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Abstract

Critical Real-Time Embedded Systems (CRTES) are used in domains like transportation (e.g. avionics,

automotive, space, and railway), healthcare, and industrial machinery. This subset of embedded

systems requires undergoing a stringent Validation & Verification (V&V) process before they are

allowed to enter in operation since any misbehavior can result in harm of humans or even fatalities.

Software timing behavior is a key element to cover in the V&V process, providing with evidence that

software runs timely. Software timing analysis, in turn, requires deriving bounds to each application

task’s execution time. These bounds are referred to as Worst-Case Execution Time (WCET) estimates.

As CRTES implement more complex safety-related functionalities in every new product, more com-

plex software and consequently more performant computing hardware is used to satisfy the high-

performance requirements. The side effect, however, of using more complex hardware and software

is challenging state-of-the-art software timing analysis techniques.

Measurement-Based Probabilistic Timing Analysis (MBPTA) techniques have been proposed to han-

dle such hardware and software complexity providing tight and trustworthy WCET bounds (esti-

mates). Specifically, Extreme Value Theory (EVT) has been used to provide with models for the

most extreme occurrences in form of a probabilistic distribution. The output of the timing model is

referred as a probabilistic WCET (pWCET). However trustworthy, EVT models can be cumbersome to

apply and they sometimes can be exceedingly pessimistic which adds extra cost into timing budgets.

This thesis investigates MBPTA techniques and develops novel methodologies within this framework

in three distinct fronts. Firstly, by improving the tightness of pWCET models on sky-high quantiles

with two models. A first one that combines risk analysis with EVT for a safe and accurate pWCET.

And a second one that introduces Markov’s Inequality to the pWCET estimation problem, which

provides with trustworthy guarantees with less requirements for its correct application. Secondly,

in order to boost the use of data coming from performance monitoring counters - increasingly used

by MBPTA techniques to tighten estimates-, this thesis shows two mathematically-based ways of

merging multiple disjointed readings based on order statistics and copula models. Finally, this

thesis proposes a model for the contention of competing tasks, when the timing profile obtained

is limited, that allows to provide with more extreme WCET scenarios based on the dependencies

between tasks.

Summarizing, this thesis pushes the state-of-the-art forward in the V&V methodologies for CRTES

in the framework of MBPTA in terms of WCET estimation and data gathering.
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Chapter 1

Introduction

Historically, computer systems have been used mostly for automation and entertainment. This trend

has changed in recent years with computers being increasingly used in a number of critical domains

of our life including transportation and health, among others. In these domains, computers are em-

bedded into devices like a car, a train, an airplane, and medical machinery. Unlike other Embedded

Systems (ES) in which a malfunctioning of the computer causes mostly discomfort, a malfunction

in the so-called Critical Embedded Systems (CES) can cause serious harm to the environment, or

people, even resulting in fatalities. In order to ensure that these systems are safe to use in critical

scenarios, it is imperative that their design satisfies functional correctness [61] tested according to

a well-defined Validation and Verification (V&V) process. Functional correctness ensures that the

system functions as intended without anomalies. On the other hand, timing correctness ensures that

the performed tasks complete their execution within the assigned time budget or deadline. In this

thesis, we focus on CES whose correctness also depends on their timely response, which are catego-

rized as Critical Real-Time Embedded Systems (CRTES). In the domain of CRTES, the functional and

timing correctness have equally important weight through the V&V process, given that not meeting

the pre-assigned time budget, or deadline, can lead to catastrophic consequences. Thus, in timing

analysis deriving a conservative estimation of the Worst-Case Execution Time (WCET) is essential.

The interest in keeping up with the challenges of timing analysis is due to the increasing growth

in CRTES in services like healthcare and industries like avionics, railway, and automotive vehicles

[72]. Furthermore, the systems are growing exponentially in complexity: the car manufacturer Volvo

stated that in 2020 their cars needed around 100 million lines of code to implement the key function-

alities of a car such as electronic fuel injection, transmission control, navigation systems, etc. Their

measurements show that since 2000, the automotive software increases an order of magnitude every

decade [9]. Their functionalities are also way more complex too. In the case of autonomous cars,

the system must handle data coming from radars and LIDARS and process it using state-of-the-art

Neural Networks algorithms in real-time, requiring very high levels of performance. To satisfy those

needs, CRTES need to rely on high-performance hardware such as multi-level cache memories de-

sign and multi-core architectures. While powerful, this kind of design tends to be harder to analyze

which makes them more challenging to work with towards an accurate WCET estimation.

1.1 Certification with Higher Performance Requirements
In past years, the prevailing architecture paradigm for the design of CRTES was the federated archi-
tecture. These architectures comprise multiple subsystems, each with critical functionalities, which

are physically separated from each other. The increasing complexity of new functionalities in recent

years challenge the scalability of federated systems [96]. The higher performance needs of today’s

functionalities would rise the cost, weight, and size of CRTES. In that regard, the CRTES industry

shifted towards integrated architecture paradigms that integrate several functionalities in the same com-

puting hardware. Integrated architectures can also naturally leverage the parallelism of multicore

systems and the capabilities of high-performance features like multi-level cache. To that end, soft-

ware solutions like resource partitioning are used to contain the impact that software partitions can

generate on each other. While the adoption of integrated architectures has aided the cost-weight-size
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problem and provided with satisfactory performance, the certification on multicore systems becomes

notably more challenging. The loss of guarantees in terms of independence between subsystems

within integrated architectures affects their timing predictability. Depending on the degree of integra-

tion and partitioning the dependency, and therefore predictability, will be affected differently. This

usually results in a trade-off between performance and degree of integration. In terms of certifica-

tion for CRTES, new designs trend towards favoring timing predictability [140] instead of increased

average performance.

1.2 Measurement-Based Timing Analysis
Increasingly complex software functionalities in CRTES require high-performance multicore pro-

cessors (computing hardware). However, more complex processors have drawbacks in relation to

the V&V process. Complex CRTES should comply to the same safety standards as the simpler

architectures and given the interconnected nature of integrated architecture and the complexity of

multicores, the V&V process for timing is very challenging in terms of effort and accuracy [5]. A high-

quality WCET estimation in this domain must be affordable in terms of costs and trustworthiness,

so that the produced execution time estimate tightly upper-bounds the real execution time.

Timing analysis techniques can be broadly categorized into two groups: Static Timing Analysis (STA)

and Measurement-Based Timing Analysis (MBTA) [172]. STA does not need to execute code on real

hardware and instead it relies on creating abstract models of the architecture and analyzing possible

execution paths for the task under analysis. This approach faces limitations due to the limited in-

formation about the hardware provided by the hardware manufacturer and its accuracy [1]. In fact,

some processor manufacturers do not disclose full information about their systems’ microarchitec-

ture in order to protect intellectual property. Even assuming the validity and completeness of the

information disclosed, the technical manual of a modern Multi-Processor System on Chip (MPSoC)

like the Zynq UltraScale+ is more than a thousand pages long [179]. The methods that worked for

simpler single core processor architectures do not scale well with the complexity that CRTES have

nowadays. In less complex architectures, the approaches for V&V were usually guided by previous

engineering experience [41].

MBTA considers a different approach, in which timing measurements of a given task in a given

hardware guide the analysis. The CRTES system engineer is responsible for designing experiments

with stressful initial conditions for the task running in real hardware or simulator. Those experi-

ments should reflect the timing behavior at operation so that the bounds derived from it are reliable.

However, measurements in themselves are not treated as bounds [173], given the general impossi-

bility of reproducing and forcing those execution conditions that lead to the worst-case scenario.

Industry standard solutions to derive bounds from measurements rely on adding safety margins.

For instance, on top of the high-water mark, a safety margin (e.g. 20%) can be added. The logic

behind it is to compensate the unobserved effects that can impact observed values. However, for

complex hardware deriving a safety margin is significantly more complex.

1.3 Hardware Event Monitors
The execution time of a program in a complex computing platform is the product of many interactions

happening within the different hardware blocks. In complex CRTES these interactions are hard to

control and model. For instance, the functionality of multi-level cache memories is deeply connected

to the variability of the program’s execution time. Smaller level 1 caches directly connected to the

core have low latency and their data can be quickly accessed. Due to cost and convenience, caches at

a higher-level (e.g. L2) are bigger in size, more distant from the core, and the time required to access

them increases. A program that tends to perform accesses to the higher-level caches, or the off-chip

memory, will suffer higher latency to fetch data and instructions than the one which mostly operates

at low-level caches.

Many of these events describing the usage of hardware computing resources made by a task can be

tracked via Hardware Event Monitors (HEMs) which can be hence used for software timing analysis

purposes. In fact, several MBTA techniques build on HEMs to model and control contention for
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instance by limiting the maximum number of accesses a task is allowed to do to a given resource

[32, 125].

HEMs are programmed and accessed by the Performance Monitoring Unit (PMU) in the processor,

which is also referred to as statistics unit. The PMU offers a set of visible registers called Performance

Monitoring Counters (PMCs) which can be configured to read the number of occurrences of a given

HEM.

1.4 MBPTA and Extreme Value Theory
In an effort towards relieving some of the burden on the application of MBTA to complex systems,

Measurement-Based Probabilistic Timing Analysis (MBPTA) approaches have been gaining traction

[3, 21, 23, 44] in CRTES over more than a decade ago. The variety of execution conditions complex

CRTES can produce causes huge differences between runs of the same task and great variance in the

distribution of execution times. Hence, instead of aiming for a fixed and likely pessimistic WCET,

a better alternative is to provide a probabilistic view into timing analysis [36]. Instead of fixing a

single value that upper-bounds all executions, MBPTA provides a distribution that upper-bounds

the probability of exceeding any specific execution time, although we are interested in high values.

For each arbitrarily rare occurrence, an MBPTA tool provides a probability of exceeding it, thus a

probabilistic Worst-Case Execution Time (pWCET) estimate. That is, on MBPTA the results are given

in the form of a distribution.

When dealing with the distribution of arbitrarily rare occurrences, Extreme Value Theory (EVT) is

the theoretical best approach [40]. In particular, the appeal of extreme value analysis is to estimate

the probabilities of events which are rarer than the ones observed. With EVT one can assess for

instance, the likelihood of an earthquake bigger than the ones we have observed so far. Given the

generality of its results, EVT has been applied in multiple fields. EVT is still present in fields which

have very little in common between them like traffic safety [79], finance [27], earthquake analysis [31],

biophysical science [120] and even musical analysis [146]. The different nature of each application

field requires to adjust the approach to each problem instance, but the underlying laws are still the

same. Of course, for instance, in case of earthquakes one cannot generate more data so it makes sense

that EVT is used in this domain. Nonetheless, EVT is also applied in fields where data is readily

available, but the cost or even the chance to obtain it is barely possible or feasible. In the case of

WCET estimation, the execution time of a program may be relatively short, but obtaining extreme

execution times may take weeks or even months. Therefore, one must resort to construct a pWCET

model with smaller yet representative set of data. And it is in the word representative where a big

part of the challenges arises in MBPTA. Obtaining stressful benchmarks for the CRTES at analysis

that generates the most extreme execution conditions in the system is a very challenging task. In my

view, there are two sides to the MBPTA problem. The first is the technical aspect of computer science

that is concerned about designing hardware that is compliant with MBPTA experimentation, and

working towards obtaining representative extreme conditions [18, 117]. The second one, the focus

of this thesis, is the modelling aspect of the estimation of unseen extreme execution times under the

upper-bounding condition.

There have been several mentions to extreme values without proper definition. In EVT there are two

classical ways of thinking about extremes. Since this thesis is concerned about WCET estimation,

we consider extremes as the high-end values of our measurements, although EVT also work for the

lowest values.

• The first way is considering that the extremes are only the maximum value on your sample.

Imagine we have a sample of size 𝑛 and we divide it into separate groups of size 𝑆. Then,

for each group, we obtain the maximum value on it. This is called the Block Maxima (BM)

approach.

• The second way is considering extremes as the group of values above a certain threshold. This is

the Peaks over Threshold (PoT) approach. To illustrate them, Figure 1.1a and 1.1b represent the

set of values deemed as extremes using the BM and PoT approach respectively. In this example,

the sample of data is the same, yet the set of values deemed as extreme is different. There are

values classified as extremes in Figure 1.1b which are classified as belonging to the body of the
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Figure 1.1: Both classical EVT ways of considering extremes.

distribution in Figure 1.1a. Not only that, but one can also see how changing the size of the

block 𝑆 or the location of the threshold will change the group of extreme values. This is not

inconsistent within EVT and both approaches yield good models for extremes. Yet, the selection

of the block size or the threshold is a well-known problem with many different approaches as

we will see in Chapter 3. The key finding, and the core of EVT, is that these extreme values

have a distribution of their own. The resulting extremes from the BM approach tend to a

family of distributions called the Generalized Extreme Value (GEV) distribution [65], while the

extremes from PoT converge to another family of distributions, named the Generalized Pareto

Distribution (GPD) [15]. These results, under certain conditions, are general to any random

variable; which allows us to model rainfall annual data [91] and execution times from CRTES

under the same theoretical umbrella. These theoretical family of distributions are named so

because there are different distributions within them depending on the Extreme Value Index

(EVI) parameter represented as 𝜉. The EVI is what characterizes the shape of the most extreme

values of a distribution.

For the PoT model the EVI determines the shape of the tail of the distribution in three ways. We

refer to the tail as the probability mass at the upper end point of the distribution. Figure 1.2 shows

these shapes for different distributions and values of the EVI. If the EVI is 0, the shape of the tail will

be exponential, meaning that the probability of greater values decays as an exponential function. If

the EVI is negative, the probability of the extremes will decay faster than the exponential. This kind

of tail is named a light tail. Otherwise, positive values of the EVI will make the probability decay

slower than the exponential, which makes for a heavy tail. The methods to estimate the EVI used in

this thesis will be explained in Chapter 2.

1.5 EVT for pWCET Analysis
The integration of EVT in MBPTA has received increasing attention in the last decade [44, 82].

The research community working on MBPTA has been debating on which kind of tails are more

appropriate for pWCET. It has been shown by argument and empirically that exponential tails are

a safe upper-bound in general [3, 149]. Nonetheless, exponential tails can be too pessimistic to be

usable, especially for very high quantiles. The pessimism is in part due to the very nature of the

distribution. The exponential tail assumes that the execution time may grow to infinity. However,

in CRTES this not the case. In the design process of CRTES, each task has an assigned deadline.

Therefore, the estimation of a WCET is of utmost importance to ensure the task is executed within its

time budget. Then, the theoretically best bound would be one that takes into account the finiteness
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Figure 1.2: Shape of distribution tails with different EVI 𝜉.

of execution times in CRTES programs. Light tails in EVT fulfill this purpose as their domain is

bounded with a maximum value and decay faster than the exponential. This is however, both a

blessing and a curse. When using a light tail model to fit our execution time samples, it will take

the maximum of those samples as the reference for the bounding. If in our samples we do not get

an execution time close to the WCET, the light tail model will underestimate eventually. In reality,

while light tails models tend to be very accurate in practice, in order to overestimate the WCET, they

need to be fed with values in the sample that are very close to the real WCET, which is the very

same problem we are trying to solve. In summary, while classical EVT and its two fundamental

theorems offer the best theoretical solutions to the pWCET problem, neither the GEV or the GPD

cannot prevent the uncertainty in estimating sky-high quantiles which are outside of the observed

sample, thus in general estimating a tight and trustworthy upper-bound for the WCET with EVT

is challenging. In this thesis, we identify some of these limitations and implement solutions that

combine EVT with other statistical tools, and also find new tools outside EVT to estimate extreme

values.

1.6 MBPTA with Limited Data

Frequently, CRTES engineers cannot afford an exhaustive set of benchmarks or test vectors to stress the

system towards the WCET scenario. That is the case of timing analysis for Autonomous Driving (AD)

systems, where the demonstrations via driving test serve as the benchmarks for providing guarantees

over the system behavior at operation. However, designing benchmarks that are representative

of real-life driving cases is a very challenging task [80]. As mentioned before, the difficulty in

assessing WCET scenarios is the complexity of the hardware and software. In the case of AD the

software complexity is at the core of its functionality, with Machine Learning algorithms deciphering

what the perceptive modules receive in real-time. In these systems, there can be different tasks

accessing concurrently the same hardware resources on the system, which causes timing interference

or contention impact. In this thesis, we take another point of view in the TA of these systems. Instead

of trying to provide with a representative set of benchmarks, we model the intrinsic dependency that

occurs within these systems. We aim at modelling the time dilation that occurs when similar tasks

are running at the same time. A model of this kind can give us an estimation of a WCET scenario

that may occur in very stressful situations with extreme competition among tasks. Ultimately, this

is expected to lessen the burden of the benchmark selection for the V&V.
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1.7 Thesis Contributions
The contributions of this thesis are towards the design of new and improved methods for the timing

analysis of software running on complex CRTES. It is a great challenge to improve on the classical

fundamental theorems of EVT because they provide with the theoretical best solution for predicting

extreme values. However, MBPTA’s characterizing trait is the upper-bounding constraint, which is

difficult to achieve both in theory and practice. Also, in CRTES there is a lot of data coming from

the monitoring support in the hardware, which would allow creating more sophisticated MB(P)TA

techniques accounting for varying contention scenarios. Such data is typically not used owing to

inherent hardware limitations, constraining to sampling only a restricted number of variables at

once. We provide solutions that allow merging monitoring data from multiple separate experiments

as if they were extracted from the same execution conditions. Last but not least, apart from (p)WCET

estimation for system design, there is a need for validation (testing) campaigns to assess that the

system is properly designed and WCET bounds are not exceeded. However, the lack of controllability

of how tasks overlap in multicores precludes from having sufficiently exhaustive test campaigns.

In summary, we can divide the contributions in three blocks: i) improving the current MBPTA

methods in tightness and safety for the pWCET estimation problem, ii) creating new methods to

analyze the monitoring data of CRTES by putting it in an orderly way that can be used by MBPTA

tools, and iii) devising new methods to produce execution time observations for tasks overlapping

in arbitrary (and worst-case) ways that test (validation) campaigns fail to produce. More specifically,

the contributions are divided in three parts:

1. Sky-high quantile estimation techniques.

2. Hardware Event Monitor data merging techniques.

3. Contention modelling techniques.

1.7.1 Sky-high Quantile Estimation

The estimation of very rare occurrences for the WCET is still an ongoing problem. Those extreme

values, a.k.a. sky-high quantiles, are typically in the exceedance probability range of 𝑝 = {1−10
−6 , 1−

10
−12}. In order to fulfill MBPTA requirements, the pWCET estimation should seek to upper-bound

which is an added difficulty on the estimation of extreme values. In that regard, in this thesis we

make two contributions towards improving the WCET estimation problem using measurement-based

techniques which aim at: i) Improving the accuracy of the estimation of sky-high quantiles, and ii)

keep providing with the same safe guarantees of the estimation while needing less requirements.

1. On our first contribution towards sky-high quantile estimation, we develop a new parametric

model with analytical expression which can produce safe and accurate estimates while over-

coming some limitations of the usual EVT approaches. This technique was devised by making

use of both EVT and Risk Analysis, which helps us to make safe guarantees. The proposed

parametric model for tail estimation is the tail of a Weibull distribution, or as we named it

tailW. The solution is tested against real case-study hardware data from a CRTES and improves

on the current best EVT solution. This methodology is publicly available in an R package on

the official repository (CRAN).

2. Our second contribution towards the pWCET estimaion problem is making use of Markov’s

Inequality to upper-bound sky-high quantiles. Unlike EVT, and even tailW, Markov’s Inequal-

ity does not try to fit the data but rather upper-bounds data using simple probabilistic tools.

We modify the simplest version of Markov’s Inequality with the power-of-k function, which

provides with much tighter upper-bounds. This works theoretically because one needs infor-

mation about the distribution of the sample at analysis. The challenge of this problem is in

working out a practical solution that allows to take an unknown distribution and still being able

to provide trustworthy and tight bounds. We validate this method against reference theoretical

distributions and real case-study hardware data from a CRTES, which improves on the current

best EVT solution.
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1.7.2 Hardware Event Monitor Data Merging
Multicore processors do not allow to read all the HEMs at once. HEMs which provide information

about the system at operation, can be read in small groups. Multicore processors have only few

(4-6) PMCs while the number of HEMs is in the order of hundreds [67, 68, 69]. Therefore, not

much information from the hardware can be extracted at once at operation under the same execution

conditions. To make things worse, conditions greatly vary from run to run, making the comparison

of runs a relevant concern. This presents a challenge for the use of HEMS in MBTA since, while

information from the system at operation can be obtained, only a small subset of the HEMs can be

measured at the same time. In this thesis we explore methods to capture as much data as possible

that can be used to the advantage of more robust V&V techniques.

• The first contribution makes use of statistics of order to merge HEMs. We do so by selecting a

common HEM that will be present in all collections of HEMs to read on a given run. With the

use of this common HEM, called the anchor HEM, we can proceed to perform a merge based

on the order statistics of the anchor. We evaluate if the HEMs keep the relationship they have

with one another after the merge.

• The second contribution makes use of Copula Theory in order to preserve the relationship

between HEMs after the merge. This methodology uses a more data expensive procedure to

merge HEMs because one needs to measure the relationship between all HEMs before reading.

Then, modelling said relationships with a Multivariate Gaussian copula, we can perform the

merge and obtain a final dataset were all values are sorted on similar execution conditions.

In both methods we use the T2080 platform for validation purposes.

1.7.3 Contention Modelling
High-performance processors used in CRTES provide the required computing capacity, but this

comes at the cost of additional challenges to the timing analysis of the systems. The fact that

multiple cores access shared resources at the same time can produce delay in the execution time of

tasks. Therefore, when multiple tasks are executed at the same time, they tend to create contention

on each other. In this final contribution, we design a model for inter-task contention that occurs

in multicore systems. At system operation we have the timeline of the execution times of different

tasks, although they are rarely executed in isolation from other competing tasks. In this work, we

show how the contention model we constructed allows us to estimate isolated (solo) execution time

and WCET scenarios in systems were this information cannot be obtained. Here we work on a

mathematical model of contention to estimate the general impact of contending tasks in CRTES.

This model allows us to estimate less pessimistic WCET conditions when working with limited

information. We validated this model using execution times from a demo of the Apollo autonomous

driving software.

1.8 Structure of the Thesis
• In Chapter 2 we introduce some background to understand each of the contributions made on

this thesis. First, a deeper understanding of the limitations of EVT for the pWCET estimation

problem based on theoretical arguments is presented. Then, we explain in detail the monitoring

data coming from CRTES that cannot be extracted at once. Finally, we explain in detail the

contention suffered in MPSoCs and the need to model it for the pWCET problem.

• Chapter 3 shows all the practical and theoretical tools that were used in this thesis which

are divided in several blocks. The first block is the statistical one. The final one shows the

benchmarks used to validate our solutions.

• Chapter 4 is devoted to the first solution to the WCET problem, the usage of Weibull tails to

estimate sky-high quantiles. In this chapter we combine EVT with Risk analysis to provide a

tight yet trustworthy solution to the WCET problem.

• In Chapter 5 another solution for the WCET problem is shown. We explain how Markov’s In-

equality, which upper-bounds by construction, can be the foundation for tight and trustworthy

9
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pWCET estimation.

• Chapter 6 is the first one devoted to the HEM data problem where we want to merge different

HEM readings into a single dataset using statistics of order.

• Chapter 7 is the second one devoted to the HEM data problem. The solution provided in

Chapter 6 is a simple yet satisfactory one that is easy to implement and execute. Here we use

Copula Theory to model the relationship between all HEMs and provide a final merge of the

data that keeps their intrinsic relationships.

• Chapter 8 shows the contention model we devised that allows us to estimate isolated execution

time and WCET in systems were this information cannot be obtained.

• Finally, in Chapter 9 we show the conclusions of this thesis, its overall contribution, and future

lines of work.
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Chapter 2

Background

2.1 Measurement-Based Probabilistic Timing Analysis
In order to face the challenges of performing Timing Analysis on complex CRTES, lately, MBPTA

techniques have been adopted by the community. Their utility on certification has been assessed

[153] and even in avionics real-case studies [170].

MBPTA techniques build on collected measurements of the task under analysis and produce a prob-

ability distribution function which upper-bounds the execution time of the task under analysis, also

called a pWCET. Usually, the pWCET is shown in terms of the Cumulative Distribution Function

(CDF), which is the probability that a random variable (r.v.) is smaller than a certain value. Alterna-

tively, and the one we will use throughout this thesis, is the Complementary Cumulative Distribution

Function (CCDF) (or 1−CDF), which represents the probability of the r.v. exceeding a certain value,

that is, the exceedance probability 𝑝. We say that the CCDF of an execution time pWCET, 𝐶bound,

see Figure 2.1, is said to upper-bound the real CCDF of the task under analysis, 𝐶real, – so being a

pWCET bound – when for any exceedance probability 𝑝 the execution time of the former, etbound(𝑝),
is higher (or equal) than that of the latter, etreal(𝑝). It also holds that, for any given execution time, et,
the exceedance probability of the former, 𝑝bound(et), is higher (or equal) than that of the latter, 𝑝real(et).
This can be expressed as tightness(p) = etbound(𝑝)

etreal(𝑝) .

Ideally, the tightness in pWCET should be as close to 1 as possible, specifically for small 𝑝, i.e. large

execution times. However, one should aim at ensuring that the tightness is never under 1. Estimations

of the WCET which are lower than the real WCET are said to be optimistic; and carry risk because one

could allocate a smaller time budget to a critical task than it may need. On the other hand, a pWCET

cannot be exceedingly pessimistic. A pWCET which estimates execution time 50% higher than the

real ones causes a wasteful allocation of computational resources. The upper-bounding constraint

is a difficult one to overcome. Typically, predictive models and fitting techniques aim at minimizing

the error, or maximizing the likelihood, between the data and the model; however, usually there is

not a concern about approaching the data from below or above. Furthermore, the biggest challenge

is in upper-bounding data that has not been seen yet. EVT helps a great deal in that regard given

that it provides with limit laws (i.e. parametric models for the most rare occurrences) on the range

of probabilities that MBPTA is interested in, typically 𝑝 = {10
−6 , 10

−12}.

The values of a distribution given a probability, the quantiles, can be obtained with different methods.

In general, from a sample of size 𝑛 one can obtain with relative ease a satisfactory estimation of

quantiles with probability 𝑝 > 1/𝑛 [151]. One can easily see the problem if we need to make

estimations on very low probabilities. In order to compute a trustworthy estimation of quantiles

with probability 𝑝 = 10
−12

, one cannot simply run a task 𝑛 = 10
12

times. In practice, the range

of probabilities of interest for V&V purposes for WCET estimation, will in general be beyond the

observed sample. That is why initially MBPTA adopted EVT to assess this problem.

As one can see the problem that MBPTA proposes to solve is not an easy one. Even though modelling

techniques like EVT have been proposed to estimate very rare occurrences not seen in the data, the
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requirements of MBPTA are challenging. The timing validation on CRTES are very strict and demand

precision and more importantly, trustworthiness, in the pWCET models.

2.1.1 MBPTA Requirements
MBPTA builds on a sample of the execution time of the task under analysis. This sample should

be independent and identically distributed (i.i.d) so that EVT can be applied. MBPTA-compliant

architectures satisfy these requirements by construction [99]. In order to have i.i.d. input data in

general one would reset the system each time one run finishes so that each run can be performed

under the same initial state. Alternatively, one can choose randomly within an appropriate pool of

initial states. Although in practice producing truly independent measurements in CRTES is hard,

due to the impossibility of fully controlling the execution conditions. In order to apply EVT the input

data must be independent on the extremes, although if this dependence is weak, or the dependence

is in the body of the distribution, EVT can still be applied [40].

The i.i.d. requirement is not the only important condition. The last requirement, which is general to

all modelling approaches, is the representativeness. One should ensure that the input data that is

being fed to the MBPTA model, is as close as possible to the execution time at system operation. In

the CRTES domain we have certain advantage with respect to other fields like climate or economics

where EVT is applied, in that we are able to generate samples from the system that will be on

operation. Nonetheless, it is in the hands of the engineer to produce representative scenarios of the

system at operation. In that regard it is not enough simply to run the program many times in order

to generate a representative sample. The Operating System is the one in charge of allocating the

code, as well as the stack and the heap, into the memory. The way the Operating System performs

the allocation will affect timing behavior. The different timings of multiple tasks accessing the

same shared resources (shared buses, data buffers, and data caches) can change greatly the overall

performance. Thus, it becomes necessary to produce tests with as much coverage of all possible

execution paths as possible [186]. In that regard, this representativeness can be achieved by means

of randomizing memory-placements at the code, stack, and heap level [70].

Figure 2.1: Generic representation of the tightness of pWCET estimations using the
CCDF.

2.1.2 State-of-the-art on MBPTA
EVT relies on i.i.d. observations in the input sample [65, 74, 82]. The difficulty of achieving

this depends on the underlying hardware platform [85, 99, 109, 142] and the software support

used [104]. For instance, the commercial off-the-shelf hardware platforms considered in [109, 142]

pose difficulties to enforce i.i.d. measurements, and some dependencies across measurements may

exist, thus requiring special consideration, as shown by Santinelli et al. [142].

12



2.2. Extreme Value Theory

The source of dependencies has been investigated by Melani et al. [114] concluding that pWCET

estimation is still possible despite dependencies. Other authors build upon alternative methods for

measurement collection to get rid of dependencies. In particular, Yue et al. [109] consider retaining

only maxima for that purpose. Lima and Bate [104] show that mitigating the impact of discrete data

may also help to mitigate the impact of dependencies.

MBPTA brings several challenges [71] including a sound tail modelling application, the representa-

tiveness of the input samples [1, 76, 78, 99, 142], and how to interpret the obtained results. These

three challenges have been presented in [71], while [35] makes a deep survey of the existing works

addressing each of these challenges. In this context, [6, 98] have shown how to interpret EVT results

from a certification point of view.

A different challenge to pWCET reliability relates to representativeness of the observations [4, 12,

78, 118] which corresponds, in the timing domain, to guaranteeing the observations are actually

representative or upper-bound the execution time distribution, which in fact, is an inherent trait for

any sampled-based approach. Statistical and model uncertainties in the scope of EVT are discussed

in [26] where robustness in tail estimation is achieved by considering, together with GEV, a family

of plausible probability models (i.e., close to GEV) and selecting the most conservative estimated

probability value among all models.

2.2 Extreme Value Theory
EVT has been one of the most important and useful theories of modern mathematics. There are

many areas where there is a need for modelling extreme events that have not been observed yet.

CRTES is one of them; not only in order to comply with safety standards, but also for efficiency and

energy consumption reasons [157].

In this section we show the two classical fundamental theorems of EVT. Also, we will dive into the

techniques to put the theory into practice.

2.2.1 Law of Large Numbers: the Central Limit Theorem
Let us start with a basic definition that will be useful to discuss for this thesis. Throughout this

thesis we model the execution time of complex CRTES as a r.v.. In this thesis, a r.v. is devised as a

mathematical object in which we attribute a stochastic behavior, responsible of generating outcomes,
from a set of possible events. Formally speaking, the outcome of a r.v. will be the result of a measure

of some event, 𝜔, in an experiment which belongs to the set of all possible outcomes 𝜔 ∈ Ω, and

this event will take form in the measurable space. In this thesis, the measurable space will be the

one where execution times belong, the positive real-values bigger than zero, in our R>0 . As a toy

example, a six-sided dice is a r.v. responsible for generating one of the possible outcomes from the

set Ω = {1, 2, 3, 4, 5, 6}.

It is needed to stress out that a r.v. is a function responsible of generating the outcomes. Considering

this definition of a r.v. will makes us thing about them in a more abstract way which will be useful

throughout the thesis.

The Central Limit Theorem (CLT) helps to introduce the concept of limit laws. In every discipline,

modelling probability distributions is a challenging task. More often than not, the distributions

of real data do not take the shape of a defined parametric distribution which eases the modelling.

This, though, does not prevent performing satisfactory probabilistic models. One of the most useful

tools in statistics is to approximate the empirical distribution of real data to a simpler parametric

distribution using a limiting argument.

Definition 1 (CDF). The CDF of a r.v. 𝑋 is a function, 𝐹𝑋 , given by

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥), (2.1)

where 𝑃 denotes the probability that the r.v. 𝑋 takes a value smaller or equal than some 𝑥.
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Definition 2 (Limit law [40]). A sequence of r.v.s 𝑋1 , 𝑋2 , · · · , having distribution functions 𝐹1 , 𝐹2 , · · · , is
said to converge in probability to the r.v., 𝑋, having distribution function 𝐹, denoted 𝑋𝑛

ℒ−→ X, if

∀𝑥, 𝐹𝑛(𝑥) → 𝐹(𝑥) as 𝑛 →∞. (2.2)

Whatever the form of 𝑋1 , 𝑋2 , · · · , might be, there can be transformations which takes those distri-

butions to a limiting law which is much easier to assess for our modelling. Note that, limiting laws

consider that the number of r.v. tends to infinity (𝑛 →∞). In practice, this is not possible to achieve.

Some limiting laws may be able to achieve this limit with a different number of r.v. and this may

carry problems in the modelling.

Let us use the most famous example of limiting law as introduction, the CLT.

Definition 3. Let 𝑋 be a discrete r.v. with probability function 𝑓𝑋(𝑥), where 𝑥 are the particular values that
𝑋 can take. The expected value of 𝑋 is:

𝐸(𝑋) =
∑
𝑥∈𝑋

𝑥 𝑓𝑋(𝑥) =
∑
𝑥∈𝑋

𝑥𝑃(𝑋 = 𝑥). (2.3)

Theorem 1 (CLT [40, 168]). Let 𝑋1 , 𝑋2 , · · · , be a sequence of independent and identically distributed r.v.s
with finite 𝐸(𝑋) = 𝜇 < ∞ and positive variance 0 < 𝑉(𝑋) = 𝜎2 < ∞. Then the weighted sum of the r.v.s
converges in probability to:

𝑋̄𝑛 =
𝑋1 + · · · + 𝑋𝑛

𝑛

ℒ−→ 𝒩
(
𝜇,

𝜎2

𝑛

)
as 𝑛 →∞, (2.4)

where𝒩
(
𝜇, 𝜎

2

𝑛

)
is the Gaussian distribution with mean 𝜇 and variance 𝜎2.

This is a powerful and fundamental result of statistics and its simplicity explains why the Gaussian

distribution seems to appear everywhere. One must be aware of the details of the theorem. Here

the CLT is not stating that we are modelling the unknown distributions of this r.v. as a normal

distribution. The result states that the mean of several r.v., regardless of their parent distribution, can

be modelled as a normal distribution.

Bringing this to our domain, usually execution times of complex tasks in CRTES have unknown

distributions. If we were interested in knowing the average execution time in our system, a first

approach could be model the average of the distribution of our execution time as a Gaussian dis-

tribution. Which is a very powerful approach because we do not need to take into account more

information than the one that is presented in the samples. Therefore, limiting laws allow us to avoid

making ad hoc models for each specific platform or task. Changing platforms or changing tasks will

only change the parameters 𝜇 and 𝜎2
of the Gaussian distribution, but the underlying model will

stay the same.

2.2.2 Law of Extremes: Block Maxima
Let us show in this section how we can apply the limit laws into the most extreme values of a

distribution. As we explained in Section 1.4, we have two ways of thinking about extremes. Let us

start by the first one of considering as extremes the maximum value of a sample.

Block Maxima.

We can define,

𝑀𝑛 = max{𝑋1 , · · · , 𝑋𝑛}, (2.5)

where 𝑋1 , · · · , 𝑋𝑛 is a sequence of independent and identically distributed r.v. with common dis-

tribution 𝐹. One can think of this sequence as different sets of runs from the same task in a given
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system, then 𝑀𝑛 is the maximum of each set of runs. It is actually rather easy to describe the limit

law for 𝑀𝑛 :

𝑃(𝑀𝑛 ≤ 𝑦) = 𝑃{𝑋1 ≤ 𝑦, · · · , 𝑋𝑛 ≤ 𝑦}, (2.6)

= 𝑃{𝑋1 ≤ 𝑦} × · · · × 𝑃{𝑋𝑛 ≤ 𝑦}, (2.7)

= {𝐹(𝑦)}𝑛 . (2.8)

Equation 2.6 of the demonstration is just writing the CDF of 𝑀𝑛 in terms of all the components.

Then, in Equation 2.7 we use the fact that each r.v. 𝑋1 , · · · , 𝑋𝑛 is independent, and thus the CDF of

𝑀𝑛 can be written as the product of the CDF of all 𝑋𝑖 . Finally, because each 𝑋𝑖 has the same CDF, 𝐹,

the CDF of 𝑀𝑛 can be neatly summarized as {𝐹(𝑦)}𝑛 . As clean as this result is, it is not very useful

at first because we do not know 𝐹, thus we look for approximations on 𝐹𝑛
.

When looking at the behavior of 𝐹𝑛
when the sample size tends to infinity, 𝑛 →∞, one can see that

for any 𝑦 < 𝑦+, where 𝑦+ is the upper end-point of 𝑌, the CDF of 𝑀𝑛 degenerates to zero.

An appropriate linear normalization of 𝑀𝑛 allows to stabilize the scale and location of the distribution

instead of degenerating to a point mass on 𝑦+. This is the approach that was used to derive the first

fundamental theorem of EVT.

Theorem 2 (Fisher–Tippett–Gnedenko Theorem [65]). Let us suppose that there exists sequences of
real-valued constants {𝑎𝑛 > 0} and {𝑏𝑛} such that,

𝑃{(𝑀𝑛 − 𝑏𝑛)/𝑎𝑛 ≤ 𝑦} → 𝐺(𝑦) as 𝑛 →∞, (2.9)

where 𝐺 is a non-degenerate1 distribution function, then 𝐺 belongs to the GEV distribution families,

𝐺(𝑦) = exp

{
−
[
1 + 𝜉

( 𝑦 − 𝜇
𝜎

)] 1

𝜉

}
, (2.10)

which is defined on 1 + 𝜉(𝑦 − 𝜇)/𝜎 > 0 where 𝜇, 𝜉 ∈ R and 𝜎 > 0.

This model has three parameters. We call 𝜇 the location parameter, 𝜎 the scale parameter, and 𝜉 the

shape parameter. Here we can differentiate three cases that produce the distribution families. The

distinction among them is given by the values that the extreme value index, 𝜉, takes. The first two

are the cases where 𝜉 > 0 which is the Fréchet family and the case where 𝜉 < 0 which is the Weibull
family. As seen in Figure 1.2, the Fréchet distribution is a Heavy Tail distribution, and the Weibull is

a Light Tail one. The final case is when 𝜉→ 0 which delivers the Gumbel family,

𝐺(𝑦) = exp

{
− exp

[
−
( 𝑦 − 𝜇

𝜎

)]}
, (2.11)

which is an Exponential Tail.

Finally we have a solution for the distribution of maxima 𝑀𝑛 . Nonetheless, one should recall that

this is a limit law. When the number of samples 𝑛 tends to infinity this is the distribution of the

maxima. This puts a burden on the estimation of the parameters of the GEV, more importantly on

the shape 𝜉 which is crucial in making a good assessment of the distribution. Being a limit law

implies that there will be some uncertainty in the model regardless of the method used to estimate

the parameters because our sample size cannot be infinite. We regard this phenomenon as model
uncertainty.

2.2.3 Threshold Law: Peaks Over Threshold
The second classical fundamental theorem of EVT parts from the second way to look at extremes.

Instead of fixing the maxima of each sample, one can consider the probability mass of the upper

end-point from a distribution, namely the tail.

1A Degenerate distribution function is one such that all the mass is located at one point 𝑚0 with probability 1 and the rest

of the values are 0.

15



Chapter 2. Background

Peaks Over Threshold (PoT).

