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Abstract
Reading is an essential skill that plays a crucial role in our daily lives. It
allows us to access information, gain knowledge, expand our understand-
ing of the world around us, and build the foundation for learning, commu-
nication, and personal growth. However, many texts we encounter day af-
ter day often contain complex words or syntactic structures that can cause
reading difficulties for certain groups of people; this motivates the need
for Automatic Text Simplification (ATS). ATS is a Natural Language Pro-
cessing (NLP) task that aims to reduce the linguistic complexity of a text
while preserving its original information and meaning. It involves vari-
ous operations, such as replacing complex words with simpler synonyms,
splitting long sentences into shorter ones, and reorganizing the structure
of the text. The goal of ATS is to make texts more accessible and under-
standable to a broader audience, including non-native speakers, children,
and individuals with Dyslexia, Autism, Aphasia, Intellectual Disabilities,
and Deaf and Hard of Hearing. In this work, we will discuss our proposed
methods for Complex Word Identification (CWI), Lexical Simplification
(LS), and Sentence Simplification (SS) in order to help improve reading
comprehension. For CWI, we propose several systems based on different
machine learning algorithms, such as Convolutional Neural Networks,
CatBoost, and XGBoost with word embeddings and feature-engineered
for identifying complex words in English, Spanish, German, and French
texts. For LS, we propose two systems, monolingual English and multi-
lingual system supporting English, Spanish, and Portuguese. For SS, we
propose several systems to simplify English and Spanish texts. In both
LS and SS, we explore the use of transfer learning and controllable mech-
anism, where the transfer learning help create the model that requires less
amount of training data, and the controllable mechanism gives us the abil-
ity to adjust the outputs based on our preference, especially for different
target audiences.
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Resum
La lectura és una habilitat essencial que juga un paper crucial en la nostra
vida quotidiana. La lectura ens permet accedir a la informació, adqui-
rir coneixements, ampliar la nostra comprensió del món que ens envolta
i construir les bases per a l’aprenentatge, la comunicació, i creixement
personal. No obstant això, molts textos sovint contenen paraules comple-
xes o estructures sintàctiques que poden provocar dificultats lectores per
a determinats grups de persones; això motiva la necessitat de la simpli-
ficació automàtica de text (ATS). ATS es una tasca que pretén reduir la
complexitat lingüística d’un text tot conservant la seva informació i sig-
nificat originals. Implica diversos operacions, com ara substituir paraules
complexes per sinònims més senzills, dividir les frases llargues en frases
més curtes i reorganitzant l’estructura del text. L’objectiu d’ATS és fer
que els textos siguin més accessibles i entenedors a un públic més ampli.
En aquest treball, presentem nostra proposta de mètodes d’identificació
de paraules complexes (CWI), simplificació lèxica (LS) i Simplificació
de frases (SS) per tal de fer els textos més accessibles. Pel que fa la CWI,
proposem diversos sistemes basats en algorismes d’aprenentatge automà-
tic, com ara xarxes neuronals de convolucions, “CatBoost” i “XGBoost”
amb incrustacions de paraules i característiques dissenyades per identifi-
car paraules complexes en anglès, espanyol, alemany i francès. Pel que
fa la LS, proposem dos sistemes, un pel anglès i un multilingüe. Per a
la SS, explorem l’ús de l’aprenentatge de transferència i el mecanismes
de control, on l’aprenentatge de transferència ajuda a crear un model que
requereix menys quantitat de dades d’entrenament mentre que el meca-
nisme de control ens dona la capacitat per ajustar les sortides en funció de
la nostra preferència, especialment per a diferents públics objectiu.
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Chapter 1

Introduction

Our research focuses on the topic of Automatic Text Simplification. In
this chapter, we detail the problem statement, motivation, and objectives
that inspired us to take on this research to accomplish our goals. Next, we
describe our contributions and the organization of the thesis.

1.1 Motivation
Reading is an essential skill that plays a crucial role in our daily lives.
It allows us to access information, gain knowledge, expand our under-
standing of the world around us, and build the foundation for learning,
communication, and personal growth. More importantly, it is a key in-
gredient for success in school, work, and life in general. Reading is an
activity that enhances knowledge transfer and increases skill, which ulti-
mately leads to academic success (Rabia et al., 2017). Reading has been
shown to have numerous benefits for our mental health, including reduc-
ing stress, improving cognitive function, and enhancing empathy (Deepti
S, 2016). It can reduce stress levels and improve mental health by provid-
ing an escape from reality and promoting relaxation. Reading can broaden
one’s perspective and understanding of the world by exposing the read-
ers to different cultures, ideas, and experiences (Stanovich, 2009). It can
also improve empathy and emotional intelligence by allowing readers to
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connect with characters and their experiences (Adrian et al., 2005). It has
also been found to enhance cognitive abilities such as critical thinking,
problem-solving, and creativity, as well as improve vocabulary, language
skills, and communication abilities (Cartwright, 2007).

Now imagine what life would be like if the text we read was so hard
to understand that we had to constantly use additional resources to grasp
the text’s essential meaning; life would be hard and limited. Reading dif-
ficulties can have various side effects on individuals. One of the most
significant side effects is the difficulty comprehending written informa-
tion, which can lead to a lack of access to important information, espe-
cially in today’s digital age, where most information is presented in writ-
ten form. Vast amounts of text produced every day are not accessible to
everybody due to their complexity. Usually, the way text is written often
contains both lexical and syntactical complexity, especially for those who
have problems reading and understanding. One of the ways to solve the
problem is to adapt the texts by simplifying them with Automatic Text
Simplification (ATS) (Saggion, 2017). ATS aims to reduce the complex-
ity of a text while preserving its original meaning. Research on ATS has
gained momentum in the last few decades because of its benefits as a
tool for reading aids, which could make the information more accessible
to broader audiences (Saggion, 2017) or help improve the performance
of other NLP tasks. ATS has been shown useful for developing read-
ing aids for children (Watanabe and Iwasaki, 2009; Siddharthan, 2002),
non-native speakers (Siddharthan, 2002), people with cognitive disabili-
ties such as autism (Orǎsan et al., 2013; Barbu et al., 2015), aphasia (Car-
roll et al., 1999) or dyslexia (Rello et al., 2013a; Matausch and Peböck,
2010). Moreover, ATS can also be used as a preprocessing step to im-
prove the results of many NLP tasks, e.g., parsing (Chandrasekar et al.,
1996), information extraction (Jonnalagadda and Gonzalez, 2010; Evans,
2011), semantic role labeling (Vickrey and Koller, 2008), question gen-
eration (Bernhard et al., 2012), text summarisation (Siddharthan et al.,
2004), and machine translation (Štajner and Popovic, 2016).

Text simplification can be performed at different levels, including lex-
ical, syntactic, and semantic. Lexical simplification involves replacing
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complex words with simpler synonyms or explanations. Syntactic simpli-
fication involves modifying the sentence structure and grammar to make it
easier to understand. Semantic simplification focuses on simplifying the
meaning and content of the text, such as ambiguous or metaphorical ex-
pressions, idiomatic phrases, and domain-specific terminology. The goal
of text simplification is to reduce the linguistic complexity of a text and
make it more accessible and comprehensible.

1.2 Research Questions
The research of this thesis started with the following research questions:

• RQ1 Is it possible to employ a deep learning method with word
embeddings and engineered features to accurately identify lexical
sources of complexity in sentences?

• RQ2 Can we build an adaptive lexical simplification?

• RQ3 Can we build an adaptive sentence simplification?

• RQ4 Can transfer-learning methods be used to improve the perfor-
mance of text simplification?

1.3 Contributions
This thesis makes a number of contributions to the field of automatic text
simplification, including complex word identification, lexical simplifica-
tion, and sentence simplification. Our main contributions can be narrowed
down to the following:

• Complex word identification is one of the most important modules
in lexical simplification, which is used to find difficult words that
should be simplified. For this task, we have proposed two systems.
The first system is based on Convolutional Neural Networks (CNN)
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with engineered features and word embeddings to identify complex
words in English, Spanish, and German texts. The second system is
made for identifying complex words in French medical texts, which
has more features than the first system and was trained with differ-
ent algorithms such as CNN, XGBoost, and CatBoost.

• For the lexical simplification task, we have proposed two state-of-
the-art models. The first model is a monolingual controllable lexi-
cal simplification for English, whereas the second model is a multi-
lingual controllable lexical simplification for English, Spanish, and
Portuguese. Both models are controllable, meaning that the outputs
can be altered based on the token values embedded into each input
sentence to match our desire, which for the evaluation purposes the
control tokens are set to their optimal values.

• We proposed several state-of-the-art sentence simplification sys-
tems for English and Spanish, using Transformer-based models
coupled with a simplification control mechanism. The approach is
inspired by the knowledge-transfer idea, where the model has been
trained on data-rich tasks or languages and then fine-tuned with
specific data to perform a certain task. Therefore, we fine-tuned
our systems with Transformer-based pre-trained models along with
control tokens embedded into each input. The control tokens are
intended to have control over different aspects of the outputs, such
as word length, sentence length, amount of paraphrasing, lexical
complexity, and syntactic complexity.

• This thesis follows an open science mandate by making all re-
sources created available.1,2,3,4,5,6

1www.github.com/kimchengsheang/cwi_cnn
2www.github.com/kimchengsheang/MedCWI
3www.github.com/kimchengsheang/ConLS
4www.github.com/kimchengsheang/mTLS
5www.github.com/kimchengsheang/TS_T5
6www.github.com/kimchengsheang/TS-AAAI-2022
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1.3.1 Publications
The following are the outcomes of this research:

• Sheang, Kim Cheng, and Horacio Saggion. 2023. “Multilingual
Controllable Transformer-Based Lexical Simplification.” In 39th
International Conference of the Spanish Society for Natural Lan-
guage Processing. Jaén, Spain.

Contributions:

– Kim Cheng Sheang: ideas, models’ implementation, experi-
ments, evaluations, and writing.

– Horacio Saggion: ideas, supervision, review, and editing.

• Sheang, Kim Cheng, Daniel Ferrés, and Horacio Saggion. 2022.
“Controllable Lexical Simplification for English.” In Proceedings
of the Workshop on Text Simplification, Accessibility, and Read-
ability (TSAR-2022), 199–206. Abu Dhabi, United Arab Emirates
(Virtual): Association for Computational Linguistics.

Contributions:

– Kim Cheng Sheang: ideas, model’s implementation, experi-
ments, evaluations, and writing.

– Daniel Ferrés: ideas and writing.

– Horacio Saggion: ideas, supervision, review, and editing.

• Štajner, Sanja, Kim Cheng Sheang, and Horacio Saggion. 2022.
“Sentence Simplification Capabilities of Transfer-Based Models.”
In Proceedings of the AAAI Conference on Artificial Intelligence,
36:12172–80. British Columbia, Canada (Virtual).

Contributions:

– Sanja Štajner: ideas, expert guidelines, expert evaluations,
writing.
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– Kim Cheng Sheang: ideas, models’ implementation, experi-
ments, automatic evaluations, crowd-sourced human evalua-
tions, and writing.

– Horacio Saggion: ideas, supervision, review, and editing.

• Sheang, Kim Cheng, Anaïs Koptient, Natalia Grabar, and Horacio
Saggion. 2022. “Identification of Complex Words and Passages in
Medical Documents in French.” In Actes de La 29e Conférence
Sur Le Traitement Automatique Des Langues Naturelles. Volume
1 : Conférence Principale, 116–25. Avignon, France: ATALA.

Contributions:

– Kim Cheng Sheang: ideas, models’ implementation, experi-
ments, evaluations, and writing.

– Anaïs Koptient: ideas, dataset creation, writing.

– Natalia Grabar: ideas, writing, supervision.

– Horacio Saggion: supervision, review, and editing.

• Sheang, Kim Cheng, and Horacio Saggion. 2021. “Controllable
Sentence Simplification with a Unified Text-to-Text Transfer Trans-
former.” In Proceedings of the 14th International Conference on
Natural Language Generation, 341–52. Aberdeen, Scotland, UK:
Association for Computational Linguistics.

Contributions:

– Kim Cheng Sheang: ideas, model’s implementation, experi-
ments, evaluations, and writing.

– Daniel Ferrés: ideas and writing.

– Horacio Saggion: ideas, supervision, review, and editing.

• Sheang, Kim Cheng. 2019. “Multilingual Complex Word Identi-
fication: Convolutional Neural Networks with Morphological and

6



Linguistic Features.” In Proceedings of the Student Research Work-
shop Associated with RANLP 2019, 83–89. Varna, Bulgaria: In-
coma Ltd.. (Best Paper Award)

Contributions:

– Kim Cheng Sheang: ideas, model’s implementation, experi-
ments, evaluations, and writing.

– Horacio Saggion: ideas, supervision, review, and editing.

• Sheang, Kim Cheng. 2019. “Context-Aware Automatic Text Sim-
plification.” In Proceedings of the Doctoral Symposium of the
XXXV International Conference of the Spanish Society for Nat-
ural Language Processing (SEPLN 2019), 56–62. Bilbao, Spain:
CEUR.

Other Publications

• Saggion, Horacio, Sanja Štajner, Daniel Ferrés, Kim Cheng
Sheang, Matthew Shardlow, Kai North, and Marcos Zampieri.
2022. “Findings of the TSAR-2022 Shared Task on Multilin-
gual Lexical Simplification.” In Proceedings of the Workshop on
Text Simplification, Accessibility, and Readability (TSAR-2022),
271–83. Abu Dhabi, United Arab Emirates (Virtual): Association
for Computational Linguistics.

1.4 Thesis Structure
This thesis is divided into five parts. Each part contains a series of chap-
ters covering different studies.

Part I (chapters 2 and 3) gives the background relevant to the thesis.
Chapter 2 provides a detailed study of the previous approaches of ATS,
and Chapter 3 introduces the various target audiences that could benefit
from ATS, their characteristics, and the challenges they face.
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Part II (chapters 4) presents two of our experiments on CWI. The
first experiment, Section 4.3, describes our CWI model based on CNN
with features engineered and word embeddings to identify complex
words in English, Spanish, and German texts. The second experiment,
Section 4.4, describes the extended work of the previous experiment
incorporating more features as well as training with different types of
Machine Learning algorithms, including CNN, CatBoost, and XGBoost
to tackle the complex word identification problem in French biomedical
documents.

The research presented in this chapter is based on the following
papers:

• Sheang, Kim Cheng. 2019. “Multilingual Complex Word Identi-
fication: Convolutional Neural Networks with Morphological and
Linguistic Features.” In Proceedings of the Student Research Work-
shop Associated with RANLP 2019, 83–89. Varna, Bulgaria: In-
coma Ltd..

• Sheang, Kim Cheng, Anaïs Koptient, Natalia Grabar, and Horacio
Saggion. 2022. “Identification of Complex Words and Passages in
Medical Documents in French.” In Actes de La 29e Conférence
Sur Le Traitement Automatique Des Langues Naturelles. Volume
1 : Conférence Principale, 116–25. Avignon, France: ATALA.

Part III (chapters 5 and 6) presents our lexical simplification
approaches. Chapter 5 describes the controllable lexical simplification
model for English. Chapter 6 describes our approaches to tackling both
monolingual and multilingual lexical simplification.

The research presented in this chapter is based on the following
papers:

• Sheang, Kim Cheng, Daniel Ferrés, and Horacio Saggion. 2022.
“Controllable Lexical Simplification for English.” In Proceedings
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of the Workshop on Text Simplification, Accessibility, and Read-
ability (TSAR-2022), 199–206. Abu Dhabi, United Arab Emirates
(Virtual): Association for Computational Linguistics.

• Sheang, Kim Cheng, and Horacio Saggion. 2023. “Multilingual
Controllable Transformer-Based Lexical Simplification.” In 39th
International Conference of the Spanish Society for Natural Lan-
guage Processing. Jaén, Spain.

Part IV (chapters 7 and 8) presents our sentence simplification
approaches. Chapter 7 describes our controllable sentence simplification
model fine-tuned with T5 pre-trained model and control tokens. Chapter
8 describes the extended work of the previous model by fine-tuning a
new model for Spanish with the Newsela dataset.

The research presented in this chapter is based on the following
papers:

• Sheang, Kim Cheng, and Horacio Saggion. 2021. “Controllable
Sentence Simplification with a Unified Text-to-Text Transfer Trans-
former.” In Proceedings of the 14th International Conference on
Natural Language Generation, 341–52. Aberdeen, Scotland, UK:
Association for Computational Linguistics.

• Štajner, Sanja, Kim Cheng Sheang, and Horacio Saggion. 2022.
“Sentence Simplification Capabilities of Transfer-Based Models.”
In Proceedings of the AAAI Conference on Artificial Intelligence,
36:12172–80. British Columbia, Canada (Virtual).

Lastly, Part V summarizes all the work of this thesis and gives some
potential future work.
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Part I

Background
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Chapter 2

Literature Review

Early approaches to text simplification were based on manual interven-
tion, where human editors would manually simplify the text (Siddharthan,
2014). However, manual text simplification is time-consuming and labor-
intensive, which has led to the development of automated text simplifi-
cation systems (Siddharthan, 2014). Automatic text simplification in the
field of NLP dates back to the 1990s from the work of Chandrasekar and
Srinivas (1997), which is based on Chandrasekar et al. (1996), highlight-
ing that long and complicated sentences can pose significant challenges
for various systems that rely on natural language input.

Generally, simplification tasks are separated into two categories:
lexical simplification and higher-level simplification (sentence-level or
document-level). Lexical simplification aims to reduce the complexity
of a text by replacing complex words with simpler synonyms or more
commonly used words with the same meaning (Horn et al., 2014). The
following sentence shows a lexical simplification example where the
word trencherous is selected and a complex word is replaced by the
word dangerous 1.

1Example from Sian Gooding presented at Cambridge Assessment 2019 https://
drive.google.com/file/d/1xt0C0diASUs-HY-bZJ16zOQ5uF7y0Fym/
view
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Snow has left many roads treacherous.
Snow has left many roads dangerous.

Higher-level simplification combines lexical, syntactic, and/or seman-
tic simplification to achieve more comprehensive simplification (Sid-
dharthan, 2006). Syntactic simplification is a task in text simplifica-
tion that focuses on reducing the complexity of sentence structures (Sid-
dharthan, 2006). The approach involves modifying the syntactic struc-
ture of a sentence to make it easier to understand while preserving the
original meaning. It involves various operations, such as splitting long
and complex sentences into short and simpler ones, removing or rephras-
ing subordinate and embedded clauses, and simplifying coordination and
subordination. The following sentence contains ambiguity, which can be
fixed with syntactic simplification 2.

The horse raced past the barn fell.
The horse raced past the barn. The horse fell.

Early approaches to syntactic simplification have often relied on hand-
crafted rules to capture syntactic transformations; however, more recent
approaches have explored the use of neural networks and deep learn-
ing methods to automatically learn syntactic simplification patterns from
large corpora (Alva-Manchego et al., 2020b). Syntactic simplification is
an essential component of text simplification as it helps to break down
complex sentences into more manageable and understandable units (Sid-
dharthan, 2006), whereas semantic simplification aims to reduce the com-
plexity of the meaning conveyed in a text while preserving the overall
message. The approach involves identifying and simplifying complex se-
mantic structures, such as ambiguous or metaphorical expressions, id-
iomatic phrases, and domain-specific terminology. Semantic simplifi-
cation helps to bridge the gap between complex and simplified texts by

2Example from Sian Gooding presented at Cambridge Assessment 2019.
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ensuring that the simplified version retains the essential meaning of the
original text, and so far there is very little research has focused on this.

Figure 2.1: The graph shows the number of ATS articles published be-
tween 1996 and 2022.

The research on ATS has been getting more interest starting from the
late 90s based on the number of publications in Figure 2.1, which shows
the number of ATS articles published between 1996 and 2022. The graph
is created by counting the search results on Google Scholar with the key-
words: “text simplification”, “lexical simplification”, “syntactic simplifi-
cation”, or “sentence simplification”.

2.1 Lexical Simplification
Carroll et al. (1998) proposed the first lexical simplification system based
on the method of Devlin and Tait (1998) in the context of Aphasic read-
ers. The system selects a list of synonyms from WordNet (Miller, 1994)
and then chooses the one with the highest Kucera-Francis frequency as
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obtained from the Oxford Psycholinguistic Database (Quinlan, 1992).
Similar approaches of lexical simplification were also proposed by Lal
and Rüger (2002) as a component of a text summarization pipeline and
by De Belder et al. (2010) that employed Word Sense Disambiguation
(WSD) instead of the Psycholinguistic Database, making it more scalable
to other languages.

There are different approaches to lexical simplification have been pro-
posed; therefore, we group them into different categories, such as rule-
based, data-driven, unsupervised, and masked language modeling. More
details are described in the following sections:

2.1.1 Data-Driven Approaches

One of the early data-driven approaches was proposed by Yatskar et al.
(2010) that utilized edit histories from English Wikipedia (EW) and Sim-
ple English Wikipedia (SEW) to extract possible synonym pairs from the
old and updated versions of the articles. They calculated the probability
of different edit operations to identify which phrase from the edit history
has been replaced with the aim of finding the simpler version, and the
editors’ metadata was also used to detect the trusted revisions.

Biran et al. (2011) proposed a system for learning simplification rules
from EW and SEW without using the edit histories. The system consists
of two phases: rule extraction and sentence simplification. In the rule
extraction phase, the system extracts ordered word pairs from the EW
and SEW and computes a similarity score between the words using their
context vectors (cosine similarity) to ensure that the extracted pairs repre-
sent a complex-simple pair. WordNet is also used as a semantic filter for
possible lexical substitution along with word complexity measure, which
takes into account word length and word frequency. In the simplification
phase, the system selects and simplifies words in a sentence based on the
information received from the previous phase.

Horn et al. (2014) proposed a feature-based ranker approach. First,
they extracted over 30,000 candidate lexical simplifications (the syn-
onyms of each word) from a sentence-aligned corpus of EW and SEW us-
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ing GIZA++ (Och and Ney, 2003). By identifying aligned words in these
two versions of Wikipedia, they were able to identify potential simplifi-
cations. To apply these simplification rules, they trained a feature-based
ranker model with Support Vector Machine (SVM) on a set of labeled
simplifications. These labeled simplifications were collected using Ama-
zon’s Mechanical Turk, a crowd-sourcing platform. This training process
allows the ranker to learn the patterns and features that are indicative of
good simplifications.

Further subsequent developments of lexical simplification mostly fol-
lowed the well-known four-step pipeline approach proposed by Shard-
low (2014) (Paetzold and Specia, 2017; Al-Thanyyan and Azmi, 2021;
Saggion et al., 2022; North et al., 2023). It consists of four modules:
1) Complex Word Identification (CWI) for detecting complex words, 2)
Substitution Generation (SG) to generate candidates for replacement, 3)
Substitution Selection (SS) for filtering candidates, and 4) Substitution
Ranking (SR) for ranking candidates by simplicity.

2.1.2 Unsupervised Approaches

Traditionally, lexical simplification methods relied on manually created
resources such as annotated data, dictionaries, WordNet, or Psycholin-
guistic Database. However, creating these resources is difficult, expen-
sive, and time-consuming; therefore, different unsupervised approaches
have been proposed. Glavaš and Štajner (2015) proposed an unsupervised
lexical simplification system that relied on word vector representations.
The method leverages the power of GloVe word embeddings (Pennington
et al., 2014) to identify simpler alternatives for complex words without
the need for manually annotated data. First, the model extracts the 10
most similar candidates based on cosine similarity. Then, the model ranks
candidates by different features such as semantic similarity, context simi-
larity, simplicity (word frequency), and language model features to make
sure that the selected candidates fit into the context.

Paetzold and Specia (2016e) proposed a new context-aware model for
word embedding to generate candidates for complex words. The model
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was trained using CBOW Word2Vec model (Mikolov et al., 2013) on a
corpus that was annotated with POS tags, such as adjectives, nouns, verbs,
and adverbs. Given the vector representation of the target word and the
POS tag, the model extracts n candidates with the closest cosine similar-
ity. Then, a binary classifier was trained with features such as language
model log probabilities, word-embedding cosine similarity, and the con-
ditional probability of a candidate given the POS of the target word to
filter the candidates. For candidate ranking, a 5-gram language model
was trained with various datasets, and then the candidates were ranked by
their uni-gram probabilities. The approach leverages two key resources:
a corpus of subtitles and a word-embedding model that considers the am-
biguity of words. The use of subtitles as a resource is motivated by the
fact that they often contain simplified language to aid comprehension for
viewers. Despite being an unsupervised model, the proposed method still
compromises the use of annotated data for POS.

