
Universitat Politècnica de Catalunya
Computer Architecture Department

Dissertation

Software Diagnostics for Autonomous
Safety-Critical Control-Systems Based On

Artificial Intelligence

Javier Fernández Muñoz

Advisor Jaume Abella Ferrer
Barcelona Supercomputing Center (BSC)
Computer Architecture and Operating Systems Group (CAOS)

Co-advisor Irune Agirre Troncoso
Ikerlan Technology Research Centre
Dependable Embedded Systems Department

Tutor Miquel Moretó Planas
Universitat Politècnica de Catalunya (UPC)
Computer Architecture and Operating Systems Group (CAOS)

May, 2023

Javier Fernández Muñoz
Software Diagnostics for Autonomous Safety-Critical Control-Systems Based On Artificial Intelli-
gence
Dissertation, May, 2023
Advisors: Jaume Abella Ferrer and Irune Agirre Troncoso
Tutor: Miquel Moretó Planas

Universitat Politècnica de Catalunya

Computer Architecture Department

Carrer de Jordi Girona, 1, 3

08034 and Barcelona

ii

Abstract

Machine Learning (ML) systems allow the efficient implementation of functionalities
that can be hard to program by traditional software due to the high spectrum of inputs
that hinder the definition of a specific procedural rule set. This characteristic of ML
systems has encouraged their adoption in applications such as object detection or image
classification in several safety-related domains, which are subject to safety certification.
This certification is usually achieved by adhering to traditional functional safety stan-
dards such as IEC 61508 [1] or ISO 26262 [2]. However, these standards were not
devised to accommodate technologies such as ML in safety-related systems due to their
development process, which is based on probabilistic models generated from training
data, as opposed to traditional software components coded from specifications. Addition-
ally, new challenges arise due to the fact that these ML algorithms need to process large
volumes of data, and this requires High-Performance Embedded Computing (HPEC)
platforms with computing capabilities far superior to traditional safety systems, such
as multicore devices and GPU accelerators. Current functional safety standards do not
provide explicit guidance for the use of HPEC platforms in safety-relevant systems, and
the inherent complexity of those highly parallel architectures challenges certifications.
With this Thesis, we attempt to address these challenges and give a step forward towards
the functional safety certification of safety control systems integrating ML components
in HPEC platforms.

iii

Acknowledgement

I am deeply grateful to the many people who have contributed to this Thesis’s
success. My advisors, Dr. Jaume Abella and Dr. Irune Agirre, and my tutor, Dr.
Miquel Moretó, have my utmost appreciation. Their knowledge, guidance, and
encouragement were invaluable throughout the entire process. This Thesis has
become a reality thanks to their continued support and contributions.

I also extend my gratitude to Mr. Peio Onaindia and Dr. Jon Perez for their
supervision and willingness to offer advice and assistance when needed. Their
encouragement kept me motivated during difficult times. I am thankful to Ikerlan
for allowing me to join their team and for funding this Thesis. This opportunity is
truly a lifetime achievement. I would also like to thank the Dependable Embedded
Systems area, particularly my colleagues from the Real-Time Systems team. Working
alongside such a reliable and supportive team has made daily challenges more
enjoyable, and I am constantly learning from them. I would especially like to thank
all the people who have supported me in the roller coaster that has been the Thesis.
In particular to Alex (the good, the bad, and the maje), Aritz, Segura, Agirre, Yarza,
Angel, Juan, and many people that I will not mention so as not to make the list too
long but with whom I appreciate the time shared.

I am grateful to the CAOS group from the BSC for their warm welcome during
my time working with them in Barcelona. It was a valuable learning experience
to collaborate with such qualified professionals. My wonderful family and friends
have been by my side throughout this process, and I am forever grateful for their
unwavering support. I extend special thanks to my mother (Rosita), father (Manolo),
and brothers (Angelito y Manuel Jesús), who have always believed in me. Their
contribution to this achievement cannot be overstated. I also want to express my
appreciation to my wonderful friends: my "Kuadrila" from Bilbao (Rafita, Moni,
Cris, Ritxi...), my "Pandilla" from my local village (Tuki, Josan, Adri...), friends from
the university that stay today supporting me (Almu, "Guitarra"...), "los de siempre"
(Mochi, Luichi, "Jamon"...) and my amazing flatmate and friend Pep, whose support
has been a blessing. Of course, I am deeply grateful to Belén, who has been there
suffering and enjoying the Thesis even more than me, thanks to her endless calls
and unforgettable trips.

v

Contents

Abstract iii

Acknowledgement iv

List of Figures ix

List of Tables xi

List of Acronyms xii

1 Introduction 1

1.1 Safety Implications of Artificial Intelligence 2

1.2 Safety Implications of High-Performance Embedded Computing Plat-
forms . 3

1.3 Objectives . 5

1.4 Contributions . 5

1.4.1 Adaptation of Sequential and Vectorization Based ML Libraries
to Accomplishing Functional Safety Standards 6

1.4.2 Fostering Performance Improvement While Preserving Safety:
GPU-based Implementations 7

1.4.3 Metholodology to Selectively Protect CNNs 7

1.5 Thesis Organization . 8

1.6 Publications . 9

2 Background 11

2.1 Basic concepts . 11

2.1.1 Artificial Intelligence . 11

2.1.2 Dependability, Safety and Functional Safety 14

2.1.3 Emerging Standards and Initiatives for AI 17

2.1.4 Checksum Algorithms . 20

2.2 Related Work . 26

2.2.1 Emergent Initiatives to Address ML Certification and Tradi-
tional Safety Standards Adaptations 27

2.2.2 Safe ML Deployment on HPEC Platforms 28

vi

3 Methodology and Experimental Set-up 31

3.1 Methodology . 31

3.2 Experimental Set-up . 32

3.2.1 MISRA C and Polyspace® . 33

3.2.2 Berkeley DeepDrive dataset 33

3.2.3 Embedded platforms . 34

3.2.4 YOLO-v3 and Tiny YOLO-v3 37

3.2.5 CUTLASS . 38

4 Safe Deployment of MMM in Sequential Implementations 39

4.1 Systematic error avoidance in the MMM 40

4.2 Error Detection in the MMM . 42

4.2.1 Execution Signatures . 43

4.2.2 Architectural Patterns . 48

4.3 Evaluation . 49

4.3.1 Experimental Set-up . 49

4.3.2 Performance Impact . 52

4.3.3 Diagnostic Coverage . 57

4.3.4 Trade-off between DC and Performance Impact 59

4.3.5 IEC 61508 compliance . 61

4.4 Summary . 62

5 Exploiting Safe Parallelization on GPUs 65

5.1 Enhancing MMM Safety . 66

5.1.1 Diagnostic Techniques . 67

5.1.2 Reproducibility . 67

5.1.3 Memory Hierarchy . 68

5.2 Evaluation . 70

5.2.1 Experimental Set-Up . 70

5.2.2 Performance Impact . 71

5.2.3 Diagnostic Coverage . 75

5.2.4 Trade-off Between Performance Impact and DC 77

5.2.5 IEC 61508 compliance . 78

5.3 Summary . 79

6 Methodology to Selectively Protect CNNs: Use Case Application Analysis 81

6.1 Methodology to Selectively Protect CNNs 82

6.1.1 First stage: CNN’s Sensitivity to Misclassification Analysis . . 82

6.1.2 Second Stage: Layer-by-layer Performance Impact and DC . . 85

6.1.3 Third Stage: Selective Protection 85

vii

6.1.4 DC Analysis in Big Dimension Matrices 86
6.2 Evaluation . 89

6.2.1 Experimental Set-up . 89
6.2.2 Stage 1: CNN’s Sensitivity to Misclassification Analysis 90
6.2.3 Stage 2: Layer-by-layer Performance and DC Analysis 91
6.2.4 Stage 3: Selective protection 97

6.3 Summary . 99

7 Conclusions and Future Work 101
7.1 Summary of Contributions . 101
7.2 Impact . 103
7.3 Future Work . 105

Bibliography 107

8 Code appendix 119
8.1 Sequential code . 119
8.2 AVX code . 121
8.3 CUDA code . 122

viii

List of Figures

Fig. 1.1 Logical organization of Thesis’s contributions 6

Fig. 2.1 Artificial Intelligence (AI) terminology hierarchy 11

Fig. 2.2 Neural Networks . 13

Fig. 2.3 Example of a convolutional operation 14

Fig. 2.4 Relation among safety certification standards [39] 15

Fig. 2.5 Emerging standards and initiatives to certify ML in safety-related
systems . 17

Fig. 2.6 Exclusive OR (XOR) . 21

Fig. 2.7 Example of performing a XOR checksum 21

Fig. 2.8 Example of performing two’s complement checksum 22

Fig. 2.9 Example of how to perform one’s complement checksum 23

Fig. 2.10 Example of how to perform CRC checksum 24

Fig. 2.11 Example of how to perform fletcher checksum 26

Fig. 3.1 Thesis methodology . 31

Fig. 3.2 Thesis contributions and elements involved in their development . 32

Fig. 3.3 Set of images extracted from Berkeley DeepDrive dataset 34

Fig. 3.4 Zynq UltraScale+ Architecture (EG device family) 35

Fig. 3.5 NVIDIA® Jetson Xavier NX architecture 36

Fig. 3.6 Tiny YOLO-v3 . 37

Fig. 3.7 Bounding box and nomenclature employed by YOLO object detector 38

Fig. 3.8 Cutlass GEMM hierarchy [18] . 38

Fig. 4.1 Scalar MMM software MISRA-C:2012 compliance analysis: rules
and directives (D) violated according to a Polyspace analysis. 41

Fig. 4.2 Darknet CNN MISRA-C:2012 compliance analysis: top 5 of rules and
directives violated in the Darknet Convolutional Neural Network
(CNN) code according to a Polyspace analysis. 42

Fig. 4.3 Safety architectural patterns . 49

Fig. 4.4 Scalar MMM: performance impact caused by the inclusion of a
catalog of checksum algorithms disabling compiler optimizations. . 53

ix

Fig. 4.5 AVX MMM: performance impact incurred by the adoption of the
catalog of checksums in the Matrix-Matrix Multiplication (MMM)
disabling compiler optimizations. 54

Fig. 4.6 Darknet CNN: performance impact caused by the inclusion of a
catalog of checksum algorithms evaluated in YOLO-v3 and Tiny
YOLO-v3 CNN. 56

Fig. 4.7 Trade-off between performance impact vs. Diagnostic Coverage (DC)
for square matrices of dimension 80 × 80. 60

Fig. 5.1 Example of a single-bit error impact in an CNNs-based object detec-
tion application . 65

Fig. 5.2 Execution Signature (ES) transference among GPU memory hierar-
chies . 69

Fig. 5.3 Performance impact with -O0 compiler optimization in GPU-based
implementations . 72

Fig. 5.4 Performance impact with -O3 compiler optimization in GPU-based
implementations . 74

Fig. 5.5 Performance impact caused by the inclusion of our checksums cata-
log evaluated in YOLO-v3 and Tiny YOLO-v3 for the two proposed
memory hierarchies with -O3 compiler optimization 75

Fig. 5.6 Trade-off between performance impact vs. DC: GPU-based MMM
implementations for square matrices of dimension 80 × 80. 77

Fig. 6.1 Selective CNN layer protection methodology 82
Fig. 6.2 Sensitivity criterion flow to assess the layer’s sensitivity to misclassi-

fication . 84
Fig. 6.3 MMM decomposition into blocks 87
Fig. 6.4 Layer-by-layer performance impact without compiler optimizations

(-O0) . 92
Fig. 6.5 Layer-by-layer performance impact with compiler optimization -O3 93

x

List of Tables

Table 3.1 Intel core™ i7-6600U specifications [120] 36

Table 4.1 Matrices dimensions employed in performance impact experi-
ments. 51

Table 4.2 Matrices dimensions employed in DC experiments. 52
Table 4.3 Performance impact ratio in square matrices with varying com-

piler optimization . 55
Table 4.4 DC of the scalar and AVX-based MMM 58
Table 4.5 Maximum allowable SIL according to the HFT (Table 3 of IEC

61508-2) . 61
Table 4.6 Selected checksums for 80 × 80 matrices dimension according

to SIL and HFT. 62

Table 5.1 DC in scalar (Sca), AVX-based, and GPU-based implementations. 76
Table 5.2 Selected checksums for 80 × 80 matrices dimensions according

to SIL and HFT. 78

Table 6.1 Layer-by-layer size, total errors and statistically representative
fault injections per layer . 90

Table 6.2 Layer-by-layer analysis of its sensitivity to misclassification . . 90
Table 6.3 Single grid of thread blocks dimensions involved in the DC

computation of each layer . 95
Table 6.4 Single block dimensions employed in the DC computation of

each layer . 95
Table 6.5 Faults detected in the single blocks defined in Table 6.4 96
Table 6.6 Achievable DC layer-by-layer according to the diagnostic tech-

niques catalog . 97
Table 6.7 Trade-off of performance impact vs DC (HFT=0) 98

Table 8.1 CRC-32C (Castagnoli) . 120
Table 8.2 CRC-32C (Castagnoli) Lookup Table 120

xi

List of Acronyms

AAM Advanced Air Mobility
ADAS Advanced Driver-Assistance System
AI Artificial Intelligence
AV Autonomous Vehicles
ABFT Algorithm-Based Fault Tolerance
ABED Algorithm-Based Error Detection
APU Application Processor Unit
ASIL Automotive Safety Integrity Level
ANSI American National Standards Institute
AVX Advanced Vector Extensions
BC Block Column
BR Block Row
CCF Common Cause Failure
CNN Convolutional Neural Network
CPU Central Processing Unit
CRC Cyclic Redundancy Check
cuBLAS CUDA Basic Linear Algebra Subroutine
CUTLASS CUDA Templates for Linear Algebra Subroutines
DC Diagnostic Coverage
DMR Dual Modular Redundancy
DNN Deep Neural Network
DTI Diagnostic Test Interval
ES Execution Signature
EUC Equipment Under Control
FC Fully-Connected
FCS Frame Check Sequence
FN False Negative
FP False Positive
FPGA Field-Programmable Gate Array
GEMM General Matrix Multiplication
GPS Global Positioning System
GPU Graphics Processing Unit
HARA Hazard Analysis and Risk Assessment
HFT Hardware Fault Tolerance
HPEC High-Performance Embedded Computing
HR Highly-Recommend

xii

IFM Input Feature Map
IMU Inertial Measurement Unit
ISA Instruction Set Architecture
LSB Least Significant Bit
MISRA Motor Industry Software Reliability Association
ML Machine Learning
MMA Matrix Multiply-Accumulate
MMM Matrix-Matrix Multiplication
MPSoC Multi-Processor System-on-Chip
MSB Most Significant Bit
NN Neural Network
NR Non-Recommended
PAS Publicly Available Specification
PFD Probability of Failure on Demand
PFH Probability of Failure per Hour
PL Programmable Logic
PS Processing System
PST Process Safety Time
PTX Parallel Thread Execution
QM Quality Management
R Recommended
RL Research Line
RPU Real-time Processing Unit
SBST Software-Based Self Test
SIL Safety Integrity Level
SIMD Single Instruction Multiple Data
SIMT Single Instruction Multiple Thread
SRAM Static Random-Access Memory
SSE Streaming SIMD Extensions
SOTIF Safety Of The Intended Functionality
SPI Safety Performance Indicators
TMR Triple Modular Redundancy
OFM Output Feature Map
UAS Unmanned Aircraft Systems
UCI Uncertainty Confidence Indicator
UL Underwriters Laboratories
XOR Exclusive OR
YOLO You Only Look Once

xiii

Introduction 1
In recent years, the presence of autonomous systems has become pervasive, even in
everyday activities from vacuum cleaners to self-driving cars. ISO/IEC 22989:2022
defines autonomous systems as those "capable of modifying their operating domain
or goal without external intervention, control, or oversight" [3]. The autonomy of
the systems or capacity for self-governance is a characteristic that has fostered
their application in several domains over the past few years. Among them are
Autonomous Vehicles (AV) [4], Advanced Air Mobility (AAM) [5], [6], Unmanned
Aircraft Systems (UAS) [7], [8], and a wide variety of implementations in the field
of robotics, such as surgery robots [9], [10].

Some standards classify autonomous systems across different levels of automation
by taking different reference criteria. For example, the SAE J3016 standard defines
six levels of automation in the autonomous driving domain ranging from no driving
automation (level 0) to full driving automation (level 5) [11]. ISO/IEC 22989:2022
shares the same classification as SAE J3016, but denotes them as heteronomous
systems and does not define an application domain. In fact, ISO/IEC 22989:2022
differentiates between heteronomous systems, which operate under the constraint of
external intervention, control, or oversight, and autonomous systems, which possess
the ability to modify their operating domain or goals without the need for external
intervention, control, or oversight.

The advent of AI technology and its ability to perform complex tasks with competitive
performance supports the potential for achieving the highest levels of heteronomy
and, finally, autonomy. This feature has attracted the attention of autonomous sys-
tems designers, triggering the widespread adoption of AI-based solutions in general
and Machine Learning (ML)-based solutions in particular in multiple domains. The
ability of Deep Neural Networks (DNNs), a subfield of ML, and more particularly
Convolutional Neural Networks (CNNs), a subfield of DNN, to efficiently and ac-
curately perform complex functionalities such as those related to object detection,
location and classification tasks, is crucial in the development of computing vision,
one of the most critical functionalities in autonomous driving [12].

However, failures in autonomous systems performing safety-related tasks could have
catastrophic consequences (e.g., failures in the control of the braking systems can
lead to accidents causing fatalities). Therefore, these safety-related autonomous

1

systems are subject to certification, usually achieved by providing evidence of adher-
ence to functional safety standards. On the one side, it is necessary to guarantee
that the AI model is safe for its intended purpose and that uncertainty-related risks
are sufficiently mitigated. On the other side, risks associated with deploying such
AI models in embedded platforms shall also be controlled and mitigated. Common
solutions rely on High-Performance Embedded Computing (HPEC) platforms that
meet the performance demands and AI software frameworks that facilitate the
integration of such models into hardware platforms.

1.1 Safety Implications of Artificial Intelligence

Safety-related systems are those whose failure could result in casualties, signifi-
cant property damage, or environmental, equipment or machinery damage [1].
For that reason, those systems are usually subject to certification requiring a ro-
bust system design in the development process that shall guarantee that design
faults (i.e., systematic faults) are mitigated in the design process, and that un-
predictable faults (i.e., random faults) are controlled at run-time in such a way
that the residual risk of failure of the system is acceptably low. Traditionally, this
has been achieved by proving adherence to applicable functional safety standards
such as IEC 61508 [1] or ISO 26262 [2]. These standards define the procedures,
requirements, techniques, and safety measures to reduce such risk to acceptable
levels. However, they were not originally designed to accommodate the use of ML
in the deployment of safety functions; therefore, the certification of these systems is
currently an open research challenge.

ML algorithms are based primarily on statistical learning. A task is performed
based on a probabilistic model generated from training data instead of from its
specifications. This technique enables the implementation of functionalities that
are harder to program by traditional software programming paradigms because
manually formulating rules for the large spectrum of possible inputs is a tedious
task that may be impracticable due to the large and multidimensional input space.
Nevertheless, the traditional functional safety standards were designed for the latest,
in which the designer programs according to a set of requirements in a deductive
way. The inductive way ML operates (probabilistic models built from training
data) supposes a shift in the programming paradigm that these standards did not
contemplate when they were designed. E.g., notions such as the specifications that
conventionally apply to the code itself may now encompass the learning process,
and the standards do not consider this process [13].

2 Chapter 1 Introduction

ML algorithms require handling massive volumes of data with the consequent
demand of high-performance computational capabilities for their execution, both at
the software and hardware levels.

Regarding software, ML usually relies on widely used frameworks and tools built
upon highly efficient low-level libraries that ease software development and in-
crease hardware utilization [14]. These libraries include the required low-level
operations and usually target to achieve the highest performance on the underlying
implementation platform. In CNNs, these compute-intensive operations are linear
algebra operations such as Matrix-Matrix Multiplications (MMMs). There are several
platform-dependant implementations focusing on these algebraic operations— for
instance, i) ATLAS [15] and OpenBLAS [16] libraries for CPU-based implementations
and ii) CUDA Basic Linear Algebra Subroutine (cuBLAS) [17] and CUDA Templates
for Linear Algebra Subroutines (CUTLASS) [18] libraries for Graphics Processing
Units (GPUs) [14].

Nevertheless, using these highly-optimized libraries involves new certification chal-
lenges from a safety point of view. These libraries usually share a closed-source
nature because of competition concerns and are not developed according to safety
standards. Their use in safety domains implies their adaptation to safety procedures
and requirements by library owners or the application of black box testing by the end
users, which may limit their applicability [19]. As an alternative to closed-source
libraries, another option lies in employing an existing open-source library offering
competitive performance as a baseline and modifying it to accomplish functional
safety standards.

Regarding hardware, the required performance for ML algorithms is higher than
those provided by traditional dependable embedded hardware platforms that per-
form more conventional safety tasks. This performance is, instead, usually achieved
by HPEC platforms. In the following section, we explain the safety challenges posed
by their use.

1.2 Safety Implications of High-Performance
Embedded Computing Platforms

The efficient deployment of ML can only be realized by HPEC platforms that are
commonly comprised of a multicore Central Processing Unit (CPU) and accelerators
such as GPUs. GPUs and Field-Programmable Gate Arrays (FPGAs) have become

1.2 Safety Implications of High-Performance Embedded Computing
Platforms

3

broadly used devices for accelerating DNN applications [20], [21], boosted by the
computational power and the re-programmability associated to these platforms [22].
However, the inherent complexity of these platforms makes the certification of safety-
related systems involving ML on HPEC platforms an open research challenge.

Common Cause Failures (CCFs) at the hardware level do not differ between con-
ventional and HPEC platforms’ hardware [23]. However, the high volume of data
movements and the compute-intense arithmetic operations involved in the execu-
tion of ML algorithms can produce an increment in the Probability of Failure on
Demand (PFD) and Probability of Failure per Hour (PFH) of HPEC platforms in
contrast with conventional hardware [23]. Then, they have to be minimized or
reduced to failure rates that guarantee the absence of unacceptable risks according
to the Safety Integrity Level (SIL) of the target application.

Among those errors that can jeopardize the reliability of HPEC platforms (i.e.,
environmental perturbations, and voltage or temperature fluctuations [24]), soft
errors require special attention in platforms integrating GPUs and FPGAs in particular
[25]–[28]. These radiation-induced errors produce single event effects caused by
high-energy particles striking the electronic device. As a consequence, particle strikes
can result in a single event upset, changing the current state of a transistor (bit-flip
in case of memory), or they can induce a voltage and current spike (single event
transient).

These errors become a concern since HPEC platforms are scaling down, reducing
the dimension with a corresponding increment in density. Hence, the soft-error rate
drastically increases in these silicon devices, becoming a challenge to be overcome
in safety-critical systems [29]. Especially in embedded components such as GPUs,
whose memory hierarchy and high levels of parallelism can quickly spread a soft
error affecting a single memory bit to multiple locations and lead to catastrophic
consequences [30]. Moreover, parallel architectures entail higher risks of timing
errors (E.g., race conditions or deadlocks) than conventional single-core implemen-
tations traditionally employed to implement safety tasks [23]. Hence, increasing the
chances of experiencing an error due to a particle strike.

Besides, the safe deployment and execution of safety-related systems on HPEC
devices entails guaranteing the safe behavior of multiple components (e.g., core,
private cache, interconnect, shared cache, shared memory, memory management
unit) and built-in mechanisms (e.g., cache coherency) [31]. However, traditional
solutions such as Software-Based Self Tests (SBSTs) [32] and implementation-
specific tests [33] require fine-grained knowledge of the components design and
implementation, which are often barely documented by the platform manufacturer.

4 Chapter 1 Introduction

Nevertheless, diagnosis of all components involved in executing safety-related tasks
remains a must, even if the functional safety standards do not establish common
practice solutions.

1.3 Objectives

As introduced in the previous section, the topic of autonomous systems safety is
extensive, with many open challenges. This Thesis focuses on the challenges of
safe AI system execution on HPEC platforms. This has motivated the goal of this
Thesis: ‘the safe deployment of safety-related systems involving the use of AI on HPEC
platforms’. More specifically, we focus on adopting software diagnostics in ML-based
implementations over HPEC platforms for accomplishing the requirements imposed
by functional safety standards such as IEC 61508 or ISO 26262. For this purpose,
this Thesis formulates the following objectives:

O1 Adopt functional safety practices in ML code subsets. This objective intends to
guarantee the absence of unacceptable risks caused by the malfunctioning
of safety-related systems involving ML, initially focusing on code subsets or
low-level libraries employed by those systems. We aim to mitigate and avoid
systematic faults at design and control random faults at runtime.

O2 Foster performance improvement of ML solutions while preserving safety. This
Thesis seeks to achieve a compromise between safety assurance and perfor-
mance in the deployment of ML. Parallelization can jeopardize the functional
safety compliance of safety-related systems. We intend to analyze the achiev-
able performance degree without compromising the safety assurance.

O3 Implement a ‘safe ML’ solution prototype in a HPEC platform. We attempt to
verify that the methodology followed in the Thesis paves the way towards safely
deploying ML applications. We will adapt a representative ML application in a
safety-related domain integrating the solutions carried out during this Thesis.

1.4 Contributions

This section summarizes the contributions of this Thesis. For that, we decompose the
contributions into three subsections that collect our three main research outcomes.
For an easier understanding, we depict in Fig. 1.1 the main contributions presented in
each chapter of this document, as well as the objectives addressed by each chapter.

1.3 Objectives 5

Towards functional safety of ML-based systems

Performance
improvement based on

GPU parallelization
Systematic

error avoidance
Error detection

capabilities at runtime

Sequential
Implementation

CUDA-based
implementation

Chapter 4 Chapter 5

AVX-based
implementation

Error detection
capabilities at runtime

Adoption of safety practices

Selective
protection

of CNN
layers

Strategy to
compute DC

of large
matrices

Chapter 6

Use-case analysis

O1, O2, O3 O1, O2, O3 O3

Fig. 1.1: Logical organization of Thesis’s contributions

1.4.1 Adaptation of Sequential and Vectorization Based ML
Libraries to Accomplishing Functional Safety Standards

The first contribution of this Thesis focuses on adopting safety practices recom-
mended by traditional functional safety standards (objective O1), such as IEC 615081 [1],
tackling smaller pieces of an entire ML library. As the challenges to be met in order
to overcome the requirements imposed by these standards can be currently unfea-
sible, we limit the scope of this contribution towards accomplishing the software
requirements imposed by the previously cited standard (IEC 61508-3). In that way,
we base on the core component of the CNN, the MMM.

Complex embedded platforms involve additional challenges, as explained in Sec-
tion 1.2. That has motivated us to focus on single-core implementations based on
sequential code in our first approximation, to achieve the highest adherence to safety
standards. However, these implementations can not always provide the performance
required by ML algorithms. To overcome this, as a second step, we rely on vector-
ization to improve performance without leaving safety aside (objective O2). For
the sequential code, we adopt safety practices to avoid systematic errors at design
time. Additionally, we provide error detection capabilities through combining safety
architectural patterns and the use of diagnostic techniques2 to generate an Execution
Signature (ES). These ESs allow checking both the correct order of execution and
provide an indirect diagnostics of the components involved in the MMM. As a result,
we obtain a catalog of diagnostics with varying levels of DC and performance impact
applicable across different architectural patterns. Additionally, we include these
‘safe MMM’ libraries in YOLO-v3 and Tiny YOLO-v3, measuring the performance

1We mainly reference this standard since it is the reference in many domain-specific functional safety
standards, such as ISO 26262.

2During this Thesis we use indistinctly the terms checksums, diagnostics or diagnostic techniques
since we employ the checksums as diagnostic techniques

6 Chapter 1 Introduction

impact incurred by the adoption of our catalog of diagnostic techniques. This work
is presented in Chapter 4.

1.4.2 Fostering Performance Improvement While Preserving Safety:
GPU-based Implementations

For the sake of performance and seeking the completeness of objective O2, we focus
on HPEC platforms integrating embedded GPUs. These highly parallel platforms
provide the required performance to handle the huge amount of data involved in
the deployment of CNN applications. However, their use implies additional safety
challenges. Among them, we can list that they usually rely on high-performance
libraries that are commonly closed-source, the difficulty of guaranteeing determinism
in their execution (the internal behavior of these platforms is highly complex and
poorly documented), or the intrinsic level of parallelism that these platforms exploit.
In the second contribution of this Thesis, we adapt the previous catalog of diagnostic
techniques to GPU platforms and include them on a widely used high-performance
MMM library, CUTLASS, while continuing to apply the safe architectural patterns
proposed in the previous contribution (objectives O1 and O2). We address part of the
design and implementation of a safe ML solution on HPEC platforms (objective O3)
by including our GPU-based ‘safe ML’ library in YOLO-v3 and Tiny YOLO-v3 and
evaluate the performance impact associated with the inclusion of our GPU-specific
diagnostics catalog. This contribution is described in Chapter 5.

1.4.3 Metholodology to Selectively Protect CNNs

Safety-related systems involving CNN commonly operate in real-time environments,
which impose stringent timing constraints. In those cases, the performance impact
associated with protecting all layers through adopting the previously defined di-
agnostic techniques in the CUTLASS library may not be affordable. We propose
a three-stage methodology to determine which CNN’s layers to protect selectively
according to parameters such as performance impact and achievable DC. For its
evaluation, we apply the presented methodology in a safety-related object detection
task based on a widely used object detector (Tiny YOLO-v3) in the automotive
domain as a representative use case application. This contribution is directly related
to fulfilling objective O3. For the completeness of this contribution, we carried
out two complementary tasks: i) characterizing the most error-prone layer of Tiny
YOLO-v3 through a fault injection campaign and ii) designing and implementing a
strategy to compute the achievable DC. We detail this contribution in Chapter 6.

1.4 Contributions 7

1.5 Thesis Organization

After introducing the main challenges and defining the objectives of this Thesis, we
structure the rest of this Thesis as follows:

• Chapter 2 presents the background on functional safety, CNNs, and HPEC
platforms. Additionally, this Chapter details the related work devoted to ML
certification according to functional safety standards.

• Chapter 3 describes the methodology followed throughout this Thesis and
explains the experimental set-up used to quantify and evaluate the proposals
of this Thesis.

• Chapter 4 tackles the safety software deployment of CNNs in sequential and
vectorized implementations, focusing on protecting the MMM, CNN’s most
timing demanding component.

• In chapter 5, we adapt the sequential and vectorized solutions proposed in
Chapter 4 to be implemented on massively parallel GPU-based platforms and
evaluate them after their adaptation.

• Chapter 6 proposes a three-stage methodology to protect CNN layers according
to the target DC and the performance penalty incurred by our protection
techniques. We propose a strategy to efficiently determine the achievable DC
of large matrices implemented on GPUs and apply the proposed methodology
and strategy in an object detection use case.

• In Chapter 7, we finally draw the most relevant conclusions of this Thesis,
reviewing the achievement of the initially defined objectives. In addition, we
present potential future research lines.

8 Chapter 1 Introduction

1.6 Publications

In this section, we enumerate the publications carried out in this Thesis:

• Towards safety compliance of matrix-matrix multiplication for machine
learning-based autonomous systems
J. Fernández, J. Perez, I. Agirre, I. Allende, F. J. Cazorla, and J. Abella
International Conference on Reliable Software Technologies (AEiC), 2021
Extension to Journal of Systems Architecture (JSA), 2021
DOI: https://doi.org/10.1016/j.sysarc.2021.102298

• On the Safe Deployment of Matrix Multiplication in Massively Parallel
Safety-Related Systems
J. Fernández, J. Perez-Cerrolaza, I. Agirre, A. J. Calderon, F. J. Cazorla, and J.
Abella
Special Issue: “Computing and Artificial Intelligence” in (Switzerland) Applied
Sciences, 2022
DOI: https://doi.org/10.3390/app12083779

• A Methodology for Selective Protection of Matrix Multiplications: a Diag-
nostic Coverage and Performance Trade-off for CNNs Executed on GPUs
J. Fernández, I. Agirre, J. Perez-Cerrolaza, F. J. Cazorla, and J. Abella
International Conference on System Reliability and Safety (ICSRS), 2022
DOI: https://doi.org/10.1109/ICSRS56243.2022.10067299

1.6 Publications 9

https://doi.org/10.1016/j.sysarc.2021.102298
https://doi.org/10.3390/app12083779
https://doi.org/10.1109/ICSRS56243.2022.10067299

Background 2
This chapter outlines the background concepts of this Thesis and summarizes the
research outcomes devoted to the safety certification of systems involving the use of
ML components deployed on HPEC platforms.

2.1 Basic concepts

This section introduces the basic concepts that will be used throughout this Thesis.
These can be decomposed into three main research fields: i) AI technology, ii) safety-
related systems, and iii) widely used diagnostic mechanisms to guarantee data
integrity.

2.1.1 Artificial Intelligence

This subsection explains concepts related to AI, deepening from the most general
term, AI itself, to more specific ones, such as the CNNs. To facilitate understanding
of this section, Fig. 2.1 represents a hierarchy of terms.

Artificial

Intelligence

Machine

Learning

Neural

Networks

Deep Neuronal

 Networks

Convolutional

Neural Networks

Fig. 2.1: AI terminology hierarchy

11

AI is defined as ‘a system’s ability to interpret external data correctly, to learn from
such data, and to use that knowledge to achieve specific goals and tasks through flexible
adaptation’ [34]. It can be decomposed into different fields such as Planning, ML
or Natural Language Processing [35]. Among them, this Thesis focuses on ML,
which can be defined as the process by which a machine/computer/system learns
things that it can use to perform better in the future [36]. These algorithms can be
classified into three groups:

• Supervised learning. These algorithms generate a model based on learning
the relationships and dependencies extracted from a set of input features and
the target prediction outputs (provided at design), so that the model can
extrapolate the appropriate output from new input data. These algorithms can
be further divided into two groups regarding whether the output inference
values take discrete or continuous values:

– Classification. The model predicts from input variables discrete output
values in the form of a class label or category. I.e., filtering emails as
‘spam’ or ‘not spam’.

– Regression. The model predicts a continuous quantity from observing
the variability of a dependent variable regarding one or a series of other
changing variables. I.e., determining the probability of rain.

• Unsupervised learning. The main difference with the above lies in the absence
of an expected output to compare with the achieved results. The system learns
the structure of the data without employing explicit labels by analyzing the
available data to detect correlations and determines relationships. Its goal is
to detect patterns in the data that may not be obvious.

• Reinforcement learning. This algorithm, known as the agent, interacts with
its environment performing a task and learning with positive and negative re-
wards feedback from the actions taken to maximize the reward. It exploits the
entire set of possible states iteratively by learning from its previous decisions.

This Thesis focuses on supervised learning performing regressions. Specifically, it
centers on one of the most common branches, the Neural Networks (NNs). This ML
subclass consists of interconnected layers composed of neurons. Neurons or nodes
are mathematical functions based on models of biological neurons that constitute
the elementary units of the NNs. Fig. 2.2a depicts the architecture of a neuron. As it
can be seen, each neuron has n inputs (in in the figure) with their associated weights
(wn) that are multiplied and the results are added and passed into the activation
function (i.e., a step function). These activation functions produce an output that

12 Chapter 2 Background

can serve as input for the next layer of neurons or as a final output. As illustrated in
Fig. 2.2b, the layers can be denoted into three categories regarding the position of
the layer in the neural network (a.k.a. network): i) an input layer, ii) a hidden layer
(weight layer), and iii) an output layer (decision layer). When the complexity of the
NN increases and includes multiple hidden layers, it is denoted as DNN. A DNN is
essentially a NN with three or more layers of interconnected nodes that simulate the
behavior of the human brain.

fn

Sum Activation
function

Output

i1

i2

i3

in

.

i3

wn

w3

w2

w1

(a) Model of an artificial neuron

Input layer Hidden layers

i1

in

i2 . . .