Given a r.v. 𝑋 with a CDF, F, and a threshold, 𝑢 > 0, such that 𝑦 = 𝑥 − 𝑢, the excess r.v., 𝑋𝑢 , defined

as (𝑋 − 𝑢 | 𝑋 > 𝑢) is given by the CDF, 𝐹𝑢 , defined as:

𝐹𝑢(𝑦) = 𝑃(𝑋 − 𝑢 ≤ 𝑦 |𝑋 > 𝑢) =
𝐹(𝑢 + 𝑦) − 𝐹(𝑢)

1 − 𝐹(𝑢) , 𝑦 ≥ 0. (2.12)

Then 𝐹𝑢 is the excess distribution function, which is the distribution of the excess value over a

threshold 𝑢. A PoT model is a semi-parametric model where the law of 𝑋 for 𝑥 < 𝑢 is described

by the empirical distribution, and for 𝑥 > 𝑢 is defined by a parametric model for the tail. It is

semi-parametric because, if we want to apply EVT models, we are concerned with the tail of the

distribution. Therefore, for the values of the r.v. higher than the threshold 𝑋 > 𝑢 we use a parametric

model 𝑆𝑢(𝑥𝑢), with 𝑥𝑢 = 𝑥 − 𝑢, and for the cumulative probability up to the threshold 𝑢 we use the

empirical probability mass given by the sample. More formally,

𝑃(𝑋 > 𝑥) = 𝑆(𝑥) = 𝑆(𝑢)𝑆𝑢(𝑥𝑢), (2.13)

where 𝑆(𝑥) = 1 − 𝐹(𝑥) and 𝑆𝑢(𝑥𝑢) = 1 − 𝐹𝑢(𝑥𝑢) are the CCDFs.

Theorem 3 (Pickands–Balkema–de Haan theorem [15]). Let 𝐹 be a distribution function such that
𝐹(𝑥) < 1 with 𝐹𝑢 being its conditional excess distribution function. Then, 𝐹𝑢 converges in probability to the
Generalized Pareto Distribution (GPD) for large 𝑢. That is, 𝐹𝑢

ℒ−→ 𝐺(𝑦; 𝜎, 𝜉) as 𝑢 →∞, where:

𝐺(𝑦; 𝜎, 𝜉) =
{

1 −
(
1 + 𝜉

( 𝑦−𝜇
𝜎

) )− 1

𝜉 if 𝜉 ≠ 0,

1 − exp

(
− 𝑦

𝜎

)
if 𝜉 = 0.

(2.14)

With 𝜎 > 0, and 𝑦 ≥ 0 when 𝜉 ≥ 0 and 𝜇 ≤ 𝑦 ≤ 𝜇 − 𝜎/𝜉 when 𝜉 < 0. This result is crucial for

tail estimation. If the conditions for the theorem are met, the GPD family of functions results in

accurate estimates for the most extreme values on the tail. However, the conditions are met when

the threshold 𝑢 → ∞, which brings uncertainty in the implementation of estimates with the GPD

since finite values of 𝑢 need to be used.

2.2.4 State-of-the-art for EVT in MBPTA
Extreme Value Theory, a consolidated approach for modelling and predicting the occurrence of

rare events, has emerged as the preferred option for modelling the WCET of software programs in

CRTES. EVT has been considered particularly fit for probabilistic modelling of WCET as the latter

is normally considered a rare event in the program’s timing behavior. EVT is at the foundation of

several MBPTA approaches [3, 20, 35, 82, 149, 165], which have been already positively assessed in

some industrial use cases [170]. Probabilistic approaches building on sample and population sizes

have also been built for overlapping concerns across task scheduling and timing analysis [127], hence

being orthogonal to WCET estimation. Several works assess the necessary conditions for a correct

application of EVT to the timing problem since an inattentive application of the EVT statistical tools

can severely affect both trustworthiness and quality of the derived pWCET bounds [71, 105, 118].

Several studies focus on EVT applicability preconditions on the (timing) observations being i.i.d.

r.v.s [35, 44]. EVT has also been shown to be applicable also to stationary data preserving extremal

independence [142]. Different statistical tests have been assessed for that purpose in the real-time

literature [3, 35, 44, 137]. Also, platform randomization [97] or data sample randomization [104] have

been used to meet the i.i.d. requirement. However, even in case such statistical preconditions are

met, the reliability of the obtained pWCET bounds is still affected by the choice in the EVT inputs (i.e.

selection of samples belonging to the tail) and parameters of the fit distribution. Several methods

have been proposed for selecting and assessing the quality of EVT parameters and sample selection

and, in turn, their impact on the trustworthiness of the computed bounds [3, 12, 138].

Several authors have considered general EVT distributions, without restricting them to the expo-

nential law [76, 104, 105], whereas others build on the particular characteristics of the problem
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modelled – finiteness of the execution time of critical real-time programs – to fit exponential tails

only [3, 44, 59, 82], which have been shown to provide usable bounds and confidence intervals [149].

Probabilistic and statistical approaches [35, 48] have been increasingly considered as a promising

solution to cope with the rise in complexity of hardware and software systems, as determined by

unprecedented increasing computing performance requirements [54].

2.3 EVT Alternatives
In this thesis we propose alternative models for estimating very rare occurrences in the context of

MBPTA. Our aim is to propose new methodologies that maintain safety guarantees while needing

less requirements of application.

2.3.1 Chebyshev’s Inequality
Additionally, the other front is to mitigate EVT’s model uncertainty. Given that EVT has uncertainty

in the modelling process that cannot be avoided by construction due to the threshold estimation, we

want to resort to methods which can produce safe upper-bounds which do not have uncertainties

embedded into them. In that regard, there is a probabilistic inequality called Chebyshev’s Inequality
which upper-bounds the cumulative probability of exceeding a given value of the r.v. at study. This

inequality upper-bounds by construction any positive r.v. which makes for a suitable candidate for

starting a pWCET methodology. Let us introduce this probabilistic tool.

Theorem 4 (Chebyshev’s Inequality [156]). Let 𝑋 be a non-negative r.v., 𝑏 > 0, and 𝑓 a non-negative and
increasing function. Chebyshev’s inequality states that:

𝑃(𝑋 ≥ 𝑏) ≤ 𝐸( 𝑓 (𝑋))
𝑓 (𝑏) . (2.15)

For WCET estimation, 𝑋 corresponds to the execution time distribution to be bounded, and 𝑏 to an

execution time for which we want to find its upper-bound probability.

Regarding 𝑓 , it needs to be defined to realize the general Chebyshev’s inequality into a specific

upper-bound function. The function 𝑓 can be any non-negative function so that for a particular

domain D, Property 2.16 holds.

∀𝑥 ∈ 𝐷, 𝑓 (𝑥) > 0, (2.16)

𝑓 must also be an increasing function so that for a given interval 𝐼, Property 2.17 holds.

𝑎, 𝑏 ∈ 𝐼 | 𝑎 < 𝑏, ⇒ 𝑓 (𝑎) ≤ 𝑓 (𝑏). (2.17)

Interestingly, Chebyshev’s inequality does not require determining where the actual tail distribution

starts but instead works with the entire distribution, hence removing EVT’s model uncertainty for

tail selection. In fact, Chebyshev’s inequality carries no model uncertainty.

Observation 1. Chebyshev’s inequality is a model uncertainty free general model for pWCET estimation.

Chebyshev’s inequality also applies to continuous and discrete distributions regardless of their

characteristics (e.g. shape, variance, kurtosis, etc.). Also, it is non-parametric, i.e. it makes no

assumption on parameters for the studied distribution.

2.3.2 Markov’s Inequality
Markov’s inequality is a specific instantiation of Chebyshev’s inequality.

Corollary 1 (Markov’s Inequality [111]). Let 𝑋 > 0 and let the function 𝑓 be the identity function
𝑓 (𝑋) = 𝑋. Hence, Markov’s inequality yields:

𝑃(𝑋 ≥ 𝑏) ≤ 𝐸(𝑋)
𝑏

. (2.18)
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As for the baseline Chebyshev’s inequality, Markov’s inequality holds for any real-valued r.v. with a

finite expected value and positive value 𝑏. Also, it (i) is a trustworthy upper-bound, by construction,

of the underlying distribution; (ii) has no model uncertainty; (iii) is non-parametric; and (iv) can be

applied to discrete and continuous distributions.

In Chapter 5, we will assess Chebyshev’s Inequality viability for an MBPTA methodology.

2.3.3 State-of-the-art for EVT Alternatives for MBPTA
Markov’s and Chebyshev’s inequalities have been historically applied in a wide variety of fields such

as Engineering [160], Big Data sampling [143], and radiative transfer [163]. In the context of real-time

computing, moment-based bounds on tail probabilities have also been considered in the scope of

probabilistic schedulability analysis [37, 38, 56, 167]. Chernoff bounds [37, 38] and generalizations

thereof [167] are exploited to compute the cumulative distribution of the interference caused by

higher-priority tasks on a task response time, ultimately delivering a probability for deadline misses.

While building on application of Markov’s inequality to the timing dimension, these approaches

do not address the problem of computing probabilistic bounds to tasks’ execution time, which are

instead assumed to be available, but offer a scalable alternative to the computational complexity of

convolutions. Some works [106, 135] consider the use of Chebyshev’s inequality for WCET and/or

cache hit and miss rates estimation. However, those works consider Chebyshev’s inequality only

to estimate the impact of the variance on those metrics, and focus on the analysis of statistical

uncertainties. Other works consider using higher moments to improve concentration inequalities

similar to Markov [101]. Finally, authors in [185] consider a similar approach to those works for

WCET estimation, but discard Chebyshev’s inequality altogether given the pessimism expected for

high quantiles.

2.4 Hardware Event Monitors in MBTA
Powerful measurement-based timing analysis solutions have been proposed for multicores for critical

applications building on hardware and software profiling [24, 57, 144]. In this context, the PMU

in MPSoCs offers information relevant for timing analysis [73, 115], enabling V&V and software

time budgeting of time-critical applications. For instance, the usage of some shared resources can

be budgeted, monitored, and enforced using event quotas building on HEMs reached through the

PMU [46, 126, 131, 183]. HEMs are used to monitor when tasks exceed their usage quotas which

are suspended. Furthermore, HEM data has been shown to aid sampling representativeness [33].

Indeed, HEM information is already used as a pillar to certify critical avionics systems [134], so PMUs,

and the HEMs they allow monitoring, become the basis of industrial-quality multicore interference

mitigation and estimation techniques.

However, HEM information is not straightforward to use. Due to the impossibility of controlling

execution conditions in complex CRTES. A program run several times and performing the same

number of instructions, thus maintaining functionality, will yield different HEM results. In this

section we analyze the variability of HEM data within the context of the NXP T2080 Reference

Board.

We show that several of the 262 HEMs in the T2080 present significant variation (Section 6.2.1) and

follow different distributions (Section 6.2.2). We also dig down into some of the reasons behind the

observed variation (Section 6.2.3).

2.4.1 Disproportion Between the Number of HEMs and PMCs
Despite the increase in number and specialization of HEMs, their observability and accessibility in

reference CRTES platforms is typically constrained by the availability of a relatively (but consistently)

lower number of PMCs. The latter represent, in fact, the most natural way of making HEM infor-

mation available to the user. The number of PMCs available in modern MPSoCs typically ranges

between 4 and 8 per core, which inherently clashes with the number of HEMs an analysis would

need to track. In the case of ARM A53/A57/A71 cores, the number of PMCs is 6, which also matches

the number of PMCs in NXP cores e500mc/e6500.
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Overall, the clear imbalance between the large number of HEMs and available PMCs calls for ap-

proaches that reliably merge HEM readings across different experiments. It is also worth mentioning

that MPSoCs include an increasing number of complex shared resources. This will naturally result

into more HEMs tracked by timing analysis techniques to capture the effect of contention.

Hence, several runs are required to read all the HEMs of interest, which are later ‘merged’ off-line to

analyze the program behavior and reason about contention. For instance, to decide whether some

tasks can be scheduled concurrently, we need to budget how much each one is expected to access

each shared resource, which requires consistent reads of a large number of HEMs.

To make things worse, several runs of the same experiment in an MPSoC can result in inevitable

variations in the timing behavior of the program, though its functional behavior is the same. This

is due to the impossibility to control the entire hardware and software initial state in each run. In

practical terms, this translates into variability in HEM readings (as high as 59% for processor cycles in

our target system for relevant HEMs), with no variability observed in instruction count (as analyzed

in Section 6.2.3). The engineer is confronted with a set of values (readings) for each HEM, that need

to be merged to allow reasoning about multicore contention. Unfortunately, since HEM values from

different runs to be merged can be subject to different (large) noise, it is challenging to merge them

consistently so that merged HEM vectors – those where all HEMs of interest are included – resemble

the values that would have been obtained if they could have been read all of them simultaneously in

the same run.

2.4.2 State-of-the-art on HEM Analysis
In the CRTES domain, several works build on HEMs for the estimation of bounds to software timing.

Paulisch et al. [126] create an analysis and runtime monitoring solution for limiting task contention

in multicores by tracking and controlling HEM. In the same vein, Diaz et al. [55] build on HEM

to produce an ILP-based contention model for an AURIX automotive microcontroller. Likewise,

Santinelli et al. [77], build on the HEM of a multicore system to derive probabilistic WCET estimates.

Griffin et al. [75] derive a method to select the HEM with highest contribution to software timing

and predict execution time under unseen configurations.

More recently, information from HEMs has been exploited as the cornerstone of industrial-quality ap-

proaches [134, 162] for providing the necessary evidence for supporting the certification of multicore

CRTES, in conformance with the requirements from domain-specific certification authorities [62].

Several works in the mainstream (high-performance) domain reason on the sources of variability in

HEM values when executing several times the same piece of software. This covers from the operating

system noise [119], application variability [7, 121] and the particular HEM-Reading library, to the

complexity of the hardware [184]. For instance, [119] focuses on the cycle count HEM and shows

that its variability is often related to the executable layout and operating system issues. Also, at

software level, [184] assesses the accuracy of various high-level counter APIs with focus on cycle

count and total retired instruction HEMs. In our work, we use no operating system and access

directly, with no library, the HEMs (via the PMCs) so they are not subject to software-induced

variability. In [121], authors focus on task-parallel programs in high-performance environments

with highly-dynamic execution conditions, including dynamic task scheduling, that cause tasks to

execute in different orders and in different cores across executions. Authors propose techniques to

determine which HEM readings belong to each task and hence, combine them to derive all HEMs

for a task. Interestingly, the reading of each group of HEMs is performed once, so authors do not

assess the impact of variability in HEM readings due to hardware and software related variability.

We, instead, focus in much more predictable environments, as needed for CRTES and consider the

variability of HEM readings.

HEM sampling or multiplexing consists in time-sharing the PMCs over a set of HEMs: at each

interval boundary, whose duration is a configuration parameter, the PMCs are reprogrammed to

read a different set of HEMs. HEM sampling is, for instance, adopted by the Linux kernel’s perf event

subsystem. The potential inaccuracies introduced by the interpolation made by sampling techniques

have been studied elsewhere [103, 180]. Other works rearrange samples derived from HEMs from

long executions to improve performance analysis [147].

At hardware level, other works [171] focus on specific HEMs (e.g. retired instructions, branches,
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loads/stores) and develop low-level hardware hypotheses on the reasons behind some of these

HEMs suffering from various forms of under and over count. Authors do several recommendations

on the hardware design to reduce the observed variability. Our goal, instead, is managing at software

level HEM variability and limitations to read HEMs on existing boards (e.g. NXP T2080).

Incomplete sets of data have been considered with Matrix Completion (MC) methods [83, 136]. There

are fundamental differences between HEM merging and MC.

1. MC requires input data be a random matrix, where values in all rows and columns belong to

one measure with its own distribution for each value, which does not hold for the problem at

hand (e.g. the outcome of a HEM measure is a column, thus with its own distribution).

2. MC aims at producing synthetic data to complete missing data, thus bringing risks due to in-

ferring the distribution of real data to produce new data, which may match some characteristics

of real input data but miss others.

In fact, since input data (HEM values) do not match requirement (1), and the fraction of missing

values is large, MC populates the data array with values whose mean and standard deviation differs

drastically from those for real (observed) data. Overall, MC does not fit the needs of the problem at

hand by construction since its prerequisites are not met.

Several solutions have been proposed to master multicore interference in industrial contexts. Some

approaches attempt to reduce or fully remove interference across tasks running concurrently in

multicores by segregating accesses to different hardware blocks. These approaches have been devised

for on-chip and off-chip memories, including banks of shared caches, as well as banks and ranks of

DDR memories [94, 107, 110, 128, 155, 182].

Other approaches perform segregation over time, rather than over space, by splitting execution of

tasks into memory and computation phases, thus letting schedulers guarantee that memory phases

from different tasks do not occur simultaneously [25, 51, 129]. However, segregation over time is not

always doable due to the characteristics of the hardware or the application itself (e.g. application

semantics cannot be changed due to overwhelming V&V costs). Therefore, if time segregation is

not feasible, even if space segregation is used, multicore interference can still occur in hardware

resources not visible at software level, such as interconnects, as well as buffers and queues internal

to shared caches for instance [161]. In those cases, solutions are needed to master interference in

multicores and account for it during timing analysis.

2.5 Timing Validation in Automotive Systems
The need for deriving time budgets for safety-related software components in automotive emanates

from safety requirements, as described in ISO 26262 automotive functional safety standard [89].

Safety requirements determine the maximum response time affordable for a given functionality and

the fault tolerant time interval, which stands for the time allowed since a fault occurs until an action is

taken to recover or to bring the system to a safe state. Both determine the end-to-end time for a given

functionality to be performed (including sensing and actuation time). Once discounted the time

devoted to interfacing with physical components, the remaining time is the time budget allocated

for the software component to complete its execution.

Automotive systems are designed and verified following appropriate practices to achieve safety

compliance. For instance, WCET estimation tools may be used, together with appropriate response

time analysis methods for task scheduling. Nevertheless, a validation step is needed before deploying

the system to detect system faults due to, for instance, the violation of some assumptions caused

during integration. Whether an application adheres to its timing constraints during the validation

process is normally assessed in hardware-in-the-loop testing environments, where the complete

application can be run. Appropriate test equipment is used to collect information on the execution of

the application under analysis in general, and each of its tasks in particular, thus with a much higher

observability than in the system during operation. However, due to the high coupling between the

different tasks, the operating system, and the input/output interface of the application, individual

tasks cannot be run in isolation or at externally-controlled time instants. Hence, although start and

end times can be obtained for the different jobs of each task (observability), it is not possible to
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enforce specific release times at will (controllability). Overall, tasks overlap with each other in an

intricate manner depending on release times dictated by input data and timers, as well as by their

duration.

Execution time measurements, therefore, reflect arbitrary-looking overlaps across tasks, representa-

tive for the input data used during tests. Whether other overlaps are possible and whether those

can lead to higher execution times is, in general, unknown and hard to control in practice. Hence,

other than considering an engineering margin on top of the high watermark execution time to ac-

count for scenarios not triggered by the tests used, end users lack tools to use those execution time

measurements in a more informed manner for validation purposes. While engineering margins

set based on experience have worked for hardware platforms with low execution time variability,

the increasing use of Graphics Processing Units (GPUs) and other high-performance hardware to

match the performance needs of Autonomous Driving frameworks brings much higher performance

variability due to contention in the use of shared resources (e.g. shared caches and main memory

bandwidth). Hence, end users lack means to quantify whether unobserved scenarios could lead to

timing violations.

One of the focus of this thesis is to aim the timing validation methodologies by providing with an

analysis tool for the contention derived from overlapping tasks. Continuing the trend of resorting

to measurement-based analysis our contention modelling builds on a state-of-the-art autonomous

driving framework.

2.5.1 State-of-the-art on MBPTA with Dependency
The impact of dependencies in WCET estimation has been mostly considered for the particular

case where they exist across jobs of a given task. In particular, probabilistic WCET estimation was

originally formulated on top of the assumption of i.i.d. execution time observations for a task [59].

Therefore, solutions for pWCET estimation have often built on top of Extreme Value Theory for i.i.d.

processes [65].

However, some researchers noted that execution time dependencies may exist across jobs of a given

task, thus jeopardizing i.i.d. properties, so methods considering those dependencies would be more

convenient [40, 100]. Amongst those works, Bernat et al. [22] pioneered in the area of execution time

dependencies and analyzed them at the scope of program components.

Santinelli et al. [142] considered a particular type of dependencies across jobs – stationary processes –

and concluded that they could lead to WCET underestimation if not accounted for carefully. Similarly,

Melani et al. [114] showed that appropriate statistical tests (mostly correlation and independence

tests) can be used to account for those dependencies satisfactorily. Lima and Bate [104] proposed a

solution to mitigate the impact of dependencies across jobs to facilitate WCET estimation. Finally,

Abella et al. [2] have recently shown that the source of those dependencies across jobs imposes

different constraints on task scheduling.
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Chapter 3

Experimental Methodology

The workflow used in this thesis is carefully designed in order to ensure the results obtained can

be trusted; from the generation of the data until the end goal. The diagram in Figure 3.1 shows the

general workflow of all experimental methodologies followed in this thesis. In Section 3.1 we present

the Data Generation process which in this thesis has been performed in two ways.

• The first option is to design a set of programs that stresses the hardware (board) or simulator

used to obtain execution times or HEM data for the analysis.

• The second option, described in Section 3.2, is to use analytical parametric distributions as

benchmarks for pWCET methodologies’ validation. Gathering a set of parametric distributions

with similar tail profile than the most extreme conditions of CRTES at operation is useful to

validate pWCET estimation methodologies.

Once we have chosen the benchmarks for data generation, we perform the Data Gathering using

sampling techniques. In Section 3.3 the Data Validation step is detailed. After sampling, the samples

coming from real hardware or simulator should pass a validation process with an i.i.d. test to ensure

that the methodologies can be trustingly applied. In contrast, the data sampled from parametric

distributions is obtained using standard statistical libraries from R [133], in which the i.i.d. condition

is given by construction. Finally, Section 3.4 shows the Modelling part of the experimentation. Once

the data is ready and validated, we apply the models and methods we propose in this thesis and also

state-of-the-art methodologies like EVT. The application of EVT models will be further explained in

this chapter. After the confidence intervals have been computed, we obtain our End Result, be it a

pWCET or other results from our methodologies. Even if the methodologies we investigated in this

thesis are different in nature, the core of the experimental methodology remains the same to ensure

trustworthy results and methods.

Benchmark 
Programs

Benchmark 
Distributions

Hardware

Sample

i.i.d. Test EVT Model
or other 

Methodologies

Confidence
Intervals

pWCET
Estimation
or 
other Models

Data Generation Data ValidationData Gathering Modelling End result

Simulator

Figure 3.1: Diagram of the experimental workflow with the tools used in this thesis.

3.1 Benchmarks and Platforms
In this section we describe the benchmarks used in this thesis to generate the data that will be used

to validate and test our methodologies. We distinguish between a real-case study on real hardware,
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Table 3.1: Workloads on the T2080 for validation purposes.

Core0 Core1 Core2 Core3
W1 IMUL_UL2 FADD_MEM FMUL_MEM LMUL_MEM

W2 LADD_DL1 LMUL_UL2 FADD_UL2 FMUL_UL2

W3 LMUL_MEM LMUL_UL2 FADD_UL2 DMUL_UL2

W4 LADD_UL2 FADD_MEM FMUL_MEM LADD_MEM

W5 FADD_MEM FMUL_MEM LADD_MEM LMUL_MEM

W6 FADD_UL2 FMUL_UL2 LADD_UL2 LDIV_UL2

W7 FADD_UL1 FMUL_UL1 LADD_UL1 LMUL_MEM

W8 FMUL_UL1 FADD_MEM LMUL_L1 LMUL_MEM

W9 FMUL_MEM FADD_DL1 FADD_MEM LMUL_DL1

W10 LADD_MEM LADD_DL1 LADD_UL2 LADD_MEM

W11 FADD_DL1 FADD_UL2 FADD_MEM FMUL_UL1

W12 FADD_UL2 LADD_UL2 LDIV_DL1 LMUL_UL2

W13 LADD_UL2 FADD_MEM FMUL_MEM LADD_MEM

W14 LADD_UL2 LMUL_UL2 FADD_MEM FMUL_MEM

W15 FADD_MEM FMUL_MEM LADD_DL1 LDIV_DL1

W16 LADD_DL1 LDIV_DL1 FADD_MEM FMUL_MEM

benchmarks that are run on real hardware boards to collect HEM data, a representative autonomous

driving software framework, and a set of reference analytical distributions which are representative

of tail profiles in CRTES.

3.1.1 Railway Case-Study on a LEON3+ Platform
The European Train Control System (ETCS) is a safety-critical application (SIL 4) responsible of

signaling and control in the European Rail Traffic Management System (ERTMS) framework.

ETCS protects the train motion by constantly monitoring traveled distance and speed, and is pro-

grammed to activate the emergency brake system whenever unauthorized speed values are detected.

The ETCS subsystem comprises three main tasks that are executed sequentially to provide the re-

quired safety function: the Odometry module, estimating a set of parameters based on the inputs

collected from the train environment (e.g., estimated position); the Service module, managing the

Service braking system; and the Emergency module, actually controlling the Emergency braking

system. This function has strict real-time requirements and needs to be certified at the highest in-

tegrity level in the corresponding railway safety standards. While all three tasks do exhibit strict

real-time requirements, we focus our evaluation on the Emergency module, the core of the ETCS

CRTES module.

The ETCS validation suite, which is made available with the application, includes 10 different

input vectors (TEST0 to TEST9) corresponding to the operating conditions for functional and timing

validation regarded as relevant by the application owner. These benchmarks are used for the

techniques proposed in Chapters 4 and 5.

Platform. The platform for this experiment is an Field-Programmable Gate Array (FPGA) implemen-

tation of a LEON3+ architecture comprising first level instruction and data caches, and a unified L2

cache, where the sources of execution time variation have been conveniently controlled by hardware

means to guarantee the representativeness of the measurements collected at analysis with respect to

the timing behavior during operation [85, 159]. In particular, this processor builds upon the concepts

of time upper-bounding and time randomization to enforce representativeness.

3.1.2 Microbenchmarks on an NXP T2080 Platform
In general, programs can have built-in sources of non-determinism (e.g. time- or input-dependent

values). Also, they may easily be subject to variability due to minimal variations in the Operating

System [171]. In order to reduce these sources of variability, we construct specific test-cases, which
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Figure 3.2: Block diagram of the T2080.

also aim at triggering a wide set of HEMs. To that end, we have created different benchmarks

comprising different core and cache (memory) patterns. At core level, we create 3 benchmarks using

intensively the integer pipeline, using integer (I) and long (L) operands, and the floating point (F)

pipeline. We use short latency addition (ADD) operations and long-latency multiplication (MUL)

operations. At the cache hierarchy level, benchmarks operate on a vector whose size we vary so most

load/store operations hit in the data cache (DL1), the L2 (UL2) or memory (MEM). From these 18

benchmarks (𝐼 , 𝐿, 𝐹) · (ADD,MUL) · (DL1,UL2,MEM), we have generated 16 workloads, as shown

in Table 3.1.

These benchmarks are used for the techniques presented in Chapters 6 and 7. In both chapters, we

target a NXP T2080 Reference Design Board [68, 69] increasingly considered in the avionics domain,

with Airbus already achieving multi-core certification on this board [113], and with Rockwell Collins

pursuing such certification [134]. The T2080 equips 4 e6500 cores (see Figure 3.2), each comprising

private instruction and data cache as well as a private MMU. A second level cache is shared between

all the cores. A “CoreNet” coherence fabric provides access to the memory controller as well as

other peripherals present in the board. Some features are deactivated in our setup for predictability

reasons, such as SMT (Hyperthreading in Intel terminology) and the CoreNet Platform Cache.

We have run our tests in a bare-metal setup, using the software development kit provided by the

board manufacturer (NXP) to configure the platform and load images to it through a JTAG debugging

interface. In the bare-metal setup, we access PMCs directly without the use of a specific library, e.g.

PAPI, to minimize the impact of readings.

In each experiment, we run one benchmark per core. The task in core0 is the reference task on which

we perform the analysis, for the tasks in the other cores would be performed analogously. In each

run of every experiment, we collect measurements when the task in core0 finishes its execution. We

consider single-path benchmarks to isolate platform-level variability, so that in all runs the number

of instructions executed (INSTRUCTIONS_COMPLETED) in core0 is exactly the same. Across any two

runs of an experiment, we reset the state of caches, TLBs, and Branch Target Buffer. To that end, we

execute a micro-benchmark that generates a massive number of misses in all those stateful blocks.

While ISA-specific solutions exist that allow obtaining the same effect with specific instructions, we

considered the micro-benchmark solution to be more platform agnostic.

3.1.3 Apollo Autonomous Driving Framework on an NVIDIA Jetson Platform
In Chapter 8 we present a methodology to assess contention in CRTES. There, we target Apollo [11]

AD framework, as the largest existing AD project with more than 120 partners including top-tier AI

and tech companies, and car manufacturers.
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Figure 3.3: Apollo 3.0 software architecture pipeline.

AD systems drive the vehicle towards a specified destination as safely and efficiently as possible. To

this end, the AD system includes complex combinations of various input sensors such as cameras,

short-range and long-range radars and LiDARs to scan the surrounding area around the car and track

the moving objects. The system features sophisticated navigation schemes to locate the position of

the vehicle with centimeter-level precision. Based on this information, the system plans the future

paths, predicts the trajectory of moving objects, and controls the vehicle to follow the specified paths.

These are the main stages of almost all practical state of the art AD systems [11, 13, 158]. Figure 3.3

shows the main modules and architecture of our reference AD system, Apollo 3.0. The main modules

are the following:

(1) Perception module identifies the obstacles in the surrounding of the autonomous vehicle.

(2) Prediction anticipates the future motion trajectories of perceived obstacles/objects.

(3) Localization leverages information received from different sensors to estimate the location of the

vehicle precisely.

(4) Navigator (Routing) module tells the vehicle how to reach the specified destination.

(5) Planning plans the spatio-temporal trajectory of the vehicle.

(6) Control generates control commands such as accelerating, braking and steering based on the

outcome of these modules.

(7) CANBus passes all the control commands to the vehicle hardware and also provides some infor-

mation back to the AD system.

(8) HD Map module is a library that provides detailed structured information about the roads.

(9) HMI (Human Machine Interface) is a module for viewing the status and controlling the functions

of the vehicle in real-time.

(10) Monitor is a surveillance system to check all the software and hardware modules.

(11) Guardian is a safety module responsible to intervene whenever Monitor detects a failure.

Inter-Module Functional Dependencies: The dependencies between different modules of Apollo

can be triggered in three different ways:

• Periodically, based on a timer (On-Timer).

• Once a module produces data to be served by its successor or successors.

• Whenever a module receives a request message from another module. Accordingly, a response
message should be computed and published.

As shown in Figure 3.3, each module may be triggered by either two or just one of these ways.
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• Perception receives sensor input data such as Radar data, LiDAR point-cloud data, and camera

data. Based on these inputs, this module detects objects of interest and traffic lights and tracks

them inside consecutive frames.

• Localization module has two modes: a RTK-based1 mode with a timer-based function (On-

Timer), and Multiple Sensor Fusion (MSF).

• Prediction receives output data of both Perception and Localization. It updates its internal status

whenever it receives a Localization update. However, the main prediction function is triggered

once Perception publishes an output message.

• Navigator module is triggered whenever a routing request is received.

• Planning, Control and CANBus modules are all triggered periodically and also when they receive

Prediction output, human commands and Control commands respectively.

In Figure 3.3, control lines, On-Timer triggers, and inter-module updates are shown with different

arrow types.

Platform. Since our target are real automotive systems, we have ported it to the NVIDIA’s latest

automotive platform, Xavier MPSoC, which is integrated in the Jetson AGX Xavier [148] platform.

The Xavier MPSoC consists of an Octa-core ARM-based CPU, a 512-core NVIDIA Volta GPU, and

several accelerators such as specialized deep learning accelerators (NVDLA) to meet the needs of

automotive systems.

3.2 Analytical Distributions
In general, parametric models with analytical expressions are very useful to validate pWCET method-

ologies. While case-study benchmarks allow us to validate the pWCET with data that will be similar

to the one at system operation; parametric models allow to validate the pWCET for exceedingly

low probabilities. With parametric models, one can contrast the pWCET at probabilities as low

as 𝑝 = 10
−15

, thus assessing how the model works for quantiles which are very far from the ones

observed. This kind of validation cannot be done with real hardware data due to the impossibility

of capturing such quantities of data. Therefore, when working in tandem, analytical distributions

and case-study data make for a more complete validation set.

In the scope of timing analysis of real-time programs, it is reasonable to assume that the target

program will always terminate. Hence, a WCET value upper-bounding all possible program’s

executions always exists. It therefore follows that, the tail of its execution time distribution is

necessarily a light distribution, which has been shown to be trustingly and tightly upper-bounded

with light and exponential tail distributions [3, 44, 149]. For this reason, we focus on light and

exponential tails.

While heavy tails are, therefore, unnecessarily pessimistic and hence, left out of our set of validation

distributions, an execution time sample could apparently correspond to a heavy tail distribution.

This could be, for instance, the case when the sample size is not large enough to provide sufficient

representativeness in a mixture distribution. In the general case, this concern relates to the sampling

process (sample size in particular), shared across all applications of statistics, and therefore, beyond

the scope of our methodology. Nevertheless, nothing precludes the use of our methodology for

heavy tails.

The different types of tails are illustrated with the CCDF of several example distributions in Figure 1.2.

All three GEV distributions have location 𝜇 = 0 and scale 𝜎 = 1000: the Weibull distribution (light

tail) with shape 𝜉 = −1/4 has a sharp slope and a maximum value (2500 in the example); Gumbel

(exponential tail) with 𝜉 = 0 has also a relatively sharp slope but it has no maximum; and the

exceedance probability for the Fréchet distribution (heavy tail) with 𝜉 = 1/4 decreases polynomially.

The Beta (light tail) distribution has a similar profile to the Weibull distribution and it is commonly

used to model high quantiles of random variables with a finite defined interval [10, 92, 116], which

1Real-time kinematic (RTK) positioning is a satellite navigation technique used to enhance the precision of position data

derived from satellite-based positioning systems (global navigation satellite systems, GNSS).
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Table 3.2: Distributions used for the analysis and their respective parameters.

Acronym Type Parameters Probability Density Function
Gaussian1 Gaussian 𝜇 = 100, 𝜎 = 10

1

𝜎
√

2𝜋
exp

(
− 1

2

( 𝑥−𝜇
𝜎

)
2

)
Gaussian2 Gaussian 𝜇 = 100, 𝜎 = 50

Weibull1 Weibull 𝛼 = 4, 𝜆 = 80 𝛼
𝜆

(
𝑥
𝜆

)𝛼−1

exp

(
−
(
𝑥
𝜆

)𝛼)
Weibull2 Weibull 𝛼 = 8, 𝜆 = 80

Beta1 Beta 𝛼 = 8, 𝛽 = 1/4
𝑥𝛼−1(1 − 𝑥)𝛽−1

Γ(𝛼+𝛽)
Γ(𝛼)Γ(𝛽)Beta2 Beta 𝛼 = 8, 𝛽 = 1/8

Gamma1 Gamma 𝛼 = 100, 𝜆 = 1 𝑥𝛼−1

Γ(𝛼)𝜆𝛼 exp

(
− 𝑥

𝜆

)
Gamma2 Gamma 𝛼 = 150, 𝜆 = 1

Mixture1 Mixture of Gaussians 𝜇 = {5, 50, 100}, ∑
3

𝑖=1

𝑤𝑖

𝜎
√

2𝜋
exp

(
− 1

2

( 𝑥−𝜇
𝜎

)
2

)
𝜎 = 10,

𝑤 = {0.60, 0.39, 0.01}
Mixture2 Mixture of Gaussians 𝜇 = {50, 100, 400},

-𝜎 = 50,

𝑤 = {0.60, 0.39, 0.01}
Mixture3 Mixture of Weibulls 𝜆 = {5, 50, 100}, ∑

3

𝑖=1
𝑤𝑖

𝛼
𝜆𝑖

(
𝑥
𝜆𝑖

)𝛼−1

exp

(
−
(
𝑥
𝜆𝑖

)𝛼)
𝛼 = 4,

𝑤 = {0.60, 0.39, 0.01}
Mixture4 Mixture of Weibulls 𝜆 = {5, 50, 100},

-𝛼 = 8,

𝑤 = {0.60, 0.39, 0.01}

fits WCET modeling. And the Gamma (light tail) distribution is also typically used in EVT and

WCET [12].

All former distributions are unimodal, which is a common way to represent execution time profiles.

However, it has also been shown that the execution time of many programs presents “clusters”. That

is, the program’s execution time varies around two or more central values rather than vary around

a single mean. This results in mixture distributions that can arise both in sequential applications and

parallel applications [3, 177, 178]. As an example of the former, let us assume a program whose

execution time profile is influenced by the latency of its load/store operations which can hit or miss

the data L1 cache and L2 cache across different runs depending on the program’s inputs. This results

in a mixture distribution with 3 clusters (peaks) around the data L1, L2 and memory latencies,

respectively. An example of mixture distribution is represented by the black line in Figure 4.1.

Overall, we use a solid set of reference distributions that are in line with the state of the art

[12, 34, 82, 137]. In particular, we use unimodal (Gaussian, Weibull, Beta, and Gamma) and chal-

lenging multi-modal distributions (Gaussians and Weibulls) with different tail profiles to increase

representativeness. In Table 3.2 we show all the reference distributions and their parameters used in

this thesis. Summarizing, we fixed this set of reference distributions based on these criteria:

• Working on the assumption of non-heavy tails, we choose four parametric distribution fam-

ilies to reflect on different tail profiles. Thus, Fréchet distribution is left out. Also, Gumbel

distribution is replaced by the Gaussian distribution, which has exponential tails.

• Execution time profiles of complex CRTES working with complex software produce mixture

distributions. Each component of the mixture is related to the latencies produced by misses

in the different cache levels. We choose two families of mixture distribution with exponential

(Gaussian) and light tails (Weibull).

• Each distribution family is present with two different parameterizations to stress the starting

point of the threshold from an EVT point of view.
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3.3 Statistical Tests and Techniques
In thesis, we resort to the frequentist approach to statistical testing [123]. Frequentist inference

has proven to be a trustworthy approach to hypothesis testing and to compute confidence levels

comparable to the Bayesian approach in critical domains like healthcare [169]. In the literature there

are a plethora of tests that tackle these problems and we try to use the most powerful ones from the

point of view of frequentist inference. Before discussing statistical testing, let us throw some light to

the p-value discussion.

The p-value in hypothesis testing is mistakenly thought as the probability of your hypothesis being

correct or not. This interpretation is quite common due to the multiple layers in between your sample

and the p-value that are not explored enough. The definition of p-value is the conditional probability

to the hypothesis associated to an statistic of the observed sample. In the next section we further

explain this definition.

3.3.1 Hypothesis Testing
Hypothesis testing is commonly used to assess some characteristic in our data. If done right, it is

very useful to guide us on our assumptions on the data.

First, one starts by fixing a null hypothesis, 𝐻0, which is the hypothesis that one wants to test on

the data, and then an alternative hypothesis, 𝐻1, in order to fix an alternative option. For instance,

a null hypothesis can be that the data follows a Gaussian distribution. Then, one decides which

test is appropriate. It is important to highlight that the goal of hypothesis testing is gather enough

information about the sample to either reject the null hypothesis or not reject it, but the null hypothesis

will never be accepted as such for reasons we will explain later. The statistical test works as the

following. One can devise a new random variable, 𝑡, attempting at describing some property of the

data, also called a test statistic. To put it formally, the test statistic will be devised in such a way that,

if the null hypothesis is true, then the test statistic 𝑡 will follow a certain distribution 𝑇. Now, let us

assume we have our sample and computed our test statistic 𝑡, it is time to assess whether 𝑡 follows

the distribution 𝑇. This is a complicated problem of its own, but in hypothesis testing what one does

is assess whether a value like 𝑡 is likely to happen if it comes from distribution 𝑇. In the case of

unilateral testing, the conditional probability on this statistic is given by:

𝑝 = 𝑃(𝑇 ≥ 𝑡 |𝐻0), (3.1)

which is the definition of the p-value for the unilateral test. Note that, there are some tests where

the test statistic, 𝑡, is directly related to the null hypothesis. For instance, if we want to test whether

our data can be adjusted to a given expected value, we will perform a t-test [154], in which under

the null hypothesis the statistic follows the Student’s t-distribution. In other cases, the test statistic

might just be a consequence of the null hypothesis. If our null hypothesis is that our data follows a

Gaussian distribution, because it is a symmetric distribution, we can test whether our data has zero

skewness. In this case, zero skewness is a property derived from the null hypothesis, but on its own

it is not enough proof to assess if we are under the null hypothesis. In practice, one should aim at

finding, or devising, a statistical test in which the statistic is directly related to the null hypothesis

(e.g. Lilliefors’ test for the Gaussian distribution [102]).