2.1.3 Masked Language Modeling Approaches

Masked Language Model (MLM) has become a popular approach in Nat-
ural Language Processing (NLP) tasks. MLM is trained on a large amount
of data to predict masked words in a given sentence, which allows an
effective encapsulation of the contextualized word representations. The
concept of masked language modeling was first introduced with BERT
(Bidirectional Encoder Representations from Transformers) (Devlin et al.,
2019), which has become one of the most influential and widely used pre-
trained language models. Prior to BERT, most substitution generation ap-
proaches relied on rules, dictionaries, WordNet, statistics, n-grams, and
word embeddings such as GloVe, Word2Vec, or FastText (Bojanowski
et al., 2017).

The use of MLM for lexical simplification, called LSBert, was first
introduced by Qiang et al. (2020, 2021). The model employs two phases:
1) substitution generation and 2) substitution filtering and ranking. First,
the model extracts substitution candidates from BERT pre-trained model
by providing the sentence with the complex word masked and the orig-
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inal sentence concatenated with it as a context. Then, all candidates are
filtered and ranked by five features such as MLM prediction probabilities,
language model, PPDB database (Ganitkevitch et al., 2013), corpus-based
word frequency, and FastText word similarity.

Since the release of LSBert, MLM approach for lexical simplification
has been widely adopted by subsequent research. For example, 6 out of 10
system reports submitted to the TSAR-2022 shared task (Saggion et al.,
2022) are based on MLM (Whistely et al., 2022; Chersoni and Hsu, 2022;
Wilkens et al., 2022; Nikita and Rajpoot, 2022; Li et al., 2022; North et al.,
2022).

2.2 Higher-level Simplification

Since the inception of Automatic Text Simplification (ATS), researchers
have focused on both lexical and beyond lexical aspects simultaneously.
As the lexical part has been discussed above, so in this section, we will
focus on sentence-level simplification. The research on simplification has
evolved over time, with different approaches and techniques being de-
veloped to simplify texts. Initially, the approaches involved the use of
handcrafted rules to perform syntactic simplification (Chandrasekar et al.,
1996; Chandrasekar and Srinivas, 1997; Siddharthan, 2002, 2006, 2010,
2011; Bott et al., 2012). Here are some common operations: splitting
sentences, simplifying relative clauses, simplifying appositive phrases,
simplifying coordination, rearrangement and clause dropping, removing
inessential phrases, converting passive sentences to active, and removing
subordinate and embedded clauses. The use of handcrafted rules in syn-
tactic simplification models has its limitations. While these approaches
can encode precise and linguistically well-informed syntactic transforma-
tions, they do not account for lexical simplifications and their interaction
with the sentential context (Narayan and Gardent, 2016).
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2.2.1 Simplification as Monolingual Translation

Simplification as monolingual translation refers to the process of trans-
forming a complex text into a simpler and more easily understandable
version within the same language. This task is often approached using
techniques similar to those used in Machine Translation (MT), where a
source text is translated into a target text in a different language. However,
in the case of simplification, the translation is performed within the same
language, aiming to make the text more accessible to a specific audience
or to reduce its complexity. The earliest contribution that put the research
into this direct was from Zhu et al. (2010). They proposed a translation
model based on parse tree transformations, which reduced the need for
lexical-level translation operations in monolingual translation. This work
laid the foundation for subsequent developments in the simplification-as-
translation area. Later advancements in this field focused on the Statistical
Machine Translation (SMT) paradigm and transitioned to neural-based
methods.

Statistical Machine Translation (SMT) SMT is a machine-learning
approach to translating natural language. It has made significant advance-
ments in translation quality since the introduction of Phrase-Based Ma-
chine Translation (PBMT) (Marcu and Wong, 2002; Och and Ney, 2004).
SMT treats translation as a statistical problem and uses statistical models
to generate translations based on patterns and probabilities learned from
large-scale parallel corpora. The models capture the statistical patterns
and dependencies between words and phrases in the source and target
languages, and the quality of translation in SMT usually depends on the
availability of parallel data between the source and target language pair
(Haffari et al., 2009). SMT has been widely adopted as a framework
for text simplification such as Specia (2010) uses standard SMT to sim-
plify Portuguese texts, Coster and Kauchak (2011a) implemented a mod-
ified PBMT to incorporate phrasal deletion, making the model produces
shorter outputs, Wubben et al. (2012) focuses on dissimilarity to include
diversity, as mentioned by Woodsend and Lapata (2011) that simplifica-
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tion does not necessarily imply shortening. One of the main challenges in
SMT for text simplification is the limited availability of high-quality and
large-scale manually simplified corpora; therefore, Xu et al. (2016) pro-
pose an approach to use large-scale paraphrases learned from bilingual
texts and a small amount of manual simplifications with multiple refer-
ences. Another significant contribution is the release SARI metric, which
has been used to evaluate syntactic simplification ever since. The use of
SMT has been shown to work well for text simplification; however, it still
has two limitations: one is its complex translation model, and the other is
its poor handling of long-distance dependencies. These limitations have
been addressed by the introduction of Neural Machine Translation (NMT)
models, which have the ability to handle long-distance dependencies and
have simplified modeling mechanisms (Li et al., 2015).

Neural Machine Translation (NMT) NMT uses a single large neural
net that directly transforms the source sentence into the target sentence
(Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014; Cho et al.,
2014a; Bahdanau et al., 2015). The models used in NMT typically con-
sists of an encoder and a decoder. The encoder takes a variable-length
input sentence and extracts a fixed-length representation from it. This
representation is then used by the decoder to generate a correct translation
(Cho et al., 2014a). NMT has a number of advantages over the existing
SMT system. First, NMT requires a minimal set of domain knowledge.
For example, the models proposed by Bahdanau et al. (2015), Sutskever
et al. (2014), or Kalchbrenner and Blunsom (2013) do not assume any lin-
guistic properties in both source and target sentences except that they are
sequences of words. Second, the whole system is jointly trained to maxi-
mize the translation performance producing more fluent and grammatical
output as well as capturing long-range dependencies, unlike the existing
phrase-based system, which consists of many separately trained features
whose weights are then tuned jointly. Lastly, the memory footprint of the
NMT model is often much smaller than the existing system, which relies
on maintaining large tables of phrase pairs.

Various researchers have successfully applied NMT for text simpli-
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fication such as: 1) Nisioi et al. (2017) trained their model with Simple
Wikipedia data compiled by Hwang et al. (2015), 2) Zhang and Lapata
(2017) combined NMT with Deep Reinforcement Learning, and Scarton
and Specia (2018) trained the model with school grade levels to simplify
for specific target audiences.

2.2.2 Simplification as Sequence-Labeling

In this section, we review the existing literature on edit-based text sim-
plification systems (sequence-labeling approaches), which focus on mak-
ing simplifications through edit operations such as add, delete, and keep.
These systems learn edit operations at the word level, allowing for fine-
grained control over the simplification process, which provides advan-
tages in terms of interpretability and adaptability.

Alva-Manchego et al. (2017) was the first to propose an edit-based
method for text simplification using BiLSTM to predict edit labels se-
quentially. The model outperforms the translation-based models in terms
of simplicity scores, although it may result in slightly lower meaning
preservation and grammaticality.

The edit-based approach has become notable since the release of Ed-
itNTS proposed by Dong et al. (2019). EditNTS is a neural programmer-
interpreter model that learns explicit edit operations (add, keep, and
delete) in a sequential fashion. The model is an LSTM encoder-decoder
model with an injection of POS tags as the syntactic information. The
model addresses the lack of interpretability in previous approaches and
allows for a meaningful explanation of the simplification process. Edit-
NTS outperforms other state-of-the-art ATS systems in terms of simplic-
ity, fluency, and adequacy.

Kumar et al. (2020) proposed an iterative, edit-based model based on
RNN with GRU that performs word and phrase-level edits on complex
sentences. The model is guided by a scoring function that considers flu-
ency, simplicity, and meaning preservation. Unlike previous approaches,
this model does not require a parallel training set.

Omelianchuk et al. (2021) proposed a method based on sequence tag-
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ging, leveraging pre-trained Transformer-based encoders for simple and
efficient text simplification. The model also employed data augmentation
with Back Translation and knowledge distillation on ensemble teacher
models to augment the training data.

Cumbicus-Pineda et al. (2021) proposed a method to enhance the edit-
based text simplification system (the model is based on EditNTS) by in-
corporating syntactic information. The model relies on Graph Convolu-
tional Network (GCN) module that mimics the dependency structure of
the sentence, providing the model with an explicit representation of syn-
tax. By incorporating syntactic information, the proposed model aims
to capture long-range syntactic relations among words and improve the
quality of simplification.

2.2.3 Transformer-Based Methods

Vaswani et al. (2017) proposed a new network architecture called Trans-
former, which relies solely on the use of self-attention, where the repre-
sentation of a sequence (or sentence) is computed by relating different
words in the same sequence. Unlike traditional sequence transduction
models that rely on complex recurrent or convolutional neural networks,
the Transformer eliminates the need for recurrence and convolutions en-
tirely. Instead, it connects the encoder and decoder through attention
mechanisms, resulting in a simpler and more efficient model. Another ad-
vantage of the Transformer is speed because it is parallelizable, meaning
that a number of inputs can be passed through the network simultaneously,
taking advantage of modern hardware (especially GPUs), whereas other
recurrent networks like Long-Short Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) or Gated Recurrent Unit (GRU) (Cho et al.,
2014b) have to pass inputs sequentially. Originally, Transformer was de-
signed for Machine Translation and has been widely applied in various
NLP tasks; moreover, it has been successfully adopted in other domains,
including Computer Vision, Audio Processing, and Multimodal Applica-
tions due to its flexible architecture (Lin et al., 2022). For NLP, Trans-
former has been explored in tasks such as Machine Translation (Vaswani
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et al., 2017; Edunov et al., 2018; Raffel et al., 2020; Liu et al., 2020a),
Text Summarization (Lewis et al., 2020; Raffel et al., 2020), Question
Answering (Raffel et al., 2020), Text Classification (Howard and Ruder,
2018), Language Modeling (Devlin et al., 2019; Liu et al., 2019; Raffel
et al., 2020; Radford et al., 2019; Brown et al., 2020; Zhao et al., 2023),
Named Entity Recognition (Ushio and Camacho-Collados, 2021; Yamada
et al., 2020; Lu et al., 2022), and more (Lin et al., 2022).

Zhao et al. (2018) explored the model for sentence simplification that
integrated the Transformer architecture and a custom loss function with
Simple PPDB (A Paraphrase Database for Simplification) (Pavlick and
Callison-Burch, 2016), an external paraphrase knowledge base for sim-
plification that covers a wide range of real-world simplification rules.
Moreover, the model also employed dynamic memory augmented method
(Feng et al., 2017) to capture infrequent simplification rules. Martin et al.
(2019) trained the Transformer model for controllable sentence simpli-
fication by embedding control tokens to each input in order to control
different aspects of the outputs, such as the amount of compression, the
amount of paraphrasing, lexical complexity, and syntactical complexity.
Besides adopting the whole Transformer architecture, the encoder or de-
coder can be used separately, e.g., Omelianchuk et al. (2021) propose
a sentence simplification model based on a sequence tagging that relied
solely on encoders.

2.2.4 Controllable Simplification

Early work on controllable simplification was proposed by Scarton and
Specia (2018), an MT-based model trained with control tokens (grade
level, operation) embedded in the inputs in order to adjust the outputs for
specific audiences based on their reading levels. Similarly, Martin et al.
(2019) proposed a Transformer-based sequence-to-sequence model with
four control tokens embedded in each input to control different aspects,
such as compression level, amount of paraphrasing, and lexical and syn-
tactic complexity.
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Nishihara et al. (2019) argued that adding the grade-level token to the
inputs only controls the syntactic complexity and tends to output difficult
words beyond the target grade level; therefore, they proposed a method
for controllable text simplification with lexical constraint loss. They in-
troduced the concept of using the grade level of the US education system
as the target level of the sentence. Their approach considered both the
sentence level and the word level to achieve the desired level of simpli-
fication. The sentence level was incorporated by adding the target grade
level as input, while the word level was considered by adding weights to
the training loss based on words that frequently appear in sentences of
the desired grade level. The results of their experiments showed improve-
ments in both BLEU and SARI metrics.

Previous systems primarily rely on sequence-to-sequence models that
are trained end-to-end to perform all these operations simultaneously.
However, these systems often struggle to adapt to the specific require-
ments of different target audiences; hence, Maddela et al. (2021) proposed
a hybrid approach to text simplification that combines linguistically-
motivated rules for splitting and deletion with a neural paraphrasing
model. This approach allows for the production of varied rewriting styles
and provides more control over the degree of each simplification opera-
tion applied to the input texts.

In Chapter 7 and Chapter 8, we will report our works on this specific
area.

2.3 Evaluation of Sentence Simplification Sys-
tems

Automatic sentence simplification systems are usually evaluated in two
ways: (1) automatically, for the similarity of their output to the gold stan-
dard manual simplifications; and (2) manually, for grammaticality, sim-
plicity, and meaning preservation of their output sentences.

For automatic evaluation, studies commonly use ‘gold standard’ man-
ually simplified test sentences and calculate the BLEU (Papineni et al.,
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2002) and SARI (Xu et al., 2016) scores. BLEU is originally designed
for Machine Translation and has been commonly used previously. BLEU
has lost its popularity in text simplification due to the fact that it cor-
relates poorly with human judgments and often penalizes simpler sen-
tences (Sulem et al., 2018). We keep using it so that we can compare
our system with previous systems. SARI compares system outputs with
the references and the source sentence. It measures the performance of
text simplification on a lexical level by explicitly measuring the good-
ness of words that are added, deleted, and kept. Automatic evaluation
is useful for quickly getting rough estimates of the performances of dif-
ferent system configurations. Nevertheless, although both scores show
some correlations with human assessments (Štajner et al., 2014; Xu et al.,
2015), they are not reliable enough for comparing performances of differ-
ent simplification systems (Sulem et al., 2018; Vásquez-Rodríguez et al.,
2021). Some studies also use Flesch-Kincaid Grade Level (FKGL) (Kin-
caid et al., 1975) for automatic evaluation. Although well-known in read-
ability research, this metric is considered inadequate for sentence simpli-
fication (Saggion, 2017; Stajner, 2021; Tanprasert and Kauchak, 2021).

In the ideal scenario, grammaticality and meaning preservation should
be evaluated by native speakers with high literacy levels, as the original
sentences can be too complex to understand for an average reader. Sim-
plicity, in contrast, should be evaluated by non-native speakers, experts in
text simplification or production of easy-to-read texts, or carers of the in-
tended target population (Stajner, 2021). All three evaluations are usually
performed using a five-point Likert scale (Alva-Manchego et al., 2020b).
Crowd-sourced human evaluation involves collecting judgments from a
diverse group of individuals to assess the quality and fluency of the gen-
erated language. This type of evaluation often has the following: (1) in
most of the studies, all three evaluations are performed by the same peo-
ple, usually Amazon Mechanical Turk workers, whose literacy levels are
unknown and who thus might not be the optimal evaluators of grammati-
cality and meaning preservation; (2) if the pool of evaluators is comprised
of a mixture of native and non-native speakers, or people with different
literacy levels, the notion of simplicity and grammaticality might differ
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among them.

2.4 Summary
This chapter provides an overview of the history and different approaches
to automatic text simplification. It begins by discussing the emergence
of automatic text simplification and the motivation behind it. The chap-
ter then focuses on lexical simplification, which involves simplifying the
vocabulary of a text. It discusses various approaches to lexical simplifi-
cation, including rule-based, data-driven, unsupervised, and masked lan-
guage modeling. The chapter also highlights higher-level simplification,
which involves simplifying the lexical and syntactic structure of a text.
It discusses different methods of syntactic simplification, starting from
rule-based approaches to more modern techniques such as monolingual
machine translation, edit-based and Transformer-based methods.

Additionally, the division between lexical simplification and syntactic
simplification is somehow artificial since syntax and lexicon are closely
related. They both contribute to the overall structure and meaning of a
sentence. The relationship between syntax and lexicon can be seen in the
way that changes in one can affect the other. For example, when a com-
plex word is replaced with a simpler word in lexical simplification, it may
also require changes in the sentence structure to maintain grammatical-
ity and coherence. Similarly, when a sentence is restructured in syntactic
simplification, it may involve the substitution of certain words to maintain
the intended meaning.

Finally, we end the chapter with a discussion of the evaluation meth-
ods for sentence simplification systems.
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Chapter 3

Target Audiences

Text Simplification can provide numerous benefits for users with different
needs, including those with Autism (Evans et al., 2014), Dyslexia (Rello
et al., 2013b), Aphasia (Carroll et al., 1998), low literacy levels (Children
and Second Language Learners) (Paetzold and Specia, 2016e), Deaf and
Hard of Hearing (Inui et al., 2003), and Intellectual Disabilities (Chen
et al., 2017). In the following, we will discuss the characteristics of each
group and the effects on reading difficulties.

3.1 Autism
Autism, also known as Autism Spectrum Disorder (ASD), is a complex
neurodevelopmental disorder that affects communication, social interac-
tion, and behavior. It is a lifelong condition that typically appears in
early childhood and affects individuals differently, with varying degrees
of severity. The exact cause of Autism is not yet fully understood, but
it is believed to be a combination of genetic and environmental factors
(Halepoto and Al-Ayadhi, 2014).

The symptoms of Autism can vary widely but generally include im-
pairments in social interaction, difficulty with communication, and re-
strictive and repetitive behaviors. Individuals with Autism may have diffi-
culty understanding social cues, making eye contact, and engaging in con-
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versation. They may also have difficulty with nonverbal communication,
such as facial expressions and body language. Additionally, individuals
with Autism may engage in repetitive behaviors, such as hand-flapping
or rocking, and may have a strong attachment to routines and sameness
(Bilbili, 2013).

Autism is a highly heritable condition, and genetic relatives of peo-
ple with Autism often show milder expression of traits characteristic of
Autism, referred to as the Broader Autism Phenotype (BAP) (Sucksmith
et al., 2011). However, environmental factors may also play a role in
the development of Autism. For example, some studies have suggested a
possible link between certain prenatal and perinatal factors, such as ma-
ternal infection or exposure to certain chemicals, and an increased risk of
Autism (Mohammed et al., 2022).

Diagnosis of Autism is typically based on a combination of behavioral
and developmental assessments, as well as medical and family history.
There are several different types of Autism, including Classical Autism
or Autistic Disorder, Asperger’s Syndrome, William’s Syndrome, Per-
vasive Developmental Disorder (Not Otherwise Specified), Rett’s Syn-
drome, Landau Kleffner Syndrome, and Children Dis-integrative Disor-
der (Ivo Paclt and Anna Strunecka, 2010). Each type of Autism has its
own set of diagnostic criteria and specific symptoms.

There is currently no cure for Autism, but early intervention and treat-
ment can help individuals with Autism to develop communication and
social skills, manage their behavior, and improve their quality of life.
Treatment options may include behavioral therapy, speech therapy, oc-
cupational therapy, and medication (Volkmar et al., 2004).

Children with autism are at risk of reading and learning difficulties
(Vale et al., 2022). Research shows that children with Autism manifest
abnormalities in the use of gaze and have difficulties in the comprehension
of mental states (Johnson et al., 2007). Norbury and Nation (2011) inves-
tigated the reasons for variability in reading skills in people with Autism.
They used the simple view of the reading model to investigate both word
decoding and text comprehension processes in two well-established sub-
types within the Autism spectrum. They found that reading outcomes in
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ASD are related to variations both in decoding and comprehension and in
the oral language skills that support the development of these processes.

There has been a growing interest in developing language technolo-
gies to make documents more accessible for individuals with autism. An
early approach by Evans et al. (2014) focuses on evaluating a set of syn-
tactic simplification rules designed to address the challenges faced by in-
dividuals with Autism when processing syntactically complex and com-
pound sentences. The study developed 127 rules for simplifying complex
sentences and 56 rules for simplifying compound sentences. The evalua-
tion aimed to assess the accuracy of these rules and determine the reliabil-
ity of the fully automatic conversion of sentences into a more accessible
form.

Another research by Barbu et al. (2015) explores a simplification sys-
tem to help Autism individuals. First, they discuss the linguistic limita-
tions faced by individuals with Autism, mentioning that they often strug-
gle with inferring the meaning of ambiguous words from context and link-
ing objects in sentences with pronouns and anaphoric references. These
difficulties become more pronounced as the syntactic complexity of a sen-
tence increases. To address these limitations, Barbu et al. (2015) propose
a simplification system called Open Book. Open Book employs strategies
commonly used by successful simplifiers, such as image retrieval, docu-
ment summarization, and document topic modeling. The system allows
users to select words they do not comprehend and retrieve images that
illustrate them. It also ranks sentences in a document according to their
relevance and provides a summary of the document’s content. Addition-
ally, Open Book presents users with excerpts and expressions that best
summarize the overall topic of a document using a topic modeling ap-
proach called Latent Dirichlet Allocation (Blei et al., 2003). To evaluate
the effectiveness of the system, they conducted a study with 243 autistic
patients. The participants were asked to read both the original and simpli-
fied versions of various documents and then answer a questionnaire about
the content. The researchers claim that subjects who read the simplified
versions of the documents achieved noticeably higher comprehensibility
scores compared to those who read the documents in their original form.
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Yaneva et al. (2015) conducted an eye-tracking study to investigate
how simplification could aid individuals with Autism. They compared
the fixation times of subjects while reading various documents and found
that individuals with Autism tend to fixate on photographs and images
more than non-autistic individuals. The findings suggest that adding vi-
sual components that describe key components in a text can help indi-
viduals with Autism comprehend its meaning. Additionally, they found
that modifying texts according to the Plain English guidelines of Frey-
hoff et al. (1998a) resulted in higher comprehension. However, the study
also discovered that replacing the text with ads and/or images that are not
descriptive can hinder their comprehension.

3.2 Dyslexia

Reading difficulties, also known as Dyslexia, are characterized by the
inability to read words accurately and fluently. It is a specific learning
disability that affects reading skills, including difficulties in word recog-
nition, decoding, and spelling. It was first reported in 1896 by a physician,
W. Pringle Morgan, and since then, major medical journals have contin-
ued to publish research furthering the scientific understanding of dyslexia
(Romberg et al., 2016). Dyslexia is a complex disorder that varies from
person to person, and it is estimated to affect between 5 and 10% of
the worldwide population (Al-Shidhani and Arora, 2012). According to
Roitsch and Watson (2019) and Yunus and Ahmad (2022), common char-
acteristics of dyslexia include difficulty with phonological skills, low ac-
curacy, and fluency of reading, poor spelling, and/or rapid visual-verbal
responding. Additionally, dyslexia is often associated with poor hand-
writing, written expression difficulties, and difficulty associating sounds
with letters (Yunus and Ahmad, 2022).

Dyslexia is a learning disorder that affects a person’s ability to read,
write, and spell. Their reading challenges often include long and less-
frequent words (Rello et al., 2013b), homophones words that are or-
thographically similar, new words, and non-words (Rello et al., 2013a).
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Dyslexia is not limited to reading difficulties with alphabetic material.
Cornoldi et al. (2022) found that dyslexia is specifically related to diffi-
culties in reading and writing not only alphabetic material but also numer-
ical material. Furthermore, dyslexia is not limited to reading difficulties.
According to Al-Dawsari and Hendley (2022), there are non-reading dif-
ficulties that co-occur with dyslexia, such as memory problems and low
levels of self-esteem.

The identification of dyslexia at a preliminary phase comes from the
ability to notice dyslexia characteristics. Yunus and Ahmad (2022) sug-
gest that poor handwriting, written expression difficulties, spelling diffi-
culties, reading fluency, and difficulty associating sounds with letters are
some of the characteristics that can help identify dyslexia. Additionally,
reading difficulties in most children with developmental dyslexia are re-
lated to phonological disorders (Kurinna et al., 2022).