Output layer

o1

on

o2

(b) Types of layers in a Neural Network

Fig. 2.2: Neural Networks

According to the specific problem to be addressed by DNNs, they can be newly
subcategorized. In this Thesis, we specifically focus on CNNs, which present out-
standing accuracy in performing tasks such as classification, segmentation, and
object detection. The CNN computation proceeds across each layer of its particular
network configuration. These layered structures are composed of several kinds of
layers. The main CNN computation comes from the convolutional ones that extract
or detect features from an input (i.e., an image in object detection applications).
For that extraction, these layers apply filters (also denoted as weights or kernels)
of multiple dimensions on the input data (denoted as Input Feature Map (IFM)1)
by performing convolution operations. Considering the IFM and filters as matrices,
the convolutional layers can be formulated as MMMs. The filter slides over the IFM,
multiplying and accumulating products to generate the Output Feature Map (OFM)
as Fig. 2.3 depicts, where the OFM of a layer becomes the IFM of the following
one. Notice that in Fig. 2.3, the input feature map has been extended by adding
zero values (grey boxes) in the borders of the original one (light cyan boxes). This
process is known as padding and often increases the accuracy of the predictions.

The pooling and batch normalization layers usually follow the convolutional layers.
These layers decrease the computation with different techniques. Pooling layers
compute the maximum value of groups of feature maps with specific strides discard-

1In the first layer, the IFM can be images, text or sound depending on the specific CNN application.

2.1 Basic concepts 13

Fig. 2.3: Example of a convolutional operation

ing the rest. Batch normalization layers focus on standardizing the feature maps to
avoid overfitting. This standardization is performed by transforming their values to
achieve zero mean and unit variance. After these layers, activation ones (i.e., ReLU)
are usually applied, which decide whether a neuron (or a specific weight) is activated
or not. The primary purpose of these layers is to introduce non-linearity into the
output of a neuron. Finally, Fully-Connected (FC) layers classify the inputs.

The implementation of CNNs have two stages. The first is the training phase, in
which the CNN iterates with a specific dataset until it reaches the requirements
established in the design phase, e.g., a given accuracy. This phase is usually very
time consuming since it entails processing vast amounts of data. The second phase
is the deployment of the trained CNN into the platform that performs the inference.
In this Thesis, we focus on the latter.

2.1.2 Dependability, Safety and Functional Safety

Dependability is, by definition, ‘the ability to deliver service that can justifiably be
trusted’ [37]. Traditionally, dependability is divided into five attributes: availability,
reliability, integrity, maintainability, and safety. This Thesis centers on the safety
attribute or ‘absence of catastrophic consequences on the user(s) and the environ-
ment’ [37]. Particularly, we focus on functional safety, which is defined as ‘part of the
overall safety relating to the Equipment Under Control (EUC) and the EUC control sys-
tem which depends on the correct functioning of the Electrical/Electronic/Programmable
Electronic (E/E/PE) safety-related systems, other technology safety-related systems and
external risk reduction facilities’, according to the IEC 61508 [1].

14 Chapter 2 Background

Functional Safety Certification and Standards

IEC 61508 [1] is an international functional safety standard that guides the develop-
ment process of safety-related systems composed of E/E/PE elements across different
industry sectors. IEC 61508 is the reference standard for the definition of many
domain-specific standards, such as ISO 26262 [2] for road-vehicles or EN 5012X [38]
for the railway, which by inheritance share many common requirements, techniques,
and measures for certification. Figure 2.4 provides an overview of the relationships
among some of the current safety certification standards.

Traditional safety certification standards

IEC 61508

Industrial Avionics

DO 297 DO 178 DO 254

Space

ECSS

...

...

IEC 61513

Nuclear

ISO 26262

Automotive Railway

EN 50126 EN 50128 EN 50129 EN 61511

Process Industry Elevator

ISO 22201

...

...

Fig. 2.4: Relation among safety certification standards [39]

These standards define the necessary requirements, techniques and measures to
guarantee the absence of unacceptable risks caused by the malfunction of the system.
To this end, the IEC 61508 standard defines the SIL metric for each safety function
according to its criticality from SIL 1 (minimun) to SIL 4 (maximun). Similarly,
ISO 26262 uses the term Automotive Safety Integrity Level (ASIL), which ranges
from ASIL A (least stringent) to ASIL D (most stringent) and incorporates a fifth
non-hazardous level denoted as Quality Management (QM) level. According to these
integrity levels, functional safety standards require the adoption of different safety
measures and mechanisms in the development cycle and in the design. In the case
of IEC 61508, the importance of applying a specific technique or measure for each
integrity level is signified by the following notation: i) mandatory (M), ii) Highly-
Recommend (HR), iii) Recommended (R) and iv) Non-Recommended (NR).

Types of faults and diagnostic coverage

Faults are classified into two major categories in the aforementioned safety stan-
dards: systematic and random faults. Systematic faults are associated with the
development process and method, and may relate to hardware and/or software.
Safety standards define a development process intended to make the residual risk of
systematic faults negligible. Instead, random faults relate to hardware faults caused
by electromagnetic interference, voltage drops, component wear-out and the like.
Additionally, random faults can be classified according to the frequency into perma-
nent, if they persist indefinitely, and transient, if their occurrence is sporadic [2].

2.1 Basic concepts 15

Regardless of whether faults are systematic or random, they can be classified as
Common Cause Failures (CCFs) when they meet the following definition: ‘the failure
is the result of one or more events, causing concurrent failures of two or more sepa-
rate channels in a multiple channel system, leading to system failure’. Hence, safety
standards recommend the deployment of safety measures to detect faults or errors
and control those errors in such a way that they do not lead to failure. Among these
measures, diagnostic mechanisms are used to detect errors within the Diagnostic
Test Interval (DTI). In addition, this safety standard requires specific Hardware Fault
Tolerance (HFT), or the ability of a functional function to perform as required in the
presence of faults or errors, according to the SIL of the function. The achievable SIL
on a system is partially determined by the adopted fault detection and tolerance.

The assessment of the effectiveness of diagnostic mechanisms is generally evaluated
in the form of DC. “Diagnostic Coverage (DC) denotes the effectiveness of diagnosis
techniques to detect dangerous errors, expressed in coverage percentage with respect
to all possible dangerous errors” [31]. DC is classified as low (60 % < DC < 90 %),
medium (90 % ≤ DC < 99 %) and high (99 % ≤ DC) [1]. As stated in [31], the
implementation of software-based DC techniques becomes relevant to periodically
diagnose the correct operation of the hardware components or the safe operation of
the device with respect to possible faults not covered by hardware diagnosis or to
complement them (usually classified as low or medium DC).

To achieve appropriate error detection and tolerance levels, safety measures are
often deployed following specific architectural patterns. There is a large variety of
patterns, but some of the most common ones build upon the use of redundancy
(e.g., full or partial time or space replication) and diversity (e.g., making redundancy
non-identical so that a single fault does not lead to the same erroneous output in all
redundant instances).

IEC 61508 defines the abbreviation NooM (N out of M) to describe the architecture
of the system: M is the total number of channels in the architecture (where channel
refers to the group of elements that implement a safety function) and, N is the
minimum number of channels that are required to complete the safety function [1].
As an example, a 1oo2 architecture consists of two channels connected in parallel
(M= 2), and either channel can process the safety function on its own (N= 1).
Therefore, in case of a dangerous failure in one of the channels, the second one can
still safely perform the safety function (HFT=1).

16 Chapter 2 Background

2.1.3 Emerging Standards and Initiatives for AI

A variety of emerging standards relate to AD safety, such as ISO 21448 [40], Ameri-
can National Standards Institute (ANSI)/Underwriters Laboratories (UL) 4600 [41],
VDE-AR-E 2148-61 [42], ISO/IEC JTC 1/SC 42 [43], ISO/IEC 5469 [44] and
ISO/PAS2 8800 [45]. They are shown in Fig. 2.5 specifying the application sector
and including some under development. These standards define high-level goals or
objectives rather than explicitly prescriptive requirements.

Emerging initiatives and standards focused on
Artificial Intelligence

Automotive

ISO 21448:2022 Safety Of the
Intended Functionality (SOTIF)

ANSI/UL 4600:2022. Standard
for Safety for the Evaluation of

Autonomous Products

Sector independent

VDE-AR-E 2842-61:2020.
Development and trustworthiness
of autonomous/cognitive systems

ISO/IEC JTC1 SC42. Artificial
intelligence

Under development

ISO PAS 8800 - Road Vehicles - Safety
and Artificial Intelligence

ISO/IEC JTC1 SC42. Artificial intelligence

ISO/IEC TR 5469. Artificial intelligence
- Functional safety and AI systems

Fig. 2.5: Emerging standards and initiatives to certify ML in safety-related systems

ISO 21448 - Safety Of The Intended Functionality (SOTIF)

SOTIF is an ISO document focusing on avoiding system safety violations in the
absence of hardware and software faults for achieving the intended functionality.
It is complementary to current functional safety standards, such as IEC 61508 and
ISO 26262, which seek to avoid such hardware and software failures. Specifically, it
covers critical safety systems operating in open, situationally-aware environments
and the limitations caused by the use of complex sensors, probabilistic algorithms,
and foreseeable misuse. For example, an unknown scenario in an Advanced Driver-
Assistance System (ADAS) in which the algorithm works as trained but not as
intended. It may be because designing these systems to address the large spectrum
of possible inputs can be tedious and highly problematic.

The proposed lifecycle starts with a Hazard Analysis and Risk Assessment (HARA)
followed by defining safety requirements for their mitigation (a.k.a, safety goals). It
is crucial to identify the scenarios in which the systems operate and verify the correct
operation for each of them. The main idea is to identify and mitigate those events
that can jeopardize the intended functionality and, in an iterative way, monitor those
situations and generate an ever-expanding catalog of operating scenarios.

2A PAS is an intermediate document expected to become a standard within six years. Otherwise, the
document is withdrawn.

2.1 Basic concepts 17

ANSI/UL 4600 - the Standard for Safety for the Evaluation of Autonomous Products

ANSI/UL 4600, the Standard for Safety for the Evaluation of Autonomous Products,
is a safety standard approved by ANSI. It addresses the safety involved in fully au-
tonomous systems to perform as intended according to the system’s current state and
perception of the operating environment. Additional aspects, such as the reliability
of hardware and software necessary for ML technologies, are also handled.

ANSI/UL 4600 defines safety principles and processes based on a claim-based ap-
proach. It covers issues such as safety arguments in safety case construction, valida-
tion, life cycle concerns, metrics, or conformance assessment, among others. Addi-
tionally, it addresses the security attribute without defining details on its achievement
and it does not cover any ethical aspect of the product’s behavior or decision.

ANSI/UL 4600 is technology neutral. It does not require specific technology to create
autonomous systems or a specific design approach, which involves design process
flexibility. Instead, it relies on verification and validation via methodology and
metrics. For that purpose, ANSI/UL 4600 defines Safety Performance Indicators (SPI)
as operational metrics and defends the importance of continuous safety compliance
instead of the punctual approval of adherence to functional safety standards. Further,
it postulates that it is particularly relevant to learning systems trusting in AI.

VDE-AR-E 2842-61

The German application rule VDE-AR-E 2842-61, ‘Development and trustworthiness
of autonomous/cognitive systems’, defines a general framework for developing
trustworthy solutions and autonomous/cognitive systems. This trustworthiness
is considered a generic concept that must guarantee functional safety, security,
privacy, usability, reliability, and intended functionality (among others). Analogous
to current functional safety standards and taking the safety life cycle of ISO 26262
as a reference, it presents a reference life cycle with the logical flow to the involved
activities. However, it is not domain specific.

This application rule is under development at the moment of writing this document.
It tries to cope with the ’uncertainty’ related to AI. It consists of six parts where
three of them have already been published. Part one states that in the future, "it
might be possible to calculate a fault rate for AI elements, consequently called
λAI ". However, for the moment, it defines the Uncertainty Confidence Indicator
(UCI) for dealing with these uncertainty-related failures and different UCI levels
according to the safety required by the application. This application rule proposes
demonstrating the achievement of the specific UCI-level requirements in an assurance

18 Chapter 2 Background

case. Nevertheless, VDE-AR-E 2842-61 does not specify how to deal with these
uncertainty-related failures or how to define this assurance case.

ISO/IEC JTC 1/SC 42

ISO/IEC JTC 1/SC 42 - Artificial Intelligence is a joint committee between ISO and
IEC international standards with a scope in the area of AI. SC 42’s program work has,
as its focal point, the standardization of AI. This subcommittee includes foundational
AI standards, data standards related to AI, Big Data and Analytics, AI trustworthiness,
use cases and applications, AI governance implications, computational AI approaches,
and ethical and societal concerns. To the date of writing this document, ISO/IEC
JTC 1/SC 42 lists 16 published standards (including two updates) and 25 under
development. Some published standards are listed below:

• ISO/IEC TR 24028:2020 Information technology — Artificial Intelligence —
Overview of trustworthiness in artificial intelligence. This document surveys
issues related to trustworthiness in AI systems.

• ISO/IEC TR 24029-1:2021 Artificial Intelligence — Assessment of the robust-
ness of neural networks — Part 1: Overview, which collects existing methods
to evaluate the robustness of neural networks.

• ISO/IEC TR 24030:2021 Information technology — Artificial Intelligence —
Use cases, which collects use cases of AI applications in several domains.

Although they offer insight into possible ways to overcome current problems, none of
them provides specific solutions for using ML systems. Improvements are expected
with ISO/IEC 5469 Artificial intelligence — Functional safety and AI systems [44],
under development.

ISO/IEC TR 5469 - Artificial intelligence – Functional safety and AI systems

ISO/IEC TR 5469 [44] standard aims to cover the application of AI-based solutions
on safety-critical systems by identifying properties, risk factors of safety, available
methods, and potential constraints towards the appropriate adoption of AI ap-
proaches in safety functions. The standard is not associated to any application
domain. At the time of writing, this standard is still at a development phase and the
information on this section is based on early drafts.

This standard is of particular interest for AI-based systems development, as it covers
different aspects of AI safety functions. For instance, it defines a high-level lifecycle
that combines the V-model and ML lifecycle activities, identifies the properties to
be considered, and evaluates the potential compliance of AI-based solutions with
existing functional safety standards.

2.1 Basic concepts 19

On the platform side, the standard identifies the technological elements required for
ML model creation and execution and differentiates those that traditional functional
safety techniques can cover from those that require further considerations. It also
mentions that GPU-based systems may have special failure modes to be addressed
and some architectural considerations are proposed (like the use of supervisors,
redundancy and diversity and detection mechanisms).

ISO/PAS 8800 - Road Vehicles - Safety and Artificial Intelligence

This document sets the definition of safety-related properties and risk factors that
impact the insufficient performance and malfunctioning behavior of AI for road
vehicles. It sets a framework that addresses all development phases and the life
cycle of IA components. This framework takes into consideration the derivation of
suitable safety requirements on the function and factors related to data quality and
completeness. It provides architectural measures for the control and mitigation of
failures and defines tools used to support AI as well as verification and validation
techniques. Additionally, the evidence required to support an assurance argument
for the overall safety of the system is described. Their objectives are the following:

• Define suitable safety principles, methods and evidence satisfying objectives
with ISO 26262 and ISO 21448.

• Harmonize concepts described in ISO/TR 4804 [15] and ISO 21448 Annexes’s.

• Rely on generic guidance from ISO/IEC TR 5469.

At the time of writing, this standard is still at a development phase and information
is based on early drafts.

2.1.4 Checksum Algorithms

Since CNNs involve managing large amounts of data, it is essential to ensure their
integrity. This section summarizes some widely used diagnostic mechanisms for
detecting errors in data transmission. We focus on those based on arithmetic
operations to generate a Frame Check Sequence (FCS) to ensure network data
integrity. It is worth mentioning that besides those based on sums of data chunks are
known as checksums, from now on, we will generalize under the term checksums
those based on other arithmetic operations, such as divisions.

20 Chapter 2 Background

Exclusive OR

Exclusive OR (XOR) or exclusive disjunction checksum is based on the logical XOR
operation, denoted with ‘⊕’ symbol. The truth table for the XOR operation is depicted
in Fig. 2.6. It sets out the functional output values of the XOR operation (X0 ⊕ X1)
from the possible combinations of two binary inputs (X0 and X1). The logic is
as follows: if both input values are equal (1,1 or 0,0), the output is false or zero;
otherwise, if only one input value is one (1,0 or 0,1), then the output is one or true.

X
0X

1
0 1

0

1

0

0

1

1

(a) XOR’s Karnaug table

X0 X1 X0 ⊕ X0

0 0 0
0 1 1
1 0 1
1 1 0

(b) XOR’s truth table

Fig. 2.6: Exclusive OR (XOR)

Although the data to be protected may be higher than two data words, for a better
understanding, we depict in Fig. 2.7 the protection of two (DataA and DataB). Data
blocks are protected with XOR checksum by applying the logic XOR operation in
parallel across each bit position of those data blocks. That is, by XORing those blocks
of data together (A ⊕ B). Notice that each of the checksum bits values denotes the
parity computation of all blocks at the corresponding bit position. So, for example,
the bit position 30 of the checksum represents the parity of bit 30 of all data blocks
protected.

Data B
Data A 1111 1111 0000 0000 0011 1010 1100 0000

1010 1011 0001 0101 1111 1111 0111 0000

A B 0101 0100 0001 0101 1100 0101 1011 0000

Fig. 2.7: Example of performing a XOR checksum

The order in which these blocks are XORed does not influence either the final result
or the error detection. In other words, the effectiveness of the XOR checksum is
data-independent and, additionally, order-independent. This checksum detects all
single-bit errors in data blocks, failing to detect errors aligning in the same bit
position of an even number of data blocks. In addition, this checksum detects all
odd errors and any combination of bit errors that result in an odd number of errors
in at least one-bit position.

2.1 Basic concepts 21

Two’s complement checksum

The two’s complement checksum consists of adding the data blocks to be protected
and applying the two’s complement of the resulting binary number, that is, inverting
the sum and adding one to the Least Significant Bit (LSB) of the given result. Carry
bit from the sum of the Most Significant Bits (MSBs) is discarded. Fig. 2.8 depicts
an example of applying the two’s complement checksum to protect two 32-bit data
blocks (DataA and DataB). Note that inversion is represented by the symbol ‘~’.

1

Data B
Data A 1111 1111 0000 0000 0011 1010 1100 0000

1010 1011 0001 0101 1111 1111 0111 0000

1010 1010 0001 0110 0011 1010 0011 0000A + B

+

1
~ (A + B)2 0101 0101 1110 1001 1100 0101 1100 1111
To add 13

+
 1

0101 0101 1110 1001 1100 0101 1101 0000

Fig. 2.8: Example of performing two’s complement checksum

The final two’s complement checksum value is not affected by the order in which
the data blocks are processed. Therefore, it is a data-dependent checksum but not
order-dependent. Although it detects all one-bit errors in the data blocks, there are
significant sources of even numbers of bit errors that remain undetected:

S1 An even number of errors affects several blocks at the same bit positions without
producing an additional carry-generating bit. The overall number of inversions from
zeros to ones has to be the same as from ones to zeros. Otherwise, the carry bit
would modify the final checksum value, and the error would be detected.

S2 An even number of errors impacts the MSBs positions of any two data blocks,
independently of their value. Two’s complement checksum disregards the MSB’s
carry-out. Therefore, this type of error is undetected.

S3 A third source of undetected errors is a non-carry generating bit being inverted
in the data word and the bit in the corresponding bit position in the checksum also
being inverted [46]. We have not contemplated the simultaneous occurrence of
these two errors in the experiments conducted during this Thesis.

The effectiveness of detecting two errors of two’s complement checksum is higher
than the XOR checksum. This improvement is because two’s checksum primary
source of undetected errors are those in which two bits with different values (0
and 1 or 1 and 0) of two data blocks are inverted. In the case of XOR checksum, it
neither detects those errors in which the values of the bits do not differ.

22 Chapter 2 Background

One’s complement checksum

One’s complement checksum consists of summing data blocks and applying the
binary one’s complement to the resulting sum, which is obtained by inverting all the
bits from 0s to 1s and, vice-versa, 1s to 0s. One’s complement checksum does not
disregard the carry bit of the MSB of the sum, which entails re-summing the carry
bit back into the LSB. Fig. 2.9 depicts an example of performing one’s complement
checksum to two 32-bit data blocks (DataA and DataB).

Data B

Data A 1111 1111 0000 0000 0011 1010 1100 0000

1010 1011 0001 0101 1111 1111 0111 0000

1 1010 1010 0001 0110 0011 1010 0011 0000A + B

+

Sum overflow

~

+

3

1

2 1010 1010 0001 0110 0011 1010 0011 0001

 1

0101 0101 1110 1001 1100 0101 1100 11102

Fig. 2.9: Example of how to perform one’s complement checksum

The effectiveness of one’s complement checksum is not affected by the order in
which the data blocks are processed. This checksum shares the S1 error source of the
two’s complement checksum. However, preserving the carry bit of the data block’s
MSBs and adding it back to the resulting sum overcomes the S2 source of error and,
therefore, one’s complement has enhanced effectiveness.

Cyclic Redundant Code

Cyclic Redundancy Check (CRC) is an error detection code based on a division
instead of sums of values. However, it aims to ensure data integrity independently
of the mathematical operations involved. The data to be protected is mathematically
considered as a bit string whose bits are the binary coefficients of a polynomial, the
most significant being the coefficients of a higher degree. This code disregards the
quotient of the division and treats the remainder of the operation as the FCS.

CRC calculations perform binary arithmetic operations with no carries for additions
and no borrows for subtractions. That way, CRC arithmetic division is based on
polynomial division on base-2, primarily about performing XOR operations between
a chunk of the data block to be protected and the polynomial generator and shifting
one bit rightwards after performing each XOR operation. Before performing this
division, it is necessary to add as many zeros to the data block to be protected as

2.1 Basic concepts 23

the highest degree of the polynomial generator. It is necessary to explain that in
division modulo 2, a polynomial is divisible by another if both have the same degree.
Suppose the dividend is not divisible by the polynomial. In that case, single bits
shift rightwards until it is divisible or until all the bits of the data block are traversed
(including the previously appended zeros). Fig. 2.10 represents a CRC computation
indicating with a red box in the most significant bit those cases in which the dividend
is not divisible by the generator polynomial and, in green, those in which it is.

Generator
Polynomial

Attached

zeros

0 0 0 0

CRC value

1 1 1 0 1 1 0 1

1 0 1 0 0 0 0 1

1 1 0 0 1

1 0 0 1 1 0

1 1 0 0 1

1 1 0 1 1 0 1 1

1 1 0 0 1

1 1 1 1 0 0 1 0

1 1 0 0 1

1 1 1 0 1 0 0 0
1 0 1 0 1 0
1 1 0 0 1

1 1 1 0 1 0 1 0
1 1 0 0 1

1 0 0 1 1 0

Righ shift
one-bit

XOR

XOR

XOR

Right shift one bit

XOR

XOR

1 1 1 0 1 1 0 1

 0 0 0 0 Initial CRC

Data to be
 protected

Final XOR value 0 0 0 0

0 0 1 1

CRC

Computation

CRC Pre-
Computation

CRC post-
Computation

Fig. 2.10: Example of how to perform CRC checksum

Additionally, Fig. 2.10 includes a pre-computation related to the initial value of
the CRC register (usually 0x0000 or 0xFFFF in 32-bit CRCs in hexadecimal) and
a post-computation consisting in XORing the final CRC value. In this example, we
consider that the CRC register has been initialized to zero values, and the final CRC
value is XORed with zero values. Therefore, these values do not affect the CRC

24 Chapter 2 Background

computation. Another concept to be aware of, in addition to the initial CRC value
and the value to be XORed with the final CRC value, is the concept of reversed
Polynomials. However, we consider the election of the two initial values as well
the concept of reversed Polynomials out of this Thesis’s scope and refer the reader
to [47] for further discussion of these concepts.

Fletcher

The Fletcher checksum processes the data blocks to be protected into chunks half the
size of the checksum. For example, a 32-bit fletcher checksum iteratively computes
16-bit block sizes until all data chunks are processed. For the calculation, Fletcher
decomposes into two data chunks (SumA and SumB) with half the checksum
size, concatenating them once the calculation is complete (being concatenation
represented by the symbol ‘∥’). Furthermore, the data is divided into i groups
computed from D0 to Di. The operations involved in the calculation are as follows
(Note that ‘MOD’ is a value dependent on the Fletcher checksum size):

Initial Values: SumA = SumB = 0

For increasing i:



SumA = SumA + Di

SumB = SumB + SumA

SumA = SumA % MOD

SumB = SumB % MOD

Fletcher checksum : SumB ∥ SumA

Fig. 2.11 depicts an example of a 32-bit data size Fletcher checksum of a 32-bit data
word which decomposes into two data chunks, denoting the MSBs D1 and the LSBs
D0. The Fletcher checksum is also divided into two 16-bit data blocks initialized to
zero (the MSBs of DataB are referred to as SumB, and the LSBs as SumA). To sum
the values across the Fletcher calculation, one can use a standard binary addition, a
two’s complement addition, or a one’s complement addition. For simplicity, Fig. 2.11
represents a standard binary addition.

The accumulation of SumB turns the checksum sensitive to the order in which
Fletcher processes the data blocks and increases its error detection effectiveness. In
fact, the Fletcher checksum exhibits higher effectiveness for detecting errors than the
previously defined checksums but incurring in an increment in the computational
cost [46]. However, its effectiveness is lower than that of the CRC, which we present
next, but it has a lower performance cost.

2.1 Basic concepts 25

Data B:

Data A:

Most Significant Bits (MSB) Least Significant Bits (LSB)

0011 1010 1100 0000

0000 0000 0000 0000

0011 1010 1100 0000

0011 1010 1100 0000

0011 1010 1100 0000

1111 1111 0000 0000

0000 0000 0000 0000

1111 1111 0000 0000

0011 1001 1100 0000

0011 1001 1100 0000
1111 1111

1111 1111 0111 00000000 0000 1111 0100 0000 0000 1111 1001

1111 1111 0111 0000

0011 1010 1100 0000

0000 0000 0000 0000

0011 1010 1100 0000

0000 0000 0000 0000

2 Iteration 1: Calculate SumB

Iteration 2: Calculate SumA3

1 Iteration 1: Calculate SumA

Iteration 2 : Calculate SumB4

SumB

D1

0011 1010 1100 0000

0011 1001 1100 0000

0111 0100 1000 0000

0111 0100 1000 0000
1111 1111

SumB= SumB+ SumA

SumA

D0

SumA = SumA + D1

SumB= SumB+ SumA

Modulo operation5

SumA = D0 + SumA
+

+

+

+

1

Fig. 2.11: Example of how to perform fletcher checksum

2.2 Related Work

This section compiles the works related to the safety certification of systems employ-
ing AI components over HPEC platforms to perform safety functions. First, we collect
the research effort devoted to the adhesion to current functional safety standards
for systems involving AI components, along with those adopting emerging initiatives
designed to accommodate AI. Furthermore, we summarize the main proposals for
the detection and mitigation of errors in CNN, in general, and MMM, in particular,
implemented on top of HPEC platforms.

26 Chapter 2 Background

2.2.1 Emergent Initiatives to Address ML Certification and
Traditional Safety Standards Adaptations

Initial research on the alignment with emerging standards, including ANSI/UL 4600,
SOTIF, and VDE-AR-E 2842-61, has already been conducted. According to ANSI/UL
4600, the authors in [48] evaluate their adoption’s viability and explore their ap-
plication in an auditable safety case in the aerospace domain. They conclude that,
with some modifications, ANSI/UL 4600 may be employed for safety assurance
evidence in this domain. They also postulate that it allows overcoming challenges
in autonomous and ML component approval. In a study on SOTIF, the authors
in [49] argue that this standard may result in a mandatory requirement for DNNs
oversight through supervisors, being the first paper to frame two supervisors within
the SOTIF process. Complementarily, the authors in [50] focus on the alignment of
high-level automation driving functionalities with SOTIF, employing a safety argu-
ment structure to ensure safety. Regarding VDE-AR-E 2842-61, the lifecycle of this
application rule became the foundation of [51]. The authors identify the necessity
of a standardized process model for AI components and provide an AI-blueprint for
DNN. Similarly, several aspects of VDE-AR-E 2842-61 have influenced the design
of a data-driven engineering process for applying ML in the industry [52] (e.g., the
hierarchical approach or the management of data sets and their quality).

However, these standards are still under development (IEC/ISO 5469 or VDE-AR-E
2842-61) or in their incipient or early stage, as is the case of ANSI/UL 4600, which
currently defines UCI to deal with uncertainty-related failures without defining how
to deal with them [53].

In addition to the emerging standards, there are plenty of works devoted to the safety
certifiability of ML-based solutions in the current literature [14], [19], [54]–[57].
There is a research line focused on identifying and analyzing the main gaps for
the adoption of ML components in safety-related system development processes,
according to the requirements of functional safety standards such as ISO 26262 or
IEC 61508 [19], [55], [56]. In this research line, Falcini and Lami [54] give an initial
insight into the applicability of current automotive standards to artificial intelligence
systems focusing on software development. They postulate that, according to the
standards, learning algorithm development is a partially addressable issue, although
data-driven development remains the main challenge. The work in [56], which is an
extended work of [55], identifies five problems to adhere to the ISO 26262 lifecycle
with ML approaches and proposes five recommendations to address them. In the
same manner, Hamid et al. [19] identify the main challenges of ML to adhere to
the requirements for software development described in part 6 of the ISO 26262

2.2 Related Work 27

standard, and they state the necessity of a safe ML library. Besides, after an analysis
of the deep learning framework in [14], the authors assert the direct impact of
low-level libraries, mostly based on matrix operations, on these frameworks. They
postulate that the optimization or development of new low-level libraries would be
beneficial to address issues such as fault tolerance and promote reusability. This has
motivated our work, where we have defined diagnostic mechanisms to detect errors
in the computation of MMMs, the backbone of CNNs.

The research community’s enthusiasm for the safety assurance of AI systems has
triggered several systematic literature reviews [13], [58] and surveys [59], [60]
that address related issues. After identifying the state of the art, [13] considers
six main pillars covering the certification: “Robustness, Uncertainty, Explainability,
Verification, Safe Reinforcement Learning, and Direct Certification”. In [58], the
authors identify five main approaches: “performing black-box testing, using safety
envelopes, designing fail-safe AI, combining white-box analyses with explainable
AI, and establishing a safety assurance process throughout systems’ lifecycles”. In
addition, authors in [61] explore the main challenges related to the inclusion of
ML in safety-related systems, providing an analysis of the safety hazards through
all the phases of the ML safety lifecycle. Similarly, authors in [60] assess the safety
implications of ML use, with particular regard to robustness and explainability.

As mentioned previously, the computational requirements of ML systems require
them to be implemented in HPEC platforms that hinder their safety certification.
That reason has motivated the research community to focus on the mitigation of
faults of ML systems implemented on HPEC platforms, intending to reduce the risk
as much as possible down to tolerable safety levels.

2.2.2 Safe ML Deployment on HPEC Platforms

The research community has made significant endeavors in mitigating hardware
errors in HPEC platforms. Traditionally, the adopted methods have focused on the
replication of hardware components, i.e., Dual Modular Redundancy (DMR) or
Triple Modular Redundancy (TMR) [62]. Some processors provide such redundancy,
along with diversity, by hardware means with lockstep architectures, such as the
Infineon AURIX processor family [63], the ST Microelectronics SPC56XL70 [64], and
some Arm-based designs [65]. Other works provide redundancy with lighter-weight
approaches based on single-core thread redundancy [66], [67] or multi-core thread
redundancy [68]–[70]. Some works even consider only partial redundancy [71],
[72]. Software-only mechanisms for execution redundancy have also been widely

28 Chapter 2 Background

studied in the context of CPUs [73]–[78], including mechanisms such as a monitor
process to detect errors or leveraging compilers to inject redundancy. This type of
solution has also been explored for accelerators such as the Kalray MPPA family and
GPUs, either at hardware level [79]–[83] or at software-only level [79], [84]–[86].
Additionally, we have identified a hardware-based approach based on hardening
memory cells on FPGA-based implementations [29], [87]. In the same research line,
Li et al. [28] propose partial redundancy with a previous characterization of the CNN
error propagation to select the most suitable latches to be hardened. However, these
partial-hardware redundancies depend on the CNN and require specific hardware
modifications that entail a great effort in view of the large variety of CNN models.
According to their results, this latch hardening incurs an area overhead between
20 % and 25 %. As the suitability of these hardware solutions is evaluated based on
the required embedded area rather than by the execution time, it is not possible to
provide a performance comparison with our solution.

Several fault-injection experiments have analyzed the reliability of GPU-based (e.g.,
work in [88], [89]) and FPGA-based CNN software implementations (e.g., work
in [90], [91] analyzes Static Random-Access Memory (SRAM)-based FPGA against
soft-errors errors striking their configuration memory and after binary quantization,
respectively). These analyses are fundamental to understanding the importance of
random-hardware-errors management and understanding the nature of errors and
their propagation. Some of them focus on identifying DNN reliability challenges
and summarize analytic and mitigation techniques [92], [93]. Other research is
based on studying the CNN reliability [25], [26], [89], [92], [94]–[98], yet without
providing systematic solutions.

With a broader scope, multiple testing and fault injection approaches exist for the
verification and validation of automotive systems. While some of them are not
explicit for ML-based systems, they can also be applied to them. Some works assess
software-based defect detection by means of mutation testing and fault injection
in the context of autonomous driving systems [99]. Other works focus on how to
test the system with different sets of inputs [100]–[102]. In a more classical strand,
model-based software design and testing can be used for verification and validation
activities [103].

Device and software implementation-specific techniques (e.g., references [28],
[104]) can potentially provide high error-detection rate with a low-performance
impact (e.g., detecting 84.5% of errors that lead to misclassification with 0.3%
performance impact [104]). However, the analysis, selection, evaluation (e.g., DC
estimation), and implementation of techniques become software implementation-

2.2 Related Work 29

and device-specific (reduced portability). For instance, SBST [32] for specific compo-
nents generally builds on low-level knowledge of the device under testing (e.g., GPU
gate-level implementation) to devise software-only solutions with high coverage,
and hence, SBST is neither portable across designs nor usable in COTS GPUs, whose
low-level (circuit) design is often unknown (no public information is available).

The mitigation of soft-errors and permanent faults in safety-critical systems imple-
menting ML is of special interest in MMM [27]. MMMs are at the heart of DNN
and CNN software solutions; for example, over 90% of a CNN execution time is
due to MMM-based convolutions [105] and MMM accounts for 67% of YOLO’s
execution time [14]. The performance of the MMM in diverse platforms such as
GPUs and multi-core processors has also been widely evaluated due to its critical
importance [106]–[108].

Concerning MMM implementations, different technical approaches have been pro-
posed for random-hardware-errors management (detection, correction, and mitiga-
tion), ranging from device and MMM implementation-specific techniques to general-
izable techniques. Generalizable techniques for MMM algorithms, such as Algorithm-
Based Error Detection (ABED) and Algorithm-Based Fault Tolerance (ABFT) [105],
are algorithm-specific but less dependent on specific GPU architectures. Several
research works propose the adoption of these solutions to enhance the reliability
both on FPGAs [27], [109] and on GPUs [26], [110]–[112]. These papers focus on
the avoidance of soft-errors at runtime, but they do not consider the errors caused by
built-in mechanisms like cache coherency and the safe behavior of all platform com-
ponents. ABFT leverages MMM algorithmic knowledge to provide fault-tolerance
with the detection and correction of random hardware errors with low-performance
impact, as demonstrated by the authors in [111] with an overhead from 4 % to 8 %,
performance impacts of 20% for square matrices or higher than 50% for non-square
matrices [105], 13.8 % when employed with small matrices dimensions [110] and
3 % with 500 × 500 square matrices [27]. Moreover, ABED-based techniques can
potentially lead to high error-detection rate claims with low-performance impact
(e.g., 100% hardware errors with 6–23% performance impact) [105]. However,
these techniques need to consider software implementation restrictions, such as
considered data type (e.g., fixed-point integers or rounding errors with floating-point
numbers [105]) and detect errors (only) in the generated output values.

In all cases, however, those solutions are orthogonal to those studied in this Thesis
and need to be carefully applied only whenever needed due to their costs and the
specific needs to meet some safety requirements in ISO 26262 (e.g., such as diverse
redundancy for the highest integrity levels).

30 Chapter 2 Background

Methodology and
Experimental Set-up

3

In this chapter, we describe the methodology followed in this Thesis and the experi-
mental set-up employed in developing our research work.