Now that we have developed the intuition on the p-value, we need to assess how to interpret the

usual critical factor, 𝛼, used in practice. Even if the probability of having a value as big or small as the

statistic, 𝑡, coming from 𝑇 is very unlikely, they still can happen. As we show, there is a whole branch

of statistics dedicated to extreme values. Therefore, the assessment of whether or not 𝑡 belongs to 𝑇
is determined by a critical factor 𝛼 set by the user. In the case of unilateral testing, if 𝑝 < 𝛼 the null

hypothesis is rejected, which means that the user thinks the value is so unlikely they assume it does

not come from 𝑇. We put emphasis on the assumption because test are not a truth, the user is the one

that puts a critical threshold and decides how risky they want their assumptions to be. Furthermore,

if one takes another look at Equation 3.3.1, it says that one first assumes that the null hypothesis is

true, then checks whether or not the data reflects that. Usually one would think we are testing the

opposite, that given our data, how likely is the null hypothesis to be true. In practice computing that
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is very challenging and thus we resort to these incomplete methods. That is why one can not accept

a null hypothesis, because the tests are designed assuming the null hypothesis is true. Nonetheless,

hypothesis and statistical tests are very useful and are used widely within the scientific community,

but it is important that each and every scientist that implements them knows their limitations.

3.3.2 Confidence Intervals
It is common in any statistical estimation dealing with r.v. to provide with confidence intervals. One

of the most common approaches is the Delta Method [42], or propagation of uncertainty. Let 𝜃̂𝑛 be

the estimator of a certain parameter 𝜃. If the estimator is asymptotically normal then:

√
𝑛(𝜃̂𝑛 − 𝜃) ℒ−→ 𝒩(0, 𝜎2(𝜃)), (3.2)

the difference between the estimator and the true value of the parameter converges in probability to

a Gaussian distribution which is fairly easy to compute. In general, the computation of confidence

intervals is not so straight-forward given that the estimator may be inside a more complex function.

For instance, if we devise a model for the execution time of a program, rarely will this depend directly

on the estimator. Usually, it will be devised in a more complex way inside some function, ET ∼ 𝑔(𝜃̂𝑛).
Let 𝑔 be a differentiable function around 𝜃 with 𝑔′ being the derivative. Then the Delta Method for

the univariate case is

√
𝑛
(
𝑔(𝜃̂𝑛) − 𝑔(𝜃)

) ℒ−→ 𝒩 (
0, 𝜎2(𝜃)[𝑔′(𝜃)]2

)
. (3.3)

Suddenly, the computation of confidence intervals can become very complex. The derivative of 𝑔
may be very hard to compute in practice. In those cases, one can resort to techniques which put the

burden on computing power.

The Bootstrap [60] is a technique to estimate the sampling distribution of a r.v. coming from an

unknown distribution 𝐹. Let us explain this with a simple case. We want to compute the mean from

a sample 𝑋𝑛 drawn from a population 𝐹. With the delta method one would estimate the mean using

the sample mean 𝑋̄𝑛 and estimate the confidence interval using Equation 3.2. In Bootstrap, one takes

the sample 𝑋𝑛 = 𝑥1 , 𝑥2 , · · · , 𝑥𝑛 and resample it with replacement, meaning that when resampling

any value 𝑥𝑖 can be drawn many times. A sample without replacement would mean that once

𝑥𝑖 is drawn, it gets taken out of the sampling pool. Now you have another sample 𝑋∗𝑚 . In [60]

the second Bootstrap method states that as one generates multiple samples 𝑋∗𝑚 and computes the

desired estimator with it 𝜃̂∗𝑚 , its distribution is approximately the one in the Delta Method. The

power of this method is that this is true for any r.v., therefore it works as well for the case of the

estimator being in a complex function 𝑔(𝜃̂𝑛). In practice, when computing confidence intervals

using Bootstrap one would generate many Bootstrap samples and take as confidence intervals the

maximum and minimum value of the estimator produced by those samples. The Bootstrap method

eases the computation of confidence intervals by a great deal and is used throughout this thesis.

3.3.3 Testing for Independence
The Ljung-Box test [28, 108] is a test to check the independence of a sample. The original idea from

[28] was to find the distribution of the residuals in ARIMA models. One can define the autoregression

of the residuals of an ARIMA as:

𝑟𝑘 =
∑ 𝑎̂𝑡 𝑎̂𝑡−𝑘

𝑎̂2

𝑡−𝑘
, (3.4)

where 𝑎̂𝑡 are the residuals. Then for large 𝑛 and assuming 𝑎’s are uncorrelated random deviates, the

distribution for the statistic,

𝑄 = 𝑛(𝑛 + 2)
𝑚∑
𝑘=1

𝑟2

𝑘

𝑛 − 𝑘
, (3.5)
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follows a chi-squared distribution 𝜒2

𝑚 with 𝑚 degrees of freedom. Now, we can use this reasoning

to check the independence of a random sample. We take a random sample and compute the statistic

𝑄, then if the r.v. is independent 𝑄 follows a 𝜒2

𝑚 .

3.3.4 Test for Identical Distribution
The Kolmogorov-Smirnov (KS) test [95, 150] is usually the go-to test for identical distribution of a

sample. Given a r.v. 𝑋 of size 𝑛 one wants to assess whether the sample was drawn from distribution

𝐹(𝑥). For the KS test one computes the statistic:

𝐷 = sup

𝑥

|𝐹(𝑥) − 𝑆𝑛(𝑥)|, (3.6)

where 𝑆𝑁 (𝑥) is the empirical cumulative distribution function of X. Under the null hypothesis and

if 𝐹(𝑥) is continuous the statistic

√
𝑛𝐷𝑛 for 𝑛 →∞ follows the Kolmogorov distribution,

𝑃(𝑥) =
√

2𝜋
𝑥

∞∑
𝑘=1

exp

(
−(2𝑘 − 1)2𝜋2

(8𝑥2)

)
, (3.7)

which does not depend on 𝐹(𝑥). For the usual case where 𝐹(𝑥) is unknown we use the two-sample
test:

𝐷𝑚,𝑛 = sup

𝑥

|𝑆1,𝑚(𝑥) − 𝑆2,𝑛(𝑥)|. (3.8)

One rejects the hypothesis of 𝑆1,𝑚 and 𝑆2,𝑛 coming from the same distribution if the statistic 𝐷𝑛,𝑚

surpasses some confidence level 𝛼, e.g. 𝛼 = 0.05. Note that, in order for the statistic to follow a

Kolmogorov distribution, the parameters of 𝑆1,𝑚 and 𝑆2,𝑛 must be known. If one or more parameters

must be estimated from the sample, alternative test based on Kolmogorov should be devised, as in

the case of the Lilliefors’ test for normality [102]

3.4 Estimating the Extreme Value Index
In this section we discuss some methods to estimate the extreme value index while indirectly inferring

on the threshold for the tail.

3.4.1 Hill Estimator
Let us assume a sample 𝑋1 , · · · , 𝑋𝑛 with CDF 𝐹, and let 𝑋(1) ≥ 𝑋(2) ≥ · · · ≥ 𝑋(𝑛) be the order statistics.

That is, 𝑋(1) denotes the highest value from the sample and 𝑋(𝑛) denotes the lowest one. The Hill

estimator [86] based on 𝑛 upper order statistics is:

𝜉̂𝑘 =
1

𝑘

𝑘∑
𝑖=1

𝑋(𝑖)

𝑋(𝑘+1) , (3.9)

for 𝑘 = 1, · · · , 𝑛−1. The extreme value index has an estimator which only depends on the proportion

of upper order statistics with some chosen threshold 𝑋 𝑘+1
. The particular choice of threshold is

crucial for the estimation. The estimator is shown to be consistent when 𝑘 →∞. As one can see the

particular choice of 𝑘 crucial for the estimation while remaining an unknown variable. The threshold

𝑘 depends on the underlying distribution 𝐹 which is unknown and therefore requires solutions which

are obtained directly from the data which can provide asymptotic solutions like bootstrap [45]. This

can still be computationally demanding given the need to use finite samples. In practice, one infers

𝜉 with the use of the Hill plot. From a given sample, we compute all 𝜉̂𝑘 from a set of thresholds 𝑋(𝑘)

such that 1 ≤ 𝑘 ≤ 𝑛 − 1. Then in a plot we draw in the 𝑥-axis all threshold values 𝑘 and in the 𝑦-axis

all the computed 𝜉̂𝑘 . We will find a region on the plot that is stable, and we will infer the value of 𝜉
from there. However, this method is well-suited for the analysis of heavy-tails, given that the model

is derived from the power law model. Given that in the context of this thesis we discard the use of

heavy tails, we need to resort on other methods to estimate the extreme value index.
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Light

Heavy

Exponential

Figure 3.4: Example of a CV plot for a sample from Gaussian distribution.

3.4.2 Coefficient of Variation
The Coefficient of Variation (CV) is a powerful test to distinguish between polynomial (light and

heavy) and exponential tails [90]. It uses the residual coefficient of variation. The theoretical residual

CV from the excess random variable 𝑋𝑢 from a threshold 𝑢 is given by

CV(𝑢) ≡ CV(𝑋𝑢) =
√
𝑉(𝑢)/𝑀(𝑢), (3.10)

where 𝑀(𝑢) = 𝐸(𝑋𝑢) is the residual mean and 𝑉(𝑢) = Var(𝑋𝑢) is the residual variance. For a given

sample we can compute the empirical residual CV with the standard deviation and mean of the

sample. It was shown in [132] and [15] that the residual CV of a random variable, for a sufficiently

large threshold, is almost constant and tends to the residual CV of a certain GPD. In the case of the

GPD, the residual CV is constant and independent of the scale parameter,

𝐶𝜉 =
√

1/(1 − 2𝜉). (3.11)

Therefore estimating the CV one can estimate 𝜉:

𝜉 =
1

2

(
1 − 1

𝐶2

𝜉

)
. (3.12)

This serves as a distinguisher for the kind of tail one is working with. Consider the case when

𝐶𝜉 = 1, then 𝜉 = 0, therefore our sample, 𝑋, is in the domain of attraction of a Gumbel distribution

(exponential tails). Similarly, if 𝐶𝜉 > 1 we are dealing with heavy tails, and if 𝐶𝜉 < 1 we are dealing

with light tails. In the same way as with the Hill plot, we can draw a plot that help us distinguish

which tail we are dealing with. In Figure 3.4 we show an example of the CV plot (with the residual

CV being the black line) for a sample of size 𝑛 = 10
5

coming from a Gaussian distribution. First of

all, we only use those order statistics that are closest to the tail. In Figure 3.4 only the last thousand

order statistics are shown, which are the ones closest to the tail in this case. There are three zones

to remark here. The red line represent the statistical test developed in [90] to reject the hypothesis

of exponential tail. In the green zone in between the red lines, there is the region where we cannot
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reject the hypothesis of exponential tails. Our example data shows that on the order statistic between

99200 and 99250 the exponential tail of our distribution begins. The red regions are the ones where

we can reject the exponential hypothesis because we are either dealing with heavy tails (upper zone)

or light tails (bottom zone). This technique has been used throughout the thesis as a first assessment

on the kind of tails we are working with. The tools to implement this concept are in the CRAN

package "ercv" [53].

33



Chapter 3. Experimental Methodology

34



Part II

Sky-High Quantile Estimation
for CRTES
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Chapter 4

Sky-high Quantile Estimation with
Weibull Tails

4.1 Introduction
The increasing automation of CRTES, such as those in cars and planes, leads to more complex

and performance-demanding on-board software and the subsequent adoption of multicores and

accelerators. This causes software’s execution time dispersion to increase due to variable-latency

resources such as caches, networks on chip, advanced memory controllers and the like. CRTES

undergo strict V&V processes against their corresponding functional safety standards (i.e. ISO26262

in automotive [89] and DO178B/C[139] in avionics). Timing V&V processes require collecting

evidence supporting that software will execute correctly and timely. In particular, those processes

provide evidence that the risk of violating deadlines for critical real-time software is residual, since

functional safety standards acknowledge that risk cannot be completely avoided. Thus, they impose

thorough V&V processes that allow deeming such risk as “sufficiently low” so that it can be neglected.

In this line, pWCET estimates allow to quantify such residual risk.

EVT [38], appropriate for risk analysis, is used to model the right/upper tail of execution time

distributions. In the context of pWCET estimation, exponential tails delivered by EVT, see Figure 1.2,

have been shown by argument [7] and empirically [156] to provide a reliable tail model for pWCET

estimation. However, tightness of those exponential tails is limited. Tails lighter than exponential

ones (so with 𝜉 < 0) can deliver tighter bounds, as discussed in [3] and later in Section 4.2. Yet, in the

context of EVT, either GEV or GPD, distributions with 𝜉 < 0 have a compact support, i.e. they have

an absolute maximum value that cannot be exceeded. Hence, light tails in the case of EVT have an

intrinsic risk of delivering optimistic tail distributions. This has some key implications in the fitting

process, since a sufficiently large sample is needed to guarantee that light tail fitting is reliable for

arbitrarily low exceedance probabilities. The target of this chapter is overcoming this limitation of the

data and delivering a practical solution to obtain pWCET estimates tighter than those of exponential

tails while preserving reliability. We do so by complementing EVT with survivability analysis as the

theoretical ground for our hypothesis.

Analysis. We formally show that tail modelling in the context of survivability analysis [43] targets

analogous questions to those of risk analysis. Then, we show that log-concave1 distributions [112],

inherited from survivability analysis, deliver the tightest distribution models, but existing fitting

methods fail to model tails [14, 58], needed for pWCET estimation.

Proposal. We propose the use of a subset of log-concave distributions: Weibull tail distributions

with increasing hazard rate, i.e. with shape 𝛽 ≥ 1, neither Reverse Weibull as in EVT nor full

Weibull as in survivability analysis. Our approach provides analogous accuracy to that of log-

concave distributions, without limitations to extend them to arbitrarily low exceedance probabilities,

as needed for pWCET estimation.

1A function 𝑓 is logarithmically concave log-concave for short, if the function log( 𝑓 (𝑥)) is concave.
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Assessment. We compare our method and EVT alternatives with a bootstrap analysis on large data

samples (10
7

measurements) from a railway case study as ground truth. Our results provide evidence

on the reliability of our approach and significant pWCET reductions with respect to exponential tails

obtained with EVT, thus allowing to trustingly increase system utilization noticeably.

4.2 EVT limits

Threshold

Figure 4.1: EVT estimation on the mixture distribution (three Gaussian with parameters
𝜇 = {5, 50, 100}, 𝜎 = {10, 10, 10} and weights 𝑤 = {0.60, 0.39, 0.01}, respectively.)

C
C

D
F

Figure 4.2: CCDF for GPD (𝜉 < 0) and exponential tails from EVT for TEST8. Both models
are fitted with a sample of 𝑛 = 1000 observations out of all 𝑛 = 10

7 observations made.

CRTES programs have a finite WCET as discussed in Section 2.1. A distribution with a finite

maximum value is said to have compact support. In that situation the most appropriate tail profile

to model the input data with will be a light one, i.e. with extreme value index 𝜉 < 0. In [44] it has

been argued that heavy-tails, i.e. 𝜉 > 0, are too pessimistic to model distributions with compact

support. As an upper limit for the model, exponential tails, 𝜉 = 0 can be proposed. As an example,

we show the results of this reasoning. In Figure 4.2 we show the fit of an execution time profile from

a program running in CRTES. The execution time profile contains 𝑛 = 10
7

samples. Although for

modelling purposes, we tried to fit a GPD with an exponential tail and a light tail using only a sample

of 𝑛 = 10
3

realizations. In the figure we can appreciate how the exponential model in this case is
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overly pessimistic for probabilities as low as 𝑝 = 10
−6

. On the other hand, the GPD model with

light tails is closer to the real distribution, however the model underestimates, thus being unsafe in

the context of MBPTA. The reason the GPD with light tails underestimates, is because its compact

support nature. When trying to fit the small sample of 𝑛 = 10
3

with a light tail, the maximum

value on that sample will serve as the reference for the GPD. Therefore, if the maximum value for

the sample is smaller than the maximum value of the whole sample, the GPD will underestimate.

Nonetheless, the GPD with light tails is a good model in a vacuum for these kinds of distributions.

However, in modelling the context always matters. Therefore, while in general the GPD with light

tails is a good model, in the context of MBPTA it is a risky model.

We have just discussed how the exponential tail can be used as an upper-bound model for execution

time profiles of CRTES. Recall that we discussed in Section 2.2.3 how the second fundamental

theorem of EVT, Theorem 3, was fulfilled when the threshold 𝑢 → ∞ and that it could bring

uncertainty to the estimation. Figure 4.1 shows a mixture of three Gaussians with 𝜇 = {5, 50, 100},
𝜎 = {10, 10, 10} and weights 𝑤 = {0.6, 0.39, 0.01}. Each mode around Time {5, 50, 100} represents a

Gaussian in the mixture. For each different tail threshold 𝑢 such that 𝑢 > 60, we fit an exponential

tail, given that Gaussian distributions have exponential tails. In Figure 4.1 we see three scenarios

that we exemplify with approximate ranges of 𝑢. For values of 𝑢 around [60, 80] (purple lines), we

see how the exceedance probability of the mixture is underestimated in the Time range [80, 120]
(probabilities 10

−3 − 10
−5

). For 𝑢 in the range [120, 140] (blue-green lines), GPD over estimates the

reference distribution. For values of 𝑢 above 140 (green lines), the estimate becomes increasingly

tight. Depending on the threshold selected, even if the exponential is the appropriate model to fit

the tail of a mixture of Gaussians, it can lead to optimistic pWCET.

In that regard, one of the goals of this thesis is to overcome the limits of EVT when working in the

context of MBPTA. More specifically, in this work our goal is to devise a more flexible model for the

tails than the GPD with light tails and the exponential by making use of Risk Analysis theory.

4.3 On the Use of Light Tails and Risk Analysis for WCET Estima-
tion

4.3.1 Risk and Survivability Analysis
EVT is used in risk analysis to predict extreme (rare) events with the objective of proving that

risk is below specific thresholds (e.g. financial risk). Survivability analysis, while it also focuses

on predicting extreme events, it has opposite goals: proving that survivability is above specific

thresholds (e.g. human life duration). Hence, both analyses target the modelling of extreme events,

but with different objectives.

The type of distributions used to model those extreme events (i.e. tail distributions) differs across

both analyses.

• EVT (either GPD or GEV) is used in the context of risk analysis, and it has been used so far

in pWCET estimation building on the idea that exceeding a specific execution time bound is a

risk.

• For survivability analysis tail distributions can be split into two types: Decreasing Hazard

Rate (DHR) and Increasing Hazard Rate (IHR) distributions. The boundary between those two

categories corresponds to exponential distributions, which can be regarded as part of both.

In the context of pWCET estimation, we focus on IHR distributions, since they include those distri-

butions that, as values get higher, the probability of realization increases. In our context this means

that, as the program runs, there is an increasing probability of finishing the execution, which is the

case of real-time programs that need to have a finite execution time to meet their deadline. Formally

stated, a random variable 𝑋 is IHR if the hazard rate function is increasing, where the hazard rate

function is defined as:

ℎ(𝑥) = 𝑓 (𝑥)
1 − 𝐹(𝑥) , 𝑥 ∈ support(𝑋), (4.1)

where 𝑓 and 𝐹 stand for the Probability Density Function (PDF) and the CDF of 𝑋, respectively. In

Equation 4.1, support(𝑋) is a function representing the subset of the domain in which the random
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variable (𝑋) probability is defined (i.e. it is not zero). In fact, the hazard rate function which assesses

the IHR property is equivalent to the convexity 𝐻 function, where 𝐻(𝑥) = −log(1 − 𝐹(𝑥)), called

cumulative hazard rate.

4.3.2 IHR Distributions in Survivability Analysis
Log-concave distributions, as they can have an arbitrarily large number of parameters, are one of

the best tools to fit data. On the other hand, they are generally defined only for the range of data

observed. Hence, they are unable to model the distribution beyond that range, which is not useful

for pWCET estimation. Some methods smooth the distribution by means of convolutions with other

laws (e.g. Gaussian) to better fit the mode of the distribution [14, 58, 112]. While such an approach

delivers a distribution that spans beyond the range of the data observed, it is tuned to model central

behavior (not the tails) and so inherits the original problem we aim to tackle: an appropriate law

needs to be identified for tail modelling.

Weibull distributions, among others, have often been used to model IHR distributions. However,

they are unable to fit all tail distributions, so they are used only in specific contexts where the

problem at hand matches the shape of those distributions [112, 174]. Therefore, while survivability

analysis opens new opportunities to model pWCET, this is yet unexplored and existing distributions,

in general, may not fit the needs of pWCET estimation. In this chapter we address this challenge

by contextualizing the needs of pWCET estimation and defining distribution families able to model

pWCET distributions reliably, tightly and without incurring on the limitations imposed by log-

concave distributions.

4.4 Equivalence Between IHR and Non-heavy Tails
In this section we introduce the connection between risk and survivability analysis in the context of

pWCET estimation, which will lay out the ground for our hypothesis in further sections. pWCET

estimates should be obtained theoretically under the assumption of the law of extreme events char-

acterized by quicker decay in the tail than an exponential law, or equal, in the limit case. Exponential

tails have been regarded as the appropriate (limit) model in practice [3, 149]. An exponential decay

is a memoryless process where the probability of the process to complete is constant regardless of

how long the process has been progressing. In the context of pWCET estimation, this corresponds

to having a constant probability for the program to finish its execution despite the time elapsed

since the program started running. Instead, the theoretical solution for pWCET estimation indicates

that, the longer the program has been running, the higher the probability of finishing. That is, if 𝑋
corresponds to execution time as a non-negative random variable, this assumption can be formally

stated as follows if 𝑠 < 𝑡 and 𝑥 > 0:

𝑃(𝑋 > 𝑡 + 𝑥 | 𝑋 > 𝑡) ≤ 𝑃(𝑋 > 𝑠 + 𝑥 | 𝑋 > 𝑠), (4.2)

In the context of extreme events, where 𝑢 is the threshold upon which values belong to the tail of the

distribution, 𝑠, 𝑡 have to be large enough so that 𝑠, 𝑡 > 𝑢, for some 𝑢 > 0 2.

In the general case of EVT (e.g. GPD), the tail decay can be described as follows for heavy, exponential

and light tails respectively:

if 𝜉 > 0, then 𝑃(𝑋 > 𝑡 + 𝑥 |𝑋 > 𝑡) ≥ 𝑃(𝑋 > 𝑥) for 𝑥 > 𝑡.

if 𝜉 = 0, then 𝑃(𝑋 > 𝑡 + 𝑥 |𝑋 > 𝑡) = 𝑃(𝑋 > 𝑥) for 𝑥 > 𝑡.

if 𝜉 < 0, then 𝑃(𝑋 > 𝑡 + 𝑥 |𝑋 > 𝑡) ≤ 𝑃(𝑋 > 𝑥) for 𝑥 > 𝑡.

Note that the assumption described by Equation 4.2 for extreme events implies 𝜉 ≤ 0. Hence, the

assumption for pWCET estimation matches the formulation above for light and exponential tails

from GPD, inherited from risk analysis since, in the context of pWCET estimation, the longer the

2Note that the threshold 𝑢 is not larger than the theoretical threshold corresponding to the asymptotic behavior of the tail

from the second fundamental theorem in EVT [15, 132].
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program has been running, the higher the probability of finishing. This matches the known concept

in reliability modelling of IHR, which is therefore appropriate for pWCET estimation.

Building on Equation 4.2, and given a fixed 𝑥, we have the following equivalent assumption:

𝑃(𝑋 < 𝑡 + 𝑥 |𝑋 > 𝑡) ≥ 𝑃(𝑋 < 𝑠 + 𝑥 |𝑋 > 𝑠), if 𝑠 < 𝑡.

Given that 𝑠 < 𝑡, then 𝑃(𝑋 > 𝑡) < 𝑃(𝑋 > 𝑠), and hence, we can elaborate the equation above as

follows:

𝑃(𝑋 < 𝑡 + 𝑥) − 𝑃(𝑋 < 𝑡)
𝑃(𝑋 > 𝑡) ≥ 𝑃(𝑋 < 𝑠 + 𝑥) − 𝑃(𝑋 < 𝑠)

𝑃(𝑋 > 𝑠) .

If we use the CDF expressions instead, we have the excess distribution:

𝐹(𝑡 + 𝑥) − 𝐹(𝑡)
1 − 𝐹(𝑡) ≥ 𝐹(𝑠 + 𝑥) − 𝐹(𝑠)

1 − 𝐹(𝑠) , if 𝑠 < 𝑡. (4.3)

If 𝑥 tends to 0, then the cumulative probability ranges, between 𝑡 and 𝑡 + 𝑥 and between 𝑠 and 𝑠 + 𝑥,

reduce to the particular probabilities at 𝑡 and 𝑠 respectively:

ℎ(𝑠) =
𝑓 (𝑠)

1 − 𝐹(𝑠) ≤
𝑓 (𝑡)

1 − 𝐹(𝑡) = ℎ(𝑡), if 𝑠 < 𝑡. (4.4)

As shown, Equation 4.4 – which we derive from Equation 4.2 – builds upon the hazard rate function

shown in Equation 4.1. Hence, it models IHR distributions for survivability analysis, analogously to

the GPD formulation for risk analysis. Note that in Equation 4.4 the equality case corresponds to a

constant decay rate, hence a constant hazard rate function.

Log Concavity: In order to use IHR distributions for pWCET estimation, we build upon the following

theorem proven in [43] and [84]:

Theorem 5. Given a non-negative random variable 𝑋, with 𝑓 and 𝐹 the PDF and CDF, respectively (where
𝐻(𝑥) = − log(1 − 𝐹(𝑥)), 𝑥 ∈ support(𝑋)),

log( 𝑓 ) concave⇒ 𝑋 IHR⇔ 𝐻 convex. (4.5)

Note that 𝑋 is IHR in the tail, i.e. (𝑋 | 𝑋 > 𝑢) is IHR for some threshold 𝑢 > 0, if and only if Equation

4.2 holds for all 𝑠, 𝑡 > 𝑢 and, therefore, 𝑋 is log-concave. Thus, by using log-concave distributions,

IHR holds by construction.

A non-negative function is log-concave if its domain is a convex set, and if it satisfies the inequality

𝑓 (𝜃𝑥 + (1 − 𝜃)𝑦) ≥ 𝑓 (𝑥)𝜃 𝑓 (𝑦)1−𝜃, for all 𝑥, 𝑦 in the domain of f and 0 < 𝜃 < 1.

In order to test IHR one could make use of the log-concavity of the probability density function,

which would give a convex H function and hence, IHR.

Given an appropriate threshold 𝑢 so that (𝑋 | 𝑋 > 𝑢) is IHR (and log-concave), we can fit a log-

concave density function to the tail by using the maximum likelihood approach, as detailed in [14, 58].

Regardless of whether we fit the best log-concave distribution or a distribution function family

preserving log-concavity but with much fewer parameters, as we do in this work, the exceedance

threshold (𝑢 above) must be estimated to use the appropriate set of tail values from the sample for

fitting. In particular, we build upon the work by Hazelton [84] that provides a procedure for testing

whether we can reject the hypothesis of log-concavity for a given threshold 𝑢.

4.5 Weibull Tails (TailW) for pWCET Estimation
In Section 4.2 we have concluded that light tails with compact support are likely optimistic (thus

unreliable) for pWCET estimation. On the other hand, exponential tails are the limit distribution

for appropriate pWCET distribution models, hence being reliable but likely pessimistic. In order to
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support this reasoning, we showed in Figure 4.2 how the GPD (with 𝜉 < 0) and exp (𝜉 = 0) from EVT

produce lower and upper bounds respectively to the pWCET distribution estimation for decreasing

exceedance probabilities. Hence, we need an alternative model that has to satisfy the following

properties:

1. Must have IHR in the tail (so H convex in the tail), thus having positive memory and evi < 0.

2. Must not have bounded (compact) support, not to suffer the same problems as GPD (with

evi < 0).

The set of H-convex probabilistic models, i.e. with log-concave densities, satisfies the properties

above and includes all probabilistic models satisfying those properties. However, as explained in

Section 4.3, those distributions may have a large number of parameters, which reduces the number of

degrees of freedom. Furthermore, the fitting process allows describing them only for the probability

range where data exists, which is useless for pWCET estimation.

Weibull distributions3 have been often used to model survival processes such as, for instance, the

lifetime of processors [174]. Failure rates over processor lifetime are usually shown in the form of

a bathtub curve, where the failure rate decreases during the beginning of the lifetime (so DHR),

since failures due to infant mortality are frequent. However, the more the processor survives in this

phase, the lower the hazard rate. Eventually, a near-flat phase is reached where the hazard rate is

nearly-constant, until the end of life period is approached, when the hazard rate increases (so IHR)

until the processor eventually fails. Obviously, such a distribution does not meet the properties

indicated above since it should be IHR, and Weibull distributions may have DHR for at least part

of their support. However, if 𝛽 > 1, where 𝛽 stands for the shape, Weibull tails (tailW) are IHR and

allow covering all the spectrum between GPD with 𝜉 < 0 and exponential tails. In fact, if we allow

𝛽 ≥ 1, the boundary case where 𝛽 = 1 corresponds to the exponential tails.

4.5.1 Formal Definition of tailW
The tailW law is constructed using the excess probability function, shown in Equation 4.3. Thus, the

CDF is:

𝐹(𝑥, 𝛼, 𝛽, 𝜈) = 1 − exp

(
−𝛼(𝑥 + 𝜈)𝛽 + 𝛼𝜈𝛽

)
, (4.6)

for 𝑥 ≥ 0, 𝛼 > 0, 𝛽 ≥ 0 and 𝜈 > 0. We consider tailW law with 𝜈 fixed and 𝛽 ≥ 1. The former reduces

the cost of parameter estimation (only 2 parameters need to be estimated instead of 3) at the expense

of delivering negligibly more pessimistic tail models. The latter (𝛽 ≥ 1), as explained before, restricts

tailW distributions to the domain of IHR. The likelihood ratio in the tail is described by:

𝑙(𝑥; 𝛼, 𝛽, 𝜈) = 𝑛
(
log(𝛼) + log(𝛽)

)
+ (𝛽 − 1)

𝑛∑
𝑖=1

log(𝑥 + 𝜈) − 𝛼
𝑛∑
𝑖=1

(
(𝑥 + 𝜈)𝛽 − 𝜈𝛽

)
, (4.7)

and the MLE to fit the tailW law to the tail is obtained with numerical methods. The full definition

of the tailW and a numerical method based on MLE to estimate its parameters can be found in the R

package distTails [133, 164].

Since the purpose of tail prediction is only modelling tails, for which we lack sufficient empirical data

to rely on the empirical quantile, we need to fit an appropriate law for the tail. However, for the rest

of the distribution we can simply rely on empirical data. Hence, we can resort to a semi-parametric

model, where for a fixed threshold 𝑢, the law for 𝑥 < 𝑢 is given by the empirical law and for 𝑥 > 𝑢
the law is given by a parametric model (e.g. tailW or exp).

4.6 Fitting Protocol
In order to use tailW distributions, we define an application protocol that guarantees reliability and

maximizes tightness. Consider a sample, 𝑋, {𝑥1 , · · · , 𝑥𝑛}, and a fixed threshold 𝑢 to define the tail.

We start by checking that the sample preserves the IHR property (log-concavity) for the considered

exceedance threshold 𝑢 as described in [84]:

3The Weibull law for X is given by the CDF 𝐹(𝑥,𝜆, 𝛽) = 1 − exp

(
−(𝑥/𝜆)𝛽

)
.
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1. Apply the bootstrap log-concavity test in the tail of the sample for the given 𝑢.

2. If the null hypothesis of log-concavity is rejected with risk 0.05, take another sample and restart.

Note that the significance level is 0.05, so that 95% of the bootstrapped samples must pass the test,

is a common value for statistical tests. From this point onward, log-concavity in the tail is assumed

since it has already been tested. Also, 𝑢 ≥ 𝑢EVT, where 𝑢EVT is the threshold such that the theoretical

approach from EVT can be applied. Then, the protocol continues as follows:

3. Fix 𝜆 = 𝐹emp(𝑢).
4. Consider the sample 𝑌 given by 𝑦𝑖 = 𝑥𝑖/𝑢 − 1 for 𝑖 such that 𝑥𝑖 ≥ 𝑢.

5. Fit the exp, tailW and logc by MLE. Then, the loglikelihood for each law can be denoted by

(where Θ̂ corresponds to the set of parameters for a logc distribution)

𝑙̂exp = 𝑙exp(𝜓;𝑌),
𝑙̂tailW = 𝑙tailW(𝛼̂, 𝛽̂;𝑌, 𝜈 = 1),
𝑙̂logc = 𝑙logc(Θ̂;𝑌).

6. Test the null hypothesis tailW ∼ exp through the Likelihood Ratio Test (LRT) [124, 175] with

risk 𝛼 = 0.05:

2(̂𝑙tailW − 𝑙̂exp) < 𝜒2,1
0.95

.

Note that, since tailW has 2 parameters and exp 1, the 𝜒2
test is applied with 1 degree of freedom

(the difference). If it is true, then the exp model (PoT with exp in the tail) must be considered

for high-quantile estimation, and the fitting process finishes since the simplest model must be

used if the models are not proven to differ4. Else, we continue with the next step.

7. Test the null hypothesis logc ∼ tailW with risk 0.05:

2(̂𝑙logc − 𝑙̂tailW) < 𝜒2,𝛿
0.95

,

where 𝛿 is the number of parameters in logc fit minus 2 (those for tailW). If it is true, then tailW
model (PoT with tailW law in the tail) must be considered for high-quantile estimation, and the

fitting process finishes. Else, tailW may not be a sufficiently good fit. Hence, either we continue

searching for tailW fitting with larger samples or another valid value for 𝑢, or we resort to the

exp model (computing 𝑢EVT and fitting the new tail as indicated before), which is known to be

pessimistic but reliable for sky-high quantiles5.

Overall, this application protocol is reliable by construction and aims at maximizing pWCET tight-

ness.

4.7 Evaluation
While theoretically tailW distributions meet the properties needed to model pWCET distributions

tightly and reliably, we verify empirically such hypotheses in several ways:

• We compare tailW distributions against sky-high quantiles for large (ground truth) data sam-

ples.

• We compare tailW against GPD (with 𝜉 < 0) and exp.

• We apply LRT to compare tailW and the reference logc.

4If an exp tail is used for modelling, then EVT should be used to improve the fit, computing 𝑢EVT such that 𝑢EVT ≤ 𝑢, and

fitting the new tail.

5Note that typically, high quantiles are defined at the range 0.9-0.9999. Since we target very small exceedance probabilities,

in line with safety standards requirements, we define sky-high quantiles those reaching values around 1−10
𝑛
, where typically

𝑛 ∈ [−6,−12].
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Figure 4.3: H-plots for all tests for a bootstrap sample of 10000 observations. The x-axis
shows execution times in processor cycles.

The evaluation of tailW will be done using the 10 tests with size 𝑛 = 10
7

each, from the ETCS

validation suite run in an Field-Programmable Gate Array (FPGA) implementation of a LEON3+

architecture described in Section 3.1.1.

4.7.1 Assessing Model Hypotheses: H-Convexity and Light Tails
tailW relies on the convexity of the H-plot and lightness of the tail for the distribution modelled.

By definition of our problem at hand (finite execution times), both properties must hold. Figure

4.3 shows the H-plot for the full samples of the railway case study (10
7

measurements). As shown

graphically in the plots, all data sets are H-convex, thus in line with the hypothesis in Equation 4.2.

The lightness of the tail can be assessed with the Coefficient of Variation (CV) statistic. Given that

the CV in the context of the gpd for a certain threshold u is CV(𝑋𝑢) = 1/
√

1 − 2𝜉, where 𝜉 is the

evi, we are able to classify the nature of the tail. This method is properly developed and explained

in the context of MBPTA in [3]. In Figure 4.4, we show the CV plot for all TEST traces, where the

thick line corresponds to the trace for TEST6. The CV plot shows that, given that CV ≤ 1 in general,

distributions have light tails. Small discontinuities in the data sample, which may happen due to

random sampling, may create peaks when a low number of exceedances is considered; as in the

case of TEST0 and TEST4, in Figure 4.4. Regarding TEST6, it is the only one with a slightly different

behavior since the leftmost part of its CV is slightly heavy (CV ≥ 1), and it only becomes light after

excluding half of the sample. We discuss TEST6 in more detail later.

4.7.2 Assessment with Large Data Sets
To assess the reliability and tightness of the tailW model, for each of the 10 TESTs, we conduct a

bootstrap experiment consisting of generating 1000 random samples with 1000 observations each

from the 10
7

observations collected for that TEST. Then, we fit the exponential (exp), the GPD with

𝜉 < 0 and tailW models for each of those 1000 data samples. The pWCET value obtained for each

of the three methods is assessed against the empirical distribution sky-high quantile 1 − 10
−6

(so at

an exceedance probability of 10
−6

). Note that, by building on a data sample with 10
7

measurements,

the highest quantile we could consider would be at 1 − 10
−7

, which would be fully dependent on

the highest value in the sample. Relying on a single (randomly sampled) value may bring some

instability, so we opted for considering a lower (still sky-high) quantile at 1 − 10
−6

.

Figure 4.5a shows the Quantiles Of BootStrap (QOBS) estimator for TEST0 in the form of a boxplot.

All other TESTs except TEST6 have analogous behavior to TEST0, so we omit them for space needs.

Results are obtained using different number of extremes (maxima) for tail fitting: we have used 500,

200, 100 and 50 extremes selected with PoT. The assumption formalized in Equation 4.2 lets us use

the hypothesis on IHR for all data. Therefore, those numbers of extremes (between 50 and 500)

can be reliably used for our analysis. As shown, exp provides highly pessimistic estimates with 500
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Figure 4.4: Plot of the CV against the excluded sample size. The thick purple line
corresponds to the TEST6, while the thin lines come from the rest of the tests. The CV
plot was computed using the R package ercv [53].
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(c) TEST6 10000

Figure 4.5: QOBS estimator distribution for TEST0 and TEST6 for 1000 and 10000

samples, under different models: exp, gpd and tailW, with different number of extremes:
(500, 200, 100, 50) for samples of 1000 measurements and (5000, 2000, 1000, 500) for
10000 measurements.

extremes, whose mean is in the range [1.15, 1.20]. Tightness improves as we decrease the number

of extremes. However, fitting a distribution with a lower number of measurements brings increased

uncertainty.

As expected, gpd tends to underestimate the sky-high quantile of the real data with a low number

of extremes (50), and quantiles are wide. Hence, in this case uncertainty is relatively high and

confidence intervals should be wide. By increasing the number of extremes, uncertainty rapidly

decreases and quantiles narrow down. However, gpd further underestimates the sky-high quantile

of the real data due to losing the asymptotic tail behavior by using values farther away from the

maximum in the sample.

Finally, tailW tends to tightly and reliably estimate the sky-high quantile of the real data with few

extremes (50), but with wide quantiles. As we increase the number of extremes up to 500, we

observe that reliability and tightness are preserved, and quantiles quickly narrow down. Overall,

tailW provides much tighter (and still reliable) pWCET estimates than exp, and does not suffer

the underestimation problems of gpd due to the compact support of gpd, which should naturally

worsen as we consider higher sky-high quantiles (a.k.a. lower exceedance probabilities). Note that,

sporadically, tailW may lead to pessimistic sky-high quantile estimates (comparable to those for exp).

As explained before, occasionally, tailW fitting may not be sufficiently good and then, our model
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Chapter 4. Sky-high Quantile Estimation with Weibull Tails

Table 4.1: Lower Confidence Interval (LCI) for the reference values for all railway
TESTs.