Dyslexia is a specific learning disability that affects a significant num-
ber of individuals. According to Shaywitz et al. (1992), reading difficul-
ties, including dyslexia, occur as part of a continuum that also includes
normal reading ability. Dyslexia is not a result of low intelligence or lack
of motivation. It is a result of neurobiological differences that affect the
way the brain processes language (Irdamurni et al., 2018).

Several studies have explored the benefits of text simplification tech-
niques for individuals with dyslexia, focusing on lexical simplification,
visual support, and text presentation parameters. In a study by Rello
et al. (2013b), they measured reading time and comprehension using
eye-tracking and questionnaires and found that a system that presented
synonyms on demand was preferred over a system that automatically re-
placed difficult words. The study also found that using more frequent
words improves reading speed, and shorter words help them understand
the text better. These results suggest that interactive tools that perform
lexical simplification may benefit people with dyslexia. Similar results
have also been found by Gala and Ziegler (2016). The study involved
testing the reading performance of dyslexic children on original and man-
ually simplified texts, as well as assessing their comprehension through
multiple-choice questions. The results showed that the simplified texts
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led to increasing reading speed, reduced reading errors (particularly lexi-
cal ones), and did not result in a loss of comprehension. Similarly, exam-
ined the influence of visual support and lexical simplification on sentence
processing through eye movements (Rivero-Contreras et al., 2021). The
study found that visual support and lexical simplification were effective
in facilitating sentence processing, particularly by enhancing lexical se-
mantic access. The study also found that participants with lower print
exposure and lower vocabulary benefited more from word-level lexical
simplification.

3.3 Aphasia

Aphasia is a language disorder that occurs due to damage to a specific
area of the brain that controls language expression and comprehension
(Elias et al., 2023). It affects multiple modalities of language use, in-
cluding reading, auditory comprehension, and expressive language (In-
gram et al., 2020). Aphasia can lead to social isolation and loss of social
roles (Żulewska-Wrzosek, 2021). There are different types of aphasia,
including Broca (Non-Fluent), Wernicke (Fluent), Anomic (Dysnomia),
and Global (Fazeli et al., 2008). The most widely accepted neurologic
and/or neuropsychological definition of aphasia is the loss of ability to
use speech or to understand speech as the result of disease or injury af-
fecting the brain (Kumar et al., 2017). Aphasia is linked to impairments
in the lexical/semantic and grammatical systems of language, which are
associated with Wernicke-type Aphasia and Broca-type Aphasia, respec-
tively (Ardila, 2010).

Reading difficulties in aphasia can have a significant impact on every-
day activities and social interactions. People with aphasia may struggle to
read stories to children, read emails, or participate in conversations about
newspaper articles. The increasing prevalence of technology-based writ-
ten communication further exacerbates the communication gap between
people with aphasia and the rest of the world (Caute et al., 2015).

Different types of aphasia can also affect reading comprehension dif-
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ferently. People with non-fluent aphasia often have difficulty understand-
ing complex sentences, especially those that do not follow the typical
word order for their language. In contrast, people with fluent aphasia may
have difficulty producing semantically specific words, which can impact
their reading comprehension (Gordon, 2008). Other common reading dif-
ficulties include high information density, long sentences, long sequences
of adjectives, passive voice, and compound nouns (Carroll et al., 1999).

Technological advancements have provided alternative ways to com-
pensate for reading difficulties associated with aphasia. A review by Cis-
tola et al. (2021) covered research on technologies explicitly developed to
compensate for reading difficulties associated with aphasia and research
into which accessibility features included in mainstream high-tech sys-
tems are helpful for people with aphasia when trying to access written
material.

3.4 Children

Children’s ability to read and comprehend text is a crucial aspect of their
personal and academic development. However, not all children have the
same level of proficiency in reading, and some may require additional
help to facilitate their learning. One approach is to have adapted text
by using text simplification to simplify texts based on children’s reading
levels. E.g., controlling vocabulary, sentence length, and the complexity
of sentence form, etc. The simplified texts should not be too simple, as
the reading encourages the learning of new words, and not be too hard to
make them feel comfortable and more engaged in the reading. This could
help children become more independent in their reading and learning,
making them rely less on others for help and feel more confident in their
abilities.

One area of focus for text simplification is improving reading compre-
hension and fluency in children. Text reading fluency, which refers to the
ability to read text smoothly and accurately, plays a crucial role in read-
ing development and comprehension (Kim and Wagner, 2015). Research
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has shown that text reading fluency mediates the relationship between
word reading fluency, listening comprehension, and reading comprehen-
sion in children. In the early stages of reading development, text-reading
fluency may not be independently related to reading comprehension, but
as children develop their word-reading proficiency, text-reading fluency
becomes a significant factor in mediating the relationship between word-
reading fluency and reading comprehension. A study by Javourey-Drevet
et al. (2022) has found that text simplification can improve reading flu-
ency and comprehension in beginning readers. Moreover, simplified texts
have been shown to benefit poor readers and children with weaker cogni-
tive skills to a greater extent than good readers and children with stronger
cognitive skills.

3.5 Second Language Learners

Second language (L2) learners are individuals who are learning a lan-
guage that is not their first language. These learners have unique charac-
teristics that affect their language acquisition process. One of the most
significant factors that influence second language acquisition is the age of
the learner. According to the key age hypothesis, younger learners have
a better chance of acquiring a second language than older learners (Deng
and Wang, 2019). However, this hypothesis has been challenged by re-
search that shows that adult learners can also acquire a second language
successfully (Herschensohn, 2007).

Another characteristic of second language learners is their attitude to-
wards the target language, culture, and speakers. Learners who have a
positive attitude towards the target language and culture tend to be more
successful in acquiring the language (Kusmiatun and Liliani, 2020). Ad-
ditionally, learners who are motivated to learn the language and have the
willingness to communicate in the target language are more likely to suc-
ceed in language acquisition (Yang and Wu, 2017).

Individual differences also play a significant role in second language
acquisition. Learners differ in their aptitude, learning style, and cogni-
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tive abilities, which can affect their language acquisition process (Yang
and Chen, 2018). Some learners may progress rapidly, while others may
struggle with language acquisition (Mohammed, 2020).

Learning a second language is a complex process that requires a lot of
effort and dedication. Second language learners face various challenges
that affect their ability to read and write in the target language. According
to Olajide (2010) and Malebese et al. (2019), all categories of ESL learn-
ers display difficulty in learning to read and write. The transition from
the use of the home language to the second language, namely English
first additional language, is complexly related to the learners’ inability
to read text meaningfully. Differentiation of whether English language
learners’ struggles are symptomatic of reading disability or related to sec-
ond language acquisition is often challenging (Gorman, 2009).

One of the challenges that second language learners face is reading
difficulties. Hmeljak Sangawa (2016) notes that reading is one of the
bases of second language learning, and it can be most effective when
the linguistic difficulty of the text matches the reader’s level of language
proficiency. Moreover, knowing the vocabulary is also an important fac-
tor for learning a new language, and most of the vocabulary is usually
acquired through reading, so having slightly more difficulty than the cur-
rent reader’s level allows the progress of language development (Krashen,
1989).

In the context of second language learning, text simplification has
been found to have several benefits. It can facilitate comprehension and
processing of open educational resources in English (Rets and Jekaterina
Rogaten, 2020). A study conducted on adult English L2 users showed
that simplification led to better text comprehension, particularly at lower
English proficiency levels. Eye-tracking measures also revealed that text
simplification resulted in changes in processing time during reading, in-
dicating its impact on reading behavior.

Different approaches have been proposed for text simplification. The
structural approach focuses on using traditional readability formulas and
involves replacing rare words with more frequent ones and shortening
sentences. On the other hand, the intuitive approach relies on the expe-
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riences of a language teacher, learner, or materials writer to guide the
simplification process (Crossley et al., 2011). Both approaches have been
widely used in text simplification for second language learners.

Recently, Degraeuwe and Saggion (2022) proposed a lexical simpli-
fication system targeting Dutch speakers learning Spanish by simplify-
ing all the words except the vocabulary that needs to be studied. The
model consists of four modules: complex word identification (CWI), sub-
stitution generation, substitution selection, and substitution ranking. The
complex word identification module is a lexicon-based model with dif-
ferent features, including frequency, and word familiarity, fine-tuned with
RoBERTa-BNE (Gutiérrez-Fandiño et al., 2022). The CWI measures the
word complexity of all words in a sentence based on the levels of the
Common European Framework (CEFR). Next, the substitution generation
module generates candidates using a masked language model approach as
described in Chapter 2 Section 2.1.3, the candidates are selected by POS
filter, and ranked by different criteria, such as MLM probability, language
model score (Qiang et al., 2021), lemma frequency in SCAP corpora, to-
ken frequency in SUBTLEX-ESP (Cuetos et al., 2012), cosine similarity
with FastText and RoBERTa-BNE.

3.6 Deaf and Hard of Hearing

Deaf and hard-of-hearing individuals have unique characteristics that
are shaped by their experiences and identity. According to research
(Mikhailova et al., 2019), personality characteristics in deaf and hard-of-
hearing individuals can vary depending on their self-identification type.
Some individuals may identify as culturally Deaf, using sign language and
affiliating with Deaf culture, while others may identify as audio-logically
deaf or hard of hearing.

Deaf and hard-of-hearing individuals may face barriers in education
(Scherer et al., 2023; Adoyo and Maina, 2019; Anderson et al., 2021; A.
El-Zraigat, 2012; Wurst et al., 2005; Ristić et al., 2021; Roksandić et al.,
2018; Alsraisri et al., 2020). These barriers can include societal myths,

38



teacher incompetence in the language of instruction, low expectations,
and difficulties in acquiring reading and writing skills (Adoyo and Maina,
2019; Wurst et al., 2005). In addition, deaf and hard-of-hearing children
are at risk of exclusion from community life and education, which may
increase their risk of mental health conditions (Scherer et al., 2023).

Children who are deaf and hard of hearing often struggle with gram-
mar (Lederberg et al., 2013), syntactically complex sentences (Sid-
dharthan, 2006), limited vocabulary, and difficulties generalizing word’s
meaning in different contexts (Fabbretti et al., 1998).

Individuals who are deaf or hard of hearing often experience difficul-
ties with reading and literacy skills. Research has shown that more than
90% of students who are deaf or hard of hearing have hearing parents
who do not share an effective mode of communication with their children,
which can result in a lack of explicit teaching of literacy skills (How-
ell and Luckner, 2003). This lack of exposure to language and literacy
can lead to poor reading abilities and low levels of reading achievement.
While some students who are deaf or hard of hearing may be skilled in
critical areas such as vocabulary and grammar, many find acquiring read-
ing and writing skills to be the most difficult academic hurdles they face
(Wurst et al., 2005).

It is important to note that the difficulties experienced by individu-
als who are deaf or hard of hearing with reading and literacy skills can
have significant impacts on their academic success and overall well-being.
Without strong reading and writing skills, individuals who are deaf or
hard of hearing may struggle to fully engage in classroom activities and
may experience academic failure. However, research has also shown that
factors such as psychological well-being and subjective well-being may
be related to higher mastery in reading comprehension and mathematics,
highlighting the importance of considering the whole person in support-
ing their literacy development (Gonzalez and Camacho-Vega, 2021).

Research has explored the use of text simplification to improve the
accessibility of deaf and hard-of-hearing individuals. A study by Kushal-
nagar et al. (2016) developed a two-step approach for simplifying cancer
and other health text for deaf people who use American Sign Language.
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The study tested the approach with a sample of deaf and hearing college
students and found that the simplified text significantly improved the com-
prehension of deaf college students. This research highlights the impor-
tance of text simplification in making health information more accessible
for deaf individuals.

3.7 Intellectual Disabilities

Intellectual disability is a condition that affects an individual’s cognitive
and adaptive functioning. According to Millichap and Millichap (2014)
and Vasilakopoulou and Tzvetkova-Arsova (2021), intellectual disability
is characterized by significant limitations in intellectual functioning and
adaptive behavior expressed in conceptual, social, and practical adaptive
skills. Individuals with intellectual disabilities have limited intelligence,
social and other mental functions, and difficulty in learning, reasoning,
and problem-solving (Phytanza et al., 2018).

People with intellectual disabilities also have unique physiological
and psychological characteristics. They may have difficulty in express-
ing their emotions and understanding the emotions of others (Sivasubra-
manian, 2020). Emotional and behavioral impairments are common in
individuals with intellectual disabilities (Harris, 2005). Psychopathology
of mental and behavioral disorders is also prevalent in this population
(Dębska et al., 2020).

People with intellectual disabilities often face challenges in reading
and developing reading skills. These challenges can be attributed to vari-
ous characteristics of individuals with intellectual disabilities. Firstly, in-
dividuals with intellectual disabilities may have difficulties in phonologi-
cal awareness, which is the ability to recognize and manipulate sounds in
words. This can make it challenging for them to decode words and under-
stand their meanings (Sun and Kemp, 2006). Secondly, individuals with
intellectual disabilities may have limited vocabulary and comprehension
skills, which can affect their ability to understand what they are reading
(Cox-Magno et al., 2018). Thirdly, individuals with intellectual disabili-
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ties may have difficulty with metacognition, which is the ability to reflect
on and regulate one’s own thinking processes. This can make it challeng-
ing for them to monitor their own reading comprehension and adjust their
reading strategies accordingly (Cox-Magno et al., 2018).

Moreover, individuals with intellectual disabilities may have difficul-
ties in communication skills, including speech and language, which can
affect their ability to understand and express themselves through reading
(Licardo et al., 2021). They may also have limitations in writing, reading,
speaking, and listening skills, which can affect their ability to learn a new
language, such as English (Dalilan et al., 2021). Additionally, individuals
with intellectual disabilities may have difficulty accessing age-appropriate
texts due to their reading skills (Shurr and Taber-Doughty, 2017).

Intellectual disabilities can make it difficult to process complex lan-
guage and vocabulary, which can lead to difficulties in reading and com-
prehension. Text simplification can be particularly beneficial, as simpli-
fied text can help to reduce these barriers and make the content more
accessible (Saggion et al., 2011).

3.8 Summary

This chapter provides a brief introduction to various targeted users group
that could be benefited from ATS. Some of the benefits are 1) Im-
proved Comprehension: text simplification could help users with Autism,
Dyslexia, Aphasia, and Children to understand better the content they are
reading. By using simpler language, shorter sentences, and more straight-
forward vocabulary, users can more easily comprehend the information
presented to them. 2) Increased Independence: for users with Autism,
Dyslexia, Aphasia, and Children, text simplification can help them be-
come more independent in their reading and learning. By providing them
with content that is easier to understand, they can rely less on others for
help and feel more confident in their abilities. 3) Enhanced Learning: text
simplification can also benefit Second Language Learners by providing
them with content that is easier to understand and learn from. By using
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simpler language and vocabulary, learners can more easily grasp new con-
cepts and improve their language skills. 4) Accessibility: for users who
are Deaf or Hard of Hearing, text simplification can provide an acces-
sible alternative to audio or video content. By providing written content
that is easier to understand, users can access information that might other-
wise be difficult or impossible to access. Overall, text simplification can
provide numerous benefits for users with different needs, including im-
proved comprehension, increased independence, enhanced learning, and
accessibility.
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Part II

Complex Word Identification

43





Chapter 4

Complex Word Identification

In this chapter, we describe two of our experiments on Complex Word
Identification (CWI). The first experiment is based on Convolutional Neu-
ral Networks (CNN) in combination with different features such as word
embeddings, morphological features, and linguistic features to identify
complex words in English, Spanish, and German texts. The second ex-
periment explores two additional algorithms along with a new set of fea-
tures selected specifically to tackle complex words in French biomedical
documents.

4.1 Introduction
Complex Word Identification (CWI) is an essential task in helping Lexical
Simplification (LS) identify the difficult words that should be simplified.
LS simplifies text mainly by substituting difficult and less frequently-used
words with simpler equivalents. The majority of works on CWI are ei-
ther feature-engineered or neural networks with word embeddings. Both
approaches have advantages and limitations, so here we combine both
approaches in order to achieve higher performance while still supporting
multilingualism.

In the first experiment, we carried out our experiments on the data
from the CWIG3G2 dataset used in Complex Word Identification Shared
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Task 2018 (Yimam et al., 2017b). The following sentence shows an En-
glish example of the CWIG3G2 dataset. The target text flexed their mus-
cles is annotated as complex by at least one annotator.

Both China and the Philippines flexed their muscles on
Wednesday.

The second experiment is focused on a French biomedical dataset.
Medical documents are often considered one of the most challenging texts
to read and understand by a large population. The difficulty is mainly on
a lexical level since the vocabulary of medical texts is very specific and
because of the document’s rich terminological status.

For example, the following sentence from a biomedical document
contains difficult words such as (OPA (acute pulmonary edema), réso-
lutif (resolvent), VNI (NIV), oxygénothérapie (oxygen therapy)) which, if
simplified or explained, could make the text more understandable.

Le patient est donc transféré en réanimation : l’OAP est réso-
lutif sous VNI et oxygénothérapie.

Hence, the patient is transferred to intensive care: acute pul-
monary edema is resolvent with NIV and oxygen therapy.

We make the following contributions:

• We propose an approach that combines feature engineering and
deep learning (CNN) to identify complex words in English, Span-
ish, German, and French texts1.

• We make an analysis comparing the deep learning approach with
two classical machine learning approaches.

1The code is available at https://github.com/kimchengsheang/cwi_
cnn and https://github.com/kimchengsheang/MedCWI
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4.2 Related Work

Complex word identification has attracted the attention of researchers re-
cently, either as part of text simplification systems (Shardlow, 2013; Paet-
zold and Specia, 2015) or as an independent task, such as promoted by
SemEval 2016 (Paetzold and Specia, 2016d), 2018 CWI shared task (Yi-
mam et al., 2018), or SemEval 2021 (Shardlow et al., 2021).

The first complex word identification SemEval was introduced in
2016 to identify difficult words in an English corpus. The task was a
binary classification task in which the model had to decide whether the
target word was difficult or not for non-native speakers (Paetzold and Spe-
cia, 2016d). Participants exploited different classifiers such as Support
Vector Machine (SVM), Decision Tree, Random Forest, Logistic Regres-
sion, and Recurrent Neural Network (RNN) with features like word em-
beddings, lexical, morphological, and psycholinguistic properties of the
target words and Part-of-Speech (POS) tags.

In 2018, the CWI shared task extended its purpose to the identifica-
tion of difficult words in different languages (English, German, French,
and Spanish), as well as in a multilingual corpus (Yimam et al., 2018).
Two tasks were proposed: binary classification task (to decide whether
the word is difficult or not) and probabilistic classification task (to as-
sign a probability to a given word as being difficult). Participants used
different classifiers (e.g., SVM, Naive Bayes, Random Forest) and differ-
ent combinations of features such as word frequency, semantics, lexical,
morphological, and psycholinguistic properties. In addition, some partic-
ipants started to use the context of target words and word embeddings.
The results of the binary classification task, F-measures, were between
0.176 and 0.874 for the English corpus and between 0.577 and 0.745 for
other languages.

The purpose of the second SemEval 2021 task was also to identify
difficult words in texts from different genres in English: European Par-
liament, Bible, and biomedical texts (Shardlow et al., 2021). Two main
differences from previous tasks: words are annotated using a 5-point Lik-
ert scale (from very easy to very difficult) and consideration of polylex-
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ical units. Participants used language models, such as BERT (Devlin
et al., 2019) or RoBERTa (Liu et al., 2019), and Gradient Boosted Re-
gression. The evaluation metric was Pearson’s Correlation and the partic-
ipants obtained scores between 0.7886 and -0.0272 for the processing of
single words and scores between 0.8612 and 0.1860 for the processing of
polylexical units.

Besides challenge papers, Gala et al. (2014) proposed an approach to
predict the lexical complexity of French words for non-native learners.
The authors use SVM with different features (e.g., word length, number
of phonemes, number of syllables, phoneme/spelling coherence). They
obtain an accuracy between 43% and 63%. In another work, three meth-
ods for the detection of difficult words in general language English cor-
pora are evaluated (Shardlow, 2013): (1) simplify everything, (2) exploit
frequency using reference corpus, (3) train SVM model. The SVM-based
method shows the highest performance with 0.771 precision, while the
simplifying everything method has 0.738 precision and the frequency-
based method has 0.709 precision. The frequency threshold is exploited
in another work for the detection of familiarity with medical terms (Zeng
et al., 2005). The experience obtains 0.196 mean absolute error and 0.293
root mean square error. Yet, another way to determine word complexity
is based on the rarity of words: the words that are not found in different
lexica are considered as difficult (Borst et al., 2008). This method shows
92% accuracy.

Many techniques have been introduced so far to identify complex
words. It is obvious that feature-based approaches remain the best; how-
ever, deep-learning approaches have become more popular and achieved
impressive results. Our deep learning-based model follows that of Aroye-
hun et al. (2018) in combination with word embeddings and linguistic
features.
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4.3 Multilingual complex word identification
with Convolutional Neural Networks

In this section, we describe our CWI approach based on Convolutional
Neural Networks (CNN) with word embeddings and engineered features.
In the following, we describe the datasets, how to prepare the data, and
the training details.

4.3.1 Methodology

In this section, we describe our CWI approach based on CNN with word
embeddings and engineered features. Figure 4.1 shows the overall ar-
chitecture of our model. It is implemented using pure Tensorflow deep
learning library version 1.14.2.

Figure 4.1: The CWI model architecture based on CNN.

2https://www.tensorflow.org

49

https://www.tensorflow.org


Features

In this experiment, we employ word embeddings, morphological and lin-
guistic features. word embedding feature gives us a details representation
of each word, whereas morphological and linguistic features provide the
characteristics of each word, which are correlated with word complexity.
Below we describe the details of each feature.

Word Embedding Feature: We use pre-trained word embeddings
GloVe (Pennington et al., 2014) with 300 dimensions to extract the word
vector representation of each word for all three languages. For English,
we use the model trained on Wikipedia 2014 and Gigaword 5 model (6B
tokens, 400K vocab).3 For Spanish, we use the model (Cardellino, 2016)
trained on 1.5 billion words of data from different sources: dumps from
the Spanish Wikipedia, Wikisource, and Wikibooks on date 2015-09-01,
Spanish portion of SenSem, Spanish portion of Ancora Corpus, Tibidabo
Treebank and IULA Spanish LSP Treebank, Spanish portion of the OPUS
project corpora, and Spanish portion of the Europarl.4 For German, we
use the model trained on the latest dumps of German Wikipedia.5

Morphological Features: Our morphological feature set consists of
word frequency, word length, number of syllables, number of vowels, and
TF-IDF.

• Word frequency: the frequency of each word is extracted from the
latest Wikipedia dumps as the raw count and then normalized to
between 0 and 1.

• Word length: the number of characters in the word.

• Number of syllables: the number of syllables of the word, calcu-
lated using Pyphen.6

• Number of vowels: the number of vowels in the word.
3https://nlp.stanford.edu/projects/glove
4https://github.com/dccuchile/spanish-word-embeddings
5https://deepset.ai/german-word-embeddings
6https://pyphen.org
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• TF-IDF: Term frequency-inverse document frequency, calculated
using scikit-learn library.7

Linguistic Features: The linguistic features consist of part-of-speech,
dependency, and stop words.

• Part-of-Speech (POS): a category to which a word is assigned in ac-
cordance with its syntactic functions, e.g. noun, pronoun, adjective,
verb, etc.

• Dependency: a syntactic structure consists of relations between
words, e.g. subject, preposition, verb, noun, adjective, etc.

• Stop word: a commonly used word such as “the”, “a”, “an”, “in”,
“how”, “what”, “is”, “you”, etc.

All these features are extracted using SpaCy (Honnibal and Montani,
2017).

4.3.2 Experiments
In the following, we describe the datasets, how the data are prepared, and
the training details.

Datasets

We use the CWIG3G2 datasets from (Yimam et al., 2017a,b) for our
CWI system for both training and evaluation. The datasets are collected
for multiple languages (English, Spanish, German). The English dataset
contains news from three different genres: professionally written news,
WikiNews (news written by amateurs), and Wikipedia articles. For Span-
ish and German, they are collected from Spanish and German Wikipedia
articles. For English, each sentence is annotated by 10 native and 10
non-native speakers. For Spanish dataset, it is mostly annotated by native
speakers, whereas German is annotated by more non-native than native

7https://scikit-learn.org
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speakers. Each sentence contains a target text which is selected by anno-
tators, and it is marked as complex if at least one annotator annotates as
complex. Table 4.1 shows all the details about each dataset used in the
experiments.