3.1 Methodology

The fundamental structure followed for the work of this Thesis is depicted in Fig. 3.1.
We split the methodology into three stages or phases: i) exploratory, ii) development
and iii) analysis phase.

Exploratory Phase

Prior Knowledge

Observation & motivation

Objectives definition

Development phase

Solution development

Solution implementation

Analysis phase

Analysis of results

Concluding remarks

Fig. 3.1: Thesis methodology

In the exploratory phase, we analyze the available literature related to concepts
such as AI, functional safety certification, and safe deployment and execution on
HPEC platforms. From it, we define the goal of this Thesis: “the safe deployment
of safety-related systems involving the use of AI on HPEC platforms” by including
software diagnostics. Having defined and formulated the goal in the observation
and motivation step, we describe and define complementary objectives to achieve
the goal of this Thesis.

31

In the development phase, we deal with these objectives in an iterative development
phase in which we initially define a theoretical solution and a development frame-
work. Then, we carry out the implementation in the embedded platforms in the
solution implementation step and come back to the solution development to address
new challenges arising during the implementation.

Finally, the analysis phase evaluates the resulting solutions concluding with dissemi-
nating the research work. These works have been partially validated by the research
community and published in journals and conferences [113]–[115].

3.2 Experimental Set-up

This section describes the elements composing the evaluation framework of this
Thesis. For an easier understanding, we depict in Fig. 3.2 the elements involved
in the development of each chapter: 1) coding guidelines (MISRA C) and static
code analysis tools (Polyspace®), 2) automotive datasets (Berkeley DeepDrive),
3) embedded platforms considered, 4) object detectors based on ML (YOLO-v3
and Tiny YOLO-v3) and 5) high-performance MMM (CUTLASS). We follow an
incremental strategy from lower to higher performance, motivated by the fact that
the safety implications increase when increasing the complexity of the platforms
where these systems are deployed.

Fault detection at runtime
Catalog of
checksums

Matrix-matrix
multiplication (MMM)

Sequential
Implementation

Vectorized
Implementation

CUDA
Implementation

C-based MMM
(extracted from Darknet)

CUDA and PTX-
based MMM

(CUTLASS library)

C-based

AVX-based

CUDA and
PTX-based

AVX-based MMM
(extracted from Darknet)

5

 Berkeley
 dataset

Most error-prone
layers

A layer-by-layer selection
 of diagnostic mechanisms

Embedded Platforms

MMMs

 YOLO-v3 & Tiny YOLO-v3

NVIDIA Xavier NX

Zynq UltraScale+

MMMs

 YOLO-v3 & Tiny YOLO-v34

3

4

C
H

A
PT

ER
 1

C
H

A
PT

ER
 2

C
H

A
PT

ER
 3

Performance impact
+ Diagnostic coverage

Performance
impact

Diagnostic
coverage

Intel i7-6600

MMMs

 YOLO-v3 & Tiny YOLO-v34

2

Ac
hi

ev
ab

le
Pe

rfo
rm

an
ce

Sa
fe

ty
ad

he
re

nc
e

to
st

an
da

rd
s

MISRA C & Polyspace MISRA C & Polyspace1

Systematic error avoidance
Performance

impact

Diagnostic
coverage

Fig. 3.2: Thesis contributions and elements involved in their development

32 Chapter 3 Methodology and Experimental Set-up

3.2.1 MISRA C and Polyspace®

MISRA C and MISRA C++ are a set of C and C++ coding guidelines focusing on
the safe, secure and reliable development of embedded software [116]. The Motor
Industry Software Reliability Association (MISRA) developed these guidelines target-
ing the automotive domain during their design phase. However, their use has spread
across multiple domains, such as medical or automation, and functional safety stan-
dards, such as ISO 26262 and IEC 61508, enforce their use. Regarding whether the
information provided by these guidelines can be unambiguously checked or are open
to interpretation, they split into a set of rules and directives, respectively, and label
them according to the compulsory compliance as advisory, required, or mandatory.

Decidable rules are those rules that can be statically checked and conclusively
verified, e.g., using static commercial tools. Polyspace® [117] is one of them,
offering a compliance analysis of C, C++, and Ada code according to MISRA
guidelines. It supports the adherence to coding rules in several editions of these
standards MISRA-C:2004, MISRA-C:2012, MISRA AC AGC, and MISRA-C++:2008,
AUTOSAR C++14, allowing the generation of independent confirmation of compli-
ance with standards.

3.2.2 Berkeley DeepDrive dataset

Berkeley DeepDrive is a public benchmark providing a large-scale driving video
dataset for heterogeneous multitask learning based on image recognition [118].
This dataset collects a set of videos from tens of thousands of drivers in a crowd-
sourced manner, providing 100k forty seconds of driving videos recorded at different
times of the day under several weather conditions with a focus on diversity. For
this purpose, the videos include diverse scenarios such as residential areas, city
streets, and highways recorded with a 30 fps frame rate, 720p resolution, and
Global Positioning System (GPS)/Inertial Measurement Unit (IMU). All are publicly
available in https://www.bdd100k.com/, where videos are decomposed into three
categories: i) training, ii) validation, and iii) testing. In Fig. 3.3, we depict five
images extracted from the validation category and label them according to their
names in this dataset.

3.2 Experimental Set-up 33

https://www.bdd100k.com/

(a) 4b2662a8-00000000 (b) 82b5764d-00000000

(c) 96009a72-7eb1ba47 (d) 9e75b2a9-98437b5b

(e) b499ff48-6a0b212e

Fig. 3.3: Set of images extracted from Berkeley DeepDrive dataset

3.2.3 Embedded platforms

In this subsection, we briefly describe the characteristics of the embedded platforms
employed during the development of this Thesis. We have followed an incremental
strategy from lower to higher platform complexity, focusing initially on single-core
implementations towards higher levels of parallelism (e.g., GPUs).

Zynq UltraScale+ MPSoC

In this Thesis we use the Xilinx® UltraScale+ Multi-Processor System-on-Chip
(MPSoC) [119], more specifically the EG family, for single-core experiments. The
architecture of this platform comprises a high-performance FPGA, MPSoC and a ded-
icated Arm® Mali™-400 MP GPU. In Fig. 3.4 we depict UltraScale+ architecture.

34 Chapter 3 Methodology and Experimental Set-up

Zynq UltraScale+ MPSoC provides a Processing System (PS) including a quad-core
Arm v8-based Cortex®-A53 (64-bit) Application Processor Unit (APU) combined
with a dual-core Arm Cortex®-R5F Real-time Processing Unit (RPU), being a repre-
sentative safety device that is certified up to SIL 3 according to IEC 61508 and up to
ASIL C regarding to ISO 26262 [31]. Additionally, the PS includes a large number of
peripherals and dedicated functions to support the functionalities of the processors.
The APU includes L1 and L2 cache hierarchy memories of 32KB I/D per core and
1MB, respectively. The RPU also includes a L1 cache memory of 32KB I/D per core
and includes, in addition, a Tightly Coupled memory subsystem. Both RPU and APU
have access to a 256KB on-chip memory.

ARM-A53 ARM-A53

ARM-A53 ARM-A53

APU (Quad ARM COREs)

L2 cache memory

RPU (Dual ARM COREs)

ARM-R5F ARM-R5F

OCM

GPU MALI-400 MP2

L2 cache memory

Processing System

Programmable Logic

Interfaces

Platform Management

Unit (PMU)

ULTRARAM
 100G Ethernet
 VIDEO CODEC
 PCIe GEN4

https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html#productAdvantages

System functions

CONFIG AND SECURITY

Additional memory

subsystems

Fig. 3.4: Zynq UltraScale+ Architecture (EG device family)

Intel® core™ i7-6600U Processor

Intel® core™ i7-6600U [120] is a processor from the 6th generation of Intel launched
in 2015. Its specifications are summarized in Table 3.1. This processor includes
vector capabilities through integrating Single Instruction Multiple Data (SIMD) in-
structions and vector registers, accelerating the most computing-intensive workloads
when performing identical operations on multiple data elements. In particular, this
processor incorporates Intel Streaming SIMD Extensions (SSE)4.1, Intel SSE4.2
and Intel Advanced Vector Extensions (AVX)2 Instruction Set Architecture (ISA).
Intel offers the possibility of programming these extensions with assembly code
and using C intrinsic functions that implement a sequence of compiler instructions
directly [121].

3.2 Experimental Set-up 35

Tab. 3.1: Intel core™ i7-6600U specifications [120]

CPU Specifications
Total cores 2
Total Threads 4
Max Turbo Frequency 3.40 GHz
Intel Turbo Boost Technology 2.0 Frequency 3.40 GHz
Processor Base Frequency 2.60 GHz
Cache 4 MB

NVIDIA® Jetson Xavier Nx

NVIDIA® Jetson Xavier NX [122] is a high-performance platform offering a compact
implementation. This platform integrates an embedded NVIDIA® Volta GPU archi-
tecture (compute capability version 7.2) with a six-core NVIDIA® Carmel Arm v8.2
(64-bit) heterogeneous multiprocessing CPU architecture. The Carmel cores have
64 KB L1 data cache and 128 KB instruction cache per core and share 6 MB and
4 MB L2 and L3 memory cache, respectively. The Volta GPU offers six Streaming
Multiprocessors (SMs) of 64 CUDA cores and 8 Tensor cores each SM, allowing a
simultaneous operation of a total of 384 CUDA cores and 48 Tensor cores. In Fig. 3.5,
we depict the Nvidia® Jetson Xavier NX architecture.

GLOBAL MEMORY

Memory Controller

L2 / L3 cache

CPU 1CPU 0 CPU 2

CPU 3 CPU 4 CPU 5

L2 cache

SM 3

SM 0

SM 4

SM 1

SM 5

SM 2

Carmel Cores Volta GPU architecture

NVIDIA Jetson Xavier NX SoC

Fig. 3.5: NVIDIA® Jetson Xavier NX architecture

36 Chapter 3 Methodology and Experimental Set-up

3.2.4 YOLO-v3 and Tiny YOLO-v3

You Only Look Once (YOLO) is a one-stage object detector whose backbone network
is Darknet [123], a CNN coded in C and CUDA. We have selected it among the huge
variety of current object detection algorithms [124] not only for its high accuracy on
perceptual tasks [94], but also because its reliability has been widely studied [19],
[26], [94], [95]. There are several versions of this object detector [125]–[127],
and all of them involve the use of three types of layers: i) the convolutional layers
that extract the features from the input image, ii) max-pooling layers reducing the
feature map and iii) fully connected layers classifying the input. This Thesis focuses
on Tiny YOLO-v3 [125] and YOLO-v3 [126].

YOLO is a multi-scale object detector that resizes the input image or frame to
predefined values and splits it into grids of S×S cells. These S values vary according
to the YOLO configuration and version. The higher the S value, the better the
detection of larger objects and vice-versa. YOLO employs multi-scale predictions;
that is, the prediction relies on multiple-scale feature maps associated with the above
cell. In particular, YOLO-v3 uses the feature extractor Darknet-53, a residual network
with 53 convolutional layers that produce feature maps on three scales (13×13,
26×26, and 52×52). In contrast, Tiny YOLO-v3 is the reduced version of YOLO-v3
with a smaller feature extractor that splits into a lower number of convolutional
layers (13 nested layers), computing the feature maps on two scales (13×13 and
26×26). As a representative example, we depict its architecture in Fig. 3.6.

Fig. 3.6: Tiny YOLO-v3

These feature maps contain a list of bounding boxes with the classes recognized at
each scale. These bounding boxes extend in four features: confidence score, the
probability that the box contains a specific class, center coordinates, and box dimen-
sions. According to Fig. 3.7, the coordinates of the box center are bx and by, and bh

and bw correspond to the box height and weight dimensions. After post-processing

3.2 Experimental Set-up 37

of the feature maps from the different scales, YOLO obtains the final bounding boxes
predictions by applying concepts such as Non-Max Suppression or the intersection
over union (IoU) (although this stage is out of the scope of this Thesis).

bh

bw

(bx,by)

Fig. 3.7: Bounding box and nomenclature employed by YOLO object detector

Darknet offers the user a selection of MMM based on implementation needs [123]:
i) General Matrix Multiplication (GEMM) function for the sequential implementation
on CPUs, ii) CUBLAS for the GPU implementations and iii) other processor-specific
variants such as the use of AVX for Intel processors. Additionally, the software
developer can include its own MMM implementation or any other (i.e., CUTLASS).

3.2.5 CUTLASS

CUTLASS is a collection of templates coded in CUDA and C++ that abstract the
high-performance matrix-multiplication implementation. This open-source and
low-level library decomposes this algebraic operation into software modules using
C++ template classes. These modules divide matrix multiplication into thread,
warp, block and device levels, as can be seen in Fig. 3.8. This figure highlights the
memory transfer in each iteration of the most external loop of the Matrix Multiply-
Accumulate (MMA) (C += A × B). Additionally, CUTLASS allows tuning through
custom data types, tiling sizes and other algorithmic policies.

matrix C

Global memory Shared memory Register file SM CUDA Cores

matrix B
matrix A

Thread tileWarp tileThread block tileBlocked GEMM

Fig. 3.8: Cutlass GEMM hierarchy [18]

38 Chapter 3 Methodology and Experimental Set-up

Safe Deployment of MMM in
Sequential Implementations

4
The scope of this chapter relates to solutions for mitigating systematic and random
errors in MMM software libraries executed on HPEC platforms. Our contribution
lies in defining a ‘safe MMM’ software module. This arithmetic operation is the
central computing element of many ML libraries [14], as it takes 67 % of the CNN
execution time according to the results obtained from YOLO-v3 implemented on
NVIDIA GPUs [26] and 98.5 % and 87 % in single Arm and Intel cores, respectively,
according to our experiments. An error in the MMM execution could lead to miss-
classification in the object detection tasks. As an illustrative example, the authors
in [28], [95] perform a fault1 injection campaign to demonstrate how a single-bit
error could result in a wrong classification of a horse as a sheep or a truck as a bird,
respectively. Their results reveal that 25 % of the faults forced in a specific case study
employing the YOLO object detector lead to an unsafe situation [95]. The next
chapter depicts the miss-classification in a GPU-based object detection task when a
single bit-flip occurs in the CNN weights.

Therefore, in this chapter, we provide solutions to mitigate systematic errors and
to detect and control random errors in the MMM execution, using as baseline the
non-vectorized GEMM implementation (scalar MMM) and the vectorized MMM
implementation (AVX-based MMM) extracted from the Darknet CNN [123]. The
former is interesting from a safety perspective, as it is the closest option to current
safety practice. However, at the same time, the scalar implementation provides the
poorest performance, which is also an important property for ML inference. Trying to
find a balance between safety and performance, we first advocate for the AVX-based
MMM instead of the CUDA-based MMM. The main reason for this is the safety
implications involved with CUDA-based implementations: the closed-source nature
of the high-performance MMM libraries, the lack of or limited support for developing
safety-critical software through available GPU programming languages [128], and
GPU’s features, such as dynamic memory allocation [19], among others. We will
partially cope with these challenges in the following chapter. This one contributes
with the following modifications to the scalar and AVX-based MMMs:

1Since the injection consists of flipping bits, they can be considered faults or errors. Hence, we could
use both terms interchangeably in our discussion. However, we generally refer to them as errors
except when talking about injection since fault injection is the most common term in the domain.

39

1. We define and implement the required modifications for the avoidance of
systematic errors in the implementation of the MMM function with the help
of Polyspace [117]. Likewise, we evaluate Darknet CNN to demonstrate that
complying with the specifications demanded by coding guidelines such as
MISRA C is feasible with limited effort.

2. We identify and integrate a variety of suitable diagnostic mechanisms to attain
different levels of Diagnostic Coverage (DC) against random errors in HPEC
platforms and residual systematic errors in the design. For that, we integrate
existing checksums in one of the Arm R5 cores of a Zynq UltraScale+ MPSoC,
and we then adapt them to an Intel i7 processor with native code employing
vectorization for the sake of performance (AVX instructions). In addition,
we define two common safety architectural patterns where the previously
mentioned diagnostics could be used to implement error detection.

3. We assess the DC and the performance penalty incurred by previous measures
for a given set of representative matrix dimensions. For that, we perform
exhaustive single-bit error injection. As a result, we provide a catalog of
mechanisms with varying levels of DC and performance impact, allowing the
final user to choose a solution based on system needs.

4. Additionally, we compute the overall performance impact incurred by indi-
vidually including each catalog diagnostics mechanism in YOLO-v3 and Tiny
YOLO-v3 with both implementations.

The rest of this chapter is organized as follows: Sections 4.1 and 4.2 define the pro-
posed adaptations to obtain a ‘safe MMM’ with configurable DC levels. Specifically,
the focal point of Section 4.1 is the avoidance of systematic errors, while Section 4.2
targets the detection of errors. Section 4.3 presents the evaluation results of the
proposed modifications. Finally, Section 4.4 draws a summary.

4.1 Systematic error avoidance in the MMM

In this section, we focus on the avoidance of systematic software errors. To that end,
we have verified the source code of the scalar MMM, and implemented the resulting
verification comments, according to the following recommendations:

• Usage of a safe subset of the “C language” according to the MISRA C coding
guideline [116]. According to ISO 26262-6 Table 1 the use of a language
subset (where unsafe language features are excluded) is a HR technique for
any ASIL [2] and for SIL 3 and higher according to IEC 61508-3 Table A.3 [1].

40 Chapter 4 Safe Deployment of MMM in Sequential Implementations

More explicitly, IEC 61508 states in 7.4.4.12 that “programming languages for
the development of all safety-related software shall be used according to a suitable
programming language coding standard”.

• Use of defensive programming where input parameters are checked with
respect to coherence and correctness. This is also a HR technique in same tables
of both ISO 26262 and IEC 61508 for ASIL D/SIL 3 or higher. Concretely, the
standards recommend their use to check data or control anomalies at runtime.
In particular, we check that pointers to matrices do not have “NULL” values.

After using the Polyspace tool to check the adherence to MISRA C, we identify 33 vi-
olations in the scalar MMM as shown in Fig. 4.1. That is not the case with vectorized
code, for which the MISRA C specifies that all the used compiler extensions must
be analyzed from a safety point of view and approved or rejected on a case-by-case
basis. We observe that the corrections required by the MISRA C directives (identified
with the letter ‘D’) and rules need limited engineering effort as described below:

• D4.6: Twenty-two violations were due to not explicitly defining types with the
size and signedness for basic numerical types. In this case, we explicitly define
the required types.

• D4.14: Six violations were caused by not checking the correctness of input
parameters. As explained before, we implement ‘defensive programming’ as a
corrective action.

• 12.1: Three violations were due to not explicitly defining the desired prece-
dence of operators within expressions. In this case, we explicitly define the
operator precedence.

• 8.13: Two violations were caused by not explicitly defining input parameter
pointers as a const-qualified type. We explicitly qualify as constant all input
parameter pointers to data content that are not internally modified as a
corrective action.

0 2 4 6 8 10 12 14 16 18 20 22

D4.6

D4.14

12.1

8.13

Number of coding guidelines violations

D
ir

ec
ti

ve
 (

D
)

/
R

u
le

 ID

MISRA C:2012 Guidelines Summary - Violations by Rule

Fig. 4.1: Scalar MMM software MISRA-C:2012 compliance analysis: rules and directives
(D) violated according to a Polyspace analysis.

4.1 Systematic error avoidance in the MMM 41

It is worth mentioning that we achieve full MISRA C compliance with the Polyspace
tool once we apply the above recommendations.

Additionally, we analyze the complete Darknet CNN, identifying 2,332 violations. In
the same manner, these violations do not require a significant effort to accomplish
MISRA C. However, the implementation of the respective modifications is beyond
the scope of this chapter, as we follow an incremental strategy in which we initially
focus on small subsets of code in this chapter (the MMM), rather than the entire
CNN. For illustrative purposes, in Fig. 4.2 we depict the five most repeated violations,
which account for 64.5 % of the total.

0 100 200 300 400 500 600 700

D4.6
10.3
15.6
12.1
D1.1

Number of coding guidelines violations

D
ire

ct
iv

e
(D

) /
 R

ul
e

ID

MISRA C:2012 Guidelines Summary - Violations by Rule

Fig. 4.2: Darknet CNN MISRA-C:2012 compliance analysis: top 5 of rules and directives
violated in the Darknet CNN code according to a Polyspace analysis.

The adherence to directive D4.6 and rule 12.1 can be achieved with previous
corrective actions and the additional ones described below:

• D1.1: These violations are related to explicitly defining the implementation-
defined behavior that affects the outputs, such as casting from integers to
floating-points. As suggested by MISRA C, the corrective action is to elaborate
a conformance matrix with the procedures to be followed by the developer and
to document it to ensure that the code complies with all MISRA C standards.

• 15.6: These violations concern the use of a compound statement to enclose the
body of an iteration or selection-statement. The corrective action lies in the in-
clusion of this compound statement to clarify which statements form the body.

• 10.3: The assignment of a value from an expression to an object with a
narrower essential type shall not be made. The easier corrective action is to
cast to the same essential type.

4.2 Error Detection in the MMM
Providing a safe inference execution environment for the YOLO MMM software
module requires the deployment of diagnostics for runtime error detection [129].
Diagnostics techniques implementation could be considered outside the scope of
YOLO MMM, exporting such requirements to the system architect and integrator.

42 Chapter 4 Safe Deployment of MMM in Sequential Implementations

However, the implementation of simple generic diagnostics techniques built-in in the
MMM software module can provide an efficient solution to achieve the required DC
with a reduced effort for the system integrator [31], [130]. For example, detecting
errors due to cache coherency, cache errors, interconnect errors and core execution
that could lead to incorrect computation errors can be a challenge in HPEC multi-core
devices [31] and also from a system integration perspective [31], [130].

In this section, we propose the use of an ES as a means of diagnosis, which can
provide a scalable strategy with varying levels of achievable DC and the associated
computational cost. The ES, described in Section 4.2.1, can summarize in a reduced
number of bits (e.g., 32 bits) the computed data and program sequence for later
comparison in one of the architectural patterns described in Section 4.2.2.

4.2.1 Execution Signatures

Among the state of the art, we have identified XOR, two’s and one’s complement ad-
dition, Fletcher and CRC as potential diagnostic techniques to compute the ESs [46],
[131]. These error detection techniques are widely used to assure network message
data integrity at different levels of error detection effectiveness [46]. For details
about the effectiveness of each of these techniques, we refer the reader to [46]
and [131], which make an evaluation of the error detection properties of each of the
checksum algorithms, proposing methods for the selection of the most appropriate
one (based on parameters such as the length of the code, the kind of errors or the
selection of a polynomial generator used in the CRC algorithm [132]). The novelty
of this chapter rests in the integration of these existing diagnostics into the MMM
and the evaluation of both, the performance impact and achievable DC based on the
data to be protected and the checksum or combination of checksums employed. This
approach allows verifying not only the bit-wise correctness of the data involved in
the MMM execution but also a proper program sequence with a reduced number of
bits (32 in scalar and AVX-based implementations) and the diagnosis of all internal
platform components that take part in the computations.

The MMM is an algebraic operation usually coded and implemented through nested
loops as shown in Algorithm 1. The ES can be calculated by integrating the checksum
algorithm(s) in any of the loops, or a combination of loops and checksum algorithms.
The methodology that we employ in this contribution can be extrapolated to MMM
involving a different number of loops. In our case, both the scalar MMM and AVX-
based MMM implementations use three loops for computing the MMM, denoted as
inner (I), intermediate (M) and external (E) loops as shown in Algorithm 1.

4.2 Error Detection in the MMM 43

Algorithm 1 MMM loops
1: for each column of the first matrix do
2: External loop statements
3: for each row of the first matrix do
4: Intermediate loop statements (Store the value of the first matrix in a register)
5: for each column of the second matrix do
6: Internal loop statements (Compute the multiplication)
7: [Checksum (I)]
8: end for
9: [Checksum (M)]

10: end for
11: [Checksum (E)]
12: end for

The deeper the loop where the checksum is implemented, the higher is the potential
achievable DC because the higher is the amount of data and computation summa-
rized in the ES, at the cost of increasing the required computational penalty required
to generate the ES. Therefore, the potentially achievable DC level depends on the
length of the ES and the data protected, the selected checksum algorithm, and the
loop level where it is implemented. These statements are independent of the number
of loops employed for the implementation of the MMM. In this chapter, instead of
defining a specific solution, we explore all these different alternatives, providing a
catalog of solutions that can be tailored to the concrete needs of the applications in
terms of performance and DC.

The implemented checksums compute the ES of A, B and C matrices (where the
duty of the MMM is to compute (C = A × B)) and store these ESs values in three
independent variables (one for each matrix). Once the multiplication is complete,
the selected checksum is again employed to combine all signatures into a single one.
However, the inclusion of certain checksums, such as Fletcher and CRC in the internal
loop, can be an unaffordable solution in terms of performance. Fortunately, it is
expected that combining these algorithms in the outermost loops with checksums
with a lower performance penalty in the inner loop will provide a reduction in
overhead and an increase in DC over individual implementations. For that reason,
we have designed a catalog with individual and combined checksums to provide the
user with a wide variety of DC and performance penalty alternatives. The catalog
can be divided into two groups according to the checksum involved in the MMM:

• Individuals: employ a single checksum algorithm in one of the three loops (I,
M, E) of Algorithm 1.

• Combinations: use different checksum algorithms with lower performance
impact in the internal loop (I) and higher performance impact, and higher
DC, in the intermediate loop (M) (e.g., XOR_Fletcher means that a XOR is
computed in the internal loop and a Fletcher in the intermediate loop).

44 Chapter 4 Safe Deployment of MMM in Sequential Implementations

We decompose this subsection into two additional ones to better explain how the
MMM coding and other aspects such as the compiler instructions influence the
implementation of the diagnostics with respect to being the scalar and AVX-based
implementation.

Scalar Implementation

We refer the reader to appendix 8.1, where we detail the code employed in scalar
implementation (Algorithms 6 to 11). However, in favor of the understandability of
the checksum combinations, Algorithm 2 shows an example of the code employed
to compute the ES with a XOR_Fletcher checksum combination. We can see how
in lines 3-5 we have applied defensive programming to check that the pointers to
the arrays do not have “NULL” values. In lines 14, 15, and 17 we code the XOR
checksum to compute the ES of the matrices B, C, and A respectively. All these
values are summarized into a single ES in line 18 with the XOR checksum. Finally,
the Fletcher checksum is coded in line 19 to perform a new ES from the ES computed
by the XOR checksum.

Algorithm 2 Scalar MMM with XOR_Fletcher checksums implemented
1: function SMM_XOR_INTERMEDIATE(uint32_t ui32_m, uint32_t ui32_n,

uint32_t ui32_k, float32_t f32_alpha, const float32_t* const paf32_ma,
const float32_t* const paf32_mb, const float32_t* const paf32_mc)

2: //Definition of local variables
3: assert(paf32_ma != NULL); ▷ Defensive programming
4: assert(paf32_mb != NULL);
5: assert(paf32_mc != NULL);
6: for (ui32_idx_i = 0u; ui32_idx_i < ui32_m; ui32_idx_i++) do
7: ui32_idx_b_ref = 0u;
8: for (ui32_idx_k = 0u; ui32_idx_k < ui32_k; ui32_idx_k++, ui32_idx_a++) do
9: f32_a_part = f32_alpha * paf32_ma[ui32_idx_a];

10: for (ui32_idx_j = 0u, ui32_idx_b = ui32_idx_b_ref, ui32_idx_c = ui32_idx_c_ref;
ui32_idx_j < ui32_n; ui32_idx_j++, ui32_idx_b++, ui32_idx_c++) do

11: f32_b = paf32_mb[ui32_idx_b]; ▷ Multiplication
12: paf32_mc[ui32_idx_c] += f32_a_part * f32_b;
13: f32_c = paf32_mc[ui32_idx_c];
14: ui32_xor_b ⊕= (uint32_t) * ((uint32_t *) &f32_b); ▷ XOR ES
15: ui32_xor_c ⊕= (uint32_t) * ((uint32_t *) &f32_c);
16: end for
17: ui32_xor_a ⊕= (uint32_t) * ((uint32_t *) &f32_a_part);
18: ui32_xor = (ui32_xor_a ⊕ui32_xor_b) ⊕ ui32_xor_c;
19: Fletcher.ui32 = Fletcher32c_ui32(Fletcher, ui32_xor); ▷ Fletcher ES
20: ui32_idx_b_ref += ui32_n;
21: end for
22: ui32_idx_c_ref += ui32_n;
23: end for
24: return Fletcher.ui32;
25: end function

4.2 Error Detection in the MMM 45

Additionally, we show the code of the Fletcher checksum in Algorithm 3. As it
can be seen, the Fletcher function receives the union datatype ui32_to_ui16_t
(Algorithm 4) with the current Fletcher ES and an uint32_t datatype with the data
to be protected.

Algorithm 3 Scalar Fletcher
1: function FLETCHER32C_UI32(uint32_t Prev_Fletcher, uint32_t ui32_data)
2: ui32_to_ui16_t v;
3: ui32_to_ui16_t Fletcher;
4: v.ui32 = ui32_data;
5: Fletcher.ui32 = Prev_Fletcher;
6: Fletcher.ui16[0] += v.ui16[0];
7: Fletcher.ui16[1] += Fletcher.ui16[0];
8: Fletcher.ui16[0] += v.ui16[1];
9: Fletcher.ui16[1] += Fletcher.ui16[0];

10: Fletcher.ui16[0] %= 255u;
11: Fletcher.ui16[1] %= 255u;
12: return Fletcher.ui32;
13: end function

The union has been employed to access the same memory position with two
datatypes: i) uint32_t and ii) an array of two uint16_t values. The use of the
union has been motivated by the nature of the Fletcher checksum, which involves
decomposition into two smaller blocks to carry out the ES computation.

Algorithm 4 Union definition
1: typedef union ui32_to_ui16 {
2: uint32_t ui32;
3: uint16_t ui16[2u];
4: } ui32_to_ui16_t;

Regarding the implementation of the CRC algorithm, we resort to lookup tables for
its execution. This method accelerates the protection of MMA operations as follows:
1) we precompute the ES applying the CRC algorithm to all chunk’s possible values
of a prefixed number of bits (n). These values are stored in a 2n lookup table, and
2) we access these CRCs values at runtime.

AVX-based Implementation

The protection of the MMM in the AVX-based implementation has certain pecu-
liarities. AVX execution lies on the SIMD paradigm. The maximum data length
computed with each instruction depends on the ISA, the size of the registers, and
the instruction itself. This length determines the data management performed in the
MMM computation and it affects its protection. In this way, we perform the MMM

46 Chapter 4 Safe Deployment of MMM in Sequential Implementations

with AVX instructions going through the rows of A matrix and the columns of B

matrix multiplying data chunks, which match the length of the data vector managed
by the processor until reaching the last data chunk. For the last data chunk, we check
if the length is lower than that managed by the processor and, if it is, we perform
the MMM of this chunk of data and its protection sequentially to avoid incorrect
accesses to undefined memory locations. In Alg. 5, we depict our AVX-based MMM
implementation for an easier understanding. In our case, the ISA of the employed
intel core i7-6600 supports AVX2 and carries 256-bit numeric processing capabilities,
allowing it to handle operations with eight floating point values of 32 bits. In Alg. 5,
the reader can observe that we employ the variable prev_end to check whether the
number of rows of A and columns of B matrices (referred to as ui32_n variable)
matches the data size of the data managed by the compiler and, if not, to compute
the MMM of that data chunk sequentially.

Algorithm 5 MMM implementation based on AVX instructions
Auxiliar variables:
uint32_t prev_end = (ui32_n % 8);

1: for each column of A matrix do
2: External loop statements
3: for each column from B matrix do
4: Intermediate loop statements
5: for group of eight rows from A matrix a do
6: Internal loop statements (compute the multiplication)

 AVX-based implementation
7: [Checksum (I)]
8: end for
9: if 0 ̸= prev_end then

10: for each value of the last group do
11: Internal loop statements (compute the multiplication)

 Scalar implementation
12: [Checksum (I)]
13: end for
14: end if
15: [Checksum (M)]
16: end for
17: [Checksum (E)]
18: end for

a Excepting last group if it is < 8, in that case the MMM and its protection is performed sequentially

We refer the reader to appendix 8.2, where we detail the code employed in AVX-based
implementation (Algorithm 12 to 16).

However, the computation of the ES by itself is not sufficient for detecting errors at
runtime. The use of safety architectural patterns, explained in the next subsection,
becomes an inherent part of their implementation as diagnostic techniques.

4.2 Error Detection in the MMM 47

4.2.2 Architectural Patterns

Taking into consideration the architectural patterns and DC techniques for HPEC
multi-core devices described in [31], and the safety measures proposed by the safety
standards (IEC 61508, ISO 26262) considered in this work, this section defines two
basic and common architectural patterns that support safe detection of faults based
on previous diagnostic techniques (see Fig. 4.3) with different HFT levels:

Periodic diagnosis with design time fixed data pattern(s)2. Applying this pattern the
‘safe MMM’ executes at least once every DTI (Fig. 4.3b) or Process Safety Time (PST)
according to ISO 26262 or IEC 61508, respectively. In the rest of executions the
MMM operates without diagnosis, as the reader can observe in Fig. 4.3b. The ‘safe
MMM’ takes predefined reference input data vectors at design time, being correct if
it leads to known reference outputs and known ES (see Fig. 4.3a). If the obtained
ES does not match the expected design time ES value, a random error may have
occurred, and the repetition of this error can determine whether it is transient
or permanent. This pattern enables the periodic diagnosis of device components
and built-in techniques, carrying a performance impact against the normal matrix
multiplication operation (M). Additionally, it can be used in a single channel archi-
tecture (HFT=0) or in redundant architectures (e.g., triplicated architecture with
HFT=2). Error detection can be used to detect the erroneous channel prior to the
voting process, and application-specific measures can be implemented (e.g., restart
erroneous channel, activate safe state...).

Redundancy (with or without diversity) . The ‘safe MMM’ software, or a complete
safe YOLO library that integrates the ‘safe MMM’, is executed with redundancy by n
replicas (e.g., 1oo2, 2oo3) and for each redundant execution, both an output and
ES values are generated. After that, the voting mechanism compares ES values
(and optionally the output) (Fig. 4.3c), discarding the replica(s) with discrepancies
for each computation cycle (Fig. 4.3d) and/or implementing application-specific
measures (e.g., restart erroneous channel). The comparison of just the output values
would not generally be sufficient to detect latent errors (e.g., faults in matrix B

–weights matrix– cannot be detected in the output matrix C for a given set of A

matrices if those matrices (A) take zero values in the positions computed with the
faulty position of matrix B). This can provide a ‘correct’ output while it masks a latent
error that would be detected on the ES. This pattern implies a higher computational
cost than the previous as the ‘safe MMM’ is executed in each execution period (τ)
by the n replicas. However, the correctness of components and of the output is

2It should be noted that MMM in normal operation executes sequentially without diagnostics (imply-
ing a run time per run denoted as N in Fig. 4.3b).

48 Chapter 4 Safe Deployment of MMM in Sequential Implementations

diagnosed in every execution period, and it can support fault-tolerance as later
explained in Section 4.3.5 (e.g., a 2oo3 architecture could tolerate one discrepancy).
In order to further improve DC by the detection of CCFs, the redundant pattern can
be complemented with different types of diversity [31], such as component diversity
(e.g., implementing the MMM in different types of cores of a multi-core platform).

Safe MMM

Known outputs
and ES data

Fi
xe

d
in

pu
t d

at
a

Er
ro

r d
et

ec
ti

on detected
error

output

(a) Periodic diagnosis pattern

MMM1
…

M x N N

MMM1
 Channel 1

t

Safe MMM1

DTI

MMM2 …MMM2
 Channel 2 Safe MMM2

… ……… …

MMMn …MMMn
 Channel n Safe MMMn

MMM1

MMM2

…

MMMn

(b) Periodic diagnosis pattern scheduling

Safe MMM1

…

Safe MMMn O
ut

pu
t v

ot
in

g
an

d
er

ro
r d

et
ec

ti
on

In
pu

t d
at

a

ouput

detected
error

(c) Redundancy pattern

Safe MMM2

…

Safe MMMn

Safe MMM2

…

Safe MMMn

Safe MMM2

…

Safe MMMn

Channel 2

Channel n

Safe MMM1 Safe MMM1 Safe MMM1
Channel 1

 …

…

…

…

…

DTI

t

(d) Redundancy pattern scheduling

Fig. 4.3: Safety architectural patterns

4.3 Evaluation

In this section, we evaluate the execution time penalty caused by the inclusion of
the different diagnostics from Section 4.2 in the scalar MMM and AVX-based MMM
extracted from YOLO, as well as the maximum achievable DC of each ES for the
detection of single-bit errors. In addition, we provide a discussion of compliance of
our diagnostics catalog to DC ranges established by functional safety standards.