Test LCI Test LCI
TEST0 0.00% TEST5 0.28%

TEST1 0.08% TEST6 0.97%

TEST2 0.13% TEST7 0.10%

TEST3 0.17% TEST8 0.21%

TEST4 0.00% TEST9 0.35%

resorts to exponential tail fitting to preserve reliability.

For TEST6 (Figure 4.5b), the larger the number of extremes considered (and so the higher the

confidence), the closer the estimator to the reference value for tailW, but still most of the distribution

is below the reference value. For larger samples of 10000 measurements – Figure 4.5c – estimates

for TEST6 become more precise, but still slightly below the reference value (up to 1%). Since the

reference value is obtained with point estimation, we have calculated its lower confidence interval

(a.k.a. how much reference lines at 1.0 should be moved down in the y-axis). In particular, we use

the binomial confidence interval [39], since it only requires the size of the sample used and the number

of successes/failures. We compute the 95% confidence interval. Results for all TESTs, see Table 4.1,

show that all confidence intervals are tiny except for TEST6, whose lower confidence interval is ≈1%,

which means that tailW estimates are within the confidence interval of the ground truth value.

Since standards accept failure rates in the order of 10
−5

to 10
−9

failures per hour, and critical real-

time tasks may run up to several thousands of times per hour, we consider exceedance probabilities

of 1 − 10
−6

and 1 − 10
−12

per run for the pWCET estimates, thus showing the sensitivity of the

different methods to the exceedance probability. In particular, we compare the only two reliable

methods: exp and tailW. Given that gpd has been proven unreliable, we do not consider it for pWCET

estimation. Therefore, we estimate the pWCET at such probabilities for tailW and exp with samples

of 1000 execution time measurements. We consider, as in previous experiments, different numbers

of extremes (50, 100, 200 and 500), and show the results normalized with respect to tailW.

As shown in Figure 4.6, exp delivers pWCET estimates between 5% and 20% higher than those of the

proposed tailW method for the railway case study for an exceedance probability of 10
−6

per run. As

shown in Figure 4.5, tighter estimates are obtained for exp if fewer extremes are considered, whereas

tailW accuracy is highly insensitive to this parameter. However, uncertainty increases if the number

of extremes used is relatively low. Therefore, as the reliability required for the pWCET estimate

increases, tailW provides higher gains.

Results for an exceedance probability of 1 − 10
−12

per run are shown in Figure 4.7. Such a lower

probability should be used for more critical tasks and/or for those tasks running more often. As

shown, trends are similar to those of 1 − 10
−6

exceedance probability, but at a higher scale, since exp
pWCET estimates are typically between 15% and 50% higher than those of tailW. This increasing gap

between the (tight) tailW model and exp model can be easily understood looking at Figure 4.2, where

we see that the gap between exp and the actual distribution increases at decreasing exceedance

probabilities. Note that achieving higher savings for tasks running more frequently implies that

potential savings in system utilization can also be larger.

4.7.3 Comparing exp, tailW and logc Models
As explained before, logc distributions are the reference model, but they can only be used in the

value range determined by input data. Nevertheless, we assess whether tailW delivers distributions

that cannot be distinguished from logc ones statistically in the range where the latter are defined. For

that purpose, we perform an LRT.

We have applied the LRT to the 10 TESTs on the large data sets. As shown in Table 4.2, the test

is passed in almost all cases. In particular, the p-value is below 0.05 only for TEST1 (T1) with 100

extremes and TEST4 (T4) with 500 extremes. Hence, this result confirms that M1 (so tailW) cannot be

distinguished from logc distributions, thus supporting the high accuracy of the proposed model. In

fact, in those cases where the test is failed, we only need to select an appropriate number of extremes
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pWCET 
at 10-6

Figure 4.6: pWCET estimate increase for exp with respect to tailW at an exceedance
probability of 1 − 10

−6 per run for the railway case study with different numbers of
extremes for the tail.

pWCET 
at 10-12

Figure 4.7: pWCET estimate increase for exp with respect to tailW at an exceedance
probability of 1 − 10

−12 per run for the railway case study with different numbers of
extremes for the tail.

that ensures that tailW is indistinguishable. The default solution consists on collecting a new sample

since both distributions are naturally indistinguishable. Note that, in general, 𝛼 determines the ratio

of false negatives (a.k.a. wrong hypothesis rejections). In our case, given that 𝛼 = 0.05, we would

expect 2 rejections out of 40 tests, which is exactly what we obtained.

For completeness, we have applied the LRT to compare exp with tailW. A test pass would mean

that the simpler model (exp has just 1 parameter whereas tailW has 2) should be used instead of the

complex one. Our results (omitted due to space constraints) show that the test is failed in most of the

cases, thus meaning that exp is unable to capture tail distributions with as much accuracy as tailW.

Table 4.2: LRT p-values for the 10 TESTs comparing tailW and logc models.

tailW vs logc
500 200 100 50

T0 0.91 0.63 0.24 0.19

T1 0.07 0.08 0.04 0.72

T2 0.72 0.63 0.21 0.37

T3 0.21 0.57 0.30 0.94

T4 0.01 0.72 0.48 0.80

T5 0.98 0.25 0.67 0.19

T6 0.88 0.77 0.97 0.97

T7 0.75 0.85 0.34 0.59

T8 0.52 0.61 0.25 0.51

T9 0.11 0.88 0.21 0.92
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4.8 Summary
The need for performing a proper analysis is crucial for the V&V of CRTES. While EVT has been

proposed and applied successfully to derive WCET estimates, its results can be improved upon.

The first alternative we proposed in this thesis to compute pWCET is the Tail of a Weibull (tailW),

which combines characteristics from EVT and Risk Analysis. As shown in the results, tailW is less

pessimistic than the exponential tail while not being optimistic like GPD with light tails model, thus

producing tight pWCET models.

48



Chapter 5

Sky-high Quantile Estimation with
Markov’s Inequality

5.1 Introduction
Deriving WCET estimates for software programs with probabilistic means (a.k.a. pWCET estimation)

has received significant attention during the last years as a way to deal with the increased complexity

of the processors used in real-time systems. Many works build on EVT that is fed with a sample of

the collected data (execution times). In its application, EVT carries two sources of uncertainty [26]:

model uncertainty that is intrinsic to the EVT model and relates to determining the subset of the

sample that belongs to the (upper) tail, and hence, is actually used by EVT for prediction; and

statistical uncertainty that is induced by the sampling process and hence is inherent to all sample-

based methods.

• Statistical uncertainty encompasses as the first aspect the testing conditions under which the

experiments are performed in reference to those that can arise during system operation. Testing

conditions that are representative or worse than operation conditions are the basis to attain

representativeness of the sample data (execution time) [4, 12, 78, 118] so that the pWCET

estimate holds during system operation. A second aspect of statistical uncertainty relates to the

natural uncertainty of a sampling process that, in general, reduces as the sample size increases,

and that is handled with confidence intervals. Sampling uncertainty impacts summary statistics

(e.g. mean) and tail fitting methods, whose goodness – either of their hypotheses or outcome

– is assessed with specific methods [12, 137].

• Model uncertainty, instead, relates to uncertainties intrinsic to the mathematical model used for

tail prediction. In the case of EVT, model uncertainty relates to determining the threshold from

which the upper tail starts. This threshold plays a key role on the trustworthiness (safeness) of

EVT results since only samples above it (i.e. the maxima data set) are fed into EVT for pWCET

estimation. There is not an exact mathematical method to derive this threshold. Instead,

current methods estimate the tail of a distribution [30] based on plot inference [50, 52, 86] and

regression analysis [29].

As discussed in Section 2.2.3, the second fundamental theorem of EVT is satisfied when, for

the excess distribution function 𝐹𝑢 in Equation 2.12, the threshold 𝑢 → ∞. It is crucial to

make a good estimation of this threshold because it will affect the pWCET as seen in Figure

4.1. Given that the computation of the threshold is not exact and there does not exist a closed

form to compute it, one must rely on estimations to assess the tail of a distribution. This

phenomenon is an example of model uncertainty. The model itself, in this case EVT, is the one

bringing uncertainty in the calculations before dealing with the sampling process. To tackle

this issue, we introduce Markov’s Inequality, a probabilistic tool which produces provably safe

upper-bounds by construction, which fits the needs for pWCET estimation.

In this chapter, we show that Markov’s Inequality is a provably safe probabilistic tool which upper-
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(a) Gaussian distribution (b) Weibull distribution (c) Beta distribution (d) Gaussian Mixture

Figure 5.1: Markov’s Inequality bound for the reference distributions.

bounds by construction since it does not have any source of model uncertainty. The modification of

Markov with the power-of-k function leads to tight upper-bounds even for very low probabilities.

Finally, we show how to apply this probabilistic tool for any collection of samples coming from

execution times of Real-Time systems.

We carry out the development of our methodology using analytical reference distributions which

are representative of the tail profiles from execution time distributions of Real-Time systems. This

reference distributions are described in Section 3.2 of the Experimental chapter. Furthermore, we

assess the validity of our methodology with a railway case-study data coming from the European

Train Control System (ETCS), which consists on 10 different test from the Emergency Module.

5.2 Chebyshev and Markov Inequalities for pWCET Estimation
This section analyzes the applicability of Markov’s inequality as an alternative model to EVT for the

problem of trustworthy pWCET estimation and shows that it is not subject to any model uncertainty,

thus resulting in provably safe bounds for the analyzed distribution.

Recalling the discussion from Chapter 2 in Section 2.1; one upper-bounds the execution time profile

of the task under analysis, when the resulting execution time at a given probability 𝑝 for the pWCET

, etbound(𝑝), is higher (or equal) than the one of the task under analysis, etreal(𝑝). This can be expressed

as tightness(p) = etbound(𝑝)
etreal(𝑝) .

We introduced in Section 2.3.1 Chebyshev’s Inequality, and one of its realizations – Markov’s

Inequality–, which are both probabilistic tools that satisfy MBPTA requirements for the pWCET

problem because produce safe upper-bounds by construction. This chapter will be dedicated to

study the viability and applicability of these inequalities to estimate sky-high quantiles.

5.2.1 Markov’s Inequality on Low Probabilities

Besides trustworthiness, pWCET estimates are also required to be reasonably tight, especially for the

range of relevant probabilities usually considered for pWCET estimation, e.g. [10
−6 , 10

−15]. In this

line, our analysis shows that Markov’s inequality tends to be hardly useful for pWCET estimation.

This is better illustrated in Figure 5.1 which shows for all considered distributions the probability

bounds given by Markov’s inequality. We can observe that estimates are very pessimistic, orders of

magnitude higher than the real probability. This includes the range of probabilities of interest for

pWCET estimation. In fact, we see that Markov’s inequality never goes below 10
−2

for all distributions

for the execution time value range plotted.

Observation 2. Markov’s inequality in its original form is too pessimistic to be usable in practice for pWCET
estimation.
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(a) Gaussian distribution (b) Weibull distribution (c) Beta distribution (d) Gaussian Mixture

Figure 5.2: MIK bounds for the reference distributions.

5.3 Power-of-k functions for Markov’s Inequality
One of the main insights of this work is that the key reason for Markov’s inequality resulting in

loose pWCET bounds lies on the fact that it builds on the identity function, 𝑓 (𝑋) = 𝑋, of a random

variable. In this section, we show how a different function can lead to increased tightness on the

produced pWCET estimates while preserving trustworthiness.

In particular, we contend that the power function for any 𝑘 ∈ R>0 = {𝑘 ∈ R|𝑘 > 0}, i.e. 𝑓 (𝑋) = 𝑋 𝑘
,

or power-of-𝑘 function for short, can be safely used instead of the identity function to obtain tighter

and trustworthy pWCET bounds.

Definition 4. Let 𝑋 be a discrete random variable and 𝑘 a positive real value. The expected value of 𝑋 𝑘 , also
defined as the 𝑘th (theoretical) moment, is:

𝐸(𝑋 𝑘) =
∑
𝑥

𝑥𝑘𝑃(𝑋 = 𝑥). (5.1)

Corollary 2 (Markov’s Inequality to the power-of-k). Let 𝑋 > 0 and let the function 𝑓 be the power-of-𝑘
function 𝑓 (𝑋) = 𝑋 𝑘 . Markov’s inequality to the power-of-𝑘 yields:

𝑃(𝑋 ≥ 𝑏) ≤ 𝐸(𝑋 𝑘)
𝑏𝑘

. (5.2)

Hence, the probability that 𝑋 takes a value greater or equal to 𝑏 is bounded by 𝐸(𝑋 𝑘)/𝑏𝑘 . This makes

Markov’s inequality with 𝑓 (𝑥) = 𝑥𝑘
(MIK for short) a safe pWCET estimate when 𝑋 represents the

execution time of a program.

Proof. Theorem 4 holds true when Property 2.16 and Property 2.17 are fulfilled. The power-of-k
function does not fulfill those properties in general. However, when the 𝑥 domain is restricted to the

positive real numbers R>0 = {𝑥 ∈ R|𝑥 > 0}, which in fact includes the domain of execution time

profiles, the power-of-k function does fulfill Properties 2.16 and 2.17 since 𝑥 is positive, so 𝑥𝑘
is also

positive and an increasing function. □

Overall, for this application scenario (𝑥 ∈ R>0), Equation 5.2 is an upper-bound when using the

power-of-𝑘 function onto the reference distribution for any value of 𝑘 ∈ R>0. Hence, it can be

leveraged for pWCET estimation.

It is worth noting that other functions can exist that fulfill Properties 2.16 and 2.17. While exploring

them is part of our future work, as shown in Section 5.3.1, MIK (i.e. 𝑓 (𝑋) = 𝑋 𝑘
) achieves very tight

pWCET estimates which leaves small room for improvement.

Observation 3. For every value of 𝑘 ∈ R>0, MIK (i.e. Markov’s inequality with 𝑓 (𝑋) = 𝑋 𝑘) is a safe pWCET
estimate when 𝑋 represents the execution time of a program.
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(a) Gaussian distribution (b) Weibull distribution (c) Beta distribution (d) Gaussian Mixture

Figure 5.3: Evolution of MIK bounds with the value of 𝑘.

Note that there is no theoretical constraint on the maximum value of 𝑘, which can be any positive

real number 𝑘.

5.3.1 Tightness of MIK for Increasing Values of k
Once we have established the safe use of MIK for pWCET estimation, we illustrate the impact of

varying 𝑘 on tightness. Figure 5.2 shows for several values of 𝑘, {10, 15, 25, 50}, and the reference

distributions presented before, that MIK dramatically increases the tightness provided by Markov’s

inequality (Figure 5.1), while remaining a trustworthy upper-bound for every value of 𝑘. We also

observe that MIK tightness remains for high exceedance probabilities, which hence makes it a

promising model to provide pWCET estimates.

Observation 4. Markov’s inequality with 𝑓 (𝑋) = 𝑋 𝑘 heavily reduces the pessimism of Markov’s inequality.

Intuitively, from Figure 5.2, higher values of 𝑘 result in tighter estimates, i.e. minimizing the distance

between the reference distribution and the upper-bound distribution. However, this is not always

the case. For instance, if we take a closer look at the Beta distribution (Figure 5.2(c)), we see that at

cut-off probabilities 10
−3

and 10
−6

the tightest MIK estimates are not obtained for the highest value

of 𝑘 evaluated (50).

Observation 5. For a given threshold probability, higher values of 𝑘 do not necessarily result in a tighter
MIK bound.

This is better illustrated with the examples in Figure 5.3 that shows quantitatively the evolution of

the MIK bound obtained for varying values of 𝑘.

In this experiment, for the value of the target distribution at each probability, we evaluate MIK

for different values of 𝑘. As it can be seen, for every threshold probability and distribution the

value of 𝑘 resulting in the tightest estimation is different. For instance, for the Gaussian distribution

(Figure 5.3(a)) and target probability 10
−6

, 𝑘 = 71 produces the tightest estimate, while for 10
−9

and

10
−12

the best 𝑘 is 97 and 121, respectively. As a general trend, we see that the lower the target

exceedance probability, the higher the value of the best 𝑘 is. Yet, the highest value of 𝑘 evaluated

for each target probability does not produce the tightest bound. Overall, for each probability there

exists a value of 𝑘 producing the tightest upper-bound, with the optimal value of 𝑘 depending on

the actual reference distribution.

Observation 6. Increasing the tightness of MIK for each probability is an optimization problem on 𝑘 which
only increases accuracy and does not affect trustworthiness.

In order to address this optimization problem, we propose MEMIK (Minimum Envelope for MIK,

i.e. Markov’s Inequality to the power-of-K). MEMIK combines the results of MIK bounds obtained

for any value of 𝑘 by keeping, for each point in an interval, the value of 𝑘 producing the tightest

estimate. This set of points form an envelope that is a provable trustworthy and tight tail bound

by construction for any exceedance probability. Therefore, MEMIK improves the pessimistic upper-

bounds of Markov’s inequality (see Figure 5.1), with a much tighter envelope that is usable for
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5.3. Power-of-k functions for Markov’s Inequality

Algorithm 1 Compute an envelope using power-of-𝑘

1: function MEMIK(𝑡range, 𝑡step, 𝑝all, max𝑘(𝑝all), 𝑘step)

2: for 𝑡 ∈ 𝑡range , 𝑡step do
3: for 𝑝 ∈ 𝑝all do
4: mikbest(𝑝) ← ∞
5: for 𝑘 ∈ ([1,max𝑘(𝑝)], 𝑘step) do
6: vpred← EVAL(𝑡 , 𝑘, 𝑝)
7: if vpred < mikbest(𝑝) then
8: mikbest(𝑝) = vpred
9: 𝑘best(𝑝) = 𝑘

10: end if
11: end for
12: envelope(𝑡 , 𝑝) ←< mikbest(𝑝), 𝑘best(𝑝) >
13: end for
14: end for
15: return envelope
16: end function

k

(a) Gaussian distribution (b) Weibull distribution (c) Beta distribution (d) Gaussian Mixture

Figure 5.4: MEMIK bound (envelope) on the reference distributions.

pWCET estimation. Formally, the MEMIK bound is defined as follows:

𝑃(𝑋 ≥ 𝑏) ≤ min

𝑘

𝐸(𝑋 𝑘)
𝑏𝑘

for 𝑘 > 0. (5.3)

MEMIK, see Algorithm 1, which uses point-wise power-of-𝑘 Markov’s inequality values, performs

a simple complete exploration of MIK values over a given time range 𝑡range and over a configurable

range of 𝑘, determined by the maximum value max𝑘 to be explored for each probability 𝑝 in the set

of probabilities of interest 𝑝all. The granularity of MEMIK exploration over 𝑡 and 𝑘 is determined

by the 𝑡step and 𝑘step parameters respectively. For each probability 𝑝 in the interval of interest 𝑝all
(line 3) and 𝑘 in the range determined by max𝑘(𝑝) (line 5), the algorithm estimates the value of the

target distribution, EVAL(t, k, p) (line 6). To that end, we evaluate Equation 5.2 with 𝐸(𝑋 𝑘), which

corresponds to the theoretical 𝑘th
moment of the target distribution from Equation 5.1, obtaining

vpred that we compare to the best MIK value so far for all considered 𝑘 (line 7).

The minimum MIK value produced for a given 𝑡 and across all 𝑘 values (mikbest(𝑝)) is stored, together

with the corresponding 𝑘best(𝑝), in the data structure envelope (line 12). Eventually, after iterating

over the whole-time interval, the algorithm returns the envelope data structure (line 15) which holds

the point-wise definition of the approximation envelope. Note that, if for any value 𝑡, the value of

𝑘best(𝑝)matches max𝑘(𝑝), then max𝑘(𝑝) can be increased to find tighter bounds.

We applied MEMIK to our reference distributions, for which we can derive the theoretical moments.

For this experiment, we varied the value of 𝑘 up to 150 with 𝑘step = 1. We obtained the envelopes de-

picted in Figure 5.4 which provides evidence that MEMIK produces tight and trustworthy estimates

for all distributions, with an observed error of around 5%.
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Figure 5.5: MEMIK with sample mo-
ments (𝑛 = 1000 and 𝑛sims = 100) on
the reference Gaussian distribution with
(RESTK) and without (NO RESTK) re-
stricting 𝑘. Also, MEMIK evaluated
with theoretical moments.

M
ax

k

Figure 5.6: Minimum max𝑘 values for the
reference distributions used in this work.

Overall, this section provides the key result that our proposal, Markov’s inequality to the power-of-k

(MIK), unlike EVT, suffers no model uncertainty at the theoretical level and hence, provides correct-

by-construction pWCET estimates that are much tighter than those provided by the default Markov’s

inequality. This leaves sampling uncertainty as the problem to address.

5.4 Handling Markov Sampling Uncertainty

So far, we have been reasoning on examples for which we could compute the theoretical 𝑘th
moments

for each distribution. This was possible since the distributions considered were known and, hence,

we could compute exactly the value of each moment (i.e. 𝐸(𝑋 𝑘) for each value of 𝑘) using its analytical

closed form. However, we need to consider the scenario in which only samples are available. Hence,

as for any other sample-based method, we need to deal with the underlying sampling uncertainty.

A commonality of sample-related methods like EVT [35], and something that we also assume, is that,

input samples are independent and identically distributed [40] (i.i.d.) or at least exhibit extremal

independence [142]. The i.i.d. property can be pursued with platform randomization [97] or data

(time measurements) sample randomization [104].

For the case of the Markov’s inequality, this translates into deriving the sample moments, referred

to as 𝐸̂(𝑋 𝑘) (for each value of 𝑘). In particular, we need an estimator for high-order moments that

can produce good estimates for any distribution.

5.4.1 Sample Moment Estimation

The 𝑘th
moment of a random variable 𝑋 can be estimated as:

𝐸̂(𝑋 𝑘) = 1

𝑛

𝑛∑
𝑖=1

𝑋 𝑘
𝑖 . (5.4)

In general, this estimator is the best one to deal with high-order sample moments [81], as it is

asymptotically unbiased. Given that it asymptotically tends to a Gaussian distribution [16], the

properties of the Central Limit Theorem’s apply to it. However, the estimator is asymptotically

unbiased [64] only when using large amounts of data. For instance, for a sample of a Gaussian

distribution with 𝜇 = 100, 𝜎 = 10 and 𝑛 = 10
3
, the difference between the 3

rd
exact moment, and the

sample moment using Equation 5.4 is about 0.02%, it is between 1% and 3% for the 50
th

moment,

and can be up to 160% for the 100
th

moment.
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5.4. Handling Markov Sampling Uncertainty

When the sample moment, i.e. the estimate of the 𝑘th
moment, is higher than the theoretical moment,

there is a risk of underestimating the upper tail of the distribution by assigning to a certain probability

a smaller quantile than it has in reality. The approach we propose to limit that risk consists in setting

a maximum value of 𝑘 allowed for each different probability, which we refer to as max𝑘 . In order

to illustrate the effect of not controlling max𝑘 , Figure 5.5 assesses the tightness of MEMIK over a

particular set of nine probabilities (from 10
−7

to 10
−15

). The red triangles represent the theoretical

bound of MEMIK using Equation 5.3 with 𝐸(𝑋 𝑘) being the theoretical moments, while the orange

dots (NO RESTK) represent the application over multiple simulations of Equation 5.3 using the

sample moment from Equation 5.4. On both applications we set up a high value for max𝑘 , 150. We

can see how the loss of consistency of the sample moment estimator on Equation 5.4 results in bad

estimates.

An intuitive way to control the gap between the 𝑘th
sample and the theoretical moments is to vastly

increase the sample size, which in our domain would require an unaffordable number of runs of the

task under analysis. Alternatively, one can control the range of values of k explored in Equation 5.4.

By doing so, we trade some tightness for trustworthiness. That is, if we explore values of 𝑘 until a

low max𝑘 limit, we can see in Figure 5.3 that the theoretical bound is not optimal in terms of accuracy.

On the other hand, small values of max𝑘 also limit the inaccuracy of the sample moment estimator.

Note that it is not possible to identify a general optimal value of max𝑘 for any kind of data under

analysis. The appropriate max𝑘 value changes across distribution types, across the same distribution

type with different parameters, and even across probabilities for a given distribution. For this reason,

we propose the restricted k method (RESTK) that builds on the information gathered directly from the

samples to derive max𝑘 so as to produce trustworthy and tight results.

5.4.2 Understanding the Behavior of max𝑘

We gain insight on the behavior of max𝑘 along 3 axes. We analyze i) whether for a given distribution

there exists a pattern for max𝑘 that can provide tight and safe results using the sample moment

estimator; ii) whether this pattern can be predicted using only the information from the sample; and

iii) whether the pattern can be generalized for any distribution.

We focus on the same example distributions used in previous sections. We fix the interval [1, 150]
as exploration range for 𝑘. In order to account for sample uncertainty, we perform 𝑛sims = 10

3

Monte-Carlo simulations, each one considering a random sample of size 𝑛=10
3
.

We first compute Markov to the power-of-𝑘 (MIK) using Equation 5.2 with the sample moment

estimator in Equation 5.4, for all selected 𝑘. In each simulation, we increase values of 𝑘 and find

the first (smallest) value of 𝑘 that produces underestimation. This is computed by comparing the

estimation with the actual value of the distribution. That is, we take the value of 𝑘 for which the

estimated quantile is smaller than the theoretical quantile. Then, we set 𝑘 − 1 as our max𝑘 . For each

Monte-Carlo simulation, we compute the max𝑘 for all target probabilities. When all simulations are

performed, we keep the smallest max𝑘 for each probability. As a result, for each experiment of 𝑛sims
Monte-Carlo simulations, we obtain one value of max𝑘 for each probability under study. We plot

those values in Figure 5.6 from which we derive two main conclusions.

We observe that the values in Figure 5.6 follow a linear distribution. For each distribution we

fit minima max𝑘 values to a linear model and we derive the resulting correlation coefficient. The

correlation coefficient quantifies the strength of the linear relation between two variables. It ranges

between -1 and 1, with 1 or -1 indicating perfect correlation (all points would lie along a straight

line).

The distributions we use in this work include 4 types of unimodal distributions, 2 multi-modal

distributions and several parameters thereof (see Table 3.2 in Section 5.5). For all those distributions,

Table 5.1 shows that the correlation coefficient is very high and steadily stays above 0.99. Even

the empirical distributions derived from the case study analyzed in Section 5.6 result in a high

coefficient of correlation (0.98 on average), despite they tend to produce more variability in the

estimations. Hence, empirical evidence in support of linearity for the minimum observed value

of max𝑘 is strong for the distribution tails and range of probabilities representative for the WCET.

Besides, the application of RESTK includes a method to assess whether the linearity property holds,

building on the observed data. It is also noted that, similar empirical reasoning is used to support
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statistical arguments whether phenomena adhere to specific distributions builds on empirical tests.

For instance, in the case of EVT, previous work uses QQ-plots to assess, based on observation,

whether some tails can be considered exponential [105].

Table 5.1: Correlation Coefficient for all the distributions used in this work.

Gauss1 Gauss2 Weib1 Weib2 Beta1 Beta2 Gam1 Gam2 Mix1 Mix2 Mix3 Mix4
.999 .999 .999 .999 .999 .998 .999 .999 .998 .998 .997 .998

Overall, by restricting max𝑘 , one can avoid under-estimating the upper tail of the modeled distri-

bution. This is exemplified in Figure 5.5, where the green squares (RESTK) represent the estimates

obtained for the Gaussian distribution when applying the max𝑘 values in Figure 5.6. By restrict-

ing max𝑘 , we address the lack of trustworthiness in Figure 5.5 (NO RESTK) and produce tight and

trustworthy bounds. Analogous results are obtained for the other distributions.

5.4.3 Deriving max𝑘 from Unknown Distributions
When deriving Figure 5.6, we built on the values of the theoretical quantiles so as to determine the

value of 𝑘 for which the sample moment starts underestimating. Given a sample of size 10
𝑝
, we can

estimate confidently quantiles from exceedance probabilities bigger than 1/10
(𝑝−1)

. In this case, based

on the law of large numbers, it is very likely to see around 10 realizations whose probability is of the

order of 10
(𝑝−1)

[151]. That is, on a sample of size 𝑛 = 1000 we will see around 10 realizations whose

probability is 0.01 (1%). Therefore, for a sample of size 10
4
, quantiles corresponding to exceedance

probabilities 10
−3

and 10
−2

can be estimated easily with the usual quantile estimation functions from

statistical packages [88]. The computation of confidence intervals for quantile estimation can be done

using distribution-free methods like Kaigh and Lagenbruch or bootstrap [152]; and in any case the

accuracy of the estimation can be increased using a bootstrap technique to correct variability.

RESTK estimates at least three max𝑘 points to construct its model and assess linearity. The latter

is assessed by deriving the correlation coefficient for these three points. If such coefficient is above

a threshold th = 0.95, we deem max𝑘 boundary to be linear and vice-versa (in which case RESTK

cannot be applied). For instance, the quantiles corresponding to exceedance probabilities 10
−3

, 10
−4

,

and 10
−5

can be estimated very accurately with a sample of size 𝑛 = 10
6
. These reference points

allow us to assess when RESTK underestimates, and hence generate three max𝑘 points, one for

each probability. With those points, we can generate the regression line that projects max𝑘 for any

probability of interest (e.g., those in Figure 5.6) and assess that the correlation coefficient is above the

desired threshold.

Algorithm 2 generalizes the RESTK process starting from a main sample of the distribution under

analysis (size 10
𝑝
), selecting the range of 𝑘 to explore and the number of 𝑛sims to run. First, RESTK

estimates the quantiles at given probabilities 𝑝test from the main sample (Line 3), e.g. 10
−(𝑝−1)

,10
−(𝑝−2)

,

and10
−(𝑝−3)

. For each simulation, 𝑛boot bootstrap samples of size 10
𝑝−3

are generated from the main

sample (Line 5). For each of these samples, we compute the maximum 𝑘 and maximum tightness for

all the probabilities to test. The predicted value vpred is obtained by computing MIK from Equation 5.2

with the sample moment estimator, 𝐸̂(𝑋 𝑘) in Equation 5.4, (Line 10). The tightness of the predicted

value is computed (Line 11) by using as reference value vref the estimated quantiles obtained before

(Line 3). The algorithm finds the values of 𝑘 in the considered range that produce the tightest estimate

(Lines 15-16) and terminates its exploration as soon as a 𝑘 that underestimates (tightness < 1) is found

(Line 12). After exploring all selected probabilities for all 𝑘 and all simulations, the algorithm returns

the smallest max𝑘 across all simulations (Lines 20-21). Once the max𝑘 (e.g. for 10
−(𝑝−1)

, 10
−(𝑝−2)

, and

10
−(𝑝−3)

) are obtained, RESTK builds a linear model for all possible probabilities (Line 24). The final

check (Line 25) will ensure that the correlation of max𝑘 is above th = 0.95, otherwise RESTK provides

no pWCET estimate. As we show in Table 5.1, the correlation should always be close to 1 for max𝑘 .

The threshold th = 0.95 is a standard and stringent threshold for confidence in statistics, and used as

a way to discard estimates that do not meet the safety criteria of finding a proper max𝑘 .

RESTK enables the computation of a value for max𝑘 that reduces the risk of underestimation for any

probability of interest. This can be directly exploited by running MEMIK (Algorithm 1) on a prede-

termined range for 𝑘 and for each probability 𝑝 under study by using max𝑘(𝑝) as the upper bound for
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5.5. RESTK and EVT PWCET Estimates on Distributions

Algorithm 2 Computing the boundary necessary to apply RESTK approach.

1: function RESTKBoundary(sample, 𝑘range, 𝑘step, 𝑛boot, 𝑛sims, 𝑝test, 𝑝all, th)

2: for 𝑝 ∈ 𝑝test do
3: 𝑞est ← estimateQuantiles(sample, 𝑝)
4: for sim ∈ 𝑛sims do
5: sampleboot ← bootstrap(sample, 𝑛boot)
6: max𝑘(𝑝) ← ∞
7: tightnessbest(𝑝) ← ∞
8: for 𝑘 ∈ 𝑘range , 𝑘step do
9: vref ← 𝑞est

10: vpred←MIK(𝑘, sampleboot , 𝑝)
11: tightness← vpred/vref
12: if tightness < 1 then
13: break
14: end if
15: if tightness < tightnessbest(𝑝) then
16: current𝑘(𝑝) = 𝑘
17: end if
18: end for
19: if current𝑘(𝑝) < max𝑘(𝑝) then
20: max𝑘(𝑝) = current𝑘(𝑝)
21: end if
22: end for
23: end for
24: max𝑘(𝑝all) ← buildLinearModel(max𝑘(𝑝test), 𝑝all)
25: if corr(max𝑘(𝑝all)) < th then
26: return no pWCET estimate
27: end if
28: return max𝑘(𝑝all)
29: end function

𝑘, instead of considering an arbitrary range. Also, note that with RESTK, we use Equation 5.2 with

sampled moments (𝐸̂(𝑋 𝑘)) as EVAL(𝑡 , 𝑘, 𝑝) function in MEMIK. The rest of the MEMIK algorithm

remains unchanged when using the RESTK method.

5.5 RESTK and EVT PWCET Estimates on Distributions
Our implementation of RESTK and MEMIK is programmed in 𝑅 [133]. We run experiments on an

Intel Core i5-7600K CPU clocked at 3.8GHz. The maximum execution time required per experiment

was very short, 50 milliseconds or lower. We analyze values of 𝑘 in the range 𝑘 ∈ [1, 150] with

𝑘step = 1 to estimate max𝑘 for all reference distributions, which, as shown in Figure 5.6 is a wide

enough range to find the best max𝑘 across distributions and probabilities. For all methods compared

in this section, we use a sample size of 𝑛 = 10
6
. For RESTK, we set the number of bootstrap

simulations to 𝑛boot = 2000.

For EVT, we use the PoT methodology to fit tails and the CV Plot [52] to find the appropriate threshold

for the PoT model. We use two EVT models fitted for pWCET estimation, namely exponential and

light tails models. For each specific model, a different threshold using the CV plot will be found to

ensure the best possible fit.

• Exponential: with an exponential model, the shape of the GPD is fixed to 𝜉 = 0, which only

leaves us to estimate the threshold 𝑢 and the scale 𝜎. The threshold is estimated with the CV

Plot fixing 𝜉 = 0, which finds where the exponential tail begins. Once we find the tail, we

separate it from the rest of the sample and estimate the scale 𝜎 with it.

• GPD light tails: for the light tails model, we need the value of 𝜉, with 𝜉 < 0, best fitting the

data. Using the CV Plot we find the threshold 𝑢 where the light tail begins. Then, we separate
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(a) Gaussian (b) Weibull (c) Beta (d) Mixture

Figure 5.7: MEMIK with sample moments (𝑛 = 1000 and 𝑛sims = 100) on the reference
distributions, hence restricting 𝑘 (RESTK). Also MEMIK evaluated with theoretical
moments (MEMIK), and EVT evaluated with exponential tails (EXP) and with a GPD
with light tails (GPD).

the tail from the sample and estimate the shape 𝜉 and the scale 𝜎.

Reference Distributions. We start the comparison with Figure 5.7 that depicts for the reference

distributions the results of PoT with exponential and light tail models (EXP and GPD). It also shows

the results obtained with MEMIK, which we can obtain as we have the actual distributions, and

RESTK. Note that MEMIK provides the theoretical bound achievable with RESTK – it produces a

safe bound and the tightest estimates. RESTK, EXP, and GPD build on a sample (the same one for

a fair comparison) of the distribution. Following common practice, we show in Figure 5.7 the bias

of our estimator, which is the expected value (mean) of RESTK output. It is noted that in RESTK

application process all the distributions of this section fulfilled the linearity assessment (line 25 in

Algorithm 2).

As we can see in this initial set of results, GPD tends to underestimate while EXP increases overesti-

mation for high exceedance probabilities. RESTK produces values that are more consistent across all

probabilities, improving EXP specially for higher exceedance probabilities. For 10
−12

overestimates

are 8%, 13%, 24% and 11% for the four reference distributions, respectively. The values increase to

13%, 20%, 37% and 17% for 10
−15

. It can also be observed that the overestimation introduced by

RESTK with respect to MEMIK to handle sampling uncertainty is limited: at 10
−12

the difference

is 4.75 percentage points (p.p) on average with a maximum of 8 p.p across all four reference dis-

tributions, and at 10
−15

the overestimation difference is 5.25 p.p on average with a maximum of 10

p.p.

Extended set of Distributions. We consider a wider set of parameters for each distribution as

listed in Table 3.2, resulting in 12 different distributions. The first distribution of each type (but the

Gamma) is the reference distribution with the parameters used in previous sections. The rest of the

distributions of each type encompass a different set of parameters to increase representativeness. The

set of values explored for each parameter aims at showing the capabilities of RESTK under different

scenarios. To that end we modify the following parameters.

1. the variance of the distribution for Gaussian1 and Gaussian2; and Mixtures1 and Mixture2

2. the shape of the tail of the distribution for Beta1 and Beta2, Weibull1 and Weibull2, Gamma1

and Gamma2, and Mixture3 and Mixture4.

This covers all possible variability scenarios as the scale and location do not affect the results for

Markov’s Inequality. As shown in [111], a change of location does not affect the inequality if the shift

keeps the random variable positive, 𝑃(𝑋 − 𝑎 ≥ 𝑏 − 𝑎) ≤ 𝐸(𝑋−𝑎)
𝑏−𝑎 < 𝐸(𝑋)

𝑏
. Also, scaling the random

variable 𝑋 as𝜆𝑋 where𝜆 is real-valued, does not affect Markov’s Inequality as 𝑃(𝜆𝑋 ≥ 𝜆𝑏) ≤ 𝐸(𝜆𝑋)
𝜆𝑏 =

𝜆𝐸(𝑋)
𝜆𝑏 =

𝐸(𝑋)
𝑏

.

Looking at the results for the broader set of experiments in Table 5.2, we observe the following:

• GPD is always close to the true quantile, but in all cases it produces optimistic results. Fur-

thermore, the higher exceedance probability, the more optimistic the estimate is. For instance,

GPD on the Gaussian1 has a tightness of {0.93, 0.90} at 𝑝 = {10
−12 , 10

−15} respectively. This
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5.6. Railway Use Case

Table 5.2: Tightness of the different models (MEK stands for MEMIK and RES for
RESTK).

probability 10
−12

probability 10
−15

GPD EXP MEK RES GPD EXP MEK RES
Gaussian1 0.93 1.08 1.02 1.06 0.90 1.13 1.02 1.06

Gaussian2 0.90 1.20 1.05 1.14 0.86 1.28 1.03 1.11

Weibull1 0.91 1.13 1.02 1.09 0.87 1.20 1.02 1.09

Weibull2 0.96 1.09 1.03 1.04 0.94 1.14 1.05 1.04

Beta1 0.98 1.24 1.03 1.18 0.98 1.37 1.03 1.20

Beta2 0.98 1.17 1.03 1.11 0.98 1.26 1.02 1.13

Gamma1 0.93 1.09 1.03 1.07 0.89 1.11 1.03 1.07

Gamma2 0.95 1.09 1.02 1.06 0.92 1.13 1.02 1.07

Mixture1 0.92 1.11 1.03 1.03 0.88 1.17 1.02 1.02

Mixture2 0.94 1.16 1.03 1.07 0.90 1.23 1.03 1.05

Mixture3 0.88 1.25 1.03 1.15 0.83 1.37 1.02 1.13

Mixture4 0.94 1.15 1.02 1.15 0.91 1.23 1.03 1.16

behavior is observed for all reference distributions.

• EXP follows the opposite pattern. In general, we can see in Figure 5.7 that, for an exceedance

probability 𝑝 = 10
−7

, the estimates across distributions are always safe and quite tight. How-

ever, for higher exceedance probabilities, EXP tends to give more pessimistic estimates. For

instance, EXP on the Gaussian1 has a tightness of 1.01 at 𝑝 = 10
−7

that increases to 1.13 at

𝑝 = 10
−15

. At this probability and across all distributions EXP overestimation is 21.8% on

average, 37% in the worst case.

• The estimates with MEMIK, i.e. with theoretical moments, are very tight, below 6% for all

distributions.