Lang Genre Train Dev Test Positive

English
News 14,002 1,764 2,095 40%
Wikinews 7,746 870 1,287 42%
Wikipedia 5,551 694 870 45%

Spanish Wikipedia 13,750 1,622 2,233 40%

German Wikipedia 6,151 795 959 42%

Table 4.1: Statistics of the CWIG3G2 dataset (Yimam et al., 2017a,b).
The column positive shows the percentage of selected target text labeled
as complex.

Data Preprocessing

We separate each sentence into three parts: target text, left context, and
right context. The target text is a word or phrase that is selected and
marked as complex or non-complex by the annotators. The left context
and the right context are words that appear to the left and the right of the
target text.

First, we remove all special characters, digits, and punctuation marks.
Then, each word is replaced by its word vector representation using pre-
trained word embeddings from the GloVe model as described in Section
4.3.1. Words that do not exist in the pre-trained word embeddings are
replaced with zero vectors. Afterward, we transform the left context and
right context into a 300-dimensional vector calculated as the average of
the vectors of all the words in the left context and the right context. If
the left context or right context is empty (when the target text is at the
beginning or the end of the sentence), we replace it with a zero vector.

52



Next, we initialize a matrix X of size n ∗ m(n = h + 2,m = 308)
where the first row corresponds to the left context vector, the second row
corresponds to the right context vector, and the last r rows are given by
the embedding vectors of the words contained in the target text, where r
is the number of words in the target text. In order to have a fixed-size
matrix, we pad the remaining rows p with zero vectors, where p = h− r
and h is the maximum value of r in the corpus.

To convert each feature into a vector representation, first, we need to
transform its values. For example:

• Part-of-speech and Dependency are given the values such as N as
1, V as 2, ADJ as 3, ADV as 4, and PREP as 5, and then are nor-
malized to between 0 and 1.

• Stop word: 1-stop word, 0-otherwise.

• All the values of word frequency, word length, number of syllables,
number of vowels, and tf-idf are numbers, so we just normalize it
to between 0 and 1.

For each feature, we initialize a matrix of one column and n rows
where the first row corresponds to the average value of the left context,
the second row corresponds to the average value of the right context, and
the last r rows are the values of the feature for each word in the target
text, and the remaining rows are padded with zero. Then, we append the
matrix to the matrix X (the representation of the matrix X can be found
in Figure 4.1).

Hyperparameters and Training

We train our model using CNN with a number of filters of 128, a stride
of 1, and a kernel size of 3, 4, and 5. We then apply the ReLU activation
function with Max Pooling to the output of this layer, and it is often called
feature maps. The feature maps are flattened and pass through three Fully-
Connected layers (FC) with dropouts between each layer. The first two FC
layers use the ReLU activation function with 256 and 64 outputs. The last
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FC layer uses the Softmax activation function, which provides the output
as complex (1) or non-complex (0). Figure 4.1 shows the representation
of the architecture.

For all datasets, the training is done through Stochastic Gradient De-
scent over shuffle mini-batches using Adam optimizer (Kingma and Ba,
2015) with the learning rate of 0.001, a dropout rate of 0.25, mini-batch
size of 128. Also, we use weighted cross-entropy as a loss function with a
weight of 1.5 for the positive since our datasets are imbalanced; it contains
roughly 60% negative examples and 40% positive examples as shown in
Table 4.1. We train the system for 200 epochs, and for every 20 itera-
tions, we validate the system with the shuffle development set. Then, if
the model achieves the highest F1-score, we save the model and use it for
our final evaluation with the test set. In our case, all the hyperparameters
are selected via a grid search over the English development set.

We train and evaluate each language separately. For English, the
dataset has three different genres, so we combine and train all at once.
For Spanish and German datasets, there is only one genre, so we use it
directly for training.

4.3.3 Results and Discussion

System
English

Spanish German
News WikiNews Wikipedia

Camb (Gooding and Kochmar, 2018) 87.36 84 81.15 - -
TMU (Kajiwara and Komachi, 2018) 86.32 78.73 76.19 76.99 74.51
NLP-CIC (Aroyehun et al., 2018) 85.51 83.08 77.2 76.72 -
ITEC (De Hertog and Tack, 2018) 86.43 81.10 78.15 76.37 -
NILC (Hartmann and Santos, 2018) 86.36 82.77 79.65 - -
CFILT_IITB (Wani et al., 2018) 84.78 81.61 77.57 - -
SB@GU (Alfter and Pilán, 2018) 83.25 80.31 78.32 72.81 69.92
Gillin Inc. 82.43 70.83 66.04 68.04 55.48
hu-berlin (Popović, 2018) 82.63 76.56 74.45 70.80 69.29
UnibucKernel (Butnaru and Ionescu, 2018) 81.78 81.27 79.19 - -
LaSTUS/TALN (AbuRa’ed and Saggion, 2018) 81.03 74.91 74.02 - -
Our CWI 86.79 83.86 80.11 79.70 75.89

Table 4.2: The evaluation results based on macro-averaged F1-score,
higher means better.
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Table 4.2 shows the results of our model against others (all the results
are based on macro-averaged F1-score).

Our evaluation has shown that when training with a dataset that has
more training examples, the model achieves a better result. For exam-
ple, the model achieves F1-score of 86.79 on the English News dataset
with 14,002 examples compared to a score of 83.86 on the English
WikiNews dataset with 7,746 examples and a score of 80.11 on the En-
glish Wikipedia dataset with 5,551 examples.

After an analysis of the results, we have found some samples that
contain a word that can be both complex and non-complex at the same
time, depending on the selection of the target. The following are two
examples:

Example 1:

The distance, chemical composition, and age of Teide 1
could be established because of its membership in the young
Pleiades star cluster.

“Pleiades” is selected as the target text, and annotators annotated as com-
plex, and our system also predicts it as complex.

The distance, chemical composition, and age of Teide 1
could be established because of its membership in the young
Pleiades star cluster.

“Pleiades star cluster” is selected as the target text, and annotators
annotated as non-complex, but our system predicts it as complex.

Example 2:

Definitions have been determined such that the super casino
will have a minimum customer area of 5000 square metres
and at most 1250 unlimited-jackpot slot machines.

“casino” is selected as the target text, and annotators annotated as non-
complex, and our system predicts it as non-complex.
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Definitions have been determined such that the super casino
will have a minimum customer area of 5000 square metres
and at most 1250 unlimited-jackpot slot machines.

“super casino” is selected as the target text, and annotators annotated as
complex, but our system predicts it as non-complex.

Based on these examples, it is a good indication that the surrounding
context is very important for identifying complex words.

4.4 Identification of complex words in French
medical documents

In this section, we further investigate two additional approaches along
with a new set of features selected specifically to tackle complex words
in French biomedical documents.

4.4.1 Methodology
In this experiment, we train three models based on CNN (LeCun et al.,
1995), CatBoost (Dorogush et al., 2018), and XGBoost (Chen and
Guestrin, 2016). More details about each model will be described in Sec-
tion 4.4.2. Each model is incorporated with a set of features, as described
below:

Features

Our models rely on a number of features to perform the classification. We
adopt some features from the previous experiments, such as word length,
number of syllables, number of vowels, and TF-IDF. The rest of the fea-
tures are newly proposed and selected specifically for this experiment.

1. FastText Embedding (Bojanowski et al., 2016) a language model
pre-trained on large unlabeled corpora is used as word representa-
tion. In the previous experiment, we used GloVe word embeddings;
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however, in this experiment, we use FastText because it is trained
with both word and subword information, which can deal better
with rare or unknown words, which we believe that it is suitable for
medical texts;

2. CamemBERT Embedding (Martin et al., 2020b) is a contextualized
word embedding, which is a French version of BERT (Devlin et al.,
2019). It is pre-trained on a large amount of text using a word mask-
ing approach. Having contextualized word embedding would give
additional context information to the model, which in the previous
experiment was lack of. In this experiment, we use Flair (Akbik
et al., 2019) to extract word embeddings for the whole sentence
from the 12 embedding layers and then compute the average. After
that, we extract the embedding of each word in the sentence with a
dimension of 768 each;

3. Word Length is the number of characters in a word;

4. Word Syllable is the number of syllables in each word, extracted
using PyHyphen8;

5. Vowel Count is the number of vowels in each word;

6. Word Rank is the frequency order taken from FastText pre-trained
model;

7. TF-IDF (Salton, 1991) permits to measure how a sentence is rele-
vant to a document;

8. LangGen Frequency is a frequency computed from French
Wikipedia;

9. Clear Frequency is a frequency computed from a French medical
corpus (Grabar et al., 2018).

8https://github.com/dr-leo/PyHyphen
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4.4.2 Experiments
In this section, we present the dataset, the preprocessing steps, and the
models we propose in this chapter. The goal of the experiments is to clas-
sify the target text in a sentence as complex or not complex and evaluate
it based on the manual annotation of the dataset.

Dataset

We utilized a sample of 100 clinical cases from the CAS corpus (Grabar
et al., 2018), which is a collection of clinical cases in French. These clin-
ical cases are similar to clinical reports and provide detailed information
about patient’s medical backgrounds, reasons for consultation, healthcare
processes, treatments, and outcomes. The CAS corpus contains a total of
4,900 clinical cases in French, with nearly 1.7 million word occurrences,
which are extracted from different freely accessible sources, and all the
patient’s information is fully anonymous.

The corpus with clinical cases is pre-processed. The documents are
syntactically analyzed by the Cordial parser (Laurent et al., 2009) to di-
vide them into syntactic groups (chunks). When a given word belongs
to a chunk within another chunk, we keep a minimal chunk. The corpus
contains in total of 15,053 chunks.

Documents are then annotated manually by nine annotators in order
to mark up the chunks with understanding difficulty (e.g., understand, not
understand, not fully understand). The annotators are all native French
speakers, and they have no medical knowledge or training. Few of them
are chronically ill. During the annotation process, the annotators were ad-
vised not to use dictionaries or information available on the Internet. They
had to do the annotations on the basis of their own knowledge. The an-
notators are presented with whole documents, where chunks are between
brackets, such as shown in Figure 4.2. For each chunk, the annotators
have to indicate whether they cannot understand it (in red) or whether
they are not sure to understand it (in blue). In the case they understand a
given chunk, they do not have to annotate it.

In the end, each document is annotated by at least four annotators,
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[Ses antécédents médicaux] [montrent] [notamment] [un diabète ges-
tationnel probable] [et une HG] [lors de sa première grossesse].
[La patiente] [avait alors été hospitalisée] et [avait recu] [un traite-
ment intraveineux] [de métoclopramide associé] [à de la diphénhy-
dramine suivi] [d’un relais] [par voie orale] [au métoclopramide et]
[à l’hydroxyzine]. [Une réaction extrapyramidale] ([rigidité] [de la
mâchoire et] [difficulté] [à parler]) [avait nécessité] [l’arrêt] [du
métoclopramide]. [L’hydroxyzine] [avait] [ensuite été remplacée]
[par l’association] [de doxylamine] [et de pyridoxine] (DiclectinMD).

[Her medical background] [shows] [a probable gestational diabetes]
[and an HG] [during her first pregnancy]. [The patient] [had then
been hospitalized] and [received] [an intravenous treatment] [of meto-
clopramide with] [diphenhydramine followed] [by oral treatment] [with
metoclopramide and] [hydroxyzine]. [An extrapyramidal reaction]
([jaw] [stiffness and] [difficulty] [to talk]) [caused] [the cessation]
[of metoclopramide]. [Hydroxyzine] [had] [then been replaced] [by
the combination] [of doxylamine] [and pyridoxine] (Di-clectinMD).

Figure 4.2: An example of an annotated clinical case. Each chunk of the
text is grouped by the parser. The colors are marked by an annotator:
black means understand, red means not understand, and blue means not
fully understand.
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Annotators Kappa
all (1-4) 0.175
1 & 2 0.093
1 & 3 0.292
1 & 4 0.100
2 & 3 0.316
2 & 4 0.115
3 & 4 0.048

Table 4.3: Kappa scores for different annotators

while some documents are annotated by up to six annotators. We com-
puted the kappa of Fleiss (Fleiss, 1971) for four annotators who annotated
all the documents, which gives a low 0.175 Kappa. For some pairs of an-
notators, Kappa shows slightly higher values (0.292 and 0.316). Table
4.3 shows all the Kappa scores between the four annotators. This means
that the annotation task is very subjective and heavily depends on own
knowledge and experience of each person.

The corpus is then segmented into sentences containing one target
chunk per sentence. In total, we have 9,709 sentences with 3,482 complex
and 6,227 non-complex chunks. Then for each training and evaluation, we
shuffle the data with a different seed number and split it into three parts:
70% for training, 15% for validation, and 15% for testing.

Data Preprocessing

The preprocessing steps follow the same procedures as described in Sec-
tion 4.3.2 with all the features mentioned in Section 4.4.1. Figure 4.3
shows an example of the vector representations of how a sentence with a
selected target text is preprocessed.
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Figure 4.3: An example of the vector representations of how a sentence
with a selected target text is preprocessed with all the features.

Models

We use three models, a CNN already described in Section 4.3 and two
classifiers described below:

CatBoost (Dorogush et al., 2018) is a gradient boosting on. The deci-
sion Trees library is often used for ranking, regression, and classification
tasks. CatBoost is an ensemble learning library that combines multiple
machine learning algorithms (Decision Trees) to obtain a better model.
To train the model, we follow the same data preparation step as in the
CNN model and then flatten it into a long vector. The model is trained for
1200 iterations with a learning of 0.03.

XGBoost (Chen and Guestrin, 2016) stands for Extreme Gradient
Boosting is a scalable, distributed gradient-boosted decision tree machine
learning library similar to CatBoost. It is one of the leading machine-
learning libraries for regression, classification, and ranking problems. To
train the model, the data is prepared the way as in CatBoost model, and
then trained with the max depth of 10, the learning rate of 0.03, and the
number of estimators of 500.
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4.4.3 Results and Discussion
Table 4.4 shows the results of our three models (CNN, CatBoost, and XG-
Boost) trained with different feature sets. The results are indicated in a
macro average of precision (P), recall (R), and F1-score (F1). The models
are trained with each feature set five times: the average values are indi-
cated. The column Features indicates the combinations of features used in
each model. Each feature number corresponds to those in Section 4.4.1.
The CNN model performs better in all cases except when the CNN model
is trained without word embeddings, it performs lower than CatBoost and
XGBoost. We get up to 0.854 F1-score.

We started with the CNN model trained with only FastText word em-
bedding, and then we kept adding more features one by one. We could
see that the result was improved each time we added a new feature. Then,
we tried removing the embedding feature, and the result dropped signif-
icantly. Next, we tried BERT embedding (CamemBERT), and the re-
sult was way better than all models with FastText. It can be due to the
fact that BERT embedding has captured better information on words than
FastText. Next, we combined FastText with BERT; as a result, the CNN
model performed worse than the model with BERT alone, whereas Cat-
Boost and XGBoost models performed better, especially the CatBoost
model performed the best among all of its models. Even though CatBoost
and XGBoost models perform pretty well, it is still significantly lower
than the CNN model.

In comparison with all the models, the results show that in most cases
the CNN model performs better than CatBoost and XGBoost, except in
the model without the word embeddings; this could be an indication that
CatBoost and XGBoost learn better than the CNN model when having
less information.

4.5 Conclusion
In this chapter, we have presented two experiments for complex word
identification for two different datasets. The first experiment utilized a
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Features
CNN CatBoost XGBoost

P R F1 P R F1 P R F1
1 0.818 0.811 0.814 0.798 0.773 0.783 0.798 0.770 0.780
1, 3 0.817 0.813 0.815 0.799 0.771 0.781 0.796 0.770 0.779
1, 3, 4 0.819 0.815 0.816 0.804 0.781 0.790 0.800 0.772 0.782
1, 3, 4, 5 0.820 0.817 0.818 0.803 0.780 0.788 0.797 0.770 0.780
1, 3, 4, 5, 6 0.826 0.818 0.821 0.829 0.812 0.819 0.799 0.774 0.783
1, 3, 4, 5, 6, 7 0.823 0.820 0.821 0.830 0.813 0.820 0.826 0.811 0.817
1, 3, 4, 5, 6, 7, 8 0.824 0.824 0.824 0.826 0.809 0.816 0.825 0.812 0.818
1, 3, 4, 5, 6, 7, 8, 9 0.827 0.826 0.826 0.831 0.817 0.823 0.826 0.812 0.818
3, 4, 5, 6, 7, 9 0.787 0.778 0.781 0.803 0.786 0.793 0.802 0.789 0.795
1, 2 0.848 0.843 0.845 0.838 0.824 0.830 0.834 0.817 0.824
2 0.848 0.847 0.847 0.823 0.807 0.814 0.824 0.799 0.809
2, 3 0.848 0.847 0.847 0.825 0.811 0.817 0.825 0.802 0.811
2, 3, 4 0.852 0.851 0.851 0.826 0.812 0.818 0.825 0.802 0.811
2, 3, 4, 5 0.854 0.852 0.853 0.822 0.808 0.814 0.824 0.798 0.808
2, 3, 4, 5, 6 0.851 0.850 0.851 0.821 0.806 0.812 0.820 0.796 0.805
2, 3, 4, 5, 6, 7 0.851 0.847 0.849 0.829 0.817 0.822 0.834 0.816 0.823
2, 3, 4, 5, 6, 7, 8 0.851 0.846 0.848 0.822 0.810 0.815 0.827 0.815 0.820
2, 3, 4, 5, 6, 7, 8, 9 0.849 0.844 0.846 0.832 0.817 0.824 0.835 0.822 0.827
2, 3, 4, 5, 6, 8, 9 0.853 0.856 0.854 0.826 0.815 0.820 0.834 0.822 0.827

Table 4.4: This table shows the results in a macro average of precision (P),
recall (R), and F1-score (F1) of our three models trained with different
combinations of features. All models are trained with each feature set
five times and computed the average. A higher value means better. The
column feature lists all combinations of features used in the training of
each model, and each number represents the corresponding feature listed
in Section 4.4.1.
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deep learning model (CNN) with word embeddings and engineered fea-
tures. The evaluations have shown that the model performs quite well
compared to the state-of-the-art system for English, which depends on a
lot of engineered features and is better than the state-of-the-art systems
for both Spanish and German. In the second experiment, we have pro-
posed three classifiers based on CNN, CatBoost, and XGBoost trained
with different feature sets selected specifically to detect complex words
in French biomedical documents. The results have shown that the CNN
model performs better than CatBoost and XGBoost.
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Part III

Lexical Simplification
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Chapter 5

Controllable Lexical
Simplification for English

In this chapter, we present our lexical simplification approach based on a
Transformer-based model along with a controllable mechanism for mono-
lingual English. The controllable mechanism gives us the ability to con-
trol the outputs based on the token values (see Chapter 2 Section 2.2.4)
embedded into each input sentence, such as word length, word frequency,
and candidate ranking.

5.1 Introduction
Recently, fine-tuning Transformer-based approaches have shown excit-
ing results in sentence simplification (Sheang and Saggion, 2021; Martin
et al., 2022). However, so far, no research has applied similar approaches
to the lexical simplification task. Figure 5.1 shows an example of a lexi-
cal simplification where the word “hiatus” is selected as a complex word
and is replaced by the word “break”. In this chapter, we present ConLS,
a Controllable Lexical Simplification system fine-tuned with T5 (Raffel
et al., 2020). T5 is an encoder-decoder model pre-trained on multiple
tasks: unsupervised tasks such as BERT-style span masking (Devlin et al.,
2019), and supervised tasks such as machine translation, document sum-
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Complex Sentence: The Hush Sound is currently on hiatus.

Simplified Sentence: The Hush Sound is currently on break.

Figure 5.1: A lexical simplification example taken from the LexMTurk
dataset (Horn et al., 2014) with the complex word and the substitute word
in bold.

marization, question answering, classification tasks, and reading compre-
hension. T5 is trained on Colossal Clean Crawled Corpus (C4), a dataset
created by applying a set of filters to English texts sourced from the public
Common Crawl web scrape.

Our proposed system harnesses the power of transfer learning by fine-
tuning the T5 pre-trained model where first the T5 model was trained
as a language model and then trained with multiple NLP tasks, such as
machine translation, question answering, paraphrasing, summarization,
etc. The T5 pre-trained model has already captured some knowledge that
would be beneficial to our task, which would require less amount of data
for training. As for the controllable mechanism, the idea is to train an end-
to-end model (a single model) that does candidate generation, selection,
and ranking through the training process. The control tokens are embed-
ded in each input sentence in order to help the model generate simpler
candidates and rank them by simplicity.

The systems evaluated in this chapter do not perform complex word
identification. We use datasets that already had a complex word tagged
for each instance. Moreover, we do not address the morphological and
context adaptation task because our model usually returns the correct in-
flected candidates.

The evaluation results on three datasets (LexMTurk, BenchLS, and
NNSeval) have shown that our model performs comparable to LSBert (the
current state-of-the-art) see Section 5.4 and even outperforms it in some
cases. We also conducted a detailed comparison of the effectiveness of
control tokens to give a clear view of how each token contributes to the
model.
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We make the following contributions:

• To the best of our knowledge, we are the first to introduce a con-
trollable mechanism for LS and to fine-tune a Transformer-based
model for LS1.

• We conduct an extensive evaluation of several metrics that allow us
to understand the system better when applied to real-world scenar-
ios.

5.2 Methodology
Following recent works on controllable sentence simplification of Martin
et al. (2019), Martin et al. (2022), Sheang and Saggion (2021), and Štajner
et al. (2022b), we are inspired to apply a similar approach in lexical sim-
plification task. Specifically, our model is based on Sheang and Saggion
(2021), a model originally developed for sentence simplification2. We
propose a controllable mechanism for lexical simplification because we
believe that the embedded token values extracted from training data could
give additional information to the model about the relations between the
source and the target word; so that at inference, we could define different
token values that fulfill our objectives, which in this case is to find the
best candidates. In the following paragraphs, we describe all the details
about control tokens and the reason why they are chosen.

Word Length (WL) is the character length ratio between the complex
word and the target word. It is the number of characters of the target
word divided by the number of characters of the complex word. Based on
our analysis of the training dataset (TSAR-EN), 65.71% of the time com-
plex word is longer than the best candidate, 21.30% the complex word is
shorter than the best candidate, and 12.99% both are the same length.

1The code and data are available at https://github.com/
kimchengsheang/ConLS

2https://github.com/kimchengsheang/TS_T5
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Word Rank (WR) is the inverse frequency of the target word divided
by that of the complex word. The inverse frequency order is extracted
from the FastText pre-trained model. Based on our analysis of the TSAR-
EN dataset, 85.45% of the time, the complex word has a lower frequency
than the best candidate. Therefore, this token is a good indicator to help
guide the model to predict simpler candidates.

Candidate Ranking (CR) is the ranking order extracted from the train-
ing data. The values are given to candidates by the ranking order. E.g.,
the best-ranking candidate is given a value of 1.00, the second 0.75, the
third 0.50, the fourth 0.25, and starting from the fifth is given a value of
0.00. We used only five different values to avoid overloading the model,
as the training data is relatively small. In addition, the rationale behind
using these values is that we want the model to learn candidates rank-
ing from data through the training process rather than injecting additional
information or doing post-processing.

5.3 Experiments

In our experiments, we compare our model with the current state-of-the-
art model LSBert (Qiang et al., 2020). We used the original LSBert con-
figurations and resources, and we made the following changes to have a
detailed comparison with our model. By default, LSBert returns only a
single best candidate for each complex word, so we made the changes to
return the 10 best-ranked candidates. We changed the number of BERT
mask selections from 10 to 15 so that after removing duplicate candidates,
we still have around 10 candidates. Moreover, we filtered out all the can-
didates that were equal to the complex word. Due to the fact that all the
used datasets have gold annotated simpler substitutions in all instances,
we could assume that returning the complex word would be incorrect.
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5.3.1 Datasets
This subsection describes all the lexical simplification datasets for English
that we used in our experiments. We used LexMTurk (Horn et al., 2014),
BenchLS3 (Paetzold and Specia, 2016c), and NNSeval 4 (Paetzold and
Specia, 2016e) for testing and TSAR-EN (Štajner et al., 2022a) dataset
for training and validation. LexMTurk has 500 sentences that were ob-
tained from Wikipedia. This dataset contains the marked complex words
and their replacements suggested by 50 English-speaking annotators. The
BenchLS dataset is a union of the LSeval (De Belder and Moens, 2012)
and LexMTurk datasets in which spelling and inflection errors were au-
tomatically corrected. The NNSeval dataset is a filtered version of the
BenchLS adapted to evaluate LS for non-native English speakers.