4.3.1 Experimental Set-up

In this chapter, we have implemented the scalar MMM function on one of the
Arm R5 lock-step cores of a Zynq UltraScale+ MPSoC device and an AVX-based
solution employing vectorization on the Intel core i7-6600U processor. However, the
overall approach is platform-independent and can be adapted to diverse platforms.

4.3 Evaluation 49

In the upcoming chapters, we will apply the same approach to platforms that
include GPU accelerators. Nevertheless, this methodology could be used for other
implementations, such as those based on FPGAs.

The scalar MMM has been compiled employing the Arm v8 gcc 7.3.1 compiler,
while AVX-based MMM has been compiled with Microsoft Visual C++ (MSVC)
compiler version 14.16, both without optimizations. Despite the fact that compiler
optimizations are desirable from a performance point of view, they may bring
challenges for safety-related systems. For instance, altering the control flow or
the organization of multi-condition branches. In this chapter, we have opted for
disabling compiler optimizations in both implementations to avoid side effects.
Notwithstanding, we have performed a subset of experiments employing high-level
compiler optimizations to explore its influence on the performance impact incurred
by the adoption of checksums. We have employed the highest optimization level
provided by gcc (O3) and MSVC (O2) compilers to evaluate the highest possible
impact with respect to the unoptimized experiments.

We have decomposed both the DC and performance impact experiments into two
groups based on the MMMs dimensions: i) square matrices seeking to evaluate the
influence of matrices sizes when we preserve the same relationship between the
number of rows and columns and ii) unbalanced matrices focusing on assessing the
representativeness of matrices dimensions in performance impact experiments and
the variability of the DC when the relationship between rows and columns changes.
It should be pointed out that, as we explain above, the chosen matrices dimensions
are smaller than those involved in the CNNs executions. The reasons vary according
to the experiments. On the one hand, performance impact experiments aim to
identify variability in performance impact by modifying the size of the matrices,
which do not require large matrices to extract a common tendency. On the other
hand, the evaluation of the DC requires executing the MMM with a single fault
injection (bit flip) as many times as the number of bit positions in the matrices A and
B, which can involve an unaffordable computational cost if matrices are too large.

Regarding the time measurements, we have employed the following libraries:
i) “time.h” C library in AVX-based MMM and ii) “xtime_l.h”, a specific Xilinx C
library, in the scalar MMM function. The procedure followed in the performance
experiments consists of a loop of ten thousand iterations for each MMM of a subse-
quently defined set of matrices dimensions to obtain a mean time value. Additionally,
we disregarded the first ten time measurements to avoid cold-start problems from
the caches. We have assessed the performance impact with the matrices dimensions
depicted in Table 4.1, dividing them into two groups:

50 Chapter 4 Safe Deployment of MMM in Sequential Implementations

• Square matrices: we have performed the first set of experiments with square
matrices (A, B, and C) of dimensions N × N . These experiments have also
been performed with high levels of compiler optimization.

• Unbalanced matrices: we have also evaluated the performance impact of
unbalanced matrices with dimensions extracted from one of the most repeated
layers of our Darknet configuration (L91, where 91 refers to the position of
the extracted layer in the CNN). In this case, the dimensions for matrices are
M × K for A, K × N for B, and M × N for C.

Tab. 4.1: Matrices dimensions employed in performance impact experiments.

Square matrices

Name N N

80 × 80 80 80
160×160 160 160
320×320 320 320

Unbalanced matrices

Name M N K

L91 18 230400 64

To conclude these experiments, we have evaluated the performance impact incurred
by the adoption of our catalog of diagnostics in the MMM employed in YOLO-v3
and its Tiny version, employing both the scalar and AVX-based implementations. For
this purpose, we have employed ten thousand images extracted from the Berkeley
DeepDrive dataset as input to obtain the mean time value (disregarding the initial
ten timing measurements).

Regarding DC experiments, the computational cost required to perform this exhaus-
tive fault-injection campaign at bit level has lead us to the choice of smaller matrices
dimensions than those for the performance experiments as shown in Table 4.2:

• Square matrices: The dimensions of the matrices we have employed for the
performance assessment of DC are depicted in Table 4.2.

• Unbalanced matrices: we have evaluated smaller matrices keeping the rela-
tionship between rows and columns proportional to some of the scalar MMM
implementations of Darknet. We denote these matrices L1, L2 and L3, which
have been chosen as a representative example for the evaluation of the vari-
ability in error detection with respect to the dimensions of the matrices A or
B and the loop where the checksum is implemented. All these experiments
have been analysed in both, scalar and AVX-based MMM. For completeness,
we have also evaluated the DC of matrices extracted from Darknet employing
the scalar MMM. In Section 4.3.1 we have chosen the L59 layer due to the
reduced size of its matrices, when compared to other Darknet layers.

4.3 Evaluation 51

Tab. 4.2: Matrices dimensions employed in DC experiments.

Square matrices

Name N N

20×20 20 20
40×40 40 40
80×80 80 80

Unbalanced matrices

Name M N K

L1 32 29 144
L2 8 900 8
L3 15 225 48

L59 18 900 1024

4.3.2 Performance Impact

First of all, we define the performance impact as a ratio (n) in terms of execution
time as shown in Eq. (4.1) (where X and Y vary in function of the experiments):

n = Execution timeX

Execution timeY
[133] (4.1)

As a first step, we have measured the performance impact incurred by the adoption
of MISRA C coding guidelines and defensive programming. Here, the performance
impact is represented by the execution time of performing the MMM after adhering
MISRA C (X) divided by the execution time of the original scalar MMM (Y). We
have observed that these adaptations of the original MMM do not cause a relevant
overhead in the execution time (below 1 %, which may be influenced by the standard
deviation of the experiments themselves). Additionally, we have slightly adapted
the original code to optimize its performance in a 5 % while still complying with
MISRA C guidelines. This modification consists of the avoidance of unnecessary
re-computations in the internal and intermediate loops by the insertion of auxil-
iary variables in the intermediate and external loops. According to Eq. (4.1), in
this experiment, X refers to the scalar MMM accomplishing MISRA C after the
optimizations, and Y refers to the original scalar MMM.

For evaluating the performance slowdown incurred by the inclusion of the check-
sums, we first obtain the baselines (Y) for the optimized scalar and AVX-based
MMM. To this end, we have measured the execution time incurred by each of the
aforementioned matrices dimensions defined in Section 4.3.1 in both their scalar
(MISRA C compliant MMM) and AVX-based versions with no integrated diagnostic
mechanisms. These baselines reveal the execution time improvement achieved with
the AVX-based implementation, which ranges between 3.97 and 6.57 times faster
than the scalar MMM for the different matrices sizes. Based on these values, we
then obtain the performance impact incurred by the adoption of the ES on both
implementations, where according to Eq. (4.1), X relates to the MMM after the im-
plementation of the diagnostics catalog. The results are depicted in Fig. 4.4 and 4.5
respectively (the complete catalog can be identified in the y-axis of both figures).

52 Chapter 4 Safe Deployment of MMM in Sequential Implementations

1

2

3

5

X
O

R
 (E

)
X

O
R

 (M
)

X
O

R
 (I

)
O

N
E

's
 (E

)
O

N
E

's
 (M

)
O

N
E

's
 (I

)
TW

O
's

 (E
)

TW
O

's
 (M

)
TW

O
's

 (I
)

Fl
et

ch
er

 (E
)

Fl
et

ch
er

 (M
)

Fl
et

ch
er

 (I
)

C
R

C
 (E

)
C

R
C

 (M
)

C
R

C
 (I

)
X

O
R

_F
le

tc
he

r
X

O
R

_C
R

C
O

N
E

's
_F

le
tc

he
r

O
N

E
's

_C
R

C
TW

O
's

_F
le

tc
he

r
TW

O
's

_C
R

C
Fl

et
ch

er
_C

R
C

Checksum(s) algorithms

P
er

fo
rm

an
ce

 Im
pa

ct
 (

lo
g)

80x80
160x160
320x320
L91

Fig. 4.4: Scalar MMM: performance impact caused by the inclusion of a catalog of check-
sum algorithms disabling compiler optimizations.

The results of Fig. 4.4 are represented as follows: i) 80 × 80 is depicted with a
green solid line and a square marker, ii) 160 × 160 with a red dashed line and round
marker, iii) 320 × 320 with a blue dashed line and a triangular marker and iv) L91
with a yellow dot-and-dash line and a rhomboid marker. As shown in Fig. 4.4, the
performance impact decreases with increasing matrices size, approaching asymptot-
ically specific values for each ES. This reduction is expected since larger matrices
require an increasing number of memory accesses, which decreases the performance
impact incurred by the ES computation in relative terms. Furthermore, in this scalar
implementation, the individual experiments confirm the increase in performance
impact from the straightforward (XOR, two’s and one’s complement) to the more
intricate algorithms (Fletcher and CRC) as well as a smaller impact on the most
external loops (M, E) with respect to the internal loop (I). Additionally, we observe
that when the size of the matrices increases, the performance impact of the checksum
combinations tends to approximate to the performance impact incurred by the indi-
vidual checksum implemented in the internal loop. This means that for increasing
matrices sizes, the impact of the intermediate checksum (M) is comparatively lower
than the impact of the internal checksum (I) in relative terms.

4.3 Evaluation 53

1

2

3

5

IN
TE

L_
X

O
R

 (E
)

IN
TE

L_
X

O
R

 (M
)

IN
TE

L_
X

O
R

 (I
)

IN
TE

L_
O

N
E

's
 (E

)
IN

TE
L_

O
N

E
's

 (M
)

IN
TE

L_
O

N
E

's
 (I

)
IN

TE
L_

TW
O

's
 (E

)
IN

TE
L_

TW
O

's
 (M

)
IN

TE
L_

TW
O

's
 (I

)
IN

TE
L_

Fl
et

ch
er

 (E
)

IN
TE

L_
Fl

et
ch

er
 (M

)
IN

TE
L_

Fl
et

ch
er

 (I
)

IN
TE

L_
C

R
C

 (E
)

IN
TE

L_
C

R
C

 (M
)

IN
TE

L_
C

R
C

 (I
)

IN
TE

L_
X

O
R

_F
le

tc
he

r
IN

TE
L_

X
O

R
_C

R
C

IN
TE

L_
O

N
E

's
_F

le
tc

he
r

IN
TE

L_
O

N
E

's
_C

R
C

IN
TE

L_
TW

O
's

_F
le

tc
he

r
IN

TE
L_

TW
O

's
_C

R
C

IN
TE

L_
Fl

et
ch

er
_C

R
C

Checksum(s) algorithms

P
er

fo
rm

an
ce

 Im
pa

ct
 (

lo
g)

80x80
160x160
320x320
L91

Fig. 4.5: AVX MMM: performance impact incurred by the adoption of the catalog of
checksums in the MMM disabling compiler optimizations.

Fig. 4.5 keeps the same color and type of lines used in Fig. 4.4. In Fig. 4.5, we
can see an increase in the performance impact of the one’s complement checksum
with respect to Fig. 4.4. This increase occurs due to the fact that one’s complement
checksum requires the addition of all values to be checked and subsequently adding
the carry bit back into the result before a final inversion [46]. With AVX instruc-
tions, the arithmetic operations lack of a carry bit and hence, this checksum is not
suitable for AVX instruction-based implementations in terms of performance. Our
solution to overcome this limitation rests in using larger data-types to compute one’s
complement checksum (where we add the carry bit), causing higher overhead. In a
similar way, the Fletcher’s checksum implies a modulo operation for the extraction
of the remainder from a specific division that is not considered by AVX instructions.
Such arithmetic operation has to be implemented with scalar code that increases the
performance impact of that diagnostic mechanism in the AVX-based MMM.

As we mentioned in Section 4.3.1, we have executed a set of experiments with square
matrices employing high-level compiler optimizations. The obtained performance
impact ratio is shown in Table 4.3 together with the non-optimized results for
comparison purposes. It should be noted that in order to have a fair comparison,
the baseline for computing the ratio of the optimized results is the execution time of
an optimized MMM with the same optimization level.

54 Chapter 4 Safe Deployment of MMM in Sequential Implementations

Tab. 4.3: Performance impact ratio in square matrices with varying compiler optimization

GCC Compiler MSVC Compiler
Arm (-O3) Arm (-O0) AVX (-O2) AVX (-O0)Checksum

implemented 80 160 320 80 160 320 80 160 320 80 160 320

XOR (E) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
One’s (E) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00
Twos’s (E) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Fletcher (E) 1.00 1.00 1.00 1.00 1.00 1.00 1.02 1.00 1.00 1.01 1.00 1.00
CRC (E) 1.00 1.00 1.00 1.03 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00
XOR (M) 1.01 1.00 1.00 1.01 1.00 1.00 1.03 1.00 1.00 1.03 1.01 1.00
One’s (M) 1.01 1.01 1.00 1.02 1.01 1.00 1.20 1.07 1.02 1.35 1.18 1.08
Two’s (M) 1.00 1.00 1.00 1.01 1.00 1.00 1.06 1.01 1.00 1.11 1.06 1.03
Fletcher (M) 1.06 1.03 1.01 1.04 1.01 1.00 2.54 1.75 1.26 1.56 1.29 1.14
CRC (M) 1.05 1.02 1.01 1.14 1.04 1.02 1.24 1.10 1.00 1.35 1.18 1.09
XOR (I) 1.09 1.09 1.08 1.21 1.12 1.12 1.11 1.08 1.07 1.38 1.38 1.38
One’s (I) 1.33 1.33 1.33 1.72 1.43 1.42 3.06 3.03 2.88 4.69 4.63 4.47
Two’s (I) 1.17 1.17 1.17 1.31 1.20 1.18 1.40 1.36 1.34 2.17 2.17 2.17
Fletcher (I) 3.65 3.64 3.64 2.84 2.14 2.12 15.16 15.07 13.97 6.73 6.72 6.42
CRC (I) 6.04 6.03 6.03 5.58 3.76 3.70 4.65 4.55 4.25 4.67 4.62 4.38
XOR_Fletcher 1.27 1.26 1.26 1.22 1.12 1.12 2.63 1.84 1.40 1.90 1.66 1.52
XOR_CRC 1.12 1.10 1.09 1.52 1.28 1.26 1.39 1.22 1.08 1.74 1.56 1.47
One’s_Fletcher 1.62 1.60 1.59 1.85 1.50 1.49 4.73 3.87 3.24 5.32 5.06 4.88
One’s_CRC 1.63 1.61 1.59 1.96 1.54 1.52 3.61 3.39 2.95 4.91 4.81 4.71
Two’s_Fletcher 1.35 1.34 1.34 1.33 1.20 1.18 2.91 2.12 1.65 2.68 2.47 2.32
Two’s_CRC 1.21 1.19 1.18 1.42 1.22 1.20 1.73 1.53 1.34 2.49 2.35 2.26
Fletcher_CRC 3.67 3.66 3.66 2.96 2.16 2.13 15.23 15.08 13.97 6.54 6.71 6.54

We can observe that the performance impact in the external loops implemented with
high-level optimizations remains unaltered or with low execution time slowdown.
This is aligned with the non-optimized results where we have seen that the execution
time required to compute the checksums in this loop is almost negligible in contrast
with MMM computation time. Suppose we focus on the intermediate and inner loops.
In that case, a decrease in performance impact is appreciated after the application
of compiler optimizations in most of the checksums, except for the Fletcher and
CRC implementation, whose performance impact is generally higher, especially for
Fletcher. This could be explained by the fact that the instructions employed in the
Fletcher checksum do not equally benefit from compiler optimization, especially
in the AVX implementation, where the employed modulo operation is not natively
supported. Therefore, as the baseline MMM execution time used for comparison
in these experiments is improved with optimization, the resulting impact is bigger
than in the non-optimized solution that already has a higher baseline execution
time. Additionally, we observe that the high-level compiler optimization in Arm (gcc
compiler) involves a lower performance impact increment than that observed in
AVX (MSVC compiler). Optimizations improve the overall result for most techniques
regarding checksum combinations, except for some exceptions on those that include
the Fletcher checksum as one of the combined techniques.

To conclude the performance experiments, we have analyzed the impact of the ‘safe
MMM’ implemented in the Darknet CNN extracted from YOLO-v3 and in the Tiny
YOLO-v3 CNN [125]. We have depicted the results in Fig. 4.6. To offer an insight

4.3 Evaluation 55

into the execution time required to process one image in the selected architectures,
we provide the baselines for our experiments, which are obtained with the optimized
MISRA C compliant scalar MMM and the AVX-based MMM, both without diagnostic
mechanisms. The obtained values are 639.8 and 235.5 seconds for the scalar (Arm
cores) and AVX-based MMM (Intel cores) with YOLO-v3 implementation, which can
be reduced down to 8.5 and 0.226 seconds in Tiny YOLO-v3. In fact, there is high
variability on the inference time of CNNs such as YOLO, as it depends on the input
resolution of the network, YOLO version, compiler optimization, number of layers
of the network architecture, image resolution or inference platform, among others.
As the experiments of this section aim to focus on the performance penalty incurred
by the checksums, such inference time analysis is considered out of the scope of this
chapter.

1

2

3

5

X
O

R
 (E

)
X

O
R

 (M
)

X
O

R
 (I

)
O

N
E

's
 (E

)
O

N
E

's
 (M

)
O

N
E

's
 (I

)
TW

O
's

 (E
)

TW
O

's
 (M

)
TW

O
's

 (I
)

Fl
et

ch
er

 (E
)

Fl
et

ch
er

 (M
)

Fl
et

ch
er

 (I
)

C
R

C
 (E

)
C

R
C

 (M
)

C
R

C
 (I

)
X

O
R

_F
le

tc
he

r
X

O
R

_C
R

C
O

N
E

's
_F

le
tc

he
r

O
N

E
's

_C
R

C
TW

O
's

_F
le

tc
he

r
TW

O
's

_C
R

C
Fl

et
ch

er
_C

R
C

Checksum(s) algorithms

P
er

fo
rm

an
ce

 Im
pa

ct

YOLO v3 scalar MMM
YOLO v3 AVX−based MMM
Tiny YOLO v3 scalar MMM
Tiny YOLO v3 AVX−based MMM

Fig. 4.6: Darknet CNN: performance impact caused by the inclusion of a catalog of check-
sum algorithms evaluated in YOLO-v3 and Tiny YOLO-v3 CNN.

Regarding the impact of the different checksums depicted in Fig. 4.6, we can remark
that both Tiny and YOLO-v3 share the same tendency. In general terms, we can
observe that the slowdown caused by the individual experiments in the external
and intermediate loops is very close. Consequently, it is preferable to apply the
checksum in the intermediate loop rather than in the external loop, since it allows
achieving a higher DC, as shown in next section. In the combination experiments,

56 Chapter 4 Safe Deployment of MMM in Sequential Implementations

the results reveal that the checksums added in the intermediate loop do not produce
a significant slowdown with respect to that caused by the checksums applied in the
internal loop. This is so except for the one’s_Fletcher combination in the AVX-based
MMM, which is expected based on the results we have previously seen for the MMM,
where both one’s complement and Fletcher are the two least suitable checksums for
AVX-based instructions. Finally, it should be noted that since the CNN is a portion of
the full YOLO-v3 algorithm, the performance impact of YOLO-v3 is expected to be
lower than that for Darknet in relative terms.

4.3.3 Diagnostic Coverage

In order to quantify the potential achievable DC of diagnostics techniques, common
approaches are to make analytical calculations, validation through experimental
measurements with fault-injection campaigns, or a combination of both [46].

In this section, we evaluate the DC of the individual ESs, their combinations, and
their implementation in the different loops (I, M, E) of the MMM based on fault
injection campaigns. We perform an exhaustive fault-injection campaign in all bit
positions of the values of matrices A and B for the evaluation of the DC. To this
end, we base on the architectural pattern a) presented in Section 4.2.2 (periodic
diagnosis with design time fixed data pattern). First, we obtain the ES with fixed
data, which is later used as reference ES. Then, we induce exhaustive single-bit
fault-injections in matrices A or B, and the resulting ES is compared with respect to
the reference ES. In this way, we are able to evaluate whether the checksums detect
injected single-bit errors, and we can compute a DC percentage. We have evaluated
individual ES, as well as some particularly relevant combinations. Table 4.4 gathers
the results of the scalar and AVX-based MMM implementations for individual ES
and their combinations in the previously mentioned matrices sizes.

As a general rule, the DC is higher when the checksums are applied in the more
internal loops, as the granularity of the diagnostics increases (i.e., in the internal loop,
all values of A, B, and C matrices are contemplated in the checksum). However, the
results in Table 4.4 show that the XOR, one’s complement, and two’s complement
checksums in the internal loop do not reach a 100 % DC neither in scalar nor in
AVX-based MMM. The reason is that, although the values of A, B, and C are
summarized with independent checksums, the final ES is obtained by combining
these three variables, and, therefore, some bit-errors can be masked. As explained
in Section 4.2.1, this can be solved by combining these individual checksums with a
Fletcher or CRC in the intermediate loop or by obtaining three different signatures
(one for each matrix) instead of a combined one. Regarding the external and

4.3 Evaluation 57

Tab. 4.4: DC of the scalar and AVX-based MMM

Scalar MMM AVX-based MMM
Square Unbalanced Square UnbalancedChecksum

implemented 20 40 80 L1 L2 L3 20 40 80 L1 L2 L3

XOR (E) 2.5 1.3 0.6 0.4 0.1 0.1 2.5 1.3 0.6 0.4 0.1 0.1
XOR (M) 50.0 50.0 50.0 52.5 0.9 6.6 50.0 50.0 50.0 52.5 0.9 10.0
XOR (I) 50.0 50.0 50.0 52.5 0.9 100.0 50.0 50.0 50.0 52.5 0.9 100.0
One’s (E) 2.5 1.3 0.6 0.4 0.1 0.1 2.5 1.3 0.6 0.4 0.1 0.2
One’s (M) 52.5 51.2 50.6 54.1 1.0 7.1 79.2 59.2 54.2 72.9 2.2 9.9
One’s (I) 98.5 97.7 96.9 98.4 97.7 96.9 99.2 99.2 99.2 98.9 99.2 99.9
Two’s (E) 2.5 1.3 0.6 0.4 0.1 0.1 2.5 1.3 0.6 0.4 0.1 0.2
Two’s (M) 52.3 51.1 50.6 54.1 1.0 7.1 68.8 59.1 54.4 63.5 1.7 9.6
Two’s (I) 96.9 95.3 93.8 98.4 90.7 96.9 96.9 95.3 93.8 92.6 90.7 100.0
Fletcher(E) 2.6 1.3 0.6 0.4 0.1 0.1 3.5 1.5 0.7 0.5 0.2 0.2
Fletcher(M) 52.2 51.1 50.6 54.1 1.0 7.1 80.0 60.0 55.0 73.8 2.2 10.0
Fletcher(I) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.9 100.0
CRC(E) 2.6 1.3 0.6 0.4 0.1 0.1 3.5 1.5 0.7 0.5 0.2 0.2
CRC(M) 52.5 51.3 50.6 54.1 1.0 7.1 80.0 60.0 55.0 73.77 2.2 10.0
CRC(I) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
XOR_Flet 99.8 99.8 99.8 99.8 99.8 99.8 100.0 100.0 100.0 100.0 100.0 100.0
XOR_CRC 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
One’s_Flet 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
One’s_CRC 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Two’s_Flet 97.9 97.8 97.7 99.6 99.8 99.6 100.0 100.0 100.0 99.9 99.9 99.9
Two’s_CRC 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

intermediate loops, the DC is highly dependent on the dimension of the matrices
involved in the MMM. For instance, implementing Fletcher in the intermediate loop
makes bit-error detection vary from more than 50 % in the square matrices to a 1 %
in a given set of unbalanced matrices (L2), according to the results extracted from
the scalar MMM and from 80 % to 2.2 % in the AVX-based MMM. The reason rests in
the row/column proportion of the input matrices. In the intermediate loop, the ES
evaluates each of the values of the overall matrix A and only the last column of the
matrices B and C. In unbalanced matrices, such as L2 and L3 where the dimension
of A and the number of columns of B is proportionally lower than the dimension
of B, a considerable decrease of the achievable DC can be observed. Finally, the
checksums in the external loop provide a weak DC as expected, since the ES only
contemplates M (number of rows of matrix A) of the total possible combinations.

Accordingly, the internal loop solutions seem to be the most suitable ones from a DC
perspective, but as we have seen in a previous section, the execution time penalty
they involve is considerably higher (e.g., CRC (I)). For this reason, we have defined
the combined solutions that provide different checksum techniques in different loops,
achieving a 100 % DC with less performance impact (e.g., one’s_CRC).

Additionally, in Table 4.4, it is possible to see the difference between scalar and
AVX-based checksum implementations. According to the XOR checksum, we can

58 Chapter 4 Safe Deployment of MMM in Sequential Implementations

observe that for square matrices, AVX-based and scalar MMM reach a very similar
DC in the individual experiments, regardless of the loop where it is implemented.
The greatest difference comes from the one’s complement checksum, which reaches
slightly higher DC in the AVX-based implementation due to the required adaptation
to overcome the absence of the carry bit. For the remaining individual experiments,
we can appreciate a DC increase when AVX-based MMM is employed, which is
explained by the single instructions with multiple data used by AVX. This causes the
protected data in each checksum calculation with AVX to be higher than with scalar
instructions. However, in experiments with unbalanced matrices implementing
the Fletcher checksum in the internal loop, we can appreciate that with matrices
dimensions L1 and L2 there is a decrease in the achieved DC, which remarks
that this diagnostic mechanism is less appropriate in AVX-based implementations.
Additionally, the experiments with unbalanced matrices highlight the impact of the
matrices dimensions in the achievable DC, where for instance, the DC of XOR (I)
varies from 0.9 % to 100 %.

To conclude the DC experiments in scalar MMM, we have computed the DC of
a layer extracted from YOLO (L59) with one’s and two’s complement checksums
in the internal loop with respect to individual experiments. The individual CRC
and Fletcher experiments in the internal loop have not been carried out since the
achievable DC is 100 % regardless of the dimension and the type of matrices involved
in the MMM, as shown in Table 4.4. In the same manner, we have not evaluated the
achievable DC of the XOR checksum implemented in the internal loop since from
Table 4.4, we consider that its combination with another checksum, such as CRC
or Fletcher, can be more interesting in terms of DC and performance impact. In
contrast, we have evaluated the combination of one’s complement with CRC and the
combination two’s complement with CRC to verify that the DC increases when we
combine checksums with lower DC detection in the internal loop with checksum with
higher DC in the intermediate one. The results confirm our hypothesis, producing an
increase from 98.5 % in one’s complement checksum and 96.9 % in two’s complement
checksum, up to 100 % DC when they are implemented in combination with the CRC.

4.3.4 Trade-off between DC and Performance Impact

Based on previous results, in this section, we evaluate the relationship between
DC and performance impact for all considered checksum algorithms and their
combinations for square matrices of dimension 80 × 80 with the scalar MMM and
with AVX-based implementation (see Fig. 4.7).

4.3 Evaluation 59

100% DC

 50% DC

0

2

4

6

0

50

90

100

X
O

R
 (E

)
X

O
R

 (M
)

X
O

R
 (I

)
O

N
E

's
 (E

)
O

N
E

's
 (M

)
O

N
E

's
 (I

)
TW

O
's

 (E
)

TW
O

's
 (M

)
TW

O
's

 (I
)

Fl
et

ch
er

 (E
)

Fl
et

ch
er

 (M
)

Fl
et

ch
er

 (I
))

C
R

C
 (E

)
C

R
C

 (M
)

C
R

C
 (I

)
X

O
R

_F
le

tc
he

r
X

O
R

_C
R

C
O

N
E

's
_F

le
tc

he
r

O
N

E
's

_C
R

C
TW

O
's

_F
le

tc
he

r
TW

O
's

_C
R

C
Fl

et
ch

er
_C

R
C

Checksum(s) Algorithms

P
er

fo
rm

an
ce

 Im
pa

ct

D
ia

gn
os

tic
 C

ov
er

ag
e

(D
C

)

Performance Impact AVX−based Performance Impact scalar DC AVX−based DC scalar

Fig. 4.7: Trade-off between performance impact vs. DC for square matrices of dimension
80 × 80.

DC is represented in the right-hand y-axis and depicted with two green bar diagrams
(the lighter one for the scalar implementation and the darker one for AVX-based
implementation). On the other side, the performance impact is represented in the
left-hand y-axis, with the AVX-based implementation illustrated with a green solid
line with triangular markers and the scalar implementation depicted with a green
dashed line and round markers. As previously stated, not all selected combined
approaches reach 100 % DC, and their execution time impact considerably varies
from one checksum to another. Among the options with the highest DC, Fig. 4.7
depicts how the two’s complement and one’s complement checksums implemented
in the internal loop and the combinations XOR_Fletcher and Twos_Fletcher do not
reach 100 % DC with the scalar implementation. However, the AVX implementation
allows to reach 100 % DC with all checksum combinations and almost 100 % with
two’s complement implemented in the most internal loop. Although it might not
be evident in Fig. 4.7, XOR_Fletcher reaches 99.8 % error detection instead of 100 %
in the scalar MMM (as described in Table 4.4). The reason for not reaching the
maximum DC in comparison with the checksum combination XOR_CRC is that the
DC reached by the Fletcher checksum in the intermediate loop is slightly inferior
to that reached by the CRC in the same loop and therefore, some single-bit errors
remain undetectable. Hence, the most promising performance results are provided
by XOR_CRC, two’s_CRC, one’s_CRC and one’s_Fletcher checksums in scalar MMM

60 Chapter 4 Safe Deployment of MMM in Sequential Implementations

and two’s_Fletcher, two’s_CRC, XOR_Fletcher and XOR_CRC in the AVX-based MMM.
In particular, XOR_CRC offers the lowest performance impact for our particular scalar
evaluation framework (Arm core of the Zynq UltraScale+ platform) and AVX-based
evaluation framework (Intel core i7-6600U core).

4.3.5 IEC 61508 compliance

The evaluation shown in previous subsections results in a catalog of checksums with
varying degrees of performance impact and DC against single-bit errors. While the
required performance is application dependant, for the DC, IEC 61508-2 Table 3
determines the required coverage based on the SIL and the HFT of the safety-related
system (depicted in this document in Table 4.5). This allows the safety designer
to select the most suitable checksum for each of the safety architectural patterns
described in Subsection 4.2.2.

Tab. 4.5: Maximum allowable SIL according to the HFT (Table 3 of IEC 61508-2)

Safe Failure Fraction
of an element

Hardware Fault Tolerance (HFT)
0 1 2

<60 % Not allowed SIL 1 SIL 2
60 % - <90 % SIL 1 SIL 2 SIL 3
90 % - <99 % SIL 2 SIL 3 SIL 4
≥ 99 % SIL 3 SIL 4 SIL 4

For the periodic diagnosis with design time fixed data pattern, which is based on a
single channel architecture with diagnostics (HFT = 0), the standard requires a DC of
at least 60 % for complex elements whose failure modes cannot be easily determined.
Therefore, as shown in Table 4.4, most of the individual checksums applied in
the external or intermediate loops are not suitable by their own as a diagnostic
mechanism for safety-critical systems without redundancy. The DC is improved
when the individual checksums are applied in the internal loop, but we have already
seen that the slowdown caused in this case is considerably bigger, which could
not be affordable from a real-time perspective. For this reason, the best options
for this architectural pattern are within the combined checksums. In contrast, the
architectural pattern based on redundancy can reach a HFT > 0. In this case, the
standard permits reaching the same SIL as before with lower DC. For instance, for a
HFT = 1 a DC below 60 % is acceptable for up to SIL 1, and up to SIL 2 if the HFT is
at least 2. Even in these cases, although the standard does not specify it, in practice,
a diligent safety system design requires a DC closer to 60 % than to 0 %.

4.3 Evaluation 61

Following these requirements from IEC 61508, we select the solution that provides
best DC and performance impact ratio for Darknet CNN. However, as we have
already seen in previous subsections, the DC varies depending on the considered
matrices dimensions, and, for that reason, the adequacy of the checksum or combi-
nation of checksums should be evaluated for each of the layers of the CNN (which
in Darknet are known at design time). As an example, in Table 4.6, we provide the
selected checksums for each SIL and HFT in square matrices of 80 × 80 dimensions.
The grayscale of its cells refers to the range of DC, where the darker the gray, the
higher the DC required.

Tab. 4.6: Selected checksums for 80 × 80 matrices dimension according to SIL and HFT.

SIL
4 3 2 1

Scalar XOR_Flet (1.22) (iv) XOR_Flet (1.22)(iii) XOR_Flet (1.22)(ii)

0
AVX

Non achievable
XOR_CRC (1.52)(iv) XOR_CRC (1.52)(iii) XOR_CRC (1.52)(ii)

Scalar XOR_Flet (1.22)(iv) XOR_Flet (1.22)(iii) XOR_Flet (1.22)(ii) CRC (M) (1.14)(i)

1
AVX XOR_CRC (1.52)(iv) XOR_CRC (1.52)(iii) XOR_CRC (1.52)(ii) XOR_CRC (1.52)(i)

Scalar XOR_Flet (1.22)(iii) XOR_Flet (1.22)(ii) CRC (M) (1.14)(i)

HFT

2
AVX XOR_CRC (1.52)(iii) XOR_CRC (1.52)(ii) CRC (M) (1.14) (i) Non Specified

NOTE: i) DC < 60 % ii) 60 % < DC < 90 % iii) 90 % ≤ DC < 99 % iv) 99 % ≤ DC

Table 4.6 shows how for the same SIL, a checksum with lower DC can be selected
if it is implemented in a redundant architecture. For instance, for SIL 2, the single-
channel pattern (HFT = 0) involves a high DC (90 % ≤ DC < 99 % (iii)) for which
checksum combinations are the preferred option. For the redundant pattern instead,
with HFT = 2 a low DC (< 60 %) is sufficient, and the CRC (M) individual checksum
provides best performance vs required DC ratio, reaching a 50.6 % (scalar) and
55.0 % (AVX) DC for the selected matrices dimensions. For high DC, the XOR_Flet
(scalar) and XOR_CRC (AVX) combinations allow achieving the required DC with
a lower performance impact. The same solution turns out to be the most suitable
for a medium DC (60 % < DC < 90 % (ii)) too, since in our results there is not any
checksum within this specific DC range.

4.4 Summary

In this chapter, we present an approach to adapt the MMM functions present in
ML software libraries in order to avoid and control systematic and random errors
according to the considered functional safety standards. On the one hand, for
systematic error avoidance, we have seen that the effort to adapt the original
MMM code to MISRA C coding guidelines was relatively low and with a negligible

62 Chapter 4 Safe Deployment of MMM in Sequential Implementations

performance impact. This same conclusion can also be extrapolated to the complete
Darknet CNN, where we propose solutions for the most frequent violations. On the
other hand, this chapter presents an approach for runtime fault detection based
on a combination of ESs and safe architectural patterns. We evaluate the trade-off
between performance penalty ratio and DC, achieving up to 100 % DC for single-bit
inversions with a performance impact from 1.001 to 2.97 for the analyzed largest
matrices sizes computed with the scalar MMM and from 1.001 to 6.33 with the
AVX-based MMM. Additionally, the experimental results confirm that for a given
DC and performance penalty target, the selection of the appropriate combination of
checksums depends on the considered matrices dimensions (which for YOLO are
known at design time) and this allows the adoption of the most appropriate ones
according to the specific application. In particular, we provide a pre-selection of the
most suitable checksums for the CNN layer that corresponds to the 80 × 80 matrices
dimensions for two different safety architectural patterns, one based on periodic
diagnostics and the second for redundant architectures with varying degrees of fault
tolerance. Additionally, we observe that the vectorization of certain checksums, such
as 1’s complement and Fletcher, implies a performance penalty that makes them
less appropriate in these implementations in terms of performance. Besides that,
the AVX-based MMM allows reaching higher performance than that provided by
the scalar MMM, improving execution time by a factor between 3.97 and 6.57 for
different matrices sizes.