• RESTK achieves results similar to MEMIK, preserving tightness and trustworthiness. Even for

very high exceedance probabilities, RESTK is able to produce consistent estimates. Building

on the Gaussian1 distribution, we see that while EXP can achieve a tighter estimate for low

exceedance probabilities (e.g. 𝑝 = 10
−7

), EXP suffers from increased pessimism for higher

exceedance probabilities whereas RESTK stays stable. This behavior is more striking in distri-

butions harder to analyze like mixtures. For instance, for Mixture1 RESTK not only maintains

tightness stable across probabilities, {1.03, 1.02}, but it gets also a tighter bound than EXP for

probabilities 𝑝 = 10
−9

and beyond as seen in Figure 5.7. At 10
−15

RESTK estimates across all

distribution overestimate by 9.4%, far below the 21.8% of EXP. In the worst case it is 20% (with

respect to 37% of EXP).

Overall, experimental results show the ability of RESTK to produce bounds suitable for pWCET es-

timation, being those trustworthy, tight and stable across probabilities and distributions, as opposed

to existing models, which fail to meet all three goals simultaneously. The benefits of RESTK increase

as the cutoff probability decreases to 10
−12

– 10
−15

, which are the main range of interest for pWCET

estimation considering maximum failure rates of 10
−9

per hour and tasks running thousands of times

per hour.

5.6 Railway Use Case
In order to evaluate the effectiveness of RESTK, we use an industrial critical real-time use case. In

particular, we focus on the central safety processing unit of the European Train Control System

(ETCS) reference architecture described in Section 3.1.1 where 10 different tests were conducted on

a Cobham Gaisler LEON3 platform.

Ground truth. For real programs, for which the actual distribution is not known, common practice

consists in using as ‘ground truth’ the observed quantiles for samples as large as reasonably possible

(e.g. 10
4

[105] and 10
8

[149]). We follow the same approach and consider the quantile observed for
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Table 5.3: Tightness of the estimates for the ETCS case study.

probability 10
−6

GPD EXP RESTK GPD EXP RESTK
TEST0 1.01 1.21 1.10 TEST5 0.98 1.12 1.07

TEST1 0.98 1.12 1.06 TEST6 0.94 1.06 1.01

TEST2 1.00 1.13 1.11 TEST7 1.01 1.16 1.09

TEST3 0.98 1.20 1.10 TEST8 1.01 1.23 1.12

TEST4 0.99 1.17 1.13 TEST9 0.98 1.11 1.10

the 10
7

sample as the reference value. More than two weeks of execution were needed to complete

the execution of all the 10
7

runs per input vector (TEST).

Setup: The setup and parameters used to run RESTK are the same used for the reference distributions.

As the number of runs we have is 𝑛 = 10
7

per input set, we make projections for 𝑝 = 10
−6

, for which

the observed frequencies closely match the actual probability (i.e. 95% confidence intervals are

within 0.1% of the mean). In this case, the estimated quantile at probability 𝑝 = 10
−6

is our ground

truth. Only TEST6 is an exception to this and, due to the variability observed for that quantile, we

use a 95% confidence interval, which is 1% off the mean. In this section, we use a sample size of

𝑛 = 10
4

for GPD, EXP and RESTK. Note that MEMIK with theoretical moments cannot be used since

the actual distribution is unknown and we only have sampled data.

Results: As part of the RESTK application process, all the 10 distributions fulfilled the linearity

assessment (line 25 in Algorithm 2). As shown in Table 5.3, pWCET estimates are similar to those

presented in the previous section. In particular:

• GPD achieves extremely tight estimates for 4 tests, with tightness up to 1.01, but on the other

6 tests it produces optimistic results. In general, while potentially very tight, GPD can easily

underestimate the bounds.

• On the other hand, EXP never underestimates although it produces pessimistic results, as high

as 23% for such a relatively low quantile.

• RESTK consistently produces tighter estimates than EXP in all tests for the use case. On average,

EXP exhibits 15.1% pessimism, whereas RESTK reduces it to 8.9%.

Discussion: Overall, with the combined results over a wide set of distributions, shown in the

previous section, and the results for the ETCS case study presented in this section, we conclude

that RESTK consistently provides tighter estimates than EXP and improves for lower exceedance

probabilities.

5.7 Summary
In the previous chapter, we showed how tailW improves pWCET estimates with respect to exponential

tails while preserving trustworthiness. However, both approaches have some model uncertainty due

to the need to determine where the tail starts. The other EVT alternative we propose in this thesis for

the WCET problem is the use of Markov’s Inequality. The key characteristic of Markov’s Inequality is

being an upper-bound for the probability of exceeding a given value by construction, hence without

any model uncertainty. In this work, we managed to make the upper-bound very tight with the use

of the power-of-k function, which yields the moments of a distribution. With said function, we can

move from computing the moments theoretically to a sample moment estimator that allows us to

compute the inequality for any sample. We devised the RESTK method to avoid the underestimation

produced by the inconsistency of the sample moment estimator and, in our experiments, it provides

tight and safe estimates.
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Chapter 6

Merging Hardware Event Monitor
Data for Complex MPSoCs Using
Order Statistics

6.1 Introduction
The Performance Monitoring Unit (PMU) in MPSoCs is at the heart of the latest measurement-based

timing analysis techniques in Critical Embedded Systems. In particular, hardware event monitors

(HEMs) in the PMU are used as building blocks in the process of budgeting and verifying software

timing by tracking and controlling access counts to shared resources.

As the complexity of MPSoCs in modern CRTES platforms in domains like avionics and automotive

continues to increase, so does the number of HEMs that can be tracked. In fact, current MPSoCs,

already comprise hundreds of HEMs, e.g., the ARMv8(-A) architecture defines over 280 micro-

architectural events [67]. This architecture is implemented by a set of processors such as the A53

(used by the NXP LayerScape family and the Xilinx ZynqUltraScale MPSoC), the A57, the A72, and

NVIDIA’s Carmel processor. Each processor implements a subset of those HEMs. For instance

A53 implements 63, while more modern A57/A72 implement 92/85 respectively. We see a similar

increasing trend in the NXP eXXX family with 180 HEMs in the e500mc and 262 in the e6500.

While the number of HEMs in current multicores is in the order of hundreds, they can only be read in

small groups of 4-8 via user-visible performance monitoring counters (PMCs). This limitation relates

to the hardware cost of routing the HEMs via long wires and multiplexors to access PMCs that can

be accessed via software. Hence, several runs are required to read all the HEMs of interest, which are

later ‘merged’ off-line to analyze the program behavior and reason about contention. For instance,

to decide whether some tasks can be scheduled concurrently, we need to budget how much each

one is expected to access each shared resource, which requires consistent reads of a large number of

HEMs.

To make things worse, several runs of the same experiment in an MPSoC can result in inevitable

variations in the timing behavior of the program, though its functional behavior is the same. This

is due to the impossibility to control the entire hardware and software initial state in each run. In

practical terms, this translates into variability in HEM readings (as high as 59% for processor cycles in

our target system for relevant HEMs), with no variability observed in instruction count (as analyzed

in Section 6.2.3). The engineer is confronted with a set of values (readings) for each HEM, that need

to be merged to allow reasoning about multicore contention. Unfortunately, since HEM values from

different runs to be merged can be subject to different (large) noise, it is challenging to merge them

consistently so that merged HEM vectors – those where all HEMs of interest are included – resemble

the values that would have been obtained if they could have been read all of them simultaneously in

the same run.

In this chapter we introduce a HEM-Reading Merging (HRM) approach to guide the merging of HEM
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Figure 6.1: Observed variability for several HEMs in the T2080.

values subject to different noise. HRM identifies an anchor HEM, and defines groups of HEMs, each

group with PMCs - 1 HEMs plus the anchor. HRM performs several runs for each group of HEMs,

ranks HEM values in each group using order statistics on the anchor HEM, and merges those HEMs

with the same rank in different groups. Order statistics are non-parametric and hence, can handle the

different distributions of the HEM values observed. Since noise-free HEM values cannot be obtained

in general in complex MPSoCs, we evaluate HRM comparing the correlation across HEMs merged by

HRM against their correlation when those HEMs are measured in the same run, thus under identical

noise. Our results show that HRM captures accurately the correlation between HEMs, as opposed

to blindly merging HEMs read in different runs.

6.2 Motivation
We motivate this work by showing how several of the 262 HEMs in the T2080 present significant

variation (Section 6.2.1) and follow different distributions (Section 6.2.2). We also dig down into

some of the reasons behind the observed variation (Section 6.2.3).

6.2.1 HEM Variability
On the NXP T2080 [69] we run a four-task workload with each task pinned to one of its e6500 cores.

Each task performs integer and floating operations at the core level over several large vectors so

that data operated is fetched from main memory, causing frequent misses in all cache levels, and

thus exercising several HEMs. For this experiment, as well as the remaining ones throughout this

chapter, we run on baremetal to remove potential interference coming from the operating system (the

specifics of our experimental framework are described in Section 3.1.2). We divide the experiment

into several sub-experiments, in each of which we read 6 HEMs (the total number of PMC available

in the T2080). Hence, reading all 262 HEMs requires 44 sub-experiments, each of which we repeat

100 times to capture the impact of noise on HEM readings. In all runs we focus on the HEMs for

core 0. Each run finishes when the task in core 0 finishes.

Figure 6.1 shows the maximum relative variability observed for several HEMs, i.e. var = (max −
min)/min, with bars in the figure sorted from higher to lower. Each bar is tagged (see bottom part of

the figure) with the order of magnitude 𝑚 of the value of each HEM in the experiment. For instance,

for 𝑚 = 3, 10
3 ≤ hem𝑖 < 10

4
. This information allows assessing the potential impact of the variability

on execution time, whose magnitude for this experiment is tens of millions (10
7
) of cycles. So is that

for the number of committed instructions.

In the NXP T2080, the maximum duration of an event triggered by an instruction can be in the

order of hundred cycles (10
2
). Hence, HEMs below 10

4
arguably have low impact on performance.

This, of course, is related to events not involving the execution of system software, e.g. a TLB miss,

whose impact is not covered by multicore contention timing analysis but instead captured by the

system-level timing analysis. We differentiate some cases for our experiments.
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Figure 6.2: Histogram and empirical CDF (ECDF) types: (a) Normal, (b) Concave, (c)
Convex, (d) Clustered, (e) hard-to-fit.

• Relevant high variability. Some HEMs present high variability while their magnitude is

relevant, 10
4
-10

7
. These HEMs are the focus of our study as they can significantly impact the

timing of the application and hence, the bounds that can be derived to it. In this category we

find PROCESSOR_CYCLESwith a variability of 45% from 3.6 · 10
7

to 5.2 · 10
7

(in other experiments

the variability of this HEM reached 59%). 37 HEMs fall in this category if we set 1% as threshold

for low-variability.

• Irrelevant or low variability. Other HEMs have low variability in absolute terms, thus having

little impact on performance. There are 70 HEMs in this category, including the three on the

left of Figure 6.1 whose variability is over 180% but their value is below 300, hence, insignificant

with respect to the cycle count. Other HEMs, 5 in total for this experiment, while exhibiting

values above 10
4
, incurred less than 1% variability, with limited impact on performance.

• Not exercised. Finally, other HEMs, 150 in our case, were not exercised by the program under

analysis making both the minimum and maximum value be zero. As the set of HEMs exercised

can change across different experiments, the particular non-exercised HEMs will like vary. In

fact, this is the motivation behind having different benchmarks in the experimental evaluation.

The observed HEM variability does not depend on the particular subset of HEMs that are enable/dis-

abled when collecting observations. Interestingly, the ‘low variability’ category comprises HEMs

presenting no variability. Those are related to the functional execution of the program capturing

the number of completed instructions including SFX, CFX, store, load, stores, taken and non-taken

branches. For instance, the total number of executed instructions (INSTRUCTIONS_CMPLTD) of the

first task is exactly the same in all runs (15,646,749). This leads us to conclude that the observed

variability does not come from the software that always performs the same function (e.g. it traverses

always the same execution path), and instead the variability is induced by the hardware.
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6.2.2 Distribution
Focusing on the relevant high variability HEMs, we identified their variable behavior falls into five

main classes of distribution. These types are depicted in Figure 6.2 that shows the histogram (bars)

and the cumulative distribution function or CDF (line) of observed values for one HEM in each

category for illustrative purposes. The x-axis shows HEM value, the left y-axis the frequency of

occurrence for the histogram (for a 500 observations sample), and the right y-axis the fraction of

observations for the CDF.

a. Normal. HEMs in this category show a symmetric behavior that resembles a normal distribu-

tion.

b. Concave. The distribution resembles a uniform with leaning towards the smallest values,

which gives a concave cumulative distribution function.

c. Convex. Distribution with the probability mass concentrated on the highest values of the

distribution, giving a convex cumulative distribution function.

d. Clustered. HEMs in this category show a clustered behavior around two values or more values.

Distributions with more than one clear mode also fall into this category.

e. Hard to fit. Finally, some distributions follow no obvious distribution (hard to fit category)

apparently characterized by having two modes and a long tail.

Out of the 37 relevant HEMs in our experiment, their distribution is as follows: 2 (5.4%) Normal,

13 (35.1%) concave, 19 (51.4%) convex, 1 (2.7%) clustered, and 2 (5.4%) hard-to-fit. The case of the

HEM PROCESSOR_CYCLES is particularly relevant for a two-fold reason. It is the main HEM used in

timing analysis for making predictions, and it presents a hard to fit distribution (see Figure 6.2(e)).

This HEM presents 59% variability from around 2.0 · 10
7

to 3.2 · 10
7
.

6.2.3 Reasons Behind the Observed Variability
The T2080 implements a complex architecture with an aggressive core (the e6500), so some form of

hardware-induced HEM variability is therefore expected. We have observed that the HEMs with

relevant high variability capture the activity in a wide range of hardware units, from the (on-core)

integer issue queue to the internal queues of the L2 cache. High variability can be due to the complex

nature of the T2080 and its sources of multicore interference: specific hardware scheduling choices

in the multiple shared queues and buffers in the core-to-L2 interconnect, internal to the L2, the

CoreNet Coherence Fabric, and the memory controller, may lead to variable latencies for specific

requests. Specific and controlled execution scenarios allow narrowing down the sources of execution

time variability. As an example, we have performed some bare-metal experiments where all cores

hit L2 cache sustainedly, with a task 𝜏 overlapping its full execution with the others. The intent is

that interference occurs solely in the L2 cache. Variability observed across executions (up to more

than 40%) could be attributed to minor initial processor state differences causing slight time shifts

between L2 accesses across runs, and leading to cascade effects in L2 queues. In general, however,

the limited information about the internal functioning of some of these resources, e.g. CCF, simply

prevents identifying some of the reasons behind the observed variability. Also, as the programs used

in this study typically perform the same activities repeatedly, contention for requests of a given core

can stay repeatedly low or repeatedly high, leading to cumulatively high variability. Further, such

systematic patterns may inadvertently switch from low to high contention scenarios (or vice versa)

due to several reasons, such as the effects of loop control instructions in a program, which might

alter systematic behavior inside the loop, as well as the impact of DRAM refresh operations, just to

name some examples.

Authors in [171] perform a hardware analysis of several Intel architectures and formulate several

hypotheses on the reasons behind various forms of under and over counting affecting some HEMs

(retired instructions, branches, load/stores, floating point, etc). Extending this to modern MPSoCs

confronts with the inclusion of large hardware IP blocks with limited description and the increasing

number of HEMs monitoring events highly sensitive to such variability. Also, note that knowing the

reasons behind such variability would help assessing whether the device allows some configurations

under which the variability reduces. However, if the behavior causing the variability is intrinsic to
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Table 6.1: Main terms used in this work.

Term Definition
nh, np, nb, nr number of HEMs, PMCs, sub-experiments, and runs

ℎ 𝑖 HEM with id 𝑖

𝑏 𝑗 𝑗th sub-experiment

𝑟 𝑗 ,𝑘 run 𝑘 of a given sub-experiment 𝑏 𝑗
𝑚 𝑖

𝑗 ,𝑘
measured value for ℎ 𝑖 in run 𝑟 𝑗 ,𝑘

𝑀 𝑖
𝑗

set of measured values for ℎ 𝑖 in 𝑏 𝑗

𝑣 𝑖
𝑗 ,𝑘

range of variation of measured value 𝑚 𝑖
𝑗 ,𝑘

ℎ𝑎 anchor HEM

sr𝑗 ,𝑙 Run of 𝑏 𝑗 with the 𝑙th lowest value of ℎ𝑎

SR𝑙 Concatenation of sr𝑗 ,𝑙 for all {𝑏 𝑗} 𝑗=1,··· ,nb
SM𝑙 HEM readings in sr𝑗 ,𝑙 for all {𝑏 𝑗} 𝑗=1,··· ,nb

the complexity/functioning of the device, a solution like HRM is still needed – whether or not the

root can be explained.

6.3 Problem Formalization
Combining the discussion Section 2.4.1 about the disproportion between HEMs and PMCs with the

analysis of high variability between measurements of the previous section, there lies a challenge to

merge the information from different HEM readings into a single dataset as if they were measured

together. In this section we will formalize the HEM merging problem.

We are interested in collecting the values of a set of relevant HEMs, ℋ ∋ {ℎ1 , ℎ2 , · · · , ℎnh}, whilst a

given program executes on the target platform in response to a given input (the main terms used in

this chapter are listed in Table 6.1).

In an ideal scenario, all nh HEMs are collected at once on a single program execution without incurring

the uncontrolled (platform or system level) jitter or variability that may arise across executions. Under

such favorable conditions, we obtain a set of measurements (values) for each HEM in ℎ 𝑖 ∈ {ℋ} that

cumulatively capture the activity performed by the program. This is referred to as Scenario 1 in

Figure 6.3, in which the row shows the single execution, columns the HEMs and the cell their

respective values.

In a more realistic scenario, program executions on the target platform are subject to noise so that in

each execution the measured values for a given HEM ℎ 𝑖 can potentially vary. Note that we use the

term ‘noise’ to generically refer to the varying execution conditions across experiments, either due

to different initial hardware and system software state (in this respect, our experiments are executed

baremetal reducing the variability due to system software). We are not after quantifying such noise,

but we just recognize that it is in general uncontrollable, beyond the measures we take in order to

reduce it as shown in Section 3.1.2. To capture the impact of noise, several runs of each experiment

need to be performed. The noise of the different runs is represented as different levels of grey in

Figure 6.3 (Scenario 2). In this scenario, noise can occur but at least all HEMs can be read at once,

so all HEMs in each run are exposed to the same noise. This makes possible to reason about their

relationships for statistical inference.

In general, however, it is not possible to read all nh HEMs at once in a single execution as the

number of HEMs that can be tracked simultaneously is determined by the number of available

PMCs. Assuming our platform support np configurable PMCs1 typically comparatively small with

respect to the number of supported HEMs, with np ≪ nh. For this reason, HEMs are necessarily

collected in groups of at most np elements. Hence, to measure all HEMs for a given program we

1Without lack of generality, we assume there are no constraints on which specific HEM can be read from each PMC.

Some processors exhibit such constraints, due to hierarchy of multiplexors to route HEM readings to a specific PMC. This

scenario would just restrict which HEMs can be read in the same run, but would not affect HRM, as some HEMs (e.g.

PROCESSOR_CYCLES) can be read along with any other group of HEMs.
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Scenario 3: With Noise. 
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All HEMs can be read at once

run1
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Scenario 2: With Noise. 
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Naïve merging (run1 and runk) 

Figure 6.3: Scenarios in HEM reading.

must perform a set of at least nb ≥ ⌈nh/np⌉ sub-experiment (𝑏1 , · · · , 𝑏 𝑗 , · · · , 𝑏nb), each capturing the

values of at most np distinct HEMs and cumulatively covering all HEMs.

To capture the variability in measured values, several runs of the same sub-experiment 𝑏 𝑗 are carried

out, see Scenario 3 in Figure 6.3, with crosses showing the HEMs not read in a given run. In this case,

we assume only 2 HEMs can be read in each run. Also, as shown at the bottom of Scenario 3, naively

merging HEMs (from the first run and k
th

run in this case) results in merging HEMs values obtained

under different noise levels, potentially resulting in inconsistent values that cannot be reliably used.

In this chapter, we address the challenge of merging the readings (measurements) for all ℎ 𝑖 ∈ ℋ ,

each one measured several times in a different sub-experiment (Scenario 3) to obtain noise-consistent

measurements for all HEMS (Scenario 2), preserving their relationships with execution time to favor

timing analysis. Note that, noise-free HEM values (Scenario 1) are arguably hard to achieve, if at

all possible, in MPSoCs. In particular, we aim at obtaining vectors with values for all HEMs under

similar noise, as if all of them could have been read simultaneously in every single run.

6.4 HRM: a Technique to Merge HEMs
Table 6.2 introduces an example with the main inputs and outputs to be generated by any HEM

merging approach. In particular, it shows the measurements made when the number of HEMs is

nh = 12 and the number of PMCs is np = 3, hence being required nb = 4 sub-experiments. In the

example, nr = 5 runs are performed per sub-experiment. On the left, it is reported the sub-experiment

and run id. In the top part, the HEM id. We use 𝑟 𝑗 ,𝑘 to refer to the run 𝑘 of sub-experiment 𝑏 𝑗 . We

refer to measured value of HEM ℎ 𝑖 in 𝑏 𝑗 and run 𝑘 as 𝑚 𝑖
𝑗 ,𝑘

. In terms of outputs, a HEM merging

mechanism must aim at producing a list of nr all-HEM readings (vectors) where each vector includes

all HEMs. Each of the nr measurements of each HEM is placed exactly in one of those nr vectors.

This is illustrated at the bottom of Table 6.2, where each run of each sub-experiment is merged with

another run from each other sub-experiment so that each run is represented exactly once in the

merged result. For instance, in the example, the 1
st

run of the first sub-experiment (𝑚1

1,1
, 𝑚2

1,1
, 𝑚3

1,1
) is

merged with the 𝑥′th run of the 4
th

sub-experiment, and with one run of each other sub-experiment

represented as the 𝑥th
run of the 𝑗th sub-experiment.

6.4.1 Approach
Our approach, HRM, builds on non-parametric order statistics, which allows relating random vari-

ables based on the order of the sampled values of the variables, regardless of their distributions. In

particular, HRM aims at merging the HEM measurements from different sub-experiments in such a

way that the noise experienced by the different measurements is as similar as possible. HRM must

also allow merging HEMs regardless of the distribution of the data to be merged. Non-parametric
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Table 6.2: Example with nh = 12, np = 3, nb = 4, a nr = 5.

ℎ1 ℎ2 ℎ3 · · · ℎ 𝑖 · · · ℎ10 ℎ11 ℎ12

𝑟1,1 𝑚1
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.

.
.
.
.

.

.

.
.
.
.

𝑏1 𝑟
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1,𝑘
𝑚2

1,𝑘
𝑚3
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.
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.
.

.

.
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.
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. . .

.

.

.
.
.
.

𝑏 𝑗 𝑟𝑗 ,𝑘 · · ·𝑚 𝑖
𝑗 ,𝑘
· · ·

.

.

.
.
.
.

. . .

𝑟4,1 𝑚10

4,1
𝑚11

4,1
𝑚12

4,1

.

.

.
.
.
.

.

.

.
.
.
.

𝑏4 𝑟
4,𝑘 𝑚10

4,𝑘
𝑚11

4,𝑘
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4,𝑘

.

.

.
.
.
.

.

.

.
.
.
.

𝑟4,5 𝑚10

4,5
𝑚11

4,5
𝑚12

4,5

⇓
SM1 𝑚1

1,1
𝑚2

1,1
𝑚3

1,1
· · · 𝑚 𝑖

𝑗 ,𝑥
· · ·𝑚10

4,𝑥′𝑚
11

4,𝑥′𝑚
12

4,𝑥′

.

.

.
.
.
.

.

.

.

SM𝑖 𝑚1

1,𝑘
𝑚2

1,𝑘
𝑚3

1,𝑘
· · · 𝑚 𝑖

𝑗 ,𝑦
· · ·𝑚10

4,𝑦′𝑚
11

4,𝑥′𝑚
12

4,𝑦′

.

.

.
.
.
.

.

.

.

SMnr 𝑚1

1,5
𝑚2

1,5
𝑚3

1,5
· · · 𝑚 𝑖

𝑗 ,𝑧
· · ·𝑚10

4,𝑧′𝑚
11

4,𝑥′𝑚
12

4,𝑧′

order statistics, which resort to the order of data regardless of their distribution, allow relating

runs across measurements through the use of an ‘anchor’ HEM, referred to as ℎ𝑎 , measured in all

sub-experiments. HRM derives the relation between HEMs in different sub-experiments via their

relation to ℎ𝑎 .

This is illustrated in the left side of Figure 6.4 that shows how the individual readings of ℎ 𝑖 and

ℎ 𝑗
(𝑚 𝑖

and 𝑚 𝑗
respectively) from different sub-experiments are related to those of the ℎ𝑎 in each

sub-experiment referred to as. HRM provides the following properties. First, it preserves the

distribution of each individual HEM. It also preserves the joint distribution between each HEM,

ℎ 𝑖 , and the anchor HEM, ℎ𝑎 (recall that the joint distribution between the HEMs read in the same

sub-experiment is maintained). Finally, HRM estimates the most reliable joint distribution across

HEMs in different sub-experiments. Next, we detail the procedure followed by HRM to provide

those properties, followed by the mathematical foundation of the approach.

6.4.2 Procedure
The application process of HRM includes four main steps.

STEP ➀. HRM starts by selecting the anchor HEM, ℎ𝑎 , that will be read in all sub-experiments. In

each sub-experiment np − 1 PMCs are used to read different HEM. That is, from all available np
PMC, HRM uses one of them in each sub-experiment 𝑏 𝑗 for the anchor, and the other np − 1 PMCs

for other HEM. HRM approximates unobserved HEM relationships via their individual (observed)

relationship with ℎ𝑎 . Thus, the selection of ℎ𝑎 is critically important as it determines how effective

is HRM to merge HEMs for the problem under study. As the problem at hand relates to timing

analysis, we chose ℎ𝑎 to be as relevant as possible to timing. In the case of the T2080, execution time

is measured via the HEM PROCESSOR_CYCLES, and hence ℎ𝑎 = PROCESSOR_CYCLES.

STEP ➁. After performing nr runs of each sub-experiment, HRM sorts the runs of each sub-

experiment by ℎ𝑎 , from lowest to highest. As a result, each element in the sorted list for each
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Figure 6.4: Introduction to the HRM approach.

sub-experiment will indicate an order statistic, with the 𝑘th
order statistic of a sample being its

𝑘th
-lowest value.

Each sub-experiment is characterized by a small fixed set of HEMs, limited by the number of PMCs

available, np. Each sub-experiment in {𝑏 𝑗} 𝑗=1,··· ,nb is represented by a set of nr runs of dimension np,

𝑟 𝑗 ,𝑘 :

(
𝑚𝑎

𝑗,𝑘
, 𝑚
(np−1)(𝑗−1)+1

𝑗 ,𝑘
, · · · , 𝑚(np−1)(𝑗−1)+(np−1)

𝑗 ,𝑘

)
.

The selection of nr should be based on prior knowledge of ℎ𝑎 random variable behavior. Without

such knowledge, one must resort to nr ≥ 30, as this is the minimum size to estimate the main

properties of a distribution through the central limit theorem. Runs in each sub-experiment and

across them, should be designed to ensure that they are independent and identically distributed to

enable the probabilistic reasoning on which HRM builds. To achieve this property, we empty the

processor state between runs (see Section 3.1.2). We assess it by performing statistical independence

and identical distribution tests (see Section 6.5.2).

STEP ➂. Once all sub-experiments are sorted based on ℎ𝑎 , we merge the different sub-experiments

so that the 𝑘th
measurement in the list for ℎ 𝑖 in a given sub-experiment is merged with the 𝑘th

measurement of ℎ 𝑗
in another sub-experiment. Naturally, HEM measurements in the same run

of the same sub-experiment remain at exactly the same position in the sorted list, so they remain

together upon merging.

Let sr𝑗 ,𝑙 be the run of sub-experiment 𝑏 𝑗 with the 𝑙th lowest value of ℎ𝑎 . sr𝑗 ,𝑙 is defined as sr𝑗 ,𝑙 = 𝑟 𝑗 ,𝑘
where 𝑚𝑎

𝑗,𝑘
is the 𝑙-lowest value in the set {𝑚𝑎

𝑗,𝑘
}𝑘=1,··· ,nr. Finally, the concatenation produces a vector

with completed representation of HEMs SR𝑙 = (sr1,𝑙 , · · · , sr𝑗 ,𝑙 , · · · , srnb,𝑙) for each 𝑙 = 1, · · · , nr. Since

the 𝑙-lowest value of 𝑚𝑎
𝑗,𝑘

is well-defined, we can assume that for each 𝑗 = 1, · · · , nb, 𝑚𝑎
𝑗,𝑘
≤ 𝑚𝑎

𝑗,𝑘+1

for all 𝑘 = 1, · · · , (nr − 1). Therefore, 𝑚𝑎
𝑗,𝑘

is the (𝑘 : nr)-order statistic of the sample of size nr,
{𝑚𝑎

𝑗,𝑘
}𝑘=1,··· ,nr. HRM merges the values read in the same ordered run across all sub-experiments,

referred to as SM𝑙 . For each SM𝑙 , HRM produces one reading for each HEM and nb readings for ℎ𝑎 .

STEP ➃. After merging, we compute the summarized order statistics for ℎ𝑎 . In particular, we

compute the quantiles of the distribution of all values of ℎ𝑎 across all sub-experiments so that we

obtain exactly nr quantiles, i.e. one for each row of our merged list of HEM values. The resulting

array yields 𝑚̂𝑎 = quantile(0, · · · , 𝑘/(nr− 1), · · · , 1), where 𝑘 = 0, · · · , (nr− 1). HRM estimates the nr
equal spaced quantiles of ℎ𝑎 using the sample of size (nr · nb) obtained from joining all ℎ𝑎 values.

6.4.3 Quantile Estimation
Several methods for quantile estimation can be considered. Let {𝑥(𝑘)}𝑘=1,··· ,𝑛 be an ordered sample of

size 𝑛. In general, a method for quantile estimation corresponds to weighted averages of consecutive

order statistics. Given fixed values for a function 𝛾 and a constant 𝑚, the 𝑝-quantile is defined by

𝑞(𝑝) = (1 − 𝛾(𝑗 , 𝑚))𝑥(𝑗) + 𝛾(𝑗 , 𝑚)𝑥(𝑗+1), where (𝑗 − 𝑚)/𝑛 ≤ 𝑝 < (𝑗 − 𝑚 + 1)/𝑛, 𝑥(𝑗) is the (𝑗 : 𝑛)−order

statistic. We consider a continuous representation of quantile estimation with 𝛾(𝑗 , 𝑚) = 𝑝 · 𝑛 +𝑚 − 𝑗
and 𝑚 = 1 − 𝑝, which is equivalent to do linear interpolation between the points {(𝑝𝑘 , 𝑥(𝑘))} where

𝑝𝑘 attempts to estimate the mode of 𝐹(𝑥(𝑘)). Then 𝑞(𝑝) is a continuous function of 𝑝 and 𝑝(𝑘) =
(𝑘−1)/(𝑛−1). We refer the interested reader to [88] for a review of programming quantile estimation.
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6.4.4 Correlation Boundary

HRM produces a solution that preserves the observed information and reliably builds unobserved

information by preserving joint distributions. That is, HRM preserves the correlation across HEMs.

In particular, HRM describes the relationship between the expected value of a target HEM, the

anchor ℎ𝑎 , and the values observed for a different HEM ℎ 𝑖 . The relationship across different HEMs,

namely ℎ 𝑖 and ℎ 𝑗
, not observed together, is built therefore through ℎ𝑎 . HRM builds such relationship

by estimating the covariance matrix across all HEMs. The covariance matrix can be used because

each ℎ 𝑖 is a random variable with at least 4 finite moments. In our case, each HEM has infinite finite

moments since all HEM values are bounded, i.e. they count finite events per cycle during a finite

interval, since the measurement starts until the measured value is collected. Therefore, each HEM

value is a bounded number, thus guaranteeing the existence of infinite finite moments. By being

random variables with finite moments, we can describe the relationship across expected values

of HEMs through a multivariate normal distribution based on the central limit theorem, which

ultimately ensures the existence of the covariance matrix that characterizes the relationship between

the expected values of HEMs asymptotically.

In particular, correlation across HEMs is based on Pearson correlation coefficient [66]. It can be

obtained via a Least-Squares fit, where a value 1 represents a perfect positive relationship, −1 a

perfect negative relationship, and 0 the absence of any apparent relationship across variables. Let

𝑋 and 𝑌 be random variables, and denote by cor(𝑋,𝑌) the Pearson correlation, obtained as
cov(𝑋,𝑌)
𝜎𝑥𝜎𝑦

,

where 𝜎 and cov describe the variances and covariance, respectively.

Lemma. Let (𝑌, 𝑋1 , 𝑋2) be a random vector with multivariate standardized normal distribution.

Then, the correlation between 𝑋1 and 𝑋2 is in the interval

𝜌1𝜌2 ±
√

1 − 𝜌2

1

√
1 − 𝜌2

2
,

where 𝜌𝑖 = cor(𝑌, 𝑋𝑖) for 𝑖 = 1, 2.
Proof. Let Σ be the covariance matrix the joint distribution between the random variables, 𝑌, 𝑋1 and

𝑋2. Σ can be described as the correlation matrix

©­«
1 𝜌1 𝜌2

𝜌1 1 𝜌
𝜌2 𝜌 1

ª®¬ . (6.1)

where 𝜌 cannot be arbitrarily set between [−1, 1], since the matrix must be positive semidefinite.

A Hermitian matrix is positive semidefinite if and only if all principal minors are non-negative.

Building on Silvester’s criterium, only the minors defined by submatrices starting from the upper left

corner need being checked. The 2-by-2 submatrix,

(
1 𝜌1

𝜌1 1

)
, is trivial, and the 3-by-3 matrix produces

the result to prove.

Note that, by operating the result of the multivariate standardized normal distribution with the

corresponding 𝜇 and 𝜎 of the random variables of the HEMs whose joint distribution we are study-

ing, we can directly obtain the result for the multivariate non-standardized normal distribution.

Moreover, since the random variables studied (the HEMs) have 4 finite moments (in fact they have

infinite moments), and based on the central limit theorem, the Lemma guarantees that observed

values converge asymptotically to the expected values.

Building on the Lemma, we can prove that HRM guarantees the three properties described in

Section 6.4.1.

Theorem Let 𝐻 be the joint distribution of all HEMs, and assume the set of ordered sub-experiments

as shown in the example in Table 6.2. Let be {𝑚̂𝑎
𝑘
}𝑘=1,··· ,nr the set of nr equal spaced quantiles of ℎ𝑎

from the sample {𝑚𝑎
𝑗,𝑘
} 𝑗 ,𝑘 of size (nb · nr). Consider the complete (merged) vector with all HEMs

defined as:
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Table 6.3: HEMs with observed relevant variability.

Name ID
CYCLES_LSU_SCHE_STALLED 1

CYCLES_LSU_ISSUE_STALLED 2

BLINK_REQUEST 3

L2_MISSES 4

L2_DEMAND_ACCESSES 5

L2_ACCESSES 6

L2_STORE_ALLOCATES 7

L2_DATA_MISSES 8

L2_RELOADS_FROM_CORENET 9

L2_SNOOP_HITS 10

L2_SNOOP_PUSHES 11

STALL_FOR_RLT_CYCLES 12

STALL_FOR_WDB_CYCLES 13

BIU_MASTER_REQUESTS 14

BIU_GLOBAL_REQUESTS 15

(
𝑚̂𝑎

𝑘
, 𝑚1

1,𝑘
, · · · , 𝑚(np−1)

1,𝑘
, · · ·

𝑚
(np−1)(𝑗−1)+1

𝑗 ,𝑘
, · · · , 𝑚(np−1)(𝑗−1)+(np−1)

𝑗 ,𝑘
, · · ·

𝑚
(np−1)(nb−1)+1

nb,𝑘 , · · · , 𝑚(np−1)(nb−1)+(np−1)
nb,𝑘

)
,

for each 𝑘 = 1, · · · , nr. Then, the empirical joint distribution described by the complete vectors

complies the (formalized) properties of HRM:

• Property 1. Preserves the marginal distribution of 𝐻 for all HEMs.

• Property 2. Preserves the joint distribution across HEMs in the same sub-experiment.

• Property 3. Estimates, with minimum error on correlation, the joint distribution between HEMs

in different sub-experiments.

Proof. Property 1: The marginal distribution of all HEMs but ℎ𝑎 is preserved, since no modifications

are produced in the observed values of those HEMs – they are just sorted. Only ℎ𝑎 is modified, since

it is replaced by the order statistics. As its distribution has infinite moments, replacing ℎ𝑎 by its order

statistics of a larger sample, leads to a higher amount of information (i.e. nb · nr values instead of nr),
improving the sample and hence, preserving the marginal distribution of ℎ𝑎 .

Property 2: The re-ordering procedure preserves measurements of different HEMs in the same sub-

experiment together. Therefore, their joint distribution is preserved identical.

Property 3: Regarding the joint distribution of HEMs in different sub-experiments, HRM estimates

such joint distribution for each pair of HEMs. Note that, since those pairs of HEMs are never observed

in the same sub-experiment, data collected provides no information about their joint distribution.

The only relation across sub-experiments is had through ℎ𝑎 , which is observed in all of them, so

the joint distribution to be estimated needs to preserve this common relation. Based on the Lemma,

such relation is preserved if the estimated correlation for describing the real joint distribution of two

HEMs in different sub-experiments is in the interval 𝜌1𝜌2 ±
√

1 − 𝜌2

1

√
1 − 𝜌2

2
, where 𝜌1 and 𝜌2 are the

correlation between each of those two HEMs and ℎ𝑎 . Since there is no additional information about

the actual correlation between those two HEMs, any value in the interval is equally probable. Thus,

the correlation value proposed by HRM is 𝜌1𝜌2, since this is the value that minimizes the absolute

error with respect to the real value.
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6.4.5 Matrix Completion Techniques
HRM aims at merging actual observations rather than filling missing values with synthetic data. The

latter, which may be realized with Matrix Completion methods [83, 136], as discussed before in

Section 2.4.2, is not appropriate in our case. This is so because Matrix Completion requires that

values in each row and column belong to a different distribution, which is not our case, since each

column is a different HEM with its own distribution. As a consequence, the use of Matrix Completion

methods for our problem leads to inadequate value distributions where, for instance, the mean and

standard distribution of the synthetic data for all HEMs is extremely different from those for actual

observations. For instance, in our experiments, the mean for synthetic data is ≈ 20𝑥 smaller than

that of real data, whereas the standard deviation is between 0.36𝑥 and 5𝑥 that of real data.

6.5 Experimental Evaluation

6.5.1 Validation Methodology
For the experimental evaluation of this work we resort to the microbenchmarks run in the NXP T2080

Reference Board described in Section 3.1.2 and represented in Figure 3.2. The benchmarks we use

to generate validation data are the microbenchmarks described in Section 3.1.2, which are designed

to stress different cache levels to conform a representative set of cases. In order to create a realistic

scenario for the validation, we use the set of 16 workloads described in Table 3.1, where we run one

benchmark per core and the readings are performed from core0.

The validation of any HEM merging methodology is complex on real hardware as we do not have

the noise-free value for each HEM (ℎ 𝑖), as explained in Section 6.3. This prevents us from directly

comparing the estimated value for each HEM with its corresponding noise-free value. Thus, we can

only evaluate HRM comparing the correlation for the HEM merged with HRM against the real –

measured – correlation.

In order to evaluate estimated and real correlations, first, for each workload, we perform 100 runs for

each of the 53 = 261/5 sub-experiments. Hence, we collect readings for all 262 HEMs with 5 HEMs

plus ℎ𝑎 read in each sub-experiment2, except the last group (sub-experiment) that only includes 1

HEM and the ℎ𝑎 .

We validate HRM for 15 HEMs having high relevant variability, see Table 6.3. To that end we on

purpose place those HEMs in different groups so that their mutual correlation is not observed in the

data used for HRM.