Sentence

European Union foreign ministers agreed Monday to impose fresh
sanctions on Syria as a U.N.-backed peace plan – along with all other
diplomatic efforts – has yet to stop the carnage that mounts every
day.

Simpler Substitutes

destruction:6, bloodshed:3, massacre:3, slaughter:3, carnage:2, bru-
tality:1, butchering:1, butchery:1, damage:1, death:1, slaying:1, vio-
lence:1, war:1

Figure 5.2: An example taken from the TSAR-EN dataset (Štajner et al.,
2022a) with the target word in bold. The numbers after ’:’ represents the
number of workers that suggested the substitution. Each instance has 25
substitutes suggested by 25 crowd-sourced workers.

TSAR-EN dataset has 386 instances with 25 gold-annotated substitu-
tions. Figure 5.2 shows an example. The instances and their target com-

3https://doi.org/10.5281/zenodo.2552393
4https://doi.org/10.5281/zenodo.2552381
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plex words were extracted from the Complex Word Identification shared
task 2018 (Yimam et al., 2018). The instances were annotated using Ama-
zon’s Mechanical Turk by 25 annotators. A native English annotator re-
viewed all suggestions.

5.3.2 Evaluation Metrics
We evaluated the systems with several metrics that could take into account
the results for different numbers of K candidates (from 1 up to 10). The
metrics used are the following:

• Accuracy@1: is the ratio of instances with the top-ranked candi-
date in the gold standard list of annotated candidates.

• Accuracy@K@Top1: The ratio of instances where at least one of
the top K predicted candidates match the most frequently suggested
synonym/s5 in the gold list of annotated candidates.

• Potential@K: the percentage of instances for which at least one of
the top K substitutes predicted is present in the set of gold annota-
tions.

• Mean Average Precision@K (MAP@K): This metric evaluates
the relevance and ranking of the top K predicted substitutes.

• Precision@K: the percentage of top K-generated candidates that
are in the gold standard.

• Recall@K: the percentage of gold-standard substitutions that are
included in the top K-generated substitutions.

5.3.3 Data Preprocessing
For each instance, we have a sentence, a complex word, and a list of
ranked candidates. We compute all the ratios and the ranking, then

5Ties in the most repeated gold-annotated candidates are taken into account.
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prepend it to the source sentence. We also use special tokens [T] and [/T]
to mark the boundary of the complex word in the source sentence and the
simple word in the target sentence. Moreover, these special tokens help us
identify the candidates during the inference. Figure 5.3 shows an example
of source and target sentences embedded with token values and boundary
tokens.

Source: <CR_1.00> <WL_0.54> <WR_0.90> The Obama ad-
ministration has seen what The New York Times calls an
[T]unprecedented[/T] crackdown on leaks of government secrets.

Target: The Obama administration has seen what The New York
Times calls an [T]unusual[/T] crackdown on leaks of government se-
crets.

Figure 5.3: A training example. The control token values are extracted
from the complex word (unprecedented) and one substitute word (un-
usual). The word unusual is the best-ranked candidate suggested by anno-
tators, so the CR value is 1.00. We used all the candidates in each instance
to generate parallel sentences for training. One candidate per training ex-
ample.

5.3.4 Model Details
The model’s implementation is based on Huggingface Transformers
(Wolf et al., 2020) and Pytorch-lightning6.

In our experiments, we fine-tuned the T5-large model on the TSAR-
EN dataset. We also compared the difference sizes of T5 pre-trained mod-
els; the results are in Table 5.3. We split the dataset to 90% for training
and 10% for validation. This 10% validation set is also used in the token
values search at the inference, as described in the following section. For
the training data, we preprocessed by extracting and adding control tokens

6https://www.pytorchlightning.ai
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to the source sentence along with the boundary tokens to the complex
word and substitute word, as shown in Figure 5.3. We set the maximum
sequence length (number of tokens) to 128, as all our datasets contain less
than 128 in tokens length.

We fine-tuned the model for 8 epochs, using AdamW (Loshchilov and
Hutter, 2019) optimizer with the learning rate 1e-5 and Adam epsilon of
1e-8. We set the batch size to 8 for training and validation. We fine-tuned
the model on a machine with an NVidia RTX 3090, Intel core i9 8950HK
CPU, with 32G of RAM; usually, it took around 2 hours. In addition, we
used Optuna (Akiba et al., 2019) for hyper-parameters search.

5.3.5 Inference

First, we performed token values search on the validation set that max-
imizes the Accuracy@1@top1 score using Optuna (Akiba et al., 2019).
We searched the values ranging between 0.5 and 1.25; at each iteration,
we changed the value by 0.05. We searched only WL and WR, whereas,
for CR, we set it to 1.00 because we already knew that the best-ranking
candidates were given the value of 1.00. Then we kept these values fixed
for all sentences at the inference. Finally, at the inference, we set the
beam search to 15 and the number of return sequences to 15 so that after
filtering out some duplicate candidates, the remaining would be around
10. The ranking order of the candidates is chosen from the return orders
of sequences produced by the model.

5.4 Results and Discussion

In Table 5.1 we present the results for the metrics: Accuracy@1, Ac-
curacy@K@Top1, and Potential@K. In Table 5.2 we present the results
for the metrics: MAP@K, Precision@K, and Recall@K. The results of
ConLS presented here are based T5-Large.

Our experiments show that the modified LSBert had improved its Ac-
curacy@1 metric results with respect to the ones seen in the original LS-
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Dataset System ACC@1
ACC@K@Top1 Potential@K

@1 @2 @3 @4 @5 @2 @3 @4 @5 @10

BenchLS
LSBert 67.59 40.68 51.45 57.37 59.84 61.57 77.07 81.27 83.32 84.28 85.47
ConLS 62.00 37.99 51.34 59.31 64.90 68.46 74.92 81.27 84.82 87.08 90.31

NNSeval
LSBert 44.76 28.03 38.49 43.93 46.86 49.79 59.00 64.85 67.78 71.55 74.48
ConLS 41.00 26.77 34.30 45.18 50.20 52.71 53.14 61.09 65.69 69.87 79.08

LexMTurk
LSBert 84.80 44.00 54.80 60.40 61.80 62.80 91.00 93.20 94.60 95.00 95.80
ConLS 80.60 43.80 56.39 65.40 71.20 76.60 90.00 95.60 97.40 98.20 99.60

Table 5.1: The results of LSBert and ConLS for the metrics: Accu-
racy@1, Accuracy@K@Top1, and Potential@K.

Dataset System
MAP@K Precision@K Recall@K

@2 @3 @4 @5 @10 @3 @5 @10 @3 @5 @10

BenchLS
LSBert 52.26 42.29 34.79 29.25 15.74 46.46 34.62 24.90 25.74 29.80 32.41
ConLS 49.73 41.37 35.01 30.54 18.84 46.34 37.11 26.20 25.59 32.25 41.89

NNSeval
LSBert 34.93 27.84 23.18 19.97 10.73 32.84 26.16 18.78 19.55 23.40 26.14
ConLS 31.69 27.31 23.23 20.30 12.53 32.91 27.02 19.51 18.80 23.80 32.08

LexMTurk
LSBert 67.05 54.41 45.83 39.01 21.29 58.03 45.25 33.43 20.52 24.61 27.52
ConLS 65.45 55.45 48.04 42.52 27.59 60.16 49.89 36.94 21.32 27.51 37.15

Table 5.2: The results of LSBert and ConLS for the metrics: MAP@K,
Precision@K, and Recall@K.

Bert paper (Qiang et al., 2021): Accuracy@1 has improved from 79.20 to
84.80 for LexMTurk, from 61.60 to 67.59 for BenchLS, and from 43.60
to 44.76 for NNSeval. On the other hand, for the Accuracy@1 metric
the ConLS system does not improve the results of the modified LSBert
system but improves the results of the original LSBert for the LexMturk
and BenchLS datasets. The results of the Accuracy@K@Top1 metrics
show that the modified LSBert achieves better results at K={1, 2} and
the ConLS achieves better results at K={3, 4, 5} for all datasets. This
indicates that with more candidates allowed (3, 4, and 5 candidates) the
ConLS is able to generate more instances with candidates within the top-
1(s) gold annotated substitution(s) with respect to LSBert. The results of
the Potential@K metric show these facts: 1) in LexMturk and BenchLS,
the ConLS is outperforming LSBert gradually and increasingly from K=3
to K=10; 2) in NNSeval, ConLS improves the potential of LSBert only at
K=10. For the MAP@K metric, we show that ConLS is able to improve
the results of the metric at K={4, 5, 10} in all the datasets with respect
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to the modified LSBert. Finally, the results of the Precision@K and Re-
call@K metrics show the same pattern: 1) for LexMTurk, ConLS out-
performs the LSBert in all K={3, 5, 10}; 2) for BenchLS and NNSEval,
ConLS outperforms the LSBert only in K={5, 10}.

T5 Model ACC@1
ACC@K@Top1

@1 @2 @3

T5-Small 23.40 7.80 11.80 15.40
T5-Base 60.00 28.80 40.40 48.40
T5-Large 80.60 43.80 56.39 65.40

Table 5.3: The results of ConLS trained all tokens using different T5
models. The models were trained with TSAR-EN and evaluated with
LexMTurk.

We also conducted a comparison on the effect of different T5 mod-
els trained with TSAR-EN and evaluated with LexMTurk. Table 5.3
shows that the T5-Large model performs a lot better than the T5-Base and
the T5-Small models in all metrics (Accuracy@1, Accuracy@K@Top1).
Therefore, we believe that the performance of our model would improve
if we could go with a larger model, for example, T5-3b or T5-11b. We
have tried with the T5-3b model, but unfortunately, it was unable to fit
into our GPU memory (NVidia RTX 3090) even though we had set the
batch size to as small as one.

To evaluate the effectiveness of the control tokens, we conducted fur-
ther experiments with different sets of combinations. We trained and eval-
uated each set of tokens using T5-Large with TSAR-EN for training and
LexMTurk for evaluation. The results in Table 5.4 have shown that the
model trained with no tokens performs worse than the model with all
tokens in all metrics, especially for the Accuracy@1@Top1 metric; the
model with all tokens performs +2 points higher. Moreover, the all to-
kens model performs better than all other models in all metrics. This
indicates that each token contributes to the selection and ranking of the
candidates, which leads to better performance.
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Tokens ACC@1
ACC@K@Top1

@1 @2 @3

No Tokens 79.20 41.80 55.20 62.60
CR 79.00 41.00 54.40 62.60
WL 79.40 43.00 55.20 65.00
WR 78.60 41.20 54.60 63.20
CR+WL 78.40 41.40 54.40 62.40
CR+WR 78.60 42.80 54.60 62.20
WL+WR 78.60 41.00 54.20 62.20
All Tokens 80.60 43.80 56.39 65.40

Table 5.4: The results of ConLS trained with a different set of tokens.
Each model was trained with TSAR-EN and evaluated with LexMTurk.

5.5 Conclusion
This chapter presents ConLS, the first approach for Controllable Lexical
Simplification. The chapter also describes the evaluation of LSBert and
ConLS for English with the LexMTurk, BenchLS, and NNSeval datasets
for testing and the TSAR-EN dataset for training. The results of our eval-
uation show that the modified LSBert improves the Accuracy@1 metric
results with respect to the ones seen in the original LSBert paper in all
three datasets. ConLS also improves it for the LexMturk and BenchLS
datasets. Moreover, the ConLS system is able to achieve: 1) more poten-
tial to capture correct answers at K={3, 4, 5, 10} for BenchLS and LexM-
turk and at K=10 for NNSeval with respect to LSBert, 2) with more can-
didates retrieved (4 or 5) is able to generate more candidates within the
top-1 more frequent gold-annotated suggestions with respect to LSBert,
3) with K={5, 10} candidates are able to generate (according to the gold-
annotations) more correct and different candidates.
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Chapter 6

Multilingual Controllable
Transformer-Based Lexical
Simplification

In Chapter 5, we presented a lexical simplification system for English,
which lacks multilinguality; therefore, in this chapter, we present mTLS,
a multilingual controllable Transformer-based lexical system for English,
Spanish, and Portuguese. The novelty of this work lies in the use of
language-specific prefixes, control tokens, and candidates extracted from
pre-trained masked language models to learn simpler alternatives for com-
plex words. The evaluation results on three well-known LS datasets –
LexMTurk, BenchLS, and NNSEval – show that our model outperforms
the previous state-of-the-art models like LSBert and ConLS. Moreover,
further evaluation of our approach on the part of the recent TSAR-2022
multilingual LS shared-task dataset shows that our model performs com-
petitively when compared with the participating systems for English LS
and even outperforms the GPT-3 model on several metrics. Moreover, our
model obtains performance gains also for Spanish and Portuguese.
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6.1 Introduction
In Chapter 5, we introduced ConLS, the first controllable lexical simplifi-
cation system fine-tuned with T5 using three tokens: Word Length token,
Word Rank token, and Candidate Ranking token. The three tokens were
used to control different aspects of the generated candidates: Word Length
is often correlated with word complexity, Word Rank is the frequency or-
der (word complexity is also correlated with frequency), and Candidate
Ranking is for the model to learn how to rank the generated candidates
through training. The model was fine-tuned with T5-large on TSAR-EN
dataset (Saggion et al., 2022) and tested on LexMTurk (Horn et al., 2014),
BenchLS (Paetzold and Specia, 2016a), and NNSeval (Paetzold and Spe-
cia, 2016b). However, this model lacks multilinguality.

In this work, we were interested in assessing knowledge transfer and
multilinguality for lexical simplification. Due to the relatively small size
of the available lexical simplification datasets for Spanish and Portuguese,
it is quite challenging to train the model. To address this issue, we pro-
pose a multilingual lexical simplification model that jointly learns three
languages simultaneously: English, Spanish, and Portuguese. We believe
that the knowledge learned from one language could be shared with an-
other; therefore, the model that is trained with a resource-rich language
like English could be used to help other languages that have lower re-
sources, like Spanish and Portuguese. In addition, we propose two addi-
tional tokens (Word Syllable and Sentence Similarity) on top of the three
tokens from ConLS and Masked Language Model candidates to improve
the model’s performance.

We make the following contributions:

• We improve the English monolingual LS model and propose a new
multilingual LS model for English, Spanish, and Portuguese1.

• We show the way to fine-tune a multilingual LS model by adding
language-specific prefixes, control tokens, and Masked Language

1The source code and data are available at https://www.github.com/
kimchengsheang/mTLS
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Model (MLM) candidates extracted from BERT-based pre-trained
models.

• We conduct an analysis to capture the strengths and weaknesses of
our approach.

6.2 Methodology

Figure 6.1: Illustration of the mTLS model with three simplification ex-
amples from the three languages.

Building upon the work of ConLS, we propose a new multilingual
controllable transformer-based lexical simplification model that integrates
language-specific prefixes alongside the control tokens and masked lan-
guage model candidates to leverage the input-level information. We
adopted the same three tokens from ConLS (Word Length, Word Rank,
and Candidate Ranking) and incorporated two additional tokens (Word
Syllables and Sentence Similarity), where word syllables correlate with
word complexity and sentence similarity to guide the model to select rel-
evant candidates based on semantic similarity. We fine-tuned our English
monolingual model with T5 (Raffel et al., 2020) and multilingual model
with mT5 (Xue et al., 2021). For more details about T5, see Section
5.1. mT5 is a multilingual model based on T5 trained on the multilin-
gual colossal dataset (mC4), a dataset with over 100 languages also ex-
tracted from the public Common Crawl web scrape. Figure 6.1 shows an
overview of our multilingual model where each input is a sentence with
a complex word annotated, and the output is a list of substitutes ranked
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from the most relevant and simplest to the least. The details of the Pre-
processor are described in Section 6.3.4.

Language-specific Prefixes are embedded into each input so that the
model knows and learns to differentiate the three languages. We used
three prefixes: “simplify en:” for English, “simplify es:” for Spanish, and
“simplify pt:” for Portuguese. In addition, these prefixes serve another
purpose. Due to the limited data for Spanish and Portuguese, training
individual models for Spanish and Portuguese would make the model un-
able to generalize well, so to tackle this issue, we jointly trained the three
languages in just one model. This way, all the weights are learned and
shared between the three languages during the training.

Control Tokens The following are the control tokens that were em-
ployed in our model to control different aspects of the generated candi-
dates. Word Length, Word Rank (word frequency), and Word Syllables
are known to be correlated well with word complexity, so we use them
to help select simpler candidates. Candidate Ranking is used to help the
model learn how to rank candidates through the training process so that, at
the inference, the model could generate and sort candidates automatically,
whereas Sentence Similarity is intended to help select relevant candidates
based on semantic similarity.

• Word Syllables (WS) is the ratio of the number of syllables of the
substitute divided by that of the complex word. It is extracted using
PyHyphen library2. The study of Alva-Manchego et al. (2020a)
shows that syllable count could help predict lexical complexity.

• Sentence Similarity (SS) is the normalized sentence similarity
score between the source and the target sentence. The target sen-
tence is the source sentence with the complex word replaced by
its substitute. The score is calculated with the cosine similar-
ity between the embeddings of the two sentences extracted from

2https://github.com/dr-leo/PyHyphen

82



Sentence-BERT (Reimers and Gurevych, 2019, 2020). This simi-
larity score gives us a measure of the relation between the two sen-
tences. In the experiments, we used the pre-trained model called
“multi-qa-mpnet-base-dot-v1”3 because it achieved the best perfor-
mance on semantic search (tested on 6 datasets) and supported dif-
ferent languages such as English, Spanish, Portuguese, and more.

Masked Language Model (MLM) Candidates We believe that adding
MLM candidates at the input level could give the model additional con-
text on how to select better candidates than just repeating the same sen-
tence twice as in LSBert. The candidates are extracted using the masked
language model approach following the same style as LSBert candidates
generation. For each input sentence and its complex word, we give the
model (e.g., BERT, RoBERTa) the sentence and the same sentence with
the complex word masked. E.g.,

The motive for the killings was not known. </s> The
[MASK] for the killings was not known.

We then ask the model to predict the [MASK] token candidates and rank
them by the returned probability scores. After that, we select only the
top-10 ranked candidates and append them to the end of each input. We
believe that adding the MLM candidates to the input sentence could help
the model find and select better candidates. More details about how we
chose the best pre-trained model for each dataset are described in Section
6.3.4.

6.3 Experiments
In this section, we describe in detail all the datasets, baselines, evaluation
metrics, data preparation steps, model details, training, and evaluation
procedures.

3https://www.sbert.net/docs/pretrained_models.html
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6.3.1 Datasets

Lang Text Target Ranked Substitutes

EN The motive for the
killings was not known.

motive reason:16, incentive:2, intention:2, aim:1,
cause:1, motive:1, inspiration:1, object:1

ES Estaban en la jurisdic-
ción de Santiago del Es-
tero y en Catamarca.

jurisdicción territorio:5, autoridad:5, zona:3, competen-
cia:2, jurisdicción:1, legislación:1, el ter-
ritorio:1, poder:1, el poder:1, ubicación:1,
mando:1, atribución:1, territorial:1, ley:1,
resguardo:1

PT Naquele país a ave é
considerada uma praga

praga peste:9, epidemia:5, maldição:3, doença:2,
desgraça:2, tragédia:1, infestação:1

Table 6.1: Three examples from the TSAR-2022 shared-task dataset. Tar-
get is the complex word that is already annotated in the datasets. The
number after the “:” indicates the number of repetitions suggested by
crowd-sourced annotators.

As in the previous experiment, we use monolingual English datasets
such as LexMTurk, BenchLS, NNSeval, and the multilingual dataset,
TSAR-2022 shared task dataset. TSAR-2022 dataset contains three sub-
sets: TSAR-EN for English, TSAR-ES for Spanish, and TSAR-PT for
Brazilian Portuguese. Table 6.1 shows three examples from the TSAR-
2022 dataset, one from each language, and Table 6.2 shows some statistics
of the datasets. The average number of tokens (Avg #Tokens) shows that,
on average, TSAR-ES has the longest text length, and TSAR-PT has the
shortest text length.

All datasets that are used in the experiments already have com-
plex words annotated, so the complex word identification module is not
needed.

6.3.2 Baselines
We compare the proposed models with the following strong baselines,
LSBert and ConLS as described in Chapter 5, and the systems from the
TSAR-2022 shared task:
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Dataset Lang #Instances
#Tokens

Min Max Avg

TSAR
EN 386 6 83 29.85
ES 381 5 138 35.14
PT 386 3 57 23.12

LexMTurk EN 500 6 78 26.23

BenchLS EN 929 6 100 27.90

NNSEval EN 239 7 78 27.95

Table 6.2: Some statistics of the datasets.

• CILS (Seneviratne et al., 2022) generates candidates using lan-
guage model probability and similarity score and ranks them by
candidate generation score and cosine similarity.

• PresiUniv (Whistely et al., 2022) uses the Masked Language
Model (MLM) for candidate generation and ranks them by cosine
similarity and filters using the part-of-speech check.

• UoM&MMU (Vásquez-Rodríguez et al., 2022) uses a Language
Model with prompts for candidate generation and ranks them by
fine-tuning the Bert-based model as a classifier.

• PolyU-CBS (Chersoni and Hsu, 2022) generates candidates using
MLM and ranks them by MLM probability, GPT-2 probability, sen-
tence probability, and cosine similarity.

• CENTAL (Wilkens et al., 2022) generate candidates using MLM
and ranks them by word frequency and a binary classifier.

• teamPN (Nikita and Rajpoot, 2022) generates candidates using
MLM, VerbNet, PPDB database, and Knowledge Graph and ranks
them by MLM probability.

85



• MANTIS (Li et al., 2022) generates candidates using MLM and
ranks them by MLM probability, word frequency, and cosine simi-
larity.

• UniHD (Aumiller and Gertz, 2022) uses prompts with GPT-3 (few-
shot learning) for candidate generation and ranks them by aggregat-
ing the results.

• RCML (Aleksandrova and Brochu Dufour, 2022) generates candi-
dates using lexical substitution and ranks them by part of speech,
BERTScore, and SVM classifier.

• GMU-WLV (North et al., 2022) generates candidates using MLM
and ranks them by MLM probability and word frequency.

• TSAR-LSBert is a modified version of the original LSBert to sup-
port Spanish and Portuguese and produce more candidates.

• TSAR-TUNER is an adaptive version of the TUNER system (a
rule-based system) (Ferrés et al., 2017) for the TSAR-2022 shared
task.

6.3.3 Evaluation Metrics
We adopt the same evaluation metrics used in TSAR-2022 shared task
(Saggion et al., 2022) as described in Section 5.3.2.

6.3.4 Preprocessing
For each instance in the training set, there is a sentence, a complex word,
and a list of ranked gold candidates. Thus, we compute the token values
between the complex word and each candidate (we used all the candi-
dates), which means if there are 9 candidates, there will be 9 training
examples created.

Figure 6.2 shows the preprocessing steps of an English sentence taken
from the TSAR-EN dataset. The sentence contains the complex word
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Figure 6.2: Preprocessing steps of an English training example. For Span-
ish and Portuguese, the process follows the same procedures.

“motive” and 9 ranked gold candidates; therefore, 9 training examples
will be created. For each candidate and the complex word, we compute
the tokens value, extract MLM candidates, and put all the values in the
following format. Language prefix + Control Tokens + the input sentence
with the complex word embedded in between [T] and [/T] + </s> + com-
plex word + MLM candidates.

For Spanish and Portuguese datasets, we follow the same process and
change the prefix to “simplify es:” for Spanish and “simplify pt:” for
Portuguese.