In summary, the contribution of this chapter defines, implements, and evaluates
a catalog of diagnostic techniques by proposing methods for the system safety
designers to select the most suitable option based on the affordable performance
impact and the target DC of their specific safety application.

4.4 Summary 63

Exploiting Safe Parallelization
on GPUs

5
As we explained in Chapter 1, the high level of computing parallelism of GPUs, to-
gether with their complex memory hierarchy, may spread a single random hardware
error to multiple errors [134], jeopardizing the computation correctness. As a GPU-
based implementation example in the automotive domain, Fig. 5.1 illustrates the
possible consequences of a single error on a CNN-based object detector. We classify
an image1 from Berkeley DeepDrive dataset [118] employing YOLO-v3 [126] based
on a pre-trained model with the COCO dataset2 [135]. In the absence of errors,
the CNN correctly detects 35 classes, such as people or traffic lights, among others
(Fig. 5.1a). However, a single-bit error injection in a single weight of the first
layer of the CNN leads to detecting 11 classes not present in the image, such as
three wine glasses or four dining tables (Fig. 5.1b), but no people or traffic lights.
In contrast, if the error is injected at bit 705, it does not impact the CNN inference,
becoming a latent error if further diagnostics are not in place. These errors are of
particular concern in safety-related systems, where misclassifications can lead to
catastrophic consequences.

(a) Error-free or single-bit error (bit 705) infer-
ence

(b) Single-bit error (bit 734) inference

Fig. 5.1: Example of a single-bit error impact in an CNNs-based object detection applica-
tion

Following the preceding chapter’s approach, we continue focusing on the most
computationally expensive operation of the CNNs, the MMM. This chapter paves the

1“9e75b2a9-98437b5b.jpg” from “10K Image” package
2“yolov3.cfg” and “coco.data” extracted from the configuration folder (https://github.com/

AlexeyAB/darknet/tree/darknet_yolo_v3). Weights from https://pjreddie.com/media/
files/yolov3.weights

65

https://github.com/AlexeyAB/darknet/tree/darknet_yolo_v3
https://github.com/AlexeyAB/darknet/tree/darknet_yolo_v3
https://pjreddie.com/media/files/yolov3.weights
https://pjreddie.com/media/files/yolov3.weights

way towards the safe implementation of CNN-based safety solutions on massively
parallel GPU-based platforms through the adaptation of the diagnostic catalog
presented in Chapter 4. Additionally, this solution supports an indirect functional
diagnosis of the used GPU components (without needing component design and
implementation details knowledge) and is complementary and can be combined
with other techniques, such as Algorithm-Based Fault Tolerance (ABFT) or Algorithm-
Based Error Detection (ABED). In this chapter we have taken CUTLASS library [18]
as baseline and applied to it the following modifications:

1. We adapt the catalog of diagnostic mechanisms defined for scalar and vector-
ized implementations (Chapter 4) for being implemented in CUDA cores with
Single Instruction Multiple Threads (SIMTs) math instructions. We include this
catalog in CUTLASS library to compute an array of ESs jointly implemented
with safety architectural patterns, such as those defined in Chapter 4, to reach
various levels of DC against random errors in HPEC platforms integrating
GPUs.

2. We analyze the performance impact and the DC of this catalog of mechanisms
for multiple matrices dimensions in an NVIDIA Jetson Xavier NX GPU and
compare them against scalar and AVX-based implementations from Chapter 4.

3. We perform an analysis of the trade-off between DC and performance for a
specific matrices dimensions evaluating the required achievable DC by the
IEC 61508 standard for different SILs and architectural patterns.

4. In addition, we calculate the overall performance impact incurred by individu-
ally including each GPU-based catalog diagnostic mechanism in YOLO-v3 and
Tiny YOLO-v3 for two GPU memory architectures.

The rest of this chapter is structured as follows: Section 5.1 describes the error-
detection adaptations for the MMMs implementations based on GPUs. Section 5.2
describes and discusses the results providing a comprehensive analysis of them.
Finally, Section 5.3 summarizes this chapter.

5.1 Enhancing MMM Safety
In this section, we describe the adaptations performed to the catalog of diagnostic
techniques to be implemented in the high-performance MMM CUTLASS library.
As in the previous chapter, those diagnostics are implemented in several loops
of the MMM.

66 Chapter 5 Exploiting Safe Parallelization on GPUs

In this case, they compute an array of ESs instead of a single one to detect MMM
execution errors. We also study their reproducibility and memory management to
minimize the performance impact on HPEC platforms that include GPUs.

5.1.1 Diagnostic Techniques

The main idea is to compute an array of ESs at runtime to provide the MMM ex-
ecution with error detection capabilities. For this purpose, we propose to protect
the data employed at the arithmetic operation level by including a GPU-based
adaptation of the catalog of diagnostic mechanisms described in the previous chap-
ter. We focus on thread-level GEMM, the lowest loop nests of CUTLASS [18]. At
this level, each thread is responsible for processing a certain number of Matrix
Multiply-Accumulate (MMA) operations in a triple nested loop denoted as inner (I),
intermediate (M), and external (E) in the same way as in Algorithm 1.

Regarding the GPU-based adaptations applied to the catalog of diagnostics, XOR,
one’s, and two’s complement checksums employ a low-level Parallel Thread Execu-
tion (PTX) [136]. We code them with an instruction set provided by this intermediate
language, aiming to be portable across multiple GPU architectures. Among the bene-
fits, the extended-precision integer arithmetic instructions allow holding carry-in
and carry-out with a carry-bit flag in an integer addition operation. This feature
is highly desirable in one’s complement checksum as it reduces the performance
impact incurred by its inclusion. For implementation details, we refer the readers to
Section 8.3 where we expound the two’s and one’s complement checksum imple-
mentation based on PTX instructions (Algorithms 17 and 18, respectively). For the
Fletcher and CRC, we employ the same implementations in CUDA than in scalar; we
refer the reader to Algorithm 3 and 11, respectively.

5.1.2 Reproducibility

Another crucial factor for the safe deployment of CNN algorithms in HPEC platforms
exploiting parallelism is the execution order. The MMM involves using floating
point data types that do not satisfy the associative property in addition and multi-
plication operations. Therefore, a different execution order may lead to different
results. Hence, the use of floating points is considered a source of numerical re-
producibility errors [137], [138]. In [139], NVIDIA highlights that despite all
individual operations accomplish with IEEE 7543 standard [140], the result may

3IEEE 754 is the IEEE standard for floating-point arithmetic, specifying formats and methods for
binary and decimal floating-point arithmetic in computer programming. This standard seeks to
address problems related to floating-point implementations that compromise their portability and
make them difficult to use reliably.

5.1 Enhancing MMM Safety 67

not be bit identical. For instance, the operation (1 + 2100) − 2100 ̸= 1 + (2100 − 2100)
since (1 + 2100) − 2100 = 0 and 1 + (2100 − 2100) = 1. Consequently, neither the
order-independent checksums based on sums operations (XOR, one’s and two’s
complement) nor the order-dependant ones (Fletcher and CRC) can be implemented
directly without assuring a deterministic execution order, since both types of algo-
rithms are data dependant.

For guarantying that the ESs are computed in the same order and ensure determin-
ism, we propose employing as many ESs as threads are involved in the MMM. Each
thread executes a tile of the MMM in scalar order in a CUDA core. We use the global
identifier of each thread to store the final ES computed by each thread at its relative
address in an array of ESs. Note that, instead, combining ESs from different threads
into a single ES would challenge reproducibility if we cannot enforce a specific
computation order, which is not trivial since the internal scheduler of the GPUs can
be considered as a black box.

5.1.3 Memory Hierarchy

Applying previous diagnostics techniques to the MMM involves as many accesses
to memory as variables we intend to protect. As some implementations protect
all variables involved in the MMM (A, B, and intermediate values of C matrices),
the MMM computation entails protecting three times the number of performed
MMA operations. In GPU-based implementations, memory management usually
becomes the main bottleneck in these highly-parallelized platforms [141], and
the memory access speed is essential for achieving good performance, mainly for
real-time applications that are subject to strict execution time requirements.

We depict the employed memory hierarchy in Fig. 5.2. Initially, we allocate the ESs
arrays into the global memory device. At this point, we compare two approaches to
address the memory transfer of the ESs arrays (as can be seen in Fig. 5.2):

A) Direct transfer to registers (Glob2Reg): during the MMM execution, these ESs
are transferred to registers (the memory with the highest speed) and returned
to global memory when the computation finalizes.

B) Intermediate transfer to shared memory (Glob2Shared2Reg): We allocate these
ESs in shared memory before transferring them to registers. Iteratively ESs
are stored in registers and eventually are transferred from registers to shared
memory. Once the computation is complete, the final results are transferred
from shared to global memory.

68 Chapter 5 Exploiting Safe Parallelization on GPUs

The aim is to compare the two memory hierarchies based on a selection of matrix
dimensions. The greyscale used in the GPU memories (Fig. 5.2) denotes the memory
access time, with the darkest grey requiring a higher latency.

A particular concern arises in the CRC implementation, which requires further
accesses to the lookup table on which this implementation relies. As all threads
share these values, we have chosen shared memory instead of global memory to
reduce memory access time. However, the shared memory has a reduced size that
limits the CRC lookup table dimension. The safety designer has to consider such a
limitation at the design phase according to the target GPU’s memory. In this chapter,
we perform CRC execution byte-by-byte, which requires 28 shared memory addresses
and, hence, four shared memory accesses per protected 32-bit data word.

Global Memory

d_ES_a[n_Elem]
d_ES_b[n_Elem]
d_ES_c[n_Elem]

Device Memory

Constant Memory

d_CRC_table[CRC_nElem]

Shared Memory
d_ES_a_shared[n_Elem]
d_ES_b_shared[n_Elem]
d_ES_c_shared[n_Elem]

Shared Memory
d_table_shared[CRC_nElem]

Registers

d_ES_a_reg
d_ES_b_reg
d_ES_c_reg

Host Memory

h_ES_a[n_Elem]
h_ES_b[n_Elem]
h_ES_c[n_Elem]

h_CRC_table
[CRC_nElem]

Block MemoryA

B

Fig. 5.2: ES transference among GPU memory hierarchies (CRC_nElem: number of CRC lookup table
memory addresses. n_Elem: number of ES memory addresses).

In addition to the ESs, we schematize the transfer of the CRC lookup table across
the memory hierarchy of the selected platform in Fig. 5.2. Both accesses have in
common that the transfer starts in the host memory, where it is initialized, and
reaches the shared memory, where each thread finally accesses it. However, the CRC
lookup table has static values and is not required to be writeable from the device.
Then, we employ the constant memory instead of the global memory. This memory
presents lower latency than global memory, especially in accesses where several
threads consecutively access the same addresses. We can exploit this CRC lookup
table transfer since the MMM executes as many blocks as k tiles it is decomposed in,
and all these blocks store the CRC table in their own shared memory. Although the
first block accesses occur serialized, the remaining blocks access the constant cache
memory (which has the required 1 KB to store the entire table) that is faster than the
global memory. We initially store the CRC lookup table in constant memory from host
memory before it is transferred to the shared memory at runtime since GPU shared

5.1 Enhancing MMM Safety 69

memory can not be statically initialized. This memory can not be employed for the
ESs array since it is only writeable from the host. Then, the device can not store the
final ESs array computation, which must be accessible from the host for comparison.
This has led to using global memory instead of constant memory for storing the ESs
arrays.

5.2 Evaluation
Next, we evaluate the DC and performance impact incurred by the different diagnos-
tic techniques in the GPU-based MMM.

5.2.1 Experimental Set-Up

We use an NVIDIA Jetson Xavier NX platform employing the clang compiler with
CUDA (both version 10) in an Ubuntu system. In order to minimize system inter-
ference, we employ the PREEMPT-RT patch and isolate the NVIDIA Carmel Arm
core that executes the program with the highest real-time priority and configure
it to run at the maximum frequency. We launch a single MMM stream to the GPU
to avoid the uncertainty in the order of execution of the streams associated with
several applications running simultaneously [142]. We employ the same matrices
dimensions and nomenclature as in Chapter 4.3.1, seeking a fair comparison with
the scalar and AVX-based implementations. These values are collected in Table 4.1
and 4.2 for performance impact and DC experiments, respectively.

Regarding performance impact, we run the MMM function ten thousand times and
measure the execution time with “xtime_l.h” library to reach a nanoseconds resolu-
tion and calculate the mean value. We disregard the initial hundred measurements
to avoid the cold-start problems associated with caches and the delays associated
with the initial kernel launches [143]. To conclude these experiments, we analyze
the performance impact incurred in the execution of YOLO-v3 and Tiny YOLO-v3
when employing the CUTLASS library with the catalog of diagnostics in the two
memory hierarchies proposed in the previous section.

Regarding DC experiments, we perform a bit-exhaustive fault-injection campaign in
both A and B matrices (as in the previous chapter). It is worth mentioning that we
perform these bit-flips in the host before launching the MMM kernel to the GPU.

70 Chapter 5 Exploiting Safe Parallelization on GPUs

5.2.2 Performance Impact

In order to derive the relative performance impact (n according to Eq. 4.1), we divide
the execution time of the MMM including the diagnostic techniques (X), by the
execution time of the original MMM (Y), with identical matrices dimensions. This
performance impact is relative to single-matrices execution. However, performance
impact varies at the system level depending on the safety architectural pattern in
which the safety designer includes the diagnostic mechanism(s). Thus, the impact
on the periodic diagnostic pattern described in Section 4.2.2 is calculated by dividing
the single ‘safe MMM’ execution by the Diagnostic Test Interval (DTI), not depending
only on the performance impact of a single ‘safe MMM’ execution but also on the
number of iterations of the MMM in the DTI. Depending on the implementation of
the redundant patterns, the performance impact can either: i) be multiplied by a
factor of two when the MMM is re-executed on the same hardware or ii) maintain the
same value as that observed for single MMMs, which implies an additional execution
platform (double hardware cost). This subsection provides the performance impact
relative to single-matrices execution, which can be computed from the timing
measurements and according to the implemented safety architectural pattern.

Initially, we perform timing experiments by disabling compiler optimizations to
avoid additional safety challenges brought by optimizations (compiler optimization
option -O0). We use compiler optimizations throughout this chapter and in the
next one to refer to both host and device compilers. In this way, we perform the
performance impact experiments with the same optimizations. Fig. 5.3 shows that
the performance impact caused by the inclusion of the diagnostic(s) is relatively
small in the two memory approaches (between 1× and 1.25× for all matrices
dimensions in approach A (Fig. 5.3a) and between 1× and 1.23× in the approach B
(Fig. 5.3b)).

In the previous chapter, we show that increasing matrix dimension sizes lead to
decreasing performance impacts for scalar and AVX-based implementations. Further-
more, we also show significant differences across different checksums. Moreover,
in Fig. 5.3a (memory approach A), we observe a very similar impact for different
matrices dimensions in our GPU-based implementation, as well as across different
checksums. This behavior relates to the fact that memory accesses dominate exe-
cution time. Hence, due to the different checksums, arithmetic operations have a
minimal impact that barely changes when varying the matrices dimensions or the
specific checksum used. The reader can observe the same behavior in Fig. 5.3b
(memory approach B), but this one increases the performance impact variability
among dimensions in contrast with approach A. For example, the combination of

5.2 Evaluation 71

(a) Approach A: Direct transfer to registers

1.00

1.05

1.10

1.15

1.20

1.25

X
O

R
 (E

)
X

O
R

 (M
)

X
O

R
 (I

)
O

N
E

's
 (E

)
O

N
E

's
 (M

)
O

N
E

's
 (I

)
TW

O
's

 (E
)

TW
O

's
 (M

)
TW

O
's

 (I
)

Fl
et

ch
er

 (E
)

Fl
et

ch
er

 (M
)

Fl
et

ch
er

 (I
)

C
R

C
 (E

)
C

R
C

 (M
)

C
R

C
 (I

)
X

O
R

_F
le

tc
he

r
X

O
R

_C
R

C
O

N
E

's
_F

le
tc

he
r

O
N

E
's

_C
R

C
TW

O
's

_F
le

tc
he

r
TW

O
's

_C
R

C
Fl

et
ch

er
_C

R
C

Checksum(s) algorithms

P
er

fo
rm

an
ce

 Im
pa

ct
 (

lo
g)

80x80
160x160
320x320
L91

(b) Approach B: Intermediate transfer to shared memory

1.00

1.05

1.10

1.15

1.20

X
O

R
 (E

)
X

O
R

 (M
)

X
O

R
 (I

)
O

N
E

's
 (E

)
O

N
E

's
 (M

)
O

N
E

's
 (I

)
TW

O
's

 (E
)

TW
O

's
 (M

)
TW

O
's

 (I
)

Fl
et

ch
er

 (E
)

Fl
et

ch
er

 (M
)

Fl
et

ch
er

 (I
)

C
R

C
 (E

)
C

R
C

 (M
)

C
R

C
 (I

)
X

O
R

_F
le

tc
he

r
X

O
R

_C
R

C
O

N
E

's
_F

le
tc

he
r

O
N

E
's

_C
R

C
TW

O
's

_F
le

tc
he

r
TW

O
's

_C
R

C
Fl

et
ch

er
_C

R
C

Checksum(s) algorithms

P
er

fo
rm

an
ce

 Im
pa

ct
 (

lo
g)

80x80
160x160
320x320
L91

Fig. 5.3: Performance impact with -O0 compiler optimization in GPU-based implementa-
tions

72 Chapter 5 Exploiting Safe Parallelization on GPUs

diagnostics varies less than 5% for the set of matrices dimensions evaluated for
approach A, increasing up to 7,5% in approach B. Despite this, the variability is
moderate, contrasting with the one observed in Section 4.3.2 for scalar and AVX-
based implementations. Besides, comparing these two memory approaches, we
observe that the intermediate transfer of the ESs arrays to the shared memory pro-
duces a performance impact reduction in contrast with the direct transfer to register
when at least one diagnostic is implemented in the internal loop. This tendency is
more pronounced with the higher matrix dimension L91 and remains similar in the
square matrix dimensions.

We further evaluate the performance impact with a higher compiler optimization
(compiler optimization option -O3). We depict the performance impact results
obtained for the two proposed memory approaches in Fig. 5.4. In Fig. 5.4a and
Fig. 5.4b, we can observe that in the two approaches, the performance impact
increases across all checksums, but particularly for the Fletcher and CRC if imple-
mented in the internal loop. Such impact further exacerbates when increasing the
matrices dimensions, as opposed to the case of scalar and AVX-based implementa-
tions. CRC implementation involves four accesses to the shared memory to protect
each word in the loop. In GPUs, memory latency is crucial from a performance point
of view. That explains the performance impact produced by the CRC implementation,
reaching an impact of up to ≈100× the original implementation. Concerning the
Fletcher implementation, the performance impact relates to the modulo operation,
used twice in each protected word, whose implementation is not efficient in NVIDIA
GPUs compared to the scalar implementation evaluated in Chapter 4.

These results show that with compiler optimizations, not all checksum combinations
may be affordable in terms of computing performance impact in contrast with the -O0
compiler optimization option. It should be noted that with the maximum compiler
optimization option (-O3), the MMM execution time is three orders of magnitude
smaller than disabling compiler optimizations (-O0). This decrease explains the
higher relative impact of -O3 compiler optimization experiments. Additionally,
comparing the two memory approaches from Fig. 5.4a and Fig. 5.4b, we observe
that the results are almost the same, which suggests that the compiler has optimized
the code for shared memory buffer transfer in both cases.

Finally, we analyze YOLO-v3 and Tiny YOLO-v3 for concluding performance impact
experiments setting up the -O3 compiler optimization. Fig. 5.5 depicts the perfor-
mance impact incurred by the inclusion of our catalog of diagnostics employing the
two memory architectures described in Section 5.1.3. The average execution time
obtained as a baseline to process an image in YOLO-v3 and Tiny YOLO-v3 with -O3
compiler optimization is 176.5 and 45.8 ms, respectively.

5.2 Evaluation 73

(a) Approach A: Direct transfer to registers

1

3

10

30

70

100

X
O

R
 (E

)
X

O
R

 (M
)

X
O

R
 (I

)
O

N
E

's
 (E

)
O

N
E

's
 (M

)
O

N
E

's
 (I

)
TW

O
's

 (E
)

TW
O

's
 (M

)
TW

O
's

 (I
)

Fl
et

ch
er

 (E
)

Fl
et

ch
er

 (M
)

Fl
et

ch
er

 (I
)

C
R

C
 (E

)
C

R
C

 (M
)

C
R

C
 (I

)
X

O
R

_F
le

tc
he

r
X

O
R

_C
R

C
O

N
E

's
_F

le
tc

he
r

O
N

E
's

_C
R

C
TW

O
's

_F
le

tc
he

r
TW

O
's

_C
R

C
Fl

et
ch

er
_C

R
C

Checksum(s) algorithms

P
er

fo
rm

an
ce

 Im
pa

ct
 (

lo
g)

80x80
160x160
320x320
L91

(b) Approach B: Intermediate transfer to shared memory approach

1

3

10

30

70

100

X
O

R
 (E

)
X

O
R

 (M
)

X
O

R
 (I

)
O

N
E

's
 (E

)
O

N
E

's
 (M

)
O

N
E

's
 (I

)
TW

O
's

 (E
)

TW
O

's
 (M

)
TW

O
's

 (I
)

Fl
et

ch
er

 (E
)

Fl
et

ch
er

 (M
)

Fl
et

ch
er

 (I
)

C
R

C
 (E

)
C

R
C

 (M
)

C
R

C
 (I

)
X

O
R

_F
le

tc
he

r
X

O
R

_C
R

C
O

N
E

's
_F

le
tc

he
r

O
N

E
's

_C
R

C
TW

O
's

_F
le

tc
he

r
TW

O
's

_C
R

C
Fl

et
ch

er
_C

R
C

Checksum(s) algorithms

P
er

fo
rm

an
ce

 Im
pa

ct
 (

lo
g)

80x80
160x160
320x320
L91

Fig. 5.4: Performance impact with -O3 compiler optimization in GPU-based implementa-
tions

74 Chapter 5 Exploiting Safe Parallelization on GPUs

1

10

100

X
O

R
 (E

)
X

O
R

 (M
)

X
O

R
 (I

)
O

N
E

's
 (E

)
O

N
E

's
 (M

)
O

N
E

's
 (I

)
TW

O
's

 (E
)

TW
O

's
 (M

)
TW

O
's

 (I
)

Fl
et

ch
er

 (E
)

Fl
et

ch
er

 (M
)

Fl
et

ch
er

 (I
)

C
R

C
 (E

)
C

R
C

 (M
)

C
R

C
 (I

)
X

O
R

_F
le

tc
he

r
X

O
R

_C
R

C
O

N
E

's
_F

le
tc

he
r

O
N

E
's

_C
R

C
TW

O
's

_F
le

tc
he

r
TW

O
's

_C
R

C
Fl

et
ch

er
_C

R
C

Checksum(s) algorithms

P
er

fo
rm

an
ce

 Im
pa

ct

YOLO v3 Glob2Reg
YOLO v3 Glob2Shared2Reg
Tiny YOLO v3 Glob2Reg
Tiny YOLO v3 Glob2Shared2Reg

Fig. 5.5: Performance impact caused by the inclusion of our checksums catalog evaluated
in YOLO-v3 and Tiny YOLO-v3 for the two proposed memory hierarchies with
-O3 compiler optimization

In Fig. 5.5, we observe that intermediate memory allocation of the ESs arrays in
shared memory reduces the performance impact in contrast with the direct transfer
from global to shared memory when the diagnostics are individually implemented on
the outermost loops (intermediate and external loops). However, in the experiment
implementing the diagnostics in the internal loops and the diagnostics combinations,
we do not appreciate a significative improvement, which can be motivated by the
fact that the compiler performs this intermediate allocation as an optimization inde-
pendently of the fact that we have not explicitly implemented it. In this case, the
standard deviation involved in these experiments may be the source of these perfor-
mance impact differences between the two memory architecture implementations.

5.2.3 Diagnostic Coverage

For the DC experiments, we have followed the same procedure as in the previous
chapter performing a fault-injection campaign at the bit-level in all bit positions.

Table 5.1 gathers the achievable DC obtained from including our GPU-based diag-
nostics catalog in CUTLASS MMM together with the achievable DC in scalar and

5.2 Evaluation 75

AVX-based implementations (Table 4.4 from the previous chapter). This table shows
that GPU-based implementations achieve a higher DC than the less parallelized
implementations for external (E) implementations. This increment occurs due to the
specific implementation details of the GPU-based MMMs, where the entire matrix
is decomposed into block tiles that independently compute partial MMMs. In this
implementation, the number of values protected in the most external loop increases
with a consequent increment in the achievable DC.

Tab. 5.1: DC in scalar (Sca), AVX-based, and GPU-based implementations.

Square Unbalanced

Checksum
Implemented

20 40 80 L1 L2 L3

Sca AVX GPU Sca AVX GPU Sca AVX GPU Sca AVX GPU Sca AVX GPU Sca AVX GPU

XOR (E) 2.5 2.5 10.0 1.3 1.3 10.0 0.6 0.6 12.5 0.4 0.4 6.6 0.1 0.1 12.4 0.1 0.1 12.1
XOR (M) 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 52.5 52.5 52.5 0.9 0.9 0.9 6.6 10.0 6.3
XOR (I) 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 52.5 52.5 52.5 0.9 0.9 0.9 100.0 100.0 6.3
One’s (E) 2.5 2.5 10.0 1.3 1.3 10.0 0.6 0.6 12.5 0.4 0.4 6.6 0.1 0.1 12.4 0.1 0.2 12.1
One’s (M) 52.5 79.2 62.5 51.2 59.2 62.5 50.6 54.4 62.5 54.1 72.9 63.9 1.0 2.2 25.7 7.1 9.9 30.0
One’s (I) 98.5 99.2 100.0 97.7 99.2 100.0 96.9 93.8 100.0 98.4 98.9 100.0 97.7 99.2 100.0 96.9 99.9 100.0
Two’s (E) 2.5 2.5 10.0 1.3 1.3 10.0 0.6 0.6 12.5 0.4 0.4 6.6 0.1 0.1 12.4 1.0 0.2 12.1
Two’s (M) 52.3 68.8 61.7 51.1 59.1 61.7 50.6 54.2 61.7 54.1 63.5 63.2 1.0 1.7 24.1 7.1 9.6 28.5
Two’s (I) 96.9 96.9 95.7 95.3 95.3 95.7 93.8 99.2 95.7 98.4 92.6 95.9 90.7 90.7 91.5 96.9 100.0 92.0
Fletcher (E) 2.6 3.5 10.0 1.3 1.5 10.0 0.6 0.7 12.5 0.4 0.5 6.6 0.1 0.2 12.4 0.1 0.2 12.1
Fletcher (M) 52.2 68.8 62.5 51.1 60.0 62.5 50.6 55.0 62.5 54.1 73.8 63.9 1.0 2.2 25.7 7.1 10.0 30.0
Fletcher (I) 100.0 96.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0
CRC (E) 2.6 3.5 10.0 1.3 1.5 10.0 0.6 0.7 12.5 0.4 0.5 6.6 0.1 0.2 12.4 0.1 0.2 12.1
CRC (M) 52.5 80.0 62.5 51.3 60.0 62.5 50.6 55.0 62.5 54.1 73.8 63.9 1.0 2.2 25.7 7.1 10.0 30.0
CRC (I) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
XOR_Flet 99.8 100.0 90.6 99.8 100.0 90.6 99.8 100.0 90.6 99.8 100.0 91.0 99.8 100.0 81.4 99.8 100.0 82.5
XOR_CRC 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
One’s_Flet 100.0 100.0 96.3 100.0 100.0 95.6 100.0 100.0 95.6 100.0 100.0 95.5 100.0 100.0 90.7 100.0 100.0 91.3
One’s_CRC 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Two’s_Flet 97.9 100.0 96.3 97.8 100.0 95.6 97.7 100.0 95.6 99.6 100.0 95.5 99.8 99.9 90.7 99.6 100.0 91.3
Two’s_CRC 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Fletcher_CRC 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

We observe the same trend in the intermediate implementations in square matrices
with dimensions greater than 20 and unbalanced matrices L2 and L3, with an
exception in the XOR implementation in L3, which was motivated by the nature
of XOR which does not detect even single-bit errors. In the rest of the matrices,
the DC of AVX is superior to that achieved in GPUs. The reason lies in the AVX-based
implementation that protects eight values in the intermediate loop and, in small
matrices, the number of values protected is larger than those for the GPU.

Internal loop implementations reach 100 % DC in all matrices dimensions with one’s
complement, Fletcher, and CRC. XOR implementation has identical DC to scalar and
AVX in all dimensions except in the L3 matrix. DC drops because our GPU-based
implementation for these matrices sizes divides the MMM into an even number of
computations performed by each thread, and this checksum fails to detect even
failures. Two’s complement provides similar results to the other implementations.

76 Chapter 5 Exploiting Safe Parallelization on GPUs

Finally, all combinations of checksums reach the maximum DC, excluding the ones
presented in Table 5.1 that still provide a high DC. In the GPU-based implementation,
the combinations, including Fletcher in the intermediate loop, do not provide as
much DC as the other implementations. This reduction relates to the location of the
Fletcher checksum computation in the code, which could not be kept identical to
the other implementations in the GPU-based implementation.

5.2.4 Trade-off Between Performance Impact and DC

In this subsection, we analyze the suitability of our catalog of diagnostics for an
80×80 square MMM, searching for a proper trade-off between DC and performance
impact. As explained in a previous subsection, the performance impact varies
substantially from the non-optimized compilation to the highest optimization, which
has led to assessing both implementations, as it can be seen in Fig. 5.6.

1

3

10

30

50

100

X
O

R
 (

E
)

X
O

R
 (

M
)

X
O

R
 (

I)
O

N
E

's
 (

E
)

O
N

E
's

 (
M

)
O

N
E

's
 (

I)
T

W
O

's
 (

E
)

T
W

O
's

 (
M

)
T

W
O

's
 (

I)
F

le
tc

he
r

(E
)

F
le

tc
he

r
(M

)
F

le
tc

he
r

(I
)

C
R

C
 (

E
)

C
R

C
 (

M
)

C
R

C
 (

I)
X

O
R

_F
le

tc
he

r
X

O
R

_C
R

C
O

N
E

's
_F

le
tc

he
r

O
N

E
's

_C
R

C
T

W
O

's
_F

le
tc

he
r

T
W

O
's

_C
R

C
F

le
tc

he
r_

C
R

C

Checksum(s) Algorithms

P
er

fo
rm

an
ce

 Im
pa

ct
 (

lo
g)

D
ia

gn
os

tic
 C

ov
er

ag
e

(D
C

)

80x80 DC 80x80 (-O0) Performance Impact 80x80 (-O3) Performance Impact

Fig. 5.6: Trade-off between performance impact vs. DC: GPU-based MMM implementa-
tions for square matrices of dimension 80 × 80.

Regardless of the compiler optimizations, both reach the same DC. However, in
the experiments with -O0 compiler optimization, we obtain performance impacts
between 1.01-1.23 in contrast with -O3, which increases this range to 1.18-17.98.

5.2 Evaluation 77

We can realize from Fig. 5.6 that all combinations, including CRC in the intermediate
loop as well as the individual implementations of Fletcher, CRC, and one’s comple-
ment in the most internal loops allow us to reach 100 % DC. Among all of them,
the one’s complement incurs the smallest performance impact, and it is, therefore,
the most suitable one for detecting single-bit errors for this MMM dimension (1.09
in non-optimization compilation and 3.70 the highest compiler optimization). For
medium DC, the most suitable option for -O0 compilation remains the same, but
with -O3 optimization, the best trade-off can be reached with two’s complement (I)
(3.33 performance impact). Finally, the best performance for low DC is achieved in
both optimizations with two’s complement (M) (1.01 and 1.44, respectively).

5.2.5 IEC 61508 compliance

After analyzing the most suitable checksums according to the DC range, performance
impact, and compiler optimization for 80 × 80 square matrices dimensions, we exam-
ine the DC required to achieve the SIL and HFT established in the functional safety
standards. For that, we recur to IEC 61508-2 Table 2 (depicted in Fig. 4.5, where
those relationships are defined. As DC and performance impact are MMM dimension-
dependent, safety designs must analyze both values based on their particular CNN
dimensions. As a representative example, Table 5.2 collects the most suitable check-
sums and the incurred performance impact to reach the required DC for each HFT
and SIL with square matrices of dimension 80 × 80. We employ a greyscale to denote
the DC ranges defined in IEC 61508, with higher DCs being darker gray cells.

Tab. 5.2: Selected checksums for 80 × 80 matrices dimensions according to SIL and HFT.

SIL
4 3 2 1

-O0 One’s (I) (1.09) (iv) One’s (I) (1.09)(iii) One’s (M) (1.01)(ii)
0

-O3
Non achievable

One’s (I) (3.7)(iv) Two’s (I) (3.33)(iii) Two’s (M) (1.44)(ii)

-O0 One’s (I) (1.09)(iv) One’s (I) (1.09)(iii) One’s (M) (1.01)(ii) XOR (M) (1.01)(i)
1

-O3 One’s (I) (3.7)(iv) Two’s (I) (3.33)(iii) Two’s (M) (1.44)(ii) XOR(M) (1.25)(i)

-O0 One’s (I) (1.09)(iii) One’s (M) (1.01)(ii) XOR (M) (1.01)(i)

HFT

2
-O3 Two’s (I) (3.33)(iii) Two’s (M) (1.44)(ii) XOR (M) (1.25) (i) Non Specified

NOTE: i) DC < 60 % ii) 60 % < DC < 90 % iii) 90 % ≤ DC < 99 % iv) 99 % ≤ DC

In Table 5.2, it is possible to observe the compiler optimization influence on the
choice of the most appropriate diagnostic mechanism. For instance, for a SIL=2
with a single-channel implementation (HFT=0), the chosen checksum changes from
one’s (M) to two’s (M) according to the compilation (-O0 and -O3, respectively).

78 Chapter 5 Exploiting Safe Parallelization on GPUs

5.3 Summary

This chapter describes, implements, and evaluates the DC and performance impact
of our catalog of diagnostic techniques integrated into the high-performance MMM
CUTLASS library (‘safe GPU-based MMM’) to detect GPU transient and permanent
errors. This ‘safe GPU-based MMM’ software module can be used to detect random
hardware errors in the MMM software execution itself and perform an indirect
diagnosis of the GPU components that compute the MMM and reduce the probability
of undetected latent errors. This chapter paves the way towards the safe imple-
mentation of CNN-based safety solutions implemented in GPU-based platforms by
providing the MMM with error detection capabilities, and represents a step forward
in adherence to the current functional safety standards of safety systems involving
ML components implemented in HPEC platforms. With the selected GPU, the devel-
oped ‘safe GPU-based MMM’ software implementation and 80 × 80 square matrices
dimensions, low, medium, and high DCs are achieved with a minimum performance
impact of 1.01, 1.09, and 1.09 for the -O0 compiler optimization option and 1.44,
3.33, and 3.7 for the -O3 option.

Moreover, the ‘safe GPU-based MMM’ can be integrated in different safety architec-
tural patterns with different diagnostic approaches (e.g., design-time fixed pattern,
real-time input data) and different fault-tolerance levels based on redundant archi-
tectures. Furthermore, as explained in the introduction of this chapter, this approach
should also be considered potentially complementary with respect to other existing
techniques, such as ABFT and ABED.

The ‘safe GPU-based MMM’ technique is generalizable to different GPU devices
and matrices dimensions. However, achievable DC and the associated performance
impact varies with GPU devices/architectures, software libraries, matrices dimen-
sions, and compiler optimizations. Thus, whenever this technique is instantiated,
experiments should be re-executed for the given GPU device/architecture, compiler,
software library, and application-specific matrices dimensions to select the most
suitable candidate from the catalog of integrated diagnostic techniques (e.g., DC vs.
performance impact).