For each of the 120 pairs3 of HEMs we estimate their correlation 𝜌̂𝑖 , 𝑗
, after merging them with

HRM. We also collect 100 runs for a set of experiments in which those 15 HEMs and the anchor are

observed in the same group. Thus, for each pair of HEMs (ℎ 𝑖 and ℎ 𝑗
), as well as ℎ𝑎 , we obtain their

actual correlation 𝜌𝑖 , 𝑗
from those measurements. This allows us comparing their real correlation 𝜌𝑖 , 𝑗

with the estimated correlation after merging with HRM 𝜌̂𝑖 , 𝑗
. In particular we measure the absolute

distance (difference) between |𝜌𝑖 , 𝑗− 𝜌̂𝑖 , 𝑗 |, so that the maximum difference obtained for a pair of HEMs

is 2. This happens when the estimated correlation is 1 (or −1) and the real one is −1 (or 1).

6.5.2 Independence and Identical Distribution
HRM builds on these statistical properties for ℎ𝑎 , PROCESSOR_CYCLES, to apply order statistics. In

practice, this holds since all values of ℎ𝑎 have been collected from the repeated execution of the same

workload, with the same inputs, and enforcing the same hardware and software state as much as it can

be controlled. We have further evaluated these properties quantitatively. We performed an ANOVA

test [63] to assess identical distribution of PROCESSOR_CYCLES across sub-experiments. The result of

the test is a p-value 𝑝 = 0.57, so the test is not rejected comparing the law on the expected value

of PROCESSOR_CYCLES, and tells us that the noise is identically distributed across sub-experiments.

We assess independence within each sub-experiment with a Ljung-Box test [108] with lag = 10.

With a significance level 𝛼 = 0.05, independence is not rejected in 96% of the sub-experiments, so

2For the sake of convenience, we refer to the HEM read in the same sub-experiment as being in the same (HEM) group.

3All possible pairs with the 16 HEMs analyzed (the 15 relevant and ℎ𝑎 ).
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measurements can be regarded as independent since the expectation is that the test is not rejected by

a fraction of the tests matching 1 − 𝛼. Hence, we can use the order statistics for PROCESSOR_CYCLES
after the merge as part of HRM because the noise is the same across sub-experiments and there is no

dependence across values read.

6.5.3 Correlation Between HEMs
In order to have reliable correlation estimates, we use the percentile bootstrap method [49, 60] with the

following methodology. We first compute bootstrap samples of size 𝑛 = 50 for all sub-experiments;

we compute the correlation between all pairs of HEMs; we then repeat 𝑝 = 100 times those two

steps and store the estimates of the correlation; for each pair of HEMs we have 100 estimates and we

take the mean of those 100 values, which will be our reference estimation. We can also obtain the

confidence interval for those 100 values for completeness.

For reference, we consider two other merging methods, referred to as unsorted and sorted respectively.

The unsorted method simply concatenates results of different sub-experiments in the very same order

they are collected, without analyzing any type of relationship between HEMs. The sorted method,

instead, sorts the values collected for each HEM from lowest to highest merging in the same vector

those in the same relative position for each HEM, so the lowest value for each HEM form a vector,

the second lowest for each HEM another vector, and so on and so forth.

We have chosen workloads 1, 2, 5 and 10 due to their high variability and different spectra of

measured values and correlations between HEMs in order to provide a representative set of cases.

Figure 6.5 shows the correlation distance for the chosen workloads. Each point represents the

absolute difference between the estimated correlation for each method and the real correlation

obtained measuring those HEMs in the same group. We order all HEM pairs for each method

from lowest to highest correlation difference. As shown, the differences between the observed and

estimated correlation for HRM is consistently lower than for the other methods, thus reflecting its

higher accuracy. While the input data for all methods does not include direct observations of the real

correlation and hence, such information is missing in statistical terms, HRM successfully recovers

part of this information through their individual correlations with ℎ𝑎 , which is effectively observed.

The (naive) unsorted method is obviously poor and achieves good correlation only in some cases by

chance.

The sorted method performs very well for those pairs of HEMs where both HEMs have strong

positive correlation, since sorting them precisely joints correlated values. However, in many cases

such correlation is either indirect or weak, which makes the sorted method particularly inaccurate

leading to the highest discrepancies with respect to real correlations.

In the case of HRM, correlation is precisely estimated for those HEMs with significant correlation

with ℎ𝑎 , since their mutual correlation is preserved with a probability matching the product of their

individual correlations with ℎ𝑎 . However, if their individual correlation with ℎ𝑎 is weak at least for

one of the HEMs, their mutual correlation will be mostly lost, and the estimated correlation will ap-

proach 0. However, despite that, a key advantage of HRM is that joint correlation across HEMs is lost

if and only if at least one of them is not meaningfully correlated with ℎ𝑎 . Instead, those correlations

that matter for timing in our case, are preserved, as opposed to the other methods (unsorted and

sorted), which preserve correlation for arbitrary pairs of HEMs, not for those necessarily correlated

with timing (i.e. ℎ𝑎).

For the rest of the 12 workloads we cannot show such detailed results as for workloads 1 and 2.

Instead we present a summarized analysis of the three methods for all workloads is shown in Table

6.4, in the form of the mean squared error (MSE). The MSE is the average of the squared errors,

it is specifically computed as
1

𝑛

∑𝑖> 𝑗

𝑖 , 𝑗=1,··· ,nrh(𝜌
𝑖 , 𝑗 − 𝜌̂𝑖 , 𝑗)2, where nrh is the number of relevant HEMs,

and n is the number of pairs

(nrh
2

)
. As it can be seen, HRM shows to be the most accurate method

sustainedly, and its accuracy is only relatively lower for Workload 4 since correlations with ℎ𝑎 in this

workload are relatively weak in general.

Correlation with the anchor. As stated, HRM aims at preserving the relationship between each

HEM and the anchor. While such correlation is highly preserved by observing each HEM with ℎ𝑎 ,
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Figure 6.5: Correlation Difference for each HEMs pair for workload 1 (top-left), workload
2 (top-right), workload 5 (bottom-left), and workload 10 (bottom-right).

HRM reduces the number of observations of ℎ𝑎 in each merged vector (nb, one for each run of each

sub-experiment merged) by applying order statistics. Thus, only 1 HEM out of the np − 1 in each

merged vector preserves the actual value observed for ℎ𝑎 in its run, whereas the other np − 2 have

a different ℎ𝑎 value, which may have an effect on the correlation between HEMs and ℎ𝑎 . However,

this effect is expected to be tiny. We assess this quantitatively in Figure 6.6 for workloads 1 and 2,

where we show the estimated correlation (blue lines), the 95% confidence interval (red lines) and

the real correlation (black dots). As expected, correlation is estimated with very high precision. We

have observed this very same effect for all workloads and all pairs of HEMs, so we omit those data

due to lack of further insights and of space.

6.5.4 Overheads

The HRM algorithm has very low computation requirements. To process the data of the experiments

we performed in the T2080, the R implementation of HRM required less than 38 milliseconds on a

Dell latitude e7490 laptop.

HRM requires nr runs for each of the nb sub-experiments, so a total of nb · nr runs. For instance,

to read all 262 HEMs, HRM required 53 sub-experiments to collect 5 different HEMs and ℎ𝑎 in

each sub-experiment. Each sub-experiment was executed nr = 100 runs, thus above the minimum

number of 30. Values for each workload were obtained in around 10 minutes. Note that, given that

real-time programs usually last in the order of milliseconds, so few thousands of runs may only take

up to few minutes in general.
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Table 6.4: Mean squared error of the merging methods.

Workload HRM Sorted Unsorted Workload HRM Sorted Unsorted
1 0.18 0.67 0.39 9 0.10 0.45 0.14

2 0.04 0.24 0.38 10 0.05 0.69 0.25

3 0.17 0.51 0.44 11 0.22 0.28 0.33

4 0.4 0.48 0.46 12 0.14 0.43 0.33

5 0.15 0.37 0.45 13 0.20 0.34 0.40

6 0.36 0.50 0.38 14 0.25 0.35 0.48

7 0.12 0.34 0.12 15 0.09 0.55 0.17

8 0.17 0.19 0.30 16 0.22 0.21 0.32
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Figure 6.6: Correlation between relevant HEMs and PROCESSOR_CYCLES before and
after merging for workload 1 (top-left), workload 2 (top-right), workload 5 ( bottom-left),
and workload 10 (bottom-right).

6.6 Summary
The V&V methodologies for MB(P)TA can be aided with the monitoring information at system

operation from the hardware. In this work we show how, despite this information being useful,

the reduced number of PMCs does not allow to obtain sufficient information from HEMs at once.

Furthermore, the high variability of the execution conditions makes merging data very challenging.

Our first proposal in this thesis to collect and merge information from HEMs as if they were read

at once is called HEM-Reading Merging (HRM). In this method, we match the execution conditions

of each run with the anchor HEM which is present at every sub-experiment. With the use of order

statistics, we can sort the sub-experiments by the anchor HEM and preserve the relationships between

the anchor and the rest of the HEMs after merging.
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Chapter 7

Merging Hardware Event Monitor
Data for Complex MPSoCs Using
Copulas

7.1 Introduction
In the previous chapter, we proposed a methodology called HRM to reliably join HEMs from

multiple runs with different levels of noise, into one single dataset. The strength of HRM resides

in its simplicity of application and experimental setting. However, HRM does not come without

limitations. In this chapter, we analyze those limitations and propose another methodology that

fulfills the same purpose and overcomes HRM’s limitations.

HRM Analysis. The approach followed by HRM consists in reading an anchor HEM, ℎ𝑎 in each

sub-experiment along with np − 1 other HEMs, without repeating any of the other nh − 1 HEMs

across sub-experiments. See Figure 7.2 for a visual explanation of HRM with two sub-experiments,

with the first column representing the anchor. Then, HRM merges all HEMs into complete HEM

vectors by preserving their correlation with the anchor ℎ𝑎 perfectly, since all HEMs are read along

with ℎ𝑎 in one sub-experiment. That is, for any HEM ℎ 𝑖 , the correlation 𝜌ai is fully preserved. In fact,

if two HEMs, ℎ 𝑖 and ℎ 𝑗
, where 𝑖 ≠ 𝑎 and 𝑗 ≠ 𝑎, are read in the same sub-experiment, they will be

merged together in the merged HEM vector and hence, their pairwise correlation 𝜌ij will also be fully

preserved. However, no action is taken to preserve the correlation among any other pair of HEMs

read in different sub-experiments. In the diagram shown in Figure 7.1, and focusing on a specific

HEM (e.g. ℎ2
) this implies that correlations 𝜌21 and 𝜌23 are fully preserved, whereas correlations

𝜌24, 𝜌25, 𝜌26, and 𝜌27 are not. Since those HEMs in different sub-experiments are placed in the same

merged HEM vector through their relation with ℎ𝑎 , as discussed before, their pairwise correlation is

only preserved to a limited extent dictated by 𝜌ai and 𝜌aj. For instance, in our example, correlation

𝜌24 is preserved as much as determined by the product 𝜌21 · 𝜌41. If such product is low, then HRM

will preserve 𝜌24 poorly, and increasing the number of runs for each sub-experiment cannot cure

such limitation.

Formalization. When two strongly correlated HEMs, ℎ𝑥 and ℎ𝑦
, with correlation 𝜌xy, are read

in different sub-experiments, then, given an anchor HEM ℎ𝑎 , HRM preserves 𝜌xy correlation only

partially 𝜌
factor
xy = 𝜌ax · 𝜌ay. Hence, under HRM the actual correlation preserved is 𝜌hrm

xy = 𝜌
factor
xy · 𝜌xy.

Unless both 𝜌ax and 𝜌ay are very high (e.g. close to 1.0), the degree of joint correlation preserved

drops significantly and their actual correlation in the merged HEM vector can be drastically different

to the real one. For instance, if 𝜌xy ≈ 1.0, but 𝜌ax ≈ 0.7 and 𝜌ay ≈ 0.7, then 𝜌
factor
xy < 0.5 and hence,

𝜌hrm
xy < 0.5, largely below 𝜌xy ≈ 1.0.

Such limitation is intrinsic to the way HRM collects sub-experiments, since, in general the correlation

across HEMs in different sub-experiments is not observed (as HRM observes only the relations of
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Figure 7.1: Runs collected with HRM when np < nh. In particular, np = 3 and nh = 7

in the example.

each HEM with the anchor HEM). As a result, even if HRM collected more runs per sub-experiment

or even different sub-experiments, it would still be unable to get rid of its intrinsic limitation.

Summary. With HRM the correlation between each HEM and the anchor is preserved with almost

perfect accuracy in the merged HEM vector. The number of sub-experiments needed by HRM,

nbhrm is typically very close to the minimum possible number of sub-experiments nbmin. However,

in general, HRM does not collect any data to retrieve the degree of correlation between HEMs in

different sub-experiments. Therefore, the merged HEM vector may completely lose the correlation

among strongly correlated HEMs read in different sub-experiments.

In this chapter we propose MUlti-Correlation HEM reading and merging (MUCH) approach. MUCH

overcomes the limitations of HRM with a completely different strategy to collect HEM values and

using multivariate Gaussian distributions to merge HEM values, drastically improving the accuracy

of the merged HEM vectors for all pairs of HEMs at once.

7.2 MUCH: Multi-Correlation HEM Reading and Merging

7.2.1 HRM Analysis
MUCH, builds upon observing all pairwise correlations across HEMs. Then, MUCH merges values

from the different HEMs into complete HEM vectors preserving all pairwise correlations simultane-
ously. For instance, given 4 HEMs ℎ1

, ℎ2
, ℎ3

and ℎ4
, MUCH organizes their values into complete

HEM vectors so that preserving some correlations (e.g. all correlations with ℎ1
, ⟨ℎ1 , ℎ2⟩, ⟨ℎ1 , ℎ3⟩

and ⟨ℎ1 , ℎ4⟩) does not impact negatively the other correlations (e.g. ⟨ℎ2 , ℎ3⟩, ⟨ℎ2 , ℎ4⟩ and ⟨ℎ3 , ℎ4⟩).
Therefore, MUCH’s challenge is putting all HEM values into complete vectors so that all pairwise

correlations observed across HEMs separately are preserved simultaneously after merging.

Interestingly, by observing all pairwise HEM correlations one does not overcome the problem of

preserving those correlations. It is still necessary to devise a proper method to merge all the

observed readings into a complete dataset while keeping the correlations as close as possible to the

ideal scenario. For instance, in the example above, if we merge all HEMs preserving their perfect

correlation with ℎ1
, e.g. sorting by ℎ1

values in all pairs ⟨ℎ1 , ℎ2⟩, ⟨ℎ1 , ℎ3⟩ and ⟨ℎ1 , ℎ4⟩, and merging

directly the rows keeping any of the values of ℎ1
in each row, we would keep perfect correlation

between ℎ1
and each other HEM. However, we would likely degrade significantly the correlation of

the pairs ⟨ℎ2 , ℎ3⟩, ⟨ℎ2 , ℎ4⟩ and ⟨ℎ3 , ℎ4⟩. The challenge addressed by MUCH is exactly this one: how
much do I have to “sacrifice” each pairwise correlation so that, when putting all HEMs together, each pairwise
correlation is still close to the observed one?

To observe all pairwise correlations across HEMs, sub-experiments need to be arranged so that all

pairs of HEMs are observed together in at least one sub-experiment. This is illustrated in Figure 7.3

for the same example discussed for HRM, with np = 3 and nh = 7. As shown, for instance, ℎ2
is

observed in the first sub-experiment (𝑟1-𝑟4) together with ℎ1
and ℎ3

, in the fourth sub-experiment

(𝑟13-𝑟16) together with ℎ4
and ℎ6

, and in the fifth sub-experiment (𝑟17-𝑟20) together with ℎ5
and ℎ7

.

This allows observing all pairwise correlations, and thus, organizing observed values into merged

HEM vectors where 𝜌̂ij ∼ 𝜌ij for each pair of HEMs ℎ 𝑖 and ℎ 𝑗
.
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Figure 7.2: Diagrams of HRM and MUCH methodologies. On both diagrams the colors
represent the order statistics of each column, i.e. lighter colors represent lower values
while darker colors represent higher values.

Given that we have observed all pairwise HEM correlations, MUCH generates a nh-dimensional

model of the HEMs by building on MVGD. Then, by organizing HEM values read according to that

model, MUCH generates merged HEM vectors where all pairwise HEM correlations are preserved

simultaneously with high accuracy, as detailed in next subsection.

Also MUCH requires a higher number of sub-experiments than HRM to observe all pairwise HEM

correlations. Such number increases with the number of relevant HEMs (nh) and whenever the

number of PMCs (np) decreases. However, as shown later in the evaluation section, under similar

number of runs for HRM and MUCH, i.e. nbhrm · nrhrm ≈ nbmuch · nrmuch, MUCH provides higher

accuracy. Note that in that case, typically we have nbhrm < nbmuch and nrhrm > nrmuch.

7.2.2 Mathematical Approach
By virtue of the Central Limit Theorem, we can model the expected value of each HEM as a Gaussian

distribution. This can be extended to multiple variables (e.g. the nh HEMs of interest), which are

regarded as a MVGD with nh dimensions modeling the expected value of each HEM.

Definition. Let us consider a set of 𝑙 i.i.d. Gaussian random variables 𝑍 ∼ 𝒩(0, 1). The covariance

matrix for 𝑍 is the identity matrix 𝐼𝑙 with expected value 0. Now, let 𝐴 be a 𝑘 × 𝑙 matrix and 𝜇 be

a 𝑘-vector, both with real finite coefficients. Then, 𝑋 = 𝐴𝑍 + 𝜇 has a MVGD. The expected value of

𝑋 is 𝜇 and the covariance matrix is Σ = AA𝑇
. The usual way of writing the MVGD is 𝑋 ∼ 𝒩

(
𝜇,Σ

)
[176].

The computation of this model requires the expected value and the variance of each HEM, 𝜇 and

𝜎2
, and the covariance matrix Σ, where the latter can be obtained from the correlation matrix 𝑆. In

particular, the covariance of variables 𝑋 and 𝑌, 𝜎XY, can be obtained as follows, where 𝜌XY is their

correlation.

𝜎XY = 𝜌XY · 𝜎𝑋 · 𝜎𝑌 .

The measurement collection procedure allows obtaining some relevant information.
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Figure 7.3: Runs collected with MUCH when np < nh. In particular, np = 3 and
nh = 7 in the example.

• For each ℎ 𝑖 , the measurements collected in each sub-experiment allow obtaining a grouped

sample, that is {ℎ 𝑖}, which includes all measurements of ℎ 𝑖 across all sub-experiments.

• For each ℎ 𝑖 , the values of 𝜇̂𝑖 and 𝜎̂𝑖 obtained from {ℎ 𝑖}.

• For each pair of HEMs ℎ 𝑖 and ℎ 𝑗
, we obtain 𝜌̂ij, which is the empirical counterpart of 𝜌ij. 𝜌̂ij is

obtained from the sub-experiment where both ℎ 𝑖 and ℎ 𝑗
are observed together.

Therefore, since we have 𝜎̂𝑖 , 𝜎̂𝑗 and 𝜌̂ij, we can also obtain their empirical covariance 𝜎̂ij. Then, we

can produce the empirical correlation matrix 𝑆̂ ∼ 𝑆, and the corresponding (empirical) covariance

matrix Σ̂. Once we have constructed this information, we have a model for how each HEM in the

experiment relates to all other HEMs in terms of expected values. Since we have 𝜇̂ and Σ̂ for all

HEMs, we can describe the corresponding MVGD as follows:

𝑋 ∼ 𝒩nh
(
𝜇̂, Σ̂

)
.

However, now we need to generate actual merged HEM vectors using measured data in accordance

with the MVGD model. From a mathematical point of view, the challenge is to reorder the grouped

sample {ℎ 𝑖} for each HEM ℎ 𝑖 , such that for each pair of HEMs ℎ 𝑖 and ℎ 𝑗
the empirical correlation

of the grouped samples is close to 𝜌ij. Equivalently, the challenge is to reorder the grouped samples

such that the new corresponding (empirical) covariance matrix is close to Σ̂. This corresponds to an

optimization problem with an existing solution, since the set of potential orders (all permutations) is

large but finite. However, it is not a trivial problem from a computational point of view. We construct

the solution with a probabilistic approach using the preliminary results of copula theory [122].

Application of copula theory. For each ℎ 𝑖 , the empirical distribution function 𝐹 𝑖
emp lets us transform

the grouped sample into a uniform sample. A uniform sample can be transformed into a Gaus-

sian sample by applying the inverse function of the cumulative distribution function of a standard

Gaussian distribution, Φ. Therefore, the grouped sample is transformed one-to-one into a standard

Gaussian distribution:

Φ−1

(
𝐹 𝑖

emp
(
{ℎ 𝑖}

) )
. (7.1)
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For instance, if {ℎ 𝑖} is {1, 2, 5, 8}, this would map to a uniform sample {0.2, 0.4, 0.6, 0.8}1. Then,

those values would map to a standard Gaussian distribution as {−0.842,−0.253, 0.253, 0.842}2.
We apply this process to all HEMs, thus obtaining for each measurement of each HEM its counterpart

value for the standard Gaussian distribution. Then, we refer to as Σ̂0 to the covariance matrix obtained

from the transformed data to differentiate it from the one obtained from the measured data (Σ̂).

Finally, we generate a sample sampMVGD of 𝑛MVGD runs (e.g. 𝑛MVGD = 10 000) from the MVGD, which

we define using Σ̂0:

𝑋 ∼ 𝒩nh
(
0, Σ̂0

)
, (7.2)

which produces a joint sample with marginal standard Gaussian distribution (i.e. sampled values

follow such distribution). At this point, sampMVGD provides a matrix with as many columns as

HEMs (nh), as many rows as HEM vectors we want to generate (e.g. as many as total measurements

per HEM), and preserving the correlations across all pairs of HEMs (𝜌ij) simultaneously. However,

values in the matrix correspond to a standard Gaussian distribution instead of being HEM values

read. Thus, we use the actual sampMVGD to produce the indexes for order statistics. In other words,

if for a given HEM ℎ 𝑖 , sampMVGD has a particular order of values (e.g. 𝑘th
lowest first, 𝑙th lowest

second, 𝑚th
lowest third, and so on and so forth), we set the actual observed values for ℎ 𝑖 in the very

same order to generate the merged HEM vectors. The easiest way to do this is setting 𝑛MVGD to the

actual number of measured values per HEM. For instance, if for a given HEM ℎ 𝑖 the sampMVGD has

produced the values {1.121,−0.870,−0.172, 0.343}, and the actual values observed are 9, 10, 12, 17,

they would be sorted as follows: {17, 9, 10, 12}, thus preserving the same ordering, but this time

using the actual values read. By following their sampMVGD ordering for all HEMs to organize the

actual values measured, we generate as many merged HEM vectors as actual values have been

observed for each HEM. For instance, recalling the example in Figure 7.3, where we have 12 values

per HEM, we could set 𝑛MVGD = 12, and would sort the values for each of the 7 HEMs in the same

order as their synthetic values in sampMVGD.

In fact, once this process is complete, we could assess 𝜌̂′ij for all pairs of HEMs in the merged vectors

and compare them with the original values 𝜌̂ij obtained from pairwise HEM measurements. Some

(small) discrepancy is expected due to statistical reasons (i.e. sampling processes can always produce

inaccuracies). Such discrepancy could be reduced with an iterative process where 𝑋 in Equation 7.2

is obtained as many times as needed and measured HEM values sorted accordingly to obtain new

merged vectors where 𝜌̂′′ij is compared to 𝜌̂ij. This process could be repeated a fixed number of times

or until a specific criterion is fulfilled. However, this step is purely optional.

Recalling the example for HRM limitations before, MUCH would successfully preserve all correla-

tions across the three HEMs simultaneously, overcoming the limitation of HRM. In particular, MUCH

does not favor any particular random variable (HEM) when merging and, instead, all correlations

are preserved as accurately as possible at the same time. Instead, HRM strategy is a supervised one

where correlations with a particular variable (anchor HEM) are perfectly preserved at the expense

of causing large inaccuracies for other correlations if they are weakly correlated with the anchor.

7.2.3 Procedure
For the sake of completion, we provide the application process of MUCH, which includes five main

steps. The procedure can be followed visually on Figure 7.2.

• STEP ➀. The HEM selection for each sub-experiment does not play a role in MUCH. Each HEM

will be measured with every other HEM at least once, to capture the relation between them,

i.e. to compute the empirical correlation matrix 𝑆̂. While generating the minimum number

of sub-experiments allowing to capture all pairwise HEM correlations is convenient, it is not

strictly mandatory for the application of MUCH, so combinations can be generated with greedy

1Given a HEM ℎ 𝑖 for which we have 𝑛 values, the uniform sample probability space is split into 𝑛 + 1 identical parts.

Out of the 𝑛 + 2 boundary values, we exclude 0 and 1 since they cannot be used later for the Gaussian distribution as their

counterpart values would be −∞ and +∞ respectively.

2As for the uniform distribution, those values distribute the probability space into 𝑛 + 1 parts with identical accumulated

probability.
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Table 7.1: HEMs with observed relevant variability.

Name HRM id
PROCESSOR_CYCLES ℎ𝑎

CYCLES_LSU_SCHE_STALLED 1

CYCLES_LSU_ISSUE_STALLED 1

BLINK_REQUEST 1

L2_MISSES 1

L2_DEMAND_ACCESSES 1

L2_ACCESSES 2

L2_STORE_ALLOCATES 2

L2_DATA_MISSES 2

L2_RELOADS_FROM_CORENET 2

L2_SNOOP_HITS 2

L2_SNOOP_PUSHES 3

STALL_FOR_RLT_CYCLES 3

STALL_FOR_WDB_CYCLES 3

BIU_MASTER_REQUESTS 3

BIU_GLOBAL_REQUESTS 3

algorithms if needed. For each sub-experiment at least 30 runs (nr ≥ 30) are needed to allow

the use of the Central Limit Theory [87]. In general, the higher nr, the more accurate 𝑆̂ will be.

As a matter of fact, in this work we set nr = 50.

• STEP ➁. Once the values are gathered, map them to a standard MVGD, and compute the

covariance matrix Σ̂0.

• STEP ➂. Compute the MVGD using Σ̂0 as shown in Equation 7.2, and generate a sample equal

in size (𝑛MVGD) to the number of collected values for each HEM in a sub-experiment or in all

sub-experiments. Note that the method could also be applied with larger 𝑛MVGD values.

• STEP ➃. (OPTIONAL) As an optimization step, we can compute the correlation matrix of the

generated sample 𝑆̂′ from the MVGD and compare it to the measured correlation matrix 𝑆̂, for

instance, obtaining the Minimum Square Error (MSE). Then, we can repeat step ➂ and keep

the 𝑆̂′ with lowest MSE compared to 𝑆̂. Such process can be repeated as many times as wanted

as a way to further increase accuracy without requiring additional runs on the target platform.

• STEP ➄. Copy the order statistics of the sample of the MVGD into the experimental data. Now,

the experimental data is finally merged in accordance with the MVGD.

7.3 Evaluation
This section presents the experimental framework, the validation approach followed to evaluate

MUCH and compare it with HRM, and the results of the evaluation.

7.3.1 Validation Approach
In this work the experimental validation is performed on the same platform, the NXP T2080, as with

HRM in Chapter 6 with the same microbenchmarks and workloads described in Section 3.1.2.

The reference against which to compare MUCH is the actual correlation of each pair of HEMs when

measured together in the platform, so that we can validate whether correlations in the merged HEM

vector are accurate with respect to real correlations. For completeness, we compare MUCH against

HRM in terms of both, accuracy with respect to the real correlations and number of runs required.

For the sake of comparison, we focus on the same 16 HEMs regarded as relevant in HRM [166],

which we list in Table 7.1 for completeness. Note that, while all HEMs are treated homogeneously

by MUCH – thus meaning that all pairwise HEM correlations are measured and then processed

together in an identical basis – the same does not apply to HRM. In particular, HRM needs a HEM to

be the anchor. Then, given that the T2080 MPSoC has 6 PMCs and one of them is used by the anchor,

the remaining 15 HEMs need to be distributed across 3 sub-experiments. The sub-experiment where

each HEM is read for HRM is shown in Table 7.1 in the HRM id column.
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Figure 7.4: Correlation Difference for each HEMs pair for workload 1 (top-left), workload
2 (top-right), workload 3 (bottom-left), and workload 5 (bottom-right).

Note that, by using 16 HEMs, there are 120 different pairs of HEMs for which we evaluate the actual

correlation obtained for the merged HEM vectors with MUCH and HRM, and compare them against

their real empirical correlation, 𝜌̂𝑖 , 𝑗
. In particular, we compute the accuracy for both methods as��𝜌𝑖 , 𝑗

much − 𝜌̂𝑖 , 𝑗
��
and

��𝜌𝑖 , 𝑗

hrm − 𝜌̂𝑖 , 𝑗
��
.

7.3.2 Results
We evaluate the correlation accuracy obtained, for both MUCH and HRM, against the real empirical

correlation. For this first comparison, we set nr = 50. The number of sub-experiments is only 3 for

HRM (nb = 3). For MUCH, while theoretically we could observe 120 pairs of HEMs with nb = 8

sub-experiments (15 pairs per sub-experiment with 6 PMCs), we needed nb = 10 just following a

greedy process to create sub-experiments where we iterate over HEMs from 1 to 16, and for each

one we create sub-experiments adding the lowest order HEM not yet observed with any of already

selected HEMs in the sub-experiment. Therefore, 𝑛 = 150 for HRM and 𝑛 = 1000 for MUCH.

We show detailed results for the 120 pairs of HEMs in Figure 7.4 for workloads W1, W2, W3, and

W5. In particular, W2 corresponds to the case where the improvement of MUCH with respect to

HRM is only moderate, W3 to an extreme case with huge improvement, and W1 and W5 to two cases

with typical high improvement. The HEM pair values are sorted from lowest difference to highest

difference with respect to the real correlation for each technique. As shown, MUCH provides higher

accuracy since its differences with respect to the real correlation are much lower than those of HRM.

Moreover, the difference in the worst case for MUCH is up to 0.25 for very few pairs of HEMs,

whereas HRM reaches values above 0.5 for a non-negligible number of pairs, and even above 0.75

in some cases. Note that the maximum theoretical difference is 2.0, which would occur when the
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MUCHMUCH

n n

n n

Figure 7.5: Mean square error for HRM and MUCH as a function of the number of runs.
Workload 1 (top-left), workload 2 (top-right), workload 3 (bottom-left), and workload 5
(bottom-right).

estimated correlation is 1.0 (or -1.0), and the real correlation is -1.0 (or 1.0).

As a second comparison, we study the dependence of each method on the total number of runs

𝑛 = nr · nb, which illustrates the trade-off between cost (in terms of number of runs) and accuracy for

both methods. Again, we consider the same 4 workloads, where we vary nr (values 50, 100, 200 and

400), and obtain for each workload, the MSE for their difference with respect to the real correlation

across the 120 pairs of HEMs. In particular, to produce a statistically significant comparison, we

bootstrapped 50 samples for each of the methods and each nr value. For instance, for nr = 100

this implies that we generate a random sample of 100 runs for each sub-experiment and apply the

corresponding method on that sample. Then, we repeat the process 50 times, thus obtaining 50

estimates for each method and nr value.

Figure 7.5 shows those results, where dots indicate individual measurements and the line corre-

sponds to the mean across them. Note that both axes are in logarithmic scale. First, we observe

that HRM obtains negligible gains from increasing 𝑛. Those gains are only noticeable for W2, where

pairwise correlations with the anchor HEM are indeed high, allowing HRM to be almost as accurate

as MUCH. In any case, HRM apparently plateaus at 𝑛 = 1200 (nr = 400).

For MUCH, we observe significant gains in all cases but W3, where increasing 𝑛 produces limited

improvements in accuracy. However, in the other 3 cases we observe improved accuracy as we

increase 𝑛, and, apparently, such improvement does not plateau even with nr = 400, thus offering

opportunities to further increase accuracy if the number of runs is increased beyond that number.

When comparing MUCH and HRM, we note that in general, MUCH allows reaching much more

accurate merged HEM vectors. It is of prominent importance the case where 𝑛 ≈ 1000, because
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Table 7.2: MSE for the 16 workloads under iso-runs (𝑛 = 2100).

Workload MUCH HRM
W1 0.003 0.135

W2 0.004 0.024

W3 0.004 0.295

W4 0.006 0.272

W5 0.005 0.110

W6 0.007 0.083

W7 0.006 0.021

W8 0.006 0.068

W9 0.020 0.228

W10 0.007 0.168

W11 0.017 0.207

W12 0.005 0.158

W13 0.008 0.282

W14 0.005 0.106

W15 0.007 0.068

W16 0.017 0.250

it allows performing an iso-cost comparison across both methods, i.e. with the same number of

total runs. In this case, where 𝑛much = 1000 (nrmuch = 50) and 𝑛hrm = 1200 (nrhrm = 400), thus with

a slight advantage for HRM, we observe that MUCH is significantly better than HRM in 3 out of

4 workloads, and in the remaining one, where the MSE is already pretty low for both methods,

MUCH is slightly better despite its slightly lower number of runs. Finally, note that in both methods,

increasing 𝑛 reduces dispersion of the bootstrap, thus making merged HEM vectors more stable in

terms of accuracy with respect to the real correlations.

For completion, we have evaluated all workloads with 𝑛 = 2100, so nrhrm = 700 and nrmuch = 210,

again with a bootstrap with 50 samples. The mean MSE across the 50 samples is shown in Table 7.2.

As expected, MUCH is systematically more accurate than HRM for all workloads, and the difference

across both methods is tiny (e.g. W2 and W7) only when HRM is highly accurate, since MUCH is

always highly accurate. In fact, the worst MSE for MUCH (0.020 for W9) is indeed better than the

best MSE for HRM (0.021 for W7).

So far we have shown that MUCH outperforms HRM under iso-cost (identical number of runs 𝑛),

and naturally, under identical number of runs per sub-experiment (iso-nr), where MUCH has a

higher 𝑛 value. Moreover, we have shown that in all cases MUCH is highly accurate. However, the

number of sub-experiments needed by MUCH is much more dependent on nh and np than that of

HRM. For instance, if nh is high or np is very low, MUCH may need many sub-experiments whereas

HRM only needs 𝑛hrm = nr ·
⌈nh−1

np−1

⌉
. In particular, for MUCH we need to observe

(nh
2

)
=

nh·(nh−1)
2

pairs

of HEMs, and each sub-experiment allows observing up to

(np
2

)
=

np·(np−1)
2

pairs. Assuming that

sub-experiments for MUCH can be optimized to generate always unobserved pairs of HEMs only,

the number of sub-experiments would be ratio between both values, and hence, the total number of

runs would be 𝑛much = nr ·
⌈nh·(nh−1)

np·(np−1)
⌉
. Figure 7.6 shows 𝑛much and 𝑛hrm for the case np = 6, as in the

T2080, and nr = 100, when varying nh. As shown, 𝑛much grows much faster than 𝑛hrm as we increase

nh. Therefore, there may be cases where 𝑛much might not be affordable and the only affordable

solution is HRM. In those cases, despite the limitations of HRM, such solution has been shown to be

systematically better than any other alternative (except MUCH) [166], and thus, it would be the best

choice.

7.4 Summary
In the previous chapter, we proposed the HRM approach to merge HEMs from different runs accu-

rately preserving their correlation with respect to one anchor HEM (i.e. processor cycles) building

on order statistics. However, HRM does not always preserve the correlation between other pairs of
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Figure 7.6: Number of total runs as a function of the number of HEMs to arrange. The
parameters on 𝑛much and 𝑛hrm are np = 6, nr = 100.

HEMs that might be lost to a large extent. This chapter copes with HRM limitations by proposing

the MUlti-Correlation HEM reading and merging approach (MUCH). MUCH builds on multivariate

Gaussian distributions to merge HEMs from different runs while preserving pairwise correlations

across each individual pair of HEMs simultaneously. Our results on an NXP T2080 MPSoC used

for avionics systems show that MUCH largely outperforms HRM for an identical number of input

runs. However, MUCH requires significantly more data to achieve such performance. Therefore,

both HRM and MUCH have their use depending on the needs and resources of the engineer.
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Chapter 8

Clean Execution Times for MBPTA

8.1 Introduction
Timing validation for CRTES (e.g. automotive systems) occurs in late integration stages when it

is hard to control how the instances of software tasks overlap in time. To make things worse, in

complex software systems, like those for autonomous driving, tasks schedule has a strong event-

driven nature, which further complicates relating those task-overlapping scenarios (TOS), which

produce contention, captured during the software timing budgeting and those observed during

validation phases.

Multiple approaches exist to account for contention due to concurrency on the access to shared

hardware resources, as part of the design and verification process of CRTES. While it is not the

purpose of this thesis surveying on this topic, we identify the main families of techniques. Some

techniques control the impact of contention by building upon some hardware and/or software

support [93, 126, 183]. Other techniques use such support to completely avoid any impact due to

contention [8, 17, 25, 129, 130]. Finally, some other approaches, rather than controlling or mitigating

contention, aim at upper-bounding it [47, 145].

While each of those techniques has its assumptions and requirements and has been proven appro-

priate for WCET estimation as part of the verification process, a validation step is still needed during

system integration phases, in accordance with safety-related systems development processes. In this

context, performing a reliable timing validation process building on measurements with arbitrary

overlap across tasks is a difficult challenge.

Tasks overlapping heavily impacts individual tasks’ execution time and is an aspect of multicore-

based systems for which no satisfactory solution exists yet. Given a reference analysis task, the

number of other tasks (and the particular tasks) that overlap with it changes its execution time.

Likewise the degree of overlap, i.e. how long tasks overlap, affects also its timing behavior. Task

overlap varies in non-obvious manners across individual measurements and also during operation.

Therefore, measurements are subject to hard-to-control contention, which brings uncertainty to the

validation process. While the user might have means to observe the variability among tasks in

observed TOS during tests, it is hard to enforce specific TOS.

In this chapter we propose CleanET, that stands for clean execution times, an approach to distill

both, contention-free measurements as well as measurements subject to specific contention levels, to

enable a reliable timing validation process that captures any TOS that might occur during operation.

CleanET builds upon statistical dependence analysis to derive the dilation factor 𝑟 affecting execution

times due to simultaneous task execution. CleanET resamples the execution times measured during

testing to derive tasks execution time under (1) no overlapping scenarios (i.e. in isolation), (2) full

single overlapping (i.e. when the task overlaps 100% of the time with exactly one other task), and

(3) data with any specific overlap representing the worst overlap of interest (e.g. full overlap with

𝑛 other tasks). CleanET estimates provide additional means of validation for derived time budgets

and alleviates the pressure on end users to produce tests cases with different TOS.
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Figure 8.1: Timeline interval of Prediction showing the behavior of the outliers.

We apply CleanET on the Autonomous Driving (AD) framework Apollo [11], described in Section

3.1.3, where the different modules (tasks) of the framework overlap partially and in an ’arbitrary’

manner, thus exposing the challenge that CleanET targets. Apollo is an intricate set of tightly-coupled

software modules, including an Operating System, which jeopardizes the possibility of collecting

measurements for each module under controlled TOS. CleanET successfully distills the dilation

factor and resamples measurements to any TOS of interest.

8.2 Timing Analysis Validation on Apollo
In this work the methodology will be carried out within the Apollo Autonomous Driving Framework

described in Section 3.1.3. As explained, with this framework we are able to obtain a timeline of

execution time data on all available modules to monitor from a navigation test.

From all Apollo modules, we focus on those with most intensive computation requirements, which

are the ones using the GPU: Prediction and Perception. Those modules create mutual interference

(contention), and hence, challenge timing validation. Both modules use the GPU in a similar manner

since both build upon Deep Neural Networks and Recurrent Neural Networks. Both call the same

matrix multiplication primitives with similar parameters. Therefore, whenever they attempt to use

the GPU simultaneously, they are expected to create significant interference on each other. In our

analysis, for simplicity, we model how the execution time of the Prediction module is affected by the

overlapping with the execution of Perception jobs. The symmetrical analysis can also be performed,

but we omit it due to lack of space and since it does not offer further insights.

