feature Extraction (DFE) and Multi-Level
Reconstruction Modules. We defined I I R

LR , I V i s
HR , and I I R

SR as the low-quality infrared,
high-quality RGB inputs, and high quality output of our network, respectively.

7.2.2 Shallow Feature Extraction

Given the input images to the network, we apply a single 3×3 convolutional layer
on each network’s streams to the provided LR and HR visible inputs in order to
map the input images space to a higher dimensional feature space and increase
the performance of the network [168]. Therefore, we extract the shallow features as
follow:

F I R
0 =Conv3×3(I I R

LR ),F V i s
0 =Conv3×3(I V i s

HR ), (7.1)

where F I R
0 (.) and F V i s

0 (.) denotes the output of shallow feature extraction on both
infrared and visible images.

7.2.3 Dense Feature Extraction

After mapping the inputs to a higher dimensional feature space, the features pass
through the Dense Feature Extraction FDF E to encode the information in order to
understand the context of the sequences. The feature encoders of the proposed
approach (i.e, Dense Feature Extraction) is a Transformer based network, which
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shares between the both input images (I I R
LR and I V i s

HR ) to keep the network computa-
tionally efficient. However, each stream receive the same patch of input image with
different sizes since LR images are relatively smaller than visible images. Particu-
larly, Dense Feature Extraction design by using several Transformer blocks to extract
abstract features and spotlights the high-level information. Each Transformer block
consists of several Transformer layers and a 1×1 Conv layer with benefit of cascade
connections to transfer the information from previous stage to current stage and
help the gradient flow of the network. Thus, we extract the feature as follow:

FDF E = HDF E (F I R
0 ;F V i s

0 ), (7.2)

where HDF E (.) is Dense Feature Extraction with several Transformer blocks which
can be formulated as

Fi =Conv1×1(C [HD AT B (Fi−1), Xi−1], i = 1,2, ...,K , (7.3)

where HD AT B (.) denotes the ith Dual Attention Transformer Blocks. C stands for the
concatenation operation between initial and output features of each D AT B block.
Conv denotes the convolutional layer after concat operation within each DATB. By
using a convolutional layer in the Transformer block, help to transfer inductive bias
from the convolution operation into the Transformer network and provide a more
solid foundation for the later aggregation with shallow features.

After encoding the features through several DATB, the output feature maps of
each DATB stage are concatenated together to highlight the positional information
via GMFF module, which stands for Gated MLP Feature Fusion before reconstruct-
ing the SR images. GMFF module is shown in Fig 7.3, which design to generate a
multi-stage representation feature map of Transformer blocks. Later, the feature
map passes through a lightweight MLP network. However, unlike to standard MLP
network, the GMFF´s MLP module is designed by using a 3×3 depthwise Conv
layer and gating mechanism technique to first, leak the spatial information since
highlighting such features are important in SR tasks to achieve high performance.
Second, allowing the useful information pass through the network and suppress the
less informative ones. Gating mechanism used by applying element wise product
of two parallel routes of linear transformation layer that one is activated with the
GELU. Thus, Gated MLP Feature Fusion can be seen as follow:

FGMF F = MLP (GELU (Conv3×3(MLP (Fi ))))+F0, (7.4)

where FGMF F is the output of DFE with aggregation of the initial features, which
later used by Multi Stage Feature Fusion Module.
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7.2.4 Multi Stage Feature Fusion Module

After encoding the information of both LR infrared image I I R
LR and HR visible image

I V i s
HR with a dual stream shared network, the LR features first scale up to the same

spatial size of HR visible image before fusing the information, with a learnable bicu-
bic upsampling that contains a conv layer before it; later, the aggregated features of
all the stages are concatenating together to enhance the infrared LR images before
upsampling it to the desired output size.

FMSF F =
Conv1×1(C [HU P (F I R

GMF F ),F V i s
GMF F ,F FS1, ...,F FS4]),

(7.5)

where FMSF F (·) denotes the output of multi-stage feature fusion module of both
TnTViT streams and the feature fusion of each stage.

7.2.5 Multi Level Reconstruction Module

Later, to upsample the LR infrared image after fusing the information, we propose a
new inductive bias in GSR architectures to generate SR images more accurately with
less artifacts compared with the other methods or naive interpolations techniques.
To do so, we first pass the information through two pixel shuffle layers and a conv
layer before each of them. Second, the upsampled features with pixel shuffle layers
feed to a learnable bicubic interpolation to up scale the features to any arbitrary
sizes. Later, the information aggregate with a shallow features of HR guided image,
which also up scaled with learnable bicubic interpolation and directly up scaled
feature of LR thermal image to grant access to the original LR information.

ISR = H↑
Rec (HU P (F I R

0 )+FMSF F +HU P (ILR )), (7.6)

where HRec (·) and ISR denotes the up-sampling module and high quality recon-
structed image respectively. Hence, the proposed module can learn how to refine
the pixels more correctly via different level of up scaling to bring it closer to the
actual high-resolution counterpart and beyond. The extensive experiments have
been detailed on ablation study to show the efficiency of proposed reconstruct
module over other approaches.

7.2.6 Loss Function

To keep the consistency with previous works, we use L1 loss as a cost function
during training to optimize the parameters of proposed TnTViT.
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L1(θ) = 1

N

N∑
i=1

∥ISR − IHR∥1 , (7.7)

where ISR obtained by taking low-quality infrared image as the input of our model
and IHR is the corresponding ground-truth.

In the next subsections, we provide more details about our Transformer layer.

Figure 7.3: Illustration of Dual Attention Layer (DAL).

7.2.7 Dual Attention Layer

This section presents the proposed Dual Attention layer, an architecture abstracted
from general multi-head Transformer layer [156] with revising the self-attention
layer. As is generally known, self-attention is critical to achieve excellent perfor-
mance in Transformer-based networks. However, self-attention might be trouble-
some for a variety of reasons. For example, the computational complexity of self-
attention grows quadratically with the number of tokens to mix. Also, self-attention
does not take into account the local contextual information due to nature of self-
attention and treats the images as flatten sequences which ignore the structure of
the image. Thus, we propose the Dual Attention layer to address the mentioned
limitations by constructing a global attention map at a lower computational cost.
Dual Attention layer creates a global attention map by combining two local atten-
tion maps, which are obtained in parallel by using a CNN-based Attention Module
and a Transformer self-attention layer. Unlike the prior token mixer, the Dual Atten-
tion able to take to the account both long-range dependency and local contextual
information with less computing cost.

As shown in Fig 7.3, we design our Dual Attention such that the channel infor-
mation is distributed evenly across both attention module branches (SpAM and
SeAM). Both attention branches get half of the input tensor from Norm layer ten-
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sor X to generate the local attention map independently. SeAM is a self-attention
Transformer, which first generates the query (Q), key (K), and value (V) projections
enriched with local context. Inspired by [180], we apply SeAM only across the chan-
nels rather than spatial dimensions. Our SeAM uses only depth-wise convolutions
to emphasize the channel-wise spatial context before computing feature covariance
to produce the attention map. Thus, Q, K , V are computed as:

Q =W Q
d Y ,K =W K

d Y ,V =W V
d Y , (7.8)

where W (·)
d is the 3×3 depth-wise convolution. Next, query and key projections

reshape in a way that their dot-product interaction generates a transposed-attention
map. Thus, attention map generate as follow:

At tenti on(Q,K ,V ) =Wd (V.So f tmax(K .Q/α))+X , (7.9)

where X is the input feature map and α is a learnable scaling parameter that is used
to regulate the magnitude of the dot product of K and Q before applying the Softmax
function. Similar to previous works [93, 156, 177] we perform the attention function
for h times to learn separate attention maps in parallel in our SeAM module.

Second branch of our Dual Attention layer is Spatial Attention Module (SpAM),
which is an almost parameter free attention mechanism. SpAM receive the other
half of the input tensor to generate the local attention map. The goal of SpAM
module is to encode the spatial information, which represents the importance of
each pixel in the input feature with negotiable cost. Given half of the input tensor
information, the channels of the input tensor are reduced by mean and max opera-
tions, of which the shape is 1×H ×W . The obtained features concatenated, then
pass through a dilated convolution layer with kernel size of 3×3. After, a sigmoid
activation layer apply to the output feature to generate the attention weights of
shape 1×H ×W , which are later multiply with the input tensor to refined tensors
of shape C ×H ×W . Thus, the SpAM can be formulated as follow:

X = Si g moi d(Conv3×3[FMean(X ),FM ax (X )])∗X , (7.10)

where FMean(·) and FM ax (·) denotes for mean and max operations. Later, both
generated local attention maps from SpAM and SeAM are concatenated together
to obtain a unify global attention map with less computational cost. Thus, the
generated attention map contains both long range dependency and local context
information with enrich of spatial features.

Following that, a multi-layer perceptron (MLP) with two fully connected layers
and a GELU non-linearity activation function between them is employed for further
feature modifications. The norm layer is also added before MLP, and both modules
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Table 7.1: Average PSNR, SSIM comparisons with SOTA CNN- and Transformer-
based methods with the same range of network parameters on the Bicubic (BI)
degradation for scale factors [×2,×4,×8]. Best results are highlighted.

Scale Method DM G/S
M3FD RGB-NIR

PSNR↑ SSIM↑ PSNR↑ SSIM↑
×2 Bicubic BI Single 37.74 0.9465 31.91 0.8792

×2 CARN [1] BI Single 38.82 0.9538 33.05 0.8982

×2 SwinIR [93] BI Single 37.89 0.9498 31.84 0.8863

×2 TNTViT [OURS] BI Single 38.91 0.9542 33.14 0.9002

×2 TNTViT-G [OURS] BI Guided 39.01 0.9556 34.49 0.9152

×4 Bicubic BI Single 30.79 0.8435 26.63 0.7129

×4 CARN [1] BI Single 31.58 0.8336 27.33 0.7284

×4 SwinIR [93] BI Single 30.82 0.8457 26.12 0.7177

×4 TNTViT [OURS] BI Single 31.64 0.8646 27.40 0.7395

×4 TNTViT-G [OURS] BI Guided 32.00 0.8735 29.59 0.8252

×8 Bicubic BI Single 26.77 0.7594 24.10 0.6142

×8 CARN [1] BI Single 27.41 0.7787 24.79 0.6348

×8 SwinIR [93] BI Single 26.81 0.7621 24.18 0.6153

×8 TNTViT [OURS] BI Single 27.50 0.7607 24.90 0.6348

×8 TNTViT-G [OURS] BI Guided 27.88 0.7628 26.21 0.7835

contains the residual connection between them. Thus, the entire procedure inside
of our Dual Attention is as follow:

X = (Nor m(Sp AM(X /2)+Se AM(X /2)))+X

Y = MLP (Nor m(X ))+X
(7.11)

where Nor m(·) stands for normalization layer and Y for the output feature map.
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7.3 Experimental Results

7.3.1 Setting

Datasets

Two datasets have been used to perform the experiments, namely M3FD[101]
and RGB-NIR [19]. The first dataset is M3FD, which newly released by [101]. The
M3FD dataset contains pair of visible and thermal images. The dataset built with a
synchronized system of one binocular optical camera and one binocular thermal
sensor to capture corresponding two modality images. We use M3FD Fusion dataset
which consists of 300 aligned pair images from different scenarios in Daytime, Night
and Overcast. Also, The dataset consists of images from different scenes such as
road, campus, street, forest, and many others.

The second dataset is RGB-NIR Scene [18] dataset. The RGB-NIR Scene dataset
contains aligned pair of 477 RGB and near-infrared images, divided into 9 categories
such as country, field, forest, indoor, mountain, old building, street, urban, and
water. The images were acquired by utilizing different exposures from customized
SLR cameras equipped with visible and near-infrared filters.

Evaluation Protocol

Two widely used quantitative metrics have been considered to measure the perfor-
mance of our TnTViT compared to other approaches. We used Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index Measure (SSIM) to measure recon-
structed SR image accuracy. PSNR assesses the image by statistically calculating
distortion levels between the reconstructed and ground-truth images. SSIM mea-
sures the structural similarity between two images based on luminance, contrast,
and structure, which has a value range between [0-1]. Higher value, better for both
PSNR and SSIM.

Degradation models

Degradation models have been created to replicate LR images in order to demon-
strate the effectiveness of our proposed approach. The degradation model is bicubic
downsampling (BI), which simulates LR images with the scale factors [×2,×4,×8]
by applying bicubic downsampling to HR images.

Implementation Details

We randomly select 70%, 20%, and 10% of images of each datasets for the training,
validation and test phases respectively. In the training phase, we provide the image
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patches as inputs with different sizes based on the size of each datasets from LR
images and corresponding RGB images. The batch size has been set to 32 for the
training. Horizontal random flips and 90 degree rotation data augmentation applied
on patches of images. Adam optimizer has been used with the initial learning rate
10−3. L1 is used as loss function to optimize the model and the network has been
trained for 150K iterations. Also, the configurations of our transformer encoder is
as follow, we use 4 Transformer blocks within 6 Transformer layers for each block,
Embedding dimension set to 64 and MLP ratio to 2 for all Transformer blocks.
TnTViT-G is developed by using PyTorch framework and trained on single NVIDIA
RTX 3090 GPU to achieve its performance.

7.3.2 Comparison with State-Of-The-Art Methods

In this section, we compare our proposed SISR (TnTViT) and GSR (TnTViT-G) with
other lightweight state of the art approaches on different datasets with different
scale factors.

Experiments on Bicubic Degradation

Table 7.1 shows comparisons between the proposed approach (TnTViT and TnTViT-
G) and SOTA CNN and Transformer based models, CARN [1] and SwinIR [93] on
the Bicubic (BI) degradation model for scale factors [×2, ×4, ×8]. Also it is worth to
mention that, these networks contain almost the same number of network parame-
ters, allowing for a fair comparison. As can be observed, when the proposed method
compared to the approaches mentioned above, TnTViT achieves better results with-
out help of any guided image (Visible image). Furthermore, the proposed method
(TnTViT-G) with the guidance of visible image information achieves superior re-
sults in all cases with major margin. This demonstrates that TnTViT-G continually
accumulate these hierarchical information from different spectral images in order
to construct more robust representative features that are well-focused on spatial
context information since its the key of accurate SR image. The derived SSIM scores,
which are based on the visible structures in the image and hence more accurate,
validate this claim. Fig. 7.4 shows some qualitative results on M3FD, and RGB-NIR
datasets on different scale factors. As can be seen, TnTViT produce image better
than existing method in the SISR since the network is able to focus better on the
spatial information. However, TnTViT-G is able to reconstruct high-frequency de-
tails significantly better than all the existing methods and generates more accurate
SR infrared images, which are more similar to the ground truth images.
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Table 7.2: Avargae LPIPS comparison between proposed method and the other methods on
benchmark dataset for scale factors [×2, ×4]. The lower is better.

Methods Scale M3FD RGB-NIR

CARN[1] ×2 0.1127 0.1365
SwinIR[93] ×2 0.2076 0.2291
TNTViT (Ours) ×2 0.1013 0.1224
TNTViT-G (Ours) ×2 0.0916 0.0934

CARN[1] ×4 0.2418 0.3371
SwinIR[93] ×4 0.3176 0.3985
TNTViT (Ours) ×4 0.2322 0.3262
TNTViT-G (Ours) ×4 0.2119 0.2202

7.4 Ablation Study

The proposed model is further studied by an extended ablation investigation to
demonstrate its efficiency. The ablation study is intended to offer further informa-
tion about the performance of the proposed approach.

7.4.1 Visualization on Impact of Guided Image

Fig. 7.5 shows the average feature maps of each stage of our Dense Feature Ex-
traction module to investigate the impact of guidance image (i.e, visible image)
when it stacked up with the LR feature map in each stage of DFE. Each average
feature map reflects the output of the Transformer block at each stage in Dense
Feature Extraction module. The average feature maps without guidance images
are presented on the top row, while those with guidance images are shown on the
bottom row. We can observe from the feature maps that using a guidance image
helps the network acquire sharper representations. Second, as the network focus
more on high-level information, feature maps tend to include more negative values
at each stage, showing a greater influence of suppressing the smooth area of the
input image, yields to a more accurate SR output.

7.4.2 Influence of Multi-Level Reconstruction Module

We investigate the advantages of using the proposed Multi-Level Reconstruction
Module, as well as the impact of two widely upsampling and interpolation ap-
proaches on reconstruction results. We carried out following experiments: i ) Di-
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Image from M3FD, Scale Factor x2 HR CARN SwinIR TNTViT TNTViT-G

Image from RGB-NIR, Scale Factor x2 HR CARN SwinIR TNTViT TNTViT-G

Image from M3FD, Scale Factor x4 HR CARN SwinIR TNTViT TNTViT-G

Image from RGB-NIR, Scale Factor x4 HR CARN SwinIR TNTViT TNTViT-G

Image from M3FD, Scale Factor x8 HR CARN SwinIR TNTViT TNTViT-G

Image from RGB-NIR, Scale Factor x8 HR CARN SwinIR TNTViT TNTViT-G

Figure 7.4: Visual results of BI degradation model for scale factors [×2, ×4, ×8] on
M3FD an RGB-NIR datasets respectively.
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Figure 7.5: Average feature maps of TnTViT (top) and TnTViT-G (bot tom) on
different stages of Dense Feature Extraction.

Table 7.3: Average running time (s) and memory consumption (MB) comparison on
RGB-NIR dataset for ×4.

Methods Parameters(M) Memory(MB) Running Time(s)↓ PSNR(dB)↑
CARN[1] 1.5M 1,230 0.072 27.33
SwinIR[93] 1.0M 3,110 0.185 26.12
TNTViT (Ours) 1.2M 2,324 0.116 27.40
TNTViT-G (Ours) 1.3M 2,549 0.204 29.59

rectly employing Pixel Shuffle layer to produce images after fusing the information
of both network’s stream instead of our MLUP; i i ) Using Pixel Shuffle layer followed
by a conv layer and bicubic interpolation to scale the generated SR image to ar-
bitrary scales. As can be seen in Table 7.4, when the suggested MLUP module is
used for up scaling, superior results are obtained by a large margin compared to
other upsampling techniques. These studies demonstrate that, opposite to com-
mon practice, the MLUP significantly improves reconstruction accuracy since the
module is able to generate the SR images in multi level with the access of both direct
and indirect shallow and abstract features which increasing the size of the encoder
yields consistent improvements on benchmark datasets.
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Table 7.4: Average PSNR results on RGB-NIR dataset for different upscaling methods with
arbitrary scales. Best results are highlighted, second best underlined.

Experiment
Scale

×2 ×2.2 ×2.4 ×2.6 ×2.8
Pixel Shuffle 34.06 – – – –
P.S. Bicubic 34.21 34.89 34.73 34.67 34.53

TNTViT MLUP 34.49 35.24 35.07 34.90 34.71
×3 ×3.1 ×3.3 ×3.5 ×3.7

Pixel Shuffle 32.18 – – – –
P.S. Bicubic 32.31 32.44 32.08 31.95 31.74

TNTViT MLUP 32.57 32.45 32.29 32.15 32.02
×4 ×4.2 ×4.4 ×4.6 ×4.8

Pixel Shuffle 29.11 – – – –
P.S. Bicubic 29.44 29.77 29.62 29.54 29.48

TNTViT MLUP 29.59 29.85 29.81 29.73 29.64

7.4.3 Learned Perceptual Image Patch Similarity

In Table 7.2, we provide the Learned Perceptual Image Patch Similarity (LPIPS)
evaluation metric to evaluate the quality of the generated super resolution images
since it has been demonstrated to correlate well with human perceptual similarity
of image quality than other evaluation metrics (i.e, PSNR and SSIM). LPIPS is pro-
posed by Zhang et al. [189], a deep-feature based evaluation metric that calculates
the perceptual distance between two images. As can be seen, the proposed model
achieves lower value than other approaches (lower is better). This shows the effec-
tiveness of proposed TnTViT-G to generate more accurate and fine detailed SR IR
images when HR visible images are accessible.

7.4.4 Model Complexity and Inference Time Analysis

Table 7.3 compares the proposed TnTViT-G architecture with existing CNN and
Transformer based architecture approaches on M3FD test images in terms of Net-
work Parameters (M), Inference Time (s), and Memory Consumption (MB). To
provide a fair comparison, all models are tested using the same setup, including
their public source code and default hyper-parameters, on a Intel Core i9-10900K
CPU and a NVIDIA RTX 3090 GPU. As can be seen, TnTViT generate the SR images
faster than other Transformer methods. This comparison shows that our proposed
model properly balances performance and running time requirements.

130



7.5 Summary

7.5 Summary

This paper introduces TnTViT-G, a novel approach for guidance super resolution
based on Transformer architecture. TnTViT-G is designed to accept two images
of different domains, extract the information from each domain (infrared and
corresponding visible image) with a separate stream and fuse them efficiently at
different stages while remaining memory efficient. We propose a dense feature
extraction, which contains both transformer self-attention layer and a convolu-
tional attention module that can capture both global dependency and local context
information at a lower computational cost while its well focusing on spatial features
compared to other Transformer models. Furthermore, unlike to other GSR methods,
TnTViT-G is able to generate the SR images in arbitrary sizes, while other methods
only generate SR images in fixed sizes. Our experiments highlight that a high-cost,
low-resolution spectral image (IR image) can be enhanced by a corresponding
high-resolution, low-cost visible image (visible image). We have demonstrated
that our approach achieves superior performance compared to other lightweight
state-of-the-art methods on all benchmark datasets.
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8.1 Conclusions

In addition to digital visible-spectrum imaging, IR imaging are making their way
into numerous applications due to the spectacular advancements in digital sensors
and the development of low-cost sensors. They offer a different perspective by in-
cluding multi-modal spectral sensors, which prove crucial to boosting the precision
of conventional digital vision and advancing machine vision beyond the visible
spectrum. Construction of machine vision based on various modalities allows for
the capture of features of physical objects, which are not visible to the human eye,
including those in the thermal infrared spectrum.

Using several sensors for a single machine vision task generates a large amount
of information. Therefore, it is vital to use the information from all the sensors and
fuse them together to extract the greatest benefit from the provided data. However,
the advancement of new generation multi-modal sensor networks camera presents
a number of difficulties, the most significant one is the disparity in image quality
and resolution between spectral regions, which prevents the fusion of details and
integrated the images captured at different wavelengths.

This thesis presents my effort to investigate several challenging in image restora-
tion tasks both single- and cross- domain by tackling the problem of Single Image
Super Resolution, Guidance Image Super Resolution (i.e., cross domain), and Image
Colorization through new deep learning approaches. In this research, we aim to ad-
vance the use of IR images by bringing image resolution closer to the human vision
and expanding the scope of machine vision’s possible uses. Also, we have studied
regard to colorizing the IR images to map them as closely as possible to the human
understanding of true colors since human perception is better at understanding
such colors. In chapter 3, we propose a novel approach for colorizing near infrared
images by using Generative Adversarial Network. The proposed model is able to
map the NIR images to color image while there is not a paired dataset available. We
introduce a new generator for CycleGAN and a new training strategy, which leads to
generate a better visual quality compared to other SOTA approaches.
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In chapter 4, we present a lightweight super resolution network to address the
problem of Single Image Super Resolution by using Convlutional Neural Network.
We present Multi-Path Residual Network, which contains set of Residual Concatena-
tion Blocks with stacked by several Adaptive Residual blocks. The proposed network
is able to adaptively extract important features and highlighting spatial context
information, which is the key important in SISR task. Furthermore, a new attention
module introduced to boost the performance of the network by spotlighting both
informative features across the channel and spatial dimensions. We have experi-
mentally shown that MPRNet outperforms previous state-of-the-art approaches in
benchmarks datasets while maintaining relatively low computation and memory
requirements. Moreover, in order to show the effectiveness of proposed model in
other domains, we have experimented MPRNet for Thermal Image Super Resolution
changeling, which shows a remarkable performance in infrared domain as well in
chapter 5.

In chapter 6, we propose an effective and efficient network to tackle the problem
of SISR by using Vison Transformer (ViT), called SRFormer, to mitigate the limita-
tions of CNN models, which suffer from limited respective field and in-adaptability
to the input content. Also, the proposed model cover the drawbacks of the Trans-
former based networks, which computational cost can increase dramatically high
for HR images and the fact that transformer ignores the original structure of the
input image. SRFormer is a powerful yet lightweight Transformer-based architec-
ture that captures both local and global dependencies by redesigning several key
importance of ViT without increasing computing costs and memory consump-
tion. Furthermore, the Gated MLP Feature Fusion module introduced to aggregate
the features of various phases of Transformer blocks by concentrating on their
inter-spatial interaction. Extensive experiments shows SRFormer delivers huge
performance gain compared to CNN based methods and superior results when it
compared to Transformer based network.

Finally, in chapter 7, as our experiments showed success in enhancing the
SR problem via a Convolutional Neural Network and Vision Transformer method,
we turned our attention to extensive experiments to search for a better model
architecture and other training procedures to advance the development of the
super resolution problem on cross domain (IR and visible spectrum images). We
extend the experiments by testing whether the rich texture details captured in
the visible spectral images can contribute to the improvement and enhancement
of the infrared images. Thus, we introduce a novel network, named TNTViT-G,
which accept two domains as input and effectively aggregate the visible spectral
image features with their inferred features counterparts to improve the quality of
reconstructed super resolved infrared images. This experiment proved that high
quality visible image can increase the resolution of low-quality IR image at lower
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cost than a high cost IR sensor.
The take-home message from this work is that by designing effective network

with choosing correct training strategy, we are able to design fast, accurate, and
lightweight networks which can increase the resolution of infrared images by using
the help of the corresponding visible images at lower cost. We believe that the
proposed approaches would have an important impact on the practical deployment.

8.2 Future Work

Despite the great success achieved by deep learning models in the single- and cross-
domain image restoration tasks, there are still many unsolved problems. Thus, we
will point out some of these problems explicitly and introduce some promising
trends for future evolution in this section.

Real-world conditions provide significant challenges for image SR because to
the fact that images captured in these conditions frequently exhibit indeterminate
forms of image degradation, such as blurring, additive noise, and compression
artifacts. Therefore, models that were trained on existing datasets that were done
manually tend to have poor performance in real-world applications. As a result,
developing an SR model that is capable of dealing with an unknown degradation is
essential to boost the applicability of real-world applications. In addition, SR is not
only limited to the use of domain-specific data and situations; it is also a significant
assistance in the completion of other visual tasks. Therefore, applying SR to more
particular domains, such as video surveillance, object detection, face recognition,
medical imaging, and scene rendering, is also a potential avenue that should be
pursued in the future.

Despite the fact that there has been experimental proof that low-cost channel
(e.g., visible image) can be used to increase the resolution of expensive channel
(e.g., infrared image), however this strategy relay on a well registered paired dataset,
which is difficult to obtain such images since there is misalignment between multi-
models sensors; and simple feed-forward network cannot deal with mismatch
problem. Thus, image alignment technique is require as a pre-process to match
the counterparts before encoding features of both domains and generate a super-
resolved image. Therefore, there will be more research needs into this topic to solve
the mismatch problem in a feed-forward network.

Furthermore, despite recent progress in unsupervised Image Colorization, there
are a lot of work need to be done to map correct color components to infrared
images. There are many possibilities of colors for each objects in a scene. For
instance, human made objects can presents in different colors. We validates that
an end-to-end deep learning architecture could be suitable for image colorization
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tasks. However, we believe that image colorization require some degree of human
interactions, which it still a huge potential in the future and could eventually reduce
hours of supervised work.

8.3 Scientific Articles

This dissertation has led to the following publications:

8.3.1 Published and Submitted Journals

• Armin Mehri, Parichehr Behjati, and Angel D. Sappa. SRFormer: Efficient
Yet Powerful Transformer Network For Single Image Super Resolution. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2022. (under
review)

• Armin Mehri, Parichehr Behjati, and Angel D.Sappa. TnTViT: Transformer
in Transformer Network for Guidance Super Resolution. IEEE Access, 2022.
(under review)

• Behjati, Parichehr, Pau Rodriguez, Carles Fernández, Isabelle Hupont, Armin
Mehri, and Jordi Gonzàlez. "Single image super-resolution based on direc-
tional variance attention network." Pattern Recognition 133 (2023): 108997.

• Behjati, Parichehr, Pau Rodriguez, Carles Fernández Tena, Armin Mehri, F.
Xavier Roca, Seiichi Ozawa, and Jordi Gonzàlez. "Frequency-Based Enhance-
ment Network for Efficient Super-Resolution." IEEE Access 10 (2022): 57383-
57397.

8.3.2 International Conferences and Workshops

• Mehri, Armin, and Angel D. Sappa. "Colorizing near infrared images through
a cyclic adversarial approach of unpaired samples." In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops, pp. 0-0. 2019.

• Mehri, Armin, Parichehr B. Ardakani, and Angel D. Sappa. "MPRNet: Multi-
path residual network for lightweight image super resolution." In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp.
2704-2713. 2021.

• Mehri, Armin, Parichehr B. Ardakani, and Angel D. Sappa. "LiNet: A Lightweight
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Network for Image Super Resolution." In 2020 25th International Conference
on Pattern Recognition (ICPR), pp. 7196-7202. IEEE, 2021.

• Behjati, Parichehr, Pau Rodriguez, Armin Mehri, Isabelle Hupont, Carles
Fernandez Tena, and Jordi Gonzalez. "Overnet: Lightweight multi-scale
super-resolution with overscaling network." In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pp. 2694-2703. 2021.

• Rivadeneira, Rafael E., Angel D. Sappa, and Armin Mehri et al. "Thermal
image super-resolution challenge-pbvs 2021." In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4359-4367.
2021.

• Rivadeneira, R. E., A. D. Sappa, and A. Mehri et al. "Thermal image superreso-
lution challenge-pbvs 2020. In 2020 IEEE." In CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pp. 432-439. 2020.
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