5.3 Summary 79

Methodology to Selectively
Protect CNNs: Use Case
Application Analysis

6

This chapter proposes a step-by-step methodology for the selective protection of
MMMs to achieve a performance-efficient DC of CNNs deployed on GPUs. In Chap-
ter 5, we propose protecting the MMM by using our catalog of diagnostic techniques
implemented at the arithmetic operation level. Since our catalog provides different
degrees of DC incurring an execution time penalty according to the implementation
and the dimensions of the MMM, a trade-off between performance and DC for each
CNN layer shall be analyzed before its application. However, the safety-related
systems where our solution could be deployable commonly operate in real-time,
having to cope with stringent timing constraints. The resulting slowdown for the
highest DCs may be unaffordable when applied to the whole CNN. In those cases, we
propose to reduce the performance impact by adopting our step-by-step methodology.
We enumerate the main contributions of this chapter as follows:

1. We define a step-by-step methodology to selectively protect CNNs deployed
on GPUs by implementing diagnostics in the MMMs. This methodology has
three stages: i) CNN’s sensitivity to misclassification analysis, ii) layer-by-layer
performance impact and DC analysis, and iii) selective CNN layer protection.

2. We present a strategy to efficiently determine the achievable DC of big dimen-
sion matrices implemented on GPUs. This strategy is based on the DC analysis
of the grid of thread blocks in which they are launched on the GPU.

3. Finally, we apply the methodology in Tiny YOLO-v3 employing the previously
mentioned strategy for the DC analysis.

The rest of this chapter is structured as follows: Section 6.1 describes our method-
ology for protecting CNNs and proposes a strategy to evaluate the achievable DC
of matrices of big dimension. Then, we implement and evaluate our methodology
in Tiny YOLO-v3 in Section 6.2. Finally, we provide a summary of this chapter in
Section 6.3.

81

6.1 Methodology to Selectively Protect CNNs

This section presents a methodology for the selective protection of MMM-based CNNs
applied in safety-related applications. This methodology seeks to find a trade-off
between DC and the performance impact incurred by including diagnostic techniques.
The layered architecture of CNNs is the main foundation of the methodology (see
Fig. 6.1). In this layered CNN architecture, an error’s impact is highly dependent
on the layer where the error occurs and its propagation through the CNN. The
proposed methodology seeks to identify the most misclassification-prone layers to
provide selective CNN protection through the three stages depicted from top to
bottom in Fig. 6.1. This figure depicts each stage’s input (left side of the figure)
and intermediate and final outputs (right side). The upper middle part includes an
example of MMM-based CNN, particularly Tiny YOLO-v3. The bottom center figure
depicts a specific proposal to protect CNN in the form of colored shields.

St
ag

e
3:

 S
el

ec
tiv

e
 p

ro
te

ct
io

n

Inputs

Safety requirementsPrevious stages results

L

H M

L

M

St
ag

e
1:

 S
en

si
tiv

ity
 to

m
is

cl
as

si
fic

at
io

n
An

al
ys

is
St

ag
e

2:
 D

C
 a

nd
 p

er
fo

rm
an

ce

im
pa

ct
 a

na
ly

si
s

Safe library

St
ep

 1
.1

Fault
InjectionInput

St
ep

 1
.2

St
ep

 2
.2

St
ep

 2
.3

St
ep

 2
.1

x

xxx

CNN (Tiny YOLO-v3 architecture)
Golden inference+
execution time ref.

Intermediate

Output Final Output

Most error-prone
layers

Golden ES

ES with fi

Inference with fi

Diagnostic

coverage

Performance

impact

Execution time

with diagnostics

Output

.

A layer-by-layer selection

 of diagnostic mechanisms

MHH HH H L M

Fig. 6.1: Selective CNN layer protection methodology

Finally, we propose a strategy to efficiently obtain the DC of big dimension matrices,
significantly reducing the fault injection campaign effort.

6.1.1 First stage: CNN’s Sensitivity to Misclassification Analysis

This section evaluates the behavior of CNN layers against single-bit errors affecting
weights in classification tasks. We identify the most misclassification-prone layers by
performing a fault injection campaign in weights, which are values obtained in the
training phase of the CNNs, corresponding to B values in the MMM (C = A × B).
We define the first two steps as follows (see Fig. 6.1):

82 Chapter 6 Methodology to Selectively Protect CNNs: Use Case Application
Analysis

Step 1.1 performs the classification with a set of predefined images to obtain a
golden reference inference value of each image and measures the execution time
required by each layer.

Step 1.2 executes a fault injection campaign with the same set of images. Exhaus-
tive fault injection at bit-level is hardly manageable due to the required testing
time, even in small CNNs. For example, the Tiny Yolo-v3 weight configuration
file has 9.06e9 bits [125] that would require the same amount of single-bit error
injection executions. According to our GPU-based implementation, the execution
time of single image classification is about 45,82 ms. Therefore, performing an
exhaustive single-bit fault injection campaign with a single Xavier Nx GPU would
take approximately 13,163 years. Instead, we propose injecting faults in the weights’
most prone-error bits.

CNN-based applications such as Tiny YOLO-v3 commonly rely on floating-point
data types. In these data types, the impact in the classification varies depending
on the bit position affected by the error [89], [94], [95]. In fact, the errors in
the sign and mantissa bits do not significantly impact the prediction, in contrast
with those in exponent bits, which cause critical misclassifications [89], [94], [95].
We propose performing a statistical fault injection campaign on the exponent bits
of the weights. After defining classification features such as the confidence level,
error margin, and the total number of possible errors in the weights, we compute a
statistically representative random sampling size as stated in [144].

The resulting inference is compared against the golden inference from Step 1.1, and
based on a misclassification criterion, we obtain the most misclassification-prone
layers as the final output of this first stage. We propose a semantic comparison
of the detected classes against the golden output according to the specific CNN
application. E.g., in object detection applications, such as YOLO, this criterion
would be based on defining acceptance ranges for features such as the accuracy
of the detected classes, box size (height and width), or location of the box center
for each of the detected classes.

In Fig. 6.2, we define the flow of our classification criteria employed to evaluate
the sensitivity of each layer to misclassification. We apply this criterion for every
classification result from the fault injection campaign and obtain the average value
of all the classified images in all the bits belonging to the same layer. We consider
that the objects are detected if, by comparing against the golden result: 1) the
central point of the box is less than 50 pixels away, 2) the width and height of the
boxes vary less than 25 pixels, and 3) the accuracy differs less than 15%. Note that
this criterion depends on the specific application (e.g., the input image resolution).

6.1 Methodology to Selectively Protect CNNs 83

Golden classes

Is the same class?

Is the x-axis box center

within the x-axis range?

Yes

Is the y-axis box center

within the y-axis range?

Is the box height within

the height range?

Is the box width within

the width range?

Yes

Yes

Yes

Yes

 Store the
misclassification
 error

No

Specify that

the golden

 class has been

 detected

Yes

Is there any additional

fault injection class?

Yes

Is there any additional

golden class?

Yes
Classes after
fault injection

Is the accuracy within

the accuracy range?

No

No

No

No

No

No

No

Start

End

Fig. 6.2: Sensitivity criterion flow to assess the layer’s sensitivity to misclassification

From the results obtained after applying the misclassification criterion, we can obtain
the undetected objects or False Negatives (FNs) and the average of new objects that
appear or False Positives (FPs).

84 Chapter 6 Methodology to Selectively Protect CNNs: Use Case Application
Analysis

6.1.2 Second Stage: Layer-by-layer Performance Impact and DC

After identifying the most misclassification-prone layers, this stage evaluates the per-
formance impact incurred by including diagnostics in each layer and the maximum
achievable DC. To this end, we rely on the ‘safe MMM’ library proposed in Chapter 5.
This stage follows the next three steps depicted in Fig. 6.1:

Step 2.1 evaluates the execution time penalty incurred by each diagnostic technique
included in the safe catalog. To this end, we apply the diagnostics in all CNN layers
and measure the execution time of each one. This process is repeated for the different
types of protection techniques provided in the diagnostics catalog. The performance
penalty is then determined as a ratio between the mean execution time of each CNN
layer with the diagnostic techniques divided by the mean execution time to compute
the same layer without diagnostics (previously measured in Step 1.1).

Step 2.2 computes an array of golden ESs by including the catalog of diagnostic
techniques in the MMM execution of each layer without fault injections. This value
is then taken as a reference in the next steps to determine whether injected errors
are detected by diagnostics (identical ESs at bit-level) or not.

Step 2.3 performs a fault injection campaign and obtains the DC associated with
each layer. However, an exhaustive fault injection campaign may be unaffordable
for matrices with big dimension due to the required number of iterations to cover
all input combinations. That is why, in Subsection 6.1.4 we propose a strategy to
compute the DC of big dimension matrices implemented on GPUs, relying on the
CUDA programming model characteristics.

6.1.3 Third Stage: Selective Protection

The performance impact and DC analysis of all CNN layers, Step 2.1 through Step 2.3,
are followed by analyzing the most appropriate diagnostics layer-by-layer. The SIL of
the application and the HFT of the system determine the DC range to achieve. Thus,
the diagnostic with the lowest performance impact that achieves at least the imposed
DC is selected in a layer-by-layer process. However, the selective protection of the
CNN’s layers is the most reasonable option instead of the complete one, especially
in systems under tight timing requirements. The results obtained in the analysis of
the CNN’s sensitivity to misclassification determine the layers less likely to cause
misclassification. We propose to selectively protect each layer based on these results
and taking into account the percentage of the execution time of each layer according

6.1 Methodology to Selectively Protect CNNs 85

to the entire CNN. This protection depends on CNN’s propensity to misclassifying,
and it is always subject to a final fault injection campaign to simulate the achieved
DC according to the selection. As a representative example, we have depicted in
Fig. 6.1 a particular diagnostics election in the form of shields including the chosen
DC range: i) low (L), ii) medium (M) and iii) high (H).

Note that a valid solution is always reached since at least one of the diagnostics
provides 100% DC in each layer so that such specific diagnostics would be a proper
solution from the DC standpoint. Hence, the goal is preserving a sufficiently high
DC while minimizing the performance impact due to diagnostics according to the
maximum affordable by the specific application.

6.1.4 DC Analysis in Big Dimension Matrices

This subsection decomposes into two parts. First, we explain the base of our strategy
to evaluate the DC of big matrices and the main factors that affect the effectiveness
of the diagnostics. Then, we describe how to compute the final DC according to the
source of the error in the MMM implementation.

Block decomposition

Before launching a CUDA kernel, it is necessary to define built-in variables to
decompose the function to parallelize into a grid of blocks of threads (see Fig. 3.8
in the background). These blocks execute according to the SIMT model. That is,
all active threads process the data in the same way. Since those threads access
shared memory (block dependant memory), we can consider that all blocks with
the same number of active threads handle the same amount of data independently.
This independence among blocks is the cornerstone of our strategy to evaluate
the achievable DC of big dimension MMMs since we can compute it from the DC
evaluation of smaller blocks.

The following factors shall be considered in this strategy:

(F1) Block parity: techniques such as XOR, one’s, and two’s complement do not
detect errors affecting the same bit position of an even number of data words.

(F2) Block dimensions: determines the amount of data computed by each block. A
higher amount to be protected may lead to lower diagnostics effectiveness [46].

(F3) Error source: errors affecting global memory spread into several ones instead
of those appearing in a register, which can affect a single arithmetic operation [141].

86 Chapter 6 Methodology to Selectively Protect CNNs: Use Case Application
Analysis

(F4) Fault type: the diagnostics effectiveness varies according to the type of errors
(e.g., single-bit, burst, random errors...). This chapter focuses on single-bit errors.

(F5) MMM implementation: the specific software implementation and the location
of diagnostics techniques in the end user’s code are crucial in the effectiveness of
the diagnostics (as we postulate in the previous chapters).

Fig. 6.3a depicts a MMM with representative matrices dimensions (e.g., output
matrix C = 133 × 200 with a grid of threads blocks <64, 64, 8>) to explain the
DC computation and the influence of previously enumerated factors. As explained
in Section 3.2.5, the CUTLASS library decomposes the matrix into blocks to run the
MMM in the GPU. We denote as B1 those blocks whose dimensions match the size
of the blocks launched to the GPU, B2 as those with an equal number of columns
but different rows, B3 if the number of rows matches but columns differ, and finally,
B4 if both the number of rows and columns differ.

Matrix A

B1 B1 B1

B1B1B1 B3

B3

B2 B2 B2 B4

Matrix C

Matrix B

(a) MMM block decomposition

B
R

T2
B

R
T1

Matrix C

B1

B2

B1B1

B1 B1

B2

B1

B2 B4

B3

B3

(b) Block rows

BCT2BCT1

Matrix C

B1

B2

B1B1

B1 B1

B2

B1

B2 B4

B3

B3

B1

(c) Block columns

Fig. 6.3: MMM decomposition into blocks

DC computation per error source

Depending on the error source (F3), the computation of the DC differs. We propose
two scenarios according to this error source:

6.1 Methodology to Selectively Protect CNNs 87

Faults injected at the arithmetic operation level or at register level: In this scenario,
the final DC can be obtained after independently computing the DC associated with
previously defined blocks. As Eq. 6.1 summarizes, this value is computed as the ratio
between the sum of errors detected (Ndet) by each block divided by the total number
of fault injections (Nfi)1, being i the block type previously defined (from B1-B4):

DC =

4∑
i=1

N_blocksBi × Ndet_Bi

Nfi
(6.1)

In this scenario, the effectiveness of XOR, one’s, and two’s complement checksums
is not affected by the block parity factor (F1) since the error is not spread across
multiple blocks, and is not affected by the amount of data to be protected (F2).

Fault injected at the global memory level: This kind of errors entails changes in
the DC computation since the error count diverges from the previous scenario. In
this case, the errors injected in the input matrices A and B affect several blocks.
Therefore, a proper DC computation requires verifying if previous blocks have
already counted the detected errors. To do this, we propose distinguishing between
errors detected from the fault injection in A (DetA) and B (DetB) matrices. Faults
injected in A affect Block Rows (BRs) and those injected in B matrix affect Block
Columns (BCs), as shown in Fig. 6.3b and Fig. 6.3c, respectively. In both cases, we
define two types of blocks: i) type 1 (T1) as those block rows/columns (BRT 1/ BCT 1)
in which at least one block is B1, and ii) type 2 (T2) as those block rows/columns
(BRT 2/ BCT 2) in which none is B1. The number of detected errors can be computed
according to Eq. 6.2 and Eq. 6.3:

DetA = (B1†
detA

+ B3†
detA

) × N_BRT 1 + B2∗
detA

+ B4∗
detA

(6.2)

DetB = (B1⊗
detB

+ B2⊗
detB

) × N_BCT 1 + B3⊛detA
+ B4⊛detA

(6.3)

In the above equations, we include the same superscripts for two blocks to indicate
that those errors detected by one do not have to be accounted for by the other.
E.g., B1†

detA
and B3†

detA
denote the number of detected errors in B1 and B3 respec-

tively when performing a fault injection campaign in matrix A. Since they belong
to the same BR, we indicate by means of the same superscript (†) that they are
complementary and do not have to account for the same errors injected in A. For
that, we store the index positions of the errors detected by each block in an array
that the complementary block will check. Eq. 6.4 presents the final step to compute

1In an exhaustive fault injection campaign at bit-level, this value is N times the number of arithmetic
operations. Being N the size of the data type in which the matrices are stored.

88 Chapter 6 Methodology to Selectively Protect CNNs: Use Case Application
Analysis

the DC. As we perform a fault injection campaign at the bit-level, the number of
injected errors depends on the dimension of the input matrices and the data size of
the data type employed (data_size).

DC = DetA + DetB

Nfi
= DetA + DetB

(M + N) × K × data_size
(6.4)

In those errors that appear in the global memory for the previously defined F1 and
F5 factors, the blocks B2, B3, and B4 (the smallest) could detect other errors as
opposed to those detected by B1 (the biggest). As B1 dimensions are multiples of
32 (number of threads per warp) for performance reasons by design, the amount of
data protected according to our MMM implementation (F5) is multiple of an even
number. Therefore, the effectiveness of some algorithms can be affected by F1 since
any number multiplied by an even number leads to an even result. Those other
blocks protecting an odd number of data can additionally detect those errors not
detected by B1. That occurs if the following conditions are met:

1. Diagnostics in the internal loop (I): the number of iterations computed by each
thread is odd. That is, Mt, Nt, and Kt take odd values. Note that, since B3
shares the B1 row dimensions, and B2 the column dimensions, these blocks
do not detect additional errors since B1 dimensions are multiple of 32.

2. Diagnostics in the intermediate loop (M): The number of protected data types
is odd only if Nt and Kt are odd.

3. Diagnostics in the external loop (E): Kt is odd, independently of Mt and Nt.

6.2 Evaluation

In this section, we evaluate our methodology and present the results for each of
its stages. We initially evaluate the performance impact incurred by the adoption
of each of the diagnostic techniques from the ‘safe MMM’ library in Tiny YOLO-v3
layers, as well as their achievable DC. Finally, according to these results, we discuss
the most appropriate diagnostics to perform selective protection of Tiny YOLO-v3
CNN based on the target SIL.

6.2.1 Experimental Set-up

For the set-up of the Nvidia Xavier Nx GPU over which we perform the experiments,
we continue with the one proposed in Chapter 5 and then refer the reader to

6.2 Evaluation 89

Subsection 5.2.1. Clarify that we denote the layers from Tiny YOLO-v3 as L1-L13,
where the number refers to the order position in the CNN. Table 6.1 gathers the
CNN’s configuration through the parameters M , N and K. As it was explained in
previous chapters: A=M × K, B=K × N and C=M × N .

Tab. 6.1: Layer-by-layer size, total errors and statistically representative fault injections per layer

Tiny
Yolo-v3

Features
M N K Target faults Injections Timing (%)

L1 173056 16 27 3456 413 20,30
L2 43264 32 144 36864 3114 16,75
L3 10816 64 288 147456 6314 8,60
L4 2704 128 576 589824 8497 4,71
L5 676 256 1152 2359296 9301 3,93
L6 & L9 169 512 2304 9437184 9526 6,21
L7 169 1024 4608 37748736 9574 18,40
L8 169 256 1024 2097152 9265 1,75
L10 169 255 512 1044480 89446 1,07
L11 169 128 256 262144 7427 0,71
L12 676 256 3456 7077888 9501 10,10
L13 676 255 256 522240 8372 1,28

6.2.2 Stage 1: CNN’s Sensitivity to Misclassification Analysis

We employ a statistical fault injection campaign on the exponent bits of the weights
to analyze the CNN’s layers sensitivity to misclassification when they are affected by
single-bit errors. First, we compute a statistically representative random sampling
size (Injections) with a 95% confidence level and a 1% error margin, taking as refer-
ence the number of potential faults targeting each layer (Targetfaults). As we focus
on the exponent bits (8 bits) of the weights, the number of target faults of each layer
is targetfaults = N ×K ×8. Table 6.1 summarizes the above mentioned features.

Then, we perform the fault injection campaign for five images extracted from
Berkeley DeepDrive dataset [118] (these images are depicted in Subsection 3.3).
Applying our previously defined criterion and performing the average across the five
images, we obtain the results collected in Table 6.2. This table depicts the average
of FNs and FPs in percentage terms.

Tab. 6.2: Layer-by-layer analysis of its sensitivity to misclassification

Sensitivity
Layer Position

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13

FNs (%) 96,4 90,6 93,7 92,3 83,4 96,8 87,1 99,6 59,8 55,2 74,3 55,7 66,8
FPs (%) 0,2 1,6 1,2 0,9 2,7 1,5 1,2 0,1 6,5 6,5 0,1 27,6 27,3

90 Chapter 6 Methodology to Selectively Protect CNNs: Use Case Application
Analysis

In FNs column, we observe that modifying a single-bit in the exponent of a unique
weight leads to a failure to detect most of the objects regardless of the layer where
the weight is used. Moreover, we observe that the impact of the initial layers (from
L1-L8) on the classification is higher than the final layers (L9-L13). As mentioned
in the background, YOLO is a multi-scale object detector that performs multi-layer
feature extraction. Tiny YOLO-v3 performs this feature extraction from L10 and L13
layers (see Fig 6.1). These layers belong to different branches whose origin is the
output from L8. Errors in the initial layers propagate virtually to all outputs resulting
in very high FNs. Instead, errors in the final layers have a lower impact due to their
propagation is lower, and it is more frequent in the case where only the bounding
box or object location is affected, which translates into a FP if the impact is large
enough, or into no semantic error if impact is small. Note that L11 errors do not
produce as many FNs and FPs as the rest of the final layers since the concatenation
with L5 and the absence of errors on the other branch (L9 and L10) mitigate their
appearance. In addition, it should be noted that errors in L10 and L11 produce a
greater number of FPs than those in L9 and L10 because the scale of the former is
larger than that of the latter, detecting smaller objects with smaller scales.

6.2.3 Stage 2: Layer-by-layer Performance and DC Analysis

In this subsection, we evaluate the achievable DC and performance impact associated
with the inclusion of the diagnostics catalog in each of the Tiny YOLO-v3 layers.

Step 2.1: Performance impact

Table 6.1 depicts the percentage execution time breakdown across layers for the en-
tire CNN performed without diagnostics and with maximum compiler optimizations.
These values will be decisive in Stage 3. For instance, L1 is the most time-consuming
layer accounting for 20.3% of the overall execution time of the CNN.

Then, we measure the performance impact incurred by adopting the diagnostics
catalog following Step 2.1 of the methodology. In this experiment, we measure the
layer-by-layer execution time required to predict single images with a set of a thou-
sand images extracted from the Berkeley DeepDrive dataset [118]. Additionally, we
dispensed with the initial hundred timing measurements to avoid problems related to
cache cold-starting and the delays involved with the initial kernel launches [143].

As in the previous chapters, we perform the first set of experiments disabling the
compiler optimizations (-O0). We present the layer-by-layer performance impact of
Tiny YOLO-v3 CNN in Fig. 6.4 (results normalized with respect to the layer execution
without diagnostics). It should be noted that L6 and L9 are depicted in the same
figure since they have identical dimensions and hence, identical execution times.

6.2 Evaluation 91

L1

1.00

1.05

1.10

1.15

1.20

1.25

P
er

fo
rm

an
ce

 Im
pa

ct

L3

1.00

1.10

1.20

1.30

P
er

fo
rm

an
ce

 Im
pa

ct

L5

1.00

1.05

1.10

1.15

1.20

P
er

fo
rm

an
ce

 Im
pa

ct

L7

1.00

1.05

1.10

1.15

1.20

P
er

fo
rm

an
ce

 Im
pa

ct

L10

1.00

1.05

1.10

1.15

1.20

P
er

fo
rm

an
ce

 Im
pa

ct

L12

X
O

R
 (

E
)

X
O

R
 (

M
)

X
O

R
 (

I)
O

N
E

S
 (

E
)

O
N

E
S

 (
M

)
O

N
E

S
 (

I)
T

W
O

S
 (

E
)

T
W

O
S

 (
M

)
T

W
O

S
 (

I)
F

LE
T

 (
E

)
F

LE
T

 (
M

)
F

LE
T

 (
I)

C
R

C
 (

E
)

C
R

C
 (

M
)

C
R

C
 (

I)
X

O
R

_F
LE

T
X

O
R

_C
R

C
O

N
E

S
_F

LE
T

O
N

E
S

_C
R

C
T

W
O

S
_F

LE
T

T
W

O
S

_C
R

C
F

LE
T

_C
R

C

1.00

1.05

1.10

1.15

1.20

Checksum(s) algorithms

P
er

fo
rm

an
ce

 Im
pa

ct

L2

1.00

1.05

1.10

1.15

1.20

1.25

L4

1.00

1.05

1.10

1.15

L6 & L9

1.00

1.05

1.10

1.15

1.20

L8

1.00

1.05

1.10

1.15

1.20

1.25

L11

1.00

1.10

1.20

L13

X
O

R
 (

E
)

X
O

R
 (

M
)

X
O

R
 (

I)
O

N
E

S
 (

E
)

O
N

E
S

 (
M

)
O

N
E

S
 (

I)
T

W
O

S
 (

E
)

T
W

O
S

 (
M

)
T

W
O

S
 (

I)
F

LE
T

 (
E

)
F

LE
T

 (
M

)
F

LE
T

 (
I)

C
R

C
 (

E
)

C
R

C
 (

M
)

C
R

C
 (

I)
X

O
R

_F
LE

T
X

O
R

_C
R

C
O

N
E

S
_F

LE
T

O
N

E
S

_C
R

C
T

W
O

S
_F

LE
T

T
W

O
S

_C
R

C
F

LE
T

_C
R

C

1.00

1.05

1.10

1.15

1.20

Checksum(s) algorithms

Fig. 6.4: Layer-by-layer performance impact without compiler optimizations (-O0)

From these results, we observe that the layer incurring the highest performance
impact is L3 (varying from 1.01 to 1.37), with the lowest performance impact
values in L4 (from 1.002 to 1.18). Hence, the relative performance impact is quite
insensitive to layer dimensions. The suitability of the diagnostic catalog in terms
of performance impact needs to be analyzed according to the specific application’s
safety function(s) timing requirements.

92 Chapter 6 Methodology to Selectively Protect CNNs: Use Case Application
Analysis

However, for those applications with stringent timing constraints, the no-compiler
optimizations may not be an option. Thus, this has led us to perform a second set of
experiments configuring the maximum compiler optimization (compiler option -O3).
Fig. 6.5 presents the obtained results layer-by-layer. These results evidence that diag-
nostics based on Fletcher and CRC in the most internal loop have significantly higher
performance impact than the rest. In fact, this penalty difference has motivated us
to break the performance impact axis (y-axis) in the graphs depicted in Fig. 6.5.

L1

70
80

70
80

1

3
5

1

3
5

P
er

fo
rm

an
ce

 Im
pa

ct

L3

96
110

96
110

1

3
5

1

3
5

P
er

fo
rm

an
ce

 Im
pa

ct

L5

100
130

100
130

1

3

10

1

3

10

P
er

fo
rm

an
ce

 Im
pa

ct

L7

140
160

140
160

1

3

10

1

3

10

P
er

fo
rm

an
ce

 Im
pa

ct

L10

95
105

95
105

1

3

10

1

3

10

P
er

fo
rm

an
ce

 Im
pa

ct

L12

130
150

130
150

X
O

R
 (

E
)

X
O

R
 (

M
)

X
O

R
 (

I)
O

N
E

S
 (

E
)

O
N

E
S

 (
M

)
O

N
E

S
 (

I)
T

W
O

S
 (

E
)

T
W

O
S

 (
M

)
T

W
O

S
 (

I)
F

LE
T

 (
E

)
F

LE
T

 (
M

)
F

LE
T

 (
I)

C
R

C
 (

E
)

C
R

C
 (

M
)

C
R

C
 (

I)
X

O
R

_F
LE

T
X

O
R

_C
R

C
O

N
E

S
_F

LE
T

O
N

E
S

_C
R

C
T

W
O

S
_F

LE
T

T
W

O
S

_C
R

C
F

LE
T

_C
R

C

1

3

10

1

3

10

Checksum(s) algorithms

P
er

fo
rm

an
ce

 Im
pa

ct

L2

95
110

95
110

1

3
5

1

3
5

L4

96
110

96
110

1

3
5

1

3
5

L6 & L9

140
160

140
160

1

3

10

1

3

10

L8

110
130

110
130

1

3

10

1

3

10

L11

70
80

70
80

1

3
5

1

3
5

L13

70
90

70
90

X
O

R
 (

E
)

X
O

R
 (

M
)

X
O

R
 (

I)
O

N
E

S
 (

E
)

O
N

E
S

 (
M

)
O

N
E

S
 (

I)
T

W
O

S
 (

E
)

T
W

O
S

 (
M

)
T

W
O

S
 (

I)
F

LE
T

 (
E

)
F

LE
T

 (
M

)
F

LE
T

 (
I)

C
R

C
 (

E
)

C
R

C
 (

M
)

C
R

C
 (

I)
X

O
R

_F
LE

T
X

O
R

_C
R

C
O

N
E

S
_F

LE
T

O
N

E
S

_C
R

C
T

W
O

S
_F

LE
T

T
W

O
S

_C
R

C
F

LE
T

_C
R

C

1

3

5

1

3

5

Checksum(s) algorithms

Fig. 6.5: Layer-by-layer performance impact with compiler optimization -O3

6.2 Evaluation 93

Comparing against performance impact experiments without optimization, we notice
a significant impact increase. We observe the minimum performance impact in
layer L1 (ranging from 1,02 to 82,5, hence increasing execution time by more than
82x in the worst-case) and the maximum in L7 (from 1,04 to 171,5). This increase
is associated with the high optimization of MMMs on GPUs. Including new data
(array of ESs) in the computation exacerbates one of the main problems associated
with GPU platforms, the bottleneck created for data access. This bottleneck is the
main reason for the high-performance impact of the CRC implementation since this
diagnostic is based on memory access. Moreover, Fletcher diagnostic has a similar
performance to CRC. However, a key reason for this timing penalty lies in using the
modulo operator, which is highly inefficient in GPU implementations.

Step 2.2- Step 2.3: Diagnostic coverage

As explained in Subsection 6.1.4, we build on the DC evaluation of the single blocks
to calculate the global DC. All the experiments are configured with a grid of blocks
of <64, 64, 8> for B1 blocks (see Fig. 6.3a), except those related to L1 and L2
that employ <64, 16, 8> and <64, 32, 8> respectively. We use a specific grid for
these matrices for performance reasons since, with the initial grid configuration,
the execution would use non-active threads. As explained before, B2, B3 and B4
blocks have fewer rows, columns, or both since they are at the boundaries of the
kernel. Therefore, according to the layer dimensions summarized in Table 6.1, we
present in Table 6.3 the individual grid of thread blocks dimensions into which layers
are decomposed. Additionally, we include the number of T1 BRs/BCs according to
each layer and the selected grid of threads blocks employed. Note that the default
block size, <64, 64, 8>, has been selected as it is among those chosen by CUDA to
maximize performance in NVIDIA GPUs, and it is small enough to allow decomposing
most layers’ computations into blocks of this size.

By dividing grids of thread blocks into individual blocks, we obtain that block
dimensions repeat many times inside a given layer and across layers. Hence, we
only need to perform fault injection once per unique block, and results are reused
for all instances of any given block across layers. We summarize in Table 6.4 the
resulting unique blocks, assign to each one an identifier (BlockId) and specify the
number of injected errors in input matrices A (InjectionsA) and B (InjectionsB) and
in which layers they are used. For some blocks, errors detected in B2 and/or B3
may have already been detected in B1 or B4. In those cases, we carefully avoid
counting error detections twice. The specific blocks where this effect can happen are
marked with an asterisk in the “Block” column.

94 Chapter 6 Methodology to Selectively Protect CNNs: Use Case Application
Analysis

Tab. 6.3: Single grid of thread blocks dimensions involved in the DC computation
of each layer

Layer Block M N K N_BRT 1 N_BCT 1

L1 B1 64 16 27 2704 1
L2 B1 64 32 144 676 1
L3 B1 64 64 288 169 1

L4
B1 64 64 576

42 1
B3 16 64 576

L5
B1 64 64 1152

10 4
B3 36 64 1152

L6 & L9
B1 64 64 2304

2 8
B3 41 64 2304

L7
B1 64 64 4068

2 16
B3 41 64 4068

L8
B1 64 64 1024

2 4
B3 41 64 1024

L10

B1 64 64 512

2 3
B2 64 63 512
B3 41 64 512
B4 41 63 512

L11
B1 64 64 512

2 2
B3 41 64 256

L12
B1 64 64 3456

10 4
B3 36 64 3456

L13

B1 64 64 256

10 3
B2 64 63 256
B3 36 64 256
B4 36 63 256

Tab. 6.4: Single block dimensions employed in the DC computation of each layer

Layers Block M N K BlockId InjectedA InjectedB

All except L1-2 B1 64 64 8 1 16384 16384
L1 B1 64 16 27 2 55296 13824
L2 B1 64 32 8 3 16384 8192
L10 B2∗ 64 63 8 4 16384 16128
L13 B2∗ 64 63 8 5 16384 16128
L6-L9 & L11 B3∗ 41 64 8 6 10496 16384
L10 B3∗ 41 64 8 7 10496 16384
L5 & L12 B3∗ 36 64 8 8 9216 16384
L13 B3∗ 36 64 8 9 9216 16384
L4 B3 16 64 8 10 4096 16384
L10 B4 41 63 8 11 10496 16128
L13 B4 36 63 8 12 9216 16128

6.2 Evaluation 95

We then evaluate the errors detected in the blocks with the dimensions defined in
Table 6.4 according to the diagnostic techniques of our catalog and collect them in
Table 6.5. We decompose the detected errors according to the input matrix where
the fault injection campaign injects the error (DetA and DetB). Those blocks that
do not appear in the table do not detect any other error (i.e., there are B2 and B3
blocks that detect errors that B1 and B4 blocks have already detected).

Tab. 6.5: Faults detected in the single blocks defined in Table 6.4

Faults Detected for each BlockId

Diagnostics
1 2 3 6 8 10 11 12

DetA DetB DetA DetB DetA DetB DetA DetA DetA DetA DetB DetA DetB

XOR (E) 2048 2048 6912 3456 2048 1024 512 256 0 512 2048 256 2048
XOR (M) 16384 0 55296 0 16384 0 10496 9216 4096 10496 0 9216 0
XOR (I) 16384 0 55296 0 16384 0 10496 9216 4096 10496 0 9216 0
One’s (E) 2048 2048 6912 3456 2048 1024 512 256 0 512 2048 256 2048
One’s (M) 16384 4096 55296 3456 16384 2048 10496 9216 4096 10496 3840 9216 3840
One’s (I) 16384 16384 55296 13824 16384 8192 10496 9216 4096 10496 16128 9216 16128
Two’s (E) 2048 2048 6912 3456 2048 1024 512 256 0 512 2048 256 2048
Two’s (M) 16384 3840 55296 3240 16384 1920 10496 9216 4096 10496 3600 9216 3600
Two’s (I) 16384 14976 55296 12636 16384 7488 10496 9216 4096 10496 14736 9216 14736
Fletcher (E) 2048 2048 6912 3456 2048 1024 512 256 0 512 2048 256 2048
Fletcher (M) 16384 4096 55296 3456 16384 2048 10496 9216 4096 10496 3840 9216 3840
Fletcher (I) 16384 16384 55296 13824 16384 8192 10496 9216 4096 10496 16128 9216 16128
CRC (E) 2048 2048 6912 3456 2048 1024 512 256 0 512 2048 256 2048
CRC (M) 16384 4096 55296 3456 16384 2048 10496 9216 4096 10496 3840 9216 3840
CRC (I) 16384 16384 55296 13824 16384 8192 10496 9216 4096 10496 16128 9216 16128
XOR_Fletc 16384 13312 55296 11232 16384 6656 10496 9216 4096 10496 13056 9216 13056
XOR_CRC 16384 16384 55296 13824 16384 8192 10496 9216 4096 10496 16128 9216 16128
One’s_Fletc 16384 14848 55296 12960 16384 7424 10496 9216 4096 10496 14592 9216 14592
One’s_CRC 16384 16384 55296 13824 16384 8192 10496 9216 4096 10496 16128 9216 16128
Two’s_Fletc 16384 14848 55296 12960 16384 7424 10496 9216 4096 10496 14592 9216 14592
Two’s_CRC 16384 16384 55296 13824 16384 8192 10496 9216 4096 10496 16128 9216 16128
Fletc_CRC 16384 16384 55296 13824 16384 8192 10496 9216 4096 10496 16128 9216 16128
Injected Faults 16384 16384 55296 13824 16384 8192 10496 9216 4096 10496 16128 9216 16128

The evaluation of the errors detected in the single blocks (see Table 6.5) continues
by applying the strategy described in Subsection 6.1.4 to compute the achievable DC
of each CNN layer according to the diagnostic techniques. We present in Table 6.6
the achievable DC of each layer. As a representative example, we evaluate the DC
of L10, which includes all types of blocks (B1, B2, B3 and B4), using XOR (E)
diagnostic. First, we evaluate the errors detected according to the source of the error
(matrix A or matrix B) as mentioned in Eq. 6.2 and Eq. 6.3. In this particular layer,
the complementary blocks do not detect additional errors. These are the expected
results since the conditions stated in Subsection 6.1.4 are not satisfied (Kt is even in
the external loops of the complementary blocks).