8.2.1 Prediction Module Timing Behavior
From our analysis of the prediction module’s execution times we have realized that the vast majority

of executions occur in a non-overlapping manner between each other with few exceptions. In

particular, periodically a Prediction job starts with an unusual delay with respect to the finalization

time of the previous job; then said job takes longer execution time than expected. Sometimes, before

a long job finishes, a new Prediction job is released, but it is cancelled soon after its start since

the previous one is still running. Therefore, sporadically (exactly once every 10 jobs at most), we

have two jobs with anomalous timing behavior. This is illustrated in Figure 8.1, where we show an

excerpt of the chronogram for the Prediction module. As shown, anomalies appear at time instants

26.5, 28.5 and 29.5 seconds, shown in green color (abnormally high execution times) and yellow

color (abnormally low execution times after abnormally high ones). We, therefore, classify execution

times into three classes: normal corresponds to the normal Prediction behavior, before outlier class

corresponds to overly large execution times, and the outliers class corresponds to the outliers that

start before the previous job has finished.
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Figure 8.2: Execution time histogram of Prediction jobs.

Figure 8.3: Portion of normalized execution times that overlaps with different number
of Perceptions simultaneously.

Figure 8.2 shows the histograms of each class with the same color code as for previous figure. The

particular execution time mean (in milliseconds) for each class is 100, 144, and 50.3 respectively.

Hence, outliers have shorter execution times, whereas the execution times before the outliers are

particularly high. Finally, normal concentrates most jobs in a relatively narrow execution time interval.

Based on this evidence, we conclude that execution times for each class need to be treated separately.

Moreover, we build on the common practice in CRTES for automotive and robotics, among others,

where some jobs can fail (e.g. due to an overrun) as long as the number of failures in the last 𝑀
jobs does not exceed a particular threshold, 𝑁 [187], thus building on top of the typical worst-case

response time rather than on the absolute worst-case response time. In our case, by simply studying

normal jobs, we discard up to 2 jobs every 10, whose timing behavior, if it violates any deadline, would

not be a problem as long as 2 out of 10 runs are allowed to fail, thus much in line with automotive

and robotics common practice.

8.2.2 Aggregation of Overlaps
Once filtered the Prediction jobs of interest, we study their overlap with Perception jobs. Our

analysis reveals that each Prediction job can overlap, during different parts of its execution, with up

to 3 Perception jobs. The fraction of time overlapped with 0, 1, 2, or 3 Perception jobs for each of

the Prediction jobs is depicted in Figure 8.3. Jobs have been sorted from highest to lowest fraction
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of overlap with 1 Perception job to ease graphical representation. As shown, most Prediction jobs

spend most of their execution time overlapped with exactly 1 Perception job. The fraction of time

overlapped with 2 Perception jobs is also significant. Little time is spent without overlapping in

general. Finally, only sporadically some Prediction jobs overlap with 3 Perception jobs.

8.3 CleanET

8.3.1 Setting the Objective
Complex MPSoCs like the NVIDIA Xavier have a large internal hardware and software (e.g. CUDA

drivers) state. Modelling this state, which strongly influences tasks’ execution time, is quite difficult.

In such a complex system, the execution time of a task can be regarded as a random variable, 𝐽.
When several tasks execute simultaneously, they affect each other timing behavior due to contention

in the access to shared resources, even if tasks have no data or control dependence among them. The

impact of the contention interference depends on (i) the number of tasks with overlapping execution;

(ii) the percentage of time they overlap; (iii) the particular part of their code that overlaps; and (iv)

the inputs to the program that might affect tasks access pattern to shared resources. In this work, we

focus on the first two factors, and hence do not model the particular section of the code of a task that

overlaps, nor tasks inputs.

Our objective is to enable the estimation of the execution time of tasks under different TOS. In

particular, by modelling the dependence of the execution time on the TOS (i.e. how much overlapping

and with how many tasks), we enable the reliable estimation of the dilation factors, 𝑟1 , · · · , 𝑟𝑚 ,

impacting execution time due to the task overlapping with 1, · · · , 𝑚 tasks respectively. Hence, 𝑟𝑖 is

the factor by which the execution time with no overlap of the task under analysis must be multiplied

when overlapping with 𝑖 tasks. For instance, if 𝑟𝑖 = 1.5, the non-overlapping execution time of the

task under analysis is 10ms, and it overlaps with 𝑖 tasks during 4ms, then the execution time is

6 + 4 · 1.5 = 12ms.

Once dilation factors 𝑟𝑖 are obtained, and given that we know the start and end time for all jobs –

and so their particular overlappings, we can deduce execution time measurements under any TOS

(i.e. those regarded relevant but that could not be tested) since we can obtain the pristine (non-

overlapped) execution time measurements removing the impact of contention in the measurements

collected, and apply dilation factors to model any TOS of interest for validation purposes.

The derived dilation factors can be used to validate the timing behavior of the task under analysis

by comparing them against the corresponding bounds from the verification phase, e.g. under worst

overlapping conditions. They can also be used to contrast the output of timing analysis techniques

that predict WCET estimates under different TOS. For instance, since execution times under a given

(homogeneous) overlap correspond to random variables independent and with identical distribution,

then we could use MBPTA techniques [3, 44, 76, 141] for that purpose.

It is worth noting that, unlike previous works studying dependent execution times [19, 114, 141],

which focus on stationary processes and hence, on dependencies across measurements, our work

considers external dependencies that are unlikely to be periodic and that cannot be studied only based

on the actual execution time measurements of the jobs of the task under analysis, but accounting

for the execution times (more precisely, for the start and end times) of the jobs of the other tasks

running simultaneously in the system. Stationary processes could be normally studied on top of

the measurements obtained dilating them with our approach to match worst-case overlaps during

operation. Thus, our work is orthogonal and complementary to previous works since they consider

different types of dependencies (i.e. we target dependencies on the TOS).

8.3.2 Modelling Approach
CleanET assumes a baseline (basal) state without any impact of dilation that corresponds to the

execution in isolation with no overlap with any other task. In practice the basal state may never

occur in the system as it may be not possible to run the task under analysis without overlapping its

execution with others. We denote the hardware/software state information in this basal state as ℐ0.
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CleanET builds around the mathematical expectation E. Let ℐ be the available information on the

state of the system for any arbitrary state, and E(𝑇 |ℐ) the expected execution time T assuming that

the system is in a given (observed) state ℐ. The dilation coefficient, 𝑟 is defined as follows, thus

relating the execution time of the basal state with that of any other state:

E(𝑇 |ℐ) = 𝑟E(𝑇 |ℐ0). (8.1)

Whenever the system is not in the basal state, then the expectation of the execution time, E(𝑇 |ℐ),
is dilated by the coefficient 𝑟, where in general 𝑟 > 1 (i.e. execution overlapping normally leads to

increased execution times). In fact, Equation 8.1 holds for any state where the amount of overlapping

in ℐ is higher than in ℐ0, thus meaning that any TOS necessarily results in an increase of tasks

execution time.

The basal state of the system (i.e. the execution in isolation) cannot be observed in general. Otherwise,

by observing such state and any other state, we could trivially derive 𝑟. Instead, we build upon the

measurements collected with arbitrary TOS from a real system where no practical control can be

exercised to enforce specific TOS, as it is the case, for instance, for most automotive systems. Given

a finite sample of execution times and variables characterizing the state of the system (i.e. how jobs

overlap), we want to estimate a basal state of the system as a random variable, as well as the dilation

coefficient 𝑟. For the sake of this discussion, we consider that jobs either overlap or do not overlap,

neglecting whether they overlap with one or more jobs. Later we extend the discussion to arbitrary

numbers of overlapping jobs.

8.3.3 Mathematical Development of CleanET
The simplest way for describing the state of a system along the execution period𝑇 is by summarizing

the information of its state. This can be done with only one property through a binary measure

for each instant of time, 𝑡 of a fixed duration (e.g. 1 processor clock cycle in the extreme), see

Equation 8.2 where 𝑡 is the particular time instant when we assess the property. In this work the

particular property is whether the execution of the particular job of the task under analysis overlaps

with the execution of any other job.

𝑊𝑡 =

{
1 if the property holds,

0 otherwise.
(8.2)

We can summarize this process through the total time during which the property holds, i.e. 𝑊𝑡 = 1,

denoted by 𝑉 . The remaining time, 𝑇 − 𝑉 , is denoted by 𝑈 . This approach approximates the basal

state of the system by ℐ0 = (𝑉 = 0) and Equation 8.1, so that:

E(𝑇 |𝑉 = 𝑣) = 𝑟(𝑣)E(𝑇 |𝑉 = 0). (8.3)

In Equation 8.3, E(𝑇 |𝑉 = 0) stands for the expectation (𝐸(·)) of the execution time (𝑇) when there is no

overlap at all (𝑉 = 0), 𝑟(𝑣) is the dilation factor given a specific overlap 𝑣, and therefore, E(𝑇 |𝑉 = 𝑣)
is the expectation of the execution time given the specific overlap 𝑣.

Likewise, let 𝑄 be the proportion of the execution time, 𝑇, where the property holds (V/T) and 1−𝑄
where it does not (U/T). This approach approximates the basal state of the system by 𝐸(𝑇 |𝑄 = 0)
and Equation 8.1, so that:

E(𝑇 |𝑄 = 𝑞) = 𝑟(𝑞)E(𝑇 |𝑄 = 0). (8.4)

Both Equation 8.3 and 8.4, allow using regression methods for parameter estimation [181]. In

particular, we want to obtain the dilation coefficient 𝑟, which we obtain as 𝑟(1), so when 𝑞 = 1 (full

overlap).
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8.3.4 Obtaining r
Let 𝑋 = (𝑇 |𝑄 = 0) = (𝑇 |𝑉 = 0) be the execution time of the task when the state of the system is basal.

Note that 𝑋 = (𝑇 |𝑉 = 0) is the actual random variable, which may realize into any specific execution

time, instead of 𝐸(𝑇 |𝑉 = 0), the expectation, that can only be the Expectation, thus a single value (i.e.

the mean of an infinitely large sample). Let 𝑌 = (𝑇 |𝑉) = (𝑇 |𝑄) be the observed execution time, thus

with 𝑉 time of overlapping (or 𝑄 fraction of overlapping). If an observation of 𝑌 is given (the actual

execution time measured), then 𝑉 is fixed to 𝑣, and 𝑄 fixed to 𝑞, for some 𝑣 and 𝑞. Note that 𝑣 and

𝑞 are directly obtained from observation of the system since we have the start and end time for each

job of each task, and hence, we can determine whether the specific job of the task under analysis

overlaps its execution with any other job at any time instant.

We can decompose the observed execution time, 𝑌, as follows:

𝑌 = 𝑈 +𝑉 = (1 − 𝑞)𝑌 + 𝑞𝑌, (8.5)

(1 − 𝑞)𝑌 is the part of the execution time of the job in basal state (no overlapping). Hence, we can

define (1−𝑝) such that (1− 𝑞)𝑌 = (1−𝑝)𝑋, thus relating the execution time with overlapping (𝑌) with

the execution time in isolation (𝑋). From this equivalence, we can describe the dilation coefficient 𝑟
as follows:

𝑌 = 𝑈 +𝑉 = (1 − 𝑞)𝑌 + 𝑞𝑌 = (1 − 𝑝)𝑋 + 𝑟𝑝𝑋, (8.6)

where the rightmost part of the equation decomposes the measured execution time into (1 − 𝑝)𝑋,

so the fraction of non-overlapping execution (1− 𝑝) multiplied by the basal state execution time (𝑋),

and 𝑟𝑝𝑋, so the fraction of overlapping execution (𝑝) multiplied by the dilation factor (𝑟) and the

basal state execution time.

Equivalently, we can apply the distributive property:

𝑌 = ((1 − 𝑝) + 𝑟𝑝)𝑋. (8.7)

Moreover, since 𝑈 + 𝑉
𝑟 = 𝑋, then 𝑈 = 𝑋 − 𝑉

𝑟 , and we can obtain a linear expression:

𝑌 = 𝑈 +𝑉 = 𝑋 − 𝑉

𝑟
+𝑉,

𝑌 =
𝑟 − 1

𝑟
𝑉 + 𝑋. (8.8)

Then, we can apply linear regression to obtain 𝑟 and 𝑋 in Equation 8.8 since 𝑌 and 𝑉 are known.

Note that the basal state corresponds to 𝑉 = 0, so 𝑌 = 𝑋. Also note that if all execution time is

overlapped with other jobs (so 𝑉 = 𝑌), we would have the following:

𝑌 =
𝑟 − 1

𝑟
𝑌 + 𝑋. (8.9)

We could transform it into the following expression:

𝑌

(
1 − 𝑟 − 1

𝑟

)
= 𝑋. (8.10)

Thus, having that
𝑌
𝑟 = 𝑋, and𝑌 = 𝑟𝑋, which matches Equation 8.7 when 𝑝 = 1 (overlapping fraction).

Based on the assumptions of the model, 𝑋 and 𝑄 are independent, which is equivalent to 𝑋 and 𝑃
being independent.

Proof. Here we use the theorem which states that functions of independent random variables are

independent. Let 𝐴 and 𝐵 be subsets of the real numbers R. Let 𝑔−1[𝐴] and ℎ−1[𝐵] denote the
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pre-image of 𝐴 and 𝐵 under 𝑔 and ℎ respectively. Applying the definition of independent random

variables:

Pr(𝑔(𝑋) ∈ 𝐴, ℎ(𝑌) ∈ 𝐵)) = Pr(𝑋 ∈ 𝑔−1[𝐴], 𝑌 ∈ ℎ−1[𝐵]), (8.11)

= Pr(𝑋 ∈ 𝑔−1[𝐴])Pr(𝑌 ∈ ℎ−1[𝐵]), (8.12)

= Pr(𝑔(𝑋) ∈ 𝐴)Pr(ℎ(𝑌) ∈ 𝐵). (8.13)

□

Then, it follows that, in general, given 𝑋 and 𝑃 being non-observed independent random variables,

and 𝑈 and 𝑉 observed random variables such that

𝑈 = (1 − 𝑃)𝑋 and 𝑉 = 𝑟𝑃𝑋,

for some coefficient 𝑟 > 0, then a point estimation for 𝑟, 𝑃 and 𝑋 is given by

𝑋̂ = 𝑈 +𝑉/𝑟, (8.14)

𝑃̂ = 𝑉/(𝑟𝑈 +𝑉), (8.15)

𝑟 = min

𝑟

{
cov(𝑋̂ , 𝑃̂)

}
. (8.16)

However, point estimations are not satisfactory from a safety perspective due to the uncertainty

caused by the potential error in the estimation of execution times. Therefore, we propose a pessimistic

method that overestimates the coefficient 𝑟, which we detail next.

8.3.5 Intrinsic Pessimism
Equation 8.8, states the linear relationship between Y and V. On the other hand, the linear regression

of Y and V provides us with (𝛼, 𝛽, 𝑍) such that 𝛼, 𝛽 ∈ R, and 𝑍 is a random variable that maximizes

the independence between 𝑌 and 𝑉 such that 𝑌 = 𝛼 + 𝛽𝑉 + 𝑍. Given the definition of 𝛽 in simple

linear regression [181]:

Proof. Y, V and Z need: cov(𝑉, 𝑍) = 0 =⇒ 𝑌 = 𝛼 + 𝛽𝑉 + 𝑍. Using the expression 𝑌 = 𝛼 + 𝛽𝑉 + 𝑍:

cov(𝑉,𝑌 − 𝛼 − 𝛽𝑉) = 0. (8.17)

Which yields:

cov(𝑉,𝑌) = cov(𝑉, 𝛼) + cov(𝑉, 𝛽𝑉), (8.18)

cov(𝑉,𝑌) = 𝛽var(𝑉), (8.19)

𝛽 =
cov(𝑌,𝑉)

var(𝑉) . (8.20)

Which is the estimator of 𝛽 in the linear regression. □

Now, using Equation 8.8, we can yield the following expression:

𝛽 =
cov(𝑌,𝑉)

var(𝑉) =
cov( 𝑟−1

𝑟 𝑉 + 𝑋,𝑉)
var(𝑉) =

𝑟 − 1

𝑟
+ cov(𝑋,𝑉)

var(𝑉) . (8.21)

Therefore, the equivalence 𝛽 = 𝑟−1

𝑟 would hold if 𝑋 and 𝑉 were independent:

cov(𝑋,𝑉) = cov(𝑋, 𝑋𝑃𝑟) (8.22)

Let us check the dependency between 𝑉 and 𝑃:
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Proof. Start by laying out the expression for cov(𝑋, 𝑋𝑃):

2cov(𝑋, 𝑃𝑋) = var(𝑋) + var(𝑃𝑋) − var(𝑋 − 𝑃𝑋). (8.23)

Determine var(𝑃𝑋) and var(𝑋 − 𝑃𝑋).

var(𝑃𝑋) = var(𝑃)var(𝑋) + var(𝑃)𝐸(𝑋)2 + var(𝑋)𝐸(𝑃)2 , (8.24)

var(𝑋 − 𝑃𝑋) = var(1 − 𝑃)var(𝑋) + var(1 − 𝑃)𝐸(𝑋)2 + var(𝑋)𝐸(1 − 𝑃)2. (8.25)

By subtracting those two equations we obtain the right-hand side of Equation 8.23:

var(𝑋)
[
𝐸(𝑃)2 − 𝐸(1 − 𝑃)2 + 1

]
= 2cov(𝑋, 𝑃𝑋), (8.26)

var(𝑋)
[
𝐸(𝑃)2 − (1 − 𝐸(𝑃))2

]
= 2cov(𝑋, 𝑃𝑋), (8.27)

var(𝑋)𝐸(𝑃) = cov(𝑋, 𝑃𝑋) > 0. (8.28)

Which holds in our case because 𝑃 ∈ [0, 1] and 𝑋 ∈ R+. □

Given that 𝑋 and 𝑃 are not independent, the relationship between 𝑟 and 𝛽 yields:

𝛽 =
𝑟 − 1

𝑟
+ cov(𝑋,𝑉)

var(𝑉) >
𝑟 − 1

𝑟
, (8.29)

since cov(𝑋,𝑉) > 0. Note that the covariance between 𝑋 and 𝑉 is generally unknown. Thus, by

ignoring it, we overestimate the factor
𝑟−1

𝑟 , which, given that 𝑟 > 1 as indicated before, implies that

we overestimate 𝑟.

The consequence of overestimating 𝑟 is that, by considering scenarios where the overlapping is

higher than measured, the overestimated 𝑟 leads to higher predicted execution times than those

in the real system. In our case, this implies that, if those predicted measurements respect timing

budgets, then real system measurements would necessarily also respect the budgets. Also, if the

system can overrun the timing budget, predicted measurements obtained with CleanET will indicate

even higher overruns, so faults will be reliably detected. However, in some cases, time budgets may

be respected and CleanET report that they are violated. Hence, while this may cost some tightness

by imposing the allocation of larger time budgets than needed, our approach does not challenge the

safety of the system tested.

8.3.6 CleanET for Multiple Overlappings
In the previous section we focused the case where one specific job either does not overlap or partially

overlap with another job. The model can be easily extended to account for several jobs overlapping

at the same time (from 1 to 𝑚). This is done by defining Equation 8.2 for each number of overlaps,

so having 𝑊1

𝑡 , · · · ,𝑊𝑚
𝑡 , where the property in each case is whether there are exactly 𝑖 overlaps. For

instance, for 𝑖 = 2, 𝑊2

𝑡 = 1 if and only if the job overlaps with exactly 2 other jobs in time 𝑡. For any

other number of overlapping jobs (e.g. 0, 1, 3, etc), 𝑊2

𝑡 = 0. Hence, 𝑉𝑖 stands for the total time where

property 𝑊 𝑖
𝑡 holds.

We can, therefore, extend our original definition of 𝑌 (𝑌 = 𝑈 + 𝑉 = (1 − 𝑞)𝑌 + 𝑞𝑌) decomposing 𝑉
and 𝑞 across the different types of overlapping (from 1 to 𝑚 overlapping jobs) as follows:

𝑌 = 𝑈 +
𝑚∑
𝑖=1

𝑉𝑖 =

(
1 −

𝑚∑
𝑖=1

𝑞𝑖

)
𝑌 +

𝑚∑
𝑖=1

𝑞𝑖𝑌. (8.30)

This allows us to reformulate Equation 8.7 as follows:

𝑌 =

((
1 −

𝑚∑
𝑖=1

𝑝𝑖

)
+

𝑚∑
𝑖=1

𝑟𝑖𝑝𝑖

)
𝑋, (8.31)
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which can be transformed into the following equation where linear regression can be directly applied:

𝑌 =

𝑚∑
𝑖=1

(
𝑟𝑖 − 1

𝑟𝑖
𝑉𝑖

)
+ 𝑋, (8.32)

where𝑌 and all𝑉𝑖 are known, and 𝑋 and all 𝑟𝑖 dilation factors are obtained through linear regression.

8.4 Evaluation
For the evaluation of CleanET, we first estimate 𝑟𝑖 dilation factors for the different task overlaps.

Then, we validate how dilation factor estimation matches expectations. Finally, we show how those

dilation factors can be used to estimate execution time bounds for different overlapping scenarios,

thus allowing to validate whether time budgets are violated.

8.4.1 Dilation Factors (𝑟𝑖)
Single Dilation Factor

We have applied CleanET to obtain the dilation factors, 𝑟𝑖 , for the different numbers of overlapped

tasks. Results are shown in Table 8.1 considering a single dilation factor (whether overlap exists

or not), as per Section 8.3.4. As shown, execution time with no overlap at all is around 16.32ms,

with a standard deviation of 1.64ms. However, the impact of overlap is huge since 𝑟 = 6.85 with a

standard deviation of 0.78. Hence, on average, we could expect the execution time will full overlap

to be around 112ms (16.32ms · 6.85). For the sake of completeness, the table also provides the

number of execution time observations used (289), which are those for class 0 before, and the degree

of correlation measured between non-overlapped and overlapped execution time measurements,

which is, as expected, very high (0.9).

Table 8.1: CleanET applied to filtered data with Overlap as co-variate.

Overlap (𝑟) 6.85 ± 0.78

Constant (𝑝 = 0) 16.32 ± 1.64

Observations 289

Adjusted R-squared (correlation): 0.90

All Dilation Factors

As a second step, we have applied CleanET to obtain individual dilation factors for 1, 2 and 3 jobs

overlapping with the jobs of the task under analysis, as per Section 8.3.6. Results are shown below

in Table 8.2. We observe that results for 1 or 2 jobs overlapping are very similar and ranges (e.g.

𝜇 ± 𝜎) overlap almost completely. Statistically, we cannot prove that they are distinguishable and,

therefore, we conclude that overlapping with 1 or 2 jobs must be considered together, thus defining

that the property in Equation 8.2 holds if the task overlaps with exactly 1 or 2 jobs. In the case of 3

jobs overlapping, we observe that (1) the value of 𝑟3 is far lower than that for 𝑟1 and 𝑟2, which would

mean that overlapping with 3 jobs leads to a lower dilation factor (so a lower execution time increase)

than overlapping with 1 or 2 jobs, which is against intuition. However, the real problem with 3

overlaps relates to the fact that, out of the 289 class 0 measurements, only 9 have 3 jobs overlapping

with the task under analysis for some time, which is, in practice, too scarce data to raise any reliable

prediction. In fact, the (very high) standard deviation for this case already indicates this behavior

indirectly. The number of measurements including data for each overlap case is provided in Table 8.3

for completeness. Finally, note that, while the case with no overlap (“Constant” in the tables) has no

meaningful change with respect to the case where we fit only 𝑟, it is not absolutely identical. This

relates to the fact that all parameters in Equation 8.32 are fit together, thus dealing to minor variations

when varying the parameters to fit.
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Table 8.2: Linear model applied on filtered data with Overlap time of one, two and three
processes at a time.

Overlap 1 (𝑟1) 6.97 ± 0.81

Overlap 2 (𝑟2) 6.55 ± 0.81

Overlap 3 (𝑟3) 3.23 ± 2.42

Constant (𝑝 = 0) 16.32 ± 1.65

Observations 289

Adjusted R-squared (correlation): 0.90

Table 8.3: Number of class 0 measurements with part of its execution with 0, 1, 2, 3
jobs overlapping.

Number of Measurements Percentage
overlapping jobs (w.r.t. 289)
Overlap 0 137 47.4%

Overlap 1 288 99.7%

Overlap 2 218 75.4%

Overlap 3 9 3.1%

Statistically Significant Dilation Factors

After concluding that 1 and 2 overlapping measurements are not statistically distinguishable, we

apply CleanET again considering only two dilation factors: 𝑟1−2 for 1 or 2 overlaps, and 𝑟3 for 3

overlaps, as shown in Table 8.4 below. We note that 𝑟1−2 is not distinguishable in practice with 𝑟 in

Table 8.1 when considering just one dilation factor since the amount of data for 3 overlaps is too little

to cause meaningful differences. We also note that, by considering 1 and 2 overlaps together instead

of separated, the case for 3 overlaps varies drastically, which reflects the weakness of the fit for 3

overlaps due to the too little data available for this case.

Table 8.4: Linear model applied on filtered data with Overlap time of one and two
processes added, and three processes.

Overlap 1-2 (𝑟1−2) 6.88 ± 0.78

Overlap 3 (𝑟3) 2.75 ± 1.68

Constant (𝑝 = 0) 16.31 ± 1.64

Observations 289

Adjusted R-squared (correlation): 0.90

Overall, our results show that scenarios with 0, 1 or 2 overlaps can be reliably resampled from the

data available. If the case with 3 overlaps is regarded as relevant for operation conditions, then

additional input data would be required including many more measurements corresponding to that

scenario, so that CleanET could deliver a reliable dilation factor for this case.

8.4.2 Validation of the Method
In general, these solutions cannot be validated due to the lack of reference data, which in this case

would correspond to measurements with the complete execution time with a constant number of

jobs overlapping (e.g. 100% of the execution time overlapping with exactly 1 job). However, in our

case, we have measurements with exactly 1 job overlapping during their complete execution. In

fact, since 1 and 2 overlappings have been shown to be indistinguishable, and 3 overlappings occur

seldom (too occasionally to be statistically significant), we consider as reference measurements those

in which some overlapping (with either 1, 2 or 3 jobs) occurs during the whole execution. Hence, we

performed the following:
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Figure 8.4: QQ-plot of full overlap resampled data with CleanET with respect to empir-
ical data with full overlap.
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Figure 8.5: Execution time bounds for no overlapping (𝑝 = 0) and full overlapping
(𝑝 = 1).

1. Split the set of measurements into 2 categories: one with those measurements with 100%

overlap (OVL1 group, 152 values), and those with non-full overlap (OVLmix, the remaining

137 values).

2. Apply CleanET on OVLmix data.

3. Compare the results obtained with CleanET resampling data in OVLmix to the case with full

overlap, with the actual data with those overlapping characteristics (OVL1 data) with a QQ-plot

(see Figure 8.4).

In the figure, we would like to have a linear relation between the empirical data and the data resam-

pled with CleanET (straight line). However, the fact that 𝑟 is overestimated leads to non-linearity.

Results show that CleanET, using OVLmix data, produces higher values than those observed empir-

ically (OVL1), thus corroborating our expectation of having overestimated execution times for high

overlaps due to the overestimation of 𝑟. This supports empirically our expectations with a reference

data set different to that used by CleanET by partitioning the data into OVL1 and OVLmix groups.

99



Chapter 8. Clean Execution Times for MBPTA

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ●

● ● ● ● ● ● ●
●

● ●
●

● ● ● ● ● ● ● ● ●
● ●

● ● ●
●

● ● ●

●

●
● ● ● ● ● ● ● ● ● ●

●
● ● ●

● ● ●
● ● ●

● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ●
● ●

● ● ●
● ● ● ● ● ● ● ● ● ●

●
● ● ●

● ●
● ● ● ● ● ● ● ● ● ●

● ●
● ● ● ● ● ●

●
● ● ●

●
● ●

●
● ● ●

●
● ● ● ●

●

● ●

●

●

●

● ● ● ● ● ●

●

●

● ●

● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

●
● ● ● ● ● ●

●

●

● ●

●
● ● ● ●

● ●
● ● ● ● ● ● ●

●
● ● ● ● ● ●

●

● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ●

● ●

● ● ● ●

●

●

●

●

●

●

Figure 8.6: Impact of the dilation factor (𝑟) on the execution time bounds as we vary the
degree of overlapping (𝑝).

8.4.3 Using CleanET Results
We have used CleanET to generate, from the actual measurements obtained from the system with

arbitrary overlaps, measurements corresponding to overlapping scenarios of interest. In particular,

since the purpose of timing validation is assessing that no overrun occurs, we have considered the

case with full overlap. For the sake of illustration, we also show results for the case of no-overlap.

Figure 8.5 plots the empirical complementary cumulative density function (ECCDF) for the three

scenarios: actual data measured (empirical), data obtained with CleanET with no overlap (basal),

and data obtained with CleanET with full overlap. Together with the empirical data, we fit an

exponential tail to the highest values of the extreme cases (basal and full overlap), which has been

recommended as a suitable approach to predict high execution times [3, 44]. For that purpose, we

build on peaks-over-threshold methods selecting the threshold as indicated in [90].

Measurements resampled with CleanET allow considering cases that could not be explicitly tested

in the system under test. As shown, as expected, the full overlap case leads to execution times higher

than those of the empirical (measured) case, whereas the basal case, instead, leads to the lowest

execution times one would expect in the real system. Note that, as discussed in Section 8.3.5, 𝑟 values

are overestimated. Hence, the full overlap case is an overestimation of what would be in practice

the behavior of the real system with full overlap, whose timing behavior would be somewhere in

the region between the empirical measurements for arbitrary overlaps and the estimated full-overlap

measurements obtained with CleanET. Note also that overestimating 𝑟 makes that, whenever we

consider lower overlaps than in practice (e.g. basal case), execution times obtained are in practice

lowerbounds of the true basal case. In any case, the basal case is irrelevant to validate whether time

budgets allocated suffice.

For the sake of completeness, we provide in Figure 8.6 how execution times expected vary as we

vary the degree of overlap (𝑝). We use peak-over-threshold again, and we collect the values obtained

at different exceedance levels (lvl), from 10
−3

to 10
−12

. As expected, a linear increase of the degree

of overlap, leads to nearly-linear increase of the execution times expected, with small disturbances

due to the uncertainty associated to threshold selection in the fitting process of a distribution (an

exponential distribution in our case). For instance, based on the results obtained, if we consider an

exceedance level of 10
−6

, we would conclude that execution times could be slightly below 500ms

(assuming full overlap being the worst-case during operation). Thus, validation tests would be

passed if such value is lower than the deadline for the task under analysis.

Overall, CleanET allows exploring any arbitrary degree of overlap of interest, thus providing end

users with means to validate their system against scenarios that cannot be triggered during system

testing, thus relieving end users from having to create additional test cases with the hope of those

test cases to produce the execution scenarios that need being considered.
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8.5 Summary
The complexity of current MPSoCs is mainly due to the intricate interactions between their multiple

hardware blocks in the execution of complex software like the one governing Autonomous Driving.

The competition for resources in these hardware blocks impacts greatly the execution time of each

task. In this work we propose cleanET, a mathematical model that expresses how tasks that overlap in

time produce a time dilation on each other. CleanET not only can model the dilation factor of a given

set of time data, it can also use that factor to estimate a worst-case scenario where the contention is at

its peak. We used as case-study data from a real autonomous driving framework, Apollo, to assess

the dilation factor of overlapping tasks. CleanET allows generating, apart from the worst-case full

overlap scenario, a no overlap scenario so that we can observe a model for the execution times in

isolation with only the data during system operation.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions
The growth in the complexity of CRTES continues to challenge the real-time community to pro-

vide trustworthy timing analysis solutions. The execution of increasingly-complex mixed-critically

software, like machine learning, on complex multicore hardware makes timing analysis, and pro-

viding evidence of correctness, difficult tasks. In order to address the complexity rise in CRTES,

several measurement-based techniques have been proposed. In particular, measurement probabilis-

tic timing analysis techniques based on Extreme Value Theory have been shown to deliver provably

trustworthy WCET estimates on execution scenarios that have not been observed. In order for

MBPTA techniques to be applied, the execution time occurrences under validation should be repre-

sentative of all possible execution conditions and scenarios that may arise during system operation,

hardware- and software-wise. The particularity of MBPTA resides in providing WCET bounds via

measurements in the form of a probability distribution.

This thesis pushes the state-of-the-art in the MBPTA domain: We have proposed new tools to i)

provide tighter and trustworthy pWCET estimates, ii) merge disjoint hardware event monitor data,

and iii) assess contention from competing tasks. More specifically, we achieved the following:

• Sky-high Quantile Estimation: Light tails are the theoretical best fit for pWCET estimation.

However, the lack of reliable fitting methods (for light tails as part of EVT) that deliver reliable

pWCET estimates for arbitrarily low exceedance probabilities imposes the use of exponential

tails, which although proven reliable, are increasingly pessimistic for decreasing exceedance

probabilities. We proposed two different solutions for this problem.

– We proved that risk analysis, where EVT is used, and survivability analysis tackle the

same fundamental problem by predicting the occurrence of rare events. Then, building

on distributions from survivability analysis, we proposed the use of Weibull tails (tailW),

which are proven to be as reliable as reference log-concave distributions, but enabling the

tight modelling of arbitrarily low exceedance probabilities.

– We presented for the first time a method based on Markov’s Inequality for pWCET estima-

tion that represents a solid alternative approach to EVT. In particular, we showed that MIK

(Markov Inequality to the power-of-k) has no model uncertainty and proposed a method to

handle sampling uncertainty (RESTK) that consistently provides more trustworthy, tighter

and stable results than EVT in different scenarios, including a railway case study. These

promising results suggest that RESTK can be effectively used as a standalone method for

pWCET estimation, or even as an alternative approach to validate EVT results in those

cases where EVT is already consolidated. In this line, the fact that MIK (RESTK) and EVT

build on completely different mathematical foundations provides stronger evidence on

the trustworthiness of the obtained pWCET estimates.

• HEM Data Merging: Measurement-based timing analysis methods increasingly build on

HEMs to measure and estimate the timing behavior of time-critical applications running on
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MPSoCs. Unfortunately, in complex MPSoCs, HEM values are subject to some unavoidable

noise. Besides, they can only be read in small subsets, as many as the number of PMCs the

hardware has. As a result, the system designer can only collect partial snapshots (i.e. only a

subset of HEMs) in every run, each potentially subject to different noise with different impact

on HEMs. In this thesis we have proposed two solutions for this problem:

– HRM, a flexible method to merge HEM values across runs that allows preserving precisely

their correlation with timing and their joint correlation, to a good extent. HRM achieves

its goals by building on (1) non-parametric statistics, which do not pose any constraint on

the distributions observed for different HEMs in the T2080, and (2) the use of an anchor

HEM to relate measurements from different HEMs.

– MUCH, a method that works by observing pairwise HEM correlations and building on

multivariate Gaussian distributions to generate merged HEM vectors where discrepancies

between produced pairwise HEM correlations and real ones is very low. Our results on

an NXP T2080 MPSoC used for avionics’ CRTES support the effectiveness of MUCH and

show that it outperforms HRM systematically, thus being HRM the best choice only in

those cases where too many HEMs are needed and there are very few PMCs.

• Contention Modelling: Validating execution time bounds for CRTES becomes increasingly

difficult due to the growing complexity of those systems driven by a higher system automation.

This is particularly true in automotive systems with the advent of autonomous driving. This

thesis proposes CleanET, a novel solution to obtain measurements representative of any relevant

scenario from the set of measurements obtained during analysis. In particular, CleanET builds

upon estimating the impact of execution time interference across tasks to allow resampling

data into any degree of interference (i.e. execution overlap) of interest. CleanET is a purely

measurement-based solution, thus in line with the requirements of automotive end users, that

facilitates testing execution scenarios that cannot be practically produced by testing engineers.

Our results on a commercial AD framework, Apollo, corroborate the advantages of CleanET

for timing validation.

9.2 Future Work
In this thesis, we pioneered multiple methodologies that can be explored further. In particular, this

thesis pushes the state-of-the-art forward in three main areas. Some possible future works on each

of those areas are the following:

• Sky-high Quantile Estimation: This thesis introduces two new tail estimation methodologies

that improve the state-of-the-art on the WCET problem. In both, tailW and Markov’s Inequality

works, we always work with i.i.d. data. Even if the data is not fully independent, as long as

the dependence is weak and it is not present at the most extreme values, our methodologies

will hold. In our work, the dependence we found is weak, and there was no dependence on

the extremes. However, it can be interesting to explore these new methodologies specifically in

the case of dependence on the extremes to provide with more robust guarantees in scenarios

where such dependence on the extremes manifests. Note that, in none of the platforms and

benchmarks we used this extreme dependence appeared. But, of course, we do not discard it

appearing in other unexplored scenarios.

• HEM Data Merging: We proposed two solutions to the HEM merging problem. As explained,

keeping the relationships between HEMs read in different runs is not an easy task. HRM

solves this problem by means of statistics of order. Conversely, MUCH tackles this problem by

using multivariate Gaussian copulas. Both methods deliver good results for HEM merging.

However, both methods model the central part of the distribution rather than the extremes. As

firsts steps into this new approach, they are satisfactory. However, increasing the accuracy for

the extreme data can be particularly useful in the CRTES domain. In that regard, MUCH has

the potential to be improved for an extreme modelling approach given that we can change the

copula model for one that focuses on keeping the relationships in the tail. Additionally, there

are some platforms with more constraints on HEM data gathering. In some cases, a particular

group of HEMs is restricted to only be read through a specific PMC. Therefore those HEMs

106



9.2. Future Work

cannot be read simultaneously. If one were to implement HRM in this scenario those HEMs

cannot function as an anchor properly. Although, HRM could still be used in those scenarios

if one considers the execution time of a program (i.e. processor cycles) as the anchor given it is

a free HEM and can be read through any PMC. Implementing MUCH in a scenario where two

HEMs cannot be read at once is an interesting challenge that would generalize its applicability.

• Contention Modelling: In this thesis we proposed a model for the contention produced by

tasks accessing shared resources at the same time. We proposed CleanET, a model devised from

basic mathematical modelling principles. Once the model for the contention was established,

we performed a linear fit to estimate its parameters. With these parameters we can estimate

a WCET for the full overlap of the tasks. As shown, the model is conservative in nature and

may yield pessimistic results for the full overlap scenario. Also, with a linear fit model it is

modelling the central part of the distribution. Similarly to HRM and MUCH, CleanET is the

first step into a more general model. The next step would be considering a model which takes

into account the dependencies on the overlaps which produce the most dilation. As mentioned,

the other aspect to work on is a tighter full overlap scenario to model the WCET.

A natural step for all the solutions developed in this thesis is increasing the maturity to enable

industrial adoption. To ease this step, part of the work of the research group aims at the integration

of these solutions into industrial use cases on commercial platforms, and into open source and

commercial toolsets. Those activities are being conducted in the context of European projects just

starting (e.g., Horizon Europe SAFEXPLAIN, coordinated by BSC), and some project proposals under

submission or to be submitted soon. Also, a first effort towards easing the adoption of these solutions

is the release as open source of the distTails package for sky-high quantile estimation.

107



Chapter 9. Conclusions and Future Work

108



Bibliography

[1] J. Abella, C. Hernandez, E. Quiñones, F. J. Cazorla, P. R. Conmy, M. Azkarate-askasua, J. Perez,

E. Mezzetti, and T. Vardanega. WCET analysis methods: Pitfalls and challenges on their

trustworthiness. In International Symposium on Industrial Embedded Systems (SIES), pages 1–10,

2015.

[2] J. Abella, E. Mezzetti, and F. J. Cazorla. On assessing the viability of probabilistic scheduling

with dependent tasks. In Symposium On Applied Computing (SAC), 2019.

[3] J. Abella, M. Padilla, J. del Castillo, and F. J. Cazorla. Measurement-based worst-case execution

time estimation using the coefficient of variation. Transactions on Design Automation of Electronic
Systems, 22(4):72:1–72:29, 2017.