For the validation set, we follow the same format as the training
set, except all the token values are set with the values of 1.00. E.g.,
<CR_1.00> <WL_1.00> <WR_1.00> <WS_1.00> <SS_1.00>. We used
these default values so that we could validate the model during the fine-
tuning process and save the best model for evaluation.

To choose the best pre-trained models for MLM candidates extraction,
we ran a series of experiments on some of the most popular BERT-based
pre-trained models (the popularity is based on the number of downloads
available on Huggingface website4). We compared them using the Po-
tential metric since this metric measures the presence of the predicted

4https://huggingface.co/models
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TSAR-EN TSAR-ES TSAR-PT

Model Potential Model Potential Model Potential

roberta-base 0.970 PlanTL-GOB-ES/roberta-large-bne 0.846 neuralmind/bert-large-portuguese-cased 0.835

bert-large-uncased 0.945 PlanTL-GOB-ES/roberta-base-bne 0.840 neuralmind/bert-base-portuguese-cased 0.808

bert-large-cased 0.939 dccuchile/bert-base-spanish-wwm-cased 0.818 xlm-roberta-large 0.616

roberta-large 0.939 dccuchile/albert-xxlarge-spanish 0.772 xlm-roberta-base 0.582

bert-base-uncased 0.936 dccuchile/albert-base-spanish 0.725 rdenadai/BR_BERTo 0.485

distilbert-base-uncased 0.915 dccuchile/distilbert-base-spanish-uncased 0.654 josu/roberta-pt-br 0.451

bert-base-cased 0.915 xlm-roberta-large 0.648 bert-base-multilingual-cased 0.390

albert-base-v2 0.863 dccuchile/bert-base-spanish-wwm-uncased 0.620

xlm-roberta-large 0.780 bert-base-multilingual-uncased 0.580

distilbert-base-multilingual-cased 0.410

Table 6.3: The comparison of different pre-trained models on candidate
generation using masked language model ranked by Potential metric on
TSAR dataset. Higher is better.

candidates, which are matched with the gold candidates. For each model
and each instance of a dataset (we use only the training and development
sets), we extracted the top 10 candidates and computed the Potential. Ta-
ble 6.3 reports the results of the TSAR dataset, and Table 6.4 shows the
results of the LexMTurk, BenchLS, and NNSeval dataset. We did the
experiments on the top 5, 10, 15, 20, 30, 40, and 50 candidates, and we
found that the top 10 candidates worked the best in all of our experi-
ments. So, these are the selected models that produce the best score in
each dataset: “roberta-base” for TSAR-EN, “PlanTL-GOB-ES/roberta-
base-bne” for TSAR-ES, “neuralmind/bert-large-portuguese-cased” for
TSAR-PT, “bert-large-cased” for LexMTurk and BenchLS, and “bert-
base-uncased” for NNSeval.

6.3.5 Model Details
In the experiments, we fine-tuned four different models: TLS-1, TLS-2,
TLS-3, and mTLS. Each model was fine-tuned with the language prefix,
control tokens, and MLM candidates, except for the TLS-3 model, which
was without the MLM candidates.

The following are the details of each model:

• TLS-1 is an English monolingual based on T5-large. It was fine-
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LexMTurk BenchLS NNSeval
Model Potential Model Potential Model Potential

bert-large-cased 0.974 bert-large-cased 0.918 bert-base-uncased 0.887
bert-base-uncased 0.972 bert-large-uncased 0.909 roberta-base 0.883
bert-large-uncased 0.970 roberta-base 0.906 bert-large-uncased 0.879
roberta-base 0.970 bert-base-uncased 0.899 bert-base-cased 0.870
bert-base-cased 0.962 bert-base-cased 0.893 bert-large-cased 0.858
distilbert-base-uncased 0.950 distilbert-base-uncased 0.869 distilbert-base-uncased 0.791
xlm-roberta-large 0.934 albert-base-v2 0.850 albert-base-v2 0.762
albert-base-v2 0.926 roberta-large 0.830 roberta-large 0.745
roberta-large 0.904 xlm-roberta-large 0.813 xlm-roberta-large 0.711

Table 6.4: The comparison of different pre-trained models on candidate
generation using masked language model ranked by Potential metric on
LexMTurk, BenchLS, and NNSeval dataset. Higher is better.

tuned and validated with the TSAR-EN dataset (we split the dataset
to 80% train, 20% validation) and then tested with LexMTurk,
BenchLS, and NNSeval. This model is intended to compare with
LSBert and ConLS.

• TLS-2 is an English monolingual based on T5-large. It was fine-
tuned, validated, and tested on the same dataset (TSAR-EN). The
dataset was split into a 70% train, a 15% validation, and a 15% test.

• TLS-3 (without MLM candidates) is an English monolingual based
on T5-large. It was fine-tuned, validated, and tested on the TSAR-
EN dataset. The dataset was split into a 70% train, a 15% valida-
tion, and a 15% test.

• mTLS is a multilingual based on mT5-large. It was fine-tuned, val-
idated, and tested with the whole TSAR-2022 dataset (TSAR-EN,
TSAR-ES, TSAR-PT). We split the dataset of each language into a
70% train, a 15% validation, and a 15% test. We then preprocessed,
randomized, and combined the data of all languages into one train-
ing and one validation sets. During the fine-tuning process, the
model is randomly fed with parallel data (the source and target data
created by the preprocessing steps as shown in Figure 6.2) from
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the three languages, allowing the model to learn and share all the
weights.

• The model TLS-2, TLS-3, and mTLS are intended to compare with
the models from the TSAR-2022 shared task. In order to have a
fair comparison between our model and the shared-task models, we
only compared the results of the same 15% test sets.

We implemented our approach using Huggingface Transformers li-
brary5 and Pytorch-lightning6. Then we fine-tuned each model on an
NVidia RTX 3090 GPU with a batch size of 4 (except mTLS, the batch
size was set to 1 due to out-of-memory issues), gradient accumulation
steps of 4, the max sequence length of 210 (it was based on the number of
tokens/wordpiece from all datasets), learning rate of 1e-5, weight decay
of 0.1, Adam epsilon of 1e-8. We fine-tuned it for 30 epochs, and if the
model did not improve for four epochs, we saved the best model based on
the highest validation score ACC@1@Top1 and stopped the fine-tuning
process. All of our models took less than 15 epochs to converge. As in
the previous experiments, we used Optuna to perform hyperparameters
search on T5-small and T5-base to speed up the process and then em-
ployed the same hyperparameters in the final larger models like T5-large
and mT5-large. For the generation, we used beam search and set it to 15
to generate 15 candidates so that it is left with around 10 candidates after
some filtering (duplicate or the candidate the same as the complex word).
In addition, in our experiments, the performance of the models based on
T5-small and T5-base performed lower than the model based on T5-large
in all metrics. The same with the multilingual models mT5-small, mT5-
base, and mT5-large, so for that reason, we only report the results of the
models that are based on T5-large and mT5-large.

5https://huggingface.co
6https://lightning.ai
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6.3.6 Inference

For each model, we performed a tokens value search on the validation set
of each corresponding dataset using Optuna (the same tool used for hyper-
parameters search). We searched the value of each token ranging between
0.5 and 2.0 with the step of 0.05, but we skipped the search for the Candi-
date Ranking token as we already knew the best value of it would be 1.00
to obtain the best candidates. We ran the search for 200 trials, then se-
lected the top 10 sets of values that maximized ACC@1@Top1 and used
them for the evaluation of the test set. For each set of tokens, we kept
them fixed for all instances of the whole test set. Finally, we report the
results of the set that maximized ACC@1@Top1. Figure 6.3 shows an ex-
ample from the TSAR-EN test set and the simpler substitutes generated
by our TLS-2 model.

Source: simplify en: <CR_1.00> <WL_1.25> <WR_1.05>
<WS_1.60> <SS_1.00> #8-8 I want to continue playing at the highest
level and win as many [T] trophies [/T] as possible. </s> trophies :
trophies titles trophy competitions championships tournaments prizes
awards cups medals

Predicted candidates: awards, medals, prizes, honors, accolades, ti-
tles, crowns, rewards, achievements, certificates

Figure 6.3: An example of the input taken from TSAR-EN test set and
the candidates predicted by TLS-2 model.

6.4 Results and Discussion

In our experiments, we compared our model with all the systems sub-
mitted to the TSAR-2022 shared task on the TSAR dataset and the other
two state-of-the-art models, LSBert and ConLS, on LexMTurk, BenchLS,
and NNSeval datasets. We compared all of them with the same metrics
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Dataset System ACC@1
ACC@1 ACC@2 ACC@3 MAP MAP MAP Potential Potential Potential
@Top1 @Top1 @Top1 @3 @5 @10 @3 @5 @10

LexMTurk
LSBert 0.8480 0.4400 0.5480 0.6040 0.5441 0.3901 0.2129 0.9320 0.9500 0.9580
ConLS 0.8060 0.4380 0.5639 0.6540 0.5545 0.4252 0.2759 0.9560 0.9820 0.9960
TLS-1 0.8580 0.4440 0.6080 0.7020 0.6629 0.5393 0.3591 0.9900 1.0000 1.0000

BenchLS
LSBert 0.6759 0.4068 0.5145 0.5737 0.4229 0.2925 0.1574 0.8127 0.8428 0.8547
ConLS 0.6200 0.3799 0.5134 0.5931 0.4137 0.3054 0.1884 0.8127 0.8708 0.9031
TLS-1 0.7255 0.4133 0.5952 0.6749 0.5187 0.4015 0.2539 0.8848 0.9257 0.9612

NNSeval
LSBert 0.4476 0.2803 0.3849 0.4393 0.2784 0.1997 0.1073 0.6485 0.7155 0.7448
ConLS 0.4100 0.2677 0.3430 0.4518 0.2731 0.203 0.1253 0.6109 0.6987 0.7908
TLS-1 0.5313 0.3263 0.4644 0.5397 0.3486 0.2762 0.1791 0.7824 0.8828 0.9414

Table 6.5: Results of TLS-1 in comparison with LSBert and ConLS on the
Accuracy@1, Accuracy@N@Top1, Potential@K, and MAP@K metrics.
The best performances are in bold.

used in the TSAR-2022 shared task, such as ACC@1, ACC@N@Top1,
Potential@1, and MAP@K where N ∈ {1, 2, 3} and K ∈ {3, 5, 10}.

Table 6.5 presents the results of our model TLS-1 (a monolingual En-
glish model fine-tuned and validated on the TSAR-EN dataset) in com-
parison with LSBert and ConLS on LexMTurk, BenchLS, and NNSeval
datasets. Our model achieves better results in all metrics across the board,
and the results on Potential@K and MAP@K show a significant improve-
ment.

Table 6.6 shows the results of our three models, English monolin-
gual models (TLS-2, TLS-3), and multilingual model (mTLS), compared
with all the systems from the TSAR-2022 shared task on the TSAR-EN
dataset. Since all the models from the shared task are unsupervised ap-
proaches, we only compare the results on the same 15% test set. Our
TLS-2 outperforms all the models in all metrics and performs equally to
GPT-3 model (UniHD) on ACC@1 and ACC@1@Top1; it also performs
significantly better on ACC@{2,3}@Top1 and MAP@{3,5,10} but lower
on Potential@{3,5}.

TLS-2 performs better than TLS-3 in all metrics except
ACC@3@Top1, showing that adding MLM candidates does improve the
model’s performance.

Our multilingual model (mTLS) performs better than the previous ap-
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Model
ACC
@1

ACC@1
@Top1

ACC@2
@Top1

ACC@3
@Top1

MAP
@3

MAP
@5

MAP
@10

Potential
@3

Potential
@5

Potential
@10

TLS-2 0.8750 0.5536 0.6964 0.6964 0.6379 0.5126 0.3069 0.9643 0.9643 1.0000
TLS-3 0.8393 0.5536 0.6786 0.7500 0.5933 0.4506 0.2842 0.9643 0.9821 0.9821
mTLS 0.6607 0.3929 0.5000 0.6071 0.4871 0.3651 0.2173 0.8571 0.9286 0.9643

UniHD 0.8750 0.5536 0.6429 0.6786 0.5913 0.4055 0.2284 1.0000 1.0000 1.0000
UoM&MMU 0.6964 0.4107 0.5536 0.5714 0.4315 0.3234 0.2020 0.8393 0.8571 0.8929
RCML 0.6071 0.2321 0.4107 0.4821 0.3978 0.3032 0.1959 0.8214 0.9286 0.9464
LSBERT 0.5893 0.2679 0.4821 0.5714 0.4385 0.3136 0.1860 0.8750 0.9107 0.9286
MANTIS 0.5714 0.3036 0.4643 0.5179 0.4613 0.3463 0.2097 0.8393 0.9107 0.9464
GMU-WLV 0.5179 0.2143 0.2500 0.4107 0.3700 0.2936 0.1716 0.7321 0.8393 0.9107
teamPN 0.4821 0.1964 0.3571 0.3750 0.3065 0.2320 0.1160 0.6786 0.8036 0.8036
PresiUniv 0.4643 0.1786 0.2857 0.3214 0.3075 0.2417 0.1396 0.6607 0.7500 0.7857
Cental 0.4464 0.1250 0.2500 0.3393 0.3016 0.2210 0.1385 0.6607 0.7143 0.7857
CILS 0.4107 0.1786 0.2500 0.2679 0.2817 0.2198 0.1378 0.5893 0.6071 0.6250
TUNER 0.3929 0.1607 0.1607 0.1607 0.1865 0.1158 0.0579 0.4643 0.4643 0.4643
PolyU-CBS 0.3571 0.1607 0.2321 0.3036 0.2579 0.1887 0.1118 0.6250 0.7500 0.8214

Table 6.6: Official results from TSAR-2022 shared task in comparison
with our models TSAR-EN dataset. The best performances are in bold.

proaches, except for UniHD. The fact that the model’s performance is
notably inferior to its monolingual counterparts could be attributed to the
following facts. First, the use of a multilingual model can reduce perfor-
mance, as it contains a lot of irrelevant information from other languages.
Second, the mT5-large pre-trained model is significantly larger than the
T5-large, with around 1.2 billion parameters compared to 737 million
of the T5-large. Given the large number of parameters that need to be
updated, the mT5-large model requires significantly more data to learn
from; therefore, we could not fine-tune the mT5-large model individu-
ally for Spanish or Portuguese. We had to fine-tune a multilingual model
(mTLS) by randomly feeding the data from the three languages, allowing
the model to learn and share all the weights.

Table 6.7 and Table 6.8 present the results of our mTLS model in com-
parison with the TSAR-2022 official results on TSAR-ES and TSAR-PT
datasets. Our model performs significantly better than all the participating
systems in all metrics. However, there were unofficial results of UniHD
that outperformed our mTLS model on TSAR-ES and TSAR-PT datasets.
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Model
ACC
@1

ACC@1
@Top1

ACC@2
@Top1

ACC@3
@Top1

MAP
@3

MAP
@5

MAP
@10

Potential
@3

Potential
@5

Potential
@10

mTLS 0.5357 0.2857 0.3929 0.4821 0.3790 0.2852 0.1685 0.7500 0.8036 0.9107

PolyU-CBS 0.4107 0.2143 0.2143 0.2143 0.2153 0.1479 0.0918 0.5000 0.5536 0.5893
GMU-WLV 0.3929 0.1786 0.2679 0.3036 0.2560 0.1945 0.1167 0.5714 0.6607 0.7321
UoM&MMU 0.3571 0.1964 0.2679 0.3214 0.2391 0.1699 0.0979 0.5714 0.6250 0.7143
PresiUniv 0.3214 0.1964 0.3214 0.3929 0.2361 0.1574 0.0860 0.6429 0.6786 0.7679
LSBERT 0.3036 0.0893 0.1429 0.1786 0.1994 0.1504 0.0910 0.4643 0.6250 0.7500
Cental 0.2679 0.1429 0.1786 0.2143 0.1865 0.1449 0.0851 0.5000 0.5536 0.5714
TUNER 0.1429 0.0714 0.1071 0.1071 0.0843 0.0506 0.0253 0.1964 0.1964 0.1964

Table 6.7: Official results from TSAR-2022 shared task in comparison
with our model on the TSAR-ES dataset. The best performances are in
bold.

Model
ACC
@1

ACC@1
@Top1

ACC@2
@Top1

ACC@3
@Top1

MAP
@3

MAP
@5

MAP
@10

Potential
@3

Potential
@5

Potential
@10

mTLS 0.6607 0.4464 0.5536 0.5714 0.4216 0.2940 0.1842 0.8214 0.9107 0.9464

GMU-WLV 0.4464 0.2143 0.3750 0.4107 0.2579 0.1926 0.1143 0.6429 0.7679 0.8571
PolyU-CBS 0.3571 0.1071 0.1429 0.1607 0.1905 0.1455 0.0847 0.4643 0.5536 0.6071
Cental 0.3214 0.0714 0.1250 0.1964 0.2153 0.1554 0.0910 0.5714 0.6786 0.8214
LSBERT 0.3036 0.1607 0.2321 0.3036 0.1895 0.1364 0.0816 0.5179 0.6250 0.7321
TUNER 0.2321 0.1429 0.1607 0.1607 0.1071 0.0688 0.0344 0.2857 0.2857 0.2857
PresiUniv 0.2321 0.1071 0.1786 0.1964 0.1409 0.0952 0.0532 0.3750 0.4643 0.5179
UoM&MMU 0.1071 0.0357 0.0536 0.0714 0.0704 0.0553 0.0338 0.1964 0.2500 0.2857

Table 6.8: Official results from TSAR-2022 shared task in comparison
with our model on TSAR-PT dataset. The best performances are in bold.

6.5 Conclusion

This chapter proposed a new multilingual Controllable Transformer-
based Lexical Simplification that integrates language-specific prefixes
alongside dynamic control tokens and masked language model candidates
to leverage the input-level information. This approach allows us to have
the candidate generation and ranking within one model as well as mul-
tilingual. Moreover, our method enables the model to learn more effec-
tively on the complex word and to have finer control over the generated
candidates, leading the model to outperform all the previous state-of-the-
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art models in all datasets, including the GPT-3 model (UniHD) on some
metrics.

95





Part IV

Sentence Simplification
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Chapter 7

Controllable Sentence
Simplification with a Unified
Text-To-Text Transfer
Transformer

In this chapter, we explore the use of T5 (Raffel et al., 2020) for sentence
simplification in combination with a controllable mechanism to regulate
the system outputs. The control mechanism is intended to help the model
generate adapted text for different target audiences. Our experiments
show that our model achieves remarkable results with gains of between
+0.69 and +1.41 over the current state-of-the-art (BART+ACCESS) at
the time of writing. We argue that using a pre-trained model such as T5,
trained on several tasks with large amounts of data, can help improve Text
Simplification.1

1The code and data are available at https://github.com/
kimchengsheang/TS_T5
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7.1 Introduction

Sentence simplification can be regarded as a natural language generation
task where the generated text has a reduced language complexity in both
vocabulary and sentence structure while preserving its original informa-
tion and meaning. It is often tackled as a monolingual translation prob-
lem (Zhu et al., 2010; Coster and Kauchak, 2011b; Wubben et al., 2012)
as explained in our Chapter 2, where the models are trained on parallel
complex-simple sentences extracted from English Wikipedia and Simple
English Wikipedia (Zhu et al., 2010).

Lately, there has been increased interest in conditional training with
sequence-to-sequence models. It has been applied to some NLP tasks
such as controlling the length and content of summaries (Kikuchi et al.,
2016; Fan et al., 2018), politeness in machine translation (Sennrich et al.,
2016), and linguistic style in text generation (Ficler and Goldberg, 2017).
Scarton and Specia (2018) introduced the controllable text simplification
model by embedding grade-level token <grade> into the sequence-to-
sequence model. Martin et al. (2019) took a similar approach adding 4
tokens into source sentences to control different aspects of the output,
such as length, paraphrasing, lexical complexity, and syntactic complex-
ity. Kariuk and Karamshuk (2020) adopted the idea of using control to-
kens from Martin et al. (2019) and used it in an unsupervised approach
by integrating those control tokens into the back translation algorithm,
which allows the model to self-supervise the process of learning inter-
relations between a control sequence and the complexity of the outputs.
The results of Scarton and Specia (2018), Martin et al. (2019), and Kariuk
and Karamshuk (2020) have shown that adding control tokens does help
improve the performance of sentence simplification models quite signifi-
cantly.

In recent years, research in text simplification has been mostly fo-
cused on developing models based on deep neural networks (Vu et al.,
2018; Zhao et al., 2018; Martin et al., 2019). However, to the best of our
knowledge, very few studies of transfer learning –where a model is first
pre-trained on a data-rich task and then fine-tuned on downstream tasks–
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have been explored in text simplification.
In this chapter, we propose a controllable sentence simplification

model with transfer learning that harnesses the power of the T5 pre-
trained model (a Unified Text-to-Text Transfer Transformer) (Raffel et al.,
2020), combining with control tokens to provide a way to generate out-
puts that adapt well to different target users without having to rebuild the
model from the ground up.

We make the following contributions:

• We introduce a transfer learning approach combined with a control-
lable mechanism for sentence simplification task.

• We make an improvement to the performance of the sentence sim-
plification system.

• We introduce a new control token W to help the model generate
sentences by replacing long complex words with shorter alterna-
tives.

• We conduct an evaluation and comparison between different sizes
of pre-trained models and a detailed analysis of the effect of each
control token.

• We show that by choosing the right control token values and pre-
trained model, the model achieves state-of-the-art performance in
two well-known benchmarking datasets.

7.2 Methodology

In this work, we fine-tune T5 pre-trained model with the controllable
mechanism for sentence simplification. The details about T5 were de-
scribed in Chapter 5.
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7.2.1 Control Tokens
We adopt the tokens introduced in Martin et al. (2019) to control different
aspects of the simplification, such as compression ratio, amount of para-
phrasing, lexical complexity, and syntactic complexity. In addition, we
propose a new token word ratio, which is used to control word length.
We argue that word ratio is another important control token because nor-
mally word frequency correlates well with familiarity, and word length
can be an additional factor as long words tend to be hard to read (Rello
et al., 2013c), and corpus studies of original and simplified texts show
that simple texts contain shorter and more frequent words (Drndarević
and Saggion, 2012). Therefore, we add a word ratio to help the model
generate simplified sentences with a similar amount of words and shorter
word lengths. The compression ratio alone could help the model regulate
sentence length but not word length.

• C: character length ratio between source sentence and target sen-
tence. The number of characters in the target is divided by that of
the source.

• L: normalized character-level Levenshtein similarity (Levenshtein,
1965) between the source and target.

• WR: inverse frequency order of all words in the target divided by
that of the source.

• DTD: maximum depth of the dependency tree of the target divided
by that of the source.

• W: the number of words ratio between source sentence and target
sentence. The number of words in the target is divided by that of the
source. Word frequency correlates well with familiarity, and word
length can be an additional factor as long words tend to be hard to
read (Rello et al., 2013c).

The first token (C) controls the compression level during simplifica-
tion, the second token (L) controls the level of modifications performed,
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the third token (WR) controls the lexical complexity at a word level, and
the fourth token (DTD) controls the syntactic complexity of the sentence
(Martin et al., 2019). Lastly, the fifth token (W) controls the length of
words in the sentence (e.g., mathematics => math).

Figure 7.1 shows an example of a sentence is processed and embedded
with control tokens for training.

Source

simplify: W_0.58 C_0.52 L_0.67 WR_0.92 DTD_0.71 In architec-
tural decoration Small pieces of colored and iridescent shell have been
used to create mosaics and inlays, which have been used to decorate
walls, furniture and boxes.

Target

Small pieces of colored and shiny shell has been used to decorate
walls, furniture and boxes.

Figure 7.1: An example of how the control tokens are embedded into
the source sentence for training. The keyword simplify is added at the
beginning of each source sentence to mark it as a simplification task.

7.3 Experiments
Our model is developed using the Huggingface Transformers library
(Wolf et al., 2019)2 with PyTorch3 and Pytorch lightning4.

7.3.1 Datasets
We use the WikiLarge dataset (Zhang and Lapata, 2017) for being the
largest and most commonly used text simplification dataset containing

2https://huggingface.co/transformers/model_doc/t5.html
3https://pytorch.org
4https://pytorchlightning.ai
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296,402 sentence pairs from automatically aligned complex-simple sen-
tence pairs English Wikipedia and Simple English Wikipedia, which is
compiled from Zhu et al. (2010); Woodsend and Lapata (2011); Kauchak
(2013).

For validation and testing, we use TurkCorpus (Xu et al., 2016), which
has 2000 samples for validation and 359 samples for testing, and each
complex sentence has 8 human simplifications. We also use ASSET
(Alva-Manchego et al., 2020a) for testing, which contains 2000/359 sam-
ples (validation/test) with 10 simplifications per source sentence.

7.3.2 Evaluation Metrics
Following previous research (Zhang and Lapata, 2017; Martin et al.,
2020a), we use automatic evaluation metrics widely adopted in text sim-
plification such as SARI, BLEU, and FKGL as described in Section 2.3.
We compute SARI, BLEU, and FKGL using EASSE (Alva-Manchego
et al., 2019)5, a simplification evaluation library.

7.3.3 Training Details
We performed hyperparameters search using Optuna (Akiba et al., 2019)
with the smallest T5 pre-trained model (T5-small) and reduced-size
dataset to speed up the process. All models are trained with the same
hyperparameters, such as a batch size of 6 for T5-base and 12 for T5-
small, a maximum token of 256, a learning rate of 3e-4, weight decay
of 0.1, Adam epsilon of 1e-8, 5 warm-up steps, 5 epochs, and the rest
of the parameters are left with default values from Transformers library.
Also, we set the random seed to 12 for reproducibility. For the genera-
tion, we use a beam search of 8. Our models are trained and evaluated
using Google Colab Pro, which has a random GPU, T4 or P100. Both
have 16GB of memory, up to 25GB of RAM, and a time limit of 24 hours
per execution. Training of the T5-base model for 5 epochs usually takes
around 20 hours.

5https://github.com/feralvam/easse
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7.3.4 Choosing Control Token Values at Inference
Control tokens were intended to control the aspects of the simplifications
for different target audiences; however, in this case, we use them to gener-
ate simplified outputs that maximize the SARI evaluation metric. To find
the best control tokens values, first, we need to perform the values search.
We use Optuna (the same tool used for hyperparameters search) to find
the optimal values that produce the outputs with the best SARI score on
the validation set and then keep those values fixed for all sentences in the
test set. We repeat the same process for each evaluation dataset.

7.3.5 Baselines
We benchmark our model against several well-known state-of-the-art sys-
tems:

YATS (Ferrés et al., 22)6 Rule-based system with linguistically moti-
vated rule-based syntactic analysis and corpus-based lexical simplifier
which generates sentences based on part-of-speech tags and dependency
information.

PBMT-R (Wubben et al., 2012) Phrase-based MT system trained on a
monolingual parallel corpus with candidate re-ranking based on dissimi-
larity using Levenshtein distance.

UNTS (Surya et al., 2019) Unsupervised Neural Text Simplification is
based on the encode-attend-decode style architecture (Bahdanau et al.,
2015) with a shared encoder and two decoders and trained on unlabeled
data extracted from English Wikipedia dump.

Dress-LS (Zhang and Lapata, 2017) A Seq2Seq model trained with
deep reinforcement learning combined with a lexical simplification model
to improve complex word substitutions.

6http://able2include.taln.upf.edu
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DMASS+DCSS (Zhao et al., 2018) A Seq2Seq model trained with the
original Transformer architecture (Vaswani et al., 2017) combined with
the simple paraphrase database for simplification (PPDB) (Pavlick and
Callison-Burch, 2016).

ACCESS (Martin et al., 2019) Seq2Seq system trained with four con-
trol tokens attached to source sentence: character length ratio, Leven-
shtein similarity ratio, word rank ratio, and dependency tree depth ratio
between source and target sentence.

BART+ACCESS (Martin et al., 2020a) The system fine-tunes BART
(Lewis et al., 2020) and adds the simplification control tokens from AC-
CESS.

7.3.6 Results
We evaluate our models automatically on two different datasets TurkCor-
pus and ASSET. In addition, we also perform a human evaluation on
one of our models, human evaluation – see Section 7.4. Table 7.1 re-
ports the results of the automatic evaluation of our models compared with
other state-of-the-art systems. Our model T5-base+C+WR+L+DTD per-
forms best on TurkCorpus with the SARI score of 43.31, while the other
model T5-base+All Tokens performs best on ASSET with SARI score
of 45.04 compared to the current state-of-the-art BART+ACCESS with
the SARI score of 42.62 on TurkCorpus and 43.63 on ASSET. Follow-
ing these results, our models outperform all the state-of-the-art models in
the literature in all approaches: rule-based, supervised, and unsupervised
approaches, even without using any additional resources.

7.4 Human Evaluation
In addition to automatic evaluation, we perform a human evaluation of the
outputs of different systems. Following recent works (Alva-Manchego
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Model Data
ASSET TurkCorpus

SARI↑ BLEU↑ FKGL↓ SARI↑ BLEU↑ FKGL↓

YATS Rule-based 34.4 72.07 7.65 37.39 74.87 7.67

PBMT-R PWKP (Wikipedia) 34.63 79.39 8.85 38.04 82.49 8.85

UNTS Unsup. Data 35.19 76.14 7.60 36.29 76.44 7.60

Dress-LS WikiLarge 36.59 86.39 7.66 36.97 81.08 7.66

DMASS+DCSS WikiLarge 38.67 71.44 7.73 39.92 73.29 7.73

ACCESS WikiLarge 40.13 75.99 7.29 41.38 76.36 7.29

BART+ACCESS WikiLarge 43.63 76.28 6.25 42.62 78.28 6.98

T5-base+C+WR

+L+DTD WikiLarge 44.91 71.96 6.32 43.31 66.23 6.17

T5-base+All Tokens WikiLarge 45.04 71.21 5.88 43.00 64.42 5.63

Table 7.1: We report SARI, BLEU, and FKGL evaluation results of our
model compared with others on TurkCorpus and ASSET test set (SARI
and BLEU higher the better, FKGL lower the better). BLEU and FKGL
scores are not quite relevant for sentence simplification, and we keep them
just to compare with the previous models. All the results of the literature
are taken from Martin et al. (2020a), except YATS which is generated
using its web interface.
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et al., 2017; Dong et al., 2019; Zhao et al., 2020), we run our evaluation
on Amazon Mechanical Turk by asking five workers to rate using a 5-
point Likert scale on three aspects: (1) Fluency (or Grammaticality) - is
it grammatically correct and well-formed?; (2) Simplicity - is it simpler
than the original sentence?; and (3) Adequacy (or Meaning preservation)
- does it preserve the meaning of the original sentence?. For this evalua-
tion, we randomly select 100 sentences from different systems trained on
the WikiLarge dataset, except YATS, which is rule-based. The evaluation
is first presented with the consent form (Appendix A.1) and then followed
by the instructions (Appendix A.2) and finally, the simplification outputs
from four systems displayed with random order (Appendix A.3). Table
7.2 reports the results.

Model Fluency Simplicity Adequacy
YATS 4.03* 3.62* 3.92*
DMASS+DCSS 3.84* 3.70* 3.48*
BART+ACCESS 4.41 4.02 4.13
Our Model 4.30 3.99 4.18

Table 7.2: Results of human evaluation on 100 random sentences selected
from TurkCorpus test set. Best results are marked in bold, and results
marked with an ’*’ are significantly lower than our model according to
paired t-test with p<0.01. The maximum value is 5, and the minimum is
1. Our model in use here is T5-base+All Tokens.

The results have shown that our model performs lower in fluency
and about the same in simplicity and better in adequacy compared to
BART+ACCESS. Based on our observation, there are two reasons that
humans rated our model lower on fluency: (1) our model generates incor-
rect text format (without spaces) in some sentences (examples in Table
7.2). The problem can be easily spotted by humans, but it does not af-
fect the automatic evaluation as EASSE uses a tokenizer that can split
the whole sentence correctly. (2) Our model tends to produce longer sen-
tences than BART+ACCESS, and in some cases, the subject is repeated
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twice when the sentence is split into two (e.g., relative clause). Repetition
is also considered one of the key features of simplification as it makes text
easier to understand, but for native or fluent language speakers, repetition
and the longer sentence make the fluency worse. Moreover, due to these
problems, the evaluators also tend to lower the simplicity score as they
consider it harder to read.

Sentence

So far the’celebrity’episodes have included Vic Reeves, Nancy Sor-
rell, and Gaby Roslin.

New South Wales’biggest city and capital is Sydney.

Figure 7.2: Examples of incorrect text format generated by our model.

7.5 Ablation Study

In this section, we investigate the contribution of each token and different
T5 pre-trained models to the performance of the system. Table 7.3 reports
the scores of models trained on WikiLarge and evaluated with TurkCorpus
and ASSET test set. Table 7.4 shows all control token values used for all
the models in Table 7.3 which are selected using the same process and
tool as mentioned in Section 7.3.4.

Based on the results, the larger model (T5-base) performs better than
the smaller one (T5-small) on both datasets (+3.06 on TurkCorpus, +4.3
on ASSET). It is due to the fact that a larger model has more information
which could generate better and more coherent text. Moreover, when
control tokens are added, the performance increases significantly. With
only one token, WR performs best on TurkCorpus (+3.88 over T5-base)
and L on ASSET (+7.43 over T5-base).

Using the pre-trained model alone does not gain much improvement;
only when combined with control tokens, the results improve by a big
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Model
ASSET TurkCorpus

SARI↑ BLEU↑ FKGL↓ SARI↑ BLEU↑ FKGL↓
T5-small (No Tokens) 29.85 90.39 8.94 34.50 94.16 9.44

T5-small + All Tokens 39.12 86.08 6.99 40.83 85.12 6.78

T5-base (No Tokens) 34.15 88.97 8.94 37.56 90.96 8.81

T5-base:
+ W 38.51 84.02 7.45 38.86 89.10 8.61

+ C 39.58 79.22 6.06 38.95 84.81 7.76

+ L 41.58 82.52 6.53 40.90 85.45 7.55

+ WR 41.40 76.75 5.85 41.44 85.46 7.67

+ DTD 40.08 81.94 6.56 39.18 87.60 7.81

T5-base:
+ WR + L 42.85 80.38 4.47 41.75 83.90 7.42

+ C + WR + L 44.89 56.76 5.93 42.91 67.09 6.53

+ W + C + WR + L 44.65 58.52 5.52 43.03 68.11 5.96

+ C + WR + L + DTD 44.91 71.96 6.32 43.31 66.23 6.17

+ All Tokens 45.04 71.21 5.88 43.00 64.42 5.63

Table 7.3: Ablation study on different T5 models and different control
token values. Each model is trained and evaluated independently. We
report SARI, BLEU, and FKGL on TurkCorpus and ASSET test sets.
Control token values corresponding to each model are listed in Table 7.4

margin (+3.06 and +9.28 for T5-small with and without tokens), and
(+5.75 and +10.89 for T5-base with and without tokens).

7.5.1 Analysis on the effect of Word Ratio token (W)

Our goal of using the W control token is to make the model learn to gen-
erate shorter words, whereas C alone could help the model regulate the
sentence length but not word length, so here we investigate how W and C
control tokens affect the outputs.
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Model ASSET TurkCorpus

T5-small (No Tokens)

T5-small + All Tokens W1.05 C0.95 WR0.75 L0.75 DTD0.75 W1.05 C0.95 WR0.85 L0.85 DTD0.85

T5-base (No Tokens)

T5-base:

+ W W0.75 W0.85

+ C C0.5 C0.75

+ L L0.75 L0.85

+ WR WR0.25 WR0.85

+ DTD DTD0.5 DTD0.75

T5-base:

+ WR + L W0.75 L0.75 W0.85 L0.85

+ C + WR + L C0.95 WR0.75 L0.75 C0.95 WR0.85 L0.85

+ W + C + WR + L W1.05 C0.95 WR0.75 L0.75 W1.05 C0.95 WR0.75 L0.75

+ C + WR + L + DTD C0.95 WR0.75 L0.75 DTD0.75 C0.95 WR0.75 L0.75 DTD0.75

+ All Tokens W1.05 C0.95 WR0.75 L0.75 DTD0.75 W1.05 C0.95 WR0.85 L0.85 DTD0.85

Table 7.4: These are the control token values used for the ablation study
in Table 7.3. Each model is trained and evaluated independently. The
values are selected using the hyperparameters search tool mentioned in
Section 7.3.4.
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Tokens
Model 1: C_0.5 WR_0.75 L_0.75 DTD_0.75
Model 2: W_1.0 C_0.5 WR_0.75 L_0.75 DTD_0.75

Source: In order to accomplish their objective, surveyors use elements of geome-
try, engineering, trigonometry, mathematics, physics, and law.

Model 1: In order to accomplish their objective, surveyors use geometry, engineer-
ing, and law.

Model 2: In order to do this, surveyors use geometry, engineering, trigonometry,
math, physics, and law.

Source: The municipality has about 5700 inhabitants.
Model 1: The municipality has 5700.
Model 2: The town has about 5700.

Source: A hunting dog refers to any dog who assists humans in hunting.
Model 1: A hunting dog is any dog who hunts.
Model 2: A hunting dog is a dog who helps humans in hunting.

Tokens
Model 1: C_0.75 WR_0.75 L_0.75 DTD_0.75
Model 2: W_1.0 C_0.75 WR_0.75 L_0.75 DTD_0.75

Source: The park has become a traditional location for mass demonstrations.
Model 1: The park has become a popular place for demonstrations.
Model 2: The park has become a place for people to show things.

Source: Frances was later absorbed by an extratropical cyclone on November
21.

Model 1: Frances was later taken in by an extratropical cyclone.
Model 2: Frances was later taken over by a cyclone on November 21.

Source: There are claims that thousands of people were impaled at a single time.
Model 1: There are claims that thousands of people were killed.
Model 2: There are also stories that thousands of people were killed at a time.

Table 7.5: Examples showing the differences between the model with a
number of words ratio versus the one without. Model 1 was trained with
four tokens without W control token, and model 2 was trained with all
five control tokens. All control token values used to generate the outputs
are listed in the rows Tokens. We use bold to highlight the differences.
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Figure 7.3: Influence of W and C control tokens on the simplification
outputs. Red represents the outputs of the model trained with four to-
kens without W control token. Blue represents the outputs of the model
trained with all five tokens. Green is the reference taken from TurkCor-
pus. The first row shows the compression ratio (number of chars ratio
between system outputs and source sentences), and the second row is
the Levenshtein similarity (words similarity between system outputs and
source sentences) of each model. We plot the results of the 2000 valida-
tion sentences from TurkCorpus. Other control token values used here are
set to 0.75, the example in Table 7.5.

For the model with the W token to work, it has to be incorporated
with C, as W determines the number of words, and C limits the number
of characters in the sentence. In our examples Table 7.5, we set W to 1.0,
which means the number of words in the simplified sentence has to be
similar to the original sentence, and C is set to 0.5 and 0.75, which means
keeping the same amount of words but reduces 50% or 25% of characters.

Figure 7.3 shows the differences in density distribution (first row) and
similarity (second row) between model 1 in red without W token, model 2
in blue with W tokens, and the one in green is the reference. The first col-
umn C is set to 0.25, the second column C=0.5, the third column C=0.75,
the fourth C=1.0, and in all cases, W is set to 1.0. From the plots, we
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can see that Model 1 does more compression than Model 2, which means
Model 2 preserves more words than Model 1.

Table 7.5 shows some example sentences comparing models with
C_0.75 and C_0.5. When C is set to 0.75, we do not see much differ-
ence between the two models, but when C is set to 0.5, the two models
have differences in terms of sentence length and word length. For exam-
ple, the word mathematics in example number one is replaced with the
word math in model 2 (with W) and removed by model 1 (without W).
Second example, the word municipality is replaced by the word town by
model 2, and model 1 simply keeps the word and crops the sentence (the
same problem with the third example). In addition, in the fourth example,
the word location is replaced by both models with the word place, the
phrase mass demonstration is reduced to demonstration by model 1,
whereas model 2 changes to four shorter words people to show things.

There are many cases where model 1 and model 2 generate the same
substitutions, but very often, model 1 tends to crop the end of the sen-
tence or drops some words to fulfill the length constraint. Whereas model
2 tends to generate longer sentences than model 1, has less crop, and of-
ten replaces long complex words with shorter ones. Even though, based
on the results from Table 7.1, adding the W control token does not signif-
icantly improve the SARI score and sometimes even lowers the score, it
certainly holds its purpose.

7.6 Conclusion
This chapter proposed a method that leverages the technique of trans-
fer learning by fine-tuning T5 for the controllable sentence simplifica-
tion task. The experiments have shown good results of 43.31 SARI on
the TurkCorpus evaluation set and 45.04 on the ASSET evaluation set,
outperforming the current state-of-the-art models. Also, we have shown
that adding the control token W is useful for generating substitutions with
shorter word lengths. The only drawback of this approach is that it is slow
to run, requiring resource-intensive hardware for training and inference.
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Chapter 8

Sentence Simplification
Capabilities of Transfer-Based
Models

In Chapter 7, we presented the controllable sentence simplification for
English. In this chapter, we explore the approach further by fine-tuning
different models based on T5, mT5 (Xue et al., 2021), and mBart (Liu
et al., 2020b) for English and Spanish. We also propose specifications for
expert evaluation that are in accordance with well-established easy-to-
read guidelines. We conduct expert evaluations of our new systems and
the previous state-of-the-art systems for English and Spanish and discuss
the strengths and weaknesses of each of them. Finally, we draw conclu-
sions about the capabilities of the state-of-the-art sentence simplification
systems and give some directions for future research.

8.1 Introduction
In this work, we aim to extend the approach proposed in Chapter 7 to sup-
port both English and Spanish. This expansion is motivated by the need
to cater to a wider audience and enhance the usability and applicability
of the model. By incorporating support for multiple languages, we can
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address the needs of users in either English or Spanish.
To evaluate the performance of the model, we employ a comprehen-

sive evaluation methodology that goes beyond traditional automatic met-
rics. While automatic metrics provide a quick quantitative assessment of
the model’s performance, they may not capture the nuances and complex-
ities of the simplified sentences. Therefore, we employ crowd-sourced
human evaluation (see Section 8.3.3) and expert evaluation (see Section
8.3.4)) in addition to automatic metrics.

We make the following contributions:

• We propose new transformer-based sentence simplification systems
for English and Spanish that, according to an extensive multi-facet
evaluation, show state-of-the-art performances for both languages.1

• We conduct crowd-sourced human evaluations for English and
Spanish.

8.2 Methodology
In this work, we use three transformer-based models:

• mBart (Liu et al., 2020b): a multilingual sequence-to-sequence
model based on BART (Lewis et al., 2020), trained as a denoising
auto-encoder, using random span masking and sentence shuffling
on a subset of 25 languages from XLM-R dataset (Conneau et al.,
2020).

• T5 (Raffel et al., 2020): more details see Section 5.1.

• mT5 (Xue et al., 2021): a multilingual model based on T5 trained
on the multilingual colossal dataset (mC4), a dataset with over
100 languages also extracted from the public Common Crawl web
scrape.

1The code and data is available at https://github.com/kimchengsheang/
TS-AAAI_2022
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The T5 and mT5 models are available in different sizes, depending on
the number of attention modules and the number of parameters. Due to
memory limitations and time constraints, we are able only to use T5-
base for English. For Spanish, we use mT5-base and mT5-large. We
implement the models using Huggingface Transformers library2 (Wolf
et al., 2020) with PyTorch3 and Pytorch lightning.4

We adopt the four control tokens (C, L, WR, DTD) from the previous
model described in Section 7.2.1. We set as the optimal values of the
control tokens those values that lead to the highest SARI score on the
validation datasets. The search for the optimal values of control tokens is
done using Optuna for each language and dataset separately.

8.3 Experiments
In this section, we describe the training details, the datasets, automatic
evaluation metrics, and expert evaluation guidelines.

8.3.1 Training Details
We train the three models following the same procedures and configura-
tions as described in Chapter 7 Section 7.3.3. Except we train mBART
and mT5 on our own computers due to the limited resources of Google
Colab. We only change the batch size to adapt to the GPU memory. Our
computer has an Intel core i9 8950HK, 32GB of memory, and an NVidia
RTX 3090 GPU (24GB).

8.3.2 Datasets
For English, we use Wiki-Large (Zhang and Lapata, 2017) dataset for
training. Wiki-Large is the largest and most commonly used dataset for

2https://huggingface.co/transformers/model_doc/t5.html
3https://pytorch.org
4https://pytorchlightning.ai
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English sentence simplification. It contains 296,402 sentence pairs from
automatically-aligned complex-simple sentence pairs from document-
aligned English Wikipedia and Simple English Wikipedia articles. For
validation and testing in English, we use two datasets: MTurk (Horn
et al., 2014) and ASSET (Alva-Manchego et al., 2020a). Both datasets
contain 2,000 samples for validation and 359 samples for testing. In the
MTurk dataset, each sample contains an original sentence from English
Wikipedia and eight simplifications of that sentence by eight Amazon
Mechanical Turk workers. In ASSET, each sample contains an original
sentence from English Wikipedia and ten manual simplifications. The
original sentences are the same in both datasets.

For Spanish, we use automatically-aligned sentence pairs (Štajner
et al., 2018) from the original and manually simplified Newsela corpus
which comprises original news articles, manually simplified to several
simpler levels by professional editors. The complex-simple sentence pairs
were aligned using the CATS tool (Štajner et al., 2017, 2018) built espe-
cially for that purpose.5 As the alignments of sentences between further-
apart complexity levels are less reliable (Štajner et al., 2018), we only
use the alignments between the original articles and the first level of sim-
plification. The correctness of these alignments is estimated to be 96.1%
for the recommended C3G sentence-level alignment (Štajner et al., 2018).
From all aligned sentence pairs, we randomly selected 700 sentence pairs
for validation and 350 for testing. The rest (7,414 sentence pairs) we use
for training.

It is important to note that our English models are trained on a sig-
nificantly larger dataset (296,402 sentence pairs) than the Spanish models
(7,414 sentence pairs) and that the English simple sentences are signifi-
cantly shorter than the Spanish simple sentences in the datasets used (Ta-
ble 8.1).

5https://github.com/neosyon/SimpTextAlign
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Dataset Original Simple

ES-train-Newsela 29.89 30.61
ES-dev-Newsela 30.56 30.75
ES-test-Newsela 30.64 30.48

EN-train-WikiLarge 25.68 18.86
EN-dev-MTurk 22.07 21.07
EN-test-MTurk 22.82 21.79
EN-dev-ASSET 21.93 19.27
EN-test-ASSET 22.60 18.89

Table 8.1: Average sentence length (in tokens) for different parts of the
datasets.

8.3.3 Standard Evaluation

To compare our systems with a larger number of previously proposed
systems, we use the SARI metric (Xu et al., 2016) implemented in EASSE
(Alva-Manchego et al., 2019), a simplification evaluation library. SARI
compares system outputs to the references and the source sentence by
counting words that are added, deleted, and kept.

To compare our best systems with the best previous systems (accord-
ing to SARI) with different architectures, we perform a crowd-sourced
human evaluation of grammaticality (G), meaning preservation (M), and
simplicity (S) on a 1–5 Likert scale, by five Amazon Mechanical Turk
workers who are native speakers of the respective language (English or
Spanish). We follow the same procedure as in other studies that perform
this type of evaluation, e.g. (Martin et al., 2022). The annotators are first
provided with the consent form and then the instructions and instances
for evaluation. For each instance, they are provided with the original sen-
tence and the three simplified versions. For each simplified version, they
are asked to judge how much they agree (1–strongly disagree, 5–strongly
agree) with the following statements (used to assess G, M, and S, respec-
tively):
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• The sentence is grammatically correct and well-formed.

• The sentence has the same meaning as the original one.

• The sentence is simpler than the original one.

For English, we adopt the same interface as in the previous study Sec-
tion 7.4 and adapt the translation for Spanish.

8.3.4 Expert Evaluation
To better assess simplifications performed by different sentence simpli-
fication systems and their compliance with easy-to-read guidelines, we
propose a novel expert evaluation and a detailed set of rules on how to
judge whether the transformation made by the system results in a simpler
form (Table 8.2). For each language, we ask two expert annotators to per-
form the assessment. We provide them with the above-mentioned set of
rules and an online editing tool that highlights the differences between the
original and simplified sentences.

The annotators are asked to count several types of lexical and syntactic
transformations and judge their correctness. The transformation is correct
if it satisfies all three conditions: (1) preserves the original meaning; (2)
is grammatical; and (3) results in a simpler phrase/sentence(s) according
to the evaluation guidelines provided. If conditions (1) and (3) are satis-
fied, but the transformation results in a small grammatical error (e.g., verb
in plural instead of the singular form), the transformation is semi-correct
and receives a 0.5 score (instead of 1 for a complete correct transfor-
mation). The annotators are instructed to separately count and evaluate
phrase-level lexical transformations (everything beyond uni-grams on ei-
ther source or target side), sentence splitting, reordering within a clause,
removal and addition of information. For each pair of original-simplified
sentences, the annotators are requested to assign a meaning preservation
score and simplicity score on a 1–5 scale (Tables 8.4 and 8.5).

The annotators are requested to compare their results, reach a consen-
sus, and provide us with their final joint result. Several examples with
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correct and incorrect transformations are presented in Table 8.3. Accord-
ing to the guidelines for assigning simplicity and meaning preservation
scores (Tables 8.4 and 8.5), the first sentence automatically simplified by
the MUSS-sup system in Table 8.3 would get the score 3 for meaning
preservation (as it lost the essential information that Graham graduated
with BA in anthropology) and score 5 for simplicity (due to sentence split-
ting, lexical simplification, and less information to process).

Rule Simpler form...

1 Uses active tense instead of passive
2 Uses the simplest form of the verb (simple present or past tense in-

stead of conditionals or future)
3 Avoids hidden verbs (i.e. verbs converted into a noun)
4 Avoids abbreviations
5 Uses shorter and/or more commonly used words
6 Omits unnecessary words
7 Uses the same term consistently
8 Avoids legal, technical, or foreign jargon
9 Simplifies punctuation

10 Makes the sentence(s) shorter
11 Keeps subject, verb, and object close together
12 Avoids double negatives and exceptions to exceptions
13 Places the main idea before the exceptions and conditions
14 Covers only one main idea per sentence
15 Avoids figures of speech and metaphors
16 Uses number instead of the word

Table 8.2: Guidelines for expert annotation, based on the Plain Language
guidelines (PlainLanguage, 2011), “Make it simple" guidelines (Freyhoff
et al., 1998b), and “Am I making myself clear?" guidelines (Mencap,
2002).
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Transformations Original Automatically Simplified System

lexical, split-
ting, addition
(‘In 1943,’)

Graham attended Wheaton College
from 1939 to 1943, when he grad-
uated with a BA in anthropology.

Graham went to Wheaton College
from 1939 to 1943. In 1943, he got
a degree in anthropology.

T5-base

lexical, split-
ting (missing
information)

Graham attended Wheaton College
from 1939 to 1943, when he gradu-
ated with a BA in anthropology.

Graham went to Wheaton College
from 1939 to 1943. He graduated
from Wheaton College in 1943.

MUSS-sup

addition
(‘,’), lexical-
phrase

In 1987 Wexler was inducted into
the Rock and Roll Hall of Fame.

In 1987, Wexler was added to the
Rock and Roll Hall of Fame.

T5-base

reordering,
lexical (miss-
ing informa-
tion)

In 1987 Wexler was inducted into
the Rock and Roll Hall of Fame.

He was inducted into the Rock and
Roll Hall of Fame in 1987.

MUSS-sup

Table 8.3: Automatic English sentence simplification performed by our
system (T5-base) versus the state of the art (MUSS-sup). Correct trans-
formations are marked in bold, whereas incorrect transformations (lost or
changed meaning) are marked in italics.

Score Definition

1 Simplified sentence is meaningless.
2 Simplified sentence has a completely different meaning from the original.
3 Meaning has not been changed but some essential information is missing.
4 Meaning is almost the same; there are some minor differences that are not

essential.
5 Meaning is fully kept (some nuances might have been lost due to deletion

of non-essential information).

Table 8.4: Definition of meaning preservation scores in the expert evalu-
ation.
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Score According to the rules in Table 8.2...

1 ... original sentence is much easier to understand than the simplified one.
2 ... original sentence is somewhat easier to understand than the simplified

one.
3 ... both sentences are equally easy/difficult to understand.
4 ... simplified sentence is somewhat easier to understand than the original

one.
5 ... simplified sentence is much easier to understand than the original one.

Table 8.5: Definition of simplicity scores in the expert evaluation.

8.4 Results and Discussion

8.4.1 English Sentence Simplification

Standard Evaluation. We use SARI score to automatically compare our
systems with previously proposed state-of-the-art sentence simplification
systems with various architectures: the rule-based YATS system (Fer-
rés et al., 22), phrase-based MT (Wubben et al., 2012), encoder-decoder
model (LSTM) with reinforcement learning Dress-LS (Zhang and Lapata,
2017), original-transformer-based model DMASS+DCSS (Zhao et al.,
2018), the original transformer-based model with control tokens ACCESS
(Martin et al., 2019), and transformer-based model (BART) with control
tokens MUSS-sup (Martin et al., 2022). The ACCESS and MUSS-sup
systems use the same four control tokens as our models (mBART, mT5-
base, and T5-base) and the same training dataset. The only difference
among those five systems (ACCESS, MUSS-sup, mBART, mT5-base,
and T5-base) is the transformer model that is used. Our T5-base sys-
tem achieves a higher SARI score than all previously proposed systems
on both test sets (Table 8.6). Overall, the results show the superiority of
transformer-based models with control tokens over all other approaches.

We further perform a human evaluation of grammaticality, meaning
preservation, and simplicity, by five Amazon Mechanical Turk workers
(all native English speakers) of several systems: our T5-base (as the best
performing system), MUSS-sup (as the best performing previous system),
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System Type ASSET MTurk

YATS rule-based 34.4 37.4
PBMT-R phrase-based MT 34.6 38.0
Dress-LS LSTM+reinfor. 36.6 37.0
DMASS+DCSS transformer 36.7 39.9
ACCESS transf.+control 40.1 41.4
MUSS-sup BART+control 43.6 42.6
mBART (our) mBART+control 40.4 41.4
mT5-base (our) mT5+control 42.0 41.2
T5-base (our) T5+control 44.9 43.3

Table 8.6: SARI scores for English sentence simplification on two test
sets (ASSET and MTurk), each with 359 instances. Higher scores indicate
better outputs.

and YATS (as the rule-based system).
The results are presented in Table 8.7. The output of MUSS-sup and

our T5-base are rated similarly. Both systems produce simpler and more
grammatical sentences than YATS.

System G M S

YATS 3.58*±0.14 3.54±0.14 3.25*±0.13

MUSS-sup 3.99±0.13 3.54±0.13 3.66±0.12

T5-base (our) 3.91±0.12 3.58±0.13 3.68±0.12

Table 8.7: Human evaluation scores (mean value with 95% confidence in-
terval) for English on 50 randomly selected MTurk test instances. Higher
scores indicate better outputs. Results marked with an ‘*’ are significantly
lower than the best ones (paired t-test; p<0.01).

Expert evaluation. The results of the expert evaluation for English,
performed on the same instances used for the crowdsourced human eval-
uation, are presented in Table 8.8. T5-base outperforms MUSS-sup by
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almost all metrics. The main issue found with MUSS-sup is the removal
of essential parts which results in a lower overall meaning preservation
score (M). Two instances that illustrate those phenomena were presented
earlier in Table 8.3. The fewer number of lexical simplifications found
in MUSS-sup and the higher percentage of errors among those led to a
lower overall simplicity score (S). Among the additions made by MUSS-
sup, only one was a hallucination: “...on the steps of Michigan Union." →
“...on the steps of Michigan Union University.". The addition performed
by MUSS-sup in one case led to a transformation of a sentence in the
present tense into a hypothetical sentence. All other additions made by
MUSS-sup were correct. They were necessary to preserve grammatical-
ity during reordering and sentence splitting. Among the additions made
by T5-base, we found only one case of hallucination.

System Lexical-all Lexical-phrase Reorder Split Remove Add Same M S
All Corr. All Corr. All Corr. All Corr. All Corr. All Corr.

T5-base 80 91% 49 90% 20 70% 17 94% 22 59% 16 87% 2% 4.2 4.3
MUSS-sup 69 77% 34 82% 6 50% 16 100% 16 41% 7 71% 2% 4.1 3.8

Table 8.8: Results of the expert analysis for English, done on 50 randomly
selected instances from the MTurk test set, for two best-performing sys-
tems (both systems were analyzed for their output on the same 50 in-
stances). The columns Corr. show the percentage of all cases of the
respective category that were marked as correct. The column Same shows
the percentage of sentences that were not changed by the system. Bet-
ter scores in each category are presented in bold. Differences in M and
S scores for the two systems are not statistically significant (Wilcoxon’s
sign rank test; p< 0.01).

Overall, we found that both systems perform a range of distinct sim-
plification operations. For each of the 16 rules from Table 8.2, we found
at least one example of a simplified sentence that is simpler than the orig-
inal according to that rule in the output of each system. For example,
we found two cases of passive to active voice conversion (e.g. “Fives is
a British sport believed to... → “Fives is a British sport. Many people
think...") performed by T5-base, and one by MUSS-sup. All three were
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correct.
When interpreting the results in Table 8.8, it is important to remem-

ber that the only difference between the architectures used in T5-base and
MUSS-sup is the transformer model (T5-base vs. BART). Both systems
are trained with the same Wiki-Large dataset and use the same four con-
trol tokens. Interestingly, we only found two instances for which both
systems produced identical outputs.

8.4.2 Spanish Sentence Simplification

Standard Evaluation. For Spanish sentence simplification, we calcu-
late SARI scores on the test set (350 instances) for the output of our
three systems (mT5-base, mT5-large, and mBART), and the only two
previously proposed fully-fledged systems: the rule-based system Sim-
plext (Saggion et al., 2015), and the unsupervised MUSS system (Martin
et al., 2022) which uses the combination of mBART with four control to-
kens (Table 8.9). The only difference between our mBART system and
MUSS-unsup is that our system was trained with complex-simple sen-
tence pairs from Spanish Newsela (7,414 sentence pairs), whereas the
MUSS-unsup was trained with the web-mined paraphrases (996,609 sen-
tence pairs). The mBART, mT5-large, and MUSS-unsup all achieve sim-
ilar SARI scores, noticeably higher than those of the other two systems.
Among them, the MUSS-unsup obtains the highest average scores for G,
M, and S in the crowdsourced human evaluation (Table 8.10). However,
the differences in G, M, and S scores between any pair of systems were
not statistically significant.

Expert Evaluation. The results of the expert evaluation for Span-
ish are presented in Table 8.11. In comparison to the English T5-base
system, the Spanish mT5-large system makes noticeably fewer lexical
simplifications and sentence splittings and has a higher percentage of er-
roneous ones. Both phenomena are very likely the result of a much lower
number of training instances for Spanish (7,414, as opposed to 296,402
for English) and the use of the multilingual instead of the monolingual
transformer model.
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System Type SARI

Simplext rule-based 33.5
MUSS-unsup mBART+control 36.8
mT5-base (our) mT5+control 32.7
mT5-large (our) mT5+control 36.9
mBART (our) mBART+control 37.1

Table 8.9: Results of Spanish sentence simplification.

System G M S

MUSS-unsup 4.52±0.11 3.96±0.17 3.51±0.16

mT5-large (our) 4.43±0.13 3.81±0.18 3.19±0.18

mBART (our) 4.38±0.13 3.86±0.17 3.19±0.16

Table 8.10: Human evaluation scores (mean value with 95% confidence
interval) for Spanish on 50 randomly selected test instances. Higher
scores indicate better outputs. The differences in scores are not statis-
tically significant (paired t-test; p<0.01) for any pair of systems.
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According to the expert evaluation, MUSS-unsup performs more lex-
ical simplifications than the other two Spanish sentence simplification
models (especially mT5-large). However, those lexical transformations
are found to be correct only in half of the cases (52%). The high per-
centage of errors made by MUSS-unsup resulted in noticeably lower
average meaning preservation (M) and simplicity (S) scores. The most
conservative system (mT5-large), which leaves 34% of the sentences un-
changed, achieves the highest simplicity score among the three systems.
Here is important to note that mBART and MUSS-unsup architectures
differ only in the datasets they were trained with, their size and quality.
MUSS-unsup was trained with a large number of web-mined paraphrases
(996,609 sentence pairs), while mBART was trained with only 7,414 sen-
tence pairs from a high-quality Newsela dataset. These results indicate
that, in transformer-based sentence simplification with these four control
tokens, the size and quality of the training set strongly influence the num-
ber of transformations and their variety.

System Lexical-all Lexical-phrase Reorder Split Remove Add Same M S
All Corr. All Corr. All Corr. All Corr. All Corr. All Corr.

mT5-large 20 40% 5 40% 1 0% 2 50% 26 31% 4 0% 34% 3.4 3.6
mBART 40 45% 12 42% 0 NA 2 50% 22 57% 6 83% 24% 3.6 3.3
MUSS-unsup 53 52% 27 57% 33 24% 3 0% 23 59% 1 0% 2% 3.2 3.1

Table 8.11: Results of the expert analysis for Spanish, done on 50 ran-
domly selected instances from the test set for three systems (the same 50
instances for all three systems). The columns Corr. show the percentage
of all cases of the respective category that were marked as correct. The
column Same shows the percentage of sentences that were not changed
by the system. Better scores in each category are presented in bold. Dif-
ferences in M and S are not significantly different (Wilcoxon’s sign rank
test; p< 0.01) for any pair of systems.
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8.5 Conclusion
Automatic sentence simplification is envisioned to play a significant role
in making everyday texts more accessible for wider populations, thus en-
suring their better social inclusion. In this study, we proposed several
state-of-the-art sentence simplification systems for English and Spanish,
using recently proposed transformer-based models coupled with a sim-
plification control mechanism. We also proposed guidelines for expert
human evaluation which takes into account recommendations for easy-
to-read texts.

The extensive evaluation showed that the proposed systems perform
state-of-the-art sentence simplification in both English and Spanish and
that transformer-based systems with the chosen four-token control mech-
anism produce sentences that are simpler than the originals according to
easy-to-read guidelines. All investigated transformer-based systems per-
formed a wide range of simplification operations which led to simpler
output according to easy-to-read guidelines. In English sentence simplifi-
cation, the results of the expert evaluation indicate that the use of T5 leads
to a higher number of simplification operations and a higher number of
correct transformations than the use of mBART. In Spanish sentence sim-
plification, the results of the expert evaluation indicated that the size and
the quality of the training data have an influence on the correctness of
some transformations.
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Part V

Conclusions and Future Work
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Chapter 9

Conclusions and Future Work

This thesis reported a comprehensive study and the systems we have pro-
posed for automatic text simplification. We have presented different ap-
proaches for complex word identification, lexical simplification, and sen-
tence simplification with the goal of creating a robust automatic text sim-
plification system. The technologies we have developed could be help-
ful for creating applications to improve readability and comprehension
for individuals with autism, dyslexia, aphasia, children, second-language
learners, deaf and hard of hearing, and others with intellectual disabilities.

In Chapter 4, two experiments were conducted to identify complex
words. The first experiment utilized CNN with a set of engineered
features and non-contextualized word embeddings to identify complex
words in English, Spanish, and German texts. The second experiment
explored the use of additional features, including contextualized and non-
contextualized word embeddings and different word frequency lists. We
trained the model with three algorithms: CNN, CatBoost, and XGBoost.
The experiments have shown that the CNN model works better than en-
semble algorithms, CatBoost and XGBoost. Moreover, our CNN model
performs comparable results to the state-of-the-art system for English and
achieves state-of-the-art results for Spanish and German despite having
very few features.

In Chapter 5 and 6, we presented two experiments on lexical simplifi-
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cation, which led to two state-of-the-art systems, an English lexical sim-
plification and a multilingual lexical simplification for English, Spanish,
and Portuguese. Chapter 5 presented the first approach to monolingual
controllable lexical simplification, and Chapter 6 presented more experi-
ments on both monolingual and multilingual controllable lexical simpli-
fication based on T5 as well as controllable mechanism and masked lan-
guage model candidates as additional input-level context. The models are
controllable, meaning that the outputs can be altered based on the token
values embedded into each input sentence to match our desire, which in
our case, we generate the outputs that maximize the evaluation metrics.

In Chapter 7 and 8, we presented several state-of-the-art sentence
simplification systems for English and Spanish, using Transformer-based
models (T5, mT5, mBart) coupled with the simplification control mecha-
nism. The approach is inspired by the knowledge-transfer idea, where the
model has been trained on multiple tasks and then fine-tuned with spe-
cific data to perform a certain task. Therefore, we fine-tuned our systems
with Transformer-based pre-trained models along with control tokens em-
bedded into each input. The control tokens are intended to have control
over different aspects of the outputs, such as sentence length, amount of
paraphrasing, lexical complexity, and syntactic complexity. The exten-
sive evaluation conducted based on automatic, crowd-sourced, and expert
evaluations demonstrated that the proposed systems achieved state-of-the-
art performance in sentence simplification for both English and Spanish.
The Transformer-based systems, specifically those utilizing a four-token
control mechanism, were able to generate sentences that were simpler
than the original ones, as evaluated based on easy-to-read guidelines.
These transformer-based systems performed a wide range of simplifica-
tion operations, resulting in simpler output according to the guidelines. In
English sentence simplification, the use of T5 led to a higher number of
simplification operations and correct transformations compared to the use
of mBART. In Spanish sentence simplification, the results of the expert
evaluation indicated that the size and the quality of the training data have
an influence on the correctness of some transformations.

Our research started with the following questions, and now it is time
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to revisit them:

• RQ1 Is it possible to employ a deep learning method with word
embeddings and engineered features to accurately identify lexical
sources of complexity in sentences?

In Chapter 4, we addressed the research question RQ1 by present-
ing a complex word identification model that utilizes a CNN along
with word embeddings and engineered features. Our approach was
found to be highly effective, achieving results that are comparable
to state-of-the-art models in English and even outperforming state-
of-the-art models in Spanish and German, despite using a signifi-
cantly smaller number of features. This aspect of our model makes
it highly adaptable to other languages, as it can be easily modified
to accommodate the specific features of different languages.

• RQ2 Can we build an adaptive lexical simplification?

The research question RQ2 is addressed in Chapter 5 and Chapter
6 in which we proposed controllable lexical simplification models,
both monolingual and multilingual. These models have the ability
to adjust the simplifications according to the control token values
embedded in each input, resulting in outputs that are tailored to
suit various target audiences. However, in our case, we selected
the control token values to generate the outputs that maximize the
evaluation metrics.

• RQ3 Can we build an adaptive sentence simplification?

Chapter 7 and Chapter 8 address the research question RQ3 by pre-
senting various controllable sentence simplification models for En-
glish and Spanish. These models generate outputs based on the
control tokens embedded in each input sentence, which can be cus-
tomized to suit different target audiences. However, since we did
not have the chance to evaluate the outputs with the target users,
we mainly selected the control tokens values that maximize the
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evaluation metric. Moreover, in Section 7.5, we did some analy-
sis showing the effects of control tokens confirming that they do
have control over the simplification outputs.

• RQ4 Can transfer-learning methods be used to improve the perfor-
mance of text simplification?

To address the research question RQ4, we have clear evidence
demonstrating that transfer learning significantly enhances the per-
formance of sentence simplification. In Chapter 7, Section 7.3.6,
we compared our model, which utilizes four tokens, to ACCESS
(Martin et al., 2019), a sequence-to-sequence model (Transformer)
trained from scratch. Our model, on the other hand, is fine-tuned
using the T5 pre-trained model, and both models share a similar un-
derlying architecture and are trained on the same data and control
tokens. Our model performed significantly better than ACCESS in
the ASSET dataset (+4.78) and TurkCorpus dataset (+1.93) on the
SARI metric.

Regarding the limitations, we have highlighted the needs and chal-
lenges of target audiences, and our lexical and sentence simplification
systems are capable of adjusting outputs to better serve these groups.
However, we were not able to conduct an evaluation with these specific
target users for two primary reasons. Firstly, to evaluate with a specific
user group, we would require in-depth knowledge of their characteris-
tics and requirements to generate outputs tailored to their needs, which
would necessitate the involvement of experts or additional studies in the
field. Secondly, we do not have access to these end users to carry out the
evaluation. It is worth noting that the human evaluations conducted in
Chapter 7 and Chapter 8 were conducted on readers without any reading
impairments. Therefore, future studies should prioritize the evaluation of
the proposed methods with target audiences who have specific needs and
challenges in order to better understand the effectiveness of our models in
serving these groups.

In conclusion, based on all the studies we have presented, we can say
that we have achieved the objectives we set at the beginning, and the rest
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will be left for future research.

Future Work

Despite the advancements in natural language processing, and machine
learning, the current results in text simplification have yet to reach a satis-
factory level that can be integrated into practical applications. The com-
plexity of the task, the need for accurate preservation of information, and
the lack of reliable evaluation metrics and datasets contribute to the on-
going challenges in text simplification research. Therefore, there is a po-
tential for future research as the following:

Automatic Evaluation Metrics: One crucial aspect of text simpli-
fication is the development of automatic evaluation metrics that can ef-
fectively measure the quality and readability of simplified texts. Current
evaluation metrics, such as BLEU and SARI, have limitations in capturing
the semantic and structural changes introduced by simplification. Future
work can focus on developing more sophisticated evaluation metrics that
take into account the semantic and structural changes as well as specific
linguistic characteristics of simplified texts.

Datasets: The availability of high-quality datasets is essential for
training and evaluating text simplification models. Existing datasets based
on Wikipedia data have been widely used but lack in quality and may
not cover the full range of linguistic variations and complexities present
in real-world texts. Newsela dataset offers higher quality with different
levels of simplifications but is not open, which limits the possibility for
research. Future work can involve the creation of new datasets that en-
compass a wider range of text genres, domains, and languages. These
datasets should also include annotations for different levels of simplifica-
tion, allowing for more fine-grained analysis and evaluation.

Accuracy: Improving the accuracy of text simplification models is
another important area for future work. Current models often struggle
with preserving the meaning and coherence of the original text while
simplifying it. Future research can focus on developing more advanced
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models that can better capture the semantic and syntactic structures and
changes of the input text and generate simplified versions that are both
accurate and readable. This can involve exploring new neural network
architectures, incorporating external knowledge sources, and leveraging
techniques such as transfer learning, multi-task learning, large language
models, and instruction-based learning.

Domain-specific Simplification: Text simplification techniques can
be further developed to cater to specific domains, such as medical texts,
legal documents, or scientific literature. These domains often contain spe-
cialized terminology and complex concepts that can pose challenges for
readers with limited domain knowledge. Future work can focus on devel-
oping domain-specific simplification models and datasets that are tailored
to the unique characteristics and requirements of these domains.

Multilingual Simplification: While much of the existing research
on text simplification has focused on English, there is a need for text
simplification techniques in other languages as well. Future work can
explore text simplification for different languages, taking into account the
specific linguistic features and challenges of each language. This can
involve leveraging parallel corpora, machine translation techniques (e.g.,
back translation), creating multilingual datasets, and investigating cross-
lingual transfer learning techniques.

User-centered Evaluation: In addition to automatic evaluation met-
rics, future work can also focus on the user-centered evaluation of text
simplification systems. This can involve conducting user studies to assess
the readability, understandability, and usability of simplified texts by dif-
ferent user groups, such as individuals with low literacy, language learn-
ers, or people with cognitive impairments. This could involve incorporat-
ing user feedback and preferences into the text simplification process to
ensure that the generated simplified text is tailored to the individual user’s
needs.
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TUAL DISABILITY. Yaşam Becerileri Psikoloji Dergisi, 2(4):199–
205.

PlainLanguage (2011). Federal plain language guidelines.
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Appendix A

Sentence Simplification Human
Evaluation

Our interface is based on the one proposed by Kriz et al. (2019), and the
consent form is based on Alva-Manchego et al. (2020a).
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A.1 Consent Form

Figure A.1: Human evaluation consent form.
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A.2 Instructions

Figure A.2: Human evaluation instructions.
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A.3 Examples

Figure A.3: Human evaluation examples.
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