DetA = (2048 + 0) × 2 + 0 + 512 = 4608

DetB = (2048 + 0) × 3 + 0 + 2048 = 8192

96 Chapter 6 Methodology to Selectively Protect CNNs: Use Case Application
Analysis

We have reduced 64 times the K dimension in L10 matrix, i.e., K = 512 for all
L10 grids of thread blocks, and we used blocks with K = 8. Therefore, the errors
detected by A and B must be multiplied by this number to obtain the final DC:

DC = (4608 + 8192) × 64
(169 + 255) × 512 = 11.79

The complete set of results is shown in Table 6.6. From them, we observe the signifi-
cant influence of the matrices dimensions in the achievable DC. The higher the ratio
M
N , the higher the achievable DC is. This can be appreciated by comparing L1 and L7,
whose respective ratios are 64

16 = 4 (B1) for L1, and 64
64 = 1 (B1) and 41

64 = 0, 64 (B3)
for L7, and whose DC in XOR (M) decreases from 99,99% to 14,17%, respectively.

Tab. 6.6: Achievable DC layer-by-layer according to the diagnostic techniques catalog

Diagnostics
Tiny Yolo-v3 layers

L1 L2 L3 L4 L5 L6&9 L7 L8 L10 L11 L12 L13
XOR (E) 12,50 12,50 12,50 12,43 12,12 12,04 12,24 11,76 11,79 11,45 12,12 12,14
XOR (M) 99,99 99,93 99,41 95,48 72,53 24,82 14,17 39,76 39,86 56,90 72,53 72,61
XOR (I) 99,99 99,93 99,41 95,48 72,53 24,82 14,17 39,76 39,86 56,90 72,53 72,61
One’s (E) 12,50 12,50 12,50 12,43 12,12 12,04 12,24 11,76 11,79 11,45 12,12 12,14
One’s (M) 99,99 99,94 99,56 96,61 79,40 43,61 35,62 54,82 54,72 67,68 79,40 79,38
One’s (I) 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00
Two’s (E) 12,50 12,50 12,50 12,43 12,12 12,04 12,24 11,76 11,79 11,45 12,12 12,14
Two’s (M) 99,99 99,94 99,55 96,54 78,97 42,44 34,28 53,88 53,79 67,00 78,97 78,95
Two’s (I) 100,00 99,99 99,95 99,61 97,64 93,54 92,62 94,82 94,83 96,30 97,64 97,64
Fletcher (E) 12,50 12,50 12,50 12,43 12,12 12,04 12,24 11,76 11,79 11,45 12,12 12,14
Fletcher (M) 99,99 99,94 99,56 96,61 79,40 43,61 35,62 54,82 54,72 67,68 79,40 79,38
Fletcher (I) 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00
CRC (E) 12,50 12,50 12,50 12,43 12,12 12,04 12,24 11,76 11,79 11,45 12,12 12,14
CRC (M) 99,99 99,94 99,56 96,61 79,40 43,61 35,62 54,82 54,72 67,68 79,40 79,38
CRC (I) 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00
XOR_Fletc 99,99 99,99 99,89 99,15 94,85 85,90 83,91 88,71 88,68 91,92 94,85 94,84
XOR_CRC 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00
One’s_Fletc 99,99 99,99 99,94 99,58 97,42 92,95 91,95 94,35 94,34 95,96 97,42 97,42
One’s_CRC 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00
Two’s_Fletc 99,99 99,99 99,94 99,58 97,42 92,95 91,95 94,35 94,34 95,96 97,42 97,42
Two’s_CRC 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00
Flet_CRC 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00

6.2.4 Stage 3: Selective protection

In this section, we perform a selective layer-by-layer protection of Tiny YOLO-v3.
Instead of selecting the same diagnostic for all layers, we select the diagnostic with
the lowest performance impact in each layer for each of the DC ranges established
by IEC 61508. Those diagnostics are shown in Table 6.7. Additionally, we include
the lowest performance impact ratio (PI) incurred in each range to protect with the
combination of these diagnostics.

6.2 Evaluation 97

Tab. 6.7: Trade-off of performance impact vs DC (HFT=0)

Layers DC ranges (%)
99 ≤ DC 90 ≤ DC < 99 60 < DC < 90

L1 XOR (M) XOR (M) XOR (M)
L2 XOR (M) XOR (M) XOR (M)
L3 XOR (M) XOR (M) XOR (M)
L4 One’s (I) XOR (M) XOR (M)
L5 One’s (I) Two’s (I) XOR (M)
L6 One’s (I) Two’s (I) Two’s (I)
L7 One’s (I) Two’s (I) Two’s (I)
L8 One’s (I) Two’s (I) Two’s (M)
L9 One’s (I) Two’s (I) Two’s (I)
L10 One’s (I) Two’s (I) Two’s (I)
L11 One’s (I) Two’s (I) Two’s (M)
L12 One’s (I) Two’s (I) XOR (M)
L13 One’s (I) Two’s (I) XOR (M)
PI 3,80 3,33 2,61

We observe that the lowest performance impact on achieving high, medium, and low
DC ranges is 3,8, 3,33, and 2,61, respectively. Note that, while such performance
impact is high, it could be reduced if diagnostics are used periodically as described
in Subsection 4.2.2. That work shows that the safety architectural pattern where
hardware is diagnosed periodically with predefined data so that output is known
can be tuned as needed to trade-off between performance impact and diagnostics
frequency. For instance, if the PST is one hundred times the execution of a single
classification task and the individual performance impact for the high DC range is
3,8, as shown above, the periodic diagnosis can be executed once in each PST period
incurring in a performance impact of a 5%. In other words, we could execute the
diagnosis once every 76 CNN executions.

In this chapter, we stick to a simple approach based on selecting for each layer the
diagnostic with the lowest performance cost that achieves the target DC individually
for that layer. However, this approach may not be an option in performance terms
even for those systems based on the periodic diagnostic pattern if the PST is not
high enough. Then, the safety designer has to selectively protect each layer based
on its propensity to misclassify and the percentage of the execution time of each one
according to the entire CNN. Highlight that this approach is subject to iteratively
performing fault injection campaigns to verify if the achievable DC with the proposed
selection of diagnostics is in the application’s target DC range.

98 Chapter 6 Methodology to Selectively Protect CNNs: Use Case Application
Analysis

6.3 Summary

This chapter provides a methodology decomposed into three stages to selectively
protect CNNs implemented on GPUs, focusing on controlling errors at runtime
in the MMM through the inclusion of our catalog of diagnostics. We apply this
methodology to the Tiny YOLO-v3 object detector as an application example. The
first stage consists of the sensitivity analysis of each CNN’s layer to identify the most
misclassification-prone layers and measure the relative execution time of each CNN’s
layer against the entire CNN to determine the most timing consuming ones. For
this CNN, we observe a higher tendency to misclassify (from 83,4 to 99,6%) in the
initial layers (L1-L8). However, the final layers also present lower but still high
misclassification rates (from 55,2 to 74,34%). In the second stage, we analyze the
incurred performance impact and the DC layer-by-layer for our catalog of diagnostics
explained in Chapter 5. For the DC analysis, we offer a strategy that computes the
entire MMM DC based on analyzing the blocks in which MMM is decomposed before
launching it to the GPU with an exhaustive fault injection campaign at the bit-level of
these smaller blocks. Finally, we selectively protect each layer according to the three
DC ranges providing the most appropriate diagnostics that achieve the minimum
required DC in each range on an NVIDIA Xavier Nx GPU. We observe that the lowest
performance impact to achieve high, medium, and low DC ranges is 3,8, 3,33, and
2,61, respectively. As explained, this impact might be affordable in the context of
the safety architectural pattern where diagnostics are performed periodically, in
accordance with the timing constraint imposed by the PST, by trading-off between
diagnostics frequency and performance impact.

6.3 Summary 99

Conclusions and Future Work 7
Nowadays, there is a clear trend towards systems with a higher degree of autonomy
in industry and daily life activities. The AI capacity to carry out complex tasks
has become particularly interesting to autonomous systems. This AI feature allows
for high levels of precision, surpassing human accuracy in some application areas.
However, since some systems are safety-related, they are subject to certification. They
must ensure that the AI models are safe for their intended purpose and sufficiently
mitigate uncertainty-related risks.

Additionally, these safety-related AI-based systems rely on HPEC platforms to meet
their performance demands. Risks associated with deploying safety-related systems
on top of these platforms shall be controlled and mitigated. However, these platforms
pose an additional challenge for safety certification since traditional functional safety
standards do not contemplate their intrinsic hardware complexity.

These challenges have motivated the contributions of this Thesis to the state-of-
the-art of safety-related systems integrating AI-based components for performing
safety-related functions. In this chapter, we summarize the main findings of the
research and its impact and present open areas for future research.

7.1 Summary of Contributions

This Thesis contributes to the state-of-the-art safety-related systems using AI by
including a safe catalog of diagnostics techniques into one of the main operations of
these algorithms, the MMM. In particular, this Thesis’s contributions and which of
its objectives it addresses (see Section 1.3) can be decomposed into the following:

• The first contribution focuses on adapting the scalar implementation of the
MMM to avoid and control systematic and random errors according to the
recommendations of current functional safety standards, such as IEC 61508.
On the one hand, for the avoidance of systematic errors, we adapt the MMM
according to MISRA C coding guidelines and include defensive programming,
providing a MMM implementation amenable to software development prac-
tices of safety standards. This is a step forward in AI safety certification, as

101

the low-level libraries of most widely used AI solutions were not originally
conceived for functional safety. On the other hand, we design, implement and
deploy a safe catalog of widely used diagnostic techniques implemented in
scalar code. Combined with a safe architectural pattern, this catalog provides
fault detection capabilities to the MMM at runtime. This contribution directly
addresses O1, ‘Adopt functional safety practices in ML code subsets’. In conclu-
sion, our results show how high levels of protection are subject to an impact
on code performance, requiring a trade-off between both features, which has
led us to the next contribution.

• As a second contribution, we follow an incremental strategy to achieve higher
performance than the scalar implementation while trying to find a balance with
safety. For this reason, we first adapt the diagnostic catalog to be implemented
with vectorization based on AVX instructions and then CUDA code employing
PTX instructions when possible. This contribution is a step towards achieving
the O2, ‘Foster performance improvement of ML solutions while preserving safety’,
and O1.As a result, we notice that the suitability of the diagnostics differs when
contrasting the three implementations. Therefore, the performance impact
and the achievable DC vary according to the optimization of the instructions
involved in the computation and the MMM implementation.

• We have assessed all the previously mentioned implementations of the diagnos-
tic catalog regarding the achievable DC and the incurred performance impact
when adopted in MMMs. The experiments have been performed using the
same set of square and unbalanced matrix dimensions for comparison purposes
among the implementations. The MMMs for the scalar and AVX-based imple-
mentations have been extracted from YOLO v3 object detector. Instead, we
employed the CUTLASS library for evaluating the GPU-based implementation.
These experiments address objectives O1 and O2 and partially address O3,
‘Implement a ‘safe ML’ solution prototype in a HPEC platform’, as a set of matrix
dimensions has been extracted from the Darknet CNN. Our findings indicate
that, as the matrix dimensions increase, the relative performance impact de-
creases in both the scalar and AVX-based implementations. However, this is
not observed in GPU-based implementations, which we relate to the fact that
the chosen MMM dimensions do not fully utilize the GPU resources. Regarding
DC, we observe that the effectiveness of the diagnostics significantly varies
depending on the relationship between rows and columns of the matrices
involved in the MMM. Therefore, it is essential to perform the effectiveness
assessment of the diagnostics according to the MMM dimensions.

102 Chapter 7 Conclusions and Future Work

• The fourth contribution of this Thesis focuses on the implementation of the cat-
alog in an object detector application based on CNNs and deployed over HPEC
platforms. For that purpose, we include the catalog of diagnostics and measure
the performance impact incurred by their adoption in the MMM employed by
YOLO v3 and its tiny version, Tiny YOLO v3. In the case of the GPU-based
implementation, we modified YOLO to employ an open-source MMM library,
CUTLASS. These experiments evidence that the higher the performance capa-
bilities of the platform over which we deploy the experiments, the higher the
performance impact associated with the diagnostics because modifications of
the MMMs involve a decrease of its high degree of optimization. Additionally,
we observe that the performance impact incurred in the most external loop
against the intermediate is very close. Therefore, applying the diagnostic in
the intermediate is preferable since the DC is generally higher than in the most
external loop. This contribution is directly related to O3 and also deals with
O2.

• Finally, the last contribution of this Thesis focuses on those systems with strin-
gent timing constraints in which the performance impact can be critical when
protecting the entire CNN. For those cases, we design, implement and deploy
a methodology to selectively protect layers of the CNN. It is decomposed into
three steps: i) CNN’s sensitivity to misclassification analysis, ii) performance
impact and DC analysis of each layer, and iii) protection of the layers. Since the
time required to analyze the DC of our catalog of diagnostics in big matrices
dimensions can be prohibitive in terms of execution time, we provide a strategy
that focuses on the DC analysis of the grid of thread blocks in which these
matrices are launched on the GPU. We demonstrate the viability of applying
our strategy requiring a handleable effort in terms of execution time. Also,
we apply the proposed methodology in a Tiny CNN, obtaining performance
impacts ranging from 3.8x, 3.3x and 2.6x for achieving the high, medium, and
low DC ranges. We demonstrate with a practical example how the maximum
performance impact (3.8x) can get down to 0.05% by applying the diagnosis
periodically (at least once in each PST period). This contribution is directly
related to O3 and also deals with O2.

7.2 Impact

AI is becoming increasingly used in many sectors for deploying complex functionali-
ties since AI solves problems where traditional rule-based algorithms are challenging
or even impractical to construct. AI is becoming a source of competitive advantage,

7.2 Impact 103

and there is a tendency towards its adoption. This is evidenced by the expected size
and growth of the global AI market, which was valued at nearly 136 billion in 2022,
with a revenue forecast of 1,800 billion by 2030, representing a compound annual
growth rate of 37.3% [145]. Overall, it is clear that there is a growing interest and
investment in AI technology.

These ML algorithms require handling massive volumes of data that demand higher
computational capabilities than traditional dependable hardware. However, when
these systems involving the use of AI are safety-related, they can be subject to
certification imposed by the legislation or by the customer who will use these
systems. The impact of this Thesis lies in these systems and in those involving the
use of AI that have to achieve certain reliability levels.

To the best of our knowledge, at the moment of this Thesis’s writing, it was not any
initiative devoted to developing a ‘safe ML’ library at the software level. We have
designed a catalog of diagnostic techniques to provide the MMM with detection
capabilities that safety designers can quickly adapt in their implementations. Addi-
tionally, we adopted this catalog in a high-performance MMM, CUTLASS, going a
step towards a ‘safe CUTLASS’ library. In this way, the development of a ‘safe ML’
library aims to reduce the design costs associated with ensuring the reliability of
ML systems and, therefore, increase the competitiveness of those products entailing
the deployment of AI components.

By providing suitable diagnostics solutions for MMM, the heart of ML software
implementations, we pave the road towards the adoption of ML solutions in safety-
critical systems. Accordingly, with the development of our safe catalog, we attempt
to anticipate the software requirements that are expected to be imposed by emerg-
ing standards, such as ISO/IEC 5469, to achieve safety certification of systems
involving the use of AI components.

The impact of this Thesis is not limited to academic contributions, as it has the poten-
tial to make a significant impact on the industry as well. The use of ML algorithms
has consolidated as the most effective solution to deploy complex functionalities
like perception, opening up new opportunities for innovation in industries such as
automotive or railway. The outcomes of this Thesis have a direct impact in these
domains since the implementation of the ‘safe GPU-based MMM’ in CNNs based
on MMMs fosters the safe execution of perception tasks, such as object detection.
This Thesis has implemented and evaluated the performance impact and achievable
DC associated with the protection of object detection tasks through the inclusion
of our ‘safe GPU-based MMM’. This can pave the way towards the safety software
certification of object detector applications based on CNNs.

104 Chapter 7 Conclusions and Future Work

7.3 Future Work

The results of this Thesis open the door to new research opportunities and directions
to extend this Thesis. We identify the following future Research Lines (RLs):

RL1 This Thesis focuses on implementing diagnostics in MMMs deployed over plat-
forms integrating single-cores (based on scalar and vectorized code, C and AVX
languages, respectively) and those integrating embedded GPUs (parallelizing
CUDA-cores implemented in CUDA language). The first direction in which the
contributions of this Thesis can be extended is by analyzing the viability and
challenges associated with implementing our catalog diagnostics in further
accelerators, such as the Programmable Logic (PL) of FPGAs and the Tensor
Cores of NVIDIA GPUs. To better understand the suitability of our catalog
of diagnostics, it would be interesting to conduct a comparative analysis of
a wider variety of platforms on which our catalog is deployed. This analysis
would help to determine the suitability of our diagnostics in different envi-
ronments and provide insights into the best-performing diagnostic according
to the platforms, and it would help to identify any limitations or advantages
associated with each platform.

RL2 A further RL consists of defining a catalog of synchronization mechanisms and
analyzing computational load balancing in high-performance computing op-
erations and their adequacy to fulfill the requirements imposed by functional
safety standards. It may be of particular interest for those systems imple-
mented on platforms with a large number of resources capable of running
simultaneously, such as GPUs combining Tensor cores with CUDA cores or the
combination of the PL and the Processing System (PS) in the FPGAs.

RL3 We have protected one of the main components of the CNNs by generating
an ES or arrays of ESs of the process. However, the rest of the CNN is still
subject to errors. We propose to analyze the feasibility of protecting the rest of
CNN’s elements by generating ESs (i.e., protecting batch and pooling layers
would require hardly any modifications) and devise appropriate solutions for
the remaining parts (e.g., the rest of layers, image pre-processing...) where
protection is convenient.

RL4 In this Thesis, we have briefly analyzed the sensitivity to misclassification
of a CNN when single-bit errors impact the MSBs of the activation weights
by performing a statistically representative number of fault injections. The
main goals focused on verifying the most error-prone layers to center the CNN

7.3 Future Work 105

protection on them. At this point, we identify two interesting RLs. On the one
hand, we propose to evaluate a deeper CNN (higher number of and types of
layers) instead of a tiny version of the CNN for the completeness of the analysis.
On the other hand, to study the suitability of AI-based techniques for fault
injection to identify those inputs or configuration parameters that maximize
the impact of errors on the unit under test. The European project Horizon
Europe METASAT is partially addressing this RL with a focus on systems in the
space domain.

RL5 During this Thesis, we have identified two safe architectural patterns that,
combined with the safe catalog of diagnostics, provide the MMM with error de-
tection capabilities. Hence, identifying safe architectural patterns applicable to
applications involving AI (i.e., safe envelopes, diversity...) can be an engaging
RL. The European project Horizon Europe SAFEXPLAIN will at least partially
address this RL. In fact, one of its tasks is devoted to the definition of safety
architectural design patterns, such as diagnostic measures or redundancy. Our
solution directly fits into the realization of this RL.

RL6 Additionally, explainability techniques are acquiring a crucial role in assuring
functional safety in systems involving the use of AI. In this Thesis, we develop
a strategy to selectively protect CNNs according to criteria such as performance
and sensitivity to misclassification. An engaging RL may be to consider the
output of explainability techniques in the protection of CNNs.

RL7 Finally, we aim to transfer this Thesis’s contributions to an industrial domain.
As a first step, we expect to accommodate them in a case study in the railway
domain under the European project Horizon Europe SAFEXPLAIN, which
is currently under execution. In addition, we expect to leverage the broad
network of industrial collaborators from the institutions involved in developing
this Thesis for implementation in industrial domains, as well as collaborate
with industrial users focused on the safe deployment of safety-related system
software and its functional safety certification.

106 Chapter 7 Conclusions and Future Work

Bibliography

[1] IEC 61508(-1/7): Functional safety of electrical / electronic / programmable electronic
safety-related systems, Legal Rule or Regulation, 2010 (cit. on pp. iii, 2, 6, 14–16,
40).

[2] ISO 26262(-1/11) road vehicles – functional safety, Legal Rule or Regulation, ISO,
2018 (cit. on pp. iii, 2, 15, 40).

[3] ISO/IEC 22989: Information technology — Artificial intelligence — Artificial intelli-
gence concepts and terminology, Legal Rule or Regulation, 2022 (cit. on p. 1).

[4] S. Mozaffari, O. Y. Al-Jarrah, M. Dianati, et al., “Deep learning-based vehicle behav-
ior prediction for autonomous driving applications: A review,” IEEE Transactions on
Intelligent Transportation Systems (T-ITS), vol. 23, no. 1, pp. 33–47, 2020 (cit. on
p. 1).

[5] A. P. Cohen, S. A. Shaheen, and E. M. Farrar, “Urban Air Mobility: History, Ecosystem,
Market Potential, and Challenges,” IEEE Transactions on Intelligent Transportation
Systems (T-ITS), vol. 22, no. 9, pp. 6074–6087, 2021 (cit. on p. 1).

[6] K. Jang, Y. V. Pant, A. Rodionova, et al., “Learning-to-Fly RL: Reinforcement Learning-
based Collision Avoidance for Scalable Urban Air Mobility,” in AIAA/IEEE 39th
Digital Avionics Systems Conference (DASC), 2020, pp. 1–10 (cit. on p. 1).

[7] X. Chen, Z. Li, Y. Yang, et al., “High-resolution vehicle trajectory extraction and
denoising from aerial videos,” IEEE Transactions on Intelligent Transportation Systems
(T-ITS), vol. 22, no. 5, pp. 3190–3202, 2021 (cit. on p. 1).

[8] R. Azoulay, Y. Haddad, and S. Reches, “Machine Learning Methods for UAV Flocks
Management-A Survey,” IEEE Access, vol. 9, pp. 139 146–139 175, 2021 (cit. on
p. 1).

[9] A. A. Gumbs, I. Frigerio, G. Spolverato, et al., “Artificial Intelligence Surgery: How
Do We Get to Autonomous Actions in Surgery?” Sensors, vol. 21, no. 16, p. 5526,
2021 (cit. on p. 1).

[10] A. E. Abdelaal, J. Liu, N. Hong, et al., “Parallelism in Autonomous Robotic Surgery,”
IEEE Robotics and Automation Letters (RA-L), vol. 6, no. 2, pp. 1824–1831, 2021
(cit. on p. 1).

[11] SAE J3016: Taxonomy and Definitions for Terms Related to Driving Automation
Systems for On-Road Motor Vehicles, Legal Rule or Regulation, 2021 (cit. on p. 1).

107

[12] M. Cerino, “Review of Fault Mitigation Approaches for Deep Neural Networks for
Computer Vision in Autonomous Driving,” Interesting a image that shown that 1’s
to 0’s bit transition produce a lower misclassification than 0’s to 1’s, Thesis, 2020
(cit. on p. 1).

[13] F. Tambon, G. Laberge, L. An, et al., “How to Certify Machine Learning Based Safety-
critical Systems? A Systematic Literature Review,” ArXiv, vol. abs/2107.12045, 2021
(cit. on pp. 2, 28).

[14] H. Tabani, R. Pujol, J. Abella, et al., “A cross-layer review of deep learning frame-
works to ease their optimization and reuse,” in IEEE 23rd International Symposium
on Real-Time Distributed Computing (ISORC), 2020, pp. 144–145 (cit. on pp. 3, 27,
28, 30, 39).

[15] R. C. Whaley and A. Petitet, “Minimizing development and maintenance costs in
supporting persistently optimized BLAS,” Software: Practice and Experience, vol. 35,
no. 2, pp. 101–121, 2005 (cit. on p. 3).

[16] OpenBLAS, OpenBLAS: An optimized BLAS library, https://www.openblas.net/,
Web Page, 2011 (cit. on p. 3).

[17] NVIDIA, NVIDIA cuBLAS, https://developer.nvidia.com/cublas, Web Page,
2022 (cit. on p. 3).

[18] NVIDIA, CUTLASS: CUDA Templates for Linear Algebra Subroutines, https://github.
com/NVIDIA/cutlass, available online: Dec-2021, 2020 (cit. on pp. 3, 38, 66, 67).

[19] H. Tabani, L. Kosmidis, J. Abella, et al., “Assessing the Adherence of an Indus-
trial Autonomous Driving Framework to ISO 26262 Software Guidelines,” in 56th
ACM/IEEE Design Automation Conference (DAC), 2019, pp. 1–6 (cit. on pp. 3, 27,
37, 39).

[20] Z. You, S. Wei, H. Wu, et al., “White Paper on AI Chip Technologies (2018),” Report,
2018 (cit. on p. 4).

[21] E. Nurvitadhi, S. Subhaschandra, G. Boudoukh, et al., “Can FPGAs Beat GPUs in
Accelerating Next-Generation Deep Neural Networks?,” Association for Computing
Machinery, 2017, pp. 5–14 (cit. on p. 4).

[22] J. E. R. Condia, P. Rech, F. F. d. Santos, et al., “An Effective Method to Identify Mi-
croarchitectural Vulnerabilities in GPUs,” IEEE Transactions on Device and Materials
Reliability (T-DMR), vol. 22, no. 2, pp. 129–141, 2022 (cit. on p. 4).

[23] A. Steimers and M. Schneider, “Sources of Risk of AI Systems,” International Journal
of Environmental Research and Public Health, vol. 19, no. 6, p. 3641, 2022 (cit. on
p. 4).

[24] M. Nicolaidis, “Time redundancy based soft-error tolerance to rescue nanometer
technologies,” in Proceedings 17th IEEE VLSI Test Symposium (Cat. No.PR00146),
1999, pp. 86–94 (cit. on p. 4).

[25] Y. Ibrahim, H. Wang, M. Bai, et al., “Soft Error Resilience of Deep Residual Networks
for Object Recognition,” IEEE Access, vol. 8, pp. 19 490–19 503, 2020 (cit. on pp. 4,
29).

108 Bibliography

https://www.openblas.net/
https://developer.nvidia.com/cublas
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass

[26] F. F. d. Santos, L. Draghetti, L. Weigel, et al., “Evaluation and mitigation of soft-
errors in neural network-based object detection in three GPU architectures,” in
47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
Workshops (DSN-W), 2017, pp. 169–176 (cit. on pp. 4, 29, 30, 37, 39).

[27] S. Roffe and A. D. George, “Evaluation of Algorithm-Based Fault Tolerance for
Machine Learning and Computer Vision under Neutron Radiation,” in IEEE Aerospace
Conference (AERO), 2020, pp. 1–9 (cit. on pp. 4, 30).

[28] G. Li, S. K. S. Hari, M. Sullivan, et al., “Understanding error propagation in deep
learning neural network (DNN) accelerators and applications,” in Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis, 2017, p. 8 (cit. on pp. 4, 29, 39).

[29] A. Azizimazreah, Y. Gu, X. Gu, et al., “Tolerating Soft Errors in Deep Learning Accel-
erators with Reliable On-Chip Memory Designs,” in IEEE International Conference
on Networking, Architecture and Storage (NAS), 2018, pp. 1–10 (cit. on pp. 4, 29).

[30] Y. Ibrahim, H. Wang, J. Liu, et al., “Soft errors in DNN accelerators: A comprehensive
review,” Microelectronics Reliability, vol. 115, p. 113 969, 2020 (cit. on p. 4).

[31] J. Perez Cerrolaza, R. Obermaisser, J. Abella, et al., “Multi-core devices for safety-
critical systems: A survey,” ACM Comput. Surv., vol. 53, no. 4, 2020 (cit. on pp. 4,
16, 35, 43, 48, 49).

[32] N. Kranitis, A. Paschalis, D. Gizopoulos, et al., “Software-based self-testing of em-
bedded processors,” IEEE Transactions on Computers, vol. 54, no. 4, pp. 461–475,
2005 (cit. on pp. 4, 30).

[33] D. Siewiorek and L. K.-W. Lai, “Testing of digital systems,” Proceedings of the IEEE,
vol. 69, no. 10, pp. 1321–1333, 1981 (cit. on p. 4).

[34] A. Kaplan and M. Haenlein, “Siri, Siri, in my hand: Who’s the fairest in the land? On
the interpretations, illustrations, and implications of artificial intelligence,” Business
Horizons, vol. 62, no. 1, pp. 15–25, 2019 (cit. on p. 12).

[35] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
pp. 436–444, 2015 (cit. on p. 12).

[36] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann Publishers Inc., 2011 (cit. on p. 12).

[37] A. Avizienis, J. C. Laprie, B. Randell, et al., “Basic concepts and taxonomy of
dependable and secure computing,” IEEE Transactions on Dependable and Secure
Computing (TDSC), vol. 1, no. 1, pp. 11–33, 2004 (cit. on p. 14).

[38] EN50128 - railway applications: Communication, signalling and processing systems -
software for railway control and protection systems, Legal Rule or Regulation, 2011
(cit. on p. 15).

[39] I. Agirre Troncoso, “Development and certification of mixed-criticality embedded
systems based on probabilistic timing analysis,” Thesis, 2018 (cit. on p. 15).

Bibliography 109

[40] ISO 21448 road vehicles – safety of the intended functionality, Legal Rule or Regula-
tion, ISO, 2022 (cit. on p. 17).

[41] ANSI/UL 4600 Standard for Safety for the Evaluation of Autonomous Products, Legal
Rule or Regulation, 2020 (cit. on p. 17).

[42] VDE-AR-E 2842-61 - Design and Trustworthiness of autonomous/cognitive systems,
Legal Rule or Regulation, VDE Std., 2020 (cit. on p. 17).

[43] ISO/IEC JTC 1/SC 42 - Artificial Intelligence, Legal Rule or Regulation, ISO/IEC
(cit. on p. 17).

[44] ISO/IEC, “ISO/IEC CD TR 5469 Artificial intelligence — Functional safety and AI
systems,” (cit. on pp. 17, 19).

[45] ISO/AWI PAS 8800 Road Vehicles — Safety and artificial intelligence, Legal Rule or
Regulation, ISO, 2023 (cit. on p. 17).

[46] T. C. Maxino and P. J. Koopman, “The effectiveness of checksums for embedded
control networks,” IEEE Transactions on Dependable and Secure Computing (TDSC),
vol. 6, no. 1, pp. 59–72, 2009 (cit. on pp. 22, 25, 43, 54, 57, 86).

[47] R. N. Williams, “A painless Guide to CRC Error Detection Algorithms,” 1993 (cit. on
p. 25).

[48] U. D. Ferrell and A. H. A. Anderegg, “Applicability of UL 4600 to Unmanned Aircraft
Systems (UAS) and Urban Air Mobility (UAM),” in AIAA/IEEE 39th Digital Avionics
Systems Conference (DASC), 2020, pp. 1–7 (cit. on p. 27).

[49] J. Henriksson, C. Berger, M. Borg, et al., “Performance Analysis of Out-of-Distribution
Detection on Various Trained Neural Networks,” in 45th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), 2019, pp. 113–120 (cit. on
p. 27).

[50] J. Birch, D. Blackburn, J. Botham, et al., “A Structured Argument for Assuring Safety
of the Intended Functionality (SOTIF),” in 2020, pp. 408–414 (cit. on p. 27).

[51] E. Wozniak, H. J. Putzer, and C. Cârlan, “AI-Blueprint for Deep Neural Networks,”
in Proceedings of the Workshop on Artificial Intelligence Safety (SafeAI), H. Espinoza,
J. McDermid, X. Huang, et al., Eds., ser. CEUR Workshop Proceedings, vol. 2808,
CEUR-WS.org, 2021 (cit. on p. 27).

[52] M. Kläes, R. Adler, I. Sorokos, et al., “Handling Uncertainties of Data-Driven Models
in Compliance with Safety Constraints for Autonomous Behaviour,” in 17th Eu-
ropean Dependable Computing Conference (EDCC), VDE-AR-E, 2021, pp. 95–102
(cit. on p. 27).

[53] R. Zhang, A. Albrecht, J. Kausch, et al., “DDE process: A requirements engineering
approach for machine learning in automated driving,” in IEEE 29th International
Requirements Engineering Conference (RE), 2021, pp. 269–279 (cit. on p. 27).

[54] F. Falcini and G. Lami, “Challenges in Certification of Autonomous Driving Systems,”
in IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW), 2017, pp. 286–293 (cit. on p. 27).

110 Bibliography

[55] R. Salay, R. Queiroz, and K. Czarnecki, “An Analysis of ISO 26262: Using Machine
Learning Safely in Automotive Software,” ArXiv, vol. abs/1709.02435, 2018 (cit. on
p. 27).

[56] R. Salay and K. Czarnecki, “Using Machine Learning Safely in Automotive Software:
An Assessment and Adaption of Software Process Requirements in ISO 26262,”
arXiv preprint arXiv:1808.01614, 2018 (cit. on p. 27).

[57] A. Biondi, F. Nesti, G. Cicero, et al., “A safe, secure, and predictable software
architecture for deep learning in safety-critical systems,” IEEE Embedded Systems
Letters (ESL), pp. 1–1, 2019 (cit. on p. 27).

[58] A. V. S. Neto, J. B. Camargo, J. R. Almeida, et al., “Safety Assurance of Artificial
Intelligence-Based Systems: A Systematic Literature Review on the State of the Art
and Guidelines for Future Work,” IEEE Access, vol. 10, pp. 130 733–130 770, 2022
(cit. on p. 28).

[59] S. Dey and S.-W. Lee, “Multilayered review of safety approaches for machine
learning-based systems in the days of AI,” Journal of Systems and Software, vol. 176,
p. 110 941, 2021 (cit. on p. 28).

[60] G. Vidot, C. Gabreau, I. Ober, et al., “Certification of embedded systems based on
Machine Learning: A survey,” ArXiv, vol. abs/2106.07221, 2021 (cit. on p. 28).

[61] A. Pereira and C. Thomas, “Challenges of Machine Learning Applied to Safety-
Critical Cyber-Physical Systems,” Machine Learning and Knowledge Extraction, vol. 2,
no. 4, pp. 579–602, 2020 (cit. on p. 28).

[62] R. E. Lyons and W. Vanderkulk, “The Use of Triple-Modular Redundancy to Improve
Computer Reliability,” IBM Journal of Research and Development, vol. 6, no. 2,
pp. 200–209, 1962 (cit. on p. 28).

[63] Infineon, AURIX Multicore 32-bit Microcontroller Family to Meet Safety and Powertrain
Requirements of Upcoming Vehicle Generations, 2012 (cit. on p. 28).

[64] STMicroelectronics, 32-bit Power Architecture microcontroller for automotive SIL3/ASILD
chassis and safety applications, 2014 (cit. on p. 28).

[65] X. Iturbe, B. Venu, E. Ozer, et al., “The Arm triple core lock-step (TCLS) processor,”
ACM Transactions on Computer Systems (TOCS), vol. 36, no. 3, 2019 (cit. on p. 28).

[66] S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection via simultaneous
multithreading,” in Proceedings of the 27th Annual International Symposium on
Computer Architecture (ISCA), vol. 28, Association for Computing Machinery, 2000
(cit. on p. 28).

[67] E. Rotenberg, “AR-SMT: A microarchitectural approach to fault tolerance in mi-
croprocessors,” Digest of Papers. Twenty-Ninth Annual International Symposium on
Fault-Tolerant Computing (FTC), pp. 84–91, 1999 (cit. on p. 28).

[68] S. Mukherjee, M. Kontz, and S. Reinhardt, “Detailed design and evaluation of
redundant multi-threading alternatives,” in Proceedings 29th Annual International
Symposium on Computer Architecture (ISCA), 2002, pp. 99–110 (cit. on p. 28).

Bibliography 111

[69] M. Gomaa, C. Scarbrough, T. Vijaykumar, et al., “Transient-fault recovery for chip
multiprocessors,” in 30th Annual International Symposium on Computer Architecture
(ISCA), 2003, pp. 98–109 (cit. on p. 28).

[70] C. LaFrieda, E. Ipek, J. F. Martinez, et al., “Utilizing Dynamically Coupled Cores
to Form a Resilient Chip Multiprocessor,” in 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2007, pp. 317–326 (cit. on
p. 28).

[71] B. H. Meyer, B. H. Calhoun, J. Lach, et al., “Cost-effective safety and fault localization
using distributed temporal redundancy,” in Proceedings of the 14th International
Conference on Compilers, Architectures and Synthesis for Embedded Systems (CASES),
2011, pp. 125–134 (cit. on p. 28).

[72] J. Fu, Q. Yang, R. Poss, et al., “On-demand thread-level fault detection in a concur-
rent programming environment,” in International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS), 2013, pp. 255–262 (cit.
on p. 28).

[73] G. Reis, J. Chang, N. Vachharajani, et al., “SWIFT: Software implemented fault
tolerance,” in International Symposium on Code Generation and Optimization (SGO),
2005, pp. 243–254 (cit. on p. 29).

[74] H. So, M. Didehban, Y. Ko, et al., “EXPERT: Effective and flexible error protection
by redundant multithreading,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2018, pp. 533–538 (cit. on p. 29).

[75] F. Haas, S. Weis, T. Ungerer, et al., “Fault-Tolerant Execution on COTS Multi-
core Processors with Hardware Transactional Memory Support,” in Architecture
of Computing Systems (ARCS), J. Knoop, W. Karl, M. Schulz, et al., Eds., Springer
International Publishing, 2017, pp. 16–30 (cit. on p. 29).

[76] H. Mushtaq, Z. Al-Ars, and K. Bertels, “Efficient software-based fault tolerance
approach on multicore platforms,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2013, pp. 921–926 (cit. on p. 29).

[77] A. Shye, T. Moseley, V. J. Reddi, et al., “Using Process-Level Redundancy to Exploit
Multiple Cores for Transient Fault Tolerance,” in 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2007, pp. 297–306 (cit. on
p. 29).

[78] A. Shye, J. Blomstedt, T. Moseley, et al., “PLR: A Software Approach to Transient
Fault Tolerance for Multicore Architectures,” IEEE Transactions on Dependable and
Secure Computing (TDSC), vol. 6, no. 2, pp. 135–148, 2009 (cit. on p. 29).

[79] J. Wadden, A. Lyashevsky, S. Gurumurthi, et al., “Real-world design and evalu-
ation of compiler-managed GPU redundant multithreading,” in ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA), 2014, pp. 73–84 (cit. on
p. 29).

[80] H. Jeon and M. Annavaram, “Warped-DMR: Light-weight error detection for GPGPU,”
in 45th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
2012, pp. 37–47 (cit. on p. 29).

112 Bibliography

[81] M. B. Sullivan, S. K. S. Hari, B. Zimmer, et al., “SwapCodes: Error Codes for
Hardware-Software Cooperative GPU Pipeline Error Detection,” in 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2018, pp. 762–
774 (cit. on p. 29).

[82] R. Nathan and D. J. Sorin, “Argus-G: Comprehensive, low-cost error detection for
GPGPU cores,” IEEE Computer Architecture Letters (CAL), vol. 14, no. 1, pp. 13–16,
2015 (cit. on p. 29).

[83] S. Alcaide, L. Kosmidis, C. Hernandez, et al., “Software-only diverse redundancy on
GPUs for autonomous driving platforms,” in IEEE 25th International Symposium on
On-Line Testing and Robust System Design (IOLTS), 2019, pp. 90–96 (cit. on p. 29).

[84] M. Dimitrov, M. Mantor, and H. Zhou, “Understanding Software Approaches for
GPGPU Reliability,” in Proceedings of 2nd Workshop on General Purpose Processing
on Graphics Processing Units, ser. GPGPU-2, Washington, D.C., USA: Association for
Computing Machinery, 2009, pp. 94–104 (cit. on p. 29).

[85] S. Jain, I. Baek, S. Wang, et al., “Fractional GPUs: Software-Based Compute and
Memory Bandwidth Reservation for GPUs,” in IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), 2019, pp. 29–41 (cit. on p. 29).

[86] S. Alcaide, L. Kosmidis, C. Hernandez, et al., “High-integrity GPU designs for critical
real-time automotive systems,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2019, pp. 824–829 (cit. on p. 29).

[87] F. Libano, B. Wilson, J. Anderson, et al., “Selective Hardening for Neural Networks
in FPGAs,” IEEE Transactions on Nuclear Science, vol. 66, no. 1, pp. 216–222, 2019
(cit. on p. 29).

[88] J. E. R. Condia, F. F. d. Santos, M. S. Reorda, et al., “Combining Architectural
Simulation and Software Fault Injection for a Fast and Accurate CNNs Reliability
Evaluation on GPUs,” in IEEE 39th VLSI Test Symposium (VTS), 2021, pp. 1–7 (cit. on
p. 29).

[89] A. Ruospo, A. Bosio, A. Ianne, et al., “Evaluating Convolutional Neural Networks
Reliability depending on their Data Representation,” in 23rd Euromicro Conference
on Digital System Design (DSD), 2020, pp. 672–679 (cit. on pp. 29, 83).

[90] B. Du, S. Azimi, C. d. Sio, et al., “On the Reliability of Convolutional Neural Network
Implementation on SRAM-based FPGA,” in 2019 IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2019, pp. 1–6
(cit. on p. 29).

[91] F. Libano, B. Wilson, M. Wirthlin, et al., “Understanding the Impact of Quantization,
Accuracy, and Radiation on the Reliability of Convolutional Neural Networks on
FPGAs,” IEEE Transactions on Nuclear Science, vol. 67, no. 7, pp. 1478–1484, 2020
(cit. on p. 29).

[92] M. A. Hanif, F. Khalid, R. V. W. Putra, et al., “Robust Machine Learning Systems:
Reliability and Security for Deep Neural Networks,” in IEEE 24th International
Symposium on On-Line Testing and Robust System Design (IOLTS), 2018, pp. 257–
260 (cit. on p. 29).

Bibliography 113

[93] M. Hanif and M. Shafique, “Dependable Deep Learning: Towards Cost-Efficient
Resilience of Deep Neural Network Accelerators against Soft Errors and Permanent
Faults,” in IEEE 26th International Symposium on On-Line Testing and Robust System
Design (IOLTS), 2020, pp. 1–4 (cit. on p. 29).

[94] F. dos Santos, L. Carro, and P. Rech, “Kernel and Layer Vulnerability Factor to
Evaluate Object Detection Reliability in GPUs,” IET Computers & Digital Techniques,
vol. 13, 2018 (cit. on pp. 29, 37, 83).

[95] A. Bosio, P. Bernardi, A. Ruospo, et al., “A Reliability Analysis of a Deep Neural
Network,” in IEEE Latin American Test Symposium (LATS), 2019, pp. 1–6 (cit. on
pp. 29, 37, 39, 83).

[96] A. Mahmoud, S. K. S. Hari, C. W. Fletcher, et al., “Optimizing Selective Protection for
CNN Resilience,” in IEEE 32nd ISSRE, IEEE Computer Society, 2021, pp. 127–138
(cit. on p. 29).

[97] M. A. Neggaz, I. Alouani, S. Niar, et al., “Are CNNs Reliable Enough for Critical
Applications? An Exploratory Study,” IEEE Design & Test, vol. 37, no. 2, pp. 76–83,
2020 (cit. on p. 29).

[98] L. H. Hoang, M. A. Hanif, and M. Shafique, “FT-ClipAct: Resilience Analysis of Deep
Neural Networks and Improving their Fault Tolerance using Clipped Activation,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2020, pp. 1241–
1246 (cit. on p. 29).

[99] R. Rana, M. Staron, C. Berger, et al., “Early Verification and Validation According
to ISO 26262 by Combining Fault Injection and Mutation Testing,” in Software
Technologies, J. Cordeiro and M. van Sinderen, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 164–179 (cit. on p. 29).

[100] K. Pei, Y. Cao, J. Yang, et al., “DeepXplore: Automated Whitebox Testing of Deep
Learning Systems,” Commun. ACM, vol. 62, no. 11, pp. 137–145, Oct. 2019 (cit. on
p. 29).

[101] R. B. Abdessalem, A. Panichella, S. Nejati, et al., “Testing autonomous cars for
feature interaction failures using many-objective search,” in Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering (ASE),
ser. ASE, Montpellier, France: Association for Computing Machinery, 2018, pp. 143–
154 (cit. on p. 29).

[102] C. Berger, “Accelerating regression testing for scaled self-driving cars with lightweight
virtualization: A case study,” in Proceedings of the First International Workshop on
Software Engineering for Smart Cyber-Physical Systems, ser. SEsCPS, Florence, Italy:
IEEE Press, 2015, pp. 2–7 (cit. on p. 29).

[103] M. Broy, S. Kirstan, H. Krcmar, et al., What is the Benefit of a Model-Based Design of
Embedded System in the Car Industry? IGI global, 2012 (cit. on p. 29).

[104] K. Adam, I. I. Mohamed, and Y. Ibrahim, “A Selective Mitigation Technique of Soft
Errors for DNN Models Used in Healthcare Applications: DenseNet201 Case Study,”
IEEE Access, vol. 9, pp. 65 803–65 823, 2021 (cit. on p. 29).

114 Bibliography

[105] S. K. S. Hari, M. Sullivan, T. Tsai, et al., “Making Convolutions Resilient via
Algorithm-Based Error Detection Techniques,” IEEE Transactions on Dependable
and Secure Computing (TDSC), pp. 1–1, 2021 (cit. on p. 30).

[106] M. Salim, A. O. Akkirman, M. Hidayetoglu, et al., “Comparative benchmarking:
Matrix multiplication on a multicore coprocessor and a GPU,” in Computational
Electromagnetics International Workshop (CEM), 2015, pp. 1–2 (cit. on p. 30).

[107] Z. Huang, N. Ma, S. Wang, et al., “GPU computing performance analysis on matrix
multiplication,” The Journal of Engineering, vol. 2019, no. 23, pp. 9043–9048, 2019
(cit. on p. 30).

[108] V. Kelefouras, A. Kritikakou, I. Mporas, et al., “A high performance Matrix-Matrix
Multiplication Methodology for CPU and GPU architectures,” The Journal of Super-
computing, vol. 72, 2016 (cit. on p. 30).

[109] I. C. Lopes, F. Benevenuti, F. L. Kastensmidt, et al., “Reliability analysis on case-study
traffic sign convolutional neural network on APSoC,” in IEEE 19th Latin-American
Test Symposium (LATS), 2018, pp. 1–6 (cit. on p. 30).

[110] C. Braun, S. Halder, and H. J. Wunderlich, “A-ABFT: Autonomous Algorithm-Based
Fault Tolerance for Matrix Multiplications on Graphics Processing Units,” in 44th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks,
2014, pp. 443–454 (cit. on p. 30).

[111] K. Zhao, S. Di, S. Li, et al., “FT-CNN: Algorithm-Based Fault Tolerance for Convo-
lutional Neural Networks,” IEEE Transactions on Parallel and Distributed Systems
(TPDS), vol. 32, pp. 1677–1689, 2020 (cit. on p. 30).

[112] J. Kosaian and K. V. Rashmi, Arithmetic-intensity-guided fault tolerance for neural
network inference on GPUs, Conference Paper, 2021 (cit. on p. 30).

[113] J. Fernández, J. Perez-Cerrolaza, I. Agirre, et al., “Towards Safety Compliance of
Matrix-Matrix Multiplication for Machine Learning-based Autonomous Systems,”
Journal of Systems Architecture, 2021 (cit. on p. 32).

[114] J. Fernández, J. Perez-Cerrolaza, I. Agirre, et al., “On the Safe Deployment of
Matrix Multiplication in Massively Parallel Safety-Related Systems,” Applied Sciences,
vol. 12, no. 8, 2022 (cit. on p. 32).

[115] J. Fernández, I. Agirre, J. Perez-Cerrolaza, et al., “A Methodology for Selective
Protection of Matrix Multiplications: a Diagnostic Coverage and Performance Trade-
off for CNNs Executed on GPUs,” in 7th International Conference on System Reliability
and Safety (ICSRS), IEEE, 2023 (cit. on p. 32).

[116] MISRA C:2012 - guidelines for the use of the C language in critical systems, Legal Rule
or Regulation, MISRA, 2012 (cit. on pp. 33, 40).

[117] J.-L. Boulanger, “Polyspace,” in Static Analysis of Software: The abstract Interpreta-
tion. John Wiley & Sons, Inc, 2013, ch. 3, pp. 113–142 (cit. on pp. 33, 40).

[118] F. Yu, H. Chen, X. Wang, et al., “BDD100K: A Diverse Driving Dataset for Heteroge-
neous Multitask Learning,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2020 (cit. on pp. 33, 65, 90, 91).

Bibliography 115

[119] Xilinx, Zynq UltraScale+ MPSoC, xilinx.com/products/silicon-devices/soc.
html, Web Page, available online: Dec-2022 (cit. on p. 34).

[120] I. Corporation©, Intel® Core™ i7-6600U Processor, https://www.intel.co.uk/
content/www/uk/en/products/sku/88192/intel-core-i76600u-processor-
4m-cache-up-to-3-40-ghz/specifications.html, Web Page, 2015 (cit. on
pp. 35, 36).

[121] I. Corporation©, Intel® Intrinsics Guide, https://www.intel.com/content/www/
us/en/docs/intrinsics-guide/index.html, Web Page, 2022 (cit. on p. 35).

[122] NVIDIA Corporation & affiliates, NVIDIA® Jetson Xavier™ NX, https : / / www .
nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-
nx/, Web Page, available online: Dec-2022 (cit. on p. 36).

[123] J. Redmon, Darknet: Open source neural networks in C, http://pjreddie.com/
darknet/, Web Page, 2016 (cit. on pp. 37–39).

[124] L. Jiao, F. Zhang, F. Liu, et al., “A Survey of Deep Learning-Based Object Detection,”
IEEE Access, vol. 7, pp. 128 837–128 868, 2019 (cit. on p. 37).

[125] P. Adarsh, P. Rathi, and M. Kumar, “YOLO v3-Tiny: Object detection and recognition
using one stage improved model,” in International Conference on Advanced Comput-
ing and Communication Systems (ICACCS), 2020, pp. 687–694 (cit. on pp. 37, 55,
83).

[126] J. Redmon and A. Farhadi, YOLOv3: An incremental improvement, 2018. arXiv:
1804.02767 [cs.CV] (cit. on pp. 37, 65).

[127] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLO v4: Optimal speed and
accuracy of object detection,” arXiv preprint arXiv:2004.10934, 2020 (cit. on p. 37).

[128] J. Diaz, C. Muñoz-Caro, and A. Niño, “A Survey of Parallel Programming Models and
Tools in the Multi and Many-Core Era,” IEEE Transactions on Parallel and Distributed
Systems (TPDS), vol. 23, no. 8, pp. 1369–1386, 2012 (cit. on p. 39).

[129] J. Athavale, A. Baldovin, R. Graefe, et al., “AI and reliability trends in safety-critical
autonomous systems on ground and air,” in 50th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W), 2020, pp. 74–
77 (cit. on p. 42).

[130] J. Perez, D. Gonzalez, C. F. Nicolas, et al., “A safety certification strategy for IEC-
61508 compliant industrial mixed-criticality systems based on multicore partition-
ing,” in Euromicro conference on Digital System Design (DSD), 2014 (cit. on p. 43).

[131] P. Koopman, K. Driscoll, and B. Hall, “Selection of cyclic redundancy code and
checksum algorithms to ensure critical data integrity,” Carnegie Mellon University,
Report, 2015 (cit. on p. 43).

[132] J. Ray and P. Koopman, “Efficient high Hamming distance CRCs for embedded
networks,” in International Conference on Dependable Systems and Networks (DSN),
2006, pp. 3–12 (cit. on p. 43).

116 Bibliography

xilinx.com/products/silicon-devices/soc.html
xilinx.com/products/silicon-devices/soc.html
https://www.intel.co.uk/content/www/uk/en/products/sku/88192/intel-core-i76600u-processor-4m-cache-up-to-3-40-ghz/specifications.html
https://www.intel.co.uk/content/www/uk/en/products/sku/88192/intel-core-i76600u-processor-4m-cache-up-to-3-40-ghz/specifications.html
https://www.intel.co.uk/content/www/uk/en/products/sku/88192/intel-core-i76600u-processor-4m-cache-up-to-3-40-ghz/specifications.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://arxiv.org/abs/1804.02767

[133] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach.
5th ed. Amsterdam: Morgan Kaufmann, 2011 (cit. on p. 52).

[134] Y. Ibrahim, H. Wang, and K. Adam, “Analyzing the Reliability of Convolutional
Neural Networks on GPUs: GoogLeNet as a Case Study,” in International Conference
on Computing and Information Technology (ICCIT-1441), 2020, pp. 1–6 (cit. on
p. 65).

[135] T.-Y. Lin, M. Maire, S. Belongie, et al., “Microsoft COCO: Common Objects in
Context,” in European conference on computer vision, Springer, 2014, pp. 740–755
(cit. on p. 65).

[136] NVIDIA Corporation & affiliates, Parallel Thread Execution ISA, https://docs.
nvidia.com/cuda/parallel-thread-execution/index.html#integer-arithmetic-
instructions, Web Page, [available online: Dec-2021], 2021 (cit. on p. 67).

[137] F. Suenobu, M. Ito, and F. Kubo, “Algebras over floating point numbers,” JP Journal
of Algebra, Number Theory and Applications, vol. 31, 2013 (cit. on p. 67).

[138] S. F. J. Apostal, D. Apostal, and R. Marsh, “Improving Numerical Reproducibility of
Scientific Software in Parallel Systems,” in IEEE International Conference on Electro
Information Technology (EIT), 2020 (cit. on p. 67).

[139] N. Whitehead and A. Fit-Florea, Floating Point and IEEE 754 Compliance for NVIDIA
GPUs, https : / / docs . nvidia . com / cuda / floating - point / index . html #
floating-point, Web Page, 2021 (cit. on p. 67).

[140] “ISO/IEC/IEEE International Standard - Floating-point arithmetic,” ISO/IEC 60559:2020(E)
IEEE Std 754-2019, pp. 1–86, 2020 (cit. on p. 67).

[141] J. Perez-Cerrolaza, J. Abella, L. Kosmidis, et al., “GPU Devices for Safety-critical
Systems: A Survey,” ACM Comput. Surv., 2022 (cit. on pp. 68, 86).

[142] I. S. Olmedo, N. Capodieci, J. L. Martinez, et al., “Dissecting the CUDA scheduling
hierarchy: a Performance and Predictability Perspective,” in IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2020 (cit. on p. 70).

[143] A. J. Calderón, L. Kosmidis, C. F. Nicolás, et al., “GMAI: Understanding and Ex-
ploiting the Internals of GPU Resource Allocation in Critical Systems,” ACM Trans.
Embed. Comput. Syst., vol. 19, no. 5, Article 34, 2020 (cit. on pp. 70, 91).

[144] R. Leveugle, A. Calvez, P. Maistri, et al., “Statistical fault injection: Quantified error
and confidence,” in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2009, pp. 502–506 (cit. on p. 83).

[145] Grand View Research, Artificial Intelligence Market Size, Share & Trends Analysis
Report By Solution, By Technology (Deep Learning, Machine Learning), By End-use, By
Region, And Segment Forecasts, https://www.grandviewresearch.com/industry-
analysis/artificial-intelligence-ai-market, Web Page, available online:
May-2023 (cit. on p. 104).

Bibliography 117

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#integer-arithmetic-instructions
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#integer-arithmetic-instructions
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#integer-arithmetic-instructions
https://docs.nvidia.com/cuda/floating-point/index.html#floating-point
https://docs.nvidia.com/cuda/floating-point/index.html#floating-point
https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-market
https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-market

Code appendix 8
8.1 Sequential code

Algorithm 6 Sequential XOR
1: function SEQ_XOR(uint32_t ui32_prev_xor, float32_t f32_data)
2: return ui32_prev_xor ∧= (uint32_t) ∗((uint32_t ∗) &f32_data);
3: end function

Algorithm 7 Sequential two’s complement checksum
1: function SEQ_2C(uint32_t ui32_prev_twos, float32_t f32_data)
2: ui32_prev_twos += (uint32_t) ∗ (uint32_t ∗) &f32_data;
3: return ((∼ui32_prev_twos) + 1u);
4: end function

Algorithm 8 Union definition
1: typedef union ui64_to_ui32 {
2: uint64_t ui64;
3: uint32_t ui32[2u];
4: } ui64_to_ui32_t;

Algorithm 9 Sequential one’s complement checksum
1: function SEQ_1C(ui64_to_ui32_t un_prev_ones, float32_t f32_data)
2: un_prev_ones.ui64 += (uint64_t) ∗ ((uint32_t ∗) &f32_data);
3: un_prev_ones.ui32[0] += un_prev_ones.ui32[1];
4: un_prev_ones.ui32[0] = ∼(un_prev_ones.ui32[0]);
5: return un_prev_ones.ui64;
6: end function

Algorithm 10 Union definition
1: typedef union ui32_to_ui8 {
2: uint32_t ui32;
3: uint8_t ui8[4u];
4: } ui32_to_ui8_t;

119

In Table 8.1, we gather the parameters employed in the experiments carried out
during this Thesis. This particular CRC configuration is referred to as CRC32-C:

Tab. 8.1: CRC-32C (Castagnoli)

CRC look up table configuration

Polynomial Generator 0x1EDC6F41

Initial Value 0xFFFFFFFF

Final Value 0xFFFFFFFF

We have computed the following look-up table employing the above parameters:

Tab. 8.2: CRC-32C (Castagnoli) Lookup Table

CRC Look Up Table Values
0x00000000L 0xF26B8303L 0xE13B70F7L 0x1350F3F4L 0xC79A971FL 0x35F1141CL 0x26A1E7E8L 0xD4CA64EBL
0x8AD958CFL 0x78B2DBCCL 0x6BE22838L 0x9989AB3BL 0x4D43CFD0L 0xBF284CD3L 0xAC78BF27L 0x5E133C24L
0x105EC76FL 0xE235446CL 0xF165B798L 0x030E349BL 0xD7C45070L 0x25AFD373L 0x36FF2087L 0xC494A384L
0x9A879FA0L 0x68EC1CA3L 0x7BBCEF57L 0x89D76C54L 0x5D1D08BFL 0xAF768BBCL 0xBC267848L 0x4E4DFB4BL
0x20BD8EDEL 0xD2D60DDDL 0xC186FE29L 0x33ED7D2AL 0xE72719C1L 0x154C9AC2L 0x061C6936L 0xF477EA35L
0xAA64D611L 0x580F5512L 0x4B5FA6E6L 0xB93425E5L 0x6DFE410EL 0x9F95C20DL 0x8CC531F9L 0x7EAEB2FAL
0x30E349B1L 0xC288CAB2L 0xD1D83946L 0x23B3BA45L 0xF779DEAEL 0x05125DADL 0x1642AE59L 0xE4292D5AL
0xBA3A117EL 0x4851927DL 0x5B016189L 0xA96AE28AL 0x7DA08661L 0x8FCB0562L 0x9C9BF696L 0x6EF07595L
0x417B1DBCL 0xB3109EBFL 0xA0406D4BL 0x522BEE48L 0x86E18AA3L 0x748A09A0L 0x67DAFA54L 0x95B17957L
0xCBA24573L 0x39C9C670L 0x2A993584L 0xD8F2B687L 0x0C38D26CL 0xFE53516FL 0xED03A29BL 0x1F682198L
0x5125DAD3L 0xA34E59D0L 0xB01EAA24L 0x42752927L 0x96BF4DCCL 0x64D4CECFL 0x77843D3BL 0x85EFBE38L
0xDBFC821CL 0x2997011FL 0x3AC7F2EBL 0xC8AC71E8L 0x1C661503L 0xEE0D9600L 0xFD5D65F4L 0x0F36E6F7L
0x61C69362L 0x93AD1061L 0x80FDE395L 0x72966096L 0xA65C047DL 0x5437877EL 0x4767748AL 0xB50CF789L
0xEB1FCBADL 0x197448AEL 0x0A24BB5AL 0xF84F3859L 0x2C855CB2L 0xDEEEDFB1L 0xCDBE2C45L 0x3FD5AF46L
0x7198540DL 0x83F3D70EL 0x90A324FAL 0x62C8A7F9L 0xB602C312L 0x44694011L 0x5739B3E5L 0xA55230E6L
0xFB410CC2L 0x092A8FC1L 0x1A7A7C35L 0xE811FF36L 0x3CDB9BDDL 0xCEB018DEL 0xDDE0EB2AL 0x2F8B6829L
0x82F63B78L 0x709DB87BL 0x63CD4B8FL 0x91A6C88CL 0x456CAC67L 0xB7072F64L 0xA457DC90L 0x563C5F93L
0x082F63B7L 0xFA44E0B4L 0xE9141340L 0x1B7F9043L 0xCFB5F4A8L 0x3DDE77ABL 0x2E8E845FL 0xDCE5075CL
0x92A8FC17L 0x60C37F14L 0x73938CE0L 0x81F80FE3L 0x55326B08L 0xA759E80BL 0xB4091BFFL 0x466298FCL
0x1871A4D8L 0xEA1A27DBL 0xF94AD42FL 0x0B21572CL 0xDFEB33C7L 0x2D80B0C4L 0x3ED04330L 0xCCBBC033L
0xA24BB5A6L 0x502036A5L 0x4370C551L 0xB11B4652L 0x65D122B9L 0x97BAA1BAL 0x84EA524EL 0x7681D14DL
0x2892ED69L 0xDAF96E6AL 0xC9A99D9EL 0x3BC21E9DL 0xEF087A76L 0x1D63F975L 0x0E330A81L 0xFC588982L
0xB21572C9L 0x407EF1CAL 0x532E023EL 0xA145813DL 0x758FE5D6L 0x87E466D5L 0x94B49521L 0x66DF1622L
0x38CC2A06L 0xCAA7A905L 0xD9F75AF1L 0x2B9CD9F2L 0xFF56BD19L 0x0D3D3E1AL 0x1E6DCDEEL 0xEC064EEDL
0xC38D26C4L 0x31E6A5C7L 0x22B65633L 0xD0DDD530L 0x0417B1DBL 0xF67C32D8L 0xE52CC12CL 0x1747422FL
0x49547E0BL 0xBB3FFD08L 0xA86F0EFCL 0x5A048DFFL 0x8ECEE914L 0x7CA56A17L 0x6FF599E3L 0x9D9E1AE0L
0xD3D3E1ABL 0x21B862A8L 0x32E8915CL 0xC083125FL 0x144976B4L 0xE622F5B7L 0xF5720643L 0x07198540L
0x590AB964L 0xAB613A67L 0xB831C993L 0x4A5A4A90L 0x9E902E7BL 0x6CFBAD78L 0x7FAB5E8CL 0x8DC0DD8FL
0xE330A81AL 0x115B2B19L 0x020BD8EDL 0xF0605BEEL 0x24AA3F05L 0xD6C1BC06L 0xC5914FF2L 0x37FACCF1L
0x69E9F0D5L 0x9B8273D6L 0x88D28022L 0x7AB90321L 0xAE7367CAL 0x5C18E4C9L 0x4F48173DL 0xBD23943EL
0xF36E6F75L 0x0105EC76L 0x12551F82L 0xE03E9C81L 0x34F4F86AL 0xC69F7B69L 0xD5CF889DL 0x27A40B9EL
0x79B737BAL 0x8BDCB4B9L 0x988C474DL 0x6AE7C44EL 0xBE2DA0A5L 0x4C4623A6L 0x5F16D052L 0xAD7D5351L

120 Chapter 8 Code appendix

Algorithm 11 Sequential Cyclic Redundant Code
1: function CRC32_UI32(uint32_t ui32_crc, uint32_t ui32_data)
2: uint32_to_ui8_t u;
3: u.ui32 ui32_data;
4: ui32_crc = kaui32_crc_table[(ui32_crc ∧ u.ui8[0u]) & 0x00ffu] ∧ (ui32_crc >> 8u);
5: ui32_crc = kaui32_crc_table[(ui32_crc ∧ u.ui8[1u]) & 0x00ffu] ∧ (ui32_crc >> 8u);
6: ui32_crc = kaui32_crc_table[(ui32_crc ∧ u.ui8[2u]) & 0x00ffu] ∧ (ui32_crc >> 8u);
7: ui32_crc = kaui32_crc_table[(ui32_crc ∧ u.ui8[3u]) & 0x00ffu] ∧ (ui32_crc >> 8u);
8: return ui32_crc;
9: end function

8.2 AVX code

Algorithm 12 AVX XOR
1: function __AVX_XOR(__m256i m256i_prev_xor, __m256i m256i_data)
2: return _mm256_xor_si256(m256i_prev_xor, m256_i_data);
3: end function

Algorithm 13 AVX two’s complement checksum
Auxiliar variables:
__m256i m256i_ones = _mm256_set1_epi32(-1)
__m256i m256i_singleOne = _mm256_set1_epi32(1)

1: function __AVX_2C(__m256i m256i_prev_twos, __m256i m256i_data)
2: __m256i m256i_ES_twos;
3: m256i_ES_twos = _mm256_add_epi32(m256i_prev_twos, m256i_data);
4: m256i_ES_twos = _mm256_xor_si256(m256i_ES_twos, m256i_ones);
5: m256i_ES_twos = _mm256_add_epi32(m256i_ES_twos, m256i_singleOne);
6: return m256i_ES_twos;
7: end function

Algorithm 14 AVX one’s complement checksum
Auxiliar variables:
__m256i m256i_ones = _mm256_set1_epi32(-1);
__m256i m256i_zeros = _mm256_setzero_si256();

1: function __AVX_1C(__m256i m256i_prev_ones, __m256i m256i_data)
2: m256i_ES_ones = _mm256_add_epi64(m256i_prev_ones, m256i_data);
3: m256i_ES_ones = _mm256_hadd_epi32(m256i_ES_ones, m256i_ES_ones);
4: m256i_ES_ones = _mm256_xor_si256(m256i_ES_ones, m256i_ones);
5: m256i_ES_ones = _mm256_unpackhi_epi32(m256i_ES_ones, m256i_zeros);
6: return m256i_ES_ones;
7: end function

8.2 AVX code 121

Algorithm 15 AVX Fletcher
Auxiliar variables:
uint32_t aui32_ES_hi[4] = { 0u };
uint32_t aui32_ES_lo[4] = { 0u };

1: function __AVX_1C(__m128i ∗m128i_Flet_lo, __m128i ∗m128i_Flet_hi, __m256i m256i_data)
2: aux_128i_Flet_lo = _mm256_extractf128_si256(m256i_data, 0);
3: aux_128i_Flet_hi = _mm256_extractf128_si256(m256i_data, 1);
4: m128i_Flet_lo = _mm_add_epi32(m128i_Flet_lo, aux_128i_Flet_lo);
5: m128i_Flet_hi = _mm_add_epi32(m128i_Flet_hi, m128i_Flet_lo);
6: m128i_Flet_lo = _mm_add_epi32(m128i_Flet_lo, aux_128i_hi);
7: m128i_Flet_hi = _mm_add_epi32(m128i_Flet_hi, m128i_Flet_lo);
8: memcpy(aui32_ES_lo, &m128i_Flet_lo, sizeof(aui32_ES_lo));
9: memcpy(aui32_ES_hi, &m128i_Flet_hi, sizeof(aui32_ES_hi));

10: for each 32 bit positions in a m128i data type do
11: aui32_ES_lo[0, · · · , 3] %= 65535;
12: aui32_ES_hi[0, · · · , 3] %= 65535;



Modulo operation
(not implemented

with AVX instructions)13: end for
14: memcpy(&m128i_Flet_b_lo, aui32_ES_lo, sizeof(aui32_ES_lo));
15: memcpy(&m128i_Flet_b_hi, aui32_ES_hi, sizeof(aui32_ES_hi));
16: return ;
17: end function

Algorithm 16 AVX Cyclic Redundant Code
1: function AVX_CRC32_UI32(uint32_t ui32_prev_crc, uint32_t ui32_data)
2: uint32_t aui32_val[8];
3: uint32_t ui32_crc;
4: memcpy(aui32_val, &b256, sizeof(aui32_val));
5: for each element of the array aui32_val do
6: ui32_crc = _mm_crc32_u32(ui32_prev_crc, (uint32_t) ∗(uint32_t ∗) &aui32_val[0, · · · , 7]);
7: end for
8: return ui32_crc;
9: end function

8.3 CUDA code

Algorithm 17 Two’s complement checksum
1: function __A2C(uint32_t ui32_a, uint32_t ui32_b)
2: uint32_t acc;
3: asm (“add.u32 %0, %1, %2; ”
4: “not.b32 %0, %0; ”
5: “add.u32 %0, %0, 1; ”
6: “=r” (acc)
7: “=r” (ui32_a), "r"(ui32_b));
8: return acc;
9: end function

122 Chapter 8 Code appendix

Algorithm 18 One’s complement checksum
1: function __A1C(uint32_t ui32_a, uint32_t ui32_b)
2: uint32_t acc;
3: asm (“add.cc.u32 %0, %1, %2; ”
4: “addc.u32 %0, %0, 0; ”
5: “not.b32 %0, %0; ”
6: “=r” (acc)
7: “=r” (ui32_a), "r"(ui32_b));
8: return acc;
9: end function

8.3 CUDA code 123

124 Chapter 8 Code appendix

	Titlepage
	Abstract
	Abstract
	Acknowledgement
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Safety Implications of Artificial Intelligence
	1.2 Safety Implications of High-Performance Embedded Computing Platforms
	1.3 Objectives
	1.4 Contributions
	1.4.1 Adaptation of Sequential and Vectorization Based ML Libraries to Accomplishing Functional Safety Standards
	1.4.2 Fostering Performance Improvement While Preserving Safety: GPU-based Implementations
	1.4.3 Metholodology to Selectively Protect CNNs

	1.5 Thesis Organization
	1.6 Publications

	2 Background
	2.1 Basic concepts
	2.1.1 Artificial Intelligence
	2.1.2 Dependability, Safety and Functional Safety
	2.1.3 Emerging Standards and Initiatives for AI
	2.1.4 Checksum Algorithms

	2.2 Related Work
	2.2.1 Emergent Initiatives to Address ML Certification and Traditional Safety Standards Adaptations
	2.2.2 Safe ML Deployment on HPEC Platforms

	3 Methodology and Experimental Set-up
	3.1 Methodology
	3.2 Experimental Set-up
	3.2.1 MISRA C and Polyspace®
	3.2.2 Berkeley DeepDrive dataset
	3.2.3 Embedded platforms
	3.2.4 YOLO-v3 and Tiny YOLO-v3
	3.2.5 CUTLASS

	4 Safe Deployment of MMM in Sequential Implementations
	4.1 Systematic error avoidance in the MMM
	4.2 Error Detection in the MMM
	4.2.1 Execution Signatures
	4.2.2 Architectural Patterns

	4.3 Evaluation
	4.3.1 Experimental Set-up
	4.3.2 Performance Impact
	4.3.3 Diagnostic Coverage
	4.3.4 Trade-off between DC and Performance Impact
	4.3.5 IEC 61508 compliance

	4.4 Summary

	5 Exploiting Safe Parallelization on GPUs
	5.1 Enhancing MMM Safety
	5.1.1 Diagnostic Techniques
	5.1.2 Reproducibility
	5.1.3 Memory Hierarchy

	5.2 Evaluation
	5.2.1 Experimental Set-Up
	5.2.2 Performance Impact
	5.2.3 Diagnostic Coverage
	5.2.4 Trade-off Between Performance Impact and DC
	5.2.5 IEC 61508 compliance

	5.3 Summary

	6 Methodology to Selectively Protect CNNs: Use Case Application Analysis
	6.1 Methodology to Selectively Protect CNNs
	6.1.1 First stage: CNN's Sensitivity to Misclassification Analysis
	6.1.2 Second Stage: Layer-by-layer Performance Impact and DC
	6.1.3 Third Stage: Selective Protection
	6.1.4 DC Analysis in Big Dimension Matrices

	6.2 Evaluation
	6.2.1 Experimental Set-up
	6.2.2 Stage 1: CNN's Sensitivity to Misclassification Analysis
	6.2.3 Stage 2: Layer-by-layer Performance and DC Analysis
	6.2.4 Stage 3: Selective protection

	6.3 Summary

	7 Conclusions and Future Work
	7.1 Summary of Contributions
	7.2 Impact
	7.3 Future Work

	Bibliography
	8 Code appendix
	8.1 Sequential code
	8.2 AVX code
	8.3 CUDA code

	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	anm0:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