[4] J. Abella, E. Quiñones, F. Wartel, T. Vardanega, and F. J. Cazorla. Heart of Gold: Making the

improbable happen to extend coverage in probabilistic timing analysis. In Euromicro Conference
on Real-Time Systems (ECRTS), pages 255–265. IEEE, 2014.

[5] I. Agirre. Development and certification of mixed-criticality embedded systems based on probabilistic
timing analysis. PhD thesis, UPC, Departament d’Arquitectura de Computadors, 2018.

[6] I. Agirre, F. J. Cazorla, J. Abella, C. Hernández, E. Mezzetti, M. Azkarate-askatsua, and T. Var-

danega. Fitting software execution-time exceedance into a residual random fault in ISO-26262.

Transactions on Reliability, 67(3):1314–1327, 2018.

[7] A.R. Alameldeen and D.A. Wood. Variability in architectural simulations of multi-threaded

workloads. In International Symposium on High-Performance Computer Architecture (HPCA), pages

7–18, 2003.

[8] A. Alhammad, S. Wasly, and R. Pellizzoni. Memory efficient global scheduling of real-time

tasks. In Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 285–296,

2015.

[9] V. Antinyan. Revealing the complexity of automotive software. In Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering, page

1525–1528, New York, NY, USA, 2020. ACM.

[10] C. Antoniadis, D. Garyfallou, N. Evmorfopoulos, and G. Stamoulis. Evt-based worst case

delay estimation under process variation. In Design, Automation Test in Europe (DATE), pages

1333–1338, 2018.

[11] Apollo. An open autonomous driving platform. http://apollo.auto/, 2018.

[12] L. F. Arcaro, K. P. Silva, R. S. de Oliveira, and L. Almeida. Reliability test based on a bino-

mial experiment for probabilistic worst-case execution times. In Real-Time Systems Symposium
(RTSS), pages 51–62, 2020.

[13] Autoware. An open autonomous driving platform. https://github.com/CPFL/Autoware/,
2016.

[14] F. Balabdaoui, K. Rufibach, and J. A. Wellner. Limit distribution theory for maximum likelihood

estimation of a log-concave density. Annals of Statistics, 37(3):1299–1331, 2009.

109

http://apollo.auto/
https://github.com/CPFL/Autoware/


Bibliography

[15] A. A. Balkema and L. de Haan. Residual Life Time at Great Age. The Annals of Probability,

2(5):792 – 804, 1974.

[16] F. Bartolucci and L. Scrucca. Point estimation methods with applications to item response

theory models. In Penelope Peterson, Eva Baker, and Barry McGaw, editors, International
Encyclopedia of Education (Third Edition), pages 366–373. Elsevier, Oxford, third edition edition,

2010.

[17] M. Becker, D. Dasari, B. Nicolic, B. Akesson, V. Nelis, and T. Nolte. Contention-free execution

of automotive applications on a clustered many-core platform. In Euromicro Conference on
Real-Time Systems (ECRTS), pages 14–24, 2016.

[18] P. Benedicte. Smart hardware designs for probabilistically-analyzable processor architectures. PhD

thesis, UPC, Departament d’Arquitectura de Computadors, 2022.

[19] K. Berezovskyi, F. Guet, L. Santinelli, K. Bletsas, and E. Tovar. Measurement-based proba-

bilistic timing analysis for graphics processor units. In International Conference on Architecture
of Computing Systems (ARCS), pages 223–236, New York, NY, USA, 2016. Springer-Verlag New

York, Inc.

[20] K. Berezovskyi, L. Santinelli, K. Bletsas, and E. Tovar. WCET Measurement-Based and Ex-

treme Value Theory Characterisation of CUDA Kernels. In International Conference on Real-Time
Networks and Systems (RTNS), page 279–288, New York, NY, USA, 2014. ACM.

[21] G. Bernat, A. Burns, and M. Newby. Probabilistic timing analysis: An approach using copulas.

Journal of Embedded Computing, 1(2):179–194, 2005.

[22] G. Bernat, A. Colin, and S. M. Petters. WCET analysis of probabilistic hard real-time system.

In Real-Time Systems Symposium (RTSS), 2002.

[23] G. Bernat, A. Colin, and S.M. Petters. WCET analysis of probabilistic hard real-time systems.

In Real-Time Systems Symposium (RTSS), pages 279–288, 2002.

[24] A. Betts, N. Merriam, and G. Bernat. Hybrid measurement-based wcet analysis at the source

level using object-level traces. In International Workshop on Worst-Case Execution Time Analysis
(WCET), pages 54–63, 2010.

[25] A. Biondi and M. Di Natale. Achieving predictable multicore execution of automotive applica-

tions using the let paradigm. In Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 240–250, 2018.

[26] J. Blanchet, F. He, and K. Murthy. On distributionally robust extreme value analysis. Extremes,
23:317–347, 2020.

[27] Catalina Bolancé, Carlos Alberto Acuña, and Salvador Torra. Non-normal market losses and

spatial dependence using uncertainty indices. Mathematics, 10(8), 2022.

[28] G. E. P. Box and D. A. Pierce. Distribution of residual autocorrelations in autoregressive-

integrated moving average time series models. Journal of the American Statistical Association,

65(332):1509–1526, 1970.

[29] F. Caeiro and M. Gomes. Semi-parametric tail inference through probability-weighted mo-

ments. Journal of Statistical Planning and Inference, 141(2):937–950, 2011.

[30] F. Caeiro and M. Gomes. Threshold selection in extreme value analysis. Extremes, 2014.

[31] J. Cai, P. Wan, and G. Özel Kadilar. Parametric and non-parametric estimation of extreme

earthquake event: the joint tail inference for mainshocks and aftershocks. Extremes, 24, 2021.

[32] J. Cardona, C. Hernandez, J. Abella, and F. J. Cazorla. Maximum-contention control unit

(mccu): Resource access count and contention time enforcement. In Design, Automation Test in
Europe (DATE), pages 710–715, 2019.

[33] M. Casas, H. Servat, R. M. Badia, and J. Labarta. Extracting the optimal sampling frequency

of applications using spectral analysis. Concurrency and Computation: Practice and Experience,
24(3):237–259, 2012.

110



Bibliography

[34] E. Castillo, A. Hadi, N. Balakrishnan, and J. Sarabia. Extreme Value and Related Models With
Applications in Engineering and Science. Whiley, 2005.

[35] F. J. Cazorla, L. Kosmidis, E. Mezzetti, C. Hernandez, J. Abella, and T. Vardanega. Probabilistic

worst-case timing analysis: Taxonomy and comprehensive survey. Computing Surveys, 52(1),

2019.

[36] F. J. Cazorla, E. Quiñones, T. Vardanega, L. Cucu-Grosjean, B. Triquet, G. Bernat, E. Berger,

J. Abella, F. Wartel, M. Houston, L. Santinelli, L. Kosmidis, C. Lo, and D. Maxim. Proartis:

Probabilistically analyzable real-time systems. Transactions on Embedded Computing Systems,
12(2s), 2013.

[37] K. Chen and J. Chen. Probabilistic schedulability tests for uniprocessor fixed-priority schedul-

ing under soft errors. In International Symposium on Industrial Embedded Systems (SIES), pages

1–8, 2017.

[38] K. Chen, N. Ueter, G. von der Brüggen, and J. Chen. Efficient computation of deadline-miss

probability and potential pitfalls. In Design, Automation Test in Europe (DATE), pages 896–901,

2019.

[39] C. J. Clopper and E. S. Pearson. The use of confidence or fiducial limits illustrated in the case

of the binomial. Biometrika, 26(4):404–413, 1934.

[40] S. Coles. An Introduction to Statistical Modeling of Extreme Values. Springer, 2001.

[41] M. Colnaric, D. Verber, and W. A. Halang. Distributed Embedded Control Systems: Improving
Dependability with Coherent Design. Springer Publishing Company, Incorporated, 1st edition,

2008.

[42] C. Cox. Delta Method. John Wiley & Sons, Ltd, 2005.

[43] D.R. Cox and D. Oakes. Analysis of Survival Data. Chapman and Hall, 1984.

[44] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega, L. Kosmidis, J. Abella,

E. Mezzetti, E. Quiñones, and F. J. Cazorla. Measurement-based probabilistic timing analysis

for multi-path programs. In Euromicro Conference on Real-Time Systems (ECRTS), pages 91–101,

2012.

[45] J. Danielsson, L. de Haan, L. Peng, and C.G. de Vries. Using a bootstrap method to choose the

sample fraction in tail index estimation. Journal of Multivariate Analysis, 76, 2001.

[46] D. Dasari, B. Andersson, V. Nelis, S. M. Petters, A. Easwaran, and J. Lee. Response time

analysis of cots-based multicores considering the contention on the shared memory bus. In

International Conference on Trust, Security and Privacy in Computing and Communications, pages

1068–1075, 2011.

[47] D. Dasari and V. Nelis. An Analysis of the Impact of Bus Contention on the WCET in Multicores.

In International Conference on High Performance Computing and Communication & 2012 IEEE 9th
International Conference on Embedded Software and Systems, pages 1450–1457, 2012.

[48] R. Davis and L. Cucu-Grosjean. A survey of probabilistic schedulability analysis techniques

for real-time systems. Leibniz Transactions on Embedded Systems, 6(1):04–1–04:53, 2019.

[49] A. C. Davison and D. V. Hinkley. Bootstrap Methods and their Application. Cambridge University

Press, 1997.

[50] A. C. Davison and R. L. Smith. Models for exceedances over high thresholds. Journal of the
Royal Statistical Society. Series B (Methodological), 52(3):393–442, 1990.

[51] Ddc-i. Patent Details for Managing Cache. https://www.ddci.com/manage_cache_patent/,
2020.

[52] J. del Castillo, J. Daoudi, and R. Lockhart. Methods to distinguish between polynomial and

exponential tails. Scandinavian Journal of Statistics, 41(2):382–393, 2014.

[53] J. del Castillo, D. Moriña, and I. Serra. ercv: Fitting Tails by the Empirical Residual Coefficient of
Variation, 2017. R package version 1.0.0.

111

https://www.ddci.com/manage_cache_patent/


Bibliography

[54] Deloitte. Semiconductors – the Next Wave Opportunities and winning strategies for semiconductor
companies, 2019.

[55] E. Díaz, E. Mezzetti, L. Kosmidis, J. Abella, and F. J. Cazorla. Modelling multicore contention

on the aurixtm tc27x. In Design Automation Conference (DAC), 2018.

[56] J. L. Diaz, D. F. Garcia, K. Kim, C. Lee, L. Lo Bello, J. M. Lopez, S. Min, and O. Mirabella.

Stochastic analysis of periodic real-time systems. In Real-Time Systems Symposium (RTSS),
pages 289–300, 2002.

[57] B. Dreyer, C. Hochberger, A. Lange, S. Wegener, and A. Weiss. Continuous non-intrusive hybrid

wcet estimation using waypoint graphs. In International Workshop on Worst-Case Execution Time
Analysis (WCET), 2016.

[58] L. Duembgen, A. Huesler, and K. Rufibach. Active set and EM algorithms for log-concave

densities based on complete and censored data. Technical report, IMSV, Univ. of Bern, 2010.

[59] S. Edgar and A. Burns. Statistical analysis of wcet for scheduling. In Real-Time Systems Sympo-
sium (RTSS), pages 215–224, 2001.

[60] B. Efron. Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1):1–26,

1979.

[61] R. Ernst. Codesign of embedded systems: status and trends. Design Test of Computers, 15(2):45–

54, 1998.

[62] Federal Aviation Administration, Certification Authorities Software Team (CAST). CAST-32A
Multi-core Processors, 2016.

[63] R. A. Fisher. Xv.—the correlation between relatives on the supposition of mendelian inheri-

tance. Transactions of the Royal Society of Edinburgh, 52(2):399–433, 1919.

[64] R. A. Fisher. Moments and product moments of sampling distributions. Proceedings of the
London Mathematical Society, s2-30(1):199–238, 1930.

[65] R. A. Fisher and L. H. C. Tippett. Limiting forms of the frequency distribution of the largest

or smallest member of a sample. Mathematical Proceedings of the Cambridge Philosophical Society,

24(2):180–190, 1928.

[66] D. Freedman, R. Pisani, and R. Purves. Statistics: Fourth International Student Edition. W.W.

Norton & Company, 2007.

[67] Freescale semicondutor. ARM® architecture reference manual. armv8, for armv8-a architecture

profile. ARM DDI 0487F.b (ID040120).

[68] Freescale semicondutor. e6500 Core Reference Manual. https://www.nxp.com/docs/en/
reference-manual/E6500RM.pdf, 2014. E6500RM. Rev 0. 06/2014.

[69] Freescale semicondutor. QorIQ T2080 Reference Manual, 2016. Also supports T2081. Document

Number: T2080RM. Rev. 3, 11/2016.

[70] M. Fusi, F. Mazzocchetti, A. Farres, L. Kosmidis, R. Canal, F. J. Cazorla, and J. Abella. On

the use of probabilistic worst-case execution time estimation for parallel applications in high

performance systems. Mathematics, 8(3), 2020.

[71] S. Jiménez Gil, I. Bate, G. Lima, L. Santinelli, A. Gogonel, and L. Cucu-Grosjean. Open

challenges for probabilistic measurement-based worst-case execution time. Embedded Systems
Letters, 9(3):69–72, 2017.

[72] S. Girbal, M. Moretó, A. Grasset, J. Abella, E. Quiñones, F. J. Cazorla, and S. Yehia. On

the convergence of mainstream and mission-critical markets. In Design Automation Conference
(DAC), New York, NY, USA, 2013. ACM.

[73] T. Grass, A. Rico, M. Casas, M. Moreto, and A. Ramirez. Evaluating execution time predictabil-

ity of task-based programs on multi-core processors. In Parallel Processing Workshops, pages

218–229. Springer International Publishing, 2014.

112

https://www.nxp.com/docs/en/reference-manual/E6500RM.pdf
https://www.nxp.com/docs/en/reference-manual/E6500RM.pdf


Bibliography

[74] D. Griffin and A. Burns. Realism in Statistical Analysis of Worst Case Execution Times. In Björn

Lisper, editor, International Workshop on Worst-Case Execution Time Analysis (WCET), volume 15,

pages 44–53, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

The printed version of the WCET’10 proceedings are published by OCG (www.ocg.at) - ISBN

978-3-85403-268-7.

[75] D. Griffin, B. Lesage, I. Bate, F. Soboczenski, and R. I. Davis. Forecast-based interference:

Modelling multicore interference from observable factors. In International Conference on Real-
Time Networks and Systems (RTNS), page 198–207, New York, NY, USA, 2017. ACM.

[76] F. Guet, L. Santinelli, and J. Morio. On the Reliability of the Probabilistic Worst-Case Execution

Time Estimates. In Embedded Real-time Software and Systems (ERTS2) Conference, 2016.

[77] F. Guet, L. Santinelli, and J. Morio. Probabilistic analysis of cache memories and cache memories

impacts on multi-core embedded systems. In Symposium on Industrial Embedded Systems (SIES),
pages 1–10, 2016.

[78] F. Guet, L. Santinelli, and J. Morio. On the representativity of execution time measurements:

Studying dependence and multi-mode tasks. In International Workshop on Worst-Case Execution
Time Analysis (WCET), pages 3:1–3:13, 2017.

[79] Y. Guo, T. Sayed, L. Zheng, and M. Essa. An extreme value theory based approach for

calibration of microsimulation models for safety analysis. Simulation Modelling Practice and
Theory, 106:102172, 2021.

[80] M. Gyllenhammar, R. Johansson, F. Warg, D. Chen, H. Heyn, M. Sanfridson, J. Söderberg,

A. Thorsén, and S. Ursing. Towards an operational design domain that supports the safety

argumentation of an automated driving system. In European Congress on Embedded Real Time
Systems (ERTS), 2020.

[81] P. R. Halmos. The Theory of Unbiased Estimation. The Annals of Mathematical Statistics, 17(1):34

– 43, 1946.

[82] J. Hansen, S. Hissam, and G. A. Moreno. Statistical-Based WCET Estimation and Validation.

In Niklas Holsti, editor, International Workshop on Worst-Case Execution Time Analysis (WCET),
volume 10, pages 1–11, Dagstuhl, Germany, 2009. Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik. also published in print by Austrian Computer Society (OCG) with ISBN 978-3-

85403-252-6.

[83] T. Hastie, R. Mazumder, J. D. Lee, and R. Zadeh. Matrix completion and low-rank svd via fast

alternating least squares. J. Mach. Learn. Res., 16(1):3367–3402, 2015.

[84] M. L. Hazelton. Assessing log-concavity of multivariate densities. Statistics and Probability
Letters, 81(1):121–125, 2011.

[85] C. Hernández, J. Abella, F. J. Cazorla, A. Bardizbanyan, J. Andersson, F. Cros, and F. Wartel.

Design and Implementation of a Time Predictable Processor: Evaluation With a Space Case

Study. In Marko Bertogna, editor, Euromicro Conference on Real-Time Systems (ECRTS), vol-

ume 76, pages 16:1–16:23, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik.

[86] B. M. Hill. A Simple General Approach to Inference About the Tail of a Distribution. The
Annals of Statistics, 3(5):1163 – 1174, 1975.

[87] R. V. Hogg and E. A. Tanis. Probability and statistical inference. Prentice Hall, 1997.

[88] R. Hyndman and Y. Fan. Sample quantiles in statistical packages. The American Statistician,

50(4):361–365, 1996.

[89] International Organization for Standardization. ISO/DIS 26262. Road Vehicles – Functional Safety,

2009.

[90] J. Daoudi J. del Castillo and R. Lockhart. Methods to distinguish between polynomial and

exponential tails. Scandinavian Journal of Statistics, 41(2):382–393, 2014.

113



Bibliography

[91] A. F. Jenkinson. The frequency distribution of the annual maximum (or minimum) values of

meteorological elements. Quarterly Journal of the Royal Meteorological Society, 81(348):158–171,

1955.

[92] N. L. Johnson. Continuous univariate distributions. Vol. 2. Wiley and Sons, New York, 2nd ed. /

norman l. johnson, samuel kotz, n. balakrishnan. edition, 1994.

[93] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. Bounding memory

interference delay in cots-based multi-core systems. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 145–154.

[94] T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and M. Bertogna. Deterministic

memory hierarchy and virtualization for modern multi-core embedded systems. In Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 1–14, 2019.

[95] M. Kolmogorov. Sulla determinazione empírica di uma legge di distribuzione. Giornale
dell’Istituto Italiano degli Attuari, 1933.

[96] H. Kopetz. The complexity challenge in embedded system design. In International Symposium
on Object and Component-Oriented Real-Time Distributed Computing (ISORC), pages 3–12, 2008.

[97] L. Kosmidis, J. Abella, E. Quiñones, and F. J. Cazorla. A cache design for probabilistically

analysable real-time systems. In Enrico Macii, editor, Design, Automation and Test in Europe
(DATE), pages 513–518. EDA Consortium San Jose, CA, USA / ACM DL, 2013.

[98] L. Kosmidis, E. Quiñones, J. Abella, G. Farrall, F. Wartel, and F. J. Cazorla. Containing timing-

related certification cost in automotive systems deploying complex hardware. In Design Au-
tomation Conference (DAC), page 1–6, New York, NY, USA, 2014. ACM.

[99] L. Kosmidis, E. Quiñones, J. Abella, T. Vardanega, C. Hernandez, A. Gianarro, I. Broster,

and F. J. Cazorla. Fitting processor architectures for measurement-based probabilistic timing

analysis. Microprocessors and Microsystems, 47:287–302, 2016.

[100] S. Kotz and S. Nadarajah. Extreme value distributions: theory and applications. World Scientific,

2000.

[101] B. Light. Concentration inequalities using higher moments information. arXiv, 2020.

[102] H. W. Lilliefors. On the kolmogorov-smirnov test for normality with mean and variance

unknown. Journal of the American Statistical Association, 62(318):399–402, 1967.

[103] R. V. Lim. Computationally efficient multiplexing of events on hardware counters. In Linux
Symposium, 2014.

[104] G. Lima and I. Bate. Valid Application of EVT in Timing Analysis by Randomising Execution

Time Measurements. In Real-Time and Embedded Technology and Applications Symposium (RTAS),
pages 187–198, 2017.

[105] G. Lima, D. Dias, and E. Barros. Extreme value theory for estimating task execution time

bounds: A careful look. In Euromicro Conference on Real-Time Systems (ECRTS), pages 200–211,

2016.

[106] J. S. Liu and S. M. Shahrier. On predictability of caches for real-time applications. In Interna-
tional Workshop on Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOT), pages 52–56, 1994.

[107] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu. A software memory partition approach for

eliminating bank-level interference in multicore systems. In Pact, pages 367–376. ACM, 2012.

[108] G. M. Ljung and G. E. P. Box. On a measure of lack of fit in time series models. Biometrika,

65(2):297–303, 1978.

[109] Y. Lu, T. Nolte, I. Bate, and L. Cucu-Grosjean. A new way about using statistical analysis of

worst-case execution times. SIGBED Rev., 8(3):11–14, 2011.

114



Bibliography

[110] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni. Real-time cache

management framework for multi-core architectures. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 45–54. IEEE, 2013.

[111] A. Markov. On certain applications of algebraic continued fractions. Ph.D. thesis, St. Petersburg,

1884.

[112] A.W. Marshall and I. Olkin. Life distributions. Structure of Nonparametric, Semiparametric, and
Parametric Families. Springer, 2007.

[113] Maspatechnologies. Maspatechnologies Helps Airbus Pass Multicore Certification

on NXP T2080. https://maspatechnologies.com/wp-content/uploads/2022/08/A3R_
MulticoreCertification_ADSMPT.pdf, 2022.

[114] A. Melani, E. Noulard, and L. Santinelli. Learning from probabilities: Dependences within

real-time systems. In Conference on Emerging Technologies Factory Automation (ETFA), pages 1–8,

2013.

[115] E. Mezzetti, L. Kosmidis, J. Abella, and F. J. Cazorla. High-integrity performance monitoring

units in automotive chips for reliable timing v v. Micro, 38(1):56–65, 2018.

[116] T. Mikosch. Regular variation, subexponentiality and their applications in probability theory.

International Journal of Production Economics, 1999.

[117] S. Milutinovic. On the limits of probabilistic timing analysis. PhD thesis, UPC, Departament

d’Arquitectura de Computadors, 2019.

[118] S. Milutinovic, E. Mezzetti, J. Abella, T. Vardanega, and F. J. Cazorla. On uses of Extreme

Value Theory fit for industrial-quality WCET analysis. In International Symposium on Industrial
Embedded Systems (SIES), pages 1–6. IEEE, 2017.

[119] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. Sweeney. Producing wrong data without doing

anything obviously wrong! volume 44, pages 265–276, 2009.

[120] T. Naoi, Y. Kagawa, K. Nagino, S. Niwa, and K. Hayashi. Extreme value analysis of the velocity

of axonal transport by kinesin and dynein. Biophysical Journal, 121(3, Supplement 1):400a, 2022.

[121] R. Neill, A. Drebes, and A. Pop. Fuse: Accurate multiplexing of hardware performance counters

across executions. Transactions on Architecture and Code Optimization, 14(4), 2017.

[122] R. B. Nelsen. An Introduction to Copulas. Springer Publishing Company, Incorporated, 2010.

[123] J. Neyman, E. Pearson, and K. Pearson. Ix. on the problem of the most efficient tests of statistical

hypotheses. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers
of a Mathematical or Physical Character, 231(694-706):289–337, 1933.

[124] J. Neyman and E. S. Pearson. On the problem of the most efficient tests of statistical hypotheses.

Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical
or Physical Character, 231:289–337, 1933.

[125] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and M. Schmidt. Multi-core

interference-sensitive wcet analysis leveraging runtime resource capacity enforcement. In

Euromicro Conference on Real-Time Systems (ECRTS), pages 109–118, 2014.

[126] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and M. Schmidt. Multi-core

interference-sensitive WCET analysis leveraging runtime resource capacity enforcement. In

Euromicro Conference on Real-Time Systems (ECRTS), pages 109–118, 2014.

[127] S. Osborne and J. H. Anderson. Simultaneous multithreading and hard real time: Can it be

safe? In Marcus Völp, editor, Euromicro Conference on Real-Time Systems (ECRTS), volume 165,

pages 14:1–14:25. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[128] X. Pan and F. Mueller. Controller-aware memory coloring for multicore real-time systems. In

Symposium on Applied Computing (SAC), pages 584–592. ACM, 2018.

115

https://maspatechnologies.com/wp-content/uploads/2022/08/A3R_MulticoreCertification_ADSMPT.pdf
https://maspatechnologies.com/wp-content/uploads/2022/08/A3R_MulticoreCertification_ADSMPT.pdf


Bibliography

[129] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley. A predictable

execution model for COTS-based embedded systems. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 269–279, 2011.

[130] R. Pellizzoni, B. D. Bui, M. Caccamo, and L. Sha. Coscheduling of CPU and I/O Transactions

in COTS-Based Embedded Systems. In Real-Time Systems Symposium (RTSS), pages 221–231,

2008.

[131] R. Pellizzoni, A. Schranzhofer, J. Chen, M. Caccamo, and L. Thiele. Worst case delay analysis

for memory interference in multicore systems. In Design, Automation Test in Europe (DATE),
pages 741–746, 2010.

[132] J. Pickands. Statistical inference using extreme order statistics. The Annals of Statistics, 3(1):119–

131, 1975.

[133] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria, 2021.

[134] D. Radack, H. G. Tiedeman Jr, and P. J. Parkinson. Civil Certification of Multi-core Processing

Systems in Commercial Avionics, 2018.

[135] A. Ravindar and Y. N. Srikant. Estimation of probabilistic bounds on phase CPI and relevance

in WCET analysis. In International Conference on Embedded Software, page 165–174, New York,

NY, USA, 2012. ACM.

[136] B. Recht. A simpler approach to matrix completion. J. Mach. Learn. Res., 12(null):3413–3430,

2011.

[137] F. Reghenzani, G. Massari, and W. Fornaciari. Probabilistic-WCET reliability: Statistical testing

of EVT hypotheses. Microprocess. Microsystems, 77:103–135, 2020.

[138] F. Reghenzani, L. Santinelli, and W. Fornaciari. Dealing with uncertainty in pWCET estima-

tions. Transactions on Embedded Computing Systems, 19(5):33:1–33:23, 2020.

[139] RTCA and EUROCAE. DO-178C / ED-12C, Software Considerations in Airborne Systems and
Equipment Certification, 2011.

[140] C. El Salloum, M. Elshuber, O. Höftberger, H. Isakovic, and A. Wasicek. The across mpsoc –

a new generation of multi-core processors designed for safety-critical embedded systems. In

Euromicro Conference on Digital System Design, pages 105–113, 2012.

[141] L. Santinelli, F. Guet, and J. Morio. Revising measurement-based probabilistic timing analysis.

In Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 199–208, 2017.

[142] L. Santinelli, J. Morio, G. Dufour, and D. Jacquemart. On the Sustainability of the Extreme

Value Theory for WCET Estimation. In Heiko Falk, editor, International Workshop on Worst-Case
Execution Time Analysis (WCET), volume 39, pages 21–30, Dagstuhl, Germany, 2014. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik.

[143] A. Satyanarayana. Intelligent sampling for big data using bootstrap sampling and Chebyshev

inequality. In Canadian Conference on Electrical and Computer Engineering (CCECE), pages 1–6,

2014.

[144] K. Schmidt, D. Marx, J. Harnisch, A. Mayer, U. Dannebaum, and H. Christlbauer. Non-intrusive

tracing at first instruction. In SAE Technical Paper. SAE International, 2015.

[145] A. Schranzhofer, R. Pellizzoni, J. J. Chen, L. Thiele, and M. Caccamo. Worst-case response

time analysis of resource access models in multi-core systems. In Design Automation Conference
(DAC), pages 332–337, 2010.

[146] J. Serrà, A. Corral, M. Boguñá, M. Haro, and J. Ll. Arcos. Measuring the evolution of contem-

porary western popular music. Scientific reports, 2(1):1–6, 2012.

[147] H. Servat, G. Llort, J. Giménez, K. Huck, and J. Labarta. Folding: detailed analysis with coarse

sampling. In Tools for High Performance Computing 2011, pages 105–118. Springer, 2012.

116



Bibliography

[148] D. Shapiro. Introducing xavier, the nvidia ai supercomputer for the future of autonomous

transportation. NVIDIA blog, 2016.

[149] K. P. Silva, L. F. Arcaro, and R. Silva De Oliveira. On Using GEV or Gumbel Models When

Applying EVT for Probabilistic WCET Estimation. In Real-Time Systems Symposium (RTSS),
pages 220–230, 2017.

[150] N. Smirnov. On the estimation of the discrepancy between empirical curves of distribution for

two independent samples. Moscow University Mathematics Bulletin, 1939.

[151] D. Sornette. Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder:
Concepts and Tools. Springer, 2006.

[152] S. M. Steinberg and C. E. Davis. Distribution-free confidence intervals for quantiles in small

samples. Communications in Statistics - Theory and Methods, 14(4):979–990, 1985.

[153] Z. Stephenson, J. Abella, and T. Vardanega. Supporting industrial use of probabilistic timing

analysis with explicit argumentation. In IEEE International Conference on Industrial Informatics
(INDIN), pages 734–740, 2013.

[154] Student. The probable error of a mean. Biometrika, 6(1):1–25, 1908.

[155] N. Suzuki, H. Kim, D. de Niz, B. Andersson, L. Wrage, M. H. Klein, and R. Rajkumar. Coor-

dinated bank and cache coloring for temporal protection of memory accesses. In CSE, pages

685–692. IEEE Computer Society, 2013.

[156] P. Tchebichef. Des valeurs moyennes. Journal de mathématiques pures et appliquées, 12(2):177–184,

1867.

[157] D. Trilla. Non-functional considerations of time-randomized processor architectures. PhD thesis,

UPC, Departament d’Arquitectura de Computadors, 2020.

[158] Udacity. An Open Source Self-Driving Car. https://github.com/udacity/self-driving-
car/, 2017.

[159] http://www.gaisler.com/index.php/products/processors/leon3. Leon3 Processor.

[160] V. Utkin. Calculating the reliability of machine parts on the basis of the Chebyshev inequality.

Russian Engineering Research, 32, 2012.

[161] P. Kumar Valsan, H. Yun, and F. Farshchi. Taming non-blocking caches to improve isolation in

multicore real-time systems. In Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 1–12, 2016.

[162] S. H. VanderLeest and C. Evripidou. An approach to verification of interference concerns for

multicore systems (CAST-32A). In SAE Technical Paper. SAE International, 2020.

[163] G. V.G. Baranoski, J. G. Rokne, and G. Xu. Applying the exponential Chebyshev inequality

to the nondeterministic computation of form factors. Journal of Quantitative Spectroscopy and
Radiative Transfer, 69(4):447–467, 2001.

[164] S. Vilardell and À. Pineda. distTails: A Collection of Full Defined Distribution Tails, 2019. R

package version 0.1.2.

[165] S. Vilardell, I. Serra, J. Abella, J. del Castillo, and F. J. Cazorla. Software timing analysis for

complex hardware with survivability and risk analysis. In International Conference on Computer
Design (ICCD), pages 227–236, 2019.

[166] S. Vilardell, I. Serra, R. Santalla, E. Mezzetti, J. Abella, and F. J. Cazorla. Hrm: merging

hardware event monitors for improved timing analysis of complex mpsocs. Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2020.

[167] G. von der Brüggen, N. Piatkowski, K. Chen, J. Chen, and K. Morik. Efficiently approximating

the probability of deadline misses in real-time systems. In Euromicro Conference on Real-Time
Systems (ECRTS), 2018.

[168] B. von Mises. Fundamentalsätze der wahrscheinlichkeitsrechnung. Mathematische Zeitschrift,
4:1–97, 1919.

117

https://github.com/udacity/self-driving-car/
https://github.com/udacity/self-driving-car/
http://www.gaisler.com/index.php/products/processors/leon3


Bibliography

[169] H. Wang and K. J. Jonas. The likelihood of severe covid-19 outcomes among plhiv with various

comorbidities: a comparative frequentist and bayesian meta-analysis approach. Journal of the
International AIDS Society, 24(11):e25841, 2021.

[170] F. Wartel, L. Kosmidis, A. Gogonel, A. Baldovin, Z. R. Stephenson, B. Triquet, E. Quiñones,

C. Lo, E. Mezzetti, I. Broster, J. Abella, L. Cucu-Grosjean, T. Vardanega, and F. J. Cazorla. Timing

analysis of an avionics case study on complex hardware/software platforms. In Wolfgang

Nebel and David Atienza, editors, Design, Automation and Test in Europe (DATE), pages 397–

402. ACM, 2015.

[171] V. M. Weaver, D. Terpstra, and S. Moore. Non-determinism and overcount on modern hardware

performance counter implementations. In International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 215–224, 2013.

[172] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdi-

nand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström.

The worst-case execution-time problem–overview of methods and survey of tools. Transactions
on Embedded Computing Systems, 7(3):36:1–36:53, 2008.

[173] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdi-

nand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström.

The worst-case execution-time problem—overview of methods and survey of tools. Transactions
on Embedded Computing Systems, 7(3), 2008.

[174] D.J. Wilkins. The bathtub curve and product failure behavior, part one: The bathtub curve,

infant mortality and burn-in. Reliability Hotwire, (21), 2002.

[175] S. S. Wilks. The large-sample distribution of the likelihood ratio for testing composite hypothe-

ses. The Annals of Mathematical Statistics, 9(1):60–62, 1938.

[176] S. N. Wood. Core Statistics. Cambridge University Press, 2015.

[177] J. Worms and S. Touati. Parametric and Non-Parametric Statistics for Program Performance

Analysis and Comparison. [Research Report] RR-8875, INRIA Sophia Antipolis - I3S; Université
NiceSophia Antipolis; Université Versailles Saint Quentin en Yvelines; Laboratoire de mathématiques
deVersailles, 2017.

[178] J. Worms and S. Touati. Modelling program’s performance with gaussian mixtures for para-

metric statistics. Transactions on Multi-Scale Computing Systems (TMSCS), 4(3):383–395, 2018.

[179] Xilinx. Zynq ultrascale+ device technical reference manual. https://docs.xilinx.com/v/u/
en-US/ug1085-zynq-ultrascale-trm, 2020.

[180] H. Xu, Q. Wang, S. Song, L. K. John, and X. Liu. Can we trust profiling results? understanding

and fixing the inaccuracy in modern profilers. In International Conference on Supercomputing,

page 284–295, New York, NY, USA, 2019. ACM.

[181] X. Yan and X. G. Su. Linear Regression Analysis: Theory and Computing, chapter 2. World Scientific

Publishing Co., Inc., River Edge, NJ, USA, 2009.

[182] H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni. PALLOC: DRAM bank-aware memory allo-

cator for performance isolation on multicore platforms. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 155–166. IEEE, 2014.

[183] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard: Memory bandwidth

reservation system for efficient performance isolation in multi-core platforms. In Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 55–64, 2013.

[184] D. Zaparanuks, M. Jovic, and M. Hauswirth. Accuracy of performance counter measurements.

In International Symposium on Performance Analysis of Systems and Software (ISPASS), pages 23–32,

2009.

[185] P. G. Zaykov and J. Kubalčik. Worst-case measurement-based statistical tool. In Aerospace
Conference, pages 1–10, 2019.

118

https://docs.xilinx.com/v/u/en-US/ug1085-zynq-ultrascale-trm
https://docs.xilinx.com/v/u/en-US/ug1085-zynq-ultrascale-trm


Bibliography

[186] M. Ziccardi, E. Mezzetti, T. Vardanega, J. Abella, and F. J. Cazorla. Epc: Extended path coverage

for measurement-based probabilistic timing analysis. In IEEE Real-Time Systems Symposium
(RTSS), pages 338–349, 2015.

[187] D. Ziegenbein and A. Hamann. Timing-aware control software design for automotive systems.

In Design Automation Conference (DAC), pages 56:1–56:6, New York, NY, USA, 2015. ACM.

119


	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	I Introduction, Background, and Experimental Methodology
	Introduction
	Certification with Higher Performance Requirements
	Measurement-Based Timing Analysis
	Hardware Event Monitors
	MBPTA and Extreme Value Theory
	EVT for pWCET Analysis
	MBPTA with Limited Data
	Thesis Contributions
	Sky-high Quantile Estimation
	Hardware Event Monitor Data Merging
	Contention Modelling

	Structure of the Thesis
	List of Publications

	Background
	Measurement-Based Probabilistic Timing Analysis
	MBPTA Requirements
	State-of-the-art on MBPTA

	Extreme Value Theory
	Law of Large Numbers: the Central Limit Theorem
	Law of Extremes: Block Maxima
	Threshold Law: Peaks Over Threshold
	State-of-the-art for EVT in MBPTA

	EVT Alternatives
	Chebyshev's Inequality
	Markov's Inequality
	State-of-the-art for EVT Alternatives for MBPTA

	Hardware Event Monitors in MBTA
	Disproportion Between the Number of HEMs and PMCs
	State-of-the-art on HEM Analysis

	Timing Validation in Automotive Systems
	State-of-the-art on MBPTA with Dependency


	Experimental Methodology
	Benchmarks and Platforms
	Railway Case-Study on a LEON3+ Platform
	Microbenchmarks on an NXP T2080 Platform
	Apollo Autonomous Driving Framework on an NVIDIA Jetson Platform

	Analytical Distributions
	Statistical Tests and Techniques
	Hypothesis Testing
	Confidence Intervals
	Testing for Independence
	Test for Identical Distribution

	Estimating the Extreme Value Index
	Hill Estimator
	Coefficient of Variation



	II Sky-High Quantile Estimation for CRTES
	Sky-high Quantile Estimation with Weibull Tails
	Introduction
	EVT limits
	On the Use of Light Tails and Risk Analysis for WCET Estimation
	Risk and Survivability Analysis
	IHR Distributions in Survivability Analysis

	Equivalence Between IHR and Non-heavy Tails
	Weibull Tails (TailW) for pWCET Estimation
	Formal Definition of tailW

	Fitting Protocol
	Evaluation
	Assessing Model Hypotheses: H-Convexity and Light Tails
	Assessment with Large Data Sets
	Comparing exp, tailW and logc Models

	Summary

	Sky-high Quantile Estimation with Markov's Inequality
	Introduction
	Chebyshev and Markov Inequalities for pWCET Estimation
	Markov's Inequality on Low Probabilities

	Power-of-k functions for Markov's Inequality
	Tightness of MIK for Increasing Values of k

	Handling Markov Sampling Uncertainty
	Sample Moment Estimation
	Understanding the Behavior of maxk
	Deriving maxk from Unknown Distributions

	RESTK and EVT PWCET Estimates on Distributions
	Railway Use Case
	Summary


	III Merging Hardware Event Monitor Data for CRTES
	Merging Hardware Event Monitor Data for Complex MPSoCs Using Order Statistics
	Introduction
	Motivation
	HEM Variability
	Distribution
	Reasons Behind the Observed Variability

	Problem Formalization
	HRM: a Technique to Merge HEMs
	Approach
	Procedure
	Quantile Estimation
	Correlation Boundary
	Matrix Completion Techniques

	Experimental Evaluation
	Validation Methodology
	Independence and Identical Distribution
	Correlation Between HEMs
	Overheads

	Summary

	Merging Hardware Event Monitor Data for Complex MPSoCs Using Copulas
	Introduction
	MUCH: Multi-Correlation HEM Reading and Merging
	HRM Analysis
	Mathematical Approach
	Procedure

	Evaluation
	Validation Approach
	Results

	Summary


	IV Contention Modelling for CRTES
	Clean Execution Times for MBPTA
	Introduction
	Timing Analysis Validation on Apollo
	Prediction Module Timing Behavior
	Aggregation of Overlaps

	CleanET
	Setting the Objective
	Modelling Approach
	Mathematical Development of CleanET
	Obtaining r
	Intrinsic Pessimism
	CleanET for Multiple Overlappings

	Evaluation
	Dilation Factors (ri)
	Validation of the Method
	Using CleanET Results

	Summary


	V Conclusions and Future Work
	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography


